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ABSTRACT 
	
 

The last two decades has witnessed many achievements in our understanding of the 

molecular-mechanisms underlying various neuroinflammatory-disorders. Microglia activation 

is thought to be a driving force of neurodegeneration that follows neuroinflammation in many 

neurological disorders, but confirmatory evidence is still elusive. In particular, the possible 

relationship between cause and consequence for microglia activation and pathological 

landmarks, such as neuronal demyelination and cell death in adult vs neonatal age is still 

disputed. In this thesis we tried to highlight the potential of early biomarkers for microglia-

activation, using two rat models of diseases where microglia activation and neurodegeneration 

interact.  

In the paper included in chapter I, we performed a time-course investigation of 

neuroinflammation and demyelination biomarkers in the spinal cord, cerebrospinal fluid and 

blood in EAE induced in Dark-Agouti female rats compared with controls and adjuvant, 

focusing on the time-course between immunization and clinical-onset. We demonstrate that 

CSF1 was the first up-regulated protein at 1 DPI, in blood, cerebrospinal fluid and spinal cord. 

A treatment with GW2580, a selective CSF1R inhibitor, slowed the disease progression, 

significantly reduced the severity and prevented the relapse phase. Moreover, both pro-and 

ant-inflammatory cytokines were regulated starting from 8 DPI.  

In the manuscript included in chapter II, we investigated the effect of GW2580 on 

blood brain barrier disruption with the temporal evolution of EAE. We demonstrated that 

GW2580 treatment had a therapeutic effect in EAE rats, through reduction of BBB leakage by 

inhibiting activities of MMP-9 and consequent reduction of microglia activation, IgG-

extravasation, and T-cell infiltration.  

In the manuscript included in chapter III, we investigated plasma and CSF-contents of 

inflammatory biomarkers after neonatal-HI on acute and chronic phases and their correlation 

with neurological disorders in rat model of HI. Our data revealed that several inflammatory 

modulators were most affected at the acute-phase and stabilized at the chronic-phase.  

Key words: Neuroinflammation, Multiple sclerosis, Experimental allergic encephalomyelitis, 

Biomarkers, microglia, CSF1, Blood brain barrier, MMPs, Neonatal Hypoxia Ischemia, 

neurobehavioral tests   
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GENERAL INTRODUCTION 
 
	

The present thesis is dedicated to study two rat models of diseases in which microglia 

activation and neurodegeneration interact, to try to identify a very early marker for microglia 

activation as compared to neural distress markers. We performed a time-course investigation 

based on a discovery strategy of inflammation using high-throughput technologies in order to 

highlight the potential of novel early biomarkers in adult experimental allergic 

encephalomyelitis (EAE) and neonatal hypoxia ischemia (HI) models.  In the following, such 

knowledge will be discussed to provide a framework for the different observations made in 

this thesis.  

1. Neuroinflammation 

1.1. Neuroinflammation: physiological vs pathological response  

Neuroinflammation process plays a significant role in health and diseases of the central 

nervous system (CNS) (Gendelman and Masliah, 2017; McFarland et al., 2014). Brain 

inflammatory response appears to be a double edged sword promoting both reparation and 

damaging of neural tissue in brain and spinal cord injuries, as well as in other CNS 

pathologies. Neuroinflammation includes adaptive and reparative mechanism, hence, its 

neurotoxic effect could result from deregulation of underlying biochemical processes (Amor et 

al., 2010; Nencini et al., 2013). In other words, perturbation of normal physiological 

mechanisms of neural tissue protection or reparation results in absolute or relative 

hyperproduction of certain neuroinflammatory mediators which causes neuronal damages or 

death (Becher et al., 2017a). These responses are mediated by two types of immune cells: the 

hematopoietic system cells (lymphocytes, monocytes and macrophages) and glial cells of the 

CNS: astrocytes and microglia (Stoll and Jander, 1999).  

In response to a brain insult, glial cells are the first to be activated. Astrocytes upon 

activation increase expression of the intermediate filament glial fibrillary acid protein (GFAP), 

and produces cytokines, also contributing to the formation of the glial scar, which isolates the 

damaged area. These reactive astrocytes also produce neurotrophic factors including nerve 

growth factor and brain-derived growth factor which favors the blood brain barrier (BBB) 

repair and remyelination (Faulkner et al., 2004). On the other hand, within any scenario of 

immune-mediated brain injury, microglia qualifies as the main intrinsic immune effector cells 
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of the brain. They are potentially phagocytic cells, have a pronounced cytotoxic potential 

(reviewed by (Banati et al., 1993)), may express several immunomolecules on their surface, 

may effectively present antigen to T-lymphocytes (Matsumoto et al., 1992; Wang et al., 2016) 

and are capable of releasing a plethora of mediator substances such as inflammatory cytokines 

and chemokines.  

Most inflammatory mediators have relatively few actions in healthy CNS tissue, where 

are expressed at very low or undetectable levels. Nevertheless some cytokines and chemokines 

also modulate neuronal activities in the mature CNS and participate in the neuroendocrine 

communication. However, their expression is rapidly induced in response to tissue injury or 

infection; certain inflammatory mediators appear in the affected brain region and the 

cerebrospinal fluid (CSF) when the CNS homeostasis is disturbed as a result of trauma, stroke, 

ischemia, infection, or degenerative processes. This increased cytokines and chemokines 

levels in the CNS may result also from BBB disruption that allows cells of the hematopoietic 

immune system to leave the blood stream and reach the injury site (Lossinsky and Shivers, 

2004). The immune cells respond to injuries by eliminating debris, and synthesizing and 

releasing a host of powerful regulatory substances, like complements, cytokines, chemokines, 

glutamate, interleukins, nitric oxide, reactive oxygen species and transforming growth factors 

which in turn start the cycle all over of responding cells (Barker and Cicchetti, 2014; Hensley 

et al., 2006; Jana et al., 2016). Neuroinflammation can be further explained as two distinct 

responses, during acute and chronic conditions.  

1.1.1. Acute neuroinflammation  

Acute neuroinflammation is often associated to CNS injury or insult. CNS tissue 

responses to injury is referred to as “reactive gliosis”, which is the accumulation of 

hypertrophic glial cells (microglia and astrocytes) at the CNS injury site (Streit et al., 2004). 

Glial “reactivity” is majorly a passive response to injury whereas glial “activation” implies a 

more aggressive role in responding to activating stimuli. Activated glial cells release factors 

that act on and generate responses in target cells equivalent to the responses of activated 

immune cells in the periphery; however, peripheral immune cells activation leads to leukocyte 

infiltration, which is notably absent in the brain unless there has been a transient lesion or a 

permanent destruction of the BBB (Minagar, 2015). When peripheral immune cells enter the 

CNS, they do produce a scenario similar to that seen in inflammatory responses in the 

periphery.  
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1.1.2. Chronic neuroinflammation  

Chronic inflammation is often associated to CNS chronic diseases, and several 

hypothesis support a major role in neurodegenerative diseases onset and progression (Cherry 

et al., 2014; Streit et al., 2004). The immune cells and pro-inflammatory chemicals involved in 

neuroinflammation would underlie the mechanisms of diseases and neurodegeneration. The 

general framework is that activation, or over activation, of immune cells involved in 

neuroinflammation and the release of pro-inflammatory substances would result in reduced 

neuroprotection and neuronal repair, and increased neurodegeneration (Nathan and Ding, 

2010). In particular, the inflammatory responses damage the BBB, increase oxidative stress 

and release pro-inflammatory and pro-apoptotic cytokines and other neurotoxic factors that 

affect neuronal viability. The damage and stress signals enhance microglial activation, 

resulting in positive feedback in the release of chemokines and cytotoxic cytokines that cause 

further ingress of immune cells into the brain and expand inflammatory responses. 

1.2. Cytokines and chemokines in neuroinflammation  

Biomarkers are measurable indicators of normal biological and pathogenic processes, 

or pharmacological responses to a therapeutic intervention (Santonen et al., 2015). A good 

biomarker should be precise and reliable, distinguishable between healthy and pathological 

state (Piskunov, 2010). Clinical biomarkers can be detectable molecules from blood, urine or 

other biological fluids that refer to measurable indicators used to predict physiological states 

of a disease. To be used in clinics, biomarkers should fulfill certain requirements; their 

measurements should be accurate, precise and reproducible. Moreover, biomarkers should also 

present high sensitivity and specificity, be relatively easy to interpret by clinicians and add 

information on top of clinical variables (Bustamante et al., 2016; Mayeux, 2004; Piskunov, 

2010). 

Inflammatory mechanisms appear to be universal; hence, neuroinflammation 

biomarkers can be studied in any acute or chronic brain disease related to neuroinflammation 

(Muneer, 2016; Vezzani and Friedman, 2011). Such universality results from the fact that 

microglia activation is a programmed response consisting in stereotypic changes in gene 

expression and enzyme activity, which are independent from initial stimuli. Therefore, 

regardless of disease, neuroinflammation is characterized by a dramatic increase in pro-

inflammatory cytokines production, induction of adhesion molecules expression, and 
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activation of proteases and enzymes generating low molecular inflammatory mediators 

(Brown et al., 2010; Wang et al., 2015b). Classically defined neuroinflammatory conditions, 

as observed in inflammatory demyelinating diseases (for example, multiple sclerosis) and 

infections (bacterial and viral encephalitis), are characterized by leukocytes invading the CNS 

parenchyma and a drastic loss of BBB integrity (Becher et al., 2017b; da Fonseca et al., 2014). 

Lymphocytes and myeloid cells are the main mediators of tissue damage and deliver cytokines 

to the tissue, fuelling the inflammatory cascade (Figure 1).  

	

Figure 1.	Neuroinflammation cascade in demyelinating diseases. (a) In response to 

homeostatic unbalance and (b) as observed in inflammatory demyelinating diseases and 

infections. Source: adapted from (Becher et al., 2017a). 

Classically defined neuroinflammatory conditions, as observed in inflammatory 

demyelinating diseases (for example, multiple sclerosis) and infections (bacterial and viral 

encephalitis), are characterized by leukocytes invading the CNS parenchyma and a drastic loss 

of BBB integrity. Lymphocytes and myeloid cells are the main mediators of tissue damage 

and deliver cytokines to the tissue, fuelling the inflammatory cascade (Figure 1).  

1.2.1. Cytokines  

 Cytokines are small multifunctional glycoprotein mediators whose biological actions 

are mediated locally by specific receptors and which are linked to most processes in the body. 

Cytokines are mainly released from immune cells such as monocytes, macrophages and 
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lymphocytes, in addition to microglia and astrocytes (Kim et al., 2016). Both pleiotrophy and 

redundancy exist within the cytokine families, and several different cytokines often exert 

similar and overlapping functions on certain cells. Their receptors also often display 

redundancy and	utilize different signal transduction pathways (Robertson, 1998).  

Cytokines are activated during situations in which inflammation, infection and/or 

immunological alterations occur and are mainly involved in the repair of damaged tissues and 

the restoration of homeostasis (Nathan, 2002 and Woodroofe, 1995). Cytokines mediate 

signals between immune cells and are generally divided into pro-inflammatory and anti-

inflammatory cytokines, which facilitate and inhibit inflammatory responses, respectively. 

As shown in Table 1, some cytokines act primarily as T-lymphocyte or B-cell growth 

factors, others function as prominent mediators of inflammation, whereas yet others suppress 

inflammation as well as immune responses (Dinarello, 2007; Turner et al., 2014). In some 

cases, the cytokine receptor is found primarily on one type of cell, accounting for its primary 

function, for example, IL-33 receptor is expressed on mast cells (Schmitz et al., 2005). In 

other cases, the receptor is found on nearly every cell, for example, IL-1 and TNFα. In these 

cases, the cell type defines the property of the cytokine. 



	
	

 
 

Table 1. Functional Classes of Cytokines. 

	
Functional Class Primary Property Other Effects Examples 
lymphocyte growth factors clonal expansion Th1/Th2/Th17 polarization IL-2, IL-4, IL-7, IL-17, IL-15 
Th1 cytokines ↑ Th1 response clonal expansion of cytotoxic	T-cell IFNγ, IL-2, IL-12, IL-18 
Th2 cytokines ↑ Th2 responses ↑ antibody production IL-4, IL-5, IL-18, IL-25, IL-33 
Th17 cytokines ↑ Th17 responses, IFNγ autoimmune responses IL-17, IL-23, IFNγ 
pro-inflammatory cytokines ↑ inflammatory 

mediators 
↑ innate immune responses IL-1α, IL-1β, TNFα, IL-12, IL-18, IL-

23 
   MIF, IL-32, IL-33, CD40L 
anti-inflammatory cytokines ↓ inflammatory genes ↓ cytokine-mediated lethality IL-10, IL-13, TGFβ, IL-22, IL-1Ra, 

IFNα/β 
adipokines pro-inflammatory ↓ autoimmune disease pro-atherogenic IL-1α, TNFα, IL-6, leptin, adiponectin 
gp130 signaling cytokines growth factors B-cell activation, acute phase IL-6, CNTF, IL-11, LIF, CT-1 
nerve growth factors ↑ nerve/Schwann cells B-cell activation BNDF, NGF 
osteoclast activating 
cytokines 

bone resorption immune stimulation RANK L 

colony stimulating factors hematopoiesis pro and anti-inflammatory IL-3, IL-7, G-CSF, GM-CSF, M-CSF 
angiogenic cytokines neovascularization pro-metastatic VEGF, IL-1, IL-6, IL-8 
mesenchymal growth factors fibrosis pro-metastatic FGF, HGF, TGFβ, BMP 
type II interferon macrophage activation increase class II MHC IFNγ 
type I interferons anti-viral; ↑ class I MHC anti-inflammatory, anti-angiogenic IFNα, IFNβ 
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1.2.2. Chemokines  

Chemokines belong to a large superfamily of structurally and functionally related 

cytokines with chemotactic activity, they are involved in chemotaxis of monocytes, 

lymphocytes, neutrophils, eosinophils, basophils, natural killer cells, dendritic cells, and 

endothelial cells (Proost et al., 1996). More than 50 chemokines have been identified to date, 

but there is a large degree of redundancy and overlap of functions (Bacon et al., 2002; Murphy 

et al., 2000). As shown in Table 2, there are four major subfamilies of chemokines, based on 

the relative positions of their cysteine residues (CC, CXC, C and CX3C) (Luster, 1998). 

Chemokines perform a variety of functions aside from chemotaxis, including T helper cell 

differentiation and function, as well as angiogenesis (Turner et al., 2014). 

 Chemokines can have direct effects on T cell differentiation through direct 

interactions on the developing cell or indirectly by altering antigen-presenting cell (APC) 

trafficking or cytokine secretion. For example, it was recently found that the chemokine 

receptor, CXCR3, was upregulated on CD4 + T cells and this was associated with cytokine 

expression and differentiation of these cells to type 1 (Th1) cells (Groom et al., 2012). 

Chemokines play an important role in angiogenesis, although this function lies with a subclass 

of the CXC chemokines. The CXC chemokines can be subdivided into two categories, those 

with a specific amino acid or motif of Glu-Leu-Arg (or ELR for short) immediately before the 

first cysteine of the CXC motif (ELR-positive), and those without an ELR motif (ELR-

negative). ELR-positive CXC chemokines are angiogenic and specifically induce the 

migration of neutrophils, and interact with chemokine receptors CXCR1 and CXCR2 

(Baggiolini, 2001). By contrast, the non-ELR chemokines are angiostatic and act mainly 

through the CXCR3B receptor. The exception to this is CXCL12, which is a non-ELR 

chemokine but is angiogenic and exerts its effects on the vasculature primarily by binding to 

CXCR4 and CXCR7 (Kryczek et al., 2007). 

 



	
	

 
 
 
Table 2. Chemokine families and their functions. 

 

Chemokine families  Main function Examples 

CC chemokine Recruitment of monocytes/macrophage 

Recruitment of T-lymphocytes 

Recruitment of eosinophils 

CCL2, CCL3, CCL5, CCL7, CCL8, CCL13, CCL17 and CCL22. 

CCL2, CCL1, CCL22 and CCL17 

CCL11, CCL24, CCL26, CCL5, CCL7, CCL13, and CCL3 

C chemokine Recruitment of T-lymphocytes XCL1 (Lymphotactin) and XCL2 (SCM1-b) 

CXC chemokine 

- non-ELR(a) 

- ELR 

 

Angiostatic 

Angiogenic and chemoatractant for 

neutrophils 

 

CXCL4, CXCL9, CXCL10, CXCL11and CXCL17 

CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and 

CXCL8/IL-8 

CX3C chemokine 

 

Serve as a chemoattractant and as an 

adhesion molecule 

CX3CL1 (Fractalkine) 

 
(a) ELR is a conserved amino acid motif (Glu-Leu-Arg) immediately preceding the first cysteine amino acid in the CXCL chemokine
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2. Microglia and its role in neuroinflammation  

2.1. Microglia in the brain 

Microglia are tissues-resident cells of the brain, that regulates tissues homeostasis 

during normal physiology as well as in CNS pathologies (Prinz and Priller, 2014). Microglia 

are of myeloid origin, invade the CNS from the yolk sac during development and are 

maintained by self-renewal throughout the animal's lifespan (Ginhoux et al., 2013; Hashimoto 

et al., 2013; Ikezu and Gendelman, 2017). They are distributed throughout the parenchyma 

and account for approximately 10% to 20% of the total glial cell population in the brain 

(Karperien et al., 2013). Research on microglia biology often focuses on cellular behaviors 

during tissue injury or disease (Hilaire and Gendelman, 2017). Interestingly, microglia exhibit 

dynamic behavior in the CNS under normal physiological conditions and they do have a 

critical role for the development and maintenance of the neural environment (Butovsky et al., 

2017; Nathan, 2002). A CNS injury can trigger “resting microglia” to become activated, thus 

showing different morphology according to the state (Figure 2).  

 

 
Figure 2. Microglial morphology in adult CNS (human). Source: adapted from (Streit 

et al., 1999). 
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Neurons may also activate microglia, and the degree of microglial activation varies 

with the severity of neuronal injury. The mildest injuries may only cause hyper-ramification of 

microglia (Wilson and Molliver, 1994), but most types of neuronal damage will cause resting 

microglia to become reactive microglia. If neurons die, microglia transform into brain 

macrophages (phagocytic microglia) and remove the dead cells and debris. If an injured 

neuron recovers, hyper-ramified and reactive microglia may revert back to the resting form 

(Kettenmann et al., 2011; Ling, 1976).  

Microglia are present throughout the CNS, including the spinal cord, although some 

regions are more populated than others, with the white matter generally containing fewer 

microglia than the grey matter (Graeber et al., 2011). In the prenatal brain, the amoeboid 

phagocytic microglia are the predominant form, with a large spherical cell body and short 

processes (Hess et al., 2004). During postnatal maturation, amoeboid microglia transform into 

ramified resting microglia, and these cells remain a semi-permanent population with relatively 

slow turnover rates when compared to peripheral macrophages (Hess et al., 2004; Kennedy 

and Abkowitz, 1997). Resting ramified microglia monitors the microenvironment, adapting 

their morphology and expressing cell surface markers accordingly (Butovsky et al., 2017; 

Lawson et al., 1992).  

2.2. Activation of microglia in neuroinflammation 

As microglia have been recognized as the major components of the intrinsic brain 

immune system they have become a main focus in cellular neuroimmunology and therefore in 

neuroinflammation. There are various stimuli that could activate microglial cells and cause 

neuroinflammation (Shimizu et al., 2016; Tang and Le, 2016). In vivo studies identified 

stimuli associated to neural infections, ischemia, neurodegeneration and prion diseases. In 

vitro, lipopolysaccharide (LPS), thrombin, interferon-γ (IFN-γ), β-amyloid (βA) and some 

proinflammatory mediators produce microglia activation (Dheen et al., 2007; Nayak et al., 

2014). The response to these different stimuli include changes in morphology, proliferation 

and upregulation of surface markers.  

The magnitude of microglial activation depends on the type of insult, potency and 

distance of the stimulus, immediate microenvironment and the state of microglia that have 

been exposed to prior and existing stimuli (Lue et al., 2010). The activation of microglia by 

these stimuli exerts cytotoxic effects through two different processes, they either act as 



	 15	

phagocytes, which implicate a direct contact cell-to-cell or release of large noxious factors 

(Lull and Block, 2010; Schmitt et al., 2014).  

2.3. Pathways mediating microglial activation  

Several intrinsic factors such as Irf8 and Pu.1 and extrinsic like TREM2, CX3CR1 and 

CD200 regulate the transition of microglia cells from homeostatic phenotype to an activated 

stage in response to neuronal injury. Kinase and phosphate cascades mediate microglial 

response to extracellular stimuli.   

Some reports have demonstrate that p38 mitogen-activated protein kinases, which are a 

class of mitogen-activated protein kinases (MAPKs) and p44/42 families of mitogen activated 

protein kinase pathways, play an important role in activation of microglial cells which in turn 

leads to neuroinflammation and the release of neurotoxic mediators in acute brain injury and 

chronic neurodegenerative diseases (Harry and Kraft, 2008; Lee et al., 2015).  In mammals 

MAPKs can be grouped into three main families, these are ERKs (extracellular-signal-

regulated kinases), JNKs (Jun amino-terminal kinases), and p38/SAPKs (stress-activated 

protein kinases). Microglia activation could effect through any these if not all of the MAPK 

pathways (Morrison, 2012). A major role of the macrophage colony-stimulating factor 

CSF1/MAPKs in microglia activation and disease progression has been also described. In 

neuropathic pain induced by peripheral nerve injury, CSF1 is produced and retrograde 

transported to the spinal cord by sensory neurons (Guan et al., 2016).  

Other proinflammatory pathways that could respond to microglia activation is the 

NFκB and Wnt pathway (Du and Geller, 2010). Indeed, any of the microglia mediated pro-

inflammatory stimuli can activate NFκB expression (Sparacio et al., 1992), which can further 

induce target genes that in turn regulate the expression of inflammation genes, thus leading to 

a self-maintaining process producing the elevation of inflammatory proteins. Wnt pathway can 

instruct pro-inflammatory microglia transformation and emphasize the pathogenic significance 

of β–catenin signaling networks in this cell type (Halleskog et al., 2011). 

2.4. Release of noxious mediators by activated microglia  

Upon activation, microglia cells express wide array TLRs and initiates innate 

responses with the production of a large number of neuroactive substances, cytokines and 

chemokines. On the basis of in vitro evidence, microglia are considered the major CNS 

sources of pleiotropic cytokines that stimulate humoral and cell-mediated immune responses 
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(Aloisi, 2001). These include IL-1 and TNF-α, the two master proinflammatory cytokines with 

largely overlapping functions during CNS inflammation; IL-18 (Klapal et al., 2016), which 

have a critical role in the stimulation of NK and Th1 cells; IL-6, a cytokine with pro- and anti-

inflammatory actions, which promotes B-cell growth and differentiation (CHEN et al., 2016; 

Stone and Flamme, 2016); IL-15, which selectively activates NK and CD8+ T cells (Hanisch 

et al., 1997).  

Activated microglial cells release also radicals, such as superoxide and nitric oxide, 

that are products of the enzymes nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase and inducible nitric oxide synthase, respectively (Butovsky et al., 2017; Ikezu and 

Gendelman, 2017). Microglial cells contain glutathione, substantial activities of the 

antioxidative enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione 

reductase as well as NADPH-regenerating enzymes that provide an efficient antioxidative 

defense mechanisms for microglia against oxidative stress (Dringen, 2005). Activated 

microglia cells triggers and maintains an inflammatory response, deluging neurons with a 

whole host of inflammatory mediators that may eventually lead to cell death. Consequently, 

the activation of microglia cells and chronic inflammation thereafter is the initiation of the 

release of panoply of neurotoxic mediators that are believed to contribute to neurodegenerative 

processes (Harry and Kraft, 2008; Lull and Block, 2010).  

2.5. Microglial phagocytosis 

Microglia cells are able to phagocytes particles and debris via different phagocytic 

receptors and digest the taken-up material by proficient lysosomal mechanism. Depending on 

the type of the phagocytic receptor, microglia responds differently in their downstream 

cytokine signaling, either pro- or anti-inflammatory (Moller 2000; Wu et al.,2002).  

Microglial phagocytosis (Figure 3) may need different types of receptors to initiate 

function (Aderem and Underhill, 1999). In general, there are two distinctive types of 

receptors, one with a high affinity to bind to foreign microbial pathogens, such as Toll-like 

receptors (TLRs), and another recognizing apoptotic cellular substances, such as triggering 

receptor expressed on myeloid cells 2 (TREM-2) (Fu et al., 2014; Nayak et al., 2014). Besides 

these two types, some receptors such as Fc receptors, pyrimidinergic receptor P2Y, G-protein 

coupled-6 (P2RY6), macrophage antigen complex 2 (MAC-2), also participate in microglial 

phagocytosis (Smith, 1999). Microglia are able to engulf whole neurons within hours (Neher 
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et al., 2011). In order too reduce inflammation, microglia cells phagocyte dead and dying 

neurons, neuronal and myelin debris (Sierra et al., 2013). 

 
Figure 3. Microglia (green) detects a tissue injury and springs to action. Its extended 

processes detect signs of damage and trigger the cell’s transformation into a big blob that 

engulfs the debris. Source: adapted from (Nayak et al., 2014). 

 

However, microglia could also cause death of the engulfed cell by phagocyting live 

neurons (Fricker et al., 2012; Fu et al., 2014; Hoeppner et al., 2001), live neutrophils 

(Neumann et al., 2008) and live glioma cells  under certain conditions (Kopatz et al., 2013). 

2.6. Targeting microglial activation as therapeutic strategy  

So far, the development of effective neuroprotective therapies is impeded by our 

limited knowledge of the pathogenesis of neurodegenerative diseases. Since its role in 

neuroinflammation and thereby neurodegenerative diseases progression, microglia has been 

put in focus as intervention targets (Kim, 2015; Wang et al., 2015a). Many reports about 

neuroinflammation, proposes that the inhibition of microglial activation and suppression of 

inflammatory mediators production will avoid the escalation of CNS inflammatory processes, 

thus resulting in neuroprotection (McCarty, 2006). This may be possible through the 

identification of agents that target over-activated microglial cells and the determination of 

their anti-inflammatory mechanisms (Glass et al., 2010).  

Several anti-inflammatory drugs have been shown to diminish neuroinflammation, 

such as glucocorticoids, minocyclines, vitamin E, D, endocannbinoids and several synthetic 
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drugs (Dheen et al, 2007), but a very few have demonstrated a direct functional effects on 

microglial activity (Lleo et al., 2007).  

Non-steroidal anti-inflammatory drugs (NSAIDS), which include ibuprofen, naproxen, 

and many other generic drugs, have been identified with huge list of undesirable and severe 

side effects (Silverstein et al., 2000). Though, synthetic cyclooxygenase-2 (COX-2) selective 

NSAIDs were brought into the market as alternatives highlighting its association with less 

toxicity than nonselective NSAIDs, recent studies have shown that they cause more serious 

adverse effects like cardiovascular events and other life threatening side effects (Mukherjee et 

al., 2001). Moreover, the BBB is little permeable to most of these compounds. Therefore, 

there is an urgent need to develop drugs that have wide spectrum anti-inflammatory effects, 

accumulate the brain in appropriate concentration, and are able to slow down or curtail the 

progression of the degenerative process without causing any debilitating side effects.  

In the recent decade, there has been a widespread surging interest in naturally 

occurring plants and plant derived compounds that prove to be highly efficacious drugs with 

less adverse side effects. With the great strides in the technology of extraction, isolation and 

activity detection, natural product studies are being propelled as alternatives to synthetic drugs 

(Newman and Cragg, 2007). In this encouraging scenario, any naturally occurring medicinal 

compound, which can efficaciously inhibit microglial activation, could open avenues for better 

ameliorating microglia-associated neurodegenerative and neuroinflammatory diseases. 

All the drugs and molecules described above attempt to suppress the neurotoxic effect 

of microglial cells in CNS diseases. It should be emphasized that the neuroinflammation in 

CNS diseases is amplified considerably by the rapid influx of microglial cells to injury sites in 

CNS (Thameem Dheen et al., 2007). The migration of microglia is regulated by various 

chemokines. Recently, it has been shown that expression of chemokines such as MCP-1 and 

IFN- inducible protein-10 (IP-10) by astrocytes plays a role in migration and activation of 

microglial cells and subsequent neurodegeneration in secondary progressive multiple sclerosis 

(Tanuma et al., 2006). Therefore, targeting chemokines may be one of the therapeutic options 

to inhibit neuroinflammation caused by proinflammatory cytokines released by microglial 

cells.  

3. Neuroinflammation in neurodegenerative diseases 

Neurodegenerative diseases are characterized by the chronic progressive loss of the 

structure and functions of neurons, resulting in functional and mental impairments. While the 
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causes associated with neuronal degeneration remain poorly understood, the emerging 

evidence on the contribution of microglia and astrocytes in sustaining inflammatory response 

associated with in disease progression, suggest that effectors of neuroinflammation contribute 

in neuronal dysfunction and death (Campbell et al., 1999; Chen et al., 2016) Rm et al., 2015). 

Actually, some diseases debut as inflammatory disease, thus turning to neurodegeneration 

during the disease progression. 

3.1. Experimental Allergic Encephalomyeilitis as multiple sclerosis animal model 

3.1.1 Multiple sclerosis  

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the CNS, 

where the pathological hallmarks are inflammation, demyelination and axonal loss (Lassmann, 

2009; Stadelmann, 2011; Trapp and Nave, 2008). MS is characterized by a variable clinical 

course and complex pathology and pathogenesis. There are three clinical subtypes of MS 

according to the clinical course: relapsing-remitting MS (RRMS), secondary progressive MS 

(SPMS) and primary progressive MS (PPMS) (Koudriavtseva and Mainero, 2016). RRMS is 

the most diffuse form, and is characterized by an acute begin followed by subsequent 

improvement and a further relapse after a disease-free interval. A minority of patients, about 

15% suffer from PPMS from onset. This subtype of the disease progresses slowly without 

relapses (Compston and Coles, 2002). Although MS is considered to be as a white matter 

disease, grey matter is also extensively affected (Enzinger and Fazekas, 2015; Messina and 

Patti, 2014). 

MS lesions are characterized by the infiltration of lymphocytes, antibody-producing 

plasma cells and a plethora of recruited macrophages that from the periphery enter the 

perivascular region of the brain and spinal cord (Hemmer et al., 2002; Zigmond et al., 2014), 

cross the BBB, cause microglial and astrocytes hyper activation that trigger a cascade of 

inflammatory mediators and ultimately lead to severe demyelination and axonal loss (Figure 

4) (Lassmann et al., 2001, 2012). Oligodendrocytes are in fact cells highly sensitive to 

inflammatory stimuli, such as denuded axons. In the progressive phase of MS, deposition of 

antibodies and complement around demyelinated lesions and axonal degeneration have been 

observed (Frohman et al., 2006; Trapp and Nave, 2008). When damage is not too extensive 

and the ensuing inflammatory response is transient, remyelination took place as part of the 

normal repair. However, in the presence of chronic inflammation, remyelination is severely 
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impaired and leads to axon degeneration and the eventual neuronal death (Glass et al., 2010; 

Podbielska et al., 2013). Cytokines and chemokines play a key role in these processes by 

regulating cell migration, proliferation and activation of resident and infiltrating cells 

(Dendrou et al., 2015).  

 
Figure 4. Inflammatory components in multiple sclerosis. Hypothetical view of 

immune responses in acute multiple sclerosis lesions. Source: adapted from (Glass et al., 2010). 

 

 Thus, there are four key pathological features in MS: (a) inflammation, which is 

generally believed to be the main trigger of the events leading to CNS tissue damage in the 

majority of cases, although recent evidence suggests that initial damage to neuroglial elements 

can trigger secondary inflammation in some cases (Barnett and Prineas, 2004); (b) 

demyelination, the hallmark of MS, where the myelin sheath or the oligodendrocyte cell body 

are destroyed by the inflammatory process; (c) axonal damage and loss; and (d) gliosis, the 

astrocytic reaction to CNS damage (Constantinescu et al., 2011a). 

 Despite the intensive efforts and the major progress achieved in understanding the 

inflammatory process and pathogenetic mechanisms within this heterogeneous disease entity 
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to date the many aspects of the of MS pathogenesis remain elusive. An important contribution 

to MS studies has been made by experimental allergic encephalomyelitis (EAE), the most 

widely used animal model for MS (Aharoni, 2013), in which the interaction between a variety 

of immunopathological and neuropathological mechanisms affords an approximation of the 

key pathological features of MS pathology, including inflammation and immune reaction, 

demyelination, axonal loss and gliosis (Guerreiro-Cacais et al., 2015; Robinson et al., 2014). 

EAE has been also used to develop and validate all approved therapies for MS 

(Constantinescu et al., 2011a), thus confirming the good correlation between animal and 

human pathology (Ben-Nun et al., 2014; ‘t Hart et al., 2015). 

3.1.2 Experimental Allergic Encephalomyeilitis 

 EAE is the most widely used animal model for MS, reproducing inflammation and 

immune reaction, demyelination, axonal loss and gliosis (Aharoni, 2013), (Constantinescu et 

al., 2011b). EAE may be induced by active of passive immunization. Active immunization is 

induced by injecting susceptible animals with CNS extract, purified myelin components, or 

synthesized specific peptides such as, derived from myelin oligodendrocyte glycoprotein 

(MOG), proteolipid protein (PLP), or myelin basic protein (MBP), emulsified in an adjuvant 

(Lorentzen et al., 1995; O’Brien et al., 2010).  

 The Dark Agouti (DA) rat model of EAE mimics certain aspects of the clinical course 

of disease in people with RRMS (Skundric, 2005), typified by progressive, sustained 

demyelination, and associated axonal loss  (Barnett and Prineas, 2004; Bjartmar et al., 2003; 

Stadelmann, 2011). At disease onset, in DA rats, neurological impairments are observed, 

followed by an acute attack with ataxia and paralysis. Most animals recover from paralysis 

and experience remission, and then may undergo one or more relapses (Lorentzen et al., 

1995). The neurological impairment in EAE is mediated by activation of autoimmune 

responses and is accompanied by infiltration of activated lymphocytes (T/B cells), NK cells, 

and monocytes into the affected CNS tissue (CHEN et al., 2016). 

3.2. Blood-brain barrier and extracellular matrix in neuroinflammation 

The microenvironment of the brain is strongly controlled to guarantee appropriate 

nervous system functions (Banks, 2016). The main layer of protection comes from the BBB at 

the capillary endothelium, and the blood-CSF barrier at the choroid epithelium and the 

arachnoid membrane. These barriers separate the blood from the CNS microenvironment 



	
	 	22 

(Redzic, 2011). In vertebrates, the BBB consists primarily of endothelial cells (ECs) with 

specialized tight junctions (TJs) lining the blood vessels, astrocytic end-feet surrounding the 

blood vessels, and pericytes embedded in the basement membranes (BMs) between the ECs 

and the astrocytes (Figure 5) (Banerjee and Bhat, 2007; Varatharaj and Galea, 2017).  

 

 Figure 5. The barrier is formed by capillary endothelial cells, surrounded by basal 

lamina and astrocytic perivascular endfeet. Astrocytes provide the cellular link to the neurons. 

Source: adapted from (Hansen and Koeppen, 2002). 

The BBB has multiple functions. As a physical barrier, it limits the paracellular 

transport of cells, proteins. As a transport barrier, it controls nutrient supply and waste 

removal, throughout specific transport systems. As a metabolic barrier, it contains enzymes 

that metabolize ATP and neuroactive compounds, allowing separation of the central and 

peripheral pools of neurotransmitters (Abbott et al., 2006; Baeten and Akassoglou, 2011). 

Nevertheless, the BBB is neither an absolute barrier nor is it immobile (Carvey et al., 2009; 

Neuwelt et al., 2011). Rather, this dynamic structure is highly regulated by interactions 

between its cellular and extracellular matrix (ECM) components along with integrin receptors. 
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3.2.1. Blood brain barrier disruption  

The main functions of the BBB, namely maintenance of brain homeostasis, regulation 

of influx and efflux transport, and protection from harm, are determined by its specialized 

multicellular structure (Engelhardt and Liebner, 2014; Obermeier et al., 2013). Every 

constituent cell type makes an indispensable contribution to the BBB's integrity. But if one 

member of the BBB fails, and as a result the barrier breaks down, there can be dramatic 

consequences and neuroinflammation and neurodegeneration can occur.  

 
Figure 6. Schematic illustration of disruptive and non-disruptive BBB. CAMs, cellular 

adhesion molecules; GL, glia limitans. Source: adapted from (Varatharaj and Galea, 2017). 

 

A common factor of the BBB fails, is the abundance of immune cells that infiltrate into the 

CNS (Carvey et al., 2009; Hallmann et al., 2015; Klein and Bischoff, 2011; Trapp and Nave, 

2008). The process of leucocyte transmigration across a post-capillary venule into the CNS 

involves several important steps (Engelhardt, 2008; Larochelle et al., 2011). The first step is a 

slowing of leucocytes within the blood through the interaction and binding of integrin alpha 4 

beta 1 receptors present on leucocytes plasma membrane with several cell adhesion molecules 

on the endothelium, including vascular cell adhesion molecule 1 (VCAM1), intercellular 

adhesion molecule 1 (ICAM1) and Leukocyte function antigen-1 (LFA-1) (Muller, 2009; 

Rezai-Zadeh et al., 2009). This is followed by leucocyte arrest to endothelial cells possibly 

due to a response to chemokines secreted by endothelial cells (Stamatovic et al., 2008). Once 
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leucocytes adhere, they migrate across the endothelial cell barrier and endothelial basement 

membrane to accumulate in the perivascular space and form an inflammatory perivascular 

cuff. The perivascular space have been defined as the space where leucocytes accumulate 

before entering the CNS parenchyma (Kivisäkk et al., 2009; Ransohoff et al., 2003). 

Recent studies have demonstrated the important role of ECM components in the 

migration of leukocytes across the BBB, as the laminin composition of the vascular and 

possibly parenchymal BMs determine accessibility to the CNS (Wu et al., 2009). 

3.2.2. Extracellular matrix 

The ECMs (Figure 7) is secreted by cells, surrounds them in tissues and provide not 

only physical scaffolds into which cells are embedded but also regulate many cellular 

processes including growth, migration, differentiation, survival, homeostasis, and 

morphogenesis (Frantz et al., 2010; Theocharis et al., 2016). The ECMs consists of a complex 

assembly of several proteins and polysaccharides whose exact composition varies from tissue 

to tissue (Clause and Barker, 2013).   

 
  Figure 7. Extracellular matrix components.  Source: adapted from (Lau et al., 2013). 

BM proteins are degraded by proteolysis at certain conditions, mostly by matrix 

metalloproteinases (MMPs) and plasmin (Fukuda et al., 2004; Lu et al., 2011).  
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The major constituents of ECMs are fibrous-forming proteins, such as collagens and 

elastin, and glycoproteins, such as fibronectin (FN), laminins, formed by the assembly of 

different proteins with glycosaminoglycans (GAGs), which are highly acidic and hydrated 

molecules. There are two basic forms of the ECM, basement membranes (BMs), the cellular 

matrix between epithelial and stromal layers of cells, and the interstitial matrix: the cellular 

matrix surrounding cells forming a porous 3-D lattice (Ingber, 2006; Sorokin, 2010). The BM 

is a thin layer of ECM below the epithelia and endothelia, that also surrounds muscle, fat and 

nerve cells. It provides mechanical structure, separates different cell types, and signals for cell 

differentiation, migration, and survival. The BM consist of four major components: type IV 

collagen, laminins, nidogen and the heparan sulphate proteoglycan perlecan (Sasaki et al., 

2004; Sorokin, 2010). 

3.2.3. Metalloproteinases 

MMPs comprise a large group of endoproteinases that share come structural features in 

the N-terminal catalytic domains. MMPs can catalyze the degradation of all protein 

components to prevent tissue destruction. Recently, the spectrum of MMP substrates has been 

extended to enzyme inhibitors, cell membrane-bound adhesion molecules, cytokines 

precursors and cytokines receptors.  MMPs are a family of 23 related either secreted or 

membrane bound endopeptidases catalyzing the hydrolysis of diverse biological 

macromolecules. The activation of MMPs is controlled at multiple levels. They are 

synthesized in a latent form and secreted as proenzymes that require extracellular activation.  

During inflammation, the secretion of MMPs by tissue resident cells is controlled by 

the equilibrium of inflammatory mediators such as TGF-β, TNF-α and IFN-γ released by 

infiltrating immune cells (Song et al., 2015). This secretion is also controlled by growth 

factors and hormones (Benbow and Brinckerhoff, 1997; Sabeh et al., 2004). MMPs, together 

with membrane-anchored disintegrin metallo-proteinases (ADAMs) and meprins, target a 

wide range of ECM and other extracellular proteins involved in migration, survival and 

function of immune cells, thereby propagating or terminating immune signals (Malemud, 

2006).  

Notably, MMPs could alter the biological activity and the spatiotemporal distribution 

of growth factors and inflammatory mediators by cleaving their fragments (Van den Steen et 

al., 2003). By shedding of cell surface receptors, MMPs actively regulate the availability of 

both surface molecules and soluble effectors. For some proteins, this process is also a 
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prerequisite for intramembrane proteolysis, which releases the intracellular domain for 

translocation to the nucleus to direct gene expression. Altogether, these findings indicate that 

MMPs are a crucial component of the immune system and that tight control of MMP activity 

is essential for maintaining immune homeostasis. 

During inflammation MMP play a critical role, at least on the chemotactic effects of 

certain chemokines such as CXCL12 which have been shown to be required for holding T 

cells in the perivascular cuff, and its proteolytic degradation by MMPs (MMP-9 and MMP-2) 

releases leukocytes to migrate into the CNS parenchyma (Chu et al., 2017; McCandless et al., 

2008; Song et al., 2013). 

3.3. Neonatal hypoxia-ischemia  

3.3.1.  Hypoxic-ischemic neuronal injury  

Perinatal period is a critical period in the development of the CNS, and injuries in this 

period can cause severe damage with permanent disabilities. However, very little is known 

about the short-term effects of neuronal lesions, despite the prognostic significance of the 

early changes. Hypoxic-ischemic (HI) brain injury in human neonates is a rather common 

problem, having severe neurological sequelae that include cerebral palsy, mental retardation, 

high risk of mortality and long-term neurodevelopmental disability in survivors. This is 

especially true in infants and children. The injury is two staged. A certain amount of damage 

results from acute, primary neuronal death. This often is followed by a second, delayed period 

of neuronal loss. This pathology evolution provides a therapeutic window in which secondary 

damage might be prevented, and the huge potential of plasticity and regeneration of young age 

can limit the negative effects of neuronal damage.  

The most commonly used rodent model of neonatal hypoxia ischemia is the unilateral 

ligation of the common carotid artery (CCA) followed by a period of hypoxic exposure. In 

rats, the first two weeks of age are the critical period of neuronal maturation and meylination. 

Injuries usually restricted to the hemisphere ipsilateral to the ligation and are primarily 

observed in the cerebral cortex, the deep gray matter (striatum of the basal ganglia and 

thalamus), the subcortical and periventricular white matter, and the hippocampus. Such 

neuropathological damage is rarely seen in the contralateral hemisphere and never in pups 

rendered hypoxic without carotid artery ligation. 
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3.3.2 Inflammation and immune dysregulation after HI 

In the immature brain, HI injuries induce the expression of several genes related to 

immune responses and inflammation, including macrophages and microglial related genes, T-

lymphocytes related genes, and cytokines (Albertsson et al., 2014; Hedtjärn et al., 2004).  

 
Figure 8. Cascade of inflammatory pathway in brain after acute HI. reactive oxygen 

species (ROS) and reactive nitrogen species (RNS), neutrophil (NP), leukocytes (LC), 

macrophage (MP). 

This inflammatory mediators have been suggested to contribute to injury after HI, at a 

stage corresponding to human term and near-term infants (Saliba and Henrot, 2001). As 

already mentioned, microglia reveal a multifaceted response to injury (Figure 8), indeed they 

release inflammatory mediators which may aggravate injury (Hagberg et al., 2015; Liu and 

Mccullough, 2013), but also they express neutrophic and immunomodulatory factors which 

contribute to healing and recovery from injury (Lalancette-Hébert et al., 2012). The exact 

contribution of these microglial responses depends on the mechanism, location, severity of the 

injury, and importantly, may also depend on the age at which the injury occurs (Albertsson et 

al., 2014; Gomes-Leal, 2012). Active microglia express receptors which play an important role 
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in microglial proliferation, such as IL-6, IL-3, and CSF1 (Denes et al., 2007; Sawada et al., 

1990). At the site of injury, rapid increase in number of microglia was observed which might 

be related to influx of peripheral monocytes and movement of innate microglia from other 

parts of the brain (Hellström Erkenstam et al., 2016). 

Cytokines and chemokines released by active microglia cells in response to an acute 

neurologic insult, modulate the influx of peripheral immune and inflammatory cells into the 

brain, contribute to secondary neuronal, oligodendrocyte, and axonal injury and ultimately 

promote tissue repair and recovery (Butt, 2006; Káradóttir and Attwell, 2007; Mesplès et al., 

2005) (Figure 5). Inflammatory mediators released by peripheral immune cells also contribute 

to neuroinflammation (Albert-Weißenberger et al., 2013). For example, the tumor necrosis 

factor-related apoptosis inducing ligand (TRAIL) is expressed primarily on microglia and 

astrocytes and it has been shown to participate in neonatal brain injury after inflammation and 

HI and the reactive oxygen species (ROS) and nitrogen metabolites generated within the 

active microglia induce the release of proinflammatory cytokine (Eklind et al., 2001). In 

newborns’ CSF, elevated levels of IL-6 and IL-8 have been correlated with an increased 

degree of encephalopathy and poor neurodevelopmental outcome.  
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MAIN OBJECTIVES 
	
	
	
Due to the role of microglia in neuroinflammation, a strong effort in searching potential 

biomarker for microglia activation is in progress, also to monitor efficacy of therapeutic 

interventions. 

In this frame, the main goals of this study were:  

 

• To perform a time course investigation of potential neuroinflammation and 

demyelination biomarkers in the spinal cord, cerebrospinal fluid and blood in EAE 

induced in Dark-Agouti rat in order to try to identify novel early biomarkers for 

microglia activation. (Chapter I) 

 

• To investigate the extracellular matrix components according to the temporal evolution 

of EAE focusing on very early stages, to clarify their contribution to the accumulation 

of the peripheral inflammatory cells in the perivascular space and their transmigration 

into the neural parenchyma (Chapter II)	

	

• Identify novel early inflammatory biomarkers for microglia activation in neonatal 

hypoxic ischemic-related and their correlation with related neurological disorders 

(Chapter III) 
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GENERAL EXPERIMENTAL PROCEDURES 

	

1. Animals  

 All animal protocols described herein were carried out in accordance with European 

Community Council Directives (86/609/EEC), approved by the intramural ethical committee 

for animal experimentation of Bologna University and the Ministry of Health (n° 158/2013-B 

and no. 607/2016-PR). The experiments were designed in compliance with the guidelines 

published in the NIH Guide for the Care and Use of Laboratory Animals (Louhimies, 2002) 

and the ARRIVE guidelines, randomizing the procedures and applying blinded analysis.  

The animals used in the course of this thesis work were, Dark-Agouti (DA) female rats 

(151-167 g body weight), and Wistar rat pups of both sexes (12-14 g body weight). Animals 

were maintained in an animal room on a 12-h light/12-h dark cycle and at constant 

temperature (22 ± 2°C), food and water ad libitum. 

 During the surgical procedures, all animals were deeply anesthetized by isoflurane 

inhalation (Gas anesthesia system-21100- Ugo Basile, Varese – Italy). 

2. Surgical procedures  

2.1. EAE induction  

 DA rats were sensitized by a medium containing 0.15-g/ml guinea pig spinal cord 

tissues in complete Freund's adjuvant (CFA, Sigma, Saint Louse, USA), 50% v/v, to which 5 

mg/ml of heat-inactivated Mycobacterium tuberculosis (Difco H37Ra, DB, Milan, Italy) was 

added. Sensitization was performed by injecting 100 µl in both hind pads. Control rats and 

adjuvant-injected rats (CFA, 50% v/v, heat-inactivated Mycobacterium tuberculosis, 5 mg/ml) 

were used.  

2.2. Disease follow-up  

 Rats were weighed daily and examined for clinical signs of EAE, according to the 

following semi quantitative score for neurological disability: 0 = no signs, 1 = loss of tail tone, 

2 = mono or bilateral weakness of hind legs or middle ataxia, 3 = ataxia or paralysis, 4 = 

severe hind legs paralysis, 5 = severe hind leg paralysis and urinary incontinence (Calza et al., 

2002). In view of the animals’ disability, wet food was included inside the cages to facilitate 

feeding.  
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2.3. GW2580 treatment  

 GW2580 (LC Laboratories, Boston, USA) was dissolved in 0.5% 

hydroxypropylmethylcellulose and 0.1% Tween 80 (Leblond et al., 2015a) (Conway et al., 

2005). Experimental groups are: vehicle (0.5% hydroxylpropylmethyl-cellulose / 0.1% Tween 

80); control+GW2580; EAE and EAE+GW2580. Rats (control+GW2580 and EAE+GW2580 

groups) were under GW2580 treatment at 80 mg/Kg (Dose calculation based on BSA (Value 

based on data from FDA Draft Guidelines), see calculation below) once daily by oral gavage 

using flexible plastic feeding tubes FTP-15-78-50 (Instech Laboratories, Netherlands) for one-

day prior and eleven consecutive days following the immunization. Previous investigations 

have established that GW2580 administered in mice at 160 mg/kg once daily achieved 

GW2580 levels that peaked at approximately 9µM, and remained greater than 1µM for 24 

hours, exceeding the estimated minimum plasma concentration to achieve a therapeutic effect 

(Leblond et al., 2015b).  

 All animals were weighed daily and EAE and EAE+GW2580 groups were examined for 

clinical signs of EAE till the 18 DPI (last day of the experiment) following the semi 

quantitative score for neurological disability as already explained in 2.2. 

 

  Rat dose (mg/Kg) = mouse dose (160mg/kg) × !"#$% !" (!)
!"# !" (!)

 = 80mg/kg 
 

2.4. Neonatal hypoxia-ischemia injury model  

At postnatal day 7 (P7), Wister rat pup was first weighed and then anesthetized with 

3% isoflurane. The surgery was performed under surgical microscope and lasted less than 5 

min. The rat pup was palced on surgical heating pad at 37°C, the skin was cleaned with 10% 

povidone iodide and a less than 1 cm longitudinal midline incision of the neck was performed 

to expose the right common carotid artery (CCA). In order to avoid an overextension of the 

nerve, the fibrous sheath that wraps together both the carotid and the vagus nerve was broken 

and separated. The CCA was permanently doubly ligated with a 5/0 silk suture. After the 

ligation few drops of surgical glue was used for the suture of the skin. Pups were placed above 

a heat mat at 37°C until awakening and recovering then were returned to their dam and were 

allowed to recuperate for 1.5 hours. Pups were then placed in a hypoxic chamber that contains 

8% O2 and 92% N2 with a constant flow of 3L/min for 90 min, submerged in a water bath 
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maintained at 32°C, which is the usual temperature to which rat pups are exposed when 

huddling with their mother (Mortola and Dotta, 1992) (Hosono et al., 2010). After hypoxia, all 

pups were returned again to their dam for recovery.  

Sham animals underwent the HI surgical procedures (i.e. exposure of the CCA) 

without artery ligation and without exposure to hypoxic conditions. 

3. Examination of neurobehavioral development  

3.1. Neurological reflexes 

Examinations of neurobehavioral development were performed for all rat pups from P8 

to the P21 after the hypoxic insult, and were carried out daily between 10 and 12 a.m. Rat 

were weighed daily. Pups were tested for the following neurological reflexes:  

Righting reflex: this test is believed to be a reflection of subcortical maturation 

estimate, the generation of these movements from circuits in the spine connected to the 

supplementary motor area, the basal ganglia, and the reticular formation. The time (sec) used 

by the animal to go from a supine to a prone position by placing all four paws on the surface 

was recorded.   

Negative geotaxis: this test examines the sensorimotor function of neonatal rats 

(Rumajogee et al., 2016). Rat pups were placed upside down in the middle of a slope (45°) of 

30 cm. The latency to turned 180 degree to an upward direction was recorded. From the day 

when the animal turns to go up, the time (sec) it took to reach the upper side of the plane was 

recorded. The maximum duration of recording was 30 seconds otherwise the test was 

considered negative.  

Sensory reflex: the ear and the eyelid of the pup were touched with a cotton swab and 

the first day of the ear twitch reflex and the contraction of the eyelid were recorded. 

Auditory startle: the first day of the startle response to a clapping sound was recorded. 

Crossed extensor reflex: the left hind paw was pinched and the possible extension of 

the right paw was recorded.  

Limb placing: the back of the forepaw and hindpaw was touched with the edge of the 

bench while the animal suspended, and the first day of lifting and placing the paws on the 

table was noted.  

Limb grasp: the forelimbs were touched with a thin rod, and the first day of grasping 

onto the rod was recorded.  



	 33	

Gait: the animals are placed at the center of a white plexiglass circle (diameter = 

13cm). Register the day when they start to move out of the circle with both front paws, 

estimate the time (sec) that the animal uses to exit out of the circle. In the case in which the 

animal does not leave the circle within 30 seconds, the test is considered negative. 

In order to assess the development of neurological reflex, rats are given a score the to 

the corresponding time (sec). The higher score indicates greater capacity for development of 

neurological reflexes (See table 3) 

Table 3. Neurological reflex score and the corresponding time. 

Time (sec) Score 
0-10 3 

11-20 2 
21-30 1 
>30 0 

3.2. Behavioral assessment  

Three weeks after (P28), the assessment of long-term neurofunctional handicap were 

performed in sham and HI groups. These tasks consisted of the open field, Rota-rod, Catwalk 

and Morris water maze.  

3.2.1. Open field 

Animals were observed for locomotor behavior in an open-field. Pups were placed in 

an open-field consisting of a 46x46 cm wooden chamber with 21 cm high walls around, with a 

dark gray floor divided into 16 fields. Rats were placed individually in the center, always 

facing the same direction, in the center of the chamber and the latency to leave this first square 

will be recorded. The following parameters were measured: distance travelled, rearing, 

groming and ambulation frequency. Speed was calculated from the ambulatory time and the 

total travelled distance. Animals were video-recorded for 10 min (Balduini et al., 2000) 

3.2.2. Rota-rod 

The rotarod test (LE 8500 RotaRod : 2Biological Instruments, Varese, Italy ) consist 

on two days test. Animals were exposed to one habituation session during 3 min in the 

apparatus on slow velocity (20 rpm). In the test session, 24 h later, animal's motor ability was 

evaluated. The rotarod test was performed by placing rats on rotating drums and measuring the 

time each animal was to maintain its balance on the rod. The speed of the rotarod accelerated 

from 16 to 40 rpm over a 6 min period. Variables recorded were: latency of the first downfall, 
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number of falls (maximum 3) and time of permanence in the apparatus (Rojas et al., 2013) 

(Rojas et al., 2013; Takao et al., 2010).  

3.2.3. CatWalk 
Cerebellar function was analysed by CatWalk (Noldus Information Technology, 

Wageningen, The Netherlands), a quantitative gait analysis system.  

Each rat ran across a glass walkway transversely and three complete runs were 

recorded using a camera positioned below, and the average will be calculated. If an animal 

failed to complete a run within 5 s, walked backwards or reared during the run, the process 

was repeated. The experiment was performed in the dark; the glass walkway was illuminated 

with beams of light, thereby allowing the animals' paws to reflect light as they touched the 

glass floor. Each paw was labeled on the recorded video in order to calculate paw-related 

parameters. The gait-related parameters measured using the CatWalk system was the 

following: maximum contact area: the maximum area of a paw that comes into contact with 

the glass plate, stand: stance phase is the duration in seconds of contact of a paw with the glass 

plate and swing speed: is the speed (Distance Unit/second) of the paw during Swing. The 

formula of Swing Speed is: Swing (s) Phase which is the duration in seconds of no contact of a 

paw with the glass plate. The Stride Length which is the distance (in Distance Units) between 

successive placements of the same paw, the calculation of Stride Length is based on the X-

coordinates of the center of the paw print of two consecutive placements of the same paw 

during Max contact and taking into account Pythagoras’ theorem (Hattori et al., 2015). 

3.2.4. Morris Water Maze  
The spatial memory performance was evaluated 3 week after HI lesion using an MWM 

(180 cm diameter, 45 cm high) conceptually divided in four equal imaginary quadrants. The 

water of the pool was made opaque by using non-toxic grey tempera paint. Training on spatial 

version of the MWM was carried out over 4 consecutive days. On each day, rats received four 

training trials in which a randomly starting point was used, such that 2 successive trials never 

began from the same position. The training consisted of a swim followed by a 30 s econds 

platform sit. The escape latency to find the platform was measured for individual animals on 

each day. Rats that did not find the platform within 120 seconds were guided to it by the 

experimenter. To assess long-term memory, 24 hours after the final trial, the platform was 

removed from the maze and a 2-minute free swim will be conducted, and time (seconds) spend 
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during the first 20 seconds and the entire swim in the quadrant formerly occupied by the 

platform will be recorded (Chou et al., 2001). 

4. Immunohistochemistry on slides  

Spinal cord tissues were fixed in 4% paraformaldehyde and picric acid saturated 

aqueous solution in 0.1 M Sörensen buffer pH 7 for 24 h and then washed with 5% sucrose 

solution every day till the fixative was completely removed. Tissues were frozen with CO2 gas 

and kept at –80°C until processed. Coronal sections (14µm thickness) were then prepared 

(Microm HN550, Bio-Optica, Milan, Italy) and processed for morphological studies. For 

immunohistochemistry, sections were first rehydrated and then incubated for 1 h with PBS-

0.3% Triton X-100, 2% normal serum goat, 1% BSA, followed by incubation with the primary 

antibodies (table 4) diluted in the pre-absorption solution overnight at 4°C. After rinsing in 

PBS, the sections were incubated at 37°C for 30 min with the secondary antibodies (table 5) 

diluted in PBS-0.3% Triton X-100. Sections were then rinsed in PBS and mounted in 

phenylendiamine solution (0.1% 1,4-phenylendiamine, 50% glycerine, carbonate/bicarbonate 

buffer pH 8.6, Sigma, Saint Louse, USA). Control slices were incubated with the secondary 

antibodies only and processed in parallel.  

 Cerebellum tissues were fixed in 1.5% paraformaldehyde saturated aqueous solution in 

0.1 M Sörensen buffer pH 7 for 4 h then embedded in Tissue-Tek® O.C.T.™ Compound 

(Sakura Finetek Europe, Alphen aan den Rijn, Netherlands), (Leica CM1950, Walldorf, 

Germany). Tissues were frozen and kept at –80°C until processed. For immunohistochemistry, 

sections (10µm thickness) were incubated for 1 h with PBS-0.5% Triton X-100, 1% BSA, 

followed by incubation with the primary antibodies (table 4) diluted in the pre-absorption 

solution overnight at 4°C. After rinsing in PBS, the sections were incubated at 37°C for 2 h 

with the secondary antibodies (table 5) diluted in the pre-absorption solution. Sections were 

then rinsed in PBS and mounted in Evanol solution. 

5. Histology  

To analyze the inflammatory infiltration, spinal cord sections were stained with 

toluidine blue and evaluated on 3 replicate sections per animal, counting the number and 

severity of cellular infiltrates over each whole coronal section. Cellular infiltrates were scored 

as follows: 0, none; 1, a few inflammatory cells; 2, organization of perivascular infiltrates; 3, 

increasing severity of perivascular cuffing with extension into the adjacent tissue (Hickey et 
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al., 1987). The inflammation score derives from the sum of infiltration scores in each cellular 

infiltrate.  

To analyze the cerebellum’s perivascular cuffs, tissues were cut into 10 µm thickness 

sections on the cryostat (Leica CM1950), and stained with hematoxylin and eosin (H&E) 

according to standard procedures. 

6. Microscopy  

Sections destined for quantification were examined under bright field in a Nikon 

Eclipse E-600 microscope equipped with appropriate filters for the visualization of 

fluorescence produced by FITC, RRX, TMR, Texas Red or Nikon Microphot-FXA or Zeiss 

AxioImager equipped with epifluorescent optics  

Photographs were taken with digital CCD camera Q Imaging Retiga-2000RV (Q 

Imaging, Surrey, BC, Canada) or digital camera DXM1200F or Hamamatsu ORCA ER 

camera. Images were captured and analyzed using NIS software 4.30 or Volocity 5.1 software 

(Improvision). 
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Table 4. List and characteristics of primary antibodies used in this thesis 

Antibody 
Species of 

origin 
Dilution  Reference 

Cluster of differentiation 44 (CD44) Rabbit 1:100 
Acris Antibodies, Inc, San Diego, 
USA 

CD163 Rabbit 1:100 Bioss Inc, Woburn, USA 
Neurofilament (NF200) Mouse 1:800 Sigma, Saint Louse, USA 
Colony Stimulating Factor 1 (CSF1) Rabbit 1:100 Novus Biologic 
OX42 Mouse 1:250 AbD Serotec Inc., Raleigh, USA 
Membrane-spanning chondroitin 
sulphate proteoglycan (NG2) 

Mouse 1:100 
Millipore, Merck S.p.a., Milan, 
Italy 

2', 3'-cyclic nucleotide 3'-
phosphodiesterase (CNPase) 

Mouse 1:250 
Millipore, Merck S.p.a., Milan, 
Italy 

Glial Fibrillary Acidic Protein 
(GFAP) 

Rabbit 1:500 Dako, Milan, Italy 

GFAP Mouse 1:500 Sigma, Saint Louse, USA 
FluoroMyelinTM Fluorescence 
Myelin Staining 

- 1:300 Molecular Probes, Eugene, OR 

Ionized calcium binding adaptor 
molecule 1 (Iba 1) 

Rabbit 1 :100 Wako 

Neuronal Nuclei (NeuN) Mouse 1 :400 Millipore 
Cluster of differentiation 3 (CD3) Rabbit 1 :500 Abcam 
Pan-Laminin (Pan LM)  Human  1 :1000 L.M.Sorokin Lab 
C-X-C motif chemokine 12 
(CXCL12) 

Rabbit 1 :400 AHP794, AbD Serotec 

 

Table 5. List and characteristics of secondary antibodies used in this thesis 

Antibody 
Species of 

origin 
Dilution  Reference 

Anti-mouse IgG DyLight 488 Rabbit 1:100 ThermoScientific, Milano, Italy 
Anti-rabbit IgG Rhodamine Red™-
X 

Donkey 1:100 
Jackson Immunoresearch, West 
Grove, PA, USA 

Anti-rabbit IgG  DyLight 488 Donkey 1:100 ThermoScientific, Milano, Italy 

Anti-goat IgG Red™-X Donkey 1:100 
Jackson Immunoresearch, West 
Grove, PA, USA 

Anti-mouse IgG  Alexa Fluor 488 Rabbit 1:1000 Molecular Probes/Invitrogen 
Anti-rat IgG  Alexa Fluor 594 Donkey 1:1000 Invitrogen  
Anti-rabbit IgG  Alexa Fluor 594 Donkey 1:1000 Invitrogen  
Anti-GFAP Alexa Fluor 488 Mouse  1:1000 eBioscience 
Anti-mouse IgG Cy3 Goat 1:400 Jackson ImmunoResearch  
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7. In Vitro Experiments  

7.1. Preparation of CNS Tissue Lysates 

Crude CNS samples from Controls and EAE rats were frozen in liquid nitrogen, 

weighed and homogenized in PBS with 0.37 mg/ml proteinase inhibitor-EDTA cocktail tablets 

(Roche) on ice. For 1 mg tissue, 500 µl PBS was used. Extracts were centrifuged for 10 min at 

12,000g at 4°C and supernatants were collected. 

7.2. Determination of Protein Concentrations 

Protein concentrations of brain lysates were determined using the BCATM Protein 

Assay Kit (Pierce, Rockford; USA) according to the manufactures´ instructions. Photometric 

analysis was performed using a BioPhotometer (Eppendorf) with a BSA standard curve 

utilizing the internal, pre-programmed BCA protein concentration determination algorithm. 

7.3. Gelatin Zymography  

Cerebellum tissue lysates were used. Prepurification of tissue lysates was carried out 

by incubation with gelatin-Sepharose 4B for 20 min (Descamps et al., 2002). Equal amounts 

of total protein were mixed with SDS sample buffer without reducing agent and run on a 4% 

stacking and 12% separating SDS-polyacrylamide gel, containing 1 mg/ml gelatin to detect 

pro- and activated-forms of MMP-2 and MMP-9 (Masure et al., 1991). After electrophoresis, 

gels were washed with 2.5% Triton X-100 in H20 for 30 minutes at room temperature to 

remove SDS and to renature MMP-2 and MMP-9. Gels were then incubated in developing 

buffer (50 mM Tris base, 50 mM Tris-HCL, 0.2 M NaCl, 5 mM CaCl2, 0.02% NP-40, dH2O) 

for an optimized length of time (overnight) at 37°C to induce gelatin cleavage by the renatured 

MMPs. After overnight incubation, proteins in the gels were fixed in acetic acid:ethanol:dH2O 

[10:50:40] for 30 minutes and then washed in acetic acid:methanol:H2O [10:50:40] mixture 

also for 30 minutes. Subsequently, the zymogram was stained with Coomassie Brilliant Blue 

and destained in acetic acid: methanol: dH2O [10:50:40] solution at room temperature for 1 h. 

Areas of cleaved gelatin appear as clear bands against a dark blue stained background. Human 

recombinant MMP-9 and mouse recombinant MMP-2 were used as controls. 
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8. mRNA analysis 

8.1. Spinal cord mRNA analysis  

Rats were sacrificed and total LSC was dissected, snap frozen and stored at -80°C until 

used. Total RNA was prepared from spinal cord using QIAzol Reagent, cleaned with RNeasy 

Mini kit (Qiagen; Milano- Italy) and eluted in RNase Free Water and purity and concentration 

were evaluated by spectrophotometry using NanoDrop ND-2000 (ThermoScientific, Milano, 

Italy). cDNA synthesis was performed using RT² First Strand kit following the manufacturer’s 

instructions. In brief, after incubation for 5 min at 42°C with Genomic DNA elimination mix 

in order to avoid any DNA contamination, a reverse-transcription mix of BC3, P2, RE2 and 

H2O was used and the transcription performed in a final volume of 20 µl by heating first at 

42°C for 15 min, then at 95°C for 5 min. Real-time PCR amplification was performed using 

the Stratagene Mx3005P multiplex quantitative PCR system (Agilent Technologies). The 

expression of genes involved in MS progression was carried out using RT2 SYBR Green 

qPCR Mastermix (Qiagen). These genes were grouped according to: T Cell 

Activation/Signaling, Adaptive Immunity, Cytokine/Chemokine Inflammation, demyelination 

and cellular stress. The raw data obtained was uploaded into GeneGlobe Data Analysis 

software (SABiosciences, Qiagen) for analysis. Relative quantification of mRNA expression 

was calculated using the comparative cycle threshold (CT) method and is expressed as Log 2 

Fold Change of expression. The Fold Change (2^(- Delta Delta Ct)) is the normalized gene 

expression (2^(- Delta Ct)) in the test sample divided by the normalized gene expression (2^(- 

Delta Ct)) in the control sample.  

9. CSF and plasma biomarker analysis  

CSF sampling was adapted from the method of Liu, L. and Duff, K (Liu and Duff, 

2008). Briefly, rats were anesthetized and placed prone on the stereotaxic instrument letting 

the body of the rat laid down. A sagittal incision of the skin was made below the occiput and 

the subcutaneous tissue and neck muscles through the midline were separated and held apart 

using a microretractor. The dura mater of the cisterna magna was then penetrated by an 8 cm 

long glass capillary, which had a narrowed tip with an inner diameter of about 0.5 mm so that 

the CSF flowed into the capillary. After collection, each sample was centrifuged at 2000xg for 

10 minutes at 4°C, and the supernatant aliquoted and stored at -80°C for biochemical assays. 

Blood was collected from the abdominal aorta in EDTA-K2 Vacuntainer tubes, centrifuged at 
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3000xg for 10 min at 4°C and the plasma collected, aliquoted and stored at -80°C until used. 

Proteins known to play key roles in neuroinflammation pathways were selected. For this 

purpose Bio-Plex Pro™ Rat Cytokine 24-plex Assay  (Bio-Rad; Milano- Italy) was used. The 

kit included EPO, G-CSF (CSF3), GM-CSF (CSF2), GRO/KC, IFN-γ, IL-1α, IL-1β, IL-2, IL-

4, IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-17A, IL-18, M-CSF (CSF1), MCP-1 (CCL2), 

MIP-1α (CCL3), MIP-3α (CCL20), RANTES (CCL5), TNF-α and VEGF.   

 The simultaneous quantification of the different proteins in CSF and plasma was 

performed using xMAP technology and a MAGPIX Luminex platform. This technology 

makes use of different populations of color-coded beads of monoclonal antibodies specific to a 

particular protein, thus allowing simultaneous capture and detection of specific analytes from 

a sample. All the beads from each set are read off, which further validates the results. Using 

this process, xMAP Technology allows multiplexing of up to 50 unique bioassays within a 

single sample, both rapidly and precisely (Houser, 2012), (Blankesteijn and Altara, 2014). In 

brief, after the incubation of a specific monoclonal antibody conjugated bead population with 

50 ml of CSF/plasma samples for 1 hour at RT, washed beads were incubated with detection 

antibody solution at RT for 30 min, then with the streptavidin–phycoerythrin conjugated 

solution (RT, 10 min). After washing, beads were resuspended in the assay buffer, shaken for 

1 min and then a reading performed on the MAGPIX instrument. The results were analyzed 

with xPONENT 4.2 ® software and expressed as pg/mL. 

10. Functional pathway and network analysis  

 A pathway analysis approach in an exploratory study was implemented. We proceed 

through the web-software STRING 10.0 (http://string-db.org/) and Gene Ontology databases. 

Protein–protein interaction analysis (both physical and functional interactions) was performed 

using default parameters (high confidence: 0.7) and R.norvegicus as the organism of interest. 

The software allows the net of interactions including other proteins closely linked to the one 

analyzed to be extended, in order to obtain a better understanding of the possible pathways 

affected by the disease.  

11. Statistical Analysis  

 Student's t test was used to compare means of two groups and one-way ANOVA 

followed by Dunnett’s multiple comparison tests. Data are presented as mean ± standard error 
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of the mean and significance was set at P ≤ 0.05. All statistical analyses were performed using 

GraphPad Prism 6.0 (GraphPad Software).   

 In order to calculate the number of animals needed to study the effect of the treatment 

with GW2580, we performed a power analysis using the G*Power 3.1 software. To reach a 

power of 0.9, based on retrospective analysis of recent research done by others (Gómez-Nicola 

et al., 2013; Olmos-Alonso et al., 2016), we needed a minimum of n = 6 animals per 

experimental group. 

 For the normalization of gene expression on the RT² PCR Profiler Array, five 

housekeeping genes, Ribosomal protein, large, P1, Hypoxanthine phosphoribosyltransferase 1, 

Ribosomal protein L13A, Lactate dehydrogenase A, Actin beta were used. The CT was 

determined for each sample and normalized to the average CT of the five housekeeping genes. 

A comparative CT method was used to calculate relative gene expression. Data are 

represented as Log 2 Fold Change relative to control. The P-values were calculated on the 

basis of a Student’s t-test of the replicate 2^(- Delta Ct) values for each gene in the control 

group and treatment groups, and P values less than 0.05 was considered significant.  
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RESULTS AND GENERAL DISCUSSION 
	
	
	

During this study we came across some results that are interesting from a 

methodological point of view. Part of these results presented in this thesis has been already 

published (Chapter I), or are in manuscript form (Chapter II and III). Data included in this 

paper or manuscripts, are only briefly described in this section. 

 

In chapter I, using high-throughput technologies for gene expression and protein 

assays, and focusing on the time-course between immunization and the clinical onset, we 

performed a time course investigation of neuroinflammation and demyelination biomarkers in 

the CNS tissue (spinal cord, SC), and biological fluids (CSF and plasma) in EAE induced in 

Dark-Agouti female rats compared with controls and adjuvant injected rats. In this study, we 

demonstrate that the CSF1 was the first up-regulated protein as soon as 1 DPI, not only in 

blood but also in CSF and SC. A treatment with GW2580, a selective CSF1R inhibitor, slowed 

the disease progression, significantly reduced the severity and prevented the relapse phase. 

Moreover, both pro-inflammatory (IL-1β, TNF-α) and anti-inflammatory cytokines (IL-5, IL-

10, VEGF) were upregulated starting from 8 DPI. Myelin genes were down-regulated starting 

from 8 DPI, especially MAL, MBP, PMP22 while an opposite expression profile was 

observed for inflammation-related genes, such as CXCL11 and CXCL10. 

 

In chapter II, we investigated the effect of CSF1R inhibition using the small 

molecule, GW2580, on BBB disruption with the temporal evolution of EAE. We have shown 

that GW2580 treatment had a therapeutic effect in EAE rats. Our findings prove that GW2580 

down regulates microglia activation, reduce IgG extravasation and T-cell recruitment and 

more important, CSF1R inhibition, reduces BBB leakage by inhibiting activities of MMP-9. 

Those findings identify a novel mechanism underlying the effect of GW2580 that could be a 

novel therapy for MS. 

 

In chapter III, we investigated plasma and CSF contents of biomarkers after neonatal 

HI during the acute (24 and 72 hours) and chronic (44 days) phases and their correlation with 

neurological disorders in rat model of HI. In this study, both male and female Wistar rats were 

used and underwent ischemia procedure, where the right carotid artery permanently was 
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doubly ligated, and exposed to 8% oxygen for 90 min; control rats received sham surgery. 

Sensory and cognitive parameters were assessed by the use of open field, rotarod, CatWalk 

and Morris water maze test. After behavioral testing, plasma and CSF were used to investigate 

proinflammatory and immunoregulatory biomarkers at different time points. Our data suggest 

that HI induced an early activation of the inflammatory cascade leads to increased production 

of a large number of proinflammatory mediators that could be the cause of tissue loss of 

hypoxic hemisphere, which in his turn might leads to short-term- as well as long-lasting 

behavioral- deficits. 
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CHAPTER I 
	
	

Cytokine and chemokine alterations in tissue, CSF, and plasma in early presymptomatic 

phase of experimental allergic encephalomyelitis (EAE), in a rat model of multiple 

sclerosis. 
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Abstract

Background: Experimental allergic encephalomyelitis (EAE) is the most commonly used experimental animal model
for human multiple sclerosis (MS) that has been used so far to study the acute and remission-relapsing phases of
the disease. Despite the vast literature on neuroinflammation onset and progression in EAE, important questions
are still open regarding in particular the early asymptomatic phase between immunization and clinical onset.

Methods: In this study, we performed a time-course investigation of neuroinflammation and demyelination
biomarkers in the spinal cord (SC), cerebrospinal fluid (CSF), and blood in EAE induced in dark agouti (DA) female
rats compared to the controls and adjuvant-injected rats, using high-throughput technologies for gene expression
and protein assays and focusing on the time-course between immunization, clinical onset (1, 5, 8 days post-immunization
(DPI)), and progression (11 and 18 DPI). The expression profile of 84 genes related to T cell activation/signaling, adaptive
immunity, cytokine/chemokine inflammation, demyelination, and cellular stress were analyzed in the tissue; 24 cytokines
were measured in the CSF and plasma.

Results: The macrophage colony-stimulating factor (CSF1) was the first up-regulated protein as far as 1 DPI, not only in
blood but also in CSF and SC. A treatment with GW2580, a selective CSF1R inhibitor, slowed the disease
progression, significantly reduced the severity, and prevented the relapse phase. Moreover, both pro-inflammatory
(IL-1β, TNF-α) and anti-inflammatory cytokines (IL-5, IL-10, VEGF) were up-regulated starting from 8 DPI. Myelin genes
were down-regulated starting from 8 DPI, especially MAL, MBP, and PMP22 while an opposite expression profile was
observed for inflammation-related genes, such as CXCL11 and CXCL10.

Conclusions: This early cytokine and chemokine regulation indicates that novel biomarkers and therapeutic options
could be explored in the asymptomatic phase of EAE. Overall, our findings provide clear evidence that CSF1R signaling
regulates inflammation in EAE, supporting therapeutic targeting of CSF1R in MS.
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Background
Inflammation and demyelination are the primary patho-
logical events in multiple sclerosis (MS), the most diffuse
inflammatory demyelinating disease of the central ner-
vous system (CNS) [1]. The progressive failure of remye-
lination leads to the cumulative loss of axons, gray
matter atrophy, and the prevalent neurodegeneration
responsible for chronic disability and cognitive defects
[2]. Despite the intensive efforts and the major progress
achieved in understanding the inflammatory process and
pathogenetic mechanisms within this heterogeneous dis-
ease entity to date, the exact pathophysiological process
of MS remains elusive.
Both humoral and the cell-mediated immune reactions

having peripheral macrophages and central microglia as
key players take part in the neural-immune mechanisms
underlying MS [3]. Indeed, MS pathogenesis has been
believed to be derived from autoreactive lymphocytes
(T/B cells) and a plethora of macrophages recruited
from the periphery. Both cell classes are able to cross
the blood–brain barrier (BBB) [4] and to engage micro-
glia, the resident immune cells in the CNS [5], ultimately
leading to severe demyelination and neuronal degener-
ation. Cytokines and chemokines play a key role in these
processes by regulating cell migration, proliferation, and
activation of resident and infiltrating cells [6].
An important contribution to MS studies has been

made by experimental allergic encephalomyelitis (EAE),
the most widely used animal model for MS [7], in which
the interaction between a variety of immunopathological
and neuropathological mechanisms affords an approxi-
mation of the key pathological features of MS pathology,
including inflammation and immune reaction, demyelin-
ation, axonal loss, and gliosis [8, 9]. EAE has been also
used to develop and validate all approved therapies for
MS [10], thus confirming the good correlation between
animal and human pathology [11, 12].
In particular, the EAE model allows a hitherto poorly

studied phase of the disease to be investigated, i.e., the
preclinical asymptomatic phase. This time window could
be particularly interesting for the discovery of novel early
biomarkers and novel therapeutic target. According to re-
cent reports, in the MS murine model, a significant T cell
mobilization was observed at 2 days post-immunization
(DPI), thus an asymptomatic stage of the disease [13].
Furthermore, a transient vessel leak in the cortical gray
matter has been described at the same time window [14].
Moreover, pain associated with microglia and astro-
cyte activation occurs in EAE prior to the onset of
clinical signs [15, 16].
It is worthy of note that few studies to date have been

devoted to the investigation of this asymptomatic phase
of the disease. In order to elucidate very early molecular
alterations occurring in the CNS of EAE animals before

the clinical onset of the disease and to link tissue alter-
ations to potential CSF and plasma biomarkers, in the
present study, we investigated molecular mediators of
neuroinflammation and demyelination in the tissue (SC),
CSF, and plasma during early presymptomatic EAE using
high-throughput technologies for gene expression and
protein assays. The results indicate that the profile of
neuroinflammation and demyelination biomarkers is
dramatically changed during the early phase of EAE.
Consequently, we have identified the regulation of the
chemokine macrophage colony-stimulating factor (CSF1)
already 24 h after immunization, which indicates the
occurrence of microglia activation. Interestingly, we found
that a selective inhibition of CSF1R significantly reduced
the severity of the disease and prevented the relapse phase
in EAE rats, suggesting the importance of CSF1-CSF1R
signaling in microgliosis and inflammation in MS.

Methods
Animals, EAE induction, and disease follow-up
Dark agouti (DA) (Harlan, Italy) female rats, 151–167-g
body weight, were used in the first part of the study,
placed on ad libitum food and water, and housed three
per cage on a 12-h light/dark cycle. The DA rat model
of EAE mimics certain aspects of the clinical course of
the disease in people with RRMS [17–19], typified by
progressive, sustained demyelination, and associated
axonal loss [20, 21]. The disease onset in this strain
bears is characterized by neurological impairments,
manifested as a flaccid tail followed by an acute attack
with disturbed gait and paralysis. Most DA animals
recover spontaneously from paralysis and experience
remission and may then undergo one or more relapses.
A group of 42 rats was sensitized (considering group

composition and two extra animals) by a medium con-
taining 0.15 mg/ml guinea pig spinal cord tissue in
complete Freund’s adjuvant (CFA, Sigma, Saint Louse,
USA), 50% v/v, to which 5 mg/ml of heat-inactivated
Mycobacterium tuberculosis (Difco H37Ra, DB, Milan,
Italy) was added. Sensitization was performed by inject-
ing 100 μl in both hind pads. Control rats (n = 8) and
adjuvant-injected rats (CFA, 50% v/v, heat-inactivated M.
tuberculosis, 5 mg/ml) (n = 15) were used. The rats were
weighed daily and examined for clinical signs of EAE,
according to the following semi quantitative score for
neurological disability: 0 = no signs, 1 = loss of tail tone,
2 = mono or bilateral weakness of hind legs or middle
ataxia, 3 = ataxia or paralysis, 4 = severe hind legs paralysis,
and 5 = severe hind leg paralysis and urinary incontinence
[22]. In view of the animals’ disability, wet food was
included inside the cages to facilitate feeding. At 1, 5, 8, 11,
and 18 DPI, eight EAE rats were randomly sacrificed. From
each experimental group, five animals were used for prote-
omic and molecular biology experiments and three for
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morphology and immunohistochemistry. All animal proto-
cols described herein were carried out in accordance with
the European Community Council Directives (86/609/
EEC), approved by the intramural ethical committee for
animal experimentation of Bologna University and the
Ministry of Health (no. 158/2013-B) and comply with the
guidelines published in the NIH Guide for the Care and
Use of Laboratory Animals [23].

GW2580 treatment and CSF1R inhibition
In order to calculate the number of animals needed to
study the effect of the treatment with GW2580, we per-
formed a power analysis using the G*Power 3.1 software.
To reach a power of 0.9, based on retrospective analysis
of recent research done by others [24, 25], we needed a
minimum of n = 6 animals per experimental group.
The experiments were designed in compliance with

the ARRIVE guidelines, randomizing the procedures and
applying blinded analysis.
GW2580 (LC Laboratories, Boston, USA) was dis-

solved in 0.5% hydroxypropyl methylcellulose and
0.1% Tween 80 [26, 27]. The experimental groups
made of n = 6 animals each were as follows: vehicle
(0.5% hydroxypropyl methylcellulose/0.1% Tween 80);
control + GW2580; EAE; and EAE +GW2580. The rats
(control + GW2580 and EAE +GW2580 groups) were
under GW2580 treatment at 40 mg/kg once daily by oral
gavage using flexible plastic feeding tubes FTP-15-78-50
(Instech Laboratories, Netherlands) for 1 day prior and 11
consecutive days following the immunization. All animals
were weighed daily and the EAE and EAE +GW2580
groups were examined for clinical signs of EAE till the 18
DPI (last day of the experiment) following the semi quan-
titative score for neurological disability as already ex-
plained in the first part of the study. Animal protocols
described herein were carried out in accordance with the
European Community Council Directives (86/609/EEC),
approved by the intramural ethical committee for animal
experimentation of Bologna University and the Ministry
of Health (no. 607/2016-PR).

Histology and immunohistochemistry
On post-immunization days 1, 5, 8, 11, and 18, three rats
were scarified and the lumbar spinal cord (LSC) tissues
of the control, EAE, and adjuvant groups were fixed in
4% paraformaldehyde and picric acid and saturated
aqueous solution in 0.1 M Sörensen buffer pH 7 for
24 h and then washed with 5% sucrose solution every
day till the fixative was completely removed. The tissues
were frozen with CO2 gas and kept at −80 °C until proc-
essed. Coronal sections (14-μm thickness) were then
prepared (Microm HN550, Bio-Optica, Milan, Italy) and
processed for morphological studies. For immunohisto-
chemistry, the sections were first rehydrated and then

incubated for 1 h with PBS–0.3% Triton X-100, 2% normal
serum goat, and 1% BSA, followed by incubation with the
primary antibodies diluted in the pre-absorption solution
overnight at 4°C. The primary antibodies and dilutions used
were as follows: rabbit anti-CD44 (1:100, Cluster of differ-
entiation 44, Acris Antibodies, Inc, San Diego, USA), rabbit
anti-CD163 (1:100, Cluster of differentiation 163, Bioss
Inc, Woburn, USA), mouse anti-CD86 (1:250, Cluster
of differentiation 86, Novus Biological Europe, Cam-
bridge, UK), mouse anti-NF200 (1:200, Neurofilament, Sigma,
Saint Louse, USA), rabbit anti CSF1 (1:100, colony-
stimulating factor 1, Novus Biological), mouse anti-OX42
(1:250, AbD Serotec Inc., Raleigh, USA), mouse anti-NG2
(1:100, membrane-spanning chondroitin sulfate proteoglycan,
Millipore, Merck S.p.a., Milan, Italy), mouse anti-
CNPase (1:250, 2′, 3′-cyclic nucleotide 3′-phosphodiester-
ase, Millipore, Merck S.p.a., Milan, Italy), rabbit anti-GFAP
(1:500, glial fibrillary acidic protein, Dako, Milan, Italy), and
mouse anti-GFAP (1:500, Sigma, Saint Louse, USA). Fluor-
oMyelin™ Fluorescence Myelin Staining (Molecular Probes,
Eugene, OR) was also performed to stain the myelin
sheaths, following the manufacturer’s specifications. After
rinsing in PBS, the sections were incubated at 37 °C for
30 min with the secondary antibodies: DyLight488-
conjugated affinity-pure goat anti-mouse IgG (Thermo-
Scientific, Milano, Italy), Rhodamine Red™-X-conjugated
affinity-pure donkey anti-rabbit IgG (Jackson Immunore-
search, West Grove, PA, USA), DyLight488-conjugated
affinity-pure donkey anti-rabbit IgG (ThermoScientific,
Milano, Italy), and Red™-X-conjugated affinity-pure donkey
anti-goat IgG (Jackson Immunoresearch, West Grove, PA,
USA) diluted in PBS–0.3% Triton X-100, 1:100. The
sections were then rinsed in PBS and mounted in phenyl-
enediamine solution (0.1% 1,4-phenylenediamine, 50% gly-
cerine, carbonate/bicarbonate buffer pH 8.6, Sigma, Saint
Louse, USA). The control slices were incubated with the
secondary antibodies only and processed in parallel. Images
were captured using a Nikon Eclipse E600 microscope
equipped with digital CCD camera Q Imaging Retiga-
2000RV (Q Imaging, Surrey, BC, Canada). To analyze the
inflammatory infiltration, the sections were stained with
toluidine blue and evaluated on three replicate sections per
animal, counting the number and severity of cellular infil-
trates over each whole coronal section. Cellular infiltrates
were scored as follows: 0, none; 1, a few inflammatory cells;
2, organization of perivascular infiltrates; and 3, increasing
severity of perivascular cuffing with extension into the
adjacent tissue [28]. The inflammation score derives from
the sum of infiltration scores in each cellular infiltrate.

Spinal cord mRNA analysis
At post-immunization days 1, 5, 8, 11, and 18, five rats
were sacrificed and the total LSC was dissected, snap
frozen, and stored at −80 °C until used.
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The total RNA was prepared from the spinal cord using
QIAzol Reagent, cleaned with RNeasy Mini kit (Qiagen;
Milano- Italy), and eluted in RNase Free Water, and purity
and concentration were evaluated by spectrophotometry
using NanoDrop ND-2000 (ThermoScientific, Milano,
Italy). Complementary DNA (cDNA) synthesis was per-
formed using RT2 First Strand kit following the manufac-
turer’s instructions. In brief, after incubation for 5 min at
42 °C with genomic DNA elimination mix in order to
avoid any DNA contamination, a reverse-transcription
mix of BC3, P2, RE2, and H2O was used and the
transcription was performed in a final volume of 20 μl by
heating first at 42 °C for 15 min, then at 95 °C for 5 min.
Real-time PCR amplification was performed using the
Stratagene Mx3005P multiplex quantitative PCR system
(Agilent Technologies). The expression of genes involved
in MS progression was carried out using RT2 SYBR Green
qPCR Mastermix and the Multiple Sclerosis RT2 Profiler
PCR Array (Qiagen). The genes are grouped according
to the following: T cell activation/signaling, adaptive
immunity, cytokine/chemokine inflammation, demyelin-
ation, and cellular stress. The raw data obtained was
uploaded into GeneGlobe Data Analysis software (SABios-
ciences, Qiagen) for analysis. Relative quantification of
messenger RNA (mRNA) expression was calculated using
the comparative cycle threshold (CT) method and is
expressed as Log2 fold change of expression. The fold
change (2^(−Delta Delta Ct)) is the normalized gene
expression (2^(−Delta Ct)) in the test sample divided by
the normalized gene expression (2^(−Delta Ct)) in the
control sample.

CSF and plasma biomarker analysis
CSF sampling was adapted from the method of Liu and
Duff [29]. Briefly, the rats were anesthetized by iso-
flurane inhalation (Gas Anesthesia System-21100, Ugo
Basile, Varese, Italy) and placed prone on the stereotaxic
instrument letting the body of the rat laid down. A sagit-
tal incision of the skin was made below the occiput, and
the subcutaneous tissue and neck muscles through the
midline were separated and held apart using a microre-
tractor. The dura mater of the cisterna magna was then
penetrated by an 8-cm long glass capillary, which had a
narrowed tip with an inner diameter of about 0.5 mm so
that the CSF flowed into the capillary. After collection,
each sample was centrifuged at 2000×g for 10 min at
4 °C, and the supernatant aliquoted and stored at −80 °C
for biochemical assays.
Blood was collected from the abdominal aorta in

EDTA-K2 Vacuntainer tubes and centrifuged at 3000×g
for 10 min at 4 °C, and the plasma was collected,
aliquoted, and stored at −80 °C until used.
Proteins known to play key roles in neuroinflamma-

tion pathways were selected. For this purpose, Bio-Plex

Pro™ Rat Cytokine 24-plex Assay (Bio-Rad; Milano, Italy)
was used. The kit included EPO, G-CSF (CSF3), GM-
CSF (CSF2), GRO/KC, IFN-γ, IL-1α, IL-1β, IL-2, IL-4,
IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-17A, IL-18,
M-CSF (CSF1), MCP-1 (CCL2), MIP-1α (CCL3), MIP-
3α (CCL20), RANTES (CCL5), TNF-α, and VEGF.
The simultaneous quantification of the different pro-

teins in CSF and plasma was performed using xMAP
technology and a MAGPIX Luminex platform. This
technology makes use of different populations of color-
coded beads of monoclonal antibodies specific to a
particular protein, thus allowing simultaneous capture
and detection of specific analytes from a sample. All the
beads from each set are read off, which further validates
the results. Using this process, xMAP Technology allows
multiplexing of up to 50 unique bioassays within a single
sample, both rapidly and precisely [30, 31]. In brief, after
the incubation of a specific monoclonal antibody conju-
gated bead population with 50 μl of CSF/plasma samples
for 1 h at RT, washed beads were incubated with
detection antibody solution at RT for 30 min, then with
the streptavidin–phycoerythrin conjugated solution (RT,
10 min). After washing, beads were resuspended in the
assay buffer, shaken for 1 min and then a reading
performed on the MAGPIX instrument. The results
were analyzed with xPONENT 4.2 ® software and
expressed as pg/ml.

Statistical analysis
Student’s t test to compare means of two experimental
groups, one-way ANOVA followed by Dunnett’s multiple
comparison tests, and two-way ANOVA followed by
Bonferroni post-test were used. Data are presented as
mean ± standard error of the mean, and significance was
set at P ≤ 0.05. All statistical analyses were performed
using GraphPad Prism 6.0 (GraphPad Software).
For the normalization of gene expression on the RT2

PCR Profiler Array, five housekeeping genes, ribosomal
protein, large, P1, hypoxanthine phosphoribosyltransfer-
ase 1, ribosomal protein L13A, lactate dehydrogenase A,
and actin beta were used. The CT was determined for
each sample and normalized to the average CT of the
five housekeeping genes. A comparative CT method was
used to calculate relative gene expression. Data are
represented as Log2 fold change relative to control. The
P values were calculated on the basis of a Student’s t test
of the replicate 2^(–Delta Ct) values for each gene in the
control group and treatment groups, and P values less
than 0.05 was considered significant.

Results
Clinical profile and histopathology
The clinical profile of EAE is reported in Fig. 1a, b in
which the clinical score (a) and body weight graphs (b)
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Fig. 1 (See legend on next page.)
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are shown. Clinical signs of neurological disabilities in
EAE started at 7–8 DPI and reached the higher score at
11 DPI (acute phase). A remission phase is then ob-
served, from 12 to 15 DPI, followed by a rapid increase
in the clinical score (relapsing phase). Figure 1b shows
the body weight gain, which decreases in EAE groups
from 2 DPI compared to the control group (P < 0.001).
A difference between EAE and adjuvant groups is also
observed from 7 to 12 DPI (P = 0.0139), in close corres-
pondence with the evolution of the symptoms of the
disorder, which is followed by a partial recovery.
Histopathology was performed in the LSC at each time

point investigated, focusing on inflammation and demye-
lination. Representative images of toluidine blue staining
(C-H) and immunofluorescence visualization of OX42-
IR microglia cells (I-L), GFAP-IR astrocytes (M-P), and
myelin (T-W) are reported in Fig. 1. Toluidine staining
illustrates the massive cellular infiltrate starting from
11 DPI. The semiquantitative evaluation reveals a se-
vere and diffuse cellular infiltrate (P < 0.0001) in the
LSC at the acute and the remission phases (11, 18 DPI)
(Fig. 1q). Significantly, microglial reaction starts at 8
DPI (P = 0.0001) (Fig. 1r), when OX42-IR cells take on
a rounder morphology (see high-magnification inserts
in Fig. 1i, j, EAE t8, compared to the control) and con-
verge around blood vessels, reaching a peak at 11 DPI
(P < 0.0001). The astroglial reaction was also analyzed
by GFAP-immunostaining and a higher immunoreactiv-
ity was observed at 8 DPI (P = 0.0005) (Fig. 1m, n,
control, compared to EAE t8). Demyelination signs
appear at 8 DPI as revealed by the slight decrease in
FluoroMyelin staining intensity in the gracile fasciculus
(gr) of the LSC, (Fig. 1t, u, control, compared to EAE
t8; see arrows), which is very extensive at 11 DPI
(Fig. 1t, v, EAE t11, compared to the control; see plus)
and has partially recovered at 18 DPI (Fig. 1t, w,
control, compared to EAE t18; see asterisks).

Regulation of inflammatory mediators in SC during early
asymptomatic EAE
The mRNA expression of genes that encode for T cell
activation/signaling, adaptive immunity, cytokines/che-
mokines, and cellular stress involved in neuroinflamma-
tion and demyelination processes were studied in the SC

by real-time PCR. The complete list of investigated
genes is presented in Fig. 2. For biological averaging and
variance reduction, samples from each group were
pooled for microarray experiments, in fact, for very
small designs, pooling dramatically improves accuracy
[32–34]. The results from the different groups are
presented in a clustergram that performs non-supervised
hierarchical clustering to display a heat map with dendro-
grams indicating co-regulated genes across groups, criteria
for significance are reported in the table of magnitude
gene expression (Fig. 2). Several pro-inflammatory cyto-
kines and chemokines such as IL-1β and CCL12 were
highly up-regulated in the SC at 8 DPI and reached a peak
at 11 DPI. IFN-γ, CXCL11, and LTA were the most up-
regulated genes, showing more than 22 Log2 fold change
compared to the controls at 8 DPI, around 115 at 11 DPI,
and more than 67 Log2 fold change at 18 DPI. The high-
est up-regulation was observed for IFN-γ, 68.12 Log2 fold
change at 8 DPI, 179.15 at 11 DPI, and 98.7 at 18 DPI
(Fig. 2). Notably, ADAM17 and CSF1 mRNAs are strongly
down-regulated at 1 DPI. Most of the anti-inflammatory
cytokines and chemokines were down-regulated with a
profile opposite to that observed for the pro-inflammatory
ones (starting to decrease from 8 DPI), including VEGF,
SOD1, NTF3, APC, HEXB, while an up-regulation was
observed for some anti-inflammatory mediators such as
GPX1 and IL-10. With regard to genes involved in mye-
lination, a down-regulation starting from 8 DPI was
observed, including MAL, MBP and PMP22. To note, the
overexpression of IFN-γ mRNA in EAE in acute phase
(11 DPI) is the highest EAE-induced up-regulation ob-
served compared to the other inflammatory mediators
investigated (Fig. 2).

Inflammation biomarkers at plasma and CSF level are
regulated during early asymptomatic EAE
In order to evaluate the kinetics of inflammation bio-
markers during EAE, 24 cytokines and chemokines,
EPO, G-CSF (CSF3), GM-CSF (CSF2), GRO/KC, IFN-γ,
IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12p70,
IL-13, IL-17A, IL-18, M-CSF (CSF1), MCP-1 (CCL2),
MIP-1α (CCL3), MIP-3α (CCL20), RANTES (CCL5),
TNF-α, and VEGF, were simultaneously quantified in
CSF samples at the different time points investigated

(See figure on previous page.)
Fig. 1 EAE clinical profile and histopathology. a The time-course of the neurological disability score of EAE animals is reported in the graph
(mean ± SD), showing the peak at day 11 (acute phase), the remission phase at day 16, and relapse at day 18. b The body weight gain in
experimental animals is reported in the graph (mean ± SD), revealing a significant difference between the control and EAE group. Statistical
analysis: one-way ANOVA, ****P < 0.0001. Toluidine blue staining of the lumbar spinal cord (c–h) massive cellular infiltrate starting from 11 DPI
(EAE t11) OX42-IR microglia staining (i–l). GFAP-immunostaining (m–p). q The semiquantitative evaluation of the inflammation score in the LSC.
r Immunoreactivity indicates that microglia activation starts at 8 DPI. s Astrocyte immunoreactivity starts at 8 DPI. Fluoromyelin staining (t–w) in
control (t); EAE t8 (u); EAE t11, the acute phase (v); and EAE t18, the remission-relapsing phase (w). Arrow in u indicate a partial demyelination at
8 DPI; plus in v indicates severe demyelination during the acute phase; asterisks in w indicate a partial recovery at 18 DPI. Statistical analysis:
one-way ANOVA and Dunnett’s multiple comparison test (*P < 0.05, **P < 0.01, ***P < 0.001). t time
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(1, 5, 8, 11, and 18 DPI, Fig. 3a, c). IL-17A, IL-1β, TNF-α,
and IL-10 were significantly increased at 8 DPI in
EAE group compared to the control animals (P = 0.0412;
P = 0.0127; P = 0.0039; P = 0.0412, respectively), reaching
a peak at 11 DPI (P < 0.0001; P < 0.0001; P < 0.0001;
P = 0.0074, respectively) and decreasing again at 18
DPI (ns; P = 0.0035; P < 0.0001; P = 0.0128, respectively).
For both pro-inflammatory chemokines CCL2 and CCL3
and for the anti-inflammatory cytokines IL-5, the same
significant profile was observed, reaching a peak at 8
DPI (P < 0.0001; P = 0.001; P < 0.0001, respectively)
then starting to decrease starting from 11 DPI (P < 0.0001;
P = 0.0046; P < 0.0001, respectively). The levels of CCL20
and IL-6 were significantly increased in EAE animals only
at 8 DPI (P < 0.0001; P = 0.004, respectively) (Fig. 3).
Unpredictably, IFN-γ, IL-13, IL-2, IL-1α, IL-4, IL-

12p70, and GM-CSF were not detected at any of the
time points analyzed in the CSF in our experimental
conditions.
The different cytokines/chemokines quantified in

CSF were also simultaneously measured in plasma
samples (Fig. 3b, d) in order to both correlate with
CSF changes and to evaluate the peripheral effect of
adjuvant. IL-1β increased in EAE compared to con-
trol group of animals at 8 DPI (P = 0.0231). GM-CSF
was the only cytokine not detectable at any of the
time points analyzed, and no significant changes was
observed for the rest of the panel compared to the
control.
No significant variations between adjuvant and con-

trol groups were observed in CSF or plasma at the
investigated times.

Fig. 2 Inflammation genes mRNA expression level in the SC. The expression levels of mRNA of T cell activation/signaling, adaptive immunity,
and cytokine/chemokine inflammation and demyelination are reported in the clustergram, based on heat map with dendrograms, indicating the
co-regulated genes across groups. Red color for a gene indicates expression above the median, and green color indicates expression below the
median. The table presents differentially expressed genes. Statistical analysis was performed using Student’s t test of the replicate 2^(−Delta Ct)
values for each gene in the control group and treatment group; P < 0.05 was considered significant
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Immunohistochemical analysis
In order to elucidate the cell type producing the most
regulated biomarkers, double-labeling experiments were
performed in the LSC of the control and EAE animals.

Representative images from the control and EAE
animals at 8, 11, and 18 DPI are shown in Fig. 4. The
following markers were investigated: OX42 as marker
for microglia; CD86, as marker for M1 macrophages

Fig. 3 Cytokine/chemokine levels in CSF/plasma. The amount of IL-1b, IL-17A, IL-5, TNF-α, IL-6, MIP-3a (CCL20), IL-10, MCP-1 (CCL2), RANTES
(CCL5), and MIP-1a (CCL3) in CSF (a, c) and plasma (b, d) in the control, EAE, and adjuvant groups are reported. Results are presented as individual
values (pg/ml), and the mean ± SD is also shown. Statistical analysis: one-way ANOVA and Dunnett’s multiple comparison test (*P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001)
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phenotype; CD163, as marker for M2 macrophages
phenotype; CD44, as marker for T lymphocytes; NG2, as
marker for oligodendrocyte precursor cells (OPCs); and
CNPase, as marker for oligodendrocytes. Immunostain-
ing was quantified by a computerized procedure to
evaluate the immunoreactive area. As expected, the in-
crease in OX42-IR observed at 8 DPI corresponds to in-
creased expression of the M2 cytokine CD163 (Fig. 4a–d,
see plus in B, M), while the M1 macrophage marker CD86
showed the highest immunoreactive area at 11 DPI
(Fig. 4i–l, p). This activation was accompanied by an in-
crease in the CNPase immunoreactive (IR) area starting
from 8 DPI (Fig. 4e–h, n), which partially contrasts with
the FluoroMyelin staining results (Fig. 1t–w). In the con-
trol group, CD44 was expressed by oligodendrocytes
(Fig. 4e; see arrows), while this co-localization was no
longer present in the EAE animals at 8, 11, and 18 DPI
(Fig. 4f; see asterisk). The highest up-regulation of the

different markers verified in the white matter was
detected in the acute phase of EAE (Fig. 4c, g, and
k), where also a significant up-regulation of CD163
(P = 0.0016), CNPase (P = 0.0197), CD44 (P = 0.0005),
and CD86-IR (P < 0.0001) areas were observed at 11
DPI (Fig. 4m, n, o, and p, respectively).
No significant results were observed in EAE t1,

EAE t5, and adjuvant experimental groups (results
not shown).

CSF1 regulation in early presymptomatic EAE
Going one step deeper into biomarker regulation at the
early phase of EAE, it was found that the pro-
inflammatory mediator CSF1 (The CSF-1R is a member
of the platelet-derived growth factor receptor (PDGFR)
family of class III receptor tyrosine kinases that includes
PDGFRα/β, stem cell factor receptor (c-Kit), and Flt3/
Flk2) [35] was regulated starting from 1 DPI in EAE

Fig. 4 Immunohistochemistry analysis. Double immunostaining of OX42/CD163, CNPase/CD44 and CD86/NG2 in the lumbar spinal cord of
control and EAE rats. a–d Double labeling for microglial cells marker (OX42) and M2 macrophages marker (CD163) in the white matter of control
(a) and EAE experimental groups: 8, 11, and 18 DPI (b–d). Plus in b indicates the activated microglia expressing CD163. e–h Double labeling for
oligodendrocyte marker (CNPase) and T lymphocyte marker (CD44) (see also the included high-power magnifications). CD44 is expressed by
oligodendrocytes in control. Arrows in e indicate co-localization, although this expression changed at 8 DPI in f. i–l Double labeling for oligodendrocyte
precursor cells (NG2) and M1 macrophages marker (CD86). The immunoreactive area of CD163 (m), CNPase (n), CD44 (o), and CD86 (p) in EAE rats
compared to controls. Statistical analysis: one-way ANOVA and Dunnett’s multiple comparison test (*P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001)
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group compared to the control in all the biological
samples analyzed (Fig. 5a). In plasma, CSF1 was signifi-
cantly up-regulated only at 1 DPI (P = 0.0006), then
continuously decreased till the last time point studied,
18 DPI (Fig. 6b), while in CSF, CSF1 level started to
decrease at 1 DPI, becoming significant at 11 and 18
DPI (P < 0.0001, P < 0.0001) (Fig. 5c). Notably, CSF1-IR
in the tissue also increased starting from 1 DPI (P = 0.0003)
(Fig. 5e, k), then decreased at 5 and 8 DPI (Fig. 5g, h)
ultimately reaching the highest immunoreactivity at 11 DPI
(P < 0.0001) (Fig. 5i, k). The mRNA expression of CSF1
gene in SC was also analyzed (Fig. 2), and a down-
regulation at 1 and 11 DPI was observed (Fig. 5d). In the
attempt to identify the CSF1-producing cells at 1 and 11
DPI, double-labeling immunostaining of CSF1 with CNPase
and GFAP was performed in the LSC (Fig. 5l–o). Figure 6n,
o shows that CSF1 is constitutively expressed by astrocytes
not only in the EAE animals but also in the control (results
not shown). Interestingly, CSF1 was expressed by oligoden-
drocytes at 1 DPI in EAE (Fig. 5l), while this expression is
no longer present as from 11 DPI (Fig. 5m).

Functional pathway and network analysis
In an exploratory study, a pathway analysis approach of
the different proteins derived from the most early regu-
lated genes at 8 DPI was implemented. This time point
corresponds to the beginning of the regulation of genes
in the CNS, while cellular infiltrates are not yet present
and clinical signs start to appear. We proceed through
the web-software STRING 10.0 (http://string-db.org/)
and Gene Ontology databases. The protein–protein
interaction analysis (both physical and functional inter-
actions) was performed using default parameters (high
confidence, 0.7) and R.norvegicus as the organism of
interest. The software allows the net of interactions
including other proteins closely linked to the one
analyzed to be extended, in order to obtain a better un-
derstanding of the possible pathways affected by EAE in
DA rats at early onset. The analysis showed that almost
all the proteins deriving from genes of interest (except
for the CXC family) did not directly interact with each
other (Fig. 6a). The extended network (indirect protein–
protein interactions) showed that those proteins were
connected in four clusters according to their involve-
ment in the biological process (autoimmune disease),
situating STAT1 (signal transducers and activators of
transcription), FLT1 (vascular endothelial growth factor
receptor 1), and TRAF6 (TNF receptor associated factor)
as nodes of the extended net linking the different groups
(Fig. 6b). To gain further insight into the biological
significance of those clusters in MS, an enrichment ana-
lysis using Gene Ontology was performed. It was found
that these four clusters consist of a Wnt signaling path-
way (the green cluster), a cytokine-mediated signaling

pathway (the yellow cluster), T cell chemotaxis (the blue
cluster), and positive regulation of mitogen-activated
protein tyrosine kinase (MAPK) (the red cluster). Not-
ably, CSF1 takes part of MAPK cluster.

Effects of selective inhibition of CSF1R activity on the
clinical score of EAE animals
Since the peculiar temporal expression pattern of CSF1
in particular in the very early phase of the disease, the
tyrosine kinase activity of CSF1R was inhibited by the
oral administration of GW2580. GW2580 is a highly
selective inhibitor of the c-FMS kinase, and through this
pathway, this small molecule blocks CSF1 signaling.
Treatment started 1 day before the immunization and
till 11 DPI. The clinical profiles of the disease in EAE,
EAE + GW2580, control + GW2580, and vehicle groups
of animals are reported in Fig. 7, in which the clinical
score (a) and body weight graphs (b) are shown. Clinical
signs of the neurological disabilities in EAE were the
same as reported in the first group of animals included
in our study (Fig. 1a), which prove the reproducibility of
the model. While the clinical signs started at 6–7 DPI in
the EAE group, a delay in the appearance of the neuro-
logical disability was observed in the EAE + GW2580
group. The acute phase was at 11–12 DPI with a
maximum score of 5, while a significant reduction of the
severity of the disease was observed in the EAE +
GW2580 group (P < 0.001) with a maximum score of
2.8. Interestingly, the EAE +GW2580 animals did not
show any relapse phase (P < 0.001) and after the acute
phase, they were recovering till the 18 DPI, last day of
the experiment (P < 0.001). Figure 7b shows the body
weight gain. A decrease was observed in the EAE +
GW2580 groups from 2 DPI compared to the GW2580
animals (P < 0.001), which is the same profile of the body
weight loss observed in the EAE group but less severe,
in close correspondence with the evolution of the symp-
toms of the disorder, which is followed by a recovery.
We also calculated the cumulative disability index,
reported in Fig. 7c, observed in EAE compared to the
EAE + GW2580 groups (P < 0.001).

Discussion
The aim of this study was to investigate the expression
profile of molecules involved in inflammation and de-
myelination in the very early presymptomatic phase of
EAE induced by active immunization in female DA rats
by comparing the tissue (spinal cord), CSF, and plasma.
It was previously demonstrated that in the acute phase
of this model, a massive infiltration of inflammatory cells
and extensive demyelination were observed in the spinal
cord [36–38]. Samples collected at symptom-free times
(1 and 5 DPI) and at the symptom onset (8 DPI), peak
(11 DPI), and relapse (18 DPI) were then examined
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Fig. 5 Early regulation of CSF1 in EAE. a Schematic illustration of CSF1 regulation in all the biological samples analyzed on Excel: the XY scatter
option is chosen and under the chart subtypes, the option connecting the points with smooth lines with markers is selected. The amount of CSF1
in plasma (b) and CSF (c) in the control, EAE, and adjuvant groups are reported. Results are presented as individual values (pg/ml), and the mean
± SD is also shown. d The expression level of mRNA of CSF1 is reported in the clustergram, based on heat map with dendrograms, indicating the
co-regulation across the different groups (e–j) k CSF1-immunostaining in the white matter of control and EAE experimental groups: 1, 5, 8, 11,
and 18 DPI. The immunoreactive area of CSF1 in EAE rats compared to controls. Double labeling for CSF1 and oligodendrocytes marker (CNPase)
and GFAP in the EAE group 1 and 11 DPI (l, m and n, o, consecutively). Statistical analysis: one-way ANOVA and Dunnett’s multiple comparison
test (*P < 0.05, ***P < 0.001, ****P < 0.0001)
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using high-throughput technologies together with bio-
informatic analysis for molecule and pathway identifica-
tion in CNS tissue and biological fluids.
At mRNA level (spinal cord tissue), T cell activation/

signaling, adaptive immunity, cytokine/chemokine in-
flammation, demyelination, and cellular stress were
analyzed, thereby including astroglial and microglial
markers. Microglia markers refer to the “resting state”
(M0); to inflammatory microglia (M1 polarization)

producing numerous pro-inflammatory cytokines/chemo-
kines; and to anti-inflammatory microglia (M2 polarization),
which triggers them to endorse regeneration and eliminate
debris [39–41]. The most significant results were verified by
means of double-labeling immunohistochemistry. At pro-
tein level in CSF and plasma, 24 cytokines were analyzed.
Our first important result is that an early regulation of

most of the inflammatory and demyelinating biomarkers
was observed as soon as symptoms appear (8 DPI) but

Fig. 7 Effects of selective inhibition of CSF1R activity on the disease progression. a. Time-course of the neurological disability score of EAE and
EAE + GW2580 animals is reported in the graph (mean ± SD), showing the peak at day 11 (acute phase), the remission phase at day 16, and
relapse at day 18 for EAE animals while a delayed and reduced clinical score was observed for EAE + GW2580 group. b The body weight gain
(mean ± SD) is reported in the graph (mean ± SD), enlightening a significant difference between GW2580 and EAE + GW2580 group. c Cumulative
disability index. Statistical analysis: a, b two-way ANOVA and Bonferroni post-test (***P < 0.001); c one-way ANOVA, ****P < 0.0001

Fig. 6 Functional pathway and network analysis. a Illustration of protein interactions of the most regulated gene at 8 DPI upon querying the
STRING 10.0 protein network (evidence view). b The extended net (high confidence, 0.7). Nodes represent proteins; same node colors indicate
membership of the same cluster, and different line colors denote the type of evidence for the interaction
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before the disease peak (11 DPI). Molecular markers of
microglial activation toward a phagocytic phenotype are
found (8 DPI), when also astrocyte hypertrophy is
observed. The highest regulation of these markers is
observed when symptoms peak (11 DPI, acute phase)
and then partially recover at relapse (18 DPI). Signifi-
cantly, microglia and astrocytes were activated early in
the EAE animals by 8 DPI. Indeed, almost all the cyto-
kines/chemokines shift their expression at 8 DPI in
plasma, CSF, and even in the SC. In particular, a higher
regulation of CCL2, TNF-α, and IL-1β was found, pos-
sibly indicating the initiation of BBB breakdown. Indeed,
it has been demonstrated that the CCL2-CNS level can
be induced by the pro-inflammatory cytokine IFN-γ,
TNF-α, and IL-1β and does affect the BBB integrity and
attract monocytes to the CNS [42, 43]. Interestingly, we
found that the anti-inflammatory biomarkers, IL-5 and
IL10, have the same profile of expression as the pro-
inflammatory mediators, revealing that both “M1” and
“M2” polarization is present at the same time during
EAE. Actually, very recent studies have shown that micro-
glia/macrophages simultaneously express both “M1” and
“M2” phenotypic markers in brain trauma, suggesting that
these cells display a mixed phenotype due to the fact they
cannot adequately switch to a polarized “M1-only” or
“M2-only” phenotype [44, 45].
Using a functional pathway analysis tool, Gene Ontol-

ogy and Enrichment Analysis, four possible pathways
were indicated as affording suggestive evidence of being
associated with the early phase of MS: the Wnt signaling
pathway, the cytokine-mediated signaling pathway, the T
cell chemotaxis pathway, and MAPK. Significantly, Wnt
signaling has been recognized as the central tenet in the
development and regeneration of myelin in the CNS
[46]. Chronic activation of canonical Wnt signaling in
oligodendrocyte precursors results in delayed develop-
mental and regenerative myelination [47, 48]. Interest-
ingly, IL-6, which belongs to the MAPK pathway, was
detected only at 8 DPI. Besides, IL-17A, which is
secreted by T helper-17 which contributes to pathogen-
esis in MS and EAE [49], started to be regulated at 8
DPI, confirming that IL-6 promotes T cell development
at 8 DPI. Indeed, it has been shown that IL-6-deficient
mice were resistant to EAE because they fail to induce
CNS–T helper-17 cells [50].
Our second major result is that the colony-stimulating

factor CSF1, part also of MAPK pathway, was regulated
at 1 DPI in EAE groups compared to the control, not
only in the plasma but also in CSF and SC. CSF1, is an
integral tyrosine kinase transmembrane receptor and
signals through its receptor CSF1R (also known as c-
FMS) to regulate the differentiation, proliferation, and
recruitment of microglia [51, 52]. Thus, our data indi-
cate that the first sign of immunological response in

EAE occurs in the CNS already 24 h after immunization
and plasma biomarker could reflect microglia activation
in the tissue. It was then attempted to identify the cell
type producing CSF1. It was found that CSF1 at 1 DPI is
expressed by oligodendrocytes and astrocytes in the EAE
animals, while in the acute phase (11 DPI), only astro-
cytes express CSF1. However, it was also seen that CSF1
is expressed by GFAP-positive cells in control, adjuvant-
injected, and intact animal. Moreover, we found that the
treatment with GW2580, a selective inhibitor of CSF1R,
delayed the onset of the disease, significantly reduced the
clinical severity and surprisingly prevented the relapse
phase even though the treatment was performed till the
11 DPI, thus suggesting the CSF1 is a major molecular
regulator in the very early phases of EAE. To our know-
ledge, our results provide the first evidence of the very
early regulation of CSF1 in EAE and on a major role of
CSF1-mediated events in EAE onset and progression.
A major question arising from this result is the cell

type responsible for this very early effect. The CSF1
receptor (CSF1R), encoded by the proto-oncogene c-fms
[53, 54] and having CSF1 and IL-34 as natural ligands
[55], is expressed by several cell types, including macro-
phages and microglia [56]. In the brain, it has been
confirmed that under normal conditions, microglia are
the only cell type that expresses the CSF1R [57, 58].
Several lines of evidence suggest that microglial ac-
tivation is mediated by the binding of CSF1 to CSF1R,
which triggers the release of inflammatory cytokines
[59, 60]. A role of CSF1 in microglial activation and
disease progression has been described in several models
of injury and neurodegenerative diseases, but in few of
them, the responsible cell type has been identified. In
neuropathic pain induced by peripheral nerve injury,
CSF1 is produced and retrograde transported to the spinal
cord by sensory neurons [61]. In the mouse model of
amyotrophic lateral sclerosis, the positive effects of
GW2580 has been attributed to the attenuation of macro-
phages infiltration of the peripheral nerve [62]. In an
Alzheimer’s mouse model, prolonged treatment with
GW2580 directly target microglia regulating cytokines
production and also improving the functional outcome
[25]. When used in EAE starting from 10 DPI, GW2580
reduces the proportion of peripheral macrophages, also
decreasing the number of inflammatory foci in the CNS
[63]. This effect has at least partially attributed to the
repression of the autocrine signaling of inflammatory mac-
rophages and microglia, leading to the reduction of neu-
roinflammatory cytokines and chemokines [57, 64, 65],
suggesting that targeting tyrosine kinase receptors such as
c-Fms and PDGFR could prevent the development of the
disease by enhancing BBB integrity [66].
According to our results, it could thus be speculated

that CSF1-CSF1R signaling plays an important role in
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not only the early phase of EAE but also all along the
disease progression. CSF1 could be so a good trigger for
microglial activation and subsequent induction of neu-
roinflammation, and its increase could be detected in
biological fluids including plasma. Further studies will
elucidate the mechanism of this early microglial activa-
tion, also in view of possible therapeutic implications. In
fact, the therapeutic potential of the CSF1R kinase
inhibitor has been explored in many pathologies such as
cancer, bone disease, inflammatory diseases, and other
autoimmune disorders, and so several CSF1R tyrosine
kinase inhibitors are under development for clinical
applications [67–70].

Conclusions
In the attempt to elucidate still elusive aspects of multiple
sclerosis (MS) pathogenesis, we performed a time-course
study in experimental allergic encephalomyelitis (EAE),
the most widely used MS rodent model, focusing on the
presymptomatic phase. By investigating neuroinflamma-
tion and demyelination biomarkers in the tissue, CSF, and
plasma using high-throughput technology and bioinfor-
matics analysis, we discovered the very early regulation of
the chemokine colony-stimulating factor 1 (CSF1), which
indicates the occurrence of microglia activation already
1 day after immunization. The selective inhibition of
CSF1R decreased EAE clinical severity and prevents the
relapse phase suggesting the importance of CSF1-CSF1R
signaling in microgliosis and inflammation in MS.
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CHAPTER II 

 

Effect of CSF1R inhibition on Blood-Brain Barrier Disruption and temporal evolution of 

experimental allergic encephalomyelitis in rats. 
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Abstract: 

Dysfunction of the blood-brain barrier (BBB) is a primary characteristic of experimental 

allergic encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). We 

have previously demonstrated that, GW2580, a selective inhibitor of CSF1R, slow the 

disease progression, reduce the severity and prevent the relapse phase. However, whether 

this effect of GW2580 is through protecting the integrity and function of the BBB is not 

known. In the present study, we show that GW2580 treatment had a therapeutic effect in 

EAE rats, with reduction of microglia activation, IgG extravasation, and T-cell 

infiltration. Our findings demonstrate that GW2580 down regulating microglia activation 

reduces BBB leakage by inhibiting activities of MMP-2 and -9. Taken together, our 

results identify a novel mechanism underlying the effect of GW2580 that could be a novel 

therapy for MS. 
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Introduction 

Although multiple sclerosis (MS) pathology is not fully understood, blood-brain barrier 

(BBB) dysfunction plays a crucial role in the pathogenesis of this disease. In both MS and 

experimental allergic encephalomyelitis (EAE), the most widely used animal model for 

MS, proinflammatory cells and toxic mediators migrate into the brain via the damaged 

BBB, resulting in cerebral edema, demyelination, and neural cell death (Varatharaj and 

Galea, 2017; Varatharaj et al., 2017). 

It has been shown that BBB breakdown is accompanied by excessive expression of 

matrix metalloproteinases (MMPs) (Lakhan et al., 2013; Zhang et al., 2013). MMPs, 

including MMP-9 and MMP-2, belong to a class of zinc-bound proteases, whose 

functions include induction of inflammation, cleavage of myelin proteins, activation or 

degradation of inflammatory mediators, and direct damage to CNS cells (Lu et al., 2011; 

Song et al., 2015). Abnormal increases in MMP-9 and MMP-2 in endothelial cells may 

collectively impair endothelial barrier function by degrading the vascular basement 

membrane and tight junctions (TJs) (Abbott et al., 2006; Alvarez et al., 2011; Ransohoff 

et al., 2003; Stamatovic et al., 2008; Tietz and Engelhardt, 2015). Inflammatory mediators 

derived from infiltrating leukocytes regulate MMP-2/9 activity at the parenchymal 

border, which in turn promotes astrocyte secretion of chemokines and differentially 

modulates the activity of different cytokines/chemokines at the CNS border, thereby 

promoting leukocyte migration out of the cuff (Malemud, 2006; Song et al., 2015; Turner 

and Sharp, 2016). Hence, cytokines, chemokines, and cytokine-induced MMP-2/9 activity 

specifically at the inflammatory border collectively act to accelerate leukocyte 

chemotaxis across the parenchymal border.  

Data suggest that penetration of the endothelial and parenchymal barriers are independent 

steps involving distinct molecular mechanisms. While several factors have been identified 

that play important roles in penetration of the endothelial cell monolayer (Engelhardt and 

Liebner, 2014) and its basement membrane (Sixt et al., 2001; Sorokin, 2010) 

comparatively little is known about the subsequent penetration of the parenchymal 

border. Chemokines such as CXCL12 have been shown to be required for holding T cells 

in the perivascular cuff, and its proteolytic degradation by MMPs releases leukocytes to 

migrate into the CNS parenchyma (Laoui et al., 2014; McCandless et al., 2006). 
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Our previous data suggest that the treatment with GW2580, a selective inhibitor of 

CSF1R, decreased EAE clinical severity and prevented the relapse phase, thus suggesting 

the importance of CSF1-CSF1R signaling in microgliosis and inflammation in EAE 

(Borjini et al., 2016). However, whether this effect of GW2580 is through protecting the 

integrity and function of the BBB is not known. In the present study, we show that 

GW2580 treatment had a therapeutic effect in EAE rats, with reduction of microglia 

activation, IgG extravasation, and T-cell infiltration. Furthermore, GW2580 treatment 

reduced BBB leakage by inhibiting activities of MMP-2/9, and down regulating microglia 

activation. Our results suggest that inhibition of early microglia activation by inhibiting 

CSF1R during the presymptomatic EAE partially restores functional BBB integrity and 

limits immune cell infiltration into the CNS. 

Materials and methods 

Animals 

Female Dark-Agouti rats (DA) (Harlan, Italy), 151-167 g body weight, were used in this 

study, placed on ad libitum food and water, and housed three per cage on a 12 h light/dark 

cycle. All animal protocols described herein were carried out in accordance with 

European Community Council Directives (86/609/EEC), approved by the intramural 

ethical committee for animal experimentation of Bologna University and the Ministry of 

Health (n° 158/2013-B, n° 607/2016-PR) and comply with the guidelines published in the 

NIH Guide for the Care and Use of Laboratory Animals (Louhimies, 2002). 

EAE induction and GW2580 treatment 

Rats were sensitized by a medium containing 0.15mg/ml guinea pig spinal cord tissue in 

complete Freund's adjuvant (CFA, Sigma, Saint Louse, USA), 50% v/v, to which 5 

mg/ml of heat-inactivated Mycobacterium tuberculosis (Difco H37Ra, DB, Milan, Italy) 

was added. Sensitization was performed by injecting 100 µl in both hind pads. EAE 

(n=48) and adjuvant-injected rats (CFA, 50% v/v, heat-inactivated Mycobacterium 

tuberculosis, 5 mg/ml) (n=15) were sacrificed at 1, 5, 8, 11 and 18-day post immunization 

(DPI). GW2580 (LC Laboratories, Boston, USA) was dissolved in 0.5% 

hydroxypropylmethylcellulose and 0.1% Tween 80 (Conway et al., 2005; Leblond et al., 

2015). Rats (control+GW2580 and EAE+GW2580 groups) were under GW2580 

treatment at 40 mg/Kg once daily by oral gavage using flexible plastic feeding tubes FTP-

15-78-50 (Instech Laboratories, Netherlands) for one-day prior and eleven consecutive 
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days following the immunization. Control rats (n=8), vehicle (0.5% 

hydroxypropylmethylcellulose / 0.1% Tween 80) (n=6); control+GW2580 (n=6); 

EAE+GW2580 (n=6) were sacrificed at 18 DPI (last day of the experiment). 

Rats were weighed daily and examined for clinical signs of EAE, according to the 

following semi quantitative score for neurological disability: 0 = no signs, 1 = loss of tail 

tone, 2 = mono or bilateral weakness of hind legs or middle ataxia, 3 = ataxia or paralysis, 

4 = severe hind legs paralysis, 5 = severe hind leg paralysis and urinary incontinence 

(Calza et al., 2002). In view of the animals’ disability, wet food was included inside the 

cages to facilitate feeding. At 1, 5, 8, 11 and 18 DPI, eight EAE rats were randomly 

sacrificed. From each experimental group, five animals were used for proteomic and 

molecular biology experiments and three for morphology and immunohistochemistry. 

Spinal cord mRNA analysis 

Total RNA was prepared from spinal cord using QIAzol Reagent, cleaned with RNeasy 

Mini kit (Qiagen; Milano- Italy) and eluted in RNase Free Water and purity and 

concentration were evaluated by spectrophotometry using NanoDrop ND-2000 

(ThermoScientific, Milano, Italy). cDNA synthesis was performed using RT² First Strand 

kit following the manufacturer’s instructions. In brief, after incubation for 5 min at 42°C 

with Genomic DNA elimination mix in order to avoid any DNA contamination, a reverse-

transcription mix of BC3, P2, RE2 and H2O was used and the transcription performed in a 

final volume of 20 µl by heating first at 42°C for 15 min, then at 95°C for 5 min. Real-

time PCR amplification was performed using the Stratagene Mx3005P multiplex 

quantitative PCR system (Agilent Technologies). The expression of genes involved in cell 

adhesion and inflammatory cells infiltration was carried out using RT2 SYBR Green 

qPCR Mastermix (Qiagen). The raw data obtained was uploaded into GeneGlobe Data 

Analysis software (SABiosciences, Qiagen) for analysis. Relative quantification of 

mRNA expression was calculated using the comparative cycle threshold (CT) method and 

is expressed as Log 2 Fold Change of expression. The Fold Change (2^(- Delta Delta Ct)) 

is the normalized gene expression (2^(- Delta Ct)) in the test sample divided by the 

normalized gene expression (2^(- Delta Ct)) in the control sample. 
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Histochemical staining 

To analyze the cerebellum’s perivascular cuffs, tissues were cut into 10 µm thickness 

sections on the cryostat (Leica CM1950, Walldorf, Germany), and stained with 

hematoxylin and eosin (H&E) according to standard procedures. 

Immunohistochemistry 

Cerebellum tissues were fixed in 1.5% paraformaldehyde saturated aqueous solution in 

0.1 M Sörensen buffer pH 7 for 4 h then embedded in Tissue-Tek® O.C.T.™ Compound 

(Sakura Finetek Europe, Alphen aan den Rijn, Netherlands). Tissues were frozen and kept 

at –80°C until processed. Sections (10µm thickness) cut on the cryostat (Leica CM1950, 

Walldorf, Germany) were incubated for 1 h with PBS-0.5% Triton X-100, 1% BSA, 

followed by incubation with the primary antibodies diluted in the pre-absorption solution 

overnight at 4°C. The primary antibodies and dilutions used were: rabbit anti-human CD3 

(1: 400), Alexa Fluor 488 mouse anti-glial fibrillary acidic protein (GFAP) (1: 1000), 

mouse anti-mouse neuronal nuclei (NeuN), rabbit anti-mouse Ionized calcium binding 

adaptor molecule 1 (Iba 1) (1: 100), rabbit anti-human SDF-1 (Cxcl-12a) (1: 400), donkey 

anti-rat IgG Alexa Fluor 594 (1: 1000). 

After rinsing in PBS, the sections were incubated at 37°C for 2 h with the secondary 

antibodies diluted in the pre-absorption solution. Sections were then rinsed in PBS and 

mounted in Evanol solution. Control slices were incubated with the secondary antibodies 

only and processed in parallel. Sections were examined using a Zeiss Axio Imager 

equipped with epifluorescent optics or a Zeiss LSM 700 confocal microscope and 

documented using a Hamamatsu ORCA-ER camera. Images were captured and analyzed 

using Volocity 5.1 software (Improvision). 

Gelatin gel zymography 

Gelatin gel zymography was performed as described previously (Song et al., 2015). 6 mg 

of the cerebellum lysates was used for MMP prepurification, and the resulting 20 ml 

eluted from the columns was loaded onto the gelatin gels. This permitted comparison of 

the relative proportions of pro–MMP-2/9 and activated MMP-2/9 in control versus EAE 

at different time point (8, 11 and 18) and EAE rats treated with GW2580. 
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Results 

GW2580 decreased EAE clinical severity and prevents the relapse phase  

By the oral administration of GW2580, the tyrosine kinase activity of CSF1R was 

inhibited. GW2580 is a highly selective inhibitor of the cFMS kinase and through this 

pathway it blocks CSF1 signaling. Animals were treated one day before the immunization 

and till 11 days after immunization. The clinical profiles of the disease in EAE, 

EAE+GW2580, control+GW2580 and vehicle groups of animals are reported in Figure 1, 

in which clinical score (A) and body weight graphs (B) are shown. While clinical signs of 

the neurological disabilities started at 6-7 DPI in the EAE group, a delay in the 

appearance of the neurological disability observed in EAE+GW2580 group. A maximum 

score 5 was reached by 11-12 DPI which witness the acute phase, while a significant 

reduction of the severity of the disease was observed in EAE+GW2580 group (P<0.001) 

with a maximum score of 2.8. Remarkably, EAE+GW2580 animals didn’t show any 

relapse phase (P<0.001), they were recovering (P<0.001) till the last day of the 

experiment (18 DPI). A decrease the body weight (Figure 1B) was observed in 

EAE+GW2580 group from 2 DPI compared to the GW2580 animals (P<0.001), which is 

the same profile of the body weight loss observed in EAE group but less severe, in close 

correspondence with the evolution of the symptoms of the disorder, which is followed by 

a recovery.   

Reduction of BBB damage and IgG extravasation under GW2580 

A straightforward method of assessing BBB disruption is measurement of extravasated 

blood proteins. We investigated by immunofluorescence the extravasation of endogenous 

anti-rat immunoglobulin G (IgG) in the cerebellum parenchyma (Figure 2). At 8 DPI, 

circulating IgG was accumulated inside the blood vessels, which witness an intact BBB at 

this time point. At 11 DPI, the acute phase (Figure 2B), and 18 DPI, the relapse phase 

(Figure 2C), a disruption of the BBB was observed, evidenced through leakage of IgG 

into the cerebellum parenchyma and hemorrhage around capillaries (Figure 2B-C). With 

the inhibition of CSF1R in EAE by using GW2580 (EAE+GW2580 18 DPI) (Figure 2D), 

in some part of the cerebellum we noticed few IgG extravasation into the CNS tissue, 

while the major part of IgG staining was within the blood vessels (Figure  2D). 

Altered expression of BBB genes in SC during early presymptomatic EAE 

We then quantified the expression of 24 genes coding for proteins and enzymes forming 
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and modifying the BBB in the SC of control and EAE rats. The complete list of 

investigated genes is presented in figure 3. The results are presented in a clustergram that 

performs non-supervised hierarchical clustering to display a heat map with dendrograms 

indicating co-regulated genes across groups, criteria for significance are reported in the 

table of magnitude gene expression (Figure 3). Of the 24 BBB genes tested, an early 

regulation of most of the genes was observed as soon as symptoms appear (8 DPI) but 

before the disease peak (11 DPI). Several adhesion genes such as VCAM, ICAM, were 

up-regulated in the SC at 8 DPI. Most of the chemokines such as CXCL-10, CCL-12, 

CXCR-3 were also up-regulated starting from 8 DPI. With regard to MMP-9, an up-

regulation starting from 8 DPI was observed with 5,46 Log 2 Fold Change. Notably, 

ADAM-17 (metallopeptidase domain 17) mRNAs is strongly down regulated at 1 DPI. 

The highest upregulation was observed for IFN-γ; 68.12 Log 2 Fold Change at 8 DPI, 

179.15 at 11 DPI and 98.7 at 18 DPI (Figure 3). To note, the overexpression of IFN-γ 

mRNA in EAE-acute phase (11 DPI) is the highest EAE-induced up-regulation observed 

compared with the other genes investigated (Figure 3). 

Effect of GW2580 on cerebellum’s perivascular cuffs   

Representative images of hematoxylin and eosin (H&E) staining show absence of 

pathology in healthy controls (data not shown). In the cerebellum white matter at 8 DPI 

(Figure 4A), intact perivascular cuffs (Figure 4E) could be observed where the immune 

cells were accumulated in the perivascular space, in contrast to robust inflammatory 

lesions in the cerebellum white matter at the peak of the disease (11 DPI) (Figure 4B) and 

at the relapse phase (18 DPI) (Figure 4C), where all perivascular cuffs are destroyed 

(Figure 4F), the immune cells quit the perivascular space and infiltrated to the CNS 

tissue. With the selective inhibition of CSF1R in EAE with GW2580 (EAE+GW2580 18 

DPI) (Figure 4D), we could observe much more intact perivascular cuffs as seen at 8 DPI, 

but also some destroyed ones where the immune cells started to infiltrate to the 

cerebellum parenchyma (Figure 4G). 

Cerebellum’s glial activation under GW2580 

In order to evaluate the cerebellum’s glial activation, immunohistochemistry analysis 

were performed in the cerebellum of control (data not shown), EAE animals (8, 11 and 18 

DPI) and EAE + GW2580 at 18 DPI. Representative images are shown in Figure 5. A 

slight activation of microglia and astrocyte was noticed at 8 DPI (Figure 5A-C) whereas 



	
	 	72 

intact perivascular cuffs were observed where perivascular astrocytic endfeets perfectly 

surrounding the blood vessel. Iba-1 immunofluorescence revealed a strong activation and 

amoeboid form of resident microglia and perivascular macrophages at 11 DPI and 18 DPI 

(Figure 5E-F and H-I). A decrease of GFAP- immunofluorescence surrounding vessels 

was observed, at the acute and relapse phase (Figure 5D and G). With the inhibition of 

CSF1R using the oral administration of GW2580, less glial activation was observed 

(Figure 6J-L) comparing to EAE 18 DPI. 

GW2580 attenuate T-cells infiltration in EAE 

Immune cell infiltration into the cerebellum parenchyma was assessed per CD3-

immunofluorescence analyses. Intact perivascular cuffs were observed at 8 DPI (Figure 

6A), few CD3+ cells (Figure 6B) were found within the perivascular spaces (Figure 6C). 

At 18 DPI destroyed cuffs were observed, evidenced through gaps occur between 

astrocytes’ endfeet, supposing to cover microvessels in the CNS and form the glia limits 

(Figure 6D), and a plethora of T-cells infiltrate to the cerebellum parenchyma (Figure 6E-

F). Comparing with EAE 18 DPI, the treatment with GW2580 (Figure 6G-I) seems to 

maintain the perivascular astrocytic endfeets and attenuate T-cells infiltration. 

MMP-2 and MMP-9 in the course of EAE 

MMP-2 and MMP-9 activity have been previously shown to occur at sites of leukocyte 

penetration of the CNS parenchyma (Agrawal et al., 2013; Song et al., 2015) but have not 

been analyzed during the course of presymptomatic EAE. We therefore performed gelatin 

gel zymography for MMP-2 and MMP-9 on cerebellum extracts from naïve DA rats, at 8 

DPI, peak EAE (11 DPI) and EAE relapse phases (18 DPI), revealing that pro- and 

activated-MMP-9 were up-regulated upon appearance of EAE symptoms (8 DPI) and 

declined during recovery phases (Figure 7); while in all samples pro and activated MMP-

2 were constitutively expressed (Figure 7). With the inhibition of CSF1R using the small 

molecule GW2580, activated MMP-9 was down-regulated comparing with the EAE 18 

DPI. 

Effect of CSF1R inhibition on CXCL-12 chemokine 

Since CXCL12 is inactivated by MMP-2 and MMP-9 (McQuibban et al., 2001), and as 

the cleaved form is localized only within CNS parenchyma (Song et al., 2015), we used 

an antibody that recognizes both full-length and cleaved CXCL12.  At 18 DPI, few full-

length form of CXCL12 was observed within cuffs with high signal for the cleaved form 
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within the cerebellum parenchyma (Figure 8A-C). Comparing to 18 DPI, the major 

CXCL12 in EAE rats under GW2580 treatment at 18 DPI (Figure 8D-F) seems to be full-

length form with little signal for the cleaved one and localized at the parenchymal border. 

Discussion 

Multiple sclerosis lesions have been classified into several patterns on the basis of 

demyelination, and the nature and persistence of an inflammatory response leading to 

severe neuronal degeneration (Compston and Coles, 2002; Frohman et al., 2006; 

Lassmann et al., 2012; Trapp and Nave, 2008). Despite the heterogeneity of these lesions, 

alterations in BBB permeability have long been thought to be a key initiating factor in 

MS and EAE (Zigmond et al., 2014). Previously, we have demonstrated that the oral 

administration of GW2580, a selective inhibitor of CSF1R, an integral tyrosine kinase 

transmembrane receptor expressed by microglia cells under normal conditions, decreased 

EAE clinical severity and prevents the relapse phase, thus suggesting the importance of 

CSF1-CSF1R signaling in microgliosis and inflammation in MS (Borjini et al., 2016).  

The current study therefore extended our previous finding to investigate whether this 

effect of GW2580 is through protecting the integrity and function of the BBB.  

At mRNA level (spinal cord tissue), genes coding for proteins and enzymes forming and 

modifying the BBB were regulated as soon as symptoms appear (8 DPI) in EAE rats 

compared to control, while no BBB disruption was seen by that time point. A 

straightforward method of assessing BBB disruption is the measurement of extravasation 

blood proteins in the brain parenchyma, using immunofluorescence or 

immunohistochemistry. An advantage of this method is that no exogenous tracer is 

introduced into the circulation, eliminating potential confounding factors (Kassner and 

Merali, 2015). Remarkably, the presence of IgG-immunofluorescence within the blood 

vessels and few IgG leakages into the CNS parenchyma indicates that a reduction of BBB 

damage was observed in EAE treated rats with GW2580. The integrity of the BBB is 

maintained by multiple components, including the tight junction (TJ)-sealed capillary 

ECs, pericytes and the extracellular matrix (ECM) and astrocyte endfeet (Neuwelt et al., 

2011; Shi et al., 2016). Under GW2580, we observed intact perivascular cuffs, where 

perivascular astrocytic endfeets perfectly surround the blood vessel, and no gaps occur 

between astrocytes’ endfeet.  

Inflammatory perivascular cuffs are comprised of leucocytes that accumulate in the 
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perivascular space around post-capillary venules before their penetration into the 

parenchyma of the CNS. Inflammatory perivascular cuffs are commonly found in the 

CNS of patients with MS and animals with EAE (Song et al., 2015). Interestingly, 

GW2580, the selective inhibitor of CSF1R in EAE, attenuated T-cells infiltration within 

the CNS parenchyma. In fact, it has been shown that when GW2580 used in EAE starting 

from 10 days after immunization, it reduces the amount of peripheral macrophages and 

decreases the number of inflammatory foci in the CNS (Crespo et al., 2011a).  This effect 

has at least partially accredited to the conquest of the autocrine signaling of inflammatory 

microglia and macrophages, inducing the decrease of neuroinflammatory mediators 

(Erblich et al., 2011; Ginhoux et al., 2010; Irvine et al., 2006), suggesting that targeting 

tyrosine kinase receptors could avoid the development of the disease by boosting BBB 

integrity (Adzemovic et al., 2013; Crespo et al., 2011b). 

 The process of leucocyte transmigration across a post-capillary venule into the CNS 

includes several important steps (Engelhardt and Ransohoff, 2005; Larochelle et al., 

2011). The first step is a slowing of leucocytes within the blood through the interaction 

and binding of integrin alpha 4 beta 1 receptors present on leucocytes with several cell 

adhesion molecules on the endothelium including VCAM1 and ICAM1 (Engelhardt and 

Ransohoff, 2005; Sixt et al., 2001; Tietz and Engelhardt, 2015). This is followed by 

leucocyte arrest to endothelial cells possibly due to a response to chemokines secreted by 

endothelial cells (Alt et al., 2002; Dorovini-Zis, 2015). Once leucocytes adhere, they 

cross the endothelial cell barrier and endothelial basement membrane to accumulate in the 

perivascular space and form the inflammatory perivascular cuff (Agrawal et al., 2013). 

With the inhibition of CSF1R using the small molecule GW2580, on gel zymography we 

observed that activated MMP-9 was down regulated comparing with the EAE 18 DPI 

which could explain the reduction of CD3+ cells transmigrating the perivascular space to 

the CNS tissue. Indeed, the family of matrix metalloproteinases helps leucocytes transit 

into the CNS. MMPs do not seem to be required in leucocyte migration across the 

endothelial basement membrane (Wu et al., 2009), but they are necessary when 

leucocytes transmigrate the parenchymal border (Clark et al., 2011; Toft-Hansen et al., 

2004; Yamamura and Gran, 2013). Specifically, MMP2 and MMP9 have been shown to 

cleave β-dystroglycan, a receptor on astrocyte end feet that abuts the parenchymal 

basement membrane, allowing cells to enter the CNS parenchyma (Agrawal et al., 2006; 
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Kim and Joh, 2012).  

Under GW2580 treatment, we also observed that the majority of the chemokine CXCL12 

(stromal cell-derived factor 1 alpha), seems to be at the full-length form with little signal 

for the cleaved form, and localized at the parenchymal border, which could explain the 

reduction of T-cells’ infiltration within the CNS tissue and the down-regulation of MMP-

9 on EAE + GW2580 rats. It has been demonstrated that CXCL12 is required for holding 

T-cells in the perivascular cuff, and its proteolytic degradation by MMP-2/-9 releases 

leukocytes to migrate into the CNS parenchyma (Chu et al., 2017; McCandless et al., 

2006; Meiron et al., 2008). The initial recruitment of T cells to the CNS is likely to be 

controlled by CXCL12, which has been shown by others to hold immune cells in the 

perivascular cuff in its intact form only within the perivascular cuff (McCandless et al., 

2006; Song et al., 2015). 

Collectively, our study demonstrates that improving BBB integrity is one of the 

mechanisms of GW2580 action in EAE therapy. This effect is at least partially through 

inhibiting activities of MMP-2/-9 and protecting the BBB integrity. As a result, 

inflammatory infiltration into the CNS is largely reduced. While the process of immune 

cell extravasation is partially an endothelial cell-mediated process, whether GW2580 

reduces this pathway of immune cell infiltration is not yet known. Nevertheless, results 

from the present study, together with the reduction effect of GW2580 on microglia cells 

activation that we have previously shown (Borjini et al., 2016) and its safety (Conway et 

al., 2005, 2008), suggest that GW2580 could qualify as an effective, alternative remedy in 

MS therapy and that further investigation to test this possibility is justified. 
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Legend to the figures 

Figure 1. Effects of selective inhibition of CSF1R activity on the disease progression. 

(A) Time-course of the neurological disability score of EAE and EAE+GW2580 animals 

is reported in the graph (mean ± SD), showing the peak at day 11 (acute phase), the 

remission phase at day 16 and relapse at day 18 for EAE animals while a delayed and 

reduced clinical score was observed for EAE+GW2580 group. (B) The body weight gain 

(mean ± SD) is reported in the graph (mean ± SD), enlightening a significant difference 

between GW2580 and EAE + GW2580 group. Statistical analysis: (A) two-way ANOVA 

and Bonferroni post-test (***P<0.001), (B) one-way ANOVA, ***P<0.0001. 

Figure 2. Cerebellum’s IgG extravasation in; (A) EAE rats at 8 DPI (EAE t8) (B) the 

acute phase at 11 DPI (EAE t11) (C) during the relapse phase 18 DPI (EAE t18) and (D) 

under the treatment of CSF1R inhibitor, GW2580 at 18 DPI (EAE t18 + GW2580). 

Figure 3. BBB genes mRNA expression level in the SC. The expression levels of 

mRNA of genes coding for proteins and enzymes forming and modifying the BBB in 

control and EAE rats are reported in the clustergram, based on heat map with 

dendrograms, indicating the co-regulated genes across groups. Red color for a gene 

indicates expression above the median and green color indicates expression below the 

median. The table presents differentially expressed genes. Statistical analysis was 

performed using Student’s t-test of the replicate 2^(- Delta Ct) values for each gene in the 

control group and treatment group; P<0.05 was considered significant. 

Figure 4. Cerebellum’s perivascular cuffs. Hematoxylin and eosin staining (H&E) of 

the cerebellum at (A) 8 DPI EAE (EAE t8), (B) the acute phase 11 DPI (EAE t11), (C) 

during the relapse phase 18 DPI (EAE t18), and (D) under the treatment of CSF1R 

inhibitor, GW2580 at 18 DPI (EAE t18 + GW2580). High-magnification of perivascular 

cuff at EAE 8 DPI (E), EAE 11 DPI (F) and under the treatment GW2580 at 18 DPI (G). 

Figure 5. Cerebellum’s glial activation. Immunofluorescence staining of thin (10 µm) 

cerebellum sections of EAE rats at 8 DPI (A-C), 11 DPI (D-F), 18 DPI (G-I), with the 

treatment GW2580 at18 DPI (J-L). The sections were stained with anti-Iba1 antibody to 

visualize microglia/macrophages (red), with anti-GFAP antibody to mark astrocytes 

(green). DAPI stains all nuclei (blue). 
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Figure 6. T-cells infiltration in EAE. Immunofluorescence staining of 10 µm 

cerebellum sections with anti-CD3 antibody to mark CD3+ infiltrating T-cells (red) and 

anti-GFAP antibody to mark astrocytes (green). DAPI stains all nuclei (blue). Pictures are 

representatives from similar data from 6 rats each. 

Figure 7. Effects of CSF1R inhibition on MMP2/9 activation. Gelatin gel zymography 

of cerebellum lysates of control rats, EAE rats at 8 DPI EAE, the acute phase (EAE t11), 

during the relapse phase 18 DPI (EAE t18) and under the treatment of CSF1R inhibitor, 

GW2580 at 18 DPI (EAE t18 + GW2580). 

Figure 8. Effects of CSF1R inhibition on CXCL-12 chemokine. Immunofluorescence 

staining of inflammatory perivascular cuffs in the white matter of cerebellum of EAE rat 

at relapse phase 18 DPI (A-C) and treated EAE rats with GW2580 (D-F), The sections 

were stained with anti-Pan LM antibody to visualize BMs of blood vessels (green), and 

with anti-CXCL-12 antibody (red). DAPI stains all nuclei (blue). 
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Figure. 3 

  

Transcript ID Gene 
symbol

Log2 
Fold 

Change
p value Fold 

Change p value Fold 
Change p value Fold 

Change p value Fold 
Change p value

NM_053018 Cd9 CD9 molecule 1,225 0,0031 1,181 0,0909 -1,072 0,0203 -2,938 0,0000 -1,784 0,0000
NM_012499 Apc Adenomatous polyposis coli -1,354 0,0010 -1,357 0,0001 -1,828 0,0000 -5,836 0,0000 -4,127 0,0000
NM_019288 App Amyloid beta (A4) precursor protein -1,123 0,0001 -1,079 0,0300 -1,526 0,0000 -3,084 0,0000 -2,704 0,0000
NM_031131 Tgfb2 Transforming growth factor, beta 2 -1,100 0,0230 -1,214 0,0004 -2,497 0,0000 -9,095 0,0000 -4,643 0,0000
NM_017190 Mag Myelin-associated glycoprotein -1,063 0,5654 -1,464 0,0039 -1,464 0,0001 -5,796 0,0000 -3,422 0,0000
NM_017218 Erbb3 V-erb-b2 erythroblastic leukemia viral oncogene -1,229 0,1260 -1,464 0,0389 -1,569 0,0162 -3,877 0,0014 -2,761 0,0019
NM_031643 Map2k1 Mitogen activated protein kinase kinase 1 -1,317 0,0064 -1,516 0,0015 -1,414 0,0033 -3,084 0,0000 -2,338 0,0003
NM_031116 Ccl5 Chemokine (C-C motif) ligand 5 -1,034 0,8691 1,165 0,5210 1,357 0,0346 14,271 0,0001 22,085 0,0000
NM_019165 Il18 -1,163 0,0424 -1,125 0,4246 -1,007 0,2651 1,409 0,1343 1,979 0,0002
NM_012889 Vcam1 Vascular cell adhesion molecule 1 -1,272 0,0001 -1,376 0,0111 -1,257 0,0048 1,235 0,0475 1,821 0,0001
NM_053415 Cxcr3 Chemokine (C-X-C motif) receptor 3 1,159 0,0817 1,014 0,3308 5,028 0,0000 57,880 0,0013 55,909 0,0007
NM_012967 Icam1 Intercellular adhesion molecule 1 -1,139 0,0082 1,000 0,9840 2,732 0,0152 4,840 0,0000 5,521 0,0000
NM_012675 Tnf Tumor necrosis factor (TNF superfamily, member 2) -2,293 0,0367 -1,189 0,7864 6,105 0,0299 9,350 0,0027 9,747 0,0010
NM_013025 Ccl3 Chemokine (C-C motif) ligand 3 -1,383 0,2623 1,338 0,0066 5,352 0,0000 12,168 0,0000 10,891 0,0001
NM_139089 Cxcl10 Chemokine (C-X-C motif) ligand 10 -2,231 0,0005 -1,945 0,0011 11,551 0,0000 25,369 0,0007 24,847 0,0000
NM_019143 Fn1 1,175 0,0532 1,173 0,2527 1,919 0,0243 4,302 0,0078 2,594 0,0001
NM_138880 Ifng Interferon gamma -1,611 0,1786 1,464 0,4249 68,120 0,0000 179,147 0,0000 98,702 0,0000
NM_012924 Cd44 Cd44 molecule 1,233 0,1963 1,257 0,0822 3,837 0,0039 6,126 0,0002 4,874 0,0001
NM_019357 Ezr 1,030 0,7152 -1,125 0,0948 1,516 0,0207 1,723 0,1172 1,380 0,5413
NM_031514 Jak2 Janus kinase 2 -1,204 0,0004 -1,214 0,0000 1,206 0,0001 1,011 0,0382 1,068 0,0108
NM_001105822 Ccl12 Chemokine (C-C motif) ligand 12 1,251 0,1804 1,347 0,2403 33,129 0,0023 31,450 0,0005 29,141 0,0041
NM_031055 Mmp9 Matrix metallopeptidase 9 -3,804 0,0437 -1,320 0,2762 5,464 0,0000 4,579 0,0003 3,745 0,0011
NM_023981 Csf1 Colony stimulating factor 1 (macrophage) -1,299 0,0855 -1,495 0,0064 -1,057 0,0043 -1,688 0,0016 -1,419 0,0028
NM_020306 Adam17 ADAM metallopeptidase domain 17 -1,255 0,0524 -1,292 0,0474 -1,347 0,0100 -1,439 0,0015 -1,227 0,0047

EAE t8 vs. Control EAE t11 vs. Control EAE t18 vs. Control

Gene title

Interleukin 18

Ezrin

Fibronectin 1

EAE t1 vs. Control EAE t5 vs. Control
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Figure. 8 

	



	 89	

	
	

 
	
	
	

 
	
	

CHAPTER III 

 

Biomarkers of inflammation during neonatal hypoxia/ischemia and their correlation 
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Abstract:  

Hypoxia/ischemia causes serious injury to newborns. Clinical imaging is the basic 

assessment method for neonatal severe injury but it has several limitations. Therefore, 

searching for reliable biomarkers has become a research hot spot. In this study, both male 

and female Wistar rats were used; the right carotid artery was permanently doubly 

occluded and animals were exposed to 8% oxygen for 90 min; control rats received sham 

surgery. Sensory and cognitive parameters were assessed by the use of open field, 

rotarod, CatWalk and Morris water maze test. After behavioral testing, plasma and CSF 

were used to investigate proinflammatory and immunoregulatory biomarkers on the acute 

(24h and 72h) and chronic phase (4 weeks). Our data suggest that HI induced an early 

activation of the inflammatory cascade leads to increased production of a large number of 

proinflammatory mediators that could be the cause of tissue loss of hypoxic hemisphere, 

which in his turn might leads to short-term- as well as long-lasting behavioral- deficits. 
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Introduction 
 
Perinatal brain injury remains an important clinical problem due to resulting neurological 

disabilities and increased risk of adult-onset neurological disorders (Vannucci and 

Hagberg, 2004). Neonatal hypoxia-ischemia (HI) is the most frequent cause of 

neurological morbidity and mortality in infants, often leading to mental retardation, 

seizures, and cerebral palsy (Bhalala et al., 2015; Hagberg et al., 2015). Several studies 

have shown that neonatal HI triggers extensive inflammatory reactions in the brain, which 

includes activation of the innate immune system (Hedtjärn et al., 2004) and experimental 

studies in neonatal animals have demonstrate that inhibition of pro-inflammatory 

biomediators is neuroprotective (Doverhag et al., 2010; Hedtjärn et al., 2002; Svedin et 

al., 2007).  Cytokines and chemokines are important inflammatory and immunoregulatory 

mediators, and cerebral ischemic injury can trigger a cascade of inflammatory mediators 

induction that acts to orchestrate an in situ inflammatory response (Alsulaimani et al., 

2015; Saliba and Henrot, 2001a) and maintains CNS tissue homeostasis (Hopkins, 2003). 

Overall, the role of cytokines and chemokines are pleiotropic, and whether the general 

effects are pro- or anti-inflammatory in the context of hypoxic ischemic insults remains 

controversial even in adult models, for which there are more data than for HI in neonates 

(Albertsson et al., 2014; Bona et al., 1999; Saliba and Henrot, 2001b). 

The susceptibility of the immature central nervous system (CNS) to HI and related 

inflammation is largely dependent on the temporal and regional course of developmental 

processes, as well as on the regulation of cerebral blood flow and metabolism (Vexler and 

Ferriero, 2001). Intrapartum asphyxia is associated with inflammation in the brain and 

there are increased levels of cytokines and chemokines in the cerebral spinal fluid (CSF) 

in term infants that have suffered birth asphyxia (Dammann and O’Shea, 2008; Fatemi et 

al., 2009; Sävman et al., 1998). The course of inflammatory process with respect to 

neuropathological alterations in HI has been investigated only partly in the neonatal 

setting (McRae et al., 1995; Sawada et al., 1990).  

After neonatal HI onset, there is a time difference in the range of 24 h between 

metabolism changes, tissue morphological changes and pathological changes in the brain. 

Possible intervention strategies need to be tailored on the precise stage of the lesion. The 

clinical diagnosis and severity assessment of neonatal HI mainly rely on the Sarnat score 

(Robertson and Perlman, 2006), brain CT (computed tomography) scans (Acharya et al., 
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2017), MRI (magnetic resonance imaging), ultrasound diagnosis and EEG 

(electroencephalogram) detection methods (Jan et al., 2017; Lv et al., 2015). Because of 

the influence of the progressive disease process and other factors, the Sarnat score is 

subjective, and other tests have certain limitations and effectiveness. Neuroimaging 

studies have demonstrated that the appearance of CNS damage is delayed compared to 

the undergoing pathology mechanism, taking up to 72 h (Thoresen et al., 2010; Thornton 

et al., 2012). Therefore, the early monitoring of biomarkers in serum or CSF of neonatal 

HI is particularly important. Thus, the early clinical detection of blood or CSF biomarkers 

might allow an earlier diagnosis compared with MRI or CT results. The identification of 

early noninvasive biomarkers of disease is a vital question, especially during the first 

period of lifetime, since it could provide valuable, beneficial and advanced diagnostic 

evidence when clinical and radiological signs are still silent.  

An accepted rodent model of neonatal asphyxia is a modification of the Levine model 

(Levine, 1960) done by Rice et al. (Rice et al., 1981), consisting in the combination of 

ischemia, achieved by unilateral occlusion of carotid artery, followed by exposure to 

hypoxia in 7-day-old rats. Indeed in rats, hypoxic seizures could be induced during the 

critical developmental window, P6–12, which is a period of synaptic maturation and 

myelination, is thought to match with a human nearby 32-36 weeks of gestation, and 

corresponds to the age of clinical hypoxia producing neonatal seizure (Jensen et al., 1991; 

Leonard et al., 2013; Owens et al., 1997; Rakhade et al., 2011). Thus, the most widely 

used animal model is the unilateral common carotid artery ligation followed by exposure 

to hypoxia in rats at 7 days old (P7). 

Therefore, this study aimed to investigate the mechanisms underlying hypoxic ischemic 

injury and the following immune response through detection of the levels of 

inflammatory mediators in plasma and CSF in a rat model of HI, and their correlate with 

the neurological symptoms. Here we demonstrate that HI in rats leads to short-term as 

well as long-lasting neurological and behavioral deficits up to four weeks after the injury 

and extensive brain hemisphere atrophy which could be the consequence of an early 

activation of the inflammatory cascade leading to increased production of a large number 

of proinflammatory cytokines and chemokines. 
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Materials and methods 

Animals and experimental groups 

A total of 65 Wistar rat pups of both sexes were used in this study. Animals were 

maintained in an animal room on a 12-h light/12-h dark cycle and at constant temperature 

(22 ± 2°C), food and water ad libitum. All animal protocols described herein were carried 

out in accordance with the European Community Council Directives (86/609/EEC), 

approved by the intramural ethical committee for animal experimentation of Bologna 

University and comply with the guidelines published in the NIH Guide for the Care and 

Use of Laboratory.  

The animals were divided into three experimental groups: A) 24h HI (n=7), 24h sham 

(n=6); B) 72h HI (n=9), 72h sham (n=6) (both male and female rats were pooled at these 

time points); C) P44 HI male (n=13), P44 sham male (n=8), P44 HI female (n=6), P44 

sham female (n=7). 

Inclusion and exclusion criteria  

Rat pups from the same litter were served for both HI group and sham and pups with 

weight less than 12g and higher than 14g were exluded from the experiment. 

Neonatal hypoxia-ischemia injury model 

The surgery was performed on Wistar rats at postnatal day 7 (P7) under surgical 

microscope as described previously (Rice et al., 1981) with introduction of some 

modifications. In brief, the pup was first weighed and then anesthetized with 3% 

isoflurane. The surgery lasted less than 5 min. After placing the rat on surgical heating 

pad at 37°C, the skin was cleaned with 10% povidone iodide and a less than 1 cm 

longitudinal midline incision of the neck was performed to expose the right common 

carotid artery (CCA). The fibrous sheath that wraps together both the carotid and the 

vagus nerve was broken and separated in order to avoid an overextension of the nerve. 

The CCA was permanently doubly ligated with a 5/0 silk suture. After the ligation few 

drops of surgical glue was used for the suture of the skin. Pups were placed above a heat 

mat at 37°C until awakening and recovering then were returned to their dam and were 

allowed to recuperate for 1.5 hours. Pups were then placed in a hypoxic chamber that 

contains 8% O2 and 92% N2 with a constant flow of 3L/min for 90 min, submerged in a 

water bath maintained at 32°C, which is the usual temperature to which rat pups are 

exposed when huddling with their mother (Hosono et al., 2010; Mortola and Dotta, 1992). 



	
	 	94 

After hypoxia, all pups were returned again to their dam for recovery. Sham animals 

underwent the HI surgical procedures (i.e. exposure of the CCA) without artery ligation 

and without exposure to hypoxic conditions. 

Short-term neurofunctional outcome following cerebral HI 

The examination of neurobehavioral development were performed for all rat pups from 

P8 to the P21 after the hypoxic ischemia insult, and were carried out daily between 10 

and 12 a.m. Body weights of rat pups were recorded daily. Pups were tested for the 

following neurological reflexes, (1) Righting reflex: this test is believed to be a reflection 

of subcortical maturation estimate, the generation of these movements from circuits in the 

spine connected to the supplementary motor area, the basal ganglia, and the reticular 

formation. the time (sec) used by the animal to go from a supine to a prone position by 

placing all four paws on the surface was recorded.  (2) Negative geotaxis: this test 

examines the sensorimotor function of neonatal rats (Rumajogee et al., 2016). Rat pups 

were placed upside down in the middle of a slope (45°) of 30 cm. The latency to turned 

180 degree to an upward direction was recorded. From the day when the animal turns to 

go up, the time (sec) it took to reach the upper side of the plane was recorded. The 

maximum duration of recording was 30 seconds otherwise the test was considered 

negative. (3) Sensory reflex: the ear and the eyelid of the pup were touched with a cotton 

swab and the first day of the ear twitch reflex and the contraction of the eyelid was 

recorded. (4) Auditory startle: the first day of the startle response to a clapping sound was 

observed. (5) Crossed extensor reflex: the left hind paw was pinched and the possible 

extension of the right paw was recorded. (6) Limb placing: the back of the forepaw and 

hindpaw was touched with the edge of the bench while the animal suspended, and the first 

day of lifting and placing the paws on the table was noted. (7) Limb grasp: the forelimbs 

were touched with a thin rod, and the first day of grasping onto the rod was recorded. (8) 

Gait: the animals are placed at the center of a white plexiglass circle (Ø = 13cm). 

Register the day when they start to move out of the circle with both front paws, estimate 

the time (sec) that the animal uses to exit out of the circle. In the case in which the animal 

does not leave the circle within 30 seconds, the test is considered negative. In order to 

assess the developpement of neurological reflex, rats are given a score the to the 

corresponding time (sec). The higher score indicates greater capacity for development of 

neurological reflexes. 
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Long-term neurofunctional outcome after HI insult 

The assessment of long-term neurofunctional handicap was performed in sham and HI 

groups three weeks after the insult (P28). These tasks consisted of the open field, Rota-

rod, Catwalk and Morris water maze.  

Open field 

Animals were observed for locomotor behavior in an open-field. Pups were placed in an 

open-field consisting of a 46x46 cm wooden chamber with 21 cm high walls around, with 

a dark gray floor divided into 16 fields. Rats were placed individually in the center, 

always facing the same direction, in the center of the chamber and the latency to leave 

this first square will be recorded. The following parameters were measured using 

EthoVision tracking software (Noldus Information Technology, Inc.): distance travelled, 

rearing, groming and ambulation frequenc.. Speed was calculated from the ambulatory 

time and the total travelled distance. Animals were video-recorded for 10 min (Balduini et 

al., 2000a). 

Rota-rod 

The rotarod test (LE 8500 RotaRod : 2Biological Instruments, Varese, Italy ) consist on 

two days test. Animals were exposed to one habituation session during 3 min in the 

apparatus on slow velocity (20 rpm). In the test session, 24 h later, animal's motor ability 

was evaluated. The rotarod test was performed by placing rats on rotating drums and 

measuring the time each animal was to maintain its balance on the rod. The speed of the 

rotarod accelerated from 16 to 40 rpm over a 6 min period. Variables recorded were: 

latency of the first downfall, number of falls (maximum 3) and time of permanence in the 

apparatus (Rojas et al., 2013; Takao et al., 2010).  

Catwalk 

Cerebellar function was analysed by CatWalk (Noldus Information Technology, 

Wageningen, The Netherlands), a quantitative gait analysis system. Each rat ran across a 

glass walkway transversely and three complete runs were recorded using a camera 

positioned below, and the average will be calculated. If an animal failed to complete a run 

within 5 s, walked backwards or reared during the run, the process was repeated. The 

experiment was performed in the dark; the glass walkway was illuminated with beams of 
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light, thereby allowing the animals' paws to reflect light as they touched the glass floor. 

Each paw was labeled on the recorded video in order to calculate paw-related parameters. 

The gait-related parameters measured using the CatWalk system was the following: 

maximum contact area: the maximum area of a paw that comes into contact with the glass 

plate, stand: stance phase is the duration in seconds of contact of a paw with the glass 

plate and swing speed: is the speed (Distance Unit/second) of the paw during Swing. The 

formula of Swing Speed is: Swing (s) Phase which is the duration in seconds of no contact 

of a paw with the glass plate. The Stride Length which is the distance (in Distance Units) 

between successive placements of the same paw, the calculation of Stride Length is based 

on the X-coordinates of the center of the paw print of two consecutive placements of the 

same paw during Max contact and taking into account Pythagoras’ theorem (Hattori et al., 

2015). 

Morris Water Maze  

Three weeks after HI lesion, the spatial memory performance was evaluated using an 

MWM (180 cm diameter, 45 cm high) conceptually divided in four equal imaginary 

quadrants. The water of the pool was made opaque by using non-toxic grey tempera paint. 

Training on spatial version of the MWM was carried out over 4 consecutive days. Each 

day, rats received four training trials in which a randomly starting point was used, such 

that 2 successive trials never began from the same position. The training consisted of a 

swim followed by a 30 s econds platform sit. The escape latency to find the platform was 

measured for individual animals on each day. The experimenter guided rats that did not 

find the platform within 120 seconds to it. To assess long-term memory, 24 hours after 

the final trial, the platform was removed from the maze and a 2-minute free swim will be 

conducted, and time (seconds) spend during the first 20 seconds and the entire swim in 

the quadrant formerly occupied by the platform will be recorded (Chou et al., 2001). 

CSF and plasma biomarker analysis 

The method of CSF sampling was adapted from the method of Liu, L. and Duff, K and 

Rodríguez-Fanjul (Liu and Duff, 2008; Rodríguez-Fanjul et al., 2015). Briefly, the rat pup 

was anesthetized by isoflurane inhalation (isofluorane 4%) (Gas Anesthesia System-

21100, Ugo Basile, Varese, Italy) and fixed by one investigator with the head positioned 

at 90° angle. A sagittal incision of the skin was made below the occiput, and the 

subcutaneous tissue and neck muscles through the midline were separated and held apart 
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using a microretractor. The dura mater of the cisterna magna was then penetrated by an 8-

cm long glass capillary, which had a narrowed tip with an inner diameter of about 0.3 mm 

so that the CSF flowed into the capillary. After collection, each sample was centrifuged at 

2000×g for 10 min at 4 °C, and the supernatant aliquoted and stored at −80 °C for 

biochemical assays. 

Blood was collected from the abdominal aorta in EDTA-K2 Vacuntainer tubes and 

centrifuged at 3000×g for 10 min at 4 °C, and the plasma was collected, aliquoted, and 

stored at −80 °C until used. 

Proteins known to play key roles in neuroinflammation pathways were selected. For this 

purpose, Bio-Plex Pro™ Rat Cytokine 24-plex Assay (Bio-Rad; Milano, Italy) was used. 

The kit included EPO, G-CSF (CSF3), GM-CSF (CSF2), GRO/KC, IFN-γ, IL-1α, IL-1β, 

IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-17A, IL-18, M-CSF (CSF1), 

MCP-1 (CCL2), MIP-1α (CCL3), MIP-3α (CCL20), RANTES (CCL5), TNF-α, and 

VEGF. 

The simultaneous quantification of the different proteins in CSF and plasma was 

performed using xMAP technology and a MAGPIX Luminex platform. This technology 

makes use of different populations of color-coded beads of monoclonal antibodies 

specific to a particular protein, thus allowing simultaneous capture and detection of 

specific analytes from a sample. All the beads from each set are read off, which further 

validates the results. Using this process, xMAP Technology allows multiplexing of up to 

50 unique bioassays within a single sample, both rapidly and precisely (Blankesteijn and 

Altara, 2014; Houser, 2012). In brief, after the incubation of a specific monoclonal 

antibody conjugated bead population with 50 µl of CSF/plasma samples for 1 h at RT, 

washed beads were incubated with detection antibody solution at RT for 30 min, then 

with the streptavidin–phycoerythrin conjugated solution (RT, 10 min). After washing, 

beads were resuspended in the assay buffer, shaken for 1 min and then a reading 

performed on the MAGPIX instrument. The results were analyzed with xPONENT 4.2 ® 

software and expressed as pg/ml. 

Statistics 

Results in appearance of physical and neurological resflexes as well as body weights were 

compared with Student‘s t-test. Statistical differences between groups for each outcome 
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measured were analyzed using one-way ANOVA or Two-way ANOVA followed by 

Tukey post-hoc. All the data were expressed as mean ± SD and significance was set at 

P ≤ 0.05. All statistical analyses were performed using GraphPad Prism 7.0 (GraphPad 

Software). 

Results 

Three rats died during different steps of the experiment (4.6%). Animals were weighed 

every day of life, and all along the experiment there were no significant differences in 

body weight neither between sham and HI groups nor between HI males and females 

(Figure 1A). HI induced brain edema in the acute phase 24 and 72h after unilateral 

ligation of the right carotid artery and hypoxia for 90 min in neonatal rat and tissue loss in 

the chronic phase, i.e. after 4 weeks (Figure 1B). At the end of the experiment, when 

sacrificed, we found different degrees of brain damage in adult HI animals, an extensive 

damage to the cerebral cortex, hippocampus and striatum ipsilateral to the ligated carotid. 

Neurological reflexes 

As it is shown in Table 1, right eye opening was delayed in hypoxic–ischemic animals 

(P<0.0001). In addition, several neurological reflexes, such as negative geotaxis, ear 

twitch reflex, auditory startle, hindlimb grasp and gait reflex (P=0.0042; P=0.0025, 

P=0.0032; P=0.0127; P=0.0008 respectively) appeared significantly later compared to 

normal pups. Hypoxic–ischemic injury caused not only delay in the appearance of some 

reflexes but animals performed certain tasks in significantly longer times. 

Open-field activity 

The Open Field test was performed as a measure of exploratory locomotion in a novel 

environment. There was no significant difference between HI and sham rats concerning 

the number of crossing, general activity and movement pattern (Figure 2A). HI males 

more than females rats spent more time in the center (P=0.0005; P=0.0007 respectively) 

of the open field and less time at walls and in corners than sham rats (Figure 2B,C). There 

was no significant difference in the time spent with grooming activity or in the number of 

fecal boluses at any time-point between the different groups (data not shown) while a 

significant difference was observed in HI male and female rats in the number of rearing 

all along the test duration comparing to sham animals (P<0.0001; P<0.0001 
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respectively) as it is shown in Figure 2D. Among HI rats, there was a significant 

difference between genders (P=0.0052). 

Rota-Rod performance 

Rota-Rod test was performed for sensory-motor coordination. During the habituation 

session HI (Figure 3A), rats were not able to stay on the rod comparing to sham when the 

rod was rotated at a steady-rate of 20 rotations per minute (P<0.0001; P<0.0001 HI 

female vs sham female and HI male vs sham male respectively). During the test session 

(Figure 3B), 24h later, HI female and male rats held on the Rota-rod for a significantly 

shorter time comparing to sham (P<0.0001, P<0.0001). Among HI rats, there were no 

significant differences between genders. 

MWM performance 

In order to determine the effect of HI injury on cognitive capacities, 30 days old rats were 

trained in the spatial version of the MWM. Two-way ANOVA test revealed significant 

differences in the escape latency of the second between the experimental groups 

(P<0.0001, P<0.0001 HI female vs sham female and HI male vs sham male respectively) 

during the training period (Figure 4A). As shown in Figure 4B, the cumulative distance to 

platform to forth days and even on the test day, was shorter in sham-operated rats when 

compared with the HI groups, indicating that HI impaired memory performance in the 

injured animals and among HI rats, no significant differences between genders was 

detected. 

CatWalk performance 

The CatWalk assessment of gait analysis post HI in rat demonstrate long-term deficit in 

behavioral parameters related to the hindpaw. Parameters detected by CatWalk 

(maximum contact area, stand and swing speed of the 4 limbs) in ischemic rats subjected 

to 90 minutes of hypoxia are presented in Figure 5. Additional post Tukey analysis 

showed that HI animals have significant impairment in the maximum contact area of their 

right fore (RF), right hind (RH), left fore (LF) and especially the left hind (LH) paws in 

comparing to sham rats (Figure 5A), (P<0.05 or P<0.01 or P<0.001 or P<0.0001). Figure 

5B indicate that the duration in seconds of contact of a paw with the glass plate of HI rats 

comparing with sham, showed an increase in stand duration (P<0.05 or P<0.01 or 

P<0.001). In HI animals the swing speed (Figure 5C) of their 4 limbs were all decreased 
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compared to those of the rats in the sham group (P<0.05 or P<0.01). Overall, HI induced 

sensorimotor function deficits in HI rats and HI males were worse than HI females. 

Inflammation biomarkers at plasma and CSF levels 

Twenty-four cytokines and chemokines were simultaneously quantified in plasma and 

CSF samples at the different time points investigated, in the acute phase 24 and 72h and 

in the chronic phase 4 weeks. Those cytokines and chemokines are EPO, G-CSF (CSF3), 

GM-CSF (CSF2), GRO/KC, IFN-γ, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-

12p70, IL-13, IL-17A, IL-18, M-CSF (CSF1), MCP-1 (CCL2), MIP-1α (CCL3), MIP-3α 

(CCL20), RANTES (CCL5), TNF-α and VEGF.  

Several pro-inflammatory biomarkers such as CCL3, CCL2 and IL-6 (P=0.0412; 

P=0.0127; P=0.004, respectively) in plasma (Figure 6A, C, F) and TNF-α, CCL2 

(P=0.0412; P<0.0001, respectively) in CSF (Figure 7G, B) were significantly regulated as 

soon as 24h after HI while the major part of the biomarkers investigated were regulated 

after 72h after HI such as CSF1, IFN- γ, CCL5 (P=0.0483; P=0.0193; ns, respectively) in 

plasma (Figure 6A, C, F) and CCL5, CSF1, VEGF, IL-17A (P<0.0001; P=0.0003; 

P=0.0024, P<0.0001 respectively) in CSF (Figure 7A, C, E, H). 

During the chronic phase, 4 weeks after the injury, in plasma only TNF-α and IFN-γ 

(P<0.0001; P=0.0047, respectively) were significantly up-regulated at this time point in 

male HI comparing to sham male (Figure 6D,E) and only TNF-α (P=0.0009) was 

significantly increased on female HI comparing to female sham group (Figure 6D). In 

CSF only CCL5 and TNF-α (P=0.0164; P=0.0012, respectively) were significantly up-

regulated at this time point in male HI comparing to sham male (Figure 7A,G) and only 

TNF-α (P=0.0164) was significantly increased on female HI comparing to female sham 

group (Figure 7G). The rest of measurable biomarkers of the panel, at the chronic phase 

in plasma and CSF HI rats, showed no significant change nor between HI and sham males 

neither between HI and sham females. Among HI rats, there were no significant 

differences between genders (Figure 6 and 7). 

The biomarkers G-CSF (CSF3), GM-CSF (CSF2), IL-1α, IL-7, IL-10 and IL-12p70 were 

not detected at any of the time points analyzed in the CSF in our experimental conditions. 

No significant changes were observed for rest of the panel compared to sham group. 
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Discussion 

The main goal of the present study was to investigate plasma and CSF biomarkers after 

acute and chronic HI, performed at P7 on Wistar rats, and their correlation with 

neurological and behavioral parameters. We have shown that atrophy and tissue loss of 

hypoxic hemisphere in HI rats leads to short-term, retarded neurobehavioral development 

as shown by delayed appearance and worse performance of some neurological reflexes, 

as well as long-lasting behavioral deficits as shown by retarded development of motor 

coordination, thus confirming and extending previous 	 studies reporting that hypoxic–

ischemic animals display short and long-term learning deficits (Arteni et al., 2003; 

Balduini et al., 2000a; Jansen and Low, 1996; Lubics et al., 2005). We also showed some 

important differences between male and female rats. 

In contrast to what was reported previously that HI animals have significantly lower daily 

weights and pups needed artificial feeding due to their severe body weight loss (Ten et 

al., 2003; Wagner et al., 2002), in our HI rat model we didn’t observe any significant 

difference in the somatic development. Our results show that HI animals perform worse 

in negative geotaxis, ear twitch, auditory startle, hindlimb grasp and gait test as measured 

by the reflex times, those reflexes were largely independent of gender. Several groups 

reported that hypoxic–ischemic injury in rodent models affects the short-term outcome of 

righting, geotaxis reflexes as measured 1 and 24 h after the injury (Lubics et al., 2005; 

Rakhade et al., 2011; Ten et al., 2003). According to our observations, neurological 

reflexes are affected also later in age in rats, in the chronic phase after four weeks post 

injury.  

In order to assess the long-term neurofunctional following neonatal HI, several tests have 

been described such as rotarod, open field, CatWalk and Morris water maze. However, 

results are contradicted from study to other. One of the most frequently used test is 

rotarod test, which has been described as a useful tool to measure reduced motor 

coordination and learning ability after HI insults. Our results show significant differences 

between sham and hypoxic animals in the rotarod test for motor coordination, while no 

significant difference between genders was observed. Several studies reported that 

rotarod test was sensitive to the insult in neonatal HI rats and a significant difference was 

observed between HI and sham group (Tata et al., 2015). However, some authors do not 

confirm these results (Lee et al., 2010; Lubics et al., 2005).  
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Concerning the locomotor behavior in an open-field, both hyper- and hypoactivity have 

been described following HI insults. In accordance with other reports (Balduini et al., 

2000b; Lubics et al., 2005; Patel et al., 2015), we didn’t see any significant difference 

concerning the number of crossing, general activity and movement pattern in the time 

spent with grooming activity or in the number of fecal boluses at any time-point between 

the different groups, while a significant difference was observed in HI male and female 

rats in the number of rearing all along the test duration comparing to sham animals. In 

contrast, Antier at al. (Antier et al., 1998) found hypoactivity in adult rats who underwent 

neonatal HI. Our observations show that HI rats spent more time in the center and less 

time at walls and in corners than sham rats, and this alteration is more pronounced in 

male than females rats. Notably, this is exactly the opposite of the natural reflex of the 

pups, who quickly find the wall where they feel more safe. This may be explained by the 

age of the rats, since the test was performed after 4 weeks after HI insult (adolescent age).  

In order to determine the effect of HI insult on cognitive capacities and spatial memory 

performance, MWM was used, a well-established and widely accepted tool of testing 

these parameters. The escape latency to reach the platform, a revealing parameter of 

working memory that is tested during the training phase, was significantly longer in HI 

group compared to sham in the first four days of MWM task. Moreover, the cumulative 

distance to platform measured as reference memory components and recorded on the 

probe phase (5th day) of the task, was significantly reduced in sham-operated rats when 

compared with the HI groups. Our data clearly indicates that HI injury impaired learning 

and memory performance in the injured animals. In harmony with our finding, results 

from De Paula et al. and Goren et al. have shown that the MWM test was sensitive to 

brain damage in neonatal HI rats (Goren et al., 2017; de Paula et al., 2009), although 

contrasting data have been also reported (Tian et al., 2013).  

The CatWalk assessment of sensorimotor function post HI in our rat model demonstrate 

long-term deficit in gait parameters related to the hindpaw. Indeed, the CatWalk can show 

detailed impairment of each individual paw and overall gait pattern. Our results show that 

HI animals have significant impairment in the maximum contact area of their 4 limbs and 

especially the left hind paws in comparing to sham rats. In addition, our results show that 

the duration in seconds of contact of a paw with the glass plate of HI rats comparing with 
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sham, showed an increase in stand duration and the swing speed of the 4 limbs were all 

decreased compared to those of the sham group.  

Overall, we have demonstrated HI males were worse than HI females and hypoxia 

ischemia insult do induce sensorimotor function deficits in HI rats in some parameters 

while in some others we observe a slight recovery and no significant difference between 

HI and sham group. This could be explained by the fact of the high neuronal plasticity of 

the neonatal brain, and it is possible that the control of motor coordination has shifted 

from a brain structure damaged by ischemia to an unharmed structure (Balduini et al., 

2000a; Barth and Stanfield, 1990; Goren et al., 2017). 

Several studies have shown that neonatal HI triggers widespread inflammatory reactions 

in the brain including activation of the innate immune system (Alsulaimani et al., 2015; 

Hedtjärn et al., 2004; Moyer, 2012). Our results demonstrate that an early regulation of 

most of the inflammatory biomarkers was observed as soon as 24 and 72h, during the 

acute phase, while at the chronic phase in plasma and CSF HI rats, no significant change 

nor between HI and sham males neither between HI and sham females was observed. 

Some pro-inflammatory biomarkers such as CCL3, CCL2 and IL-6 in plasma and CSF 

regulated as soon as 24h after HI while the major part of the biomarkers investigated were 

regulated after 72h after HI such as CSF1, IFN- γ, CCL5. It has been shown by other that 

in term neonates, the magnitude of IL-6 CSF levels after perinatal asphyxia is related to 

the severity of early neonatal HI and late neurological outcome (Drews et al., 1995; 

Lusyati et al., 2013; Martín-Ancel et al., 1997; Moyer, 2012; Saliba and Henrot, 2001b; 

Shahkar et al., 2011). In our model we do observe an upregulation of IL-6 at 24 and 72h 

in plasma and CSF and this could explain the short-term as well as long-lasting 

behavioral deficits observed in HI rats. Both CCL2 and CCL3 are necessary for recruiting 

monocyte to the injury site, where they play an important role in CNS plasticity and 

repair (Biber and Boddeke, 2014; Dimitrijevic et al., 2007). It was recently described that 

CCL2 and its receptor CCR2 regulates macrophage trafficking by induction of leukocyte 

adhesion to the microvascular endothelium after brain injury (Schilling et al., 2009). In 

our model, 24h after HI insult, we observed a decrease in the level of CCL2 and CCL3 in 

plasma after 24h after HI insult and in the meanwhile were both upregulated in CSF.	This	

could	be	explained by early quick response of the neonate brain to the insult, leading to a 

cell recruitment to the injury site. Schilling et al. have demonstrated that CCL2-CCR2 
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axis differentially regulates hematogenous cell recruitment and sequential inhibition of 

selective CCL2 dependent pathways by CCR2 blockade may be an effective treatment to 

ameliorate tissue damage (Schilling et al., 2009). 

It has been demonstrated previously, that TNF-α is mainly secreted by activated 

macrophages and its overexpression is toxic to cells (Li et al., 2014). TNF-α plays critical 

role in HI induced neutrophil infiltration and tissue damage. It can also increase 

permeability of endotheliocyte and activate matrix metalloproteinases, which damage the 

blood brain barrier leading to swelling and degeneration of neurons and glial cells (Liu 

and Mccullough, 2013; Szaflarski et al., 1995). Kaur et al. have demonstrated that the 

unmyelinated axons showed an upregulated expression of TNF-R1 coupled with the 

disruption of myelin basic protein immunopositive processes of oligodendrocytes in the 

periventricular white matter of HI neonatal rats suggesting that overproduction of TNF-α 

may damage axons and delay their myelination (Deng et al., 2010; Kaur et al., 2013). Our 

results show that, TNF-α was upregulated in CSF as soon as 24h after HI till the end of 

the experiment and in plasma it was regulated during the chronic phase, which may 

explain the tissue loss that was observed at the sacrifice time. 	

We have previously suggested that the overexpression of CSF1 (macrophage colony 

stimulating factor) in CSF aggravate the inflammatory process in experimental allergic 

encephalomyelitis (EAE), a rat model for multiple sclerosis, by propagating the 

proinflammatory signals to the nearby resting microglia and astrocytes through increased 

production of proinflamamtory cytokines (Borjini et al., 2016). Those finding was also 

investigated on HI rodent model and recent results suggest that amoeboid microglial 

cells-derived CSF1 promotes astrocytes to generate proinflammatory cytokines, which 

may be involved in axonal damage following HI insult (Denes et al., 2007; Deng et al., 

2010; Escamilla et al., 2015; Kaur et al., 2013; Sanchez-Niño et al., 2016). In this study 

we show that CSF1 was significantly regulated on the acute phase after HI insult, at 72h, 

in plasma and in CSF. According to our results, it could thus be speculated that CSF1 

signaling plays an important role in the early phase of HI, by trigging microglial 

activation, subsequent induction of neuroinflammation and axonal damage and this could 

leads to short-term as well as long-lasting behavioral deficits after the injury. 

While either sex of rats has been used for modeling hypoxia seizures, male rats are 

preferred in most studies to avoid potential bias due to gender difference. Female rats 
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show different developmental GABA profile during the critical period (Galanopoulou, 

2008) and therefore responses differently to hypoxia-induced neonatal seizures. However, 

overall in our model we didn’t observe that much gender difference that should suggest a 

discrimination of one gender.  

In conclusion, in the HI used in this study we have shown an early activation of the 

inflammatory cascade leads to increased production of a large number of 

proinflammatory cytokines and chemokines. This could lead to the tissue loss observed in 

the hypoxic hemisphere, which in his turn may leads to short-term neurological- as well 

as long-lasting behavioral- deficits in particular in motor coordination. Their significance 

as early biomarkers is greater than the one of the chronic phase, since cytokines and 

chemokines production precedes and induces the brain damage. The different 

mechanisms appear to be interlinked and culminate in heightened inflammation. An 

understanding of these mechanisms would let the earlier characterization of the degree of 

the brain damage, initiation of intervention procedures to improve neonatal survival and 

reduce the degree of the injury. 
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Legend to the figures and tables 

Figure 1. (A) Average weights ± S.E.M. of hypoxic and sham rats starting from P7 (one-

day prior the intervention). (B) Brain lesion induced by acute (24 and 72h) and chronic 

hypoxia-ischemia (4 weeks). 

Table 1. Average days ± S.E.M. of appearance of physical and neurological reflexes in 

sham and HI rats. *P < 0.05, **P < 0.01, ***P < 0.001 ****P < 0.0001 vs. control rats. 

Figure 2. Effect of neonatal HI on Open field performance in sham and HI rats; (A) 

number of crossing (B) Frequency of entry to the center, (C) representative traces of sahm 

and HI rat movement during the open field test. (D) number of rearing. Statistical 

analysis: Two way ANOVA and Multiple Comparison test (**P<0.01, ***P<0.001, 

****P<0.0001). Test duration: 10 min. N= 13 Male HI, 6 Female HI, 8 Male Sham, 7 

Female Sham. 

Figure 3. Effect of neonatal HI on Rota-rod performance. (A) number of falls during the 

habituation session,  (B) latency of falls during the test session. Statistical analysis: Two-

way ANOVA and Multiple Comparison test ****P<0.0001. N= 13 Male HI, 6 Female 

HI, 8 Male Sham, 7 Female Sham. 

Figure 4. Effect of neonatal HI on MWM performance after 30 days. (A) Mean escape 

latency during the 4 days of training (B) Cumulative distance to platform during the 

training and the test days. Statistical analysis: Two-way ANOVA and Tukey’s multiple 

comparison test  ****P<0.0001. N= 13 Male HI, 6 Female HI, 8 Male Sham, 7 Female 

Sham. 

Figure 5. Motor function was assessed with a CatWalk gait analysis system (A) 

maximum contact area, (B) stand and (C) swing speed. Statistical analysis: Two-way 

ANOVA and Tukey’s multiple comparison test (*P<0.05, **P<0.01, ***P<0.001,  

****P<0.0001). RF, right fore; RH, right hind; LF, left fore; LH, left hind limbs. 

Figure 6. Cytokine/Chemokine levels in Plasma. The amount of IFN-γ, IL-1β, IL-6, M-

CSF (CSF1), MCP-1 (CCL2), MIP-1α (CCL3), MIP-3α (CCL20), RANTES (CCL5), and 

TNF-α in plasma in sham and HI groups are reported. Results are presented as individual 

values (pg/mL) and the mean ± SD is also shown. Statistical analysis: one-way ANOVA 
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and Tukey’s multiple comparison test (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). 

F: female, M: male. (the group of 24h and 72h male and female are pooled) 

Figure 7. Cytokine/Chemokine levels in CSF. The amount of EPO, IFN-γ, IL-5, IL-17A, 

M-CSF (CSF1), MCP-1 (CCL2), MIP-3α (CCL20), RANTES (CCL5), and VEGF.  in 

CSF in Sham and HI groups are reported. Results are presented as individual values 

(pg/mL) and the mean ± SD is also shown. Statistical analysis: one-way ANOVA and 

Tukey’s multiple comparison test (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). 
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CONCLUSION  
	
 

Neurological insults and disease leading to extensive neurodegeneration, exemplified 

by MS or HI, represent major unmet defies for therapeutic interventions. Characterization and 

targeting of the processes that initiate specific disease pathologies are clearly important areas 

for investigation. The inchoate evidence for both protective and pathogenic roles of microglia 

and the activation of common inflammation pathways in these cells in several 

neurodegenerative disorders supports the hypothesis that glia-induced inflammation is an amp 

of pathology. Although inhibition of neuroinflammation may not alter the underlying cause of 

disease, it may decrease the production of factors that contribute to neurotoxicity and 

demyelination, thus resulting in a clinical benefit.  

 

 A common link between neurodegenerative conditions is the chronic activation of innate 

immune responses counting also those intermediated by microglia. Such activation can trigger 

toxic pathways leading to progressive degeneration. Yet, microglia are also crucial for 

governing inflammatory processes, such as repair and regeneration mechanisms. The adaptive 

immune response is implicated in neurodegenerative diseases contributing to tissue damage, 

but in several cases, mediators used by the immune system to resolve inflammation, mediate 

neuroprotection and repair are also used by the CNS for growth and development. This 

common language is demonstrated by the role of microglia, and the role of cytokines and 

chemokines during development of the brain.  

 

 Notwithstanding the fact that the CNS is an immune-privileged site, innate and adaptive 

immune responses do frequently take place in the CNS. They are indispensable to eliminate 

infectious agents, as well as for clearing debris and endorsing tissue repair. Despite these 

helpful roles of immune responses, such responses must remain under tight control to avoid 

any damage to the CNS. The BBB and the powerful immune-regulatory functions act together 

to protect such control. Microglia are actively maintained in a quiescent state, and the influx 

and local activation of peripheral immune cells is severely limited. Despite these measures, 

chronic immune activation is a pathological hallmark of neurodegenerative disorders.  
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 A better consideration of the endogenous protective pathways will certainly disclose 

ways to harness reparative processes, and so improve control over chronic inflammatory 

neurodegenerative disorders.  
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