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1. INTRODUCTION 

1.1 The chicken gut microbiota: composition and development  

Domestic chickens are the most common avian species and valuable sources of proteins for humans. 

The chicken gastrointestinal tract is densely populated by microorganisms, which closely and 

intensively interact with the host, the diet and the ingested feed. A better understanding of these 

interactions, impacting on animal nutrition and health, is required to further enhance poultry 

productions, safety of poultry products and host growth performance (Rinttilä and Apajalahti, 2013; 

Pan and Yu, 2014). The total DNA that can be extracted from the chicken gut is the metagenome and 

is the aggregate of the DNA of the host and the microbiota. Microbiota is the collective microbial 

community inhabiting the chicken gut. Metagenome and microbiome are often used interchangeably 

but the microbiome is the collective genomic content of a microbiota and indicates the total genetic 

capacity of the community (Tremaroli and Bäckhed, 2012).  

Between all body sites the gastrointestinal tract (GIT) is the most densely colonized organ by different 

microbial cells representing the GIT microbiota (Scott et al., 2013; Doré and Blottière, 2015; 

Jandhyala et al., 2015; Yoon et al. 2015). The microbiota consists of trillions of symbiotic microbial 

cells harbored by each host, primarily bacteria in the gut; furthermore, the microbiome consists of the 

genes these cells harbor. In fact, the microbiome is defined as the combined genetic material of the 

microorganisms in a particular environment (Ursell et al., 2013). All animals coexist with their 

microbiota establishing a symbiotic equilibrium that confers them a variety of physiologic benefits. 

The composition of the microbiota is host specific, evolve during the animal's lifetime and is 

susceptible to both exogenous and endogenous modifications (Neish, 2009; Sekirov et al., 2010).  

Rawls et al. (2006) showed that the transplantation of microbial communities between different host 

species results in the transplanted community transforming to resemble the native microbiota of the 

recipient host. The symbiotic equilibrium between host and microbiota is established soon after the 

animal birth. Later on, changes in its composition are influenced by the exposure to the 

microorganisms present in the surrounding environment by diet (Pan and Yu, 2014; Blottière Doré, 

2015; Wang et al., 2016). The loss of balance settled between the various populations that compose 

each microbiota may lead to serious repercussions on the host, such as the onset of a large number of 

metabolic, immune-mediated, allergic and inflammatory pathologies (Cogen et al., 2008; Yoon et al. 

2015). 

Compared with mammals, chicken and other poultry, as turkey and duck, have a shorter 

gastrointestinal tract causing a faster digesta transit, a relatively short retention time for ingested food 

and consequently selecting a deeply different intestinal microbiota compared to other food animals. 
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The average transit time through the whole chicken gastrointestinal tract is less than 3.5 h (Hughes, 

2008; Pan and Yu, 2014). The chicken gastrointestinal apparatus is divided into histologically and 

anatomically distinct structure, named esophagus, stomach, small intestine (duodenum, jejunum and 

ileum) and large intestine (caecum, colon and rectum). The ingested food is initially stored in the 

crop, an extension of the esophagus, which inner surface is covered with non-secretory stratified 

squamous epithelium, then it passes to the stomach (Van de Graaff, 1986; Grist, 2004). The food 

begins the digestion process in the crop where it is fermented by bacteria, especially Lactobacillus 

genus, since crop is the election site for bacteria colonization. From the crop, food passes into the 

proventriculus and successively into the gizzard, that constitute the glandular and muscular parts of 

the avian stomach. From the gizzard, the digesta passes into the small intestine which is comprised 

of the duodenum, jejunum and ileum, where it is mixed with bile salts and proteinases, amylases and 

lipases secreted in enzyme secretions from the pancreas and others digestive enzyme produced by the 

secretory mucosa of the small intestine. The small intestine is the major site of chemical digestion 

and nutrient absorption due, other than presence of pancreatic and small intestine-produced enzymes, 

to villi and microvilli. The digesta then passes into the large intestine where two caeca branch out 

forming two separate blind ended pouches (Fuller and Brooker, 1974; Barnes et al., 1980; McLelland, 

1989; Mead, 1997) that are filled trough retrograde peristalsis from the colon. The caeca are thought 

to be involved in the breakdown of plant material indigestible for the host and the absorption of water, 

glucose and volatile fatty acids. From the ileo-caecal junction the digesta enters the colon where there 

is very little absorption or digestion processes and then finally the feces pass into the cloaca and 

expelled mixed with uric acid (McLelland, 1989). 

The short digesta retention time, during chicken digestion process, selects bacteria that can adhere to 

the mucosal layer and/or grow fast. The regions which have less tolerable conditions and faster 

passage of contents have lower numbers of bacteria. However, abundance and diversity of microbiota 

are different along the gastrointestinal tract and the ceca.  When young chicks are delivered from the 

hatchery to a chicken house (typically at the age of 1–2 days), their initial gastrointestinal microbiota 

is very simple, containing a very small number of bacteria belonging to a few species but, after 

housing, chicks are exposed to several sources of bacteria that can enter in the immature gut. Since 

the chicks in this stage of life have little colonization resistance, the bacteria coming from litter 

materials, feed, water, and ambient air readily colonize their gastrointestinal tract. As young chicks 

grow, their gastrointestinal microbiota undergoes through a series of changes becoming increasingly 

diverse and complex (Wang et al.,2016; Wei et al., 2013b). 
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Several studies have been conducted trying to characterize chicken gastrointestinal microbiota and 

microbiome composition, beginning with early cultivation-based studies that revealed low 

abundances of Lactobacilli (>104/g CFUs) and Clostridia (102–104/g CFUs) in the small intestines 

and high abundance (1010‒1011/g microscope counts) of anaerobic bacteria in the cecum. 

Peptostreptococcus, Propionibacterium, Eubacterium, Bacteroides, and Clostridium were the major 

genera recovered from cecum by cultivation but it was possible to cultivate jusy between 20–60% of 

the total cecal bacteria (Pan and Yu, 2014). The technologies used for 16S rRNA gene based 

metataxonomic analyses make it possible to comprehensively characterize the chicken intestinal 

microbiota and to obtain sequence information, expanding our knowledge on bacterial diversity 

present in the intestinal tract, particularly the cecum, of chickens and turkeys (Wei et al., 2013b). Wei 

et al., (2013), identified in chicken gastrointestinal microbiota 117 established genera of bacteria, 

represented by the sequence collection, with most genera belonging to the phyla Firmicutes, 

Proteobacteria, and Bacteroidetes. Within phylum Firmicutes, genera Clostridium, Ruminococcus, 

Lactobacillus, Eubacterium, Fecalibacterium, Butyrivibrio, Ethanoligenens, Alkaliphillus, 

Butyricicoccus, Blautia, Hespellia, Roseburia, and Megamonas were represented by more than 1% 

of the total bacterial sequences. Within phylum Proteobacteria, genus Desulfohalobium was 

represented by the most sequences, and within phylum Bacteroidetes most of the sequences were 

classified into order Bacteroidales, and only genera Bacteroides, Prevotella, Parabacteroides, and 

Alistipes were each represented by >1% of the bacterial sequences. Of the minor phyla, 

Actinobacteria was the most predominant, but only the genus Bifidobacterium was represented by 

>1% of sequences within this phylum. The most predominant phyla in cecal microbiota included 

Firmicutes and Bacteroidetes, accounting for approximately 78 and 11% of the total cecal sequences, 

respectively. Firmicutes alone contained 31 genera, but only Ruminococcus, Clostridium, and 

Eubacterium each represented ≥5%, of the sequences classified to this phylum. Other genera that 

contained more than 1% of the total cecal bacterial sequences included Fecalibacterium, Blautia, 

Butyrivibrio, Lactobacillus, Megamonas Roseburia, Ethanoligenes, Hespellia, Veillonella, and 

Anaerostipes. Bacteroides was the most predominant genus in the phylum Bacteroidetes, accounting 

for 40% of the cecal sequences in this phylum. Other relatively predominant genera in this phylum 

included Prevotella and Paraprevotella, Tannerella and Riemerella. Within phylum Proteobacteria, 

Desulfohalobium, Escherichia/Shigella, and Neissenia were the most predominant genera. 

Comparison of data obtained with different methods shows discrepancy that might reflect the bias of 

individual studies that could hinder a comprehensive knowledge of composition of the intestinal 

microbiome (Wei et al., 2013b). Furthermore, the composition of the gut microbiota is strongly 
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influenced by a large range of factors that include the microbial species acquired at birth, host 

genetics, immunological factors, antibiotic usage and dietary effects (Scott et al., 2013).  

1.2  Interactions between populations belonging to the chicken gut microbiota 

It has to be taken into account that, aside from the characterization of the composition of the 

microbiota is essential to understand the interactions between the different bacterial populations that 

compose this complex ecosystem. Other than between the microbiota and its host, there are extensive 

interactions among avian gut microbes. In fact, the avian gastrointestinal tract is an ideal habitat for 

microorganisms but it does not support unlimited microbial proliferation due to the limited 

availability of nutrient and niches. Therefore, different bacterial populations have different 

interactions, such as competition, cooperation, and antagonism. Competition for attachment sites and 

nutrients among bacteria is a common phenomenon in intestinal ecosystem (Soler et al., 2010). The 

lack of available attachment sites and niches, due to competition could represent a valid strategy to 

inhibit the pathogen colonization and proliferation in the host gastrointestinal tract. In fact, in order 

to cause infections in birds, enteric pathogens need to first attach to the intestinal mucosa and then to 

break through the epithelial barrier, but the commensal bacterial populations of healthy birds colonize 

intestinal mucosa forming a protecting layer that cover the mucosal surface. This layer of dense and 

complex microbial communities occupying the adhering niches can prevent the attachment and the 

subsequent colonization of most enteric pathogens trough the phenomenon so called “competitive 

exclusion” (Lan et al., 2005; Gabriel et al., 2006; Lawley and Walker, 2013). For this reason, a critical 

stage for pathogen colonization could be the post hatching period, when the gastrointestinal tract of 

chicks is still not colonized by the microbiota and consequently more susceptible to pathogens. Newly 

hatched chick’s gastrointestinal tract is sterile, but is immediately colonized by microorganisms 

present in the surrounding environment. In nature, these microorganisms would belong to the 

mother’s feces microbiota, but in poultry productions, the chicks are hatched in incubators, away 

from the hens. Since the incubators are relatively clean, there is a delay in normal colonization and 

succession of intestinal microbiota. The prolonged absence of a normal gut microbiota offers to 

enteric pathogens in the environment a greater opportunity to colonize gastrointestinal tract and to 

cause infection in new hatchlings, making them more susceptible to enteric infections, in particular 

to necrotic enteritis and to the colonization of potential human pathogens, such as Salmonella 

enteritidis (Lan et al., 2005; Dahiya et al., 2006; Lutful Kabir, 2009).  Varmuzova et al. confirmed 

this theory testing whether microbiota from donor hens of different age will protect chicks against 

Salmonella Enteritidis infection. They inoculated groups of newly hatched chicks with cecal extracts 

of 35-week-old hens either on day 1 of life followed by S. Enteritidis infection on day 2 or were 
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infected with S. Enteritidis infection on day 1 followed by therapeutic administration of the cecal 

extract on day 2 or were inoculated on day 1 of life with a mixture of the cecal extract and S. 

Enteritidis. In this experiment, terminated when the chickens were 5 days old, both Salmonella culture 

and chicken gene expression confirmed that inoculation of microbiota from 35-week-old hens 

protected chickens even 24 h after while simultaneous administration or therapeutic microbiota 

administration failed to protect chickens against S. Enteritidis infection. 

Other than the competitive exclusion, another strategy used by some bacterial populations to gain 

competitive advantages is to produce bacteriostatic or bactericidal substances hostile to competitors. 

In fact, the term competitive exclusion generally does not refer only to the mechanism of the site’s 

physical occupation but it includes even other mechanisms as the direct physical or chemical insult 

to the potential colonist and the resource competition in a physical or chemical niche (Oakley et al., 

2014). For example, lactic acid and some short chain fat acids produced by various commensal 

bacteria have an inhibitory action against certain pathogens. Furthermore, a great number of Gram 

positive and Gram negative bacteria produces, during their growth, substances of protein structure 

(either proteins or polypeptides) possessing antimicrobial activities, called bacteriocins. Lactic acid 

bacteria can inhibit the pathogens growth using both mechanisms. In fact, lactic acid bacteria 

fermenting the carbohydrates present in chickens’ feed produce lactic acid, which, lowering the pH 

in the surrounding environment, inhibits the growth of certain pathogens such as Escherichia coli, 

Salmonella Typhimurium and Clostridium perfringens through the production of bacteriocins as a 

natural barrier against pathogens.  

Other than lactic acid that was proven to be effective against Escherichia coli, Salmonella 

Typhimurium and Clostridium perfringens, in an in vitro study conducted on chicken, Van der Wielen 

et al. (2000) showed that in ceca there is a negative correlation between some short chain fat acids 

concentrations (acetate, propionate, and butyrate) and Enterobacteriaceae abundance. This could 

happen because short chain fat acids in un-dissociated form, other than lowering extracellular pH, 

can diffuse across the bacterial cell membrane. Once into the cell their dissociation causes a lowering 

of the intracellular pH causing the inhibition of some essential enzymes or metabolism (Van der 

Wielen et al., 2000; Van Immerseel et al., 2004; Van Immerseel et al., 2006).  

The resource competition in a physical or chemical niche mostly refers to the nutrient competition. A 

good example is the competition for zinc among microbiota’s microbes, since zinc is an essential 

element involved in several cellular functions, such as enzymatic reactions and gene expression. 

Under low-zinc conditions some pathogen bacteria as Campylobacter jejuni, Salmonella 

Typhimurium and Escherichia coli use the high affinity ZnuABC transporter mechanism to bring zinc 
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into cell (Patzer and Hantke, 2000; Campoy et al., 2002; Davis et al., 2009; Gielda and DiRita, 2012). 

Gielda and DiRita 2012, showed that both a wild-type C. jejuni strain and a znuABC- mutant strain 

of C. jejuni were able to colonize limited-mirobiota chicks at similar efficiencies, but only the wild-

type C. jejuni strain was able to colonize conventional chicks.  However, since the zinc level in cecal 

content was significantly lower in the conventional chicks than in the limited-microbiota chicks, they 

suggested that under low zinc conditions, C. jejuni lacking the high-affinity zinc uptake system was 

outcompeted by other bacteria present in the GI tract. 

Another important interaction between microbes in the horizontal gene transfer that is ‘the non-

genealogical transmission of genetic material from one organism to another (Goldenfeld and Woese, 

2007). The commensal bacteria present in the gastrointestinal microbiota usually possess some 

characteristics which allow them to survive in the gastrointestinal tract and more importantly, to 

outcompete other adverse bacteria and the pathogens. However, the horizontal gene transfer make it 

possible for the pathogens to acquire these characteristic traits and became more competitive, and for 

commensal bacteria to acquire virulence factors from pathogens becoming pathogenic for chickens. 

Finally, poultry enteric pathogens can directly exchange the virulence traits increasing their 

pathogenicity (Johnson et al., 2010; Van Reenen and Dicks, 2011). The inappropriate or prolonged 

use of antibiotics can lead to the horizontal transfer of resistance genes and may contribute to spread 

of antimicrobial resistance among adverse and pathogenic bacteria. In particular, the litter, if used for 

multiple growth cycles, can represent the main source of antibiotic resistant bacteria in poultry  

allowing their recycle between litter and gastrointestinal tract of animals (Dhanarani et al., 2009). 

1.3 Microbiota’s role in host physiology  

In the past decades, most of the research on the impact of bacteria in the intestinal environment has 

focused on gastrointestinal pathogens and the way they cause disease, while there has recently been 

a considerable shift towards the study of the effect that commensal microbes exert on the host gut. In 

fact, the intestinal microbiota is an extremely dense and complex ecosystem, which plays a relevant 

role in the maintenance of the animal's well-being through the production of biologically relevant 

metabolites and the prevention of pathogenic microorganisms’ colonization, acting as an intestinal 

barrier. The microbiota is intimately involved in numerous aspects of normal host physiology. It can 

influence the usage of nutrients by the host and host’s stress and immune response. Furthermore, it 

contributes to the optimal development of its intestinal mucosa and immune system (Scott et al., 2013; 

Doré and Blottière, 2015; Jandhyala et al., 2015; Yoon et al. 2015). The mechanisms through which 

microbiota exerts its beneficial or detrimental influences remain largely undefined, but it includes 



10 
 

elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial 

and mucosal immune cells (Sekirov et al., 2010).  

1.3.1  Immunostimulation, immunomediation and mucosal development 

The gastrointestinal microbiota contributes to gut immunomodulation in tandem with both the innate 

and adaptive immune systems and maintain gut homeostasis by protecting the host from infections 

stimulating the gut enteric system and keeping it always active inducing a base level of inflammation. 

The cells of the host immune system that cooperate with gut microbiota in the immunomodulatory 

process are the gut associated lymphoid tissues (GALT), effector and regulatory T cells, IgA 

producing B (plasma) cells, Group 3 innate lymphoid cells, and, resident macrophages and dendritic 

cells in the lamina propria (Cebra, 1999; Chung et al., 2012; Jandhyala et al., 2015). The implication 

of gut microbiota in shaping a normal GALT is implied by the reduced development of the Peyer’s 

patches and isolated lymphoid follicles that are marked by the abundance of IgE+ B cells instead of 

the normal IgA+ B cells, documented by Durkin et al. (1981), in germ free mice compared to 

conventionally raised mice. Gut microbiota is also associated to the normal development and function 

of Foxp3+, a protein regulator of regulatory T cells (Tregs) even if the mechanism by which this is 

mediated is still not clear.  Furthermore, short chain fat acids (CFAs), especially butyrate, has also 

been implicated in the development and function of Tregs. In fact, they activate G-protein coupled 

receptors expressed by the IECs and regulate Treg by epigenetic regulation of the Foxp3 (Smith et 

al., 2013; Arpaia et al., 2013). Other roles played by the microbiota during the immunostimulation 

process regards the My-D88 signaling, the differentiation of innate lymphoid cells and the support of 

IL1β in response to pathogen. The production of IgA is induced by DCs. MyD88 signaling is the 

mediator of this function and its signaling process can be activated by the gut microbiota. 

Furthermore, the microbiota can stimulate directly DCs in the Peyer’s patches to secrete TGF-β, 

CXCL13, and B-cell activating protein leading to IgA production and class switching (Suzuki et al., 

2010). 

The microbiota’s composition can also affect the diverse differentiation in the innate lymphoid cells 

or in T helper Th17 cells of a common lymphoid precursor. Commensal flora induces MyD-88 

dependent mechanisms, which are essential during the rapid production of the mature IL1β, from the 

pro-IL1β, in response to pathogen invasion (Spits and Cupedo, 2012). Other than an involvement in 

the immunostimolation, the gut microbiota plays a relevant role in maintaining the structure and 

function of the gastrointestinal tract. This theory is supported by the observation that germ free mice 

shows a lower intestinal surface area, a significant reduction of villus capillary network and a 

decreased nutrient digestion and absorption (Gordon and Bruckner-Kardoss, 1981). In fact, the gut 
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microbiota induces the transcription factor angiogenin-3, implied in the development of intestinal 

microvasculature. It can prevent cytokine induced apoptosis of the intestinal epithelial cells through 

the production by Lactobacillus rhamnosus GG strain of two soluble proteins (p40 and p75) and can 

increase the levels of endocannabinoids, trough Akkermansia muciniphilia strain action, that control 

gut barrier functions by decreasing metabolic endotoxemia (Jandhyala et al., 2015). Furthermore, the 

microbial cell wall peptidoglycan stimulates signaling path of TLR2, a mechanism that is necessary 

for the maintenance of the tight junctions (Cario et al., 2007).  

Other than stimulating the immuneresponse, some bacteria populations produce butyrate, a short 

chain fatty acid, that it is the preferred energy source for the enterocytes in the lower intestinal tract 

and is known to regulate cellular differentiation and proliferation within the intestinal mucosa, 

thereby increasing intestinal tissue weight. So, it should be pointed out that, the contribution of 

butyrate, other than feeding the enterocytes, since the epithelium act as a highly selective barrier 

preventing the passage of toxic and proinflammatory molecules into the submucosa and systemic 

circulation, is indirectly essential in the maintenance of normal intestinal barrier functions (Waite and 

Taylor, 2014). 

1.3. 2  Synthesis of dietary compounds  

Microbe-host interactions are mutualistic. In fact, commensal intestinal bacteria help during the 

digestion and synthesis of dietary compounds, some of which could not be otherwise available, and 

energy metabolism. In return the host provides to the microbes a secure growth conditions and a 

constant stream of nutrients (Waite and Taylor, 2014). However, the amounts and types of compound 

produced trough bacterial fermentation depend on relative amounts of each substrate available and 

fermentation strategy of bacteria involved in the fermentation process (Waite and Taylor, 2014). 

Some of the principal end products of intestinal microbial fermentation are short-chain fatty acids, 

vitamins and protein degradation products. 

Vitamins are critically involved in regular energy metabolism and enzymatic functions important for 

gene expression. Deficiency of one or more water-soluble vitamins can contributes to various diseases 

and dysfunctions. An adequate supply of vitamins obtained by dietary intake seems necessary to 

ensure sufficient vitamin status, but microbiota can also act as an important supplier of vitamins. 

(Biesalski, 2016).  Some bifidobacterial species are claimed to convert a number of dietary 

compounds into health-promoting bioactive molecules, such as conjugated linoleic acid and certain 

vitamins. Such findings have been confirmed by in vivo studies: administration of high-producing 

folate strains was shown to cause an increased faecal level of folate in rats (Pompei et al., 2007a, 

Pompei et al., 2007b). Folate biosynthetic properties of bifidobacteria, though folate de-novo 



12 
 

biosynthesis, appear to be restricted only to certain species/strains, while other species are capable of 

folate biosynthesis just in the presence of para-aminobenzoic acid (pABA) (LeBlanc et al., 2013). In 

fact, Bifidobacterium adolescentis ATCC15703 and Bifidobacterium dentium Bd1 are the only strains 

in which genome possesses the genetical determinants for entire de novo-pathway for pABA 

biosynthesis. No complete pathways for the biosynthesis of biotin, panthothenate, pyridoxine, 

cobalamin and menaquinone are present in any of the so far sequenced bifidobacterial genomes. 

Lactobacilli do not appear to harbour the genetic determinants for de novo pABA synthesis, except 

for Lactobacillus plantarum WCFS1, suggesting that the vast majority of Lactobacilli are unable to 

synthesize folate in the absence of pABA (LeBlanc et al., 2013; Ventura et a., 2009). 

Regarding instead riboflavin, the enzymes needed for the biosynthesis of this vitamin seem to be 

partially or completely absent from most of the currently available bifidobacterial genomes (Ventura 

et al., 2009). Cobalamin is the only vitamin that is exclusively produced by microorganisms, 

particularly by anaerobes, in fact the commercial vitamin B12 is bacterial produced. Lactobacillus 

reuteri CRL1098 is able to produce a cobalamin-like compound with an absorption spectrum closely 

resembling that of standard cobalamin, but with a different elution time. The asset of 30 genes, 

involved in the B12 vitamin biosynthesis of Lactobacillus reuteri CRL1098 is similar to those found 

in Salmonella enterica and Listeria innocua genome, with the exception of hem genes location on 

their genome that appear to be different.  Propionibacteria and L. reuteri are normally present in the 

intestine and may thus (partially) fulfil the vitamin B12 requirement of the host (Santos et al., 2007; 

LeBlanc et al., 2013). Gut microbiome of poultry may also serve as a vitamin (especially B vitamins) 

supplier to its host. Similar as bacterial protein, most of the vitamins synthesized by gut bacteria are 

excreted with feces because they cannot be absorbed in the cecum. However, coprophagic birds may 

benefit from bacterial vitamin synthesis. This is evidenced by a greater vitamin requirement by 

chickens housed in wire cages, where coprophagy is prevented, than by chickens raised on hard floors 

(Pan and Yu, 2014). 

Aside from vitamins, short-chain fatty acids (acetate, butyrate, propionate, succinate, and lactate) 

represent relevant end products of intestinal microbial carbohydrate fermentation that benefits the 

host. Short-chain fatty acids are mainly used by the host as source of energy but they can bring even 

other benefits as reducing pH of the intestinal environment in chicken cecum, potentially inhibiting 

acid-sensitive pathogenic bacteria, such as members of the family Enterobacteriaceae, by dissipating 

the proton motive force across the bacterial cell membrane (van Der Wielen et al., 2000). Butyrate is 

used from the host enterocytes as energy source. Furthermore, it contributes to the regulation of 

cellular differentiation and proliferation within the intestinal mucosa, consequently increasing 
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intestinal tissue weight. The contribution of butyrate and other SCFA to epithelial development is 

essential in the maintenance of normal intestinal barrier functions and, therefore, indirectly in the 

protection of the host from the pathogens (Rinttilä and Apajalahti, 2013). Although butyrate 

production is distributed across many Clostridial clusters like the IV and the XIV, belonging to 

phylum Firmicutes, it is mainly produced by members of Roseburia spp. and Eubacterium rectale, 

both members of the family Lachnospiraceae, and especially from Faecalibacterium prausnitzii of 

family Ruminococcaceae (Rinttilä and Apajalahti, 2013; Miquel et al., 2014). 

The production of short chain fatty acids by bacteria’s fermentation can be observed in most part of 

the avian gut, but primarily takes place in the cecum, which is the most densely populated and 

diversified ecosystem in the gastrointestinal tract. However, fermentation increases as young birds 

grow. In fact, cecal acetate, propionate and butyrate are almost undetectable in 1-d-old broilers. As 

the cecal microbiota becomes established, these short chain fat acids reach high concentrations in 15-

d-old broilers and remain stable afterwards. Chicken microbiome produce greater concentrations of 

short chain fatty acids than human microbiome (Rehman et al., 2007; Pan and Yu, 2014). 

Lactic acid is another compound produced by gastrointestinal bacteria and particularly from lactic 

acids bacteria. This compound would tend to reduce residual pH more than other short chain fatty 

acids but it is normally absorbed from the intestine or used as a substrate for lactate-utilizing bacteria, 

such Eubacterium, Anaerostipes, Veillonella, and Megasphaera genera, quickly enough to not being 

able to pathologically acidify the gut environment (Harmsen et al., 2002; Belengueret al., 2007; Rinttilä 

and Apajalahti, 2013). 

Another noteworthy microbiota’s metabolism is the protein and amino acid fermentation in the lower 

intestine. The real role of this metabolism lies, more than in the energy or compound production, in 

the fermentation, by putrefactive bacteria, of potential systemic toxins and carcinogens resulted from 

the protein catabolism. In fact, in broiler chicken cecum once carbohydrate sources are exhausted, 

sources of protein material are fermented and metabolized to salvage energy but at that 

gastrointestinal level, proteins and amino acids provide a less significant energy source. Common 

examples of undesired metabolic end products include phenols and indoles (as a result of anaerobic 

fermentation of the aromatic amino acids, tyrosine and tryptophan, by intestinal bacteria), ammonia 

(as a result of oxidative or reductive deamination of amino acids), and amines (as a result of amino 

acid decarboxylation in the gut). These compounds other than be toxic could result in an increase the 

pH of intestinal contents, but a low pH is beneficial for the suppression of the growth of the acid-

sensitive pathogenic microorganisms. As the bacteria generally favor fermentable sources of 

carbohydrates, protective measures against excessive putrefactive activity and the undesired 
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metabolites in the hindgut can be achieved by adding dietary fiber in the diet or limiting the intake of 

poorly digested proteins (Apajalahti, 2005; Rinttilä and Apajalahti, 2013). 

Gut bacteria also contribute to host nitrogen metabolism. Since in birds the intestinal and urogenital 

tracts meet in the cloaca where urine mixes with feces, some urine, may travel to the ceca due to the 

retrograde peristalsis in the rectum. Cecal bacteria can then catabolize uric acid to ammonia, which 

can be absorbed by the host and used to synthesize a few amino acids such as glutamine (Pan and Yu, 

2014). Some of the dietary nitrogen is incorporated into bacterial cellular proteins. Therefore, gut 

bacteria themselves can be a source of amino acids. However, the majority of these bacterial proteins 

are lost by the host with the excretion of feces, because most of the intestinal bacteria in birds reside 

in the cecum which does not have the ability to digest and absorb proteins. Utilization of bacterial 

proteins is possible when chickens are housed on hard floors, where coprophagy (ingestion of feces) 

can occur and bacterial proteins can be digested and absorbed in proximal gut (Pan and Yu, 2014). 

1.4 Factors affecting and modulating the chicken GI microbiota               

The intestinal track of poultry harbors a complex and dynamic microbiota that has a symbiotic 

relationship with its host. The interaction between host and microbiota affects the physiological, 

immunological, and nutritional status of the host and consequently his growth performance and health 

status. The evidence for metabolic interactions is particularly strong, as many data support the 

conclusion that gut microbiota influences the energy harvest from dietary components, particularly 

complex carbohydrates, and that metabolites, such as the short-chain fatty acids produced by gut 

bacteria, can perturb metabolic traits. The gut microbiota communities are assembled each generation, 

since their composition is influenced by environmental factors, age and diet (Wei et al., 2013b; Org 

et al., 2015). In particular, the symbiotic equilibrium between host and microbiota is established soon 

after hatching and later on bacteria present in microbiota can be affected by a range of factors, such 

as host genetics and age, litter management, diet, and feed additives. Since the gastrointestinal 

microbiota is strongly related to several host functions, numerous efforts have been attempted on 

manipulation and control of the exogenous factors, especially dietary intervention and litter 

management, in order to modulate its composition to enhance feed conversion and gut health (Wei et 

al., 2013b; Pan and Yu, 2014; Blottière Doré, 2015; Wang et al., 2016). 

1.4.1  Environment, age and diet 

For commercial chickens, the environment is represented by the litter. Litter can have a significant 

effect on the initial composition and structure of the microbiota gastrointestinal tract of chickens, 

while later on the main role in the microbiota shaping process is played by the diet.  In fact, when 

young chicks are delivered from the hatchery their gastrointestinal tract contains very small number 
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of bacteria belonging to a few species, and just when they begin pecking at and consuming litter 

materials they inoculate their young gastrointestinal tract from the litter (Wang et al., 2016). If 

hatching takes place in an environment where the microbial load has been minimized, individual 

chicks may pick up a random inoculum from their surroundings, which may lead to differences in the 

intestinal physiology of individual birds in a flock. It is worth noting that intentional inoculation of 

the chicks with a competitive exclusion culture at hatch might render a flock microbiota composition 

more uniform (Rinttilä and Apajalahti, 2013). Poultry litter is a mixture of bedding materials and in 

the USA, where the litter is changed every 6 cycles, even of chicken excreta that contain chicken GI 

bacteria, undigested feed, uric acid, and other substances of host origin. Several studies have 

documented that poultry litter contains a complex and dynamic microbiota, composed primarily of 

environmental bacteria and its composition can be affected by the bedding materials used (Lu et al., 

2003; Torok et al., 2009). Repeated use of poultry litter and poor litter management can result in 

considerable changes in microbiological conditions leading to an increase of density and diversity of 

microbes. In addition, reused litter can serve as a driving force that shapes the chicken GI microbiota 

because exposing young chicks to different bacterial inocula can profoundly affect GI microbiota 

development (Cressman et al., 2010). It was shown that reused litter harbors less Salmonella and 

Clostridium perfringens but enables Campylobacter jejuni and C. coli to survive longer compared to 

fresh litter (Kassem et al., 2010; Roll et al., 2011; Wei et al., 2013a). Moreover, two recent studies 

have shown that reused litter can affect the immune system of chickens, which suggests that litter 

conditions can also affect the GI microbiota of chickens indirectly through their immune system (Lee 

et al., 2011; Shanmugasundaram et al., 2012). 

Cressman et al., (2010) examined the microbiota both in the GI tract and in the poultry litter and their 

interaction revealing that the litter microbiota and the GI microbiota affected each other in a reciprocal 

manner. In fact, fresh litter resulted in increased diversity and predominance of environmental 

bacteria in the GI microbiota of young chicks, while reused litter increased the bacteria of gut origin. 

Another study conducted by Wang et al., (2016), investigating the effect of fresh and reused litter on 

chicken gastrointestinal microbiota at different ages, showed that the ileal mucosa and the cecal 

contents were affected by both litter management regimen and age of birds. At days 10 and 35, in the 

cecal luminal microbiota eight and three genera, respectively, differed significantly in relative 

abundance between the two litter management regimens. Compared to the fresh litter, reused litter 

increased predominance of halotolerant/alkaliphilic bacteria and Faecalibacterium prausnitzii, a gut 

butyrate-producing bacterium. This study suggests that litter management regimens affect the chicken 

GI microbiota, which may impact the host nutritional status and intestinal health. 
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Torok et al., (2009) investigated linkages between litter material, gut microbiota and chicken growth 

performance. Cecal microbial populations were investigated at 14 and 28 d of age and at both ages. 

The caeca microbiota of chickens raised on reused litter was significantly different from that of 

chickens raised on any of the other litter materials, except for softwood shavings at d 28. However, 

age had a significant influence on ceca microbiota composition regardless of litter material. We can 

conclude that the environment and consequently the type of litter material and management, can 

influence colonization and development of cecal microbiota in chickens. Litter-induced changes in 

the gut microbiota may be partially responsible for some of the significant differences observed in 

early rates of growth; therefore, litter choice may have an important role in poultry gut health 

particularly in the absence of in-feed antibiotics (Torok et al., 2009). 

Gong et al. (2008) examined the effect of dietary bacitracin, bird age and access to range on the 

richness and microbiota community structure concluding that age had the most profound effect on 

microbiota composition. This is demonstrated clearly since most birds of the same age were grouped 

together and, regardless of access to range or dietary treatment, the richness of microbiota increased 

as the birds grew older. Furthermore, they showed that chickens at 42 days of age had a well-

developed bacterial microbiota in both ileum and caeca and at 14 days the development of caecal 

bacterial microbiota was close to that of 42-day-old chickens, while the ileal microbiota did not 

appear to be fully developed, a stage which could be more sensitive to dietary treatments and other 

environmental factors. It is worth pointing out that, the abundance of Lactobacilli in the caecal 

microbiota was greatly higher in 3-day-old chickens than in 42-day-old chickens, suggesting the 

importance of Lactobacilli in the early development of caecal microbiota while, on the contrary, the 

abundance of Bifidobacteria population in the ileum and caeca were hardly detected in 3-day-old 

chicks and high in 42-day-old chickens. 

Regarding the immature chicken microbiota, Lu et al. (2003b) reported that 3-day-old broiler 

chickens had a similar community structure of bacterial microbiota in ileum and caeca and the caecal 

microbiota was a subset of the ileal microbiota during the first 14 days of age based on the 

metataxonomic analysis of random clone libraries of partial 16S rRNA genes. On the contrary, Gong 

et al., 2008 in their study, reported that PCR–DGGE profiles of bacterial microbiota from the ileum 

and caeca of 3-day-old chicks were significantly different, suggesting two different bacterial 

communities in these two intestinal regions at that age.  

The correlation between the advancing of age and the increase of microbiota composition richness 

were reported even by other authors, like Van der Wielen et al. (2002), Knarreborg et al. (2002), Van 

Wielen et al. (2002) and Hume et al. (2003). Van der Wielen et al., 2002 found that the PCR–DGGE 
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profiles of the microbiota were similar in crops, duodenum and ileum in 4-day-old chicks, but 

observed an increased diversity of bacterial microbiota in crops, duodenum, distal ileum and caeca 

when broiler chickens aged. All these studies highlight that, regardless the influence of other factors, 

microbiota changes and matures on time during the chicken’s life. 

Another factor that can influence the microbiota composition is host’s genotype. The role of host 

genetics in shaping microbial communities’ composition is not clear but it could be speculated that 

the host may affect its microbiota composition either directly, through secretions into the gut, control 

of gut motility and modification of epithelial cell surfaces, or indirectly, through food and lifestyle 

preferences (Zhao et al., 2013). Zhao et al. (2013) conducted an experiment using next generation 

sequencing technology to investigate the effect of genetic on the gut microbiota’s population structure 

in two different lines (56-day high or low body weight) of adult chickens. The pattern of host genetic 

influence was different in adult males and females, demonstrating gender as a factor that impacts the 

composition of gut microbiota. Of 190 species, 68 were affected by genotype (line), gender and by 

genotype and gender interactions, where 15 of the 68-species belonged to Lactobacillus. In fact, of 

host-microbe interactions, Lactobacillus was the major influenced genus showing different 

abundances between low body weight males and high body weight females. Beside environment, age 

and genotype the chicken gut microbiota composition is mainly shaped by diet and feed additives. 
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Figure 1. Interactions among gut microbiome, avian host, diet, and litter microbiome (Pan and Yu, 

2014) 

1.4.2  Diet and feed additives 

Diet is the most relevant factor impacting on intestinal microbiome in poultry as dietary components 

that escape host digestion and absorption serve as substrates for the growth of intestinal bacteria (Pan 

and Yu, 2014). In fact, several studies already demonstrated its potential to impact the chicken GI 

microbiota with respect to diversity, composition, and structure. It was also showed that the same 

action can be performed by feed additives (Amerah et al., 2011; Danzeisen et al., 2011; Rodriguez et 

al., 2012; Wang et al., 2016).The first studies focused on how feed and feed additives affect the 

prevalence of enteric pathogens, such as Salmonella (Santos et al., 2008), Clostridium perfringens 

(Si et al., 2009; Wei et al., 2013a), and Campylobacter jejuni (Ridley et al., 2011), while the 

prevalence of these pathogens could be decreased by the effect of a healthy GI microbiota. In fact, 

microbiota can perform colonization resistance and competitive exclusion to inhibit the pathogen 

growth (Wagner, 2006; Kerr et al., 2013). Furthermore, other than creating this positive barrier, the 

commensal bacteria can positively affect the efficiency of feed utilization by the chicken host. That’s 

why, now the interest of the researchers shifted towards the understanding of how diet and feed 
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additives, could modulate the GI microbiota of chickens instead of just focusing on their effect on 

pathogens bacteria (Gong et al., 2008; Santos et al., 2008; Danzeisen et al., 2011).  

One of the most remarkable example of how diet can modulate the microbiota, is represented by the 

use of diets containing high levels of indigestible, water-soluble, non-starch polysaccharides as 

wheat-, barley-, or rye-based diets, that favor the proliferation of Clostridium perfringens and 

predispose young chicks to necrotic enteritis, while diets poor in non-starch polysaccharides, such as 

corn-based diets, do not. In fact, this proliferation can be due to increase of digesta viscosity, decrease 

of digesta passage rate and a decline in nutrient digestibility caused by high level of non-starch 

polysaccharides, supporting the growth of Clostidium perfringens. When compared with corn-based 

diet, wheat-based diets also affect a number of other bacteria (Annett et al., 2002; Pan and Yu, 2014). 

In a study conducted in 2010, Hammons et al. showed that even a small variation in dietary cereal 

grain composition can potentially affect the intestinal bacteria at species and strain levels. In fact, 

they showed that a standard corn-soybean ration supported Lactobacillus agilis type R5, whereas a 

ration high in wheat favored L. agilis type R1. In order to see the effect of grain base on the microbial 

community profile Apajalahti et al., (2004), analyzed 256 caecal samples of broilers being fed either 

wheat or corn based diet from all around the world. The % G+C profiling method used to reveal the 

most significant sources of variation showed that the two grain bases favored different bacterial 

groups in the caecum. This analysis did not reveal the identity of the bacteria, but it was possible to 

establish that corn favors low G+C Clostridia, Enterococci and/or Lactobacilli and wheat improves 

higher %G+C Bifidobacteria.  

Another dietary nutrient category that can affect gut microbiota can be the protein. In fact, the source 

and level of dietary protein have been demonstrated to stimulate the proliferation of different bacteria 

populations. Sun et al. (2013) noticed that the use of fermented cottonseed meal as protein source, 

instead of soybean meal which is widely used as a source of protein in poultry production, increases 

the population of Lactobacilli and decreases the number of coliforms in cecum of broiler chickens. 

Furthermore, other than water-soluble and non-starch polysaccharides, even diets containing high 

percentages of animal protein support the growth of Clostridium perfringens in the chicken gut and 

are considered as one of the predisposing factors of necrotic enteritis. In addition, it has been reported 

that C. perfringens proliferation can be improved even by dietary fat source, as it was more abundant 

in the ileum of broiler chickens fed diet with animal fat than chickens fed diet with soy oil (Pan and 

Yu, 2014). 

However, not only the nutrients inside the diet affect the microbiota composition, even processing 

significantly affects the characteristics of the feed as a substrate for the bacterial community. If the 
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bacterial shifts following different set of feed processing conditions were understood, the 

manufacturing process itself could be used to partly control and manage the gastrointestinal 

microflora trough the identification of signature species. Apajalahti et al. (2004) investigated the 

changes caused by inclusion of whole wheat in the feed on the bacterial community structure in 

chicken caecum, giving an overview of the effect of processing procedure on microbial community 

compositions. They showed that grinding and processing of wheat affect wheat characteristics and 

act as a microbial modulator. In particular, they investigated the changes caused by of feed 

amendment with the addition of whole wheat, compared to the commercial feed with no amendments, 

on microbiota using the G+C% profiling. Effect of whole-wheat addition on microbial community 

structure was statistically significant and in particular bacteria with %G+C ranging from 35 to 54 

were stimulated by whole wheat, while those with %G+C between 60 and 69 were suppressed (e.g., 

Bifidobacteria). 

Another way to influence gut microbiota in poultry, reducing enteric pathogens and increasing growth 

performances, is using feed additives. In the past growth-promoting antibiotic (AGP), as feed 

additives, were added in the feed to gain effects on gastrointestinal microflora and performance. 

These effects were obtained because growth-promoting antibiotic reduced competition for nutrients 

in the small intestine, reduced local inflammation due to control of pathogens, and reduced intestinal 

thickening and length, as a result of improved digestibility and reduced pathogen loading (Thomke 

and Elwinger, 1998b; Thomke and Elwinger, 1998a). The latter two mechanisms result in a more 

efficient digestion and reduced maintenance energy requirement (Apajalahti et al., 1999; Apajalahti 

et al., 2004). However, it was hypothesized by Niewold (2007) that a different mechanism is behind 

the AGP positive effect on animals’ growth performances. According to the author, the different 

microbial compositions when using AGP are a consequence of an altered immune status of the host 

rather than of a direct effect on the microbiota. The changes in microflora are most likely the 

consequence of an altered condition of the intestinal wall due to the anti-inflammatory effect on 

intestine cells. Growth promoter’s antibiotic have long been supplemented to poultry feed to stabilize 

the intestinal microbial flora, improving the general performances and prevent some specific 

intestinal pathology. However, due to the growing concern about microbes resistant to antibiotics 

used to treat human and animal infections, the European Commission (EC) decided to phase out, and 

ultimately ban (1 January 2006), the marketing and use of antibiotics as growth promoters in feed 

(EC Regulation No. 1831/2003; 

http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:268:0029:0043:EN:PDF). 

http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:268:0029:0043:EN:PDF
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Since the ban of AGP as feed additives for livestock production, the research of new molecules able 

to selectively promote the growth of microbial populations related with positive effect on animals’ 

growth performances and health has always be continuous (Butaye et al., 2003; Huyghebaert et al., 

2011). Whatever the mechanism of action of AGPs, the main characteristic of a good alternative, 

from a practical point of view, should be that it must positively modulate microbiota composition 

improving good microbial populations and reducing pathogens. Good alternatives to AGPs to 

influence the intestinal microbiota population is using probiotic and feed enzymes. 

Modulation of the intestinal bacteria by feeding probiotics is currently under active research (Garriga 

et al., 1998; Jin et al., 1998; Gusils et al., 1999; Samli et al., 2007; Gérard et al., 2008; Nakphaichit 

et al., 2011; Babot et al., 2014; Pedroso et al., 2016; Hu et al., 2017). The target of such nutraceutical 

products is to improve gastrointestinal health by selecting for beneficial microflora and suppressing 

known intestinal and food-borne pathogens. Direct-fed microbials (probiotics) are products which are 

targeted to improve the health of the gastrointestinal tract, but these are likely to be effective only if 

the requirements for their growth are fulfilled. Many of these benefits apply also to the use of feed 

enzymes. Dietary enzymes, such as xylanase and β-glucanase, has already been showed to increase 

intestinal lactic acid bacteria and decrease the population of adverse and pathogenic bacteria, such as 

E. coli (Rodríguez et al., 2012). Dietary supplementation with xylanase and β-glucanase can also 

offer chickens some protection against necrotic enteritis as the enzymes breakdown the non-starch 

polysaccharides in the diet and reduce the digesta viscosity. Furthermore, feed enzymes have the 

ability to remove fermentable substrate from the small intestine, that could be an optimal substratum 

for some pathogens growth requirements (Apajalahti et al.,2004; McDevitt et al., 2006; Owens et al., 

2008). 

The role of feed enzymes in improving the productive value of diets for monogastric animals has 

received extensive reviews, and several modes of action have been proposed. They include hydrolysis 

of specific chemical bonds in feedstuffs that are not sufficiently degraded or indeed not at all by the 

animal’s own enzymes (for example, mixed salts of phytic acid); the elimination of the nutrient-

encapsulating effect of the cell wall polysaccharides and therefore increased availability of starches, 

amino acids and minerals; the breakdown of anti-nutritional factors that are present in many feed 

ingredients (for example, soluble NSP and phytic acid) and the complementation of the enzymes (for 

example, amylase, protease, lipase) produced by young animals where, because of the immaturity of 

their own digestive system, endogenous enzyme production may be inadequate. For example, the 

indigestibility of some protein contents could limit the inclusion of these nutrients into pig feed. 

However, the supplementation of proteases might allow high inclusion of such feedstuffs. However, 
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it must be taken into consideration that the supplementation of any feed enzyme does not just impact 

directly animal nutrition but, since the gastrointestinal tract is densely populated, it will impact also 

the microbiota. Since microbiota plays a critical role for animal nutrition, performance and safety of 

animal products, there is a clear need to understand the role of feed enzymes in influencing gut health 

through its modulation (Kiarie and Nyachoti, 2009; Kiarie et al., 2013). The feed additives whose 

modulating action on chicken gut microbiota will be analysed in this study are a probiotic (i.e., 

Lactobacillus acidophilus) and two feed enzymes, a commercial protease and a commercial phytase, 

alone and combined with inositol. 

1.5 Analysis of chicken gut microbiota: from traditional techniques to metagenomic analysis 

One of the most remarkable events in the field of microbial ecology in the past decade has been the 

advent and development of metagenomics. Metagenomics is the study of the metagenome 

(microbiome). Metagenomics can either be targeted (usually 16S ribosomal RNA) or untargeted 

(shotgun sequencing) (Tremaroli and Bäckhed, 2012). Metagenomics provides both access to the 

functional gene and the composition of microbial communities, within an environmental sample 

(Thomas et al., 2012). Metagenomic analysis has recently developed. Previously microbial 

communities were characterized culturing them on selective growth media and subsequently carrying 

out a range of biochemical tests to identify the bacteria that survived under the specific culture 

conditions employed. Such methods, other than being laborious and time consuming, were not 

suitable for extensive monitoring of the unknown microflora, because only a small fraction of bacteria 

composing the community could be found. In fact, up to 99% of the bacteria in many environments 

fail to grow under artificial conditions. This disadvantage is due to the growth requirements of most 

bacteria that are still unknown or cannot be mimicked under laboratory conditions, leading to an 

incomplete data recovery regarding the whole community. Since microbial communities have 

individual bacterial members specialized on different functions and providing elements to other 

bacterial members, conducting a metagenomic analysis investigating these communities’ dynamic 

and interactions with the omission of unculturable populations would have been impossible 

(Apajalahti et al., 1999; Apajalahti et al., 2001; Apajalahti et al., 2004). 

That is why, in the late 1970s, Woese and Fox proposed the use of ribosomal RNA genes as molecular 

markers, revolutionizing the classification of microorganisms. Some decades later, advances in 

molecular techniques were applied to microbial diversity description and granted access to a “new 

uncultured world” of microbial communities. DNA-based culture-independent methods’ basic 

principle was the analysis of the bacterial DNA without harvesting it from in vitro isolated pure 

cultures. Total bacterial DNA is directly recovered from a sample derived from the site of interest, 
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extracted and then analysed. Some of these techniques were the polymerase chain reaction (PCR), 

fluorescent in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE and TGGE), 

restriction-fragment length polymorphism, and terminal restriction-fragment length polymorphism 

(T-RFLP) (Woese and Fox, 1977; Apajalahti et al., 2001; Apajalahti et al., 1999; Apajalahti et al., 

2004; Hiergeist et al., 2015; Escobar-Zepeda, 2015). 

The target for many of the molecular profiling techniques is the 16S ribosome and its encoding gene. 

In bacteria, the three rRNA molecules are genetically organized in a ribosome operon and primarily 

transcribed as a single 30S rRNA precursor that is subsequently cleaved by RNase III into 16S, 23S, 

and 5S rRNA subunits. Operon size, sequences, and secondary structures of these three rRNA genes 

are conserved within a bacterial species. The 16S rRNA gene contains both variable regions and 

conserved regions, allowing the design of PCR primers which target all or specific bacterial DNA.  

The 16S rRNA gene is constituted of nine variable regions (V1-V9), where the V1 region was found 

to be the most variable, followed by V9 and then by V3 (Yu and Morrison, 2015; Hedgiest., 2015). 

For more than 30 years, culture-independent microbial profiling has been based on the 16S ribosomal 

rRNA gene (Olsen et al. 1986). By doing this, researchers received a key tool to species and 

phylogenetic trees identification by comparing these relatively stable parts of the genome. However, 

these 16S ribosomal rRNA gene based technologies, other than being low-throughput technologies, 

could not deliver exhaustive insight into microbial diversity and metabolic and ecological functions, 

making impossible to deduce the potential biological tasks carried out by a community as a whole 

(Woese and Fox, 1977; Escobar-Zepeda, 2015; Hiergeist., 2015). In fact, metagenomics provides 

access to the functional gene composition, e.g. metagenome, of microbial communities and therefore 

gives genetic information on potentially novel biocatalysts or enzymes, genomic linkages between 

function and phylogeny for uncultured organisms, and evolutionary profiles of community function 

and structure, a much broader description than phylogenetic surveys based on 16S rRNA gene 

(Thomas et al., 2012).  

In 1990, for the first time, clone libraries of 16S rRNA genes from environmental bacteria were 

directly amplified and sequenced by the Sanger method (Giovannoni et al., 1990). This procedure 

represented a breakthrough that permanently changed the way prokaryotes in the environment were 

analyzed, leading to the advent of the metagenomic analysis era trough sequencing techniques 

(Hiergeist., 2015). Sanger and others introduced the concept of DNA sequencing called the chain-

terminator method. This first-generation sequencing technology is based on incorporation of 

fluorescently labelled deoxynucleoside triphosphate and primers into a PCR that set the stage for 

automated high-throughput DNA sequencing. With the information obtained from the last terminator 
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base in the four individual base reaction tubes after size separation, the original sequence could be 

determined (Sanger and Coulson, 1975; Sanger et al., 1977). However, Sanger sequencing method 

presented a high number of limitations and disadvantages, mainly associated with the low throughput 

of DNA sequences obtained and the high cost. That’s why others sequencing technologies were 

developed during the following years (Schloss, 2008; Metzker, 2010). 

Particularly relevant was the development of pyrosequencing technique, also called sequencing by 

synthesis, that permits the detection of pyrophosphate released when a nucleotide is incorporated in 

the chain resulting in detectable light in a real-time format. Improvements and development of this 

technology resulted in advances in the next-generation devices based on the same principle, leading 

to so-called next generation HT-NGS platforms produced by Roche, Illumina-Solexa, Life 

Technologies, Helicos, and other companies. 

Illumina sequencing technology is based on reversible dye-terminators principle and can perform 

shotgun High throughout Whole Genome sequencing. In fact, in shotgun sequencing random DNA 

fragments are immobilizes on a surface and then a solid-surface PCR amplification is performed with 

the result of clusters of identical DNA fragments. These are then sequenced with four types of 

reversible terminator bases in a sequencing-by-synthesis process. After the incorporation of 

reversibly terminating nucleotides, a camera capture images of the fluorescence and the dye along 

with the terminal 3′ blocker is chemically removed from the DNA allowing the next cycle. Clustered 

fragments can be sequenced from both ends (pair-end mode) and the cluster density is enormous, 

with hundreds of millions of reads per surface channel. The read length can be different in relation to 

the Illumina instrument and the sequencing mode chosen but, in any case, it is relatively short 

compared to other sequencing technologies read length. Yields of ~60 Gbp can therefore be typically 

expected in a single channel. In fact, this technology can sequence the equivalent of one-third of the 

entire human genome in a single run (approx. 10 days), while the sequencing of the entire human 

genome with the sanger method lasted 10 years and costs 2 billion dollars. The lower costs of this 

technology and recent success in application to metagenomics, are currently making the Illumina 

technology an increasingly popular choice. The only limitation of Illumina technology is the read 

length. In fact, a limited read length means that a greater proportion of unassembled reads might be, 

after the quality clipping of the first bad quality sequences of the reads, too short for functional 

annotation. However, some current software packages (e.g. MG-RAST and Mg-Mapper) are 

designed to analyze unassembled Illumina reads of 75 bp and longer, bypassing this limit (Thomas et 

al., 2012; Diaz-Sanchez et al., 2015).  
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Next-generation sequencing platforms (NGS) have allowed the substantial researches into the 

diversity and functions of microbiota from the guts of various livestock animals. High-throughput 

NGS generates large volumes sequence data containing genetic information and this allows 

hypothesis-driven researches on chicken GIT microbiota, thereby highlighting the roles of previously 

unknown and rare microbial GIT species. Furthermore, metagenomic data have raised new questions 

such as how microbiota stability and ecological shifts in species diversity are influenced by nutrients 

and hosts (Metzker, 2010; Medinger et al., 2010; Choi et al., 2015). 

The application of HT-NGS sequencing is emerging and moving toward the development and the 

improvement of the poultry industry raising the food safety measures and avoiding foodborne 

pathogens. Relative few studies have been conducted on chicken gut microbiota to determine any 

changes that affect health and disease and a detailed assessment of probiotics or/and other feed 

additive to control pathogenic growth and or shaping the gut microflora, trying to lead to the 

development of novel alternatives to antibiotic growth promoters. Frequently, the sequencing 

methods used to gain data regarding the microbiota composition, aside from the platforms, are the 

small-subunit ribosomal RNA (16S rRNA gene) amplicons or shotgun metagenomic sequencing 

(Diaz-Sanchez et al., 2013).   

1.5.1 16S rRNA gene based metataxonomic analysis 

Amplicon sequencing is the most widely used method for characterizing the diversity of microbiota, 

even in chicken. For bacteria and archaea classification, the small-subunit ribosomal RNA (16S rRNA 

gene) locus is targeted and amplified by PCR. The obtained amplicons are sequenced and 

characterized to determine microbial community composition and population relative abundance 

(Pace et al., 1986; Hugenholtz and Pace, 1996). Comparing 16S rRNA gene based metataxonomic 

analyses profiles across samples clarifies how microbial diversity is associated with environmental 

conditions generating insight into host–microbe interactions and yields hypotheses about microbiota-

based disease mechanisms (Muegge et al., 2011; Sharpton, 2014). However, amplicon sequencing 

presents several limitations. In fact, it may fail to resolve a substantial fraction of diversity in a 

community because of various biases associated with PCR and can produce widely estimates of 

diversity (Hong et al., 2009; Sharpton et al., 2011; Sharpton, 2014; Jumpstart Consortium Human 

Microbiome Project Data Generation Working Group, 2012). Furthermore, amplicon sequencing 

only provides insight into the taxonomic composition of the microbial community, with taxa for 

which taxonomically informative genetic markers are known, and sometime result in an 

overestimation of community diversity, since the 16S rRNA gene locus can be transferred between 

distantly related taxa. Another limitation is the impossibility to provide information on the biological 
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functions associated with the single population. In some cases, phylogenetic reconstruction can be 

used to infer those biological functions that are encoded in a genome containing a particular 16S 

rRNA gene sequence (Langille et al., 2013) but the accuracy depends on how well the genomic 

diversity of the community is represented by the genomes available in sequence databases.  

1.5.2 Shotgun whole genome metagenomic sequencing 

Shotgun whole genome sequencing is an alternative approach that can avoid all 16S rRNA gene 

metataxonomic amplicon sequencing limitations. In fact, instead of targeting a specific genomic 

locus, all DNA is subsequently sheared into tiny fragments that are independently sequenced making 

possible to sequence numberless genomes present in the sample, including non-microbes or microbes 

with unknown taxonomically informative genetic markers.  The DNA sequences are sampled from 

taxonomically informative genomic loci (e.g., 16S rRNA gene) and from coding sequences that 

provide insight into the biological functions encoded in the genome. However, even if using shotgun 

whole genome sequencing the metagenomic data do not present the previously described limitations, 

there are anyways several challenges. Metagenomic analysis tends to require a large volume of data 

to identify meaningful results because of the vast amount of genomic information being sampled. 

Furthermore, the data, other than representing a big amount, are relatively complex and large, 

sometimes making it difficult to determine the genome from which a read belongs. That’s because 

such rich diversity of genomes can result in a not complete representation of all communities and two 

reads from the same gene may not overlap and are thus impossible to directly compare through 

sequence alignment. However, if two reads do overlap, it is not always evident if they are from the 

same or distinct genomes, which can challenge sequence assembly (Mavromatis et al., 2007; Schloss 

and Handelsman, 2008; Sharpton et al., 2011; Mende et al., 2012; Sharpton, 2014). Another challenge 

is represented from eventual contamination, since, once the genetic material is sequenced, is 

particularly difficult to discriminate the contaminant’s reads. This contamination could mislead 

analyses of community genetic diversity if the contaminant’s genome is enriched of genes that are 

uncommon in the community and is highly abundant or has a large genome.  However, other than 

limiting the contamination applying good sampling and DNA extraction practices, bioinformatic 

software allows identification and filter of contaminant and host sequences in the metagenomic data 

(Schmieder and Edwards, 2011). Shotgun whole genome sequencing, for the advantages regarding 

the large amount of data generated, has become the most used methods for most laboratories, even 

because the limits are lately being overcome by the development in bioinformatics. In recent years, 

metagenomic sequencing has been used to identify new viruses, characterize the genomic diversity 
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and function of uncultured bacteria, reveal novel and ecologically important proteins, and identify 

taxa and metabolic pathways that differentiate gut microbiota (Sharpton, 2014). 

1.5.3 Sequences’ data analysis and MG-RAST platform 

When performing shotgun metagenomics, the complete sequences of protein coding genes 

(previously characterized or novel) as well as full operons in the sequenced genomes can offer 

invaluable functional knowledge about the community. The first approach to analyse the output data 

of sequencing is the assembly of shorter reads into genomic contigs and orientation of these into 

scaffolds to provide a more compact and concise view of the sequenced community under 

investigation. The process of assembling shorter reads into contigs can be performed using reference-

based assembly or de novo assembly. Reference-based assembly refers to the use of one or more 

reference genomes as a “map” in order to create contigs, which can represent genomes or parts of 

genomes belonging to a specific species or genus. The tools commonly used in metagenomics for 

performing referenced-based assemblies are not computationally intensive and perform well when 

metagenomic samples are derived from extensively studied areas. In that case the sequences from 

closely related organisms would have already been deposited in online databases, allowing them to 

be used as references for the assembly process.  

De novo assembly refers to generation of assembled contigs using no prior reference to know 

genome(s). This task is computationally expensive and relies heavily on sophisticated graph theory 

algorithms, such as de-Bruijn graphs tools. These tools initially were built for assembling a single 

genome and often underperform when used for metagenome assemblies. This limitation led to the 

development of the next generation of assembly tools, such as MetaVelvet and Meta-IDBA. 

MetaVelvet and Meta-IDBA employ a combined binning and assembly approach to create more 

accurate assemblies from datasets containing a mixture of multiple genomes. They make use of k-

mer frequencies to detect kinks in the de-Bruijn graph and then use these k-mer thresholds to 

decompose the graph into subgraphs. These tools further assemble contigs and scaffolds based on the 

decomposed sub-graphs, and thus perform a more efficient grouping/assembly of contigs, effectively 

separating those belonging to different species (Zerbino et al., 2008; Miller et al., 2010; Peng et al., 

2010; Thomas et al., 2012; Oulas et al., 2015). 

The annotation of metagenomes is the alternative, specifically designed to work with mixtures of 

genomes but requires some pre-processing step to prepare the reads for annotation. Briefly, the first 

step is the trimming of low-quality reads based on the Phred or Q quality scores, the thresholds of 

which depend on the sequencing technology, followed by the masking of low-complexity reads 

process and a final de-replication step that removes sequences that are more than 95% identical. The 
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last step is the screening of the sequences performed by tools like MG-RAST. MG-RAST provides 

an option to remove reads that matches to the genomes of model organisms, including human and 

chicken, allowing to remove of host associated sequences and eventual human contaminations. The 

next main stage of the annotation pipeline is the identification of genes within the reads/assembled 

contig, a process often denoted as “gene calling” (Glass et al., 2010, Thomas et al., 2012; Oulas et 

al., 2015) Genes are labelled as coding DNA sequences and noncoding RNA genes, and certain 

annotation pipelines also predict for regulatory elements, such as clustered regularly interspaced short 

palindromic repeats. 

Coding DNA sequences are identified using a number of tools including MetaGeneMark, Metagene, 

Prodigal, Orphelia, and FragGeneScan, all of which utilize ab initio gene prediction algorithms. 

Often, annotation pipelines use an intersection of these tools to obtain a more informative prediction 

of the protein coding genes. Gene prediction tools utilize codon information (ie, start codon – AUG) 

to identify potential open reading frames and hence label sequences as coding or non-coding. Most 

tools can be trained by using the desired training sets (Thomas et al., 2012; Oulas et al., 2015). For 

example, FragGeneScan is trained for prokaryotic genomes only, and is used by IMG/MER and MG-

RAST as well as EBI Metagenomics. It is believed to be one of the most accurate gene-prediction 

tools currently available. Noncoding RNAs, such as tRNAs are predicted using programs like 

tRNAscan. Ribosomal RNA (rRNA) genes (5s, 16s, and 23s) are predicted using internally developed 

rRNA models for IMG/MER, and MG-RAST uses similarity to compare three known databases 

(SILVA, Greengenes, and the Ribosomal Database Project-RDP95) to predict rRNA genes (Rho et 

al., 2010; Glass et al., 2010). The next stage of the annotation pipeline involves functional assignment 

to the predicted protein coding genes. This is currently achieved by homology-based searches of 

query sequences against databases containing known functional and/or taxonomic information. 

BLAST or other sequence-similarity-based algorithms often run on high-performance computer 

clusters. Some widely-used data repositories to obtain annotation for metagenomic datasets include 

functional annotation databases, such as KEGG, SEED, eggNOG, COG/KOG, as well as protein 

domain databases, such as PFAM and TIGRFAM (Tatusov et al., 2000; Du et al., 2014; Powell et al., 

2014; Oulas et al., 2015). 

MG-RAST utilizes many of the databases for annotation mapping, as well as the NCBI taxonomy. 

The primary data product displayed to the user by MG-RAST is in the form of abundance profiles, 

and taxonomic information is projected against this data. Both IMG/MER and MG-RAST are widely 

used data management repositories and comparative genomics environments. They are fully 

automated pipelines that provide quality control, gene prediction, and functional annotation. Both 

tools support user download of data products generated, as well as optional sharing and publishing 
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within the respective portals. MG-RAST predicts all genes in the metagenome, and then identifies 

the best homologs of those genes in the isolate genomes using a tool called BLAT (BLAST-like 

alignment tool). BLAT misses similarities below 70% identity, so many strong hits to other genes are 

missed. After the best hits to genes from an isolated genome are identified, all subsequent analysis is 

done using the genes of the isolate genomes, not the genes of the metagenome at hand. This creates 

a lot of limitations due to the fact that the analysis is not performed on the original genes of the 

metagenome, but on the “proxy” genes to the isolated genomes instead. The advantage of this method 

is its speed; the only computationally intensive step is to find the best hits of the metagenomes against 

the isolates. Once this is done, all other comparisons are already pre-existing. (Kent et al., 2002; Oulas 

et al., 2015). 
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2. OBJECTIVES 

The symbiotic equilibrium between a host and its microbiota is established immediately after the 

animal birth, then during the early stages of life its development is influenced by exposure to 

microorganisms present in the environment. However, the main role in the microbiota shaping 

process is played by the diet (Pan and Yu, 2014; Doré and Blottière, 2015). The intestinal microbiota 

is an extremely dense and complex ecosystem which plays a relevant role in the maintenance of the 

animal's well-being through the production of biologically relevant metabolites. The microbiota can 

influence the usage of nutrients by the host and furthermore it contributes to the optimal development 

of his intestinal mucosa (Scott et al., 2013; Doré and Blottière, 2015). In fact, the loss of balance 

between the various populations composing the microbiota may lead to the onset of pathologies and 

to a prevalence of pathogens (Yoon et al. 2015). 

Since the diet is considered the main way to influence intestinal bacterial populations, maintaining 

their homeostasis status, it is already common to introduce feed additives in animal diets in order to 

positively modulate gut microbiota (Angelakis and Raoult, 2010; Huyghebaert et al., 2011; Kiarie et 

al., 2013; Pan and Yu, 2014). In livestock production, the research of new molecules able to 

selectively promote the growth of microbial populations related with positive effect on animals’ 

growth performances has always be continuous, especially after the ban of antibiotic growth 

promoters within the European Union. Metagenomic analysis is an effective strategy to characterize 

the effect of feed additives on modulation of chicken gut microbiome, which is the collection of all 

genomes from all members of a microbial community from a specific environment (Handelsman et 

al., 1998). Several studies regarding the characterization of chicken gut microbiome are available but 

there is surprisingly little literature regarding the characterization of the chicken skin microbiota 

through metagenomic analysis. In fact, in the majority of the studies, even if they focus on 

understanding the structure of the population’s flora inhabiting the skin and especially on how a 

subset of these microbes can become human pathogens, metagenomic analysis is not used and little 

attention is paid to the analysis of the microbiota and how it can be modulated (Cogen et al., 2008, 

Yoon et al. 2015). 

The objectives of this Ph.D. project have been: 

1. to characterize the impact of the administration of different feed additives on gut microbiota 

as well as the functional genes of commercial chicken; 

2. to provide new information regarding the chicken skin microbiota and the effect of the diet 

on its modulation.  
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Both these objectvises will allow to highlight the connection between skin and gut microbiota in order 

to find nutritional strategies able to fight foodborne pathogen colonization in the chichen, improving 

the safety of poultry meat.  

The tested feed additives were a probiotic (i.e., Lactobacillus acidophilus D2/CSL), a serine protease 

and phytase, administered alone or in combination with inositol. The feed additives were tested in 

separate trials involving commercial chickens. The animals investigated in this Ph.D. project 

were farmed and slaughtered under commercial conditions, according to Italian and European law for 

broiler chicken production. Whenever possible, the animal gastrointestinal tract was collected at the 

slaughterhouse at the end of animal rearing period. At the slaughterhouse, the chickens were 

electrically stunned in agreement with the Council Regulation (EC) No. 1099/2009 on protection of 

animals at the time of killing. Moreover, all slaughter procedures were monitored by the veterinary 

team appointed by the Italian Ministry of Health. The few chickens sacrificed along the trials (i.e., 1, 

14 and 42 days) were humanely euthanized by cervical dislocation according to the principles stated 

in EU Directive 63/2010 (European Union, 2010) regarding the protection of animals used for 

experimental and other scientific purposes and according to the guidelines of the Animal Ethic 

Committee of the University of Bologna.  

For all feeding trials, described below, the work flow included (1) rearing of the chickens fed with a 

control diet and the diet supplemented with the additive; (2) chicken gastrointestinal tract collection 

and total DNA extraction; (3) library preparation and shotgun metagenomic sequencing; (4) 

sequences analysis and statistical analysis; (5) results interpretation and discussion.  
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3. TRIALS PERFORMED  

3.1 Trial on metagenomic investigation of caeca of chickens fed with Lactobacillus 

acidophilus D2/CSL 

3.1.1 Background  

Probiotics, or direct-fed microbials, have been defined as “live microorganisms that, when 

administered in adequate amounts, confer a health benefit on the host” (Pineiro and Stanton, 2007). 

Probiotics supplement is used in livestock and poultry production to protect animals from enteric 

pathogen infection and improve animal health (Dahiya et al., 2006; Kabir, 2009). The mode of action 

of probiotics can vary depending on the traits of the specific probiotic strains/species used.  Ideally, 

researchers select the promising probiotic strains from the autochthonous intestinal microbiota by 

supposing that these microorganisms have a symbiotic relationship with the host, so they could 

colonize the gastrointestinal tract. The mechanisms through which the probiotic, in particular Lactic 

Acid Bacteria (LAB), benefits the host include: competitive exclusion toward harmful bacteria, 

through competition for nutrient and attachment site, production of bacteriostatic and bactericidal 

substances, alteration of microbial and host metabolism, neutralization of enterotoxins, enhance of 

gut barrier functions and stimulation of host immunity (Van der Wielen et al., 2000; Haghighi et al., 

2005; Lan et al., 2005; Huyghebaert et al., 2011; Lawley and Walker, 2013). 

To archive these beneficial effects, the probiotic species/strains can be administrated to the host 

individually or combined. The effect of multispecies probiotics has also been investigated by many 

authors as Mountzouris et al., 2007 and Ghareeb et al., 2012. Mountzouris et al., 2007 investigated 

the effect of a multispecies probiotic containing Enterococcus faecium, Bifidobacterium animalis, 

Pediococcus acidilactici, Lactobacillus salivarius and Lactobacillus reuteri isolated from chicken 

gut, showing that its administration decreased cecal coliform population and that probiotic inclusion 

level had a significant effect on broiler chicken growth responses, nutrient apparent digestibility 

coefficients, apparent metabolizable energy, and cecal microflora composition. Another study 

conducted by Ghareeb et al. (2012) demonstrated that multispecies probiotics containing 

Enterococcus faecium, Pedococcus acidilactici, Lactobacillus salivarius and Lactobacillus reuteri 

significantly reduced cecal colonization by Campylobacter jejuni. This result suggested that probiotic 

can also be used to higher the food safety levels of poultry products by reducing the population of 

human pathogens, such as Campylobacter jejuni.  

However, the most common choice is the administration of a single species/strain probiotic because 

its effect is more easily defined and more predictable. In fact, probiotic effects are strain-specific 
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(FAO/WHO, 2002) and selection criteria must consider the safety and efficacy on the target species. 

However, not only the bacteria strains, but even the dosage (i.e., colony forming unit (cfu)/bird/day) 

and the duration of the treatment are critical factors that should be considered since they can influence 

probiotic efficacy. Nevertheless, the health status of the flock and/or the farm hygienic conditions 

may suggest modulating the dose. Since it is necessary to preserve the bacteria vitality until their 

ingestion and assist their intestinal colonization, other important variables that must be considered 

are probiotic conservation and distribution technology, feed composition, antimicrobial agents in the 

feed or in the drinking water used as probiotic carrier (Gallazzi et al., 2008). 

Lactobacillus strains have been described to be beneficial additives because of their effects in 

promoting poultry production performance and stimulating immune responses, improving digestive 

health in chickens. It has even been shown that Lactobacillus probiotic strains can decrease the 

population of Salmonella, Campylobacter, Clostridium and some other non-beneficial bacterial 

groups in chickens, improving the safety of poultry meat (Kim et al., 2012; Brisbin et al., 2011; 

Ghareeb et al., 2012; Neal-McKinney et al., 2012; Askelson et al., 2014; Spivey et al., 2014; La 

Ragione et al., 2004; Chen et al., 2012. 

Other than reducing some pathogen proliferation and producing bacteriostatic or bactericidal 

molecules, as bacteriocins, several Lactobacillus species have been shown to even stimulate the 

immune-response of the host. Some studies suggest that various strains of Lactobacilli have a 

stimulating effect on antibody-mediated response in chickens. Such effect is dependent on the strain 

of Lactobacillus administrated, genotype and age of the chickens. Lactobacillus acidophilus, 

Lactobacillus reuteri and Lactobacillus salivarius are members of the chicken intestinal microbiota 

and have been shown to induce different cytokine profiles in mononuclear cells in vitro (Robredo and 

Torres, 2000; Brisbin et al. 2011). Brisbin et al. (2011) examined the effects of these bacteria 

individually or in combination on the induction of antibody- and cell-mediated immune responses in 

vivo proving the effectiveness of Lactobacilli oral treatment in the immune response modulation. 

However, these bacteria may vary in their ability to modulate the immune response. In particular, the 

birds received Lactobacilli weekly via oral gavage starting on day of hatch and subsequently, at 14 

and 21 days, were immunized with sheep red blood cells (SRBC), keyhole limpet hemocyanin (KLH), 

Newcastle disease virus vaccine, and infectious bursal disease virus vaccine. Lactobacillus 

salivarius-treated birds had significantly more serum antibody to SRBC and KLH than birds that 

were not treated with probiotics. Lactobacillus salivarius-treated birds also had decreased cell-

mediated immune responses to recall antigen stimulation while Lactobacillus acidophilus treatment 

increased the antibody response to KLH. Even if the mechanism through which the probiotics 
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enhance the antibody-mediated immune response is still not fully understood, probiotics could 

stimulate the production of Th2 cytokines, which may subsequently increase the antibody immune-

mediated response (Robredo and Torres, 2000; Koenen et al., 2004; Haghighi et al., 2005; Brisbin et 

al., 2011). Brisbin et al. (2012) evaluated even the effects of Lactobacillus acidophilus bacteria as a 

probiotic on chicken T cell subset populations in peripheral blood and lymphoid tissues. The findings 

indicate that probiotics may alter the distribution of T cells in the blood and lymphoid tissues in young 

chickens; however, transient changes in lymphoid tissues indicate that probiotics likely do not 

permanently affect mucosal immunity. In fact, in the probiotic-fed group after 21 days of treatment 

the percentage of blood CD4+, CD8+, and TCR1+ cells was significantly higher than in the control 

group. After 14 days and 21 days of treatment, a significantly greater number of CD4+ T cells were 

found in the ileum of probiotic-fed chickens than in chickens from the other two groups. 

In the present project, the effect of the addition of a probiotic to the diet (i.e., Lactobacillus 

acidophilus) on chicken gut microbiota populations and composition of functional genes will be 

investigated. 

3.1.2 Methodology  

3.1.2.1 Animals and diet groups 

The trial in which the chickens were fed with L. acidophilus D2/CSL experiment was approved by 

the Ethical Committee of the University of Bologna on 17/3/2014 (ID: 10/79/2014). A total of 1,100-

day-old male Ross 308 chicks, obtained from the same breeder flock and hatching session, were used. 

Birds were vaccinated against infectious bronchitis virus, Marek’s disease virus, Newcastle and 

Gumboro diseases and coccidiosis at the hatchery. Before housing, chicks were individually weighed 

and divided according to their live weight in 5 classes: >42 g, 42-44 g, 45-47 g, 48-50 g, >50 g. The 

first and the last groups (i.e. >42 g and >50 g) were discarded, while the remaining ones were 

distributed in 32 pens (2.5 m2 each) at the stocking density of 10 chicks/m2 (25 birds/pen), while 

maintaining the same class distribution of live-weight of the population placing in each pen an equal 

number of chicks belonging to the three classes. Pens were equipped with pan feeders to assure at 

least 2cm/bird of front space and an independent drinking system with 1 nipple/5 birds. Feeders were 

of identical manufacture, type, size, colour, and other notable physical features. Each pen was 

equipped with an individual bin clearly labelled as reservoir for the experimental feed.  

On a daily basis, the experimental feed was manually transferred from the bin to the feeder. Any 

change in the diet was made uniformly for all animals. Feed and water were provided for ad libitum 

consumption. At each diet switch, feeders were emptied, orts were weighed back and the feeders were 

filled with the diets described below. Twice daily observations were recorded for general flock 
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condition, temperature, lighting, water, feed, litter condition and mortality. The experiment lasted 41 

days when birds reached the slaughter weight of about 2.8 kg of live weight. Photoperiod and 

temperature programs were set up according to the European welfare regulation 43/2007 (European 

Commission, 2007). The chicks were divided into 2 groups of 16 replicates each, fed with the basal 

diet (control group, CON) (Table 1) or the basal diet supplemented with Lactobacillus acidophilus 

D2/CSL (bacterial concentration of 5.0 x 1010 CFU g–1) at the dosage of 20 g ton-1 feed (treated 

group, LA group). The probiotic strain L. acidophilus D2/CSL has been isolated from the GI tract of 

a healthy adult chicken (Bianchi Salvadori et al., 1985) and supplied by Centro Sperimentale del Latte 

S.r.l. (Lodi, Italy). The experimental diets were weekly produced by adding the LA to the common 

basal diet. The feed was supplied ad libitum in mash form throughout the experiment. The feeding 

program included three feeding phases: Starter (0-14 d), Grower (15-28 d) and Finisher (29-41 d). 

The basal diet composition is given in Table 1. 
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Table 1. Basal diets composition (%) of the feed administered to the chicks belonging to the 

trial with Lactobacillus acidophilus D2/CSL (%) 

 

1 Provided the following per kg of diet: vitamin A (retinyl acetate), 13,000 IU; vitamin D3 (cholecalciferol), 

4,000 IU; vitamin E (DL-α_tocopheryl acetate), 80 IU; vitamin K (menadione sodium bisulfite), 3 mg; 

riboflavin, 6.0 mg; pantothenic acid, 6.0 mg; niacin, 20 mg; pyridoxine, 2 mg; folic acid, 0.5 mg; biotin, 0.10 

mg; thiamine, 2.5 mg; vitamin B12 20 μg; Mn, 100 mg; Zn, 85 mg; Fe, 30 mg; Cu, 10 mg; I, 1.5 mg; Se, 0.2 

mg; ethoxyquin, 100 mg. 

 

Starter 

(0-14 d) 

Grower 

(15-28 d) 

Finisher 

(29-41 d) 

Corn 42.17 34.96 12.73 

White corn  0.00 0.00 15.00 

Wheat  10.00 20.00 25.01 

Sorghum  0.00 0.00 5.00 

Soybean meal  23.11 20.63 17.60 

Expanded soybean 10.00 10.00 13.00 

Sunflower  3.00 3.00 3.00 

Corn gluten meal 4.00 3.00 0.00 

Soybean oil 3.08 4.43 5.48 

Dicalcium phosphate 1.52 1.20 0.57 

Calcium carbonate 0.91 0.65 0.52 

Sodium bicarbonate 0.15 0.10 0.15 

Salt  0.27 0.27 0.25 

Choline chloride  0.10 0.10 0.10 

Lysine sulphate  0.59 0.55 0.46 

Dl-methionine  0.27 0.29 0.30 

Threonine  0.15 0.14 0.14 

Xylanase 0.08 0.08 0.08 

Phytase 0.10 0.10 0.10 

Vitamin-mineral premix1 0.50 0.50 0.50 

Dry matter 88.57 88.65 88.64 

Protein 22.70 21.49 19.74 

Lipid 7.06 8.24 9.74 

Fiber 3.08 3.04 3.07 

Ash 5.85 5.17 4.49 

ME (kcal/kg) 3,076 3,168 3,264 
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3.1.2.2 Sample collection 

In the trial with Lactobacillus acidophilus D2/CSL, four chickens were randomly selected and 

humanely euthanized at day 1, before starting the dietary treatment. Moreover, five chickens were 

randomly selected from both control and treated group at the end of the rearing period (i.e., 41 days). 

From each of the 14 selected birds, the caeca were dissected out and a small sample of cecum content 

(i.e., 0.5 to 2 g) was collected into 10-ml sterile plastic tubes. The samples collected were then stored 

at -80°C until further testing. 

3.1.2.3 DNA extraction from chicken caecum contents  

The DNA was extracted from each sample of caecum content using a bead-beating procedure 

(Danzeisen et al., 2011). Briefly, 0.25 g of cecal content were suspended in 1 ml lysis buffer (500 

mM NaCl, 50 mM Tris-Cl, pH 8.0, 50 mM EDTA, 4 % SDS) with MagNA Lyser Green Beads 

(Roche, Milan, Italy) and homogenized on the MagNA Lyser (Roche) for 25 secs at 6500 rpm. The 

samples were then heated at 70°C for 15 min, followed by centrifugation to separate the DNA from 

the bacterial cellular debris. This process was repeated with a second 300 µl aliquot of lysis buffer. 

The samples were then subjected to 10 M v/v ammonium acetate (Sigma, Milan, Italy) precipitation, 

followed by isopropanol (Sigma) precipitation and a 70% ethanol (Carlo Erba, Milan, Italy) wash and 

re-suspended in 100 ul 1X Tris-EDTA (Sigma). The samples were treated with DNase-free RNase 

(Roche) and incubated overnight at 4°C, before being processed through the QIAmp® DNA Stool 

Mini Kit (Qiagen, Milan, Italy) according to manufacturer’s directions with some modifications. 

Samples were measured on a BioSpectrometer® (Eppendorf, Milan, Italy) to assess DNA quantity 

and quality. 

3.1.2.4 Library preparation and metagenomic sequencing  

The DNA extracted from each sample were quantified on a BioSpectrometer® (Eppendorf, Milan, 

Italy) to assess DNA yield, in terms of quantity and quality. Moreover, DNA purity was assessed in 

terms of absence of contaminants according to value of the A260 / A280 nm ratio.  

The DNA extracted and assessed for quality and quantity was submitted to the library preparation 

procedure with the Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA). Nextera 

technology provides an input DNA fragmentation and transposase mediated ligation of oligo-

adapters, essentials to anchor the amplified DNA fragment (around 500 bp) to the sequencer flow cell 

and to amplify the insert DNA by PCR. Illumina’s preparation procedure was chosen because it 

improves traditional protocols by combining DNA fragmentation, end-repair, and adaptor-ligation 

into a single step using an engineered enzyme (Head et al., 2014). The PCR reaction also adds index 

(barcode) sequences. However, the use of an engineered enzyme makes this protocol very sensitive 
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to the amount of DNA input compared with other fragmentation methods (Head et al., 2014). Since 

the ratio of transposase complexes to sample DNA is critical and the subsequent fragment size is also 

dependent on the reaction efficiency DNA concentration was evaluated other than by 

BioSpectrometer (Eppendorf) even using fluorimetric analysis by Quant-iT™ PicoGreen® dsDNA 

Assay Kit (Invitrogen).  

In particular, according to the first quantification obtained through BioSpectrometer (Eppendorf), the 

DNA was brought to the concentration required (0.2 ng/µl) through others intermediate dilutions (i.e., 

25, 10 and 2 ng/µl) all quantified using Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen) on 

the Infinite 200 PRO (Tecan) instrument. All libraries have been validated accordingly to Illumina’s 

protocol. To determinate the nanomolarity of each library, the concentration and average length of 

the DNA fragments have been checked through fluorimetric analysis by Quant-iT™ PicoGreen® 

dsDNA Assay Kit and through Chip DNA Hi Sensitivity analysis on Bioanalyzer 2100 (Agilent 

Technologies). Each library pool of 24 samples was adjusted to a micro molarity between 1.3 to 2 

(depending on the pool’s library with the lower molarity) to be sequenced. A total of 5 µl of each 

library (1.3-2 nM) were pooled together. Each pool of 24 libraries was load into a flow cell of glass 

slide. Each fragment of DNA library was anchored on complementary oligo-adapters placed on the 

flow cell and clonally amplified through a solid-phase amplification called bridge amplification and 

then sequenced by synthesis. Whole genome sequencing was performed using the HiScanSQ 

sequencer (Illumina) at 100 bp in paired-end mode. Metagenomic sequencing yielded an average of 

6.841 million mapped reads/sample, with a Phread quality score always higher than 30. 

3.1.2.5 Sequences analysis  

The metagenomic sequences belonging to the Lactobacillus acidophilus D2/CSL were analysed using 

the MG-RAST pipeline. The MG-RAST pipeline (Meyer et al., 2008) (metagenomics.anl.gov) was 

used to identify the relative abundances of bacterial taxa performing a BLAST similarity search for 

the longest cluster representative against the M5rna database, integrating SILVA (Pruesse et al., 

2007), Greengenes (De Santis et al., 2006 ) and RDP (Cole et al., 2003). Moreover, the sequenced 

reads were assigned to functional groups using the Kyoto Encyclopedia of Genes and Genome 

(KEGG) database (www.genome.jp/kegg/) (Kanehisa, 2002) and the percentage of abundance was 

calculated. For both taxonomic and functional classification the following parameters were set: 

maximum e-value 1e-5, minimum identity 60%, and minimum alignment length 15 bp.  

The metagenomic sequences belonging to the Lactobacillus acidophilus D2/CSL trial were deposited 

on MG-RAST at the following link: http://metagenomics.anl.gov/linkin.cgi?project=13081. The 

metagenome ID mgm 4624898.3, 4625263.3, 4625261.3 and 4625265.3 refer to samples collected at 
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day 1. The mgm 4625297.3, 4625262.3, 4625269.3, 4625304.3 and 4625316.3 refer to samples 

collected from the control group. The mgm 4625288.3, 4625285.3, 4625287.3, 4625273.3 and 

4625272.3 refer to samples collected from the treated group.  

3.1.2.6 Statistical analysis  

The results regarding the relative abundances of bacterial taxa and functional groups were compared 

through the White’s non-parametric t-test, using Statistical Analysis of Metagenomic profile Software 

v 2.0.9 (STAMP) (Parks et al., 2014).   

3.1.3 Results  

3.1.3.1 Sequences obtained 

All samples with a A260 / A280 nm ratio value out of the range between 1.7 and 1.9 were excluded 

from the analysis and the DNA was extracted again from the original sample. The quantity and quality 

parameters of the DNA samples sequenced in this project along with corresponding library 

parameters abd reads achieved for each individual sample are described in Table 2.  
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Table 2. Parameters of the samples and libraries sequenced in the project.   

Sample Library 
ID Conc (ng/ml) Ratio 260/280 nm Conc (ng/µl) Fragment lenght mM Reads (n) 

Lactobacillus acidophilus trial 
XT_45 136 1.78 6.63 696 14.67 6,489,130 
XT_120 771.7 1.78 6.72 998 10.36 4,757,509 
XT_121 129.9 1.85 8.66 1327 10.05 4,342,708 
XT_122 113.1 1.84 6.13 1075 8.78 6,825,047 
XT_74 851.1 1.77 7.04 1224 8.85 7,899,518 
XT_75 979.2 1.8 6.18 1003 9.48 6,875,605

  XT_76 1342.8 1.81 5.18 1370 5.83 7,089,936 
XT_77 1161.5 1.85 3.74 896 6.42 6,189,645 
XT_78 819.1 1.84 4.66 1232 5.82 5,348,518 
XT_79 1200.9 1.87 6.29 930 10.40 5,364,250 
XT_80 1192.3 1.83 1.55 1158 2.06 5,891,661 
XT_81 907.4 1.83 2.49 1310 2.93 5,408,894 
XT_82 1003 1.84 3.741 876 6.57 5,104,388 
XT_83 1286 1.76 1.18 980  1.86 5,225,063 
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3.1.3.2 Caeca microbiota composition  

The microbiota composition of the chicks fed with Lactobacillus acidophilus D2/CSL (bacterial 

concentration of 5.0 x 1010 cfu g–1) at the dosage of 20 g ton-1 feed was compared with that of 

chicks fed with a control diet at 41 days of rearing. Moreover, both microbiota were compared with 

the microbiota of day old chicks tested before starting the feeding trial. The results obtained in day 

old chicks (i.e., 1 d), in chicks fed with the basal diet (control group, CON) and in chicks fed with the 

basal diet supplemented with Lactobacillus acidophilus (treated group, LA group) are detailed in 

Table 3. In the microbiota composition of day-old chicks more than 95% of bacterial population was 

represented by Firmicutes (85.5%) and Proteobacteria (9.61%). Both these Phyla were largely 

represented also in the caeca of CON and LA birds at 41 days (Table 3). The relative frequency of 

abundance of Firmicutes in day-old chicks was significantly lower than that observed in both groups 

at 41 days (P=0.01), whereas Proteobacteria were significantly higher (P=0.0067).  

Within the phylum of Firmicutes, in day-old chicks Bacilli was the most abundant class, followed by 

Clostridia. On the contrary, at 41 days Clostridia represented the most abundant class in both LA and 

CON groups (70.8 and 70.5% respectively) followed by Bacilli, presenting a relative frequency of 

abundance of 20.7 and 18.9%, respectively. The mean relative abundances of Clostridia and Bacilli 

in the birds at the end of the rearing period were significantly higher (P=0.0086) and lower (P=0.0094) 

in comparison to those of one day-old chicks (Table 3). In day-old chicks, as well as LA and CON 

groups, Gammaproteobacteria was the most representative class of the Proteobacteria phylum. This 

class was the only one significantly higher in day-old chicks in comparison to CON and LA group at 

41 days of age (P=0.015 and P=0.017 respectively). Moreover, in day-old chicks Enterobacteriaceae 

was the most represented family (7.63%) in comparison to the birds at 41 days, where the relative 

abundances of the same family were as low as 0.77 and 0.84% in the CON and LA groups, 

respectively (Table 3). Within the Bacilli class, the most represented family in day-old chicks was 

objeceae (33.5%), followed by Enterococcaceae (3.72%), Streptococcaceae (1.79%) and Bacillaceae 

(1.17%) (Table 3). This distribution was similar in CON and LA birds at 41 days, except for 

Bacillaceae and Paenibacillaceae, representing the second most abundant families in CON and LA 

birds at 41 days, respectively. 
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Table 3. Mean relative frequency of abundance (%) of Phyla, Classes and Families of caecum bacteria in day-old and 41 day-old chickens untreated 

(CON) and treated with L. acidophilus (LA). 

Phylum Class Family   1 d CON 41 d LA 41 d 

Firmicutes     85.85 93.93 92.14 

  Bacilli   43.55 20.72 18.91 

    Bacillaceae 1.17 1.12 0.81 

    Paenibacillaceae 0.18 0.49 0.95 

    Staphylococcaceae 0.93 0.22 0.18 

    Enterococcaceae 3.72 0.50 0.37 

    Lactobacillaceae 33.45 17.22 15.62 

    Streptococcaceae 1.79 0.44 0.32 

  Clostridia   41.92 70.51 70.79 

    Clostridiaceae 12.28 11.89 14.30 

    Eubacteriaceae 3.47 3.87 3.73 

    Lachnospiraceae 13.25 14.39 17.07 

    Peptococcaceae 0.18 0.60 0.43 

    Peptostreptococcaceae 1.18 3.89 3.39 

    Ruminococcaceae 6.8 29.53 26.27 

  Erysipelotrichi   0.37 2.21 1.83 

  Negativicutes  0 0.47 0.60 

Proteobacteria     9.61 1.74 2.10 

  Alphaproteobacteria   0.49 0.57 0.66 

  Betaproteobacteria   0.18 0.10 0.10 

  Deltaproteobacteria   0.18 0.27 0.48 

  Gammaproteobacteria   8.74 0.77 0.84 

  Enterobacteriaceae 7.63 0.62 0.70 

Actinobacteria     1.6 0.92 1.43 

Bacteroidetes     0.18 0.35 0.29 

Tenericutes     1.42 1.18 1.47 
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Comparing the abundance of the top five classes between chickens belonging to the same group 

chicken ID 1 and 3 showed a percentage of abundance of Gammaproteobacteria lower in comparison 

to the other day one chicks (i.e., 9.91 and 10.03 vs 36.47 and 44.70%) (Figure 2). The decrease in 

Gammaproteobacteria corresponded to a higher abundance of Clostridia (55.81 and 67.70% 

respectively). On the contrary, Chicken ID 4 showed the highest abundance of Gammaproteobacteria 

(44.70%) and the lowest abundance of Clostridia (26.88%) in comparison with the other day old 

chicks.   At 41 days, the percentage of abundance of the top five classes was quite similar between 

both groups of chickens belonging to the CON and LA group. However, chicken ID 12 showed a 

higher percentage of abundance of Bacilli and a lower abundance of Clostridia in comparison to the 

other LA chickens (Figure 2).  

 

Figure 2. Mean relative frequency of abundance (% abundance) of most represented bacterial classes 

in each of the 14 chickens tested (Day 1: chicken ID 1-4; Control 41 days: chicken ID 5-9; Treated 

41 days: chicken ID 10-14). 
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In comparison to day-old chicks, Lactobacillaceae, Enterococcaceae and Streptococcaceae decreased 

significantly in both CON (i.e., P=0.023, P=0.042 and P=0.01, respectively) and LA groups (i.e. 

P=0.031, P=0.013, P=0.002, respectively) at 41 d. Lachanospiraceae was the most represented family 

identified within the Clostridia class in one-day old chicks (13.25%). On the contrary, in CON and 

LA at 41 days Ruminococcaceae was the most represented family (29.53 and 26.27%, respectively) 

and showed a relative frequency of abundance significantly higher than in day-old chicks (P=0.00044 

and P=0.0107 for CON and LA, respectively). At the end of the rearing period Lachanospiraceae 

were significantly higher in LA birds in comparison to CON (17.07 vs 14.39; P=0.036) and the same 

trend was observed for Clostridiaceae (14.30 vs 11.89%; P=0.074) (Table 3).  

Overall, among the first 30 bacterial species identified in day-old chicks the most represented species 

were Lactobacillus johnsonii, Lactobacillus crispatus, Escherichia coli, Ruminococcus torques, 

Lactobacillus helveticus, Lactobacillus gasseri, Ruminococcus obeum, Ruminococcaceae bacterium 

D16, Clostrifium hylemonae, Eubacterium limosum (Table 4). At 41 days, the most represented 

species in CON group were Faecalibacterium prausnitzii, Lactobacillus crispatus, Ruminococcus 

torques, Subdoligranulum variabile, Ruminococcaceae bacterium D16, Lactobacillus johnsonii, 

Pseudoflavonifractor capillosus, Ruminococcus obeum, Clostridium difficile and Blautia 

hydrogenotrophica, whereas in LA group they were Faecalibacterium prausnitzii, Lactobacillus 

johnsonii, Ruminococcus obeum, Subdoligranulum variabile, Ruminococcus torques, 

Ruminococcaceae bacterium D16, Lactobacillus reuteri, Lactobacillus crispatus, Blautia 

hydrogenotrophica and Clostrium leptum (Table 4).  
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Table 4. Mean relative frequency of abundance (%) of the 30 most representative species (MRS) of caecum bacteria in day-old and 41 day-old 

chickens untreated (CON) and treated with L. acidophilus (LA). 

MRS Species 1 d Mean Species CON 41 d Mean Species LA 41 d Mean 

1 Lactobacillus johnsonii 11.36 Faecalibacterium prausnitzii 17.35 Faecalibacterium prausnitzii 14.00 

2 Lactobacillus crispatus 6.14 Lactobacillus crispatus 5.62 Lactobacillus johnsonii 4.17 

3 Escherichia coli 4.80 Ruminococcus torques 4.41 Ruminococcus obeum 3.76 

4 Ruminococcus torques 3.80 Subdoligranulum variabile 3.26 Subdoligranulum variabile 2.99 

5 Lactobacillus helveticus 2.94 Ruminococcaceae bacterium D16 3.10 Ruminococcus torques 2.86 

6 Lactobacillus gasseri 2.73 Lactobacillus johnsonii 2.44 Ruminococcaceae bacterium D16 2.73 

7 Ruminococcus obeum 1.98 Pseudoflavonifractor capillosus 2.05 Lactobacillus reuteri 2.44 

8 Ruminococcaceae bacterium D16 1.98 Ruminococcus obeum 1.68 Lactobacillus crispatus 2.12 

9 Clostridium hylemonae 1.85 Clostridium difficile 1.59 Blautia hydrogenotrophica 1.62 

10 Eubacterium limosum 1.80 Blautia hydrogenotrophica 1.38 Clostridium leptum 1.62 

11 Clostridium bolteae 1.74 butyrate-producing bacterium SM4/1 1.30 Pseudoflavonifractor capillosus 1.54 

12 Lactobacillus vaginalis 1.69 Clostridium leptum 1.27 Blautia sp. Ser8 1.31 

13 Lactobacillus reuteri 1.68 Lactobacillus reuteri 1.23 Ruminococcus bromii 1.29 

14 Enterococcus faecalis 1.48 Lactobacillus acidophilus 1.18 Clostridium difficile 1.29 

15 Shigella boydii 1.43 Ruminococcus bromii 1.11 Clostridium clostridioforme 1.29 

16 Enterococcus faecium 1.32 Ruminococcus albus 1.06 Clostridium bolteae 1.16 

17 Clostridium asparagiforme 1.30 Lactobacillus vaginalis 1.05 butyrate-producing bacterium SM4/1 1.03 

18 Lactobacillus delbrueckii 1.30 Lactobacillus helveticus 1.02 Ruminococcus flavefaciens 0.94 

19 Ruminococcus lactaris 1.18 Ruminococcus flavefaciens 0.90 Lactobacillus helveticus 0.92 

20 butyrate-producing bacterium SL7/1 1.11 Lactobacillus agilis 0.87 Lactobacillus agilis 0.90 

21 Granulicatella adiacens 0.93 butyrate-producing bacterium SL7/1 0.84 Ruminococcus gnavus 0.90 

22 Blautia hydrogenotrophica 0.93 Clostridium bartlettii 0.84 Clostridium scindens 0.89 

23 Clostridium sphenoides 0.93 Ruminococcus gnavus 0.83 butyrate-producing bacterium SL7/1 0.88 

24 Enterococcus pseudoavium 0.92 Anaerotruncus colihominis 0.81 Ruminococcus albus 0.86 

25 Lactobacillus acidophilus 0.87 Butyricicoccus pullicaecorum 0.81 Clostridium saccharolyticum 0.84 

26 Faecalibacterium prausnitzii 0.87 Clostridium bolteae 0.80 Lactobacillus vaginalis 0.82 

27 Pseudoflavonifractor capillosus 0.87 Eubacterium hallii 0.76 Lactobacillus acidophilus 0.78 

28 Lactobacillus plantarum 0.87 Blautia sp. Ser8 0.74 Roseburia intestinalis 0.77 

29 Clostridium scindens 0.80 Dorea formicigenerans 0.68 Anaerotruncus colihominis 0.70 

30 butyrate-producing bacterium SM4/1 0.80 Clostridium clostridioforme 0.66 Blautia hansenii 0.65 
1MRS: most represented species 
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In relation to the bacterial species significantly different among the tested groups, the relative 

frequency of abundance of Lactobacillus crispatus was significantly higher in day-old chicks in 

comparison to LA, whereas Ruminococcus lactaris was significantly higher in day-old chicks in 

comparison to CON at 41 days. The species Faecalibacterium prausnitzii and Subdoligranulum 

variabile showed a significantly higher relative frequency of abundance in LA and CON birds in 

comparison to day-old chicks. On the contrary, all the other species were significantly higher in day-

old chicks in comparison to both LA and CON groups (Table 5).  

Table 5. Statistically significant differences between means of relative frequency of abundance (%) 

of caecum bacterial species in day-old and 41 day-old chickens untreated (CON) and treated with L. 

acidophilus (LA). 

 

 

 

1 d 

CON  

41 d 

LA 

41 d 

1 d vs 

CON 41 d 

1 d vs 

LA 41 d 

Species Mean P-values 

Lactobacillus johnsonii 11.36 2.44 4.17 0.0088 0.0045 

Lactobacillus crispatus 6.14 - 2.12 0.005 0.0049 

Escherichia coli 4.80 0.40 - 0.0165 0.022 

Lactobacillus gasseri 2.73 0.37 0.45 0.0058 0.0079 

Clostridium bolteae 1.74 0.80 1.16 0.0032 0.039 

Shigella boydii 1.43 0.03 0.03 0.0006 0.0009 

Lactobacillus delbrueckii 1.30 0.23 0.28 0.0191 0.028 

Ruminococcus lactaris 1.18 0.17 - 0.0458 0.106 

Faecalibacterium 

prausnitzii 0.87 17.35 

 

14.00 3.57E-05 0.0005 

Subdoligranulum variabile 0.62 3.26 2.99 0.0025 0.0034 
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Overall, among all the bacterial species identified in CON and LA groups at 41 days those showing 

a significantly higher relative frequency of abundance in LA birds were Ruminococcus obeum, 

Clostridium clostridioforme, Roseburia intestinalis, Lachnospiraceae bacterium 14-2T and 

Coprococcus eutactus. On the contrary, Clostridium indolis and Ruminococcus torques were 

significantly higher in CON at 41 days (Figure 3).  

 

Figure 3. Bacterial species resulting significantly different in chickens treated with L. acidophilus 

(Treated) in comparison to the untreated birds (Control) at 41 days. 

 

 

 

3.1.3.3 Caeca metabolic genes composition  

The mean relative abundance of the KEGG pathways related to metabolism and genetic information 

processing in day-old chicks corresponded to 20.9 and 16.2%, respectively. These values were 

significantly lower than those detected at 41 days in both CON and LA groups (53.8 vs 55.8% and 

25.6 vs 25.0%, respectively) (Figure 4). On the contrary, the environmental information processing 

and cellular processes pathways were significantly higher in day-old chicks. 
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Figure 4. Mean relative frequency of abundance (% abundance) of the KEGG pathways in caeca of 

Day 1 chickens (Day 1) and in ceca of chickens treated with L. acidophilus (Treated) in comparison 

to the untreated birds (Control) at 41 days.  

 

 

 

In relation to the specific metabolism pathway, day-old chickens showed relative frequencies of the 

aminoacid and carbohydrate metabolisms significantly lower (4.54 and 3.55%, P<0.001) of those 

detected in both LA and CON groups (19.8 and 18.6%; 16.2 and 16.1%, respectively) (Figure 5). The 

biosynthesis of other secondary metabolites was the only metabolism pathway significantly higher in 

LA than CON birds (1.27 vs 1.12% respectively; P<0.012) at 41 days (Figure 5).  
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Figure 5. Mean relative frequency of abundance (% abundance) of the KEGG in caeca of day 1 

chickens (Day 1) and in ceca of chickens treated with L. acidophilus (Treated) in comparison to the 

untreated birds (Control) at 41 days. 

 

 

Overall, in terms of mean relative frequency of abundance, the top 20 metabolic functions identified 

using the KEGG database are reported in Table 6. 
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Table 6. Mean relative frequency of abundance (%) of the top 20 metabolic functions identified in caeca of day-old and 41 day-old chickens untreated 

(CON) and treated with L. acidophilus (LA) by using KEGG database. 

 

Metabolic functions 1 d CON 41 d LA 41 d 

 Mean SD Mean SD Mean SD 

uvrA; excinuclease ABC subunit A 0.06 0.020 0.95 0.09 1.06 0.08 

gpmA. PGAM; 2.3-bisphosphoglycerate-dependent phosphoglycerate mutase [EC:5.4.2.1] 0.04 0.010 0.49 0.03 0.48 0.06 

LARS. leuS; leucyl-tRNA synthetase [EC:6.1.1.4] 0.10 0.020 0.48 0.05 0.48 0.09 

ABC-2.AB.A; antibiotic transport system ATP-binding protein 0.03 0.010 0.54 0.08 0.49 0.06 

ppdK; pyruvate.orthophosphate dikinase [EC:2.7.9.1] 0.03 0.007 0.5 0.04 0.49 0.06 

E2.3.1.54. pflD; formate C-acetyltransferase [EC:2.3.1.54] 0.03 0.007 0.47 0.05 0.50 0.08 

glnA; glutamine synthetase [EC:6.3.1.2] 0.06 0.020 0.51 0.03 0.53 0.06 

uvrB; excinuclease ABC subunit B 0.02 0.010 0.52 0.03 0.53 0.06 

DPO3A1. dnaE; DNA polymerase III subunit alpha [EC:2.7.7.7] 0.03 0.020 0.53 0.02 0.56 0.06 

VARS. valS; valyl-tRNA synthetase [EC:6.1.1.9] 0.05 0.009 0.58 0.04 0.58 0.06 

DPO3A2. polC; DNA polymerase III subunit alpha. Gram-positive type [EC:2.7.7.7] 0.03 0.010 0.6 0.07 0.58 0.13 

dnaK; molecular chaperone DnaK 0.06 0.020 0.62 0.04 0.64 0.05 

secA; preprotein translocase subunit SecA 0.03 0.010 0.66 0.05 0.64 0.06 

cbiO; cobalt/nickel transport system ATP-binding protein 0.07 0.030 0.7 0.09 0.65 0.08 

IARS. ileS; isoleucyl-tRNA synthetase [EC:6.1.1.5] 0.07 0.010 0.66 0.02 0.66 0.11 

E6.3.5.3. purL; phosphoribosylformylglycinamidine synthase [EC:6.3.5.3] 0.03 0.010 0.58 0.18 0.69 0.15 

nrdD; ribonucleoside-triphosphate reductase [EC:1.17.4.2] 0.04 0.020 0.74 0.10 0.74 0.12 

carB. CPA2; carbamoyl-phosphate synthase large subunit [EC:6.3.5.5] 0.04 0.010 0.78 0.03 0.82 0.09 

rpoC; DNA-directed RNA polymerase subunit beta' [EC:2.7.7.6] 0.05 0.002 1.03 0.13 0.95 0.14 

rpoB; DNA-directed RNA polymerase subunit beta [EC:2.7.7.6] 0.07 0.030 1.00 0.09 0.96 0.15 
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At the end of the rearing period the following functions resulted significantly higher in LA vs CON 

birds: bglX beta-glucosidase (EC:3.2.1.21), tkatkb transketolase EC:2.2.1.1, alpha-mannosidase 

(EC:3.2.1.24), ppk polyphosphate kinase (EC:2.7.4.1), oadB oxaloacetate decarboxylase beta subunit 

(EC: 4.1.1.3), glk glucokinase (EC:2.7.1.2), rpiB ribose 5-phosphate isomerase B (EC: 5.3.1.6), araA 

L.arabinose isomerase (EC:5.3.1.4) and npdA NAD-dependent deacetylase (EC:3.5.1.-). On the 

contrary sacA beta-fructofuranosidase (EC:3.3.1.26), malF:maltose/maltodextrin transport system 

permease, msmX, msmK; maltose/maltodextrine transport system ATP-binding protein, pyk; 

pyruvate kinase (EC:2.7.1.40) were higher in CON vs LA (Figure 6). 

 

Figure 6. Mean relative frequency of abundance (% abundance) of the KEGG functions showing P 

< 0.05 between chickens treated with L. acidophilus (Treated) in comparison to the untreated birds 

(Control) at 41 days. 
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The distribution of the 20 metabolic functions among the 14 tested chickens showed slight differences 

only among the four chickens collected from the day-old chicks (Figure 7). 

Figure 7. Mean relative frequency of abundance (% abundance) of the top 20 KEGG functions in 

each of the 14 chickens tested (Day 1: chicken ID 1-4; Control 41 days: chicken ID 5-9; Treated 41 

days: chicken ID 6-10). 
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3.2 Trial on metagenomic investigation of caeca of chickens fed with serine 

protease 

3.2.1 Background 

Proteins consist of polymers of amino acids. All amino acids commonly consist of an amino and 

carboxylic group, which interconnect the amino acids with peptide bonds that comprise the backbone 

of protein. Each amino acid has in addition a side-group, which has different chemical properties and 

is the basis for grouping the amino acids into hydrophobic, hydrophilic and aromatic groups. The 

specific composition and order of the amino acids in the protein, together with the three-dimensional 

structure, determines the properties of the final protein. The enzymes that degrade proteins, named 

proteases, are characterized by their ability to hydrolyse bonds before and after specific amino acids.  

The use of exogenous proteases in poultry diets has significantly improved during the last decade. 

The first commercial protease was introduced into the poultry feed market in the 1990s in 

combination with other enzymes, with the aim to increase the ileal digestibility of grain and oilseed 

meal based diets (Simbaya et al., 1996; Olukosi et al., 2015). Recently serine proteases were 

introduced into the market for broilers. This feed proteases are claimed to act through solubilisation 

and hydrolysis of dietary proteins, and to have an unspecific mode of action on a broad range of 

dietary proteins (Fru-Nji et al., 2011). 

Several proteases are now commercially available and their use has significantly increased because 

of the significant pressure on the price of soybean meal, which has motivated nutritionists to further 

evaluate proteases for their ability to improve protein and amino acid digestibility of diets (Olukosi 

et al.,2015). Romero et al (2013, 2014) in their studies proved this theory describing the possibility 

to increment in the ileal digestibility of protein and amino acids feeding the chickens with an 

exogenous protease supplementation in the feed. They fed the chickens with two different diets, a 

simple maize–soya diet and the same diet fortified with dried distiller’s grains with soluble and 

rapeseed meal. The results showed that a combination of xylanase, amylase and protease improved 

ileal digestibility of starch, fat and protein significantly, improving the birds’ ability to extract energy 

from the different diets. The accelerated intestinal digestion and the removal by feed enzymes of what 

would otherwise be apparently indigested however, could lead to a limitation of nutrients’ availability 

for the microbiota populations. 

In fact, proteases don’t just interact with dietary proteins hydrolysing them, they even have interaction 

with the digestions of other nutrients in the feed matrix and with the intestinal mucosa increasing the 

mucus layer’s thickness, but most importantly they interact with the microbes composing the 
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microbiota. Protease’s effect of increasing the availability of easily accessible proteins in different 

parts of intestinal lumen can lead to changes in the microbial communities’ composition (Olukosi et 

al.,2015; Scott et al., 2013). Even though the effect of exogenous proteases on ileal digestibility, on 

total tract retention of energy and protein and on growth performance of the chicken has been 

extensively studied, there are few information regarding their effect on chicken’s microbiota 

modulation. 

One of few studies that examined not only the correlation between the addition of protease to the feed 

and the growth performance but even the effect of protease on chicken gut microbiota’s composition 

was conducted by Torok et al. (2008). This study implied that the changes in the species composition 

may have contributed to improve the performances of chickens fed with the addition of feed enzymes 

in the diet. The authors used the terminal restriction fragment length polymorphism method to 

examine the changes in gut microbial communities in response to the addition of a product containing 

b-glucanase, xylanase and protease enzymes in a barley-based diet with the intent of improving the 

degradation of starch polysaccharides. Other than improvement of growth performance and energy 

utilisation related to the use of the product, the authors described a correlation between the dietary 

apparent metabolisable energy and microbial community composition within the ileum and caeca of 

the chickens, revealing distinct composition between the control and enzyme-supplemented birds. It 

was noticed that for both cereals, enzyme supplementation tended to decrease specific groups of 

bacteria and in particular, Coliforms and Enterobacteriaceae. This must be regarded as a beneficial 

property of using feed enzymes since the Enterobacteriaceae family, besides commensal coliform 

bacteria, also includes pathogens and zoonotic bacteria, like Salmonella.  

The main factors that drive the fitness and colonisation efficiency of the microbes in the vary intestinal 

compartments of the gastrointestinal tracts are the availability of suitable growth substrates. Ingested 

feed has a high concentration of readily available substrates which could potentially be utilised by a 

wide variety of bacteria and its availability decreases moving down the gastrointestinal tract. That is 

why bacteria in the lower intestine are often specialists in utilising feed components that are resistant 

to the endogenous digestive system of the host as non-starch polysaccharides, resistant starch or 

resistant proteins, while the small intestine is dominated by lactic acid bacteria which have complex 

nutrient requirements resembling those of the chicken host itself. For example, Lactobacilli are unable 

to synthesise amino acids for their anabolism and are highly dependent on amino acid availability in 

the growth environment (Apajalahti and Vienola, 2016). This need lead to a competition for amino 

acids between the chicken and host the microbiota, that is estimated to utilize from 3 to 6% of the 

protein. Exogenous protease can provide a competitive advantage to the chicken, offering less growth 
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potential for amino acid-dependent bacteria. So, it can be concluded that some positive populations 

of bacteria populations dependent on amino acid availability could be affected from the addition of 

protease enzymes in the chicken diet. However, on the other hand, some others non-beneficial 

populations, as some members of the Enterobacteriaceae family or putrefactive bacteria, could be 

reduced. In fact, ilea bypass protein is subject to fermentation by putrefactive bacteria in the caecum 

with the production of many harmful and toxic compounds, which in high concentrations may have 

adverse effects on chicken growth and performance. These compounds include amines, indoles, 

phenols, cresol and ammonia, which can all negatively affect host or cell health. All actions to reduce 

the amount of ilea bypass protein potentially also reduce production of toxic protein fermentation 

metabolites in the caecum. Enzymes which facilitate protein digestion in the upper intestine and 

soluble carbohydrates resistant to ilea digestion both reduce caeca putrefaction. 

Since the effects of the protease on chicken gut microbiota are still not clearly and completely defined 

due to the few numbers of study available, the present project aims to characterize the effect of a 

commercial protease, in particular a serine protease, on chicken gut microbiota’s composition and 

modulation. 

3.2.2 Methodology 

3.2.2.1 Animals and diet groups 

In the trials with serine protease, a total of 1755 one-day-old male chicks (Ross 308), obtained in 

September 2012 from the same breeder flock and hatching session, were used. The chicks were 

housed in a poultry house containing 27 pens of 6 m2 each. Before housing, birds were individually 

weighed and divided according to their live weight in 3 classes: 42-44 g, 45-47 g, 48-50 g. The groups 

were distributed in 27 pens at the stocking density of about 10 chicks/m2 (i.e., 65 birds/pen), while 

maintaining the same class distribution of live-weight of the population placing in each pen an equal 

number of chicks belonging to the three classes. The 27 pens were divided in three diet groups of 9 

replicates each. Pens labelled as group A hosted birds fed with the basal diet (i.e., diet A) (Table 7); 

those of group B, birds fed with basal diet - 7 % protein (i.e., diet B); those of group C, birds fed with 

basal diet -7 % protein and supplementation of 15000 units of serine protease (i.e., diet C). Feeds, 

formulated according to the three different diets, were supplied ad libitum in mash form throughout 

the experiment. The feeding program included four phases: starter (0-10 day), grower first period (11-

21 day), grower second period (22-35 day) and finisher (36-42 day). The experiment lasted at 42 

days, when birds reached the slaughter weight of about 2.8 kg of live weight. Photoperiod and 

temperature programs were set up according to the European welfare regulation 43/2007 (Europian 

Union, 2007). 
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Table 7. Basal diets composition (%) of the feed administered to the chicks belonging to the trial with serine protease 

 0-10 days 11-21 days 22-35 days 36-42 days 

 Diet A Diet B Diet C Diet A Diet B Diet C Diet A Diet B Diet C Diet A Diet B Diet C 

Corn 35.206 46.804 46.804 41.229 52.449 52.449 42.841 53.969 53.969 43.676 54.835 54.835 

Soybean meal  28.880 19.140 19.140 23.960 14.413 14.413 23.747 14.307 14.307 23.107 13.600 13.600 

Wheat 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 

Expanded soybean 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 

Vegetable oils  3.260 1.500 1.500 3.793 2.100 2.100 4.940 3.247 3.247 5.207 3.513 3.513 

Corn gluten meal 3.000 3.000 3.000 2.000 2.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000 

Dicalcium phosphate 1.480 1.600 1.600 1.200 1.320 1.320 0.760 0.893 0.893 0.547 0.667 0.667 

Calcium carbonate 0.980 0.960 0.960 0.733 0.707 0.707 0.653 0.627 0.627 0.653 0.640 0.640 

Lysine sulphate 0.484 0.434 0.434 0.449 0.445 0.445 0.332 0.349 0.349 0.305 0.337 0.337 

Dl-methionine 0.360 0.248 0.248 0.336 0.240 0.240 0.339 0.245 0.245 0.320 0.233 0.233 

Salt 0.260 0.260 0.260 0.260 0.160 0.160 0.240 0.193 0.193 0.240 0.187 0.187 

Sodium butyrate 0.120 0.120 0.120 0.120 0.120 0.120 0.000 0.000 0.000 0.000 0.000 0.000 

Thannins  0.120 0.120 0.120 0.120 0.120 0.120 0.153 0.153 0.153 0.153 0.153 0.153 

Threonine 0.110 0.074 0.074 0.099 0.079 0.079 0.103 0.085 0.085 0.081 0.072 0.072 

Sodium bicarbonate 0.100 0.100 0.100 0.100 0.247 0.247 0.100 0.160 0.160 0.100 0.173 0.173 

Choline chloride  0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.060 0.060 0.060 

Vitamin-mineral premix1 0.440 0.440 0.440 0.400 0.400 0.400 0.340 0.340 0.340 0.200 0.200 0.200 

Carotenoids 0.000 0.000 0.000 0.000 0.000 0.000 0.252 0.231 0.231 0.251 0.229 0.229 

Phytase 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 

Serine protease 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.000 0.100 

             

Dry matter 88.415 88.415 88.415 88.374 88.374 88.374 88.228 88.228 88.228 88.232 88.232 88.232 

Protein  20.501 20.501 20.501 18.020 18.020 18.020 16.832 18.832 16.832 16.531 16.531 16.531 

Lipid 5.507 5.507 5.507 6.212 6.212 6.212 7.358 7.358 7.358 7.643 7.643 7.643 

Fiber 2.546 2.546 2.546 2.482 2.482 2.482 2.476 2.476 2.476 2.465 2.465 2.465 

Ash 5.500 5.500 5.500 4.761 4.761 4.761 4.211 4.211 4.211 3.960 3.960 3.960 

ME (Kcal/kg) 3.070 3.070 3.070 3.160 3.160 3.160 3.240 3.240 3.240 3.275 3.275 3.275 
1Provided the following per kg of diet: vitamin A (retinyl acetate), 13,000 IU; vitamin D3 (cholecalciferol), 4,000 IU; vitamin E (DL-α_tocopheryl acetate), 80 IU; 

vitamin K (menadione sodium bisulfite), 3 mg; riboflavin, 6.0 mg; pantothenic acid, 6.0 mg; niacin, 20 mg; pyridoxine, 2 mg; folic acid, 0.5 mg; biotin, 0.10 mg; 

thiamine, 2.5 mg; vitamin B12 20 μg; Mn, 100 mg; Zn, 85 mg; Fe, 30 mg; Cu, 10 mg; I, 1.5 mg; Se, 0.2 mg; ethoxyquin, 100 mg. 
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3.2.2.2 Sample collection 

In the trial with serine protease five chickens were randomly selected and humanely euthanized at 

day 14 and 42 from each diet group (i.e., A, B and C). The entire gastrointestinal tract of each 

individual selected bird was dissected out and a small sample of caecum content was collected into 

collected from both caeca into 2 ml sterile plastic tubes and then stored at -80°C until DNA extraction. 

3.2.2.3 DNA extraction from the chicken caecum contents  

The DNA was extracted from each sample of caecum content using a bead-beating procedure 

(Danzeisen et al., 2011). Briefly, 0.25 g of cecal content were suspended in 1 ml lysis buffer (500 

mM NaCl, 50 mM Tris-Cl, pH 8.0, 50 mM EDTA, 4 % SDS) with MagNA Lyser Green Beads 

(Roche, Milan, Italy) and homogenized on the MagNA Lyser (Roche) for 25 secs at 6500 rpm. The 

samples were then heated at 70°C for 15 min, followed by centrifugation to separate the DNA from 

the bacterial cellular debris. This process was repeated with a second 300 µl aliquot of lysis buffer. 

The samples were then subjected to 10 M v/v ammonium acetate (Sigma, Milan, Italy) precipitation, 

followed by isopropanol (Sigma) precipitation and a 70% ethanol (Carlo Erba, Milan, Italy) wash and 

re-suspended in 100 ul 1X Tris-EDTA (Sigma). The samples were treated with DNase-free RNase 

(Roche) and incubated overnight at 4°C, before being processed through the QIAmp® DNA Stool 

Mini Kit (Qiagen, Milan, Italy) according to manufacturer’s directions with some modifications. 

Samples were measured on a BioSpectrometer® (Eppendorf, Milan, Italy) to assess DNA quantity 

and quality. 

3.2.2.4 Library preparation and metagenomic sequencing  

The DNA extracted from each sample were quantified on a BioSpectrometer® (Eppendorf, Milan, 

Italy) to assess DNA yield, in terms of quantity and quality. Moreover, DNA purity was assessed in 

terms of absence of contaminants according to value of the A260 / A280 nm ratio.  

The DNA extracted and assessed for quality and quantity was submitted to the library preparation 

procedure with the Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA). Nextera 

technology provides an input DNA fragmentation and transposase mediated ligation of oligo-

adapters, essentials to anchor the amplified DNA fragment (around 500 bp) to the sequencer flow cell 

and to amplify the insert DNA by PCR. Illumina’s preparation procedure was chosen because it 

improves traditional protocols by combining DNA fragmentation, end-repair, and adaptor-ligation 

into a single step using an engineered enzyme (Head et al., 2014). The PCR reaction also adds index 

(barcode) sequences. However, the use of an engineered enzyme makes this protocol very sensitive 

to the amount of DNA input compared with other fragmentation methods (Head et al., 2014). Since 

the ratio of transposase complexes to sample DNA is critical and the subsequent fragment size is also 
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dependent on the reaction efficiency DNA concentration was evaluated other than by 

BioSpectrometer (Eppendorf) even using fluorimetric analysis by Quant-iT™ PicoGreen® dsDNA 

Assay Kit (Invitrogen).  

In particular, according to the first quantification obtained through BioSpectrometer (Eppendorf), the 

DNA was brought to the concentration required (0.2 ng/µl) through others intermediate dilutions (i.e., 

25, 10 and 2 ng/µl) all quantified using Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen) on 

the Infinite 200 PRO (Tecan) instrument. All libraries have been validated accordingly to Illumina’s 

protocol. To determine the nanomolarity of each library, the concentration and average length of the 

DNA fragments have been checked through fluorimetric analysis by Quant-iT™ PicoGreen® dsDNA 

Assay Kit and through Chip DNA Hi Sensitivity analysis on Bioanalyzer 2100 (Agilent 

Technologies). Each library pool of 24 samples was adjusted to a micro molarity between 1.3 to 2 

(depending on the pool’s library with the lower molarity) to be sequenced. A total of 5 µl of each 

library (1.3-2 nM) were pooled together. Each pool of 24 libraries was load into a flow cell of glass 

slide. Each fragment of DNA library was anchored on complementary oligo-adapters placed on the 

flow cell and clonally amplified through a solid-phase amplification called bridge amplification and 

then sequenced by synthesis. Whole genome sequencing was performed using the HiScanSQ 

sequencer (Illumina) at 100 bp in paired-end mode. Metagenomic sequencing yielded an average of 

6.841 million mapped reads/sample, with a Phread quality score always higher than 30. 

3.2.2.5 Sequences analysis  

The metagenomic sequences belonging to the serine protease trial were analysed using the MG-RAST 

pipeline. The MG-RAST pipeline (Meyer et al., 2008) (metagenomics.anl.gov) was used to identify 

the relative abundances of bacterial taxa performing a BLAST similarity search for the longest cluster 

representative against the M5rna database, integrating SILVA (Pruesse et al., 2007), Greengenes (De 

Santis et al., 2006) and RDP (Cole et al., 2003). Moreover, the sequenced reads were assigned to 

functional groups using the Kyoto Encyclopedia of Genes and Genome (KEGG) database 

(www.genome.jp/kegg/) (Kanehisa, 2002) and the percentage of abundance was calculated. For both 

taxonomic and functional classification, the following parameters were set: maximum e-value 1e-5, 

minimum identity 60%, and minimum alignment length 15 bp.  

The metagenomic sequences belonging to the serine protease trial were deposited in MG-RAST 

(http://metagenomics.anl.gov/) under project label as “protease” and metagenome ID mgm 

4624489.3 to mgm 4624518.3. 
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3.2.2.6 Statistical analysis  

The results regarding the relative abundances of bacterial taxa and functional groups were compared 

through the White’s non-parametric t-test, using Statistical Analysis of Metagenomic profile Software 

v 2.0.9 (STAMP) (Parks et al., 2014). After removing non-bacterial species, taxa abundances obtained 

from MG-RAST were normalized so that each sample total abundance resulted 1. The samples 

heterogeneity was investigated both in terms of alpha and beta diversity. 

Alpha diversity was computed according to Pielou's definition 

 𝛼 =
−∑ 𝑝𝑖

𝑆
𝑖=1 𝑙𝑛(𝑝𝑖)

𝑙𝑛(𝑆)
  

(Pielou, 1966), where pi is the proportion of the i-th species. This is a normalized index related to 

Shannon entropy, that ranges from 0, when all individuals belong to the same species, corresponding 

to minimum diversity, to 1, when each individual belongs to a different species, corresponding to 

maximum diversity. Beta diversity, that refers to the compositional difference between samples, was 

computed in the form of Bray-Curtis distance with pdist function of scipy module (0.17.0). Principal 

Coordinate Analysis (PCoA) was computed with python module skbio 0.4.2 to represent the samples 

in a 2D space that satisfies the Bray-Curtis distances. 

In order to assess which species mostly contribute to the samples Bray-Curtis distances, SIMilarity 

PERcentages analysis (SIMPER) (Clarke et al., 1993) was computed with R package vegan 2.3-5, 

setting 100000 permutations. Species that contribute at least to 70% of the differences between groups 

were selected by SIMPER as important in explaining the beta diversities. Student t-test and 2-way 

Analysis Of Variance (ANOVA) were computed with scipy 0.17.0, after scaling the data, to compare 

taxas abundances and samples diversity and to evaluate the influence of time, diet and their 

combination on the microbiota composition. In order to determine a signature that characterizes the 

four diet groups, for each time point we considered those phyla that included at least 10% of the 

species that were found to be significantly different in at least one pairwise comparison (p-value < 

0.05). Moreover, species with an average abundance in the four groups less than 0.025% were 

discarded. We propose to use as signature the set of selected species that are also important in 

explaining the beta diversities, that is species that were found to be important also by SIMPER, as 

previously defined. All the statistical analyses were performed in python 2.7 and R 3.3.0. 
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3.2.3 Results 

3.2.3.1 Sequences obtained 

All samples with a A260 / A280 nm ratio value out of the range between 1.7 and 1.9 were excluded 

from the analysis and the DNA was extracted again from the original sample. The quantity and quality 

parameters of the DNA samples sequenced in this project along with corresponding library 

parameters and reads achieved for each individual sample are described in Table 8.  
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Table 8. Parameters of the samples and libraries sequenced in the project.   

Sample Library 
ID Conc (ng/ml) Ratio 260/280 nm Conc (ng/µl) Fragment lenght mM Reads (n) 

XT_10 90.7 1.78 4.21 445 14.56 6188550 
XT_12 116.6 1.72 3.99 1072 5.72 6773629 
XT_14 20.1 1.78 6.86 854 12.36 6449097 
XT_15 97.7 1.7 6.56 943 10.67 7508957 
XT_17 107.7 1.82 5.73 929 9.49 6432429 
XT_18 74 1.80 5.88 904 10 7050352 
XT_20 96 1.89 6.98 962 11.17 7184616 
XT_21 25.6 1.89 6.26 612 15.74 6208473 
XT_22 52 178 5.39 403 20.56 7088568 
XT_23 13.7 2.06 3.84 729 8.10 4804282 
XT_24 78.6 1.90 5.65 472 18.42 4813726 
XT_25 540 1.83 3.61 631 8.82 5661233 
XT_26 406 1.84 7.45 894 12.82 5683528 
XT_27 394.8 1.82 4.50 520 13.31 6424469 
XT_28 501.2 1.85 2.15 636 5.21 5447944 
XT_29 305.6 1.85 2.27 614 5.69 6893134 
XT_30 383.3 1.85 4.50 530 13.08 6719001 
XT_31 286 1.86 4.61 628 11.31 6389432 
XT_32 125.1 1.88 2.45 728 5.19 6267990 
XT_33 255.2 1.87 2.32 634 5.63 6219556 
XT_34 189.3 1.86 2.55 486 8.07 7544966 
XT_3 64.3 1.78 6.07 671 13.90 6913357 

XT_41  79.4 1.82  7.40 493 23.09 4280630 
XT_42  115.8 1.82  3.82 929 6.32 5398553 
XT_43 70  1.80  7.20 608 18.22 4581356 
XT_44 113.9  1.81  6.53 831 12.09 5486244 
XT_5 120.7 1.75 7.37 477 23.78 5014363 
XT_6 47.6 1.78 7.37 408 29.16 4347928 
XT_7 83.7 1.80 6.02 487 19.02 4128956 
XT_9 136.1 1.8 6.59 853 6.45 5601013 
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3.2.3.2 Caeca microbiota composition  

In the trials with serine protease, the microbiota composition of the chicks fed with the basal diet 

(group A) were compared with those of chicks fed with basal diet - 7 % protein (group B) and those 

of birds fed with basal diet -7 % protein and supplementation of 15000 units of serine protease (group 

C).  The species diversity observed in microbiota colonizing the caecum contents of broilers fed with 

the different diets at 14 and 42 days, quantified by the Pielou alpha-diversity, was similar in all tested 

groups (Figure 8). 

 

 Figure 8. Pielou-alpha diversity calculated for the species colonising the caeca of the broilers fed 

with the different diets (i.e. A, B, C) at (A) 14 days and (B) 42 days. 

 

 

 

The Principal Coordinate Analysis (PCoA) plots (Figure 9), generated using the Bray-Curtis distance 

metric, confirmed that, despite the strong relationship between age of the birds and microbiota 

composition, the microbiota compositional diversity (measured by the Beta diversity parameter) did 

group samples belonging to diet C at family level, at 14 and 42 days (Figures 9 A, 9 B), but not at 

species level (Figure 9 C, 8 D).  
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Figure 9. PCoA plots generated using the Bray-Curtis distance metric showing the impact of age of 

the birds and diet on microbiota composition in terms families and species. (A) family 14 days; (B) 

family 42 days; (C) species 14 days; (D) species 42 days. 

 

 

At phylum level, Firmicutes accounted for up to 70% of the differences observed between all pairwise 

comparisons (i.e., diet vs time) at both 14 (Figure 10 A) and 42 (Figure 10 B) days. The additional 

phyla accounting for such difference were Actinobacteria and Proteobacteria at both sampling time, 

as well as Bacteroidetes at 42 days only (Figures 10 A and 10 B).  
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Figure 10. Phyla in charge of 70% of the Bray-Curtis dissimilarities in birds tested at (A) 14 and (B) 

42 days. 

 

 

At species level, Faecalibacterium prausnitzii was the most abundant species among those 

accounting for up to 70% of the differences observed at both 14 and 42 days within the phylum 

Firmicutes, followed by Subdoligranum variabile at 14 days (Figure 11 A) and Pseudoflavonifactor 

capillosus at 42 days (Figure 11 B). 

  



65 
 

Figure 11. Firmicutes species included in the first 70% of the Bray-Curtis dissimilarities in birds 

tested at (A) 14 and (B) 42 days. 

 

Bifidobacterium longum was the most abundant species among those accounting for up to 70% of the 

differences observed at both 14 (Figure 12 A) and 42 (Figures 12 B) days within the phylum 

Actinobacteria, followed by Bifidobacterium adolescentis at 14 days (Figure 12 A).  

Figure 12. Actinobacteria species included in the first 70% of the Bray-Curtis dissimilarities in 

birds tested at (A) 14 and (B) 42 days.  
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Escherichia coli was the most abundant species causing differences between pairwise comparisons 

at both sampling time within the phylum Proteobacteria, followed by Salmonella enterica and 

different species belonging to the genus Shigella at 14 (Figure 13 A) and by those species along with 

Burkholderiales bacterium 1_1_47, Parasitterella excrementihominis and Oxalobacter formigenes at 

42 days (Figure 13 B).  

 

Figure 13. Proteobacteria species included in the first 70% of the Bray-Curtis dissimilarities in 

birds tested at (A) 14 and (B) 42 days. 

 

 

Alistipes putredinis accounted for the majority of the differences observed at species level between 

pairwise comparisons at both 14 (Figure 14 A) and 42 (Figure 14 B) days within the phylum 

Bacteroidetes, followed by Alistipes shahii and Alistipes sp. HGB5 at 42 days (Figure 14 B).  
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Figure 14. Bacteroidetes species included in the first 70% of the Bray-Curtis dissimilarities in birds 

tested at (A) 14 and (B) 42 days 

 

Overall, the abundance of Faecalibacterium prausnitzii in chickens fed with the different diets did 

not significantly change at both 14 and 42 days. The same trend was observed for Escherichia coli at 

14 days. However, the abundance of E. coli in the caeca of birds fed with diet C at 42 days was 

significantly higher in comparison to groups A and B (Figure 15).  

 

Figure 15. Boxplots showing the distribution of Faecalibacterium prausnitzii at 14 (A) and 42 (B) 

days and the distribution of Escherichia coli at 14 (C) and 42 (D) days. 

 



68 
 

At both sampling time, in all tested diets, the most abundant class was represented by Clostridia, 

followed by Bacilli showing an abundance ≥ 0.592 in all tested groups (Figure 16 A). The class of 

Erysipelotrichi was stable at both sampling time in all tested diets (i.e., abundance ranging between 

0.026 and 0.037), whereas Gammaproteobacteria decreased and Bacteroidia increased in all tested 

groups between 14 and 42 days (Figure 16 A). However, at 14 days Gammaproteobacteria were 

significantly higher in group C fed with serine protease in comparison to the other groups. At family 

level, the most abundant groups were Clostridiaceae and Ruminococcaceae (Figure 16 B), followed 

by Lachnospiraceae, Eubacteriaceae and Lactobacillaceae. Clostridiaceae and Eubacteriaceae 

showed an abundance quite stable at both sampling times in all tested diets (i.e., abundance ranging 

between 0.173 and 0.192 and 0.050 and 0.053, respectively), whereas Ruminococcaceae increased 

over time in groups A and C. Lachnospiracea slightly decreased in all tested groups between 14 and 

42 days, whereas Lactobacillaceae decreased in groups A and C and increased in group B over time 

(Figure 16 B). 

 

Figure 16. (A) Classes and (B) families belonging to the 10 most abundant phyla colonising the 

birds fed with each diet at each sampling time. 

 



69 
 

3.2.3.3 Impact of diet, age and their interactions on microbiota composition 

The ANOVA two-way analysis, assessing the impact of diet, time and their interaction on abundance 

of phyla colonising the caeca, showed that abundances of Actinobacteria and Proteobacteria were 

mainly affected by the diet, as well as interaction between diet and time. On the contrary, abundances 

of Firmicutes and Cyanobacteria were mainly affected by age of the birds (Figure 17).  

Figure 17. Phyla showing an abundance significantly changed according to sampling time, diet or 

their interaction assessed using the ANOVA two way. The x-axis shows the proportion of 

significantly changed species belonging to the phyla shown in the y-axis. 

 

Overall, the number of species with significantly changed abundances in ceca of broilers fed with diet 

B in comparison to the control diet was similar at both sampling time (i.e., 43 and 49 species at 14 

and 42 days, respectively). At 14 days, most of the species with increased abundances in comparison 

to the control diet belonged to the phyla Actinobacteria, Cyanobacteria and Planctomycetes (Figure 

18 A), whereas most of the species with decreased abundances belonged to the phyla Bacteroidetes, 

Spirochetes and Thermotogae (Figure 18 B).  
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Figure 18. Phylum classification of the species with significantly (A) increased and (B) decreased 

abundance levels in the comparisons between diets B and C with the control diet (T-test) at 14 days. 

 

At 42 days, most of the species with increased abundances belonged to the phyla Actinobacteria, 

Firmicutes and Proteobacteria (Figure 19 A).  

 

Figure 19. Phylum classification of the species with significantly (A) increased and (B) decreased 

abundance levels in the comparison between diets B and C with the control diet (T-test) at 42 days. 

 



71 
 

 

Overall, the number of species with significantly changed abundances in ceca of broilers fed with diet 

B in comparison to the control diet was similar at both sampling time (i.e., 43 and 49 species at 14 

and 42 days, respectively). At 14 days, most of the species with increased abundances in comparison 

to the control diet belonged to the phyla Actinobacteria, Cyanobacteria and Planctomycetes (Figure 

20 A), whereas most of the species with decreased abundances belonged to the phyla Bacteroidetes, 

Spirochetes and Thermotogae (Figure 20 B).  

 

Figure 20. Proportion of species that differ between treatments and control in each phylum at 14 

days. (A) Proportion of increased species; (B) Proportion of decreased species. 

 

At 42 days, most of the species with increased abundances belonged to the phyla Actinobacteria, 

Firmicutes and Proteobacteria (Figure 21 A).  
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Figure 21. Proportion of species that differ between treatments and control in each phylum at 42 

days. (A) Proportion of increased species; (B) Proportion of decreased species. 

 

 

The number of species with significantly increased abundances in the ceca of broilers fed with the 

serine protease in comparison to the control was higher at 42 than 14 days (i.e., 76 vs 7, respectively), 

whereas the number of species with decreased abundances was higher a 14 than 42 days (i.e., 97 vs 

12, respectively) (Figure 22).  
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Figure 22. Number of species significantly changed in the comparison between diets B and C with 

the control diet (T-test) at (A) 14 days and (B) 42 days. Black: number of species with increased 

abundance levels; grey: number of species with decreased abundance levels. 

 

 

 

At 14 days, the species with significantly increased abundances belonged to the phyla Actinobacteria, 

Firmicutes, and Proteobacteria, whereas those with significantly decreased abundances belonged to 

the phyla Bacteroidetes, Chlorobi, Cyanobacetria, Deinococcus-Thermus, Fusobacteria, Tenericutes, 

and Thermotogae (Figure 20).  

At 42 days, the species with increased abundances belonged to the phyla Bacteroidetes, Chlamydiae, 

Chlorobi, Cyanobacetria, Fusobacteria, Nitrospirae, Planctomycetes, Tenericutes, and 

Verrucomicrobia, whereas those with decreased abundances belonged to phyla Actinobacteria, 

Firmicutes, and Proteobacteria (Figure 21 B). The classification at the class level of the significantly 

increased and decreased groups are shown in Figure 23 and 24. 
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Figure 23. Class classification of the species with significantly different abundance levels in the 

comparison between diets B and C with the control diet at 14 days. (A) Increased species; (B) 

Decreased species. 

 

Figure 24.  Class classification of the species with significantly different abundance levels in the 

comparison between diets B and C with the control diet at 42 days. (A) Increased species; (B) 

Decreased species. 
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3.2.3.4 Identification of signature species 

At each sampling time, the species showing in the t test a p value < 0.05 in comparison to the control 

(i.e., diet A) and an average abundance ≥ 0.025% were considered signature species. At 14 days, five 

signature species were identified in the caeca of broilers fed with the diet containing -7% protein (i.e., 

diet B) (Table 9). All those species belonged to the phylum Firmicutes; Eubacterium cylindroides 

was significantly higher in comparison to the control, whereas the other signature species were 

significantly lower (Table 9). All signature species identified in the group fed with -7% protein and 

serine proteases, belonging to Bacteroidetes and Proteobacteria, were significantly lower in 

comparison to the control diet. At the end of the rearing period, the diet with -7% protein showed a 

significantly lower abundance of Bacillus licheniformis, Lactococcus lactis and Lactobacillus 

ruminis in comparison to the control diet. When serine protease was added in the same kind of diet 

(i.e., -7% protein) the abundance of Solobacterium moorei, Lactobacillus lactis, Turicibacter sp. 

HGF1 and Acholeplasma laidlawii were significantly higher, whereas those of Subdoligranum 

variabile and Lactobacillus delbrueckii decreased in comparison to the control diet (Table 9).  
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Table 9. Species assessed as signature, identified in the caeca of broilers fed with diets B and C with p values < 0.05 in comparison to group A and 

with an average abundance ≥ 0.025% within the three most abundant phyla colonising the birds at 14 and 42 days. 

Phylum Species T-test p-value SIMPER Increase(+) /Decrease (-) 

Diet B 14 days 

Firmicutes 

Lactobacillus salivarius 0.0368 0.5499 - 

Lactobacillus fermentum 0.0419 0.8324 - 

Eubacterium cylindroides 0.0451 0.8596 + 

Erysipelotrichaceae bacterium 3 1 53 0.0399 0.8998 - 

Lactobacillus brevis 0.0408 0.9033 - 

Diet C 14 days 

Bacteroidetes 

Prevotella ruminicola 0.0208 0.9439 - 

Eubacterium dolichum 0.0465 0.8344 - 

Erysipelotrichaceae bacterium 3 1 53 0.0190 0.8497 - 

Acidaminococcus fermentans 0.0374 0.8687 - 

Eubacterium biforme 0.0355 0.8885 - 

Syntrophomonas wolfei 0.0482 0.8937 - 

Pelotomaculum thermopropionicum 0.0487 0.9048 - 

Carboxydothermus hydrogenoformans 0.0414 0.9099 - 

Phascolarctobacterium succinatutens 0.0079 0.9364 - 

Thermoanaerobacter brockii 0.0495 0.9377 - 

Bacillus pumilus 0.0489 0.9422 - 

Candidatus Desulforudis audaxviator 0.0442 0.9515 - 

Proteobacteria 
Desulfuromonas acetoxidans 0.0451 0.9552 - 

Ralstonia solanacearum 0.0488 0.9710 - 

Diet B 42 days 

Firmicutes 

Bacillus licheniformis 0.0471 0.9192 - 

Lactococcus lactis 0.0471 0.9141 - 

Lactobacillus ruminis 0.0385 0.9023 - 

Diet C 42 days 

Firmicutes 

Subdoligranulum variabile 0.0311 0.3739 - 

Lactobacillus delbrueckii 0.0335 0.8158 - 

Solobacterium moorei 0.0405 0.8743 + 

Lactococcus lactis 0.0475 0.8918 + 

Turicibacter sp. HGF1 0.0368 0.8955 + 

Tenericutes Acholeplasma laidlawii 0.0389 0.8646 + 

SIMPER§ - ordered cumulative contribution to the observed dissimilarity between the diet and the control 
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3.2.3.5 Caeca metabolic genes composition  

The average abundances of level one metabolic and functional protein categories were similar among 

all tested groups, with the highest abundances of genes coding for carbohydrates metabolism, 

followed by genes for clustering-based subsystems (Figure 25).  

 

Figure 25. Heatmap showing the average relative abundance of metagenomic reads annotated to 

SEED Subsystems (Level 1). The columns represent the diet types at each sampling time, the rows 

represent the SEED subsystems (Level 1), and the colorbar represent the range of average relative 

abundance of reads annotated to each category. 

 

At 14 days, at level one functions, virulence, disease and defence genes, as well as cell wall and 

capsule genes, were higher in the ceca of broilers fed with serine protease in comparison to the ceca 

of broilers fed with -7% protein (Table 10). At the same sampling time, the main differences in 

abundances between level 2, level 3 and level function genes were identified in ceca of broilers 

belonging to groups B and C (Table 10). Moreover, the abundance of Protein secretion system Type 

VI (T6SS) was significantly higher in the ceca of broilers belonging to group B in comparison to the 

control.  
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Table 10. Pairwise t-test results on metabolic and functional protein categories at 14 days 

  
Comparison p-val mean A mean B mean C 

Level 1 - results with p-values <0.1 

Virulence, Disease and Defense (B, C) 0.0210 0.02254017 0.02158902 0.02466282 

Amino Acids and Derivatives (B, C) 0.0856 0.08447138 0.08992435 0.08461438 

Cell Wall and Capsule (B, C) 0.0998 0.04244985 0.04057576 0.04486254 

Level 2 - results with p-values <0.05 and abundance mean values ≥ 0.001 

Selenoproteins (A, C) 0.0059 0.00165232 0.00195313 0.00205538 

Sugar Phosphotransferase Systems, PTS (B, C) 0.0077 0.00244844 0.00228124 0.00304398 

D-tyrosyl-tRNA(Tyr) deacylase (EC 3.1.-.-) cluster (B, C) 0.0176 0.00022085 0.00019047 0.00021945 

Regulation of virulence (B, C) 0.0180 0.00218882 0.00204319 0.00223771 

Electron accepting reactions (A, C) 0.0201 0.00461309 0.00465974 0.00578723 

Sugar alcohols (B, C) 0.0223 0.00729531 0.00692066 0.00842076 

Electron accepting reactions (B, C) 0.0251 0.00461309 0.00465974 0.00578723 

Protein secretion system, Type VI (A, B) 0.0286 0.00103303 0.00124519 0.00122071 

Resistance to antibiotics and toxic compounds (B, C) 0.0301 0.01564567 0.01445885 0.01687134 

Pyridoxine (B, C) 0.0418 0.00237646 0.00249819 0.00218212 

Polysaccharides (B, C) 0.0439 0.00490108 0.00524122 0.00426978 

Level 3 – results with p-values <0.05 and abundance mean values ≥ 0.0005 

pVir Plasmid of Campylobacter (B, C) 0.0018 0.00111436 0.00132148 0.00101498 

At4g38090 (B, C) 0.0021 0.00059273 0.00046618 0.00068250 

Sex pheromones in Enterococcus faecalis and other Firmicutes (B, C) 0.0055 0.00093652 0.00068214 0.00120058 

Beta-lactamase (B, C) 0.0066 0.00063350 0.00051703 0.00083367 

Galactose-inducible PTS (B, C) 0.0088 0.00062466 0.00056931 0.00085701 

rRNA modification Bacteria (A, B) 0.0095 0.00361442 0.00334855 0.00337693 

LMPTP YfkJ cluster (B, C) 0.0148 0.00011742 7.67 10-5 0.00013129 

Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate (B, C) 0.0160 0.00312521 0.00300561 0.00338952 

Glycogen metabolism cluster (B, C) 0.0172 0.00328702 0.00370479 0.00288228 

Transport of Iron (B, C) 0.0188 0.00173977 0.00191605 0.00153969 

YgfZ (B, C) 0.0195 0.01079670 0.01117850 0.01037185 

Glycerol and Glycerol-3-phosphate Uptake and Utilization (B, C) 0.0212 0.00201134 0.00199045 0.00240512 

Fructose and Mannose Inducible PTS (B, C) 0.0222 0.00059605 0.00058210 0.00083710 

Histidine Biosynthesis (B, C) 0.0225 0.00236479 0.00261008 0.00192856 

Polyadenylation bacterial (B, C) 0.0230 0.00120542 0.00128014 0.00103187 

Arginine Biosynthesis extended (B, C) 0.0239 0.00362080 0.00393469 0.00304773 

rRNA modification Bacteria (A, C) 0.0240 0.00361442 0.00334855 0.00337693 

Glycogen metabolism (B, C) 0.0248 0.00418025 0.00455074 0.00360966 

CBSS-203122.12.peg.188 (B, C) 0.0250 0.00090132 0.00099590 0.00078267 

Campylobacter Iron Metabolism (B, C) 0.0252 0.00173004 0.00189640 0.00147344 

CBSS-262719.3.peg.410 (A, B) 0.0271 0.00133850 0.00110650 0.00120509 

Type VI secretion systems (A, B) 0.0286 0.00103303 0.00124519 0.00122071 

Terminal cytochrome oxidases (A, C) 0.0291 0.00153680 0.00155148 0.00193620 

Staphylococcus aureus hypothetical repetitive gene loci (B, C) 0.0291 0.00136710 0.00135979 0.00158032 

ATP-dependent RNA helicases, bacterial (B, C) 0.0319 0.00062048 0.00052645 0.00070976 

Protein degradation (B, C) 0.0337 0.00086754 0.00084366 0.00108971 

Leucine Biosynthesis (B, C) 0.0374 0.00216641 0.00240628 0.00186562 
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Methylthiotransferases (A, C) 0.0374 0.00098375 0.00089894 0.00072909 

Succinate dehydrogenase (B, C) 0.0381 0.00070802 0.00048619 0.00064609 

Predicted secretion system W clustering with cell division 

proteins 

(A, C) 0.0394 0.00063271 0.00057492 0.00047790 

polyprenyl synthesis (B, C) 0.0400 0.00100794 0.00113698 0.00085796 

COG1836 (B, C) 0.0404 0.00074630 0.00077397 0.00065285 

Protein chaperones (B, C) 0.0407 0.00361011 0.00388526 0.00313795 

Terminal cytochrome oxidases (B, C) 0.0409 0.00153680 0.00155148 0.00193620 

Housecleaning nucleoside triphosphate pyrophosphatases (B, C) 0.0416 0.00060388 0.00051051 0.00059403 

Pyridoxin (Vitamin B6) Biosynthesis (B, C) 0.0418 0.00237646 0.00249819 0.00218212 

Ammonia assimilation (B, C) 0.0420 0.00374305 0.00430987 0.00360616 

Fructose and Mannose Inducible PTS (A, C) 0.0424 0.00059605 0.00058210 0.00083710 

Transcription factors cyanobacterial RpoD-like sigma factors (A, C) 0.0445 0.00080135 0.00073515 0.00056196 

RNA modification cluster (B, C) 0.0448 0.00070776 0.00063224 0.00074654 

Mannose Metabolism (A, C) 0.0451 0.00162792 0.00155888 0.00184369 

Phage capsid proteins (A, C) 0.0455 0.00060711 0.00070375 0.00092889 

Branched-Chain Amino Acid Biosynthesis (B, C) 0.0461 0.00511578 0.00564862 0.00457491 

USS-DB-7 (A, B) 0.0477 0.00099220 0.00120424 0.00107820 

Ethanolamine utilization (A, C) 0.0481 0.00190448 0.00198283 0.00220315 

CBSS-56780.10.peg.1536 (B, C) 0.0482 0.00059039 0.00061727 0.00054014 

RNA methylation (B, C) 0.0498 0.00341701 0.00327438 0.00353359 

Level functions – results with p-values <0.05 and abundance mean values ≥ 0.0002 

PTS system, ,mannose-specific IIB component (EC 2.7.1.69) (B, C) 0.0000 0.00020476 0.00014238 0.00036685 

PTS system, mannose-specific IIA component (EC 2.7.1.69) (B, C) 0.0003 0.00017017 0.00012239 0.00032328 

Mannose-6-phosphate isomerase (EC 5.3.1.8) (B, C) 0.0004 0.00042406 0.00027185 0.00043636 

Cold-shock DEAD-box protein A (B, C) 0.0007 0.00023546 0.00019995 0.00028155 

Cell division protein FtsA (B, C) 0.0017 0.00028104 0.00022496 0.00050602 

5, 10-methylenetetrahydrofolate reductase (EC 1.5.1.20) (A, C) 0.0018 0.00087568 0.00094374 0.00070525 

Oligopeptide ABC transporter, periplasmic oligopeptide-binding 

protein OppA (TC 3.A.1.5.1) 

(B, C) 0.0022 0.00115640 0.00094497 0.00163735 

D-serine/D-alanine/glycine transporter (B, C) 0.0029 0.00030117 0.00012210 0.00043357 

Maltose phosphorylase (EC 2.4.1.8) (B, C) 0.0030 0.00022293 0.00010109 0.00027986 

Chorismate synthase (EC 4.2.3.5) (B, C) 0.0030 0.00089952 0.00107742 0.00071337 

Trehalose phosphorylase (EC 2.4.1.64) (B, C) 0.0031 0.00044144 0.00019944 0.00054887 

2-C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase (EC 

4.6.1.12) 

(B, C) 0.0069 0.00053948 0.00066055 0.00044620 

GTP-binding protein HflX (B, C) 0.0073 0.00043417 0.00058593 0.00044268 

2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (EC 

2.7.7.60) 

(A, C) 0.0084 0.00068442 0.00070114 0.00053022 

DNA recombination protein RmuC (B, C) 0.0089 0.00021964 0.00028578 0.00018107 

6-phosphogluconate dehydrogenase, decarboxylating (EC 

1.1.1.44) 

(B, C) 0.0091 0.00047310 0.00028605 0.00066625 

Rhodanese-related sulfurtransferase (A, C) 0.0098 0.00018873 0.00023808 0.00028937 

Gluconokinase (EC 2.7.1.12) (B, C) 0.0102 0.00022773 0.00016595 0.00033474 

Glycogen phosphorylase (EC 2.4.1.1) (B, C) 0.0112 0.00215596 0.00235219 0.00171623 

PTS system, mannose-specific IIB component (EC 2.7.1.69) (A, C) 0.0114 0.00020476 0.00014238 0.00036685 

2', 3'-cyclic-nucleotide 2'-phosphodiesterase (EC 3.1.4.16) (B, C) 0.0115 0.00027059 0.00019471 0.00043095 

PTS system, cellobiose-specific IIC component (EC 2.7.1.69) (A, B) 0.0126 0.00032120 0.00017186 0.00025744 

1-deoxy-D-xylulose 5-phosphate reductoisomerase (EC 

1.1.1.267) 

(B, C) 0.0128 0.00097032 0.00101755 0.00072552 
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Phosphoribosylformylglycinamidine synthase, glutamine 

amidotransferase subunit (EC 6.3.5.3) 

(B, C) 0.0132 0.00126705 0.00150265 0.00106036 

N-acetyl-gamma-glutamyl-phosphate reductase (EC 1.2.1.38) (B, C) 0.0147 0.00026229 0.00032044 0.00022526 

tRNA-i(6)A37 methylthiotransferase (A, C) 0.0167 0.00337435 0.00318570 0.00237999 

ClpB protein (B, C) 0.0167 0.00368464 0.00431777 0.00340495 

Phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1) (B, C) 0.0168 0.00062865 0.00069966 0.00054665 

N-acetylglutamate synthase (EC 2.3.1.1) (B, C) 0.0169 0.00030433 0.00032330 0.00024260 

Methionine ABC transporter substrate-binding protein (B, C) 0.0170 0.00061480 0.00049193 0.00072964 

PTS system, mannose-specific IID component (EC 2.7.1.69) (B, C) 0.0181 0.00027274 0.00026422 0.00043959 

DNA topoisomerase I (EC 5.99.1.2) (B, C) 0.0183 0.00261068 0.00287428 0.00206854 

LSU ribosomal protein L11p (L12e) (A, B) 0.0187 0.00055244 0.00044698 0.00042106 

Phosphoribosylformylglycinamidine synthase, synthetase subunit 

(EC 6.3.5.3) 

(B, C) 0.0190 0.00127648 0.00151254 0.00109266 

Citrate synthase (si) (EC 2.3.3.1) (B, C) 0.0198 0.00127890 0.00159784 0.00118206 

Dipeptide transport system permease protein DppC (TC 

3.A.1.5.2) 

(A, B) 0.0199 0.00023559 0.00031684 0.00029518 

Phosphoserine aminotransferase (EC 2.6.1.52) (B, C) 0.0199 0.00105236 0.00114909 0.00084413 

Putative Dihydrolipoamide dehydrogenase (EC 1.8.1.4) (B, C) 0.0200 0.00012946 0.00011659 0.00025526 

Rod shape-determining protein MreC (B, C) 0.0201 0.00020421 0.00015158 0.00030797 

GTP-binding protein HflX (A, B) 0.0203 0.00043417 0.00058593 0.00044268 

Hypothetical radical SAM family enzyme in heat shock gene 

cluster, similarity with CPO of BS HemN-type 

(B, C) 0.0203 0.00029641 0.00038577 0.00022327 

Glycerol-3-phosphate ABC transporter, periplasmic glycerol-3-

phosphate-binding protein (TC 3.A.1.1.3) 

(B, C) 0.0206 0.00038193 0.00022729 0.00054628 

Beta-lactamase (B, C) 0.0209 0.00032376 0.00027470 0.00040593 

Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49) (B, C) 0.0209 0.00031347 0.00021530 0.00045976 

Cytochrome d ubiquinol oxidase subunit II (EC 1.10.3.-) (B, C) 0.0214 0.00038740 0.00020205 0.00060347 

Acetylglutamate kinase (EC 2.7.2.8) (B, C) 0.0222 0.00033701 0.00037355 0.00025759 

N-acetylglutamate synthase (EC 2.3.1.1) (A, C) 0.0222 0.00030433 0.00032330 0.00024260 

23S rRNA (Uracil-5-) -methyltransferase RumA (EC 2.1.1.-) (B, C) 0.0226 0.00072926 0.00053494 0.00073096 

Phage major capsid protein (A, C) 0.0236 0.00096949 0.00120269 0.00141684 

Intramembrane protease RasP/YluC, implicated in cell division 

based on FtsL cleavage 

(A, C) 0.0243 0.00034234 0.00034893 0.00041106 

LSU ribosomal protein L22p (L17e) (A, C) 0.0248 0.00017756 0.00015809 0.00013506 

PTS system,  

mannose-specific IID component (EC 2.7.1.69) 

(A, C) 0.0258 0.00027274 0.00026422 0.00043959 

Ornithine decarboxylase (EC 4.1.1.17) (B, C) 0.0264 0.00056055 0.00027304 0.00066510 

Nicotinamidase (EC 3.5.1.19) (B, C) 0.0279 0.00037653 0.00031431 0.00044666 

Histidinol-phosphate aminotransferase (EC 2.6.1.9) (B, C) 0.0284 0.00021720 0.00026506 0.00017673 

Polyribonucleotide nucleotidyltransferase (EC 2.7.7.8) (B, C) 0.0292 0.00364486 0.00378304 0.00274906 

Xanthine/uracil/thiamine/ascorbate permease family protein (B, C) 0.0292 0.00053745 0.00049061 0.00063072 

Biotin-protein ligase (EC 6.3.4.15) (A, C) 0.0304 0.00027108 0.00031636 0.00041320 

3-isopropylmalate dehydratase small subunit (EC 4.2.1.33) (B, C) 0.0306 0.00043568 0.00050108 0.00035614 

UDP-N-acetylmuramoylalanyl-D-glutamyl-2, 6-

diaminopimelate--D-alanyl-D-alanine ligase (EC 6.3.2.10) 

(A, B) 0.0338 0.00105446 0.00083749 0.00093248 

N-acetyl-L,L-diaminopimelate aminotransferase (EC 2.6.1.-) (A, B) 0.0349 0.00020640 0.00013967 0.00020738 

Ribosomal protein L11 methyltransferase (EC 2.1.1.-) (B, C) 0.0349 0.00018907 0.00017648 0.00023043 

Ribonuclease BN (EC 3.1.-.-) (B, C) 0.0356 0.00018542 0.00012731 0.00035373 

Thymidylate kinase (EC 2.7.4.9) (A, C) 0.0357 0.00046558 0.00046620 0.00037458 

Biotin operon repressor (A, C) 0.0361 0.00016821 0.00019333 0.00026738 

Acetylornithine aminotransferase (EC 2.6.1.11) (B, C) 0.0362 0.00096226 0.00106153 0.00080046 

Methylmalonyl-CoA decarboxylase, beta chain (EC 4.1.1.41) (B, C) 0.0363 0.00044429 0.00051250 0.00029878 
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Pyrimidine-nucleoside phosphorylase (EC 2.4.2.2) (A, C) 0.0370 0.00066343 0.00054688 0.00040286 

Ubiquinone/menaquinone biosynthesis methyltransferase UbiE 

(EC 2.1.1.-) 

(B, C) 0.0376 0.00025994 0.00016084 0.00034155 

Phosphoribosyl-AMP cyclohydrolase (EC 3.5.4.19) (A, C) 0.0377 0.00092342 0.00084429 0.00062097 

Acetyl-coenzyme A carboxyl transferase alpha chain (EC 

6.4.1.2) 

(B, C) 0.0387 0.00035764 0.00039926 0.00029211 

Glutamate 5-kinase (EC 2.7.2.11) (B, C) 0.0387 0.00103425 0.00112361 0.00086500 

High-affinity branched-chain amino acid transport system 

permease protein LivH (TC 3.A.1.4.1) 

(B, C) 0.0388 0.00026786 0.00027168 0.00019846 

Phospho-N-acetylmuramoyl-pentapeptide-transferase (EC 

2.7.8.13) 

(A, C) 0.0393 0.00027953 0.00027189 0.00022468 

Cytochrome d ubiquinol oxidase subunit I (EC 1.10.3.-) (B, C) 0.0395 0.00025666 0.00015817 0.00042143 

3-isopropylmalate dehydrogenase (EC 1.1.1.85) (B, C) 0.0395 0.00125259 0.00140642 0.00097793 

3-ketoacyl-CoA thiolase (EC 2.3.1.16) (A, C) 0.0411 0.00227912 0.00224503 0.00315085 

Glutamate synthase [NADPH] small chain (EC 1.4.1.13) (B, C) 0.0412 0.00146336 0.00176306 0.00121559 

UTP--glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) (B, C) 0.0414 0.00047714 0.00038620 0.00047192 

Hydroxymethylglutaryl-CoA synthase (EC 2.3.3.10) (B, C) 0.0416 0.00020442 6.73 10-5 0.00026246 

Ribosomal RNA small subunit methyltransferase B (EC 2.1.1.-) (B, C) 0.0418 0.00044192 0.00036550 0.00053045 

3'-to-5' exoribonuclease RNase R (B, C) 0.0434 0.00052974 0.00039537 0.00051405 

Glycerate kinase (EC 2.7.1.31) (A, C) 0.0443 0.00112512 0.00137300 0.00160909 

Phosphoesterase, DHH family protein (A, B) 0.0444 0.00036586 0.00026323 0.00032499 

1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (EC 

1.17.7.1) 

(B, C) 0.0448 0.00130742 0.00134226 0.00096096 

2-isopropylmalate synthase (EC 2.3.3.13) (B, C) 0.0449 0.00112915 0.00131132 0.00099531 

Lacto-N-biose phosphorylase (EC 2.4.1.211) (A, C) 0.0449 0.00057665 0.00067762 0.00031051 

RNA polymerase sigma factor RpoD (A, C) 0.0451 0.00320061 0.00291986 0.00224315 

23S rRNA (Uracil-5-) -methyltransferase RumA (EC 2.1.1.-) (A, B) 0.0453 0.00072926 0.00053494 0.00073096 

Imidazole glycerol phosphate synthase amidotransferase subunit 

(EC 2.4.2.-) 

(A, C) 0.0458 0.00016647 0.00022371 0.00012259 

Butyrate kinase (EC 2.7.2.7) (B, C) 0.0463 0.00039588 0.00048732 0.00025642 

GTPase and tRNA-U34 5-formylation enzyme TrmE (B, C) 0.0472 0.00294506 0.00228020 0.00310661 

Arginine/ornithine antiporter ArcD (A, C) 0.0482 0.00035904 0.00057199 0.00063394 

Histidinol dehydrogenase (EC 1.1.1.23) (B, C) 0.0488 0.00040510 0.00046680 0.00033088 

D-tyrosyl-tRNA(Tyr) deacylase (A, C) 0.0490 0.00034900 0.00031730 0.00026203 

ATP-dependent Clp protease ATP-binding subunit ClpA (B, C) 0.0491 0.00140518 0.00098455 0.00146038 

Maltose O-acetyltransferase (EC 2.3.1.79) (A, C) 0.0492 0.00027105 0.00025471 0.00021634 

tRNA-i(6)A37 methylthiotransferase (B, C) 0.0493 0.00337435 0.00318570 0.00237999 

2, 3-bisphosphoglycerate-independent phosphoglycerate mutase 

(EC 5.4.2.1) 

(A, C) 0.0497 0.00229392 0.00211853 0.00171048 

 

 
At 42 days, statistically significant differences were observed between genes coding for motility and 

chemotaxis, potassium metabolism, cell division and cell cycle, stress response and iron acquisition 

and metabolism, between ceca of broilers fed with diets B and C (Table 11).  
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Table 11. Pairwise t-test results on metabolic and functional protein categories at 42 days 

Function Comparison p-val mean A mean B mean C 

Level 1 – results with p-values <0.1 

Motility and Chemotaxis (B, C) 0.0021 0.00300 0.00261 0.00362 

Potassium metabolism (B, C) 0.0303 0.00232 0.00225 0.00262 

Cell Division and Cell Cycle (B, C) 0.0354 0.01773 0.01810 0.01704 

Stress Response (B, C) 0.0683 0.01489 0.01410 0.01527 

Iron acquisition and metabolism (B, C) 0.0829 0.00972 0.00930 0.01070 

Level 2 – results with p-values <0.05 and abundance mean values ≥ 0.001 

Protein secretion system, Type VI (B, C) 0.0004 0.00122 0.00115 0.00149 

Flagellar motility in Prokaryota (B, C) 0.0036 0.00219 0.00185 0.00267 

Protein secretion system, Type VI (A, C) 0.0086 0.00122 0.00115 0.00149 

DNA repair (B, C) 0.0107 0.02190 0.02293 0.02139 

Gram-Negative cell wall components (B, C) 0.0129 0.00371 0.00329 0.00443 

DNA uptake, competence (B, C) 0.0131 0.00412 0.00410 0.00332 

DNA uptake, competence (A, C) 0.0194 0.00412 0.00410 0.00332 

Sugar alcohols (B, C) 0.0357 0.00665 0.00712 0.00625 

Purines (A, B) 0.0386 0.01472 0.01558 0.01486 

Gram-Positive cell wall components (B, C) 0.0458 0.00247 0.00303 0.00198 

CRISPs (A, B) 0.0460 0.00177 0.00145 0.00144 

Level 3 – results with p-values <0.05 and abundance mean values ≥ 0.0005 

USS-DB-7 (B, C) 0.0003 0.00119 0.00112 0.00145 

Type VI secretion systems (B, C) 0.0004 0.00122 0.00115 0.00149 

Recycling of Peptidoglycan Amino Acids (B, C) 0.0015 0.00051 0.00045 0.00064 
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Function Comparison p-val mean A mean B mean C 

Level 1 – results with p-values <0.1 

One-carbon metabolism by tetrahydropterines (A, B) 0.0022 0.00165 0.00185 0.00170 

tRNA-methylthiotransferase containing cluster (B, C) 0.0022 0.00079 0.00068 0.00083 

CBSS-306254.1.peg.1508 (A, B) 0.0025 0.00049 0.00056 0.00050 

Flagellum (B, C) 0.0050 0.00139 0.00114 0.00162 

Heme, hemin uptake and utilization systems in GramNegatives (B, C) 0.0065 0.00048 0.00039 0.00056 

Sporulation Cluster (A, B) 0.0074 0.00148 0.00163 0.00151 

At2g23840 (B, C) 0.0075 0.00205 0.00199 0.00218 

Resistance to Vancomycin (A, C) 0.0079 0.00073 0.00066 0.00057 

CBSS-342610.3.peg.1794 (A, C) 0.0084 0.00064 0.00071 0.00073 

Type VI secretion systems (A, C) 0.0086 0.00122 0.00115 0.00149 

USS-DB-7 (A, C) 0.0112 0.00119 0.00112 0.00145 

Murein Hydrolases (B, C) 0.0126 0.00093 0.00084 0.00101 

Level functions – results with p-values <0.05 and abundance mean values ≥ 0.0002 

Stage V sporulation protein D (B, C) 0.00004 0.00050 0.00043 0.00059 

DNA-directed RNA polymerase alpha subunit (EC 2.7.7.6) (B, C) 0.00008 0.00138 0.00122 0.00151 

site-specific recombinase, phage integrase family (A, C) 0.0001 0.00036 0.00027 0.00028 

site-specific recombinase, phage integrase family (A, B) 0.0017 0.00036 0.00027 0.00028 
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The average abundance of the 30 most variable level 2 functions was similar among all tested groups, 

with dominance of genes coding for protein biosynthesis, followed by genes included in a 

miscellaneous SEED category, comprising a diverse set of genes identified during investigation of 

plant-prokaryote interactions by a project at the Department of Energy (DOE), USA (Figure 26). 

Differences between level 2 functional categories were identified between groups B-C ad A-C in 

relation to T6SS genes. In fact, such genes were significantly lower in the -7% protein group in 

comparison to the control, but significantly higher in the ceca of birds treated with serine protease in 

comparison to both control group and -7% protein group. Additional differences concerned genes for 

DNA repair in groups B-C and genes for purines in groups A-B. Finally, genes for sugar alcohols 

were significantly higher in the ceca of chickens fed with serine protease in comparison to the ceca 

of chickens fed with -7% protein and no protease at 14 days, whereas at 42 days were significantly 

higher in ceca of broilers fed with diet B (Table 11).  

Figure 26. Heatmap showing the average relative abundance of metagenomic reads annotated to 

SEED Subsystems (Level 2). The columns represent the diet types at each sampling time, the rows 

represent the SEED subsystems (Level 2), and the colour bar represent the range of average relative 

abundance of reads annotated to each category. 
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The most abundant genes coding for level 3 functions were those for sugar utilization in 

Thermotogales, followed by genes for DNA-replication and universal GTPases (Figure 27).  

 

Figure 27. Heatmap showing the average relative abundance of metagenomic reads annotated to 

SEED Subsystems (Level 3). The columns represent the diet types at each sampling time, the rows 

represent the SEED subsystems (Level 3), and the colorbar represent the range of average relative 

abundance of reads annotated to each category. 

 

 

The most abundant functional genes were cystine desulfurase, followed by alpha-galactosidase and 

serine hydroxymethyltransferase (Figure 28).  
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Figure 28. Heatmap showing the average relative abundance of metagenomic reads annotated to 

SEED Subsystems (Function). The columns represent the diet types at each sampling time, the rows 

represent the SEED subsystems (Function), and the colorbar represent the range of average relative 

abundance of reads annotated to each category. 

 

The most abundance genes significantly different between groups B-C were stage V sporulation 

protein D and DNA-direct RNA polymerase alpha subunit. Moreover, the most abundant genes 

significantly different in groups A-C and A-B were site-specific recombinase, phage integrase family 

(Table 11).  
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3.3 Trial on metagenomic investigation of caeca of chickens fed with phytase and 

corresponding carcasses 

3.3.1 Background 

Feed enzymes for poultry have made the most progress and impact in the past decade and, in 

particular, phytase currently dominates this market, taking a 60 % share among all biotechnological 

additives (Adeola and Cowieson, 2011). Rapid growth in the last decade has been associated with the 

acceptance of phytase in replacing inorganic phosphates to mitigate spiralling feed costs and minimise 

nutrient excretion (Kiarie and Nyachoti, 2009). Phosphorous is the third most expensive nutrient in 

diets for non-ruminants; however, the majority (65 %) of the phosphorous in feedstuffs of plant origin 

is bound in mixed salts of phytic acids and is unavailable to the animal without phityse’s 

dephosphorylation (Kiarie and Nyachoti, 2009). The phytic acid, myo-inositol hexaphosphate, is the 

major phosphate source in feedstuff of plant origin. About 75% of total phosphorus in cereals and 

legumes is present as phytate, salt of phytic acid, forms not readily available for monogastric 

(Wodzinsky and Ullah, 1996). Phytic acid consists of a sugar, myo-inositol (similar to glucose), to 

which are covalently bound phosphate groups (PO4), and it is present as a salt of mono and divalent 

cations (potassium, calcium and magnesium) that is rapidly accumulated in seeds during the ripening 

period. It is generally considered as the primary source of inositol and phosphorus reserve in plant 

seeds used in animal’s nutrition (seed flour, cereal grains and legumes) (Maga, 1982). Furthermore, 

phosphorus, under the phytic acid form, has an anti-nutritional effect on ilea digestibility, reducing 

minerals and dietary protein availability and increasing endogenous secretions as mucin (Cowieson et 

al., 2004). In fact, phytic acid appears to have a strong anti-nutritional effect due to its unusual 

molecular structure in which, in the complete dissociation, the six phosphate groups lead to a total of 

twelve negative charges. That is why phytic acid can bind various mono, di and tri cations forming 

insoluble complexes containing especially potassium and magnesium and in small quantities calcium, 

zinc, iron or copper. The solubility and stability of such complexes decreases when the number of 

residues decrease. Therefore, the removal of phosphate residues on the myo-inositol ring lead to a 

greater availability of essential minerals (Sandberg et al., 1999; Han et al., 1994). The phytate binds 

also proteins and amino acids decreasing their digestibility. In fact, phytic acid, in acidic pH 

conditions, can firmly bind the vegetal protein until their isoelectric point is generally around pH 4.0-

5.0 decreasing their solubility, digestibility and nutritional value. In addition, other than creating 

complexes with minerals and protein, phytic acid interacts with some enzymes involved in the 

digestion process such as trypsin, pepsin, α-amylase and β-galactosidase, decreasing their activity 

(Kerovuo, 2000). 
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An approach to provide adequate phosphorous to poultry, since the avian intestinal and pancreatic 

secretions of phytase are insufficient, could be to include feedstuffs with high phosphorous 

availability, such as inorganic supplements, as dicalcium phosphate, in the diet (Selle and  Ravindran, 

2007). However, this addition, even if it could provide the adequate phosphorus requirement, raises 

the cost of the diet and can lead to an excessive excretion of phosphorous in the manure. It also has a 

considerable impact on non-renewable global reserves for rock phosphate (Kiarie and Nyachoti, 

2009). Another approach could be to improve the use of phytic acid in the basal vegetable feedstuffs 

using exogenous phytase. This approach is widely adopted especially in poultry feeds (Adeola and 

Cowieson, 2011; Slominski, 2011; Woyengo & Nyachoti, 2011). Other than making the phosphorus 

available for the host, the supplementation of phytase could avoid the anti-nutritional effect of phytic 

acid reducing endogenous losses and increasing protein digestibility and, consequently, limiting 

protein supply in the diet and modulating microbiota.  

Ptak et al. (2015) investigated the phytase effect on the microbial ecology of the gastrointestinal tract 

of chickens. The chickens were fed with 4 different diets, with the factors being adequate, or 

insufficient calcium and digestible phosphor and with or without 5000 phytase units (FTU)/kg of 

Escherichia coli 6-phytase. The reduction in calcium and digestible phosphorus resulted in a 

significant reduction of ilea total bacteria count, while phytase supplementation increased ileal total 

bacterial counts. Additionally, the deficient diet reduced butyrate- but increased lactate-producing 

bacteria. The addition of phytase increased Lactobacillus sp./Enterococcus sp. whereas in case of 

Clostridium leptum subgroup, Clostridium coccoides - Eubacterium rectale cluster, Bifidobacterium 

sp. and Streptococcus/Lactococcus counts a significant insufficient calcium and digestible phoshor 

level x phytase interaction was found. Furthermore, the reduction of calcium and digestible 

phosphorus levels lowered Clostridium perfringens and Enterobacteriaceae counts. The analysis of 

fermentation products showed that reducing the calcium and digestible phosphorus content in the diet 

reduced the total amount of short chain fatty acids, DL-lactate, and acetic acid in the ileum, suggests 

that phosphorus is a factor which limits fermentation in the ileum, while phytase increased 

concentrations of these acids in the digestible phosphorus deficient diet group.  

However, Smulikowska et al. (2010) reported an increase of caecal acetate in broiler chickens fed 

with phytase. Furthermore, it was shown by Lumpkins et al. (2009) that phytase reduces intestinal 

5AC mucin mRNA abundance in broiler chickens and the reduction in mucin levels could correspond 

to a reduction in Clostridium perfringens and the occurrence of necrotic enteritis in chickens, since 

this bacterium prospers on mucin (Cooper and Songer, 2009).  It might be concluded that the addition 

of phytase can play a role in modulating the gut microbiota of chicken.  
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For this reason, the present project aims to characterize the gut microbiota modulation of chicken fed 

with phytase, alone and combined with inositol, with special emphasis on the single population 

changes. 

3.3.2 Methodology 

3.3.2.1 Animals and diet groups 

In the trials with phyase, a total of 1755 one-day-old male chicks (Ross 308), obtained in September 

2012 from the same breeder flock and hatching session, were used. The chicks were housed in a 

poultry house containing 27 pens of 6 m2 each. Before housing, birds were individually weighed and 

divided according to their live weight in 3 classes: 42-44 g, 45-47 g, 48-50 g. The groups were 

distributed in 27 pens at the stocking density of about 10 chicks/m2 (i.e., 65 birds/pen), while 

maintaining the same class distribution of live-weight of the population placing in each pen an equal 

number of chicks belonging to the three classes. The 27 pens were divided into five diet groups of 9 

replicates each. Pens labelled as group A hosted birds fed with the basal diet summarised in Table 12 

(i.e., diet A); those of group B, birds fed with a basal diet supplemented with phytase at 500 FTU/kg 

feed (i.e., diet B); those of group C, birds fed with a basal diet supplemented with phytase at 1500 

FTU/kg (i.e., diet C); those of group D, birds fed with a basal diet supplemented with phytase at 500 

FTU/kg feed and 3g/kg inositol (i.e., diet D); those of group E, birds fed with a basal diet 

supplemented with phytase at 1500 FTU/kg feed and 3g/kg inositol (i.e., diet E) (Table 12). Feeds, 

formulated according to the five different diets, were supplied ad libitum in mash form throughout 

the experiment. The feeding program included four phases: starter (0-10 day), grower first period (11-

21 day), grower second period (22-35 day) and finisher (36-42 day). The experiment lasted 35 days, 

when birds reached the slaughter weight of about 2.8 kg of live weight. Photoperiod and temperature 

programs were set up according to the European welfare regulation 43/2007 (European Union, 2007).
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Table 12 Basal diets composition (%) of the feed administered to the chicks belonging to the trial with serine protease 

 0-10 days 11-21 days 22-35 days 36-42 days 

Diet A B C D E A B C D E A B C D E A B C D E 

Corn 29.02 29.02 29.02 29.02 29.025 36.98 36.98 36.98 36.98 36.98 18.64 18.64 18.64 18.64 18.64 15.01 15.01 15.01 15.01 15.01 

Soybean meal  25.17 25.17 25.17 25.17 25.173 22.01 22.01 22.01 22.01 22.01 17.31 17.31 17.31 17.31 17.31 14.32 14.32 14.32 14.32 14.32 

Wheat 20 20 20 20 20 15 15 15 15 15 15 15 15 15 15 21.19 21.19 21.19 21.19 21.19 

Sunflower 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Sorghum 20 20 20 20 20 15 15 15 15 15 15 15 15 15 15 21.19 21.19 21.19 21.19 21.19 

Expanded soybean 10 10 10 10 10 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 

Gluten Corn 3 3 3 3 3 2 2 2 2 2 . . . . . . . . . . 

Vegetable oils  3.65 3.65 3.65 3.65 3.65 3.49 3.49 3.49 3.49 3.49 4.12 4.12 4.12 4.12 4.12 4.86 4.86 4.86 4.86 4.86 

Dicalcium phosphate 1.10 1.10 1.10 1.10 1.10 0.68 0.68 0.68 0.68 0.68 0.33 0.33 0.33 0.33 0.33 0.21 0.21 0.21 0.21 0.21 

Calcium Carbonate 0.94 0.94 0.94 0.94 0.94 0.84 0.84 0.84 0.84 0.84 0.78 0.78 0.78 0.78 0.78 0.81 0.81 0.81 0.81 0.81 

White corn . . . . . . . . . . 15 15 15 15 15 15 15 15 15 15 

Dl Methionin 0.29 0.29 0.29 0.29 0.29 0.26 0.26 0.26 0.26 0.26 0.12 0.12 0.12 0.12 0.12 0.29 0.29 0.29 0.29 0.29 

Salt 0.22 0.22 0.22 0.22 0.22 0.20 0.20 0.20 0.20 0.20 0.16 0.16 0.16 0.16 0.16 0.23 0.23 0.23 0.23 0.23 

Protease  0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

Vitamin-mineral premix 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.42 0.42 0.42 0.42 0.42 0.27 0.27 0.27 0.27 0.27 

Threonin 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 

Sodium bicarbonate 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 . . . . . 

Phytase 0.0 500 1500 500 1500 0.0 500 1500 500 1500 0.0 500 1500 500 1500 0.0 500 1500 500 1500 

Colin 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Lysine sulphate 0.60 0.60 0.60 0.60 0.60 0.56 0.56 0.56 0.56 0.56 0.43 0.43 0.43 0.43 0.43 0.40 0.40 0.40 0.40 0.40 

                     

Dry matter 88.53 88.53 88.53 88.50 88.26 88.39 88.39 88.39 88.12 88.13 88.23 88.23 88.23 87.97 87.97 88.17 88.17 88.17 87.90 87.91 

Protein 22.88 22.88 22.87 22.87 22.80 20.99 20.99 20.98 20.92 20.92 19.40 19.40 19.39 19.34 19.34 18.28 18.28 18.27 18.22 18.22 

Lipid 7.21 7.21 7.21 7.20 7.18 7.26 7.26 7.26 7.24 7.24 8.74 8.74 8.73 8.71 8.71 9.40 9.40 9.39 9.37 9.36 

Fiber 3 3 3 3 3 3 3 3 3 3 3 3 3.06 3.05 3.05 2.98 2.98 2.98 2.97 2.97 

ash 5 5 5 5 5 5 5 5 5 5 4 4 4.36 4.33 4.35 4.05 4.06 4.07 4.05 4.06 

Ca tot 0.87 0.87 0.87 0.87 0.86 0.71 0.71 0.71 0.70 0.70 0.58 0.58 0.58 0.58 0.58 0.53 0.53 0.53 0.53 0.53 

P tot 0.57 0.57 0.57 0.57 0.57 0.48 0.48 0.48 0.48 0.48 0.41 0.41 0.41 0.41 0.41 0.38 0.38 0.38 0.38 0.38 

ZN tot 116 116 115.98 115.97 115.64 114.59 114.60 114.57 114.25 114.23 100.89 100.88 100.86 100.58 100.56 74.46 74.45 74.44 74.23 74.21 

CU tot 21.82 21.82 21.82 21.81 21.75 21.26 21.27 21.26 21.20 21.20 18.89 18.89 18.88 18.83 18.83 14.09 14.09 14.09 14.05 14.04 

 

 



91 
 

3.3.2.2 Sample collection 

In the trial with phytase nine chickens were randomly selected and humanely euthanized at day 35 

days from each diet group (i.e., A, B, C, D, E). The entire gastrointestinal tract of each individual 

selected bird was dissected out and a small sample (i.e., 0.5-2 g) of caecum content was collected 

from both caeca into 2 ml sterile plastic tubes. Furthermore, to characterize the skin microbiota of the 

chicken after slaughter, plucking, an evisceration, 15 samples of 15 g each of skin and 300 ml of 

carcass washing water were collected from corresponding carcasses at the slaughterhouse. 

The samples were collected from 15 fresh poultry carcasses belonging to three different groups of 5 

animals each, within groups A, C and E (5+5 samples for each group). Each carcass was processed 

in a sterile environment as follows: a 10-g sample of skin was removed by tissue excision from the 

neck and the breast of each carcass using a sterile scalpel and then placed in a sterile bag with 40 mL 

of sterile saline solution. Tissue samples were homogenized for 1 minute using the Pulsifier® 

(Microgen Bioproducts Ltd, Cambrige, UK) and the whole rinse fluid was placed in a 50-ml falcon 

tube and then centrifuged at 4500 Xg for 8 min to pellet the bacteria.  After tissue removal, each 

chicken carcass was placed in sterile heavy plastic bags with 300 ml sterile physiologic solution to 

sample the carcass washing water. The bags were sealed and vigorously shaken by hand for 3 min. 

After shaking, each carcass was removed and the rinse fluid was first poured into a new sterile bag 

and then divided into 6 falcon tubes (50 ml). 

All the tubes (6 for each sample) were centrifuged at 4500 Xg for 8 minutes to pellet the bacteria. 

The supernatant fluids were removed by suction and all the 6 pellets were transferred together in a 

new falcon tube with the few remaining supernatant (total volume of each carcass washing water 

sample was 20 ml). All caecum, skin and carcass washing water samples collected (e.g. 45, 15 and 

15 respectively) were stored at -80°C until further testing. 

3.3.2.3 DNA extraction from the chicken caecum contents  

The DNA was extracted from each sample of caecum content using a bead-beating procedure 

(Danzeisen et al., 2011). Briefly, 0.25 g of cecal content were suspended in a 1 ml lysis buffer (500 

mM NaCl, 50 mM Tris-Cl, pH 8.0, 50 mM EDTA, 4 % SDS) with MagNA Lyser Green Beads 

(Roche, Milan, Italy) and homogenized on the MagNA Lyser (Roche) for 25 secs at 6500 rpm. The 

samples were then heated at 70°C for 15 min., followed by centrifugation to separate the DNA from 

the bacterial cellular debris. This process was repeated with a second 300 µl aliquot of lysis buffer. 

The samples were then subjected to 10 M v/v ammonium acetate (Sigma, Milan, Italy) precipitation, 

followed by isopropanol (Sigma) precipitation and a 70% ethanol (Carlo Erba, Milan, Italy) wash and 

re-suspended in 100 ul 1X Tris-EDTA (Sigma). The samples were treated with DNase-free RNase 
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(Roche) and incubated overnight at 4°C, before being processed through the QIAmp® DNA Stool 

Mini Kit (Qiagen, Milan, Italy) according to manufacturer’s directions with some modifications. 

Samples were measured on a BioSpectrometer® (Eppendorf, Milan, Italy) to assess DNA quantity 

and quality. 

3.3.2.4 DNA extraction from chicken carcass skin and washing water  

The DNA was extracted from each sample using a two-step bead beating protocol developed in our 

laboratory. 500 μL aliquots of each sample were placed in 2 mL microtubes with a 600 μL lysis buffer 

(500 mM NaCl, 50 mM Tris-Cl, pH 8.0, 50mM EDTA, 4 % SDS) and 20 µl of lysozime (20mg/ml) 

and heated at 37°C for 30 min. The samples were homogenized on MagNA Lyser (Roche) for 20 secs 

at 900 xg, after the addition of 2 MagNA Lyser Green Beads (Roche, Milan, Italy). After the beads’ 

removal, the samples were incubated with 180 µl Buffer AL and 20 µl proteinase K (Kit dnEASY 

Blood and Tissue) at 56°C overnight. Each sample was then processed using the DNeasy Blood & 

Tissue Kit (Qiagen, Milan, Italy) according to manufacturer’s directions with some modifications. 

DNA was measured on a BioSpectrometer® (Eppendorf, Milan, Italy) to assess its quantity and 

quality. 

3.3.2.5 Library preparation and metagenomic sequencing  

The DNA extracted from each sample were quantified on a BioSpectrometer® (Eppendorf, Milan, 

Italy) to assess DNA yield, in terms of quantity and quality. Moreover, DNA purity was assessed in 

terms of absence of contaminants according to the value of the A260 / A280 nm ratio.  

The DNA extracted and assessed for quality and quantity was submitted to the library preparation 

procedure with the Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA). Nextera 

technology provides an input DNA fragmentation and transposase mediated ligation of oligo-

adapters, essentials to anchor the amplified DNA fragment (around 500 bp) to the sequencer flow cell 

and to amplify the insert DNA by PCR. Illumina’s preparation procedure was chosen because it 

improves traditional protocols by combining DNA fragmentation, end-repair, and adaptor-ligation 

into a single step using an engineered enzyme (Head et al., 2014). The PCR reaction also adds index 

(barcode) sequences. However, the use of an engineered enzyme makes this protocol very sensitive 

to the amount of DNA input compared with other fragmentation methods (Head et al., 2014). Since 

the ratio of transposase complexes to sample DNA is critical and the subsequent fragment size is also 

dependent on the reaction efficiency, DNA concentration was evaluated other than by 

BioSpectrometer (Eppendorf) even using fluorimetric analysis by Quant-iT™ PicoGreen® dsDNA 

Assay Kit (Invitrogen).  
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In particular, according to the first quantification obtained through BioSpectrometer (Eppendorf), the 

DNA was brought to the concentration required (0.2 ng/µl) through other intermediate dilutions (i.e., 

25, 10 and 2 ng/µl) all quantified using Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen) on 

the Infinite 200 PRO (Tecan) instrument. All libraries were validated according to Illumina’s 

protocol. To determin the nanomolarity of each library, the concentration and average length of the 

DNA fragments were checked through fluorimetric analysis by Quant-iT™ PicoGreen® dsDNA 

Assay Kit and through Chip DNA Hi Sensitivity analysis on Bioanalyzer 2100 (Agilent 

Technologies). Each library pool of 24 samples was adjusted to a micro molarity between 1.3 to 2 

(depending on the pool’s library with the lower molarity) to be sequenced. A total of 5 µl of each 

library (1.3-2 nM) were pooled together. Each pool of 24 libraries was loaded into a flow cell of a 

glass slide. Each fragment of DNA library was anchored on complementary oligo-adapters placed on 

the flow cell and clonally amplified through a solid-phase amplification called bridge amplification 

and then sequenced by synthesis. Whole genome sequencing was performed using the HiScanSQ 

sequencer (Illumina) at 100 bp in paired-end mode. Metagenomic sequencing yielded an average of 

6.841 million mapped reads/sample, with a Phread quality score always higher than 30. 

3.3.2.6 Sequences analysis  

The metagenomic sequences belonging to the phytase trial were analysed using a pipeline developed 

at the Technical University of Denmark (DTU). The quality trimming process was performed using 

the wrapper tool Trim Galore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). 

Trim Galore! was set to trim low-quality base calls off from the 3' end of the reads with a Phred score 

threshold of 20, to filter all the reads shorter than 50 bp, to discharge the trimmed paired-end reads 

(R1 and R2) if at least one of them became shorter than the set threshold (50 bp), to retain the unpairs 

in a new file and to automatically generate a new FastQC report of the trimmed sequences. The 

trimming process, with the previously mentioned options, allowed the removal of the biases and the 

discharge of short reads optimizing the quality of the data and reducing the potential crashes of 

programs which require sequences with a certain minimum length as the one used in this pipeline, 

MGmapper (70bp).  

After the new generated FastQC report check, the reads were mapped to reference sequence databases 

using MGmapper version 2.2. The pre-processing step was skipped because all the reads were already 

checked and trimmed. The features for the mapping process were set as follows: the threshold for 

fraction of matches+mismatches (FMM) in relation to the full length of a read was set to 0.8 and the 

minimal alignment score (MAS) was set to 30 (default values). The sequences were mapped against 

the Nt database in (1) full mode (i.e., accepting as true hit all the primary hit to the following 
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databases: Bacteria, MetaHitAssembly, HumanMicrobiome, Bacteria_draft, Plant, 

Common_animals) and (2) best mode (i.e., accepting as true hit when the alignment score of a 

sequence to a database was higher than all the other alignment scores of the same sequence to other 

databases).  

3.3.2.7 Statistical analysis  

The results regarding the relative abundances of bacterial taxa and functional groups were compared 

through White’s non-parametric t-test, using Statistical Analysis of Metagenomic profile Software v 

2.0.9 (STAMP) (Parks et al., 2014).  After removing non-bacterial species, taxa abundances obtained 

from MG-RAST were normalized so that each sample total abundance resulted 1.  

3.3.3 Results 

3.3.3.1 Sequences obtained 

All samples with a A260 / A280 nm ratio value out of the range between 1.7 and 1.9 were excluded 

from the analysis and the DNA was extracted again from the original sample. The quantity and quality 

parameters of the DNA samples sequenced in this project along with corresponding library 

parameters abd reads achieved for each individual sample are described in Table 13.  

To characterize the chicken skin microbiota DNA was extracted from the homogenized skin samples.  
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Table 13. Parameters of the samples and libraries sequenced in the project.   

Sample Library 
ID Conc (ng/ml) Ratio 260/280 nm Conc (ng/µl) Fragment lenght mM Reads (n) 

Phytase-caceca 
XT_307 1210.10 1.83 3.42 662 7.94 5325585  
XT_308 177.70 1.88 4.86 900 8.30 9765424 
XT_309 1232.20 1.83 4.74 941 7.75 6226416 
XT_310 762.60 1.84 4.19 774 8.33 4036908 
XT_311 487.10 1.84 4.38 1263 5.33 8738856 
XT_312 1068.10 1.86 4.46 927 7.40 6292292 
XT_313 1111 1.84 2.23 772 4.44 5607068 
XT_314 820.80 1.85 2.96 717 6.35 6157612 
XT_315 1177.90 1.86 6.39 912 10.78 7419414 
XT_316 276.30 1.83 4.63 1256 5.67 6949576 
XT_317 1090.30 1.82 3.54 1250 4.36 6470484 
XT_318 1293.60 1.84 3.53 642 8.47 4346994 
XT_319 1024.80 1.84 3.28 986 5.12 5608516 
XT_320 898.40 1.84 4.23 1053 6.19 6806712 
XT_321 400.00 1.83 3.51 1113 4.85 6274678 
XT_322 543.00 1.81 4.87 1267 5.91 7830358 
XT_323 1439.60 1.84 4.57 1120 6.28 6903988 
XT_324 1239.90 1.84 3.01 1110 4.17 8899214 
XT_325 1187.30 1.82 3.66 1072 5.26 7857888 
XT_326 1033.20 1.84 3.85 1064 5.57 7963304 
XT_327 1110.80 1.85 2.14 979 3.37 8322336 
XT_328 1218.50 1.84 3.76 1391 4.16 8396650 
XT_329 501.80 1.83 3.27 758 6.63 8057404 
XT_330 752.20 1.84 4.89 1166 6.31 8493560 
XT_331 1119.90 1.84 3.85 950 6.23 6486162 
XT_332 420.30 1.82 2.78 539 7.93 6661378 
XT_333 1360.00 1.82 3.64 1177 4.76 8473134 
XT_334 1311.10 1.85 5.16 993 8.00 7308470 
XT_335 1408.80 1.84 2.61 1122 3.58 7636498 
XT_336 504.80 1.82 4.23 1046 6.22 5310828 
XT_337 1386.20 1.84 3.19 1128 4.36 7693028 
XT_338 813.30 1.85 2.44 1000 3.76 4308024 
XT_339 1248.50 1.84 4.50 1079 6.42 7708538 
XT_340 1344.30 1.84 3.51 974 5.55 7503362 
XT_341 1232.10 1.84 4.87 1128 6.64 8347030 
XT_342 891.80 1.82 4.03 991 6.25 5921694 
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XT_343 719.80 1.84 5.77 1162 7.63 9915124 
XT_344 508.70 1.83 4.77 1018 7.21 5146582 
XT_345 756.20 1.84 4.47 1130 6.08 5989196 
XT_346 908.90 1.84 4.71 1075 6.75 7393520 
XT_347 954.10 1.84 5.03 1219 6.35 7234728 
XT_348 1426.20 1.84 3.77 938 6.19 8242848 
XT_349 793.50 1.85 4.90 1032 7.30 7754078 
XT_350 818.50 1.84 5.69 1430 6.12 10894772 
XT_351 1335.40 1.84 5.27 939 8.64 7310282 

Phytase-carcasses 
XT_357 55.80 1.89 7.06 1150 9.45 9445326 
XT_358 70.40 1.97 3.66 1256 4.49 7636834 
XT_359 20.40 1.75 4.73 1235 5.89 7728898 
XT_360 35.90 1.95 4.23 1066 6.10 6850052 
XT_361 19.90 1.99 2.20 1238 2.73 6664934 
XT_367 11 1.73 3.95 1465 4.15 5226314 
XT_368 80.00 1.99 5.60 1206 7.14 6363476 
XT_369 37.20 1.95 4.88 1313 5.72 6544524 
XT_370 32.80 1.83 3.43 1285 4.10 5160700 
XT_371 14.60 1.91 7.39 1315 8.65 5485326 
XT_377 36.90 1.89 3.23 1551 3.20 7974236 
XT_378 20.10 1.97 2.29 1501 2.35 5492496 
XT_379 17.80 1.90 1.97 1322 2.30 7335068 
XT_380 24.00 1.90 2.83 1444 3.02 7171638 
XT_381 25.30 1.90 2.53 1549 2.51 7168624 
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3.3.3.2 Caeca microbiota composition  

In the trial with phytase the microbiota composition of the chicks fed with the basal diet (group A) 

was compared with those of chicks fed with a basal diet and commercial phtase without (group B) 

and with inositol (group D) and triple concentration of commercial phythase without (group C) and 

with (group E) inositol.  The microbiota composition in the caeca collected from nine birds for each 

group is summarized in Table 14 and shows that Firmicutes and Bacteroidetes represented more than 

90% of microbiota in all tested groups. The most represented phylum in Group A, B, C and D was 

Firmicutes showing a percentage of abundance of 56.68, 50.14, 51.41 and 54.40, respectively, 

followed by Bacteroidetes with abundances of 37.15, 41.72, 39.74 and 43.20, respectively. In Group 

E the most represented phylum was Bacteroidetes (i.e., 47.95% of abundance) followed by Firmicutes 

(i.e., 44.77% of abundance). The relative frequency of abundance of Firmicutes in Group A was 

significantly higher than that observed in Group E (P=0.024), whereas that of Bacteroidetes was 

significantly lower (P=0.031).  

Within the phylum of Firmicutes, Clostridia was the most abundant class in all groups (41.98, 38.07, 

39.80, 43.02, 36.05%), followed by Bacilli (8.16, 5.23, 5.20, 4.67, 3.64%), Erysipelotrichi (2.08, 2.06, 

1.80, 2.36, 1.69% of abundance) and Negativicutes (0.80, 0.40, 0.47, 0.55, 0.21%). The most 

represented families in the Clostridia class were Lachnospiraceae (11.22, 10.21, 10.19, 11.83, 9.29%), 

Ruminococcaceae (9.89, 8.48, 9.18, 9.46, 8.44%)  and Clostridiaceae (9.14, 7.83, 8.69, 9.13, 7.07%) 

followed by Eubacteriaceae (2.44, 2.38, 2.27, 2.77, 2.26%), Oscillospiraceae (1.92, 1.82, 2.28, 2.01, 

1.84%), Peptostreptococcaceae (0.60, 0.61, 0.58, 0.68, 0.53%)  and Acidaminococcaceae (0.73, 0.34, 

0.41, 0.47, 0.15%). The distribution of the families belonging to the Clostridia class was similar 

among all five Groups, except for Acidaminococcaceae that showed a lower main relative frequency 

of abundance in Group E (0.036) compared to Group A. The mean relative abundance of Bacilli was 

significantly higher in Group A (P<0.05) in comparison to all the treated groups. Within the Bacilli 

class, the most represented family was Lactobacillaceae (6.50, 3.98, 3.64, 3.11, 2.61%), followed by 

Enterococcaceae (0.59 0.44, 0.45, 0.47, 0.40%), Bacillaceae (0.56, 0.27, 0.65, 0.45, 0.18%), 

Streptococcaceae (0.37, 0.42, 0.36, 0.51, 0.32%) and Staphylococcaceae (0.08, 0.09, 0.06, 0.09, 

0.08%) (Table 14). The main relative frequency of abundance of the families, belonging to the Bacilli 

class, was similar among all groups, except for Lactobacillaceae that showed a relative frequency of 

abundance significantly higher (P=0.022) in group A compared to the treated groups (Figure 29). 
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Table 14. Mean relative frequency of abundance (%) of Phyla, Classes and Families of caecum bacteria in Groups A, B, C, D and E. 

Phylum Class Family Group A Gruop B Group C Group D Group E 

Firmicutes   56.68 50.14 51.41 54.40 44.77 
 Clostridia  41.98 38.07 39.80 43.02 36.05 
  Lachnospiraceae 11.22 10.21 10.19 11.83 9.29 
  Ruminococcaceae 9.89 8.48 9.18 9.46 8.44 
  Clostridiaceae 9.14 7.83 8.69 9.13 7.07 
  Eubacteriaceae 2.44 2.38 2.27 2.77 2.26 
  Oscillospiraceae 1.92 1.82 2.28 2.01 1.84 
  Peptostreptococcaceae 0.60 0.61 0.58 0.68 0.53 
  Acidaminococcaceae 0.73 0.34 0.41 0.47 0.15 
 Bacilli  8.16 5.23 5.20 4.67 3,64 
  Lactobacillaceae 6.50 3.98 3.64 3.11 2.61 
  Enterococcaceae 0.59 0.44 0.45 0.47 0.40 
  Bacillaceae 0.56 0.27 0.65 0.45 0.18 
  Staphylococcaceae 0.08 0.09 0.06 0.09 0.08 
  Streptococcaceae 0.37 0.42 0.36 0.51 0.32 
 Erysipelotrichia 2.08 2.06 1.80 2.36 1.69 
  Erysipelotrichaceae 2.08 2.06 1.80 2.36 1.69 

  Negativicutes 0.80 0.40 0.47 0.55 0.21 

Bacteroidetes  37.15 41.72 43.20 39.74 47.95 
 Bacteroidia 37.08 41.63 43.13 39.68 47.89 
  Rikenellaceae 19.09 13.68 14.11 15.80 16.38 
  Bacteroidaceae 11.54 21.60 17.35 22.53 24.22 

    Porphyromonadaceae 6.34 6.21 6.33 6.38 7.11 

Proteobacteria  4.75 6.34 4.31 4.60 5.40 
 Gammaproteobacteria 1,54 3.53 1.51 0.66 0.76 
  Enterobacteriaceae 1.46 3.48 1.45 0.60 0.70 
 Epsilonproteobacteria 1,22 1.33 0.85 0.39 2.16 
 Deltaproteobacteria 0,83 0.64 0.82 2.61 0.88 
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  Desulfovibrionaceae 0.56 0.39 0.41 0.40 0.54 
 Betaproteobacteria 0,22 0.23 0.18 0.32 0.24 
 Alphaproteobacteria 0,13 0.06 0.10 0.08 0.27 

    Bradyrhizobiaceae 0.03 0.02 0.02 0.03 0.03 

Actinobacteria  0.78 0.67 0.63 0.79 0.56 
 Coriobacteriia 0,48 0.43 0.39 0.41 0.33 
 Actinobacteria 0,31 0.23 0.24 0.38 0.23 

    Bifidobacteriaceae 0.13 0.09 0.09 0.19 0.08 

Fusobacteria   0.19 0.07 0.12 0.08 0.13 

 Fusobacteriia  0.19 0.07 0.12 0.08 0.13 

    Fusobacteriaceae 0.19 0.07 0.12 0.08 0.13 

Spirochaetes  0.16 0.12 0.12 0.13 0.13 

 Spirochaetia  0.16 0.12 0.12 0.13 0.13 

Tenericutes   0.16 0.13 0.10 0.13 0.13 

  Mollicutes   0.16 0.13 0.10 0.13 0.13 
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Figure 29. Box Plot showing the abundance (%) of Lactobacillaceae among tested Groups 

 

 

Within the Phylum Firmicutes, Erysipelotrichia class shows a comparable abundance in the control 

group (i.e., 2.08 %) and in the groups treated with normal concentration of phytase with and without 

inositol (i.e., 2.06 and 2.36% in groups B and D, respectively) but it tends to decrease in the groups 

treated with triple concentration of phytase with and without inositol (i.e., 1.80 and 1.69% in groups 

C and E, respectively). In particular, the relative frequency of abundance of Erysipelotrichi in Group 

D was significantly higher (P=0.0275) compared to Group E. The same trend was observed for 

Erysipelotrichaceae, the only represented family of this class. Finally, the relative abundance of 

Negativicutes was significantly higher in Group A compared to Group E (P=0.0352) (Table 14). 

In all the five Groups, Bacteroidia was the most representative class of the Bacteroidetes phylum and 

it was significantly lower in Group A in comparison to Group E (P=0.031). Moreover, in Group A 

Rikenellaceae was the most represented family (19.09%) in comparison to the other groups, where 

the relative abundances of the same family were 13.68, 14.11, 15.80, 16.38% respectively (Table 14). 

On the contrary, in groups B, C, D and E Bacteroidaceae was the most represented family (21.60, 

17.35, 22.53, 24.22% respectively), belonging to the Bacteroidia class, compared to Group A where 
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the relative abundance of this family was (11.54%). Gammaproteobacteria was the most represented 

class belonging to the Proteobacteria phylum in group A, B, C, E (1.54, 3.53, 1.51, 0.76%), while in 

Group D within the Proteobacteria class, Deltaproteobacteria showed a higher relative frequency of 

abundance than Gammaproteobateria (2.61 and 0.66% respectively) compared to the other Groups 

(0.83, 0.64, 0.82, 0.88%). The other most represented class in the Proteobacteria phylum was 

Epsilonproteobacteria (1.22, 1.33, 0.85, 0.39, 2.16%) followed by Betaproteobacteria (0.22, 0.23, 

0.18, 0.32, 0.24%) and Alphaproteobacteria (0.13, 0.057, 0.10, 0.082, 0.27%). 

It is remarkable that, even if not statistically significant, the abundances of Gammaproteobacteria 

and, in particular, of the Enterobacteriaceae family, tend to decrease in groups D and E treated with 

normal and triple concentration of phytase supplemented with inositol, in comparison with the control 

group. On the contrary, the abundance of Alfaproteobacteria was statistically lower (P < 0.005) in 

groups B and C (i.e., 0.057, 0.082%) in comparison to group A (0.13%). The same trend was observed 

in the Fusobacteria phylum, Fusobacteriia class and Fusobacteriaceae family that showed a significant 

higher abundance in the control group in comparison to all other groups (P < 0.005). 

Actinobacteria abundance was comparable between groups A, B and C while in groups D and E it 

was significantly lower (P=0.035) compared to the control. Within the Actinobateria phylum, the 

most represented classes were Coriobacteriia followed by Actinobacteria and within the 

Actinobacteria class, the Bifidobacteriaceae was the most represented family.  

Tables 15 summarises the top 30 bacterial species identified in the control group in comparison to 

groups treated with commercial phytase at the standard and triple concentration. Moreover, Table 16 

summarises the top 30 bacterial species identified in the control group in comparison to groups treated 

with phytase and inositol. In all tested groups the top five species are represented by genus Alistipes, 

Faecalibacterium and Bacteroides. 
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Table 15. Mean relative frequency of abundance (%) of the 30 most representative species (MRS) of caecum bacteria in Groups A, B and C. 

 MRS Group A species Mean Group B species  Mean Group C species Mean  

1 Alistipes sp. AG:268 5.31 Bacteroides dorei 7.4 Bacteroides dorei 5.9 

2 Alistipes shahii 4.34 Bacteroides fragilis 7.27 Bacteroides sp. CAG:20 4.6 

3 Bacteroides sp. CAG:20 4.01 Alistipes sp. CAG:268 3.79 Alistipes sp. CAG:268 4.42 

4 Bacteroides fragilis 3.92 Bacteroides sp. CAG:20 3.6 Bacteroides fragilis 3.83 

5 Faecalibacterium prausnitzii 3.77 Faecalibacterium prausnitzii 3.53 Faecalibacterium prausnitzii 3.7 

6 Alistipes senegalensis 3.52 Escherichia coli 3.29 Alistipes shahii 3.57 

7 Pseudoflavonifractor capillosus 3.32 Pseudoflavonifractor capillosus 3.14 Pseudoflavonifractor capillosus 3.35 

8 Lactobacillus crispatus 2.9 Alistipes shahii 3.08 Alistipes senegalensis 2.91 

9 [Clostridium] saccharolyticum 2.84 [Clostridium] saccharolyticum 2.61 [Clostridium] saccharolyticum 2.91 

10 Barnesiella intestinihominis 2.23 Alistipes senegalensis 2.49 Barnesiella intestinihominis 2.6 

11 Subdoligranulum variabile 1.92 Barnesiella intestinihominis 2.07 Eubacterium sp. ER2 1.86 

12 Eubacterium sp. ER2 1.71 Lactobacillus crispatus 1.85 Butyricicoccus pullicaecorum 1.79 

13 Alistipes finegoldii 1.58 Firmicutes bacterium CAG:94 1.67 Lactobacillus crispatus 1.44 

14 Tannerella sp. 6_1_58FAA_CT1 1.48 Eubacterium sp. ER2 1.62 Subdoligranulum variabile 1.42 

15 Escherichia coli 1.39 Subdoligranulum variabile 1.33 Lachnospiraceae bacterium 7_1_58FAA 1.35 

16 Firmicutes bacterium CAG:94 1.37 Odoribacter splanchnicus 1.3 Firmicutes bacterium CAG:94 1.34 

17 Butyricicoccus pullicaecorum 1.33 Helicobacter pullorum 1.3 Tannerella sp. 6_1_58FAA_CT1 1.3 

18 Lachnospiraceae bacterium 7_1_58FAA 1.22 Butyricicoccus pullicaecorum 1.28 Alistipes finegoldii 1.3 

19 Bacteroides dorei 1.2 Tannerella sp. 6_1_58FAA_CT1 1.18 Clostridium sp. ATCC 29733 1.24 

20 Helicobacter pullorum 1.19 Lachn.bacterium 7_1_58FAA 1.11 Oscillibacter sp. KLE 1745 1.21 

21 Clostridium sp. CAG:678 1.19 Oscillibacter sp. KLE 1745 1.11 Odoribacter splanchnicus 1.03 

22 Odoribacter splanchnicus 1.17 Clostridium sp. ATCC 29733 1.1 [Clostridium] methylpentosum 0.99 

23 Alistipes sp. CAG:29 1.16 Alistipes finegoldii 1.1 Alistipes sp. CAG:29 0.95 

24 Clostridium sp. ATCC 29733 1.16 Odorib. splanchnicus CAG:14 0.94 Flavonifractor plautii 0.89 

25 Oscillibacter sp. KLE 1745 1.12 [Clostridium] methylpentosum 0.86 Alistipes obesi 0.81 

26 Alistipes obesi 0.97 Alistipes sp. CAG:29 0.8 Odoribacter splanchnicus CAG:14 0.73 

27 [Clostridium] methylpentosum 0.95 Flavonifractor plautii 0.73 Lactobacillus salivarius 0.65 

28 Lactobacillus salivarius 0.9 Alistipes obesi 0.69 Escherichia coli 0.56 

29 Odoribacter splanchnicus CAG:14 0.84 Lactobacillus salivarius 0.62 Clostridium sp. CAG:678 0.55 

30 Flavonifractor plautii 0.81 Clostridium sp. CAG:678 0.26 Helicobacter pullorum 0.38 
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Table 16. Mean relative frequency of abundance (%) of the 30 most representative species (MRS) of caecum bacteria in Group A, Group D and E. 

MRS  Group A species  Mean Group D species  Mean Group E species 
Mean

  

1 Alistipes sp. CAG:268 5.31 Bacteroides dorei 9.41 Bacteroides dorei 12.55 

2 Alistipes shahii 4.34 Bacteroides fragilis 4.82 Alistipes sp. CAG:268 4.6 

3 Bacteroides sp. CAG:20 4.01 Bacteroides sp. CAG:20 4.7 Bacteroides sp. CAG:20 3.84 

4 Bacteroides fragilis 3.92 Alistipes sp. CAG:268 3.96 Alistipes shahii 3.79 

5 Faecalibacterium prausnitzii 3.77 Faecalibacterium prausnitzii 3.84 Bacteroides fragilis 3.62 

6 Alistipes senegalensis 3.52 Alistipes shahii 3.25 Pseudoflavonifractor capillosus 3.2 

7 Pseudoflavonifractor capillosus 3.32 Pseudoflavonifractor capillosus 3.17 Alistipes senegalensis 3.07 

8 Lactobacillus crispatus 2.9 Barnesiella intestinihominis 2.69 Faecalibacterium prausnitzii 2.88 

9 [Clostridium] saccharolyticum 2.84 Alistipes senegalensis 2.62 [Clostridium] saccharolyticum 2.26 

10 Barnesiella intestinihominis 2.23 [Clostridium] saccharolyticum 2.6 Barnesiella intestinihominis 2.18 

11 Subdoligranulum variabile 1.92 Butyricicoccus pullicaecorum 2 Helicobacter pullorum 2.11 

12 Eubacterium sp. ER2 1.71 Lactobacillus crispatus 1.89 Tannerella sp. 6_1_58FAA_CT1 1.48 

13 Alistipes finegoldii 1.58 Firmicutes bacterium CAG:94 1.56 Butyricicoccus pullicaecorum 1.46 

14 Tannerella sp. 6_1_58FAA_CT1 1.48 Eubacterium sp. ER2 1.54 Odoribacter splanchnicus 1.43 

15 Escherichia coli 1.39 Oscillibacter sp. KLE 1745 1.48 Lactobacillus crispatus 1.4 

16 Firmicutes bacterium CAG:94 1.37 Escherichia coli 1.39 Subdoligranulum variabile 1.37 

17 Butyricicoccus pullicaecorum 1.33 Subdoligranulum variabile 1.35 Eubacterium sp. ER2 1.36 

18 Lachnospiraceae bacterium 7_1_58FAA 1.22 Tannerella sp. 6_1_58FAA_CT1 1.25 Alistipes finegoldii 1.36 

19 Bacteroides dorei 1.2 Lachn.bacterium 7_1_58FAA 1.25 Lachn.bacterium 7_1_58FAA 1.15 

20 Helicobacter pullorum 1.19 Alistipes finegoldii 1.16 Firmicutes bacterium CAG:94 1.11 

21 Clostridium sp. CAG:678 1.19 Clostridium sp. ATCC 29733 1.12 Oscillibacter sp. KLE 1745 1.09 

22 Odoribacter splanchnicus 1.17 Odoribacter splanchnicus 0.93 [Clostridium] methylpentosum 1.04 

23 Alistipes sp. CAG:29 1.16 [Clostridium] methylpentosum 0.92 Odoribacter splanchnicus CAG:14 1.01 

24 Clostridium sp. ATCC 29733 1.16 Alistipes sp. CAG:29 0.84 Alistipes sp. CAG:29 1 

25 Oscillibacter sp. KLE 1745 1.12 Helicobacter pullorum 0.83 Clostridium sp. ATCC 29733 0.91 

26 Alistipes obesi 0.97 Flavonifractor plautii 0.82 Alistipes obesi 0.85 

27 [Clostridium] methylpentosum 0.95 Alistipes obesi 0.73 Flavonifractor plautii 0.78 

28 Lactobacillus salivarius 0.9 Odori.splanchnicus CAG:14 0.65 Escherichia coli 0.65 

29 Odoribacter splanchnicus CAG:14 0.84 Clostridium sp. CAG:678 0.56 Lactobacillus salivarius 0.43 

30 Flavonifractor plautii 0.81 Lactobacillus salivarius 0.53 Clostridium sp. CAG:678 0.23 
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In relation to the bacterial species with abundances higher than 0.020 in at least one group and 

significantly different among groups, the relative frequencies of abundance of Lactobacillus johnsonii 

and Lactobacillus amylovorus were significantly higher in group A in comparison to groups B and C 

(Table 17) as well as D and E (Table 18). Clostridium species abundances were significantly higher 

in group A compared to groups B and C (Table 17) as well as group E (Table 18). 

 

Table 17. Statistically significant differences between means of relative frequency of abundance (%) 

of caecum bacterial species in Group A, Group B and Group C. 

          

  Group A Group B Group C   

Species Mean P-values 

Lactobacillus johnsonii 0.58 0.21 0.19 0.02385 

Clostridium sp. CAG:354 0.46 0.15 0.18 0.04859 

Lactobacillus amylovorus 0.29 0.16 0.12 0.04451 

Fusobacterium sp. CAG:439 0.17 0.06 0.06 0.00107 

Azospirillum sp. CAG:260 0.05 0.01 0.01 0.00024 

Brachyspira sp. CAG:484 0.05 0.02 0.02 0.00404 

Bacteroides sp. 2_1_56FAA 0.04 0.08 0.04 0.00899 

Lactobacillus gigeriorum 0.03 0.02 0.01 0.02854 

Clostridium sp. CAG:768 0.03 0.01 0.02 0.03194 

Clostridium sp. KNHs214 0.03 0.01 0.01 0.04000 

Streptococcus mitis 0.03 0.02 0.02 0.04177 

Lactobacillus acidophilus 0.02 0.01 0.01 0.04244 
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Table 18. Statistically significant differences between means of relative frequency of abundance (%) 

of caecum bacterial species in Group A, Group D and Group E. 

  Group A Group D Group E   

Species Mean P-values 

Faecalitalea cylindroides 0.68 0.53 0.49 0.04053 

butyrate-producing bacterium SM4/1 0.59 0.53 0.43 0.03415 

Lactobacillus johnsonii 0.58 0.18 0.22 0.02009 

Clostridium sp. M62/1 0.46 0.54 0.36 0.02645 

Lactobacillus amylovorus 0.29 0.13 0.10 0.00837 

Eubacterium desmolans 0.28 0.30 0.51 0.00923 

Blautia obeum 0.28 0.25 0.20 0.02819 

Firmicutes bacterium CAG:114 0.20 0.17 0.14 0.04204 

Bacteroides cellulosilyticus 0.13 0.18 0.21 0.01780 

Firmicutes bacterium CAG:110 0.11 0.37 0.13 0.02141 

Clostridium sp. KLE 1755 0.10 0.08 0.06 0.01052 

Clostridium sp. CAG:58 0.09 0.07 0.05 0.00043 

Ruminococcus sp. SR1/5 0.06 0.05 0.04 0.00989 

Clostridium clostridioforme CAG:132 0.05 0.05 0.03 0.03618 

 

Overall, it should be noticed that, in this as in previous trials, a consistent variation in the relative 

abundance of predominant phyla, classes and families was observed between the same replicates. 

One example is reported for the Lactobacillaceae family (Figure 30). This result underlines the 

importance to test a representative number of birds within each treated group and nine chickens 

should be a suitable number.   
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Figure 30. Abundance variation of Lactobacillaceae family between cickens of the same treatment. 

 

 

 

3.3.3.3 Caeca metabolic genes composition  

The comparison between abundance of level function genes in the tested groups showed a number of 

significantly different functions, mainly belonging to carbohydrate metabolism, amino acid 

metabolism and membrane transport. All significantly different functions were lower in the treated 

groups in comparison to the control and were mainly associated to glutathione metabolism, pyruvate 

metabolism and phosphotransferase system (Table 19). The only exception was represented by pepN; 

aminopeptidase N [EC:3.4.11.2] significantly higher in the group treated with commercial phytase at 

triple concentration.  The PTS components, significantly lower in the treated groups, were found to 

regulate numerous cellular functions not or only indirectly related to carbon metabolism and 

transport. In fact, PTS components control nitrogen and phosphate metabolism as well as potassium 

transport, antibiotic resistance, biofilm formation, and endotoxin production and also regulate the 

virulence of several pathogens. Given the high physiological impact of its regulatory functions, the 

PTS can no longer be considered merely a sugar transport and phosphorylation system but plays some 

regulatory roles (Deutscher et al., 2014).   
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Table 19. Metabolic functions significantly different between control and treated groups. 
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3.3.3.4 Chicken carcass microbiota composition 

In the trial with phytase, other than the caecal microbiota, skin microbiota composition of chicken 

carcasses collected at the slaughterhouse at the end of the cooling tunnel was investigated. The 

microbiota composition of the skins belonging to carcasses collected from group A (i.e., control diet) 

was compared with those of carcasses fed with a triple concentration of commercial phytase without 

(group C) and with (group E) inositol. The microbiota of the skins belonging to each group is 

summarised in Table 20. For all groups Proteobacteria followed by Firmicutes represented more than 

90% of bacterial populations. Both these Phyla were largely represented in all groups. However, the 

relative frequency of abundance of Proteobacteria was higher in Group A compared to the other 

groups. On the contrary, the abundance of Firmicutes was higher in the treated groups (Group C and 

E) in comparison to group A. Gammaproteobacteria was the most abundant class within 

Proteobacteria, followed by Betaproteobacteria and Alphaproteobacteria (Table 20). Enterococcaceae 

and Moraxellaceae were the most rapresented families in the Proteobacteria class, followed by 

Aeromonadaceae, Shewanellaceae, Pseudomonadaceae, Pasteurellaceae, Idiomarinaceae and 

Vibrionaceae (Table 20). Enterococcaceae showed a significantly lower (P=0.029) relative 

abundance in group A (i.e., 22.84%) in comparison to groups C and E (i.e., 42.00 and 37.56%, 

respectively). The same trend was observed in the relative frequency of abundance of Vibrionaceae 

that was significantly lower in the control group compared to the others (P=0.010). On the contrary, 

the abundances of Moraxellaceae, Shewallanaceaea and Idiomondaceae were significantly higher in 

group A (i.e., P<0.05) compared to the treated groups. The Phylum Firmicutes was mostly represented 

by Bacilli and Clostridia. In particular, both Clostridia (P=0.011) and Clostridiaceae (P<0.05) were 

significantly more abundant in group B compared to Group A. Within the Bacilli class, the most 

represented families were Planococcaceae, Bacillaceae, Paenibacillaceae, Staphylococcaceae, 

Enterococcaceae, Lactobacillaceae and Streptococcaceae (Table 20). In the distribution of 

Bacillaceae, Lactobacillaceae, Streptococcaceae, Staphylococcaceae, between all groups, significant 

differences were not observed, while the other families showed statistically significant differences. 

In particular, the abundance of Eterococcaceae was significantly higher (P=0.04) in group E 

compared to groups A and C, while the Paenibacillaceae abundance was significantly higher in group 

A compared to the others groups (Table 20). In the Bacilli class, group E showed a significantly 

higher relative frequency of abundance of the Enterococcaceae family (P=0.029) compared to the 

other groups and a significantly lower relative frequency of abundance of Planococcaceae compared 

to group C (P<0.05). 
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Table 20. Mean relative frequency of abundance (%) of Phyla, Classes and Families of carcass skin 

microbiota in chickens belonging to groups A, C, and E. 

Phylum Class Family Group A Group C Group E  

Proteobacteria   94.99 92.68 92.81 
 Gammaproteobacteria 94.61 92.15 92.51 
  Enterobacteriaceae 22.84 42.00 37.56 
  Moraxellaceae 51.36 23.71 22.05 
  Aeromonadaceae 19.48 25.18 30.95 
  Shewanellaceae 0.47 0.82 1.48 
  Pseudomonadaceae 0.31 0.30 0.33 
  Idiomarinaceae 0.03 0.02 0.01 
  Pasteurellaceae 0.07 0.05 0.03 
  Vibrionaceae 0.02 0.02 0.03 
 Betaproteobacteria 0.35 0.51 0.26 
  Comamonadaceae 0.29 0.45 0.19 
  Neisseriaceae 0.04 0.02 0.03 

  Alphaproteobacteria 0.02 0.02 0.03 

Firmicutes   4.01 6.46 6.10 
 Bacilli  3.14 3.21 3.42 
  Planococcaceae 0.57 0.68 0.36 
  Bacillaceae 0.24 0.11 0.08 
  Paenibacillaceae 0.11 0.06 0.06 
  Staphylococcaceae 0.19 0.56 0.18 
  Enterococcaceae 0.33 0.45 1.17 
  Lactobacillaceae 0.02 0.38 0.46 
  Streptococcaceae 1.66 0.96 1.09 
 Clostridia  0.85 3.24 2.67 
  Clostridiaceae 0.77 3.18 2.61 

    Peptostreptococcaceae 0.05 0.03 0.02 

Bacteroidetes   0.96 0.79 0.97 
 Bacteroidia 0,05 0.23 0.12 
  Bacteroidaceae 0.04 0.21 0.09 
 Flavobacteriia 0,90 0.55 0.83 

    Flavobacteriaceae 0.90 0.55 0.83 

Actinobacteria   0.04 0.06 0.10 
 Actinobacteria 0,04 0.06 0.10 
  Micrococcaceae 0.01 0.03 0.02 

    Bifidobacteriaceae 0.003 0.004 0.03 

 

Whithin the phylum Bacteroidetes, the Flavobacteriia class was the most represented in all groups 

followed by Bacteroidia (Table 20). The abundance of the Flavobacteria class and Flavobacteriaceae 

was significantly lower (P<0.05) in group C in comparison to the control group. On the contrary, the 

Bacteroidia class was significantly higher in group C compared to the control group (P<0.05). 
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Bacteroidaceae was the most represented family in the Bacteroidia class and showed a significantly 

higher abundance in group E compared to the control group (P<0.05). 

Finally, phylum Actinobacteria showed a frequency of abundance significantly higher (P=0.045) in 

the control group in comparison to groups A and E. The same trend was observed for the class 

Actinobacteria. In Group E, Bifidobacteriaceae was the most represented family and it showed a 

significant higher abundance (P<0.01) in Group E in comparison to groups A and C, where the 

relative abundances of the same family were as low as 0.003 and 0.004% respectively (Table 20), 

The Micrococcaceae abundance was significantly higher (P=0.029) in group C in comparison to the 

control group.  

Table 21 summarises the top 30 bacterial species identified in the control group in comparison to the 

treated groups (Group C and E). Among these species, both Group C and E showed a higher 

abundance of some pathogenic bacteria compared to Group A. Group C and E presented a higher 

abundance of Escherichia coli and Clostidium perfringens compared to Goup A, where the relative 

abundances of the same species were 16.27 and 0.73% respectively. The same trend was observed 

for Salmonella enterica that was present as one of the top 30 species only in groups C and E, while it 

was absent in Group A. Comparing the top 30 bacteria species reported in Table 21 it can be noticed 

that the composition of group A showed a prevalence of Acinetobacter and Aeromonas genera, while 

the other two groups showed a more diversified composition (Table 21). Among these genera, 

potential pathogenic species present in Group A, such as Acinetobacter baumannii and Acinetobacter 

haemolyticus showed a higher abundance compared to the other groups. Moreover, other than 

potential pathogens belonging to Acinetobacter genus, even Klebsiella oxytoca and Morganella 

morganii had a higher relative frequency of abundances in group A compared to group C and E, while 

on the contrary, Aeromonas hydrophila and Aeromonas veronii had a higher relative frequency of 

abundances in Group C and E compared to Group A (Table 21).
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Table 21. Mean relative frequency of abundance (%) of the 30 top representative species (MRS) of skin microbiota in Groups A, C and E. 

MRS Group A species Mean Group C species Mean Group E species Mean 

1 Acinetobacter johnsonii 32.86 Escherichia coli 36.80 Escherichia coli 30.47 

2 Escherichia coli 16.27 Aeromonas veronii 18.65 Aeromonas veronii 22.28 

3 Aeromonas veronii 13.83 Acinetobacter johnsonii 14.25 Acinetobacter johnsonii 14.21 

4 Acinetobacter lwoffii 9.84 Aeromonas hydrophila 4.46 Aeromonas hydrophila 5.77 

5 Aeromonas hydrophila 3.78 Acinetobacter lwoffii 4.35 Acinetobacter lwoffii 4.23 

6 Citrobacter freundii 1.32 Clostridium perfringens 3.15 Clostridium perfringens 2.57 

7 Aeromonas media 1.07 Aeromonas media 1.28 Citrobacter freundii 2.53 

8 Morganella morganii 1.05 Citrobacter freundii 0.97 Aeromonas media 1.67 

9 Acinetobacter junii 0.99 Morganella morganii 0.74 Enterococcus cecorum 0.90 

10 Acinetobacter towneri 0.85 Acinetobacter junii 0.67 Shewanella baltica 0.85 

11 Acinetobacter baumannii 0.80 Kurthia sp. 11kri321 0.66 Aeromonas salmonicida 0.81 

12 Klebsiella oxytoca 0.74 Psychrobacter sp. P11F6 0.52 Morganella morganii 0.54 

13 Clostridium perfringens 0.73 Aeromonas salmonicida 0.46 Klebsiella oxytoca 0.45 

14 Providencia rustigianii 0.70 Shewanella baltica 0.44 Acinetobacter junii 0.39 

15 Streptococcus iniae 0.67 Acinetobacter towneri 0.43 Streptococcus iniae 0.38 

16 Kurthia sp. 11kri321 0.56 Providencia rustigianii 0.42 Empedobacter brevis 0.37 

17 Aeromonas salmonicida 0.53 Acinetobacter baumannii 0.40 Lactobacillus salivarius 0.35 

18 Acinetobacter bereziniae 0.53 Staphylococcus aureus 0.37 Providencia rustigianii 0.35 

19 Empedobacter brevis 0.50 Streptococcus iniae 0.36 Kurthia sp. 11kri321 0.35 

20 Moraxella bovoculi 0.49 Acinetobacter bouvetii 0.36 Acinetobacter baumannii 0.34 

21 Acinetobacter bouvetii 0.48 Klebsiella oxytoca 0.35 Acinetobacter bouvetii 0.29 

22 Streptococcus dysgalactiae 0.43 Lactobacillus salivarius 0.35 Streptococcus parauberis 0.29 

23 Acinetobacter gerneri 0.41 Acinetobacter bereziniae 0.30 Citrobacter sp. FDAARGOS_156 0.25 

24 Acinetobacter haemolyticus 0.39 Comamonas aquatica 0.29 Hafnia alvei 0.24 

25 Acinetobacter sp. TTH0-4 0.39 Empedobacter brevis 0.27 Acinetobacter bereziniae 0.24 

26 Acinetobacter venetianus 0.38 Klebsiella pneumoniae 0.26 Aeromonas molluscorum 0.24 

27 Acinetobacter radioresistens 0.37 Salmonella enterica 0.25 Salmonella enterica 0.23 

28 Acinetobacter tandoii 0.37 Enterococcus cecorum 0.24 Acinetobacter towneri 0.22 

29 Acinetobacter parvus 0.32 Acinetobacter gerneri 0.21 Proteus mirabilis 0.21 

30 Enterobacter cloacae 0.27 Proteus mirabilis 0.21 Klebsiella pneumoniae 0.21 
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The bacterial species with abundances higher than 0.025% in at least one group and significantly 

different between groups A and E as well as A and C are summarized in Tables 22 and Table 23. 

Group A showed significant higher abundances of the species belonging to Acinetobacter, Moraxella 

and Enterobacter genera compared to both the treated groups, i.e. group C and group E (Table 22 and 

23). The same trend was observed for Pseudomonas genus. In particular, the Pseudomonas 

pseudoalcaligenes species was significantly higher in group A compared to groups C and E, while 

Pseudomonas aeruginosa was significantly higher compared only to group C. On the contrary, the 

species belonging to the Shigella and Shawanella genera were significantly lower in the control group 

in comparison to the treated groups. Clostridium perfringens abundance was significantly higher in 

Group C compared to Group A, while Salmonella enterica showed a significant difference only in 

the comparison between group E and A. Group E showed even a significant higher abundance of 

Aeromonas schubertii in comparison to Group A. Finally, group A showed higher abundances of 

Citrobacter youngae and Citrobacter amalonaticus compared to group C. On the contrary, the species 

Klebsiella pneumoniae and Klebsiella variicola were significantly higher in Group E compared to 

Group A.  
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Table 22. Statistically significant differences between means of relative frequency of abundance 

(%) of skin bacterial species in groups A and E. 

  Group A Group E  

Species Mean P-values 

Acinetobacter johnsonii 32.86 14.21 0.0008 

Acinetobacter lwoffii 9.84 4.23 0.0005 

Acinetobacter junii 0.99 0.39 0.0035 

Acinetobacter towneri 0.85 0.22 0.0024 

Acinetobacter baumannii 0.80 0.34 0.0003 

Klebsiella oxytoca 0.74 0.45 0.0394 

Acinetobacter bereziniae 0.53 0.24 0.0001 

Acinetobacter gerneri 0.41 0.16 0.0019 

Acinetobacter haemolyticus 0.39 0.18 0.0006 

Acinetobacter sp. TTH0-4 0.39 0.17 0.0005 

Acinetobacter venetianus 0.38 0.17 0.0010 

Acinetobacter radioresistens 0.37 0.14 0.0003 

Acinetobacter tandoii 0.37 0.16 0.0021 

Acinetobacter parvus 0.32 0.18 0.0033 

Enterobacter cloacae 0.27 0.18 0.0014 

Acinetobacter schindleri 0.26 0.07 0.0228 

Enterobacter asburiae 0.26 0.13 0.0007 

Shewanella baltica 0.23 0.85 0.0162 

Acinetobacter ursingii 0.23 0.09 0.0003 

Acinetobacter sp. Ver3 0.22 0.08 0.0017 

Acinetobacter pittii 0.21 0.09 0.0013 

Leclercia adecarboxylata 0.20 0.10 0.0027 

Comamonas aquatica 0.19 0.10 0.0434 

Moraxella osloensis 0.15 0.08 0.0147 

Salmonella enterica 0.14 0.23 0.0292 

Klebsiella pneumoniae 0.14 0.21 0.0015 

Serratia liquefaciens 0.12 0.06 0.0066 

Acinetobacter gyllenbergii 0.12 0.05 0.0007 

Acinetobacter bohemicus 0.11 0.05 0.0015 

Paenibacillus sophorae 0.10 0.06 0.0403 

Acinetobacter sp. ATCC 27244 0.09 0.04 0.0012 

Enterococcus cecorum 0.08 0.90 0.0222 

Bacillus mycoides 0.08 0.03 0.0009 

Aeromonas schubertii 0.07 0.12 0.0471 

Enterobacter sp. E20 0.07 0.03 0.0002 

Shewanella oneidensis 0.07 0.16 0.0002 

Acinetobacter harbinensis 0.06 0.02 0.0020 

Acinetobacter equi 0.05 0.02 0.0009 

Shewanella putrefaciens 0.05 0.17 0.0027 
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Pseudomonas 

pseudoalcaligenes 
0.05 0.03 0.0029 

Acinetobacter sp. NIPH 298 0.05 0.02 0.0014 

Shewanella sp. ANA-3 0.04 0.09 0.0004 

Acinetobacter nosocomialis 0.04 0.02 0.0001 

Macrococcus caseolyticus 0.04 0.07 0.0255 

Enterobacter cancerogenus 0.04 0.02 0.0022 

Plesiomonas shigelloides 0.04 0.01 0.0360 

Comamonas kerstersii 0.04 0.02 0.0284 

Bacteroides fragilis 0.03 0.05 0.0222 

Shewanella sp. MR-7 0.03 0.06 0.0005 

Shewanella sp. MR-4 0.03 0.06 0.0003 

Edwardsiella tarda 0.03 0.04 0.0428 

Idiomarina loihiensis 0.02 0.01 0.0197 

Shewanella sp. W3-18-1 0.02 0.08 0.0042 

Shigella sonnei 0.02 0.03 0.0446 

Klebsiella variicola 0.01 0.04 0.0345 

Bifidobacterium gallinarum 0.003 0.03 0.0281 
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Table 23. Statistically significant differences between means of relative frequency of abundance (%) 

of skin bacterial species in group A and Group C.  

  Group A Group C  

Species Mean P-values 

Acinetobacter johnsonii 32.86 14.25 0.0024 

Acinetobacter lwoffii 9.84 4.35 0.0021 

Acinetobacter towneri 0.85 0.43 0.0435 

Acinetobacter baumannii 0.80 0.40 0.0059 

Klebsiella oxytoca 0.74 0.35 0.0098 

Clostridium perfringens 0.73 3.15 0.0088 

Acinetobacter bereziniae 0.53 0.30 0.0121 

Empedobacter brevis 0.50 0.27 0.0134 

Acinetobacter gerneri 0.41 0.21 0.0340 

Acinetobacter haemolyticus 0.39 0.20 0.0090 

Acinetobacter sp. TTH0-4 0.39 0.18 0.0023 

Acinetobacter venetianus 0.38 0.18 0.0069 

Acinetobacter radioresistens 0.37 0.20 0.0148 

Acinetobacter tandoii 0.37 0.17 0.0084 

Enterobacter cloacae 0.27 0.17 0.0072 

Enterobacter asburiae 0.26 0.14 0.0024 

Acinetobacter ursingii 0.23 0.13 0.0195 

Acinetobacter sp. Ver3 0.22 0.10 0.0155 

Acinetobacter pittii 0.21 0.10 0.0178 

Leclercia adecarboxylata 0.20 0.09 0.0022 

Moraxella osloensis 0.15 0.09 0.0231 

Serratia liquefaciens 0.12 0.06 0.0025 

Acinetobacter bohemicus 0.11 0.05 0.0061 

Pseudomonas aeruginosa 0.11 0.08 0.0457 

Paenibacillus sophorae 0.10 0.06 0.0322 

Citrobacter youngae 0.10 0.07 0.0453 

Enterobacter sp. 638 0.095 0.056 0.0122 

Acinetobacter sp. ATCC 

27244 
0.090 0.047 0.0236 

Bacillus mycoides 0.079 0.035 0.0041 

Acinetobacter harbinensis 0.057 0.030 0.0337 

Acinetobacter equi 0.054 0.023 0.0034 

Pseudomonas 

pseudoalcaligenes 
0.048 0.025 0.0025 

Chryseobacterium gleum 0.047 0.030 0.0457 

Acinetobacter sp. NIPH 298 0.047 0.026 0.0428 

Acinetobacter nosocomialis 0.040 0.020 0.0037 

Enterobacter cancerogenus 0.040 0.021 0.0016 

Citrobacter amalonaticus 0.025 0.018 0.0367 

Shigella flexneri 0.017 0.043 0.0320 

Shigella sonnei 0.016 0.043 0.0379 

Shigella dysenteriae 0.014 0.033 0.0238 

 



116 
 

 4. DISCUSSION AND CONCLUSIONS 

The animal gut microbiome describes the collective genomic content of the microbial community 

ihabiting the gut and the total genetic capacity of that community (Tremaroli and Bäckhed, 2012). 

Since the gut microbiome is involved in the regulation of multiple host metabolic pathways, a deep 

understanding of the relationships between microbiome and host provides new strategies to fight 

diseases, improve animal health and as a consequence safety of foods of animal origin. Using shotgun 

metagenomic sequencing the relationship between chickens and their microbiome has been 

investigated in the context of application of different feeding strategies specifically represented by 

the supplementation in a control diet of (1) Lactobacillus acidophilus D2/CSL, (2) serine protease, 

associated or not to a low level of proteins, (3) phytase at standard and triple concentration associated 

or not with inositol.  

Overall, in the three feeding trials the gut populations were investigated in their natural habitats and 

in the context of their interrelationships with the host using shotgun metagenomic sequencing. 

Knowledge of the microorganisms having gene coding for enzymes associated to specific metabolic 

pathways allows improving (or decreasing) those pathways driving specific microbial populations by 

fit for purpose nutrition strategies and investigating how the metabolic pathways are correlated to one 

another in the different microorganisms. The variability between individuals treated with the same 

additive has been previously reported in other studies that characterized chicken caeca (Stanley et al., 

2013b; Sergeant et al., 2014), these studies hypothesized that this great variation in the relative 

abundance of the bacterial community between individuals could depend on the initially colonizing 

microbiota and immune system of the host (Donaldson et al., 2015). To take into account such 

variability the number of individual chickens tested within each group, including controls, changed 

during the project and shoud be fixed at nine birds collected at least at twice along the rearing cycle.  

4.1 Impact of feed supplemented with Lactobacillus acidophilus D2/CSL on chicken 

gastrointestinal tract 

The administration of probiotic Lactobacilli has been demonstrated to stimulate immune responses 

(Haghighi et al., 2005; Brisbin et al., 2011), improve digestive health (Kim et al., 2012), as well as 

growth performance (Loh et al., 2010; Shim et al., 2012; Askelson et al., 2014) in poultry. 

Lactobacillus administration has also been shown to reduce colonization by Campylobacter (Ghareeb 

et al., 2012; Neal-McKinney et al., 2012), Clostridium (La Ragione et al., 2004), and Salmonella 

(Chen et al., 2012; Ghareeb et al., 2012), improving the microbial food safety of poultry meat.  

The ability of Lactobacillus species to adhere to epithelial tissues and colonize poultry has been 

reported (Jin et al., 1996; Edelman et al., 2002; Bouzaine et al., 2005). However, microbial factors 
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important to gastro intestinal persistence of Lactobacillus in poultry are not well characterized. The 

lack of a species-specific cell culture model has been a problem to investigations of Lactobacillus 

adhesion and its contribution to gastro intestinal colonization in poultry. According to previous 

studies (Oakley et al., 2013) Firmicutes and Proteobacteria were the most common phyla identified 

in caeca tested in our research. At finer scales of taxonomic resolutions, the majority of sequences 

belonged to various members of Clostridia class. In the day-old chicks, the most represented bacteria 

genera were Lactobacillus, Clostridium, Blautia, Escherichia, Enterococcus, Eubacterium and 

Ruminococcus. This trend was partially observed also in the chickens at 41 days. However, at the end 

of the rearing period the most representative genera were Faecalibacterium, Subdonigranulum, 

Roseburia and Eubacterium. The presence of Clostridium-related species in the chicken caeca was 

observed by other authors (Bjerrum et al., 2006; Gong et al., 2007; Lund et al., 2010). Clostridium 

clusters IV (including Faecalibacterium prausnitzzi, Subdoligranulum variabile and Anaerotruncus 

colihominis) and XIVa (including Roseburia intestinalis and Ruminococcus torques) produce 

primarily butyrate (Van den Abbeele et al., 2010). In particular, F. prausnitzzi has a requirement for 

acetate, and produces butyrate, formate and lactate (Scupham, 2007). Butyric acid has been shown to 

have an important function in protection against pathogens in poultry (Fernandez-Rubio et al., 2009). 

Furthermore, it is involved in several intestinal functions, being an energy source stimulating the 

epithelial cells proliferation and differentiation, other than exerting an antimicrobial effect by 

promoting the production of peptides and stimulating the production of tight junction protein 

(Dalmasso et al., 2008). Overall, the microbiological profiles identified in day-old chicks, in CON 

and LA partially confirm those reported by Gong et al., (2008) showing that the first days after 

hatching the broiler caecum is colonized by facultative aerobes bacteria. Oxygen consumption by 

these bacteria alters the lower gut environment to more reducing conditions, which facilitates 

subsequent growth and colonization of extremely oxygen-sensitive obligates anaerobes (Barnes et 

al., 1972; Gong et al., 2002; Wise and Siragusa, 2007).  

R. torques, which is known to degrade GI mucin (Wilson et al., 1997) was significantly higher in 

CON group in comparison to LA at 41 days. Degradation of mucin is regarded as a pathogenicity 

factor, since loss of the protective mucus layer may expose GI tract cells to pathogens (Ruseler-van 

Embden et al., 1995). However, mucin also constitutes a carbon and energy source for intestinal 

microbiome. It has been estimated that 1% of colonic microbiome is able to degrade host mucin using 

enzymes (e.g. glycosidases and sulfatases) that can degrade the oligosaccharide chains (Hoskins and 

Boulding, 1981). Despite the apparent low level of mucin degrading bacteria, these species provide 

nutrients for other resident bacteria, which can use the monosaccharides or amino acids released from 
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mucin degradation (Derrien et al., 2004). This result might be possibly related to the higher incidence 

of pasty vent observed in CON group, but this hypothesis needs to be confirmed. 

In relation to the metabolic functions, LA group showed a significantly higher level of β-glucosidase. 

These enzymes contribute to the hydrolysis of glucose monomers from non-starch polysaccharides 

(e.g., cellulose, β-glucans), playing an important role in the fermentation of undigested carbohydrates 

and, ultimately, in animal performance and health. In particular, β-glucosidase (β-glucoside 

glucohydrolase; EC3.2.1.21) hydrolyzes alkyl- and aryl-β-glucosides, as well as diglucosides and 

oligosaccharides, to release glucose and an aglycone (Reese, 1977). It also hydrolyzes isoflavonal 

glycoside conjugates into isoflavone aglycones, such as genistein, daidzein, and glycitein. An 

increase of the concentrations of genistein and daidzein in soy milk has been reported by using strains 

of Streptococcus thermophilus, L. acidophilus, L. delbrueckii ssp.bulgaricus, L. casei, L. plantarum, 

L. fermentum and several Bifidobacterium species (Donkor and Shah, 2008; Rekha and 

Vijayalakshmi, 2011). These aglycones hydrolyzed by β-glucosidases from intestinal 

microorganisms are readily absorbed across the villi of the intestine (Ismail et al., 2005), possess 

greater bioavailability than the corresponding glycoside conjugates (Izumi et al., 2000) and a wide 

range of biological properties, such as antioxidant and anti-tumor activities (Fritz et al., 1998; Brouns 

et al., 2002). Qian and Sun (2009) confirmed that broilers fed with 0.2% β-glucosidase show a 

significantly increased average daily weight gain (P<0.05) and significant higher feed conversion 

ratios (P<0.05) than control.  

In conclusion, the relative abundance of Lactobacillus acidophylus in the caeca of LA chickens was 

comparable with that of CON group. This result might be explained taking into account the 

colonization preference of the administered strain for the crop and the small intestine, even if this 

specific aspect was not investigated. Beside the lack of colonization of LA in broiler caeca, the results 

of this study seem to suggest that the metabolic activity of supplemented Lactobacillus acidophilus, 

and in particular the lactic acid production, positively affect the microbial species producing butyric 

acid by a cross feeding mechanism. Finally, a positive effect was observed in relation to the metabolic 

functions of the treated group, with particular reference to the higher abundance of the β-glucosidase, 

improving animal performance and health.  

4.2 Impact of feed supplemented with serine protease on chicken gastrointestinal tract 

Nutritionists are evaluating proteases for their ability to improve protein and amino acid digestibility 

in the chicken diets (Olukosi et al., 2015). Nonetheless, the understanding of the mode of action of 

proteases in the gastrointestinal tract of chickens is still limited (Olukosi et al., 2015). Diet associated 

differences in the composition of chicken ileum and cecum have been previously reported only in 
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relation to the association between abundance of Lactobacilli and Clostridium perfringens and 

supplementation of xylanase in a barley-basal diet (Totok et al., 2008). In this project, taxonomic and 

functional changes occurring at 14 and 42 days in ceca of chickens fed with a control diet in 

comparison to diets with a decreased content of protein (i.e., -7%) supplemented, or not 

supplemented, with an enzyme preparation of serine protease were investigated. Despite the strong 

relationship between age of the birds and microbiota composition, the microbiota compositional 

diversity did group the samples at family level according to their diet, at both 14 and 42 days. At 

phylum level, abundances of Actinobacteria and Proteobacteria were mainly affected by the diet, as 

well as interaction between diet and time. Abundances of Firmicutes and Cyanobacteria were mainly 

affected by age of the birds.  

The lower level of protein in the diet decreased the abundance of Lactobacillaceae at 14 days but then 

they increased over time. Lactobacillaceae have been considered key players in host metabolic 

balance because may reduce the antigen load from gut bacteria to the host, and may alleviate certain 

inflammation responses (Zhu et al., 2015). The increase of Lactobacillaceae over time might explain 

the corresponding rise of Faecalibacterium prausnitzii in the ceca of broilers fed with -7% protein 

between 14 and 42 days. In fact, according to Miquel et al., 2014, the increase of Bifidobactirium 

longum and Lactobacilus spp might fed Faecalibaterium prausnitzii through the production of acetate. 

In a study supporting this hypothesis, Bifidobacterium longum BB536 intake (13 weeks treatment) 

enhanced Faecalibacterium prausnitzii 16S rRNA gene copy numbers in Japanese individuals with 

cedar pollinosis (Odamaki et al., 2007). Furthermore, an in vitro experiment conducted to quantify 

butyric-producing bacteria in a simulated broiler cecum, the supplementation of different 

Lactobacillus species, including Lactobacillus salivarius, after 24 h of incubation, significantly 

increased the number of Lactobacilli, Bifidobacteria and Faecalibacterium prausnitzii (Meimandipour 

et al., 2010). Faecalibacterium praustnizii, as well as Sudoligranum variabile representing one of the 

signature species decreasing in diet C in comparison to the control at 42 days, are producers of short-

chain fatty acids (SCFA), such as butyric acid and formic acid (Bjerrum et al., 2006), having an 

important function in both growth performance (Garcia et al., 2007) and protection against pathogens 

(Fernandez-Rubio et al., 2009). All diet C signature species at 14 days belonged to Bacteroidetes and 

were significantly lower in the chickens fed with serine protease in comparison to the control. This 

result demonstrated the lower health status of ceca collected from animals fed with serine protease. 

In fact, Bacteroidetes are the main bacteria involved in producing SCFA and play an important role 

in breaking down complex molecules to simpler compounds, which are essential to the growth of the 

host and gut microbiota (Lan et al., 2006). The animals fed with serine protease showed also a higher 

abundance of Gammaproteobacteria at 14 days in comparison to control group and group -7% protein. 
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Gammaproteobacteria contain many pathogenic species, including Escherichia coli, which rinsed 

over time in the ceca of broilers fed with diet C and was significantly higher in animals fed with 

serine protease in comparison to the other groups at the end of the rearing period (i.e., 42 days). Some 

E. coli strains are capable of causing opportunistic secondary infections in birds, following other 

respiratory tract pathogens, such as infectious bronchitis virus or Mycoplasma gallisepticum (Smith 

et al., 1985; Gross, 1990) in response to high ammonia levels in poultry houses, or physiological 

changes in the avian host. Besides, its potential as zoonotic pathogen, there is evidence that intestinal 

microbiome, including E. coli, may serve as reservoirs for antibiotic resistance and spread of 

resistance to zoonotic pathogens, such as Salmonella (Nandi et al., 2004; Fricke et al., 2009). 

Therefore, the increasing trend of this species linked to the supplementation of proteases should be 

carefully taken into consideration.  

The most abundant functional genes in all tested groups were cystine desulfurase, followed by alpha-

galactosidase and serine hydroxymethyltransferase. Cysteine desulfurase is a pyridoxal 5′-phosphate 

(PLP)-dependent homodimeric enzyme that catalyzes the conversion of L-cysteine to L-alanine and 

sulfane sulfur via the formation of a protein-bound cysteine persulfide intermediate on a conserved 

cysteine residue. Increased evidence for the functions of cysteine desulfurases has revealed their 

important roles in the biosyntheses of Fe-S clusters, thiamine, thionucleosides in tRNA, biotin, lipoic 

acid, molybdopterin, and NAD. The enzymes are also proposed to be involved in cellular iron 

homeostasis and in the biosynthesis of selenoproteins (Mihara and Esaki, 2002). At 14 days, genes 

coding protein secretion system Type VI (T6SS) were significantly higher in the ceca of birds fed 

with -7% protein in comparison to the control group. However, at 42 days T6SS were significantly 

higher in the ceca of birds treated with serine protease in comparison to both control group and -7% 

protein group. Type VI secretion systems (T6SSs) are the most recently described specialized 

secretion systems. T6SSs are widely distributed in Gram-negative bacteria, especially in 

Proteobacteria, where type VI secretion gene clusters may be found in several copies on the 

chromosome (Cascales and Cambillau, 2012). First thought of as secretion systems dedicated to 

virulence towards eukaryotic host cells, recent data have shown unambiguously that these systems 

are regulating bacterial interactions and competition (Cascales and Cambillau, 2012). T6SSs are 

required to kill neighbouring, non-immune bacterial cells by secreting anti-bacterial proteins directly 

into the periplasm of the target cells upon cell-to-cell contact. This intense bacterial warfare indirectly 

contributes to pathogenesis in animals as T6SS facilitates the colonization of specific niches where 

pathogens then develop anti-host defences and toxins (Cascales and Cambillau, 2012).  
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In conclusion, the decrease level of protein in the diet negatively affected the abundance of 

Lactobacillaceae at 14 days. The supplementation of serine protease in the same feed (i.e., -7% 

protein) increased the level of Gammaproteobacteria at 14 days and the abundance of E. coli over 

time. Moreover, the supplementation of protease increased the abundances of T6SS genes 

contributing to pathogenesis in animals. Therefore, the supplementation of serine protease to improve 

protein and amino acid digestibility in chicken diets negatively affect the animal gut health. 

4.3 Impact of feed supplemented with phytase on chicken gastrointestinal tract  

Availability of the phosphorus fraction from phytic acid [myo-inositol 1,2,3,4,5,6-hexakis 

(dihydrogen phosphate); InsP6] present in plant seeds and feed, depends on the breakdown of InsP6. 

Phytases catalyse the hydrolysis of InsP6 to less-phosphorylated inositol phosphates, myo-inositol, 

and orthophosphates. Inositol phosphate isomers (InsPs) formed through the degradation action of 

different phytases have been assumed to possess physiological relevance in the digestive tract of 

broilers (Zyła et al., 2004). The supplementation of phytase in the diets have been showed to 

significantly affected growth performance of broiler chickens increasing final body weight feed 

consumption and body weight gain. Furthermore, an enhanced phosphorus availability can affect the 

structure of the microbial community in the digestive tract of broiler chickens (Zeller et al., 2015; 

Borda-Molina et al., 2016). However, the majority of the studies available focus on the effect of 

phytase on growth performance and body weight of the chickens, while few studies focused on the 

effect of this enzyme on the chicken microbiota. 

This project aimed to distinguish the effects of the administration of a standard and triple 

concentration of a commercial phytase, alone and combined with inositol, on the composition of 

microbial communities present in the cecum content of broiler chickens. As commonly described in 

previous studies (Stanley et al., 2013a; Deusch et al., 2015), the majority of the microorganisms 

colonizing chicken caecum belong to the phylum Firmicutes. However, in the present study 

Firmicutes was the most abundant phylum in all groups except group E in which the birds were fed 

with commercial phytase at triple concentration and inositol. In particular, caeca of birds fed with 

diet E showed a higher abundance of Bacteroidetes in comparison to the control group and lower 

abundance of Clostridi, Lactobacillaceae, Negativicutes, Bacteroidia Fusobacteria and 

Actinobacteria.  

The abundance of Erysipelotrichaceae, a family associated to butyryl-CoA production enzymes 

(Eeckhaut et al., 2011; De Maesschalck et al., 2014) was affected from the addition of phytase in 

triple concentration to the diet. On the contrary, Enterobacteriaceae abundance was reduced by the 

addition of inositol in comparison to the control group. The Lactobacillaceae family and 
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Lactobacillus sp. were negative affected from all the treatments in comparison to the control group. 

This result is in contrast with other studies where the addition of phytase leaded to a higher abundance 

of Lactobacillaceae (Borda-Molina et al., 2016). However, a study conducted by Witzig et al., (2015) 

reported that diets supplemented with phytase seem to support the abundance of Enterobacteriaceae 

while decreasing Lactobacillaceae in the ileum of chickens. Furthermore, it should be taken into 

account that the decrease of phytase efficacy in supporting positive populations like Lactobacillaceae 

might be due to high level of mineral phosphorus (Zeller et al., 2015). 

4.4 Impact of feed supplemented with phytase on chicken carcass microbiota 

The skin is the most exposed organ, responsible for providing a barrier to the external environment, 

however, despite a potent cutaneous immune system, many different microbial communities multiply 

on the skin surface. However, there are not studies, we are aware of, that analyse the skin microbiota 

of the chicken using metagenomic sequencing. In fact, authors have mainly focused on the research 

of photogenic bacteria on carcasses or on poultry meat products in order to avoid food born diseases.  

However, a better understanding of the dynamics between bacteria populations colonizing the chicken 

skin and of their modulation could, aside from improving the animal welfare, prevent the onset of 

foodborne pathogens and higher the food quality level of pouty meat products (Cogen et al., 2008; 

Grice and Segre, 2011; Sanford et al., 2013). 

The result showed that the skin microbiota of chickens in both groups were mainly composed of 

Proteobacteria and Firmicutes. Among these phyla, some of the more represented classes in the 

control group in comparison to the treated groups were Moraxellaceae, Flavobacteriaceae while at a 

species level there was a prevalence of Acinetobacter and Pseudomonas species. Freeman et al. 

(1976) identified Pseudomonas putrefaciens and Pseudomonas species that were members of groups 

I and II of Shewan's classification, as well as Flavobacterium and oxidative Moraxella, as bacteria 

producing a number of the compounds found in the aroma of spoiled chickens as hydrogen cyanide, 

methyl isopropyl sulfide, 2-propane thiol, methyl propionate, ethyl benzene, and an unidentified 

compound. Even Acinetobacter, that is usually found on the feathers of the bird and may originate 

from the deep litter, have been identified as spoilage bacteria along with Flavobacterium. 

On the contrary, Shawanella species, such as Shawanella putrefaciens, identified by Russell et al. 

(1995) as the bacterial species responsible for spoilage of poultry from various locations around the 

U.S, showed lower abundance in the control group in comparison to the treated groups.  

Morover, results showed that Enterococcaceae, Clostridiaceae and Micrococcaceae and some enteric 

pathogenic species, such as Salmonella enterica, Escherichia coli and Clostridium perfringens, 

showed a statistically higher abundance in one or both the treated groups in comparison to the control 
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group.  However, the higher abundance of these families and these pathogenic species in the treated 

groups in comparison to the control, was observed only in the skin samples but not in the fecal 

samples of the group fed with the same diet. Therefore, it could be hypothesized that this phenomenon 

could depend on a contamination at a slaughterhouse.  

However, this principle can be applied even to others pathogenic species, such as Salmonella that 

was showed to increase during some de-feathering processes (Clouser et al., 1995). Smith et al., 

(2007) reported the effect of external or internal faecal contamination on the numbers and incidence 

of coliforms, Escherichia coli and Campylobacter after evisceration and passage through an inside-

outside bird washer.  The authors showed that carcasses with external contamination had the highest 

numbers of bacteria after washing compared to carcasses with internal contamination or carcasses 

without applied contamination.   

Shigella species were also found to be significantly more abundant in the treated groups in 

comparison to the control group. Some species of Shigella genus are pathogenic bacteria causing 

Shigellosis and Shigella-contaminated food is often the source of infection. This study results show 

that, aside from the presence of some pathogenic bacteria contaminations caused from processing, 

the effect of phytase on chicken skin lead to mostly the reduction of spoilage genera and species in 

the treated groups compared to the control. The reduction of these genera and species, responsible of 

the spoilage of meat, could allow to heighten the quality of poultry meat product. 

4.5 Future prospectives   

In recent years the ability to obtain a through  picture of gut microbial communities has been 

consistently improved by the introduction of molecular, culture-independent techniques based on 

ribosomal 16S rRNA gene sequencing, including fluorescent in situ hybridization (FISH), fragment 

restriction length polymorphism mapping, competitive and quantitative PCR, denaturating (or 

temperature) gradient gel electrophoresis (DGGE/TGGE), shotgun sequencing DNA, and whole 

metagenomic analyses (Deng et al., 2008). The greatest challenges in this research field, apart from 

pure metagenomic complexitity, relate to understanding the temporal dynamics of metabolic 

communication between the host and its gut microbiota on an evolutionary time scale, in relation to 

global changes in nutritional strategies as well as environmental stressors. Alterations to the gut 

microbiota affect chicken biological fitness at multiple levels that will need to be better understood 

if we want to elucidate the role of the gut microbiota and the best ways to manipulate the microbiota 

to gain animal health benefit and improve food safety. 

Host–microbe interaction is currently a very active area of research and may help in identifying 

clusters of GIT bacteria that are consistently associated with better growth performance and health in 
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animals raised in varied environments (Torok et al 2011; Stanley et al., 2012). Highly productive 

animals have been developed by selection for elite genetic traits; it is possible that in the future, gains 

in productivity and health outcomes could be influenced by selection of elite GIT microbiota. 

Therefore, the role of the GIT microbiota in both productivity and health is subject to intensive study. 

Even if our knowledge of the gut microbiota composition, metabolic functions, and influence on 

animal health, welfare, and performance is far from complete, metagenomic sequencing results 

collected in this project should help to fill this gap.  In this project, the comparison of multiple 

metagenomes from the chicken guts using MG-RAST reveled the relationships between dit and host 

at different time points based on taxonomic and functional profiling. Even if the project time frame 

did not allow to go further in the identification of the best diet to fight pathogens in the gut to improve 

poultry meat safety, the results achieved contribute to reach this aim.   
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