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A B S T R A C T

Simultaneous localisation and mapping (SLAM) is a technique stud-
ied in computer vision and robotics that, given measurements ob-
tained from one or more sensors, allows incremental building of
a map of the environment (i.e. the mapping process) and simultan-
eous estimation of the position and orientation of the very same
sensor used to acquire the input data (i.e. the localisation process).
The localisation and mapping phases are typically performed iter-
atively, back-to-back, in order to allow each to rely on informations
provided or updated by the other. SLAM systems can rely on the
input provided by different kinds of sensors to estimate the pose
of the mobile agent carrying them: works in literature proposed
systems deploying laser range finders, inertial or odometry sensors,
GPS units, and cameras. The subset of SLAM systems relying on im-
age sensors (either monocular or not) is named visual SLAM. Visual
SLAM systems typically allow the generation of accurate reconstruc-
tions of the explored environment but, until very recently, did not
provide high level informations on the contents of the reconstruc-
ted scenes, useful to foster high level reasoning by subsequent al-
gorithms.

In this thesis we focus on the topic of Semantic SLAM, i.e. we
propose techniques to obtain semantically accurate reconstructions
of the explored environment by combining efficient SLAM systems
with state-of-the-art semantic image segmentation algorithms. We
show how, by relying on such semantic reconstructions, the accur-
acy of the localisation phase of a SLAM pipeline can improve, by
accounting for the presence of semantic informations during the
camera pose estimation step. We thus realise a “semantic loop”,
where the availability of high level clues betters the mapping pro-
cess, in turn helping the subsequent localisation phase. A full sys-
tem, drawing inspiration from the presented research, allowing a
real-time and automatic semantic mapping of large-scale environ-
ments is then presented.
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An ancillary, but nevertheless important, component of simul-
taneous localisation and mapping systems is a technique to allow
the estimation of sensor position separately from the main SLAM
loop (i.e. to recover from failures in the localisation algorithm). We
present a technique that, by exploiting the appearance of image
patches can reliably localise the likely position of the sensor used
to acquire such images. The latter technique associates the like-
ness of distinctive points in the candidate image with locations in
a world coordinate frame where similar points have been observed
in the past (e.g. by associating image patches depicting chairs with
locations in the map where similar chairs are located). A relocalisa-
tion system such as the one we present can be easily included in
a Semantic SLAM system to allow a more robust mapping process
wherein camera tracking failures can be reliably recovered from.
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1
I N T R O D U C T I O N

Simultaneous localisation and mapping (SLAM) is a technique stud-
ied in computer vision and robotics that, given measurements ob-
tained from one or more sensors, allows incremental building of a
map of the environment (i.e. the mapping process) and simultaneous
estimation of the position and orientation of the very same sensor
used to acquire the input data (i.e. the localisation process). Start-
ing from a completely unknown environment, the measurements
allow the reconstruction of a first and coarse view of the sensor’s
surroundings. The position of the subsequent measurements, rel-
ative to the initial samples, is then estimated using the information
stored in the partial map that has just been built, which is in turn im-
proved by integrating the new data. The SLAM process is repeated
iteratively, to increase the map coverage of the environment as well
as its accuracy. The precision of the sensor localisation step typically
depends on the map quality, since a more detailed reconstruction of
the scene provides better clues to identify the position and bearing
of the sensor itself, thus creating a positive feedback loop between
the localisation and mapping phases of the algorithm. In Chapter 2 we
present the SLAM topic in more detail, by additionally providing a
survey on the main research works in the field.

Simultaneous localisation and mapping is a core component for
several technologies that are have been studied in the last decades
and have started becoming well known to the general public in
the last few years. Cars equipped with self (or assisted) driving
capabilities, automated household appliances (e.g. vacuum cleaners,
lawnmowers, . . . ) and toys, detailed 3D maps of the world onto
smartphones (used for augmented reality or path planning), aug-
mented/virtual reality setups, or even the 3D scanning (and print-
ing) systems: all rely on SLAM algorithms to reconstruct the world
around the sensor and perform their task or provide useful inform-
ations to the user.
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2 introduction

Simultaneous localisation and mapping can be performed with
several kinds of sensors, each allowing attainment of different map
types. In the computer vision field, predictably, the main instru-
ment used to generate reconstructions of the world is the image
sensor. Different techniques have been brought forward during
the years, mainly split being between the 2D and 3D category of
the input sensor: 2D sensors are the standard monocular RGB (or
gray-scale) cameras, whilst techniques relying on the presence of
3D sensors can process input provided by e.g. laser scanners, stereo
camera setups, or active RGB-D sensors based on structured light
or time-of-flight technologies. This thesis work will focus on 3D
SLAM performed using commodity RGB-D sensors such as the Mi-
crosoft Kinect, the Asus Xtion, or the Structure Sensor (the latter
specifically designed for mobile mapping, being self-powered and
small enough to be mounted on the back of a tablet device); that in
recent years have become extremely affordable and thus amenable
to deployment in the hands of end-users.

Current state of the art SLAM algorithms are, thanks to the work
by hundreds of researchers and decades of effort, in general able to
produce a fairly accurate map of the environment and estimate with
sufficient accuracy the sensor position. Generated maps, though, are
typically only concerned with the appearance of the world (i.e. its
geometry), not providing high level informations on what is located
in a certain area of the explored region. Availability of semantic
informations in the maps can be indeed useful for higher level reas-
oning by the agent using such reconstructions: if we think about a
self driving car having to take decisions on how to react to a small
obstacle suddenly appearing in its path (and therefore in its con-
tinuously updated map of the surroundings), we can easily under-
stand the importance of knowing whether this obstacle is a branch
fallen from a tree or a person. A less extreme example, depicting
the importance of the availability of semantic informations in the
map, can be that of the autonomous mopping robot: by detecting
an area of the floor to be washed as covered in carpet (geometric-
ally very similar to other types of flooring, i.e. flat), the mobile agent
can decide to avoid working on top of it. While still being a largely
unexplored area, works dealing with the extraction of semantic in-
formation from the observed world and its embedding into the re-
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constructions generated by SLAM algorithms started appearing re-
cently.

1 .1 semantic simultaneous localisation and mapping

The work presented in this thesis is concerned with the integration
of semantic information within the SLAM process. Specifically, we
aim to develop a Semantic-SLAM system where information on con-
tent of the scene being explored is used to simultaneously improve
the accuracy of camera localisation and embed knowledge into the
generated map. We strive to show how a virtuous loop can ensue,
by storing high level informations on the world in the map and
employing such clues, in addition to sensor measurements, during
the following camera localisation phases of the algorithm. Similarly
as to how the availability of a better map causes a more accurate
estimation of the sensor pose, we show that the accuracy of such
estimation can be improved by relying on semantic clues. This al-
lows the generation of a more accurate (and semantic) map of the
surroundings of the sensor that, in turn, will benefit the subsequent
runs of the algorithm.

No constraints on the kind of semantic information employed by
our system will be put in place: ideally, we want to be able to clas-
sify each element of the images used to perform SLAM (i.e. to give a
label to every pixel therein). Two research topics tackle this problem:
on one hand we have the object recognition task, where the aim is to
locate and classify certain objects in a scene; on the other we have se-
mantic segmentation, whose aim is the subdivision of each image into
several regions, each representing a certain category (such as: wall,
floor, furniture, etc. . . ). Clearly, a semantic segmentation algorithm
is closer to what we would like to feed a Semantic SLAM algorithm
(as described in the beginning of this section) but, under certain con-
ditions, it is possible to consider the information provided by the
output of an object recognition (or detection) algorithm and give a
name (label) only to pixels belonging to the detected objects. Many
current state of the art semantic segmentation and object recognition
algorithms employ the so called Deep Learning paradigm. Deep
Learning algorithms are, in general, based on neural networks made
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out of several layers, each providing a representation of the input at
higher level of generalization, thus helping in the classification task
for each sub region of the image fed to the algorithm.

One of our goals is to study the effect of the inclusion of semantic
information into the SLAM process. To achieve this goal, as a first
step, we need to define a data structure to store such information.
For this reason, we propose to augment the map representations
generated by SLAM systems with, for example, a label indicating
the type of object present in each element of the reconstructions
(Chapter 3). Given the great number of object recognition/segment-
ation algorithms, as a first approximation we will assume to have
a correct pixel-wise labelling of the images captured by the RGB-D
sensor; only successively we will focus on the selection of a reliable
and sufficiently fast algorithm to include in the whole pipeline.

As anticipated, we also aim to exploit semantic information dur-
ing the camera localisation phase. Purposely, we further augment
the map representation to store, instead of a single semantic label
per element, a full probability mass function for several categories. The
camera pose estimation algorithm is then modified to account for
the availability of such information, thus improving the quality of
generated maps (Chapter 4).

Since state of the art labelling neural networks are (currently)
not able to produce results in real time (by real-time here we
mean “camera rates”, i.e. 30Hz), in Chapter 5 we finally present a
SLAM pipeline able to cope with a “slow” semantic segmentation
algorithm: by deploying the system on a personal computer with
two different graphics processors we are able to achieve interactive
processing rates even when the labelling operation takes hundreds
of milliseconds.

1 .2 appearance-based camera relocalisation

Simultaneous localisation and mapping algorithms iteratively estim-
ate the position and orientation in the world of a sensor and rely on
such estimation to augment a map of the environment with new in-
formations. Expectedly, sensor localisation techniques are not flaw-
less, sometimes failing in their task for a plethora of reasons depend-
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ing on their specific implementation. When this happens, common
SLAM systems enter into a so-called relocalisation mode, where the
current contents of the generated map – possibly in concert with
other sources of information – are used to identify likely positions
of the sensor in order to restart the localisation and mapping loop.

Relocalisation systems are also useful to bootstrap a SLAM ses-
sion with a previously acquired map of the environment, rather
than starting a reconstruction from scratch. Looking back at the ro-
bot vacuum example previously mentioned, one can perceive how
it is more efficient to store a map of the floors to clean and, on activ-
ation, apply suitable techniques to identify the current pose of the
agent and start an optimised cleaning pattern, rather than having to
explore the whole house again.

Several camera relocalisation systems rely on the identification,
in the images being used to estimate the sensor pose, of parts of
the already mapped scene for which the location in the world is
known (having been estimated in the past). When correspondences
between items observed in the image (for which the sensor pose
is unknown) and items endowed with an absolute position in the
world are known, it becomes possible to estimate the location and
bearings of the sensor used to observe them. Semantic informa-
tions are implicitly used to perform such tasks: objects in the scene
having distinctive appearance provide useful clues to the camera
relocalisation. If a set of chairs is observed by the sensor mapping
a household environment, for example, it is much more likely for
the agent to be currently located in a sitting room than in a bed-
room, therefore simplifying the bootstrap/failure recovery phase of
the SLAM algorithm.

In Chapter 6 we present such a system, based on the online ad-
aptation of regression forests, allowing reliable estimation of sensor
position and orientation in a previously explored environment, by
reliance on image appearance features. Our system provides, for
each part of the image processed by it, a set of world locations where
similarly appearing items have been previously observed (e.g. for an
image patch depicting a stair step, the locations of steps previously
detected whilst mapping the environment are returned). By deploy-
ing such informations in a robust pose estimation method (i.e. a
RANdom SAmple Consensus-based technique) we are then able to
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estimate the likely sensor location and bearing thus becoming able
to proceed with SLAM iterations.

1 .3 summary of contributions

To summarize, the research work carried out during the develop-
ment of this thesis focused on implementation and evaluation of a
robust Semantic SLAM system, where a state of the art Simultan-
eous Localisation and Mapping system, based on the processing
on RGB-D images, has been augmented to integrate and exploit se-
mantic information, such as the position of objects and the type of
scene acquired by the sensor.

In the first part we will be concerned with the core of the SLAM
system. We expect our work to have a twofold outcome: on one side
the employment of semantic information during the tracking and
mapping iterations will help obtain higher quality maps and more
accurate camera localisation; an additional contribution is also the
generation of semantic maps of the environment that may, in turn,
be advantageous to higher level reasoning algorithms. Specifically,
in Chapter 2 we will begin with a more formal description of the
SLAM task, coupled with a survey of visual SLAM systems and the
recent works that started to consider the deployment of semantic
informations within the generated maps. In Chapter 3, we will
then describe a system allowing the semantic mapping of a scene
whilst, in Chapter 4, we will show how to improve the quality of
semantic reconstructions by also taking into account higher level in-
formations during the “localisation” part of the pipeline. We are,
thus, realising a full semantic loop where such informations are
stored in the reconstructed map and in turn relied on to improve
the continuation of the SLAM loop. Finally, in Chapter 5 we will
tackle some of the shortcomings abstracted away while presenting
the joint labelling, tracking and mapping system just mentioned,
thereby describing a complete and deployable pipeline.

In the second part of this thesis (Chapter 6) we will then focus
on the relocalisation component of a SLAM system, by presenting
a camera pose regression forest, relying on appearance-based in-
formations, allowing robust estimation of sensor location in a pre-
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viously explored environment. Such technique, when embedded
into a simultaneous localisation and mapping pipeline, can reliably
allow recovery from tracking failure scenarios or bootstrap novel
reconstruction sessions within an already explored environment.

Finally, in Chapter 7, we will summarise the contributions of this
thesis and draw concluding remarks.





Part I

S E M A N T I C F U S I O N : J O I N T L A B E L L I N G ,

T R A C K I N G , A N D M A P P I N G





2
S E M A N T I C S L A M : I N T R O D U C T I O N A N D S TAT E
O F T H E A RT

In this chapter we will, first, briefly describe the topic of Simultan-
eous Localisation And Mapping, introduced earlier, and discuss its
applications. We will then focus on the field of visual SLAM, i.e.
the localisation and reconstruction of scene representations by the
employment of RGB sensors (possibly capturing also depth inform-
ations) and computer vision techniques. Finally, we will introduce
the idea of semantic SLAM, drawing a bridge between the topic of
SLAM and that of semantic segmentation of images.

The remainder of this first part of the thesis will be concerned
with the description of a complete SemanticFusion system, relying
on both the aforementioned topics to allow automatic generation
of semantic reconstructions of the explored environments, i.e. 3D
representations of scenes endowed with labels detailing the kind of
objects being part of the scene.

2 .1 simultaneous localisation and mapping

As briefly mentioned in the Introduction, SLAM systems deploy
a processing loop concerned with the tasks of localising a mobile
agent that is exploring the world and mapping the explored loca-
tions. The localisation and mapping phases are typically performed
iteratively, back-to-back, in order to allow each to rely on informa-
tions provided or updated by the other.

The idea that performing the estimation of the pose of an agent
(e.g. a mobile robot) in the world could benefit from being per-
formed together with the identification of positions of fixed land-
marks of interest in a map, describing the environment the agent is
exploring, can be traced back to works from the late 1980s.

Initially, the tasks of localisation and mapping were studied sep-
arately. By applying probabilistic methods to the estimation of

11
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landmark positions and spatial relations between them, Smith and
Cheeseman [106] and Durrant-Whyte [36] showed that the correla-
tion between multiple observations of different objects of interest,
in a single map, indeed increases with the amount of observations
used to estimate their locations. Separately, in the same years, re-
search in navigation systems (i.e. the localisation of robots) was being
undertaken with different techniques: Chatila and Laumond [20]
and Crowley [28] deploy laser range finders or ultrasonic sensors to
measure the position of the agent, while Ayache and Faugeras [2]
rely on stereo vision algorithms, and account for sensor errors by
combining different measurements via Kalman filtering [67]. The
two tasks were cast under the same light at the beginning of the
1990s by Smith, Self and Cheeseman [107] and Leonard and Durrant-
Whyte [73] when it was observed that the uncertainties of multiple
relative landmark observations were correlated with each other de-
pending on the confidence on the pose estimated for the mobile
agent. Accurately estimating the position of a robot and the location
of points of interest in the world were found to be part of the same
problem and thus, a formal definition of the Simultaneous Localisa-
tion and Mapping problem was proposed, and research previously
focused on the tasks of mapping and localisation began to address the
SLAM task.

A detailed look at the history of SLAM is given in the two tu-
torials by Durrant-Whyte and Bailey [4, 37], as well as in the book
by Thrun, Burgard and Fox [113], and the chapter by Thrun and
Leonard [114]. Such sources cover the classical formulations of the
SLAM problem, based on Extended Kalman Filters [61, 108], Rao-
Blackwellised Particle Filters [88] and maximum likelihood estima-
tion. Another recent survey, by Cadena et al. [15], details the works
presented in the years after the turn of the millennium, the modern
formulation of SLAM problem, techniques adopted to tackle such
task, and open challenges that will shape future directions of the
research in this field.
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2 .2 visual slam

Simultaneous Localisation and Mapping, as described above, does
not pose any restriction on the kind of sensors used to estimate
the pose of the agent within the world: systems relying on laser
range finders [27], inertial sensors [71], odometry sensors [23], GPS
units [70], and cameras [32] (or combinations of them [1, 93]) have
been proposed.

The subset of SLAM techniques relying on processing of image
data only is aptly named visual SLAM. In this thesis we propose a
Semantic SLAM pipeline based on the availability of input RGB-D
streams, therefore in the remainder of this section we will focus on
works relevant to our research.

The field of visual SLAM is typically divided between two main
approaches, one relying on data captured by monocular image
sensors and the other relying on the presence of an additional
depth channel, acquired e.g. by stereo or RGB-D sensors, providing
information on the geometry of the observed scene.

From the former category, employing RGB informations only to
generate maps of an environment wherein a monocular camera is
moved freely by the user, we would like to point out the seminal
work by Davison [31], followed by [32]. Eade and Drummond [38]
and Civera et al. [26] also proposed systems relying on filtering
approaches to perform visual odometry. All of those systems rely
on sparse features and therefore output sparse maps of the explored
environment, where no knowledge on the geometry of the observed
scene is embedded.

Allowing instead the generation of dense maps of the environ-
ment, are the works by Newcombe and Davison [89], [92], Keller
et al. [68] and Whelan et al. [121].

With the advent of affordable RGB-D sensors such as the Mi-
crosoft Kinect, research focused on the reconstruction of environ-
ments through employment of 2.5D images (i.e. images with an asso-
ciated depth channel) spurred. Several works relied on the detection
of 2D point features (such as SIFT [79], SURF [8], or ORB [99]) in the
input images, their matching with keypoints extracted from previ-
ously observed frames (or keyframes), and the subsequent projection
of such interest points in 3D space by using the known spatial re-
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lation between the RGB and the depth sensor to estimate camera
poses and generate maps of the scene. Examples of such systems
are by Endres et al. [40], Fioraio and Di Stefano [43], Henry et al.
[59] and Mur-Artal, Montiel and Tardós [86].

A second strand of research focused on the generation of dense
maps of the environment by RGB-D images, has been fostered by
the presentation of the well known KinectFusion system by New-
combe et al. [91]. KinectFusion has been one of the first SLAM
pipelines allowing the tracking of a sensor and the extraction of a
detailed reconstruction of the scene in real-time, by offloading most
of its processing to a GPU-based accelerator. The system relies on
a Signed Distance Function-based map of the environment (that will
be described in detail in Chapter 3) allowing, among other results,
the attainment of synthetic depth images from arbitrary viewpoints.
Such generated depth maps are used to perform camera pose estim-
ation by employing a Projective Iterative Closest Points technique [9,
100]. The work we present in this thesis is built on this system and
its extensions that will be mentioned in the following paragraphs.

Newcombe’s work [91], well-favoured in its simplicity and effect-
ive in its core task – mapping of small/medium size environments
rich in geometric structure – suffers though from four main short-
comings highlighted as follows.

(a) Reliance on a memory-demanding data structure allocated on
the GPU, such as a dense fixed-size voxel grid storing the
aforementioned Signed Distance Function, prevents the map-
ping of large scale scenes.

(b) The drift error, inherently accumulated during the ICP-based
tracking process, may cause gross reconstruction errors
when observing surfaces poor in geometric informations (e.g.
smooth/flat surfaces) or closing camera path loops.

(c) The requirement for static and rigid scenes hampers usabil-
ity outside controlled settings, severely limiting the breadth of
practical applications.

(d) Finally, the original KinectFusion outputs a purely geometric
map of the environment, thus not providing semantic hints to
support higher level reasoning about the surroundings of the
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sensor. Only a few works embed semantic informations in the
reconstructed map and, currently, none rely on them during
the camera localisation phase of the pipeline.

In the remainder of this section we will mention some works tack-
ling each of the aforementioned issues, excluding the last one, con-
cerned with semantic informations. The latter, being core of the
work of this thesis, will be treated in the next section.

extents of the mapped environment Different kinds of
approaches can be taken to extend the mapped workspace. The
data structure holding the map representation is typically associ-
ated to a global coordinate frame allowing the generation of metric-
ally accurate reconstructions. Such reference frame for the volume
can be moved alongside with sensor movements, thus centering the
map onto the position of the camera, possibly downloading parts
of the voxel grid from GPU to CPU memory, as proposed by Roth
and Vona [98] and Whelan et al. [120]. Building on this idea are
also the works by Fioraio et al. [44] and Kähler, Prisacariu and
Murray [64]: in their proposals, the map of the scene is divided
in smaller volumes, reconstructed independently and merged with
suitable techniques. Alternatively, Kähler* et al. [66] and Nießner
et al. [94] employ sparse voxel grids indexed by hash tables (or as
hierarchical structures: Chen, Bautembach and Izadi [21] and Zeng
et al. [124]) to diminish occupancy and increase the bounds of the
mappable space. Hybrid methods combining the strengths of hier-
archical structures and hash tables have also been proposed to allow
the generation of reconstructions with variable degrees of accuracy,
depending on the level of details of the observed scenes [65].

tracking accuracy Some works have proposed to rely on
additional clues with respect to the purely geometry-based Kinect-
Fusion camera tracker, to attempt reducing the inherent drift error.
In particular, Bylow, Olsson and Kahl [13] show that injecting per-
pixel colour measurements within the cost function optimized by
the tracker does improve accuracy, especially when dealing with
flat or smooth surfaces that present distinctive colour features. Con-
versely, Zhou and Koltun [127] posit to deploy occluding contours
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rather than colour and demonstrate the effectiveness of their pro-
posal in experiments focused on scanning individual objects featur-
ing smooth and evenly coloured surfaces. Other approaches con-
cern tackling drift by a global optimization step on a pose graph,
which may better counteract misalignments showing up at loop clos-
ures. The pose optimization step may be run either off-line, after the
capture process is terminated [126, 128], or on-line, by continuously
optimizing the poses of partial volumes, possibly deforming the sur-
faces contained therein [30, 44, 58, 64].

movement in the scene Lightly dynamic scenes are allowed
by the original KinectFusion algorithm, though only due to the
volume update step behaving as a low-pass filter forgetting old
measurements after the fusion of a certain number of frames. How-
ever, scene motion is not explicitly considered, sudden movements
of relatively large-size objects inevitably causing camera tracking
failures. Recent works, instead, have demonstrated impressive res-
ults in non-rigid and dynamic settings by modelling motion as a
fundamental property of the captured scene [34, 35, 90].

2 .3 semantic slam

As mentioned in the previous section, embedding of semantic
informations into SLAM algorithms was addressed by just a few
works. A relevant early proposal in this field is the work by Castle,
Klein and Murray [19], where locations of planar objects detected
by SIFT features are incorporated into a SLAM algorithm based
on Extended Kalman Filtering [61, 108]. Later, Civera et al. [25],
lift the limitation of the previous approach to account for planar
objects only, by building their system on top of the EKF SLAM
pipeline of [26], detecting objects of interest via SURF keypoints
and descriptors [8], and inserting corresponding 3D points into
the filter state. Bao et al. [5–7] proposed the idea of “Semantic
Structure from Motion” to jointly perform the object recognition
and SLAM tasks; in their research, tough, they process entire
image sequences offline and perform a global optimization on the
resulting environmental map. All such approaches, also, do not
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employ RGB-D informations, relying instead on the processing of
several images to estimate the 3D world structure.

On the converse, works exploiting the availability 3D information
throughout the entire pipeline are those by Fioraio, Cerri and Di
Stefano [41], [42], Salas-Moreno et al. [101] and Xiao, Owens and
Torralba [123]. Fioraio and Di Stefano, in [42], propose a keyframe-
based SLAM algorithm where detected objects are inserted as ad-
ditional constraints in the bundle adjustment process used to es-
timate camera poses. Their work is then extended in [41] by de-
ploying the Semantic Bundle Adjustment framework together with
KinectFusion [91]. This enables the detection of known object in-
stances, estimation of their 6 DOF poses, and embedding of such
objects into a globally optimized pose graph to help counteracting
drift. Although pursuing a diverse graph-based mapping strategy,
the SLAM++ system by Salas-Moreno et al. relies on the detection
of known object instances to perform camera tracking by an ap-
proach akin to KinectFusion: detected objects are used to estimate
the sensor location, by rendering a synthetic view of their placement
and aligning the real depth image to such view through the ICP al-
gorithm [100]. Xiao, Owens and Torralba introduce a semantically
annotated dataset; while not the main focus of their work, semantic
informations on the object location are used during the bundle ad-
justment process to better constrain the generated reconstruction of
the environment. In their work they show a full “semantic loop”,
where bounding boxes for objects manually labelled in a subset of
frames are used to improve the world map; in turn this allows to
propagate their labels to previously unlabelled frames thus reducing
the effort needed by the user to annotate the entire sequences.

Additional recent works, concerned with the generation of se-
mantically annotated reconstructions, are those by Hermans, Floros
and Leibe [60], Valentin et al. [117], Golodetz et al. [52], Miksik et al.
[84], and McCormac et al. [83].

Hermans, Floros and Leibe [60] present a pipeline allowing the
transfer of semantic labels associated to 2D images by randomised
decision forests to 3D point cloud reconstructions obtained by adapt-
ing the method described in [46]. In their system, the 2D semantic
segmentations are further refined with a 3D Conditional Random
Field before being stored as per-point state in the final reconstruc-
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tion. Golodetz et al. [52] and Valentin et al. [117] show a system
based on the InfiniTAM 3D reconstruction pipeline [66] that, em-
ploying multi-modal user interaction, can learn to classify voxels of
the reconstructed map into user selected categories via streaming de-
cision forests trained on-line. Miksik et al. [84] deploy a setup based
on a head-mounted stereo camera together with the VoxelHashing
3D reconstruction pipeline [94]. By tracking the target of a portable
laser pointer through the acquired frames, the user is able to mark
areas of the scene as pertaining to a certain object category. Such la-
bels are then fed to a densely connected Conditional Random Field
that learns how to classify voxels online in the reconstructed scene.

The systems described until this point rely on semantic segmenta-
tions obtained either with the deployment of decision forests or con-
ditional random fields. Thanks to the focus on deep learning in the
last years, several semantic segmentation techniques were proposed
that could process entire images in fractions of a second, providing
pixel-wise category labels or probability mass functions over a set of
such categories. Gupta et al. [54], process pairs of RGB and Depth
images with multiple deep neural networks followed by an SVM
classifier, generating a threefold output: bounding boxes for ob-
ject detection, per-pixel confidences to segment such instances and
a full-image semantic segmentation output. Long, Shelhamer and
Darrell [77] show how Fully Convolutional Networks can provide
accurate per-pixel, per-category scores on entire images in a determ-
inistic amount of time. Eigen and Fergus [39] demonstrate how a
single deep network architecture can successfully be employed for
three different tasks: predicting depth and normals from RGB im-
ages as well as performing semantic segmentation to infer, again,
per-pixel category probabilities. Zheng et al. [125], then, join the
strengths of Conditional Random fields and Convolutional Neural
Networks within a unique framework trained end-to-end to obtain
semantic segmentation.

Similarly to our proposals, described in Chapter 3 and Chapter 5,
the very recent work by McCormac et al. [83] combines the out-
put of a Convolutional Neural Network for Semantic Segmentation
with the ElasticFusion SLAM system [121] to obtain semantically
annotated 3D maps, by fusing multiple predictions associated with
different frames of the input RGB-D stream.
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The next chapter will describe a first extension of the KinectFu-
sion system [91] allowing the generation of semantic reconstructions
of the explored scene by the integration of the output of a Fully Con-
volutional Network [77].

We will build on the ideas there gathered in the following chapter,
Chapter 4, where we will show how the issue of the inherent drift
that may be accumulated by a purely geometric tracker can be
tackled by relying on semantic observations such as category labels
rather than low-level cues like colour [13] or occluding contours
[127] during the camera pose estimation step. We realize a closed
loop between the semantic labelling and the dense mapping and
tracking processes, so to allow one process to beneficially influence
the other. In this respect, our approach is more similar in spirit to
previous works aimed at creating synergistic interactions between
object detection and SLAM [41, 42, 101].

Additionally, while previous work [52, 84, 117] has addressed in-
teractive scenarios and shown how to obtain semantic reconstruc-
tions by placing the user in the loop, we propose a fully automatic
approach: all the pipelines that we present do not require any user
interaction to perform the labelling and train the classifier, and,
therefore, any untrained user can proficiently reconstruct the ex-
plored scenes just by moving around a hand-held RGB-D sensor.
Finally, improving on the automatic volume labelling method re-
ported in Chapter 3, and unlike all the above mentioned works ad-
dressing semantic reconstruction, our final proposal, described in
Chapter 5, is not constrained to keeping track of only one label per
element of the reconstruction but instead can gather evidence con-
cerning all categories across the whole map. The proposed pipeline
will yield, in each spatial location, the full probability mass function
across several categories rather than estimating the most likely label
only. Such a richer output enables not only generation of semantic-
ally labelled maps, but also assessment of the likeliness of each and
every category across the whole scene surface.





3
V O L U M E - B A S E D S E M A N T I C L A B E L L I N G

3 .1 summary of contributions

Research works on the two topics of Semantic Segmentation and
SLAM (simultaneous localisation and mapping) have been follow-
ing separate tracks. In this chapter, we link them quite tightly by
delineating a category label fusion technique that allows for embed-
ding semantic information into the dense map created by a volume-
based SLAM algorithm such as KinectFusion. The approach here
described allows the generation of a semantically labelled dense re-
construction of the environment around the sensor from a stream of
RGB-D images.

It is thanks to the employment of semantic reconstructions akin
to those described in the following pages that, in a later chapter,
we will show how the exploitation of semantic informations can im-
prove the accuracy of the camera pose estimation (i.e. the localisation
step). We evaluate the proposed volumetric labelling approach by
using a publicly available, semantically annotated, RGB-D dataset to
generate fully labelled reconstruction in the following scenarios: a)
employing ground truth labels, b) corrupting such annotations with
synthetic noise, c) deploying a state of the art semantic segmentation
algorithm based on Convolutional Neural Networks. Results show
that the proposed technique outputs reasonably accurate, fully an-
notated, environment maps. Additionally, thanks to the temporal
smoothing effect naturally provided by this approach, the inevitable
labelling failures that take place during processing of single frames
in the RGB-D input stream have a reduced chance of hindering the
final reconstructions.

21



22 volume-based semantic labelling

(a)

(b)

Figure 3.1: The top picture shows a shaded visualization of the standard
KinectFusion output on the hotel scene of the Sun3D data-
set [123], note that geometric informations only are used to
generate such image. The bottom picture illustrates the type
of output delivered by our technique: a fully labelled, dense
reconstruction wherein each surface element is assigned a cat-
egory tag, here colour coded for ease of visualization.
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3 .2 rationale

In the last years, the Computer Vision community renewed its in-
terest in the task of Simultaneous Localisation and Mapping by
leveraging on RGB-D information. This research trend has been
fostered by the development of ever cheaper sensors as well as by
the more and more ubiquitous presence of smart mobile platforms,
possibly having such sensors on board. Many works tackled is-
sues related to reliable camera tracking, accurate mapping, scalable
world representation, efficient sensor relocalisation, loop closure de-
tection, map optimization. A major breakthrough in the realm of
RGB-D SLAM was achieved by the KinectFusion algorithm by New-
combe et al. [91], which firstly demonstrated real-time and accurate
dense surface mapping and camera tracking.

On separate tracks, researchers working on object detection and
semantic segmentation proposed many interesting techniques to ex-
tract high-level knowledge from images by recognition of object
instances or categories and subsequent region labelling Especially
thanks to the recent developments in the field of deep convolutional
neural networks, year after year, new benchmark-beating algorithms
are proposed that enable to quickly process raw images and extract
from them valuable semantic information.

However, just a few works have tried to draw a bridge between
the two aforementioned fields, though we believe that both research
areas could benefit significantly from tighter integration. Indeed, a
SLAM process may be improved by deploying high-level knowledge
on the type of objects encountered while the moving agent explores
the environment, whereas object detection and semantic labelling
techniques could be ameliorated by deploying multiple views from
tracked sensor poses.

In this chapter we propose a technique capable to obtain incre-
mentally a dense semantic labelling of the environment from a
stream of RGB-D images while performing tracking and mapping à
la KinectFusion [91]. Therefore, differently from the map concerned
only with the 3D shape of the surfaces present in the environment,
yielded by a typical SLAM algorithm such as KinectFusion (and
depicted in Figure 3.1a), our technique additionally provides a fully
labelled map that embodies the information on what kind of object
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(e.g. a wall, chair, bed, pillow, furniture. . . ) each reconstructed sur-
face element belongs to. A view from one of such dense semantic
maps is reported in Figure 3.1b, with each colour representing a
different category label.

The remainder of the current chapter is structured as follows: Sec-
tion 3.3 describes, first, the camera tracking and mapping method
employed in our work and, subsequently, illustrates our proposal
concerning the integration of a semantic labelling algorithm’s out-
put within the SLAM framework; finally, Section 3.4 shows how the
proposed volume-based semantic labelling technique behaves when
feeding it with a) “correct”, manually annotated, labels, b) labels cor-
rupted by synthetic noise, c) “real” labels obtained by a state of the
art semantic segmentation algorithm.

3 .3 description of the method

To obtain a densely labelled map of the environment captured by
the sensor, we adopt a dense, volume-based, approach. Similarly
to KinectFusion [91], the map is represented by a regular 3D grid
of fixed size, wherein each element (voxel) stores a value defining
a Signed Distance Function [29], but, peculiarly, we also provide
each voxel with a label specifying the type of object appearing in
that spatial location, together with an indication of the confidence
on the assigned label. In the remainder of this section we will,
first, describe the Signed Distance Function data structure (Subsec-
tion 3.3.1), as employed in the original KinectFusion pipeline [91]
to generate accurate reconstructions of the explored environments
and, subsequently, our proposed approach to achieve integration of
semantic labels into such representation (Subsection 3.3.2).

To update the information stored into the voxel grid by integrat-
ing new measurements, we need to track the RGB-D sensor as it
moves within the environment. In KinectFusion [91], camera track-
ing is performed by ICP-based alignment between the surface as-
sociated with the current depth image and that extracted from the
TSDF. Later, Bylow et al. [14] and Canelhas, Stoyanov and Lilienthal
[17] proposed to track the camera by direct alignment of the current
depth image to the mapped environment encoded into the TSDF as
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the zero-level isosurface. This newer approach has been proven to
be faster and more accurate than the original KinectFusion tracker.

Camera tracking by direct alignment of the acquired depth image
with respect to the TSDF volume relies on the following considera-
tion: assuming that the estimated pose of the camera is correct and
noise does not affect the current and previous depth measurements,
then each depth pixel should correspond to the projection of a 3D
world point that, given the content of the TSDF grid, features a null
distance function (i.e. lies on the surface). Clearly, noiseless depth
images and perfectly accurate camera pose estimations cannot be
obtained in real settings. However, Bylow et al. [14] show that, for
small camera movements (such as those occurring to the sensor dur-
ing online real-time tracking), iteratively minimizing the sum of the
squared TSDF values determined by the 3D points corresponding
to depth pixels in the RGB-D image, allows for accurate estimation
of camera poses. In our work, we decided to employ the afore-
mentioned direct camera-tracking method on such considerations of
speed and accuracy. As no source code for the algorithm has been
made available by the authors, we implemented the algorithm ac-
cording to its description in the original paper. More precisely, our
code has been obtained by properly modifying a publicly available
implementation of the standard KinectFusion algorithm1 in order
to introduce both the direct camera tracking method as well as the
dense semantic labelling process.

For details on the camera pose estimation algorithm, we refer the
reader to the previously mentioned article by Bylow et al. [14] and
Chapter 4, where we show how the results obtained by applying
such technique can be improved when taking into account the pres-
ence of semantic labels in both the reconstruction and input RGB-D
frames, thus increasing the accuracy of the estimated camera poses.

3 .3 .1 Data structure for 3D reconstructions

Core element of any SLAM system is the map of the environment
being explored. This map is relied on by the localisation component
to allow the estimation of the sensor pose from which new measure-

1 https://github.com/Nerei/kinfu_remake

https://github.com/Nerei/kinfu_remake
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ments are acquired. As the localisation and mapping loop proceeds,
the map is in turn updated, to account for the new data acquired by
the sensor.

As previously anticipated, in a visual SLAM system such as Kin-
ectFusion [91], base of the pipeline described in this thesis work, the
reconstruction of the environment is defined via a Truncated Signed
Distance Function (TSDF), popularised by Curless and Levoy [29].

A Signed Distance Function (SDF) is a continuous function Φ(x) :
R3 → R defining, for each point in a 3D space, the signed distance
of the point to its closest surface. SDF values are positive when the
point is located outside of a surface (in front of it) and negative other-
wise (i.e. the point is behind the surface represented by the function).
A point located exactly on a surface is assigned an SDF value of
0. To clarify, Figure 3.2 shows a colour-coded representation of the
SDF values associated to a 2D shape (i.e. the corresponding distance
transform). The extension to 3D surfaces is straightforward.

A Signed Distance Function can be used to indirectly define the
map of the environment being explored. Since each position in
space is associated to the distance from its closest mapped surface,
it is trivially possible to identify empty and occupied areas: positive
values of the function identify free space, while areas where the SDF
assumes negative values belong to the interior of an object. Extrac-
tion of a representation of the mapped area is less trivial but non-
etheless feasible: by employing suitable techniques, it is possible to
determine the zero-level isosurface of the function and either render
synthetic images from arbitrary viewpoints or generate a triangular
mesh that can be further processed according to the task at hand.
More details on this in the following subsections.

Values of the SDF are, in the KinectFusion pipeline [91], truncated
up to a small value δ (typically in the order of a few centimetres) to
represent uncertainty on the surface being reconstructed: points in
the world located farther away from the object boundaries than the
truncation distance δ, are assigned the SDF value of δ to indicate that,
when observed from different camera viewpoints, they might result
closer to other surfaces. Similarly, points pertaining to the interior
of an object have SDF values up to a distance of −δ from the surface.
Signed distances assigned to points located farther away, that would
have increasing negative SDF values, are left uninitialised: while
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Figure 3.2: Representation of the 2D Signed Distance Function for a curved
shape. The green path represents the surface encoded by the
SDF. The gradients represent the corresponding values: black-
to-blue indicates increasing negative distances from the sur-
face (i.e. points inside the contour) while black-to-red repres-
ents increasing positive distances (i.e. points located outside the
shape).

from a specific camera viewpoint they might be believed to be part
of the interior of an object, when viewed from other vantage points
they might indeed result located outside such object of interest (i.e.
behind it). A SDF to which is applied the just-described truncation
distance is named Truncated Signed Distance Function (TSDF, φ(x) :
R3 → R) and is used to define the map of the environment being
reconstructed.

Truncated Signed Distance Functions are, conceptually, con-
tinuously defined over the whole R3 domain. In practice, in
KinectFusion-based reconstruction pipelines, TSDFs are approxim-
ated through the definition of a regular voxel grid storing values of
the function in discrete spatial locations. Due to practical memory
occupation concerns, the domain of this discretised TSDF is also
bounded, thus allowing the reconstruction of an environment of
limited size. The mapping between values of the continuous func-
tion φ(x) to the discretised version φ̃(x) can be trivially obtained by
sampling the values of φ corresponding to the spatial locations of
the centre of each voxel. To, on the other hand, obtain values of φ
for arbitrary locations in space, typically, a trilinear interpolation of
the values of φ̃ corresponding to the 8 voxels closest to the location
of interest is required. A discretised representation of the TSDF is
well suited to GPU-based parallel processing and, by choosing a
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sufficiently small voxel size, the loss in accuracy derived from the
non bijective mapping between φ and φ̃ can be minimised.

In the remainder of this thesis we will use the terms Truncated
Signed Distance Function, TSDF, and the symbol φ to refer to
the continuous definition of the function, assuming the mapping
between formal definition of φ and implementation, based on the
discretised, φ̃ to be applied as necessary.

A second function, Ω(x) : R3 → R+
0 is similarly defined over the

mapped space to store a weight for each voxel. Such value is used in
the integration process to blend past measurements already stored
in the TSDF grid with new depth values provided by the sensor.
A weight of 0 indicates locations for which the Truncated Signed
Distance Function is currently uninitialised, e.g. as previously men-
tioned, points located behind a surface, farther away than the trun-
cation distance δ.

If desired, each voxel in the grid can be extended to store an RGB
triplet and a corresponding weight. This would allow the genera-
tion of a coloured reconstruction of the environment. By applying
the considerations made in the previous paragraphs on the continu-
ous/discrete conversions, we can define a function, ψ(x) : R3 →
[0, 255]3, to represent the colour associated to each point in the world
and a weight function, Ωc(x) : R3 → R+

0 , again used during the in-
tegration step.

The next subsections will detail, first, the process through which
the surface measurements encoded within a frame (acquired with,
e.g. a RGB-D sensor) can be robustly integrated in the 3D voxel grid;
subsequently, the opposite operations, allowing the generation of
synthetic depth images from arbitrary viewpoints and the recon-
struction of a 3D mesh representing the mapped environment in its
entirety will be described.

3 .3 .1 .1 Integration of depth frames

In a 3D SLAM pipeline relying on an indirect map representation
such as a TSDF, core of the mapping phase is the update of the func-
tion values according to the measurements acquired by the sensor.
RGB-D sensors, such as the Kinect, produce a colour and depth
frame pair for each sampling interval. Assuming the camera pose
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in the world to be known (or having been correctly estimated dur-
ing the localisation phase), a depth frame can be integrated (or fused,
hence the name KinectFusion [91]) in the 3D voxel grid to improve
the current representation of the world.

We denote with Tw,c = (R, t) ∈ SE(3) the estimated camera pose,
i.e. the rigid-body transformation mapping points in the camera
reference frame to world coordinates, and u = (u, v)T the loca-
tion of a pixel in the input frame. We assume the depth frame
d(u) : [0,w)× [0,h) → R+

0 (with w and h indicating, respectively,
width and height of the image) to have been previously undistor-
ted thus encoding, for each pixel, the metric distance of the camera
to the observed surface, if available (0 otherwise). For simplicity
we also assume the RGB frame i(u) : [0,w)× [0,h) → [0, 255]3 to
be registered with the depth image, thus being able to sample the
colour associated to a depth measurement d(ū) by observing the
corresponding value of the RGB frame i(ū). The intrinsic paramet-
ers of the depth sensor (focal distances fx, fy, and principal point cx,
cy) are also assumed to be known, so as to be able to perform per-
spective projection of 3D points into pixels and vice-versa. We will
indicate the projection operation of a 3D point onto the image plane
as π(p) : R3 → R2 and the backprojection of a 2D pixel associated
to a depth onto a 3D point as π−1(u, z) : (R2, R)→ R3. Formally:

π(p) =

fx pxpz + cx

fy
py
pz

+ cy

 (3.1a)

π−1(u, z) = π−1(u, v, z) =


zu−cxfx

z
v−cy
fy

z

 (3.1b)

Fusion of the RGB-D frame is then performed as follows. Typic-
ally, every voxel in the 3D volume is visited in parallel on the GPU
(as the operations performed for each are independent from the oth-
ers) and the 3D position of its centre pv is projected onto the depth
map to select the coordinates of a pixel uv:

uv = bπ(T−1w,cpv)e (3.2)
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The real coordinates resulting from the application of the π(x) oper-
ation are rounded to the nearest integer (b.e) in order to sample from
the input depth frame. Then, iff the projected location falls within
the bounds of the input image and the corresponding depth meas-
urement is available (d(uv) > 0), the data contained in the voxel
has the chance of being updated. A signed distance from the voxel
centre to the surface described by the depth image is computed, by
considering the z coordinate of the voxel centre in the camera refer-
ence frame:

sv = d(uv) − (T−1w,cpv)z (3.3)

The truncation distance, δ, is then considered, so that voxels in the
3D volume are updated iff they lie within the sensor view frustum
and sv > −δ. The (normalised) truncated signed distance ŝv for the
voxel is then defined as:

ŝv =

1 if sv > δ

sv
δ if − δ 6 sv < δ

(3.4)

The voxel TSDF value, φ(pv), is updated by a weighted average
with sv. The weight Ω(pv) is also increased, up to a maximum
value Ωmax. Infinite weight growth is avoided to allow for tem-
poral smoothing of the estimated surface distance: this approach al-
lows older measurements to be forgotten after a certain number of
volume updating steps. To this purpose, a function w(x) : R→ R is
defined so as to apply a weight to the TSDF value ŝv considered dur-
ing the averaging process. Several formulations have been proposed
in literature, in our experiments we employed, firstly, the exponen-
tial approach described by Bylow et al. [14] since in their evaluation
it was deemed to produce more accurate reconstructions:

w(x) =


1 if x > ε

e−σ(x−ε)
2

if ε > x > −δ

0 if x < −δ

(3.5)
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with ε being typically a small negative value, such as −2.5 cm. The
rationale behind such choice of weighting function is to provide
high weight to voxels in front of the observed surface, while sig-
nalling uncertainty as to the content of voxels located behind the
surface by using decreasing weights. After several experiments we
decided to deploy instead the constant weighting function w(x) = 1
giving equal certainty to both voxels in front of the surface and
behind it, as far as the truncation distance. Reconstructions were
not severely hindered by this choice and, conversely, the processing
speed of the system increased sensibly (due to the removal of sev-
eral floating point operations performed on the GPU for every voxel
being updated). To represent the weight associated to a voxel being
updated we define:

wv = 1 (3.6)

Finally, Equation 3.4 and Equation 3.6 allow us to define the mech-
anism used to update the TSDF volume:

φt+1(pv) =
φt(pv)Ωt(pv) + ŝvwv

Ωt(pv) +wv
(3.7a)

Ωt+1(pv) = min(Ωt(pv) +wv,Ωmax) (3.7b)

The subscripts t and t+1 indicate respectively the current and up-
dated values of the φ(x) and Ω(x) functions.

3 .3 .1 .2 Integration of RGB frames

The fusion of colour measurements in the voxel grid is an optional
step, performed simultaneously to the integration of depth meas-
urements. If processing speed of the pipeline or GPU memory oc-
cupation are a concern for the specific task being performed, a Kin-
ectFusion system can still work in absence of colour informations.

As mentioned in the previous subsection, coloured pixels in the
RGB-D pair are registered to the depth image pixels thus, whilst
sampling the depth d(uv), we can also sample the corresponding
RGB triplet:

(rv,gv,bv) = i(uv) (3.8)
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Then, iff the voxel being updated lies within the truncation distance
of the surface being observed (i.e. |ŝv| 6 δ), the values stored within
it and defining the ψ(x) and Ωc(x) functions are updated.

Similarly to the depth fusion step, a weighted average of the pixel
colours and those stored in the voxel is performed [13]. A weighting
coefficient wc,v depending on the angle θ, between the optical axis
of the sensor and the line joining the camera centre to the 3D point
determined by the depth measurement for pixel uv, is defined:

wc,v = wv cos(θ) (3.9)

The update is performed as follows:

ψr,t+1(pv) =
ψr,t(pv)Ωc,t(pv) + rvwc,v

Ωc,t(pv) +wc,v
(3.10a)

ψg,t+1(pv) =
ψg,t(pv)Ωc,t(pv) + gvwc,v

Ωc,t(pv) +wc,v
(3.10b)

ψb,t+1(pv) =
ψb,t(pv)Ωc,t(pv) + bvwc,v

Ωc,t(pv) +wc,v
(3.10c)

Ωc,t+1(pv) = min(Ωc,t(pv) +wc,v,Ωc,max) (3.10d)

3 .3 .1 .3 A note on memory requirements

SLAM systems relying on fixed-size voxel grids as backing storage
for the map, such as KinectFusion [91] and derived pipelines as
the one described in this and following chapters, have very strong
memory requirements. As mentioned towards the end of Subsec-
tion 3.3.1, a continuous TSDF is approximated by a dense voxel
grid, wherein each voxel holds the TSDF information (and related
values, i.e. weights and colours) for a certain region of space. The
contents of each voxel, as described, are the following:

1. Truncated signed distance of the voxel from the closest world
surface.

2. Weight used to compute the running average during the voxel
update step.

3. RGB values representing the colour of the surface

4. Weight associated to the colour values.
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The TSDF value and its associated weight can be stored as half preci-
sion floating point numbers, occupying 2B each, whilst RGB triplets
are stored as unsigned chars, and their associated weight as a fourth
byte (floating point numbers are scaled to integers by multiplication
for a constant scaling factor, i.e. 10). The total memory occupation
for a single voxel, with such representation, is then 8B.

Typical voxel grids have size 5123 or 2563, even though the latter
is used only in cases where the amount of available memory is lim-
ited. With a voxel grid of size 5123 this means a occupation of 1GB
of GPU memory, while with a 2563 voxel grid this translates to a
128MB requirement, both well within the memory limit of current
GPU processors.

Extents of the mappable area are directly related to the dimension
of each voxel (their resolution), the actual amount of occupied or free
space does not have any effect on it: voxels located far away from
the reconstructed objects, whilst uninformative to the purpose of
the reconstruction, will be assigned a TSDF value equal to the trun-
cation distance δ. The resolution is typically chosen accordingly to
the kind of scene being reconstructed: to reconstruct small objects
with many details, a voxel with a side of 2.5mm could be indicated,
thus deploying a cubic volume having sides of ≈1.3m. Slightly lar-
ger environments could benefit from 0.53cm3 or 13cm3 voxels, thus
allowing the reconstruction of environments respectively as big as
≈ 2.53m3 or ≈ 53m3. For even larger reconstructions, e.g. for room-
sized scenes, voxels having sides of up to 2 cm can be used, thus
allowing the reconstruction of scenes up to ≈ 103m3. The loss in ac-
curacy caused by choosing voxels with sides bigger than 2 cm is too
severe to allow deployment of the system in larger environments.

In this and the following chapter we deploy TSDF volumes com-
posed of 5123 voxels with sizes ranging between 1.53 and 23cm3,
depending on the extents of the specific scene to reconstruct. If one
wants to map a larger environment, different techniques have to be
deployed: the dense voxel grid does not scale further. A non-dense
approach, where voxels in GPU memory are stored only for loca-
tions close to the actual surfaces being reconstructed, thus maxim-
ising the memory efficiency, is described in Chapter 5 and is based
on dynamic indexing structures that allow on-demand allocation
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of voxel blocks, thus allowing the mapping of large scale environ-
ments.

3 .3 .1 .4 Surface extraction

The availability of a dense TSDF grid allows the generation of ac-
curate surface predictions from arbitrary viewpoints by finding the
zero-level isosurface stored within the voxel grid. To this purpose, a
virtual camera is placed in the environment, with position and ori-
entation of interest, and a per-pixel raycast operation is performed,
as described by Parker et al. [95]. By marching a ray for each pixel
in the virtual image plane (in parallel, on the GPU), from the camera
centre, and sampling the TSDF values of the voxels being traversed
it is possible to identify zero-crossings of the function. A surface be-
ing observed from the front is detected when, whilst marching a ray,
a positive-to-negative transition in the SDF values is identified. By
interpolating the position of the positive and negative-valued voxels
it is possible to estimate the position of the 3D point representing
the surface. On the converse, if a negative-to-positive zero-crossing
is encountered (signifying a surface observed from the inside of an
object) or if the ray being marched exits the reconstruction volume,
the corresponding pixel is set to not visible.

A normal for each raycasted point can be computed by numeric-
ally approximating the derivatives of the TSDF values in the neigh-
bourhood of the point itself. Colour for the rendered surface can
also be extracted from the voxel grid, by trilinearly interpolating the
colours associated to the 8 voxels located around raycasted points.
More details on the surface raycasting process and techniques to
speed up the ray marching phase can be found in the article by
Newcombe et al. [91].

3 .3 .1 .5 Mesh extraction

An unstructured mesh can also be generated from the TSDF volume:
by deploying the marching-cubes algorithm [78] it is possible to ex-
tract a set of triangles representing the zero-level isosurface encoded
by the SDF values. The mesh extraction algorithm can be trivially
parallelised on the GPU, by processing each voxel with an ad-hoc
thread. Surface normals for each triangle are computed by deploy-
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ing the cross product between two of its edges, whilst vertex colours
can be sampled from the grid by trilinearly interpolating the nearby
voxel colours, as described in the previous subsection.

For further details on the marching-cubes algorithm we refer the
interested reader to the original paper by Lorensen and Cline [78].
In the following subsections we will detail the modifications applied
to the TSDF data structure and the algorithms used to integrate
semantic informations in the reconstruction.

3 .3 .2 Data structure for labelled reconstructions

To obtain a densely labelled representation of the environment, we
assume the RGB-D sensor output to be fed to a semantic segment-
ation algorithm. Without lack of generality, the output of such an
algorithm can be represented as a “category” map, i.e. a bitmap hav-
ing the same resolution as the input image, wherein each pixel is as-
signed a discrete label identifying its category (or the lack thereof).

Moreover, we assume to be provided with a “score” map, where
each value represents the confidence of the labelling algorithm in
assigning a category to the corresponding pixel of the input image.
Different semantic segmentation algorithms may indeed produce
their output in heterogeneous formats (e.g. per-pixel categories, la-
belled superpixels, 2D or 3D bounding boxes, 3D cluster of points,
polygons. . . ) but it is typically possible to reconcile those into the
aforementioned intermediate representation. The reliance on such
an algorithm-agnostic format may also allow us to exploit, simultan-
eously, the output from diverse labelling techniques, either aimed at
detection of different categories or in order to combine their predic-
tions by fusing the score maps. As not every semantic segmentation
technique can be run in real time for every frame captured by the
sensor, the proposed label storage and propagation technique also
allows for the robust integration of unlabelled frames.

As described in Subsection 3.3.1, a typical TSDF volume holds
for each voxel the (truncated) distance of its centre from the closest
surface in the environment together with a weight (also truncated
to a maximum value) and the colour of the observed surface.
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To augment the voxel data structures and label elements of the
volume, several approaches may be envisioned. The most informat-
ive is to store, as an histogram, a probability mass function repres-
enting the probability for the voxel to represent an object of a certain
class. Advantage of this approach is the possibility to properly la-
bel a multi-category voxel (such as one spatially located between
two or more objects), also, analogously to the trilinear interpola-
tion of SDF values and colours, one may interpolate between neigh-
bouring voxels to obtain a spatially continuous p.m.f. Unfortunately,
practical memory occupancy issues forbid us to rely on such an ap-
proach: each voxel already holds a TSDF value, a weight and asso-
ciated colour (together with its weight). Subsection 3.3.1.3 describes
in detail the memory requirements of the vanilla version of the recon-
struction pipeline we are describing. Typical consumer GPU cards
rarely provide more than 2− 3GB of total usable memory. Hence, by
encoding the probability of each class using a single byte (as float-
ing point numbers in the interval [0, 1] can be trivially mapped to
integers in the range [0, 255] with an acceptable loss of precision), we
can not store probabilities for more than 8− 12 categories without
filling most of the available GPU memory. Also, since the integra-
tion of a new frame into the volume during the “mapping” phase of
the algorithm requires a visit to each voxel in the grid, the more cat-
egories one wishes to handle, the slower turns out the entire track-
ing pipeline, practically limiting the maximum number of probabil-
ities that can be stored in each voxel.

The above considerations lead us to store, instead, a single cat-
egory per voxel, together with a “score” expressing the confidence
on the accuracy of the assigned label. In the chosen representa-
tion discrete labels are stored as unsigned short numbers while the
score is represented once again as an half precision floating point
number, bringing the total memory occupation for a single voxel to
12B (including the pre-existing data). Clearly we lose information
using such label encoding, as we can no longer represent properly
those voxels featuring more than one likely label but, accordingly,
the memory requirements for a 5123 voxel grid is fixed to 1.5GB
of GPU RAM, regardless of the total number of handled categories.
Moreover, such a minimal representation mandates special care in
implementing the volume update operation to insert new labelled
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data into the grid, in order to avoid situations where a voxel gets
continuously switched between different categories. The process
undertaken to integrate new labelled frames in the TSDF volume
is described in the next subsections, with the assumption that the
fusion step described earlier is performed at the same time as it.

3 .3 .2 .1 Label Fusion Process

As mentioned, to store semantic information into each voxel, we
augment the data structure by adding a discrete category label to-
gether with a floating point score, expressing the confidence in the
stored label. Hence, a running average approach such as that used
during the depth fusion step cannot be used for the semantic la-
belling information, as different categories cannot be directly con-
fronted. We could, hypothetically, store in each voxel the labels as
we receive them (by projecting each 3D cell’s coordinates onto the
label bitmap and sampling the corresponding pixel), but this would
be prone to errors, as a single mislabelled region would possibly
overwrite several correct voxel labels acquired in the past. Addition-
ally, not every pixel may be labelled; possibly entire frames, when
using a slow semantic segmentation technique which cannot be run
on every input image.

We therefore propose an evidence weighting approach: similarly
to the depth fusion process described previously, the coordinates
of each voxel in the volume are projected (in parallel, on the GPU)
onto the depth image and label/confidence maps and, iff they result
within the truncation distance δ from the observed surface, we up-
date the informations stored in the voxel depending on the sampled
category and score pair. Specifically, each time a voxel is projected
onto a pixel having the same label, we increment its score. On the
converse, if the category stored in the voxel differs from the one in
the corresponding pixel (e.g. due to a labelling error or to being on
the seam between two differently labelled regions), we decrement
the associated score. Only when the score reaches a negative value
we replace the stored category with the new one.

As for the evidence increment/decrement weight applied to the
score, we deploy the confidence of the semantic segmentation al-
gorithm, as sampled from the input score map that we assume to be
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provided together with the labelling output itself. This choice nat-
urally induces an hysteresis-like effect, protecting the consistency
of the labels stored into the volume when areas of the input image
are assigned to different categories in subsequent frames. Typic-
ally, a mislabelled region has associated a low score, such value
will then not be able to bring in enough evidence to change the cat-
egory associated with a correctly labelled area of the reconstruction.
Conversely, assuming the initial labelling of a region to be wrong
(i.e. with a low confidence), a correct labelling from subsequent
frames will easily be able to replace the initial, erroneous, tag. A
possible pitfall becomes evident if, for any reason, the confidence
associated to a wrong labelling result by the semantic segmentation
algorithm is very high but, as more frames are integrated into the
TSDF volume, stored scores will increase above the maximum one
the labelling algorithm is able to provide; when such a situation is
reached, a single incorrect segmentation will not have the chance
to adversely affect the volume contents. An unlabelled area (or en-
tire frame, without lack of generality) has no effect on the volume
labelling process: each corresponding voxel will be left unchanged.

Similarly to the geometric integration approach, we clamp the
maximum label score for a voxel to allow for an easier change of cat-
egory if, suddenly, a region of space is consistently tagged as a dif-
ferent object for several frames (e.g. in non-static situations, when an
object is removed from the scene). Algorithm 1 shows the pseudo-
code for the proposed volume-based label updating process.

3 .4 experimental evaluation

To evaluate the proposed volume labelling approach we perform
tests using different types of semantically segmented data. Our tests
deploy the video sequences included in the Sun3D dataset [123].
On their website, Xiao, Owens and Torralba provide multiple RGB-
D video sequences captured using a Kinect sensor, depicting typ-
ical indoor environments such as hotel, conference rooms or lounge
areas. Unique to this dataset, is the presence of manually acquired
object annotations, in the form of per-object polygons, for multiple
sequences. Each object is also given a unique name, which allows



3.4 experimental evaluation 39

Algorithm 1 Pseudo-code of the label updating process
for all voxels in the volume do

pv ← 3D world coordinates of the voxel centre
uv ← projection of the voxel onto the image plane (see Equation 3.2)
sv ← SDF associated to the voxel (see Equation 3.3)
Lin ← category associated to the pixel uv
Win ← labelling score associated to the pixel uv)
Ltsdf ← category associated to the current voxel
Wtsdf ← labelling score associated to the current voxel
if |sv| 6 δ∧ Lin /∈ (unlabeled, background) then

if Ltsdf = unlabeled ∨Wtsdf < 0 then
Ltsdf ← Lin
Wtsdf ←Win

else if Lin = Ltsdf then
Wtsdf ← min(Wtsdf +Win,Wclamp)

else
Wtsdf ←Wtsdf −Win

end if
end if

end for

us to tell apart several instances of a same category (e.g. in a hotel
room sequence we may have “pillow 1” and “pillow 2”).

To parse the dataset’s own object representation into our interme-
diate labelling format, described in Subsection 3.3.2, we adopt the
following approach:

category map Each named object is given an increasing (and
unique) integer identifier, afterwards, its bounding polygon
is painted as a filled shape into our category bitmap. Being
the source data result of a manual annotation process, partial
overlap of the object polygons is not considered a concern.

score map Annotated shapes are the result of a manual annota-
tion process, we therefore consider the labelling algorithm’s con-
fidence maximal. Similarly to the category map, we draw each
object’s bounding polygon onto the score map and fill it with
the floating point value 1.0.

Figure 3.3 shows a frame from the hotel room sequence contained
in the aforementioned dataset. We see that each object is correctly
labelled and their confidences are maximal due to the manual la-
belling process.
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Figure 3.3: Labelled frame from the hotel room sequence of the Sun3D
dataset [123]. From top left in clockwise order: RGB frame,
depth frame, score map and category map. The score map has
been drawn in false colours to increase visibility (blue is the
minimum value while red is the maximum). In the category
map each colour represents a different object instance.

We provide two kind of results, first by proving the robustness
of the method under presence of synthetic noise in the labeller’s
output (Subsection 3.4.1). Subsequently, we show densely labelled
volumes for several sequences, obtained using either ground truth
labelling data or the semantic segmentation produced by a state
of the art algorithm. For the latter, we evaluate the capability of
the proposed fusion technique to reduce the number of erroneously
labelled areas in the reconstructed volumes (Subsection 3.4.2).

3 .4 .1 Robustness to synthetic label noise

To investigate on the robustness of the proposed volumetric label
integration process with respect to per-pixel semantic segmentation
errors, for all the considered sequences, we corrupt the ground-truth
category map associated with each frame with synthetically gener-
ated white noise. We then compare the resulting labelled volume to
a reference volume obtained by executing the label fusion process
on the noiseless, manually annotated, category maps. In particular,
considering only those labels assigned to voxels representing a sur-
face element (i.e. the zero-level isosurface of the TSDF), we compute
the volumetric labelling error rate, i.e. the fraction of misclassified
surface voxels. Our synthetic noise model is as follows: we sample
pixels from the category map with a certain probability so to switch
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Figure 3.4: Volumetric labelling error rate for several sequences of the
Sun3D dataset [123] when synthetic noise is added to the
ground-truth category labels.

their correct label to wrong ones uniformly selected from the total
pool of labels present in the sequence being examined. We also as-
sign maximum confidence to such switched labels.

Figure 3.4 shows how, though the image labeller output is cor-
rupted (as illustrated in Figure 3.5), thanks to the temporal label
integration process, the final volume features a consistent labelling
wherein each voxel is likely to have been correctly classified. Even
when the probability to corrupt a label is as high as 50%, the pro-
posed label integration can reduce the final volumetric error rate
significantly, i.e. squeezing it down to less than 25% typically, to
much less than 20% quite often. For more than 50% of wrong labels
per input image, the error grows almost linearly with the noise level.
The label fusion process still turning out beneficial in terms of noise
attenuation: e.g, with as much as 70% wrong labels per image, the
amount of misclassified surface voxels is typically less than 60%.

Figure 3.6 depicts the semantic reconstruction of a portion of the
environment explored through the mit_dorm_next_sj sequence. It
can be observed that the labelled surface represents accurately both
the shape as well as the semantic of the objects present in the en-
vironment. The comparison between Figure 3.6a and Figure 3.6b
allows for assessing the effectiveness of the temporal label integra-
tion process: though as many as 30% of the per-pixel labels in each
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(a) Noise: 5% (b) Noise: 15%

(c) Noise: 30% (d) Noise: 60%

Figure 3.5: Examples of category bitmaps fed to the label fusion algorithm
when correct labels are corrupted by increasing amounts of
noise.

(a) (b)

Figure 3.6: Semantically labelled reconstructions of the dorm sequence in
the Sun3D dataset [123]: each surface element is coloured ac-
cording to its category label. Left: reconstruction from noise-
less per-pixel category maps. Right: reconstruction when 30%
of the input labels in each map are switched to wrong. La-
belling errors are visible by zooming onto the desk area only.



3.4 experimental evaluation 43

frame are wrong, just a few errors are noticeable with respect to the
semantic reconstruction based on perfect noiseless input data. In-
deed, such errors are mostly concentrated in the desk area, where
the sensor did not linger for multiple frames and thus the evidence
weighting process turned out less effective.

3 .4 .2 Results in real settings

To evaluate the effectiveness of our technique when using a real
semantic labelling algorithm, we deploy the recent Semantic Seg-
mentation approach proposed by Long, Shelhamer and Darrell [77].
Such algorithm uses a Convolutional Neural Network to produce a
per-pixel labelling of an input image. The authors made available
several pre-trained networks2 based on the open source Caffe deep
learning framework [62]. We focused our evaluation on the “FCN-
16s NYUDv2” architecture due to similarities of its output category
set with the type of objects present in the Sun3D dataset. The chosen
network processes RGB-D images and produces per-pixel scores for
40 categories defined by Gupta, Arbelaez and Malik [53]. Using
the aforementioned algorithm to label each frame of the input se-
quences, we fed our volume labelling pipeline with category maps
wherein each pixel is assigned to the object class having the highest
probability, storing then such values into the respective score maps.

Figures 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13 show views from
the semantically labelled surfaces obtained by processing some of
the sequences of the Sun3D dataset [123]. To allow for better com-
parative assessment of the performance achievable in real settings,
in each Figure we report both the reconstruction obtained by feed-
ing our algorithm with ground truth labels and with the output
from the CNN mentioned above. Per-object identifiers from the
Sun3D dataset have been manually mapped onto the correspond-
ing categories defined in [53] to facilitate the comparison of results
(in the hotel sequence of the Sun3D dataset for example, four dif-
ferent pillow objects are defined; we mapped all such identifiers
to the single “pillow” category). Based on the comparison to the
ground-truth reconstructions, it can be observed that the majority

2 https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn

https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn
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Figure 3.7: View from hotel_umd sequence of the Sun3D dataset [123].
From the top left, in clockwise order: standard KinectFusion
output, semantically labelled view obtained by fusing manu-
ally annotated categories, semantically labelled view and asso-
ciated confidence map obtained by fusing the labels computed
by the CNN [77].

Figure 3.8: A second view from the hotel_umd sequence of the Sun3D
dataset [123]. Images are ordered as in Figure 3.7.
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Figure 3.9: A third view from the hotel_umd sequence of the Sun3D data-
set [123]. Images are ordered as in Figure 3.7.

Figure 3.10: A fourth view from the hotel_umd sequence of the Sun3D
dataset [123]. Again, images are ordered as in Figure 3.7.
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Figure 3.11: A view from the mit_dorm_next_sj sequence of the Sun3D
dataset [123]. Once again, images are ordered as in Figure 3.7.

Figure 3.12: A second view from the mit_dorm_next_sj sequence of the
Sun3D dataset [123]. Images are ordered as in Figure 3.7.
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Figure 3.13: A third view from the mit_dorm_next_sj sequence of the
Sun3D dataset [123]. Once again, images are ordered as in
Figure 3.7.

of the labelled regions are consistently and correctly identified by
the real algorithm and that, where labelling errors have been made,
the associated confidence provided by the proposed label integra-
tion technique is likely low (such as in the TV stand in Figure 3.9
or on the bed corner, in Figure 3.11). We also provide a supple-
mentary video3 depicting fully labelled volumes for the two Sun3D
sequences “hotel_umd” and “mit_dorm_next_sj”. In the video we
show the output of our algorithm when feeding it with manually
annotated images and per-pixel categories provided by the CNN.

Finally, in Table 3.1 we assess the benefits brought in by our
volumetric label integration technique with respect to per-frame la-
belling in real settings, i.e. when deploying a real semantic labelling
algorithm such as the CNN proposed in [77]. The first part of the
table reports per-frame semantic labelling error rates: this metric
is computed for each frame using the ground-truth labels provided
with the Sun3D dataset, dividing the number of incorrectly labelled
pixels by the total number of labelled pixels. We show average per-
frame error rate and associated standard deviation for the two se-
quences considered during the evaluation. The rightmost column,
then, displays the volumetric error rate, i.e. the percentage of erro-
neously labelled surface voxels in the final reconstruction of the 3D
volume (the same metric as Figure 3.4). The results in Table 3.1

3 https://vision.disi.unibo.it/~tcavallari/phd_thesis/psivt2015.mp4

https://vision.disi.unibo.it/~tcavallari/phd_thesis/psivt2015.mp4
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Per frame error rate (%) Volumetric error rate (%)
Sequence Average Std. Dev.

hotel_umd 34.9 22.6 24.1
mit_dorm_next_sj 26.1 15.7 19.3

Table 3.1: Volumetric vs. per-frame labelling The left side of the table
reports the error rates yielded by CNN proposed in [77] on
the individual frames of the two Sun3D sequences considered
throughout this chapter. The rightmost column shows the per-
centage of voxels incorrectly labelled by our volumetric label in-
tegration method.

vouch how the proposed label integration technique can handle ef-
fectively varying and large per-frame labelling errors so to provide a
significantly more accurate semantic segmentation of the reconstruc-
ted environment. It is also worth pointing out that the volumetric
error rates reported in Table 3.1 turn out higher than those yielded
by synthetic label noise (Figure 3.4) due to the diverse nature of
labelling errors. Indeed, while in the experiment dealing with syn-
thetic noise each pixel has a uniform and independent probability
to be assigned to a wrong category, in real settings it is more likely
that large connected image regions get labelled wrongly due to the
spatial smoothness constraints enforced by real semantic labelling
algorithms, such as e.g. the CNN deployed in our experiments.

3 .5 final remarks

In this chapter we described a first approach to bridge the gap
between semantic segmentation and dense surface mapping and
tracking, so as to attain a semantically labelled, dense reconstruc-
tion of the environment explored by a moving RGB-D sensor. We
demonstrated its robustness by introducing significant noise in the
labelled data fed as input, as well as its effectiveness by comparing
the labelled surfaces achievable by fusing ground truth semantic in-
formations to those obtained by deploying a state of the art semantic
segmentation algorithm.

Our goal is to provide a tool usable alongside any kind of se-
mantic perception algorithm in order to incrementally gather high-
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level knowledge on the environment and store it within the map it-
self. By exploiting the availability of semantic informations in each
voxel, it becomes feasible to raycast in real time a category and con-
fidence bitmap pair. This will allow the user to obtain a continuous
stream of semantically labelled frames, possibly interacting with
the system while mapping the space so as to either linger on low-
confidence regions or even correct or improve the acquired semantic
information. Moreover, the raycasting of such segmented frames re-
mains possible even while employing perception algorithms that
cannot be run in real time: while the segmentation algorithm can-
not produce any new output, the system remains able to display the
labels stored into the map.

In the next chapter we will show how the deployment of semantic
data stored in the reconstructed volume can be used to improve
the camera tracking algorithm by exploiting semantic cues together
with geometric information to better align the current camera view
to the surface embedded into the TSDF volume and thus lead to the
generation of more accurate reconstructions.





4
V O L U M E - B A S E D S E M A N T I C T R A C K I N G

4 .1 summary of contributions

In the previous chapter we showed how the integration of semantic
information such as that provided by an image labelling algorithm
can benefit a dense RGB-D SLAM pipeline, by allowing the gen-
eration of fully labelled reconstructions of the environment being
explored.

As detailed in Chapter 2, recent research on the task of dense
volume reconstruction has focused on improving different short-
comings of the original KinectFusion algorithm [91], i.e.:

(a) impossibility to map large scale environments;

(b) drift in the camera trajectory caused by the accumulation of
small per-frame errors during the tracking process;

(c) low reliability in case of movement in the observed scene;

(d) lack of high level information in the generated maps.

Having provided a technique amenable to storing high level in-
formations in the reconstruction (see Chapter 3), in this chapter we
extend it to tackle a second shortcoming of volume-based recon-
struction systems: the accumulation of camera tracking drift. Ac-
cordingly, we present an extended KinectFusion pipeline taking into
account per-pixel semantic labels gathered from the input frames
during the camera localisation step so as to increase the accuracy in
the estimated camera trajectory. Thus, we realize a SemanticFusion
loop whereby per-frame labels help better track the camera, and
successful tracking enables to consolidate instantaneous semantic
observations into a coherent volumetric map.

51
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4 .2 introduction

Since the publication of the KinectFusion paper by Newcombe et al.
[91], significant interest has spurred on the topic of dense surface
mapping and tracking by means of an handheld RGB-D sensor, this
resulting in a multitude of proposals focused on extending and/or
improving the original algorithm from a variety of diverse perspect-
ives. Thus, for example, attention has been devoted to extend Kin-
ectFusion to reconstruct either large scale [66, 94] or non-rigid [90]
scenes, to improve the tracking module [127] or also to achieve de-
tection of known object instances [41].

Figure 4.1: Advantages of the proposed technique. Top left: the scene re-
construction provided by KinectFusion shows gross errors due
to the flat wall causing the geometry-based tracker to drift sig-
nificantly. Top right: deployment of semantic cues into the
tracking process may enable correct handling of planar sur-
faces. While KinectFusion is concerned with surface informa-
tion only (bottom left), our method can provide a semantically
labelled volumetric reconstruction of the workspace (bottom
right).

Differently, the work described in this chapter is concerned with
endowing KinectFusion with the ability to create a semantically la-
belled dense reconstruction of the environment as well as with de-
ploying per-frame semantic information to improve camera track-
ing, the two processes carried out jointly and synergistically. In-
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deed, on one hand we track the camera by relying also on per-pixel
semantic labelling of the current RGB-D frame, so that a likely cam-
era pose should explain not only the geometry of the scene but also
its semantics: e.g., a pixel labelled as picture should preferably pro-
ject onto a voxel tagged as picture than as wall. On the other hand,
upon successful camera tracking we fuse the category map associ-
ated with the current frame into a volumetric representation, so that
the final labelling results from suitable integration over time of the
many fragile instantaneous observations delivered by the per-frame
labeller. Thereby, semantic labelling ameliorates camera tracking, es-
pecially while acquiring scene elements – such as walls or windows
– that may not provide distinctive geometric cues, and camera track-
ing robustifies semantic labelling by allowing for identification of
observations dealing with the same surface patch at different times
so to assess their likelihood and confidence. The two key advant-
ages brought in by our proposal are exemplified in Figure 4.1.

Previous work has demonstrated how deployment of additional
cues, such as colour [13] or contours [127], can significantly im-
prove the accuracy of the original KinectFusion tracker, which relies
on geometrical information only. Unlike previous work, here we ad-
vocate reliance on higher-level observations, such as per-pixel object
category tags, to improve the tracking module and present a method
that can also output automatically a fully labelled dense reconstruc-
tion of the environment, with confidence scores for multiple object
categories stored into each voxel of the mapped space. This kind of
semantically rich output may vastly facilitate difficult tasks related
to 3D indoor scene understanding, object discovery, object recogni-
tion and grasping, path planning and human/robot navigation.

In the following section we will describe the implementation of
the semantic tracker that we deploy in the KinectFusion pipeline.
First, in Section 4.3, we will detail once again the modifications ap-
plied to the original voxel data structure: whilst in Chapter 3 we ad-
vocated the inclusion of a single category label and associated score
to each voxel of the volume, for the purpose of semantic camera
tracking we need to have available confidence values for multiple
categories. Next, in Section 4.4, we will describe the label-based
tracking approach, core of this chapter. Finally, in Section 4.5, we
will present quantitative and qualitative results proving that the se-
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mantic tracking approach effectively reduces the error in estimating
the real camera trajectory in presence of geometrically ambiguous
surfaces and showing the fully labelled reconstructed volumes that
allow us to perform high level reasoning on the observed environ-
ments.

4 .3 multi-label reconstruction volume

Cornerstone of the semantic tracking approach that we propose is
the availability, during the reconstruction, of scores for multiple cat-
egories in each voxel of the reconstruction volume. Reasons for this
claim will be given in the section describing the camera pose estima-
tion technique but, to summarize them, we will briefly anticipate the
idea on which the tracker is based. As mentioned in the previous
section, we propose to track the camera by relying, in addition to
geometric properties of the scene being observed, also on per-pixel
semantic labelling of the current RGB-D frame: a likely camera pose
should explain not only the geometry of the scene but also its se-
mantics. Camera trackers (geometry-based as well as colour-based
or, as in this case, employing semantic clues) estimate the sensor pose
in the world by minimising an error term depending on the align-
ment between input frames and the current reconstruction stored
in the map. The minimisation process requires the computation of
gradients for the error function, in the semantic case this requires,
for each pixel, to compute a gradient over the voxel grid depending
on the label associated to the pixel, this in turn preventing us from
storing a single label in each voxel (as described in Subsection 3.3.2)
since the gradient computation would then not be feasible.

In each voxel we store multiple category labels as an histogram,
wherein the value stored in each bin is as higher as the correspond-
ing label is observed more frequently and with higher confidence
scores. As such, a bin value becomes correlated to the probability
that an object of a certain category is located at the voxel’s 3D po-
sition. This representation allows us to both compare the evidence
about the diverse categories gathered within each voxel, as well as
to rank the labelling confidence between different voxels.
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4 .3 .1 Fusion of semantic labels in a multi-label volume

In principle, updating the bins of the label histogram associ-
ated with a voxel may be performed similarly to the TSDF and
colour updating processes described in Subsection 3.3.1.1 and
Subsection 3.3.1.2.

As already mentioned, we assume the semantic segmentation al-
gorithm to provide a label map l(u) : [0,w)× [0,h) → N (with w
and h indicating, respectively, width and height of the input RGB-D
image) and a corresponding confidence map s(u) : [0,w)× [0,h) →
R+
0 . When integrating a new frame then, at each voxel we would

be able to update only the bin associated with the label observed at
the corresponding pixel and we are faced with the issue of whether
and how to update the other bins. Updating only the observed
bin would inevitably result in the plateauing of the histogram at
relatively high values in case several highly confidently and inco-
herent label measurements get fused into the same voxel over mul-
tiple frames. Instead, we devised a suitable updating technique that
tackles this issue by both increasing the value of the bin associated
with the observed label as well as decreasing those of all other bins.
In particular, the increment is proportional to the confidence score
provided by the labeller while the decrement factor takes also into
account the evidence hitherto gathered into the histogram, to penal-
ize less higher bins.

Formally, we denote the category histogram stored in each voxel
via a function Γ(x) : R3 → RN (analogously to the SDF function
Φ(x) described in Subsection 3.3.1), withN the number of categories
of interest. We update each voxel pv lying within the truncation
region δ of the observed surface (as in the colour update process
described in Subsection 3.3.1.2) in parallel, on the GPU, by defining
the weight factor wli applied to each category i ∈ [0,N) depending
on the label assigned to the pixel, l(uv) and its associated score s(uv),
both computed by the semantic segmentation algorithm:

wli =

 s(uv) for i = l(uv)

Γ it(pv)(1− s(uv)) for i 6= l(uv)
(4.1)
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With uv corresponding to the pixel in the input label and confidence
maps that the voxel pv is projected onto, after application of the
camera pose transformation (as in Equation 3.2). Then, we update
each bin of the category histogram as follows:

Γ it+1(pv) =
Γ it(pv)Ωt(pv) +wli

Ωt(pv) + 1
(4.2)

It worth observing that, analogously to TSDF and colour, the label
update step is tantamount to a running average over the number of
observations for a voxel. For the bin corresponding to the pixel’s
label, we use the labeller’s score as the update factor, while for all
the others we reduce the running average value by an amount de-
pending on both such score and that previously stored in the bin
being updated.

4 .4 tracking algorithm

To update the information stored into the volume by integrating
new measurements, we need to track the RGB-D sensor as it moves
within the environment. In KinectFusion [91] camera tracking is
performed by ICP-based alignment [9] between the surface associ-
ated with the current depth image and that extracted from the TSDF.
Later, Bylow et al. [14] and Canelhas, Stoyanov and Lilienthal [17]
proposed to track the camera by direct alignment of the current
depth image to the mapped environment encoded into the TSDF
as the zero-level isosurface. This approach has been proven to be
faster and more accurate than the original KinectFusion tracker.

Camera tracking by direct alignment of the acquired depth image
with respect to the TSDF volume relies on the consideration anticip-
ated in Section 3.3: assuming that the estimated pose of the camera
is correct and noise does not affect the current and previous depth
measurements, then each depth pixel should correspond to the pro-
jection of a 3D world point that, given the content of the TSDF grid,
features a null distance function (i.e. lies on the surface of the re-
construction). Accordingly, they define an energy function with an
error term associated to each pixel of the depth image being tracked.
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By minimising such function, the rigid body transformation determ-
ining the camera pose can be estimated.

In this chapter, we propose to consider also the category labels
assigned to pixels in the input image within the objective function
minimized by the tracker. Indeed, a shortcoming of both the stand-
ard KinectFusion ICP tracking algorithm and the tracker based on
direct alignment of depth images consists in the difficulty to local-
ise the camera when the acquired frames depict scenes poor in geo-
metry such as smooth or flat surfaces. We argue that exploiting the
inherent structure determined by the boundaries between labelled
objects can improve tracking accuracy when the scene features in-
sufficient geometric clues.

Camera pose estimation is thus performed by finding the rigid
body transformation, Tw,c = (R, t) ∈ SE(3), that minimizes a cost
function consisting of two separate terms. One term measures the
geometric alignment of the depth frame to the surface implicitly
encoded into the TSDF (as in [14]), while the other term captures
the coherence between per-pixel labelling proposed by the semantic
segmentation algorithm with respect to the label histograms already
stored into voxel grid. By defining pu as the 3D location in camera
coordinate space of the point determined by a pixel u having a valid
value in the depth image:

pu = π−1(u,d(u)) (4.3)

The geometric error term for that pixel is then given by the truncated
signed distance associated to its corresponding voxel:

Ed(Tw,c, u) = φ(Tw,cpu) (4.4)

We analogously define the semantic error term, based on both the
confidence of the labeller in the predicted pixel label and the amount
of evidence already gathered on that label within the corresponding
voxel:

El(Tw,c, u) = s(u)
(
1− Γ l(u)(Tw,cpu)

)
(4.5)
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Thereby, the error term turns out high when the per-pixel labeler
confidently predicts a category for which the degree of previous
evidence stored in the category histogram is small.

The final objective function to be minimized by the tracker takes
the following form:

E(Tw,c) =
∑

u∈{[0,w)×[0,h):d(u)>0}

(
Ed(Tw,c, u)2 +αEl(Tw,c, u)2

)
(4.6)

Given a candidate pose, the first term of the sum quantifies the geo-
metric misalignment between the current frame and the surface em-
bedded into the TSDF. The second, instead, penalizes those poses
where the labels assigned to pixels turn out incoherent with respect
to the category histograms stored into the corresponding voxels. As
such, the second term of the sum may be thought of as quantifying
the semantic misalignment between the current frame and the volu-
metric map. The blending parameter, α, enables to weigh properly
the contribution of two error terms.

By employing ξ = (vx, vy, vz,ωx,ωy,ωz) ∈ R6, a minimal para-
metrization of the Tw,c transformation, and knowing that the Lie
algebra allows expressing Tw,c = eξ and ξ = ln(Tw,c) via the expo-
nential and logarithm map operations [11, 110], we can define

Edu(ξ) = φ(e
ξpu) (4.7)

and

Elu(ξ) = su

(
1− Γ l(u)(eξpu)

)
(4.8)

so to rewrite Equation 4.6 as:

E(ξ) =
∑

u

(
Edu(ξ)

2 +αElu(ξ)
2
)

(4.9)

Using Equation 4.9 we can, finally, express the camera tracking cost
function as:

ξ = argmin
ξ

∑
u

(
Edu(ξ)

2 +αElu(ξ)
2
)

(4.10)
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By linearising the function around an initial pose ξ̂ (such as the
estimated camera pose for the previously tracked frame) and assum-
ing a small movement between the two acquisitions (as mentioned
before, a reasonable assumption in the hand-held tracking scenario),
it is possible to perform an iterative nonlinear minimization using a
method such as Levemberg-Marquardt [75, 81] in order to estimate
the camera pose, ξ, that optimally aligns the current frame to the
volumetric reconstruction both geometrically and semantically.

The gradient of the cost function required by the iterative minim-
ization to compute the increment applied to ξ is attained independ-
ently for the two terms.

As for the gradient of the geometric term, in each pixel u, we
trilinearly interpolate the values of the TSDF in the 8 voxels closest
to point eξpu.

The gradient for the semantic error term is also computed by tri-
linear interpolation, though, in this case, of the values 1− Γ l(u)(x),
with x representing voxel coordinates around eξpu. Thereby, for
each pixel we consider the category histogram bin associated to the
label assigned to the pixel itself. It is worthwhile observing that
optimization of the semantic error mandates maintaining in each
voxel an histogram concerning the likeliness of all categories, as we
propose in this chapter, whilst storing the evidence gathered for the
most likely label only, as described in Chapter 3, would make it im-
possible to compute the gradient of the semantic error due to voxels
lacking the information on whether moving along a certain direc-
tion would either increase of decrease the likeliness of the sensed
pixel label.

4 .5 experimental evaluation

In this section we present quantitative (Subsection 4.5.1) and qual-
itative (Subsection 4.5.2) results showing how the proposed camera
localisation algorithm, based on both geometry and semantic clues,
can successfully reduce the trajectory error in several challenging
sequences. Purposely, we employ the well-known RGB-D SLAM
Dataset by Sturm et al. [111] and the ICL_NUIM Dataset by Handa
et al. [56]. We also show reconstructed environments obtained from
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sequences part of the Sun3D Dataset [123] together with a sequence
depicting a household environment.

As already mentioned, to successfully track the camera pose and
update the volume, we assume to be provided in each frame with
per-pixel labels and confidence scores by a semantic segmentation
algorithm. Here, as in Subsection 3.4.2, we employed the Fully
Convolutional Networks recently proposed by Long, Shelhamer and
Darrell [77]. From the complete probability distribution over all the
categories of interest output by the network we then select the label
having the maximum probability and use such values to populate
the l(u) and s(u) matrices given as input to our algorithm. The au-
thors provide several pretrained networks based on different sets of
object categories and input features. For this chapter we considered
two such networks, one based on the 59 categories of the Pascal Con-
text dataset [85] (“FCN-8s PASCAL-Context”, as the authors name it
in their paper) and another trained on 40 categories of the NYUDv2

dataset [105] (“FCN-16s NYUDv2”). While the FCN-8s network pro-
cess only the input RGB frame to obtain the categories, the network
trained on the NYUD dataset requires also computation of the HHA
depth embedding [54]. The deployment of either network requires
a vast amount of GPU computing power and memory but the latter,
relying on processing both an RGB and HHA image, needs twice the
GPU RAM as the former (≈ 8.8GB), which reduces significantly the
GPU memory available to store the proposed voxel grid containing
category histograms. Eventually we decided to privilege the “FCN-
8s PASCAL-Context” network in our experimental evaluation. We
point out, though, that the semantic tracking technique we propose
does not rely on a specific image labelling algorithm, but merely
expects to be provided with per-pixel labels and scores.

As between the 59 categories detected by the aforementioned la-
belling algorithm we are interested only in a subset comprising in-
door objects (e.g. “tables”, “chairs”, “walls”, “tv monitors” and not
categories such as “sheep” or “mountain”), we filter the network
output at each pixel so to keep the most likely label within the sub-
set of categories of interest. All the performed tests consider 12

categories.
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a note on memory occupation As in Subsection 3.3.1.3 we
detail the memory occupation required by the proposed semantic
voxel grid. In each voxel we store the following pieces of informa-
tion:

tsdf value Half precision float, 2 bytes

tsdf weight Half precision float, 2 bytes

color R,G,B and weight channels stored each as unsigned char, 4

bytes

category histogram Each bin as a floating point value in the in-
terval [0, 1], mapped as [0, 255] into an unsigned char, 12 bytes

The total occupancy for a 5123 voxel grid storing a category his-
togram with 12 bins in each voxel is therefore ≈ 2.5GB of GPU
memory, within the possibilities of modern graphic cards.

We would like to point out that, with a dense volume-based
mapping approach such as the one described here, the memory
footprint of the system exhibits a cubic dependence on both the
voxel and workspace sizes. Comparatively, increasing the amount
of bytes stored in each voxel increases memory occupancy only
linearly. Thus, storing 12 more bytes in each voxel, as we do for
labels, does not change the working constraints of the system
dramatically. To clarify this claim, let us assume the extent of the
environment to be 83m3: by employing a quite standard 5123 voxel
grid we would be able to map the environment with a resolution of
≈ 1.6cm, this requiring 1GB of GPU memory without storing per
voxel-labels and, as mentioned before, ≈ 2.5GB when also storing
an histogram with 12 label scores in each voxel. Conversely, should
we wish to map the same environment with a voxel resolution of
0.5 cm, a grid of 16003 voxels would be necessary, this requiring
32GB of GPU memory without per voxel-labels and ≈ 80GB in case
of semantic voxel grids. Both cases are intractable with the current
graphics hardware thus, in practice, with the proposed system we
are able to handle workspaces of similar size as KinectFusion.
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4 .5 .1 Quantitative results

As mentioned, we evaluate the performances of the proposed label-
aware tracking method on RGB-D sequences part of the TUM[111]
and ICL_NUIM[56] datasets. As customary in the evaluation of
SLAM algorithms, we deploy the RMS Absolute Trajectory Error
performance metric described by Sturm et al. [111]. We compare
our approach to a standard geometry-based tracker based on dir-
ect alignment of the depth image as well as to an improved tracker
that employs also colour information by Bylow, Olsson and Kahl
[13]. As the article describing the colour-based tracker did not con-
sider the ICL_NUIM dataset in the evaluation, we implemented
their tracking algorithm and show here the RMS ATE values also
for our implementation.

As for the runtime configuration of our algorithm, we employ a
voxel grid spanning 83m3 of space. The truncation distance has been
set to 0.3m and the α blending coefficient applied to our semantic
error term to 0.085, after a grid search over the parameter space.

Figure 4.2 shows the accuracy of different tracking approaches in
several sequences of the TUM RGBD-SLAM dataset[111]. Overall,
we observe that most TUM sequences can be tracked quite success-
fully by a purely geometric approach, so that both semantics and
colour have got no chances to bring in notable improvements in
accuracy. Nor they cause any harm, though. Instead, in those se-
quences, like “floor” and “room”, turning more challenging for a
purely geometric tracker, employment of additional clues, such as
semantic labels – or color – does help reducing the tracking error
quite significantly. Indeed, the improvement achievable by our se-
mantic tracker versus a purely geometric approach is much higher
in “room” than in “floor”, as the former sequence is characterized
by a richer semantic content (i.e. presence of several object categor-
ies) while in the latter the sensor continuously observes the floor of
a room, which renders color cues more distinctive than semantics.

Figure 4.3 shows the tracking error on the sequences of the
ICL_NUIM dataset. Handa et al. [56] provide two sets of four
RGB-D sequences obtained by rendering views from a synthetically
generated model of two environments: a living room and an office.
One set contains noiseless images while the depth frames in the
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Figure 4.2: Tracking performances in sequences part of the TUM[111] data-
set. Geometric represents the purely geometric KinectFusion
tracker. For the Color-based approach we show both the res-
ults reported by Bylow, Olsson and Kahl [13] (α = 0.1), as well
as those achieved by our own implementation of Bylow’s ap-
proach. Semantic denotes our proposal.
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dataset. Series as in Figure 4.2.
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Figure 4.4: Tracking performances in the object scanning sequences con-
sidered in [127]. The method proposed in [127] is referred to
as Contour. As for the original colour based tracker, we show
here the results reported in [127], which were obtained by the
authors running Bylow’s code. As usual, we also provide the
results attained by our own implementation of Bylow’s tracker.

other have been corrupted by noise akin to that present in the
images acquired by a real Kinect sensor. In our tests we consider
the latter, noisy, set. Once again it can be observed how, in those
sequences where the geometric tracker has more difficulties in
estimating the correct camera trajectory, deployment of semantic
labels can ameliorate tracking accuracy notably. Moreover, unlike
the TUM dataset, it turns out here that, more often than not,
semantic labels compare favourably with respect to colour cues,
possibly due to the richer semantic content of the scenes.

Finally, Zhou and Koltun [127] evaluate their contour-based
tracking method on a small subset of the TUM dataset, i.e. four se-
quences, each focused on scanning a single object featuring smooth
and evenly coloured surfaces. In Figure 4.4 we report the trajectory
errors for all the considered tracking methods, including Zhou’s,
on the four sequences used for the evaluation in [127]. Clearly,
scanning a single object is neither the typical operating mode nor
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Figure 4.5: Household scene captured with a Kinect sensor. Left: a purely
Geometric tracker cannot estimate camera poses accurately due
to the flatness of the wall. Right: deployment of Semantic la-
bels enable to map the environment correctly.

particularly suitable a scenario to our method, which, instead, is
aimed at automatic reconstruction and volumetric labelling of rel-
atively large workspaces featuring a number of diverse categories
of interest (indeed, we set the volume size to 2.53m3 in these four
sequences). Yet, Figure 4.4 vouches how employing semantic labels
in object scanning settings is not detrimental to the overall tracking
accuracy. Contours seem the most effective cues in these settings,
while the results yielded by semantic labels may be judged on par
to those attainable by deploying colours.

4 .5 .2 Qualitative results

In this section we show, at first, qualitative results proving the
advantages attainable by employing a label-aware camera tracker
within a dense, volume-based reconstruction framework such as
KinectFusion.

Figure 4.5 concerns an RGB-D sequence that we captured via a
Kinect sensor in a corridor within a household environment. While
the flatness of the wall prevents successful tracking based solely on
the geometry of the surfaces, the low confidence of the “wall” label
associated with the paintings provides enough distinctive cues to
enable correct reconstruction of the environment.

Figure 4.6 deals with the hotel room sequence contained in the
SUN3D dataset [123]. When mapping the hotel’s bathroom, the
camera briefly lingers on the mirror above the faucet. An RGBD
sensor such as the Kinect is unable to detect the mirror as a flat sur-
face, instead mirroring the shape of the reflected environment as a
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Figure 4.6: Fatal tracking failure prevented. Left: the mirror causes a
purely geometric camera tracking approach to fail, the recon-
structed volume turning out unrecognisable. Right: tracking
succeeds and the bathroom is correctly mapped thanks to the
employment of semantic clues during camera pose estimation.

window on a different room. A purely geometric tracking, thus, is
unable to estimate the correct camera trajectory, resulting in a very
bad reconstruction such as that shown by the left picture. However,
the correct and coherent semantic labels associated to the surfaces
surrounding the mirror deployed in our tracking cost function allow
for better constraining camera poses and obtain an accurate recon-
struction. The mirror still appears as a hole in the wall showing the
rest of the hotel room because depth measurements in that spatial
location are farther away than the mirror itself, but the rest of the
bathroom is correctly reconstructed.

Finally, analogously to Subsection 3.4.2, we provide qualitative
results to demonstrate the capability of our method to output se-
mantically labelled volumes by relying on the category histogram
stored in each voxel of the reconstruction. Figure 4.7 shows details
of the “room” sequence (part of the TUM dataset [111], top row) and
the aforementioned household sequence (also depicted in Figure 4.5,
bottom row), with each voxel labelled according to the tag exhibit-
ing highest score in the category histogram. The score is shown in
an adjacent picture, as a heat map. It can be observed that most
voxels are labelled correctly and heat maps are quite reliable, due to
high confidence labels unlikely turning out wrong and mislabelled
areas featuring low scores. Moreover, the maps provide evidence
on the presence of both large scene structures as well as smaller ob-
jects. It is worth highlighting that with the “room” sequence the
quality of the 3D reconstruction is equivalent to that achievable by
deploying colour cues (see Figure 4.2) however, by our method, one
can also gather high level information concerning which types of
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Figure 4.7: Details of the semantic reconstruction from the “room” se-
quence (from the TUM Dataset [111], Top) and household se-
quence (Figure 4.5, Bottom). Left: RGB mesh. Centre: La-
bels associated to the reconstructed volume. Right: confidence
scores assigned to the labels (blue: low – red: high).

objects are present in the environment and where they are located
in space. Additional qualitative results are available in the accom-
panying video1.

4 .6 concluding remarks

In this chapter, building on the ideas brought forward by the sys-
tem described in Chapter 3, and peculiarly with respect to previous
work aimed at robustifying the KinectFusion tracker, we show a
dense, volume-based, SLAM pipeline that relies on a fully labelled
volume wherein each voxel is endowed with the likeliness of the
whole set of categories of interest, to generate a semantically la-
belled reconstruction of the scene being observed.

We have shown how high-level observations, such as per-pixel
object category tags, can improve the dense mapping and tracking
process popularized by KinectFusion, especially when dealing with
surfaces featuring scarce geometric cues. Quantitative experiments
on standard benchmark datasets suggest that, overall, reliance on se-
mantic labels for tracking yields results comparable to deployment
of colour. However, we believe that semantic information holds the
potential to enable more reliable tracking as category tags are less

1 https://vision.disi.unibo.it/~tcavallari/phd_thesis/r6d2016.mp4

https://vision.disi.unibo.it/~tcavallari/phd_thesis/r6d2016.mp4
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affected by nuisances such as light changes, shadows, reflections,
blur. For example, a labeller working only on depths would allow
to semantically track the camera in very low-light conditions or even
in the dark. More generally, we expect the performance of semantic
tracking to improve alongside advances in labelling algorithms, our
framework allowing for accommodating such foreseeable advances
seamlessly.

Moreover, the semantic map attainable by our method seems to
provide valuable cues to facilitate indoor scene understanding, as it
would typically detect and coarsely localise major large-size scene
structures such as floor, walls, tables, windows, and chairs; as well
as several smaller objects like monitors, books, and keyboards. Such
information comes together with a reliable confidence map that may
be deployed effectively within an high-level reasoning process.

The first major limitation of the approach we describe here con-
cerns speed. Indeed, while the semantic tracker can run comfort-
ably at about 50− 60 fps, the Fully Convolutional Network we cur-
rently rely upon for semantic labelling takes about 250ms per frame,
which brings down the overall frame rate of our system at about
3− 4 fps. Yet, as our proposal is agnostic to the actual labeller, it
will be feasible to investigate on alternative labelling approaches
that may improve the processing speed without overly penalizing
accuracy.

The second limitation deals with our current fixed-size volume
approach, which hinders the possibility to semantically map work-
spaces of arbitrary sizes such as big rooms or even multiple rooms.
To address this, in the next chapter we will show how a large-scale,
voxel-based, reconstruction pipeline such as VoxelHashing by
Nießner et al. [94] can be adapted, by deploying components of the
systems previously described in this thesis, to provide semantic-
ally labelled reconstructions of room-sized environments whilst
maintaining an interactive processing rate.



5
O N L I N E L A R G E - S C A L E S E M A N T I C F U S I O N

5 .1 summary of contributions and rationale

The previous chapters described a Semantic SLAM system allow-
ing the fully automatic generation of semantically annotated maps
of the environment (Chapter 3) and, jointly, exploiting the availabil-
ity of such annotated reconstructions to improve the task of camera
pose estimation (Chapter 4), thus realising what could be called a
“SemanticFusion” virtuous loop. While promising, the described
pipeline suffers from some challenges that make its deployment in
concrete systems difficult. First and foremost, its reliance on a dense
voxel grid as map storage medium prevents the reconstruction of en-
vironments bigger than a few cubic metres: we empirically determ-
ined that deploying volumes bigger than 83m3 forces the choice of
voxel sizes too big to generate a sufficiently detailed reconstruction
of the scene.

A second drawback is the amount of time needed to semantically
label each frame: current pixel labelling pipelines are not yet cap-
able of processing every pixel in 640 × 480 images, such as those
provided by a consumer RGB-D sensor, in real time. A system such
as FCN [77], while effective in its core task of producing per-pixel
semantic labels, still requires hundreds of milliseconds to process a
VGA image. A consideration can be drawn from this: a system re-
quiring semantic informations as core part of its algorithm cannot be
run in real time. Not being able to run a dense SLAM pipeline, such
as the one we derived from KinectFusion, with a sufficient speed
causes issues when applying the described tracking algorithm: in
Section 4.4 we mentioned that directly aligning the depth image (as
well as the semantic maps) to the data stored in the volume is a re-
liable way to estimate the camera pose iff the assumption of small
camera movements between frames holds. Clearly, our ability to
process at most a few frames per second increases the average cam-
era motion between subsequent RGB-D measurements, impairing

69
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our ability of accurately estimating the trajectory followed by the
sensor. As a consequence, the quality of the reconstructed map of
the world decreases and, being it relied on by the tracking algorithm
to estimate the camera motion for subsequent frames, we enter in a
vicious circle negatively affecting the SLAM pipeline in its entirety.

Recent research towards 3D reconstruction has delivered reliable
and fast pipelines that allow attainment of accurate volumetric maps
for large environments. On the other hand, the majority of such
works were concerned with 3D geometry only, the advent of com-
modity RGB-D sensors having made this task remarkably affordable
and effective. In this chapter we present a system that, by building
on the ideas described in the previous chapters and being rooted
on a large scale RGB-D reconstruction system (VoxelHashing, by
Nießner et al. [94]), can deliver interactively and automatically a
map for a large scale environment featuring both geometric as well
as semantic information. We show how the significant computa-
tional cost inherent to deployment of a state-of-the-art deep network
for semantic labelling does not hinder interactivity thanks to suit-
able scheduling of the workload on an off-the-shelf PC platform
equipped with two GPUs.

With the proposed system, the user can explore the environment
interactively by a hand-held RGB-D sensor. As in most previous
work, this allows to attain a dense, detailed 3D reconstruction of
the scene; peculiarly to our system, though, the resulting map is
also endowed online and fully automatically with semantic labels de-
termining the likelihood of each surface patch to depict objects of
specific categories.

Driving factor behind the development of this pipeline is the need
for a system whereby an untrained user may reliably scan and ac-
quire semantically annotated 3D reconstructions of large indoor en-
vironments. As highlighted in Section 2.3, previous work such as
[52, 117] would allow generation of similarly annotated 3D maps,
though requiring proper interaction with a trained user. Conversely,
to minimize user effort, we seamlessly integrate dense mapping
and semantic labelling tasks into a single pipeline that can output
detailed reconstructions of large scale environments wherein each
voxel stores a complete probability mass function over a set of se-
mantic categories of interest, akin to Section 4.3. Hopefully, this
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accomplishment may foster research on topics such as indoor scene
understanding, object discovery and/or recognition, human/robot
interaction and navigation.

The chapter is organised as follows: the next section discusses the
proposed system, quantitative and qualitative results are provided
in Section 5.3, while in Section 5.4 we will draw concluding remarks.

5 .2 description of the method

The proposed pipeline is composed of two subsystems, each
tailored to a specific task, controlled by a main engine handling all
input/output operations and dispatching work to both. The two
subsystems are:

labelling subsystem : tasked with semantically labelling the
RGB images gathered from the sensor.

slam subsystem : dealing with camera tracking, map building
and on-demand rendering of the reconstructed 3D scene from
arbitrary viewpoints.

In the next paragraphs we will provide a detailed description of the
above subsystems and then show how the main engine ties them
together to attain the overall system.

5 .2 .1 Labelling Subsystem

This subsystem represents the interface of our pipeline to an image-
based semantic labelling algorithm: given an input RGB image and,
optionally, a depth map, this block provides per pixel confidences
for a set of categories of interest, thus providing us with a full prob-
ability mass function across categories for each pixel of the input
image.

We would like to point out the difference with labelling systems
assumed to be provided in Chapter 3 and Chapter 4: there we de-
ployed an interface exposing, for each pixel, a single category and
an associated confidence. The rationale for such choice was to retain
agnosticity w.r.t. the selection of the semantic labelling algorithm to



72 online large-scale semantic fusion

deploy alongside the pipeline: different algorithms, providing dif-
ferently label data could have their output converted in the interme-
diate format we described. The pipeline we describe in this chapter
is tightly linked with the Fully Convolutional Newtork system by
Long, Shelhamer and Darrell [77]. As before, we strive to maintain
the design of the subsystem’s interface independent from the choice
of per-pixel labelling pipeline but, pragmatically, we decide to make
use of all the informations that the semantic segmentation pipeline
provides.

More specifically, given input images of size w × h and a set
of N categories of interest, C, the output of this subsystem is a
“volume” of confidences, L, of size w×h×N and wherein each ele-
ment (u, v, i) represents the confidence that the semantic labelling
algorithm assigns to category i at pixel u = (u, v). We define a func-
tion L(u) : [0,w)× [0,h) → [0, 1]N to denote such volume. Should a
single label for a pixel u become necessary, a simple argmax opera-
tion over theN confidences L(u) would provide the required output.
In our system, though, we exploit the availability of multiple confid-
ences at each image location to reconstruct a multi-label 3D map of
the environment, wherein each voxel is endowed with information
about the likeliness of each category of interest.

The interface just described is sufficiently generic that any
labelling algorithm may in principle be incorporated within
our pipeline. For instance, algorithms returning rectangular or
polygonal ROIs with associated labels can have their output post-
processed to paint each ROI in the volume “slice” associated to the
correct category. Overlapping ROIs of the same category may also
be handled, e.g. by applying a max operator to the confidence stored
in each pixel, whereas overlapping regions of different categories
can be drawn on the corresponding slices and a final per-pixel
normalization can then turn the confidence values for each pixel in
a proper probability mass function. Additionally, multiple labelling
algorithms may be deployed, the only requirement being to run a
normalization step independently on each pixel volume “column”.
Yet, to minimize the post processing necessary to obtain the labelled
volume, semantic labelling algorithms providing directly per-pixel
confidences across categories are inherently more amenable to our
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pipeline, nowadays the most effective and efficient proposals in this
space relying on Deep Learning [39, 54, 77, 125].

As previously mentioned, in the final system we deploy the FCN
approach [77] as we found experimentally that, in our settings, this
architecture can provide quite clearly the best trade-off between clas-
sification accuracy and speed. Given an input RGB image, the pre-
trained networks yield per-pixel confidences for a large number of
categories (20, 40 or 60, depending on the specific model chosen)
dealing with both indoor and outdoor objects. As the use case of
our system concerns mapping indoor environments by a commod-
ity RGB-D sensor, similarly to the previous chapters, we reduce the
number of categories by dropping the output concerning unneces-
sary classes and applying per-pixel softmax normalization on the
remaining raw scores, in order to convert the values into a proper
probability mass function.

5 .2 .2 SLAM Subsystem

Generation of a semantic map of the observed environment is a task
left to the SLAM Subsystem. A typical Simultaneous Localisation
and Mapping pipeline consists of two main components: the first
localises the camera within the environment by tracking its move-
ments over time (localisation task); the second relies on the estimated
camera pose to integrate the data provided by the sensor into the
current representation of the scene (mapping task). Typically a third,
optional, component is tasked with visualisation of the reconstruc-
ted scene to provide feedback to the user.

In the system presented in this chapter we add a fourth com-
ponent to perform what we call the semantic fusion task, i.e. integ-
ration within the reconstructed scene of the semantic information
provided by the Labelling Subsystem. This might also be seen as
part of the standard mapping task but, as we will illustrate in Sub-
section 5.2.3, we split the standard SLAM mapping operation (in-
tegrating data from the RGB-D sensor) and the semantic mapping
operation (integrating the information provided by the labeller), in
order to decouple them and allow for deferred integration of the
per-pixel category probabilities into the scene representation. In-
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deed, this approach is mandatory to enable on-line operation of the
overall semantic reconstruction pipeline.

The SLAM subsystem adopted in our system is built on top of the
VoxelHashing reconstruction pipeline by Nießner et al. [94] that, un-
like KinectFusion [91], permits mapping of large workspaces by stor-
ing the map as a hash-based data structure instead of a dense voxel
grid. For a detailed description of VoxelHashing we refer the inter-
ested reader to the original paper. In the following, we highlight the
core of such system together with the main modifications required
to store the semantic information, peculiar to our approach.

5 .2 .2 .1 Map generation and storage

One main limitation of KinectFusion consists in its reliance on a
dense, fixed-size voxel grid allocated onto GPU memory. In partic-
ular, each voxel stores a Truncated Signed Distance Function value
together with weight and colour. Signed Distance Function values
represent the distance of each voxel to the closest surface. As men-
tioned in Subsection 3.3.1, using a Truncated SDF, i.e. imposing a
maximum value that the SDF is allowed to reach, yields a more ac-
curate scene reconstruction when fusing measurements taken from
multiple viewpoints. Voxels farther away from the closest surface
than the Truncation Distance, on the other hand, bear no useful in-
formation to the reconstruction task.

Given a chosen voxel resolution, the number of voxels required to
represent the scene grows cubically with its size, regardless of the
actual contents of the environment. Hence, scaling KinectFusion
to large workspaces is constrained by the amount of available GPU
memory. As a matter of example, a quite typical 5123 voxel grid
would allow for representing a cubic workspace of ≈ 53m3 - such as
a medium size room - with 1 cm3 voxel resolution on state-of-the-
art GPU hardware. Most of the GPU memory, however, would be
wasted to store truncation values associated with empty space.

To address the scalability issue, we rely on the VoxelHashing sys-
tem [94],which employs a hash-table to quickly index and store in
the GPU memory only those voxel blocks bearing useful informa-
tion (i.e. “non truncated” SDF values). This approach has a threefold
advantage in comparison to the original, dense, voxel grid:
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a) the amount of available GPU memory constrains the size of the
actively mapped area rather than that of the whole workspace.
As a result, much larger scenes can be mapped using state-of-
the-art hardware.

b) Typically, it turns out possible to rely on a smaller voxel size,
which provides a far more resolute map of the observed scene.

c) Efficient swapping techniques are deployed to migrate por-
tions of the scene currently not needed by the mapping process
onto a secondary storage medium (e.g. from GPU memory to
RAM and, eventually, to disk) and then, as soon as needed,
back to GPU memory, thereby enabling, in principle, recon-
struction of environments of any arbitrary size.

The hash-based data structure employed by the system allows to
efficiently index a heap of data blocks, each block representing the
voxels defining the map of a limited region of space. As in the
previous chapters, each voxel in the map is endowed with three
tokens of information:

• TSDF Value;

• Weight;

• Colour.

The base memory occupancy for a single voxel amounts then to
8 bytes. In our pipeline, we augment the data structure by a his-
togram Γ ∈ [0, 1]N storing a probability mass function over a set
of N categories, as in Section 4.3. Each bin represents the prob-
ability that an item of a specific category is located in the surface
area associated with the voxel by encoding a floating point value
in the interval [0, 1]. To reduce memory occupancy, such values are
stored into bytes by scaling the floating point number to the interval
[0, 255]. The final size of the voxel data structure thus increases by
N bytes. The set of categories is application dependent and in our
tests we employ 8 categories, having each voxel occupying 16 bytes,
thereby doubling the memory footprint with respect to the standard
data structure. Doubling the per-voxel memory occupancy would
be worrying if we were using a dense data structure as deployed by
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KinectFusion. Conversely, thanks to the reduced memory pressure
allowed by VoxelHashing, we can easily accommodate such inform-
ations onto the GPU memory and, if necessary, move it back and
forth with the system RAM via swapping operations.

When a new voxel is allocated by VoxelHashing, its histogram is
set to the uniform probability, thus having each bin initialized to
the value 255/N, so to express maximum uncertainty on the type of
object located within its boundaries.

5 .2 .2 .2 Surface rendering

Visualization of the reconstructed scene is typically performed via
raycasting. First, a synthetic range image is extracted: given a cam-
era pose of interest, a ray is marched for each pixel of the output im-
age from the camera centre until a positive to negative zero-crossing
of the TSDF function is encountered, this signalling the presence of
a surface, as described in Subsection 3.3.1.4. Clearly, marching a ray
from the camera centre in a “non-dense” system such as the one
here described is expensive, since the hash table has to be queried
for every step, therefore several optimizations are described in the
VoxelHashing paper [94]. The InfiniTAM pipeline [66] – another
implementation of a large-scale, hash-based reconstruction system
– details more enhancements to the raycasting operation that can
sensibly speed up the computation.

The raycasted range map can then be used to extract a coloured
representation of the environment by performing trilinear interpola-
tion of the RGB values associated to the 8 voxels closest to each zero
crossing point. If speed is a priority, one can even avoid the inter-
polation step altogether and use the colour associated to the single
voxel closest to the raycasted 3D point, at the expense of a slightly
inaccurate colouring of the generated image. Point normals can
be computed by either numerically estimating the gradient of TSDF
values in the correspondence of the rendered point or by computing
the cross product of vectors connecting neighbouring pixels in the
range map, the latter method being faster but slightly less accurate.

Semantic labels for each rendered point can then be extracted. In
order to determine the label of a single pixel, we apply an argmax
operation over the N histogram bins associated to each raycasted
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3D point and store the resulting label in an output category map
and the associated confidence in an output probability map. While
we could trilinearly interpolate between bins associated to the histo-
grams of 8 neighbouring voxels, in order to obtain an interpolated
histogram to subject, in turn, to the argmax operation, in practice
we consider only the voxel whose centre is closest to the candid-
ate 3D point, on account that, typically, object categories are “large
scale” scene attributes and the interpolation of neighbouring voxel
probabilities would not provide much additional information while
notably slowing down the processing speed of the pipeline. Fig-
ure 5.1a provides an exemplar image obtained by raycasting into
the current camera view the most likely label for each voxel and
subsequently applying a shading pass.

Our category representation scheme allows also to render the
likeliness of a specific category in each voxel observable from the
current camera viewpoint. Indeed, we can provide visualizations
detailing the spatial distribution of a certain category of interest, by
selecting the histogram bin associated to that category in every voxel
identified by the raycasted range image. For example, as shown in
Figure 5.1b, we might wish to render the “chairness” of the recon-
structed scene. It is worth observing that, although some surface
patches belonging to chairs are mislabelled in Figure 5.1a, the right
image provides evidence that these may indeed belong to chairs,
this information likely to help performing an higher lever task such
as segmenting out all the chairs present in the scene.

Once the range, normal, colour, category and score maps are ex-
tracted, shading can be applied to obtain pleasant visualizations, as
in Figure 5.1. While the renderings just described may convey use-
ful informations to the user, all but those dealing with the range and
normal maps are optional in our pipeline and can thus be disabled
to increase processing speed. The renderings of the range and nor-
mal maps, instead, are pivotal in the camera localisation step that
will be described next.

5 .2 .2 .3 Camera localisation

Camera localisation is an essential step of the SLAM pipeline: to in-
tegrate RGB-D frames coming from the sensor into the global map
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(a) Semantic labels (b) “Chairness” of the scene

Figure 5.1: Left: semantic labels assigned to the reconstruction of an office
environment. Right: heat map showing the spatial distribution
of “chair” objects. It can be seen how, even in presence of
mislabelled areas (highlighted by the red ellipse), the “chair”
confidence is not null and thus may help to segment out chairs.

of the environment, one has to know the pose from which the cam-
era captured such informations. Typically, thanks to the availability
of RGB-D sensors providing useful informations at 30Hz and the
high processing rate of systems such as KinectFusion/VoxelHash-
ing, the task of sensor localisation can be simplified into a task of
camera tracking, where the pose of the sensor at a given moment of
time is computed in relation to the previous camera pose, therefore
requiring only estimation of an incremental rigid body transforma-
tion (that, given the real-time processing rate nature of the system,
is likely very close to the identity transform).

Several approaches to camera tracking task have been proposed
in the literature related to KinectFusion, either relying on purely
geometric clues, such as the projective ICP approach of the original
paper [91] and the direct alignment methods described in [14, 17]
and considered in Chapter 3 and Chapter 5, or aimed at deploy-
ing colour information to maximize the photo-consistency between
pairs of consecutive frames [109, 119] or between the current frame
and the colour information stored into voxels [13].

In the system described in this chapter we employ the projective
ICP approach by Newcombe et al. [91] to estimate sensor pose. The
method relies on the raycasted depth and normals map as seen from
the previous camera pose and the current depth map. An iterative
process performs a projective association between points in the cur-
rent and in the raycasted range maps [10], computes an energy term
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at each pixel based on the point to plane metric [22], and finally min-
imizes the sum of all pixel energies by linearising such function in a
neighbourhood of the previous pose and computing an incremental
transformation using the Lie algebra representation [11, 110].

5 .2 .2 .4 Semantic Fusion

Finally, the Semantic Fusion component is tasked with the integ-
ration into the voxel-based map of the environment of per-pixel se-
mantic labels extracted from an input RGB-D frame by the Labelling
subsystem. As mentioned earlier, this task is kept disjoint from
the canonical “fusion” operation performed by the reconstruction
pipeline, to allow the labeller to work asynchronously with respect
to the SLAM process, thus not hindering the real-time nature of the
latter due to the former being significantly slower.

Once a frame has been labelled, its associated pose, Tw,c, estim-
ated by the camera localisation component, is retrieved and can be
used to perform the actual fusion step. Akin to the integration of
the RGB-D image, the process is applied only to those voxels that
fall into the camera frustum and are “close enough” to the surface
described by the depth frame associated with the previously extrac-
ted labels (that had been cached at the beginning of the labelling
phase); purposely, we employ the same truncation distance δ used
by the depth fusion step.

More precisely, as a first step, the location of each mapped voxel
block1 in the world coordinate frame is transformed in the appro-
priate camera reference frame by the inverse transformation T−1w,c

described by the sensor pose. The transformed block centre is then
projected onto the image plane and, if the resulting coordinates lie
inside the image bounds, the block is marked as potentially visible
and thus to be updated. Thanks to the GPU, this first step can
be efficiently carried out in parallel by associating a thread to each
block. A scan-and-compact operation is then performed to gather the
indices of all the blocks to be updated in a single buffer, which in
turn is used to launch an update thread for each voxel residing in
such blocks.

1 Wherein the original KinectFusion algorithm each voxel is processed independ-
ently, in the hash-based implementation of VoxelHashing the minimal unit of
processing is the voxel block, as allocated in the heap.
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Each voxel centre pv is then projected onto the depth frame by
applying the T−1w,c transformation and the depth camera intrinsics to
obtain the corresponding pixel coordinates u, as in Equation 3.2. Its
associated depth d(u) is then sampled from the cached range map:
iff the 3D point determined by such depth is sufficiently close to the
voxel itself (|sv| 6 δ, see Equation 3.3), then the label probabilities
vector Γ(pv) stored in the voxel is subject to the update operation
that will be described next.

To integrate the pixel category probabilities provided by the
labelling algorithm into the probability histogram stored in each
voxel, we perform an operation akin to the running average ad-
opted during the depth integration step, in turn followed by a
re-normalization step to ensure attainment of a valid probability
mass function. We denote as L(u) ∈ RN the p.m.f. computed
for the pixel u and as Γ(pv) ∈ [0, 1]N the p.m.f. corresponding
to the voxel being updated. In the weighted average operation
performed to fuse the probability values we deploy unitary weights
for the new measurements, thus employing the same strategy used
during the depth integration phase. We then sample the weight
Ω(pv) stored in the voxel, representing the (possibly clamped to a
maximum value) number of fusion operations already performed
on it. Elements of a (not yet normalised) updated histogram Γ̄(pv)

are computed as follows:

Γ̄ i(pv) =
Γ it(pv)Ω(pv) + L

i(u)
Ω(pv) + 1

with i ∈ [1,N] (5.1)

We then normalize the values so as to attain a valid probability mass
function, Γt+1(pv), that is stored back into the voxel:

Γ it+1(pv) =
Γ̄ i(pv)∑
i Γ̄
i(pv)

with i ∈ [1,N] (5.2)

We do not update the weight associated to the voxel, leaving
that task to the depth fusion component. While weights Ω(pv) de-
pend on the number of times a specific voxel pv has been observed,
and that number typically differs from the amount of times a voxel
has been semantically labelled, we found no significant difference
between using an ad-hoc semantic weight (that would need to be



5.2 description of the method 81

stored alongside the p.m.f. histogram) and just piggy-backing on
the already present weight associated to the TSDF. Hence, we ex-
ploit the Ω(pv) values to give an appropriate strength to the past
probabilities and, by performing a weighted average during the
update operation, prevent single measurements from significantly
changing the p.m.f. Also, as typically the frame rate of the SLAM
subsystem is constant and the time required by the labelling al-
gorithm is also deterministic, the relationship between the depth
weight (a clamped counter of the number of frames that have been
integrated) and an ad-hoc “semantic weight” would be linear.

5 .2 .3 Main engine

The Main Engine of the system described in this chapter interacts
with the RGB-D sensor, dispatches the work to the SLAM and La-
belling subsystems, and provides the user with feedback on the on-
going operation by displaying rendered images depicting the recon-
structed environment.

One of the key novelties of our proposal is its ability to perform
SLAM and semantic mapping fully automatically and on-line. This
means that, while the user moves around the RGB-D sensor, she/he
would see on the screen a semantic reconstruction of the workspace
created incrementally at interactive frame-rate. In other words,
while in KinectFusion/VoxelHashing the user would perceive in-
cremental reconstruction of the geometry of the scene interactively,
and by deploying the systems described in the previous chapters
she/he would observe semantic reconstructions of the environment
but with low processing speed; the system here described is aimed
at providing, just as interactively, both geometry and semantics in
the form of surfaces tagged with category labels. Processing speed
is therefore of paramount importance to the pipeline as a whole.
While the SLAM Subsystem can comfortably keep-up with the
30Hz RGB-D stream delivered by the sensor, state-of-the-art deep
networks for semantic labelling require hundreds of milliseconds
or even seconds to process a single frame.

This state of affairs mandates the two subsystems to be decoupled
so to execute their code in parallel and prioritize SLAM to provide
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interactive feedback to the user. The Labelling subsystem is thus
run on the remaining CPU and GPU time and, by exploiting the
deferred Semantic Fusion algorithm described in Subsection 5.2.2.4,
its output is integrated into the voxel map as soon as it becomes
available. To obtain an even higher throughput, we deploy the two
subsystems onto different GPUs, the Main Engine performing the
appropriate copies or movements of the data to and from the differ-
ent cards.

While all frames captured by the RGB-D sensor are used to per-
form the SLAM task (necessary to obtain an accurate map and a
reliable camera localisation), only a minority of those are provided
to the Labelling Subsystem. Choice of such candidate frames is left
to the Main Engine and in this case performed in a greedy fash-
ion, by ignoring all frames grabbed while the Labelling Subsystem
is busy processing a frame and marking for labelling the first new
frame received after the labeller has finished its work on a previous
one. We elected not to use a queue-based system to privilege the la-
belling of several areas of the environment instead of rapidly filling
the queue with similar frames acquired by nearby viewpoints thus
having the labeller unavailable to process newly explored regions of
the environment.

Figure 5.2 shows a sequence diagram detailing the execution flow
of the system. Once an RGB-D frame is grabbed by the sensor, its
data is copied to both GPUs and the labelling thread is activated.
At the same time, the camera pose from which the scene was ob-
served is estimated by the SLAM Subsystem and stored in a pose
database together with an associated time-stamp, used to retrieve
such pose at a later stage; subsequently, depth and colour inform-
ation are fused into the hash-based TSDF structure. A raycasting
operation is then performed to obtain the range and normals maps
required by the projective ICP algorithm to localise the camera at
the next iteration; if semantic visualization is desired then colour,
label, and confidence maps are rendered as well.

The main engine then verifies if the labelling algorithm has
terminated its computation; if not, another iteration of the SLAM
pipeline is executed. Conversely, the labelling output (i.e. the
w × h × N volume storing per-pixel category probabilities de-
scribed in Subsection 5.2.1) is transferred from the labelling GPU to
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MainEngine RGB-D Sensor SLAM Subsystem (on GPU1) Labeling Subsystem (on GPU2)

grabFrame()

return RGB-D frame
return timestamp

copyFrameOnGPU1()

copyFrameOnGPU2()

StartLabelling

localiseCamera()
return pose

storePose(pose, timestamp)

fuseRGBDAtPose(pose)

raycastFrameAtPose(pose)
return depth

return normals
return rgb

return labels
return confidences

grabFrame()

return RGB-D frame
return timestamp

copyFrameOnGPU1()

LabellingDone?

SLAM LoopSLAM Loop repeats until LabellingDone

copyLabeledFrameFromGPU2toGPU1()

retrievePose(timestamp)

return pose
semanticFusionAtPose(pose)

Main LoopMain Loop

Figure 5.2: Sequence diagram depicting the execution flow of the pro-
posed system. The SLAM and Labelling subsystems are de-
ployed on two different GPUs, here colour coded in red and
blue. The main engine moves data between the host memory
and the two GPU memories as needed.
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the SLAM GPU and the viewpoint from which the labelled frame
had been observed is retrieved from the pose database according
to its time-stamp. Semantic labels are then fused through the
algorithm described in Subsection 5.2.2.4.

The process is repeated until the user wishes to terminate; at that
point the entire map of the environment can be saved as a mesh by
application of the marching cubes algorithm [78]. The mesh can be
coloured using either the RGB values stored in the hash-based map
or a colour mapped representation of category or confidence values.

5 .3 results

The system presented in this chapter pursues interactive and fully
automatic semantic mapping of large workspaces. In this section
we will show quantitative and qualitative results provided by the
system. Firstly, we present an evaluation of the computational re-
quirements of the entire system, detailing the overall impact of the
two main subsystems. Afterwards, we show qualitative results de-
picting the kind of semantic reconstructions that can be achieved by
running the system.

5 .3 .1 Performance evaluation

The system here described relies on computation modules deployed
on both the CPU and two graphics processors. Our testing setup
consists in a PC equipped with a Intel Core i7 4960X CPU and two
GeForce Titan Black graphics cards (each with 6GB of dedicated
memory). The SLAM Subsystem is deployed on one card, while the
Labelling Subsytem based on a Fully Convolutional Network [77] is
deployed on the other (the amount of GPU memory required by the
neural network is ≈ 5.5GB).

Table 5.1 shows the average time spent in the main components of
the pipeline. It is evident how the most computationally intensive
component of the proposed system is that concerned with semantic
labelling of input frames and how its decoupling and deployment
on a separate graphics processor is necessary to maintain an inter-
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Times (ms.)
Multiple GPU Single GPU

Algorithm Section GPU 1 GPU 2

Frame Grabbing + Preprocessing 10.27 – 20.21

Camera Localisation 4.30 – 24.90

Depth + RGB Fusion 8.79 – 16.96

ICP Raycast (Depth + Normals) 5.16 – 13.35

RGB + Labels + Confidence Raycast 6.49 – 23.79

Shading + GUI update 11.32 – 71.64

Other processing 7.70 – 10.26

SemanticFusion* 9.59 – 10.44

Frame Labelling – 284.09 438.91

Total time per frame* 57.20 284.09 186.55

Table 5.1: Processing time broken down by component. *Total time per frame does not include the exact time spent in executing the
SemanticFusion step, as this is performed only after the Labeling Subsystem terminates processing an input RGB-D image, and
therefore its execution time is amortized over a larger number of frames. The total time per frame is thus the average time spent
to process a frame, yielding a frame-rate of 17.48 fps for the multi GPU system and of 5.4 fps for the single GPU setup.
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active frame-rate (≈17Hz) and allow users to reliably deploy the
system to semantically reconstruct a location.

For comparison, in the last column we show the processing times
that can be obtained by running the proposed pipeline on a single
GPU accelerator. For this test, we employed a workstation with an
Intel Core i7 4930K CPU and a Tesla K40 GPU, providing 12GB of
graphics memory. The availability of a single GPU, even with twice
the memory as those deployed in the previous test, severely hinders
the overall system speed due to the computation being bound by the
number of CUDA cores rather than by amount of available memory,
this bringing evidence towards the idea of deploying two separate
GPUs to realize our system.

5 .3 .2 Qualitative results

Our system enables the user to interactively attain a semantic recon-
struction of the environment by employing a hand-held commodity
RGB-D sensor such as the Kinect. In this section we show exemplar
results obtained in different environments.

Several office sequences depicting a variety of indoor objects
such as “monitors”, “chairs”, “tables”, etc. . . were acquired and
processed by our system. Figure 5.3 shows a view from one of such
sequences where chairs, monitors, and the keyboard are labelled
quite correctly. Wall and floor regions are also mostly correct while
the “table” category shows a slightly lower segmentation accuracy,
its labels bleeding into the “cabinet” located below. The Fully
Convolutional Network model used to obtain the depicted results
is “pascalcontext-fcn8s”.

On a second video sequence, depicted in Figure 5.4, we were
interested on a different set of semantic categories, including per-
sons. To achieve a better labelling, we replaced the pre-trained
“pascalcontext-fcn-8s” network used to label the earlier example,
with the “voc-fcn-8s” network, also provided by the authors of the
Fully Convolutional Networks paper [77]. The two models show
different sensitivity towards separate labels: indeed, while in Fig-
ure 5.3 the desk category has an overall satisfactory detection rate,
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(a) (b)

(c)

Figure 5.3: A semantically reconstructed office environment. (a) shows
the coloured mesh generated by our system. (b) shows the
most likely category label for each voxel, while the associated
confidence values are displayed as a heat map in (c).

Figure 5.4: Office sequence depicting people working in front of computer
monitors. Top two rows: raycasted views obtained while pro-
cessing the sequence. Bottom row: detail of the mesh extracted
after the reconstruction. The left column represents a coloured
reconstruction of the scene. The central column shows the se-
mantic labels associated to the surfaces according to the legend
in the last row. The right column depicts the confidences asso-
ciated to the selected labels, as heat maps wherein the blue-to-
red gradient indicates increasing probabilities.
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Figure 5.5: ReadingRoom sequence from the Stanford 3D Scene Data-
set [128]. Top row: raycasted views acquired during the re-
construction. Bottom row: details from the final reconstruction.
Columns as in Figure 5.4.

in Figure 5.4 the desks are not labelled at all, their voxels being in-
stead assigned the “unknown” category.

Using the same neural network as in Figure 5.3, we have run our
system also on sequences belonging to the Stanford 3D Scene Data-
set by Zhou and Koltun [126] and Zhou, Miller and Koltun [128].
In Figure 5.5 and Figure 5.6 we show the resulting reconstructions.
It can be observed how the system can label correctly large objects,
such as sofas and tables. Moreover, voxels pertaining to smaller ob-
jects, such as the stacked books in Figure 5.5, are mostly correctly
labelled alike. The two lamps in Figure 5.5 (top row) are inevitably
mislabelled because “lamp” does not belong to the set of categor-
ies handled by the neural network. As concerns the potted plant
in Figure 5.6, it is worth pointing out that labels tend to propagate
into the wall due to the thin and partially reflective nature of the
leaves, which causes depth estimation by the RGB-D sensor to fail
and prevent the generation of an accurate 3D reconstruction of the
object.

Throughout our experiments, we observed that the boundaries
between different objects are reasonably accurate for smaller items
(e.g. books, keyboards, chairs, monitors,. . . ) while the contours deal-
ing with larger objects, such as tables, sofas and structural elements
(i.e. walls, floors and ceilings) tend to be less accurately localised and
“bleed” onto neighbouring voxels. It is noteworthy, though, that the
confidence associated to such incorrect boundary zones is typically
significantly lower than that estimated within the internal portions
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Figure 5.6: Details of the reconstruction of the Lounge sequence from the
Stanford 3D Scene Dataset [126]. Columns as in Figure 5.4.

of objects. This effect is especially evident if the object is observed
from a significant distance and can be traced back to the 2D nature
of the semantic labelling process: labelled pixels are back-projected
onto the voxel-based map by using the current depth image and
thus a single (potentially mis-)labelled pixel affects a larger area of
the reconstruction the farther away it is from the camera.

Overall, the experimental findings suggest that our system can la-
bel correctly both the main large-size scene structures such as floor,
walls, tables, chairs as well as several smaller objects like monitors,
books, keyboards. Moreover, the confidence maps turn out quite
reliable, due to high probability labels unlikely turning out wrong
and mislabelled areas featuring low scores. Therefore, our semantic
reconstructions and associated confidence maps may provide valu-
able cues to facilitate high-level reasoning pursuing indoor scene
understanding.

5 .4 final remarks

In this chapter we have presented an interactive system allowing
an user to perform 3D reconstruction of a large scale environment
while seamlessly performing semantic labelling the observed sur-
faces. To this purpose, by building upon the considerations and
results described in the previous chapters, we split the proposed
SLAM pipeline in two subsystems, each relying on state of the art
approaches.

The Labelling Subsystem pursues per-pixel semantic segment-
ation of RGB-D images by a recently proposed deep neural
network [77]. Indeed, our architecture is agnostic to the choice of
actual labeller and, thus, holds the potential to accommodate the
advances in the field, likely to be provided by the ever-increasing
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research efforts on deep learning architectures for semantic seg-
mentation and object detection.

The SLAM Subsystem relies on the VoxelHashing approach [94]
to handle reconstruction of large scenes. The pipeline described by
Nießner et al., though, has been modified to achieve storage, de-
ferred integration and visualization of semantic informations. In
addition, to provide the user with a fluid and interactive experi-
ence, we deploy the proposed system on an off-the-shelf Personal
Computer endowed with two GPUs and suitably schedule the work-
load on such platforms. A supplementary video2 demonstrates the
pipeline in operation. From the video, one may perceive the ef-
fect of the deferred semantic fusion and how this approach does
not hinder incremental interactive reconstruction, while adding se-
mantic information into the map over time.

An issue worthy of further investigation concerns the accuracy
of the semantically labelled 3D maps: sometimes labels bleed onto
voxels belonging to neighbouring objects due to the independence
of category histograms stored in the voxel blocks as seen, for ex-
ample, in Figure 5.5. Accordingly, the application of pairwise CRFs
as described for example by Valentin et al. [117], either at label integ-
ration or mesh generation time so as to ensure spatial consistency
of neighbouring labels would likely improve the appearance of the
obtained reconstructions.

Among the shortcomings of our system is, additionally, reliance
of the camera localisation step on a purely geometric tracking ap-
proach (i.e. the standard projective ICP technique used by Voxel-
Hashing and KinectFusion) which, while good enough to accurately
estimate camera poses across frames, is not immune from a cer-
tain amount of drift that may become evident when the hand-held
sensor is brought back to a previously observed area. Frame-to-
model alignment methods such as this one and the others described
also, as mentioned in the previous chapter, rely on the assump-
tion of small movements of the camera between subsequent frames.
Were the user to subject the sensor to a sudden movement, track-
ing algorithms based on iterative minimization of a cost function
would inevitably estimate incorrect poses, thus causing the fusion

2 https://vision.disi.unibo.it/~tcavallari/phd_thesis/gmdl2016.mp4

https://vision.disi.unibo.it/~tcavallari/phd_thesis/gmdl2016.mp4
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of the RGB-D measurement in the wrong location, damaging the
map being reconstructed.

Systems such as the one described by Kähler, Prisacariu and Mur-
ray [64] allow effectively to detect such tracking failures, by deploy-
ing a Support Vector Machine to classify outputs of the ICP camera
alignment operation e.g. by considering the number of inliers in the
ICP algorithm or the residual energy. When tracking failures are
detected, SLAM systems such as KinectFusion/VoxelHashing are
switched to a so-called “re-localisation mode”. In this mode of op-
eration the fusion part of the pipeline is disabled to prevent the
integration of incorrect data in the reconstruction. The system then
attempts to estimate the absolute pose of the camera in the world by
using informations already stored in the map and, if successful, re-
starts the SLAM pipeline from such pose. A naïve way to reinitialise
the system is by continuously attempting to perform ICP alignment
between the current depth frame and the depth map obtained by
raycasting the contents of the TSDF from the last known camera
pose, asking the user to carefully position the sensor to observe the
same location in the world and, hopefully, have the ICP alignment
succeed. More advanced techniques exist and, in the next part of
the thesis, we will describe such a system, allowing the effective
estimation of arbitrary camera poses in an environment being re-
constructed.





Part II
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6
A P P E A R A N C E - B A S E D C A M E R A
R E L O C A L I S AT I O N

6 .1 summary of contributions

The SLAM pipelines described in the previous chapters are all con-
cerned with semantic camera localisation (Chapter 4) and recon-
struction (Chapter 3 and Chapter 5) of scenes explored by an user
holding an RGB-D sensor. Camera pose estimation is indeed an
important problem in computer vision, with applications not only
in simultaneous localisation and mapping (SLAM) [66, 87, 91], but
also in the virtual and augmented reality [3, 18, 52, 96, 97, 117]
and navigation [72] fields. In SLAM systems such as those already
mentioned, the camera pose is commonly initialised upon starting
reconstruction and then tracked from one frame to the next (pos-
sibly relying on the presence of semantic clues, as in Chapter 4), but
tracking can easily be lost due to e.g. rapid movement or textureless
regions in the scene; when this happens, it is important to be able to
relocalise the camera with respect to the scene, rather than forcing
the user to start the reconstruction again from scratch.

Accurate relocalisation is also crucial for loop closure when trying
to build globally consistent maps [44, 64, 121]. Common techniques
either match the current image captured by the sensor against key-
frames with known poses coming from a tracker, or establish 2D-to-
3D correspondences between keypoints in the observed image and
points in the reconstructed scene in order to estimate the camera
pose. Recently, regression forests have become a popular alternat-
ive to establish such correspondences. They achieve accurate results,
but must be trained offline on the target scene, preventing relocal-
isation in new environments.

In this chapter, we show how to circumvent this limitation by
adapting a pre-trained forest to a new scene on the fly. The ad-
aptation process allows a forest to learn how to regress 3D world
coordinates for surface patches observed in a stream of input RGB-

95
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D frames, thus associating appearance features to locations in the
environment being reconstructed. Even though the process through
which the camera pose is estimated does not explicitly rely on “se-
mantic” informations, as the tracker in Chapter 4; it is easy to see
how the semantics of the reconstructed scene (i.e. the kinds of ob-
jects observed, and their spatial locations) are key to the actual re-
localisation process. For example, an image patch depicting a chair
will be likely associated to a set of candidate 3D coordinates in the
scene coherent with the locations of all the chairs observed during
the forest adaptation process. Our adapted forests achieve relocal-
isation performance that is on par with that of offline trained forests,
and our approach runs in under 150ms, making it desirable for real-
time systems that require online relocalisation.

The system here described can be deployed as part of a Semantic-
Fusion pipeline in order to allow seamless recovery from several
tracking failure situations, thus being amenable to be used by users
not trained in the “fine art” of 3D reconstruction systems based on
continuous camera tracking (i.e. users that may move the sensor
quickly or, by not knowing the limitations of ICP-based tracking
methods, observe surfaces with few geometric features).

6 .2 rationale and state of the art

Traditional approaches to camera relocalisation have been based
around one of two main paradigms:

image matching methods match the current image from the
camera against keyframes stored in an image database (potentially
with some interpolation between keyframes where necessary). For
example, Gálvez-López and Tardós [48] describe an approach that
computes a bag of binary words based on BRIEF descriptors [16]
for the current image and compares it with bags of binary words for
keyframes in the database using an L1 score. Gee and Mayol-Cuevas
[50] estimate camera pose from a set of synthetic (i.e. rendered)
views of the scene. Their approach is interesting because unlike
many image matching methods, they are to some extent able to relo-
calise from novel poses; however, the complexity increases linearly
with the number of synthetic views needed, which poses signific-
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ant limits to practical use. Glocker et al. [51] encode frames using
Randomised Ferns which, when evaluated on images, yield binary
codes that can be matched quickly by their Hamming distance: as
noted in [76], this makes their approach much faster than [50] in
practice.

keypoint-based methods find 2D-to-3D correspondences
between keypoints in the current image and 3D scene points, so as
to deploy e.g. a Perspective-n-Point (PnP) algorithm [57] (on RGB
data) or the Kabsch algorithm [63] (on RGB-D data) to generate a
number of camera pose hypotheses that can be pruned to a single
hypothesis using RANSAC [45]. For example, Williams, Klein
and Reid [122] recognise/match keypoints using an ensemble of
randomised lists, and exclude unreliable or ambiguous matches
when generating hypotheses. Their approach is fast, but needs
significant memory to store the lists. Li and Calway [76] use graph
matching to help distinguish between visually-similar keypoints.
Their method uses BRISK descriptors [74] for the keypoints, and
runs at around 12 fps. Sattler, Leibe and Kobbelt [102] describe a
large-scale localisation approach that finds correspondences in both
the 2D-to-3D and 3D-to-2D directions before applying a 6-point
DLT algorithm [57, 112] to compute pose hypotheses. They use a
visual vocabulary to order potential matches by how costly they
will be to establish.

Some hybrid methods use both paradigms. For example, Mur-
Artal, Montiel and Tardós [86] describe a relocalisation approach
that initially finds pose candidates using bag of words recognition
[49], which they incorporate into their larger ORB-SLAM system
(unlike [48], they use ORB [99] rather than BRIEF features, which
they found to improve performance). They then refine these candid-
ate poses using PnP and RANSAC. Valentin et al. [115] present an
approach that finds initial pose candidates using the combination of
a retrieval forest and a multiscale navigation graph, before refining
them using continuous pose optimisation.

Several less traditional approaches have also been tried. Kend-
all, Grimes and Cipolla [69] train a convolutional neural network to
directly regress the 6D camera pose from the current image. Deng
et al. [33] match a 3D point cloud representing the scene to a local
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3D point cloud constructed from a set of query images that can be
incrementally extended by the user to achieve a successful match.
Lu et al. [80] perform 3D-to-3D localisation that reconstructs a 3D
model from a short video using structure-from-motion and matches
that against the scene within a multi-task point retrieval framework.

Recently, Shotton et al. [104] proposed the use of a regression
forest to directly predict 3D correspondences in the scene for all
pixels in the current image. This has two key advantages over tradi-
tional keypoint-based approaches: (i) no explicit detection, descrip-
tion or matching of keypoints is required, making the approach both
simpler and faster, and (ii) a significantly larger number of points
can be deployed to verify or reject camera pose hypotheses. How-
ever, it suffers from the key limitation of needing to train a regres-
sion forest on the scene offline (in advance), which prevents on-the-
fly camera relocalisation.

Subsequent work has significantly improved upon the relocalisa-
tion performance of [104]. For example, Guzman-Rivera et al. [55]
rely on multiple regression forests to generate a number of camera
pose hypotheses, then cluster them and use the mean pose of the
cluster whose poses minimise the reconstruction error as the result.
Valentin et al. [116] replace the modes used in the leaves of the
forests in [104] with mixtures of anisotropic 3D Gaussians in order
to better model uncertainties in the 3D point predictions, and show
that by combining this with continuous pose optimisation they can
relocalise 40% more frames than [104]. Brachmann et al. [12] de-
ploy a stacked classification-regression forest to achieve results of
a quality similar to [116] for RGB-D relocalisation. Massiceti et al.
[82] map between regression forests and neural networks to try to
leverage the performance benefits of neural networks for dense re-
gression, while retaining the efficiency of random forests for evalu-
ation. They use robust geometric median averaging to achieve im-
provements of around 7% over [12] for RGB localisation. However,
despite all of these advances, none of these papers remove the need
to train on the scene of interest in advance.

In the remainder of this chapter, we show that the need for off-
line training on the scene of interest can be overcome through on-
line adaptation to a new scene of a regression forest that has been
pre-trained on a generic scene. We achieve genuine on-the-fly re-
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localisation similar to that which can be obtained using keyframe-
based approaches [51], but with both significantly higher relocalisa-
tion performance in general, and the specific advantage that we can
relocalise from novel poses. Indeed, our adapted forests achieve
relocalisation performance that is competitive with offline-trained
forests, whilst requiring no pre-training on the scene of interest, and
relocalising in close to real time. This makes this approach a prac-
tical and high-quality alternative to keyframe-based methods for on-
line relocalisation in novel scenes, suitable to be deployed in large
scale reconstruction pipelines to allow a more robust user interac-
tion during the mapping process. The next sections are structured
as follows: first, in Section 6.3 we will describe the method we em-
ploy to perform pose regression from a continuous stream of RGB-D
frames; then, in Section 6.4 we will evaluate the performances of the
proposed system, both quantitatively and qualitatively.

6 .3 on-the-fly adaptation of pose regression forests

6 .3 .1 Overview

A high-level overview of our approach is shown in Figure 6.1. Ini-
tially, we train a regression forest offline to predict 2D-to-3D corres-
pondences for a generic scene using the approach described in [116].
To adapt this forest to a new scene, we remove the contents of the
leaf nodes in the forest (i.e. GMM modes and associated covariance
matrices) whilst retaining the branching structure of the trees (in-
cluding learned split parameters). We then adapt the forest online
to the new scene by feeding training examples down the forest to re-
fill the empty leaves, dynamically learning a set of leaf distributions
specific to that scene. Thus adapted, the forest can then be used
to predict correspondences for the new scene that can be used for
camera pose estimation. Reusing the tree structures spares us from
expensive offline learning on deployment in a novel scene, allowing
for relocalisation on the fly.
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Figure 6.1: Overview of our approach. First, we train a regression forest off-
line to predict 2D-to-3D correspondences for a generic scene. To
adapt this forest to a new scene, we remove the scene-specific
information in the forest’s leaves while retaining the branching
structure (with learned split parameters) of the trees; we then
refill the leaves online using training examples from the new
scene. The adapted forest can be deployed to predict corres-
pondences for the new scene that are fed to Kabsch [63] and
RANSAC [45] for pose estimation.

6 .3 .2 Details

6 .3 .2 .1 Offline Forest Training

Training is done as in [116], greedily optimising a standard
reduction-in-spatial-variance objective over the randomised para-
meters of simple threshold functions. Like [116], we make use of
‘Depth’ and ‘Depth-Adaptive RGB’ (‘DA-RGB’) features, centred at
a pixel p, as follows:

f
Depth
Ω = d(p) − d

(
p +

δ

d(p)

)
(6.1)

fDA-RGB
Ω = i(p, c) − i

(
p +

δ

d(p)
, c
)

(6.2)
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In this, d(p) is the depth at p, i(p, c) is the value of the cth colour
channel at p, and Ω is a vector of randomly sampled feature para-
meters. For ‘Depth’, the only parameter is the 2D image-space offset
δ, whereas ‘DA-RGB’ adds the colour channel selection parameter
c ∈ {R,G,B}. We randomly generate 128 values ofΩ for ‘Depth’ and
128 for ‘DA-RGB’ and concatenate the evaluations of these functions
at each pixel of interest to yield 256D feature vectors.

At training time, a set S of training examples, each consisting of
such a feature vector f ∈ R256, its corresponding 3D location in the
scene and its colour, is assembled via sampling from a ground truth
RGB-D video with known camera poses for each frame (obtained
by tracking from depth camera input). A random subset of these
training examples is selected to train each tree in the forest, and we
then train all of the trees in parallel.

Starting from the root of each tree, we recursively partition the
training examples in the current node into two using a binary
threshold function. To decide how to split each node n, we ran-
domly generate a set Θn of 512 candidate split parameter pairs,
where each θ = (φ, τ) ∈ Θn denotes the binary threshold function

θ(f) = f[φ] > τ. (6.3)

In this, φ ∈ [0, 256) is a randomly-chosen feature index, and τ ∈ R

is a threshold, chosen to be the value of feature φ in a randomly-
chosen training example. Examples that pass the test are routed to
the right subtree of n; the remainder are routed to the left. To pick
a suitable split function for n, we use exhaustive search to find a
θ∗ ∈ Θn whose corresponding split function maximises the inform-
ation gain that can be achieved by splitting the training examples
that reach n. Formally, the information gain corresponding to split
parameters θ ∈ Θn is

V(Sn) −
∑
i∈{L,R}

|Sin(θ)|

|Sn|
V(Sin(θ)), (6.4)

in which V(X) denotes the spatial variance of set X, and SLn(θ) and
SRn(θ) denote the left and right subsets into which the set Sn ⊆ S

of training examples reaching n is partitioned by the split function



102 appearance-based camera relocalisation

denoted by θ. Spatial variance is defined in terms of the log of the
determinant of the covariance of a fitted 3D Gaussian [116].

For a given tree, the above process is simply recursed to a max-
imum depth of 15. We train 5 trees per forest. The (approximate,
empirical) distributions in the leaves are discarded at the end of
this process (we replace them during online forest adaptation, as
discussed in the next section).

6 .3 .2 .2 Online Forest Adaptation

To adapt a forest to a new environment, we replace the dis-
tributions discarded from its leaves at the end of pre-training
with dynamically-updated ones drawn entirely from the new
scene. Here, we detail how the new leaf distributions used by the
relocaliser are computed and updated online.

We draw inspiration from the use of reservoir sampling [118] in
SemanticPaint [117], which makes it possible to store an unbiased
subset of an empirical distribution in a bounded amount of memory.
On initialisation, we allocate (on the GPU) a fixed-size sample reser-
voir for each leaf of the existing forest. Our reservoirs contain up to
1024 entries, each of which storing a 3D location (in world coordin-
ates) and an associated colour. At runtime, we pass training ex-
amples (of the form described in Subsection 6.3.2.1) down the forest
and identify the leaves to which each example is mapped. We then
add the 3D location and colour of each example to the reservoirs
associated with its leaves.

To obtain the 3D locations of the training examples, we need to
know the transformation that maps points from camera space to
world space. When testing on sequences from a dataset, this is trivi-
ally available as the ground truth camera pose, but in a live scen-
ario, it will generally be obtained as the output of a fallible tracker.
To avoid corrupting the reservoirs in our forest, we avoid passing
new examples down the forest when the tracking is unreliable. We
measure tracker reliability using the support vector machine (SVM)
approach described in [64]. For frames for which a reliable camera
pose is available, we proceed as follows:

1. First, we compute feature vectors for a subset of the pixels in
the image, as detailed in Subsection 6.3.2.1. We empirically
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choose our subset by subsampling densely on a regular grid
with 4-pixel spacing, i.e. we choose pixels {(4i, 4j) ∈ [0,w)×
[0,h) : i, j ∈ N+}, where w and h are respectively the width
and height of the image.

2. Next, we pass each feature vector down the forest, adding
the 3D position and colour of the corresponding scene point
to the reservoir of the leaf reached in each tree. Our CUDA-
based random forest implementation uses the node indexing
described in [103].

3. Finally, for each leaf reservoir, we cluster the contained points
using a CUDA implementation of Really Quick Shift (RQS)
[47] to find a set of modal 3D locations. We sort the clusters in
each leaf in decreasing size order, keeping at most 10 modal
clusters per leaf. For each cluster we keep, we compute 3D
and colour centroids, and a covariance matrix. The cluster dis-
tributions are used when estimating the likelihood of a camera
pose, and also during continuous pose optimisation (see Sub-
section 6.3.2.3). Since running RQS over all the leaves in the
forest would take too long if run in a single frame, we amortise
the cost over multiple frames by updating 256 leaves in paral-
lel for each frame, in round-robin fashion. A typical forest
contains around 42,000 leaves, so each leaf is updated roughly
once every 6 s.

Figure 6.2 provides an illustrative example of the effect that online
adaptation has on a pre-trained forest: Figure 6.2a shows the modal
clusters present in a small number of randomly-selected leaves of
a forest pre-trained on the Chess scene from the 7-Scenes dataset
[104]; Figure 6.2b shows the modal clusters that are added to the
same leaves during the process of adapting the forest to the Kit-
chen scene. Note that whilst the positions of the predicted modes
have (unsurprisingly) completely changed, the split functions in the
forest’s branch nodes (which we preserve) still do a good job of rout-
ing similar parts of the scene into the same leaves, enabling effective
sampling of 2D-to-3D correspondences for camera pose estimation.
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(a) (b)

Figure 6.2: An illustrative example of the effect that online adaptation has
on a pre-trained forest: (a) shows the modal clusters present
in a small number of randomly-selected leaves of a forest pre-
trained on the Chess scene from the 7-Scenes dataset [104] (the
colour of each mode indicates its containing leaf); (b) shows
the modal clusters that are added to the same leaves during
the process of adapting the forest to the Kitchen scene.

6 .3 .2 .3 Camera Pose Estimation

As in [116], camera pose estimation is based on the preemptive,
locally-optimised RANSAC of [24]. We begin by randomly gener-
ating an initial set of up to 1024 pose hypotheses. A pose hypo-
thesis H ∈ SE(3) is a transform that maps points in camera space
to world space. To generate each pose hypothesis, we apply the
Kabsch algorithm [63] to 3 point pairs of the form (xCi , xWi ), where
xCi = d(ui)K−1(u>i , 1) is obtained by back-projecting a randomly-
chosen point ui in the live depth image d into camera space, and xWi
is a corresponding scene point in world space, randomly sampled
from M(ui), the modes of the leaves to which the forest maps ui.
In this, K is the intrinsic calibration matrix for the depth camera.
Before accepting a hypothesis, we subject it to a series of checks:

1. First, we randomly choose one of the three point pairs (xCi , xWi )

and compare the RGB colour of the corresponding pixel ui
in the colour input image to the colour centroid of the mode
(see Subsection 6.3.2.2) from which we sampled xWi . We reject
the hypothesis iff the L0 distance between the two exceeds a
threshold.

2. Next, we check that the three hypothesised scene points are
sufficiently far from each other. We reject the hypothesis iff
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the minimum distance between any pair of points is less than
30 cm.

3. Finally, we check that the distances between all scene point
pairs and their corresponding back-projected depth point pairs
are sufficiently similar, i.e. that the hypothesised transform is
“rigid enough”. We reject the hypothesis iff this is not the case.

If a hypothesis gets rejected by one of the checks, we try to gener-
ate an alternative hypothesis to replace it. In practice, we use 1024
dedicated threads, each of which attempts to generate a single hy-
pothesis. Each thread continues generating hypotheses until either
(a) it finds a hypothesis that passes all of the checks, or (b) a max-
imum number of iterations is reached. We proceed with however
many hypotheses we obtain by the end of this process.

Having generated our large initial set of hypotheses, we next ag-
gressively cut it down to a much smaller size by scoring each hy-
pothesis and keeping the 64 lowest-energy transforms (if there are
fewer than 64 hypotheses, we keep all of them). To score the hypo-
theses, we first select an initial set I = {i} of 500 pixel indices in d,
and back-project the denoted pixels ui to corresponding points xCi
in camera space as described above. We then score each hypothesis
H by summing the Mahalanobis distances between the transforma-
tions of each xCi under H and their nearest modes:

E(H) =
∑
i∈I

(
min

(µ,Σ)∈M(ui)

∥∥∥Σ−1
2 (HxCi − µ)

∥∥∥) (6.5)

After this initial cull, we use pre-emptive RANSAC to prune the re-
maining 6 64 hypotheses to a single, final hypothesis. We iteratively
(i) expand the sample set I (by adding 500 new pixels each time), (ii)
refine the pose candidates via Levenberg-Marquardt optimisation
[75, 81] of the energy function E, (iii) re-evaluate and re-score the
hypotheses, and (iv) discard the worse half. In practice, the actual
optimisation is performed not in SE(3), where it would be hard to
do, but in the corresponding Lie algebra, se(3). The details of this
process can be found in [116], and a longer explanation of Lie algeb-
ras can be found in [11, 110].

This process yields a single pose hypothesis, which we can then
return if desired. In practice, however, further pose refinement is
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sometimes possible. For example, were the relocaliser to be integ-
rated into a 3D reconstruction framework such as KinectFusion [91],
VoxelHashing [94] or InfiniTAM [64]1, we can attempt to refine the
pose further using ICP [9]. Since tasks such as 3D reconstruction
are one of the key applications of our approach, we report results
both with and without ICP in Table 6.1.

6 .4 experiments

We perform both quantitative and qualitative experiments to evalu-
ate our approach. In Subsection 6.4.1, we compare our adaptive ap-
proach to state-of-the-art offline relocalisers that have been trained
directly on the scene of interest. We show that our adapted forests
can achieve competitive relocalisation performance despite being
trained on very different scenes, allowing them to be used for on-
line relocalisation. In Subsection 6.4.2, we show our ability to per-
form this adaptation on-the-fly from live sequences, allowing us to
support tracking loss recovery in interactive scenarios. In Subsec-
tion 6.4.3, we evaluate how well our approach generalises to novel
poses in comparison to a keyframe-based random fern relocaliser
based on [51]. This relocaliser is also practical for on-the-fly reloc-
alisation (hence its use in large scale reconstruction pipelines such
as InfiniTAM [64]), but its use of keyframes means that it is unable
to generalise well to novel poses. By contrast, we are able to reloc-
alise well even from poses that are quite far away from the training
trajectory. In Subsection 6.4.4, we compare the speed of our ap-
proach with random ferns during both normal operation (i.e. when
the scene is being successfully tracked) and relocalisation. Our ap-
proach is slower than random ferns, but remains close to real-time,
whilst achieving significantly higher relocalisation performance. In
Subsection 6.4.5 we show some examples of situations where the

1 The research described in this chapter was performed during a period spent as a
visitor in the “Torr Vision Group”, University of Oxford, United Kingdom. For
this reason the reconstruction pipeline used as base of the relocalisation system
being described is “InfiniTAM” (currently maintained by members of the Depart-
ment of Engineering Science in Oxford) instead of the SemanticFusion pipeline,
based on VoxelHashing, described in the previous chapter. This has no implica-
tions on the relocaliser, since its implementation does not depend on the specific
SLAM pipeline employed. Its deployment in a system such as “SemanticFusion”,
described earlier, would be straightforward.
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proposed relocalisation method fails and draw conclusions so as to
the likely causes of the errors. Finally, in Subsection 6.4.6 we show
additional qualitative examples of challenging but successful cam-
era relocalisations.

6 .4 .1 Adaptation Performance

In evaluating the extent to which we are able to adapt a regression
forest that has been pre-trained on a different scene to the scene
of interest, we seek to answer two questions. First, how does an
adapted forest compare to one that has been pre-trained offline on
the target scene? Second, to what extent does an adapted forest’s
performance depend on the scene on which it has been pre-trained?
To answer both of these questions, we compare the performances of
adapted forests pre-trained on a variety of scenes (each scene from
the 7-Scenes dataset [104], plus a novel scene depicting an office
desk) to the performances of forests trained offline on the scene of
interest using state-of-the-art approaches [12, 55, 104, 116].

The exact testing procedure we use for our approach is as follows.
First, we pre-train a forest on a generic scene and remove the con-
tents of its leaves, as described in Section 6.3: this process runs off-
line over a number of hours or even days (but we only need to do it
once). Next, we adapt the forest by feeding it new examples from a
training sequence captured on the scene of interest: this runs online
at frame rates (in a real system, this allows us to start relocalising
almost immediately whilst training carries on in the background, as
we show in Subsection 6.4.2). Finally, we test the adapted forest by
using it to relocalise from every frame of a separate testing sequence
captured on the scene of interest.

As shown in Table 6.1, the results are very accurate. Whilst
there are certainly some variations in the performance achieved
by adapted forests pre-trained on different scenes (in particular,
forests trained on the Heads and Pumpkin scenes from the dataset
are slightly worse), the differences are not profound: in particular,
relocalisation performance seems to be more tightly coupled to the
difficulty of the scene of interest than to the scene on which the
forest was pre-trained. Notably, all of our adapted forests achieve
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Relocalisation Performance on Test SceneTraining Scene
Chess Fire Heads Office Pumpkin Kitchen Stairs Average (all scenes)

Reloc 99.8% 95.7% 95.5% 91.7% 82.8% 77.9% 25.8% 81.3%Chess
+ ICP 99.9% 97.8% 99.5% 94.1% 91.3% 83.3% 28.4% 84.9%

Reloc 98.4% 96.9% 98.2% 89.7% 80.5% 71.9% 28.6% 80.6%Fire
+ ICP 99.1% 99.2% 99.9% 92.1% 89.1% 81.7% 31.0% 84.6%

Reloc 98.0% 91.7% 100% 73.1% 77.5% 67.1% 21.8% 75.6%Heads
+ ICP 99.3% 92.3% 100% 81.1% 87.7% 82.0% 31.9% 82.0%

Reloc 99.2% 96.5% 99.7% 97.6% 84.0% 81.7% 33.6% 84.6%Office
+ ICP 99.4% 99.0% 100% 98.2% 91.2% 87.0% 35.0% 87.1%

Reloc 97.5% 94.9% 96.9% 82.7% 83.5% 70.4% 30.7% 75.5%Pumpkin
+ ICP 98.9% 97.6% 99.4% 86.9% 91.2% 82.3% 32.4% 84.1%

Reloc 99.9% 95.4% 98.0% 93.3% 83.2% 86.0% 28.2% 83.4%Kitchen
+ ICP 99.9% 98.2% 100% 94.5% 90.4% 88.1% 31.3% 86.1%

Reloc 97.3% 95.4% 97.9% 90.8% 80.6% 74.5% 45.7% 83.2%Stairs
+ ICP 98.0% 97.4% 99.8% 92.1% 89.5% 81.0% 46.6% 86.3%

Reloc 97.3% 95.7% 97.3% 83.7% 85.3% 71.8% 24.3% 79.3%Ours (Desk)
+ ICP 99.2% 97.7% 100% 88.2% 90.6% 82.6% 31.0% 84.2%

Reloc 98.4% 95.3% 97.9% 87.8% 82.2% 75.2% 29.8% 80.9%Average
+ ICP 99.2% 97.4% 99.8% 90.9% 90.1% 83.5% 33.5% 84.9%

Table 6.1: The performance of our adaptive approach after pre-training on various scenes of the 7-Scenes dataset [104]. We show the scene
used to pre-train the forest in each version of our approach in the left column. The pre-trained forests are adapted online for the
test scene, as described in the main text. Percentages denote proportions of test frames with 6 5cm translational error and 65°
angular error.
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results that are within striking distance of the state-of-the-art offline
methods (Table 6.2), and are considerably better than those that
can be achieved by online competitors such as the keyframe-based
random fern relocaliser implemented in InfiniTAM [51, 64] (see
Subsection 6.4.3). Nevertheless, there is clearly a trade-off to be
made here between performance and practicality: pre-training on
the scene of interest is impractical for on-the-fly relocalisation, but
achieves somewhat better results, probably due to the opportunity
afforded to adapt the structure of the forest to the target scene.

This drop in performance in exchange for practicality can be mit-
igated to some extent by refining our relocaliser’s pose estimates us-
ing the ICP-based tracker [9] in InfiniTAM [66]. Valentin et al. [116]
observe that the 5 cm/5° error metric commonly used to evaluate re-
localisers is “fairly strict and should allow any robust model-based
tracker to resume”. In practice, ICP-based tracking is in many cases
able to resume from initial poses with even greater error: indeed, as
Table 6.1 shows, with ICP refinement enabled, we are able to relocal-
ise from a significantly higher proportion of test frames. Whilst ICP
could clearly also be used to refine the results of offline methods,
what is important in this case is that ICP is fast and does not add
significantly to the overall runtime of our approach, which remains
close to real time. As such, refining our pose estimates using ICP
yields a high-quality relocaliser that is still practical for online use.

6 .4 .2 Tracking Loss Recovery

In Subsection 6.4.1, we investigated our ability to adapt a forest to
a new scene by filling its leaves with data from a training sequence
for that scene, before testing the adapted forest on a separate test-
ing sequence shot on the same scene. Here, we quantify our ap-
proach’s ability to perform this adaptation on the fly, by filling the
leaves frame-by-frame from the testing sequence: this allows recov-
ery from tracking loss in an interactive scenario without the need
for prior training on anything other than the live sequence, making
our approach extremely convenient for tasks such as interactive 3D
reconstruction.
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Scene [104] [55] [116] [12] Us Us+ICP

Chess 92.6% 96% 99.4% 99.6% 99.2% 99.4%
Fire 82.9% 90% 94.6% 94.0% 96.5% 99.0%

Heads 49.4% 56% 95.9% 89.3% 99.7% 100%
Office 74.9% 92% 97.0% 93.4% 97.6% 98.2%

Pumpkin 73.7% 80% 85.1% 77.6% 84.0% 91.2%
Kitchen 71.8% 86% 89.3% 91.1% 81.7% 87.0%
Stairs 27.8% 55% 63.4% 71.7% 33.6% 35.0%

Average 67.6% 79.3% 89.5% 88.1% 84.6% 87.1%

Table 6.2: Comparing our adaptive approach to state-of-the-art offline meth-
ods on the 7-Scenes dataset [104] (the percentages denote pro-
portions of test frames with 6 5cm translation error and 65°
angular error). For our method, we report the results obtained
by adapting a forest pre-trained on the Office sequence (from
Table 6.1). We are competitive with, and sometimes better than,
the offline methods, without needing to pre-train on the test
scene.

Our testing procedure is as follows: at each new frame (except the
first), we assume that tracking has failed, and try to relocalise using
the forest we have available at that point; we record whether or not
this succeeds. Regardless, we then restore the ground truth camera
pose (or the tracked camera pose, in a live sequence) and, provided
tracking hasn’t actually failed, use examples from the current frame
to continue training the forest. As Figure 6.3 shows, we are able to
start relocalising almost immediately in a live sequence (in a matter
of frames, typically 4–6 are enough). Subsequent performance then
varies based on the difficulty of the sequence, but rarely drops below
80%, except for the challenging Stairs sequence. This makes our
approach highly practical for interactive relocalisation, something
we also show in an accompanying video2.

6 .4 .3 Generalisation to Novel Poses

To evaluate how well our approach generalises to novel poses, we ex-
amine how the proportion of frames we can relocalise decreases as

2 https://vision.disi.unibo.it/~tcavallari/phd_thesis/relocalisation.mp4

https://vision.disi.unibo.it/~tcavallari/phd_thesis/relocalisation.mp4
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Figure 6.3: The performance of our approach for tracking loss recovery
(Subsection 6.4.2). Filling the leaves of a forest pre-trained
on Office frame-by-frame directly from the testing sequence, we
are able to start relocalising almost immediately in new scenes.
This makes our approach highly practical in interactive scen-
arios such as 3D reconstruction.

the distance of the (ground truth) test poses from the training traject-
ory increases. We compare our approach with the keyframe-based
relocaliser in InfiniTAM [64], which is based on the random fern
approach of Glocker et al. [51]. Relocalisation from novel poses is a
well-known failure case of keyframe-based methods, so we would
expect the random fern approach to perform poorly away from the
training trajectory; by contrast, it is interesting to see the extent to
which our approach can relocalise from a wide range of novel poses.

We perform the comparison separately for each 7-Scenes se-
quence, and then aggregate the results. For each sequence, we first
group the test poses into bins by pose novelty. Each bin is specified
in terms of a maximum translation and rotation difference of a test
pose with respect to the training trajectory (for example, poses that
are within 5 cm and 5° of any training pose are assigned to the first
bin, remaining poses that are within 10 cm and 10° are assigned to
the second bin, etc. . . ). We then determine the proportion of the test
poses in each bin for which it is possible to relocalise to within 5 cm
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Figure 6.4: Evaluating how well our approach generalises to novel poses in
comparison to a keyframe-based random fern relocaliser based
on [51]. The performance decay experienced as test poses get
farther from the training trajectory is much less severe with our
approach than with random ferns.

translational error and 5° angular error using (a) the random fern
approach, (b) our approach without ICP and (c) our approach with
ICP. As shown in Figure 6.4, the decay in performance experienced
as the test poses get further from the training trajectory is much
less severe with our approach than with random ferns.

A qualitative example of our ability to relocalise from novel poses
is shown in Figure 6.5. In the main figure, we show a range of test
poses from which we can relocalise in the Fire scene, linking them
to nearby poses on the training trajectory so as to illustrate their
novelty in comparison to poses on which we have trained. The
most difficult of these test poses are also shown in the images be-
low, alongside their nearby training poses, visually illustrating the
significant differences between the two.

As Figure 6.4 and Figure 6.5 illustrate, we are already quite effect-
ive at relocalising from poses that are significantly different from
those on which we have trained; nevertheless, further improvements
seem possible. For example, one interesting extension of this work
might be to explore the possibility of using rotation-invariant split
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Figure 6.5: A qualitative example of novel poses from which we are able
to relocalise to within 5 cm/5° on the Fire sequence from 7-
Scenes dataset [104]. Pose novelty measures the distance of
a test pose from a nearby pose (blue) on the training traject-
ory (yellow). We can relocalise from both easy poses (up to
35 cm/35° from the training trajectory, green) and hard poses
(>35 cm/35°, red). The images below the main figure show
views of the scene from the training poses and testing poses
indicated.

functions in the regression forest to improve its generalisation cap-
abilities.

6 .4 .4 Timings

To evaluate the usefulness of our approach for on-the-fly relocalisa-
tion in new scenes, we compare it to the keyframe-based random
fern relocaliser implemented in InfiniTAM [51, 64]. To be practical
in a real-time system, a relocaliser needs to perform in real time
during normal operation (i.e. for online training whilst successfully
tracking the scene), and ideally take no more than around 200ms
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Random Ferns [51, 64] Us

Per-Frame Training 0.9ms 9.8ms
Relocalisation 10ms 141ms

Table 6.3: Comparing the typical timings of our approach vs. random
ferns during both normal operation and relocalisation. Our ap-
proach is slower than random ferns, but achieves significantly
higher relocalisation performance, especially from novel poses.
All of our experiments are run on a machine with an Intel Core
i7-4960X CPU and an NVIDIA GeForce Titan Black GPU.

for relocalisation itself (when the system has lost track). As a result,
relocalisers such as [12, 55, 82, 104, 116], whilst achieving impressive
results, are not practical in this context due to their need for offline
training on the scene of interest.

As shown in Table 6.3, the random fern relocaliser is fast both for
online training and relocalisation, taking only 0.9ms per frame to
update the keyframe database, and 10ms to relocalise when track-
ing is lost. However, speed aside, the range of poses from which it is
able to relocalise is quite limited. By contrast, our approach, whilst
taking 9.8ms for online training and 141ms for actual relocalisation,
can relocalise from a much broader range of poses, still running at
acceptable speeds. Additionally, it should be noted that our current
research-focused implementation is not heavily optimised, making
it plausible that it could be sped up even further with additional
engineering effort.

6 .4 .5 Analysis of Failure Cases

As shown in the previous sections, our approach is able to achieve
highly-accurate online relocalisation in under 150ms, from novel
camera poses and without needing extensive offline training on the
target scene. However, there are inevitably still situations in which
it will fail. In this section, we analyse two interesting failure cases,
so as to help the reader understand the underlying reasons in each
case.
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6 .4 .5 .1 Office

The first failure case we analyse is from the Office scene in the 7-
Scenes dataset [104]. This scene captures a typical office that con-
tains a number of desks (see Figure 6.6). Unfortunately, these desks
appear visually quite similar: they are made of the same wood, and
have similar monitors and the same associated chairs. This makes
it very difficult for a relocaliser such as ours to distinguish between
them: as a result, our approach ends up producing a pose that faces
the wrong desk (see Figure 6.6d).

On one level, the pose we produce is not entirely unreasonable:
indeed, it looks superficially plausible, and is oriented at roughly
the right angle with respect to the incorrect desk. Nevertheless, in
absolute terms, the pose is obviously very far from the ground truth.

To pin down what has gone wrong, we visualise the last 16 sur-
viving camera pose hypotheses for this instance in Figure 6.7, in des-
cending order (left-to-right, top-to-bottom). We observe that whilst
the top candidate selected by RANSAC relocalises the camera to
face the wrong desk, any of the next five candidates would have
relocalised the camera successfully. The problem in this case is that
the energies computed for the hypotheses are fairly similar for both
the correct and incorrect poses.

Although we do not investigate it here, one potential way of fix-
ing this might be to score the last few surviving hypotheses based
on the photometric consistencies between colour raycasts from their
respective poses and the colour input image.

6 .4 .5 .2 Stairs

The second failure case we analyse is from the Stairs scene in the
7-Scenes dataset [104]. This is a notoriously difficult scene contain-
ing a staircase that consists of numerous visually-identical steps (see
Figure 6.8). When viewing the scene from certain angles (see Fig-
ure 6.9), the relocaliser is able to rely on points in the scene that
can be identified unambiguously to correctly estimate the pose, but
from viewpoints such as that in Figure 6.8d, it is forced to use more
ambiguous points,e.g. those on the stairs themselves or the walls.
When this happens, relocalisation is prone to fail, since the relocal-
iser finds it difficult to tell the difference between the different steps.
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(a)

(b) (c)

(d)

Figure 6.6: The Office scene from the 7-Scenes dataset [104]. (a) contains
multiple desks, e.g. (b) and (c), that can appear visually quite
similar, making it difficult for the relocaliser to distinguish
between them. In (d), for example, the relocaliser incorrectly
chooses a pose facing the desk in (b), whilst the RGB-D input
actually shows the desk in (c).
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Figure 6.7: The top 16 pose candidates (left-to-right, top-to-bottom) cor-
responding to the failure case on the Office scene shown in
Figure 6.6d. The coloured points indicate the 2D-to-3D corres-
pondences that are used to generate the initial pose hypotheses.
Note that whilst the top candidate selected by RANSAC reloc-
alises the camera to face the wrong desk, any of the next five
candidates would have relocalised the camera correctly.
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(a)

(b) (c)

(d)

Figure 6.8: The Stairs scene from the 7-Scenes dataset [104]. (a) is notori-
ously difficult, containing a staircase that consists of numerous
visually-identical steps (see (b) and (c)). In (d), many of the 2D-
to-3D correspondences predicted by the forest are likely to be
of a low quality, since it is hard to distinguish between similar
points on different steps. This significantly reduces the prob-
ability of generating good initial hypotheses, leaving RANSAC
trying to pick a good hypothesis from an initial set that only
contains bad ones.
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Figure 6.9: From certain angles in the Stairs scene, the relocaliser is able
to rely on points in the scene that can be identified unambigu-
ously to estimate the pose.

As in the previous section, we can visualise the top 16 camera
pose hypotheses for this instance to pin down what has gone wrong
(see Figure 6.10). It is noticeable that in this case, none of the top
16 hypotheses would have successfully relocalised the camera. As
suggested by the points predicted in the 3D scene for each hypo-
thesis (which are often in roughly the right place but on the wrong
step), this is because the points at the same places on different steps
tend to end up in similar leaves, making the modes in the leaves
less informative (see also Figure 6.11) and significantly reducing the
probability of generating good initial hypotheses.

Unlike in the Office case, the problem here cannot be fixed by a
late-stage consistency check, since none of the last few surviving
hypotheses are of any use. Instead, one potential way of fixing this
might be to improve the way in which the initial set of hypotheses
is generated so as to construct a more diverse set and increase the
probability of one of the initial poses being in roughly the right
place. An alternative might be to adaptively increase the number of
hypotheses generated in difficult conditions.
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Figure 6.10: The top 16 pose candidates (left-to-right, top-to-bottom) cor-
responding to the failure case on the Stairs scene shown in
Figure 6.8d. The coloured points indicate the 2D-to-3D cor-
respondences that are used to generate the initial pose hypo-
theses. Note that in this case, none of the candidates would
relocalise the camera successfully.
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Figure 6.11: The modal clusters contained in the leaves for the points in
the optimal camera pose hypothesis from Figure 6.10. It is
noticeable that points at the same places on different steps
end up in the same leaves, making the distributions in those
leaves less informative.

6 .4 .6 Further Successful Examples

Some further examples of successful relocalisation, this time in the
Fire scene from the 7-Scenes dataset [104], can be seen in Figure 6.12.
As in Figure 6.9, it is noticeable that the relocaliser tries to rely on
points in the scene that can be identified unambiguously where
these are available, something that is clearly easier in sequences
such as Fire that contain many easily-distinguished objects.

6 .5 final remarks

In recent years, offline approaches based on regression forests to
predict 2D-to-3D correspondences [12, 55, 82, 104, 116] have been
shown to achieve state-of-the-art camera relocalisation results, but
their adoption for online relocalisation in practical systems such as
KinectFusion [91], VoxelHashing [94] or InfiniTAM [64, 66] has been
hindered by the need to train extensively on the target scene ahead
of time.

In this chapter, we have shown that it is possible to circumvent
this limitation by adapting offline-trained regression forests to novel
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Figure 6.12: Further examples of successful relocalisation in the Fire scene
from the 7-Scenes dataset [104]. To estimate the pose, the relo-
caliser tries to rely on points in the scene that can be identified
unambiguously.

scenes online. Such adapted forests achieve relocalisation perform-
ance on the 7-Scenes Dataset by Shotton et al. [104] that is com-
petitive with the offline-trained forests of existing methods, and
our approach runs in under 150ms, making it competitive for prac-
tical purposes with fast keyframe-based approaches such as random
ferns [51, 64]. Unlike such approaches, we are also much better able
to relocalise from novel poses, removing much of the need for the
user to move the camera around when relocalising.

While not explicitly considered in this chapter, it would be feas-
ible to also employ the adapted forests to perform semantic labelling
of the input images, simultaneously to the pose regression task, by
extending the reservoirs associated to the leaves to store category ex-
amples, produced, e.g. by a deep neural network [77] or by manual
hints given by the user [52]. Such examples could then be aggreg-
ated in probability histograms for each leaf, as in SemanticPaint,
and used to quickly label the RGB-D input frames: the relocalisa-
tion task as a whole takes less than 150ms, but the majority of such
time is spent in the Preemptive RANSAC estimation, while the fea-



6.5 final remarks 123

ture computation and forest evaluation tasks take ≈3ms, thus po-
tentially allowing the labelling of input frames in real time.

A robust relocalisation system such as the one described here is
a desirable feature for 3D reconstruction pipelines (either based on
semantic clues or not), allowing an easier interaction with users of
such software: the need for slow and smooth camera movements is
somewhat reduced if tracking failures caused by the lack of them
can be reliably recovered from.
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C O N C L U S I O N S

This thesis has been concerned with the topic of Semantic Simultan-
eous Localisation and Mapping. While in the last decades several
research works tackled the theme of SLAM, resulting in the devel-
opment of effective software pipelines, only recently the interest on
high level informations has spurred research on the topic of Semantic
SLAM.

This work has been divided in two logical parts, each presenting
research on an aspect of localisation and mapping systems: in the
first part, we focused our efforts on the core elements of Semantic
SLAM systems, i.e. semantic camera tracking and reconstruction;
whilst in the second part an ancillary – but nevertheless import-
ant – component, i.e. that performing camera relocalisation, was
described.

3D reconstruction systems based on the processing of visual data
such as those here described, in general, allow the attainment of geo-
metrically accurate models of the observed environment, optionally
endowed with colour informations. Only few recent works, men-
tioned in Section 2.3, started including semantic information in the
generated reconstructions, by deploying manual hints given by the
users of the system or machine learning techniques. Accordingly, in
Chapter 3, we present a pipeline allowing the automatic labelling
of generated models, by coupling the output of a state-of-the-art
neural network for semantic segmentation of images with a 3D re-
construction pipeline such as the well known KinectFusion [91]. We
show how, by properly integrating semantic labels for pixels pertain-
ing to different images acquired over time, the categories associated
with each element of the final model become robust to single (or
relatively infrequent) errors by part of the semantic segmentation
system.

We then extend the just described system, in Chapter 4, to de-
ploy high level informations stored in the model being reconstruc-
ted during the camera pose estimation phase. By accounting for
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the semantics of items being reconstructed, we are able to over-
come limitations of the original, geometry-based, camera tracking
algorithm. Geometric tracking systems, such as the projective ICP
approach by Newcombe et al. [91] or the direct alignment method
by Bylow et al. [14], struggle in estimating the correct camera pose
when the observed surface present few geometrically distinctive fea-
tures (e.g. when the camera is observing a flat wall or floor). Con-
versely, by integrating a term accounting for the semantic alignment
between the observed surface and the reconstructed model, we are
able to successfully reconstruct scenes where the prior, geometry-
based, algorithm would fail (e.g. flat walls adorned by flat paintings)
or would perform poorly, exhibiting substantial amounts of drift.

By exploiting the presence of semantic information in both the
tracking and mapping phases of the SLAM pipeline we are thus
able to realise a virtuous “semantic loop”, wherein the availability
of high level informations by an image labelling algorithm allows to
generate semantically accurate reconstruction that, in turn, improve
the accuracy of camera pose estimation, allowing the subsequent
fusion of additional semantic informations in the map, resulting –
finally – in an overall improved model of the observed scene.

In Chapter 5 we tackle two shortcomings of the Semantic SLAM
systems described earlier, namely the non real-time nature of the
algorithms, due to high processing requirements of the semantic la-
belling neural network, and the limited extents of attainable recon-
structions, due to the choice of a dense voxel-grid representation
for the map (as in KinectFusion). By replacing the dense voxel grid
used to store the reconstruction with a dynamically managed, hash-
based, data structure, we are able to model large scale environments.
Simultaneously, by deploying the labelling process on a separate
GPU accelerator and migrating data between the main memory of
the system and two video cards used by our software, we can attain
a pipeline processing data at interactive rates, thus resulting in a
pleasant experience for the final user of the software.

In the second and final part of this thesis we present an accurate
camera relocalisation system, relying on the on-the-fly adaptation of
pre-trained pose regression forests to novel scenes. In recent years,
several research works proved that the deployment of decision
forests, paired with robust implementations of RANSAC methods,
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is a viable tool to accurately estimate the position and bearings of
a camera observing a known scene. Drawback of such methods,
however, is the requirement for the forests to be trained in advance
on the scene of interest, over the course of several minutes/hours,
thus preventing the employment of those systems in the main loop
of real-time reconstruction pipelines. In Chapter 6 we show how,
instead of performing an ad-hoc training process for each observed
scene, a single pre-trained decision forest can be adapted, online, to
new scenes, with relocalisation performances on par with those of
offline trained (and state-of-the-art) methods.

The availability of an accurate camera relocalisation algorithm is
a desirable property for any simultaneous localisation and mapping
pipeline for several reasons. While reliable, current camera pose es-
timation algorithms are not without any defects as they, sometimes,
fail in their task, thus preventing the continuation of the SLAM loop.
In such cases a forest-based relocalisation method, such as the one
we propose, can take over and identify the likely camera pose, so
as to restart the localisation and mapping iterations. Another state
wherein the availability of a relocaliser could bring benefits to a
SLAM pipeline is when the user wants to restart the reconstruc-
tion of a partially explored environment: the proposed system will
be able to reliably provide an initial sensor pose and then cede con-
trol to the main loop. Additionally, even though we don’t consider
it explicitly in this work, a pose regression forest such as that we
deploy in the relocalisation system is well suited to multiple tasks
and could be adapted to jointly perform semantic labelling or ob-
ject recognition, by relying on the feature vocabulary used by the
pre-existing system.

Recent interest for topics such as virtual or augmented reality, self
driving vehicles, and mobile mapping fostered the deployment of
ever-improving SLAM pipelines. We posit that the integration of
semantic informations in such systems will lead to improved per-
formance, either due to the pure availability of such high level data
in the maps (for processing by separate reasoning pipeline, e.g. to
detect specific instances of objects of interest) or to the exploitation
of such clues to improve quality and accuracy of the reconstructions.



130 conclusions

By focusing the work performed in this thesis on the topic of
simultaneous localisation and mapping and deploying high-level,
semantic, information as core elements of the SLAM loop we hope
to provide useful insights and deployable techniques to future re-
searchers in the field.
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