ALMA MATER STUDIORUM

Università di Bologna

DOTTORATO DI RICERCA IN:

"Ecologia Microbica e Resistenza Indotta ad Agenti Fitopatogeni e Colture Erbacee" Pogetto N.2 "Resistenza Indotta ad Agenti Fitopatogeni" XX CICLO

Settore scientifico disciplinare: Area07 Agr/12

PRODUZIONE DI VIRUS SINTETICI PER LO STUDIO DEI

MECCANISMI DI INTERAZIONE COINVOLTI

NELL'INDUZIONE DI RESISTENZA

Tesi di Dottorato presentata dalla Dott.ssa: Laura Bianchi

Coordinatore: Chiar.mo Prof. Paolo Bertolini Relatore: Dott.ssa Concepcion Rubies Autonell

Correlatore: Dott. Claudio Ratti

Esame finale anno 2008

INDICE

CAPITOLO 1: INTRODUZIONE	pag. 1
1.1 Importanza della coltura della bietola	pag. 2
1.2 Virus dell'ingiallimento nervale necrotico della barbabietola,	
la Rizomania	pag. 3
1.2.1 Aspetti fitopatologici ed epidemiologici	pag. 3
1.2.2 Condizioni di propagazione della malattia in ambiente naturale	pag. 7
1.2.3 Misure di controllo della malattia in ambiente naturale	pag. 8
1.2.4 Descrizione del BNYVV	pag. 9
1.2.5 Organizzazione molecolare del genoma del BNYVV	pag. 9
1.2.5.1 RNA 1	pag. 10
1.2.5.2 RNA 2	pag. 11
1.2.5.3 RNA 3	pag. 12
1.2.5.4 RNA 4	pag. 13
1.2.5.5 RNA 5	pag. 14
1.2.5.6 Omologie e relazioni	pag. 15
1.2.6 Caratterizzazione molecolare del BNYVV	pag. 17
1.3 Virus del mosaico comune della bietola trasmesso dal terreno	pag. 20
1.3.1 Aspetti fitopatologici ed epidemiologici	pag. 20
1.3.2 Organizzazione molecolare del genoma del BSBMV	pag. 21
1.3.2.1 RNA 1	pag. 21
1.3.2.2 RNA 2	pag. 22
1.3.2.3 RNA 3	pag. 23
1.3.2.4 RNA 4	pag. 23
1.4 Confronto BNYVV e BSBMV	pag. 23
1.4.1 Studio della "Cross protection" fra BSBMV e BNYVV	pag. 25
1.5 Scopo della ricerca	pag. 27

CAPITOLO 2: MATERIALI E METODI	pag.	29
2.1 Materiale vegetale	. pag.	. 30
2.2 Tecniche molecolari	. pag.	30
2.2.1 Estrazione degli ssRNA dai tessuti vegetali	pag.	30

2.2.1.1 Estrazione con CTABpag.	30
2.2.1.2 Estrazione con Trizolpag.	32
2.2.1.3 Estrazione con "Polysome buffer"pag.	33
2.2.1.4 Estrazione con tampone TMpag.	34
2.2.2 Reazione di trascrittasi inversa (RT) abbinata alla	
reazione a catena della polimerasi (PCR)pag.	35
2.2.3 Protocollo di RT-PCR multiplex per la diagnosi e caratterizzazione	
di BNYVV, <i>Polymyxa betae</i> , BSBV, BVQ e BSBMVpag.	36
2.2.4 Estrazione della banda elettroforeticapag.	39
2.2.5 Purificazione DNApag.	39
2.2.6 Procedura di "A-tailing"pag.	40
2.3 Clonaggio dei prodotti di PCR pag.	40
2.3.1 Preparazione delle cellule di Escherichia Coli per elettroporazionepag.	40
2.3.2 Reazione di ligasipag.	41
2.3.2.1 Ligasi con kit pGEM-T Easy Vector System (Promega)pag.	41
2.3.2.2 Ligasi con kit Rapid DNA ligation (Fermentas)pag.	42
2.3.3 Trasformazione mediante elettroporazione delle cellule di E. Colipag.	42
2.3.4 Estrazione del plasmide ricombinantepag.	44
2.3.5 Sequenziamento degli insertipag.	45
2.4 Western Blot pag.	45
2.4.1 Preparazione dei campioni pag.	45
2.4.2 SDS-PAGEpag.	46
2.4.3 Protein blottingpag.	47
2.4.4 Preparazione della membrana e deposizione anticorpipag.	48
2.5 Northern Blot pag.	49
2.5.1 Estrazione RNA e corsa elettroforeticapag.	49
2.5.2 Trasferimento RNA su membranapag.	50
2.5.3 Sintesi della sonda a DNA con il Kit Ready-To-Go DNA Labelling Beads	
(Amersham Beads)pag.	50
2.5.4 Ibridazione della sondapag.	51
2.5.4 Sviluppo lastra fotograficapag.	51
2.6 Trascrizione in vitro pag.	51
2.6.1 Inoculopag.	53

2.7 Tecniche di microscopia pag.	53
CAPITOLO 3: RISULTATIpag.	54
3.1 ottenimento dei cloni cDNA degli RNA di BSBMV e BNYVV pag.	55
3.1.1 Sintesi dei cloni cDNA degli RNA 1 e 2 di BSBMVpag.	55
3.1.2 Sintesi dei cloni cDNA degli RNA 1 e 2 di BNYVVVpag.	56
3.1.3 Sintesi di un clone cDNA infettivo dell'RNA3 di BSBMVpag.	58
3.1.4 Sintesi di un clone cDNA infettivo dell'RNA4 di BSBMVpag.	58
3.1.5 Analisi delle sequenzepag.	58
3.2 Trascrizione e inoculo degli RNA di BSBMV e BNYVV pag.	63
3.2.1 Trascrizione e inoculo degli RNA 1 e 2 di BSBMV e BNYVVpag.	63
3.2.2 Trascrizione e inoculo dell'RNA3 di BSBMVpag.	65
3.2.2.1 Sequenze estranee e sono espresse con successo dal replicone	
basato sull'RNA3 di BSBMVpag.	68
3.2.3 Trascrizione e inoculo dell'RNA4 di BSBMVpag.	73
3.2.3.1 Inoculi seriali di BSBMV su C. quinoa hanno portato alla	
comparsa di una chimera RNA4-RNA3 del BSBMVpag.	74
3.3 Core Region RNA3 BNYVV pag.	77
3.3.1 Sintesi di un clone cDNA della Core Region dell'RNA3 di BNYVVpag.	77
3.3.2 Trascrizione e inoculo della Core Regionpag.	77
3.4 Messa a punto di un metodo per l'infezione naturale attraverso	
il vettore P. betae di radici di barbabietola da zucchero	
con BSBMV e BNYVV pag.	78
3.4.1 Protocollo per l'infezione naturale di piante di barbabietola da zucchero	
mediato da <i>P. betae</i> pag.	78
3.4.2 Infezione naturale attraverso il vettore P.betae di radici	
di barbabietola da zucchero con BSBMV e BNYVVpag.	80
CAPITOLO 4: DISCUSSIONE E CONCLUSIONI	81
4.1 Discussione pag.	82
4.2 Conclusioni pag.	92
Appendice Apag.	. 94

Appendice B1	pag. 96
B2	pag. 101
B3	pag. 104
B4	pag. 109
B5	pag. 113
B6	pag. 115
B7	pag. 117
B8	pag. 118
Bibliografia	pag. 120

CAPITOLO 1

INTRODUZIONE

1.1 Importanza della coltura della bietola

Le piante saccarifere coltivate nel mondo sono fondamentalmente due: la canna da zucchero (*Saccharum officinarum*) nei climi tropicali e subtropicali, e la barbabietola da zucchero (*Beta vulgaris* var. *saccharifera* della famiglia *Chenopodiaceae*) nei climi temperati.

La produzione mondiale di barbabietola da zucchero è di circa 250 milioni di tonnellate, in massima parte prodotte da Francia, Germania, USA, Federazione Russa. In Europa, i principali produttori di barbabietola da zucchero sono Francia, Germania, Federazione Russa, Polonia, Italia ed Ukraina (Tabella 1.1) (Fao, 2005).

Nazione	Produzione (Mt)	Resa (kg/Ha)
Austria	3.083.790	690.041
Belgio	5.983.170	699.565
Repubblica Ceca	3.495.610	533.111
Francia	31.242.510	823.220
Germania	25.294.700	601.873
Ungheria	3.515.870	570.359
Italia	14.155.680	599.418
Polonia	11.912.440	416.264
Russia	21.420.110	282.319
Spagna	7.275.700	713.304
Ucraina	15.467.800	248.160
Regno Unito	8.687.000	586.959
Tabella 1.1. Produzioni, rese dei principali produttori europei di barbabietola da zucchero riferite all'anno 2005.		

L'Italia produce 14,1 milioni di tonnellate di fittoni, gli ettari di terreno coltivati a bietola sono 236.150 e le rese in zucchero sono di 5,99 t/ha (Fao, 2005).

La bietola è una pianta soggetta a numerose fitopatie catalogate sulla base della loro origine batterica, virale o fungina (Whitney e Duffus, 1986). In particolare, vi sono diverse virosi trasmesse dal terreno che colpiscono la coltura sia a livello mondiale che italiano provocando gravi perdite.

I virus sono parassiti obbligatori dei procarioti e degli eucarioti sia vegetali che animali. I virus necessitano della macchina cellulare del loro ospite per moltiplicarsi, hanno patrimonio genetico di tipo a RNA o DNA, singolo filamento (di polarità positiva o negativa) o doppio filamento. I virus delle

Anno	Nazione	Autori
1959	Italia	Canova.
1973	Grecia	Kouyeas.
1974	Francia	Putz e Vuittenez.
1977	Germania	Hamdorf <i>et al.</i>
1978	Iugoslavia	Sutic e Milovanovic.
1981	Austria	Krexner.
1981	Romania	Codrescu et al.
1983	Svizzera	Haeni e Bovey.
1984	Cecoslovacchia	Novak e Lanzova.
1984	Olanda	Heijbroeck et al.
1984	Bulgaria	Jankulova, Gueorguieva e Ivanova.
1989	Svezia	Lindsten
1987	Regno Unito	Asher e Thompson.
1988	Spagna	Cambra e Garcia; Raposo e Mateo-Sagasta.
1989	Belgio	Meulewater et al.
2006	Lituania	Jackeviciene <i>et al</i> .
Tabella 1.2. Cronologia dell'identificazione del BNYVV in Europa.		

piante, fitovirus, infettano specie vegetali molto varie, sono suddivisi in una quarantina di famiglie e il loro genoma è nella maggior parte dei casi costituito da RNA singolo filamento di polarità positiva.

La barbabietola da zucchero non è risparmiata da questi parassiti, essenzialmente le malattie ad eziologia virale trasmesse dal terreno che si riscontrano di frequente nei seminati della bietola sono quattro: la più importante, la rizomania, è causata dal virus dell'ingiallimento nervale necrotico della barbabietola (*Beet necrotic yellow vein virus*, BNYVV), seguono il virus della bietola trasmesso dal terreno (*Beet soil-borne virus*, BSBV), il virus Q (*Beet virus Q*, BVQ) e il virus del mosaico comune della bietola trasmesso dal terreno (*Beet soilborne mosaic virus*, BSBMV), attualmente identificato esclusivamente negli Stati Uniti. In Italia sono stati finora identificati il BNYVV, il BSBV e il BVQ (Ratti *et al.*, 2005; Rubies *et al.*, 2006).

1.2 Virus dell'ingiallimento nervale necrotico della barbabietola, la Rizomania

1.2.1 Aspetti fitopatologici ed epidemiologici

In patologia vegetale spesso accade che gli agenti patogeni, soprattutto quelli virali, siano riconosciuti ed identificati con un termine che si rifà alla sintomatologia. Nel caso delle fitopatie a precisa sintomatologia, che colpiscono la bietola, al primo posto, per danni e diffusione, vi è la rizomania, il nome deriva dal principale sintomo che questa malattia causa che consiste in una abnorme proliferazione delle radici ("*Rhizo*" = radice, "*mania*" = pazzia) (Figura 1.1). La

malattia, descritta per la prima volta da Canova (1959), è stata successivamente identificata in diverse aree del mondo dove la bietola è coltivata. In Europa la malattia è stata individuata in diverse nazioni come indicato in tabella 1.2.

La rizomania risulta molto dannosa, può infatti provocare perdite di prodotto fino al 45-50 % in peso del fittone e fino al 60-79 % nel contenuto in zuccheri (Casarini Camangi, 1987). Negli ultimi anni ha raggiunto una vastissima distribuzione geografica, un'intensità e frequenza d'attacco tali da compromettere la coltura saccarifera in molti comprensori bieticoli

Figura 1.1. Abnorme sviluppo del capillizio radicale di *B. vulgaris* infetta da rizomania.

dell'Italia settentrionale (Bongiovanni, 1964; Rana et al., 1978, Turina et al.,

Figura 1.2. Sintomi di rizomania in campo.

Rana *et al.*, 1978, Turina *et al.* 1996; 1999; Ratti *et al.*, 2005).

La malattia è caratterizzata da un abnorme capillizio radicale distribuito lungo i solchi saccariferi del fittone e di solito anche nelle zone lisce interposte a quelle del capillizio che, in parte, diviene poi sede di processi degenerativi a carattere necrotico. La pianta, di colore verde-pallido e di sviluppo alquanto ridotto, presenta un

apparato fogliare limitato nel quale, alcune volte, si riscontrano anche ingiallimenti più marcati lungo le nervature fogliari. Contemporaneamente cominciano a manifestarsi fenomeni di carenza idrica a carico dell'apparato aereo fino a determinare, nelle giornate più calde, l'avvizzimento di gran parte delle foglie (Canova, 1975) (Figura 1.2).

L'agente eziologico della rizomania è il virus dell'ingiallimento nervale necrotico

Figura 1.3. Ammassi di spore durevoli (cistosori) di *Polymyxa betae* al microscopio ottico.

della bietola (BNYVV) (Tamada e Baba, 1973) appartenente al genere *Benyvirus* (Koenig e Lesemann, 2005). Questo virus è trasmesso in maniera persistente dal

Figura 1.4. Ammassi di spore durevoli (cistosori) di *Polymyxa betae* al microscopio elettronico a scansione.

protozoo *Polymyxa betae* Keskin (Keskin, 1964) parassita obbligato del tessuto radicale di alcune specie vegetali (principalmente

Chenopodiaceae), inclusa la bietola.

Il ciclo vitale del protozoo, (Figura 1.5), implica almeno quattro forme:

a) spore durevoli (cistosori, Figura 1.3 e 1.4), in grado di restare vitali nel terreno per anni senza perdere la virulenza (Richards e Tamada, 1992), dalle quali si differenziano

b) zoospore mobili,
biflagellate che nuotano
attraverso la fase liquida finché

entrano nella rizosfera di una radice ospite. Il virus, in genere, aderisce alla guaina del flagello tramite interazioni proteiche ed è portato all'interno delle zoospore in seguito all'assorbimento del flagello. Le zoospore, quindi, s'incistano e per mezzo di uno stiletto riversano il proprio contenuto citoplasmatico nella cellula ospite portando alla formazione di

c) forme plasmodiali multinucleate dentro il citoplasma cellulare.

Figura 1.5: Ciclo vitale di *Polymyxa betae* Keskin (Fonte: "Le tecniche di coltivazione delle principali colture agroindustriali". Agronomica 1995).

d) Il plasmodio può, poi, o ricostituire i cistosori (D), o differenziarsi in zoosporangi (E) in grado di formare ed emettere le zoospore nel mezzo extracellulare.

Quando *P. betae* colpisce una pianta infettata con BNYVV, il virus può essere acquisito dal protozoo e trasmesso ad un'altra pianta. Sia le zoospore sia i cistosori possono trasmettere il virus che si localizza al loro interno.

1.2.2 Condizioni di propagazione della malattia in ambiente naturale

Numerosi parametri influenzano l'incidenza e la severità della malattia in campo. La malattia si manifesta abitualmente dopo l'introduzione di terreno infestato (Rush, 2003), in queste condizioni possono ritrovarsi piccole quantità di *P. betae* virulifera. La prima localizzazione della malattia si evidenzia, in pieno campo, in aree con piante dall'aspetto giallastro durante la stagione di coltivazione della bietola. Con il passare degli anni, l'inoculo iniziale cresce in maniera esponenziale, anche 10000 volte per stagione di coltivazione bieticola. La rapida progressione della malattia nei campi è attribuita a una migrazione facilitata delle zoospore virulifere causata dal sistema di irrigazione. È stato dimostrato che le operazioni meccaniche di preparazione della suolo e di raccolta sono le principali responsabili della propagazione della malattia (Harveson *et al.*, 1996).

Dopo l'apparizione della popolazione di *P. betae* infetta, la densità di inoculo è influenzata da diversi parametri, quali, l'aggressività dell'isolato di *P. betae* introdotto, la densità d'inoculo della popolazione di vettore non virulifero e la coltivazione di un ospite sensibile a *P. betae* e al virus.

La pressione di inoculo è il parametro più importante per determinare quale popolazione del vettore può prendere il sopravvento. In effetti, l'isolato che infetta per primo l'apparato radicale dell'ospite avrà un vantaggio nel ciclo infettivo. Se la popolazione originale del vettore avirulento è in densità minore, la popolazione virulenta introdotta avrà la capacità di accrescere considerevolmente la sua densità in una sola stagione di coltivazione.

La severità della malattia e la perdita di rendimento sono massime quando le condizioni di moltiplicazione del vettore sono ottimali (Rush, 2003): temperature fra i 25-30 °C e una elevata umidità del suolo favoriscono la proliferazione di *P. betae*, che è accentuata notevolmente nei terreni irrigui. Queste condizioni aumentano anche la possibilità di infezione da parte di altri virus trasmessi dallo stesso vettore *P. betae*, BSBV, BVQ e BSBMV (Adams, 2002). È stato dimostrato che la severità della malattia è legata alla quantità del complesso virus-vettore presente nel suolo e dunque alla densità di inoculo. Più le condizioni di moltiplicazione del vettore sono favorevoli più generazioni di zoospore virulifere vengono liberate nel terreno e più la severità della malattia e le perdite di rendimento sono importanti (Rush, 2003).

1.2.3 Misure di controllo della malattia in ambiente naturale

A causa della modalità di trasmissione gli unici metodi di controllo efficaci risultano l'analisi pre-semina del terreno per valutare la presenza di BNYVV (Lewellen e Wrona, 1997) oppure la fumigazione del suolo con il bromuro di metile. Questa misura estrema è efficace per ridurre fortemente la densità dell'inoculo, ma ad un costo e una tossicità proibitivi se utilizzati su larga scala (Rush, 2003).

La semina in condizioni di temperatura basse (<15°C) permette inoltre di evitare un'infezione precoce e lo sviluppo rapido della malattia. La riduzione dei volumi irrigui e un buon drenaggio permettono anch'essi di limitare la proliferazione di *P. betae*.

La miglior strategia per ridurre l'incidenza della rizomania resta comunque l'impiego di varietà resistenti al vettore ed al virus. La resistenza a *P. betae* è stata individuata in una specie selvatica di barbabietola (Scholten e Lange, 2000) e un importante lavoro di selezione è stato intrapreso al fine di ottenere varietà di bietola coltivate che possiedano questa resistenza.

La resistenza a BNYVV è stata introdotta nelle moderne varietà che possiedono il gene *Holly* (Rz1, Rush, 2003, Scholten e Lange, 2000), tali piante presentano una forte resistenza a BNYVV che comunque non è totale. La resistenza alla rizomania, in molte cultivar commerciali di barbabietola, è condizionata dall'allele dominante Rz e da fattori quantitativi che sembrano modificare l'espressione del gene (Lewellen *et al.*, 1987; Lewellen e Biancardi, 1990). In condizioni favorevoli all'infezione da rizomania, il dosaggio genico e la frequenza allelica (rapporto allelico Rz / rz in una cultivar) condizionano il comportamento delle piante (Wisler *et al.*, 1999). Alcune cultivar, parzialmente resistenti al BNYVV, contenenti i geni Rz 1 e Rz 2, hanno infatti mostrato una risposta variabile in campo quando coltivate in Paesi diversi. Questo potrebbe, però, essere causato anche da differenze riscontrate nel genoma di diversi isolati del virus (Heijbroek *et al.*, 1999).

L'utilizzo di un solo gene di resistenza contro un virus a RNA è però rischioso. In effetti, il forte tasso di mutazione del virus combinato a una forte pressione selettiva può rapidamente favorire l'insorgenza di popolazioni virali che aggirano questa resistenza (Rush, 2003). L'utilizzo di piante che portano due geni di resistenza conferisce perciò alle varietà una maggiore resistenza al BNYVV.

1.2.4 Descrizione del BNYVV

Il BNYVV è un virus a genoma multipartito, a singolo filamento di RNA di polarità positiva. Inizialmente è stato classificato nel genere *Furovirus* che è poi stato ridefinito in cinque generi distinti: *Furovirus, Pomovirus, Pecluvirus, Benyvirus* e *Hordeyvirus*. (Torrance e Mayo, 1997; Shirako *et al.*, 2000). Il BNYVV fa ormai parte del genere dei *Benyvirus*, di cui è il capostipite, e a cui appartiene anche il BSBMV (Koenig et Lesemann 2005). Questa nuova classificazione è stata fatta in base alle proprietà di ciascun virus, al loro vettore di trasmissione, al numero di RNA, al tipo di polimerasi, alla presenza o meno della sequenza poly-A all'estremità 3', alla presenza delle tre griglie di lettura (open reading frame, ORF) costitutive del blocco dei tre geni (triple gene blok, TGB) e alla presenza della proteina di rivestimento (coat protein, CP).

1.2.5 Organizzazione molecolare del genoma del BNYVV

I virioni di BNYVV sono bastoncini rigidi ribonucleoproteici di simmetria elicoidale composti da copie multiple della CP di 21 kDa e da una singola molecola di RNA.

La diffrazione ottica d'immagini, ottenute attraverso microscopia elettronica, ha rilevato che ogni subunità della CP è associata a quattro nucleotidi (nt) (Steven *et al.*, 1981). I bastoncini hanno un diametro costante (20 nm compreso il lume di 2 nm) ma diverse classi di lunghezza (390, 265, 100, 85 nm; Putz, 1977), a seconda dell'RNA incapsidato come riassunto in tabella 1.3.

Gli isolati di BNYVV contengono tipicamente quattro specie di RNA a singola catena ma si è osservata la presenza di una quinta specie di RNA in alcuni isolati giapponesi ed europei (Tamada *et al.*, 1989; Koenig *et al.*, 1995, 1997; Ward *et al.*, 2007).

I cinque distinti RNA sono stati descritti ed indicati come RNA 1 (6.8 kb), 2 (4.7 kb), 3 (1.8 kb), 4 (1.5 kb) e 5 (1.45 kb). Gli RNA 1 e 2 di differenti isolati sono

Lunghezza (nm)	390, 265, 100, 85	
Passo (nm)	2.06	
Nucleotidi/proteina	4	
Proteina di rivestimento (Da)	21.000	
Diametro (nm)	20	
Nucleotidi/ giro	49	
Subunità/ giro	12.05	
Numero di giri	4	
Elica	Destrogira	

Tabella 1.3. Caratteristiche degli RNA di BNYVV.

risultati della stessa dimensione mentre gli RNA 3 e 4 possono variare considerevolmente in lunghezza. Tutti gli RNA possiedono una coda di poli-A all'estremità 3' e possiedono un cappuccio (cap) all'estremità 5' (Putz *et al.,* 1983). Si possono ritrovare delle somiglianze di sequenza a livello dei primi 8-9 nucleotidi all'estremità 5' e negli ultimi 70 nt prima della coda poly-A.

1.2.5.1 RNA 1

L'RNA1 ha una lunghezza di 6746 nt (Bouzoubaa *et al.*, 1987), esclusa la coda poly(A) di 100 nt (Putz *et al.*, 1983) (Figura 1.6).

Contiene un singolo modulo di lettura (ORF) di 2109 codoni da AUG (154), il primo potenziale codone d'inizio, ad UAA (6481). Un secondo potenziale codone d'inizio è AUG (496) collocato più a valle. La sintesi proteica produce due lunghi polipeptidi: p237 (per l'inizio in AUG 154), p220 (per l'inizio in AUG 496) ed un numero di proteine più piccole le quali probabilmente si generano da un termine prematuro della traduzione (Jupin *et al.*, 1988).

p237 possiede due domini, omologhi ai domini di proteine non strutturali coinvolte nella replicazione virale. La regione C-terminale di p237 contiene la

sequenza "GDD" e motivi associati comuni a tutte le polimerasi RNA dipendenti (RNA-dependent RNA polymerases, RdRp).

L'altro dominio presenta la sequenza consenso GXXGXGKS-T e motivi associati caratteristici di proteine con attività elicasica (Gorbalenya e Koonin 1988; Hodgman, 1988; Lain *et al.*, 1990; 1991).

1.2.5.2 RNA 2

L'RNA2 ha una lunghezza stimata di 4612 nt (Bouzoubaa et al., 1986),

esclusa la coda poli (A) (Figura 1.7). Il cistrone per la CP è localizzato vicino all'estremità 5' e termina con un singolo codone UAG (709) che,

circa una volta su dieci, subisce soppressione per produrre una proteina, con un peso molecolare di 75 kDa (p75) (Ziegler *et al.*, 1985, Niesbach-Klosgen *et al.*, 1990). Tale polipeptide contiene la proteina di rivestimento p21 al suo N-terminale. La stessa p75 sarebbe coinvolta nell'assemblaggio virale poiché particolari delezioni nel suo dominio non interferiscono con l'infezione o con la sintesi della proteina di rivestimento ma inibiscono la formazione del virione, portando ad un aumento dell'aggregazione delle particelle virali (Richards e Tamada, 1992), oppure rendono *P. betae* incapace di trasmettere gli isolati virali (Tamada e Kusume, 1991).

Quattro ORF addizionali, nella porzione 3' terminale, occupano l'RNA2: tre (ORF 3-4-5) codificano le proteine TGB ("triple gene block": p42, p13, p15) il quarto è necessario per la sintesi della p14 (ORF 6). BNYVV può muoversi da una cellula a quella vicina senza CP, attraverso i plasmodesmi, ma le proteine TGB sembrerebbero essenziali per questo processo (Gilmer *et al.*, 1992a; Erhardt *et al.*, 2000).

p13 contiene un motivo centrale altamente conservato fiancheggiato da un dominio idrofobico potenzialmente in grado di attraversare la membrana ed è associata a frazioni subcellulari di membrana nelle piante infette (Niesbach-Klosgen *et al.*, 1990; Donald *et al.*, 1993).

p42 ha, in vitro, la capacità di legare gli acidi nucleici (Bleykasten *et al.*, 1996) ed è associata a frazioni subcellulari di membrana (Niesbach-Klosgen *et al.*, 1990). Tuttavia l'analisi al computer di P42 non evidenzia alcuna affinità per il plasmalemma. Studi successivi hanno permesso di ipotizzare che le proteine p13 e p15 agiscano contemporaneamente o sequenzialmente per ancorare p42 ai plasmodesmi (Niesbach-Klosgen *et al.*, 1990; Erhardt *et al.*, 2000).

La proteina p15 è risultata idrofobica (Lauber *et al.*, 1998) mentre p14 è principalmente localizzata nel citosol, come proteina solubile. La presenza di residui di cisteina (posizione 68-71), insieme ai vicini residui di istidina (posizione 84-87), evidenzia una similitudine con proteine aventi un dominio "zinc-finger" (Niesbach-Klosgen *et al.*, 1990).

1.2.5.3 RNA 3

L'RNA3 (1774 nt facendo riferimento alle molecole più lunghe sequenziate nel 1985 da Bouzoubaa *et al.*) contiene l'ORF di una proteina di 25 kDa (p25)

(Figura 1.8). L'espressione della p25 è associata a lesioni locali gialle su foglie inoculate di ospiti come *Chenopodium quinoa* e *Tetragonia expansa* (Tamada *et al.*, 1989; Jupin *et al.*, 1992) e allo sviluppo dei sintomi della rizomania nelle radici di bietola (Tamada *et al.*, 1990; Koenig *et al.*, 1991).

La proteina è stata trovata nel citoplasma e nel nucleo di foglie infette di *Chenopodium murale* e *C. quinoa.* Il peptide contiene vicino al suo N- terminale (residui 57-62) una sequenza ricca di arginine (<u>KRIRFR</u>; i residui basici sono sottolineati) che potrebbe costituire il segnale di localizzazione nucleare. Il significato biologico della localizzazione nucleare della p25 è al momento sconosciuto, comunque questa proteina contiene una regione ricca di cisteine (regione 73-90) che potrebbe formare un motivo "zinc-finger" in grado di interagire con il genoma dell'ospite (Jupin *et al.*, 1992). Quest'interazione potrebbe essere responsabile dei sintomi indotti dalla presenza dell'RNA3 (Haeberlé e Stussi-Garaud, 1995).

Sperimentalmente, dopo la delezione di una porzione a monte dell'ORF di p25, si esprime un piccolo ORF chiamato N (nt 1052-1231) che si sovrappone

alla porzione 3' terminale dell'ORF di p25, che codifica per una proteina di 6,5 kDa in grado di provocare la comparsa di lesioni locali su *C. quinoa* e *T. expansa* (Jupin *et al.*, 1992).

L'RNA3 contiene degli altri piccoli ORF che non sono trascritti durante l'infezione (ORF A, ORF S). Un RNA subgenomico, il cui 5' mappa al nt 1230, appare dopo ogni infezione, quando l'RNA3 è presente nell'inoculo e non è incapsidato (Bouzoubaa *et al.*, 1991). L'ORF più vicino al 5' sull'RNA3 subgenomico è S (nt 1274-1393) corrispondente ad una proteina di 4,6 kDa (Lauber *et al.*, 1998).

Le osservazioni indicano inoltre che l'RNA3 possiede delle sequenze importanti per i movimenti vascolari che si trovano approssimativamente fra i nt 1033-1257 ("core region") (Lauber *et al.*, 1998). Tali movimenti avvengono ancora, ma con minor efficienza, quando le regioni fiancheggianti tale zona vengono rimosse indicando che contribuiscono al movimento vascolare anche se in modo sussidiario. È stato verificato che una delezione tra i nt 1033-1257 blocchi il movimento vascolare del virus. Al momento si può soltanto ipotizzare il meccanismo che interviene, in uno specifico ospite, nel movimento vascolare, una possibilità è che la regione fra i nt 1033-1257 interagisca con fattori virali o cellulari che governano i plasmodesmi favorendo l'entrata, l'uscita o i movimenti nei compartimenti vascolari. Alternativamente, l'RNA3 potrebbe promuovere movimenti sistemici indirettamente attraverso l'attivazione dell'espressione di proteine virali (Lauber *et al.*, 1998).

1.2.5.4 RNA 4

L'RNA4 (1467 nt riferendosi alle molecole più lunghe sequenziate nel 1985 da Bouzoubaa *et al.*) contiene un ORF che si estende dall'AUG (344) ad UAG (1192) e può codificare un polipeptide di 31 kDa (p31) (Figura 1.9). P31 è stata osservata esclusivamente nel citosol (Niesbach-Klosgen *et al.*,

1990). La presenza dell'RNA4 sembra aumentare l'efficienza di trasmissione del virus da parte del vettore ed in particolare è stato osservato che varie combinazioni dei diversi RNA influenzano tale efficienza nel modo seguente:

(RNA 3+4+5) = (RNA 3+4) > (RNA 4+5) > (RNA4) > (RNA 3+5) = (RNA3) > (RNA 5) > (piccoli RNA assenti) (Tamada*et al.*, 1989, 1990). Oltre ad essere necessaria per una efficiente trasmissione da parte del vettore, p31 è risultata anche coinvolta nell'espressione dei sintomi ospite-specifica e nella capacita di BNYVV di sopprimere il silenziamento genico in particolar modo a livello radicale (Rahim*et al.*, 2007).

1.2.5.5 RNA 5

L'RNA5 ha una lunghezza di 1342-1347 nucleotidi con un singolo ORF codificante una proteina di 26 kDa simile al peptide di 25 kDa codificato dall'RNA 3 (Kiguchi *et al.*, 1996; Koenig *et al.*, 1997) (Figura 1.10). La presenza dell'RNA 5 sembra conferire una maggiore virulenza all'isolato. Test di inoculazione, infatti, mostrano che gli isolati

contenenti tale RNA generalmente causano sintomi più gravi (Tamada et al., 1996).

In relazione alle funzioni svolte dai diversi RNA possiamo perciò dire che: gli RNA 1 e 2 di BNYVV hanno geni coinvolti nella replicazione, nel movimento da una cellula all'altra, nell'incapsidazione dell'RNA virale e sono necessari alla moltiplicazione del virus sulle foglie delle piante ospiti; gli RNA più piccoli (3, 4 e 5) sono richiesti unicamente per il processo di infezione naturale: l'RNA3 è implicato nella proliferazione delle radici di *Beta vulgaris* e

RNA	Prodotto genico	Funzione
1	p237	replicasi
2	p21	proteina del capside
2	p75	assemblaggio, trasmissione
2	p42	movimento cellula-cellula
2	p13	movimento cellula-cellula
2	p15	movimento cellula-cellula
2	p14	?
3	p25	sintomi sulla foglia, proliferazione nella radice
4	p31	trasmissione con Polymixa
5	p26	?
Tabella 1.4: Riepilogo sulle funzioni delle proteine del BNYVV.		

nell'espressione dei sintomi (Rizomania); l'RNA4 è importante per la trasmissione del virus mediata da *P. betae*; l'RNA5 non è presente in tutte le fonti virali ma interagisce sinergicamente con l'RNA3, quando entrambi sono presenti (Figura 1.11) (Tabella 1.4). La moltiplicazione del virus mediante inoculo fogliare può determinare delle delezioni interne a questi piccoli RNA (Richards e Tamada, 1992).

1.2.5.6 Omologie e relazioni

L'omologia tra i quattro RNA è limitata alle loro estremità. Al terminale 5' (m⁷ GpppAAAUUCNAA) le molecole cominciano con adenina (A), A₃ nel caso dell'RNA 1, 2, 4 e A₄ per l'RNA3. I residui di guanina sono significativamente

poco rappresentati nei primi 30 o 50 residui dei quattro RNA. Queste sequenze potrebbero formare parte del promotore per la sintesi della seconda elica di RNA.

Il dominio essenziale in cis dell'RNA3 consiste di almeno tre subdomini separati da spaziatori non essenziali. Il subdominio più distante dall'estremità 5' è situato a 283-293 nt (Box I) ed è perfettamente complementare ai primi dieci nt immediatamente succissivi la struttura cap (Box I'). Il secondo subdominio (Box II) contiene un elemento che è complementare ad una sequenza a monte (Box II'). Delezioni all'interno del dominio "ENCAP" interferiscono con l'assemblaggio dell'RNA3. Non sono state osservate omologie di sequenza fra il

5' terminale di questo RNA e la corrispondente regione d'altri RNA (Figura 1.12).

Per esempio, il dominio essenziale in cis al 5' dell'RNA4 non contiene elementi di sequenza paragonabili al Box I dell'RNA3, capaci di appaiamento con il terminale al 5'. Tuttavia, sia l'RNA3 che l'RNA4 sono specificamente riconosciuti dalla polimerasi virale (Richards e Tamada, 1992).

Si nota che sequenze essenziali per l'assemblaggio dell'RNA3, nelle particelle virali, sono situate proprio vicino al nt 200. In particolre sui primi 312 residui posti al 5' UTR dell'RNA3 di BNYVV si identificano, nei domini I e II, tre corte sequenze chiamate Box I, II e III che sono rispettivamente complementari ad altre sequenze sul 5' UTR, Box I', II' e III' (Gilmer et al., 1992; Gilmer et al., 1993).

All'estremità 3' esiste un'estesa omologia di sequenza fra gli ultimi 200 residui dell'RNA 3 e 4 (Bouzoubaa *et al.*, 1985) e gli ultimi circa 70 residui dell'RNA2 (Bouzoubaa *et al.*, 1986).

Paragoni fra le sequenze degli RNA hanno evidenziato regioni di forte omologia (Figura 1.13). La regione indicata come A dell'RNA2 è omologa ad un dominio dell'RNA 3 e 4 che è presente anche nell'RNA1. A precedere questa regione, sull'RNA 1 e 2, ci sono due domini E-D e una più lunga regione di omologia F. Le regioni A, D, E ed F cadono nello stesso ordine nell'RNA 1 e 2 ma la spaziatura tra loro varia considerevolmente. C'è anche omologia tra i domini E dell'RNA 1-2 e la porzione del dominio B dell'RNA 3 e 4 così come tra le porzioni dei domini F e C. Questi allineamenti sono di limitata estensione interessando 13 residui per la coppia E/B e dodici residui per la coppia F/C. I domini A, B e C, simili a quelli degli RNA 3 e 4, sono presenti anche nell'RNA5. Il dominio A di tutti i cinque RNA può assumere una struttura secondaria a forcina nella quale i residui sono accomodati in regioni a singolo

filamento o a basi appaiate (Figura 1.14). E' verosimile che questa struttura conservata contenga il segnale, riconosciuto dalla polimerasi virale, per iniziare la sintesi del filamento di RNA negativo (Richards e Tamada, 1992).

1.2.5 Caratterizzazione molecolare del BNYVV

La caratterizzazione molecolare del virus è stata effettuata mediante l'analisi del polimorfismo dei frammenti di restrizione (Restriction fragment

Figura 1.14. Possibile struttura secondaria per il dominio A all'estremità 3' terminale degli RNA 1-4 di BNYVV. I rettangoli indicano posizioni dove vi sono variazioni nella sequenza fra gli RNA.

length polymorphism analysis, RFLP) eseguita sui prodotti della reazione a catena della polimerasi (Polymerase chain reaction, PCR). Kruse *et al.* nel 1994 hanno condotto tale indagine, in regioni del genoma virale importanti nella patogenicità, su diversi isolati virali Europei ed extra Europei classificandoli in due gruppi o tipi denominati A e B.

In Europa il tipo B è stato identificato in alcune aree della Germania, dell'Inghilterra, della Svezia e della Francia mentre il tipo A è risultato presente in Italia, Grecia, Iugoslavia, Slovacchia, Austria, Francia, Belgio, Olanda, Inghilterra. Nei territori di confine sono state riscontrate infezioni miste (Kruse *et al.*, 1994).

I dati disponibili (Bouzoubaa *et al.*, 1985, 1986; Meulewater *et al.*, 1989, Yao *et al.*, 1993; Kruse *et al.*, 1994) suggeriscono che le differenze nucleotidiche, fra il tipo A e il B, sono minime in varie parti del genoma. Le analisi condotte sui quattro RNA dimostrano, infatti, che la loro sequenza nucleotidica risulta identica al 97% (Saito *et al.*, 1996). Nelle sequenze pubblicate approssimativamente 22 nt (corrispondenti al 3,1%) sono differenti nella regione del gene che codifica CP, 71 nt (corrispondenti al 3,7%) sono diversi in TGB e 41 nt (corrispondenti al 2,9%) nell'RNA3; nell'RNA4 la percentuale è qualche volta più bassa, 17 nt (corrispondenti al 1,5%). La maggioranza delle differenze nucleotidiche non porta a sostituzioni aminoacidiche (aa).

Il grado della variazione è basso all'interno di ciascun gruppo, almeno in Europa. Nell'RNA2 (zona TGB), infatti, solo due nt differenziano un isolato francese (F13) da uno tedesco (Rg1) entrambi appartenenti al tipo B. Sequenze identiche sono state trovate nella regione del gene che codifica la CP degli isolati di tipo A provenienti dal Belgio, Cecoslovacchia, ex Jugoslavia. Un isolato, proveniente dall'interno della Mongolia, è invece meno relazionato, l'estremità 5' (nt 95-711) mostra 12 nt di differenza dal tipo A europeo. Le differenze nucleotidiche che compaiono nei virus appartenenti allo stesso gruppo spesso determinano cambiamenti nella sequenza aa. Le differenze aa nella proteina di rivestimento contengono quattro variazioni fra gli isolati europei tipo A e il francese F13 (tipo B), cinque rispetto all'isolato mongolo e tre fra il francese F13 e l'isolato mongolo. Nove dei differenti aa mutati nelle proteine di rivestimento dei tre isolati considerati si trovano in regioni non accessibili agli anticorpi la qual cosa spiega perché non siano state evidenziate differenze sierologiche fra gli isolati di BNYVV (Kruse *et al.*, 1994).

Percentuali di divergenza nucleotidica del 2,2% sono state riportate tra RNA4 di isolati tipo A, provenienti da Germania e Italia, ed isolati di tipo B, provenienti da Germania e Francia, mentre identità di sequenza del 99% sono state rilevate tra gli isolati appartenenti allo stesso gruppo (Koenig *et al.*, 2000).

Per Koenig *et al.*, nel 1995, è stato possibile evidenziare tali variazioni nucleotidiche, tra isolati appartenenti al medesimo tipo, impiegando l'analisi del polimorfismo di conformazione dei prodotti denaturati di RT-PCR (Single strand conformation polymorphism, SSCP), tecnica rivelatasi molto utile per rilevare anche singole differenze genomiche (Orita *et al.*, 1989).

Oltre a mostrare mutazioni in uno o più RNA in isolati dello stesso tipo ed a mettere in luce infezioni miste (A+B) di uno o di tutti gli RNA, è stato possibile identificare isolati che, pur risultando tipo A o B mediante l'RFLP, presentano differenze nucleotidiche tali da richiedere l'instaurare di un nuovo tipo. E' il caso di isolati virali che possiedono un quinto RNA, essi sono stati inizialmente identificati in Giappone, poi in Francia, Cina, Kazakistan e Regno unito. Gli isolati europei con il quinto RNA sono definiti tipo P, mentre quelli asiatici sono definiti tipo J. Il tipo P presenta una corta delezione nella regione 5' UTR e una regione codificante più lunga di 4 codoni, in più 8 residui variabili permettono di discriminare le proteine p26 di tipo P e J (Gilmer *et al.*, 2007).

Analisi delle sequenze nucleotidiche di isolati di tipo A, B e P hanno evidenziato differenze del 4% e 7% del tipo P rispetto alle medesime porzioni dell'RNA 2 di isolati di tipo A e B rispettivamente (Koenig *et al.*, 2000).

Secondo quanto riportato in bibliografia, utilizzando la sequenza completa della regione codificante la CP di BNYVV, è stato rilevato che il tipo P risulta molto più simile al tipo A piuttosto che al tipo B (Rush, 2003).

Tali dati sembrano trovare conferma nell'elevata identità di sequenza rilevata tra gli RNA di alcuni isolati di tipo A e gli isolati di tipo P. Tali isolati, di tipo A, mancando del quinto RNA sono stati denominati P-simili o tipo $P\Delta 5$ e suggeriscono una possibile via evolutiva che da isolati con cinque RNA ha portato, per perdita di un RNA, ad isolati con quattro RNA (Lemaire *et al.*, 2003).

1.3 Virus del mosaico comune della bietola trasmesso da terreno

1.3.1 Aspetti fitopatologici ed epidemiologici

Il virus del mosaico comune della bietola trasmesso dal terreno (*Beet soilborne mosaic virus*, BSBMV) appartiene al genere *Benyvirus* (Koenig e Lesemann, 2005) ed in natura, come il BNYVV, è trasmesso in maniera persistente da *P. betae*.

Il BSBMV, sierologicamente distinto dal BNYVV, è stato identificato per la prima volta in Texas nel 1988, in barbabietole da zucchero che mostravano sintomi simili a quelli della rizomania (Hiedel *et al.*, 1997). Isolati del BSBMV sono stati identificati nelle regioni centrali e settentrionali degli Stati Uniti (California, Colorado, Idaho, Nebraska, Wyoming e Minnesota) ma non è stato identificato nel resto del mondo (Rush e Heidel, 1995).

La sintomatologia del virus è molto variabile (Rush e Heidel, 1995). I sintomi fogliari sono identificati facilmente in campo durante Settembre e Ottobre, e sono più frequenti di quelli provocati da BNYVV, anche se più leggeri. Questi sintomi consistono in una leggera distorsione fogliare, striature e macchie di colore giallo lungo le nervature fogliari che, con il tempo, possono diventare clorotiche (Heidel *et al.*, 1997). A volte si presentano infezioni sistemiche nelle foglie con mosaico o sintomi simili al BNYVV. Non si è ancora in grado di evidenziare se la differenza dei sintomi provocati dal BSBMV in barbabietola da zucchero è causata da interazione con l'ambiente oppure dalla diversità genetica degli isolati virali (Rush e Heidel, 1995). È impossibile identificare visivamente un campo infetto da BSBMV in assenza di sintomi fogliari. Di solito le radici infette non hanno sintomi, anche se in qualche caso si è osservata una sintomatologia tipica della rizomania, senza che venisse identificato il BNYVV (Rush e Heidel, 1995). Le diverse piante di barbabietola riscontrate infette da entrambi i virus sembrano tuttavia suggerire che siano molti i campi con infezioni miste da BNYVV e BSBMV.

1.3.2 Organizzazione molecolare del genoma del BSBMV

Gli isolati di BSBMV contengono quattro specie di RNA a singola catena di senso positivo. I quattro distinti RNA sono stati descritti ed indicati come RNA 1 (6683 nt), RNA 2 (4615 nt), RNA 3 (1720 nt) e RNA 4 (1203 nt). Gli RNA 1 e 2 di differenti isolati sono risultati della stessa dimensione mentre gli RNA 3 e 4 possono variare considerevolmente in lunghezza. Tutti gli RNA possiedono una coda di poly(A) all'estremità 3' e un cappuccio (cap) all'estremità 5'. Inoltre, in tutti gli RNA, sono presenti delle regioni non codificanti (UTR) alle estremità 3' e 5' (Lee *et al.*, 2001).

1.3.2.1 RNA 1

L'RNA1 ha una sequenza completa di 6683 nt esclusa la coda di poly(A). È presente un grande modulo di lettura (ORF) che inizia sul nucleotide 149 e si interrompe sul codone di stop in corrispondenza del nucleotide 6502. Viene formata una singola poliproteina di 239 kDa che contiene tre domini caratteristici (Figura 1.15):

a) Dominio NTP-binding helicase tra gli amminoacidi 944 e 951 (Gly-X-X-Gly-X-Gly-Lys-Ser, dove X rappresenta qualsiasi amminoacido) che si suppone sia coinvolto nello svolgimento della doppia elica durante la replicazione e la traduzione dell'RNA virale (Gorbalenya e Koonin, 1989).

b) Dominio RdRp (Gly-Asp-Asp, il dominio GDD), localizzato al Cterminale dell'ORF tra gli amminoacidi 1939-1941.

c) Dominio metiltrasferasi, localizzato tra gli amminoacidi 220-230,
273-280 e 407-420, che presenta una bassa conservazione di sequenza con il
BNYVV.

1.3.2.2 RNA 2

L'RNA2 del BSBMV ha una lunghezza di 4615 nt esclusa la coda di poly(A). Sono stati identificati 6 ipotetiche ORF, come per l'RNA2 del BNYVV (Figura 1.16). Al 5' terminale è presente la proteina del capside virale (CP) di 21 kDa seguita da un codone di stop ambra UAG che consente la formazione della proteina readthrough (RT) da 74 kDa. Il motivo Tyr (Y), Arg-Phe (RT) e Phe-Glu (FE) tipico delle CPs codificate dai virus bastoncelliformi sono presenti rispettivamente nella regione amminica, centrale e carbossilica della CP codifica dal BSBMV. Nella regione RT è presente un dominio KTER tra i nucleotidi 1803-1814 che è fondamentale per un'efficiente trasmissione con *P. betae*.

Nella regione prossima al 3' della porzione codificante dell'RNA2 sono presenti i motivi tipici delle proteine triple gene block (TGB), rispettivamente di 42 kDa, 13 kDa e 15 kDa, necessari per il movimento del virus (Lee *et al.*, 2001).

Infine è stata identificata una proteina regolatrice di 14 kDa che presenta un dominio ricco di cisteina, implicata nella accumulazione in *cis* dell'RNA2 del BNYVV e nell'accumulazione in *trans* del CP del BSBMV.

Il TGB e la proteina regolatrice ricca di cisteine hanno una percentuale di nucleotidi in comune con il BNYVV rispettivamente del 74%, 81%, 65% e 32% (Lee *et al.*, 2001).

1.3.2.3 RNA 3

La sequenza dell'RNA3 del BSBMV è lunga 1720 nt esclusa la coda di poly(A). È presente un unico modulo di lettura (ORF) dal nucleotide 428 al nucleotide 1201 che codifica per una proteina di 29 kDa (Figura

1.17). Questa proteina ha il 23% degli amminoacidi in comune con ORF da 25 kDa presente sull'RNA3 del BNYVV (Lee *et al.*, 2001).

1.3.2.4 RNA 4

L'RNA4 ha una sequenza completa di 1203 nucleotidi esclusa la coda di poly(A). È presente un unico modulo di lettura (ORF) che codifica per una proteina di 13 kDa (Figura 1.18). L'RNA4 ha solo il 35% dei nucleotidi in

comune con l'RNA4 del BNYVV ma la proteina da 13 kDa prodotta per il 42% degli amminoacidi ha una sequenza uguale alla metà ammino-terminale dell'ORF da 31 kDa presente sull'RNA4 del BNYVV (Lee *et al.*, 2001).

È possibile che le differenze fra i sintomi dei virus BNYVV e BSBMV siano il risultato della bassa somiglianza fra i geni degli RNA 3 e 4, imprescindibili per l'infezione tramite *P.betae* e strettamente relazionati con i sintomi fogliari e con la proliferazione delle radici (Lee *et al.*, 2001).

1.4 Confronto BNYVV e BSBMV

Studi di interazione fra BNYVV e BSBMV, eseguiti con inoculi meccanici su barbabietola da zucchero, hanno dimostrato l'alto grado di protezione reciproca, che si presenta solitamente fra le varietà virali strettamente imparentate (Mahmood *et al.*, 1999). Tuttavia è stato dimostrato che le fonti di resistenza al BNYVV, quale l'allele di Rz, non forniscono resistenza a BSBMV

il che suggerisce, probabilmente, un diverso meccanismo di riconoscimento del virus da parte della piante di barbabietola (Lee *et al.*, 2001; Wisler *et al.*, 2003).

	BSBMV	BNYVV	Omologia
	DSDIVIV		sequenza
RNA 1	6683	6746	76,8%
RNA 2	4615	4609	67%
RNA 3	1720	1774	60%
RNA 4	1203	1465	35%
RNA 5		1342	0%
Tabella 1.5. Omologia di sequenza tra gli RNA di BSBMV e BNYVV.			

Gli RNA1 e 2 del BSBMV e BNYVV hanno un'omologia di sequenza pari, rispettivamente, al 92% e 81% sulla regione non codificante posta al 5' terminale (5' UTR) e 66% e 67% sulla regione 3' UTR. Le omologie di sequenza più basse sono ripartite rispettivamente fra le regioni 5' UTR del BSBMV e BNYVV RNA3 e RNA4 (38% e 50% rispettivamente) al contrario le regioni 3' UTR delle sequenze di tali RNA mostrano un'omologia pari al 79% e 64% (Lee *et al.*, 2001) (Tabella 1.5). Come si può vedere dalla tabella 1.6 anche le sequenze amminoacidiche dei diversi ORF sono molto conservate tra il BSBMV e il BNYVV. Sull'RNA1, l'80% e il 92% delle sequenze amminoacidiche della RdRp e del dominio metiltrasferasi è conservata tra BSBMV e BNYVV. Gli

	ORF	Omologia
DNA 1	MeT/H	80%
KNA I	RdRp	92%
	CP 21k	56%
	RT 75k	56%
	TGB 1 42k	74%
KNA 2	TGB 2 13k	81%
	TGB 3 15k	65%
	Cys-R 14k	32%
RNA 3		23%
RNA 4		42%
Tabella 1.6. Percentuale di omologia tra gli amminoacidi delle proteine codificate dagli RNA di BSBMV e BNYVV.		

ORF dell'RNA2 di BSBMV hanno in comune il 56% delle sequenze amminoacidiche con gli analoghi ORF dell'RNA2 del BNYVV (Tabella 1.6).

1.4.1 Studio della "cross-protection" fra BSBMV e BNYVV

La protezione incrociata ("cross-protection") è il temine generalmente utilizzato quando l'infezione di un virus protegge da una seconda infezione di un altro virus o ne riduce lo sviluppo dei sintomi. Anche se questo termine è riservato all'interazione fra due ceppi della stessa specie virale, lo stesso tipo di protezione o interferenza può essere osservata tra virus differenti, anche se con meccanismi possono essere totalmente diversi (Rush, 2003).

La "cross-protection" consiste in una duplice infezione o meglio in una pre-infezione da parte di un virus che interferisce con la superinfezione di un secondo virus correlato. Questa metodologia è utilizzata, in alcuni casi, nei metodi di controllo biologico per proteggere la pianta dalle infezioni virali ma è anche impiegata come strumento di studio delle relazioni che intercorrono fra diversi virus e tra i virus e la pianta ospite. Questa tecnica è infatti utilizzata in larga scala per il controllo del virus del mosaico del tabacco (*Tobacco mosaic virus*, TMV) su pomodoro, della Papaya ringspot disease in papaya e del virus della tristeza degli agrumi (*Citrus tristeza virus*, CTV) in alcune specie del genere *Citrus*. Il punto chiave dell'applicazione di questa tecnica onsiste nell'impiego di un ceppo attenuato di un virus strettamente correlato a quello da controllare che non causi danno e determini un alto grado di protezione (Mahmood e Rush, 1999).

Diversi studi sono stati fatti sulla protezione incrociata dei virus trasmessi attraverso il terreno alla barbabietola da zucchero. Prillwitz e Schlosser (1993) hanno dimostrato che la preinfezione da parte di BSBV, che presenta una temperatura ottimale di crescita più bassa rispetto a BNYVV, riduce il titolo virale, l'incidenza e la severità dei sintomi sviluppati in bietola a seguito dell'inoculazione con BNYVV. A causa della sua elevata somiglianza a BNYVV il BSBMV è risultato il candidato ideale per studi di "cross-protection". Mahmood e Rush (1999) hanno riportato studi sull'efficacia, in condizioni di serra, del BSBMV come agente di protezione incrociata nei confronti di BNYVV. Da questa ricerca, effettuando gli inoculi secondo il metodo descritto da Koenig e Stein (1990), risulta che la protezione incrociata data da BSBMV su BNYVV è già evidente anche dopo un breve intervallo fra i due inoculi, nonostante molte piante presentano elevate concentrazioni di BNYVV, se invece l'intervallo fra i due inoculi cresce aumenta anche l'incidenza della "crossprotection", che può essere ritenuta completa con un intervallo di 5/10 giorni, periodo in cui si ha la massima concentrazione di BSBMV nelle piante. Per quel che riguarda la protezione data da BNYVV nei confronti di BSBMV questa è più evidente nelle piante inoculate con BSBMV dopo 15 giorni dall'inoculo con BNYVV, ma l'effetto persiste per 30 giorni. La funzionalità della "crossprotection" in questi studi sembra perciò dipendere dall'intervallo in cui questi esperimenti vengono svolti suggerendo la necessità di un tempo minimo, di almeno di 5 giorni fra i due inoculi necessario perchè questa reazione di protezione abbia luogo (Mahmood e Rush, 1999).

Generalmente la "cross-protection" è studiata mediante inoculi meccanici e, solo occasionalmente, è stato inoculato il virus da cui proteggere la pianta con il vettore naturale. In particolare l'inoculo meccanico di BNYVV e BSBMV per sfregamento fogliare ha fornito risultati insoddisfacenti, come l'inoculo mediante il vettore *P. betae*, risultato difficile da impiegare in questi tipi di indagini (Mahmood e Rush, 1999).

Studi successivi hanno evidenziato, nelle piante protette, la presenza degli RNA di BNYVV mediante RT-PCR, ma adeguati saggi sierologici non hanno permesso di rilevare i corrispondenti prodotti proteici. Questo suggerisce che BNYVV non è in grado di replicarsi efficientemente nelle piante protette e che il meccanismo di protezione interferisce con la sintesi della proteina capsidica di BNYVV (Rush, 2003).

Ulteriori studi hanno dimostrato inoltre che, su terreno infetto da BSBMV, in assenza di BNYVV, il virus può infettare un alto numero di piante suscettibili o resistenti a BNYVV. In assenza di BSBMV, il BNYVV raggiunge alte concentrazioni nelle piante suscettibili e basse concentrazioni in quelle resistenti. Quando i due suoli sono mescolati BSBMV non raggiunge mai titoli alti nelle piante suscettibili e resistenti suggerendo che BNYVV può sopprimere BSBMV in infezione mista (Rush, 2003; Wisler *et al.* 2003).

Questi risultati sono in contrasto con quelli ottenuti in precedenza, ma questa discordanza è spiegabile considerando le differenti condizioni in cui sono stati ottenuti, gli studi di Mahmood e Rush (1999) sono state infatti eseguiti su giovani piante infettate meccanicamente con inoculo liquido ottenendo facilmente una infezione di tipo sistemico. Gli studi di Wisler et al. (2003) prevedevano invece inoculi realizzati per mezzo di P. betae, condizioni in cui raramente il virus si muove in maniera sistemica. Nel primo caso inoltre il primo virus inoculato, una volta insediato, è in grado di interferire sullo sviluppo del secondo inoculato, il livello di protezione aumenta perciò con l'aumentare dell'intervallo di tempo fra i due inoculi; nel secondo caso, con infezione naturale, entrambi i virus possono infettare la pianta ma, nella maggior parte dei casi, nessuno riesce ad infettarla in modo sistemico. Il virus in concentrazione maggiore colonizzerà perciò più velocemente la radice e con maggiore incidenza, in altre parole il primo virus che infetta l'apparato radicale ha maggiori probabilità di predominare in funzione delle condizioni ambientali e dalla densità di inoculo delle due popolazioni virulifere di P. betae. BSBMV e BSBV presentano infatti soglie minime di temperatura più basse di BNYVV che mostra infettività ridotta sotto i 20 °C. Ne consegue una maggiore infezione da parte di P. betae infetta da BSBMV o BSBV se la temperatura è sotto i 20°C e da BNYVV se la temperatura è maggiore ai 25 °C. In conclusione risulta perciò molto importante il momento in cui si inoculano le piante con P. betae, la densità di inoculo e la temperatura del suolo (Rush, 2003).

1.5 Scopo della ricerca

Lo scopo principale della nostra ricerca è stato quello di allestire e studiare un sistema modello, per i virus trasmessi in maniera persistente attraverso il terreno dal genere *Polymyxa*, che consenta di studiare le interazioni ospite/patogeno, coinvolte nell'espressione di resistenza, che possano fungere da base per meccanismi di induzione di resistenza.

A questo scopo sono stati presi in considerazione il BSBMV e il BNYVV in quanto strettamente correlati, ma sierologicamente distinti che rappresentarano un ottimo sistema per studiare il fenomeno della "cross-protection" (Mahmood and Rush, 1999). Sono stati ottenuti cloni infettivi cDNA degli RNA virali di un isolato di BSBMV proveniente dal Colorado (USA, gentilmente fornitoci dal Prof. C. Rush) e di un isolato di BNYVV tipo P proveniente dalla località di Pithivier (Francia, gentilmente fornitici dal Prof. D. Gilmer), i quali sono stati utilizzati come strumento per approfondire lo studio dell'interazione tra la pianta e il virus.

CAPITOLO 2

MATERIALI E METODI

2.1 Materiale vegetale

Campioni di terreno infetto da BSBMV sono stati gentilmente forniti dal Prof. C. Rush (University of Texas - USA). Il terreno è stato miscelato a sabbia sterile in rapporto 1/2, terreno/sabbia, collocato in vasi sterili del diametro di 13 cm ed utilizzato come substrato per la crescita di piante di barbabietola da zucchero (*Beta vulgaris* cv. Portland). Le piantine sono state allevate in ambiente controllato a 22 ± 1 °C, 3.000 lux e 16 ore di fotoperiodo, per un periodo di 45 giorni.

Piante di *Beta macrocarpa*, *Chenopodim quinoa* e *Tetragonia expansa* dopo essere state inoculate meccanicamente con estratti vegetali (porzioni di piante infette da BSBMV macinate in un tampone costituito da Macaloide 0,04% e KH₂PO₄ 0,05 M.), purificazioni di RNA virali o miscele di RNA trascritti da cloni cDNA, sono state allevate in cella climatica a 24 °C con illuminazione di 3.000 lux e fotoperiodo di 16 ore.

2.2 Tecniche molecolari

2.2.1 Estrazione degli ssRNA dai tessuti vegetali

L'estrazione degli RNA a singolo filamento è stata effettuata dalle radici di *B. vulgaris* e dalle foglie di *B. macocarpa*, *C. quinoa* e *T. expansa* utilizzando diversi protocolli.

2.2.1.1 Estrazione con CTAB

Il metodo si basa sull'uso del detergente CTAB (bromuro di esadeciltrimetilammonio) proposto da Chang *et al.* (1993). Il CTAB in presenza di alte temperature (circa 60°C) ed elevate concentrazioni saline si lega agli acidi nucleici formando un complesso stabile e solubile in acqua.

Per ogni estrazione è stato usato un campione di circa 200 mg di foglie o radici con il seguente protocollo:

1) posizionare circa 200 mg di materiale vegetale all'interno di buste di polietilene (16x10 cm) e congelarle in azoto liquido per qualche minuto. Con un piccolo rullo manuale macinare il tessuto fino a produrre una "pasta omogenea".

2) aggiungere 1 ml (10 volte il volume iniziale) di tampone di estrazione.

3) raccogliere 700 μ l della miscela in un tubo Eppendorf da 1,5 ml e incubare per 15 minuti a 65 °C per denaturare proteine e lipidi.

4) dopo l'incubazione addizionare alla miscela 700 μ l di cloroformio:alcool isoamilico (24:1) e miscelare con agitatore fino ad ottenere un'emulsione omogenea.

5) centrifugare i campioni a 13.000 g per 15 minuti a 4 °C, in centrifuga Beckman Allegra 21R usata in tutti i nostri esperimenti, per separare la fase acquosa, dove si raccolgono gli acidi nucleici, dal solvente, la fase organica, dove si raccolgono proteine e polisaccaridi sia del virus che della pianta.

6) prelevare la fase liquida superiore e posizionarla in un nuovo tubo Eppendorf da 1,5 ml.

7) aggiungere 700 μ l di cloroformio:alcool isoamilico (24:1) e miscelare.

8) prelevare la fase liquida superiore e posizionarla in un nuovo tubo Eppendorf da 1,5 ml.

9) centrifugare i campioni a 13.000 g per 15 minuti a 4 °C.

10) aggiungere un ugual volume di LiCl 4M. Miscelare invertendo il tubo Eppendorf 3 o 4 volte ed incubare a 4 °C per tutta la notte.

11) centrifugare a 13.000 g per 30 minuti a 4 °C.

12) eliminare la fase liquida e risospendere il sedimento (pellet) in 200 μ l di tampone TE contenente 1% SDS (sodio dodecil solfato), per rimuovere proteine e polisaccaridi residui.

13) aggiungere 100 μ l di NaCl 5M e 300 μ l di isopropanolo freddo, miscelare invertendo il tubo 3 o 4 volte. Si può ottimizzare questa fase collocando il campione per 60 minuti a -20 °C.

14) centrifugare per 15 minuti a 13.000 g a 4 °C.

15) eliminare la fase liquida e lavare il pellet con 500 μ l di etanolo al 70% e centrifugare a 4 °C per 15 minuti.

16) eliminare la fase liquida e favorire l'evaporazione dell'etanolo residuo con una pompa a vuoto per circa 10 - 15 minuti.

17) risospendere il sedimento in 100 μ l di acqua distillata sterile trattata con DEPC (dietilpirocarbonato; Sigma-Aldrich) e conservare i campioni a -20 °C.

Di seguito si riportano i tamponi usati per questa estrazione:
Tampone TE:

10 mM Tris-HCl, pH 8,0.

1 mM EDTA.

Tampone di estrazione:

2% CTAB (Hexadecyl trimethyl-ammonium bromide). 100 mM TRIS-HCl, pH 8,0. 20 mM EDTA. 1,4 M NaCl. 1,0% Na solfito. 2,0% PVP-40.

Gli ultimi due composti vanno aggiunti al tampone "stock", contenente i primi quattro reagenti, immediatamente prima dell'uso. Il tampone risultante può essere mantenuto a temperatura ambiente e usato nel giro di due settimane. Il tampone "stock" può essere autoclavato e mantenuto a temperatura ambiente.

2.2.1.2 Estrazione con Trizol

Circa 100 mg di tessuto radicale o fogliare di piante infette sono stati posti in un tubo Eppendorf da 1,5 ml.

1) aggiungere 1 ml di reagente Trizol (Invitrogen ®) e macinare le foglie con un pestello sterile direttamente in tubo Eppendorf.

- 2) incubare a temperatura ambiente per circa 5 minuti.
- 3) aggiungere 200 µl di cloroformio per ml di Trizol e miscelare la soluzione.
- 4) incubare 2 3 minuti a temperatura ambiente.
- 5) dopo l'incubazione centrifugare a 12.000 r.c.f per 10 minuti a 4°C.

6) recuperare la fase acquosa, passarla in un nuovo tubo Eppendof da 1,5 ml e aggiungere 0,5 ml di isopropanolo per ml di Trizol.

7) eseguire un'incubazione di 10 minuti a temperatura ambiente e centrifugare a 12.000 r.c.f per 10 minuti a 4°C.

8) eliminare la fase acquosa e lavare il pellet con 1 ml di etanolo al 70% per ml di Trizol e centrifugare a 7.500 r.c.f per 5 minuti a 4 °C.

9) rimuovere la fase liquida e asciugare il pellet, dai residui di etanolo, sottovuoto per circa 10 - 15 minuti, a seconda delle dimensioni.

10) risospendere il pellet in 20 μ l di acqua distillata sterile trattata con DECP (dietilpirocarbonato) e mantenere l'estratto a -20 °C.

2.2.1.3 Estrazione con "Polysome buffer"

Circa 200 mg di radici o foglie di piante infette sono state poste all'interno di buste di polietilene (16x10 cm), congelate in azoto liquido e macinate con un rullo manuale fino ad ottenere una pasta omogenea.

 aggiungere 0,5 ml di "Polysome buffer" avente la seguente composizione: 100 mM Tris - HCl pH 8,5
200 mM KCl
25 mM EGTA
36 mM MgCl2
1% Detergent Mix
1% PTE
2% DOC
5mM DTT
1mM PMSF
50 µg/ml Cyclohexamide
50 µg/ml Chloramfenicol
1 mg/ml Heparina

2) omogeneizzare e raccogliere in tubo Eppendorf da 1,5 ml, aggiungere 500 μ l di fenolo.

3) centrifugare a 14.000 r.p.m. per 10 minuti a 4 °C.

4) prelevare 500 μl della fase acquosa, passarli in un nuovo tubo Eppendorf da 1,5 ml e aggiungere 1 volume di fenolo:cloroformio:alcool isoamilico in rapporto 25:24:1 con pH 4,5 (Fluka).

5) centrifugare a 14.000 r.p.m per 15 minuti a 4 °C.

6) prelevare la fase acquosa e passarla in nuovo tubo Eppendorf da 1,5 ml, aggiungere 0,6 volumi di isopropanolo e 4 μ l di sodio acetato 3 M pH 6 per 100 μ l di liquido.

7) porre il campione a -20° C per almeno 10 minuti.

 recuperare gli ssRNA tramite centrifugazione a 14.000 r.p.m. a 4 °C per 20 minuti. 9) eliminare la fase liquida e risospendere il pellet in 100 μ l di sodio acetato 3 M pH 5-6, per rimuovere gli RNA a basso peso molecolare ed eventuali polisaccaridi contaminanti. Quest'ultimo passaggio deve essere eseguito in ghiaccio.

10) incubare i campioni a -20 °C 10 minuti.

11) centrifugare a 14.000 r.p.m. a 4 °C per 15 minuti.

12) eliminare la fase acquosa, lavare il pellet con 500 μ l di etanolo al 70% e centrifugare a 14.000 r.p.m. per 5 minuti a 4 °C.

13) Rimuovere la fase liquida e asciugare il pellet, dai residui di etanolo, sottovuoto per circa 10 - 15 minuti, a seconda delle dimensioni.

14) Risospendere il sedimento ottenuto in 50 μ l di acqua distillata sterile trattata con DECP e mantenerlo a -20 °C.

2.2.1.4 Estrazione con tampone TM

L'estrazione è stata eseguita secondo il protocollo TM descritto da Jupin *et al.* (1990):

 omogeneizzare il tessuto con 5 ml/g di tampone TM (100 mM Tris - HCl, 10 mM MgCl₂, pH 7,5) ed incubare a 37 °C per 30 minuti.

2) centrifugare a 12.000 g per 5 minuti a 4 °C, per eliminare i detriti più grossolani, recuperare la fase acquosa e porla in un nuovo tubo Eppendorf da 1,5 ml.

3) aggiungere un ugual volume di fenolo saturato con TE, miscelare con agitatore e centrifugare a 12.000 g per 15 minuti a 4 °C.

4) prelevare la fase acquosa porla in un nuovo tubo Eppendorf da 1,5 ml e aggiungere 1/10 del volume di sodio acetato 3M pH 8,0 e 2,5 volumi di etanolo assoluto.

5) incubare a -20° C per 1 h.

6) centrifugare per 15 minuti a 12.000 g a 4 °C.

7) eliminare la fase liquida, lavare il pellet con 500 μ l di etanolo 70% e centrifugare a 12.000 g a 4 °C per 15 minuti.

8) eliminare la fase liquida e favorire l'evaporazione dell'etanolo residuo con una pompa da vuoto per circa 10 - 15 minuti.

9) risospendere il sedimento in 100 μ l di acqua distillata sterile trattata con DEPC (dietilpirocarbonato) e conservare i campioni a -20 °C.

2.2.2 Reazione di trascrittasi inversa (RT) abbinata alla reazione a catena della polimerasi (PCR)

Nella reazione di trascrizione inversa (reverse transcriptase, RT) per la sintesi del filamento di DNA complementare (cDNA), sono stati utilizzati 1 μ l di RNA dell'estrazione precedente portati ad un volume finale di 5 μ l aggiungendo i seguenti componenti:

Reverse primer (10 nm/ml)	1,0 µl
SDW (acqua distillata sterile + DECP)	3,0 µl

La sospensione è stata sottoposta ad un ciclo di 70 °C per 5 minuti e il tutto è stato raffreddato in ghiaccio.

In seguito sono stati aggiunti:

Buffer ImProm-II (5X; Promega)	4,0 µl
MgCl ₂ (25mM; Promega)	1,2 µl
Miscela dNTPs (10 mM; Promega)	1,0 µl
DTT (0,1 µM)	1,0 µl
Rnasi inhibitor (40u/µl; Promega)	0,5 µl
RT ImProm – II (Promega)	1,0 µl
SDW (acqua distillata sterile + DECP)	7,5 µl

La mix è stata posta per:

- 5 minuti a 25 °C
- 1 ora a 42 °C
- 15 minuti a 70 °C

Alla fine della reazione sono stati aggiunti 30 μ l di acqua distillata sterile trattata con DEPC e in seguito 5 μ l dei diversi campioni sono stati sottoposti alla reazione a catena della polimerasi (polymerase chain reaction, PCR) in tubi Thermostrip 0,2 ml (AB GENE). Le reazioni di PCR sono state effettuate con due tipi di polimerasi differenti, per un volume finale di 25 μ l:

PCR con Pfu Ultra II Fusion HS DNA Polymerase (Stratagene):

SDW (acqua distillata sterile + DECP)	14,35 µl
Pfu Ultra II reaction buffer (10X)	2,50 µl

Miscela dNTPs (10 mM; Promega)	0,70 µl
"Forward" primer (10 nm/ml; Sigma-Aldrich)	1,00 µl
"Reverse" primer (10 nm/ml; Sigma-Aldrich)	1,00 µl
Pfu Ultra II Fusion HS DNA Polymerase	0,45 μl

I campioni sono stati amplificati in Thermocycler Biometra T3000, utilizzato per tutti i nostri esperimenti, programmato come segue:

- fase di denaturazione: 20 secondi a 95 °C
- fase di ibridazione degli oligodeossinucleotidi (annealing): 20 secondi a 37° C per i primi 5 cicli, mentre i successivi 35 sono stati effettuati a 62 °C.
- fase di sintesi: a 72 °C per 8 minuti.

Per un totale di 40 cicli.

PCR con FideliTaq PCR Master Mix (Fermentas):

FideliTaq PCR Master Mix (2X)	12,5 µl
"Forward" primer (10 nm/ml; Sigma-Aldrich)	1,0 µl
"Reverse" primer (10 nm/ml; Sigma-Aldrich)	1,0 µl
SDW (acqua distillata sterile + DECP)	5,5 µl

I campioni sono stati amplificati in Thermocycler Biometra T3000 programmato come segue:

- fase di denaturazione: 15 secondi a 94 °C
- fase di ibridazione: 15 secondi a 37 °C per i primi 5 cicli, mentre i successivi 25 sono stati effettuati a 54 °C.

- fase di sintesi: a 72° C con tempo variabile tra i 2 minuti a 4,5 minuti.

Per un totale di 30 cicli.

2.2.3 Protocollo di RT-PCR multiplex per la diagnosi e caratterizzazione di BNYVV, *Polymyxa betae*, BSBV, BVQ, e BSBMV

La determinazione delle infezioni virali è stata effettuata mediante indagine RT-PCR multiplex, questo protocollo permette oltre alla diagnosi e caratterizzazione del BNYVV, l'identificazione del vettore (*Polymyxa betae*) e dei virus BSBV, BVQ e BSBMV (Figura 2.1 e Tabella 2.1) (Ratti *et al.*, 2005). Nella reazione di trascrizione inversa sono stati utilizzati 0,5 μ l di RNA dell'estrazione precedente portati ad un volume finale di 5 μ l aggiungendo i seguenti componenti:

M-MLV RT buffer (5X; Promega)	1,00 µl
Miscela dNTPs (10 mM)	0,50 µl
Random primer (0,5 μ g/ μ l; Roche)	1,00 µl
M-MLV RT (200 U/µl; Promega)	0,25 µl
SDW (acqua distillata sterile + DECP)	1,75 µl

La sospensione è stata sottoposta a:

- 37 °C per 1 ora
- 94 °C per 5 minuti.

Una volta completata la reazione RT i campioni sono stati sottoposti alla reazione di PCR.

Coppia di primers	Regione dell'RNA (nt)	Dimensioni del frammento (bp)
RhizoTGB F / RhizoTGB R	1177 - 1847 ¹	670
RhizoA F / RhizoA R	1444 - 1767 ¹	324
RhizoB F / RhizoB R	$1405 - 1582^2$	178
Rhizo5 F / Rhizo5 R	156 - 748 ³	593
P.beta F / P.beta R	367 - 628 ⁴	261
BSBV2 F / BSBV2 R	439 - 895 ⁵	456
BVQ3 F / BVQ3 R	921 - 1442 ⁶	521
BSBMV2 R / BSBMV2 F	$947 - 1642^7$	695

Tabella 2.1. Primers usati per caratterizzare gli isolati di BNYVV, *P. Betae*, BSBV, BVQ e BSBMV. ¹Relativa alla sequenza X77574. ²Relativo alla sequenza X77575. ³Relativa alla sequenza AB0186. ⁴Relativa alla sequenza Y12825. ⁵Relativa alla sequenza U64512. ⁶Relativa alla sequenza AJ223598. ⁷Relativa alla sequenza AF061869.

Ai 5 μ l ottenuti dalla reazione di trascrittasi inversa è stata aggiunta la miscela di PCR preparata nel seguente modo:

Free Mg buffer (5X; Promega)	5,00 µl
MgCl ₂ (25 mM; Promega)	3,00 µl
Miscela dNTPs (10 mM; Promega)	0,50 µl
RhizoA F primer (5 nm/ml; Sigma-Aldrich)	0,40 µl
RhizoA R primer (5 nm/ml; Sigma-Aldrich)	0,40 µl

RhizoB F primer (5 nm/ml; Sigma-Aldrich)	0,50 µl
RhizoB R primer (5 nm/ml; Sigma-Aldrich)	0,50 µl
Rhizo5 F primer (5 nm/ml; Sigma-Aldrich)	0,40 µl
Rhizo5 R primer (5 nm/ml; Sigma-Aldrich)	0,40 µl
P.beta F primer (5 nm/ml; Sigma-Aldrich)	1,00 µl
P.beta R primer (5 nm/ml; Sigma-Aldrich)	1,00 µl
BSBV2 F primer (5 nm/ml; Sigma-Aldrich)	0,50 µl
BSBV2 R primer (5 nm/ml; Sigma-Aldrich)	0,50 µl
BVQ3 F primer (5 nm/ml; Sigma-Aldrich)	0,50 µl
BVQ3 R primer (5 nm/ml; Sigma-Aldrich)	0,50 µl
BSBMV2 F primer (5 nm/ml; Sigma-Aldrich)	0,50 µl
BSBMV2 R primer (5 nm/ml; Sigma-Aldrich)	0,50 µl
Go-Taq polimerasi (5 U/µl; Promega)	0,25 µl
SDW (acqua distillata sterile + DECP)	4,65 µl

un tipico profilo ottenuto con una reazione RT-PCR multiplex. 100 bp DNA ladder Promega.

La reazione è stata effettuata in un Thermocycler Biometra T3000 programmato come segue:

- fase di denaturazione: 5 minuti a 94 °C

Seguono 40 cicli ognuno dei quali composto da tre fasi:

- fase di denaturazione: 40 secondi a 94 °C
- fase di ibridazione: 35 secondi a 56 °C

- fase di sintesi: 40 secondi a 72 °C.

2.2.4 Estrazione della banda elettroforetica

Dopo aver eseguito una corsa elettroforetica su gel di agarosio i prodotti specifici di RT-PCR (primer specifici riportati in appendice A) sono stati estratti tagliando le porzioni di gel e purificandole mediante il kit Wizard SV gel and PCR clean-up system (Promega) seguendo il protocollo suggerito dalla casa produttrice:

- aggiungere 10 μl di Membrane Binding Solution per 10 mg di gel e miscelare con agitatore il campione.
- incubare il tubo Eppendorf a 60 °C e sciogliere completamente il gel.
- trasferire la soluzione su una colonna Wizard SV minicolum.
- incubare 1 minuto a temperatura ambiente.
- centrifugare a 14.000 g per 1 minuto e aggiungere 700 μl di Membrane Wash Solution.
- centrifugare a 14.000 g per 1 minuto e aggiungere 500 μl di Membrane Wash Solution.
- eluire il DNA con acqua distillata sterile trattata con DECP in un tubo Eppendorf sterile da 1,5 ml.

2.2.5 Purificazione DNA

La fase acquosa contenente il DNA d'interesse è stata portata ad un volume finale di 400 μ l con acqua distillata sterile trattata con DECP, successivamente è stato seguito il seguente protocollo:

- aggiungere 400 µl di fenolo:cloroformio:alcool isoamilico (in rapporto 25:24:1 con pH 4,5 (Fluka) e miscelare la soluzione con agitatore.
- centrifugare per 15 minuti a 14.000 g a temperatura ambiente.
- prelevare la fase acquosa (circa 400 μl) e passarla in un nuovo tubo Eppendorf sterile da 1,5 ml e aggiungere:

16 µl di NaCl 5M

1 μl di glicogeno (10 mg/ml)

2 volumi di EtOH 100% freddo

- posizionare il tubo Eppendorf per 10 minuti a -20°C.
- centrifugare per 20 minuti a 14.000 r.p.m. a 4 °C.
- eliminare la fase acquosa, lavare il pellet con 500 μl di EtOH al 70% e centrifugare per 4 minuti a 14.000 g a 4 °C.
- eliminare la fase acquosa, asciugare il pellet, dai residui di etanolo, sottovuoto e risospenderlo con 20 μ l di H₂O distillata sterile trattata con DEPC.

2.2.6 Procedura di "A-tailing"

Al fine di consentire l'inserimento nel plasmide pGEM-T easy (Promega) dei prodotti di PCR "Blunt-Ended", sintetizzati dalla DNA polimerasi ad alta fedeltà con attività "proofreading", è stato necessario effettuare la procedura di A-tailing per aggiungere un nucleotide dATP all'estremità 5'. La reazione è stata effettuata in un volume finale di 10 μ l utilizzando la seguente miscela:

Taq polimerasi Buffer (5X; Promega)	2,0 µl
DNA purificato	6,8 µl
dATP (10 mM; Promega)	0,2 µl
Go-Taq polimerasi (5 U/µl; Promega)	1,0 µl

La miscela è stata incubata per 30 minuti a 70 °C.

2.3 Clonaggio dei prodotti di PCR

2.3.1 Preparazione delle cellule di Escherichia Coli per elettroporazione

Una sospensione di cellule di *Escherichia coli* (10 μ l) conservate a -80 °C in glicerolo al 50% è stata allevata over night a 37 °C in agitazione in una beuta con 10 ml di LB broth sterile.

La mattina seguente è stato prelevato 1 ml della coltura overnight ed è stato aggiunto in una beuta contenente 250 ml di mezzo liquido LB sterile. Si è proceduto secondo il seguente protocollo:

 allevare a 37°C in agitazione fino al raggiungimento di un'assorbanza, a 600 nm, pari a 0,6.

2) trasferire il tutto in tubi falcon da 50 ml e centrifugare a 2600 r.p.m. per 15 minuti a 4 °C.

3) risospendere gentilmente il pellet con 50 ml di acqua ultrapura sterile (MilliQ) per ogni tubo falcon e centrifugare a 2600 r.p.m. per 15 minuti.

4) ripetere questa operazione altre 2 volte aumentando però la velocità della centrifuga a 5000 r.p.m. e 7500 r.p.m. rispettivamente, e raccogliere la sospensione in un unico tubo falcon.

5) risospendere il pellet in un volume finale di 2 ml di glicerolo al 10% e costituire aliquote da 100 μ l ognuna e congelare a -80 °C.

Prima dell'uso le cellule sono state rimosse dal congelatore e lasciate 10 minuti in ghiaccio. Prima di prelevarne la quantità desiderata i tubi sono stati invertiti delicatamente alcune volte.

2.3.2 Reazione di ligasi

Le reazioni di ligasi sono state effettuate utilizzando diversi protocolli.

2.3.2.1 Ligasi con kit pGEM-T Easy Vector System (Promega)

Al prodotto di PCR che si vuole clonare sono stati aggiunti 20 µl di cloroformio. La miscela è stata centrifugata a 14.000 r.p.m. per 10 minuti a temperatura ambiente e è stata prelevata la fase acquosa eliminando il cloroformio.

Di tale fase acquosa, contente il prodotto di PCR, 5,5 µl sono stati impiegati per la reazione di ligasi con il kit pGEM-T Easy

Vector System (Promega) (Figura 2.2) che coinvolge i seguenti reagenti:

T4 DNA ligasi buffer (2X)	7,5 μl
Vettore pGEM-T Easy (50 ng/µl)	1,0 µl
Prodotto di PCR	5,5 µl
T4 DNA ligasi (3 U/µl)	1,0 µl

Questa miscela è stata incubata per almeno 1 ora a temperatura ambiente o tutta la notte a 4 °C.

2.3.2.2 Ligasi con kit Rapid DNA ligation (Fermentas)

Per inserire frammenti di acidi nucleici nel plasmide pUC19 (Clontech, PA, USA) è stato seguito il protocollo del kit Rapid DNA ligation (Fermentas) che coinvolge i seguenti reagenti:

Rapid Ligation Buffer (5X)	3,0 µl
Vettore pUC19 (50 ng/µl)	1,0 µl
T4 DNA ligasi (5 U/μl)	1,0 µl
DNA	4,0 µl
SDW (acqua distillata sterile + DEPC)	6,0 µl

Il volume totale di 15 μ l così ottenuto è stato incubato per almeno 1 ora a temperatura ambiente.

2.3.3 Trasformazione mediante elettroporazione delle cellule di E. coli

Dopo la reazione di ligasi, il volume di 15 μ l è stato purificato seguendo il protocollo riportato nel paragrafo 2.2.5, ma nell'ultima fase dopo avere asciugato il pellet dai residui di etanolo questo è stato risospeso in un volume di 3 μ l. Di questi, 1,5 μ l sono stati usati per la trasformazione e i restanti 1,5 μ l sono stati conservati a -20°C.

Fasi per eseguire la trasformazione:

1) pulire le cuvette con H_2O distillata, asciugarle e mantenerle in ghiaccio fino al momento dell'uso.

posizionare in un tubo Eppendorf 1,5 μl del prodotto di ligasi purificato e
30 μl di cellule *E. coli*. Miscelare il tutto con una pipetta.

3) trasformare le cellule *E. coli* con elettroporatore (Electroporator 2510, Eppendorf) ad una potenza di 2500V.

4) sotto cappa sterile, aggiungere 500 μ l di LB liquido e miscelare la soluzione.

5) incubare a 37 °C per 30 minuti.

6) inoculare tutta la coltura liquida su una piastra Petri contenente un mezzo LB addizionato di 35 g di agar per litro + ampicillina (100 μ g/ml), IPTG (isopropyl- β -D-thiogalactopyranoside; 0,5 mM) e X-Gal (5-bromo-4-chloro-3-indolyl- β -D-galactoside; 80 μ g/ml). Il mezzo LB agarizzato è stato sterilizzato in autoclave e raffreddato a 50 °C prima di aggiungere ampicillina, IPTG e X-

Gal. In seguito, sono stati versati 20-25 ml di mezzo in piastre Petri del diametro di 85 mm.

7) incubare le piastre a 37 °C per tutta la notte.

Per quel che riguarda pGEM-T Easy inizialmente il plasmide è interrotto a livello del gene LacZ che codifica per la β -galattossidasi, necessaria per scindere l'X-Gal presente nel terreno di crescita. Se il prodotto di PCR è incorporato nel plasmide il gene LacZ rimane interrotto, il substrato X-gal non viene scisso, conferendo alle colonie batteriche un caratteristico colore bianco. Se la trasformazione non ha avuto successo, l'inserto non è stato cioè incorporato, il gene LacZ codifica per l'enzima specifico necessario per il metabolismo dell'X-Gal, che viene scisso determinando la colorazione blu delle colonie. Quindi durante il periodo di incubazione O/N le cellule batteriche crescono assumendo una colorazione blu (non trasformate) o bianca (trasformate).

Al fine di verificare che il prodotto di PCR clonato nel vettore plasmidico è quello desiderato, è stata eseguita una reazione di screening mediante PCR. Con stuzzicadenti sterili sono state prelevate le colonie trasferendole su una "master plate" e ponendo in seguito lo stuzzicadente in un tubo termostrip da 0.2 ml contenente una miscela composta da:

Buffer Mix (con MgCl ₂ , 5X; Promega)	4,0 µl
Primer "reverse" (5 nm/ml; Sigma-Aldrich)	1,0 µl
Primer "forward" (5 nm/ml; Sigma-Aldrich)	1,0 µl
Miscela dNTPs (10mM; Promega)	0,4 µl
Go-Taq Polimerasi (5 U/µl; Promega)	0,1 µl
SDW (acqua distillata sterile + DEPC)	14,0 µl

La "master plate" è stata incubata a 37°C per 8 ore, mentre i tubi termostrip sono stati sottoposti a reazione di PCR, il programma prevede 25 cicli in cui sono ripetute le seguenti tre fasi:

- 94 °C per 10 secondi
- 56 °C per 10 secondi
- 72 °C per 45 secondi.

I prodotti di PCR sono stati analizzati su gel di agarosio. In base alle dimensioni del frammento ottenuto sono state selezionate le colonie batteriche da sottoporre ad allevamento over night e alla successiva estrazione plasmidica.

2.3.4 Estrazione del plasmide ricombinante

Le colonie batteriche di interesse sono state trasferite dalla "master plate" in mezzo liquido LB e allevate a 37 °C per tutta la notte.

Per l'estrazione del plasmide e la purificazione dell'inserto è stato utilizzato il kit Wizard Plus SV Minipreps (Promega) seguendo il protocollo allegato:

- raccogliere il pellet di 1 10 ml di coltura batterica tramite centrifugazione per 5 minuti a 4.000 g.
- aggiungere 250 µl della soluzione di risospensione cellulare Wizard Plus SV Minipreps e risospendere il pellet.
- aggiungere 250 µl della soluzione di lisi cellulare Wizard Plus SV Minipreps e miscelare invertendo il tubo quattro volte.
- aggiungere 10 μl di proteasi alcalina e miscelare invertendo il tubo quattro volte.
- incubare per cinque minuti a temperatura ambiente.
- aggiungere 350 µl di soluzione di neutralizzazione Wizard Plus SV Minipreps e miscelare la soluzione.
- centrifugare il lisato batterico a 14.000 g per 10 minuti a temperatura ambiente.
- trasferire 850 µl del lisato pulito in una Wizard Plus SV Minipreps spin column inserita in un tubo di raccolta da 2 ml.
- centrifugare il lisato purificato a 14.000 g per un minuto a temperatura ambiente.
- pulire la colonna con 750 μl di soluzione di lavaggio Wizard Plus SV Minipreps column precedentemente diluita con etanolo al 95%.
- centrifugare a 14.000 g per un minuto a temperatura ambiente.
- aggiungere 250 μl di soluzione di lavaggio Wizard Plus SV Minipreps column.
- centrifugare a 14.000 g per due minuti a temperatura ambiente.
- trasferire la Wizard Plus SV Minipreps spin column in un tubo Eppendorf sterile da 1,5 ml.
- eluire il DNA plasmidico aggiungendo 100 μl di acqua priva di nucleasi alla Wizard Plus SV Minipreps spin column e centrifugare a 14.000 g per un minuto a temperatura ambiente.

Al fine di avere un ulteriore conferma dell'avvenuto clonaggio del frammento d'interesse, il DNA plasmidico, dopo essere stato estratto, è stato sottoposto all'azione di appropriati enzimi di restrizione. E' stata impiegata la seguente miscela di digestione enzimatica usando diversi enzimi di restrizione:

Buffer (10X; Promega)	1,0 µl
Enzima (10 U/µl; Promega)	0,1 µl
DNA plasmidico	1,0 µl
SDW (acqua distillata sterile +DEPC)	7,9 µl

per un volume totale di 10 μl che è stato messo in incubazione per 1 ora a 37 °C.

I prodotti di digestione sono stati esaminati su gel di agarosio.

2.3.5 Sequenziamento degli inserti

I prodotti di PCR inseriti nei plasmidi estratti sono stati sequenziati. A tal fine una sospensione contenente 1 μ g di DNA plasmidico è stata essiccata in un tubo Eppendorf da 1,5 ml sottovuoto per 10 minuti. I tubi Eppendorf sono stati inviati presso la ditta MGW AG Biotech (Ebersberg, Germania), dove è avvenuto il sequenziamento sfruttando primers o disegnati a livello dei promotori T7 e SP6 o specifici per il frammento da sequenziare.

Le sequenze ottenute sono state allineate ed analizzate mediante il programma di allineamento del pacchetto software VectorNTI (Invitrogen).

2.4 Western Blot

Il western blot, o immunorivelazione, è una tecnica immunochimica che permette di identificare la presenza di una determinata proteina in una miscela di proteine separate elettroforeticamete, mediante il suo riconoscimento con anticorpi specifici. Dopo l'elettroforesi le proteine vengono trasferite su un supporto, membrana di nitrocellulosa o PVDF o nylon, dove si procede alla reazione immunomediata e alla rivelazione enzimatica del complesso antigene/anticorpo.

2.4.1 Preparazione dei campioni

1) prelevare, mediante il tappo di un tubo Eppendorf da 0,5 ml, 3 dischi fogliari dai campioni da esaminare.

2) aggiungere 100 μ l di Tampone Laemli (Laemli, 1970; Tabella 2.2) e macinare il tessuto con un pestello sterile direttamente nel tubo Eppendorf.

- 3) denaturare le proteine per 3 minuti a 100 °C.
- 4) centrifugare i campioni per 1 minuto a 14.000 g.

Tampone Laemli		
Tris – HCl [1,5 M]	10 ml	
SDS 20% Glicerolo 100% Beta	6 ml 30 ml	
mercaptoetanolo	15 ml	
Blu di bromofenolo	0,25 ml	
H ₂ O	48,75 ml	
Tabella 2.2. Ricett tampone Laemli.	a per il	

2.4.2 SDS - PAGE

L'SDS-PAGE (Sodium Dodecyl Sulphate-PolyAcrylamide Gel Electrophoresis) consiste nell'elettroforesi su gel di poliacrilammide in presenza di sodio dodecil solfato, un detergente anionico in grado di complessare le proteine e mantenerle denaturate nella loro struttura primaria, caricandole negativamente.

La corsa elettroforetica è stata effettua in una cella Mini-V8·10 (GibcoBRL) che consente l'impiego di gel di dimensioni 9 x 6,5 cm (l x h) e spessore 0,75 mm. Il gel è stato preparato in due tempi successivi, i $\frac{3}{4}$ inferiori sono stati allestiti con il "Resolving" gel (poliacrilammide 12 % - pH 8,8) sopra al quale, prima della polimerizzazone, è stato depositato 1 ml di acqua distillata. A

	Resolving gel	Stacking gel
	12 %	4,05 %
Acrilammide	3,2 ml	0,54 ml
Buffer	3,3 ml	1 ml
Ammonio Persolfato 25%	0,04 ml	0,04 ml
SDW	3,45 ml	3,41 ml
TEMED (100mg/ml)	0,01 ml	0,01 ml
	10 ml	5 ml
Tabelle 2.3. Ricette per il gel per SDS-PAGE.		

polimerizzazione avvenuta l'acqua viene rimossa e il gel è stato completato mediante "Stacking" gel (poliacrilammide 4 % - pH 6,8) nel quale è stato inserito un apposito pettine che consente di ricavare 10 pozzetti con volume di circa 20 μ l (Tabelle 2.3 e 2.4).

	Tampone Resolving gel [500ml]	Tampone Stacking gel [250ml]
Tris base	68 g	18,9 g
SDS 20%	7,5 ml	6,25 ml
H ₂ O bidistillata	500 ml	250 ml
Regolazione pH	8,8	6,8
Tabelle 2.4. Ricette per i tamponi per SDS-PAGE.		

Nei pozzetti sono stati caricati 10 o 15 μ l (5-20 μ g) di proteine totali denaturate come riportato precedentemente. La corsa elettroforetica è stata eseguita in un tampone ad appropriata conducibilità elettrica ("Running Buffer" - Tabella 2.5).

	Tampone Tris - Gly 10X		Running buffer	Transfer buffer
Tris [250mM] Glicine [1,92M]	30 g 144 g	Tampone Tris - Gly 10X	100 ml	100 ml
H ₂ O bidistillata	11	SDS 20%	5 ml	0 ml
		H ₂ O bidistillata	895 ml	900 ml
Tabella 2.5. Ricetta	a per i tamponi di runnin	g e transfer.		

2.4.3 Protein Blotting

Al termine della corsa elettroforetica è stato eseguito il trasferimento delle proteine su una membrana di Polyvinylidene fluoride (PVDF) impiegando una cella di trasferimento tipo *wet*:

1) lavare la membrana di PVDF con etanolo assoluto e successivamente idratarla in 20 ml di tampone di trasferimento (Transfer buffer – Tabella 2.5) in lenta agitazione per almeno 20 minuti.

2) eliminare lo "Stacking gel".

3) immergere nel tampone di trasferimento i due supporti spugnosi e la carta assorbente (Hybond blotting paper, Amersham Biosciences).

4) preparare il sandwich di trasferimento nella cassettina nel seguente ordine partendo dal lato che sarà rivolto verso l'anodo: spugna, carta, gel, membrana, carta, spugna. Prima di porre il secondo strato di carta assorbente eliminare le bolle d'aria tra la membrana e il gel.

5) chiudere la cassettina senza disturbare il sandwich.

- 6) riempire l'apparato con il tampone di trasferimento.
- 7) introdurre la cassettina preparata nella cella di trasferimento, avendo cura di rivolgere la membrana verso il polo positivo

Il trasferimento è stato effettuato ad una temperatura di 4 °C a 80 V per 90 minuti.

2.4.4 Preparazione della membrana e deposizione anticorpi

La membrana, dopo avere eseguito il transfer, è stata saturata in una soluzione contenente latte scremato in polvere al 5% in PBS 1X–Tween 1% (Tabella 2.6) e per almeno 30 minuti.

Tampone fosfato salino (PBS) 10X		
NaCl	80 g	
KH ₂ PO ₄	2 g	
Na ₂ HPO ₄ 12H ₂ O	29 g	
KCl	2 g	
H ₂ O	fino ad un volume di 11 pH 7,4	
Tabella 2.6. Ricetta per il tampone PBS 10X.		

Successivamente si procede in questo modo:

1) aggiungere alla soluzione l'antisiero primario, coniugato o meno con l'enzima perossidasi, appropriatamente diluito (Tabella 2.7) e lasciare la membrana in agitazione 3 ore a temperatura ambiente o over night a 4 °C.

Antisiero	Concentrazione di utilizzo
Anti-CP BNYVV	1:40000
Anti-CP BSBMV	1:30000
Anti-rabbit coniugato con perossidasi	1:3500
Anti-HA coniugato con preossidasi	1:20000

Tabella 2.7. Diluizioni degli antisieri utilizzati per il saggio western blot.

2) eseguire 3 lavaggi da 20 minuti ciascuno con PBS 1X–Tween 1% per eliminare l'antisiero che non si è legato alla membrana.

3) aggiungere l'eventuale antisiero secondario coniugato con l'enzima perossidasi appropriatamente diluito (Tabella 2.7) e lasciare la membrana in agitazione over night a 4 °C.

4) eseguire 3 lavaggi da 20 minuti ciascuno con PBS 1X–Tween 1% per eliminare l'antisiero che non si è legato alla membrana.

5) aggiungere il substrato per l'enzima perossidasi, kit Lumi-light Plus Western blotting substrate (Roche), il quale innesca la reazione chemioluminescente.

6) impressionare una lastra fotografica e svilupparla immergendola per 10 minuti nella soluzione di sviluppo Developer Powerd D-19 (Kodak) e, previo lavaggio in acqua deionizzata, per 10 minuti nella soluzione di fissaggio Polymax Fixateur (Kodak).

2.5 Northern Blot

Il northen blot è una tecnica molecolare che consente di visualizzare ed identificare l'RNA purificato da un campione.

2.5.1 Estrazione RNA e corsa elettroforetica

Da 90 mg di tessuto fogliare con lesioni è stata effettuata l'estrazione dell'RNA con il metodo Trizol o PEB o TM, descritti precedentemente, utilizzando 5 µl di acqua "nuclease free" per risospendere il sedimento.

E' stato preparato un gel di agarosio all'1% contenente il 6% di formaldeide in tampone HEPES 10X (Tabella 2.8 e 2.9)

E' stato denaturato 1µl di RNA in 5µl di Tampone HFF per 5 minuti a 65 °C ed è stato raffreddato immediatamente in ghiaccio prima di caricarlo sul gel

Tampone HE	PES 10x pH 7,8	Tampone HFF	י
HEPES 200mM	47,66 g	HEPES 10x	10 µl
EDTA 10mM	3,72 g	Formamide	50 µl
KOH	9,5 g	Formaldeide	16 µl
H_2O	volume finale 11 pH 7 8	Etidio Bromuro 10mg/ml	1 µl
	F 2	Blue BB a 0,1% (con 50% di glicerolo)	6 µl
		SDW	18 µl
Tabella 2.8 e 2.9.	Ricetta per i tamponi HEPES e HFF	7.	

denaturante. Si è procededuto con una corsa elettroforetica a 80V (30 - 40 mA) per circa 4-5 ore.

2.5.2 Trasferimento RNA su membrana

Al termine della corsa elettroforetica è stato effettuato il trasferimento degli RNA dal gel denaturante alla membrana sfruttando un trasferimento capillare over night in una soluzione 20X SSC, la cui composizione è la seguente:

3M NaCl

0,3M Citrato di sodio

H₂O a volume di 800ml

Aggiustare il pH a 7 con HCl e portare a volume di 11.

E' stato costruito un sandwich alla base del quale è stato disposto il gel, sopra di esso la membrana e quindi carta assorbente.

Il giorno seguente sono stati eseguiti 2 lavaggi della membrana con una soluzione al 2X SSC. In seguito è stato eseguito il fissaggio degli RNA con cross-linker Bio Link 254 a 120 J per 2 minuti e 30 secondi.

2.5.3 Sintesi della sonda a DNA con kit Ready-To-Go DNA Labelling Beads (Amersham Biosciences)

La sonda radioattiva, marcata al nucleotide citosina mediante fosforo radioattivo P³², è stata sintetizzata mediante il kit Ready-To-Go DNA Labelling Beads (Amersham Biosciences). 25–50 ng di DNA linearizzato sono stati aggiunti alla mix di reazione per un volume finale di 30ul.

1) denaturare il DNA 3 minuti a 100 °C e porlo immediatamente in ghiaccio per 2 minuti, poi fare una breve centrifuga ed aggiungere acqua sterile trattata con DEPC per raggiungere il volume di 30 μ l.

2) aggiungere al tubo dove è presente la reaction mix la miscela ottenuta precedentemente.

3) in camera radioattiva aggiungere 5 μ l di dCTP (P³²) (Concentrazione finale di 50 μ Ci).

4) miscelare gentilmente.

5) incubare a 37 °C per 30 minuti.

6) Prima di aggiungere la sonda per l'ibridazione questa deve essere denaturata a 100 °C per 2 minuti e raffreddata in ghiaccio.

2.5.4 Ibridazione della sonda

La membrana è stata sottoposta a pre-ibridazione per 30 minuti a 65 °C in Perfecthyb plus buffer (SIGMA-H7033.14). In seguito è stata aggiunta la sonda marcata e lasciata in ibridazione per tutta la notte a 65 °C.

Il giorno successivo si eseguono:

- due lavaggi da 20 minuti ciascuno con SSC 2x e 2% SDS a 65 °C.
- due lavaggi da 20 minuti ciascuno con SSC 1 x e 1% SDS a 65 °C.

2.5.5 Sviluppo lastra fotografica

La membrana così trattata è stata utilizzata per impressionare una lastra fotografica per un tempo di esposizione variabile da 7 a 48 ore, in apposite cassette da autoradiografia a -80 °C. Per lo sviluppo la lastra fotografica è stata immersa per 10 minuti nella soluzione di sviluppo Developer Powder (Kodak) e, previo lavaggio in acqua deionizzata, per 10 minuti nella soluzione di fissaggio Polymax Fixateur (Kodak).

2.6 Trascrizione in vitro

Prima di eseguire la trascrizione *in vitro* il plasmide ricombinante è stato linearizzato mediante taglio enzimatico sfruttando il sito di restrizione posto all'estremità 3' dell'inserto. È stato utilizzando il seguente protocollo:

Buffer enzima (10X)	10 µl
Enzima di restrizione (10U/µl)	0,1µl
Plasmide purificato alla concentrazione finale di:	1ng/µl
SDW fino ad un volume finale di:	100 µl
incubare per 3 ore a 37 °C.	

Il plasmide linearizzato è stato purificato e su questo è stata eseguita la trascrizione *in vitro* utilizzando il kit RiboMax (Promega) con il seguente protocollo per un volume finale di 20μ l:

T7 Transcription buffer (5X)	4,0 µl
rATP (100mM)	1,5 µl
rCTP (100mM)	1,5 µl
rUTP (100mM)	1,5 µl
rGTP (10mM)	0,6 µl
CAP (m7 - GpppG) promega (40mM)	1,0 µl
DDT (0,1M)	1,0 µl
RNasi (40 U/ µl)	0,5 µl
T7 RNA pol mix	2,0 µl
Plasmide linearizzato (almeno 1µg)	1,5 µl
SDW (acqua distillata sterile +DEPC)	4,96 µl

Il tutto è stato incubato per 30 minuti a 37 °C, poi sono stati aggiunti 1,5 μ l di rGTP (100mM) ed è stata proseguita l'incubazione per 3 ore a 37 °C.

Per controllo della trascrizione 1 μ l del trascritto dopo circa 2 ore di incubazione a 37°C è stato fatto migrare su un gel di agarosio.

Il trascritto prima di essere utilizzato per l'inoculo è stato trattato con enzima DNasi.

Al volume finale di trascritto aggiungere:

Buffer RQ1 RNase-free DNase (10X, Promega)	15 µl
RQ1 RNase-free DNase (1U/µl)	1,5 µl
SDW fino a raggiungere un volume finale di:	150 µl

Incubare 30 minuti a 37 °C, poi passare in ghiaccio e procedere sempre in ghiaccio.

1) aggiungere ai 150 µl di trascritto trattato:

NaOAc 3M	50 µl
SDW (acqua distillata sterile +DEPC)	300 µl
fino a raggiungere un volume finale di 500 µl.	

2) aggiungere lo stesso volume di fenolo (500 μ l) e miscelare

3) centrifugare 10 minuti a 13000 rpm a 4°C.

4) prelevare la fase liquida superiore e trasferirla in un nuovo tubo Eppendorf da

1,5 ml, aggiungere 2 volumi (1000 µl) di EtOH 100% e miscelare

5) centrifugare 10 minuti a 13000 rpm a 4°C.

6) eliminare la fase liquida e lavare il pellet con 500 μ l di EtOH 50%

7) centrifugare 5 minuti a 13000 rpm a 4°C.

8) eliminare la fase liquida e aspettare l'evaporazione dell'etanolo residuo all'aria.

9) riprendere il pellet in:

SDW (acqua distillata sterile +DEPC)	14 µl
DTT (0,1 µM)	3,0 µl
Rnasi inhibitor (40u/µl; Promega)	3,0 µl
с : :1 1 с 1 1: с о 1	

fino a raggiungere il volume finale di 20 µl.

Per controllo del trattamento 1 μ l del trascritto è stato fatto migrare su un gel di agarosio.

2.6.1 Inoculo

L' inoculo meccanico dei trascritti su foglie di *C. quinoa, B. macrocarpa* e *T. expansa* è stato effettuato con la seguente miscela:

Trascritto	20 µl
Macaloide 0,5%	8,0 µl
KH ₂ PO ₄ 0,5M	10 µl
Stras12 (Miscela degli RNA1 e 2 di BNYVV tipo B)	5,0 µl
SDW (acqua distillata sterile +DEPC)	57 µl

Con un volume finale di 100 μ l si inoculano le foglie dopo avervi causato micro-lesioni sul tessuto epidermico mediante polvere di celite (Diatomaceous earth, SIGMA).

2.7 Tecniche di microscopia

Le lesioni locali apparse dopo 7 giorni sulle foglie inoculate con i trascritti contenenti GFP e RFP sono state analizzate, per controllare l'effettiva replicazione delle proteine fluorescenti, con un microscopio a fluorescenza Nikon E800 munito di fotocamera Nikon DXM1200.

CAPITOLO 3

RISULTATI

3.1 Ottenimento dei cloni cDNA degli RNA di BSBMV e BNYVV

Per ottenere i cloni cDNA della sequenza completa degli RNA di BSBMV

sono state eseguite reazioni di RT-PCR partendo dall'RNA totale estratto da foglie di B. macrocarpa e C. quinoa o da radici di B. vulgaris, mediante il reagente Trizol (Invitrogen). Per verificare l'infezione del materiale vegetale è stata utilizzata la tecnica RT-PCR multiplex (Ratti et al., Le analisi effettuate 2005). hanno permesso di confermare la presenza di BSBMV nei tessuti raccolti e di escludere infezioni miste con altri virus trasmessi da P. betae come BNYVV, BSBV e BVQ (Figura 3.1). Sfruttando le sequenze

nucleotidiche pubblicate degli RNA di BSBMV sono state disegnate differenti coppie di primers che hanno permesso l'amplificazione delle diverse regioni dell'RNA, come riportato in appendice A.

3.1.1 Sintesi dei cloni cDNA degli RNA 1 e 2 di BSBMV

RNA1 di BSBMV

Impiegando la coppia di primers BSBMV1 NotI T7 F/OligodT21VN MluI è stata amplificata la sequenza completa dell'RNA1 del BSBMV ottenendo un amplicone di 6675 bp esclusa la coda di poly(A) (Figura 3.2). Per facilitare le procedure di clonaggio e inserzione nel plasmide pUC19 (Clontech, PA, USA) all'estremità 5' del primer forward (BSBMV1 NotI T7 F) è stato aggiunto il sito di restrizione *NotI* e il promotore T7 e il sito *MluI* all'estremità del primer reverse (OligodT21VN MluI). Il prodotto di PCR

purificato è stato tagliato con gli enzimi di restrizione *NotI* e *MluI* e inserito nel plasmide pUC19 anch'esso tagliato con gli stessi enzimi di restrizione, ottenendo il clone LB106.

<u>RNA2 di BSBMV</u>

Impiegando le coppie di primers:

- 4 BSBMV2 NotI T7 F/ BSBMV2 XmaI R
- 📥 BSBMV2 XmaI F/ BSBMV XbaI R
- **&** BSBMV2 XbaI F/OligodT21VN BglII

è stata amplificata in tre frammenti la sequenza completa dell'RNA2 di BSBMV. Le sequenze amplificate sono state rispettivamente di 1815 bp, 1501 bp e 1346 bp. Per facilitare l'inserzione nei plasmidi pGEM-T easy (Promega) e pUC19 il primer BSBMV2 NotI T7 F porta il sito di restrizione NotI e il promotore T7, sul rispettivo primer reverse si trova il sito di XmaI, presente anche sulla sequenza dell'RNA2 di BSBMV. Sul primer BSBMV2 XmaI F si trova il sito di restrizione XmaI e sul primer reverse BSBMV2 XbaI R, il sito di restrizione XbaI, anch'esso presente sulla sequenza dell'RNA2 di BSBMV. Il primers BSBMV2 XbaI F porta il sito XbaI e al rispettivo primer reverse, OligodT21VN BgIII, è stato aggiunto il sito BglII. I prodotti di PCR purificati sono stati tagliati con gli enzimi di restrizione appositamente introdotti nella sequenza e inseriti nel plasmide pGEM-T easy tagliato con gli stessi enzimi di restrizione. I cloni così ottenuti sono stati rispettivamente chiamati LB5, LB15 e LB9. Il clone LB5 è stato tagliato con Xmal e Xbal per permettervi l'inserimento del clone LB15 tagliato con gli stessi enzimi ed ottenere il clone LB21. Allo scopo di ottenere il clone completo dell'RNA2 di BSBMV in pGEM-T easy (clone LB29), il clone LB21 è stato tagliato con Xbal e BglII per permettere l'inserimento di LB9, tagliato nello stesso modo. Dal clone LB29 è stato tagliato, con gli enzimi NotI e BglII, il cDNA dell'RNA2 del BSBMV (4614 bp esclusa la coda di poly(A)) che è stato ligato in pUC19, tagliato anch'esso con *NotI* e *BglII*, ottenendo il clone LB38.

3.1.2 Sintesi dei cloni cDNA degli RNA 1 e 2 di BNYVV

Durante il periodo di permanenza a Strasburgo (Francia), presso l'"Institut de Biologie Moléculaire des Plantes", sotto la guida del Pof. David Gilmer, sono state utilizzate strategie di clonaggio che sfruttano tre o due passaggi rispettivamente per produrre i cloni infettivi degli RNA1 e 2 dell'isolato di BNYVV tipo P. Da tessuto radicale di piante di bietola, cv. Roberta, suscettibile all'infezione di Rizomania, è stata effettuata l'estrazione dell'RNA, utilizzando il reagente Trizol. L'RNA isolato è stato utilizzato come target per ottenere, mediante razione di RT-PCR:

- il cDNA dell'RNA1 suddiviso in tre frammenti chiamati Fg1 (1545 bp), Fg2 (3348 bp) e Fg3 (2257 bp) utilizzando, rispettivamente, le coppie di primers:
 - 🔸 409-RNA1F5 NotI/RNA1 R2
 - **409-RNA1 F1403/409-RNA1 R4750**
 - **4** 409-RNA1 F4512/409-RNA1 R3 (oligodT16 HindIII).

- il cDNA dell'RNA2 di BNYVV, in due frammenti chiamati Fg1 (2395 bp), Fg2 (2834 bp) utilizzando, rispettivamente, le coppie di primers:

- **4** 409-RNA2 F5 NotI/RNA2 R107
- **4** 409-RNA2 F1823/409-RNA2 R3 (oligodT16 HindIII)

Per facilitare le procedure di clonaggio e inserzione nei plasmidi pGEM-T easy e pUC19 i primers 409-RNA1F5 NotI e 409-RNA2 F5 NotI F portano, oltre al promotore T7, il sito di restrizione *NotI*, mentre i reverse primers 409-RNA1 R3 e 409-RNA2 R3 portano il sito di *HindIII*.

I frammenti Fg1 (clone MP103), Fg2 (clone MP2), Fg3 (clone MP106) dell'RNA1 e Fg1 (clone MP8) dell'RNA2 sono stati clonati singolarmente in pGEM-T easy mentre il frammento Fg2 dell'RNA2 è stato inserito in plasmide pUC19 ottenendo il clone LBS11. I cloni MP103 e MP2 sono stati fusi insieme, in pGEM-T easy, a originare il clone MP203.

Per ottenere il clone completo dell'RNA1 di BNYVV (LBS9, 6747 bp esclusa la coda di poly(A)) il clone MP203 è stato tagliato con gli enzimi *NotI* e *SpeI* e inserito in pUC19 tagliato nello stesso modo, ottenendo il clone LBS8. A sua volta il clone LBS8 è stato tagliato con *SalI* e *HindIII* per permettere l'inserimento del clone MP106, tagliato con gli stessi enzimi.

Per ottenere il clone completo infettivo dell'RNA2 di BNYVV (LBS22, 4610 bp esclusa la coda di poly(A)) il clone MP8 è stato tagliato con *SpeI* e *HindIII* per permettere l'inserimento del clone LBS11 tagliato nello stesso modo.

3.1.2 Sintesi di un clone cDNA infettivo dell'RNA 3 di BSBMV

Impiegando la coppia di primers BSBMV3 EcoRI T7 F /OligodT21 HindIII è stata amplificata la completa dell'RNA3 del **BSBMV** sequenza ottenendo un amplicone di 1720 bp esclusa la coda di poly(A) (Figura 3.3). Il primer forward include il sito di restrizione EcoRI e il promotore T7, sul primer reverse, invece, si trova il sito di restrizione di HindIII, in modo da facilitare le procedure di clonaggio e inserzione nel plasmide pUC19. Il prodotto di PCR è stato tagliato con gli enzimi di restrizione EcoRI e HindIII e inserito nel plasmide pUC19 anch'esso tagliato con gli stessi enzimi, per ottenere il clone E.

(Promega).

3.1.3 Sintesi di un clone cDNA infettivo dell'RNA 4 di BSBMV

Impiegando la coppia di primers BSBMV4 NotI T7 F/OligodT21 BgIII è stata amplificata la sequenza completa dell'RNA4 del BSBMV ottenendo un amplicone di 1767 bp. Il primer forward porta il sito di restrizione *NotI* e il promotore T7, mentre il primer reverse porta il sito di *BgIII*. Il prodotto di PCR purificato è stato tagliato con gli enzimi di restrizione *NotI* e *BgIII* e inserito, con una reazione di ligasi, nel plasmide pUC19, tagliato con gli stessi enzimi (clone LB155).

3.1.4 Analisi delle sequenze

Studi precedenti hanno dimostrato il ruolo essenziale svolto dei primi 380 e degli ultimi 70 nucleotidi nella replicazione dell'RNA3 di BNYVV (Jupin *et al.*, 1990). Ulteriori studi hanno inoltre confermato l'importanza della sequenza nucleotidica che precede la coda di poly(A) degli RNA di BNYVV, ritenuta fondamentale per la formazione della struttura a forcina essenziale per la replicazione virale (Richards e Tamada, 1992). Inoltre l'analisi degli ultimi 68 residui della regione 3' UTR degli RNA 1, 2, 3, 4 di BSBMV e BNYVV evidenzia i domini conservati α , β e γ proposte da Lauber *et al.* (1997) per l'RNA 3 del BNYVV (Figura3.4).

Analisi delle sequenze degli RNA 1 e 2 di BSBMV

Confrontando la sequenza del clone LB106 con la sequenza pubblicata dell'RNA1 di BSBMV (NC_003506) e quella del clone LB38 con quella

pubblicata dell'RNA2 di BSBMV (NC_003503) sono state osservate alcune differenze nucleotidiche.

(6777)	6777	6790	6800	6810	6823		
BNYVV RNA1 NC_003514 (6700)	GTGAATTGTACC	A <mark>GTC</mark> G <mark>T</mark> TAA <mark>AG</mark>	<mark>ggttta</mark> c <mark>t</mark> a	A <mark>TCAGT</mark> A <mark>TA</mark> TTO	7AT <mark>A</mark> TAT		
BSBMV RNA1 NC_003506 (6637)	GTGAAT TGTACC	A <mark>GTC</mark> CT <mark>T</mark> GTAC	<mark>GGTTT</mark> GC <mark>T</mark> A	A <mark>TCAGT</mark> G <mark>TA<mark>TTC</mark></mark>	A T A T		
BSBMV RNA1 LB106 (6628)	GTGAAT TGTACC	A <mark>GTC</mark> CT <mark>T</mark> GTAG	<mark>GGTTT</mark> GC <mark>T</mark> A	A <mark>TCAGT</mark> G <mark>TAT</mark> G-			
BSBMV RNA1 LB160 (6628)	GTGAAT TGTACC	A <mark>GTC</mark> CT <mark>T</mark> GTAG	<mark>GGTTT</mark> GC <mark>T</mark> A	A <mark>TCAGT</mark> G <mark>TA<mark>TTC</mark></mark>	A T A T		
BNYVV RNA2 NC_003515 (4567)	GTGAAT TGTACC	A <mark>GTC</mark> CA <mark>TGT</mark> AC	GGT <mark>C</mark> TG <mark>T</mark> TT	TCAGTA <mark>TATTO</mark>			
BSBMV RNA2 NC_003503 (4574)	GTGAATTGTACC	G <mark>GTC<mark>CT</mark>T<mark>GT</mark>AG</mark>	<mark>GGT</mark> TTA <mark>T</mark> TI	TCAGTT <mark>TATTC</mark>			
BSBMV RNA2 LB38 (4573)	GTGAATTGTACC	G <mark>GTC<mark>CT</mark>TGTAC</mark>	<mark>GGT</mark> TTA <mark>T</mark> TI	TCAGTTTAC			
BSBMV RNA2 LB157 (4573)	GTGAATTGTACC	G <mark>GTC<mark>CT</mark>TGT</mark> AC	<mark>GGT</mark> TTA <mark>T</mark> TI	TCAGTT <mark>TATTO</mark>			
BNYVV RNA3 NC_003516 (1730)	GTGAAATGTACC	A <mark>GTC</mark> CT <mark>T</mark> GTAC	GGT <mark>T</mark> CT <mark>TT</mark> G	G <mark>TCAGT</mark> A <mark>TA</mark> TTC	AC		
BSBMV RNA3 NC_003507 (1675)	GTGAAATGTACC/	A <mark>GTC</mark> CT <mark>T</mark> GTAG	<mark>GGT</mark> G <mark>TA</mark> CC <mark>T</mark>	TCAGTA <mark>TA</mark> TTC	AAG-		
BSBMV RNA3 clone E (1675)	GTGAAATGTACC	A <mark>GTC</mark> CT <mark>T</mark> GTAC	GGTG <mark>TA</mark> CC <mark>I</mark>	TCAGTATAT-C	AAG-		
BNYVV RNA4 NC_003517 (1421)	GTGAAATGTACC	AGTCTTTATAG	GGTTCTCTC	G <mark>TCAGT</mark> A <mark>TATTC</mark>	AC		
BSBMV RNA4 NC_003508 (1161)	GTGAAATGTACC	A <mark>GTC</mark> CT <mark>T</mark> GTAC	<mark>GGT</mark> G <mark>TA<mark>T</mark>TI</mark>	TCAGTT <mark>TATTC</mark>			
BSBMV RNA4 LB155 (1688)	GTGAAATGTACC	A <mark>GTC</mark> CT <mark>T</mark> GTAG	<mark>GGT</mark> G <mark>TA<mark>T</mark>TT</mark>	TCAGT TATTO			
Figura 3.5. Allineamento degli ultimi nucleotidi che precedono la coda di poly(A) delle sequenze pubblicate e dei cloni sintetici di BSBMV e BNYVV.							

In particolare negli ultimi nucleotidi precedenti la coda di poly(A) sono state osservate 4 delezioni nel clone LB106 e 2 delezioni ed una sostituzione nel clone LB38, risultate invece conservate nelle sequenze degli altri RNA sia di BSBMV sia di BNYVV, che potrebbero impedire la formazione della struttura a forcina nel dominio γ (Figura 3.5).

La sequenza del clone LB106 presenta inoltre, rispetto alla sequenza NC_003506, 20 sostituzioni e 12 delezioni, concentrate soprattutto nella regione 5'. Il clone LB38 evidenza invece 11 sostituzioni ed 3 delezioni rispetto alla sequenza NC_003503.

Reazioni di RT-PCR della sola regione 3' UTR hanno permesso di ottenere i cloni LB160 (RNA1 BSBMV) ed LB157 (RNA2 BSBMV) che presentano la sequenza corretta all'estremità 3' (Figura 3.5) (Appendice B3 e B4). Al contrario reazioni RT-PCR effettuate per amplificare la sola porzione 5' degli RNA1 e 2 di BSBMV hanno fornito cloni che presentano le medesime sostituzioni prima riportate.

Analisi delle sequenze degli RNA 1 e 2 di BNYVV

La sequenza del clone LBS9 (RNA1 di BNYVV) è stata allineata con le sequenze complete dell'RNA1 di BNYVV di tipo A (NC_003514) e tipo B (gentilmente fornita dal Prof. D. Gilmer), non sono state infatti fino ad ora pubblicate sequenze complete degli RNA 1 o 2 di isolati di BNYVV del tipo P o J. Recenti osservazioni hanno inoltre evidenziato che, a livello nucleotidico, gli isolati di tipo P risultano molto più simili a quelli di tipo A piuttosto che a quelli di tipo B (Rush, 2003).

L'analisi ha evidenziato sul clone LBS9 48 sostituzioni rispetto alla sequenza NC_003514, e un'identità pari al 99,3%. L'organizzazione genomica dell'RNA1 di BNYVV prevede un unico ORF che codifica per un'unica poliproteina (Jupin *et al.*, 1988) mentre l'esame della sequenza del clone LBS9 ha permesso di individuare due ipotetiche ORF. Una transizione, G²²⁷⁷A, determina infatti nel clone LBS9 la presenza di un codone di stop (UAG), non presente sulla sequenza NC_003514. Tale transizione è stata corretta, mediante mutagenesi per PCR, ottenendo il clone LBS31(Appendice B1).

L'allineamento della sequenza del clone LBS22 con quella dell'RNA2 di BNYVV tipo A pubblicata (NC_003515) ha messo in evidenza 50 sostituzioni ed un'identità pari al 98,9% (Appendice B2). <u>Analisi delle sequenze dell'RNA3 di BSBMV – Motivi strutturali all'interno</u> <u>delle regioni UTR dell'RNA3 di BSBMV permettono la sua replicazione,</u> <u>incapsidazione e movimento in planta da parte dell'RNA 1 e 2 di BNYVV</u>

Il clone E è stato comparato con la sequenza dell'RNA3 di BSBMV pubblicata (NC_003507) e sono state osservate quattro sostituzioni nucleotidiche (Appendice B5). Una sostituzione è stata rinvenuta nella sequenza 5' UTR ($G^{335}A$) e tre nella sequenza codificante la p29 ($T^{808}A$, $A^{887}G$ e $T^{1000}C$) conducendo rispettivamente alle sostituzioni amminoacidiche D¹²⁷E, N¹⁵⁴D e alla conservazione di un amminoacido nella sequenza della p29.

La caratterizzazione della struttura secondaria della regione 5' UTR dell'RNA3 di BNYVV ha evidenziato che le tre corte sequenze, chiamate Box I, II e III, risultate complementari alle sequenze Box I', II' e III' poste più a monte sulla regione 5' UTR, sono essenziali per la replicazione (Gilmer *et al.*, 1992, 1993). L'analisi comparata delle sequenze degli RNA3 di BSBMV e BNYVV ci ha permesso di identificare elementi corrispondenti anche sulla sequenza 5' UTR di BSBMV: Box I/I' (nucleotidi 284-293/1-10), Box II/II' (nucleotidi 237-244/15-22) e Box III/III' (nucleotidi 222-231/43-51). Confrontando queste sequenze Box sulla regione 5' UTR dell'RNA3 di BSBMV e BNYVV abbiamo osservato la presenza di variazioni compensative in grado di ristabilire perfettamente la complementarietà delle basi che consente l'appaiamento delle sequenze Box I, II e III con quelle Box I', II' e III'. La transizione C-U e la transversione A-U nel Box I' sono infatti accompagnate dalle sostituzioni di basi

	Box I'	Box II'		Box III'	
BNYVV RNA3	AGAAAUUCAAAAU	UUUACCAUUACAUA	JUGGUAUUUAUUUACCCUCA <mark>GUU</mark>	GGUGAUAUAUGU GAGGACGCUAGCCUGUU	G G 80
DODAN/ DNA2		CUAUCACCACAU	IA G G U A U U A A U U U A U U C G U C U C U	AGACACUUUUGUAGCGUGCGCUAGCCCCGCU	G G 77
DODINI VILINO		CONCERCIÓN			
11000000000					
BNYVV RNA3	GUUUCCUGACCGA	ACCA . AAUCCAAGC	G A G C U U A A . U C C A A G U A C C U C G U	C U C A A A U U G A G U G U C A A G U G A A U A A G C	A U 156
BSBMV RNA3	CUUCCC. GACCGA	ACCUCAAUCCAAGC	GAGUUUAUGUCCAGGUACCUCUU	AUUGAGAAAUAGAGUGUCGAGUGAAUAAAC	A U 157
					• •
				Box III	
RNYW RNA3	AGUGACUCCAUCO	GUUUCAGGGUAGUU	ACGGCUAUUA AUAGACAUAUU	ACGAACGCUUCUCUUUAUUUAUCUCACCAACA	UG 236
DCDMA/ DNIA2	A & & C & UU & C C U C U				11 4 224
DODIN'V RINAS	AAAGAOOACGOCI	AUDACOGOGOAGUU	JAGCGC0000GCA0CAAG00A00	AACCACOCOCOACOCO	U A 234
					50
	Box II			Box I	
BNYVV RNA3	GGAUGUAAUGUUU	UAUGCGUGAGC. UA	C G G C C G C A U U G U A A A A U U A G U G G	U U U U G A A U U U C U A U U C U U C G G A A U A U C C A A	GG 316
BSBMV RNA3	CGUUGUGGUGUUG	GUAGUGUGAGCCUU	GUGCCGCUACGUAAAAUAUAUAA	AUUUAAAUUUCCAUACUU AA CCUA	GG 309
				···· · · · · · · · · · · · · · · · · ·	
DNIVIA/ DNIA2					C A 207
DIVITVV RIVAS	UUUAAAAGACCAC	SCAUDOGGGGGGGAAA			GA 387
BSBMV RNA3	UUGAGUGUGUUUU	G. UUGCUGAUAAU	GUAUAUUAUCGCAGCGCCCUU.	GCGUUGAUCUUUGAUCCGCCCUAUCUUUA	A C 386
			→ P29	→ P25	
BNYVV RNA3	UUU. UGCAUAUCA	AA GUUGUUG	J G U U U U C U G A U C A U C A U U A A G U G	G C C G U C A U G G G U G A U A U A U U A G G C G C	A G 468
BSBMV RNA3	UUUAUUUGUAUUA	AGUUUCUGUUGUCG	JUGGUAUUUAACGUCAUGGAUUU	GAAUACUAUGAUGCCAGCCUUUAAUGUUGC	UU 467

Figura 3.6.Allineamento della regione 5' UTR degli RNA3 di BNYVV (NC_003516) e BSBMV (NC_003507). Le sequenze Box I, II e III e le loro complementari Box I', II' e III' sono evidenziate dai riquadri neri. I cdoni di start AUG delle ORF che codificano per la p25 dell'RNA3 di BNYVV e la p29 dell'RNA3 di BSBMV sono evidenziati dai riquadri neri e dalle freccie. Gli asterischi corrispondono ai nucleotidi conservati. I primi due nucleotidi (AG) sulla sequenza M36894 appartengono al plasmide. Le variazioni compensative sono evidenziate in grigio chiaro e grigio scuro a rappresentare rispettivamente le sequenze di BNYVV e BSBMV.

U-A e G-A nel Box I. Le transizioni UU-CC nel Box II' sono seguite dalle transizioni AA-GG nel Box II. La transversione A-U all'estremità 5' del Box II non è compensata. Nel Box III' sono state osservate sei sostituzioni (tre transizioni e tre transversioni) e le relative sostituzioni compensative sono state identificate nel Box III (Figura 3.6). Fra le sequenze 3' UTR degli RNA3 di BNYVV e BSBMV sono state osservate sequenze altamente conservate. Sull'RNA3 di BSBMV è grazie alle sostituzioni compensative CA-AG in GU-

Figura 3.7. Allineamento della sequenza 3' UTR degli RNA3 di BNYVV (NC_003516) e BSBMV (NC_003507). Sono indicate le strutture conservate α , $\beta \in \gamma$ all'estremità 3' UTR degli RNA di BNYVV. Le variazioni compensative sono evidenziate in grigio chiaro e grigio scuro a rappresentare rispettivamente le sequenze di BNYVV e BSBMV.

CU, all'interno dello stem-loop γ , che alcune coppie di basi permettono la formazione degli stem-loop α e γ (Figura 3.7). Nel singolo filamento del dominio β della sequenza del BNYVV è stato proposto l'appaiamento delle basi ¹⁷¹¹AAGA¹⁷¹⁴ e ¹⁷⁵⁵UCUU¹⁷⁵⁸ (Lauber *et al.*,1997). In BSBMV l'allineamento delle sequenze ha permesso di verificare che i nucleotidi ¹⁶⁵⁷GUAU¹⁶⁶⁰ nella regione β_1 sono complementari a quelli ¹⁷⁰¹GUAC¹⁷⁰⁴ presenti nella regione β_2 .

Tali sequenze conservate nelle regioni 3' e 5' terminale degli RNA3 di BSBMV e di BNYVV, sono presumibilmente necessarie per l'efficiente riconoscimento della regione 3' terminale da parte dell'RdRp virale e risultano perciò importanti per l'inizio della sintesi degli RNA. Similitudini così forti suggeriscono una struttura secondaria simile a quella formata dagli RNA del BNYVV, che potrebbe essere assunta anche dagli RNA del BSBMV rendendoli perciò riconoscibili dalla RdRp codificata dall'RNA1 del BNYVV. Queste informazioni ci hanno permesso di investigare la possibile replicazione dell'RNA3 di BSBMV nel sistema replicativo del BNYVV (vedi paragrafo 3.2.2).

Analisi delle sequenze dell'RNA4 di BSBMV

Le uniche informazioni relative alla sequenza dell'RNA4 di BSBMV pubblicate fanno riferimento ad una molecola della lunghezza di 1203 bp (NC_003508). Il clone LB155 da noi ottenuto risulta essere 1731 bp, esclusa la coda di poly(A), il quale, in base all'allineamento con la sequenza disponibile dell'RNA4 di BSBMV, presenta 630 bp in più, situate dal nucleotide 689 al 1219 con un'identità di sequenza nucleotidica del 69,1% (Appendice B6). In termini di dimensioni e di organizzazione genomica la sequenza del clone LB155 risulta inoltre maggiormente simile a quella dell'RNA4 di BNYVV (NC_003517) nonostante l'identità nucleotidica risulti pari al 51,8%.

3.2 Trascrizione e inoculo degli RNA di BSBMV e BNYVV

3.2.1 Trascrizione e inoculo degli RNA 1 e 2 di BSBMV e BNYVV

I cloni LB160, LB157 e LBS31 sono stati linearizzati con appropriati enzimi di restrizione (*MluI*, *BglII* e *HindIII* rispettivamente) e il clone LBS22 tagliato con gli enzimi *NotI/HindIII* prima di essere utilizzati nella sintesi, rispettivamente, dell'RNA 1 e 2 di BSBMV e di BNYVV, mediante trascrizione *in vitro* (Figura 3.8 e 3.9).

Figura 3.10. Sintomi fogliari su foglie di *C. quinoa* indotti da: A) RNA1 di BNYVV tipo B e RNA2 di BNYVV tipo P B) RNA 1 e 2 di BNYVV tipo B.

Gli RNA trascritti sono stati inoculati meccanicamente su foglie di C. quinoa in differenti miscele secondo quanto riportato in tabella 3.1 impiegando anche una estrazione degli **RNA** totali di BSBMV,

effettuata con il metodo "Polysome buffer" (isolato PolyBSBMV). I cloni degli

RNA trascritto	Clone	Α	B	С	D	E	F	G	H	Ι	J	K
BSBMV RNA1	LB160	Х	Х									
BSBMV RNA2	LB157	Х		Х								
BNYVV RNA1 tipo P	LBS31					Х	X			Х		
BNYVV RNA1 tipo B	pB15			Х	Х			Х				Х
BNYVV RNA2 tipo P	LBS22					Х		Х			Х	Х
BNYVV RNA2 tipo B	pB214		Х		Х		X					Х
PolyBSBMV									Х	Х	Х	
Tabella 3.1. Differenti miscele utilizzate per l'inoculo meccanico di foglie di C. quinoa.												

RNA 1 e 2 di BNYVV tipo B (pB15 e pB412) sono stati gentilmente forniti del Prof. David Gilmer.

Nessuna lesione fogliare è stata osservata dopo 7 giorni sulle piante

inoculate con le miscele A, B, C, E, F ed I. Tipiche lesioni clorotiche sono comparse nelle piante inoculate con le miscele D, G e K mentre lesioni necrotiche sono comparse negli inoculi H e J (Tabella 3.1 e Figura 3.10).

L'analisi western blot, effettuata su ¹/₂ lesione fogliare e impiegando anticorpi anti-CP di BNYVV e di BSBMV ha permesso di evidenziare la presenza della sola proteina capsidica di BNYVV negli inoculi D, G e K, del solo capside di BSBMV negli inoculi H e I e di entrambe le proteine nell'inoculo J. (Figura 3.11).

Figura 3.12. RT-PCR multiplex. 1) Controllo positivo a BNYVV tipo A, 2) Controllo positivo BNYVV tipo B e 3) Controllo positivo BSBMV. Le lettere fanno riferimento alla Tacella 3.1. (M) Marker 100 bp DNA Ladder (Promega).

Per verificare l'effettiva replicazione *in planta* e la funzionalità del trascritto dell'RNA2 di BNYVV tipo P, derivato dal clone LBS22, l'RNA estratto da tre lesioni fogliari è stato analizzato mediante RT-PCR multiplex. L'amplicone specifico per l'RNA2 di BNYVV tipo B (178 bp) è stato ottenuto solo dall'inoculo D, il prodotto di PCR specifico per l'RNA2 di BNYVV tipo A o P (324 bp) è stato amplificato negli inoculi G e J, mentre gli ampliconi specifici per l'RNA2 di BNYVV tipo B e A o P sono stati amplificati contemporaneamente solo nell'inoculo K (Figura 3.12).

3.2.2 Trascrizione e inoculo dell'RNA 3 di BSBMV

Il clone E è stato linearizzato mediante digestione con l'enzima *HindIII* e usato per la sintesi dell'RNA3 completo di BSBMV mediante trascrizione *in vitro* (Figura 3.13).

L'RNA trascritto è stato inoculato meccanicamente su foglie di *B. macrocarpa* e *C. quinoa* con una miscela contenete l'isolato Stras12. Tipiche lesioni clorotiche sono comparse dopo 7 giorni nelle piante inoculate solo con Stras12. Lesioni necrotiche, identiche a quelle ottenuti dall'espressione della p26 codificata dall'RNA5 di BNYVV (Link *et al.*, 2005), sono invece apparse quando è stato aggiunto il trascritto dell'RNA3 di BSBMV all'inoculo (Figura 3.14).

L'aspetto delle lesioni locali indica l'effettiva replicazione e movimento cellula-cellula degli RNA 1 e 2 di BNYVV come confermato dall'analisi Northern blot (Figura 3.15). A tale scopo gli RNA totali e gli RNA virali incapsidati sono stati estratti da tre lesioni fogliari utilizzando, rispettivamente, il reagente Trizol o il protocollo TM (Klein *et al.*,

2007). Sonde specifiche hanno permesso di rilevare la presenza degli RNA 1 e 2 di BNYVV (Stras12) in tutte le piante inoculate e dell'RNA3 di BSBMV in tutte quelle inoculate anche con il trascritto del clone E (Figura 3.14) evidenziando

Figura 3.13. Migrazione su gel di agarosio della trascrizione *in vitro* dell'RNA3 di BSBMV prima del trattamento con l'enzima DNasi (3). (M) Marker 1kb DNA Ladder (Promega).

una elevata efficienza di replicazione dell'RNA3 di BSBMV nel complesso di replicazione BNYVV.

L'RNA3 di BSBMV è stato inoltre rilevato nelle estrazioni effettuate con il protocollo TM, che prevede una incubazione di 30 minuti a 37°C, indicando che l'RNA3 di BSBMV viene trans-incapsidato dalla proteina del capside di

Figura 3.14. Sintomi fogliari clorotici o necrotici degli inoculi effettuati su C. quinoa.

BNYVV (Figura 3.14).

Figura 3.15. Confronto del contenuto in RNA virali, incapsidati e totali, nelle lesioni locali ottenute dopo 7 giorni sulle foglie di *C. quinoa* mediante saggio northen blot. Le miscele di inoculo contengono Stras12 e il trascritto dell'RNA3 di BSBMV.

<u>L'RNA3 di BSBMV promuove il movimento a lunga distanza degli RNA 1 e</u> <u>2 di BNYVV in B. macrocarpa</u>

La regione dal nucleotide 1033 al 1257 dell'RNA3 di BNYVV (core region), è essenziale per il movimento a lunga distanza del virus in *B. macrocarpa* (Laubert *et al.*, 1998). L'isolato PolyBSBMV e l'isolato Stras12, da solo o addizionato dei trascritti in vitro dell'RNA3 di BNYVV (pB35) o di

Figura 3.16. Inoculi su *B. macrocarpa*: A, B, C e D piante inoculate con Stras12+RNA3 BSBMV; E e F piante inoculate con Stras12.

BSBMV (clone LB155), sono stati inoculati su due foglie di ogni pianta di *B. macrocarpa* dell'età di 10 giorni. Tutte le foglie inoculate hanno mostrato lesioni clorotiche dopo 5-7 giorni dall'inoculo (Tabella 3.2). Mosaicature gialle sono iniziate a comparire con carattere sistemico 10-14 giorni dopo l'inoculo sulle piante infettate con
Inoculo	Sintor	Efficienza della	
moculo	Locali	Sistemici	sistemicità (%)
Stras12	5-7	-	0
Stras12 + RNA3 BNYVV	5-7	10-14	≥ 90
Stras12 + RNA3 BSBMV	5-7	15-22	≥ 70
PolyBSBMV	5-7	10-14	≥ 90

l'isolato polyBSBMV e con Stras12 insieme all'RNA3 di BNYVV (Tabella 3.2).

Tabella 3.2. Cinetica della sintomatologia su *B. macrocarpa* a seguito dell'inoculo con Stras12, RNA3 di BNYVV e RNA3 di BSBMV. L'efficienza della sistemicità corrisponde alla media delle piante con sintomi sistemici rispetto al totale di quelle inoculate. dpi, giorni dopo l'inoculo; -, non è stato rilevato alcun sintomo.

Circa 15-22 giorni dopo l'inoculo più del 70% delle piante inoculate con Stras12 e con il trascritto dell'RNA3 di BSBMV hanno presentato sintomi sistemici (Tabella 3.2), mentre nessun sintomo e nessun RNA virale sistemico è stato rilevato nelle piante inoculate solamente con Stras12, anche 40 giorni dopo l'inoculo. Con il passare del tempo sono stati notati sintomi accentuati di arricciamento fogliare e nanismo nelle piante infette sistemicamente (Figura 3.16). Anche se l'efficienza è stata più bassa del 20% sia rispetto all'inoculo con l'RNA3 di BNYVV, sia con l'isolato PolyBSBMV, i nostri esperimenti dimostrano la possibile complementazione dell'RNA3 di BSBMV nel movimento sistemico del BNYVV.

3.2.2.1 Sequenze estranee sono espresse con successo dal replicone basato sull'RNA3 di BSBMV

Sintesi di un clone cDNA basato sulla regione non codificante dell'RNA3 di BSBMV

Partendo dall'RNA3 completo di BSBMV inserito nel plasmide pUC19 (clone E) è stato ottenuto un replicone costituito dalle sole estremità 5' e 3' UTR dell'RNA3 di BSBMV, chiamato RepIII. Il replicone RepIII è stato ottenuto sostituendo la sequenza codificante la p29 con una sequenza linker (contenente i siti di restrizione *NcoI, SalI* e *BamHI*), mantenendo la regione 5' prossimale, 425 bp, e le 346 bp precedenti la coda poly(A) dell'RNA3.

Le sequenze codificanti la proteina GFP (Green Fluorescent Protein) e la proteina RFP (Red Fluorescent Protein) sono state inserite in RepIII dopo taglio enzimatico con *NcoI* e *BamHI* per produrre rispettivamente i cloni RepIII-GFP e RepIII-RFP. Similarmente, RepIII-p29HA è stato ottenuto utilizzando un

Figura 3.17. Profili di espressione della fluorescenza ottenuti 7 giorni dopo l'inoculo di Stras12 in miscela con i repliconi derivati dagli RNA3 di BNYVV e BSBMV. Espressione della RFP (A e B) e della GFP (C e D) in RepIII osservate nelle lesioni locali. Espressione della GFP e della RFP in Rep5-GFP e RepIII-RFP, rispettivamente, rilevate nella stessa lesione (E ed F). Quando viene aggiunto il trascritto dell'RNA3 di BNYVV l'espressione della RFP in RepIII-RFP non viene rilevata (G) mentre è rilevata l'espressione della GFP (H). Quando i repliconi derivanti dagli RNA3 sono co-inoculati più del 90% delle lesioni presentano un profilo d'espressione in cui RFP è espressa in una zona della lesione (I) e GFP in un'altra (J), altrimenti le lesioni presentano una sola delle proteine fluorescenti. Quando RepIII-RFP è miscelato con RepIII-GFP le lesioni appaiono rosse nella parte centrale (L) e verdi nel bordo (M). Unendo le immagini si può vedere l'intera lesione locale (K, N). Nelle immagini A, B, E, G, I e L è stato usato il filtro per l'RFP, nelle immagini C, D, F, H, J e M quello per la GFP.

prodotto di PCR, digerito con *NcoI* e *BamHI*, sintetizzato dal clone cDNA completo dell'RNA3 di BSBMV, utilizzando un primer reverse contenente la

sequenza complementare della proteina HA (haemagglutinin) (TAT CCT TAT GAT GTT CCT GAT TAT GCA TGA) del virus dell'influenza umana.

Trascrizione e inoculo dei cloni RepIII- P29HA, RepIII- GFP e RepIII-RFP

I cloni di RepIII-GFP, RepIII-RFP e RepIII-p29HA, una volta linearizzati con *HindIII*, sono serviti come stampo per la sintesi *in vitro* dei rispettivi trascritti RNA. Questi trascritti sono stati inoculati insieme a Stras12 su foglie di *C. quinoa*. Lesioni locali di colore verde clorotico sono state osservate dopo 7 giorni dall'inoculo nelle piante inoculate con Stras12 solo o in combinazione con i trascritti di RepIII-GFP o RepIII-RFP. Lesioni necrotiche sono comparse nelle foglie inoculate con Stras12 insieme al trascritto RepIII-p29HA.

L'espressione delle proteine fluorescenti è stata confermata mediante osservazione al microscopio a fluorescenza. In tutte le foglie inoculate con Stras12 e RepIII-GFP o RepIII-RFP le proteine GFP e FRP sono rispettivamente espresse (Figura 3.17 A, B, C e D). L'espressione della p29HA è stata rilevata, mediante western blot, in tutte le lesioni necrotiche saggiate impiegando un anticorpo specifico per la proteina HA (Figura 3.18). I sintomi prodotti in presenza della p29HA sono identici a quelli ottenuti a seguito dell'inoculo del trascritto dell'RNA3 di BSBMV (clone E).

L'RNA contenuto in tre singole lesioni locali è stato analizzato mediante northern blot. Il rilevamento di RepIII-RFP e RepIII-GFP conferma che la fluorescenza osservata nelle lesioni locali è dovuta alla replicazione competente

di specie del RepIII. Interessante è che RepIII-GFP è replicato in modo più efficiente rispetto a RepIII-RFP (Figura 3.19 in basso, comparare linee 2 e 8). La replicazione di RepIII nel contesto BNYVV non interferisce con l'accumulo degli RNA 1 e 2 di BNYVV, in quanto una quantità simile viene rilevata fra gli RNAs e gli RNA totali estratti (Figura 3.19 in alto, comparare linee 1, 2 e 8).

<u>C'è competizione fra i repliconi derivati dagli RNA 3 di BSBMV (RepIII) e</u> <u>di BNYVV (Rep3), ma non fra RepIII e il replicone derivato dall'RNA5 di</u> <u>BNYVV (Rep5)</u>

L'analisi complessiva dei risultati ottenuti mediante northern blot ha permesso di stabilire che non sono significativi gli effetti dell'inoculo sull'accumulo degli RNA1 e 2 di BNYVV (Figura 3.19 in alto). BNYVV Rep5-GFP così come l'RNA3 completo sono stati ritrovati all'interno delle progenie virali ogni volta che i corrispondenti trascritti erano presenti nell'inoculo (Figura 3.19 intermedia, linee 5, 6 e 7 per Rep5-GFP e linee 4 e 6 per RNA3 BNYVV). Il trascritto del clone E è simile all'RNA3 completo di BNYVV nel contesto BNYVV. Precedenti studi hanno rivelato la competizione fra RNA3 di BNYVV e il replicone da esso derivato (Rep3) (Laubert *et al.*, 1999). Al fine di verificare eventuali competizioni nella replicazione RepIII e i suoi derivati sono stati inoculati, in presenza di Stras12, su foglie di *C. quinoa* insieme all'RNA3 di BNYVV o a Rep3. In funzione del tipo di inoculo, tipiche lesioni locali verde clorotico (CS), gialle (YS) e necrotiche (Nec) sono apparse dopo 7 giorni sulle

Fluorescenza	Effetto
Nd	Competizione: inibizione RepIII, YS
Nd	Competizione: inibizione RepIII, Nec
GFP	Competizione: inibizione RepIII, YS
GFP	Competizione: inibizione RepIII, CS
RFP e GFP	No competizione, CS
Nd	Competizione: Inibizione RepIII-GFP e Rep3-
	RFP, CS
GFP e RFP	Segregazione settoriale, CS
GFP e GFP	Segregazione, CS
	Fluorescenza Nd Nd GFP GFP RFP e GFP Nd GFP e RFP GFP e GFP

Tabella 3.3. Riassunto delle proprietà competitive degli RNA e dei derivati degli RNA3 valutate tramite fluorescenza e caratterizzazione fenotipica. Le lesioni locali su *C. quinoa* sono apparse 7 giorni dopo l'inoculo con Stras12 miscelato a BSBMV (RepIII o trascritto dell'RNA3 di BSBMV) e/o BNYVV (Rep3, Rep5 o trascritto dell'RNA3 di BNYVV). Rep3 e RepIII corrispondono ai vettori vuoti. Nd, non rilevata; Nec, lesione necrotica; YS, lesione gialla; CS, lesione clorotica.

foglie inoculate (Tabella 3.3). Singole lesioni sono state analizzate al microscopio a fluorescenza (Figura 3.17) e mediante northern blot, (Figura 3.19) ed i risultati ottenuti riassunti in Tabella 3.3.

Le lesioni gialle sono indicative dell'espressione della p25 codificata dall'RNA3 di BNYVV (Jupin *et al.*, 1992) e le lesioni necrotiche indicano la presenza dell'RNA 3 completo di BSBMV (clone E). Co-inoculando RepIII-RFP con l'RNA3 di BNYVV o di BSBMV si ha la scomparsa dei derivati del RepIII, conseguente assenza di fluorescenza delle lesioni e mancanza delle lesioni gialle o necrotiche causate dagli RNA3, rispettivamente, di BNYVV e BSBMV (Tabella 3.3). Inoltre l'analisi northern blot conferma l'assenza di RepIII-RFP (Figura 3.19, linee 3 e 4) e dell'RNA3 di BSBMV (Figura 3.19 in basso, linea 3) o di BNYVV (Figura 3.19 intermedia, linea 4).

L'aggiunta del trascritto derivato da Rep5-GFP a queste combinazioni porta all'espressione della GFP e alla comparsa di lesioni gialle locali (Figura 3.17, H), suggerendo che il clone Rep5 non interferisce con l'accumulo dell'RNA3 di BNYVV (Figura 3.19 intermedia, linea 6), come precedentemente descritto (Schmidlin *et al.*, 2005), e non reintegra l'accumulo di RepIII (Figura 3.17, G e Tabella 3.3). Questo effetto di non competizione fra Rep5-GFP sull'RNA3 di BSBMV è stato confermato nell'interazione con RepIII-RFP in quanto in tutte le

lesioni locali sono state espresse entrambe le proteine fluorescenti (Figura 3.17, E ed F) e sono state rilevate entrambe le specie virali (Figura 3.19 intermedia e in basso, linea 5). L'origine della molecola derivata dall'RNA3 di BSBMV non ha quindi azione sull'effetto competitivo, Rep3 è inoltre in grado di inibire RepIII-RFP (Figura 3.19 intermedia e in basso, linea 7 e Tabella 3.3). Similmente RepIII inibisce l'accumulo di Rep3-RFP e la sua espressione (Figura 3.19 intermedia e in basso, linea 11 e Tabella 3.3). La contemporanea presenza di RepIII-GFP e Rep3-RFP nell'inoculo porta all'espressione di entrambe le proteine fluorescenti secondo un fenotipo settoriale (Figura 3.17, I, J e K e Tadella 3.3). L'analisi sul contenuto in RNA rivela la presenza di entrambi gli RNA Rep3-RFP e RepIII-GFP derivati dal vettore virale (Figura 3.19 intermedia e in basso, linea 9), anche se ne diminuisce l'accumulo. Un effetto simile, ma più debole si è ottenuto quando RepIII-RFP è stato miscelato nell'inoculo con RepIII-GFP. In questo caso si presenta un modello fenotipico differente da quello settoriale prima descritto in cui RFP sembra essere espressa maggiormente al centro delle lesioni che risultano contornante da un anello in cui viene espressa la

GFP (Figura 3.17, L, M e N e Tabella 3.3). L'analisi Northern blot ha evidenziato le presenza RepIII in tutte le lesioni analizzate (Figura 3.19 in basso, linea 10).

3.2.3 Trascrizione e inoculo dell'RNA 4 di BSBMV

Il clone LB155 è stato linearizzato mediante digestione con l'enzima *BglII* e usato per la sintesi dell'RNA4 di BSBMV infettivo mediante trascrizione *in vitro* (Figura 3.20).

L'RNA trascritto è stato inoculato meccanicamente su foglie di *B. macrocarpa* e *C. quinoa* con una miscela contenente Stras12 con o senza l'aggiunta del trascritto dell'RNA3 di BNYVV o di BSBMV. Tipiche lesioni clorotiche caratterizzate dalla presenza di un anello necrotico

Figura 3.20. Migrazione su gel di agarosio della trascrizione *in vitro* dell'RNA4 di BSBMV prima del trattamento con l'enzima DNasi (4). (M) Marker 1 Kb DNA Ladder (Promega). sono comparse dopo 7 giorni sulle foglie delle piante inoculate con Stras12 e il trascritto dell'RNA4 di BSBMV (Figura 3.21), mentre in presenza del trascritto dell'RNA3 di BSBMV o di BNYVV le lesioni sono apparse necrotiche o clorotiche rispettivamente.

La replicazione dell'RNA4 di BSBMV e il suo trans-incapsidamento da parte della proteina del capside di BNYVV sono state riscontrate in tutte le piante inoculate, mediante analisi northern blot delle estrazioni di RNA effettuate, rispettivamente, con i protocolli Trizol e TM.

L'aspetto delle lesioni locali, se comparate a quelle causate dall'isolato Stras12, indicano inoltre l'effettiva replicazione dell'RNA4 di BSBMV.

Figura 3.21. Sintomi fogliari clorotici con anello necrotico degli inoculi effettuati su foglie di *C. quinoa* con una miscela di Stras12 (D) insieme al trascritto dell'RNA 4 di BSBMV (A-C).

3.2.3.1 Inoculi seriali di BSBMV su C. quinoa hanno portato alla comparsa

Figura 3.22. PCR di controllo con primer BSBMV4 NotI T7 F / OligodT21aVN BgIIII R: (A) e (B) RNA4 completo; (S) Campione sano; (C) 21° inoculo seriale. (M) Marker 1kbp DNA Ladder (Promega).

di una chimera RNA4-RNA3 del BSBMV

Secondo quanto pubblicato da Bouzouba *et al.* (1991) il reinoculo meccanico di BNYVV su piante ospiti può determinare la scomparsa degli RNA accessori (RNA 3 e/o 4) o la comparsa di delezioni nella loro sequenza.

Radici di *Beta vulgaris* cv. Portland, infette da BSBMV, sono state macinate ed inoculate meccanicamente su foglie di *C*. *quinoa*. Dopo 7 giorni sono state osservate lesioni necrotiche tipiche di BSBMV. Tre lesioni sono state re-inoculate su nuove foglie di *C. quinoa* ogni 7 giorni. Prima di ogni inoculo si è eseguita una reazione di RT-PCR di controllo al fine di verificare la presenza degli RNA3 e 4 di BSBMV e l'eventuale presenza di forme delete.

Sono stati attualmente eseguiti 55 inoculi seriali e l'RNA3 di BSBMV è sempre stato rilevato senza che siano state identificate forme delete. Per quel che riguarda l'RNA4 al 14° inoculo la reazione di RT-PCR ha mostrato un amplicone di circa 1310 bp esclusa la coda di poly(A). Il prodotto di PCR è stato inserito nel plasmide pUC19, ottenendo il clone LB55. Questo è stato sequenziato e la sequenza allineata con quella del clone LB155, dall'allineamento è stata messa in evidenza una delezione di 432 nucleotidi situati dal nucleotide 612 al 1043 sul clone LB155. Inoltre, la sequenza del clone LB55 è stata allineata con la sequenza pubblicata dell'RNA4 di BSBMV, fra le due è risultata un'identità del 91,6%, maggiore rispetto a quella ottenuta dall'allineamento fra la sequenza pubblicata e quella del clone LB155. Dall'allineamento della sequenza del clone LB55 con quella pubblicata dell'RNA4 di BSBMV viene messo in evidenza che il clone LB55 presenta 98 nucleotidi in più, dal nucleotide 603 al 701, che si inseriscono a livello del nucleotide 610 della seguenza pubblicata. Il clone deleto presenta inoltre 9 sostituzioni rispetto alla sequenza pubblicata e 11 rispetto al clone LB155 (Appendice B7).

Al 21° inoculo la reazione di RT-PCR ha mostrato un amplicone di 1144 bp, esclusa la coda di poly(A) (Figura 3.22). Il prodotto di PCR è stato inserito in pUC19 ottenendo il clone LB89. Il clone LB89 è stato sequenziato e allineato con le sequenze pubblicate degli RNA 3 e 4 di BSBMV e di BNYVV

Figura 3.23. Mappa genetica del clone LB89, complementare alle estremità 3' dell'RNA4 di BSBMV e 5' dell'RNA3 di BSBMV.

(Appendice B8). Dall'allineamento è risultato che il clone LB89 presenta la porzione 5', dal nucleotide 1 al 556, identica alla regione 5' dell'RNA4 di BSBMV (clone LB155) e la porzione 3', dal nucleotide 556 al 1162, corrispondente ai nucleotidi 1132-1720 dell'RNA3 di BSBMV. Mediante il Software Vector NTI (Invitrogen) sono state inoltre individuate due ipotetiche ORF sul filamento senso della sequenza in grado di codificare due ipotetiche proteine: p7 e p9 (Figura 3.23). Infatti sulla sequenza sono presenti 2 codoni AUG (382-384 e 561-563) e 2 codoni di stop UGA (559-561 e 786-788) che danno origine alle due teoriche ORF comprese tra i nucleotidi 382-561 (p7) e 561-788 (p9).

Studio della chimera

Al fine di verificare se le ipotetiche proteine p7 e p9 sono tradotte *in vivo* sono stati sintetizzati due cloni, originati dal clone LB155, in cui è stata inserita la sequenza della proteina HA fusa all'estremità C-terminale delle ipotetiche proteine p7 e p9, ottenendo rispettivamente i cloni MD09 e MD10. Questi cloni sono stati utilizzati, dopo essere stati linearizzati con BglII, per la trascrizione *in vitro*.

Figura 3.24. Confronto del contenuto in RNA virali nelle lesioni locali ottenute dopo 7 giorni sulle foglie di *C. quinoa* mediante saggio northen blot. Le miscele di inoculo contengono Stras12 (D) a cui è stato aggiunto: il trascritto dell'RNA3 di BSBMV e p9HA (A), p9HA (B), p7HA (C).

Gli RNA trascritti sono stati inoculati meccanicamente su foglie di *C. quinoa* con una miscela contenente Stras 12, a distanza di 7 giorni dall'inoculo su tutte le piante inoculate sono comparse lesioni clorotiche tipiche dell'infezione dell'isolato Stras12. Per verificare l'effettiva replicazione *in planta* degli RNA derivati dai cloni MD09 e MD10 sono stati estratti gli RNA totali da 3 lesioni e sono stati saggiati mediante northen blot usando sonde specifiche marcate con ³²P radioattivo (Figura 3.24). Sequenze specifiche dell'RNA3 e RNA4 di BSBMV sono state rilevate in tutte le piante inoculate ad eccezione della sola pianta di controllo inoculata solo con Stras12. Al fine di verificare la funzionalità delle due ipotetiche ORF p7 e p9 della chimera si è proceduto mediante saggio

western blot partendo da 3 lesioni fogliari. Entrambe le proteine p7HA e p9HA non sono visibili sulla lastra fotografica mentre è ben visibile la p29HA, utilizzata come controllo positivo della reazione e dell'inoculo (Figura 3.25).

3.3 Core Region RNA3 BNYVV

3.3.1 Sintesi di un clone cDNA della Core Region dell'RNA3 BNYVV

Con la coppia di primer BNYVV3Core F NcoI e BNYVV3Core R BamHI è stata amplificata la core region dell'RNA3 del BNYVV (226 bp). Il primer forward porta il sito di restrizione *NcoI* e il primer reverse *BamHI* per il clonaggio in RepIII e Rep3. Il prodotto di PCR purificato è stato tagliato con *NcoI* e *BamHI* e ligato nei plasmidi RepIII e Rep3, tagliati nello stesso modo, ottenendo rispettivamente i plasmidi MD05 e MD06.

3.3.2 Trascrizione e inoculo della Core Region

I plasmidi MD05 (RepIII-Core Region) e MD06 (Rep3-Core Region) sono stati linearizzati con *HindIII* e utilizzati per la sintesi di RepIII-Core region e Rep3-Core region, rispettivamente, mediante trascrizione *in vitro*.

Gli RNA trascritti stato stati inoculati su foglie di *B. macrocarpa* in miscela con Stras12. Contemporaneamente sono stati trascritti e inoculati nelle medesime condizioni gli RNA3 di BSBMV e BNYVV. Dopo 7 giorni dall'inoculo su tutte le foglie inoculate sono comparse lesioni clorotiche, tipiche dello Stras12. Dopo 15 giorni sono comparsi sintomi sistemici solamente nelle piante inoculate con i trascritti degli RNA3 di BSBMV e BNYVV, mentre nessun sintomo sistemico è comparso nelle piante inoculate con i trascritti dei cloni MD05 o MD06.

3.4 Messa a punto di un metodo per l'infezione naturale attraverso il vettore *P. betae* di radici di barbabietola da zucchero con BSBMV e BNYVV

3.4.1 Protocollo per l'infezione naturale di piante di barbabietola da zucchero mediata da *P. betae*

A partire dal metodo di inoculo pubblicato da Koenig e Stein (1990) è stato messo a punto un protocollo che ha permesso di infettare radici di piante di barbabietola da zucchero tramite il vettore naturale dei virus oggetto di studio, *P. betae*. Questo metodo permette di riprodurre l'infezione che avviene in natura ed è stato utilizzato per studiare i cloni sintetici degli RNA virali ottenuti.

I migliori risultati sono stati ottenuti impiegando piantine di bietola (cv. Portland) di 10 giorni ottenute su sabbia sterile da seme sterilizzato con etanolo 70% e ipoclorito di sodio al 2%.

La fonte *in vivo* del vettore *P. betae* è stata ottenuta seminando semi di bietola sterilizzati su sabbia sterile miscelata a radici secche di bietole in cui è stata verificata la presenza del vettore e l'assenza di infezioni virali tramite reazione RT-PCR multiplex.

La sorgente d'inoculo virale *in vivo* è stata ottenuta infettando meccanicamente foglie di *C. quinoa* con miscele d'inoculo contenenti i trascritti degli RNA di BSBMV e BNYVV. Dopo 7 giorni dall'inoculo le lesioni fogliari di *C. quinoa* sono state macinate nello stesso tampone utilizzato per l'inoculo fogliare, in rapporto peso:volume 1:3. L'estratto ottenuto è stato passato in un tubo corex da 30 ml, contenente polvere di carborundo, e vi sono state immerse le radici di 20 piantine di bietola sane, private di ogni residuo di sabbia. Il tubo è stato agitato, con un agitatore meccanico, per 1 minuto e fatto riposare in ghiaccio per 5 minuti, con le radici immerse nella soluzione di inoculo. Le piantine sono state successivamente trapiantate in sabbia sterile. In particolare vaschette di plastica, di dimensioni di 10 cm x 10 cm, sono state idealmente suddivise i tre settori (Figura 3.26), in ciascuno dei settori 1 e 2 sono state trapiantate 10 piantine di bietola sane.

Dopo 7 giorni dall'inoculo le piante del settore 1 sono state inoculate con un tampone innestato con *P. betae* irrorando sul colletto di ogni singola pianta 2 ml della soluzione preparata. Un ulteriore inoculo è stato effettuato a distanza di 90 minuti.

Il saggio mediante RT-PCR multiplex ha permesso di rilevare l'infezione virale e del vettore dopo 4 settimane nelle piantine del terzo settore. Dopo tale termine è possibile estirpare le piante del settore 3 e seccarne le radici all'aria. Le radici secche sono state miscelate a sabbia sterile sulla quale vengono seminati semi di bietola sterili. Le piantine che si sviluppano hanno evidenziato, mediante analisi RT-PCR multiplex, l'infezione del virus e del vettore 20 giorni dopo la semina.

3.4.2 Infezione naturale attraverso il vettore *P. betae* di radici di barbabietola da zucchero con BSBMV e BNYVV

Adottando il protocollo descritto nel paragrafo 3.6.1 sono state inoculate le radici di piantine di bietola con differenti miscele contenenti:

- A) Stras12+RNA4 BNYVV tipo B
- B) Stras12+RNA3 e 4 BNYVV tipo B
- C) PolyBSBMV
- D) Stras12+RNA3 BNYVV tipo B e RNA4 BSBMV

L'analisi RT-PCR multiplex nella fase finale del protocollo ha confermato l'infezione virale in tutte le piante saggiate evidenziando ampliconi specifici per l'RNA2 di tipo B nelle piane inoculate con le miscele A, B e D e per l'RNA2 di BSBMV per la miscela C.

CAPITOLO 4

DISCUSSIONE E CONCLUSIONI

4.1 Discussione

La complementazione fra segmenti di RNA provenienti da RNA virali con genoma multipartitico è considerato uno dei principali criteri per la classificazione delle specie virali (Van Regenmortel *et al.*, 1997). Nel caso del genoma tripartitico dei *Cucumovirus* gli RNA 1 e 2 codificano proteine fondamentali quali metiltransferasi, elicasi e polimerasi, e il materiale genetico può essere scambiato solo all'interno della stessa specie, quindi fra *Cucumber mosaic virus* (CMV), *Tomato aspermy virus* (TAV) e *Peanut stunt virus* (PSV), ma non fra differenti specie (Habili *et al.*, 1974; Hu *et al.*, 1998; Palukaitis *et al.*, 1992; Rao *et al.*, 1981). Ciò nonostante l'RNA3 di questi virus, che codifica per le proteine del capside e di movimento, può essere scambiato fra specie diverse (Habili *et al.*, 1974; Salanki *et al.*, 1997).

La comparazione delle sequenze fra il genoma del BSBMV e il genoma del BNYVV rivela geni essenziali conservati sull'RNA 1 e 2 e una bassa conservazione dei componenti del genoma che portano geni non essenziali (RNA 3 e 4) (Lee *et al.*, 2001).

La sequenza 3' UTR degli RNA del BSBMV è altamente conservata e comparabile con la sequenza degli RNA del BNYVV, ben caratterizzati dal punto di vista molecolare e funzionale (Bouzoubaa *et al.*, 1985, 1986).

BSBMV e BNYVV risultano molto simili dal punto di vista biologico, epidemiologico e sintomatologico ma, dal punto di vista genetico sono sufficientemente differenti da essere ascritti a due specie separate. Effetti sinergici e antagonistici delle infezioni virali sono inoltre già stati descritti per quel che riguarda BSBMV/BNYVV (Wiesler *et al.*, 2003).

In base queste osservazioni abbiamo ipotizzato una selezione dell'RNA virale conservata e un meccanismo di replicazione comune per entrambi i virus. L'elevata conservazione dei prodotti codificati dall'RdRp degli RNA 1 di BNYVV e BSBMV ha creato il presupposto per cui il complesso della replicazione del BNYVV e del BSBMV potesse replicare gli RNA dell'altro virus.

Queste informazioni ci hanno convinto che lo studio incrociato di BSBMV e BNYVV, sfruttandone le reciproche somiglianze e divergenze, possa

82

permettere di acquisire importanti informazioni per comprendere i meccanismi biochimici che si trovano alla base delle interazione fra il virus e l'ospite.

La nostra ricerca si è perciò concentrata sull'ottenimento di cloni cDNA infettivi, degli RNA che compongono il genoma di BSBMV e BNYVV, per poter creare un sistema "sintetico", ben caratterizzato cioè da un punto di vista molecolare. Inserendo variabili note in tale sistema, come ad esempio mutazioni puntiformi specifiche nei geni virali coinvolti nella replicazione e/o nell'espressione dei sintomi, si potranno estrapolare informazioni essenziali per lo studio delle interazioni bio-molecolari che avvengono tra i due virus e la pianta ospite.

Numerose difficoltà, superate grazie all'impiego di diverse strategie di clonaggio, sono state incontrate durante la produzione dei cloni cDNA degli RNA 1 e 2, sia di BSBMV sia di BNYVV. L'instabilità del cDNA virale inserito in un vettore plasmidico batterico è stata infatti osservata in diversi processi per la produzione di cloni cDNA completi, per la trascrizione in vitro di RNA infettivi, di virus a singolo filamento positivo di RNA (Miyanishi *et al.*, 2002).

I trascritti ottenuti, a partire dai cloni LB160 e LB157 (RNA 1 e 2 di BSBMV rispettivamente) e dal clone LBS31 dell'RNA1 di BNYVV tipo P si sono dimostrati non replicativi e non infettivi *in planta*. Tali osservazioni, alla luce del fatto che le regioni 3' e 5' UTR del genoma di BNYVV intervengono in maniera decisiva nel meccanismo della replicazione virale (Gilmer *et al.*, 1992, 1993 e Lauber *et al.*, 1997) suggeriscono che i cloni fino ad ora ottenuti presentino una o più sostituzioni nucleotidiche, nelle regioni 3' e/o 5' UTR, che non ne permettono la replicazione. L'analisi delle sequenze dei cloni ottenuti, allineate con le rispettive sequenze pubblicate (Appendici B1, B3 e B4), hanno infatti evidenziato un basso numero di sostituzioni o delezioni nucleotidiche.

Precedenti studi, che hanno portato alla sintesi dei cloni completi infettivi degli RNA 1 e 2 di BNYVV di tipo B, hanno già evidenziato che una singola sostituzione nucleotidica può compromettere la funzionalità biologica dell'RNA virale (Jupin *et al.*, 1988). Risulta però particolarmente difficile discriminare sostituzioni nucleotidiche dovute alla naturale variabilità genetica del virus, da alterazioni della sequenza verificatesi durante il clonaggio. Tale discorso risulta particolarmente vero per il BNYVV tipo P del quale la bibliografia manca di una sequenza completa dell'RNA1 e, prima del presente lavoro, dell'RNA2, ma anche per quel che riguarda BSBMV di cui si dispone della sequenza nucleotidica di un solo isolato (Lee *et al.*, 2001). Per questo motivo le sequenze dei cloni dell'RNA 1 e 2 di BNYVV tipo P sono state allineate con le sequenze complete degli RNA 1 e 2 di BNYVV di tipo A (NC_003514) e tipo B (gentilmente fornita dal Prof. D. Gilmer) e l'identità e il numero di sostituzioni sono state calcolate riferendosi alla sequenza di tipo A, a cui gli isolati di tipo P risultano molto simili (Rush, 2003).

I cloni LB160 e LB157 presentano diverse differenze nucleotidiche rispetto alle sequenze dell'isolato di Lee *et al.* (2001) che, non essendo state corrette da reazioni di RT-PCR, che amplificano specificatamente la sola porzione 5' degli

BSBMV (NC_003506) e di BNYVV (NC_003514). Le ellissi indicano le divergenze fra la sequenza del clone LB160 e la sequenza NC_003506 che trovano corrispondenza nella sequenza NC_003514. Le sostituzioni sono indicate in rosso e le delezioni in blu.

RNA 1 e 2 di BSBMV, si suppone siano dovute alla variabilità genetica tra gli isolati virali. Un discorso a parte deve essere fatto per il clone LB160 la cui sequenza mostra la maggior parte delle differenze nucleotidiche, rispetto a quella dell'RNA1 di BSBMV (NC_003506), comprese tra i nucleotidi 460 e 741. La

maggior parte di tali differenze trovano sorprendentemente corrispondenza nella sequenza dell'RNA1 di BNYVV tipo A (NC_003514) (Figura 4.1). L'identità di sequenza del clone LB160 aumenta infatti dal 76,8% al 77,0 % nei confronti, rispettivamente, delle sequenza NC_003506 e NC_003514. Tale osservazione suggerisce, oltre alla validità del clone LB160, la possibilità che la sequenza NC_003506 sia stata soggetta a problemi di instabilità dell'inserto cDNA durante le fasi di clonaggio in accordo a quanto riportato, proprio nella regione codificante l'enzima metil-transferasi, durante il tentativo di clonazione dell'RNA1 del virus del mosaico comune del frumento (*Soil-borne cereal mosaic virus*, SBCMV) trasmesso da *Polymyxa graminis* (Miyanishi *et al.*, 2002).

Anche la sequenza dell'RNA2 di BSBMV riportata da Lee *et al.* (2001), su cui ci si è basati per costruire il clone LB157, presenta una particolare discordanza nei primi due nucleotidi (GG) della regione 5' UTR rispetto ai nucleotidi AA che mostrano le sequenze pubblicate degli altri RNA di BSBMV e di BNYVV.

Per individuare quali, tra le sostituzioni evidenziate, determinano la non infettività dei nostri cloni si procederà apportando correzioni puntiformi tramite mutagenesi per PCR e verificando l'infettività del clone *in planta* (Appendice A).

A conferma della difficoltà nel definire la corretta sequenza dei nostri cloni, il clone dell'RNA2 di BNYVV tipo P (LBS22) è risultato essere infettivo nonostante presenti ben 50 sostituzioni rispetto alla sequenza dell'RNA2 di BNYVV tipo A pubblicata (NC_003515).

L'inoculo meccanico dell'RNA trascritto dal clone LBS22, su foglie di *C*. *quinoa* in presenza:

- del trascritto dell'RNA1 di BNYVV tipo B,
- dell'isolato Stras12 (RNA 1 e 2 tipo B)
- dell'isolato PolyBSBMV

ci ha permesso di dimostrare, rispettivamente, per la prima volta che:

- l'RdRp dell'RNA1 di BNYVV tipo B è in grado di riconoscere e replicare in maniera efficiente il trascritto dell'RNA 2 di BNYVV tipo P.
- non c'è competizione nella replicazione tra l'RNA2 di BNYVV tipo B e l'RNA2 di BNYVV tipo P.

 - l'RNA2 di BNYVV tipo P è riconosciuto e replicato dalla RdRp dell'RNA1 di BSBMV e non compete per la replicazione con l'RNA2 di BSBMV.

I risultati appena evidenziati rivestono particolare importanza nell'ottica dello studio incrociato dei due virus, in quanto dimostrano per la prima volta l'esistenza di una attiva interazione in pianta sia tra diversi tipi del BNYVV sia tra questi e il BSBMV e, di conseguenza, la possibile esistenza di meccanismi comuni di riconoscimento da parte dell'ospite.

La presente ricerca si è focalizzata anche sulle specie dell'RNA3 in quanto le strutture UTR all'estremità 5' e 3' dell'RNA3 di BNYVV sono state ben caratterizzate (Gilmer et al., 1993; Lauber et al., 1997). Su entrambe le specie di RNA3 la regione 3' UTR presenta infatti delle sequenze altamente conservate con mutazioni compensative in grado di permettere la formazione delle strutture secondarie necessarie per l'inizio della trascrizione (Figura 3.7). Interessante è che questa analisi ha permesso di confermare l'esistenza delle interazioni ipotizzate fra ¹⁷¹¹AAGA¹⁷¹⁴ e ¹⁷⁵⁵UCUU¹⁷⁵⁸ presenti sull'RNA3 di BNYVV (Figura 3.7) visto che le sequenze compensative 1657 GUAU 1660 e 1701 GUAC 1704 sono state identificate nell'RNA 3 di BSBMV. Nella regione 5' UTR dell'RNA3 di BSBMV sono state rinvenute sequenze ripetute, invertite (Boxes) contenenti variazioni compensative di basi. Questi Boxes mantengono l'appaiamento delle basi e partecipano alla replicazione e all'incapsidazione dell'RNA3 di BNYVV (Gilmer et al., 1993, 1992). Le nostre analisi ci hanno permesso di concludere che le regioni UTR dell'RNA3 di BSBMV possiedono strutture secondarie molto simili a quelle presenti nelle regioni UTR dell'RNA3 di BNYVV. Il rinvenimento della progenie dell'RNA3 di BSBMV dopo l'inoculo del clone completo trascritto in vitro in presenza dello Stras12 dimostra che l'RdRp del BNYVV è in grado di replicare l'RNA3 di BSBMV. Inoltre l'RNA3 del BSBMV viene anche incapsidato dalla proteina capsidica del BNYVV e promuove il movimento sistemico delle particelle di BNYVV in B. macrocarpa (Tabella 3.2). Fino ad ora, infatti, il determinante essenziale per il movimento vascolare è stato assegnato ad una regione dell'RNA3 di BNYVV, la core region, escludendo il ruolo di ogni prodotto genico dell'RNA3 (Lauber et al., 1998). Di conseguenza abbiamo supposto che un motivo simile a questa core region fosse presente anche sull'RNA3 di BSBMV, in quanto in grado di determinare il movimento sistemico

del BNYVV in *B. macrocarpa*. L'allineamento dei cloni completi degli RNA 3 di BNYVV e BSBMV ha rivelato una identità nuclotidica del 61% e una sequenza di 20 bp (5'-GUCCGAAGACGUUAAACUAC-3') conservata in entrambi gli RNA (posizione 1236-1255 e 1237-1256 per RNA3 di BNYVV e BSBMV rispettivamente) chiamata 'coremin'. Abbiamo identificato la sequenza coremin nell'RNA5 di BNYVV, nell'RNA4 di BSBMV e in altre specie virali appartenenti al genere *Cucumovirus*: nell'RNA3 del CMV e del TAV. Interessante è che tale sequenza è presente sulla sequenza 5' leader del CMV, sugli RNA subgenomici del TAV (Blanchard *et al.*, 1997; Shi *et al.*, 1997) e nella sequenza 5' leader dell'RNA3 subgenomico di BNYVV (Balmori *et al*, 1993). Tutto ciò sottolinea l'importante ruolo della sequenza coremin nell'interazione pianta virus ed in particolare per le infezioni sistemiche dei virus, come suggerito anche dai nostri risultati (Tabella 3.2).

L'infezione sistemica è risultata più efficiente per BNYVV (RNA 1-3) o BSBMV (RNA 1-4) piuttosto che per Stras12 inoculato con l'RNA 3 di BSBMV. In altri termini si è osservato che lo stesso RNA3 di BSBMV è in grado di indurre sintomatologie sistemiche di forte entità qualora si trovi in presenza degli RNA 1 e 2 di BSBMV ma sintomatologie lievi quando è co-inoculato con gli RNA 1 e 2 di BNYVV.

Tale differenza potrebbe essere collegata alla presenza di due motivi coremin in BSBMV (RNA 3 e 4) e l'elevato accumulo dell'RNA3 di BNYVV potrebbe compensare la mancanza di una seconda sequenza coremin. Interessante è che gli isolati di BNYVV che contengono tutti i 5 RNA possiedono anche una seconda regione coremin, fatto che potrebbe spiegare la loro maggiore aggressività in barbabietola da zucchero (Buttner *et al.*, 1990).

Tale ipotesi non può comunque escludere la presenza di altri motivi strutturali sull'RNA 1 e/o 2 di BNYVV che possono essere implicati nel movimento sistemico. La sequenza completa della "Core Region" di un isolato di BNYVV è stata infatti clonata in Rep3 ed in RepIII. I risultati dell'inoculo di tali cloni con l'isolato Stras12 su piante di *B. macrocarpa* hanno permesso di escludere che la "Core Region" abbia un ruolo "solista" nello sviluppo di sintomi sistemici.

Ciononostante i sintomi sistemici di Stras12 inoculato con l'RNA3 di BSBMV confermano che quest'ultimo è transincapsidato da parte della CP di BNYVV, come richiesto per il movimento a lunga distanza di BNYVV (Quillet *et al.*, 1989).

Lavori precedenti hanno riportato l'utilizzo di repliconi dell'RNA 3 e 5 di BNYVV come vettori di espressione (Bleykasten et al., 1997; Schmidlin et al., 2005). Il clone dell'RNA3 di BSBMV è servito per produrre un nuovo vettore virale, RepIII, che è stato impegato per esprimere con successo le proteine GFP e RFP (Figura 3.17). La co-espressione di proteine utilizzando due repliconi derivanti dagli RNA 3 determina la perdita di competitività di una delle molecole di RNA3 all'interno della lesione locale (Lauber et a.l, 1999) ad eccezione di quando entrambe le sequenze codificate dai repliconi sono richieste per un ciclo di replicazione efficiente (Lauber et al., 1998). La co-espressione di proteine richiede perciò la presenza di molecole derivate dall'RNA3 di BSBMV e dall'RNA5 di BNYVV (Schmidlin et al., 2005). La coinoculazione dei repliconi derivati dal BSBMV e dal BNYVV, insieme a Stras12, rivela una forte competizione fra gli RNA3, ma non con l'RNA5. Questa situazione suggerisce la stretta relazione fra i promotori della replicazione di ambo gli RNA 3 che risulta minore con quelli dell'RNA5, anche se l'RNA3 di BSBMV codifica la proteina p29 che è risultata molto più simile alla p26 codificata dall'RNA5 piuttosto che alla p25 codificata dall'RNA3 di BNYVV.

La competizione dell'RNA3 è espressa o dalla replicazione esclusiva e quindi selezione dei componenti parentali dell'RNA3 di BNYVV legata alla perdita degli RNA di BSBMV (ad esempio il trascritto dell'RNA3 di BNYVV o di Rep3 esclude il trascritto dell'RNA3 di BSBMV e di RepIII), o dalla replicazione di uno dei repliconi derivati dall'RNA3, conducendo alla casuale selezione dell'RNA e all'espansione settoriale della specie virale. Quest'ultima mancanza di pressione selettiva fra i repliconi derivati dall'RNA3 di BSBMV e BNYVV e BSBMV suggerisce la presenza di elementi *cis* sull'RNA3 di BSBMV e BNYVV che possono favorire il riconoscimento e/o la replicazione. Quando RepIII-GFP e RepIII-RFP sono miscelati insieme, entrambe le molecole vengono replicate. L'espressione dell'RFP risulta però inferiore (Figura 3.17) e tendenzialmente espressa nell'infezione tardiva al centro della lesione, mentre GFP viene

espressa nell'intera lesione (Figura 3.17). Questa situazione potrebbe perciò essere spiegata dalla replicazione di entrambi i vettori RepIII nelle fasi iniziali dell'infezione e nella selezione del componente RNA di RepIII-GFP. La ragione di tale selezione potrebbe essere dovuta ad alcune strutture dell'RNA più compatibili per la replicazione presenti in RepIII-GFP piuttosto che in RepIII-RFP. Effettivamente, sequenze presenti su entrambe le regioni 5' e 3' UTR si sono dimostrate in grado di facilitare o interferire con l'accumulo *in planta* di Rep3 (Lauber *et al.*,1999).

Durante la presente ricerca abbiamo altresì supposto che l'RNA4 del BSBMV potesse essere replicato dal complesso della replicazione del BNYVV.

Il clone LB155 ottenuto si presenta con una lunghezza di 1767 nucleotidi e mostra, rispetto alla sequenza di riferimento pubblicata NC_003508, 630 nucleotidi in più, precisamente dal nucleotide 689 al 1219 con un'identità di sequenza nucleotidica del 69,1%. In termini di dimensioni e di organizzazione genomica la sequenza del clone LB155 risulta inoltre maggiormente simile a quella dell'RNA4 di BNYVV (NC_003517) nonostante l'identità nucleotidica risulti pari al 51,8% (Appendice B6).

A seguito dell'inoculo meccanico, in presenza dell'isolato Stras12, su foglie di C. *quinoa* del clone completo trascritto *in vitro* è stato dimostrato che l'RdRp del BNYVV è in grado di replicare anche l'RNA4 di BSBMV e che inoltre quest'ultimo viene transincapsidato dalla proteina capsidica del BNYVV.

La presenza dell'RNA4 di BNYVV è essenziale nella trasmissione tramite il vettore naturale *P.betae*, ma interviene anche nella comparsa dei sintomi (Rahim *et al.*, 2007). A seguito dell'inoculo meccanico di foglie di *C. quinoa* con una miscela contenente Stras12 e il trascritto del clone LB155 sono state osservate lesioni clorotiche caratterizzate dalla presenza di un anello necrotico (Figura 3.14), questa sintomatologia, differente da quella determinata dal solo Sras12 ci ha permesso di dimostrare per la prima volta che anche l'RNA4 di BSBMV interviene nell'induzione dei sintomi.

Il reinoculo meccanico di BNYVV su piante ospiti come *C. quinoa* ha permesso di evidenziare, in alcuni casi, la scomparsa degli RNA accessori (RNA 3 e/o 4) o la formazione di acidi ribonucleici deleti derivanti dagli RNA3 e RNA4 del BNYVV. Lo studio di tali forme delete ha permesso di acquisire

nuove conoscenze sulla funzionalità del genoma virale della rizomania (Bouzouba *et.al*, 1991). In base a queste informazioni si può ipotizzare che l'isolato rinvenuto da Lee *et al.* (2001) potrebbe consistere in una forma deleta dell'RNA4, nonostante esso sia stato ritrovato, di dimensioni identiche, anche nelle estrazioni effettuate a partire da foglie di *B. vulgaris*.

Per questo motivo una parte della nostra ricerca ha indagato il comportamento degli RNA3 e 4 di BSBMV in seguito ad inoculi meccanici seriali su *C. quinoa*.

I dati raccolti durante i 55 inoculi seriali eseguiti non hanno evidenziato forme delete dell'RNA3 ma hanno permesso di rilevare la comparsa, al 14° reinoculo, di una forma deleta dell'RNA4 di BSBMV di 1310 bp esclusa la coda di poly(A), che presenta un'identità nucleotidica dell'83,6% con la sequenza pubblicata NC_003508. Al 21° reinoculo è scomparsa la forma deleta dell'RNA4 ed è comparsa una forma chimerica, un acido ribonucleico formato cioè dall'estremità 5' dell'RNA4 e dall'estremità 3' dell'RNA3 di BSBMV. La ricombinazione è un fenomeno frequente nei virus ad RNA, specialmente come risultato largamente influenzato dalla pressione selettiva. La chimera selezionatasi nelle condizioni di reinoculo si è mantenuta inalterata fino al 55° passaggio rivelandosi perciò una stabile risposta alla pressione selettiva a cui il virus è stato sottoposto.

Sulla sequenza della chimera sono state individuate due ipotetiche ORF in grado di codificare due ipotetiche proteine: p7 e p9. I risultati ottenuti esprimendo e inoculando in *C. quinoa* cloni della chimera fusi con la proteina HA suggeriscono la non funzionalità degli ipotetici ORF identificati. È stato però stato dimostrato che il clone dell'RNA chimerico viene replicato *in planta* indicando un possibile coinvolgimento della sola sequenza nucleotidica nel ciclo infettivo del virus senza produzione di alcuna proteina virale. Non si può però escludere che la causa della mancata espressione delle proteine p7HA e p9HA sia da imputare ad eventuali modifiche subite, in seguito all'inserimento della sequenza HA, dalla struttura secondaria dell'RNA e dei relativi siti di inizio della traduzione.

Infine, a completamento del sistema di studio che la presente ricerca ha costruito, si è resa necessaria la messa a punto di un protocollo che permetta di

trasferire i cloni ottenuti alle zoospore di *P. betae*. In questo modo sarà possibile studiare e verificare il comportamento dei virus sintetici in condizioni di inoculo naturali, mediate perciò dal protozoo vettore.

La piena funzionalità del protocollo ideato è stata verificata mediante infezione di *P. betae* con diverse miscele di RNA di BNYVV e BSBMV (Stras12+RNA4 BNYVV tipo B; Stras12+RNA3 e 4 BNYVV tipo B; PolyBSBMV; Stras12+RNA3 BNYVV tipo B e RNA4 BSBMV). Contemporaneamente è stato dimostrato, per la prima volta, che l'RNA4 di BSBMV è in grado di mediare la trasmissione attraverso *P. beate* degli RNA 1, 2 e 3 di BNYVV confermando la stretta relazione esistente fra i due virus oggetto di studio.

4.2 Conclusioni

La nostra ricerca ha raggiunto lo scopo prefissosi, ha prodotto infatti una collezione di cloni cDNA degli RNA di BNYVV e di BSBMV che, insieme al lavoro di precedenti gruppi di ricerca (Jupin *et al.*, 1988; Ziegler Graff *et al.*, 1988), permette la sintesi di copie sintetiche di entrambi i Benyvirus. Le difficoltà incontrate nel produrre i cloni LB160, LB157 e LBS31, non superate da altri gruppi di ricerca (Miyanishi *et al.*, 2002), ne hanno però ritardato il completamento. Tali cloni saranno resi infettivi tramite mutagenesi puntiforme specifica che verrà attuata in base alle sequenze ottenute.

Oltre a ciò la ricerca ha dimostrato, per la prima volta, la capacità degli RNA1 e 2 di BNYVV (Stras 12) di trans-replicare ed incapsidare l'RNA3 e l'RNA4 del BSBMV, e degli RNA 1 e 2 di BSBMV di replicare l'RNA2 di BNYVV verificando la stretta correlazione tra i due virus. Inoltre, l'RNA3 del BSBMV rende possibile il movimento sistemico degli RNA 1 e 2 di BNYVV inoculati in piante di *B. macrocarpa*. Siamo riusciti a produrre con successo un nuovo vettore virale (RepIII), derivato dalle regioni non codificanti dell'RNA3 del BSBMV, che ha consentito l'espressione delle proteine p29HA, GFP e RFP in piante di *C. quinoa*.

Abbiamo dimostrato che la "Core Region" non è l'unico dominio fondamentale per il movimento sistemico in *B. macrocarpa* del BSBMV e BNYVV: esistono altre regioni del genoma virale, forse localizzate sull'RNA1 o sull'RNA2, in grado di interagire positivamente tra loro consentendo il movimento sistemico del virus.

Gli effetti competitivi in una infezione mista di BNYVV/BSBMV in barbabietola sono stati descritti da Wisler *et al.* (2003), l'infezione di BNYVV riduce l'accumulo di BSBMV sia nelle specie suscettibili sia resistenti di barbabietola da zucchero. Nello stesso articolo gli autori menzionano la possibile competizione per un fattore cellulare necessario per formare i complessi di replicazione. Le nostre analisi non sono sufficienti per investigare questa ipotesi ma apportano nuove conoscenze a riguardo. Il complesso di replicazione di BNYVV è infatti in grado di replicare l'RNA3 di BSBMV, tale replicazione diviene però impossibile in presenza dell'RNA3 di BNYVV. Ne consegue che se l'RNA3 di BSBMV è necessario per adempire il ciclo virale di BSBMV, ci si dovrebbe aspettare un calo del contenuto virale di BSBMV in infezione mista. Questa ipotesi potrebbe essere ripresa per le altre specie di RNA virali e questo spiegherebbe la maggior virulenza di BNYVV nelle piante. Nello stesso studio l'accumulazione preferenziale di BSBMV è descritta in un solo caso (Wisler *et al.*, 2003). In tale situazione sfavorevole sarebbe possibile la ricombinazione fra le due specie virali che condurrebbe ad un nuovo genotipo di virus non ancora descritto.

Di particolare interesse risulta il fatto che i sintomi indotti dall'RNA3 di BSBMV sulle foglie di *C. quinoa* sono risultati molto più simili alle lesioni locali necrotiche causate dalla p26, codificata dall'RNA5 di BNYVV, piuttosto che ha quelle clorotiche causate dalla p25 codificata dall'RNA3 di BNYVV. Come precedentemente riportato l'identità della sequenza amminoacidica fra p29 di BSBMV e p25 di BNYVV è del 23% (Lee *et al.*, 2001), ma questa identità cresce al 43% se comparata con la sequenza della p26 codificata dall'RNA5 di BNYVV. Questa ragione può spiegare la similitudine dei sintomi indotti dalla p29 e dalla p26, ma altri studi sono necessari per scoprire le proprietà funzionali della p29 di BSBMV e compararle con quelle della p26 di BNYVV (Link *et al.*, 2005).

È stata ottenuta una forma chimerica, derivata dalla fusione dell'estremità 5' dell'RNA4 ed estremità 3' dell'RNA3 di BSBMV, come risposta alla pressione selettiva ad inoculi meccanici seriali su *C. quinoa* del BSBMV "wild-type". Tale RNA chimerico sembra non esprimere alcuna proteina ma, essendo replicato e trascritto *in planta*, potrebbe rappresentare un importante strumento di studio per acquisire nuove conoscenze sulle interazioni *Benyvirus* – pianta.

In conclusione sono stati prodotti diversi strumenti, tra cui un sistema per l'analisi in condizioni naturali di inoculo tramite *P. betae*, e ottenute nuove conoscenze che permetteranno di affrontare i futuri esperimenti volti a investigare, sfruttando le loro somiglianze e divergenze, le interazioni molecolari fra BNYVV e BSBMV in barbabietola da zucchero.

APPENDICI

Nome	Sequenza	Regione	Accession number genbank o sequenza di riferimento
	Primers utilizzati per l'ottenimento dei cloni		
DODMV1 Not T7 E	BSBMV KNAI	0.22	NC 002506
OligodT21 VN MluI		0-32 poly(A)	NC_003506
ongourzi vivimur	BSBMV RNA2	pory(r1)	110_005500
BSBMV2 NotI T7 F	AAAGCGGCCGCTAATACGACTCACTATAGGGATTCTAATTATTATCTCCATTGAATAGAA	0-31	NC_003503
BSBMV2 XmaI R	CTTTCAGTCTTCCCGGGCATAC	1794-1815	NC_003503
BSBMV2 XmaI F	GAGCGTATGCCCGGGAAGAC	1790-1809	NC_003503
BSBMV2 Xba F	AAATGTCTAGAGAAATAACGGCCCGTGC	3271-3298	NC_003503
BSBMV2 XbaI R	AAACTGCAGTCTAGACATTATCTATCCTCGCAAAAGG	3254-3290	NC_003503
Oligod121 VN BgIII	AAAAGAICIITIIIITIITIITIITIITIIVN BSRMV DNA3	poly(A)	NC_003503
BSBMV3 EcoRI T7 F	AAAGAATTCTAATACGACTCACTATAGAAATTTAAATCTATCACCACATTAGGTATTAATTTATCG	0-40	NC 003507
OligodT21 HindIII	AAAAAGCTTTTTTTTTTTTTTTTTTTTTTTT	poly(A)	NC 003507
	BSBMV RNA4	1.1.1	
BSBMV4 NotI T7 F	AAAGCGGCCGCTAATACGACTCACTATAGAAATTCAAAAACTCAAAAATATAATTTTGTATTTCC	0-35	NC_003508
OligodT21 BglII	AAAAGATCTTTTTTTTTTTTTTTTTTTTTTTTT	poly(A)	NC_003508
	BNYVV RNA1		
409-RNA1 F5NotI	AAAAGCGGCCGCTAATACGACTCACTATAGGAAATTCGATTCTTCC	0-15	NC_003514
RNA1 R2	ACCACCCAATGAACCATGC	1527-1545	NC_003514
409-RNA1 F1403	GGTIGCATATICGACCCCCCCC	1403-1417	NC_003514
409-RNA1 R4750	GCAATCGTGGGGCTAATGTGG	4730-4730	NC_003514
BNYVV 409-RNA1-R3	TTTTAAGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	polv(A)	NC 003514
	BNYVV RNA2	poly(1)	110_000011
409-RNA2 F5NotI	AAAAGCGGCCGCTAATACGACTCACTATAGGAAATTCTAACTATTA	0-15	NC_0053515
RNA2 R107	AATTTGCCCCAATCGCAATGTCCGGG	2313-2338	NC_0053515
409-RNA2-F1823	CTGGTATACAAGGTGGCGCGC	1823-1843	NC_0053515
BNYVV 409-RNA2-R3	TTTTAAGCTTTTTTTTTTTTTTTTTTCAATATACTGAAAACAG	Poly(A)	NC_0053515
	Core region (BNYVV RNA3)		
BNYVV3 CoreF NcoI	AAAACCATGGTATGCAGGTGATGTTTTAGATG	1023-1054	NC_003516
BNY VV3 COREK BAIIHI	n7 e n9 (chimera)	1237-1200	NC_003516
BSBMVp9F	AAA CCA TGG CTG CAG TCG TAT ATT TGA GGG TGG	1201 - 1218	LB89
BSBMVp9PstI HA R	AAA CTG CAG TCA TGC ATA ATC AGG AAC ATC ATA AGG ATA ATG TGC GAG GAA CAC ATC ATT C	1176 - 1197	LB89
BSBMVp7F	AAA CTG CAG ATG GTG AAA ACA TTG ACG	973 - 990	LB89
BSBMVp7PstI HA R	AAA CTG CAG TCA TGC ATA ATC AGG AAC ATC ATA AGG ATA ACA AAT ATC ACG ACG ACG AAT C	949 - 970	LB89
	primers sfruttati per la correzione dei cloni e la mutagenesi		
DSDMV1D10	BSBNIV KNAI	1204 1217	NC 002506
BSBMV1R11		688-707	NC_003506
BSBMV1F10	CTTCACTCGGTGGTCACCGTTTCTCAAACTCCCT	697-730	NC_003506
BSBMV1R12	GAAACGGTGACCACCGAGTGAAGGACTTAACCTTC	685-719	NC_003506
BSBMV1F11NotI	AAAGCGGCCGCTCTCGATATGTTCGTGCAC	5825-5843	NC_003506
	BNYVV RNA1	•	•
409-F1 Mut	AGGCGACCGGTGCGCAG	1418-1434	NC_003514
409-R2 Mut	GTGGACGTGGTTATTTGATA	2313-2332	NC_003514
409-F3 Mut	AAT GAA AAA GGG TAT CAC ATG GGC AGA	2226-2252	NC_003514
409-R4 Mut	AGU CITICAA UCI ATU IGU CUA IG	2243-3365	NC_003514
	Primers strutteti ner le sintesi delle sonde northern blot		
	I finers situtati per la sintesi dene sonde northern bior		
BSBMV1Fprobe	GGGTAATACTATTTTAATGGGTGC	5887-5910	NC_003506
BSBMV2Fprobe	TGATATCCCAAAATATGTGGC	3801-3821	NC_003503
BSBMV3Fprobe	GGTGAAAATTATCCGTCTGC	923-942	NC_003507
BSBMV4Fprobe	GCTTATTGCTCTGGTATCTGC	926-946	LB155
BSBMV45'Fprobe	CAAAACTCAAAAATATAATTTTGTATTTCC	579-603	LB155
BSBMV1RProbe	TTTAAATACACTGATAGCAAACCC	6659-6682	NC_003506
BSBMV2RProbe	TATAAACTGAAAATAAACCCTACAAGG	4589-4616	NC_003503
BSBMV3RProbe		1697-1720	NC_003507
DSBIVI V 4KProbe	υρι καλυτυβαλαλι Αυλουυτι Αυλού Δερατεία αελιεία αυλουστιά ατά είδαες	570 602	LB155
BNYVV1FProbe	GATGATGGTTTTAAAAGGCAG	5947-5967	NC 003514
BNYVV2FProbe	GAGTTGCGATATTCCAAAGC	3806-3825	NC 0053515
BNYVV3FProbe	CACGGTTAATTGTGTGTTACG	972-992	NC_003516
BNYVV1RProbe	CAATATACTGATAGTAAACCCTTTAACG	6715-6742	NC_003514
BNYVV2RProhe	TGAAAACAGACCCTACATGG	4582-4601	NC 0053515

Appendice A. Sequenza nucleotidica dei primers utilizzati nella ricerca.

Appendice B1. Allineamento della sequenza nucleotidica del clone dell'RNA1 di BNYVV tipo P (LBS31) con la sequenza NC_003514.

											Section 1
	(1)	1	,10	20		,30	,40		50	,60	7
BNYVV RNA1 NC_003514	(1)	AAAT	TCGATTCTT	CCATTCG	CCATCAT	TGAATCA	TTACTC	GTGTACTG	GAACGCAG	TTAGGAGTGGCT	CCAAAGCA
DIVITVV RIVAL Type P LDSS1	(1)	MAAI	TCGMITCITC	CUATION	COMICAL	IGANICA	TIACIC	GIGIACIG	GANCOC GG	LINGGNGI GGCI	
	(78)	78	,90		100	,110		,120	,130	,140	154
BNYVV RNA1 NC_003514	(78)	TCTI	CTTTGAAAA	TAGATTGC	GAAGTGA	GTTCACO	TAAGAC	GACGTCGG	TGTTTTAC	GAGTTTTTACAT	AATCAACA
BNYVV RNA1 Type P LBS31	(78)	TCTI	CTTTGAAAA	TAGATTGC	GAAGTGA	GTTCACO	TAAGAC	GACGTCGG	TGTTTTAC	JAGTTTTTACAT	AATCAACA
	(155)	155	160	170	180		190	200	210	220	
BNYVV RNA1 NC_003514	(155)	TGGC	AGATTCGTT	GGTTTTA	CTCCAAT	GGAGGTI	TTGCTT	TTTGGTGG	TGAATCGG	TTCAGTTGTTAA	CTTCAGAC
BNYVV RNA1 Type P LBS31	(155)	TGGC	AGATTCGTT	GGTTTTA	CTCCAAT	GGAGGTI	TTGCTT	TTTGGTGG	TGAGTCGG	TTCAGTTGTTAA	CTTCAGAC
	(222)	232	240	250		260	270	2	80	290	Section 4
BNYVV RNA1 NC 003514	(232)	ATGO	CTATTGATG	CCAGTGG	GGCTTTG	TACACTO	CACTCG	ATGTTATG	CTCTCTGG	AAAGACGACTTG	ATTCATCT
BNYVV RNA1 Type P LBS31	(232)	ATGO	CTATTGATG	CCAGTGG	GGCTTTG	TACACTO	TACTCG	ATGTTATG	CTCTCTGG?	AAAGACGACTTG	ATTCATCT
	(000			000	0.40		050	202	070	Section 5
BNW/ DNA1 NC 003514	(309)	309	320	AATATTC	330	340	AACGGT	350 GGGAAAGG	360	370	385
BNYVV RNA1 Type P LBS31	(309)	CAAT	CCGCTGTTG	AATATTC	ACAGCGA	ATTGCAL	AACGGT	GGGAAAGG	TTAGTTTCO	GGCTTTGTTGG	CCCAGTAC
	. ,										— Section 6
	(386)	386		,400	410	<u>,</u> 4	20	,430	,440	,450	462
BNYVV RNA1 NC_003514 RNYVV RNA1 Type P I BS31	(386)	CGCI	TGATAAGTIC	STIGICIT	TGTTGGC	AAAACTI	ATGAGG	TATTGTGT TATTGTGT	TAACATGG	GGTGTCTGTAC	AGGAGATA
birrer kind type i 20001	(500)										
							Inter Second			0.411 Pp	
	(463)	463	,470	,480	.4	90	,500	,510) 5	520	539
BNYVV RNA1 NC_003514 BNYVV RNA1 Type P I BS31	(463)	TATI	TGTCTGATG	TATTGTT	TCATCGT	CTTATAI	GTTGCA	TGTGTCTA	GGAGTGCAG	GTTGTGTGTGTCT	TTTAGTTG
DITIVE KINI TYPE P LUSSI	(105)					ST LITER I	011001	1010101011	oono ro rni		
	(540)	540	,550	5	60	570	,58	80	590	,600	616
BNYVV RNA1 NC_003514	(540)	GTTC	TATGCCAAG	TGTCCAT	GTTTGCT	TCGTGTG	GCAAGT	TCTGGGTA	GGGTCTTC	ACATCACACGGC	TGCCAACA
BNYVV KNA1 Type P LBS31	(540)	GITC	FATGCCAAG	TGICCAI	GITIGCI	TCGTGIC	GCAAGT	TCTGGGTA	GAGICITCA	ACATCACACGGC	Section 9
	(617)	617	E	30	640	,65	C	660	670	680	693
BNYVV RNA1 NC_003514	(617)	TGAI	TGAAGGTTCO	CGTGCTG	TGAATGG	TCCGGAI	GTGGCT.	ATTTCTGA	GATGGTTG/	AAGCCTTCCATT	TAGAGGTG
BNYVV RNA1 Type P LBS31	(617)	TGAI	TGAAGGTTCO	CGTGCTG	TGAATGG	TCCGGAI	GTGGCT	ATTTCTGA	GATGGTTG	AAGCCTTCCATT	TAGAGGTG Section 10
	(694)	694	700	710	720)	730	740	75	0 760	
BNYVV RNA1 NC_003514	(694)	AAGT	CTTCACTCG	TGTAACT	GTGTCTT	TGACTCO	TAGGGA	GAAAAAGA	TTCTGGAG	CGAGAGCTAGGT	TTTGTGCC
BNYVV RNA1 Type P LBS31	(694)	AAGI	CTTCACTCG	ITGTAACT	GTATCTT	TGACTCO	TAGGGA	GAAAAAGA	TT T TGGAGO	CGAGAGCTAGGT	TTTGTGCC
	(771)	771	780	790	1	800	810	(820	830	- Section 11 847
BNYVV RNA1 NC_003514	(771)	GTTO	TACAAACAG	AAAGTAG	AGCTCCA	CGCAATO	ACCCAG	TGCTGGCT	GCTCTTCG	CGAGGTTATGAG	GCAGGAGT
BNYVV RNA1 Type P LBS31	(771)	GTTG	TACAAACAG!	AAAGTAG	AGCTCCA	CGTAATO	ACCCAG	TGCTGGCT	GCTCTTCGC	CGAGGTTATGAG	GCAGGAGT
	(0.40)	0.40	96	0	970	000		200	000	010	- Section 12
BNYW RNA1 NC 003514	(848)	ATTO	TGCTAGTTG	TAATATTC	TTAATAC	AAAGTTO	AAAACA	CTGGTAGT	TEGTECTE	PIU	TTAATTGT
BNYVV RNA1 Type P LBS31	(848)	ATTO	TGCTAGTTG	TAATATTC	TTAATAC	AAAGTTO	AAAACA	CTGGTAGT	TGGTGCTGC	CCAGTCGTGAAG	TTAATTGT
											Castian 12
	(025)	925	930	940	950		960	970	980	990	Section 13
BNYVV RNA1 NC_003514	(925)	TATI	CGTCTAATCO	GTCTGTA	CATTACT	ATTTTG	TAATAA	AGATAGCA	AGGATTTG	STAAGGACCACT	CTGGAGTT
BNYVV RNA1 Type P LBS31	(925)	TATI	CGTCTAATC(CGTCTGTA	CATTACI	ATTTTG	TAATAA.	AGATAGCA	AGGATTTG	GTAAGGACCACT	CTGGAGTT
	(1000)	1002	1010	1020	1	1020	1040	4	050	1060	
BNYVV RNA1 NC 003514	(1002) (1002)	GTTO	CATAGCGCT'	TGGCTAC	AAAGTAC	CGCAAT	TGGAAA	GTGGTGAG	CGAGAACTO	CATGAATAATTT	GAAGGGTT
BNYVV RNA1 Type P LBS31	(1002)	GTTO	CATAGCGCT!	TGGCTAC	AAAGTAC	CGCAATA	TGGAAA	GTGGTGAG	CGAGAACT	CATGAATAATTT	GAAGGGTT
											- Section 15
PNMA/ PNA1 NC 002514	(1079)	1079	,1090) 788880007	1100	,1110	CHCHAN	1120 Cheemmen	1130	1140	1155
BNYVV RNA1 Type P LBS31	(1079) (1079)	GTGG	TTATATTGT	CAAAAGGT	CGGTTGA	AAATGCT	GTCTAT	GAGGTIGI	TTCCGATA	AAGATGTTGCCG	AAGTGTTA
											- Section 16
	(1156)	1156	2	1170	,1180	,1	190	,1200	,1210	,1220	1232
BNYVV RNA1 NC_003514 BNYVV RNA1 Type D LBS21	(1156) (1156)	AGG	TATGCGCAAA	TGTCGCT	TCAACGA	AGAAAGI	GGCGAA.	AAAGAAAC	CTAACACT	GGAAAGCGAAAA GGAAAGCGAAAA	ATGGTCAT
2	(1150)	-									- Section 17
	(1233)	1233	,1240	,1250	,1	260	,1270	128	30 ,1	1290	1309
BNYVV RNA1 NC_003514	(1233)	GTCC	GAAGCAACT	CGTAGAAC	AATCGAA	CTGCAT	AGTTGT	CGCGTATT	GTAGCCGA	AGAGAAGAAGAT	TCCTAACC
DIVITVY KINAL TYPE P LBS31	(1233)	arce	STARGE ARCTO	UG I AGAAC	AATCGAA	CTGCATC	AGITGT	COCOTATI	GTAGCCGA/	AGAGAAGAAGAT	- Section 18
	(1310)	1310	,1320	.1	330	,1340	,13	350	,1360	,1370	1386
BNYVV RNA1 NC_003514	(1310)	ATTI	TCCACTTTGA!	IGAAAGTG	ATTTGC	TTCTGTT	GGTAAT	TTTACTCA	GTTGGTTT	STGAAGATGTTG	GTTACAAT
	(1010)	The lot of the lot of the	the same will be also then then same and the					and the same the same time and the	and the same time time time time time.	and the second sec	the second se

(1387)	1387	.140	00	,1410	,1420		430	1440	.1450	- Section 19
BNYVV RNA1 NC_003514 (1387) BNYVV RNA1 Type P LBS31 (1387)	TTTT TTTT	CTGTGGATGCI CTGTGGATGCI	TGGTTGCA	ATTTGTT(ATTTGTT)	CGAGGCG CGAGGCG	ACCGGTGC ACCGGTGC	GCAGACT	SCCGTTGG' SCCGTTGG'	ITATATGGCA ITATATGGCA	TTGCCTA# TTGCCTA#
(1464) BNYVV RNA1 NC_003514 (1464) BNYVV RNA1 Type P LBS31 (1464)	1464 C <mark>GA</mark> A T <mark>GAA</mark>	,1470 ACTTTTGTTTGA ACTTTTGTTTGA	,1480 ACATTATO ACATTATO	1490 CCAATAT CCAATAT	CAGATTA CAGATTA'	1500 TTATGATI TTATGATI	,1510 TATTGGGA	1520, SGGTGTTG SGGTGTTG	,1530 AAAAGCATGG AAAAGCATGG	— Section 20 1540 TTCATTGO TTCATTGO
(1541) BNYVV RNA1 NC_003514 (1541) BNYVV RNA1 Type P LBS31 (1541)	1541 GTGG	,1550 TATTACTATTI TATTACTATTI	,1560 CCCCTTTC	GCGGAAT	1570 GGACAGG' GGACAGG'	,1580 TTGTTGGI	159 ATGCCGA	0 CTGGGGTT CTGGGGTT	1600 ITTCAACCTG ITTCAACCTG	- Section 21 1617 TTCATTTT TTCATTTT
(1618) BNYVV RNA1 NC_003514 (1618) BNYVV RNA1 Type P LBS31 (1618)	1618 GACA	,1630 AGACGTCTGCT	GGTTTAGC GGTTTAGC	1640 STATTCC STATTCC	,1650 TGGTTCA. TGGTTCA.	,16 AAGATGGO AAGATGGO	60 STG <mark>CTGCT(</mark> STACTGCT(,1670 GAACGTGT GAACGTGT	,1680 FATATGTCAC. FATATGTCAC.	
(1695) BNYVV RNA1 NC_003514 (1695) BNYVV RNA1 Type P LBS31 (1695)	1695 TGG# TGG#	,1700 ACTTGGAAATGG ACTTGGAAATGG	,1710 CTACAATC	,1720 CATGTTA CATGTTA	,17 AAAGTGA AAAGTGA	30 TTGGCAGA TTGGCAGA	,1740 ACGTTGTT ACGTTGTT	,1750 GAAACATCO GAAACATCO	1760, CTATTTGTC CTATTTGTC	- Section 23 1771 TTCTTCAP TTCTTCAP
(1772) BNYVV RNA1 NC_003514 (1772) BNYVV RNA1 Type P LBS31 (1772)	1772 AGTA	,1780 TAATTTTGCTG	,1790 TTGAAGTC	,18 JGATTTA JGATTTA	800 ACGGGAC	,1810 GTTATGG1 GTTATGG1	,1820 TTGTCTTG TTGTCTTG	,18 CTACCTTT CTACCTTT	30 CGGTTAACTC CGGTTAACTC	- Section 24 1848 GTGTGAC1 GTGTGAC1
(1849) BNYVV RNA1 NC_003514 (1849) BNYVV RNA1 Type D 18531 (1849)	1849 GGA0	,1860 CAAGTATGTT	,18 GCTAGAAC	70 CTATAAA	,1880 ATTGCGT	,1890 CCAGAAGA) ATAGGTAT	1900 STTCGGGT	,1910 STTGGATTTG	- Section 25
(1926) BNYVV RNA1 NC_003514 (1926) BNYVV RNA1 Type P LBS31 (1926)	1926 TGT0 TGT0	1 CGTAGTATTAG CGTAGTATTAG	940 GTTGAAAC	,1950 GGCATG	,196 CCGGTTT CCGGTTT	0 GAAAGAAG GAAAGAAG	,1970 CATATCA	,1980 GTATTTTCC	,1990 CTGTGTATAA. CTGTGTATAA.	- Section 26 2002 ACGTGAGO
(2003) BNYVV RNA1 NC_003514 (2003) BNYVV RNA1 Type P LBS31 (2003)	2003 TAGA TAGA	2010 NTACGCCGGTGT NTACGACGGTGT	2020 CTTACTGT CTTACTGT	203 FTTTTCT. FTTTTCT.	0 ATTGCTG ATTGCTG	2040 AAAAATCO AAAAATCO	2050 STTGACAG	206 FACAAAC/ FACAGAAC/	0 ATTGCTAATT ATTGCTAATT	- Section 27 2079 TTATTAGA TTATTAGA
(2080) BNYVV RNA1 NC_003514 (2080) BNYVV RNA1 Type P LBS31 (2080)	2080 САТС САТС	2090 CATATTGGTGGT CATATTGGTGGT	2100 GTTTCTTT GTTTCTTT) FAGTTAA FAGTTAA	2110 CAAAGAA' CAAAGAA'	2120 TTAGTATO	21 CGGCGTGG CGCGTGG	30 CGTCTGAA'	2140 FCCACAACTT FCCACAACTT	- Section 28 2156 GTTCCTTC GTTCCTTC
(2157) BNYVV RNA1 NC_003514 (2157) BNYVV RNA1 Type P LBS31 (2157)	2157 GTTC	21 CGCATATGCCGT CGCATATGCCGT	70 TTACTTT TTACTTT	2180 FATGTTG FATGTTG	2190 TTAATTT TTAATTT	2 GAGAGGTO GAGAGGTO	200 GAGTTGGA' GAGTTGGA'	2210 IGGGATGT IGGGATGT	2220 IGCAGAAGTT. IGCAGAAGTT.	- Section 29 2233 AATGAAAA AATGAAAA
(2234) BNYVV RNA1 NC_003514 (2234) BNYVV RNA1 Type P LBS31 (2234)	2234 AGG0 AGG0	2240 STATCACATGGG STATCACATGGG	2250 CAGATAGO CAGATAGO	2260 GTTGAAG GTTGAAG	GCTAATG GCTAATG	2270 TTTCAGCO	2280 STTTTTGC	2290 GAGATATG GAGATATG	2300 STAGATCCTA STAGATCCTA	- Section 30 2310 TTAGTTTT TTAGTTTT
(2311) BNYVV RNA1 NC_003514 (2311) BNYVV RNA1 Type P LBS31 (2311)	2311 TTG1 TTG1	2320 GGACGTGGTTA	2330 TTTGAGAG	GAGATTI GAGATTI	2 <mark>340</mark> AGTCGATO	2350 CAAATTTI CAAATTTI	236) GGGACTGAT	2370 FGTTTTTACC	— Section 31 2387 CAGATGGA CAGATGGA
(2388) BNYVV RNA1 NC_003514 (2388) BNYVV RNA1 Type P LBS31 (2388)	2388 TCGT TCGT	2400 GCTTGTGTTGA GCTTGTGTTAA	2 TGAGAAGO TGAGAAGO	A10 CATTGC	2420 GTTTGAAG	24 CGATCACA CGATCACA	30 TTAAAAT TTAAAAT	2440 C <mark>ACACGAG</mark> P <mark>ACACGAG</mark>	2450 ACTTTTTGCC	- Section 32 2464 FGCTGACA FGCTGACA
(2465) BNYVV RNA1 NC_003514 (2465) BNYVV RNA1 Type P LBS31 (2465)	2465 CTTI CTTI	2470 ACTTCCTGAAG	2480 GATGGTC1 GATGGTC1	2490 TTAGAC	25 GATTGGG/ GATTGGG/	00 AAAAAGCI AAAAAGCI	2510 CCCGATA	2520 GTTTGAAG GTTTGAAG	2530 ACTCTTTCGG ACTCTTTC	- Section 33 254 CAGCTGCT CAGCTGCT
(2542) BNYVV RNA1 NC_003514 (2542) BNYVV RNA1 Type P LBS31 (2542)	2542 TCG1 TCG1	2550 TGCCAGTAGAG	2560 TGCGGGGG TGCGGGGGG	25 GGTAAA GGTAAA	70 FTGTGTT(FTGTGTT(2580 SGTAAGTO SGTAAGTO	2590 GTTTAAG GTTTAAG	26 AGCGTGCG3 AGCGTGCG3	00 FACTCTATTA FACTCTATTA	- Section 34 2618 CCACCATO
(2619) BNYVV RNA1 NC_003514 (2619) BNYVV RNA1 Type P LBS31 (2619)	2619 <mark>TGTI</mark> TGTI	2630 GTTACTTCACC	26 TGTTGAGO TGTTGAGO	40 CAGTTTT CAGTTTT	2650 FCAAATC FCAAATC	2660 IGGIGGIA IGGIGGIA	AATTTAG AATTTAG	2670 AGATGATGO AGATGATGO	2680 CCGAGTTTGC CCGAGTTTGC	- Section 35 2695 GGAATTGT GGAATTGT
(2696) BNYVV RNA1 NC_003514 (2696) BNYAQ RNA1 Type D LBS21 (2696)	2696	2 TGCGCACTATC	710 GCTGGCAG	2720	2730) FTTGTGCI	2740	2750	2760 SCTTTGACTG	- Section 36 2772 STAAAACG

(0770)	0770	0700	2700	2000	2040	202	0 00	20	- Section 37
(2/73) BNYVV RNA1 NC_003514 (2773) BNYVV RNA1 Type P LBS31 (2773)	GGTI GGTI	CTCAAGTTGTT CTCAAGTTGTT	GAATGCAGA GAATGCAGA	TGGAAAGC TGGAAAGC	IGAGTCTAT IGAGTCTAT	GTATACAT GTATACAT	TTTCTATGTC	D ACAAACTGAG ACAAACTGAG	ZO48 GTTGATGA GTTGATGA
(2850) BNYVV RNA1 NC_003514 (2850) BNYVV RNA1 Type P LBS31 (2850)	2850 TTTT TTTT	2860 'AGAAATGAGAT 'AGAAATGAGAT	2870 TAAGGCTCA TAAGGCTCA	288 ATCTATTG ATCTATTG	0 2 AAAAGGGAA AAAAGGGAA	890 ATCGTTTT ATCGTTTT	2900 GGTGAAATG1 GGTGAAATG1	2910 TTAATAGGTGT/ TTAATAGGTGT/	- Section 38 2926 ACATCAGA ACATCAGA
(2927) BNYVV RNA1 NC_003514 (2927) BNYVV RNA1 Tuno D LBS31 (2927)	2927 AAAT	294	0 29 CCTTTGAGG	950 TTTCAGTT	2960 CGACTCGAA	2970	2980 AGGT GGGCC1	2990	- Section 39 3003
(3004) BNYVV RNA1 NC_003514 (3004)	3004 CTTA	3010	3020 GCTGACCCT	3030 ATCAGGGA	3040	,3050	,3060 TCATAAAAT) ,3070	- Section 40 3080
(3081) BNYVV RNA1 NC_003514 (3081) BNYVV RNA1 NC_003514 (3081) RNVV RNA1 Type P LBS31 (3081)	3081 TCAA	3090 CGAGTTGGTGA	3100 TGAGCTTCT	3110 TTCTTGGG	312 ACTTTCACA	20 CGCCTCAC	3130 AAAGCATTGO	3140	- Section 41 3157
(3158) BNYVV RNA1 NC_003514 (3158) BNYVV RNA1 Type P LBS31 (3158)	3158 TTAT	,3170 TTTTGTTGATG TTTTGTTGACG	,318 AGTTTACAG AGTTTACAG	CCTATGAT	3190 FGGCGTTTA FGGCGTTTA	3200 CTAGCTGT	3210 GTTGGCTTAT	,3220 TAGAAATCATGO TAGAAATCATGO	- Section 42 3234 CCATACT
(3235) BNYVV RNA1 NC 003514 (3235)	3235 ATTI	3240	3250 GATGAGCAG	3260	3270	3280	,3290 GAGAAGGAA	3300	- Section 43 3311
BNYVV RNA1 Type P LBS31 (3235) (3312) BNYVV RNA1 NC_003514 (3312) RNYVV RNA1 Type P LBS31 (3312)	ATTI 3312 TGAT	ACTTAGTTGGT 3320 CTGTCTAAGGT CTGTCTAAGGT	GATGAGCAG 3330 TTCTACACA	CAGACTGG 3340 TGTTCCAA TGTTCCAA	PATTCAAGA 3350 PCATGAACT	GGGTCGTG	GAGAAGGAAT	ATCGATACTT 370 ATGTTAAGGT ATGTTAAGGT	AACAAAAT - Section 44 3388 ATTAAATT
(3389) BNYVV RNA1 NC_003514 (3389) BNYVV RNA1 Type P LBS31 (3389)	3389 ATCI ATCI	3400 GTTTGGGTCTC GTTTGGGTCTC	,3410 GTATGGTTC GTATGGTTC	34 CTATGTCT CTATGTCT	20 FCCGTTGAA FCCGTTGAA	,3430 .AAGGGATT .AAGGGATT	3440 TAGTTTCGGG	<mark>,3450</mark> SGATGTTAAAGA SGAT <mark>ATTAAAG</mark> A	- Section 45 3465 ATTTTCG
(3466) BNYVV RNA1 NC_003514 (3466) BNYVV RNA1 Type P LBS31 (3466)	3466 TCTT TCTT	3 4 TGTCAAATATC TGTCGAATATC	180 CCAGACACT CCAGACACT	3490 AAAATCAT AAAATCAT	,3500 FCATTATTC FCATTATTC	3510 CGATGAGA CGATGAGA	3520 CTGGTGAACA CTGGTGAACA	,3530 TATGATGCCT TATGATGCCT	- Section 46 3542 SATTACGT SATTACGT
(3543) BNYVV RNA1 NC_003514 (3543) BNYVV RNA1 Type P LBS31 (3543)	3543 TAGO TAGO	,3550 GGAGTGTCAAA GGAGTGTCAAA	3560 AACTACTGT AACTACTGT	,3570 CCGTGCTA CCGTGCTA	,3580 ATCAGGGIA ATCAGGGIA	359 GTACCTAC GTACCTAC	0 ,36 GATAATGTTO GATAATGTTO	00 STTTTGCCTGT STTTTGCCTGT	- Section 47 3619 CTTACCAT
(3620) BNYVV RNA1 NC_003514 (3620) BNYVV RNA1 Type P LBS31 (3620)	3620 CTGA CTGA	, <mark>3630</mark> \TTTGAAC <mark>CTGA</mark> \TTTGAA <mark>CTGA</mark>	3640 TTAACTCAG TTAACTCAG	, 365 CTGAGTTG CTGAGTTA	0 3 AATTTGGTA AATTTGGTA	660 GCTTTATC GCTTTATC	3670 TCGTCACAGO TCGTCACAGO	3680 SAATAAGTTAAG	- Section 48 3696 CCATTTA CCATTTA
(3697) BNYVV RNA1 NC_003514 (3697) BNYVV RNA1 Type P LBS31 (3697)	3697 TTGG TTGG	371 ACAATGATGGT ACAATGATGGT	0 3 ATGAATATT ATGAATATT	720 GGTGCTGT GGTGCTGT	3730 FTTGAAAGG	3740 CATGCTTG.	3750 AGGGTGTGCC	3760 GGAAGAACTCO	- Section 49 3773 GAAAGAAG
(3774) BNYVV RNA1 NC_003514 (3774) BNYVV RNA1 Type P LBS31 (3774)	3774 GGAI GGAI	3780 TACATTGTTGG TACATTGTTGG	3790 GATGTACCT GATGTACCT	3800 TGGGTTAC TGGGTTAC	3810 ATTTACCTA ATTTACCTA	,3820 TTAAGAAA TTAAGAAA	3830 GAGTTCTTCT GAGTTCTTCT) 3840 TTCCTGAGTC1	- Section 50 3850 GAGTTTG
(3851) BNYVV RNA1 NC_003514 (3851) BNYVV RNA1 Type P LBS31 (3851)	3851 СТАА СТАА	,3860 A TCGTTTAGAT G TCGTTTAGAT	,3870 TAATGGTTG TAATGGTTG	,3880 CTAAGTAT CTAAGTAT	389 SAGGCATTT SAGGCATTT	0 GTACCTTA GTACCTTA	3900 CGATAGTAA1 CGATAGT <mark>G</mark> A1	,3910 TTGCCAACTT CTGCCAACTT	- Section 51 3927 IGGTTTTA IGGTTTCA
(3928) BNYVV RNA1 NC_003514 (3928) BNYVV RNA1 Type P LBS31 (3928)	3928 CAAG CAAG	,3940 GAGATGTCGTT GAGATGTCGTT	,395 GTTTTGGAC GTTTTGGAC	0 ATAGCACG ATAGCACG	3960 FGTGGAAAA FGTGGAAAA	,3970 .CGACATTA. .CGAT <mark>ATTA.</mark>	3980 ATGATGCCTT ATGATGCCTT	,3990 TTAATTGTCCA TG <mark>ATTGT</mark> GCA	- Section 52 4004 SATTTCTA SATTTCTA
(4005) BNYVV RNA1 NC_003514 (4005) BNYVV RNA1 Type P LBS31 (4005)	4005 TAAT TAAT	4010 CTTGTGTCTCG CTTGTGTCTCG	4020 TCCTAACAA TCCTAACAA	,4030 TTGTTTAG TTGTTTAG	,4040 FAGTAGCTA FAGTAGCTA	4050 TTTCAGAA TTTCAGAA	,4060 TGTTTAGGTO TGTTTAGGTO	,4070 STGACGCTAGA STGACGCTAGA	4081
(4082) BNYVV RNA1 NC_003514 (4082) BNYVV RNA1 Type P LBS31 (4082)	4082 ACAA	,4090 TCTTATGCAAG	4100 CTAACGCTG CTAACGCTG	,4110 TGACGCTT TGACGCTT	4120, JATAAGTAT JATAAGTAT	A1	30 A GTTGTCTAAC GTTGTCTAAC	140 SAAGTCTCCATC	- Section 54 4158 CAACTTGG

											 Section 55
(4159) BNYVV RNA1 NC 003514 (4159)	4159 CAAG	A170	TTTGCC	4180 GATGCTC	,4190 TGAAGGT	420	00 ACGTTAA	4210	,4220 TCTGACAA	ACCTT	4235
BNYVV RNA1 Type P LBS31 (4159)	CAAG	ACTGTAGAATG	TTTGCC	GATGCTC	TGAAGGT	TCCATGT	ACGTTAA	GGTTTTA	TCTGACA	AACCTT	ACGATCT
(4236)	4236	,42	250	4260	,42	70	4280	,4290	ł	1300	- Section 56 4312
BNYVV RNA1 NC_003514 (4236) BNYVV RNA1 Type P LBS31 (4236)	AACT AACT	TATGAGGTTGA TATGAGGTTGA	TGGTGC' G <mark>GGTGC'</mark>	TGGTTCC! TGGTTCC!	ICAGTGA(ICAGTGA(CATTACAT CATTACAT	TTAGTTG	GTAAGGA. GTAAGGA.	AAGCGAT(AAGCGAT(GGGCAT GGGCAT	TTTATTG
(4313)	4313	4320	4330	.43	40	4350	4360		4370		- Section 5/ 4389
BNYVV RNA1 NC_003514 (4313) BNYVV RNA1 Type P LBS31 (4313)	CTGC CTGC	CCCGCTTAGTC CCCGCTTAGTC	CGTCGC	TTTCTAC(CAATGAG CAATGAG	AGAGAGTC AGAGAGTC	CGGACAT	GATAGTA. GATAGTA.	AGAAACCO AGAAACCO	GGCTGA GGCTGA	TGATTCT TGATTCT
(4200)	4390	4400	44	110	4420	4430	1	1440	4450		- Section 58
BNYVV RNA1 NC_003514 (4390) BNYVV RNA1 Type P LBS31 (4390)	GACA GACA	CCTTTGATGCT CCTTTGATGCT	GCTAAT	TTGTTTG	CTGATAA	GGTGTTT	CTTCCGC	TGATATA	GAGGCTT	TTTGTG TTTGTG	CCTATTT
(4467)	4467	449	20	4400	450	0	4510	4520	45	20	- Section 59
(4467) BNYVV RNA1 NC_003514 (4467) BNYVV RNA1 Type P LBS31 (4467)	AGAA	AAGACTTTAAT	GGCAAC	AATTATG	GAGTATG	ATTTGAGA	TTGCAAT	CGTGGGC	TAATGTG(STTGAT	GATACTG
											- Section 60
(4544) BNYVV RNA1 NC 003514 (4544)	4544	4550	4560	4570 TTTCTGA	0 GTTTCGT(4580	4590	46	00 TGTTGTCA	4610	4620
BNYVV RNA1 Type P LBS31 (4544)	ACGA	TTTTTATCAAA	TTAATA	TTTCTGA	GTTTCGT	CAGTCCAC	GTGTTTT	GGTAAAT	TGTTGTC/	GCGCT	TGAAGTT
(4621)	4621	4630	.464	0	.4650	4660	.46	570	4680		- Section 61 4697
BNYVV RNA1 NC_003514 (4621)	TTGA	AGGTTGATGTT	TCGAGG	AAGAGGT	TTATATC'	GATTGGT	TGTGTAA	AAATCTT	GAGAATA	ACAAT	TCCGGTG
BNTVV RNAT Type P LB531 (4621)	TIGA	AGGIIGAIGII	TCGAGG	AAGAAGT	ITATATO.	FGATIGGI	TGTGTAA	AAATCII	GAGAATA	3 MC AA I	– Section 62
(4698)	4698	4710	memeeel	4720	,4730	4	740	4750	4760		4774
BNYVV RNA1 Type P LBS31 (4698)	GCGT	TGGTCTTCTAG	TGTGGC	TTCAACT	AGTTCGG	CGGGTCG	AATGTCG	ACGATGA	TTTTGTC	ATATG	GCAGGGG GCAGGGG
(4775)	4775	4780	4790	4800	1	1810	4820	,483	0	4840	4851 -
BNYVV RNA1 NC_003514 (4775)	GAAA	GACTGATGCTA	ATGTTG	ATCCTGC!	IGATGTT'	TGAGGCA	GAGTTTT	ATGGATT.	ATGCATCO	GAATT	TGTTCCT
											- Section 64
(4852) BNYVV RNA1 NC_003514 (4852)	4852 ATCC	4860	4870	ATACTTA	4880 TGCCGTT/	,4890	490 CTGAACC	0 GATATTG'	4910	GTATGG	4928
BNYVV RNA1 Type P LBS31 (4852)	ATCC	TTATCGCTGAA	TCACCA	ATACTTA	IGCCGTT	AGTTGAGC	CTGAACC	GATATTG	TCCAAGTO	GTATGG	TGCCTGA
(4929)	4929	4940		4950	,4960	,497	70	4980	,4990		5005
BNYVV RNA1 NC_003514 (4929) BNYVV RNA1 Type P LBS31 (4929)	GTTT GTTT	GACGCCTTTTT GACGCTTTTTT	ATTAAT	AAAGGAA' AAAGGAA'	TTTGATT: TTTGATT:	IGGACAAT IGGACAAT	GGTGCTG	ATGAGTA' ATGAGTA'	ICAATGC(ICAATGC(GCTTAT GCTTAT	CTTAATG CTTAATG
(5006)	5006	50	120	5030	50	40	5050	5060	-	5070	- Section 66
BNYVV RNA1 NC_003514 (5006)	AATC	TGTTGCTAATC	GTGTTG	GTGACAA	ATTTGTT	CGGGTGT	TTTGGAC	ACTGATA	TTATATC	CCATT	AAATCTG
BNYVV RNA1 Type P LBS31 (5006)	AATC	TGTTGCTAATC	GTGTTG	GTGACAA	ATTTGTT	CGGGTGT	TTTAGAC.	ACTGATA	TTATATC	CCATT	AAATCTG
No. COMP. PARA			a te teoror t	at a stre		11.25-25-25-2			10 40 91 40		- Section 67
(5083) BNYVV RNA1 NC 003514 (5083)	5083	5090	5100	51 AATGTTA	10 AATATCA	5120	5130	CCCGCT	5140 CAGATATA	ATTTTA	5159
BNYVV RNA1 Type P LBS31 (5083)	AGGG	GACATCCTATT	GCTGAA	AATGTTA	AATATCA	CAGTATGT	GTGTGGC	CCCGCT	CAGATATA	ATTTTA	AGCGGAA
(5160)	5160	5170	,51	180	5190	5200) ;	5210	5220		- Section 68 5236
BNYVV RNA1 NC_003514 (5160) BNYVV RNA1 Type P LBS31 (5160)	TCAG TCAG	TGGCAAGAATT TGGCAAGAATT	ACAGGT'	TCAACAG(TCAACAG(GCTCGGT) GCTCGGT)	ACTTATTT ACTTATTT	CGAAAAG CGAAAAG	IGAGG <mark>AA'</mark> IGAGA <mark>AA'</mark>	TTCTCCA1	CATCG CATCG	ACACAAG ACACAAG
(5327)	5237	525	50	5260	527	n	5280	5290	53	00	- Section 69
BNYVV RNA1 NC_003514 (5237)	ATAG	TGTTGCACGTA	TGGTTG	CTCAGCT	ATTTGTT	TCTGATTG	TTTGGTG	CCAAACG	TAGCTGAT	TACTTT	TTCTGCT
BNYVV RNA1 Type P LBS31 (5237)	ATAG	TGTTGCACGTA	TGGTTG	CTCAGCT	ATTIGTT	PCTGATTG	TTTGGTG	CCAAACG	TAGCTGA	FACTTT	– Section 70
(5314) BNYON BNA1 NC 003514 (5314)	5314	5320	5330	534	O	5350	5360	53	STO	5380	5390
BNYVV RNA1 Type P LBS31 (5314)	TCCA	ATTTGTGGCGA	ATTATG	GACAAAG	CTATGCA	TGACATGG	TCACAAA	AAATTAT	CAAGGAC	AATGG	AAGAGGA
(5391)	5391	,5400	,541	0	5420	5430	.54	40	5450		- Section 71 5467
BNYVV RNA1 NC_003514 (5391)	GTTT	ACGCGTAATGC	TAAATT	ATATCGT	TTTCAGT	GAAGGAT	ATTGAAA	AACCTTT	GAAGGAC	CAGAG	ACTGATT
3NTVV RNA1 Type P LBS31 (5391)	GTTT	ACGUGTAATGC	TAAATT	ATATCGT	TTCAGT	LGAAGGAT	ATTGAAA	AACCCTT	GAAGGACO	CAGAG	- Section 72
(5468) RNV0/ RNA1 NC 002514 (5468)	5468	5480	BBCCCA	5490	,5500	5	510	5520	5530		5544
BNYW RNA1 Type P I BS31 (5468)	TGGC	AAAGGCTGGTC	AAGGGA	TATTGGC	ATGGTCT	AGGAGGG	ACATGTT	AAGTTTA	TGGTTGC	TTTAG	AGTTTTA

									 Section 73
(5545) BNYVV RNA1 NC_003514 (5545)	5545 AAT 0	5550 ATTTGTTATTO	5560 GAAGTCGTTA	5570	5580	5590 ACGATAACAC	5600	5610 SACCGAATTTO	5621
BNYVV RNA1 Type P LBS31 (5545)	AATG	ATTTGTTATTC	HAAGTCGTTA	AACTCTAA	FGTTGTTT	ACGATAACAC	AATGTCTGA	SACCGAATTT	- Section 74
(5622)	5622	5630	,5640	5650	,566	567	70 56	80	5698
BNYVV RNA1 NC_003514 (5622) BNYVV RNA1 Type P LBS31 (5622)	AATA AATA	AATGCCGCCAT AATGCCGCCAT	IGAATATAGT IGAATATAGT	ACCGGATA(ACCGGATA)	GT GC TA TA GT GC TA TA	AACGGGGTTA AACGGGGTTA	TCGATGCTGC TCGATGCTGC	CTGCTTGCGA1 CTGCTTGCGA1	ITCTGGGC ITCTGGGC
(5(00)	5600	5710	5720	57	20	5740	5750	5760	- Section 75
(3699) BNYVV RNA1 NC_003514 (5699) BNYVV RNA1 Type P LBS31 (5699)	AAGG	GGTTTTTACCO	AATTGATAG	AAAGACAT	ATTTATGC ATTTATGC	TGCTTTGGGC	ATTTCTGACT	TTCTTTTTGG	ATTGGTAT
()				proprieta da	and the second			101100-000000	- Section 76
(5776)	5776		790	5800	5810	5820	5830	,5840	5852
BNYVV RNA1 NC_003514 (5776) BNYVV RNA1 Type P LBS31 (5776)	TTCI	CATTICGIGAC	GAAATATGTT	ATGCAGICO	CAGATATG	TCAGAGCACA	TATGTCTTA	IGTTAAGACT/	AGTGGAGA AGTGGAGA — Section 77
(5853)	5853	5860	5870	5880	5890	5900	5910	D	5929
BNYVV RNA1 NC_003514 (5853) BNYVV RNA1 Type P LBS31 (5853)	ACCC ACCC	GGCACTTTGC1 GGCACTTTGC1	TGGTAACAC TGGTAACAC	CATTTTAA CATTTTAA	IGGGTGCT IGGGTGCT	ATGTTAAATG ATGTTAAATG	CTATGCTTCO CTATGCTTCO	STGGGACCGG/ STGGGACCGG/	ACCATTTT ACCATTTT
(5020)	5020	50.40	5050	EOR	0	5070	5090	5000	- Section 78
(5930) BNYVV RNA1 NC_003514 (5930) BNYVV RNA1 Type P LBS31 (5930)	GTAT	GGCCATGAAGO GGCCATGAAGO	GCGATGATG	GTTTTAAA	AGGCAGGC	TAATTTGAAA TAATTTGAAA	ATTAACGATO	CAAATGTTAAA	AGTTGATT
biriti (awa tipe i Ebssi (5556)		000011201110					in sumo sint s		
and a statement of	1000000000		5.55	rofall	10000000	1202200	al manda taka	NAL MARK	- Section 79
(6007)	6007	,60	20 60	030	6040	,6050	6060	6070	6083
BNYVV RNA1 NC_003514 (6007) BNYVV RNA1 Type P LBS31 (6007)	AAAA	AGGAAACIGIC	TTGGATTIC	AAATTGGA	TTAAATG	TTCCTATCAC	TTTCTGTGG	ITATGCTITAT	ICTAATGG ICTAATGG
(6094)	6084	6090	6100	6110	6120	6130	6140	6150	- Section 80
BNYVV RNA1 NC 003514 (6084)	ACAT	TTGTTTCCAA	TGTTTCACG	TAAATTGA	GAAGATA	GCAGCACACA	GGTTCCGTG	AGTATAAGCAT	TTTTGTG
BNYVV RNA1 Type P LBS31 (6084)	ACAT	TTGTTTCCAAG	TGTTTCACG	TAAGTTGA(CGAAGATA	GCAGCACACA	GGTTCCGTG/	AGTATAAGCAI	TTTTTGTG
(6161)	6161	6170	6180	6190	6	200 6	210 6	\$220	- Section 81
BNYVV RNA1 NC_003514 (6161)	AATA	CCAGGAATCT	TGCGTGATT	GGATTAAA	AATCTTCC	CAAAGACCCA	GCTGTTTAT	GCTGATTTTT	IGGAGTGT
BNYVV RNA1 Type P LBS31 (6161)	AATA	CCAGGAATCTI	TGCGTGATT	GGATTAAA	AATCTTCC	CAAAGACCCA	GCTGTTTAT	GCTGATTTTT	rggAgTgT
(6238)	6238	6250	626	i0 .6	5270	6280	6290	6300	- Section 82 6314
BNYVV RNA1 NC_003514 (6238)	AATG	CTAGCTTATCT	TGTCGCAAT	GTTGACGA	IGTTCAAC	GTTGGTTGGA	TGCTATTAT	CTCTGTGTCC	GAATTGG
BNYVV RNA1 Type P LBS31 (6238)	AATG	CTAGCTTATCI	TGTCGCAAT	GTTGAT GA	IGTCCAAC	GTTGGTTGGA	TGCTATTAT	CTCTGTGTCTC	GAATTGG Section 83
(6315)	6315	6320	6330	6340	6350	6360	6370	6380	6391
BNYVV RNA1 NC_003514 (6315)	GCGI	GAGCAATTTAT	GATGATGTT	CCCGATAC	GGGAAGTT	TTTATGTCAT	TGCCACCCG	TTGAGGATAG	TTTGGGTG
BNYVV RNA1 Type P LBS31 (6315)	GCGI	GAGCAATTTA	GATGATGTT	CCCGATAC	GGAAGTT	TTTATGTCAT	TGCCACCCG	TTGAGGATAG	- Section 84
(6392)	6392	,6400	,6410	6420	,643	30 ,644	10 ,64	50	6468
BNYVV RNA1 NC_003514 (6392)	AGTI	ATCTTCTACGA	AAGTGGCTG	TGTCTATT	GGGGACAA	TGTTTCTAAT	GTTGTTAGA	AAGGTTGCCC	STGTCGAT
BINTVV RNAT Type P LB531 (6392)	AGTI	ATCTICIACGA	TAAGTGGUTG	TGICIATIO	JUGGACAA	TGITICTAAT	GITGITAGA	AAGGTTGC T <mark>CC</mark>	STGTCGAT
500-85508-644			50.000 A. 10		101111	100000	10.000		- Section 85
(6469) BNV04 DNA1 NC 002514 (6460)	6469	6480	6490	65 TAGTAATA	00	6510	6520	6530	6545
BNYVV RNA1 Type P LBS31 (6469)	ATGA	AAAAGTTTTA	TGTGTAATA	TAGTAATA'	FAATACGT	TGTATACTIG	TGAGTAGTA	TAAGTTTGAA	ATGAATA Section 86
(6546)	6546	.6	560	6570	6580	,6590	6600	6610	- Section 80 6622
BNYVV RNA1 NC_003514 (6546) BNYVV RNA1 Type P LBS31 (6546)	AAGG AAGG	CCATGCCACAC	GCCTCCTAT	CTTGATGA CTTGATGA	AGGTTGTT AGGTTGTT	GTGGTTTTCT GTGGTTTTCT	CATTACTGT	ITTATTATTG ITTATTATTG	TTTGAGTT TTTGAGTT
					1999 A.S.				- Section 87
(6623) BNYAV BNA1 NC 003514 (6623)	6623 GCTT	6630	6640	6650	,6660	6670	668	JTAATCTACT	6699
BNYVV RNA1 Type P LBS31 (6623)	GCTI	ATGTTGGTTCT	TGATTATGT	GGTGCATA	ATTATTGA	ACTAATTGTT	TGTTGGGTT	STAATGTACT	GACTGGGT
	6700	0740	0700	070	0	6746			 Section 88
(6700) BNYVV RNA1 NC_003514 (6700)	GTGA	p/10	CGTTAAAGG	GTTTACTA	J ICAGTATA	TTGATAT			
BNYVV RNA1 Type P I BS31 (6700)	GTGA	ATTGTACCAGT	CGTTAAAGG	GTTTACTA	TCAGTATA	TTGATAT			

BNX0/ DNA2 NC 003515	(1)	1	10	20	D TTCDDT	30	,40		50	,60 TGTTCTC	CCCCCT	77
BNYVV RNA2 Type P LBS22	(1)	AAAT	TCTAACTAT	TATCTCC	ATTGAAT	AGAATTT	CACCGT	CIGIIGGI	TCTTATT	TGTTCTC	GGGGGCA	ATTTTATI
	(70)	70	0	2	100	140		120	120		40	Section 2
BNYVV RNA2 NC_003515	(78)	CAGG	GCCCTACTT	TAAATAT	AGGTGCG	AGTAATA	AGTAGC	CGCCGTCC	AGAAGAAG	ATAGTAC	TAACAT	GTCGAGTG
BNYVV RNA2 Type P LBS22	(78)	CAGG	GCCCTACTT	TAAATAT	AGGTGCG	AGTAATA	AGTAGC	CGCCGTCC	AGAAGAAG	ATAGTAC	TAACAT	GTCGAGTG
	(155)	155	160	170	18	D	190	200	2	10	220	— Section 3 231
BNYVV RNA2 NC_003515	(155)	AAGG	TAGATATAT	GACATGG	AAGGATA	TGTCACA	TAATAA	GTTTATGA	CCGATCGA	TGGGCCC	GTGTTT	CGGACGTC
BNYVV RNA2 Type P LBS22	(155)	AAGG	TAGATATAT	GACATGG	AAGGATA	TGTCACA	TAATAG	GTTTATGA	CCGATCGA	TGGGCCC	GTGTTT	CGGACGTC Section 4
	(232)	232	240	250	1	260	270)	280	290		308
BNYVV RNA2 NC_003515	(232)	GTGA	GTGTTATTA	AACAATC	GCATGCT	ATGGACT	TGTCCA	AGGCTGCG	AATCTATC	TATAATI	AAAACT	GCTTTGGC
DINTYY KINAZ TYPE P LOSZZ	(232)	GIGA	GIGITALIA	ARCARIC	GCA1GC1	ATGGACT	TRICCM	N990-1909	AALCIALC	1 1 1 1 1 1	AAAAUI	
	(309)	309	,320		,330	,340		,350	,360	37	0	385
BNYVV RNA2 NC_003515 BNYVV RNA2 Type P LBS22	(309)	AGGA	TTAGGCTCG	GGTTGGA	CTGACAA CTGACAA	TAATCCT	TTTGTG TTTGTG	TCCCCGAT	GACCCGTT	TTCCACA	AGACACT.	AACTATGT AACTATGT
	()	100000		11-30254	0.05022			PATENA			0.001.00	— Section 6
BNMA/ DNA2 NC 002515	(386)	386	TOCACTTOT	,400	410	TOTOTON	420	,430	440) ACTARGO	450	462
BNYVV RNA2 Type P LBS22	(386)	ACGG	TGCACTTGT	GTTATAT	GTTAATC	TGTCTGA	CCCAGA	ATTTGCGT	TGATAATG	ACTAAG	TAAGTA	CTTTAACT
												- Section 13
	(925)	925	,930	,940	,950	0	,960	,970	,9	80	,990	1001
BNYVV RNA2 NC_003515 BNYVV RNA2 Type P LBS22	(925)	GGTC	TTCCTTTTG	AAGTTTC	CGAGGAA	GTTGAGC	AGGCAA	ATAGGAAT	AGTCTATG	GCTAACA	GTTGGA	CTGCTATT
	(525)											- Section 14
(1002)	1002	,1010	,102		1030	,104	DECARCAR	1050	1060	ACCECA	1078
BNYVV RNA2 Type P LBS22 (1002)	AGCI	GCTTTGGCA	GTTGGGA	TIGGIGI	AGCTGCT	TATCAT	AGGAAGAA	GCTCCAAA	GTAGATI	ACGTGA	GTTAAAAT
		4070	100	0	1100	4440		4400	4400		10	- Section 15
(BNYVV RNA2 NC 003515 (1079) 1079)	TGCT	ATGGGGTTC	TACTGGT	GGGTCTG	GTGGTGG	TGGTGG	TTTGACA	CCGAGCTG	TATATGO	40 CGTGCTA	CAGATACT
BNYVV RNA2 Type P LBS22 (1079)	TGCT	ATGGGGTTC	TACTGGT	GGGTCTG	GTGGTGG	TGGTGG	TTTTGACA	CCGAGCTG	TATATGO	GC GC TA	CAGATACT
	1156)	1156		.1170	1180)	1190	.1200	.121	0	1220	- Section 16
BNYVV RNA2 NC_003515 (1156)	GTTA	GTTTGGGAA	CCACTCT	TTCAGAG	CATGCTG	CTTCAG	CTCCGTCG	GGGTTACG	GCACCGA	CCTGCT	GCTACTGA
BNYVV RNA2 Type P LBS22 (1156)	GTTA	GTTTGGGAA	CCACTCT	TTCAGAG	CATGCTG	CTTCAG	CICCGICG	GGGTTACG	GCACCGA	ACC TGC T	GCTACTGA — Section 17
(1233)	1233	1240	,1250		1260	,1270	,1	280	,1290		1309
BNYVV RNA2 NC_003515 (1233)	TAGT	GGACCTCAT	GAAGCGC	TGCCGTT	CGAGGTG	TGGGTG	TTTGATAA	TCTAGCTG	TAGTGTA	TGATTC	GATTGGTA
DIVITY KINAZ TYPE P LDSZZ (1255)	1091	GUNCCICAL	GANGERC	1000011	TUNGUTO	199919	11190100	II CINGCI G	INGIGIA	TIGNITO	- Section 18
(1310)	1310	,1320	BBABA	1330	,1340	meecom	1350	,1360	,1370		1386
BNYVV RNA2 Type P LBS22 (1310)	TGAG	TGATTTATT	TTATACT	GTTAGAG	AGTTTGT	TGGGGT	GTTCAACG	GTGAGTTT	GAAGGGC	TTATAG	AGCIGITA
												- Section 19
(1387)	1387		1400	,1410	,14	420	1430	,1440		,1450	1463
BNYVV RNA2 NC_003515 (BNYVV RNA2 Type P LBS22 (1387)	GAGT	CACCCGATG	ATGATGA	TGGTGTG	TATACGA	ATGCTC	CTAGAGAC	ACTGCCAT	TGACGCC	TATGAA	TCTCAAGA
DIVING RIVAZ TYPE P LDSZZ (1507)	andi	CACCEGAIG	AT GAT GA	1001010	ITATACOA	AIGGIC	CINGNONC	ACTOCCAT	1041000	, INT SAN	- Section 20
(1464)	1464	,1470	,1480	1	490	,1500	,15	10	1520	1530	1540
BNYVV RNA2 NC_003515 (BNYVV RNA2 Type P LBS22 (1464)	AAAC	TACGACCGI	ATTGATA	TTGAAAC	TGTCTTG	CTCGAG	AGGCGTAT	AAACTIGA	AAAAGCI	GCTTCT	TGAAGAAG
		45.44	4550		-00	4570		500	4500	4000		- Section 21
(BNYVV RNA2 NC 003515 (1541) 1541)	CAGA	GCTAGAACG	ACGAGAG	CGAGATA	TGACTAT	GATTGC	TGATGAAG	AACAAAGA	ACATTGO	TACATA	GGTTGGAA
BNYVV RNA2 Type P LBS22 (1541)	CAGA	GCTAGAACG	ACGAGAG	CGAGATA	TGACCAT	GATTGC	TGATGAAG	AACAAAGA	<mark>ACATT</mark> AI	TACATA	GGTTGGAA
1	1618)	1618	16	530	1640	165	50	1660	1670	1	680	— Section 22 1694
BNYVV RNA2 NC_003515 (1618)	AGTT	CTAGGGTTG	AAGCAAC	TCATGCA	GTTGCCA	AAGCCG	AAGCTGAT	GCTCGGGC	AGCIGI	GCTATG	GCTGCTCT
BNYVV RNA2 Type P LBS22 (1618)	AGTT	CTAGGGTTG	AAGCAAC	TCATGCA	GTTGCCA	AAGCCG	AAGCTGAT	GCTCGGGC	AGCTGT	GCTATG	GCTGCTCT — Section 23
(1695)	1695	1700	,1710	,173	20	1730	,1740	.1	750	,1760	1771
BNYVV RNA2 NC_003515 (1695)	TGCT	TCTAAGGAA	GCTAATG	ATTACGA	CAGTAAG	ATGGCT	TTTGACAG	GTCTTGTA	AAGAACA	GGAACT	GCGGTTGC
DIVITYV KINAZ TYPE P LBSZZ (1092)	1901	TCCAAGGAA	GCTAATG	ATTACGA	CAGIAAG	AIGGUT	TTTGACAG	GICIIGIA	ANGAACA	ISGAACT	- Section 24
	1772)	1772	,1780	,179	0	1800	,181	0	1820	,1830		1848
BNYVV RNA2 NC_003515 (BNYVV RNA2 Type P LBS22 (1//2)	GCGA	ACTEGAAGT	GAATAGT	ATGCCGA	GTAAAAC	AGAGAG	GTATGTTC	ATACTGGT	ATACAAG	GTGGCG	CGCAATTG
the second s										and the second se		

Appendice B2. Allineamento della sequenza nucleotidica del clone dell'RNA2 di BNYVV tipo P (LBS22) con la sequenza NC_003515.

(1849) BNYVV RNA2 NC_003515 (1849) BNYVV RNA2 Type P LBS22 (1849)	1849 GCTG	,1860 GAGCTATGGCT(GAGCTATGGCT)	,1870 TCGGTGCT, TTGGTGCT	,188 ATGCTGCGA ATGCTGCGA	0 ,1	890 G <mark>GTTCTTC1</mark> CAGTTCTTC1	,1900 TCTCAAACC	,1910 GTTTCTAGTG	- Section 25 1925 GTGCTAA GTGCTAA
(1926) BNYVV RNA2 NC_003515 (1926) BNYVV RNA2 Type P LBS22 (1926)	1926 TATT TATT	,19 GGTTCTCGTTC GGTTCCCCCCC	40	1950 GACTCGTGG	,1960 ICGTAGTGC	,1970	,1980	,1990	- Section 26 2002
(2003) BNYVV RNA2 NC_003515 (2003) BNYVV RNA2 Type P LBS22 (2003)	2003 GTGG	2010 GGTTAATAATAA	2020 ATATTAGTA. ATATTAGTA.	2030 ATACTAATC	2040 TTGTTAGGO	2050 GCTGGTAATA	2060 AGT GC T G A A G) TTTCTGCTGG	- Section 27 2079 TAGATCT
(2080) BNYVV RNA2 NC_003515 (2080) BNYVV RNA2 Type P LBS22 (2080)	2080 ACTA ACTA	2090 ATAGTGGTAAT ATAGTGGTAAT	2100 AGTAATTTT AGTAACTTTT	2110 TGGTCCAAA TGGTCCAAA	21: TTACGTGTI TT <mark>GCGTGTI</mark>	20 2 IGGTGAAGGA IGGTGAAGGA	130 NIGGICCAAG	2140 TACAGCGTAG TACAGCGTAG	- Section 28 2156 AACGGGC AACGGGC
(2157) BNYVV RNA2 NC_003515 (2157) BNYVV RNA2 Type P LBS22 (2157)	2157 GGCG GGCG	2170 ACAAGGGCGCAA ACAAGGGCGCAA) 21 AGGGCAAT AGGGCAAT	80 2 CG <mark>TGCTTCC</mark> TA <mark>TGCTTCC</mark>	2190 A GC GC CC CC A GC GC CC CC	2200 CGTCCGCTCC	2210 CCGCCGGATG	2220 ACTCAGGATG ACTCAGGATG	- Section 29 2233 ACTGGTC ACTGGTC
(2234) BNYVV RNA2 NC_003515 (2234) BNYVV RNA2 Type P LBS22 (2234)	2234 ACGT/ ACGT/	2240 ACCCATCCCGAC ACCCATCCCGAC	2250 GATATTTT GATATTTT	2260 CTCAGTTAT CTCAGTTAT	2270 IGAGAAAAC IGAGAAAAC	2280 CACTAGTAGA CACTAGTAGA	2290 NGGATGGGTA NGGATGGGTA	2300 TAAATGGAAC TAAATGGAAC	- Section 30 2310 GGGGTAA GGGGTAA
(2311) BNYVV RNA2 NC_003515 (2311) BNYVV RNA2 Type P LBS22 (2311)	2311 AACCO	2320 CGGACATTGCG CGGACATTGCG	2330 ATTGGGGCA.	2340 AATTGAAGG AATTGAAGG	2350 AATCTGGTC AATCTGGTC) 23 GCTATTGAT# GCTATTGAT#	60 2 ATTTTAGGG	370 GTACATTAGA GTACATTAGA	- Section 31 2387 AGGCGAG
(2388) BNYVV RNA2 NC_003515 (2388) BNYVV RNA2 Type P LBS22 (2388)	2388 TTAG TTAG	2400 GTAAAAATTGT(GTAAAAATTGT(2410 SATTTGACT SATTTAACT	0 24 TGTAATGCT TGTAATGCT	20 SCTGCCGTI GCTGCCGTI	2430 TAAACTTGAC	2440 CACATTGCAA	2450 AAGGTGAAAA AAGGTGAAAA	- Section 32 2464 TGTCATC TGTCATC
(2465) BNYVV RNA2 NC_003515 (2465) BNYVV RNA2 Type P LBS22 (2465)	2465 AGAT AGAT	2470 2 TGGACTGCCAG TGGACTGCCAG	480 AGTTGGTAT' AGTTGGTAT'	2490 TGTTTTGGG' TGTTTTGGG'	2500 IGCTCCTGG IGCTCCTGG	2510 STGTTGGGAA STGTTGGGAA	2520 ATCTACCTC ATCTACCTC	2530 GATTAAGAAC GATTAAGAAC	- Section 33 2541 TTATTAG TTATTAG
(2542) BNYVV RNA2 NC_003515 (2542) BNYVV RNA2 Type P LBS22 (2542)	2542 ACAAA ACAAA	2550 ATTTGGAGCAAA ATTTGGAGCAAA	2560 ACATAAAA' ACATAAAA'	2570 TGGTGTTAT TGGTGTTAT	2580 GCTTACCTT GCTTACCT1	2590 TTTAGTCAGI) 260 TTGTTAGAAG TTGTTAGAAG	00 GAGTGTTTGC GAGTGTTTGC	- Section 34 2618 TGGTCGG
(2619) BNYVV RNA2 NC_003515 (2619) BNYVV RNA2 Type P LBS22 (2619)	2619 TTGG TTGG	2630 ACACTTTTCTG ACACTTTTCTG	2640 TTGATGAT' TTGATGAT'	265 TTGTTCTGT TTGTTCTGT	0 2 AGGTCCGTC AGGTCCGTC	2660 GGATATGGA GGATATGGA	2670 AAATACAAC AAATACAAC	2680 ACCATGCTTG ACCATGCTTG	- Section 35 2695 TAGATGA TAGATGA
(2696) BNYVV RNA2 NC_003515 (2696) BNYVV RNA2 Type P LBS22 (2696)	2696 GGTC:	27 ACTCGTGTGCA		2720	2730	2740	2750		 Section 36
	GGTC.	ACTCGTGTGCA	ATGTGTGA	GATTTTGGT. GATTTTGGT/	ACTTGCCGG ACTTGCCGG	GACATTTAG	GTGTTAAGAA GTGTTAAGAA	2760 CGTGATATGT CGTGATATGT	2772 TTTGGTG TTTGGTG
(2773) BNYVV RNA2 NC_003515 (2773) BNYVV RNA2 Type P LBS22 (2773)	2773 ATCC	ACTCGTGTGCA 2780 GGCGCAAGGGT GGCGCAAGGGT	2790	GATTTTGGT GATTTTGGT 2800 AGGCCGGTT(AGGCCGGTT(ACTTGCCGG ACTTGCCGG 2810 2TGCCGTGA 2TGCCGTGA	SACATTTAGO SACATTTAGO 2820 AACTATAATT AACTATAATT	2730 STGTTAAGAA STGTTAAGAA 2830 2830 VTTCCGATTA	2760 CGTGATATGT CGTGATATGT TTGCTGAATG TTGCTGAATG	2772 TTTGGTG TTTGGTG - Section 37 2849 TTATGCT TTATGCT
(2773) BNYVV RNA2 NC_003515 (2773) BNYVV RNA2 Type P LBS22 (2773) (2850) BNYVV RNA2 NC_003515 (2850) BNYVV RNA2 Type P LBS22 (2850)	2773 ATCC ATCC 2850 AGTA AGTA	ACTCGTGTGCA 2780 GGCGCAAGGGT GGCGCAAGGGT 2860 3ACGGTTCGGT/ GGCTCGGT/	2790 2790 10 AAATTATA 10 AAATTATA 2870 10 AGGCGACT 10 AGGCGACT	GATTTTGGT GATTTTGGT 2800 AGGCCGGTT AGGCCGGTT 2880 SCCGATCTC SCCGATCTC	ACTTGCCGC ACTTGCCGG CTGCCGTGA CTGCCGTGA CTGCCGTGA 288 ATTAATTCC	ACATTTAGG GACATTTAGG 2820 AACTATAATT AACTATAATT 90 2 LAGCAATGG CAGCAATGG	2830 2830 2830 2830 2830 2830 2830 2830	2760 CGTGATATGT CGTGATATGT 1 TTGCTGAATG TTGCTGAATG 2910 CCTGTAGTCG CCTGTAGTCG	2772 TTTGGTG TTTGGTG - Section 37 2849 TTATGCT TTATGCT TTATGCT Section 38 2926 GTAATAA GTAATAA
(2773) BNYVV RNA2 NC_003515 (2773) BNYVV RNA2 Type P LBS22 (2773) (2850) BNYVV RNA2 NC_003515 (2850) BNYVV RNA2 NC_003515 (2850) (2927) BNYVV RNA2 NC_003515 (2927) BNYVV RNA2 Type P LBS22 (2927)	2773 ATCC ATCC 2850 AGTA AGTA 2927 CGAG CGAG	ACTCGTGTGTGCA 2780 GGCGCAAGGGT GGCGCAAGGGT GGCGCAAGGGT GACGGTTCGGT GACGGTTCGGT 2940 GTAAAGGATAG GTAAAGGATAG	2790 2790 AAATTATA AAATTATA 2870 AGGCGACTO AGGCGACTO 29 TGGACTTT TGGACTTT	GATTTTGGT GATTTTGGT 2800 AGGCCGGTT 2880 SCCGATCTC GCCGATCTC IGAAGAACT	ACTTGCCGG ACTTGCCGG 2810 2TGCCGTGA 2TGCCGTGA 280 ATTAATTCC 2960 ATGTGGGAA ATGTGGGAA	2820 ACATTTAGG SACATTTAGG 2820 ACTATAATT ACTATAATT 90 2 200 200 2 200 2970 AGATACTAGA AGATACTAGA	2730 TGTTAA GAA TGTTAA GAA 2830 TTCCGATTA TTCCGATTA 1000 CGGTGGTAAA 2900 CGGTGGTAAA 2980 TATGTCTAC	2760 CGTGATATGT CGTGATATGT 1 1 1 1 1 1 1 1 1 1 1 1 1	2772 TTTGGTG TTTGGTG - Section 37 2849 TTTATGCT - Section 38 2926 GTAATAA GTAATAA - Section 39 3003 GCTACAC GCAACAC CAACAC
(2773) BNYVV RNA2 NC_003515 (2773) BNYVV RNA2 Type P LBS22 (2773) (2850) BNYVV RNA2 NC_003515 (2850) BNYVV RNA2 Type P LBS22 (2850) (2927) BNYVV RNA2 NC_003515 (2927) BNYVV RNA2 NC_003515 (2927) (3004) BNYVV RNA2 NC_003515 (3004) BNYVV RNA2 Type P LBS22 (3004)	2773 ATCC ATCC 2850 AGTA AGTA 2927 CGAG CGAG 3004 GCGAJ GCGA	ACTCGTGTGTGCA 2780 GGCGCAAGGGT GGCGCAAGGGT GGCGCAAGGGT 2860 GACGGTTCGGT 2940 STAAAGGATAG GTAAAGGATAG 3010 AACCCAAAAGT AACCCAAAAGT	2790 2790 TAAATTATA AAATTATA AGGCGACT AGGCGACT J 29 TGGACTTT TGGACTTT 3020 TCTATTAG	GATTTTGGT GATTTTGGT 2800 AGGCCGGTT 2880 GCCGATCTC 30CGATCTC 1GAAGAACTI 3030 AAGATAATA	ACTTGCCGC ACTTGCCGC 2810 CTGCCGTGA CTGCCGTGA 288 ATTAATTCC 2960 ATGTGGGAA ATGTGGGAA 3040 FTGAGTCTA FTGAGTCTA	2820 AACATTTAGG 2820 AACTATAATT AACTATAATT AACTATAATT 290 2 CAGCAATGG 2970 AGATACTAGA AGATACTAGA 3050 ATTCTTACT	2730 TGTTAA GAA TGTTAA GAA TGTTAA GAA TTCCGATTA TTCCGATTA GGTGGTAAA CGGTGGTAAA 2980 TATGTCTAC TATGTCTAC 3060 CGGACGCCC CGGACGCCC	2760 C GTGATATGT TTGCTGAATG TTGCTGAATG 2910 CCTGTAGTCG 2990 TGTTTGGTA TGTTTTGGTA 3070 ACGGGCAAAC	2772 TTTGGTG TTTGGTG - Section 37 2849 TTATGCT TTATGCT - Section 38 2926 GTAATAA - Section 39 3003 GC TACAC GC AACAC GC AACAC GC AACAC CC ACAC CC ACAC CC ACAC C
(2773) BNYVV RNA2 NC_003515 (2773) BNYVV RNA2 Type P LBS22 (2773) (2850) BNYVV RNA2 NC_003515 (2850) BNYVV RNA2 Type P LBS22 (2850) (2927) BNYVV RNA2 NC_003515 (2927) BNYVV RNA2 NC_003515 (2927) (3004) BNYVV RNA2 NC_003515 (3004) BNYVV RNA2 NC_003515 (3004) (3081) BNYVV RNA2 NC_003515 (3081) BNYVV RNA2 Type P LBS22 (3081)	2773 ATCC ATCC 2850 AGTA AGTA 2927 CGAG CGAG CGAG GCGA 3004 GCGA GCGA 3081 GTTG GTTG	ACTCGTGTGTGCA 2780 GGCGCAAGGGT GGCGCAAGGGT GGCGCAAGGGT GCGCAAGGGT 2860 SACGGTTCGGT GTAAAGGATAG 3010 AACCCAAAAGT AACCCAAAAGT 3090 FCACTATCATT CCACTATCATT	ATGTGTGTGA 2790 TAAATTATA TAAATTATA AGGCGACT AGGCGACT TGGACTTT 3020 TCTATTAG TCTATTAG 3020 TCTATTAG TGGAAGAC TGGAAGAC	GATTTTGGT GATTTTGGT 2800 AGGCCGGTT 2880 GCCGATCTC GCCGATCTC GCCGATCTC 3030 AAGATAATA 3030 AAGATAATA AAGATAATA 3110 BAGTTTGAT	ACTTGCCGC ACTTGCCGCG 2810 CTGCCGTGA TGCCGTGA ATGCCGTGA ATTAATTCC 2960 ATGTGGGAA ATGTGGGAA ATGTGGGAA TGAGTCTA TGAGTCTA 3040 TTGAGTCTA 3120 3ATGCTGCC 3ATGCTGCC	2820 AACTATTAGG 2820 AACTATAATT AACTATAATT AACTATAATT AACTATAATT 90 2 200 2 200 2 2970 AGATACTAG AGATACTAG AGATACTAG 3050 ATTCTTTACT ATTCTTTACT 0 31 CATTTGCGAG	2000 200 2000 2	2760 CGTGATATGT TTGCTGAATG TTGCTGAATG 2910 CCTGTAGTCG 2990 TGTTTTGGTA TGTTTTGGTA 3070 ACGGGCAAAC ACGGGCAAAC 140 AGGGCTGTCT	2772 TTTGGTG TTTGGTG - Section 37 2849 TTATGCT - Section 38 2926 GTAATAA - Section 39 3003 GCTACAC GCAACAC - Section 40 3080 ATACGAC ATACGAC - Section 41 3157 TGTTAAC CGTTAAC Social (200)

										 Section 43 	
(3235) BNYVV RNA2 NC_003515 (3235) BNYVV RNA2 Type P LBS22 (3235)	3235 GTGG GTGG	3240 AGTTAGTAAG AGTTAGTAAG	3250 TCTTGCACO TCTTGCACO	3260 CGGAGATAC CGGAGATAC	3270 TTTTTGCG TTTTTGCG	328 AAGATAGA AAGATAGA	0 3 TAATGTCTA TAATGTCTA	290 AGGGAAATA AGGGAAATA	,3300 ACCGCT ACCGCT	3311 CGACCCA CGACCCA	
(3312) BNYVV RNA2 NC_003515 (3312) BNYVV RNA2 Type P LBS22 (3312)	3312 ATAA ATAA	3320 GAATGTGCCI GAATGTGCCI	,3330 ATTGTTGT1 ATTGTTGT1	3340 IGGTGTTTG IGGTGTTTG	33 TGTTGTGG TGTTGTGG	50 CTTTCTTT CTTTCTTT	,3360 GTATTGCTC GTATTGCTC	3370 SGCGTTCAT SGCGTTCAT	GCAGCA GCAGCA	3388 AAAACAT	
(3389) BNYVV RNA2 NC_003515 (3389) BNYVV RNA2 Type P LBS22 (3389)	3389 AAGA AAGA	3400 CACATTCTGG CACATTCTGG	34 GGGCGATT GGGCGATT	10 ACGGAGTCC ACGGAGTCC	3420 CAACATTT CAACATTT	3430 ICTAACGG ICTAACGG	3440 TGGTAAATA TGGTAAATA	3450 CAGAGACG T <mark>AGAGACG</mark>	GT <mark>ACAA</mark> GC <mark>ACAA</mark>	- Section 45 3465 GGTCAGC	
(3466) BNYVV RNA2 NC_003515 (3466) BNYVV RNA2 Type P LBS22 (3466)	3466 TGAT TGAT	TTTAATAGTA TTTAATAGTA	3480 ATAATCATC ATAATCATC	,3490 CGTGCTTAC CGTGCTTAC	,3500 GGGTGCGG GGGTGCGG	3510 IGGGICIG IGGGICIG	35. GGGGTAGCO GGGGTAGCO	20 STTAGTAGT STTAGTAGT	3530 CGAGTC CGAGTC	- Section 40 3542 GGGCAGC	
(3543) BNYVV RNA2 NC_003515 (3543) BNYVV RNA2 Type P LBS22 (3543)	3543 AACT AACT	3550 TGTTGTGTTA TGTTGTGTTA	3560 GCTATTGTO GCTATTGTO	3570 STCTGTGTT STCTGTGTT	<mark>358</mark> A <mark>ATAGTAT</mark> G <mark>ATAGTAT</mark>	0 CACTGTTA CACTGTTA	3590 CAACGATTA CAACGATTA	3600 AGATCTCC AAGATCTCC	ACCAGA ACCAGA	- Section 4/ 3619 ACATATT ACATATT - Section 48	
(3620) BNYVV RNA2 NC_003515 (3620) BNYVV RNA2 Type P LBS22 (3620)	3620 TGTA TGTA	,3630 ATGGTGCTTG ATGGTGCTTG	,3640 TGGTTAAA TGGTTAAA	0 ,36 STAGATTTA STAGATTTA	650 TCTAATAT TCTAATAT	,3660 IGTGTTGT, IGTGTTGT,	,3670 ATATAGTTO ATATAGTTO	,3680 SCCGGTTGT SCCGGTTGT	GTTGTT GTTGTT	3696 GTTAGCA GTTAGCA	
(3697) BNYVV RNA2 NC_003515 (3697) BNYVV RNA2 Type P LBS22 (3697)	3697 TGTT TGTT	3 GTACTCACCA GTACTCACCA	710 TTTTTCAGO TTTTTCAGO	3720 CAACGATGT CAACGATGT	3730 TAAAGCGT TAAAGCGT	3740 CCAGCTAT CCAGCTAT	,3750 GC GG GA GC # GC GG GA GC #) 3 AGTTTTTAA AGTTTTTAA	760 AGGGAG AGGGAG	- Section 49 3773 TGGCTGT TGGCTGT	
(3774) BNYVV RNA2 NC_003515 (3774) BNYVV RNA2 Type P LBS22 (3774)	3774 ATCA ATCA	3780 TGGACAGGAA TGGACAGGAA	3790 TTCGTTTGC TTCGTTTGC	3800 CTCAATTIG CTCAATTIG	3810 GGAGTTGC GGAGTTGC	38 GATATTCC GATATTCC	320 A <mark>AAGCATG1</mark> G <mark>AAGCATG1</mark>	3830 AGCCGAGI AGCCGAGI	,3840 CCATCA CCATCA	- Section 50 3850 CTAAGGT CTAAGGT	
(3851) BNYVV RNA2 NC_003515 (3851) BNYVV RNA2 Type P LBS22 (3851)	3851 TGCT TGCT	3860 ACCAAAGAGC ACCAAAGAGC	3870 ACGATGCT ACGATGCT	,388 GATATATG GATGTAATG	0 GTAAAAAG GTAAAAAG	3890 AGGTGAAG AGGTGAAG	3900 TGACCGTTC TGACCGTTC	3910 CGTGTTGTG CGTGTTGTG	ACTCTC	ACCGAAP Section 53	
(3928) BNYVV RNA2 NC_003515 (3928) BNYVV RNA2 Type P LBS22 (3928)	3928 CTCT TTAT	394 TTTCATAATA TTTCATAATA	40 ; TTATCTAG TTATCTAG	3950 ATTGTTTGG ATTGTTTGG	,3960 TTTGGCGG TTTGGCGG	,3970 IGTTTTTG IGTTTTTG	,3980 TTCATGAT# TTCATGAT#	,399 A <mark>TGT</mark> TTAAT ATGTCTAAT	90 GTCTAT GTCTAT	4004 AGTTTGG	
(4005) BNYVV RNA2 NC_003515 (4005) BNYVV RNA2 Type P LBS22 (4005)	4005 TTTT TTTT	4010 GGTGTCATAG GGTGTCATAG	4020 ATAAATTG ATAAATTG	,4030 FGGTAGAAT FGGTAGAAT	,4040 GAGTATGG GAGTATGG	,405 GGATGGTA GGATGGTA	0 A GATAGTITO GATAGTITO	1060 STGT <mark>GTGTT</mark> STGC <mark>GTGTT</mark>	,4070 TGTTGG TGTTGG	- Section 53 4081 TCGGGGTC TCGAGTC - Section 54	
(4082) BNYVV RNA2 NC_003515 (4082) BNYVV RNA2 Type P LBS22 (4082)	4082 ATAA ATAA	,4090 CTGAGGGATC CTGAGGGATC	,4100 TGAAAGTGI TGAAAGTGI	4110 <u>,</u> TTGAGGGTG TTGAGGGTG	41, TGGAACGG TGGAACGG	20 TTTTCCAT TTTTCCAT	,4130 TAAGTTTAG TAAGTTTAG	, <mark>4140</mark> STGACTGGA STGA <mark>GTGGA</mark>	AATTGT AATTGT	4158 TCACCAC	
(4159) BNYVV RNA2 NC_003515 (4159) BNYVV RNA2 Type P LBS22 (4159)	4159 CGCG CGCG	4170 GTGTACGTTG GTGTACGTTG	A1 AATATCGTC AATATCGTC	80 CAGTTAGGT CAGTTAGGT	4190 GAGAAAGA GAGAAAGA	4200 STGTAGTT STGTAGTT	,4210 TGAAGGATO TGAAGGATO	4220 TTGGTAGG TTGGTAGG	TTACAT TTACAT	- Section 55 4235 TTTAATA	
(4236) BNYVV RNA2 NC_003515 (4236) BNYVV RNA2 Type P LBS22 (4236)	4236 TGTC TGTC	ATGTGTGAAA ATGTGTGAAA	<mark>,4250</mark> TGCTGTCA) TGCTGTCG	,4260 AAAACTTAA AAAACTTAA	4270 ATGCAAGA ATGCAAGA	,4280 AACAAAAT. AACAAAAT.	42 AAAAATCAT AAAAATCAT	90 FAGTAAACA FAGTAAACA	4300 CGTCCA CGTCCA	- Section Se 4312 AAATGGA AAATGGA	
(4313) BNYVV RNA2 NC_003515 (4313) BNYVV RNA2 Type P LBS22 (4313)	4313 <u> </u>	4320 TACGCAAGGI TACGCAAGGI	4330 GCGTAATT GCGTAATT	,4340 FTTCCATTT FTTCCATTT	435 , TAGGTGTT TAGGTGTT	0 IGCGGTGA IGCGGTGA	4360 TTGTTGTGF TTGTTGTGF	,4370 AGTCTTTTA AGTCTTTTA	CACTTG	- Section 37 4389 CGGACGA CGGACGA	
(4390) BNYVV RNA2 NC_003515 (4390) BNYVV RNA2 Type P LBS22 (4390)	4390 AAAA AAAA	4400 CATCATGTTA CATCATGTTA	,4410 TTGTCGATC TTGTCGATC	0 44 CCTGAGGTG CCTGAGGTG	<mark>120</mark> TAAT <mark>AGG</mark> G TAAC <mark>AGG</mark> A	, <mark>4430</mark> ITTATTCA. ITTATTCA.	, <mark>4440</mark> AGAGACTAI AGAGACTAI	4450, IGTTTAATA IGTTTAATA	ТТААТА ТТААТА	4466 ATCAGGO ATCAGGO Section 50	
(4467) BNYVV RNA2 NC_003515 (4467) BNYVV RNA2 Type P LBS22 (4467)	4467 CCAT CCAT	4 GCCACAGGCC GCCACAGGCC	480 TCCTATTGO TCCTATTGO	,4490 SGTTGTTCC SGTTGTTCC	,4500 GAAGGTTG GAAGGTTG	,4510 TTGTGGTT TTGTGGTT	,4520 TATATTGC1 TATATTGC1) ,4 TTATTGGTA TTATTGGTA	530 AGTGAT AGTGAT	4543 TTGATTA	
(4544) BNYVV RNA2 NC_003515 (4544) BNYVV RNA2 Type P LBS22 (4544)	4544 AGGT	,4550 TGCAGTGTAC TGCAGTGTAC	,4560 TGACTGGG	4570 FGTGAATTG	4580 TACCAGTC	45 CATGTAGG	590 GTCTGTTTT	4 CCAGTATAT	609 TG	- Secular ol	
											— Section 1
--	----------------------------	----------------------------------	---	---	--	---	---	--	--	---	--
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(1) (1) (1)	1 AAAT AAAT	10, TCTTCCC TCTTCCC	ATTCGC(20 CATCATTO CATCATTO	30 GAATCGI GAATCGI	TATTOGTA	,40 TACTGGAAC TACTGGAAC	50 GCAGTTAGG GCAGTTAGG	,60 AGTGGCTCCAAAG AGTGGCTCCAAAG	79 CGTCTCGT1 CGTCTCGT1
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(80) (80) (80)	80 TAAA	9 AATAGAT	0 TGCGAA	,100 GTGAGTTC	,1 CACCTAP	10 AGACGACGT AGACGACGT	,120 CGGTGTTTT	,130 ACGAATTTT ACGAATTTT	,140 FATATAATCAAGA FATATAATCAAGA	
BSBMV RNA1 NC_003506	(159) (159)	159 CGT1	TGGTTTT	170	,180 ATGGAGGI	ITTTGCI	,190 IGTTTCGTG	200 GTGAGTCAT	210	220 IGACATCTGACAT	— Section 3 237 GCCTTTGGA
BSBMV RNA1 NC_003506 BSBMV RNA1 NC_003506	(238) (238) (238)	238 TGT1 TGT1	CAGTGGG	250 ATGTTG	260 TCTACTCA	AGCTAGA	270 ATGCTATGC	280 CATTTGGAA	290 AGCATGATCT	300 FACTCATCTCAAT	
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(317) (317) (317)	317 AAGA AAGA	ATTCGCA	330 ACGTTT ACGTTT	34 GGCAAAAG GGCAAAAG	0 CGCTGGG CGCTGGG	350 GACAAGTTG GACAAGTTG	360 ATTTCGGGC	,370 TTTGGTGGT(TTTGGTGGT(,380 CCTGTACCTTTAG CCTGTACCTTTAG	— Section 5 395 ACAAGTTAT ACAAGTTAT
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(396) (396) (396)	396 TGAC TGAC	TGCTTTA	410 CTTGCT(4 CTTATGAC CTTATGAC	420 GGTATTO GGTATTO	430 GTATCACCA GTATCACCA	,440 TGGGGGTGT TGGGGGTGT	,450 CTGTACAGG CTGTACAGG	,460 ATATCTATTTATC ATATCTATTTATC	— Section 6 474 TGATGTTG TGATGTTG
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(475) (475) (475)	475 TACA	480 ACTTCAG	,490 ATAATT	TGTTACAT	500 FGTGTC1	510	520 TGGGTTGTG TGG-TTGTG	530 TTACTTTAA	540 AG <mark>TGGTTGTATGC</mark> GT <mark>TGGTTGTATGC</mark>	— Section 7 553 CAAATTGTC CAAATTGTC
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(554) (554) (553)	554 TTTC TTTC	,560 TTTGGAA TTTGGTA	57 GGCATG	'0 GAAGGTT1 GT <mark>AGGTT1</mark>	580 TTGGGTI TTGGGTI	590 IGGATCTTC	,600 TTAGTCATA T-AGTCATA	D 61 CTGCTGCAA CTGCTGCAA	0 ,620 CTATTATTGAAGG CTATGATTGAAGG	Section 8 632 GTCCTCGTG GTC-TCGTG
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(633) (633) (630)	633 <mark>СТСТ</mark> СТСТ	<mark>,640</mark> TAATGGT TAATGGT	CCTGAT	650 GTGGCTAI GTGGCTAI	,660 TTTCTGA TTTCTGA	670 AATGGTAG AATGGTAG) ,6 AAGCTTTTC AAGCTTTTC	80 (ATTTGAAGG' ATTTG <mark>GAGG'</mark>	690 ,700 FTAAGTCCTTCAC FTAAGTCCT-CAC	
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(712) (712) (707)	712 ACCO ACCO	720 <u>,</u> TTTCTCA TTTCTCT	AACTCC AACTCC	,730 C <mark>TAGAGAC</mark> - <mark>TAGAGAC</mark>	,740 GAAGAAG GAAGAAG	,7 GATACTAGA GATACTAGA	50 GAGAGAATI GAGAGAATI	,760 GGGTTTTGT(GGGTTTTGT(.770 .780 SCCATTATATAG SCCATTATATAAG	790 CAGAAGACT CAGAAGACT
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(791) (791) (785)	791 CGTC CGTC	800 CTCCACG) TAATCA TAATCA	,810 TCCTGTG1 TCCTGTG1	,820 PTGGCTG PTGGCTG	0 GCGTTGCGT GCGTTGCGT	<mark>830</mark> GAGGTTATG GAAGTTATG	840 AGGCAGGAG AGACAAGAG	850 FATGCGGCTAGTA FATGCGGCTAGTA	Section 11 869 GCAACATTT GCAACATTT
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(870) (870) (864)	870 TAAA TAAA	8 TACAAAG TACAAAG	80 TTGAAG TTGAAG	,890 ACTTTGG1 ACTTTGG1	9 IGATTGO IGATTGO	00 Stgcggcca Stgcggcca	910 GTCGTGAGG GTCGTGAGG	920 TTAATTGTTA TTAATTGTT	930 ATTCTTCTAATCC ATTCTTCTAATCC	— Section 12 948 TTCTGTTCA TTCTGTTCA
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(949) (949) (943)	949 TTAT TTAT	TACTTTG	960 CTAATA CTAATA	970 AAGATAGI AAGATAGI	TAAGGA1 TAAGGA1	980 TTAGTGAG	990 AACTACTTI AACTACTTI	,1000 GGAGTTGTT GGAGTTGTT	,1010 GCACAGTGCCTTG GCACAGTGCCTTG	— Section 13 1027 GCTACAAAA GCTACAAAA
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(1028) (1028) (1022)	1028 TATC TATC	GTAATAT GTAATAT	,1040 'GGAGAG' 'GGAGAG'	,1050 TGACGAG TGGT <mark>GA</mark> -7) ACCG <mark>GTG</mark> AC <mark>GTG</mark>	,1060 GCATATG GCATATG	,1070 AT <mark>CAATTTA</mark> A <mark>CAATTTA</mark>	,1080 AAAGGTTGT AAAGGTTGT	,1090 SGGTACATTGTTA SGGTACATTGTTA	Section 14 1106 AGAGGTCTA AGAGGTCTA
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(1107) (1107) (1098)	1107 CCGA CCGA	TAGTGGT	, <mark>1120</mark> GTTTAT(GTTTAT(,11 GAGGTTG1 GAGGTTG1	30 ICTCAGA	1140 TAAAGATG	,1150 TTGCTGAGG TTGCTGAGG	,1160 TATTGAGGTA TATTGAGGTA	, <mark>1170</mark> ATGCTAAGACTGT ATGCTAAGACTGT	Section 15 1185 CGCTTCTAC CGCTTCTAC
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(1186) (1186) (1177)	1186 TAAG TAAG	CGTGATG	1200 CTAAGCI CTAAGCI	t AAAAACCI AAAAACCI	1210 EGTTGGA EGTTGGA	,1220 AAAAGGAA AAAAGGAA	,1230 AATGATAAT AATGATAAT	,1240 GTCTGAGGCA GTCTGAGGCA	,1250 AACTAGAAGGACT AACTAGAAGGACT	— Section 16 1264 ATCGAGTTG ATCGAGTTG
BSBMV RNA1 NC_003506 BSBMV RNA1 LB160	(1265) (1265) (1256)	1265 CATO CATO	,1270 AGCTGTC AGCTGTC	,128 TAGAGT TAGAGT	0 TGTGGCA(TGTGGCA(,1290 GAGGAAA GAGGAAA	,1300 A G A A G A T C A G A A G A T C	,1310 CCGAATCAI CCGAATCAI) ,132 TTTCATTTT TTTCATTTT	0 ,1330 GATGAGCGTAGTT GATGAGCGTAGTT	- Section 17 1343 TTGGTTCTG TTGGTTCTG
BSBMV RNA1 NC_003506	(1344) (1344) (1335)	1344 TTGG	1350 TAGTTTT	,13 ACTCAA	60 TTAGTTTO	,1370 STGAAGA	,1380 TGTTGGGT	139 ATAATTTTT	90 ,14	00 ,1410 CTTGGTTACATTT	- Section 18 1422 GTTTAATGT GTTTAATGT

Appendice B3. Allineamento della sequenza nucleotidica del clone dell'RNA1 di BSBMV (LB160) con la sequenza NC_003506.

							 Section 19
1423 TACG TACG	,1430 GGTGCGCAGACT GGTGCGCAGACT	, <mark>1440</mark> GCTGTTGGTTA GCTGTTGGTTA	1450 TATGGCTTTC TATGGCTTTC	, <mark>1460</mark> CCAAATGAGT CCAAATGAGT	,1470 TGTTATTTGA TGTTATTTGA	1480 ,1490 ACATTATCCTATCT ACATTATCCTATCT	1501 CTGATTAT CTGATTAT
1502 TATG	,1510	,1520 JTATTGAAAAA	,1530	1540	,1550	,1560 ,1570 CCATTAAAGAATGG	- Section 20 1580 GCAAGTTG
1581 TTGG	,1590	,1600	,1610	,1620	,1630	,1640 TCGGGATTCCTGGG	- Section 21 1659 TCCAAGAT
1660 GGGA	TATGCCAAAGGG ,1670 .ACTGTTGAACGT/	1680 ,1680	CTTCACAGT ,1690 .TATGTCAGAC	TTGTAATTCA ,1700 GGCTTTGGCA	1710	1720 ,1720 TCATGTTAAGAGTG	TCCAAGAT - Section 22 1738 ATTGGCAA
GGGA 1739 ACAT	ACTGTTGAACGT ,1750 TGCTTAAGAATCO	ATCATATGTCA ,1760 CAATTTTAGCG	,1770 TCACCCAAAT	,1780 ,1780	ACGGGTATAA ,1790 .TATAGAGGTA	TCATGTTAAGAGTG ,1800 GACTTGCAAGGACG	ATTGGCAA - Section 23 1817 TTATGGGT
ACAT 1818	TGCTTAAGAATCO ,1830	,1840	1850	ATAATTTTGC ,1860	TATAGAGGTA ,1870	GACTTGCAAGGACG	TTATGGGT - Section 24 1896
GTCT	TGCCACTTTTCG	TCTGACGCGAG	TCACCGGCGI	GAAGTATGTI	GCTAGAACTA	TTAAACTTAGACCT	GAGGATAG – Section 25
ATAT ATAT	GTTCGTGTGCTA GTTCGTGTGCTA GTTCGTGTGCTA	,1920 GATTTGCTACA GATTTGCTACA	,1930 TATTGTGCG1 TATTGTGCG1	,1940 AGTATAAGGC AGTATAAGGC	,1950 CAGAAAGGACA CAGAAAGGACA	,1980 CGCTGGTCTTAGAG CGCTGGTCTTAGAG	AACCCTAT AACCCTAT AACCCTAT – Section 26
1976 СААТ СААТ	1990 ATTTCCCTGTTT ATTTCCCTGTTT	D 2000 ATAAGCGTGAG ATAAGCGTGAG	2010 CTTGATACCA CTTGATACCA) 2020 CTGTCTCGTA CTGTCTCGTA	2030 CTTGTTTTCA CTTGTTTTTCA	2040 ATAGCTGAAAAGTC ATAGCTGAAAAGTC	2054 TCTGACTG TCTGACTG
2055 TGCA TGCA	2060 20 GAACATTGCAAA GAACATTGCAAA	70 200 TTTTATTCGAC	80 20 ATCACATIGO ATCACATIGO	90 210 TGGGGTGTCT	00 211 TTGGTTAATA	0 2120 AGGAGCTTGTTTCT AGGAGCTTGTTTCT	- Section 27 2133 GCCTGGAG GCCTGGAG
2134 GTTG	2140 2 AATCCGCAACTT AATCCGCAACTT	2150 2 GTACCGTCTTT	160 2 CGCCTATGCI	170 2 GTTTATTTT GTTTATTTTT	180 2' LATGTTATTAA	190 2200 TTTGAGAGGCGAAT	- Section 28 2212 TAGATGGT
2213 ATGT ATGT	2220 TGGAGAAGTTGA TGGAGAAGTTGA	2230 IGAAGAAGGGT IGAAGAAGGGT	2240 ATCACTTGGI	2250 CAGATCGACI	2260 GAAAGCTAAT CAAAGCTAAT	2270 2280 GTATCTGCTTTTT GTATCTGCTTTTTT	– Section 29 2291 GAGAGATA GAGAGATA
2292 TGGT	2300	2310	2320 CATGGTTATI	2330	2340	2350 2360 AAATTTTTGAGGAT	- Section 30 2370 GGTACCGA
2371	2380	2390	2400	2410	2420	2430	- Section 31 2449
2450	2460	2470	TGTGGATGAT	2490	AGTTGAGTGA	ACATTTAAATGTCA 2510	CTCGTGAT - Section 32 2528
TTTA TTTA	TGCCGGCTGACAC TGCCGGCTGACAC	CTTTATTGCCC CTTTATTGCCC	GAGGGATGGG	TTTTGGATGA TTTTGGATGA	ATTGGGAGAAG ATTGGGAGAAG	GCTCCAGATAGTCT GCTCCAGATAGTCT	GAAGACTT GAAGACTT – Section 33
2529 TGTC TGTC	2540 CGCTGCTGCTTCC CGCTGCTGCTTCC	2550 CCTACCTATOG	2560 AATGTGGGAC AATGTGGGAC	2570 TATTAATTGI TATTAATTGI	2580 GTTGGCAAAT GTTGGCAAAT	2590 CTITCAAGAGTATC CTITCAAGAGTATC	2607 CGCTCTCT CGCTCTCT
2608 GTTG GTTG	2620 CCACCATCTGTC CCACCATCTGTC	2630 STTACCTCTCC STTACCTCTCC	2640 TGTTGAGCAG	2650 TTTTTCAAAG	2660 GCTGGCGGCAA GCTGGCGGCAA	2670 ATTTCGAAATGATA ATTTCGAAATGATA	- Section 34 2686 GTGAGTTT GTGAGTTT
2687 GCTG	2700 AGTTGTTGAGCGO	2710 CTCATTATCGT	2720 TGGCAATGO	2730 ACAATTOGTI	2740	2750 CAGGTTTGTTCTGC CAGGTTTGTTCTGC	- Section 35 2765 TTTAACAG
2766	2780	2790	2800) 2810) 2820	2830	- Section 36 2844
	1423 TAC G TAC G TAC G TAC G TAC G 1502 1503 1504 TT G G 1660 GGGAA 1739 ACAT 1887 1897 ATATA 1976 CAAT 2055 TGCAAT 2055 TGCAAT 2055 TGCAAT 2055 TGCAAT 2051 TGCAAT 2292 TGGTT 2371 TGGTT 2450 TTTA 2529 TGTC 2603 GTTC G 2603 GTT G 2677 G 2766	1423 ,1430 TAC GG GT GC GC A GACT (TAC GG GT GC GC A GACT (TAC GG GT GC A GACT (TAT GG A A GG GT GT GA A GA GT GT GA A GG GT GT GA A GA GT GT GA A GA GT GT GA A GA GT GT GA GA GA GT GA GA GA GT GA	1423 ,1430 ,1440 TAC GGGT GC GC A GACT GCT GTT GGT TA TAC GGGT GC GC A GACT GCT GTT GGT TA TA GGT TA TT GGGA A GGT A TT GA A A A A TA TG AT TA TT GGGA A GGT A TT GA A A A	1423 1,430 1,440 1,450 TAC GGGT GGGCA GACT GCT GT T GGT T AT AT GGCT TT G T AC GGGT GGCA GACT GCT GT T GGT T AT AT GGCT TT G T A T GATT AT T GG GA AG GT AT TT GA AAAC AT GGT GCT T A T GATT AT T GG GA AG GT AT TT GA AAAC AT GGT GCT T T A T GATT AT T GG GA AG GT AT TT GA AAAC AT GGT GCT T T GGT AT GCCAA AG GGT GT TT T T C AA GCT T C AC AG T T T GGT AT GCCAA AG GGT GT TT T T C AA GCT T C AC AG T T T GGT AT GCCAA AG GGT GT TT T T C AA GCT T C AC AG T T T GGT AT GCCAA AG GGT GT TT T T C AA GCT T C AC AG T T T GGT AT GCCAA AG GGT GT T T T C AA GCT T C AC AG T GGGAACT GT T G AAC GT AT C A T AT G T C AT AT GT C AC C AA AT C AT T GC T T AA GA T C C A A TT T A GC GT C AC C C AA AT C AT T GC T T A G AA T C C A A TT T T A GC GT C AC C C AA AT C AT T GC T T A GA AT C C A A TT T T A GC GT C AC C C AA AT C AT T GC T T A G AA T C C A A TT T T A G G T C AC C C AA AT C AT T G C T C T T T C G T G AC G G A GT C AC C G G G T GT C T G C AC TT T T C G T G AC G G A GT C AC C G G G T GT C T G C C A C T T T C G T G AC G G A GT C AC C G G G T GT C T G C C A C T T T C G T G AC G G A GT C AC C G G G T GT T G C AC T T T C G T G A C G G A GT C AC C G G G T GT T G C AC T T T C G T T A T AA GC G T A A C A T T G T G G T A T A T G T T C G T T G T A A T T T T C G A C A T A C T T G G T G C AG AA C AT T G C AA A T T T T A T C AG C T C A C A T T G C C AG AA C AT T G C AA A T T T T A T C G A C A C A C T T G G G T G AA C AC T T G A C A T T G G T T G A C A T T G G T T G A A G A G G G T A C A C T T G G T G G T T G A A G T G A T G A G A A G G G T A T C A C T T G G T G G T T G A A G T G A T G A T G A T G A G A	1423 1,440 1,450 1,460 TAC GGGT CCCCA GACT GCT GGT TG GT TATA TG GCT TT GCC AA AT GACT TA CGGT GCCCA GACT GCT GGT GGT AT TA GGT TT TG CCAA AT GACT TA CGATTAT TG GAAG GT AT TG AA AACAT GGT GCT TT GGC GGT AT TA TG AT TT GG GAAG GT AT TG AA AACAT GGT GCT TT GGGC GGT AT TA GAT TT GG GAAG GT AT TT CAA GCT TC ACA GT TT TG TAA TT CA TG GT AT GCC AA AG GGT GT TT TC CAA GCT TC ACA GT TT TG TAA TT CA GGG ACT GT TG AA GGT AT CAT AT GT CAA GT TC ACA GT TT TG TAA TT CA GGG ACT GT TG ACAG GT AT CAT AT GT CAA GT TC ACAG GT TT GGC GG GGG ACT GT TG ACAG GT AT CAT AT GT CAAC GGC TT GGC G GGG ACT GT TG ACAG GT AT CAT AT GT CAAC GGC TT GGC G GGG ACT GT TG ACAG GT AT CAT AT GT CAAC GGC TT GGC G GGG ACT GT TG ACAG GT AT CAT AT GT CAAC GGC TT GGC G GGG ACT GT TG ACA GT AT CAT AT GT CAAC GGC TT GGC G GGG ACT GT TG ACA GT AT TA GC GT AC CCG AA AT AT AT TT TG C CAT TG CT TA AG AT CCAA TT TA GC GT CAC CG GC TG AA GT AT GT CT TT GC CACT TT TC GT CT GAC GCG GT CAC CG GC GT GAAG TAT GT CT CTT GC CACT TT TC GT CT GAC GCG GT CAC CG GC GT GAAG TAT GT CT CTT GC CACT TT TC GT CT GAC GCG GT GA GC CAC CG GC GT GAAG TAT GT CT CTT GC CACT TT TC GT CT GAC GCG GT GA GT AT CCAC TT GT CT CACT GC CACT TT TC GT TG GT CAC GCG GT GA GT AT GT TT CC TG CT CAC TT TT TG GT CT GAC GCG GT GA GT AT GT TT CT CT GC CACT TT TC GT TG GT CAC GCG GT GA GT AT GT TT CT CAT TT CC CT GT TT AT TA GC GT CA GT GT AT CCAC TT GT CT TT G CT TG CAT CC CT GT TT AT TT TG CT CAC AT TT GT GGG GT GT TT G CT TG CAT CC CT GT TT AT TT TT CG CAC AT TC AT TT GT GGG GT GT TT G CT CT GC CACT TT TT G CT CAC GT CT GT GG GT GT TT G CT CT GC GT GT TT TT AT TA TG CG CT CT GG CT GT GT GT GT G CT TG CAC GT CT TT G GC TT G GG GT GT TT G GGG GT GT TT G CT CT GC GT GT TT AT TT TT CG CC CT CT TG GC GT GT TT G CT CT GC GT GT TT AT CACT TT TT TG GC GT GT GT TT G CT TG CC CT GT TT AT CG CT CT TT G GC GT TT G GT G CT TG CT GCT GT TT AT CG CT CT TT G GC GT TT TT TT CAC GT TT G CT TG GT GT GT GT G GAC	1423 1430 1440 1450 1460 1470 1423 1430 1440 1450 1460 1470 1423 1430 1150 1150 1150 1150 1502 11510 1520 1530 1140 1150 1403 1450 1600 1610 1620 1630 1501 1520 1600 1610 1620 1630 1506 1670 1680 1630 1700 1710 1660 1670 1680 1630 1700 1710 1660 1670 1680 1630 1700 1710 1660 1670 1680 1739 1760 1770 1780 1799 1739 1750 1760 1770 1780 1870 1870 1739 1750 1760 1770 1780 1870 1747 1910 1920 1930 1940 1950 1747 1940 1920 1930 1940 1950 1746 <th>1423 1,430 1,440 1,450 1,460 1,470 1,480 1,440 1420 1,510 1,520 1,530 1,540 1,550 1,550 1,560 1,570 1502 1,510 1,520 1,530 1,540 1,550 1,560 1,570 1511 1,520 1,530 1,540 1,550 1,640 1,640 1521 1,550 1,600 1,610 1,620 1,630 1,640 1523 1,550 1,760 1,700 1,700 1,700 1,700 1523 1,750 1,760 1,700 1,700 1,700 1,700 1739 1,750 1,760 1,680 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,700 1,700 1,800 1,700 1,800 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600</th>	1423 1,430 1,440 1,450 1,460 1,470 1,480 1,440 1420 1,510 1,520 1,530 1,540 1,550 1,550 1,560 1,570 1502 1,510 1,520 1,530 1,540 1,550 1,560 1,570 1511 1,520 1,530 1,540 1,550 1,640 1,640 1521 1,550 1,600 1,610 1,620 1,630 1,640 1523 1,550 1,760 1,700 1,700 1,700 1,700 1523 1,750 1,760 1,700 1,700 1,700 1,700 1739 1,750 1,760 1,680 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,700 1,700 1,800 1,700 1,800 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600

·				ill and i					- Section 37
(2845) BSBMV RNA1 NC_003506 (2845) BSBMV RNA1 LB160 (2836)) 2845) TGAC) TGAC	2850 CGATTTTAGAA CGATTTTAGAA	2860 ATGAAGTTAA ATGAAGTTAA	2870 GGCTCAGTCT GGCTCAGTCT	2880 ATTGAAAAAGO ATTGAAAAAGO	2890 SGAATCGGTTI SGAATCGGTTI	2900 GGAGAGTTA GGAGAGTTA	2910 TTGGTAG TTGGTAG	2923 GTGTACAT GTGTACAT
(2924 BSBMV RNA1 NC_003506 (2924 BSBMV RNA1 L B160 (2915) 2924) CAAF	2930	2940 TCAAGCTTTT TCAAGCTTTT	2950 GAGGTTTCTG	2960 IGCGGCTTGAA	2970 ATATATCAAGO	2980 GGTGGGCCTG	2990 SCACTGG	- Section 38 3002 TAAGTCCT TAAGTCCT
(3003 BSBMV RNA1 NC_003506 (3003) <u>3003</u>) <u>TTC1</u>	,3010 IGATAAGGTCT	3020 TTAGCTGATC	,3030 CTATAAGGGA'	3040 ICTTGTTGTGC	3050 GCTCCTTTTAI	,3060 CAAATTGAG	,3070 STCCGAT	- Section 39 3081 TATCAAAA
(3082 BSBMV RNA1 NC_003506 (3082 BSBMV RNA1 NC_003506 (3082 BSBMV RNA1 LB160 (3073) 3082) TCA <i>F</i>) TCA <i>F</i>	3090 CGTGTGGGGTG	3100 ATGACGTTGT ATGACGTTGT	3110 TTCTTGGGAT	3120 FTTCACACTCO	3130 GCATAAGGC1	3140 STTGGATATCA	3150 3150 ACAGGTA	- Section 40 3160 AGCAGGTG AGCAGGTG
(3161 BSBMV RNA1 NC_003506 (3161 BSBMV RNA1 LB160 (3152) <u>3161</u>) <mark>ATT1</mark>) <mark>ATT1</mark>	3170 TTCGTGGATGA TTCGTGGATGA	3180 ATTTACTGCT ATTTACTGCT	3190 TACGATTGGCO TACGATTGGCO	3200 GTTTGCTTGCT GTTTGCTTGCT	3210 FGTTTTGGCTT FGTTTTGGCTT	3220 ATCGAAATCA	ATGCTCA ATGCTCA	- Section 41 3239 TACCATAT TACCATAT
(3240 BSBMV RNA1 NC_003506 (3240) 3240) ATCI	3250	3260 GAGCAACAAA	3270 CTGGTATACA	,3280	3290	,3300	TAATAGG	- Section 42 3318 ATTGATTT
(3319) (3319)) <u>3319</u>	,3330	,3340	3350	,3360	3370	,3380	TAATAGG	- Section 43 3397
BSBMV RNA1 NC_003506 (3319 BSBMV RNA1 LB160 (3310) ATC1) ATC1	TAAGATCTCAA TAAGATCTCAA	CACATGTTCC CACATGTTCC	TATTATGAAT	TTTAGAAATCO	CGTTCGAGA1	IGTTAAGGTC'	TTGAATT. TTGAATT.	ATTTATTT ATTTATTT - Section 44
(3398 BSBMV RNA1 NC_003506 (3398 BSBMV RNA1 LB160 (3389) <u>5398</u>) <mark>GGT(</mark>) <mark>GGT(</mark>	34 CTCGCATGGT CTCGCATGGT	TCCAATGTCT TCCAATGTCT	AGTATTGAGCI AGTATTGAGCI	AGGGTTTTTGT AGGGTTTTTGT	D ,3450 FTTCGGGGATA FTTCGGGGATA	TTAAAGATT!) FTTCTTC' FTTCTTC'	34/c TTTATCTA TTTATCTA - Section 45
(3477) BSBMV RNA1 NC_003506 (3477 BSBMV RNA1 LB160 (3468) 3477) <mark>ATA1</mark>) <mark>ATA1</mark>	3 TACCTGATACT TACCTGATACT	490 35 AAGATCGTTC AAGATCGTTC	500 35 ACTATTCTGA ACTATTCTGA	10 35 CGAGACCGGTC CGAGACCGGTC	20 35 GAGCATATGAT GAGCATATGAT	30 35 IGCCTGACTA IGCCTGACTA	40 IGTTAGG IGTTAGG	3555 GGTATTTC GGTATTTC
(3556 BSBMV RNA1 NC_003506 (3556 BSBMV RNA1 LB160 (3547) 3556) <mark>TAAO</mark>) TAAO	GACCACTGTAC	3570 GIGCTAATCA GIGCTAATCA	3580 AGGAAGCACT AGGAAGCACT	3590 3 FATGATAATGI FATGATAATGI	3600 3 TTGTGTTGCCT	610 2 IGTCCTACCA IGTCCTACCA	620 CTGATT CTGATT	- Section 46 3634 TGAAATTG TGAAATTG
(3635 BSBMV RNA1 NC_003506 (3635 BSBMV RNA1 LB160 (3626) <u>3635</u>) <mark>ATC</mark>) <mark>ATC</mark>	3640 ACTCTCAGGA ACTCTCAGGA	,3650 ATTGAATTTG ATTGAATTTG	,3660 GTTGCTTTGT(GTTGCTTTGT(3670 CTCGACATAAC	,3680 SAACAAATTAA SAACAAATTAA	,3690 ACCATTTTGT ACCATTTTGT	3700 IGGACAA IGGACAA	- Section 47 3713 CGATGGCA CGATGGCA
(3714 BSBMV RNA1 NC_003506 (3714) 3714) <mark>TGA/</mark>	3720	3730 ACTTTAAAGG	3740 GTATGATTGA	,3750 AGGTGTGCCTC	,3760 BAGGAACTTGA	3770 ACGTAAGGA	3780	- Section 48 3792 ATTGGTAT
BSBMV RNA1 LB160 (3705) <u>TGAA</u>) <u>3793</u>	3800	3810	<u>,3820</u>	3830	3840	,3850	3860	ATTGGTAT - Section 49 3871
BSBMV RNA1 NC_003506 (3793 BSBMV RNA1 LB160 (3784) GTA1) GTA1	TTTGGGCAATC TTTGGGCAATC	ATCTACCTAT ATCTACCTAT	TAAGAAAGAG' TAAGAAAGAG'	ITCTTCTTTCC ITCTTCTTTCC	CGGAGTCTGAF CGGAGTCTGAF	ATTTGCAAAA' ATTTGCAAAA'	ICTTTTA ICTTTTA	GATTGATG GATTGATG - Section 50
(3872) BSBMV RNA1 NC_003506 (3872) BSBMV RNA1 LB160 (3863)) <u>3872</u>) <mark>GTT(</mark>) <mark>GTT(</mark>	,3880 GCGAAGTATGA GCGAAGTATGA	3890 GGCTTTTGTG GGCTTTTGTG	3900 CCTTATGATA CCTTATGATA	,3910 SCGATTTACCA SCGATTTACCA	,3920 AACTTTGGTTT AACTTTGGTTT	3930 CGCAGGGTG CGCAGGGTG	3940 ATGTCGT ATGTCGT	3950 TGTTTTGG TGTTTTGG
(3951 BSBMV RNA1 NC_003506 (3951 BSBMV RNA1 LB160 (3942) 3951) <mark>ATG1</mark>) <mark>ATG1</mark>	,3960 TTTCTCGTGTT TTTCTCGTGTT	3970 GAGAACGACA GAGAACGACA	3980 TTAACGACACA	,3990 ATTTGAGTGTC ATTTGAGTGTC	,4000 GCTGATTTTA GCTGATTTTA	,4010 ACAACTTGAT ACAACTTGAT	TCTCGA	- Section 51 4029 CCAAACAA CCAAACAA
(4030 BSBMV RNA1 NC_003506 (4030) 4030) CTG1	4040	,4050 CCATTTCTGA	,4060 ATGCCTGGGT(4070	4080	,4090	CAGGCCA	- Section 52 4108
(4109 BSBMV RNA1 NC_003506 (4109) <u>4109</u>) <mark>ACT</mark>	,4120 ATTTCAAAGTA	4130 TCACAATTGG	4140 TTGAGAAAGA	,4150 AGACACCTTCC	A160	,4170 GATTGTAGGT	IGTTCGC	- Section 53 4187 TGATGCTT
BSBMV RNA1 LB160 (4100 (4188) <u>ACT</u>	420	TCACAATTGG 00 ,421	TTGAGAAAGA	0 ,4230	CACATÓGGAGO) ,4250	TGTTCGC	TGATGCTT - Section 54 4266
BSBMV RNA1 NC_003506 (4188 BSBMV RNA1 LB160 (4179) TGAP	AGTITCTATG	CATGTTAAGG CATGTTAAGG	TGTTGTCTGA	TAAACCTTATO	GATTTAAATTA GATTTAAATTA	ATTTGGTTGA!	IGGGGCG	GCATCTAA GCATCTAA

(4267)	4267		4280	4290	4300	4310	4320	4330	- Section 55
BSBMV RNA1 NC_003506 (4267) BSBMV RNA1 LB160 (4258)	CATI	ACTCTTCAT	TTGCTTGGG TTGCTTGGG	AAAGAAAGCGI AAAGAAAGCGI	ACGGTCACTT ACGGTCACTT	TGTGGCAGCA TGTGGCAGCA	CCTATTTCCG CCTATTTCCG	GTGGTAGCG GTGGTAGCG	CTTCTACT CTTCTACT
	40.40		4260	4070	4000	4200	4400	4440	- Section 56
(4346) BSBMV RNA1 NC_003506 (4346)	4346 TCTI	CTGGTAATA	ATAATAGTG	4370	CACTTCATCT	GAGGATGATG	AAGAGTTTGA	CGTTACTAA	TTTATTG
BSBMV RNA1 LB160 (4337)	TCTI	CTGGTAATA	ATAATAGTG(CTTCTAGCTC	CACTTCATCT	GAGGATGATG.	AAGAGTTTGA	CGTTACTAA	TTTATTG
(4425)	4425	,4430	4440	4450	4460	,4470	4480	4490	4503
BSBMV RNA1 NC_003506 (4425)	CTGA	TAGTGGTGT	GTCTCCAAC'	IGATATGGAC	GCTTTTTGCG	GTTTTTTGGA	GGCTACTATT	ATGACTTAT	TTTGATAA
DSDMV KNAT LDTOU (4410)	CIGA	149199191	GICICCAAC	TOWINIGONCO	3011111603	GIIIIIGGA	GGCIACIAII	AIGACIIAI	- Section 58
(4504) RSBMV RNA1 NC 003506 (4504)	4504	4510	4520	4530	4540	,4550	4560	4570	4582
BSBMV RNA1 LB160 (4495)	GCAI	GATTTGCCA	AATTCTGAT	TGGGCACACCO	CTGTTGATGG	TGCTGATGGA	TATTATCAGA	TAAATGTTG	AGAAATTC
(4583)	4583	4590	4600	4610	4620	4630	4640	4650	- Section 59 4661
BSBMV RNA1 NC_003506 (4583)	GGGI	TGTCTGAGT	GTTGTCAAG	CTTTCCTTCG	CGCTTTGGAT	GTGTTCAAAC	TTGATAGTTC	GCAGAAAAA	GGTAGTGT
BSBMV RNA1 LB160 (4574)	GGGI	TGTCTGAGT	GTTGTCAAG	CTTTCCTTCG	CGCTTTGGAT	GTGTTCAAAC	TTGATAGTTC	GCAGAAAAA	GGTAGTGT - Section 60
(4662)	4662	4670	,4680	,4690	,4700	,4710	4720	,4730	4740
BSBMV RNA1 NC_003506 (4662) BSBMV RNA1 LB160 (4653)	ACAP	GIGGCTICG	TAGTGCCCT' TAGTGCCCT'	TAAAGATAAA(TAAAGATAAA)	CAATTTCATT CAATTTCATT	GGCGGGGCCAC GGCGGGGCCAC	TCCTGGTAAC TCCTGGTAAC	ACGTCGGCT.	AGTTCATC AGTTCATC
									- Section 61
(4741)	4741	,4750	,4760	,4770	,4780	,4790	,4800	1	4819
BSBMV RNA1 NC_003506 (4741) BSBMV RNA1 LB160 (4732)	TGGA	TCTGATGTT	GATAATGAT GATAATGAT	TTTGTTAATC' TTTGTTAATC'	TAGCCGGTGG TAGCCGGTGG	TAAGACTAAA TAAGACTAAA	TCTAAGTCGA TCTAAGTCGA	GTGCTGATG	TCGCTCCG
(1020)	4920	4920	494	0 495	0 496	0 407	0 499	20	- Section 62
(4820) BSBMV RNA1 NC_003506 (4820)	GCT G	ATACTTGA	GACAAAGTT	TATGGATTA	IGCTTCGGAG	TTCATACCTA	TTTTAATTGC	TGATGCCCC'	TGCTGTTT
BSBMV RNA1 LB160 (4811)	GCTO	ATACTTTGA	GACAAAGTT	TTATGGATTA'	IGCTTCGGAG	TTCATACCTA	TTTTAATTGC	TGATGCCCC	TGCTGTTT Section 63
(4899)	4899	491	0 ,49	20 49	30 ,49	940 ,49	950 .4	960	4977
BSBMV RNA1 NC_003506 (4899) BSBMV RNA1 LB160 (4890)	TGCC	TTTGGTTGA	ACCCGACCC'	TATTGTTTCC/	AAATGTATGG	TTCCCGAATT TTCCCGAATT	CGATGCTTTT	TTATTAATC.	AAGGAATT AAGGAATT
									- Section 64
(4978) BSBMV RNA1 NC 003506 (4978)	4978 TGA1	49 TTGGATAAT	990 GGGGCTGAT	GAGTACCAAT	GTTCTTACCT	5020 TAATGAAGCT	5030 GTTGCCAATC	5040 GTATTGGCG	5056 ATAAATT
BSBMV RNA1 LB160 (4969)	TGAI	TTGGATAAT	GGGGCTGAT	GAGTACCAAT(GTTCTTACCT	TAATGAAGCT	GTTGCCAATC	GTATTGGCG.	ATAAATTT
(5057)	5057		5070	5080	5090	5100	5110	5120	5135
BSBMV RNA1 NC_003506 (5057)	GTTT	CAGGTGTTT	TGGATACTG.	ATATCATTTC'	TCCATTGAAC	TTGCGTGGGC	ATCCTGTTTC	CGAGACTGT	GAAATATC
D3DHV KNAI (D100 (3040)	0111	CHOOLOITI	TUUTINGTU	MANDALITY.	ICCALIGNAC	1100010000	THINK!	CONGACIGI	- Section 66
(5136) BSBMV RNA1 NC 003506 (5136)	5136	TATGTOCOT	5150	5160	5170	5180	5190	5200	5214
BSBMV RNA1 LB160 (5127)	ATA	TATGTGCGT	AGCACCTGC	CCAAATTTAC	TTTAAGCGTA	ATCAGTGGCA	AGAGTTGCAG	GTGCAGCAG	GCTAGGTA
·									Section 67
(5215) BSBMV RNA1 NC 003506 (5215)	5215 TTTC	5220	5230 GTTCGTAAC	5240	5250	5260 CACAGTTGCT	5270 CGTATGGTTG	5280	5293 TTGTTTCA
BSBMV RNA1 LB160 (5206)	TTT	TTTCGGAAG	GTTCGTAAC	TCACCCTCTT(CTAC <mark>ACAGGA</mark>	CACAGTTGCT	CGTATGGTTG	CTCAGATGT	TTGTTTCA
(5294)	5294	5300	5310	5320	,5330	5340	5350	5360	5372 -
BSBMV RNA1 NC_003506 (5294)	GATT	GCTTAGTAC	CTAATGTTG	CTGAGGTATT!	TTCAACATCT.	AATTTGTGGA	GAATCATGGA	TAAGGCTAT	GCATGATA
D3D117 KIA1 ED100 (3203)					i i cimoni i ci		omiteoni		- Section 69
(5373) BSBMV RNA1 NC 003506 (5373)	5373	5380	5390	5400	5410	5420	5430	5440	5451
BSBMV RNA1 LB160 (5364)	TGGI	CACAAAAAA	TTATCAGGG	GCAGATGGAA	GAAGAATTCA	CTCGAAATGC	GAGGTTGTAC	AGATTCCAA	TTGAAAGA
(5452)	5452	5460	5470	5480	5490	5500	5510	5520	- Section 70 5530
BSBMV RNA1 NC_003506 (5452)	TATI	GAAAAACCT	TTAAAGGAT	TCTGAGACTG	ATCTTGCTAA	AGCTGGGCAA	GGCATTTTAG	CTTGGTCCA	AAGAGGCG
B2BMV KNA1 LB160 (5443)	TATI	GAAAAACCT	TTAAAGGAT	ICTGAGACTG	ATCTTGCTAA	AGCIGGGCAA	GGCATTTTAG	CTTGGTCCA.	- Section 71
(5531)	5531	5540	5550	5560	5570	5580	,5590	CABRONNON	5609
BSBMV RNA1 LB160 (5522)	CATO	TGAAGTTTA	TGGTAGCTT'	ITAGAGTTTT(GAATGATTTA	TTATTGAAAT	CTCTTAACTC	CAATGTTGT(GTATGATA
(6610)	5610	5620	563	0 564	0 565	0 566	0 567	70	- Section 72
BSBMV RNA1 NC_003506 (5610)	ATAC	AATGTCAGA	GGTGAAGTT	TGTTGCCAAC	ATTAATGCTG	CCATGAGTAC	TGTTCCGGGG	AGTGCTATT	AATGGAGT
BSBMV RNA1 LB160 (5601)	ATAC	AATGTCAGA	GGTGGAGTT'	TGTTGCCAAC	ATTAATGCTG	CCATGAGTAC	TGTTCCGGGG	AGTGCTATT	AATGGAGT

										- Section 73
(5689) BSBMV RNA1 NC_003506 (5689) BSBMV RNA1 LB160 (5680)	5689 CATT CATT	5700 GACGCTGCTGC GACGCTGCTGC	57 TTGTGATT TTGTGATT	10 CCGGTCA CCGGTCA	5720 AGGGGTTT AGGGGTTT	5730 TTACGCAAC TTACGCAAC	5740 TCATTGAAA TCATTGAAA	5750 GGTATATA GGTATATI) TATTCTG TATTCTG	5767 CTCTTGGA CTCTTGGA
(5768)	5768	5780	5	790	,5800	5810	5820	,58	30	- Section 74 5846
BSBMV RNAT NC_003506 (5768) BSBMV RNA1 LB160 (5759)	ATTT	CAGATITCTTC	CTCGATTG	GTACTIT	ICCTITCG	GGAGAGATA	CATTATGC/	GTCTCGAT	ATGTTCG	IGCACATA IGCACATA - Section 75
(5847) BSBMV RNA1 NC_003506 (5847) BSBMV RNA1 LB160 (5838)	5847 TGTC TGTC	586 TTACGTTAAGA TTACGTTAAGA	80 CTAGTGGI CTAGTGGI	5870 GAGCCIG GAGCCIG	5880 SCACATTA SCACATTA	5890. TTGGGTAAT TTGGGTAAT	5900 ACTATTTT ACTATTTT) 5 ATGGGTGC ATGGGTGC	910 TATGCTT TATGCTT	5925 AATGCCAT AATGCCAT - Section 76
(5926) BSBMV RNA1 NC_003506 (5926) BSBMV RNA1 LB160 (5917)	5926 GCTT GCTT	5 CGTGGGACTGG CGTGGGACTGG	940 GCCTTTTT GCCTTTTT	5950 GTATGGC GTATGGC	5960 FATGAAAG FATGAAAG	5970 GTGATGATG GTGATGATG	59 GGTTTAAAA GGTTTAAAA	80 GACAGGCT GACAGGCI	5990 AATTTGA AATTTGA	6004 AAATTAAC AAATTAAC Section 77
(6005) BSBMV RNA1 NC_003506 (6005) BSBMV RNA1 LB160 (5996)	6005 ACTG ACTG	6010 ATATTTTGAAA ATATTTTGAAA	6020 TTGATTAA TTGATTAA	(6030 IGAAAGAA) IGAAAGAA)	6040 <u>,</u> ACGGTGTT ACGGTGTT	60: GGATTTTAA GGATTTTAA	50 (6 GTTAGATTA GTTAGATTA	060 TAAATGTTC TAAATGTTC	6070 CTATCAC	6083 FTTTTGTG FTTTTGTG
(6084) BSBMV RNA1 NC_003506 (6084) BSBMV RNA1 LB160 (6075)	6084 GTTA GTTA	6090 TGCTTTATCTA TGCTTTATCTA	6100 ATGGTCAT ATGGTCAT	6110 TTATTCCC TTATTCCC	,612 CAAGTGTT CAAGTGTT	20 6 TCGCGTAAG TCGCGTAAG	130 CTGACAAAC CTGACAAAC	6140 ATTGCTGC ATTGCTGC	6150 TCATCGT TCATCGT	- Section 78 6162 ITTCGTGA
(6163) BSBMV RNA1 NC_003506 (6163) BSBMV RNA1 LB160 (6154)	6163 GTAC GTAC	6170 AAACATTTTTG AAACATTTTTG	6180 CGAGTATC CGAGTATC	6190 AAGAATC AAGAATC	6, FTTGCGTG FTTGCGTG	200 ATTGGATTA ATTGGATTA	6210 AAAATCTTC AAAATCTTC	6220 CCAAAGAI CCAAAGAI	6230 CCTAATG CCTAATG	- Section 79 6241 ITTACGCT ITTACGCT Contine 90
(6242) BSBMV RNA1 NC_003506 (6242) BSBMV RNA1 LB160 (6233)	6242 GATT GATT	6250 TCTTAGAGTGT TCTTAGAGTGT	,6260 AATGCTAG AATGCTAG	,6270 CTTGTCC CTTGTCC) FGCCGCAC FGCCGCAC	<mark>6280</mark> AACTGATGA AACTGATGA	6290 TGTTCAACO TGTTCAACO	6300 TTGGCTGG TTGGCTGG	6310 ATGCTAT ATGCTAT	6320 CATTTCTG CATTTCTG Section 81
(6321) BSBMV RNA1 NC_003506 (6321) BSBMV RNA1 LB160 (6312)	6321 TTTC TTTC	, <mark>6330</mark> TCGCATGGGCT TCGCAT <mark>GGCT</mark>	,6340 ATGCTCAA ATGCTCAA	,63 TTTATGA TTTATGA	50 FGATGTTT FGATGTTT	6360 CCTTTGCGI	6370 GAGGTTGC1 GAGGTTGC1	,6380 ATGTCTTT PATGTCTTT	GCCTCCT	6399 GTTGAAGA GTTGAAGA
(6400) BSBMV RNA1 NC_003506 (6400) BSBMV RNA1 LB160 (6391)	6400 CGAG CGAG	6410 TTACAAGTGTT TTACAAGTGTT	6420 ATCTTCCA ATCTTCCA) (CTAAGGT)	6430 FAATGTTT FAATGTTT	6440 CCATTGGGG CCATTGGGG	6450 AAAACATT AAAACATCI	6460, CTAACTTT CTAACTTT	GTTAGGA GTTAGGA	6478 6478 AGGTTGCT AGGTTGCT
(6479) BSBMV RNA1 NC_003506 (6479) BSBMV RNA1 LB160 (6470)	6479 CGTG CGTG	<mark>,6490</mark> TTGATATGAAA TTGATATGAAA	,650 A A A T T T T A A A A T T T T A	00 AATGCTT AATGCTT	6510 FGTTTGCG FGTTTGCG	6520 TTATTTG TTATTTGA	,6530 TTTTAAAT# TTTTAAAT#	6540 AAGGCCAI AAGGCCAI) GCCACAG GCCACAG	Section 83 6557 SCCTCCTA
(6558) BSBMV RNA1 NC_003506 (6558) BSBMV RNA1 LB160 (6549)	6558 TCTT TCTT	6570 CGGAAGGTIGI CGGAAGGTIGI	6, TGTGGTTT TGTGGTTT	580 CTTTTCC CTTTTCC	,6590 ITTGTGGT ITTGTGGT	,6600 TTTCTTTTA TTTCTTTTA	,6610 GTTTTCTTI GTTTTCTTI	,662 TGGTTGTA TGGTTGTA	20 ATGTACT ATGTACT	- Section 84 6636 SACTGGGT GACTGGGT
(6637) BSBMV RNA1 NC_003506 (6637) BSBMV RNA1 LB160 (6628)	6637 GTGA GTGA	665 ATTGTACCAGT ATTGTACCAGT	50 CCTTGTAG CCTTGTAG	,6660 GGTTTGC GGTTTGC	6670 FATCAGTG FATCAGTG	6683 TATTGATAT	5			- Section 85

	(1)	1	10		20	30		40	50		60	Section 1
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(1) (1) (1)	GGAT GGAT	TCTAATT	ATTATCI ATTATCI	CCATTGAA	TAGAAT TAGAAT	TTCACCA TTCACCA	ACTATTG ACTATTG	TCTGA' TCTGA	FATCTTGT FATCTTGT	CCTGGGGGGCAA CCTGGGGGGCAA	TTTTATTCA TTTTATTCA Section 2
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(80) (80) (80)	80 GTGC GTGC	9 CCTAACT CCTAACT	0 TTGGAAA TTG <mark>-</mark> AAA	,100 TAC <mark>GTGCG</mark> TA <mark>GGTGCG</mark>	,110 AGTAAT AGTAAT) AAGTAGC AAGTAGC	,120 CCCCCGTC CCCCGTC	13 CAGGA CAGGA	0 GAAGTTGC GAAGTTGC	, <mark>140</mark> TTACAATATGG TTACAATATGG	158 TTGATGAAG TTGATGAAG
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(159) (159) (158)	159 GTAG	ATATATG	,170 ACATGGA	,180 AAGATGCA	19 ACTCAT ACTCAT	90 AATAAGT AATAAGT	200 TGATGAC	CGACC	210 GATGGGCA GATGGGCA	220 CGCGTATCAAG	
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(238) (238) (237)	238 GACC GACC	ATTAACC	250 AGGCTTI	260 GAGCCTCG	ATCTGT	270 CTAAAGC CTAAAGC	280 CGCAAGC CGCAAGC	TTACC'	290 IGTTATTA IGTTATTA	300 AGGCCAATTTT AGGCCAATTTT	— Section 4 316 AGTAGTCTC AGTAGTCTC
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(317) (317) (316)	317 GGTG GGTG	CTAATTG CTAATTG	,330 GTCTGAA GTCTGAA	,340 IGATGGTGA IGATGGTGA	TGTGTT TGTGTT	350 TGTGGCA TGTGGCA	360 CCTATGG	TTCGG' TTCGG'	370 FTTCCAGT FTTCCAGT	,380 TACCCTCAATC TACCCTCAATC	<u>Section 5</u> 395 AATTTGGTG AATTTGGTG
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(396) (396) (395)	396 CATT	GGTTTTG	410 TGGCTCA	420 ACTTATCT) GACCCT GACCCT	430 GCTTTCG	440, CTATTCT CTATTCT	TATGA(TATGA)	.450 CGAAAGTT CGAAAGTT	,460 TTTACGTTGAC TTTACGTTGAC	— Section 6 474 TAATGCCGG TAATGCCGG
BSBMV RNA2 NC_003503	(475) (475)	475 TGGA	,480 .GCCGACA	,490 .ATGCCTC	50 CGCCAGTT	00 CACGTC	510 GTGAAGT	52 TGTGGCT	20 GGGAG	530 CCGACCCG	540 AAACTTCTGGT	— Section 7 553 AAGTCTGTA
BSBMV RNA2 LB157 BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(474) (554) (554) (553)	554 GGTA	560 CCGATGA	570 GAGIGGO	CGCCAGTT CAGTTATAC	580 TTTGAC	590 CACCACT	TTACAAG	600 CTTTT CTTTT	610 610 AATCAAGC	620 FATCCGCTTAC	AAGTETGTA — Section 8 632 CTGAGGTTC CTGAGGTTC
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(633) (633) (632)	633 TGTG TGTG	640 GACTCGT GACTCGT	6 GATAAGT GATAAGT	50 'TTGAACGG 'TTGAACGG	,660 GAGTGG GAGTGG	,670 AATCTGC AATCTGC) CATGGAC CATGGAC	680 CCCTAC	,690 CTAGGGGT CTAGGGGT) ,700 GTTACTCCTGC GTTACTCCTGC	Section 9 711 CGTTCCACG CGTTCCACG
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(712) (712) (711)	712 CACC CACC	720, AATTAGC AATTAGC	AATTAAA AATTAAA	,730 (TGCTGCTC (TGCTGCTC	,740 GAACTA GAACTA	,7 Tggcaca Tggcaca	50 TATTCGA TATTCGA	,760 GCAGCI GCAGCI	77 ATTAAAGG ATTAAAGG	70 ,780 CGCGTCTGTAT CGCGTCTGTAT	CCTGGTGAC
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(791) (791) (790)	791 AGTA AGTA	800, TTGAGTG. TTGAGTG.) GGTTGGA GGTTGGA	810 TGGGTGCA TGGGTGCA	820) TAGTTA TAGTTA	CCCCCCT CCCCCCT	830 CCACCAT CCACCAT	840 ATGAT ATGAT	GGGTACGA GGGTACGA	850 TGTTCCGTCTT TGTTCCGTCTT	— Section 11 869 TAGATATTA TAGATATTA
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(870) (870) (869)	870 TTAA TTAA	8 TGAGAAA TGAGAAA	80 CTTGCTG	890 CTGATGAT CTGATGAT	,900 GTTGGT GTTGGT) GGTTTGG GGTTTGG	910 TGTTACC	92 TACAC TACAC	0 CTGATATT CTGATATT	,930 CCTGGTGGTCC CCTGGTGGTCC	— Section 12 948 <mark>CAATTTTGA</mark> CAATTTTGA
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(949) (949) (948)	949 GGTC	TCCGAGG	960 ATATTGA	970 GCAAACTG GCAAACCG	98 GTCGGA GTCGGA	80 ATGGTTT ATGGTTT	990 GTGGTTG GTGGTTG	ATGGT	1000 CGGGTTGC CGGGTTGC	,1010 TATTAGCTGCC TATTAGCTGCC	
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(1028) (1028) (1027)	1028 GGTG	TTGGGAC	,1040 TGCTGCC	,1050 TACCATCG	TCGCAA TCGCAA	1060 GTTGCGT GTTGCGT	,1070 AGTAGGT AGTAGGT	TAGTT(, <mark>1080</mark> 3AACTAAA 3A <mark>GCTAAA</mark>	,1090 GAGTCTATGGT GAGTCTATGGT	
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(1107) (1107) (1106)	1107 GTTC GTTC	TGGTGGC	,1120 GGCGGTG	,1130 ATTTCACT ATTTCACT	GTTGAG GTTGAG	,1140 TTACCAA TTACCAA	,1150 CTAGAAC CTAGAAC	TACTG	,1160 ATGCCTTT ATGCCTTT	,1170 AGTTTAGGTAC AGTTTAGGTAC	— Section 15 1185 CACTATTTC CACTATTTC
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(1186) (1186) (1185)	1186 TGAA TGAA	CATGCTC	1200 CACCTCC	,121 TGTAGGTA TGTAGGTA	0 CTATGC CTATGC	,1220 GTCATCG GTCATCG	,123 TTCGACT	0 ACGGC(ACGGC)	,1240 GACTGATA GACTGATA	,1250 GTCATGAGGCC GTCATGAGGCC	
BSBMV RNA2 NC_003503 BSBMV RNA2 LB157	(1265) (1265) (1264)	1265 GAAA GAAA	,1270 CATGGGT	,1280 TTATTA TTATTA	AATCTCTC	290 TCGTGT TCGTGT	,1300 GTATTTT GTATTTT	AGTATCG AGTATCG	310 GGTGT GGTGT	,1320 FCTGATCT FCTGATCT	,1330 CTTTTATGCGA CTTTTATGCGA	— Section 17 1343 CTAGAGAAT CTAGAGAAT
BSBMV RNA2 NC_003503	(1344) (1344) (1343)	1344 TTGT	,1350	,130 TTTAATG	50 GGGAGTTT	1370 GAGGGT	,1380 CTTATCG	AACTACT	1390 TGAGG	,1400 CGTCTGAT	,1410 GAGGATGATGG	

Appendice B4. Allineamento della sequenza nucleotidica del clone dell'RNA2 di BSBMV (LB157) con la sequenza NC_003503.

(1423)	1423	,1430	,1440	,1450	,1460	,1470	,1480	,1490	- Section 19 1501
BSBMV RNA2 NC_003503 (1423) BSBMV RNA2 LB157 (1422)	TGAT TGAT	GCTGAGAGTGCT GCTGAGAGTGCT	GTCATTGTGGC GTCATTGTGGC	STACTAGTGC STACTAGTGC	TATTGTTAAT TATTGTTAAT	GACCACGATC GACCACGATC	AATTTGATCTC AATTTGATCTC	CAATA	CTGTGATT CTGTGATT
(1502)	1502	.1510	.1520	.1530	.1540	1550	1560	.1570	- Section 20 1580
BSBMV RNA2 NC_003503 (1502) BSBMV RNA2 LB157 (1501)	CTTG	AAAAGCGCATAA AAAAGCGCATAA	AGTTTAAACGO	GCTTTCTTTA GCTTTCTTTA	GAGGAGGCGG GAGGAGGCGG	AACTTAATCG AACTTAATCG	TCAGGAGTCT TCAGGAGTCT	TGAC	CATCGAGT CATCGAGT
	4504	4500	1000	1010	1000	1000	1010		- Section 21
(1581) BSBMV RNA2 NC_003503 (1581) BSBMV RNA2 LB157 (1580)	TTGC	CGATGAGGAACG CGATGAGGAACG	TCGTACGCTC/	ATGCATAAGT ATGCATAAGT	TAGAAAGCGA TAGAAAGCGA	TAGACTTGAG TAGACTTGAG	GCGACGCATA GCGACGCATA	GGTG	AATAAGGC
(1660)	1660	1670	1680	1600	1700	1710	1720		- Section 22
BSBMV RNA2 NC_003503 (1660) BSBMV RNA2 LB157 (1659)	TGCT	GCTGATGCTGAG	GCAGCTCTATO	CAGTTGCTGT	TCTGGCTGCT. TCTGGCTGCT	AAAGAGGCTC	GTACTTATGAT	GATA.	AATTGGCT
(1700)	1720	1750	1760	1770	1700	1700	1000		- Section 23
(1739) BSBMV RNA2 NC_003503 (1739) BSBMV RNA2 LB157 (1738)	TTTG	,1750 ATAGAGCTTGTA ATAGAGCTTGTA	AGGAAAAGGAC	GCTAAGGCTA. GCTAAGGCTA.	,1780 A GA GA GC TT G A GA GA GC TT G	AGGTTGAGCG AGGTTGAGCG	,1800 TATGCCCGGG7 TATGCCCGGG7	AGAC'	TGAAAGAT TGAAAGAT
(1010)	1818	1830	1840	1850	1860	1870	1880		- Section 24
BSBMV RNA2 NC_003503 (1818) BSBMV RNA2 LB157 (1817)	ATAT ATAT	TCACACAGGTAT	ACAAGGTGGTC	GCTCAACTCG	CTGGTGCTTT CTGGTGCTTT	AGCTGTCGGT. AGCTGTCGGT.	AGTATGTTACO	GAACA	CGTGGTGT
(1907)	1897	1910	1920	1930	1940	1050	1960		- Section 25
BSBMV RNA2 NC_003503 (1897)	TAGT	AATATAACTCCG	AGTAATGCTAC	GTGGTAGTCC	TACCGGTATT	GGTCGTGTTC	GTAGTGCTTC	CAGC	CCGTACCC
BSBMV RNA2 LB157 (1896)	TAGT	AATATAACTCCG	AGTAATGCTAG	STGGTAGTCC	TACCGGTATT	GETCETETTC	GTAGTGCTTC	CAGC	– Section 26
(1976) RERMU RNAD NC 002502 (1076)	1976	199	0 2000	0 201	0 202	0 203	0 2040		2054
BSBMV RNA2 NC_003303 (1970) BSBMV RNA2 LB157 (1975)	ACTA	GTTTGTCTGGTG	GTTCTGTTCA	GGGGGCTAAT.	AATAATAATA	GTGTTGGCAG	TGTTAGTTCA	GAAG	TAGGGTAG
(2055) BSBMV RNA2 NC, 003503 (2055)	2055	2060 20	070 20	80 20	090 2'	100 21	110 21	20	- Section 27 2133 TGGCGCCA
BSBMV RNA2 LB157 (2054)	AGTO	GTTAGGGTATAA	TTCGGCTATTC	CGCAATCATA.	ACACCTTTTG	GTCCAAACTT	CGTATTGGAA	TGAA	TGGCGCCA
(2134)	2134	,2140	2150 2	2160	2170	2180	2190 2	200	2212
BSBMV RNA2 NC_003503 (2134) BSBMV RNA2 LB157 (2133)	GAAC GAAC	AGCATAAGCAGA AGCATAAGCAGA	ATGCAAGCGA(ATGCAAGCGA(GACCGCTAGC	GGGCGGCGGA GGGCGGCGGA	ATTCCTCCGT ATTCCTCCGT	CCGCTCCCGC	GTAT	GAGTAAGG GAGTAAGG
(00.10)	2242	2220	2220	22.40	2250	2260	2270	2220	- Section 29
(2213) BSBMV RNA2 NC_003503 (2213) BSBMV RNA2 LB157 (2212)	ATGA	CTGGTCTGTCAC	CCACCCAGATO CCACCCAGATO	JATGTTTTCT GATGTTTTCT	CTATTATTGA CTATTATTGA	GAAAACATTG GAAAACATTG	GTGGAGGATGO GTGGAGGATGO	GTAC	AAATGGCA
(2202)	2292	2300	2310	2320	2330	2340	2350	2360	- Section 30 2370
BSBMV RNA2 NC_003503 (2292) BSBMV RNA2 LB157 (2291)	TGGG TGGG	GTAAAACCCGGT GTAAAACCCGGT	CATTGCGATTO CATTGCGATTO	GGATAAGCT. GGGATAAGCT.	AGAGCAGTCT AGAGCAGTCT	GGTGCTATTA. GGTGCTATTA.	AGAATTTTAA/ AGAATTTTAA/	GGTA	CTTTAGAA
(2274)	0074	2220	2200	2400	2440	2420	2420		- Section 31
BSBMV RNA2 NC_003503 (2371)	GGCG	AGGTCGATAGTA	GTTGTTCATT/	AACATGTAAC	GCCGCGGCAA	TTAAGTTGGA	TATAGTAGAA/	GATT	AGACGTGT
BSBMV RNA2 LB157 (2370)	GGCG	AGGTCGATAGTA	GTTGTTCATT!	AACATGTAAC	GCCGCGGCAA	TTAAGTTGGA	TATAGTAGAA	GATT	AGACGTGT - Section 32
(2450)	2450	2460	2470	2480	2490	2500	2510		2528
BSBMV RNA2 NC_003503 (2450) BSBMV RNA2 LB157 (2449)	CTTC	TGACTGGTCCGC	TCGGGTAGGC/	ATTGTGTGTTAG	GTGCGCCTGG	TGTTGGGAAA	TCGACTTCAA	TAAG	CACATCTT
(2520)	2529	2540	2550	2560	2570	2580	2590		- Section 33 2607
BSBMV RNA2 NC_003503 (2529)	GGAC	ACTTATGGTTCT	CGTTATAAAAT	IGGTGTTATG	TTTACCAGTC	AAACAGTTAC	TCGACGGGGT	STTTT(CGGGTAGA
BSBMV RNA2 LB157 (2528)	GGAC	ACTTATEGTTCT	CGTTATAAAA	IGGTGTTATG	TTTACCAGTC.	AAACAGTTAC	TCGACGGGGT	51111	- Section 34
(2608) BSBMV RNA2 NC 003503 (2608)	2608	2620	2630	2640	2650	2660	2670	TAGT	2686
BSBMV RNA2 LB157 (2607)	ATGG	ACACTTTTCTGA	TTGATGACAT	ATTTAGTCGC	TCTGTAGACT.	ATGGTAAGTA	CCACACTATG	TAGT	AGACGAGA
(2687)	2687	2700	2710	2720	2730	2740	2750		- Section 35 2765
BSBMV RNA2 NC_003503 (2687)	TCAC	TCGCGTTCATAT	GTGTGAGGTCC	TGGTGTTGG	CTGGTTATTT CTGGTTATTT	AGGCATTAAA.	AATGTTATATO	STTTC	GGCGACCC
030111 Kilkiz (2000)	ance			21 200 10 11 00	a and the fit				- Section 36
(2766) BSBMV RNA2 NC_003503 (2766)	2766 T GC A	278 CAAGGTATTAAC	TTTAAGGCAG	D 280 GGTCTGCTGT	U 281 TAACTATAAC	U 282	0 2830	TACT	2844 CTAGTCGT
BCBMV DNA2 1 B157 (2765)	TGCA	CAAGGTATTAAC	TTTAAGGCAG	GTCTGCTGT	TAACTATAAC	TTTCCTGTTA	TTGCTGAGTGO	TACT	CTAGTOGT

									 Section 37
(2845) BSBMV RNA2 NC_003503 (2845) BSBMV RNA2 LB157 (2844)	2845 AGGT AGGT	2850 TCGGGGGTTGC TCGGGGTTGC	2860 CACGGCTGAT CACGGCTGAT	2870 CTCATAAACT CTCATAAACT	2880 CCTGCAATGGT CCTGCAATGGT	2890 GGTGGGAAA1 GGTGGGAAA1	2900 FCAGTTGTTG FCAGTTGTTG	2910 GTAATAA GTAATAA	2923 CGATGTTA CGATGTTA
(2924) BSBMV RNA2 NC_003503 (2924) BSBMV RNA2 LB157 (2923)	2924 AAGA AAGA	2930 CAACTGGACA	2940 TTTGAAGAAT TTTGAAGAAT	2950 TGTGCGGTAA. TGTGCGGTAA.	2960 AATCGAGGAAA AATCGAGGAAA	2970 TGTCCACTG	2980 IGCTTGTTGC IGCTTGTTGC	2990 AACACAC	- Section 38 3002 GCCACAAA GCCACAAA
(3003) BSBMV RNA2 NC_003503 (3003)	3003 GGAG	3010	,3020 ATGATGGCAT	3030	3040 FATTACGAAGA	3050	3060	3070	- Section 39 3081
(3082) BSBMV RNA2 NC_003503 (3082) BSBMV RNA2 LB157 (3081)	3082 GTGC	3090 TTAAGGATGA	3100 GTTTGACGAC	3110 GATGCCATCT	3120 GTGATAGCAAT	3130 GTGAGAGCTO	3140 GTGTTGTTAA GTGTTGTTAA	3150, CTAGGGC CTAGGGC	- Section 40 3160 TAGAAAAG
(3161) BSBMV RNA2 NC_003503 (3161) BSBMV RNA2 LB157 (3160)	3161 GCGG GCGG	3170 TTTACTTAAG TTTACTTAAG	,3180 GTTGATCCTA. GTTGATCCTA.	3190 ATATTGCGGC ATATTGCGGC	3200 CAGGTTTAAAA CAGGTTTAAAA	3210 ATGGTGATTI ATGGTGATTI	3220 FTAATTCACG FTAATTCACG	TGGAGTT. TGGAGTT.	- Section 41 3239 AGTAAGGC AGTAAGGC
(3240) BSBMV RNA2 NC_003503 (3240) BSBMV RNA2 1 B157 (3230)	3240	3250 ACAGGTGATA	3260 CCTTTTGCGA	3270 GGATAGATAA	3280	3290	,3300 CGTGCTAATA	AGAATGT	- Section 42 3318 GCCTATTG
(3319) BCDMV DNA2 NC 201502 (2210)	3319	,3330	,3340	3350	,3360	,3370	,3380	CONCRETE	- Section 43 3397
BSBMV RNA2 INC_003503 (3319) BSBMV RNA2 LB157 (3318) (3398)	3398	TGGTGTTTGT 341	GTTGTTGCTT 0 342	CTTTGTATT	CTGGCTTTC 3CTGGCTTTC 0 3440	TGCAACAAAA TGCAACAAAA) 3450	AACATAAGAC AACATAAGAC D 346	GCACTCT	GGT GGC GA GGT GGC GA - Section 44 3476
BSBMV RNA2 NC_003503 (3398) BSBMV RNA2 LB157 (3397)	TTAC TTAC	GGGGTTCCAA	CTTTTTCGAA	CGGTGGAAAG CGGTGGAAAG	TATAGGGATGG	GACTAGGTC	IGCGGACTTT IGCGGACTTT	AATAGTA. AATAGTA.	ATAATCAT ATAATCAT - Section 45
BSBMV RNA2 NC_003503 (3477) BSBMV RNA2 LB157 (3476)	CGTG	CTTATGGCTG CTTATGGCTG	TGGAGGTTCT. TGGAGGTTCT.	AAATCTAGTG AAATCTAGTG	IGACTGGCAAG IGACTGGCAAG	GTTGGGCAGC GTTGGGCAGC	CAGCTGCTTG CAGCTGCTTG	TGCTTGC(TGCTTGC)	CCTAGTAG CCTAGTAG - Section 46
(3556) BSBMV RNA2 NC_003503 (3556) BSBMV RNA2 LB157 (3555)	3556 TAGC TAGC	TGTCTTTGTT TGTCTTTGTT	3570 TTGTTCATGC TTGTTCATGC	3580 GTGGTTGCTG GTGGTTGCTG	3590 3 STCCTCTCCTG STCCTCTCCTG	600 3 AGCATATTTO AGCATATTTO	8610 SCAATGGTTC SCAATGGTTC	3620 TTGTGGT' TTGTGGT'	3634 TAAGGTTG TAAGGTTG
(3635) BSBMV RNA2 NC_003503 (3635) BSBMV RNA2 LB157 (3634)	3635 ATTT ATTT	,3640 TTCTACTATA TTCTACTATA	,3650 GTTTTGTATA GTTTTGTATA	,3660 TAGTTGCTGG TAGTTGCTGG	3670 FGTTGTAGTTG FGTTGTAGTTG	3680 TGAGTGTGC1	3690 FGTACTCACC FGTACTCACC	3700 ATTCTTT ATTCTTT	- Section 4/ 3713 AGTAATGA AGTAATGA
(3714) BSBMV RNA2 NC_003503 (3714) BSBMV RNA2 I B157 (3713)	3714 AGTG	3720 AAGGCTGGCG	3730 GTTATGCCGG	3740 TGCCATTTTT TGCCATTTTT	3750 CCAAATGGGGG	3760 TTGCATTATO	3770 GGATAGGAAT	3780	- Section 48 3792 CACAGTTT CACAGTTT
(3793) BSBMV RNA2 NC_003503 (3793)	3793	,3800 GTTGTGATAT	,3810 CCCAAAATAT	.3820 GTGGCTGATT	3830 CTATCTCTCGT	,3840 GT GGCC ATC7	,3850 AAGGAATTAG	,3860 ACGCCGA	- Section 49 3871 TATAAAG
BSBMV RNA2 LB157 (3792) (3872) BSBMV RNA2 NC_003503 (3872)	GGTG 3872 CCGA	GTTGTGATAT 3880 CTTGAATAGT	3890 GTTGTTGCTA	GTGGCTGATT 3900 AAAGAGTAGT	3910 39TTGTACGAAG	3920	AAGGAATTAG 3930 AGTTATGTTA	ACGCCGA 3940 TAGGGTT	TATAAAAG - Section 50 3950 TTCTCTTG
(3951) BSBMV RNA2 NC_003503 (3951)	3951	3960 GTGTGTTTGT	GTTGTTGCTA. 3970 TCATGGTGTG	AAAGAGTAGT ,3980 TTTAATGTTG	3990 3990	4000 4000	4GTTATGTTA ,4010 FAGTTAATTA	TAGGGTT' GGTGAAC	TTCTCTTG - Section 51 4029 GCATCTTA
BSBMV RNA2 LB157 (3950) (4030) BSBMV RNA2 NC_003503 (4030)	GTTG 4030 TTAT	ACTOTOTOTOT 4040 TAGTAATGGA	1CATGGTGTG 4050 GAAAAGTAAT.	TTTAATGTTG (4060 AGCATAGGGG	ITTGTGTGGGTT ,4070 IGTATGTTAAG	4080 ACCCTATCA	AGTTAATTA ,4090 ACAAATGATT	GGTGAAC	GCATCTTA - Section 52 4108 GTTTAGCG
BSBMV RNA2 LB157 (4029) (4109) BSBMV RNA2 NC_003503 (4109)	4109 TTAA	AGTAATGGA 4120 ATGTGGCAAC	GAAAAGTAAT. ,4130 TGGTGCTTAT	AGCATAGGGG (4140) TCACAAATCA	A150 A150	ACCCTATCA A160	ACAAATGATT ,4170 GAAAGAACGA	GTAGGTT TGATGAG	- Section 53 4187
BSBMV KNAZ LB157 (4108)	TTAA	ATGTGGCAAC	IGGIGCTIAT.	TCACAAATCA	I GTTTTTGTGA	CTTACCGTG(JAAAGAACGA	TGATGAG	- Section 54

(4267)	4267		4280	4290	4300	4310	4320	4330	
BSBMV RNA2 NC_003503 (4267)	GATC	ATTTGGAA	TGGTTGTCT	AAAGGTTTC	GTTCGTGTTA	ATAGAAATTT'	TTCTATTGTAG	GTGCTTGTA	GTAAGTGCC
DSDIMV RIVAZ LD137 (4200)	GATC	ATC TOORA	1199119101	AAAGGIIIC	GITCGIGIIA	ATAGAAATTI.	I ICIAI IGIAG	101001101A	— Section 56
(4346)	4346		4360	,4370	,4380	4390	4400	,4410	4424
BSBMV RNA2 NC_003503 (4346)	GCGG	TGTGTTTG	ATAGTTGTG	CGCAGCAAG	ATGAGTTGGA	CAACAATGTT	STCTAACTCTI	TAAAGAGAC	TGTTGTATA
BSBMV RNA2 LB157 (4345)	GCGG	TGTGTTTC	ATAGTTGTG	CGCAGCAAG	ATGAGTTGGA	CAACAATGTT	JTCTAACTCT1	TAAAGAGAC	TGTTGTATA
(4425)	4425	4430	,4440	4450	4460	,4470	4480	,4490	
BSBMV RNA2 NC_003503 (4425)	TATA	ATAATCAG	GGCCATGCC	ACAGGCCTC	CCATTGGGTT	GTTCCGAGGG	TGTTGTGGTG	ATATAAATG	ATATTATTA
BSBMV RNA2 LB157 (4424)	TATA	ATAATCAG	GGCCATGCC	CCAGGCCTC	CCATTGGGTT	GTTCCGAGGG!	ITGTTGTGGTG	ATATAAATG	ATATTATTA
(4504)	4504	4510	4520	4530	4540	4550	4560	4570	
BSBMV RNA2 NC 003503 (4504)	ATAA	TAATAATA	GTGTCATCG	GTAATATAT	TATTGTTACT	GGTGTTAAGG	TGTAATGTAC	TGACCGGGT	GTGAATTGT
BSBMV RNA2 LB157 (4503)	ATAA	TAATAATA	GTGTCATCG	GTAATATAT'	TATTGTTACT	GGTGTTAAGG!	TGTAATGTAC	TGACCGGGT	GTGAATTGT
									— Section 59
(4583)	4583	,4590	,4600	mmmot ommi	4616				
BSBMV RNA2 INC_003503 (4583)	ACCG	GTCCTTGI	AGGGTTTAT	TTTCAGTTT	ATTG				

								10	50	00		- Section 1
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(1) (1) (1)	AAAT AAAT	10, TTAAATC TTAAATC	TATCACO	20 CACATTAGG CACATTAGG	,30 TATTAA TATTAA	TTTATTC	4U GTCTCTAGA GTCTCTAGA	DU CACTTTTG CACTTTTG	,60 TAGCGTGCG TAGCGTGCG	CTAGCC CTAGCC	7 CGCTGGC CGCTGGC
BSBMV RNA3 NC 003507	(80)	80 TCCC	9 GACCGAC	0 CTCAATO	,100 CCAAGCGAG	,110 TTTATO) TCCAGGT	,120 ACCTCTTAT	,130 TGAGAAAT	,140	AGTGAA	— Section 2 158 TAAACATA
BSBMV RNA3 clone E	(80)	TCCC	GACCGAC	CTCAATO	CAAGCGAG	TTTATG	TCCAGGT	ACCTCTTAT	TGAGAAAT	AGAGTGTCG	AGTGAA	TAAACATA — Section 3
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(159) (159) (159)	159 AAGA AAGA	TTACGTO	170 ATTACGO ATTACGO	,180 GGTAGTTG GGTAGTTG	AGCGCI AGCGCI	90 TTTGCAT TTTGCAT	200 CAAGTTATT CAAGTTATT	210 AACCACTC AACCACTC	220 GCTACTCGO GCTACTCGO	TGTCTA	237 GACTACGI GACTACGI
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(238) (238) (238)	238 TGTC TGTC	GTGTTGI GTGTTGI	250 AGTGTGI AGTGTGI	260 AGCCTTGTG AGCCTTGTG	CCGCTA CCGCTA	270 CGTAAAA CGTAAAA	280 TATATAAAT TATATAAAT	290 TTAAATTT TTAAATTT	,300 CCATACTT# CCATACTT#	ACCTAG	- Section 4 316 GTTGAGTG GTTGAGTG
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(317) (317) (317)	317 TGTI TGTI	TGTTGCI	330 GATAAT/ GATAAT/	340 AG <mark>TATATTA</mark> A <mark>TATATTA</mark>	TCGCAG TCGCAG	350 CGCCCTT CGCCCTT	360 GCGTTGATC GCGTTGATC	,370 TTTGATCC TTTGATCC	38 GCCCTATCI GCCCTATCI) TTAACT TTAACT	Section 5 395 TTATTTGT TTATTTGT
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(396) (396) (396)	396 ATTA ATTA	GTTTCTG	,410 TTGTCGT	420, TTGGTATTT TTGGTATTT) <mark>AACGTC</mark> AACGTC	,430 ATGGATT ATGGATT	,440 TGAATACTA TGAATACTA	450 TGATGCCA TGATGCCA) ,4 GCCTTTAAT GCCTTTAAT	60 GTTGCT GTTGCT	
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(475) (475) (475)	475 CGGC CGGC	,480 GTTCATG	,490 CTCCTTA	5 ATGTTGTCA ATGTTGTCA	00 AGCGTA AGCGTA	510 TGATGCA TGATGCA	520 TGAGGTGGT TGAGGTGGT	5 TATGAATG TATGAATG	30 Tgggaccac Tgggaccac	540 CTGGTT CTGGTT	— Section 7 553 TTATATGI
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(554) (554) (554)	554 TATC TATC	560 CGCTTCC CGCTTCC	57 TGTCGA1	0 FTTTGATCT FTTTGATCT	580 CAACGA CAACGA	590 CACTGGT CACTGGT	,600 GTGATTCAT GTGATTCAT) AATTTTGC AATTTTGC	610 TTACCATAA TTACCATAA	620 TCGTGT TCGTGT	— Section 8 632 TAAAACCA TAAAACCA
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(633) (633) (633)	633 TGAG TGAG	640 ATTATTI ATTATTI	GTGGGCI GTGGGCI	50 ATTCAGAAT ATTCAGAAT	,660 AATTGI AATTGI	,670 AGTGAGT AGTGAGT	6 GGGTTTATG GGGTTTATG	80 GCCGTGCA GCCGTGCA	,690 CGGTTTGTI CGGTTTGTI	,700 GTGTTT GTGTTT	
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(712) (712) (712)	712 CGC1 CGC1	720, ATCTCGC ATCTCGC	CTTGGG	,730 IGAATAATG IGAATAATG	,740 GTTGTA GTTGTA	75 TGAGTCT TGAGTCT	50 ATTCTCGCC ATTCTCGCC	,760 TTTTGTTG TTTTGTTG	770 GCGTTAAT# GCGTTAAT#	,780 IGTCCTA IGTCCTA	– Section 10 790 TTGATCGT TTGATCGT
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(791) (791) (791)	791 AATC	80 TTTTGAG) GAGAGAGA1 GAGAGA1	,810 FAGTCGTGG FAGTCGTGG	820 TGTTAG	TGTGTTG	830 TGGGATCGT TGGGATCGT	840 GTTTATCG	850 TGTTAATCO TGTTAATCO	TGGCAC	- Section 11 869 ACAGCTTT ACAGCTTT
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(870) (870) (870)	870 TTGT TTGT	8 TGATGAG	80 ACGTTT ACGTTT	,890 A <mark>ACTTCATC</mark> GACTTCATC	,900 GGGCCI GGGCCI) GGAAATT GGAAATT	910 ATCCCGCCC	920 AAGTTGGT AAGTTGGT	<mark>,930</mark> GAAAATTAT GAAAATTAT	CCGTCT	- Section 12 948 GCCACTAC
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(949) (949) (949)	949 GTAT GTAT	GATTCTA	960 TCTACGI	970 TTGCTTGTG TTGCTTGTG	9 TGACCG TGACCG	80 ATTGGAT	990 TGATAACAA TGATAACAA	,1000 TGTTTA TGTCTTTA	,1010 GACTAACAI GACTAACAI	CTGACA	- Section 13 1027 GCGTTGGT GCGTTGGT
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(1028) (1028) (1028)	1028 TGGT TGGT	TTCATTO	,1040 TGGTTT/	,1050 AGACGACGG AGACGACGG	TCCTCG	,1060 ACTTGCT	,1070 TTTGGGCAA TTTGGGCAA	1080 	,1090 TGCTCCCGF TGCTCCCGF) TGATGA TGATGA	- Section 14 1106 TGGTGATG TGGTGATG
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(1107) (1107) (1107)	1107 GTG1 GTG1	TGTTGG1	,1120 GATGACO	,1130 GATGTCGAT GATGTCGAT	GTTGAT	,1140 GGTGAAA	,1150 ACATTGACG ACATTGACG	,1160 AAGATGCC	,11 GATGTCATO	70 IGACGAC	- Section 15 1185 GCTAACAC
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(1186) (1186) (1186)	1186 AGAI AGAI	GATGGTG	,1200 ATTAAA ATTAAA	,121 TTTTTCGT	0 CTCTTG CTCTTG	,1220 ACGTTAA ACGTTAA	,1230 ACATCTATC ACATCTATC	124 TTAGTCCG TTAGTCCG	10 ,1 AAGACGTT# AAGACGTT#	250 AACTAC AACTAC	- Section 16 1264 GTGTCGTT GTGTCGTT
BSBMV RNA3 NC_003507 BSBMV RNA3 clone E	(1265) (1265) (1265)	1265 TTAI TTAI	1270	,1280 TGTGGGT TGTGGGT	D .11 CCGAAGAC CCGAAGAC	290 GTAAAA GTAAAA	1300 CTACATA	,1310 TAGTAATGA TAGTAATGA	,1 TTGTAACT TTGTAACT	320 ATGTGTTCC ATGTGTTCC	,1330 TGAGCA	- Section 17 1343 ATCCGAAT ATCCGAAT
BSBMV RNA3 NC_003507	(1344) (1344)	1344 GAT 0	,1350	,13	60 TTGATCGTA	1370 TATTTG	,1380 AGGGTGG	,139 TAGGTAAAA	0 TAGTGTGT	1400 GGTTTATCC	,1410	- Section 18 1422 TTGTTTTT

Appendice B5. Allineamento della sequenza nucleotidica del clone dell'RNA3 di BSBMV (E) con la sequenza NC_003507.

								S	ection 19
(1423)	1423	,1430	,1440	1450	,1460	,1470	,1480	,1490	1501
BSBMV RNA3 NC_003507 (1423)	GAACA	AGTGATCCTC	GGAAATATCC	TTGCGTTTCA	CAAACGTGTA	TGGCGTGTTT	CCTGCCTAT	CTGGGTTTT	ACTATG
BSBMV RNA3 clone E (1423)	GAACA	AGTGATCCTC	GGAAATATCC	TTGCGTTTCA	CAAACGTGTA	TGGCGTGTTT	CCTGCCTAT	CTGGGTTTT	ACTATG
								S	ection 20
(1502)	1502	1510	1520	1530	,1540	1550	1560	1570	1580
BSBMV RNA3 NC_003507 (1502)	AGCCI	TTATATTTCA	AAATATAAGA	ATACATAGTA	GTTTAACAGG	CTCGTTTGCA	AGCCTCCCA	TTGGGTTTA	TGCAGA
BSBMV RNA3 clone E (1502)	AGCCI	TTATATTTCA	AAATATAAGA	ATACATAGTA	GTTTAACAGG	CTCGTTTGCA	AGCCTCCCA	TTGGGTTTA	TGCAGA
								S	ection 21
(1581)	1581	,1590	1600	,1610	,1620	,1630	1640		1659
BSBMV RNA3 NC_003507 (1581)	CACAF	AAAGATGGCT	TATTGGTTAT	GCTTAACCTC	ATATCTATAT	CTTTATCGTT	ATATTTATG	TTTTATTG	GTTGTA
BSBMV RNA3 clone E (1581)	CACAP	AAAGATGGCT	TATTGGTTAT	GCTTAACCTC	ATATCTATAT	CTTTATCGTT	ATATTTATG	TTTTATTG	GTTGTA
	0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	10000000		1	hert-12874			S	ection 22
(1660)	1660	,1670	1680	,1690	,1700	,1710	1720		
BSBMV RNA3 NC_003507 (1660)	TTGTA	CTGACTGGGT	GTGAAATGTA	CCAGTCCTTC	TAGGGTGTAC	CTTCAGTATA	TTGAAG		
BSBMV RNA3 clone E (1660)	TTGTF	CTGACTGGGT	GTGAAATGTA	CCAGTCCTTC	TAGGGTGTAC	CTTCAGTATA	TGA <mark>A</mark> G-		

							<u></u>	/	- Section 1
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(1) (1) (1)	1 AAATTCAAA AAATTCAAA	10 ACTCAAAAA ACTCAAAAA	20 TATAATTTTG TATAATTTTG	30 TATTTCCAGT' TATTTCCAGT'	,40 TGATTATCTGT TGATTATCTGT	50 6 AAAATAATCTC AAAATAATCTC	0 GGTTAACTAGT GGTTAACTAGT	79 TGTCCGAT TGTCCGAT Section 2
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(80) (80) (80)	80 TAACAACTC TAACAACTC	90 GAGTCTGAT GAGTCTGAT	,100 CTGCTTAAAG) CTGCTTAAAG)	,110 ATCCCCAATA' ATCCCCAATA'	,120 TTATTATCAAT TTATTATCAAT	130 ATTATTATCAP ATTATTATCAP	,140 ATTTTAACGTGI ATTTTAACGTGI	158 CGCTACTC CGCTACTC
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(159) (159) (159)	159 ATCTACTGT ATCTACTGT	,170 TGTTGATTG	,180 TGGTTGGTAG' TGGTTGGTAG'	, <mark>190</mark> TCATTGGAAA TCATTGGAAA	200 GGTGCCTGTGC GGTGCCTGTGC	210	220 CTGATCAGTCO	— Section 3 237 GTTTGTGG GTTTGTGG
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(238) (238) (238)	238 TTGCAGAAA TTGCAGAAA	250 GCTACTTAG GCTACTTAG	260 GTGAGGCTAA(GTGAGGCTAA)	270 GGCCCGTGTT(GGCC-GTGTT(280 CGGAACCTTAG CGGAACCTTAG	290 ATTCACGAGCC ATTCACGAGCC	.300 CCGCGTGATTAA - GCGTGATTAA	
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(317) (317) (315)	317 GTCACTGGG GTCACTGGG	330 ATCCGGTCT ATCCGGTCT	,340 ATCAGTAAGA(ATCAGTAAGA)	,350 GCTATTCCTT' GCTATTCCTT'	360 TGTTAATACCC TGTTAATACCC	370 TTTTTGGTTAG	380 TTACCAATTATO TAACAATTATO	
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(396) (396) (394)	396 GGAGATTTG GGAGATTTG	, <mark>410</mark> CCGATGTCA CCGATGTCA	,420 GGATAGTCAG GGATAGTCAG	, <mark>430</mark> GAACCTTTGC GAACCTTTGC	,440 TTAATGTTACC TTAATGTTACC	450 GGATATGATCI	,460 TACTTCTCGTG	— Section 6 474 GTGATGTTT GTGATGTTT
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(475) (475) (473)	475 ,480 GAGCGAATT GAGCGAATT	490 GATATTGGC GATATTGGC	500 CCCTTAGGGG CCCTTAGGGG	510 TGTTGTGCAA' TGTTGTGCAA'	520 TATCGGTGTG TATCGGTGTGC	530 TATTTCATATO TATTTCATATO	540 TCCGTGATTCC TCCGTGATTCC	
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(554) (554) (552)	554 ,560 ATATTTTC ATATTTTC	, <mark>570</mark> CTTGGCTTA CTTGGCTTA	ACAAGATTAC ACAAGATTAC	590 G GTCTATTAAT(,600 GTTTCTGTTGA	610 TGTGCCAGTTA	, <mark>620</mark>	Section 8 632
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(633) (583) (631)	633 <u>640</u> TCAGTGTCG	GGTTGTTGT	50 ,66 TTTTACATGT(GATAGAGTTG	0 ,680 GTGCTTTCCAT	0 <u>690</u> GTTTGGCAAGI	,700 GATCCCTGGAI	Section 9 711 GTTTCATT
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(712) (583) (710)	712 7	20 TGTTATAAT	7 30 ,	7 40 TCTA' TTGTCCACGA'	750 ,7 TTAATGTT <mark>T</mark> TG <mark>AA</mark> CT <mark>TGT</mark> TG	60 77 ACGTGGCTATI	0 ,780 GATAACGAATI	
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(791) (599) (789)	791 TTAGCTGTG	800 TTTTCTCTC	,810 GAGCCTATGA	<mark>.820</mark> -TT <mark>GATG</mark> TCC <mark>GATG</mark> GAT'	830 TTAAGGATTTT	.840 8	50 <mark>1</mark> CGGAAGATTG <mark>1</mark>	- Section 11 869 GCCA <mark>G</mark> TATG <mark>G</mark> TTG Section 12
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(870) (611) (868)	870 GAGTGATGT	880 CACTATAGA	,890 TGTGGATCAG'	,900 TATACCCTTCO	910 CCTCTAATGAG	920 GAATGGTTGTGC	,930 TTATTGCTCTG	948 948 95 GTATCTGC
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(949) (611) (947)	949 TTTTATAGT	960 GACCCCCGG	970	980 GTCGTCCTTT	990 ICGTGATCCAT	,1000	,1010	— Section 13 1027
BSBMV RNA4 NC_003508 BSBMV RNA4 I B155	(1028) (611) (1026)	1028	,1040	,1050	,1060	,1070	,1080	,1090	- Section 14 1106
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(1020) (1107) (617) (1105)	1107 TAATCGCAC	,1120	,1130 AATT GAATGGTTGG0	,1140	,1150 TG	,1160 TGGTGTCACGA	,1170	- Section 15 1185 TTATACAT
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(1186) (657) (1184)	1186 TGTACGCTG TGTACGCTG	1200 GCGCGGTAT GCGCGGTAT	,1210 ATGTTGTTTT ATGTTGTTTT	,1220 GTTTCGAACAI GTTTCGAACAI	,1230 AGATTTTCAGT AGATTTTCAGT	,1240 GATTATTGTG GATTATTGTG	,1250 ATTGTTAGTCC ATTGTTAGTCC	- Section 16 1264 GATGATGT GATGATGT
BSBMV RNA4 NC_003508 BSBMV RNA4 LB155	(1265) (736) (1263)	1265 ,1270 TGTTTTACT TGTTTTACT	, <mark>1280</mark> TATCGTACG TATCGTACG	,1290 AATATTTGTG AATATTTGTG	,1300 TATGATAGTG' TATGATAGTG'	,1310 TATGTCCGAAG TATGTCCGAAG	,1320 ACGTTAAACTA ACGTTAAACTA	,1330 CATGTAGTGAT CATGTAGTGAI	- Section 17 1343 AACTGTAA
BSBMV RNA4 NC_003508	(1344) (815)	1344 ,1350 CTATATGTT	,136 TGTGATCAG	0 ,137	0 ,138	0 ,1390 CATATTAATCO) ,1400	,1410 TGGTAAGTAAA	- Section 18 1422

Appendice B6. Allineamento delle sequenza nucleotidica del clone dell'RNA4 di BSBMV (LB155) con la sequenza NC_003508.

23 ,1430 GTTTTCCCGA GTTTTCCCGA	,1440 CTCTTGGTGT	,1450 TGAACCGAGT	,1460 GATCCTTGGAA	,1470	,1480	,1490	1501
GTTTTCCCGA GTTTTCCCGA	CTCTTGGTGT	TGAACCGAGT	GATCCTTGGAA	ACATCCTTT	GTCTCACAA	ACGTGTATG	0.00000000
GGTTTTCCCGA	CTCTTGGTGT				Contraction of the states	HOUT OTHING	GCGTGTTT
	the state of the state of state.	TGAACCGAGT	GATCCTTGGAA	ACATCCTTT	GTCTCACAA	ACGTGTATG	GCGTGTTI
							- Section 20
02 ,1510	,1520	,1530	,1540	,1550	1560	1570	1580
TGCTTACCTO	GGTTTCTACT	ATGAGCCCTT	ATATTTCAAAA	TATAAGAATA	ACATAGTTGT	TTAACAGGC'	TCGTCTGC
TGCTTACCTO	GGTTTCTACT	ATGAGCCCTT	ATATTTCAAAA	TATAAGAATA	ACATAGTTGT	TTAACAGGC'	TTGTTGC
							- Section 21
81 ,1590	1600	,1610	,1620	,1630	,1640		1659
GCCTCCCATI	GGGTTTATGC	AGACACAAAA	AGATGGCTTAT	TGGTTATGCT	TAAACCTCAT	ATCTTTGTA	TTTGTG-T
AGCCTCCCATI	GGGGGTTATGC	AGACACAAAA	AGATGGCTTAI	TGGTTATGC	TAAACCTCAT	ATCTTTGTA	TTTGTGT-
							- Section 22
60 ,16	,168	0 ,169	1700	.1710	,172	20	1733
STTTGTTTGGI	TGTATTGTAC	TGACTGGGTG	TGAAATGTACO	AGTCCTTGT	AGGGTGTATT	TTCAGTTTA	TTG
GTTTGTTTGG1	TGTATTGTAC	TGACTGGGTG	TGAAATGTACC	AGTCCTTGT	AGGGTGTATT	TTCAGTTTA	TTG
	02 1510 TGCTTACCTG TGCTTACCTG 81 1590 GCCTCCCATT GCCTCCCATT 60 160 TTTTGTTTGGT	GTTTTCCCGACTCTTGGTGT 02 1510 1520 TGCTTACCTGGGTTCTACT. TGCTTACCTGGGTTCTACT. 81 1590 1600 GCCTCCCATTGGGTTTAGC GTTATGC. 60 1670 168 TTTGTTTGGTTGTATTGTACT. 1670 168	GTTTTCCCGACTCTTGGTGTTGAACCGAGT D2 ,1510 ,1520 ,1530 TGCTTACCTGGGTTTCTACTATGAGCCCTT TGCTTACCTGGGTTTCTACTATGAGCCCTT 81 ,1590 ,1600 ,1610 GCCTCCCATTGGGTTTATGCAGACACAAAA GCCTCCCATTGGGTTATGCAGACACAAAA GCCTCCCATTGGGTTATGCAGACACAAAA 60 ,1670 ,1680 ,162 TTTTGTTTGGTTGTATTGTACTGGCTGGGTG TTTGTTTGGTTGTATTGTACTGACTGGGTG	IGTTTTCCCGACTCTTGGTGTGAACCGAGTGATCCTTGGAA 02 ,1510 ,1520 ,1530 ,1540 ITGCTTACCTGGGTTTCTACTATGAGCCCTTATATTTCAAAA ITGCTTACCTGGGTTTCTACTATGAGCCCTTATATTTCAAAA 81 ,1590 ,1600 ,1610 ,1620 IGCCTCCCATTGGGTTTCTACTACGAGACACAAAAAGATGGCTTAT ITATGCAGACACAAAAAGATGGCTTAT 60 ,1670 ,1680 ,1690 ,1700 ITTTGTTTGGTTGTATTGTACTGACTGGGTGTGAAATGTACCGAAAGGATGACAAAAGATGGCTTAT	GETTTTCCCGACTCTTGGTGTTGAACCGAGTGATCCTTGGAAACATCCTTTC D2 ,1510 ,1520 ,1530 ,1540 ,1550 TGCTTACCTGGGTTTCTACTATGAGCCCTTATATTTCAAAATATAAGAATA TGCTTACCTGGGTTTCTACTATGAGCCCTTATATTTCAAAATATAAGAATA B1 ,1590 ,1600 ,1610 ,1620 ,1630 \GCCTCCCATTGGGTTTTACGAGACAAAAAGATGGCTTATTGGTTATGCT \GCCTCCCATTGGGTTTATGCAGACAAAAAGATGGCTTATTGGTTATGCT \GCCTCCCATTGGGTTTAGCAGACACAAAAAGATGGCTTATTGGTTATGCT \GCCTCCCATTGGGTGTGTAAGAAGATGACCAGACAAAAAGATGGCTTATTGGTTATGCT \GCCTCCCATTGGGTGTGTATGCAGGCACAAAAAGATGGCTTATTGGTTATGCT \GCCTCCCATTGGGTGTGTATTGCAGGCACAAAAAGATGGCTTATTGGTTATGCT \GCCTCCCATTGGGTGTGTATGCAGCCAGACACAAAAGATGGCCTTATTGGTTGTATGCT ,1670 ,1680 ,1690 ,1700 ,1710 \GTTGTTTGGTTGTATTGTACTGACTGGGTGTGAAATGTACCAGTCCTTGT ,7700 ,1710 ,1711	GTTTTCCCGACTCTTGGTGTTGAACCGAGTGATCCTTGGAAACATCCTTTCGTCTCACAA D2 ,1510 ,1520 ,1530 ,1540 ,1550 ,1560 TTGCTTACCTGGGTTTCTACTATGAGCCCTTATATTTCAAAATATAAGAATACATAGTTGT TGCTTACCTGGGTTTCTACTATGAGCCCTTATATTTCAAAATATAAGAATACATAGTTGT B1 ,1590 ,1600 ,1610 ,1620 ,1630 ,1640 GCCTCCCATTGGGTTTGGCTTATGCAGACACCAAAAAGATGGCTTATTGGTTATGCTAAACCTCAT ,0600 ,1610 ,1620 ,1630 ,1640 GCCTCCCATTGGGTTTAGCAGACACAAAAAGATGGCTTATTGGTTATGCTAAACCTCAT ,0600 ,1610 ,1620 ,1630 ,1640 GCCTCCCATTGGGTTTAGCAGACACAAAAAGATGGCTTATTGGTTATGCTAAACCTCAT ,0600 ,1670 ,1640 ,1690 ,1700 ,1710 ,172 60 ,1670 ,1680 ,1690 ,1700 ,1710 ,172 7TTTGTTGGTTGTATTGTATGTACTGACTGACTGGGTGTGAAATGTACCAGTCCTTGTAGGGTGTATT ,1690 ,1700 ,1710 ,172 7TTTGTTGGTTGTATTGTATGTATGACTGACTGAGGTGTGAATGTACCAGTCCTTGTAGGGTGTATT ,1690 ,1700 ,1710 ,172 7TTTGTTGGTTGTATTGTATTGTCGACTGGGTGTGAATGTACCAGTCCTTGTAGGGTGTATTGTTGGTTG	GTTTTCCCGACTCTTGGTGTTGAACCGAGTGATCCTTGGAAACATCCTTTCGTCTCACAAACGTGTATG D2 ,1510 ,1520 ,1530 ,1540 ,1550 ,1560 ,1570 TTGCTTACCTGGGTTTCTACTATGAGCCCTTATATTTCAAAATATAAGAATACATAGTTGTTTAACAGGC TTGCTTACCTGGGTTCTACTATGAGCCCTTATATTTCAAAATATAAGAATACATAGTTGTTTAACAGGC TGCTTACCTGGGTTCTACTATGAGCCCTTATATTTCAAAATATAAGAATACATAGTTGTTTAACAGGC 1620 ,1630 ,1640 GCCTCCCATTGGG TTATGCAGACCACAAAAAGATGGCTTATTGGTTATGCTAAACCTCATATCTTGTA GCCTCCCATTGGGGTTATGCAGACACAAAAAGATGGCTTATTGGTTATGCTAAACCTCATATCTTGTA 50 ,1670 ,1680 ,1690 ,1700 ,1710 ,1720 STTTGTTGGTTGTATTGTACTGACTGGGTGTGAAATGTACCAGTCCTTGTAGGGTGTATTTCAGTTA ,1700 ,1710 ,1720

	(1)	1	.10	20	1	30	.40	50	,60	——————————————————————————————————————
BSBMV RNA4 deleto LB55 BSBMV RNA4 NC_003508	(1) (1)	AAAT AAAT	TCAAAACTC. TCAAAACTC	AAAAATA1 AAAAATA1	FAATTTTG FAATTTTG	TATTTCCAG TATTTCCAG	STTGATTATC STTGATTATC	ТGТААААТАА ТGТААААТАА	TCTCGGTTAAC TCTCGGTTAAC	TAGTTGTCCGAT TAGTTGTCCGAT
	(80)	80	,90	.1	100	,110	,120	,130	,140	Section 2
BSBMV RNA4 deleto LB55 BSBMV RNA4 NC 003508	(80)	TAAC	AACTCGAGT	CTGATCTC CTGATCTC	GCTTAAAG	ATCCCCAA1	ATTATTATC	AATATTATTA AATATTATTA	TCAATTTTAAC TCAATTTTAAC	GTGTCGCTACTC GTGTCGCTACTC
	(00)	_								Section 3
RSBMV RNA4 deleto I R55	(159)	159	170	CATTGTG	180	,190	200	210	220	237
BSBMV RNA4 NC_003508	(159)	ATCT	ACTGTTGTT	GATTGTG	GTTGGTAG	TCATTGGAA	AGGTGCCTC	TGCTTGGTGT	TGCACTGATCA	GTCGGTTTGTGG
	(220)	229	26	0	260	270	290	200	300	Section 4
BSBMV RNA4 deleto LB55 BSBMV RNA4 NC_003508	(238) (238) (238)	TTGC TTGC	AGAAAGCTA AGAAAGCTA	CTTAGGT(CTTAGGT(GAGGCTAA GAGGCTAA	GGCC-GTGI GGCCCGTGI	TCGGAACCI	TAGATTCACG	AGCC - GCGTGA AGCCCGCGTGA	TTAATCGGGTTT TTAATCGGGTTT
	(217)	217		220	240	250	260	270	280	Section 5
BSBMV RNA4 deleto LB55	(317)	GTCA	CTGGGATCC	GGTCTAT	CAGTAAGA	GCTATTCCT	TTGTTAATA	CCCTTTTTGG	TAGTAACAAT	TATGGCCGATGT
BSBMV RNA4 NC_003508	(317)	GTCA	CTGGGATCC	GGTCTATO	CAGTAAGA	GCTATTCCI	TTGTTAATA	CCCTTTTTGG	TTAGTAACAAT	TATGGCCGATGT
	(396)	396		.410	420	.430	.440	0 450	460	Section 6
BSBMV RNA4 deleto LB55 BSBMV RNA4 NC_003508	(394) (396)	GGAG GGAG	ATTCGCCGA ATTTGCCGA	IGTCAGA IGTCAG <mark>G</mark>	ATAGTCAG ATAGTCAG	GAACCTTTC GAACCTTTC	CTTAATGTT CTTAATGTT	ACCGGATATG	ATCTTACTTCT ATCTTACTTCT	CGTGTGATGTTT CGTGTGATGTTT
		175			-					Section 7
BSBMV RNA4 deleto LB55	(475)	4/5 GAGO	480 GAATTGATA	,490 TTGGCCCC	500	510 GTGTTGTGC	AATATCGGI	20 5 GTGTTATTC	30 ,540 ATATGTCCGTG	553 ATTCGTCGTCGT
BSBMV RNA4 NC_003508	(475)	GAGC	GAATTGATA	TTGGCCCC	CTTAGG-G	GTGTTGTGC	AATATCGGI	GTGTTATTTC	ATATGTCCGTG.	ATTCGTCGTCGT
	(554)	554	560	570	580	5	90	600	610 62	Section 8
BSBMV RNA4 deleto LB55 BSBMV RNA4 NC 003508	(552)	GATA	TTTTTCCTT	GGCTTAAC	CAAGATTA	CGTCTATTA CGTCTATTA	ATGTTTCTG	GTTGATGTGCC GTTGATGTGCC	AGTTAATAACG	TGGCCACTCAAC
			0.10	050			070			Section 9
BSBMV RNA4 deleto I B55	(633)	GATT	640 TGTGCGTGG	650 FTTGGTTC	GAGCCGA	50 TGGCTTTGA	670 ACAAGATAA	680 TCGCACCATT	690 TCTAAGAATGG	700 711 TGGGCGGCG <mark>CTT</mark>
BSBMV RNA4 NC_003508	(611)									<mark>ctt</mark>
	(712)	712	720	730		740	750	760	770	
BSBMV RNA4 deleto LB55	(710)	TTGC	TACAATTTG	TGGTGTC/	ACGATTAT	GGTGATGTI	ATACATTGI	ACGCTGGCGC	GGTATATGTTG	TTTTGTTTCGAA
BSBMV RNA4 NC_003508	(614)	TTGC	TACAATTTG	IGGIGIC/	ACGATTAT	GGTGATGTI	ATACATTGI	ACGCTGGCGC	GGTATATGTTG	TTTTGTTTCGAA Section 11
	(791)	791	,800	,81	0	820	,830	840	,850	869
BSBMV RNA4 deleto LB55 BSBMV RNA4 NC 003508	(789)	CAAG	ATTTTCAGT	GATTATT	IGTGATTG	TTAGTCCGA	TGATGTTGT	TTTACTTATC	GTACGAATATT	TGTGTATGATAG
D3DHV KNA4 NC_005300	(093)	CARG	ATTTICAT.	SATIALL.	10104110	TINGICCOR	10A101101	LITACITATO	GIAUGRAINII	Section 12
	(870)	870	880	3,	390	,900	910	920	930	948
BSBMV RNA4 deleto LB55 BSBMV RNA4 NC_003508	(868) (772)	TGTA	TGTCCGAAG.	ACGTTAAA ACGTTAAA	ACTACATG	TAGTGATAA	CTGTAACTA	TATGTTTGTG	ATCAGTTCGAT	TGGTGTGTGTTCCT
										Section 13
	(949)	949	,960		,970	,980	,990	,1000	,1010	1027
BSBMV RNA4 deleto LBSS BSBMV RNA4 NC_003508	(947) (851)	CGCA	TATCAATCG	TATTTGA TATTTGA	AGGGTGGT	AAGAAAAA AAGTAAAAA	AGTGTGTGC	TTTTCCCGAC	TCTTGGTGTTG	AACCGAGTGATC
		4000		10	1050	1000	1070	1000	1000	Section 14
BSBMV RNA4 deleto LB55	(1028) (1026)	1028 CTTG	GAAACATCC	TTTCGTC1	1050	JU60	JU/U	,1080	JU90	1106 GAGCCCTTATAT
BSBMV RNA4 NC_003508	(930)	CTTG	GAAACATCC	TTTCGTCT	ICACAAAC	GTGTATGGC	GTGTTTCCI	GCTTACCTGG	GTTTCTACTAT	GAGCCCTTATAT
	(1107)	1107		1120	1130	1140	1150) 1160	1170	
BSBMV RNA4 deleto LB55	(1107)	TTCA	AAATATAAG	AATACATA	AGTTGTTT	AACAGGCTC	GTCTGCAAG	CCTCCCATTO	GGTTTATGCAG.	ACACAAAAAGAT
BSBMV RNA4 NC_003508	(1009)	TTCA	AAATATAAG.	AATACATA	AGTTGTTT	AACAGGCTC	GTCTGCAAG	CCTCCCATTG	GGTTTATGCAG	ACACAAAAAGAT Section 16
	(1186)	1186		1200	,1210	,1220	,123	30 ,124	40 ,1250	1264
BSBMV RNA4 deleto LB55	(1184)	GGCT	TATTGGTTA	IGCTAAAO	CCTCATAT	CTTTGTATI	TGTGTGGTT	TGTTTGGTTG	TATTGTACTGA	CTGGGTGTGAAA CTGGGTGTGAAA
000500 KINAT NC_000500	(1000)	5001	TATIOUTA	1 JOI MAAG	JOICHINI	official I	101010011	.1011100110	THE FOLKET GA	——————————————————————————————————————
	(1265)	1265	1270	,1280	,1290	1301				
BSBMV RNA4 DELESS	(1203) (1167)	TGTA	CCAGTCCTT	GTAGGGT	GTATTTTC	AGTTTATTG				

Appendice B7. Allineamento della sequenza nucleotidica del clone dell'RNA4 deleto di BSBMV (LB55) con la sequenza NC_003508.

									Section 1
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(1) (1) (1) (1)	1 ,10 AAATTTAAATC AAATTCAAAACTC AAATTCAAAACTC	20 TATCACCA AAAAATAT AAAAATAT	AC <mark>ATT</mark> AG <mark>G</mark> TRATTTTGI TRATTTTGI	30 FATTAATTT FATT <mark>TCCAC</mark> FATT <mark>TCCAC</mark>	40 FA <mark>T</mark> TCG <mark>TCT STTGATTAT ST<mark>TGATTA</mark>T</mark>	50 CTAGACACTT CT <mark>GTAAAATA</mark> CT <mark>GTAAAAT</mark> A	60 T <mark>TGTAGCGT</mark> G ATCTCG-GTT ATCTCG-GTT	75 CG <mark>CTAG</mark> CCCG <mark>CTG</mark> C AACTAG <mark>TTGTCC</mark> G AACTAG <mark>TTGTC</mark> CG
	(80)	80 90	.1	00	.110	.120	130	.140	Section 2 15
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(78) (79) (79)	CTTCCCGACCGAC TTAACAAC TTAACAAC	CTCAATC TCGAGTCT TCGAGTCT	CA <mark>A</mark> G <mark>C</mark> GAG IGATCTGC IG <mark>ATCTGC</mark>	TTTATGTCC TTAAAGATC TTAAAGATC	AGGTACCT CCCAAT CCCCAAT	C <mark>TTATT</mark> GAG <mark>A</mark> ATTATT <mark>ATC</mark> A A <mark>TTATT<mark>ATC</mark>A</mark>	AATAG <mark>A</mark> GTGT(ATATTATTAT ATATT <mark>ATTA</mark> T	CGAGTGAATAAAC CAATTTTAAC CAATTTTAAC
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(159) (157) (148) (148)	159 177 TAAAGATTACGTC TGTCGCT-AC-TC TGTCGCT-AC-TC	0 CAT <mark>-TAC</mark> GG CAT <mark>CTACTG</mark> CAT <mark>CTACT</mark> G	,180 5GG <mark>TAGTT(</mark> 5 <mark>TT</mark> GTT(5 <mark>TT</mark> GTT(,190 GAGCGCTTT GATTGTGG GA <mark>TTGTGG</mark> I	200 FTGCATCAA FTG <mark>GTAGTC</mark> FTG <mark>GTAGTC</mark>	210 G <mark>TT</mark> ATT <mark>AA</mark> CC ATT <mark>GGAAA GG</mark> ATT <mark>GGAAA</mark> GG	220 ACT <mark>C</mark> GCTACT TGCCTGTGCT TGCCTGTGCT	23 CGGTGTCTAG IGGTGTTGCATTG IGGTGTTGCACTG
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(238) (232) (223) (223)	238 22 CT <mark>A CGTT</mark> GTG TCACTCGGTTTG TCACTCGGTTTG	50 GT <mark>GTTGTAG</mark> GTTGCAG	260 STGT <mark>G</mark> AGC GAAAGCTA GAAAGCTA	270 CTT GTGC CTT A GGTG CTT A GGTG7	280 CC <mark>GCTAC</mark> GT AGCTAAGG AGCTAAGG	290 AAAATATAT- CC-GTGTTCG CCC <mark>GTGTTCG</mark>	,300 - AAAT TTAAA GAACC TTAGA GAACC TTAGA	Section 4 31 PTTCCATACTTAAC ITCACGAGCCC ITCACGAGCCCC
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(317) (305) (298) (300)	317 CTAGGTTGAGTG7 CGTGATTAATCG CGTGATTAATCG	330 GTTTGTTG GTTTGT <mark>CA</mark> GTTTGT <mark>CA</mark>	,340 G <mark>CTG</mark> AT <mark>A</mark> A ACTG <mark>GGAT</mark> ACTG <mark>GGA</mark> TO	,350 TA <mark>G - TATA1</mark> CCGGTCTA1 CCGGTCTA1	360 TATCGC <mark>AG</mark> CAGTA-AG	370 C <mark>GCCCTTGC</mark> G AGC <mark>TATTCCT</mark> AGC <mark>TATTCCT</mark>	,380 TTGATCTTTG TTGTTA TTGTTA	Section 5 39 ATCCCCCTATCT ATAC-CCTTT ATAC-CCTTT
	(396)	396	410	.420	.430	.44	40 45	50 .46	
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(383) (367) (369)	TAACTTTATTTGT TTGGTTAGT TTGGTTAGT	TATTAGTT TA <mark>ACAATT</mark> A TA <mark>ACAATT</mark> A	TCT <mark>G</mark> TT <mark>G</mark> T(ATGGCCGA ATG <mark>GCCG</mark> A	C <mark>GTT</mark> GGTA1 TGT <mark>GGAG</mark> A1 TGT <mark>GGAG</mark> A1	TTTAACGTC TTT <mark>GC</mark> CG TTT <mark>GC</mark> CG	ATGGATTT <mark>G</mark> A ATGTCAG <mark>G</mark> ATGTCAG <mark>G</mark>	ATACTAT <mark>G</mark> AT(ATA <mark>GTCAGGA</mark> ATA <mark>GTCAGGA</mark>	G <mark>CC</mark> AGCCTTTAATO ACCTTTGCTTAATO ACCTTTGCTTAATO
	(475)	475 ,480	,490	500	51	0	520	530 #	Section 7
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(462) (438) (440)	TTGCTTATTGGG# TTAC TT <mark>AC</mark>	A <mark>CGG</mark> CGTTC CGG <mark>ATAT</mark> C CGG <mark>ATA</mark> TC	CATGCTCC! ATCTTAC! ATCTTAC!	ITATGTTGI ITCT ITCT	rcaag <mark>cgt</mark> a <mark>cgtg</mark> <mark>cgtg</mark>	TGATGCATGA TGATG <mark>TT</mark> TGA TGATG <mark>TT</mark> TGA	GGTGG <mark>TT</mark> ATG GCGAATTGAT GCGAA <mark>TT</mark> GAT	AA <mark>TG</mark> TGGGACC <mark>AG</mark> A <mark>TTGGCCCCTT</mark> AG A <mark>TTG<mark>GCCCCTT</mark>AG</mark>
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(554) (541) (499) (501)	554 560 TGGTTTTATATGT - GGTGTTGTGCA7 - GGTGTTGTGCA7	570 TATCCGCI TATCGG TATC <mark>G</mark> G	580 TTCC <mark>TGT</mark> CC TGT <mark>G</mark> TGT <mark>G</mark>	ŞAT <mark>TTT</mark> GAT TTA <mark>TTTC</mark> AT FTATTTCAT	590 ICTCAACGA I <mark>ATGTCCG</mark> T I <mark>ATGTCCG</mark> T	600 C <mark>ACTGGT</mark> GTG GATTCGTCGT GATTCGTCGT	610 ATTC <mark>ATA</mark> ATT CGTGATATTT CGTGATA <mark>T</mark> TT	620 Section 8 TGOTTACOATAA GTTGATGO - TGAA TCCTTGGOTTACA Section 9
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(633) (620) (570) (574)	633 640 CGTG <mark>TTA</mark> AAAACCA AACATTGACGA AAG <mark>ATTA</mark> CGTCTA	,650 TGAGATTA TGA TTAATGT	,66 ATT <mark>TGT</mark> GG -TGCCG ITCTGTTG	0 GCA <mark>TTC</mark> AG <i>I</i> ATGT ATGTGCCAC	,670 AATAATTGT G	,680 AGTGAGTGGG	,690 TTTATGGCCG	700 71
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(712) (699) (593) (611)	712 720 TGTTTTCAACCTC	, 730 CCGCTATCT	, rcgccttg(7 40 GGTGAATA7	, 750 ATGGTTGTA	, 760 TGAGTCTATT	770 CTCGCCTTTT	780 79
BSBMV RNA3 NC_003507 BSBMV LB89 chimera	(791) (778) (593)	791 800 TCCTATTGATCG1	810 RAATCTTT	0 Igaggaga(<mark>820</mark> GATAGTCG1	<mark>,830</mark> IGGTGTTAG	<mark>,840</mark> TGTGTTGTGG	<mark>,850</mark> GATCGTGTTT.	Section 11 86 ATCGTGTTAATCGT
BSBMV RNA4 NC_003508 BSBMV RNA3 NC_003507	(611) (870) (857)	870 880 GGCACACAGCTT	8 RTTGTTGAT	190 IGAGACGT	.900	910	920 920	930 CCGCCCAAGT	Section 12 944 FGGTGAAAATTATC
BSBMV LB89 chimera BSBMV RNA4 NC_003508	(593) (611)								Section 13
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(949) (936) (593) (611)	949 96 CGTCTGCCACTAC	0 CGTATGATI	. 970 ECTATCTA	980 CGTTGCTTC	,990 GTGTGACCG	, 1000 ATTGGATTGA	,1010 TAACAATGTT	102 FTTAGACTAACATC
BSBMV RNA3 NC_003507 BSBMV LB89 chimera BSBMV RNA4 NC_003508	(1028) (1015) (593) (611)	10281 TGACAGCGTTGGT	040 TTGGTTTCA	, 1050	, 1060 TTAGACGAC	,1070 CGGTCCTCG	,1080 ACTTGCTTTT	, 1090 GGGCAAGGTT	III00
	(1107)	1107	1120	1130	1140	115	0 116	0 117	Section 15
BSBMV RNA3 NC_003507 BSBMV LB89 chimera	(1094) (593)	GATGATGGTGATC	GTGTTGTI	rggtgatg)	ACGATGTCC	GATGTTGAT	GGTGAAAACA	TTGACGA <mark>A</mark> GA	GCC <mark>G</mark> A <mark>TGTCATG</mark> CATG TGT <mark>GGTGTCACG</mark> A

Appendice B8. Allineamento della sequenza nucleotidica della chimera (LB89) con le sequenze NC_003507 e NC_003508.

												Section 16
	(1186)	1186		1200	,1210	,1220		1230	1240	,1250	1	1264
BSBMV RNA3 NC_003507	(1172)		GAC GAC GC T	A-ACACAC	– <mark>ATGA</mark> TGG	T <mark>G</mark> ATTA <mark>A</mark> A	ATTT	- TCGTCT	C	- TT GACGT	TAAAC	ATCTATC
BSBMV LB89 chimera	(597)		GACGACGCT	A-ACACA	– A <mark>T</mark> G <mark>A</mark> TGG	T GATTA AA	ATTT	- TOGTOT	<mark>C</mark>	- TTGACGT	TAAAC	ATCTATC
BSBMV RNA4 NC_003508	(638)	TTAT	GGTGATGTT	ATACATTO	TACGCTGG	CGCGGTAT	ATGTTGI	TTTGTTT	CGAACAAG.	A <mark>TT</mark> TT <mark>C</mark> AG	TGATT	ATTTGTG
		1005	1070	1000	1000	120	0	4240	1220	10	20	Section 1/
DCDMM/ DNA2 NC 003E07	(1265)	1260	12/0	1280	1290	130	U	1310	,1320	13	SU CACCE	1343
BSBMV LB80 chimora	(1234)		TTAGTCCGA	AGACGTT	AACTACGT	TCGT	TT	ATATG	ACAGIGIG	GTCCGAA	GACGI	AAAACIA
BSBMV RNA4 NC 003508	(717)	ATTG	TTAGTCCGA	TGATGTTO	TTTTACTT	ATCGTACG	AATATT	GTGTATG	ATAGTGTA	TGTCCGAA	GACGT	TAAACTA
	(, 1,)			-								Section 18
	(1344)	1344	1350	,1360	,1370	.13	380	.1390	1400	.1	410	1422
BSBMV RNA3 NC_003507	(1300)	CATA	TAGTAATGA	TGTAACI	ATGTGTTC	GTGAGCAA	TCCGAAI	GATGTGT	TCCTCGCA	ATTGATC	GTATP	TTTGAGG
BSBMV LB89 chimera	(725)	CATA	TAGTAATGA	TGTAACI	ATGTGTTC	GTGA <mark>G</mark> CA <mark>A</mark>	TCCGAA1	GATGTGT	TCCTCGCA	ATTGATC	GTATA	TTTGAGG
BSBMV RNA4 NC_003508	(796)	CATG	TAGT GATAA	C <mark>TGTAACI</mark>	ATATGTT	GTGATCAG	TTCGAT I	GGTGTGT	TCCTCGCA	Г <mark>АТТ</mark> А <mark>АТС</mark>	GTAT-	TTTGAGG
												Section 19
	(1423)	1423	,1430	,1440	145	i0 ,	1460	,1470	,148	0	1490	1501
BSBMV RNA3 NC_003507	(1379)	GTGG	TAGGTAAAA	TA-GTGTC	TGGTTTAT	CCCGACTC	TTGTTT	TGAACA-	AGTGATCC	CGGAAAT	ATCCT	TGCGTTT
BSBMV DNA4 NC 002508	(804)	GTGG		TATGTGTG	TGGTTTAT	CCCGACTC	TTGTTT	TGAACA-	AGTGATCC	TEGAAA	ATCCT	TECGT
BSDITV RNA4 NC_005508	(0/4)	9199	TAADTAAAA	1A-01010	100111-1	CCCGACIC.	1100101	TOARCCO	AGIGAICC	TUUAAAC	AICCI	Section 20
	(1502)	1502	1510	1520	1	530	1540	1550	15	60	1570	1580
BSBMV RNA3 NC 003507	(1456)	CACA	AACGTGTAT	GGCGTGTI	TCCTGCCT	ATCTGGGT	TT-TACT	ATGAGCC	TTATATT	CAAAATA	TAAGA	ATACATA
BSBMV LB89 chimera	(882)	CACA	AACGTGTAT	GGCGTGTI	TCCTGCT	ATCTGGGT	TT-TACI	ATGAGCC	TTATATT	CAAAATA	TAAGA	ATACATA
BSBMV RNA4 NC_003508	(951)	CACA	AACGTGTAT	GGCGTGTI	TCCTGCTT	ACCTGGGT	TTCTACI	ATGAGCC	CTTATATT	CAAAATA	TAAGA	ATACATA
												Section 21
	(1581)	1581	.1590	.16	00	1610	.1620	.163	0	1640		1659
BSBMV RNA3 NC 003507	(1534)	GTAG	TTTAACAGG	CTCGTTT	CAAGCCTC	CCATTGGG	TTTATGO	AGACACA	AAAAGATG	SCTTATTO	GTTAT	GCTTAAC
BSBMV LB89 chimera	(960)	GTAG	TTTAACAGG	CTCGTTT	CAAGCCTC	CCATTGGG	TTTATGO	AGACACA	AAAAGATG	GCTTATTG	GTTAT	GCTTAAC
BSBMV RNA4 NC_003508	(1030)	GTTG	TTTAACAGG	CTCGTCTC	CAAGCCTC	CCATTGGG	TTTATGO	AGACACA	AAAAGATG	SCTTATTG	GTTAT	GCTAAAC
	433-04-513			0 00		1014942107				4.022040 V		Section 22
a second a second s	(1660)	1660	1670	,1	680	1690	,1700	,17	/10	,1720		1738
BSBMV RNA3 NC_003507	(1613)	CTCA	TATCTATAT	CTTTATCO	TTATATTT	ATGTTTTA	TTTGGTI	GTATTGT	ACTGACTG	GGTGTGAA	ATGTA	CCAGTCC
BSBMV LB89 chimera	(1039)	CTCA	TATCTATAT	A TTTATCE	TTATATTT	ATG TTTA	TTTGGTT	GTATIGT	ACTGACTG	GTGTGAA	ATGTA	CCAGTCO
DSDMV KNA4 NC_003508	(1109)	CICA	TATCI II GI	ATTIGIG-		-1001110	1110011	GIAIIGI	ACTOACTO	JGIGIGAN	AIGIA	Section 23
	(1730)	1739	174	50	1767	ti						Section 25
BSBMV RNA3 NC 003507	(1692)	TTGT	AGGGTGTA	TTCAGT	TATTGAAG	_						
BSBMV I B89 chimera	(1118)	TTGT	AGGGTGTA	CTTCAGT	TATTG							

BSBMV LB89 chimera (1118) TTGTAGGGTGTACOTTCAGTATATIG---BSBMV RNA4 NC_003508 (1178) TTGTAGGGTGTA

BIBLIOGRAFIA

- Adams M. 2002. Plant virus vector interactions. Advances in Botanical Research vol. 36 chap. Fungi San Diego, California, USA: Academic Press 47–64 advances in Botanical Research incorporating Advances in Plant Pathology.
- Balmori, E., D. Gilmer, K. Richards, H. Guilley, G. Jonard. 1993. Mapping the promoter for subgenomic RNA synthesis on beet necrotic yellow vein virus RNA 3. *Biochimie*, 75:517-21.
- Blanchard, C. L., T. J. Higgins, B. J. Anderson. 1997. RNAs 4A and 5 are present in tomato aspermy virus and both subgroups of cucumber mosaic virus. *Archives of virology*, 142:1273-83.
- Bleykasten C., D. Gilmer, H. Guilley, K.E. Richards, G. Jonard. 1996. The beet necrotic yellow vein virus 42 kDa triple gene block protein binds nucleic acids in vitro. *The journal of general virology*, 77: 889-897.
- Bleykasten Grosshans C., H. Guilley, S. Bouzoubaa, K.E. Richards, G. Jonard. 1997. Independent Expression of the First Two Triple Gene Block Proteins of Beet Necrotic Yellow Vein Virus Complements Virus Defective in the Corresponding Gene but Expression of the Third Protein Inhibits Viral Cell-to-Cell Movement. *Molecular plant-microbe interactions*, 10 (2): 240-246.
- Bongiovanni G.C. 1964. La diffusione della rizomania in Italia. *Informatore fitopatologico*, 14 (10): 263-265.
- Bouzoubaa S., H. Guilley, G. Jonard, K.E. Richards, C. Putz. 1985. Nucleotide sequence analysis of RNA 3 and RNA 4 of beet necrotic yellow vein virus, isolates F2 and G1. *The journal of general virology*, 66, 1553-1564.
- Bouzoubaa S., V. Ziegler, D. Beck, H. Guilley, K.E. Richards, G. Jonard. 1986. Nucleotide sequence of beet necrotic yellow vein virus RNA 2. *The journal* of general virology, 67: 1689-1700.
- Bouzoubaa S., L. Quillet, H. Guilley, G. Jonard, K.E. Richards. 1987. Nucleotide sequence of beet necrotic yellow vein virus RNA 1. *The journal of general virology*, 68: 615-626.
- Bouzoubaa S., U. Niesbach-Klosgen, I. Jupin, H. Guilley, K.E. Richards, G. Jonard. 1991. Shortened forms of beet necrotic yellow vein virus RNA 3 and RNA 4. *The journal of general virology*, 72: 259-66.

- Büttner, G., K. Bürcky. 1990. Content and distribution of beet necrotic yellow vein virus (BNYVV) in sugar beet varieties with different degrees of susceptibility to rhizomania. *Proceedings of the First Symposium of the International Working Group on Plant Viruses with Fungal Vectors*, Braunschweig, Eugen Ulmer, Stuttgart.:83-86.Canova A. 1959. Appunti di patologia della barbabietola. *Informatore fitopatologico*, 9 (20): 390-396.
- Canova A. 1959. Appunti di patologia della barbabietola. *Informatore fitopatopatologico*, 9 (20), 390-396.
- Canova A. 1975. Malattie da virus. *In*: Manuale di patologia vegetale. Edizione Agricole, 770.
- Casarini Camangi P. 1987. Incidenza della rizomania sulla produzione qualiquantitativa della barbabietola da zucchero. *L'informatore Agrario*, 43: 149-152.
- Chang S., J. Puryear, J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. *Plant molecular biology reporter*, 11: 113-116.
- Donald R.G.K., H. Shou, A.O. Jackson. 1993. Serological analysis of barley stripe mosaic virus-encoded proteins in infected barley. *Virology*, 195: 659-668.
- Erhardt M., M. Morant, C. Ritzenthaler, C. Stussi-Garaud, H. Giulley, K.E. Richards, G. Jonard, S. Bouzoubaa, D. Gilmer. 2000. P42 movement protein of Beet necrotic yellow vein virus is targeted by the movement protein P13 and P15 to punctate bodies associated with plasmodesmata. *Molecular plant-microbe interactions: MPMI*, 13 (5): 520-528.
- FAO. 2005. FAOSTAT Agricolture Statistics Database. Pagina Web: http://faostat.fao.org/site/336/default.aspx
- Gilmer D., K.E. Richards, G. Jonard, H. Guilley. 1992. Cis-active sequences near the 5'-terminus of beet necrotic yellow vein virus RNA 3 and 4. *Virology*, 190: 55-67.
- Glimer D., S. Bouzoubaa, A. Hehn, H. Guilley, K. Richards, G. Jonard. 1992a.
 Efficient cell-to-cell movement of beet necrotic yellow vein virus requires 3' proximal genes located on RNA 2. *Virology*: 189, 40-47.

- Gilmer D., C. Allmang, C. Ehresmann, H. Guilley, K. Richards, G. Jonard, B. Ehresmann. 1993. The secondary structure of the 5'-noncoding region of beet necrotic yellow vein virus RNA3: evidence for a role in viral RNA replication. *Nucleic acids research*, 21(6):1389-95.
- Gorbalenya A.E., E.V. Koonin. 1988. Viral proteins containing the purine NTPbinding sequence pattern. *Nucleic acids research*, 17: 8413–8440
- Habili, N., R. I. Francki. 1974. Comparative studies on tomato aspermy and cucumber mosaic viruses. III. Further studies on relationship and construction of a virus from parts of the two viral genomes. *Virology*, 61:443-9.
- Haeberlè A.M. and C. Stussi-Garaud. 1995. In situ localization of the nonstructural protein P25 encoded by beet necrotic yellow vein virus RNA 3 *The journal of general virology*, 76: 643-650.
- Harveson R., C. Rush and T. Wheeler. 1996. The spread of beet necrotic yellow vein virus from point source inoculations as influenced by irrigation and tillage. *Phytopathology*, 86: 1242–1247.
- Heidel GB, C. Rush, T.L. Kendal, S.A. Lommel, R.C. Franch. 1997. Characteristics of beet soilborne mosaic virus, a furo-like virus infecting sugar beet. *Plant disease*, 81: 1070-1076
- Heijbroek W., P.M.S. Muster, A.H.L. Schoone. 1999. Variation in pathogenicity and multiplication of beet necrotic yellow vein virus (BNYVV) in relation to the resistance of sugar beet cultivars. *European journal of plant pathology*, 105: 397-405.
- Hleibieh K., C. Peltier, E. Klein, A. Schirmer, L. Schmidlin, L. Covelli, C. Ratti, A. Legrève, C. Bragard, D. Gilmer. 2007. Étiologie de la rhizomanie de la betterave sucrière. *Virologie*, 11 (6) : 409-21.
- Hodgman T.C. 1988. A new superfamily of replicative proteins. *Nature*, 333: 22-23.
- Hu, C. C., M. Sanger, S. A. Ghabrial. 1998. Production of infectious RNA transcripts from full-length cDNA clones representing two subgroups of peanut stunt virus strains: mapping satellite RNA support to RNA1. *The journal of general virology*,79 (Pt 8):2013-21.Jupin I., L. Quillet, V. Ziegler-Graff, H. Guilley, K.E. Richards. 1988. *In vitro* translation of

natural and synthetic beet necrotic yellow vein virus RNA-1. *The journal of general virology*, 69: 2359-2367.

- Jupin, I., K. Richards, G. Jonard, H. Guilley, C.W. Pleij. 1990. Mapping sequences required for productive replication of beet necrotic yellow vein virus RNA 3. *Virology*, 178: 273-80.
- Jupin I., H. Guilley, K.E. Richards, G. Jonard. 1992. Two proteins encoded by beet necrotic yellow vein virus RNA 3 influence symptom phenotype on leaves. *EMBO Journal*, 11: 479-488.
- Keskin, B. 1964. Polymyxa betae ein Parasit in den Wurzeln von Beta vulgaris Tournee., besonders während der Jugendentwicklung der Zuckerrübe. *Archiv für microbiologie*, 49: 348-374.
- Kiguchi T, M. Saito, T. Tamada. 1996. Nucleotide sequence analysis of RNA 5 of five isolates of beet necrotic yellow vein virus and the identity of a *deletion mutant. The journal of general virology, 77: 575-580.*
- Klein E., D. Link, A Schirmer. M. Erhardt, D. Gilmer. 2007. Sequence variation within Beet necrotic yellow vein virus p25 protein influences its oligomerization and isolate pathogenicity on Tetragonia expansa. *Virus research*, 126 (1-2): 53-61.
- Koenig R., B Stein. 1990. Distribution of beet necrotic yellow vein virus in mechanically inoculated sugarbeet plantlets of cultivars with different degrees of rhizomania resistance. Schriftenreihe der Deutschen Phytomedizinischen Gesellsehaft, vol. 1. Proceedings of the First Symposium of the International Working Group on Plant Viruses with Fungal Vectors, Braunschweig, Germany, August 21-2.
- Koenig R. and D.E. Lesemann. 2005. Genus Benyvirus. Virus Taxonomy VIII. Fauquet C.M., Mayo M.A., Maniloff J., Desselberger U., Ball L.A. pp. 1043-1048.
- Koenig R., W. Jarausch, Y. Li, U. Commandeur, W. Burgermeister, M. Gehrke,
 P. Luddecke. 1991. Effect of recombinant beet necrotic yellow vein virus with different composition on mechanically inoculated sugarbeets. *The journal of general virology*, 72: 2243-2246.
- Koenig R., P. Lueddecke, A.M. Haeberlé. 1995. Detection of beet necrotic yellow vein virus strains, variants and mixed infections by examining

single-stranded conformation polymorphisms of immunocapture RT-PCR products. *The journal of general virology*, 76: 2051-2055.

- Koenig R., A.M. Haeberlé, U. Commandeur. 1997. Detection and characterization of a distinct type of beet necrotic yellow vein virus RNA 5 in a sugarbeet growing area in Europe. *Archives of virology*, 142: 1499-1504.
- Koenig R., B.L. Lennefors. 2000. Molecular analyses of European A, B and P type sources of Beet necrotic Yellov Vein Virus and detection of the rare P Type in Kazakhstan. *Archives of virology*, 145: 1551-1570.
- Kruse M., R. Koenig, A. Hoffmann, A. Kaufmann, U. Commandeur, A.G. Solovyev, I. Savenkov, W. Burgermeist. 1994. Restriction fragment length polymorphism analysis of reverse transcription PCR products reveals the existence of two major strain groups of beet necrotic yellow vein virus. *The journal of general virology*, 75: 1835-1842.
- Laemli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, 227; 680–685.
- Lain S., J.L. Riechmann, J.A. Garcia. 1990. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. *Nucleic acids research*, 18; 7003-7006.
- Lain S., M.T. Martin , J.L. Riechmann, J.A. Garcia. 1991. Novel catalytic activity associated with positive-strand RNA virus infection: nucleic acid-stimulated ATPase activity of the plum pox potyvirus helicaselike protein. *Journal of virology*, 65: 1-6.
- Lauber E., H. Guilley, K. Richards, G. Jonard. D. Gilmer. 1997. Conformation of the 3'-end of beet necrotic yellow vein benevirus RNA 3 analysed by chemical and enzymatic probing and mutagenesis. *Nucleic acids research*, 25 (23): 4723-9.
- Lauber E., H. Guilley, T. Tamada, K.E. Richards, G. Jonard. 1998. Vascular movement of beet necrotic yellow vein virus in *Beta macrocarpa* is probably dependent on an RNA 3 sequence domain rather than a gene product. *The journal of general virology*, 79: 385-393.
- Lauber, E., G. Jonard, H. Guilley, D. Gilmer. 1999. Effects of structural modifications upon the accumulation in planta of replicons derived from

beet necrotic yellow vein virus RNA 3. Archives of virology, 144 (6): 1201-8.

- Lee L., E.B. Telford, J.S. Batten, K.B. Scholthof, C.M. Rush. 2001. Complete nucleotide sequence and genome organization fo Beet soilborne mosaic virus, a proposed mumber of the genus Benyvirus. *Archives of virology*, 146 (12):2443-53.
- Lemaire O., M. Beuve, C. Weber, A. Schirmer, D. Link, A. Meunier, C. Bragard,
 D. Gilmer. 2003. Etiolgy and molecular epidemiology of a severe rhizomania disease occurring in confined locations in Europe: Hypotesis for the implication of the RNA-3 and/or -5 of beet necrotic yellow vein virus (BNYVV)-P pathotype. 1st joint IIRB-ASSBT congress, 26th Feb.1st March 2003, San Antonio (USA). 303-318.
- Lewellen R.T., E. Biancardi. 1990. Breeding and performance of rhizomania resistant sugar beet. In: Proc. 53rd I.I.R.B. Winter Congr. Imprimerie J. Duculot. Brussels, Belgium, 69-87.
- Lewellen R.T., A.F. Wrona. 1997. Solarizion and host-plant resistence as alternatives to soil fumigation to control rhizomania of sugar beet. In: *Proc.* 60th I.I.R.B. Congress. Imprimerie J. Duculot. Brussels, Belgium, 189-201.
- Lewellen R.T., I.O. Skoyen, A.W. Erichsen. 1987. Breeding sugar beet for resistance to rhizomania: Evaluation of host-plant reactions and selection for and inheritance of resistance. *In*: Proc. 50th I.I.R.B. Winter Congr. *Imprimerie J. Duculot.* Brussels, Belgium, 1990, 139-156.
- Link D., L. Schmidlin, A. Schirmer, E. Klein, M. Erhardt, A. Geldreich, O. Lemaire, D. Gilmer. 2005. Functional characterization of the Beet necrotic yellow vein virus RNA-5-encoded p26 protein: evidence for structural pathogenicity determinants. *The journal of general virolology*, 86 (Pt 7): 2115-25.
- Mahmood T., C. Rush. 1999. Evidence of cross-protection between beet soilborne mosaic virus and beet necrotic yellow vein virus in sugar beet. *Plant disease*, 83: 521-526.
- Meulewater F., P. Soetaert, J. Van Emmelo. 1989. Structural analysis of the coat protein gene in different BNYVV isolates. *Mededeling van de Faculteit Landbouwwetenschappen Rijkuniversiteit Gent*, 54: 465-468.

- Miyanishi M., S. H. Roh, A. Yamamiya, S. Ohsato, Y. Shirako. 2002. Reassortment between genetically distinct Japanese and US strains of *Soilborne wheat mosaic virus*: RNA1 from a Japanese strain and RNA2 from a US strain make a pseudorecombinant virus. *Archives of virology*, 147: 1141–1153.
- Niesbach-Klosgen U., H. Guilley, G. Jonard, K.E. Richards. 1990. Immunodetection *in vivo* of beet necrotic yellow vein virus encoded proteins. *Virology*, 178: 52-61.
- Orita M., Y. Suzuki, T. Sekiya, K. Hayashi. 1989. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. *Genomics*, 5: 874-879.
- Palukaitis, P., M. J. Roossinck, R. G. Dietzgen, R. I. Francki. 1992. Cucumber mosaic virus. Advances in virus research, 41:281-348.
- Prillwitz H, E. Schlosser. 1993. Interactions between Beet soilborne virus (BSBV-2) and Beet necrotic yellow vein virus (BNYVV). See Ref. 48, pp. 71–74.
- Putz C. 1977. Composition and structure of beet necrotic yellow vein virus. *The journal of general virology*, 35: 397-401.
- Putz C., L. Pink, M. Pink, C. Fritsch. 1983. Identification of 3' and 5' ends of beet necrotic yellow vein virus RNAs. Presence of a poly(A) sequences. *FEBS Letters*, 156: 41-56.
- Quillet L., H. Guilley, G. Jonard, K. Richards. 1989. In vitro synthesis of biologically active beet necrotic yellow vein virus RNA. *Virology*, 172(1): 293-301.
- Rahim, M. D., I. B. Andika, C. Han, H. Kondo, T. Tamada, 2007. RNA4encoded p31 of beet necrotic yellow vein virus is involved in efficient vector transmission, symptom severity and silencing suppression in roots. *The journal of general virology*, 88 (Pt 5): 1611-9.
- Rana G.L., A. Di Franco, M. Russo. 1978. La rizomania della barbabietola in Italia meridionale. *Informatore fitopatologico*, 28(2): 5-7.
- Rao, A.L.N., R.I.B. Francki. 1981. Comparative studies on tomato aspermy and cucumber mosaic viruses. VI. Partial compatibility of genome segments from the two viruses. *Virology*, 114:573-575.

- Ratti C., L. Bianchi, R. Resca, M. De Biaggi, V.A. Harju, C.M. Henry, E. Jackeviciene, B. Cvjetkovic, C. Rubies Autonell. 2005. Incidence of sugar beet soil-borne viruses in sugar beet growing countries. In: Rush C.M., (eds.) Proc. of the sixth symposium of the IWGPVFV, Bologna, September 5-7 2005, pp. 158-161.
- Rubies Autonell C., C. Ratti, R. Resca, M. De Biaggi, J. Ayala García. 2006. First report of Beet virus Q in Spain. *Plant disease*, 90: 110.
- Rush C. 2003. Ecoloy and epidemiology of *Benivirus* and plasmodiophorid vectors. *Annual review of phytopathology*, 41: 567-592.
- Rush C., G.B. Heidel. 1995. Furovirus diseases of sugar beets in the United States. *Plant disease*, 79: 868-875.
- Richards K.E., T. Tamada. 1992. Mapping functions on the multipartite genome of beet necrotic yellow vein virus. *Annual review of phytopathology*, 30: 291-313.
- Saito M., T. Kiguchi, T. Kusume, T. Tamada. 1996. Complete nucleotide sequence of the Japanese isolate S of the beet necrotic yellow vein virus RNA and comparison with European isolates. *Archives of virology*, 141: 2163-2175.
- Salanki, K., I. Carrere, M. Jacquemond, E. Balazs, M. Tepfer. 1997. Biological properties of pseudorecombinant and recombinant strains created with cucumber mosaic virus and tomato aspermy virus. *The journal of virology*, 71:3597-602.
- Schmidlin, L., D. Link, J. Mutterer, H. Guilley, D. Gilmer. 2005. Use of a Beet necrotic yellow vein virus RNA-5-derived replicon as a new tool for gene expression. *Journal of general virology*, 86 (Pt 2): 463-7.
- Scholten O., W. Lange. 2000. Breeding for resistance to rhizomania in sugar beet: A review Euphytica, 112: 219–231.
- Shi, B., S. Ding, R. H. Symons. 1997. Two novel subgenomic RNAs derived from RNA 3 of tomato aspermy cucumovirus. *The journal of general virology*, 78 (Pt 3):505-10.Shirako Y., N. Suzuki, R. French. 2000. Similarity and divergence among viruses in the genus Furovirus. *Virology*, 270: 201–207.Steven A.C., B.L. Trus, C. Putz, M. Wurtz. 1981. The

molecolar organization of beet necrotic yellow vein virus. *Virology*, 113: 428-438.

- Tamada T., T. Baba. 1973. Beet necrotic yellow vein virus from rizomania affected sugar beet in Japan. Annals of the phitopatological society of Japan, 39: 325-332.
- Tamada T., T. Kusume. 1991. Evidence that the 75K readthrough protein of beet necrotic yellow vein virus RNA 2 is essential for transmission by the fungus *Polymyxa betae*. *The journal of general virology*, 72: 1497-1504
- Tamada T., Y. Shirago, H. Abe, M. Saito, T. Kiguchi, T. Harada. 1989. Production and pathogenicity of isolates of beet necrotic yellow vein virus with different numbers of RNA components. *The journal of general virology*, 70: 3399-3409.
- Tamada T., M. Saito, T. Kiguchi, T. Kusume. 1990. Effect of isolates of beet necrotic yellow vein virus with different RNA components on the developmet of rizomania symptoms. *In*: R. Koenig, (edit), Proc. Symp. Int. *Working Group on Plant Viruses with Fungal Vectors*, 1st., Stuttgart: Eugen Ulmer GmbH, 41-44.
- Tamada T., T. Kusume, H. Uchino, T. Kiguchi, M. Saito. 1996. Evidence that beet necrotic yellow vein virus RNA 5 is involved in symptom development of sugar beet roots. *In*: Sherwood J.L., Rush C.M., (eds.), Proc. 3rd Symp. of the Intern. *Working Group on Plant Viruses with Fungal Vectors*, Dundee, August 6-7, 1996, 49-52.
- Torrance L., M.A. Mayo. 1997. Proposed re-classification of *Furovirus*es. *Archives of virology*, 142: 435-439.
- Turina M., R. Resca, C. Rubies Autonell. 1996. Survey of soil-borne virus diseases of sugar-beet in Italy. *In*: Sherwood J.L., Rush C.M., (eds.), Proc. 3rd Symp. of the Intern. *Working Group on Plant Viruses with Fungal Vectors*, Dundee, August 6-7, 1996, 121-124.
- Turina M., R. Resca, V. Cerreta, C. Ratti, A. Canova, C. Rubies Autonell. 1999. *In*: Sherwood J.L., Rush C.M., (eds.), Preliminary molecular characterization of italian isolates of beet necrotic yellow vein benyvirus (BNYVV). 4rd Symp. of the Intern. *Working Group on Plant Viruses with Fungal Vectors*, Asilomar Center, October 5-8, 1999, 69-72.

- Van Regenmortel, M.H., D.H. Bishop, C.M. Fauquet, M.A. Mayo, J. Maniloff,
 C. Calisher.1997. Guidelines to the demarcation of virus species. *Archives* of virology 142 (7): 1505-18.
- Ward, L., R. Koenig, G. Budge, C. Garrido, C. McGrath, H. Stubbley, N. Boonham. (2007). Occurrence of two different types of RNA-5-containing beet necrotic yellow vein virus in the UK. *Archives of virology*, 152 (1): 59-73.
- Whitney E.D., J.E. Duffus, 1986. Compendium of beet diseases and insects. St. Paul, USA: *APS Books*, 76.
- Wisler G.C., R.T. Lewellen, J.L. Sears, H.Y. Liu, J.E. Duffus. 1999. Specificity of TAS-ELISA for beet necrotic yellow vein virus and its application for determining rhizomania in field grown sugar beets. *Plant disease*, 83: 864-870.
- Wisler G.C. R.T. Lewellen, J.L. Sears, J.W. Wasson, H.Y. Liu, W.M. Wintermantel. 2003. Interactions between beet necrotic yellow vein virus and beet soilborne mosaic virus in sugar beet. *Plant disease*, 87: 1170-1175.
- Yao H., Y. Liu, C. Zhunan, Z. Yu. 1993. The cloning and sequencing of coat protein gene from beet necrotic yellow vein virus. *Chinese journal of biotecnology*, 2: 147-151.
- Ziegler V., K.E. Richards, H. Guilley, G. Jonard, C. Putz. 1985. Cell-free translation of beet necrotic yellow vein virus: readthrough of the coat protein cistron. *The journal of general virology*, 66, 2079-2087.
- Ziegler Graff V., S. Bouzoubaa, I. Jupin, H. Guilley, G. Jonard, K. Richards. 1988. Biologically Active Transcripts of Beet Necrotic Yellow Vein Virus RNA-3 and RNA-4. *The journal of general virology*, 69 (9): 2347-2357.