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Aim and Outline 
 

 

 

 

Hemodialysis is the most common renal replacement therapy in developed 

countries. It is a blood purification therapy that aims at removing toxins and 

excess liquid accumulated in the patient’s body due to the complete or almost 

complete loss of renal function. It also has the additional purpose of rebalancing 

the correct plasmatic concentrations of electrolytes. Over the course of the years, 

hemodialysis underwent a number of technological advancements.  

 

One of such advancements is the use of sensors to monitor the proper functioning 

of the machine, the safety of the treatment and the intra-session alterations of the 

hematic properties of the patient. Recently, sensing gained an additional role in 

hemodialysis: retrieving information for the purpose of therapy customization, by 

means of biofeedback algorithms. Unfortunately, economical costs and the nature 

of the treatment severely limit the available options for measurements, making 

non-invasive sensing quite an attractive choice. Non-invasive sensing techniques 

have the advantage of not requiring contact with the patient’s blood, increasing 

safety and avoiding any sterilization issue or the use of disposable elements. 

Increased patient safety is the primary benefit of non-invasive sensing; however, 

another significant factor is that the use of additional disposable material for each 

treatment is avoided. This is not only important in economic terms, but also in 

terms of environmental impact of hemodialysis. 

 

The primary aim of this doctoral thesis was the development of non-invasive 

sensing techniques for the measurement of physiological parameters during the 

hemodialysis session. The experience and data collected while pursuing this 

primary aim allowed to carry out an additional activity related to mathematical 

modeling of the dialysis process. 
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The thesis is composed of four chapters. Chapter 1 serves as an introduction to the 

field of hemodialysis, giving the reader an overview of the different aspects of this 

medical therapy. Chapters 2 and 3 are related to the topic of non-invasive sensing, 

main aim of the thesis, whereas in Chapter 4 the topic is the mathematical 

modeling of the hemodialysis process. The content of these chapters is based on 

scientific papers in preparation or already published, and the original article 

structure was kept. This way, each chapter is self-contained and can be read 

independently from the others.  

 

In Chapter 2, a new method for the contactless estimation of plasmatic 

conductivity is described. The presented method uses high-frequency impedance 

measurement and model fitting to estimate electrical conductivity of the liquid 

contained inside the bloodline. The characterization of the electrical properties of 

the bloodline’s biopolymer was also a fundamental step for the development of 

the new method. Good results were obtained with measurements on saline 

solution and a blood-mimicking fluid. 

 

In Chapter 3, a system for continuous estimation of relative blood volume loss and 

plasmatic sodium concentration is described. The system integrates information 

from multiple sensors, among which is a new fiber-optic sensor, to estimate these 

two variables with satisfying accuracy. 

 

In Chapter 4, a model of sodium diffusion across the hemodialysis filter is 

reported. The innovative aspect of the model is that it interconnects mathematical 

descriptions of both the patient and the dialyzer, at different abstraction levels, in 

order to give a more realistic representation of sodium exchange during the 

treatment. 

 

The thesis closes with some final remarks on the presented work and an outlook 

for the possible future developments. 
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Chapter 1 
 

 

Background 
 

 

In this chapter, a brief overview of the hemodialysis therapy is given, addressing 

topics like the different dialysis techniques, the involved physical processes and 

technologies, and the innovation trends which will most likely shape the future of 

this medical procedure. 
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Abbreviations 

ΔRBV: Relative blood volume loss 

1D: One-dimensional 

2D: Two-dimensional 

AKI: Acute kidney injury 

AVF: Artero-venous fistula  

AVG: Artero-venous graft 

BVM: Blood volume monitor 

BTM: Blood temperature monitor 

CKD: Chronic kidney disease 

ESRD: End-stage renal disease  

HD: Hemodialysis 

HF: Hemofiltration 

Hgb: Hemoglobin 

HDF: Hemodiafiltration 

IDH: Intra-dialytic hypotension 

PD: Peritoneal dialysis 

RBV: Relative blood volume 

RRT: Renal replacement therapy 

TPC: Total protein concentration 

TWL: Total weight loss 

UF: Ultrafiltration 
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1.1 End-stage renal disease and dialysis 

 

End-stage renal disease (ESRD) is a term employed to describe all the 

pathological conditions in which the patient is left with kidney functionality 

below 10% [1]. It is usually associated with the late stage of a slowly-developing 

chronic kidney disease (CKD), but may also be the consequence of acute kidney 

injury (AKI) if full renal function is not recovered. It has been estimated that the 

population of ESRD patients expands roughly by 5-10% each year [2-4]. 

Treatment of ESRD condition is carried out by renal replacement therapy (RRT), 

which can assume three different forms: hemodialysis (HD), peritoneal dialysis 

(PD) and renal transplantation. In practice, due to the low rate of renal 

transplantation, dialysis is the most common type of RRT [2]. Dialysis treatment 

presents a very high economic impact [4,5]. Access to dialysis and RRT is, 

generally, more common in prosperous, high-income countries [6]. Recently, 

Liyanage et al. [7] quantified the worldwide burden of end-stage kidney disease 

and use of RRT, with the aim of estimating future trends in the field. According to 

their estimation, in 2010 a total of 2.618 million people received RRT, of which 

2.050 million (78%) received dialysis (either HD or PD), and the remainder 

received a transplant. Also, according to their projection, the number of people 

receiving RRT will double by 2030. 

Due to the lack of renal function, the ESRD patient tends to accumulate uremic 

toxins in blood and excess water in the whole body. Another consequence of 

kidney disease is the imbalance of electrolytes in blood (i.e. sodium, potassium, 

etc.). For this reason, both types of dialysis (HD/PD) have three main targets: the 

removal of uremic toxins, the removal of excess body water and the restoration of 

physiological concentrations of electrolytes. Dialysis only allows replacing the 

blood purification functions of the kidney, but not its endocrine functions, that 

must be substituted pharmacologically. 

In hemodialysis, the body of the patient is connected to a hemodialysis machine 

though a vascular access [8]. Blood flows through an extracorporeal circulation 

system and inside a dialyzer (dialysis filter), where toxins and excess liquid are 
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transferred to a special fluid called dialysate, which also exchanges electrolytes 

with blood. Dialysate flows in the opposite direction of blood. After purification 

in the dialyzer, blood is returned to the patient’s circulatory system.  

Peritoneal dialysis [9] takes advantage of the peritoneum as a natural 

semipermeable membrane. In peritoneal dialysis, a dialysate bag is connected to 

the abdominal cavity, which is in this way filled by dialysate. Then, diffusion and 

osmosis drive waste and excess liquid from the other body compartments across 

the peritoneum, into dialysate. Dialysate is then drained from the abdominal 

cavity, concluding the cycle. 

In developed countries, HD is the treatment employed for the large majority of 

patients, whereas the use of PD is much lower [10,11]. The mortality of ESRD 

patients treated with the two procedures has been investigated in many 

observational studies, as reported by Yang [10]. Nonetheless, the use of PD in its 

most recent forms is still advocated by some [11,12]. Due to its nature as a 

simpler treatment, PD offers many benefits for use in developing countries: lower 

cost, home-based therapy, single access, less requirement of highly trained 

personnel and major infrastructure, higher number of patients under a single 

nephrologist [13]. On the other hand, hemodialysis, due to its nature, allows many 

more treatment customization options, better treatment monitoring, and is in 

general a better recipient for technical innovation. This doctoral thesis focuses on 

the use of non-invasive sensors during HD sessions for CKD patients, for this 

reason further reference to PD will be omitted. 

 

1.2 The hemodialysis process 

 

As described in the previous paragraph, hemodialysis replaces blood 

purification in uremic patients [14]. Conventional clinical hemodialysis [15] is 

usually carried out three times a week, in sessions with an average duration of 

four hours, under medical supervision. 

At the beginning of each session, the patient is connected to the hemodialysis 

machine through a vascular access and a hydraulic circuit (Fig. 1.1). Such circuit, 
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the bloodline, is a biocompatible disposable part specifically developed for the 

extracorporeal circulation of blood. Due to the frequency of the sessions and the 

short time between consequent treatments, the presence of a safe and ready access 

to the circulatory system of the patient is particularly important and for this 

reason, a dedicated vascular access is created surgically, in the forms of an artero-

venous fistula (AVF) or graft (AVG). AVF is the most common type of vascular 

access, characterized by the lowest occurrence of complications. It is usually 

created by joining an artery and a vein, usually in the forearm, and allowing for 

the consequent remodeling process: the result is a junction point able to withstand 

the pressures and flows of modern hemodialysis. Blood flowing from the vascular 

access inside the extracorporeal circuit is pumped by the machine inside the 

hemodialyzer, a disposable filter which is the core of the hemodialysis process, as 

already outlined in the previous paragraphs. Modern hemodialyzer, thanks to their 

hollow fiber structure, have a huge exchange surface area (in the order of 1-2 m2): 

each filter is composed by a large number (≃10000-14000) of membranous fibers 

bundled together and potted at the extremities. Together, the internal lumens of all 

fibers constitute the blood-side compartment of the dialyzer. The joint space 

outside the fibers is filled with dialysate solution and constitutes the dialysate-side 

compartment. The dialyzer includes four connecting ports, to allow inlet and 

outlet flow for each compartment. Blood and dialysate flow inside the dialyzer in 

opposite directions (counter-flow), to maximize diffusion across the membrane. In 

modern single-pass machines, dialysate solution is prepared in real-time by the 

hemodialysis machine by mixing ultrapure water prepared from the water 

purification system of the hospital with the content of one or more bag/s of 

concentrates. Its composition is determined by the mixing factor between water 

and solutes coming from the bag of concentrates. The machine monitors and 

controls the mixing process, to guarantee a composition within a range of 

physiological compatibility with blood plasma. 

 



6 
 

 

Fig. 1.1 – Diagram of the hemodialysis process 

Simple diagram of the interaction between the patient and the hemodialysis machine. 
 

Inside the dialyzer, blood purification is achieved by means of two solute 

transport mechanisms, diffusion and convection [16,17]. Convection is a 

secondary effect of ultrafiltration (UF), a process used to remove excess liquid. 

Equations 1.1 and 1.2 report the mathematical descriptions for diffusion and 

convection. 

 

𝐽𝐷 = −𝐷 ∙ 𝐴 ∙
𝛥𝐶

𝛥𝑥
    (1.1) 

 

𝐽𝐶 = 𝑄𝑈𝐹 ∙ 𝐶𝐵 ∙ 𝑆    (1.2) 

 

In equation 1.1, also known as Fick’s law, D is the diffusion coefficient of the 

solute, A is the exchange surface area, ΔC is the difference in the concentration of 

the solute across the membrane and Δx is the short distance between the opposite 

sides of the membrane. Diffusion is driven by the concentration gradient at the 

membrane, given by the ratio of ΔC to ΔX. Although the movements of single 

molecules of solute are random, on average the solute moves from areas of high 
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concentration to areas of low-concentration, in an effort compensation of the 

concentration gradient. This type of solute transport works better for small 

solutes, characterized by smaller weight and consequently a higher diffusion 

coefficient. In the case of uremic toxins, which are present only on the blood side 

of the membrane, the concentration gradient is always positive and movement is 

always one-way from blood to dialysate. In the case of solutes present in both 

blood and dialysate (i.e. electrolytes, glucose, etc.), the direction of solute 

movement is dictated by the difference between concentrations. The fact that fresh 

dialysate is often prepared with the same concentration, whereas the patient’s 

body has finite volume and mass of solute, means that during the session 

plasmatic concentration of physiological solutes moves toward the concentration 

set in dialysate. 

 UF and convection are carried out by applying a positive hydrostatic pressure 

gradient across the dialyzer membrane: this mechanism generates a flow of liquid 

from the blood side of the membrane to the dialysate side of the membrane. The 

total amount of liquid to be removed during each session is set by medical 

prescription and programmed into the machine at session start, to correctly 

manage the ultrafiltration rate during treatment time. Convection is a physical 

process which implies transport of solutes across a membrane by movement of 

liquid: when the solvent flows to the opposite side of the membrane, molecules of 

solutes are dragged alongside it. Due to its nature, this type of solute transport is 

independent from the concentration gradient. In Equation 1.2, QUF is the UF rate 

across the membrane, CB is the average solute concentration in blood, and S is the 

Sieving factor. The Sieving Factor accounts for the fact that convection of large 

molecules is reduced or even stopped by the dimensions of the membrane’s pores. 

Some variants to the standard therapy exist. Hemofiltration (HF) is normally 

used to treat AKI. In HF, only convection, and not diffusion, is carried out inside 

the hemodialyzer: the dialysate is not present. Physiological replacement fluid is 

instead added to the blood to replace fluid volume and rebalance electrolytes. In 

hemodiafiltration (HDF), HD and HF are combined: dialysate is present inside the 

dialyzer to allow diffusion, UF and convection are carried out at a high rate, and 
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substitution fluid is added to blood pre- or post-dialyzer. This solution combines 

the good removal of small molecules typical of diffusion and that of large 

molecules associated with convection. 

After purification in the dialyzer, blood is returned to the patient’s circulatory 

system through the vascular access. 

 

1.3 The role of sensors in modern hemodialysis  

 

The use of sensors is a very important feature for hemodialysis machines for 

many purposes: patient safety, monitoring and control of machine operation, 

collection of clinically-relevant data, and biofeedback. Unfortunately, the nature 

of the hemodialysis treatment places large restrictions on the types of sensors than 

can be employed: given the frequency of the treatments (i.e. ≃150-160 treatments 

per year per patient), to sustain an ever-increasing patient population national 

healthcare systems can only afford very cheap treatments. For this reason, no 

unnecessary single-session cost in addition to that of the basic disposable kit is 

usually considered by producers. Currently, the only sensors available on-machine 

are completely non-invasive at blood-side or able to withstand high-temperature 

sterilization at dialysate-side.  

Many methods have been proposed along the years to extract additional 

information from blood or dialysate, but they usually present unacceptable 

disadvantages. Generally speaking, to increase significantly the information 

available during the session chemical analysis would be required, but any type of 

sensing that involves chemical analysis is either too complex to manage, too 

costly or has sterilization problems. For example, chemically-treated sensing 

probes may be employed for dialysate-side enhanced electrical or optical sensing, 

but such sensors are usually not resistant to high-temperature sterilization and 

present a cost too high to be used as disposable material. On blood-side, chemical 

analysis would require the management of an automated system for frequent 

blood sampling, which would be very complex and require regular maintenance.  
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Although chemical analysis is impractical during hemodialysis, the use of 

sensors based on general physical principles, together with some theoretical 

knowledge about the system and the processes involved, led to the development 

of current sensor solutions. Common sensors on current hemodialysis machines 

are based on ultrasonic, optical and electrical principles. 

For example, ultrasonic sensors are employed to detect the presence of air 

bubbles inside the bloodline and activate a clamp mechanism before the bubble 

can reach the vascular access. Flow meters are employed to monitor the flow of 

dialysate, and the difference between measured flow rates at inlet and outlet is 

equivalent to the UF rate. Pressure sensors are employed to monitor the pressures 

of the arterial and venous traits of the bloodline. For example, in the Artis 

machine (Baxter, Medolla, Italy), pressures are transmitted from the artero-venous 

expansion chambers to the pressure sensors by deformable membranes. 

Electrical conductivity sensors are placed on the dialysate-side hydraulic circuit 

both at inlet and outlet positions. The importance of monitoring the electrical 

conductivity of dialysate is determined by the high correlation between dialysate 

conductivity and its total content of electrolytes.  

As already described in paragraph 1.2, dialysate is prepared in real-time by 

mixing ultrapure water and a bag of concentrates, composed mostly of electrolytes 

(sodium, chlorine, calcium, etc.) plus some glucose and other less-concentrated 

molecules. In diluted electrolytic solutions conductivity is determined by the sum 

of concentrations of the single ions, weighted by their ionic mobility [18]. Larger 

molecules contained in dialysate, like glucose, may affect conductivity depending 

on their electrical charge but larger sizes and lower concentration lead to a smaller 

influence.  

Although conductivity cannot be used to determine the concentration of each 

separate ion, measured inlet conductivity can be employed to check if water and 

concentrates are mixed according to the proper mixing factor. Therefore, the first 

use of conductivity measurements in hemodialysis is in monitoring of dialysate 

preparation. A second use of dialysate conductivity measurements is clinical. 

Following the theory developed by Polaschegg [19], many systems have been 
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developed to estimate ionic clearance and plasmatic conductivity on the basis of a 

time-dependent measurement protocol (Fig. 1.2).  

 

 

 

 

Fig. 1.2 - Conductivity estimation by step-like protocol 

Upper panel: Inlet and outlet dialysate conductivity cells are used to estimate ionic dialysance and 

plasmatic conductivity. Lower panel: Step-based estimation protocol (Source: [22]). 
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Ionic clearance is important to quantify the efficacy of the dialysis treatment and 

is similar in value to urea clearance given that electrolytes and urea have similar 

molecular weights. The knowledge of plasmatic concentrations of electrolytes 

would be also clinically relevant, but as described in the first part of this 

paragraph, practical reasons prevents direct chemical analysis of blood. In 

particular, sodium is the most concentrated ion in dialysate and plasma, and is 

very important due to its influence on osmotic phenomena in the patient’s body 

[20,21]. In this regard, plasmatic conductivity is the best sodium-related 

parameter which can be estimated non-invasively. The employed protocol works 

by recording inlet and outlet conductivity after applying a positive or negative 

conductivity step to inlet dialysate. Due to the fact that outlet conductivity is 

determined by inlet and plasmatic conductivity [22-24] because of the exchange 

of solutes at the filter, it is possible to estimate ionic clearance and plasmatic 

conductivity by observing the step-response outlet dynamics. The Diascan system 

[25] (Baxter, Medolla, Italy) is one example of commercial system currently in 

use developed on the basis of the Polaschegg theory. 

Another physiological variable commonly monitored during hemodialysis by 

the use of sensors is the relative blood volume loss. During the session, the 

volume of blood VB(t) contained in the patient’s circulatory system is modified by 

the phenomena of ultrafiltration and vascular refilling according to equation (1.3), 

where VB,0 is the starting blood volume and JUF and JRef are, respectively, the UF 

and refilling rates. Accordingly, relative blood volume (RBV) is defined as 

absolute blood volume VB(t) at any given time, normalized to starting blood 

volume VB,0(t), as reported in equation (1.4). In turn, relative blood volume loss 

(ΔRBV) is defined as the relative variation in blood volume as reported in 

equation (1.5). It is usually expressed in percentage and during a typical session it 

can assume values down to -10%. ΔRBV is also commonly described in models 

according to the ordinary differential equation reported in equation (1.6). 

 

𝑉𝐵(𝑡) = 𝑉𝐵,0 + ∫  (−𝐽𝑈𝐹(𝜏) +  𝐽𝑅𝑒𝑓(𝜏))𝑑𝜏
𝑡

0
   (1.3) 
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𝑅𝐵𝑉(𝑡) =
𝑉𝐵(𝑡)

𝑉𝐵,0
=

∫  (−𝐽𝑈𝐹(𝜏)+ 𝐽𝑅𝑒𝑓(𝜏))𝑑𝜏
𝑡
0

𝑉𝐵,0
   (1.4) 

 

Δ𝑅𝐵𝑉(𝑡) =
𝑉𝐵(𝑡)−𝑉𝐵,0

𝑉𝐵,0
=

∫  (−𝐽𝑈𝐹(𝜏)+ 𝐽𝑅𝑒𝑓(𝜏))𝑑𝜏
𝑡
0

𝑉𝐵,0
  (1.5) 

 

𝛥𝑅𝐵𝑉̇ (𝑡) =
−𝐽𝑈𝐹(𝑡)+ 𝐽𝑅𝑒𝑓(𝑡)

𝑉𝐵,0
     (1.6) 

 

The possibility of direct ΔRBV quantification is given by its relationship with 

some other physical property of blood. In particular, optical and ultrasonic sensors 

(Fig 1.3) are used for ΔRBV estimation by monitoring other physiological 

parameters whose value change during the session mainly because of 

modifications of blood volume. 

In the case of ultrasonic sensors, the relationship between ΔRBV and total 

protein concentration (TPC) is exploited. During hemodialysis, TPC is mainly 

modified by the change in distribution volume of proteins, whereas the 

modification due to physiological activity is negligible. Therefore, measuring 

blood TPC variations by ultrasonic means allows to estimate ΔRBV indirectly. An 

example of ultrasonic-based blood volume sensor employed on a commercial 

hemodialysis machine is the blood volume monitor (BVM, Fresenius Medical 

Care, Bad Homburg, Germany) [26-28]. 

In the case of optical sensors, simple systems composed by LEDs and 

photodiodes are employed to measure absorbance or reflectance depending on the 

geometrical placement of the sensor on the bloodline. Depending on the specific 

realization, the section of the bloodline where the optical measurement is carried 

out may be composed of a specific material with better optical properties. In this 

case, the optically transparent segment is usually called “cuvette”. In optical 

ΔRBV sensors, the monitored variable is hemoglobin concentration ([Hgb]): as 

for TPC, the relative variation of [Hgb] during the dialysis session is more related 

to distribution volume changes than to production/degradation of the protein. 

Optical measurements are usually carried out at ≃800-810 nm, the point of the 
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absorbance spectrum of hemoglobin where absorbance is not determined by the 

oxygenation state of the molecule. An example of commercial optical RBV 

sensors is the Hemoscan system [29,30] (Baxter, Medolla, Italy).  

 

 

Fig. 1.3 – Acoustic and optical methods for RBV estimation 

Upper panel: Estimation of RBV by ultrasonic measurement of total protein concentration.  

Lower panel: Estimation of RBV by measurement of haemoglobin concentration. 

 

In hemodialysis blood volume is measured as a relative quantity, rather than 

absolute, because currently no simple and non-invasive system for direct 

measurement of absolute blood volume exists. Some methods [31,32] have been 

proposed to estimate absolute blood volume at session start but no commercial 

solution has been developed yet. 

Recently, a new type of optical sensor was developed to continuously measure 

ultraviolet absorbance in spent dialysate and track dialysis efficiency throughout 

the session [33,34]. A non-invasive sensor for blood temperature monitoring has 
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also been developed, the blood temperature monitor (BTM) system [35] 

(Fresenius, Bad Homburg, Germany). Another recent effort to collect clinical 

information about the dialysis patient non-invasively regards the extraction of the 

cardiac signal from data collected by the extracorporeal pressure sensors [36]. 

 

1.4 Mathematical and numerical modeling of different aspects 

of dialysis 

 

Along the years mathematical modeling has been employed to study many 

different aspects of dialysis, both for descriptive and design purposes. 

One of the most studied aspects of hemodialysis is the hemodialyzer: many 

models of the solute exchange and fluidodynamics phenomena happening inside 

the hemodialyzer have been proposed in the literature. The first mathematical 

models of the hemodialyzer activity were one-dimensional (1D) models of a 

single hollow fiber. 1D models of the “average” hollow fiber have the advantage 

of low computational requirements and mathematical simplification, and were 

first employed to study the effects of changes in the properties of the dialyzer (i.e. 

fiber length, permeability, etc.). In 2006, Waniewski et al. published a detailed 

review article [37] on mathematical modeling in hemodialysis which includes a 

section on the one-dimensional theory of the hemodialyzer and relative studies. 

Further modeling efforts led to the development of bidimensional (2D) models, 

where solute concentration and/or fluidodynamics are modeled both along the 

longitudinal and radial axes of the single fibers [38-42]. 2D modeling of the single 

hollow fiber is currently the most common approach, although 3D models are 

emerging in literature [43-45]. Mathematical modeling of the hemodialyzer is a 

topic with many repercussions on design activities, because it allows numerical 

investigation of possible changes to dialyzer properties. 

 A topic closer to physiological and clinical investigation is that of kinetic 

modeling [46]. In kinetic modeling, the hemodialysis process is described at high 

abstraction level and the interaction with patient physiology is taken into account. 

The body of the patient is considered as a volume for the distribution of a specific 
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solute, and the evolution of the solute’s concentration during the hemodialysis 

session is described by mass balance equations. Kinetic models are employed to 

support clinical observations, to describe the kinetics of urea or other solutes, and 

to predict fluid and mass transfer between patient body compartments during 

hemodialysis [46-59]. Depending on the specific model, one or more 

compartments (“pools”) can be employed to describe the distribution volume. For 

example, in two-pools models (Fig. 1.4), the intracellular and extra-cellular 

components of volume are considered as different compartments. Three-pools 

models with intracellular, interstitial and plasma compartments were proposed by 

Ursino et al. [53] and, recently, by Casagrande et al. [59].  

 

 

Fig. 1.4 - Example of bicompartmental kinetic model for hemodialysis 

In bicompartmental models, two separate pools are used for intracellular and extracellular volumes 

(VIC, VEC) and concentrations of solutes (CS,IC, CS,EC). Mass flow represent the movement of 

molecules between the two compartments (JS,IE) or across the dialyzer membrane (JS,Diff for 

diffusion, JS,Conv for convection). Movement of liquid is represented by volume flow rates like QIE 

for intra/extracellular and QUF for ultrafiltration. Dialysate is not represented explicitly as a 

compartment, however significant parameters may be modelled (solute concentration CS,D and 

flow rate QD). 
 

A third topic investigated many times by computational modeling is that of 

hemodynamics of the vascular access, especially in the most common case of the 

artero-venous fistula. The details of blood flow in the region of the vascular 

access have been investigated both for descriptive purposes [60] and for clinical 

and predictive purposes [61,62]. Also, the cardiovascular mechanics evolution 

induced by the fistula presence have been investigated by Casagrande et al. by 

development of a mathematical model of the circulatory system [63]. 
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1.5 Biofeedback therapies 

 

Traditionally, hemodialysis treatments are carried out by setting the values of 

specific parameters at session start. Such values are then modified only in case of 

intra-session complications, such as intra-dialytic hypotension (IDH). Examples 

of operational parameters are the blood and dialysate flow rates, the ultrafiltration 

rate, dialysate conductivity (or sodium concentration), and dialysate temperature. 

Some of them, like UF rate and dialysate sodium concentration, are chosen by 

medical prescription: for example, UF rate is computed automatically on the basis 

of treatment time and end-session total weight loss (TWL). Others are chosen on 

the basis of physiological considerations or clinical experience. However, the 

hemodialysis treatment aims at replacing lost renal function in a population of 

patients with their own physiological variability, implying that the standard set of 

parameters associated to “average” renal function may not be the optimal solution 

for each patient and each session. The aim of biofeedback therapies [64-67] is the 

transition toward a customized, more physiological treatment. Traditional 

hemodialysis can be categorized as open-loop, with direct perturbation of 

biological variables, regardless of patient’s response. In biofeedback treatments, 

biological variables are continuously monitored and collected data is employed to 

modulate further perturbations, implementing a closed-loop methodology. In this 

way, end-session targets are reached along a guided trajectory that is meant to 

avoid complications like IDH. Different biofeedback systems have been proposed 

and implemented on dialysis machines: examples are the Hemocontrol system 

[68] (Baxter, Medolla, Italy), the HFR-Aequilibrium [69] (Bellco, Medolla, Italy) 

and the feedback systems based on the BVM and BTM sensors Fresenius, Bad 

Homburg, Germany) described in paragraph 1.3.  

The Hemocontrol system is a multi-input-multi-output biofeedback system that 

regulates blood volume contraction during the HD session by adjusting UF rate 

and inlet dialysate conductivity dynamically [70]. The system monitors RBV 

variation throughout the session using the on-board optical absorbance sensor, and 

integrates the optical information with data on measured dialysate conductivity 
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and end-session targets for TWL and sodium concentration (or its conductivity 

equivalent). By mean of its control algorithm, the system tries to achieve the 

different end-session targets while avoiding imbalance between volume loss and 

physiological refilling. The influence of Hemocontrol on the occurrence of intra-

dialytic complications has been investigated in many studies [71-76], with 

seemingly positive results regarding the reduction of IDH events. 

 

 

Fig. 1.5 - Example of hemodialysis biofeedback system architecture 

Example of a multi-input multi-ouput (MIMO) controller employing blood volume loss (Δ% BV), 

dialysate equivalent conductivity (EC) and body weight loss (BWL) as controlled and monitored 

variables. (Source: [67]) 
 

The HFR-Aequilibrium system works conceptually in a similar way to 

Hemocontrol, meaning that UF rate and dialysate conductivity are the control 

variables, adjusted by the mathematical controller to avoid the osmotic differences 

between compartments that may lead to hypotension episodes. In this case, the 

monitored biological variable is the conductivity of plasmatic water measured by 

the Natrium biosensor. This system, however, is designed specifically for use 

during hemofiltration with endogenous reinfusion (HFR). Some studies have also 

been carried out to evaluate the effectiveness of this biofeedback system [77,78].  
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In the BVM-based system, the ultrasonic BVM biosensor described in 

paragraph 1.3 is employed as the basis for an RBV feedback system: differently 

from Hemocontrol and HFR-Aequilibrium, the BVM biofeedback only acts on 

UF rate as a control variable [30]. The BTM-based system is an example of 

temperature biofeedback, in which the temperature of dialysate is adjusted on the 

basis of the non-invasive measurement of blood temperature on the arterial and 

venous sides of the extracorporeal circuit. The system can be programmed either 

to deliver isothermal dialysis or to deliver a prescribed change in body 

temperature [79].  

Given the architecture of closed-loop systems, sensor availability strongly 

conditions the innovation in the field of feedback therapies: the future 

development of additional non-invasive sensors for continuous monitoring is a 

main driver for new biofeedback systems able to integrate information from many 

different sources in order to reach a higher therapy customization power. 

 

1.6 Current and future trends in hemodialysis 

 

As described in the previous paragraphs, over the last decades hemodialysis 

evolved from a complex experimental procedure to a standard and widely diffused 

therapy. Such evolution was possible thanks to many different kinds of 

innovations: the development of new biomaterials, the technical achievements in 

electronic and mechanical engineering, and the development of new therapeutic 

systems like biofeedback. Although it could be said that hemodialysis has reached 

now a consolidated form in regard to treatment modalities and machine 

architecture, some new trends are emerging and many open challenges remain, 

concerning both the achievement of optimal treatment and the access to the 

therapy. 

One of the most common targets for innovation in dialysis is the hemodialyzer. 

It has been a few decades since the dialyzer reached its current design based on 

capillary hollow fibers, thanks to the advancements in manufacturing processes 

[80]. Since then, dialyzer innovation has focused more on the alteration of 
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different aspects of the current design: for example, the use of larger pore sizes to 

increase solute clearances (in particular for middle molecules) and changes in 

polymer composition [81]. The use of new biomaterials is also targeted at 

improved biocompatibility. Other possible ways to improve the blood purification 

process include taking advantage of additional phenomena like adsorption or 

membrane functionalization [81]. Generally speaking, the properties of the 

hemodialyzer have constantly improved in the past, and it is expected that this 

slow but steady process will continue in the future. 

Regarding treatment modalities, efforts have been made to move on from the 

traditional schema of thrice-weekly diurnal dialysis to alternatives with lesser 

burdens, for two reasons. The first reason is related to quality of life: long and 

frequent diurnal sessions have a huge social cost on the patient’s life. The second 

reason is medical: normal renal function works continuously at low flux, whereas 

hemodialysis works intermittently at high fluxes and is therefore not 

physiological. The results of these efforts are nocturnal hemodialysis and home 

hemodialysis.  

In nocturnal dialysis, the patient is subjected to a normal in-center hemodialysis 

treatment, but the treatment is carried out during the night, allowing the patient to 

sleep. Treatment can be thrice-weekly [82] as in conventional dialysis or even 

more frequent [83]. The advantage of this kind of treatment is that by having a 

longer session (≃8h at night vs. 4h during day), the achievement of the prescribed 

TWL can be spread over a larger time period, thus leading to a lower UF rate. 

There is also the obvious social advantage of freeing up the patient’s daytime and 

synchronizing with the normal sleep cycle. Nocturnal, in-center hemodialysis is 

associated with improved patient survival and favorable clinical features [82-84].  

Home dialysis is carried out in the patient’s home environment, and is usually 

carried out with shorter but more frequent sessions in respect to conventional 

therapy.  

As for the case of nocturnal hemodialysis, home hemodialysis is associated with 

reported improvements in patient survival and clinical parameters [85,86]. Home 

hemodialysis programs have been started in many countries, but its diffusion is 
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still held back by the technical infrastructural requirements [86,87]. These two 

alternative modalities of treatment can also be combined: some studies reported 

the benefits of at-home nocturnal hemodialysis [88]. Unfortunately, in addition to 

the infrastructural requirements of home dialysis, the problem of remote 

monitoring of the sleeping patient has to be taken into account.  

Another topic which is receiving much attention lately is that of “green” dialysis 

[89,90]. In hemodialysis, dialysate is prepared in real time during treatment by 

mixing ultrapure water from the hospital’s purification system with a super-

concentrated electrolyte bag. For example, an average 4-hours treatment with a 

dialysate flow rate of 500 ml/min results in 120L of water consumed for a single 

session. This makes hemodialysis one of the most water-consuming among 

current medical procedures, which is a concern for multiple reasons. The first is 

environmental, due to the increasing worldwide water scarcity. The second is the 

fact that the requirement of a large water supply makes this therapy inaccessible 

to most developing countries. Many different points of intervention have been 

identified along the hemodialysis water cycle [91].  

A more drastic approach to the reduction of dialysis water consumption is that 

of the regeneration of spent dialysate by the use of dialysate sorbents [92-94]. 

This topic is also related to that of portable and wearable dialysis systems, which 

are an additional step toward a more physiological and comfortable replacement 

of renal function.  Recently, Davenport [95] published a review article on the 

topic of wearable and implantable dialysis devices. Although many technological 

advancements have been made that make these types of devices closer to 

realization, many problems related to anticoagulation, the maintenance of a 

constant vascular access and sorbent life still have to be solved before this new 

step in dialysis therapy becomes reality. 
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1.7 Current limitations to sensing and modeling in dialysis 

 

As stated in the Aim and Outline section, the topics of this doctoral thesis are: 

1. Development of new non-invasive sensing techniques for hemodialysis  

2. Mathematical modeling of the hemodialysis process.  

To be more specific, two new estimation systems are presented and a new 

approach to mathematical modeling of the dialysis session is proposed. In order to 

provide a clearer picture to the reader, this paragraph will list some of the current 

limitations to sensing technologies and mathematical models which the work 

reported in the ensuing chapters aims at overcoming. 

 

• In paragraph 1.3 the Polaschegg step-like protocol for the determination of 

plasmatic conductivity is mentioned. As explained, plasmatic conductivity is a 

valid surrogate for plasmatic sodium concentration. Such protocol, also shown 

in Fig. 1.2, has a time duration in the order of minutes. The step shown in 

figure is 2 minutes long, however commercial systems may take longer time 

for a measurement. Also, the measurement cannot be repeated too frequently, 

since it involves a perturbation of plasmatic electrolytes. For example, the 

already mentioned Diascan system takes a 10-minutes measurement each 30 

minutes. The obvious drawback of this protocol is that it does not allow for 

continuous real-time monitoring but offers only a few data points during the 

session. In Chapter 2, a new plasmatic conductivity estimation system is 

proposed. The new system allows for much faster measurements, thus making 

continuous real-time monitoring possible, without any loss of accuracy. 

• Another sensing method, also reported in paragraph 1.3, is optical ΔRBV 

estimation. Such method has been in use on hemodialysis machines for many 

years: examples are the already mentioned Hemoscan sensor (Baxter, 

Medolla, Italy) or the Hemox sensor (Bellco, Mirandola, Italy). However, 

recent publications [96-97] report the influence of osmolarity modifications on 

this type of estimation procedure. Briefly, changes in the osmolarity of blood 

have the effect of altering the volume of red blood cells, thus modifying the 
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light scattering properties of whole blood and leading to artifacts in ΔRBV 

estimation. In Chapter 3, a measurement system is presented for artifact-free 

optical ΔRBV estimation. The new system relies on enhanced optical sensing 

and integration with other on-machine sensors to remove the effect of 

scattering artifacts from ΔRBV estimation. An additional feature of the 

proposed system is an estimation of plasmatic sodium concentration, which 

also makes it an alternative to the system proposed in Chapter 2 to overcome 

the current limitations of conductivity measurements. 

• In paragraph 1.4, different types of mathematical and numerical models for 

hemodialysis are mentioned. Models with different levels of abstraction serve 

different purposes, and thus have different trade-offs in terms of complexity 

vs. descriptive power. For example, kinetic models are heavily abstracted and 

the description of the behaviour of the whole dialyzer is reduced to two 

coefficients for diffusion and convection. On the other hand, numerical hollow 

fiber models offer a more detailed description of the exchange of solutes and 

fluid along all the fiber, and thus offer potential for design activities. 

However, fiber models are not usually employed to simulate a complete 

dialysis session with evolving patient properties. In Chapter 4, a new approach 

to modeling of the hemodialysis process is proposed, in which a kinetic model 

of the blood pool is coupled to a numerical model of the hollow fiber. The 

proposed method aims at overcoming the limitations reported above while 

preserving the strengths of the two methodologies, namely a simple patient 

representation and a detailed dialyzer representation. 
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Chapter 2 
 

 

Non-invasive conductivity  

measurement in hemodialysis 
 

 

In this chapter, a new method for the direct, continuous and non-invasive 

measurement of the electrical conductivity of liquids contained inside a 

hemodialysis bloodline is presented. This new method shows good results in the 

estimation of conductivity of saline solution and blood-mimicking fluid, in a 

range of values compatible with the conductivity of human plasma, using a very 

compact measurement cell. Thus, this work constitutes an important first step in 

the development of a conductivity measurement system for blood, which is faster 

and more accurate than the current state of the art. 

 

The content of this chapter is based on the article “Non-invasive measurement of 

electrical conductivity of liquids in biocompatible polymeric lines for 

hemodialysis applications”, by Enrico Ravagli, Marco Crescentini, Marco 

Tartagni, and Stefano Severi. At the time of writing (March 2017) the article has 

been submitted to Sensors and Actuators A - Physical and is undergoing the 

review process.  
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Abbreviations 

BMF: Blood-mimicking fluid 

C4D: Capacitively-Coupled Contactless Conductivity Detection 

CPE: Constant Phase Element 

IS: Impedance Spectroscopy 

LP: Lumped Parameters 

R-C: Resistance-Capacitance 

R-CPE: Resistance-Constant Phase Element 
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2.1 Introduction 

 

The monitoring of the electrical properties of a material is an important process 

because such properties are related to its internal structure. Thus, changes in 

conductivity or permittivity can be used to detect alterations in composition. In 

the specific case of fluids, electrical properties are influenced by the presence of 

electrically charged suspensions (i.e. ions). For a mix of water and electrolytes 

with sufficient dilution, conductivity is determined by the concentration of the 

individual ionic species, weighted by ionic mobility [1]. The possibility of using 

electrical conductivity to estimate biological parameters has also been largely 

explored in biomedical engineering and science, with many different target 

tissues, such as blood [2-3] and skin [4].  

A particularly important biomedical application for conductivity monitoring is 

in the field of hemodialysis for chronic patients. Hemodialysis is a periodical 

blood purification treatment for patients with end-stage renal failure [5-6]. During 

the treatment, the blood of the patient is pumped into an extracorporeal circulation 

system and put in contact with a liquid solution, the dialysate, through a semi-

permeable membrane. Contact with dialysate allows toxins removal and 

electrolytes balance through diffusion and convection [7]. 

In this context, conductivity is important as a surrogate for sodium 

concentration measurements.  Knowledge of the trend of sodium concentration 

during the treatment is useful for clinical purposes, but implementing an on-

machine system for repeated blood sampling and chemical analysis is complex 

and expensive. Since electrical conductivity of blood plasma is mainly determined 

by sodium concentration, with a nearly linear relationship, conductivity 

monitoring is a valid substitute for sodium measurements [8]. Unfortunately, 

direct conductivity measurements cannot be carried out because of complications 

in using traditional immersion electrodes in this particular context. The first 

complication is the contact of the electrodes with blood, which demands for the 

electrodes to be either disposable or sterilized after every use. The second 

complication is the lack of biocompatibility of metallic electrodes, which is 
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required for in vivo measurements on patient blood. 

Currently, the state-of-the-art method for plasmatic conductivity estimation 

during standard hemodialysis treatments is based on the theory originally 

developed by Polaschegg [9]. This is an indirect method that allows estimation of 

plasmatic conductivity by applying conductivity steps to the dialysate fluid 

following a dynamic protocol. Briefly: 

i) Conductivity steps are imposed on inlet dialysate by the hemodialysis 

machine, and conductivity is measured on both inlet and outlet dialysate.  

ii) By use of a mathematical formulation, the measured conductivities of 

dialysate before and after its electrolyte exchange with blood can be 

employed to estimate plasmatic conductivity.  

This method presents some disadvantages. The protocol, as currently 

implemented by modern machines, requires a measurement time of about 10 

minutes and is repeated automatically every 30 minutes. Its accuracy is limited 

(typically in the order of 0.1 mS/cm in a 13-16 ms/cm full-scale measurement 

range) and, due to the conductivity steps, it also causes a temporary alteration of 

blood electrolytes content, so conceptually it can be somehow considered 

invasive. 

The C4D (Capacitively-Coupled Contactless Conductivity Detection) is a 

technique employed in electrochemistry for the detection of transition of ionic 

species with different mobility values through an electrophoresis capillary 

exposed to a constant electric field [10-12]. It is one of the many measurement 

techniques proposed in the literature for the estimation of material properties in a 

fast and contactless way [13-16]. The basis of C4D is the capacitive coupling of 

an AC electrical signal between exterior and interior of the line containing the 

fluid. Two ring electrodes placed axially outside the line (Fig. 2.1) couple the 

signal to the fluid. The current finds a flowing pathway through the liquid, and the 

pick-up signal (current) amplitude is analyzed in conjunction with the stimulation 

signal (voltage). The relation between stimulation voltage and pick-up current can 

be analyzed to determine conductivity of the flowing liquid.  
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Fig. 2.1 - C4D System 

Schematic representation of the general setup for a C4D system in voltage-stimulation 

configuration 

 

The C4D technique has been applied to many different pharmaceutical and 

biological samples, as reported in [17-19]. Over the years, the effects of the 

geometry of the measurement cell and of the operating parameters of the system 

(i.e. frequency) have been studied [20-24]. Recently, many evolutions in the 

electronics and measurement aspects of C4D have also been proposed, for 

example the use of the lock-in principle [25-26], phase-sensitive demodulation 

[27] or resonance sensing [28-32]. Contactless impedance cells with geometries 

similar to that of C4D cells have also been used for other purposes, like flow 

measurements [33]. 

The aim of this work is to explore the possibility of developing a contactless 

method to estimate the conductivity of liquids contained in biocompatible 

polymeric line for hemodialysis applications. This method would allow faster and 

more frequent measurements, in addition to being non-invasive and maintaining 

an accuracy equal or better than the traditional method.  

The method we propose is loosely based on C4D regarding the topology of the 

measurement cell, but differs from such technique by using all the information 

available from impedance spectroscopy (IS, magnitude and phase of impedance at 

different frequencies) for conductivity estimation. In our case a quantitative 

estimation of the conductivity of the liquid is given, whereas traditional C4D is 

only used to monitor the time of passage of different ions during electrophoresis. 
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In the following sections, the development and testing of a contactless 

conductimetry cell for biomedical use will be described. The cell was first tested 

with hemodialysis biopolymeric line segments filled with saline solution, to 

validate the measurement principle with a simple fluid. Afterwards, it was tested 

with blood-mimicking fluid (BMF) to study the response of the system to a more 

complex fluid. 

Impedance spectroscopy was used for experimental characterization of the cell 

and for measurements. A lumped-parameters (LP) electrical model of the cell was 

developed, and its performances were evaluated using experimental data as 

reference.  

 

2.2 Methods 

 

The measurement cell was developed to scale the application of the C4D 

principle from the original electrophoresis capillaries to biocompatible lines with 

a diameter in the order of several millimeters. The device was implemented and 

tested by filling a polymeric line segment with liquid samples, first of saline 

solution and then of BMF. Each set of solutions was composed of samples with 

different conductivity values. A LP model of the electrical equivalent circuit of 

the cell was also developed. Characterization of the electrical properties of the 

biopolymer was also helpful in model development. The purpose of the LP model 

was dual: i) experimental data interpretation on a high abstraction level; ii) easy 

conductivity estimation. 

 

2.2.1 Cell prototype 

Our degrees of freedom in cell geometry design were partially limited by the 

intended purpose of use on-board of a dialysis machine, which puts an upper limit 

to cell size. The developed cell (Fig. 2.2) is composed of two cylindrical 

aluminum electrodes of length 20 mm and distance from each other of 70 mm 

(center-to-center), held by two PVC holders. The electrodes are round-shaped, 10 
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mm wide, with internal diameter of 6 mm.  

 

 
Fig. 2.2 - Measurement Cell 

Prototype of our C4D measurement cell with a biocompatible line. Inset: detail of the cylindrical 

electrodes enclosed in the PVC holders. 

 

Electrodes and holders are contained in an aluminum shielding box of 

approximately 115 mm x 60 mm x 30 mm, with two holes on the extremities to 

allow for the insertion of the polymeric line trait. The shielding box is only 

functional to electromagnetic isolation of the electrodes from the outside 

environment, and its size was chosen based on the compactness requirement for 

the cell. Although the cell presented here is a simple version that requires cutting 

and insertion of the line into the electrodes, a version based on two half-electrodes 

and two half-boxes to be clamped around the line, without any alteration to it, can 

be easily manufactured. The line used to contain fluid is a segment of a polymeric 

biocompatible line used for hemodialysis treatment (ArtiSet blood tubing system, 

Baxter, Medolla, Italy), with an external diameter of 6.5 mm and an internal 

diameter of 4 mm. The size of the tubing is fixed by technical requirements for 

hemodialysis: bloodlines from different companies have very similar sizes. 

 

2.2.2 Electrical properties of the biocompatible polymer 

Electrical properties of the biocompatible polymeric line were determined by 
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measuring the impedance of a cut sample placed between two square aluminum 

electrodes of known area and thickness (15 mm x 15 mm x 1.2 mm), as shown in 

Fig. 2.3a. An Agilent E4980A Precision LCR Meter (0.3% accuracy in the chosen 

configuration) was used for impedance measurements in a two-points 

configuration.  This impedance spectroscopy for material analysis was carried out 

in the 0.8-200 kHz frequency range with a 2V voltage amplitude. 

 

 
Fig. 2.3 - Polymer characterization 

(a) Diagram of the polymer characterization process (b) Experimental results and model fitting for 

polymer characterization. Horizontal axis shows the real part of impedance Re(Z), vertical axis 

shows the imaginary part of impedance Im(Z). For better illustration, vertical axis is inverted. 

 

The polymeric square was originally prepared to quantify the dielectric constant 

of the bloodline material on a test sample of known dimensions and size. 

However, the resulting data, reported in Fig. 2.3b, show that the biopolymeric 

material behavior is best described in the lumped-parameters domain as a constant 
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phase element (CPE) [34-36]. CPE is used to describe an imperfect capacitor, 

with a continuous distribution of time constants. This phenomenon is also called 

“frequency dispersion of capacitance” [36]. Its physical origin is thought to be 

fundamentally related to microscopic surface roughness [35], or to 

electrochemical behaviour at the electrode interface, but is still not completely 

clear [36]. In our specific case, it may also be related to the composition of the 

biomedical polymer. The formulation for CPE impedance is described in equation 

(2.1): K is the magnitude of the impedance element expressed in Ohm and α is a 

dimensionless constant. Asymptotic behavior of the CPE impedance is resistive 

for α→0 and capacitive for α→1.  

 

𝑍𝐶𝑃𝐸 =
𝐾

(𝑗𝜔)𝛼
   (2.1) 

 

The software ZView (Scribner Associates, Inc. Southern Pines, North Carolina, 

USA) was used to fit spectroscopy data and estimate parameters contained in eq. 

(2.1), resulting in K=67.705 GΩ   and α= 0,94987. These model-fitting results 

refer only to the sample of the biocompatible material and not to the complete 

device. Fitting results are also shown in Fig. 2.3b. The value of α, which is close 

to 1, indicates that the material is very close to being a pure dielectric, but the 

effect of the CPE behaviour is still significant due to the high value of K. 

 

2.2.3 Preparation of solution samples 

For saline solution, five samples composed of ultrapure deionized water and 

different quantities of sodium chloride (NaCl) were prepared. A 10 - 20 mS/cm 

conductivity range, which includes conductivity values typical for fluids with 

physiological concentration of ions (e.g. blood plasma), was explored. To this 

end, the required NaCl concentration for each sample was calculated according to 

the concepts of molar conductivity and Kohlrausch's law [1]. 

For BMF, four samples composed of Intralipid 20% (Fresenius Kabi Italia Srl, 

Isola della Scala, Italy) and different quantities of NaCl were prepared. To the 
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best of our knowledge, no commonly-used solution for simulating the electrical 

properties of whole blood exists: usually BMFs are used to reproduce its optical 

[37] or fluid-dynamic [38] properties. Intralipid is a fat emulsion used clinically as 

an intravenously-administered nutrient. It has been used in the past as blood-

mimicking fluid for optical experiments [37] due to the presence of spherical 

scattering particles inside the solution. We choose this solution to simulate the 

presence of red blood cells inside our fluid. NaCl was added to Intralipid to rise its 

conductivity from its basic value (≃0.4 mS/cm) to the range of 7-15 mS/cm. This 

range was chosen because whole blood, due to the presence of red blood cells, has 

a lower total conductivity compared to plasma [39].  

The effective conductivity of the samples was then measured at room 

temperature using a Thermo Orion 150 APlus conductivity meter as gold 

standard, with temperature correction to normalize conductivity values to 25 °C. 

 

2.2.4 Impedance Spectroscopy 

Impedance measurements in a two-points configuration were carried out using 

the same instrument employed in section 2.2.2. The terminals of the instrument 

were connected to the electrodes of the cell and the instrument ground was 

connected to the external shielding box. Sweep-mode measurements for 

conductivity estimation were carried out in the 1 - 2 MHz frequency range, with a 

2V amplitude. The frequency range was chosen because of an upper and a lower 

bound. The lower bound was a consequence of the nature of C4D measurements: 

at low frequencies, the impedance of the coupling electrodes becomes very high, 

making the measurement of small impedance variations more difficult. We 

considered 1 MHz a sufficiently high frequency to achieve good sensitivity for 

our target application. The upper bound is given by the intended final use of our 

system, which is measurement on whole blood. Blood is subject to β-transition, a 

change in impedance which occurs at sufficiently high frequencies when current 

starts flowing inside red blood cells instead of around them [40]. We choose 2 

MHz as upper frequency limit, to work in a condition where β-transition is 
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negligible, as it may lead to more difficult modeling of the effect on hematocrit in 

future stages of this work. 

Impedance spectroscopies were carried out after filling the segment with 

samples from the prepared saline and BMF solutions. During each measurement, 

the liquid-filled segment was sealed at both ends with mechanical clamps. The 

tests were carried out for increasing conductivity values, to avoid contamination 

from higher ionic concentration samples to low ones. For each sample, 3 

measurements were taken within minutes from one another and averaged out. 

Data were exported and processed in MATLAB (Mathworks, Natick, USA). 

 

2.2.5 Lumped-Parameters Modeling 

A lumped-parameters model was developed to describe the equivalent electrical 

behavior of the conductimetry cell; the purpose is to use it to fit experimental 

results and estimate conductivity of the saline solution. 

C4D systems are traditionally modeled with a basic capacitance-resistance-

capacitance series circuit as the one shown in Fig. 2.4a, where the capacitances 

CE1 and CE2 represent the coupling between the external electrodes and the liquid 

through the containment line, and the resistance RLP is associated to the resistivity 

of the liquid. 

 

 
Fig. 2.4 - Electrical equivalent models 

(a-b) typical C4D equivalent electrical model and its simplified version. (c-d) best equivalent 

model for our cell and its simplified version 
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 The resistive element decreases its value as conductivity of the liquid increases, 

whereas the parameters of the coupling elements are assumed to be constant. 

Under the hypothesis of a sufficiently accurate manufacturing process, the two 

electrodes have equal capacitance and can be represented by a single equivalent 

capacitor CLP as shown in the simplified resistance-capacitance (R-C) model of 

Fig. 2.4b. Mathematical formulation for the R-C model is: 

 

𝑍𝐿𝑃(𝑗𝜔) = 𝑅𝐿𝑃 +
1

𝑗𝜔𝐶𝐿𝑃
   (2.2) 

 

In our specific case, though, the characterization of the electrical properties of 

the polymeric material led to the decision to replace the two capacitances CE1 and 

CE2 with two CPE elements, for a better description of the coupling process 

through polymeric line (Fig 2.4c). The CPE behavior is reasonably attributable to 

a non-purely dielectrical interaction between the biocompatible line and the 

aluminum electrode. Although this phenomenon was at first unexpected, the use 

of spectroscopic characterization as part of the measurement procedure allowed us 

to estimate conductivity of the solution, independently from the presence of CPEs 

instead of pure capacitances. Because coupling can be assumed to be the same for 

both electrodes (with negligible manufacturing differences), the model can be 

further simplified with the series equivalent of the two CPE elements (R-CPE 

model, Fig. 2.4d). The impedance of this model is: 

 

𝑍𝐿𝑃(𝑗𝜔) = 𝑅𝐿𝑃 +
𝐾𝐿𝑃

(𝑗𝜔)𝛼𝐿𝑃
    (2.3) 

 

Spectroscopy data was fitted using the ZView software, as done in section 2.2.2 

for the polymeric sample. For comparison, spectroscopy data collected with saline 

solution samples was fitted to both the R-C model described by eq. (2.2) and R-

CPE model described by eq. (2.3), although the R-CPE model proved to be the 

best choice. For this reason, BMF data was directly fitted only with the R-CPE 

model. 
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2.2.6 Frequency range reduction analysis 

As described in section 2.2.4, the frequency range for impedance measurement 

was chosen by considering the requirements of the C4D technique and the electric 

properties of blood. The modeling process in section 2.2.5 was, at first, carried out 

on the whole spectroscopy dataset in the 1-2 MHz range. However, the modeling 

process is also the foundation of our conductivity estimation method: for this 

reason, we analyzed the robustness of the method on narrower frequency ranges. 

We repeated the R-CPE modeling-based estimation process on three subsets of 

the original dataset using a 100 KHz range (0.1 MHz, 1/10th of the original range), 

to evaluate the effect of the range-narrowing process at the lower (1.0-1.1 MHz), 

middle (1.45-1.55 MHz) and upper end (1.9-2.0 MHz) of the dataset. This range 

reduction analysis was done for both the saline and BMF datasets. 

 

2.3 Results 

 

As previously described, the first set of measurements and analyses was carried 

out with saline solution samples. Reference conductivity σSol for the five saline 

solution samples was 10.50, 12.99, 15.52, 17.98 and 20.6 mS/cm.  

Fig. 2.5 reports impedance spectroscopy results on the complex plane. As 

described in section 2.2.4 and shown in the inset of Fig. 2.5, three complete 

frequency sweeps were carried out for each conductivity value, to assess the 

repeatability of the measurement process. It can be noticed that the cell response 

to an increase in frequency is a reduction in the impedance magnitude and the 

conservation of a constant phase. The reduction in the real part of impedance as a 

response to the increase in measurement frequency is the clearest indicator of the 

CPE behavior. The asymptotic value of impedance magnitude for infinite 

frequency is different from zero due to the presence of the saline solution’s 

resistive effect.  

 



42 
 

 

Fig. 2.5 shows that the developed system can detect changes in the conductivity 

of fluid without direct contact with the fluid itself, effectively achieving our 

target. Changes in a physiological range of conductivities correspond to evident 

changes in the real part of the total impedance.  

Result from fitting experimental spectroscopies in the complete measurement 

frequency range with the R-C and R-CPE model are shown in Fig. 2.6. 

R-C fitting returned CLP=3.56 pF, referring to eq. (2.2). R-CPE fitting returned 

KLP=8.9934 TΩ and αLP=0.942, referring to eq. (2.3). Due to RLP being the 

resistance associated with the current path through the liquid, its value is 

dependent on the value of σSol. Values of RLP obtained when fitting data with the 

R-C and R-CPE models are reported in Table 2.1, which also reports estimated 

values with the R-CPE model when narrower frequency ranges are employed, as 

described in section 2.2.6.  

 
Fig. 2.5 - Impedance spectroscopy results for saline solution samples 

Results of experimental impedance spectroscopies in the 1-2 MHz range performed on the 

conductivity cell with different conductivity values of the solution. Horizontal axis shows the real 

part of impedance Re(Z), vertical axis shows the imaginary part of impedance Im(Z). For better 

illustration, vertical axis is inverted. Inset: detail of the three frequency sweeps carried out for each 

conductivity value. 
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Results of the fitting procedure are consistent with the preliminary results 

obtained in section 2.2.2 for the characterization process of the polymeric 

material. 

 

 
Fig. 2.6 - Model fitting of experimental data for saline solution samples 

Fitting of experimental data (dots) with lumped-parameters models (lines). (a) Fitting with R-C 

model. (b) Fitting with R-CPE model. In both panels, horizontal axis shows the real part of 

impedance Re(Z) and vertical axis shows the imaginary part of impedance Im(Z). For better 

illustration, in each panel vertical axis is inverted. For the same purpose, only 1 every 10 data 

points is reported in figure for each spectroscopy. 
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Value of αLP from eq. (2.3) shows only a small difference compared to the value 

of α in eq. (2.1), and the difference between KLP from eq. (2.3) and K from eq. 

(2.1) can be ascribed to the different geometries of the systems under analysis. 

The gap between the estimated RLP values for the two models can be easily 

explained by the fact that in the R-C case, the fitting algorithm is forced to fit the 

CPE behavior of the AC coupling to a purely capacitive element. To do so and 

minimize fitting error, RLP is improperly adjusted for compensation. It is clear 

from Fig. 2.6a that the traditional R-C model typically employed in C4D 

applications is not a good choice for our system because a purely capacitive 

coupling cannot correctly describe the frequency dispersion in the real part of 

impedance. Fig. 2.6b shows that the R-CPE model is a much better solution and 

describes very well the behavior of the cell in the chosen frequency range.  

To quantify the goodness-of-fit of the R-C and R-CPE models, we used a 

mathematical formulation based on the deviation of model impedance values from 

the experimental data points. This formulation, reported in eq. (2.4), was used to 

TABLE 2.1 

FITTING OF RESISTANCE ELEMENT IN LUMPED-PARAMETERS MODELING FOR SALINE SOLUTION 

Frequency 

Range 

RLP (R-C model) 

[Ω] 

RLP (R-CPE model) 
[Ω] 

σSol,Exp      

[mS/cm] 
σSol,Est 

[mS/cm] 
σ error (r.m.s.) 

[mS/cm] 

Complete 

(1.0-2.0 

MHz) 

8746 6099 10.50 10.56 

0.0566 

7565 4921 12.99 12.89 

6683 4042 15.52 15.50 

6091 3452 17.98 18.00 

5631 2994 20.60 20.62 

Low 

(1-1.1 MHz) 

- 6016 10.50 10.60 

0.0696 

- 4830 12.99 12.88 

- 3946 15.52 15.48 

- 3352 17.98 17.99 

- 2894 20.60 20.64 

Middle 

(1.45-1.55 

MHz) 

- 6126                                10.50 10.5705   

0.0545 

- 4945 12.99 12.8943    

- 4063 15.52 15.5111    

- 3473 17.98 18.0034    

- 3015 20.60 20.6107 

High 

(1.9-2.0 

MHz) 

- 6209 10.50 10.56 

0.0488 

- 5043 12.99 12.90 

- 4170 15.52 15.52 

- 3579 17.98 18.01 

- 3121 20.60 20.60 
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calculate relative dispersion for each frequency and conductivity value of the 

dataset.  

 

𝐸 =  √(
𝑅𝑒{𝑍𝑀𝑂𝐷}−𝑅𝑒{𝑍𝐸𝑋𝑃}

𝑅𝑒{𝑍𝐸𝑋𝑃}
)
2

+ (
𝐼𝑚{𝑍𝑀𝑂𝐷}−𝐼𝑚{𝑍𝐸𝑋𝑃}

𝐼𝑚{𝑍𝐸𝑋𝑃}
)
22

   (2.4) 

 

Mean relative dispersion on the whole dataset was calculated for each model for 

the purpose of comparison of model performances in reproduction of 

experimental data, resulting in EC,Mean=0.0667 and ECPE,Mean=0.0100. The resulting 

mean relative dispersion is 6.67 times higher for the R-C model compared to the 

R-CPE model. The ratio between the two dispersions demonstrates quantitatively 

that the R-CPE fits better the experimental data, which is already qualitatively 

evident from Fig. 2.6a-b.  

From this point on, RLP refers to the resistance element of the R-CPE model. 

Resistance RLP is related to the conductivity of the solution by the internal 

cylindrical geometry of the tubing: for this reason, the relationship between 

admittance GLP, the reciprocal of RLP, and σSol was investigated. Such relationship 

is theoretically linear. Because of the aim of the work, which is to estimate 

conductivity σSol starting from the impedance spectroscopy results, linear 

regression was used to estimate conductivity σEst of the solution from the 

admittance values of GLP. Fig. 2.7 summarizes the steps of the conductivity 

estimation process. Fig. 2.8 shows the correlation between reference conductivity 

σSol (measured with Thermo Orion 150 APlus) and conductivity σEst linearly 

estimated from GLP. Calculations yielded a root mean square (r.m.s.) error of 

0.0566 mS/cm on the complete frequency range. 

 By applying Ohm’s second law to RLP and σSol values, the average detection 

path length was found to be ≃7.9cm. This value is slightly higher than the center-

to-center distance between electrodes since the entire electrodes surface 

contributes to the flow of current, even if the current density is not constant over 

the electrode. As a result, applying the Ohm’s second law to RLP and σSol must 

give a mean detection path value comprised between the start-to-start distance 
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(i.e. 5 cm) and the end-to-end distance (i.e. 9 cm).  

The second set of measurements was carried out using the BMF described in 

section 2.3. Reference conductivity σSol for the four BMF samples was 7.19, 9.66, 

12.77, 14.15 mS/cm.  

Table 2.1 reports estimated conductivity values and r.m.s. errors of the saline 

solution dataset for the complete and for the reduced frequency ranges. 

 

 
Fig. 2.7 - Conductivity estimation 

Steps of the model-based conductivity estimation process 

 

 
Fig. 2.8 - Conductivity estimation results for saline solution samples 

Correlation between experimentally measured conductivity of the saline solution (σSol) and 

conductivity values estimated from model admittance (σEst) is reported by dots. Ideal results 

(estimated=experimental) are shown as reference by the slashed line. 
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Fig. 2.9 - Model fitting and conductivity estimation for BMF data 

(a) Fitting of BMF experimental data (dots) with the lumped-parameters R-CPE model (lines). For 

better illustration, only 1 every 10 data points is reported in figure for each spectroscopy. (b) 

Correlation between experimentally measured conductivity of BMF and conductivity values 

estimated from model admittance (dots), with ideal results (estimated=experimental) as reference 

(slashed line). 

 

Fig. 2.9a shows impedance spectroscopy results for BMF and model-fitting 

results obtained with the R-CPE model. Fitting was carried out directly with the 

R-CPE model, given the shape of complex impedance data: the trend in response 

to different frequencies is similar to that of the saline solution spectroscopies 

reported in Fig. 2.5 and Fig. 2.6, which were shown to be better represented by the 

R-CPE model. 

R-CPE fitting returned KLP=78.16 GΩ and αLP=0.9310, referring to eq. (2.3). 
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The disparity between these fitting values and those extracted in measurements 

with saline samples will be discussed in the next section. 

Values of RLP for the BMF data are reported in Table 2.2, along with estimated 

values for narrower frequency ranges. 

 

 

 

The same conductivity estimation procedure used for saline solutions, based on 

linear regression and schematized in Fig. 2.7, was applied to BMF data, with the 

results shown in Fig. 2.9b. Table 2.2 also reports estimated conductivity values 

and r.m.s. errors of the BMF solution for the complete and for the reduced 

frequency ranges. 

By applying Ohm’s second law to the RLP and σSol values for BMF, the average 

detection path length was found to be ≃6.8cm. 

 

2.4 Discussion 

 

In this work, we developed a conductivity cell that allows the estimation of the 

conductivity of a fluid without direct contact between the liquid and the 

TABLE 2.2 

FITTING OF RESISTANCE ELEMENT IN LUMPED-PARAMETERS MODELING FOR BLOOD-

MIMICKING FLUID 

Frequency 

Range 

RLP (R-CPE model) 
[Ω] 

σSol,Exp      

[mS/cm] 
σSol,Est 

[mS/cm] 
σ error (r.m.s.) 

[mS/cm] 

Complete 

(1.0-2.0 

MHz) 

7599 7.19 7.21     

0.0608 
5596 9.66 9.65   

4216 12.77 12.68    

3744 14.15 14.22 

Low 

(1-1.1 MHz) 

7464 7.19 7.22     

0.0789 
5456 9.66 9.65    

4096 12.77 12.65    

3616 14.15 14.25 

Middle 

(1.45-1.55 

MHz) 

7620 7.19 7.21  

0.0594 
5617 9.66 9.66   

4239 12.77 12.68    

3767 14.15 14.22 

High 

(1.9-2.0 

MHz) 

7773 7.19  7.21    

0.0453 5770 9.66 9.66    
4372 12.77 12.70   

3904 14.15 14.21 
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measurement electrodes. The cell exploits the principles of capacitive coupling 

and impedance spectroscopy, and avoids the use of disposable electrodes or their 

periodical sterilization. The cell was designed to work in conjunction with 

biocompatible polymeric lines used for hemodialysis applications.  The range of 

conductivities chosen for testing reflects this biomedical application: the 10-20 

mS/cm range comprehends the conductivity values of medical saline solutions and 

human plasma in normal physiological conditions, whereas the lower 7-15 mS/cm 

range is closer to the physiological conductivity of whole blood, which is lower 

than plasma. A typical full-scale measurement range for plasmatic conductivity 

estimation is, as reported in the Introduction, the 13-16 mS/cm range. The exact 

relationship between plasma and blood conductivity is dependent on the 

hematocrit. 

Regarding the dimensions of the system, the main boundary in cell design was, 

as explained in the Methods section, the compactness required to allow on-board 

use on hemodialysis machines. However, some words can be spent on the effects 

of geometrical parameters on sensors response. Cell geometry has been analyzed 

in several C4D papers both theoretically and experimentally (see for example [10] 

and [20-23]) and we can expect the results to carry over, conceptually, to our 

larger cell. The main geometrical effects regard electrodes. An increase in 

electrode length also increases coupling surface, effectively decreasing amplitude 

of the CPE element and its weight on total impedance of the sensors. Increasing 

the distance between electrodes has a two-fold effect: on one side, it increases 

resistance of the solution due to Ohm’s second law, because the current path is 

longer. This is a positive effect, as it increases the weight of conductivity of the 

liquid on the total cell impedance, increasing sensitivity.  However, given the 

same voltage amplitude, the picked up current in the case of longer path is weaker 

due to the higher resistance. This may be a problem with custom measurement 

circuits as it can affect the signal-to-noise ratio. Short distance between the 

electrodes also leads to additional current flow paths across air instead of liquid, 

which means that stray capacitances are present. For this reason, length and 

distance should both be increased when possible, but within reasonable limits.  
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The LP model gives a simple method for conductivity estimation from 

impedance measurement results. Although the quality of the lumped-parameters 

model is critical, the goodness-of-fit approach we developed demonstrated that 

the proposed cell, together with the R-CPE LP model, estimates the conductivity 

with a global r.m.s. error of 0.057 mS/cm on saline solution and 0.061 mS/cm on 

BMF, which correspond respectively to ≃0.5% and ≃0.6%   of the measurement 

range. This accuracy is comparable to that of the laboratory conductivity meter 

used as gold standard and is also in line with the accuracy of the current 

estimation systems. This result demonstrates the effectiveness of the developed 

system and its practical usefulness in a clinically relevant measurement range. 

Also, analysis of the conductivity estimation process on narrower subset of the 

chosen frequency range resulted in similar r.m.s. errors for each subset, for both 

saline solution and BMF. A slight trend of lower error with increasing frequency 

was noticed for both fluids (≃0.4% error in the higher-end subset). This result 

shows the robustness of our modeling-based estimation processes, which can be 

applied using just 1/10th of the original frequency range. 

The use of a CPE, instead of a standard capacitance, in the LP model is a key 

aspect for the proposed method, since the impedance spectroscopy approach 

allows accurate estimation of conductivity regardless of the AC coupling 

behavior.  

The estimation of different KLP and αLP values for the saline and BMF datasets, 

along with the different estimated path length (7.9 cm for saline solution and 6.7 

cm for BMF) are indicators of the fact that the nature of the fluid inside the line 

affects the coupling process. In our specific case, particles with dielectric 

properties are suspended inside the solution. Although each dataset is self-

consistent regarding conductivity estimation, a calibration process for CPE 

parameters may be needed in future stages of the work if different fluids are 

expected to flow inside the line.  

In the last stage of the estimation process, conductivity is computed starting 

from admittance of the liquid. According to Ohm’s second law, only a scaling 

coefficient is needed for this task, to account for the geometry of the conductor. 
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However, by using linear regression, we carried out this procedure by determining 

both a gain factor and an offset coefficient. The presence of the offset coefficient, 

which in practical terms correspond to an additional parameter in the model, 

provides an additional degree of freedom in fitting the experimental data, without 

excessively increasing the complexity of the model. In future stages of this work, 

the possibility of removing this parameter will be evaluated depending on its 

effect on sensitivity. 

Our system provides a significant increase in measurement speed and repetition 

with respect to the traditional method. The time required for multiple averaged 

frequency sweeps and the consequent model-fitting procedure is less than one 

minute, while the Polaschegg protocol usually requires 10-minutes so as to get a 

good estimate. Moreover, the traditional method cannot be used too frequently 

because it perturbs blood electrolytes concentrations: our method, being non-

invasive, is limited in repetition only by the sampling time of the individual 

measurement. 

 The accuracy of the proposed conductivity cell can be enhanced using a 4-

point approach but it leads to an increase in complexity, economic cost and 

physical space occupied by the cell. The accuracy reached by our 2-point system 

is sufficient for the biomedical target application, and an increase in volume 

would have a negative impact on the compactness of the sensor bar of the 

hemodialysis machine. From a cost/benefit standpoint, it is better to improve the 

accuracy through a calibration procedure rather than complicating the system.  

 

2.5 Conclusions 

 

In conclusion, the proposed system is a promising tool in hemodialysis 

conductivity estimation, with the important properties of non-invasiveness, 

compactness and direct fast continuous estimation. 

Future objectives regarding this work include the development of a portable 

device to carry out impedance spectroscopy in the required frequency range and 

the modeling and experimental investigation of the effect on measurements of 
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transition from saline solutions and BMF to real blood. An in-depth 

electrochemical analysis may also be useful to characterize in more detail the 

possible interaction effects at the polymer/liquid interface. 

In this chapter, a new measurement technology, capable of monitor plasmatic 

conductivity directly on the bloodline, was proposed. In the next chapter, a 

different approach will be introduced:  Chapter 3 shows how it is possible to act 

on pre-existing sensors to improve the quality of measurements.  
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Chapter 3 
 

 

Estimation of relative blood volume 

and plasmatic sodium concentration 

during hemodialysis 
 

 

 

In this chapter, a new system for the conjoined estimation of two important 

hemodialysis-related physiological variables is presented. The system employs a 

mathematical estimator based on the widely known Kalman filter theory to merge 

data from multiple sensors, both newly-designed and already on-board, with 

modeling knowledge about the hemodialysis process. The estimation accuracy for 

both variables proved to be comparable with that of reference data and, in general, 

high enough for relevance in a clinical context. 

 

The inclusion of plasmatic sodium as a state variable in our estimator constitutes 

an addition or alternative to the approach presented in Chapter 2 regarding direct 

measurement of plasmatic conductivity on the bloodline tubing, given that sodium 

is one of the main determinants of plasmatic conductivity.  

 

The content of this chapter is based on the article “A New Method for Continuous 

Relative Blood Volume and Plasmatic Sodium Concentration Estimation during 

Hemodialysis”, by Enrico Ravagli, Mattias Holmer, Leif Sornmo, and Stefano 

Severi. At the time of writing (March 2017) the article is in preparation for 

submission to a scientific journal of the biomedical engineering field.  
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Abbreviations 

ΔRBV: Relative blood volume loss  

σPl: Plasmatic conductivity 

CKI: Chronic kidney injury 

D: Dialysance 

Hgb: Hemoglobin 

RBC: Red blood cell 

UF: Ultrafiltration 

 

 

 

Keywords: 

Hemodialysis; Blood; Optical sensor; Optical measurements; Kalman filter; 

Relative blood volume; Sodium. 
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3.1 Introduction 

 

Hemodialysis is a therapy employed for treating patients with chronic kidney 

injury (CKI) [1-2], usually performed 3–4 times a week and lasting 3–5 hours. 

The treatment has three main goals of which the first is to remove excess body 

water accumulated between sessions. This goal is achieved by ultrafiltration (UF), 

a process for the removal of liquid from blood. The second goal is to remove 

uremic toxins, also accumulated between subsequent sessions. The third goal is to 

restore the proper balance of electrolytes in the blood, so as to maintain the body 

homeostasis. Hemodialysis is based on the two phenomena of diffusion and 

convection, which allow mass transfer of water and solutes across the membrane 

of the hemodialysis filter (hemodialyzer) [3] is achieved. The hemodialyzer is a 

cylindrical bundle of hollow fibers designed to maximize the exchange surface 

area. Inside, blood and dialysis fluid (dialysate) flow in counter-current on 

opposite sides of the membrane [4]. 

In modern hemodialysis, much emphasis has been placed on the development of 

non-invasive methods for the collection of physiological information, carried out 

either by applying sensors directly on the patient [5] or by accessing the 

hemodialysis machine [6–7] during the treatment.  In addition to being important 

for patient safety and for clinical knowledge gathering, continuous or semi-

continuous monitoring of physiological parameters plays a key role as input to 

biofeedback systems [8–11]. 

 Examples of physiological parameters subject to investigation are relative 

blood volume loss (ΔRBV), dialysance (D) and plasmatic electrical conductivity 

(σPl). ΔRBV quantifies the effect of UF and vascular refilling, and is continuously 

monitored by optical [12–14] or ultrasonic [14–16] means. The parameter D 

quantifies dialysis efficiency, and can change during treatment. σPl is a surrogate 

for plasmatic sodium concentration NaPl, which currently cannot be measured in a 

direct, continuous and non-invasive way. Both D and σPl are estimated at fixed 

time intervals during treatment by applying conductivity steps to the inlet 

dialysate and measuring the outlet dialysate conductivity response [17–18].  
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Optical ΔRBV estimation is based on the absorbance of hemoglobin (Hgb), 

which is almost completely contained inside the red blood cells (RBCs). In simple 

optical sensors, a LED and a photodiode are used to detect absorbance changes 

linked to variations in RBC concentration. The number of RBCs is nearly constant 

during treatment, so hemoconcentration is mainly caused by a water removal due 

to UF that is larger than the plasma-refilling rate.  Recently, it was reported that 

ΔRBV estimation by optical sensors is afflicted by a cross-sensitivity to changes 

in concentration of electrolytes [19-20]. Drastic changes in dialysate sodium 

concentration can lead to under- or overestimation of ΔRBV. Such changes can be 

explained by considering the action of osmolarity on RBC volume. Sodium, being 

one of the highest-concentrated solutes in both dialysate and plasma, is a main 

driver of osmolarity. Dialysate sodium variations propagate to plasma due to 

diffusion across the hemodialyzer membrane. Consequently, a water shift takes 

place across the membrane of RBCs to balance inner and outer osmolarity, 

thereby changing their volume. This volume variation alters local Hgb 

concentration and leads to a modification of the absorbance and scattering 

properties of blood. Although the relationship between hemoconcentration, 

osmolarity and the optical properties of blood has already been investigated [21], 

the influence of osmolarity on ΔRBV estimation is still an important issue to deal 

with, in order to get a correct estimate during the dialysis session.  

In whole blood, light propagation along different trajectories takes different 

names: transmittance, reflectance, scattering. The fact that propagation in different 

directions depends on both hemoconcentration and osmolarity constitutes the 

biophysical principle underlying the present work.  

Our aim is to develop a method for an accurate estimation of blood composition 

during hemodialysis treatment, represented by ΔRBV and NaPl, which we 

consider to be a simple, yet highly descriptive set of physiological parameters. To 

accomplish our aim, we have designed an optical measurement system that uses 

plastic fiber optics to collect light propagation data at multiple angles. The data 

produced by this system is then augmented with data obtained from built-in 

sensors of the hemodialysis machine. Another novelty of the present study is the 
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formulation of a state-space model, which is employed to determine ΔRBV and 

NaPl using the optimal mean square error estimator, i.e. the Kalman filter. ΔRBV 

and NaPl are accurately estimated in real time throughout the treatment session. 

Section 3.2 describes the new optical measurement system and the protocol 

used to collect experimental data. This section also describes the differential 

equations underlying the state-space model as well as the Kalman filter. Section 

3.3 presents the results in terms of estimation errors of ΔRBV and NaPl, followed 

by a discussion in section 3.4. 

 

3.2 Methods 

 

3.2.1 Optical measurement system 

Traditional optical sensors for ΔRBV monitoring are composed of an infrared 

LED and a photodiode receiver placed either across or on the same side of the 

extracorporeal blood tube. The peak wavelength of the emitter is usually set to 

800–810 nm, corresponding to that point of the Hgb absorption spectra where 

absorption is not dependent on oxygenation. The photodiode collects either 

reflected or transmitted light depending on its position. In certain 

implementations, an optically transparent flow-through cell (cuvette) may be 

employed to improve measurement accuracy. Figure 3.1a displays a simplified 

illustration of the traditional design where both reflection and transmission 

geometries are represented. 

The new measurement system extends the architecture of the traditional design 

to collect light at different geometrical angles with respect to the emitter, allowing 

for discrimination between reflected, scattered and transmitted light. A loss in 

transmitted light due to an increase in scattering is not falsely detected as an 

increase in absorbance, if, at the same time, the scattered light is picked up by a 

different receiver.  
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Fig. 3.1 - Optical measurements on the hemodialysis bloodline 

(a) Two traditional design geometries for optical RBV monitoring. PD (T) and PD (R) represent 

photodiode placement in transmission and reflection geometries, respectively. (b) Schematic 

representation of the new measurement system. PD1 to PD4 are the light-collecting photodiodes. 

NI-6008 is the acquisition board. 

 

During preliminary tests, a preliminary measurement setup with light collection 

channels at 0°, 45°, 90°, 135° and 180° was used. Preliminary tests consisted in 

optical measurements carried out during in-vitro dialysis sessions with animal 

blood, with perturbation of ΔRBV and NaPl. The specific details of the 

preliminary experiments are reported in the next subsection (3.2.2), since the same 

kind of protocol was used for the experiments described in this chapter. In the 

final setup, it was chosen to place light collection channels at 0°, 45°, 90° and 

180° only, as shown in Fig. 3.1b. The 135° channel was deemed unnecessary after 

analysis of the preliminary data (example shown in the Results section).  

 All channels are placed radially along the normal section of the blood flow, 

except for the reflection channel (0°), which is slightly shifted along the flow 

direction to allow placement of the emission fiber. Both emitted and collected 
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light is coupled to and from the bloodline using plastic fiber optics (ESKA 

GH4001, Mitsubishi Rayon).  

A mechanical open-and-close housing was built for compatibility with the 

Artiset bloodline (Baxter, Medolla, Italy), employing high-absorption material for 

the part of the housing enclosing the bloodline’s cuvette. The housing guarantees 

tight coupling between the fiber optics channels and the surface of the cuvette. 

A multiple wavelength LED emitter (MTMD6788594SMT6, Marktech 

Optoelectronics, NY, USA) was used for light emission, coupled to fiber surface 

with a custom, 3D-printed mechanical interface. The emitter includes 5 LEDs on 

the same chip, with peak wavelengths in the red/infrared region, covering a 

spectral band in the range of ≃650-1000 nm with some gaps. As already 

explained, traditional Hgb sensors employ a ≃800-810 nm light source. However, 

we choose this source with multiple wavelength for compatibility with another 

experiment which was carried out simultaneously with the light propagation 

measurements and involved the analysis of spectral absorbance of blood. Such 

experiment did not return significant results and it is not reported in this thesis. 

The choice of a source with multiple peak wavelengths could, theoretically, lead 

to inaccurate measurements. After careful consideration, it was decided to employ 

the wideband source anyway, for reasons reported in the Discussion section. 

Photodiodes with specific fiber-coupling mechanics (IFD91, Industrial Fiber 

Optics, Tempe, USA) were chosen for light collection channels, corresponding to 

PD1–4 in Fig. 3.1b. The photodiodes were housed on a printed circuit board along 

with analog circuitry for transimpedance amplification, lowpass filtering and gain-

stage amplification. The cutoff frequency of the lowpass filter was set to 30 Hz. 

The gain was set to channel-specific values, based on preliminary testing and 

calibration. The analog outputs were sampled at a rate of 100 Hz with 12-bit 

resolution using an NI USB-6008 DAQ card (National Instruments Italy Srl, 

Milano, Italy) and recorded by a custom LabView Virtual Instrument.  

The multi-LED emitter, the signal conditioning board and the DAQ card were 

assembled together on a 3D-printed housing and placed inside a grounded 

metallic box for electro-magnetic shielding, provided with openings for fiber 
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optics, data connection and power supply. 

 

3.2.2 Experimental sessions 

An experimental protocol for in-vitro hemodialysis sessions with perturbations 

of ΔRBV and/or NaPl was designed to gather robust and representative data for the 

development and validation of the proposed estimation method.  

12 in-vitro hemodialysis sessions were carried out using fresh heparinized 

bovine blood and an Artis hemodialysis machine (Baxter, Medolla, Italy). Before 

each session, hematocrit was measured with the capillary centrifugation method 

and the blood was diluted with saline solution to achieve 30% hematocrit. For 

each session, the starting volume of the blood was VB,0=5l. The blood flow rate JB 

and dialysate flow rate JD were set to typical clinical values, i.e. JB=300 ml/min 

and JD=500 ml/min. 

During clinical hemodialysis, water removal from the patient’s blood pool is 

partially compensated by refilling–a phenomenon in which liquid shifts from 

other body compartments to the circulatory system to maintain physiological 

blood pressure. Refilling is simulated in the sessions by using a peristaltic pump 

and a container of fresh dialysis fluid, with a chemical composition similar to 

plasma; see Fig. 3.2a for a schematic diagram of the setup. 

Relative blood volume loss was implemented by setting the ultrafiltration rate to 

JUF=0.8 L/h and the refilling rate to JRef=0.63 L/h. The difference between these 

flows allowed reaching a physiological end-session ΔRBV of ≃10%. 

Changes in NaPl were implemented by applying steps to the inlet dialysate 

sodium concentration NaDial,In. Changes in NaDial,In propagate to NaPl by diffusion 

across the membrane of the hemodialyzer in a manner that can be approximated 

as a first-order response. The concentration was initially set to 140 mM, and then 

two steps of ±7mM were applied before returning to 140 mM. Each concentration 

value was maintained for 45 min. The order of the positive and negative steps is 

changed between sessions. The protocol is illustrated in Fig. 3.2b. 
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Fig. 3.2 - The experimental setup and protocol 

(a) Diagram of the experimental setup. (b) Sodium step protocol for the inlet dialysate NaDial,In. 

The dotted line shows the dual protocol with inverted steps. The large black dots indicate the times 

for blood gas sampling. (c) Diagram of the hemodialyzer with inlet/outlet ports for blood and 

dialysate. Conductivity cells measure the inlet (σIn) and outlet (σOut) dialysate electrical 

conductivity. The dotted black line represents the bypass condition. 
 

Each session was composed of a 1-h adjustment phase followed by a 3-h 

experimental phase. The adjustment phase was designed to achieve equilibrium 
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between dialysate and blood in an effort to improve reproducibility of the 

experimental sessions, since each fresh volume of bovine blood comes with very 

different plasmatic concentrations of electrolytes. During the adjustment phase 

NaDial,In is maintained constant. In this way, the blood reaches standard initial 

conditions before the start of the actual experiment. The achievement of 

concentration balance for electrolytes is accelerated by setting JUF=JRef=0.8 L/h in 

this phase, and thus blood volume is kept constant. For notation purposes, t=0 

indicates the start of the 3-h experimental phase. 8 sessions out of the total of 12 

were carried out with UF, refilling and sodium steps. 2 of the 12 sessions were 

carried out with JUF=JRef=0 to evaluate the isolated effects of NaPl variations on 

the measurement system. The remaining 2 sessions were carried out with constant 

NaDial,In concentration to evaluate the isolated effect of ΔRBV. Of the last two 

sessions, one was carried out with NaPl(0)=NaRef=140 mM, whereas the other with 

NaPl(0)=NaRef=145 mM to simulate a realistic case with a hyper-natremic patient. 

Samples for blood gas analysis were taken at the start and end of the session and 

at each 45 min in-between (indicated as black dots in Fig. 3.2b). A Stat Profile 

pHOx Ultra blood gas analyzer (Nova Biomedical, Waltham MA, USA) was used 

to determine electrolyte concentration. At the end of each session, the internal 

session log of the hemodialysis machine was downloaded to access internal sensor 

data (ultrafiltration rate JUF, dialysate inlet conductivity σIn, dialysate outlet 

conductivity σOut), see Fig. 3.2c. 

 

3.2.3 Data pre-processing 

For all signals, moving average filtering was the technique of choice for signal 

smoothing. In each case, an appropriate window length was chosen, in order to 

remove as much noise as possible without introducing significant delay. Median 

filtering was the technique of choice for removal of very short spike-like artifacts, 

present in some of the recorded signals. 

Data recorded from the optical measurement system were subjected to median 

filtering with a 10-samples window followed by moving average smoothing with 
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a 5000-samples window. Data from the 3-h experimental phase was then 

converted to relative optical power variations according to: 

 

𝛥𝑅𝑃𝑖(𝑡) =
𝑉𝑂𝑢𝑡,𝑖(𝑡)−𝑉𝑂𝑢𝑡,𝑖(0)

𝑉𝑂𝑢𝑡,𝑖(0)
     𝑖 = 1,2,3,4  (3.1) 

 

where VOut,i(t) is the recorded analog voltage output and i indicates output 

channel.  

The signals JUF(t), σIn(t) and σOut(t) were recorded by the session logger of the 

machine at FS=0.1 Hz. As for the optical data, only data from the 3-h experimental 

phase was analysed. The signal JUF(t) underwent median filtering with a 5-sample 

window, whereas σIn(t) and σOut(t) were smoothed by moving average filtering  

with a 5-sample window.  

Throughout the session, the hemodialysis machine is temporarily switched to 

bypass mode, either for safety reasons or for the purpose of internal recalibration. 

During bypass, ultrafiltration is suspended and the hydraulic connection of 

dialysate to the hemodialyzer is short-circuited, see Fig. 3.2c, meaning that data 

from the conductivity cells (σIn(t), σOut(t)) is not useful. Using the session log, a 

binary signal indicating whether conductivity data is available at any given time 

was built for each session. 

Blood gas analysis was used to determine the experimental plasmatic sodium 

concentration NaPl,Exp(t) at t=0, 45, 90, 135 and 180 min. Three analyses were 

carried out on each sample to get an average value, but the first measurement in 

each group of three always showed negative bias, whereas the other two were 

consistent among them. For this reason, the value of NaPl,Exp(t) was, for each 

blood sample, computed as the average of the second and third measurements. A 

possible explanation is that the first measurement is the one that is carried out 

after a period of inactivity of the analyzer and operating conditions of the 

instrument might be slightly different. 
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The signals ΔRBV(t) and NaPl(t) were built from experimental data to act as a 

reference for the blood state estimator. The basis for signal construction is the 

one-compartment model of the blood pool depicted in Fig. 3.3.  

 

 

Fig. 3.3 - The blood pool model used for the computation of reference signals 

 

𝑉𝐵(𝑡) = 𝑉𝐵,0 + ∫  (−𝐽𝑈𝐹(𝜏) +  𝐽𝑅𝑒𝑓(𝜏))𝑑𝜏
𝑡

0
     (3.2) 

 

Δ𝑅𝐵𝑉(𝑡) =
𝑉𝐵(𝑡)−𝑉𝐵,0

𝑉𝐵,0
=

∫  (−𝐽𝑈𝐹(𝜏)+ 𝐽𝑅𝑒𝑓(𝜏))𝑑𝜏
𝑡
0

𝑉𝐵,0
    (3.3) 

 

𝛥𝑅𝐵𝑉̇ (𝑡) =
−𝐽𝑈𝐹(𝑡)+ 𝐽𝑅𝑒𝑓(𝑡)

𝑉𝐵,0
       (3.4) 

 

𝑁𝑎𝑃𝑙
̇ (𝑡) =

𝐾𝐷𝐼𝐹𝐹∙(𝑁𝑎𝐷𝑖𝑎𝑙,𝐼𝑛(𝑡)−𝑁𝑎𝑃𝑙(𝑡))+𝐽𝑅𝐸𝐹(𝑡)∙(𝑁𝑎𝑅𝑒𝑓(𝑡)−𝑁𝑎𝑃𝑙(𝑡))

𝑉𝐵(𝑡)
  (3.5) 

 

Equation (3.2) defines the relationship between absolute blood volume VB(t) 

and flow rates. Equation (3.3) defines relative blood volume ΔRBV(t) on the basis 

of absolute blood volume VB(t). Equation (3.4) describes ΔRBV(t) in differential 

form. In (3.2-3.4), VB,0 and JRef(t) are experimentally known whereas JUF(t) is 

extracted from the session log of the hemodialysis machine.  

NaPl(t) was computed according to eq. (3.5), where NaDial,In(t) and JRef(t) are 

experimentally determined. It is relevant to point out that since equation (3.5) is a 
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concentration equation and not a mass balance equation, no term pertaining to 

ultrafiltration is needed. Ultrafiltration drags a specific mass of plasmatic sodium 

across the filter together with its associated liquid volume. Thus, there is no 

concentration change. 

 VB(t) is computed from eq. (3.2) and KDiff, the membrane diffusion coefficient 

for sodium, is set to the typical value of 250 ml/min. Computation of NaPl(t) 

requires an initial value, here set equal to the value measured by blood gas 

analysis at the onset of the experimental phase, see Fig. 3.2b. Preliminary attempts 

to compute NaPl(t) revealed the presence of a session-specific offset associated 

with inter-session events, like instrument recalibration and sodium electrode 

replacement. Therefore, a baseline adjustment was applied when computing 

NaPl(t) to account for this offset.  

After pre-processing, all signals were resampled to FS'=1 Hz so that all signals 

of the dataset had identical sampling rate. 

 

3.2.4 State space modeling and estimation 

The state-space approach was chosen for estimation of ΔRBV(t) and NaPl(t), 

treated as state variables that completely describe the system under observation. A 

set of modeling equations describe the evolution of the state variables and the 

input/output relationship. The estimation was accomplished using a Kalman 

filtering technique. 

Classification of sensor data as being either input or output depends on whether 

the specific variable monitored by each sensor perturbs the system state or is 

determined by it. The inlet dialysate sodium concentration NaDial,In(t) and the inlet 

dialysate conductivity σIn(t) constitute the input variables. The hemodialysis 

machine maintains the effective value of NaDial,In(t) within clinically acceptable 

boundaries of the value set by the operator. Due to the general properties of 

electrolyte solutions [22], and the fact that sodium is the most concentrated 

electrolyte in plasma and dialysate, a good correlation can be found between the 

two fluids' electrical conductivity and sodium concentration [23-24]. This 
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assumption is exploited in some of the following design choices. The output 

sensor data consists of the optical outputs ΔRP1(t) to ΔRP4(t) and the outlet 

conductivity σOut(t).   

 

𝛥𝑅𝐵𝑉̇ (𝑡) = 0    (3.6) 

 

𝑁𝑎𝑃𝑙(𝑡)̇ =
𝑁𝑎𝐷𝑖𝑎𝑙,𝐼𝑛(𝑡)−𝑁𝑎𝑃𝑙(𝑡)

𝜏𝐷𝑖𝑓𝑓
  (3.7) 

 

The ordinary differential equations (3.6) and (3.7) model the blood pool 

dynamics, and were developed by removing the terms with parameters unknown 

during clinical practice (VB,0, JRef, NaRef) from (3.4) and (3.5). One critical part of 

the estimation procedure is the handling of non-modeled terms: thanks to the 

properties of the Kalman filter, the lack of some terms of (3.4-3.5) not included in 

(3.6–3.7) can be accounted for as noise in process modeling. This way, although 

refilling properties and starting blood volume are not known exactly, their 

influence on the reliability of the estimation is taken into account. 

While (3.4) would be a better theoretical description, VB,0 and JRef(t) are not 

known in clinical routine. By employing the approximate version in (3.6), no 

time-dependent evolution of ΔRBV is predicted, but the Kalman filter technique 

includes a measurement-based correction step that is applied to the model 

prediction. This correction is applied to the static ΔRBV value at each time step, 

thus making ΔRBV a quasi-static variable.  

Equation (3.7) approximates (3.5): the parameters of the refilling process are 

not clinically available during treatment, so only sodium diffusion is modeled by 

employing a diffusion time constant τDiff to describe how plasmatic sodium is 

related to NaDial,In(t). τDiff can be viewed as an estimate of VB(t)/KDiff from (3.5). 

For KDiff=250 ml/min (realistic for sodium) and VB=5 l (a time-independent 

average value), we have that τDiff≃1200 s. By fitting a first-order step response of 

outlet conductivity σOut(t) to experimental data, an estimate of τDiff≃1000s was 

obtained. Therefore, an intermediate value of τDiff≃1100s was used in the filter 
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model.  

 

𝛥𝑅𝑃𝑖(𝑡) = 𝐺𝑂𝑝𝑡,𝑖,1 ∙ 𝛥𝑅𝐵𝑉(𝑡) + 𝐺𝑂𝑝𝑡,𝑖,2 ∙ 𝑁𝑎𝑃𝑙(𝑡)+ 𝐺𝑂𝑝𝑡,𝑖,3   (3.8) 

 

[

𝛥𝑅𝑃1(𝑡)
𝛥𝑅𝑃2(𝑡)
𝛥𝑅𝑃3(𝑡)
𝛥𝑅𝑃4(𝑡)

] = 𝐺𝑂𝑝𝑡 ∙ [
𝛥𝑅𝐵𝑉(𝑡)
𝑁𝑎𝑃𝑙(𝑡)

1

]       (3.9) 

 

A linear formulation was chosen for ΔRPi(t) and is described in eq. (3.8), where 

i=1,...,4 indicates the output channel. The 4x3 matrix GOpt in eq. (3.9) contains 

weighting coefficients for all channels, estimated by multivariate regression 

analysis. 

 

𝜎𝑂𝑢𝑡(𝑡) = 𝜎𝑖𝑛 ∙ (1 −
𝐷

𝐽𝐷
)+𝜎𝑝𝑙 ∙

𝐷

𝐽𝐷
     (3.10) 

 

𝜎𝑂𝑢𝑡(𝑡) = 𝐺𝑀𝑖𝑥 ∙ 𝜎𝑃𝑙(𝑡)+(1 − 𝐺𝑀𝑖𝑥) ∙ 𝜎𝐼𝑛(𝑡 − 𝜏𝐷𝑒𝑙𝑎𝑦)  (3.11) 

 

𝜎𝑃𝑙(𝑡) = 𝐺𝑁𝑎,𝐺𝑎𝑖𝑛 ∙ 𝑁𝑎𝑃𝑙(𝑡) + 𝐺𝑁𝑎,𝑂𝑓𝑓𝑠𝑒𝑡    (3.12) 

 

The last output element, i.e., the outlet dialysate conductivity σOut(t), is modeled 

as a weighted average of the inlet and plasmatic conductivities [18, 25]. In eq. 

(3.10), adapted from [25], σOut is a weighted average based on the dialysance D 

and the dialysate flow rate JD. We adopted the simpler formulation in eq. (3.11), 

where GMix=D/JD. As mentioned in section 3.2.2, JD is fixed to 500 ml/min in our 

experiments. Given an average value of D=250 ml/min, it leads to a value of 0.5 

for the mixing constant Gmix. After preliminary analysis of dialysate conductivity 

data, a term τdelay was included in eq. (3.11), to account for an observed delay in 

the response of outlet dialysate conductivity σOut(t) to changes in the conductivity 

σIn(t) of inlet dialysate. A value of τdelay=140 s was estimated by measuring the 

step response delay of σOut(t) in the sessions where sodium concentration steps 
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were applied. The most probable explanation for this brief delay is that 

modifications to the composition of inlet dialysate require some time to propagate 

across the hydraulic circuit.  

The plasmatic conductivity σPl(t) is modeled in eq. (3.12) as a linear function of 

plasmatic sodium concentration NaPl(t). The coefficients GNa,Gain and GNa,Offset 

were estimated by linear regression starting from experimental data. 

Figure 3.4a illustrates the relationship between input signals, state variables and 

output signals. 

 

 

Fig. 3.4. - Diagrams of the mathematical estimator 

(a) Relationship between input signals, state variables and output signals. The dotted lines 

represent connections which are unreliable during bypass mode. (b) The transition between 

different filter versions for bypass condition management. 

 

As described in section 3.2.3 and illustrated in Fig. 3.2c, the hemodialysis 

machine periodically goes into bypass mode. Certain changes in the modeling 

equations are needed to reflect such temporary alterations of the physical system.  
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The temporary stop in UF means JUF(t)=0, and, given the lack of information 

about JRef(t) during clinical practice, equation (3.6) is still the best available 

approximation for ΔRBV modeling. For this reason, equation (3.6) is not 

replaced. 

 

𝑁𝑎𝑃𝑙(𝑡)̇ = 0  (3.13) 

 

The hydraulic disconnection of the hemodialyzer during bypass implies that 

diffusion is suspended, here modeled by replacing eq. (3.7) with eq. (3.13). This 

temporary replacement is also reflected by modifications to the process noise for 

NaPl(t). During bypass, data from the conductivity cells is not useful due to the 

different hydraulic path of the dialysate. This is reflected by setting the sensitivity 

of the filter related to σIn(t) and σOut(t) to zero during bypass. Figure 3.4b depicts 

the transition model regulating switching of the Kalman filter between standard 

mode, bypass mode and build-up mode. During build-up mode, the alterations of 

the filter structure associated with the bypass conditions are maintained for an 

additional period of time τDelay, to allow the accumulation of the necessary delay 

of σIn(t) before returning to default filter operations. 

Equations (3.14–3.18) are given as a function of the generic time step k and 

define the Kalman filter employed in the present work. A time step of 1s was 

chosen. 

Although an exhaustive explanation of the theoretical aspects of the Kalman 

filter is out of the scope of this work, a brief explanation of the filter’s working 

principle will be given. For more detailed information, see e.g. [26-28].  

 

𝑥𝑘
− = 𝑓(𝑥𝑘−1

+ , 𝑢𝑘)     (3.14) 

𝑃𝑘
− = 𝐴 ∙ 𝑃𝑘−1

+ ∙ 𝐴𝑇 + 𝑄    (3.15) 

𝐸𝑘 = 𝑃𝑘
− ∙ 𝐻𝑇 ∙ (𝐻 ∙ 𝑃𝑘

− ∙ 𝐻𝑇 + 𝑅)−1   (3.16) 

𝑥𝑘
+ = 𝑥𝑘

− + 𝐸𝑘 ∙ (𝑧𝑘 − 𝑔(𝑥𝑘
−, 𝑢𝑘))   (3.17) 

𝑃𝑘
+ = (𝐼 − 𝐸𝑘 ∙ 𝐻) ∙ 𝑃𝑘

−    (3.18) 
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The Kalman filter works by estimating the value of its state variables with 

continuous prediction-correction. At each time step, the value of the state 

variables is predicted by a function f(∙,∙) which takes into account the previous (or 

initial) state xk-1
+ and one or more inputs contained in the input vector uk. 

Predicted state variables are memorized in vector xk
-. Inputs are defined as known 

quantities able to perturb the system’s state: they usually correspond to control 

mechanisms which are also monitored by sensors. After computation of xk
- in 

equation (3.14), covariance Pk
- is predicted in equation (3.15). It depends on the 

previously estimated covariance Pk-1
+, on A, which is the linearized version of 

f(∙,∙), and on the so-called process noise covariance Q. Eqs. (3.14) and (3.15) 

together represent the prediction step. 

Afterwards, the correction step begins by computing the so-called error gain Ek, 

which is dependent on predicted state covariance Pk
-, on the linearized version of 

the relationship between state variables and outputs (H, linearization of g(∙,∙)), and 

on measurement noise covariance R. Outputs are defined as measurable quantities 

whose value is influenced by the state of the system, in a way which is modelled 

by a specific relation. Measured outputs are contained in the observation vector zk. 

Equation (3.16) shows how error gain is determined. Then, the difference between 

the output values predicted by g(∙,∙) and the measured outputs contained in zk is 

multiplied by the error gain and added to xk
-, as shown in equation (3.17), to 

obtain the corrected estimate xk
+. The last step is to update state covariance, 

obtaining Pk
+. Equations (3.16–3.18) together represent the measurement-based 

correction step. Reported below are the detail of our specific implementation of 

the Kalman filter. 

Input vector uk is a 2x1 vector which includes NaDial,In[k] and σIn[k]. The vectors 

xk
- and xk

+ are both 2x1 and contain the predicted and corrected values of the state 

variables ΔRBV[k] and NaPl[k]. xk
- is the predicted system state at step k, and is a 

function f(∙,∙) of xk-1
+ and uk. The elements of initial vector x0

+ were set to 

ΔRBV=0 and NaPl=140 mM.  

Function f(∙,∙) is defined by the discretized versions of eqs. (3.6) and (3.7) in 

standard mode, and by the discretized eqs. (3.6) and (3.13) in bypass mode. 
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Discretization of eqs. (3.6), (3.7) and (3.13) was implemented with the forward 

Euler method, given by  

 

𝛥𝑅𝐵𝑉[𝑘] = 𝛥𝑅𝐵𝑉[𝑘 − 1]       (3.19) 

𝑁𝑎𝑃𝑙[𝑘] = 𝑁𝑎𝑃𝑙[𝑘 − 1] ∙ (1 −
1

𝜏𝐷𝑖𝑓𝑓
) +

1

𝜏𝐷𝑖𝑓𝑓
∙ 𝑁𝑎𝐷𝑖𝑎𝑙,𝐼𝑛[𝑘]  (3.20) 

𝑁𝑎𝑃𝑙[𝑘] = 𝑁𝑎𝑃𝑙[𝑘 − 1]       (3.21) 

 

respectively. Process noise covariance is described by the 2x2 matrix Q. Matrix A 

is the 2x2 Jacobian linearization of f(∙,∙) with respect to ΔRBV and NaPl.  

A standard Qstd matrix is used during standard filter operation, replaced by 

Qbypass during bypass mode. Both versions of Q are diagonal matrices whose 

elements are precomputed as described in previous paragraphs, on the basis of 

realistic maximum values for the non-modeled terms of the process equations. 

Error gain Ek
 is a 2x5 matrix computed according to eq. (3.16). 

Measurement noise is characterized by the 5x5 covariance matrix R, taken so as 

to be a pre-determined diagonal matrix. The diagonal values of R, associated with 

optical measurements, were set equal to the root-mean-square fitting residuals of 

eq. (3.9). The diagonal value of R associated with σOut modeling was chosen on 

the basis of realistic deviations of D from the average value considered for eq. 

(3.11).  

The observation vector Zk is a 5x1 column vector of experimentally measured 

system output, composed of the optical output ΔRP1[k] to ΔRP4[k] and outlet 

conductivity σOut[k]. g(xk
-,uk) is a 5x1 column vector of predicted output 

calculated according to state-output function g(∙,∙). The function g(∙,∙) is 

determined by the time-discrete versions of eqs. (3.9) and (3.11), given by 

 

  

[
 
 
 
ΔRP1[𝑘] 

ΔRP2[𝑘] 

ΔRP3[𝑘] 

ΔRP4[𝑘] ]
 
 
 

= 𝐺𝑂𝑝𝑡 ∙ [
𝛥𝑅𝐵𝑉[𝑘] 
𝑁𝑎𝑃𝑙[𝑘] 

1

]     (3.22) 
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𝜎𝑂𝑢𝑡[𝑘]  = 𝐺𝑀𝑖𝑥 ∙ 𝜎𝑃𝑙[𝑘]+(1 − 𝐺𝑀𝑖𝑥) ∙ 𝜎𝐼𝑛[𝑘 − 𝑘𝐷𝑒𝑙𝑎𝑦]     (3.23) 

 

respectively. In eq. (3.23), kDelay is the discrete version of τDelay and σPl[k] is 

computed according to 

 

𝜎𝑃𝑙[𝑘] = 𝐺𝑁𝑎,𝐺𝑎𝑖𝑛 ∙ 𝑁𝑎𝑃𝑙[𝑘] + 𝐺𝑁𝑎,𝑂𝑓𝑓𝑠𝑒𝑡    (3.24) 

 

which is the discretized version of eq. (3.12).  

The matrix H from eqs. (3.16) and (3.18) is the 5x2 Jacobian linearization of 

g(∙,∙) with respect to ΔRBV and NaPl. Two versions of H exist: Hstd and Hbypass. 

During default machine operations Hstd is used. During bypass, Hstd is replaced 

with Hbypass to ensure that the measurement-based correction step is insensitive to 

σIn[k] and σOut[k]. 

The matrices Pk
- and Pk

+ are the predicted and corrected 2x2 estimation 

covariance matrices, respectively. Both matrices are computed at each step k, 

according to eqs. (3.15) and (3.18), initiated by a diagonal matrix P+ with the 

initial uncertainties of ΔRBV and NaPl set to 0 and 4 mM, respectively. Zero 

uncertainty on starting ΔRBV is given by the fact that ΔRBV it is a relative 

variation and its starting value is always known and equal to 0. The initial 

uncertainty for NaPl is based on the assumption of a 136–144 mM physiological 

range for patients at treatment start. 

Computation of P+ is an important feature of the Kalman filter, given that it 

represents covariance of the state variables. As shown by eqs. (3.15) and (3.18), 

the estimation covariance is influenced by the covariance of the modeling and 

measurement processes. On this basis, P is a useful additional source of 

information about the uncertainty of the estimation: we choose to use the square 

root of the diagonal elements P11 and P22 from P+ in eq. (3.18) as an indicator of 

uncertainty, resulting in confidence intervals of ΔRBV ± √P11 and NaPl ± √P22. 
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3.3 Results 

 

Figure 3.5 shows optical data recorded during one of the preliminary in-vitro 

sessions, with alteration of RBV and NaDial,In. In figure, the trend of relative 

optical intensity throughout the session is shown for each of the fiber channels 

available in the preliminary setup: it can be noticed that the 135° channel has an 

output which is very similar to that of the 180° channel, apart from a scaling 

factor. For this reason, it was not included from the final measurement system. 

The remaining part of this sections deals with the results of the experiments 

carried out with the final setup. 

 

 

Fig. 3.5. – Preliminary optical data 

Data collected using a preliminary version of the fiber optics measurement system during an in-vitro 

session with the protocol described in the Methods section. Also reported in figure are the dialysate 

sodium concentration steps and the color-coded legend for the fiber channel outputs. 

 

As described in section 3.2.4, the parameters GOpt in eq. (3.9) and GNa,Gain and 

GNa,Offset in eq. (3.12) are not based on modeling assumptions, but fitted to 
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experimental data. For this reason, the performance of the system was evaluated 

in two ways. To determine best performance, the estimation error was computed 

using a version of the Kalman filter with empirical parameters fitted to the whole 

dataset. Additionally, to assess the robustness of the estimator, a leave-one-out 

procedure was employed on the 12-sessions dataset: for each iteration, 11 sessions 

were employed for fitting and 1 for testing. 

The estimation error was calculated for both ΔRBV and NaPl as the absolute 

difference between the reference data and the estimates. The mean and maximum 

errors were first computed for each session; then the inter-session mean ± 

standard deviation was calculated for both quantities. The results are reported in 

Table 3.1. 

 

The Kalman filter, tuned with data from the whole dataset, showed good 

performance when estimating ΔRBV and NaPl. 

The estimation errors evaluated with the leave-one-out procedure present only 

small differences compared to evaluation on the whole dataset, especially if the 

large standard deviations are taken into account. This result indicates that the 

fitting procedure is not sensitive to data from one session in particular, and 

demonstrates the reliability of the proposed filter architecture. 

Figure 3.6 exemplifies state estimation results in the best case, when parameters 

of the estimator are computed using data from the complete dataset.  

 

TABLE 3.1 

RESULTS OF THE ESTIMATION PROCESS 

Estimation Conditions Error Mean±SD Max±SD 

Complete Dataset 
ΔRBV [%] 0.97±0.73 1.90±0.95 

NaPl [mM] 0.47±0.19 2.35±1.38 

Leave-One-Out 
ΔRBV [%] 0.99±0.65 2.10±0.97 

NaPl [mM] 0.51±0.15 2.54±1.33 
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Fig. 3.6 - Examples of estimation results 

(a), (b), (c) ΔRBV estimation for three different experimental sessions. (d), (e), (f) NaPl estimation for the 

same experiments. In all diagrams, the dotted black line displays the reference data. The light grey solid 

line displays the Kalman-based state variable estimation. The dashed black lines display the estimation 

confidence interval. The dark grey solid lines display the intervals of the estimation performed in bypass 

mode. 
 

The estimates of ΔRBV and NaPl are presented for an experiment with both 

blood volume loss and sodium concentration steps (Fig. 3.6a and 3.6d 

respectively), for an experiment with blood volume loss close to zero (Figs. 3.6b 

and 3.6e) and for an experiment in which a starting hypernatremic patient 

condition is simulated (Figs. 3.6c and 3.6f). The switch from standard filter 

operation to bypass mode is represented by the temporary transition to dark grey 

solid lines. Figs. 3.6a–c show results on the estimation of blood volume loss. 

Although some difference remains between estimated and reference blood volume 

loss, the trend of NaPl does not show any recognizable influence on the ΔRBV 

signal. This feature is observable in all experimental sessions and indicates that 

the target of an osmolarity-insensitive ΔRBV estimation is reached. Figure 3.6f is 

an example of the reliable behaviour of our estimator, even when the starting 

conditions are less-than-optimal: the starting plasmatic sodium concentration of 

our simulated patient is much higher than the starting estimate of the Kalman 

filter (145 vs 140 mM). Nonetheless, the estimator can drive the estimate of NaPl 
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in the direction of the experimental value. After less than 10 min from session 

onset, the estimated confidence interval, given by NaPl ± √P22, already includes 

reference data. Such a short time period is largely compatible with clinical 

usefulness for NaPl estimation. 

The P+ matrix, being updated at each step, is bound to converge to a steady-state 

value due to the properties of the Kalman filter algorithm. It is clear from the 

dynamics of boundary intervals of the estimates shown in Fig. 3.6 that P+ reaches 

steady-state very quickly, in the first few minutes of filter operation (≃2 min). 

 

3.4 Discussion 

 

A method for improved relative blood volume loss estimation during 

hemodialysis was proposed. The method integrates modeling knowledge of the 

blood pool, dialysate conductivity data and information from a new optical 

measurement system. Contrary to traditional sensors, the method can estimate 

relative blood volume loss in a way that is insensitive to even drastic variations in 

osmolarity. In addition, plasmatic sodium concentration, one of the main drivers 

of osmolarity in plasma, can be estimated at the same time.  

The results, based on in-vitro hemodialysis sessions, demonstrate the viability 

of the chosen approach: the estimation errors related to blood volume and sodium, 

reported in Table 3.1, are both on the order of magnitude of the accuracy of 

reference data.  

For example, the mean ΔRBV error of 0.97% is a good result, considering that 

1% ΔRBV for VB,0=5l corresponds to 50 ml, being a very small quantity of blood. 

Such a small quantity is highly compatible with the uncertainty in the 

experimental preparation of the starting blood pool. Regarding NaPl, it is known to 

clinicians that blood gas analysers show large bias and inaccuracy. Nonetheless, 

blood gas analysers remain one of the most widespread instruments for repeated 

fast measurements of blood electrolytes, and it was the one available to us at this 

stage of the work. An example of blood gas analysis bias has been recently 

reported in [29]. Both the mean and maximum NaPl estimation errors are lower 
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than the reported bias, which is ≃3mM. In general terms, we can say that all the 

results reported in Table 3.1 are composed of two contributions, one dependent on 

the accuracy of reference data and one which depends on the quality of the 

estimator. The limited accuracy of reference data may also influence the 

quantification of the estimator’s performance in a second, less obvious way, by 

leading to inaccurate state-output relationship estimation. For such reasons, we 

can assume that the estimator’s performance is actually even better than reported 

in Table 3.1. 

The estimation of blood volume loss is insensitive to drastic changes in 

osmolarity, thus fulfilling one of the aims listed in Introduction. 

The results on the estimation of plasmatic sodium concentration are also very 

important: sodium has a significant role in many physiological processes, like 

osmotic equilibrium and electrophysiological activity, which makes it a variable 

of clinical interest. However, further investigation is needed to understand 

whether the accuracy reached for plasmatic sodium estimation can be maintained 

in a physiological context where different factors will influence osmolarity. 

Another aspect is whether blood osmolarity itself can replace plasmatic sodium 

concentration as a state variable. 

The size of the acquired dataset, together with the fact that both isolated and 

combined effects on blood volume and plasmatic sodium are included, speak in 

favour of the general robustness and viability of the proposed approach. Another 

advantage is that this approach is inexpensive as it relies on a simple optical 

measurement system with an additional cost on the order of tens of euros, beyond 

existing cost for the sensors already integrated in the machine. 

Regarding the choice of a multiple-wavelengths light source over a single-

wavelength source, it was explained in the Methods section that it could 

theoretically be a source of inaccuracy: that would be, because of the influence of 

blood oxygenation on light absorbance in the red region, and because of the 

possibly different relationship between physiological and optical properties at 

different wavelengths. However, there are many reasons to think such problems 

did not affect the reported experimental work significantly. First, the dead bovine 
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blood pool has no active mechanisms to change its oxygenation levels. Second, 

the 1-h adjustment phase should allow blood to stabilize its oxygen level, at least 

partially, by exchange with the environment and possibly with the degassed 

dialysate fluid. Third, the effects of osmolarity on the optical properties of blood 

reported in [21] are averaged over a wide spectral band and still detectable, so our 

choice of light source does not have a critical impact on estimation. In the future, 

it is planned to multiplex the multi-LED emitter to specific wavelengths or to 

directly replace it with an 800 nm emitter. 

A critical point of the estimation method is its reliance on a four-channel optical 

measurement system. Conceptually, at least two channels are needed to 

discriminate between two state variables. Additional channels should improve 

robustness of the estimation, but may prove redundant depending on the inter-

channel correlation and their position on the cuvette’s circumference.  

An analysis will be carried out in the future to determine how the performance 

of the estimation process changes in relation to how many and which channels are 

employed. The analysis will be carried out with a furtherly improved and more 

accurate version of the measurement setup, in order to obtain a reliable evaluation 

of the necessary channels. 

Other aspects to focus on include the analysis of changes in operational 

parameters like blood and dialysate flow rates, and hemodialyzer properties. 

The choice of NaPl as a state variable in place of osmolarity deserves to be 

discussed. Theoretically, blood osmolarity is influenced by all solutes present in 

plasma unable to cross the RBC membrane. Solutes influence osmolarity in 

different degrees depending on concentration: the main drivers are electrolytes, 

glucose and urea. Despite this, there is reason to believe that osmolarity and NaPl 

are highly correlated in our experiments.  At the start of the experiment, the blood 

is in osmotic equilibrium with dialysate due to the presence of the adjustment 

phase. Sodium concentration in dialysate is determined by real-time dilution of 

the content of an electrolytes bag. This means that the concentration of all 

electrolytes in dialysate will roughly follow the same trend throughout the session, 

and consequently the exchange with the blood pool will be similar. This, 
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combined with the fact that the bag also contains glucose, and that urea is 

completely removed from the blood pool during the adjustment phase, supports 

our choice of monitoring NaPl instead of osmolarity. In future research, it may 

prove useful (and even necessary) to switch from NaPl to osmolarity as second 

state variable. 

A topic of discussion is the connection between reference data and estimates. As 

described in the Methods section, UF and blood gas data, together with 

knowledge of the experimental conditions, have been employed to build 

continuous ΔRBV and NaPl signals, for use as reference data and for parametric 

fitting. The simple blood pool model we employed is described in eqs. (3.4–3.5). 

A simple model has also been used in (3.6–3.7) to build the internal blood pool 

model suitable for the Kalman filter. It should be pointed out that, given that the 

two models share some similarities, evaluation of filter performance may be 

biased toward over-estimation. This issue can, however, be dismissed based on 

the following two points. The first point is that the model similarities are very 

limited: in fact, the internal filter model does not contain any of the patient-

specific parameters from the reference model. The second point is that the model 

used by the Kalman filter requires knowledge about the system under observation. 

For this reason, it is logical that it should be based on an approximation of the 

blood pool model employed for reference data, which is a simple but sound 

description of the biophysical nature of our simulated patient. Future 

investigations should determine whether the transition from a simple in-vitro 

blood pool model to real patients requires a more advanced model. 

 

3.5 Conclusions 

 

The integration of model knowledge and data from multiple sensors is a viable 

approach to accurate osmolarity-insensitive estimation of relative blood volume 

loss during hemodialysis. The analysis of light propagation in blood using at least 

two different geometrical positions is a fundamental part of the proposed method. 

The estimation of plasmatic sodium concentration is a useful by-product of the 
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state-space estimation approach. Kalman filtering is an appropriate technique to 

handle the integration of all available knowledge into one single estimation 

process. 

Part of the data collected during the experiments described in this chapter was 

also used to develop a new mathematical model of the hemodialysis process. The 

new model has some innovative aspect, in comparison to previous models, and is 

the object of the next chapter. 
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Chapter 4 
 

 

Modeling of sodium diffusion 

across the hollow fiber of the 

hemodialyzer 
 

 

In the following chapter, a novel approach is proposed to couple two different 

models, a Finite-Element hollow fiber model and a simple one-pool kinetic model 

of the patient, in order to allow a time-sensitive and realistic simulation of the 

diffusion of sodium during the dialysis session. The resulting coupled-models 

simulation retains the level of detail of the hollow fiber model, but gains a 

dynamically-updated sodium concentration on the blood inlet side, which is also 

equivalent to the plasmatic concentration in the kinetic model. The proposed 

approach shows very good agreement with experimental data collected for 

validation, and may be useful for purposes of clinical investigation or dialyzer 

design. 

 

Content of this chapter is based on the article “Finite-element modeling of time-

dependent sodium exchange across the hollow fiber of a hemodialyzer by 

coupling with a blood pool model”, by Enrico Ravagli, Elena Grandi, Paolo 

Rovatti and Stefano Severi (Int J Artif Organs, 2016 Nov 11;39(9):471-478. doi: 

10.5301/ijao.5000528). 

  

Content of the paper was reproduced in conformity with the journal’s copyright 

policy. 
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Abbreviations 

1D: One-dimensional 

2D: Two-dimensional 

3D: Three-dimensional 

BC: Boundary condition 

FEM: Finite-element method 

ODE: Ordinary differential equations 

UF: Ultrafiltration 
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4.1 Introduction 

 

Hemodialysis for end-stage renal disease patients is a periodical procedure 

involving the removal of accumulated toxins and excess fluids, plus the 

rebalancing of the electrolyte concentrations [1]. The core of the process is the 

transfer of water and solutes across the membrane of the hemodialyzer, a bundle 

of hollow fibers for counter-current flow of blood and dialysis fluid (dialysate), 

potted inside a cylindrical vessel. 

Many mathematical models of the dialysis process have been proposed, 

targeting different aspects of the process or employing different degrees of 

abstraction. One-dimensional (1D) models describe mass transfer along the flow 

direction in the single hollow fiber [2-3]. In two-dimensional (2D) models, flow 

and/or concentration fields are computed on a bi-dimensional surface representing 

the axial and radial directions of the blood-membrane-dialysate interface [4-8]. 

Three-dimensional (3D) models are also reported in literature [9-11]. Models with 

higher levels of abstraction describe the kinetics of body pools for substances like 

urea or sodium with ordinary differential equations (ODEs) [3, 12-16]. 

Performances for 1D and 2D hollow fiber models, and their response to changes 

in geometrical or operating parameters, are usually evaluated with fixed inlet 

blood solute concentration.  This approach has the limitation of not taking into 

account the time-dependent solute concentration changes of the patient’s blood 

entering the dialyzer, caused by the mass transfer across the membrane. 

We propose a new approach to simulate the exchange of solutes in a hollow 

fiber model in a more dynamic and realistic way. A 2D hollow fiber model based 

on the Finite-Element Method (FEM) is coupled to an ODE model of the patient’s 

blood pool, to dynamically update the solute concentration entering the dialyzer. 

The resulting ODE-FEM coupled model maintains the geometrical detail of the 

2D representation and gains dynamic blood-side inlet solute concentration.  

Sodium was chosen as solute of interest, due to its clinical importance as an 

osmotic regulator [17-18]. A set of in-vitro hemodialysis sessions were carried out 

to validate our model. 
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4.2 Methods 

 

The FEM hollow fiber model was developed on COMSOL Multiphysics 5.0.  

ODEs to describe the blood pool were implemented as a separate module of the 

FEM model. Twelve in-vitro hemodialysis sessions were carried out on bovine 

blood to gather data for model validation. Blood gas samples and dialysate 

conductivity data were recorded. Model performances were evaluated according 

to two markers: plasmatic sodium concentration and outlet dialysate sodium 

concentration. 

 

4.2.1 Hollow fiber FEM model 

The hollow fiber model was developed on the basis of available data on modern 

high-flux hemodialyzers. As such, it is not representative of a specific dialyzer, 

but functional to our aim of investigating dynamic coupling between fiber and 

patient models.  

A 2D geometry revolving around the central axis of the hollow fiber was 

chosen. Fig. 4.1a shows a schematic of the model, which includes three domains: 

half of the hollow fiber space, the hemodialyzer membrane, and dialysate fluid 

surrounding the fiber. The geometrical parameters values reproduce the properties 

of an average modern hemodialyzer (PolyFlux family, Baxter, Italy [19]), and are: 

L1=107.5μm, L2=50μm, L3=70μm, LFiber=23.5cm.  The number of fibers inside an 

average hemodialyzer is in the range of 10000-14000. An average value 

nFiber=12000 was employed where the effects of the average fiber had to be scaled 

up to the entire hemodialyzer. 
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Fig. 4.1 - Depiction of the finite-element hollow fiber model and its coupling with the blood pool 

model 
(a) Schematic depiction (not to scale) of the axially-revolving bi-dimensional FEM model of the 

hollow fiber of the hemodialyzer. Axis of revolution is represented in figure by the black dashed line. 

Thin black arrows represent the geometrical properties of the model. Wide black arrows represent inlet 

and outlet direction for the fluxes on blood and dialysate. (b) Schematization of the dynamical 

interplay between the FEM fiber model and the ODE blood pool model. Thin black arrows in the blood 

pool model represent exchange of liquid and solute mass. Wide black arrows represent the coupling 

between models. 

 

Laminar flow was assumed inside the blood and dialysate domains. Velocity 

field u was computed according to theoretical equations (4.1-4.2). Eq. (4.1) is the 

Navier-Stokes momentum equation for laminar incompressible flow. The left-

hand side of the equation account for the inertial forces, the first right-hand term 

accounts for pressure forces, and the last term accounts for viscous forces. In eq. 

(4.1) p is pressure and I is the identity matrix. Eq. (4.2) is the continuity equation 

for the conservation of mass.  

 

𝜌
𝜕𝑢⃗⃗ 

𝜕𝑡
+ 𝜌(𝑢⃗ ∙ 𝛻)𝑢⃗ = 𝛻 ∙ [−𝑝𝐼 + 𝜇(𝛻𝑢⃗ + (𝛻𝑢⃗ )𝑇)]    (4.1) 

 

𝜌𝛻 ∙ (𝑢⃗ ) = 0       (4.2) 

 

Blood density and dynamic viscosity were set to ρBlood=1060kg/m3 and 

μBlood=3.5e-3Pa∙s. Dialysate density and dynamic viscosity were assumed to be 

equal to water: ρdial=1000kg/m3, μdial=8.9e-4Pa∙s. 
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Flow rates typical for hemodialysis sessions (QDial=500ml/min, 

QBlood=300ml/min) were chosen both for simulations and experiments. The 

boundary condition (BC) described in eq. (4.3), where n is the normal versor, was 

applied to the blood and dialysate inlet ports of the filter, setting average inlet 

velocities to values reported in eqs. (4.4-4.5).  

By setting the average inlet velocities according to eqs. (4.3-4.5) in a rigid 

model geometry without ultrafiltration, the desired QDial and QBlood flow rates are 

achieved. No additional pull is required from the outlet ports, for this reason a 

zero-pressure BC was applied. 

 

𝑢⃗ = −𝑈0𝑛⃗       (4.3) 

 

𝑈0,𝐵𝑙𝑜𝑜𝑑 =
𝑄𝐵𝑙𝑜𝑜𝑑

𝑛𝐹𝑖𝑏𝑒𝑟∙𝜋∙𝐿1
2     (4.4) 

 

𝑈0,𝐷𝑖𝑎𝑙 =
𝑄𝐷𝑖𝑎𝑙

𝑛𝐹𝑖𝑏𝑒𝑟∙𝜋∙((𝐿1+𝐿2+𝐿3)2−(𝐿1+𝐿2)2)
  (4.5) 

 

Convective sodium transport due to ultrafiltration (UF) does not impact 

significantly on outlet dialysate sodium concentration, since UF rate (typically, 

15ml/min) is much smaller than QDial. Thus, UF was not implemented in the FEM 

model. It was, however, implemented in the kinetic model. Fluid velocity was set 

to zero inside the membrane domain.   

A tangentially-moving wall BC was set at the external edge of the dialysate 

domain to develop a half-parabolic flow profile, by employing equations (4.6-

4.7). In eq. (4.6), t is the tangent versor.  

 

𝑢⃗ = 𝑈𝑤,𝐷𝑖𝑎𝑙𝑡      (4.6) 

 

𝑈𝑤,𝐷𝑖𝑎𝑙 = 1.5 ∙  𝑈0,𝐷𝑖𝑎𝑙   (4.7) 
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Diffusion and convection phenomena were modelled in the blood and dialysate 

domains according to theoretical equation (4.8), which is the convection-diffusion 

equation, where cNa is local sodium concentration. In eq. (4.8), the first left-hand 

side term is the time derivative of sodium concentration, the second term 

represents diffusion, and the third term represent convection. Sodium diffusion 

coefficient DNa was set to 1.334e-9m^2/s [20].  

 

𝜕𝑐𝑁𝑎

𝜕𝑡
+ 𝛻 ∙ (−𝐷𝑁𝑎𝛻𝑐𝑁𝑎) + 𝑢⃗ ∙ 𝛻𝑐𝑁𝑎 = 0 (4.8) 

 

Hemodialyzers membranes have a porous nature, with pores of different sizes 

allowing for low-flux or high-flux dialysis [21]. Porosity is defined as the ratio of 

total volume of the media which is available for flow and diffusion [22]. Various 

studies characterized different types of dialysis membranes with different 

techniques [8, 23-27]. In line with these considerations, sodium diffusion across 

the membrane was modelled as porous media transport, according to theoretical 

equations (4.9-4.10). Equation (4.9) is similar to equation (4.8), as it is a 

convection-diffusion equation. However, the nature of the material makes 

diffusion slower compared to diffusion in pure fluid, since the cross section 

available for movement is lower. The effective diffusion coefficient De can be 

determined as a function of the free diffusion coefficient DNa by taking into 

account the porosity of the material and its tortuosity, as described in eq. (4.10), 

where εp is the equivalent porosity coefficient and τF is the tortuosity. Tortuosity 

is defined as the ratio between two distances that a particle of solute must travel 

across the porous material: the first is the actual distance between two points, 

travelled by following the fluid channel, and the second is the straight-line 

distance between those points. The relationship between porosity and tortuosity 

can be described by a model. In our case, the Millington and Quirk model [28] 

was chosen, as reported in eq. (4.11). Islam et al. [8] estimated porosity for each 

of the three layers composing the membrane of a Polyflux 210H hemodialyzer. 

Such hemodialyzer has geometrical properties very similar to those of the ones 

employed in the experimental part of this work. Based on the porosity values 
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reported in [8], an equivalent porosity coefficient εp=0.24 was assumed for our 

membrane domain. Also, since convection across the membrane was not 

implemented in this model, the third term of equation (4.9) is null, since velocity 

u is equal to zero. 

 

𝜀𝑝
𝜕𝑐𝑁𝑎

𝜕𝑡
+ 𝛻 ∙ (−𝐷𝑒𝛻𝑐𝑁𝑎) + 𝑢⃗ ∙ 𝛻𝑐𝑁𝑎 = 0   (4.9) 

 

𝐷𝑒 =
𝜀𝑝

𝜏𝐹
𝐷𝑁𝑎       (4.10) 

 

𝜏𝐹 = 𝜀𝑝
−

1

3       (4.11) 

 

Inlet dialysate sodium concentration NaDial,In(t) was set either as constant or 

time-dependent in relation to the type of experimental session to be simulated. 

The time-dependent protocol is described in detail in the Experimental Data 

subsection. 

A no-diffusion BC was applied on the external boundary of the dialysate 

domain. That is, at the distance L3 from the membrane, sodium is assumed to be 

in equilibrium with the surrounding dialysis fluid.  

 

4.2.2 ODE-FEM model coupling 

Inlet plasmatic sodium concentration NaPl,In(t) is dynamically updated on the 

basis of the treatment simulation. The update is computed by coupling a one-pool 

ODE model of the patient’s blood compartment to the FEM fiber model by taking 

into account the mass balance of sodium between the dialysate inlet and outlet 

ports. Fig. 4.1b schematizes the ODE model and its interplay with the FEM 

model. 

Equations (4.12-4.13) are the theoretical equations for the single-pool ODE 

model, where VBlood(t) is the volume of the blood pool and NaBlood(t) its plasmatic 

sodium concentration. NaDial is the average sodium concentration in the 

hemodialyzer and KDiff represents sodium diffusion across the membrane. Both 
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NaDial and KDiff are not directly used in our case, since equation (4.13) is modified 

according to equation (4.14) to make NaBlood(t) dependent on the simulated 

sodium mass transfer across the FEM hemodialyzer, resulting in equation (4.15). 

Using total QDial in equations (4.14-4.15) scales up the effect of the FEM model to 

account for nFiber-fibers working in parallel. 

 

VBlood
̇ (t) = −QUF(t) +  QRef(t)      (4.12) 

 

NaBlood
̇ (t) =

KDiff∙(NaDial(t)−NaBlood(t))+QRef(t)∙(NaRef(t)−NaBlood(t))

VBlood(t)
  (4.13)  

 

KDiff ∙ (NaDial(t) − NaBlood(t)) =  (NaDial,In(t) − NaDial,Out(t)) ∙ QDial (4.14) 

 

NaBlood
̇ (t) =

(NaDial,In(t)−NaDial,Out(t)) ∙ QDial+QRef(t)∙(NaRef(t)−NaBlood(t))

VBlood(t)
 (4.15) 

 

At each simulation step, NaPl,In(t) of the FEM model is set at the current value of 

NaBlood(t), then the new sodium exchange is computed and the value of NaBlood(t) 

is updated. This way, the dynamics of the ODE and FEM models are effectively 

coupled. 

 

4.2.3 Experimental data 

A total number of twelve in-vitro dialysis sessions were carried out to gather 

data for model validation. Sessions were carried out on an Artis hemodialysis 

machine (Baxter, Medolla, Italy) using heparinized fresh bovine blood. Blood was 

diluted to 30% hematocrit using saline solution before session start. Each session 

was composed of a 1-hour stabilization phase and a 3-hours experimental phase. 

The start of the 3-hours experiment is considered as t=0 in the following. 

The stabilization phase was implemented to improve repeatability and start each 

3-hours experiment at the desired NaBlood(t=0) value. During stabilization phase, a 

peristaltic pump injects fresh dialysate inside the blood pool at QRef=QUF=0.8 L/h, 
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accelerating convergence to blood-dialysate equilibrium, while maintaining the 

original blood volume. 

Different types of sessions have been carried out, implementing a combination 

of blood volume loss and/or sodium concentration steps. A complete summary of 

the experimental conditions for each session is reported in Table 4.1. Different 

filters of the Polyflux family were employed during the sessions (also reported in 

Table 4.1).  

 

For each experimental session, VB(t=0)=5 L. For the sessions with blood 

volume loss, QUF=0.8 L/h. This rate has been paired with a refilling rate QRef=0.63 

L/h to reach an end-session blood volume loss of ≃500 ml, corresponding to ≃-

10% relative blood volume variation. Both QUF=0.8 L/h and the 10% volume loss 

are typical clinical values for average hemodialysis patients. Refilling has been 

TABLE 4.1 

EXPERIMENTAL SESSIONS 

# Filter 
QUF 

[L/h] 
QRef 

[L/h] 
NaDial,In 

[mM] 

NaRef 

[mM] 

NaBlood,Exp(t=0) 

[mM] 

NaBlood Error  

Mean±SD  

[mM] 

NaBlood Error  

Max  

[mM] 

1 Polyflux 17L 0.8 0.63 
Steps 

133-147 
140 138.95 1.07 ± 0.30 1.25 

2 Polyflux 17L 0.8 0.63 
Steps 

147-133 
140 138.25 0.60 ± 0.51 1.17 

3 Polyflux 21L 0.8 0.63 
Steps 

133-147 
140 141.9 2.02 ± 0.74 2.71 

4 Polyflux 21L 0.8 0.63 
Steps 

147-133 
140 139.55 1.11 ± 0.32 1.33 

5 Polyflux 21L 0.8 0.63 
Steps 

133-147 
140 141.15 0.27 ± 0.22 0.59 

6 Polyflux 24S 0.8 0.63 
Steps 

147-133 
140 140.3 0.58 ± 0.40 1.14 

7 Polyflux 24S 0 0 
Steps 

147-133 
140 138.35 2.32 ± 0.21 2.56 

8 Polyflux 24S 0 0 
Steps 

133-147 
140 138.45 2.28 ± 0.21 2.48 

9 Polyflux 24S 0.8 0.63 
Constant 

140 
140 137.8 2.45 ± 0.19 2.62 

10 Polyflux 24S 0.8 0.63 
Constant 

140 
145 141.65 3.40 ± 0.34 3.87 

11 Polyflux 24S 0.8 0.63 
Steps 

147-133 
140 137.4 2.89 ± 0.41 3.3 

12 Polyflux 24S 0.8 0.63 
Steps 

133-147 
140 137.7 2.19 ± 0.35 2.5 

Error on complete dataset: 1.76 ± 1.03 3.87 
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implemented by using the same peristaltic pump employed during the adjustment 

phase and previously prepared fresh dialysate.  

In 10 sessions, NaDial,In(t) has been changed at 45-minutes intervals during the 

session to implement concentration steps.  In 5 of such sessions, the sodium 

concentration is set to 140-133-147-140 mM during these intervals. In the 

remaining sessions, the dual protocol with inverted steps is applied (140-147-133-

140 mM). In 2 sessions, NaDial,In(t) has been kept constant at 140 mM throughout 

the whole session. In these sessions, NaBlood(t=0) was set respectively to 140 and 

145 mM during the stabilization phase. 

Blood gas samples were taken at 45-minute intervals during the sessions (0, 45, 

90, 135, 180 min). Samples have been analyzed with a Stat Profile pHOx Ultra 

blood gas analyzer (Nova Biomedical, Waltham MA, USA) to measure 

NaBlood,Exp(t). At the end of each experiment, the session log has been downloaded 

from the internal memory of the machine to acquire electrical conductivity signals 

of inlet and outlet dialysate (respectively, σDial,In(t) and σDial,Out(t)  measured by the 

machine’s conductivity cells.   

 

4.2.4 Data processing 

On each blood sample three consecutive measurements were performed. A 

systematic offset in the first of each group of measurements was observed. For 

this reason, reference data NaBlood,Exp is based on the mean of the second and third 

measurements carried out on each sample. 

Dialysate conductivity signals σDial,In(t) and σDial,Out(t) underwent median and 

low-pass filtering for artifact removal and smoothing.  At specific times during 

the session, the hemodialysis machine went into a hydraulic bypass condition for 

safety or auto-calibration purposes. During this condition, dialysate conductivity 

signals were not available.  A sample-and-hold procedure was applied to 

conductivity signals during bypass time intervals, setting conductivity at the last 

measured value before bypass. 

Our coupled ODE-FEM model was used to simulate all of the experimental 3-

hours sessions listed in Table 4.1 with the appropriate parameters, recording 
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computed values for NaBlood(t), NaDial,In(t) and NaDial,Out(t)  at intervals of 30 

seconds. NaBlood,Exp(t=0) was used as starting value for modelled NaBlood(t). 

Performances of the coupled ODE-FEM models were evaluated using NaBlood(t) 

and NaDial,Out(t) as our two markers of interest.  

NaBlood,Exp was compared with NaBlood(t) from the coupled ODE-FEM model 

(due to model coupling, NaBlood(t) is also equal to NaPl,in(t)). Comparison at t=0 

was excluded because NaBlood,Exp(t=0) is also employed as the starting value for 

NaBlood(t) in the simulations. Mean and maximum errors were calculated for each 

session and for the whole dataset. 

Linear regression analysis has been used to study the correlation of modeled 

values of NaDial,Out(t)  with experimentally measured σDial,Out(t). According to 

Kohlrausch's law of independent migration of ions, in diluted electrolytic 

solutions [29] the relationship between total ion content and electrical 

conductivity is described by the sum of the ionic concentrations, weighted by ion-

specific molar conductivities. Given that sodium concentration in dialysate is 1-2 

orders of magnitude higher than that of other ions, a linear concentration is 

expected with good approximation: for this reason, conductivity has been widely 

used in dialysis as a surrogate quantity in place of sodium concentration [30,31]. 

A rule of thumb is commonly used which predicts a 0.1 relationship between 

dialysate sodium concentration, expressed in [mM], and dialysate conductivity, 

expressed in [mS/cm]. For example, for 140 mM of sodium concentration, an 

electrical conductivity value of approximately 14.0 mS/cm is expected. On these 

bases, good correlation between modeled NaDial,In(t)-NaDial,Out(t) and experimental 

σDial,in(t)-σDial,Out (t) may be employed as an indicator of the model’s 

performances. Due to the placement of the outlet conductivity cell far from the 

hemodialyzer inside the hemodialysis machine, a delay of ≃140 seconds is 

present in conductivity measurements. Modeled NaDial,Out(t), which in the 

simulation is evaluated directly at the outlet port, has been shifted accordingly to 

align with conductivity measurements before estimation of correlation. One 

session was excluded from correlation estimation because the machine underwent 
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prolonged bypass right after application of a concentration step, and the sample-

and-hold procedure could not account for this type of artifact. 

Bland-Altman analysis was carried out for both evaluated markers. In the 

comparison between experimental NaBlood,Exp(t)  and simulated NaBlood(t), data 

from samples taken at t=0 has been excluded because of its use as an initial 

condition for the simulations. To compare measured outlet dialysate conductivity 

σDial,Out(t) with modelled NaDial,Out(t), the estimated linear regression equation was 

employed to convert NaDial,Out(t) to an equivalent model-based conductivity. 

Confidence intervals were computed as mean±1.96 standard deviations. 

 

4.3 Results 

 

Figs. 4.2 and 4.3 show data from two experimental sessions and their associated 

model simulations. Fig. 4.2 refers to session #1, which implements the NaDial,in(t) 

steps protocol with low-high steps, whereas Fig. 4.3 refers to session #6 where the 

dual version of the protocol is used. 

Panels 4.2a and 4.3a show an example of the response of simulated plasmatic 

sodium concentration to changes in NaDial,in(t), with NaBlood,Exp(t) as reference. 

Starting from NaBlood,Exp(t=0), simulated NaBlood(t) moves in the direction of 

NaDial,In(t)  due to diffusion in an effort to reach concentration equilibrium. As 

shown in panels 4.2a and 4.3a, the simulated NaBlood(t) demonstrates good fitting 

of NaBlood,Exp(t) data. Table 4.1 reports mean and maximum error between 

simulated NaBlood(t) and experimental NaBlood,Exp(t) calculated for each session and 

for the complete dataset. A mean error of 1.76 ± 1.03 mM was found for the 

complete dataset, along with a 3.87 mM maximum error. The overall Bland-

Altman analysis of the observed and estimated blood sodium concentrations in all 

the sessions is reported in Fig. 4.4a, together with its confidence intervals (-

1.40±2.93 mM).  

Panels 4.2b and 4.3b show σDial,In(t) and σDial,Out(t) recorded by the 

conductimetry cells. The shape of the outlet conductivity response has a first 

almost-instantaneous response phase, then a second phase more similar to the 
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response of a first-order system. This is consistent with the nature of outlet 

dialysate, whose conductivity can be modelled as a mix of inlet and plasmatic 

conductivity [32-33]. 

Panels 4.2c and 4.3c show simulated inlet and outlet dialysate sodium 

concentration. The shape of modelled NaDial,Out(t) matches closely that of 

σDial,Out(t), including the mixed step response with an instantaneous and a delayed 

component. The only missing feature is the response delay, due to the fact that in 

the model NaDial,Out(t) is measured right at the edge of the outlet port, whereas 

σDial,Out(t) is measured by the conductimetry cell placed downstream at a longer 

distance. 

Correlation analysis between simulated NaDial,Out(t) and experimentally-

measured σDial,Out(t) on the whole dataset returns R2=0.992. The estimated linear 

relationship is σDial,Out=0.092∙NaDial,Out+ 1.068. The very high correlation between 

the two variables is reported graphically in Fig. 4.5, along with the estimated 

regression line. In Fig. 4.4b, Bland-Altman analysis is reported, showing small 

confidence intervals (0.000±0.056 mS/cm).  

Fig. 4.6 shows the evolution of sodium concentration along the 1-D blood-

membrane interface, with clearly distinguishable dialysate-induced concentration 

variations. 
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Fig. 4.2 – Experimental and model simulation results for session #1 
Comparison between experimental and simulated results for different markers. See Table 4.1 for 

details on experimental session #1. (a) Simulated plasmatic sodium concentration NaBlood(t) (solid 

black line) in response to modeled changes in inlet dialysate sodium concentration NaDial,In(t) 

(dashed black line).  Reference plasmatic sodium sampling NaBlood,Exp(t) is reported as black 

squares. (b) Inlet dialysate conductivity σDial,In(t) (dashed black line) and outlet dialysate 

conductivity σDial,Out(t) (solid black line) recorded by the conductimetry cells. (c) Simulated inlet 

(NaDial,In(t), dashed black line) and outlet (NaDial,Out(t), dashed black line) dialysate sodium 

concentrations.  
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Fig. 4.3 – Experimental and simulation results for session #6 
Comparison between experimental and simulated results for different markers. See Table 4.1 for 

details on experimental session #6. (a) Simulated plasmatic sodium concentration NaBlood(t) (solid 

black line) in response to modeled changes in inlet dialysate sodium concentration NaDial,In(t) 

(dashed black line).  Reference plasmatic sodium sampling NaBlood,Exp(t) is reported as black 

squares. (b) Inlet dialysate conductivity σDial,In(t) (dashed black line) and outlet dialysate 

conductivity σDial,Out(t) (solid black line) recorded by the conductimetry cells. (c) Simulated inlet 

(NaDial,In(t), dashed black line) and outlet (NaDial,Out(t), dashed black line) dialysate sodium 

concentrations.  
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Fig. 4.4 – Bland-Altman dispersion analysis for different markers 
Comparison of observed and estimated results by Bland-Altman dispersion analysis. (a) 

Comparison of experimental NaBlood,Exp(t)  and modelled NaBlood(t). (b) Comparison of 

experimental σDial,Out(t) and regression-based equivalent conductivity based on modelled 

NaDial,Out(t). 
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Fig. 4.5 – Correlation between experimental outlet conductivity and simulated outlet sodium 

concentration 
Correlation between simulated NaDial,Out(t) and experimental σDial,Out(t) is reported for the whole 

dataset (black dots). The estimated regression equation is also reported graphically in the form of 

the dashed black line.  

 

 

 
 

Fig. 4.6 – Time evolution of sodium concentration along the blood-membrane interface 
Analysis of sodium concentration along the blood membrane interface, reported for a simulation 

based on the parameters of session #1. Color scale is proportional to sodium concentration in the 

133-147 mM range. Blood flow direction is upward. Sodium concentration along the fiber is 

reported starting at 10 mm from the blood inlet point, up to the end of the fiber. 
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4.4 Discussion 

 

In this work, a 2D FEM model of a hollow hemodialyzer fiber was developed 

and coupled to an ODE model of the patient’s blood pool to show the viability of 

dynamic analysis of hollow fiber models. Our results in reproducing experimental 

data are a demonstration of the suitability of the developed model: although it 

reproduces an “average” hemodialyzer, the dynamics of a heterogeneous set of 

high-flux dialyzers (see Table 4.1) were correctly reproduced. To the best of our 

knowledge, it is the first time that a FEM hollow fiber model is validated by 

dynamical interplay with a virtual patient model, although a simplified one.  

Results in fitting of plasmatic sodium concentration are, by themselves, already 

a good indication of the capability of our ODE-FEM model in reproducing the 

dynamic behaviour of the average hemodialyzer fiber. Although plasmatic sodium 

concentration is determined by the ODE blood pool model, such model is a good 

representation of a very simple experimental condition (animal blood in a glass 

becker). Therefore, given its dynamic interaction with the FEM model, there 

would not be a good fit of blood gas data unless exchange with the hemodialyzer 

was simulated correctly.  

It should also be observed that the average measurement error of a blood gas 

analyzer is in the order of 3 mM [34]: therefore, the mean error of our model falls 

within the range of measurement uncertainty for plasmatic sodium reference data. 

For this reason, a large fraction of maximum error could be ascribed to the blood 

gas analyzer and not to bad model performances. 

The very high correlation obtained between outlet dialysate conductivity and 

sodium concentration is an additional indicator of the ODE-FEM model’s good 

performances. Correlation accounts for the presence of offset and gain between 

the two compared variables, but the high estimated R2 value could only be 

obtained in the case of very similar time dynamics. Values of the regression 

coefficients are similar to values reported in literature for the relationship between 

sodium concentration and conductivity in dialysate: for example, Tura et al. [35] 

reported σDial=0.08∙NaDial+ 2.87. The value of the obtained regression slope, 0.092 
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(mS/cm)/mM, and the presence of a 1.068 mS/cm offset can be explained by the 

influence of ions other than sodium on total conductivity, as already mentioned in 

the Methods section.  

Regarding the results of Bland-Altman analyses: evaluation of the first marker, 

plasmatic sodium concentration, shows that data points are concentrated into three 

main groups (Fig. 4.4a). This is expected because of the timing of blood sampling, 

always carried out at the end of a time step, corresponding to 45-minutes of 

application of low/medium/high sodium concentration to inlet dialysate in our 

stepwise protocol.  However, the three groups show comparable error ranges: this 

positive finding demonstrates that error is not related to the value of plasmatic 

sodium concentration. Fig. 4.4a also shows a systematic negative error (-1.40 

mM), indicating that the model slightly overestimates plasmatic sodium 

concentration. Modeling results are closer than experimental data to what is 

logically expected from our experimental procedure, that is, complete or nearly 

complete alignment to inlet dialysate sodium concentration. Our interpretation is 

that this can be actually not a modeling problem but the indication of the presence 

of negative, variable, bias in the sodium electrodes for blood gas analysis. 

Regardless of the interpretation, error dispersion is well within the limits of 

accuracy of the experimental measurements (≃3 mM, as already mentioned [34]). 

Bland-Altman analysis of outlet dialysate conductivity (Fig. 4.4b) does not show 

any particular feature: data points are regularly distributed in a small error range 

(±0.056 mS/cm). 

Both markers have been evaluated on a dataset of 12 experimental sessions. The 

size of the experimental dataset and the combination of sessions with different 

types of dialysate sodium time profile is an indication of the robustness of our 

validation. 

 

4.4.1 Limitations 

In the present work, reference data was gathered by means of blood gas analysis 

with an emergency-room grade analyzer and by recording inlet/outlet dialysate 

conductivity. This is currently the best available way for fast repeated sampling of 
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blood plasmatic sodium concentration. The possible inaccuracy of the instrument 

was partially compensated by repeating analysis three times for each sample. 

Conductivity was measured in place of sodium concentration for inlet and outlet 

dialysate. This may constitute a limitation, but with our aim to gather reference 

data in dynamic conditions, having a continuous recording is a much greater 

benefit. 

A simple one-pool ODE model was used to describe the blood compartment. 

Although more complex (e.g. double-pool), models exist, our representation was 

sufficiently detailed to correctly describe the experimental setup. 

 

4.5 Conclusions 

 

The results we obtained demonstrates the possibility of dynamical simulation of 

patient/dialyzer sodium exchange and of fiber model validation by dynamical 

analysis, which were the main targets of this work. Coupling our FEM hollow 

fiber model to a simple blood pool model proved to be an effective approach for 

implementing such dynamical analysis.  

This innovative approach of merging together two different models, each with 

its own appropriate level of abstraction, presents some advantages compared to 

more traditional models employed on their own: 

• From the perspective of kinetic modeling, it allows to take into account 

the exchange of solutes with the dialyzer in a more detailed way, 

compared to the use of a simple diffusion coefficient.  

• From the designer’s perspective, it allows the inclusion of feedback from the 

patient’s physiology when investigating the behaviour of a hollow fiber with 

specific properties, which is usually done in steady-state conditions.  

• From the clinical perspective, a more direct application of our coupled-models 

approach could be the fitting of experimental dialysate conductivity tracks and 

blood gas data by optimization of the kinetic model parameters, in order to 

develop customized patient models. 
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In future stages of the work, the simple one-pool patient-side model could be 

replaced with more detailed two-pools or three-pools models for the aim of 

clinical modeling. Additional electrolytes could also be added.  

Modeling and sensing in dialysis are two approaches which show much 

potential for integration. The availability of sensors able to provide accurate and 

continuous measurements of physiological parameters during dialysis is critical 

for the development and validation of new mathematical models, as shown in this 

chapter. On the other hand, models may be useful to predict quantities which 

cannot be directly measured. One example of this type of approach is shown in 

Chapter 3.  
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Concluding Remarks 
 

 

 

In this doctoral thesis two different methods for non-invasive sensing and 

estimation are presented, which aim at improving the quantity and quality of 

information available during the hemodialysis session. A new model for the 

diffusion of sodium during the session is also proposed. 

 

In Chapter 2 an estimation method for plasmatic conductivity was presented. 

The method satisfies the requirements of compactness and non-invasiveness 

necessary for hemodialysis sensors. Quantitative results showed that the accuracy 

of the measurement and model-fitting process is comparable to that of the 

traditional method and even slightly better. However, the developed method is 

also much faster than the currently used systems and is viable for continuous 

estimation throughout the session, whereas current systems are based on a long 

step-like protocol that can only be applied a few times during the whole treatment. 

The next challenge for the further development of this technology will be the 

transition from measurements on a blood-mimicking fluid in a simple setup to 

measurements on whole blood flowing in a hemodialysis machine. Further 

experiments will clarify whether the complex nature of blood will require, for the 

estimation of plasmatic conductivity, a deeper analysis of the collected impedance 

measurement and/or the use of additional sensors. 

 

The system described in Chapter 3 is an excellent example of how the 

limitations to viable sensing technologies in hemodialysis can be overcome by 

integrating data from different sources, whereas each single source may not 

provide much information by itself. In our specific case, the Kalman filter 

methodology proved to be a valid choice for the task, returning accurate and 

robust estimates for relative blood volume loss and plasmatic sodium 

concentration. Good results were also obtained when, during short time intervals, 
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the available information was reduced. The technology presented in this chapter is 

already at a more developed stage if compared to the conductivity estimation 

system, having been already validated with flowing blood on a real hemodialysis 

machine. However, more tests are needed in order to study the response of the 

system to parameters, which were in our case fixed: two among them, blood and 

dialysate flow rates. 

 

The two measurement technologies presented in this thesis have been developed 

in parallel and their targets may seem to be partially overlapped, as plasmatic 

conductivity and plasmatic sodium concentration strongly correlates. That is, 

because sodium concentration is much higher compared to other plasmatic 

electrolytes and its influence on conductivity is the strongest one. The hybrid 

optical/conductivity estimator may seem the most logical choice between the two, 

as it offers the estimation of relative blood volume loss in addition to that of 

plasmatic sodium concentration. However, another more interesting option is 

viable: as reported in Chapter 3, the Kalman estimator architecture includes a 

mathematical relationship between inlet/outlet conductivity and sodium 

concentration, which by means of linear regression is employed as plasmatic 

conductivity. On the other hand, the conductivity estimation system in Chapter 2 

will require, when working on whole blood, some kind of hematocrit 

compensation, which may be obtained by collecting optical data. This means that 

the developed Kalman-based architecture may include and integrate the 

information on plasmatic conductivity quite elegantly, resulting in a single piece 

of technology with the ability to extract different (kind of) data during the dialysis 

treatment non-invasively and return robust estimations. Also, the fact that the two 

sensors are based on different physical principles (one is optical and the other 

electrical) means that mechanical integration into one compact bloodline 

measurement cell is possible without interference between the two systems.  

 

In Chapter 4, we presented a new integrated model simulating patient-dialyzer 

interaction for the purpose of describing sodium diffusion during the hemodialysis 
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session. This part of the doctoral work is not strictly related to the main topic of 

the thesis, that of non-invasive sensing technologies, however the data collected 

during the development of the work reported in Chapter 3, and the experience 

maturated in the same context about modeling different aspects of the 

hemodialysis process, made this work possible. The model we created was able to 

reproduce data collected from the internal sensors of the hemodialysis machines 

and from blood sampling during in-vitro sessions with animal blood. Although 

data was not collected in the most realistic conditions (in-vivo sessions), our aim 

was to show that integration between modeling descriptions of different portions 

of the hemodialysis process is possible, even at different abstraction levels. The 

results obtained in model validation show that our aim was achieved. Many steps 

are possible for future development of this model. Among these, inclusion of 

solutes other than sodium and replacement of the one-pool patient model with the 

most recent bi-compartmental and tri-compartmental models presented in 

literature. 

 

In conclusion, the work reported in this thesis demonstrates how, in spite of the 

severe restrictions placed on access to blood, it is still possible to find new ways 

to extract information on hematic properties during hemodialysis. The two best 

tools for this task are non-invasive sensing technologies, for example optical and 

electromagnetic methods, and the integration of data from multiple sources by 

means of mathematical models of the dialysis process. 
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