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Chapter 1: Thesis Objective



1.1 KiCS project

The Kids Cancer Sequencing program (KIiCS) is a translational research
program established at The Hospital for Sick Children (SickKids) in Toronto,
Canada. The program aims are to improve the diagnosis and therapeutic
options of paediatric cancer patients. The program enrolls patients with a newly
diagnosed childhood tumour or who may show signs of a potential cancer
susceptibility. Patients enrolled in the program have one of the following
attributes: have a new primary or relapsed tumour, have a genetic
predisposition for cancer, have a cancer with poor prognosis, or have a poor

response to conventional cancer therapies.

These patients undergo genomic sequencing using next generation sequencing
(NGS) technology and the resulting data is analyzed to better characterize the
tumour in an attempt to identify a unique “fingerprint.” Information derived from
NGS analysis are subsequently used to find variants relevant to cancer etiology
and diagnosis, identify treatment options for each specific patient and follow

the tumour’s response to treatment.

1.2 Research aims

The main objectives of this PhD thesis was to develop novel bioinformatics
algorithms for the detection of clinically relevant variants from the RNA
Sequencing (RNA-Seq) data. Then to use this highly accurate approach on

tumors of childhood cancer patients, enrolled in KiCS. Finally, to create a



classification scheme that enables a non-specialist to interpret the functional

consequences of each somatic fusion variant.

The project was divided into two different sub-projects, each attempting to
answer an open questions in transcriptomic analysis applied to precision

medicine oncology.

The first question relates to the accuracy of RNA sequencing: can the
sensitivity and specificity of transcriptomic data improve such that he can
replace standard molecular assays?. The production of an accurate and
complete transcriptome makes RNA-Seq an ideal approach to improve the
diagnosis and therapeutic treatment of cancer patients. However, even if
clinicians could ‘read’ all of the transcripts of all the oncology patients on the
day of their diagnosis, they would still have the massive challenge of
interpreting the results. In fact, the majority of current bioinformatics tools
achieve poor sensitivity and specificity for detecting non-canonical fusions or
cryptic splicing events. They may also produce vast lists of putative fusions,

which do not subsequently validate or are found in normal controls.

Sub-project 1 involved the development of a novel software package for
detecting, filtering, validating and classifying driver oncogenic chimeric
transcripts, to overcome the lack of sensitivity and specificity problem pf the

existing fusion detection approaches.

The second question relates to transcriptional abundance in cancer: how does
the transcriptional output of a cancer cell change as it acquires somatic
mutations, becomes neoplastic, and ultimately metastasizes?. Transcriptional
amplification, whereby the entire transcriptome of a cell increases in
expression, represents the direct effect of somatic mutations in transcription

and can be used in the development of novel therapeutic strategies for



aggressive tumours. However, knowledge of the tumour types driven by
transcriptional amplification, as well as identification of the genes mediating this
effect is relatively unknown. Currently there are no software tool to accurately
measure the transcriptional output of a cancer, in vivo, from heterogeneous
patient specimens that have undergone RNA-Seq.

In sub-project 2, a computational method to measure the transcriptional
abundance of human cancer cells from primary tumours was created to
catalogue the rules governing how somatic mutation exerts direct
transcriptional effects. Results for this project were published on Cell Reports in
2016*



Chapter 2: Fusion Validator: Highly accurate
fusion gene detection from RNA sequencing

of cancer



2.1 Introduction

2.1.1 Gene fusions detection as a diagnostic test in clinical oncology

Accumulation of specific genomic aberrations like single nucleotide mutations
and chromosomal structural rearrangement are a major cause of cancer
development?. Chromosomal rearrangements, including genomic deletions,
duplications, inversions and translocations can lead to the formation of a fusion
of two genes, that would otherwise be physically separated. This resulting

fusion is exclusively expressed in cancer cells® (Figure 1).

Recurrent gene fusions like BCR-ABL1 in chronic myeloid leukemia*, EWSR1-
FLI1 in Ewing's sarcoma®, EML4-ALK in lung cancer® or FGFR-TACC in
glioblastoma’, are considered strong driver mutations and used as diagnostic

markers or for therapeutic decision-making (Figure 2).
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Figure 1. Schematic representation of a gene fusion from genomic rearrangements
between different chromosomes (A) or same chromosome (B). In genomic rearrangements
between different chromosomes (A) genes from different chromosomes have a translocation on
the breakpoint position (vertical black line) and form a fusion gene. The product of the
translocation is transcribed into a fusion transcript containing exons from gene 1 (blue) and
from gene 2 (red). Rearrangement in the same chromosome (B) can be classified as deletion
(when a part of chromosome is lost during replication), inversion (when a part of chromosome
is reversed end to end) or eversion (when a part of chromosome is reversed end to beginning)
and are transcribed into fusion transcripts containing exons from gene 1 (blue) and from gene 2
(green)
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Figure 2. List of most recurrent gene fusions in different cancer types according to

Parker et al. [Parker]

The advent of NGS platforms and the use of RNA-Seq paired-end technique in
tumour studies allowed the identification of an increasing number of fusion

transcripts collected in public databases®® (Figure 3).

11




NPM1-ALK = ETVB-RUNX1 K!AA154R-BRAF
iger | s P
coA SSIESSXZ  pryemrks MYENFIB
PRCC-TFE3 T
R EWSF.'QRT%;DIB MECT{ A2 ESRRAS-ggMZO
il R Forgee
Ve ™ PTERKSPOS
8518:85X1 o mga TR R
ALCL X
LS B i sstessn PG Efw BOQR CONB3
S5 TMPRSS2-ETV4
PML-RARA PAX8-PPARG
1 x APL FTC EML FPQ-TFE3
IGHMYC EWSRL-FLI1 EWSALLWTFJ T .NS‘C—féKI f;ﬁcc
IMT
Ll rrererrerrl el L1l llllll ettt e irlereirg
rrifrerrrretrrrrerrrryrrrryrrrryirrrrerrtrrertrrryrrrrwroena
1965 1970 1975 1980 A1985 1990 1995 2000 20;5 A 2010 2015
Sanger sequencing 1st automated Capillary Gsmsz:tem len torrent
invented sequencer sequencer (Roche) (ABI)
(ABI)
First sequence of PCR developed 3(25100
24bp published

Next-generation sequencing

Figure 3. Timeline showing the years in which particular driver fusions were discovered,
compared to the year in which DNA sequencing technologies became available. (Figure

from Parker et al. [Parker])

The ability to characterize the entire transcriptomic profile in a precise and
efficient way, at reduced cost compared to traditional techniques, and with the
power to uncover novel events in a single test, makes RNA-Seq fusion
detection a very suitable and attractive instrument to improve the diagnosis and
therapeutic treatment of cancer patients’®. In the last few years, different
institutes have established personalized cancer medicine programs giving rise
to what is called precision oncology*'. Some institutes have included fusion

transcripts in their investigation of biological driver events'#*3,

Regardless of the integration of NGS diagnostic tests within time and cost
budgets, significant challenges for clinical interpretation exist. First, algorithms
used to detect any targetable genomic alteration must be robust and have the

ability to detect a wider range of variants with high sensitivity compared to

12




available methods. Several experimental design components, like sequence
length, coverage and the choice of appropriate library preparation protocols,
should be also taken in consideration before sequencing, to avoid missing
biologically relevant events. Second, the list of putative candidate variants
detected can contain false positive calls, due to technological and biological
biases in NGS data, and this decrease the specificity. Correctly filtering out
chimeric events is crucial to reduce the number of candidate variants to
investigate. Third, the genetic variants discovered can include events not
present in any database or appearing in only a single patient, may produce
fusions between adjacent genes in the genome (read through), or alterations
observed in normal tissues****. Therefore, a very accurate annotation and
validation of results is required to best select candidate oncogenic variants®®.
Some of the approaches used to confirm RNA-Seq variants like Sanger
sequencing or real time PCR assay'’ are time consuming and labor intensive,
making the validation of a large number of transcriptomic event candidates not
feasible. The demand of a robust analytical validation on customizable panel of
gene fusion at affordable costs, and with low RNA input requirements, has led
different groups to use targeted RNA deep sequencing as a NGS based

diagnostic test in clinical oncology**™*°.

2.1.2 Different approaches for gene fusion detection in RNA-Seq Experiments

To partially resolve gaps in RNA-Seq fusion transcripts analysis, several new
software tools have been developed over the past few years. These tools differ
each other by reads alignment strategies, fusion prediction algorithms, and/or

filtering criteria used'®*2! (Table 1).
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Tool name PMID Citation

Belerophontes 22711792 Abate et al. (2012)
BreakFusion 22563071 Bradeen et al. (2006)
BreakPointer 22302574 Sunet al. (2012)
ChildSeg-RNA 24517889 Qadir et al. (2014)
ChimeraScan 21840877 lyer et al. (2011)
Comrad 21478487 McPherson et al.
[2011b)
defuse 21625565 McPherson et al.
20118
Dissect 22689759 Yorukoglu et al. (2012)
EBARDenovo 23457040 Chu et al. (2013)
EricScript 23093608 Benelli et al. (2012)
FusionAnalyser 22570408 Piazza et al. (2012)
FusionCatcher 21247443 Edgren et al. (2011)
FusionFinder 22761941 Francis et al. (2012)
FusionHunter 21546395 Lietal (2011)
FusionMap 21593131 Ge et al. (2011)
FusionSeq 20964841 Shoner et al. (2010)
vy Center Fusion 24261984 Shah et al. (2013)
discovery tool
LifeScope 22496636 Sakarya et al. (2012)
MapSplice 20802226 Wang et al. (2010)
NFuse 22745232 McPherson et al.
2012)
Pegasus 25183062 Abate et al. (2014)
ShortFuse 21330288 Kinsella et al. (2011)
SnowShoes-FTD 21622959 Asmann et al. (2011)
SOAPFuse 23409703 Jia et al. (2013)
TopHat-Fusion 21835007 Kim and Salzberg
(2011)

Table 1. List of fusion detection bioinformatic software developed in the past years

(Figure from Davare et al.’®).

Carrara et al.??* classified fusion detection tools according to alignment
strategies: Softwares like deFuse®, Fusionseg®, FusionHunter®, Ericscript®
and SOAPfuse? align paired-end reads to a reference sequence and create a
set of putative fusion products using discordant alignments (Whole paired-end
approach Figure 4). Other tools like MapSplice?®, FusionFinder® and
FusionMap®* fragment reads into smaller segments and try to find fusion
candidates aligning these fragments against the reference (Direct
fragmentation approach Figure 5). Another strategy that combines both paired-
end and fragment alignment is used by ChimeraScan®, Bellerophontes® and

14



Tophat-Fusion®®. Using this two-step approach, reads are first aligned as
paired-end sequences against the reference to detect putative fusion products
via discordant alignments. Reads that remain unaligned after first step are then
fragmented and realigned to identify junction-spanning reads of the fusion

transcript® (Figure 6).

discordant alignments are detected

=\

reads are aligned to a reference

=l : | N\ =
L gene X
== | = |
gene Z mwny [ ———
geneY
a set of putative fusion products unmapped reads are rescued
is generated B
— ) R
|
| | | R
| | | [ ] |
[ [ | D'D”MD“'D'"

Figure 4. Whole Paired-end fusion detection approach.

In the whole paired-end approach, sequences are aligned to the reference genome and
transcriptome. The reads, in which each mate aligns to a different gene (discordant reads), are
then used to select a list of putative fusion products. All the unmapped reads from the first
alignment step are then realigned locally to confirm each putative fusion product. (Figure from
Raffaele Calogero’s presentation “Alternative Splicing Variants and Translocation Induced

Chimera detection, strength and limits of state of the art bioinformatics approaches).
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Figure 5. Direct fragmentation fusion detection approach.

In the direct fragmentation approach, sequences are fragmented into small segments of a user
defined size and then aligned to the reference. Discordant aligned mate pairs are then used to
find potential candidate fusions. (Figure from Raffaele Calogero’'s presentation “Alternative
Splicing Variants and Translocation Induced Chimera detection, strength and limits of state of

the art bioinformatics approaches).
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Figure 6. Paired-end + fragmentation fusion detection approach.

In the paired-ends + fragmentation approach the reads are first aligned in paired-ends against
the reference to detect putative fusion products via discordant alignments. Then sequences
unaligned at first step are fragmented and realigned to identify junction-spanning reads of the
fusion transcript. (Figure from Raffaele Calogero’s presentation “Alternative Splicing Variants
and Translocation Induced Chimera detection, strength and limits of state of the art

bioinformatics approaches).

Performance evaluation of different computational methods for gene fusion
discovery, on both real and simulated datasets, revealed a consistently high
number of false positive events and very little overlap between different tools?*

34
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Due to heterogeneous results and different sensitivity in identifying chimeras, a
combination of various fusion finder tools was suggested to compensate
individual tool errors and correctly detect driver fusions in cancer patients®.
This combination can lead to the identification of thousands of different fusion
transcripts, most of them false positives, that reduce the specificity and
increase the complexity of downstream analysis and experimental validation.
The false positive rate can be partially reduced using filtering steps
implemented on fusion finder algorithms, but the number of events that require
a biological confirmation still remains high. Most common filtering options
among different fusion detection tools includes the removal of:

e read-through transcripts

e candidate fusion mapping on homologous and repetitive regions

¢ PCR artifacts

e transcripts supported by poor read quality, read pair distance, number of

spanning-junctions supporting sequences and number of nucleotides

overlapping each side of the fusions breakpoint.

Other filtering steps are software-specific, like the comparison between
chimeric transcript expression and the corresponding genes expression, used
by FusionSeq, or the option to select only canonical or semi-canonical
junctions, used by MapSplice. Many fusion detection programs also accept
user provided blacklists of gene fusions found in normal tissues, or from
existing fusion transcript databases. However, this filtering procedure can
introduce additional errors, since the detection of gene fusions in normal
datasets may encounter the same software-dependent sensitivity and
specificity biases found in tumour samples®.

Moreover, only few bioinformatics softwares can currently annotate, filter and
prioritize fusion transcripts detected by multiple algorithms. The Chimera R
package from Beccuti et al.*” can manipulate outputs from 12 different fusion

detection softwares and includes a breakpoint validation feature through de

18



novo assembly of reads. However, Chimera encounters issues in summarizing
identical fusion genes picked by different fusion finder algorithms, especially
when fusions involve genes overlapping each other on the opposite strands or
results from tools that use different transcriptome annotations are compared.

Fusion Matcher (FuMa)®* was designed to improve Chimera’s functionality by
comparing and matching fusion genes coming from different fusion finder
algorithms, and using a unique and consistent annotation to easily summarize
identical fusions. Other fusion annotation tools try to predict oncogenic potential
of fusion genes using machine learning algorithms. Oncofuse® for example,
uses a naive Bayes Network classifier, trained on features present in known
oncogenic fusions, to predict the probability of a novel chimera to be classified
as a driver fusion. This machine learning classifier takes into consideration
protein domains maintained in fusion transcripts, but ignores interactions
between functional protein domains. For this reason, recently Abate et al.
developed Pegasus®, a functional annotation software that identifies the
fusion’s reading frame and conserved/lost protein domains for each
reconstructed chimeric transcript sequence. Pegasus then uses this information
to train a classifier based on a gradient tree boosting algorithm, in order to
predict fusion oncogenic potential. At present Pegasus takes in input gene
fusion candidates from 3 different fusion finder algorithms, requiring the users
to format results from other fusion detection tools into a common general

format.
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2.1.3 Project aim

The aim of sub-project 1 is to create a bioinformatics pipeline to address the
major challenges in the clinical validation of fusion transcripts from NGS
experiments. This will be achieved by increasing the performance of driver
fusions detection and by significantly reducing the number of false positives. To
address these challenges, we developed Fusion Validator, a tool able to scan
and filter a multitude of fusion genes from different fusion finder algorithms, and
to validate real events through chimeric transcript sequence reconstruction and

local realignment of candidate reads around fusion breakpoint.

Fusion Validator's main features are unique and yield improved results over
current methods. First, the pipeline is completely algorithm agnostic, as it
accepts input lists of chimeric transcripts detected by most of currently
available fusion detection tools, and converts the results into a generic file
format for further processing. The user then has the opportunity to select the
most suitable combination of programs to use for optimal sensitivity.

Second, Fusion Validator uses the input list of chimeric transcripts to
reconstruct the sequence spanning the fusion between two different genes or
between two internally rearranged genes. It is designed to work with canonical
fusions as well as other somatic structural changes in the transcriptome, like
exon skips. Fusion Validator is also able to remove recurrent transcripts that
are found in normal transcriptomes, through dynamic alignment of normal
sequences around the breakpoint of aberrant transcripts. This procedure gives
the user the opportunity to select a list of thousands of RNA-Seq experiments
on a large number of diverse human tissues from the Genotype-Tissue
Expression (GTEX) project** or GEUVADIS*, and efficiently remove recurrent

20



false positive events, directly comparing putative junctions against a multi-
tissue dataset, instead of processing the tumour and normals separately.

The dynamic local realignment approach is also used to validate the
breakpoints of the chimeric transcripts and additional filtering steps are
performed to significantly reduce the number of fusion candidates and increase
the software’s specificity. Lastly, Fusion Validator is able to annotate and assign
a score to each chimeric transcript, empowering the user with the ability to
rank the final validated list of fusions and quickly distinguish driver fusions for
further investigation. The Fusion Validator workflow is completely automated
and allows the user to merge, filter and validate thousands of fusions from
different detection tools, without any additional work and in a significantly

reduced computational time, using a high performance computer cluster.

2.2 Material and methods

2.2.1 Simulated datasets

EricScript Simulator tool (Eric Script 0.5.4) was used to simulate 1000 synthetic
gene fusions with breakpoints randomly chosen among all known splicing sites
of involved genes (Intact exons (IE)), and the same 1000 fusion events with
breakpoints randomly chosen without taking in consideration splicing sites
(Broken exons (BE)). For each dataset of BE and IE fusions, approximately 13
million synthetic 125 base pair (bp) paired-end supporting reads were created.
The average insert size for simulated reads was 400bp, with 50 bp standard

deviation.
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An additional 10 million 125bp paired-end reads were randomly generated as
background noise using the BEERS simulator®®. Synthetic reads generated with
EricScript and BEERS were merged to create two starting simulated datasets:
one for BE fusions and one for |IE fusions.

Additional synthetic datasets containing reads of different lengths (50bp, 75bp,
100bp, 125bp) and a range of sequencing coverage (25X, 50X, 100X, 200X,
300X and 400X) were created by randomly subsampling the starting set of
reads, using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html)
and seqtk (https://github.com/Ih3/seqtk). Thus creating a total of 24 different

datasets with BE and 24 with IE (Figure 7) (Table 2). To ensure read quality
consistency between every dataset, a Phred quality score of 25 was manually

assigned to all the bases of the simulated reads generated.
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Figure 7. Simulated fusion datasets selection steps. 1000 random in silico chimeric
transcripts were extracted from human genome and gene models, together with reads
supporting each specific transcript, for a total of 48 datasets of sequences with different length
(50, 75, 100, 125 base pair), sequencing coverage (25X, 50X, 100X, 200X, 300X, 400X), and
breakpoint positions (on a exon junction for intact exons or random for broken exons).
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Paired-end Paired-end

Paired-end fusion read + Paired-end fusion read +

SamPlY EShoth]| Coverage fusion reads background SIS Dot Coverage fusion reads background

reads reads

BE.50bp.25X 50 25 726713 10726713|IE.50bp.25X 50 25 819372 10819372
|BE.75bp.25X 75 25 484475 10484475|IE.75bp.25X 75 25 546248 10546248
BE.100bp.25X 100 25 363356 10363356 |I1E.100bp.25X 100 25 409686 10409686
BE.125bp.25X 125 25 290685 10290685|E.125bp.25x 125 25 327749 10327749
BE.50bp.50X 50 50 1453426 11453426|IE.50bp.50X 50 50 1638744 11638744
BE.75bp.50X 75 50 968950 10968950|IE.75bp.50X 75 50 1092496 11092496
BE.100bp.50X 100 50 726713 10726713|IE.100bp.50X 100 50 819372 10819372
BE.125bp.50X 125 50 581370 10581370|IE.125bp.50X 125 50 655498 10655498
|_BE.50bp.100X 50 100 2906851 12906851|E.50bp.100x 50 100 3277488 13277488
BE.75bp.100X 75 100 1937901 11937901|IE.75bp.100X 75 100 2184992 12184992
BE.100bp.100X 100 100 1453426 11453426|1E.100bp.100X 100 100 1638744 11638744
BE.125bp.100X 125 100 1162740 11162740]IE.125bp.100X 125 100 1310995 11310995
|BE.50bp.200X 50 200 5813702 15813702]IE.50bp.200X 50 200 6554976 16554976
BE.75bp.200X 75| 200 3875801 13875801|IE.75bp.200X 75 200 4369984 14369984
X i 100 200 2906851 12906851|IE.100bp.200X 100 200 3277488 13277488
125 200 2325481 12325481|IE.125bp.200X 125 200 2621990 12621990
50 300 8720553 18720553|1E.50bp.300X 50 300 9832464 19832464
75 300 5813702 15813702|IE.75bp.300X 75 300 6554976 16554976
100 300 4360277 14360277|E.100bp.300x 100 300 4916232 14916232
|BE.125bp.300X 125 300 3488221 13488221|IE.125bp.300X 125 300 3932986 13932986
|BE.50bp.400X 50 400 11627404 21627404|1E.50bp.400X 50 400 13109952 23109952
BE.75bp.400X 75| 400 7751603 17751603|IE.75bp.400X 75 400 8739968 18739968
|BE.100bp.400X 100 400 5813702 15813702|IE.100bp.400X 100 400 6554976 16554976
BE.125bp.400X 125 400 4650962 14650962|IE.125bp.400X 125 400 5243981 15243981

Table 2.

Number of reads supporting fusions and background reads extracted for each

simulated dataset.

2.2.2 Breast Cancer Cell lines

The second dataset used for validation was from RNA-Seq of 4 Breast Cancer
(BRCA) cell lines (BT-474, SK-BR-3, KPL-4 and MCF-7) containing 27 gene

fusions that had already been validated** were downloaded from NCBI

Sequence Read Archive (SRA accession number SRP003186) (Table 3).
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Sample |5 chromosome| 5’ gene |3’ chromosome 3’ gene
KPL-4 9INOTCH1 9INUP214
KPL-4 19|BSG 19INFIX
KPL-4 12|PPP1R12A 2|SEPT10
BT-474 17|ACACA 17|STAC2
BT-474 3|GLB1 3|CMTM7
BT-474 20|VAPB 17]IKZF3
BT-474 20|DIDO1 20|KIAA0406
BT-474 20|CPNE1 20|PI3
BT-474 20|ZMYND8 20|CEP250
BT-474 13|LAMP1 13|MCF2L
BT-474 17|STARD3 20|DOK5
BT-474 17|SKA2 17|MYO19
BT-474 17|RPS6KB1 17|SNF8
BT-474 20|RAB22A 19|{MYO9B
SK-BR-3 3|SUMF1 3|LRRFIP2
SK-BR-3 8|TATDN1 17|GSDMB
SK-BR-3 14|CCDC85C 14|SETD3
SK-BR-3 17|CYTH1 8|EIF3H
SK-BR-3 5|ANKHD1 5|PCDH1
SK-BR-3 20|NFS1 20|PREX1
SK-BR-3 20|CSE1L 20|RP4-791K14.2
SK-BR-3 17|RARA 8|PKIA
SK-BR-3 8|WDR67 8|ZNF704
SK-BR-3 20|DHX35 20|ITCH
MCF-7 20|BCAS4 17|BCAS3
MCF-7 20|ARFGEF2 20|SULF2
MCEF-7 17|RPS6KB1 17|TMEM49

Table 3. List of fusion genes validated by Edgren et al. In 4 BRCA cell lines.
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2.2.3 The Cancer Genome Atlas pan-cancer dataset

Finally we used additional 50bp fastg sequences from 190 pan-cancer samples
from The Cancer Genome Atlas (TCGA)* were downloaded from the NIH
Genomic Data Commons (GDC) Data Portal [http://gdc.nci.nih.gov/], along with
their respective lists of 195 recurrent fusions involving kinases (115 unique)
validated by Stransky et al*® (Table 4).
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GENE1 GENE2 CANCER_TYPE TCGA_ID
SLC34A2 ROS1 Lung adenocarcinoma TCGA-05-4426-01A
R3HDM2 PIP4K2C Glioblastoma multiforme TCGA-06-0174-01A
EGFR SEPT14 Glioblastoma multiforme TCGA-06-0750-01A
TMEM165 |PDGFRA Glioblastoma multiforme TCGA-06-2559-01A
NFASC NTRK1 Glioblastoma multiforme TCGA-06-5411-01A
CEP85L ROS1 Glioblastoma multiforme TCGA-06-5418-01A
WASF2 FGR Ovarian serous cystadenocarcinoma TCGA-09-2054-01A
MAP2K2 INSR Ovarian serous cystadenocarcinoma TCGA-13-1410-01A
DDR1 PAK1 Ovarian serous cystadenocarcinoma TCGA-13-1477-01A
FGFR3 TACC3 Lung squamous cell carcinoma TCGA-22-4607-01A
BAG4 FGFR1 Lung squamous cell carcinoma TCGA-22-5480-01A
ARHGEF18 [INSR Ovarian serous cystadenocarcinoma TCGA-25-2398-01A
FGFR3 TACC3 Glioblastoma multiforme TCGA-27-1835-01A
EGFR SEPT14 Glioblastoma multiforme TCGA-27-1837-01A
EGFR SEPT14 Glioblastoma multiforme TCGA-28-1747-01C
EGFR SEPT14 Glioblastoma multiforme TCGA-28-2513-01A
EGFR SEPT14 Glioblastoma multiforme TCGA-32-5222-01A
ADCY9 PRKCB Lung squamous cell carcinoma TCGA-33-4533-01A
IGF2BP3 PRKCA Lung squamous cell carcinoma TCGA-33-4587-01A
FGFR3 TACC3 Lung squamous cell carcinoma TCGA-39-5024-01A
TANC2 PRKCA Lung squamous cell carcinoma TCGA-43-2581-01A
TECR PKN1 Lung squamous cell carcinoma TCGA-43-7658-01A
CLTC ROS1 Lung adenocarcinoma TCGA-44-2665-01A
CLTC ROS1 Lung adenocarcinoma TCGA-44-2665-01B
CLTC ROS1 Lung adenocarcinoma TCGA-44-2665-11A
EML4 ALK Lung adenocarcinoma TCGA-50-8460-01A
TRIM33 RET Lung adenocarcinoma TCGA-55-6543-01A
EZR ROS1 Lung adenocarcinoma TCGA-55-6986-01A
TRIM24 NTRK2 Lung adenocarcinoma TCGA-55-8091-01A
SLC34A2 ROS1 Lung adenocarcinoma TCGA-62-A46Y-01A
CD74 ROS1 Lung adenocarcinoma TCGA-64-1680-01A
\WASF2 FGR Lung squamous cell carcinoma TCGA-66-2759-01A
FGFR2 CCAR2 Lung squamous cell carcinoma TCGA-66-2765-01A
FGFR3 TACC3 Lung squamous cell carcinoma TCGA-66-2786-01A
EML4 ALK Lung adenocarcinoma TCGA-67-6215-01A
EML4 ALK Lung adenocarcinoma TCGA-67-6216-01A
TUBD1 RPS6KB1 Lung adenocarcinoma TCGA-69-7978-01A
CCDC6 RET Lung adenocarcinoma TCGA-75-6203-01A
FGFR3 TACC3 Glioblastoma multiforme TCGA-76-4925-01A
EML4 ALK Lung adenocarcinoma TCGA-78-7163-01A
SPNS1 PRKCB Lung adenocarcinoma TCGA-83-5908-01A
CD74 ROS1 Lung adenocarcinoma TCGA-86-8278-01A
EML4 ALK Lung adenocarcinoma TCGA-86-A4P8-01A
KIF5B MET Lung adenocarcinoma TCGA-93-A4JN-01A
CAMK2D ANK2 Lung squamous cell carcinoma TCGA-98-A53A-01A
DDX42 RPS6KB1 Breast invasive carcinoma TCGA-A1-AOSN-O1A
TANC2 STRADA Breast invasive carcinoma TCGA-A1-AOSN-01A
SPINT2 PAK1 Breast invasive carcinoma TCGA-A1-A0SQ-01A
FGFR3 TACC3 Kidney renal papillary cell carcinoma TCGA-A4-7287-01A
TECR PKN1 Uterine Corpus Endometrial Carcinoma TCGA-A5-A3LP-01A
XRN1 PIP4K2A Breast invasive carcinoma TCGA-A8-A07C-01A
STK24 PIP5K1B Breast invasive carcinoma TCGA-AC-A5EH-01A
FGFR2 CASP7 Breast invasive carcinoma TCGA-AN-AOAL-01A
ETV6 NTRK3 Breast invasive carcinoma TCGA-AO-A03U-01B
ZNF577 FGFR1 Breast invasive carcinoma TCGA-AR-AOU3-01A
ZNF37A PIP5K1B Breast invasive carcinoma TCGA-AR-A2LL-01A
ERC1 PIK3C2G Breast invasive carcinoma TCGA-B6-A0IG-01A
PAN3 NTRK2 Head and Neck squamous cell carcinoma |TCGA-BB-4223-01A
ANXA4 PKN1 Liver hepatocellular carcinoma TCGA-BC-4072-10A
ATG7 BRAF Skin Cutaneous Melanoma TCGA-BF-AS5EP-01A
RHOT1 FGFR1 Breast invasive carcinoma TCGA-BH-A18U-01A
KIT PDGFRA Breast invasive carcinoma TCGA-BH-A1F0-01A
NAP1L1 STK38L Breast invasive carcinoma TCGA-BH-A1FN-01A
ZNF791 FGFR1 Breast invasive carcinoma TCGA-BH-A209-01A
CCDC6 RET Thyroid carcinoma TCGA-BJ-A0ZJ-01A
CCDC6 RET Thyroid carcinoma TCGA-BJ-A28Z-01A
RAF1 AGGF1 Thyroid carcinoma TCGA-BJ-A2N7-11A
RAF1 AGGF1 Thyroid carcinoma TCGA-BJ-A2N8-11A
FNDC3B PIK3CA Uterine Corpus Endometrial Carcinoma TCGA-BK-A56F-01A
BAIAP2L1 |[MET Kidney renal papillary cell carcinoma TCGA-BQ-7049-01A
FGFR2 TACC2 Stomach adenocarcinoma TCGA-BR-8080-01A
CASZ1 MTOR Stomach adenocarcinoma TCGA-BR-8483-01A
ERC1 RET Breast invasive carcinoma TCGA-C8-A1HJ-01A
TBLIXR1 PIK3CA Breast invasive carcinoma TCGA-C8-A26X-01A
STARD3 STRADA Breast invasive carcinoma TCGA-C8-A275-01A
CPD ERBB2 Stomach adenocarcinoma TCGA-CD-5799-01A
CCDC6 RET Thyroid carcinoma TCGA-CE-A13K-01A
ETV6 NTRK3 Thyroid carcinoma TCGA-CE-A27D-01A
SSBP2 NTRK1 Thyroid carcinoma TCGA-CE-A3MD-01A
TRIM27 RET Thyroid carcinoma TCGA-CE-A481-10A
NCOA4 RET Thyroid carcinoma TCGA-CE-A482-01A
SPECCIL |RET Thyroid carcinoma TCGA-CE-A485-01A
FGFR3 TACC3 Bladder Urothelial Carcinoma TCGA-CF-A3SMF-01A
FGFR3 TACC3 Bladder Urothelial Carcinoma TCGA-CF-ASMG-01A
FGFR3 TACC3 Bladder Urothelial Carcinoma TCGA-CF-A3MH-01A
FGFR3 TACC3 Bladder Urothelial Carcinoma TCGA-CF-A47S-01A
AGGF1 RAF1 Prostate adenocarcinoma TCGA-CH-5737-01A
KDM7A BRAF Prostate adenocarcinoma TCGA-CH-5737-01A
ETV6 NTRK3 Colon adenocarcinoma TCGA-CK-5913-01A
ETV6 NTRK3 Colon adenocarcinoma TCGA-CK-5916-01A
CCDC6 RET Colon adenocarcinoma TCGA-CM-4743-01A
LYN NTRK3 Head and Neck squamous cell carcinoma |TCGA-CN-6997-01A
FGFR3 TACC3 Head and Neck squamous cell carcinoma |TCGA-CR-6473-01A
FGFR3 ELAVL3 Brain Lower Grade Glioma TCGA-CS-6186-01A
FGFR3 TACC3 Head and Neck squamous cell carcinoma |TCGA-CV-7100-01A
KAZN MTOR Uterine Corpus Endometrial Carcinoma TCGA-D1-A3JQ-01A
TAX1BP1 BRAF Skin Cutaneous Melanoma TCGA-D3-A2JC-06A
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GENE1 GENE2 CANCER_TYPE TCGA_ID
FGFR2 CCDC6 Breast invasive carcinoma TCGA-D8-A13Z-01A
ERLIN2 FGFR1 Breast invasive carcinoma TCGA-D8-A1JC-01A
MPRIP RAF1 Skin Cutaneous Melanoma TCGA-D9-A4Z6-06A
AGK BRAF Skin Cutaneous Melanoma TCGA-DA-A1IA-06A
MACF1 BRAF Thyroid carcinoma TCGA-DE-A0Y2-01A
RAF1 AGGF1 Thyroid carcinoma TCGA-DE-A20L-01A
NCOA4 RET Thyroid carcinoma TCGA-DE-A3KN-01A
AGK BRAF Thyroid carcinoma TCGA-DJ-A2PX-01A
CCDC6 RET Thyroid carcinoma TCGA-DJ-A2Q1-01A
RAF1 AGGF1 Thyroid carcinoma TCGA-DJ-A2Q3-01A
RAF1 AGGF1 Thyroid carcinoma TCGA-DJ-A2Q4-01A
RAF1 AGGF1 Thyroid carcinoma TCGA-DJ-A2Q5-01A
STRN ALK Thyroid carcinoma TCGA-DJ-A3US-01A
ETV6 NTRK3 Thyroid carcinoma TCGA-DJ-A3UV-01A
CCDC6 RET Thyroid carcinoma TCGA-DJ-A3V3-01A
IRF2BP2 NTRK1 Thyroid carcinoma TCGA-DJ-A4UP-01A
CCDC6 RET Thyroid carcinoma TCGA-DJ-A4UQ-01A
ETV6 NTRK3 Thyroid carcinoma TCGA-DJ-A4V0-01A
CCDC6 RET Thyroid carcinoma TCGA-DJ-A4V5-01A
MTSS1 ERBB2 Bladder Urothelial Carcinoma TCGA-DK-A216-01A
CCDC6 RET Thyroid carcinoma TCGA-DO-A1JZ-01A
CAMK2D  |ANK2 Brain Lower Grade Glioma TCGA-DU-5855-01A
EGFR SEPT14 Brain Lower Grade Glioma TCGA-DU-6406-01A
WNK1 STK38L Brain Lower Grade Glioma TCGA-DU-7007-01A
PTPRZ1 MET Brain Lower Grade Glioma TCGA-DU-7304-02A
SQSTM1 NTRK2 Brain Lower Grade Glioma TCGA-DU-A76L-10A
TRIO TERT Sarcoma TCGA-DX-A1L3-01A
RAB3B PKN2 Sarcoma TCGA-DX-A23U-01A
TUFT1 PKN2 Sarcoma TCGA-DX-A23U-01A
TRIO TERT Sarcoma TCGA-DX-A2J0-01A
TPM3 NTRK1 Sarcoma TCGA-DX-A3UA-01A
PTARL PIP5K1B Sarcoma TCGA-DX-A48N-01A
SRI PIP4K2C Sarcoma TCGA-DX-A6BH-01A
PDGFRA FIP1L1 LNX1 [Brain Lower Grade Glioma TCGA-E1-A7YI-01A
TBLIXR1 PIK3CA Breast invasive carcinoma TCGA-E2-A14P-01A
ANK1 FGFR1 Breast invasive carcinoma TCGA-E2-A15A-01A
WHSCI1L1 |FGFR1 Breast invasive carcinoma TCGA-E2-A15A-01A
CCDC6 RET Thyroid carcinoma TCGA-E3-A3E0-01A
FGFR3 TACC3 Bladder Urothelial Carcinoma TCGA-E7-A5KE-10A
EML4 ALK Thyroid carcinoma TCGA-E8-A432-01A
ETV6 NTRK3 Thyroid carcinoma TCGA-E8-A438-01A
CCDC6 RET Thyroid carcinoma TCGA-E8-A44M-10A
ETV6 NTRK3 Skin Cutaneous Melanoma TCGA-EB-A51B-01A
LMNA RAF1 Skin Cutaneous Melanoma TCGA-EB-A5SF-01A
TRAK1 RAF1 Skin Cutaneous Melanoma TCGA-EE-A2MI-06A
TBL1XR1 PIK3CA Prostate adenocarcinoma TCGA-EJ-5507-01A
FGFR3 AES Prostate adenocarcinoma TCGA-EJ-A7TNM-01A
CCDC6 RET Thyroid carcinoma TCGA-EL-A3CY-01A
TPM3 NTRK1 Thyroid carcinoma TCGA-EL-A3D4-10A
NCOA4 RET Thyroid carcinoma TCGA-EL-A3H3-01A
AP3B1 BRAF Thyroid carcinoma TCGA-EL-A3T0-01A
ERC1 RET Thyroid carcinoma TCGA-EL-A3T9-01A
CCDC6 RET Thyroid carcinoma TCGA-EL-A3TB-01A
SND1 BRAF Thyroid carcinoma TCGA-EL-A3ZK-01A
ETV6 NTRK3 Thyroid carcinoma TCGA-EL-A3ZN-01A
CCDC6 RET Thyroid carcinoma TCGA-EL-A3ZP-01A
CCDC6 RET Thyroid carcinoma TCGA-EL-A3ZS-01A
GTF2IRD1 |ALK Thyroid carcinoma TCGA-EL-A4KD-01A
RAF1 AGGF1 Thyroid carcinoma TCGA-EM-A1CS-01A
NCOA4 RET Thyroid carcinoma TCGA-EM-A2CU-01A
CCDC6 RET Thyroid carcinoma TCGA-EM-A3AN-O1A
TFG NTRK1 Thyroid carcinoma TCGA-EM-A3AO0-10A
ERC1 RET Thyroid carcinoma TCGA-EM-A3FQ-06A
CLCN6 RAF1 Skin Cutaneous Melanoma TCGA-ER-A19L-06A
WASF2 FGR Skin Cutaneous Melanoma TCGA-ER-A19W-06A
BCL2L11 BRAF Thyroid carcinoma TCGA-ET-A2MX-01A
RBPMS NTRK3 Thyroid carcinoma TCGA-ET-A39L-01A
CCDC6 RET Thyroid carcinoma TCGA-ET-A39R-01A
FAM114A2 [BRAF Thyroid carcinoma TCGA-ET-A3BN-01A
FKBP15 RET Thyroid carcinoma TCGA-ET-A3DQ-01A
CCDC6 RET Thyroid carcinoma TCGA-ET-A3DR-01A
TBL1XR1 RET Thyroid carcinoma TCGA-ET-A40R-01A
SQSTM1 NTRK1 Thyroid carcinoma TCGA-ET-A40S-01A
CCDC6 RET Thyroid carcinoma TCGA-ET-A40T-01A
EFNA3 PIK3C2G Breast invasive carcinoma TCGA-EW-A1PC-01B
TRIM24 BRAF Rectum adenocarcinoma TCGA-F5-6464-01A
SMEK2 ALK Rectum adenocarcinoma TCGA-F5-6864-01A
ETV6 NTRK3 Thyroid carcinoma TCGA-FE-A3PD-01A
FGFR3 TACC3 Brain Lower Grade Glioma TCGA-FG-7643-01A
RIMKLB PIP4K2A Brain Lower Grade Glioma TCGA-FG-8185-01A
TFG MET Thyroid carcinoma TCGA-FK-A3S3-01A
CCDC6 RET Thyroid carcinoma TCGA-FK-A3SE-01A
AKAP13 RET Thyroid carcinoma TCGA-FK-A3SG-01A
CDC27 BRAF Skin Cutaneous Melanoma TCGA-FS-A1ZU-06A
SND1 BRAF Thyroid carcinoma TCGA-FY-A40N-O1A
STRN ALK Kidney renal papillary cell carcinoma |TCGA-G7-6792-01A
C80ORF34 |MET Kidney renal papillary cell carcinoma |TCGA-GL-7773-01A
NARS2 PAK1 Skin Cutaneous Melanoma TCGA-GN-A26D-06A
TPM1 ALK Bladder Urothelial Carcinoma TCGA-GV-A3QG-01A
PAPD7 RAF1 Prostate adenocarcinoma TCGA-HC-8256-01A
AFAP1 NTRK2 Brain Lower Grade Glioma TCGA-HT-7680-01A
GGA2 PRKCB Brain Lower Grade Glioma TCGA-HT-A5RC-01A
MKRN1 BRAF Thyroid carcinoma TCGA-J8-A301-01A
CCDC6 RET Thyroid carcinoma TCGA-J8-A4HW-01A
ERBB2 PPP1R1B Liver hepatocellular carcinoma TCGA-KR-A7K2-01A
ZC3HAV1 |BRAF Thyroid carcinoma TCGA-KS-A4ID-01A
FGFR3 TACC3 Brain Lower Grade Glioma TCGA-P5-A72U-01A
OXR1 MET Liver hepatocellular carcinoma TCGA-RC-A6M6-01A




Table 4. List of recurrent kinase fusions validated by Stransky et al. In 190 pan cancer
TCGA samples.

2.2.4 Normal tissue control dataset

We obtained control transcriptomes derived from the non-diseased tissue of
healthy individuals from the NHGRI GTEx consortium (database version 4).
Representative samples for each tissue and sub-tissue type were selected.
Samples were ordered by RNA Integrity Number (RIN) in descending order and
by the time with which samples were prepared after the patients decease in
ascending order. We excluded samples for which the autolysis score was
greater than 2. Up to 30 samples for each tissue type were then selected from

the sorted list, for a total of 1277 samples from 43 different tissues (Table 5).
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# Samples| Tissue Subtissue
30 Adipose Adipose - Subcutaneous
31 Adipose Adipose - Visceral (Omentum)
30 Adrenal Adrenal Gland
11 Bladder Bladder
30 Blood Cells - EBV-transformed lymphocytes
30 Blood Artery - Aorta
30 Blood Artery - Tibial
30 Blood Whole Blood
43 Blood Artery - Coronary
10 Brain Brain - Amygdala
10 Brain Brain - Cerebellum
10 Brain Brain - Cortex
11 Brain Brain - Anterior cingulate cortex (BA24)
13 Brain Brain - Frontal Cortex (BA9)
13 Brain Brain - Putamen (basal ganglia)
13 Brain Brain - Substantia nigra
14 Brain Brain - Hippocampus
14 Brain Brain - Spinal cord (cenvical c-1)
15 Brain Brain - Cerebellar Hemisphere
17 Brain Brain - Hypothalamus
18 Brain Brain - Caudate (basal ganglia)
18 Brain Brain - Nucleus accumbens (basal ganglia)
30 Breast Breast - Mammary Tissue
4 Cervix Cenix - Endocenvix
6 Cervix Cenvix - Ectocervix
16 Colon Colon - Sigmoid
30 Colon Colon - Transwverse
24 Esophagus Esophagus - Gastroesophageal Junction
30 Esophagus Esophagus - Mucosa
30 Esophagus Esophagus - Muscularis
7 Fallopian Fallopian Tube
30 Heart Heart - Left Ventricle
41 Heart Heart - Atrial Appendage
8 Kidney Kidney - Cortex
35 Liver Liver
30 Lung Lung
30 Muscle Muscle - Skeletal
30 Nerve Nerve - Tibial
39 Ovary Ovary
30 Pancreas Pancreas
23 Pituitary Pituitary
41 Prostate Prostate
6 Salivary Minor Salivary Gland
30 Skin Cells - Transformed fibroblasts
30 Skin Skin - Sun Exposed (Lower leg)
43 Skin Skin - Not Sun Exposed (Suprapubic)
17 Small Small Intestine - Terminal lleum
36 Spleen Spleen
30 Stomach Stomach
30 Testis Testis
30 Thyroid Thyroid
36 Uterus Uterus
34 Vagina Vagina
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Table 5. List of GTEX samples used for Fusion Validator’s normal filtering step stratified

by tissue and subtissue.

2.3 Analysis

2.3.1 Fusion detection analysis

Fusion transcripts for both simulated dataset and BRCA cell lines test set were
detected using Defuse 0.6.2, Chimerascan 0.4.5, STAR-fusion 0.7.0%,
MapSplice 2.1.9 and FusionCatcher 0.99.4d_beta*® with default parameters
and no filtering options activated. Defuse, Chimerascan and STAR-fusion were
also selected to find gene fusion candidates on TCGA pan-cancer dataset.
Gencode Release 19 (GRCh37.p13) was used as reference gene model for all

the alignments.

2.3.2 Statistical analysis

Fusion genes randomly selected in simulated dataset were validated using
Fusion Validator. Positive Predicted Value (PPV), sensitivity, specificity,
accuracy and F-Measure were used to assess the performance of the novel
tool. PPV is defined as the proportion of true positive fusions divided by the
positive calls. Sensitivity is computed as the ratio between true positives events
and the sum of true positives and false negatives, while specificity correspond
to the ratio between true negatives and the sum of true negatives and false
positives. Accuracy represent the proportion of true calls (positives and
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negatives) on the total number of calls and F Measure is calculated as the
harmonic mean of PPV and Sensitivity.

2.4 Fusion Validator workflow

The Fusion Validator workflow consists of 4 different components (Figure 8):

Step 1) Integration of different fusion detection tools and reconstruction of

chimeric transcripts.

Step 2) Removal of non-cancer fusions through local realignment of sequences

from normal tissues on chimeric transcripts.

Step 3) Validation of fusion transcripts through local realignment and de novo

assembly of tumour reads.

Step 4) Annotation of fusions transcripts and ranking score assignment.

31



Step 1

Integration of different
fusion detection tools

Blacklist filter

Reconstruction of chimeric
transcript sequence

Fusion Detection Fusion Detection Fusion Detection Fusion Detection
Tool 1 Tool 2 Tool 3 Tool n )

Extract fusion info
(gene name, strand, breakpoint position)

Preliminary screening

5 Gene

-
N\

* ——
|

Candidate
fusiong

.-

blacklist .

Step 2

Normal tissue 1

Chimeric transcript present in
normal samples

Local realignment of Hotmallissue 2 * _ -

sequences from Normal tissue 3 e

normal tissues _=
Chimeric transcript Step 4

Step 3

Validation through local
realignment on tumour
reads

Tumour Reads
S em

Figure 8. Fusion Validator workflow.

not removed by

Annotation and ranking

u genat e
oG 7e 46 01A Al ForRd Tacza TEiEA o

TCGA Te4BIL0IA 2% SREtE R TERLmE | on
TCGA 704805014 218 WUFTLA T TLFLELA o
1o e apas 1A b7 rarm ThCS TFma | on
TCGA 7o 4508014 60 DRar shoL TUFUSZAs | m
TEDA 704508 014 725 DRER sTame nRmn | on
oA 70 4503014 120 DO ML TS n

Step 1: Chimeric transcript breakpoint coordinates from several fusions or alternative splicing

detection software are merged and annotated using a standardized file format. Each chimeric

transcript sequence around the breakpoint is subsequently reconstructed by extracting a user

defined region length upstream and downstream from the fusion breakpoint.

Step 2: Sequences from user-provided list of normal samples are locally realigned against each

candidate chimeric transcript to remove aberrant junctions present in normal tissues. A blacklist

with the coordinates of each event removed by normal filter is dynamically populated whenever

a new sample is processed.
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Step 3: Reads from the tumour sample are locally realigned against each detected and filtered
chimeric transcript to select sequences spanning the breakpoint as potential candidates to
reconstruct the fusion/skip.

Validation of the breakpoint is performed using the candidate reads and combining both a de
novo assembly and a seed and extend algorithm for scaffold closing.

Additional filtering options are included to remove fusions mapping on homologous or highly
repetitive regions.

Step 4: Chimeric transcripts retained after the validation step are annotated and a ranking

score based on a linear combination of predictor variables is calculated for each event.

2.4.1 Integration of chimeric transcripts detected from multiple tools

The first component of Fusion Validator creates a framework that converts
results from different fusion detection software into a generic file format,
generating a list of aberrant transcript junction sequences for further
processing. First, Fusion Validator collects basic fusion information, like gene
names, breakpoint coordinates and the number of reads supporting the
chimeric event from different fusion or alternative splicing detection tools. A set
of different modules are then used to extract additional chimeric transcript
information from a user defined gene model GTF file, to create a consensus
multi tool output with a standard annotation: The annotation includes
coordinates and strand of the genes that create the chimeric transcript, splice-
donor and splice-acceptor site, gene location and exonic location of the
breakpoints. During the first step, a preliminary optional screening of the fusion
transcripts is also performed to remove read through events, fusions/skips
involving miRNAs, small nucleolar RNAs, ribosomal and mitochondrial genes.
Any fusion transcripts detected by more than one algorithm involving the same
genes with identical breakpoints and orientation, are collapsed into one single

record and noted as having been recurrently found by different software.
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After this initial screening, the multi-tool integration step reconstructs each
chimeric transcript sequence around the breakpoints, extracting and merging a
region upstream from the fusion breakpoint for 5’ gene, and downstream from
the breakpoint for 3’ gene (default length 200bp). The chimeric sequence is
retrieved at the genomic level for breakpoints falling into intronic or
up/downstream regions and at transcriptomic level for exonic breakpoints. If an
exonic breakpoint overlaps different transcript isoforms, the reconstruction
algorithm gives priority to transcripts whose breakpoint is on an exon junction,
and then to the longest length isoforms. Fusion Validator currently supports the
analysis of fusions detected by Defuse, Chimerascan, STAR-Fusion, TopHat-

Fusion, MapSplice, FusionCatcher and exons skips detected by Skippy.

2.4.2 Normal tissues filter

The second component of Fusion Validator is responsible for removing
recurrent transcripts that are also found in normal transcriptomes, using a user
provided list of sequences from RNA-seq of normal tissues. This filtering step
also makes use of a blacklist database of fusions already validated in normal
tissues, that is dynamically updated as well as new samples are processed
through the Fusion Validator pipeline. The list of chimeric transcripts created
after the multi tool integration step is first scanned against the normal blacklist
to remove all the events already found in normal tissues and involving the

same genes with the same strands and breakpoint coordinates.

Then, sequencing reads for each user provided normal tissue are locally
aligned with STAR 2.4.2a against the chimeric transcripts that remain after
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blacklist screening. Every aligned read is considered as a candidate for
supporting the fusion in a normal sample if it spans the breakpoint of the
chimeric transcript with a perfect match and with a minimum overlap
(parameter -e, default = 10 bp). Every chimeric transcript containing a minimum
number of candidate reads (parameter -r , default = 3 reads) for more than 3
normal tissues (parameter -n , default = 3 samples), is discarded and its
breakpoint coordinates dynamically populates the blacklist normal database.
Remaining events not found in normal tissues are selected for further validation

in tumour samples.

Simulated normal filtering steps were run on fusions detected on 5 random
TCGA pan cancer samples of different sizes from Stransky et al., using subsets
with different number of Gtex normal tissue samples, to assess the relationship
between the number of normal samples screened versus the number of fusions
discarded by the normal filter.

Results in Figure 9 show that the number of fusions removed by the normal
filtker rapidly increases when up to 250 normal samples are used. The
distribution curve tends to slightly increases when the list contains over 500
normals, and starts reaching a plateau at approximately 1300 samples. This
amount of normal samples represents the optimal configuration for Fusion
Validator normal filtering module, since adding extra samples provides minimal
benefit in terms of normal fusion removal, while significantly increasing

computational time.
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Figure 9. Distribution of number of fusions removed by Fusion Validator normal filter
varying the number of GTEx normal tissues used for 5 different pan-cancer TCGA
samples.

The number of events classified as present in normal tissues and removed by Fusion
Validator’'s normal filter tends to increase in each of the 5 TCGA samples processed as the
number of GTEx normal tissues used increases. The distribution curve tends to slightly
increase when the list contains over 500 normals, until it reaches a plateau at around 1300
samples.
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2.4.3 Local realignment validation

The third component of Fusion Validator evaluates chimeric transcripts
candidates through a dynamic realignment approach, to distinguish real fusion
or skip events from artifacts. RNA-seq reads from the tumour are locally
aligned in single end against each chimeric transcript retrieved in the previous
step, using STAR 2.4.2a. All the reads aligning on each chimeric transcript are
extracted using samtools and selected as potential candidates to attempt to
reconstruct the sequence spanning the breakpoint and validate the fusion/skip.
Validation of the breakpoint is performed using the candidates reads and
combining both a de novo assembly and a seed and extend algorithm for
scaffold closing (Figure 10). De novo assembly of candidate reads is performed
using Abyss 1.9.0*° with iteration steps for different kmer size. Contigs
generated by Abyss are then compared with the reconstructed chimeric
transcript using BLAST. Fusions/skips are considered validated if at least one
de novo assembled contig spans the breakpoint of the chimeric transcript, with

at least 3 bp overlap and with maximum 1 mismatch.

The second approach used for validating the aberrant transcripts creates an
artificial 5 base gap around the chimeric transcript breakpoint (the base on the
breakpoint and the 2 bases at 5’ and 3’ of the breakpoint are replaced with Ns),
and uses Gapfiller software® to try to close the artificially created scaffold
between the two genes involved in a fusion, or the two exons involved in a skip.
In brief, reads previously selected as potential candidates for chimeric
transcript reconstruction are used as input sequences for Gapfiller and aligned
against the artificial scaffolds for each fusion/skip using Bowtie** (for reads
lower than 50 bp) or the Burrows-Wheeler Aligner (BWA)> (for reads longer
than 50bp). Reads aligned on scaffold sequences are then split into shorter k-
mers and used to iteratively fill the created gap, from the left and right edge,
one nucleotide at a time. The k-mer size is selected as 85% of the length of the
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reads; This size was tested on different Gapfiller runs on simulated and real
datasets and was the one which ensured the best compromise between
coverage and accuracy in gap closing. Every nucleotide incorporated step by
step by Gapfiller is considered to fill a base gap if is covered by at least 2 k-mer
sequences. After filling all the gapped bases, the scaffold can be considered
closed and the chimeric transcript validated if an overlap of minimum 3 bp can
be found in both left and right extension and the difference between the final
length of the gapclosed sequence and the length of the original scaffold is not
higher than 1 bp. Chimeric transcripts successful reconstructed and confirmed
by de novo assembly or gap filling approach are flagged in the final output as
validated.

| 5 Gene | 3’ Gene
+ Chimeric transcript reconstruction

== == Single end reads realignment on
- — — chimeric transcript

Candidate reads selection

ABYSS de novo assembly / \ Gapfiller realignment

— — — —
— —
— —
-—
5' Gene 3'Gene T Gene ¥ Gene
1 Chimeric transeript ATGCCCTGATCGAGCTAGCTTTGCGAATCGATCCGATGCTAATGGGT
5 bp scaffold ATGCCCTGATCGAGCNNNNNNNGCGAATCGATCCGATGCTARTGGGT
ATGCCCTGATCGAGCT
ATGCCCTGATCGAGCTA
TGCGAATCGATCCGATGCTAATGGGT
Reads realignment TTGCGRATCGATCCGATGCTAATGGET
for gap closure ATGCCCTGATCGAGCTAG
GCTTTGCGRATCGATC CGATGCTARTGGGT
de novo assembled contigs ATGCCCTGATCGAGCTAGCTTT
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Figure 10. Schematic representation of chimeric transcript’s breakpoint validation.
Tumour reads are realigned in single end on each reconstructed chimeric transcript and only
sequences spanning the breakpoint are selected as candidate reads.

Using a de novo assembly approach (ABYSS), a contig generated by candidate reads
reassembly is eligible to validate the chimeric transcript if it spans the breakpoint of the
chimeric sequence, with at least 3 bp overlap and with maximum 1 mismatch.

Using a seed and extend alignment approach (Gapfiller), a chimeric transcript is validated if the
candidate reads can close and extend, for minimum 3bp in both 5’ and 3’ direction, an artificial

5bp scaffold around the chimeric sequence breakpoint.

2.4.4 Genomic realignment validation

Additional filtering options are included only for fusion genes validation to
remove chimeric transcripts with sequence similarity between two regions
around the breakpoint, or with other locations in the genome, as well as
transcripts with breakpoint located in highly repetitive regions (Figure 11).

During this step, previously reconstructed fusion transcript sequences are
aligned to the reference genome using BLAST, with DUST filtering for low

complexity regions activated.

Chimeric transcripts that realign in genomic regions of low complexity are
flagged by Fusion Validator as “low complexity regions”. Then, for every
analyzed transcript, if the sequence spanning the breakpoint aligns with more
than 50bp and with 100% identity to other locations in the genome, the chimeric
candidate is considered as a misalignment due to high level of homology
between regions and reported by Fusion Validator with the flag “homologous
region”. As final step, for every BLAST alignment spanning the breakpoint of a
chimeric transcript, the difference between the end of the 5 gene alignment

and the breakpoint position and the difference between the start of 3’ gene
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alignment and the breakpoint position is computed. If the maximum of the two
differences is higher than 5 bases with identity greater than 99%, there is a
high similarity between the regions of the two genes surrounding the breakpoint
and the fusion transcript is flagged as “similarity between genes” by Fusion
Validator. The genomic realignment filter can be used to remove fusions
involving pseudogenes or solve conflicts between genes with different

rearrangements (so called promiscuous genes).

5" Gene 3’ Gene A
I I
I L

Genomic filter passed

5" Gene 3’ Gene B

I -_
/

Similarity between genes filter

5" Gene 3’ Gene C

Homologous region filter
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Figure 11. Additional Fusion Validator filter based on sequence similarity on the genome.
Realignment of candidate fusion against the genome:

a) Fusion candidate passing the genome realignment filter

b) Fusion candidate with high similarity between the regions of the two genes surrounding the
breakpoint

¢) Fusion candidate aligning in multiple regions with high level of homology.

2.4.5 Annotation and ranking

The last component of Fusion Validator annotates each chimeric transcript
retained after the validation step and calculates a score that is used to rank the
final list of validated events. The ranking score is the result of a function based
on a linear combination of predictor variables that best discriminate between
cancer-driver validated events and false positives. The predictor variables of
the function and their relative coefficients were generated using a linear
discriminant analysis function as a training set on the 115 validated kinase

fusions from 191 pan-cancer TCGA samples described above.

The list of annotation variables used to compute the ranking score, summarized
in Table 6, are:

- Total number of reads supporting the fusion: Include mate pairs that harbour a
fusion junction in the insert sequence (span reads) and pairs that harbour the
fusion junction in one of the two reads (split reads).

- Breakpoint coverage: Corresponds to the number of reads locally aligning on
the region 5bp upstream from the fusion breakpoint for 5 gene, and 5bp
downstream from the breakpoint for 3' gene of the chimeric transcript. Reads
that are not a primary alignment and have more than 4 mismatches are

excluded from counting.
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- 3'/5" imbalance ratio: Is a measure of the read orientation distribution around
the fusion transcript breakpoint and is calculated by subtracting the number of
3’ reads to the number of 5’ reads spanning the chimeric transcript breakpoint,
and dividing the result by the breakpoint coverage. 3'/5’ imbalance ratio range
from -1 (all the sequences spanning the breakpoint are 3’ reads) , to +1 (all the
sequences spanning the breakpoint are 5 reads). Values closer to the
extremity of this interval are more likely to be artifacts caused by sequencing
errors.

- Gene location: The location of the breakpoints for both the genes involved in
the fusion. (intronic, up/downstream, exonic or coding sequence).

- Exonic location: The location of the breakpoint in the exons of the fusions
(inside, outside or at start or end of an exon).

- Fusion recurrence in solid tumours: Annotation step check if the genes
involved in the fusion are present in the Catalogue Of Somatic Mutation In
Cancer (COSMIC) [Forbes] fusion database version 77 for GRCh37.

- Donor/acceptor site: The splice pattern on the fusion junction. The major
canonical splice pattern GT-AG is most likely to be preserved in true fusion
than the minor canonical ones (GC-AG and AT-AC) or the non-canonical (any
other combination of dinucleotides).

- Number of different fusion finder tools that have identified the chimeric
transcript: Recurrent driver events are usually detected by multiple fusion
detection software tools.

- Fusion orientation: Indicates the strand of the fusion junction for the first and
second gene involved in the fusion. Fusions with both genes on the same
orientation are most likely to be true.

- Reading frame: Predicted effect of the fusion estimated using Gene
Rearrangement AnalySiS (GRASS) tool [https://github.com/cancerit/grass].
Different reading frame predictions include frameshift fusions, in frame fusions,
stop codon formed at breakpoint junction, UTR to UTR fusions, intronic or

ambiguous events.
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- Number of contigs generated by de novo reconstruction of the chimeric
transcript: A high number of contigs generated by de novo assembly is due to
the alignment of a large number of candidate reads with mismatches or multiple
alignments. High number of de novo contigs increase the probability of a fusion
transcript to be an artifact.

- Maximum percentage of chimeric transcript reconstructed by de novo aligned
contigs: It's calculated for each chimeric transcript sequence as the length of
the longest de novo aligned contig spanning the breakpoint junction divided by
the total length of the reference chimeric transcript. A high percentage of
reconstructed chimeric transcript increases the probability of a fusion to be
classified as a true positive event.

- Maximum overlap around the breakpoint for de novo aligned contigs: It is
calculated as the maximum difference between the end of a contig and the
chimeric transcript breakpoint position, if the contig overlaps mostly on 5’ gene,
and as the maximum difference between the start of a contig and the
breakpoint position, in the opposite case. A longer overlap around the
breakpoint increases confidence in the validation of a fusion event.

- Maximum percentage of chimeric transcript reconstructed by de novo aligned
contigs: It's calculated for each chimeric transcript sequence as the length of
the longest de novo aligned contig spanning the breakpoint junction divided by
the total length of the reference chimeric transcript. High percentage of
reconstructed chimeric transcript increase the probability of a fusion to be
classified as a true positive event.

- Maximum overlap around the breakpoint for de novo aligned contigs: It is
calculated as the maximum difference between the end of a contig and the
chimeric transcript breakpoint position, if the contig overlap mostly on 5’ gene,
and as the maximum difference between the start of a contig and the
breakpoint position, in the opposite case. The longer is the overlap around the

breakpoint the more reliable is the validation of a fusion event
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Cancer Genes No genes in COSMIC At least 1 gene in COSMIC Both genes in
census census COSMIC census
Breakpoint location intron/intron coding/intron coding/coding
In[ron;lﬂr_ coding/utr
I}?B[%su doumstr gam coding/up-downstream
Hf)r}u?rwns ream/utr
Strand +f- il
-1+ -/~
Frame Frameshift In Frame
Undefined
NULL
Splice pattern Non canonical Canonical
GT-AG, GC-AG, AT-AC
Supporting reads <=3 3<X<15 >=15

Breakpoint exonic location

No splice junction

On splice junction

Coverage around
breakpoint

Coverage = 0

Coverage >0

3'/5’ Imbalance ratio

Ratio <=-0.9 or >=0.9

-0.9 < Ratio < 0.9

Supporting de novo >250 <=250
contigs

Maximum de novo <15bp >=15bp
breakpoint extension

% de novo reconstructed <15% >=15%

transcript

Table 6. List of annotation variables used for ranking score prediction and relative

categories.
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2.5 Determining the accuracy of Fusion Validator using

simulated datasets

2.5.1 Established fusion detection tools perform differently in simulated
datasets

The performance of Fusion Validator in terms of sensitivity and PPV, compared
to other fusion detection software, was assessed using a total of 48 simulated
datasets with different coverages (25X, 50X, 100X, 200X, 300X and 400X),
read lengths (50bp, 75bp, 100bp and 125bp) and breakpoint positions (intact or
broken exons). Our comparison of different fusion detection tools demonstrated
that most had widely varying performance for different breakpoint position. The
only exception was defuse, which had an average sensitivity of 95.97% for IE
and 96.45% for BE and an average PPV of 40.95% for IE and 41.57% for BE.

FusionCatcher, Mapsplice and STAR-fusion had higher sensitivity for BE
fusions than IE (79.16% vs 57.42% for FusionCatcher, 83.52% vs 65.35% for
MapSplice and 95.89% vs 84.79% for STAR-fusion). However, while
FusionCatcher and Mapsplice demonstrate higher average PPV in BE datasets
compared to IE (48.02% in BE fusions vs 44.07% in IE for FusionCatcher and
80.45% in BE fusions vs 76.50% in IE for MapSplice), STAR-fusion presents
an opposite trend with an average PPV of 61.21% for IE fusions and 56.05%
for BE ones. Chimerascan on the other hand has a significantly higher
sensitivity and PPV in IE fusions compared to BE fusions (average sensitivity
88.05% in IE fusions vs 53.25% in BE and average PPV of 53.88% in IE vs
44.71% in IE) (Figure 12, Tables 7).
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Figure 12. Fusion transcript detection results for broken and intact exon’s synthetic
datasets.

Boxplots show the distribution of Sensitivity (A, B) and PPV (C, D) in 24 broken exons (A, C)
and 24 intact exons (B, D) datasets for 5 different fusion detection softwares (Defuse,

Chimerascan, STAR-fusion, MapSplice and FusionCatcher) and for the multi-tools approach
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Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity Ppv : Ppv .
Samle defuse chimerascan starfusion fusioncatcher mapsplice (P Glefizee chimerascan Bpysariuson fusioncatcher Bpyimapselice
IE_25X_50bp 95 87.2 83.3 36.7 44.3 48.5934 54.2626 71.0145 64.3860 90.9651
IE_25X_75bp 94.9 87.4 87.7 53.1 50.9 51.8863 53.9839 74.4482 52.4186 84.9750
IE_25X 100bp 94.4 87.3 87.9 51.9 52.6 50.8347 53.6241 74.1772 51.3353 85.6678
IE_25X 125bp 92.8 86.5 85.8 54.6 47.9 50.7381 52.9700 74.4146 42.9583 86.1511
IE_50X_50bp 95.1 87.8 90.4 48.4 52.9 43.9667 57.3856 63.6172 68.0731 89.3581
IE_50X_75bp 95.2 87.7 88.4 56.9 63.4 46.7125 53.4105 68.4741 48.1387 83.6412
IE_50X_100bp 94.8 87.1 87.1 55.7 63.9 47.7101 52.9483 68.7451 47.0837 83.2031
IE_50X_125bp 95.5 87.3 86.1 59.7 61.5 48.9744 52.9412 69.3237 39.1219 85.4167
IE_100X _50bp 97 88.2 89.8 51.1 56.7 38.7380 56.0356 58.1230 67.5033 83.8757
IE_100X_75bp 96.1 87.9 85.7 59.8 72.1 47.1541 56.2740 63.1075 43.7775 80.2895
IE_100X_100bp 96 88 85.2 58.9 71.3 48.3140 53.4629 64.7909 41.7434 77.7535
IE_100X_125bp 95.7 87.8 83.7 63.2 69.4 44.0000 53.5692 65.1869 34.6491 78.0652
IE_200X 50bp 96.5 88.7 86.1 51.6 58.4 32.7785 54.9907 53.5781 63.3907 75.3548
IE_200X_75bp 96.4 88.6 82.2 61.1 75.8 41.3202 54.9287 58.0508 37.2561 70.4461
IE_200X_100bp 96.6 88.1 81.3 61.2 75.7 43.2990 54.4499 60.3116 35.5194 72.0266
IE_200X_125bp 96.5 88.4 84.6 65.7 73.2 38.8330 52.2459 60.5634 29.6748 73.0539
IE_300X 50bp 96.9 89 80.2 52.3 59.2 29.3993 54.0049 51.1178 60.3230 68.5979
IE_300X_75bp 97 88.6 82.2 62.3 76.4 35.6225 53.9257 53.2183 32.8760 65.4670
IE_300X_100bp 96.7 88.6 82.6 61.9 77.4 37.3792 53.6970 55.4656 31.1525 69.5418
IE_300X_125bp 96.7 88.2 82.4 66.3 75 35.5645 52.8460 57.3611 26.6479 70.0280
IE_400X_50bp 97.3 88.6 81 52.2 59.6 26.1068 52.6128 48.3852 55.6503 64.1550
IE_400X_75bp 97.2 88.8 82.6 63.7 76.9 29.7157 52.9833 50.7519 30.4931 63.6589
IE_400X_100bp 96.6 88.8 84.3 62.6 78.2 31.7450 52.9517 51.3682 28.4934 67.3557
IE_400X_125bp 96.6 88.5 84.4 67.1 75.7 33.4256 52.6472 53.4898 25.0935 66.8728
BE_25X 50bp 95.5 57.7 82.3 56.6 76 49.1508 46.3454 69.4515 72.9381 93.7115
BE_25X 75bp 94.6 56.4 93.1 79.2 78.6 50.2924 44.9045 68.0058 63.3094 89.6237
BE_25X 100bp 95.2 54.4 93.6 77.3 78.7 51.0730 43.6948 66.8094 61.4467 89.8402
BE_25X 125bp 94.7 51.8 92.8 73.9 75.3 51.1892 42.5987 66.0498 51.3194 90.8323
BE_50X 50bp 96 54.9 93.2 74.5 79.8 44.7970 47.3276 60.8355 74.2772 91.3043
BE_50X_75bp 95.8 56.1 96.1 81.1 83.7 47.4727 44.4181 62.4431 59.7202 88.4778
BE_50X_100bp 96.5 55.1 96.7 80.3 84.3 48.8608 43.8345 62.0269 58.3152 88.6435
BE_50X _125bp 95.7 53.2 97.3 78.7 83.5 49.2284 43.3931 62.2521 45.4388 89.8816
BE_100X_50bp 96.5 52.8 96.5 77.8 82.1 41.8655 47.9129 56.2682 72.7103 85.2544
BE_100X_75bp 96.4 52.6 96.9 82.3 85.2 42.9207 46.6312 59.1214/ 51.3733 82.2394
BE_100X_100bp 96.4 54.6 96.7 81.5 85.9 44.2202 43.4022 59.7651 49.6648 85.6431
BE_100X_125bp 96.5 53.3 97.2 80.7 85.4 45.6481 43.1929 59.5588 37.3093 87.5000
BE_200X _50bp 97 52.7 97.2 78.6 83.2 35.2856 46.3093 52.2300 67.7586 72.5371
BE_200X_75bp 96.9 51.8 97.3 82.8 85.9 38.4524 46.0444 54.5098 39.5415 75.0218
BE_200X_100bp 97.3 51.5] 97.6 82.1 86.2 40.3065 45.3744 54.8007 36.9321 81.3208
BE_200X_125bp 96.4 53.2 96.7 81.3 86.3 40.6580 42.9032 53.9320 29.0461 83.1407
BE_300X_50bp 97.2 52.4 97.4 78.7 83.3 32.0792 46.1674 49.7701 61.1975 64.9766
BE_300X_75bp 97.5 52 97.4 82.8 85.8 35.1098 45.1781 50.1287 32.5472 70.2128
BE_300X_100bp 96.4 51.7 97.6 82.4 86.5 36.7518 44.4923 48.7756 30.0950 76.2787
BE_300X_125bp 97.1 51.8 97.1 81.6 86.4 38.5624 42.5287 48.2365 24.8856 77.9080
BE_400X_50bp 97.3 52.7 97.5 78.8 83.2 29.7645 44.8129 47.3991 55.3371 59.0909
BE_400X_75bp 97.4 52.2 97.7 82.9 86 32.7395 44.5392 45.7611 27.9031 66.8221
BE_400X_100bp 97.4 51.5 97.8 82.4 86.7 34.7485 43.9795 43.8368 26.6408 69.3046
BE_400X_125bp 97.1 51.5 97.8 81.6 86.5 36.6001 42.9525 43.3127 22.7933 71.1934
average_IE 95.97916667 88.04583333 84.79166667 57.41666667 65.35 40.95047705 53.88132647 61.2118566 44.07331377 76.4966937
average_BE 96.45 53.24583333 95.89583333 79.1625 83.52083333 41.57403773 44.70574474 56.05336742 48.02085607 80.44829716

Table 7. Distribution of Sensitivity, and PPV for fusion detected by 5 different softwares

on 48 synthetic datasets.

The probability of detecting a true fusion increased with the increment of the

sequencing coverage for all the software, except for STAR-fusion and

Chimerascan. However, adding more reads to the simulated dataset tended to

inflate the number of false positive events, penalizing the PPV: This trend is

observed for all the fusion detection tools, with the exception of Chimerascan,

in which the PPV appear to be constant for each sequencing coverage (Figure

13).
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With regards to the performance of different fusion detection software for
datasets of different read length, no particular improvement in term of
sensitivity was found for the inspected tools, varying the sequence length under
fixed coverage. The only exception is represented by MapSplice and
FusionCatcher, that show a very poor performance in term of sensitivity for
datasets with reads of 50bp compared to the other lengths, particularly for IE
datasets. The impact of different read lengths on the number of extra calls and,
consequently, on the PPV depends on different software, breakpoint position
and coverage. Tools like Defuse, for example, tend to increase the number of
extra calls (and decrease the PPV), when the length of the reads decrease, in
both IE and BE samples. The same trend is observed in STAR-fusion for IE
samples and MapSplice for BE samples with coverage greater than 100X
(Figure 13). FusionCatcher, on the other hand, shows a significantly higher
PPV for shorter reads (50bp) and a progressive decrease of PPV when the
read length increase. No particular changes in PPV values for different read

length were found in Chimerascan.
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Figure 13. Sensitivity and PPV distribution for fusion transcript detected by different

software on synthetic datasets of different coverage, read length and breakpoint

position.

Each row shows the results for 5 different fusion detection softwares (Defuse, Chimerascan,

STAR-fusion, MapSplice and FusionCatcher) and for the multi-tool approach used by Fusion

Validator. The 4 columns of the plot panel measure distribution of Sensitivity in broken and

intact exons and PPV in broken and intact exons database respectively.

X-axis shows the trend of each distribution for different read coverage.

Read lengths are represented with different colors (red for 50bp, yellow for 75bp, green for
100bp and blue for 125bp).
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2.5.2 Fusion Validator maintains high accuracy across a range of sequence
coverage and read lengths

Using our multi-tool integrated approach implemented in Fusion Validator,
chimeric transcripts detected by the 5 different fusion detection algorithms
tested were merged into a single output. The multi-tools approach successfully
identified an average of 99.58% of the fusions for the IE datasets and an
average of 99.65% for those in the BE group, with sensitivity values quite
constant across different read length and coverage datasets. Combining results
from different fusion finding algorithms, however, tends to increase the number
of false positive events. This can be seen from the PPV distribution, the
average values of which is lower than any single software evaluated (average
PPV 31.84% for IE and 32.21% for BE fusions). Average PPV for the multi-tool
approach slightly decreases when the coverage increases for both BE and IE
datasets and slightly increases for read length increases in BE and IE datasets
with coverage greater than 100X (Table 8 and Figure 13). These results
demonstrate that the multi-tool approach adopted by Fusion Validator can
perform optimally for short reads and low coverage sequencing, as an increase
in terms of coverage and read length does not bring any benefit on number of

true fusions and extra calls detected.

The validation performed by Fusion Validator’s local realignment step, on fusion
transcripts detected by 5 different software, significantly reduced the number of
false positive fusion calls by half in all the simulated datasets, increasing the
average PPV to 66.01% for IE and 64.56% for BE subsamples, and
maintaining a very high average sensitivity (94.79% and 96.75% for IE and BE
respectively), specificity (77.20% and 74.71% for IE and BE respectively) and
accuracy (82.78% and 81.75% for IE and BE respectively) (Table 9).
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Eyson Fuson Fusion tools| Sensitivity | Ppv fusion F_measure
Sample tools tools not i i
extra calls |fusion tools tools fusion_tools
detected detected

IE_25X 50bp 995 5 1823 99.5 35.3087 52.1215
IE_25X _75bp 995 5 1775 99.5 35.9206 52.7851
IE_25X_100bp 993 7 1766 99.3 35.9913 52.8332
IE_25X _125bp 988 12 1774 98.8 35.7712 52.5253
IE_50X_50bp 995 5 1941 99.5 33.8896 50.5589
IE_50X_75bp 995 5 1934 99.5 33.9706 50.6490
IE_50X_100bp 995 5 1937 99.5 33.9359 50.6104
IE_50X_125bp 995 5 1896 99.5 34.4172 51.1437
IE_100X 50bp 996 4 2184 99.6 31.3208 47.6555
IE_100X 75bp 996 4 2040 99.6 32.8063 49.3558
IE_100X_100bp 995 5 2066 99.5 32.5057 49.0027
IE_100X_125bp 995 5 1998 99.5 33.2442 49.8372
IE_200X 50bp 998 2 2409 99.8 29.2926 45.2916
IE_200X_75bp 997 3 2281 99.7 30.4149 46.6106
IE_200X_100bp 997 3 2181 99.7 31.3719 47.7262
IE_200X_125bp 996 4 2168 99.6 31.4791 47.8386
IE_300X 50bp 998 2 2552 99.8 28.1127 43.8681
IE_300X_75bp 997 3 2427 99.7 29.1180 45.0723
IE_300X_100bp 997 3 2279 99.7 30.4335 46.6324
IE_300X_125hp 996 4 2251 99.6 30.6745 46.9037
IE_400X _50bp 998 2 2736 99.8 26.7274 42.1631
IE_400X _75bp 997 3 2542 99.7 28.1718 43.9304
IE_400X_100bp 997 3 2405 99.7 29.3063 45.2976
IE_400X_125bp 997 3 2322 99.7 30.0392 46.1681
BE_25X 50bp 995 5 1884 99.5 34.5606 51.3019
BE_25X 75bp 996 4 1884 99.6 34.5833 51.3402
BE_25X 100bp 992 8 1892 99.2 34.3967 51.0814
BE_25X 125bp 990 10 1867 99 34.6517 51.3352
BE_50X_50bp 994 6 1968 99.4 33.5584 50.1767
BE_50X_75bp 998 2 1957 99.8 33.7733 50.4678
BE_50X_100bp 994 6 1964 99.4 33.6038 50.2274
BE_50X_125bp 994 6 1950 99.4 33.7636 50.4057
BE_100X 50bp 996 4 2083 99.6 32.3482 48.8355
BE_100X_75bp 998 2 1977 99.8 33.5462 50.2138
BE_100X_100bp 997 3 2050 99.7 32.7207 49.2711
BE_100X_125bp 997 3 2013 99.7 33.1229 49.7257
BE_200X _50bp 999 1 2313 99.9 30.1630 46.3358
BE_200X_75bp 998 2 2126 99.8 31.9462 48.3996
BE_200X_100bp 998 2 2064 99.8 32.5931 49.1384
BE_200X_125bp 996 4 2152 99.6 31.6391 48.0231
BE_300X 50bp 998 2 2469 99.8 28.7857 44.6832
BE_300X_75bp 998 2 2229 99.8 30.9266 47.2203
BE_300X_100bp 998 2 2175 99.8 31.4529 47.8313
BE_300X_125bp 998 2 2183 99.8 31.3738 47.7398
BE_400X 50bp 997 3 2585 99.7 27.8336 43.5181
BE_400X_75bp 998 2 2342 99.8 29.8802 45.9908
BE_400X_100bp 997 3 2255 99.7 30.6581 46.8956
BE_400X_125bp 999 1 2215 99.9 31.0828 47.4134
average_|E 995.75 4.25 2153.625 99.575| 31.84266476| 48.19087403
average_BE 996.458333| 3.54166667| 2108.208333| 99.6458333| 32.20685319| 48.64881707

Table 8. Distribution of Sensitivity, PPV and F-measure for Fusion Validator multi-tool

approach on 48 synthetic datasets.
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Sample Ppv Sensitivity Specificity Accuracy F_measure
validator Validator Validator Validator Validator
IE_25X 50bp 74.0770 94.7739 81.8482 86.2669 83.1570
IE_25X 75bp 70.4733 94.2714 77.4397 82.5632 80.6535
IE_25X 100bp 72.4138 90.9366 80.4989 84.1972 80.6250
IE_25X 125bp 72.3748 90.6883 81.2910 86.2419 80.5031
IE_50X 50bp 70.9941 96.1809 79.8141 85.2520 81.6901
IE_50X 75bp 68.3644 95.7789 76.8382 82.4855 79.7823
IE_50X_100bp 70.1368 92.7638 79.7004 84.1064 79.8788
IE_50X _125bp 71.2519 92.6633 80.7653 85.9218 80.5592
IE_100X 50bp 67.2498 96.4859 78.7176 84.6541 79.2577
IE_100X 75bp 65.6797 97.9920 74.2684 80.6324 78.6463
IE_100X 100bp 69.2598 92.1608 80.1850 83.7635 79.0858
IE_100X 125bp 68.2504 90.9548 79.6225 85.1988 77.9836
IE_200X 50bp 61.4997 97.7956 74.6473 81.4500 75.5126
IE_200X _75bp 60.9619 97.8937 71.8468 78.4320 75.1347
IE_200X _100bp 65.5914 91.7753 78.0421 82.4733 76.5050
IE_200X_125bp 67.7229 92.2691 80.3587 85.6827 78.1130
IE_300X 50bp 59.6119 98.4970 73.9233 80.8732 74.2728
IE_300X_75bp 57.5439 98.6961 69.4058 76.8400 72.7004
IE_300X_100bp 64.3599 93.2798 77.4518 82.3871 76.1671
IE_300X_125bp 66.3824 93.7751 79.4258 85.0015 77.7362
IE_400X 50bp 56.5842 98.5972 72.4251 79.4590 71.9035
IE_400X _75bp 55.8390 98.7964 68.6771 76.0949 71.3510
IE_400X _100bp 62.2907 93.2798 76.7163 81.8636 74.6988
IE_400X 125bp 65.3953 94.5838 78.9983 84.9654 77.3268
BE_25X 50bp 72.4368 97.9899 80.3079 86.4189 83.2977
BE_25X 75bp 68.8421 98.4940 76.4331 84.0625 81.0409
BE_25X 100bp 70.0893 94.9597 78.7526 84.3273 80.6507
BE_25X 125bp 70.8995 94.7475 79.3787 84.7042 81.1068
BE_50X 50bp 69.1114 98.5915 77.7439 84.7400 81.2604
BE_50X_75bp 67.8596 98.7976 76.1369 83.7902 80.4570
BE_50X_100bp 68.6063 96.0765 77.7495 83.9080 80.0503
BE_50X_125bp 69.1691 95.4728 78.3077 84.1033 80.2198
BE_100X 50bp 64.3461 99.2972 73.6918 81.9747 78.0892
BE_100X 75bp 64.6714 99.5992 72.5341 81.6134 78.4221
BE_100X_100bp 67.0723 93.9819 77.5610 82.9340 78.2790
BE_100X_125bp 67.0066 92.2768 77.4963 82.3920 77.6371
BE_200X 50bp 61.2585 99.3994 72.8491 80.8575 75.8015
BE_200X 75bp 60.7186 99.8998 69.6613 79.3214 75.5303
BE_200X_100bp 63.8167 93.4870 74.3702 80.6009 75.8537
BE_200X 125bp 65.9957 92.1687 78.0204 82.4968 76.9166
BE_300X 50bp 58.2598 99.2986 71.2434 79.3193 73.4346
BE_300X 75bp 58.2746 99.4990 68.1023 77.8122 73.5011
BE_300X_100bp 61.6037 94.6894 72.9195 79.7668 74.6445
BE_300X _125bp 62.8859 93.8878 74.6679 80.6979 75.3215
BE_400X 50bp 56.1265 99.4995 69.9187 78.1686 71.7690
BE_400X 75bp 57.3241 99.5992 68.4031 77.7246 72.7672
BE_400X_100bp 60.8142 95.8877 72.6829 79.7970 74.4258
BE_400X_125bp 62.1622 94.3944 74.0858 80.3983 74.9603
average_|E 66.01287068| 94.78705568 77.20449662| 82.78359092| 77.63518196
average BE 64.55629669| 96.74979308 74.70909081| 81.74708031| 77.30988154
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Table 9. Distribution of Sensitivity, PPV, Specificity, Accuracy and F-measure for Fusion

Validator on 48 synthetic datasets.

When comparing the performance of Fusion Validator across subsamples of
different coverage and read length, a slight increase in sensitivity can be
observed for each coverage increment in both IE and BE datasets, with 50bp
and 75bp sequences showing higher sensitivity than 100bp and 125bp
datasets. This difference is due to the method used to subsample different
simulated datasets, as, for fixed coverage, an increase in read length
decreases the total number of reads in the dataset and, consequently, the
number of candidate reads used by Fusion Validator to reconstruct the chimeric
transcript. The average sensitivity of Fusion Validator for shorter reads datasets
tends to converge to the one calculated for longer reads samples when there is
an increase in coverage (Figure 14). In contrast to what happens to the
sensitivity, PPV and specificity for Fusion Validator tends to decrease slightly
for each increment of coverage, with longer sequences showing better PPV
and specificity than the shorter ones in both IE and BE datasets. Accuracy for
Fusion Validator appear to be constant across samples of different coverage,
as a result of a balance between the increase of TP events and sensitivity and
the decrease of TN and specificity related to the increase of read coverage.

The overall constant accuracy across different datasets makes Fusion Validator
an ideal tool with a good combination of sensitivity and specificity, that can

perform extremely well also with short reads and coverage under 100X.
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Figure 14. Sensitivity, PPV, Specificity and Accuracy distribution for Fusion Validator on
synthetic datasets of different coverage, read length and breakpoint position.

The rows of the plot panel shows distribution of Sensitivity, PPV, Specificity and Accuracy.

The columns of the panel measure distribution of different metrics in broken and intact exons
database respectively.

X-axis shows the trend of each distribution for different read coverage.

Read lengths are represented with different colors (red for 50bp, yellow for 75bp, green for
100bp and blue for 125bp).
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2.5.3 Fusion Validator demonstrates a better combination of sensitivity and
precision compared to other fusion detection tools

Fusion Validator showed the best average sensitivity among different fusion
detection tools in BE datasets and the second best after Defuse in IE subsets,
with only a 1.19% difference in average sensitivity (94.79% for Fusion Validator
vs 95.98% for Defuse). Fusion Validator was the second best performer in
terms of average PPV for both IE and BE dataset, after MapSplice (66.01% vs
76.50% in IE datasets and 64.50% vs 80.45% in BE datasets for Fusion
Validator and MapSplice respectively). However, MapSplice was able to detect
only an average of 65.35% of known fusions for IE subsets and an average of
83.52% for BE, with large range of variability among different coverage and
read length datasets (Figure 15A-B).

To compare the overall performance of Fusion Validator with results from other
fusion detection software, the F measure was calculated for each simulated
dataset to summarize sensitivity and PPV with a single standardized index.
Distribution of F measure for different fusion finder tools showed that Fusion
Validator achieved the best performance for IE datasets, with an average F
measure of 77.64%, and an average F measure of 77.31% for BE dataset, that
represent the second best score after MapSplice (average F measure for
MapSplice 81.51%) (Figure 15C-D). However, as reported above, despite the
high PPV, MapSplice’s performance in term of sensitivity is not in the same
range of Fusion Validator, with a probability of correctly identify a real fusion
that is 13.23% less than Fusion Validator.
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Figure 15. Fusion detection performance evaluation across different softwares for
synthetic datasets.

The scatterplots display the relation between Sensitivity and PPV in broken exons (A) and
intact exons (B) databases for 5 different fusion detection tools (Defuse, Chimerascan, STAR-
fusion, MapSplice and FusionCatcher), multi-tools approach and Fusion Validator.

Colored dots point out the average Sensitivity and PPV for each software, while 95%
confidence intervals for Sensitivity and PPV is represented by colored ellipses.

Boxplots show the distribution of F-measure in broken exons (C) and intact exons (D) datasets.
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2.6 Test set analysis

2.6.1 Fusion detection in breast cancer Cell Lines

To assess the ability of Fusion Validator to validate real known fusion
transcripts from publicly available data sets, and evaluate its abilityto reduce
the number of candidate events detected by different fusion finder algorithms,
27 experimentally validated fusions from 4 different breast cancer cell lines (BT-
474, SK-BR-3, KPL-4, and MCF-7), identified by Edgren et al., were used as a
true positive set.

Results in table 10 show that none of the 5 fusion detection tools used (Defuse,
Chimerascan, STAR-fusion, MapSplice, FusionCatcher) identified all 27 known
fusions. The number of true positive calls ranged from a minimum of 19/27
(70.37% sensitivity) in MapSplice to a maximum of 24/27 (88.89% sensitivity)
using Chimerascan. To detect all 27 experimentally validated chimeric
transcripts, a combination of fusion calls from the 5 different software were
performed by the first component of Fusion Validator. This step merged 5,494
fusion candidates, which were subsequently reduced to 3,190 after the normal
filtering, and finally further reduced to 1,134 after Fusion Validator’s final step.
This represent a striking 79.36% reduction in the number of false positive
events (PPV for Fusion Validator 2.29% vs 0.47% for combined tools).

Strikingly, Fusion Validator was able to correctly validate 26 out of 27 known
fusions, with a sensitivity significantly higher than all the other fusion finder
algorithms (sensitivity 96.30%). Chimerascan and MapSplice show a PPV
slightly higher to that of Fusion Validator (2.29% for Fusion Validator vs 2.88%

for Chimerascan and 2.97% for MapSplice) but these tools were able to
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correctly

identify only 24/27 and 19/27 known

fusions

respectively.

FusionCatcher is the software with the higher PPV (43.14%), but it shows a

lack in sensitivity, with only 22/27 fusions correctly identified (sensitivity
81.48%) (Table 11).

¥ ; . : : . Fusion Total fusions |Total fusions after| Total fusions after
Cell line Defuse Chimerascan | STAR-fusion | FusionCatcher MapSplice |Combined tools Validator Pa— Normal filter Validator filter
BT-474 10/11 10/11 10/11 9/11 9/11 11/11 A 2556 1461 538
SK-BR-3 _[7/10 8/10 7/10 7/10 5/10 10/10 9/10 1930 o GBI 403
KPL-4 2/3 313 313 313 2/3 313 313 456 261 73
MCE-7 2/3 3/3 3/3 3/3 313 313 313 552 357 120
Total 21/27 24/27 23/27 22/27 19/27 27127 26/27 5494 3190 1134

Table 11. Number of fusion transcript detected by 5 different softwares and filtered by
Fusion Validator on 4 BRCA Cell lines.

Software Sensitivity PPV
Defuse 77.78% 0.74%
Chimerascan 88.89% 2.88%
STAR-fusion 85.18% 1.67%
FusionCatcher 81.48% 43.14%
MapSplice 70.37% 2.97%
Combined tools 100% 0.47%
Fusion Validator 96.30% 2.29%

Table 12. Average Sensitivity and PPV of 5 different fusion detection softwares, multi-

tool approach and Fusion Validator on 4 BRCA Cell lines.
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2.6.2 Fusion Validator easily identified driver kinase fusions in TCGA pan
cancer data

To see if our method was able to correctly detect fusions from a larger cohort of
different tumour types and validate additional chimeric transcripts not found or
not reviewed in previous studies, we extended the analysis to 190 TCGA pan-
cancer samples carrying 195 validated recurrent kinase fusions (115 unique)
from Stransky et al.. This dataset was reanalyzed using a combination of 3
fusion detection tools (Defuse, Chimerascan and STAR-fusion) and processed
through the Fusion Validator pipeline.

The multi-tool chimeric transcript detection approach was able to select an
average of 4904 fusion candidates per sample (95% confidence interval 4635-
5174), that were reduced to an average of 2945 (95% confidence interval 2755-
3136) and 983 (95% confidence interval 900-1067) per sample after normal
filtering and local realignment validation step respectively, with a significant
reduction of 79.95% of the candidate fusions. 191 out of 195 (97.95%)
recurrent validated fusions were also confirmed in silico by Fusion Validator,
with the four missing chimeric transcripts not found by any of the 3 fusion finder
algorithms used, and, therefore not been processed by the Fusion Validator
pipeline (list of fusions in Appendix A). One of the 4 missed transcripts is a
complex fusion affecting PDGFRA and overlapping genes FIP1L1 and LNX1 in
Brain Lower Grade Glioma sample TCGA-E1-A7YI-01A. For this sample STAR-
fusion detected a chimeric transcript involving FIP1L1, but with a different
partner CHIC2. The CHIC2 gene overlap with the longer isoform of PDGFRA,
which is present only in UCSC gene models (ucOO3haa.3) and not on the
Gencodel9 annotation used for the analysis: The FIP1L1-CHIC2 fusion can
thus be considered a product of different annotation databases rather than an

event missed by fusion finder algorithms (Figure 16).
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Figure 16. UCSC Genome Browser snapshot showing overlap between gene CHIC2 and

the longest isoform of PDGFRA on the fusion transcript breakpoint position.

Considering the list of non-recurring chimeric transcripts detected by Stransky
et al. in the 190 samples, 2/2 validated fusions, and 22/30 non reviewed events
were also confirmed by Fusion Validator (Appendix A). Fusion Validator was
also able to confirm and validate an additional 5384 kinase fusions removed by
the different filtering steps applied by Stransky et al., 791 of them recurrent in
more than 1 of the 190 analyzed samples. This list includes recurrent driver
fusions like FGFR3-TACC3 and RAF1-AGGF1, that were validated by Stransky
et al. In 15 (5 Bladder Urothelial Carcinoma, 3 Lung squamous cell carcinoma,
2 Glioblastoma multiforme, 2 Head and Neck squamous cell carcinoma, 2 Brain
Lower Grade Glioma and 1 Kidney renal papillary cell carcinoma) and 7
samples respectively (7 Thyroid carcinoma) and were confirmed by Fusion
Validator in additional 2 (2 Glioblastoma multiforme) and 1 samples (1 Thyroid

carcinoma) respectively.
Sorting the final annotated list of fusions for each sample by ranking score, in

descending order, we found that 151 out of 191 (79.06%) recurrent fusion

transcripts validated by Fusion Validator were classified by the annotation
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module with the best ranking score, thus demonstrating a high probability of
being classified as driver fusions. Since Stransky et al. focused their analysis
only on kinase fusions, the percentage of fusions classified with the best
ranking score by Fusion Validator is affected by the presence of no kinase
driver fusions, as, for example, in sample TCGA-33-4587-01A, where the
highest annotation score is assigned to a non-kinase activating fusion between
PRSS33 and CREBBP, while the chimeric transcript involving IGF2BP3 and
PRKCA, validated by Stransky et al.,, has only the second best score.
Considering only kinase fusions, the percentage of chimeric transcripts
classified with the best ranking score by Fusion Validator increases to 81.67%.

For some of the samples in Stransky’s dataset, more than one validated kinase
fusion was found. For example in sample TCGA-CH-5737-01A, both the
experimental validated fusions, KDM7A-BRAF and AGGF1-RAF1, were in
confirmed in silico by Fusion Validator and classified with the best and second

best annotation score, respectively.

To correctly evaluate the performance of Fusion Validator’s ranking score on
samples with multiple recurrent kinase fusions, the percentage of validated
fusions in the top 3 and top 5 rank was considered as a more accurate metric.

180 out of 191 (94.24%) and 190 out of 191 (99.48%) validated kinase fusions
received a ranking score in the top 3 and top 5 respectively (Figure 17)
(Appendix A). This strong correlation between ranking score and probability of
a fusion to be validated, support the idea that, to quickly identify fusion
transcripts for downstream analysis, it's sufficient to sort a Fusion Validator
output by ranking score and select the top 3 validated candidates. In doing so,

one has a ~95% sensitivity in detecting a real kinase driver fusion.
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Figure 17. Pie chart with distribution of Fusion Validator ranking positions of 191

recurrent validated kinase fusions.

2.7 Discussion

In the last few years, the incorporation of RNA-Seq molecular tools into clinical
diagnostics has turned out to be an attractive instrument to identify disease
and patient specific biomarkers that are tractable targets for therapy. The need
to detect driver gene fusions on large scale datasets have stimulated a

remarkable effort to develop new bioinformatics algorithms for identifying gene
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fusions from sequencing data, each of them showing different levels of
sensitivity. Meta caller or so called ‘ensemble approaches’ proposed in the
literature are useful to explore a wide-ranging panel of potential real fusions,
but dramatically increase the number of false positive events. The choice of
proper standardized filtering steps that maximize sensitivity and specificity, and
the use of algorithms for candidate fusion prioritization, is crucial to quickly
identify driver oncogenic fusions for downstream analysis and wet-lab

validation.

To solve the main challenges in clinical validation of fusion transcripts coming
from NGS experiments, we developed Fusion Validator, an optimized pipeline
tool designed to collect thousands of fusion transcripts detected by different
fusion finder algorithms and to identify clinically relevant fusion genes, with a
significant 79.95% reduction of the number of candidates that need to be

subsequently assessed through experimental validation.

Fusion Validator recreates the chimeric transcript sequence around the fusion
breakpoint and performs a number of filtering steps, including the removal of
read through transcripts and genes from user defined list of invalidated events,
local realignment of normal tissues sequences on fusion transcripts and
flagging of fusions in homologous and repetitive regions around the breakpoint.
Validation of each fusion transcript sequences is carried out through a local
realignment of reads around the fusion breakpoint and a combination of both a
de novo assembly and a seed and extend mapping of read candidates to
reconstruct the breakpoint. A ranking score based on annotation is assigned to
the final list of filtered and validated transcripts. Fusion Validator can work with
canonical fusions as well as other somatic structural changes in the
transcriptome, like exon skips, and can take advantage of different new
features that provide major accuracy improvements over traditional fusion

detection and prioritization algorithms:
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The combined tool approach implemented by Fusion Validator, can take in
input lists of fusions from the most common fusion detection tools and easily
merge results, by simply aggregating basic standard information like genes,
breakpoint locations and strand orientations. This approach demonstrated a
highly significant increase in sensitivity for both real and simulated datasets
analyzed compared to other fusion detection algorithms. Moreover, Fusion
Validator can extract additional fusion information not given by the majority of
fusion detection tools. Each fusion transcript sequence is retrieved using one
set of rules, independent of the software from which it was selected, in an
attempt to eliminate any bias related to different references and annotations.
Another distinguishing feature of Fusion Validator is the use of a dynamic
normal filtering step, that realigns all of the control samples from human normal
tissues against every putative aberrant junction, instead of processing the
tumour and normals separately: Comparing putative junctions against a multi-
tissue dataset, using raw reads, was demonstrated to be the most
comprehensive way of reducing false positives. The use of a dynamic blacklist,
to store normal chimeric transcripts detected by Fusion Validator, provides a big
advantage in term of computational costs, as candidate fusions that have been
found in normal tissues before are not re-processed, and in terms of specificity,
as the normal filter’s performance continues to improve as additional samples
are processed. Ultimately, the use of a blacklist has allowed us to quickly
discard more than a half of the initial fusions candidates. The local realignment
of tumour reads to reconstruct the chimeric transcript provides a robust and
reliable validation of each candidate event, since reads that perfectly
encompass the breakpoint are selected first, and then reassembled with
different independent methods (de novo assembly and seed and extend
scaffold reconstruction). The use of a genomic realignment filter option ensures
an additional reduction of false positive events caused by alignment errors or
reads mapping on low complexity or homologous regions. The final ranking
score assigned by the annotation module of Fusion Validator to each chimeric
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transcript that passed the filtering steps, can be used by clinicians and
researchers to quickly identify events of interest for downstream analysis: It's
sufficient to look at the top 3 fusions for each sample, and without any
experimental validation, to have a 95% probability to find a real driver

oncogenic fusion.

Fusion Validator performs well in terms of overall accuracy across different
experimental conditions, showing an excellent combination of sensitivity and
specificity, even for low coverage and short reads sequencing. This advantage
leads to reducing the cost of sequencing per patient, since it has been shown
that a coverage increase does not bring particular advantage to the number of
fusions successfully detected, and lack in coverage can be easily compensated
by using additional fusion detection tools as input for Fusion Validator to retain
a high level of sensitivity. The characteristic of maintaining a very high accuracy
at reduced sequencing costs, make Fusion Validator an ideal diagnostic tool in
precision medicine research applied to oncology patients, where gene fusions

are critical as diagnostic and prognostic factors.

2.8 Software characteristics

Fusion Validator is implemented in Perl and Unix and It has been tested on a
Linux high performance compute cluster (Centos distribution 6.8) with job-
scheduling software Portable Batch System (PBS).
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Chapter 3: Direct transcriptional
consequences of somatic mutation in

cancer
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3.1 Introduction

3.1.1 Somatic mutations can amplify the transcriptional output in cancer cells.

Somatic mutation underpins the development of cancer, and most solid
tumours have thousands to tens of thousands of point mutations, coupled with
tens to hundreds of genomic rearrangements and copy number changes****,

Small numbers of these, known as ‘driver mutations’, dysregulate the
fundamental cellular processes involved in normal tissue homeostasis, and
confer a selective advantage to the clone. A critical point is that Darwinian
selection acts on phenotype and so, for a somatic mutation to drive cancer, it
must manifest a phenotypic effect. Transcription is the primary conduit by which
changes in the genomic code are translated into cellular phenotype, with the
corollary that it is a necessary criterion of driver mutations that they directly
induce a change in transcript structure. Altered transcript structure can take
many forms, including the creation of fusion genes by genomic rearrangement,
interference with RNA splicing at mutated splice sites, alteration of the codon
sequence for missense substitutions and over or under-expression of genes

through copy number alterations or mutation in regulatory regions.

Beyond the primary and direct effects of somatic mutation on transcript
structure, there may be a series of downstream, secondary alterations in the
transcriptome occurring as a consequence of the primary effect. Most studies
of the transcriptome in cancer, including those from large-scale efforts such as
TCGA®**, have evaluated these second-order effects, concentrating
predominantly on the magnitude of gene expression using microarray
tecnologies®*® or RNA sequencing®*®. They have revealed large-scale
disturbances of transcriptional regulation in most cancers, with expression

profiles for many hundreds of genes differing from profiles of normal cellular
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counterparts. Within a tumour type, similarities in transcriptional profiles across
individuals allow the disease to be sub-classified into several groups, many of
which have biological, therapeutic and prognostic significance. In some cases,
these changes can be correlated with underlying driver mutations, such as
ERBB2 amplification in Breast Cancer® or specific fusion genes in acute
myeloid leukaemia®'. While these studies have concentrated on mRNA profiles,
similar observations are beginning to emerge from studies of MicroRNA
transcription®, long non-coding RNA levels and even expression of
pseudogenes®. While it is a necessary criterion for a driver mutation to directly
induce modification of transcript structure, it is not sufficient. Many mutations
that do not confer selective advantage, so-called passenger mutations, will also
generate phenotypic consequences, but consequences of no benefit to the cell.
Initial studies correlating RNA-sequencing data with genomic change in cancer
have reported some of these direct effects, especially for coding point
mutations or canonical fusion transcripts® but there has been little systematic
effort to describe, measure and quantify first-order transcriptional
consequences across all classes of somatic mutation found in well-annotated

cancer genomes.

3.1.2 Transcriptional Amplification as target therapy

Transcriptional amplification is a phenomenon by which certain oncogenes
contribute to tumour progression by increasing a cell’'s global production of
RNA and, consequently, the entire transcriptome of a cell increases in
expression. Cancer cells have been shown to become heavily reliant on
elevated levels of transcriptional activity, making them highly sensitive to
targeted therapies that selectively inhibit transcription. For this reason

transcriptional amplification represents a novel, and demonstrably targetable
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feature of cancer, where precision therapies often fail, because cancer cells
have the unique ability to adapt to changing environmental pressures, and
targeting oncogenic pathways can ultimately select for cancer cell
subpopulations that have evolved to obsolesce those particular pathways for
survival. However, the understanding of transcriptional amplification’s
prevalence and its implications for malignant progression is still

underdeveloped.

The second sub-project of this thesis was focused on developing a
bioinformatics method to measure the transcriptional output of human primary
tumour cells, using a validation set of nearly a thousand of TCGA Breast
Cancer patients, in order to have a comprehensive understanding of

transcriptional amplification in cancer cell biology.
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3.2 Material and Methods

3.2.1 TCGA Breast Cancer dataset

Aligned BAM files for 980 breast cancer samples with both RNA-Seq and
exome sequencing were downloaded from CGHUB (https://cghub.ucsc.edu/)
using GeneTorrent. PCR duplicates for both exome and transcriptome were
removed using SAMtools. The position of somatic mutations, in MAF file
format, and gene expression values (using the RSEM method) were obtained
from https://tcga-data.nci.nih.gov/. Additional clinical covariates were obtained
from cBioPortal (http://www.cbioportal.org/) (Figure 18). All putative mutations

were re-annotated using Annovar (release 2013Aug23) and all potential
germline variants were removed (present in NCBI dbSNP Human build 142).
Finally, 70,071 exonic/splicing substitutions present in the 980 RNA-Seq and
WES paired samples were considered for further analysis. Mutations in the 5’
or 3' UTRs were excluded.
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Figure 18. Schematic overview of information downloaded from TCGA dataset for 980
Breast Cancer samples (green boxes) and extracted from starting raw data (light blue

boxes).

3.2.2 Analysis of variant allele fraction differences between the transcriptome
and genome in TCGA data

A bioinformatcs software was developed to accurately measure the number of
bases supporting each mutation in the genome (or exome) and in the
corresponding transcriptome for each of the 70,071 somatic mutations
selected. The tool parses the sequencing alignment file for both DNA and RNA
samples, extracts all the sequence bases aligning in each of the selected

somatic point mutations and calculates the Variant Allele Fraction (VAF) for
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each position as the frequency of variant alleles in a given locus, using the

formulas

VAFdna= nVARdna VAFrng= nVARrna
nREFdna+ nVARdna nREFrna+nVARrna

,where nVARdna is the number of variant calls for the specific base in the DNA
alignment, nREFdna is the number of reference calls for the same base, and
nVARrna and nREFrna are the number of variant calls and the number of
reference calls for the specific base in the RNA alignment respectively. To
estimate the effect of somatic mutations on transcription, the proportion of
sequencing reads supporting the mutant allele in the transcriptome was
compared to that expected from the genome. This proportion was measured as
the difference between VAF in the transcriptome and in the genome (VAFgiference
= VAFuanscripome = VAFgenome) (Figure 19). Mutated loci were considered as not
expressed, and therefore excluded from the analysis, if the total coverage was
less than five reads, or the number of reads supporting the mutated base was
less than five reads. The total number of somatic variants considered for further
analysis after filtering steps is 25,177 , corresponding to 955 patients (Figure
20). Information about variant allele fraction differences and percentage of
expressed mutations were merged with clinical data and gene expression
guantification. Linear regression was used to model the relationship between
the amount of ESR1 expressed by a tumor and the VAF difference of its
mutations. Survival data was analyzed using the Kaplan-Meier and log-rank
Mantle-Cox methods. The limit of significance for all analyses was defined as P
< .05. TCGA Breast Cancers were classified into known subtypes (Luminal B,
Luminal A, HER2-related and triple negative) by immunohistochemistry

according to Blows et al®® (Figure 21).
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Figure 19. Example of somatic C -> T mutation in TP53 gene alignments for DNA (on the
top) and RNA (on the bottom). For both DNA and RNA Variant Allele Fraction is calculated as
the number of variants (base T in orange) divided by the number of total reads. Difference
between VAF in RNA and DNA is used as a measure of transcriptional amplification for the
specific mutation. Grey bars represent each aligned read and variant base T is highlighted in

red.
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980 TCGA WGS-WXS samples 980 TCGA RNA-Seqg samples ‘
Remove PCR duplicates from Remove PCR duplicates from
DNA alignment RNA alignment

Gene expression quantification
(raw reads count)

Normalization (RSEM method)

Compute Variant Allele Fraction Compute Variant Allele Fraction
for each coding SNV in DNA for each coding SNV in DNA/RNA

Merge Variant Allele Fraction
in DNA and RNA

Filter SNV positions not covered
by RNA or not expressed
Variant Allele Fraction difference
in RNA/DNA for 25177 SNVs

in 955 samples

Figure 20. Transcriptional amplification analysis workflow for 980 TCGA DNA and RNA
sequencing from Breast Cancer patients. 980 samples for which both DNA and RNA
sequencing was available were analyzed. PCR duplicates were removed from both DNA and
RNA alignments and variant allele fraction for each coding SNV was computed in both
datasets. The proportion of sequencing reads supporting the mutant allele in the transcriptome
compared to that expected from the genome was estimated as the difference between VAF in
RNA and DNA. 25,177 SNVs belonging to 955 samples were selected after filtering positions
not covered or not expressed in RNA.
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Figure 21. Classification of breast cancer subtypes according to IHC marker profile
(Figure from Blows et .al)®. Each Breast Cancer subtype is characterized by the expression
of immunohistochemistry markers Estrogen receptors (ER), Progesterone receptors (PR) and

Human epidermal grow factor receptor-2 (HER2)

3.3 Results

3.3.1 On average exonic point mutations are expressed to the level of would
expect from their prevalence in the genome.

25,177 somatically acquired base substitutions in 955 breast cancer samples
were covered in both the genome and the transcriptome (>4 reads) and were
found to be expressed (>4 variant reads present in the transcriptome). The
average percentage of mutations expressed in the transcriptome is about 60%.
Variant allele fraction (VAF) in the genome and the transcriptome are strongly
positively correlated (Pearson's correlation coefficient =0.6439, p-value<0.0001
Figure 22). To estimate the effect of somatic mutations on transcription, the
proportion of sequencing reads supporting the mutant allele in the
transcriptome was compared to that expected from the genome. This
proportion was measured as the difference between VAF in the transcriptome

and in the genome.
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Figure 22. Variant Allele Fraction comparison in RNA-Seq and DNA for all protein coding
mutations. X and Y axis shows the distribution of VAF in genome and transcriptome
respectively. Each dot of the scatterplot represent a single nucleotide variant and is colored by
sample. Black regression line represent the theoretical condition of maximum linear correlation
between VAF in DNA and VAF in RNA

There were some differences in the transcription levels of base substitutions
according to the predicted consequence on the protein. Silent, missense and
UTR mutations have the same strong correlation between variant allele
fractions in the genome and transcriptome, whereas nonsense mutations have
a weaker relationship. Indeed, nonsense mutations had a significantly lower
expression than predicted from the genome compared to other classes of
mutation (p<0.0001). Several reasons could explain the lower expression of
nonsense mutations. Nonsense-mediated decay could selectively target
transcripts with nonsense mutations for degradation. Nonsense-mediated
decay depends upon the cell distinguishing a premature termination codon
from a proper termination codon. Generally, stop signals in the last exon are
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considered proper, whereas those appearing more than 50-55bp upstream of
the last exon-exon junction, and therefore upstream of the exon-junction
complex, are more likely to be targeted for nonsense-mediated decay .
Another possible explanation for the low expression of nonsense mutations is
that they are tolerated only in genes not expressed in the cancer cells, those

occurring in important genes would be subject to negative selection.

To explore this possibility, the expression levels from the organoids of normal
breast epithelium for genes mutated in the cancer samples was compared. No
clear-cut differences across the mutation categories for whether the mutated
genes were found to be expressed in normal breast epithelial cells (Figure 23),
suggesting that this reason does not explain the lower expression levels of
nonsense mutations. Therefore, it appears as if only nonsense mediated decay
explains the lower expression of these mutations.
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Figure23. Absence of negative selection in honsense mutations.
Comparison of expression levels from the organoids of normal breast epithelium for genes

mutated in the cancer samples.
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£° Average VAF difference 0.12669 Pvalue < 0.0001
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3.3.2 Expressed mutations are significantly inversely correlated to the Estrogen
receptor levels

The average VAF in the transcriptome relative to the genome is greater and
significantly different in estrogen receptor positive patients (0.12669) compared
to estrogen receptor negative ones (0.06353) (p-value <0.0001, Figure 24). The
average VAF difference between the transcriptome and the genome is
significantly negatively correlated with the expression level of gene that
encodes the estrogen receptor, ESR1 (Pearson's correlation =-0.2669, p-
value<0.0001), and significantly positively correlated with the percentage of
mutations expressed in transcriptome (Pearson's correlation =0.1074, p-
value=0.0009). The percentage of mutations expressed is also significantly
positively  correlated  with ESR1 gene  expression (Pearson's
correlation=0.0725, p-value=0.0251) (Table 13).

Student’s t test .
w# Average VAF difference 0.06353

ER Status

Figure 24. Variant allele fraction in transcriptome relative to genome distribution for ER

negative (red) and ER positive (light blue) samples.
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Average
VAF Difference

ESR1 expression

#
of mutations

% Mutation
Expressed

Average VAF Difference

1.0000

-0.2669 (p<0.0001)

-0.0182 (p=0.5735)

0.1074 (p=0.0009)

ESR1 expression

1.0000

-0.0571 (p=0.0778)

0.0725 (p=0.0251)

# of mutations

1.0000

-0.0619 (p=0.0558)

% Mutation Expressed

1.0000

Table 13. Pairwise Pearson correlation for VAF difference, ESR1 gene expression,

number of mutations and percentage of mutation expressed in 955 Breast Cancer

samples.

The VAF difference between the transcriptome and the genome can be

estimated with a linear discriminant function of 2 variables: ESR1 expression

and percentage of mutation expressed. In Figure 25, if ESR1 expression

decreases, the VAF difference increases proportionally and the percentage of

mutations expressed increase as well. That is, tumours with high levels of ER

express fewer mutations than cancers with low ER. This relationship can be

formally modelled as: for every 1% decrease in ESR1 expression, 15 more

mutations are expressed in breast cancer.
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Figure 25 Regression model for average Variant Allele Fraction difference and
percentage of expressed mutations, stratified by ESR1 expression.

Expression of ESR1 gene is represented in log scale from lower (red) to higher expression
values (blue). VAF difference is directly proportional to the percentage of mutations expressed

and inversely proportional to ESR1 expression
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3.3.3 Transcriptional amplification differs in the most common breast cancer
subtypes

We stratified breast cancer patients into different subgroups by their
immunohistochemistry staining for estrogen, progesterone and HER2
receptors. The distribution of percentage of mutation expressed and VAF
difference between the transcriptome and the genome was compared for the
four main breast cancer subgroups: Triple Negative Breast Cancer (TNBC),
HER2 positive, Luminal A and Luminal B. The VAF difference in the
transcriptome relative to the genome, as well as percentage of mutations
expressed tends to increase if the breast cancer subgroups with better clinical
outcome (Luminal A/B) are compared to subgroups with the worst prognosis
(HERZ2 positive and TNBC). Average percentage of mutations expressed range
from 61.28% of the Luminal B subgroup to 70.31% of TNBC (Figure 26).

Breast cancer patients were divided in two groups according to a threshold of
0.045504 for VAF difference, selected as the value that maximizes the sum of
sensitivity and specificity in the ROC curve. Patients with high VAF difference
between the transcriptome and the genome had a better prognosis than the
ones with the low VAF difference group with median overall survival of 114 and
90.8 months, respectively. Survival curves computed using the Kaplan-Meier
method shows a statistically significant survival difference between high and
low VAF difference groups, with a 0.05 p-value for log rank Mantel-Cox test
(Figure 27).
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Figure 26. Variant Allele Fraction difference (violin plots on the top) and percentage of
mutated samples (histogram on the bottom) distribution according to 4 main Breast
Cancer subgroups (Luminal B in red, Luminal A in green, HER2 positive in light blue

and Triple Negative Breast Cancer in purple).
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Figure 27. Overall Survival curve for Breast Cancer patients stratified by low (red) and

high (blue) Variant Allele Fraction difference.

3.4 Discussion

The disturbed transcriptional landscape of cancer cells results from three main
forces: (1) direct, primary consequences of somatic mutation; (2) co-ordinated,
secondary gene expression changes resulting from altered cellular signaling,
transcriptional regulation and chromatin landscape; and (3) general loss of
transcriptional fidelity, manifesting as shorter 3’ UTRs , retained introns, trans-

splicing and so on.

This sub-project was focused on dissecting the immediate impact that the

repertoire of somatic mutations has on the transcriptome in breast cancer,
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exploring the rules that govern how the transcriptional machinery interprets
somatic mutation. Integration of transcriptomic with genomic can determine

which mutations are expressed and their effect on gene expression profile.

An exhaustive bioinformatics tool for analyzing RNA sequencing data combined
with whole genome/exome sequencing was developed and applied to a huge
dataset of 980 breast cancers. The software computes the proportion of reads
supporting a given variant in the DNA (VAF DNA), that is reflective of that
variant's concentration within a sample, and then models the transcriptional
output of human cancer cells ,by measuring the deviation in RNA allelic fraction
(VAF DNA) from the DNA allelic fraction. This measure was called VAF

difference.

Using the VAF difference as a method to account for differences in tumor purity,
we found that about 60% of Breast Cancer exonic point mutations are
expressed and induce some transcriptional consequence, and a striking anti-
correlation between ER levels and the number of expressed mutations. That is,
tumors with high levels of ER express fewer mutations than cancers with low
ER. This relationship determined that, for every 1% decrease in ER expression,
15 more mutations are expressed. As a breast cancer loses estrogen receptor
expression, and becomes more transcriptionally active, it is more likely to
actually express its complement of somatic mutations. While speculative, this is
of interest to researchers in the field of immunotherapy, since somatic
mutations can act as neoantigens that could trigger host immune responses.
There are studies reporting strong associations between the number of
neoantigens and response to immunotherapy, and these data suggest that
such mutations are more likely to be expressed in ER-negative or ER-low

tumors.
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Stratifying Breast Cancer patients by clinical factors, we found that the
difference in VAF between the transcriptome and the genome, as well as
percentage of mutations expressed differs in the most common Breast Cancer
subgroups and can be used to predict better or poorer clinical outcome in terms
of overall survival. In fact, the VAF difference in the transcriptome relative to the
genome and the percentage of exonic mutations expressed tends to increase
their values going from subtypes with better (Luminal A/B) to worst (TNBC)
prognosis. Breast cancer subgroups can be inferred using a model that include
data from the genomic and transcriptomic profile of the patient when
information about immunohistochemistry for the Estrogen Receptor,

Progesterone Receptor and HER?2 are unavailable or uncertain.

Having developed a method to feasibly measure differences in transcriptional
amplification between individual cells on sporadic breast cancer, a well-studied
tumour type, and having demonstrated that transcriptional amplification is a
distinguishing feature between known cancer subtypes and may correlate with
those subtype’s clinical prognosis, different future works can be developed from
this study. One of these includes a complete characterization of transcriptional
amplification process across thousands of different tumours, in order to predict
and classify different cancer subtypes using a signature based on
transcriptional output measure from DNA and Rna sequencing. This signature
can help clinicians to identify cancer subtype diagnosis, to select the most

suitable treatment option and predict patient’s clinical outcome.
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Chapter 4: Conclusions
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Two bioinformatics software for RNA sequencing analysis applied to precision

medicine oncology were developed:

The first, Fusion Validator is able to collect thousands of fusion transcripts
detected by different fusion finder algorithm and discriminate real fusions from
false positive ones. The tool recreates the chimeric transcript sequence around
the fusion breakpoint and significantly reduces the number of fusion candidates
for validation, performing different filtering steps like local realignment of normal
tissues sequences on fusion transcripts, de novo and seed and extend
realignment of tumour candidates reads, search for homologous and repetitive
regions around the breakpoint and use of a ranking score based on fusion

product annotation.

Analysis of simulated synthetic showed an overall better performance of Fusion
Validator in terms of Sensitivity and PPV, when compared to 5 different fusion
detection tools, with a constant F-measure across samples of different
coverage, read length and breakpoint positions. Fusion Validator was able to
successfully detect and 96.30% of the chimeric transcripts validated in literature
on 4 Breast Cancer Cell lines and 97.95% of the recurrent kinase fusions
validated in 190 pan cancer samples, with a significant 79.95% reduction of
false positive events. 94.24% of the validated fusions were predicted by Fusion

Validator with a ranking score on the top 3.

Fusion Validator can be used as a very quick and efficient diagnostic tool for
KiCS program to increase the performance in detecting driver fusions and
significantly reduce the number of false positives in particular disorders, where

gene fusions are critical as diagnostic and prognostic factors.

89



The second software integrates transcriptomic with genomic data to measure
transcriptional amplification in primary tumours and to determine which
mutations are expressed. It also determine their effect on gene expression
profile. The software measures the proportion of sequencing reads supporting
the mutant allele in the transcriptome, compared to that expected from the
genome as the Variant Allele Fraction in the transcriptome related the genome.

Analysis of 25177 somatic variants in 955 Breast Cancer samples showed that
60% of exonic point mutations are expressed and induce some transcriptional
consequence, and that number of expressed mutations are significantly
inversely correlated to the Estrogen Receptor levels. Variant Allele Fraction
differences between the transcriptome and genome, as well as percentage of
mutations expressed, differs in the most common Breast Cancer subgroups
and can be used as a diagnostic tool to infer tumour subgroup when
information about immunohistochemistry for the Estrogen Receptor,
Progesterone Receptor and HER2 are unavailable or uncertain, or as

prognostic tool to predict better or poorer clinical outcome.
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Appendix A

List of kinase fusion transcripts from TCGA pan-cancer datasets

processed through the Fusion Validator pipeline.

FUSION GLOBAL KINASE
GENE1 | GENE2 CANCER_TYPE TCGA_ID RECURRENCE |VALIDATION| VALIDATOR NOTES RANKING FUSIONS
CONFIRMATION RANKING

SLC34A2 |ROS1 Lung adenocarcinoma: TCGA TCGA-05-4426-01A  |Recurrent Confirmed Y TOP3 TOP3
R3HDM2 PIP4K2C Glioblastoma multiforme: TCGA TCGA-06-0174-01A  [Recurrent Confirmed Y TOP2 TOP2
EGFR SEPT14 Glioblastoma multiforme: TCGA TCGA-06-0750-01A  [Recurrent Confirmed Y TOP1 TOP1
TMEM165 |[PDGFRA [Glioblastoma multiforme: TCGA TCGA-06-2559-01A  [Recurrent Confirmed X TOP1 TOP1
NFASC NTRK1 Glioblastoma multiforme: TCGA TCGA-06-5411-01A  [Recurrent Confirmed ¥ TOP1 TOP1
CEP85L ROS1 Glioblastoma multiforme: TCGA TCGA-06-5418-01A  [Recurrent Confirmed Y TOP1 TOP1
WASF2 FGR Ovarian serous cystadenocarcinoma: TCGA TCGA-09-2054-01A  [Recurrent Confirmed N Missed by fusion detection tools

MAP2K2 _ |INSR Ovarian serous cystadenocarcinoma: TCGA TCGA-13-1410-01A  [Recurrent Confirmed Y TOP1 [TOP1
DDR1 PAK1 Ovarian serous cystadenocarcinoma: TCGA TCGA-13-1477-01A  [Recurrent Confirmed Y TOP1 TOP1
FGFR3 TACC3 Lung squamous cell carcinoma: TCGA TCGA-22-4607-01A  [Recurrent Confirmed N TOP1 TOP1
BAG4 FGFR1 Lung squamous cell carcinoma: TCGA TCGA-22-5480-01A  [Recurrent Confirmed Y TOP1 TOP1
ARHGEF18 [INSR Ovarian serous cystadenocarcinoma: TCGA TCGA-25-2398-01A  [Recurrent Confirmed N Missed by fusion detection tools

FGFR3 TACC3 Glioblastoma multiforme: TCGA TCGA-27-1835-01A  [Recurrent Confirmed Y TOP1 TOP1
EGFR SEPT14 Glioblastoma multiforme: TCGA TCGA-27-1837-01A  [Recurrent Confirmed Y TOP2 TOP2
EGFR SEPT14 Glioblastoma multiforme: TCGA TCGA-28-1747-01C  [Recurrent Confirmed Y TOP1 TOP1
EGFR SEPT14 Glioblastoma multiforme: TCGA TCGA-28-2513-01A  [Recurrent Confirmed Y TOP2 TOP2
NBPF3 EPHB2 Glioblastoma multiforme: TCGA TCGA-28-2513-01A  |Non recurrent Confirmed Y TOP1 TOP1
EGFR SEPT14 Glioblastoma multiforme: TCGA TCGA-32-5222-01A  [Recurrent Confirmed Y TOP2 TOP2
ADCY9 PRKCB Lung squamous cell carcinoma: TCGA TCGA-33-4533-01A  [Recurrent Confirmed Y TOP1 TOP1
IGF2BP3 PRKCA Lung squamous cell carcinoma: TCGA TCGA-33-4587-01A  |Recurrent Confirmed b4 TOP2 TOP1
FGFR3 TACC3 Lung squamous cell carcinoma: TCGA TCGA-39-5024-01A  [Recurrent Confirmed e TOP1 TOP1
TANC2 PRKCA Lung squamous cell carcinoma: TCGA TCGA-43-2581-01A  [Recurrent Confirmed R4 TOP1 TOP1
TECR PKN1 Lung squamous cell carcinoma: TCGA TCGA-43-7658-01A  [Recurrent Confirmed ¥ TOP2 TOP2
CLTC ROS1 Lung adenocarcinoma: TCGA TCGA-44-2665-01A  [Recurrent Confirmed ¥ TOP1 TOP1
CLTC ROS1 Lung adenocarcinoma: TCGA TCGA-44-2665-01A  [Recurrent Confirmed R TOP2 TOP2
CLTC ROS1 Lung adenocarcinoma: TCGA TCGA-44-2665-01B  |Recurrent Confirmed 4 TOP1 TOP1
EML4 ALK Lung adenocarcinoma: TCGA TCGA-50-8460-01A [Recurrent Confirmed ¥ TOP1 TOP1
MINK1 NQO2 Lung adenocarcinoma: TCGA TCGA-50-8460-01A  [Non recurrent Not reviewed Y TOP3 TOP3
TRIM33 RET Lung adenocarcinoma: TCGA TCGA-55-6543-01A  [Recurrent Confirmed N TOP1 TOP1
EZR ROS1 Lung adenocarcinoma: TCGA TCGA-55-6986-01A [Recurrent Confirmed Y TOP1 TOP1
TRIM24 NTRK2 Lung adenocarcinoma: TCGA TCGA-55-8091-01A [Recurrent Confirmed ¥ TOP1 TOP1
SLC34A2 |ROS1 Lung adenocarcinoma: TCGA TCGA-62-A46Y-01A [Recurrent Confirmed Y TOP1 TOP1
CD74 ROS1 Lung adenocarcinoma: TCGA TCGA-64-1680-01A  [Recurrent Confirmed e TOP1 TOP1
WASF2 FGR Lung squamous cell carcinoma: TCGA TCGA-66-2759-01A  [Recurrent Confirmed RZ TOP5 [ TOP5
LATS1 LACE1 Lung squamous cell carcinoma: TCGA TCGA-66-2759-01A  |Non recurrent Not reviewed NG TOP1 TOP1
MAP3K5 NKAIN2 Lung squamous cell carcinoma: TCGA TCGA-66-2759-01A  [Non recurrent Not reviewed R4 TOP2 TOP2
FGFR2 CCAR2 Lung squamous cell carcinoma: TCGA TCGA-66-2765-01A  [Recurrent Confirmed N TOP1 TOP1
FGFR3 TACC3 Lung squamous cell carcinoma: TCGA TCGA-66-2786-01A  [Recurrent Confirmed B TOP1 TOP1
EML4 ALK Lung adenocarcinoma: TCGA TCGA-67-6215-01A  [Recurrent Confirmed b4 TOP1 [TOP1
EML4 ALK Lung adenocarcinoma: TCGA TCGA-67-6216-01A  [Recurrent Confirmed ¥ TOP1 TOP1
TUBD1 RPS6KB1 [Lung adenocarcinoma: TCGA TCGA-69-7978-01A  [Recurrent Confirmed ¥ TOP4 TOP3
CCDC6 RET Lung adenocarcinoma: TCGA TCGA-75-6203-01A  [Recurrent Confirmed Y TOP1 TOP1
FGFR3 TACC3 Glioblastoma multiforme: TCGA TCGA-76-4925-01A  [Recurrent Confirmed e TOP1 TOP1
PEAK1 TMOSF3 Glioblastoma multiforme: TCGA TCGA-76-4925-01A  [Non recurrent Not reviewed Y TOP4 TOP4
EML4 ALK Lung adenocarcinoma: TCGA TCGA-78-7163-01A  |Recurrent Confirmed N TOP1 TOP1
SPNS1 PRKCB Lung adenocarcinoma: TCGA TCGA-83-5908-01A [Recurrent Confirmed b TOP2 TOP2
CD74 ROS1 Lung adenocarcinoma: TCGA TCGA-86-8278-01A  [Recurrent Confirmed Y TOP1 TOP1
EML4 ALK Lung adenocarcinoma: TCGA TCGA-86-A4P8-01A [Recurrent Confirmed Y TOP1 TOP1
KIF5B MET Lung adenocarcinoma: TCGA TCGA-93-A4IN-01A [Recurrent Confirmed e TOP1 TOP1
CAMK2D  |ANK2 Lung squamous cell carcinoma: TCGA TCGA-98-A53A-01A [Recurrent Confirmed Y TOP2 TOP2
DDX42 RPS6KB1 |Breast invasive carcinoma: TCGA TCGA-A1-AOSN-O1A [Recurrent Confirmed Y TOP1 TOP1
TANC2 STRADA F3reast invasive carcinoma: TCGA TCGA-A1-AOSN-01A [Recurrent Confirmed hé TOP6 TOP6
TEX14 CLTC |Breast invasive carcinoma: TCGA TCGA-A1-AOSN-01A [Non recurrent Not reviewed N Missed by fusion detection tools

TLK2 KCNJ16 Breast invasive carcinoma: TCGA TCGA-A1-AOSN-O1A [Non recurrent Not reviewed Y TOP3 TOP3
SPINT2 PAK1 Breast invasive carcinoma: TCGA TCGA-A1-A0SQ-01A |Recurrent Confirmed Y TOP1 TOP1
MARK4 LYPD5 Breast invasive carcinoma: TCGA TCGA-A1-A0SQ-01A |Non recurrent Not reviewed Y TOP2 TOP2
FGFR3 TACC3 Kidney renal papillary cell carcinoma: TCGA TCGA-A4-7287-01A  [Recurrent Confirmed N TOP1 TOP1
TECR PKN1 Uterine Corpus Endometrial Carcinoma: TCGA TCGA-A5-A3LP-01A [Recurrent Confirmed Y TOP1 [TOP1
XRN1 PIP4K2A  |Breast invasive carcinoma: TCGA TCGA-A8-A07C-01A [Recurrent Confirmed Y TOP1 TOP1
PI4KB SELENBP1 [Breast invasive carcinoma: TCGA TCGA-A8-A07C-01A [Non recurrent Not reviewed N TOP2 TOP2
MOK ANKRD66 [Breast invasive carcinoma: TCGA TCGA-A8-A07C-01A |Non recurrent Not reviewed Y TOP5 [TOP5
STK24 PIP5K1B  |Breast invasive carcinoma: TCGA TCGA-AC-A5EH-01A [Recurrent Confirmed b4 TOP3 TOP3
FGFR2 CASP7 [Breast invasive carcinoma: TCGA TCGA-AN-AOAL-O1A [Recurrent Confirmed Y TOP1 TOP1
ETV6 NTRK3 Breast invasive carcinoma: TCGA TCGA-AO-A03U-01B [Recurrent Confirmed ¥ TOP1 TOP1
ZNF577 FGFR1 Breast invasive carcinoma: TCGA TCGA-AR-AOU3-01A [Recurrent Confirmed Y TOP4 TOP3
ZNF37A PIP5K1B  |Breast invasive carcinoma: TCGA TCGA-AR-A2LL-01A [Recurrent Confirmed N TOP1 TOP1
ERC1 PIK3C2G  |Breast invasive carcinoma: TCGA TCGA-B6-A0IG-01A  [Recurrent Confirmed V. TOP1 TOP1
PAN3 NTRK2 Head and Neck squamous cell carcinoma: TCGA |TCGA-BB-4223-01A |Recurrent Confirmed b TOP1 TOP1
OBSCN CASZ1 Head and Neck squamous cell carcinoma: TCGA |TCGA-BB-4223-01A |Non recurrent Not reviewed Y TOP2 TOP2
ANXA4 PKN1 Liver hepatocellular carcinoma: TCGA TCGA-BC-4072-10A |Recurrent Confirmed N TOP1 TOP1
ATG7 BRAF Skin Cutaneous Melanoma: TCGA TCGA-BF-ASEP-01A [Recurrent Confirmed Y TOP1 TOP1
RHOT1 FGFR1 Breast invasive carcinoma: TCGA TCGA-BH-A18U-01A [Recurrent Confirmed ¥ TOP3 TOP2
KIT PDGFRA  |Breast invasive carcinoma: TCGA TCGA-BH-A1F0-01A [Recurrent Confirmed ¥ TOP1 TOP1
SGK1 PDSS2 Breast invasive carcinoma: TCGA TCGA-BH-A1F0-01A [Non recurrent Not reviewed N TOP9 TOP7
NAP1L1 STK38L Breast invasive carcinoma: TCGA TCGA-BH-A1FN-01A [Recurrent Confirmed N4 TOP4 TOP4
ZNF791 FGFR1 Breast invasive carcinoma: TCGA TCGA-BH-A209-01A [Recurrent Confirmed Y TOP4 TOP4
CCDC6 RET Thyroid carcinoma: TCGA TCGA-BJ-A0ZJ-01A [Recurrent Confirmed ¥ TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-BJ-A28Z-01A [Recurrent Confirmed RZ TOP1 TOP1
RAF1 AGGF1 Thyroid carcinoma: TCGA TCGA-BJ-A2N7-11A [Recurrent Confirmed e TOP2 TOP1
RAF1 AGGF1 Thyroid carcinoma: TCGA TCGA-BJ-A2N8-11A [Recurrent Confirmed Y TOP1 TOP1
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FUSION GLOBAL KINASE
GENE1 | GENE2 CANCER_TYPE TCGA_ID RECURRENCE |VALIDATION VALIDATOR NOTES RANKING FUSIONS
CONFIRMATION RANKING
FNDC3B PIK3CA Uterine Corpus Endometrial Carcinoma: TCGA [ TCGA-BK-A56F-01A  |Recurrent Confirmed Y TOP1 TOP1
[BAIAP2LT |[MET Kidney renal papillary cell carcinoma: TCGA [ TCGA-BQ-7049-01A  |Recurrent Confirmed Y TOP1 TOP1
FGFR2 [TACC2 Stomach adenocarcinoma: TCGA [TCGA-BR-8080-01A  [Recurrent Confirmed Y- TOP1 TOP1
NF1 TEX14 Stomach adenocarcinoma: TCGA [TCGA-BR-8080-01A  |Non recurrent Not reviewed Y TOP3 TOP3
CASZ1 MTOR Stomach adenocarcinoma: TCGA [ TCGA-BR-8483-01A  |Recurrent Confirmed N Missed by fusion detection tools
PRKCI GPR160 Stomach adenocarcinoma: TCGA [ TCGA-BR-8483-01A  |Non recurrent Not reviewed N Missed by fusion detection tools
DSTYK NUCKS1 Stomach adenocarcinoma: TCGA [ TCGA-BR-8483-01A  |Non recurrent Not reviewed N Missed by fusion detection tools
BMPR2 SPATS2L [Stomach adenocarcinoma: TCGA TCGA-BR-8483-01A  [Non recurrent Not reviewed N Missed by fusion detection tools
[ERCT RET Breast invasive carcinoma: TCGA [TCGA-C8-A1HJ-01A  [Recurrent Confirmed Y TOP1 TOP1
[TBLIXR1 |PIK3CA Breast invasive carcinoma: TCGA [TCGA-C8-A26X-01A _ |Recurrent Confirmed Y TOP4 TOP3
NLK FBCASS [Breast invasive carcinoma: TCGA [TCGA-C8-A26X-01A  [Non recurrent Not reviewed Y- TOP2 TOP2
STARD3 _ |STRADA Breast invasive carcinoma: TCGA TCGA-C8-A275-01A  |Recurrent Confirmed Y TOP5 TOP5
CPD LERBBZ Stomach adenocarcinoma: TCGA TCGA-CD-5799-01A _ |Recurrent Confirmed Y TOP5 TOP5
CCDC6 RET Thyroid carcinoma: TCGA [ TCGA-CE-A13K-01A |Recurrent Confirmed Y TOP1 TOP1
ETV6 NTRK3 Thyroid carcinoma: TCGA [ TCGA-CE-A27D-01A  |Recurrent Confirmed Y TOP1 TOP1
SSBP2 NTRK1 Thyroid carcinoma: TCGA [ TCGA-CE-A3MD-01A |Recurrent Confirmed Y TOP1 TOP1
TRIM27 RET Thyroid carcinoma: TCGA [ TCGA-CE-A481-01A  |Recurrent Confirmed Y TOP1 TOP1
NCOA4 RET Thyroid carcinoma: TCGA [ TCGA-CE-A482-01A  |Recurrent Confirmed Y TOP1 TOP1
SPECCI1L [RET Thyroid carcinoma: TCGA [ TCGA-CE-A485-01A  |Recurrent Confirmed Y TOP1 TOP1
FGFR3 [ TACC3 Bladder Urothelial Carcinoma: TCGA [TCGA-CF-A3MF-01A  |Recurrent Confirmed Y TOP1 TOP1
FGFR3 [TACC3 Bladder Urothelial Carcinom [TCGA-CF-ASMG-01A [Recurrent Confirmed Y TOP1 TOP1
FGFR3 TACC3 Bladder Urothelial Carcinoma: TCGA [TCGA-CF-A3MH-01A [Recurrent Confirmed Y TOP1 TOP1
FGFR3 [TACC3 Bladder Urothelial Carcinoma: TCGA [TCGA-CF-A47S-01A  |Recurrent Confirmed Y TOP1 TOP1
KDM7A BRAF Prostate adenocarcinoma: TCGA [TCGA-CH-5737-01A _ [Recurrent Confirmed Y JHDM1D-BRAF found. JHDM1D is an alias of KDM7A [TOP1 TOP1
AGGF1 RAF1 Prostate adenocarcinoma: TCGA [TCGA-CH-5737-01A  |Recurrent Confirmed Y TOP2 TOP2
|ETV6 NTRK3 Colon adenocarcinoma: TCGA [TCGA-CK-5913-01A F?ecurrem Confirmed Y- TOP1 TOP1
ETV6 NTRK3 Colon adenocarcinoma: TCGA TCGA-CK-5916-01A _[Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Colon adenocarcinoma: TCGA TCGA-CM-4743-01A _|Recurrent Confirmed Y TOP1 TOP1
LYN NTRK3 Head and Neck squamous cell carcinoma: TCGA |TCGA-CN-6997-01A  |Recurrent Confirmed Y TOP1 TOP1
FGFR3 TACC3 Head and Neck squamous cell carcinoma: TCGA |TCGA-CR-6473-01A  |Recurrent Confirmed Y TOP1 TOP1
FGFR3 [ELAVL3 __[Brain Lower Grade Glioma: TCGA [TCGA-CS-6186-01A  |Recurrent Confirmed Y TOP1 TOP1
FGFR3 [TACC3 Head and Neck squamous cell carcinoma: TCGA [TCGA-CV-7100-01A _[Recurrent Confirmed Y TOP1 TOP1
[WNK1 GIPC1 Uterine Corpus Endometrial Carcinoma: TCGA [TCGA-D1-A3JQ-01A  |Non recurrent Not reviewed Y [TOP3 TOP3
KAZN MTOR Uterine Corpus Endometrial Carcinoma: TCGA [ TCGA-D1-A3JQ-01A  |Recurrent Confirmed Y TOP2 TOP2
[TAX1BP1 |BRAF Skin Cutaneous Melanoma: TCGA [TCGA-D3-A2JC-06A  |Recurrent Confirmed Y TOP1 TOP1
GGA3 [VRK2 Skin Cutaneous Melanoma: TCGA [ TCGA-D3-A2JC-06A  |Non recurrent Not reviewed N Missed by fusion detection tools
FGFR2 CCDC6 Breast invasive carcinoma: TCGA [TCGA-D8-A13Z-01A  |Recurrent Confirmed Y TOP1 TOP1
ERLIN2 FGFR1 Breast invasive carcinoma: TCGA [TCGA-D8-A1JC-01A  |Recurrent Confirmed Y TOP2 TOP2
MPRIP RAF1 Skin Cutaneous Melanoma: TCGA [TCGA-D9-A4Z6-06A  |Recurrent Confirmed [V TOP1 TOP1
[AGK BRAF Skin Cutaneous Melanoma: TCGA TCGA-DA-A1IA-06A  |Recurrent Confirmed Y TOP1 TOP1
MACF1 _ |BRAF Thyroid carcinoma: TCGA TCGA-DE-AO0Y2-01A |Recurrent Confirmed Y TOP1 TOP1
RAF1 [AGGF1 Thyroid carcinoma: TCGA [ TCGA-DE-A20L-01A |Recurrent Confirmed Y TOP1 TOP1
INCOA4 |I?ET Thyroid carcinoma: TCGA [ TCGA-DE-A3KN-01A |Recurrent Confirmed Y TOP1 TOP1
[AGK BRAF Thyroid carcinoma: TCGA [ TCGA-DJ-A2PX-01A  |Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-DJ-A2Q1-01A |Recurrem Confirmed Y TOP1 TOP1
RAF1 [AGGF1 Thyroid carcinoma: TCGA [ TCGA-DJ-A2Q3-01A  |Recurrent Confirmed Y TOP1 TOP1
RAF1 [AGGF1 Thyroid carcinoma: TCGA [ TCGA-DJ-A2Q4-01A |I?ecurrenl Confirmed Y TOP1 TOP1
RAF1 [AGGF1 Thyroid carcinoma: TCGA [ TCGA-DJ-A2Q5-01A  |Recurrent Confirmed Y TOP2 TOP1
STRN ALK Thyroid carcinoma: TCGA [TCGA-DJ-A3US-01A  |Recurrent Confirmed Y TOP1 TOP1
ETV6 NTRK3 Thyroid carcinoma: TCGA [ TCGA-DJ-ABUV-01A  |Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET [Thyroid carcinoma: TCGA [ TCGA-DJ-A3V3-01A  |Recurrent Confirmed Y TOP1 TOP1
IRF2BP2  |NTRK1 Thyroid carcinoma: TCGA [TCGA-DJ-A4UP-01A  |Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA [TCGA-DJ-A4UQ-01A |Recurrent Confirmed Y TOP1 TOP1
[ETve NTRK3 Thyroid carcinoma: TCGA TCGA-DJ-A4V0-01A  [Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET [Thyroid carcinoma: TCGA [ TCGA-DJ-A4V5-01A  |Recurrent Confirmed Y TOP1 TOP1
CTSB PXK [ Thyroid carcinoma: TCGA [ TCGA-DJ-A4V5-01A  |Non recurrent Not reviewed N Missed by fusion detection tools
MTSS1 |ERBB2 [Bladder Urothelial Carcinoma: TCGA [TCGA-DK-A2I6-01A F?ecurrem Confirmed Y TOP2 TOP2
CCDC6 RET Thyroid carcinoma: TCGA TCGA-DO-ALJZ-01A _[Recurrent Confirmed Y TOP1 TOP1
CAMK2D  |JANK2 Brain Lower Grade Glioma: TCGA TCGA-DU-5855-01A  |Recurrent Confirmed Y TOP1 TOP1
EGFR SEPT14 Brain Lower Grade Glioma: TCGA [TCGA-DU-6406-01A |I?ecurrenl Confirmed Y TOP2 TOP2
WNK1 STK38L [Brain Lower Grade Glioma: TCGA [TCGA-DU-7007-01A  |Recurrent Confirmed Y TOP1 TOP1
PTPRZL MET Brain Lower Grade Glioma: TCGA [TCGA-DU-7304-02A  [Recurrent Confirmed Y TOP1 TOP1
SQSTM1 |NTRK2 Brain Lower Grade Glioma: TCGA [ TCGA-DU-A76L-10A  |Recurrent Confirmed Y [TOP1 TOP1
TRIO [TERT Sarcoma: TCGA [TCGA-DX-A1L3-01A  |Recurrent Confirmed (Y- TOP2 TOP2
C50RF22 |MAP2K5 Sarcoma: TCGA [ TCGA-DX-A1L3-01A  |Non recurrent Not reviewed N Filtered by Validator
TUFT1 PKN2 Sarcoma: TCGA [TCGA-DX-A23U-01A  |Recurrent Confirmed [ TOP1 TOP1
RAB3B PKN2 Sarcoma: TCGA [TCGA-DX-A23U-01A  |Recurrent Confirmed Y TOP2 TOP2
[TRIO TERT Sarcoma: TCGA [TCGA-DX-A2J0-01A  |Recurrent Confirmed Y TOP2 TOP2
[ELk3 CDK17 Sarcoma: TCGA [TCGA-DX-A2J0-01A  |Non recurrent Confirmed Y TOP3 TOP3
TPM3 NTRK1 Sarcoma: TCGA [TCGA-DX-A3UA-01A |Recurrent Confirmed [V TOP1 TOP1
PTAR1 PIP5K1B Sarcoma: TCGA TCGA-DX-A48N-01A |Recurrent Confirmed Y TOP2 TOP1
C120RF45 [CDK7 Sarcoma: TCGA TCGA-DX-A48N-01A  |Non recurrent Not reviewed [V TOP8 TOP7
INUAK1 UHRF1BP1lSarcoma: TCGA [TCGA-DX-A48N-01A  |Non recurrent Not reviewed ¥ TOP3 TOP2
SRI PIP4K2C  |Sarcoma: TCGA [TCGA-DX-A6BH-01A |Recurrent Confirmed Y TOP1 TOP1
PDGFRA _|FIP1L1 LNXI|Brain Lower Grade Glioma: TCGA [TCGA-E1-A7YI-01A Recurrent Confirmed N FIP1L1-CHIC2 fusion found: CHIC2 overlap PDGFRA
TBLIXR1 |PIK3CA Breast invasive carcinoma: TCGA [TCGA-E2-A14P-01A _[Recurrent Confirmed Y TOP4 TOP4
GSK3B FSTL1 Breast invasive carcinoma: TCGA [TCGA-E2-A14P-01A |Non recurrent Not reviewed Y TOP1 TOP1
WHSCIL1 |[FGFR1 Breast invasive carcinoma: TCGA [TCGA-E2-A15A-01A  |Recurrent Confirmed Y- TOP1 TOP1
ANK1 FGFR1 Breast invasive carcinoma: TCGA [TCGA-E2-A15A-01A  |Recurrent Confirmed Y TOP2 TOP2
DYRK1A [KDM4B Breast invasive carcinoma: TCGA [TCGA-E2-A15A-01A  |Non recurrent Not reviewed Y TOP4 TOP4
CCDC6 RET Thyroid carcinoma: TCGA [ TCGA-E3-A3E0-01A  |Recurrent Confirmed Y TOP1 TOP1
FGFR3 TACC3 Bladder Urothelial Carcinoma: TCGA [TCGA-E7-ASKE-10A  |Recurrent Confirmed Y TOP1 TOP1
rEML4 ALK Thyroid carcinoma: TCGA [TCGA-E8-A432-01A  |Recurrent Confirmed [V TOP1 TOP1
[ETVE NTRK3 Thyroid carcinoma: TCGA [ TCGA-E8-A438-01A  |Recurrent Confirmed [ TOP1 TOP1

93



FUSION GLOBAL KINASE

GENE1 | GENE2 CANCER_TYPE TCGA_ID RECURRENCE (VALIDATION | VALIDATOR NOTES RANKING FUSIONS

CONFIRMATION RANKING
CCDC6 RET Thyroid carcinoma: TCGA TCGA-E8-A44M-10A |Recurrent Confirmed Y TOP1 TOP1
ETV6 NTRK3 Skin Cutaneous Melanoma: TCGA TCGA-EB-A51B-01A |Recurrent Confirmed Y TOP1 TOP1
LMNA RAF1 Skin Cutaneous Melanoma: TCGA TCGA-EB-A5SF-01A |Recurrent Confirmed Y TOP1 TOP1
TRAK1 RAF1 Skin Cutaneous Melanoma: TCGA TCGA-EE-A2MI-06A |Recurrent Confirmed Y TOP1 TOP1
TBL1XR1 |PIK3CA |Prostate adenocarcinoma: TCGA TCGA-EJ-5507-01A  |Recurrent Confirmed Y TOP3 TOP2
FGFR3 AES Prostate adenocarcinoma: TCGA TCGA-EJ-A7TNM-01A |Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-EL-A3CY-01A |Recurrent Confirmed Y TOP1 TOP1
TPM3 NTRK1 Thyroid carcinoma: TCGA TCGA-EL-A3D4-10A |Recurrent Confirmed Y TOP1 TOP1
NCOA4 RET Thyroid carcinoma: TCGA TCGA-EL-A3H3-01A [Recurrent Confirmed Y TOP1 TOP1
AP3B1 BRAF Thyroid carcinoma: TCGA TCGA-EL-A3T0-01A |Recurrent Confirmed Y TOP1 TOP1
ERC1 RET Thyroid carcinoma: TCGA TCGA-EL-A3T9-01A [Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-EL-A3TB-01A |Recurrent Confirmed Y TOP1 TOP1
SND1 |BRAF Thyroid carcinoma: TCGA TCGA-EL-A3ZK-01A |Recurrent Confirmed Yi TOP1 TOP1
ETV6 NTRK3 Thyroid carcinoma: TCGA TCGA-EL-A3ZN-01A |Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-EL-A3ZP-01A |[Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-EL-A3ZS-01A |Recurrent Confirmed Y TOP1 TOP1
GTF2IRD1 [ALK Thyroid carcinoma: TCGA TCGA-EL-A4KD-01A [Recurrent Confirmed Y TOP1 TOP1
RAF1 AGGF1 |Thyroid carcinoma: TCGA TCGA-EM-A1CS-01A |Recurrent Confirmed Y TOP1 TOP1
NCOA4 RET Thyroid carcinoma: TCGA TCGA-EM-A2CU-01A |Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-EM-A3AN-01A [Recurrent Confirmed Y TOP1 TOP1
TFG NTRK1 Thyroid carcinoma: TCGA TCGA-EM-A3AO-10A [Recurrent Confirmed Y TOP1 TOP1
[ERCT RET Thyroid carcinoma: TCGA TCGA-EM-A3FQ-06A [Recurrent Confirmed Y. TOP1 TOP1
CLCN6 RAF1 Skin Cutaneous Melanoma: TCGA TCGA-ER-A19L-06A |Recurrent Confirmed Y TOP1 TOP1
WASF2 FGR Skin Cutaneous Melanoma: TCGA TCGA-ER-A19W-06A |Recurrent Confirmed Y TOP4 TOP3
BCL2L11 |BRAF Thyroid carcinoma: TCGA TCGA-ET-A2MX-01A |Recurrent Confirmed Y TOP1 TOP1
RBPMS NTRK3 Thyroid carcinoma: TCGA TCGA-ET-A39L-01A |Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-ET-A39R-01A |Recurrent Confirmed N TOP1 TOP1

GRID1 BAZ1B Thyroid carcinoma: TCGA TCGA-ET-A39R-01A [Non recurrent Not reviewed N Missed by fusion detection tools

FAM114A2 |BRAF Thyroid carcinoma: TCGA TCGA-ET-A3BN-01A |Recurrent Confirmed Y TOP1 TOP1
FKBP15 |RET Thyroid carcinoma: TCGA TCGA-ET-A3DQ-01A |Recurrent Confirmed Yi TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-ET-A3DR-01A |Recurrent Confirmed N4 TOP1 TOP1
TBLIXR1 |RET Thyroid carcinoma: TCGA TCGA-ET-A40R-01A [Recurrent Confirmed Yi TOP1 TOP1
SQSTM1 [NTRK1 Thyroid carcinoma: TCGA TCGA-ET-A40S-01A |Recurrent Confirmed N TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-ET-A40T-01A [Recurrent Confirmed Y/ TOP1 TOP1
[EFNA3 PIK3C2G |Breast invasive carcinoma: TCGA TCGA-EW-A1PC-01B |Recurrent Confirmed Y TOP1 TOP1
TRIM24 BRAF Rectum adenocarcinoma: TCGA TCGA-F5-6464-01A  |Recurrent Confirmed Y TOP1 TOP1
SMEK?2 ALK Rectum adenocarcinoma: TCGA TCGA-F5-6864-01A  |Recurrent Confirmed Y TOP1 TOP1
CAMK2D |TLL2 Rectum adenocarcinoma: TCGA TCGA-F5-6864-01A  [Non recurrent Not reviewed Y TOP2 TOP2
ETV6 NTRK3 Thyroid carcinoma: TCGA TCGA-FE-A3PD-01A |[Recurrent Confirmed Y TOP1 TOP1
FGFR3 TACC3 Brain Lower Grade Glioma: TCGA TCGA-FG-7643-01A  |Recurrent Confirmed Y TOP1 TOP1
RIMKLB PIP4K2A |Brain Lower Grade Glioma: TCGA TCGA-FG-8185-01A  |Recurrent Confirmed Y. TOP2 TOP2
TFG MET Thyroid carcinoma: TCGA TCGA-FK-A3S3-01A |Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-FK-A3SE-01A |Recurrent Confirmed Y TOP1 TOP1
AKAP13 |RET Thyroid carcinoma: TCGA TCGA-FK-A3SG-01A |Recurrent Confirmed 4 TOP1 TOP1
CDC27 BRAF Skin Cutaneous Melanoma: TCGA TCGA-FS-A1ZU-06A |Recurrent Confirmed Y TOP1 TOP1
SND1 BRAF Thyroid carcinoma: TCGA TCGA-FY-A40N-01A |[Recurrent Confirmed Y] TOP1 TOP1
STRN ALK Kidney renal papillary cell carcinoma: TCGA [TCGA-G7-6792-01A |Recurrent Confirmed Y TOP1 TOP1
MAP4K3  [SMC6 Kidney renal papillary cell carcinoma: TCGA |TCGA-G7-6792-01A [Non recurrent Not reviewed i TOP4 TOP3
CB0ORF34 [MET Kidney renal papillary cell carcinoma: TCGA |TCGA-GL-7773-01A |Recurrent Confirmed Y. TOP1 TOP1
NARS2 PAK1 Skin Cutaneous Melanoma: TCGA 'TCGA-GN-A26D-06A |Recurrent Confirmed Y TOP3 TOP3
MARK2 BATF2 Skin Cutaneous Melanoma: TCGA TCGA-GN-A26D-06A [Non recurrent Not reviewed Y TOP2 TOP2
TBK1 GRIP1 Skin Cutaneous Melanoma: TCGA TCGA-GN-A26D-06A |Non recurrent Not reviewed Y TOP1 TOP1
PAK1 PDGFD  |Skin Cutaneous Melanoma: TCGA TCGA-GN-A26D-06A [Non recurrent Not reviewed N TOP4 TOP4
TPM1 ALK Bladder Urothelial Carcinoma: TCGA TCGA-GV-A3QG-01A |Recurrent Confirmed Y TOP1 TOP1
PAPD7 RAF1 Prostate adenocarcinoma: TCGA TCGA-HC-8256-01A  |Recurrent Confirmed Y TOP2 TOP2
AFAPL NTRK2 _|Brain Lower Grade Glioma: TCGA TCGA-HT-7680-01A  |Recurrent Confirmed Y TOP1 TOP1
GGA2 PRKCB |Brain Lower Grade Glioma: TCGA TCGA-HT-A5RC-01A |Recurrent Confirmed Y: TOP2 TOP2
MKRNL __ |BRAF Thyroid carcinoma: TCGA TCGA-J8-A301-01A |Recurrent Confirmed Y TOP1 TOP1
CCDC6 RET Thyroid carcinoma: TCGA TCGA-J8-A4HW-01A |Recurrent Confirmed Y TOP1 TOP1
ERBB2 PPP1RI1B [Liver hepatocellular carcinoma: TCGA TCGA-KR-A7K2-01A |Recurrent Confirmed Y TOP1 TOP1
ZC3HAV1 |BRAF Thyroid carcinoma: TCGA TCGA-KS-A4ID-01A  |Recurrent Confirmed Y TOP1 TOP1
FGFR3 TACC3 Eirain Lower Grade Glioma: TCGA TCGA-P5-A72U-01A |Recurrent Confirmed Y: TOP1 TOP1
OXR1 MET |Liver hepatocellular carcinoma: TCGA TCGA-RC-A6M6-01A [Recurrent Confirmed Y TOP1 TOP1
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