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Abstract

Electronic systems are now widely adopted in everyday use. More-

over, nowadays there is an extensive use of embedded wearable and

portable devices from industrial to consumer applications. The grow-

ing demand of embedded devices and applications has opened several

new research fields due to the need of low power consumption and real

time responsiveness. Focusing on this class of devices, computer vision

algorithms are a challenging application target. In embedded computer

vision hardware and software design have to interact to meet application

specific requirements. The focus of this thesis is to study computer vision

algorithms for embedded systems. The presented work starts presenting

a novel algorithm for an IoT stationary use case targeting a high-end em-

bedded device class, where power can be supplied to the platform through

wires. Moreover, further contributions focus on algorithmic design and

optimization on low and ultra-low power devices. Solutions are presented

to gesture recognition and context change detection for wearable devices,

focusing on first person wearable devices (Ego-Centric Vision), with the

aim to exploit more constrained systems in terms of available power bud-

get and computational resources. A novel gesture recognition algorithm

is presented that improves state of art approaches. We then demon-

strate the effectiveness of low resolution images exploitation in context

change detection with real world ultra-low power imagers. The last part

of the thesis deals with more flexible software models to support mul-

tiple applications linked at runtime and executed on Cortex-M device

class, supporting critical isolation features typical of virtualization-ready
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CPUs on low-cost low-power microcontrollers and covering some defects

in security and deployment capabilities of current firmwares.



Introduction

Background

Electronic Systems are nowadays widespread and aid the human beings

in most of the every-day activities. Moreover the growth in energy

efficiency over performance of CPUs has driven the design of systems

capable to be embedded in small and portable form factors and to be

integrated with peripherals.

Embedded systems have evolved to meet several requirements among

the years: portability, energy efficiency, peak performance, costs. Nowa-

days Embedded Systems integrate from low and ultra-low power low-end

Microcontroller Units (MCUs) that consume power in the order of the

mWatt to high-end SoCs that target higher performance and have higher

power needs. Moreover they expose different processing capabilities, they

can embed a single core or expose multiples or many cores. This broad

range of different devices enables to target many application domains,

such as automotive and industrial systems (MCU and FPGA), commu-

nication systems (DSP and FPGA), and computer vision.

Computer Vision (CV) is the ability of extract information from im-

ages and videos and the information extracted can be used to take de-

cisions, reproducing the human vision system. The research in this field
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has been started since early 1970s [1], with works in robotic and artificial

intelligence.

The marriage of computer vision and embedded systems has some

early examples coming from 1980s. As stated in [2] one of the first exam-

ples of Embedded Computer Vision (ECV) system is the Xerox optical

mouse. In this primitive, but successful, example the acquisition system

is composed by a really simple optical sensor equipped with an array

of only 4x4 pixels and the embedded systems is an Application Specific

Integrated Circuit (ASIC). This is one of the first cases where computer

vision engineers and hardware designers had to cooperate to create an

embedded computer vision system. Since this successful case, thanks to

the growth in potability and autonomy of embedded systems, as well

as the system integration, computer vision on embedded systems had

a massive diffusion in research and industry. Over the years computer

vision and embedded systems have evolved together to meet and create

new applicative contexts.

Embedded Computer Vision

Nowadays applications of Embedded Computer Vision are diverse. Im-

plementation ranges from human assistance, like autonomous devices or

robots [3], to video games [4] or virtual reality systems [5]. Automotive

is one field in which ECV is very active: pedestrian detection [6], lane

departure prevention [7, 8] or obstacle detection [9]. Smart surveillance

uses computer vision to pre-filter videos, examples include vehicle traffic

monitoring [10], event surveillance and analysis of human features [11].

Because of the diversity of these applications several constraints must
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be taken into account bringing computer vision to embedded systems.

In particular Power Budget, Physical Size, Responsiveness, Flexibility,

Accuracy and Costs are most influencing the design of ECV systems.

Power Budget is a first important requirement that must be taken

into account. There are scenarios like industrial assembly lines where

this is a more relaxed constraint, while it is very important when devices

are battery operated. Physical Size is influencing the design when em-

bedded devices are portable, this means not only the target size in terms

of mm3 but also the form factor. This constraint is important in novel

scenarios like wearable devices, where the device has to be worn so it

must also be comfortable for the final user. The third important con-

straint is the Responsiveness of the system. There are computer vision

systems whose results are not expected to be produced in few millisec-

onds but images or videos can be elaborated in time. While, for instance,

in collision avoidance systems the video stream must be evaluated in hard

time deadline to enable actuators. Flexibility can be meant in terms of

code deployment, ease of update, as well as in terms of programmability

of the hardware platform. The last two constraints are Accuracy and

Costs. Accuracy must be taken into account more carefully in solutions

like Biometric Analysis Systems, where the security or the health of the

patient is involved, while Costs are important in distributed scenarios

where deployment of several devices is required.

All these constraints are not to be considered stand-alone but must

cooperate to meet the requirements of the specific use-case.
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Bringing Computer Vision to Embedded Systems

Several design choices can be employed to meet outlined constraints. We

summarize them into 4 categories: choice of the hardware platform, low-

level software optimizations, high-level software optimizations, design of

new algorithms.

A first important choice is the hardware platform. Field Programmable

Gate Arrays (FPGAs) have been deeply studied as a solution for Em-

bedded Vision Systems [12]. The advantages of using these platforms are

power efficiency and the possibility to use automatic tools to export an

FPGA design to an ASIC. While, the main difficulty is the programma-

bilty that usually requires longer time and advanced skills. Most applica-

tions in computer vision implemented on FPGAs deal with stereo cam-

era matching and several old and new works have been proposed [13,14].

Other solutions rely on more flexible devices based on ARM Cortex SoC,

these platforms range from single to multiple cores and, for power ef-

ficiency, they enable CPU frequency scaling and embed heterogeneous

cores. They are preferred to FPGAs because they permit fast proto-

typing and higher software flexibility. They can be coupled with multi

and many-core accelerators like GPUs or VLIW Digital Signal Processors

(DSPs). Examples are Movidius Myriad [15], TI AccelerationPAC [16].

A clear trend in last years is the exploitation of low-end platforms [17].

There are, as well, new commercial platforms for fast prototyping [18].

Such devices find their application mostly in robotics, i.e. drones or un-

manned vehicles and the Internet of Things (IoT). One novel application

for low-power and ultra-low-power platforms is visual life-logging [19].

The choice of the hardware platform not only means the computa-

tional unit but also the choice of the Vision Sensor (imager). In last
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years works explore the usage of low-power and ultra-low-power im-

agers [20–22], not only measuring pixel intensity but binary patterns

as well.

In the software domain a first solution that can be employed is Low-

Level Software Optimizations, re-writing routines to exploit the specific

hardware [23]. Optimizations range from exploiting core parallelism to

vector units or the coupled hardware accelerators when available.

High-Level Software Optimizations are another viable solution. The

target of this technique is to minimize the number of serial operation

that the algorithm tailored for a specif task requires. This can be done

by re-design the algorithm to find a simpler and less resource-hungry

solution. We have several notable and well known recent [24] and less

recent [25–29] works that use this technique to reduce the computational

load.

Design of New Algorithms targeted for a novel or an existing scenario

is the third software way to bring computer vision to embedded systems.

An example of novel scenario is wearable systems for First Person Vision

also called ego-vision. There are several very recent works that range from

Action [30] and Activity Recognition [31,32] to Attention Prediction [33],

Engagement Detection [34], Visual Saliency [35]. On the other hand

new solutions are provided to existing problems with the diffusion of

machine learned features. Deep learning [36] is driving the research in

computer vision in the last years and improving existing solutions in

terms of accuracy and performance.
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Thesis Contributions

Open Challenges include the study of CV algorithms on integrated em-

bedded platforms, providing the accuracy of the proposed solution along

with an analysis of the performance in a possible target scenario. More-

over the study of reliable and affordable solutions finding the best trade-

off between requirements and constraints is, in some scenarios, a missing

critical link between computer vision and embedded systems. The study

of deep learning algorithms on low resolution imagers has only been par-

tially explored. Computer Vision is widely adopting deep learning. The

study of neural networks on this class of imagers would open new per-

spectives in space and power constrained low-end scenarios. On low-end

platforms, moreover, there is a need of flexible and secure software solu-

tions for smart application deployment. In this thesis we deal with all

these challenges presenting the contributions in three scenarios of ECV on

electronic systems with high energy efficiency with growing requirements

and constraints.

The first major contribution of this thesis is the design of

a novel algorithm for an image based IoT Node. To meet the

requirements we started with the assumption that the stationarity of the

node can be exploited to present a solution with a better tradeoff be-

tween accuracy and operation per second required. In terms of computer

vision optimization, we present the design of a novel algorithm for a task

that already has some solutions in literature but these solutions have

higher power and performance requirements, that are not suitable for an

embedded system.

From a high-end embedded system based on android in a stationary

condition, we move to a second scenario where the embedded system is
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of the same power/performance class but in wearable context.

The second major contribution of this thesis is a novel ges-

ture recognition algorithm for ego-vision applications that uses

trajectories, appearance features and hand segmentation to classify static

and dynamic hand movements and that can achieve high accuracy results

even when trained with a few positive samples. Then we present a per-

formance analysis of the algorithm on a workstation class x86 machine.

The static and dynamic hand gesture recognition algorithm

has been fully integrated in wearable vision system, this is the

third major contribution. A distributed architecture that improves

museum visitors’ experience composed by ego-vision wearable devices

and a central server, and it is capable of recognizing users’ gestures and

artworks. Thus we present a performance evaluation of our algorithm

on an ARM big.LITTLE heterogeneous platform and an implemented

tradeoff between accuracy and performance.

For the third scenario presented in this thesis we set in the same wear-

able context discussed in the previous one but studying the exploitation

of a low-end (MCU) class of devices.

We then explore how, even with very limited resolution, we can obtain

context awareness and understand, at least, a change of context in our

day-life. Dealing with a novel image acquisition system (imager) we

study the exploitation of this imager designing a new algorithm based

on convolutional neural networks. The forth major contribution is

a context change detector for low-resolution images based on a

wearable ego-centric camera with ultra-low power consumption.

The fifth major contribution of the thesis is a more flex-

ible software model to support multiple applications runtime
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linked and executed on Cortex-M class of devices, supporting

critical isolation features typical of virtualization-ready CPUs on low-

cost low-power microcontrollers and covering some defects in security

and deployment capabilities of current firmwares.

Thesis Overview

The thesis is divided into 5 chapters. In Figure 1 we show their position-

ing based on computer vision and embedded systems features.

Figure 1: Structure of the thesis.

Chapter 1 presents an occupancy monitoring algorithm based on im-

ages in a stationary setting. Chapter 2 shows a novel monocular gesture

recognition algorithm for first person vision, and Chapter 3 shows how

this algorithm can be integrated in an embedded system using wearable

vision sensors to enhance visitors’ museum experiences. Chapter 4 deals

with an ultra-low power low-resolution imager presenting a novel first
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person context change detector, while Chapter 5 deals with some infras-

tructure defects, presenting a more flexible and secure software model to

support multiple applications runtime linked and executed on low-end

device class.

Embedded Computer Vision Metrics

A clarification on the evaluation metrics of an ECV system is given in this

subsection. To evaluate a computer vision system four different metrics

must be considered, as reported in [1]:

M.1 Application Performance

Percentage of success in doing the task

M.2 Speed

Time to complete the task

M.3 Power Dissipation

The energy required by the embedded system to execute the task

M.4 System Size

The physical size of the embedded system

In this thesis we choose a nomenclature closer to the embedded system

world than to the CV world. We will refer to M.1 with the term accuracy,

this is more often used in the Embedded Systems to refer to the quality of

the elaboration of the algorithm. The term performance will instead be

used for M.2, denoting the speed of elaboration of the solution provided.

The power dissipation M.3 and the size M.4 of the solution cannot be

interpreted with any ambiguity.



Chapter 1

Image Based IoT Node for

Classroom Occupancy

Monitoring

1.1 Overview

In this first chapter we present an IoT node which uses the processing

of images taken with camera nodes to provide occupancy information in

mostly-static contexts. The task poses a first challenge because of the

limited computational resources of the embedded platform, while the sta-

tionary setting of the vision nodes provides an easier and more relaxed

design constraint that permits to scale down sampling rate and process

images instead of videos. After designing the image based algorithm the

IoT CV node has been further integrated in a heterogeneous WSN, con-

sisting of sensor nodes and camera nodes for building monitoring. Indeed,

computer vision typically requires notable amounts of complexity, perfor-

mance and power consumption levels not compatible with a distributed
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wireless sensing scenario.

By combining local processing, low power hardware design and power

management we will prove the efficiency of our approach and we will

demonstrate, by experimental results the feasibility of occupancy mon-

itoring in a real deployment scenario, with acceptable levels of power

consumption and accuracy.

The chapter is structured as follows. First related works are pre-

sented. Section 1.3 deals with the design of the people counting algo-

rithm. Then we present the image based node. In Section 1.4 the het-

erogeneous sensors network is presented. In Section 1.5 results in terms

of accuracy and power consumption are shown and discussed. Finally,

Section 1.6 concludes the chapter.

1.2 Related Work

Internet of Things and Wireless Sensor Networks are becoming a mature

technology and several structural and building monitoring real systems

based on wireless sensor networks have been designed [37] and are already

on the market, for instance IBM TRIRIGA R© Energy Optimization [38]

and Siemens Desigo [39]. Such systems allow a flexible room automation

with a fine-grained control and monitoring thanks to wireless nodes ca-

pable to measure environmental conditions and energy consumption [40].

The centralized control rooms are equipped with timers and there are

several thermostats placed all over the building, but those systems miss

a complete automated system for heating control based on room occu-

pancy.

The solution that we provide focuses on occupancy monitoring by a
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distributed on-node algorithm. Several works have already investigated

the trade-off between central vs. distributed processing in a WSN, such

as [41–43]. Focusing on the people counting task, there are several ap-

plications that try to implement an efficient solution using a variety of

sensors or distributed algorithms on computing platforms. A big part of

the literature relies on video cameras stream processing. There are good

results achieved by [44] [45]. They track people in video, using different

methods, as a consequence these systems could be used to enumerate and

then count the number of people in a scene. However they need a high

computational effort to achieve it.

People detection in crowded scenes tries to estimate the number of

people by building occupancy models. Several works has been presented

on this topic. Li et al. [46] give an in depth description covering differ-

ent aspects of scene analysis, including crowd motion pattern learning,

crowd behavior and activity analyses, and anomaly detection in crowds.

They do not explicitly cover People Counting though. Another less re-

cent survey on people counting by Zhan et al. [47] gives a description of

crowd density measurement which can be done by counting people in the

scene. An interesting work is presented by Hou et al. [48], but it mostly

deals with very crowded outdoor scenarios. More recent works, in this

field, exploit new neural network techniques. For example good results

are achieved in [49] where accuracy and performance are deeply studied

but performance are not compatible with an embedded implementation.

Moreover there are two works that should be noted [50, 51]. They have

as main target counting people in indoor spaces, so they try to address

the problem similarly to our approach. The main difference is a lack of

performance assessment and accuracy information to make a comparison
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Figure 1.1: Steps of Entropy based Algorithm.

with our results.

In WSN, the applications for counting people with a camera mostly

focus on ceiling top down view. The work proposed by Lee, Tsai and

Hung [52] defines an interest region that is used like a gate, an intereste

region to counts the poeple crossing it, and uses a Gaussian Mixture

Model (GMM) [53] to isolate the foreground from the background. While

the work by Teixera and Saviddes [54] tries to count the number of people

in the field of view using a single wide-angle camera. They use size and

movements of humans to recognize them, calculating a motion histogram.

It has limited scalability due to their need for several camera sensors to

cover a large area.

1.3 People Counting: An Entropy Based

Approach

In this section we describe in detail the algorithm developed for counting

people on the visual nodes. The target of this algorithm is to find the

number of people inside classrooms during lectures. Our approach is

based on one assumption: most of the changes that take place inside a

room are related to human activity. We want moreover to be robust to

these two kinds of changes:
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1. Slow Changes related to environment or sunlight (i.e. weather/time-

of-day related light changes). These changes take place in minutes

or hours.

2. Instantaneous Changes related to the lighting system (i.e. when

light is switched on or off).

Starting from this idea, with a wall-mounted still camera, we decided

to scale down the sampling rate (intervals between subsequent frames)

and take picture in pairs at a fixed time interval. Exploiting the changes

observed in the two pictures of a pair, we can correlate them with the

number of people inside the classroom, measuring the entropy produced

within the interval. After extensive experimentation we settled that a

good interval to track entropy produced by people (even sitting in the

same place for a long time) is to take pictures in pairs outdistanced of 60

seconds and look at the differences that occurs within them. This reduces

the sensitivity of Slow Changes because they take place over longer time

scales. Elaborating from 15 to 25 images per second, as mostly of the

on-the-market camera sensors can provide, is moreover a big overkill of

data, not needed for our purpose. To further reduce the sensitivity with

respect to Slow Changes we decided to work in gradient space, that is

more robust to small light changes than normal color/light space.

Instantaneous changes cannot be tolerated with the approach de-

scribed above. Hence, a large gradient variation is expected when an

Instantaneous Change happens in the 60 seconds interval between two

images. On the other hand, these changes are less frequent than Slow

Changes and the interval of 60 seconds that we chose for images pairs

helps reducing even more their impact. To remove the false counts cre-

ated by these changes, we decided add a filter that checks the differences
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in between the pairs and if it is higher than the entropy measured with

the maximum number of people inside the classroom, we invalidate the

results and we take another picture. Then we elaborate this new picture

with the second one of the original pair.

In next subsections, we describe each of the three parts that compose

our algorithm: the first one deals with the entropy extraction, the second

one with features description, and the third one explains the learning

phase that matches described features with the numerical output of the

algorithm.

1.3.1 Entropy Based Features

The main idea of the entropy based features extraction is to correlate

two maps of gradients of two subsequent images, to find the features

that characterize the presence of people. The choice of using gradients is

due to the idea that people activity alters the original map of gradients

and this activity can be correlated to the number of people in the room.

Moreover gradients permit to avoid small light changes between the pairs

of images.

The input for the gradients extraction are two color images sampled

with 60 seconds of delay. This way the correlation of gradients of two

images does not contain the difference between the empty room and the

people that is on the foreground. It contains just what has been changed

within the pair of images. This design presents multiple advantages.

It prevents that Slow Activity affects the results of the algorithm (as

described before) and, not less important, even if the configuration of

the room (arrangement of furniture, chairs, desks) changes the results

are not affected. Moreover gradients are less affected by fluctuation of
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brightness due to exposure or small light changes.

The Absolute gradient difference depicted in Fig. 1.1 is preceded by

four steps. The first one is a Gaussian blur with a 3 × 3 kernel. This

step is done to clean the noise introduced from the image sensor. Then

a conversion to gray scale is done for the gradients extraction.

The extraction of gradient information from the images is done with

two Sobel Kernels. In order to extract the x and y derivatives, these two

convolutional kernels are used:

Kx =


+1 0 −1

+2 0 −2

+1 0 −1

 ; Ky =


+1 +2 +1

0 0 0

−1 −2 −1



This step is done for each of the two images. As a result of this

step, two new matrices are produced, one for the x and one for the y

derivative: Kx and Ky. To have a merged map for each image, Kx and

Ky are transformed in the corresponding Modulus matrices and then an

addition is performed, with a 0.5 weight for each matrix.

Finally to have a map of the features that describes the activity in

the room, the results of the previous matrices are modulus subtracted

(Absolute Gradient Difference). This operation removes all the gradient

map’s features that belong to the background, and only what has changed

during the elapsed time between the two picture is described after this

step. We will refer to this map in next section naming it Entropy Features

Map (EFM), an example in Figure 1.2.
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(a)

(b)

Figure 1.2: (a) One of the two images of one couple, (b) a binarized EMF
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1.3.2 Features Description

The key idea of features description is simple: the area taken up by each

person is related to the vertical position in the image space. People that

sit in the first seats occupy a bigger area in the picture, while people in

the back a smaller one.

Since the EFM contains information on people related to their size,

we decided to make a description of the EFM by creating many accu-

mulators, one for each horizontal line of EFM. So given Dx and Dy the

horizontal and vertical size of EFM, there are Dy accumulators:

Acc0 =

Dx−1∑
i=0

{
1 if EMF (0, i) is foreground

0 if EMF (0, i) is background

...

...

...

AccDy−1 =

Dx−1∑
i=0

{
1 if EMF (Dy−1, i) is foreground

0 if EMF (Dy−1, i) is background

Each one of this accumulators describe the number of foreground

pixels for each line of the EFM. This way is possible for the learning

phase to weight the foreground pixels of the image by line.

1.3.3 Characterization of a Room

Starting from the previous feature description, a characterization be-

tween the features description and the real number of people inside the

classrooms is required. For this purpose, we decided to use a machine
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learning stage that inputs the previous accumulators and learns the num-

ber of people from that data. We set up a Support Vector Machine and,

since the output is an integer number belonging to the range 0 to 150

(number of people), we used a regression model. After different trials

we choose ν-SVM and Radial Basis as most suitable SVM Model and

Kernel, whose performance are discussed in the next Section.

1.4 Heterogeneous Sensors Network

In this section two kinds of nodes that compose the WSN are presented:

the camera one and the sensors equipped one.

1.4.1 Image Based IoT Nodes

The camera nodes that we target are Android platforms (e.g. smart-

phones with embedded camera or development platforms with external

camera). The network deployment has been done on Samsung Galaxy

Pocket Smartphones. They are equipped with Android 4.0.4 and through

a WIFI module they communicate directly to the main server (a cloud

based server that collects data from all sensors and camera nodes). We

use these devices to process images from building’s rooms on board. For

this purpose we designed and implemented an Android application that

makes use of native C libraries for the computational back-end and of

java libraries for the interface and control front-end. Thus, the result

of processing is sent trough the network using TCP-IP and JSON based

protocols to the centralized server. The application is designed to col-

lect images at specific time intervals, that can be set by a graphical user

interface. It is possible to send through the network either results from
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Figure 1.3: (a) W24TH Sensor node used for environmental monitoring
and (b) block diagram of sensor design.

the local processing algorithm that is described in Section 1.3 or images

to collect a dataset. The images are sent trough Secure Copy Protocol

(SCP) and a fault tolerance module that permits long offline periods has

been implemented. The collection of images can be stopped by a timer

to, for instance, disable image sampling overnight or during weekends.

Furthermore there is a module for alerts, designed to advice if there are

power supply issues.

1.4.2 Sensor Nodes

The wireless sensor nodes used for environmental monitoring is a W24TH

model, developed by Wispes srl [55]. The node (Fig. 1.3) is designed to

minimize the energy wasted during idle state and the used CPU is a 32-

bit architecture (NXP JN5148) module [56] with ultra-low-power features

and high performance wireless capability targeted at 802.15.4 networking
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applications. Compared to other similar and commercial sensor nodes

[57], it features about 35% power savings with a power consumption of

35mW for TX mode and 42mW for RX, while it can switch to a sleep

states with only 8µA consumption. The most remarkable characteristics

are the 32-bit computation capability at 32MHz useful to perform on-

line processing. They are equipped with several sensors: temperature,

relative humidity, light and dock for the catalytic MOX sensors.

1.4.3 Data Collection

The camera nodes are directly connected to the internet trough a WIFI

module and they can communicate elaborated results directly to cloud

servers. They transmit packets over the network trough TCP-IP protocol

encapsulating data using JSON format.

The sensor nodes are organized as a tree network where the root

sensor collects data from the other nodes, then communicate collected

values through a gateway.

The information sampled from sensors and cameras are gathered to-

gether in a cloud based server. This will make possible to show the

retrieved values and to further trigger remote actions.

1.5 Experimental Results

In this section we present results in terms of accuracy, performance and

energy. For this purpose we collected a dataset of images sized 1600 ×

1200 px, taken from a frontal viewpoint (Fig. 1.4) from two different

classrooms.
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Figure 1.4: Four dataset images, two from Room 1 (on top) and two from
Room 2 (on bottom).

1.5.1 Algorithm Detection Accuracy

The dataset for the learning phase consists, for each room, of four days

of images, sampled in pairs. Each pair consists of two images sampled

within 60 seconds interval. The pairs are sampled with 10 minutes inter-

val. The sampling started at 08:00 a.m. and went on until 08:00 p.m., so

the total number of images per day is 144, and the total images for the

learning phase is 576. With these images we trained the SVM learning

phase described is Section 1.3.

In figure 1.5 we show the results of a test set consisting of 144 images

for each room. It depicts the real number of people and the detected

one. Each detection is related to the elaboration of one pair. Ground
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truth has been human calculated and thus it could contain errors since

counting people in a room from pictures is a difficult task even for hu-

man beings, due to partial or total occlusions and background cluttering.

Moreover the ground truth is relative to the second picture of the pair.

Watching the depicted results, the detection line follows ground truth,

except sometimes that is possible to notice a lead or lag of one measure-

ment. This is due to higher entropy when people enter and leave rooms.

For instance it can be noticed an error in the pair 160543 within Room

1 or the pair 190543 within Room 2 of figure 1.5.

The error calculation has been done with equation (1) and (2): MAE

(Mean Absolute Error) and RMSE (Root Mean Square Error) respec-

tively:

MAE =

∑N−1
i=0

∣∣Ri −Di

∣∣
N

(1.1)

RMSE =

√∑N−1
i=0

(
Ri −Di

)2
N

(1.2)

Where N is total number of test images, R and D the real and de-

tected number of people respectively.

The error related to the dataset composed of 5 days (four for training

and one for test) is:

Best Result:

Room 1: MAE = 04.86 RMSE = 09.39

Room 2: MAE = 04.98 RMSE = 07.12
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Figure 1.5: Comparison of detected people with ground truth during a
whole day. X axis represents time of the taken picture (total number of
pictures per day: 72 pairs), and Y axis the number of detected people.
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Worst result:

Room 1: MAE = 09.44 RMSE = 15.71

Room 2: MAE = 08.38 RMSE = 12.24

The four days of training and the day of test have been randomly

chosen, this is the reason why we show best and worst results. The

average error is around 7 people, and it gives better results when the

number people in the room is smaller. This is a good accuracy for our

purpose because the correlation with micro-climatic information can be

done by creating some occupancy classes, for instance room empty, few

occupancy, medium occupancy or room full, and so reducing even more

the error rate.

1.5.2 Algorithm Performance

To evaluate the performance of the algorithm we used a different platform

than the one presented in Section 1.4.1. Tests has been conducted on the

Odroid XU, an ARM equipped developer board produced by Hardkernel

company. This platform permits to have more accurate power and per-

formance measurements, than the Samsung Galaxy used to deploy the

system, while it embeds a similar class of SoC. In Table 1.1, performance

comparison is presented as a function of the scaling size of input image.

We used different sized images: 1600×1200, the original size, 800×600,

640×480 and 320×240, to understand the behavior of the algorithm with

different inputs.

Finally, we show another comparison to correlate RMSE with per-

formance. We added to this graph the size of input images to give a
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Table 1.1: Algorithm Performance comparison

1600 × 1200 800 × 600 640 × 480 320 × 240

Performance (ms) 660 164 106 27

Image size (KByte) 5,625 1,406 900 450
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Figure 1.6: Performance, accuracy and resolution comparative chart

quantitative feedback of the differences in amount of elaborated input

data. This results are shown in Fig. 1.6.

As we expected the best accuracy is reached with the biggest input

image, but what is noteworthy is that scaling down the image of a half

and then to VGA size the performance increases of 4.00× for 800×600

px size and then of 6.21× for 640×480 px size, but in both last two cases

the accuracy is really similar. Whereas the resolution 320x240 brings

a great speedup (24×), but the accuracy of the algorithm in this case

drops by 20%. This shows that between the total sized image and the

three resized ones, there is a loss of details mandatory to keep the best

accuracy for the proposed algorithm. Indeed for timing purpose there is
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no need of scaling down the input images, since the sampling time for

people counting visual nodes is 10 minutes. This down-sample is related

to power consumption discussed in next subsection.

1.5.3 Energy Comparison

The comparison of the energy needed to elaborate the images with the

proposed algorithm is presented in Table 1.2. The input of this test is

the total number of images taken in a day, 144, and elaborated in batch

as a single block of input. The results are compared with four different

resolutions.

Table 1.2: Algorithm Energy comparison

1600 × 1200 800 × 600 640 × 480 320 × 240

Performance (s) 48.56 12.41 7.96 2.22

Energy (J) 229.05 55.90 35.14 12.13

Table 1.2 shows that the effort to produce better results from full size

images is much higher and not linear with input data size. Matching

results shown in figure 1.6 and table 1.2 we notice that a power/accu-

racy trade-off could be reached and it is located in 640×480 category.

In an energy per sample perspective the elaboration of 1 sample of peo-

ple counting needs 3.18 J for max resolution and 0.49 J for 640×480.

While in a battery perspective, eliminating the system standby, the pure

computation on a 4000mAh battery will discharge it in about 184 min-

utes for 1600×1200 and in 192 minutes for 640×480 and the total people

counting samples elaborated are about 16751 and 109167 respectively.

These numbers shows that we are still far from an autonomous node

completely battery-powered, but considering that in one day our test
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generates 72 occupancy measurements, the results are considered very

interesting, for a quite unexplored application scenario. Indeed further

optimization could be done switching ON and OFF internal components

and peripherals, improving the global camera nodes power saving.

1.6 Conclusions

In this chapter we presented a real-word application of visual node in-

tegrated in a heterogeneous WSN composed of two kinds of nodes: the

sensor nodes and the camera nodes. We presented a novel algorithm

to detect the occupancy of mostly-static rooms. It elaborates images,

instead of video, to reduce the overhead of computation. The on-node

implementation permits to reduce the network traffic. The algorithm

reaches a good accuracy in mostly-static occupancy contexts. We then

explored the trade-off between accuracy and performance on an high-end

embedded SoC and we characterized the energy consumption compared

to the size of input images. Our results prove that a good trade-off be-

tween power consumption and accuracy can be reached for the proposed

target to combine occupancy and micro-climatic information.

In next chapter we move from a stationary setting to a wearable one

and we explore which are the different requirements and constraints of

this different and more challenging setup.



Chapter 2

Gesture Recognition in

Ego-Centric Videos

2.1 Overview

In this chapter we move to a more challenging embedded vision paradigm

called ego-vision [58]. Ego-centric vision is a paradigm that joins in the

same loop humans and wearable devices to augment the subject vision ca-

pabilities by automatically processing videos captured with a first-person

camera. We present a hand gesture recognition approach for human-

machine interfaces designed for a wearable monocular camera. We take

into account both static gestures, in which the meaning of the gesture is

conveyed by the hand pose, and dynamic gestures, in which the meaning

is given by motion too. It should be noted that gestures are somehow

personal. In fact, they can vary from individual to individual and even

for the same individual between different instances.

In next section we discuss related work, then the gesture recognition

algorithm is presented. In Section 2.4 experimental results are presented,
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while Section 2.5 concludes the chapter.

2.2 Related Work

The ego-vision scenario has been addressed only recently by the research

community and mainly to understand human activities and to recognize

hand regions. Pirsiavash et al. [59] detected activities of daily living using

an approach that involves temporal pyramids and object detectors tuned

for objects appearance during interactions and spatial reasoning. Sun-

daram et al. [60] proposed instead to use Dynamic Bayesian Networks to

recognize activities from low resolution videos, without performing hand

detection and preferring computational inexpensive methods. Fathi et

al. [61] used a bottom-up segmentation approach to extract hand held

objects and trained object-level classifier to recognize objects; further-

more they also proposed an activity detection algorithm based on object

state changes [62].

Regarding hand detection, Khan et al. in [63] studied color classi-

fication for skin segmentation. They pointed out how color-based skin

detection has many advantages and potentially high processing speed,

invariance against rotation, partial occlusion and pose change. The

authors tested Bayesian Networks, Multilayers Perceptrons, AdaBoost,

Naive Bayes, RBF Networks and Random Forest. They demonstrated

that Random Forest classification obtains the highest F-score among all

the other techniques. Fathi et al. [61] proposed a different approach to

hand detection, based on the assumption that background is static in

the world coordinate frame, thus foreground objects are detected as to

be the moving regions respect to the background. An initial panorama
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of the background is required to discriminate between background and

foreground regions: this is achieved by fitting a fundamental matrix to

dense optical flow vectors. This approach is shown to be a robust tool

for skin detection and hand segmentation in indoor environments, even

if it performs poorly with more unconstrained scenarios.

Li et al. [64] provide a historical overview of approaches for detect-

ing hands from moving cameras. They define three categories: local

appearance-based detection, global appearance-based detection, where a

global template of hand is needed, and motion-based detection, which

is based on the hypothesis that hands and background have different

motion statistics. Motion-based detection approaches require no super-

vision nor training. On the other hand, these approaches may identify as

hand an object manipulated by the user, since it moves together with his

hands. In addition they proposed a method with sparse feature selection

which was shown to be an illumination-dependent strategy. To solve this

issue, they trained a set of Random Forests indexed by a global color

histogram, each one reflecting a different illumination condition.

Several approaches to gesture and human action recognition have been

proposed. Sanin et al. [65] developed a new and more effective spatio-

temporal covariance descriptor to classify gestures in conjunction with a

boost classifier. Lui et al. [66, 67] used tensors and tangent bundle on

Grassmann manifolds to classify human actions and hand gestures. Kim

et al. [68] extended Canonical Correlation Analysis to measure video-to-

video similarity to represent and detect actions in video. However, all

these approaches are not appropriate for the ego-centric perspective, as

they do not take into account any of the specific characteristics of this

domain, such as fast camera motion and background cluttering. To our
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knowledge, the study of gesture recognition in the ego-centric paradigm

has been partially addressed by P. Mistry et al. [69]. Their work presents

a natural interface to interact with the physical world and embeds a

projector to show results of that interaction. However they use colored

markers on user’s fingers to recognize gestures and they require a back-

packed laptop as computational unit. Although our work could seem sim-

ilar to this last approach, we move a step forward with respect to [69]:

we proposed a fully automatic gesture recognition approach based on

appearance and motion of the hands. Our approach can deal with back-

ground cluttering and camera motion and does not require any markers

on fingers.

2.3 Gesture Recognition Algorithm

Gestures can be characterized by both static and dynamic hand move-

ments. Therefore, we consider a video sequence captured by a glass

mounted camera, in which a gesture may be performed, and describe it

as a collection of dense trajectories extracted around hand regions. When

the user’s hands appear, feature points are sampled inside and around

the hands and tracked during the gesture; then several descriptors are

computed inside a spatio-temporal volume aligned with each trajectory

to capture its shape, appearance and movement at each frame. We use

the following descriptors, according to [70]: Trajectory descriptor, his-

tograms of oriented gradients (HOG), of optical flow (HOF), and motion

boundary histograms (MBH). The first one directly captures trajectory

shape, while HOG [71] are based on the orientation of image gradient
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Figure 2.1: Outline of the proposed Gesture Recognition method.

and thus encode the static appearance of the region surrounding the tra-

jectory. HOF and MBH [72] are based on optical flow and are used to

capture motion information enforcing the temporal aspect of our method.

These descriptors are coded, using the Bag of Words approach and power

normalization, to obtain the final feature vectors, which are then classi-

fied using a linear SVM classifier. Figure 2.1 provides a more detailed

outline of the workflow of the proposed gesture analysis module.

Camera Motion Removal

To estimate the hand motion, it is first necessary to remove the camera

motion, which is, semantically, noise. To do so, the homography trans-

form between two consecutive frames is estimated running the RANSAC

[73] algorithm on densely sampled features points: SURF [74] features
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and sample motion vector are extracted from the Farneback’s optical

flow [75] to get dense matches between frames. The choice of this partic-

ular optical flow algorithm is induced by our preliminary tests, in which

Farneback’s optical flow showed the best performance when compared to

other popular optical flow algorithms, such as TV-L1 [76] and Simple-

Flow [77].

In ego-vision, however, it is often the case where camera and hand mo-

tions are not consistent, resulting in wrong matches between the frames

and degrading the consequent homography estimation. This introduces

the need for an additional step based on a totally decoupled feature. We

use a hand segmentation mask that allows us to remove the matches

belonging to the user’s hands, which could have resulted in incorrect

trajectories. Computing the homography based only on non-hand key-

points allows to have a motion model consistent with the ego-motion of

the camera which can, consequently, be removed.

Gesture Description

After the suppression of camera motion, trajectories can be extracted.

Using the previously estimated homography, each frame of the sequence

is warped and the Farneback’s optical flow between each couple of ad-

jacent frames is recomputed to estimate the motion resulting from the

hand movement. Feature points around the hand region are sampled

and tracked in a way similar to [70]. We build a spatial pyramid with

four layers, such that each layer has half the area of the previous one,

and at each spatial scale we apply a threshold on the minimal eigenvalue

of the covariance matrix of image derivatives to obtain dense keypoints.

We also ensure that keypoints are not duplicated among different spatial
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layers, and that a minimum distance between each couple of points is

preserved. Each keypoint Pt = (xt, yt) is then tracked by the means of

median filtering with kernel M in a dense optical flow field ω = (ut, vt):

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ω)|(x̄t,ȳt) (2.1)

where (x̄t, ȳt) is the rounded position of Pt. Differently from [70], our

trajectories are calculated under the constraint that they lie inside and

around the user’s hand: at each frame the hand mask is dilated and all

keypoints still outside are discarded.

A spatio-temporal volume aligned with each trajectory is then build,

as a collection of 32× 32 patches around the keypoint. Then, Trajectory

descriptor, HOG, HOF and MBH are computed inside the volume. We

introduce a difference in how to weight the temporal volume of each

component of our feature vector: while HOF and MBH are averaged on

five consecutive frames, a single HOG descriptor is computed for each

frame. This allows us to describe the changes in the hand pose at a finer

temporal granularity. This step results in a variable number of descriptors

for each video sequence. To obtain a fixed size descriptor, we exploit the

Bag of Words approach training four separate codebooks, one for each

descriptor. Each codebook contains K visual words (in the experiments

we fix K = 500) and is obtained running the k-means algorithm on the

training data.

Since the histograms obtained from the Bag of Words in our do-

main tend to be sparse, they are power normalized to unsparsify the

representation, while still allowing for linear classification. To perform
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power-normalization [78], the function:

f(hi) = sign(hi) · |hi|
1
2 (2.2)

is applied to each bin hi in our histograms.

The final descriptor is then obtained by the concatenation of its four

power-normalized histograms. Finally, gestures are recognized using a

linear SVM 1-vs-1 classifier.

2.3.1 Hand Segmentation

As stated before, a hand segmentation mask is used to distinguish be-

tween camera and hand motions, and to prune away all the trajectories

that do not belong to the user’s hand. In this way, our descriptor captures

hands movement and shape as if the camera was fixed, and disregards

the noise coming from other moving regions that could be in the scene.

At each frame we extract superpixels using the SLIC algorithm [79],

that performs a k-means-based local clustering of pixels in a 5-dimensional

space, where color and pixel coordinates are used. Superpixels are then

represented with several features: histograms in the HSV and LAB color

spaces (that have been proven to be good features for skin representa-

tion [63]), Gabor filters and a simple histogram of gradients, to discrim-

inate between objects with a similar color distribution.

Illumination invariance

To deal with different illumination conditions, we cluster the training im-

ages running the k-means algorithm on a global HSV histogram. Hence,

we train a Random Forest classifier for each cluster. By using a histogram
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over all three channels of the HSV color space, each scene cluster encodes

both the appearance of the scene and its illumination. Intuitively, this

models the fact that hands viewed under similar global appearance will

share a similar distribution in the feature space. Given a feature vec-

tor l of a superpixel s and a global appearance feature g, the posterior

distribution of s is computed by marginalizing over different clusters c:

P (s|l,g) =
k∑

c=1

P (s|l, c)P (c|g) (2.3)

where k is the number of clusters, P (s|l, c) is the output of the cluster-

specific classifier and P (c|g) is a conditional distribution of a cluster c

given a global appearance feature g. In test phase, the conditional P (c|g)

is approximated using an uniform distribution over the five nearest clus-

ters. It is important to highlight that the optimal number of classifiers

depends on the characteristics of the dataset: a training dataset with

several different illumination conditions, taken both inside and outside,

will need an higher number of classifiers than one taken indoor. In ad-

dition, we model the hand appearance not only considering illumination

variations, but also including semantic coherence in time and space.

Temporal coherence

To improve the foreground prediction of a pixel in a frame, we replace

it with a weighted combination of its previous frames, since past frames

should affect the prediction for the current frame.
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We define a smoothing filter for a pixel xit from frame t as:

P (xit = 1) =

min(t,d)∑
k=0

wk(P (xit = 1|xit−k = 1) ·

·P (xit−k = 1|lt−k,gt−k) + P (xit = 1|xit−k = 0)

·P (xit−k = 0|lt−k,gt−k)) (2.4)

where d is the number of past frames used, and P (xit−k = 1|lt−k,gt−k)

is the probability that a pixel in frame t − k is marked as hand part,

equal to P (s|lt−k,gt−k), being xit part of s. In the same way, P (xit−k =

0|lt−k,gt−k) is defined as 1−P (s|lt−k,gt−k). Last, P (xit = 1|xit−k = 1) and

P (xit = 1|xit−k = 0) are prior probabilities estimated from the training

set as follows:

P (xit = 1|xit−k = 1) =
#(xit = 1, xit−k = 1)

#(xit−k = 1)

P (xit = 1|xit−k = 0) =
#(xit = 1, xit−k = 0)

#(xit−k = 0)
(2.5)

where #(xit−k = 1) and #(xit−k = 0) are the number of times in which

xit−k belongs or not to a hand region, respectively; #(xit = 1, xit−k = 1) is

the number of times that two pixels at the same location in frame t and

t− k belong to a hand part; similarly #(xit = 1, xit−k = 0) is the number

of times that a pixel in frame t belongs to a hand part and the pixel in

the same position in frame t−k does not belong to a hand region. Based

on our preliminary experiments we set d equal to three.
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Spatial consistency

Given pixels elaborated by the previous steps, we want to exploit spa-

tial consistency to prune away small and isolated pixel groups that are

unlikely to be part of hand regions and also aggregate bigger connected

pixel groups. For every pixel x, we extract its posterior probability P (xti)

and use it as input for the GrabCut algorithm [80]. Each pixel with

P (xti) ≥ 0.5 is marked as foreground, otherwise it’s considered as part

of background. After the segmentation step, we discard all the small

isolated regions that have an area of less than 5% of the frame and we

keep only the three largest connected components.

2.4 Experimental Results

To compare the accuracy of the proposed gesture recognition algorithm

with existing approaches, we test it on the Cambridge-Gesture database

[81], which includes nine hand gesture types performed on a table, under

different illumination conditions. To better investigate the effectiveness

of the proposed approach in videos taken from the ego-centric perspec-

tive and in a museum setting, we also propose a far more realistic and

challenging dataset which contains seven gesture classes, performed by

five subjects in an interactive exhibition room which functions as a vir-

tual museum. Furthermore, to evaluate the hand segmentation approach,

we test it on the publicly available CMU EDSH dataset [64] which con-

sists of three ego-centric videos with indoor and outdoor scenes and large

variations of illuminations.

After presenting the accuracy we evaluated the performance of the

designed method on an x86 Intel based workstations to investigate the



42 2.4 Experimental Results

effort required to bring the algorithm to an integrated embedded solution.

2.4.1 Gesture Recognition

The Cambridge Hand Gesture dataset contains 900 sequences of nine

hand gesture classes. Although this dataset does not contain ego-vision

videos it is useful to compare our results to recent gesture recognition

techniques. In particular, each sequence is recorded with a fixed cam-

era, placed over one hand, and hands perform leftward and rightward

movements on a table, with different poses. The whole dataset is di-

vided in five sets, each of them containing image sequences taken under

different illumination conditions. The common test protocol, proposed

in [81], requires to use the set with normal illumination for training and

the remaining sets for testing, thus we use the sequences taken in nor-

mal illumination to generate the BoW codebooks and to train the SVM

classifier. Then, we perform the test using the remaining sequences.

Table 2.1 shows the recognition rates obtained with our gesture recog-

nition approach, compared with the existing ones, presented in related

work section. They are tensor canonical correlation analysis (TCCA) [68],

product manifolds (PM) [66], tangent bundles (TB) [67] and spatio-

temporal covariance descriptors (Cov3D) [65]. Results show that pro-

posed method outperforms the existing state-of-the-art approaches.

We then propose the Interactive Museum dataset, a gesture recogni-

tion dataset taken from the ego-centric perspective in a virtual museum

environment. It consists of 700 video sequences, all shot with a wearable

camera, in an interactive exhibition room, in which paintings and art-

works are projected over a wall, in a virtual museum fashion (see figure

2.2). The camera is placed on the user’s head and captures a 800 × 450,
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Method Set1 Set2 Set3 Set4 Overall

TCCA [68] 0.81 0.81 0.78 0.86 0.82
PM [66] 0.89 0.86 0.89 0.87 0.88
TB [67] 0.93 0.88 0.90 0.91 0.91
Cov3D [65] 0.92 0.94 0.94 0.93 0.93
Our method 0.92 0.93 0.97 0.95 0.94

Table 2.1: Recognition rates on the Cambridge dataset.

(a) Dislike gesture

(b) Point gesture

(c) Slide left to right gesture

Figure 2.2: Sample gestures from the Interactive Museum dataset.
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25 frames per second 24-bit RGB image sequence. In this setting, five

different users perform seven hand gestures: like, dislike, point, ok, slide

left to right, slide right to left and take a picture. Some of them (like the

point, ok, like and dislike gestures) are statical, others (like the two slide

gestures) are dynamical. This dataset is very challenging since there is

fast camera motion and users have not been trained before recording their

gestures, so that each user performs the gestures in a slightly different

way, as would happen in a realistic context. We have publicly released

our dataset1.

Since Ego Vision applications are highly interactive, their setup step

must be fast (i.e. few positive examples can be acquired). Therefore,

to evaluate the proposed gesture recognition approach, we train a 1-vs-1

linear classifier for each user using only two randomly chosen gestures

per class as training set. The reported results are the average over 100

independent runs.

In Table 2.2 we show the gesture recognition accuracy for each of

the five subjects, and we also compare with the ones obtained without

the use of the hand segmentation mask for camera motion removal and

trajectories pruning. Results show that our approach is well suited to

recognize hand gestures in the ego-centric domain, even using only two

positive samples per gesture, and that the use of the segmentation mask

can improve recognition accuracy.

2.4.2 Hand Segmentation

The CMU EDSH dataset consists of three ego-centric videos (EDSH1,

EDSH2, EDSHK) containing indoor and outdoor scenes where hands are

1http://imagelab.ing.unimore.it/files/ego_virtualmuseum.zip

http://imagelab.ing.unimore.it/files/ego_virtualmuseum.zip
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User No segmentation With segmentation

Subject 1 0.91 0.95

Subject 2 0.87 0.87

Subject 3 0.92 0.95

Subject 4 0.96 0.94

Subject 5 0.91 0.96

Average 0.91 0.93

Table 2.2: Gesture recognition accuracy on the Interactive Museum
dataset with and without hand segmentation.

purposefully extended outwards to capture the change in skin color. As

this dataset does not contain any gesture annotation, we use it to evaluate

only the hand segmentation part.

We validate the techniques that we have proposed for temporal and

spatial consistency. In Table 2.3 we compare the performance of the hand

segmentation algorithm in terms of F1-measure, firstly using a single

Random Forest classifier, and then incrementally adding illumination in-

variance, the temporal smoothing filter and the spatial consistency tech-

nique via the GrabCut algorithm application. Results shows that there is

a significant improvement in performance when all the three techniques

are used together: illumination invariance increases the performance with

respect to the results obtained using only a single random forest classifier,

while temporal smoothing and spatial consistency correct incongruities

between adjacent frames, prune away small and isolated pixel groups and

merge spatially nearby regions, increasing the overall performance.

Then, in Table 2.4 we compare our segmentation method with dif-

ferent techniques: a video stabilization approach based on background
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Features EDSH2 EDSHK

Single RF classifier 0.761 0.829
II 0.789 0.831
II + TS 0.791 0.834
II + TS + SC 0.852 0.901

Table 2.3: Performance comparison considering Illumination Invariance
(II), Temporal Smoothing (TS) and Spatial Consistency (SC).

Method EDSH2 EDSHK

Hayman and Eklundh [82] 0.211 0.213
Jones and Rehg [83] 0.708 0.787
Li and Kitani [64] 0.835 0.840
Our method 0.852 0.901

Table 2.4: Hand segmentation comparison with the state-of-the-art.

modeling [82], a single-pixel color method inspired by [83] and the ap-

proach proposed in [64] by Li et al. , based on a collection of Random

Forest classifiers. As can be seen, the single-pixel approach, which ba-

sically uses a random regressor trained only using the single pixel LAB

values, is still quite effective, even if conceptually simple. Moreover, we

observe that the video stabilization approach performs poorly on this

dataset, probably because of the large ego-motions these video present.

The method proposed by Li et al. is the most similar to our approach,

nevertheless exploiting temporal and spatial coherence we are able to

outperform their results.

2.4.3 Performance Evaluations

In this subsection we give a brief overview of the performance of the

algorithm on an Intel based workstation, with a i7-2600 CPU that runs
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up to 3.40 GHz.

To evaluate execution time, we divide our algorithm in four modules:

1. Trajectory sampling module, which includes trajectories extraction

and description

2. Power-normalized BoW module, that exploits the Bag of Words

approach and power normalization to build the final feature vectors

3. Classification module, that performs linear SVM classification

4. Hand Segmentation module, that runs our hand segmentation al-

gorithm

30.13
119.60

31.39

910.59

Worksta�on Execu�on Time (ms)

Trajectory Sampling
Power-normalized BoW
Classifica�on
Hand Segmenta�on

Total execu�on �me: 1091.71 ms

Figure 2.3: Workstation Performance Evaluation on 15 frames trajecto-
ries.

Results in Figure 2.3 shows that the total execution time on 15 frames

is 1.1 second. This is a good result that means that we reach a near real-

time frame rate, resulting in roughly 14 fps. We underline that Hand
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Segmentation contributes to a greater extent the overall performance

compared to the other modules. This consideration will be used in the

optimization presented in Chapter 3 to implement our algorithm in a

fully integrated embedded system.

2.5 Conclusions

In this chapter we presented a novel gesture recognition algorithm that

can deal with static and dynamic gestures and can achieve high accu-

racy results even when trained with a few positive samples. Our gesture

recognition and hand segmentation results outperform the state-of-the-

art approaches on Cambridge Hand Gesture and CMU EDSH datasets.

Moreover we presented a new Interactive Museum dataset. An accuracy

analysis on this dataset has been proposed showing the effectiveness of

our approach. Finally we presented a preliminary performance analysis

on a workstation class processor.

In next chapter we will show how this CV algorithm can be fully

integrated on an embedded system and we further present an architecture

in a real-world scenario where this application can be used in cultural

heritage to offer a more natural and entertaining way of accessing museum

knowledge.



Chapter 3

Fully Integrated Gesture

Recognition using Wearable

Vision Sensors

3.1 Overview

Museums and cultural sites still lack of an instrument that provides en-

tertainment, instructions and visit customization in an effective natural

way. Too often visitors struggle to find the description of the artwork

they are looking at and when they finds it, its detail level could be too

high or too low for their interests. Moreover, frequently the organization

of the exhibition does not reflect the visitors’ interests leading them to a

pre-ordered path which cultural depth could not be appropriate.

We developed a wearable vision device for museum environments,

able to replace the traditional self-service guides and overcoming their

limitations and allowing for a more interactive museum experience to all

visitors. The aim of our device is to stimulate the visitors to interact



50 3.1 Overview

Figure 3.1: Natural interaction with artworks: visitors can get specific
content or share information about the observed artwork through simple
gestures. Hand segmentation results are highlighted in red and detected
gestures are reported in the bottom part of each frame.
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with the artwork, reinforcing their real experience, by letting visitors to

replicate the gestures (e.g. point out to the part of the painting they’re

interested in) and behaviors that they would use to ask a guide something

about the artwork.

In this Chapter, we show how the algorithm presented in the pre-

vious Chapter can be used to recognize user interaction with artworks,

and artwork recognition to achieve content-awareness. The proposed so-

lution is based on scalable and distributed wearable devices capable of

communicating with each other and with a central server. In particu-

lar the connection with the central server allows our wearable devices to

grab gestures of past visitors for improving gesture analysis accuracy, to

get information and specific content of the observed artwork through the

automatic recognition module.

We further demonstrate that our gesture recognition approach can

achieve acceptable accuracy results even with a few training samples

performed by the visitor, and can benefit from distributed training in

which gestures performed by other visitors are exploited. Finally, we

present a performance evaluation of our algorithms on an ARM Cortex

A15 multi-core platform for wearable devices.

The chapter is structured as follows: in Section 3.2 we give a detailed

description of our system, focusing on embedded platform and the sys-

tem architecture. In Section 3.3 we present a novel dataset taken in a

real museum. Then we present accuracy and performance results on an

integrated embedded platform.
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Museum area

Central server

Visitor with wearable vsion sensor

Visitor with wearable vsion sensor

Visitor with wearable vsion sensor
…

Artwork database

…

Past gestures database

J. Kounellis, 
Untitled, 1961.

J. Kounellis, 
Untitled, 1960.

S. Lombardo, Me 
and Plinio, 1962.

…

Figure 3.2: Schema of the proposed distributed system. Each wearable vi-
sion sensor can communicate with a central server to send captured hand
gestures and to retrieve gestures from other users and painting templates
for artwork recognition. The central server contains two databases: the
gesture database, which includes gestures performed by past visitors, and
the artwork database, which contains artwork templates.

3.2 Proposed Architecture

The cultural heritage system consists of a central server and a collection

of wearable ego-vision devices, that embed a glass-mounted camera and

an Odroid-XU developer board, serving as video-processing and network

communication unit. There are several benefits in using such a portable

device: the commercial availability and low costs for prototypes evalua-

tion, the computational power and energy efficiency of the big.LITTLE

architecture, the possibility of peripheral addition to extend connections

and input devices. In particular, the developer board [84] we use embeds

the ARM Exynos 5 SoC, that hosts a Quad big.LITTLE ARM processor

(Cortex A15 and A7) [85]. To make it a portable demo device a battery

pack of 3000 mAh has been added, which guarantees a lasting of 5 to 6

hours(see Figure 3.4).

This wearable device hosts the two main components of our system.

The first one is the software that makes it capable of recognizing the

gestures performed by its user and can customize itself, learning the way
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Figure 3.3: One user interacting with wearable camera.

Figure 3.4: The Odroid-XU board with battery pack.

its user reach out for information. Adapting to personal requests is a

key aspect in this process, in fact people in different cultures have very

different ways of express through gestures. Our method is robust to

lighting changes or ego-motion and can learn from a very limited set of

examples gathered during a fast setup phase involving the user. The

second component of our architecture is the artwork recognition, which

allows not only to understand what the user is observing but also to infer

the user’s position.
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The cooperation of ego-vision devices with the central server is two-

fold. First, to increase gesture recognition accuracy, wearable devices

receive gesture examples performed by past visitors and then send ges-

tures for future users to augment the training set; second, the server also

features a database of all the artworks in the museum, which is used

for painting recognition and for obtaining detailed text, audio and video

content. A schema of the proposed system is presented in Figure 3.2.

3.2.1 Artwork Recognition

In addition to the gesture recognition presented in Chapter 2, the second

component of our system is artwork recognition: a matching is estab-

lished between the framed artwork and its counterpart on the system

database. The real-world ego-vision setting we are dealing with makes

this task full of challenges: paintings in a museum are often protected by

reflective glasses or occluded by other visitors and even by user’s hands,

requiring a method capable of dealing with these difficulties too.

For this reason, we follow common approaches of object recognition

based on interest points and local descriptors [86, 87], that have been

proved to be able to capture sufficiently discriminative local elements

and are robust to large occlusions.

First of all, SIFT keypoints are extracted from the whole image. The

need to proceed with this approach instead of sampling from a detected

area derives from the difficulties that arise when trying to detect paintings

from a first person perspective. Detection based on shape resulted in high

false positive rate, hence we rely on sampling over the whole image. To

improve the match quality, we process the matched keypoints using the

RANSAC algorithm. The ratio between the remaining matches and the
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total number of keypoints is then thresholded, allowing to recognize if

the two images refer to the same artwork even in presence of partial

occlusions. In addition, to avoid occlusions with user’s hands we perform

artwork recognition on the frames captured before the recognized gesture

using a temporary buffer.

3.3 Experimental Results

3.3.1 Accuracy Evaluation

To test our approach in a real setting, we created a dataset with videos

taken in the Maramotti modern art museum, in which paintings, sculp-

tures and objets d’art are exposed. As in the previous dataset, the cam-

era is placed on the user’s head and captures a 800 × 450, 25 frames

per second image sequence. The Maramotti dataset contains 700 video

sequences, recorded by five different persons (some are the same of the In-

teractive Museum dataset), each performing the same gestures as before

in front of different artworks.

Figure 3.5 show some examples of gestures performed in the dataset.

Users perform gestures in front of real artworks inside a museum. This is

a realistic and very challenging environment: the illumination changes,

other visitors are present and sometimes walk in. In both cases there is

significant camera motion, because the camera moves as the users move

their heads or arms. It is also important to underline that users have

not been trained before recording their gestures, so each user performs

the gestures in a slightly different way, as would happen in a realistic

context.

In Table 3.1 we show the results of our gesture recognition approach
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Table 3.1: Gesture recognition accuracy on the Maramotti dataset.

User Single user’s Gestures Augmented

User A 0.54 0.65

User B 0.52 0.72

User C 0.68 0.68

User F 0.56 0.79

User G 0.53 0.72

Average 0.57 0.71

on the Maramotti dataset. As can be seen, in this case the challeng-

ing and real environment causes a drop in accuracy compared to results

on Interactive Museum dataset. This is mainly due to the illumination

changes, to the presence of other visitors, and to the fact that often the

artworks are better illuminated than hands. Since our wearable vision

devices is fully connected to a central server, we show how the use of

other visitors’ gestures can improve the recognition accuracy. In our sce-

nario each visitor coming to the museum performs, in the initial setup

phase, two training gestures for each class. These training gestures from

past visitors, manually checked, are used to augment the training set, so

no erroneous data is accumulated into the model. In particular, in our

test “Augmented” (Table 3.1) each ego-vision wearable device uses two

randomly chosen gestures performed by its user as training, plus gestures

performed by the remaining four users supplied by their devices to the

central server. Results show that this distributed approach is effective

and leads to a significant improvement in accuracy.



3.3 Experimental Results 57

(a) Like gesture.

(b) Ok gesture, in low light.

(c) Slide right to left gesture, while another visitor walks in.

(d) Take a picture gesture.

Figure 3.5: Gestures from the Maramotti dataset.

3.3.2 Performance Evaluation

In this section we present our gesture recognition approach performance

and optimizations targeting the Interactive Museum Dataset and Maramotti

Dataset. They are evaluated on the Hardkernel Odroid-XU board, al-

ready introduced in Section 3.2. The tests we further present are per-

formed on the Interactive Museum dataset and the Maramotti dataset.

To reach good performance on the Odroid-XU embedded device we ap-

plied different optimization techniques. Firstly compiler optimization has
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been used to speed-up code execution adding -O3 to compilation flags.

Then we used Neon optimized instructions, by including neon library in

source code and using these flags at compile time: -mfpu=neon-vfpv4

-mfloat-abi=hard -mtune=cortex-a15 -marm. Several low level “for cy-

cles” have been balanced on different processors using OpenMP parallel

regions.

Interactive Museum Dataset

As shown in Table 2.2 the Hand Segementation contributes in a small part

to the accuracy of the algorithm on this dataset. Thus for the embedded

implementation we removed the hand segmentation module that has the

worst accuracy/performance contribution to the whole algorithm.

Result shown in Figure 3.6 compares the embedded implementation

with the workstation results presented in the previous chapter. Embed-

ded implementation reaches around 19 fps, when the Hand segmentation

module is disabled. This is a good result that means that we reach a near

real-time frame rate. Moreover comparing these results with Figure 3.6

and Table 2.2 it is possible to correlate the accuracy loss, that is around

2%. Hence we trade off a modest accuracy loss for being able to reach

near real time performance.

Maramotti Dataset

On the more challenging Maramotti dataset we noticed that the hand

segmentation contributes in a larger part to the accuracy of the algorithm

so we studied a technique to trade-off the accuracy and performance of

the solution. We split our algorithm in five main sub-modules (already

deeply explained in the previous sections): Hand Segmentation, Camera
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Total execution time: 787.68 ms

30.13
119.60

31.39

910.59

Workstation Execution Time (ms)

Trajectory Sampling
Power-normalized BoW
Classification
Hand Segmentation

134.90

536.48

116.29

Classification

Trajectory sampling

Power-normalized BoW

Total execution time: 1091.71 ms

Embedded Execution Time (ms)

Figure 3.6: Workstation Performance Evaluation on 15 frames trajecto-
ries.

motion removal, Trajectory extraction, Trajectory description, Power-

normalized BoW and SVM-based Classification. In Figure 3.7 we show

the impact of each sub-module, separately, to elaborate 38 frames, that is

the average gesture length within the Maramotti dataset. On the bottom

part of each column we report the number of times each sub-module is

called.

Therefore we introduce a frame step between subsequent elaborations.

The idea is to benefit of the hand segmentation not on each frame, but
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to introduce a gap between segmentation processing of the video stream

and see how this impact on the gesture recognition accuracy. In this case,

the hand segmentation mask is computed every s frames. Trajectories

and descriptors are still computed using all frames, but new keypoints

are sampled only when the hand segmentation mask is available. The

choice of higher values of s results in an increasing loss of accuracy,

since the gesture is described with less trajectories, but in a decreasing

computational power needed to process the input.

Figure 3.8 summarizes the whole gesture recognition algorithm perfor-

mance and accuracy, applying different hand segmentation frame steps.

We evaluated it as an average of the five Maramotti subjects, and the

execution step of the Hand Segmentation is evaluated on the average

length of the dataset samples (38 frames).

Three lines are shown in the graph: accuracy, performance and the
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Figure 3.7: Average time of each sub-module to elaborate a gesture sam-
ple from the Maramotti dataset.



3.3 Experimental Results 61

3438,51

1719,25

1146,17

687,70

429,81 343,85

0,712
0,65

0,63 0,622

0,532 0,522

0,00
0,13

0,17

0,26

0,04 0,00
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

1 2 3 4 5 6 7 8 9 10

A
lg

o
ri

th
m

 A
cc

u
ra

cy
 %

A
lg

o
ri

th
m

 P
er

fo
rm

an
ce

 (
m

s)

Hand segmentation Step (s)

Hand Segmentation Step Performance vs Accuracy

Performance (ms) Accuracy % Normalized Tradeoff %

Figure 3.8: Performance-accuracy trade-off of the proposed gesture recog-
nition approach with different Hand Segmentation frame steps.

normalized tradeoff. This last line has been computed as plain multi-

plication of normalized accuracy by normalized performance. The best

normalized tradeoff is given by a step size of 5 frames. The average hands

segmentation accuracy decreases of 9% (from 71.2% to 62.2%) in a trade-

off with a speed-up of 5x. This is a good result for performance, because

paying a 9% accuracy loss we reduce the execution time from 3438.51 ms

to 687.70 ms. In Table 3.2 we show a summary of the performances ob-

tained with different step sizes. As can be seen, the best computational

performance on Odroid-XU platform is reached when using a step size

of 10, and paying an accuracy loss of about 19%. Based on this analy-

sis, we can state that our gesture recognition with hand segmentation is

sufficiently accurate for real-life deployment and runs with an acceptable

computation performance on ARM-based embedded devices.
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Table 3.2: Gesture recognition performance with different step sizes.

Step size ms per frame Frame/second Accuracy

s = 1 3438.51 0.29 71,2 %

s = 5 687.70 1.45 62,2 %

s = 10 343.85 2.91 52,2 %

3.4 Conclusions

We described a novel approach to cultural heritage fruition based on ego-

centric vision devices. Our work is motivated by the increasing interest

in ego-centric vision and by the growth of the cultural market, which

encourages the development of new interfaces to interact with the cultural

heritage. We presented a gesture and painting recognition model that can

deal with static and dynamic gestures and can benefit from a distributed

training. We implemented the presented solution on a fully integrated

wearable embedded platform and we ran extensive performance analysis

proposing two solutions to Interactive Museum and Maramotti datasets

that show the feasibility of the proposed approach.

In next chapter we introduce a low resolution imager for wearable

embedded systems of a further low-power class compared to the one pre-

sented in this chapter, moving from high-end mobile class to low-end

devices.



Chapter 4

Context Change Detection

with an Ultra-Low Power

Low-Resolution Imager

4.1 Overview

In this chapter we move to the third challenging scenario exploring how,

even with very limited resolution, we can obtain context awareness and

understand, at least, a change of context in our day-life. We present a

context change detector for low-resolution images based on a wearable

egocentric camera with ultra-low power consumption. An example of the

task that we want to achieve is shown in Fig. 4.1. Low-resolution images

can’t “see” in the way we usually interpret, as good quality pictures,

but can give visual context awareness, that can be exploited for context
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Figure 4.1: We addess the problem of recognizing context changes from
low-Resolution images. Figure shows some images taken from the Stony-
man Dataset.

change detection. The system is able to collect data 24/7 laying the basis

for the long-term analysis of egocentric vision activities. In this context,

state of the art context change detection techniques, that are based on

results of semantic classifiers, cannot be adopted. Therefore, we propose

a novel approach that explores the use of Deep Convolutional Neural

Networks on low level resolution images. Experimental results on a new

challenging dataset demonstrate that the presented solution is able to

detect context changes with good precision.

The chapter is organized as follows. Section 4.2 presents the re-

lated work. Section 4.3 gives an overview of the hardware platform and

presents the images and the pre-filtering stage. Section 4.4 describes in

depth the network architecture, Section 4.5 details the performance and

accuracy of our solution, while Section 4.6 concludes the chapter.
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4.2 Related Work

Understanding everyday life activities is gaining more and more atten-

tion in the research community. This has triggered a number of inter-

esting applications, ranging from health monitoring, memory rehabilita-

tion, lifestyle analysis to security and entertainment [34, 88–90]. These

are mainly based on two sources of data: sensor and visual data. Sensor

data, such as GPS, light, temperature and acceleration have been exten-

sively used for activity monitoring [91–93]: among others, Kwapisz et al.

[94] describe how a smartphone can be used to perform activity recog-

nition simply by keeping it in the pocket. Guan et al. [95] present a

semi-supervised learning algorithm for action understanding based on 40

accelerometers strapped loosely to common trousers. Although sensor

data can be easily collected for days, thanks to low energy consumption,

its ability to recognize complex activities and the context around the user

is low.

On the other hand, computer vision can indeed capture much richer

contextual information which has been successfully used to recognize

more complex activities [96–98]. Recently, several works that consider

vision tasks from the egocentric perspective have been presented. Po-

leg et al. [99] propose a temporal segmentation that identifies 12 dif-

ferent activities (e.g. head motion, sitting, walking etc). Castro et al.

[100] present an approach based on the combination of a Convolutional

Neural Network and a Random Decision Forest; this approach is able to

recognize images automatically in 19 activity classes. Ryoo et al. [101]

suggest a new feature representation for egocentric vision which captures

both the entire scene dynamics and the salient local motion observed in
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video. There is one notable work which uses adaptive sampling to com-

bine sensor data with camera images [102]. However, these approaches

are designed to recognize a limited set of activities and can be useful for

specific applications only.

To address this limitation, some unsupervised temporal segmentation

and context change detection techniques have been presented, which are

capable of splitting an egocentric video into meaningful segments. Lu et

al. [103] present an approach that discovers the essential moments of

a long egocentric video. First, they segment the original video into a

series of subshots. Then they represent a short sequence in term of vi-

sual objects, that appear within it, using a bank of object detectors.

Dimiccoli et al. [104] present an approach for context change detec-

tion, which combines low-level features and detection of semantic visual

concepts (high-level semantic labels are extracted using Imagga’s auto-

tagging system1). By relying on these features, a graph-cut technique

is used to integrate agglomerative clustering and an adaptive windowing

algorithm [105].

4.3 Egocentric Vision Acquisition System

The egocentric vision acquisition system is a device based on a Texas In-

strument MCU which exploits a Stonyman Centeye imager. It is powered

by a Li-Ion battery and embeds an energy harvester, that can supply the

system while in operation or recharge the battery while the system is

in standby. The main advantage of this platform is the ultra-low power

1https://imagga.com/solutions/auto-tagging.html
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consumption at the expense of image quality. This platform is a devel-

opment of Infinitime device [106], a wearable bracelet with human body

harvesting. In Fig. 4.2 we show the core platform components and a

picture of the real device.

The computational unit is an up-to 16 MHz Microcontroller by Texas

Instruments, the MSP430FR5969 [107]. This MCU can run in several

low power states, turning off unused memories and peripherals, or scaling

down the operating frequency. The sensors that this board features are

an analog camera, an analog microphone, a temperature sensor and an

accelerometer.

4.3.1 Stonyman Imager

The embedded camera sensor, as already mentioned, is a Stonyman sen-

sor by Centeye [108]. Since this is an analog sensor, the first step of

the acquisition chain is to sample the images by an Analog to Digital

Converter (ADC) and to store them in the system FRAM. Then the

platform can store images in an SD card or send them through the NFC

to a seconds device (e.g. a smartphone or a tablet).

The analog sensor can capture 112×112 pixel wide grayscale images at

Figure 4.2: Schema of the egocentric vision acquisition system.
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up to 2.5 fps, while storing it into SD card. The power consumption of the

imager itself is some order of magnitude less than a digital CMOS sensors

in the marketplace. In fact, we observed that the power consumption

while reading an image is 3.9 mW, while storing an image into SD card

takes about 121 mW. In terms of performance, acquiring an image and

storing to SD card takes 400 ms. The sending procedure via NFC is less

expensive in terms of power budget, as it costs 0.35 mW. In sleep mode

the MCU consmes only 0,005 mW. So if we take as example a battery

of 1000 mAH, at 1 fps and we store the in the SD Card the device can

run for 3/4 days, with a full recharge. Further experiments conducted by

Spadaro et al. [109] shows that with a kinetic harvester during running

activity the harvester can supply enough energy to collect 36 images

per minute, while walking activity permits to take 6 images per minute

using the NFC to send the image to second device. The ultra-low power

consumption showed enables this device to be used as a visual aware

sensor.

Images captured by the imager and converted by the ADC are rather

noisy, so we pay in some sort in image quality the gain in power consump-

tion. A pre-filtering step is thus required to enhance the image quality.

Next section shows the quality of the images and the noise removal tech-

nique that we propose.

4.3.2 Images Pre-Processing

Images are sampled by a 12 bit ADC, so a normalization stage is needed

before converting them in a 8-bit single channel format. In particular,

images sampled from the Stonyman imager are mainly affected by static

noise. Therefore, a noise removal stage is carried out with an easy but
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Figure 4.3: Image Denoising results.

effective technique. First a mask is created by averaging several pictures

framing a white background in a average light condition. Then the mask

is subtracted to the images. This is step helps the temporal segmentation

network presented in the next chapter, since the network is based on

pretrained weights on images without noise.

In Figure 4.3 we show same samples of images before and after de-

noising.

4.4 Temporal Segmentation Network

Learning to detect context changes can be addressed as a similarity learn-

ing task. In particular, we propose to learn a function f(x, y) that com-

pares an image x to another candidate image y of the same size and

returns a high score if the two images depict the same context and a low

score otherwise. The function f will be learned from a dataset of videos

with labeled change points.

Given their widespread success in computer vision [110–113], we will
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use a deep ConvNet as the function f . The architecture of the network

resembles that of a Siamese network [114], which is the most used model

for addressing similarity learning with ConvNets. Siamese networks ap-

ply the same transformation φ to both inputs, and then combine their

representations using a distance function. Therefore, function φ can be

considered as an embedding, while the overall network can be seen as a

learnable distance computation model.

To train the network, we employ a discriminative approach, by col-

lecting positive and negative pairs. We define positive a pair of images

which share the same temporal context, and negative a pair of images

sampled from different contexts. At each iteration, we randomly sample

a set of pairs P , and minimize the following contrastive loss function:

L(w) =
1

|P|
∑

(xi,yi)∈P

yif(xi, yi) + (1− yi) max(0, 1− f(xi, yi)) (4.1)

where yi ∈ {0, 1} is the ground truth label of each pair. We choose to

define the distance function f with respect to the embedding function φ

through the cosine similarity:

f(x, y) = 1− φ(x) · φ(y)

‖φ(x)‖ · ‖φ(y)‖
(4.2)

This choice, compared with more popular distance functions for Siamese

networks, such as L1 or L2, presents a significant advantage. By comput-

ing the angle between φ(x) and φ(y), and neglecting their magnitudes, it

does not force the network to bring its activations into a given numerical

range, thus saving training time and avoiding poor local minima.
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Table 4.1: Stonyman and Stonyman Quality Datasets sets, number of
images and number of context changes (CS).

Set Name Stonyman D. Stonyman Quality D. # of CS
2016-04-06 2734 2143 7
2016-07-05 - 9.00 12104 9257 13
2016-07-06 - 9.00 6256 5566 11
2016-07-07 - 9.00 2056 1544 5
2016-07-07 - 12.00 4367 4043 6
2016-07-08 868 424 3
2016-07-09 876 435 3
Total 29261 23412 48

4.5 Experimental Results

In this section we present the evaluation of our system in terms of ac-

curacy in context change detection. The evaluation has been done by

collecting a dataset of images that is described in the next section. In

section 4.5.2 we describe the evaluation measures, while in Section 4.5.3

we present accuracy in comparison with two baselines and a state-of-art

work.

4.5.1 Stonyman Dataset

To evaluate our results we collected a dataset of 29261 images named

“Stonyman Dataset”, from the name of the imager. All the images are

collected at 1 fps and from a single subject under several days. We define

context change any point of the sequence which delimits two temporal

segments representing different environments (i.e. we considered as con-

text change going in a shop, enter in the workplace, going off for a pause,

etc).

In Table 4.1 we show the sets in which the dataset is divided and the

number of images collected per day, while the third column shows the
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Figure 4.4: Three examples, matching the three criteria used to remove
images from Stonyman Dataset to create Stonyman Quality Dataset.

number of images of a subset of the dataset that we called “Stonyman

Quality dataset”. This is an improved version of the dataset obtained by

pruning images with poor quality or that cannot be understood neither

by a human expert. In particular, three criteria were considered:

1. Images with bubble effect (wavy images).

2. Images with poor luminosity or completely black.

3. Images where the subject that took the dataset cannot understand

what’s in it.

In Figure 4.4 an example of each of these defects is shown. This subset

has been created to fairly evaluate the results of our system. In case a

global shutter is employed by the imager the wavy effect disappears even

under low light or fast moving scenes.

4.5.2 Evaluation measures

For the evaluation of context scene detection, the classical precision-recall

scheme has been often used, with the important variation of adding a
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temporal tolerance factor to detections and ground truth cuts. Therefore,

a detection is considered as positive if its distance to nearest ground

truth cut is below a certain threshold, otherwise it is considered as a

false positive. False negatives are computed by counting ground truth

cuts which are further than the same threshold to the nearest detected

cut. Formally, given a threshold θ, a set of detected change points D =

{t0, t1, ..., tn} and the set of ground truth cuts C = {tg0, t
g
1, ..., t

g
m}, true

positives, false positives and false negatives are computed as follows:

TP =
n∑

i=0

m
max
j=0

1(|ti − tgj | ≤ θ) FP =
n∑

i=0

1− m
max
j=0

1(|ti − tgj | ≤ θ)

(4.3)

FN =
m∑
i=0

1− n
max
j=0

1(|tj − tgi | ≤ θ)

where 1(·) is an indication function that returns 1 when the given

condition is true, and 0 otherwise. F-Score is then derived from Precision

and Recall as usual.

Of course, the major drawback of this measure is the need to set an

appropriate tolerance threshold. In our experiments, following previous

works in the field [104], we set up a tolerance threshold of 5 frames, which

given our frame rate correspond to 5 seconds.

The problem we address can be regarded as a temporal segmentation

task, so appropriate measures can be taken from works that addressed

temporal segmentation in other scenarios. One of them is surely scene

detection, in which the objective is to temporally segment a broadcast

video in semantically meaningful parts. In this settng, a measure based

on intersection over union has been recently proposed [115]. Here, each
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temporal segment is represented as a closed interval, where the left bound

of the interval is the starting frame, and the right bound is the ending

frame of the sequence. The intersection over union of two segments a

and b, IoU(a, b), is written as

IoU(a, b) =
a ∩ b
a ∪ b

(4.4)

A segmentation of a video can be seen as a set of non-overlapping se-

quences, whose union is the set of frames of the video. By exploiting this

relation, [115] defines the intersection over union of two segmentations C

and D as:

IoU(C,D) =
1

2

(
1

#C

∑
a∈C

max
b∈D

IoU(a, b) +
1

#D

∑
b∈D

max
a∈C

IoU(a, b)

)
(4.5)

It is easy to see that Eq. 4.5 computes, for each ground-truth segment,

the maximum intersection over union with the detected segments. Then,

the same is done for detected segments against ground-truth ones, and

the two quantities are averaged.

4.5.3 Results

To quantitatively evaluate the difficulty of dealing with low resolution

images, we first present two baseline experiments. They both use His-

togram of Oriented Gradients [116] (HOG) as descriptors, and hierar-

chical agglomerative clustering with euclidean distance to group images

in contexts. The choice of this method provides a similarity measure of

images of the same scene vs images of different scenes.

In the former baseline test (named CT1, Clustering Test 1), we fix
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the number of clusters to eight, which is the number of unique contexts

that we have in our dataset: biking, car, home, office, walking, stairs,

supermarket/shop, outdoor. The idea behind this experiment is to test

the ability of a popular hand-crafted descriptor to distinguish between

different contexts and places. HOG are extracted separately from each

image and then descriptors are clustered in eight clusters.

In the latter test (named CT2, Clustering Test 2), instead, agglomer-

ative clustering is applied with a different methodology, which resembles

that of a Siamese network. Images are elaborated in subsequent couples

from the beginning to end of the dataset. From each couple of images

we extract HOG features, and compute the element-wise L1 distance on

feature vectors. We thus get a feature vector for each couple, having

the same dimensionality of the HOG descriptor. The resulting features

are then given as input to the agglomerative clustering, but instead of

looking for eight clusters as the previous baseline test, we fix the number

of clusters to two (similar and dissimilar pairs).

In Figure 4.5 and 4.6 we present the accuracy measured respectively

with F-Score and IoU on CT1 and CT2. We tested two different settings

for HOG features extraction. For both we used a window size of 112×112,

block size of 56× 56 and block stride of 28× 28, and tested two different

cell sizes: 28 × 28 and 56 × 56. We selected these two settings after

conducting a grid search on a subset of the dataset, and picked the top

two feature sizes in accuracy.

As it can be seen from the two charts, F-Score and IoU values are

very low, thus revealing that hand-crafted features are not well suitable

for low-resolution noisy images. The best accuracy in terms of F-Score is

achieved with CT1, since the solution of clustering into eight classes is a
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Figure 4.5: CT1 and CT2 baselines in terms of F-Score

more easy task, and we see a slight improvement with Stonyman Quality

with respect to the entire dataset. In Figure 4.6 the same results are

evaluated in terms of IoU. All settings results in similar values of IoU,

and this is due to the completely different nature of the two performance

measures.

Moving to the proposed approach, we employed the pre-trained 16

layers model from VGG [110] as the embedding function φ, since it is

well known for its state-of-the-art performances on image classifications

tasks, while still being a simple and lightweight model for modern GPUs.

The overall network is then trained end-to-end using Stochastic Gradient

Descent with learning rate 0.001 and batches of 20 couples.

In Table 4.2 we present the results of our system on the Stonyman and

Stonyman Quality datasets. The performances are reported in terms of

F-Score and IoU for each set. Notice that Stoneyman Quality compared

to Stonyman produce 0.2 improvement in F-Score and 0.1 improvement in

IoU, we attribute this behavior mostly to wavy images that are removed

in Stonyman Quality. These distort images produces an altered feature,



4.5 Experimental Results 77

Figure 4.6: CT1 and CT2 baselines in terms of IoU

Table 4.2: F-Score and IoU results of our system on Stonyman and Stony-
man Quality datasets

Stonyman D. Stonyman Quality D.
F-Score IoU F-Score IoU

2016-04-06 0.571 0.655 0.667 0.608
2016-07-05 0.216 0.411 0.357 0.539
2016-07-06 0.105 0.590 0.286 0.375
2016-07-07 - 9.00 0.133 0.397 0.625 0.791
2016-07-07 - 12.00 0.217 0.387 0.500 0.712
2016-07-08 0.143 0.618 0.400 0.552
2016-07-09 0.193 0.346 0.267 0.520
Average 0.226 0.486 0.443 0.585

that make the problem more challenging.

Table 4.3 present a comparison of the two baselines (CT1 and CT2)

and our system. We can observe that the techniques based on scene clus-

tering achieve low performance. Whereas our system obtains promising

results in both scenarios. We could not compare our solution with a state

of the art Scene Clustering System called SR-Clustering [104], because,

as mentioned before, a key element of their technique is the extensively
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Table 4.3: Comparison results between the proposed solution and the two
baselines (CT1 and CT2) on Stonyman and Stonyman Quality datasets.

Stonyman D. Stonyman Quality D.
F-Score IoU F-Score IoU

CT1 0.019 0.170 0.032 0.192
CT2 0.006 0.179 0.009 0.204
Our System 0.226 0.486 0.443 0.585

usage of high-level semantic classifiers, which don’t work with our low-

resolution snapshots. This is clearly shown in Figure 4.7, in which we

present some examples of predictions obtained on our low-resolution im-

ages by the classifiers adopted in [104] comparated to the corresponding

narrative images.

Figure 4.7: This figure shows Imagga predicted tags on the same images
shot with Stonyman (Grayscale) and Narrative (Color)

Therefore even if our system cannot exploit an high-level semantic
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Table 4.4: Performnace results of our system on EDUB-Seg

F-Score IoU
Subject1 1 0.563 0.494
Subject1 2 0.545 0.536
Subject2 1 0.448 0.466
Subject2 2 0.500 0.473
Subject3 1 0.500 0.418
Subject3 2 0.400 0.574
Subject4 1 0.476 0.546
Subject4 2 0.774 0.560
Average 0.521 0.510

classifier, we tested it on the reference dataset of SR-Clustering to show

that results on color high quality images are in-line with the Stonyman

Quality low-resolution images.

The SR-Clustering work proposes a dataset called EDUB-Seg which

is composed of two sets: EDUB-Seg Set 1 and EDUB-Seg Set 2. The

only publicly available one is EDUB-Seg Set 1. This dataset is composed

4912 color images (512× 512 pixels) collected by 4 subjects with a Nar-

rative Clip camera [117] at 2 fpm. In Table 4.4 is shown our results on

this dataset. We trained the network with the technique leave-one-out:

for each subset the network is trained on all the other subsets. The re-

sults shows an improvement in F-Score compared to Stoneyman Quality

dataset, while on IoU there is a slight loss. This shows that in this dataset

the low framerate is balanced by the quality of the images.

Table 4.5: Accuracy of our system and SR-Clustering in EDUB-Seg Set
1 Dataset

F-Score
SR-Clustering 0.69
Our System 0.521

Lastly in Table 4.5 we report for the reader the results of SR-Clustering
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on EDUB-Seg set 1 and the average F-Score that we achieve with our

system.

4.6 Conclusions

In this chapter we proposed a context change detection system. First, we

presented an egocentric vision device with ultra-low power consumption

that can capture images round the clock. Then, we suggested a similarity

learning approach, based on Siamese ConvNets, that is able to deal with

grayscale low-resolution snapshots. We finally ran extensive experiments

in real scenarios, showing the robustness and efficacy of the proposed

method with respect to related approaches.

The possibility to integrate and deploy this kind of applications on a

low-end platform poses two clear challenges. The first and more obvious

one is in terms of computational resources that the studied solution needs.

Such an MCU presented in this chapter and employed as ego-centric em-

bedded vision device has a reduced amount of computational power and

memory available. Our design and the use cases proposed make it pos-

sible to find a tradeoff by reducing the sample rate of images. Therefore

in terms of performance and memory footprint some techniques can be

studied and employed in terms of hardware choice [118] and software

optimizations [119]. The deployment in a real-world scenario of such

an application on a MCU platform rises, moreover, concerns in terms

of security, and this is the second challenge that must be addressed to

bring this class of systems to an integrated solution that can be flexibly

programmed by third-party developers. The context change detection

algorithm is one of the possible future usages of this vision sensor, but
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there exist several others: face recognition, video summarization, life log-

ging, etc. Thus, to provide flexibility and security to third-party software

development and deployment, we designed and developed a framework

for MCUs device class as the one presented in this chapter. In the next

chapter we deal with this second challenge, explaining the problem and

presenting our proposed solution.



Chapter 5

Lightweight Virtualization

on MPU Enabled

Microcontrollers

5.1 Overview

An important aspect in the deployment of applications presented in chap-

ter 4 is the flexibility and the security of their execution. The virtual-

ization of the hardware resources becomes necessary to execute securely

third-party software and different applications with well-controlled inter-

ference. Then, the capability to remotely download new parts of code,

to link dynamically the binary and to execute runtime within the main

application permit to support more flexible software updates, avoiding

moreover down-time and reboot. However, if this technology is well

known and available in operating systems for high-end embedded systems

(e.g. Linux on ARM Cortex-A microprocessors), providing mechanisms
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for dynamic linking in low-resource microcontroller based embedded plat-

forms, such as ARM Cortex-M class, is still a challenge, and only few and

limited solutions have been proposed so far.

In this chapter we present a framework which provides a lightweight

virtualization of the IO and platform peripherals and permits the dy-

namic loading of new user code. The aim of this work is to support crit-

ical isolation features typical of virtualization-ready CPUs on low-cost

low-power microcontrollers with no MMU (Memory Management Unit),

IOMMU or dedicated instruction extensions. Our approach only lever-

ages the Memory Protection Unit (MPU), which is generally available in

all ARM Cortex-M3 and Cortex-M4 microcontrollers.

The chapter is organized as follows. Section 5.2 gives an overview of

the work related to our IoT Lightweight Virtualization software infras-

tructure, Section 5.3 describes in depth the framework architecture and

provides all technical details of this solution, Section 5.4 details our per-

formance and memory footprint, while Section 5.5 concludes the chapter.

5.2 Related Work

Virtualization support for embedded systems based on high-end CPUs,

such as the ARM Cortex-A series, has been extensively explored in the

academic literature and has reached industrial maturity [120]. This class

of devices exploits the hardware extensions to provide hardware abstrac-

tion and protection of critical resources. Recent Cortex-A CPUs feature

native virtualization support like MMU and IOMMU address translation,

interrupt virtualization, TrustZones [121, 122], etc. Cortex-M MCUs do
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not come with any of those hardware extensions. Furthermore, avail-

able memory and computational resources are much more limited. Our

work and the related works surveyed below deal with Cortex-M3 and

Cortex-M4 class of devices, where virtualization is not a mature tech-

nology and several compromises with respect to full hardware-supported

virtualization have to be made.

Abstract Virtual Machines and Interpreters

One of the most common approaches for virtualization on MCUs is

based on interpreter-based virtual machines, which have been originally

conceived with the main purpose of creating high-level easy-to-use lan-

guages and run-times at a higher abstraction level than the traditional C

language. Python [123, 124], Java [125, 126], Javascript [127], Lua [128]

are all lightweight multi-paradigm scripting languages employed in Vir-

tual Machines for embedded systems. Their main benefit is the cross-

platform support. They are interpreted by a native virtual machine

loaded on the microcontroller, thus they introduce high overhead in

term of latency of access to the resources in comparison to virtualization

layers written in native code, but they are designed for easy software

application develoment and to meet the increasing demand of fast run

time customization, without the need of complex or dedicated compiling

toolchains. Such a kind of virtualization, usually, is focused on improving

portability, extensibility, ease-of-use in development and protection but

lacks performance, multiple user level accesses and low-level hardware

control. Only the exposed high level resources can be leveraged by the

user.

Bogliolo et al. [129] presented Virtual Sense, a sensor node which

executes java-compatible virtual machine called Darjeeling VM [126] on
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top of Contiki OS [130]. This work is close to ours in the emphasis on

supporting resource allocation and protection for multiple independent

user tasks on the MCU. However this solution, besides the overhead

introduced by the interpreter, is oriented to share only network stack

between Darjeeling VM tasks, while our work is general to all peripherals.

Just In Time/Ahead of Time Compilation

A well-explored approach to reduce the run-time overhead of VM inter-

peters is Just in Time or Ahead of Time Compilation. Micropython [123]

developers, for example, introduced in their platform the concept of dec-

orator to emit ARM native opcode and to use native C types, but not all

native C types are supported and the implementation of this optimiza-

tion is platform dependent. A solution can be to extend with C wrapped

functions called from python, but there are drawbacks: marshaling and

unmarshaling of data is very expensive in terms of computational re-

sources and with this solution the programmer loses the low level ab-

straction. In comparison, using our solution, the developer implements

C functions which will be executed in user level tasks. In general these

approaches require a higher memory footprint to host the just-in-time

or ahead-of-time compile process and do not achieve the performance

of native code execution. Furthermore, they are difficult to use in con-

texts where real-time constraints cannot tolerate the jitter introduced by

on-line compilation.

Native Implementations

Native virtualization is the closest to hardware and extremely desirable

for resource and performance-limited devices. This technique usually

relies on the use of MPU that is the only hardware unit available for

security in low-end systems.
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Figure 5.1: Hardware, IO and Memories layers.

Bhatti et al. [131] presented a complete operating system designed for

WSN (Wireless Sensor Network) and optimized to simultaneous execu-

tion of threads which can be loaded dynamically. Their work relies on

Mantis OS, a custom operating system. They work targets micro sen-

sor nodes with 4KB of RAM. They support dynamic reprogramming at

runtime of variables/parameters, while to add new functionalities, differ-

ently from our work, a reset is needed. Moreover they do not explicitly

address security and protection.

To the best of our knowledge we find only one very recent work that

addresses the problem in a broad and general sense, similarly to our

solution. Andersen et al. [132] presented an embedded platform that

relies on TinyOS. They use a mixed paradigm that permits to have Lua

VM but the computational intensive part of code can be written in native

C. To address security they use a task receiving event based system calls,

to separate kernel to user space tasks. Our work differentiates from the

latter by permitting to have both system call support and event based

peripheral virtualization. Moreover Andersen et al. do not provide any

information on the performance of the event based system call paradigm.
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5.3 Software Architecture

In this section we present all the software layers in our runtime system,

focusing on software protection. Figure 5.1 shows the layer stacking from

three viewpoints, first from a hardware point of view, then from address

space access, divided in IO and Flash/RAM. We divided core hardware

from peripherals in two different stacks to underline that the OS can

expose system calls to access to the core hardware resources, while the

Virtual IO Layer is designed to access the peripherals. The last stack

shows that the access to memories is direct for privileged tasks, while the

access from usermode tasks is strictly regulated by MPU. Two different

kinds of tasks are defined: privileged tasks and usermode tasks, which

will be discussed in next section.

Another important layer depicted in Figure 5.1 is FreeRTOS [133], a

well known Real Time Operating System for a broad range of Embedded

Systems from 8 to 32bit, including low power and ultra-low power MCUs.

We implemented our framework on an STM32F4 based platform, and

even if some details in the following description are related to this specific

microcontroller, our framework can be easily extended to be platform

independent.

In Sections 5.3.1 and 5.3.2 we focus on the first and third stack,

namely on exploiting the MPU and providing Safety Extensions, while

in Section 5.3.3 we discuss the second stack.

5.3.1 Real Time OS

The main reason for using FreeRTOS is its versatility: it is open source

with modified GPL license, many MCUs are supported and the code is
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maintained and upgraded often by Real Time Engineers Ltd. Moreover it

is modular and there are some extensions available (e.g. MPU extension),

which can be added to the core release. The open source nature makes

possible to extend it. It has moreover a small memory footprint and

sources consist of a small number of files. The scheduler supports real-

time operation, both time-triggered by a configurable system tick and

with support for priorities with preemption.

5.3.2 FreeRTOS Additions

To strengthen the security of the system, the FreeRTOS MPU module

has been integrated to enable the usage of the Memory Protection Unit

available on the microcontroller and to activate the two levels of privileges

for the tasks execution. However, the original module is an experimental

release, because of some limitations that we addressed in our work:

1. It does not have a proper way to access system resources. It pro-

vides only one system call. This system call raises the privileges of

the caller from usermode to privileged, executes the call and then

sets the privileges back to user space. This behavior has sufficient

protection in an environment where a single developer wants to

keep separation between tasks, i.e. the case where a single com-

pany develops all the firmware. While in the case we want to give

to a third-party user the capability to develop his own code, the

knowledge of the existence of this backdoor is really dangerous for

protection.

2. The exploitation of the MPU is static. The protection sections of

the MPU are not reconfigurable at run-time by privileged tasks
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with an API.

3. The task termination is not correctly handled. When a usermode

task raises an MPU trap the exception ends the system execution.

Hence it would be extremely easy to create denial of service attacks.

In next sub-sections we describe our proposed solutions to these lim-

itations. This solution has been designed and implemented.

MPU Extension

As already stated, this module permits to grant different access privileges

on a task-by-task basis. For each task the MPU settings are stored in the

task descriptor, called Task Control Block (TCB) in FreeRTOS. When a

task is created, it can be started with one out of two levels of privileges:

1. Privileged Tasks (similar to Linux Kernel Mode execution). The

task executes with permission granted to access all system resources,

memories and peripherals.

2. Usermode Tasks (similar to Linux Usermode, also called unprivi-

leged tasks). The task is executed in more restrictive environment

and has access only to a limited subset of memory and IO addresses.

STM32 Cortex-M4 has eight configurable MPU regions. When acti-

vated, the protection policy is white-list based for usermode tasks. To

access to a specific position in the address space the task should have

a grant by one MPU region. For privileged tasks the protection policy

is black-list based. The privileges on an MPU region can be: NONE,

READONLY AND READWRITE. In FreeRTOS these MPU regions are

configured as follows:
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Region 0 FLASH protection

Protects whole FLASH providing read-only privileges to both

privileged and usermode tasks.

Region 1 OS FLASH protection

Protects from accesses by usermode tasks to the OS code in

FLASH

Region 2 OS RAM access

Provides permission to privileged task to access the OS struc-

tures stored in RAM

Region 3 Peripheral access

Used to enable or disable the access to peripherals.

Region 4 Task Stack access

Used to give access to tasks own stack.

Region 5-7 Not used

These three regions are not used by FreeRTOS MPU module,

thus they are available for developer purposes.

In Table 5.1, we show a list of MPU configurations used in our solu-

tion. There is no access to peripherals granted to usermode tasks. The

access is allowed only through the IO Virtualization Architecture.

One of the main constraints of the FreeRTOS MPU module is that it

permits to configure the last regions (from 5 to 7) at compile time only.

Thus, we implemented a specific software module to reconfigure these

regions at run-time for each task. This is done for the following reasons:

1. Access to Virtual IO Layer (deeply explained in Subsection 5.3.3)

can be restricted by an MPU Region and must be asked by a task.
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Table 5.1: Default MPU region setting in FreeRTOS

Privileged Perm. Usermode Perm. Region Desc.
READ ONLY READ ONLY all Flash Protection

READ ONLY NONE
OS Code Segment
in FLASH

READ WRITE NONE OS RAM Protection
READ WRITE NONE Peripherals
READ WRITE READ WRITE Task Stack
NOT USED NOT USED User configurable
NOT USED NOT USED User configurable
NOT USED NOT USED User configurable

This makes the Virtual IO Layer aware about the number of tasks

that are using it.

2. Access to heap or other memory regions can be granted at run-time.

This is open to several future applications.

Safety Extensions

As previously stated, the single system call paradigm is not safe. The

raise privilege system call has been removed and replaced by more spe-

cific system calls. For example to grant access to FreeRTOS Queues and

Direct Task Notification, the following list of system calls are added:

• MPU xTaskGenericNotify: Direct task notification Notify function

• MPU QueueReceive: Receive a message on a queue

• MPU xGetCurrentTaskHandle: Get the current task handle

• IO Layer REGISTER: Registration to Virtual IO Layer
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Graceful Task Termination - Killer Task

FreeRTOS does not provide task termination. Thus, when an unprivi-

leged task tries to access a memory address without permission a trap

is generated from the MPU and the OS ends its execution in an endless

loop. This is not acceptable if we want to keep all other tasks and OS

in execution. The desired behavior is that the task causing the trap, is

aborted while the system continues its execution. Thus a memory trap

handler and a specific task, called Killer Task, have been created to man-

age the termination of the task that raised the trap. The Killer Task is

a privileged task created at boot time and it is in sleep state, when the

MCU is in normal usage. When a trap occurs the task is activated. The

Killer Task gets the task handles of the task that generated the trap

and removes it from the scheduler execution queue. Then it resumes the

scheduler execution and goes back into sleep, waiting for the next trap.

5.3.3 IO Virtualization Architecture

In a software protection perspective, the MPU enables the OS to keep

the control on the usermode tasks. Thus, with the MPU all usermode

tasks cannot tamper the whole system. On the other hand, if we want to

enable a third party software developer to access only a small subset of

peripherals, a fine grain control on address space must be implemented.

Usually in a MCU all peripherals addresses are grouped from a starting

to an ending address. However, if we want to provide fine grain access to

a subset of them, three free MPU regions are really limiting. Moreover

there are other two limitations: one is that the minimum area for an

MPU region is usually 32 Bytes (i.e. on STM32f4) that is usually larger
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Figure 5.2: IO Virtualization High Level Architecture

than the register pool of a peripheral. The other is that register set of

several peripherals consists of both control registers, and reading/writing

ports, at subsequent memory positions. Thus it is not possible to grant

the access to a read-only register and denying the permission to a con-

tiguous configuration register. The virtualization layer addresses these

limitations.
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The Virtual IO Layer architecture consists of two main components:

(1) a task named Virtual IO Task and (2) a library named Virtual IO

Library. The Virtual IO Task is a FreeRTOS task that handles all the

IO calls from the usermode tasks to the peripherals. The Virtual IO

Library contains the front-end calls, called from the usermode tasks and

forwarded transparently to the Virtual IO Task, and the back-end calls

invoked by the Virtual IO Task to access to the peripherals through the

HAL Library. As shown in Figure 5.2 the Virtual IO Task acts as a task-

in-the-middle that receives all calls from usermode tasks that attempt

to access to the peripherals, checks the permissions and forwards the

requests through the HAL library.

Virtual IO Library

The library consists of two subsets: a front-end functions subset and the

relative back-end functions subset.

When a usermode task wants to access peripherals, it needs to sub-

scribe to the Virtual IO Layer, using a front-end function. Registration

is required for two purposes:

1. The usermode task must have read only access to the Virtual IO

task handle. This is needed to use the OS event notifications to

notify the Virtual IO task. Therefore, one of the MPU regions of

the task must be run-time configured to read-only access to Virtual

IO task handler.

2. Usermode tasks are not authorized to use interrupt handlers, be-

cause interrupt handler code is executed in privileged mode. We

used a queue system to communicate from interrupt handlers to
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usermode tasks. Hence the registration routine creates a new queue

and saves the queue handler in a structure. This will be used after-

wards if the task will request access to one peripheral in interrupt

mode.

The registration takes place through a system call that was previ-

ously mentioned in subsection 5.3.2, hidden by a front-end call. The

system call is needed to configure an MPU region described in the for-

mer purpose. The registration procedure works as follows: (1) The user-

mode task invokes the IO Layer init() routine, which through (2) the

IO Layer REGISTER system call (3) sets an MPU region of the caller

task to access to Virtual IO Task descriptor in read-only mode. This

is needed to send notifications. Then the framework creates and initial-

izes a system queue (4) for using the DMA (the procedure is described

in Back End Subset subsection). Before returning, if the procedure was

successful, the task is added to the list of Virtual IO subscribed tasks.

Front End Subset

The Front End subset is intended to be called from the usermode

tasks. These calls have the same signature of the original HAL library

calls, beside the function name, which is extended with a prefix to make

the programmer aware that is using the Virtual IO Layer and, obviously,

to avoid a name space conflict. Thus for each HAL library function

that we want to expose to the third party developer a function must be

written. Each function declares a structure that contains:

1. The usermode task task handler.

2. A pointer to the relative back-end function to be called by the

Virtual IO Task
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3. A pointer for each original HAL Library function argument.

4. If the original HAL function returns a non-void value, a field to

store it.

We refer to this structure with the name HAL Library Argument Em-

bedding Structure (HAE Structure). Then HAE structure is instantiated

in the Front End function, on the stack, and all structure’s fields are as-

signed with their values. A notification is sent to the Virtual IO Layer

Task with a pointer to this structure. At the end, optionally the HAL

Library return value is returned if the function is non-void. A recap of

the embedding of this function is shown in right top corner of Figure 5.2.

Back End Subset

The Back End (or call back functions) is the part of the library meant

to be called by the Virtual IO Task. For each Front End function, there is

one corresponding Back End one that takes as input a single argument, a

void pointer. Its body contains a declaration of the HAE structure equal

to the corresponding Front End function. The void pointer is then cast in

this structure, arguments are then used to call the original HAL function.

When the HAL Library call ends, the return argument is written in the

structure, that still resides in the usermode stack. Finally the Virtual IO

Task suspends its execution waiting for the next call and control returns

to the usermode task.

This architecture has two advantages: (1) the ease of use, the pro-

grammer does not need to learn a new interface to use the HAL. (2) All

Front End calls and Back End calls have the same format, so they can be

written by a programmer or generated by an automatic tool, given the

list of HAL functions that the Virtual IO Library will support.
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To handle DMA asynchronous calls and to get notified when a DMA

transfer is completed, we use the Queue returned when the usermode

task subscribes the Virtual IO Layer. For security it is important that

all the interrupt service routines (ISR) are implemented by the system.

Moreover inside each service routine there is a Queue Send operation used

to notify the task that wants to use the DMA that the routine is called.

To correctly notify the corresponding usermode queue a reference table

is used. This reference table is set by the back-end, when the usermode

task invokes one of the DMA HAL Library functions.

Virtual IO Task

The Virtual IO Task is a privileged task that handles the communication

from usermode tasks to peripherals. It starts when the Virtual IO layer is

initialized, typically at system boot time. The communication is handled

via Direct Task Notification. When started this task hangs in suspended

state waiting for a call from one of the usermode registered tasks through

the Front End.

The priority of this task is higher than all usermode tasks. Thus,

when the notification is thrown from the Front End, the usermode task

waits that the Virtual IO task ends its execution. Therefore, even if

task notifications are asynchronous, the call to HAL Library is blocking

because in FreeRTOS the preemption of the scheduler is priority based.

The body of this task, besides the Task Notify Wait, consists of an

Access Control List (ACL), shown in Figure 5.2, that checks that the

callee HAL Library function can be invoked by the caller. The pointer

to HAE Structure is cast to a generic structure common for all HAE
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Structures (we always know that the first two fields are fixed: the user-

mode task task handler and the pointer to the call-back function), then

the ACL permission check occurs. if the checking passed, the Back End

function is invoked.

5.3.4 Dynamic Linking

The dynamic linking permits to execute new tasks without rebooting the

system and enables the usage of systems resources from dynamic linked

tasks. Thus, we implemented a privileged task in charge of dynamic

linking other tasks named Dynamic Linker task. Run-time linked tasks

must be cross compiled and have relocation and position independent

compiler flags enabled. The Dynamic Linker task resolves at runtime

unresolved dependencies to (1) system library functions (jump slots) and

(2) global data declared in the system firmware. Once all dependencies

are resolved a new FreeRTOS TCB is created and added to the ready

task scheduler queue. The library in charge of dynamic linking usermode

tasks is derived from the work of [134] and the dynamic linking consists

of 3 steps:

1. Allocation of Dynamic Linked Task. The task sections are

allocated in RAM.

2. Relocation of jump slots and global data . Resolution of jump

and data dependencies that points to the system firmware.

3. FreeRTOS task creation and start. Creation of the FreeRTOS

task. The entry point of the task is set to a known and predefined

function name.
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To resolve the dependencies two sections of the system firmware ELF

must be stored into Flash memory: .symtab and .strtab. The Dynamic

Linker Task uses these sections to correctly relocate jump slots and global

data to their real memory addresses. The dynamic linked task can be

stored in Flash or RAM memory before being run-time linked.

5.4 Experimental Results

In this section we present results of Virtual IO Layer and Dyanamic

Linking. All tests were conducted on an STM32F411RE NUCLEO-64

Board [135]. This is a platform by ST Microelectronics, it embeds an

ARM R© 32-bit Cortex R©-M4 CPU running up to 100 MHz with FPU and

MPU. It features 512 KB of Flash memory and 128 KB of RAM mem-

ory. In our software setup we use the new driver for accessing hardware

peripherals provided by ST called Hardware Abstraction Layer Driver

(HAL Driver) [136].

5.4.1 Virtual IO Layer

We identified two main use cases, i.e. ways to access peripherals in a

Microcontroller unit, that must be considered separately:

1. Atomic Action:

In this case a HAL Driver routine is called each time we access a

peripheral. In other words, the call does not involve data transfers

after it, either if we access an IO address once, or if we access it in

a loop. An example of this behavior is when we want to configure

or read a GPIO PIN, or write something on the UART.



100 5.4 Experimental Results

2. Continuous Action (or Tunneling Action):

In this second case we consider all the peripherals that involve the

use of DMA. For example when we want to set Analog to Digital

converter and read it at regular intervals by the DMA.

Virtual IO Layer Timing

The time of accessing a peripheral using the Virtual IO Layer is reported

in Table 5.2. The first row gives the cycles to get the task handle through

a system call. The MPU xTaskGenericNotify() is the direct task notifi-

cation system call. The third row reports the cycles required to notify

the Virtual IO Task. The last row gives the number of cycles to return

control, after the HAL Driver call back to the User mode task. The

cycles measurement has been done with the DWT CYCCNT hardware

cycle counter, available in Cortex-M4 MCUs.

Virtualization Step VIO (Cycles)
getTaskHandle 97
MPU xTaskGenericNotify 47
xTaskNotify + CS 490
Notify wait + CS back 293
TOTAL 927

Table 5.2: Timing overhead of accessing the IO using the Virtual IO
Layer in Cycles

It is worth mentioning that with this paradigm, continuous mode

operations pay the overhead just once, when the setup of the peripheral

or IO is performed. Thus when the DMA is working the only overhead

is the queue used to synchronize the ISR with the user mode task.

The cycles overhead to check if the function that the user mode task

wants to use is permitted by the ACL grows linearly with the number of
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Figure 5.3: Overhead of the control in the ACL.

checks that occurs. In Figure 5.3, the overhead is reported. As expected

the number of cycles are proportional to the number of function addresses

to verify.

Virtual IO Layer Memory Footprint

The overhead in terms of memory footprint is described in Table 5.3. We

show the code size of the library and of the Virtual IO Task separately, in

case the compiler is invoked with the flag for performance (-O3) or space

(-OS) optimization. The Size of the Virtual IO Library is measured with

an average size of 50 functions (front end + back end). As we can notice

from the results, the memory footprint is minimal. Moreover we notice

that optimizing for space and performance gives the same overhead, it is

due to the fact that employing space optimization means introducing -O2

compiler optimization as well. The code is not computationally intensive

thus -O2 and -O3 produce the same timing overhead for accessing the

peripheral.
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Opt. VIO Task VIO Library Overhead
-O3 592 B 2876 B 927 Cycles
-OS 464 B 2314 B 927 Cycles

Table 5.3: Virtualization Layer code size and access overhead with rela-
tion to space and performance optimization (Opt.)

5.4.2 Dynamic Linking

The cycles needed to link dynamically a task are dependent from the

number of relocations. As Section 5.3.4 describes, two possible kind of

relocations are supported, global data and function call relocation, the

cost of both is equal and dependent to the cycles needed to find the entry

in the system firmware elf.

Single Relocation
Dynamic Link Step KCycles ms @ 100MhZ
Relocation 181 1.81
Allocation and Start 19 0.19
TOTAL 200 2.00

Table 5.4: Dynamic Linker Cycles

In Table 5.4 we show the dynamic linking execution cycles, we aver-

aged the cycles of 10 global data and 10 function relocations. The allo-

cation and task creation and start described in Section 5.3.4 are grouped

in one entry, while the other entry shows the relocation. It is worth to

say that the relocation cycles are required for each additional variable

or function to relocate, while the task allocation and start cycles are

payed just once per task link. This means that if we want to relocate

100 variables and functions we pay an average of 18.1 MCycles that

at 100 MhZ are 181 ms. Dynamic linked tasks usually have a number

much lower than 100 relocations for a single task since they use a limited

number of calls to system firmware functions or global data.
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Opt. Code Size Reloc. Alloc. + Start
-O3 9904 B 181 KCycles 19 KCycles
-OS 6592 B 190 KCycles 21 KCycles

Table 5.5: Dynamic Linker code size and performance with relation to
the compiler optimization (Opt.)

In Table 5.5 we show the memory footprint of the dynamic linking

system in code size. As in Section 5.4.1 we measured the overhead using

compiler option for space (-OS) and performance optimization (-O3).

The memory footprint of the dynamic linker is higher than the Virtual IO

Layer but still limited. Moreover we show the relocation cycles of both

compiler optimization flags. With space optimization we save roughly

30% in space, paying a very limited amount of overhead cycles.

Finally we implemented a task that samples with the ADC an ac-

celerometer and, after a FIR filter stage, sends the results through the

WIFI to a remote cloud. We tested it in two versions: one statically

written in the system firmware, in a standard FreeRTOS with neither vir-

tualization nor dynamic linking. The second version uses our enhanced

FreeRTOS with Virtual IO and dynamic linking to link a new filter run-

time. After an initialization stage, different for the two implementations,

the main loop of the task (1) waits a notification from the DMA ISR,

(2) collects and elaborates the samples, and (3) sends them to a third

task that collects results to forward through the WIFI. Step 2 is exactly

the same for both implementations and it is responsible for the majority

of the execution time, the filter elaborates 512 samples each 10 ms and

the filtering takes 523 KCycles (5,23 ms at 100 MhZ). Step 1 costs 104

Cycles (1.04 µs at 100 MhZ) and Step 3 costs 512 Cycles (5.12 µs at 100

MhZ) for the static task, while for the task that uses the infrastructure
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presented in this chapter they have an overhead of 101 Cycles each since

they are implemented within system calls. The percentage increase for

both Step 1 and Step 3 is 32%, while considering all 3 Steps the over-

head of using our runtime system is really small, only 0.03% compared

to the static one, with all advantages discussed in previous Sections. A

summary is presented in Table 5.6.

Main Loop Native Our Solution Overhead
Wait data transfer 104 Cycles 205 Cycles 97%
FIR Filtering 523 KCycles 523 KCycles 0%
Wait data transfer 512 Cycles 613 Cycles 97%

Total overhead 0.03%

Table 5.6: Native vs our solution overhead

As a concluding note, it is important to notice the fact that the run-

time execution of tasks, when not interacting with the IOs or using system

calls, is exactly the same as native FreeRTOS tasks, with no performance

overhead for memory protection; as the MPU is completely transparent

from the performance viewpoint. This is very similar to what happens in

virtual machine execution for high-end cores, and in sharp contrast with

interpreted virtual machines or even JIT-based systems.

5.5 Conclusions

In this chapter we presented a virtualization layer for low-cost microcon-

trollers which creates a separation between kernel mode and user mode

and protects the hardware resources from misuses when concurrent tasks

or function are written by different developers.

Moreover we demonstrated the effectiveness of a mechanism capable

to execute new runtime code, without the need of system reboot. We have
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focused on small size of the framework and on lower overhead, because

targeted for low-cost and limited computing capabilities microcontrollers

such as the ones designed for IoT and WSN. Experimental results demon-

strate that the overhead is limited and time delay is negligible considering

the typical application scenarios.



Conclusions

Computer Vision on Embedded Systems is a challenging research topic.

In this thesis we provided solutions to critical missing links between these

two worlds, studying novel algorithms and providing along with the ac-

curacy measurements a performance analysis for a target embedded sys-

tem. Three challenging scenarios were presented, dealing with images

and videos in high-end mobile devices and low-end MCUs and finally

proposing a framework that address flexibility and security on MPU en-

abled Microcontrollers.

The first contribution proposed a people counting algorithm in

mostly static context integrated in IoT WSN with heterogeneous

nodes. It elaborates images, instead of videos, to reduce the overhead

of computation and network traffic. Our results prove that a good trade-

off between required computational power and accuracy can be reached

for the proposed target to combine occupancy and micro-climatic infor-

mation.

After dealing with stationary computer vision, we presented a novel

ego-centric gesture recognition algorithm for monocular wearable

cameras. It is able to recognize with a good precision static and dynamic

gestures and can achieve high accuracy results even when trained with

a few positive samples. Results are shown on publicly available datasets
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to compare our solution to existing solutions in literature.

Therefore the gesture recognition has been fully integrated in

wearable vision system to enhance visitors’ museum experiences. We

proposed a networked architecture capable of recognizing users’ gestures

and artworks. We fully integrated the gesture recognition on an ARM

big.LITTLE heterogeneous platform for embedded devices and we im-

plemented a tradeoff between accuracy and performance for a virtual

(Interactive Museum dataset) and a real (Maramotti Dataset) museum

environments. Results show the feasibility of our solution on a real-world

scenario.

The fourth contribution proposed a context change detector for

a low-resolution ultra-low power imager. We proposed a solution

based on a Siamese Convolutional Neural Network, that is able to work

with grayscale low-resolution snapshots. We finally ran extensive exper-

iments showing the robustness and efficacy of the proposed method with

respect to related approaches.

Finally we dealt with low-end MCUs security and flexibility, present-

ing a lightweight virtualization framework able to protect periph-

erals to misuses and solution the dynamic loading of new user code. We

have focused on small size of the framework because targeted for low-

cost and limited computing capabilities microcontrollers. Experimental

results demonstrate that the overhead is limited and time delay is negli-

gible considering the typical application scenario.

The contributions proposed in this thesis want to suggest a growing

constraints paradigm. We first presented a stationary high-end scenario,

then a wearable high-end and low-end one. In particular the last two con-

tributions, presented in Chapter 4 and Chapter 5, with the exploitation
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and study of ultra-low-power low-resolution imagers and a flexible and se-

cure deployment framework want to take a step toward a transition from

computer vision to always-on sensor vision. The low-power consumption

given by the exploitation of low-end devices, combined with the use of

energy harvesters and ultra-low-power low-resolution imagers permits to

save computational power, energy and to deal with privacy issues that is

one important concerns in wearable computer vision. Moreover the flex-

ibility and security of third-party application deployment can permit a

wider and easier diffusion of these devices. Obviously this does not come

for free, the study of more efficient algorithms and architectures and the

exploitation of low-resolution images rises the difficulty of these scenar-

ios. A possible future perspective is to employ such a solution as one of

the available sensor peripherals in an embedded system with high energy

efficiency that can be kept always-on to collect and elaborate informa-

tion or be used as a trigger for high resolution and more power-hungry

subsystems.
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[70] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action Recognition

by Dense Trajectories,” in Proc. of CVPR, 2011.



[71] N. Dalal and B. Triggs,“Histograms of oriented gradients for human

detection,” in Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on, vol. 1. IEEE,

2005, pp. 886–893.

[72] N. Dalal, B. Triggs, and C. Schmid, “Human detection using ori-

ented histograms of flow and appearance,” in Computer Vision–

ECCV 2006. Springer, 2006, pp. 428–441.

[73] M. A. Fischler and R. C. Bolles, “Random sample consensus: a

paradigm for model fitting with applications to image analysis and

automated cartography,” Communications of the ACM, vol. 24,

no. 6, pp. 381–395, 1981.

[74] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust

features,” in Proc. of ECCV, 2006.
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