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Abstract

The imaging of brain activity, also called “Functional Neuroimaging”, is

used to understand the relationship between activity in certain brain areas

and specific functions. These techniques include fMRI (functional Magnetic

Resonance Imaging), PET (Positron Emittance Tomography), EIT (Electrical

Impedance Tomography), EEG (ElectroEncephaloGraphy) and DOT (Dif-

fuse Optical Tomography) and are widely used in the study of brain activity.

Classical solutions such as fMRI and PET are characterized by high spatial

resolution to the detriment of portability, cost, and temporal resolution,

limiting their employment in a clinical environment.

In addition to clinical usage, analysis of brain activity is gaining popularity

in others recent fields, i.e. Brain Computer Interfaces (BCI) and the study

of cognitive processes. In these contexts, usage of classical solutions could

be unfeasible, due to their low temporal resolution, high cost and limited

portability. For these reasons, portable low cost techniques are objects of the

proposed thesis’s research, with focus on DOT and EEG.

In particular, the research activity about DOT has been carried out in the con-

text of the European project named “HIGH PROFILE” (HIGH-throughput

PROduction of FunctIonaL 3D imagEs of the brain) while EEG research ac-

tivity was developed in the scope of the European project named “CREAM”

(CReativity Enhancement through Advanced brain Mapping and stimula-

tion).

The main contribution of this thesis focuses on the implementation of a

numerical solver for DOT based on the radiosity-diffusion model, integrat-

ing the anatomical information provided by a structural MRI.

DOT is an imaging technique based on evaluating how light propagates

within the human head to obtain functional information about the brain.

iii



iv Abstract

Precision in reconstructing such an optical properties map is highly affected

by the accuracy of the light propagation model implemented, which needs

to take into account the presence of clear and scattering tissues.

The implemented solver is designed to run on parallel heterogeneous plat-

forms based on multiple GPUs and CPUs and it integrates a parallel visual-

ization toolbox based on Nvidia OptiX to obtain a 3D interactive rendering

of the light distribution displayed on the human head. We demonstrate how

the implemented solver provides meaningful speed-ups over traditional

DOT solvers, along with a significant improvement in accuracy.

In particular, we obtained a 7x speed-up over an single run of isotropic-

scattered parallel Monte Carlo engine for a domain of 2 million voxels, with

an accuracy comparable to 10 runs of anisotropic scattered Monte Carlo in

the same geometry. The speed-up significantly increases for larger domains,

allowing one to compute the light distribution of a full human head (≈ 3

million voxels) in 116 seconds for the platform used.

The implemented DOT solver was also employed to validate experimental

measurements made on a phantom mimicking the optical properties of a

realistic human head, identifying an issue in the experimental setup leading

the optical sensors operating in a non-linear range which represents a point

for further work once a complete DOT system is available.

The secondary contribution of this thesis focuses on EEG and it concerns the

implementation of software libraries for time-domain source localization in

the scope of an open-source framework called Creamino which can be used

to simplify and speed-up the design of BCI systems. It consists of firmware

and software libraries that allow designers to connect new EEG platforms

to software tools for BCI. Specifically, Creamino has been developed start-

ing from the open-source electronic platform Arduino, and it can process

multiple EEG channels on-line and operates under Windows, Linux and

Mac OS X in real-time on a standard PC. Schematics, gerber files, source

code and software modules of Creamino are available with full documen-

tation and free of charge for research and educational purposes online at

https://github.com/mchiesi/Creamino.

Since certain experiments might need to analyze EEG sources localization

in the frequency domain rather than in time-domain, we propose also the

https://github.com/mchiesi/Creamino
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implementation of frequency EEG Source Localization algorithms.

Finally, in order to simplify the interpretation by the user of EEG source

localization results, a 3D visualization toolbox able to manage the complex-

ity of the geometries directly imported by a structural MRI and allowing

the users to render the results of the DOT forward problem or EEG source

localization and interact with the rendered surface.
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Introduction

The Imaging of Brain Activity, also known as “Functional Neuroimaging”,

is used to understand the relationship between activity in certain brain areas

and specific functions and it represents a powerful tool in diagnosis and

treatment of central nervous system diseases and general study of brain

behaviour.

In this context, it is important to highlight that while classical solutions such

as fMRI and PET are reserved to clinical environment due to their high cost

and large size, alternative low cost techniques such as DOT, EEG and EIT

are gaining interest.

Between the low cost techniques listed above, EEG is the well-known and

widespread and it is widely used also in clinical contexts, while DOT and

EIT are subject to research yet.

Combining the advanced state of development and the simple recording

hardware which characterize EEG technique, it leads to an emergent interest

for extra-clinical applications such as Brain Computer Interfaces (BCIs).

BCIs are communication systems interfacing human brain with external

devices, e.g. computers or actuators, where user’s commands are evaluated

starting from the analysis of the EEG of the subject. The study of cogni-

tive processes is instead based on applying external stimuli to the patients,

which could be of visual, auditory or somatosensory nature, and analyze

the corresponding brain activity response.

In this scenario, my research activity converges into two different contribu-

tions: a main contribution about DOT, which was developed in the scope of

the “HIGH PROFILE” European project, and a secondary contribution about

EEG for BCI systems, which was developed in the scope of the “CREAM”

European project.

DOT contribution is described in Section A of this thesis while EEG contri-

1
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bution is analysed in Section B.

As shown previously, DOT has the advantages of low cost, high porta-

bility and good temporal resolution; on the other hand, spatial resolution is

rather limited, in particular due to the presence of various layers of tissue

through which light needs to propagate before reaching the cortical brain

regions [2]. Moreover, light propagation is heavily influenced by the com-

plex shapes which characterize the interfaces between tissues; hence, the

availability of anatomical information deriving from an MRI scan of the

subject can lead to more accurate domain-specific solvers [3], improving the

spatial resolution and accuracy of the imaging technique.

DOT image reconstruction requires an optimal combination of a forward

and an inverse problem solver. The purpose of the forward problem is to

compute the light distribution inside the volume under consideration given

complete information as to the light sources and the optical properties within

the domain, from which a set of light exitance values can be determined (i.e.

the light irradiated through the surface underneath a detector). By contrast,

the inverse problem solution provides an estimated reconstruction of the

local optical properties of the volume under examination given the configu-

ration of light sources and the set of experimental measurements. In general,

an inverse problem solution requires multiple computations of the forward

problem solution, calling for accurate and time-economical forward solvers.

Several methods have been developed in order to provide an appropriate

trade-off between these two requirements, ranging from accurate, highly

intensive transport-based approaches [4] to diffusive approximations [5],

through hybrid radiosity-diffusion methods [6].

Transport-based approaches use the Radiative Transport Equation (RTE)

and provide an accurate photon density distribution within the domain. Un-

fortunately, solving the RTE in non-homogeneous volumes having complex

shapes as required in optical tomography is an extremely computationally-

intensive task if solved numerically or statistically (e.g. through Monte

Carlo methods)[7][8]. Diffusion equation solvers offer lower computational

times than RTE solvers, at the cost of reduced modeling accuracy.

In general, a diffusion equation can be derived as a first order spherical

approximation of the radiative transfer equation and is suitable to model
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light propagation through highly-scattering media, where light propagates

diffusively [9]. The chief disadvantage in using a diffusion equation in a

realistic human head domain is that, in a low-scattering medium such as

the Cerebro-Spinal Fluid (CSF) which fills the central ventricles and the

subarachnoid space, it provides inaccurate results.

Hybrid radiosity-diffusion models combine the results of a diffusion equa-

tion in highly-scattering regions with radiosity solution, which specifically

models light propagation through clear regions following the principle of

ray optics. This approach, if compared to the simple diffusion model, drasti-

cally improves the accuracy of the light distribution in scattering domains

with clear regions and, at the same time, allows photon distribution to be

calculated efficiently to an accuracy comparable with that of RTE Monte

Carlo methods [10][11].

To our knowledge, radiosity-diffusion (RD) models are only available in 3D

regular geometries (i.e. spheres or overlapped layers), due to the absence

of radiosity algorithms able to handle the complex shape of the CSF region

[12]. In RTE Monte Carlo methods, a common approach to tackling the

increased level of complexity is to limit the number of simulated photons

as much as possible, leading to reduction of the light penetration depth

[13][14]. However, due to the highly irregular shape of the CSF region and

its low-scattering and low-absorption properties, a significant amount of

light that reaches its surface is irradiated towards the cortical regions with a

wide light-emittance angle, spreading light into regions which may be quite

far from the source position. There is therefore a need for models able to

include domains which are significantly larger than the region immediately

underneath the sources and detectors. Furthermore, as stated in [15], the

high degree of scattering in optical imaging makes it unrealistic to assume

flat photon propagation, making 3D models necessary in order to consider

the third direction of light propagation.

In the Section A of this thesis, we present an innovative numerical solver

for evaluating light distribution in the human head supporting both Contin-

uous Wave (CW) and Frequency Domain (FD) DOT, which is able to handle

realistic geometries by directly importing structural information about a full

human head derived from MRI scans with voxel sizes of approximately 1

mm3 (total voxel count of approximately 5 million). To our knowledge, this
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is the first solver able to accurately model hybrid radiosity-diffusion light

propagation inside a complete human head to this degree of spatial accuracy.

The very high computational load that derives from implementation of a full

3D model with a priori morphological information is tackled by exploiting

a high degree of parallelization to compute the results for both the diffusive

and the radiosity portion of the problem. In particular, a custom parallel ray

tracer based on NVIDIA OptiX 3.8.0 is implemented to manage the whole

CSF region efficiently. In order to provide the necessary computational

performance while keeping the cost and size of the platform to affordable

levels, the solvers are designed to run on multi-CPU/GPU systems based on

latest-generation NVIDIA graphic cards [16]. The novelty of the proposed

model lies in its implementation of a radiosity-algorithm which supports

the complex shape and the outstanding dimension of a realistic human head

exploiting a customized parallel ray-tracing engine, and integration of it in

the numerical formulation of the diffusion equation through an iterative

approach thus obtaining a complete model for light distribution evaluation

in a full human head derived from MRI.

As shown at the beginning of this section, EEG is gaining popularity in

extra-clinical applications, with particular focus on BCI systems.

The dissemination of EEG-based BCI systems is limited due to some draw-

backs. The majority of EEG acquisition systems are in fact high-expensive

[17], thus not affordable even for research centres and universities. While

several low-cost systems in the range of $500-$1000 are available, however

they are usually equipped with a small number of channels, have moderate

to high noise and users cannot modify the position of the electrodes on the

scalp.

Several real-time systems and open source software tools are available to

help scientists to execute BCI experiments, but there are no standard libraries

that allow one to connect these BCI software tools with EEG acquisition

systems, making difficult to use these hardware outside of the laboratory in

which were designed.

Without stable software libraries which provide a way to connect the system

to a BCI software tool, it is difficult to assess how the system functions

and indeed whether it functions at all. If the system does not perform as
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expected it can be complicated to determine if the fault is due to a hardware

or software issue and the time spent in trying to identify the source of error

and correcting it can be substantial.

In this scenario, my research team developed an Arduino-based cost-effective

EEG system called Creamino, which has a fabrication cost of about 50 eu-

ros for the first 8 channels (working system, including wet-contact active

electrodes) and 30 euros per each additional 8 channels. These numbers

are particularly attractive for systems designed to be used outside clinical

environments, such as in home care or research-oriented applications. In

addition, a set of libraries which allows the system to be used in a variety

of software environments has been developed. Creamino, with executables,

source code and documentation is available free of charge for research and

educational purposes at https://github.com/mchiesi/Creamino.

In the Section B of this thesis, we present the development of Simulink

libraries for EEG Source Localization able to compute the mean power of

the EEG sources lying in user-defined regions of interest (ROIs).

Since certain experiments might need to analyze EEG sources localization

in the frequency domain rather than in time-domain, the implementation of

frequency EEG Source Localization algorithms has also been realized.

Finally, in complex geometries such as the human head, it could be difficult

for the user to imagine the results of EEG source localization using multiples

2D plots of the reconstructed solution in various sections of the domain.

To tackle this problem, I implemented an accelerated 3D visualization tool-

box based on Nvidia OptiX ray-tracing engine, which allows displaying

normalized distributions over complex 3D surfaces making possible user

interactions.

This work is organized in two different sections: Section A is relative to

the main contribution of my research activity developed in the scope of the

“HIGH PROFILE” European project, while Section B illustrates a secondary

contribution of my research activity which was developed in the scope of

the “CREAM” European project.

In order to easily understand the work explained in this thesis, the theoreti-

cal basis of Brain Functional Imaging are presented in Chapter 1.

Section A is organized as follows: Chapter 2 presents the basis of light

https://github.com/mchiesi/Creamino
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propagation theory, necessary to understand the Finite Volumes numerical

formulation of the DOT forward problem solver presented in Chapter 3.

In Chapter 4 the DOT inverse problem is first introduced and then solved

through the implemented forward problem solver. The objective of Chapter

5 is to employ the developed DOT software using experimental measure-

ments on phantom made by materials mimicking the optical properties of a

real human head in order to validate the experimental setup. Finally, some

conclusions of the research activity presented in Section A are drawn in

Chapter 6.

Section B is organized as follows: Chapter 7 presents the basis of EEG Source

Localization and BCI systems to easily understand the implementation of

the SIMULINK libraries for EEG source localization in the time-domain

presented in Chapter 8. An accelerated solver for EEG source localization

in the frequency domain is proposed and validated in Chapter 9. Chapter

10 focuses on the implementation of a parallel visualization toolbox for the

3D rendering of light or electrical distributions on complex surfaces. Some

conclusions of the work explained in Section B are drawn in Chapter 11.

Finally, in Chapter 12, some conclusions of the whole research activity are

presented.



Chapter 1

Brain Functional Imaging

Brain Imaging comprises a set of techniques to analyze the structural or

functional behaviour of the brain in normal or pathological situations. While

brain structural imaging provides morphological description of head tis-

sues, brain functional imaging provides meaningful information about the

relationship between brain area activation and specific cerebral or physical

function.

The possible applications of brain functional imaging involves the mapping

of brain activity in healthy subjects, the assessment of the effects of stroke,

trauma or degenerative disease (such as Alzheimer’s disease) on brain func-

tion and the monitoring of the growth and function of brain tumours. These

applications make brain imaging a powerful and appealing tool in diagnosis

and treatment of central nervous system diseases and general study of brain

activity.

This chapter gives an overview of the common brain imaging techniques

(Sec. 1.1) and their medical applications (Sec. 1.3), focusing on high-portable

and economical techniques such as DOT (Sec. 1.3.1) and EEG (Sec. 1.3.2).

The object of this chapter is to provide an overview about the state of the

art of the Brain Imaging techniques and to introduce the research activity

described in this thesis.

1.1 Brain Functional Imaging techniques

Positron Emittance Tomography (PET) detects pairs of gamma rays emitted

indirectly by a positron-emitting radionuclide (tracer), which is introduced

7
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into the body on a biologically active molecule. Three-dimensional images

of tracer concentration within the body are then constructed by computer

analysis.

The greatest benefit of PET scanning is that different compounds can show

blood flow and oxygen and glucose metabolism in the tissues of the work-

ing brain. These measurements reflect the amount of brain activity in the

various regions of the brain and allow to learn more about how the brain

works. PET scans were superior to all other metabolic imaging methods in

terms of resolution and speed of completion (as little as 30 seconds), when

they first became available. The improved resolution permitted better study

to be made as to the area of the brain activated by a particular task. The

biggest drawback of PET scanning is that because the radioactivity decays

rapidly, it is limited to monitoring short tasks [18].

Functional MRI (fMRI) allows to obtain functional imaging of the brain

maintaining the high spatial resolution typical of the electro-magnetic tech-

niques. This is based on the same principles of static MRI, but it is able to

detect variations of oxygen concentration in the blood. When neurons are

activated, the supply of blood to the active region increases. For reasons

that are still unclear, the delivery of oxygenated haemoglobin to the region

is greater than local oxygen consumption, resulting in a greater proportion

of oxygenated to deoxygenated haemoglobin, which causes a local variation

of the magnetic properties that can be detected with the MRI process. fMRI

is so be used to examine the activation of the brain regions during cognitive

tasks, but with a temporal resolution less than 1Hz [19].

Electroencephalography (EEG) is a brain imaging techniques based on

recordings of potential differences on the scalp using a set of electrodes.

These potentials originate from the activity of the neurons in the gray matter

(cerebral cortex), causing an electric field to propagate to the scalp. Electric

field propagation is limited by the electrical properties of skull, resulting in

potential differences on the scalp of only few µV [20] which limit the spatial

resolution of the method.

Electrical Impedance Tomography (EIT) is based on injection of small cur-
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rents (less than 1 mA at frequency starting from 1 KHz) at the scalp surface

using active electrodes. A set of passive electrodes measures the potential

differences caused by the induced electric fields. Data detected are then

elaborated in order to obtain an impedance distribution map on the brain,

which indicates the presence of particular pathologies like epileptic foci,

local ischemia and lesions [21].

Diffuse Optical Tomography (DOT) is based on the principle that visi-

ble and near-infrared (NIR) light interact with human tissues predominantly

by absorption and scattering. By the injection of light inside the human head

and using optical sensors on its surface, is possible to obtain a map of optical

properties of the domain under study. Optical properties that characterize

a medium are the absorption coefficient, the scattering coefficient and the

refractive index (considered to be homogeneous in human head’s tissues

[8]). In particular the principle of DOT is based on the fact that variations in

O2 concentration in haemoglobin can be extracted by measuring the change

in the absorption coefficient of light.

1.2 Brain Functional Techniques Comparison

Between the techniques listed above, MRI and PET represent classical so-

lutions. Classical solutions provide high spatial resolution at the expense

of high cost, complexity and size, limiting their employment to advanced

research centers or hospitals. EIT, EEG and DOT are characterized by high

portability, high temporal resolution, non-invasivity and limited cost but low

spatial resolution. These are typically based on simple recording hardware

but a computational intensive data elaboration process is often required.

Fortunately, advances in scientific computing have led to the development

of architectures featuring high computational performance at accessible cost,

which can be used in different research fields and applications. A typical

example is the Graphic Processing Units (GPUs) [22], a programmable multi-

core architecture which allows high performance computing in a standard

PC.

In brain imaging, this computational power allows the development of

low-cost and portable techniques, where the reduced complexity and size of
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the acquisition system is balanced by the compute intensive data processing,

also within real time constraints. A typical example of this trend is the recent

development of BCI systems, which interpret human brain activity from

real-time measurements picked up by portable recording hardware.

1.3 Medical Applications of DOT, EEG and EIT

EEG imaging is used in the diagnosis of particular pathologies, like detec-

tion and localization of epileptic foci [23]. In case of intractable epilepsy,

surgery is required to remove the affected portion(s) of the brain. Conse-

quently, continuous monitoring and analysis using brain imaging techniques

is necessary in order to accurately identify the area to extract. This can be

combined with invasive procedures, like surgical implant of intra-cranial

electrodes in the subject brain. However, other brain imaging techniques

(as the EIT) are able to improve localization performance of EEG and they

could help to avoid this invasive treatment. For this purpose, several studies

show how EIT could theoretically be used to detect epileptic foci, and others

pathologies like brain lesions and local ischemia [24].

DOT offers the opportunity to image three-dimensional (3-D) spatial vari-

ations in blood parameters, particularly haemoglobin concentration and

oxygen saturation, and thus metabolic factors which these concentrations

reflect, along with tissue scattering characteristics. These features are ex-

tremely appealing and appreciated in breast and brain care, particularly

stroke, as well as during and following brain surgery [25].

In breast imaging, DOT has unique capabilities for imaging functional

parameters such as metabolism, blood flow, blood volume, and oxygen

saturation. These parameters are modified by tumour angiogenesis and

are also important for following the response to therapeutic intervention.

Tumours generally are more highly vascularized than surrounding tissue,

thus leading to differential light absorption properties, and in addition rel-

ative Hb/HbO2 concentration may not only differentiate tumours from

background tissue but also may discriminate among tumours with different

activity rates (i.e., degree of malignancy).

As well as for diagnosis and treatment of pathology, alternative techniques

can also be employed for study of the brain functionality. In particular, being
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EEG non-invasive and painless, it is used to study cognitive processes of

the brain, e.g. memory, attention and perception. These studies are based

on identification of Event Related Potentials (ERPs) in neural activity [26].

ERPs are voltage variations induced in the subject’s brain by external stimuli,

and are used to detect brain regions involved in different cognitive tasks

(attention, memory, language processing). ERPs dynamics are not detectable

by standard fMRI, so EEG is preferred for its higher temporal resolution.

In addition to measure concentrations of haemoglobin and blood volume

with high temporal resolution, DOT has the capability to potentially measure

fast scattering changes associated with neuronal activity [27][28], leading to

elucidate the hemodynamic response to neuronal activity and thus lead to

an understanding of the underlying mechanisms.

As introduced in Section 1.2, the reduced complexity and size of the

EEG acquisition system, combined with its advanced state of employment

in clinical contexts, make this technique suitable for a BCI system. As

shown in Fig. 1.1, BCI is a communication system interfacing the human

brain to external devices, like computers or actuators. User commands

Figure 1.1: BCI neurofeedback (source: [29]).

are formed by recognizing brain activity with brain imaging techniques,

typically EEG or invasive electrodes surgically positioned on the cerebral

cortex. BCIs are often designed to assist, augment or repair human cognitive

or sensory-motor functions; particular attention is paid to the realization of

prostheses controlled by BCI in order to replace damaged human functions
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like hearing, sight and movement. Voltages measured by electrodes are

sent to a computer. Data are interpreted to compute actuators commands

and the feedback is closed by the subject’s perception of actuator actions or

movements.

1.3.1 DOT

DOT is based on the principle that visible and Near-Infrared (NIR) light

interact with biological tissue predominantly by absorption and elastic

scattering. There are several physiologically interesting molecules which

have characteristic absorption spectra at these wavelenghts. In particular,

the spectra of haemoglobin (HbO2) and deoxy-haemoglobin (Hb) differ

markedly, as shown in Figure 1.2. Haemoglobin provides an indicator of

Figure 1.2: Absorption of Hb and HbO2 in function of the wavelength
(source: [30]).

blood volume and oxygenation and the different absorption spectra of HbO2

and Hb are frequently exploited in physiological monitoring techniques

such as pulse oximetry and near-infrared spectroscopy (NIRS). The aim of

Diffuse Optical Tomography (DOT) is to produce spatially resolved images,

which may display the specific absorption and scattering properties of the

tissue, or physiological parameters such as blood volume and oxygenation.
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DOT Forward and Inverse Problem

DOT image reconstruction requires an optimal combination of a forward

and an inverse problem solver. The purpose of the forward problem is

to compute the light distribution inside the volume under consideration

given complete information as to the light sources and the optical properties

within the domain, from which a set of light exitance values can be deter-

mined (i.e. the light irradiated through the surface underneath a detector).

An example of forward problem solution on a 3D sphere with homogeneous

optical properties is represented in Fig. 1.3:

Figure 1.3: Example of Light Distribution provided by forward problem
solution on a 3D Sphere with Homogeneous Optical Properties.

By contrast, the inverse problem solution provides an estimated reconstruc-

tion of the local optical properties of the volume under examination given

the configuration of light sources and the set of experimental measurements

[31]. In Fig. 1.4 is shown an example of DOT image reconstruction in a cylin-

der with homogeneous absorption coefficient which contains two anomalies.

Using a light source placed at the top of the cylinder and a set of light-

detectors laid on the red line, it is possible to reconstruct the spatial-resolved

slice shown in the left of the figure. In general, the aim of DOT is to provide

a map of absorption of the volume under study given a relative small num-

ber of light detectors on the surface of the object. Typically, the number of

light detectors is much smaller than the number of voxels (in the work-flow

illustrated in Chapter 3 voxels are more than 5 millions) leading to a typical

under-determined system. This system can be solved using a numerical ap-

proach as the Least SQuared Residuals method (LSQR) using regularization

techniques. Furthermore, an inverse problem solution requires multiple
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Figure 1.4: Example of DOT reconstruction using sensors (red line) and a
source at the top of the cylinder (source: [32]).

computations of the forward problem solution, calling for accurate and

time-economical forward solvers. Several methods have been developed in

order to provide an appropriate trade-off between these two requirements,

ranging from accurate, highly intensive transport-based approaches [4] to

diffusive approximations [5], through hybrid radiosity-diffusion methods

[6] examined in detail in Chapter 2.

1.3.2 BCI systems and EEG Source Localization

EEG is based on the measurement and mapping of electrical activity pro-

duced by the brain as it is being recorded by electrodes placed on the scalp.

The recorded data are then plotted into a standard chart, the so-called elec-

troencephalogram and visually examined by the physicians.

The potential measurements on the scalp are performed in a differential

manner using electrodes, which are most commonly passive, but can in-

clude active circuitry [33]. These potentials originate from the activity of the

neurons in the cerebral cortex, also known as gray matter. The electric field

then propagates through the skull to the scalp. Field propagation is limited

by the electrical properties of the skull and hence the potential difference

are usually in the µV range [20].

Recently, due to the increasing computational power of cost-accessible plat-

forms, brain imaging techniques have been presented based on the elabora-

tion of data recorded by EEG, in order to avoid high costs of electromagnetic-

based solutions, e.i. fMRI. Aim of this new field of application, known as
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EEG source imaging, is to provide functional images of neuronal activity in

the human cerebral cortex, in particular for the localization of active areas at

each time-frame (source localization).

EEG source imaging is characterized by an acquisition hardware, which

is relatively simple and portable (high impedance electrodes) and by an

intensive task of post-processing of acquired data (EEG inverse problem).

Unfortunately, many different sources configurations can generate the same

potentials on the scalp [34], that means that the mathematical problem is

ill-posed. This can be solved through algorithms which rely on different

approaches, using mathematical, biophysical, statistical or anatomical con-

straints [35] [36].

This introduces severe computation requirements, which could limit the

high temporal resolution provided by the measurement instrumentation.

Difficulties arise particularly when the problem needs to be solved under

real-time constraints, as required by modern BCI applications.

To satisfy real-time constraints of modern BCI systems, a massive parallel

implementation of the EEG source localization workflow is necessary.

Furthermore, to facilitate the integration of EEG source localization algo-

rithms in commercial BCI systems, the development of standard libraries is

necessary and it is treated in the Section B of this thesis.

EEG Source Localization: Forward and Inverse Problem

As introduced before, EEG computational work flow involves two main

tasks: forward problem and inverse problem.

A forward problem is defined as the determination of the voltage distribu-

tion in the volume under analysis, given its electrical properties and the

electrical sources (active voxels) distribution (see Fig. 1.5). Due to the com-

plexity of the domain, analytical solutions are not feasible, and one needs

to rely on numerical solvers. Computational resources that are required by

a realistic head model are high, thus, simplified regular geometries based

on volume shape approximation are often used; however, the limits of this

approach in respect to realistic head model are proven [38].

The inverse problem, on the other hand, is defined as the estimation of the

electrical sources distribution inside the human brain, given the electrodes

measurements and the relationship between the voltage and voxels distribu-
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(a) (b)

Figure 1.5: The EEG Forward problem defines the relationship between the
voxels’s activation inside the brain volume (a) (known its head morphology
and conductivity distribution) and the resulting voltage at the electrodes (b)
(source: [37]).

tion defined by the forward problem (1.6). Given the relative small number

(a) (b)

Figure 1.6: EEG inverse problem. Electrodes potentials are elaborated to
localize active voxels inside the brain.

of electrodes, generally from 16 to 128 in proportion to the voxels number,

this problem is obviously ill-posed and with multiple solutions. A restriction

in the solutions domain is necessary, in order to select the more realistic

and physiologically correct solution among the others. The formulation of

the inverse problem leads to an overdetermined system (more unknowns

than equations), which can be solved with a numerical approach based on

functional minimization coupled with regularization techniques.
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Chapter 2

Diffuse Optical Tomography

Theory

When light propagates inside a region (in our specific case, Near-Infrared

light propagating through the different tissues in the human head), the

photon distribution which creates on its surface (in our specific case, the

scalp) is related to internal optical properties. The aim of a photon transport

model is to determine the radiance in a region Ω characterized by specific

optical properties.

This chapter introduces the main equations which model light propagation

within a medium, ranging from accurate, highly intensive transport-based

approaches (Sec. 2.2) to diffusive approximations (Sec. 2.3), through hybrid

radiosity-diffusion methods (Sec. 2.4).

The objective of this chapter is to give the theoretical basis of light propa-

gation to understand the numerical implementation of the DOT forward

solver proposed in Chapter 3.

2.1 Light Propagation: Principle and Basic Definitions

Let us consider a flow of wave energy at a point r in a random medium hav-

ing absorption coefficient µa [m−1], scattering coefficient µs [m−1], single-

particle absorption cross section σa [m2] and single-particle scattering cross

section σs [m2]. Parameters (µa,µs) define the optical properties of the

medium. For a given direction defined by a unit vector ŝ, we define the

stationary specific intensity (or radiance) φ(r, ŝ) as the average power flux

19
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density within a unit frequency band centered at frequency ν within a unit

solid angle ω.

This quantity is measured in W m−2 sr−2 Hz−1. The amount of power dP

flowing within a solid angle dω through an elementary area da oriented

in the direction given by the unit normal vector ŝ0 in a frequency interval

(ν, ν + dν) is given by:

dP = φ(r, ŝ) cos θ da dω dν,

where θ is the angle between ŝ and ŝ0. The specific intensity φ(r, ŝ) and the

amount of power dP are represented in Figure 2.1.

Figure 2.1: Specific intensity φ(r, ŝ) and power dP (source: [39]).

2.2 Radiative Transfer Equation

A full description of light transport in tissue is provided by the radiative

transport equation (RTE) [39] [40], which can be derived as an approxima-

tion of Maxwell’s equation which does not include wave effects [41]. Under

the assumption that the wavelength is much smaller than the dimensions of

the object under study (which is the case under examination), wave effects

can be neglected and RTE provides an accurate model for light propagation.

The RTE is a conservation equation which states that the radiance φ(r, ŝ, t),

for photons travelling from point r in direction ŝ at time t, is equal to the

sum of all the mechanisms which increase φ(r, ŝ, t) minus those reducing it.

Let us consider a stationary specific intensity φ(r, ŝ) incident upon a

cylindrical elementary volume with unit cross section and length ds. This

volume contains ρds particles where ρ is the number of particles in a unit

volume. Each particle absorbs the power σa(r)φ(r, ŝ) and scatters the power
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σs(r)φ(r, ŝ), and therefore, the decrease of the specific intensity dφ(r, ŝ) for

the volume ds is expressed as

dφ(r, ŝ) = −ds
(
µa(r) + µs(r)

)
φ(r, ŝ) (2.1)

where µa(r) = ρσa(r) and µs(r) = ρσs(r). At the same time, the specific

intensity increases when the scattering from other directions ŝ ′ is focused

into the direction ŝ, as shown in Figure 2.2. In order to determine this

Figure 2.2: Scattering of specific intensity incident upon the volume ds from
the direction ŝ ′ into the direction ŝ (source: [39]).

contribution for the specific intensity φ(r, ŝ) we need to take into account

the contribution coming from all the directions ŝ ′ scattered into direction ŝ

thanks to the total number of particles ρ ds in the volume. This amount is

given by the following integral:∫
4π
ρ ds |fs(̂s, ŝ ′)|2 φ(r, ŝ ′) dω ′ (2.2)

where the integration over all ω′ is taken to include the contribution from

all directions ŝ ′ and fs(̂s, ŝ ′) is the scattering function. In general fs(̂s, ŝ ′) is

expressed in function of the phase function p(̂s, ŝ ′) which is defined as

p(̂s, ŝ ′) =
4π

σt(r)
|fs(̂s, ŝ ′)|2

with the following property:

1

4π

∫
4π
p(̂s, ŝ ′)dω =

σs(r)

σt(r)
,
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where σt(r) = σa(r) + σs(r).

Therefore (2.2) becomes:∫
4π
ρ ds |fs(̂s, ŝ ′)|2 φ(r, ŝ ′) dω ′ =

ρdsσt(r)

4π

∫
4π
p(̂s, ŝ ′)φ(r, ŝ ′)dω ′ (2.3)

Finally, the specific intensity may increase due to the emission from the

volume ds

ds ε(r, ŝ) (2.4)

where ε(r, ŝ) is the source power radiation per unit volume per unit solid

angle in the direction ŝ. Adding the contributions (2.1), (2.3) and (2.4) we

obtained the stationary Radiative Transfer Equation (RTE):

dφ(r, ŝ)

ds
= −ρσt(r)φ(r, ŝ) +

ρσt(r)

4π

∫
4π
p(̂s, ŝ ′)φ(r, ŝ ′)dω ′ + ε(r, ŝ). (2.5)

The RTE in the time domain expressed in a compact form is:(
1

c

∂

∂t
+ ŝ · O + µt(r, t)

)
φ(r, ŝ, t) = µs(r, t)

∫
p(̂s, ŝ ′)φ(r, ŝ, t)ds′ + ε(r, ŝ, t).

(2.6)

where µt(r, t) = µa(r, t) + µs(r, t) is called the extinction coefficient and c is

the light speed.

In the frequency domain, the RTE can be simply re-written as:(
ıf

c
+ŝ·O+µt(r, f)

)
φ(r, ŝ, f) = µs(r)(r, f)

∫
p(̂s, ŝ ′)φ(r, ŝ, f)ds′+ε(r, ŝ, f).

(2.7)

where f is the frequency.

Unfortunately, solving the RTE in non-homogeneous volumes having com-

plex shapes as required in optical tomography is not feasible through ana-

lytical means and is an extremely computationally-intensive task if solved

numerically or statistically (e.g. through Monte Carlo methods)[7][31].

Simpler models need to be implemented, which rely on assumptions on

whether the optical characteristics of the tissue under examination lead to

either diffusive or ray optics models.
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2.3 Diffusion Equation

In general, a diffusion equation can be derived as a first order spherical

approximation of the radiative transfer equation and it is suitable to model

light propagation through highly-scattering media, where light propagates

diffusively [9][42].

Three variables in the RTE depend on direction: the radiance φ(r, ŝ, t), the

phase function p(̂s, ŝ ′) and the source term ε(r, ŝ, t). If these variables are

expanded into spherical harmonics under three assumptions:

• the photon flux changes slowly;

• the phase function is independent by the absolute angle;

• all sources are isotropic;

we obtain:

ε(r, ŝ) =

∞∑
`=0

∑̀
m=−`

ε`,m(r)Y`,m(̂s)

φ(r, ŝ) =

∞∑
`=0

∑̀
m=−`

φ`,m(r)Y`,m(̂s)

p(̂s, ŝ ′) = p(̂s · ŝ ′) =

∞∑
`=0

∑̀
m=−`

p` Y
∗
`,m(̂s ′ )Y`,m(̂s).

Substituting the expansions listed above within RTE and using recurrence

relations leads to an infinite series of equations:

σt φ`,m +
∂

∂z

(
α`+1,m φ`+1,m(r) + α`,m φ`−1,m(r)

)
+

−1

2

(
∂

∂x
− ı ∂

∂y

)(
β`,m φ`−1,m−1(r)− β`+1,−m+1 φ`+1,m−1(r)

)
+

−1

2

(
∂

∂x
+ ı

∂

∂y

)(
− β`,−m φ`−1,m+1(r) + β`+1,m+1 φ`+1,m+1(r)

)
=

=
ρσt
4π

p` φ`,m(r) + ε`,m(r).

By taking the first N spherical harmonics of the RTE we obtain (N + 1)2

coupled partial differential equations. For a complete argumentation about

RTE derivation and its spherical harmonics development please refer to [43]
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and [40].

The diffusion equation (DE) in the frequency domain arises from the first

order expansion of RTE (N = 1) leading to the following formulation:

−∇ · κ(r, f)∇Φ(r, f) + µa(r)(r, f)Φ(r, f) +
ıf

c
Φ(r, f) = q0(r, f) ∀r ∈ Ω ;

(2.8)

where

Φ(r, f) =

∫
4π
φ(r, ŝ, f) dω

is the spectral irradiance,

q0(r, f) =

∫
4π
ε(r, ŝ, f) dω (2.9)

is the isotropic source distribution at frequency f and

κ(r, f) =
1

3(µa(r, f) + µ′s(r, f))
(2.10)

is the diffusion coefficient, where

µs(r, f)′ = (1− g)µs(r, f) (2.11)

is the reduced scattering coefficient and g is the mean cosine of the scattering

angle given by:

g =
1

4π

∫
4π
p(̂s, ŝ ′) cos(θ)dω ′ (2.12)

which is also called anisotropy factor. The scattering phase function most

typically employed is the commonly used Henyey-Greenstein scattering

function [44],[45],[46]:

p(̂s, ŝ ′) =
1− g2

2
(
1 + g2 − 2g cos(θ)

)3/2
For a detailed derivation of DE, the reader is referred to [31] and [39].

The values of g for biological tissues are typically of the order of 0.9, indicat-

ing strongly forward biased scattering.

The reduced scattering can be interpreted as the equivalent isotropic scatter-

ing coefficient and it is a fundamental parameter in the diffusion theory of

light propagation.
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In particular, as shown in Fig. 2.3, the purpose of µ′s(r, f) is to describe the

diffusion of photons in a random walk of step size 1/µ′s(r, f) where each

step involves isotropic scattering.

This is equivalent to represent the photon movement by using many steps

Figure 2.3: Equivalence between a step of random walk having step size
1/µ′s(r, f) and 10 steps of random walk of step size 1/µs(r, f) (source: [47]).

of smaller size 1/µs(r, f) and involving a partial deflection angle arccos(g)

at each step. The equivalence is valid only if there are many scattering

events before an absorption event, that is verified if µa(r, f)� µ′s(r, f).

This situation of scattering-dominated light transport is called the diffusion

regime, and this is the necessary state for diffusion equation to provide

accurate results.

This is generally the case of the most part of tissues, but the assumption

breaks down in regions of either high absorption or low scatter, for example

in the Cerebro Spinal Fluid (CSF). In these situations different approaches

are required.

Furthermore, diffusion approximation requires light propagation to be ei-

ther isotropic or weakly anisotropic. This condition is not verified near

sources and boundaries. However, comparisons of diffusion calculation

with experiments [48][49][50][51] and Monte Carlo simulations [52][53][54]

show that correct predictions of boundary measurement can be obtained

with diffusion models.

Schweiger et al. in [55] state that diffusion equation represents a valid model

for calculating measurement signals under the specification of appropriate
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boundary conditions. In the following sections we will introduce the possi-

ble boundary conditions of diffusion equation and how light sources can be

satisfyingly represented under this approximation.

The numerical model which will be introduced in Chapter 3 is implemented

to support all the following boundary conditions.

2.3.1 Boundary Conditions

If Ω is the domain under analysis and ∂Ω represents its boundary, then the

Dirichlet boundary condition (DBC) states that:

Φ(ξ) = 0 ∀ξ ∈ ∂Ω . (2.13)

Physically this is equivalent to a perfect absorbing medium that surrounds

the domain Ω. Even if it is a simple and commonly used condition, it should

be pointed out that it involves a non-realistic behaviour of the surrounding

medium.

Robin boundary condition (RBC), defined as

Φ(ξ) + 2κ(ξ)~n · ∇Φ(ξ) = 0 ∀ξ ∈ ∂Ω (2.14)

models the more realistic condition of a non scattering medium surrounding

the domain. In this equation ~n is the outward normal to ∂Ω in ξ, and no

diffuse surface reflection is considered. Equation 2.14 implies that each

photon, after crossing ∂Ω, exits from the domain without back-scattering

phenomena, and can be modified to incorporate a mismatch between the

refractive indices n1 within the domain and n2 in the surrounding medium.

The modified Robin boundary condition becomes:

Φ(ξ, ω) + 2Rκ(ξ, ω)n(ξ) · ∇Φ(ξ, ω) = 0 ∀ξ ∈ ∂Ω ; (2.15)

with

R =
2/(1−R0)− 1 + |cos(θc)|3

1− |cos(θc)|2

where θc = arcsin(n2
n1

) is called critical angle, and R0 = (n1−n2)2

(n1+n2)2
. Setting

n1 = n2 then R = 1, the modified RBC folds back to the standard RBC

without internal reflection. On the other side, in the case where n2
n1

tends
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to zero, the critical angle tends to zero as well and total internal reflection

occurs. In this situation, A tends to infinity and RBC leads to a Neumann

boundary condition (NBC) which basically states that there is no flux of

photons through ∂Ω.

2.3.2 Modelling of collimated and diffuse sources

The diffusion equation introduces the assumption that all sources in the

model are isotropic, because direction dependency can not be intrinsically

represented when using this kind of approximation.

Internal and isotropic sources can be considered directly in diffusion equa-

tion by setting q0(r, f) in Eq. 2.9 with the consistent light source distribution

[55].

In the more realistic case of light source incident at a point on the boundary,

we distinguish two cases:

1. Collimated source;

2. Diffuse source.

In the first case, we take into account a light source having a unique direction

(such as a laser beam), with all photons travelling through parallel paths.

The diffusion equation is not able to describe these kind of anisotropic

sources correctly and, in particular, collimated beams since the equation

itself derives from averaging the light behaviour over a complete solid angle,

removing any information on the photon direction.

A common approach is to represent a collimated beam by an isotropic source

located at a depth 1/µ′s(r) below the domain’s boundary.

This quantity is called mean free path and represents the average distance at

which all photons can be considered to have been scattered at least one time.

This approach produces accurate results at distances from the source larger

than the mean free path, but breaks down near the source. This is of minor

importance in diffuse tomography, since tissues of interests are located at

least at 1 − 2 cm from the source, with a typical mean free path of 0.5 − 1

mm.

A diffuse source is one which emits photons uniformly over the solid angle

of interest. In the case of diffuse sources located on the domain’s boundary,

an inward directed diffuse photon current distributed over the illuminated
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surface area is represented by simply adding a right-hand side to equations

2.13− 2.15.

2.4 Radiosity Equation

As shown in the previous section, the diffusion approximation is widely and

successfully used to model light propagation in highly scattering tissues

(µ′s(r, f)� µa(r, f)), reducing the complexity of the RTE to a second-order

partial derivative equation.

Higher-order spherical approximations of the RTE are needed to accurately

model the light propagation through low-scattering regions, making this

approach unsuitable within an image reconstruction scheme for complex

geometries, due to the high consumption of memory and time [43].

A more convenient approach can be used in the application field we are

studying, where we need to model light in a domain which is derived from

an anatomical MRI. In this case, it is possible to segment the head into

diffusive regions and non-diffusive region. We can then use two separate set

of equations to model light transport in scattering regions (diffusion model),

and in clear region (radiosity model).

In fact, in regions filled with cerebrospinal fluid (CSF) the diffusion

approximation does not hold since the condition µ′s(r, f)� µa(r, f) is not

verified. On the other hand, these regions can be satisfyingly modeled by

radiosity methods [12].

Radiosity algorithms derive from ray-tracing optics, and are basically meth-

ods for computing the amount of light leaving a certain portion of a surface

(in our case the surface between one voxel of CSF and one of a scattering

medium) reaching a different portion of the surface.

Let m and m′ be points on the CSF boundary while n(m) and n(m′)

are their respective inward directed surface normals, as shown in the Fig.

2.4. As derived in [6], the equivalent isotropic source at point m due to the

contribution of the outward photon current at every boundary point m′ is

given by:

Γ(m, f) =

∫
∂Ωcsf

hm,m′ F (m,m′)e−µacsf dm,m′ Φ(m′, f)

2Rcsf
dm′ (2.16)
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Figure 2.4: Form factor computation between CSF boundary points m and
m′: n(m) and n(m′) are the surface normals, dm,m′ is the distance between
the points and sm,m′ is the unit vector in the direction from m to m′.

where Ωcsf is the CSF volume and ∂Ωcsf represents its surface, dm,m′ is the

distance between m and m′,µacsf is the absorption coefficient of the CSF

and hm,m′ is the visibility function, which is one if m and m′ are mutually

visible, and zero otherwise. Rcsf incorporates the mismatches between the

refractive indices within the diffusive domain and within the CSF while

F (m,m′) is called the form factor between m and m′ and represents the

fraction of energy which leaves m and reaches m′. In particular:

F (m,m′) =
sm,m′ · n(m′) sm,m′ · n(m)

πd2
m,m′

(2.17)

where sm,m′ is the unit vector on the direction from m to m′. The effect of

these sources is to introduce a non-zero term on the right hand side of Eq.

2.15, leading to the following RBC for every point m on the boundary of the

CSF region:

Φ(m, f) + 2Rcsfκ(m, f)n(m) · ∇Φ(m, f) = Γ(m, f) (2.18)

where Γ(m, f) is the amount of light which irradiates point m. Hybrid

radiosity-diffusion models combine the results of a diffusion equation in
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highly-scattering regions with radiosity solution, which specifically models

light propagation through clear regions following the principle of ray optics.

This approach, if compared to the simple diffusion model, drastically im-

proves the accuracy of the light distribution in scattering domains with clear

regions and, at the same time, allows photon distribution to be calculated

efficiently to an accuracy comparable with that of RTE Monte Carlo methods

[10][11].

2.5 Conclusions

The objective of this chapter is to give the theoretical basis of light propa-

gation to understand the numerical implementation of the DOT forward

problem solver proposed in Chapter 3. It provides a review of the state of

the art of DOT light propagation models, explaining the reasoning leading

to the choice of a Radiosity-Diffusion approach.



Chapter 3

DOT Forward Problem :

Numerical Implementation

As illustrated in Chapter 1, with respect to techniques such as fMRI or PET,

DOT has the advantages of low cost, high portability and good temporal

resolution; on the other hand, spatial resolution is rather limited, in particu-

lar due to the presence of various layers of tissue through which light needs

to propagate before reaching the cortical brain regions [2]. Moreover, light

propagation is heavily influenced by the complex shapes which characterize

the interfaces between tissues; hence, the availability of anatomical infor-

mation deriving from an MRI scan of the subject can lead to more accurate

domain-specific solvers [3], improving the spatial resolution and accuracy

of the imaging technique.

Furthermore, an inverse problem solution requires multiple computations

of the forward problem solution, calling for accurate and time-economical

forward solvers. Several methods ( based on light propagation equations

introduced in Chapter 2) have been developed in order to provide an ap-

propriate trade-off between these two requirements, ranging from accurate,

highly intensive transport-based approaches to diffusive approximations,

through hybrid radiosity-diffusion methods.

Solving the RTE in non-homogeneous volumes having complex shapes

as required in optical tomography is an extremely computationally-intensive

task if solved numerically or statistically. Diffusion equation solvers offer

lower computational times than RTE solvers, at the cost of reduced mod-

eling accuracy. The chief disadvantage in using a diffusion equation in a

31
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realistic human head domain is that, in a low-scattering medium such as

the CSF which fills the central ventricles and the subarachnoid space, it

provides inaccurate results.

Hybrid radiosity-diffusion models combine the results of a diffusion equa-

tion in highly-scattering regions with radiosity solution, which specifically

models light propagation through clear regions following the principle of

ray optics. This approach, if compared to the simple diffusion model, drasti-

cally improves the accuracy of the light distribution in scattering domains

with clear regions and, at the same time, allows photon distribution to be

calculated efficiently with an accuracy comparable to RTE-based methods.

This chapter focuses on the numerical implementation of a Radiosity Dif-

fusion solver based on the numerical integration between the diffusion

equation and the radiosity equation and it is the core of this thesis. It rep-

resents an original contribution which updates the state of the art of DOT

forward problem solvers providing a solver able to implement an RD model

able to manage the geometrical complexity of the head volume directly

imported from a full resolution structural MRI.

When a numerical implementation is employed, a regular grid of cubic vox-

els is generally used to discretize the physical domain, therefore it perfectly

fits our final application where the domain is a human head, for which the

best structural information available are those obtained from a MRI scan

( Sec. 3.1), which is inherently discretized in regular voxels. Optical prop-

erties of biological tissues are investigated in Sec. 3.2 while the numerical

formulation of the diffusion and radiosity equations are analysed respec-

tively in Sec. 3.3.1 and Sec. 3.3.2, and finally combined in Sec. 3.4.3 leading

to the numerical formulation of the proposed RD solver. The accuracy and

performance of the proposed RD numerical solver are examined in Sec. 3.6

and Sec. 3.7, while in Sec. 3.8 a complete overview of the work-flow on a

realistic human head is given.

3.1 Brain Segmentation

MRI images are segmented and classified to obtain a realistic volume com-

posed of five different types of tissue, namely scalp, skull, CSF, gray matter

and white matter. To this end, we adopted “BrainSuite” [56], an automated
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open-source cortical extraction tool.

Structural MRI data in NifTi or DICOM format is imported (see Fig. 3.1) and

segmentation is performed in a semi-automated way, with some parameters

which can be modified to improve segmentation quality (see Fig. 3.2).

Figure 3.1: Structural MRI data in NifTi format.

After segmentation, data is exported in ANALYZE format and imported and

visualized in MATLAB through an ad-hoc routine. This operation results in

classification of the MRI image voxels under the five aforementioned tissues,

maintaining the full resolution provided by MRI scans. If different or more

detailed segmentations were used, this would not introduce overhead in the

successive forward problem definition, nor would it require any new mesh

generation.

As an example, sagittal, coronal and transverse section showed in Fig. 3.3

are obtained in the central section of the segmented MRI.

3.2 Optical Properties of Tissues

The main properties which define the optical characteristics of a medium can

be considered to be absorption coefficient µa, reduced scattering coefficient

µ′s (see Eq. 2.11) and refractive index n. The latter is usually considered to

be homogeneous in human head’s tissues and will therefore be generally

left out from the following discussions [57].

Optical properties of brain tissues for DOT wavelengths are derived from
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Figure 3.2: Segmentation of the structural MRI.

(a) (b)

(c)

Figure 3.3: Transverse, coronal and sagittal slices in the central section of
the segmented MRI.

the mean of the optical properties listed in Okada et al. [58], Hollis [59], Boas

et al. [60], Firbank et al. [61] , Branco et al. [62].

Table 3.1 and Table 3.2 show the absorption and the reduced scattering coef-
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ficients of the tissues considered in function of the light wavelength. These

Wavelength [nm] 600 700 800 900 1000
Skin 0.069 0.048 0.043 0.033 0.027

Cranial bone - 0.023 0.011 0.015 0.022
CSF - - - - -

Gray Matter 0.022 0.016 0.020 0.032 0.049
White Matter 0.080 0.075 0.087 0.101 0.116

Table 3.1: Absorption coefficient µa [mm−1] of biological head tissues in
function of light wavelength (mean of [58], [59], [60], [61] and [62] values).

Wavelength [nm] 600 700 800 900 1000
Skin 2.180 1.670 1.400 1.570 1.680

Cranial bone - 2.210 1.948 1.803 1.710
CSF - - - - -

Gray Matter 0.984 0.819 0.764 0.645 0.559
White Matter 6.615 5.454 4.616 3.928 3.498

Table 3.2: Reduced scattering coefficient µ′s [mm−1] of biological head tissues
in function of light wavelength (mean of [58], [59], [60], [61] and [62] values).

data show that absorption and reduced scattering are notably wavelength-

dependent for all tissue types. As shown in Table 3.1, due to melanin in the

epidermis layer, absorption coefficient of the skin is very high, especially

near the ultraviolet region. Furthermore, Simpson et al. [63] concluded

that the transmission of light through the skin is highly dependent on the

pigmentation. Moreover, it should be pointed out that all these data can be

influenced by pathologic situations which modify blood perfusion. In Table

3.1 and 3.2 Caucasian skin is considered.

Since the DOT portable system which has been developed inside WP3

of the HIGH-PROFILE project is based on bi-color LEDs at two different

wavelengths (735 and 850 nm), we are mainly interested in absorption and

reduced scattering at these particular wavelengths. These values of ab-

sorption and scattering are obtained by interpolation and are reported in

Table 3.3 and 3.4. Brain tissues have a high anisotropy g factor (defined in

Eq. 2.12) which means that the scatter is very forward-peaked [64], for our

purposes we adopt g = 0.9 which is the same value used in [65].
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Wavelength [nm] 735 850
Skin 0.047 0.037

Cranial bone 0.018 0.013
CSF 0.0022 0.0022

Gray Matter 0.017 0.026
White Matter 0.079 0.094

Table 3.3: Absorption coefficients of biological head tissues for 735 and
850 nm light wavelength (obtained by interpolation of Table 3.1 absorption
coefficients).

Wavelength [nm] 735 850
Skin 1.590 1.490

Cranial bone 2.120 1.875
CSF - -

Gray Matter 0.801 0.705
White Matter 5.175 4.272

Table 3.4: Scattering coefficients of biological head tissues for 735 and 850 nm
light wavelength (obtained by interpolation of Table 3.2 reduced scattering
coefficients).

3.3 Numerical Problem Formulation

3.3.1 Numerical Problem Formulation - Diffusive model

The implemented numerical solver is based on the Finite Volume Method

(FVM) formulation of Eq. 2.8. For FVM, a regular grid of cubic voxels is

generally used to discretize the physical domain, so it perfectly suits our

application where the domain is defined by an MRI scan which is inherently

discretized into regular voxels (see Fig. 3.4 (a)). Scattering and absorption

coefficients are assumed to be piecewise constant over each voxel volume,

whereas photon density is computed on voxel vertices (nodes). As shown

in Fig. 3.4 (b), discretization of the diffusion equation is carried out by

integrating it over a control volume centered on the node of interest, where

the control volume centered on node 1 is illustrated.

Applying the divergence theorem to Eq. 2.8 we obtain:

−
∫
S
κ(r, f)∇Φ(r, f)·dS = = −

∫
V

(
µa(r, f) +

ıf

c

)
Φ(r, f)dV+

∫
V
q0(r, f)dV

(3.1)
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(a) FVM grid (b) FVM control volume

Figure 3.4: FVM discretization: nodes are represented by numbers while
voxels are indicated by capital letters.

where V is the control volume that surrounds the central node and S is its

surface.

The surface integral
∫
S κ(r, f)∇Φ(r, f) · dS can be physically interpreted as

the photon current flowing out through the faces of the control volume. The

terms
∫
V µa(r, f)Φ(r, f) dV represents the number of photons absorbed in

the control volume while
∫
V q0(r, f) dV is the total photon density originat-

ing in the control volume by the isotropic source.

FVM formulation is based on flux conservation through the six surfaces

of the control volume. To this end, by using a finite element scheme and

supposing the photon density piecewise linear, it is possible to define the

flux through each face of the control cube in function of the neighbouring

nodal values of photon density.

Eq. 3.1 is then discretized on every control voxel, as has already been done

in the literature for the Poisson’s equation [66] [67]. With respect to that, the

diffusion equation has an additional absorption term
∫
V µa(r, f)Φ(r, f)dV .

The resulting equation for spectral irradiance Φ1(f) in node 1 of Fig. 3.4 is

given by:

Φ1(f) =

7∑
i=1

Ai(f)Φi(f) (3.2)
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where the coefficients Ai are:

A2(f) = −h
4 (κC + κD + κG + κH),

A3(f) = −h
4 (κB + κD + κF + κH),

A4(f) = −h
4 (κA + κB + κC + κD),

A5(f) = −h
4 (κA + κB + κE + κF ),

A6(f) = −h
4 (κA + κC + κE + κG),

A7(f) = −h
4 (κE + κF + κG + κH),

A1(f) = −
∑7

i=2Ai(f) + 1
8h

3(µaA + . . .+ µaH + ıf
c )

(3.3)

and h is the length of the control volume’s edge, while κA . . . κH and

µaA . . . µaH represent respectively the diffusion coefficients and the absorp-

tion coefficients of voxels A . . .H centered in node 1, as represented in Fig.

3.4 (a).

For the sake of readability, the frequency-dependency of optical coefficients

is not explicitly indicated. It is important to notice that coefficient A1 de-

pends directly on the frequency f whileA2 toA7 relies only on the frequency-

dependent diffusion coefficients.

Combining these equations for every voxel, the FVM formulation results in

a linear system of equations:

A(f)Φ(f) = b(f) (3.4)

where A(f) is the system matrix, Φ(f) is the vector containing spectral

irradiances Φi(f) at every node, and b(f) is a column vector containing

nodal isotropic sources.

Each equation in the above linear system represents the discretization of

3.1 on one of the N elements of the cubic grid. Since each voxel has six

neighbour nodes, fluxes through the surfaces surrounding the control voxel

are expressed as a function of the photon densities on the 6 neighbours. This

means that every row of A has only 7 non-zero elements as we can observe

in the representation of the system matrix shown in Fig. 3.5.

Furthermore, the system matrix A is multi-diagonal, symmetric and positive

definite, making the linear system suitable for solving by highly parallel

and fast and iterative techniques. The derivation is valid for nodes which

are surrounded by voxels of diffusive tissues. For those bordering either



3.3 Numerical Problem Formulation 39

Figure 3.5: System matrix resulting from FVM discretization. Since each
voxel has six neighbour nodes A(f) is 7-diagonal.

on air (∂Ω) or CSF (∂Ωcsf ), the inclusion of boundary conditions involves

modifying the relevant elements of the system matrix.

In order to set Dirichlet boundary condition in the voxel i, we simply need

to force a certain Φi to the value bi. This simply requires to set the corre-

sponding row of matrix A to:

A(i, j) =

1 , j = i

0 , i 6= j.
(3.5)

A different approach is required when imposing Robin boundary condition.

In order to keep derivation simple, we may consider, as an example, the

case where only voxel H is low-scattering tissue. Derivation can easily be

extended to each possible combination. The shape of the control volume

needs to be modified as shown in Fig. 3.6 where the red surfaces represent

the intersection between the volumes of the control cube centered in node 1

and of the low-scattering voxel H represented in light red.

The resulting control volume is contained within the red and the blue

surfaces defined by solid black lines and its surface can be defined as Sr ∪Sb,
where Sr is the union of the red patches while Sb is the union of the blue

patches. In particular, the left-hand side in Eq. 3.1 becomes the sum of two
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Figure 3.6: Modified control volume due to the presence of a low-scattering
voxel (light red voxel H). The red area represents the surface of the control
volume that lies on the boundary of the domain.

surface integrals as shown in Eq. 3.6:

−
∫
Sr

κ(r, f)∇Φ(r, f) · dS −
∫
Sb

κ(r, f)∇Φ(r, f) · dS. (3.6)

The procedure for computation of all volume integrals of Eq. 3.1 and also of

the surface integral over Sb is the same, taking into account the volume and

surface reduction.

To compute the integral over Sb, let us assume Φ(ξ, f) = Φ1(f). In this way,

Eq. 2.15 becomes:

κ(ξ, f)∇Φ(ξ, f) · n(ξ) = −Φ1(f)

2R
(3.7)

and the surface integral over Sb in Eq. 3.6 becomes:∫
Sb

κ(ξ, f)∇Φ(ξ, f) · n(ξ) dS = −
Nf (h/2)2

2R
Φ1(f) (3.8)

where Nf is the number of faces of area (h/2)2 composing Sb.

For example, in order to set a Robin boundary condition in the central

node Φ1(f), we need to modify the coefficient Ai(f) shown in Eq. 3.3 in the
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following way:

A2(f) = −h
4 (κC + κD + κG),

A3(f) = −h
4 (κB + κD + κF ),

A4(f) = −h
4 (κA + κB + κC + κD),

A5(f) = −h
4 (κA + κB + κE + κF ),

A6(f) = −h
4 (κA + κC + κE + κG),

A7(f) = −h
4 (κE + κF + κG),

A1(f) = −
∑7

i=2Ai(f) + 1
8h

3(µaA + . . .+ µaG + ıf
c ) + 3

8Rh
2.

(3.9)

The optical properties of voxel H disappear since it is an external voxel,

and the contribution 3
8Rh

2 is given by Eq. 3.8 with a number of dark gray

patches equal to 3 (see Fig. 3.6). Note that inclusion of RBC does not affect

the matrix characteristics of multi-diagonality and symmetry.

FVM formulation of the diffusion equation leads therefore to a linear system,

characterized by a multi-diagonal and symmetric matrix which is preserved

by including the different boundary conditions. Furthermore, FVM is flux

continuous, meaning that photon density continuity is satisfied over the

entire computational domain.

3.3.2 Numerical Problem Formulation - Radiosity model

The isotropic source distribution for CSF boundary nodes leads to the bound-

ary condition of Eq. 2.18, where Γ(f) is the vector containing the isotropic

sources which represent the amount of light which irradiates every CSF

boundary node. In order to evaluate Γ(f) a balance equation can be ob-

tained as was done in [9] and [55] to include the reflection in the Robin

boundary condition. The resulting equation is:

Φ(f) + 2Rcsfκ(f)n · ∇Φ(f) = Fa(f)

(
Φ(f)− 2Rcsfκ(f)n · ∇Φ(f)

)
(3.10)

for every CSF boundary node, where Fa(f) = Fe−µacsf dm,m′ . This equation

states that the total amount of light which irradiates the CSF surface (left

term of Eq. 3.10) is equal to the amount of light which leaves the surface

multiplied by the form factor matrix Fa which takes into account the ab-

sorption in the CSF (right term of Eq. 3.10). Comparison between the right
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terms of Eq. 2.18 and Eq. 3.10 leads to:

Γ(f) = Fa(f)

(
Φ(f)− 2Rcsfκ(f)n · ∇Φ(f)

)
. (3.11)

3.4 Numerical Solution

3.4.1 Numerical solution of diffusion equation

The literature shows that the Conjugate Gradient Method (BiConjugate Gra-

dient Method (BiCG) for complex time-dependent equations) is an excellent

candidate for solving the linear system presented and is adopted in several

works for similar problems [67]. For our application we use the efficient

and parallel BiCG and CG solvers implemented on multiple GPUs and

CPUs using the CUDA drivers and software design kit for NVIDIA GPUs

[68] and CPU multithreading using the free Linux library of OpenMP [69].

A dedicated CPU thread is spawned using OpenMP to handle each GPU.

Synchronization between the data streams is necessary on several occasions

to ensure data consistency, as discussed in [70].

3.4.2 Form factor computation

As discussed in the previous section, in order to take into account the Γ(f)

contribution defined in Eq. 2.18, an equivalent isotropic source needs to be

computed by means of Eq. 2.16.

This involves three basic steps: extracting the boundary voxels of the CSF

region, determining the mutual visibility between them (hm,m′) and evalu-

ating form factors (F (m,m′)).

First, boundary voxels are determined through an ad-hoc routine which

imports the segmented MRI. CSF voxels are marked by a non-zero label

and all the others voxels by a zero label. If we scan all the domain’s voxels

and compute, for each one, the differences in the six directions between

voxel labels, and if a negative result occurs, it means that we are centered

in a brain or skull voxel adjacent to a CSF voxel. The coordinates of these

voxels, their orthocenters and the normal vectors to the boundary faces are

exported in binary files to reconstruct the problem geometry for visibility

computation in a ray-tracing engine environment.
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Second, one proceeds to evaluate the mutual visibility between boundary

voxels, which is the most computationally intensive task.

Finally, one has to evaluate and store the form factors between boundary

voxels.

Due to the segmentation of the MRI into regular and cubic voxels, surfaces

are obtained from composition of identical and axis-oriented voxels (as

shown in Fig. 3.6). Since the geometry of the CSF surface is highly irregular

and composed of a high number of patches (≈ 4 · 105), the computational

load is massive and a parallel engine is needed to drastically reduce the

elaboration time.

Nvidia Optix 3.0.0 [71] is an interesting scalable and parallel framework

for building ray-tracing applications which is optimized to run on Nvidia

GPUs. The framework is mainly designed for graphical rendering; however

we can exploit its high efficiency to the problem under examination. It is

composed of two symbiotic parts:

1. a HOST based API that defines ray-tracing data structures,

2. a CUDA C-based programming system that can produce and manage

rays and surfaces.

Optix engine avoids specification of ray tracing engine behaviours and

instead provides mechanism to execute user-provided CUDA C code to

implement shading, camera models and color representations. Developers

provide information about rays and surfaces in the form of CUDA C-based

functions, and ray tracing structures are created by APIs. The main objects

in the system are:

• Context: instance of a running Optix engine;

• Variable: name used to pass data from C to Optix program;

• Buffer: a multidimensional array that can be bound to a variable;

• Geometry: one or more primitive that a ray can be intersected with;

• Material: a set of program executed when a ray intersects with a

primitive;
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• Acceleration: an acceleration structure object that define a hierarchy

node.

After these objects are defined, it is possible to invoke the Optix parallel ray

tracing engine. In general, the aim of ray-tracing is to generate a 2D image

given the 3D geometry of a scene, the setup of lights and the viewpoint

coordinates. The 2D image is realized by tracing the path of light rays

through the 3D virtual scene and simulating the effects of its encounters

with the virtual objects composing the scene [72]. The basic concept of ray

tracing is represented in Fig. 3.7.

Figure 3.7: Ray tracing principle.

The standard Optix ray tracing steps for rendering are:

1. Launch a generic ray pack with eye-pixel direction by parallel pro-

cesses;

2. Rays are represented by a 2D index that is also the index of the parallel

process associated;

3. Intersections between camera rays and surfaces of the scene are paral-

lel computed;

4. If an intersection occurs, a shadow ray is computed to represent oc-

clusion and a radiance ray is computed to represent the final color of

intersection point.
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Since our purpose is to determine form factors between CSF boundary sur-

faces involving light occlusion evaluation, a custom-built ray-tracer was

implemented based on the Optix engine. Its flow chart is shown in Fig. 3.8.

First of all, the coordinates of boundary voxels are imported into the Optix

environment to reconstruct the whole geometry of the CSF surface. The

geometry reconstruction step is based on creating bounding boxes that coin-

cide with voxels.

The bounding box is a fundamental structure of a ray-tracing engine, defin-

ing the smallest parallel-axes cube that contains a surface. This kind of

structure is fundamental if one is to achieve any significant speed-up, be-

cause it creates a hierarchy that enables unnecessary computations to be

avoided. Since every voxel is cubic and aligned with orthogonal axes, voxels

are mapped directly onto bounding boxes and creation of the accelerated

structure is instantaneous.

Furthermore, in order to speed-up the domain construction process, a single

bounding box is created, centered in the origin. From this, all the other

bounding boxes are created by defining a single transformation matrix

through the ad-hoc Optix function; this approach was found to be signifi-

cantly faster than creating every box singly.

To treat the problem as a light occlusion determination, the concept is to con-

sider a light irradiating from the center of a single face to the orthocenters of

all other CSF boundary faces, and using the optimized visibility evaluation

of the Optix engine to compute the light occlusion as shown in Fig. 3.9.

In order to do this, the coordinates of the orthocenters of the faces of each

Construct
the Scene
Geometry

Generate
Light Rays

from a
face to

other faces

Find out
if Light-

Occlusion
is Present

Form
Factor

Compu-
tation

Save
Results

Figure 3.8: Customized Ray-Tracing Flow Chart
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boundary voxel are loaded from an ad-hoc binary file. Each destination

face is identified by a 1D index (F # in Fig. 3.9) which identifies the parallel

process associated with each face’s orthocenter for which visibility is to be

computed. While different lights are serially processed, every destination

(a) First step

(b) Second step

Figure 3.9: Visibility evaluation: first and second step. In the first step the
visibility from first light to other faces (F2. . .F11) is evaluated, while in the
second step the visibility is computed from the second face L2 to other faces
(F1 and F3. . .F11).

point is associated with a parallel process, so that the visibility from one

light to every destination face can be evaluated in a highly parallel way.
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As can be observed from Eq. 2.17, computation of form factor F (m,m′)

requires us to estimate the distance between the boundary points dm,m′

considered and the scalar products between vectors normal to the source

and destination surfaces. Both light-point distances and scalar products

are computed through the built-in Optix functions, after loading all the

normal unit vectors. Finally, form factors are computed, multiplied by the

term e−µacsf dm,m′ to include CSF absorption, and saved in a compact binary

file via an ad-hoc protocol, to allow parallel storage with optimal memory

occupation.

In order to clarify the behavior of the protocol, let us consider the example

of visibility evaluation represented in Fig. 3.10. For every serially-processed

light the visibility algorithm provides a vector containing 1 in the index

corresponding to the visible face, and 0 otherwise. A simple method to save

face 1 face 2 face 3 . . . face m
light 1 1 0 0 . . . 1
light 2 0 2 2 . . . 0
light 3 0 3 3 . . . 3

...
...

...
...

...
...

light m m 0 m . . . m

Figure 3.10: Data storage using a full matrix with face and light indices.

the visibility data could be to construct a full matrix in the same form as the

table shown in Fig. 3.10, where m is the total number of lights. The form

illustrated in Fig. 3.10 is obtained from the product of the visibility result by

the index of the processed light.

A more convenient approach is to save only the non-zero results of each

light visibility evaluation (Fig. 3.11), leading to an upward shift of every

non-zero value of the full matrix of Fig. 3.10. For compact data storage one

face 1 face 2 face 3 . . . face m
1 2 2 1

...
3 3 ...

3
...

...
...

m m m

Figure 3.11: Compact data storage using the parallel counter.
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needs a pointer to the first empty location where it is possible to write data.

This counter is realized as a parallel vector and is incremented by the result

of visibility evaluation. For the example shown in Fig. 3.10, the progression

is represented in Fig. 3.12. When using this kind of implementation, after

light
1

visibility 1 0 0 . . . 1
counter 1 0 0 . . . 1
↓

light
2

visibility 0 1 1 . . . 0
counter 1 1 1 . . . 1
↓

light
3

visibility 0 1 1 . . . 1
counter 1 2 2 . . . 2
↓

...
...

light
m

visibility 1 0 1 . . . 1
counter k1 k2 k3 . . . km

Figure 3.12: Time evolution of the counter vector, incremented using a
visibility parallel vector.

evaluation of the visibility for every light composing the CSF boundary

surface, the counter will contain the number of faces visible from every

single light. One should note that both the counter and the visibility results

are parallel vectors and these two vectors have been summed in a parallel

way. To allow for parallel storage of visibility results, an empty matrix is first

initialized. For every column of the matrix, the counter obtained represents

a pointer to the first empty location where it is possible to write data. If

the face corresponding to a specific column is visible from the processed

light, the index of this light is saved in the position provided by the parallel

counter and the counter is incremented; otherwise no increment occurs and

in the following step the pointer will indicate the same free cell.

A concatenation of matrix columns is finally achieved, giving the definitive

compact form. The same procedure is also used for compact storage of the

form factor values. As a result, for every light we use compact binary files

to save all the information needed to build a sparse form factor matrix.

Once the compact binary files containing form factors have been created,

we need to rearrange them in the matrix form Fa(f) of Eq. 2.18 via an

ad-hoc Matlab tool.

First, the form factors saved in the compact vector of the CSF boundary



3.4 Numerical Solution 49

faces are loaded into the Matlab environment.

Second, the form factors of each boundary node are obtained by combining

the form factors of its neighboring boundary faces.

The form factor computation time for a full MRI is approximately 1.5 hours

using the High Performance Computing (HPC) platform of Table 3.5, taking

into account the reciprocal visibility of approximately 393K points for a final

compact visibility output file of about 2 GB instead of 5 TB required by the

full matrix approach. It should be pointed out that this task is computed

just once and is performed only once before DOT data acquisition.

CPUs 2x Intel Xeon E5-2650 v2 @ 2.60GHz
Graphic Cards 4x Geforce GTX Titan Black

RAM 64 GB

Table 3.5: Hardware specifications of the HPC Platform.

3.4.3 Numerical solution of the hybrid RD problem

Modeling light propagation in head tissues using the hybrid diffusion-

radiosity method requires that we combine the results obtained from solving

diffusion and radiosity equations in the appropriate regions.

The most straightforward way to do so would be to directly integrate the

results of form factor computation into the structure of matrix A(f), basi-

cally adding the contributions from non-neighboring voxels due to light

propagation in clear regions. Unfortunately this solution perturbs the ma-

trix structure, resulting in a loss of multi-diagonality and a largely sparse

matrix. Since the efficiency of the diffusion equation parallel solver relies

heavily on the regular structure of the matrix, both for computation and

for data storage, this solution is to be considered infeasible in the proposed

framework.

One different approach is based on an iterative solver where solution of the

diffusion and radiosity portions of the problem is performed in sequence as

shown in Fig. 3.13 and the process is repeated till the photon distribution

on the boundaries is consistent with both.

A diffusion equation is used to calculate the exitance on diffusive voxels
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Figure 3.13: Radiosity-Diffusion Iterative solver principle.

bordering on the CSF region. The radiosity equation is then used to calculate

the irradiance at each voxel on the CSF surface, due to the emission of light

from other voxels. Each of these acts as a source for a further diffusion

theory calculation of the light distribution in the scattering regions of the

domain. This process is iterated until the change of the total photon distri-

bution drops below a determined tolerance.

Let us analyze the integration of the results of the different governing equa-

tions 3.11 and 3.4 using an iterative approach.

Rewriting the numerical formulation of Eq. 2.18 for a generic ith step as:

2Rcsfκ(f)n · ∇Φi(f) = Γi(f)−Φi(f) (3.12)

and substituting 2Rcsfκ(f)n · ∇Φi(f) in Eq. 3.11 leads to:

Γi(f) = Fa(f)
(
Φi(f)− Γi(f) + Φi(f)

)
. (3.13)



3.5 Validation 51

Finally, combining Eq. 3.13 and Eq. 3.4 leads to:A(f)Φi(f) = bi(f)

Γi(f) = Fa(f)
(
2Φi(f)− Γi(f)

)
,

(3.14)

where q(f) is the vector of the external isotropic source and bi(f) = Γi(f) +

q(f) with Γ(0)(f) = 0. Due to memory constraints, it is not possible to

evaluate Γi(f) directly as:

Γi(f) = (I + Fa(f))−1 (Fa(f) 2Φi(f)
)
, (3.15)

because computation of (I + Fa(f))−1 would exceed the memory available.

As a result, the approach we take for computing the second equation of the

system 3.14 is to replace the right hand value of Γi(f) with its value Γi−1(f)

at the previous step, leading to the following formula:

Γi(f) = Fa(f)
(
2Φi(f)− Γi−1(f)

)
. (3.16)

Finally, the conclusive numerical formulation of the proposed RD solver

becomes: A(f)Φi(f) = bi(f)

Γi(f) = Fa(f)
(
2Φi(f)− Γi−1(f)

) (3.17)

3.5 Validation

3.5.1 Diffusive model validation

For the sake of simplicity in the following we consider the CW case, obtained

from the previous formulation by setting f = 0. A 240 mm × 240 mm × 30

mm sample, based on two overlapped diffusive layers, is used to validate

the results provided by the DOT forward problem solver realized.

The configuration is shown in Fig. 3.14 and presents heterogeneous bound-

ary conditions. The optical properties and the thickness of the overlapped

layers shown in Fig. 3.14, are the same as [58].

At the top of the overlapped layers we impose a Dirichlet boundary con-

dition (Φ = 1) which corresponds to a time-constant source, on the lateral

boundary surfaces a Neumann boundary condition, and on the bottom
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Figure 3.14: Validation sample with heterogeneous boundary conditions.

surface a Robin boundary condition with R = 1. Both the Dirichlet and the

Neumann boundary condition can easily be applied as particular instances

of the RBC. The homogeneous Dirichlet boundary condition is obtained by

setting the term R in Eq. 2.15 equal to zero, while the Neumann boundary

condition can be physically interpreted as an RBC where total reflection

occurs. The Neumann condition prevents light leaking from the lateral sur-

faces of the domain, leading to a uniform solution in x and y of the Diffusion

Equation which can be analytically computed as:

Φ(z) = c1 e
√

µa
κ
z + c2 e

−
√

µa
κ
z. (3.18)

The analytical solution and the relative errors of the numerical solution

obtained with a 1 mm, 0.5 mm and 0.25 mm length of the control volume’s

edge (h) are shown in Fig. 3.15.

Note that the trend of the relative error obtained with a half step is reduced

by a factor 4 with respect to the relative error evaluated in the coarser case

where it is lower than 8%.
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Figure 3.15: Analytical solution in the central section of the sample and
comparison between relative errors obtained with h = 1 mm, h = 0.5 mm
and h = 0.25 mm in the central section of the sample.

3.5.2 Radiosity model validation

In order to validate the radiosity portion of the algorithm as well, we use

a 135 mm × 128 mm × 40 mm sample based on two overlapped layers

separated by a non-diffusive film. The geometrical configuration, the optical

properties and the boundary conditions of this domain are illustrated in Fig.

3.16.

The configuration of the boundary conditions is similar to the previous one

(shown in Fig. 3.14) except that, on the bottom surface of the sample, we

imposed a Dirichlet boundary condition (Φ = 0) in order to obtain a simple

analytical solution representing the ideal condition of two infinite extended

layers separated by a CSF film.

The upper graph of Fig. 3.17 shows the analytical solution, while the lower

one illustrates the comparison between the relative errors with h equal to 1

mm and 0.5 mm.

The result of this simulation is affected by the amount of light which escapes

from the air-CSF boundary faces involving an increase in the relative error
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Figure 3.16: Validation sample with heterogeneous boundary conditions
and CSF.

Figure 3.17: Analytical solution in the central section of the sample and
comparison between relative errors obtained with h = 1 mm and h = 0.5
mm in the central section of the sample.
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moving towards the sample’s boundary. The error due to leaked light is

about 2% in the central axis (x = 67 mm, y = 64 mm) but increases to 80%

for the outermost section with x = 135 mm and y = 128 mm.

3.6 Accuracy Evaluation

3.6.1 Diffusive model accuracy

A 240 mm × 240 mm × 30 mm sample, based on two overlapped diffusive

layers, is used to analyse the accuracy of the results provided by the imple-

mented DOT forward problem solver with respect an RTE solution. Within

the layers we adopt the realistic optical properties of the skin and of cranial

bone as listed in Table 3.6.

Tissue µa [mm−1] µ′s [mm−1]
Skin 0.018 1.9

Cranial bone 0.016 1.6
CSF 0.001 0

Gray Matter 0.036 2.2
White Matter 0.014 9.1

Table 3.6: Optical properties of biological head tissues for accuracy evalua-
tion (source : [1]).

The configuration is shown in Fig. 3.18 and presents heterogeneous bound-

ary conditions.

At the top we impose a Dirichlet boundary condition (Φ = 1) which

corresponds to a time-constant source, on the lateral boundary surfaces a

Neumann boundary condition, and on the bottom surface a Robin boundary

condition with R = 1. As shown in the previous section, the Neumann

condition prevents light leaking from the lateral surfaces of the domain,

leading to a uniform solution in x and y of the Diffusion Equation which

can be analytically computed as:

Φ(z) = c1 e
√

µa
κ
z + c2 e

−
√

µa
κ
z. (3.19)

To our knowledge no analytical form of the RTE solution is available in the

considered 3D finite domain with heterogeneous boundary conditions, so
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Figure 3.18: Accuracy evaluation sample with heterogeneous boundary
conditions.

the benchmark solution of the RTE is achieved in two different steps.

First, the root mean square (RMS) of 100 Monte Carlo runs with 2.1 · 109

photons per run is done. To this end we adopt the Monte Carlo eXtreme

(MCX) tool [14] , which is a parallel Monte Carlo simulation software for

time-resolved photon transport in 3D domains optimized to run on a single

GPU.

After that, the mean in the z-direction of the RMS is considered, exploiting

the lateral Neumann condition which forces the solution to be constant in

the xy plane for each fixed z. The Monte Carlo solution takes into account

the anisotropic scattering of light (with anisotropy factor g = 0.9 for each

biological tissue except CSF), providing the most realistic solution of the

RTE available. This solution is shown in the top plot of Fig. 3.19 and is

used to estimate the accuracy of the DE analytical solution of Eq. 3.19 with

respect to an RTE in a turbid domain.

The relative error between the analytical solution of the DE and the gold-

standard RTE is shown in the middle plot of Fig. 3.19. The maximum

relative error between these solutions is about 7.6% and the mean relative

error is 4.8%, showing a good agreement between the DE analytical solution
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Figure 3.19: Gold-standard RTE solution computed by multiple MCX runs
(top plot), relative error between gold-standard RTE solution and analytical
DE solution (Eq. 3.19) (middle plot), and numerical errors between analytical
DE solution (Eq. 3.19) and numerical solution (Eq. 3.4) obtained with h = 1
mm, h = 0.5 mm and h = 0.25 mm in the central section of the sample
(bottom plot).

(Eq. 3.19) and the RTE solution computed by the MCX tool.

To maintain coherence between the RTE and the DE theories the accuracy

comparison is evaluated starting from the scattering depth 1/µ′s, where the

anisotropic behavior of the Monte Carlo source becomes negligible.

The numerical errors between the FVM numerical implementation of the

DE (Eq. 3.4) and the DE analytical solution (Eq. 3.19) obtained with different

spatial discretization steps h equal to 1 mm, 0.5 mm and 0.25 mm are finally

shown in the bottom graph of Fig. 3.19, validating the numerical solver with

respect to the analytical solution of the equation it implements. Note that

the trend of the relative error obtained with a half step is reduced by a factor

4 with respect to the relative error evaluated in the coarser case where it is

lower than 5%.
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3.6.2 Radiosity model accuracy

In order to validate the radiosity portion of the algorithm as well, we use

a 135 mm × 128 mm × 40 mm sample based on two overlapped layers

separated by a non-diffusive film. The geometrical configuration, the optical

properties and the boundary conditions of this domain are the same of Fig.

3.16.

The RTE benchmark solution is obtained following the same procedure as in

the previous accuracy evaluation experiment, running 100 MCX simulations

with 2.1 · 109 photons per run. The benchmark RTE solution is shown in the

top graph of Fig. 3.20.

The middle plot of Fig. 3.20 illustrates the trend of the relative error between

Figure 3.20: Gold-standard RTE solution computed by multiple MCX runs
(top plot), relative error between gold-standard RTE solution and analytical
RD solution (Eq. 3.19) (middle plot), and numerical errors between ana-
lytical RD solution (Eq. 3.19) and numerical solution (Eq. 3.17) obtained
with h = 1 mm and h = 0.5 mm in the central section of the sample (bottom
plot).

the analytical RD solution in the form of Eq. 3.19 and the gold-standard RTE

solution obtained with the MCX tool. The comparison between RTE and

analytical RD solutions is evaluated from the scattering depth and shows
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good agreement between the models, revealing a mean relative error of

about 4.8% and a maximum relative error of about 12% at the CSF interface.

Finally, the numerical errors between the proposed RD numerical solution

(Eq. 3.17) and the RD analytical solution (Eq. 3.19) obtained with h equal to

1 mm and 0.5 mm are shown in the bottom graph of Fig. 3.20, revealing a

maximum relative error of about 5% in the coarser case and also validating

the radiosity portion of the proposed RD numerical solver.

It is important to specify that the result of this simulation is affected by the

amount of light which escapes from the air-CSF boundary faces involving

an increase in the relative error moving towards the sample’s boundary. The

error due to leaked light is about 2% in the central axis (x = 67 mm, y = 64

mm) but increases to 80% for the outermost section with x = 135 mm and

y = 128 mm.

3.7 Performance

3.7.1 Time of Convergence

Four samples with different sizes (105 mm × 64 mm × 32 mm, 105 mm × 64

mm × 48 mm, 105 mm × 64 mm × 64 mm and 105 mm × 64 mm × 128 mm)

based on three overlapped layers with a Robin boundary condition over

each external surface are used to test the realized solver and to compare

the results and the performances with the parallel MCX-Extreme solver [14]

based on GPU parallel implementation of the Monte Carlo method.

The optical and the geometrical properties are summarized in Table 3.7.

In the comparison the isotropic source is placed in position (x = 52 mm,

Layer µa [mm−1] µ′s [mm−1] Thickness [mm]
1 0.019 0.858 20

2 0.004 0.009 5

3 0.020 0.99 7− 23− 39− 103

Table 3.7: Optical properties and thickness of the layers composing the 4
samples whose sizes are 105 mm × 64 mm × 32 mm, 105 mm × 64 mm ×
48 mm, 105 mm × 64 mm × 64 mm and 105 mm × 64 mm × 128 mm.

y = 32 mm, z = 1 mm), and we conduct two different tests (for every

sample) with and without inclusion of the boundary reflection.



60 DOT Forward Problem : Numerical Implementation

In the case of the implemented numerical method we consider the com-

puting time as the time required for convergence of the iterative solver, while

in the case of MCX we consider the computing time as the time required to

detect at least one photon by a detector of radius 1 mm at the farthest point

from the source.

The HPC specifications are listed in Table 3.5.

For the 105 mm × 64 mm × 32 mm validation sample, the pre-processing

time, including visibility computation and form factor matrix assembly, is

563 s. The time required for construction of matrix A and vector b is 1.25 s.

The computation times are shown in the histogram of Fig. 3.21 and involve

iterative solution of the linear system and updating of the b vector, without

inclusion of the pre-processing time. The performance of Fig. 3.21 are ob-

tained employing a single GPU run and underline a speed-up of a factor 7

with respect to MCX. We can observe how the increase in computational

times is less than linearly proportional to the domain size.

No direct comparison with the MCX tool is possible for larger domains since

the maximum number of photons supported by MCX is not sufficient to

allow detection of photons at the required depths. Simulations show how,

on increasing the depth from 32 to 48 mm, the minimum value of the light

intensity in the domain decreases by a factor of 100. We can estimate that

the number of photons required by a Monte-Carlo solver would scale ac-

cordingly by a similar factor, leading to unacceptable computational times.

Furthermore, it is possible to estimate the arithmetic throughput of a sin-

gle Titan Black card for every performance test, knowing that 156 floating

point operations are required to process one node for every iteration of the

BiCG solver. The double precision arithmetic throughput for a single GTX

Titan Black is 42.9 GFLOPS in the 105 mm × 64 mm × 32 mm sample, 46.2

GFLOPS in the 105 mm × 64 mm × 48 mm domain, 47.1 GFLOPS in the

105 mm × 64 mm × 64 mm volume and 51.7 GFLOPS in the 105 mm ×
64 mm × 128 mm sample. By running the same tests using all four GPUs

available, we obtain, respectively, 60.3, 78.8, 88.8 and 125.8 GFLOPS. Due

to the presence of memory accesses, these values of arithmetic throughput

are smaller than the theoretical ones, but it is important to notice that they

increase for larger domain sizes.

The histogram illustrates that the numerical solver speed up significantly
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Figure 3.21: Performance [s] of the numerical solver for different depths of
the sample with and without boundary reflection.

increases for larger domain’s size, while the number of photons required by

Monte Carlo increases in order to obtain a comparable accuracy, leading to

a considerable increase of the computation time.

3.7.2 Performance in function of accuracy

In order to test the performance of the proposed algorithm, the sample of

Fig. 3.16 is exploited, after extension of the third layer’s thickness to 104

mm. The HPC system of Table 3.5 is employed.

The pre-processing time required by the RD solver implemented is 3815 s,

including visibility evaluation, form factor matrix assembling and storage

operations. The time required for construction of matrix A and vector bi of

Eq. 3.17 is 12 s. The performance of the proposed GPU-based RD numerical

solver, of the isotropic-scattered MCX and of the anisotropic-scattered MCX
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are compared in terms both of computation times and accuracy, which is

evaluated as the percentage relative error between the approximated solu-

tion and the RTE benchmark solution computed at distance z equal to 40

mm, 50 mm and 60 mm. The benchmark solution is obtained following

the same reasoning as in Sec. 3.6, exploiting 300 MCX runs with 2.1 · 109

photons per run. The computation times of the GPU-based RD, of the

isotropic-scattered MCX and of the anisotropic-scattered MCX are listed in

Table 3.8. In the case of the RD solution, the elapsed time involves iterative

solution of the linear system and an update of the bi vector, without inclu-

sion of the pre-processing time.

The performance of the GPU-based RD solver in Table 3.8 shows a speed-up

of a factor 7 over a single run of isotropic MCX, with higher accuracy than

that of 100 runs of isotropic MCX and a precision comparable to 10 runs

of anisotropic MCX. As previously shown in Fig. 3.20, it can be observed

that the numerical error associated with the RD model is non-monotonic

with increasing depth since it has some local maxima close to the interface.

However, these maxima are lower than the error at 40 mm depth.

Solver Runs Time [s]
Relative Error

40 mm 50 mm 60 mm
MCX aniso 1 4175 13.81% 39.06% 92.82%

MCX iso 1 548 19.58% 39.40% 84.76%

MCX aniso 10 42283 4.38% 12.39% 28.00%

MCX iso 10 5590 17.51% 22.28% 33.78%

MCX aniso 100 417720 1.80% 4.22% 9.56%

MCX iso 100 54827 17.50% 21.32% 25.35%

RD 1 GPU � 81 8.9% 4.5% 14.22%

Table 3.8: Performance comparison between the MCX tool and the proposed
RD numerical solver

Furthermore, it is possible to estimate the arithmetic throughput of a single

Titan Black GPU card for this performance test, knowing that 156 floating

point operations are required to process one node for every iteration of the

BiCG solver. The double precision arithmetic throughput for a single GTX

Titan Black is 51.7 GFLOPS, while when using all four GPUs available it

increases to 155.3 GFLOPS. Due to the presence of memory accesses, these

values of arithmetic throughput are smaller than the theoretical ones, but it
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is important to notice that they increase for larger domain sizes.

In order to estimate the speed improvement that takes advantage of the

massively parallel GPU implementation of the BiCG solver, an OpenMP

implementation of the solver is performed on the same HPC.

By running the parallel BiCG solver on the 4 GPUs available, the speed-up

factor is 20 times if compared to the single threaded CPU-based imple-

mentation and 4 times in the case of 16 CPUs running. The BiCG speed

enhancement with all 4 GPUs running allows a 20% speed improvement of

the RD solver (63 s instead of 81 s).

3.8 Realistic Domain

We finally evaluate the performance and accuracy of the implemented RD

solver in a complete and realistic human head volume with the optical

properties listed in Table 3.6. We consider a physical domain generated

starting from 3T MRI images with a voxel resolution of 0.94 mm × 0.94 mm

× 1.20 mm resulting in a full structural MRI with 5 million voxels with a

head volume of around 2.7 million voxels. Given the anatomical structure

of the domain, voxel visibility and form factors are computed only once.

The structural pre-processing phase comprises the first 4 blocks in Fig.

3.22 and takes approximately 5 hours; this phase only needs to be evaluated

again if the patient-specific MRI changes. In order to achieve a reasonable

pre-processing time, the parallel and efficient system for form factors com-

putation described in Sec. 3.4.2 has been implemented, because form factors

evaluation represents by far the most computationally expensive step of

the whole pre-processing phase. The other pre-processing operations were

implemented in non-optimized Matlab code since the total pre-processing

time has already been reduced to acceptable levels.

Assembly of matrix A takes 39 seconds and only needs to be performed

if the distribution of the optical properties change within the domain as

happens during DOT inverse problem solution. If multiple light sources

need to be considered, matrix A is preserved. Forward problem solution

takes 116 seconds. For every iteration one needs to solve the linear system

AΦ = b, with reference to Eq. 3.17, and update term b; the dimension of

matrix A is about 5 million by 5 million (≈ 19M non-zero elements).
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Domain
Import
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CSF
Extraction
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Form
Factor

Compu-
tation
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Form
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Diffusion
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Forward
problem
solution

116 s

Structural pre-processing

Update of Matrix is required only
if optical properties change
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Figure 3.22: Time elapsing for forward problem solution in a complete
human head domain derived from 3T structural MRI.

The time required to complete each iteration of the Radiosity-Diffusion algo-

rithm is approximately 6 seconds, giving a total time of about 116 seconds to

complete all 20 iterations required for convergence. Each iteration employs

6 seconds in all, but solution of the linear system using the iterative BiCG

solver only takes 3.3 seconds to complete all 760 BiCG iterations required for

a precision of 10−45. Since the total number of nodes is about 5 million and

for each BiCG iteration 156 floating point operations are required to process

one node, the arithmetic throughput on four GTX Titan Black is about 180

GFLOPS.

A general formula for the computation of the elapsed time T required by

the proposed RD method in a DOT inversion process which requires Nit

total iterations and Nfw forward solver computations for each iteration can

be expressed as follows:

T = Nit (39 + 116 ·Nfw),
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where 39 s is the elapsed time for the construction of matrix A and 116 s is

the time necessary to obtain a single forward problem solution. The total

number of iterations Nit is strictly related to the stopping criterion of the

inverse problem solver such as Nfw, which is related to the total number of

sources and detectors.

Results provided by the numerical RD algorithm are compared with the

solutions obtained employing isotropic-scattered MCX and with the pure

Diffusion Equation model. The number of photons used in the isotropic

MCX simulation is 2.1 · 109 leading to a total elapsed time of about 2489 s.

A comparison of the three solutions in the coronal, sagittal and transverse

section of the head is shown in Fig. 3.23, where the main limitations of

both models stand out. In fact, despite the maximum number of photons

employed in the single MCX run, the resulting light distribution is markedly

granular, and the computational cost of this method is remarkable, since

2489 s is the elapsed time for a single isotropic run and 15479 s for an

anisotropic one. Nevertheless, MCX, being an RTE solver, has the ability

to manage both the scattering anisotropy within biological tissues and the

low-scattering property of CSF, contrary to what the proposed RD numerical

model is able to do. The black area of Fig. 3.23 (right column) is the result

of this inability of the proposed solver to determine the light distribution

within the non-scattering CSF layer, where the value of the solution is fixed

to zero. On the other hand, the RD solver is characterized by a lower

computational cost and no granularity in deeper regions.

Finally, Fig. 3.24 illustrates the comparison between the solutions as a

function of the distance from the light source in the transverse slice shown

in Fig. 3.23. One can observe a good agreement between the RD numerical

model and the RMS of 100 isotropic MCX runs whereas a single MCX

isotropic run exhibits high granularity.

Furthermore, it should be pointed out that the Monte Carlo noise (including

values listed in Table 3.8) carries a high degree of point-to-point and run-to-

run stochastic variability. This can significantly increase the noise level when

using differential approaches for, e.g., Jacobian computation through both

perturbative and adjoint method in DOT image reconstruction [73][74][75].

The RD model also shows a substantial improvement over the pure diffusive

model (DE) in a realistic head domain.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.23: Comparison between light distribution obtained employing
MCX tool (left column) and numerical RD solver (right column) in the
sagittal (top plots), transverse (middle plots) and coronal (bottom plots)
section of the realistic human head.

3.9 Conclusions

This chapter focuses on the numerical implementation of a Radiosity Dif-

fusion solver based on the numerical integration between the diffusion

equation and the radiosity equation and it is the core of this thesis. It rep-

resents an original contribution which updates the state of the art of DOT

forward problem solvers providing a solver able to implement a Radiosity-

Diffusion model able to manage the geometrical complexity of the head

volume directly imported from a full resolution structural MRI.
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Figure 3.24: Distribution of light in the Transverse section of the realistic
head domain as a function of the distance from the light source.

Validation, accuracy and performance of the proposed Radiosity-Diffusion

numerical solver are examined in detail with respect to a benchmark solu-

tion obtained using multiple runs of a gold-standard Monte Carlo RTE and

a complete overview of the work-flow on a realistic human head is given.

Results in a full-resolution structural MRI of a human head composed by

3 million non-zero voxels underlines a 7x speed-up over a single run of

isotropic-scattered parallel Monte Carlo engine with an accuracy compara-

ble to 10 runs of anisotropic scattered Monte Carlo in the same geometry,

allowing one to compute the light distribution of a full human head in 116

seconds for the platform used.

In Chapter 4 a DOT inverse problem solver based on the proposed RD

numerical forward problem solver is implemented, providing a complete

toolbox for a DOT imaging system.



Chapter 4

DOT Inverse Problem

The DOT forward problem described in Chapter 2 and numerically solved

through the implemented RD solver of Chapter 3, involves calculation of

measurements which are expected on the domain boundaries given the

sources and the internal properties of the domain.

As shown in Chapter 1, to reconstruct an image it is necessary to solve the

inverse problem [8] which allows to calculate the internal optical properties

given a set of photon density measurement (a discrete sampling of the

overall distribution on the boundary) and the intensity of light sources.

This chapter introduces the DOT inverse problem (Sec. 4.1), giving the basis

of Jacobian computation through perturbation method (Sec. 4.2.1) or adjoint

method (Sec. 4.2.2). Finally, Sec. 4.3 shows a typical work-flow of DOT in a

whole realistic human head, which starts importing the domain and ends to

the reconstruction of the brain optical properties.

The work illustrated in this chapter was developed in the scope of the HIGH

PROFILE European Project and it is described in detail in [76].

4.1 Inverse Problem Theory

The inverse problem in DOT is solved by minimizing an objective function

ψ over the range of optical properties in the least square sense. The objective

function is defined as:

ψ = ‖Φmeas − Φp(γ)‖22 (4.1)

68
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where Φmeas represents the set of measurements of photon density in the

domain boundary, Φp(γ) represents the numerical light distribution eval-

uated in the domain with optical properties γ = (µa, µ
′
s), where µa is the

absorption coefficient while µ′s is the reduced scattering coefficient.

Two different non-linear methods are usually employed in order to minimize

this function:

• Direct methods;

• Gradient based methods.

Direct methods, known as full-Newton approaches [8], are the most straight-

forward and relatively easy to implement. The prototypical algorithm for

Newton methods is the Levenberg-Marquardt algorithm, that leads to the

calculation of (JT · J + λI)−1, where λ is a stabilization coefficient and J is

the Jacobian of Φp(γ).

In our problem, J is significantly ill conditioned, therefore computing JT · J
leads to a problem with such an ill conditioning to be practically unsolvable.

This has been evaluated on small toy-problems before analysing the full

domain. In fact, due to the size of the domain, JT ·J could not be practically

computed in the full model due to memory constraints.

On the other hand, methods based on gradient optimization, which do not re-

quire an explicit inversion of JT Jare known to be computationally efficient

[77][78]. Since the objective function is differentiable, using a derivative-

based iterative method is most appealing.

4.2 Gradient Based Methods

Having the Jacobian matrix J of Φp(γ) at hand, the inverse problem can be

processed iteratively. If we define:

γi+1 = γi + ∆γi (4.2)

and we consider Taylor series expansion of the function Φp(γi+1) , it results:

Φp(γi+1) = Φp(γi) + J∆γi +
1

2
H∆γ2

i + . . . (4.3)
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where H is the Hessian matrix associated to the problem. Truncating the

series to the second term (linearization), we have:

Φp(γi+1) = Φp(γi) + J∆γi . (4.4)

Substituting the approximation into the objective function leads to:

ψ = ‖Φmeas − Φp(γi)− J∆γi‖22; (4.5)

where, defining ∆Φi = Φmeas − Φp(γi), we obtain the following objective

function:

ψi = ‖∆Φi − J∆γi‖22 . (4.6)

Equation 4.6 can be solved in the least square sense in order to find the

update term of optical properties ∆γi.

To sum up, the linearized iterative formulation of the problem becomes:

γi+1 = γi + lsqr(J,∆Φi) , (4.7)

where by lsqr we imply least square minimization routines such as the one

directly available in MATLAB. Since this operation is relatively fast with

respect to Jacobian computation, we can safely use the built-in MATLAB

function without introducing significant overhead. This operation has to be

repeated until ψi drops down a certain user-established tolerance.

This iterative method implies that the FVM stiffness matrixA(γi) needs to be

updated on each iteration. Since Jacobian computation is a computationally

intensive task, we found that re-using the same Jacobian matrix in successive

steps significantly reduces computation times, even if it can increase the

number of iterations which are required to obtain convergence.

There are several methods to calculate J , in particular, for our purpose, two

different methods are considered:

1. Perturbation method;

2. Adjoint method.
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4.2.1 Perturbation method

The basic idea of the perturbation method is to slightly modify the opti-

cal properties of each region having unique properties which composes

the domain , one-by-one, computing the difference with respect to the un-

perturbed solution and dividing by the magnitude of the perturbation.

If S is the number of sources, M is the number of measurements for each

source and L is the number of regions with unique optical properties, for

each measurement we need to solve L · S + 1 forward problems.

Since our interest is to reconstruct the optical properties of each voxel com-

posing the domain and given that the total number of non-zero voxels

composing a structural MRI of a human head is around 3 million, this

method is unsuitable to evaluate the Jacobian in our application. In practice,

this method is suitable only if the domain is segmented into a small amount

of homogeneous regions to be perturbed. A more efficient and appealing

scheme could be derived if the so-called reciprocity principle is considered.

4.2.2 Adjoint method

In order to assemble the Jacobian matrix, the adjoint method is based on

the reciprocity principle of light propagation. In short, reciprocity states that,

given a light source and a detector in a medium with optical properties

which are generally verified in nature (and in our case as well), the amount

of light reaching the detector is the very same that would reach the detector

if source and detector were switched. Reciprocity can be derived analytically

from the radiative transfer equation ([79] [80]).

Arridge et al. [81] proved that reciprocity theorem allows computing one

element of the Jacobian, relative to a particular voxel and a source-detector

pair, by simple algebraic operations performed on the solution of two for-

ward problems in the voxel under examination.

The first solution is computed for the real DOT problem under examination,

the second one has the source placed at the original detector position. In

[81], this scheme was applied for the finite element method formulation of

diffusion equation solver. We extended these finding to our FVM implemen-

tation as follows.

Let Φ be a solution for the parameters (µa, κ) and let Φ̃ be the solution for
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the same source, but a different set of parameters (µ̃a, κ̃) where:

µ̃a = µa + α κ̃ = κ+ β ; (4.8)

As shown in [8], reciprocity theorem leads to:

∆Φ(α, β) = −
∫
V

(
β ∇Ψ · ∇Φ + αΨΦ

)
dV (4.9)

where V is the volume under analysis and Ψ is the solution of the adjoint

problem, in which the source is placed in the detector position. By setting

α to zero and calculating ∆Φ(α, β)/β we obtain the portion of the Jacobian

relative to the diffusion coefficients. The portion of the Jacobian related to

absorption is obtained by setting β to zero and calculating the right term of

the integral. For the sake of compactness, we do not include computation

of the elements related to diffusive coefficients, while we briefly report the

first steps of calculation of those related to absorption.

In this case, the integral becomes:

∆Φ(α) = −
∫
V
αΨΦ dV . (4.10)

Assuming Φ and Ψ piecewise linear we obtain:

∆Φ(α) = −
∫
Vvoxel

(
Φc +

Φx − Φc

h
x+

Φy − Φc

h
y +

Φz − Φc

h
z

)
·

·
(

Ψc +
Ψx −Ψc

h
x+

Ψy −Ψc

h
y +

Ψz −Ψc

h
z

)
dV (4.11)

where Φc is the photon density centered in one node of the grid and Φx, Φy,

Φz are the closest nodal values by following the axis directions. The integral

is then numerically computed.

Derivation of ∆Φ(β) is similar, however gradients need to be computed

before integration, following the piecewise linear approximation of Φ.

Given S light sources, L voxels and M detectors, the overall computation

cost is approximately that of computing S ·M + 1 forward problems. With

respect to the perturbation approach, if L is in the order of some millions and

M of a few tens maximum, the speed-up is more than 10.000 times, marking

the boundary between a computation which can be performed on rather



4.3 Software Work-Flow in the Human Head 73

low-cost workstation in reasonable times versus computation which would

either require large-scale super-computers or unacceptable computation

times.

4.3 Software Work-Flow in the Human Head

In this section we explain the implementation of the inverse problem solver

using adjoint method for the Jacobian computation in a complex and large

volume such as the segmented human head imported directly from a struc-

tural MRI.

In order to validate the proposed inverse problem solver, a set of ideal

measures was generated by computing the light distribution in the whole

human head using the implemented RD forward problem solver.

The work-flow of the inverse problem solver in the whole human head is

illustrated in Fig. 4.3. Each point is then singularly analysed.

1 I Segmentation of 3D Structural MRI
↓

2 I Matlab Import of 3D segmented MRI
↓

3 I CSF Surface Extraction
↓

4 I Parallel Form Factor Evaluation Algorithm
↓

5 I Assign Guess Absorption Coefficient to every voxel of the Head
Domain
↓

6 I Forward Solution to Predict Measurements
↓

7 I Jacobian Computation (S×M+1) Forward Solvers
↓

8 I Compute ∆µa
↓

9 I Update Absorption Coefficients of the Head
↓

10 I Jump to 6 and Iterate till Convergence (3/4 times)
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1 I Segmentation of 3D Structural MRI

(a)

(b)

Figure 4.1: Structural MRI data in NifTi format is imported in Brain-
Suite for domain segmentation (a)-(b). DICOM data can be converted
to NifTi before processing. Segmentation is performed in a semi-
automated way, with some parameters which can be modified to
improve segmentation quality. Data is exported in ANALYZE format
and imported in MATLAB through an ad-hoc routine. Segmentation
of the structural MRI has been examined in detail in Section 3.1.
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2 I Matlab Import of 3D Segmented MRI

(a) (b) (c)

Figure 4.2: Segmented structural MRI information visualized through
ad-hoc MATLAB routine.

Sagittal, coronal and transverse section showed above are obtained
in the central section of the segmented MRI.

3 I CSF surface extraction

(a) (b)

Figure 4.3: Section plot of CSF region (a) and extraction of CSF-
boundary voxels through the ad-hoc Matlab tool (b). Coordinates,
faces and normals of these voxels are saved in binary files in order
to provide a suitable and efficient way to export them to the imple-
mented Nvidia Optix Visibility Toolbox. This step is described in Sec.
3.4.2
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4 I Parallel Form Factor Evaluation Algorithm

(a) (b)

(c)

Figure 4.4: Section plot of ray tracing results on the realistic head
model from the white voxel to every CSF-neighbour voxel (visible
ones are in orange). This point is examined in Sec. 3.4.2.

5 I Assign Guess Absorption Coefficient to every voxel of the
Head Domain

Tissue µa [mm−1] µ′s [mm−1]
Skin 0.047 1.590

Cranial bone 0.018 2.120
CSF 0.0022 0

Gray Matter 0.017 0.801
White Matter 0.079 5.175

Figure 4.5: Guess Optical properties of biological head tissues ob-
tained by the mean of the value found in literature. The considered
wavelength is 735 nm. In section 3.2 the optical properties of head
tissues are explained on details.
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6 I Forward Solution to Predict Measurements

(a) (b)

(c)

Figure 4.6: Forward problem solver results by using the RD iterative
method approach. This step is analysed in Sec. 3.8 and it involves
the diffusion matrix assembly and the forward problem solution
computation illustrated in the work-flow of Fig. 3.23. Notice that
the number of iteration required for convergence is minimum 20 for
a total elapsed time of approximately 2 minutes. Due to the high
absorption of light in the first layers, logarithmic plots of photon
density are showed.
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7 I Jacobian Computation (S×M+1) Forward Solvers

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Comparisons between Jacobians calculated by using RD
Iterative Model (left column) and standard Diffusion Model (right
column). The second method doesn’t take into account the non-
scattering behaviour of CSF. This step is fully described in Sec. 4.2.

8 I Compute ∆µa

∆µa = lsqr(J,∆Φi) (4.12)

∆µa computation using MATLAB lsqr built-in function as shown in
Sec. 4.2.
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9 I Update Absorption Coefficients of the Head

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Example of image reconstruction when an anomaly is
introduced in the head domain. The anomaly affects only the white
and the gray matter, it is composed by 5247 voxel with an absorption
coefficient of 0.2 mm−1. In this case we consider only absorption
distribution reconstruction because it is high-correlated to the tissue
and blood oxygenation. Left column shows the target absorption
distribution, right column refers to the image reconstruction. Notice
that, due to the adopted reconstruction technique, solution tends to
be concentrated on the outermost layers and the detected variation of
the absorption coefficient is rather small.
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9 I Update Absorption Coefficients of the Head

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Example of image reconstruction when an anomaly is
introduced in the head domain. Left column shows the target ab-
sorption distribution while right column shows results obtained by
forcing the solution to be confined in the brain regions, leading to a
solution that fits very well the target.
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4.4 Conclusions

An inverse problem solver based on the proposed forward problem solver

described in Chapter 3 has been developed and described in this chapter.

Due to the complexity of the full-resolution head domain, an adjoint method

based on reciprocity principle was adopted to handle the large number of

voxels composing the domain. Since light intensity decreases significantly

before reaching cortical regions, an innovative technique has been imple-

mented to avoid reconstruction being concentrated on the outermost layers

by forcing the solution to be located in grey and white matter only, with the

relevant improvement which can be appreciated in the comparison between

image reconstruction of Fig. 4.3 and Fig. 4.3.

In Chapter 5, the implemented framework is used to validate DOT experi-

mental measurements.



Chapter 5

Inverse Problem with

Experimental Data

An ad-hoc software framework for simulation of light transport in both

diffusive and clear regions is made available and described in Chapters 2, 3

and 4, being able to handle complex geometries with mm-range resolution.

It is designed to efficiently run on multi-GPU/CPU system to significantly

speed-up reconstruction of the optical properties without sacrificing res-

olution. Moreover, it has been used to verify the how common errors on

measured data propagate to the output.

The objective of this chapter is to validate the system using a phantom

made by materials of different reduced scattering and absorption coefficients

(respectively µ′s and µa) layered to mimic a human head.

First, in Sec. 5.1, we chose to perform a sensitivity analysis of the recon-

structed parameters as a function of some deviations in the hardware be-

haviour with respect to an ideal one.

After that, in Sec. 5.2, we characterize the hardware composing the portable

DOT system realized by STMicroelectronics, University of Palermo (UNIPA)

and Catania Unit of the Institute for Microelectronics and Microsystems

(CNRIMM). This platform is employed to perform the experimental mea-

surements presented in Sec. 5.3; the proposed RD software framework is

finally used to reconstruct the optical properties of the domain from mea-

sured data.

82
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This work has been developed in collaboration with STMicroelectronics,

UNIPA and CNRIMM in the scope of the “HIGH PROFILE” European

project and it is fully described in [82].

5.1 Software framework for analysis of Hardware non-

ideality

In order to perform a robustness analysis, we consider three main possible

sources of error:

1. Deviations in the gain of the different detectors, which can arise in any

point of the acquisition chain;

2. Deviations in the source optical power at the surface;

3. Instrumentation or external noise, which we model as an additive

white Gaussian input referred noise.

We consider a toy problem which is related to the availability of uniform

samples of the materials composing the phantoms. These are cubic and

homogeneous samples of 47x47x47 mm, having the optical characteristics

presented in Table 5.1.

In the following we consider the material composing sample 1, with an

Sample ID Tissue µa [mm−1] µ′s [mm−1]
Sample 1 Skull 0.019 0.904
Sample 2 CSF 0.001 0.025
Sample 3 Gray Matter 0.017 0.577
Sample 4 White Matter 0.011 0.930

Table 5.1: Optical properties of the considered samples.

absorption coefficient of 0.019 mm−1 and reduced scattering of 0.904 mm−1.

In order to have a realistic comparison with measured data, we consider to

have a probe which has the same geometrical properties of the hardware

developed in the project and described in Sec. 5.2. We assume that one light

source and four detectors are present on the top surface of the sample.

Geometrical positions of source and detectors are visible in Fig. 5.1.

The triangular grid shown in the figure above is composed by equilateral

triangles with side 15 mm. Caption L4 identifies the source while S5, S6, S7,
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Figure 5.1: Detectors (S5, S6, S7, S8) and source (L4) placement on the cubic
sample surface in the section z = 0.

(a) (b) (c)

Figure 5.2: Light distribution in three different sample sections correspond-
ing to x = 12 mm (a), y = 10 mm (b) and z = 0 (c) with the experimental
setup illustrated in Fig. 5.1

S8 indicate the detectors.

The resulting light distribution computed by the implemented RD numerical

solver replicating the experimental setup of Fig. 5.1 is shown in Fig. 5.2.

We perturb the nominal solution above with the mentioned non-idealities

at the detector position in order to test the sensitivity of the implemented

numerical solver.

5.1.1 Deviations in the gain of the different detectors

The possible sources of gain errors could be:

• Inter-detector variations in the sensitivity;
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• Intra-detector non-linearity in the sensitivity curve (non-linear rela-

tionship between output current and incident optical power);

• Mismatches in the amplification stages;

• Mismatches in analog-to-digital conversion.

A gain error is modelled by modifying the exact value of the nominal

solution at the detector position as follows:

Φmeas = Φth(1 + k). (5.1)

where k = (k1, k2, k3, k4) is a vector composed by samples extracted from a

random Gaussian process with zero mean and standard deviation σk, Φmeas

is a 4-dimensional vector containing the 4 synthetic measures and Φth is a

4-dimensional vector containing the forward solver nominal solutions in

the detector positions. The perturbations on each detector are different one

from the other and come from different realizations of the random process.

The reconstruction of the absorption coefficient of the sample is performed

from the perturbed detected values and the solution is checked with respect

to the nominal value. Different values of standard deviation σk and target

tolerance are taken into account.

Results are shown in Table 5.2, where each value of Success Rate (SR) is

obtained from statistical analysis of 100 runs. Results are summarized in

σk µa ± 5% SR µa ± 10% SR µa ± 20% SR
0.01 100% 100% 100%
0.05 88% 100% 100%
0.10 62% 92% 100%
0.15 40% 76% 98%
0.20 34% 66% 92%
0.25 35% 57% 91%
0.30 25% 52% 81%
0.40 17% 25% 58%
0.50 16% 36% 62%
0.75 14% 27% 44%
1.00 9% 15% 29%

Table 5.2: Success rate for gain non-ideality.

Fig.5.3. It can be seen that the threshold for correct reconstruction of the
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(a) (b)

(c)

Figure 5.3: Success rate for gain non-ideality in function of the standard
deviation of the Gaussian process.
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absorption coefficient is approximately equal to the value of the uncertainty

with which we accept the solution to be correct. This simple analysis allows

us to infer that the inverse solver is stable with respect to this kind of

perturbations and that the perturbation on the input is not amplified, rather

kept almost the same at the output. Similar results have been obtained with

similar setups and are not presented here for sake of compactness, allowing

us to extrapolate these results to configurations which can be obtained with

the developed hardware.

5.1.2 Deviations in the source optical power at the surface

The second kind of perturbation which we consider is a deviation in the

optical source power with a random Gaussian distribution with zero mean,

that affects the theoretical measurement as follows:

Φmeas = Φth(1 + h), (5.2)

where h = (h, h, h, h) is a sample extracted from a Gaussian distribution

with zero mean and standard deviation σh.

The possible sources of this kind of errors could be:

• Deviations on different sources;

• Misalignments;

• Partial occlusions.

Each detector measure is perturbed by the same sample value. Results of

these simulations are summarized in Table 5.3 and Fig. 5.4.

It can be noticed that the effect of a source power deviation leads to similar

results with respect to the previous case, where a gain non-ideality was in-

troduced. This kind of error has a slightly higher effect on the reconstructed

properties.

However, taking into account a 10% target accuracy on the solution, a pertur-

bation modelled by a Gaussian distribution with standard deviation equal

to 0.25 (with respect to a nominal value of 1) still leads to almost 50% success

rate.
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(a) (b)

(c)

Figure 5.4: Success rate for source power non-ideality in function of the
standard deviation of the Gaussian process.
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σh µa ± 5% SR µa ± 10% SR µa ± 20% SR
0.01 100% 100% 100%
0.05 73% 97% 100%
0.10 44% 79% 97%
0.15 28% 58% 90%
0.20 19% 44% 72%
0.25 30% 49% 77%
0.30 16% 30% 61%
0.40 12% 23% 46%
0.50 8% 18% 44%
0.75 16% 15% 32%
1.00 1% 2% 12%

Table 5.3: Success rate for source power non-ideality.

5.1.3 Instrumentation or external noise

The third kind of perturbation which we consider is additive white Gaussian

noise on the detected signal and it derives from the following sources:

• Detector noise;

• Detector biasing noise;

• Acquisition chain noise (amplifiers, ADCs);

• Physiological noise (does not apply to the phantom).

The mathematical model of this error is the following:

Φmeas = Φth + n; (5.3)

where n is a sample extracted from a random Gaussian process with zero

mean and standard deviation σn. The perturbations on each detector are

different one from the other and come from different realizations of the

random process. Results are shown in Table 5.4 and in Fig. 5.5 in function

of SNR that is computed as:

SNR =

√∑4
i=1 Φ2

imeas
4

σn
. (5.4)

Again, we can assume that the inverse problem solver is stable with respect

to measurement noise. As an example, taking into account a 10% target
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SNR σn µa ± 5% SR µa ± 10% SR µa ± 20% SR
23.26 0.05 100% 100% 100%
11.63 0.10 78% 99% 100%
7.75 0.15 76% 98% 100%
5.01 0.20 42% 79% 100%
4.65 0.25 46% 71% 96%
3.87 0.30 38% 60% 94%
3.32 0.35 33% 59% 87%
2.90 0.40 25% 52% 86%
2.33 0.50 18% 39% 72%
1.54 0.75 15% 29% 54%
1.16 1.00 15% 24% 46%

Table 5.4: Success rate for noise analysis.

(a) (b)

(c)

Figure 5.5: Success rate in function of the SNR for noise analysis

accuracy on the solution, we can see that a SNR as low as 3 allows more

than 50% correct reconstructions.
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5.2 Hardware characteristics

In this Section we briefly describe the characteristics of the hardware system

which has been employed to realize the experimental light measurements.

The portable DOT system was realized by STMicroelectronics in the scope

of the European project HIGH PROFILE.

The scope of this Section is to facilitate the interpretation of data analysis

performed in Sec. 5.4.

5.2.1 STM SiPM detectors

The use of Silicon Photomultipliers (SiPMs) in a DOT system has been es-

timated potentially able to increase its spatial resolution. Dedicated SiPM

sensors have been designed and fabricated by STMicroelectronics using

an optimized process. The SiPM is a large area detector consisting of a

parallel array of micro-sized Geiger Mode Avalanche Photodiodes (GMAPs)

microcells with individual integrated quenching resistor. The diodes are

biased above the breakdown voltage; the absorption of a single photon may

trigger an avalanche current pulse; the avalanche current is quenched by

an integrated quenching resistor. The current pulse amplitude does not

depend on the number of photons firing the cell: it works as a digital de-

tector. Each microcell, working as an independent photon counting device,

is connected to a common output to produce a summation device whose

output signal is proportional to the number of detected photons [83] [84].

Further details about the manufacturing method of STM SiPM technology

are reported in [85]. The characterization results have been already reported

in [86] [87][88][89][90] for 1 mm2 area SiPMs with 324 microcells and 60 µm

pitch.

5.2.2 DOT Embedded System

The design of the adopted DOT embedded prototype, hosting up to 64 IR

LED sources and 128 SiPM sensors, is described in [76]. The system has

been designed to realize DC and pulsed configurations and, by exploiting

the small form factor of SiPM and LED sources, to cover the entire skull

surface employing the above specified a high numbers optical components.
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Figure 5.6: Main Reference Architecture of the portable DOT embedded
system (source: [82]).

The adopted architecture is a scalable solution where every leaf consists of 8

modular and flexible probes, able to host 4 bi-color LEDs at two different

wavelengths (735 and 850 nm) as light sources, 16 SiPMs as photo-detectors

and a temperature sensor (see Fig. 5.6). The architecture can drive up to

8 secondary boards and probes, each hosting 16 SiPM and 8 LEDs, thus

keeping a high level of design modularity. In particular the embedded

system has been realized by subdividing the whole electronic design in

several sub-platforms:

• a Main Board hosting a powerful ARM based microcontroller;

• a Secondary Board dedicated to the handling of a modular sub-system

containing 8 IR LED and 16 SiPM sensors (Probe Board);

• a flexible Probe Board hosting the light peripheral and photo-detectors;

• a power supply delivering all the needed supply voltages (both for

the analog paths and the digital chips) starting from a unique battery

pack.

Each probe board is connected to the secondary board through a flexible flat

cable. The secondary board is responsible for the whole multiplexing actions

needed to implement the polling functionalities able to collect measurements

from all LEDs and SiPMs.

In Fig. 5.7 a detail of the LEDs and SiPMs geometrical arrangement within

a probe board is shown. All the devices are positioned at the vertexes of

triangles, so distances of 1.5 cm or multiples are allowed. The red crosses,

visible in the picture, represent the positions where sensors of an adjacent
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Figure 5.7: Detail of a probe board schematic.

Figure 5.8: Picture of the probe board.

probe can be stitched together, thus obtaining a full uniform coverage. The

probe board picture is shown in Fig. 5.8.

5.3 Measurements and data analysis

An optical phantom, mimicking a human head, has been employed to

perform some experimental measurements.

The human brain tissue phantom consists in a cylinder with four different

layers that mimic the optical properties of the different layers of a human

brain: the skull, the cerebral spinal fluid (CSF), the grey matter and the white

matter. The phantom is made of polyurethane which provides long term

stability. Small particles of TiO2 were used as the scattering agents, while

carbon black as absorbing dye. The thickness and the optical properties of

the four layers are summarized in Table 5.1.

In addition to the optical phantom, four blocks with cubic geometry with

size 4 × 4 × 4 cm3 has been realized. The phantom and the samples are

shown in Fig. 5.9. The single block has the same optical property of each

layers of the phantom.
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STMicroelectronics in collaboration with UNIPA and CNRDIMM of Catania

Figure 5.9: Phantom and samples used for experimental measurements.

provides us a set of experimental measurements realized using two different

setups:

• A portion of the probe (one source and 4 detectors) is placed on each of

the four samples of the materials composing the four different layers

of the phantom;

• A larger portion of the probe (three sources and 12 detectors) is placed

on the phantom.

In both cases the number of measurements is higher than the number of

unknown optical parameters which need to be reconstructed. The inverse

problem described in Chapter 4 is determined and a unique solution can be

found without the need for additional information (regularization). Mea-

surements are performed in a dark ambient using a black and opaque screen

to avoid ambient light to reach the samples and the phantom.

5.3.1 Experimental Measurements on Samples

Fig. 5.10 represents the schematic of the experimental setup for measure-

ments on each sample with optical properties of each layer composing the

phantom. Measurements were performed at three different bias voltages

for the SiPM (-28.5 V, -29 V, -29.5 V) and for several different optical power
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of the source (16 steps of diode bias current from 1 µA to 1500 µA). Data

were sampled at 166 Hz for 10 seconds so as to allow to verify stability and

average data to remove high frequency noise.

Additionally, some measurements have been performed by STMicroelec-

Figure 5.10: Schematic of samples experimental setup.

tronics and UNIPA to characterize the behaviour of sources (LEDs) and

detectors (SiPMs).

The breakdown voltage (Vbd) is the minimum bias voltage that leads to

self-sustaining avalanche multiplication in Geiger-Mode avalanche photo-

diodes (GM-APDs). For Vbias = Vbd both the detection efficiency and the

gain of SiPMs are still null. Only for Vbias > Vbd output current pulses are

actually observed. The excess bias beyond the breakdown voltage is called

overvoltage (Vov). By definition:

Vov = Vbias − Vbd. (5.5)

In principle, the higher the overvoltage, the higher the SiPM performance.

In reality, since the detection efficiency tends to saturate with Vov while the

noise keeps on increasing (even more than linearly) with Vov, there exist an

upper limit to the optimum SiPM bias voltage. Fig. 5.11 shows breakdown

voltage variability among different SiPMs of the same probe. Breakdown

voltages are easily extracted on an I-V plot, by notice the voltage value for

which a sudden increase in current is present.
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Figure 5.11: Variability of breakdown voltage among the different SiPMs.

5.3.2 Experimental Measurements on Phantom

Fig. 5.12 represents the schematic of the setup for phantom measurements,

in particular the portion of the probe which is placed on the top of the

phantom.

Measurements are performed in a dark ambient using a black, opaque screen

to avoid any ambient light to reach the phantom.

Figure 5.12: Schematic of the phantom experimental setup.
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5.4 Data analysis

Data were stored in different files, each file is characterized by the same

bias voltage for the SiPM and LED bias current. Data are relative to both

LED wavelength and sets of 10 to 15 seconds of data are acquired for each

SiPM-LED pair of the probe. Data is sampled at 166 samples per second and

it is imported in MATLAB, where suitable domains are modelled to verify

agreement between measured and simulated data and provide reconstruc-

tions of the optical properties.

The spectral content of the data acquired from one SiPM on a sample of

Layer 1 underlines that the noise is more or less evenly distributed, without

the presence of significant content at particular frequencies. In time domain,

noise power is approximately stable and relatively high (up to 20% of the

measured signal) and a low-pass filtering of the signals is necessary to pro-

vide reliable data for post-processing.

Fig. 5.13 shows the detected signal on four detectors on a sample of layer

Figure 5.13: Output SiPM signals measured on a sample of layer 1, bias
voltage -28.5 V.

1 as a function of the LED bias current. It is quite clear how the system

exhibits a highly non-linear behaviour.

From section 5.3, we can expect the LED emitted optical power to be roughly

proportional to its bias current.

Since we can expect the domain to have a linear behavior as well, the

non-linearity needs to be due to the detector behavior. This is particularly
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troublesome since SiPM at different positions are hit by significantly dif-

ferent optical power, therefore one can not rely on relative measurements

among different SiPM to provide reconstructions.

Additionally, we can observe how S5 and S8 are at the same distance from

the light source L4, nevertheless, the ratio between measured value on the

two detectors is approximately 2. According to our simulations, this can

not be justified by effects at the border of the domain and the expected ratio

between the detected signals should be approximately 1.

Given the fixed value of the bias voltage and the large variability of the

breakdown voltage, there is a deviation of approximately 400 mV in the

overvoltage between the two sensors. This is probably responsible for the

high variability in the measurements.

Fig. 5.14 shows a similar analysis for higher bias voltage. We can observe

Figure 5.14: Output SiPM signals measured on a sample of layer 1, bias
voltage -29.5 V.

how there is still a misalignment between signals detected on S5 and S8,

however the deviation is smaller.

This is consistent with the previous analysis since for higher bias voltage,

the effect of the breakdown voltage variation on the overvoltage will be

smaller.

Nevertheless, a deviation of more than 30% is still present. Additionally we

can observe how all detectors behave highly non-linearly with respect to

incident optical power. As an example S6 detected value increases by less

than 10% as a consequence of a theoretical simulated 100% increase of the
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incident optical power.

These two effects combined lead to errors in the reconstructed optical prop-

erties which can go up to 100% or more, due to the virtual impossibility of

the algorithms to converge to a solution which justify measurements. This

is in accordance with Sec. 5.1 and is directly due to the fact that, even if

measurement error propagates almost un-amplified from the input to the

output of the reconstruction algorithms, measurements themselves have

non-idealities in the range of more than 50%. Similar results are obtained

Figure 5.15: Output SiPM signals measured on the full phantom, bias voltage
-29.5 V.

for measurements performed on the full phantom. In Fig. 5.15 we see that

in this case S5 and S10 share correctly similar output signals having the

same distance from source (L4). However we can still see that the detectors,

especially S6, are operating in a highly non-linear region, leading again to a

virtual impossibility to perform meaningful reconstructions.

5.5 Conclusions

In this chapter, the proposed software framework for DOT optical properties

reconstruction was adapted to be used for the validation of measurements
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obtained with an experimental test. The proposed inverse problem solver

was verified to be able to reconstruct the optical properties of a sample

starting from synthetic measurements obtained by the perturbation of the

numerical solution. The robustness of the algorithm versus non-idealities

(noise, gain mismatches, non-linearities) was verified, resulting in an error

on the reconstructed optical properties which is in the order of that on the

input data.

Hardware system was characterized by STMicroelectronics,UNIPA and

CNRIMM, some non-idealities where detected such as high noise level, high

detector non-linearity and high spread in breakdown voltage, leading to

high spread on over-voltages and on output currents.

While noise level can be reduced by filtering, the gain error in the detector

signal acquisition chain can be 100% or higher. Coherently to simulations

on synthetic data, this leads to error in the reconstructed properties of

approximately the same value, making it impossible to attempt meaningful

reconstructions, identifying some non-idealities in the experimental setup.

Possible improvements in the measurements quality could be the reduction

of the light emission from LEDs to prevent the detector non-linearity due to

its saturation and a more accurate selection of the sensors to solve the gain

spread issue due to breakdown voltage spread.



Chapter 6

Conclusions Section A

In Section A of this thesis we have shown the main contribution of my

research activity. It concerns the development of a complete software work-

flow for DOT and MRI data fusion based on highly parallel algorithms for

improved image reconstruction. The aim is to efficiently include structural

information derived from structural MRI to better evaluate the distribution

of the optical properties within the head. Final objective is then to obtain

information about local tissue and blood oxygenation, correlated to brain

activity of specific regions.

One of the most significant improvement introduced by the implemented

DOT toolbox is related to the possibility to accurately represent diffusive

and clear regions with different physical and numerical models, having at

hand structural information on the boundaries between regions.

The main results of Section A could be summarized as follows:

1. The anatomical information provided by MRI improves the results

delivered by algorithms of optical properties image reconstruction;

2. MRI information is also relevant for the suitable modelling of light

propagation, allowing to distinguish between diffusive tissues and

clear regions like CSF;

3. Light propagation algorithms solution highly benefits from highly-

parallel implementation. Particularly significant is the fact that the

very same GPU cards are used both for the linear system solver asso-

ciated to the diffusive problem and the computation of form factors

associated to ray-optics part;

101
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4. Since light intensity decreases significantly before reaching cortical

regions, inverse problem solvers need to implement techniques to

avoid reconstruction being concentrated on the outermost layers. An

innovative approach has been implemented to avoid this issue by

forcing the solution to be located in grey and white matter only, with

a remarkable improvement in the accuracy of reconstruction;

5. The proposed inverse problem solver was verified to be able to re-

construct the optical properties of a sample starting from synthetic

measurements obtained by the perturbation of the numerical solu-

tion. The robustness of the algorithm versus non-idealities (noise, gain

mismatches, non-linearities) was verified, resulting in an error on the

reconstructed optical properties which is in the order of that on the

input data;

6. The proposed software framework for DOT optical properties recon-

struction was adapted to be used for the validation of measurements

obtained by an experimental test, identifying some non-idealities in

the experimental setup leading to high noise level, high detector non-

linearity and high spread in breakdown voltage, making it impossible

to attempt meaningful reconstructions.

Possible improvements for a future work could be the reduction of the

light emission from LEDs to prevent the detector non-linearity due to its

saturation and a more accurate selection of the sensors to solve the gain

spread issue due to breakdown voltage spread.
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Section B : EEG for BCI systems
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Chapter 7

ElectroEncephaloGraphy &

BCI systems

As introduced in Chapter 1, EEG is a monitoring technique commonly ap-

plied in neuroscience research and clinical routine to explore human brain

behaviour.

EEG is based on the measurement and mapping of electrical activity pro-

duced by the brain as it is being recorded by electrodes placed on the scalp.

The recorded data are plotted into a standard chart (electroencephalogram)

and examined by the physicians.

However, in the past years brain imaging techniques have been presented

based on the elaboration of data recorded by EEG, in order to avoid high

costs of electromagnetic-based solutions, e.i. fMRI. Aim of this new field of

application, known as EEG source imaging, is to provide functional images

of neuronal activity in the human cerebral cortex (gray matter), in particular

for the localization of active areas at each time-frame (source localization).

To retrieve meaningful insights from these measurements, EEG brain imag-

ing relies on detailed knowledge of the morphology of the subject head

volume, which determines the scalp voltage distribution due to brain activ-

ity. This is obtained from numerical models of the electric field propagation

in the head, whose computation is very time-consuming and computation-

ally intensive.

The objective of this chapter is to give principles, theoretical basis and appli-

cations of EEG to understand the reserach activity explained in Chapters 8,

9 and 10.
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7.1 Physiological nature of EEG

EEG brain imaging is a technique based on the estimation of cerebral activity,

starting from the recording of potentials directly generated by neuronal

activity. For this reason, a short overview of the physiological nature of EEG

is outlined in the following paragraph.

7.1.1 Neuronal activity

Neurons are electrically excitable cells, whose activity consists essentially in

the switching between two states:

• a rest state, where neurons are in a stationary electrical condition

characterized by a constant potential difference across its cellular

membrane given by different ion concentration;

• an active state, where neuron transmit along its axon impulses (action

potentials) at a particular frequency (firing rate) exploiting a precise

activation pattern for the ionic channels aimed to balance ionic dise-

quilibrium across the membrane.

When in an active state, the instigated behaviour causes an electric field,

propagating in the surrounding (conductive) medium, that is supported

by an extracellular current density owing between the axon extremities.

Electric field generated results in a potential distribution through the head,

which can be theoretically recorded by passive electrodes placed on the

scalp. However the time course of the action potential is too short (0.3 ms) to

be detected from EEG electrodes, although it can be large in amplitude (70-

110 mV) [91][92]. Transition between the two states is due to the occurrence

of post-synaptic stimuli (PSP). PSP are stimuli sent by connected neurons at

the dendrites; they flow towards the soma and along the axon, eventually

determining a change of the neuron state. Differently from active potentials,

PSP have a large time course (10-20 ms), although a lower amplitude (0.1-10

mV), which make them detectable by EEG electrodes [93].
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7.1.2 Limits of electric field detection from the scalp: the pyrami-
dal cells

In reality, the morphology of the head and the different order of magnitude

between the electrical source (neurons) and the recording device (finite size

electrodes) makes it impossible to detect activity of a single neuron switch.

In fact, an electric field generated by a single neuron is too weak to be de-

tectable by scalp electrodes, which are large and remote. Furthermore the

propagation of electric fields (and of associated current densities) between

the scalp and the brain is strongly limited by the skull, as it is more resistive

than other head tissues provoking a considerable shunting effect on the cur-

rent flow. What is more, the resulting field produced by randomly-oriented

neurons can be considered practically null, because all the contributes tend

to cancel each other out.

Given these limits, EEG electrodes can only detect summed activities of a

large number of neurons that are coherently oriented along a common direc-

tion and synchronously electrically active [93]. These conditions are verified

for a particular class of neurons located in the gray matter: the pyramidal

cells. As shown in Fig. 7.1 pyramidal cells are a type of neurons located in

the gray matter aligned perpendicularly at the brain surface. These cells

Figure 7.1: Pyramidal cells in brain cortex. Neurons are placed perpendic-
ularly to the cortex surface; their activation is synchronous, resulting in a
global electric field that is detectable from the scalp surface.

have an activity locally synchronous, which results in a global electric field

detectable by extra-cranial electrodes in the order of µV [20], so three orders
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of magnitude smaller than the amplitude of the sources of a single neuron

(mV).

EEG sources space results thus composed by a discretization of the gray

matter in voxels (elementary cubic volumes) enclosing pyramidal neurons

networks.

7.2 EEG Applications

To retrieve meaningful insights from these measurements, EEG brain imag-

ing relies on detailed knowledge of the morphology of the subject head

volume, which determines the scalp voltage distribution due to brain activ-

ity. This is obtained from numerical models of the electric field propagation

in the head, whose computation is very time-consuming and computation-

ally intensive (EEG forward problem [94]).

EEG is a technique that can provide high temporal resolution as the de-

tectable neural activity is concentrated at low frequencies, usually below 30

Hz. Typical EEG waveforms are localized at specific frequencies, usually re-

ferred to as rhythms [95] and are indicative of the patients state (deep/light

sleep, awake etc.). These rhythms are usually classified as follows:

• Delta rhythm: 0.5-4 Hz;

• Theta rhythm: 4-8 Hz;

• Alpha rhythm: 8-13 Hz;

• Beta rhythm: 13-30 Hz;

• Gamma rhythm: 30-100 Hz.

An example of brain rhythms is shown in Fig. 7.2.

Classical EEG analysis is based on the empiric examination of electroen-

cephalograms and the spectral analysis of the basic rhythms, which finds

application especially in subject monitoring, as in diagnosis of epilepsy; for

example Fig. 7.2 shows as an epileptic foci which causes a characteristic

periodic waveform at 3 Hz.

EEG is also used to measure event-related potentials where brain waves

are triggered by an external stimulus which could be visual, auditory and

somatosensory and find more field of applications in pre-surgical treatment,
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Figure 7.2: EEG rhythms. All EEG brain rhythms are at frequency less than
30 Hz. Periodic wave at the bottom is generated by an epileptic foci (source:
[96]).

neurofeedback and BCI.

In the pre-surgical treatment of epilepsy it has been proven as a high resolu-

tion EEG source imaging is a valuable non-invasive functional neuroimaging

technique [97].

The speed, ease, flexibility and low costs of this technique warrant its use

in clinical practice. EEG is also used in neurofeedback application, where

brain activation maps of the patient are computed and shown to him in real

time. This creates a direct interaction between the subject and his neural

activity, allowing him to try to modify his cerebral activity.

Advantages of EEG-based neurofeedback training have been proven by

some studies as in the cases of severe palsies [98], in treating psychological

disorders such as attention deficit/hyperactivity disorder (ADHD) [99], neu-

rological disorders [100] as well as in the improvement and the influencing

of improve cognitive performances in healthy subjects [101][102].

As shown in Chapter 1, recently EEG applications converge to Brain-Computer
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Interface (BCI) systems [103] and also consumer-oriented applications rang-

ing from home care to neurofeedback and gaming controllers.

7.2.1 BCI systems

As introduced in Sec. 1.3, BCI is a communication system interfacing the

human brain to external devices, like computers or actuators (see Fig. 7.3).

User commands are formed by recognizing brain activity with EEG and

Figure 7.3: BCI neurofeedback (source: [103]).

voltages measured by electrodes are sent to a computer. Data are interpreted

to compute actuators commands and the feedback is closed by the subject’s

perception of actuator actions or movements. Signal processing and actua-

tor actions has been performed by software toolboxes and depends on the

objective of the experiment.

Several real-time and open-source software platforms which allow design-

ers and scientists to setup and execute BCI experiments in real and virtual

environments have been introduced in the past few years. Examples of

these platforms are BCI2000 [104], OpenVIBE [105] and BioSig [106].

BCI2000 [104] is a general purpose platform capable of potentially incorpo-

rate any brain signals coming from a set of electrodes on the scalp, process
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these signals to extract specific features that reflect the user’s intent (e.g.

amplitude of evoked potentials) and then translate them into commands

that operate a device (e.g. word processing program).

OpenVIBE [105] is an open source software platform which consists of

a set of software modules that can be integrated to design BCI for both

real and virtual reality applications. It proposes a user-friendly graphical

language that allows non programmer to design a BCI experiment without

writing any code.

BioSig [106] is a toolbox which offers several modules and algorithms for

signal processing and real-time BCI.

An alternative to these BCI-oriented tools is represented by general pur-

pose tools, such as SIMULINK (MathWorks, Inc. Natick, MA) which is a

graphical programming environment widely used to design, simulate and

auto code software for different scientific fields. A Simulink model is a

hierarchical representation of the design of a system using a set of intercon-

nected blocks. In this context it can be used to acquire, process and extract

signal features. In addition, it allows the user to easily transfer data into

the MATLAB environment for a more accurate post processing using for

example the open source toolbox BioSig [106].

Connected to one of the commercial EEG systems, all of these BCI software

tools allow one to analyze neurophysiological signals in real time, or to

develop applications capable of providing practical assistance for patient

diagnosis, treatment, and rehabilitation [107, 108].

Despite of these useful applications, the dissemination of BCI systems is

limited due to the drawbacks of EEG systems. The majority of these are

high-expensive [17], thus not affordable even for research centres and uni-

versities. Also a few low-cost systems in the range of $500-$1000 (USD) are

supported by a large part of BCI software tools. However these systems are

usually equipped with a small number of channels, have moderate to high

noise and users cannot modify the position of the electrodes on the scalp.

The main issue of these systems is the lack of a direct connection between

BCI software tools and hardware implementation. There are no standard
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libraries that allow one to connect them to the previously described BCI

software tools. Hence this lack makes it difficult to use these hardware

outside of the laboratory in which they were designed.

In addition, without stable software libraries which provide a way to con-

nect the system to a BCI software tool, it is difficult to assess how the system

functions and indeed whether it functions at all. If the system does not

perform as expected it can be complicated to determine if the fault is due

to a hardware or software issue and the time spent in trying to identify the

source of error and correcting it can be substantial.

7.2.2 Creamino

In the scenario described in the previous section, the ARCES research team

developed an Arduino-based cost-effective EEG system called Creamino,

which has a fabrication cost of about 50 euros for the first 8 channels (work-

ing system, including wet-contact active electrodes) and 30 euros per each

additional 8 channels. These numbers are particularly attractive for systems

designed to be used outside clinical environments, such as in home care or

research-oriented applications. In addition a set of libraries which allows

the system to be used in a variety of software environments has been devel-

oped.

This work was developed in the scope of the European Project named

CREAM. The project is focused on the multidisciplinary study of the neural

substrates of creativity in different knowledge domains.

Creamino consists of a hybrid hardware/software platform capable of quickly

linking the analog front-end (AFE) circuits for biopotential measurements

and the PC used to acquire, visualize and process the EEG signal. Creamino

allows one to reduce the time and the effort required to complete a new

design thus leading to a rapid prototyping of an EEG-based BCI system.

Specifically the contribution of my research team can be summarized as

follows:

• A sample design of a microcontroller system supporting the connec-

tion with the AFE, extract the EEG signals and transfer them to a

PC;
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• A custom made acquisition software with a graphical user interface

(GUI) that can be used to acquire, filter, process, classify, visualize and

store up to 64 EEG channels in real-time;

• A set of libraries and drivers running on a standard PC which allows to

connect the system to BCI2000, OpenViBE, MATLAB and SIMULINK;

• A set of SIMULINK libraries for EEG Source Localization;

• A set of examples that shows how to easily setup a system and perform

experiments.

Schematics, gerber files, source code and software modules of Creamino

are available with full documentation and free of charge for research and

educational purposes online at https://github.com/mchiesi/Creamino.

My contribution concerns the development of SIMULINK libraries for EEG

source localization which are able to compute the mean power of the EEG

sources lying in user-defined regions of interest (ROIs).

7.3 EEG Source Localization

As introduced in Chapter 1, the EEG computational work flow can be di-

vided into two tasks: forward problem and inverse problem.

A forward problem is defined as the determination of the voltage distri-

bution in the volume under analysis, given its electrical properties (local

conductivity) and the sources (active voxels) distribution in the gray matter.

Head volume in EEG data elaboration can be managed as concentric com-

partments structure, where compartments are defined by the principle head

tissues (brain, skull, skin), enclosing the electrical sources volume. Due to

the complexity of the domain, analytical solutions are not feasible, and one

needs to rely on numerical solvers.

Computational resources that are required by a realistic head model are

high, thus, simplified head geometries based on concentric spherical shells

are often used; however, the limits of this approach in respect to realistic

head model are proven [109] [110], also in medical usage [38].

What is more, several studies demonstrate that EEG data elaboration is

influenced not only by approximations on the compartments surface, by

https://github.com/mchiesi/Creamino
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also by irregularities on them like varying thickness, irregular curvatures

and holes in the skull [111].

The inverse problem, on the other hand, is defined as the estimation of the

electrical sources distribution inside the gray matter, given the electrodes

measurements and the relationship between the voltage and voxels distri-

bution defined by the forward problem. Given the relative small number

of passive electrodes, generally from 32 to 256 in proportion to the voxels

number (in our workflow ∼ 200.000), this problem is ill-posed and with

many solutions. So an estimation is necessary that takes into account a-

priori informations in order to select the more realistic and physiologically

correct solution among the others. The mathematically inverse problem

is so defined by an overdetermined system (more unknowns than equa-

tions), which can be solved with a numerical approach based on functional

minimization coupled with regularization techniques.

7.3.1 EEG Forward Problem Theory

Starting from the quasi-static Maxwell equations, localizing the neural cur-

rent source generators of EEG basically breaks down to solving the equation:

∇ · (σ∇ϕ) = ∇ · j (7.1)

Where σ is the conductivity tensor, ϕ is the potential distribution and j is

the current density vector field in the medium, in this case the head. Quasi-

stationarity is a fair assumption considering the low frequency range of EEG

generators.

There is only a limited amount of potential measurements, so we can transfer

ϕ into a discrete vector Φ of length Ne containing all instantaneous sensor

measurements, with Ne being the number of electrodes. For technical fea-

sibility, also the current sources must be discretized. Picking individual

neurons for this is unfeasible, instead, a macroscopic current dipole model

is commonly chosen to segment the cortical grey matter into an uniform

array of discrete current sources, called “voxels”. The result is a vector

J = (J1, J2, J3, . . . JNv), with Ji being the 3-dimensional current density

vector at voxel i and Nv being the number of voxels.

The solution to the (discretized) forward problem is a linear map K :
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RNv × R3 → RNe , mapping current densities to scalp potentials such that

J = KΦ + c1, (7.2)

where K is commonly referred to as the electric lead field. The c1 term is

added due to the fact the electric potential is defined only up to an arbitrary

constant; c is a scalar and 1 denotes a vector of ones. The linearity holds due

to the superposition principle. Solution of the forward problem (i.e. obtain-

ing the coefficients of K) strongly depends on the volumetric conductivity

model of the head and can be very challenging if the conductivity model

contains some anatomical detail [93].

7.3.2 EEG Inverse Problem Theory

The functional that needs to be minimized in order to obtain a map of

current densities is:

F = ||Φ−KJ − c1||2 + α||J ||2, (7.3)

for a given K, Φ and α, α is a weighting coefficient used to modulate the

reconstruction.

The explicit solution to the minimization problem is:

Ĵ = T · Φ with T = KT ·H
[
HKKTH + αH

]+ (7.4)

and H = I − (1·1T )
(1T ·1)

, H ∈ RNe×Ne .
H is the centering matrix, I ∈ RNe×Ne is the identity matrix and 1 ∈ RNe×1

is a vector of ones. Here the superscript T denotes the transpose operator

as before while the superscript + represents the Moore-Penrose pseudoin-

verse. Up to this point, the current densities are reconstructed according to

LORETA algorithm [112]. In eLORETA [113], the matrix T of the inversion

step is modified as:

Ĵ = T · Φ with T = W−1KT
[
KW−1KT + αH

]+ (7.5)

where W ∈ R3Nv×3Nv is a weighting matrix that can be computed with

an iterative method. Starting from the LORETA current density power
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estimate of Eq. 7.4, it is then possible to obtain sLORETA reconstructions by

standardizing the density power relative to each voxel according to [114]:

Ĵl = JTl
(
[SĴ ]ll

)−1
Ĵl (7.6)

where Ĵl ∈ R3×1 is the current density estimate at the lth voxel given by Eq.

7.4 and [SĴ ]ll is the lth diagonal block of matrix:

SĴ = KT
[
KKT + αH

]+
K. (7.7)

Since the brain activity that is possible to detect by EEG acquisitions lays

only in the cerebral cortex of the brain, the inversion process is limited to

that region. We map the position of the electrodes mounted on an EEG

cap according to the international 10-20 system onto the segmented head

volume [115].

The current density estimated by the described methods is generally ob-

tained for each voxel of grey matter given by the segmented MRI. Addi-

tionally, grey matter voxels can be parcellated in 96 different brain regions

according to the Harvard-Oxford cortical and subcortical structural atlas

(Fig. 7.4) [116].

(a) (b) (c)

Figure 7.4: Coronal (a), Transverse (b) and Sagittal (c) section of the parcel-
lated domain of interest.
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7.4 Conclusions

This chapter has given principles, theoretical basis and applications of EEG,

with particular focus on BCI systems and EEG Source Localization which

represents the object of the research activity illustrated in the following

chapters.



Chapter 8

Simulink Libraries for

Creamino BCI

EEG Source Localization is one of the most relevant topic treated in the

ARCES research center in last years. A lot of work was developed and

described in [117] and [94], where the implementation of many EEG inverse

solvers (including LORETA’s family of algorithms) is proposed, with par-

ticular focus on the method of choice of the reconstruction algorithms and

detailed comparisons with respect alternative techniques.

Recently, in the scope of the CREAM project, a C/CUDA parallel imple-

mentation of LORETA’s family of algorithms was developed by the ARCES

research team, starting from the previous work on EEG source localization.

Having at hand the parallel implementation of LORETA, eLORETA and

sLORETA, my objective was to develop SIMULINK libraries which were

able to compute the mean power of the EEG sources lying in user-defined

regions of interest and that can be easily introduced in a real-time system

such as Creamino.

The objective of this section is to integrate these inverse problem solvers

in a user-friendly SIMULINK model, which can be easily introduced in a

real-time BCI system.

The C/CUDA implementation of all three reconstruction methods is inte-

grated with the Simulink environment by adopting a user-defined block

that loads a dynamic shared library generated starting from the native code

of these functions.

To facilitate the interaction with other software components, we adopted a

118
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standard laptop computer based on Windows 10 Enterprise and equipped

with a CUDA capable device.

The dynamic shared library was developed and build using Microsoft Visual

Studio Professional 2013 (v12.0.40629.00 update 5) and tested within the

MATLAB environment. After that, a user-defined block (S-Function) was

implemented to invoke the function in the dynamic library.

8.1 MATLAB Testing of the dynamic library

The dynamic library built using VS2013 (dll extension for Windows OS), was

loaded and tested within MATLAB by means of specific functions. First of

all it was loaded in MATLAB by using the loadlibrary function. In order to

verify that the functions of the library were loaded correctly, we used the

function libfunctionsview that allows to display the shared library function

signatures.

Finally, the function calllib was employed to invoke the functions in the

generated dynamic library. Since the library is composed of C/C++ or

CUDA functions, a specific structure has been built to pass arguments from

the MATLAB environment to the dynamic shared library. This structure is

realized through the libpointer function, which generates a pointer object

that can be used within the shared library. The result of the invoked function

returns in a libpointer object which is acquired through the getfunction. The

last step of the MATLAB validation of the dll has been realized comparing

the result returned by the dll function execution with the result given by the

MATLAB implementation of the same function.

8.2 Calling the Shared Library from Simulink

Once the library has been tested in the MATLAB environment, it is possible

to invoke the dynamic library functions in the Simulink environment. This

integration can be realized by calling the shared library from a user-defined

block. To this purpose there are several possibilities, such as:

1. Calling shared library using MATLAB S-function;

2. Calling shared library using CMEX S-function.
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The first method allows to invoke the shared library functions through lo-

cal functions using function handles while the second method allows the

Simulink engine to directly invoke MEX S-function. As a result, a CMEX

S-function simulates faster than a MATLAB S-function because the latter

calls the MATLAB interpreter for every callback method.

Since LORETA algorithms are characterized by high-computational require-

ments which markedly increases in a real-time setting, the CMEX S-function

appears to be more appealing for our purposes.

This approach allows the user to write plain C code; moreover, it is needed

to load the generated library and call functions in it. Subsequently, the code

is compiled into a binary file that is recognized by SIMULINK and linked

against the shared library. This binary file is called S-function MEX file and

can be invoked from a user-defined SIMULINK S-Function block.

8.3 Creation of the C MEX S-function

In order to manually create the C MEX S-function we use sfuntmpl_basic.c,

one of the provided S-function templates which contain the skeleton of

all the required and optional callback methods that a C MEX S-function

can implement. It is important to underline that the S-function blocks

implementing the parallel LORETA algorithms are defined as Level-2 S-

functions, since, compared to the Level-1 functions, they provide several

additional features and capabilities of SIMULINK built-in blocks, including:

• Multiple input and output ports;

• The ability to accept vector or matrix signals;

• Support for various signal attributes including data type, complexity,

and signal frames;

• Ability to operate at multiple sample rates.

To provide a complete library containing the CUDA parallel implementation

of the LORETA algorithms, a total of four C MEX S-function blocks are made

available:

1. LORETA/eLORETA Block;
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2. LORETA/eLORETA Block with Parcellated Output;

3. sLORETA Block;

4. sLORETA Block with Parcellated Output.

The LORETA/eLORETA blocks are capable to implement both the LORETA

and the eLORETA algorithms, depending on the input matrix that user

supplies to the block.

8.4 LORETA/eLORETA block

Let’s considerNe extracranial measurements gathered inNs samples coming

from Ne measuring electrodes placed on the scalp. In this case we have that:

• Φ ∈ RNe×Ns is the matrix that contains the electric potentials mea-

sured on the scalp with respect to a common reference electrode in Ns

samples;

• T ∈ RNe×3Nv is the matrix of the LORETA inversion step described

in Eq. 7.4, and Nv is the number of voxels that discretize the cerebral

cortex.

The user-defined S-Function which implements the LORETA block is repre-

sented in Fig. 8.1.

The inputs of this block are the static matrix T ∈ R3·Nv×Ne (which is trans-

Figure 8.1: LORETA/eLORETA SIMULINK block.
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posed to maintain coherence between Matlab and C languages) and the

real-time gathered measurements Φ ∈ RNe×Ns (In1 in Fig. 8.1). Ns has to be

set equal to one in order to manage instantaneous measurements.

The parameters of this block are shown in the Function Block Parameters

Window represented in Fig. 8.2 where num_ele is the number of electrodes

(Ne), num_voxels is the number of voxels that discretize the cerebral cortex

multiplied by 3 (3 ·Nv) and num_samples is the number of consecutive mea-

surements collected using the Ne electrodes (Ns).

The output is a vector composed of Nv components, which is the 2-norm of

Figure 8.2: Parameters of LORETA SIMULINK block.

the three Cartesian components of the vector Ĵ ∈ R3·Nv shown in Eq. 7.4. For

sake of simplicity, the static matrix T and the parameters are loaded directly

from the MATLAB environment after the execution of a pre-processing

step implemented in a Matlab m-file. In order to implement the eLORETA

inversion step, it is sufficient to compute the static matrix T following Eq.

7.5.
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8.4.1 LORETA/eLORETA with Parcellation block

In this case, grey matter voxels can be parcellated in Np different brain

regions according to an atlas. This step involves the introduction of two

additional static inputs for the parcellated LORETA/eLORETA SIMULINK

block: grayParcLinOut and select.

The first one is the mapping of the segmented grey matter into the parcel-

lated domain while the second one is the vector which contains the label

of the ROI of interest. For example, if grey matter voxels are parcellated

in 96 different brain regions according to the Harvard-Oxford cortical and

subcortical structural atlas, grayParcLinOut identifies the label of the ROI of

each voxel and select is the vector containing the labels of the ROIs the user

wants to monitor.

The number of parameters is also increased, introducing two additional pa-

rameters: lengthParc and lengthSelect. The first one contains the total number

of voxels mapped in the ROI labels while the second one contains the labels

of the ROIs the user wants to monitor. The output of this block is the sum of

the reconstructed current densities in the voxels composing each selected

ROI. The block is shown in Fig. 8.3.

Figure 8.3: LORETA/eLORETA with Parcellation SIMULINK block.
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8.5 sLORETA Block

This user-defined S-Function block executes the parallel implementation

of the sLORETA inversion step, which extends the LORETA algorithm

introducing the standardization step defined in Eq. 7.6.

Fig. 8.4 shows the sLORETA block where the inputs are represented by

the static matrix T ∈ R3Nv×Ne (the same of the LORETA block shown

previously) and by the vector Rvetto ∈ R9·Nv which is the linearized vector

that derives from the matrix [SĴ ]−1 of Eq. 7.6.

The parameters are: num_ele (the number of electrodes), num_voxels (number

of voxels that discretize the cerebral cortex multiplied by 3), num_samples

(number of consecutive measurements observed in the Ne electrodes) and

lengthR (length of the input Rvetto). The output of the sLORETA block are

the estimated standardized current densities for each voxel of the cerebral

cortex as defined in Eq. 7.7.

Figure 8.4: sLORETA SIMULINK block.

8.5.1 sLORETA with Parcellation block

The block which integrates the sLORETA inversion step and the parcel-

lation is illustrated in Fig. 8.5. The additional parameters and inputs as

compared to the sLORETA block are the same of the LORETA/eLORETA

with Parcellation block. In fact:
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• grayParcLinOut identifies the label of the ROI of each voxel and select is

the vector containing the labels of the ROIs the user wants to monitor;

• the number of parameters is increased introducing lengthParc and

lengthSelect.

The first one contains the total number of voxels mapped in the ROI labels

while the second one contains the labels of the ROIs the user wants to moni-

tor. The output of this block is the sum of the reconstructed standardized

current densities in the voxels composing each selected ROI.

Figure 8.5: sLORETA with Parcellation SIMULINK block.

8.6 Performance

The computational performance of the implemented LORETA, eLORETA

and sLORETA modules are evaluated on a standard laptop computer equipped

with a recent, CUDA capable Nvidia Graphics Card. Details are listed in

Table 8.1.

CPU Intel Core i7 4710HQ Quad-Core @ 2.50GHz
Graphic Card NVIDIA GeForce GTX 860M (4096 MB GDDR5)

RAM 16 GB DDR3

Table 8.1: Laptop LENOVO Y50 Equipment.
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The real-time system used for the performance evaluation is obtained in-

terfacing the acquisition module with the LORETA blocks, leading to the

SIMULINK model shown in Fig. 8.6.

The “Creamino” block in Fig.8.6 controls the communication between Creamino

BCI and the standard PC equipped with SIMULINK, allowing to manage

the communication with the BCI hardware and to import the EEG signal.

The ”Buffer” block between the “Reference” and the “Data Type Conversion”

blocks in Fig. 8.6, is necessary to gather the input samples to be passed

to the LORETA block. If the buffer size is set equal to one, the LORETA

block receive Ne instantaneous measurements collected in a vector at the

user-defined sampling frequency.

Figure 8.6: Real-time system for performance evaluation

The ”Reference” block shown in Fig. 8.6 is implemented as illustrated in

Fig. 8.7 and it allows to define a channel as reference and to remove the

average from the signals through the multiplication by the symmetric matrix

H previously defined in Sec. 7.3.2.

The characterization of the modules has been realized in function of three

fundamental parameters which modify the requirements for real-time exe-

cution of the whole system:

1. Dimension of the uspstream LORETA/eLORETA/sLORETA Buffer;

2. Sample Rate;

3. Dimension of the Matrix T .
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Figure 8.7: Reference block implementation.

We consider the real-time constraint satisfied when the SIMULINK running

time is lower than the time obtained by dividing the number of samples with

the sample rate. The bigger is the uspstream buffer dimension the lower

is the temporal resolution (since we have to wait to collect the necessary

samples to fill the buffer) but the real time constraint becomes easier to

achieve.

Since the static matrix T coming from the full-resolution cerebral cortex

segmentation is not supported by the adopted laptop computer due to the

memory constraints, in the following we adopt three different configurations

of the static matrix T , coming from its 2-3-5 undersampling.

The dimensions of the obtained static matrix are listed in Table 8.2.

Resolution Dimension of Matrix T
Full Resolution 2098857× 31

Undersampled 2 (U2) 261933× 31

Undersampled 3 (U3) 77205× 31

Undersampled 5 (U5) 16599× 31

Table 8.2: Dimension of full T matrix and its 2, 3 and 5 times undersampled
versions.

The first dimension of the matrix T is the number of considered cerebral

cortex voxels and the second one is the number of acquisition channels. The

number of measuring channel is 32 but the number of considered channel is

31 since channel 2 is used as reference.
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8.6.1 Performance of LORETA/eLORETA as function of the Buffer
Dimension

This test is realized adopting three different static matrices T coming from

the undersampling of the full-resolution cerebral cortex and, for each matrix

T , data are collected by varying the dimension of the upstream LORETA-

eLORETA buffer.

In this real time system, “Creamino” provides 8×Ne samples at a frequency

of 8/250 Hz and the following “UnBuffer” block is used to provide Ne

samples at a rate of 250 Hz, leading to a sample rate of 250 Hz.

The total simulation time is 10.24 s for a total of 2560 samples for each of the

32 channels. The LORETA upstream buffer dimensions we tested are 8, 16,

32, 64, 128 and the listed results are obtained both for the LORETA/eLORETA

block and for the same block with parcellation, with a number of ROIs vari-

able from 5 to 15. The results obtained with the U2 T matrix are shown in

Fig. 8.8.

Figure 8.8: LORETA/eLORETA performance with U2 T matrix. Results are
evaluated both for the standard block and for the parcellated block with
5-10-15 ROIs selected.

Fig. 8.8 indicates that real-time constraints are satisfied for a minimum

buffer dimension of 64 samples.

The results obtained with the U3 and the U5 T matrices are shown in Fig.

8.9 and Fig. 8.10, highlighting a real-time compatibility for any user-defined
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Figure 8.9: LORETA/eLORETA performance with U3 T matrix. Results are
evaluated both for the standard block and for the parcellated block with
5-10-15 ROIs selected.

Figure 8.10: LORETA/eLORETA performance with U5 T matrix. Results
are evaluated both for the standard block and for the parcellated block with
5-10-15 ROIs selected.

buffer dimension.

To conclude, the introduction of the upstream buffer in the LORETA-

eLORETA blocks allows to manage a high sample rate (250 samples per

second), with a negligible delay (up to 512 ms) in the output visualization.

A minimum delay of 32 ms is supported for the matrix dimension corre-

sponding to the U3 and U5 cases, but not always for the U2 case. In this

scenario the LORETA block requires at least 256 ms of delay.
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8.6.2 Performance of sLORETA as function of the Buffer Dimen-
sion

The setup of this test is the same of the previous performance test, ex-

cept that we substituted the LORETA/eLORETA block with the sLORETA

one. Even in this case results are obtained with different buffer dimensions

(8,16,32,64,128) for both the sLORETA block and the same block with parcel-

lation, with a number of ROIs variable from 5 to 15. The results obtained in

the case of the U2 T matrix are collected in Fig. 8.11.

Figure 8.11: sLORETA performance with U2 T matrix. Results are evaluated
both for the standard block and for the parcellated block with 5-10-15 ROIs
selected.

It turns out that the proposed block does not satisfy real-time constraints for

this experiment, since the running time is always greater than the simulation

time. This overhead is due to the large amount of data that needs to be

transferred from MATLAB to SIMULINK and from SIMULINK to the C

MEX S-function. The results obtained with the U3 and the U5 T matrices

are shown respectively in Fig. 8.12 and Fig. 8.13, in this case a real-time

compatibility for any user-defined buffer dimension is apparent.
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Figure 8.12: sLORETA performance with U3 T matrix. Results are evaluated
both for the standard block and for the parcellated block with 5-10-15 ROIs
selected.

Figure 8.13: sLORETA performance with U5 T matrix. Results are evaluated
both for the standard block and for the parcellated block with 5-10-15 ROIs
selected.



132 Simulink Libraries for Creamino BCI

8.6.3 Performance of LORETA/eLORETA as function of the Sam-
ple Rate

This test is realized adopting three different static matrices T coming from

the undersampling (U2, U3, U5) of the full resolution cerebral cortex. For

each matrix T , data are collected by tuning the sample rate of the real-time

simulation, removing the upstream buffer of the LORETA/eLORETA block.

The sample rate varies from 15 to 40 samples/s in the undersampled-2

experiment, from 60 to 120 samples/s in the undersampled-3 test and from

150 to 450 samples/s in the undersampled-5 case.

The simulation time is exactly 10 s, so the running time of the model must be

less or equal to this benchmark in order to guarantee real-time compatibility.

Results are obtained both for the LORETA/eLORETA block and for the

same block with parcellation, with a number of ROIs variable from 5 to 15.

Results of the U2 experiment are collected in Fig. 8.14. The graph points to

a maximum sample rate of 25 samples/s for the real-time behaviour. The

results of the U3 and U5 experiments are shown respectively in Fig. 8.15

and in Fig. 8.16, leading to a maximum sample rate of 80 samples/s for the

U3 case and of 250 samples/s for the U5 case.

Figure 8.14: LORETA/eLORETA performance as a function of the sample
rate with U2 T matrix. Results are evaluated both for the standard block
and for the parcellated block with 5-10-15 ROIs selected.
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Figure 8.15: LORETA/eLORETA performance as a function of the sample
rate with U3 T matrix. Results are evaluated both for the standard block
and for the parcellated block with 5-10-15 ROIs selected.

Figure 8.16: LORETA/eLORETA performance as a function of the sample
rate with U5 T matrix. Results are evaluated both for the standard block
and for the parcellated block with 5-10-15 ROIs selected.
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8.6.4 Performance of LORETA/eLORETA as function of the di-
mension of the matrix T

The last point concerning the characterization of the provided LORETA-

eLORETA block involves the performance evaluation with respect to the

number of voxels composing the discretization of the gray matter region. To

this purpose we adopted the U2, U3, U5 static matrix already introduced in

the previous sections, corresponding to decreasing number of voxels.

Results are collected by using the system configuration illustrated in Fig.

8.6, adopting 8, 16, 32, 64, 128 buffer dimensions.

In this real time system, “Creamino” provides 8×Ne samples at a frequency

of 8/250 Hz and the following “UnBuffer” block is used to provide Ne

samples at a rate of 250 Hz, leading to a sample rate of 250 Hz.

The total simulation time is 10.24 s for a total of 2560 samples for each of the

32 channels.

Results obtained using the LORETA/eLORETA block with the full-resolution

T matrix are collected in the graph illustrated in Fig. 8.17, while U2, U3 and

U5 downsampling results are shown in Fig. 8.18, Fig. 8.19 and Fig. 8.20

respectively.

Figure 8.17: LORETA/eLORETA block performance in function of the num-
ber of voxels. Results are evaluated adopting 8, 16, 32, 64, 128 buffer dimen-
sions.
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Figure 8.18: LORETA/eLORETA block performance as function of the num-
ber of voxels, with 5 ROIs monitoring. Results are evaluated adopting 8, 16,
32, 64, 128 buffer dimensions.

Figure 8.19: LORETA/eLORETA block performance as function of the num-
ber of voxels, with 10 ROIs monitoring. Results are evaluated adopting 8,
16, 32, 64, 128 buffer dimensions.
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Figure 8.20: LORETA/eLORETA block performance as function of the num-
ber of voxels, with 15 ROIs monitoring. Results are evaluated adopting 8,
16, 32, 64, 128 buffer dimensions.

8.6.5 Performance of sLORETA as function of the dimension of
the matrix T

In this case results are obtained using the same procedure shown in the pre-

vious section except that the LORETA/eLORETA block is substituted with

the sLORETA one. Figures 8.21, 8.22, 8.23, 8.24 show the same behaviour

of the LORETA/eLORETA block, leading to the conclusion that in order to

obtain real-time condition with 32 channels, it is necessary to adopt less than

150000 voxels of gray matter. This estimation is valid for every dimension

of the upstream sLORETA buffer.
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Figure 8.21: sLORETA block performance in function of the number of
voxels. Results are evaluated adopting 8, 16, 32, 64, 128 buffer dimensions.

Figure 8.22: sLORETA block performance as function of the number of
voxels, with 5 ROIs monitoring. Results are evaluated adopting 8, 16, 32, 64,
128 buffer dimensions.
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Figure 8.23: sLORETA block performance as function of the number of
voxels, with 10 ROIs monitoring. Results are evaluated adopting 8, 16, 32,
64, 128 buffer dimensions.

Figure 8.24: sLORETA block performance as function of the number of
voxels, with 15 ROIs monitoring. Results are evaluated adopting 8, 16, 32,
64, 128 buffer dimensions.
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8.7 Experimental Test

To test the whole system in a real-time configuration, we decided to monitor

the alpha rhythm of a subject using the SIMULINK model depicted in Fig.

8.25. Through this model we tested all the LORETA’s family blocks. The

Figure 8.25: SIMULINK system for real-time alpha rhythm monitoring.

instantaneous power of the selected ROIs is visualized in a time-scope and

reconstructions are performed using the LORETA/eLORETA and sLORETA

blocks previously described.

A low pass filter is placed in the paths between LORETA blocks and Time

Scopes to remove the high-frequency components of the outputs. Finally, the

power of the ROI given by the parcellated blocks is normalized in function

of the number of voxels composing each region through a suitable gain. The

dimension of the LORETA blocks upstream buffer is equal to 64 samples,

and the sample rate is 250 Hz. The test has been realized adopting a global

T static matrix coming from the 2-undersampling of the full-resolution cere-

bral cortex discretization. The total duration of the experiment is 2 minutes

and every 30s the subject opens/closes the eyes.

Since the aim of the experiment is to monitor the power of the alpha signal,
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we adopted the parcellated version of LORETA/eLORETA and sLORETA to

observe the power of the alpha signal in the occipital and the frontal ROIs:

in the occipital ROI we expected to have an increase of the power when the

subject close the eyes while in the frontal ROI we expected to observe no

variations.

Since we are interested on the alpha frequency of the EEG signals, the Bi-

quad Filter block named ”Filter_ALFA” in the real-time system in Fig. 8.25

allows to extract only the alpha component of the input signal.

The real-time results observed during the simulation are shown in Fig. 8.26

and Fig. 8.27.

In the reported graphs, the blue line is the trend of the normalized power of

Figure 8.26: LORETA parcellated outputs in the ROIs of interest to monitor
the alpha rhythm of a subject. The yellow line is relative to the EEG signal
measured in the frontal region, where the alpha signal cannot be appreciated.
The blue signal was obtained measuring the response in the occipital region,
where the power of the alpha signal is increased during the eyes-closed
phase.

Figure 8.27: sLORETA parcellated outputs in the ROIs of interest to monitor
the alpha rhythm of a subject.The yellow line is relative to the EEG signal
measured in the frontal region, where the alpha signal cannot be appreciated.
The blue signals was obtained measuring the response in the occipital region,
where the power of the alpha signal is increased during the eyes-closed
phase.

the occipital ROI while the yellow one represents the normalized power of
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the frontal region. As expected, during the eyes-closed period the amount

of power of the occipital ROI markedly increases as compared to the nor-

malized power obtained in the frontal region.

8.8 Conclusions

This chapter illustrates the implementation of SIMULINK Libraries for

Creamino BCI system, starting from C/CUDA parallel implementations of

LORETA, eLORETA and sLORETA in the time domain which were devel-

oped previously by the ARCES research team in the scope of the CREAM

project and theoretically introduced in Chapter 7.

The implemented library are able to compute the mean power of the EEG

sources lying in user-defined regions of interest and were validated through

an experimental test of alpha monitoring of a subject.

We proof that performance of the proposed libraries are fast enough for BCI

typical applications under different constraints, depending on the number

of voxels composing the ROIs, the buffer dimension and the sample rate of

the BCI system.

For example, we proof that performance of the proposed libraries are fast

enough for real-time behaviour of Creamino BCI system applications with a

maximum number of 150 ·103 voxels in a 32 channels system interfaced with

a standard laptop computer both for LORETA/eLORETA and sLORETA

reconstruction methods.

In the case of a 64 channels system the maximum number of admitted voxels

decreases to 75 · 103.

Since certain experiments might need to analyse EEG sources localization in

the frequency domain rather than in time-domain, in the following chap-

ter we propose the implementation of frequency EEG Source Localization

algorithms.



Chapter 9

EEG Frequency Source

Localization

Certain experiments might need to analyze data in the frequency domain

rather than in time-domain, for example when there is interest in analysing

what happens at certain frequency-bands (e.g. alpha, beta) or frequencies

(e.g in steady-state evoked potentials).

The object of this chapter is to illustrate the parallel implementation of

frequency EEG Source Localization algorithms and its validation through

multi-trial Event Related Potentials (ERP) experiments obtained from visual

stimuli.

The proposed method is based on a commonly used Welch-periodogram of

eLORETA current density estimation, where critical kernels are massively

parallel optimized for the available HPC platform.

9.1 Implementation

One possible approach to analyze data in the frequency domain might

be to filter the data among the different frequency bands of interests and

then compute reconstructions in the time-domain. However, this requires

to perform a reconstruction per each frequency (or band) of interest. On

the other side, it is not possible to compute the frequency spectrum of the

voltages on the electrodes and then perform the source reconstructions.

Therefore one needs to first reconstruct the sources and then extract the

frequency spectrum of the time-series associated to one source or a particular

142
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region.

To this purpose we adopt the periodogram, which is a method to estimate

the spectral density of a signal by averaging, over a number of windows,

the square magnitude of the signal Discrete Fourier Transform (DFT).

We define the periodogram matrix of the current density estimate averaged

over Np epochs the following matrix:

℘Ĵ =


|Ĵω1,i|2

...

|Ĵω3·Nv ,i|
2

 =
1

Np

Np∑
i=1

|Ĵωi |2 (9.1)

whose rows are the periodogram at each voxel and where Ĵω is the Discrete

Fourier Transform (DFT) of the current density estimate Ĵ . To obtain the

modified periodogram, it is sufficient to introduce a windowing and an

overlap before the DFT, leading to a smoothed estimate of the spectral

density.

Since the operations for the modified periodogram evaluation are highly

parallelizable, we implement a CUDA routine running on GPU architectures.

We implemented on GPU the pseudocode shown in Fig. 9.1.

Figure 9.1: GPU pseudocode for the modified periodogram evaluation.

In the pseudo-code represented in Fig. 9.1, matrix T is defined in Eq. 7.4

for LORETA, Eq. 7.5 for eLORETA. Due to the non-linear standardization

step, sLORETA cannot be used or would lead to inconsistent results. As in

the time-domain case the matrix product between T and Φ is computed on

GPU.

Window functions are easily implemented by calculating the windowing

value of the selected method. The implemented CUDA routine provides
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four different windowing functions: Hann, Hamming, Blackman and Gauss.

DFT is performed through the Fast Fourier Transform (FFT) algorithm which

is already available in the NVidia CUFFT library for 1D, 2D or 3D, real or

complex data. This library is called by creating an FFT plan, executing the

FFT batch in place and destroying the plan. In our case, FFT size is 3 ·Nv

and batch number is the number of samples for window (Nt).

As for the time-domain approach, we decided to make the library available

in MATLAB. Therefore, a MATLAB MEX file is realized which runs the

implemented CUDA kernels for modified periodogram calculation. As a

result, the eLORETA estimate of the intracerebral current density can be

launched directly within the MATLAB environment, with the significant

speed-ups provided by its efficient CUDA GPU implementation.

9.2 Performance

While there is no common evidence in literature whether sLORETA outper-

forms eLORETA or viceversa in terms of localization accuracy, for frequency

domain source localization eLORETA is the only viable solution since the

non-linearity of the standardization phase doesn’t allow sLORETA to be

used.

The developed parallel implementation of eLORETA is therefore compared

to a standard MATLAB implementation.

First, we perform source localization on the grey matter region of the seg-

mented head described in the electrical model (∼ 700 · 103 voxels). In Fig.

9.2, 64 measuring electrodes are considered, and the time required to per-

form frequency source localization on a varying number of time samples

is considered. The number of overall time-samples considered is obtained

by multiplying the number of windows Nv the number of time samples

composing each window. The CUDA MEX implementation is affected by

significant overheads for initiating data-transfers which limit the speed-ups

for small number of windows but provides very significant speed-ups as

the number of samples considered increases.

In Fig. 9.3 and Fig. 9.4, the reconstruction is performed on an downsampled

grey matter region with about 90 ∗ 103 voxels and the measurements are

acquired with 64 electrodes. The case illustrated in Fig. 9.3 requires signif-
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Figure 9.2: Performance comparison between MATLAB standard code and
the implemented CUDA mex for frequency source localization, with a vari-
able numbers of windows having length 256 samples.

Figure 9.3: Performance comparison between Matlab standard code and the
implemented CUDA mex for frequency-domain source localization in the
downsampled domain, with a variable numbers of windows having length
256 samples

icantly less time than when using a full resolution grey matter region but

the MATLAB implementation still requires nearly 2,5 seconds of comput-

ing time to reconstruct 256 samples while the parallel implementation can

reconstruct about 50 times more samples in the same amount of time.
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Figure 9.4: Performance comparison between Matlab standard code and
the implemented CUDA mex for frequency source localization in the down-
sampled domain, with a variable numbers of windows having length 1024
samples.

9.3 Experimental Validation

The objective was to determine if the algorithms for source localization in

the frequency-domain work correctly for multi-trial experiments such as

Event Related Potentials (ERP) obtained from visual stimuli.

In particular, we chose to apply frequency-domain source localization algo-

rithms to steady-state visual evoked potentials (SSVEPs).

EEG signal was acquired with the cost-effective Creamino BCI system. For

fastest setup time, the system allocates 32 dry-electrodes in the positions

presented in Fig. 9.5. Ground and reference are placed on right and left

earlobes respectively.

The stimuli was presented on a 24-inch LCD panel located approximately

70 cm from the subject. A square 8x8 black and white contrast checkerboard

was presented, flickering at an approximate rate of 14 Hz. Three possible

positions of the checkerboard on the screen were considered, one centred

with respect to the visual field of the subject, one slightly displaced to the

left, one to the right. The objective was to stimulate the left and right visual

fields symmetrically or asymmetrically. The flickering was repeated 140

times per each sequence with a fixed interval of 68 ms. A random interval
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Figure 9.5: Electrode placement on the cap

of 3 to 5 seconds was inserted between each sequence in order to allow the

subject to blink.

In the SSVEP experiment, the subject was comfortably seated in a quiet,

dimly-lit room. In order to consider environments typical of non-clinical

settings such as those envisioned for devices developed in the CREAM

project, the room was not electrically or acoustically shielded. In each run, 2

repetitions per positions were presented, followed by a resting time deter-

mined by the subject by pressing a key when ready to proceed.

The objective is to locate the sources of the EEG signal at the flickering

frequency, which can be supposed to be again located in the visual cortex of

the contralateral hemisphere.

Sources of the ERP were reconstructed using eLORETA on the realistic head

model derived from ICBM 152 Nonlinear Atlas [118][119][120]. Sources

have been again localized in the contralateral visual cortex for the first har-

monic (at the flickering frequency) and for the second harmonic (at twice

the flickering frequency) both.

Results for the central visual field stimulus are presented in Fig. 9.6 while

those relative to the right visual field stimulus are shown in Fig. 9.7. A

first conclusion is that asymmetrical visual field stimulation leads to the

activation of the occipital region of the contralateral hemisphere (contralat-
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eral visual cortex). The source localization reconstruction at the frequency

of the second harmonic is represented in Fig. 9.8. With respect to the plot

relative to the first harmonic, we can observe a significant spreading of the

solution. This is probably due to the reduced signal-to-noise ratio due to

the reduction of the power of the signal which is significantly lower for the

second harmonic.

With respect to the time-domain source localization which allows the recon-

struction of the sources of the different frequency components of the ERP,

here we can only observe an average activation over the time at which stim-

ulation is performed. However, we can confirm how the activity is located

in the contralateral visual cortex leading to the experimental validation of

the proposed algorithm.
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Figure 9.6: Reconstruction of the cortical sources at a frequency of 14 Hz for
central-visual-field stimulus. Maximum is located in the occipital region.
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Figure 9.7: Reconstruction of the cortical sources at a frequency of 14 Hz for
right-visual-field stimulus. Maximum is located in the occipital region of
the contralateral hemisphere.
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Figure 9.8: Reconstruction of the cortical sources at a frequency of 28 Hz
(second harmonic of the flickering frequency) for right-visual-field stimulus.
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9.4 Conclusions

In this chapter, EEG Source Localization algorithms in the frequency domain

were developed and validated by multi-trial ERP experiments obtained

from visual stimuli, representing a point for further work involving the

implementation of SIMULINK Libraries for Creamino BCI system.

In complex geometries such as the whole human head, it could be difficult

and onerous for the user to display EEG source localization results in the

cerebral cortex through multiple 2D plots in various sections of the domain.

To address this issue, in the following chapter we propose a 3D visualization

toolbox able to rendering frequency/time EEG Source Localization results

in the cerebral cortex enabling user interaction.



Chapter 10

Visualization Toolbox

In order to display EEG source localization results on a realistic human head,

an ad-hoc visualization toolbox has been realized, which is designed to effi-

ciently run on the same hardware as the developed imaging algorithms.

This chapter focuses on the implementation and characterization of a toolbox

which allows to rendering a 3D light distribution or an EEG frequency/time

source localization on a large and irregular domain, enabling the interaction

between the user and the rendered surface and making easier the interpreta-

tion of results.

In general, the user needs only to provide the software with a 3D matrix

whose elements represent the color intensity of the corresponding voxel

(anything from a simple segmentation label to the complex result of an

EEG source localization or DOT forward problem solution). The tool itself

proceeds to determine the external surface of the volume, the color to be

assigned and to visualize it in a 3D navigation environment where rotation,

zooming and translations are available through simple movements of the

mouse.

As stated previously, MRI images are segmented and classified to obtain a

realistic volume composed of five tissues: scalp, skull, CSF, gray matter and

white matter. This operation preserves the full resolution provided by MRI

scans and leads to 3D domain composed by equally sized cubic voxels.

The complex shape and the large dimension of the segmented human head

volume markedly increase the computational cost of the visualization pro-

cess, making it necessary to adopt a parallel and efficient ray-tracing engine.

153
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A pre-processing step which extracts the surfaces composing the head vol-

ume is also necessary. Furthermore, since the volume is voxel-based, an

additional smoothing and regularization step is fundamental to improve

the quality of the final rendering. The pre-processing step (Sec. 10.1) is

realized through optimized MATLAB mex-functions, while the rendering of

the surfaces (Sec. 10.2) has been realized by using NVIDIA OptiX 3.8.0.

Thanks to the complete integration with the MATLAB environment, the

user enjoys a very large freedom in choosing what to plot and how to plot

it. So, for example, having the segmentation and parcellation available, it is

very easy to plot only certain tissues or regions by modifying the input data

with very simple MATLAB operations. Similarly, sections of the volume can

be easily computed and plotted.

Furthermore, the presence of a smoothing step which improves drastically

the quality of the final rendering represents an original contribution in the

state of the art of visualization toolboxes.

10.1 MATLAB pre-processing

Given the solution of the DOT forward problem or EEG frequency/time

source localization on a generic voxel-based volume, we realized an ad-hoc

MATLAB routine in order to create both the triangulation of the surface

under investigation and the color of the triangulated surface.

First of all, to extract the surface of the volume under analysis, we use the

MATLAB function isosurface which returns a structure containing the faces

and the vertices of the triangles composing the triangulated surface.

After that, to define the solution within the surface given the solution on the

volume underneath it, we use the MATLAB function isocolors. This function

allows to evaluate the color of each vertex composing the triangulation,

given the solution on the whole volume.

To render the solution in the surface of the volume under investigation

within the MATLAB environment, the outputs of isosurface and isocolors can

be passed directly to the MATLAB patch function.

Unfortunately, the MATLAB rendering of the surface of a segmented MRI

volume, presents two main issues:

1. Irregular shape;
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2. High number of triangles.

As stated before, the irregularity of the surface derives from the cubic voxels

which compose the segmentation, while the high number of cubic voxels

increases the computational cost and it is a consequence of the large dimen-

sion of the head domain. To regularize the sharp-cornered structure of the

surfaces we adopt a free MATLAB tool: Smooth Triangulated Mesh by Dirk

Jan Kroon [121].

This function smooths the triangulated mesh extracted using isosurface pro-

viding accurate curvature flow smoothing. The regularization of the surface

is realized by smoothing in the direction of the normal keeping the edge

ratio’s the same. This toolbox also supports Laplacian smoothing with in-

verse vertice-distance based umbrella weights, making the edge lengths

more uniform. The code is written partly in MATLAB and partly in C-code

for the most computational intensive parts.

For our purposes the curvature flow smoothing with the inverse distance

between vertices as weights represents the most appealing regularization

approach. As a result, by introducing a smoothing step within the MATLAB

pre-processing we obtain a significant reduction of the number of triangles

composing the surface, and a noticeable improvement in the quality of the

final rendering.

Using MATLAB is possible to visualize the result of the pre-processing step

through the function patch but the quality of the rendering is not acceptable

and it is characterized by a lack of efficiency which leads to a very low frame

rate unsuitable for dynamic interaction (such as rotation or zoom) with the

rendered object due to the time lag associated with these operations.

A parallel ray-tracing engine is necessary to allow a 3D dynamic and inter-

active visualization of the volume representing, for example, the results of

the EEG source localizations or DOT forward problem solution.

Nvidia Optix 3.8.0 represents the parallel ray tracing engine that best match

our requests since it is optimized to run on Nvidia GPUs on which the im-

plemented efficient solvers have been developed. Two additional steps need

to be implemented within the pre-processing phase to import the geometry

of the problem within the Optix environment.

1. Creation of an Object file containing the surface to be rendered;
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2. Colors specification.

To define a Wavefront/Alias Object from the coordinates of vertices and faces

extracted through the isosurface function, we employ the free function vert-

face2obj available online.

For color export, given a distribution of intensities between 0 and 1 in the

volume under analysis, it is sufficient to realize a binary file which contains

directly the result of the isocolor function. To sum up, pre-processing phase

involves the following steps:

1. Surface triangulation (isosurface);

2. Surface smoothing (smooth triangulated surface);

3. Colors specification in the surface (isocolors);

4. Object definition (vertface2obj);

5. Colors buffer binary file creation.

10.2 Ray-Tracing Engine

10.2.1 Object Loading

In Fig. 10.1 is shown an example of scalp loaded within the Optix environ-

ment with no colour definition (only the initialization of the light buffer has

been done). In Fig. 10.1(a) it is possible to notice the irregular shape of the

scalp and the high number of voxels composing the segmented MRI. The

surface smoothing introduced in the pre-processing phase is fundamental

to improve the quality of the final rendering (Fig. 10.1(b)). It is important to

underline that this kind of smoothing is suitable for every kind of segmented

tissue extracted from the segmented MRI but also for user-defined regions

of the segmented head volume.

10.2.2 Surface colouring

To display a particular light/electrical distribution, the simple way is to

define the colour of each vertex composing the triangulated surface. As

shown in Sec. 10.1, this task is realized through the isocolors function, this

result is stored in a binary file to import the normalized colours of the
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(a) (b)

Figure 10.1: Object loaded within OptiX environment:(a) scalp object with
no smoothing step in the MATLAB pre-processing, (b) smoothed object
through smooth triangle mesh routine.

vertex composing the triangulation into the Optix environment. To define

the colour of a particular point within the surface, it is first necessary to

transform the normalized solution intensities into RGB values, after the

selection of a colormap. The definition of a colormap has been realized

through an ad-hoc C function in the Optix routine. In the case we need to

display only the surface in a uniform RGB colour, the solution can be fixed

to 1 for every point composing the surface and the RGB colour can be forced

to the selected RGB colour. To display intensity variations we adopt the

MATLAB jet colormap.

Once the colormap has been defined, the vertex colours stored in the binary

file have been transformed into RGB scale and saved in an Optix GPU Buffer

for increased speed. To define the colour of a point in a triangulated surface,

the standard Optix routine identifies the vertices of the triangle that has

been hit by a parallel ray and it defines the colour of the intersection point in

function of the material properties of the triangle. To assign a user-defined

colour to the triangle, it is necessary to customize this function, ignoring

face properties (not defined in the Object file). Once the vertices of the hit

triangle have been identified, the Optix colour buffer allows to determine

them RGB colours.

The barycentric interpolation of each RGB tone of the triangle vertex colours
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allows to define a unique RGB colour for each point within the triangle

surface, with also a smoothing effect on the final rendering colour in the

whole surface. As stated before, it is also possible to fix the RGB colour of

the whole surface displaying its anatomical structure.

For example, fixing the RGB colour to pink (1.0,0.73,0.58) and the intensities

equal to one and loading the scalp surface in the Optix environment leads

to the result shown in Fig. 10.2.

Figure 10.2: Scalp display with static and user-defined RGB colour.

The DOT forward problem solution computed in Sec. 3.8 and 2D-represented

in the right column of Fig. 3.23, is processed and visualized with the jet

colormap through the implemented toolbox, leading to the result which can

be appreciated in Fig. 10.3.

Thanks to OptiX parallel ray-tracing engine implementation, a variable

number of 20 to 60 frames per second have been obtained (instead of 0.11 fps

of MATLAB ray-tracing), leading to a fluid and efficient 3D interactive rep-

resentation of the results. We have also introduced the possibility to plot a

transition between multiple solutions. It is sufficient to store multiple colors

buffer vertically concatenated in the colors binary file and the OptiX tools

displays a transition computed by linear interpolation of the RGB colours

composing the sampled solutions, with the time evolution indication in the

bottom-left corner of the output image.

Using the visualization toolbox is also possible to obtain the 3D illustration

of the domain using the sLORETA output of the experimental test described
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(a)

(b)

(c)

(d)

Figure 10.3: Display of a light distribution with jet colormap on the scalp
(a), skull (b), grey matter (c) and white matter (d) of a structural MRI of a
human head.
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(a) (b)

Figure 10.4: 3D illustration of the domain using the sLORETA output of
the experimental test described in Sec. 8.7. Mean power of alpha signal is
shown in the occipital region during eyes open phase (a) and eyes closed
phase (b).

in Sec. 8.7. This result is shown in Fig. 10.4. It is possible to appreciate that

during eyes-open phase the mean power of the alpha signal in the occipital

region illustrated in Fig. 10.4(a) is lower than the mean power of the same

signal evaluated in the eyes-closed phase of Fig. 10.4(b). Finally, in Fig.

10.5, 10.6 and 10.7 we propose the 3D rendering of the frequency source

localization SSVEPs experiment described in Sec. 9.3. In particular, the three

slices represented in Fig. 9.6 are extracted from the volume shown in Fig.

10.5, Fig. 9.7 is related to Fig. 10.6 and Fig. 10.7 is the rendering of the slices

of Fig. 9.8.

Figure 10.5: 3D Reconstruction of the cortical sources at a frequency of 14
Hz for central-visual-field stimulus.
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Figure 10.6: 3D Reconstruction of the cortical sources at a frequency of 14
Hz for right-visual-field stimulus.

Figure 10.7: 3D Reconstruction of the cortical sources at a frequency of 28
Hz for right-visual-field stimulus.

10.3 Conclusions

This Chapter focuses on the implementation of an interactive and accelerated

3D visualization toolbox based on OptiX 3.8.0 able to display intensity

distribution on complex and large 3D surfaces, leading to a variable number

of 20 to 60 frames per second instead of 0.11 fps of MATLAB ray-tracing.

This tool allows to display frequency/time EEG Source Localization results

and light distribution obtained by the proposed DOT solver treated on

the Section A of this work, but also homogeneous surfaces such as the

segmented MRI tissues.



Chapter 11

Conclusions Section B

As shown before, the main contribution of my research activity is presented

in the Section A of this thesis while a secondary contribution is presented in

Section B.

The secondary contribution presented above concerns three different key-

points:

• development of SIMULINK libraries for EEG Source Localization in

the time domain;

• numerical implementation of massively parallel EEG Source localiza-

tion algorithms in the frequency domain;

• realization of a rendering toolbox for ease user-interpretation of re-

sults.

The implemented SIMULINK libraries for EEG Source Localization are able

to compute the mean power of the EEG sources lying in user-defined regions

of interest (ROIs) and derive from the Arduino-based cost-effective EEG

system called Creamino which I contributed to develop with the ARCES

research team.

We proof that performance of the proposed libraries are fast enough for BCI

typical applications under different constraints, depending on the number

of voxels composing the ROIs, the buffer dimension and the sample rate of

the BCI system.

For example, the proposed libraries are fast enough for real-time behaviour

of Creamino BCI system applications with a maximum number of 150 · 103
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voxels in a 32 channels system interfaced with a standard laptop computer

both for eLORETA and sLORETA reconstruction methods.

Schematics, gerber files, source code and software modules of Creamino

are available with full documentation and free of charge for research and

educational purposes online at https://github.com/mchiesi/Creamino.

The aim of the second point is to illustrate the parallel implementation

of frequency EEG Source Localization algorithms and its validation through

multi-trial Event Related Potentials (ERP) experiments obtained from visual

stimuli, representing a point for further work involving the implementation

of SIMULINK Libraries for Creamino BCI system. The proposed method

is based on a commonly used Welch-periodogram of eLORETA current

density estimation, where critical kernels are massively parallel optimized

for the available HPC platform.

In complex geometries such as the whole human head, it could be dif-

ficult and onerous for the user to display EEG source localization results

in the cerebral cortex through multiple 2D plots in various sections of the

domain. To address this issue the third point involves the implementation

of an interactive and accelerated 3D visualization toolbox based on OptiX

3.8.0.

Future lines of research could be the integration of electrical stimulation

and EIT in the Creamino BCI system in order to improve the quality of recon-

struction and the implementation of SIMULINK libraries of the proposed

frequency-domain EEG Source Localization.

https://github.com/mchiesi/Creamino
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Conclusions

The main contribution of my research activity was presented in the Section

A of this thesis.

It concerns the implementation of an innovative and complete framework

for DOT forward problem solution.

The model is based on a radiosity-diffusion (RD) algorithm which takes into

account the different behaviour of light propagation within clear and scat-

tering tissues, leading to results which are more accurate than with lower

complexity diffusion models, and performance that improve on Monte

Carlo (MC) methods. MC methods, being RTE-based solvers, have the most

generality, with the ability to manage the scattering anisotropy within bio-

logical tissues, the low-scattering property of CSF, and short source-detector

separations. On the other hand, the proposed RD solver is characterized by

a lower computational cost and no granularity in deeper regions such as

gray or white matter. Furthermore, the ability to manage the complex shape

of a non-scattering CSF layer in a human head represents a remarkable

improvement over standard diffusion-based forward problem solvers.

The numerical solver for the diffusion equation is based on an FVM dis-

cretization of the human head and its critical kernels are optimized to run

on high performance computing platforms based on GPUs. Modeling of

light propagation in clear regions is obtained through a radiosity-algorithm

based on a customized parallel ray-tracing designed to run efficiently on

the same hardware. The ray-tracing engine has been designed to optimize

form factors computation, the most critical phase of the pre-processing step.

Integration of the two models is performed by an iterative solver which does
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not compromise the efficiency of the diffusion equation solver. We obtained

a meaningful speed-up if compared to an isotropic-scattered parallel MC

engine for a domain of 2 million voxels, with a marked improvement in

accuracy. The speed-up significantly increases for larger domains, allowing

one to compute the light distribution of a full human head (≈ 5 million total

voxels, ≈ 3 million non-zero voxels) in 116 seconds for the platform used.

The implemented DOT solver was also employed to validate experimental

measurements made on a phantom mimicking the optical properties of a

realistic human head, identifying an experimental setup issue leading the

optical sensors operating in a non-linear range which is a point for further

work once a complete DOT system is available.

This work is presented in details in [O1] and it represents a meaningful

update in the state of the art of DOT forward problem solvers. It is also de-

scribed in HIGH PROFILE Deliverables [O2][O3]. This work was presented

at the High Profile meeting of Vienna [O4].

The secondary contribution of my research activity was presented in the

Section B of this thesis.

It concerns the development of SIMULINK libraries for EEG Source Lo-

calization able to compute the mean power of the EEG sources lying in

user-defined regions of interest (ROIs).

This work derives from the Arduino-based cost-effective EEG system called

Creamino which I contributed to develop with the ARCES research team

[O5][O6][O7].

EEG Source Localization algorithms in the frequency domain were also de-

veloped and validated by multi-trial ERP experiments obtained from visual

stimuli, representing a point for further work involving the implementation

of SIMULINK Libraries for Creamino BCI system.

To tackle the problem of interpreting EEG source localization results usually

solved by multiple 2D plots of the solution in various sections of the cerebral

cortex, an interactive and accelerated 3D visualization toolbox based on

OptiX 3.8.0 was developed.

The work presented in Section B of this thesis is fully described in CREAM

European Project Deliverables [O8] [O9].



Appendix A

Acronyms

API Application Programming Interface

BCI Brain Computer Interface

CPU Central Processing Unit

CSF Cerebro Spinal Fluid

CUDA Compute Unified Device Architecture

DBC Dirichlet Boundary Condition

DE Diffusion Equation

DFT Discrete Fourier Transform

DOT Diffuse Optical Tomography

EEG ElectroEncephaloGraphy

ERP Event Related Potential

fMRI functional Magnetic Resonance Imaging

FLOPs Floating Point Operations per second

GPU Graphics Processing Unit

HPC High Performance Computing

LSQR Least SQuared Residuals

MRI Magnetic Resonance Imaging

NBC Neumann Boundary Condition

NIR Near-InfraRed
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NIRS Near-InfraRed Spectroscopy

PET Positron Emittance Tomography

RAM Random Memory Access

RBC Robin Boundary Condition

RTE Radiative Transport Equation

SiPM Silicon Photomultiplier

SR Success Rate

SSVEP Steady-State Visual Evoked Potential



Appendix B

Availability of Creamino to
Other Research Groups

Creamino, with schematics, gerber files, bill of materials, executables, source
code and documentation is available free of charge for research and edu-
cational purposes at https://github.com/mchiesi/Creamino. Firmware
and libraries will be maintained and updated. Documentation suitable for
designers as well as for end users is provided.
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