

Abstract

This works deals with the power-aware job dispatching problem in supercom-
puters; broadly speaking the dispatching consists of assigning finite capacity
resources to a set of activities, with a special concern toward power and energy
efficient solutions. We tackle the problem from different angles and introduce
novel optimization approaches to address its multiple aspects.

The proposed techniques have a broad application range but are particu-
larly aimed at applications in the field of High Performance Computing (HPC)
systems. In recent years there has been a remarkable increase in the world-
wide installed capacity and the peak computational performance of HPC ma-
chines. Together with the computational increase the HPC community observed
a growing power demand that would lead supercomputers to unacceptable power
consumptions. For this reason, lately the focus has been steadily shifting from
maximum peak computational performance towards a more balanced and power-
aware approach.

Devising a power-aware HPC job dispatcher is a complex and multi-faceted
problem, where diverse, partially contrasting goals must be satisfied. An ad-
ditional layer of difficulty is represented by the online nature of the problem:
generally speaking, supercomputers do not run the same set of application over
their entire life but rather have to react to new and unexpected job requests.
Hence, a solution to the problem must be computed in real time and there-
fore stringent time limits must be respected in order not to disrupt the system
behaviour. This aspect discourages the usage of exact methods and instead sug-
gests the adoption of heuristic techniques. Historically, this have always been
the case in the HPC practice and literature, at the cost of settling for extremely
suboptimal solutions. The application of optimization techniques to the dis-
patching task is still an unexplored area of research and can drastically improve
the performance of HPC systems.

In this work we first tackle the job dispatching problem on a real HPC ma-
chine, the Eurora supercomputer hosted at the Cineca research center, Bologna.
We propose a Constraint Programming (CP) model that outperforms the dis-
patching software currently in use. An essential element to take power-aware
decisions during the job dispatching phase is the possibility to estimate jobs
power consumptions before their execution. To this end, we applied Machine
Learning techniques to create a prediction model that was trained and tested
on the Euora supercomputer, showing a great prediction accuracy. Then we
finally develop a power-aware solution, considering the same target machine,
and we devise different approaches to solve the dispatching problem while cur-
tailing the power consumption of the whole system under a given threshold.
We propose a heuristic technique and a hybrid method combining CP with a
heuristic algorithm. Both our methods are able to solve practical size instances
and outperform most of the current state-of-the-art techniques.

iv

Contents

1 Introduction 1
1.1 Content . 2
1.2 Contribution . 4
1.3 Outline . 5

2 Related Work 7
2.1 HPC systems . 7

2.1.1 HPC Workloads . 8
2.1.1.1 HPC Jobs Models 9

2.1.2 HPC Systems Dispatching Problem 11
2.1.2.1 Existing Heuristics Techniques 12

2.1.3 Power/Thermal Considerations 15
2.1.3.1 Over-provisioning 18
2.1.3.2 Energy Proportionality 18
2.1.3.3 Voltage & Frequency Scaling 19
2.1.3.4 RAPL-based techniques 21
2.1.3.5 Configuration Selection 22
2.1.3.6 Idle Power Consumption & Workload Consoli-

dation . 22
2.1.3.7 Cooling Infrastructure 23
2.1.3.8 Resource Heterogeneity 24
2.1.3.9 Power Aware Workload Management 25
2.1.3.10 Compilation-based Methods 26
2.1.3.11 Power Capping 26

2.2 Constraint Based Job Dispatching 27
2.2.1 Constraint Programming 27

2.2.1.1 Modeling in CP 28
2.2.1.2 Global Constraint 29
2.2.1.3 Search in CP . 30

2.2.2 Modeling a scheduling problem with CP 31
2.2.3 Objective Functions . 33
2.2.4 Filtering for Cumulative Constraints 34
2.2.5 Search Strategies in Scheduling Problems 37
2.2.6 Decomposition Techniques 38

2.2.6.1 Benders Decomposition 39
2.2.6.2 Large Neighborhood Search 39
2.2.6.3 Adaptive Randomized Decomposition 41

2.3 Machine Learning . 41

vi CONTENTS

2.3.1 Supervised Learning . 42
2.3.1.1 Decision Trees 43
2.3.1.2 Artificial Neural Networks 45
2.3.1.3 Statistical Learning 48
2.3.1.4 Instance-based Learning 50
2.3.1.5 Support Vector Machines 51
2.3.1.6 Ensemble Methods 54

2.3.2 Unsupervised and Reinforcement Learning 55
2.3.2.1 Unsupervised Learning 55
2.3.2.2 Reinforcement Learning 56

2.3.3 Applying Machine Learning to HPC Systems 57

3 Job Dispatching in HPC systems 61
3.1 Problem Statement . 62
3.2 Eurora System . 63

3.2.1 System Description . 63
3.2.2 Current Dispatcher . 64

3.3 Online Dispatching . 65
3.4 Job Dispatching in HPC: a CP Approach 65

3.4.1 Rolling Horizon . 66
3.4.2 Formal Problem Definition 66
3.4.3 Model Definition . 67

3.4.3.1 Modeling Decisions and Constraints 67
3.4.3.2 Handling the Objective Function 69
3.4.3.3 Example of a solution 69

3.5 Experimental Results . 70
3.5.1 Evaluation of Our Models 71
3.5.2 Comparison with PBS . 72

3.6 Chapter Summary . 77

4 Predicting Power Consumptions in HPC Sytems 79
4.1 Eurora Data . 81

4.1.1 Collecting Infrastructure 81
4.1.1.1 HW Sensors . 82
4.1.1.2 Workload Information 85

4.1.2 Example of Collected Data 87
4.2 Job Power Profiling . 90

4.2.1 Shared Resource Power Consumptions 92
4.3 Powers Prediction Model . 95

4.3.1 Exclusive Resources . 96
4.3.2 Shared Resources . 97
4.3.3 Outliers Management . 99

4.4 Experimental Results . 99
4.5 Chapter Summary . 102

5 HPC Job Dispatching under Power Cap Constraints 103
5.1 Context . 104
5.2 Job Dispatcher with Power Cap 105

5.2.1 Problem Definition . 105
5.2.2 Heuristic Approach . 106

CONTENTS vii

5.2.3 Hybrid Approach . 107
5.2.3.1 Scheduling Problem 108
5.2.3.2 Allocation Problem 110
5.2.3.3 Subproblems Interaction 111
5.2.3.4 Difference with classical LBBD 111

5.2.4 Preliminary Results . 112
5.2.4.1 Evaluation of Our Models 112

5.3 Comparison with State-of-Art . 117
5.3.1 Scalability-oriented Modifications 117
5.3.2 Experimental Setup . 118

5.3.2.1 Impact of the power reduction/frequency scaling 119
5.3.2.2 Evaluation Metric 119

5.3.3 Results . 120
5.3.3.1 Initial State Impact 121
5.3.3.2 Instance Size Impact 122
5.3.3.3 Job Arrivals Mode Impact 124
5.3.3.4 Historical Traces 126
5.3.3.5 Mispredictions Impact 131

5.4 Case Study: Integration with Cooling System 132
5.4.1 Eurora cooling system . 133
5.4.2 Free-cooling Modeling . 134
5.4.3 Experimental Results . 136

5.5 Variable Power Budget . 139
5.5.1 Frequency Reassignment Problem 140

5.5.1.1 Problem Definition 141
5.5.1.2 Problem Extensions 141

5.5.2 Greedy Algorithm . 142
5.5.3 CP Approach . 143

5.5.3.1 Search Strategy 145
5.5.3.2 Extensions . 147

5.5.4 MIP Approach . 147
5.5.5 Methods Comparison . 148

5.5.5.1 Models Evaluation 148
5.5.5.2 Problem Extensions 151

5.6 Chapter Summary . 153

6 Conclusion 157

viii CONTENTS

List of Figures

2.1 Two supercomputers hosted by CINECA [CIN] in Bologna . . . 8

2.2 Example of resource consumption profile. Source Global Con-
straint Catalog [glo15] . 32

2.3 TTB propagation example . 35

2.4 Edge-finding propagation example 36

2.5 Decision Tree Example . 43

2.6 Example of perceptron . 46

2.7 Example of ANN . 47

2.8 Separating Hyperplane . 52

3.1 EURORA Architecture . 63

3.2 Eurora utilization on the first trace (BATCH1) 73

3.3 Waiting jobs and queue time for BATCH1 73

3.4 Eurora utilization on the second trace (BATCH2) 74

3.5 Waiting jobs and queue time for BATCH2 75

3.6 Eurora utilization on the third trace (BATCH3) 76

3.7 Waiting jobs and queue time for BATCH3 76

3.8 Proactive dispatching VS PBS: an example 77

4.1 HW data flow . 82

4.2 HW Data and Tables . 83

4.3 Jobs Info and Tables . 86

4.4 Percentage of requested resources, grouped by queue 88

4.5 (a) Temperature and power for CPU and GPU; (b) Power Con-
sumed and number of nodes used by job. 89

4.6 (a) Power and Load; (b) Power and Instructions Per Seconds. . . 89

4.7 Power and duration of a job, grouped by user 90

4.8 Real power consumptions of 3 jobs (A, B and C) and standard
deviation distribution histogram 93

4.9 Comparison between the real aggregated power and the computed
aggregated power. Mean Error: 0.011 94

4.10 Predictors Scheme . 96

4.11 Prediction errors histograms for two test sets 97

4.12 Prediction error histograms of two different users 98

4.13 Comparison between the real total power and the predicted total
power. Mean Error: 0.056 . 101

4.14 Data Set size and prediction error 101

x LIST OF FIGURES

5.1 Decomposition Scheme . 109
5.2 8 Node - Base Set . 114
5.3 8 Node - HighLoad Set . 115
5.4 8 Node - ManyUnits Set . 115
5.5 32 Node - Base Set . 116
5.6 32 Node - Highload Set . 116
5.7 Average BSLD; 50 jobs 300s; HS=0%; uniform distribution . . . 122
5.8 Average BSLD; 200 jobs in 300s; HS=0%; burst arrival 123
5.9 Average BSLD; 400 jobs in 300s; HS=0%; burst arrival. Test-

ing the importance of a power-aware job admission control for
DynShare methods . 125

5.10 Uniform distribution . 126
5.11 Left-skewed distribution . 127
5.12 Burst arrival . 127
5.13 Average BSLD; 100 jobs from historical traces 128
5.14 Average BSLD; 200 jobs from historical traces 129
5.15 Average BSLD; 400 jobs from historical traces 129
5.16 Average BSLD; 100 jobs from historical traces 130
5.17 Average BSLD; 100 jobs in 900s; HS=0%; uniform distribution . 132
5.18 HPC cooling system scheme. 134
5.19 Overall cooling system power consumption (a) and correspond-

ing PUE (b) for different Tamb and HPC workloads producing
thermal power Pth. Maximum power budget as a function of Ta
and PUE upper bounds (c). 136

5.20 Idle Power and Active Power Ratio VS Power Budget (%) 137
5.21 Base Problem - 100 Jobs (Duration increase and energy difference)150
5.22 Base Problem - 600 jobs) . 151
5.23 Base Problem - 1000 Jobs) . 152

List of Tables

2.1 HPC Applications Taxonomy [FR96] 10
2.2 Training Set Example . 42

3.1 Access requirements and waiting times for the PBS queues in
Eurora . 65

3.2 An example of problem instance 70
3.3 A feasible solution for the instance from Table 3.2 70
3.4 Models comparison, queue times 70
3.5 Models comparison, system load 71
3.6 Job traces composition . 72

4.1 CPUs tables entry fields . 84
4.2 Cores tables entry fields . 84
4.3 GPUs tables entry fields . 84
4.4 MICs table entry fields . 85
4.5 Boards table entry fields . 85
4.6 Jobs table entry fields . 87
4.7 Jobs to nodes table entry fields 87

5.1 Eurora Cooling System Parameters 135
5.2 Impact of the proposed power budgeting ambient temperature-

aware on one year supercomputer center usage scenario. 138
5.3 Extensions Experiments Summary. Each value represents the

percentage (%) of solved instances. 153

xii LIST OF TABLES

Chapter 1

Introduction

This work addresses the workload dispatching problem in High Performance
Computing (HPC) systems – also referred to as supercomputers. Given a work-
load composed by a set of activities (or jobs) the dispatching problem consists
in assigning a pool of finite capacity resources and a start time to each activity
to produce a feasible schedule, i.e. a schedule respecting the resource capacity
constraints at any time. Job dispatching in supercomputers is a branch of the
wider Scheduling and Allocation problem (S & A) that arises in several differ-
ent computing fields. Workload dispatchers in real HPC systems must satisfy
a number of different requirements, ranging from respecting the users’ needs to
meeting system owners’ productivity goals. We are especially concerned with
the issue of power consumption, a matter which is acquiring increasing relevancy
along with the growth of worldwide HPC installed capacity.

Supercomputers peak performance, measured in FLOPs (floating point op-
eration per second), has been growing steadily since their introduction in the
1960s and it is expected that the Exascale (1018) will be reached around 2023,
even though a handful of more optimistic estimates forecast the Exascale as
early as 2020. Nonetheless, a very concerning obstacle towards reaching this
goal is posed by the power consumption of nowadays HPC machines. Predic-
tion trends indicate that simply scaling up current architectures would lead to
unsustainable power demands (hundreds of MWatts). Several diverse research
avenues are currently being explored in order to improve the energy efficiency of
supercomputers by at least one order of magnitude, ranging from novel hardware
solutions to improved system management.

HPC systems are large machines composed by numerous physical parts that
need to be carefully orchestrated. An essential role of any software infrastructure
overseeing a supercomputer is workload dispatching, whose policies and actions
can have deep repercussions on the overall system performance. Job dispatching
is a notoriously complex task, due in part to the sheer scale of the problem
(supercomputers easily have hundreds or thousands of computing nodes where
tens of jobs need to run simultaneously) and in part to its online nature, because
optimization must be performed respecting real-time constraints (theoretically
no delay to workload execution should be introduced by the dispatching system).
This happens since the applications which are going to be submitted to the
supercomputer are not known in advance (except a few exceptions) and therefore
it is not possible to compute an optimal schedule offline, but a dispatcher must

2 1. Introduction

rather be able to respond to unforeseen jobs arrivals.
The online requirement of HPC job dispatching coupled with the intrinsic

difficulty of S & A problems (which have been known to be NP-hard since
long time) has led to overwhelming preponderance of heuristic solutions, with
an almost complete disregard of combinatorial optimization techniques. This
is partially due to the fact that many combinatorial methods aim at finding
exact, optimal solutions but typically require excessively long times to explore
the space of possible solutions and have been therefore confined within domains
where the optimization can be performed offline (i.e. embedded systems).

Nevertheless, if the exactness constraint is relaxed, i.e. settling for good
solutions rather than optimal ones, combinatorial techniques have been proved
to be very effective in finding solutions outperforming many heuristic approaches
while respecting the time limit. For example, Constraint Programming (CP) has
a long history of success when dealing with Scheduling problems. The important
point is to find the right trade-off between solution quality and effort spent in
searching for solutions. Another promising approach relies in decomposing the
job dispatching problem in simpler sub-problems, reducing its complexity, and
mixing methodologies from combinatorial optimization and heuristic techniques,
exploiting their respective strong suits.

1.1 Content

We deal with the job dispatching problem in HPC systems which can be de-
composed in two components: 1) the Allocation problem, i.e. choosing the set
of finite capacity resources to be assigned to each activity and 2) the Scheduling
problem, i.e. deciding the start time for each job in order to produce a feasible
schedule that respect all the involved constraints. We are particularly interested
in devising a power-aware solution capable to bound the power consumption of
the HPC system. The main content of this work can be divided in three parts.

Scheduling & Allocation in HPC Systems: We begin with addressing the job
dispatching problem on a real HPC system (namely the Eurora supercomputer
hosted at CINECA in Bologna). We aim at finding solutions that maximize
the Quality-of-Service perceived by users (measured in terms of waiting time)
and at the same time maximize also the system utilization; these two goals are
not mutually exclusive but finding the right trade-off is a non-trivial problem.
Keeping the system utilization at a high level serves a two-fold purpose: 1)
satisfying more users requests per period of time (with a positive effect for the
system owners thanks to the higher revenues) and 2) reducing the number of
idle computational units, which would otherwise consume significant amounts
of unused power. We focus on devising an online job dispatcher and therefore
the time needed to find a solution must respect strict limits.

While the vast majority of current job dispatchers present a reactive na-
ture and their scheduling and allocation policies can usually be described by
simple set of rules (i.e. First-In-First-Out), we define a novel, proactive job dis-
patcher that explores a much wider space of possible decisions. At the core of
our approach there is a Constraint Programming model. Due to the real-time
requirements of online dispatching, the proposed approach does not strive to
find optimal solutions but it specializes in finding the best among the feasible
ones encountered within the time limit. We show that the proposed model leads

1.1 Content 3

to remarkable improvements in terms of both machine utilization and waiting
times for queued jobs with respect to the currently used dispatcher, i.e. Portable
Batch System (PBS).

Predictive Model for the Power Consumption of HPC Jobs: The funda-
mental advantage of proactive dispatching is long-term reasoning over a group
of activities rather then taking immediate, short-term rewarding decisions that
can lead to performance degradation over longer periods. An effective reasoning
process relies on the possibility of making informed choices, i.e. the dispatcher
needs to evaluate the consequences of its scheduling and allocation decisions.
A good schedule can be produced only if we know at decision time (within a
degree of confidence) how a workload will evolve; for example, job dispatchers
tend to assume that the amount of resource requested by each activity will be
constant throughout its whole duration.

Having this in mind it is clear that, in order to preserve the benefits provided
by a proactive dispatcher while adding power awareness, the ability to predict
the power consumption associated to any workload before its execution assumes
a critical importance. We therefore consider the problem of estimating the power
consumption of HPC applications using predictive models created with Machine
Learning techniques. For this scope, we implemented an information gathering
infrastructure that assembled measurements from a variety of physical sensors
(such as power consumption, temperature, etc.) on the Eurora supercomputer.

We then take advantage of this infrastructure and the collected information
to create a data set that we use to train a collection of predictive models to
estimate the power consumption of any job. These models take as inputs only
information available at dispatch time. We then tested the quality of our predic-
tions against historical traces of past workloads executed on the supercomputer.
The results of our analysis show that the power consumption of each job, in-
cluding jobs never encountered before, can be predicted with a very high level
of accuracy.

Power-Aware Job Dispatching : Finally, we take into account the power-
related issues and we propose two methods to create a job dispatcher able to
contain the power consumption of a real HPC system within an administrator-
decided power budget. To reach this end we devise two approaches: 1) a heuris-
tic algorithm and a 2) hybrid approach that decomposes the problem in the
scheduling stage and the allocation stage, solving the former via Constraint
Programming and the latter with a heuristic technique. The introduction of the
power constraint adds a new layer of complexity and consequently we refrain
again from obtaining optimal solutions due to real-time constraints. The goal
of the dispatcher is to minimize the performance degradation and QoS decrease
that are inherently associated with the imposition of a bound on the power
consumption.

The approach we propose is orthogonal to the most commonly used tech-
niques in today’s supercomputers, which generally rely on power monitoring
infrastructure and dynamic power management through an intervention on the
performance of computational resources, i.e. reducing the operating frequency
of a CPU leads to a decreased power consumption. In our method we want to
act on the Scheduling & Allocation decisions alone, for example with a careful
planning of the execution order. Since Scheduling & Allocation decisions take
place during the dispatching phase the capability of estimating the power con-

4 1. Introduction

sumption of any HPC job during this phase assumes a paramount importance.
For this reason we integrate into the dispatcher the ML models to predict jobs
power consumptions described previously.

The experimental analysis reveals that our approach is able to outperform
the current State-of-the-Art methods used in power capped supercomputers.
Moreover, we demonstrate that it is possible to combine our approach with
other techniques such as those acting on the computing node performance; mix-
ing non-mutually exclusive methods allows to exploit their respective strengths,
resulting in the best final outcome. We apply our dispatcher to a real super-
computer (again the Eurora HPC system), taking into consideration its cooling
infrastructure, and we show how the novel power capping method enables to
maximize the supercomputer efficiency. Lastly, we consider the case of variable
power budgets focusing on the case of sudden power cap decrease, i.e. criti-
cal situation where the power consumption of the current workload must be
drastically lowered due to the malfunctioning of other components of the HPC
machine. We therefore add a module to the power capped dispatcher that is
able to cope with these situations through a reduction of the computing nodes
performance.

1.2 Contribution

This work is positioned at the intersection of High Performance Computing,
combinatorial optimization and Machine Learning. The main contributions of
this work regard the development of novel approaches to solve Scheduling &
Allocation problems in the context of High Performance Computing, with a
special emphasis on power-aware solutions. In particular we both applied state-
of-the-art and devised original methods belonging to the area of combinatorial
optimization and Machine Learning in order to tackle S & A in supercomputers.
The contributions of this work are the following:

� A novel, proactive, Constraint Programming based job dispatcher for su-
percomputers. The basic idea of the CP model is to consider multiple
jobs (i.e. all jobs in the waiting queue) whenever a new schedule is com-
puted and explore a broad space of possible solutions, instead of using
the reactive, rule-based policy adopted by the vast majority of current
supercomputers. The use of Constraint Programming allowed us to beat
the system currently adopted on the HPC machine used as a case study
and at the same time the high flexibility of the CP paradigm simplifies
the implementation of the new model to other real world systems. This
work was published in [BBB+14].

� A new methodology to develop predictive models to estimate the power
consumption of HPC applications employing existing Machine Learning
techniques. The most important element we provide is the development
and description of the entire process leading from the data collection in-
frastructure to the creation and use of the predictive models. We deal
with several challenges that arise in real supercomputer, ranging from
establishing the minimal amount of data needed to guarantee a good pre-
diction accuracy and how to create a good training set to feed the Machine
Learning models starting from the raw measurement data. We devise a

1.3 Outline 5

method that was tested on the historical power consumption traces of a
real system; a key strength of our approach is the possibility to be applied
to different systems. This work was partially presented in [BBL+16a]

� Two novel approaches to deal with the problem of job dispatching in
a HPC system with power cap. We propose a heuristic algorithm and
an innovative hybrid technique combining CP and a heuristic technique.
The hybrid methods is loosely inspired by the decomposition techniques
found in the combinatorial optimization literature but solves the problem
in a new way. The comparison with the state-of-the-art power capped
job dispatchers in HPC reveals that our methods perform extremely well.
Moreover, our approach is extremely flexible and can be easily integrated
with different techniques from the state-of-the-art in order to achieve even
better performance or address sudden changes in the available power bud-
get. Parts of this work have been published in [BCLB15, BCL+15] and
another part (the comparison with the state-of-the-art) should appear on
the journal Transactions on Parallel and Distributed Systems.

1.3 Outline

The structure of the thesis is the following. Chapter 2 gives a panoramic
overview of the Scheduling & Allocation problem in HPC machines, with a
particular focus on power related issues. The chapter also provides a brief in-
troduction and state-of-the-art discussion on the enabling methodologies used
to tackle the main problem, namely the Constraint Programming paradigm and
Machine Learning. Chapter 3 then formally introduces the job dispatching prob-
lem and presents a model to solve it. Chapter 4 addresses the issue of predicting
the power consumption of HPC applications, describing the predictive models
created for that purpose and the data collecting process employed to gather the
information needed to effectively use Machine Learning techniques. Chapter 5
introduces the power dimension to the job dispatching problem. The chapter
describes a novel job dispatcher able to bound a supercomputer power con-
sumption and compares its performance with other methods from the current
state-of-the-art.

6 1. Introduction

Chapter 2

Related Work

This chapter gives a panoramic view on the existing research related to High
Performance Computing systems, with a focus on optimization of workload man-
agement. The chapter is split in three main subsections. First, Section 2.1 intro-
duces the High Performance Computing problem, focusing on the main issues
considered in this work, i.e. workload management optimization and power-
awareness. Afterwards, the following sections discuss the enabling technologies
that will form the grounds for the approaches presented in the rest of the work.
Section 2.2 considers the Constraint-Based Scheduling approach, describing the
Constraint Programming paradigm and its application to Scheduling and Allo-
cation problems. Section 2.3 discusses Machine Learning, its techniques and its
relevance in High Performance Computing setting.

2.1 HPC systems

The term High Performance Computing (HPC) systems – also called super-
computers – refers to machines with very large computational capacities, which
have reached nowadays tens of PetaFLOPS1, i.e. the number of floating point
operations per second. Trends in the last twenty years show an exponential
increase of the peak performance; following these trends the ExaFLOPs (1018)
scale is expected to be reached in 2020-2023 [KR13, Kha11]. Supercomput-
ers are used in a wide range of computationally intensive applications, such
as weather forecasting, physical modeling, aerodynamic research, probabilistic
analysis, molecular dynamics simulation and many others [Rus78,AAA01,Jos97,
KAB+00, Gid86, CW03, Mis90, EHB+13, CKL+13, ABD+14, MKM15, VFHB14,
HBBD16, KHO+16]. HPC systems are also part of those computing centers
which play a key role in modern ICT architectures, running our internet ser-
vices, managing several infrastructures, making our research possible.

Whereas earlier HPC systems used innovative designs and parallelism to
achieve superior computational performance [CLHH09] and usually only a few
processors, since the end of the 20th century machines with thousands of pro-
cessors began to appear and today supercomputers are usually composed by a
very large number (tens or hundreds of thousands) of “off the shelf”, general

1FLOPS is an acronym for FLoating-point Operations Per Second, 1 PetaFLOPS corre-
sponds to 1015 FLOPS

8 2. Related Work

(a) Eurora (b) Fermi

Figure 2.1: Two supercomputers hosted by CINECA [CIN] in Bologna

purpose processors – CPUs, graphical units, hardware accelerators – linked by
fast connections [HJS00, HT89]. As the number of components increases, su-
percomputers managers have to address and solve numerous challenges in order
to guarantee good performance for the customers and maintain reasonably low
functioning costs for the owners. Another aspect adding an additional layer of
complexity is the heterogeneous nature of the HPC systems, since they may in-
clude various types of resources (CPU, HW accelerators, Random Access Mem-
ory, hard disks,..), as well as various different kinds of computing units, each of
them with specific characteristic and ability to fulfill different requirements.

Typically, supercomputers have several users which submit their own com-
putationally intensive applications (usually called “jobs” or “tasks” in the lit-
erature). These jobs need to be assigned to a portion of the system resources –
according to their requirements – and then be executed. From the users point of
view the notion of good performance entails that the applications are correctly
run and complete their execution, possibly with the smallest delay possible be-
tween the submission of the task and its start. Conversely, HPC systems owners
must satisfy all the users requests but at the same time have their own peculiar
set of concerns: keep as low as possible the operational costs of the machine
(power consumption – see Section 2.1.3, maintenance costs..) while maximiz-
ing profits2, i.e. servicing the greatest possible number of customers without
degrading users’ performance.

2.1.1 HPC Workloads

The behaviour of a supercomputer strongly depends on the characteristics of
the applications running on it, i.e. its workload [CS93, CCF+99, Stu, YZ13b].
Typically, users submit their jobs into the system specifying a set of resource
requirements. For example each job may specify the number of execution nodes,

2They also have to take into account the finite lifespan of HPC machines, usually no more
than 3-5 years [Fel13]

2.1 HPC systems 9

the number of needed CPUs, the number of hardware accelerators (such as
GPUs), the amount of volatile memory (RAM), etc. In most of HPC systems
users must also declare an estimated maximum duration for each submitted
job, the wall time, and if the job lasts longer than this expected duration the
workload manager is authorized to kill the job. For this reason, users tend to
over-estimate the wall time of their applications, in order not to risk their task
being killed.

In the literature there are several works dedicated to model HPC work-
loads [LF03,DF99,Dow98,MHCD10,AF01], which are useful to understand how
systems are used and what could be done to improve their performance (and
this is especially important in large scale system). Usually, workload models
are composed by the set of statistical distributions describing the parameters
characterizing HPC tasks, i.e. the runtime, the amount of requested resources
and resource actually used, network communications, etc. The data used to
create these models can be generally found in the accounting logs generated by
HPC systems.

Cirne et al. [CB01b] investigate the relation between requested time and the
real execution time and then study the jobs arrival pattern of several different
systems. As it turns out, the arrival pattern of HPC applications is strongly de-
pendent on the considered system (it is not trivial to generalize the observations
made on a particular supercomputer) and there is a clear correlation between
requested and execution time.

2.1.1.1 HPC Jobs Models

The vast majority of applications executed on supercomputers belong to the
class of parallel jobs, that is they are composed by independent communicating
activities. From the dispatcher point of view parallel jobs can be broadly divided
in four categories. Such categories depends on how and when the amount of
requested resources is specified; such an amount can be specified by the user
(either within the program itself or through the job submission specific format)
or it may be decided by the dispatcher. Moreover, the resource used (number
of nodes, cores, etc.) can be fixed at the start of the execution or it can vary
dynamically at run-time [Str03,HJS+04].

The categories are the following (summarized also in Table 2.1):

� Rigid jobs require a fixed number of resources, no more nor less than the
amount specified by the user at submission time; they are fine-tuned for
specific resources configurations and they cannot cope with situations such
as a reduction of the number of available cores. These tasks are commonly
written in the message passing paradigm (MPI [mpi16, GLDS96]), where
all communication between processors is designed to have low latency.

� Evolving jobs may change the number of used resources at run-time; it is
important to notice that the change is initiated by the application itself.
The system must satisfy the request or the job will not be able to continue
its execution. The scheduler is only aware of the amount of resources
needed by the application at any time.

� Moldable jobs have a fixed amount of resources which is determined by the
scheduler when the job starts; the decision of the scheduler depends on

10 2. Related Work

who decides
when the decision is taken

at submittal at run-time

User Rigid Evolving
System Moldable Malleable

Table 2.1: HPC Applications Taxonomy [FR96]

the job properties and on the state of the system. Moldable jobs usually
work with a wide range of resources, but also have a minimum number
of resources to use; additional resources might improve the performance,
possibly up to a saturation point.

� Malleable jobs can run on a variable set of resources and the configuration
change is initiated by the system. The scheduler decides if the job has to
release resources or if additional ones are assigned; the job has no influence
on this decision.

Nowadays, the vast majority of HPC applications running in supercomputers
belong to the rigid category. There are two main reasons behind this prefer-
ence: 1) managing rigid jobs is much simpler than the dealing with the other
job models, thanks to their fixed amount of requested resources; 2) rigid jobs
require a fine-tuned set of resources, often carefully optimized by the user, and
that implies that their behaviour can be reasonably predicted – conversely, us-
ing different configurations might have unexpected repercussions (both positive
and negative) on an application performance. However it is important to notice
that rigid jobs have indeed their disadvantages, in particular their lack of flexi-
bility can easily lead to an increased resource fragmentation and/or not optimal
performance.

Research in the moldable jobs area is very active and has lead techniques that
are currently experiencing a rise in their adoption [CB00,SKS03,SSK+02,CB02,
SLS06, HSC09, HHTC14]. Many modern applications written in MPI [mpi16]
exhibit moldable features, allowing them to choose to exploit different paral-
lelisms for execution just before their start. Downey [Dow97] studies the run-
time speedup of moldable jobs with different numbers of allocated processors
and builds a model for them. Using this model as basis, Wu et al. [WTJ+15]
investigate how resource allocation affects the average turnaround time of mold-
able jobs in clusters.

Cirne et al. [CB01a] propose a workload model for moldable jobs, which is
based on a users’ survey and analytical models. Their moldable job model takes
as input a rigid job with only one known shape (partition size and execution
time) and provides as output a realistic set of shapes for the job. Some existing
supercomputer workload management systems already support submission of
moldable jobs. For example, Load Sharing Facility (LSF) [lsf16], owned by
IBM, lets users specify a range of processors requirements at submission time.
However, its scheduling mechanism for moldable jobs is quite simple, basically
adopting a greedy method to allocate as many processors as possible within the
range specified by a moldable job.

The benefits granted by evolving and malleable jobs have been studied ex-
tensively in the literature [NVZ96,GTU91,MVZ93,CV96,SML+07,UCL04], al-

2.1 HPC systems 11

though very few works went beyond the proof of concept phase. Typically,
these analysis compare the cost of dynamic reconfiguration to the performance
improvement but fail to give a full picture. Dynamically changing the number
of resources in most cases requires complex interactions between the operating
system and the application run-time system [ABLL92] and this complexity of-
ten makes the implementation of malleable (or evolving) jobs too hard for real
machines. A few works have tried nevertheless to exploit dynamic adaptability
within data centers and HPC systems [Kal93,KAJ+12,AGJ+14].

2.1.2 HPC Systems Dispatching Problem

In order to optimally manage a HPC system a wide array of issues, which may
arise in different phases during the life of these systems, needs to be addressed;
many of these issues can be framed as optimization problems (finding the best
solution from all feasible solutions). An essential element to successfully deploy
a HPC job is deciding which resources will be allocated and providing an efficient
run-time schedule, balancing the system users and owner different needs. This
task is often referred to as Scheduling & Allocation or Dispatching problem and
it is a widely studied in the literature [Gre75, ET96, ABSM01, MBS01, BSM01,
SDA96,HL05]. In addition to allocation, the task of assigning a set of resource
to an application is also referred to as mapping ; in the rest of this work we will
use both equivalent expressions. To summarize, the fundamental aspects of the
HPC dispatching problem (as we are going to see in Chapter 3) consists in 1)
optimally allocating the resources required by each task in its description, and
2) provide an optimal job execution order (explicitly assigning a start time to
each task).

The problem of mapping and scheduling a set of tasks to different machines
has been shown to be NP-complete in the general case [GJ79, BLK83, LKB77,
FB89, IK77] as well as some restricted cases [Ull75], such as scheduling tasks
with one or two time units to two processors and scheduling unit-time tasks to
an arbitrary number of processors. The problem complexity is the reason why
the majority of the approaches adopted in real-world systems rely on heuristic
techniques and are more committed to finding feasible solutions rather obtaining
optimal ones.

We can distinguish between offline and online approaches to the dispatching
process. In the former the allocation and the schedule are computed before the
actual execution; this method requires many details regarding the workload to
be known a priori. For example, this approach is useful in the case of embedded
systems because these devices usually run the same set of applications during
their entire lifetime. In the HPC setting the required knowledge about the jobs
which are going to run on the supercomputer is a major drawback, since it is
not always possible to know in advance which tasks are going to be submitted
by the users (except some particular cases, i.e. weather forecast applications
need to run periodically). In the second approach, online methods, mapping
and scheduling decisions are taken at run-time, upon the arrival of new tasks in
the system. On one hand this removes the requirement of oracle-like knowledge
of workloads, but on the other hand the mapping/scheduling algorithm must be
extremely fast – preferrably with constant or low-degree polynomial time. Since,
as mentioned before, multiprocessor allocation and scheduling on bounded re-
sources is NP-hard, online approaches, in general, cannot guarantee optimality,

12 2. Related Work

but they concentrate on satisfying “safe acceptance” criteria, i.e. schedulable
tasks may be rejected but non-schedulable ones will never be accepted.

The problem of parallel job scheduling on HPC systems and large data cen-
ters has been extensively studied for many years [FR95, FR97, Fei97, CCS+06,
MCF+98,TTDB13,CPS+96]. Existing mapping and scheduling approaches typ-
ically assume to have a precise and formal description of input applications (i.e.
the jobs to be scheduled), able to explicitly expose task parallelism. For exam-
ple, in the HPC context usual applications are composed by independent tasks
executing without interfering with others, each having its own subset of assigned
and non-shared resources. Usually an abstract representation of the system re-
sources is supposed to be available. In [FRS+,FR98] Feitelson et al. carry out
a thorough review of theoretical and practical results in the field, providing an
insightful classification of different scheduling methods.

2.1.2.1 Existing Heuristics Techniques

As said previously, online job dispatching presents strict time constraints and
therefore a common way to cope with this problem in real time is to use heuris-
tic approaches, which do not guarantee optimal solutions but conversely are
extremely fast. For example, the forefather of all scheduling algorithms might
be the First-Come-First-Served (FCFS) scheduling algorithm, which is also re-
ferred to as First-In-First-Out, FIFO, policy. FCFS is a simple and static job
scheduling policy, where a job is served on arrival basis; it is a classic example
of a very simple but quick algorithm to decide which job to schedule – the first
job to enter the system is also the first to be executed. While FIFO and its
basic variants are extremely fast, their excessive simplicity is not well suited to
deal with the complexity of job dispatching in a HPC system; for instance, a job
requiring a large amount of unavailable resources can prevent the execution of
other later jobs that would fit on the system. In many circumstances it could be
more useful, from the system level perspective, to delay the execution of certain
jobs disregarding their arrival time.

Currently, the vast majority of existing approaches, both in the literature
and in real systems do not explore in depth the solution space. Most dispatchers
settle with “good” solutions, neither globally nor locally optimal. Most commer-
cial solutions, like PBS [Wor15] or Torque [Sta06] follow this approach. In many
systems the burden of producing good schedules is still a task strictly reserved
to system administrators. While their expertise in the field helps them reach-
ing good practical solutions, the implicit complexity, with its multiple resource
constraints and conflicting objectives, naturally makes the HPC job dispatching
problem well suited to be addressed exploiting more advanced and automated
optimization techniques. In the next paragraph we are going to discuss three
commonly used heuristic techniques categories.

Backfilling Algorithm An important component of many commercial dis-
patchers is the backfilling algorithm [FRS05,SF09,SF03], which extends the core
FIFO algorithm. The main idea of this algorithm is to fit smaller jobs on re-
sources not used by the system due to fragmentation. Therefore, the jobs in the
queue are executed (partially) disregarding the submission or priority order. In
practice smaller jobs are moved ahead in order to fill gaps in the schedule, if they
do not delay the execution of other jobs waiting in the job queue. This widely

2.1 HPC systems 13

spread technique must be used carefully because it can lead to fairness problems
(newly arrived jobs can be executed before those waiting from a long period)
and, in more dangerous cases, to starvation (the new jobs that keep on arriving
prevent an old, low priority job to begin its execution indefinitely) [YWZL14].

The most commonly used version of the backfilling algorithm is the so called
EASY backfilling algorithm, introduced by Mu’alem and Feitelson in [MF01].
This algorithm is a more aggressive version of typical backfilling methods be-
cause it moves ahead small jobs to fill holes in the schedule provided that they
not delay only the first job in the job queue – in opposition to the more standard
approach which requires all or multiple waiting jobs not to be delayed by the
backfilling action. The performance of EASY backfilling depends heavily on the
workload but in the majority of cases it performs better than more conservative
backfilling algorithms. The same paper presents also a very interesting result:
backfilling actually works better when users overestimate jobs run-times by a
substantial factor.

Another backfilling technique is the K-reserved based policy [ABM11], where
each job in the waiting queue has a counter containing K number of times that
it has been overtaken by subsequent requests. K-reserved based policy works
by defining a window of waiting jobs of size k, ordered in FIFO fashion. If a new
job with high priority enters the system, the oldest job waiting for allocation can
be bypassed provided the subsequent job is within a window of K consecutive
jobs that start with the oldest waiting job. When all jobs within the window
have been started, the backfilling mechanism is suspended until a large-enough
set of resources becomes available for allocation to the oldest job, at which point
the window is moved forward to the next oldest waiting job. This strategy tries
to combine the benefit of backfilling (out-of-order execution) without disrupting
the fairness of FIFO policies.

The behaviour of many heuristic scheduling techniques depends on the esti-
mate of job durations, i.e. the preference is often given to shorter jobs. Usually
an estimate is provided by the user at submission time, but this value might
be inaccurate. In fact users typically over-estimate the duration of a job be-
cause they do not want their application to be abruptly terminated because
the allotted time slot has expired while the job is still running. To deal with
this issue, Tsafrir et al. [TEF07] propose a backfilling algorithm (EASY++)
which does not rely on the user-provided duration estimate but instead employs
a system-generated duration prediction.

Lawson et al. present [LSP02] a self-adapting, multiple-queue backfilling
algorithm for parallel systems that directs incoming jobs to different queues
according to the user-estimated job execution time. The key idea is to separate
short and long jobs (using two distinct queues) thus decreasing the likelihood
that a short job is overly delayed in the queue behind a very long job. Each
queue is assigned to a non-overlapping partition of system resources on which
jobs from the queue can execute; these partitions dynamically adapt in response
to the workload evolution and system utilization.

Gang Scheduling Many scheduling techniques employed in real time sys-
tems adopt the preemption mechanism [ZRS87,SAÅ+04,KSS+05,Ves07,CV01,
Sch96]: jobs can be stopped and re-allocated (possibly in different resource par-
titions). This means jobs do not have to run to completion once they have

14 2. Related Work

started and the scheduler can interrupt the execution of a job at any time for
starting a different job; the total processing time is not affected by preemption.
Despite the proven fairness of preemption and time slicing techniques [SY00],
these mechanisms are not widely used in real HPC systems due to the require-
ments in terms of hardware (high interconnection bandwidth is needed) and
software (due to limitations on the message-passing architecture).

An extension of the base preemption is the ability to preempt all the sub-
tasks of a parallel job at the same time, as well as restarting all the members
of another job. This mechanism is called gang scheduling [Ous82, FR92, Fei96,
FJ97]. In this case preemption is used to improve performance in face of un-
known run-times. Gang scheduling prevents short jobs from being stuck in the
queue waiting for long ones, and improves fairness. Gang scheduling works with
every programming model, but has some limitations: the overall system perfor-
mance is not always optimal, though it benefits individual jobs. There could
also be a high overhead due to processors fragmentation and context switching.

Priority Rules Based Scheduling Many heuristic algorithms used to quickly
produce good quality schedules fall in the Priority Rules Based (PRB) schedul-
ing category [Hau89, THS02, KA96, SL93, ERL90]. The main idea underlying
these methods is to sort the set of tasks which need to be scheduled, construct-
ing the ordered list by assigning a priority to each task. Tasks are selected
according to the priorities order and each selected task is mapped on the re-
quested resources and started (if there are enough resources available), trying to
minimizes a cost function. The algorithms in this category provide schedules of
good quality and their performance is comparable to other approaches, usually
with lower scheduling times [KA99].

The rules used by PRB algorithms can be fairly simple. For instance, Small-
est Job First (SJF) [Lam14] and Largest Job First (LJF) [LC91] update the job
queue – the jobs waiting to be executed – in, respectively, increasing and de-
creasing order in terms of job size3. The jobs are then selected for execution
drawing them from the sorted queue. Other examples of job queue ordering are
Minimum estimated Execution Time (MinET) and Maximum estimated Execu-
tion Time (MaxET), that sort the jobs depending on their expected durations
– in an ascending and descending order, respectively.

PRB algorithms are often coupled with simple allocation strategies, such as
First-Fit (FF), a strategy that, as the name says, tries to map a job in the first
partition of system resources that can satisfy the job requirements. Alterna-
tively, also the order in which the set of available resources is considered can
be influenced by priority rules. For example, a power-aware job dispatcher op-
erating in a heterogeneous supercomputer can prefer computational nodes with
lower power/energy consumption (given that more than one node can satisfy
the resources request).

We distinguish two approaches which are part of the PRB scheduling class.
The first method is known as serial or list scheduling [KW59]. In algorithms
belonging to this typology, at every stage the set of already scheduled activi-
ties and a decision set – containing activities whose predecessors have all been
scheduled and thus can in turn start themselves – are identified. The priority

3Job size can be defined in different ways, for example job duration, job width (number of
requested resources) or a combination of the two

2.1 HPC systems 15

rules are used to select an activity from the decision set and then this task is
scheduled at the earliest possible time, guaranteeing to respect precedence and
resource feasibility constraints. The other approach is generally called parallel
scheduling [BB99]. In this method, at each stage the set of activities which
can be scheduled, the decision set, contains only those tasks whose precedences
and resource requirements can be satisfied in that time instant; among those
activities a single one is selected using the priority rules. The main difference
compared to the serial method is that resources and their finite capacities are
considered when building the decision set, rather then when the start times are
assigned.

An example of priority rule-based heuristic applied to a resource constrained
scheduling problem can be found in [BK07]. The exact problem tackled by the
authors consists of the scheduling of a set of activities which can be split if nec-
essary. All resources considered are renewable and each resource unit may not
be available at all times due to resource vacations, which are known in advance.
Splitting an activity has a direct cost and impact on the total completion time
and this is taken into account in a priority rule-based heuristic which allows to
control activity splitting (i.e. minimize the number of times it happens). Klein
et al. [Kle00] present several heuristics and meta-heuristics aimed at dealing
with real-world resource constrained project scheduling problems. Tradition-
ally, such heuristics construct a schedule by planning in a forward direction
starting from the project’s beginning; this work introduces new backward and
bidirectional planning strategies, integrating them into priority rule-based al-
gorithms. Kolisch et al. [Kol96] provide an analysis of several classical priority
rules used for resource constrained project scheduling, showing their limitations
and drawbacks, and then propose two new rules which lead to a better manage-
ment of the finite-capability resources.

Chandio et al. [CXT+13] investigate the performance of several job schedul-
ing strategies in large-scale parallel computational systems. They conducted
their experimental evaluation on a real system with several heterogeneous work-
loads, taking into account different metrics to establish the best scheduling pol-
icy. Their analysis revealed that a single policy is not sufficient for resource
management in parallel computing environments. This happens because differ-
ent operational conditions and workloads are best served by different schedul-
ing strategies; to overcome this limit, they suggest the adoption of dynamic
and adaptive policies. Aida [Aid00] investigates the impact of job sizes on
the scheduling policy performance. The paper evaluates the performance of job
scheduling algorithms under various workload models, composed by different ty-
pologies of jobs (with different average sizes). The results indicate that, broadly
speaking, algorithms classified in the first-fit category are less affected by jobs
sizes than priority rules-based techniques.

2.1.3 Power/Thermal Considerations

The large number of processing units employed in current HPC machines re-
quires a huge amount of electrical power, creating many power related issues
(i.e. thermal design power, CPU power dissipation, power consumption) which
generally have greater relevance than the case of more traditional computing
systems due to the sheer number of involved resources.

Basically since their introduction decades ago, supercomputers’ development

16 2. Related Work

has been guided by the “performance at any cost” mentality, which aimed
at increasing the computational capability with an almost complete disregard
of corollary issues. This attitude is perfectly exemplified by the Top500 list
[DMS94], which ranks the best supercomputers in the world depending on their
computational peak power (GFLOPS)4. This mentality has to be abandoned
because it is no longer sustainable due to the power aware considerations limit-
ing the further growth of HPC systems [Fen03]. New solutions and more energy
efficient approaches need to be developed and applied to the next generation of
supercomputers if we want to reach the Exascale [FFG08].

The growing concern about power consumption and dissipation issues in
supercomputers led to the birth of Green500, an organization that ranks the
Top500 supercomputers based on their energetic efficiency [FC07]. The Green500
list takes into consideration an energy efficiency metric, GFLOPS per Watt
(GOPS/W), for “big” enough supercomputers, i.e. able to pass the 96 TFLOPS
threshold. Nowadays, the most powerful system is Sunway TaihuLight which
reaches 93 PetaFLOPS with 15.371 MWatts of power dissipation [FLYeA16].
Thanks to its innovative design, it is also ranked 3rd in the Green500, with
6.05GigaFLOPS/Watt. The second fastest machine (and record holder from
2013 until 2016) is Tianhe-2 and can be found at position 33rd of the Green500,
with 1.9GigaFLOPS/Watt.

Exascale supercomputers built with today’s technology would led to an un-
sustainable power demand (hundreds of MWatts of power) while according
to [BBCea08] an acceptable range for an Exascale supercomputer is 20MWatts.
For this reason, current HPC systems must significantly increase their energy
efficiency, with a goal of 50GFLOPS/W. Today’s “greenest” supercomputers
achieve around 9 GFLOPS/W, thus a wide gap still needs to be closed in or-
der to satisfy Exascale requirements. Koomey et al. [KBSW11] examined the
relationship between computing power and electricity required to operate a com-
puting unit. The conclusion is that computation per kilowatt-hour has doubled
every 1.575 year. While this is a promising finding, the implications for the
HPC context still have to be clarified [SSSF13].

A detailed survey of the research on power management techniques for high
performance systems can be found in [LZ10, CGF05]. As clearly pointed out
by Hsu et al. [HFA05], a change of the current perspective is required: the fo-
cus must shift from performance-based metrics (such as the performance-power
ratio) to new ones which take into account different aspects of the problem,
i.e. integrating the notions of total cost of ownership, productivity and relia-
bility. Wilde et al. [WAS14] complain that most of the research in the field of
power-aware systems tends to focus on specific areas and does not try to com-
bine its findings with the results obtained in different (but related) sectors. To
overcome this situation they propose a comprehensive Framework for Energy
Efficient HPC Data Centers that should be used by infrastructure managers to
evaluate their systems from a holistic point of view. They identify four “pillars”
establishing the basis of the evaluation: 1) Building Infrastructure; 2) HPC
Hardware; 3) HPC System Software; and 4) HPC Applications. While most
HPC centers already perform partial optimizations within each of the pillars,

4The rankings are based on the score obtained while running HPL [PWDC], a portable
implementation of the high-performance LINPACK benchmark written in Fortran for
distributed-memory computers

5This relationship is often called Koomey’s Law

2.1 HPC systems 17

optimization efforts crossing the pillars’ boundaries are still rare.

The power consumed by HPC systems is converted into heat, therefore,
beside the IT power strictly needed for the computation, the additional power
consumption of the cooling infrastructure must be taken into account. The
extra infrastructure needed for cooling down the HPC systems has been proved
to be a decisively limiting factor for the energy performance [Bel07]; a common
approach taken to address this problem is the shift from air cooling to the
more efficient liquid cooling. To further reduce the cooling cost HPC systems
uses hot water recycling and free-cooling solutions [KRA12a]. Indeed when
environmental conditions allow it, it is possible to decrease the computing units’
temperatures through direct exchange of heat with the ambient. The amount
of heat removed with this approach is proportional to the temperature gradient
between the supercomputer outlet temperature (water or air) and the inlet
ambient temperature. During cold days the gradient increases, enabling a larger
heat portion to be removed without switching on the chillers. At the same time
a hot internal temperature (i.e. hot-water cooling) increases the heat exchanged
with the ambient.

A broadly used metric for power efficiency is the PUE index (Power Usage
Effectiveness), i.e. the ratio between the power consumption of the whole data
center and the power consumption of the IT equipment alone. Equation 2.1
illustrates how PUE is computed, given that PT is the total amount of power
consumed by the whole HPC facilities and PIT is the power consumption of the
IT equipments.

PUE =
PT
PIT

(2.1)

Nowadays PUE is by far the most widespread metric to evaluate the power
efficiency of HPC systems, but it is not exempt from flaws. For example Yuventi
et al. [YM13] argue that PUE is an instantaneous representation of electrical
energy consumption that encourages operators to report the minimum observed
values of PUE. Hence, PUE only conveys an understatement of the minimum
possible energy use. As a fix they propose the use of different energy-based
metrics or average PUE over a significant time period (e.g., a year).

One mainstream solution to reduce the gigantic power consumption is to
employ efficient hardware or efficient design. By doing so, it is possible to
obtain remarkable reductions of the PUE index. However, reducing the PUE is
just a half of the problem. Data by McKinsey [McK] for US data centers reveals
that, on average, only 6-12% of the power is employed for actual computation.
The reason for this dramatically low value lies in how efficiently the existing IT
resources are used. In particular, redundant resources are usually employed to
maintain the quality of service under workload peaks. More redundant resources
are also needed to compensate for the fragmentation resulting from suboptimal
dispatching choices. As a consequence, a typical data center ends up packing
a lot of idle muscles. Unfortunately, idle resources still consume energy: for
a 1MW center with a 1.5 PUE, a 30% utilization means a 1Me annual cost
and 3,500 tons of CO2. In this context, optimization techniques can enable
dramatic improvements in the resource management, leading to lower costs,
better response times, and fewer emissions.

The rest of this section is devoted to describe some of the most commonly
used approaches to create power-aware HPC systems.

18 2. Related Work

2.1.3.1 Over-provisioning

Supercomputers’ components such as CPUs and memory possess a vendor-
specified Thermal Design Power (TDP) corresponding to the maximal power
required by the subsystem. Generally, the maximum power consumption of a
HPC system is determined by the sum of the TDP of its subsystems to take
into account worst-case scenario where all components work at their TDP level.
This design approach is called worst-case provisioning and can be optimal in
contexts where power is plentiful and nodes are scarce resources; since power is
now one of the limiting factors in HPC systems, worst-case provisioning became
a drag on performance. An alternative solution comes from the observation that
the system components rarely operate at their TDP limit. Recent advances in
processor and memory hardware designs have made it possible to control the
power consumption of the CPU and memory through software. The ability to
constrain the maximum power consumption of the subsystems below the vendor-
specified TDP value allows us to add more machines while ensuring that the
total power consumption of the data center does not exceed its power budget,
i.e. over-provisioning [SLGK14,PLS+15]. Over-provisioning means that not all
the processing units in a supercomputer can run at their peak performance and
power consumption. Hence, either only a subset of available computing units
can execute at its full capability or all the computing nodes are active but at
lower power levels.

Patki et al. [PLR+13] study how a policy of over-provisioning combined with
hardware-enforced power bounds leads to better performance across a range
of standard benchmarks. In particular, leveraging over-provisioning requires
that applications use efficient configurations; the best configuration depends on
application scalability and memory contention. The paper makes the (strong)
assumption that the jobs are moldable; while this is true in the supercomputer
used as a case study (and moldable jobs keep on getting more widespread), this
cannot be taken for granted in all HPC systems, yet.

In [SLGK14], Sarood et al. describe an ILP model to enforce power capping
in a HPC cluster through over-provisioning. Their approach combines over-
provisioning with a power-aware scheduler. However, this work focuses on data
centers and is based on assumptions that do not hold in typical HPC workloads.
For example, the proposed method requires to change the number of nodes used
by a job during its execution – malleable jobs. While this is very common in data
centers, where virtualization and migration allow to move around and reshape
the workload, in the majority of today’s HPC environments this is not possible
yet, since resources are locked to a job for its entire duration.

2.1.3.2 Energy Proportionality

Research in power and energy aware HPC systems has been a very active
area in recent years and many different topics have been studied. Follow-
ing the trend born in the servers field, current data center and HPC ma-
chines are moving towards the development of energy proportional systems
[SF13, AMW+10, VG10, LCG+14]. The concept of energy proportionality im-
plies that the power consumption should be proportional to the current work-
load: if the workload is low (not computationally intensive) the machine should
consume little energy, and when the workload intensifies the power consump-

2.1 HPC systems 19

tion subsequently rises too. Most of the current supercomputers instead operate
always at the maximal operational frequency, therefore at the maximum level
of power consumption. Energy-proportional machines would present a wide dy-
namic power range and they would enable great savings in terms of energy and
power [BH07a,Cam10].

Although energy proportionality was proposed as a measure orthogonal to
over-provisioning, it is expected to reduce the energy-saving benefits of over-
provisioning. Energy proportionality has the goal to reduce the energy waste
caused by the partially utilized severs; energy-proportional computing systems
strive to spend only as much energy as required by the given load. Theoretically,
in an ideal energy proportional system the idle servers would consume no power.
However, this clashes with the reality where idle resources keep on consuming,
if they are not completely shut down. Since in an over-provisioned system we
cannot turn off the nodes6, the idle power consumption is an unresolved issue
that prevent the realization of a complete energy proportional machine [VAG10].

2.1.3.3 Voltage & Frequency Scaling

In recent years a growing popularity has been associated to Dynamic Voltage
and Frequency Scaling (DVFS) [HF05a,ECLV12b], a technique that trades pro-
cessor performance for lower power consumption. With DVFS a processor can
run at one of the supported frequency/voltage pairs lower than the nominal one.
Lower frequency and voltage lead to significantly lower power consumption, al-
lowing more jobs to run simultaneously without changing the power target.
Several runtime systems that apply DVFS to reduce application energy con-
sumption have been proposed [LFL06, KFL05, FL05]. These runtime dispatch-
ers are often designed to take advantage of certain application characteristics,
such as load imbalance or different computational phases, and therefore they
may save power consumption only when applied to specific tasks. Usual DVFS
approaches [LWW07, WC08] select the optimal power state (specified in terms
of voltage or frequency) for each application, given the power budget available
and the current power consumption, with the goal of decreasing the QoS for the
users as little as possible

Previous studies [SMB+02,BM01] have shown clear gains in terms of power
and energy savings when employing approaches based on varying frequencies
and voltages. One of the main practical problems limiting the adoption in
DVFS is the trade-off between reduced power consumption and increased ex-
ecution time, which could be unacceptable in several contexts. Consequently,
many research works try to exploit frequency reduction without impacting, as
far as possible, the application duration. Rountree et al. [RLdS+09] developed a
run-time system, called Adagio, to make DVFS practical for real-world scientific
applications, with the aim of minimizing execution delays while obtaining sig-
nificant energy savings. Their algorithm works at the application level: the key
point is to consider the tasks composing the whole HPC job (analyzing internal
MPI calls between the sub-tasks) and identify which tasks can be slowed down
through frequency scaling without impacting the final job duration.

In other cases, in spite of the job runtime increase due to frequency scal-
ing, overall performance (often measured with several, diverging metrics) may

6At least not without degrading the system performance due to the mandatory delay
required to reboot a resource

20 2. Related Work

improve with DVFS application thanks to shorter job wait times [ECLV12a,
ECLV10a]. If we focus on the thermal power problem currently there exist a
few insightful case-studies about the feasibility of employing DVFS to reduce
the thermal power envelope of HPC machine nodes, thus improving reliabil-
ity and diminishing the power spent for cooling while minimizing the impact
on performance [FGC05, MGSG12]. A variant of frequency scaling is intro-
duced by Gandhi et al. [GHBD+09]. Their technique works by alternating be-
tween high-performance state and low-power idle states on the execution nodes.
This methods switches between extreme states, whereas more usual DVFS ap-
proaches utilize a wider range of possible frequencies. This approach has yet to
be properly tested on a real supercomputer.

The problem of when and how to change frequencies in order to optimize
energy savings is NP-complete and this has led to many heuristic energy-saving
algorithms. Rountree et al. [RLF+07] present a method to estimate an optimal
energy savings bound for a given MPI application using DVFS, using a Linear
Programming model. The experiments on real HPC benchmarks show that
existing techniques exploiting voltage and frequency scaling can work well for
some programs, but for others little energy savings is possible.

Raghu et al. [RSB13] propose an ILP model to solve the scheduling & al-
location problem with a focus on energy reduction and load balancing. Their
model uses DFVS and relies on the knowledge of the optimal frequency/voltage
combination for each application to be scheduled. This knowledge is obtained
executing several offline runs of the considered HPC jobs, each run using differ-
ent frequency and voltage values; in this way the approach builds a knowledge
base. This knowledge base is then used at run time by the ILP to dispatch jobs
in an optimal way (aiming at minimal makespan, load balancing and energy
minimization). An obvious drawback of this technique is the requirement of
a knowledge base that needs to be constructed offline and the issue of dealing
with HPC jobs never seen before (and therefore not in the knowledge base).

The main issue with DVFS-based approaches is the trade-off between power
savings and decrease in performance: reducing the operating clock clearly in-
creases the duration of the applications which run on the slowed-down resources.
To overcome this issue, several methods try to apply DVFS only in periods of
low system activity or in particular phases of a job execution. For example,
in [FLP+07], Freeh et al. study the energy-time trade-off of high performance
cluster nodes with several power states available. They conclude that applying
DVFS to applications with memory or communication bottlenecks does not im-
ply large time penalties. A clear weakness of this strategy is that it strongly
relies on the nature of the running applications, which must be known and
modeled in advance, before their actual execution. Their analysis requires fine-
grained monitoring of the execution of HPC jobs (i.e. run-time monitoring
of the MPI calls), which is not available in most supercomputers and for all
workloads. In [HF05b] Hsu et al. propose to solve this problem through a
power-aware adaptive algorithm which does not employ any application-specific
information a priori, but implicitly gathers such information. Unfortunately,
this requires specific monitoring instruments to collect the needed data and
these tools are not currently available in the majority of supercomputers.

A method to extend the EASY-backfilling algorithm with power budgeting
capability through frequency scaling is discussed by Etinski et al. [ECLV10a].
The results show clear improvements in terms of energy savings and also a better

2.1 HPC systems 21

utilization of the system and reduced waiting time for the users, thanks to the
possibility to execute more jobs concurrently if their frequency (thus power)
is reduced. In [ECLV10b], Etinski et al. propose an approach which tries to
minimize the performance loss by reducing the frequency only when the system
is in a low level of utilization. They combine the EASY backfilling algorithm
as scheduling policy with a frequency assignment module. When a new job is
dispatched the system assigns an operational frequency to its execution node
(such frequency will be kept for the whole job lifetime); this frequency may be
lower than the maximal one depending on the current levelsystem utilization
and power consumption. Their results show that it is possible to obtain good
energy savings without degrading the overall performance of the system. The
same authors present also a different approach in [ECLV12a]: in the latter work
they propose a scheduling policy based on integer linear programming (ILP).
Instead of relying on the backfilling algorithm the new scheduler decides which
jobs need to be executed and the optimal frequency solving a optimization
problem. This method offers better performance in terms of average job wait
time over various power budgets, but it has the disadvantage of having been
tested only on a relatively simple case-study and the corresponding ILP model
cannot be directly extended to different kinds of problems.

2.1.3.4 RAPL-based techniques

An alternative to direct frequency scaling is Intels Running Average Power Limit
RAPL [Cor09,DGH+10,RAdS+12], which provides a software configurable and
hardware enforced power cap per CPU socket. While DVFS works by selecting a
frequency or voltage among the range of possible ones, RAPL is a management
interface that only requires the user to define a power threshold. The internal
hardware then performs automatic frequency scaling and power throttling in
order to keep the power consumption within the user-specified limit. RAPL
employs an internal model of energy consumption to compute the average power
consumption over a time frame and tries to enforce the power cap as precisely
as possible. The main advantages of RAPL w.r.t. DVFS are the integration of
power monitoring and control inside the chip and a finer granularity (compared
to the finite set of frequencies of DVFS).

Methods using this mechanism usually employ simple scheduling and alloca-
tion policies (such as EASY-BF and First-Fit); at run time the power consump-
tion is measured and kept under control. For example, Bodas et al. propose a
power-aware scheduler [BSRH14] that decides the power available to each node
of the system depending on the current power consumption and power bud-
get. The efficacy of this method is limited by the simplicity and rigidity of the
rules that assign the power to the nodes. Ellsworth et al. [EMRS15] present
a more complex scheme to decide the power allocated to each node – which
they call Dynamic Power Sharing. Initially the overall available power budget
is uniformly divided among all nodes; periodically the algorithm adjusts the
allocated power depending on actual consumptions, i.e. if a node consumes less
power than the allocated one the excess capacity can be transferred to a differ-
ent node which needs it. RAPL is used to enforce the node power limit at run
time. The main drawback of these techniques is the same that troubles DVFS
mechanisms, namely the indiscriminate power reduction implies an increase in
job duration (performance loss).

22 2. Related Work

2.1.3.5 Configuration Selection

Several research works try to exploit the possibility offered by moldable jobs.
In particular, many works aim at minimizing power or energy consumption
through configuration selection, that is deciding the best possible configuration
of a job in terms of number of nodes and number of threads (and additionally
also operating frequency). Such configuration is generally decided before the
job execution and it is kept fixed at run time [BLR+14,SWAB15].

For example, Patki et al. [PLS+15] propose a job dispatcher operating on
top of an EASY-backfilling scheduler and deciding the best configuration of the
application to be run. The choice is based on the predicted power consumption
and duration for each combination of application-configuration. While these
techniques proved to be effective, their dependence on the moldable job model
limits their adoption. Furthermore, deciding the best configuration requires to
perform multiple offline runs of each application in all possible configurations,
to understand the configurations power-performance trade-offs.

Marathe et al. [MBL+15] introduce Conductor, a run-time system that com-
bines configuration selection with adaptive power balancing, with the goal of
curtailing power consumption with minimal performance degradation. The
configuration selection is dynamically performed at run-time and selects the
optimal thread concurrency level7 and frequency; an hardware power bound is
then applied (RAPL). The power-balancing mechanism dynamically distributes
the available power among all running jobs, assigning more power to critical
paths. Critical paths are sets of tasks that should not be slowed down because
doing that would increase the duration of the job composed by them. In order
to dynamically detect critical paths the run-time system needs to be coupled
with a fine-grained monitoring infrastructure that analyze the low-level MPI
calls among sub-tasks.

Although over-provisioning aims at maximizing power efficiency for a given
power budget, this method also has the disadvantage of excessive energy con-
sumption, if the resource manager is not carefully tuned. Langer et al. [LD-
KeA15] examine how the careful selection of configurations can lead to signifi-
cant savings in energy consumption with little impact on the execution time in
over-provisioned data centers.

2.1.3.6 Idle Power Consumption & Workload Consolidation

Another issue in many supercomputers is the fact that computing nodes con-
sume similar amounts of energy whether they are running an application or not –
the idle power consumption is smaller than the active one but still much greater
than zero (because inactive nodes are not completely powered off). In phases of
low workloads some nodes (or their components) could be turned off in order to
save power without incurring in severe performance losses. In [HHN08a] Hikita
et al. implement an energy-aware scheduler with a simple strategy: when a
node is not used for more than half an hour, the node is turned off. Despite
the long time required by rebooting powered off nodes when needed (around
45 minutes), the scheduler manages to obtain great energy savings. Obviously,
this solution is clearly strongly correlated to the considered system: other HPC

7Jobs can be seen as partially malleable: the number of used resources are fixed, but the
number of threads can change during the execution.

2.1 HPC systems 23

centers would probably not allow their nodes to be idle for such long times. A
more dynamic approach is described in [PBCH01]: load concentration is used
to group the workload in few nodes in order to turn off the remaining ones.
Again, even though this method obtains considerable power savings, it may not
be directly applied to different supercomputers.

Although idle power consumption is a problem, the power consumed by ac-
tive resources is vastly greater. Therefore using more nodes than needed (for
example due to workload fragmentation) leads to non-optimal energy consump-
tion. Hikita et al. [HHN08b] propose a method to tackle this issue. Their
approach relies on workload consolidation: the scheduler tries to put as many
jobs as possible in the same nodes (consolidation) and to turn off inactive nodes
(or at least force them in idle state). Their analysis demonstrates that energy
savings are possible, but there is a trade-off with QoS. In particular wait times
tend to increase because the time required to re-activate a turned off node can
be quite long.

Mammela et al. [MMB+12] present an energy-aware scheduler that can be
applied to HPC systems without any changes to their hardware components.
The idea is again to turn off idle nodes whenever possible, that is every time the
scheduler detects that no activity can be scheduled for a sufficiently long time on
a certain node. The main drawback of this approach is the fact that it strongly
depends on the possibility to turn off idle nodes, which cannot be taken for
granted in every HPC systems and usually has non negligible associated costs
(i.e. if we turn off a node a long time may be required to boot it again).

2.1.3.7 Cooling Infrastructure

Common approaches for the design of the facility as well as for the PUE com-
putation assume average or worst-case ambient parameters (temperature and
humidity) as well as peak power consumption. However peak power consump-
tion is a rare event, which may not happen for the entire lifetime of the su-
percomputer. Moreover this static design approach becomes suboptimal when
dealing with free-cooling. Indeed, as described previously, in this circumstance
the amount of IT power which can be removed without activating the chillers
depends on the external temperature and humidity level, and thus varies across
daily and night hours and seasons. The power consumption of the cooling in-
frastructure has a great influence on the overall system consumption, therefore
many methods have been proposed to improve the cooling system energy ef-
ficiency. A lot of research effort have gone in the direction of improving the
technology adopted by cooling infrastructure. Here in this work we are not
going to discuss in detail innovative technical solutions or new hardware com-
ponents because that would be out of our scope. We are instead more interested
in understanding which strategies have been proposed for a better utilization
of the supercomputer cooling infrastructure in conjunction with the workload
management.

Current supercomputers cooling infrastructures are designed to withstand
peak performance power consumption. However, everyday activity does not
stress machines so hard and the typical workload is below the 100% resource
utilization and also the jobs submitted by different users specify different com-
putational requirements [YZ13a]. Hence cooling infrastructures are often over-
designed. To reduce overheads induced by this cooling over-provisioning several

24 2. Related Work

works suggest to optimize job dispatching (mapping plus scheduling) exploiting
non-uniformity in thermal and power evolutions [BCTB13, KRA12b, KRAL13,
KQC13] – yet most of these works are based on simulations and model as-
sumptions and are not mature enough to be implemented on a HPC system in
production.

Banerjee et al. [BMVG11] integrate a model of the cooling system in a power
and energy aware job scheduler. The dispatcher is aware of the dynamic be-
haviour of the Computer Room Air Conditioner (CRAC) units and places jobs
in order to reduce cooling demands from the CRACs. For example, it tries to
evenly distribute the jobs among different servers not to overload any cooling
unit. The proposed approach also manages at run-time the CRAC thermostat
set point to reduce cooling energy consumption. The same authors also perform
an analysis [BMVG10] of the performance of different allocation policies in terms
of energy efficiency – after having modeled the cooling infrastructure. An alter-
native algorithm is then proposed (HTS), which places the jobs in the system
nodes taking into account heat recirculation and the temperature requirements
(maximal temperature allowed) of the computing nodes.

2.1.3.8 Resource Heterogeneity

Hardware heterogeneity as well as dynamic power management have started
to be investigated to reduce the energy consumption. The idea is to limit the
power consumed by a supercomputer exploiting the power variation which can
be found across the computing resources of homogeneous [SWAB15] or heteroge-
neous [FBC+14] large-scale systems, in order to create energy and power aware
schedulers.

Some authors tried to combine the possibility of adopting different configu-
ration thanks to moldable jobs with the exploitation of power and performance
variability among nodes and components within the same system. Shoukourian
et al. [SWAB15] devised a power-aware configuration adviser that tries to dis-
patch jobs on a supercomputer minimizing the total energy consumption. The
core aspect of the proposed approach is that different resource partitions have
different performance and different power consumptions; thanks to previous
offline experiments the adviser knows the best configurations for each appli-
cation and for different set of nodes. At real time the configuration adviser
integrates the knowledge about the optimal configuration with the information
on the available resource partition and selects the best configuration for the
specific situation. The main limitation of such methods is their reliance on
system/component-specific characteristics, which prevents their use on different
machines.

Wilde et al. [WASB15] discuss existing node power variations in two HPC
systems. They introduce three energy-saving techniques: node power aware
scheduling, node power aware system partitioning, and node ranking based on
power variation, which takes advantage of the node variability. The results
of their theoretical analysis show that using node power aware system parti-
tioning and node ranking based power variation leads to energy savings with
minimal negative impact on the system. The main limit of their study is the
theoretical-only nature of the evaluation: even though the suggested techniques
are interesting, no real implementations are tested.

2.1 HPC systems 25

2.1.3.9 Power Aware Workload Management

Power and energy consumption can be minimized also working on a careful
planning of the activities to be executed. Changing the jobs execution order
can have large impact on the power consumption of a system. For example,
the cooling infrastructure requires more power when the external temperature
is higher: the workload can be accordingly decreased during hot weather. In a
similar direction, Yang et al. [YZW+13] propose an energy price aware scheduler
that adapts the workload of the supercomputer depending on the current price
of the electricity. The main idea is that during the day the cost of electrical
energy is higher while it decreases at night; therefore a sensible policy is to
move high power consumption jobs in off-peak periods (at night-time). The
scheduling decisions are taken by a 0-1 Knapsack model which tries to assign
low power consuming jobs during the day and high power ones during the night;
a fair-share mechanism is also implemented to avoid incurring in job starvation.
The main limit of this method is that it has been tested only on a simulator and
the paper does not answer a fundamental question, namely how to compute (or
estimate) the power consumption of a HPC application before its execution.

Zhou et al. [ZLTD13] extend the work previously done in [YZW+13] and
devise a more sophisticated Knapsack model to schedule and allocate jobs in an
energy-aware fashion. The rationale is the same as before: try to execute more
power consuming jobs in off-peak periods of the day. In this case the objective
is dual, minimize the energy consumption and maximize system utilization (try
not too have many idle nodes) to cope with depreciation costs. The model is
solved through Dynamic Programming.

Gómez-Mart́ın et al. [GMVRGS15] discuss different energy aware resource
allocation methods, with a focus on heterogeneous systems. The aim of the
paper is to present a new simulator that considers performance and energy
consumption and use this tool to evaluate currently used resource selection and
scheduling policies. Finally, a new method based on a non-dominated sorting
genetic algorithm (NSGA-II [DPAM02]) is proposed. The main advantage of
the new algorithm compared to traditional techniques is the ability to deal with
complex, multi-objective goal functions.

Job dispatching can be used to curtail the power consumption of a system –
power capping – acting on the job execution order alone, without requiring any
HW modification nor any change in the operational frequencies of the computing
nodes [WYV+16]. In this case the dispatcher needs to have information about
the power consumption of the tasks to schedule in order to make the correct
schedule decisions. Since these power information are needed at schedule time,
before the execution of the job we cannot count on direct power measurements
but we should rely on power consumption estimates – methods to obtain such
estimations will be discussed later. Since we are dealing with estimates, bad
predictions must be taken into account. Hence, the software-based power cap-
ping approach may not exclude the hardware one, because the latter can still
be required in case of misprediction. In general hardware control can prevent
power limit violations but usually at a significant performance cost [POF+15].
Therefore, the best usage of the software techniques is to create the best pos-
sible schedules, given the current information, such as to avoid as much as
possible the triggering of hardware capping countermeasures (i.e. avoiding the
“emergency brake”). The combination of hardware and software technique, in

26 2. Related Work

conjunction with real time power monitoring to reduce the number of violations
of the power constraint, has been examined in preliminary studies [BSRH14]

Probably, the simplest way to obtain a power-constrained scheduler acting
only on jobs execution order is to modify the common EASY-backfilling algo-
rithm (EASY-BF) [MF01]. The base algorithm tries to fit as many jobs as
possible on the system (selecting them from a FIFO queue); a job fits in the
system if enough resources are available. In order to add power awareness it
is sufficient to consider the power as an additional resource – a job fits in the
system only if its power consumption will not cause the overall power to exceed
a given budget.

2.1.3.10 Compilation-based Methods

Another different approach to control the power consumption of HPC systems
is based on the possibility offered by modern compilers. The application bi-
naries produced by compilers from the source code can be optimized in order
to consume the smallest possible amount of energy [BTW14, FKM+11, ST03].
Whereas in the past compilers have focused mainly (very often exclusively) on
the performance, i.e. running as fast as possible, there is a growing interest
in considering the energy impact on the final executable generated by modern
compilers. As is often the case there is again a trade-off between optimizing for
maximal performance or minimal energy consumption [KVIY01].

2.1.3.11 Power Capping

A standard approach to limit the amount of power consumed by HPC systems
is power capping [LWW08, FWB07, RCC12, KZA+12], which means bounding
a supercomputer not to exceed a certain value of consumed power (respecting
a power “cap”). This approach somehow encompasses and can exploit all the
methodologies illustrated so far. Power capping can be implemented through
several strategies. Today’s most employed power budgeting mechanisms rely on
the hardware components capacity to operate at different frequencies and there-
fore with different power consumptions. The main idea is to limit the computing
nodes performance when the total power consumption gets closer to the critical
threshold [CHCR11,VAN08]. The power-curtailing action is generally initiated
by the resource manager in combination with the job dispatcher, which dy-
namically collects information on the current power consumption and decides
accordingly the amount of power to allocate to each computing node [Ben12].

A problem to consider when implementing power capping methods is the
variability in terms of power and performance which can be observed among
nominally equivalent processing units (and other hardware components). Mod-
ern processors suffer from increasingly large power variations due to the chips
manufacturing process [MHJI07, Nas04]. Only recently these power variations
and their implications for HPC systems with a power budget have been rec-
ognized and studied. For example, Inadomi et al. [IPI+15] analyze the manu-
facturing variability on four supercomputers with different micro-architectures
and its impact on their HPC applications; they then propose a variation-aware
power capping strategy with the goal to maximize applications performance.
The key point is to determine optimal module-level power allocations to ensure
performance homogeneity; frequency scaling proved to be the most effective

2.2 Constraint Based Job Dispatching 27

mechanism to implement the proposed policy.
A very interesting analysis of different power capping strategies can be found

in [PMW+15]. Petoumenos et al. compare different approaches (ranging from
DVFS to forced idleness, passing through compiler-based optimization) on the
same system and try to establish which one can provide the best performance-
power saving trade-off. The results indicate that DVFS is generally the most
effective technique despite the weakness of a limited granularity w.r.t. RAPL
(DVFS is constrained by the finite and small number of different operational
frequencies that can be chosen). However, their study does not conclude that
one method is always better than the others. Keeping that in mind, the authors
encourage mixed approaches which could benefit from the best characteristics
of each method; for example, combining frequency scaling with forced idleness
provided the best overall results on the tested system.

2.2 Constraint Based Job Dispatching

In the previous section we discussed the High Performance Computing context
and in particular we described the job dispatching problem in HPC systems.
In this section we are going to define this problem in a more detailed way and
we are going to show how it can be included in the broader category of the so
called Scheduling & Allocation problem, a staple of optimization research and
practice. A great part of the section is devoted to introduce the Constraint
Programming paradigm which is a fundamental enabling technology for the so-
lution approaches presented in the rest of this work (see in particular Chapters 3
and 5).

A Scheduling & Allocation problem consists of allocating finite resources to
activities over time [BT13]. Hence, finding a solution means assigning a start
time and a set of resources to each activity, while respecting a set of constraints
(i.e. to model the finite resources) and trying to optimize an objective. This
problem has been the subject of a huge number of studies from different research
fields and it is referred to also as Resource Constrained Project Scheduling
Problem (RCPSP). The problem of dispatching jobs in a HPC system can be
naturally framed as a scheduling & allocation problem: a supercomputer offers a
set of finite resources (shared or exclusive) and the dispatching problem consists
in assigning a starting time and deciding a resource partition for each activity
to be executed.

Constraint Programming (CP) is a programming archetype with a long his-
tory of success with scheduling & allocation problem and thus is an ideal candi-
date to solve the job dispatching problem in the High Performance Computing
context. The general scheduling & allocation problem is also referred to as
Constraint-Based Scheduling with the nomenclature adopted by the CP com-
munity [BPN01a]. We are now going to introduce the Constraint Program-
ming methodology and then discuss its application to the resource constrained
scheduling problem.

2.2.1 Constraint Programming

Constraint Programming is a programming paradigm belonging to the Artificial
Intelligence (AI) area. It deals with Constraint Satisfaction Problems (CSP),

28 2. Related Work

usually defined by a triple 〈X,D,C〉, where X is a set of variables, D a set of
domains and C a set of constraints. Each variable Xi may take a value v ∈ Di

from its associated domain; each constraint Cj defines (and limits) the values
that can be assumed by a set of variables, the scope of the constraint – denoted
as S(Cj). The scope of a constraint specifies the set of variables it can be applied
to; the constraint is said to be posted on S(Cj). A solution to the CSP is an
assignment of the variables compatible with every constraint.

A CP model thus is defined by variables, domains and constraints; a filtering
algorithm is associated to every constraint Cj and its purpose is to remove
certainly infeasible values from the domain of the variables in its scope. The
filtering process can be seen as a way to infer additional constraints from the
existing ones. When a domain Di is modified by a constraint, such change may
lead other constraints involving the same variable to filter out more values – this
mechanism is called constraint propagation. Many algorithms were proposed to
perform this propagation in the most efficient way [Bes94]. Usually this process
proceeds until a fixed point is reached, i.e. it is impossible to filter out further
values from each involved domain.

Typically CSP problems are solved through tree-search; each branching deci-
sion activates the filtering algorithm and constraint propagation, actively reduc-
ing the search space (often performing much faster than complete enumeration).
However, the filtering and propagation mechanisms alone are not sufficient to
find a solution in all the situations. First, if a problem possesses multiple solu-
tions filtering and propagation cannot choose between them (by definition fil-
tering and propagation do not arbitrarily remove feasible values). Furthermore,
eliminating all infeasible values in a CSP is, in general, as complex as solving
the problem itself; in practice one needs be satisfied with some kind of local
consistency [Bar05]. Several kinds of local consistencies have been proposed;
the most widely adopted are the arc consistency (AC), generalized arc consis-
tency (GAC), Bound Consistency (BC) and K-Consistency. Local consistencies
define properties that the constraint problem must satisfy after constraint prop-
agation. An extremely well written discussion on constraint propagation and
local consistencies can be found in [Bes06]. For the reasons exposed above, a
crucial aspect for all CP methods is the definition of a search strategy, which is
used to find the actual solutions.

Summarizing, in order to solve a CSP using a CP approach it is necessary
to define two key components: a model and a search strategy. Thus:

CP = model + search

Modeling and search can be seen as “independent”, i.e. a model could be solved
exploiting many search strategies and vice-versa a single search strategy could
be used with different models.

2.2.1.1 Modeling in CP

Constraint Programming provides a very expressive language which allow the
creation of compact yet expressive models. The high level of versatility of-
fered by CP is one of its most useful aspects. There are almost no restrictions
on variables and constraints. For example, the variables range from classical
types like integer and real to less common ones, like set-variables [Ger94] and
interval variables [LR08, Lab09b] (as we will see, these are extremely useful

2.2 Constraint Based Job Dispatching 29

in scheduling problems for modeling activities). Each class of variables allows
several kinds of constraints, from the simple unary linear constraints to more
complex ones. For example, we can find linear mathematical constraints as
Xi + Xj ≥ Xk − 2 or non-linear ones, Xi 6= Xj , Xi = min{Xj , Xk}, etc. We
can also have constraints specifically tailored for certain variable types, i.e. the
non overlapping(Xi, Xj) constraint for interval variables which imposes that
two activities Xi and Xj must execute in different time periods, with no over-
lap between them. Another possible constraint type is represented by meta-
constraints (or reified constraints) used within mathematical or logical expres-
sions, i.e. (Xi = 0) ≥ (Xj 6= 1).

2.2.1.2 Global Constraint

A very interesting (and widely used) group of constraint goes by the name of
global constraints [BCR05, Rég04, Sim96]. A global constraint is posted on a
set of variables and encapsulates several homogeneous constraints. For example
the well known aldiff is posted on a set of variables X0, X1..Xn and imposes
inequalities among all of them.

∀Xi, Xj with i 6= j : Xi 6= Xj

Very powerful filtering algorithms have been devised for every global constraint.
One of the strongest motivation to use global constraint is that the filtering algo-
rithm associated with them is stronger than the conjunction of the independent
filtering algorithms of the local constraints corresponding to the global one.
This is due to the fact that filtering is a local mechanism, because it is associ-
ated to each constraint independently. If a constraint is decomposed in a set of
non-global constraints, the filtering algorithm for each sub-constraint has fewer
knowledge about the overall problem and therefore has a less effective pruning
capability. For example, suppose we have this simple CSP on finite domains:

X0 6= X1, X1 6= X2, X0 6= X2

X0 ∈ {1, 2, 3}
X1, X2 ∈ {1, 2}

If we enforce Arc Consistency no value can be excluded from the variables
domains, because for each variable Xi all values v have a support in the domain
of Xj , for every single constraint Xi 6= Xj . However, if we look at all the
constraints at the same time, we can notice that, in order to obtain a feasible
solution, values 1 and 2 must be assigned to X1 and X2. Thus, the domain of
X0 can be reduced to D0 = {3}. This kind of global-level domain pruning can
be extremely effective, especially with large size problems.

In addition, global constraint are very expressive and allow more compact
models. Global constraints (and their powerful filtering algorithms) are one
of the key strengths of Constraint Programming. Many and diverse kinds of
techniques have been used to implement filtering algorithms for with global
constraints [vHK06]. For a complete survey of the (many) existing global con-
straints we refer to [R1́1].

30 2. Related Work

2.2.1.3 Search in CP

Constraint Programming allows to use a wide selection of search strategies; these
techniques may differ greatly and have a strong impact on the resolution of CSP
problems. However, the majority of search methods falls in one of three main
classes, Backtrack Search, Local Search and Dynamic Search. For a thorough
survey of search strategies in CP see [VB06,RVBW06].

In this section we focus on the most commonly used search strategy in CP
problems, Backtrack Search (BS). A backtracking search to find a solution to a
CSP can be seen as performing a depth-first traversal of a search tree. Backtrack
search works by posting constraints on variables, activating propagation at each
decision step (a node in the search tree) and then backtracking on failures.
Constraints are used to check whether a node may possibly lead to a solution of
the CSP and to prune subtrees containing no solutions. The branches are often
ordered using a heuristic, with the left-most branch being the most promising.
To ensure completeness, the constraints posted on all the branches from a node
must be mutually exclusive and exhaustive.

The term branching strategy indicates the choice of the kind of constraint
to post at each search node. With an enumeration branching strategy at each
decision point we select a variable and generate a branch for each possible value,
posting a set of unary constraints xi = v, ∀v ∈ Di. If binary choice point is
adopted one value from its domain is assigned to the selected variable, posting
xi = v on a branch and xi 6= v on the other branch. Finally in domain splitting
the variable is not necessarily instantiated, but rather the choices for the variable
are reduced in each subproblem, using two branches with constraints as xi ≥ γ
and xi < γ.

In all branching strategies a criterion must be specified to decide which
variable must be selected at each search node and which values must be assigned.
A commonly employed criterion is the so called “First-Fail Principle” [HE80]
which recommends to select the variable more likely to generate a failure. A
common implementation of this heuristic is to select at each decision step the
variable with the smaller domain [GB65]; in case of ties in the selection, the
choice could be based on the degree of the variable, i.e. the number of constraints
in which it is involved [Bré79]. Another general strategy is presented in [Ref04]
and it is called Impact Based Search: the key idea is to associate to each variable
its impact, i.e. the relative reduction of the search space it can provide, if
a certain value is assigned. The impact are learned from the observation of
domain reduction during search.

Another way to exploit information gathered during the search process are
no-goods [SS77, KB05, Bac00], sets of assignments and branching constraints
that are not consistent with any solution. The goal is to learn from previous
failures, deducing their cause and obtaining an explanation. If we are using a
backtracking search, each dead end corresponds to a no-good. Thus no-goods
are the cause of all futile search effort. Once a no-good for a dead end is
discovered, it can be ruled out by adding a constraint. Several works studied
how to effectively find no-goods, both using the static structure of the CSP
[Bru81,Dec86,Dec90] and dynamically during the search [Gin93,Pro93,SV94].

It has been observed that backtracking algorithms can be unstable on some
instances, since seemingly small changes to a variable or value ordering heuris-
tic can lead to great differences in running time. An explanation for this phe-

2.2 Constraint Based Job Dispatching 31

nomenon is that heuristics make mistakes. Depending on the number of mistakes
and how early in the search the mistakes are made (and therefore how costly
they may be to correct), there can be a large variability in performance between
different heuristics. To address this problem, two usually adopted techniques
are restarts and randomization. Randomization consists in introducing some
random element either when selecting the variable and/or when choosing which
value to assign; a useful introduction to the topic can be found in [Gom04]. A
randomized search method is usually restarted after some time – to prevent bad
random choice to ruin the overall performance. Different restarting strategies
have been proposed for this purpose [LSZ93,Wal99].

Finally, alternatives to depth-first search have been proposed. For example,
Limited Discrepancy Search [HG95], which can be seen as a sort of best-first
search strategy, since the first nodes to be explored are those deemed “better” by
a certain heuristic. When the search does not follow the values ordering heuristic
and does not take the left-most branch out of a node we have a discrepancy.
Least Discrepancy Search considers earlier the nodes with fewer discrepancies.
A generalized approach of this technique is called Decomposition Based Search
[vHM04]: using a heuristic the values of each variable are classified as “good”
or “bad”. At first only good values are considered and during the search the
variable are allowed to assume an increasing number of bad values.

2.2.2 Modeling a scheduling problem with CP

In this section we discuss a Constraint Programming model for scheduling prob-
lems. We deal with a simplified version of the general scheduling problem for
the sake of clarity. We consider only non-preemptive activities with a fixed
durations. “Non-preemptive” means that once an activity started it cannot be
interrupted. The resources available are finite (also called “cumulative” in the
literature) and additive, i.e. the total resource requirements of multiple activi-
ties executing concurrently is the sum of the every single task requirement.

Scheduling problem over a set of activities A = {a0, a1, ..} and resources
R = {r0, r1, ..} is usually modeled in CP with the introduction of three integer
variables for each task (see [BPN01a]):

1. STi is the activity start time (when the activity begins its execution)

2. ETi is the activity end time (when the activity ceases its execution)

3. Di is the activity duration (the number of time instants required to com-
plete an activity)

These three variables must always satisfy the constraint STi +Di = ETi. Here
we are dealing with fixed durations hence Di = di (where di are fixed values).
Conventional names are used to define bounds for start and end variables:

� min(STi) = EST (ai) - Earliest Start Time

� max(STi) = LST (ai) - Latest Start Time

� min(ETi) = EET (ai) - Earliest End Time

� max(ETi) = LET (ai) - Latest End Time

32 2. Related Work

EST and LET may be forced by users to specify release time and deadline on
activities. To represent precedence constraints we use linear constraint between
start and end times of different activities STi ≥ ETj . The limitations derived
from the finite resources are usually expressed through a global cumulative

constraint [AB93] posted on each resource rk ∈ R:

cumulative([STi], [Di], [rqik], Ck)

where [STi] and [Di] are the vectors of start times and durations variables, [rqik]
are the resource requirements and Ck is the capacity of resource k. The cumula-
tive constraint enforces that at each point in time, the cumulated requirements
of the set of tasks that overlap at that point, does not exceed a given limit. For-
mally, if we assume all STi variables range between 0 and eoh (End Of Horizon),
the cumulative constraint enforces:

∀i ∈ A,∀k ∈ R,∀τ = 0, .., eoh :
∑

STi≤τ<STi+Di

rqik ≤ Ck (2.2)

In every time point τ the sum of requirements [rqik] of running tasks (STi ≤ τ <
STi+Di) on resource k must not exceed its capacity Ck. In Figure 2.2 we can see
the resource consumption profile of a set of five activities allocated on a resource
of capacity of nine units. In this example the cumulative constraint holds since
at each point in time we do not have a cumulated resource consumption strictly
greater than the upper limit.

Figure 2.2: Example of resource consumption profile. Source Global Constraint
Catalog [glo15]

A solution for the scheduling problem (a schedule) is a feasible assignment
for every STi and ETi variable. To summarize, 2.3 shows a quite used simple
CP model used for scheduling problems. The objective function F (A) is not
specified since there are many different objectives to consider, some of them
mentioned in the Section 2.2.3.

2.2 Constraint Based Job Dispatching 33

min : F (A)
s.t. : STi +Di = ETi ∀ai ∈ A

ETi ≤ STj ∀ai ≺ aj
cumulative([STi], [Di], [rqik], Ck) ∀rk ∈ R

with : STi, ETi ∈ {0, ..., eoh}
Di = di

(2.3)

2.2.3 Objective Functions

This section describes some objective functions commonly used in scheduling
problems. Probably the most frequently used objective is the makespan, the
total completion time which is defined as the worst completion time among all
the activities to be scheduled:

mks = max
ai∈A

ETi (2.4)

The makespan can be also considered as the total length of the schedule and the
general goal is to minimize it. Generally, in HPC settings there is a correlation
between the utilization of the systems, i.e. the percentage of resources that are
not in an idle state, and the makespan, since when the former increases the
latter decreases – a system with higher utilization rate is executing more jobs
in parallel and will probably complete earlier the workload execution.

If activities are subjected to deadlines dli they may incur in penalties if they
fail to finish within a certain time. We therefore define the tardiness of an
activity as Tr(ai) = max(0, dli − ETi). It is also possible to associate a weight
wi to each activity which reflects the fact that it could be worse to exceed the
deadlines of some jobs rather than others, depending on their priorities. This
situation is very common in HPC contexts, since different jobs and different
users may have different needs in terms of when a task must be completed – i.e.
it could be worse exceeding the deadline for a short and urgent task rather than
long ones. The goal in this case could be the minimization of the maximum
weighted tardiness [Jac55]:

maxWT = max
ai∈A

Tr(ai) (2.5)

or to minimize the total weighted tardiness:

totWT =
∑
ai∈A

Tr(ai) (2.6)

Alternatively activities may receive penalties if they start before a certain date
(earliness cost); the objective function definition is analogous to the tardiness

34 2. Related Work

case. It is obviously possible to combine both tardiness and earliness in the
objective proceeding in a similar fashion [KH06].

Finally, there may be interest in minimizing the number of jobs exceeding
their deadlines (number of late jobs [Moo68]); this can be modeled considering
that a job is late if ETi > dli:

nlj =
∑
ai∈A

[[ETi − dli > 0]] (2.7)

These objective functions are all regular, i.e. there is no benefit in delaying
an activity towards the end of the project8. Generally, CP is better suited to
deal with objective functions defined as the maximum over a set of expressions,
as in the case of makespan or maximum tardiness. This is due to the fact that
in this case any constraint on the objective value is effectively back-propagated
on all the domains of the involved activities. Conversely CP tends to performs
worse with functions involving sums due to poor propagation.

2.2.4 Filtering for Cumulative Constraints

As mentioned when introducing Constraint Programming, in order to decrease
the time needed for the search it is very important to devise effective tech-
niques to reduce the search space. This is done in CP by reducing variable do-
mains through filtering algorithms. Every type of constraint has its own filtering
method and cumulative constraints are no exception. In fact, many filtering al-
gorithms for resource constraints have been studied and implemented. We are
going to see three of the mainly used filtering techniques; for a complete survey of
propagation methods on resource constraints see [BCP08,BP07,Lab14,LP+05].
In the remaining part of this section we assume again activities durations to
be fixed (Di = di); note that without this assumption the proposed algorithms
would still work by assuming di = min(Di).

Time-Table filtering Time-table (TTB) propagation techniques [LP94] com-
pute and maintain during the search the aggregated demands profile (the sum
of every activity requirement) at each time interval τ . This information allows
to restrict the domains of the start and end times of activities by removing the
dates that would necessarily lead to an over-consumption of the resource.

More in detail, whenever an activity ai shows the condition LST (ai) ≤
EET (ai) we can be certain that such activity will run (and consume required
resources rqik) during any time interval τ ∈ [LST (ai), EET (ai)] – this is called
an obligatory region. This information forces an update in the time-table global
data structure and the aggregated demand for the resource is increased by rqik
at time τ . We denote the aggregated resource consumption for a resource k at
time τ as RQk(τ). Since the time-table structure changes only on modifications
of LST and EET the access to RQk(τ) with binary search requires O(log|A|)
(A is the set of activities). Iterating over the entire structure takes O(|A|). The
cumulative demand is defined as:

RQk(τ) =
∑

LST (ai)≤τ<EET (ai)

rqik ∀k ∈ R (2.8)

8More precisely: when two resource feasible schedules have been constructed such that
each activity under the first schedule starts no later than the corresponding starting time in
the second schedule, then the first schedule is at least as good as the second schedule

2.2 Constraint Based Job Dispatching 35

Obviously, if a time τ exists such that RQk(τ) > Ck (Ck resource capacity),
the current schedule cannot lead to any solution and search must backtrack. In
addition, if there exists an activity aj requiring rqjk amount of resource k at
time τ0 such as:

1. EET (aj) ≤ τ0 < LET (aj)

2. ∀τ ∈ [τ0, LET (aj)) : RQk(τ) + rqjk > Ck

then activity aj cannot end after date τ0, since otherwise there would be an
over-usage of resource k. Thus τ0 is a new valid upper bound for ETj .

Figure 2.3: TTB propagation example

In Figure 2.3 we can see an example of time-table filtering: activity A1 has
an obligatory region (LST (A1) ≤ EET (A1)) and the resource usage is not equal
to zero. Conversely activity A2 has no obligatory parts, thus it does not enable
any propagation. The main advantage of this technique is its relative simplic-
ity and its low algorithmic complexity. It is the main technique used today
for scheduling discrete resources. Unfortunately, time-table filtering propagate
nothing until the activities’ time windows become so small that some time in-
stants are necessarily covered by some activity. Furthermore this method does
not exploit the existence of precedence constraints between activities.

Edge Finder filtering Edge-Finding methods [Pin91] reason about the order
in which activities execute on a given resource. A complete discussion of these
methods is out of the scope of this work hence we refer to [BP96] for a thorough
review of existing edge-finding approaches, while here we simply hint the main
idea. On unary resources edge-finding algorithms detect situations when an
activity A must execute before (or after) a set of activities Γ. We can then
draw two types of conclusions: new ordering relations (“edges” in the graph
representing the possible orderings of activities) and new bounds for start and
end time variables. If Γ is a subset of activities on a unary resource and A /∈ Γ
another activity on the same unary resource, EST (X), LET (X), Durmin(X)
are the minimal start time, maximal end time and minimal duration over all
activities in a set X, the typical edge-finding technique relies on the kind of
implication described by the following expressions.

36 2. Related Work

Let (1) be:

LET (Γ ∪A)− EST (Γ) < Durmin(Γ ∪A)

and (2):

ET (A) ≤ min
ΓS⊆Γ

(LET (ΓS)−Durmin(ΓS))

then the edge-finding rule is (1)⇒ (2)

Figure 2.4: Edge-finding propagation example

In Figure 2.4 we can see an example of edge-finding propagation. If we
consider A = A4 and Γ = {A1, A2, A3} the condition in (1) are satisfied
(LET (Γ ∪ A) = 16, EST (Γ) = 6 and Durmin(Γ ∪ A) = 11). The algorithm
would propagate and compute a new upper bound for A4: ET (A) ≤ (16−9) = 7
(taking ΓS = {A1, A2, A3})

The cumulative case is more complicated due to the many activities that may
overlap on a cumulative resource. In this case edge-finding methods use “energy
based reasoning” to detect relations between activities, where the energy is
defined as the product of duration times amount of required resource. Edge-
finding algorithms are very powerful but their non negligible computational
complexity represents a severe drawback [BPN01b].

Energetic Reasoning Energetic reasoning [ELT91,LEE92] consists in com-
paring the amount of resource energy required over a time interval to the total
amount of energy available over the same interval. Similarly to the edge-finding
technique energetic reasoning works on the time bounds of the activities, re-
moving invalid values when possible.

Again let us consider an unary resource (but the method could be extended
to the cumulative case). Energetic reasoning key point is to find pairs of activ-
ities (A,B) such that if A precedes B this would lead to a dead end, because
the resource could not provide enough energy between EST (A) and LET (B)
to execute A, B and all the other activities that necessarily execute on the same
time interval [t1, t2). More precisely let C be an activity and [t1, t2) a time
window; the energy required by C in such time window is:

E
(t1,t2)
C = max(0,min(EET (C)− t1, t2 − LST (C), Dur(C), t2 − t1))

Then if this condition holds:

LET (B)− EST (A) < Dur(A) +Dur(B) +
∑

C/∈{A,B}

WLST (A),LET (B)
c

2.2 Constraint Based Job Dispatching 37

we know that A cannot be scheduled before B, hence it must go after it. This
propagation allows to modify the time bounds for both LET (B) and EST (A).

Energetic reasoning (like edge-finding) is very effective when dealing with
pure scheduling problems but still presents the same drawbacks of time-tabling.
Their weakness is to consider only the absolute position of activities over time
(their time-bounds) rather than their relative positions (the precedence relations
between them). Hence, the propagation starts only when time windows are
sufficiently small. Furthermore, propagation may be very limited when the
current schedule contains many precedence constraints.

2.2.5 Search Strategies in Scheduling Problems

This section introduces two of the most adopted and well-known searching
strategies tailored for scheduling problem.

Schedule or Postpone Pape et al. [PCVG94] proposes schedule-or-postpone
tree-search strategy which tends to produce active schedules, i.e. schedules
where no activity can be left shifted. The schedule-or-postpone strategy is
complete if the objective function is regular (non decreasing in the end time
of the activities) because in this case there would always be an optimal active
schedule [SKD95]9. At each node of the search-tree this method selects an
activity ai and open a choice point: on the left branch ai has its start time set
at EST (ai), on the right branch ai is marked as non-selectable until its earliest
start time is modified by propagation – i.e. postponed. Generally, the criterion
used to select an activity among all the available ones at each decision point is
to prefer the activity with the smaller earlier start time, using latest end times
as tie-breaker.

Precedence Constraint Posting Precedence constraint posting is a search
strategy (also called PCP) that aims at resolving conflicts which may arise when
many activities try to access the same finite resources by adding additional
precedence constraints. This idea has been proved to be very effective when
applied to CP context [LG95,Lab05,PCOS07]. In particular Laborie proposes a
technique [Lab05] that relies on the identification and consequent resolution of
Minimal Conflict Sets (MCS). A MCS for a resource rk is a subset of activities
such that: ∑

ai∈MCS

rqik > Ck (2.9)

∀ai ∈MCS :
∑

aj∈MCS\{ti}

rqjk ≤ Ck (2.10)

∀ai, aj ∈MCS with i < j : STi < ETj ∨ STj ≤ ETi
is consistent with the current state (2.11)

where ai are activities and rqik their requirements on resource k of capacity
Ck; STi and ETi are, respectively, start times and end times of the activities.
Eq. 2.9 requires the set to be a conflict (resource over-usage), Eq. 2.10 is the

9Unless particular precedence constraints are used

38 2. Related Work

minimality condition (if any activity in the set were to be removed, the conflict
would not exist) and Eq. 2.11 says that the activities may overlap. The MCS
resolution requires to impose a single precedence relation between two activities
in the set; the complete search consists in selecting a MCS at each decision node
and branching on all its possible resolvers (the different precedence relations)
in the children nodes until there are no more MCSs.

2.2.6 Decomposition Techniques

A lot of research over the last decades produced CP algorithms very good at
solving small or medium sized instances; the main strengths of CP are strong
inference methods and powerful search heuristics. The former is very apt at
quickly detecting any infeasibility while the heuristics are used to guide the
search towards areas in the search space which will likely contain solutions.
Constraint Programming deals with optimization problems using branch and
bound techniques, with the cost represented by an objective variable – new
solutions are required to have lower costs than the previous ones (through con-
straint placed on the objective variable). However these methods often risk to
be ineffective when tackling larger problem instances. For instance, in the case
of allocation & scheduling under constrained resources in HPC systems we may
have to deal with problems formed by thousands (or even more) of variables,
depending on the number of resources hosted in the machine (as told before we
can have supercomputers with tens of thousands processing units) and on the
number of tasks submitted by users (up to thousands per day in larger systems).

The sheer complexity of many problems renders even the most advanced
CP methods ineffective unless an alternative strategy is applied. In order to
face this issue, in the last few years many works have studied approaches that
effectively decompose and solve large scale problem, i.e. the original problem is
divided in sub-problems whose individual solutions can be found with relatively
lower computational effort. Decomposition techniques have been proved to be
useful also in smaller scale (but hard) problems too, often because while there
are no efficient way to cope with the original problem its components can be
solved with specialized and effective algorithms. For example, Benini et al.
[BBGM05] describe a method to deal with allocation and scheduling in Multi-
Processor Systems on Chip. The key idea is to decompose the problem in
the scheduling component, solved through Constraint Programming, and the
allocation component solved with Integer Linear Programming.

An important component in many decomposed approach is the so called
Local Search. This term represents a large class of meta-heuristics commonly
used in computationally hard optimization problems [GH06, BPW+12, MA04,
AEOP02, LMS03]. The typical approach used in Local Search starts from an
initial feasible solution and then proceeds to apply small changes to the solution
in order to produce a new one; if the new solution is better than the older one
it becomes the new current solution. After that, new local moves are iteratively
applied to further explore the solution space until a fixed point or a time limit
is reached. The main drawback of this approach is given by the local nature of
the moves: if the current solution is a local minimum (given that we are dealing
with a minimization problem), moves to neighbours solutions may never be able
to escape such local minimum and the algorithm could not find possible global
minima. To overcome this limitation many extension have been proposed, such

2.2 Constraint Based Job Dispatching 39

as introducing randomization [NW07, Len97] or preventing to go back to the
previous solution even if it was better than the new one (Tabu Search [GL97]).
Delving in the depths of local search is outside the scope of this work but the
interested reader can find an interesting starting point in this book by Aarts et
al. [AL97].

2.2.6.1 Benders Decomposition

A very common decomposition techniques well suited for scheduling & alloca-
tion problems is the Benders Decomposition. The classical Benders Decompo-
sition [Geo72,BM91] method decomposes a problem into two loosely connected
subproblems. It enumerates values for the connecting variables. For each set
of values enumerated, it solves the subproblem that results from fixing the con-
necting variables to these values. The solution of the subproblem generates a
Benders cut that the connecting variables must satisfy in all subsequent solu-
tions. The process continues until the master problem and subproblem converge
providing the same value. The idea is to “learn by mistake” and the use of Ben-
ders cuts accomplish the goal of eliminating superfluous solutions. The classical
Benders cut is a linear inequality based on Lagrange multipliers obtained from
a solution of the subproblem dual. The typical Benders approach, however,
requires that the subproblem is a continuous linear or nonlinear programming
problem.

Logic-Based Benders Decomposition LBBD [HO03] is an extension of the
traditional scheme that enables generic solvers to be used as subproblem solvers.
LBBD can be applied to any class of optimization problem but a method to
generate Benders cuts must be identified for each different class of problems
– and this is usually not a trivial task. LBBD has been applied to numerous
application, in particular it had a great success with planning and scheduling
problems [Hoo07], and it has been also used in conjunction with Constraint
Programming [EW01]. LBBD is used in [FZB09] to solve a location-allocation
problem, i.e. deciding where to locate a set of facilities and allocate clients to
them, and the results show that it outperforms the traditional ILP approach.
LBBD has also been applied to scheduling problems [Hoo05a,Hoo05b,TB12]; for
example Canto uses LBBD [Can08] to solve the problem of scheduling preventive
maintenance activities in a power plant.

A great advantage of LBBD is the possibility to use heterogeneous techniques
to solve the master and the subproblems and this can lead to very efficient
solutions. The main limitation of LBBD-based approach lies in the difficulty to
generate effective cuts, which in turns leads to a inefficient exploration of the
search space and a slow convergence towards the optimal solution, especially
with large-scale problems. Another disadvantage of LBBD is the risk of loosing
valuable information (e.g. if master and problem variables are connected by
tight constraints) when we decouple master and subproblems.

2.2.6.2 Large Neighborhood Search

A method extensively studied in the literature and very appreciated for its prac-
tical effectiveness is Large Neighborhood Search or LNS [Sha98], a framework
that combines the search power of CP with the scaling performance of local
search. As in local search, we start from an initial solution of the problem

40 2. Related Work

(which can be found through standard CP search or faster heuristics) and then
we modify it. However, instead of making small changes to the solution, as is
typical with local search move operators, a subset of variables from the problem
are selected. These variables are then unassigned while the remaining ones are
locked to their values in the current solution, then the search for an improving
solution happens through reassigning only the unassigned variables. The search
strategy used for finding a new assignment for the relaxed variables can be cho-
sen in order to best fit the problem taken in consideration. There are three
crucial aspects affecting the quality of LNS: 1) the fragment selection procedure
(which are the variables that will be relaxed), 2) the fragment size and 3) the
search limit – the stopping criterion applied to the search of the new solution
with the relaxed variables. The best methods to address these points have not
been decided yet and they are subject of a lot of research efforts.

LNS has proved to be a very effective tool for solving complex optimization
problems, however applying LNS to real world problems still requires a great
deal of problem domain knowledge since heuristics to select effective neighbor-
hoods must be discovered for each problem class. Carchrae et al. [CB09] show
how to reduce the required expertise using adaptive techniques to create algo-
rithms that adjust their behaviour to suit the problem instance being solved.
With a similar purpose, Laborie et al. [LG] present an approach called Self-
Adapting Large Neighborhood Search, which combines Large Neighborhood
Search with a portfolio of neighborhoods selection and completion strategies
together with Machine Learning techniques to converge on the most efficient
way to solve the target problem. The re-enforcement learning scheme, although
quite simple, ensures a quick convergence on the most effective neighborhoods,
search strategies and their associated parameter values and is a key factor in
the robustness of the approach.

Godard et al. [GLNI] use a LNS technique to solve cumulative constrained
scheduling problems, where resources may execute several activities in parallel,
provided the resource capacity is not exceeded. It relies on a general approach
based on calculating partial-order schedule from a fixed start time schedule.
A partial-order schedule, POS, for a problem P is a graph where the nodes
are the activities of P and the edges represent temporal constraints between
pairs of activities, such that any possible temporal solution is also a consistent
assignment [PSCO04]. In the context of LNS, POSs provide a very powerful
way to inject flexibility into the schedule while keeping interesting features from
one solution to the other. Danna et al. [DP03] consider the job-shop scheduling
problem with earliness and tardiness costs, i.e. jobs should be scheduled exactly
at certain times in order not to incur in “penalties”. The paper compares two
approaches for dealing with this problem, one being a LNS based method tai-
lored for the problem, the other being a form of LNS called Relaxation Induced
Neighborhood Search which is a generic and unstructured algorithm, relying
only on a continuous relaxation of the Mixed-Integer Programming model of
the problem to define its neighborhood.

Palpant et al. [PAM04] propose a technique to overcome scale issues in re-
source scheduling problem. They introduce a method which combines local
search with subproblem exact resolution (LSSPER). The method can be seen
as a hybrid scheme: each step fixes a subpart of the current solution while the
other part defines a subproblem solved by a heuristic or exact solution approach.
The key factor of the method is the choice of the subproblem to be optimized

2.3 Machine Learning 41

and the paper analyzes several different strategies for this task.

2.2.6.3 Adaptive Randomized Decomposition

A different approach targeted at large scale problems is Adaptive Randomized
Decomposition (ARD), proposed by Bent and Van Hentenryck in [BH07b,BH10]
to tackle large scale vehicle routing problems. Its goal is to find a set of de-
couplings, i.e. subproblems which can be independently optimized and whose
solutions can be merged back in an existing solution to produce a better one;
the choice of algorithms for optimizing the sub-problems is independent from
the ARD scheme. Pacino et al. [PH11] study the effectiveness of LNS and ARD
methods when dealing with a constraint-based scheduling problem, in particu-
lar the flexible job-shop, a generalization of the traditional job-shop scheduling
where activities have a choice of machines. In this work LNS uses random, tem-
poral and machine neighborhoods, while ARD takes advantage of 1) temporal
(consider the activities running within a time window) and 2) machine (select
the activities executing on a subset of the machine) decouplings to generate
subproblems.

Simon et al. [SCVH12] employed ARD to tackle the problem of the restora-
tion of the electrical power system after significant disruptions caused by natural
disasters. The problem is very challenging since it combines routing and power
restoration components. Previously, a 3-stage decomposition was used but the
routing sub-problem proved to be a bottleneck, therefore in the paper a new Ve-
hichle ARD is proposed and it is shown to provide good results while addressing
problems of considerable size (several thousands of components).

2.3 Machine Learning

The field of Machine Learning (ML) is a branch of Artificial Intelligence with
the scope of building computer programs that automatically improve with ex-
perience [Mit97]. Machine Learning draws on concepts and findings from many
different areas, for example statistics, philosophy, information theory, biology,
cognitive science, computational complexity, and control theory. ML methods
have proven to have great practical value in many different application domains,
ranging from data mining in large databases that might contain valuable pat-
terns not easy to see by a human eye to improve the performance of machines
and automated systems. They have proven to be very effective in a large number
of contexts, including computer vision, speech recognition, document classifica-
tion, automated driving, computational science, and decision support.

ML algorithms use sets of data in order to extract information or generate
knowledge bases. Datasets are represented using the same set of features, that
can be continuous, categorical or binary. If the instances forming a data set have
corresponding known labels (the corresponding correct output) the learning is
called supervised (Section 2.3.1). Conversely, unsupervised learning deals with
unlabeled instances (Section 2.3.2.1); the application of unsupervised algorithm
can lead to the discovery of unknown properties or classes among the unlabeled
data. Another type of learning is reinforcement learning (Section 2.3.2.2): the
training input provided to the learning model by an external trainer (the envi-
ronment) has the aspect of a reinforcement signal, a measure of how well the

42 2. Related Work

N. Temperature (◦C) Forecast Windy # Friends Class

1 24 Sunny True 10 P
2 13 Cloudy False 8 P
3 34 Sunny False 4 N
4 26 Sunny False 3 N
5 0 Rain True 12 N
6 28 Cloudy False 9 P

Table 2.2: Training Set Example

system is operating. The learner is not commanded to take certain actions but
rather it must discover the actions generating the best reward, with a trial-and-
error mechanism.

Many books provide thorough and comprehensive introductions to ML and
its application, among them [MCM13, RNC+03]. The rest of this Section dis-
cusses several techniques employed to solve ML problems.

2.3.1 Supervised Learning

Supervised learning is the machine learning task of inferring a function from
labeled training data consisting of a set of training examples. The key hypothesis
of supervised methods is the inductive learning hypothesis [Mit97]:

Any hypothesis found to approximate the target function well over a
sufficiently large set of training examples will also approximate the
target function well over other unobserved examples.

In this case the learning scheme involves acquiring general concepts from train-
ing examples. The process of concept learning can be seen as a search through
a large space of hypotheses; the goal of the learning is to find the hypothesis
that best fit the training examples. A detailed survey of supervised techniques
and algorithms can be found in [KZP07].

Training data, forming the training set, comprises instances of training ex-
amples. Each example is a pair composed by an input object (typically a set
of features) and a desired output. Supervised learning algorithms analyze the
training data and infer a function, i.e. the relationship between the set of in-
put features and the output, which can be used to determine the labels of new
data. In order to do so, the algorithms must generalize from the training data
to unseen situations. An example of training data set can be seen in Table 2.2.
Let assume we want to learn if a particular Thursday night is apt for playing
football. The data set is composed by instances of Thursday nights character-
ized by a set of attributes: the temperature (a numerical value), if the night is
windy or not (values True or False), the weather forecast (sunny, clouds or
rain), number of friends in town (a numerical value). The concept to learn is
the fact that the Thursday night is suited for playing football (class P) or not
(class N).

Numerous ML applications can be dealt with the supervised learning scheme.
For example, a very common task for supervised learner is classification, i.e.
identify the class – or type – of an unclassified object, depending on the learned

2.3 Machine Learning 43

classification function. A high-level approach for solving the classification prob-
lems consists in finding a “simple” classifying rule with good performance on
the training data [HK16].

2.3.1.1 Decision Trees

A very commonly used technique to approximate discrete-valued target func-
tions are decision trees [Qui86, RM05, SL90]. Decision trees classify instances
by sorting them down the tree from the root to some leaf node, which provides
the classification of the instance. Each node of the tree performs a test on some
attribute of the instance and each descending branch from the node corresponds
to a possible value of the attribute. Decision trees can be applied to instances
that can be represented as attribute-value pairs. The data set can contain errors
and the missing data. Figure 2.5 displays an example of decision tree (related
to the data set of Table 2.2).

Friends

N

<
6

Forecast

Temperature

P

<
3
0 ◦

C

Su
nn
y

Temperature

Windy

N

T
ru
e

P

False

≥
10

◦ C

N

<
10 ◦

C

C
lo
u
d
y

N

Rain

≥
6

Figure 2.5: Decision Tree Example

The most common type of decision trees requires the target function to
assume only discrete values (distinct classes), thus performing classification.
There are extensions of decision tree learning that are capable to deal with real
values [BFSO84,WW96,OW03,XWVA05] – regression trees. Broadly speaking,
most of the regression tree techniques differ from decision trees only in having
values rather than classes at the leaves. Nevertheless, decision trees tend to
perform better when dealing with categorical features and outputs.

44 2. Related Work

The canonical algorithm in the literature for building decision trees is the
C4.5 [Qui14] proposed by Quinlan as an extended version of an earlier algorithm
ID3 [Qui79] from the same author. Quinlan also proposed an extended version of
C4.5 in order to tackle the issue of continuous output, the algorithm M5 [Q+92].
While decision trees have values at their leaves, M5 generate “model” trees
that represent multivariate linear models. Model trees tend to be smaller than
regression trees. Many other approaches rely on the core algorithm defined
by ID3 and C4.5; the core consists of a top-down, greedy search through the
decision trees space. Starting from the tree root an attribute is selected and
a statistical test is performed to evaluate the impact of the attribute on the
classification. For each possible value of the selected attribute a descendant
node is created and the training set instances are directed in the appropriate
node (down the branch corresponding to the instance value of the attribute).
The process is repeated using the example in the training set and descending
the tree, each time selecting the best attribute at the current tree level. At each
node the attribute is selected through a heuristic and the decision cannot be
backtracked.

A crucial component of the algorithm is to detect which are the most “infor-
mative” attributes, the attributes with higher relevancy in order to classify an
instance and therefore those that should be tested first – ideally at the root of
the decision tree. A statistical property called information gain has been intro-
duced to measure how well a given attribute can separate the data set instances
according to their target classification. To understand the most widespread
metric for information gain the concept of entropy must be introduced. En-
tropy is a concept derived from information theory and it measures the average
amount of information necessary to identify the class of an example in a data
set [Jay57, CT12, And08]. Given a set S with negative and positive examples
and the class Cj the entropy is measured as:

Entropy(S) = −
K∑
j=1

freq(cj , S)

|S|
× log2

(
freq(cj , S)

|S|

)
(2.12)

where the target attribute can assume K different values (classes); freq(cj , S) is
the frequency of examples of class j in the set (i.e. the number of examples of the
class divided by the total number of examples). Entropy can also be seen as a
measure of the unevenness of collection of examples: higher entropy corresponds
to a more variegated set. In the case of two classes, given the proportions of
negative and positive example p− and p+ (p− = 1 − p+) the equation can be
rewritten as:

Entropy(S) = −p+ × log2p
+ − p− × log2p

− (2.13)

Having introduce the entropy, the information gain produced by a test on an
attribute A is the expected reduction in entropy caused by partitioning the
examples according to this attribute:

Gain(S,A) = Entropy(S)−
∑

v∈V als(A)

Sv
S
Entropy(Sv) (2.14)

where V als(A) is the set of possible values for attribute A and Sv is the subset
of S composed by those examples whose attribute A has value v. Note that the

2.3 Machine Learning 45

second term is the expected value of the entropy after S is partitioned using
attribute A. Information gain is precisely the metric used by ID3 and C4.5 to
select the best attribute, giving preference to attributes with higher information
gains.

A decision tree, or any learned hypothesis h, is said to overfit the training
data if another hypothesis h′ exists that has a larger error than h when tested on
the training data, but a smaller error than h when tested on the entire dataset.
For example, an hypothesis listing only positive examples of the training set
is equivalent to a rule that memorize the training sample, thus having a very
small (null) error on the training set. The drawback is that said rule could
predict the class of an example if and only if the example appeared already in
the training set. Consequently the error on the entire data set would be much
greater. More generally, overfitting is a concern because algorithms will typically
be optimizing over the training sample. The two most common approaches
to tackle overfitting are: 1) stopping the training algorithm before the point
when the learned model perfectly fits the data; 2) pruning the induced decision
tree [BKK+98]. Several analysis have been made to identify the best pruning
methods [BA97,Bru00,Elo99].

A commonly appreciated aspect of decision trees is their high human read-
ability; it is possible to look at a decision tree scheme and understands why
the learning model classifies a certain instance as belonging to a certain class.
Another great advantage of decision trees is their ability to deal with incomplete
information, i.e. instances with missing feature values. One simple strategy for
dealing with a missing attribute value is to assign it the value that is most com-
mon among training examples at the tree node [Min89]. A more sophisticated
strategy consists in assigning a probability to each of the possible values that
the attribute can assume. These probabilities are computed using the observed
frequencies of the various values among the training set instances. This is the
strategy adopted by C4.5.

2.3.1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a robust and generalized approach to ap-
proximate real-valued, discrete-valued and vector-valued target functions [Hop82].
ANNs proved to be extremely effective to deal with a large variety of problems,
such as pattern recognition [Bis95, Fuk88, CG88, Rip07], handwritten charac-
ter recognition [LBD+89,RMS89,SBB+92], face recognition [LKL97,LGTB97],
stock market prediction [KAYT90, GKD11], image compression [DH95] and
many others.

The study of ANNs has been partially inspired by the observation of how
the neurons organize their structure in tightly connected networks in biological
systems such as the human brain. Artificial neural networks are composed by
densely interconnected simple units that take a number of real-valued inputs
(possibly coming from other units) and produce a single real-valued output.
There exist different type of fundamental units that serve as building blocks
in ANNs; one common kind is the so called perceptron [Ros62], depicted in
Figure 2.6. The perceptron takes as input a vector of N real values X, calculates
a linear combination of the input and then generates an output O(X) that can
be 0 or 1, depending on the linear combination being smaller or higher than a
threshold.

46 2. Related Work

O(X) =

{
1 if

∑N
i xiwi ≥ w0

0 otherwise
(2.15)

where wi is a real value called weight determining the contribution of the input
xi; w0 represents the threshold.

Single perceptrons can be used as linear classifiers. The linear combina-
tion of weighted inputs is taken as input by the activation function which is
triggered only when its input exceeds a given threshold. Commonly used ac-
tivation functions are non-linear functions such as sigmoid σ(x) = 1/(1 + ex),
tanh tanh(x) = 2σ(2x) − 1, rectified linear unit (RelU) ReLU(x) = max(0, x)
and many others. The single perceptrons can represent the primitive boolean
functions like AND, OR, NAND and NORA. Since every boolean function can
be represented through combinations of these primitives all boolean functions
can be expressed using a two levels deep network of perceptrons, where the
second stage collects the output of multiple first-stage units.

Figure 2.6: Example of ANN. Source: https://github.com/cdipaolo/goml/

tree/master/perceptron

Perceptrons can only classify linearly separable groups of instances. Linearly
separable means that drawing a straight line or plane on all input instances is
sufficient to distinguish those belonging to the target class. If the instances
cannot be separated in this fashion, a classifier based on single perceptron will
never be able to classify them. In order to overcome the limitations of single
perceptrons, artificial neural networks are modeled as collections of neurons that
are connected in an acyclic graph – the outputs of some neurons can become
inputs to other neurons [RHW85]. Cycles are not allowed since that would imply
an infinite loop in the forward pass of a network. Often, ANN are organized in
separate layers of neurons; typical ANN topologies have an initial layer (input
layer), a final layer (output) and one or multiple intermediate layers (hidden
layers). An example of basic ANN can be seen in Figure 2.7. Multi-layered
ANNs where the information flows from the input layer to the output layer with
no cycle allowed are also called feedforward networks. Feedforward networks
containing three layers of units are able to approximate any function to arbitrary
accuracy, given a sufficient (potentially very large) number of units in each
layer [Cyb88,Cyb89].

The first step of creating a ANN consists of training the model in order to
determine the input-output mapping. In the learning process the weights of the
connections between the neurons are updated until they reach the correct value;

https://github.com/cdipaolo/goml/tree/master/perceptron
https://github.com/cdipaolo/goml/tree/master/perceptron

2.3 Machine Learning 47

Figure 2.7: Example of ANN. Source: http://cs231n.github.io/

neural-networks-1/

after the training stage the weights are fixed. Afterwards, the network can be
used to generate an output given a vector of real values as an input, for example
performing classification tasks.

The most commonly used algorithm to train ANNs is the backpropagation
algorithm [RHW88, CR95]. The core steps of the backtracking algorithm are
the following. 1) Give a training sample < X,T > to the ANN as input and
compare the generated output with the expected result; compute the error in
each output neuron. For each output unit k the error δk is computed with the
formula: δk = ok(1− ok)(tk − ok), with ok the output of the neuron and tk the
target outcome. 2) Propagate the error “backwards” to hidden layers. The error
formula for hidden neurons h is δh = oh(1− ok)

∑
k wkhδk; the error assigned to

hidden neurons depends on the errors received by the output neurons, weighted
by the weights of the connections between them. 3) Update each network weight
wji = wji+∆ji where ∆ji = ηδjxji. xji is the input value to which the weight is
applied and η is the learning rate. The weight-update loop in backpropagation
may be iterated a huge number of times, therefore several different termination
conditions can be used to halt the procedure. One may choose to stop after
a fixed number of iterations, or once the error on the training examples falls
below some threshold, or after the error measure has not improved after a certain
number of iterations or once the error on a separate validation set of examples
meets some criterion – to keep overfitting in check.

Over the years a lot of research effort has been put in order to improve the ef-
ficiency of this fundamental component of ANN-based learning [LBOM98,LK90,
MVA99, RB93, VON92]. For example Wang et al. [WTT+04] propose a novel
backpropagation algorithm aimed at avoiding the local minima problem caused
by neuron saturation in the hidden layer. The main point of the new method is
to adapt the activation functions in order to prevent saturation in hidden layer
neurons. Some approaches address the weaknesses of backpropagation, such as
the risk of overfitting [TLL95, LG00]. Schittenkopf et al. [SDB97] describe a

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

48 2. Related Work

strategy to avoid overfitting in two-layered networks. They use two additional
linear layers and principal component analysis to reduce the dimension of both
inputs and internal representation; in this way less significant neurons and better
generalization are obtained. Giles et al. [Gil01] show that increasing the number
of hidden units and applying backpropagation with early stopping leads to ANN
able to generalize well. This is due to the excess capacity of hidden layer that
allows better fit for regions of high non-linearity. Early stop guarantees that
the increased net will not be over-trained and therefore overfitted.

Artificial Neural Networks are powerful instruments capable of approximat-
ing universal functions. One of the main drawback of ANN is their lack of
“transparency”: ANNs behave as black boxes and once a network has been
trained is not always trivial (or even possible) to understand the criteria it uses
to produce a certain output given a set of inputs. Another problem with ANN
is choosing the correct number of hidden layers: underestimating the number of
neurons can lead to poor approximations while too many neuron nodes can result
in overfitting and overall complicates the training phase. A very good analysis
on the right number of hidden layers and neurons can be found in [CY01,KP00].
Even networks of practical size can represent a large number of nonlinear func-
tions, making ANNs a powerful instrument for learning discrete and continuous
functions whose general form is unknown in advance.

2.3.1.3 Statistical Learning

Statistical approaches for Machine Learning rely on an underlying probabilistic
model providing the probability that an instance belongs to each class, rather
than a simple classification. The most common types of statistical ML tech-
niques are based on bayesian inference [Jen96,Ric97,Gha01,Nie08] founded on
the computation of posterior probabilities as described by the Bayes Theorem.
Bayesian methods can be used to determine the most probable class of an in-
stance. A Bayes classifier combines the predictions of all classes, weighted by
their posterior probabilities, to obtain the most probable classification of each
new instance. Bayesian methods are often called bayesian networks.

In ML we often want to know the best hypothesis (or class) given a certain
set of observed data D. The Bayesian inference allows us to compute the most
probable hypothesis h given the observed data and any initial knowledge about
the prior probabilities of all hypotheses in the hypotheses space H. Bayes
theorem provides a way to calculate the probability of a hypothesis following
the probabilities of observing various data given the hypothesis. The Bayes
theorem states:

P (h|D) =
P (D|h)P (H)

P (D)
(2.16)

P (h) is the prior probability of the hypothesis, i.e. the probability the hypoth-
esis holds before having observed any data; P (D) indicates the probability that
training data D will be observed (given no knowledge about which hypothesis
holds); P (D|h) represents the probability of observing data D if hypothesis h
is true. P (h|D) is called the posterior probability and in ML defines the prob-
ability that the hypothesis holds given the observed data. In typical learning
scenarios the learner desires to know which hypothesis (from a set of candidates)
is the most probable one, given the observed data. This hypothesis is defined
as the maximum a posteriori (MAP) hypothesis. Bayes theorem can be used to

2.3 Machine Learning 49

compute the posterior probability of each hypothesis and the MAP hypothesis
hMAP is going to be the output of the learning model – i.e. a class.

hMAP = arg max
h∈H

P (h|D) (2.17)

= arg max
h∈H

P (D|h)P (h)

P (D)
(2.18)

= arg max
h∈H

P (D|h)P (h) (2.19)

P (D) can be dropped because is independent from h.
Naive Bayesian Classifiers (NBC) are a widely adopted Bayesian learn-

ing method. NBCs have been found useful in many practical applications
[Mur06, Ris01, Leu07, MN+98, DXYY07, TCWX09]. A bayesian classifier ap-
plies to learning tasks where each instance is defined by a tuple of attributes
a1, a2, ...an and one target value vj that can take only one value from a set V .
The adjective “naive” refers to the simplifying assumption that the attribute
values are conditionally independent given the target value [Goo50,Nil65]. This
means that given the target value vj of an instance, the probability to observe
the conjunction of attribute values a1, a2, ...an is the product of the probabili-
ties of the individual attributes: P (a1, a2, ...an|vj) =

∏
i P (ai|vj). With this as-

sumption the problem of finding the most probable hypothesis hMAP (Eq. 2.19)
can be reformulated as the problem of finding the most probable value vMAP :

vMAP = arg max
vj∈V

P (vj |a1, a2, ..an) (2.20)

= arg max
vj∈V

P (a1, a2, ..an|vj)P (vj)

P (a1, a2, ..an)
(2.21)

= arg max
vj∈V

P (a1, a2, ..an|vj)P (vj) (2.22)

= arg max
vj∈V

P (vj)
∏
i

P (ai|vj) (2.23)

The greatest advantage of the naive Bayes classifier is the short time re-
quired for training. Conversely, the major flaw of the NBC is the crucial as-
sumption on the independence of the attributes a1, a2, ...an given the target
value vj . This assumption drastically limits the complexity of the learning
function. Bayesian Network (BN), also called Bayesian Belief Networks, are
an extension of the simpler NBC born with the goal of overcoming this limita-
tion [N+04, Hec98, Cha91, WMOSI12, HMW95]. A bayesian network describes
the probability distribution of a set of variables. In contrast to NBCs which
assume that all the variables are conditionally independent given the value of
the target variable, BNs apply conditional independence only among subsets of
the variables.

Bayesian networks can described with acyclic directed graphs where the arcs
represent causal influences among the input features while the lack of possible
arcs encodes conditional independences. The standard learning process of a BN
is composed by two subtasks: first, the graph structure must be learned and
secondly its parameters are computed. Probabilistic parameters (representing
the relationships between the attributes) are typically expressed in a tabular
format, one table for each variable. Thanks to the independence granted by
the network computing the joint distribution is just a matter of multiplying the

50 2. Related Work

tables. When training a BN there could be two scenarios: the network can be
already known, for example provided by an expert, or the network structure
must be discovered as well. The computational cost of the second scenario is
very high and therefore many approximate methods have been proposed, ranging
from greedy algorithms [HMC06, Chi02] to local search approaches [AdC03].
Madden [Mad03] performed a very interesting and thorough analysis of several
different methods to train bayesian networks.

The most power features of BNs (compared to decision trees or ANNs) is the
possibility to consider prior information about a problem, in terms of relation-
ships among its features. The biggest issue of BN is related to the computational
complexity of creating and learning a previously unknown network. The process
of network discovery is a NP-hard problem [CH92], which could be too costly
to perform or impossible if the number of variable and combinations grows too
large. Another weak point is the inherent dependency on the quality of the prior
information: a BN is useful only if the prior knowledge is reliable. Wrong prior
probabilities would distort the entire network and invalidate the results.

2.3.1.4 Instance-based Learning

So far we have seen learning methods that aim at building a general and ex-
plicit description of the target function (the relation between the input features
and the target output). Instead, instance-based learning methods simply gather
training examples and the generalization from these examples is postponed until
a new instance needs to be classified [Aha97, DMA98]. For these reasons these
methods are also referred to as “lazy-learning” algorithms [Mit97] because the
learning process is delayed until needed. Instance-based methods compute “lo-
cal” approximations of the target functions (applied only in the neighbourhood
of the new instance to be classified) and never derive a target function capable
of working over the entire instance space. This is an advantage when the tar-
get function is extremely complex but can be still described by a collection of
simpler local functions.

One of the most common and most used instance-based algorithms is the k-
nearest neighbour algorithm (k-NN). The cornerstone of the k-NN algorithm is
the observation (assumption) that instances within a dataset are in close prox-
imity with other instances with similar properties [CH67]. If the instances in
the train set are labeled, the k-NN classifier assigns the class to new instances
depending on the most common label in the neighbourhood. The k parameter
determines the number of neihgbour instances to be included in the computa-
tion. A key point is the way used to establish if two instances are neighbours; in
order to do that a metric that measures the distance between two instances must
be introduced. Generally, instances can be seen as points in a n-dimensional
space where each one of the n-dimensions corresponds to one of the n-features
used to describe an instance. The distance D(x, y) between two points/instances
x and y can be then computed with the following equation:

D(x, y) =

√√√√ m∑
i=1

|xi − yi|2 (2.24)

where m is the number of instance features. This distance metrics is also referred
to as Euclidean distance. Many different measurement types are possible and

2.3 Machine Learning 51

adopted on different k-NN implementations. For more precise results, many
algorithms employ weighted schemes: for example the contribution of each k
neighbour is weighted by its relative distance from the instance to be classi-
fied. Wettschereck et al. [WAM97] survey many weighting policies adopted in
instance-based learning methods.

k-NN algorithms have some weaknesses. First, they are very sensitive to the
choice of the metric used to measure the distance between two instances [SF81,
BGRS99]. Secondly, there is no error-proof criterion to choose the right k (the
size of the neighbourhood), other than cross-validation or other computationally-
expensive techniques [GWB+03, WNC06, WS09]. The majority of instance-
based local classifiers such as k-NN are not completely lazy because, for ex-
ample, the neighbourhood size k (or other parameters) is usually chosen by
cross-validation on the training set, which can require significant preprocessing
and risks overfitting. Garcia et al. [GFGS10] propose instead a completely lazy
approach that requires no preprocessing: instead of having a fixed neighbour-
hood of size k they demonstrate that using the average local probabilities over
a set of neighbourhoods performs similarly to cross-validation. They also show
that this process can also be seen as a Bayesian way to estimate the neighbour-
hood size.

A key advantage of instance-based approaches is that instead of learning a
single target function for the whole instance space these techniques estimate the
function at a local level, differently for each new instance to be classified. Lazy-
learning methods require less computational time during the training phase (the
training basically consists of storing example instances) but more computation
time during the classification phase. This can obviously be a drawback and
therefore techniques for efficiently indexing training examples are a practical
solution to reduce classification time. A possible method to decrease the com-
putation time to classify new instances is to reduce the number of features to
consider, using only the strictly necessary ones [KJ99,YL04]. Other approaches
aim instead at reducing the number of stored instance via instance-filtering algo-
rithms [KCJ01,WM00,WM97]. Jahromi et al. [JPJ09] try to make k-NN more
efficient addressing the problem from two different directions. On one hand,
they propose a weighting policy for the data set instances in conjunction with
a learning algorithm that attempts to maximize the classification accuracy by
adjusting the weights of the training instances. On the other hand, the pro-
posed weighting policy serves also to reduce the number of considered instances
because those whose weight is lower than a given threshold are deleted from the
training set.

2.3.1.5 Support Vector Machines

Another approach to deal with supervised machine learning is offered by Sup-
port Vector Machines (SVM) [Vap13,Bur98,CST00,SS04]. Let assume we have
labeled training data {xi, yi}, yi ∈ {−1, 1}, xi ∈ Rd. The basis of SVMs lays
on the notion of “separating hyperplane”, a hyperplane in the space Rd that
separates the positive from the negative examples. Let d+ and d− be the short-
est distance from the separating hyperplane to the closest positive and negative
examples. The difference d+ − d− is called the “margin” of the separating
hyperplane. If the data set examples are linearly separable the support vec-
tor algorithm searches the separating hyperplane with the largest margin (see

52 2. Related Work

Figure 2.8). Creating the largest possible distance between the separating hy-
perplane and the instances on either side of it has been proven to reduce an
upper bound on the expected generalization error [VK82].

Figure 2.8: Example of separating hyperplane. Source: http:

//docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/

introduction_to_svm.html

The problem of finding the hyperplane with the maximal margin can be
formulated in this way:

xi ·w + b ≥ 1 ∀yi = +1 (2.25)

xi ·w + b ≤ −1 ∀yi = −1 (2.26)

These equations can recombined in one set of inequalities:

yi(xi ·w + b)− 1 ≥ 0 ∀i (2.27)

The solution in the two-dimensional case has the form depicted in Figure 2.8.
The training points for which the equality of Eq. 2.27 holds are called the support
vectors (solid shapes in Fig. 2.8); removing them would cause the solution to
change. The problem can be reformulated with a Lagrangian reformulation (see
[Bur98] for a detailed explanation); we therefore introduce a set of Lagrangian
multipliers αi, i = 1, .., l one for each inequality constraints in Eq. 2.27. We
finally obtain the Lagrangian:

Lp ≡
1

2
||w||2 −

l∑
i=1

αiyi(xi ·w + b) +

l∑
i=1

αi (2.28)

This is a quadratic convex problem and can be solved through standard algo-
rithms, for example using the dual representation of the problem [Fle87]. In the
end the solution will be a linear combination of the support vectors.

The mechanism described above cannot be directly applied to the case of
non-separable data, introduced, for example, by misclassified instances. The
problem can be addressed by using a soft margin that accepts some misclassi-
fications of the training instances [VCC+99]. To overcome this limitation we

http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

2.3 Machine Learning 53

can introduce a set of positive slack variables ξi, i = 1, .., l [CV95]. The problem
then becomes:

xi ·w + b ≥ 1− ξi ∀yi = +1 (2.29)

xi ·w + b ≤ −1− ξi ∀yi = −1 (2.30)

ξi ≥ 0 ∀i (2.31)

Consequently, the Lagrangian primal is:

Lp ≡
1

2
||w||2 + C

l∑
i=1

ξi −
l∑
i=1

αi{yi(xi ·w + b)− 1 + ξi} −
l∑
i=1

µiξi (2.32)

where µi are the Lagrange multipliers introduced to enforce positivity of the
xii. C is a parameter chosen by the user, with larger values corresponding to
assigning a higher penalty to errors. The Lagrangian primal problem is then
solved as in the previous separable case.

Unfortunately many problems in the real world involve non-linear relation-
ship between the input features and the output value. One solution is to map
the data in a higher dimensional space and define a separating hyperplane
there [BGV92, ABR64]. This high-dimensional space is called transformed fea-
ture space, in opposition to the input space defined by the training set. The
input data need to be mapped to some other Euclidean space H using a map-
ping function Φ:

Φ : Rd 7→ H (2.33)

The SVM training algorithm is basically composed by dot products xi · xj and
thus the remapping would take the form Φ(xi) · Φ(xj). The next step is to in-
troduce a “kernel” function K such that K(xi, xj) = Φ(xi) ·Φ(xj); this function
would be sufficient for the training algorithm (avoiding the need of explicitly de-
fine Φ). Therefore kernels are special function that allow the inner products to
be computed in the feature space, without passing through the mapping [SB99].
Once the hyperplane is obtained, the kernel function classifies new points within
the feature space. The classification function has this expression:

f(x) =

Ns∑
i=1

αiyiΦ(si) · Φ(x) + b =

Ns∑
i=1

αiyiK(si, x) + b (2.34)

where si are the support vectors and Ns is their number. The selection of
the right kernel function is extremely important for the accuracy and efficiency
of the SVM training. Different classes of problems require different kinds of
kernels. Genton [Gen01] surveys several types of kernel functions but does not
investigate which are the optimal kernels for given a problem. It is common
practice to test a range of potential kernels and use cross-validation over the
training set to find the best one. This has the negative side effect of increasing
the time needed for training the SVM. Selecting a kernel (and its setting) is
analogous to choosing the number of hidden layer in a neural network.

An interesting aspect of SVMs is that the model complexity of a SVM does
not depend on the number of features present in the training data, therefore
SVMs are very apt at dealing with learning tasks where the number of features
is large with respect to the number of training instances.

54 2. Related Work

2.3.1.6 Ensemble Methods

A different approach with respect to those presented so far, whose general aim
was to obtain the best prediction model (given a certain problem and setting), is
represented by ensemble methods [Die02, ZM12]. Ensemble methods are learn-
ing algorithms that construct a set of prediction models and then classify new
data points by taking a (weighted) vote of their predictions; the predictors are
individually trained. It has been discovered that in many case ensembles are
more accurate than the individual classifiers that compose them [HS90]. The
construction of good ensemble methods to combine single classifier predictions
has been a very active research area in ML [Die00b,TG03,ZWT02,SK01].

Dietterich wrote a very good survey of ensemble methods [Die00a], reviewing
the performance of several algorithms and explaining why ensembles outperform
single classifiers in many contexts. In order for an ensemble to be more accurate
than its components the necessary and sufficient condition is for the individual
classifiers to be accurate and diverse. An accurate classifier must be able to
classify a new instance x with an error rate smaller than random guessing. Two
classifiers are diverse if they make different errors on different examples. From a
practical point of view there are three reasons that allow ensemble classifiers to
outperform individual ones. 1) Learning algorithms try to find the best hypoth-
esis fitting the training set searching in the (possibly huge) hypotheses space. If
the data set is too small compared to the size of the hypotheses space, individual
classifiers may find different hypotheses that fit the small training set; combin-
ing different predictions means that an ensemble can “average” their votes and
decrease the risk of choosing the wrong classifier. 2) Many learning techniques
perform some kind of local search in the hypotheses space. Even if there are
sufficient data it is difficult to find the best hypothesis due to computational
limitations; for example both neural networks and decision trees training are
NP-hard [BR88,HR76]. An ensemble built running local search from many dif-
ferent point can lead to better estimate of the unknown function between input
data and target. 3) In most ML applications the unknown function cannot be
represented by any of the hypotheses; this stems from the fact that with a fi-
nite training set even the most flexible and expressive ML algorithm can only
explore a finite set of hypotheses. Using weighted sums of hypotheses ensemble
methods may provide a way to increase the space of representable functions.

Two of the most commonly used ensemble methods are Boosting and Bag-
ging. Bagging [Bre96b, Bre96a] is an ensemble method that trains the indi-
vidual components on a random redistribution of the original data set; each
classifier training set is generated by randomly drawing, with replacement, N
examples (N is the size of the original data sets). Some examples may be
repeated in the resulting training set while other may be left out. Boost-
ing [SFBL97, Fre90, Sch90] is a family of methods that create series of classi-
fiers; the training set chosen for each classifier depends on the performance of
the previous classifier. With Boosting technique the previously misclassified
examples are chosen more often than the correctly predicted ones; the idea is
that new classifiers in the series will be able to improve the prediction accuracy
of examples that are currently not well handled. Opitz et al. [OM99] evaluate
the performance of Bagging and Boosting methods on different data sets, using
neural networks and decision trees as classification algorithms. They observe
that Bagging is almost always more precise than individual classifiers but some-

2.3 Machine Learning 55

times less precise than Boosting; conversely Boosting can lead to classifier less
accurate than individual ones (especially with neural networks). This happens
because Boosting methods performance depends heavily on the data set, in par-
ticular Boosting ensembles tend to incur in overfitting when dealing with noisy
data sets.

An example of widespread ensemble method is Random Forest [Bre01,LW02,
GBS06]. As the name suggest Random Forest classifiers are composed by a set
of decision trees. Random Forest creates multiple trees; for each tree only a
random subset of the input features is used at every splitting node and no
pruning is performed. Since only a portion of the input features is used and
no pruning, the computational load of Random Forest is relatively light. The
classification of new instances is made through a majority vote. Random forest
are often used because they are much less prone to overfitting compared to
models using a single decision tree.

2.3.2 Unsupervised and Reinforcement Learning

In this work we were mainly (almost exclusively) focused on supervised Ma-
chine Learning techniques. As we are going to see in Section 2.3.3 most ML
methods commonly used in HPC area deal with prediction problems involving
labeled data and therefore supervised algorithm are typically employed. Never-
theless, for the sake of completeness we are going to briefly present two different
paradigms of ML approaches, namely unsupervised Machine Learning and re-
inforcement Machine Learning.

2.3.2.1 Unsupervised Learning

Unsupervised Machine Learning main difference compared to the supervised
approach is the lack of labels from the data [HS99,Bar89]. Unsupervised learning
studies how systems can learn to represent particular input patterns in a way
that reflects the statistical structure of the overall collection of input patterns
[Day99]. There are no explicit target outputs or external evaluation or reward.
The only elements that can be used by unsupervised learning methods are the
input patterns xi, often assumed to be independent samples from an underlying
unknown probability distribution P (x) and some explicit or implicit a priori
information to determine what is relevant. Ghahramani provides a great high-
level introduction on unsupervised learning [Gha04], from the perspective of
statistical learning. A very interesting survey on unsupervised algorithms for
automation, classification and maintenance tasks can be found in [KMI+15].

The key concept underlying unsupervised learning is the possibility to learn a
probabilistic model coherent with the input data. The model should be capable
of estimating the probability distribution of a new input xn given a series of
previous inputs x1, .., xn−1; the model learns P (xn|x1, .., xn−1). At the heart of
most of probabilistic models there is again the Bayes theorem and its corollaries
– as already introduced and discussed in Section 2.3.1.3. These models can then
be used for outlier detection or monitoring – i.e. detecting unexpected outcomes.
Other application of such a learned model are represented by classification task
or communication and data compression [Mac03].

In many real world contexts there might be a mixture of labeled and un-
labeled data. This could happen very easily for example in domains where

56 2. Related Work

collecting data is cheap (i.e. the internet) but the labeling phase is much more
expensive or time consuming. The research area of semi-supervised learning
focuses precisely on this kind of issues. The main aspect to be considered in
semi-supervised learning is how the data distribution of the unlabeled data in-
fluences the supervised learning problem [See00]. Delving into the details of
semi-supervised learning is outside of the scope of this work but we can hint
that many of the proposed approaches try to infer a manifold, graph structure
or tree structure from unlabeled data and employ this information to determine
how labels should be generalized to new unlabeled points [Kru64,JS02,ZGL+03].

2.3.2.2 Reinforcement Learning

Reinforcement-based learning systems perform actions and receive punishments,
negative reinforcement, or prizes, positive reinforcement [SB98, Sut92, TL00].
Consequently, the learner will try to take those actions guaranteeing the best
possible result. Reinforcement-based learning systems can be seen also as agents
operating in an environment and receiving positive, negative or neutral rewards
according to their actions; the rewards are usually given by a trainer. The task
of the agent is to learn from this indirect reward and choose the sequence of
actions that guarantee the best overall outcome. An important aspect in rein-
forcement learning is the need to balance exploration and exploitation [SB98].
In order to optimally execute a task a learning agent needs to exploit the “good”
actions that it learned through the rewards mechanism but at the same time
the learning process requires that multiple different actions must be taken –
exploring the possible actions space by taking new actions. Neither exploration
nor exploitation can be pursued exclusively without failing at the task. The ex-
ploration/exploitation dilemma has been intensively studied by mathematicians
for many decades [Bel56,BT95].

The most important components present in the vast majority of reinforce-
ment learning system are the following: 1) a policy, 2) a reward function and 3)
a value function. A policy defines the behaviour of an agent, the action it will
take in a given state (state perceived from the environment). In general, policies
may be stochastic. The reward function specifies the goal: it maps every possi-
ble state (or state-action couple) to a single value representing the desirability
of that state. The only goal of a reinforcement learning agent is to maximize the
reward function in the long run. While the reward function indicates the imme-
diate attractiveness of a certain state, the value function presents a long-term
point of view. The value of a state is the total amount of reward an agent can
expect to accumulate over the future, starting from that state. Therefore the
value function takes into account the reward functions of the states that may
follow. Rewards are given directly by the environment (response obtained after
reaching a certain state) whereas values are predictions of rewards; actions and
decisions are made based on value judgments.

A very good survey on reinforcement learning (even though a bit dated)
can be found in [KLM96]. Gosavi [Gos09] considers more recent developments
in reinforced ML with a particular regard to its application in control theory
and to agents performing decision-making. Both these aspects can be modeled
as Markov decision problems [Put14], which were traditionally solved through
Dynamic Programming. The author argues that reinforcement learning is a
powerful tool to deal with these kind of problems thanks to its ability to solve

2.3 Machine Learning 57

near-optimally, complex and large-scale Markov decision processes.

2.3.3 Applying Machine Learning to HPC Systems

As we have seen in the previous sections a very important phase in supercom-
puter management is the scheduling & allocation phase (see Section 2.1). The
scheduling order and the selection of execution nodes can have a great effect on
the overall performance of a system, in terms of QoS for the end user and uti-
lization for the owners. Dispatching decisions can also heavily impact the power
and energy consumption or the thermal behaviour of a system. The possibility
of taking power-aware (or focused on any other metric) decisions is strongly cor-
related on the information regarding the workload available at schedule-time.
For example, job dispatchers decide where and when execute a job depending
on the amount of resources requested and on the current resource availability.
Similarly, in order to take “good” decisions in terms of power a job dispatcher
needs to have some information about how the execution of a certain workload
will impact the system power consumption.

More precisely job dispatchers need to know the power consumption (or at
least an estimate) of each application before deciding a schedule. For example
if we consider again the case of power capped supercomputers, the goal is to
guarantee a priori that the power constraint will not be violated in any moment
(with a certain level of confidence). For this reason the capability of predicting
the power consumptions of the jobs which need to be run is extremely important
for the optimal implementation of a power capping method, as underlined by
several works [PSLeA16,SSPeA14,BPV10].

Research in modeling and predicting data centers’ power efficiency and per-
formance is a very active area. Energy consumption models are critical in de-
signing and optimizing energy-efficient HPC management system. A very in-
teresting and complete survey of the state-of-the-art techniques used for energy
consumption modeling and prediction for data centers and their components
can be found in [DWF16]. Dayarathna et al. identify some open issues that still
need to be addressed in order to improve the current state of power modeling
in data centers: few approaches target power modeling at system-level; many
of the techniques found in literature focus on a limited number of CPU metrics;
the effectiveness and accuracy of the proposed methods is somehow lacking.
Gao [GJ14] has recently proposed a model to estimate the PUE of a data center
using Artificial Neural Networks. The model takes as input workload, cooling,
power, together with other external information such as outside temperature,
wind speed, etc. This allowed for testing various data center scenarios and im-
proving PUE for the system under analysis. The training and testing of the
proposed model was performed using large amount of data available at Google’s
data centers.

A greater prediction accuracy is related to a better performance of a power
capped dispatcher (in terms of higher machine utilization and greater energy
savings) [CGUeA08]. Intuitively, if we could exactly know the power consumed
by each application we could generate optimal schedules and be sure that these
schedules will never exceed the power budget; conversely, we may obtain sub-
optimal solutions when we deal with imperfect estimates. We may want to be
robust and never violate the power constraint (for example, employing a tighter
power budget), or we can accept to exceed the power limit from time to time,

58 2. Related Work

relying on the hardware to fix these violations.
A common way to estimate an application energy or power consumption

exploits hardware performance counters which monitors the system’s compo-
nents usage during the workload execution [CLPeA14,CM05,SBM09]. Some ap-
proaches use application signatures to predict power consumption across differ-
ent architectures [ORS+10]; others employ job performance counters [WOPW13,
NMN+10]. Despite the good accuracy obtained with these models the need to
know the performance counters, which should be measured at runtime, clashes
with the idea of having power consumption predictions available during the
dispatching phase. Similarly, other methods rely on real-time load measure-
ment [Dar15,TDM11,KJCP14,MDZD09]. These methods do not allow for pre-
diction in real life scenarios, since load counters cannot be known in advance,
unless they can be predicted through other methods.

A model to predict energy and power consumptions is presented by Shouk-
ourian et al. in [SWAB14]. The authors propose an approach which does not
require any application code instrumentation and allows for ahead of time power
and energy consumption prediction. The main limit of the described method is
that it considers only jobs which occupied entire computational nodes (this is
due to the characteristics of the considered supercomputer). This on one hand
simplifies the power consumption prediction but on the other hand cannot be di-
rectly generalized to different systems where multiple applications can possibly
concurrently run on the same node.

A very interesting model to predict power consumption in a HPC system is
described by Sirbu et al. [SB16]. The model takes as input workload informa-
tion (amount of resources used at any time by the application) and produces
as output the resulting system-level power consumption. The workload infor-
mation can be forecast at dispatch time knowing the scheduler policies and
subsequently the prediction model can be used to estimate the power consump-
tion of an application. The model can be also used to evaluate the impact of
different workload scheduling policies w.r.t. power consumption and therefore
adapt the dispatcher behaviour.

Interest in power predictions is not limited to power capping. For example,
Auweter at al [ABB+14] developed an energy aware scheduler able to reduce
energy consumption of supercomputers. For this purpose they introduced a pre-
diction model to forecast power and performance application in case of different
execution frequencies. The model relies heavily on precise information about
the application executables and requires the user to provide a tag identifying
similar jobs. While this is an interesting direction, currently users-provided
information cannot be taken for granted.

Both in HPC systems and data-centers machine learning techniques have
been adopted to accurately predict several parameters associated with a given
workload, such as power consumption, CPU usage, actual task duration, etc.
The accuracy of the estimate relies on the huge amount of data which is gener-
ated by large scale systems and that collect each job’s features. These predic-
tions may then be used to develop power aware schedulers [BGT11, BGN+10].
Other approaches employ statistical methods to model the power process of
HPC applications [SSPeA14].

The impact that uncertainties in the energy consumption can have on energy-
aware schedulers has been studied by Iturriaga et al [IGN14]. They performed
an experimental evaluation over realistic workloads and scenarios, and validated

2.3 Machine Learning 59

by measurements of power consumption on a real data center. Both offline and
online scheduling algorithms were implemented on the target cluster. The re-
sults show that errors in real-world scenarios can have a significant impact on the
accuracy of the scheduling algorithms. Online strategies generally outperformed
offline ones, due to the major capability to deal with imperfect estimates.

60 2. Related Work

Chapter 3

Job Dispatching in HPC
systems

High Performance Computing systems and data centers play in the world ICT
infrastructure a role as big as (sadly) their power consumption. In many cases, a
surprising amount of such consumption is due to idle resources, either introduced
to face workload peaks or leftovers of workload fragmentation. Computing cen-
ters play a key role in modern ICT architectures: they run our internet services,
keep track of our savings, make our research possible. They are also well known
to be power hungry: in Italy, data centers make for ∼2% of the national en-
ergy consumption, for a total of 6.6 TWh (roughly that of the Calabria region,
according to data by Fondazione Politecnico di Milano, 2010).

The mainstream solution to reduce such a gigantic consumption is to em-
ploy efficient hardware or efficient design. By doing so, it is possible to obtain
remarkable reductions of the PUE index (Power Usage Effectiveness), i.e. the
ratio between the power consumption of the whole data center and the power
consumption of the IT equipment alone. Recently, a joint effort by the CINECA
inter-university consortium [CIN] in Italy and the Eurotech group [Eur] has led
to the design of the Eurora system. Thanks to an innovative liquid based cooling
system and carefully chosen hardware components, this new machine has a PUE
of just 1.05 and managed to reach the top of the Green 500 ranking in the first
half of 2013, effectively becoming for a time the most efficient supercomputer
on earth. As a comparison, PUE values of around 3 were still common in 2009.

However, reducing the PUE is just a half of the problem. Data by McK-
insey [McK] for US data centers reveals that on average only 6-12% of the
power is employed for actual computation. The reason for this dramatically
low value lies in how efficiently the existing IT resources are used. In particu-
lar, redundant resources are usually employed to maintain the quality of service
under workload peaks. More redundant resources are also needed to compen-
sate for the fragmentation resulting from suboptimal dispatching choices. As a
consequence, a typical data center ends up packing a lot of idle muscles. Un-
fortunately, idle resources still consume energy: for a 1MW center with a 1.5
PUE, a 30% utilization means a 1Me annual cost and 3,500 tons of CO2.

62 3. Job Dispatching in HPC systems

Contributions In the complex context of HPC dispatching optimization tech-
niques can enable dramatic improvements in the resource management, leading
to lower costs, better response times, and fewer emissions. In particular, a crit-
ical stage of a supercomputer management process is the job dispatching phase.
As it is known from the literature since many years, Constraint Programming
is a great approach for dealing with scheduling and allocation problems due the
flexibility and expressiveness of the language coupled with extremely efficient
resolution techniques. The application of CP based methods to the supercom-
puting world is a novel research direction that allows to reap off the multiple
benefits generated by improvements in the management of HPC machines. In
order to gain these benefits we devise a CP model to cope with the complex,
multi-dimensional and multi-objective HPC dispatching problem, using a real
supercomputer as a case study. We then compare the proposed CP model with
the dispatching system currently in use on the HPC system.

Outline The chapter is organized as follows: Section 3.1 describes in a more
detailed way the problem tackled; Section 3.2 introduces the supercomputer
we used as a case study in order to deal with a realistic problem. Section 3.3
defines the challenges that need to be overcome to develop a dispatcher usable
on a real system. Section 3.4 represents the main contribution of this chapter
and describe the CP approach to perform job dispatching in HPC systems.
Then Section 3.5 shows the experimental results and compares the CP model
with the dispatcher currently in use on the supercomputer used as case study.

Publications Part of the work at the base of this chapter has been published
to international conferences in [BBB+14].

3.1 Problem Statement

In this chapter, we tackle the problem of workload dispatching in a High Perfor-
mance Computing machine. This task is performed by a software module that
decides where (assigning a set of resources) and when (choosing a start time) a
job has to execute. Users submit jobs to supercomputing machines specifying
the amount of required resources (CPUs, GPUs, memory, etc.) and the max-
imum expected execution time (wall-time). In general, different “job queues”
are available in HPC machines managing, for example, jobs featuring different
priorities, execution time and user-requirements. As an example of HPC ma-
chine we use the Eurora supercomputer [BCC+14], developed by Eurotech and
Cineca [CIN]. Eurora system will be the case study employed in the majority
of this work; nevertheless all proposed approaches can be generalized in order
to be implemented in different system.

The machine is employed for High Performance Computing (HPC) applica-
tions and has a job submission system currently managed by a PBS Dispatcher
(Portable Batch System [Wor15]). The dispatcher relies on a number of heuris-
tic techniques to tentatively maintain a high machine utilization and keep the
waiting times as small as possible. The Cineca staff has hints that the current
system operation could be improved, but finding a more effective PBS configura-
tion is a cumbersome and error-prone task: hence there is interest in alternative
approaches. We propose to tackle workload dispatching via proactive scheduling

3.2 Eurora System 63

using Constraint Programming. We adopt a rolling horizon approach, where our
scheduler is awakened at certain events. At each of such activations, we build
a full schedule and resource assignment for all the waiting jobs, but then we
dispatch only those jobs that are scheduled for immediate execution. By tak-
ing into account forthcoming jobs, we avoid making dispatching decisions with
undesirable consequences; by starting only the ones scheduled for immediate
execution, the system can manage uncertain execution times.

3.2 Eurora System

The Eurora supercomputer prototype has ranked first in the Green500 list in
July 2013, achieving 3.2 GFlops/W on the Linpack Benchmark with a peak
power consumption of 30.7 KW. Eurora has been supported by PRACE 2IP
project [PRA] and it serves as testbed for next generation Tier-0 system. Its
outstanding energy efficiency is achieved by adopting a direct liquid cooling so-
lution and a heterogeneous architecture with general purpose HW components
(Intel Xeon E5, Intel Xeon Phi and NVIDIA Kepler K20). Eurora cooling so-
lution is highly efficient and enables hot water cooling, that is suitable for hot
water recycling and free-cooling solutions [KRA12c, 9.911]. For its character-
istics Eurora is a perfect vehicle for testing and characterizing next-generation
“greener” supercomputers.

3.2.1 System Description

As described in [BCC+14] the architecture of Eurora consists of 8 stacked chassis
(half-rack), each of them hosting 8 node cards and 16 expansion cards (Fig. 3.1).
The node card is the basic element of the system and comprises 2 Intel Xeon
E5 Series (SandyBridge) processors and 2 expansion cards configured to host an
accelerator module. One half of the nodes use E5-2658 processors including 8
cores with 2.0 GHz clock speed while the other half uses E5-2687W processors
including 8 cores with 3.1 GHz clock speed; 58 nodes have 16 GB RAM and
the remaining 6 (with processors at 3 GHz clock rate) have 32 GB RAM. The
accelerator modules can be Nvidia Tesla (Kepler) or, alternatively, Intel MIC
KNC (Xeon phi).

Figure 3.1: EURORA Architecture

Each node of Eurora currently executes a SMP CentOS Linux distribution
version 6.3. Eurora is interfaced with the outside world through two dedicated

64 3. Job Dispatching in HPC systems

computing nodes, physically positioned outside the Eurora rack - the login node,
linking Eurora to the users, executes the batch job dispatcher (PBS) and con-
nects to the same shared file system, and the master node, connected to all the
root cards and visible only to system administrators. Moreover, Eurora adopts
a hot liquid cooling technology, i.e. the water inside the system can reach up
to 50◦C. This strongly reduces the cooling energy required for operating the
system, since no power is used for actively cooling down the water, and the
waste-heat can be recovered as energy source for other applications.

Eurora features an integrated and low-overhead monitoring system com-
posed by a set of software daemons and parsing scripts. The SW daemons run
periodically (every 5 second) on each node to collect traces of the processing
elements (CPUs, GPUs, Xeon Phy) activity by mean of HW performance coun-
ters. For each core it gathers values from the Performance Monitoring Unit 2
as well as the core temperature sensors, and the time-step counter. In addi-
tion, for each CPU it gathers the monitoring counters (power unit, core energy,
dram energy, package energy) present in the Intel Running Average Power Limit
(RAPL) interface. The parsing scripts process offline the raw log of the per-
formance counters to generate performance metrics (CPI, Load, Temperature,
Power, etc.) and relate them with the job running on the node.

3.2.2 Current Dispatcher

The tool currently used to manage the workload on Eurora system is PBS
(Portable Batch System) [Wor15], a proprietary job scheduler by Altair PBS
Works with the primary duty of allocating computational tasks, i.e. batch jobs,
among available computing resources. The main components of PBS are a server
(which manages the jobs) and several daemons running on the execution hosts
(i.e. the 64 nodes of Eurora), which track the resource usage and answer to
polling requests about the host state issued by the server component.

Jobs are submitted by the users into one of multiple queues, each one charac-
terized by different access requirements and by a different approximate waiting
time. Users submit their jobs by specifying 1) the number of required nodes;
2) the number of required cores per node; 3) the number of required GPUs
and MICs per node (never both of them at the same time); 4) the amount of
required memory per node; 5) the maximum execution time. All processes that
exceed their maximum execution time are killed. The main available queues on
the Eurora system are called debug, parallel, and longpar, and are described in
Table 3.1 - for each of those queues we report the maximum number of resources
that a job could ask if it desires to belong to that queue, i.e. maximum num-
ber of nodes, maximum number of cores and GPUs (second column), maximum
execution time, and also the approximate time it might wait before starting its
execution.

Cyclically, PBS selects a job for execution by polling the state of one or
more nodes, trying to find enough available resources to actually start the job
execution. If the attempt is unsuccessful, the job is sent back to its queue and
PBS proceeds to consider the following candidate. The choices are guided by
priority values and hard-coded constraints defined by the Eurora administrators
with the aim to have a good machine utilization and small waiting times. For
example, the administrators decided to reserve some nodes to the debug queue
and to force jobs in the longpar queue to start at night.

3.3 Online Dispatching 65

Queue Max Nodes Max Cores/GPUs Max Time Approx. Wait

debug 2 32/4 00:30:00 seconds
parallel 32 512/64 06:00:00 minutes
longpar 16 256/32 24:00:00 hours

Table 3.1: Access requirements and waiting times for the PBS queues in Eurora

3.3 Online Dispatching

A key challenge for our approach is the “online” requirement, the need to devise
a job dispatcher able to answer to the arrival of new, unexpected jobs and to
perform in real-time. That requires to have fast time-to-solution each time
a new schedule is computed; an online dispatcher has to take scheduling and
allocation decision for every job whenever it enters the system. This issue is
partially mitigated by the long duration of many HPC applications (a duration
of a few hours is not uncommon at all) and therefore jobs tend to arrive in
a supercomputer at a slower pace than in more dynamic data centers, which
in turn allows for longer times to compute a schedule. As a downside, typical
supercomputer have thousands of nodes and the dispatching problem complexity
exponentially increases with both the number of resources and number of jobs.

Due to the real-time issue, typical online dispatching softwares have a “reac-
tive” nature, they take the scheduling and allocation decisions considering only
the newly arrived jobs, without reflecting on the jobs coming from other queues
or the jobs still waiting due to previous resources unavailability. In our work we
want to create a proactive dispatcher, that is a dispatcher that takes in consid-
eration not only the last job whose arrival triggered the scheduling event, but
all jobs present on the system. Therefore we will have to focus on the scalability
of our solutions. In order to cope with scalability and real-time issues the most
commonly adopted strategy is not to care about reaching optimal solutions.
Virtually all dispatching tools employed on real world supercomputers use sim-
ple, heuristic methods to guarantee good but probably sub-optimal solutions in
real time. We follow the same approach and therefore we do not aim at optimal
solution but rather we want to reach the best possible one given a tight time
limit to explore the solutions space. Our goal will be to provide better solutions
than the current standard, PBS, which is a non-exact technique as well.

3.4 Job Dispatching in HPC: a CP Approach

In its current state, the PBS system works mostly as an online heuristic, incur-
ring the risk to make poor resource assignments due to the lack of an overall
plan. Also the hard-coded mapping constraints, designed as a way to ensure
low waiting times for specific job classes (e.g. the debug queue), may easily
cause resource under-utilization, and long waiting times for the remaining jobs
(e.g. those in the longpar queue). A proactive dispatching approach should
intuitively be able to improve the resource utilization and reduce the waiting
times without the need of devising such hard-coded restrictions. The task of
obtaining a proactive dispatching plan on a supercomputer can be naturally
framed as a resource allocation and scheduling problem, for which CP as a long

66 3. Job Dispatching in HPC systems

track of success stories. However, to our knowledge this is the first attempt to
frame the HPC dispatching problem within the CP paradigm.

3.4.1 Rolling Horizon

We adopt a rolling horizon approach, in which our scheduler is awakened when-
ever a job 1) enters the system or 2) ends its execution. At each iteration, we
build a full schedule and mapping for all the jobs in the input queues, taking
into account resource capacity limitations. We consider different performance
metrics, which we treat either as objective functions or as soft-constraint. Then
we dispatch only those jobs that are scheduled for immediate execution.

The schedule is computed based on the worst-case durations (as provided
by the users), but the dispatcher reactivation is triggered by the job actual
terminations (besides of course by their arrivals). Whenever this occurs, the
jobs currently in execution cannot be migrated, but all the waiting ones can be
re-scheduled to take advantage of the released resources.

The scheduler has to react to runtime events, like new job submissions and
job terminations, and obtain a new scheduling solution from the supercom-
puter’s current state. To solve this problem, since we are in a non-preemptive
system, we must obtain all the jobs running on the supercomputers and set their
actual start time and the used nodes, as well as insert the jobs in queues.

3.4.2 Formal Problem Definition

We can now provide a precise definition of the scheduling problem solved at each
activation of the dispatcher. Each job i enters the system at a certain arrival
time eqti, by being submitted to a specific queue (depending on the user choices
and on the job characteristics). By analyzing existing execution traces coming
from PBS, we have determined an estimated waiting time for each queue, which
applies to each job it contains: we refer to this value as ewti.

When submitting the job, the user has to specify several pieces of informa-
tion, including the maximum allowed execution time Di, the maximum number
of nodes to be used rni, and the required resources (cores, memory, GPUs,
MICs). By convention, the PBS systems consider each job as if it was divided
into a set of exactly rni identical “job units”, to be mapped each on a single
node. It is therefore convenient to specify the resource requirements on a job-
unit basis. Job-units belonging to the same job can be mapped on different
nodes (but not necessarily) and they must have the same start time (it is also
assumed that they share the same duration).

Formally, let R be a set of indexes corresponding to the resource types (cores,
memory, GPUs, MICs), and let the capacity of a node k for resource r ∈ R be
denoted as capk,r. We recall that the system has m = 64 nodes, each with 16
cores and 16 GB of RAM memory; 32 nodes have 2 GPUs each (and 0 MICs),
and the remaining 32 nodes have 2 MICs each (and 0 GPUs). Finally, let rqi,r
be the requirement of a unit of job i for resource r.

The dispatching problem at time t consists in assigning a start time sti ≥ t
to each waiting job i and a node to each of its units. All the resource capacity
limits should be respected, taking into account the presence of jobs already in
execution. Once the problem is solved, only the jobs having sti = t are actually
dispatched.

3.4 Job Dispatching in HPC: a CP Approach 67

Informally speaking, in the big picture, the goal is to increase the resource
utilization and reduce the waiting times, but those metrics can be meaningfully
evaluated only once the actual job durations become known. Hence we for-
mulate the problem in terms of several objective functions that are intuitively
correlated with the metrics we are interested in. After extensive preliminary
experimentations, we settled for the following possible problem objectives:

max
i=0..n−1

(sti +Di) (makespan) (3.1)∑
i=0..n−1

max

(
0,
sti − eqti − ewti

ewti

)
(weighted tardiness) (3.2)∑

i=0..n−1

[[sti − eqti > ewti]] (num of late jobs) (3.3)

where n is the number of jobs and the notation [[−]] stands for the reification
of the constraint between brackets. The makespan has been chosen because
compressing the schedule length tends to increase the resource utilization. For
the tardiness and the number of late jobs, we consider a job to be late if it
stays queued for a time larger than ewti. The tardiness is weighted, because
we assume that users that are already expecting to wait more (i.e. jobs with
higher ewti) should adjust better to prolonged queue times. Both the tardiness
based objectives are chosen to improve the perceived response time, in one case
by avoiding (proportionally) long waiting times, in the second by reducing the
number of jobs in the queues.

3.4.3 Model Definition

We defined for the described dispatching problem a CP model that is based
on Conditional Interval Variables (CVI, see [LR08]). A CVI τ represents an
interval of time: the start of the interval is referred to as s(τ) and its end as
e(τ); the duration is d(τ). The interval may or may not be present, depending
on the value of its existence expression x(τ). In particular, if x(τ) = 0 the
interval is not present and does not affect the model: for this situation we also
use the notation τ = ⊥.

CVIs can be subject to a number of constraints, including the classical cu-
mulative [BLLN06] to model finite capacity resources, and the more specific
alternative constraint [LR08]. This last global constraint has the following sig-
nature:

alternative(τ0, [τ1, .., τnτ],mτ) (3.4)

The constraint forces all the interval variables τ1, τ2, . . . to have the same start
and end time as τ0. Moreover, exactly mτ of τ1, τ2, . . . will be actually present
if τ0 is present. Formally, the constraint enforces:

s(τ0) = s(τi), e(τ0) = e(τi) ∀i = 1..nτ

nt∑
i=1

x(τi) = mτ x(τ0) (3.5)

3.4.3.1 Modeling Decisions and Constraints

In our model, we use a CVIs to model the scheduling decisions. In particular,
we introduce an interval variable τi with duration Di for each job waiting in

68 3. Job Dispatching in HPC systems

the input queues or already in execution. Then, we fix the start of all τi cor-
responding to running jobs to their real value (which is known at this point).
For the waiting jobs we have s(τi) ∈ t..eoh, where t is the time instant for
which the model is built and eoh can be given for example by t plus the sum
of the maximum duration of all jobs1. All the τi variables are mandatory, i.e.
x(τi) = 1.

Mapping decisions should be taken at the level of single job-units. The
modeling style we adopt for them is best explained by temporarily introducing
a simplifying assumption, namely that no two units of the same job can be
mapped on a single node. With this assumption, the mapping decisions can be
modeled by introducing a second set of optional interval variables υi,k such that
x(υi,k) = 1 if a unit of job i is mapped to node k.

However, mapping multiple units of the same job on the same node is possible
and can be beneficial. To account for this possibility, we have to introduce for
each job i multiple sets of υ variables. Specifically, we add one more index and
we maintain the semantic, so that we have variables υi,j,k such that x(υi,j,k) = 1
if a unit of job i is mapped to node k. The j index is only used to control the
number of job units that can be mapped to the same node. Finding a suitable
range for the index is a critical step: on the one hand, allowing j to range on
0..rni − 1 (i.e. one set of υ variables for each requested node) is a safe choice.
On the other hand, it is impossible to map multiple units of the same job on the
same node if doing so would exceed the availability of some resource. Hence, a
valid upper bound on the number of υ variable sets for a single job i is given
by:

pi = min

(
rni,min

r∈R

⌊
capk,r
ri,r

⌋)
(3.6)

and for each job i, the index j can range in 0..pi − 1. Then we have to specify
that exactly rni job-units should be mapped, i.e. that exactly such number
of υi,j,k intervals should be present. This can be done by using an alternative
constraint:

alternative(τi, [υi,j,k], rni) ∀i = 0..n− 1 (3.7)

Additionally, the alternative constraint forces all the job-units to start at the
same time instant as τi. Now, the resource capacity restrictions can be modeled
via a set of cumulative constraints:

cumulative([υi,j,k], [D
(pi)
i], [r

(pi)
i,r], capi,r) ∀k = 0..m− 1,∀r ∈ R (3.8)

where m is the number of nodes and the notation D
(pi)
i stands for a vector

containing D0 repeated p0 times, then D1 repeated p1 times, and so on. We
disregard all the hard-coded constraints introduced by the PBS administrator
and we trust the decision making capabilities of our optimization system with
providing waiting times as low as possible.

1Note that it is possible to shift all the domains by subtracting the smallest sti to all
values, so that at least one s(τi) has a minimum of 0

3.4 Job Dispatching in HPC: a CP Approach 69

3.4.3.2 Handling the Objective Function

We consider several variants of our dispatching problem, differing one from
each other for the considered objective and for the possible presence of soft
constraints. First, we have three “pure” models, obtained by adding on top of
the presented formulation one of the problem objectives that we have discussed
in Section 3.4.2:

min max
i=0..n−1

e(τi) (makespan) (3.9)

min
∑

i=0..n−1

max

(
0,
s(τi)− eqti − ewti

ewti

)
(weighted tardiness) (3.10)

min
∑

i=0..n−1

[[s(τi)− eqti − ewti > 0]] (num. of late jobs) (3.11)

Then we consider three “composite” formulations obtained by choosing as a
main cost function one of Equations (3.9)-(3.11), and then by posting a con-
straint on the value of the remaining ones. For example, assuming the makespan
is the main objective, we get:

min max
i=0..n−1

e(τi) (3.12)

s.t.
∑

i=0..n−1

max

(
0,
s(τi)− eqti − ewti

ewti

)
≤ δ0 θ0 (3.13)∑

i=0..n−1

[[s(τi)− eqti − ewti > 0]] ≤ δ1 θ1 (3.14)

The values θ0 and θ1 are obtained by solving the pure models corresponding
to the constrained functions. The parameters δ0, δ1 allow to tune the tightness
of the constraints. The three new composite formulations are loosely inspired
by multi-objective optimization approaches and aim at obtaining good solu-
tions according to one global metric (say, resource utilization), while keeping
acceptable levels for the other (say, waiting times).

3.4.3.3 Example of a solution

Let us suppose we have the set of waiting jobs described in Table 3.2, then a
feasible solution to this instance is described in Table 3.3. As reported in the
table, jobs 000, 001 and 002 can execute only on the nodes equipped with GPUs
(i.e. node 0 to 31), job 004 can execute only in nodes with MICs (i.e. node 32
to 63). Two units of job 000 are allocated on node 1, the other 30 units of job
000 are allocated in nodes 2 to 31; node 0 is completely free and can run job
001 while job 000 is executing; job 003 can execute on nodes 32 to 63; after the
termination of job 001, job 002 can start its execution with two units on node
0 and after the termination of job 003, job 004 can start in nodes 32 to 63.

70 3. Job Dispatching in HPC systems

i rni rqi,core rqi,gpu rqi,mic rqi,mem (KB) Di (seconds)

000 32 4 1 0 1000 14000
001 1 14 1 0 400 600
002 2 4 1 0 400 14400
003 32 16 0 0 400 800
004 32 3 0 2 800 400

Table 3.2: An example of problem instance

i s(τi) υi,0,0 υi,0,1 υi,0,2..31 υi,0,32..63 υi,1,0 υi,1,1 υi,1,2..31 υi,1,32..63

000 0 ⊥ 0 0 ⊥ ⊥ 0 ⊥ ⊥
001 0 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
002 600 600 ⊥ ⊥ ⊥ 600 ⊥ ⊥ ⊥
003 0 ⊥ ⊥ ⊥ 0 ⊥ ⊥ ⊥ ⊥
004 800 ⊥ ⊥ ⊥ 800 ⊥ ⊥ ⊥ ⊥

Table 3.3: A feasible solution for the instance from Table 3.2

3.5 Experimental Results

The results we are going to discuss now focus on the prototype version of the
proposed scheduler. At this stage we are interested in investigating the kind
of improvements that could be obtained by changing the dispatcher behaviour.
For this purpose, we have compared the results we obtained with our dispatcher
and the ones achieved by PBS as it is currently configured on Eurora.

We performed the comparison on real PBS execution traces, which contain
all the information that is usually available at the job arrival times (i.e. the
chosen queue, the resource requirements, the maximum execution time). Ad-
ditionally, the traces report for each job two important pieces of information,
namely the actual duration (which we use together with the arrival time to
simulate the scheduler activation events) and the start time assigned by PBS.

Our approach was implemented using IBM ILOG CP Optimizer [Lab09a]
using its default search strategy, which is based on Self-adapting Large Neigh-

Model
Average Queue Time (seconds)

all debug parallel longpar

MKS 187.14 4.77 161.81 0.01
MKS WT/NL 165.98 0.10 160.04 0.01
NL 722.04 2.30 316.92 369.14
NL MKS/WT 201.32 0.31 145.59 18.99
WT 662.18 2.16 203.50 446.34
WT MKS/NL 861.81 0.76 278.60 572.29

PBS 6840.81 17.34 2825.05 3600.40

Table 3.4: Models comparison, queue times

3.5 Experimental Results 71

Model
Average Resource Utilization

Avg. # jobs
cores GPUs MICs cores (%)

MKS 678.81 45.21 3.99 66% 121.68
MKS WT/NL 701.92 45.61 3.99 68% 121.92
NL 614.75 45.89 3.99 60% 116.58
NL MKS/WT 670.75 45.00 3.99 65% 121.21
WT 671.41 47.67 3.98 66% 120.50
WT MKS/NL 620.45 41.72 3.99 61% 119.07

PBS 447.98 29.16 0.33 46% 63.04

Table 3.5: Models comparison, system load

borhood Search [LG07] guided by an Linear Programming relaxation. At each
scheduler activation we use the best solution found within a time limit to decide
the jobs that should start. To allow a fair comparison, all traces were pre-
processed to reset the waiting time of all jobs that are in queue at the beginning
of the trace, so that this is not taken into account. Additionally, we have sub-
tracted from the PBS waiting times the overhead required for implementing the
dispatching decision. This was experimentally identified by analyzing the traces
themselves.

In the first run we set a time limit of 60 seconds and if the model returns no
solution within the allowed timespan (and did not explore all the solutions), we
recreate the model setting a new time limit - multiplying by 5 the previous one.
However, if the time limit reaches a threshold of 2 hours, this cycle stops and
an empty schedule is returned. In practice this means that for that particular
time point, the system state does not change and the dispatcher waits until the
next time instant (when probably some jobs are completed) to compute a new
scheduling. In our tests, this condition has never been reached: we were always
able to find a solution in the first run.

3.5.1 Evaluation of Our Models

We performed an evaluation of all our models on a PBS execution trace con-
taining data for a batch of jobs that was considered for dispatching in a 2-hour
long interval. The main performance metrics considered are (1) the time spent
by the jobs in the queues while waiting their execution to begin (ideally as low
as possible), and (2) the overall utilization of the system (ideally as large as pos-
sible). Waiting times are a measure of the perceived quality of services, while
a high utilization directly translates to a low number of idle (but still power
consuming) resources and to a more efficient use of the machine resources.

The results for the first batch (BATCH1) are presented in Table 3.4 and
Table 3.5; the models evaluated are the three “pure” ones (Makespan [MKS],
Weighted Tardiness [WT] and Num. of late jobs [NL]) plus the three composite
ones (i.e. with Makespan as main objective and constraints on Weighted tardi-
ness and Num. of late jobs [MKS WT/NL], and similarly for the others). In the
table we can see the average waiting time per job (both total and per-queue).
There is a remarkable improvement w.r.t. PBS for all the models (one order
of magnitude), and especially for those using the Makespan as main objective

72 3. Job Dispatching in HPC systems

BATCH1 BATCH2 BATCH3

#jobs 437 434 619
#jobs DEBUG 237 133 127
#jobs PAR 130 240 415
#jobs LONGPAR 62 25 12
#jobs req. GPUs 85 203 224
#jobs req. MICs 3 1 1
#jobs req. 1 core 298 197 258
#jobs req. 2 cores 2 73 38
#jobs req. 3 cores 0 0 0
#jobs req. 4 cores 1 4 7
#jobs req. 5 cores 1 1 0
#jobs req. 6 cores 6 2 3
#jobs req. 7 cores 0 0 0
#jobs req. 8 cores 59 56 187
#jobs req. 8+ cores 70 101 126

Table 3.6: Job traces composition

(MKS and MKS WT/NL). All the composite models perform better than their
pure counterparts when dealing with the jobs from debug queue (short and with
relatively low requirements). The models with Makespan as primary objective
do their best when dealing with the long jobs from the longpar queue.

The corresponding resource utilization statistics are reported in Table 3.5,
showing for each model and PBS the average number of used cores, GPUs and
MICs over time. Again, we can see a significant improvement in comparison to
PBS performance, but in this case the differences between our models are less
clear. In particular, the average numbers of used GPUs and MICs is very similar
(probably because not every job needs an accelerator), but we can notice that
MKS WT/NL performs slightly better in terms of the average number of active
cores. In the last column of the table (Avg. # jobs) we see the average number
of jobs that are in execution at each time instant: more running jobs usually
correspond to a higher utilization and a smaller time to complete the execution
of the batch. Finally, in the fifth column we report the average percentage of
active cores on Eurora, which is a good index for the utilization of the whole
system. As one can see, our best results (obtained by MKS WT/NL) are around
20% better than those of PBS. No approach was able to reach a 100% utilization:
to a large extent, this appears to be due to the presence of bottleneck resources
(e.g. GPUs) and to their allocation.

3.5.2 Comparison with PBS

The previous results show that our best model is a composite one, namely MKS
WT/NL, thus such model was chosen for a more detailed comparison with PBS
on three execution traces, each one corresponding once again to a two-hour time
frame of the Eurora activity. The features of the job batches considered in each
trace (i.e. BATCH1, BATCH2, BATCH3) are summarized in Table 3.6, which

3.5 Experimental Results 73

(a) Running Jobs (b) Active cores

Figure 3.2: Eurora utilization on the first trace (BATCH1)

(a) Jobs in Queue

0.0 0.2 0.4 0.6 0.8 1.0
Queue time

0

5

10

15

20

25

30

35

Nu
m

be
r o

f j
ob

s

(b) Times in Queue

Figure 3.3: Waiting jobs and queue time for BATCH1

reports the total number of jobs, the number of jobs in each queue2, the number
of jobs requiring at least one GPU or MIC and the number of jobs requiring a
certain number of cores.

We start by presenting the results for BATCH1, which is the same we used
for evaluating the model. The jobs composing this trace belong to a wide range
of classes, with different resource requirements and different execution times. In
Fig. 3.2a we can observe the number of active jobs in the considered time frame,
for both our approach (solid line) and PBS (dashed line). Fig. 3.2b reports
instead the number of active cores. Our approach significantly outperforms
PBS, being able to execute more jobs concurrently and to use a larger fraction
of the available cores.

Neither approach managed to reached the optimal system usage: this could
be due to (a combination of) the presence of bottleneck resources, to suboptimal

2The sum of those values may be lower than the total, because we do not report detailed
statistics for some minor queues.

74 3. Job Dispatching in HPC systems

(a) Running Jobs (b) Active cores

Figure 3.4: Eurora utilization on the second trace (BATCH2)

allocation choices, or simply to the lack of more workload to be dispatched.
Fig. 3.3a shows the number of waiting jobs at each time step for our approach
and PBS. From the data in the figure, we can deduce that our approach managed
to dispatch most of the incoming jobs immediately, suggesting that the machine
underutilization is at least in part to blame on the lack of more jobs. Still,
suboptimal choices and resource bottlenecks cause some jobs to wait (a relatively
high number of them, in the case of PBS).

Fig. 3.3b contains a histogram with the waiting times for our model, weighted
by the (inverse of) the Estimated Waiting Time of the queue they belong to. The
histogram shows how many jobs (y-axis) wait for a certain amount of times their
ewti (y-axis). The majority of the waiting jobs with our approach stay in their
queue for a very short time, unlike the case of PBS, where especially the jobs
in the longpar queue tend to be considerably delayed. We recall that currently
these jobs (which are characterized by longer durations than the remaining
ones) are forced to execute only at night, for fear or delaying jobs in the debug
or parallel queue. The evidence we provide here leads us to believe that such
a strong constraint is in fact not needed when using a proactive approach, and
its removal could provide benefits in terms of both queue time and average
utilization of the supercomputer resources.

Fig. 3.4 and Fig. 3.5 refer instead to our second trace, i.e. to the jobs
in BATCH2. This is another mixed group of jobs in terms of computational
and resource requirements, but in this case we have many more GPU requests,
putting a great strain on the dispatcher since GPUs in Eurora are much fewer
than cores. The consequences of this situation can be observed in Fig. 3.4a
and Fig. 3.4b, respectively showing the number of running jobs and active cores
over time. For both PBS and our model we notice that the number of jobs in
execution, after an initial spike, reaches a cap in the middle section of the trace,
although the percentage of actives cores is not even close to 100%. This cap
occurs because in many cases, basically all waiting jobs are requiring a GPU and
hence, even if there are available cores they cannot be used. Despite that, we still
manage to achieve a largely improved schedule than the one of PBS in terms of
number of running jobs. In particular, the average number of active GPUs with

3.5 Experimental Results 75

(a) Jobs in Queue

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Queue time

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f j
ob

s

(b) Times in Queue

Figure 3.5: Waiting jobs and queue time for BATCH2

our dispatcher is higher than 63: given that the whole supercomputer counts
only 64 GPUs, this means that the performance obtained by our approach for
the GPU-requiring jobs is very close to the theoretical limit.

In Figure 3.5 we can see our performance in terms of queue times for
BATCH2. We outperform PBS again but at the same time we notice how
the number of jobs in queue (Fig 3.5a) follows a similar pattern in both sys-
tems, with a distinctive spike after a relatively low initial value: this happens
because of the congestion on the GPUs resources we mentioned earlier – after
all, optimization can provide improvement only as long as spare resources are
available.

Finally, we can eventually consider BATCH3 and the results are displayed
in Fig. 3.6 and Fig. 3.7. The jobs considered in this trace require, on average, a
higher number of cores than all other traces and, for a large part, were submitted
to the parallel queue. They require proportionally fewer GPUs than the jobs in
BATCH2, but still more than BATCH1. We manage again to obtain a better
usage of computational resources on Eurora, as revealed in Fig. 3.6b and from
the average percentage of actives cores (85% in our model versus 55% with
PBS). One more time, these results are due to a smarter management of the
different types of resources, although the limitations imposed by the relatively
low number of available GPUs still has an impact on the number of running
jobs (Fig. 3.6a).

In Figure 3.7a we can see our model is able not to force to wait as many
jobs as PBS, but only during the first half of the trace, while after that point
the number of waiting jobs is similar between the two dispatchers. One possible
explanation for this is again the limit imposed by the GPUs availability, given
that not all the cores are occupied, which forces more jobs to wait when a certain
threshold for the number of required GPUs is reached.

76 3. Job Dispatching in HPC systems

(a) Running Jobs (b) Active cores

Figure 3.6: Eurora utilization on the third trace (BATCH3)

(a) Jobs in Queue

0 5 10 15 20 25 30
Queue time

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f j
ob

s

(b) Times in Queue

Figure 3.7: Waiting jobs and queue time for BATCH3

Example of CP and PBS different scheduling decisions In Figure 3.8
we can see an example of a very simple dispatching situation that gives an
insight on why the CP proactive model takes better decisions compared to the
simpler PBS heuristic policy. Suppose we have node A and B, where A has 1
core and 1 GPU while B has only 1 core, and suppose that A and B are fully
occupied by previous jobs. There are two job that need to be scheduled: job1,
requiring one core, and job2, requiring one core and one GPU. We suppose that
job1 was submitted first and therefore it has a higher priority from PBS point
of view. Both the jobs are in the waiting queue because the requested resources
are unavailable. Figure 3.8a depicts this situation.

Let suppose that all jobs currently occupying nodes A and B terminate at
the same moment, triggering a scheduling event. In Figure 3.8b we see the
different decisions taken by the PBS-like dispatcher (on the left) and by the
CP proactive dispatcher (on the right). PBS starts looking at the queued jobs

3.6 Chapter Summary 77

(a) Jobs Submission (b) Jobs Dispatching

Figure 3.8: Proactive dispatching VS PBS: an example

following the priority order and selects jobs1 ; subsequently, it assigns jobs1
to the first available node, in this case A (the nodes are statically ordered
without considering their usages). Then PBS considers the second element in
the waiting queue, jobs2, and tries to see if it can fit given the remaining available
resources: unfortunately the only node with an available core is B that lacks
the required GPU; therefore jobs2 is forced to wait, resulting in a sub-optimal
machine utilization.

If we instead look at the dispatching decisions taken by a CP approach we
notice a different situation. Due to its proactive nature, it consider all jobs
that are waiting in the queue and need to be executed. The CP dispatcher can
then explore different situations; in this simple case it just tries the few possible
placements of the two jobs on the two nodes. It will then realize that putting
jobs2 on Node A and jobs1 on Node B is the best solution, in terms of higher
machine utilization and lower waiting times for the jobs involved.

3.6 Chapter Summary

In this chapter we have discussed a Constraint Programming based proactive
workload dispatcher for the HPC systems, using the Eurora supercomputer as
a case study. We saw that the tackled problem is not an easy one, owing to
the need to manage multiple objectives and to the limited availability of mul-
tiple, heterogeneous resources. The goodness of our dispatcher was evaluated
considering two important aspects: 1) increasing machine utilization and 2) re-
ducing jobs waiting times. A higher machine utilization translates into a lower
consumption from idle resources and a large number of accepted jobs, with ben-
efits for the supercomputer owner and on the environmental side. Short waiting
times correspond to a higher quality of service for the system users.

The higher machine utilization is especially important from the point of
view of the machine owner because supercomputers are investment-intensive
facilities with short depreciation periods. An average supercomputer reaches
full depreciation in three to five years [Fel13], thus their utilization must be
kept as high as possible, in order to produce an acceptable return on investment.
Every small (even relatively) improvement in utilization and throughput might
lead to great financial gains.

In both the considered metrics (machine utilization and waiting times) we
considerably outperformed the current scheduler, showing that there are great

78 3. Job Dispatching in HPC systems

margins for improvement when a proactive approach is used. The fundamentally
reactive approach currently in use proved to have particular difficulties with the
simultaneous management of different classes of resource (e.g. cores and GPUs).

The dispatcher we discussed here was just a prototype but with further work
Bridi et al. managed to develop a wholly functioning, real-time job dispatcher
based on the model here presented. Their effort led to the implementation of
the proposed method on the Eurora supercomputer; the implementation details
are beyond the scope of this work but the results can be found in [BBL+16b].

Chapter 4

Predicting Power
Consumptions in HPC
Sytems

The quest towards the much sought-after Exascale in High Performance Com-
puting passes necessarily through a significant decrease of the power consump-
tion of next-generation machines. In order to achieve this goal several different
approaches have been suggested, ranging from more power-efficient HW solu-
tions to more sophisticated power and energy aware management systems. The
software-oriented methodologies generally rely on a combination of dynamic,
reactive actions and planning strategies. An example of reactive action is the
reduction of the operational clocks of some computational resources in a system
if the dynamically measured temperature in the facility reaches a critical point.
Conversely, given a a set of applications to be scheduled a planning strategy
would decide the execution order in advance (before the actual execution) in
order to optimize it w.r.t. some objective function.

In order to apply such a planning-based optimization strategies the ability
to forecast the impact of the workload execution on the system has paramount
importance. For example, the power that will be consumed by a HPC appli-
cation during its execution is an essential requirement to devise an optimized
power-aware strategy. This is especially true for tools such as proactive job
dispatchers (see Chapter 3) that need to know a priori the power consumption
(or at least an estimate) of each application before deciding a schedule. In turn,
this knowledge leads to foreseeable system behaviours (within a certain level of
confidence).

For this reason the capability of predicting the power consumptions of the
jobs which need to be run is extremely important for the optimal implementation
of power-aware approaches, as underlined by several works [PSLeA16,SSPeA14,
BPV10]. In addition a greater prediction accuracy implies better performance
(in terms of higher machine utilization and greater energy savings) [CGUeA08].
Let’s consider the goal of having a power capped HPC system, i.e. a system
whose power consumption will never exceed a given budget. Intuitively, if we
could exactly know the power consumed by each application we could generate
optimal schedules and be sure that these schedules will always respect the power

80 4. Predicting Power Consumptions in HPC Sytems

constraint. Conversely, we may obtain sub-optimal solutions when we deal with
imperfect estimates – in this case we may want to be robust and never violate
the power cap (for example, employing a tighter power budget), or we can accept
to exceed the power limit from time to time.

A typical approach to obtain the power or energy consumption of an appli-
cation consists in measuring the physical sensors which monitors the system’s
components during the workload execution [CLPeA14, CM05]. Although the
measurements collected in this way are extremely precise their run-time only
availability clearly collides with the requirement of a job dispatcher that de-
mands these values at schedule-time. There is therefore a clear need for a
different approach, although online monitoring systems will be certainly helpful
in a second phase, after the jobs have started.

As we have seen in Chapter 2 (in particular Section 2.3.3) many research
works [SB16, ABB+14, SWAB14] lately explored the possibility to forecast the
power or energy consumption of supercomputer workload before the execution.
In this chapter we are going to discuss the problem of predicting the power
consumption of HPC applications using only the information available at sub-
mission time, namely without using real time measurements or internal program
counters.

Contributions The possibility to forecast the power consumed by applica-
tions is an essential prerequisite in order to develop job dispatchers capable
of containing power and energy consumption of High Performance Comput-
ing systems. The predictions must be available at schedule-time, i.e. when
the dispatcher takes its decision, in order to be of any use. This implies that
the prediction must involve only information available at schedule-time, for ex-
ample the resources requested and the maximum duration. Machine Learning
methodologies are widely adopted in many different areas to create many di-
verse prediction models. The first step needed to create a ML model is to have
a large amount of data to use for the training phase - the accuracy of the pre-
diction is strongly related to the size of the data set. For this purpose in this
chapter we are going to describe the information collecting infrastructure that
was implemented on the Eurora supercomputer. The large database contain-
ing information about historical workloads and the related power measurements
gathered on the system constitutes the starting point for the following creation
of a prediction model. Data sets need also to be “prepared”, extracting and
aggregating the significant information from the mass of raw data. Once the
data set has been processed we can use Machine Learning algorithms to learn
prediction models. The common procedure to test the quality of the forecast
is splitting the data set in two components, train and test set, using the first
during the learning phase and the latter as a way to compare estimates and real
values. We test the goodness of the proposed prediction models against histor-
ical data from Eurora; the results reveal that the accuracy of our estimates is
very good, ranging from 92% to 95%.

Outline This chapter is organized as follows. Section 4.1 describes the infor-
mation collected on the Eurora supercomputer; we give the description of the
data gathering infrastructure and a few example of the analysis that can be
performed on such data. Section 4.2 studies how to extract the jobs power con-

4.1 Eurora Data 81

sumptions from the raw data. Once a data set suitable for Machine Learning
algorithms has been obtained, in Section 4.3 we present the prediction mod-
els used to estimate power consumptions. Finally we test the accuracy of our
models comparing estimates and real data in Section 4.4.

Publications Part of the work at the core of this chapter has been published
to international conferences in [BBL+16a].

4.1 Eurora Data

On the Eurora system we implemented an open access database where we gath-
ered the information collected on the supercomputer. Our database contains
data generated by the monitoring framework, ranging from the measurements
of physical sensors installed on the machine to the jobs run on the system; the
collecting infrastructure and the set of scripts loading the data on the database
perform their tasks without interfering with Eurora workload. The database
stores several months (precisely 18) of traces of Eurora activities, providing a
large data set for studying the behaviour of a green supercomputer.

The large amount of data collected (more or less 500GB of memory storage)
is the key element that allows the use of Machine Learning algorithms to fore-
cast the jobs power consumptions at schedule time. This information has also
been used to perform a preliminary analysis of machine’s behaviour; we were
interested in understanding the features characterizing Eurora typical workload.
In the rest of this section we are going to discuss the monitoring & collecting in-
frastructure (Section 4.1.1) and after we present some examples of data analysis
(Section 4.1.2).

4.1.1 Collecting Infrastructure

As said in [BCC+14] the data gathering framework is composed by a set of soft-
ware daemons and scripts which collect at run-time the hardware sensor values
for each component on the various nodes (see Fig. 4.1). The monitoring frame-
work employs online and offline software components. The online components
are responsible for readings the physical sensors’ measurements and save them
as log traces in the shared file system repository. These software modules are
time triggered, and monitor, concurrently for each node, the power, the temper-
ature and the level of activity of the two CPUs (CPU stats), two GPUs (GPU
stats), two Xeon Phi cards (MIC stats) and the two board temperature sensors.
We also developed a set of offline scripts that parse and then post-process the
collected data traces; these processed traces are then used to extract the infor-
mation which is going to fill the database, and that is going to be employed
to enable statistical evaluation and modeling and any kind of relevant analysis.
In addition to the data concerning the HW sensors, we also developed a set
of daemons that retrieve the information relative to the jobs executed on the
systems. This is a key point because with this information we are able to relate
workloads and operating conditions, thus increasing the number and type of
analysis that we can perform.

The open-access database stores in a single access point all information ob-
tained through tracking the workload, from its submission till its execution and

82 4. Predicting Power Consumptions in HPC Sytems

completion, considering both micro (core power, temperature, instruction den-
sity, etc.) and macro effects (liquid cooling temperature and pump flow). We
use a MySql database [WA02], hosted on a machine kindly provided to us by
Cineca. We chose to use a standard and non-proprietary technology in order to
improve the ease of access to any user. The raw data generated by the measure-
ment framework (HW data) are parsed by a set of scripts written in Python
and Unix Bash languages; the jobs information are obtained through queries
submitted to the Eurora job dispatcher PBS, with its own scripting language.
After that, all the data are loaded into the databases, with the whole process
performed every two hours and it takes between 10 and 20 minutes - this is not
a problem since this task takes place on the login node of Eurora (where the
raw data are stored before being loaded to the database) and it has almost no
computational impact on that node.

4.1.1.1 HW Sensors

In the following subsection we describe the database structure regarding the
HW sensors data and the jobs information.

Figure 4.1: HW data flow

We collect data from several physical sensors for each node. More in partic-
ular we store data regarding the CPUs (two for each node), the cores (16 per
node), the GPUs (two or zero per node), the MICs (two or zero per node) and
the boards; we also collect data regarding the power supply and cooling system
of the machine. A graphic representation of the HW data and relative tables in
the database can be seen in Figure 4.2 and in the following sections we describe
these tables in more detail.

In order to be able to retrieve the data stored on the DB without having
to wait for too long1, we added a few typical database accessory structures

1The database access time increases dramatically when the database grows larger. In our

4.1 Eurora Data 83

Figure 4.2: HW Data and Tables

called indexes which allow a faster access to the data. We had to find the right
balance between the number of indexes and the time required to load the data
onto the database – more indexes grant faster access times but unfortunately
have the effect of increasing write times (since the DB has to update both the
raw data plus the additional index structure). After an empirical evaluation,
we eventually settled for a pair of indexes for each table.

We are now going to see in more detail the information stored in the database.

CPUs For every node we have a database table storing the CPUs informa-
tion. There are 64 of these tables, namely cpu measurements 001, cpu measure-
ments 002, .. , cpu measurements 064. For each CPU we collect the data listed
in Table 4.1 (the cpu id distinguish between the two CPUs of the node). Data
types are MySql specific.

Cores Table 4.2 shows the data regarding the cores. Again we have a table
for each node called core measurements 001, core measurements 002, .. , core -
measurements 064 ; remember that each node has 16 cores so in this case the
field core id ranges between 0 and 15.

cases we are dealing with a database with a dimension of several hundreds of Gigabytes and
the access times can vary between a few seconds and a few minutes, depending on the type
of MySql query used

84 4. Predicting Power Consumptions in HPC Sytems

Field Name Measure Unit Meaning

cpu id Integer Identifies the CPU
pow cpu Watt Power consumed by the CPU
pow dram Watt Power consumed by the memory
pow package Watt Power consumed by the whole package
dT cpu ms Sampling interval in ms
timestamp datetime Time stamp of the measure

Table 4.1: CPUs tables entry fields

Field Name Measure Unit Meaning

core id Integer Identifies the Core
cpi Float Clock Per Instruction
load core % Load
mfreq MHz Maximum Frequency
rfreq MHz Real Frequency
dT core ms Sampling interval in ms
temp ◦C Core Temperature
ips GOPs Instructions Per Second
timestamp datetime Time stamp of the measure

Table 4.2: Cores tables entry fields

GPUs We can see the fields of the entries in the GPUs tables in Table 4.3. We
have one table for each node with a GPU, i.e. nodes from 33 to 64 (thus gpu -
measurements 033, gpu measurements 034, .. , gpu measurements 064) and in
each of these nodes there are 2 GPUs.

MICs Table 4.4 displays the fields of the entries in the MICs tables. We
have one table for each node with a MICs, i.e. nodes from 1 to 32 (thus mic -
measurements 033, mic measurements 034, .. , mic measurements 064) and in
each of these nodes there are 2 MICs.

Field Name Measure Unit Meaning

gpu id Integer Identifies the GPU
gpu load % GPU Load
mem load % Load of the GPU-dedicated Memory
gpu freq MHz GPU Frequency
smem freq MHz Static Memory Frequency
mem freq MHz Memory Frequency
pow Watt Consumed Power
temp ◦C GPU Temperature
timestamp datetime Time stamp of the measure

Table 4.3: GPUs tables entry fields

4.1 Eurora Data 85

Field Name Measure Unit Meaning

mic id Integer Identifies the MIC
cpu temp ◦C The MIC CPU temperature
mem temp ◦C The MIC memory temperature
fan in temp ◦C Fan-in temperature
fan out temp ◦C Fan-out temperature
core rail temp ◦C Core rail temperature
uncore rail temp ◦C Uncore rail CPU temperature
mem rail temp ◦C Memory rail temperature
core freq MHz MIC core frequency
total power Watt Total MIC power
2x3 power Watt Low Power Limit
2x4 power Watt High Power Limit
phys power Watt Physical Power Limit
free mem MB MIC Free Memory
tot mem MB MIC Total Memory
mem usage MB MIC Used Memory
timestamp datetime Time stamp of the measure

Table 4.4: MICs table entry fields

Field Name Measure Unit Meaning

Sensor1 ◦C Temperature of board
Sensor2 ◦C Temperature of board
timestamp datetime Time stamp of the measure

Table 4.5: Boards table entry fields

Boards Table 4.5 presents the fields of the entries in the boards tables. There
is one table for each node (one board for each node) therefore we have board -
measurements 001, board measurements 002, .. , board measurements 064. For
each board we measure its temperature in two different position.

Power & Cooling Systems The data from the power and cooling subsys-
tems has a sampling interval of 1 minute. We measure information regarding
the power supply such as current, voltage, frequency, absorption, total power
consumed by the machine. For the cooling system we store temperature of the
water in the 4 racks, temperature of the water flowing in and out, flow rate,
position of the valve regulating the water flow.

4.1.1.2 Workload Information

Eurora uses PBS from Altair as job dispatcher which provides APIs to trace
running and finished jobs; we use these API to obtain jobs related information,
sampling time of five minutes. We then load the jobs statistics in the database
every two hours. We use two tables:

1. table jobs keeps the information characterizing each job (job id, name,
owner, start time, etc.);

86 4. Predicting Power Consumptions in HPC Sytems

2. table jobs to nodes tracks on which nodes a particular job has executed;
to maintain this relation we employ a foreign key that relates each entry
of this table with an entry of job table2.

Figure 4.3 shows a scheme representing the relation between a job and the
related entries in the database; a job is characterized by information such as its
owner, its name, start time, etc.. (stored in table jobs), and by the nodes where
it run (table jobs to nodes). Combining these information we can also retrieve
the sensor measurements which were taken during the execution of a particular
job.

Figure 4.3: Jobs Info and Tables

The fields of the entries in jobs are summarized in Table 4.6; since we are
only keeping track of completed jobs we always know when a job terminated
(end time) and its termination status (exit status). The field queue indicates
the queue where the job were assigned (due to its requirements). Since a job
can be submitted but forced to wait by the dispatcher (machine too busy, low
priority, etc.) we memorize both when a job is submitted, start time, and when
its execution really begins, run start time. When a user of the Eurora system
submits a job (the owner) its requirements must be specified: the number of
nodes required (node req), the number of cores (cpu req) and the amount of
memory3. The user must also provide an estimated execution time, time req,
that represents an upper bound to the duration of the job - if a job has not
finished within the expected time, it will be canceled by PBS. If, for any reason,
a job can not terminate its execution successfully and is deleted we save this
information in the deleted field.

Table 4.7 displays the structure of the table jobs to nodes containing the
relation between job and its execution nodes. Any row of the table represents

2Every entry in jobs to nodes requires a field called job id (the foreign key) which points
to a specific entry in the table jobs

3The number of used GPUs and MICs is stored in a different table

4.1 Eurora Data 87

Field Name Measure Unit Meaning

job id int Identifies the job
job id string varchar String representation of the Id
job name varchar The name chosen by the owner
queue varchar The queue to which the job belongs
start time datetime When the jobs was submitted to PBS
run start time datetime When the job begins its execution
end time datetime When the jobs has terminated
owner varchar The owner of the job
node req smallint The number of nodes required
cpu req smallint The number of cores required
mem req int The amount of memory required
time req varchar The time requested
deleted varchar If a job was deleted before its completion

Table 4.6: Jobs table entry fields

Field Name Measure Unit Meaning

job2node id int Identifies a node-job pair
node id smallint Identifies the node
job id string varchar Identifies the Job
ncpus smallint Number of cores used
ngpus smallint Number of GPUs used
nmics smallint Number of MICs used
mem requested int Amount of memory used

Table 4.7: Jobs to nodes table entry fields

a job (job id) run on a node (node id); if a job required more than one node,
there will be multiple entries with the same job id but different node id. The
field ncpus tells the numbers of cores used by the job on the node; similarly
the fields ngpus, nmics and mem requested define, respectively, the number of
GPUs, MICs and amount of memory.

4.1.2 Example of Collected Data

Figure 4.4 shows the percentage of resources requested by the jobs grouped by
submission queue. The four queues active on Eurora (debug, longpar, parallel
and reservation) are displayed in the x-axis and in the y-axis there are the five
resources considered (in red the nodes, green for the cores, blue for the GPUs,
yellow for the MICs and the memory in cyan). In the z-axis each bar represents
the percentage of resources that can be attributed to the jobs which belong to
a particular queue. It is easy to see that the jobs in parallel use the larger
portion of resources in almost every case, with the exception of MICs which are
primarily used by jobs in longpar ; the explanation is fairly simple, i.e. jobs in
parallel and in longpar are the most computationally intensive ones and require
more resources, whereas debug contains only light and relatively short lived jobs
and reservation comprises only special jobs, much fewer than the other queues.

88 4. Predicting Power Consumptions in HPC Sytems

Queues: debug - longpar - par - reservation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Nodes -
 Cores -

 GPUs -
 M

ICs -
 M

emory

0

5

10

15

20

R
es

ou
rc

e
Sh

ar
e

0

20

40

60

80

100

Figure 4.4: Percentage of requested resources, grouped by queue

Figure 4.5a plots for each jobs the average core temperature and CPU and
GPU power; in the y-axis there is the average core temperature in ◦C and in
the x-axis there is the average consumed power in Watt. The figure gives this
information for both CPUs and GPUs, whose values are respectively identified
by circles and triangles. The red circles are the jobs which run on the 3.1GHz
nodes while the blue ones are the job in the 2.1GHz nodes; the green triangles
represent jobs which required at least a GPU - and necessarily executed on a
3.1GHz node4. There is a clear linear relation between the temperature and
power for the CPUs, with the higher frequency nodes almost always consuming
and heating more than their lower frequency counterparts (except for a handful
of very power consuming jobs on 2.1GHz nodes - top right corner). The same
is true for the GPUs where the linear relation is less steep, suggesting a lower
package thermal resistance.

Figure 4.5b portrays the relation between consumed power and number of
nodes used for each job. In y-axis we see the power in Watt, computed as the
integral of the CPUs and GPUs power consumption for each node contributing
to a given job. The x-axis reports the number of nodes used by the job. Again
red circles for jobs using 3.1GHz nodes - but with no GPU - and blue ones
for the 2.1GHz nodes; the read triangles stand for the jobs that used also a
GPU. The majority of the jobs used only few nodes (between 1 and 5) and for
the same number of used nodes the jobs with the higher power consumption
are those running on, in this order, 3.1GHz with GPU, 3.1GHz without GPU
and 2.1GHz nodes. It must also be noted that there is a clear trend showing
a reduction of the node average power as the number of node used rises. This
can be explained by the increase in the communication-to-computation ratio in
larger applications.

Figure 4.6a plots the CPU power (Watt) in the y-axis and the cores average

4GPUs are mounted only on nodes with 3.1GHz frequency

4.1 Eurora Data 89

(a) Temperature (C) VS Power(W) (b) Power VS # Nodes

Figure 4.5: (a) Temperature and power for CPU and GPU; (b) Power Consumed
and number of nodes used by job.

(a) Power (W) VS Load (b) Power (W) VS IPS (GOPs)

Figure 4.6: (a) Power and Load; (b) Power and Instructions Per Seconds.

load for the duration of the job is in the x-axis; the load is computed as the mean
of all the loads of the cores used by a jobs (usually more than one) and it ranges
between 0 (idle core) and 100 (core at maximum capacity). There is clearly a
strong positive correlation between the core load and the power consumption,
markedly more for jobs executed on higher frequency nodes - we maintained the
same coloration seen in the previous graphs (blue and red circles) but here we
do not differentiate between jobs that use a GPU or not.

Figure 4.6b shows the relation between the power consumed (Watt) by a
job and its mean Istruction Per Second (IPS). In the y-axis we show the CPU
power and on the x-axis the IPS measure; we again used the red and blue circles
(no distinction for the GPU usage). In this case the plot is quite scattered but
we can nevertheless observe the relationship between these measures, with the

90 4. Predicting Power Consumptions in HPC Sytems

power increasing as the IPS increases.
The proposed database can be used also to understand the relation between

a user and the properties of its submitted job. This aspect can have a crucial
significance for system owners and users, as it allows to devise different treat-
ments and accounting mechanisms for different types of users. In Figure 4.7
we plotted the power consumed by a job (in Watt) on the y-axis and the du-
ration of the job on the x-axis and we assigned a different color for each user
- i.e. all the blue circles are jobs submitted by the same user. In the plot we
reported only five users chosen randomly to keep the plot readable. Jobs with
higher energy consumption fall in the top right corner of the plot. From this
figure we can recognize that some users (such as the one identified by light-red
circles) submit jobs without any discernible pattern - at least for the metrics
considered in this plot - whereas others (like the yellow circles) always submit-
ted quite similar jobs. This information can be used by user-aware dispatching
to achieve machine power balancing or to avoid abrupt power changes in the
delivery network.

Figure 4.7: Power and duration of a job, grouped by user

4.2 Job Power Profiling

After having described the data collecting system we are now going to focus on
the most important task of such a system (at least for the purpose of this work):
how to predict the power consumption of HPC applications. In this section we
begin with discussing and empirically validating two extremely important key
concepts: 1) the power of a job can be approximated with its average value
keeping a good accuracy; 2) a method to compute the power consumed by jobs
which required only portion of nodes. In Section 4.3 we are going to explicitly
introduce the prediction models.

As we observed previously, multiple jobs can run concurrently on the same
node: while we can directly measure only the power consumed by the CPUs

4.2 Job Power Profiling 91

the jobs can be allocate to single cores. Moreover, we know on which node a
job run but we cannot distinguish the exact CPU it used (two CPUs per node).
Therefore we cannot directly measure the power consumption of applications
which do not occupy entire nodes. The number of jobs using only node portions
is not negligible at all, since that is actually the majority of jobs which run on
Eurora supercomputer5. This kind of problem may emerge in many different
HPC systems due to the various power measurements methodologies found in
current supercomputers [SSWeA14]. In the following sections we explain how
we deal with such a problem.

While the power consumption of a job depends on all the HW resources
used (CPUs, GPUs, etc.) in the rest of this section we are going to focus on
the power consumption of the CPUs, thus disregarding HW accelerators. CPUs
power consumptions are the most difficult to deal with, due to the fact multiple
jobs can run on the same CPUs. Currently, HW accelerators cannot be shared
by multiple jobs. Therefore from now on with “power” we are referring to the
CPU power consumption.

As already mentioned we must make a distinction between two kinds of prob-
lem: jobs requiring entire nodes (one or more) and jobs requiring only a portion
of a node. In the first case we can simply use the power measures we collected;
in the latter case we need a method to compute the power consumptions with
the data at our disposal. This method is described in Section 4.2.1.

A HPC application power consumption may vary during its lifetime due to
the nature of the application itself and of the different phases which compose it,
but the impact of such variability has not been extensively studied. Conversely,
if the power consumption was constant - i.e. if we can associate to each job a
precise, single value - the task of a job dispatcher would be greatly simplified6.
Our idea is to use the mean power to represent the power consumption of
a job, in the hope that the power variability is relatively low and the power
consumption relatively constant or that when we add all the job power traces
the variability of the power of each job is compensated by the others. This mean
value is calculated as the average of all power measurements collected during
the job lifetime.

Now we are going to consider jobs which executed occupying entire nodes
in order to illustrate why we do not lose too much information with our ap-
proximation. We chose to use these jobs for the sake of simplicity but the same
considerations can be applied to the case of applications running on node por-
tions. In Figure 4.8 we can see the power consumption profiles of three different
jobs, A (Fig. 4.8a), B (Fig. 4.8b) and C (Fig. 4.8c). The first two jobs present a
similar profile: their power consumption is quite constant and with a relatively
small variability. In particular the power consumption of job B shows very lit-
tle variability while job A powers have a higher variance - but still quite small
compared to the mean value. As job C reveals, this is not always the case: there
are also jobs whose power consumption changes more drastically during their
lifetime (see the sharp increase in the power consumed by job C). Nevertheless,
we can still estimate a job power consumption through its mean (average) value

5It is probably due to the fact that Eurora was originally a prototype and only later entered
production phase

6Proactive job dispatchers prefer to know in advance the job power consumption as a
single value; they could theoretically manage the power as a more complex object (i.e. a
curve instead of a single value) but we risk to incur in significant performance losses

92 4. Predicting Power Consumptions in HPC Sytems

because the jobs with significant power variability are only the minority of all
the jobs. The overwhelming majority of jobs show a low standard deviation in
their power consumptions.

In Fig. 4.8d finally we see the histogram of the “normalized” standard devi-
ations distribution. For each job we first compute the mean and the standard
deviation of all the power measurements then we divide the standard devia-
tion by the mean value to obtain a normalized standard deviation (to let us
compare standard deviations of different jobs). We can easily see that for the
vast majority of the jobs the standard deviation of the power consumptions is
less than 10% of the mean value - and in many cases even less than 5%. This
means that the standard deviation is, on average, very small and consequently
the power variability is not too big. This is probably a characteristic of HPC
jobs, which are generally carefully tuned to avoid big workload changes during
the key computation phases.

This observation allows us to estimate the power consumption with the mean
value without losing too much accuracy. It is clear that when associating a single
power to a job we are going to lose some information about the real power
consumption and therefore commit a certain (small) error. A job dispatcher
with power capping is interested in the total power consumption of the system:
when we sum all the jobs the errors tend to compensate each other thus the
average error we commit is low.

4.2.1 Shared Resource Power Consumptions

We describe now the technique to estimate the power of jobs running on portions
of nodes. As discussed before we do not have a direct measurement of the power
consumed by jobs using only a portion of a node. In this section we present a
method to compute a power for these jobs. The main idea behind our approach
is that each job consumes an amount of power proportional to its requirements
(more specifically the number of requested cores). We are thus making the
assumption that the resource requirements declared by the users are truthful
and constant (at least up to a certain degree).

An important requirement of our approach is the knowledge of the number
of running jobs and “active” cores in each node at every time. Number of active
cores means the number of cores that should be used in a node given the number
of cores requested by all jobs running on such node. We therefore created these
node profiles using the historical job traces. The information regarding the
number of cores active on a node at any given time is fundamental for our
approach since it allows us to understand the amount of power associated with
a job: if a job j runs alone on node i the number of active cores is equal to
the number of cores requested by job j and all the power consumption can
be attributed to that job. Conversely if more jobs are running concurrently,
each job will contribute to only a portion of the whole power (i.e. with 2 jobs
sharing a node, using all the node cores, each job can be associated with half
the measured power). This reasoning motivates the power we associate to each
job as expressed in Equation 4.1

Pj = Pij
crj
ncaij

(4.1)

where Pj is the power associated to job j, crj is the number of cores required by

4.2 Job Power Profiling 93

(a) Job A (b) Job B

(c) Job C (d) Standard Deviation Histogram

Figure 4.8: Real power consumptions of 3 jobs (A, B and C) and standard
deviation distribution histogram

job j, Pij is the average power of the node i on which the job j has run during
the job lifespan and ncaij is the weighted average number of cores which were
active on node i during the duration of job j. In practice this equation says
that the power associated to a job depends on the amount of workload related
to the job - i.e. how many of the active cores on the nodes were used by the
job.

While Pij and crj are information stored in our database and ready to be
used, ncaij needs to be computed. This value tells the average number of cores
(related to the number of concurrent jobs) which were active during the lifetime
of the job; this number can be computed using the node profiles described
previously, which can tell us the number of active cores in any moment of the
job duration. More precisely we divide the job lifespan in sub-intervals where
the number of active cores is constant and then we compute the average number
of cores, weighted by the sub-interval duration. To formalize, given a node i we
suppose to have job j, with duration Durj , which starts at STj and terminates
at ETj . We then have a set of intervals s ∈ j, each one with duration Durs; in
a sub-interval the number of active cores is ncs. The weighted number of active

94 4. Predicting Power Consumptions in HPC Sytems

(a) Computed VS Real Power (b) Error Histogram

Figure 4.9: Comparison between the real aggregated power and the computed
aggregated power. Mean Error: 0.011

cores can be computed as follows:

ncaij =
∑
s∈j

ncs
Durs
Durj

(4.2)

We designed an experiment to test the accuracy of the approximation method
for jobs using node portions. For a given time interval we compare the total real
power of the system, computed as the sum of all the node power measurements
at each given time (we use time sub-intervals of 5 minutes). Then, for every
time considered we also compute the total estimated power, i.e. the sum of the
powers of the jobs running at that time; the power of each job is calculated with
the method discussed above. A clear limitation in this approach is the fact that
we are comparing two aggregate metrics (total real power and total estimated
power) and we do not calculate the single job error.

In Figure 4.9 some results are shown - the trace corresponds to a one-day
period. As we can see the results are remarkably good, for example in the
period considered we can see that our power estimate has an accuracy around
99%. The results can nevertheless be worse in general, but the accuracy for our
whole data set is always between 95% and 96%. Part of the error we observe
is not due to the method itself, but actually is caused by the imperfect data
in our possession. For example, our algorithm strongly depends on the traces
of the jobs which run on Eurora and particularly on the resource requirements
declared by the users. This can be a source of error because users declare the
peak requirement of their application but the average usage may be lower (i.e.
asking for 4 cores but actually using just one on average). Nevertheless, there
is a discrepancy between the resource requirements declared by the users and
the resource actually used and such discrepancy is going to be a problem for
the prediction model. We discuss this issue in Section 4.3.3.

To summarize, the proposed method has a clear drawback in the fact that we
compute the job power making reasonable but not verifiable (and actually not
always true) assumptions: 1) we consider the number of cores requested to be an
accurate estimate of the job activity for its whole duration (whereas jobs could

4.3 Powers Prediction Model 95

require a certain number of cores and actually use them in a variable pattern),
2) we assume that a job will always use a core at its fullest capacity (while actual
load measurements from the cores reveals that the load is not always zero or
100%), 3) we consider the average power during the lifetime of a job, when in
reality the power during the job duration may vary. All these assumptions force
that our computation may not produce exact values of job powers but rather an
“approximation”. Another big limit in this method is the issue of incomplete
information. For example we could not consider the missing jobs in our DB: we
know for certain (comparing the real measured load and the job traces) that our
job collecting system is faulty and some jobs were not correctly stored on the
DB. Hence, in some periods we fail to consider the correct number of jobs and
active cores in our computation. This has a non negligible impact on the error
introduced by our computation: preliminary experiments have shown that the
accuracy of our method clearly increases in the time intervals where the jobs
were correctly stored in the DB.

4.3 Powers Prediction Model

In the previous sections we have seen that it is possible to describe a job power
consumption with a single value - the mean value - and we are able to do that for
every job running on the system, whether it occupies an entire node or not. With
this information we can now create a prediction model to estimate jobs power
consumptions. For this purpose we employed a Machine Learning approach
(ML) which relies on the large amount of historical data in our possession: using
the knowledge we have on the applications that run in the past we can learn
a model able to predict the consumption of future jobs. We implemented our
machine learning models with a Python module called scikit-learn [PVGeA11].

The basic idea of a machine learning predictor is to learn a model which
correlates a set of input features, or independent variables, with a target, or
dependent variable. In our particular context we want to correlate the job
characteristics (duration, requirements, etc), i.e. the features, with the job
power consumption. This correlation can be learned by the model thanks to
the large number of example which constitutes the training set, i.e. the data
regarding past jobs, with their characteristics and power consumptions. After
the learning phase the model can estimate the powers for new jobs (not seen
during the training). A critical element for the success of ML techniques is the
availability of large data sets for the training phase; in the Eurora’s case we
have a data set comprising tens of thousands of jobs (more or less 100k), which
is more than enough to obtain good quality predictions.

We developed two different approaches, one to be used with jobs requiring
entire nodes (Sec. 4.3.1) and one to be used with jobs occupying only portions of
nodes (Sec. 4.3.2). In this second case, we created multiple prediction models:
one for each user with already enough collected data plus a generic one for new
users.

The reason behind this diversification is based on the different type of data
at our disposal: we can be sure of the power associated to jobs which run
on entire nodes (see previous sections) but the power associated to jobs using
node portions is the result of an approximation that already introduces some
inaccuracy. In order to assure a fair comparison between the estimates and

96 4. Predicting Power Consumptions in HPC Sytems

(a) Jobs on Exclusive Resources (b) Jobs on Shared Resources

Figure 4.10: Predictors Scheme

the real power data, thus excluding sources of error not directly referred to the
prediction itself, we preferred to keep two separate prediction models. We start
describing the prediction model of the jobs on entire nodes and we later continue
with the jobs using node portions.

In Figure 4.10 we can see the schemes of both predictors, on the left the
predictor for jobs running on entire (or multiple) nodes and on the right the
predictor(s) for jobs running on shared nodes. We are going to discuss them
more in detail in the following sections.

4.3.1 Exclusive Resources

In the case of jobs on entire nodes we created a single model which takes into
account the following features: user, queue, requested duration, number of re-
quested nodes, number of requested cores, number of requested GPUs, number
of requested Xeon Phi7, amount of requested memory. The ML method we
used for this model is called Random Forest Regression [Bre01], which is an
evolution of the classical and widely used Decision Tree [Qui86]. Other than
Random Forest we tried other supervised regression techniques, using the de-
fault implementations provided by sci-kit. We used Generalized Linear Model,
Support Vector Machines, Decision Trees and ensemble methods (which com-
bine the predictions of several base estimators) such as Bagging, AdaBoost and
Gradient Tree Boosting. We then chose the approach with the best accuracy.
The time required to train the model is very low, less than 3 seconds, and the
time required to make a prediction is negligible, much less than a second. The
training should be performed once with the available historical data and then
the model could be updated regularly with the new jobs’ information collected
during the normal execution.

A common way to compute the quality of a prediction model is to split the
data set into two subsets: the training set and the test set. With the training
set we can learn the prediction model, which is then used to estimate the power

7The number of requested HW accelerators is important because GPUs and Xeon Phi are
mounted on computing nodes with different power consumptions, i.e. a job requiring a GPU
will necessary run on a CPU consuming more power than those with a Xeon Phi

4.3 Powers Prediction Model 97

(a) Test Set A: 943 Jobs (b) Test Set B: 714 Jobs

Figure 4.11: Prediction errors histograms for two test sets

consumptions of the jobs in the test set. These estimates are then compared
with the real power consumptions of the jobs in the test set, computing the
“prediction error” for each job in the test set8. The average of these prediction
errors then measures the quality of the prediction, with lower values indicating
higher quality. The average prediction error computed in this way is around 4%-
5%, which guarantees a very accurate prediction. Figure 4.11a and Figure 4.11b
show the histograms of the prediction errors for two different test sets of jobs
on entire nodes. These results were obtained with a training set of around 10k
jobs and the test sets are, respectively, of 943 and 714 jobs (test and training
sets randomly extracted from the whole data set).

Figure 4.10a portrays the scheme of the predictor for job on exclusive nodes.
As can be easily seen, it is fairly simple: when a job is submitted its features
(defined by the job request) are fed to the single prediction models, which in
turns produces the power consumption forecast as an output.

4.3.2 Shared Resources

In the case of jobs using only node portions the prediction turned out to be
more difficult than the entire node case and that forced us to try with a different
approach. In particular, we chose to create a prediction model for each user,
since it is probable that a certain user will submit jobs with similar patterns.
Also in this case the best ML technique has been selected after a preliminary
study and the best performance was obtained with Decision Tree Regression
[BFSO84] - also a Decision Tree based method. The problem with having one
predictor per user is that we split our training (and test) set and therefore
the dimension of these sets decreases. If the test set dimension decreases too
much the learning loses its effectiveness and consequently we cannot make good
predictions. This problem happens particularly if there are users who submitted
few jobs and thus we cannot actually learn a prediction model for them9. To

8We actually used a normalized prediction error: (real power −
predicted power)/real power

9This is also a problem for new users to whom we cannot build any prediction model until
a sufficient number of jobs are submitted

98 4. Predicting Power Consumptions in HPC Sytems

(a) User A (b) User B

Figure 4.12: Prediction error histograms of two different users

solve this issue together with the single user predictors we also have a “general”
predictor, devised without splitting the test set and including all users. This
generalized predictor is slightly less accurate than the specific ones, but it is an
essential component in our prediction mechanism.

The input features of the generalized predictor are the same used for the
entire nodes models plus the following: the job name, the number of jobs running
on the system at the job start time, the number of cores used on the system
at the job start time and the ratio between active cores and total number of
cores on the system at job start time. These additional information mainly
serve to characterize the supercomputer state and we also added the job name
(the application executable) since jobs with similar names - by the same users -
usually represent different runs of the same application (and probably are similar
in terms of power consumption). The specific (per user) predictors have all the
input features of the generalized predictor minus the user name: obviously, since
it would be the same for all the jobs in the test set. The training time is very
fast also in this case, usually less than 2 seconds for each user predictor.

The accuracy of the prediction has been computed as before, i.e. using the
average prediction error. Now we have different accuracies for the different user
predictors and to obtain an aggregate measure we calculate the mean of all
the average prediction errors (one average prediction error per user, plus the
generalized one). The quality of the prediction is lower than in the case of jobs
on entire nodes, with an average error around 15% - for some user the error could
be smaller than 3% while for other users it could be up to 35%. In Figure 4.12
we can see the histograms of the prediction errors for two different users, User
A and User B. In the case of User A (Fig. 4.12a) we see how the accuracy is very
good since the errors are very small and centered on zero. Conversely Fig. 4.12b
reveals that for User B the prediction is definitely less precise; it’s easy to see
that while the majority of jobs are well predicted (small error around zero), a
few of them are extremely bad predicted (queue of errors much smaller than -1,
on the left of the graph). In the following section we are going to describe the
reason of this behaviour.

Figure 4.10b depicts the prediction scheme in the case of jobs running on
shared nodes; this case is more complex than the entire nodes one. When a

4.4 Experimental Results 99

job is submitted it can belong to a previously seen user (Old User, right hand
side of the image) or to a user never seen before (New User, left hand side).
In the former case, the job features are given as input to the corresponding
user prediction model; if the user is new the job features enter the generalized
prediction model. In any case, the chosen prediction model will produce a power
estimate as output. The predictor models devised for the jobs running on node
portions could be also used without modifications also to predict the power
of jobs running on entire nodes (jobs on entire nodes are a subset of jobs on
node portions). However, the accuracy of the prediction decreases w.r.t. to the
dedicated predictor.

4.3.3 Outliers Management

After collecting the prediction results described previously we investigated them
to understand why some predictions were so wrong. The first thing we noticed
is that these bad estimated jobs have small powers (compared to the rest of the
jobs). As we see in the next section, these “bad” jobs do not have a great impact
on the aggregate prediction precision (that is, when we compare the total real
system power consumption and the total predicted power) and could actually
be disregarded. Furthermore we claim that these jobs are outliers, i.e. jobs not
representing a typical Eurora workload. This is due to two factors. First, these
jobs show “strange” behaviours: they usually have a very short duration (under
5 minutes and very often even less)10. This frequently means that these jobs did
not have a correct execution and terminated abruptly, possibly without actually
using the requested resources.

The second issue is related to the discrepancy between the declared resource
requirements and the resources actually used - due to both incorrect estimates
by users and varying levels of resource utilization during the job execution. The
jobs whose estimates are extremely wrong present a significantly higher level
of discrepancy between the declared resource requirements and the resources
actually used. If we discard these outliers from the average prediction error
computation, the accuracy increases sharply: the mean error becomes smaller
than 4%. This consideration leads us to formulate two simple guidelines to
obtain better predictions: 1) it is extremely important that the users declare
realistic requirements and should be fostered to do that; 2) the job monitoring
framework has to keep track of those jobs which did not terminate their ex-
ecution correctly and must be able to distinguish them from the “successful”
ones.

4.4 Experimental Results

In this section we present the conclusive results of the methods we introduced
in the rest of the chapter: estimate of a job power consumption with the mean
value of multiple powers measures and prediction of such mean powers with a
ML model. We want to know the final error we obtain after having applied all
the stages of our method, each of them introducing some inaccuracy. For this
purpose we tested our predictions against the real system power consumptions

10We cannot just delete all jobs with short durations from the train set since in this way
we could discard legitimate jobs

100 4. Predicting Power Consumptions in HPC Sytems

(again, we consider only CPU powers). The experiment set up is the same em-
ployed to compare mean power consumptions and real ones, that is we compare
the total real power in the system at time t with the sum of all power predic-
tions of jobs running at time t. The power predictions are obtained with the
previously mentioned model and for the sake of simplicity we did not employ
the dedicated predictor for the jobs running on entire nodes.

In our accuracy calculations we decided to disregard the outliers, as described
in Section 4.3.3. In Figure 4.13 we can see some results; the figure corresponds
to a two-days period. On the left the predicted trend is compared to the real
power trend and on the right we can see the histograms of the prediction errors.
As we can see the results are very good, with a mean error smaller than 6%.
This is true also if we consider more extended periods; the average error for the
whole test period (a month) is around 8% and 9%.

Although the average error is good, we must consider the nature of our
mispredictions in relation to the power capping. More specifically we can observe
under-prediction and over-prediction. The first one could lead to emergencies
(the real power actually exceeds the cap planned in the dispatcher) and the
second one leads to machine under-utilization and it is undesirable as well. The
concerns about underestimates is that they may lead to power and thermal
overshoots. More in detail, when the predicted power is below actual power for
a time significantly longer than the thermal time constants of the HPC machine,
and the prediction error is above 10%, then hardware power throttling would
kick in at run time to prevent temperature overshoots, leading to undesirable
performance losses and possible violations of service level agreements. We call
these events “critical underestimates”. Our error analysis reveals that critical
underestimates would happen for less than 2% of the operating time of the
machine. For example, in the 2-days period of Figure 4.13 we registered 37
periods when the predicted power was lower than the real one. While this could
seem a high number, the great majority of these under-prediction periods were
very short: 90% of the times the under-predictions lasted for less than 2 minutes
and 80% of the under-predictions lasted less than 1 minute. The longest under-
prediction period lasted for 8 minutes. These values are very short w.r.t. a
typical HPC application duration (i.e. a few hours).

Our prediction model tends to underestimate the power consumption - the
under-predictions are ∼70% of all errors. This is not fault of the prediction
model itself but it is due to the previous phase (power estimation with mean
values and for job in portions of node). The main reasons for this are the use
of mean power instead of real ones and the discrepancy between the requested
resources and those actually occupied. When we integrate the results of our
prediction models in a job dispatcher with power capping we must take into
account the under-predictions. Even though these results are very good we
can nevertheless consider under-predictions and there a few ways to cope with
them. On one hand, we can back up our dispatcher with a HW power cap
mechanism to ensure never to exceed the power budget. Another solution could
be to require the dispatcher to respect a power constraint tighter than the real
one, thus guaranteeing never to surpass the desired power budget.

Data set size importance An extremely important factor for the quality of
the prediction is the availability of information regarding previous jobs. The

4.4 Experimental Results 101

(a) Predicted VS Real Power (b) Error Histogram

Figure 4.13: Comparison between the real total power and the predicted total
power. Mean Error: 0.056

Figure 4.14: Data Set size and prediction error

size of the data set used to train our learning machine models greatly influences
the results accuracy. To give an idea of the relevance of this point we can look
at Figure 4.14. We have on the x -axis the increasing data set sizes (obtained
through random sampling of our original data set) and on the y-axis the cor-
responding mean normalized error of the prediction. The mean error reported
is the aggregated, final one. We can easily see that the prediction accuracy de-
creases (the error increases) when the data set size shrinks. A good dimension
for the data set is around 80k entries (previously observed jobs)11.

11In Eurora’s case this corresponds to less than 3 months of observation

102 4. Predicting Power Consumptions in HPC Sytems

4.5 Chapter Summary

In this chapter we discussed a method to estimate the power consumptions of
applications running on HPC systems. Such estimates represent a fundamental
tool to assist the task of online job dispatchers: the capability of forecast power
consumptions allows job schedulers to optimize the system management. In
order to be of any real use the power predictions must be available at schedule-
time, i.e. when scheduling & allocation decisions are taken, and therefore they
must be based on information present at that time.

We have considered the Eurora supercomputer as a case study thanks to
the data gathering infrastructure that collected valuable information (relative
to the jobs which run in the past and to the measurements of physical sensors)
for several months of the operating life of the machine. The data collected
gave us the possibility to employ Machine Learning techniques and create a set
of prediction models for the purpose of predicting power consumptions. The
models created were calibrated on Eurora-specific data but the methodologies
used can be easily generalized and applied to different supercomputers; the
only requirement is to have a data collecting infrastructure in order to train
new Machine Learning model. The prediction quality strongly depends on the
availability of large amount of data.

Finally we can give two additional insights on the issue of power consump-
tions estimation. First, we can approximate the power consumption of a job
with a single value, the average of all the power measurements taken during its
lifetime, with only a small loss of precision. Dealing with a single values instead
of multiple ones is a great help for job dispatchers. Then we tackled the problem
of co-executing jobs, i.e. applications which run on the same node and using
only a portion of the node resources. The problem arose from the mismatch
between the minimal allocation unit in the system and the granularity of the
power measures collected. We propose an algorithm to estimate the mean power
consumptions of such jobs and proved its efficacy.

Chapter 5

HPC Job Dispatching
under Power Cap
Constraints

High Performance Computing systems are envisioned to reach the Exascale in
2023 but multiple challenges still have to be overcome [TC12,Sim12,BBHU10].
One of the most complex issues is the power consumption because if the en-
ergy efficiency does not improve dramatically the power consumption of next-
generation systems will be unacceptable. With current technologies an Exascale
supercomputer would consume around hundreds of MWatts while a commonly
accepted upper bound for the power consumption of a supercomputer is around
20MW [BBCea08]. Such a huge challenge must be tackled from several an-
gles: new, more energy efficient hardware components should be developed,
novel power-aware workload and resource management software needs to be de-
vised, HPC applications have to become more flexible, users should shift from
a performance-only focus to more balanced perspectives, etc.

In the past years many research works have dealt with the HPC power man-
agement issue and several strategies have been proposed. Power Capping is a
methodology widespread both in the research literature and in real world sys-
tems and it consists in keeping the power consumption of a HPC center within a
power budget (the power cap). This purpose serves as a catalyst to accelerate the
development of various techniques that actually implement such a constraint.
Many mechanisms have been studied to reach the goal of a power capped su-
percomputer, ranging from a better management of the system resources to
exchanging computational performance for reduced power consumption.

Contributions In this chapter we are going to introduce a novel power cap-
ping strategy for HPC systems, a job dispatcher which is able to keep the power
consumption within a certain budget acting only on the jobs execution order.
Many currently used mechanisms require a trade-off between reduced power
consumption and application performance. For example if we force the power
of a computational unit not to exceed a given budget, the jobs running on that

104 5. HPC Job Dispatching under Power Cap Constraints

node would possibly be slowed down1. The performance decrease can be ac-
ceptable or it might lead to problems in terms of Quality-Of-Service for the
users.

Our approach relies entirely on the benefits of optimized and proactive work-
load dispatching. We reckon that it is possible to achieve a power capped
system through a careful planning of the workload execution, without incur-
ring in a significant performance degradation. Nevertheless, a strong point of
the proposed method is the possibility to combine our “smart” scheduling &
allocation method with techniques that dynamically adjust the power of the
computational resources, since these approaches are orthogonal and not mutu-
ally exclusive. The integration of the proactive dispatching policy and reactive
mechanisms allows to better cope with the mutating operating conditions of the
HPC facilities.

Outline The chapter content is organized as it follows. In Section 5.1 we
briefly cover the background and the problem context. Then in Section 5.2 we
present a job dispatching model with power cap for HPC system; we discuss
two different approaches, one based on a heuristic algorithm and one based
on a hybrid approach that combines a Constraint Programming model and a
heuristic technique. Our methods are compared against the state-of-the-art in
Section 5.3. Afterwards, in Section 5.4 we illustrate how to combine the job
dispatcher with the cooling system of a real supercomputer, studying how this
integration can lead to energy savings and better power management. Finally,
in Section 5.5 we consider the problem of variable power budget and the way the
job dispatcher can cope with this issue; in particular we present an additional
module to reduce the power consumption of an already running HPC workload
using a CP model plus Dynamic Voltage and Frequency Scaling (DVFS).

Publications Part of the work forming the core of this chapter has been pub-
lished to international conferences in [BCLB15,BCL+15]. An extended version
should appear on the journal Transactions on Parallel and Distributed Systems.

5.1 Context

As we saw in Chapter 2 (especially in Section 2.1.3) the issue of reducing the
power consumption of supercomputers is strongly felt within the HPC commu-
nity and many research avenues have been explored to address this problem. A
common denominator among several proposed techniques is the goal of bound-
ing the power consumption of a system under a certain budget – power capping.
Nowadays power capping approaches can be grouped in four different (and quite
broadly defined) areas: 1) techniques which exploit some system related char-
acteristics (i.e. node variability) or make assumptions on the nature of the
workload; 2) techniques employing some form of frequency scaling; 3) tech-
niques employing Intels Running Average Power Limit (RAPL); 4) techniques
based on heuristic or proactive algorithms and that work on the job execution
order.

1The slowdown strongly depends on the nature of the workload

5.2 Job Dispatcher with Power Cap 105

The methods based on specific workload features, such as the possibility of
using moldable or malleable jobs, are limited in their adoption by their im-
plicit assumptions, since most of today’s supercomputers only allow rigid jobs
(whose number of used cores and execution threads are fixed at dispatch time
and cannot change dynamically). Conversely, the main drawback of methods
employing some form of frequency scaling (DVFS) or physical power bound
(RAPL) is almost unavoidable degradation2 of the application performance –
generally speaking, reduced power implies increased job duration.

A radically different and poorly explored direction is represented by proactive
dispatching, i.e. planning in advance the execution of all the activities to be run
(taking dispatching decisions for every job in the waiting queue). The dispatcher
can then solve an optimization problem to find the best scheduling and allocation
while respecting the power constraint. In this approach the dispatcher needs
to have information about the power consumption of the tasks to schedule, in
order to take the correct decisions. Since these power-related information are
needed at schedule time, before the execution of the job, power consumption
estimates are required. In the rest of the chapter we are going to discuss a job
dispatcher of this kind. We combine here the insights that were gathered in
the previous chapters. In particular we are going to consider again the HPC
scheduling & allocation problem as in Chapter 3, but this time we want to
obtain a power-aware dispatcher. A critical component for this dispatcher is
the capability to estimate job power consumptions hence the prediction models
discussed in Chapter 4 are going to be exploited.

5.2 Job Dispatcher with Power Cap

In this section we describe two job dispatchers with power capping. We consider
two different approaches: 1) a heuristic algorithm, 2) a hybrid method which
decomposes the problem and uses both Constraint Programming and a heuristic
technique. The first method is faster while the second method manages to find
the best solutions. A key point of our approach is that it requires the power
consumption estimate for each job to be scheduled; this knowledge must be
known before the actual job execution. Hence we assume that such a power
consumption forecast is available for each application. Such estimate can be
obtained through machine learning techniques (as discussed in Chapter 4).

5.2.1 Problem Definition

We give now a more detailed definition of the problem, i.e. job dispatching in a
supercomputer subjected to a power cap. The problem is very similar to the one
described in Chapter 3 (particularly in Section 3.4.2); in this chapter we consider
the extended version where the power consumption must be constrained within
a certain budget.

We have a set of jobs J = {j1, ..jNJ}. Every job ji ∈ J enters the system at
a certain arrival time eqti, by being submitted to a specific queue (depending on

2Unless careful optimization is performed at task-level. The required level of detail and
access to the inner components of a job is often not allowed in nowadays HPC systems, with
the notable exception of a few research centers (i.e. Lawrence Livermore National Laboratory,
US) with access to the source codes of their workload.

106 5. HPC Job Dispatching under Power Cap Constraints

the user choices and on the job characteristics), qh ∈ Q where Q = {q1, .., qm}.
Each queue is characterized by its expected waiting time ewth, which provides
a rough indication of the queue priority. Each job specifies a maximal expected
duration (its wall time) di. Each job is composed by a set of sub-units; the
number of job units of job i is ui. Each job unit starts and ends with the job,
and requires a certain amount of resources.

HPC machines are composed by sets of nodes N = {n1, .., nNN} and sets of
resources R = {r1, .., rNR}, i.e. cores, GPUs and MICs. Each node nj ∈ N has
a capacity capjr for every resource r ∈ R. If a resource is absent from a node
the corresponding capacity is zero. Each job unit k of job i requires an amount
of resource reqikr,∀r ∈ R. Each job unit has a (estimated) power consumption
pi; we assume that the overall job consumption is evenly distributed to all job
units, pik = pi/ui. For the sake of uniformity the power can be seen as an
additional resource, forming the new set R′ = R ∪ {power}; therefore reqikr =
pik if r = power.

The dispatching problem at time τ requires to assign a start time sti ≥ τ to
each waiting job i and a node to each of its units. All the resource and power
capacity limits should be respected, taking into account the presence of jobs
already in execution. Once the problem is solved, only the jobs having sti = τ
are actually dispatched. The single activities have no deadline or release time
(i.e. they do not have to end within or start after a certain date), nor the global
makespan is constrained by any upper bound. The goal is to reduce the waiting
times, as a measure of the Quality-of-Service guaranteed to the supercomputer
users.

5.2.2 Heuristic Approach

The first approach belongs to a class of scheduling techniques known in the
literature as Priority Rules Based scheduling (PRB) [Hau89]. The main idea
is to order the set of tasks to be scheduled, constructing the ordered list by
assigning priority for each task. Tasks are selected in the order of their priorities
and each selected task is assigned to a node; even the resources are ordered and
the ones with higher priority are preferred - if available. This is a heuristic
technique and it is not able to guarantee an optimal solution but has the great
advantage of being extremely fast.

The jobs are ordered w.r.t to their expected wait times, with the “job de-
mand” (job requirements multiplied by the job estimated duration) used to
break ties. Therefore, jobs which are expected to wait less have higher priority,
subsequently jobs with smaller requirements and shorter durations are preferred
over heavier and longer ones. The mapper selects one job at time and maps it
on a available node with sufficient resources. The nodes are ordered using two
criteria: 1) at first, more energy efficient nodes are preferred (i.e. cores that
operate at higher frequencies also consume more power) 2) in case of ties, we
favour nodes based on their current load (nodes with fewer free resources are
preferred3).

The PRB algorithm proceeds by iteratively trying to dispatch all the activ-
ities that need to be run and terminates only when there are no more jobs to

3This criterion should decrease the fragmentation of the system, trying to fit as many job
as possible on the same node

5.2 Job Dispatcher with Power Cap 107

dispatch. We suppose that at time t = 0 all the resources are fully available,
therefore the PRB algorithm starts by simply trying to fit as many activities
as possible on the machine, respecting all resource constraints and considering
both jobs and nodes in the order defined by the priority rules. Jobs that cannot
start at time 0 are scheduled at the first available time slot. At each time-event
the algorithm will try to allocate and start as many waiting jobs as possible and
it will keep postponing those whose requirements cannot be met yet.

Those jobs which could not be started at time t = 0 will be considered
at the next time-event, defined as the earliest time point when some resources
may become available, i.e. when a job currently running terminates. Then at
the following time-event t

′
the algorithm will try to allocate and start as many

waiting job as possible and it will keep postponing those whose requirements
cannot be met yet.

The algorithm considers and enforces constraints on all the resources of
the system, including power. This means that power is seen as an additional
resource: a job can be scheduled in the machine if there are enough available
physical resources (such as cores or GPUs) and if adding its predicted power
to the current system consumption would not cause a violation of the power
budget.

Algorithm 1 shows the pseudo code of the PRB algorithm. Lines 1-6 initial-
ize the algorithm; J is the set of activities to be scheduled and N is the set of
nodes (ordered with the orderByRules() function which encapsulates the pri-
ority rules). At every iteration - until all jobs have been scheduled (line 7) - the
algorithm tries to schedule all the units belonging to a job (line 9). The function
checkF it(ui, n) (line 12) determines if there are enough available resources to
run job unit ui on node n - power is considered as well. If the result is positive,
the unit is mapped and the system state is updated (updateUsages(ui, N), line
13), vice versa we register that at least a job unit could not be mapped (line 16).
Only if all its units have been mapped a job can actually start (lines 17-21). If
the job cannot start the changes to the system must be undone (line 24). After
all jobs that can start at time t have been scheduled, the algorithm proceeds
to the next time point, that is the closest moment when some resources will
become free (i.e. the earliest end time among the running activities, line 26).

We note that since in this problem we have no deadline on the single ac-
tivities, the PRB algorithm will always find a feasible solution, for example
delaying the least important jobs until enough resources become available due
to the completion of previously started tasks. To prevent job starvation the job
priority grows with the time spent in the waiting queue (line 25).

5.2.3 Hybrid Approach

The key idea of the hybrid method is to decompose the allocation & scheduling
problem in two stages: 1) obtain a schedule using a relaxed CP model of the
problem; 2) find a feasible mapping using a heuristic technique (see Figure 5.1).

Since we use a relaxed model in the first stage, the schedule obtained may
contain some inconsistencies; these are fixed during the mapping phase, thus we
eventually obtain a feasible solution, i.e. a feasible allocation and schedule for
all the jobs. This two stages are repeated n times, where n has been empirically
chosen after an exploratory analysis, keeping in mind the trade-off between the
quality of the solution and the computational time required to find one. To make

108 5. HPC Job Dispatching under Power Cap Constraints

Algorithm 1: PRB algorithm

1 time← 0
2 startT imes←− ∅
3 endT imes←− ∅
4 runningJobs←− ∅
5 orderByRules(R)
6 orderByRules(J)
7 while J 6= ∅ do
8 for j ∈ J do
9 for ui ∈ j do

10 for n ∈ N do
11 canBeMapped← true
12 if checkF it(ui, n) then
13 updateUsages(ui, N)
14 break

15 else
16 canBeMapped← false

17 if canBeMapped = true then
18 J ←− J − {j}
19 runningJobs = runningJobs ∪ {j}
20 startT imes(j)← time
21 endT imes(j)← time+ d(j)

22 else
23 undoUpdates(j,N)

24 orderByRules(R)
25 orderByRules(J)
26 time← min(endT imes)

this interaction effective, we devised a feedback mechanism between the second
and the first stage, i.e. from the infeasibilities found during the allocation phase
we learn new constraints that will guide the search of new scheduling solutions
at following iterations.

We implement the power capping requirement as an additional constraint:
on top of the finite resources available in the system such as CPUs or memory,
we treat the power as an additional resource with its own capacity (i.e. the user-
specified power cap), which we cannot “over-consume” at any moment [Col14].
In this way, the power used in the active nodes (i.e. those on which a job is
running) summed to the power consumed by the idle nodes will never exceed
the given threshold.

The next sections will describe in more detail the two stages of the decom-
posed approach.

5.2.3.1 Scheduling Problem

The scheduling problem consists in deciding the start times of a set of activities
i ∈ I satisfying the finite resource constraints and the power capping constraint.

5.2 Job Dispatcher with Power Cap 109

Figure 5.1: Decomposition Scheme

Since all the job-units belonging to the same jobs must start at the same time,
during the scheduling phase we can overlook the different units since we need
only the start time for each job. Whereas in the actual problem the resources are
split among several nodes, the relaxed version used in the two-stages approach
considers all the resources of the same type (cores, memory, GPUs, MICs) as
a pool of resources with a capacity CapTr equal to the sum of all the single
resources capacities, CapTr =

∑
k∈K capk,r ∀r ∈ R. As mentioned before the

power is considered as an additional resource type of the system, so we have an
extended set of indexes R

′
corresponding to the resource types (cores, memory,

GPUs, MICs plus the power); the overall capacity CapTpower is equal to the
user-defined power cap.

We define the scheduling model using Conditional Intervals Variables (CVI)
[LR08]. A CVI τ represents an interval of time: the start of the interval is
referred to as s(τ) and its end as e(τ); the duration is d(τ). The interval may
or may not be present, depending on the value of its existence expression x(τ)
(if not present it does not affect the model). CVIs can be subject to several
different constraints, among them the cumulative constraint [BLLN06] used to
model finite capacity resources.

∀r ∈ R
′

cumulative(τ, reqr, Cap
T
r) (5.1)

where τ is the vector with all the interval variables, where reqr are the job
requirements for resource r; as a remainder, R′ is the set of resources including
the power. Since in the scheduling phase we are not distinguishing different jobs
units, the power associated to a job is the overall predicted consumption (pi).
The cumulative constraints in 5.1 enforces that, at any given time, the sum of
all job requirements will not exceed the available capacity (for every resource
type).

With this model it would be easy to define several different goals, depending

110 5. HPC Job Dispatching under Power Cap Constraints

on the metric we want to optimize. In order to improve users satisfaction while
maintaining a high job turnaround, we decided to use as objective function the
weighted queue time, i.e. we want to minimize the sum of the waiting times of
all the jobs, weighted on estimated waiting time for each job (greater weights
to job which should not wait long, for example those in queues with higher
priority):

min
∑
i∈I

max ewti
ewti

(s(τi)− qi) (5.2)

Search Strategies To solve the scheduling model we implemented a custom
search strategy inspired by the Schedule Or Postpone strategy [PCVG94]. The
classical Schedule Or Postpone tree-search algorithm selects a job and opens
a choice point: on the left branch the earliest start time is assigned; the right
branch used in backtracking the activity is postponed, i.e. marked as non se-
lectable until propagation modifies its earliest start time (thus the variable is
postponed). Basically, this strategy either manages to start a job at the current
time or postpones it when this is not possible, due to the propagation generated
by the involved constraint. Usually the order in which the jobs are considered
follows the earliest start time ordering, from lowest to highest.

We extended this search strategy developing a custom strategy we called
Weighted-Random Set Times Forward. The search algorithm is the same but
the variable selection criterion changes. In our approach each job is chosen with
probability p, drawn from a weighted random distribution, i.e. variables with
higher weight have a higher chance of being selected. The job weights mimic
the priority rules used in the heuristic algorithm, thus giving precedence to jobs
that can start first and whose resource demand is lower. When a variable is
selected we create again a split in the search tree, assigning the earliest start
time on the left branch and postponing in the right branch.

This strategy proved to be very effective and able to rapidly find good so-
lutions w.r.t. the objective function we are considering in this problem. With
different goals we should possibly change the search strategy accordingly (as
with the priority rules).

5.2.3.2 Allocation Problem

The allocation problem consists in mapping each job unit on a node. Fur-
thermore, in our approach the allocation stage is also in charge of fixing the
infeasibilities possibly generated in the previous stage. In order to solve this
problem we developed an algorithm which falls in the PRB category. Typical
PRB schedulers decide both mapping and start times, whereas in our hybrid
approach we need only to allocate the jobs.

The behaviour of this algorithm (also referred as mapper) is close to the
heuristics PRB algorithm described in Section 5.2.2 and in particular the rules
used to order jobs and resources are identical. The key difference is that now
we already know the start and end times of the activities (at least the possible
ones, they may change if any infeasibility is detected). This algorithm proceeds
by time-steps: at each time event t it considers only the jobs that should start at
time t according to the relaxed CP model described previously – the difference
with the previously described PRB algorithm is that the former considers at
each time-event all the activities that still need to be scheduled.

5.2 Job Dispatcher with Power Cap 111

During this phase the power is also taken into account, again seen as a
finite resource with capacity defined by the power cap; here we consider both
active and idle nodes powers. If the job can be mapped somewhere in the
system the start time t from the previous stage is kept, otherwise - if there
are not enough resources available to satisfy the requirements - the previously
computed start time is discarded and the job will become eligible to be scheduled
at the next time-step t

′
. At the next time event t

′
all the jobs that should start

are considered, plus the jobs that possibly have been postponed due to scarce
resources at the previous time-step. Through this postponing we are fixing the
infeasibilities inherited from the relaxed CP model.

Again, since in this problem we have no constraints on the total duration
of a schedule, it is always possible to delay a job until the system has enough
available resources to run it, thus this method is guaranteed to find a feasible
solution.

5.2.3.3 Subproblems Interaction

We designed a basic interaction mechanism between the two stages with the
goal to find better quality solutions. The main idea is to exploit the information
regarding the infeasibilities found during the allocation phase to lead the search
of new solutions for the relaxed scheduling problem. In particular whenever
we detect a resource over-usage at time τ which requires a job to be postponed
during the second stage of our model we know that the set of job running at time
τ forms a Conflict Set (not minimal), i.e. not all activities in the set can run
concurrently. A possible solution for a conflict set is for example to introduce
precedence relationships among activities (thus forcing an ordering among the
jobs in the conflict set) until the infeasibility is resolved.

In our approach we use the conflict set detected in the mapping phase to
generate a new set of constraints which impose that not all jobs in the set will
run at the same time. We then introduce in the CP model a fake cumulative
constraint for each conflict set. The jobs included in this cumulative constraint
are those belonging to the conflict set, each of them with a “resource” demand
of one; the capacity not to be exceeded is given by the conflict set size minus
one. These cumulative constraints enforce that the conflicting jobs will not run
at the same time. This mechanism does not guarantee yet that the new solution
found by the CP scheduler will be feasible since the detected conflict sets are not
minimal, nevertheless it provides a guide for the CP model to produce solutions
which will require less “fixing” by the mapper.

In conjunction with the additional cumulative constraint at each iteration
we also cast a further constraint on the objective variable in order to force the
new solution to improve in comparison to the previous one.

5.2.3.4 Difference with classical LBBD

The hybrid method we have described was loosely inspired by the Logic-Based
Benders Decomposition (LBBD) technique [HO03]. LBBD is a widely used de-
composition methods that have been proved to be very effective at dealing with
Scheduling & Allocation problems [CHHSW16, CLCS10, CH10, TB12, FZB09].
LBBD main idea consists in decomposing the original problem in two compo-
nents, a master problem and one or multiple subproblems.

112 5. HPC Job Dispatching under Power Cap Constraints

This method divides the problem variables in two groups x and y, assigns
values to x by solving the master problem (containing only variables in x) to
optimality, so as to define a subproblem containing only the variables belonging
to y. It then tries to solve the subproblem: if the trial values from the mas-
ter problem are not acceptable (i.e. it is impossible to find a solution for the
subproblem) a no-good (or cut) is generated and new trial values are generated
solving again the master problem with the additional constraint. The success of
the decomposition depends on both the degree to which decomposition can ef-
fectively exploit underlying structures and the quality of the cuts inferred. One
of the main disadvantage of the LBBD is the risk of having a slow convergence
rate, if the problem is not well suited to be decomposed in the required fashion.

Even though our decomposed approach formally speaking is not a Benders
decomposition, we employed a similar partitioning of the original problem plus a
feedback loop that shifts no-goods from the subproblem to the master problem.
Standard LBBD decomposition for the Scheduling & Allocation problem usually
considers the allocation stage as master problem and the scheduling phase as
subproblem. In our hybrid method we swap these two phases: our master
problem is the scheduling and allocation is the subproblem. Moreover, in our
master problem we employ a relaxation of the original scheduling problem.

5.2.4 Preliminary Results

As a starting point we want to investigate the kind of impact that introducing a
power capping feature may have on the dispatcher behaviour and performance.
The dispatcher we realized can work in two different modes: offline, i.e. the
resource allocation and the schedule are computed for each job before the actual
execution, and online, i.e. allocation and scheduling decisions are taken at
run-time, upon the arrival of new tasks in the system. Clearly, the actual
implementation on a supercomputer would require the online strategy since the
workload is submitted by users and not statically known a priori. Nevertheless,
we decided to use the offline strategy to perform a set of preliminary experiments
since we wanted to test our approaches with reproducible conditions. We also
needed our techniques to be stable in order to implement them on a production
system and the offline strategy allows us to better verify that.

The proposed methods were implemented using or-tools [Goo], Google’s soft-
ware suite for combinatorial optimization. We performed an evaluation of all
our approaches on PBS execution traces collected from Eurora in a timespan of
several months. From the whole set of traces we extracted different batches of
jobs submitted at various times and we used them to generate several instances
of different size, i.e. the number of jobs per instance (a couple of hundreds of
instances for each size). Since in this experimental evaluation we were concerned
only in the offline approach the real enter queue times were disregarded and in
our instances we assume that all jobs enter the system at the same time. The
main performance metric considered is the time spent by the jobs in the queues
while waiting their execution to begin (ideally as low as possible).

5.2.4.1 Evaluation of Our Models

We decided to make our experiments using two artificial versions of the Eurora
machine: A) a machine composed by 8 nodes and B) a machine with 32 nodes.

5.2 Job Dispatcher with Power Cap 113

In addition to the real traces (set base) we generated two additional sets of
instances: one composed by especially computationally intensive jobs, in terms
of resource requested (highLoad), and one formed by jobs having an unusually
high number of job-units (manyUnits). These additional groups were generated
using selected subsets of the original traces. From these three sets we randomly
extracted subsets of smaller instances with dimension of 25, 40, 50, 60, 80,
100, 150 and 200 jobs; for each size we used 50 different instances in our tests.
The instances of dimension 25 and 50 run on the smaller machine A while the
remaining instances executed on machine B.

For each instance we ran the PRB algorithm (PRB), the hybrid approach
with no feedback iteration (DEC noFeedBack) and the hybrid approach with
feedback (DEC feedBack). We tested the hybrid approach both with and with-
out the interaction between the two layers because the method without feedback
is much faster than the one with the interaction, therefore better suited to a
real-time application as a HPC dispatcher. We then wanted to understand the
trade-off between time required to reach a solution and its quality.

The CP component of the decomposed method has a timeout which forces
the termination of the search phase. The timeout is set to 5 seconds; if the solver
finds no solution within the time limit, the search is restarted with an increased
timeout (multiplying by 2 the previous timeout), until we reach a maximum
value of 60 seconds - which is actually never reached in our experiments. The
PRB is extremely fast and it manages to find a solution in fractions of second
even with the larger instances. DEC noFeedBack requires up to 3-4 seconds with
the larger instances (but usually a lower quality solution is found in less than a
second) and the DEC FeedBack requires significant larger times to compute a
solution due to the multiple iterations, in particular up to 15-20 seconds with
the instances of 200 jobs.

Each experiment was repeated with different values of power capping to
explore how the bound on the power influences the behaviour of the dispatcher.
At every run we measured the average weighted queue time of the solution, that
is the average time spent waiting by the jobs, weighted with the expected wait
time (given by the queue of the job). As measuring unit we use the Expected
Wait Time, (EWT), i.e. the ratio between the real wait time and the expected
one. An EWT value of 1 tells us that a job has waited exactly as long as
expected; values smaller than 1 indicate that the job started before the expected
start time and values larger than 1 that the job started later than expected.

To evaluate the performance of the different approaches we then compute
the ratio between the average weight queue time obtained by PRB and by the
two hybrid methods; finally we plot these ratios in the figures presented in the
rest of the section. Since the best average queue times are the lowest ones,
it is clear that if the value of the ratio goes below one the PRB approach is
performing better, while when the value is above one then the hybrid approaches
are obtaining better results. The following figures show the ratios in the y-axis
while the x-axis specify the power capping level; we only show significant power
capping levels, i.e. the one large enough to allow a solution to the problem,
hence the x-scale range may vary.

Machine with 8 nodes Figures 5.2, 5.3 and 5.4 show the results of the
experiments with the 8-nodes machine; each figure corresponds respectively to

114 5. HPC Job Dispatching under Power Cap Constraints

the base workload set of instances (both 25 and 50 jobs sizes), the highLoad case
and finally the manyUnits case. The solid lines represent the ratios between the
average queue times obtained by PRB and those obtained by DEC feedBack ;
conversely, the dashed lines are the ratios between PRB and DEC noFeedBack.
As we can see in Figure 5.2 with an average workload the hybrid approaches
usually outperform the heuristic algorithm, markedly in the 25 jobs case and
especially with tighter power budgets. With looser power cap levels usually the
hybrid approaches and PRB offer quite similar performance; this is reasonable
since when the power constraints are more relaxed the allocation and scheduling
decisions are more straightforward and the more advanced reasoning offered by
CP is less necessary.

500 1000 1500 2000 2500 3000
Power Cappings (W)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Av
gW

Q
T_

pr
b

/ A
vg

W
Q

T_
de

c
(E

W
Ts

)

DEC_noFeedBack
DEC_FeedBack

(a) 25 Jobs

500 1000 1500 2000 2500 3000
Power Cappings (W)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Av
gW

Q
T_

pr
b

/ A
vg

W
Q

T_
de

c
(E

W
Ts

)

DEC_noFeedBack
DEC_FeedBack

(b) 50 Jobs

Figure 5.2: 8 Node - Base Set

It is easy also to see that the hybrid method with the feedback mechanism
always outperforms the feedback-less as we expected: the feedback-less solution
has always inferior quality w.r.t. to those generated by the method with the
interaction - the first solution produced by DEC feedBack is the same produced
by DEC noFeedBack. Our focus should be on the extent of the improvement
guaranteed by the feedback mechanism in relation to the longer time required
to reach a solution. For example, Fig.5.2 (corresponding to the original Eurora
workloads) shows that the feedback method offers clear advantages, in particular
with tighter power constraints (around 10%-15% gain over the feedback-less
one), a fact that could justify its use despite the longer times required to reach
a solution. Conversely, Figure 5.3 reveals that the two hybrid approaches offer
very similar performance if the workload is very intensive, leading us to prefer
the faster DEC noFeedBack in these circumstances.

If we consider the workload characterized by an unusually high amount of
job-units per job we see slightly different results. As displayed in Figure 5.4,
DEC feedBack definitely outperforms the other two methods with tight power
cap values, especially in the case of instances of 25 jobs. When the power
constraints get more relaxed the three approaches offer almost the same results.

Machine with 32 nodes In Figures 5.5 and 5.6 we can see the results of
some of the experiments done on the machine with 32 nodes (in particular there
are the cases of size 40 and 100).

5.2 Job Dispatcher with Power Cap 115

500 1000 1500 2000 2500 3000
Power Cappings (W)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Av
gW

Q
T_

pr
b

/ A
vg

W
Q

T_
de

c
(E

W
Ts

)

DEC_noFeedBack
DEC_FeedBack

(a) 25 Jobs

1000 1500 2000 2500 3000
Power Cappings (W)

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Av
gW

Q
T_

pr
b

/ A
vg

W
Q

T_
de

c
(E

W
Ts

)

DEC_noFeedBack
DEC_FeedBack

(b) 50 Jobs

Figure 5.3: 8 Node - HighLoad Set

1000 1500 2000 2500 3000
Power Cappings (W)

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Av
gW

Q
T_

pr
b

/ A
vg

W
Q

T_
de

c
(E

W
Ts

)

DEC_noFeedBack
DEC_FeedBack

(a) 25 Jobs

1000 1500 2000 2500 3000
Power Cappings (W)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Av
gW

Q
T_

pr
b

/ A
vg

W
Q

T_
de

c
(E

W
Ts

)

DEC_noFeedBack
DEC_FeedBack

(b) 50 Jobs

Figure 5.4: 8 Node - ManyUnits Set

Figure 5.5 shows again the comparison between the two hybrid approaches
and the heuristic technique in the case of average workload. The pattern here is
slightly different from the 8-nodes case: after an initial phase where the hybrid
methods perform better, PRB offers better results for intermediate levels of
power capping (around 3000W); after that we can see a new gain offered by the
hybrid techniques until we reach a power cap level around 6000W (the power
constraint relaxes), where the three approaches provide more or less the same
results. It is evident again that the method with feedback outperforms the
feedback-less one, especially with larger instances.

116 5. HPC Job Dispatching under Power Cap Constraints

2000 3000 4000 5000 6000 7000 8000 9000
Power Cappings (W)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Av
gW

Q
T_

pr
b

/ A
vg

W
Q

T_
de

c
(E

W
Ts

)

DEC_noFeedBack
DEC_FeedBack

(a) 40 Jobs

2000 3000 4000 5000 6000 7000 8000 9000
Power Cappings (W)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
gW

Q
T_

pr
b

/ A
vg

W
Q

T_
de

c
(E

W
Ts

)

DEC_noFeedBack
DEC_FeedBack

(b) 100 Jobs

Figure 5.5: 32 Node - Base Set

In Figure 5.6 we can see the results obtained with the computationally more
intensive workload. In this case PRB performs generally better at lower power
cap levels until the power constraint become less tight and the three methods
produce similar outcomes again.

2000 3000 4000 5000 6000 7000 8000 9000
Power Cappings (W)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Av
gW

Q
T_

pr
b

/ A
vg

W
Q

T_
de

c
(E

W
Ts

)

DEC_noFeedBack
DEC_FeedBack

(a) 40 Jobs

2000 3000 4000 5000 6000 7000 8000 9000
Power Cappings (W)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Av
gW

Q
T_

pr
b

/ A
vg

W
Q

T_
de

c
(E

W
Ts

)

DEC_noFeedBack
DEC_FeedBack

(b) 100 Jobs

Figure 5.6: 32 Node - Highload Set

To summarize, with the 32-nodes machine with average workloads the hybrid
approaches perform definitely better than the heuristic technique for most power
capping levels except a small range of intermediate values (up to a 60% reduction
of average queue times). On the contrary, if we force very intensive workloads
we obtain better outcomes with PRB, even though with usually smaller, but still
significant, differences (around 10%). We can also see that with these intensive
workloads the difference between the two hybrid approaches is minimal and this
suggest that the basic feedback mechanism needs to be refined.

After this first batch of experiments conducted on a reduced version of the
machine and with the simplifying assumption of the offline strategy, we can
conclude that our novel approaches can find good quality solutions for the HPC
job dispatching problem with power cap. An important point that needs to
be emphasized is that both proposed approaches can find a solution respecting

5.3 Comparison with State-of-Art 117

tight real-time constraint (i.e. could be implemented and employed on a real
supercomputer). In this section we limited the evaluation to our techniques
and therefore the natural following step is to ask ourselves how our method
performs compared to other power capping policies found in the HPC literature
and state-of-the-art. The answer to this question is the aim of next section
(Sec. 5.3).

5.3 Comparison with State-of-Art

In this section we are going to compare the performance of the the job dispatcher
with power capping proposed in Section 5.2 with other state-of-the-art methods.
In order to make such a comparison we created a simulation framework to im-
plement all dispatchers. The simulator takes as an input an instance composed
by a set of job requests (user name, job id, resource requested, etc.) and then
the chosen dispatcher takes the scheduling and allocation decisions. Applica-
tions fall in one of three possible categories: CPU-bound, memory-bound and
mixed (average workload slightly skewed toward CPU usage). To increase the
realisms of the simulation we drop the two simplifying assumptions made in the
previous section: 1) we consider the full version of Eurora with its 64 nodes; 2)
we use the online mode.

The job instances used are both historical job traces which ran on the Eurora
system and synthetic benchmarks created following the said traces. In the case
of the synthetic benchmarks, the features of each job (its duration, requested
resources, etc.) are drawn from random distributions defined by parameters
learned from past workloads. Each job in an instance has an arrival time, i.e.
the moment when it enters the system; the arrival times are distributed within
a time window. The arrival times distribution can follow three different models:
1) uniform distribution; 2) left-skewed distribution (a larger fraction of the
jobs starts close to the window origin); 3) grouped distribution (also referred
as burst), where jobs arrive in groups. For example a job instance might be
composed by 400 jobs that enter in the system in 15 minutes.

5.3.1 Scalability-oriented Modifications

In order to obtain a more realistic comparison of the different methods for power
capping we wanted to increase the size of the experiments with respect to the
preliminary study described in Section 5.2.4. In particular we wanted to perform
tests on the whole Eurora machine (up to 64 nodes) and we wanted to increase
the dimension of the job instance size (up to 1000 jobs). We then made some
changes to our methods to improve their scalability.

The first change regards the heuristics approach (the PRB algorithm) – and
consequently it applies also to the heuristic algorithm used during the allocation
phase in the hybrid method. The complexity of the algorithm (see Algorithm 1)
is strongly related to the number of jobs and nodes; in lines 24 and 25 the al-
gorithm reorders both nodes and jobs according to the rules previously defined.
These two sorting actions can be discarded. First, we assume that the nodes
remain constant or at least they will not change during the external loop that
iterates among all jobs to schedule; in case the nodes actually change the best
way to reorder them would be an asynchronous function external to the dis-

118 5. HPC Job Dispatching under Power Cap Constraints

patching loop. Secondly, the jobs order depends on their characteristics and on
the time they spent in the waiting queue - the latter factor is needed to avoid
starvation (jobs that wait longer get higher priority). The time spent in queue
can only change during different invocations of the dispatcher and therefore also
jobs reordering can be discarded (at least inside the loop that starts at line 7).

We also modified the scheduling problem. Empirical observations made us
understand that reasoning on the whole set of jobs to be scheduled was not
really useful due to the finite number of nodes. In our dispatcher a feasible
solution found at time t assigns a start time to each job but only those that
have a start time equal to t are actually put in execution. Therefore a lot of
time is spent searching for start times of jobs that will not really execute at
the current scheduling event; this is especially true if the number of jobs is
much larger than the number of available nodes and resources. The number of
postponed jobs increases proportionally to the number of jobs that need to be
scheduled. Our solution is to bound the number of jobs to be scheduled: instead
of considering the whole waiting queue we limit the number of variables in the
CP model for the scheduling phase. This is a trade-off between faster solution
times and less optimal solutions – we are losing part of the proactive strength
of our approach. In our case, preliminary experiments showed that limiting the
number of jobs to be considered at 100 significantly decreases the search time
without impacting the quality of the solution.

We also changed the custom search strategy to find a solution for the schedul-
ing problem. Since we have very stringent time limits (due to the real-time
requirements) larger instances could prevent the solver to find any solution in
the allowed time; this is extremely bad because a real dispatcher must be able
to guarantee a solution in any case – a poor quality solution is still better than
no solution. We therefore need a way to find at least one solution in any case,
a fail-proof mechanism. Hence, the new search strategy starts from the solu-
tion of the heuristic approach and then tries to improve it during the remaining
search time. After the first solution is found, new solutions are searched through
Schedule or Postpone strategy. The allowed search time is initially one second;
if no solution is found within the time limit we start doubling it and continue
until a solution is found. The maximal time limit that we allow in this way is
one minute; however, in all our experiments (even with the largest instances)
the time required to find a solution for the scheduling phase is always smaller
than 4 seconds.

5.3.2 Experimental Setup

We selected a sub-set of the methods from the State-of-Art for the comparison
with our approach (see Section 2.1.3 for the related literature). First we ex-
cluded all methods based on moldable or malleable jobs since we consider only
rigid ones4. We also disregarded methods relying on system-specific features,
i.e. node variability. Finally, our dispatcher deals with a non-trivial problem
(multi-resource system, jobs composed by sub-units, etc) and therefore we did
not considered approaches not applicable to such problem. For example we
implemented [ECLV10a] instead of a more recent technique from the same au-
thors [ECLV12a] because the latter would have required to develop an entirely

4Most current HPC systems employ rigid jobs

5.3 Comparison with State-of-Art 119

different ILP model than the one presented in their paper.

The following are the chosen methods. Our two approaches: I) the heuristic
algorithm LS (Section 5.2.2) and II) the hybrid approach DEC (Section 5.2.3).
III) The power-aware EASY-backfilling extension described in Section 2.1.3.9
– referred to as BF. IV) A technique employing frequency scaling based on
[ECLV10a] – referred to as DVFS. Two methods relying on RAPL: V) Simple
power-aware scheduler presented in [BSRH14] and VI) a dynamic power-sharing
methods discussed in [EMRS15] - referred to as DynShare.

5.3.2.1 Impact of the power reduction/frequency scaling

A key aspect of some implemented models is the possibility to reduce the power
consumption in a node via RAPL or frequency scaling (DVFS, Simple, Dyn-
Share). Since we are not considering application-level optimization, such as
reducing the frequency only for memory-intensive task or tasks reordering, it is
safe to assume that, in general, the duration of a “slowed down” job will increase.
The amount of the change is a non-trivial issue: it depends on the hardware
implementation (RAPL is a proprietary solution), the nature of the application,
etc. In our work we tested different power-duration relation scenarios.

Let assume that we decrease the power on a certain node by a certain
amount, for example we go from P to P ′ = MPP, 0 < MP ≤ 1. The ideal
case is that the duration is not affected: D′ = D - this is a limit case and can
be used to compare a method against an idealized situation that favours to the
extreme techniques that reduce power by changing operating frequency. The
opposite case defines the duration increase as directly proportional to the power
decrease: D′ = MDD,MD = 1/MP ,MD ≥ 1. Between the best-case and this
worst-case scenario (from the point of view of RAPL based solutions) we can
have intermediate cases, where the duration increase is modulated by a factor
F : D′ = FMDD,MD = 1/MP ,MD ≥ 1, 0 < F ≤ 1. This general formula
can also include the first two extreme cases. In our experiments we tried the
following factors: 0.25, 0.5, 0.75.

In the scenarios discussed so far we applied indiscriminately the same power-
decrease/duration-increase model to all jobs. We also implemented a mixed
model where each job has its own factor (given that we apply the more general
formula). The factor of each job is drawn from one among three random distri-
butions, one for each application type - memory-bound jobs will obtain lower
factors (smaller duration increase) than the CPU intensive ones.

5.3.2.2 Evaluation Metric

To compare the different techniques we chose the so-called Bounded Slowdown
(BSLD), a metric commonly used in the literature [HFA05,ECLV10b,ECLV10a,
ECLV12a] and defined by the ratio between the time spent waiting in the system
and the job runtime.

BSLD = max(
wait time+ run time′

max(θ, run time)
, 1) (5.3)

where wait time is the time spent waiting for execution, run time is the “origi-
nal” duration (i.e. the duration specified when the job is submitted), run time′

120 5. HPC Job Dispatching under Power Cap Constraints

is the final duration (possibly changed due to power reduction or frequency scal-
ing), θ is a threshold used to avoid the bias of very short jobs on the average
value. In all our experiments we set a threshold of five minutes. This metric
takes into account both the slowdown introduced by the dispatchers that enforce
power capping by postponing jobs and the slowdown caused by the performance
penalty due to frequency scaling. The BSLD assumes values ≥ 1 (with 1 being
the optimal value); lower values indicate better performance.

5.3.3 Results

For every job instance we performed several experiments: first we run each
dispatcher without power cap, to establish the uncapped maximal power con-
sumption. Then we run again the dispatchers on the same instance imposing a
power cap with decreasing power budget values (expressed as percentage of the
uncapped power consumption). We run experiments on instances of varying size
and arrivals window width, ranging from 50 jobs in five minutes to 1000 jobs
in half an hour; different initial conditions were also tested, from an initially
empty system to a machine where 70% of the nodes are already fully occupied.
For every combination of number of jobs/time window/starting condition we
ran experiments on at least 20 different job instances and gathered the corre-
sponding evaluation metric for each run. The results displayed in the following
plots are the average values of the collected statistics.

The first thing we noticed is the very poor performance of the Simple dis-
patcher; in any possible condition (low or high power budget) and any instance
size this method provides schedules that are an order of magnitude worse (in
terms of average BSLD) compared to the other ones. This is due to the lack
of a power sharing mechanism among nodes and this leads to extremely unbal-
anced situations that penalize jobs that did not enter in the system as first. We
decided to exclude this method from the following plots because it would have
not added any significant information.

A second point we are not going to discuss further concerns the performance
of our methods LS and DEC. As it was expected due to their implementation
DEC always provides better - or equal - results than LS, due to the fact that
they share the first solution and only DEC runs an additional search to improve
it. When the problem grows in size DEC might not be able to find improving
solutions (due to the tight time limit we impose) and the distance between our
methods narrows.

Figure 5.7 portrays the result obtained with instances of 50 jobs arriving in
5 minutes, uniform distribution of arrival times. In Figure 5.7a the machine
was empty at the initial state, hot start (HS) = 0%. The power budget ranges
from the maximum (100%) till a value of 10% of the maximum - we want to
stress out that values lower than 40% of the unconstrained power are extremely
small and quite rare in real systems. Each column corresponds to the average
BSLD obtained by a dispatching method. We show our methods (LS & DEC),
backfilling with power cap BF, frequency scaling DVFS and several scenarios for
the RAPL methods DynShare; the different scenarios correspond to the different
power/duration models (see Sec. 5.3.2.1). The number at the end of the name
indicates the factor: 0 and 1 for the extreme cases (no duration increase and
proportional increase); 0.25, 0.5 and 0.75 are the intermediate values; mixed
denotes the scenario where each application has its own factor.

5.3 Comparison with State-of-Art 121

With such small instances the machine resources are almost never fully oc-
cupied (50 jobs for 64 nodes) and therefore the only obstacle preventing jobs to
run in the system is the power constraint; this can be clearly seen noticing the
small BSLD values at higher power budget - only slightly larger than one. It is
clear that our methods offer very good performance: both LS & DEC perform
better than all remaining methods except the DynShare 0 at power budgets be-
tween 30% and 70%. As mentioned before DynShare 0 represents an optimal,
unrealistic lower bound (power decrease does not affect job duration and BSLD
metric) and obviously performs better than all other approaches - especially
when the power is the main issue. The average BSLD of the other DynShare
techniques worsens rapidly with the increase of the power-duration factor (from
0.25 up to 1); DynShare mixed has a performance close to a factor of about 0.5-
0.6. As expected DVFS offers better results than BF (both better than RAPL
with such small instances and empty machine). In our tests the improvement of
DVFS w.r.t. BF is smaller than the one presented in [ECLV10a] and this hap-
pens due to the more complex problem tackled (job and job-units versus jobs
only, multi-resource machine versus single resource, nodes of different types).

5.3.3.1 Initial State Impact

The situation changes when we consider a non empty machine; in Fig. 5.7b we
can observe the results if the 70% of the nodes are occupied before the jobs
arrival. Now the methods using RAPL perform much better (w.r.t. the other
ones), only the case with duration increase proportional to the power decrease
maintains its bad performance; DVFS and BF provide much worse results. LS
& DEC manage to remain on par with all RAPL methods only as long as the
power budget does not get too low (smaller than 30%); at a (quite unrealistic)
power budget of 10% only DEC obtains an average BSLD close to DynShare -
mixed and DynShare 0.75. If we look at the numbers we see that the differences
in relative performance are due to the better results obtained by DynShare,
while the other methods performance is worse than the empty machine case.
We would expect to observe a generalized performance deterioration: in an
occupied machine jobs are forced to wait until more resources become available.

To understand why this is happening we have to distinguish between two
different kinds of dispatchers. RAPL-based methods are dynamic dispatchers,
they let all jobs enter the system and then dynamically adjust their power
consumptions - no power-check is performed before admitting jobs. The other
methods can be seen as static: they decide before dispatching which jobs can be
executed and their strength is based on the quality of the generated schedule.
When the machine is already occupied static approaches suffer from the lack of
optimization possibilities, thus reducing their effectiveness5. Conversely, one of
the weakest point of reactive methods is the lack of a power-based admission
control that may lead to too many jobs in the system and therefore widespread
slowdown generated by mandatory power reductions. With a partially occupied
machine fewer jobs can enter the system due to the fewer available resources
(cores, GPUs, etc.), large power reductions happen less frequently and as a
result the average BSLD improves.

5LS & DEC can also be seen as proactive dispatchers: they take into account all jobs
which need to be executed when creating an optimal schedule

122 5. HPC Job Dispatching under Power Cap Constraints

(a) Hot Start = 0%

(b) Hot Start = 70%

Figure 5.7: Average BSLD; 50 jobs 300s; HS=0%; uniform distribution

5.3.3.2 Instance Size Impact

In Figure 5.8 we can observe the behaviour of the different dispatchers when
the instance size increases, in particular up to 200 jobs in 300 seconds - in this
case the jobs arrive in groups (burst arrival). We restrict the analysis to more

5.3 Comparison with State-of-Art 123

realistic power budget (namely we discard the 10% case). The first thing worth
to be noted is the fact that the different dispatchers obtain different results
even at maximum power budget. The reason is that when the instance size
increases the problem becomes harder in terms of resource availability, therefore
an approach able to generate better schedules leads to better performance. In
other words, even with no power constraint (power budget equal to 100%) some
jobs must wait for free resource and our more sophisticated methods (LS &
DEC) manage to produce lower queue times than the simple EASY-BF - hence
lower BSLD. This is an extremely important point because it allows our method
to outperform even DynShare 0, because this method (like all RAPL-based ones)
focuses only in minimizing the runtime-increase penalty (see Equation 5.3).

With higher power budget (75%-100%) both LS and DEC outperform all
remaining methods; when the power constraint gets tighter the RAPL begins
to be effective and the gap with our methods is reduced - but at 50% it is still
the best approach. When the power budget gets even lower (30%) the quality
of the generated schedule becomes relatively less important and RAPL-based
approaches take the lead - though DEC performance is still roughly equal to
DynShare 075 and better than DynShare mixed. Both DVFS and BF generally
provide worse results than the other methods.

Figure 5.8: Average BSLD; 200 jobs in 300s; HS=0%; burst arrival

When we increase again the size of the instance, with a number of job ≥ 400,
we notice a clear limit of the RAPL-based methods in their simpler implemen-
tations. We can see this in Figure 5.9. Figure 5.9a displays the average BLSD
for instances of 400 jobs in 300 seconds, burst arrival mode, empty initial state
of the system. We see that for smaller power budgets (≤ 30%) the RAPL-based
methods are not able to find solutions: it is impossible to satisfy the power
constraint just by applying the RAPL-mechanism. This happens for two rea-
sons: 1) there is no power-aware job admission control - the basic EASY-BF

124 5. HPC Job Dispatching under Power Cap Constraints

scheduler always let jobs enter the system; 2) we assumed that there is a lower
bound on the minimal power consumption of a job - we cannot arbitrarily de-
crease the job power below a certain threshold (1 Watt in our experiments).
These two conditions (all jobs in an instance can enter the systems - provided
enough resources are available - and a non-zero minimal power consumption)
prevent pure reactive techniques such as the DynShare methods from keeping
the system power consumption within the desired budget. This is not a problem
for the remaining approaches due to the capability to limit a priori the number
of jobs entering the system.

As we identified, the problem lies in the basic implementation of the RAPL-
based methods, lacking a power-aware admission control mechanism. Even
though this is not discussed in the literature, we assume that real supercom-
puters employ some form of admission control and therefore we modified the
DynShare methods to add such a mechanism. We therefore substituted the
EASY-BF scheduler of the basic implementation with the power-aware version;
in practice we combined a first scheduling stage that employs BF and a second
stage where the power is dynamically managed with RAPL. Directly assign-
ing the desired power budget to the BF algorithm makes no sense because the
power cap would be already enforced and the RAPL-mechanism would never
be triggered. Therefore the power budget considered in the first stage is three
times the target power budget6; the remaining power slack is covered by RAPL
action.

In Fig. 5.9b we can observe the results obtained after the change. Now
even RAPL-based approaches provide solutions at lower power budgets. As
we saw for instances composed by 200 jobs, LS & DEC clearly outperform
the remaining methods when the problem is less power constrained and good
scheduling decisions have a greater impact. With the tightening of the power
constraint (power budget ≤ 30%), the possibility to decrease power consumption
at run times starts to reap its benefits; nevertheless DEC still trails very closely
DynShare 0 and provides lower average BSLD than all other methods.

The results obtained with larger instances (up to 1000 jobs, window size
ranging between 15 and 30 minutes) show a identical behaviour. The RAPL-
based methods cannot find solutions without a previous power-guided admission
control. When we add the admission control, LS & DEC perform equally or
slightly worse (higher BSLD) than DynShare with lower power-performance
factor (0 and 0.25). This happens only for lower budgets; again, with budgets
ranging from 50% to 100% our methods clearly outperform all remaining ones
(decisive advantage when the problem is less power constrained).

5.3.3.3 Job Arrivals Mode Impact

In Figures 5.10, 5.11 and 5.12 we compare the behaviour of the different ap-
proaches when the job arrival mode changes; in all cases we consider instances
of 100 jobs in 300 seconds. In Fig. 5.10 jobs arrivals are uniformly distributed
in the time window, in Fig. 5.11 the jobs are heavily concentrated towards the
start of the time frame (70% of them arrive within the first 30 seconds) and
Fig. 5.12 presents the burst case, where jobs enter the system in groups (groups
sizes range between 5 and 20, groups arrival times are uniformly distributed).

6“Three times” is an empirically computed value

5.3 Comparison with State-of-Art 125

(a) No admission control

(b) Power-based admission control

Figure 5.9: Average BSLD; 400 jobs in 300s; HS=0%; burst arrival. Testing the
importance of a power-aware job admission control for DynShare methods

We restricted the plot to power budgets between 50% and 100%. The results
reveal that all dispatchers are quite indifferent to the arrival times mode, with
similar average BSLD in all cases. LS & DEC manage to obtain slightly lower
BSLD values if the arrival times are compressed at the start of the time inter-

126 5. HPC Job Dispatching under Power Cap Constraints

Figure 5.10: Uniform distribution

val (Fig. 5.11), because these proactive methods perform better when reasoning
with larger number of jobs.

5.3.3.4 Historical Traces

We also performed experiments using real historical traces of jobs that run on
Eurora. The experiment setup is the same we used for the synthetic benchmark,
with the only difference that in this case the arrival window and mode are defined
by the trace itself.

On the historical traces we tested all previous dispatchers plus an additional
type of RAPL-based approach; in particular we added a new scenario for the
relationship between power decrease and duration change (see Section 5.3.2.1
for the other scenarios). In this case we link the duration increase to the na-
ture of the application, defined by its Clock-Per-Instructions (CPI) value. Low
values of CPI (≤ 1) indicate CPU-bound applications while higher values (≥ 5)
are related to memory-bound applications; intermediate values suggest less un-
balanced applications. The CPI values of the jobs in the historical traces have
been measured by Eurora monitoring infrastructure.

Given a value of clock-per-instructions CPI the new duration D′ change is
computed by this formula:

D′ = D(1− 1

CPI
+

1

CPI ∗MP
) (5.4)

where MP is the power multiplier (the ratio between the new desired value P ′

and the original power P), D is the original duration.
The new approach for historical traces (called DynShare CPI) shares the

same algorithm with the other RAPL-based methods (DynShare) and uses the

5.3 Comparison with State-of-Art 127

Figure 5.11: Left-skewed distribution

Figure 5.12: Burst arrival

128 5. HPC Job Dispatching under Power Cap Constraints

Figure 5.13: Average BSLD; 100 jobs from historical traces

factor defined in Eq. 5.4 to compute the job duration change given a required
power modification. With historical traces we run experiments using the fol-
lowing approaches: LS, DEC, BF, DVFS, DynShare mixed and DynShare CPI.
Figure 5.13 portrays the average BSLD computed on 80 historical traces with a
job size equal to 100; Figure 5.14 considers the case of 200 jobs and Figure 5.15
400 jobs. First, we notice that using the CPI-based criterion to compute the
duration increase (DynShare CPI) produces worst average BSLD compared to
the DynShare mixed case. This is due to the fact that the historical traces are
mostly composed by CPU-intensive jobs with low CPI values and therefore the
impact of power reduction is heavier. Then, compared to the synthetic bench-
marks case we observe a relative decrease of the performance of LS & DEC
w.r.t. DynShare mixed (and other methods able to modulate the power).

The discrepancy of results between historical and synthetic traces needs to
be explained. The key difference between the two types of benchmarks is the
job arrival frequency, which is much higher in the synthetic benchmarks. For
example if we look at the case of instances of 100 jobs, while time windows of
synthetic benchmarks range from 5 minutes to 2 hours the average time window
of historical traces is more or less 6 hours. These characteristics of the historical
workload are probably due to the fact that Eurora has been used as a prototype
and it was never heavily loaded in the measurement period, while a machine in
production would be much more loaded on average.

Another key difference is that many jobs in the historical traces have ex-
tremely short durations - around 15%-20% of jobs last less than 1 minute; in the
synthetic benchmarks there are no such short jobs. Drastically decreasing the
job arrival frequency changes the difficulty of the dispatching problem because
fewer jobs are in the system, fewer jobs are forced to wait due to unavailable
resources and using a “smart” scheduling policy loses its benefits. Moreover,

5.3 Comparison with State-of-Art 129

Figure 5.14: Average BSLD; 200 jobs from historical traces

Figure 5.15: Average BSLD; 400 jobs from historical traces

130 5. HPC Job Dispatching under Power Cap Constraints

Figure 5.16: Average BSLD; 100 jobs from historical traces

the power aspect acquires greater relevance and the methods able to modulate
the power consumption become more favorable.

The correlation between the performance difference of the proactive meth-
ods (LS & DEC) w.r.t. methods using RAPL and the job arrival time window
can be easily seen in Figure 5.16, which illustrates the performance difference
between DEC and DynShare mixed with varying time windows. On the x-axis
the job arrival time window is displayed and the y-axis shows the BLSD percent-
age difference, for each power cap7, between the considered methods; negative
values correspond to the cases when DEC outperforms DynShare mixed and
vice-versa. The figure presents the results for 4 different power cap values and
for the average results computed on all power cap (yellow square markers). The
arrival times follow a random uniform distribution. It can be easily observed
that if the window size increases (thus the job arrival frequency decreases) Dyn-
Share mixed begins to outperform DEC if the power cap is smaller than 50%;
even with larger power budget the relative performance of DEC degrades with
the increase in time window size - experiments performed with even larger time
windows, not shown in this graph, confirm the trend observed here.

This correlation gave us an insight on how combining the benefits of proac-
tive and power-modulating methods in order to obtain a dispatcher well suited
to cope with any type of workload. The main idea is that if the job arrival
frequency is high LS & DEC provide better results when job arrival frequency
decreases under a threshold the best method is some variant of DynShare. We
therefore implemented the new approach DEC+RAPL that uses both DEC and
DynShare mixed, depending on the job arrival frequency; the correct threshold
was obtained through empirical evaluation and it is equal to one job every two
minutes. The experiments prove that combining the best of both world yields

7%DIF pcap = 100× BSLD
pcap
DEC

−BLSD
pcap
RAPL MIX

BLSD
pcap
RAPL MIX

5.3 Comparison with State-of-Art 131

the best results. Looking again at Figures 5.13, 5.14 and 5.15 we focus now on
the last column on the right which represents DEC+RAPL. The new dispatcher
obtains better or equal results than the other methods in almost all situation
(except the case of 30% power budget and 200 jobs). Even though not shown
here, the results of the experiments conducted on the synthetic benchmarks are
analogous. For example, with an arrival window of 5 minutes (such as the one
of previous figures) DEC+RAPL has the same performance of DEC because
with such a high arrivals frequency the RAPL component is never activated.

5.3.3.5 Mispredictions Impact

As noted in Chapter 4 the power consumption predictions can be inaccurate.
This is a problem especially in the case of under-prediction, i.e. the forecast
power consumption is smaller than the real one, because LS & DEC might
produce schedules violating the power budget (they enforce a constraint based
on the predictions). A possible solution is to impose them a tighter power cap
than the target one, so that if under-predictions happen the desired budget
would still be respected; however, decreasing the power cap has the downside
of performance degradation. We conducted a set of additional experiments to
quantify the performance decrease due to handling the under-predictions for our
proactive dispatchers, LS & DEC.

In the new batch of experiments we use the previous jobs instances but we
impose that 10% of the job in an instance are under-predicted; for these jobs the
predicted power is 40% smaller than the real one. We then run again LS & DEC
(RAPL-based methods use the real power thus do not require additional exper-
iments) using a smaller power budget, i.e. power cap = 0.95 · power target.
After a preliminary analysis we discovered that an extremely small power cap
decrease is sufficient to ensure that the target power cap is respected; for exam-
ple, using a power cap 1% smaller than the target cause both LS & DEC not
to violate the budget.

In Figure 5.17 we see the results of the experiments with under-predictions
in the case of 100 jobs (synthetic benchmark). We see the main dispatchers
shown before plus LS & DEC using a power cap value 1% smaller than the
target, represented by the hatched columns LS vU99 & DEC vU99. The target
power budget is respected while the BSLD slightly rises. If we take into account
all the instances, given a 1% power cap reduction w.r.t. target, the average
BSLD increases by 4.2% for LS and by 4.4% for DEC.

132 5. HPC Job Dispatching under Power Cap Constraints

Figure 5.17: Average BSLD; 100 jobs in 900s; HS=0%; uniform distribution

5.4 Case Study: Integration with Cooling Sys-
tem

After having discussed the job dispatcher with power capping and having com-
pared its performance with other techniques from the state-of-the-art, we are
going now to see an example of its integration with another component of the
supercomputer facilities. We want to see how the proposed method would in-
teract with the cooling system. For example, the cooling infrastructure requires
different amount of power in different environmental condition – summarizing,
when the external temperature is higher more energy and power are required
to cool down the machine. Since the whole power budget available for a power
capped supercomputer always includes the power consumed by the cooling in-
frastructure, changes in the external conditions may have an impact on the
power that can be used for the computation. In turn, this can influence the
performance granted by the job dispatcher.

To evaluate the benefit of our proposed strategy we model the impact of
ambient temperature and power consumption of the Eurora supercomputer and
we generate a compact model which returns the needed cooling power given
as inputs the IT power and the ambient temperature. Thanks to this model
we can calculate the energetic efficiency (PUE) that can be obtained with our
dispatcher. We can also use this model in a reverse fashion: given a target PUE
and an ambient temperature we can compute the power budget available for
the IT infrastructure and therefore deduce a power cap to be given as input to
our job dispatcher.

5.4 Case Study: Integration with Cooling System 133

5.4.1 Eurora cooling system

The cooling architecture of the direct liquid-cooled HPC system considered in
this work is reported in Fig. 5.18. The coolant (water in our case) is refrigerated
by a chiller with free cooling capability, i.e. it can let the liquid to be passively
cooled by the outside environment, with no activation of the thermodynamical
cycle commonly performed for this purpose. A variable speed pump is then
used to push the liquid into the cooling pipes at a given flow rate. In addition,
a three-way valve can be regulated to bypass part of the return coolant, mixing
it to the chiller outlet flow, before re-entering the supercomputer.

Since the cooling devices are responsible for significant power consumption
w.r.t. the overall facility, energy-aware scheduling approaches could clearly ben-
efit by exploiting information about such parts. To this aim, a model of the
overall cooling system, predicting its power requirement is needed. Beside the
HPC workload, the cooling power consumption depends also on the environ-
mental conditions and the supercomputer thermal state. Roughly speaking, if
the ambient temperature is “cold enough”, heat generated by heavy workloads
can be efficiently removed going in free-cooling mode. The same reasoning ap-
plies if the supercomputer IT component temperatures are far from the critical
values when the heavy computation begins.

Accurate characterization of all such dependencies is a rather complex task;
time-consuming CFD-based techniques, typically adopted at design stage, are
clearly unfeasible for integration with online schedulers. Hence, we need some
low-complexity, approximated model, still accurate enough to describe the sys-
tem main thermal and power features but able to quickly provide results to
be used during the scheduling phase. In this respect, we use an analytical,
lumped parameters thermal model, derived from thermodynamics first prin-
ciples [YMO07] [Mas05]. The main idea is to describe the HPC machine, the
chiller, and the cooling circuit thermal behaviour as the interaction between two
main heat exchanger, one (HE1) between the machine and the cooling circuit,
the other at the evaporator side of the chiller (HE2). Bearing in mind these
considerations, the following system thermal dynamics are obtained:

ṪHPC = 1
CHPC

(
Pth − R−1

HE1

(
THPC −

Tout + αToutch + (1− α)Tout

2

))
Ṫout = 1

CHE1

(
R
−1
HE1

(
THPC −

Tout + αToutch + (1− α)Tout

2

)
−

qcvρ(Tout − Tin)

)
Ṫoutch = 1

CHE2

(
qcvρ(Tout − Tin)− R−1

HE2

(
Tout+Toutch

2 − T0

))
.

(5.5)

where THPC is the supercomputer IT devices aggregate temperature, Tout is the
coolant outlet temperature and Toutch is the temperature of the liquid exiting the
chiller. Parameters CHPC , CHE1 and CHE2 model the HPC and heat exchange
points thermal capacitance, respectively. Similarly, RHE1 and RHE2 are the
heat exchangers thermal resistances. Finally, Pth is the thermal power generated
by the HPC computation, ρ and cv are the coolant density and specific heat
(at constant volume) respectively, while q is the coolant flow rate and α ∈ [0, 1]
denotes the position of the three-way valve.

In order to complete the model, we need to express the cooling elements
power consumption as a function of the variables in (5.5) and the environmen-
tal conditions. For what concerns the pump, its power can be expressed as

134 5. HPC Job Dispatching under Power Cap Constraints

a super-linear function of the imposed flow rate [SSM+13]; here a quadratic
function PPump = kpumpq

2 is selected, with k a component specific coefficient.
Regarding the chiller, its coefficient of performance (COP), defined as the ratio
between the chiller cooling load and its power consumption, is approximated
as the Carnot efficiency of the refrigerating cycle, i.e. COPch = T0Ch

Tamb−T0Ch
.

Beside neglecting non idealities, the previous expression does not depends on
the internal chiller variables, which are typically not available; the dependence
on the outside temperature Tamb is captured, thus it can be reasonably adopted
for representing the efficiency of chilling devices. Finally, the overall cooling
power consumption can be expressed as:

Pcool = kpumpq
2 + COP−1

ch Pth. (5.6)

Knowing that the cooling system control knobs q, α, and T0 (i.e. the chiller
working point) are selected to satisfy the hard temperature constraints on both
the HPC IT device and the coolant inlet and outlet flows, model 5.5 can be
integrated to predict the system thermal evolution, and use the corresponding
variables in (5.6) to update the cooling power consumption and then the PUE8

estimations.
Clearly, if the cooling control variables α, q and T0 are known by the sched-

uler, eq. (5.6) can be directly used with no integration of (5.5).

Figure 5.18: HPC cooling system scheme.

5.4.2 Free-cooling Modeling

We used the model described in 5.4.1 to evaluate the impact of the environmen-
tal conditions, the workload and the chiller free-cooling capability on the cooling
power consumptions for Eurora supercomputer, whose thermal parameters and
constraints are reported in Table 5.1. A rather exhaustive set of operating con-
ditions have been tested; the thermal power Pth ranged from the idle condition
Pth = 5.5kW to the HPC maximum power Qmax ≈ 40kW ; several intermedi-
ate ambient temperatures (Tamb = {0, 5, 10, 15, 20, 25, 30, 35, 40}◦C) were also
taken into account, covering the seasonal average temperature variations. In
addition, the cooling management strategy actually implemented in Eurora has
been assumed: the liquid flow rate, the valve position and the chiller opera-
tion are regulated to keep the inlet water temperature lower than 25◦C (but
higher than 18◦ C to avoid condensation), and a bounded temperature gradient
Tout − Tin < 5◦C.

Figures 5.19a and 5.19b show the obtained cooling power consumption and
the corresponding PUE, respectively. It can be clearly noticed the effect of

8Defined as
(Pcool+Pth)

Pth

5.4 Case Study: Integration with Cooling System 135

Parameter Value

RHE1 0.7 [mK/W]
RHE2 0.6 [mK/W]
CHE1 225 [kJ/K]
CHE2 450 [kJ/K]
CHPC 150 [kJ/K]
TinMIN 18 [◦C]
TinMAX 25 [◦C]
ToutMIN 18 [◦C]
THPCmax 85 [◦C]
qmax 12 [m3/h]
cv 4186 [J/(Kg× K)]
ρ 1000 [Kg/m3]

Table 5.1: Eurora Cooling System Parameters

both the environmental conditions and the workload (Fig. 5.19c); the kinks in
the plots for Tamb 0 − 20◦C denote the point where the free cooling condition
is no longer feasible and the chiller thermodynamic cycle is activated – before
that points only the pump power is accounted. At Tamb = 0◦ the system is
able to operate in free-cooling for all the Pth range, while for Tamb > 25◦C free-
cooling is unfeasible due to constraint on TinMAX < 25◦, thus an almost linearly
increasing PUE is obtained as the workload rises. We can further notice that
the PUE increases with the workload also for ambient temperatures allowing
free-cooling, denoting an increased pump power consumption due to flow rate
increase. This is a system-specific feature stemming from Eurora cooling system
sizing and the corresponding control strategy.

These information can be the input for the power-capped dispatcher dis-
cussed in previous sections. The online scheduler could therefore use a varying
power budget, based on the current environmental and workload request sce-
nario, with the goal of optimizing the whole supercomputer power consumption,
i.e. cooling infrastructure included. In other words, given an “efficiency thresh-
old”, namely the desired PUE level not be exceeded, the corresponding Pth
maximum admissible value can be determined. Thus, the HPC computational
power can be scheduled/shaped so that the system will operate within these lim-
its, as much as possible, according to other performance constraints. Fig. 5.19c
shows the maximum thermal power (directly related to the power budget) which
can be removed by the Eurora cooling mechanism, for different required PUE
upper bounds PUElim, and environmental conditions.

In order to obtain better resolution, the model data have been interpolated
over the 2014 annual temperatures in Zola Predosa, Bologna, the closest weather
station to Cineca, where Eurora is hosted. As expected, the maximum power
budget is indirectly proportional to the ambient temperature (due to the chiller
COP) and directly proportional to the PUE limit. However, corners can be
noted again. Beside the obvious transition from full power (40kW) to linear
decreasing to keep the desired PUE, other jumps occur mostly in the range
20-25◦C. Again, the free-cooling is responsible for this behaviour. For lower
temperatures high efficiency is obtained thanks to such option, then the chiller

136 5. HPC Job Dispatching under Power Cap Constraints

has to be electrically operated to meet thermal constraints, augmenting the
cooling consumption and requiring a power shaping if a constant PUE has to
be guaranteed.

(a) Power consumption

(b) PUE

(c) Maximum power budget

Figure 5.19: Overall cooling system power consumption (a) and corresponding
PUE (b) for different Tamb and HPC workloads producing thermal power Pth.
Maximum power budget as a function of Ta and PUE upper bounds (c).

5.4.3 Experimental Results

In this section we are going to explore the integration of the power capped
job dispatcher with the cooling system model presented in Section 5.4.1 and

5.4 Case Study: Integration with Cooling System 137

Figure 5.20: Idle Power and Active Power Ratio VS Power Budget (%)

5.4.2. More in particular, we conducted experiments using the hybrid approach
(see Section 5.2.3). We are going to see that applying power capping to a
supercomputer featuring free-cooling according to the ambient temperature can
lead to substantial energy savings. We will also notice that power capping has
also the side effect of increasing idle energy cost against active power. Idle energy
or idle power is the amount of energy/power consumed by computing resources
when no application is using them; sadly, idle power consumption in modern
computing units is still greater than zero. Thus, future green supercomputers
need to develop integrated power capping and power management mechanisms
in order to switch off unused resources when not required.

We evaluate the performance obtained by the proposed dispatcher in case of
varying power cap levels. As we have seen in previous sections (Sec. 5.2.4 and
Sec. 5.3.3) if we decrease the power budget the overall performance in terms
of average queue times decreases. This happens because if we impose tighter
power constraints fewer tasks can be executed concurrently, therefore some jobs
must be postponed and hence forced to wait longer.

We also have tested how the introduction of a power cap influences the
power efficiency of the supercomputer. We used the same experimental setup
described in Sec. 5.2.4. Results are shown in Figure 5.20. In the x-axis we
see the power capping budget imposed, expressed as a percentage. A power
budget of 100% means that the power constraint is more relaxed, while when
we decrease the power budget (here down to the 20% of the maximal value)
the power capping gets tighter. The maximal power budget was computed as
the sum of all machine components maximum power consumptions (Thermal
Design Power, TDP). In the y-axis we plot the ratio between the idle and active
power consumed by the machine when executing all the scheduled jobs. The
figure shows that if we reduce the power budget too much (down to the 50%
of the maximal value) the percentage of power spent by idle components of the
machine become a very relevant part of the total energy - if we reduce the power

138 5. HPC Job Dispatching under Power Cap Constraints

Pue Budget[KW] Idle/active EffectivePue+Idle WQTloss

1.1 39.14 2.00% 1.100 0.0%
1.075 33.29 2.04% 1.075 0.7%
1.05 29.39 2.62% 1.057 8.6%

Table 5.2: Impact of the proposed power budgeting ambient temperature-aware
on one year supercomputer center usage scenario.

budget to 20%, the idle power amounts to the 70% of the total power, i.e. a very
inefficient power consumption. This is due to the fact that with smaller power
budgets fewer jobs can execute in parallel, then more systems components are
not used; since the unused components still consume some energy the overall
idle energy increases.

These results are mainly due to the fact that in our experiments we did
not consider the opportunity to switch off unused nodes. This is an interesting
result as it clearly states that power capping solutions need to be integrated with
idle resources shutdown and power management schemes in order to deliver the
expected power saving. If this is not done the power capping risks to increase
the idle power percentage as it works reducing the number of resources active
at the same time. Constraint programming can be used to consider also the
set-up and shut-down time for the idle resources; nevertheless such a problem
was not part of the research discussed in this work.

We finally want to give an insight about a practical usage of the methodology
proposed in this section, i.e. the integration between a power capped job dis-
patcher and the cooling system model. We collected the average hourly ambient
temperature for the entire year 2014 from the ARPA ambient station of Zola
Predosa9, close by to the Cineca supercomputing center. We then forced three
PUE targets (1.1, 1.075, 1.05) and we computed with our cooling model the
maximum power budget which ensures the target PUE for each hourly ambient
temperature during the year. According to the hourly power budget we com-
puted the hourly Quality-of-Service loss, measured as normalized average queue
time (WQTloss), and idle over active power percentage. We finally combined
this value with the target PUE to compute an effective PUE embedding the
energy efficiency loss due to the increased idle power percentage. In Table-5.2
we show the average results for the 2014 hourly ambient temperatures.

From the table we can see that imposing a PUE of 1.1 does not require
significant power budgeting as the ambient temperatures sustains the 40KWatt
budget for most of the time. Average power budget imposed by our approach
is of 39KWatt. If we impose instead a PUE of 1.075 we can see that now the
average power budget over the year decreases to 33KWatt, which leads only to
the 0.7% of weighted queue time loss (i.e. user QoS loss) w.r.t. the 1.1 PUE
case; at the same time, the idle power does not increase significantly, leading to
an effective PUE equal to the target one. Finally, if we impose a constant PUE
equal to 1.05 for the entire year, we can notice that our approach will lead to an
average power budget of 29KWatt over the entire year, which in turn produces
a weighted queue time loss of almost 9% and an effective PUE of 1.057. The
actual PUE becomes slightly higher than the target one due to the increase of

9ARPA weather data Zola Predosa station

http://www.arpae.it/sim/?osservazioni_e_dati/dati_stazioni_regionali/stazione&20056

5.5 Variable Power Budget 139

the idle power percentage in the supercomputer. These results show that our
proposed power capped dispatcher can obtain significant power savings (PUE
reduction) with negligible QoS loss, even when taking into account the cool-
ing infrastructure and its susceptibility to environmental condition. Moreover,
the idle power increase (the negative side effect) still remains below the PUE
reduction induced by the power capping.

5.5 Variable Power Budget

In this section we are going to consider another problem related to power capping
in HPC systems. So far, we discussed a job dispatcher that takes a fixed power
budget as input - the power constraint is enforced at the same level for the
whole duration of the experiments. Although in our experiments we presented
the results obtained with different power budgets, each experiment required
a constant power cap value. This is a clear limitation in real world contexts
because the power budget available for the IT infrastructure of a supercomputer
can change following mutating conditions and/or requirements. For example in
Section 5.4 we saw how the external temperature can affect the cooling system
efficiency and in turn this impacts the system power cap (less IT power if the
ambient temperature is higher).

Therefore we added to our dispatcher(s) the possibility to modify the power
constraint at run time. We extended the simulation framework in order to accept
changing power cap levels as input; currently the different power caps are given
in input as a list of couples < t, p >, specifying a power budget p at time t. The
following question we must ask regards the behaviour of the system when the
power cap changes. If the power budget increases at the next scheduling event
more waiting jobs can start their execution (if the other required resources are
available). In order to maximize system utilization the power constraint change
triggers a new scheduling event, thus the dispatcher does not have to wait for
the end of a running application to compute a new schedule.

When the power available is reduced the power constraint can be violated,
depending on the power of the applications already running in the system. If the
current workload power consumption does not exceed the reduced power cap, at
the next schedule event the dispatcher will respect the new constraint by simply
postponing the execution of new applications. Conversely, if the current power
consumption is larger than the new power budget we have to take more drastic
actions. An example of such action is reducing the power consumption of active
jobs by decreasing the operational frequency of the computational resources
they are using (Dynamic Voltage and Frequency Scaling) or setting a power cap
to the involved nodes (RAPL).

Different methods can also be employed to reduce the consumption of jobs
already in execution, for example techniques that modify at run time the char-
acteristics of an application. Jobs that can dynamically change the number
of resource used and can be migrated in other node partitions are defined as
malleable in the literature [GASK14, Str03, DM07]. Other researches point in
the direction of having jobs that can be stopped (reducing the power consump-
tion to the node idle state level) and later restarted or having jobs that can
be “slowed down” acting on the software level [WMES09, WMES10, CFG+05].
These methods are currently under study [CGR+10,MDSV07,UCL04,SAB+16]

140 5. HPC Job Dispatching under Power Cap Constraints

but their adoption is not widespread yet.

Even though these methods are promising they are not implemented in
nowadays supercomputers therefore we decided to focus on more widespread
techniques such as frequency scaling. In the rest of this section we study the
possibility to employ DVFS and act on the frequencies of the jobs currently
running in the system, in order to slow them down and reduce the overall power
consumption.

5.5.1 Frequency Reassignment Problem

In this section we are not going to deal with the problem of dispatching jobs in
a supercomputer but only with the frequency assignment problem. More in par-
ticular, we are tackling the problem of how to optimally reassign the frequencies
of a set of jobs running on the supercomputer and consuming a certain amount
of power if the overall power constraint of the system changes. Therefore for
the rest of the paper we will not consider the dispatching of the tasks in the
HPC machine but we will assume that schedule and allocation have already
been decided – and cannot be changed. We propose three different methods to
deal with the frequency reassignment problem on a real supercomputer: 1) a
greedy algorithm (Section 5.5.2), 2) a CP model with a dedicated search strat-
egy (Section 5.5.3) and 3) a MIP model (Section 5.5.4). We use again the Eurora
supercomputer as a testbed for our methods.

Frequency Variability Impact The key idea behind DVFS is that if we
change the frequency of a task running on a HPC system (actually on every IT
system) its power consumption changes accordingly, along with its duration. For
example if we lower the frequency the power consumption decreases while the
duration increases. The amount of this change strictly depends on the hardware
characteristics of the considered system. A previous work [FBC+14] studied the
impact of the frequency variability on jobs power consumption and duration in
Eurora. The results of that paper are the base of our frequency assignment
strategy; our decision whether to change the frequency of an activity or not
relies on the power and duration variations related to such frequency change.

There are two main factors which determine the impact of changing a job
frequency: 1) the application type and 2) the execution node. The cited pa-
per studies three kinds of jobs: a real HPC application (Quantum EXPRESSO
[GBBeA09]), a synthetic CPU-bound benchmark (i.e. a task which particularly
stresses the CPU) and a synthetic MEM-bound benchmark (i.e. memory inten-
sive application). In our work we follow this distinction. Clearly, slowing down
a CPU-intensive application would cause a larger increase in duration w.r.t. to
the same slow down for a memory-bound job, since CPU-bound jobs depend
more heavily on the CPU speed and frequency. The second factor is the node
on which the application is running: the frequency variations have different
impact depending on the node type. In Eurora we have high frequency nodes,
with frequency ranging from 1.2GHz up to 3.4GHz, and low frequency nodes,
with frequency from 1.2GHz up to 2.1GHz. The current system always runs the
applications at the maximum speed allowed by the execution nodes.

5.5 Variable Power Budget 141

5.5.1.1 Problem Definition

We assume a set of jobs is currently running in the system consuming a total
power Psys at the current time ct and then we have to decide the best way to
reassign the job frequencies given that the available power budget has decreased
(i.e. the new power budget P

′

sys = 0.7 ∗Psys). Hence, each job i is already run-
ning, with a start time sti and an expected end time eti, with eti = sti + di
where di is the expected duration at the current running frequency. In our cur-
rent implementation the expected duration is the maximum allowed execution
time declared by the user at submission time10. delapsedi = ct − sti represents
the elapsed duration of a job. Each job belongs to a specific queue (depending
on the user choice and on the job characteristics). By analyzing existing exe-
cution traces coming from PBS, we have determined an estimated waiting time
for each queue, which applies to each job it contains: we refer to this value as
ewti.

We assume that each job is running at frequency fi; the default dispatcher
always assigns the maximum frequency possible when scheduling but the dis-
patcher can deal with different frequencies as input. Every job is also charac-
terized by the type of the node it is running on nti and the application type
ati. The node type could assume two different values: 0, corresponding to a low
frequency node, and 1, corresponding to a high frequency node. The applica-
tion type can assume three values: 0 for average applications, 1 for CPU-bound
applications and 2 for memory-bound applications. Both node type and appli-
cation type have a strong impact on the variation of power and duration given
a frequency change. Each job has a related power consumption pi, which is the
power consumed by the job running at the frequency decided by the dispatcher.

The goal of our problem is to assign a frequency to each job in order to
respect the new power constraint. The main objective is not to disrupt the
performance in terms of Quality-of-Service for the users while at the same time
saving energy; both these goals can be reached by minimizing the job durations
increase due to the jobs slow down. The slow down must be careful: if we
slow down a job “too much” we could lose the energy benefit. Since energy =
power ∗ time increasing the duration without sufficiently decreasing the power
may lead to a rise in total energy.

As we have seen in previous chapters and sections, on Eurora we have four
main queues, debug, parallel, longpar and reservation. Jobs belonging to the last
queue need to be run within certain time frames, due to agreements between
the computing center and its customers.

5.5.1.2 Problem Extensions

The base problem is quite simple and not particularly constrained and we
wanted to also address more complex extensions. Therefore we modified the
original problem with additional constraints that, while not currently used in
the Eurora supercomputer, are common requirements in HPC settings. We first
added job deadlines, i.e. each job i has a deadline dli and it must finish within
that deadline (thus constraining the allowed duration increase). This will be
referred as Extension D. Then we implemented a second extension (Extension

10Since this user-estimated duration usually differs from the actual job duration, future
works may instead use a duration predicted via Machine Learning

142 5. HPC Job Dispatching under Power Cap Constraints

R), namely we set dependencies among jobs (in particular end-to-end relation-
ships). Each job i may have a set of “related” jobs Reli whose ends need to
come after job i end11. Finally, we considered the case with both the deadlines
and the job relations constraints, Extension D-R.

5.5.2 Greedy Algorithm

We first introduce a greedy algorithm: we decrease the frequency of few jobs as
much as possible until we reach the desired power saving. The main advantage
of this simple algorithm is its efficiency: even on the larger instances (up to
2000 jobs) the time required to produce a solution is negligible. This is a key
aspect we cannot overlook since our purpose is to be able to implement our
techniques on real systems with tight real-time requirements. We are therefore
not interested in optimal solutions but in the best solution obtainable within a
strict time limit.

The pseudo-code for the greedy algorithm is presented in Alg. 2. The set of
currently running jobs is called running jobs, current power is the sum of the
jobs powers, desired power is an input of the algorithm and defines the new
desired power budget; lines 1-3 initialize the algorithm. Line 4 sorts the jobs
according to a combination of different factors: I) the job power consumption
(we try to slow down “big” applications first in order to slow fewer jobs); II) the
remaining duration of the job compared to the overall duration (we prefer not
to slow down jobs closer to completion); III) the job priority, computed w.r.t.
the expected waiting time (activities in queue with higher priorities should face
smaller slowdowns). The actual equation which determines the weight wi of a
job i is:

wi = pi ∗ (αwDi + (1− α)wQi) (5.7)

where pi is the power consumption, wDi = di/d
elapsed
i is the ratio between

total and elapsed duration and wQi = ewti/maxi∈J(ewti) is the queue priority
factor. α is the parameter which tells us which factor has more impact (in our
experiments α = 0.6).

Once we have sorted the jobs we proceed to loop until the desired power
saving is reached (Line 5), in particular we extract the first job in the sorted list
(Line 8) and we compute the minimal frequency at which he can run (Line 9)
and the related new power and duration (Line 10 and 11). These functions are
based on the values derived from the mentioned paper [FBC+14] and depend
on the job characteristic (i.e. application type).

The algorithm then applies the changes to the selected job (notifying the
change in power consumption and the new end time et′i, Line 12); finally in
Line 13-14 we update the cumulative power gain obtained and remove the job
from the list of those which can be selected (a slowed job cannot be slowed
furthermore: its frequency has been already set to the minimum). If we set
all jobs frequencies to their minimum value and we do not reach the desired
power decrease then the algorithm simply fails (Line 6-7). This means that
it is impossible to keep the power consumption under the required constraint
without interrupting some of the running jobs12.

11In a real application we would have to deal also with start-to-end relationships but in this
case we suppose all our jobs have already started hence these possible relations must already

5.5 Variable Power Budget 143

Algorithm 2: Greedy Algorithm

1 J ← running jobs
2 power goal← current power − desired power
3 power saved← 0
4 Sort(J)
5 while power saved < power goal do
6 if J = ∅ then
7 return 0

8 j ← J [0]
9 new freq ← GetMinFreq(j)

10 power gain← FindPowerGain(j, new freq)
11 new duration← FindNewDur(j, new freq)
12 Update(running jobs, j, new freq)
13 J ← J − {j}
14 power saved← power saved+ power gain

15 return 1

We tried to modify the greedy algorithm in order to cope with the problem
extensions. For example, in the case of the deadlines, setting the frequency of
a selected job to its minimum only if the deadline will not be violated. We also
tried to set the frequency at the middle value and check the deadline constraints.
These variations strongly degrade the efficacy of the greedy algorithm as it is not
able to solve the vast majority of instances with extensions. The main problem
is that adding new constraints to the problem renders the greedy algorithm
ineffective: with tighter problems a solution can be found only “spreading” the
slow down among several jobs, which is opposite to the drastic behaviour of the
greedy method (maximum slowing down of as few jobs as possible).

5.5.3 CP Approach

The greedy algorithm is very fast but it clearly lacks reasoning power. We
then devised a Constraint Programming model to optimally reassign the job
frequencies. Given our set J of running jobs, the most important variables
of the model are a set of integer variables which represent the job frequencies
Fi ∀i ∈ J . The allowed frequency domain of each variable depends on the
node on which the job is running: for low power nodes the allowed values are
[1200, 1300, 1400, .., 2100]GHz and for high power nodes the range is [1200,
1400, 1600, .., 2800, 3100, 3400]GHz. Consequently, the domain of the Fi could
either be [0, ..,9] if the job runs on a 2.1GHz node or [0, .., 10] if the job runs
on a 3.1GHz node.

The relationship between the different frequencies and the changes in power
(and duration) is encoded in a set of vectors. Given a job i we can identify
the correct vector for the durations DM and the powers PM given the job
application type aii and node type nti (the frequency change has a different

hold
12In the current system running applications cannot be interrupted and restarted and for

this reason we do not consider this possibility

144 5. HPC Job Dispatching under Power Cap Constraints

impact with different type of task or nodes). Each vector contains as many
elements as the possible frequencies; each element specifies the duration/power
change w.r.t. to a base frequency (as base frequency we chose the maximum).
For example if a job has a duration of di at maximum frequency, the duration
at frequency F ′i becomes d′i = DM [F ′i]∗di. The method for computing the new
power is analogous.

The duration of job i can be seen as di = delapsedi +dRi , the duration elapsed so
far plus the remaining duration. These multipliers are encoded in two auxiliary
variables for each job, PMul

i for power and DMul
i for duration. These variables

are related to the frequency by the equations DMul
i = DM [Fi] and PMul

i =
PM [Fi]. These relations are expressed in the CP model via element constraints
[HC88]:

element(Fi, DM,DMul
i) ∀i ∈ J (5.8)

element(Fi, PM,PMul
i) ∀i ∈ J (5.9)

We use two additional auxiliary variables to represent the new power NPi and
duration NDi for each job:

NPi =PMul
i ∗ pi ∀i ∈ J (5.10)

NDi =DMul
i ∗ dRi + delapsedi ∀i ∈ J (5.11)

The duration increase DIi of a job can be expressed as:

DIi = (NDi − di) = (DMul
i − 1)dRi ∀i ∈ J (5.12)

Now we need to impose the constraint on the new powers, i.e. their sum
must not be greater than the new power cap pcap:∑

∀i∈J

NPi ≤ pcap (5.13)

We also want to set special constraints for the duration increase of jobs in the
reservation queue (JR), namely we want the maximum and the average duration
increase of those jobs to be less or equal of, respectively, dimaxres and diavgres :

1

|JR|
∑
∀i∈JR

DIi ≤ diavgres (5.14)

max∀i∈JRDIi ≤ dimaxres (5.15)

The frequency reassignment problem has a dual goal: on one hand we want
to reduce the energy consumed by the HPC system, on the other hand we
want to maintain a good performance for the end users - i.e. we want to keep
the duration increases as low as possible. We have experimented with several
objective functions in order to reflect the different aspects we may be interested
to optimize.

For example we tried to maximize the energy savings introducing a new set
of variables to describe the difference between the energy consumed by a job
with the new frequency and the energy consumed with the old frequency. The
energy difference δEi is given by the following equation:

δEi = delapsedi ∗ pi + (NDi − delapsedi) ∗NPi − di ∗ pi ∀i ∈ J (5.16)

5.5 Variable Power Budget 145

where di ∗ pi is the old duration (old power times old duration) and the first
two terms of the equations represent, respectively, the energy consumed so far
by the job (duration so far delapsedi times old power) and the energy consumed
till the end time (remaining duration times new power). The objective function
then tries to minimize the sum of these energy differences: min

∑
∀i∈J δEi.

For the duration increase we instead used this equation:

min
∑
∀i∈J

DIi (5.17)

After having performed initial experiments we found out that minimizing the
duration increases always guarantees an improvement in consumed energy, i.e.
in no cases slowing down jobs caused the system to consume more energy. For
this reason - combined with the fact that users strongly prefer their jobs not
be slowed down - we decided to use the minimization of the duration increases
(Eq. 5.17) as objective function in our experiments.

5.5.3.1 Search Strategy

We now discuss the search strategy. The foremost thing to remember is that
we do not compute an optimal solution, we do not need a complete strategy:
our goal is to obtain good solutions as fast as we can. Therefore we explored
a selection of search strategies imposing a realistic time limit of 5 seconds - i.e.
we want to know which is the best method within this time constraint.

The first search strategy we used is a basic version of the typical strategy
used for integer variables in CP. Namely, the variable selection proceeds among
unbound variables and chooses the variable with the smallest domain (the one
with the smallest number of possible values). In case of tie, the selected variables
is the one with the lowest min value. For the value selection, we first try to assign
the maximum allowed value for the selected variable. We are going to call this
strategy CP Standard.

Heuristic-based Search The CP standard search can produce good results
but it requires a much longer time than the greedy algorithm - during the
5 seconds time limit the greedy algorithm was often able to produce better
solutions, especially on instances of non-trivial size. We then devised a new
search strategy able to produce solutions at least as good as the greedy ones
and in a much shorter time than the standard strategy. To do that we used
the insight provided by the quality of the greedy solutions to create a heuristic
strategy search which combines both the benefit of the greedy algorithm and
the capacity of exploring a larger search space typical of CP search strategies.
Namely, our strategy starts from the solution generated by the greedy algorithm
- hence we can quickly obtain a first, feasible solution - then tries to improve
the current solution changing the value assignment of some variables.

The search proceeds in typical CP fashion: at each decision point a variable
is selected and a new value is assigned. The variable selection procedure exploits
the heuristic too: the variables are ordered with the same method used for the
greedy algorithm and then the first variable in the ranking is chosen13. The

13There is actually a small change in the ranking method: if the objective function includes
the energy, the weight of Eq. 5.7 is multiplied by the energy of the job (computed with the
duration and power before the frequency change)

146 5. HPC Job Dispatching under Power Cap Constraints

key idea is to consider first the variables that will have a greater impact on the
objective function. Once a variable is selected we set its value to the maximum
allowed. We will refer to this strategy as CP + Heuristic.

Large Neighborhood Search We also implemented a Large Neighborhood
Search strategy [CB09], a metaheuristic which has been shown to be effective
in solving several CP problems. Similarly to Local Search, with LNS we modify
an existing solution to the problem. However, instead of making small modifi-
cations to a solution, changing one single variable, a subset of variables (called
fragment) from the problem are selected and relaxed. A complete search -
bounded by a search limit - is then performed on these relaxed variables. To
perform this complete search step we used the heuristic-based search described
in the previous section.

The three main aspects impacting the LNS efficacy are 1) the fragment
selection procedure, 2) the fragment size and 3) the search limit. Despite the
success of LNS, no generic principle has emerged yet on how to choose the
parameters. They are currently set either with domain dependent heuristics or
chosen randomly. Lacking a general scheme or set of guidelines, we investigated
different possibilities, exploiting the knowledge of the problem domain.We tried
with several parameters before finding the most performing configuration for
our situation.

First, we need to decide the fragment selection procedure: select the subset
of variables that should be relaxed. The simplest strategy is to randomly select
variables until the fragment size is reached. Another possibility consists in se-
lecting contiguous variables; this strategy is generally useful if used in problems
with an underlying structure where contiguous are somehow related. In our
case the variables are independent and therefore this selection method does not
provide additional benefit compared to a random selection; conversely, random
selection is able to explore the search space more effectively, avoiding local min-
ima. Having knowledge of our problem, we can also use a selection mechanism
that favours variables with a higher dynamic impact; the variable impact is de-
fined by Mairy et al. in [MSD+10]. The dynamic impact of a variable tries to
capture the effect that the variable would have on the objective if it is relaxed.
Let S be a solution to the problem. The impact of a value v for a variable xi is
defined as the difference that is induced on the objective by setting xi to v rather
than to its value in S. We also tried with giving precedence to variable with
higher weights (the weight is defined as in the heuristic-based search). After a
preliminary exploration, the best method turned out to be combining complete
random selection and weighted selection14. This strategy is able to provide good
results thanks to trade-off between the diversification induced by the random
component and the focus on promising variables offered by the weights-guided
strategy.

After having decided the variables selection procedure we must choose the
fragment size and search limit. A common policy used in practice is to have
fixed values for both these parameters and as a first step we experimented as
well with different fixed sizes and limits. Then, inspired by the work of Mairy et
al. [MDVH11], we tried a different approach based on reinforcement learning. As

14A variable i is relaxed with probability P = ψ wi∑
∀i∈J

wi
+ (1 − ψ) 1

|J| where wi is the

weight and ψ ∈ [0, 1] is a real number

5.5 Variable Power Budget 147

we saw in Section 2.3.2.2, the core of reinforcement learning cab be summarized
as choosing actions and observing the results. This idea can be applied to
learning the right parameters for LNS: after an initial setup, the parameters
values are updated according to the quality of the solutions found by previous
LNS iterations. We thus explore the parameters space guided by the previous
results.

5.5.3.2 Extensions

We must now model the extensions described in Sec. 5.5.1.2. The deadlines and
the relations constraints are respectively expressed by the following equations:

ETi ≤ dli ∀i ∈ J (5.18)

ETi ≤ ETj ∀j ∈ Reli ∀i ∈ J (5.19)

where ETi = sti + delapsedi + DMUL
i dRi is the variable representing a job end

time and Reli is the set of jobs related to i.
We update the search strategy as well. We still use the LNS framework but

now the method to find the solution of the relaxed fragment changes. After
a preliminary study, we discovered that if jobs relations are involved (Exten-
sions R and D-R) the best search strategy to solve the relaxed problem at each
LNS iteration is the CP standard search strategy. Conversely, to deal with the
deadline we modified the heuristic described in Sec. 5.5.3.1. Now we obtain the
first solution with a variant of the greedy algorithm: instead of indiscriminately
setting the frequencies to their minimum levels, the modified version does that
only if it will not force the slowed job to go beyond its deadline. Note that this
first solution may be infeasible, i.e. could violate the power constraint. After
the first solution is found the second phase is performed as before.

5.5.4 MIP Approach

We describe now a third approach to solve the frequency assignment problem,
namely a Mixed Integer Program (MIP) model. This kind of method is generally
well suited to deal with assignment problem (without scheduling constraints).
In the MIP model we have a set of binary variables X where Xif assumes value
1 if job i has frequency f , 0 otherwise; index i has the whole set of job J as a
range and f can vary in the job frequency range F , defined as before based on
node type. Each job has exactly one frequency:∑

f∈F

Xif = 1 ∀i ∈ J (5.20)

For each job i we have a set of power and duration multipliers, one for each
allowed frequency, respectively dMul

if and pMul
if . These multipliers combined

with the current job power pi and the binary variable allow us to express the
power constraint (the power must be inferior to pcap):∑

i∈J

∑
f∈F

pMul
if piXif ≤ pcap (5.21)

We also have to impose the limits on the reservation jobs’ duration increase:
the maximum increase for these jobs must be less or equal than dimaxres and the

148 5. HPC Job Dispatching under Power Cap Constraints

average increase less or equal than diavgres . We use another set of parameters
ri, i ∈ J where ri = 1 if job i is in the reservation queue, 0 otherwise. The
reservation constraints are then the following (average and maximal):∑

i∈J

∑
f∈F

ri(d
Mul
if − 1)dRi Xif ≤ diavgres

∑
i∈J

ri (5.22)

∑
f∈F

ri(d
Mul
if − 1)dRi Xif ≤ dimaxres ∀i ∈ J (5.23)

where (dMul
if − 1)dRi Xif represents the duration increase of job i. Finally we

specify the objective function. For the MIP model we considered only the min-
imization of the duration increase.

min
∑
i∈J

∑
f∈F

(dMul
if − 1)dRi Xif (5.24)

In the MIP model the constraints introduced by the extensions are the same
as in the CP model, namely Equations 5.18 and 5.19. The end time is expressed
as ETi = sti + delapsedi +

∑
f∈F d

Mul
if dRi Xif .

The method to solve the MIP problem is embedded in the MILP solver and
it is the same for every type of problem, base and extended versions. As in most
ILP problem the solving method falls in the branch-and-bound or cutting planes
category, refined by years of research in the Operation Research community. The
discussion of these methods is entirely outside the scope of this work.

5.5.5 Methods Comparison

We are going now to see the results of the experiments we performed in order
to compare the three proposed methods. As a reminder, we exclusively study
the frequency reassignment problem: we assume to have a set of running jobs
(already mapped and scheduled) and due to the power budget variation we
need to change these jobs frequencies. We decided to use the average duration
increase of the jobs as our performance metric. This is the main concern for
HPC system users and, as a side effect, we were able to guarantee energy savings
even without focusing directly on the energy.

The proposed methods were implemented using or-tools [Goo]. The MIP
solver used on top of or-tools is the open-source Cbc (Coin-or branch and cut)
MILP solver [CO]. We evaluated all the approaches on instances which repre-
sent realistic workloads, derived from traces collected on Eurora in a timespan
of several months. We have instances of several sizes, from smaller ones com-
posed of 50 jobs up to the bigger ones with 2000 jobs. As told before, we have
strict time constraints to produce a solution due to the real-time nature of our
application. Therefore we set a time limit of 5 seconds to the solvers in all
the experiments. The time limit is not a problem for the greedy algorithm on
any of our instances; the time required by this method is always around a few
hundreds of milliseconds.

5.5.5.1 Models Evaluation

In this section we compare the performance of the different approaches when
dealing with the base version of the problem (without extension). In particular

5.5 Variable Power Budget 149

we show the results obtained by: 1) the greedy algorithm, 2) the CP model
using standard search, 3) the CP model using heuristic-based search, 4) the
CP model using LNS and 5) the MIP model. For the LNS case we used the
technique with the best performance, namely the combination of weighted and
random fragment selection (fragment size and time limit decided via reinforced
learning) and the heuristic-based search to solve the relaxed fragments. For
every model we ran experiments on 30 instances. For each instance we first
compute the initial power (the power consumed by all jobs in the instance) then
we try to reduce the power available and assign new frequencies; as power cap
levels we tested decreasing percentages of the initial power (the power levels are
identified by the markers in the plots). In the following graphs we report the
duration increases and the energy differences; these values are the normalized
averages for all instances.

To briefly summarize our experiments, when the MIP solver manages to find
a solution within the time limit it also proves that the solution is optimal, so
the remaining models can at best try to get as close as possible. In particular,
in the case of the base problem the MIP approach can solve all the instances
to optimality and clearly outperforms the other models, especially on larger in-
stances. If we start to consider the problem extensions the MIP solver struggles
more to find a solution for larger instances (obviously always within the time
limit) w.r.t. to the CP solvers. Nevertheless, when it does find a solution such
solution is optimal (or very close to the optimal one) and still outperforms the
remaining models on the corresponding instance.

Figure 5.21 presents two graphs. On the top we can see the average duration
increase (as a percentage) obtained when decreasing the power budget available
(from the right, maximum power, to the left). The bottom graph depicts in-
stead the energy difference (in percentage) w.r.t. to the maximal power budget.
Although the objective function considers only the job durations, we report also
the energy differences to prove that we obtain significant energy savings, even
without explicitly focusing on it.

All the results we obtained clearly reveal that when we reduce the power
budget the average duration of the jobs increases, as a large fraction of jobs
need to be slowed down. As we can see in Figure 5.21a when we consider small
instances (from 50 to 200 jobs) the MIP solver and CP plus LNS both provide
optimal solutions - their lines completely overlap. It is very easy to observe that
already with smaller instances there is a great gap between CP plus LNS and CP
methods without LNS: in particular CP with the standard search provides the
worst results, even worse than the greedy algorithm - except when the power
becomes very tight (50%-55%). CP with the heuristic search is able to find
solutions equal or better than the greedy algorithm ones - as we expected since
it starts from the greedy solution and then improves it. In Figure 5.21b we
can see that while both CP plus LNS and MIP find solutions very close to the
optimal, these solutions are not the same: their related energy savings slightly
differ.

In Figure 5.22 we increase the instance size up to 600 jobs and again we
see both the duration increase (Figure 5.22a) and the energy difference (Fig-
ure 5.22b). When the instances become larger (400 to 800 jobs) we start to see
the gap separating the solutions found by the MIP solver from those provided by
the CP methods: Figure 5.22a reveals that even CP plus LNS is not able to find
the optimal solution provided by MIP. However, the gap is minimal (at least for

150 5. HPC Job Dispatching under Power Cap Constraints

(a) Avg. Duration Increase

(b) Energy Difference

Figure 5.21: Base Problem - 100 Jobs (Duration increase and energy difference)

the 600 jobs case) and LNS still performs much better than the remaining CP
and greedy methods.

In Figure 5.23 we consider an even bigger instance size, namely 1000 jobs.
We can observe that the situation worsens for CP and greedy approaches when
the instances grow larger (more than 1000 jobs): in Fig 5.23a we can see how
the MIP now definitely outperforms all other methods, CP and LNS included.
We can also see that with larger instances it is very difficult for the heuristic-
based search to improve the first solution obtained by the greedy method. LNS
manages to explore the search space more effectively but not enough to reach
an optimal solution. With even bigger instances the optimality gap grows even

5.5 Variable Power Budget 151

(a) Avg. Duration Increase

(b) Energy Difference

Figure 5.22: Base Problem - 600 jobs)

further. The main reason is the fact that the base problem is rather loosely
constrained and, as it is known from the literature, MIP techniques are very
effective when dealing with pure assignment problems.

5.5.5.2 Problem Extensions

The extensions we introduced raise the difficulty of the problem. As mentioned
before we did not consider the greedy algorithm to deal with the extensions. Our
experiments with the extended model reveal a behaviour comparable to the base

152 5. HPC Job Dispatching under Power Cap Constraints

(a) Avg. Duration Increase

(b) Energy Difference

Figure 5.23: Base Problem - 1000 Jobs)

problem: the MIP approach is again the one able to find the best solutions, CP
plus LNS approaches the quality of MIP with smaller instances and the gap
gradually increases with larger instances. The remaining CP methods perform
far worse then the previous models. The plots for all the extended models are
extremely similar to those previously seen, hence we are not going to show them.

What we want to focus on is a key difference with the base problem, at
least for the extensions which consider relationships among jobs. While all the
CP models manage to find a solution for almost all the instances within the

5.6 Chapter Summary 153

Solver
600 Jobs 1500 Jobs 2000 Jobs

D R D-R D R D-R D R D-R

MIP 100 100 95 100 50 70 100 35 45
CP + LNS 100 100 95 100 100 90 100 95 95
CP + Std 100 100 100 100 100 100 100 100 100

Table 5.3: Extensions Experiments Summary. Each value represents the per-
centage (%) of solved instances.

time limit, the MIP solver fails to obtain feasible solutions for many of the
larger instances. This aspect can be seen in Table 5.3. The table reports the
percentages of solved instances for the MIP solver, CP plus LNS and CP with
standard search (CP plus heuristic solves the same number of instances solved
by CP plus LNS). Instances composed by 600, 1500 and 2000 jobs are reported
(smaller instances are always solved by every model).

As a summary of the experimental evaluation, when we consider the base
problem the MIP method outperforms the other ones when the dimension of
the instances increases; on smaller instances the gap between the CP and MIP
approaches is drastically reduced. The greedy algorithm proved to be the fastest
method but often unable to find good quality solutions. If we take into account
extensions increasing the difficulty of the initial problem the first weakness of
the MIP approach is revealed, especially on larger instances. In particular,
whereas the CP model almost always reaches a solution within the time limit,
the MIP solver struggles with the job relations extension and finds a solution
only in about half of the test instances (although it still outperforms the other
approaches when it does find a solution).

5.6 Chapter Summary

In this chapter we addressed the issue of reducing the power consumption of
HPC systems. We focused on a strategy known in literature as power capping
whose goal is to contain the power consumption of a system within a power
budget. We explored different facets of this issue. First, we introduced a power
capped job dispatcher for HPC systems whose strength relies on the possibil-
ity to limit the power consumption acting on the job execution order alone.
This method significantly differs from the vast majority of todays’ techniques
that aim at reducing power consumption through limiting the performance of
computing nodes.

We proposed two different approaches to implement our strategy: 1) a heuris-
tic algorithm and 2) a hybrid approach that decomposes the problem and com-
bines a CP model (used to solve the scheduling subproblem) with a heuristic
technique (allocation subproblem). The former is able to quickly find solutions
- always a great skill in a setting with stringent real time requirements - while
the latter can provide better results thanks to a deeper exploration of the solu-
tions space. Both approaches do not aim at finding optimal solutions; in HPC
dispatching guaranteeing a schedule is more important than reaching the theo-
retical optimum. A fundamental aspect of our approach is the requirement to

154 5. HPC Job Dispatching under Power Cap Constraints

know the power consumption of a job before its real execution. This estimate is
used by our dispatcher to schedule all jobs in such a way to guarantee that the
power budget will never be violated during actual execution. Therefore we used
the Machine Learning predictive model discussed in Chapter 2.3.3, capable of
estimating the power consumption of a job with high accuracy, using only the
information available at dispatching-time.

Thanks to a simulation framework based on the Eurora supercomputer we
were able to test our methods and to compare them with several other techniques
selected from the state-of-the-art. The results are extremely promising. Our
approach is able to outperform the majority of the other methods (at least until
we do not make unrealistic optimistic assumptions that favour excessively the
methods based on hardware mechanisms). Our approach has also a very good
scalability and it proves that proactive online job dispatching leads to better
scheduling decisions compared to more reactive and less “smart” strategies. We
also demonstrated that our approach is orthogonal to techniques that exploit
hardware mechanisms to reduce power consumptions. This led us to combine
the best of both worlds (integrating an hardware-based reactive component into
our proactive scheduling-based approach) and obtain an even better HPC job
dispatcher.

As case study, we tried to evaluate the benefits, in terms of energy savings,
that can be obtained if the power capped job dispatcher is integrated with
the other components of a supercomputer, such as the cooling infrastructure.
The cooling system is one of the most energy-consuming part of HPC system
facilities and its power consumption directly impacts the power available for
the IT part. For example, the cooling system efficiency is strictly related to
the outside temperature: in hotter days more power is required by the cooling
infrastructure and therefore less power is available for the computing nodes. We
then presented a free-cooling model describing the Eurora cooling system and
we studied its behaviour in conjunction with the job dispatcher, revealing good
performance in terms of machine utilization and energy savings.

Finally we considered the aspect of variable power budget. In many real-
world situations the power budget available might vary during the course of
days or weeks (again, in hotter days or periods less power is available for the
IT infrastructure) and we are interested to see how that would affect our power
capping method. We then extended the job dispatcher adding the possibility
of having a variable power constraint. Subsequently a new problem arose: if
the power budget decreases we risk that the current running jobs would already
violate the changed power constraint. We developed a new module to tackle
this issue: a frequency reassignment component that decreases the operational
frequency of the nodes currently in use, causing a decrease in power consumption
while augmenting the duration of the involved jobs. We presented and evaluated
different techniques to solve this problem: 1) a greedy algorithm, 2) a CP model
and 3) a MIP model.

There are clearly many very interesting areas of research still unexplored.
A first extremely important step would be the implementation of our approach
in a real HPC system, facing the unexpected real world challenges that would
surely be encountered. Another very interesting aspect that needs to be studied
is the accounting system. For example we can try to understand if users would
be willing to accept slowed applications in exchange for discount rates. This
is a complex problem which has not been studied in a satisfying way, yet, and

5.6 Chapter Summary 155

we reckon that it would be a great area to prove once again that applying
optimization techniques to HPC issues can lead to great benefits.

156 5. HPC Job Dispatching under Power Cap Constraints

Chapter 6

Conclusion

In this work we addressed the problem of online job dispatching in High Perfor-
mance Computing systems and proposed several approaches to solve the prob-
lem. We explored a number of different techniques, ranging from heuristic
algorithms to combinatorial optimization, looking for the right balance between
solution quality and search effort. Our goal was to find feasible but not nec-
essarily optimal solutions under the strict time limit imposed by the real time
requirements of the task. In particular, we investigated how to apply Constraint
Programming to the job dispatching problem and showed that a proactive strat-
egy can perform better than the most widely adopted policies in supercomputers
nowadays.

A central part of our study was devoted to the creation of a power-aware
job dispatcher for HPC systems. We presented two novel approaches, one based
on a heuristic technique and one based on the decomposition of the dispatching
problem into its sub-components, scheduling (solved via Constraint Program-
ming) and allocation (solved via a heuristic algorithm). Both our approaches
have their foundations in the idea that the power consumption of a supercom-
puter can be bound within a power budget acting only on the management
of the workload, i.e. changing the execution order of the activities. This ap-
proach is orthogonal to most of the methods for power-aware dispatching found
in the literature and current state-of-the-art, that typically employ mechanisms
trading performance for reduced power consumption. We demonstrated that
the proposed approaches are scalable and perform better than most of the al-
ternative techniques; moreover they can be extended with the integration of
state-of-the-art mechanisms to further improve performance.

An important prerequisite for having a job dispatcher capable of enforcing
a power cap is that some knowledge about the estimated power consumption
of HPC applications must be available at schedule time, in order to affect the
dispatching decisions. Thus, we devised a methodology to collect relevant data
on a supercomputer and create a set of predictive models based on Machine
Learning techniques and aimed at predicting HPC jobs power consumptions;
the models were then seamlessly integrated into the dispatcher.

Future works are described in Chapters 3, 4 and 5. Additionally, we plan
to refine the power-aware job dispatcher in order to implement it in a real HPC
machine.

158 6. Conclusion

Bibliography

[9.911] ASHRAE Technical Committee (TC) 9.9. 2011 thermal guide-
lines for data processing environments expanded data center
classes and usage guidance. Technical report, American Soci-
ety of Heating, Refrigerating and Air-Conditioning Engineers,
2011.

[AAA01] F. Allen, G. Almasi, and et al. Andreoni. Blue Gene: A vision
for protein science using a petaflop supercomputer. IBM Systems
Journal, 40(2):310–327, 2001.

[AB93] Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip
in order to solve complex scheduling and placement problems.
Mathematical and Computer Modelling, 17(7):57 – 73, 1993.

[ABB+14] A. Auweter, A. Bode, M. Brehm, L. Brochard, N. Hammer,
H. Huber, R. Panda, F. Thomas, and T. Wilde. A case study of
energy aware scheduling on supermuc. In JulianMartin Kunkel,
Thomas Ludwig, and HansWerner Meuer, editors, Supercomput-
ing, volume 8488 of Lecture Notes in Computer Science, pages
394–409. Springer International Publishing, 2014.

[ABD+14] Matthew Anderson, Maciej Brodowicz, Luke Dalessandro, Jack-
son Debuhr, and Thomas Sterling. A dynamic execution model
applied to distributed collision detection. In Proceedings of
the 29th International Conference on Supercomputing - Volume
8488, ISC 2014, pages 470–477, New York, NY, USA, 2014.
Springer-Verlag New York, Inc.

[ABLL92] Thomas E Anderson, Brian N Bershad, Edward D Lazowska, and
Henry M Levy. Scheduler activations: Effective kernel support
for the user-level management of parallelism. ACM Transactions
on Computer Systems (TOCS), 10(1):53–79, 1992.

[ABM11] Ismail Ababneh and Saad Bani-Mohammad. A new window-
based job scheduling scheme for 2d mesh multicomputers. Sim-
ulation Modelling Practice and Theory, 19(1):482 – 493, 2011.
Modeling and Performance Analysis of Networking and Collab-
orative Systems.

[ABR64] A. Aizerman, E. M. Braverman, and L. I. Rozoner. Theoretical
foundations of the potential function method in pattern recog-

160 BIBLIOGRAPHY

nition learning. Automation and Remote Control, 25:821–837,
1964.

[ABSM01] S Ali, T.D Braun, H.J Siegel, and A.A Maciejewski. Heteroge-
neous Computing. J Urbana, Encyclopedia of Distributed Com-
puting, Kluwer Academic, Norwell, 2001.

[AdC03] Silvia Acid and Luis M de Campos. Searching for bayesian net-
work structures in the space of restricted acyclic partially di-
rected graphs. Journal of Artificial Intelligence Research, 18:445–
490, 2003.

[AEOP02] Ravindra K Ahuja, Özlem Ergun, James B Orlin, and Abra-
ham P Punnen. A survey of very large-scale neighborhood search
techniques. Discrete Applied Mathematics, 123(1):75–102, 2002.

[AF01] Ahuva W Mu Alem and Dror G Feitelson. Utilization, pre-
dictability, workloads, and user runtime estimates in scheduling
the ibm sp2 with backfilling. Parallel and Distributed Systems,
IEEE Transactions on, 12(6):529–543, 2001.

[AGJ+14] Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer,
Harshitha Menon, Eric Mikida, Xiang Ni, Michael Robson, Yan-
hua Sun, Ehsan Totoni, Lukasz Wesolowski, and Laxmikant
Kale. Parallel programming with migratable objects: Charm++
in practice. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analy-
sis, SC ’14, pages 647–658, Piscataway, NJ, USA, 2014. IEEE
Press.

[Aha97] David W. Aha, editor. Lazy Learning. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 1997.

[Aid00] Kento Aida. Effect of job size characteristics on job schedul-
ing performance. In Workshop on Job Scheduling Strategies for
Parallel Processing, pages 1–17. Springer, 2000.

[AL97] Emile Aarts and Jan K. Lenstra, editors. Local Search in Combi-
natorial Optimization. John Wiley & Sons, Inc., New York, NY,
USA, 1st edition, 1997.

[AMW+10] Dennis Abts, Michael R Marty, Philip M Wells, Peter Klausler,
and Hong Liu. Energy proportional datacenter networks. In
ACM SIGARCH Computer Architecture News, volume 38, pages
338–347. ACM, 2010.

[And08] David R Anderson. Information Theory and Entropy. Springer,
2008.

[BA97] Leonard A Breslow and David W Aha. Simplifying decision
trees: A survey. The Knowledge Engineering Review, 12(01):1–
40, 1997.

BIBLIOGRAPHY 161

[Bac00] Fahiem Bacchus. Extending forward checking. In Proceedings
of the 6th International Conference on Principles and Practice
of Constraint Programming, CP ’02, pages 35–51, London, UK,
UK, 2000. Springer-Verlag.

[Bar89] Horace B Barlow. Unsupervised learning. Neural computation,
1(3):295–311, 1989.

[Bar05] Roman Barták. R. dechter, constraint processing, morgan kauf-
mann (2003). Artif. Intell., 169(2):142–145, 2005.

[BB99] David D. Bedworth and James E. Bailey. Integrated Production
Control Systems: Management, Analysis, Design. John Wiley
and Sons, Inc., New York, NY, USA, 2nd edition, 1999.

[BBB+14] A. Bartolini, A. Borghesi, T. Bridi, M. Lombardi, and M. Mi-
lano. Proactive workload dispatching on the EURORA super-
computer. In Barry O’Sullivan, editor, Principles and Prac-
tice of Constraint Programming - 20th International Conference,
CP 2014, Lyon, France, September 8-12, 2014. Proceedings, vol-
ume 8656 of Lecture Notes in Computer Science, pages 765–780.
Springer, 2014.

[BBCea08] K. Bergman, S. Borkar, D. Campbell, and et al. Exascale com-
puting study: Technology challenges in achieving exascale sys-
tems, September 2008.

[BBGM05] Luca Benini, Davide Bertozzi, Alessio Guerri, and Michela Mi-
lano. Allocation and scheduling for mpsocs via decomposition
and no-good generation. In Principles and Practice of Constraint
Programming-CP 2005, pages 107–121. Springer, 2005.

[BBHU10] Ron Brightwell, Brian W Barrett, K Scott Hemmert, and
Keith D Underwood. Challenges for high-performance network-
ing for exascale computing. In Computer Communications and
Networks (ICCCN), 2010 Proceedings of 19th International Con-
ference on, pages 1–6. IEEE, 2010.

[BBL+16a] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela
Milano, and Luca Benini. Predictive Modeling for Job Power
Consumption in HPC Systems, pages 181–199. Springer Inter-
national Publishing, Cham, 2016.

[BBL+16b] T. Bridi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini.
A constraint programming scheduler for heterogeneous high-
performance computing machines. IEEE Transactions on Par-
allel and Distributed Systems, 27(10):2781–2794, Oct 2016.

[BCC+14] A. Bartolini, M. Cacciari, C. Cavazzoni, G. Tecchiolli, and
L. Benini. Unveiling eurora - thermal and power characterization
of the most energy-efficient supercomputer in the world. In De-
sign, Automation Test in Europe Conference Exhibition (DATE),
2014, March 2014.

162 BIBLIOGRAPHY

[BCL+15] A. Borghesi, F. Collina, M. Lombardi, M. Milano, and L. Benini.
Power capping in high performance computing systems. In Prin-
ciples and Practice of Constraint Programming - 21st Interna-
tional Conference, CP 2015, Cork, Ireland, August 31 - Septem-
ber 4, 2015, Proceedings, pages 524–540, 2015.

[BCLB15] A. Borghesi, C. Conficoni, M. Lombardi, and A. Bartolini. MS3:
A mediterranean-stile job scheduler for supercomputers - do less
when it’s too hot! In 2015 International Conference on High Per-
formance Computing & Simulation, HPCS 2015, Amsterdam,
Netherlands, July 20-24, 2015, pages 88–95, 2015.

[BCP08] Nicolas Beldiceanu, Mats Carlsson, and Emmanuel Poder. New
filtering for the cumulative constraint in the context of non-
overlapping rectangles. In Laurent Perron and MichaelA. Trick,
editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, vol-
ume 5015 of Lecture Notes in Computer Science, pages 21–35.
Springer Berlin Heidelberg, 2008.

[BCR05] Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon.
Global constraint catalog. 2005.

[BCTB13] Andrea Bartolini, Matteo Cacciari, Andrea Tilli, and Luca
Benini. Thermal and energy management of high-performance
multicores: Distributed and self-calibrating model-predictive
controller. IEEE Trans. Parallel Distrib. Syst., 24(1):170–183,
2013.

[Bel56] Richard Bellman. A problem in the sequential design of experi-
ments. Sankhyā: The Indian Journal of Statistics (1933-1960),
16(3/4):221–229, 1956.

[Bel07] Christian L Belady. In the data center, power and cooling costs
more than the it equipment it supports. Electronics cooling,
13(1):24, 2007.

[Ben12] Shajulin Benedict. Energy-aware performance analysis method-
ologies for {HPC} architecturesan exploratory study. Journal of
Network and Computer Applications, 35(6):1709 – 1719, 2012.

[Bes94] Christian Bessiere. Arc-consistency and arc-consistency again.
Artificial intelligence, 65(1):179–190, 1994.

[Bes06] Christian Bessiere. Constraint propagation. Foundations of Ar-
tificial Intelligence, 2:29–83, 2006.

[BFSO84] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classi-
fication and Regression Trees. The Wadsworth and Brooks-Cole
statistics-probability series. Taylor & Francis, 1984.

BIBLIOGRAPHY 163

[BGN+10] Josep Ll Berral, Íñigo Goiri, Ramón Nou, Ferran Julià, Jordi
Guitart, Ricard Gavaldà, and Jordi Torres. Towards energy-
aware scheduling in data centers using machine learning. In Pro-
ceedings of the 1st International Conference on energy-Efficient
Computing and Networking, pages 215–224. ACM, 2010.

[BGRS99] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and
Uri Shaft. When is nearest neighbor meaningful? In Interna-
tional conference on database theory, pages 217–235. Springer,
1999.

[BGT11] Josep Ll Berral, Ricard Gavalda, and Jordi Torres. Adaptive
scheduling on power-aware managed data-centers using machine
learning. In Proceedings of the 2011 IEEE/ACM 12th Interna-
tional Conference on Grid Computing, pages 66–73. IEEE Com-
puter Society, 2011.

[BGV92] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A
training algorithm for optimal margin classifiers. In Proceedings
of the fifth annual workshop on Computational learning theory,
pages 144–152. ACM, 1992.

[BH07a] Luiz André Barroso and Urs Hölzle. The case for energy-
proportional computing. IEEE Computer, 40, 2007.

[BH07b] Russell Bent and Pascal Van Hentenryck. Randomized adap-
tive spatial decoupling for large-scale vehicle routing with time
windows. AAAI, 2007.

[BH10] Russell Bent and Pascal Van Hentenryck. Spatial, temporal, and
hybrid decompositions for large-scale vehicle routing with time
windows. . . . and Practice of Constraint ProgrammingCP . . . ,
2010.

[Bis95] Christopher M Bishop. Neural networks for pattern recognition.
Oxford university press, 1995.

[BK07] Jirachai Buddhakulsomsiri and David S. Kim. Priority rule-
based heuristic for multi-mode resource-constrained project
scheduling problems with resource vacations and activity split-
ting. European Journal of Operational Research, 178(2):374 –
390, 2007.

[BKK+98] Jeffrey P Bradford, Clayton Kunz, Ron Kohavi, Cliff Brunk, and
Carla E Brodley. Pruning decision trees with misclassification
costs. In European Conference on Machine Learning, pages 131–
136. Springer, 1998.

[BLK83] J. Blazewicz, J.K. Lenstra, and A.H.G.Rinnooy Kan. Scheduling
subject to resource constraints: classification and complexity.
Discrete Applied Mathematics, 5(1):11 – 24, 1983.

164 BIBLIOGRAPHY

[BLLN06] P. Baptiste, P. Laborie, C. Le Pape, and W. Nuijten. Constraint-
based scheduling and planning. Foundations of Artificial Intelli-
gence, 2:761–799, 2006.

[BLR+14] Peter E. Bailey, David K. Lowenthal, Vignesh Ravi, Barry Roun-
tree, Martin Schulz, and Bronis R. de Supinski. Adaptive config-
uration selection for power-constrained heterogeneous systems.
In Proceedings of the 2014 Brazilian Conference on Intelligent
Systems, BRACIS ’14, pages 371–380, Washington, DC, USA,
2014. IEEE Computer Society.

[BM91] MJ Bagajewicz and V Manousiouthakis. On the generalized
benders decomposition. Computers & chemical engineering,
15(10):691–700, 1991.

[BM01] David Brooks and Margaret Martonosi. Dynamic thermal
management for high-performance microprocessors. In High-
Performance Computer Architecture, 2001. HPCA. The Seventh
International Symposium on, pages 171–182. IEEE, 2001.

[BMVG10] Ayan Banerjee, Tridib Mukherjee, Georgios Varsamopoulos, and
Sandeep K. S. Gupta. Cooling-aware and thermal-aware work-
load placement for green hpc data centers. In Proceedings of the
International Conference on Green Computing, GREENCOMP
’10, pages 245–256, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[BMVG11] Ayan Banerjee, Tridib Mukherjee, Georgios Varsamopoulos, and
Sandeep KS Gupta. Integrating cooling awareness with ther-
mal aware workload placement for hpc data centers. Sustainable
Computing: Informatics and Systems, 1(2):134–150, 2011.

[BP96] Philippe Baptiste and Claude Le Pape. Edge-finding constraint
propagation algorithms for disjunctive and cumulative schedul-
ing. In Scheduling, Proceedings 15 th Workshop of the U.K. Plan-
ning Special Interest Group, 1996.

[BP07] Nicolas Beldiceanu and Emmanuel Poder. A continuous multi-
resources cumulative constraint with positive-negative resource
consumption-production. In Pascal Van Hentenryck and Lau-
rence Wolsey, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Prob-
lems, volume 4510 of Lecture Notes in Computer Science, pages
214–228. Springer Berlin Heidelberg, 2007.

[BPN01a] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based
scheduling. Kluwer Academic Publishers, 2001.

[BPN01b] P. Baptiste, C.L. Pape, and W. Nuijten. Constraint-Based
Scheduling: Applying Constraint Programming to Scheduling
Problems. International Series in Operations Research & Man-
agement Science. Springer US, 2001.

BIBLIOGRAPHY 165

[BPV10] L. Brochard, R. Panda, and S. Vemuganti. Optimizing perfor-
mance and energy of hpc applications onpower7. Computer Sci-
ence - Research and Development, 25(3-4):135–140, 2010.

[BPW+12] Cameron B Browne, Edward Powley, Daniel Whitehouse, Si-
mon M Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen
Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of monte carlo tree search methods. Computational In-
telligence and AI in Games, IEEE Transactions on, 4(1):1–43,
2012.

[BR88] Avrim Blum and Ronald L. Rivest. Training a 3-node neural net-
work is np-complete. In Proceedings of the First Annual Work-
shop on Computational Learning Theory, COLT ’88, pages 9–18,
San Francisco, CA, USA, 1988. Morgan Kaufmann Publishers
Inc.

[Bré79] Daniel Brélaz. New methods to color the vertices of a graph.
Commun. ACM, 22(4):251–256, April 1979.

[Bre96a] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–
140, 1996.

[Bre96b] Leo Breiman. Stacked regressions. Machine learning, 24(1):49–
64, 1996.

[Bre01] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, Octo-
ber 2001.

[Bru81] Maurice Bruynooghe. Solving combinatorial search problems
by intelligent backtracking. Information processing letters,
12(1):36–39, 1981.

[Bru00] Ivan Bruha. From machine learning to knowledge discovery: Sur-
vey of preprocessing and postprocessing. Intelligent Data Anal-
ysis, 4(3, 4):363–374, 2000.

[BSM01] TracyD. Braun, HowardJay Siegel, and AnthonyA. Maciejew-
ski. Heterogeneous computing: Goals, methods, and open prob-
lems. In Burkhard Monien, ViktorK. Prasanna, and Sriram Va-
japeyam, editors, High Performance Computing HiPC 2001, vol-
ume 2228 of Lecture Notes in Computer Science, pages 307–318.
Springer Berlin Heidelberg, 2001.

[BSRH14] Deva Bodas, Justin Song, Murali Rajappa, and Andy Hoffman.
Simple power-aware scheduler to limit power consumption by hpc
system within a budget. In Proceedings of the 2Nd International
Workshop on Energy Efficient Supercomputing, E2SC ’14, pages
21–30, Piscataway, NJ, USA, 2014. IEEE Press.

[BT95] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic pro-
gramming: an overview. In Decision and Control, 1995., Pro-
ceedings of the 34th IEEE Conference on, volume 1, pages 560–
564. IEEE, 1995.

166 BIBLIOGRAPHY

[BT13] Kenneth R Baker and Dan Trietsch. Principles of sequencing
and scheduling. John Wiley & Sons, 2013.

[BTW14] Prasanna Balaprakash, Ananta Tiwari, and Stefan M. Wild.
High Performance Computing Systems. Performance Modeling,
Benchmarking and Simulation: 4th International Workshop,
PMBS 2013, Denver, CO, USA, November 18, 2013. Revised
Selected Papers, chapter Multi Objective Optimization of HPC
Kernels for Performance, Power, and Energy, pages 239–260.
Springer International Publishing, Cham, 2014.

[Bur98] Christopher JC Burges. A tutorial on support vector machines
for pattern recognition. Data mining and knowledge discovery,
2(2):121–167, 1998.

[Cam10] Kirk W Cameron. The challenges of energy-proportional com-
puting. Computer, 43(5):0082–83, 2010.

[Can08] Salvador Perez Canto. Application of benders decomposition
to power plant preventive maintenance scheduling. European
journal of operational research, 184(2):759–777, 2008.

[CB00] Walfredo Cirne and Francine Berman. Adaptive selection of par-
tition size for supercomputer requests. In Proceedings of the
Workshop on Job Scheduling Strategies for Parallel Processing,
IPDPS ’00/JSSPP ’00, pages 187–208, London, UK, UK, 2000.
Springer-Verlag.

[CB01a] W. Cirne and F. Berman. A model for moldable supercomputer
jobs. In Parallel and Distributed Processing Symposium., Pro-
ceedings 15th International, pages 8 pp.–, Apr 2001.

[CB01b] Walfredo Cirne and Francine Berman. A comprehensive model
of the supercomputer workload. In Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop on, pages
140–148. IEEE, 2001.

[CB02] Walfredo Cirne and Francine Berman. Using moldability to im-
prove the performance of supercomputer jobs. Journal of Parallel
and Distributed Computing, 62(10):1571–1601, 2002.

[CB09] Tom Carchrae and J.Christopher Beck. Principles for the design
of large neighborhood search. Journal of Mathematical Modelling
and Algorithms, 8(3):245–270, 2009.

[CCF+99] Steve J Chapin, Walfredo Cirne, Dror G Feitelson, James Patton
Jones, Scott T Leutenegger, Uwe Schwiegelshohn, Warren Smith,
and David Talby. Benchmarks and standards for the evaluation
of parallel job schedulers. In Job Scheduling Strategies for Par-
allel Processing, pages 67–90. Springer, 1999.

[CCS+06] Jiannong Cao, AlvinT.S. Chan, Yudong Sun, SajalK. Das, and
Minyi Guo. A taxonomy of application scheduling tools for high
performance cluster computing. Cluster Computing, 9(3):355–
371, 2006.

BIBLIOGRAPHY 167

[CFG+05] Zizhong Chen, Graham E. Fagg, Edgar Gabriel, Julien Langou,
Thara Angskun, George Bosilca, and Jack Dongarra. Fault tol-
erant high performance computing by a coding approach. In
Proceedings of the Tenth ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP ’05, pages
213–223, New York, NY, USA, 2005. ACM.

[CG88] Gail A. Carpenter and Stephen Grossberg. The art of adaptive
pattern recognition by a self-organizing neural network. Com-
puter, 21(3):77–88, 1988.

[CGF05] Kirk W Cameron, Rong Ge, and Xizhou Feng. High-
performance, power-aware distributed computing for scientific
applications. Computer, (11):40–47, 2005.

[CGR+10] Márcia C. Cera, Yiannis Georgiou, Olivier Richard, Nicolas Mail-
lard, and Philippe O. A. Navaux. Supporting Malleability in
Parallel Architectures with Dynamic CPUSETsMapping and Dy-
namic MPI, pages 242–257. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[CGUeA08] J. Choi, S. Govindan, B. Urgaonkar, and et Al. Profiling, pre-
diction, and capping of power consumption in consolidated envi-
ronments. In Modeling, Analysis and Simulation of Computers
and Telecommunication Systems, 2008. MASCOTS 2008. IEEE
International Symposium on, pages 1–10. IEEE, 2008.

[CH67] Thomas Cover and Peter Hart. Nearest neighbor pattern classi-
fication. IEEE transactions on information theory, 13(1):21–27,
1967.

[CH92] Gregory F Cooper and Edward Herskovits. A bayesian method
for the induction of probabilistic networks from data. Machine
learning, 9(4):309–347, 1992.

[CH10] Elvin Coban and John N Hooker. Single-facility scheduling over
long time horizons by logic-based benders decomposition. In
International Conference on Integration of Artificial Intelligence
(AI) and Operations Research (OR) Techniques in Constraint
Programming, pages 87–91. Springer, 2010.

[Cha91] Eugene Charniak. Bayesian networks without tears. AI maga-
zine, 12(4):50, 1991.

[CHCR11] R. Cochran, C. Hankendi, A. K Coskun, and S. Reda. Pack &
cap: adaptive dvfs and thread packing under power caps. In Pro-
ceedings of the 44th annual IEEE/ACM international symposium
on microarchitecture, pages 175–185. ACM, 2011.

[CHHSW16] Elvin Coban, Aliza Heching, J. N. Hooker, and Alan Scheller-
Wolf. Robust Scheduling with Logic-Based Benders Decomposi-
tion, pages 99–105. Springer International Publishing, Cham,
2016.

168 BIBLIOGRAPHY

[Chi02] David Maxwell Chickering. Optimal structure identification with
greedy search. Journal of machine learning research, 3(Nov):507–
554, 2002.

[CIN] Cineca inter-university consortium web site.
http://www.cineca.it//en. Accessed: 2014-04-14.

[CKL+13] Michele Carpené, Iraklis A Klampanos, Siew Hoon Leong,
Emanuele Casarotti, Peter Danecek, Graziella Ferini, André
Gemünd, Amrey Krause, Lion Krischer, Federica Magnoni, et al.
Towards addressing cpu-intensive seismological applications in
europe. In International Supercomputing Conference, pages 55–
66. Springer, 2013.

[CLCS10] Jin Xin Cao, Der-Horng Lee, Jiang Hang Chen, and Qixin
Shi. The integrated yard truck and yard crane scheduling prob-
lem: Benders decomposition-based methods. Transportation Re-
search Part E: Logistics and Transportation Review, 46(3):344–
353, 2010.

[CLHH09] Sao-Jie Chen, Guang-Huei Lin, Pao-Ann Hsiung, and Yu-Hen
Hu. Hardware Software Co-Design of a Multimedia SOC Plat-
form. Springer Publishing Company, Incorporated, 1st edition,
2009.

[CLPeA14] GL.T. Chetsa, L. Lefevre, J. Pierson, and et Al. Exploiting
performance counters to predict and improve energy performance
of hpc systems. Future Generation Computer Systems, 36:287–
298, 2014.

[CM05] G. Contreras and M. Martonosi. Power prediction for intel xs-
cale®processors using performance monitoring unit events. In
Proceedings of the 2005 International Symposium on Low Power
Electronics and Design, ISLPED ’05, pages 221–226, New York,
NY, USA, 2005. ACM.

[CO] COIN-OR. Cbc (coin-or branch and cut) milp solver. https:

//projects.coin-or.org/Cbc.

[Col14] Francesca Collina. Tecniche di workload dispatching sotto vincoli
di potenza. Master’s thesis, Alma Mater Studiorum Università
di Bologna, 2014.

[Cor09] Intel Corporation. Intel® 64 and IA-32 Architectures Software
Developers Manual, December 2009. no. 253669-033US.

[CPS+96] Soumen Chakrabarti, Cynthia A Phillips, Andreas S Schulz,
David B Shmoys, Cliff Stein, and Joel Wein. Improved schedul-
ing algorithms for minsum criteria. In Automata, Languages and
Programming, pages 646–657. Springer, 1996.

[CR95] Yves Chauvin and David E Rumelhart. Backpropagation: theory,
architectures, and applications. Psychology Press, 1995.

https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc

BIBLIOGRAPHY 169

[CS93] M. Calzarossa and G. Serazzi. Workload characterization: a
survey. Proceedings of the IEEE, 81(8):1136–1150, Aug 1993.

[CST00] Nello Cristianini and John Shawe-Taylor. An introduction to
support vector machines and other kernel-based learning methods.
Cambridge university press, 2000.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information
theory. John Wiley & Sons, 2012.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

[CV96] Su-Hui Chiang and Mary K Vernon. Dynamic vs. static
quantum-based parallel processor allocation. In Workshop on
Job Scheduling Strategies for Parallel Processing, pages 200–223.
Springer, 1996.

[CV01] S-H Chiang and Mary K Vernon. Production job scheduling for
parallel shared memory systems. In Parallel and Distributed Pro-
cessing Symposium., Proceedings 15th International, pages 10–
pp. IEEE, 2001.

[CW03] J Candy and RE Waltz. Anomalous transport scaling in the
diii-d tokamak matched by supercomputer simulation. Physical
review letters, 91(4):045001, 2003.

[CXT+13] Aftab Ahmed Chandio, Cheng-Zhong Xu, Nikos Tziritas, Kashif
Bilal, and Samee U Khan. A comparative study of job scheduling
strategies in large-scale parallel computational systems. In 2013
12th IEEE International Conference on Trust, Security and Pri-
vacy in Computing and Communications, pages 949–957. IEEE,
2013.

[CY01] L. S. Camargo and T. Yoneyama. Specification of training sets
and the number of hidden neurons for multilayer perceptrons.
Neural Comput., 13(12):2673–2680, December 2001.

[Cyb88] G. Cybenko. Continuous valued neural networks with two hidden
layers are sufficient. Technical report, 1988.

[Cyb89] George Cybenko. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and systems,
2(4):303–314, 1989.

[Dar15] Waltenegus Dargie. A stochastic model for estimating the power
consumption of a processor. IEEE Transactions on Computers,
64(5):1311–1322, 2015.

[Day99] Peter Dayan. Unsupervised learning. The MIT encyclopedia of
the cognitive sciences, 1999.

[Dec86] Rina Dechter. Learning while searching in constraint-satisfaction
problems. University of California, Computer Science Depart-
ment, Cognitive Systems Laboratory, 1986.

170 BIBLIOGRAPHY

[Dec90] Rina Dechter. Enhancement schemes for constraint processing:
Backjumping, learning, and cutset decomposition. Artificial In-
telligence, 41(3):273–312, 1990.

[DF99] Allen B. Downey and Dror G. Feitelson. The elusive goal of
workload characterization. SIGMETRICS Perform. Eval. Rev.,
26(4):14–29, March 1999.

[DGH+10] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul
Khanna, and Christian Le. Rapl: Memory power estimation and
capping. In Proceedings of the 16th ACM/IEEE International
Symposium on Low Power Electronics and Design, ISLPED ’10,
pages 189–194, New York, NY, USA, 2010. ACM.

[DH95] Robert D Dony and Simon Haykin. Neural network approaches
to image compression. Proceedings of the IEEE, 83(2):288–303,
1995.

[Die00a] Thomas G Dietterich. Ensemble methods in machine learning.
In International workshop on multiple classifier systems, pages
1–15. Springer, 2000.

[Die00b] Thomas G Dietterich. An experimental comparison of three
methods for constructing ensembles of decision trees: Bagging,
boosting, and randomization. Machine learning, 40(2):139–157,
2000.

[Die02] Thomas G Dietterich. Ensemble learning. The handbook of brain
theory and neural networks, 2:110–125, 2002.

[DM07] Richard A. Dutton and Weizhen Mao. Online scheduling of mal-
leable parallel jobs. In Proceedings of the 19th IASTED Inter-
national Conference on Parallel and Distributed Computing and
Systems, PDCS ’07, pages 136–141, Anaheim, CA, USA, 2007.
ACTA Press.

[DMA98] Ramon Lopez De Mantaras and Eva Armengol. Machine learning
from examples: Inductive and lazy methods. Data & Knowledge
Engineering, 25(1):99–123, 1998.

[DMS94] J. J. Dongarra, H. W. Meuer, and E. Strohmaier. 29th top500
Supercomputer Sites. Technical report, Top500.org, November
1994.

[Dow97] Allen B Downey. A model for speedup of parallel programs.
Technical report, Berkeley, CA, USA, 1997.

[Dow98] Allen B Downey. A parallel workload model and its implications
for processor allocation. Cluster Computing, 1(1):133–145, 1998.

[DP03] Emilie Danna and Laurent Perron. Structured vs. unstructured
large neighborhood search: A case study on job-shop schedul-
ing problems with earliness and tardiness costs. Principles and
Practice of Constraint Programming . . . , pages 817–821, 2003.

BIBLIOGRAPHY 171

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT
Meyarivan. A fast and elitist multiobjective genetic algo-
rithm: Nsga-ii. IEEE transactions on evolutionary computation,
6(2):182–197, 2002.

[DWF16] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. Data center
energy consumption modeling: A survey. IEEE Communications
Surveys & Tutorials, 18(1):732–794, 2016.

[DXYY07] Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Trans-
ferring naive bayes classifiers for text classification. In Pro-
ceedings of the national conference on artificial intelligence, vol-
ume 22, page 540. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2007.

[ECLV10a] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Optimizing
job performance under a given power constraint in hpc centers.
In Green Computing Conference, 2010 International, pages 257–
267, Aug 2010.

[ECLV10b] Maja Etinski, Julita Corbalan, Jesus Labarta, and Mateo Valero.
Utilization driven power-aware parallel job scheduling. Computer
Science - Research and Development, 25(3):207–216, 2010.

[ECLV12a] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Parallel
job scheduling for power constrained {HPC} systems. Parallel
Computing, 38(12):615 – 630, 2012.

[ECLV12b] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Understand-
ing the future of energy-performance trade-off via {DVFS} in
{HPC} environments. Journal of Parallel and Distributed Com-
puting, 72(4):579 – 590, 2012.

[EHB+13] Wolfgang Eckhardt, Alexander Heinecke, Reinhold Bader,
Matthias Brehm, Nicolay Hammer, Herbert Huber, Hans-Georg
Kleinhenz, Jadran Vrabec, Hans Hasse, Martin Horsch, et al.
591 tflops multi-trillion particles simulation on supermuc. In
International Supercomputing Conference, pages 1–12. Springer,
2013.

[Elo99] Tapio Elomaa. The biases of decision tree pruning strategies.
In International Symposium on Intelligent Data Analysis, pages
63–74. Springer, 1999.

[ELT91] Jacques Erschler, Pierre Lopez, and Catherine Thuriot. Raison-
nement temporel sous contraintes de ressource et problèmes
d’ordonnancement. Revue d’intelligence artificielle, 5(3):7–32,
1991.

[EMRS15] Daniel A. Ellsworth, Allen D. Malony, Barry Rountree, and Mar-
tin Schulz. Dynamic power sharing for higher job throughput.
In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’15,
pages 80:1–80:11, New York, NY, USA, 2015. ACM.

172 BIBLIOGRAPHY

[ERL90] Hesham El-Rewini and T. G. Lewis. Scheduling parallel pro-
gram tasks onto arbitrary target machines. J. Parallel Distrib.
Comput., 9(2):138–153, June 1990.

[ET96] M.M. Eshaghian and J.F. Traub. Heterogeneous Computing.
Artech House, Norwood, MA, 1996.

[Eur] Eurotech group web site. http://www.eurotech.com/en/. Ac-
cessed: 2014-04-14.

[EW01] Andrew Eremin and Mark Wallace. Hybrid benders decomposi-
tion algorithms in constraint logic programming. In Principles
and Practice of Constraint ProgrammingCP 2001, pages 1–15.
Springer, 2001.

[FB89] D. Fernandez-Baca. Allocating modules to processors in a dis-
tributed system. Software Engineering, IEEE Transactions on,
15(11):1427–1436, Nov 1989.

[FBC+14] Francesco Fraternali, Andrea Bartolini, Carlo Cavazzoni, Gi-
ampietro Tecchiolli, and Luca Benini. Quantifying the impact of
variability on the energy efficiency for a next-generation ultra-
green supercomputer. In International Symposium on Low Power
Electronics and Design, ISLPED’14, La Jolla, CA, USA - Au-
gust 11 - 13, 2014, pages 295–298, 2014.

[FC07] Wu-chun Feng and Kirk Cameron. The green500 list: Encour-
aging sustainable supercomputing. IEEE Computer, 40(12), De-
cember 2007.

[Fei96] Dror G Feitelson. Packing schemes for gang scheduling. In Work-
shop on Job Scheduling Strategies for Parallel Processing, pages
89–110. Springer, 1996.

[Fei97] Dg Feitelson. Job scheduling in multiprogrammed parallel sys-
tems (extended version). IBM Research Report RC19790 (87657)
2nd Revision, 16:104–113, 1997.

[Fel13] M. Feldman. With roadrunners retirement, petascale enters
middle age. https://www.top500.org/news/with-roadrunners-
retirement-petascale-enters-middle-age/, 2013.

[Fen03] Wu-chun Feng. Making a case for efficient supercomputing.
Queue, 1(7):54–64, October 2003.

[FFG08] Wu-chun Feng, Xizhou Feng, and Rong Ge. Green supercomput-
ing comes of age. IT professional, 10(1):17–23, 2008.

[FGC05] Xizhou Feng, Rong Ge, and K.W. Cameron. Power and energy
profiling of scientific applications on distributed systems. In Par-
allel and Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pages 34–34, April 2005.

BIBLIOGRAPHY 173

[FJ97] Dror G Feitelson and Morris A Jettee. Improved utilization
and responsiveness with gang scheduling. In Workshop on Job
Scheduling Strategies for Parallel Processing, pages 238–261.
Springer, 1997.

[FKM+11] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbig-
niew Chamski, Olivier Temam, Mircea Namolaru, Elad Yom-
Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, Francois Bodin,
Phil Barnard, Elton Ashton, Edwin Bonilla, John Thomson,
Christopher K. I. Williams, and Michael O’Boyle. Milepost gcc:
Machine learning enabled self-tuning compiler. International
Journal of Parallel Programming, 39(3):296–327, 2011.

[FL05] Vincent W. Freeh and David K. Lowenthal. Using multiple en-
ergy gears in mpi programs on a power-scalable cluster. In Pro-
ceedings of the Tenth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’05, pages 164–
173, New York, NY, USA, 2005. ACM.

[Fle87] R. Fletcher. Practical Methods of Optimization; (2Nd Ed.).
Wiley-Interscience, New York, NY, USA, 1987.

[FLP+07] Vincent W. Freeh, David K. Lowenthal, Feng Pan, Nandini Kap-
piah, Rob Springer, Barry L. Rountree, and Mark E. Femal. An-
alyzing the energy-time trade-off in high-performance computing
applications. IEEE Trans. Parallel Distrib. Syst., 18(6):835–848,
June 2007.

[FLYeA16] Haohuan Fu, Junfeng Liao, Jinzhe Yang, and et Al. The sun-
way taihulight supercomputer: system and applications. Science
China Information Sciences, 59(7):1–16, 2016.

[FR92] Dror G Feitelson and Larry Rudolph. Gang scheduling perfor-
mance benefits for fine-grain synchronization. Journal of Parallel
and Distributed Computing, 16(4):306–318, 1992.

[FR95] Dror G Feitelson and Larry Rudolph. Parallel job scheduling:
Issues and approaches. In Job Scheduling Strategies for Parallel
Processing, pages 1–18. Springer, 1995.

[FR96] Dror G Feitelson and Larry Rudolph. Toward convergence in
job schedulers for parallel supercomputers. In Workshop on
Job Scheduling Strategies for Parallel Processing, pages 1–26.
Springer, 1996.

[FR97] D.G. Feitelson and L. Rudolph. Job Scheduling Strategies for
Parallel Processing: IPPS ’97 Workshop, Geneva, Switzerland,
April 5, 1997, Proceedings. Number v. 3 in Lecture Notes in
Artificial Intelligence. Springer, 1997.

[FR98] DrorG. Feitelson and Larry Rudolph. Metrics and benchmark-
ing for parallel job scheduling. In DrorG. Feitelson and Larry

174 BIBLIOGRAPHY

Rudolph, editors, Job Scheduling Strategies for Parallel Process-
ing, volume 1459 of Lecture Notes in Computer Science, pages
1–24. Springer Berlin Heidelberg, 1998.

[Fre90] Yoav Freund. Boosting a weak learning algorithm by majority.
In COLT, volume 90, pages 202–216, 1990.

[FRS+] Dror G Feitelson, Larry Rudolph, Kenneth C Sevcik, Uwe
Schwiegelshohn, and Parkson Wong. Theory and Practice in
Parallel Job Scheduling 1 Introduction 2 Survey of Theoretical
Results.

[FRS05] Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Job
Scheduling Strategies for Parallel Processing: 10th International
Workshop, JSSPP 2004, New York, NY, USA, June 13, 2004.
Revised Selected Papers, chapter Parallel Job Scheduling — A
Status Report, pages 1–16. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005.

[Fuk88] Kunihiko Fukushima. Neocognitron: A hierarchical neural net-
work capable of visual pattern recognition. Neural networks,
1(2):119–130, 1988.

[FWB07] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso.
Power provisioning for a warehouse-sized computer. In ACM
SIGARCH Computer Architecture News, volume 35, pages 13–
23. ACM, 2007.

[FZB09] Mohammad M Fazel-Zarandi and J Christopher Beck. Solving a
location-allocation problem with logic-based benders decomposi-
tion. In Principles and Practice of Constraint Programming-CP
2009, pages 344–351. Springer, 2009.

[GASK14] Abhishek Gupta, Bilge Acun, Osman Sarood, and Laxmikant V
Kalé. Towards realizing the potential of malleable jobs. In 2014
21st International Conference on High Performance Computing
(HiPC), pages 1–10. IEEE, 2014.

[GB65] Solomon W. Golomb and Leonard D. Baumert. Backtrack pro-
gramming. J. ACM, 12(4):516–524, October 1965.

[GBBeA09] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, and et Al.
Quantum espresso: a modular and open-source software project
for quantum simulations of materials. Journal of Physics: Con-
densed Matter, 21(39):395502 (19pp), 2009.

[GBS06] Pall Oskar Gislason, Jon Atli Benediktsson, and Johannes R
Sveinsson. Random forests for land cover classification. Pattern
Recognition Letters, 27(4):294–300, 2006.

[Gen01] Marc G Genton. Classes of kernels for machine learning: a
statistics perspective. Journal of machine learning research,
2(Dec):299–312, 2001.

BIBLIOGRAPHY 175

[Geo72] Arthur M Geoffrion. Generalized benders decomposition. Jour-
nal of optimization theory and applications, 10(4):237–260, 1972.

[Ger94] Carmen Gervet. Conjunto: Constraint logic programming with
finite set domains. In Logic Programming - Proceedings of the
1994 International Symposium, pages 339–358, Massachusetts
Institute of Technology, pages 339–358. The MIT Press, 1994.

[GFGS10] Eric K Garcia, Sergey Feldman, Maya R Gupta, and Santosh
Srivastava. Completely lazy learning. IEEE Transactions on
Knowledge and Data Engineering, 22(9):1274–1285, 2010.

[GH06] Philippe Galinier and Alain Hertz. A survey of local search
methods for graph coloring. Computers & Operations Research,
33(9):2547–2562, 2006.

[Gha01] Zoubin Ghahramani. An introduction to hidden markov models
and bayesian networks. International Journal of Pattern Recog-
nition and Artificial Intelligence, 15(01):9–42, 2001.

[Gha04] Zoubin Ghahramani. Unsupervised learning. In Advanced lec-
tures on machine learning, pages 72–112. Springer, 2004.

[GHBD+09] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, Jeffrey O
Kephart, and Charles Lefurgy. Power capping via forced idleness.
2009.

[Gid86] Dimitri Gidaspow. Hydrodynamics of fiuidizatlon and heat
transfer: Supercomputer modeling. Applied Mechanics Reviews,
39(1):1–23, 1986.

[Gil01] Rich Caruana Steve Lawrence Lee Giles. Overfitting in neural
nets: Backpropagation, conjugate gradient, and early stopping.
In Advances in Neural Information Processing Systems 13: Pro-
ceedings of the 2000 Conference, volume 13, page 402. MIT Press,
2001.

[Gin93] M. L. Ginsberg. Dynamic Backtracking. 1:25–46, 1993.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GJ14] Jim Gao and Ratnesh Jamidar. Machine learning applications
for data center optimization. Google White Paper, 2014.

[GKD11] Erkam Guresen, Gulgun Kayakutlu, and Tugrul U Daim. Using
artificial neural network models in stock market index prediction.
Expert Systems with Applications, 38(8):10389–10397, 2011.

[GL97] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic
Publishers, Norwell, MA, USA, 1997.

[GLDS96] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjel-
lum. A high-performance, portable implementation of the
mpi message passing interface standard. Parallel computing,
22(6):789–828, 1996.

176 BIBLIOGRAPHY

[GLNI] Daniel Godard, Philippe Laborie, Wim Nuijten, and S A
Ilog. Randomized Large Neighborhood Search for Cumulative
Scheduling.

[glo15] Global constraint catalog. http://sofdem.github.io/gccat/,
2015. Accessed: 2015-03-26.

[GMVRGS15] Csar Gómez-Mart́ın, Miguel A. Vega-Rodrguez, and José-Luis
González-Sánchez. Performance and energy aware scheduling
simulator for hpc: evaluating different resource selection meth-
ods. Concurrency and Computation: Practice and Experience,
27(17):5436–5459, 2015. cpe.3607.

[Gom04] CarlaP. Gomes. Randomized backtrack search. In Michela Mi-
lano, editor, Constraint and Integer Programming, volume 27 of
Operations Research/Computer Science Interfaces Series, pages
233–291. Springer US, 2004.

[Goo] Google. or-tools. https://developers.google.com/

optimization/.

[Goo50] I.J. Good. Probability and the Weighing of Evidence. Charles
Griffin, 1950.

[Gos09] Abhijit Gosavi. Reinforcement learning: A tutorial survey and
recent advances. INFORMS Journal on Computing, 21(2):178–
192, 2009.

[Gre75] SA Greibach. Lecture Notes in Computer Science. 1975.

[GTU91] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The im-
pact of operating system scheduling policies and synchronization
methods of performance of parallel applications. In ACM SIG-
METRICS Performance Evaluation Review, volume 19, pages
120–132. ACM, 1991.

[GWB+03] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer.
Knn model-based approach in classification. In OTM Confed-
erated International Conferences” On the Move to Meaningful
Internet Systems”, pages 986–996. Springer, 2003.

[Hau89] R. Haupt. A survey of priority rule-based scheduling. Operations-
Research-Spektrum, 11(1):3–16, 1989.

[HBBD16] Alexander Heinecke, Alexander Breuer, Michael Bader, and
Pradeep Dubey. High Order Seismic Simulations on the Intel
Xeon Phi Processor (Knights Landing), pages 343–362. Springer
International Publishing, Cham, 2016.

[HC88] Pascal Van Hentenryck and Jean-Philippe Carillon. Generality
versus specificity: An experience with AI and OR techniques.
In Proceedings of the 7th National Conference on Artificial In-
telligence. St. Paul, MN, August 21-26, 1988., pages 660–664,
1988.

http://sofdem.github.io/gccat/
https://developers.google.com/optimization/
https://developers.google.com/optimization/

BIBLIOGRAPHY 177

[HE80] Robert M Haralick and Gordon L Elliott. Increasing tree search
efficiency for constraint satisfaction problems. Artificial intelli-
gence, 14(3):263–313, 1980.

[Hec98] David Heckerman. A tutorial on learning with bayesian networks.
In Learning in graphical models, pages 301–354. Springer, 1998.

[HF05a] Chung-hsing Hsu and Wu-chun Feng. A power-aware run-time
system for high-performance computing. In Proceedings of the
2005 ACM/IEEE Conference on Supercomputing, SC ’05, pages
1–, Washington, DC, USA, 2005. IEEE Computer Society.

[HF05b] Chung-hsing Hsu and Wu-chun Feng. A power-aware run-time
system for high-performance computing. In Proceedings of the
2005 ACM/IEEE conference on Supercomputing, page 1. IEEE
Computer Society, 2005.

[HFA05] Chung-Hsing Hsu, Wu-chun Feng, and Jeremy S Archuleta. To-
wards efficient supercomputing: A quest for the right metric. In
Parallel and Distributed Processing Symposium, 2005. Proceed-
ings. 19th IEEE International, pages 8–pp. IEEE, 2005.

[HG95] William D. Harvey and Matthew L. Ginsberg. Limited discrep-
ancy search. pages 607–613. Morgan Kaufmann, 1995.

[HHN08a] Junichi Hikita, Akio Hirano, and Hiroshi Nakashima. Saving
200kw and $200 k/year by power-aware job/machine scheduling.
In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1–8, April 2008.

[HHN08b] Junichi Hikita, Akio Hirano, and Hiroshi Nakashima. Saving
200kw and $200 k/year by power-aware job/machine scheduling.
In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1–8, April 2008.

[HHTC14] Kuo-Chan Huang, Tse-Chi Huang, Mu-Jung Tsai, and Hsi-Ya
Chang. Moldable Job Scheduling for HPC as a Service, pages
43–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[HJS00] M.D. Hill, N.P. Jouppi, and G. Sohi. Readings in Computer
Architecture. The Morgan Kaufmann Series in Computer Archi-
tecture and Design Series. Elsevier Science & Technology Books,
2000.

[HJS+04] Ligang He, Stephen A Jarvis, Daniel P Spooner, Xinuo Chen,
and Graham R Nudd. Hybrid performance-oriented scheduling
of moldable jobs with qos demands in multiclusters and grids.
In Grid and Cooperative Computing-GCC 2004, pages 217–224.
Springer, 2004.

[HK16] John Hopcroft and Ravindran Kannan. Foundations of data sci-
ence. Book Draft, 2016.

178 BIBLIOGRAPHY

[HL05] Willy Herroelen and Roel Leus. Project scheduling under un-
certainty: Survey and research potentials. European Journal of
operational research, 165(2):289–306, 2005.

[HMC06] David Heckerman, Christopher Meek, and Gregory Cooper. A
bayesian approach to causal discovery. In Innovations in Machine
Learning, pages 1–28. Springer, 2006.

[HMW95] David Heckerman, Abe Mamdani, and Michael P Wellman. Real-
world applications of bayesian networks. Communications of the
ACM, 38(3):24–26, 1995.

[HO03] John N Hooker and Greger Ottosson. Logic-based benders de-
composition. Mathematical Programming, 96(1):33–60, 2003.

[Hoo05a] J. N. Hooker. A hybrid method for the planning and scheduling.
Constraints, 10(4):385–401, 2005.

[Hoo05b] John N Hooker. Planning and scheduling to minimize tardiness.
In International Conference on Principles and Practice of Con-
straint Programming, pages 314–327. Springer, 2005.

[Hoo07] John N Hooker. Planning and scheduling by logic-based benders
decomposition. Operations Research, 55(3):588–602, 2007.

[Hop82] John J Hopfield. Neural networks and physical systems with
emergent collective computational abilities. Proceedings of the
national academy of sciences, 79(8):2554–2558, 1982.

[HR76] Laurent Hyafil and Ronald L Rivest. Constructing optimal bi-
nary decision trees is np-complete. Information Processing Let-
ters, 5(1):15–17, 1976.

[HS90] Lars Kai Hansen and Peter Salamon. Neural network ensembles.
IEEE transactions on pattern analysis and machine intelligence,
12:993–1001, 1990.

[HS99] Geoffrey E Hinton and Terrence Joseph Sejnowski. Unsupervised
learning: foundations of neural computation. MIT press, 1999.

[HSC09] Kuo-Chan Huang, Po-Chi Shih, and Yeh-Ching Chung. Adap-
tive processor allocation for moldable jobs in computational grid.
International Journal of Grid and High Performance Computing
(IJGHPC), 1(1):10–21, 2009.

[HT89] A.R. Hoffman and J.F. Traub. Supercomputers: directions in
technology and applications. National Academy Press, 1989.

[IGN14] Santiago Iturriaga, Sebastián Garćıa, and Sergio Nesmachnow.
An empirical study of the robustness of energy-aware schedulers
for high performance computing systems under uncertainty. In
Latin American High Performance Computing Conference, pages
143–157. Springer, 2014.

BIBLIOGRAPHY 179

[IK77] Oscar H. Ibarra and Chul E. Kim. Heuristic algorithms for
scheduling independent tasks on nonidentical processors. J.
ACM, 24(2):280–289, April 1977.

[IPI+15] Yuichi Inadomi, Tapasya Patki, Koji Inoue, Mutsumi Aoyagi,
Barry Rountree, Martin Schulz, David Lowenthal, Yasutaka
Wada, Keiichiro Fukazawa, Masatsugu Ueda, Masaaki Kondo,
and Ikuo Miyoshi. Analyzing and mitigating the impact of man-
ufacturing variability in power-constrained supercomputing. In
Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’15,
pages 78:1–78:12, New York, NY, USA, 2015. ACM.

[Jac55] J.R. Jackson. Scheduling a production line to minimize maximum
tardiness. Research report. Office of Technical Services, 1955.

[Jay57] Edwin T Jaynes. Information theory and statistical mechanics.
Physical review, 106(4):620, 1957.

[Jen96] Finn V Jensen. An introduction to Bayesian networks, volume
210. UCL press London, 1996.

[Jos97] Rajani R Joshi. A new heuristic algorithm for probabilistic opti-
mization. Computers & operations research, 24(7):687–697, 1997.

[JPJ09] Mansoor Zolghadri Jahromi, Elham Parvinnia, and Robert John.
A method of learning weighted similarity function to improve
the performance of nearest neighbor. Information sciences,
179(17):2964–2973, 2009.

[JS02] Martin Szummer Tommi Jaakkola and Martin Szummer. Par-
tially labeled classification with markov random walks. Advances
in neural information processing systems (NIPS), 14:945–952,
2002.

[KA96] Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic critical-path
scheduling: An effective technique for allocating task graphs to
multiprocessors. Parallel and Distributed Systems, IEEE Trans-
actions on, 7(5):506–521, 1996.

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and compar-
ison of the task graph scheduling algorithms. Journal of Parallel
and Distributed Computing, 59(3):381 – 422, 1999.

[KAB+00] Ricky A Kendall, Edoardo Aprà, David E Bernholdt, Eric J
Bylaska, Michel Dupuis, George I Fann, Robert J Harrison,
Jialin Ju, Jeffrey A Nichols, Jarek Nieplocha, et al. High per-
formance computational chemistry: An overview of nwchem a
distributed parallel application. Computer Physics Communica-
tions, 128(1):260–283, 2000.

[KAJ+12] Laxmikant V. Kale, Anshu Arya, Nikhil Jain, Akhil Langer,
Jonathan Liffl, Harshitha Menon, Xiang Ni, Yanhua Sun, Ehsan
Totoni, Ramprasad Venkataraman, and Lukasz Wesolowski.

180 BIBLIOGRAPHY

Charm++ migratable objects + active messages + adaptive run-
time productivity + performance, 2012.

[Kal93] L. V. Kale. Parallel programming with charm: An overview.
Technical report, 1993.

[KAYT90] Takashi Kimoto, Kazuo Asakawa, Morio Yoda, and Masakazu
Takeoka. Stock market prediction system with modular neural
networks. In Neural Networks, 1990., 1990 IJCNN International
Joint Conference on, pages 1–6. IEEE, 1990.

[KB05] George Katsirelos and F Bacchus. Generalized nogoods in CSPs.
Aaai, pages 390–396, 2005.

[KBSW11] Jonathan G Koomey, Stephen Berard, Marla Sanchez, and Henry
Wong. Implications of historical trends in the electrical effi-
ciency of computing. Annals of the History of Computing, IEEE,
33(3):46–54, 2011.

[KCJ01] Miroslav Kubat and Martin Cooperson Jr. A reduction technique
for nearest-neighbor classification: Small groups of examples. In-
telligent Data Analysis, 5(6):463–476, 2001.

[KFL05] N. Kappiah, Vincent W. Freeh, and D.K. Lowenthal. Just in
time dynamic voltage scaling: Exploiting inter-node slack to save
energy in mpi programs. In Supercomputing, 2005. Proceedings
of the ACM/IEEE SC 2005 Conference, pages 33–33, Nov 2005.

[KH06] Jan Kelbel and Z Hanzálek. A case study on earliness/tardiness
scheduling by constraint programming. . . . Conference on Prin-
ciples and Practice of . . . , 2006.

[Kha11] Mohammad A Khaleel. Scientific grand challenges: Crosscutting
technologies for computing at the exascale-february 2-4, 2010,
washington, dc. Technical report, Pacific Northwest National
Laboratory (PNNL), Richland, WA (US), 2011.

[KHO+16] Pramod Kumbhar, Michael Hines, Aleksandr Ovcharenko,
Damian A. Mallon, James King, Florentino Sainz, Felix
Schürmann, and Fabien Delalondre. Leveraging a Cluster-
Booster Architecture for Brain-Scale Simulations, pages 363–380.
Springer International Publishing, Cham, 2016.

[KJ99] Ludmila I Kuncheva and Lakhmi C Jain. Nearest neighbor clas-
sifier: simultaneous editing and feature selection. Pattern recog-
nition letters, 20(11):1149–1156, 1999.

[KJCP14] Minjoong Kim, Yoondeok Ju, Jinseok Chae, and Moonju Park.
A simple model for estimating power consumption of a multicore
server system. International Journal of Multimedia and Ubiqui-
tous Engineering, 9(2):153–160, 2014.

[Kle00] Robert Klein. Bidirectional planning: improving priority rule-
based heuristics for scheduling resource-constrained projects. Eu-
ropean Journal of Operational Research, 127(3):619 – 638, 2000.

BIBLIOGRAPHY 181

[KLM96] Leslie Pack Kaelbling, Michael L Littman, and Andrew W
Moore. Reinforcement learning: A survey. Journal of artificial
intelligence research, 4:237–285, 1996.

[KMI+15] Memoona Khanum, Tahira Mahboob, Warda Imtiaz, Hu-
maraia Abdul Ghafoor, and Rabeea Sehar. A survey on unsuper-
vised machine learning algorithms for automation, classification
and maintenance. International Journal of Computer Applica-
tions, 119(13), 2015.

[Kol96] Rainer Kolisch. Efficient priority rules for the resource-
constrained project scheduling problem. Journal of Operations
Management, 14(3):179 – 192, 1996.

[KP00] Mark A Kon and Leszek Plaskota. Information complexity of
neural networks. Neural Networks, 13(3):365–375, 2000.

[KQC13] Dhireesha Kudithipudi, Qinru Qu, and AyseK. Coskun. Ther-
mal management in many core systems. In Samee Ullah Khan,
Joanna Koodziej, Juan Li, and Albert Y. Zomaya, editors, Evo-
lutionary Based Solutions for Green Computing, volume 432 of
Studies in Computational Intelligence, pages 161–185. Springer
Berlin Heidelberg, 2013.

[KR13] Peter Kogge and David R. Resnick. Yearly update: exascale
projections for 2013. Oct 2013.

[KRA12a] Jungsoo Kim, M. Ruggiero, and D. Atienza. Free cooling-aware
dynamic power management for green datacenters. In High
Performance Computing and Simulation (HPCS), 2012 Inter-
national Conference on, pages 140–146, July 2012.

[KRA12b] Jungsoo Kim, M. Ruggiero, and D. Atienza. Free cooling-aware
dynamic power management for green datacenters. In High
Performance Computing and Simulation (HPCS), 2012 Inter-
national Conference on, pages 140–146, July 2012.

[KRA12c] Jungsoo Kim, M. Ruggiero, and D. Atienza. Free cooling-aware
dynamic power management for green datacenters. In High
Performance Computing and Simulation (HPCS), 2012 Inter-
national Conference on, pages 140–146, July 2012.

[KRAL13] Jungsoo Kim, Martino Ruggiero, David Atienza, and Marcel
Lederberger. Correlation-aware virtual machine allocation for
energy-efficient datacenters. In Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’13, pages
1345–1350, San Jose, CA, USA, 2013. EDA Consortium.

[Kru64] Joseph B Kruskal. Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1–27,
1964.

182 BIBLIOGRAPHY

[KSS+05] Rajkumar Kettimuthu, Vijay Subramani, Srividya Srinivasan,
Thiagaraja Gopalsamy, Dhabaleswar K Panda, and P Sadayap-
pan. Selective preemption strategies for parallel job scheduling.
International Journal of High Performance Computing and Net-
working, 3(2-3):122–152, 2005.

[KVIY01] Mahmut Kandemir, N. Vijaykrishnan, Mary Jane Irwin, and
Wu Ye. Influence of compiler optimizations on system power.
IEEE Trans. Very Large Scale Integr. Syst., 9(6):801–804, De-
cember 2001.

[KW59] James E. Kelley, Jr and Morgan R. Walker. Critical-path plan-
ning and scheduling. In Papers Presented at the December 1-
3, 1959, Eastern Joint IRE-AIEE-ACM Computer Conference,
IRE-AIEE-ACM ’59 (Eastern), pages 160–173, New York, NY,
USA, 1959. ACM.

[KZA+12] Vasileios Kontorinis, Liuyi Eric Zhang, Baris Aksanli, Jack
Sampson, Houman Homayoun, Eddie Pettis, Dean M Tullsen,
and T Simunic Rosing. Managing distributed ups energy for ef-
fective power capping in data centers. In Computer Architecture
(ISCA), 2012 39th Annual International Symposium on, pages
488–499. IEEE, 2012.

[KZP07] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised
machine learning: A review of classification techniques, 2007.

[Lab05] Philippe Laborie. Complete MCS-based search: Application to
resource constrained project scheduling. IJCAI, 2005.

[Lab09a] P. Laborie. IBM ILOG CP Optimizer for detailed scheduling
illustrated on three problems. In Proc. of CPAIOR, pages 148–
162, 2009.

[Lab09b] Philippe Laborie. Ibm ilog cp optimizer for detailed scheduling
illustrated on three problems. In Proceedings of the 6th Inter-
national Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Prob-
lems, CPAIOR ’09, pages 148–162, Berlin, Heidelberg, 2009.
Springer-Verlag.

[Lab14] Philippe Laborie. Algorithms for propagating resource con-
straints in ai planning and scheduling: Existing approaches and
new results. In Sixth European Conference on Planning, 2014.

[Lam14] Bernard Lampard. Program Scheduling and Simulation in an
Operating System Environment. GRIN Verlag, USA, 2014.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Hen-
derson, Richard E Howard, Wayne Hubbard, and Lawrence D
Jackel. Backpropagation applied to handwritten zip code recog-
nition. Neural computation, 1(4):541–551, 1989.

BIBLIOGRAPHY 183

[LBOM98] Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus Robert
Müller. Efficient BackProp, pages 9–50. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1998.

[LC91] Keqin Li and K-H Cheng. Job scheduling in a partition-
able mesh using a two-dimensional buddy system partitioning
scheme. IEEE Transactions on Parallel and Distributed Systems,
2(4):413–422, 1991.

[LCG+14] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Bar-
roso, and Christos Kozyrakis. Towards energy proportionality
for large-scale latency-critical workloads. SIGARCH Comput.
Archit. News, 42(3):301–312, June 2014.

[LDKeA15] A. Langer, H. Dokania, L.V. Kale, and et Al. Analyzing
energy-time tradeoff in power overprovisioned hpc data cen-
ters. In Parallel and Distributed Processing Symposium Work-
shop (IPDPSW), 2015 IEEE International, pages 849–854, May
2015.

[LEE92] Pierre Lopez, Jacques Erschler, and Patrick Esquirol. Ordon-
nancement de tâches sous contraintes: une approche énergétique.
Automatique-productique informatique industrielle, 26(5-6):453–
481, 1992.

[Len97] Jan K Lenstra. Local search in combinatorial optimization.
Princeton University Press, 1997.

[Leu07] K Ming Leung. Naive bayesian classifier. Polytechnic University
Department of Computer Science/Finance and Risk Engineering,
2007.

[LF03] Uri Lublin and Dror G. Feitelson. The workload on parallel su-
percomputers: modeling the characteristics of rigid jobs. Journal
of Parallel and Distributed Computing, 63(11):1105 – 1122, 2003.

[LFL06] Min Yeol Lim, Vincent W Freeh, and David K Lowenthal. Adap-
tive, transparent frequency and voltage scaling of communication
phases in mpi programs. In SC 2006 conference, proceedings of
the ACM/IEEE, pages 14–14. IEEE, 2006.

[LG] Philippe Laborie and Daniel Godard. Self-Adapting Large Neigh-
borhood Search : Application to single-mode scheduling prob-
lems Self-Adapting Large Neighborhood Search.

[LG95] Philippe Laborie and Malik Ghallab. Planning with sharable
resource constraints. In IJCAI, volume 95, page 1643, 1995.

[LG00] Steve Lawrence and C Lee Giles. Overfitting and neural net-
works: conjugate gradient and backpropagation. In Neural Net-
works, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS
International Joint Conference on, volume 1, pages 114–119.
IEEE, 2000.

184 BIBLIOGRAPHY

[LG07] P. Laborie and D. Godard. Self-adapting large neighborhood
search: Application to single-mode scheduling problems. In Proc.
of MISTA, 2007.

[LGTB97] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D
Back. Face recognition: A convolutional neural-network ap-
proach. IEEE transactions on neural networks, 8(1):98–113,
1997.

[LK90] James Leonard and MA Kramer. Improvement of the backprop-
agation algorithm for training neural networks. Computers &
Chemical Engineering, 14(3):337–341, 1990.

[LKB77] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complex-
ity of machine scheduling problems. In B.H. Korte P.L. Ham-
mer, E.L. Johnson and G.L. Nemhauser, editors, Studies in Inte-
ger Programming, volume 1 of Annals of Discrete Mathematics,
pages 343 – 362. Elsevier, 1977.

[LKL97] Shang-Hung Lin, Sun-Yuan Kung, and Long-Ji Lin. Face recog-
nition/detection by probabilistic decision-based neural network.
IEEE transactions on neural networks, 8(1):114–132, 1997.

[LMS03] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. It-
erated local search. Springer, 2003.

[LP94] C. Le Pape. Implementation of resource constraints in ilog sched-
ule: a library for the development of constraint-based scheduling
systems. Intelligent Systems Engineering, 3(2):55–66, Summer
1994.

[LP+05] Claude Le Pape et al. Constraint-based scheduling: A tutorial.
2005.

[LR08] P. Laborie and J. Rogerie. Reasoning with conditional time-
intervals. In Proc. of FLAIRS, pages 555–560, 2008.

[lsf16] Ibm spectrum lsf. http://www-03.ibm.com/systems/

spectrum-computing/products/lsf/, 2016. Accessed:
2016-10-19.

[LSP02] Barry G Lawson, Evgenia Smirni, and Daniela Puiu. Self-
adapting backfilling scheduling for parallel systems. In Paral-
lel Processing, 2002. Proceedings. International Conference on,
pages 583–592. IEEE, 2002.

[LSZ93] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal
speedup of las vegas algorithms. Information Processing Letters,
47(4):173 – 180, 1993.

[LW02] Andy Liaw and Matthew Wiener. Classification and regression
by randomforest. R news, 2(3):18–22, 2002.

http://www-03.ibm.com/systems/spectrum-computing/products/lsf/
http://www-03.ibm.com/systems/spectrum-computing/products/lsf/

BIBLIOGRAPHY 185

[LWW07] C. Lefurgy, X. Wang, and M. Ware. Server-level power control.
In Fourth International Conference on Autonomic Computing
(ICAC’07), pages 4–4, June 2007.

[LWW08] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. Power cap-
ping: a prelude to power shifting. Cluster Computing, 11(2):183–
195, 2008.

[LZ10] Yongpeng Liu and Hong Zhu. A survey of the research on power
management techniques for high-performance systems. Software
- Practice and Experience, 40(11):943–964, 2010.

[MA04] R Timothy Marler and Jasbir S Arora. Survey of multi-objective
optimization methods for engineering. Structural and multidis-
ciplinary optimization, 26(6):369–395, 2004.

[Mac03] David JC MacKay. Information theory, inference and learning
algorithms. Cambridge university press, 2003.

[Mad03] M Madden. The performance of bayesian network classifiers con-
structed using different techniques. In Proceedings of European
conference on machine learning, workshop on probabilistic graph-
ical models for classification, pages 59–70, 2003.

[Mas05] M. Massoud. Engineering Thermofluids: Thermodynamics,
Fluid Mechanics, and Heat Transfer. Springer, 2005.

[MBL+15] Aniruddha Marathe, Peter E. Bailey, David K. Lowenthal, Barry
Rountree, Martin Schulz, and Bronis R. de Supinski. A Run-
Time System for Power-Constrained HPC Applications, pages
394–408. Springer International Publishing, Cham, 2015.

[MBS01] Muthucumaru Maheswaran, Tracy D. Braun, and Howard Jay
Siegel. Heterogeneous Distributed Computing. John Wiley and
Sons, Inc., 2001.

[MCF+98] Jose E Moreira, Waiman Chan, Liana L Fong, Hubertus Franke,
and Morris A Jette. An infrastructure for efficient parallel job
execution in terascale computing environments. In Supercom-
puting, 1998. SC98. IEEE/ACM Conference on, pages 50–50.
IEEE, 1998.

[McK] Ny times article about a survey by mc kinsey & co.
http://www.nytimes.com/2012/09/23/technology/data-centers-
waste-vast-amounts-of-energy-belying-industry-image.html.
Accessed: 2014-04-14.

[MCM13] Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell.
Machine learning: An artificial intelligence approach. Springer
Science & Business Media, 2013.

[MDSV07] KE Maghraoui, Travis J Desell, Boleslaw K Szymanski, and Car-
los A Varela. Dynamic malleability in iterative mpi applications.
In 7th Int. Symposium on Cluster Computing and the Grid, pages
591–598, 2007.

186 BIBLIOGRAPHY

[MDVH11] Jean-Baptiste Mairy, Yves Deville, and Pascal Van Hentenryck.
Reinforced adaptive large neighborhood search. In The Seven-
teenth International Conference on Principles and Practice of
Constraint Programming (CP 2011), page 55, 2011.

[MDZD09] Xiaohan Ma, Mian Dong, Lin Zhong, and Zhigang Deng. Sta-
tistical power consumption analysis and modeling for gpu-based
computing. In Proceeding of ACM SOSP Workshop on Power
Aware Computing and Systems (HotPower), 2009.

[MF01] Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, pre-
dictability, workloads, and user runtime estimates in scheduling
the ibm sp2 with backfilling. IEEE Trans. Parallel Distrib. Syst.,
12(6):529–543, June 2001.

[MGSG12] Yan Ma, Bin Gong, Ryo Sugihara, and Rajesh Gupta. Energy-
efficient deadline scheduling for heterogeneous systems. Journal
of Parallel and Distributed Computing, 72(12):1725 – 1740, 2012.

[MHCD10] Asit K Mishra, Joseph L Hellerstein, Walfredo Cirne, and
Chita R Das. Towards characterizing cloud backend workloads:
insights from google compute clusters. ACM SIGMETRICS Per-
formance Evaluation Review, 37(4):34–41, 2010.

[MHJI07] K. Meng, F. Huebbers, R. Joseph, and Y. Ismail. Modeling and
characterizing power variability in multicore architectures. In
2007 IEEE International Symposium on Performance Analysis
of Systems Software, pages 146–157, April 2007.

[Min89] John Mingers. An empirical comparison of pruning methods for
decision tree induction. Machine learning, 4(2):227–243, 1989.

[Mis90] Ignacy Misztal. Restricted maximum likelihood estimation of
variance components in animal model using sparse matrix inver-
sion and a supercomputer. Journal of dairy science, 73(1):163–
172, 1990.

[Mit97] Thomas M Mitchell. Machine learning. New York, 1997.

[MKM15] Vladimir Mironov, Maria Khrenova, and Alexander Moskovsky.
On Quantum Chemistry Code Adaptation for RSC PetaStream
Architecture, pages 113–121. Springer International Publishing,
Cham, 2015.

[MMB+12] Olli Mämmelä, Mikko Majanen, Robert Basmadjian, Hermann
De Meer, André Giesler, and Willi Homberg. Energy-aware job
scheduler for high-performance computing. Computer Science-
Research and Development, 27(4):265–275, 2012.

[MN+98] Andrew McCallum, Kamal Nigam, et al. A comparison of event
models for naive bayes text classification. In AAAI-98 work-
shop on learning for text categorization, volume 752, pages 41–
48. Citeseer, 1998.

BIBLIOGRAPHY 187

[Moo68] J. Michael Moore. An n job, one machine sequencing algorithm
for minimizing the number of late jobs. Management Science,
15(1):102–109, 1968.

[mpi16] The message passing interface standard. http://www.mcs.anl.
gov/research/projects/mpi/, 2016. Accessed: 2016-10-19.

[MSD+10] Jean-Baptiste Mairy, Pierre Schaus, Yves Deville, et al. Generic
adaptive heuristics for large neighborhood search. In 7th
workshop on local search techniques in constraint satisfaction
(LSCS2010), volume 36, page 130, 2010.

[Mur06] Kevin P Murphy. Naive bayes classifiers. University of British
Columbia, 2006.

[MVA99] George D. Magoulas, Michael N. Vrahatis, and George S An-
droulakis. Improving the convergence of the backpropagation
algorithm using learning rate adaptation methods. Neural Com-
putation, 11(7):1769–1796, 1999.

[MVZ93] Cathy McCann, Raj Vaswani, and John Zahorjan. A dy-
namic processor allocation policy for multiprogrammed shared-
memory multiprocessors. ACM Transactions on Computer Sys-
tems (TOCS), 11(2):146–178, 1993.

[N+04] Richard E Neapolitan et al. Learning bayesian networks. 2004.

[Nas04] Sani R Nassif. The impact of variability on power. In Interna-
tional Symposium on Low Power Electronics and Design: Pro-
ceedings of the 2004 international symposium on Low power elec-
tronics and design, volume 9, pages 350–350, 2004.

[Nie08] Daryle Niedermayer. An introduction to bayesian networks and
their contemporary applications. In Innovations in Bayesian
Networks, pages 117–130. Springer, 2008.

[Nil65] Nils J Nilsson. Learning machines. 1965.

[NMN+10] Hitoshi Nagasaka, Naoya Maruyama, Akira Nukada, Toshio
Endo, and Satoshi Matsuoka. Statistical power modeling of gpu
kernels using performance counters. In Green Computing Con-
ference, 2010 International, pages 115–122. IEEE, 2010.

[NVZ96] Thu D Nguyen, Raj Vaswani, and John Zahorjan. Parallel ap-
plication characterization for multiprocessor scheduling policy
design. In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 175–199. Springer, 1996.

[NW07] Frank Neumann and Ingo Wegener. Randomized local search,
evolutionary algorithms, and the minimum spanning tree prob-
lem. Theoretical Computer Science, 378(1):32–40, 2007.

[OM99] David Opitz and Richard Maclin. Popular ensemble methods:
An empirical study. Journal of Artificial Intelligence Research,
11:169–198, 1999.

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/

188 BIBLIOGRAPHY

[ORS+10] Catherine Mills Olschanowsky, Tajana Rosing, Allan Snavely,
Laura Carrington, Mustafa M Tikir, and Michael Laurenzano.
Fine-grained energy consumption characterization and modeling.
In High Performance Computing Modernization Program Users
Group Conference (HPCMP-UGC), 2010 DoD, pages 487–497.
IEEE, 2010.

[Ous82] John K Ousterhout. Scheduling techniques for concurrebt sys-
tems. In ICDCS, volume 82, pages 22–30, 1982.

[OW03] Cristina Olaru and Louis Wehenkel. A complete fuzzy decision
tree technique. Fuzzy sets and systems, 138(2):221–254, 2003.

[PAM04] Mireille Palpant, Christian Artigues, and Philippe Miche-
lon. LSSPER : Solving the Resource-Constrained Project.
(1997):237–257, 2004.

[PBCH01] Eduardo Pinheiro, Ricardo Bianchini, Enrique V. Carrera, and
Taliver Heath. Load balancing and unbalancing for power and
performance in cluster-based systems, 2001.

[PCOS07] Nicola Policella, Amedeo Cesta, Angelo Oddi, and Stephen F
Smith. From Precedence Constraint Posting to Partial Order
Schedules. Ai Communications, 20:1–17, 2007.

[PCVG94] C Le Pape, P Couronné, D Vergamini, and V Gosselin. Time-
versus-capacity compromises in project scheduling. In Proc. of
the 13th Workshop of the UK Planning Special Interest Group,
pages 1–13, 1994.

[PH11] Dario Pacino and Pascal Van Hentenryck. Large neighborhood
search and adaptive randomized decompositions for flexible job-
shop scheduling. International Joint Conference on Artificial
. . . , pages 1997–2002, 2011.

[Pin91] E. Pinson. A practical use of jackson’s preemptive schedule for
solving the job shop problem. Ann. Oper. Res., 26(1-4):269–287,
January 1991.

[PLR+13] Tapasya Patki, David K. Lowenthal, Barry Rountree, Martin
Schulz, and Bronis R. de Supinski. Exploring hardware overpro-
visioning in power-constrained, high performance computing. In
Proceedings of the 27th International ACM Conference on Inter-
national Conference on Supercomputing, ICS ’13, pages 173–182,
New York, NY, USA, 2013. ACM.

[PLS+15] Tapasya Patki, David K. Lowenthal, Anjana Sasidharan,
Matthias Maiterth, Barry L. Rountree, Martin Schulz, and Bro-
nis R. de Supinski. Practical resource management in power-
constrained, high performance computing. In Proceedings of
the 24th International Symposium on High-Performance Paral-
lel and Distributed Computing, HPDC ’15, pages 121–132, New
York, NY, USA, 2015. ACM.

BIBLIOGRAPHY 189

[PMW+15] P. Petoumenos, L. Mukhanov, Z. Wang, H. Leather, and D. S.
Nikolopoulos. Power capping: What works, what does not. In
Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st In-
ternational Conference on, pages 525–534, Dec 2015.

[POF+15] Kevin Pedretti, Stephen L. Olivier, Kurt B. Ferreira, Galen Ship-
man, and Wei Shu. Early experiences with node-level power cap-
ping on the cray xc40 platform. In Proceedings of the 3rd Inter-
national Workshop on Energy Efficient Supercomputing, E2SC
’15, pages 1:1–1:10, New York, NY, USA, 2015. ACM.

[PRA] Prace. partnership for advanced computing in europe.

[Pro93] Patrick Prosser. Hybrid algorithms for the constraint satisfaction
problem. Computational intelligence, 9(3):268–299, 1993.

[PSCO04] Nicola Policella, Stephen F Smith, Amedeo Cesta, and Angelo
Oddi. Generating robust schedules through temporal flexibility.
In Proceedings of the 14th International Conference on Auto-
mated Planning & Scheduling, ICAPS04, pages 209–218, 2004.

[PSLeA16] S. Pakin, C. Storlie, M. Lang, and et Al. Power usage of pro-
duction supercomputers and production workloads. Concurr.
Comput. : Pract. Exper., 28(2):274–290, February 2016.

[Put14] Martin L Puterman. Markov decision processes: discrete stochas-
tic dynamic programming. John Wiley & Sons, 2014.

[PVGeA11] F. Pedregosa, G. Varoquaux, A. Gramfort, and et Al. Scikit-
learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[PWDC] A. Petitet, R. C. Whaley, Jack Dongarra, and A. Cleary. HPL
- A Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Computers.

[Q+92] John R Quinlan et al. Learning with continuous classes. In 5th
Australian joint conference on artificial intelligence, volume 92,
pages 343–348. Singapore, 1992.

[Qui79] J. R. Quinlan. Discovering rules by induction from large collec-
tions of examples. 1979.

[Qui86] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–
106, March 1986.

[Qui14] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier,
2014.

[R1́1] JC Régin. Global Constraints: a survey. Hybrid optimization,
2011.

190 BIBLIOGRAPHY

[RAdS+12] B. Rountree, D.H. Ahn, B.R. de Supinski, D.K. Lowenthal, and
M. Schulz. Beyond dvfs: A first look at performance under
a hardware-enforced power bound. In Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2012
IEEE 26th International, pages 947–953, May 2012.

[RB93] Martin Riedmiller and Heinrich Braun. A direct adaptive method
for faster backpropagation learning: The rprop algorithm. In
Neural Networks, 1993., IEEE International Conference On,
pages 586–591. IEEE, 1993.

[RCC12] Sherief Reda, Ryan Cochran, and Ayse K Coskun. Adaptive
power capping for servers with multithreaded workloads. IEEE
Micro, 32(5):0064–75, 2012.

[Ref04] Philippe Refalo. Impact-based search strategies for constraint
programming. In Mark Wallace, editor, Principles and Practice
of Constraint Programming CP 2004, volume 3258 of Lecture
Notes in Computer Science, pages 557–571. Springer Berlin Hei-
delberg, 2004.

[Rég04] Jean-Charles Régin. Global constraints and filtering algorithms.
In Constraint and Integer Programming, pages 89–135. Springer,
2004.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning internal representations by error propagation. Techni-
cal report, DTIC Document, 1985.

[RHW88] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning representations by back-propagating errors. Cognitive
modeling, 5(3):1, 1988.

[Ric97] Thomas Richardson. An introduction to bayesian networks.
Journal of the American Statistical Association, 92(439):1215–
1217, 1997.

[Rip07] Brian D Ripley. Pattern recognition and neural networks. Cam-
bridge university press, 2007.

[Ris01] Irina Rish. An empirical study of the naive bayes classifier. In
IJCAI 2001 workshop on empirical methods in artificial intelli-
gence, volume 3, pages 41–46. IBM New York, 2001.

[RLdS+09] Barry Rountree, David K. Lownenthal, Bronis R. de Supinski,
Martin Schulz, Vincent W. Freeh, and Tyler Bletsch. Adagio:
Making dvs practical for complex hpc applications. In Proceed-
ings of the 23rd International Conference on Supercomputing,
ICS ’09, pages 460–469, New York, NY, USA, 2009. ACM.

[RLF+07] Barry Rountree, David K Lowenthal, Shelby Funk, Vincent W
Freeh, Bronis R De Supinski, and Martin Schulz. Bounding en-
ergy consumption in large-scale mpi programs. In Proceedings
of the 2007 ACM/IEEE conference on Supercomputing, page 49.
ACM, 2007.

BIBLIOGRAPHY 191

[RM05] Lior Rokach and Oded Maimon. Top-down induction of decision
trees classifiers-a survey. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 35(4):476–
487, 2005.

[RMS89] A Rajavelu, Mohamad T Musavi, and Mukul Vassant Shirvaikar.
A neural network approach to character recognition. Neural Net-
works, 2(5):387–393, 1989.

[RNC+03] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jiten-
dra M Malik, and Douglas D Edwards. Artificial intelligence: a
modern approach, volume 2. Prentice hall Upper Saddle River,
2003.

[Ros62] Frank. Rosenblatt. Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms, pages 245–248. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1962.

[RSB13] H. V. Raghu, S. K. Saurav, and B. S. Bapu. Paas: Power aware
algorithm for scheduling in high performance computing. In Util-
ity and Cloud Computing (UCC), 2013 IEEE/ACM 6th Inter-
national Conference on, pages 327–332, Dec 2013.

[Rus78] RM Russell. The CRAY-1 computer system. Communications
of the ACM, 1978.

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of
constraint programming. Elsevier, 2006.

[SAÅ+04] Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin,
Theodore Baker, Alan Burns, Giorgio Buttazzo, Marco Cac-
camo, John Lehoczky, and Aloysius K Mok. Real time scheduling
theory: A historical perspective. Real-time systems, 28(2-3):101–
155, 2004.

[SAB+16] Cristina Silvano, Giovanni Agosta, Andrea Bartolini, Andrea R
Beccari, Luca Benini, Radim Cmar, Carlo Cavazzoni, Jan Mar-
tinovi, Gianluca Palermo, Martin Palkovi, et al. Autotuning and
adaptivity approach for energy efficient exascale hpc systems:
the antarex approach. In 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 708–713. IEEE,
2016.

[SB98] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge, 1998.

[SB99] Bernhard Schölkopf and Christopher JC Burges. Advances in
kernel methods: support vector learning. MIT press, 1999.

[SB16] Alina Ŝırbu and Ozalp Babaoglu. Power Consumption Model-
ing and Prediction in a Hybrid CPU-GPU-MIC Supercomputer,
pages 117–130. Springer International Publishing, Cham, 2016.

192 BIBLIOGRAPHY

[SBB+92] Eduard Säckinger, Bernhard E Boser, Jane M Bromley, Yann Le-
Cun, and Larry D Jackel. Application of the anna neural network
chip to high-speed character recognition. IEEE Transactions on
Neural Networks, 3(3):498–505, 1992.

[SBM09] K. Singh, M. Bhadauria, and S.A. McKee. Real time power
estimation and thread scheduling via performance counters.
SIGARCH Comput. Archit. News, 37(2):46–55, July 2009.

[Sch90] Robert E Schapire. The strength of weak learnability. Machine
learning, 5(2):197–227, 1990.

[Sch96] Uwe Schwiegeishohn. Preemptive weighted completion time
scheduling of parallel jobs. In European Symposium on Algo-
rithms, pages 39–51. Springer, 1996.

[SCVH12] Ben Simon, Carleton Coffrin, and Pascal Van Hentenryck. Ran-
domized adaptive vehicle decomposition for large-scale power
restoration. Springer, 2012.

[SDA96] Howard Jay Siegel, Henry G Dietz, and John K Antonio. Soft-
ware support for heterogeneous computing. ACM Computing
Surveys (CSUR), 28(1):237–239, 1996.

[SDB97] Christian Schittenkopf, Gustavo Deco, and Wilfried Brauer. Two
strategies to avoid overfitting in feedforward networks. Neural
networks, 10(3):505–516, 1997.

[See00] Matthias Seeger. Learning with labeled and unlabeled data.
Technical report, 2000.

[SF81] R Short and Keinosuke Fukunaga. The optimal distance mea-
sure for nearest neighbor classification. IEEE transactions on
Information Theory, 27(5):622–627, 1981.

[SF03] Edi Shmueli and Dror G. Feitelson. Job Scheduling Strategies for
Parallel Processing: 9th International Workshop, JSSPP 2003,
Seattle, WA, USA, June 24, 2003. Revised Paper, chapter Back-
filling with Lookahead to Optimize the Performance of Paral-
lel Job Scheduling, pages 228–251. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

[SF09] Edi Shmueli and Dror G. Feitelson. On simulation and design of
parallel-systems schedulers: Are we doing the right thing? IEEE
Trans. Parallel Distrib. Syst., 20(7):983–996, July 2009.

[SF13] Balaji Subramaniam and Wu-chun Feng. Towards Energy-
Proportional Computing for Enterprise-Class Server Workloads.
In 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE), Prague, Czech Republic, April 2013. Best
Paper Award.

[SFBL97] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun
Lee. Boosting the margin: A new explanation for the effective-
ness of voting methods, 1997.

BIBLIOGRAPHY 193

[Sha98] Paul Shaw. Using constraint programming and local search
methods to solve vehicle routing problems. In Michael Maher and
Jean-Francois Puget, editors, Principles and Practice of Con-
straint Programming CP98, volume 1520 of Lecture Notes in
Computer Science, pages 417–431. Springer Berlin Heidelberg,
1998.

[Sim96] H Simonis. A problem classification scheme for finite domain
constraint solving. In Proceeding of workshop on constraint ap-
plications, CP96, Boston. Citeseer, 1996.

[Sim12] Horst D Simon. Barriers to exascale computing. In International
Conference on High Performance Computing for Computational
Science, pages 1–3. Springer, 2012.

[SK01] W Nick Street and YongSeog Kim. A streaming ensemble al-
gorithm (sea) for large-scale classification. In Proceedings of the
seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 377–382. ACM, 2001.

[SKD95] Arno Sprecher, Rainer Kolisch, and Andreas Drexl. Semi-active,
active, and non-delay schedules for the resource-constrained
project scheduling problem. European Journal of Operational
Research, 80(1):94 – 102, 1995.

[SKS03] Sudha Srinivasan, Sriram Krishnamoorthy, and P Sadayappan.
A robust scheduling technology for moldable scheduling of par-
allel jobs. In Cluster Computing, 2003. Proceedings. 2003 IEEE
International Conference on, pages 92–99. IEEE, 2003.

[SL90] S Rasoul Safavian and David Landgrebe. A survey of decision
tree classifier methodology. 1990.

[SL93] G. C. Sih and E. A. Lee. A compile-time scheduling heuris-
tic for interconnection-constrained heterogeneous processor ar-
chitectures. IEEE Trans. Parallel Distrib. Syst., 4(2):175–187,
February 1993.

[SLGK14] O. Sarood, A. Langer, A. Gupta, and L. Kale. Maximizing
throughput of overprovisioned hpc data centers under a strict
power budget. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analy-
sis, SC ’14, pages 807–818, Piscataway, NJ, USA, 2014. IEEE
Press.

[SLS06] Gerald Sabin, Matthew Lang, and P Sadayappan. Moldable par-
allel job scheduling using job efficiency: an iterative approach. In
Workshop on Job Scheduling Strategies for Parallel Processing,
pages 94–114. Springer, 2006.

[SMB+02] Greg Semeraro, Grigorios Magklis, Rajeev Balasubramonian,
David H Albonesi, Sandhya Dwarkadas, and Michael L Scott.

194 BIBLIOGRAPHY

Energy-efficient processor design using multiple clock do-
mains with dynamic voltage and frequency scaling. In High-
Performance Computer Architecture, 2002. Proceedings. Eighth
International Symposium on, pages 29–40. IEEE, 2002.

[SML+07] Ozan Sonmez, Hashim Mohamed, Wouter Lammers, Dick
Epema, et al. Scheduling malleable applications in multiclus-
ter systems. In 2007 IEEE International Conference on Cluster
Computing, pages 372–381. IEEE, 2007.

[SS77] Richard M Stallman and Gerald J Sussman. Forward reasoning
and dependency-directed backtracking in a system for computer-
aided circuit analysis. Artificial intelligence, 9(2):135–196, 1977.

[SS04] Alex J Smola and Bernhard Schölkopf. A tutorial on support
vector regression. Statistics and computing, 14(3):199–222, 2004.

[SSK+02] Srividya Srinivasan, Vijay Subramani, Rajkumar Kettimuthu,
Praveen Holenarsipur, and P Sadayappan. Effective selection of
partition sizes for moldable scheduling of parallel jobs. In In-
ternational Conference on High-Performance Computing, pages
174–183. Springer, 2002.

[SSM+13] M. M. Sabry, A. Sridhar, J. Meng, A. K. Coskun, and D. Atienza.
Greencool:an energy-efficient liquid cooling design technique for
3d mpsocs via channel width modulation. IEEE Trans. on
TCAD, pages 524–537, 2013.

[SSPeA14] C. Storlie, J. Sexton, S. Pakin, and et Al. Modeling and pre-
dicting power consumption of high performance computing jobs.
arXiv preprint arXiv:1412.5247, 2014.

[SSSF13] Balaji Subramaniam, Winston Saunders, Tom Scogland, and
Wu-chun Feng. Trends in Energy-Efficient Computing: A Per-
spective from the Green500. In 4th International Green Com-
puting Conference, Arlington, VA, June 2013.

[SSWeA14] T.R.W. Scogland, C.P. Steffen, T. Wilde, and et Al. A power-
measurement methodology for large-scale, high-performance
computing. In Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, ICPE ’14, pages 149–
159, New York, NY, USA, 2014. ACM.

[ST03] John S. Seng and Dean M. Tullsen. The effect of compiler op-
timizations on pentium 4 power consumption. In Proceedings
of the Seventh Workshop on Interaction Between Compilers and
Computer Architectures, INTERACT ’03, pages 51–, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

[Sta06] Garrick Staples. Torque resource manager. In Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, SC ’06, New
York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 195

[Str03] Achim Streit. Self-tuning job scheduling strategies for the re-
source management of HPC systems and computational grids.
PhD thesis, University of Paderborn, 2003.

[Stu] R Scott Studham. Hpc workload characterization.

[Sut92] Richard S Sutton. Introduction: The challenge of reinforcement
learning. In Reinforcement Learning, pages 1–3. Springer, 1992.

[SV94] Thomas Schiex and Gérard Verfaillie. Nogood recording for
static and dynamic constraint satisfaction problems. Interna-
tional Journal on Artificial Intelligence Tools, 3(02):187–207,
1994.

[SWAB14] H. Shoukourian, T. Wilde, A. Auweter, and A. Bode. Predict-
ing the energy and power consumption of strong and weak scal-
ing hpc applications. Supercomputing frontiers and innovations,
1(2):20–41, 2014.

[SWAB15] H. Shoukourian, T. Wilde, A. Auweter, and A. Bode. Power vari-
ation aware configuration adviser for scalable hpc schedulers. In
High Performance Computing Simulation (HPCS), 2015 Inter-
national Conference on, pages 71–79, July 2015.

[SY00] Uwe Schwiegelshohn and Ramin Yahyapour. Fairness in parallel
job scheduling. Journal of Scheduling, 3(5):297–320, 2000.

[TB12] Tony T Tran and J Christopher Beck. Logic-based benders de-
composition for alternative resource scheduling with sequence
dependent setups. In ECAI, pages 774–779, 2012.

[TC12] Matthew Tolentino and Kirk W Cameron. The optimist, the
pessimist, and the global race to exascale in 20 megawatts. Com-
puter, 45(1):0095–97, 2012.

[TCWX09] Songbo Tan, Xueqi Cheng, Yuefen Wang, and Hongbo Xu.
Adapting naive bayes to domain adaptation for sentiment anal-
ysis. In European Conference on Information Retrieval, pages
337–349. Springer, 2009.

[TDM11] Ibrahim Takouna, Wesam Dawoud, and Christoph Meinel. Accu-
rate mutlicore processor power models for power-aware resource
management. In Proceedings of the 2011 IEEE Ninth Interna-
tional Conference on Dependable, Autonomic and Secure Com-
puting, DASC ’11, pages 419–426, Washington, DC, USA, 2011.
IEEE Computer Society.

[TEF07] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. Backfilling us-
ing system-generated predictions rather than user runtime esti-
mates. IEEE Trans. Parallel Distrib. Syst., 18(6):789–803, June
2007.

[TG03] Aik Choon Tan and David Gilbert. Ensemble machine learning
on gene expression data for cancer classification. 2003.

196 BIBLIOGRAPHY

[THS02] Haluk Topcuoglu, Salim Hariri, and Ieee Computer Society.
Performance-Effective and Low-Complexity. 13(3):260–274,
2002.

[TL00] Sebastian Thrun and Michael L Littman. Reinforcement learn-
ing: an introduction. AI Magazine, 21(1):103–103, 2000.

[TLL95] Igor V Tetko, David J Livingstone, and Alexander I Luik. Neu-
ral network studies. 1. comparison of overfitting and overtrain-
ing. Journal of chemical information and computer sciences,
35(5):826–833, 1995.

[TTDB13] TT Tran, Daria Terekhov, DG Down, and JC Beck. Hy-
brid queueing theory and scheduling models for dynamic envi-
ronments with sequence-dependent setup times. . . . Scheduling
(ICAPS 2013), To . . . , 2013.

[UCL04] Gladys Utrera, Julita Corbalan, and Jesus Labarta. Implement-
ing malleability on mpi jobs. In Proceedings of the 13th Inter-
national Conference on Parallel Architectures and Compilation
Techniques, PACT ’04, pages 215–224, Washington, DC, USA,
2004. IEEE Computer Society.

[Ull75] J.D. Ullman. Np-complete scheduling problems. Journal of Com-
puter and System Sciences, 10(3):384 – 393, 1975.

[VAG10] Georgios Varsamopoulos, Zahra Abbasi, and Sandeep KS Gupta.
Trends and effects of energy proportionality on server provision-
ing in data centers. In High Performance Computing (HiPC),
2010 International Conference on, pages 1–11. IEEE, 2010.

[VAN08] A. Verma, P. Ahuja, and A. Neogi. Power-aware dynamic place-
ment of hpc applications. In Proceedings of the 22nd annual in-
ternational conference on Supercomputing, pages 175–184. ACM,
2008.

[Vap13] Vladimir Vapnik. The nature of statistical learning theory.
Springer Science & Business Media, 2013.

[VB06] Peter Van Beek. Backtracking search algorithms. Handbook of
constraint programming, pages 85–134, 2006.

[VCC+99] Konstantinos Veropoulos, Colin Campbell, Nello Cristianini,
et al. Controlling the sensitivity of support vector machines.
In Proceedings of the international joint conference on AI, pages
55–60, 1999.

[Ves07] Steve Vestal. Preemptive scheduling of multi-criticality sys-
tems with varying degrees of execution time assurance. In Real-
Time Systems Symposium, 2007. RTSS 2007. 28th IEEE Inter-
national, pages 239–243. IEEE, 2007.

BIBLIOGRAPHY 197

[VFHB14] Erik Vermij, Leandro Fiorin, Christoph Hagleitner, and Koen
Bertels. Exascale Radio Astronomy: Can We Ride the Tech-
nology Wave?, pages 35–52. Springer International Publishing,
Cham, 2014.

[VG10] Georgios Varsamopoulos and Sandeep KS Gupta. Energy pro-
portionality and the future: Metrics and directions. In Parallel
Processing Workshops (ICPPW), 2010 39th International Con-
ference on, pages 461–467. IEEE, 2010.

[vHK06] Willem-Jan van Hoeve and Irit Katriel. Global constraints.
Handbook of constraint programming, pages 169–208, 2006.

[vHM04] Willem Jan van Hoeve and Michela Milano. Decomposition
based search - A theoretical and experimental evaluation. CoRR,
cs.AI/0407040, 2004.

[VK82] Vladimir Naumovich Vapnik and Samuel Kotz. Estimation of
dependences based on empirical data, volume 40. Springer-Verlag
New York, 1982.

[VON92] Arjen Van Ooyen and Bernard Nienhuis. Improving the con-
vergence of the back-propagation algorithm. Neural Networks,
5(3):465–471, 1992.

[WA02] Michael Widenius and Davis Axmark. Mysql Reference Manual.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1st edition,
2002.

[Wal99] Toby Walsh. Search in a small world. In Proceedings of the Six-
teenth International Joint Conference on Artificial Intelligence,
IJCAI ’99, pages 1172–1177, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[WAM97] Dietrich Wettschereck, David W Aha, and Takao Mohri. A re-
view and empirical evaluation of feature weighting methods for a
class of lazy learning algorithms. Artificial Intelligence Review,
11(1-5):273–314, 1997.

[WAS14] Torsten Wilde, Axel Auweter, and Hayk Shoukourian. The 4
pillar framework for energy efficient hpc data centers. Comput.
Sci., 29(3-4):241–251, August 2014.

[WASB15] Torsten Wilde, Axel Auweter, Hayk Shoukourian, and Arndt
Bode. Taking Advantage of Node Power Variation in Homoge-
nous HPC Systems to Save Energy, pages 376–393. Springer
International Publishing, Cham, 2015.

[WC08] X. Wang and M. Chen. Cluster-level feedback power control
for performance optimization. In 2008 IEEE 14th International
Symposium on High Performance Computer Architecture, pages
101–110, Feb 2008.

198 BIBLIOGRAPHY

[WM97] D Randall Wilson and Tony R Martinez. Instance pruning tech-
niques. In ICML, volume 97, pages 403–411, 1997.

[WM00] D Randall Wilson and Tony R Martinez. Reduction tech-
niques for instance-based learning algorithms. Machine learning,
38(3):257–286, 2000.

[WMES09] Chao Wang, Frank Mueller, Christian Engelmann, and
Stephen L. Scott. Hybrid full/incremental checkpoint/restart
for mpi jobs in hpc environments. In Dept. of Computer Sci-
ence, North Carolina State University, 2009.

[WMES10] Chao Wang, Frank Mueller, Christian Engelmann, and
Stephen L Scott. Hybrid checkpointing for mpi jobs in hpc envi-
ronments. In Parallel and Distributed Systems (ICPADS), 2010
IEEE 16th International Conference on, pages 524–533. IEEE,
2010.

[WMOSI12] Philippe Weber, Gabriela Medina-Oliva, Christophe Simon, and
Benôıt Iung. Overview on bayesian networks applications for
dependability, risk analysis and maintenance areas. Engineering
Applications of Artificial Intelligence, 25(4):671–682, 2012.

[WNC06] Jigang Wang, Predrag Neskovic, and Leon N Cooper. Neighbor-
hood size selection in the k-nearest-neighbor rule using statistical
confidence. Pattern Recognition, 39(3):417–423, 2006.

[WOPW13] Michal Witkowski, Ariel Oleksiak, Tomasz Piontek, and
J Weglarz. Practical power consumption estimation for real
life hpc applications. Future Generation Computer Systems,
29(1):208–217, 2013.

[Wor15] Altair PBS Works. Pbs professional®13.1 administrator’s guide.
http://www.pbsworks.com/pdfs/PBSProAdminGuide13.1.pdf,
2015.

[WS09] Kilian Q Weinberger and Lawrence K Saul. Distance metric
learning for large margin nearest neighbor classification. Journal
of Machine Learning Research, 10(Feb):207–244, 2009.

[WTJ+15] Song Wu, Qiong Tuo, Hai Jin, Chuxiong Yan, and Qizheng
Weng. Hrf: A resource allocation scheme for moldable jobs. In
Proceedings of the 12th ACM International Conference on Com-
puting Frontiers, CF ’15, pages 17:1–17:8, New York, NY, USA,
2015. ACM.

[WTT+04] X.G. Wang, Z. Tang, H. Tamura, M. Ishii, and W.D. Sun. An
improved backpropagation algorithm to avoid the local minima
problem. Neurocomputing, 56:455 – 460, 2004.

[WW96] Yong Wang and Ian H Witten. Induction of model trees for
predicting continuous classes. 1996.

BIBLIOGRAPHY 199

[WYV+16] Sean Wallace, Xu Yang, Venkatram Vishwanath, William E. All-
cock, Susan Coghlan, Michael E. Papka, and Zhiling Lan. A data
driven scheduling approach for power management on hpc sys-
tems. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC
’16, pages 56:1–56:11, Piscataway, NJ, USA, 2016. IEEE Press.

[XWVA05] Min Xu, Pakorn Watanachaturaporn, Pramod K Varshney, and
Manoj K Arora. Decision tree regression for soft classification of
remote sensing data. Remote Sensing of Environment, 97(3):322–
336, 2005.

[YL04] Lei Yu and Huan Liu. Efficient feature selection via analysis of
relevance and redundancy. J. Mach. Learn. Res., 5:1205–1224,
December 2004.

[YM13] Jumie Yuventi and Roshan Mehdizadeh. A critical analysis of
power usage effectiveness and its use in communicating data cen-
ter energy consumption. Energy and Buildings, 64:90–94, 2013.

[YMO07] D.F. Young, B. R. Munson, and T. H. Okiishi. A Brief Intro-
duction to Fluid Mechanics. John Wiley and Sons LTd, 2007.

[YWZL14] Yulai Yuan, Yongwei Wu, Weimin Zheng, and Keqin Li. Guar-
antee strict fairness and utilizeprediction better in parallel job
scheduling. Parallel and Distributed Systems, IEEE Transac-
tions on, 25(4):971–981, April 2014.

[YZ13a] Haihang You and Hao Zhang. Comprehensive workload analysis
and modeling of a petascale supercomputer. In Walfredo Cirne,
Narayan Desai, Eitan Frachtenberg, and Uwe Schwiegelshohn,
editors, Job Scheduling Strategies for Parallel Processing, vol-
ume 7698 of Lecture Notes in Computer Science, pages 253–271.
Springer Berlin Heidelberg, 2013.

[YZ13b] Haihang You and Hao Zhang. Job Scheduling Strategies for
Parallel Processing: 16th International Workshop, JSSPP 2012,
Shanghai, China, May 25, 2012. Revised Selected Papers, chap-
ter Comprehensive Workload Analysis and Modeling of a Petas-
cale Supercomputer, pages 253–271. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[YZW+13] Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan, Wei Tang, Su-
san Coghlan, and Michael E. Papka. Integrating dynamic pric-
ing of electricity into energy aware scheduling for hpc systems.
In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’13,
pages 60:1–60:11, New York, NY, USA, 2013. ACM.

[ZGL+03] Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-
supervised learning using gaussian fields and harmonic functions.
In ICML, volume 3, pages 912–919, 2003.

200 BIBLIOGRAPHY

[ZLTD13] Zhou Zhou, Zhiling Lan, Wei Tang, and Narayan Desai. Re-
ducing energy costs for ibm blue gene/p via power-aware job
scheduling. In Workshop on Job Scheduling Strategies for Paral-
lel Processing, pages 96–115. Springer, 2013.

[ZM12] Cha Zhang and Yunqian Ma. Ensemble machine learning.
Springer, 2012.

[ZRS87] Wei Zhao, Krithi Ramamritham, and John A Stankovic. Pre-
emptive scheduling under time and resource constraints. IEEE
Transactions on computers, 100(8):949–960, 1987.

[ZWT02] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural
networks: many could be better than all. Artificial intelligence,
137(1):239–263, 2002.

	Introduction
	Content
	Contribution
	Outline

	Related Work
	HPC systems
	HPC Workloads
	HPC Jobs Models

	HPC Systems Dispatching Problem
	Existing Heuristics Techniques

	Power/Thermal Considerations
	Over-provisioning
	Energy Proportionality
	Voltage & Frequency Scaling
	RAPL-based techniques
	Configuration Selection
	Idle Power Consumption & Workload Consolidation
	Cooling Infrastructure
	Resource Heterogeneity
	Power Aware Workload Management
	Compilation-based Methods
	Power Capping

	Constraint Based Job Dispatching
	Constraint Programming
	Modeling in CP
	Global Constraint
	Search in CP

	Modeling a scheduling problem with CP
	Objective Functions
	Filtering for Cumulative Constraints
	Search Strategies in Scheduling Problems
	Decomposition Techniques
	Benders Decomposition
	Large Neighborhood Search
	Adaptive Randomized Decomposition

	Machine Learning
	Supervised Learning
	Decision Trees
	Artificial Neural Networks
	Statistical Learning
	Instance-based Learning
	Support Vector Machines
	Ensemble Methods

	Unsupervised and Reinforcement Learning
	Unsupervised Learning
	Reinforcement Learning

	Applying Machine Learning to HPC Systems

	Job Dispatching in HPC systems
	Problem Statement
	Eurora System
	System Description
	Current Dispatcher

	Online Dispatching
	Job Dispatching in HPC: a CP Approach
	Rolling Horizon
	Formal Problem Definition
	Model Definition
	Modeling Decisions and Constraints
	Handling the Objective Function
	Example of a solution

	Experimental Results
	Evaluation of Our Models
	Comparison with PBS

	Chapter Summary

	Predicting Power Consumptions in HPC Sytems
	Eurora Data
	Collecting Infrastructure
	HW Sensors
	Workload Information

	Example of Collected Data

	Job Power Profiling
	Shared Resource Power Consumptions

	Powers Prediction Model
	Exclusive Resources
	Shared Resources
	Outliers Management

	Experimental Results
	Chapter Summary

	HPC Job Dispatching under Power Cap Constraints
	Context
	Job Dispatcher with Power Cap
	Problem Definition
	Heuristic Approach
	Hybrid Approach
	Scheduling Problem
	Allocation Problem
	Subproblems Interaction
	Difference with classical LBBD

	Preliminary Results
	Evaluation of Our Models

	Comparison with State-of-Art
	Scalability-oriented Modifications
	Experimental Setup
	Impact of the power reduction/frequency scaling
	Evaluation Metric

	Results
	Initial State Impact
	Instance Size Impact
	Job Arrivals Mode Impact
	Historical Traces
	Mispredictions Impact

	Case Study: Integration with Cooling System
	Eurora cooling system
	Free-cooling Modeling
	Experimental Results

	Variable Power Budget
	Frequency Reassignment Problem
	Problem Definition
	Problem Extensions

	Greedy Algorithm
	CP Approach
	Search Strategy
	Extensions

	MIP Approach
	Methods Comparison
	Models Evaluation
	Problem Extensions

	Chapter Summary

	Conclusion

