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“Physicists describe the two properties of physical laws that they do not depend
on when or where you use them as symmetries of nature. By this usage physicists
mean that nature treats every moment in time and every location in space identi-
cally symmetrically by ensuring that the same fundamental laws are in operation.
Much in the same manner that they affect art and music, such symmetries are
deeply satisfying; they highlight an order and coherence in the workings of nature.
The elegance of rich, complex, and diverse phenomena emerging from a simple set
of universal laws is at least part of what physicists mean when they invoke the
term “beautiful".”
Greene (1999)
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Abstract

The problem of output regulation deals with asymptotic tracking/rejection of a pre-

scribed reference trajectory/disturbance. The main feature of the output regulation is

that references/disturbances to be tracked/rejected belong to a family of trajectories gen-

erated as solutions of an autonomous system typically referred to as exosystem. Tackling

this problem in context of error feedback leads to solutions that embeds a copy of the

exosystem properly updated by means of error measurements. The output regulation

problem for linear systems has been fully characterized and solved in the mid seven-

ties by Davison, Francis and Wonham and then has been generalized to the non-linear

context by Isidori and Byrnes. It is worth noting, however, that most of the frameworks

considered so far for output regulation deal with systems and exosytems defined on Eu-

clidean real state space and not much efforts have been done to extend the results of out-

put regulation to systems and exosystems whose states live in more general manifolds.

The tools available for solutions of the output regulation problem can’t be extented in

a straightforward manner to non-linear systems whose states live in more general man-

ifolds due to some restrictive structural assumption. The present thesis focuses on the

problem of output regulation for left invariant systems defined on matrix Lie groups. In

this framework we extend the idea of internal model-based control to systems defined

on matrix Lie-groups taking advantages of the symmetry and invariant structures of the

system considered. In particular we propose a general structure of the regulator for left
invariant kinematic systems defined on general matrix Lie-group that solves the output

regulation problem. Going further we study the output regulation problem for kinemat-

ics systems defined on the special orthogonal group and the special Euclidean group. We

also show that the dynamics associated to the fully actuated system whose kinematic is

defined on the special orthogonal group and the special Euclidean group can be handled

taking advantages of backstepping techniques.
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Sommario

Il problema della regolazione delle uscite si occupa dell’inseguimento asintotico

(reiezione asintotica) di una traiettoria di riferimento. La caratteristica principale della

regolazione delle uscite consiste nel considerare le traiettore da inseguire e i disturbi da

reiettare appartenenti ad una famiglia di traiettorie generate come soluzioni di un sis-

tema dinamico autonomo noto come esosistema. Nel contesto di retroazione delle uscite,

il principio del modello interno porta a soluzioni in cui viene inserito nel loop di con-

trollo una copia dell’esosistema opportunamente guidata da una funzione dell’errore

di inseguimento. Il problema della regolazione delle uscite per sistemi lineari è stato

ampiamente caratterizato e risolto nella metà degli anni settanta da Davison, Francis e

Wonham. Il problema di regolazione delle uscite è stato successivamente esteso nel con-

testo non lineare da Isidori and Byrnes. Si noti tuttavia che nella maggioranza di lavori

nel contesto di regolazione delle uscite vengono presi in considerazione sistemi ed eso-

sistemi il cui spazio di stato è definito su uno spazio Euclideo e non vi è stato un grande

sforzo nell’estensione del problema per sistemi il cui spazio di stato giace su varietà dif-

ferenziali ed in generale su spazi non Euclidei. I classici strumenti per la soluzione del

problema della regolazione non sono direttamente estendibili per sistemi non lineari il

cui spazio di stato giace su varietà differenziabili a causa di alcune ipotesi restrittive.

Questa tesi si focalizza sul problema della regolazione delle uscite per sistemi sinistro-
invarianti definiti sui gruppi matriciali di Lie. In questo contesto, prendendo vantaggio

delle simmetrie del sistema e delle sue proprietà di invarianza, verrà esteso il principio

del modello interno per sistemi cinematici definiti sui gruppi di Lie. Inoltre, in questa

tesi, verrà considerato il problema della regolazione delle uscite per sistemi definiti sul

gruppo speciale ortogonale ed il gruppo speciale Euclideo. Verrà inoltre mostrato che il prob-

lema cinematico di regolazione può essere esteso dinamicamente per sistemi pienamente

attuati utilizzando le classiche tecniche di backstepping.
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Notation

R set of real numbers

Rn×n set of n× n square matrices

R≥0 set of non negative real numbers

R>0 set of real numbers larger than zero

N set of non negative integers

N>0 set of integers larger than zero

{A} inertial frame

{B} body-fixed frame

G general matrix Lie-group

g Lie-algebra associated to the Lie-group G

SO(n) special orthogonal group

so(n) Lie-algebra associated to the special orthogonal group

R Rotation matrix of {B} relative to {A}
SE(n) special Euclidean group

se(n) Lie-algebra associated to the special Euclidean group

SL(n) special linear group

sl(n) Lie-algebra associated to the special linear group

[·, ·] Lie-bracket (matrix commutator)

mrp matrix representation

vrp vectorial representation

Ω× skew map

vex inverse of the skew map

AdX adjoint operator

∈ belongs to

⊂ subset

xiv



∪ union

⊃ superset

:= defined as

7→ maps to

∧ vectorial product

A> transpose

A−1 inverse

‖A‖ Frobenius norm

Pa(A) anti-symmetric projection in square matrix space

Ps(A) symmetric projection in square matrix space

Pg(A) orthogonal projection of A onto g with respect to the trace inner

product

A > 0 positive definite matrix

A ≥ 0 positive semi-definite matrix

det(A) determinant

rank(A) rank

tr (A) trace

λ(A) eigenvalue of A

σ(A) spectrum of A, the set of its eigenvalues

0n×m matrix of dimension n×m whose entries are all zeros

In an n×n identity matrix, also denoted with I when there is no need

to emphasize the dimension

diag (a1, . . . , an) an n× n diagonal matrix with ai as its i-th diagonal element

col (a1, . . . , an) column vector with elements (a1, . . . , an)

vec(A) column vector obtained by the concatenation of columns of the

matrix A with elements (a1,1, ..., an,1, a1,2, ..., an,2, ..., a1,n, ..., an,n)

Hurwitz matrix with all eigenvalues with strictly negative real part

Lfh(x) Lie derivative of h(x) along the vector field f(x)

� end of proof

||x|| Euclidean norm of x, with x ∈ Rn
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Introduction

Since the dawn of humanity, human being have been fascinated of the symmetries

of the world surrounding them. Symmetry comes from the ancient Greek word

σuµµετρια, which literally means same (σuµ) measure (µετρov). Over the cen-

turies, symmetries have fascinated philosopher, architects, mathematicians, physicians,

astronomers, musicians and “control people”.

Broccoli, snowflakes, the Milky Way Galaxy, honeycomb, to name a few, exhibit many

different types of symmetries.

It was Socrates who first attempted to express the concept of beauty and symmetry

in mathematics “The straight line and the circle and the plane and solid figures formed

from these by turning lashes and rulers and patterns of angle”. The formal definition of

symmetry and symmetric object was unknown at that time and the modern use of the

word “symmetry” comes from Legendre (Hon and Goldstein (2005)).

An object, generally spiking, is said to be symmetric if after performing an action on

it, it looks like the same. For example, a square look likes the same if rotated (around its

center) of an angle multiple of 90◦. The circle instead looks like the same if you rotate

it about its center for an arbitrary angle. The first kind of symmetry is called discrete

while the second one is a continuous symmetry.

In mathematics, the set of all action you can perform on an object that after the

action looks like the same form a group. In the case of continuous symmetries the group

is known as Lie group.

Not only objects exhibit symmetries but also the laws of nature. In physics we say

that a system is symmetric if some physical quantities remain unchanged under some

action on them (such as a change of variables of the coordinates). For example the con-

servation laws of momentum and energy.
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Underwater vehicles, aerial vehicles and terrestrial/ground vehicles naturally exhibit

symmetries that lead to represent those systems on Lie Groups. It turns out that the

kinematic law of motion of those kind of systems are invariant with respect to a change

of coordinates.

In this work we are going to study the output regulation problem for systems defined

on Matrix Lie group. The problem of output regulation has been intensively studied for

both the linear and non-linear context, however the design tools available so far are not

directly applicable on non Euclidean spaces. For the existing literature review on the

output regulation problem the reader is referred to the Chapter 4 of the present thesis.

The output regulation problem on matrix Lie groups is motivated by a wide range of

real world applications in robotics, aerospace and projective geometry. For example, the

attitude control problem of a Low Earth Orbit (LEO) rigid satellite, whose configuration

manifold is the special orthogonal group or the attitude control problem of a fully actu-

ated camera gimbal. Also the control problem of an omnidirectional wheeled robots fits

the framework of the present dissertation, indeed the configuration space of the wheeled

robot is the special Euclidean group SE(2). The relevance of the proposed control problem

is also relevant for the film industry. In particular the output tracking problem of homo-
graphies. Indeed is well known that the configuration manifold of the set of homographies
is the special linear group SL(3).

The thesis is organized as follow. In Chapter 1 the reader can find a brief review of

Manifolds, Lie Groups, Lie algebras and homogeneous spaces. In Chapter 2 we discuss

about Matrix Lie group, focusing our attention on the two most important Lie group

(for the mechanical point of view), that are the special orthogonal group and the special
Euclidean group. In Chapter 3 we present some mathematical model of mechanical sys-

tems whose configuration space is a matrix Lie group. In Chapter 4 after discussing on

the output regulation problem we present a novel regulator design for kinematic sys-

tems on matrix Lie groups with invariant relative error measurements. In Chapter 5 and

6 we study the output regulation problem for kinematic systems on the special orthogonal
group and the special Euclidean group, respectively. In particular, exploiting the specific

structure of the group considered we extend the local results obtained in Chapter 4 to

almost global results. Going further a regulator design for dynamic fully actuated rigid

body is presented.
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“I am certain, absolutely certain that...these theories

will be recognized as fundamental at some point in

the future.”

Sophus Lie

1
A brief Introduction to Lie Groups

Galois “inspired” the Norwegian mathematician Sophus Lie in the study of sym-

metry of differential equations. Galois theory provides a connection between

the structure of groups and the structure of fields. The French mathemati-

cians used this connection to describe how the roots of a given polynomial equation are

related to one other. Taking advantages of the simpler structure of groups with respect

to the structure of fields, Galois’ study allowed to answer the question “is it possible to
find the roots of a 5-th order degree polynomial in terms of the polynomial’s coefficients (with
the usual operations +,−,√,×)?”. Analogously, roughly speaking, an highly non-linear

object such as a Lie Group can be “characterized” by a simpler linear object known as

Lie Algebra. Lie Groups nowadays constitute the foundation of many physic theory (see

Hooft and Veltman, Gilmore (2008) and references therein) such as conformal field the-

ory, string theory (Virasoro algebra) and general relativity, to name a few. Moreover, as

we will discuss in detail later on (Chapter 3), they are of interest also from an engi-

neering point of view since they describe for example the kinematic motion of satellites,

unmanned aerial vehicles and mobile robotic systems.

In order to be self-contained and to prepare the reader for the next chapters, some

basic facts about Lie groups are presented. It is not the purpose of this work to give

a complete treatment of Lie groups (see books devoted to the subject as Hall (2003),

Onishchik et al. (1993), Neeb and Hilgert (2011) for additional detail). The content of

3



1.1. Manifolds

this chapter contains no novelty and can be found in many textbook as Arvanitogeor-

gos (2003), Marsden (1994), Varadarajan (1984), Spivak (1979). The present Chapter is

based on the work of Arvanitogeorgos (2003) and Marsden (1994).

1.1 Manifolds

Intuitively, a manifold is a topological space M that locally looks like Rn. In other words,

each point of a n-dimensional manifold has a neighborhood that is homeomorfic to a

Euclidean space of dimension n. More specifically one has:

Definition 1.1. A smooth n-dimensional manifold is a Hausdorff topological space M

with a family {(Uα, φα)} with open sets Uα ⊂M and homeomorphism φα : Uα 7→ Rn so that:

1. M is the union of all Uα, M = ∪αUα.

2. Given Uα ∩ Uβ 6= 0, the coordinate transformation φαβ = φβ ◦ φ−1
α is smooth.

3. The family {(Uα, φα)} is maximal relative to 1 and 2.

The pair (Uα, φα) is called chart and the family {(Uα, φα)} is called atlas.

Figure 1.1: The sphere as smooth manifold.

Definition 1.2. Two curves t 7→ c(t) and t 7→ c′(t) in M are equivalent at the point X ∈M

if

1. c(0) = c′(0) = X

2. dt (φ ◦ c)
∣∣∣∣
t=0

= dt(φ ◦ c′)
∣∣∣∣
t=0

for some chart (U , φ).

4



Chapter 1. A brief Introduction to Lie Groups

Definition 1.3. A tangent vector v to a manifold M in a point X ∈ M is an equivalence
class of curves at X .

We denote by TXM the tangent space to the manifold M at the point X ∈M.

Definition 1.4. The tangent bundle of the manifold M , denoted by TM , is the disjoint
union of the tangent spaces to M at the points X ∈M, that is

TM = ∪
X∈M

TXM.

Figure 1.2: The tangent space of a sphere.

Definition 1.5. A vector field F on a manifold M is a map F : M 7→ TM that assigns a
vector F(X) at the point X ∈M.

1.2 Lie Groups

Before introducing the formal definition of Lie-Groups we recall the notion of group.

Definition 1.6. A group (G, ?) is a nonempty set G together with a binary operation ? on
G that satisfies the following group axioms.

1. Closure: for all X,Y ∈ G the element X ? Y is also an element of G.

2. Associativity: for all X,Y, Z ∈ G, one has X ? (Y ? Z) = (X ? Y ) ? Z.

3. Identity element: There exists an identity element Id ∈ G such that, for all X ∈ G,
the following holds Id ? X = X ? Id.

4. Inverse element: For each X ∈ G there exists an inverse element X−1 ∈ G such that

X ?X−1 = X−1 ? X = Id.

Note that as consequence of the four axioms, the Identity element of the group is

unique and each element of the group has a unique inverse element. A Lie Group,

5



1.2. Lie Groups

roughly speaking, is a smooth manifold and a group as well that satisfies the additional

condition that the group operations are differentiable.

Definition 1.7. A Lie Group G is a smooth manifold with:

1. G a group.

2. The group operation
? : G×G 7→ G; (X,Y ) 7→ XY

are smooth maps.

For example it is easy to verify that the Euclidean space is a smooth n-dimensional

manifold covered by only one chart (since Rn looks like globally Rn) with φ the identity

map. The set Rn is also a abelian Group under the vector addition +

(X,Y ) 7→ X + Y, X 7→ −X.

As consequence Rn is a Lie Group.

Definition 1.8. A Lie subgroup H of G is a submanifold of G which is also subgroup of the
group G.

However is difficult to assert from the previous definition if a group H is a Lie sub-

group or not. It is more easy, instead, to show that H is a subgroup of the Lie group G,

and the apply the following Cartan’s Theorem.

Proposition 1.1. (Cartan, see Onishchik et al. (1993))A subgroup H of a Lie group G is a
Lie subgroup of G if it is closed under the topology of G.

We introduce the concept of left (right) maps and left (right) invariant vector fields,

these notion are of extremely importance and will be used in the next section in order to

define the Lie Algebra g associated to the Lie Group G.

Definition 1.9. The map LX : G 7→ G is a left translation map if

LX(Y ) = XY.

Definition 1.10. The map RX : G 7→ G is a right translation map if

RX(Y ) = Y X.

It can be easily verified that the left translation map and the right translation map

are smooth. Indeed, for X,Y ∈ G one has

LX(Y )−1 = X−1Y = LX−1(Y ); RX(Y )−1 = Y X−1 = RX−1(Y ).

6



Chapter 1. A brief Introduction to Lie Groups

Recalling that, given two manifolds M,N, a differentiable map f : M 7→ N is a diffeo-

morphism if it is bijective and its inverse is also differentiable, one concludes that the

left and right translation maps are diffeomorphisms.

Definition 1.11. For X,Y, Z ∈ G, a map f is called left invariant if

f(X,Y ) = f(LZ(X), LZ(Y ))

.

For example the map EL : G × G 7→ G, EL(X,Y ) := X−1Y is a left invariant map

since

EL(LZ(X), LZ(Y )) = X−1Z−1ZY = X−1Y.

This map will be used in Chapter 2 to define the natural error in the special orthogonal
group and the special euclidean group.

Definition 1.12. A vector field F is left invariant if for all X,Y ∈ G the following holds

(TY LX)F(Y ) = F(LX(Y )) = F(XY ).

Definition 1.13. For X,Y, Z ∈ G, a map f is called right invariant if

f(X,Y ) = f(RZ(X), RZ(Y ))

.

Definition 1.14. A vector field F is right invariant if for all X,Y ∈ G the following holds

(TY RX)F(Y ) = F(RX(Y )) = F(Y X).

Definition 1.15. A vector field is called bi-invariant if it is both left and right invariant.

1.3 Lie Algebras

Definition 1.16. An n-dimensional vector space g over a field F with a bilinear map, Lie

bracket (or commutator) is a Lie Algebra if it is satisfies the following properties

1. [X,X] = 0 for all X ∈ g.

2. [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ g (Jacobi identity).

Definition 1.17. A vector subspace h of a Lie algebra g is a Lie subalgebra if [h, h] ⊂ h.

7



1.4. Group Actions and Homogeneous Spaces

As mentioned in section 1.2 left (right) invariant vector fields play an important role

in the study of the geometry of a Lie group. Indeed consider a vector field F one has

F(X) = F(XId) = (TIdLX)F(Id), for allX ∈ G,

this means that a left invariant vector field is completely characterized by its value at the

identity element of the Lie group.

Proposition 1.2. Let G be a Lie group. Then, the vector space of all left invariant vector fields
on G is ismomorphic to TIdG.

Moreover it is possible to show that the Lie bracket of two left invariant vector fields

is a left invariant vector field. Then, the tangent space of G at the identity, denoted by

TIdG, is a Lie algebra.

Definition 1.18. Let G be a Lie group and χL(G) the set of all left invariant vector fields on
G. The Lie algebra g associated to the Lie group G is TIdG with the Lie bracket induced by its
identification with χL(G).

1.4 Group Actions and Homogeneous Spaces

Homogeneous spaces are symmetrical manifolds that do not necessarily possess a Lie

group structure. For example the sphere is an homogeneous space but not a Lie group.

One of the most interesting properties of an homogeneous manifold, in analogous man-

ner of Lie groups, is that roughly speaking an homogeneous manifold looks locally the

same at each point.

Definition 1.19. Given a manifold M, and a group G, a left group action of G on M is a
smooth map l : G×M 7→M , such that

1. For all X,Y ∈ G and all m ∈M

l(X, l(Y,m)) = l(XY,m).

2. For all m ∈M

l(Id,m) = m

where Id ∈ G is the identity element of the group.

A left group action is called linear left group action if the map l : G×M 7→ M is a

linear map.

8
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Definition 1.20. Given a manifold M, and a group G, a right group action of G on M is a
smooth map r : G×M 7→M , such that

1. For all X,Y ∈ G and all m ∈M

r(X, r(Y,m)) = r(Y X,m).

2. For all m ∈M

r(Id,m) = m

where Id ∈ G is the identity element of the group.

Definition 1.21. The action l is transitive iff for any m,n ∈M there exist X ∈ G such that

l(X,m) = n.

Definition 1.22. The action r is transitive iff for any m,n ∈M there exist X ∈ G such that

r(X,m) = n.

For example consider the group G ⊂ R2×2 of 2× 2 matrices{
X :

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

] ∣∣∣∣θ ∈ R

}
,

the above matrix form a group under matrix multiplication, the inverse element is the

transpose of the matrix and the identity element of the group is the identity matrix I2.

In Chapter 2 we will see that the set of this kind of matrices form a Lie group known as

special orthogonal group SO(2). Let M = S1 be the unit circle, and m ∈ S1 a unit norm

column vector. We define a linear left action G on S1 by matrix vector multiplication

l(X,m) = Xm.

Moreover is straightforward to verify that the left group action considered is a transitive

action, indeed consider two elements of the unit circle m = [a, b]> and n = [c, d]> with

a2 + b2 = 1 and c2 + d2 = 1. Thus[
cos(θ) sin(θ)

− sin(θ) cos(θ)

][
a

b

]
=

[
c

d

]
,

9
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after basic algebraic manipulation one hascos(θ) = ac+ bd

sin(θ) = bc− ad
.

This implies that there exist a matrix X on the form

X =

[
ac+ bd bc− ad
−(bc− ad) ac+ bd

]

such that

l(X,m) = n.

We claim, then, that the unit circle S1 is an homogeneous space; this claim is justified by

the following definition.

Definition 1.23. Let G a Lie group, a G-homogeneous space (or simply an homogeneous

space) is a manifold with a transitive action of G.

It should be clear then, that a Lie group is an homogeneous space since G ×G acts

on G by left and right translations.

Definition 1.24. The Adjoint action of G on g is given by

Ad : G× g 7→ g, AdX(ξ) := TId(RX−1 ◦ LX)ξ

where X ∈ G, ξ ∈ g.

1.5 Metric Space and Riemannian Metric

In this section we briefly introduce the notion of the length of a vector, the length of

curve and the notion of the distance between two points on a manifold M. The interested

reader is referred to functional analysis books devoted to the argument as Alabiso and

Weiss (2014), Lebedev et al. (2013) and differential geometry books as Spivak (1979) and

Fecko (2006).

Definition 1.25. Let G a group. A distance function d : G ×G 7→ R+ is a metric on G if,
for all X,Y, Z ∈ G, the following hold

1. The map is symmetric d(X,Y ) = d(Y,X).

2. d(X,Y ) = 0, iff X = Y .

3. Triangle inequality, d(X,Z) ≤ d(X,Y ) + d(Y,Z)

10
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Definition 1.26. (see Alabiso and Weiss (2014)) A vector space V with ‖ · ‖ a norm on V , is
called a normed space (V, ‖ · ‖) if for all X,Y ∈ V and α ∈ Rn the following conditions hold

• ‖X‖ ≥ 0 for X 6= 0.

• ‖αX‖ = |α| ‖X‖.

• ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖.

Definition 1.27. (Alabiso and Weiss (2014)) If V is a normed space, then defining d : V ×
V 7→ R+ by

d(x, y) = ‖x− y‖

endows V with the structure of a metric space.

Definition 1.28. A Riemannian metric on a smooth manifold M is a continuous collection
of inner products

(〈
·, ·
〉
m

) ∣∣
m∈M in the tangent space TmM at each point m ∈ M such that

for any smooth vector fields F1 and F2 , the map m 7→
〈
F1,F2

〉
m

is smooth.

Since a Lie group is a smooth manifold it is possible to endow the group G with a

Riemannian metric. Moreover since a Lie group is also a group, we are interested in

particular Riemannian metrics that takes into account the group structure of G. It turns

out that these particular metrics are those for which the left translations (or the right

translations) are isometries.

Definition 1.29. A metric 〈·, ·〉 on a Lie group G is called left invariant (resp. right invari-

ant) if
〈u, v〉X = 〈(TXLY )u(X), (TXLY )v(X)〉LY (X) ,

(resp. 〈u, v〉X = 〈(TXRY )u(X), (TXRY )v(X)〉RY (X)),

for all X,Y ∈ G and u, v ∈ TXG.
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“Manifolds are a bit like pornography: hard to define,

but you know one when you see one. ”

S. Weinberger

2
Matrix Lie Group and their asociated

Lie Algebras

Matrix Lie groups intuitively are Lie groups realized as group of n × n square

matrices with real or complex entries. The realization theory plays major

importance in some field such as quantum mechanics ( see for instance Bés

(2004) and Hall (2013)). However, in this work we do not use the representations theory

and their classification (the interested reader is referred to Varadarajan (1984) and Hall

(2003)). For the aim of the present work one should think of representation as a smart

way to describe a point of a manifold M with matrices or vectors. The so called classical

Lie groups are the following matrix Lie groups (over real numbers)

• The General Linear Group GL(n,R).

• The Special Linear Group SL(n,R).

• The Orthogonal Group O(n).

• The Special Orthogonal Group SO(n).

• The Euclidean Group E(n).

• The Special Euclidean Group SE(n).

13



2.1. General Linear Group

• The Unitary Group U(n).

• The Special Unitary Group SU(n).

In this work we will focus our attention on the special orthogonal group SO(3) and

the special Euclidean group SE(3) since they are associated with rigid body motion, it

will be clear in the next sections. The material presented in this section is based in part

on Murray et al. (1994) and in part on Siciliano et al. (2009).

2.1 General Linear Group

Definition 2.1. The general linear group GL(n,R) of dimension n2 is the set of n × n

invertible matrices with real entries

GL(n) =
{
X ∈ Rn×n

∣∣ det(X) 6= 0
}

together with the operation of ordinary matrix multiplication.

Note that the set of n×n invertible matrices forms a group under the ordinary matrix

multiplication, indeed the product between two invertible matrices is invertible

det(AB) = det(A) det(B), for A,B ∈ GL(n,R).

As inverse of each element the matrix inverse (det(A) = det(A)−1) and identity element

of the group the identity matrix In.

Definition 2.2. A matrix Lie group (with real entries) is a closed subgroup of GL(n,R).

2.1.1 The Matrix Exponential and Matrix Logarithm

As we have seen in section 1.3 the tangent space of G at the identity element of the

group is the Lie algebra g associated to the Lie group G. The matrix exponential plays

an important role in the definition of a Lie algebra g associated to a matrix Lie group G.

Definition 2.3. For U ∈ Rn×n, the matrix exponential exp(U) is defined by the series

exp(U) :=

∞∑
k=0

Uk

k!

Properties 2.1. For U,U ′ ∈ Rn×n, the following hold

1. exp(U)0 = In.

2. exp(U) is always invertible.

14
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3. if U and U ′ commute, i.e. UU ′ = U ′U , then exp(U + U ′) = exp(U) exp(U ′).

4. For X ∈ GL(n,R), exp(XUX−1) = X exp(U)X−1.

5. det(exp(U)) = exp(tr(U)).

Definition 2.4. For X ∈ Rn×n, the matrix logarithm log(U) is the inverse map of the
matrix exponential, i.e. log(exp(U)) = U , and is defined by the series

log(X) :=
∞∑
k=1

(−1)k+1 (X − In)k

k!
.

2.1.2 The Lie Algebra Associated to a Matrix Lie group

Definition 2.5. The Lie algebra g of a matrix lie group G is the set

g =
{
U ∈ Rn×n

∣∣ exp(tU) ∈ G, for all t ∈ R
}
.

The Lie algebra g is closed under the Lie bracket [U,U ′] = UU ′ − U ′U for all U,U ′ ∈ G.

From this definition it follows that the Lie algebra associated to the general linear
group GL(n) denoted by gl(n) is the set

gl =
{
U ∈ Rn×n

∣∣ exp(tU) ∈ G, for all t ∈ R
}
.

2.1.3 The Adjoint Action

For X ∈ G and U ∈ g, from definition 1.24 and using the matrix exponential one has

AdX(U) = X
d

dt
(exp(tU))

∣∣
t=0

X−1 = XUX−1.

In the present work we will make often use of the Adjoint action since, as will be more

clear in the next sections, the body fixed-frame velocities and the velocities with respect

to an inertial frame of a rigid body are related by the Adjoint action.

2.1.4 Right Invariant Systems

Proposition 2.1. For X ∈ GL(n) and U ∈ gl(n), a right invariant system on GL(n) is of
the form

Ẋ(t) = U(t)X(t). (2.1)
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Proof. Consider a time-varying matrixX(t) ∈ GL(n), due to the fact that det(X(t)) 6=
0 one has

X(t)X−1(t) = In

and differentiating with respect to time it yields

0 =
d

dt
(X(t)X−1(t))

= Ẋ(t)X−1(t) +X(t)
d

dt
(X−1(t))

= Ẋ(t)X−1(t)− Ẋ(t)X−1(t).

Denoting U = Ẋ(t)X−1(t), one has

Ẋ(t) = U(t)X(t)

and note that U is an element of the Lie algebra gl(n) associated to the general linear

group GL(n). The tangent spaces TXGL(n), then, are identified with

TXGL(n) :=
{
UX

∣∣ U ∈ gl(n)
}
⊂ Rn×n.

The map TXRY : UX 7→ UXY is given by right multiplication of the matrices in

TXGL(n) with a constant matrix Y . It is straightforward to verify that the system

dynamics are right invariant, indeed

d

dt
(X(t)Y ) = Ẋ(t)Y = U(t)(X(t)Y )

and this concludes the proof.

2.1.5 Left Invariant Systems

Proposition 2.2. For X ∈ GL(n) and U ∈ gl(n), a left invariant system on GL(n) is of the
form

Ẋ(t) = X(t)U(t). (2.2)

Proof. Consider a time-varying matrix X(t) ∈ GL(n), proceeding in a similar way

of the right invariant case one has

X−1(t)X(t) = In
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and differentiating with respect to time one obtains

0 = X−1(t)Ẋ(t)−X−1(t)Ẋ(t).

Denoting U = X−1(t)Ẋ(t), it yields

Ẋ(t) = X(t)U(t)

and note that U is an element of the Lie algebra gl(n) associated to the general linear

group GL(n). The tangent spaces TXGL(n) are identified with

TXGL(n) :=
{
XU

∣∣ U ∈ gl(n)
}
⊂ Rn×n.

The map TXLY : XU 7→ Y XU is given by left multiplication of the matrices in

TXGL(n) with a constant matrix Y . The system dynamics are left invariant, indeed

d

dt
(Y X(t)) = Y Ẋ(t) = (Y X(t))U(t)

and this concludes the proof.

2.1.6 Matrix and Vectorial Representation of a Lie Algebra

Definition 2.6. Let G a matrix Lie group and g its associated Lie Algebra. The matrix

representation is a mapping mrp : Rk 7→ g, that maps a vector v ∈ Rk in an element of the
algebra g, where k is the dimension of G.

Definition 2.7. Let G a matrix Lie group and g its associated Lie Algebra. The vectorial

representation is a mapping vrp : g 7→ Rk, that maps an element of the algebra g in a vector
v ∈ Rk, where k is the dimension of G.

The vectorial operator is the inverse of the matrix operator, namely

vrp(mrp(v)) = v, for all v ∈ Rk.

2.1.7 Inner Product

Definition 2.8. For any two matrices A,B ∈ Rn×n the Euclidean matrix inner product is
defined by

〈A,B〉 = tr(A>B).

The Euclidean inner product induces the Frobenius norm

‖A‖F =
√
〈A,A〉,
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and the Euclidean distance is the metric given by

d(A,B) = ‖A−B‖F , for allA,B ∈ Rn×n.

Note that for any A ∈ Rn×n and B ∈ Rn×n

〈A,B〉F = tr(A>B) = vec(A)> vec(B)

where vec(A) ∈ Rn2
is the column vector obtained by the concatenation of columns of

the matrix A as follows

vec(A) = [a1,1, ..., an,1, a1,2, ..., an,2, ..., a1,n, ..., an,n]>.

Definition 2.9. Let vrp(U) ∈ Rk and U ∈ g an n× n matrix, with n ≤ k ≤ n2. We call the
matrix D ∈ Rn2×k duplication matrix if

vec(U) = D vrp(U) .

The definition above states that the column vector obtained by the concatenation

of columns of the matrix U ∈ g is a linear combination of the vectorial representation

vrp(U), for any U ⊂ gl(n). As consequence, with U ∈ g and V ∈ g elements of the same

Lie algebra one has

tr
(
U>V

)
= vrp>(U)Qg vrp(V )

where Qg = DTD and D the duplication matrix. The matrix Qg will play an important

role in Chapter 4 for the design of the regulator that solves the problem of output regu-
lation for systems on matrix Lie groups.

We can endow G with a Riemannian metric and show that there is a one-to-one

correspondence between left-invariant metrics on a Lie group G, and inner products on

the Lie algebra g. To this end, consider U, V ∈ g two left invariant vector fields, one has

〈U, V 〉X = 〈U(X), V (X)〉 = 〈(TIdLX)U(Id), (TIdLX)V (Id)〉 .

Moreover, if the metric considered is left invariant one obtains

〈U, V 〉X = 〈(TIdLX)U(Id), (TIdLX)V (Id)〉 = 〈U(Id), V (Id)〉
= 〈U, V 〉Id

for all X ∈ G.

This means that an inner product on the Lie algebra can be extended to a Riemannian

metric making use of left translation. As consequence also the matrix inner product on
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gl(n) can be extended to a Riemannian metric taking advantages of left or right trans-

lation, however this metric is not left nor right invariant. Indeed for U, V ∈ gl(n) and

X ∈ GL(n) one has,

〈U(X), V (X)〉 = 〈XU,XV 〉 = tr(U>X>XV ) 6= 〈U(Id), V (Id)〉 .

Definition 2.10. For all A ∈ Rn×n the mapping Pg(A) : Rn×n 7→ g is called the orthogonal

projection of A onto g with respect to the trace inner product if

〈U,A〉 = tr
(
U>A

)
= tr

(
U>Pg(A)

)
= 〈U,Pg(A)〉

for any U ∈ g and any A ∈ Rn×n.

Where the context is clear we will write P for Pg. The orthogonal projection with

respect to the trace inner product is significant in the Observer design for systems on Lie

groups (see Mahony et al. (2012a) and Hua et al. (2011)), Consensus and Synchronization
problems (see Sarlette et al. (2007) and references therein) and Integral controls on Lie
groups (see Mahony et al. (2015) and Zhang et al. (2015)).

2.2 The Special Orthogonal Group

Definition 2.11. The special orthogonal group SO(n) is the set of real n×n matrices with
othonormal columns and determinant equal to 1

SO(n) :=
{
R ∈ GL(n)

∣∣RR> = In, det(R) = 1
}

together with the operation of matrix multiplication. The special orthogonal group is a
n(n− 1)/2 dimensional manifold.

Note that the special orthogonal group is compact and connected. For n = 3 the special
orthogonal group is also called the rotation group since, as we will see in the next section,

it describes rigid body orientation.

2.2.1 Rotation Matrix and Rigid Body Attitude

Let {A} and {B} denote respectively an inertial frame and a body-fixed frame attached

to the vehicle (see Figure 2.1). We denote by AxB, AyB, AzB, the coordinate of the unit

vectors of {B}with respect to the inertal frame {A}. In order to have a compact notation

we can stack these unit vectors into a (3× 3) matrix

ARB =
[
AxB

AyB
AzB

]
.
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Figure 2.1: Rigid body Attitude

Note that since by construction these unit vector are the unit vectors of an orthonor-

mal right handed frame one has

Ax>B
AyB = 0, Ax>B

AzB = 0, Ay>B
AzB = 0,

Ax>B
AxB = 1, Ay>B

AyB = 1, Az>B
AzB = 1,

and also

AxB ∧ AyB = AzB,
AyB ∧ AzB = AxB,

AzB ∧ AxB = AyB.

From the three properties above is straightforward to see that a rotation matrix is an

element of SO(3) indeed the first and the second property yield to R>R = I3. From the

third one, recalling the relation between the mixed product and the determinant of a

(3× 3) matrix, it yields

det (ARB) = Ax>B
(
AyB ∧ AzB

)
= Ax>B

AxB = 1.

It follows, then, that the attitude of a rigid-body can be represented by a rotation matrix
ARB ∈ SO(3) of the body-fixed frame {B} relative to the inertial frame attached to the

earth {A}. In order to have a more compact notation from now on, when the context is

clear, we will drop the superscript A and the subscript B, i.e. R ≡ ARB .

A rotation matrix does not only defines the mutual orientation of two reference

frames {A} and {B} but it also describes the coordinate transformation between the coor-

dinates of a point expressed in two different frames. Indeed, for example, consider two
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Figure 2.2: Representation of a point expressed in two different frames.

reference frame {A}, {B} mutually rotated of an angle θ (see Figure 2.2). Denoting by
Bpx, Bpy the projections of the vector p along the x, y axis of the frame {B} respectively,

simple geometric calculations leads to

Apx = Bpx cos(θ)− Bpy cos(
π

2
− θ) = Bpx cos(θ)− Bpy sin(θ)

Apy = Bpx sin(θ) + Bpy sin(
π

2
− θ) = Bpx sin(θ) + Bpy cos(θ).

The equation above can be written in the following compact form[
Apx
Apy

]
=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
Bpx
Bpy

]
= ARB

[
Bpx
Bpy

]
.

Thus the rotation matrix ARB defines the transformation of a vector from one frame to

another
Ap = ARB

Bp.

This property of a rotation matrix is of particular importance in order to link the

angular velocity of a rigid object with respect to an inertial frame into a velocity in a

body-fixed frame.

Note that since the set of rotation matrix forms a group under the usual matrix

multiplication it follows that the product of two rotation matrix is still a rotation ma-

trix and it represents composition of successive rotations. Indeed consider three frames

{A}, {B}, {C}, if one knows the rotation matrix BRC of the frame {C} with respect to

{B} and the rotation matrix ARB of the frame {B} relative to {A} then the mutual ori-

entation of the reference frames {A} and {C} is given by

ARC = ARB
BRC .
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2.2.2 The Lie Algebra associated to the Special Orthogonal Group

Definition 2.12. The Lie algebra associated to the special orthogonal group, denote by so(n),
is the set of n× n skew symmetric matrices

so(n) :=
{
U ∈ gl(n)

∣∣ U + U> = 0
}
.

The Lie algebra so(3) with the matrix commutator [·, ·] is isomorphic to R3 with the

cross product. The map mrp, denoted in the particular case for systems posed on SO(3)

as (·)×, identifies SO(3) with R3. Indeed, let Ω1,Ω2 ∈ R3 then one has

[Ω1×,Ω2×] = (Ω1 ∧ Ω2)×.

The following identity is widely used in the present work.

Property 2.1. Let v ∈ R3 and R ∈ SO(3) then

(Rv)× = Rv×R
> = AdR v×.

Figure 2.3: The angular velocity in the body-fixed frame and in the inertial frame.

Let {A} and {B} denote an inertial frame and a body-fixed frame and let ΩA ∈ R3

denotes the angular velocity of the body-fixed frame with respect to the inertial frame (see

Figure 2.3), then the angular velocity in a body-fixed frame is

ΩB = R>ΩA (2.3)

where R is the rotation matrix ARB of the frame {B} with respect to {A}. Using the

isomorphism between so(3) and R3 and recalling Property 2.1 it yields

(ΩB)× = (R>ΩA)× = R>ΩA×R = AdR> ΩA×.
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2.2.3 Right Invariant Systems on SO(n)

Proposition 2.3. For R ∈ SO(n) and Ω ∈ so(n), a right invariant system on SO(n) is of
the form

Ṙ(t) = ◦Ω(t)R(t). (2.4)

Proof. Consider a time-varying rotation matrix R(t), due to the fact that R(t)−1 =

R(t)> one has

R(t)R>(t) = In

and differentiating with respect to time one obtains

0 =
d

dt
(R(t)R>(t))

= Ṙ(t)R>(t) +R(t)Ṙ>(t).

Denoting ◦Ω = Ṙ(t)R>(t), one has

Ṙ(t) = ◦Ω(t)R(t)

it follows that
◦Ω + ◦Ω> = 0

as consequence ◦Ω is a skew symmetric matrix. The tangent spaces TRSO(n), then,

are identified with

TRSO(n) :=
{◦ΩR ∣∣ ◦Ω ∈ so(n)

}
⊂ Rn×n.

The map TRRR̄ : 7→ ◦ΩRR̄ is given by right multiplication of the matrices in TRSO(n)

with a constant matrix R̄. From this one verifies that the vector field considered is

right invariant, indeed

d

dt
(R(t)R̄) = Ṙ(t)R̄ = ◦Ω(t)(R(t)R̄)

and this concludes the proof.

Note that a right invariant vector field on SO(3) has a clear physical interpretation,

indeed it is well known from mechanics (see Figure 2.3) that

ṗ(t) = w ∧R(t)p̄ (2.5)

where w(t) ∈ R3 denotes the angular velocity of frame {B} with respect to the frame
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{A}. Recalling the (·)× map and defining ◦Ω := w× it yields

ṗ(t) = Ṙ(t)p̄ = ◦Ω(t)R(t)p̄.

It follows that ◦Ω(t) obtained in the derivation of the right invariant vector field, for the

specific case of system on SO(3), is the angular velocity of the rigid body expressed in

the inertial frame, we will refer to this velocity ◦Ω as right invariant angular velocity or

spatial angular velocity.

2.2.4 Left Invariant Systems on SO(n)

Proposition 2.4. For R ∈ SO(n) and Ω ∈ so(n), a left invariant system on SO(n) is of the
form

Ṙ(t) = R(t)Ω(t). (2.6)

Proof.

Consider a time-varying rotation matrix R(t) ∈ SO(n), proceeding in a similar

way of the right invariant case one has

R>(t)R(t) = In

and differentiating with respect to time one obtains

0 = Ṙ>(t)R(t) +R>(t)Ṙ(t).

Denoting Ω(t) = R>(t)Ṙ(t), it yields

Ṙ(t) = R(t)Ω(t)

and note that Ω(t)> + Ω(t) = 0. The tangent spaces TRSO(n) are identified with

TRSO(n) :=
{
RΩ

∣∣ Ω ∈ so(n)
}
⊂ Rn×n.

The map TRLR̄ : RΩ 7→ R̄RΩ is given by left multiplication of the matrices in

TRSO(n) with a constant matrix R̄. It follows that the system dynamics are left
invariant

d

dt
(R̄R(t)) = R̄Ṙ(t) = (R̄R(t))Ω(t)

and this concludes the proof.

Analogously to the right invariant case, the angular velocity Ω has clear physical in-

terpretation. Indeed recalling that the angular velocity w ∈ R3 of the frame {B} with
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respect to {A} can be obtained from the angular velocity wB ∈ R3 of the frame {A} with

respect to {B} one has from (2.5)

ṗ(t) = w ∧R(t)p̄ = RwB ∧R(t)p̄

and proceeding exactly as the right invariant case denoting w× = ◦Ω, wB× = Ω

ṗ(t) = Ṙ(t)p̄ = ◦Ω(t)R(t)p̄ = R(t)Ω(t)R(t)R>p̄ = R(t)Ω(t)p̄,

we will refer to Ω(t) ∈ so(3) as the left invariant angular velocity or body angular velocity.

2.2.5 Rodrigues’ formula and Log map in SO(3)

According to the classical Euler Theorem the orientation of a frame {B} relative to a

frame {A} can be represented by means of a rotation about a fixed axis ω ∈ R3 through

an angle θ ∈ [0, 2π). From the definition of exponential map and of the Lie algebra

associated to a matrix Lie group along with the Euler theorem one has

R = exp(ω×θ) =
∞∑
k=0

(ω×θ)
k

k!

for any θ ∈ [0, 2π) and any ω ∈ R3 with ‖ω‖ = 1. The equation above is an infinite series,

the Rodrigues’ formula is useful in order to express the matrix R = exp(ω×θ) in closed

form

exp(ω×θ) = I + sin(θ)ω× + (1− cos(θ))ω2
×.

This method of representing a rotation about a fixed axis through an angle is known as

angle-axis representation. The inverse map of the exponential map, namely the log map,

is therefore given in closed form

log (R) = θω×, ω× =
1

2 sin(θ)
(R−R>) (2.7)

where (θ, ω) with |ω| = 1 is the angle-axis coordinates of R ∈ SO(3).

2.2.6 Trace and Eigenvalues of a Rotation Matrix

Let R ∈ SO(3) be a rotation matrix, the eigenvalues of R can be determined from the

roots of the characteristic polynomial

det(λI −R) = 0.
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In order to do so, denoting the elements of the rotation matrix

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33


yields to

det(λI −R) = −(λ− 1)(λ2 + (r11 + r22 + r33 − 1)λ+ 1 = 0.

It can be shown, using the Rodrigues’ formula (see Murray et al. (1994)), that

tr(R) = r11 + r22 + r33 = 1 + 2 cos(θ) (2.8)

where theta is the angle from angle-axis representation, hence the characteristic polyno-

mial can be rewritten as

det(λI −R) = −(λ− 1)(λ2 + 2 cos(θ)λ+ 1 = 0.

The eigenvalues of R ∈ SO(3) are therefore

eig(R) = (1, cos(θ) + i sin(θ), cos(θ)− i sin(θ)). (2.9)

Note that from (2.8) it follows

− 1 ≤ tr(R) ≤ 3. (2.10)

2.2.7 Inner Products and Metrics on SO(n)

The Euclidean distance in SO(3) is also known as chordal distance indeed for RA, RB ∈
SO(3) one has

d(RA, RB)F = ‖RA −RB‖ =
√
〈RA −RB, RA −RB〉

=
√

tr((RA −RB)>(RA −RB))

=

√
2 tr(I3 −

1

2
R>ARB −

1

2
R>BRA)

=
√

2 tr(I3 −R>ARB).

(2.11)

Denoting R̃ = R>ARB , this new rotation matrix can be considered as coordinates of a

new frame {C}, and recalling (2.8) one obtains

1√
2
d(RA, RB)F =

√
tr(I3 − R̃) =

√
2(1− cos(θ)) = 2 sin(

θ

2
)
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where θ is angle associated with the rotation from {B} to the frame {C}.

Figure 2.4: The chordal distance and the arc length of a circle.

Hence
1√
2
d(RA, RB)F represents the length of the chord between two points on a

unit circle separated by an angle θ (see Figure 2.4). The Euclidean distance on SO(3) is

both left invariant

d(LR̄(RA), LR̄(RB))2
F = tr

(
(RA −RB)>R̄>R̄(RA −RB)

)
= d(RA, RB)2

F

and right invariant

d(RR̄(RA), RR̄(RB))2
F = tr

(
R̄>(RA −RB)>(RA −RB)R̄

)
= tr

(
(RA −RB)>(RA −RB)R̄R̄>

)
= d(RA, RB)2

F

hence the metric considered is bi-invariant.
The chordal distance is widely used in the design of attitude tracking regulators (see

Bertrand et al. (2009) and Bullo and Murray (1999)), rigid body attitude synchronization
(see Sarlette et al. (2007), Nair and Leonard (2007)), observer design (see Mahony et al.

(2012a) and Lageman et al. (2010b)) and PI control on SO(3) (see Maithripala and Berg

(2014) and Mahony et al. (2015)). This metric is widely used due to the fact that it

intrinsically captures the notion of error in SO(3) and it represents an artificial potential
energy between the body-fixed frame and the reference frame. It is also important in the

stability analysis and for the construction of a Lyapunov function candidate in SO(3).

We can endow SO(3) with a Riemannian metric, let Ω1,Ω2 ∈ so(3) then

d(Ω1,Ω2)R = 〈Ω1,Ω2〉 = tr (Ω>1 Ω2)

is a bi-invariant Riemannian metric. Indeed for R̄ ∈ SO(3) one has that the metric is left
invariant

〈LR̄(Ω1), LR̄(Ω2)〉 = tr (Ω>1 R̄
>R̄Ω2) = 〈Ω1,Ω2〉
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and right invariant

〈RR̄(Ω1), RR̄(Ω2)〉 = tr (R̄>Ω>1 Ω2R̄) = 〈Ω1,Ω2〉 .

The Riemannian metric on SO(3) represents the length of the arc(angle) between two

points on a unit circle, indeed taking advantage of the log map one has

d2
(
log(R>ARB), log(R>ARB)

)
R

= tr(log(R>ARB)> log(R>ARB))

with RA, RB ∈ SO(3). Denoting R̃ = R>ARB and recalling (2.7) it yields to

d2
(

log(R̃), log(R̃)
)
R

= tr(ω>×θ
>θω×)

= tr(θ>θω>×ω×) = θ2 tr(ω>×ω×)

where (ω, θ) is the angle-axis representation of R̃. Using the fact that for any ω ∈ R3

‖ω‖2 =
1

2
tr(ω>×ω×) (2.12)

we finally obtain
1

2
d2
(

log(R>ARB), log(R>ARB)
)
R

= θ2.

Note that since the Euclidean metric is the length of the chord d(·, ·)F = 2 sin(θ/2) and

the Riemannian is the length of the arc d(·, ·)R = θ, it follows that near the origin R̃ ≈ I

the two metrics are similar d(·, ·)F
∣∣
I ≈ d(·, ·)R

∣∣
i.

2.2.8 Orthogonal Projection with respect to the Trace Inner Product

Proposition 2.5. Let A ∈ Rn×n, then the orthogonal projection of A onto so(n) with
respect to the trace inner product is given by

Pso(n)(A) =
1

2
(A−A>). (2.13)

Proof. For A ∈ Rn×n and Ω ∈ so(n)

tr(Ω>A) =
1

2
tr
(

Ω>
(

(A−A>) + (A+A>)
))

where we have used the fact that a square matrix can be written as a sum of a sym-

metric matrix Ps(A) =
1

2
(A+A>) and skew-symmetric matrix Pa(A) =

1

2
(A−A>).
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Note that for B = B> ∈ Rn×nand C = −C> one has tr(B>C) = 0, hence

tr(Ω>A) =
1

2
tr
(

Ω>Pa(A)
)
.

It follows that Pso(n)(A) = Pa(A).

If the matrix A considered is a rotation matrix A ∈ SO(3), then from (2.7) it turns

out

Pso(3)(A) = 2 sin(θ)ω× (2.14)

where (θ, ω) are the angle-axis coordinate of the matrix A. The following identities are

useful in the design of observers, PI and Internal model on SO(3) and are widely used

in this work.

Properties 2.2. For x, y ∈ R3

1. x>y = Q−1
so(3)tr(x

>
×y×), where Q−1

so(3) =
1

2
I3

2. x×y× = yx> − x>yI3

3. yx> − xy> = (x ∧ y)×

Properties 2.3. For A = A> ∈ R3×3 and x ∈ R3

1. (Ax)× =

(
1

2
tr(A)I3 −A

)
x× − x×

(
1

2
tr(A)I3 −A

)
2. P(Ax×) =

1

2
((tr(A)I3 −A)x)×

2.2.9 Kinematic Tracking on SO(3)

In this subsection we gather all the idea presented so far in order to design a regulator

for a simple kinematic tracking problem for left invariant systems on SO(3). Consider a

left invariant kinematic system on SO(3)

Ṙ = RΩ×

with R ∈ SO(3) the state and Ω× ∈ so(3) a velocity control input for the system. Con-

sider a reference trajectory for the system, given in terms of a desired orientation Rd(t)

with respect to an inertial reference frame

Ṙd = Ωd×Rd
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with Rd ∈ SO(3) and Ωd× ∈ so(3). The attitude kinematic tracking problem consists in

designing a feedback control action Ω× along with a feed-forward terms, such that the

orientation R of the body converges to Rd. Assume that the natural attitude error

E = R>Rd

and the reference velocity Ωd× are known. Consider as candidate Lyapunov function a

modified version of the chordal distance in (2.4)

L =
1

2
d2(R,Rd) = tr(Kp − EKp).

with Kp = diag(k1, k2, k3) with k3 > k2 > k1 > 0. The reason why the positive gains are

chosen to be distinct is technical and needed for the stability analysis. Differentiating L
one obtains

L̇ = − tr(ĖKp).

By bearing in mind the definition of E, it turns out that the time derivative is given by

Ė = Ṙ>Rd +R>Ṙd

= Ω>×R
>Rd +R>Ωd×Rd

= −Ω×R
>Rd +R>Ωd×Rd

= −Ω×R
>Rd +R>Ωd×RR

>Rd

= −Ω×E +R>Ωd×RE

= −(Ω× −R>Ωd×R)E.

Note that the velocity R>Ωd×R = (R>Ωd)× is the desired inertial velocity expressed in

the body-fixed frame (2.3). Introducing the expression of the time derivative of the error

into the Lyapunov function it yields

L̇ = tr
(
(Ω× −R>Ωd×R)EKp

)
= tr

(
(Ω−R>Ωd)×EKP

)
= − tr

(
(Ω× −R>Ωd×R)>EKp

)
Recalling the orthogonal projection of EKp onto so(3) with respect to the trace inner

product (Proposition 2.5) one has

L̇ = − tr
((

Ω× −R>Ωd×R
)
P(EKp)

)
and choosing as kinematic control input

Ω× = R>Ωd×R+ kpP(EKp)
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one finally obtains

L̇ = −‖P(EKP )‖2.

Note that the control law obtained (Figure 2.5) is the superposition of a feed-forward

term R>Ωd×R and a proportional feedback term P(EKP ). Lyapunov’s direct method

Maps spatial velocity

into body velocity

feed-forward action

Reference trajectory System KinematicsMaps error E

onto 

Figure 2.5: Block diagram of the proposed control law.

ensures that P(EKP ) converges asymptotically to zero. It follows that for L̇ = 0 one has

E?Kp −KpE
?> = 0

This implies that all eigenvalues ofE? are real, and bearing in mind the expression of the

eigenvalues of an rotation matrix (2.9) it follows that θ = kπ with k = −1, 0, 1 where θ

is the angle of the angle-axis representation. For θ = 0 one has eig(E?) = (1, 1, 1) and this

implies R = I . For θ = ±π one has eig(E?) = (1,−1,−1), hence tr(E?) = −1. Therefore

tr(E?) = −1 also implies that E? is a symmetric matrix, then

E?Kp −KpE
? = 0⇒ (ki − kj)E?ij = 0, for all i, j

and since k3 > k2 > k1 it follows that E?ij = 0 for all i 6= j, hence E? is a diagonal matrix.

Thus there are four possible equilibria for the closed loop systems

E?1 = I

E?2 = diag(1,−1,−1)

E?3 = diag(−1,−1, 1)

E?4 = diag(−1, 1,−1).

Note that E?1 is the desired equilibrium point while E?i for i = 2, 3, 4 are undesired

equilibrium points. In order to prove that the set

S := {R,Rd ∈ SO(3)× SO(3)
∣∣R = Rd}
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is almost globally asymptotically stable, we need to show that the desired equilibrium is

stable while the others three equilibria are unstable. To this end it suffices to show that

the eigenvalues of the linearized error system at E = I have strictly negative real part.

To this purpose consider the error dynamics for the closed-loop system

Ė = −P(EKp)E

= −1

2

(
EKp −KpE

>)E
=

1

2
Kp −

1

2
EKpE

>.

Consider a first order approximation of E around the equilibrium point E?i

E = E?i (I3 + xi×)

with xi ∈ R3. The linearization of the closed-loop system dynamics is given by

d

dt
(E?i (I3 + xi×)) =

1

2
Kp −

1

2
E?i (I + xi×)KpE

?
i (I3 + xi×)

=
1

2
Kp −

1

2
E?iKpE

?
i −

1

2
E?iKpE

?
i xi× −

1

2
E?i xi×KpE

?
i

−1

2
E?i xi×KpE

?
i xi×.

Using the fact that E?iKp commutes, i.e. E?iKp = KpE
?
i , and neglecting high order terms

one obtains

E?i ẋi× =
1

2
Kp −

1

2
KpE

?
i E

?
i −

1

2
E?iKpE

?
i xi× −

1

2
E?i xi×E

?
iKp.

Bearing in mind that E?i = E?>i = E?−1
i one has

ẋi× = −1

2
KpE

?
i xi× −

1

2
xi×KpE

?
i

= −P(KpE
?
i xi×).

Recalling the second item in Properties 2.3 it yields

ẋi× = −1

2
((tr(KpE

?
i )I3 −KpE

?
i )xi)×

thus

ẋi = Aixi
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where Ai is on the form Ai = −1

2
((tr(KpE

?
i )I3 −KpE

?
i ), specifically

A1 =
1

2
diag(−k2 − k3,−k1 − k3,−k1 − k2),

A2 =
1

2
diag(k2 + k3,−k1 + k3,−k1 + k2),

A3 =
1

2
diag(−k2 + k3, k1 − k3, k1 + k2),

A4 =
1

2
diag(k2 − k3, k1 + k3, k1 − k2).

It is straightforward to verify that the equilibrium E = I is stable in the sense of Lya-

punov, indeed all eigenvalues of the matrix A1 have strictly negative real part. Note

that for i = 2, 3, 4 the matrix Ai has at least one positive eigenvalue and not null eigen-

values, then from Lyapunov indirect method (Khalil (1996)) we could conclude that for

i = 2, 3, 4 the system is unstable. However since in the next chapters we will deal with

systems in which the indirect method is inconclusive we introduce an alternative method

to prove the instability of the others three equilibria, namely the Chetaev’s instability

theorem (see Khalil (1996)). To this end consider the following cost function
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Figure 2.6: Simulations of the tracking algorithm. Reference trajectories
θd,Ωxd,Ωyd,Ωzd are generated by a pink noise. θd represents the desired angle (angle-
axis representation) and Ωxd,Ωyd,Ωzd are the components of the reference velocity as-
sociated to the inertial frame.

Ii =
1

2
xi.
′Aixi, i = 2, 3, 4
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and differentiating along the solutions of the linearized error dynamics one obtains

İ = A2
i |xi|

2 , i = 2, 3, 4.

Since A2
i is positive definite it follows that the time derivative of the cost function I is

always positive. For an arbitrarily small radius r > 0, define the set

Ui = {xi
∣∣ Ii > 0, |x|i < r}, i = 2, 3, 4

and note that the set Ui is non empty for each i = 2, 3, 4 since at least one eigenvalue of

the matrix Ai is positive. As consequence a trajectory xi(t) inizialized near an equilib-

rium point x?i = 0 will diverge from the compact set Ui since the derivative of the cost

function is always positive. Moreover the trajectory xi(t) can not exit from the center of

the ball since along the trajectory the level sets are I(xi(t)) ≥ I(xi(0)). Thus trajectories

arbitrary close to the origin must exit trough the ball |xi| = r. Consequently the origin

of the linearized system is unstable for i = 2, 3, 4. However note that there will be trajec-

tories that converges to the unstable equilibria along the stable center manifold (Khalil

(1996)). Anyhow such particular trajectories are of zero Lebesque measure.
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Figure 2.7: The time behavior of the Lyapunov function and the norm of the error. In
red, the case in which the error E(0) starts from an undesired equilibrium point. In
blue, the case in which the error E(0) starts from a generic point that differs from an
equilibrium point.

Note that from Figure 2.7 one can see (from the red graph) that even if the error starts

or converges to the unstable equilibria, this will not cause practical problems. Indeed,

in this case, small integration errors of the MATLABr solver used in the simulations

moves out the trajectory from the unstable equilibrium. In a real world scenario, small
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disturbances such as the noise of the sensors or the quantization of the embedded con-

troller will force the trajectory to exit from the undesired equilibrium point.

2.3 The Special Euclidean Group

Definition 2.13. The special Euclidean group SE(n) is the set

SE(n) = {(R, p)
∣∣R ∈ SO(n), p ∈ Rn}

together with the group operation

(R1, p1)(R2, p2) 7→ (R1R2, R1p2 + p1).

The identity element is (In, 0), while the inverse element is given by

(R, p)−1 = (R>,−R>p).

The special Euclidean group can be also defined as the set of mappings f : Rn 7→ Rn

with

f(R,p)(x) = Rx+ p, (2.15)

note that f(R,p) is a group action of SE(3) on R3. Moreover note that

f(R1,p1) ◦ f(R2,p2) = f(R1R2,R1p2+p1)

is the group operation in the definition of SE(3). Since the group operation and the

inverse element involve a group action it turns out that SE(n) is the semi-direct product

of SO(n) and Rn

SE(n) := SO(n) nRn.

The dimension of SE(n) as a manifold is n(n+ 1)/2.

2.3.1 Pose of a Rigid Body

Let {A} denote an inertial frame (for example a frame attached to the earth) and {B}
a body-fixed frame attached to the rigid body. As we have already seen in the previous

section, the attitude of a rigid body can be represented by a rotation matrix R ∈ SO(3)

of the body-fixed frame {B} with respect to the inertial frame {A}. The position of the

body-fixed frame, expressed in the inertial frame, is denoted by a vector p ∈ R3 (see Figure

2.10). The pose (attitude and position) of the rigid-body is then represented by the tuple

(R, p) with R ∈ SO(3) and p ∈ R3.
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Figure 2.8: Pose of a rigid body.

Let Apd,Bpd the position of the point d with respect to the inertial frame and to the

body-fixed frame, respectively. Assume that the coordinates of the point d with respect to

the inertial frame are unknown, how we can obtain the coordinates of Apd given p,Bpd, R?

First of all we need to express the coordinates of the vector Bpd in the inertial frame.

This can be done by the rotation matrix that defines the transformation of a vector from

{B} to {A}
ApBd = RBpd.

Note that since in this case the origins of the two reference frames don not coincides,
ApBd is not the position of the point d with respect to {A}. Then the position of the

point d with respect to the frame {A} is given by

Apd = ApBd + p = RBpd + p.

Note that the new-found expression is exactly the group action in 2.15. Thus the pose of

Figure 2.9: Position of a point d with respect to an inertial frame and a body-fixed
frame.

a rigid body can be interpreted as an element of the special Euclidean group SE(3).
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2.3.2 Representation of the Special Euclidean Group SE(3)

A convenient way to represent an element of SE(3) is the matrix representation of SE(3).

Due to the fact that the group action in 2.15 is an affine transformation we can represent

SE(3) with an augmented matrix X ∈ SE(3) i.e.

X =

[
R p

0 1

]
.

This representation is commonly known as homogeneous representation. Note that the

group structure of SE(3), taking advantages of the matrix representation, is preserved

under matrix multiplication. The identity element is I4 while the inverse element is

given by

X−1 =

[
R> −R>p
0 1

]
.

The group action then is obtained as “augmented" vector matrix multiplication[
Apd

1

]
=

[
R p

0 1

][
Bpd

1

]
.

The “augmented" form of the vector is known as the homogeneous coordinates of the

vector. From now on for any p ∈ R4 in homogeneous coordinates, the vector p ∈ R3

denotes the first three components of the vector p, i.e. p = col(p, 1).

2.3.3 The Lie Algebra associated to the Special Euclidean Group

Definition 2.14. The Lie algebra associated to the special Euclidean group SE(3), denote by
se(3), is the set of tuples

se(3) :=
{

(Ω, V )
∣∣ Ω ∈ so(3), V ∈ R3

}
.

Using the matrix representation we can define the Lie algebra associated to the spe-

cial Euclidean group SE(3) as follow.

Definition 2.15. The Lie algebra associated to the special Euclidean group, denote by se(3),
is the set of 4× 4 matrices

se(3) :=

{
U ∈ R4×4

∣∣ ∃Ω, V ∈ R3 : U =

[
Ω× V

0 0

]}
.
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2.3.4 The Vectorial and Matrix Representation of se(3)

Definition 2.16. Let Ω, V ∈ R3, the vectorial representation vrp : se(3) 7→ R6 of

U =

[
Ω× V

0 0

]
∈ se(3)

is given by

vrp(U) =

[
Ω

V

]
.

Definition 2.17. Let Ω, V ∈ R3, the matrix representation mrp : R6 7→ se(3) of

T =

[
Ω

V

]

is given by

mrp(T ) =

[
Ω× V

0 0

]
∈ se(3).

2.3.5 Right Invariant Systems on SE(3)

Proposition 2.6. For X ∈ SE(3) and U ∈ se(3), a right invariant system on SE(3) is of
the form

Ẋ(t) = ◦U(t)X(t). (2.16)

Proof. Consider a time-varying matrix X(t) ∈ SE(n), differentiating with respect

to time at the identity element of the group it yields

0 =
d

dt
(X(t)X−1(t))

= Ẋ(t)X−1(t) +X(t)
d

dt
(X−1(t))

= Ẋ(t)X−1(t)− Ẋ(t)X−1(t).

Denoting ◦U := Ẋ(t)X−1(t), one has

Ẋ(t) = ◦U(t)X(t).

The tangent spaces TXSE(3), then are given by

TXSE(3) :=
{◦UX ∣∣ ◦U ∈ se(3)

}
⊂ R4×4.
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It is straightforward to verify that system dynamics are right invariant, indeed

d

dt
(X(t)Y ) = Ẋ(t)Y = ◦U(t)(X(t)Y )

with Y ∈ SE(3), and this concludes the proof.

Bearing in mind the matrix representation of SE(3) one obtains

◦U = Ẋ(t)X−1(t) =

[
Ṙ ṗ

0 0

][
R> −R>p
0 1

]

=

[
ṘR> −ṘR>p+ ṗ

0 0

]
.

Recalling the angular velocity associated to a right invariant vector field one has

◦U =

[
◦Ω× −◦Ω×p+ v

0 0

]

where v := ṗ is the velocity of the origin of the body-fixed frame with respect to the inertial
frame.

We can give a physical interpretation of the velocity ◦U . To this end let v ∈ R3 the

velocity of the origin of the body-fixed frame {B} with respect to the inertial frame

{A} and ◦Ω the angular velocity of the rigid-body with respect to the inertial frame (see

Figure 2.10). It is well known from classical mechanics that the velocity vd of a point d

of the rigid body is given by

vd = ◦Ω ∧ (pd − p) + v

where pd is the position of the point d with respect to the inertial frame. And in homoge-
neous coordinates [

vd

0

]
=

[
◦Ω× −◦Ω×p+ v

0 0

][
pd

1

]
= ◦U

[
pd

1

]
it follows that the matrix ◦U is a mapping that relate the velocity of the origin of the

body-fixed frame to the velocity of another point of the rigid body, both with respect to

the inertial frame. Due to this fact we will call the vector vrp(◦U) = col(◦Ω,−◦Ω×p + v)

the spatial velocity of the rigid body.

2.3.6 Left Invariant Systems on SE(3)

Proposition 2.7. For X ∈ SE(3) and Ω ∈ se(3), a left invariant system on SE(3) is of the
form

Ẋ(t) = X(t)U(t). (2.17)
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Figure 2.10: Velocity of a point of the rigid body.

Proof. Consider a time-varying matrix X(t) ∈ SE(3), proceeding in an analogous

manner of the right invariant case, and differentiating at the identity element of the

group one has

0 = X−1(t)Ẋ(t)−X−1(t)Ẋ(t).

Denoting U = X−1(t)Ẋ(t), it yields

Ẋ(t) = X(t)U(t)

Thus the tangent spaces TXGL(n) are identified with

TXGL(n) :=
{
XU

∣∣ U ∈ gl(n)
}
⊂ Rn×n.

The map TXLY : XU 7→ Y XU is given by left multiplication of the matrices in

TXSE(3) with a constant matrix Y . The system dynamics are then left invariant

d

dt
(Y X(t)) = Y Ẋ(t) = (Y X(t))U(t)

The physical interpretation of the velocity U is straightforward, indeed consider the

matrix representation of U

U = X−1(t)Ẋ(t) =

[
R> −R>p
0 1

][
Ṙ ṗ

0 0

]

=

[
R>Ṙ R>ṗ

0 0

]
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Recalling the angular velocity associated to a left invariant vector field one has

U =

[
Ω× R>ṗ

0 0

]

and bearing in mind that the velocity of the origin of the body-fixed frame relative to the

inertial frame is given by V = R>v, where v is the velocity of the origin of the body-fixed

frame with respect to the inertial frame it yields

U =

[
Ω× V

0 0

]
.

Thus the first three components of vrp(U) = col(Ω, V ) represent the angular velocity of

the inertial frame as seen from the body-fixed frame, while the second three components

represent the velocity of the origin of the body coordinate frame relative to the spatial

frame.

We have seen that ◦U represents inertial velocities whileU represents body velocities,

the two quantities are related by the adjoint action, indeed

◦U(t) = Ẋ(t)X−1(t) = X(t)X−1(t)Ẋ(t)X−1(t)

= X(t)U(t)X−1(t) = AdX(t)U(t).

2.3.7 Metrics on SE(3)

For XA, XB ∈ SE(3) the induced matrix norm on SE(3) is given by

d2(XA, XB)F = tr
(
(XA −XB)>(XA −XB)

)
= tr

([
(RA −RB)> 0

(pA − pB)> 0

][
(RA −RB) (pA − pB)

0 0

])

= tr

([
(RA −RB)>(RA −RB) (RA −RB)>(pA − pB)

(pA − pB)>(RA −RB) (pA − pB)>(pA − pB)

])

= tr
(
(RA −RB)>(RA −RB)

)
+ (pA − pB)>(pA − pB)

= d2(RA, RB)F + ‖pA − pB‖2.

The metric d(·, ·)F on SE(3) is left invariant, indeed considering a left translation LX̄
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with X̄ ∈ SE(3) it yields

d2(LX̄XA, LX̄XB)F = tr
(
(XA −XB)>X̄>X̄(XA −XB)

)
= tr

(
(XA −XB)>

[
R̄> 0

p̄ 1

][
R̄ p̄

0 1

]
(XA −XB)

)

= tr

(
(XA −XB)>

[
I3 R̄>p̄

p̄>R̄ p̄>p̄

]
(XA −XB)

)

= tr

([
(RA −RB)> (RA −RB)>R̄>p̄

(pA − pB)> (pA − pB)>R̄>p̄

][
(RA −RB) (pA − pB)

0 0

])

= d2(XA, XB)F .

However it can be easily verified that the metric d(·, ·)F is not right invariant. Often

for the construction of a suitable Lyapunov function one needs a right invariant metric.

This is for example the case of the design of left observer on Lie Groups (see Hua et al.

(2015a) and Lageman et al. (2010a)). In the work of Lageman et al. (2010a), a systematic

procedure for the construction of a right invariant metric for systems on Lie Groups is

provided.

Proposition 2.8. (Lageman et al. (2010a)) Let G a Lie group and let f : G ×G 7→ R be a
left invariant function. Then f̃ : G×G 7→ R defined by

f̃(X,Y ) = f(X−1, Y −1)

is a right invariant function.

Thus in our case the left invariant metric is given by

d̃2(XA, XB)F = d2(X−1
A , X−1

B )F

= tr

[(R>A −R>B) −R>ApA +R>BpB

0 0

]> [
(R>A −R>B) −R>ApA +R>BpB

0 0

]
= ‖R>A −RB‖2F + ‖ −R>ApA +R>BpB‖2.

We can also endow SE(3) with a left invariant Riemannian metric, recalling the def-
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inition of tangent spaces for a left invariant vector field one has

d2(XU1, XU2)R = 〈XU1, XU2〉

= tr(U>1 X
>XU2)

= tr

([
−Ω1× 0

V >1 0

][
R> 0

p> 1

][
R p

0 1

][
Ω2× V2

0 0

])

= − tr(Ω1×Ω2×) + V >1 V2 = 〈U1, U2〉 = d2(U1, U2)R.

Or in analogous manner with a right invariant Riemannian metric, indeed by bearing in

mind the definition of tangent spaces for a right invariant vector field one obtains

d2(◦U1X,
◦U2X)R = 〈◦U1X,

◦U2X〉

= tr(X>◦U>1
◦U2X)

= tr

([
R> 0

p> 1

][
−◦Ω1× 0

−p>◦Ω1× + v>1 0

][
◦Ω2× −◦Ω2×p+ v2

0 0

][
R p

0 0

])

= − tr(◦Ω1×
◦Ω2×) + v>1 v2

= 〈◦U1,
◦U2〉 = d2(◦U1,

◦U2)R.

2.3.8 Orthogonal Projection with respect to the Trace Inner Product

Proposition 2.9. Let A ∈ R4×4 a block matrix of the form

A =

[
A1 a2

a>3 a4

]

with A1 ∈ R3×3, a2, a3 ∈ R3 and a4 ∈ R. Then the orthogonal projection of A onto se(3)

with respect to the trace inner product is given by

Pse(3)(A) =

[
Pso(3)(A1) a2

0 0

]
. (2.18)
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“Spaghetti and Levi-Civita.”

Albert Einstein

3
Models of Mechanical Systems

whose configuration manifold is a
Lie Group

The civil and commercial usage of Unmanned Aerial Vehicles (UAVs), Unmanned

Ground Vehicles (UGV) and Unmanned Underwater Vehicles (UUV) has ex-

perienced an exponential growth in last past years. Unmanned vehicles have

become very popular due to their ability to replace and help human beings (or cooper-

ate with them) in dangerous environments. Nowadays unmanned vehicles are used in

everyday life including aerial photography and filming, crop supervision, soil and field

analyses, package delivery (Amazon and Google), infrastructure inspection (Marconi

et al. (2012a)), seafloor mapping (Wynna et al. (2014)), research and rescue (Marconi

et al. (2012b)), fire detection and monitoring (de Dios et al. (2006)).

A wide class of these robotic systems (UAV, UGV, UUV) share the fact that the kine-

matics laws of motion are invariant under a change of the configuration space. This

invariace properties are known in physics as continuous symmetries. Such physical sym-

metries lead to structured state space representations on Lie groups. Indeed, as we have

seen in the previous chapter the pose and the attitude of a rigid-body are represented

in SE(3) and SO(3) respectively. In this chapter we are going to introduce some basic
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3.1. Unmanned Ground Vehicles

mechanical models for systems whose configuration space is a Lie Group, focusing our

attention on fully actuated systems.

3.1 Unmanned Ground Vehicles

Roughly speaking, we can distinguish ground vehicles in base of the wheels mounted

on them. Basically the wheels mounted on a vehicle can be directional wheels or omni-
directional wheels. Conventional directional wheels, such as the wheels of a car, put

constraints in the instantaneous velocity of the vehicle. Indeed, conventional wheels

can’t move in a direction parallel to the wheel axle. For example, for lateral parking, a

car-like vehicle needs to perform complex maneuvers in order to park (see Figure 3.1).

Figure 3.1: Lateral parking with conventional wheels.

This type of constraints are called non-holonomic constraints. For a deep treatment

of wheeled robots the reader is referred to books devoted to the argument as Siciliano

et al. (2009).

Vehicles with omni-directional wheels, instead, are able to instantaneously move the

car in any direction regardless its current configuration (see Figure 3.2).

Figure 3.2: Lateral parking with Swedish wheels.

The omni-directional motion is obtained thanks to the particular design of omni-
directional wheels. In omni-directional wheels, small rollers are located around the outer

diameter of the wheel, mounted perpendicularly to the axle of the wheel. As conse-
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Chapter 3. Models of Mechanical Systems whose configuration manifold is a Lie Group

quence the wheel is free to move in the direction parallel to the rotation axis of the wheel

(see Figure 3.4). The omni-directional wheel was first patented in 1919 by J. Grabowiecki.

Another popular omni-directional wheel is the Swedish or Mecanum wheel. The wheel

Figure 3.3: Side and front view of a roller wheel.

name come from the nationality of its inventor Bengt Ilon (1973) (Mecanum company).

The first mobile robot with Mecanum wheels is Uranus (see Muir and Neuman (1987)).

For an extensive analysis of the wheeled robots’ kinematic the reader is referred to Muir

and Neuman (1986) and Muir and Neuman (1987).

Figure 3.4: Uranus (Muir and Neuman (1987)).

Holonomic and non-holonomic vehicles, however, share the same configuration man-

ifold. Indeed non-holonomic constraints do not restrict the configuration space. The

configuration manifold of a planar rigid body (like vehicles) is the special Euclidean group
SE(2)

SE(2) = SO(2) nR2.

In the next section we will briefly derive the kinematic model for a vehicle with three

omni-directional wheels. We do not consider the dynamic model of the vehicle since it

is strictly depended on the particular wheel used and because usually the commercial

models have already a low level control for these wheels.
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3.1. Unmanned Ground Vehicles

3.1.1 Ground Vehicle with Omni-directional Wheels

Figure 3.5 presents the classical configuration of a three omni-directional wheeled vehi-

cle, each wheel is separated by an angle of 2π/3 radiant and placed at distance d with

respect to the center of the robot.

Figure 3.5: Ground vehicle with three roller wheels

We denote by vwi, i = 1, 2, 3, the linear velocity of the i-th wheel, and by Vx, Vy, Ω the

velocity along the x axis, the velocity along the y axis and the angular velocity, respec-

tively. Linear velocities of the wheels with respect to the body-fixed frame {B} velocities

are given by
vw1 = −Vy + Ωd

vw2 = Vy cos(π/3)− Vx cos(π/6) + Ωd

vw3 = Vy cos(π/3) + Vx cos(π/6) + Ωd.

And using a compact notation one gets

Vw = wJB vrp(U)
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where Vw = col(vw1, vw2, vw3), vrp(U) = col(Ω, Vx, Vy) and

wJB =


0 −1 d

−
√

3

2

1

2
d

√
3

2

1

2
d

 .

The determinant of this matrix is given by

det(wJB) = −3
√

3

2
d

and bearing in mind that d > 0, it’s possible to conclude that the matrix BJw is always

invertible. Thus, we can obtain the inverse transformation mapping the linear velocities

of the wheels into the velocity of the body-fixed frame

vrp(U) = BJwVw

where

BJw = wJ−1
B =

 0 −
√

3/3
√

3/3

−2/3 1/3 1/3

1/(3d) 1/(3d) 1/(3d)

 .
The kinematic model is

Ẋ = XU

vrp(U) = BJwVw.
(3.1)

with X ∈ SE(2) the state of the system.

3.2 Unmanned Aerial Vehicle

3.2.1 Rigid Satellite

The configuration manifold of a satellite is SO(3). The kinematics equation of motion

are given by (2.6)

Ṙ = RΩ×

with R the rotation matrix of the body-fixed frame with respect to an inertial frame at-

tached to the Earth and Ω the body angular velocities. Let J denotes the constant inertia

matrix around the center of mass of the satellite (expressed in the body fixed frame ).
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3.2. Unmanned Aerial Vehicle

The Newton-Euler equations of motion yield the following dynamic model

JΩ̇ = −Ω×JΩ + Γext + Γ (3.2)

where Γ ∈ R3 is a torque control input and Γext ∈ R3 is the resultant torque acting on

the body. The control input Γ is usually actuated by thrusters or momentum wheels,

however we do not consider the particular choice of the actuators in this work.

For satellites operating at high altitude the disturbance torque Γext is negligible.

For low-Earth orbit satellites (LEO), orbits below below 103 to 5 ∗ 103 km, the gravi-

tational field produces disturbances that are not negligible

Γgrav = 3
µ

ρ3
(R>

[
0 0 1

]>
)×JR

>
[
0 0 1

]>
(3.3)

where µ is the gravitation constant of the Earth and ρ is the radius of the orbit. Also the

atmosphere produces not negligible disturbances, the atmosphere affects the satellite

by generating aerodynamic drag lift. Drag depends on the ballistic coefficient and on

the atmospheric density. For a deep treatment of space mission the reader is referred

to Larson and Wertz (2005), for spacecraft control see books devoted to the argument

Markley and Crassidis (2014).

3.2.2 Fully Actuated Multicopter

The configuration manifold of an aerial vehicle is SE(3). Rigid body’s kinematic equa-

tions of motion are described by (2.17)

Ẋ = XU

with X ∈ SE(3) and U ∈ se(3). Let m denotes the mass of the body and let J denotes

the constant inertia matrix around the center of mass (expressed in the body fixed frame

). Newton-Euler equations of motion for a fully actuated aerial vehicle with 6DOF yield

the following dynamic model

JΩ̇ = −Ω×JΩ + Γext + Γ (3.4a)

mV̇ = −mΩ×V + F ext + F (3.4b)

where Γ ∈ R3 and F ∈ R3 represent respectively the torques and forces control inputs.

F ext and Γext represent the resultant of the external disturbances acting on the rigid body.
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We can express the dynamic equation of motion in a compact form[
J 0

0 mI3

][
Ω̇

V̇

]
=

[
−Ω×J 0

0 −mΩ×

][
Ω

V

]
+

[
Γext

F ext

]
+

[
Γ

F

]
.

Denoting F̄ ext = col(Γext, F ext) and F̄ = col(Γ, F )

M̄ =

[
J 0

0 mI3

]
, C(Ω, V ) =

[
−Ω×J 0

0 −mΩ×

]

and recalling the vectorial representation of se(3) one obtains

M̄ vrp(U̇) = C(Ω, V ) vrp(U) + F̄ ext + F̄ .

For the sake of simplicity in the design of the control laws that we are going to present in

the next chapters, we assume that the dynamics of the actuators are faster than vehicle

dynamics. Moreover, for the sake of generality we are not going to consider the partic-

ular choice of the actuators. The structure presented is the basic structure of many of

the nonlinear tracking control algorithms developed for fully-actuated vehicles, see Hua

et al. (2015b), Naldi et al. (2008), Ryll et al. (2015) and Rajappa et al. (2015).

3.3 Unmanned Underwater Vehicle

UUV’s can navigate vast distances and collect scientific data (seafloor mapping, temper-

ature mapping, salinity) without any human control in very extreme environments. In

this section we are going do present the kinematic and dynamic model of a 6DOF un-

derwater vehicle. For a detailed analysis of marine vehicles (modeling and control) the

reader is referred to Fossen (2002). The configuration manifold of a rigid body moving

into an incompressible, irrotational and inviscid fluid is the group of rigid displacements

SE(3). The kinematic equations of motion are described by (2.17)

Ẋ = XU

with X ∈ SE(3) and U ∈ se(3). Let M and J denote the mass and the inertia of the

body-fluid system. For the added mass effect (mass of the body-fluid system) the reader

is referred to Fossen (2002). Kirchhoff equations of motion for a fully actuated immersed

underwater vehicle with 6DOF read as

JΩ̇ = −Ω×JΩ− V×MV + Γext + Γ (3.5a)

MV̇ = −Ω×MV + F ext + F (3.5b)

51



3.3. Unmanned Underwater Vehicle

where Γ ∈ R3 and F ∈ R3 represent respectively the torques and forces control inputs.

F ext and Γext represent the resultant of the external disturbances acting on the vehicle.

Kirchhoff dynamic equation of motion can be expressed in compact form[
J 0

0 M

][
Ω̇

V̇

]
=

[
−Ω×J −V×M

0 −Ω×M

][
Ω

V

]
+

[
Γext

F ext

]
+

[
Γ

F

]
.

Denoting F̄ ext = col(Γext, F ext), F̄ = col(Γ, F )

M̄ =

[
J 0

0 M

]
, C(Ω, V ) =

[
−Ω×J −V×M

0 −Ω×M

]

one obtains

M̄ vrp(U̇) = C(Ω, V ) vrp(U) + F̄ ext + F̄ .
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“My only wish would be to have 10 more lives to live

on this planet. If that were possible, I’d spend one life-

time each in embryology, genetics, physics, astronomy

and geology. The other lifetimes would be as a pianist,

backwoodsman, tennis player, or writer for the “Na-

tional Geographic”.”

Joseph Murray

4
Output Regulation For Systems On

Matrix Lie Groups

The output regulation problem is one of the central problems in control theory.

This problem deals with asymptotic tracking of a reference trajectory or asymp-

totic rejection of external disturbances. A key characteristic in the context of

internal model-based control is to model references to be tracked or disturbances to be

rejected as belonging to the set of all possible solutions generated by an autonomous

system typically referred to as exosystem. The framework can be considered as trade-off
between scenarios in which the reference trajectory is completely known and the ones

in which it is totally unknown. For linear MIMO (multiple-input multiple-output) sys-

tems, the output regulation problem was completely characterized and solved in the

mid seventies by the pioneering works of Francis (1977), Francis and Wonham (1976)

and Davison (1976), leading to the internal model principle. In this context, the regu-

lator that solves the problem incorporates in the feedback path a suitably reduplicated

model of the exosystem. The linear framework has been then extended to a quite gen-

eral nonlinear context by Isidori and Byrnes (1990). After the seminal paper of Isidori

and Byrnes (1990) there has been considerable interest in the theory, see among others

Marconi et al. (2001), Marconi et al. (2006) and Huang and Lin (1994). A breakthrough

in the nonlinear output regulation problem happened in Byrnes and Isidori (2004), in
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which has been recognized that the problem of output regulation can be cast as a prob-

lem of nonlinear observers design. In this new perspective, a large amount of paper has

been published (see, among others, Priscoli et al. (2006), Bin et al. (2016), Marino and

Tomei (2011) and for a deep treatment of observers and internal model Astolfi (2016)).

A wide number of the existing works on output regulation deals with systems and ex-

osystem defined on Euclidean real state space and there is only a small amount of papers

that consider the output regulation problem on more general manifold. Only recently,

some effort has been done to extend the internal model principle to systems defined on

matrix Lie group. In particular, Schmidt et al. (2012) and Schmidt et al. (2014) consider

the output regulation problem for left invariant systems and left invariant exosystems de-

fined on the special orthogonal group SO(n) and the special Euclidean group SE(n). In both

works full error information are assumed to be available. For a comprehensive treatment

of the argument see Schmidt (2014). The main differences of the work of Schmidt (2014)

with the present work is that we are going to consider the output regulation problem for

left invariant systems and right invariant exosystems on Lie groups in which only par-

tial relative measurement are supposed to be known, this fact will be clear in the next

sections. Moreover in this work we are going to present a general internal model-based

design for systems defined on matrix Lie groups.

4.1 Lie Output Regulation: An Illustrative Example

In what follows we consider one of the most simple abelian Lie group, that is Rn. Due

to some similarity with matrix Lie group, the design on Rn will give us some hint for a

generic design. Consider the following linear system on Rn

Ẋ = U (4.1a)

X ∈ Rn the state of the system and U ∈ Rn the control input. We consider an

exosystem of the form
Ẋd = Cw

ẇ = Sw
(4.2)

where Xd ∈ Rn, w ∈ Rm, C ∈ Rn×m and S ∈ Rm×m with S = −S> and the pair (S,C)

observable. The input w models exogenus signals that represent velocity references to be

tracked. Note that assuming S skew-symmetric is equivalent to the classical assumption

of neutral stability of the exosystem. Indeed consider an exosystem of the form

ẇ = Aw
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if all eigenvalues of A have zero negative real part and multiplicity one in the minimal

polynomial then the system is neutrally stable. Moreover is well known that a matrix A

with all eigenvalues with zero real part and multiplicity one in the minimal polynomial

can be always expressed, in suitable coordinates, as a skew symmetric matrix S. We also

assume that all the trajectories of the exosystem are bounded backward and forward

in time. Note that usually the assumption on the eigenvalues of the matrix S implies

that the exosystem is bounded forward an backward in time. However in this particular

formulation we have added an additional step of integration and due to this fact the

neutral stability of the subsystem ẇ = Sw does not implies the boundness of the state of

the whole exosystem.

We assume that the matrices C and S are known and only relative position measure-

ments are available, namely

e = Xd −X. (4.3)

In this framework, the control problem is the design of a feedback control action U as a

function of e, in such a way the error e converges with a large domain of attraction.

Note that considering the change of variable Z =
[
e U

]>
the problem can be cast

as in the classical linear Internal model framework. However we are going to proceed

with a design based on the Lyapunov direct method since the linear design will be not

applicable on the more general case of systems posed on matrix Lie group.

Proposition 4.1. Consider the system (4.1a) along with exosystem (4.2) and let the controller
be given by

U = kpe+ Cδ

δ̇ = Sδ + kIC
>e

(4.4)

with kp, kI some positive gains. Then the set

S = {(X, δ, (Xd, w)) ∈ Rn × Rm × (Rn × Rm) : X = Xd, δ = w} (4.5)

is globally asymptotically stable for the closed-loop system.

Proof. Consider the following Lyapunov function

L(e, w̃) =
1

2
‖e‖2 +

1

2kI
‖w̃‖2

where w̃ = w − δ, which is positive definite and L(0, 0) = 0. The derivative of the

position error with respect to time is given by

ė = Ẋd − Ẋ = Cw − U.
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Taking the derivatives along the solution of (4.1a) and (4.2) one obtains

L̇ = e>ė+
1

kI
w̃> ˙̃w

= e>(Cw − U) +
1

kI
w̃>(Sw − δ̇)

and substituting U and δ̇ from (4.4) one has

L̇ = −kpe>e+ e>Cw̃ +
1

kI
w̃>Sw̃ − w̃>C>e

= −kpe>e.

Substituting (4.4) into the derivative of the error for L̇ = 0 one has

ė = 0 = Cw̃

˙̃w = 0 = Sw̃

and this along with the observably condition of the pair (S,C) in turn implies w̃ = 0.

From this using classical LaSalle arguments, it is possible to conclude that the set S
is globally asymptotically stable.

Figure 4.1: Block Diagram of the regulator in Rn.

Note that, with the same spirit of the linear internal model principle, the control

action U obtained is the superposition of a stabilizing unit and an internal model unit

(see figure 4.1 ).
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4.2 Kinematic Output Regulation For Systems on Matrix Lie

Groups

As we have seen in the previous chapters many physical systems, such as aerial vehicles,

mobile robotic vehicles and underwater vehicles can be described by geometric models

with symmetries. Symmetric structures reflect the fact that the behavior of a symmetric

system in one point is independent from the choice of a particular set of configuration

coordinates. Preserving such a symmetry plays undoubtedly a key feature in the design

of control and observer for mechanical systems with symmetries. Control of mechanical

system has been intensively studied by Jurdjevic (1997) and Bullo and Lewis (2004). As

shown by Byrnes and Isidori (2004) the output regulation problem is very close to the

observer design problem. It is natural, then, to investigate and highlight the key princi-

ples in the design for invariant nonlinear observer. Aghannan and Rouchon (2003) first

had pointed out the main role of invariance in the observer design. Recent works, based

on the aforementioned paper, take advantage of the left invariant structure to define

invariant error coordinates in order to build an invariant observer (see , among others,

Bonnabel et al. (2008), Bonnabel et al. (2009), Hua et al. (2011), Trumpf et al. (2012),

Lageman et al. (2009) and Lageman et al. (2010a)). As shown in Mahony et al. (2012b)

and Khosravia et al. (2015) input measurements affected by bias lead to non-autonomus

error dynamic, analogously the output regulation problem of this work will lead to an

non-autonomous error system. Finally the last key concept to be highlighted is the con-

struction of an invariant cost function on the output space. Properly chosen, these cost

function give rise to non increasing Lyapunov function along the trajectories of the er-

ror system (see Khosravia et al. (2015), Mahony et al. (2013) and Maithripala and Berg

(2014)). Part of the content of the present section has been accepted as brief paper for

the Automatica journal (de Marco et al. (2016b)) and is under the revision process.

57



4.2. Kinematic Output Regulation For Systems on Matrix Lie Groups

4.2.1 Problem formulation

In this section we consider a left invariant kinematic system of the form

Ẋ = X(U + Un), X(0) ∈ G (4.6a)

Un = mrp (Cnwn) (4.6b)

ẇn = Snwn (4.6c)

X ∈ G the state of the system , U ∈ g the control input and where Un ∈ g represents

velocity disturbances to be rejected. With vrp(Un) ∈ Rk,wn ∈ Rz, Cn ∈ Rk×z, and

Sn ∈ Rz×z with z ≥ k. We assume that Sn = −S>n .

Reference trajectories to be tracked are generated by a right invariant system defined

on the same Lie-Group G of the controlled system and driven by a linear oscillator

defined on the Lie-algebra g associated to the Lie group G

Ẋd = ◦UdXd (4.7a)
◦Ud = mrp(Cw) (4.7b)

ẇ = Sw (4.7c)

where Xd ∈ G and ◦Ud ∈ g are n × n matrices, vrp(◦Ud) ∈ Rκ,w ∈ Rm, C ∈ Rκ×m, and

S ∈ Rm×m with m ≥ κ and S = −S>. Note that the exosystem in (4.7) has a similar

form of the exosystem presented in the illustrative example.

As we have seen in the previous chapters a natural choice to denote the state error as

an element of the group G for systems defined on matrix Lie group is given by

E = X−1Xd. (4.8)

However we don not assume that the natural error is directly available for measurements

since there aren’t commercial or custom sensors capable of measuring that quantity.

Instead, we assume that only partial relative geometrical information of the exosystem

with respect to actual system is available for measurements. These measurements are

assumed to be invariant and associated with a group action on a homogeneous space of

the state space. In particular we consider a linear left group action (see Definition 1.19)

of G on Rn, l(E, y) 7→ Ey and reference vectors of the form

yi = Eẙi, i = 1, 2, ..., ν

where ẙi are known constant reference vectors.

Note that the choice of a linear left group action is related to the fact that it is the
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Chapter 4. Output Regulation For Systems On Matrix Lie Groups

natural action of SE(3) and SO(3) on R4 and R3, respectively. Moreover this choice sim-

plifies the calculation in the derivation of the control law. However all results presented

in this work would hold for a general left group action.

In this context we define an “error vector” e̊i by

e̊i = ẙi − Eẙi.

If the goal is to maintain a certain relative “distance”, for example in SE(3) in the for-

mation flight problem, we can apply a constant “reference” Xr ∈ G to ẙi to generate

constant reference vectors

yri = Xrẙi.

Thus considering Xr one has

ei = yri − yi = yri − Eryri , where Er = EX−1
r .

The control problem considered is the design of a feedback control action U as a

function of X and yi, in such a way the error Er converges to the identity element of the

group and ei converges to zero with a certain domain of attraction.

The control problem formulated above is solved under the assumption that there are

at least a certain number of measurements and the exosystem state (Xd, Ud) is bounded,

as formalized in the forthcoming assumptions.

Assumption 4.1. There are sufficient independent measurements yi with i = 1, . . . , ν such
that

`(E) :=
1

2

ν∑
i=1

‖ei‖2 =
1

2

ν∑
i=1

‖yri − Eryri ‖2 (4.9)

is locally positive definite in Er ∈ G around the identity matrix Er = I .

Assumption 4.2. There exists a compact setWd ⊂ G× g which is invariant for (4.7).

The last assumption reflects the fact that in a real world scenario some trajectories

will be forbidden even if they are generate by the neutrally stable subsystem ẇ = Sw, in

an analogous way of the illustrative example. For example, on the special Euclidean group
SE(3), due to this assumption, some trajectories such as constant linear trajectories or

helical trajectories are forbidden since they will generate an unbounded exosystem state.

Note that on the special orthogonal group SO(n) this assumption is automatically fulfilled

since, as we have seen in Chapter 2, SO(n) is a compact manifold.

Before moving to the next section we’d like to give a physical intuition of the mea-

surements used in the present work. To this purpose consider two quadrotors as in figure

4.2. One of the quadrotor, the exosystem, is moving along a certain trajectory described
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by (4.7). The second vehicle, the controlled quadrotor, is measuring in its body-fixed

frame its relative position with respect to the exosystem. In the example of figure 4.2

the measurements are taken by a stereo camera that observes some reference features on

the exosystem quadrotor, represented in figure as optical markers. In this case a known

vector ẙi is a reference feature on the exosystem quadrotor in its own frame of reference.

exosystem

-1

system

exosystem

Figure 4.2: Reference vectors and error vectors in SE(3). The body fixed-frames are
represented with dashed lines while the inertial reference frame is represented with
dotted lines.(de Marco et al. (2016a))

The vector Xdẙ1 represents the inertial coordinates of the point ẙ1, while y1 = Eẙ1

are the coordinates of the marker ẙ1 in the body-fixed frame of the controlled quadrotor.

Note that y1 = Eẙ1 is exactly the relative measure of position taken by the onboard

stereo camera.

The control goal then, is to steer the actual quadrotor in order to “follow” the exosys-

tem quadrotor whit an orientation offset and position offset given by Xr.
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4.2.2 Output regulation: Reference trajectory tracking

In this section we are going to present the structure of the regulator that solves the

problem formulated in the previous section considering Un = 0.

Theorem 4.1. (de Marco et al. (2016b)) Consider system (4.6a) with Un = 0, along with
exosystem (4.7). Let the controller be given by the control law

U = AdX−1∆− kp
ν∑
i=1

P
(
ei(y

r
i − ei)>

)
(4.10a)

∆ = mrp(Cδ) (4.10b)

δ̇ = Sδ + C>Qg vrp(β) (4.10c)

β = −kI
ν∑
i=1

P(X−>ei(y
r
i − ei)>X>) (4.10d)

with kp and kI some positive gains. If Assumptions 4.1 and 4.2 hold then the compact set

S = {(X, δ, (Xd, w)) ∈ G× Rm ×Wd

∣∣ X−1Xd = Xr, δ = w}

is locally asymptotically stable for the closed-loop system. Furthermore

(X, δ, (Xd, w)) ∈ S ⇒ ei = 0 ∀i = 1, . . . , ν . (4.11)

Proof. Condition (4.11) directly follows from the definition of the compact set

S and from the definition of the error vectors ei. We proceed by proving that the

set S is locally asymptotically stable. Consider as candidate Lyapunov function the

following function

L(E, w̃) =
1

2

ν∑
i=1

‖ei‖2︸ ︷︷ ︸
L1

+
1

2kI
w̃>w̃︸ ︷︷ ︸
L2

(4.12)

where w̃ = w − δ. And note that by assumption (4.1) L is positive definite around

(E, w̃) = (I, 0) and L(I, 0) = 0. Let’s focus on the time derivative of the first term in

the right hand side of the Lyapunov candidate

L̇1 =
1

2

ν∑
i=1

d

dt
‖yri − Eryri ‖2 = −

ν∑
i=1

e>i Ėry
r
i . (4.13)
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Recalling the expression of Er in (4.8), it turns out that the derivatives along the

solution of (4.6a) and (4.7) are given by

Ėr =
d

dt
(X−1XdX

−1
r )

= (X−1(−Ẋ)X−1)XdX
−1
r +X−1ẊdX

−1
r

= −X−1XUX−1XdX
−1
r +X−1◦UdXdX

−1
r

= −(UX−1 −X−1◦UdXX
−1)XdX

−1
r

= −(U −AdX−1
◦Ud)Er.

(4.14)

Substituting the time-derivative of Er into L̇1 one gets

L̇1 =
ν∑
i=1
e>i (U −AdX−1

◦Ud)Ery
r
i

=
ν∑
i=1
e>i (U −AdX−1∆̃−AdX−1∆)Ery

r
i

(4.15)

where ∆̃ represents a velocity error in the Lie algebra g

∆̃ = ◦Ud −∆ .

The i’th element of the equation above can be rewritten

e>i

(
U −AdX−1∆̃−AdX−1∆

)
Ery

r
i = tr

((
U −AdX−1∆̃−AdX−1∆

)
Ery

r
i e
>
i

)
= tr

((
Ery

r
i e
>
i

)> (
U −AdX−1∆̃−AdX−1∆

)>)
= tr

((
U −AdX−1∆̃−AdX−1∆

)> (
Ery

r
i e
>
i

)>)
.

Introducing the projection P associated to the Lie algebra g (see definition 2.10), one

has

e>i

(
U −AdX−1∆̃−AdX−1∆

)
Ery

r
i = tr

(
(U −AdX−1∆)> P

((
Ery

r
i e
>
i

)>))
− tr

(
∆̃>P

(
X−>

(
Ery

r
i e
>
i

)>
X>
))

.

And substituting the above expression into L̇1, it yields

L̇1 =
ν∑
i=1

tr

(
(U −AdX−1∆)> P

((
Ery

r
i e
>
i

)>))
−

ν∑
i=1

tr

(
∆̃>P

(
X−>

(
Ery

r
i e
>
i

)>
X>
))

.

(4.16)
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Now consider the time derivative of the second term of the Lyapunov candidate

(4.12), one has

L̇2 =
1

kI
w̃> ˙̃w =

1

kI
w̃>(Sw − δ̇)

and, substituting δ̇ from (4.10c) into the above equation, one obtains

1

kI
w̃>(Sw − δ̇) =

1

kI
w̃>Sw̃ − 1

kI
w̃>C>Qg vrp(β)

where Qg is the duplication matrix. Recalling the fact that for a skew-symmetric

matrix B = −B> ∈ Rm×m and x ∈ Rm

x>Bx = −x>Bx = 0

it yields

1

kI
w̃>Sw̃ − 1

kI
w̃>C>Qg vrp(β) = − 1

kI
(Cw̃)>Qg vrp(β)

= − 1

kI
vrp>(∆̃)Qg vrp(β)

= − 1

kI
tr(∆̃>β)

Bearing in mind the expression of L̇2 and substituting β from (4.10d), one has

L̇2 =
ν∑
i=1

tr

(
∆̃>P

(
X−>

(
Ery

r
i e
>
i

)>
X>
))

. (4.17)

Recalling that

L̇ = L̇1 + L̇2

and substituting (4.16) and (4.17) into the equation above and introducing the ex-

pression of U (4.20a), it yields

L̇ =
ν∑
i=1

tr
(

(U −AdX−1∆)> P
((
Ery

r
i e
>
i

)>))
= − tr

((
ν∑
i=1
kpP

(
Ery

r
i e
>
i

)>)( ν∑
i=1

P
(
Ery

r
i e
>
i

)>)>)
= −kp

∣∣∣∣ ν∑
i=1

P
((
Ery

r
i e
>
i

)>)∣∣∣∣2 .
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Since L is positive definite in the error state and since the exosystem state (Xd, w)

lies in a compact set by assumption, it follows that the whole state is globally bounded

and solutions exist for all time.

Let I be the largest invariant set for which the Lyapunov descend condition is

zero. In what follows we are going to apply the LaSalle theorem showing that S is

the largest invariant set in I. To this end, let A0 denote the set

A0 = {(X, δ, (Xd, w)) : ei = 0,∀i = 1, . . . , ν} .

It is easy to check that A0 is closed and S ⊂ A0. Consider a set A1 = {L̇ = 0} − A0

that contains the residual points in the state space for which L̇ = 0, but which aren’t

in the setA0. It is straightforward to see thatA1 is closed and disjoint fromA0. And

note that I ⊂ A0 ∩ A1. Let I0 := I ∩ A0 and note that I0 is invariant since A0 is

disjoint fromA1. Since S ⊂ I0 is an invariant subset of I0 then I0 is not empty. Note

that by assumption `(Er) is positive definite around Er = I and is identically zero

on I0 hence Ėr = 0 on solution in I0, indeed substituting U of equation (4.10) into

the time derivative of Er one obtains

0 = Ėr =
(
AdX−1∆̃

)
.

Hence ∆̃ = 0 on I0 and directly follows that w̃ = 0 on I0. By construction S ⊂ I0

since we have proved that I0 ⊂ S we get I0 = S. Therefore the set S is locally

asymptotically stable and this completes the proof.

Figure 4.3: Block Diagram of the control law proposed in Theorem 4.1.

64



Chapter 4. Output Regulation For Systems On Matrix Lie Groups

The regulator architecture, in the same spirit of the linear Internal model, contains a

copy of the exosystem properly updated by means of error measurements. The control

law proposed (see Figure 4.4) is composed by a stabilizing unit that maps the error ei
onto the tangent spaces TIG and an internal model unit that produces the control action

in steady state.

Note that for the special case in which ◦U̇d = 0, namely reference trajectories with

constant velocities, the proposed control law (4.10) it’s reduced to

U = AdX−1∆− kp
ν∑
i=1

P
(
ei(y

r
i − ei)>

)
(4.18a)

∆ = mrp(δ) (4.18b)

δ̇ = Qg vrp(β) (4.18c)

β = −kI
ν∑
i=1

P(X−>ei(y
r
i − ei)>X>) (4.18d)

since for constant velocities one has that S = 0. Simple algebraic computation leads to

U = AdX−1∆− kp
ν∑
i=1

P
(
ei(y

r
i − ei)>

)
∆̇ = −kI

ν∑
i=1

P(X−>(Ery
r
i e
>
i )>X>)

(4.19)

that is exactly the PI control law for systems on matrix Lie group presented in Theorem

3.1 by Mahony et al. (2015).
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4.2.3 Output regulation with disturbances rejection

Theorem 4.2. Consider system (4.6a), along with exosystem (4.7). Let the controller be given
by the control law

U = AdX−1∆−∆n − kp
ν∑
i=1

P
(
ei(y

r
i − ei)>

)
(4.20a)

∆ = mrp(Cδ) (4.20b)

∆n = mrp(Cnδ) (4.20c)

δ̇ = Sδ + C>Qg vrp(β) (4.20d)

β = −kI
ν∑
i=1

P(X−>ei(y
r
i − ei)>X>) (4.20e)

δ̇n = Snδn + C>n Qg vrp(βn) (4.20f)

βn = knI

ν∑
i=1

P
(
ei(y

r
i − ei)>

)
(4.20g)

with kp, kI and knI some positive gains. If Assumptions 4.1 and 4.2 hold then the compact set

Sn = {(X,wn, δ, δn, (Xd, w)) ∈ G×Rz ×Rm×Rz ×Wd

∣∣ X−1Xd = Xr, δ = w, δn = wn}

is locally asymptotically stable for the closed-loop system. Furthermore

(X,wn, δ, δn, (Xd, w)) ∈ Sn ⇒ ei = 0 ∀i = 1, . . . , ν . (4.21)

Proof. Consider as candidate Lyapunov function the following function

L(E, w̃, w̃n) =
1

2

ν∑
i=1

‖ei‖2︸ ︷︷ ︸
L1

+
1

2kI
w̃>w̃︸ ︷︷ ︸
L2

+
1

2knI
w̃>n w̃n︸ ︷︷ ︸
L3

(4.22)

where w̃ = w− δ and w̃n = wn− δn. It is straightforward to verify that the Lyapunov

candidate is positive definite around (E, w̃, w̃n) = (I, 0, 0).

Proceeding in a similar way of the proof of theorem 4.1, the time derivative of
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the first term in the right hand side of the equation above is given by

L̇1 =
ν∑
i=1

tr
(

(U + ∆n −AdX−1∆)> P
((
Ery

r
i e
>
i

)>))
−

ν∑
i=1

tr
(

∆̃>P
(
X−>

(
Ery

r
i e
>
i

)>
X>
))

+
ν∑
i=1

tr
(

∆̃>nP
((
Ery

r
i e
>
i

)>))
.

(4.23)

Note that L2 doesn’t depend on the disturbances Un, it follows that its time deriva-

tive is the same obtained in the proof of theorem 4.1. The time derivative of L3 is

given by

L̇3 =
1

knI
w̃>n ˙̃wn =

1

knI
w̃>n (Snwn − δ̇n)

and, substituting δ̇n from (4.20f) into the above equation, one obtains

1

knI
w̃>n (Snwn − δ̇n) =

1

kI
w̃>n Snw̃n −

1

kI
w̃>nC

>
n Qg vrp(βn)

= − 1

knI
(Cnw̃n)>Qg vrp(βn) = − 1

knI
tr(∆̃>n βn).

Introducing the expression of U , β and βn from (4.20) into L̇ it yields

L̇ = −kp

∣∣∣∣∣
ν∑
i=1

P
((

Ery
r
i e
>
i

)>)∣∣∣∣∣
2

.

From this, using similar LaSalle arguments exploited in Theorem 4.1, it is possible

to conclude that the set Sn is locally asymptotically stable. And this concludes the

proof.

Figure 4.4: Block Diagram of the control law proposed in Theorem 4.2.
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The control laws proposed in this chapter render the sets S,Sn locally asymptotically

stable. Exploiting the particular structure of the Lie group considered it is possible to

extend the local properties of the control law (4.10) to almost global ones. In the next

two chapters we are going to study the stability properties of the control architecture

(4.10) for the particular case of systems posed on SO(3) and SE(3).
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“Mathematics is a game played according to certain

simple rules with meaningless marks on paper. ”

David Hilbert

5
Output Regulation for Systems on

SO(3)

In this chapter we provide a comprehensive stability analysis for the special case of

system posed on the special orthogonal group SO(3), extending the local properties

of the control law proposed in the previous chapter to almost global ones. Going

further we present the particular case of a rigid body modeled as a dynamic system

whose control input is a torque Γ ∈ R3 instead of a velocity input. In order to take into

account also the dynamic of the system a backstepping procedure is developed. The

content of this chapter is based on de Marco et al. (2016b).

Specializing the notation of the previous chapter and considering the Euler-Lagrange

equations of motion of a rigid body derived in Chapter 3 yields to

Ṙ = RΩ× (5.1a)

JΩ̇ = −Ω ∧ JΩ + Γext + Γ. (5.1b)

Note that in this context the angular velocity Ω is a state component of the system. In
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this framework the exosystem is described by

Ṙd = ◦Ωd×Rd
◦Ωd× = (Cw)×

ẇ = Sw

(5.2)

where Rd represents the desired orientation (Rd = Xd ∈ SO(3)) and ◦Ωd is the desired

angular velocity expressed in the inertial reference frame (◦Ωd× = ◦Ud,
◦Ωd = vrp(◦Ud)).

In order to deal with the new control input Γ we first design the controller of the

kinematic system using Ω as virtual input, then taking advantages of backstepping tech-

niques we present a regulator design for fully actuated mechanical systems on SO(3).

Before moving into the next section, we specialize Assumption 4.1 in the specific case

of systems posed on SO(3) as follow

Assumption 5.1. There are at least two non collinear directions yri available for measure-
ments such that the symmetric matrix

Y =
kp
2

ν∑
i=1

yri y
r>
i

has three distinct eigenvalues.

Note that under the assumption above, the natural error E could be algebraically

reconstructed with algorithms such as the TRIAD (Black (1964)). Although this algo-

rithm is simple, in presence of noise in the measurements is not guaranteed that the

reconstructed matrix is an element of the special orthogonal group. There are more so-

phisticated algorithm to cope with noise in the measurements, however they introduce

non negligible over-head for the computations. Thus, in the present chapter we are not

going to reconstruct algebraically the error E.

5.1 Kinematic Output Regulation on SO(3)

The control law (4.10), for the particular case of systems posed on SO(3), can be rewrit-

ten (denoting Re := Er, Ω := Ωc) as

Ωc
× = AdR>∆× +

kp
2

ν∑
i=1

(ei ∧ yri )× (5.3a)

∆× = (Cδ)× (5.3b)

δ̇ = Sδ + C>Qso(3)β (5.3c)
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β =
kI
2
R

ν∑
i=1

(ei ∧ yri ) . (5.3d)

The forthcoming proposition extends the local properties of Theorem 4.1 to almost

global ones.

Proposition 5.1. (de Marco et al. (2016b)) Consider the system (5.1a) along with exosystem
(5.2) and let the controller be given by (5.3). Let Assumption 5.1 holds. Then the set

S = {(R, δ, (Rd, w)) ∈ SO(3)× Rm × (SO(3)× Rm) : R>Rd = Xr, δ = w} (5.4)

is almost globally asymptotically and locally exponentially stable for the closed-loop system.

Note that almost global stability is the best we can get on SO(3) with a smooth con-

trol action due to the well-known topological obstructions (see S. P. Bath (2000)) on the

special orthogonal group SO(3).

Proof. In order to prove that the set S is almost globally asymptotically and lo-

cally exponentially stable for the closed-loop system we proceed similarly to the

kinematic tracking problem in Chapter 2 (subsection 2.2.9).

Starting from the fact that Theorem 4.1 ensures the local attractiveness of the set

S we need to prove the following three facts:

1. The dynamic of the group error for the closed-loop system has only four iso-

lated equilibrium points (Re,∆) = (R∗ej , 0), j = 1, . . . , 4.

2. The equilibrium point (R∗e1,∆) = (I3, 0) is locally exponentially stable.

3. The three equilibria with (R∗ej ,∆) 6= (I3, 0), j = 2, . . . , 4 are unstable.

We proceed by showing that there are only four isolated equilibria for the closed-

loop system. To this purpose consider the error dynamic for the closed-loop system

Ṙe =

(
AdR>∆̃× +

kp
2

ν∑
i=1

(Rey
r
i ∧ yri )×

)
Re .

As we have seen from Theorem 4.1, Ṙe = 0 implies ∆̃ = 0, which in turn implies

0 =
kp
2

ν∑
i=1

(R∗ey
r
i ∧ yri )×

= R∗e
kp
2

ν∑
i=1
yri y

r>
i −

kp
2

ν∑
i=1
yri y

r>
i R∗

>
e = R∗eY − Y R∗

>
e .

(5.5)
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Proceeding like in the proof of the tracking example in Chapter 2 one has that

R∗eY = Y R∗
>
e implies that R∗e is a symmetric matrix. As consequence there are

only four possible values of R∗e that satisfy eq. (5.5), they are
R∗e1 = I3

R∗e2 = u1u
>
1 − u2u

>
2 − u3u

>
3

R∗e3 = −u1u
>
1 + u2u

>
2 − u3u

>
3

R∗e4 = −u1u
>
1 − u2u

>
2 + u3u

>
3

where u1, u2, u3 are the eigenvectors of the matrix Y associated to the eigenvalues

λ1, λ2, λ3, with

0 ≤ λ1 < λ2 < λ3

and this concludes the proof of item 1.

We continue the analysis showing that the set S is locally exponentially stable

(item 2).

The error dynamic for the closed-loop system can be rewritten as

Ṙe =

(
AdR>∆̃× +

kp
2

ν∑
i=1

(Rey
r
i ∧ yri )×

)
Re

=

(
ReR

>
d ∆̃ +

kp
2

ν∑
i=1

(Rey
r
i ∧ yri )

)
×
Re

In order to simplify the algebra and without loss of generality consider Xr = I3, and

C = I3. The dynamics of the velocity error are given by

˙̃∆× =

(
S∆̃ + kI

ν∑
i=1

RdR
>
e (Rey

r
i ∧ yri )

)
×

. (5.6)

and denoting

∆̃ = R∆̃

Ṙ = −RS
(5.7)

where R ∈ SO(3), one gets

Ṙe =

(
ReR

>
d R
>∆̃ +

kp
2

ν∑
i=1

(Rey
r
i ∧ yri )

)
×
Re

˙̃∆ = kI
ν∑
i=1
RRdR

>
e (Rey

r
i ∧ yri ) .

(5.8)

To prove the local exponential stability of the equilibrium (R∗e1, 0) of system (5.8), it
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suffices to prove that the origin of the linearized system is uniformly asymptotically

stable. Thus, we proceed by linearizing system (5.8). To this purpose consider a

first order approximation Re = I + x× and ∆̃ = θ, with x, θ ∈ R3, of equation (5.8)

around the equilibrium point (R∗e1, 0). Then the first order approximation of (5.8) is

given by

[
ẋ

θ̇

]
=


kp
2

ν∑
i=1
yi×yi× R>d R

>

−kIRRd
ν∑
i=1
yi×y

>
i× 0


[
x

θ

]
. (5.9)

Note that the linear system obtained is a time-varying system. From this, the proof

of the exponential stability of the linear time-varying (LTV) system follows from

a direct application of Theorem 1 in Loria and Panteley (2002), which establishes

sufficient conditions for the uniform exponential stability of the origin of a linear

time-varying system having the following standard form[
ẋ

θ̇

]
=

[
A(t) B(t)>

−C(t) 0

][
x

θ

]
. (5.10)

Note that (5.9) is in standard form with

A(t) =
kp
2

ν∑
i=1
yi×yi×, B(t) = RRd,

C(t) = kIRRd
ν∑
i=1
yi×y

>
i×.

Now we verify the three assumption of Theorem 1 in Loria and Panteley (2002).

First, the first assumption of this theorem is satisfied since from Theorem 4.1 one

has that |B(t)| and
∣∣∣∣∂B(t)

∂t

∣∣∣∣ remain bounded for all time. The second assumption of

this theorem is also satisfied since the symmetric matrices P = kI
∑ν

i=1 yi×y
>
i× and

Q = k−1
I kpP2 satisfying the conditions PB> = C> and −Q = A>P + PA + Ṗ are

constant and positive definite. Finally, we need to prove that the term B is uniformly

persistently exciting. It is straightforward to verify that B is uniformly persistently

exciting, indeed for any positive number ε there exists T > 0 such that∫ t+T

t
B(τ)B(τ)>dτ =

∫ t+T

t
RRdR

>
d R
>dτ = TI3 > εI3

for all t ≥ 0. Thus, all conditions of Theorem 1 in Loria and Panteley (2002) are

satisfied, which in turn implies that the origin of (5.9) is uniformly exponentially

stable and this concludes the proof of Item 2.
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Let us prove Item 3, namely the instability of three equilibria with (R∗ej ,∆) 6=
(I3, 0), j = 2, . . . , 4. To this purpose we can proceed with similar arguments of the

instability proof of the tracking example. The proof is based on a direct application

of the Chetaev’s Theorem. To this end consider the first order approximation of

(5.8), Re = R∗ej(I3 +x×), ∆ = θ with x, y ∈ R3 around an equilibrium point (R∗ej , 0).

Neglecting high order terms one has

ẋj = Υjxj +R>d R
>θ

θ̇j = 2
kI
kp
RRdΥjxj

(5.11)

where Υj :=
kp
2

ν∑
i=1
R∗ejyi×R

∗
ejyi×, with j = 2, . . . , 4. Now, consider the continuously

differentiable functions

Vj(xj , θj) =
kI
2kp

x>j Υ>j xj −
1

4
|θj |2 , j = 2, . . . , 4

and for each index j = 2, . . . , 4 and for an arbitrary small radius r > 0 define

Uj,r := {(xj , θj)> | Vj(xj , θj) > 0, |xj , θj | < r}.

In order to ensure that the three equilibria with (R∗ej ,∆) 6= (I3, 0), j = 2, . . . , 4 are

unstable we need to prove that the set Uj,r is non-empty for each index j = 2, . . . , 4

and show that the matrix Υj is not singular and at least one of its eigenvalues is

positive. To this end consider the characteristic polynomial of the matrix Υj for

each j = 2, . . . , 4

det(Υj − λ̄I3) = det(Y R∗ej − kp
ν∑
i=1
y>i R

∗
ejyiI3 − λ̄I3) (5.12)

and decomposing the symmetric matrices Y,R∗ej as Y = RqλqR
>
q andR∗ej = RqR̄jR

>
q

with λq = diag(λ1, λ2, λ3) and

R̄2 = diag(1,−1,−1), R̄3 = diag(−1, 1,−1)

R̄4 = diag(−1,−1, 1).
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one has

det(Υj − λ̄I3) = det(RqλqR
>
q RqR̄jR

>
q − tr

(
λqR̄j

)
I3 − λ̄I3)

= det(λqR̄j − tr
(
λqR̄j

)
I3 − λ̄I3)

= det(λqR̄j − tr
(
λqR̄j

)
I3 − λ̄I3).

(5.13)

Hence, the eigenvalues of Υj for j = 2, 3, 4 are

eig(Υ2) = [λ2 + λ3;λ3 − λ1;λ2 − λ1]>

eig(Υ3) = [λ3 − λ2;λ3 + λ1;λ1 − λ2]>

eig(Υ4) = [λ2 − λ3;λ1 − λ3;λ1 + λ2]>.

From this, considering Assumption 5.1 it is possible to conclude that the matrix Υj

is not singular and at least one of its eigenvalues is positive for each j = 2, 3, 4, which

in turn implies that the set Uj,r is non empty.

It remains to show that the derivatives with respect to time of Vj(xj , θj) are al-

ways positive. Consider the time-derivative of Vj(xj , θj), one has

V̇j(xj , θj) =
kI
kp
x>j Υ>j Υjxj .

and due to the fact that the matrix Υj is not singular for each j = 2, 3, 4 one verifies

that Υ>j Υj > 0, with j = 2, . . . , 4, which in turn implies that V̇j is always positive

for each (x, θ) ∈ Uj,r. Since all conditions of the Chetaev’s Theorem are satisfied

it follows that the origin of (5.11) is unstable for j = 2, 3, 4 and this completes the

proof.

5.2 Dynamic Output Regulation for fully actuated systems on

SO(3)

In order to take into account the dynamics of the system and consider the torques Γ as

control input starting with the virtual input Ωc in (5.3a), a backstepping procedure is

developed. Define a new velocity error

Ω̃ = Ω− Ωc

that is the velocity error between the real angular velocity of the rigid body and the vir-

tual velocity Ωc. By backstepping the new velocity error Ω̃ it turns out that the following

control law
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Γ = Ω×JΩ− Γext − JΩ×R
>∆ + JR>∆̇ + 2

ν∑
i=1

(ei ∧ yri )

+ Jkp

ν∑
i=1

yri× (yri − ei)× (Ω̃ + α)− kDΩ̃

(5.14a)

Ωc
× = AdR>∆× +

kp
2

ν∑
i=1

(ei ∧ yri )× (5.14b)

∆× = (Cδ)× (5.14c)

δ̇ = Sδ + C>Qso(3)β (5.14d)

β =
kI
2

(
ν∑
i=1

(
kpR (yri − ei)× y

r
i×J

>Ω̃ +R (ei ∧ yri )
))

(5.14e)

with α = kp
∑ν

i=1 0.5 (ei ∧ yri ) and kp, kI , kD some positive arbitrary gain, solves the

dynamic control problem as stated in the forthcoming proposition.

Proposition 5.2. (de Marco et al. (2016b)) Consider system (5.1a), (5.1b) along with ex-
osystem (5.2) and let the controller be given by (5.14). Let Assumption 5.1 holds.Then the
set

Sbs = {((R,Rd), (δ, w), (Ω×,
◦Ωd×)) :∈ SO(3)2×R2m×so(3)2 : R>Rd = Xr, δ = w ,Ω = ◦Ωd}

is almost globally asymptotically stable and locally exponentially stable for the closed-loop
system.

Proof. Consider the following Lyapunov candidate

Lbs(E, w̃, Ω̃) =
1

2

ν∑
i=1

‖ei‖2 +
1

2kI
w̃>w̃ +

1

2
Ω̃>JΩ̃ (5.15)

that under Assumption 5.1 is definite positive respect to the set Sbs andLbs(I, 0, 0) =

0. Differentiating the Lyapunov function with respect to time and bearing in mind
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the expression of Ωc in (5.14b), one obtains

L̇bs = −kp
4

∣∣∣∣ ν∑
i=1

(Rey
r
i ∧ yri )×

∣∣∣∣2 +
1

kI
w̃>
(
Sw − δ̇

)
+

1

2
tr

(
Ω̃>×

ν∑
i=1

(Rey
r
i ∧ yri )×

)
−1

2
tr

(
∆̃>×AdR

ν∑
i=1

(Rey
r
i ∧ yri )×

)
+Ω̃>

(
−Ω×JΩ + Γext + Γ− JΩ̇c

)
.

And differentiating Ωc along the solution of the closed-loop system it yields

Ω̇c = −Ω×R
>∆ +R>∆̇ +

kp
2

ν∑
i=1
yri× (Rey

r
i )×

(
Ω̃ + α

)
−kp

2

ν∑
i=1
yri× (Rey

r
i )×R

>∆̃.

Substituting the expression of Ω̇c in the Lyapunov function and recalling the fact

that, for any two vectors A and B, tr(A>×B×) = 2A>B, it yields

L̇bs = −kp
4

ν∑
i=1

∣∣(Reyri ∧ yri )×∣∣2 +
1

kI
w̃>
(
Sw − δ̇

)
+Ω̃>

(
2
ν∑
i=1

(Rey
r
i ∧ yri )− Ω×JΩ + Γext + Γ + JΩ×R

>∆− JR>∆̇− Jkp
ν∑
i=1
yri× (Rey

r
i )×

(
Ω̃ + α

))

+∆̃>

(
kp

ν∑
i=1
R (Rey

r
i )× y

r
i×J

>Ω̃−R
ν∑
i=1

(Rey
r
i ∧ yri )

)
.

Introducing the expression of Γ (5.14a) and δ̇ (5.14d) in the above expression, one

has

L̇bs = −kp
4

ν∑
i=1

∣∣(Reyri ∧ yri )×∣∣2 − kDΩ̃2

+∆̃>

(
kp

ν∑
i=1
R (Rey

r
i )× y

r
i×J

>Ω̃−R
ν∑
i=1

(Rey
r
i ∧ yri )−

2

kI
β

)
.

Finally substituting β from (5.14e) in the equation above one obtains

L̇bs = −kp
4

ν∑
i=1

∣∣(Reyri ∧ yri )×∣∣2 − kDΩ̃2. (5.16)

It follows that the compact set Sbs is stable in the sense of Lyapunov and that Ω̃

converges to zero. The proof can be completed using similar arguments to Theorem

4.1.
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5.3 Practical Output Regulation for systems on SO(3)

In this section we briefly discuss on the robustness of control law (5.14) with respect

to uncertainties in the parameters. We first show that even in the simpler case of Sec-

tion 4.1, the backstepping procedure introduces non robust feed-forward terms. To this

purpose consider system (4.1a) completed with the dynamic equation of motion

Ẋ = U (5.17a)

JU̇ = Γ (5.17b)

X ∈ R3 and U ∈ R3 the state of the system, Γ ∈ R3 the control input and J = J> >

0 ∈ R3×3. We consider an exosystem of the form

Ẋd = Cw

ẇ = Sw
(5.18)

where Xd ∈ R3, w ∈ Rn, C ∈ R3×n and S ∈ Rn×n with S = −S> and the pair (C, S)

observable.

Define Ũ as

Ũ = U − U c.

Consider the following control law

Γ = (I + k2
pJ − JCC>)e− (kdI + kpJ + kpJCC

>J>)Ũ − JCSδ (5.19a)

U c = kpe+ Cδ (5.19b)

δ̇ = Sδ + kIC
>e− kpC>J>Ũ (5.19c)

with kD a positive arbitrary gain. By backstepping Ũ it turns out that control law (5.19)

solves the stabilization problem as stated in the following proposition.

Proposition 5.3. Consider system (5.17a), (5.17b) along with exosystem (5.18) and let the
controller be given by (5.19). Then the set

S1 = {((X,Xd), (δ, w), (U,U c)) :∈ (R3×R3)×R2n×(R3×R3) : X = Xd, δ = w,U = U c}

is globally asymptotically stable for the closed-loop system.

Proof. Consider the following Lyapunov function

Lbs(e, w̃, Ũ) =
1

2
‖e‖2 +

1

2kI
‖w̃‖2 +

1

2
Ũ>JŨ
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Differentiating Lbs along the solutions of the closed-loop system one has

L̇bs = e>(Cw − Ũ − U c) +
1

kI
w̃>(Sw − δ̇) + Ũ>(Γ− JU̇ c)

and bearing in mind the expression of U c and substituting Γ, δ̇ from (5.20a), (5.20c)

it yields

L̇bs = −kpe>e− kdŨ>Ũ .

From this using classical LaSalle arguments, it is possible to conclude that the set S1

is globally asymptotically stable. And this completes the proof.

We show now that the control law obtained in (5.19) is not robust in the Francis

and Wonham (1976) sense due to feed-forward terms used in the design of the control

law. To this purpose we assume that the matrix J is uncertain and ranging over a given

compact sect P . We denote by J0 its nominal value and with J its real one. Define

J̃ = J − J0

and consider the following Lyapunov function

Lbs(e, w̃, Ũ) =
1

2
‖e‖2 +

1

2kI
‖w̃‖2 +

1

2
Ũ>JŨ .

Differentiating Lbs along the solutions of the closed-loop system one has

L̇bs = e>(Cw − Ũ − U c) +
1

kI
w̃>(Sw − δ̇) + Ũ>(Γ− JU̇ c)

and choosing

Γ = (I + k2
pJ0 − J0CC

>)e− (kdI + kpJ0 + kpJ0CC
>J>0 )Ũ − J0CSδ (5.20a)

U c = kpe+ Cδ (5.20b)

δ̇ = Sδ + kIC
>e− kpC>J>0 Ũ (5.20c)

one obtains

L̇bs = −kpe>e−kdŨ>Ũ+Ũ>J̃(kpI+CC>J0)Ũ+Ũ>J̃(k2
pI−CC>)e−Ũ J̃kpw̃−Ũ>J̃CSδ.

Note that the last term in the right-hand side of the equation above depends on the state

of the internal model, and this is one of the major issues related to the robustness (in

the Wonham sense) of the proposed control law. Since the system considered is linear, it

is straightforward to verify that the control law (5.20) with a suitable choice of kp, kd is
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practically robust with respect to parameter uncertainties.

Now we show that also for the SO(3) case the backstepping procedure prevents the

robustness (in the Wonham sense) of control law (5.14). To this end consider the Lya-

punov candidate function in (5.15)

Lbs(E, w̃, Ω̃) =
1

2

ν∑
i=1

‖ei‖2 +
1

2kI
w̃>w̃ +

1

2
Ω̃>JΩ̃.

Differentiating Lbs along the solutions of the closed-loop system and recalling the ex-

pression of Γ, δ̇ and β in (5.14), it yields

L̇bs = −kp
4

∣∣∣∣ ν∑
i=1

(Rey
r
i ∧ yri )×

∣∣∣∣2 − kDΩ̃2

+Ω̃>
(
−Ω×J̃Ω + J̃Ω×R

>∆− J̃R>∆̇− J̃kp
ν∑
i=1
yri× (yri − ei)× (Ω̃ + α)

)
+∆̃>kp

ν∑
i=1
R (Rey

r
i )× y

r
i×J̃

>Ω̃.

That is exactly what we have found for the linear case. However, it is possible to verify

that the control law (5.14) is robust respect to small variation in the inertia. Indeed

local asymptotic stability implies local ISS, for suitable restriction on inputs and initial

condition (see Lemma I.1 Sontag and Wang (1996)). This result is stated for system

defined on the euclidean space, however it can be adapted to systems on manifold due

its local nature.

It would be nice to prove an ISS property without restriction on inputs and initial

condition for the closed-loop system obtained by backstepping, however it is well known

that, due to topological obstruction (S. P. Bath (2000)), smooth continuous state feedback

on smooth manifold (non homeomorfic to Rn) will always lead to trajectories that do not

converge to the origin. As consequence on non-Euclidean spaces global stabilization

with a smooth vector field is not possible. Due to this fact the almost global stability

concept was introduced. In this framework an equilibrium is said to be "Almost Glob-

ally Stable" if all trajectories converge asymptotically to the equilibrium point, except

for a set of zero Lebesque measure. Recently Rantzer (2001) has recognized that the

Lyapunov second method admits a dual method, based on density function, that nat-

urally leads to almost global convergence results. Since global stability is a necessary

condition for ISS, the new concept of Almost global Input-to-State Stability was intro-

duced by Angeli (2004). In this work the combination of Lyapunov method with density

function is suggested in order to provide almost ISS. Indeed almost ISS is obtained, as

sketched by means of examples (Angeli (2004)), as the combination of local ISS (related

to Lyapunov method, ultimate bound) with the concept of Weakly almost ISS (related to
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the density function method). The AISS property of the proposed control law is still an

open problem and can be considered as future direction of work.
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“Mathematics is the cheapest science. Unlike physics

or chemistry, it does not require any expensive equip-

ment. All one needs for mathematics is a pencil and

paper.”

George Pólya

6
Output Regulation for Systems on

SE(3)

In this Chapter we are going to study the stability properties of the control archi-

tecture proposed in (4.1) for the special case of systems posed on SE(3). Due to

the fact that stabilizing a point in SE(3) implies to stabilize a point on SO(3), and

due to the topological obstructions discussed in the previous Chapter, the best one can

gets with a smooth control action on SE(3) is almost global stability of the origin of the

closed-loop system. Taking advantages of the specific structure of the special Euclidean
group we extend the local results of (4.1) to almost global ones. Going further we also

present a regulator design, based on backstepping techniques, for fully actuated dynam-

ical mechanical systems whose kinematic space is defined on the special Euclidean group
SE(3). As done in the previous Chapter we specialize Assumption 4.1 for the specific

case of systems posed on SE(3).

Assumption 6.1. There are at least three linearly independent measurement yi (i = 1, . . . , ν; ν ≥
3) and the matrix

Y := kp

ν∑
i=1

yr
i
yr
>

i
− kp

ν

ν∑
i=1

yr
i

ν∑
i=1

yr
>

i

has three distinct eigenvalues.
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Where the vector y ∈ R3 denotes the first three components of the vector y, i.e.
y =

[
y 1

]>.

It is possible to verify that three is the minimum number of independent measure-

ments such that the cost `(E) in (4.9) is definite positive around the origin of the group

SE(3). The second part of Assumption 6.1 on the eigenvalues of the matrix Y is technical

and needed for the stability analysis.

The present chapter is based on de Marco et al. (2016a).

6.1 Kinematic Output Regulation on SE(3)

By taking advantages of the group structure of the special Euclidean group, it is possible

to extend the local results of the control law proposed in (4.1) to almost global results as

stated in the following proposition.

Proposition 6.1. (de Marco et al. (2016a)) Consider the system (4.6a) along with exosystem
(4.7) and let the controller be given by (4.10). Let assumptions 4.2 and 6.1 hold. Then the
compact set

S = {(X, δ, (Xd, w)) ∈ SE(3) × Rm × Wd : X−1Xd = Xr, δ = w}

is almost globally asymptotically stable and locally exponentially stable for the closed-loop
system.

For the sake of analysis purpose, let us introduce an equivalent system to the dynam-

ics of the group error Er.

Recalling the dynamics of the error (4.14) for the closed loop system

Ėr =

(
AdX−1∆̃ + kp

ν∑
i=1

P
(
eiy

r>
i E>r

))
Er (6.1)

and decomposing the error and the velocity error in

Er =

[
Re pe

0 1

]
, ∆̃ =

[
∆̃Ω
× ∆̃v

0 0

]

with Re ∈ SO(3), Ω̃× ∈ so(3), pe ∈ R3 and ṽ ∈ R3 one obtains
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Ėr =

[
R> −R>p
0> 1

][
∆̃Ω
× ∆̃v

0 0

][
R p

0 1

]
Er + P

([
I3 −Re −pe

0 0

][
Ξ µ

µ> kpν

][
R>e 0

p>e 1

])
Er

=

[
R>∆̃Ω

×R R>∆̃Ω
×p+R>∆̃v

0> 0

]
Er +

[
Pa(ΞRe + µp>e ) (I3 −Re)µ− kpνpe

0 0

]
Er

=

[
B∆̃Ω
× + Ωe×

B∆̃v + ve

0 0

]
Er

with
µ := kp

∑ν
i=1 yi

Ξ := kp
∑ν

i=1 yiy
>
i

and
B∆̃Ω
× := R>∆̃Ω

×R

Ωe× := 0.5
(
ΞR>e −ReΞ + µp>e − peµ>

)
B∆̃v := R>∆̃Ω

×p+R>∆̃v

ve := (I3 −Re)µ− kpνpe .

System (6.1) is equivalent to the following system

Ṙe = (B∆̃Ω
× + Ωe×)Re

ṗe = (B∆̃Ω
× + Ωe×)pe + B∆̃v + ve .

(6.2)

As consequence of Theorem 4.1, ∆̃Ω
× , ∆̃v , Ωe× and ve converge to zero which implies

that the equilibrium points of (6.2) are characterized by

p∗e = (kpν)−1(I3 −R∗e)µ (6.3)

Y R∗
>
e = R∗eY. (6.4)

Proof. The proof is similar to the SO(3) case, in what follows we proceed by step

showing that:

1. System (6.2) has only four isolated equilibrium points (Re, pe, ∆̃
ω, ∆̃v) = (R∗ej , p

∗
ej , 0, 0),

j = 1, . . . , 4. The trajectories of the error (Re(t), pe(t), ∆̃
ω(t), ∆̃v(t)) converge

to one of these equilibria for any initial condition (Re(0), pe(0), ∆̃ω(0), ∆̃v(0)).

2. The equilibrium point (Re, pe, ∆̃
ω, ∆̃v) = (I3, 0, 0, 0) is locally exponentially

stable.
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3. The equilibria (R∗ej , p
∗
ej , 0, 0) with (R∗ej , p

∗
ej) 6= (I3, 0) are unstable.

We prove now that the error system has only four isolated equilibrium points. From

(6.4) and from Assumption 6.1, using the same arguments of item 1 in Proposition

5.1, it is possible to show that there are only four possible equilibria for the attitude

error Re 
R∗e1 = I3

R∗e2 = u1u
>
1 − u2u

>
2 − u3u

>
3

R∗e3 = −u1u
>
1 + u2u

>
2 − u3u

>
3

R∗e4 = −u1u
>
1 − u2u

>
2 + u3u

>
3

where u1, u2, u3 are the eigenvectors of Y associated to the eigenvalues λ1, λ2, λ3,

with

0 ≤ λ1 < λ2 < λ3 .

From this, one verifies that the corresponding equilibrium points for the position

error p∗e in (6.3) are uniquely defined for Re = R∗ei. Thus, the convergence of the

trajectories for the closed-loop systems to one of the four equilibria is a direct con-

sequence of the Lyapunov analysis of Theorem 4.1, and this concludes the proof of

the first item.

We proceed by showing that the set S is locally exponentially stable. To this end

we first algebraically manipulate the error system in order to split the error dynam-

ics in term of attitude and position errors. Then, following the same approach for

the SO(3) case we linearize the error system around its origin. In order to simplify

the algebra and without loss of generality consider Xr = I4 and C = I6. Using the

following change of variable

p̄e = −R>e pe

one has
˙̄pe = −Ṙ>e pe −R>e ṗe

= −R>e B∆̃v −R>e ve .
(6.5)

The linear velocity estimation error in the body-fixed frame is given by

B∆̃v = R>∆̃Ω
×p+R>∆̃v

= ReR
>
d ∆̃Ω
×p+ReR

>
d ∆̃v

= −ReR>d ∆̃Ω
×Rpe +ReR

>
d ∆̃v +ReR

>
d ∆̃Ω
×pd

= Re

[
R>d ∆̃Ω

×Rdp̄e +R>d ∆̃v +R>d ∆̃Ω
×pd

]
.

(6.6)
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Substituting the expression of the linear velocity estimation error in the body-fixed

frame (6.6) into the time-derivative of the position error (6.5) it yields

˙̄pe = p̄e×R
>
d ∆̃Ω +R>d pd×∆̃Ω −R>d ∆̃v − kp

ν∑
i=1

(R>e − I)y
i
− kpνp̄e . (6.7)

And bearing in mind the dynamic of the velocity estimation error for the closed loop

system and recalling that Qse(3) = diag(2, 2, 2, 1, 1, 1) one obtains

vrp
(

˙̃∆
)

= S vrp
(

∆̃
)

+
kI
kp

[
2vex

[
(RΩe)× + Pa(Rvep>)

]
Rve

]
. (6.8)

Denoting

vrp
(

∆̃
)

= R vrp
(

∆̃
)

Ṙ = −RS
(6.9)

where R ∈ SO(6). From (6.8) one deduces

vrp
(

˙̃∆
)

=
kI
kp
R

[
2vex

[
(RΩe)× + Pa(Rvep>)

]
Rve

]

=
kI
kp
R

[
2RdR

>
e Ωe + (pd +Rdp̄e) ∧RdR>e ve

RdR
>
e ve

]
.

(6.10)

Then, the error dynamic for the closed loop system considering the change of vari-

able vrp
(

∆̃
)

= R vrp
(

∆̃
)

can be written as follow

Ṙe =

[[
ReR

>
d 0

]
R> vrp

(
∆̃
)

+
kp
2

ν∑
i=1

(
Reyi ∧ yi

)
+
kp
2

ν∑
i=1

(
y
i
∧Rep̄e

)]
×
Re

(6.11)

˙̄pe =
[
p̄e×R

>
d +R>d pd× −R>d

]
R> vrp

(
∆̃
)
− kp

ν∑
i=1

(R>e − I)y
i
− kpνp̄e. (6.12)

We are ready to linearize the system around the equilibrium point (R∗ej , p̄
∗
ej , 0).

To this purpose consider the following first order approximationRe = R∗ej(I3+x1×),

p̄e = x2 + p̄∗ej and vrp(∆) = θ, with x1, x2 ∈ R3 and θ ∈ R6. Denoting by x = [x1, x2]>

87



6.1. Kinematic Output Regulation on SE(3)

and neglecting high order terms it yields[
ẋ

θ̇

]
=

[
−kpFAj BjR

>

−kIRB>j Aj 0

][
x

θ

]
. (6.13)

where F = diag(0.5, 0.5, 0.5, 1, 1, 1) and

Aj =


ν∑
i=1

(R∗ejyi)×(y
i
− p̄∗ej)>× −

ν∑
i=1

(R∗ejyi)×
ν∑
i=1

(R∗ejyi)× νI3

,
Bj =

[
R>d 03×3

p∗ej×R
>
d +R>d pd× −R>d

]
.

We proceed by proving the exponential stability of the origin of linear time-varying

(LTV) system for j = 1, (Re, pe, ∆̃
ω, ∆̃v) = (I3, 0, 0, 0). The proof is analogous to the

SO(3) case for a system having the standard form in (5.10).

The first assumption of Theorem 1 in Loria and Panteley (2002) is satisfied since

by Assumption 4.2 |B| and
∣∣∂B
∂t

∣∣ remain bounded for all time t. Assumption 2 of this

Theorem is also satisfied since the matrix P = kIA1 and Q = 2kpkIA1FA1 satisfy

the required relations PB> = C> and −Q = A>P + PA + Ṗ and is easy to verify

that are symmetric and positive definite. Indeed consider the Schur complement Sh

of νI3 in A1 one obtains

Sh =
ν∑
i=1
y
i×y
>
i× −

1

ν

ν∑
i=1
y
i×

ν∑
i=1
y>
i×

=
1

ν

ν∑
i=1

ν∑
κ<i

(y
i×− yκ×)(y

i×− yκ×)>.
(6.14)

From the assumption on the measurements (Assumption 6.1) on verifies that Sh is

positive definite, since νI3 is positive definite it follows that the whole matrix A1 is

positive definite, which in turn implies that P is positive definite. Consider the Q
matrix one has

z>Qz = 2kpkIz
>A1FA1z = 2kpkI(A1z)

>F (A1z) > 0

for ∀z ∈ R6. Due to the fact that pd is bounded and B1R
> is not singular, one has

that the term B(t)B(t)> is positive definite. From this, one can verifies that the term

B(t) is persistently exciting. It is seen that all condition of Loria and Panteley (2002)

are fulfilled hence the set S is locally exponentially stable, and this concludes the

proof of item 2.
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In what follows we proceed by proving that the equilibria (R∗ej , p̄
∗
ej , 0) with j =

2, . . . , 4 are unstable. To this purpose consider the smooth functions

Vj(x, θ) = −kI
2
x>A>j x−

1

2
θ>θ, with j = 2, . . . , 4.

For an arbitrarily small radius r > 0 define the set

Uj,r := {(x, θ)> | Vj(x, θ) > 0, |x, θ| < r}, j = 2, . . . , 4.

We will show afterward that the set Uj,r is nonempty for each j ∈ {2, 3, 4}. The

derivatives of Vj along the trajectories of the system are given by

V̇j(x, θ) = kpkI x
>A>j FAjx.

The demonstration concludes showing that the matrixAj is not singular ∀j ∈ {2, 3, 4},
at least one of its eigenvalues is negative and that the derivatives of the functions Vj
are positive in Uj,r for all j ∈ {2, 3, 4}.

Consider the first block of the block matrix Aj one has

ν∑
i=1

(R∗ejyi)×(y
i
− p̄∗ej)>× =

ν∑
i=1
R∗ejyi×R

∗
ej

(
y
i× −

1

ν

ν∑
i=1
y
i× +

1

ν
R∗ej

ν∑
i=1
y
i×R

∗
ej

)>
= −1

ν

ν∑
i=1

ν∑
κ<i

R∗ej

(
y
i× − yκ×

)
R∗ej

(
y
i× − yκ×

)>
− 1

ν
R∗ej

ν∑
i=1
y
i×

ν∑
i=1
y
i×R

∗
ej

=
1

kp
tr
(
Y R∗ej

)
I3 −

1

kp
Y R∗ej −

1

ν
R∗ej

ν∑
i=1
y
i×

ν∑
i=1
y
i×R

∗
ej .

Let shj be the Schur complement of νI3 in Aj , one verifies

det(shj − λI3) = det(tr
(
Y R∗ej

)
I3 − Y R∗ej − λI3)

as consequence one has

eig(Υ2) = [−λ2 − λ3;λ1 − λ3;λ1 − λ2]>

eig(Υ3) = [λ2 − λ3;−λ1 − λ3;λ2 − λ1]>

eig(Υ4) = [λ3 − λ2;λ3 − λ1;−λ1 − λ2]>.

It is straightforward to verify that under Assumption 6.1 at least one of the eigenval-

ues of the Schur complement is negative, since νI3 is positive definite one concludes
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that the matrix Aj is indefinite for j ∈ {2, 3, 4}. The matrix Aj for j ∈ {2, 3, 4} is not

singular, indeed one gets

det(Aj) = det(νI3) det(shj) 6= 0 ∀j ∈ {2, 3, 4}.

Since Aj has at least one negative eigenvalue and it is not singular it follows that the

set Uj,r is nonempty for each j ∈ {2, 3, 4} and the functions V̇j are positive in Uj,r. It

is seen that all condition of the Chateav’s theorem are fulfilled hence the origin of

system (6.13) for j ∈ {2, 3, 4} is unstable, and this completes the proof.

Note that in SE(3) Assumption 4.2, namely the boundness of the exosystem state,

is needed to the proof. Indeed the forward and backward invariance of the exosystem

ensures that solutions exist for all time and are instrumental for the LaSalle arguments.

It follows that trajectories like a screw trajectory are forbidden since they will cause

an unbounded exosystem state. Anyhow, it is possible to render the set compact by

periodically re-inizialize the inertial frame to a new certain position. Note that since

the control law is based on the relative error between the controlled system and the

exosystem, such a re-inizialization will not cause discontinuities in the control action. A

full treatment of this problem is behind the scope of the present work.

6.2 Dynamic Output Regulation for fully actuated systems on

SE(3)

In this section we solve the output regulation problem for fully actuated system whose

kinematic is described by a left invariant vector field on SE(3). In this context the system

is described by the non linear differential equations in Chapter 3.2 (subsection 3.2.2

and section 3.3). We proceed exactly like the dynamic output regulation case for fully

actuated system on SO(3). To this purpose denote the kinematic velocity input obtained

in the previous section as U := U c. Denote by

Ũ c := U − U c =

[
Ω× V

0 0

]
−

[
Ωc
× V c

0 0

]
=

[
Ω̃c
× Ṽ c

0 0

]
. (6.15)

the error between the actual velocity U of the system and the virtual velocity U c it should

has. Consider the following control law

Γ = −kΩ
DΩ̃c + Γff + ΓJ

F = −kvDṼ c + Fff + Fm
(6.16)
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where Γff and Fff represent feed-forward terms

Γff = Ω×JΩ− Γext +
ν∑
i=1
ei ∧ yri

Fff = mΩ×V − F ext −
ν∑
i=1
ei

and ΓJ , Fm are terms that depend on the inertia tensor and on the mass of the vehicle

ΓJ = 0.5J

[
kp

ν∑
i=1
yr
i×(α− Ω̃c)×(yr

i
− ei) + kp

ν∑
i=1
yr
i×

(
kp

ν∑
i=1
ei + Ṽ c

)
− 2Ω×R

>∆Ω + 2R>∆̇Ω

]
Fm = m

[
kp(α− Ω̃c)

ν∑
i=1

(yr
i
− ei) + kpν(kp

ν∑
i=1
ei + Ṽ c) + B∆̇v

]
.

with α = −kp
∑ν

i=1 e
r
i ∧ yri and kΩ

D, kvD some positive gains. Along with the internal

model
∆ = mrp(Cδ)

δ̇ = Sδ + C>Q

[
βΩ + βΩ

Ωc + βΩ
V c

βV + βVΩc + βVV c

]
feed by means of the following terms

βΩ = −kIR
ν∑
i=1

ei ∧ yi +
1

2
p ∧R

ν∑
i=1

ei

βΩ
Ωc =

kI
4

[
kpR

ν∑
i=1

(yr
i
− ei)×yi× − p×R

ν∑
i=1

yi×

]
J>Ω̃c

βΩ
V c = m

[
kpR

ν∑
i=1

(ei − yri ) + kpνp×R

]
Ṽ c

βV = kIR

ν∑
i=1

ei

βVΩc =
kIkp

2
R

ν∑
i=1

yr
i×J

>Ω̃c

βVV c = −mkpνRṼ .

By backstepping U c it turns out that the control law above solves the dynamic output

regulation problem as stated in the following proposition.

Proposition 6.2. (de Marco et al. (2016a)) Consider system (4.6a), (3.4), along with exosys-
tem (4.7) and let the controller be given by (6.16). Let Assumption 4.2 and 6.1 hold. Then the
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set

S = {((X,Xd), (δ, w), (U, ◦Ud)) :∈ SE(3)2×R2m×se(3)2 : X−1Xd = Xr, δ = w ,U = ◦Ud}

is almost globally asymptotically stable and locally exponentially stable for the closed-loop
system.

The proof is omitted since it is similar to the backstepping procedure in SO(3) and it

is very computational heavy without adding much more insights to the problem.
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“If you can’ t solve a problem, then there is an easier

problem you can solve: find it.”

George Pólya

7
Simulative Examples

The present Chapter is dedicated to some examples in order to validate numeri-

cally the theory presented in the previous chapters. In particular we are going

to simulate as illustrative example the output regulation problem for an omni-
directional wheeled robot and the attitude control problem for a fully actuated satellite.

7.1 Control of an Omnidirectional Wheeled Robot

In this section we consider the kinematic output regulation problem of an omnidirec-
tional wheeled robot. We recall the kinematic model derived in (3.1)

Ẋ = X(U + Un)

vrp(U) = BJwVw.

Un = mrp(Cnwn)

ẇn = Snwn

(7.1)
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where Un is a velocity disturbance to be rejected. The matrices Sn and Cn are chosen to

be

Sn =



0 71 0 0 0 0

−71 0 0 0 0 0

0 0 0 100 0 0

0 0 −100 0 0 0

0 0 0 0 0 50

0 0 0 0 −50 0


, Cn

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 .

Reference directions considered in the simulations are y1 = [1, 0, 1]> and y2 = [0, 0.5, 1]>.

It is straightforward to verify that two is the minimum number of independent measure-

ments in SE(2) and the cross product between the two reference directions is not null.

Moreover the matrix

Y := kp

ν∑
i=1

yr
i
yr
>

i
− kp

ν

ν∑
i=1

yr
i

ν∑
i=1

yr
>

i
=

[
0 −kp/2

−kp/2 0

]

has two distinct eigenvalues, thus Assumption 6.1 for the particular case of systems

posed on SE(2) is fulfilled. The initial state of the simulated system is chosen as X(0) =

I3 with initial zero velocity U(0) = 0. In this context the exosystem read as
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Figure 7.1: System and exosystem trajectories along the x and y axis

Ẋd = ◦UdXd (7.2a)
◦Ud = mrp(Cw) (7.2b)

ẇ = Sw (7.2c)
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with

S =



0 3 0 0 0 0

−3 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 2

0 0 0 0 −2 0


, C

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 .

The simulated exosystem starts with π/2[rad] as initial yaw and a relative distance from

the inertial frame of 3[m] along the x axis and 5[m] along the y axis. In this framework
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Figure 7.2: The time behavior of the norm of the closed-loop state components.

the control law that solves the output regulation problem is on the form

Vw = BJ−1
w vrp(U) (7.3a)

U = AdX−1∆−∆n − kp
2∑
i=1

Pse(2)

(
ei(y

r
i − ei)>

)
(7.3b)

∆ = mrp(Cδ) (7.3c)

∆n = mrp(Cnδ) (7.3d)

δ̇ = Sδ + C>Qse(2) vrp(β) (7.3e)

β = −kI
2∑
i=1

Pse(2)(X
−>ei(y

r
i − ei)>X>) (7.3f)

δ̇n = Snδn + C>n Qse(2) vrp(βn) (7.3g)
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βn = knI

2∑
i=1

Pse(2)

(
ei(y

r
i − ei)>

)
. (7.3h)

The controller gains are chosen as kp = 8 and kI = kIn = 3. Figure 7.2 shows the

evolution of the tr(I−E), the norm of the estimation error
∣∣∣vrp(∆̃)

∣∣∣ an the time behavior

of the Lyapunov function. Plot shows that in steady state the relative error converges to

the identity element of the group (origin) and the velocity estimation ∆ in the fixed

frame converges to the desired velocity ◦Ud.

7.2 Attitude Control of a rigid Satellite

In this section we consider the attitude control problem for a fully actuated satellite.

The equations of motion of the rigid body where given in section 3.2 Eq. (3.2), while the

control law is a direct application of the control law presented in Proposition 6.2. Refer-

ence direction are chosen to be y1 = [1, 0, 0]> and y2 = [0, 1.5, 0]>, it is straightforward to

verify that the two reference directions considered are not collinear moreover the matrix

Y =
kp
2

ν∑
i=1

yri y
r>
i =

kp/2 0 0

0 9kp/8 0

0 0 0


has three distinct eigenvalues, thus Assumption 5.1 is fulfilled. Initial states of the sys-
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Figure 7.3: Evolution of the relative Error Re, velocity error Ω̃ and estimation error w̃
in SO(3). Case of perfect knowledge of the inertia matrix.

tem are chosen as R(0) = I3 and initial zero angular velocity Ω(0) = 0, while the control

gains are kp = 4, kd = 6 and kI = 0.4. The inertia tensor of the Satellite in the body-fixed
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frame is that of an non-axisymmetric rigid body J = diag(2, 1, 1.5)[Kg m2].

The matrices of the linear oscillator in the Lie algebra of the exosystem are chosen to

be

S =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 3 0 0

0 0 −3 0 0 0

0 0 0 0 0 5

0 0 0 0 −5 0


, C

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 .

The initial yaw, pitch and roll of the desired trajectory are chosen to be π/4[rad], π/4[rad]

and π/3[rad], respectively. Figure 7.3 shows that in steady state the relative attitude error

Re converges to the identity element of the group, the angular velocity Ω of the satellite

converges to the virtual velocity Ωc and the norm of the estimation error w̃ converges to

zero. We have run a second simulation considering a slight unknown variation in the
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Figure 7.4: Evolution of the relative Error Re, velocity error Ω̃ and estimation error w̃
in SO(3). Case of imperfect knowledge of the inertia matrix.

inertia of the satellite. The inertia tensor implemented in the control law is Jnom =

diag(2, 1, 1.5)[Kg m2] while the real inertia of the system is Jreal = 0.85Jnom. Figure

7.4 and Figure 7.5 confirm, as seen in section 5.3, that only practical regulation can be

achieved in presence of uncertainties in the dynamic parameters of the system.
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Figure 7.5: Evolution of the relative Error Re, velocity error Ω̃ and estimation error w̃
in SO(3) after 40 seconds of the simulation. Case of imperfect knowledge of the inertia
matrix.
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Conclusion

The output regulation problem for left invariant systems on matrix Lie group has

been investigated. Taking advantages of the symmetries and invariant structures

of the system considered, a novel internal model based design has been pro-

posed. With the same spirit of the linear internal model principle, the proposed control

architecture embeds a copy of the exosystem properly updated by means of partial in-
variant error measurements. Exploiting the particular structures of the special orthogonal
group and the special Euclidean group the local properties of the control law presented in

Chapter 4 has been extended to almost global ones in Chapter 5 and 6, respectively. For

the particular case of systems posed on SO(3) and SE(3) the kinematic output regula-

tion problem has been extended in Chapter 5 and 6, considering also the dynamics of

the systems. The dynamic extension of the proposed control approach has been handled

with classical backstepping techniques. In the same chapters the problem of robustness

with respect to uncertainties in the system parameters has been considered.

Many problems investigated in this thesis are still open. First of all, it would be

interesting to relax Assumption 4.2, since as pointed out a screw motion or a constant

linear trajectory in SE(3) are forbidden. This problem can been addressed considering

an hybrid analysis whit periodic resets of the coordinate of the fixed frame or considering

SE(3) as the semi-direct product SO(3) n R3. By considering SE(3) = SO(3) n R3 it is

possible to circumvent one of the major problematic in the inversion of the matrix X in

the adjoint action.

Another open problem of major interest is the construction of a robust control law

in the Wonham sense. Indeed as shown in Chapter 5 and 6 only practical regulation

with restriction on initial state and input can be achieved with the presented control

law. One of the major problem for the robustness of the control law proposed is related
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to the fact that a linear oscillator in the Lie algebra of a right invariant systems becomes a

time varying oscillator in the body-fixed frame. Indeed the desired velocity in the body-

fixed frame is U = X−1
d
◦UXd. In order to know the frequency involved one would like

to express the entries of the matrix Xd in closed form, however this can be done in very

particular cases and it is strictly depended to the Lie group considered. Due to this fact

classical immersion assumptions are really difficult to fulfill and even in very simple cases

it turns out that one needs an infinite dimensional linear system to solve the problem.

For example in the attitude control problem, in order to express each entry of the desired

attitude Rd in closed form one could consider the linear time-varying system associated

to (5.2). Then it is possible to express the state transition Υ(t, t0) matrix of the equivalent

linear time-varying system in closed form. To this purpose define

x := vec(Rd)

where vec(Rd) is the column vector obtained by the concatenation of columns of the

matrix Rd
vec(Rd) = [r11, r21, r31, r12, r22, r32, r13, r23, r33]> .

Exosystem (5.2), then, is equivalent to the following-time varying system

ẋ = A(t)x (7.4)

where A(t) := diag(◦Ωd×,
◦Ωd×,

◦Ωd×).

The i-th entry of the matrix ◦Ωd×, considering (5.2), is of the form

◦Ωdi(t) = ai0 +

ni∑
k=1

(aik sin(wikt) + bik cos(wikt))

as consequence the time varying matrix A(t) can be written as

A(t) =
3∑
i=1

[
ai0 +

ni∑
k=1

(aik sin(wikt) + bik cos(wikt))

]
Qi (7.5)

where Qi = diag(Q̄i, Q̄i, Q̄i), and

Q̄1 =

0 0 0

0 0 −1

0 1 0

 , Q̄2 =

 0 0 1

0 0 0

−1 0 0

 , Q̄3 =

 0 1 0

−1 0 0

0 0 0

 .
The state transition matrix of a linear time-varying system can not, in general, be ex-

pressed in closed form. Closed form solutions are known only for a restricted class of
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systems, such as for example the commutative class. To the author’s knowledge the class

of systems (7.4), (7.5) in which

QiQj = (QjQi)
> ∀i, j = 1, 2, 3 with i 6= j

has never been studied and a closed form solution is still unknown. Consider now the

special case in which the exosystem is oscillating along one axis, for example along the

x axis. The time varying matrix A(t), then, can be written as

A(t) =

[
a10 +

n1∑
k=1

(a1k sin(w1kt) + b1k cos(w1kt))

]
Q1

and note that

A(t1)A(t2) = A(t2)A(t1).

The Peano-Baker series for the solution of the state transition matrix is given by

Υ(t, t0) = I +
∫ t
t0
A(τ)dτ +

∫ t
t0
A(τ1)

∫ τ1
t0
A(τ2)dτ2dτ1

+
∫ t
t0
A(τ1)

∫ τ1
t0
A(τ2)

∫ τ2
t0
A(τ3)dτ3dτ2dτ1 + . . .

and since A(t)
∫ t
t0
A(τ)dτ =

∫ t
t0
A(τ)dτA(t) one has

Υ(t, t0) = I +
∫ t
t0
A(τ)dτ +

∫ t
t0

[∫ τ1
t0
A(τ2)dτ2A(τ1)

]
dτ1

+
∫ t
t0

[∫ τ1
t0

[∫ τ2
t0
A(τ3)dτ3A(τ2)

]
dτ2A(τ1)

]
dτ1 + . . .

= I +
∫ t
t0
A(τ)dτ +

1

2

[∫ t
t0
A(τ)

]2
+

1

2

1

3

[∫ t
t0
A(τ)

]3
+ . . .+

1

k!

[∫ t
t0
A(τ)

]k
+ . . .

= exp
[∫ t
t0
A(τ)dτ

]
= exp [a10Q1(t− t0)]

∏n1
k=1 exp

[∫ t
t0

[a1k sin(w1kτ) + b1k cos(w1kτ)] dτQ1

]
.

Denoting by λk :=
∫ t
t0

[a1k sin(w1kτ) + b1k cos(w1kτ)] dτ and considering the particular

structure of the matrix Q1 it yields

Υ(t, t0) = exp [a10Q1(t− t0)]
∏n1
k=1 Θλk(t, t0)

where Θλk(t, t0) = diag
[
Θ̄λk(t, t0), Θ̄λk(t, t0), Θ̄λk(t, t0)

]
and

Θ̄λk(t, t0) =

1 0 0

0 cos(λk) − sin(λk)

0 sin(λk) cos(λk)

 .
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Consider now the case of a single linear oscillator in the Lie algebra so(3)

ẋ(t) = b1 cos(w1t)Q1x

one obtains

Υ(t, 0) = Θλ1(t, 0)

where

Θ̄λ1(t, 0) =


1 0 0

0 cos(
b1
w1

sin(w1t)) − sin(
b1
w1

sin(w1t))

0 sin(
b1
w1

sin(w1t)) cos(
b1
w1

sin(w1t))

 .

Considering the Jacobi-Anger expansion of cos(
b1
w1

sin(w1t)) and sin(
b1
w1

sin(w1t)) one fi-

nally obtains

Θ̄λ1(t, 0) =


1 0 0

0 J0(
b1
w1

) + 2
∞∑
κ=1

(−1)κJ2κ(
b1
w1

) cos(2κw1t) −2
∞∑
κ=1

J2κ−1(
b1
w1

) sin[(2κ− 1)w1t]

0 2
∞∑
κ=1

J2κ−1(
b1
w1

) sin[(2κ− 1)w1t] J0(
bk
wk

) + 2
∞∑
κ=1

(−1)κJ2κ(
b1
w1

) cos(2κw1t)


where Jκ is the Bessel function of the first kind. This in turn implies that the ij-th ele-

ment of the rotation matrix Rd is on the form

rij = aij0 +
∞∑
κ=1

1aijκ cos(2κw1t) +
∞∑
κ=1

2aijκ sin[(2κ− 1)w1t]

in which aij0, 1aijκ,
2aijκ are coefficients which depend on Rd(0) and on the Bessel func-

tion of the first kind. From this, it should be clear that there not exists a finite dimen-

sional observable linear system that solves the problem. However, in this particular case

adding a certain number of oscillators it should be possible to make arbitrarily small the

norm of the regulated output.

Anyhow the approach presented here seems to be a “brute force” solution, indeed

with this approach we are not considering the particular structure of the system and we

are not preserving the symmetries. A more fine solution should consider the Lagrangian-

Hamiltonian structure of the system in order to solve the problem in a robust way.
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