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1 INTRODUCTION 

 

1.1 Mitochondria and cell metabolism 

 

Mitochondria are important cytosolic organelles directly involved in the energy production in 

cells. Their inheritance is maternal and the theory by which they originated from symbiotic 

bacteria living in cells is almost fully accepted (1). Endosymbiotic theory states that ages ago 

mitochondria were free-living prokaryotes that became active organelles of eukaryotic cells. If 

initially accepted for the sole plant plastids, this theory was then considered valid for 

mitochondria as well (2), given the fact that either physiological or biochemical aspects of these 

organelles are similar to prokaryotic cells (3). Mitochondria coevolved with their host, the 

eukaryotic cell, such that the majority of mitochondrial proteins is encoded by the cell nucleus. 

They however are equipped with an own small DNA genome of 16 Kb which encodes for 

tRNAs, rRNAs and major proteins involved in oxidative phosphorylation (OXPHOS), an 

essential process for ATP (adenosine triphosphate) production in cells. Therefore, mitochondria 

are important bioenergetics factories critical for normal cell function and metabolism. For this 

reason, mitochondrial diseases in human cells can be dangerous, affecting many important 

tissues, such as nervous tissue, heart and muscle (4). The observation by Otto Warburg that 

cancers usually acquire the property of taking up and fermenting glucose to lactate in the 

presence of oxygen led him to propose that mitochondrial respiration defects are the underlying 

basis for aerobic glycolysis and cancer (5). Not all tumors, however, necessarily undergo 

aerobic glycolysis to rapidly produce the energy required for tumor growth and progression (6). 

A consistent amount of studies on different cancers has been conducted over the years and the 

current data seem to support the view that in order to favour the production of biomass, 

proliferating cells are commonly prone to satisfy the energy requirement utilizing substrates 

rather than completely oxidizing glucose (to CO2 and H2O). More precisely, only part (40 to 

75%, (7)) of the cell need of ATP is obtained through the scarcely efficient catabolism of 

glucose to pyruvate/lactate in the cytoplasm and the rest of  the ATP need is synthesized in the 

mitochondria through the tricarboxylic acid (TCA) cycle (one ATP produced each acetyl 
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moiety oxidized) and the associated oxidative phosphorylation that regenerates nicotinamide- 

and flavin-dinucleotides in their oxidized state (NAD+ and FAD).  

 

1.2 Mitochondrial structure  

 

Adenosine triphosphate (ATP) is a highly energetic compound required for most cellular 

endergonic reactions and processes. Functional integrity of mitochondria is strictly dependent 

on the molecular dynamic that monitors their dimensions and structure. Several functions are 

indeed carried out by these organelles: ATP production via OXPHOS process, cell-signalling 

handling, apoptotic processes, cellular energetic state regulation, muscular contraction, ionic 

gradients maintenance through biological membranes. The wide range of mitochondrial 

functions is highly related to the mitochondrial structure. Electronic microscopy experiments 

showed that mitochondria are separated from the cytosol by a complex double-membrane 

architecture, consisting of an outer mitochondrial membrane (OMM) and an inner 

mitochondrial membrane (IMM) separated by an intermembrane space (IMS) a few nanometres 

thick (8) [Fig.1]. The IMM is extensively folded into the mitochondrial matrix (MM), forming 

a series of invaginations called mitochondrial cristae that enormously increase the IMM’s 

surface, therefore increasing the number of sites on which OXPHOS reactions can take place 

(9). Small junctions of around 30 nm (cristae junctions) are able to directly connect the 

mitochondrial cristae to the IMS: it has been hypothesized that the cristae junctions may act as 

an effective barrier to reduce not only the free diffusion of protons from the MM to the IMS, 

but also to prevent the improper distribution of proteins between the two different sides of the 

IMM.  

The IMM is impermeable to ions and polar molecules, an important characteristic that is 

fundamental for the maintenance of the proton electrochemical gradient created by the oxidative 

phosphorylation. Moreover, it is mainly composed of proteins rather than lipids since the 

mitochondrial complexes (normally associated in supercomplexes) responsible for the electron 

transport, are in here embedded. Another peculiarity is that the IMM doesn’t contain 

cholesterol, a typical element of biological membranes, whereas it contains cardiolipin, a lipid 

that is usually present in bacterial membranes (10). As previously introduced, the IMM delimits 

the mitochondrial matrix (MM), characterized by a jellied consistency because of its high 

concentration in terms of proteins (around 500 mg/ml). The MM is the main site where the 

citric acid cycle (also known as tricarboxylic acid -TCA- cycle, or Kreb’s cycle), and the fatty 
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acids oxidation take place and where mitochondrial DNA (mtDNA), ribosomes and the proteins 

involved in the apoptotic processes are carefully guarded (9). 

The OMM which externally defines the organelle in the cytosol, has a thickness of around 5 

nm and it is permeable to a lot of small molecules and ions, thanks to the fact that it owns large 

amounts of mitochondrial porin, also known as VDAC (Voltage-Dependent Anion Channel), 

an important protein of 32 kDa that is able to form channels on the OMM allowing the free 

diffusion of small molecules up to 5000 Da. 

 

 

 

As we can see in the picture [Fig.1], mitochondria look like small rods, with a diameter of around 

0.3 μm and a length of around 1-6 μm. The number of mitochondria in one cell is variable 

according to the cellular type and to the cell’s functional state. The mitochondrial life cycle starts 

with growth and division of pre-existing organelles (process known as biogenesis) and finishes 

with degradation of impaired or surplus organelles by a mechanism called mitophagy. In 

between, they undergo several cycles of fission and fusion that are fundamental for the generation 

Fig. 1 Schematic representation of mitochondrial structure and electron microscopy of a mitochondrion showing the 

folding of the cristae into the mitochondrial matrix [Lehninger, D.L. Nelson and M.M. Cox, Principles of Biochemistry,3rd 

edition 2000]. 
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of heterogeneous mitochondria or interconnected mitochondrial networks, depending on the 

physiological state of the cell (11): the large mitochondrial networks that are generated by fusion 

are beneficial in metabolically active cells, in which they contribute towards the dissipation of 

energy (12). By contrast, in quiescent cells mitochondria are frequently present as numerous 

morphologically and functionally distinct small spheres or short rods. Mitochondrial fusion and 

fission are antagonistic activities that shape the mitochondrial compartment, and the consequent 

dynamic behaviour of mitochondria allows the cell to respond to its ever-changing physiological 

conditions (13). Thus, the rates of fusion and fission must be tightly controlled to keep the right 

balance required for the maintenance of mitochondrial morphology or to shift this balance to 

adapt the degree of mitochondrial interconnectivity to changing physiological conditions. As a 

matter of fact, fusion is involved in mitochondrial function and homeostasis maintenance 

whereas fission is responsible for the organelles division during mitosis, apoptotic factors release 

into the intermembrane space and damaged mitochondria turnover. Recent studies suggest that 

defects in the shape or distribution of mitochondria, possibly due to genetic mutations occurring 

in proteins related to fusion/fission balance (such as optic atrophy protein 1-OPA1, 

metalloendopeptidase OMA1, dynamin related protein 1-drp1, dynamin 1-dnm1), could be 

related to neurodegenerative diseases (e.g. Alzheimer’s, Hungtington’s and Parkinson’s diseases) 

(14) (15) (16).  

 

1.3 Mitochondrial genome 

 

As mentioned, mitochondria are equipped with their own genome, the mitochondrial DNA 

(mtDNA), which is located in the MM. In mammalian cells, each organelle generally contains 

many identical copies of mtDNA. During its evolution into the present-day powerhouses of 

eukaryotic cells, the endosymbiont transferred many of its essential genes to the nuclear 

chromosomes. Nevertheless, the mitochondrion still carries hallmarks of its bacterial ancestor: 

for instance, it uses an N-formylmethionyl-tRNA (fMet-tRNA) as initiator of protein synthesis 

(17). Most mitochondrial proteins are in fact encoded by nuclear genes and imported into the 

organelles at a later time. To this end, at the time when they are synthesised, these proteins are 

composed of N-terminal pre-sequences of 20-50 amino which are able to drive them to a 

specific mitochondrial region according to the function they are meant to carry out (18).  

The nucleotide sequence of the human mtDNA was the first documented complete sequence of 

a mitochondrial genome (19). Structure and gene organisation of mtDNA is highly conserved 
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among mammals. The mammalian mitochondrial genome is a closed-circular, double-stranded 

DNA molecule of 16569 pair bases [Fig. 2], encoding for 2 rRNAs and 22 tRNAs essential for 

the mitochondrial protein synthesis, and 13 polypeptides which constitute some of the enzyme 

complexes involved in the OXPHOS process. The OXPHOS proteins encoded by mtDNA are 

7 subunits of the NADH-CoQ oxidoreductase (complex I), one subunit of the CoQ-cytocrome 

c reductase (complex III), 3 subunits of the cytocrome c oxidase (complex IV) and 2 subunits 

of the ATP synthase (ATPase 6 and ATPase 8) (20). The strands of the DNA duplex can be 

distinguished on the basis of G/T base composition which results in different buoyant densities 

of each strand (‘heavy’ and ‘light’) in denaturing caesium chloride gradients (21). Most 

information is encoded on the heavy (H) strand, with genes for 2 rRNAs, 14 tRNAs, and 12 

polypeptides. The light (L) strand codes for 8 tRNAs and a single polypeptide. The replication 

of the H strand begins in a specific region of the mtDNA called D-loop where the promoters of 

both H and L strands are included. D-loop is a non-coding area of the mtDNA, a segment called 

control region, containing the binding sites for replication and transcription factors.  

 

 

 

Many differences with respect to the nuclear genome can be described: the genes lack introns 

and, except for one regulatory region, intergenetic sequences are absent or limited to a few 

Fig. 2: Human mtDNA 
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bases; both rRNA and tRNA molecules are unusually small; some of the protein genes are 

overlapping and, in many cases, part of the termination codons are not encoded but are 

generated post-transcriptionally by polyadenylation of the mRNAs (22). Another important 

difference is that mtDNA replication takes place independently from the cell cycle phases and 

occurs in all differentiated, even if non- proliferating, tissues. Finally, mtDNA reparation 

mechanisms are less efficient than the nuclear genome’s ones explaining the high mutation rate 

occurring in mitochondria. The high mutation rate and the presence of several copies of mtDNA 

in a single mitochondrion are the reason why two different mutations are common: homoplasmy 

and heteroplasmy. The former is referred to a cell with a uniform pattern of mtDNA, either 

completely wild-type or completely mutant. The latter refers to a cell including mitochondria 

with both mutant and wild-type mtDNA. Therefore it is important to define the correlation 

between the mtDNA mutation degree and the altered phenotype entity in mitochondrial 

pathologies. 

1.4 Mitochondrial functions 

 

As introduced, energetic metabolism, apoptotic processes, reactive oxygen species (ROS) 

production and important cell-signalling pathways are regulated by mitochondria, which play 

a crucial role in the physiology of the cell. In particular, tricarboxylic acid cycle (TCA – Kreb’s 

cycle) where Acetyl-CoA is completely oxidized to 2 CO2 generates reducing agents, NADH 

and FADH2, required to initiate the OXPHOS process. In addition, TCA cycle produces 

important precursors of anabolic pathways like gluconeogenesis, fatty acid, porphyrins and 

proteins biosynthesis. Moreover, fatty acid β-oxidation, urea cycle, amino acid oxidative 

deamination and membrane phospholipids synthesis take place in mitochondria (23). These 

organelles are indeed the most productive centres of ROS in the cell, since superoxide anion 

(O2
.-) is generated as a result of the electron transport dysfunction through the redox centres of 

the protein complexes (24). Cellular ROS concentration has to be strictly regulated: whereas 

low concentrations of ROS are able to modulate cell-signalling pathways, higher amounts of 

radicals could damage nucleic acids, lipids, enzymes, and trigger apoptotic processes. Another 

feature of mitochondria is the maintenance of Ca2+ homeostasis in the cell: this function is finely 

regulated by the close proximity of the organelles to the endoplasmic reticulum (ER), the main 

Ca2+ storage site in the cell, and by the numerous transporters wiped through the inner and the 

outer mitochondrial membranes. Finally, mitochondria are also responsible for the 
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thermogenesis phenomenon, essential in the brown adipose tissue to convert the energy derived 

from the OXPHOS into heat (25). 

 

1.4.1 Electron transport chain and oxidative phosphorylation 

 

Mitochondrial respiration is the main energy-yielding mechanism in aerobic eukaryotes. For 

this purpose, the evolution has created a well organised and efficient structure represented by 

the electron transport chain (ETC): it is composed of four protein complexes and two mobile 

transporters (coenzyme Q - CoQ, and cytocrome c - cyt c), most of which are embedded in the 

IMM. The protein complexes contain functional redox centres able to accept electrons from 

reduced donors and to release them to available acceptors, allowing their transport up to oxygen 

(O2), which is the final acceptor of the chain [Fig. 3]. 

Complex I (also known as NADH/ubiquinone oxidoreductase, NADH-CoQ oxidoreductase, 

NADH dehydrogenase) directly receives electrons from nicotinamide adenine dinucleotide 

(NADH) generated by Kreb’s cycle. It internally presents a flavoprotein associated to a flavin 

cofactor (FMN) able in fact to accept two electrons released by NADH. The electrons move 

from FMN, passing through iron-sulfur redox clusters, towards Coenzyme Q, a liposoluble 

ubiquinone, located inside of IMM. Ubiquinone’s role is receiving electrons coming from both 

complex I and complex II, and to move them to complex III.  

Complex II (succinate/CoQ reductase, succinate dehydrogenase) is the only TCA cycle enzyme 

located in the IMM. It is involved in both Kreb’s cycle and OXPHOS. The conversion of 

succinate to fumarate, a reaction of citrate cycle, reduces FADH into FADH2, from which 

electrons are taken and moved to complex II iron-sulfur centres and then to CoQ. The latter, 

thanks to its liposolubility, is able to diffuse through the membrane and transport these electrons 

up to complex III (cytocrome bc1 complex or CoQH2-cytocrome c reductase). Here the 

electrons promptly bind to the intermediate cytocrome c1, which then transfers them directly to 

cyt c. Finally complex IV (cytocrome c oxidase - COX) captures the electrons from the cyt c 

and moves them to the final acceptor (O2). 
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Thermodynamics studies demonstrated that all ETC-redox reactions are highly exergonic. The 

energy developed from the ETC reactions pushes the protons transport from the MM to the 

intracristae space, against concentration gradient. More precisely, this energy is sufficient to 

translocate 4 protons (H+) from complex I, 4 H+ from complex III, 2 H+ from complex IV (26). 

Sir Peter Mitchell first explained the role played by the proton gradient, postulating the so called 

chemiosmotic theory (27). Protons movement from the mitochondrial matrix to the 

intermembrane space produces a transmembrane electrochemical potential (Δψm), also called 

proton motive force (Δμ), generated by the distribution of both electric charges (Δψ) and 

chemical species (ΔpH) between the MM and the IMS. In particular, in the mitochondrial 

matrix Δψm is negative (around -150/180 mV) and it’s used by the F1FO-ATPase to synthesise 

ATP from ADP + Pi. The IMS protons are in fact picked up by the enzyme to trigger a rotational 

catalysis responsible for ATP production. Δψm is therefore essential for the maintenance and 

control of the energetic state in the cell. 

 

1.4.2 Importance of mitochondrial membrane potential 

 

Several mitochondrial functions are strictly regulated by Δψm, which is involved not only in the 

maintenance of the proton gradient required for ATP production, but also in ions homeostasis 

Fig 3. Electron transport chain and mitochondrial complexes. [Solaini G. et al., Biochimica et Biophysica Acta, 2010] 
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control, metabolites transport, ROS production and cell death. For instance, it is the fuel for 

Ca2+ import into the mitochondrion under particular energy requests, such as during contraction 

in muscular cells (28). It has been also observed that in certain circumstances a high Δψm 

directly contributes to ROS production: an increased delta (Δ) of the mitochondrial 

transmembrane potential, principally associated to a decrease of ATP synthesis rate via 

OXPHOS which consequently causes a decrease of the electron transport rate through the IMM 

protein complexes, could determine a higher ability of the electrons to escape from the 

complexes redox centres and create reactive species in the presence of free O2 (29).  

Despite ATP synthesis handling is the most important aspect related to Δψm, it is also essential 

for the preservation of mitochondrial morphology: an alteration of OPA1 (Optic Atrophy 

Protein 1) metabolism could induce a collapse of Δψm, resulting in mitochondrial 

fragmentation, mitophagy activation pathways, mitochondrial permeability transition pore 

(mPTP) opening and apoptosis (30) (31). 

The mitochondrial potential can also be altered by some classes of chemicals, such as 

uncouplers and ionophores, which can determine the complete dissipation of the proton gradient 

by forcing H+ entrance in the MM. The uncouplers 2,4-dinitrophenol (DNP), carbonyl cyanide-

4-(trifluoromethoxy) phenylhydrazone (FCCP), carbonyl cyanide m-chlorophenyl hydrazine 

(CCCP) are in fact able to bind and transport H+ from the IMS to the MM, inducing the collapse 

of  Δψm and nulling the proton gradient. Instead, ionophores like valinomycin, ionomycin or 

gramicidin create outright channels able to move many types of ions across the membrane. 

Finally, endogenous uncoupling proteins (UCPs) play an essential role in all animal tissues: 

they are capable of dissipating the proton gradient created by the ETC, like DNP, FCCP and 

CCCP do, to generate heat, when cells experience a decrease in temperature (32). 

 

1.5 Mitochondrial F1FO-ATPase  

 

The F1FO-ATPases (or ATP synthases) are multisubunit enzyme complexes of energetically 

active membranes in bacteria, mitochondria and chloroplasts. Mitochondrial ATP synthase uses 

the proton electrochemical gradient generated by the electron transport across the inner 

membrane (IMM) to produce the most important energetic source in the cell, adenosine 

triphosphate (ATP), from adenosine diphosphate (ADP) and inorganic phosphate (Pi). The 

enzyme consists of two major functional parts, a membrane-extrinsic F1 portion, and a 
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membrane-intrinsic FO (where “o” stands for “oligomycin”) portion joined together by central 

and peripheral stalks. F1 sector is the catalytic portion where ATP is synthesised, whereas FO 

domain contains a motor, which generates rotation using the potential energy stored in the 

proton gradient. The rotational energy of the motor is then transmitted to the catalytic portion 

by the central stalk (33) [Fig. 4]. 

 

 

 

In mammals, FO contains 8 c-subunits, each composed of two α-helix structures kept together 

by a loop region to form a ring inserted in the IMM, which is called c-ring. The c-ring is tightly 

in contact with the a-subunit, rich in basic-amino acids. The C-terminal α-helix of each c-

subunit contains a carboxyl group, in the form of –COO-, exposed on the external surface of 

the c-ring: as soon as H+ ions cross the ring, they interact with –COO- groups neutralizing the 

negative charges and converting them to –COOH. Once neutralized, –COOH residues are able 

to pass through the hydrophobic environment of the phospholipid bilayer, generating the 

complete rotation of the c-ring. This mechanism allows the next –COO- group to be exposed 

inducing the second rotation. As c-ring rotations are triggered, –COOH residues are forced to 

Fig.4. Schematic representation of mitochondrial F1FO-ATPase. [Walker, JE. The ATP synthase: the understood, the 

uncertain and the unknown. Keilin Memorial Lecture, 2012] 
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a second interaction with the a-subunit where the microenvironment furthers –COOH groups 

dissociation, making them available for the following ionic interactions. Protons are finally able 

to reach the MM passing through a second small channel which is part of the ring (33). The 

number of protons required to generate each 360° rotation of the c-ring corresponds to the 

number of c-subunits that form the ring.  

In close proximity to a-subunit, a peripheral stalk extends from FO domain to F1 sector: it is 

composed of a single copy of OSCP (oligomycin-sensitivity conferring protein), b, d and F6 

subunits (34).  This structure facilitates a- and c- subunits contacts and makes F1 sector more 

resistant during FO rotation mechanism (35).  

The F1 domain of the ATP synthase is an assembly of 5 proteins: α, β, γ, δ, ε, with the 

stoichiometry of α3 β3 γ1 δ1 ε1. The combined molecular mass of all these subunits is 

approximately 350 kDa. The three α- and the three β- form a spherical α3 β3 structure arranging 

in alternation around the γ subunit, completely enveloped in the α3 β3 domain. The γ subunit is 

fundamental to transfer the rotational energy coming from FO sector to the catalytic subunits. 

Paul Boyer was the first scientist who proposed a mechanism that could explain the ATP 

synthesis driven by F1 domain (36): according to his model, α-subunits bind one Mg2+ ion and 

one nucleotide, whereas each β-subunit is able to change its conformation 3 times giving rise 

to 3 different conformations, known as βTP, βDP, βE, having different affinity to ADP and ATP. 

The synthesis starts when βDP binds ADP and Pi, inducing a conformational change of βDP site, 

which assumes βTP configuration and promotes the conversion of ADP into ATP. Once ATP is 

produced, βTP modifies its structure to βE, characterized by a low affinity for ATP, consequently 

allowing its release in the MM [Fig.5]. 
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As widely explained in literature, mitochondrial ATP synthase is a reversible molecular motor, 

such that when Δψm is compromised, as it occurs when mitochondrial respiration is 

dramatically impaired, the enzyme is able to work in reverse hydrolysing cytosolic ATP to 

restore normal Δψm levels (37) (38). In this case, the F1 sector directly picks up and binds the 

ATP molecules present in the MM and, thanks to FO’s ability to work in a counterclockwise 

direction, releases ADP and H+ in the IMS, thus regenerating both proton gradient and Δψm. 

What basically happens is that when hydrolysis is activated, ATP is bound to βE site of the 

enzyme inducing the same conformational change occurring during ATP synthesis. How this 

happen is still under investigation: some investigators propose that βTP is the site where ATP is 

hydrolysed, whereas some others say that this reaction occurs on the βDP subunit (39). The 

second hypothesis has been so far considered the most reliable. 

Despite a single enzymatic complex of ATP synthase is fully able to produce ATP, it has been 

proved that the enzyme normally organizes in dimers and oligomers rather than in single 

monomers. The association of two or more ATP synthases in oligomeric complexes is important 

for the stabilization of the enzyme and for the protection against mechanical insults during its 

catalytic activity. It has also been demonstrated that ATP synthase dimers intervene in cristae 

Fig.5. Conformational changes occurring in F1 sector to synthetize ATP [Lehninger, D.L. Nelson and M.M. Cox, 

Principles of Biochemistry, 3rd edition 2000] 
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remodelling and in the generation of areas in which protons are better rerouted for the ATP 

synthesis (40).  

 

1.5.1 ATP synthase regulation 

 

Under physiological conditions, ATP synthase activity is strictly regulated. Therefore, the 

electron transport across the complexes is finely controlled and directly related to ADP 

concentration in the physiological medium. When the metabolic state of the cell changes and a 

higher amount of ATP is requested, ADP concentration is increased and ATP synthesis rate 

becomes higher. This event is induced by an up-regulation of the Kreb’s cycle, which 

consequently induces an increase in the dehydrogenases activation and NADH concentration 

(41).  

ATP synthase’s hydrolytic activity is carefully regulated as well, since physiological amounts 

of ATP are essential for cell life and survival. The uncontrolled and prolonged ATP 

consumption occurring when Δψm collapses, could provoke a complete deprivation of 

intracellular energy, which could lead to cell death. The most important regulator of this process 

is the ATP synthase Inhibitory Factor 1 (IF1). Beyond the canonical and at this point accepted 

role of the protein in this function, it has been lately observed its involvement in the 

maintenance of mitochondrial morphology and network, and in carcinogenesis process, 

favouring tumor cells growth and proliferation. 

 

1.6 The mitochondrial ATP synthase Inhibitory Factor 1: structure and binding to ATP 

synthase 

 

As introduced above, ATP synthase activity needs to be strictly controlled. In animals and 

plants it is finely regulated by the endogenous, nuclear-encoded, ATP synthase Inhibitory 

Factor, IF1, a small basic protein of 81-84 amino acids first discovered by Pullman and Monroy 

in 1963 (42). Its canonical function has been observed when the proton electrochemical gradient 

across the IMM is lost (during hypoxia/ischemia, as it occurs in tumors) or when IMM’s 

integrity is compromised. In such condition, ATP synthase nanomotor is able to work in reverse 

hydrolysing cytosolic ATP to sustain Δψm. In order to avoid the uncontrolled wasting of cellular 

ATP, IF1, which is activated by a decrease of pH in the MM, binds to ATP synthase and blocks 
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the ATP consumption. In vitro, at a pH of 6.7 or below, this protein forms a 1:1 complex with 

either F1 domain or with the intact ATP synthase (43). Once the electrochemical gradient is 

restored, IF1 is released and ATP synthesis resumes.  

It is encoded by the ATPIF1, a nuclear gene located in the chromosome 1, and it fulfils its 

function in MM. IF1 is a small protein of around 10 kDa, well conserved among the species: as 

a matter of fact, human and bovine IF1 proteins show up to 75% of similarity (44). The active 

bovine protein is a homodimer, where the C-terminals of the two α-helical monomers form an 

antiparallel coiled-coil. The protruding N-terminal regions represent the inhibitory domain of 

the protein, able to bind two F1-ATPase moieties at the same time (45) [Fig.6]. At pH values of 

8 and higher, dimers of IF1 form dimers of dimers and more complexes aggregates, hiding the 

inhibitory domain of the protein and rendering it inactive. Disaggregation of these oligomers is 

thought to be managed by a His49 residue, which probably controls the pH-dependent 

interconversion between the inactive and active forms of the protein [Fig.7] 

 

 

 

Fig. 6. Schematic representation of ATP synthase Inhibitory Factor 1 α-helices. [Walker JE. The ATP synthase: the 

understood, the uncertain, the unknown. Keilin Memorial Lecture, 2012] 
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More precisely, mature bovine IF1 proteins are imported from the cytosol into the MM thanks 

to an N-terminal presequence of 25 amino acids. The inhibitory domain (ID) is located in the 

N-terminal region and confers IF1 the ability to interact with the F1 domain of the ATP synthase. 

A calmodulin-binding site has also been identified (46): it involves 33-42 residues and it’s 

thought to be part of Ca2+ homeostasis regulation mechanism. This region is followed by a 

histidine-rich region (HRR), from 48 to 70 residues, implicated in the pH-sensitivity 

mechanism and hence in IF1 activation process. IF1 dimerization is controlled by the C-terminus 

of the protein (dimerization domain – DD), whereas its oligomerization is driven by the 

oligomerization domain (OD) hosted by the N-terminal region (47) [Fig. 8]. 

 

 

 

Fig. 8. Schematic representation of IF1 domains. [Faccenda D., Campanella M., International Journal of Cell Biology, 

2012] 

Fig. 7. Schematic drawing of the interconversion between dimers and tetramers of ATP synthase Inhibitory Factor 1. 

[Cabezòn et al., JBC, 2000] 
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In the bovine complex, IF1 is inserted in a groove lined with α-helices in the C-terminal regions 

of αDP and βDP subunits of the enzyme, while its N-terminal region interacts with the coiled-coil 

α-helix of the γ-subunit extending to the central cavity of F1 sector. Most of IF1 residues are 

involved in hydrophobic interactions with the C-terminus of βDP and βTP subunits. In addition, 

more binding energy is provided by ionic interactions between IF1 and F1ATPase. Two possible 

molecular inhibition mechanisms have been proposed: according to the first one, IF1 interacts 

with F1 β-subunits preventing the release of hydrolysed ADP. The second theory states that 

once IF1 is bound to the enzyme, ATP hydrolysis is prevented and ATP is promptly released 

(48). In any case, it is nowadays accepted that IF1 selectively inhibits, through a non-

competitive mechanism, the ATP-hydrolysing activity of the ATPsynthase without affecting 

the synthesis of ATP during oxidative phosphorylation. 

Despite for a long time IF1 activity has only been related to the inhibition of ATP hydrolysis in 

case of mitochondrial membrane impairment, in the last few years many research teams have 

shed light on the possible involvement of the inhibitor protein in the dimeric arrangement of 

the ATP synthase and in the mitochondrial cristae biogenesis and remodelling. Its importance 

wouldn’t be related to the sole bioenergetics modulation, but it would also be connected to the 

maintenance of the proper mitochondrial morphology (40)(49). 

 

1.6.1 Importance of IF1 in tumors 

 

As largely described, IF1 directly affects the preservation of the cell energetic balance. 

Moreover, IF1 may also be involved in the pre-conditioning process in heart, a phenomenon 

that could allow this tissue to better adapt and resist to various and brief ischemic insults: thanks 

to its direct interaction with the ATP synthase, IF1 would be able to slow down the dissipation 

of ATP and thus to increase the time interval between the ischemic episode and the following 

reperfusion (50).  

Since preliminary studies on IF1 have been carried out mainly in primary cell lines, for the last 

few years the scientists have been trying to elucidate the role of IF1 in tumor cells metabolism. 

Interestingly, it has been observed that it is in fact overexpressed in many human cancers, e.g. 

hepatocellular carcinoma, breast, lung carcinomas, colon carcinoma, cervical cancer and 

Yoshida’s sarcoma (51) (52). Some studies have shown that IF1- non expressing cells die more 

quickly if deprived of glucose and oxygen, a condition which normally occurs in specific tumor 
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areas. In addition, IF1 could also participate in the activation of NfkB, an important promoter 

of cell proliferation and survival (53).  The activation of this pathway has been associated to an 

increased superoxide radicals production. Nevertheless, contrasting data regarding ROS 

production modulation in the presence or absence of IF1 are reported, keeping in mind that ROS 

can cause different effects on cells (54) according to the cell metabolic state, in particular its 

ROS/antioxidants balance. ROS can in fact interact with many genes and proteins involved 

either in cell proliferation (such as NfkB, AP-1) or in cell death mechanisms, which can also 

be prevented by IF1.  

Beyond this, electronic microscopy analysis have confirmed the possible involvement of IF1 in 

the mitochondrial cristae stabilization in tumor cell lines: IF1-expressing cells show in fact more 

organized and branched mitochondrial network and a higher number of cristae with respect to 

controls. Since an increasing number of studies seems to indicate that IF1 could probably 

promote or stabilize dimeric forms of the ATP synthase, one might hypothesize that it also 

prevents mPTP opening and cyt c release, two important events preceding programmed cell 

death (55). 

While some preliminary data proposed that IF1 could further regulate the ATP synthase activity, 

by inhibiting ATP synthesis rate via OXPHOS and consequently inducing Δψm increase, it’s 

now mostly accepted that IF1-non expressing cells present higher Δψm (56) (57), associated to 

lower oxygen consumption rate. These results, sustained by further evidence, allowed to 

suppose that probably the inhibitor protein stimulates the OXPHOS process under normoxic 

physiological conditions. 

 

 

1.6.2 IF1 and the oligomeric organization of the ATP synthase 

 

The role played by the inhibitor protein in the oligomeric organization of mitochondrial ATP 

synthase is still under debate: while some investigators firmly state that IF1 is directly involved 

in the regulation of the oligomeric state of the enzyme, others say that ATP synthase oligomeric 

arrangement is independent from IF1 presence or up-regulation. According to many researchers, 

IF1 would directly contribute to ATP synthase dimerization by binding two F1 portions at the 

same time (47) (58), thus promoting mitochondrial cristae formation and morphology and 

ultrastructure preservation (49). García and co-workers observed an increased dimer/monomer 
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ratio in rat liver and bovine heart ATP synthases when IF1 expression increase was induced, 

whereas a decrease of the same ratio was detected when IF1 was removed. On the other hand, 

some experiments carried out by Lippe’s team in Udine (IT), would lead to conclude that in 

bovine heart mitochondria the dimeric organization of the enzyme is independent from IF1 

binding (59). 

The mechanism by which IF1 would be able to bind two different F1 domains is shown in Fig. 

9 and starts with the pathological collapse of the mitochondrial membrane potential and the 

consequent decrease of pH in the MM. In this condition, IF1 active dimers adhere to the αβ 

interfaces of two different F1 portions made available by two distinct ATP synthases, actively 

contributing to the dimer creation. By inducing the formation of dimers and even superior 

oligomers of the enzyme, the number of invaginations of the IMM into the MM significantly 

increases, leading to a more functional entrapment and distribution of protons in the close 

proximity of the enzymes. This mechanism has been explained by Strauss and co-workers, who 

demonstrated, by high resolution electronic microscopy, that ATP synthase’s dimers tend to 

line up in ribbons that settle along the mitochondrial membrane. The dimer ribbons enforce a 

strong local curvature of the membrane, increasing the inner membrane’s surface and 

generating areas of higher proton concentration where the membrane is sharply curved. ATP 

synthases would therefore benefit from an increased proton gradient increasing ATP synthesis 

efficiency (40) [Fig.10]. 

 

 

 

 

Fig.9. Schematic representation of the ATPP synthase 

dimer stabilized by IF1. [Faccenda D., Campanella M., 

International Journal of Cell Biology, 2012] 

 

Fig.10. Schematic drawing of the proton traps 

created by membrane curvatures. [Strauss M. 

et al, EMBO J., 2008] 



19 

 

 

1.7 Hypoxia and ischemia in cancer 

 

Cancer cells are characterized by a high proliferation rate. As a consequence, nutrients and 

oxygen trafficking in tumor cells is tremendously favoured in order to facilitate the tumor 

growth (60). High proliferating rate-cells extremely need quick ATP generation, high 

macromolecules biogenesis and accurate redox state control. In order to satisfy all these needs, 

tumor cells are characterized by significant alterations in the metabolism of all macromolecules 

(proteins, lipids, carbohydrates and nucleic acids). To be taken into consideration is that the 

growing tumor lives in a heterogeneous and dynamic microenvironment where nutrients and 

oxygen concentrations are continuously modified (61). In 1924, Otto Warburg conducted some 

studies on the altered use of glucose by cancer cells: according to his theory, they would 

increase glycolysis rate to satisfy the higher ATP request, consequently increasing lactate 

generation. In this scenario, OXPHOS process would be slowed down in spite of the normal 

concentration of oxygen (aerobic glycolysis) (62). This use of glucose by cancer cells may 

facilitate the quick tumor growth not only increasing the ATP production rate, but also 

increasing the availability of substrates, coming from either glycolysis or TCA or pentose 

phosphate pathway, necessary to induce new macromolecules biosynthesis. In addition, the 

consistent lactate accumulation would provoke an acidification of the cell environment, 

promoting invasiveness and tumor metastasis (63). In the last few years, Warburg’s hypothesis 

has been largely questioned, since many studies have demonstrated the presence of still 

functional and working mitochondria in tumor cells. Indeed, many tumor cell lines, such as 

143B and HeLa cells (64) (65), rely on OXPHOS to generate the ATP requested for tumor 

proliferation (6). The metabolic regulation occurring in cancers may be directly correlated with 

an actual decrease of oxygen, a condition which is called hypoxia. Nutrients and oxygen reach 

the solid tumor travelling across pre-existing and new-generated blood vessels, the latter created 

during a phenomenon called angiogenesis. When tumor is growing, the pre-existing vessels 

often undergo disruption and damage, whereas the new capillaries are characterized by 

structural abnormalities (66). These events, together with a possible reduction of the oxygen 

transport (as it happens during anaemia) or an increased oxygen consumption by cells, may 

contribute to the generation of hypoxic areas. Cells in the close proximity of the blood vessels 

are characterized by an oxygen concentration of around 2%, but, the larger the distance from 

the vessels is, the lower the oxygen tension becomes: cells 200 µm far from the capillary 
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endothelium may be even exposed to 0.2% oxygen concentration (severe hypoxia) (67). In 

order to allow the cell to face this event, many survival responses are activated. The first 

mechanism the cells adopt is the activation of the Hypoxia Inducible Factor 1 (HIF-1). HIF-1 

was first identified in human cells as a regulator of erythropoietin, the hormone that controls 

red-cells production; vascular endothelial growth factor (VEGF), which stimulates 

angiogenesis; and glycolytic enzymes, which adapt cell metabolism to hypoxic conditions. HIF-

1 is composed of a constitutively expressed HIF-1β subunit and an oxygen-regulated HIF-1α 

subunit. Under normoxic conditions (21% O2), HIF-1α is hydroxylated by prolyl hydroxylase 

domain proteins (PHDs), that induce HIF-1α interaction with the von Hippel–Lindau (VHL) 

protein, the substrate-recognition subunit of an ubiquitin-protein ligase that targets HIF-1α for 

proteasomal degradation. Under hypoxic conditions, hydroxylation is inhibited and HIF-1α 

accumulates, binding HIF-1β and inducing the activation of hundreds of genes involved in cell 

adaptation to hypoxia (e.g. angiogenesis, erythropoiesis, glucose uptake, glycolysis, growth, 

invasiveness and metastasis transcription factors) [Fig. 11] (68). Together with the increase of 

the glycolysis efficiency and rate, HIF-1α activates the pyruvate-dehydrogenase kinase 

enzymatic complex (PDK), which inhibits pyruvate dehydrogenase (PD) activity. Following 

glycolysis, PD is responsible for the conversion of pyruvate into Acetyl-CoA essential to launch 

the TCA cycle and OXPHOS (69) (70).  
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On the other hand, mitochondrial respiration rate is dramatically reduced by lack of oxygen 

itself, since this molecule is the final acceptor of the electron transport. If the oxygen 

deprivation is prolonged, the proton-motive force which drives ATP synthesis is lost and cells 

start to hydrolyse cytosolic ATP. As previously described, the reversal of the ATP synthase is 

fundamental to sustain the Δψm and cell homeostasis. However, if this process is uncontrolled, 

ATP availability could be compromised and in order to avoid this, IF1 blocks ATP synthase’s 

hydrolytic activity (71). 

Yoshida and co-workers chemically mimicked the ischemic event in permanently IF1-silenced 

HeLa cells by using the uncoupler CCCP (56): as already described, the uncouplers are 

hydrophobic weak acids which are able to load H+ in the IMS, cross the IMM, and release them 

in the MM, dissipating the proton gradient. In such situation, they observed a higher ability of 

+IF1 cells to alleviate such “ischemic” injury. 

  

Fig. 11. The alternative fates of HIF and main adaptive mechanisms in hypoxia. [Semenza, G.L., The New England 

Journal of Medicine, 2011]. 

] 
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1.7.1 Reactive oxygen species in hypoxia 

 

It has now been over 40 years since H2O2 generation from mitochondria was first recorded (72), 

quickly followed by the detection of mitochondrially generated superoxide anions (O2
.-) (73). 

These findings, together with the uncovering of superoxide dismutase (SOD) (74), an important 

antioxidant enzyme of the mitochondria matrix, prompted scientists to consider mitochondria 

as important sources of ROS in cells. The first ROS generated by mitochondria is O2
.-, as a 

result of monoelectric reduction of O2. The continuous activity of the ETC principally reduces 

O2 to water but a small amount of O2 is reduced to O2
.-. Superoxide is mainly generated at 

complexes I and III (75) and released into the intermembrane space (approx. 80% of the 

generated superoxide) or the mitochondrial matrix (approx. 20%) (76). Being this species 

highly reactive, it is promptly converted into H2O2, thanks to the mitochondrial SOD (Mn-SOD 

or SOD2) and to the cytosolic SOD (CuZn-SOD or SOD1). Since the bulk of mitochondrial 

ROS generation is the ETC (77), this generation can occur at relatively high rates compared to 

cytosolic ROS production and is primarily determined by metabolic conditions. The result of 

generating ROS at potentially high rates and in a manner not primarily determined by signalling 

networks is that mitochondrially-generated ROS are associated mostly with damaging 

processes, although signalling roles for these species are now being uncovered, regarding cell 

function and homeostasis maintenance and signalling pathways regulation. As previously 

described, cancer cells experience a strong reduction of O2 concentration and mitochondria are 

the main oxygen sensors in cells (over 90% of O2 is used for mitochondrial respiration). In this 

scenario, the reactive oxygen species level in hypoxia is still unclear and needs to be addressed. 

Contrasting results are in fact reported: whereas some authors state that the decrease of O2 as 

main substrate for ROS production leads to a decrease of ROS (78), others say that the minor 

availability of O2 as final substrate of the ETC slows down the electron transport rate increasing 

electrons permanence time in the redox centres of the ETC, thus increasing ROS production 

(79) (80). The presence of ROS during hypoxia activates HIF-1α by inhibiting PHDs. This 

increases the activation of transcription factors not only involved in angiogenesis, 

erythropoiesis and glycolysis, but also in antioxidant defence, such as NRF2 (81). A further 

ROS increase causes DNA double strand breaks with increase in mutations (genomic 

instability) and cell damage (lipoperoxidation) leading to necrosis of cells that are more distant 

from vessels. However, the activation of HIF1-α by ROS in sublethally damaged tumor cells 

closer to the vessels, allows the expression of HIF1α-driven genes that contribute to their 

survival and growth thereby increasing their commitment to malignancy. It has also recently 
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been studied a relationship between the mitochondrial membrane potential and ROS levels (82): 

in HeLa cells, the addition of oligomycin-an important ATPase FO-domain inhibitor- and the 

consequent Δψm increase, leads to a higher production of peroxides in mitochondria. Instead, 

the addition of FCCP is responsible for a sharp decrease of H2O2 amount. Considering the role 

played by IF1 in the control of Δψm under stressing conditions, it could be interesting to analyse 

the differences in terms of ROS production in cells expressing different levels of IF1.  

In order to balance ROS production, cells are able to increase antioxidant systems expression 

and activity: the main endogenous antioxidants are represented by the glutathione system 

(GSH/GSSG and glutathione peroxidase -GPX), superoxide enzymes (SOD1 and SOD2), 

catalase, redoxins (thioredoxin, peroxiredoxin). Glutathione peroxidase is a family of potent 

antioxidant enzymes that are mainly responsible for scavenging excessive H2O2 and reducing 

lipid hydroperoxides. They catalyse the conversion of reduced glutathione (GSH) to GSSG in 

the presence of H2O2. GSH is then promptly regenerated by glutathione reductase (GR) in the 

presence of NADPH+ and H+ (83). Superoxide dismutases are important enzymes due to their 

crucial role in scavenging O2
.-. Specific metal atoms, such as copper (Cu), zinc (Zn), manganese 

(Mn), iron (Fe) and nickel (Ni), are essential cofactors of various types of SODs due to their 

high reactivity with O2
.-(84). They quickly convert O2

.-, highly reactive, into H2O2. Since the 

accumulation of H2O2 and its product, OH. (hydroxyl radical) can cause severe oxidative 

damage to the cell, catalase, another important peroxides scanvenger, catalyses the conversion 

of peroxide into water (85) (86). 

 

1.8  Importance of mitophagy in cellular balance  

 

Autophagy is a degradative process by which cytosolic organelles and constituents are captured 

by phagophore membranes and degraded through fusion of the resulting autophagosomes with 

lysosomes. This mechanism is essential for the cell to get rid of non-functional or potentially 

toxic particles (87). In particular, mitophagy is the selective autophagic progress which targets 

mitochondria thanks to the interaction between adaptor molecules located in the OMM and 

processed LC3 (88). These adaptor molecules are BNIP3, NIX and FUNDC1 in addition to 

mitochondrial targets of E3 ubiquitin ligases, such as Parkin (PARK2) and PINK1. Mitophagy 

is responsible for the turnover of dysfunctional mitochondria that would otherwise damage the 

cell, and the main events preceding mitophagic pathway activation are loss of Δψm and 

mitochondria fragmentation. Mitochondrial membrane depolarization also induces proteolytic 
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cleavage and degradation of the fusion protein Opa-1 thereby reducing the size of mitochondria, 

a consequence favouring the uptake of mitochondria by phagosomes (89). On the other hand, 

mitochondrial fusion protects healthy respiring mitochondria from degradation, a mechanism 

that is promoted by protein kinase A (PKA)-mediated inhibition of the fission protein Drp-1.  

The accumulation of non-functional mitochondria is often associated to aging process probably 

due to an increase of free radicals production. However, mitophagy also plays a key role in 

reducing mitochondrial mass in the acute response to certain stresses, such as hypoxia and 

nutrient deprivation (90) occurring in cancer. It has been observed in HeLa cells that when Δψm 

is compromised, the dimerization of IF1 and its binding to the ATP synthase promotes PINK1 

stabilization on the OMM (91). This is a critical step in recruiting PARK2 and activating 

mitophagy.  

 

1.9 Mitochondrial contribution to apoptosis 

 

The beginning of apoptosis (programmed cell death) is regulated by the activation of caspases, 

a group of cysteine proteases normally existing as pro-caspases. During apoptosis, they are 

cleaved to generate active caspases, the enzymes responsible for the cleavage of many cellular 

substrates to dismantle cell content (92). Two main apoptotic pathways are known: extrinsic 

and intrinsic pathways responding to different signals. The extrinsic signalling pathways that 

initiate apoptosis are characterized by transmembrane receptor-mediated interactions, involving 

death receptors that are members of the tumor necrosis factor (TNF) receptor gene superfamily 

(93). TNFs play a critical role in transmitting the death signal from the cell surface to the 

intracellular signalling pathways. The best-characterized ligands and corresponding death 

receptors include FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, Apo2L/DR4 and Apo2L/DR5. 

Following ligand binding, cytosolic adapter proteins are recruited to regulate the downstream 

activation of caspase-8. Once caspase-8 is activated, apoptosis is triggered. The intrinsic 

pathway is also known as mitochondrial pathway considering the essential involvement of 

mitochondria in this process. These organelles are in fact essential for the handling not only of 

anti-apoptotic and pro-apoptotic proteins interactions, but also for the regulation of signals that 

initiate the caspases activation. Cytocrome c is a key component of the apoptotic event, since 

its release from the IMM triggers the activation of caspase 9. Activated Caspase-9 further 

cleaves downstream caspases such as Caspase-3, -6 or -7 (94). The permeability of the IMM 

needs indeed to be strictly regulated: important regulators of cyt c release are Bcl2 proteins, 
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that, together with other many anti-apoptotic regulators, such as Mcl-1 and A1, are able to 

counteract the activity of pro-apoptotic factors (Bax, Bak, Bok) (95). Another important aspect 

involved in the IMM permeability is the opening of the multiprotein pore PTP located in the 

contact site between the outer membrane and inner membrane (96). Opening of PTP leads to 

matrix swelling, depolarization of the inner membrane (dissipation of the Δψm), ensuing rupture 

of the outer membrane, and nonselective release of IMS proteins. All these events represent the 

unavoidable prelude to programmed cell death. 

However, the link between apoptosis and cancer emerged when Bcl2 proteins family was 

discovered (97). This gave birth to the concept that compromised apoptosis is a central step in 

tumorigenesis. Indeed, a defective suicide programme endows nascent neoplastic cells with 

multiple selective advantages: cells can survive in hostile places where, for instance, nutrients 

or oxygen are limiting, evolving into more aggressive derivatives. Thus, cells become more 

resistant and able to survive detachment from the extracellular matrix and to migrate 

(metastasis).  

 

1.10 Mitochondrial Ca2+ homeostasis regulation 

 

Cells invest much of their energy to control cytosolic Calcium (Ca2+) concentration, which 

needs to be maintained ~100 nM. Many ways to sequester Ca2+ from the cytosol have been 

developed, favouring its binding energy for signal transductions. To exert control over Ca2+, 

cells must extrude it, chelate it, or compartmentalize it. The main protagonists of Ca2+ extrusion 

from cytosol to extracellular space are Na+/Ca2+ exchangers (NCX), Na+/Ca2+, K+ exchangers 

(NCKX), Ca2+ -activated Cl- and K+ channels, plasma-membrane Ca2+ receptors (PMCA), 

Voltage-gated Ca2+ selective channels (CaVs). Ca2+ is indeed chelated in the cellular 

environment by EDTA and EGTA and is stored in specific Ca2+ compartments represented by 

endoplasmic reticulum (ER) and mitochondria [Fig.12]. Hundreds of proteins have been 

adapted to bind Ca2+ in order to buffer its level or trigger signalling pathways. Among these, 

calmodulin is the most important protein involved in Ca2+ signalling. It is a small ubiquitously 

expressed adaptor protein that changes its domains shape upon Ca2+ binding. Under such 

circumstances, hydrophobic surfaces are exposed within each domain of the protein, triggering 

calmodulin Ca2+ sensor activity (binding to its targets). Hydrophobic residues, usually 

containing methionine, wrap around amphipathic regions of target proteins, such as the α-

helices in myosin light chain kinase (MLCK) and calmodulin dependent kinase II (CaMKII). 
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Calmodulin also extends the reach of Ca2+ by activating phosphorylation pathways. 

Ca2+/calmodulin binding relieves autoinhibition of the catalytic domain of calmodulin kinase 

(CaMK) family enzymes. CaMKIIs multimerize, leading to interphosphorylations that prolong 

kinase activity (98).  

Increases in cytosolic Ca2+ concentration are mainly associated to its release from the external 

medium or from intracellular stores. In the first case, the different plasma-membrane channels 

are activated in response to stimuli including membrane depolarization, toxic stimuli, 

extracellular agonists and intracellular messengers. In the second case, Ca2+ is normally 

released from the endoplasmic reticulum, ER (or its equivalent in myocytes, the sarcoplasmic 

reticulum - SR) following stimuli coming from Ca2+ itself or other messengers, such as inositol-

1,4,5-trisphosphate (Ins(1,4,5)P3), cyclic ADP ribose (cADPR), nicotinic acid adenine 

dinucleotide phosphate (NAADP) and sphingosine-1-phosphate (S1P) (99).  

Inositol triphosphate (IP3) pathway relies on the previous activation of phospholipase C (PLC). 

There are several PLC isoforms, activated by different mechanisms, e.g. G-proteins and 

tyrosine-kinase coupled receptors, increases in Ca2+ concentration, Ras activation (100). Once 

activated, PLCs hydrolyse phosphatidylinositol 4,5 bisphosphate (PIP2), a phospholipid located 

in plasma membrane, to diacylglycerol (DAG) and IP3. IP3 works as messenger for the 

mobilization of Ca2+ from ER by activating IP3 receptors (IP3R) placed on the ER-membrane 

(or ryanodine receptors -RyR- in case of myocytes). The release of Ca2+ from ER via IP3 

pathway can be driven by either endogenous stimuli or exogenous molecules, such as Histamine 

in HeLa cells (101) (102). Ca2+ release from ER is rapidly counteracted by SERCAs pumps 

(sarco-endoplasmic reticulum Ca2+ ATPases) situated on the ER membrane, that try to maintain 

physiological Ca2+ levels driving this ion back to ER by using ATP. Upon pharmacological 

stimulus with Histamine, HeLa cells show in fact oscillations of cytosolic Ca2+ concentration 

due to alternated releases and uptakes (102). Once Ca2+ is released, it is promptly accumulated 

in cytosol and in mitochondria, given the close proximity of the latter to ER (103). 

Mitochondria are therefore one of the main targets, and at the same time regulators, of Ca2+ 

signalling, since their function, movement and viability are tightly associated to this ion. Like 

the ER, mitochondria can also store mM concentrations of Ca2+ but in mitochondria it is 

regulated by fundamentally distinct mechanisms compared to those used in the ER. Whereas 

Ca2+ readily diffuses through large pores in the mitochondrial outer membrane, it crosses the 

inner membrane via ion channels and transporters. Outer membrane’s TSPO (104) and VDAC 
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(105) take part to the mitochondrial uptake of Ca2+ and other ions. In particular, although 

originally thought to be exclusive component of the OMM, it has been then demonstrated that 

VDAC is located in the contact sites between the OMM and the ER, consequently increasing 

its participation to mitochondria/ER Ca2+ signalling. As introduced, the mechanisms involved 

in Ca2+ transport through the IMM are more complex: accordingly, a rapid electrogenic 

pathway, denoted the “mitochondrial calcium uniporter” (MCU), quickly transports Ca2+ into 

the matrix, driven by the negative charge of the membrane potential established by the 

respiratory chain (106). MCU-mediated Ca2+ uptake is partly inhibited at basal and low 

concentrations of cytosolic Ca2+ by the regulator MICU1(107) (108). Signalling by G protein-

coupled receptors or tyrosine kinases receptors, that increase cytosolic Ca2+ concentration 

above 3 μM, stimulates MCU current (IMCU), resulting in the accumulation of Ca2+ in the 

mitochondrial matrix. Changes in cytosolic Ca2+ content activate numerous transcription 

factors, such as nuclear factor of activated T cells (NFAT), c-FOS, and cyclic AMP response 

element binding protein (CREB). The latter is activated by phosphorylation when cytosolic 

Ca2+ concentration increases, due to IP3R-mediated release or plasma membrane SOCE (store-

operated Ca2+ entry), resulting in the activation of genes involved in Ca2+ buffering: it has been 

demonstrated that in HeLa cells CREB binds MCU promoter actively stimulating MCU 

abundance in the cell (109). Mitochondria that have accumulated Ca2+ exhibit higher 

mitochondrial bioenergetics through tricarboxylic acid (TCA) cycle and oxidative 

phosphorylation (110). In general, increases in the concentration of Ca2+ ions in the cytoplasm 

are important for the initiation of cellular processes such as contraction, secretion, ion- and 

metabolite- pumping and proliferation. These processes are energy requiring and are associated 

with an increased need of ATP, which has to be matched with an increase in ATP supply. The 

increased ATP synthesis is reached by activating the intramitochondrial Ca2+-sensitive 

dehydrogenases and hence through increases in NADH supplied respiration (110). In particular, 

it was observed that Ca2+ interacts with the following mitochondrial enzymes: FAD-glycerol 

phosphate dehydrogenase (FAD-GPDH); pyruvate dehydrogenase phosphatase (PDHP), 

involved in the induction of the rate-limiting step for mitochondrial respiration activation 

through Acetyl-CoA production (111); NAD+-isocitrate dehydrogenase (NAD-ICDH) and 2-

oxoglutarate dehydrogenase (OGDH), both involved in Kreb’s cycle; ATP synthase. Although 

shown to bind Ca2+ directly through F1 β-subunit (112), the ATP synthase is likely to be 

regulated via post-translational modifications, such as phosphorylation of the γ-subunit which 

was found to be sensitive to mitochondrial Ca2+. Recent work has identified a protein that binds 

to ATP synthase in Ca2+-dependent manner in cardiomyocytes, resulting in an increased 
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capacity for ATP production (113). At the present time, other potential mitochondrial targets 

for Ca2+ are being studied, like cytocrome c oxidase, malate-aspartate shuttle, pyrophosphatase, 

ATP-Mg2+/Pi transporter (114). Increasing ATP production means that more oxygen is 

reduced to water, but at the same time a higher number of electrons can escape from ETC’s 

complexes giving the formation of superoxides that could damage mtDNA. For this reason, 

mitochondrial Ca2+ concentration must be controlled, in order to avoid the final activation of 

apoptotic pathways. Ca2+ overload in mitochondria is also associated to mitochondrial swelling, 

which could lead to IMM impairment and eventually outer membrane rupture and release of 

apoptotic proteins (115).   

Given the role of IF1 in regulating ATP synthase activity and Δψm, essential for Ca2+ entry in 

mitochondria, a possible involvement of the protein in mitochondrial Ca2+ signalling will be 

addressed.  

 

 

 

  

Fig. 12. Ca2+ signalling and crosstalk between ER and mitochondria [Reuveny E., Weizmann Institute of Science] 
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1.11 Highlights on the cell lines used 

 

1.11.1 HeLa cell line 

 

Cervical adenocarcinoma is an epithelial tumor of the cervix uteri with a high level of mortality 

in developing countries. Human papillomavirus (HPV) has been identified as one of the prime 

etiologic agents in the progress of the cervical neoplasia. For this reason, screening programs 

are normally run in women of fertile age. HPVs are specific and tissue trofic, and able to grow 

and survive in completely differentiated epithelial cells. There are more than 100 HPV 

genotypes, categorised in high and low risk groups. HPV-16 and HPV-18 are considered the 

high risk types and responsible for malignancy development. Besides the oncogenic potential 

of HPV infection, many other risk factors concur in the etiology of this disease, such as nutrients 

deficiency, low socioeconomic status, high usage of oral contraceptives, genetic factors (116). 

At the present time, chemoradiotherapy and surgical removal are the most used medical 

approaches towards the disease (117). 

HeLa cells (human cervical adenocarcinoma cells) [Fig. 13] are one of the most important 

tumor cell lines in the field of scientific investigation. They are known as the first immortal cell 

line ever used in research laboratories and their story is quite extraordinary: the acronym 

“HeLa” means “Henrietta Lacks”, which is the name of a 31 years old African American 

woman who was diagnosed with cervical adenocarcinoma in 1950s during her hospitalization 

at the Johns Hopkins Hospital in Baltimore, Maryland (118). Henrietta’s cells were taken 

without her knowledge by researcher George Gey, who started to use and expand them to carry 

out his experiments. After her death, a huge debate rose up, especially because Henrietta never 

had the chance to know what had happened with her cervical cells and, moreover, her unaware 

donation hadn’t been anonymous. In those years there wasn’t any attention to ethical problems 

in the field of scientific research, although getting human samples for research purposes without 

consent is illegal nowadays. 

However, HeLa cells represented a great step forward in science, since until 1950s all the cells 

available for the experimentation died after a few replications. Scientists soon realized that for 

the first time in history they would use an immortal cell line, which means that cells had the 

incredible ability to divide indefinitely, giving birth to a great opportunity for cancer research 

progress. From that moment on, HeLa cells have represented an important cellular model for 
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cancer biology, gene mapping, gene transfection techniques, pharmacology and toxicology 

studies, just consider that the first achievement reached was the development of the polio 

vaccine in 1953 (119).  

As previously introduced, mitochondrial ATPase inhibitory factor 1 (IF1) was found to be up-

regulated in many human carcinomas (51). Accordingly to these evidences, human cervical 

adenocarcinoma cells have been chosen to study IF1 involvement in cellular Ca2+ homeostasis 

regulation. 

 

 

1.11.2 143B cell line 

 

Osteosarcoma is an uncommon cancer which arises from bone. Despite its very low incidence, 

osteosarcoma predominantly affects adolescents and young adults. Modern therapy is 

represented by chemotherapy, radiotherapy and surgery but still, the survival rate of patients 

diagnosed with the disease is not high, due to the high propensity of this malignancy to 

metastatization, especially in lungs (120). Hence, the interest towards novel approaches or 

optimization of the current strategies for treating the disease has grown consistently. 

Anatomically, osteosarcoma shapes in the metaphyseal region of long bones, within the 

medullary cavity, and infiltrates into the bone also involving the surrounding tissues (121). 

Fig. 13. Optical microscope images of HeLa cell line [ATCC registered trademark]] 
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Histologically, it is characterized by fusiform cells producing an osteoid matrix. It was first 

suggested that the main reason that could promote osteosarcoma’s onset was the interaction 

with the external environment, in particular radiations or chemical agents. Later on, the 

improvement of the molecular techniques has allowed to identify several chromosome 

abnormalities and genetic syndromes (i.e. Fraumeni syndrome, retinoblastoma) that could be 

associated with this neoplasia (122). In fact, it has been demonstrated that alterations in 

oncosuppressor genes can directly participate to osteosarcoma pathogenesis: for instance, p53 

gene is mutated in the 22% of all osteosarcomas and mutations in oncosuppressor Rb influence 

osteosarcoma’s carcinogenesis by impairing cell cycle (123). Increased cell proliferation rate 

and metastatization have also been related to mutations in AP-1 (involved in cell proliferation 

and differentiation mechanisms and bone metabolism control), myc up-regulation (probably 

associated with an increased resistance towards chemotherapy), augmented growth factors 

activation and receptors overexpression (TGF, IGF, CTGF) (124) (125). In addition, the 

stabilization of the hypoxia inducible factor 1 (HIF-1) and the consequent activation of the 

proangiogenic VEGF have been observed in the cells located in the central areas of the tumor 

(126).  

Considering all these aspects, a great interest towards both clinical and molecular mechanisms 

behind osteosarcoma pathogenesis has recently developed.  

An initial screening performed in our laboratory showed that mitochondrial ATPase inhibitory 

factor 1 (IF1) is up-regulated in osteosarcoma cell line. Hence, 143B cells have been chosen to 

stably silence the expression of the protein and investigate its role in bioenergetics regulation 

under both physiological and stressing/hypoxic conditions.  
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2 AIM OF THE STUDY  

 

Tumor cells metabolism has been widely investigated and nowadays it is one of the major topics 

researchers are focused on, with the final purpose to find therapeutic strategies to inhibit cancer 

growth and metastasis. Nevertheless, before setting up therapeutic approaches, it is fundamental 

to deeply investigate and understand the basic mechanisms occurring in malignant 

transformation. One of the first aspects that was discovered is the metabolic switch towards 

aerobic glycolysis (5) to sustain the enhanced energy demand necessary for cancer cells growth 

and proliferation. This mechanism, known as Warburg’s effect, has been then challenged by 

many studies which demonstrated an important contribution of mitochondria to tumor cells 

metabolism. For instance, 143B (osteosarcoma) and HeLa (cervix adenocarcinoma) cell lines, 

used in the present study, rely on oxidative phosphorylation as major source for energy 

production (64) (65). 

An important feature of solid tumors is the high vascularization degree, created by both pre-

existing and new-generated blood vessels, to ensure the sufficient nutrients intake. However, 

blood vessels often undergo damage and impairment and the cells localised in the most central 

areas of the tumor end up being far from the capillary endothelium, experiencing conditions of 

severe hypoxia/anoxia (67). 

Taking all these aspects into account, the role of mitochondrial F1FO-ATPase Inhibitory Factor 

1 (IF1) will be addressed. IF1 is an endogenous, ubiquitously expressed, nuclear encoded protein 

of ~10 kDa, highly conserved among species. It was first discovered by Pullman and Monroy 

in 1963 (42) and described as inhibitor of the hydrolytic activity of the mitochondrial ATP 

synthase. Under normoxic physiological conditions, the mitochondrial ATP synthase uses the 

proton electrochemical gradient created by the mitochondrial electron transport chain (ETC) to 

synthesise the most powerful source of energy in the cell, the ATP molecule. Under certain 

circumstances, such as hypoxia/ischemia, the proton electrochemical gradient may be lost, due 

to a dramatic impairment of the electron transport across the enzyme complexes of the ETC, 

allowing the ATP synthase to reverse its activity and hydrolyse cytosolic ATP to restore the 

proton gradient essential for cell survival. This ATP consumption needs to be strictly regulated 

in order to avoid a complete energy depletion. The acidification of the mitochondrial matrix 

caused by the collapse of the inner membrane potential (Δψm) induces the activation of IF1 by 

disrupting the tetrameric form of the protein and generating active dimers (43). The active forms 
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of the inhibitor bind the αβ interface of ATP synthase’s F1 portion and block its hydrolytic 

activity.  

Besides the canonical role in protecting tumor cells from ATP wasting, many other aspects 

concerning IF1 presence in tumors need to be considered: for instance, it is overexpressed in 

many human carcinomas (52) where it may promote cancer cell growth and proliferation. In 

addition, it may be involved in ATP synthase oligomerization modulating apoptosis and 

autophagy processes (58). Moreover, its involvement in cancer cells metabolism regulation 

under physiological conditions has been scarcely addressed: for this reason, the first part of this 

dissertation will be focused on the investigation of the function exerted by IF1 in human cancer 

cells bioenergetics under normoxic conditions (21% O2). Considering the importance of Δψm 

in the regulation of many cellular functions, i.e. molecules transport, apoptosis regulation, ROS 

production and ions homeostasis control, we will first try to shed light on the possible 

involvement of IF1 in mitochondrial Ca2+ handling. Mitochondria are important Ca2+ storage 

sites in cells, together with the endoplasmic reticulum (ER) and a functional cross talk between 

the two organelles occurs to monitor cytosolic Ca2+ concentration, given the close proximity of 

the two cellular compartments (103). Both cytosolic and mitochondrial free Ca2+ levels will be 

analysed in IF1 expressing and non-expressing HeLa cells and related to mitochondrial Ca2+ 

uniporter (MCU) expression levels and Δψm, previously addressed (56). Mitochondrial Δψm 

analysis in normoxia will be then deepened in 143B osteosarcoma cell line, stably silenced for 

the inhibitor protein. The data obtained will be then related to the study of the oligomeric 

organization of the ATP synthase in the presence or absence of the protein, in order to finally 

clarify this matter. In fact, contrasting data are reported in literature: while some investigators 

observe that IF1 may directly contribute to the dimerization of the enzyme (49) (58), others say 

that the arrangement in oligomers might be independent from IF1 binding (57) (59). 

Once clarified the involvement of IF1 in tumor cells bioenergetics modulation in normoxia, a 

new set of data will be discussed regarding tumor cells inner membrane function alterations 

under stressing/ischemic conditions, by using an Invivo2 hypoxic chamber to mimic the typical 

hypoxic environment found in central areas of solid tumors (0.5% O2). 

For these purposes, stably IF1-silenced 143B and HeLa cells will be used and compared with 

parental and scrambled cells to understand the role played by IF1 in cancer metabolism. A 

complete elucidation of this topic could be interesting for the creation of new therapeutic 

strategies targeted to the inhibition of tumor cells growth and proliferation. 
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3 MATERIALS AND METHODS 

 

3.1 Cell Cultures and transfections 

 

Human osteosarcoma 143B cells were grown and maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% bovine serum, 100 U/ml penicillin, and 100 μg/ml 

streptomycin 0.25 µg/ml amphotericin B, 4 mM glutamine, 25 mM glucose and 1 mM pyruvate 

at 37°C in a humidified atmosphere (5% CO2). For transient cotransfection we used pCMV6-

XL5-IF1 expression plasmid together with alternatively a single shRNA vector or a scrambled 

negative control construct cloned in a pGFP-V-RS plasmid (#1 GI325933, #2 GI325934, #3 

GI325935, #4 GI325936 and TR30013, respectively). All the plasmids used were from Origene 

(Rockville, MD, USA). Equal amounts of the two vectors (4 µg total DNA) were transfected 

overnight using polyethylenimmine (PEI). After 24 h the medium was replaced with complete 

DMEM and the cells were cultured for further 24 hours before analysing IF1 silencing level. To 

establish stable clones, parental 143B cells were seeded and transfected as described above with 

2 µg of either GI325936 or TR30013 plasmid DNA. Cells were split and selected for stable 

transformation 48 hours later, in the presence of 1 µg/ml puromycin, and the culture medium 

was changed every day. Single colonies were then subcloned by limiting dilution and finally 

all the clones obtained were assayed for IF1 expression by Western Blotting technique. 

Once confirmed the stable silencing of IF1, the cells were used for all the experiments according 

to the following procedure: after being seeded on the first day, the medium was replaced on the 

second day with a new and fresh complete DMEM and the cells were moved either to the 

incubator (for the normoxic exposure) or to a Invivo2 hypoxia chamber (Ruskinn technologies) 

for 24 or 48 hrs.  

During my stay in London, HeLa (cervix adenocarcinoma) cells were used for the experiments 

regarding mitochondrial Ca2+ signalling in live-imaging. Cells were previously transfected with 

a silencing RNA (siRNA) which targets the mRNA of IF1 (QIAGEN S100908075) and with a 

scrambled plasmid as control, according to the method described in Campanella et al, 2008 (49) 

and stable IF1-silenced clones were obtained, confirmed by Western Blotting technique. In 

order to carry out the study, cells were grown in complete DMEM (Life Technologies, Inc.) 

supplemented with 10% FBS, 100 units/ml penicillin, and 25 mg/ml streptomycin. They were 

kept in T-75 (250 ml) Falcon flasks, and incubated at 37°C in a 5% CO2 humidified incubator. 
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Once they reached 50%–60% confluence, cells were split and cultured on round borosilicate 

cover glasses (VWR, Radnor, PA, USA), and mounted within an Attofluor® metal cell chamber 

for microscopy (Molecular ProbesTM, Thermo Fisher Scientific, A-7816) prior to experiment. 

In order to fully clarify the involvement of IF1 in mitochondrial Ca2+ handling transient 

transfection were performed to induce either increased IF1 expression or mutation in IF1 active 

sequence. Up-regulation of the protein was achieved by using the full-length ORF cDNA clone 

of human ATPase inhibitory factor 1 (ATPIF1), transcript variant 1, mRNA (321 bp; 

GenBank® accession number: NM_016311.4). The 19 fluorescent-tagged version of IF1, 

obtained by fusion with EYFP, was obtained by subcloning of the protein cDNA, excised from 

pCMV-Sport6-ATPIF1, into the MCS of the plasmidial vector pEYFP-N1. The procedure was 

carried out by Mutagenex (Suwanee, Georgia, United States). IF1 mutant H49P clone was 

obtained by Site-directed mutagenesis and subcloning of the mutated cDNAs into pEYFP-N1 

which was realized by Mutagenex.  

Cells were seeded on glass coverslips for microscopy on the first day and transfected on the 

following day by using Lipofectamine p3000 vector (Thermo Fischer Scientific) according to 

the manufacturer instructions. After 24 h cells were washed in PBS (Life Technologies, Inc.) 

and left for further 24-36 h prior to experiment. 

 

3.2 Cell Growth  

 

 Cell growth was assessed after seeding 2×105 cells in complete DMEM and culturing the cells 

for up to 72h. Adherent cells were trypsinized and collected, and the growth of cell lines was 

assayed using the trypan blue exclusion test. Cell count was performed every 24 h without 

changing the medium. 

 

3.3 Mitochondrial Isolation 

 

 Coupled mitochondria were isolated from cells according to the method described by Barbato 

S. et al. (57). After collecting the cells from the Petri dishes and washing them in Hank’s 

balanced salt solution - HBSS (0.4 g/L KCl, 0.06 g/L KH2PO4, 0.35 g/L NaHCO3, 8 g/L NaCl, 

0.05 g/L Na2HPO4, pH 7.4), cells were homogenized by using a glass Potter-Helvehjem 

homogenizer with a motor-driven Teflon pestle in isolation buffer (0.22 M mannitol, 0.07 M 
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sucrose, 0.02 M HEPES, 1 mM K-EDTA, 0.1 mM K-EGTA, pH 7.4) containing 1 mM PMSF 

(phenylmethanesulfonyl fluoride). Crude extracts were centrifuged at 2000 rpm for 10 min 

(Sorvall SS34 rotor) to remove nuclei and plasma membrane fragments, and then the 

supernatant was centrifuged at 10000 rpm for 10 min (Sorvall SS34 rotor) to obtain the 

mitochondrial fraction. Mitochondria were washed in 0.25 M sucrose, 0.02 M HEPES, 1 mM 

KEDTA and 0.1 mM K-EGTA, pH 7.4 and suspended in the same buffer at 10 mg/ml of protein 

concentration verified by Lowry quantification assay. 

 

3.4 BN-PAGE Analysis and Western Blot 

 

The organization of the ATP synthase complex and the binding of IF1 to the monomeric and/or 

oligomeric form of the enzyme were analyzed by 1D blue-native PAGE (6). Mitochondria were 

treated with digitonin in a ratio of 2.5:1 (w/w) digitonin/mitochondrial protein. Once 

permeabilized, the mitochondrial extracts were treated with Coomassie Blue dye and loaded 

into a native gel (3.5%-7% acrylamide/bis-acrylamide). Following overnight electrophoresis in 

non- denaturating conditions, proteins were immediately electroblotted onto nitrocellulose 

membranes in denaturing conditions. Right afterwards, ATP synthase and IF1 protein bands 

were detected using anti-α and  anti-d subunits and anti-IF1 primary monoclonal antibodies 

(MitoSciences Inc., Eugene, OR, USA), respectively, and a secondary goat anti-mouse IgGH+L 

antibody labelled with horseradish peroxidase (Life Technologies, Carlsbad, CA, USA). The 

immunoblots were detected and quantified by chemiluminescence using the ECL Western 

Blotting Detection Reagent Kit (Amersham Biosciences, Piscataway, NJ, USA). 

 

3.5 In-gel ATPase Activity  

 

Right after the electrophoretic run of the protein complexes extracted from digitonin-treated 

mitochondria, ATPase activity was assayed on the native gel by using an enzymatic 

colorimetric method based on the formation of a white lead phosphate precipitate formed by 

the ATP hydrolysis activity (127).  White-stained ATP synthase bands were acquired using a 

GS-800 densitometer (BioRad, Hercules, CA, USA) with a blue filter to minimize the 

interference from the residual Coomassie Blue. 
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3.6 SDS-PAGE and Western Blot   

 

Cells were collected from the Petri dishes and washed in Hank’s buffer, and immediately treated 

with RIPA lysis buffer (50 mM Tris HCl, 150 mM NaCl, 0.5% sodium deoxycolate, 1% SDS, 

pH 8) at 4°C, supplemented with protease inhibitors cocktail and 1mM of PMSF in order to 

prevent proteins degradation. Following the quantification by Lowry assay, the protein lysates 

were then supplemented with Laemmli-sample loading buffer (0.102 g/ml SDS, 0.36 ml/ml 

Glycerol, 0.357 ml/ml TRIS HCl pH 6.8, 0.5 µl/ml β-mercaptoethanol, 0.7 mg/ml bromophenol 

blue) and loaded into a SDS polyacrylamide gel. Cellular lysates were separated by SDS-PAGE 

and blotted onto nitrocellulose membranes to perform semiquantitative analysis of protein 

content according to Baracca et al. (128). Blots of resolved proteins were incubated with 

primary mouse monoclonal antibodies specific for the d-subunit (19 kDa) and the β-subunit of 

F1F0-ATPase (52 kDa), IF1 (12 kDa), and with primary rabbit polyclonal antibodies specific for 

MCU (50 kDa). A cocktail of five primary mouse monoclonal antibodies specific for single 

subunits of each OXPHOS complex (MitoSciences Inc., Eugene, OR, USA) was used as 

reported in Sgarbi et al. (129),. Actin (42 kDa) and porin (35 kDa), used as loading controls for 

cells and mitochondria respectively, were immunodetected with mouse monoclonal anti-actin 

(Sigma-Aldrich, St. Louis, MO, USA) and anti-porin (Mito-Sciences Inc., Eugene, OR, USA) 

primary antibodies.  Immunodetection of primary antibody was carried out with secondary goat 

anti-mouse IgGH+L antibody (Life Technologies, Carlsbad, CA, USA) labelled with 

horseradish peroxidase. Chemiluminescent detection of the specific proteins was performed 

with the ECL Western Blotting Detection Reagent Kit (GE Healthcare, Waukesha, WI, USA), 

composed by peroxide (H2O2) and luminol: peroxide is quickly hydrolized by the peroxidase 

enzyme bound to the secondary antibody into H2O and O2. The O2 produced is directly involved 

in luminol oxidation and in light production. The emitted luminescence was detected by using 

the ChemiDoc MP system equipped with the ImageLab software (BioRad, Hercules, CA, USA) 

essential to perform the densitometric scanning of the relative protein intensity.  

 

3.7 Flow Cytometric Assessment  

 

Fluorescence level of GFP positive cells was analysed by flow cytometry using a FACSaria 

cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). Excitation was at 488 nm and 

fluorescence emission was measured at 530/30 nm. Data acquisition and analysis was 

performed with BD FACSDiva and Flowing Software, respectively. 
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3.7.1 Mitochondrial membrane potential measurement  

 

The inner mitochondrial membrane potential (Δψm) was measured by staining cells with 20 nM 

tetramethylrhodamine methyl ester (TMRM, Molecular Probes, Eugene, OR, USA), a 

lipophilic cationic probe which passes through biological membranes and enters mitochondria 

in a Δψm-dependent manner (130). Cells were incubated with the probe for 30 min at 37°C in 

the presence or absence of 0.6 µM oligomycin and were then washed twice with Hank’s buffer 

to remove any remaining unincorporated dye. Cells were rapidly trypsinized, diluted to the 

optimal density (300.000 cells/ml) with Hank’s buffer and supplemented with 10% FBS and 

analysed with the MUSE Cell analyser (Millipore, Billerica, MA, USA). Excitation was at 532 

nm and fluorescence emission was measured at 576/28 nm. Data acquisition and analysis was 

performed with MuseSoft Analysis and Flowing software, respectively.  

 

3.8 Brightfield and Fluorescence Microscopy  

 

 Brightfield and fluorescence images of controls and IF1 silenced cells were acquired using a 

fluorescence inverted microscope (Olympus IX50 equipped with a CCD camera). Multiple 

high-power (magnification 10x and 40x) images were acquired with IAS2000 software (Delta 

Sistemi, Roma, Italy). Fluorescence photographs of GFP positive cells were obtained using a 

specific set of filters: excitation 480/30 and emission 530/30. Mitochondrial network 

morphology and membrane potential were evaluated by incubating cells with 20 nM TMRM 

for 30 min. At least 10 different optic fields were acquired for every experimental condition. 

 

3.9 Biochemical Assays  

 

3.9.1 Glucose consumption and lactate release measurements 

 

Cells media were collected from the Petri dishes and immediately used for the glucose 

consumption and lactate release assays. These biochemical measurements were performed by 

using the Glucose Liquid Trinder Method Kit (FAR, Verona, Italy) and Lactate PAP Fluid Kit 

(Centronic GmbH, Wartenberg, Germany), respectively, following the manufacturer's 

instructions. 
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Glucose quantification was obtained by applying the colorimetric Trinder GOD/POD Method, 

universally used for the estimation of glucose in serum and plasma. The enzymatic reaction 

sequence employed in the assay of glucose is the following: 

 

β-D-Glucose + H2O + O2       H2O2 + D-Gluconic Acid Peroxidase 

 

H2O2 + 4-Aminoantipyrine + Phenol                             Iminoquinone (coloured compound) +  

H2O 

 

The increase in the absorption at 510 nm is proportional to glucose concentration and can be 

measured with the spectrophotometer. 

Lactate quantification was performed by employing a colorimetric assay for the determination 

of lactate concentration in serum and plasma, as following: 

 

L-Lactate + O2                                               Pyruvate + H2O2 

 

H2O2 + p-Aminophenazone + p-Clorophenol                                                   chromogen + H2O 

 

The increase in the absorption at 546 nm is proportional to lactate concentration and can be 

measured photometrically. 

Data were expressed as µmol/106 cells and normalized to the number of cells present in the 

wells.  

 

3.9.2 ATP levels measurement 

 

The ATP content of cells was assayed by using a bioluminescence method based on the 

luciferin– luciferase system (ATP bioluminescent assay kit CLS II; Roche, Basel, Switzerland). 

Cells were trypsinized and washed in buffer containing 10mM Tris HCl, 100 mM KCl, 5 mM 

KH2PO4, 3 mM EGTA, 2 mM MgCl2 pH 7.4. They were then suspended in the same buffer and 

a small amount of suspended cells was diluted in dimethyl sulphoxide (DMSO) to extract the 

intracellular content. The DMSO diluted cells were immediately cooled down with cold water 

Glucose oxidase 

Peroxidase 

Lactate oxidase 

Peroxidase 
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and placed on ice to stop ATP degradation. ATP content measurement was then performed 

adding the cellular extract to 0.1 M Tris/acetate, 2 mM EDTA pH 7.75 buffer and stocked 

luciferin, and referred to 1.65 mM standard ATP. The luminometric reaction induced is the 

following: 

 

Luciferin + MgATP                                 AMP-luciferin + MgPPi  

        

         

oxyluciferin + CO2 + AMP + light 

 

The amount of ATP measured is proportional to the amount of light emitted by the samples and 

recorded by the luminometer machine. It was referred to the protein content, determined by the 

Lowry method (explained below), and expressed as nmol of ATP/mg protein. 

 

3.9.3 Citrate synthase activity assay 

 

Citrate synthase (CS) is located in mitochondrial matrix and it is responsible for the first 

reaction of the Krebs cycle. For this reason, it is considered an important index of mitochondrial 

mass in the cells. The reaction catalysed by the enzyme is the following: 

 

Acetyl CoA + oxaloacetate + H2O                      CoA−SH + Citrate 

 

Reduced CoA reduces in turn 5,5’ dithiobis - 2’nitro-benzoic acid (DTNB) to TNB which is 

coloured, and the developed colour is recorded in a V-450 Jasco spectrophotometer. The overall 

reaction product, TNB, absorbs at 412 nm. 

In order to perform this assay, cells were trypsinized and washed in Hank’s buffer and then 

suspended in the same. A small aliquot of cells was added to 125mM Tris HCl pH 8 buffer, 

Triton detergent (Sigma-Aldrich) to allow the permeabilization, DTNB, Acetyl CoA and 

oxaloacetate. Increased TNB production and absorption over time were observed in the graph. 

The assay was carried out at 30°C temperature and 412 nm wavelength. The specific activity 

intracellular luciferase 

O2 

CS 
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of the enzyme was calculated through Lambert-Beer Law application and it was referred to 

protein amount determined by the Lowry method and expressed as nmol/min/mg of protein. 

 

3.9.4 Oxygen consumption rate measurement 

 

The oxygen consumption rate was measured using an oxygen Clark-type electrode as reported 

by Baracca et al. (128). It is composed of a Pt cathode and an Ag/AgCl anode immersed in a 

KCl electrolytic solution and it’s separated from the sample’s suspension thanks to a gas semi-

permeable membrane through which O2 diffuses. The electric current generated by the redox 

reaction is proportional to the amount of O2 that diffuses through the membrane and it is 

recorded by the instrument. To perform this assay, we normally used saturating concentrations 

of substrates and inhibitors: 

- 10 mM glutamate/10 mM malate to induce NADH dehydrogenase (complex I) -

driven respiration 

- 10 mM succinate to induce succinate dehydrogenase (complex II)- driven 

respiration 

- 0.5 mM ADP to induce ATP synthesis (state 3 respiration) 

- 6 µg/ml rotenone to inhibit complex I, used together with succinate 

- 1.8 mM malonate to inhibit complex II, used together with glutamate/malate 

- 60 μM DNP (dinitrophenol) to uncouple the oxidative phosphorylation process 

The experiments were carried out as follows: cells were detached from the Petri dishes with 

trypsin and washed in Hank’s buffer and then suspended. An aliquot of cells was loaded in the 

electrode chamber and diluted in 0.25 M sucrose, 20 mM Tris HCl, 4 mM MgSO4, 0.5 mM 

EDTA, 10 mM KH2PO4 pH 7.4. Cells were immediately permeabilized with 60 μg/ml digitonin 

at 30°C, and glutamate/malate (plus malonate) or succinate (plus rotenone) were added 

immediately. State 3 and uncoupled respiration rates were measured in the presence of ADP or 

DNP (dinitrophenol) respectively. The oxygen consumption rate was observed in the graph as 

a decrease of oxygen concentration in the electrode chamber over time. It was normalized 

referring the oxygen consumption rate to the amount of protein measured by the Lowry method, 

and it was expressed as nmol/min/mg of protein. 
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3.10 Ca2+ signalling measurements 

 

Cytosolic-free Ca2+ levels in live cells were measured with the red-fluorescent ratiometric Ca2+ 

indicator Fura-2, AM. At low concentrations of the indicator, 340/380nm excitation ratio allows 

accurate measurements of the intracellular concentration of the divalent cation. After 24-36h of 

transfection, cells were loaded with 5mM Fura-2, AM dissolved in fluorobrite DMEM, pH 7.4 

(Thermo Fischer Scientific) for 30 minutes. The loading solution was then removed, and cells 

were washed three times with the same medium. Each cover slip of cells was assembled into a 

purpose-built chamber and a fresh aliquot of medium was added to the cells and placed on the 

stage of a Nikon Eclipse Inverted fluorescent microscope equipped with a UV lamp. Cells 

loaded with the indicator were excited by both 340 and 380 nm wavelengths and live changes 

were followed after adding 1µM Thapsigargin (Tg), an important SERCA pumps inhibitor. 

Differences of increasing cytosolic Ca2+ concentration among the cell lines could be detected 

with an increased 340 nm-derived emission light and a decreased 380 nm-derived emission 

light (increased 340/380 nm). Acquired traces were analysed with Andor iQ live Cell Imaging 

software. 

Mitochondrial Ca2+ levels were measured by transfecting the cells with the genetically encoded 

mitochondrion targeting 4mtGCAMP6 probe, one of the last generation GCamP probes (131). 

4mtGCAMP6 is a ratiometric probe, excited by both 475 and 410 nm wavelengths and 

characterized by a high Ca2+ affinity. Recent studies have shown that the GCamP fluorophore 

has an isosbestic point (410 nm) in its excitation spectrum and exciting GCaMP6m at 410 nm 

leads to fluorescence emission which is not Ca2+ dependent. As a consequence, the ratio 

between 475 and 410 nm excitation wavelengths is proportional to Ca2+ concentration while 

independent on probe expression levels. The transfection was achieved by using Lipofectamine 

p3000 as previously described and after 24-36 h of transfection cells were expressing the 

indicator. The growing medium was then removed and replaced with fresh fluorobrite DMEM, 

and each cover slip of cells was assembled into a purpose-built chamber and placed on the stage 

of a Nikon Eclipse Inverted fluorescent microscope, as described above. Cells expressing the 

indicator were excited at 475 and 410 nm and increasing fluorescence was observed after adding 

1µM Thapsigargin (Tg). Traces were acquired and analysed with Andor iQ live Cell Imaging 

software. 
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3.11 Protein quantification with the Lowry method (132) 

 

The Lowry method allows the determination of the correct protein amount in the examined 

sample. It is based on the measurement of the aromatic groups through a colorimetric reaction 

recorded spectrophotometrically at 750 nm wavelength. It is first necessary to realize a 

calibration curve with standard albumin (BSA – Sigma Aldrich) before starting the assay: 

increasing amounts of BSA are prepared from a stock solution of the protein and tested at 278 

nm wavelength. The concentration of BSA is extrapolated from the graph according to the 

measured absorptions related to each BSA aliquot and to the known 1 mg/ml BSA absorption 

(0.64).  Once obtained the calibration curve, the assay is carried out as follows: cells are 

trypsinized and washed deeply in order to remove all the interfering elements contained in the 

medium, such as FBS and amino acids. 10% deoxycholate (DOC), H2O and a misture of NaOH, 

Na-K tartrate and CuSO4 (100:1:1) are then added to the cells and the suspension is incubated 

for 10 minutes. Right afterwards, the suspension of cells is supplemented with Folin-

Ciocalteau’s reagent and left 30 minutes far from light at room temperature. The absorption 

(Abs) is measured right after. Sample’s protein concentration (mg/ml) is calculated applying 

Lambert-Beer Law and it’s referred to the calibration curve previously prepared.   
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4 RESULTS 

 

4.1 Role played by IF1 in Ca2+ homeostasis regulation  

 

As previously introduced, intracellular Ca2+ levels must be tightly controlled to maintain 

cytosolic Ca2+ concentration within the physiological range. Impaired cytosolic Ca2+ regulation 

often leads to cellular dysfunctions and can induce the activation of cell death mechanisms. For 

this reason, cells have developed many ways of maintaining Ca2+ homeostasis by extruding, 

chelating, or compartmenting the cation. Together with the endoplasmic reticulum, 

mitochondria play a pivotal role in the intracellular compartmentalization of Ca2+. Increases of 

mitochondrial Ca2+ concentration regulate the increase of ATP synthesis. Recently, a putative 

binding site for calmodulin in F1FO-ATPase IF1 sequence has been uncovered (46), suggesting 

that IF1 may contribute to the regulation of Ca2+ level in the intracellular environment. Taking 

these aspects into account, we set up a campaign of experiments in order to clarify whether IF1 

is involved in mitochondrial Ca2+ handling. All the experiments were carried out in scrambled 

(Scr), and permanently IF1-knockdown (IF1 KD) HeLa cells, which were obtained by shRNA 

interference. Scr cells were used as control and expressed normal levels of the protein of 

interest.  

 

4.1.1  Cytosolic Ca2+ evaluation  

 

Cytosolic Ca2+ concentration was the first parameter to be analysed, in order to assess the 

possible differences between control and IF1 KD HeLa cells. Cells were incubated with the 

ratiometric Ca2+ indicator Fura-2 for 30 minutes and then imaged with the Nikon Eclipse 

fluorescent microscope upon pharmacological stimulation with 1µM Thapsigargin (Tg), an 

inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pumps that blocks the 

physiological Ca2+ reuptake into the ER. As we can see in the graph [Fig.14], Fura-2 ratio 

increased in both Scr and IF1 KD HeLa cells after Tg challenge, indicating a quick progressive 

release of Ca2+ from the ER into the cytosol. After the initial rise, cytosolic Ca2+ levels then 

reached a plateau phase. The histograms show the plateau values reached by the cell lines, 

following ER emptying. Interestingly, IF1 KD HeLa cells showed a significantly lower 
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cytosolic Ca2+ increase (-40/50%) with respect to controls, suggesting that the ER Ca2+ storage 

capacity is negatively affected by the removal of IF1-expression. 

 

 

In order to fully understand whether the modulation of cytosolic Ca2+ homeostasis was only 

related to changes in IF1 expression or also influenced by IF1 activation, cytosolic Ca2+ response 

was evaluated in wild type HeLa cells, transiently transfected with either the yellow fluorescent 

protein (YFP), YFP-IF1, or YFP-H49P cDNAs. YFP transfected cells were used as control and 

expressed normal levels of the protein of interest. Cells were instead transfected with YFP-IF1 

to up-regulate IF1 expression, or with IF1
H49P to induce a higher level of activation. The 

substitution of His 49 with Pro leads to a change in the pH sensitivity of IF1 activating the 

protein even at physiological mitochondrial matrix pH. A similar mutation is reported in (133). 

Approximately 72 h after the transfection, cells were incubated for 30 minutes with Fura-2 and 

then immediately analysed. First, 15-20 regions of interest (ROIs) corresponding to transfected, 

YFP positive, cells were selected, and then ER emptying was induced by adding 1µM Tg to the 

recording medium. The increase in Fura-2 ratio, which gives a direct indication of the cytosolic 

Ca2+ concentration, were monitored and recorded in all clones. As we could observe, higher 

cytosolic Ca2+ increases were measured in both +IF1 and IF1
H49P clones (+50%) with respect to 

control cells, suggesting that the ER Ca2+ storage capacity may not only be related to IF1 up-

regulation but also to constitutive activation due to H49P mutation [Fig.15]. 

 

Fig.14. Cytosolic Ca2+ increase in Scr (red trace) and IF1 KD (black trace) cells, upon induction with 1µM Thapsigargin 

(Tg). On the right: histograms of the plateau values reached by the cell lines once the ER is emptied. IF1-lacking cells 

show a significantly lower plateau value (-40/50%). *** p < 0.001 indicates the statistical significance with respect to 

Scr cells. 
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4.1.2  Mitochondrial Ca2+ measurements  

 

Considering the presence of statistically significant differences in Tg-induced cytosolic Ca2+ 

accumulation between the genotypes analysed, mitochondrial Ca2+ concentration was evaluated 

in both Scr and IF1 KD HeLa cells. As fully described in Materials and Methods, cells were 

transiently transfected with the genetically encoded mitochondrially targeted 4mtGCAMP6 

probe. This is a ratiometric probe, excited by 410 and 475 nm wavelengths with a high affinity 

for Ca2+. The 475/410 nm excitation ratio allows accurate measurements of mitochondrial Ca2+ 

concentration. 

After 72 h from the transfection, Ca2+ release from the ER was induced with 1µM Tg and 

changes in mitochondrial Ca2+ were monitored with the Nikon Eclipse Inverted fluorescent 

microscope. Considering the close proximity of mitochondria to the ER, mitochondrial Ca2+ 

variations could be rapidly observed. In this case, a higher increase -and a consequently higher 

plateau value- in mitochondrial Ca2+ concentration occurred in IF1 KD HeLa cells (+30%) 

[Fig.16]. This partially explains the lower cytosolic Ca2+ increase that was observed in the same 

cell line.  

Fig.15. Cytosolic Ca2+ increase in control (black), + IF1 (orange) and IF1
H49P (blue) cells, upon stimulation with 1µM 

Thapsigargin (Tg). On the right: histograms of the plateau values reached by the clones. Both IF1 overexpression and 

constitutively activation are responsible for a different ER’s emptying ability. *** p < 0.001 indicates the statistical 

significance with respect to Scr cells 
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Mitochondrial Ca2+ evaluation was also carried out in wild type control, +IF1 and IF1
H49P 

cells, but no statistically significant differences were detected among the clones. This might 

have been caused by performance limitations due to the necessity of co-transfecting the cells 

with two plasmids. 

 

4.1.3 Mitochondrial Ca2+ uniporter (MCU) expression levels in Scr and IF1 KD HeLa cells 

 

The preliminary data on cytosolic and mitochondrial Ca2+ measurements in Scr and IF1 KD 

HeLa cells prompted us to analyse the steady state expression levels of the main transporter 

involved in mitochondrial Ca2+ uptake, MCU [Fig.17]. As previously introduced, MCU is a 

Ca2+ sensitive uniporter that resides on the inner mitochondrial membrane and is activated only 

when the concentration of this cation is high. Its activity is also driven by the mitochondrial 

membrane potential (Δψm). MCU expression level was analysed together with VDAC level, 

another important ion carrier, and the values were normalized to those of ATP synthase (β-

subunit) and β-actin, which were used as mitochondrial and cellular loading controls, 

respectively.  

The image shows a significantly increased expression level of MCU in IF1 KD HeLa cells with 

respect to Scr cells. This data is in line with the higher mitochondrial Ca2+ uptake observed 

when IF1 is down-regulated, whereas VDAC level remained unchanged. The histogram shows 

the quantification of MCU band density relative to β-actin.  

Fig.16. Mitochondrial Ca2+ measurement in Scr (red) and IF1 KD HeLa cells, upon stimulation with 1µM Tg. On the 

right: histograms of the plateau values reached by the cell lines. * p < 0.05 indicates the statistical significance with 

respect to Scr cells 
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Considering these data, the higher mitochondrial Ca2+ uptake observed in IF1 KD cells could 

be explained by either the higher expression of MCU, or the higher Δψm that characterize IF1 

KD HeLa cells (56), Nevertheless, it remains unclear whether MCU overexpression is a pre- or 

post- transcriptional event and whether IF1 can actively influence MCU expression and 

mitochondrial Ca2+ uptake via calmodulin regulation. Further analysis of intracellular Ca2+ 

signalling in the presence or absence of IF1 will therefore be carried out. However, considering 

the important role of Δψm in the maintenance of cellular homeostasis, we decided to carry out 

a new set of experiments to study and clarify the importance of IF1 in the regulation of 

mitochondrial functions in tumor cells.  

 

4.2 143B cell line bioenergetics modulation by IF1 

 

As reported in literature, IF1 is overexpressed in many human carcinomas (49) (51). Even if its 

main activity is considered related to a decrease of mitochondrial matrix pH caused by a 

collapse of Δψm, as it occurs in ischemia, its role in tumor cells growing in a physiological 

environment has been marginally considered. To assess this important aspect, we stably 

silenced IF1 expression in human osteosarcoma (143B) cell line and tried to elucidate the 

importance of the protein in the intracellular bioenergetics modulation.  

 

Fig.17. On the left, immunoblot of MCU expression levels in Scr and IF1 KD HeLa cells. On the right, semiquantitative 

analysis of MCU levels normalized to β-actin. 
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4.2.1 Screening of IF1 silencing plasmids in 143B cells  

 

Four different plasmids complementary to the target sequence of human IF1 mRNA were 

screened and verified by Western Blotting technique, in order to identify the shRNA sequence 

with the most efficient IF1 silencing competence. In addition, a plasmid with a scrambled 

sequence was used as control of transfection treatment. Comparing the results coming from 

SDS-PAGE and Western Blotting, plasmid #4 was the most efficient at silencing the protein 

[Fig.18, A]. The transfection efficiency was also confirmed by bright field and fluorescence 

microscopy images. In fact, both Scr and #4 plasmids showed an efficient fluorescence intensity 

(around 30%) proved by the expression of the Green Fluorescent Protein (GFP) [Fig. 18, B] 

 

 

 

At a later stage, GFP+ single cells resulting from the previous experiments were subcloned and 

selected with puromycin treatment. Following the selection, the cells were screened once again 

through SDS-PAGE and Western Blotting analysis. As it is shown in the picture, A7 and D9 

clones exhibited the best silencing efficiency, which is still on after 3 years [Fig.19, A]. 

Fig.18. Initial screening of shRNAs for IF1 silencing. Panel A: SDS-PAGE and Western Blotting of Scr and IF1 silencing 

plasmids. Panel B: bright field and fluorescence microscopy images of Scr and #4 plasmids showing the transfection 

efficiency. Panel C: map of plasmid #4 showing the complete sequence of the construct. 

C 
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Transfection stability and morphology of Scr and IF1 KD 143B cells were assessed by both 

bright field and flow cytometric analysis [Fig. 19, B and C]. We could finally detect that all the 

transfected clones were characterized by a high and homogeneous fluorescence intensity of 

GFP (>98%) and that the transfection technique didn’t cause any modification in cell 

morphology. The stable silencing of the protein was periodically checked by performing SDS-

PAGE followed by immunodetection with IF1 antibody. 

 

 

 

4.2.2 Endogenous mitochondrial membrane potential evaluation in normoxia 

 

Once Scr and stable IF1-silenced clones were selected for our study, parental, Scr and silenced 

cells were cultured and seeded for the experiments under normoxic conditions (21% O2). We 

Fig.19. Scr and IF1 KD clones resulting from subcloning and puromycin selection. Panel A: SDS-PAGE and Western 

Blotting analysis of all obtained clones, using porin and ATP synthase d-subunit as mitochondrial loading controls. 

Panel B: bright field and fluorescence microscopy images showing homogeneous morphology and efficient transfection 

in all cell clones. Panel C: cytofluorimetric quantification of stable transfection efficiency of the chosen Scr and –IF1 

clones.  
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started with the quantification of endogenous mitochondrial membrane potential (Δψm) in order 

to evaluate the possible differences in this important mitochondrial function’s parameter related 

to the presence or absence of the protein [Fig.20]. All the cell lines were loaded with 20 nM 

TMRM for 30 minutes and fluorescence images were obtained by using an inverted fluorescent 

microscope (x40 magnification): from a first qualitative analysis it could be easily noticed that 

IF1-silenced clones showed a higher fluorescence intensity, indicating a higher endogenous 

Δψm, when compared with both parental and Scr cells [Fig. 20, A]. A quantitative analysis 

carried on by using flow cytometry confirmed the qualitative results [Fig. 20, B]. In fact, IF1-

lacking cells showed a significantly higher Δψm, of around 30%, with respect to IF1 positive 

cells. The differences detected among the cell lines were double checked by adding oligomycin, 

inhibitor of ATP synthase Fo sector, that, as expected, removed all the differences previously 

observed. This could confirm that the higher Δψm obtained in IF1 silenced clones was 

attributable to IF1 absence. 
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4.2.3 Oxygen consumption rate measurement in normoxia 

 

Intrigued by the results regarding Δψm, we decided to address the respiratory chain activity by 

measuring the oxygen consumption rate in all cell lines exposed to normoxia. Cells were 

washed and loaded in an oxygen Clark-type electrode, as reported by Baracca et al. (128). 

Following permeabilization with digitonin, 20 mM glutamate/malate (plus malonate) was 

added to induce Complex I-driven respiration [Fig.21]. State 3 respiration was evaluated by 

adding saturating concentrations of ADP to maximise ATP synthase’s activity. The state 3 

Fig.20. Mitochondrial membrane potential (Δψm) measurements in parental, Scr and IF1-silenced 143B cells, loaded with 

20 nM TMRM probe. Panel A: fluorescent microscopy showing the differences among the cell lines. Panel B: flow 

cytometric analysis of Δψm showing a higher endogenous potential in IF1-silenced cells if compared with controls. Panel 

C: histograms of the semiquantitative evaluations of the obtained results in the absence (filled bars) or in the presence 

(dashed bars) of oligomycin.  ** p < 0.01 and * p < 0.05 indicate the statistical significance with respect to 143B and Scr 

cells. 
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oxygen consumption rate increased in all cell lines, and in particular was found slightly, but 

significantly, lower (-20%) in IF1-deprived cells if compared with controls [Fig. 21, A and B]. 

In contrast, no differences were detected among the clones in state 4 respiration induced by 

adding oligomycin [Fig. 21, A and C].  

 

 

These results, together with the ones obtained by Δψm analysis, suggested that the presence of 

IF1 in 143B cell line might enhance the ATP synthesis rate via OXPHOS. Nevertheless, total 

intracellular ATP content, OXPHOS enzymes expression levels and mitochondrial mass 

remained unchanged in all cell lines and no detectable differences could be seen (data not 

shown) (57).  

 

 

Fig.21. Respiratory chain activity measurement in parental, Scr and IF1-deprived 143B cells. Panel A: traces of oxygen 

consumption rate driven by Complex I, after adding ADP and oligomycin. IF1-silenced cells (black and blue traces) 

showed a slight decrease of state 3 respiration of around 20% with respect to controls (red and pink traces). Panel B: 

histograms of state 3 respiration in all cell lines, expressed as nmol/min/mg of protein of consumed oxygen. Panel C: 

histograms of state 4 respiration in all clones (nmol/min/mg of protein). * p < 0.05 indicates the statistical significance 

with respect to 143B and Scr cells. 
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4.2.4 Oligomeric organization of ATP synthase in IF1-silenced clones 

 

Considering the results obtained from Δψm and state 3 respiration rate measurements, the 

oligomeric state of mitochondrial ATP synthase was then investigated under normoxic 

conditions. To proceed with this study, we first assessed the correct mitochondria extraction 

method and inner mitochondrial membrane permeabilization, since the type of detergent and 

its concentration are critical for the execution of the experiment (135). Mitochondria from 

parental 143B cells were extracted and treated with different digitonin/protein ratios to assess 

the correct detergent concentration. As we could notice, 2.5/1 digitonin/protein was the best -

ATP synthase conservative- condition that could maintain the physiological ATP synthase 

organization in dimers and monomers, observed through α-subunit immunodetection following 

first dimension (1D)-Blue Native gel electrophoresis [Fig.22]. 

 

 

Later on, ATP synthase oligomeric distribution was analysed in all cell lines. Once 

mitochondria were extracted, BN-PAGE electrophoresis was conducted to separate ATP 

synthase oligomers and 1D gels were obtained [Fig. 23]. As we can observe in the picture, in-

gel ATPase activity was run as control for ATP synthase dimers and monomers localization on 

the gel. It could be clearly seen that both monomers and dimers exert ATP hydrolytic activity 

[Fig. 23, A]. The images coming from α-subunit immunodetection showed that the pattern of 

distribution of the ATP synthase oligomers is the same in parental, Scr and IF1-silenced clones 

(53-58% monomeric form and 42-47% dimeric form) indicating that the oligomeric distribution 

of the enzyme is independent from IF1 expression in osteosarcoma cells [Fig. 23, B and D]. 

Interestingly, the immunodetection of the inhibitor protein showed that when IF1 is present (in 

Fig.22. Immunoblot of ATP synthase α-subunit in parental 143B cells showing digitonin/protein titration, performed to 

evaluate the best condition for oligomeric ATP synthase conservation. 
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parental and Scr cells), its main target is represented by the dimeric form of the ATP synthase 

[Fig. 23, C] (57).  

 

 

 

Taken together, the results obtained indicated that IF1 plays an important role in bioenergetics 

modulation of 143B cell line: in physiological conditions, IF1 doesn’t affect the oligomeric 

organization of the ATP synthase, but stabilizes the dimeric form of the enzyme, possibly 

contributing to the enhancing of ATP synthase activity, confirmed by both lower Δψm and 

higher state 3 respiration rate in IF1 positive cells. 

We therefore investigated mitochondrial function changes in the presence or absence of the 

inhibitor protein under hypoxic exposure, trying to reproduce the hypoxic/anoxic environment 

occurring in the most central zones of the solid tumor.  

Fig.23. Oligomeric distribution of ATP synthase in parental, Scr and IF1-silenced 143B cells in normoxia. Panel A: in-

gel ATPase activity of all cell lines. Panel B: α-subunit immunodetection following BN-PAGE electrophoresis that 

shows the pattern of organization of ATP synthase’s oligomers. IF1 positive and negative cells showed the same 

distribution of monomers and dimers. Panel C: IF1 immunodetection in all cell lines that shows the IF1 localization on 

the dimeric form of the enzyme. Panel D: semiquantitative analysis of monomers and dimers distribution in all cells. 
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4.3 Mitochondrial function regulation in hypoxia 

 

To verify the involvement of IF1 in cellular and mitochondrial function maintenance we studied 

the effect of the inhibitor protein under stressing conditions: for this purpose, we performed a 

new set of experiments on all the cell lines exposed to 0.5% O2. 

 

4.3.1 IF1 expression levels in hypoxia 

 

We first evaluated IF1 expression levels in parental, Scr and IF1-silenced cells exposed to 24 

and 48 h of hypoxia created by an Invivo2 hypoxic chamber. As we could notice, in IF1-

expressing cells a significant increase of the protein expression could be detected through SDS-

PAGE followed by Western Blotting. In particular, the semiquantitative analysis of IF1 level 

normalized to the β-actin and the ATP synthase α-subunit showed that in both parental and Scr 

cells the increase was around 50% after 24 h, whereas it was of about 70% after 48 h [Fig.24].  

 

Fig.24. ATP synthase IF1 expression level analysis in parental, Scr and IF1-silenced clones obtained through SDS-PAGE 

and Western Blotting. Both parental and Scr cells showed a progressive increase of IF1 levels in hypoxia. 
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4.3.2 Cell growth 

 

Considering the results obtained regarding IF1 content, cells proliferation ability was tested in 

all cell clones. Cells were exposed to hypoxia up to 72 h and the growth rate was measured 

every 24 h. As we can observe from the graph, IF1-silenced cells showed a significant decrease 

of proliferation rate after 48 h, with respect to parental and Scr cells, which instead maintained 

an efficient replication activity even after 72 h from the seeding. The cell growth traces 

suggested that IF1 absence might contribute to a more difficult cell adaptation to hypoxia [Fig. 

25].  

 

 

4.3.3 Mitochondrial membrane potential evaluation in hypoxia 

 

Considering the increased IF1 levels and the different proliferation rate observed in hypoxia, 

we decided to investigate the effects of IF1 up-regulation on Δψm. Cells were exposed to 0.5% 

O2 for 24 h and then loaded with 20 nM TMRM probe for 30 minutes. Images obtained through 

fluorescence microscopy showed a high Δψm in both parental and A7 clones [Fig. 26, A]. This 

qualitative observation was confirmed by flow cytometric analysis of Δψm in all cell lines, 

where no differences could be detected in the presence or absence of IF1 [Fig. 26, B]. In 

particular, Δψm was found to be increased in IF1-expressing cells with respect to normoxia (see 

previous results), suggesting that the lower concentration of oxygen is probably responsible for 

a slowdown in the ETC activity. Since no differences concerning Δψm could be detected in the 

Fig.25. Cell growth evaluation of parental, Scr (grey traces) and IF1-silenced (black traces) 143B cells under hypoxic 

exposure (0.5% O2) 
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presence or absence of IF1, we concluded that probably in these conditions, mitochondria were 

not sufficiently depolarized to induce ATP hydrolysis. 

A slight increase of Δψm was then induced by adding oligomycin, indicating that in the 

examined conditions Δψm was very close to state 4 of respiration [Fig. 26, C]. 

 

 

4.3.4 Mitochondrial mass evaluation 

 

Mitochondrial membrane potential measurements are strictly dependent on mitochondrial mass 

content, especially when fluorescent probes are used, since a different signal in the fluorescence 

intensity may be recorded according to the number of mitochondria analysed. For this reason, 

a mitochondrial mass check needed to be run. After 24 h of hypoxic exposure, cells were 

collected and permeabilized and citrate synthase activity assay was carried out [Fig.27]. The 

Fig.26. Mitochondrial membrane potential (Δψm) measurements in parental, Scr and IF1-silenced 143B cells exposed to 

24 h of hypoxia. Panel A: fluorescent microscopy images showing a high Δψm in both parental and A7 (-IF1) clones. 

Panel B: flow cytometric analysis of Δψm where no differences could be detected among the cell lines. Panel C: 

histograms of the semiquantitative analysis of Δψm in the absence (filled bars) or in the presence (dashed bars) of 

oligomycin.  



59 

 

results, expressed as nmol/min/mg of protein, showed that citrate synthase activity was the same 

in all cell clones (dashed bars) and a slight decrease (around -15%) was observed with respect 

to normoxia (filled bars).  

 

 

4.3.5 Glucose consumption and lactate release 

 

In order to confirm that no ATP hydrolysis had been activated in our experimental conditions, 

the glycolysis efficiency was tested by measuring glucose consumption and lactate release. 

Cells were exposed to 24 h of hypoxia and media were then collected for the assay. As expected, 

no significant difference could be detected among the cell lines, concerning either glucose 

consumption, or lactate production, both expressed as µmol/106 cells. In addition, lactate 

release/glucose consumption ratio was found to be 2/1 in all clones, indicating that all consumed 

glucose was converted into lactate, independently from the presence of IF1 [Fig. 28]. 

Fig.27. Mitochondrial mass analysis of all cell lines through citrate synthase activity assay (nmol/min/mg of protein). No 

differences were detected among the clones either in normoxia or in hypoxia. 
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4.3.6 Steady state ATP level 

 

The study was continued with the total steady state ATP content measurement in all cell lines. 

Cells were left for 24 h in the hypoxic chamber and then permeabilized for the ATP 

quantification through luminometric assay. Even in this case we could not observe any 

significant difference in total ATP level among the cell clones [Fig.29]. 

 

 

4.3.7 OXPHOS enzymes expression levels analysis 

 

Trying to find an explanation to the high Δψm found in hypoxia in all cell lines, we assessed the 

OXPHOS complexes expression levels in all cell lines. 143B cells were seeded and exposed 

for 24 h to hypoxia and then collected and lysed to perform SDS-PAGE. Following the 

electrophoresis run, the proteins were immediately blotted onto a nitrocellulose membrane and 

Fig.28. Glucose consumption (µmol/106 cells) on the left, and lactate release (µmol/106 cells) on the right, of parental, 

Scr and IF1-non expressing cells in hypoxia. No significant differences were detected among the cell lines. 

Fig.29. Steady state ATP level (nmol/mg of protein) in all cell lines exposed to 0.5% O2 remained unchanged. 



61 

 

incubated with a cocktail of antibodies anti-OXPHOS complexes. As we can see in the image, 

a detectable difference could be observed in complex I expression: both IF1 expressing and non-

expressing cells showed significantly higher levels (+70/80%) of the complex if compared to 

normoxia [Fig. 30]. A slight, but significant, increase (+15%) of complex II was detected as 

well. 

 

 

Overall, the data obtained so far led us to conclude that probably the oxygen tension in use was 

not sufficient to induce a complete depolarization of the mitochondrion, necessary for ATP 

hydrolysis activation and glucose consumption increase, both fundamental for IF1 binding to 

ATP synthase. Further investigation is now on to clarify the effect of the inhibitor protein on 

mitochondrial and cellular metabolism in chemically induced-stressing conditions. 

  

Fig.30. Immunodetection of OXPHOS complexes in parental, Scr, and IF1-silenced cells exposed to 24h of hypoxia 

(0.5% O2). The quantification of the protein content was normalized to the porin, taken as mitochondrial loading control. 

Complex I was found to be significantly increased (+70%, **p<0.01) in all cell lines exposed to hypoxia with respect to 

normoxia. A slight significant increase (+15/20%, *p<0.05) was also found in complex II expression level. 
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5 DISCUSSION 

 

Tumor cells exhibit genetic, biochemical and histological differences with respect to non-

transformed cells. One of their most important features is the metabolic switch towards 

glycolysis which leads to a higher glycolytic flux to compensate the increased energy demand 

(Warburg effect) (5). Indeed, many biochemical mechanisms may contribute to increasing the 

glycolysis rate, one of which has recently been proposed to be the inhibition of the 

mitochondrial ATP synthase by the natural inhibitor protein, IF1 (51). As fully described in the 

introduction, the importance of IF1 is related to many intriguing aspects that prompted us to 

deeply study the involvement of this protein in the regulation of the energetic state of tumor 

cells. IF1 is a basic, stable protein of 106 amino acids in humans (136), highly evolutionary 

conserved among species. Besides the canonical role ascribed to IF1, its involvement in 

tumorigenesis has been proposed and studied in the last few years. Interestingly, it has been 

observed that it is overexpressed in many human carcinomas (51) (49), suggesting a role in 

cancer cell survival, growth and invasiveness.  

It is well established that when the electrochemical proton gradient (Δψm) across the inner 

mitochondrial membrane collapses, as it occurs in case of a dramatic mitochondrial respiration 

impairment, the ATP synthase reverses its activity hydrolysing cytosolic ATP, mostly derived 

from glycolysis, to restore the intermembrane potential (43) (45). In such condition, either the 

collapse of Δψm or the shift to glycolysis (resulting in an increased lactate production) may 

contribute to a decrease in the pH leading to the activation of the inhibitor protein (50). Once 

activated, it binds to the αβ interface of the ATP synthase and blocks the reversal of the enzyme. 

This fine regulation of ATP hydrolysis by IF1 is fundamental to prevent massive energy 

depletion, event that could rapidly lead to cell death. As introduced, the importance of Δψm is 

not only associated with the control of ATP synthesis efficiency, but it is also fundamental for 

proteins transport, mitochondrial morphology maintenance, cell death regulation, ions 

homeostasis and ROS production handling.  

Considering the important role played by IF1 in ATP synthase modulation, the first part of this 

study was dedicated to addressing tumor cells bioenergetics in the presence or absence of the 

protein under physiological non-stressing conditions. The first step was the evaluation of a 

possible involvement of IF1 in mitochondrial Ca2+ signalling. Mitochondria are important Ca2+ 

storage sites in the cell, together with the endoplasmic reticulum (ER). Recently, a putative 
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binding site for calmodulin in IF1 sequence has been uncovered (46), suggesting that it may 

contribute to the regulation of Ca2+ level in the intracellular environment. For these reasons, 

scrambled (Scr) and permanently IF1-knockdown (IF1 KD) human adenocarcinoma cells (HeLa 

cells) were used to clarify the possible contribution of IF1 to mitochondrial Ca2+ signalling. The 

first aspect to be assessed was the cytosolic free-Ca2+ content quantification measured by using 

the ratiometric indicator Fura-2. Thapsigargin (Tg), an important inhibitor of ATP-dependent 

Ca2+ uptake into the ER, was used to induce a hormone-like elevation of cytosolic Ca2+. The 

results obtained showed that when ER’s emptying was stimulated by Tg, an increase in 

cytosolic Ca2+ was recorded in both Scr and IF1-silenced cells, but in the absence of IF1 this 

increase was significantly lower, suggesting that ER’s storage capacity is probably higher when 

IF1 is present. In order to fully understand whether the differences in cytosolic Ca2+ increase 

were only related to IF1 expression levels or they could be even associated to IF1 activation, the 

same experiment was conducted in wild type HeLa cells, transiently transfected with either 

yellow fluorescent protein (YFP), or YFP-IF1, or YFP-H49P plasmids. YFP cells were used as 

control of transfection and expressed normal levels of IF1. Instead, in YFP-IF1 cells a genic up-

regulation of IF1 was induced, whereas IF1
H49P cells carried a mutation in His 49. The latter was 

obtained by substituting His with Pro, leading to a changing in IF1’s pH sensitivity and making 

it active even at physiological pH (constitutive activation). Interestingly, cytosolic Ca2+ increase 

upon stimulation with Tg was significantly higher in both IF1 overexpressing and constitutively 

active clones with respect to YFP controls, indicating that either IF1 expression levels or 

constitutively activation of the protein may play a role in cytosolic Ca2+ response to Tg. Given 

the close proximity of the ER to the mitochondria, we decided to investigate the cross-talk 

between the two Ca2+ storage compartments in the presence or absence of IF1. Scr and IF1 KD 

HeLa were transiently transfected with the genetically encoded mitochondrion targeting 

4mtGCAMP6 probe and after 72 h they were imaged and analysed. In this case, Tg induced a 

higher increase of mitochondrial Ca2+ concentration in IF1 lacking cells with respect to controls. 

This result was considered in line with what obtained from the analysis of the cytosolic Ca2+ 

response. 

Mitochondrial Ca2+ uptake is allowed by specific and non-specific transporters and ion channels 

situated on the outer and the inner mitochondrial membranes (OMM and IMM, respectively). 

In particular, although originally thought to be exclusive component of the OMM, it has been 

then demonstrated that VDAC is located in the contact sites between the OMM and the ER 

(105). Ca2+ transport across the IMM is instead exerted by a rapid electrogenic pathway, the 
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mitochondrial calcium uniporter (MCU), which quickly transports Ca2+ into the matrix, driven 

by the negative charge of the membrane potential established by the respiratory chain (106). 

Trying to give an explanation to the results obtained, the main mitochondrial Ca2+ transporters 

expression levels were addressed. The results coming from SDS-PAGE and following Western 

Blotting showed that VDAC levels remained unchanged between Scr and –IF1 cells, whereas 

an up-regulation of MCU was observed in IF1-silenced cells with respect to controls. This result 

could in part explain the higher mitochondrial uptake of Ca2+ in IF1 KD HeLa cells: an enhanced 

MCU expression, driven by the negative charge of the Δψm found in the mitochondrial matrix 

of IF1 KD HeLa cells (56) would be able to induce a higher uptake of Ca2+ into the 

mitochondria. What would be interesting to deepen is whether MCU overexpression is a pre- 

or post-transcriptional event and whether IF1 would be able to directly modify MCU levels not 

only by regulating Δψm, but also by interacting with calmodulin. Further investigation 

concerning intracellular Ca2+ signalling changes in the presence or absence of IF1 will be carried 

out. However, considering the important role of Δψm in the cellular homeostasis maintenance, 

a new campaign of experiments was conducted in order to study and clarify the importance of 

IF1 in the regulation of mitochondrial functions in tumor cells. 

We stably silenced the expression of the inhibitor protein in human osteosarcoma 143B cell 

line and to study the possible changes occurring in Δψm and bioenergetics. The efficiency of 

the transient transfection by using the scrambled (Scr) and #4 plasmids was around 30% and 

upon puromycin selection and subcloning, stably transfected clones were obtained (A7 and D9). 

The immunodetection with IF1 antibody showed that the silencing was of around 90-95% 

compared to parental and Scr cells. The periodic check of IF1 expression level in silenced clones 

confirms that the silencing is still present after 3 years. Once Scr and IF1-silenced clones were 

selected, parental, Scr and silenced cells were used to evaluate Δψm under physiological 

conditions (normoxia) by using the fluorescent TMRM probe. The increased Δψm measured in 

both A7 and D9 clones with respect to Scr and parental cells matched with the results obtained 

in HeLa cells (56), suggesting that the presence of IF1 may contribute to ATP production in 

normoxia. At the same time, our result was in contrast with what reported by Sanchez-Cenizo 

et al. (51), who found increased Δψm in different carcinoma cells transiently overexpressing 

IF1. In this case, it is important to underline that transiently transfected cell populations may 

represent a heterogeneous system where both transfected and control cells co-exist: such a 

model wouldn’t represent a stable steady state metabolic condition, but a dynamic situation that 
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could produce potentially ambiguous data. However it can’t be excluded that different cell types 

may behave differently from HeLa or 143B cells. 

The steady state Δψm level found in 143B cells was double checked with 0.6 µM oligomycin, 

which, as expected, increased the fluorescence intensity in all cell lines removing all the 

differences previously detected. This result indicated that the differences observed among 

parental, Scr and IF1 KD cells could be ascribed to the presence or absence of the protein and, 

in addition, that no ATP hydrolysis had been triggered under normoxic conditions: according 

to recent work (137), when ATP hydrolysis significantly contributes to the maintenance of Δψm, 

the addition of oligomycin results in Δψm collapse despite the presence of IF1. Intrigued by 

these results, the efficiency of the electron transport across the mitochondrial respiratory chain 

was addressed by measuring the oxygen consumption rate (OCR) in all cell lines exposed to 

normoxia. The results obtained showed that under ADP phosphorylating conditions (state 3 of 

respiration) the respiration rate was higher in parental and Scr cells than in IF1-silenced clones. 

Even in this case, the addition of oligomycin levelled out the differences among the cell lines 

by completely blocking the ATP synthase activity. Taken together, Δψm analysis and OCR 

measurement indicated that the presence of the inhibitor protein in 143B cells can enhance the 

rate of ATP synthesis via OXPHOS and suggested that the absence of IF1 doesn’t have any 

effect on the respiratory chain activity. Nevertheless, any significant difference was observed 

concerning OXPHOS expression levels, mitochondrial mass and total ATP content among the 

cell lines (57).  

In the last few years, IF1 presence has been associated with an enhanced oligomerization level 

of the ATP synthase: active dimers of IF1 would bind two F1 portions coming from two distinct 

ATP synthase enzymes actively promoting the formation of ATP synthase dimers (47) (58). 

This process would induce the formation of local curvatures in the inner membrane, the so 

called mitochondrial cristae, generating areas of very high protons concentration and thus 

increasing the ATP production rate (40). Considering the lower steady state level of Δψm and 

the higher ADP-induced OCR found in both parental and Scr cells, we decided to elucidate the 

involvement of IF1 in the oligomeric distribution of the ATP synthase. The first step was to 

assess the correct protein/detergent concentration in order to maintain the physiological inner 

membrane complexes distribution: in fact, excess of detergent concentration can dismantle 

mitochondrial inner membrane’s superstructures (135). In particular, the first dimension-gel 

immunodetection of the ATP synthase’s α-subunit showed that the ratio of 1:2.5 

(protein/digitonin) was the best at maintaining the actual distribution of the enzyme. After that, 
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the oligomeric organization of the enzyme was studied in all the cell lines and no differences 

in the dimers/monomers distribution could be detected in the presence or absence of the 

inhibitor protein, indicating that in osteosarcoma cell line IF1 does not promote ATP synthase 

oligomerization. However, when IF1 was present, it was completely associated to the dimeric 

form of the enzyme.  

All the results obtained in normoxia lead us to conclude that in human 143B cell line IF1 does 

not affect the level of F1FO-ATPase oligomerization, even though it possibly stabilizes the 

dimeric form of the enzyme. The lower Δψm and the higher state 3 respiration rate found in IF1 

expressing cells suggested that IF1 might enhance ATP production via OXPHOS. 

The following step was to verify the involvement of IF1 in cellular and mitochondrial function 

maintenance under hypoxic exposure, trying to reproduce the hypoxic/anoxic environment 

occurring in the most central zones of solid tumors. To recall, nutrients and oxygen reach the 

solid tumor travelling across pre-existing and new-generated blood vessels. When the tumor is 

growing, the pre-existing vessels may be easily disrupted or damaged and the new capillaries 

may be characterized by structural abnormalities. These events, together with a possible 

reduction of the oxygen transport or an increased oxygen consumption by tumor cells, may 

contribute to the generation of hypoxic areas. The concentration of oxygen in the close 

proximity of the blood vessels is normally around 2%, but, the larger the distance from the 

vessels is, the lower the oxygen tension becomes: cells 200 µm far from the capillary 

endothelium may be even exposed to 0.2% oxygen concentration, creating areas of severe 

hypoxia/ischemia (66) (67). To verify whether IF1 may play a role in protecting tumor cells 

under stressing/hypoxic conditions, we performed a new set of experiments on both IF1-

expressing and non-expressing 143B clones exposed to hypoxia (0.5% O2).  

We started by analysing IF1 expression changes in parental and Scr cells exposed to the hypoxic 

environment for 24 and 48 h. Interestingly, we could notice that both parental and Scr cells 

progressively increased IF1 content with respect to normoxia. Given this result, the cell growth 

and proliferation rates were assessed in all cell lines. As we could observe, IF1-lacking cells 

slowed down their proliferation rate after 48 h from the seeding, differently from parental and 

Scr cells, which instead maintained an efficient replication ability even after 72 h, suggesting 

that when IF1 is present it may promote a better adaptation to hypoxia. Once IF1 content and 

proliferation rate had been verified, we carried on our study analysing 143B’s behaviour after 

24 h of hypoxia, considering this exposure time sufficient to induce an increased expression of 
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the protein. The analysis of endogenous Δψm in the presence or absence of the inhibitor protein 

was first performed. Surprisingly, from the microscopy images obtained we could not observe 

any depolarization of the mitochondria, neither in the presence nor in the absence of IF1. In 

particular, flow cytorimetric analysis of endogenous Δψm showed that in both parental and Scr 

cells it was increased with respect to normoxia. The addition of oligomycin further increased 

Δψm in all cell lines, indicating that no ATP hydrolysis was occurring: in fact, if mitochondria 

had been sufficiently depolarized, we would have expected to observe a very low steady state 

Δψm in all cell lines. In particular, IF1 non-expressing cells should have showed a slightly higher 

Δψm with respect to parental and Scr cells, due to uncontrolled ATP hydrolysis, and in the 

presence of oligomycin it should have collapsed as a result of the ATP hydrolytic activity of 

the F1FO-ATPase complex. We concluded that the limited availability of oxygen probably 

slowed down the electron transport across the inner membrane complexes (less than ATP 

synthesis by OXPHOS), thus increasing Δψm.  

Moreover, since Δψm measurements are strictly dependent on the total number of mitochondria 

in the cells, an evaluation of mitochondrial mass was carried out by analysing the citrate 

synthase activity. Citrate synthase is the first enzyme of Kreb’s cycle and it is commonly used 

as mitochondrial matrix marker. The assay was run after 24 h of hypoxia and no differences 

could be detected among the cell lines, since the slight decrease observed with respect to 

normoxia was the same independently from the presence of IF1. This result indicated that the 

fluorescence intensity exerted by the TMRM probe was not affected by differences in 

mitochondrial mass. 

In order to confirm that ATP hydrolysis had not been triggered in our experimental conditions, 

we explored the glycolysis efficiency in all cell lines exposed to 24 h of hypoxia. The results 

obtained showed that any significant difference could be detected among the cell lines, neither 

in glucose consumption, nor in lactate release, and that all consumed glucose was converted 

into lactate in all cell lines. This data supported our hypothesis that no ATP hydrolysis occurred 

in our experimental conditions: in fact, if it had been activated, we would have expected to 

observe a sharp increase of glucose consumption (and lactate production) in IF1-silenced cells 

caused by an uncontrolled energy wasting. In addition, when steady state ATP levels were 

assessed, we noticed that in the absence of IF1 they were not decreased as we would have 

expected if ATP hydrolysis had been activated.  
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However, intrigued by the high Δψm observed in hypoxia, we carried out the quantification the 

OXPHOS enzymes expression levels in all cell lines exposed to 24 h of hypoxia. Interestingly, 

the immunodetection of the ETC’s complexes showed that no difference could be detected 

among the clones, except for complex I: in fact it was found to be significantly increased in all 

cells lines, but independently from IF1 levels. We might speculate that the higher expression of 

complex I may contribute to the high Δψm maintenance found in hypoxia. 

Taken together, the results obtained in hypoxia showed that IF1 increased its expression after 

24 h of hypoxic exposure and that the proliferation rate of IF1-non expressing cells was 

significantly lower than in controls, suggesting that in the presence of the protein the cells better 

adapted to the stressing conditions. However, this event didn’t find a confirmation in an 

impairment of mitochondrial function in the absence of IF1: neither Δψm, nor glycolysis and 

ATP content resulted modified, indicating that our experimental conditions could not induce 

the transmembrane potential collapse necessary to lower pH and promote IF1 dimerization and 

activation to inhibit the FIFO-ATPase. For this reason, further investigation is now on in our 

laboratory to shine light on the role of the inhibitor protein as a modulator of mitochondrial and 

cellular metabolism in chemically induced-ischemic conditions, by using the uncoupler agent 

FCCP.  
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6 Conclusions 

 

In the present study, the role played by the endogenous ATP synthase inhibitor protein, IF1, in 

tumor cells was addressed. We went through the evaluation of the possible involvement of IF1 

in mitochondrial Ca2+ homeostasis handling, drawing then the attention to the assessment of 

the role exerted by the protein in the regulation of the metabolic and energetic state of tumor 

cells under both physiological and stressing conditions.  

Summarizing, on the basis of the data so far obtained we can conclude that: 

 In HeLa cells grown in normoxia, IF1 regulates mitochondrial Ca2+ uptake by 

modulating mitochondrial membrane potential-driven MCU expression 

 In 143B cells grown in normoxia (21% O2), IF1 doesn’t affect the oligomeric 

organization of the ATP synthase but it possibly stabilizes the dimeric form of the 

enzyme. We suppose that the lower Δψm found in both parental and scrambled cells, 

supported by a higher state 3 respiration rate, is due to a higher ATP production via 

OXPHOS 

 In 143B cells grown in hypoxia (0.5% O2) the experimental conditions were not 

sufficient to induce a complete loss of Δψm, essential for IF1 to inhibit the F1FO-ATPase 

complex, even though IF1-expressing cells showed a higher proliferation rate with 

respect to IF1-null clones, supporting the notion that IF1 plays important role(s) in cells 

exposed to severe hypoxia/anoxia. 
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