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1. 

A mirror reflect: the hematopoietic stem cells and their 

microenvironment 

 
Hematopoietic stem cells (HSCs) constitute a small population in the bone marrow (BM). They 

have two unique and peculiar properties: self-renewing capacity and multi-lineage differentiation 

capacity. Specifically, self-renewal of HSCs represents its ability to generate themselves, while 

differentiation capacity means the ability to produce all blood cells (red blood cells, platelets, 

myeloid lineage cells, as well as lymphoid lineage cells).
1
 

Most adult HSCs are quiescent and their turnover is slowly, on a monthly time scale. However, 

highly proliferative downstream hematopoietic progenitor cells (HPCs) provide a daily 

hematopoietic production. All cellular behaviors of HSCs and their fate are tightly regulated in turn 

by both cell-intrinsic factors and cell-extrinsic factors.
2
 Intrinsic mechanisms are related to cellular 

metabolism and transcriptional regulatory network factors (such as epigenetic machineries, 

Polycomb group proteins, Hox genes, DNA damage response and transcription factors).
3
 Extrinsic 

mechanisms are dictated by niche such as cytokines, chemokines, growth factors, metabolites, and 

exogenous pathogen-derived molecules. Beyond the intrinsic and extrinsic factors, BM niche 

modulates HSPC activation and retention.  

This cross-talks involve different populations and mechanisms that confirm the supportive roles of 

BM niche on HSPCs (Figure A). Among them, for example, BM stromal cells and macrophages 

support hematopoiesis by production of hematopoietic cytokines, such as thrombopoietin (TPO), 

stem cell factor (c-Kit ligand), and granulocyte-colony stimulating factor.
4
 In addition, vascular 

endothelial growth factor (VEGF) signaling is important to assist HSC regeneration and the 

vasculature preservation is mediated by endothelial cells through the Tie2/angiopoietin-1 axis and 

angiopoietin-like proteins. Of note, the retention of HSPC in the niche is mediated via integrins and 

C–X–C chemokine receptor type 4 (CXCR4)/stromal-derived-factor-1 (SDF-1).
5
 

Among all the regulatory factors, reactive oxygen species (ROS) are another essential and crucial 

aspects for HSPC activation and regulation. ROS are not just byproduct of oxidative stress but press 

HSPC to enter cell cycle for proliferation and differentiation.
6
 

Therefore, the stability and architecture of BM niche could substantially modulate the fate of HSPC. 

Importantly, it could be attractive to understand how the BM niche fosters tumor growth and 

progression. It is therefore necessary to highlight where HSCs reside in order to hit them. 
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In line of this, targeting microenvironmental properties could be more likely to succeed 

therapeutically in overcoming common mechanisms of drug resistance. A specialized architecture 

of BM exists, where the majority of HSCs resides and interacts with an orchestra of different cells. 

Two types of niche exist in the BM and confirmed by several studies: endosteal niche and 

vascular/peri-sinusoidal niche.
7
 

Figure A. The BM HSC niche in homeostasis The cellular composition of the hematopoietic microenvironment. The 

bone marrow ‘stroma’ can initiate and maintain hematopoiesis.CXCL12 and SCF secreted by perivascular, 

endothelial, Schwann, and sympathetic neuronal cell, promoting the maintenance of HSCs. Dormant HSCs are found 

around arterioles, activated HSCs are located near sinusoidal niches. Macrophages or megakaryocytes can feed back 

to the niche to influence HSC migration or proliferation.
8,9
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2. 

Structure and Properties of the HSC Niche 
 

2.1 Osteolineage cells and mesenchymal stem cells 
 

Haematopoiesis is supported in all bones in mice, and on the contrary, is located within the axial 

skeleton in adult humans. In particular, the soft tissue of bone contains HSCs and is distributed 

throughout trabeculae that interconnecting bone rods or plates.
10

 This provides a structural 

foundation for soft tissue, and the opposing actions of osteoblasts and osteoclasts shape it, 

regulating dynamically the bone matrix. Endosteum covers trabeculae that consists of osteoblasts, 

osteoprogenitor cells, and osteoclasts.
10

 This is the “endosteal niche” that is created by mainly these 

osteolineage cells, located proximal to the endosteal.
11,12

 The continuous remodeling of the bones 

and bone homeostasis involves a tiny balance between bone-forming osteoblasts (OBs) derived 

from multipotent mesenchymal stem cells (MSCs) and osteoclasts (OCs) that regulate bone 

resorption.
13

 OBs have been proposed to regulate HSC maintenance in the endosteal niche, 

regulating its size and HSCs number.
10

 Various soluble factors and cell adhesion molecules have 

been described to mediate HSCs and OBs interactions within their endosteal niche.
14

 In mice, HSC 

expansion is permitted by increasing OB number with parathyroid hormone (PTH), involving Notch 

activation.
15

 Moreover, bone morphogenetic protein (BMP) signaling increases the number of N-

cadherin
+
 CD45

-
 osteoblastic cells with a subsequent correlation with an increased number of 

HSCs.
16

 However, OBs could also negatively influence HSCs proliferation and induce a quiescent 

status. This is mediated by the interactions between Angiopoietin-1 (Ang-1) produced by OBs and 

its receptor, the Tie2 tyrosine kinase, expressed by HSCs.
7
 However, S. J. Morrison et al.

17
 reports 

that OBs are not able to directly support HSCs. 

 

Mesenchymal stem cells (MSCs) are defined by their capacity to differentiate into osteoblastic, 

adipocytic, and chondrocytic lineages and osteolineage cells could develop from MSCs. These 

stromal cells are a key component of the BM microenvironment that regulates crucial niche 

functions. MSCs can be identified in mice through Nestin (Nes) promoter-driven GFP expression.
18

 

There are many relationship between Nes expression and MSCs and Nes is considered as a selective 

marker for BM-derived MSCs.
19

 Previously described as a neural stem cells (NSCs) marker, Nes is 

an intermediate filament protein that appeared during development of the central nervous system 

(CNS). When Nes
+ 

cells differentiate into neurons or glial cells its expression is downregulated.
20

 

Nes-expressing cells regulate long-term repopulating HSCs, linking MSCs to the endosteum and 
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HSC maintenance. Nes-expressing cells are distributed around vascular structures, associated with 

nerve fibers, or adjacent to bone. Due to their localization, MSCs can contribute to both endosteal 

and vascular niches. 

 

 

2.2 The vascular system 
 

The relationship with HSCs and blood vessels in the BM is determined by location, structure, and 

function. Some Long-term HSCs (LT-HSC) are associated with arterioles and the rapid access of 

HSCs to the bloodstream is provided by venous sinusoids.
10

 Arterial vessels branch into smaller 

arterioles located near the endosteum and surrounded by layers of smooth muscle, pericytes, and 

non-myelinating Schwann cells. This vascular niche has been associated with quiescent HSCs.
21

 

However, sinusoidal blood vessels can promote presumably proliferation, differentiation, and 

mobilization of HSCs and this is provided by a more nutrient-rich microenvironment with higher 

concentrations of oxygen and growth factors.
22,23

 

Endothelial cells support and regulate HSC activity through particular factors named angiocrine 

factors. One of most important function is provided by Notch signaling, because endothelial cells 

express the Notch ligands Jagged-1, Jagged-2, and Delta-like (DLL) -1 and -4, promoting in vitro 

self-renewal of LT-HSCs and in vivo reconstitution of the LT-HSC pool after myeloablation. 

Moreover, the increasing of endothelial and perivascular cell numbers promotes arterial formation 

by the Notch pathway.  

In parallel to studies on Nes
+
 cells, several works have focused on the previously identified 

population of CXCL12-abundant reticular (CAR) cells. These CAR cells are adventitial reticular 

cells widely spread throughout the bone marrow and the loss of CAR cells coincides with a strong 

reduction in LT-HSC number in a mouse model.
24

 In addition, LT-HSCs in CAR cell-depleted mice 

are smaller and more quiescent. Moreover short-term ablation of CAR cells in vivo severely 

impaired the adipogenic and osteogenic differentiation potential of BM cells, suggesting CAR cells 

contain adipo-osteogenic bipotential progenitors.
25

 The HSCs have direct contact with CAR, which 

secrete higher levels of CXCL12 than OBs.
24

 

In addition, the endosteal-vascular niche provides a hypoxic microenvironment that promotes 

quiescence of stem cells.
26

 At low oxygen tensions, cells responds with an activate adaptive 

transcriptional program mediated by the hypoxia-inducible factor-1α (HIF-1α). HSC differentiation 

and cell cycle quiescence is regulated by hypoxic microenvironment.
27

 Recently, works 
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demonstrate that to maintain hypoxia in the HSC niche is required by the integrity of blood vessels 

and the presence of densely-populated cells. Capillaries branching from arterioles fed sinusoids and 

are located around a central sinus that drains blood out of the bone marrow. Fenestrated sinusoids 

permit HSC and leukocyte mobilization
26

 and direct contact with the HSC niche is necessary for 

LT-HSC maintenance. So that, long periods of mobilization is able to reduce the stemness potential 

of HSCs, promoting differentiation into mature cells.
28

 

 

 

2.3 External Innervation of the BM 

 
Myelinated and non-myelinated nerve fibers are found in  the BM.

29
 The stem cell niche and the 

migration of hematopoietic cells are regulated by the autonomic nervous system (ANS); HSC 

mobilization is influenced by the sympathetic nervous system (SNS).
30

 This behaviour is direct 

dependent by rhythmic secretion of noradrenaline modulated by circadian oscillations of HSC 

numbers in peripheral blood. Notably, noradrenaline decreases CXCL12 expression, an essential 

chemokine for HSC localization to the niche in BM stromal cells. CXCR4-expressing HSCs egress 

from the niche after decreasing CXCL12 levels. Non-myelinating Schwann cells have also been 

oserved to localize close to HSCs and maintain HSC quiescence by activating transforming growth 

factor-β (TGF-β)-SMAD signaling.
29

 

The nervous system regulation on HSC niche is dictated by circadian rhythmic and modulate HSC 

mobilization and quiescence. 

 

 

2.4 Hematopoietic cells, immune cells in the hematopoietic stem cell 

niche 

 
The migration of HSCs provides a tool for BM microenvironment to communicate on a systemic 

level. 1-5 % of the pool of HSCs enters the circulation and this generates a vacant niche spaces to 

accept HSCs to home back to the BM. Many studies showed the presence of HSCs in spleen, lung, 

liver and kidney, as proof of HSCs behaviour to enter in circulation and migrate through peripheral 

tissue.
31

 

Neutrophils constitute the highly migratory myeloid cells and sensitive to tissue damage and 

infection or inflammation.
32

 Also the release of neutrophils is modulated by BM niche, similar to 
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HSCs, according to circadian rhythm. In particular aged neutrophils express low levels of CD62 L 

and high levels of CXCR4, increasing homing to BM.  

Interestingly, the CD169
+
 macrophages in the BM engulf dying neutrophils. These CD169

+
 

macrophages with neutrophil engulfed inhibit CXCL12 production by niche stromal cells, with a 

subsequent realease of HSCs from the niche. On the contrary, the retention of HSCs is promoted by 

increasing CXCL12 production from Nes
+
 MSCs. CD169

+  
macrophages promote HSC retention by 

increasing CXCL12 production from Nes
+
 MSCs. HSCs mobilization is linked to the circadian 

rhythm of neutrophil migration and the regulation of niche, modulated by the depletion of CD169
+ 

macropohages that reduce the ability of BM stromal cells to produce CXCL12.
33

 

Infection or different stimuli entail cytotoxic CD8
+
 T cells homing to the BM with a stimulation of 

MSC-mediated myelopoiesis.
34

 CTLs secrete IFN-γ and MSCs, in turn, produce IL6 that promote 

myelopoiesis. This responce of CTLs in a peripheral organ can indirectly stimulate innate immune 

protection within the BM.
28
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3. 

Modulation of the HSC niche by different stimuli 
 

3.1 HSCs and stress-mediated responses 
 

HSCs sense their microenvironment and may be impaired by diverse sources of stress: including 

oxidation, radiation, hypoxia, chemotherapy and inflammation, hampering homeostasis and 

hindering regeneration.
35

 Specifically, ionizing radiation and chemotherapy, used to treat 

hematopoietic malignancies and leukemia, lead to BM injury and alteration in cell composition.
8
 

The dynamics of BM cell production, maturation, trafficking and lifespan are all compromised by 

radiation and chemotherapy. HSCs reactions result in increasing apoptosis in a dose- and time-

dependent manner, which can be attenuated by different mechanisms, such as VEGF-induced 

expression of myeloid cell leukemia-1 (MCL1) in hematopoietic progenitor cells.
36

 

Importantly, the ability of hematopoietic tissues to maintain redox status is crucial to maintaining 

normal hematopoiesis. Indeed, an overabundance of cellular ROS emerges into oxidative stress. 

This derives by the partial reduction of oxygen or a defect in the antioxidant protection 

mechanisms. Free radicals and ROS produced by high doses of radiation alter HSC repopulating 

ability and damage the BM vasculature.
37

 ROS can activate DNA damage response pathways (e.g. 

mediated by p53, ATM, 53BP1 (TP53BP1), CHK2 and FOXO3a), promoting loss of stem cell 

functionand senescence.
38

 Accordingly, therapeutic approaches aimed at reducing excessive ROS 

accumulation may also provide a recovery after stress induced. 

 

3.2 Hematopoietic Responses to Inflammation 
 

'Wounds that do not heal': this is the inflammation. Infection and tissue injury/damage could 

explode in an inflammatory response that is defined as a protective immune response.
1
 Endogenous 

and exogenous factors can induce local or systemic inflammation. Inflammatory cytokines appear 

to stimulate HSCs to proliferate in the short-term; however, little is known about HSC identification 

becomes substantially more complex in the contest of inflammatory signaling. IFNs and TNF-α 

induce the expression of the canonical stem cell marker Sca-1 in hematopoietic cells. In addition, 

when HSCs are stimulated to proliferate after 5-fluorouracil treatment, the c-Kit marker is 

downregulated and Mac-1, one of the lineage markers, is upregulated.
39

 HSPCs can themselves 

home to sites of inflammatory microenvironment and this provides a direct contribute to 

inflammatory processes. In particular, HSPC express Toll-like receptors (TLRs), which are 
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important for the recognition of microbial moieties by innate immune cells.
40

 HSPCs home to 

various inflammatory non-hematopoietic sites or ectopic sites and are capable to rapidly produce 

cells that are essential for the immune response. After migration, HSPCs can differentiate in situ 

and also colonize extramedullary hematopoietic sites, such as spleen and liver, to rapidly produce 

effector innate immune cells.
24

 To survive in a toxic environment of inflamed tissues, evidences 

suggest the phagocytic activity of macrophages increases in the presence of pro-inflammatory 

molecules, and this response would be beneficial to clear offending pathogens during infection. 

 

 

Figure B. Tumor microenvironment (TME) as a fertile soil for dynamic cell phenotype and function. 

Composition of TME includes mesenchymal stromal/stem cells (MSCs), tumor-associated fibroblasts (TAFs); immune 

cells: macrophages (MФ), regulatory T cells (Treg), myeloid-derived suppressor cells (MDSCs), natural killer (NK) 

cells, dendritic cells (DCs), monocytes, neutrophils, T lymphocytes, B cells, and heterogenic population of tumor cells. 

Reciprocal cross-talk within cellular compartment and complex network.
44

 

 

In addition, MSCs could adopt tumor-inhibiting phenotypes by means the activation of various 

surface receptors.
41

 MSCs help tumor cells in maintenance of permissive tumor microenvironment 

and suppression of antitumor immune response. They act as “ambulatory cells” home sites of 

inflammation, manifesting immunosuppressive properties, and differentiating into various cell 

types.
42

 MSCs are involved in different step of tumor development, such as evasion of immune 
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surveillance, promotion of tumor angiogenesis, resistance to chemotherapeutics, invasion and 

metastasis.
43

 Surprisingly, it was demonstrated that tumor-associated inflammation has been 

converted by tumor cells to their advantage as normal response to injury and infection. The activity 

of stromal cells in tumors appears to be subordinated by tumor microenvironment (TME) 

influences.
44

 

One mechanism is due to the suppression of the immune response with a MSCs-mediated direct or 

paracrine communication with immune cells (Figure B).
45

 For this reason, BM MSCs have been 

tested into the clinical settings. Consistent with macrophages differentiation, it has been proposed 

the existence of two functional phenotypes of MSCs, M1 (proinflammatory) and M2 (anti-

inflammatory).
46

 TNF-α, interferon (IFN)-γ, IL-6, IL-1, and TGF-β, as pro-inflammatory cytokines, 

can regulate immune activities of MSCs. Also, the activation of NF-κB by MSCs alters the 

macrophages polarization toward M1 or M2 phenotype.
47

 Thus, it seems that MSCs can behave like 

immune cells, responding to inflammatory stimuli of microenvironment and modifying their 

secretory and activity profile toward immunosuppression. 
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4. 

The Niche for Malignant Hematopoietic Cells 
 

 

Myeloid malignancies define clonal diseases of hematopoietic stem or progenitor cells with an 

alteration of proliferation, abnormal self-renewal and/or differentiation defects. Different genetic 

and epigenetic causes changes in HSCs and these functional changes in BM niche cells includes 

myeloid malignancies such as myeloproliferative neoplasms (MPN), myelodysplastic syndrome 

(MDS) and acute myeloid leukaemia (AML).
48

 

 

Figure C.The leukemic stem-like cell (LSC) niche in the bone marrow (BM). Specific pathways of LSCs in acute 

myeloid leukemia (AML; red), chronic myelogenous leukemia (CML; dark blue), B-cell acute lymphoblastic leukemia 

(B-ALL; green), chronic lymphocytic leukemia (CLL; pale blue), myelodysplastic syndrome (MDS; orange) and JAK2 

V617F positive myeloproliferative neoplasia (MPN; yellow) microenvironment-mediated. SDF-1α: stromal-derived 

factor 1α; BMP: bone morphogenetic protein; BMPR: bone morphogenetic protein receptor; Gas6: growth-arrest-

specific-gene 6; VEGF (A): vascular endothelial growth factor (A); SCF: stem cell factor; IL-8: interleukin-8; PlGF: 

placental growth factor; TPO: thrombopoietin; LIF: leukemia-inhibitory factor; PDGF: platelet-derived growth factor; 

Ang2: angiopoietin2; TGFβ: transforming growth factor β.
49
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Driver mutations in MPN patients involve JAK2, Calreticulin and MPL genes.
50

 Irrespective of 

mutations, all patients show constutive activation of the JAK-STAT pathway.Specifically, JAK2 

mutation results in constitutive kinase activity and uncontrolled cell expansion. Moreover, both 

MPN patients and mice expressing the human JAK2
V617F

 mutation in the HSCs showed a reduction 

of both sympathetic nerve fibers and Nes-GFP
+
 MSCs in the BM.

51
 Concomitantly, in vivo MPN 

progression is accelerated by depletion of Nes
+
 cells, whereas administration of neuroprotective or 

sympathico-mimetic drugsreduces the myelofibrosis associated with this disease. This supports the 

idea that mutated HSCs have the potential to damage their own niche in MPN and initiate disease.  

BM mesenchymal stromal cells (BMSCs) could be altered by genetic and epigenetic 

modifications.
52

 A coordinated signaling network regulates the BM microenvironment and supports 

HSCs (Figure C). Likely, multiple different cell populations alter number, location, proliferation, 

self-renewal, and differentiation of the LSC.
53

 Thus, an alteration in the microenvironment can 

serve as the initiating event in hematologic neoplasia.
49

 BM includes HSCs, stromal cells, vascular 

cells, osteolineage cells, neuronal cells and the extracellular matrix in which these cells reside. 

HSCs lose quiescence and their stemness whether they cannot home to the niche.
9
 HSCs, as source 

of all hematopoietic lineages, are tightly linked to the HSC niche. Importantly, the niche 

dynamically determines the balance of stem cells quiescence, renewal, differentiation and 

mobilization or homing.
54

 We can hypothesize the presence of a bi-directional mirror effect where a 

change in stem cell activity reflects a change in the microenvironment. 

Determining how a tumor influences the regulatory HSC niche could help to minimize tumor-

associated immune suppression, thereby enhancing anti-tumor immune therapies. 

 

 

4.1 Chemokines and growth factors 
 

One of most crucial factor in HSC niche is CXCL12 and its interactions. In AML it has been shown 

CXCL12 deficiencies in HSC niche.
10

 Changes in Nes
+
 CD51

+
 PDGFRα

+
 mesenchymal stem and 

progenitor cells (MSPCs) induced by a MLL-AF9 AML model reveal a downregulation in the 

expression of HSC genes, linked to retention and maintenance (such as CXCL12, SCF, Vcam1, and 

Angpt1). As consequence, the frequency of LT-HSCs decreased and HSCs were mobilized from the 

BM to the periphery.
55

 Further study shows a decreased level of CXCL12 in BM plasma of AML 

patientsor in the culture supernatants of AML MSC, associated to an elevated intracellular CXCL12 

concentration.
56
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Pro-angiogenic factors such as bFGF and HGF are upregulated in AML, chronic myeloid leukemia 

(CML), and Myelodysplastic syndrome (MDS). Similarly, TNF-α, IL-6, and IL-1β are increased 

when AML blasts are co-cultured with ECs.
48

 Thereby, leukemic cell expansion is promoted by 

these cytokines that, in turn, stimulate EC proliferation and G-CSF and GM-CSF 

production.
57

 Moreover, secretion of TNF-α and IL-1β by AML blasts upregulates endothelial 

adhesion receptors(VCAM-1 and ICAM-1), promoting vascular adhesion and proliferation.
48

 The 

proinflammatory environment promotes EC activation, compromising vascular integrity and 

favoring thrombosis. 

As previuos described, proinflammatory cytokines produced by JAK2
V617F

 hematopoietic cells, 

such as IL-1β, can cause local neuropathy and microenvironmental damage leading to disease 

manifestation.
51

 

Regarding a CML model, CXCL12 downregulation is concurrently associated with an upregulation  

in BM of macrophage inflammatory protein-1α (MIP-1α), MIP-1β, IL-1α, IL-1β, TNF-α, IL-6, and 

G-CSF suggesting a new HSC niche that favors the development of leukemia.
58

 

Considering other factors released in leukemic BM, G-CSF and granulocyte macrophage-colony 

stimulating factor (GM-CSF) were inducible from endothelial cells cultured in medium conditioned 

by patient-derived AML.  

BCR/Abl positive CML can induce placental growth factor (PIGF) produced by BMSCs.
59

 

Interestingly, this upregulation was dependent on NF-κB, suggesting a role for inflammatory related 

cytokines in the progression of leukemia. 

 

4.2 Niche cell population alterations and supports 
 

The homeostasis of mesenchymal niche can be altered by leukemia. This finding was confirmed by 

different mouse model. BM niche can actively participate in leukemic initiation and 

progression.
9,49,56,60

 Regarding studies about alteration of the mesenchymal niche, it has been 

previously described a transgenic model of CML that exhibit defective retention of HSCs and 

homing in the niche as consequence of decreased CXCL12 in BM MSCs. Concomitantly, in the 

BM of animals with leukemia there is an alteration of MSCs or osteoblastic cells induced by BCR-

Abl.
61

 Only recently, studies emerged about niche remodeling in human AML patients.
62

 We and 

others found a permissive MSC niche for leukemogenesis as compared with the normal 

counterparts.
63,64

 Specifically, Kim et al.
62

 revealed that human BMs of AML patient's exhibit 

alteration in mesenchymal niche, such as extensive transcriptional reprogramming in MSCs along 
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with loss of MSCs proliferation and loss of mesenchymal progenitors (CD146
+
, primitive subsets of 

MSCs). Moreover, they showed a distinctive regulation of normal and malignant hematopoietic 

progenitors by differential expression of cross-talk molecules (Jagged-1 or CXCL12). By means of 

these mechanisms, the reprogramming of mesenchymal niche selectively suppresses normal HSCs, 

sparing the leukemogenic activity of leukemia cells. Thus, the clonal dominance of leukemic cells 

over normal hematopoietic pool is preserved by mesenchymal niche alteration. In addition, they 

found that most BMs in AML patients who maintained complete remission showed low levels of 

mesenchymal components. This finding suggests that stromal pattern at initial diagnosis may be 

considered as a biomarker to predict the clinical course of AML, identifying high-risk patients. 

Accordingly, the individual microenvironment-based approaches should be considered as a new 

therapeutic planning. 

On the other side, hematologic malignancies can alter the stromal compartments of the BM and 

subsequently the HSC niche. BM stromal cells of CML and AML patients are altered in the 

osteoblastic, neural, and endothelial compartments. It has been described an increased number of 

osteoblastic cells in the BM of CML and AML patients.
65

 Interestingly, there is a skewing to the 

osteoblastic lineage of MSC in CML induced by BCR/Abl; this finding was also confirmed in an 

MLL-AF9 AML model.
55

 Despite these differences, a significant upregulation of MIP-1α was 

observed in the mouse model and AML patients suggesting that MIP-1α may be an important 

mediator of the inhibitory effect on OBC. 

Of note, also neurons, that innervate the BM, are also altered during the pathogenesis of 

hematopoietic malignancies. Indeed, treatment with β3 adrenergic agonists restored Nes
+
 MSCs 

with a reduction of leukemia stem cells in the BM using a mouse model with HSCs that expressed 

the mutant JAK2.
51

 Concomitantly, in an AML model MLL-AF9 the depletion of adrenergic nerves 

increased leukemic infiltration in the BM, accelerating leukemogenesis and diminishing survival.
55

 

In particular, in association with SNS denervation in leukemic BM there is a reduction of 

endothelial cells and perivascular mesenchymal stem and progenitor cells (MSPCs), which exhibit a 

block in differentiation to mature osteoblast cells, with potential damage of healthy HSCs.  

Intriguingly, the link between microenvironment and cancer metabolism has been explored in the 

last decade. For example, BM stroma has been shown to have protective activity for chronic 

lymphocytic leukemia (CLL) cells by modulating oxidative stress. Particularly, the uptake of 

cystine is mediated by stromal cells with the conversion of cystine to cysteine and its release to the 

microenvironment. The uptake of cysteine by CLL cells for glutathione (GSH) synthesis, which is 

involved against oxidative damage, enhances the leukemia cell survival and drug 
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resistance.
66

 Moreover, these results are also extended to ALL to maintain the redox state in 

leukemia cells that generate more ROS than non-malignant cells.
67

 Further, recently, Iwamoto et 

al.
68

 showed a high level of asparagine synthetase by MSCs as mechanism to protect acute 

lymphoblastic leukemia (ALL) cells from asparaginase cytotoxity. Again, it has been described that 

alterations of the immune microenvironment by AML blasts occur via release of arginase II, which 

suppresses T cell proliferation and the polarization of monocytes into a suppressive M2-like 

phenotype.
69

 

 

In conclusion, only through a deeper knowledge of these intricate systems we can learn how to 

strive haematopoietic malignancies. 
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 Aims of the thesis 
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This thesis is based on the study of three different projects focusing on the role of inflammation in 

Acute Myeloid Leukemia, in Myelofibrosis (MF), and, particularly, on the contribution of BM-

MSCs to the development of AML. 

 

The specific aims were the followings:  

 

1. To analyze the role of inflammation on the functional behaviour of circulating CD34
+ 

cells 

from patients with MF. It has been hypothesized that the sustained inflammatory 

microenvironment of MF can alter crucial biological processes, leading to genomic instability and 

cancer progression. In my thesis, we tested the in vitro functional effects of pivotal players of the 

inflammatory microenvironment: the extracellular ATP nucleotide and selected cytokines, such as 

Interleukin (IL)-1β, Tumor Necrosis Factor (TNF)-α or the Tissue Inhibitor of Metalloproteinases-1 

(TIMP-1)) on the circulating CD34
+
 cells from MF patients. Specifically, we analyzed the effects of 

these selected inflammatory mediators on the proliferative activity, clonogenic potential and 

migration capability of CD34
+
 cells from JAK2

V617F
 and calreticulin (CALR) mutated patients. 

 

2. To investigate the novel function of the Tissue inhibitor of Metalloproteinases (TIMP-1) 

within the leukemic microenvironment. Here, in the attempt to provide further evidence for the 

critical role of inflammation in leukemic microenvironment, we investigated the role of TIMP-1 in 

leukemic blasts from patients with AML, at diagnosis. We dissected the molecular pathways TIMP-

1’s cytokine-like functions and signaling pathway in leukemic blasts underlying the cross-talk 

between inflammation and normal/leukemic microenvironment. Moreover, we explored the 

interplay of leukemic blasts and MSCs from donor o AML patients in co-cultures systems, showing 

TIMP-1 as a “bad actor” in a “bad soil” (leukemic microenvironment).  

 

3. To explore the crosstalk of BMSC with leukemic cells. We set up a novel co-culture system 

with BMSCs and leukemic blasts from a MLL-AF9 model mouse (doxycycline-inducible 

rtTA;MLL-AF9 mouse strain),
70

 investigating ROS-mediated signaling, lipid peroxidation and drug 

resistance mechanisms. BMSCs can be propagated as non-adherent ‘mesenspheres’ allowing them 

to self-renew and expand, mimicking their properties in vivo and increasing their therapeutic 

potential. For these reasons, the aim of the project was to study the role of BM mesenspheres in 

controlling leukemic fate in AML. The hypothesis behind this proposal is that BM mesenspheres 
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may regulate leukemic blast survival, metabolic adaptation and chemo-resistance through ROS 

signaling and mitochondria exchanges. The goals of the final part of my thesis were: 

A) to investigate whether murine mesenspheres affect in vitro survival of murine leukemic blasts; 

B) to elucidate the specific signalling pathway by which mesenspheres controls in vitro cell survival 

including modulation of ROS levels or lipid peroxidation by mitochondrial transfer; 

C) to highlight in vitro the drug resistance mechanisms of leukemic blasts in the presence of 

mesenspheres after treatment with cytosine arabinoside (AraC). 
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 Results Ia 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22  

 

Published in  

Oncotarget. 2016 Jul 12; 7(28): 43974–43988. 

Published online 2016 Jun 11. doi:  10.18632/oncotarget.9949 

CRUCIAL FACTORS OF THE INFLAMMATORY MICROENVIRONMENT 

(IL-1β/TNF-α/TIMP-1) PROMOTE THE MAINTENANCE OF THE 

MALIGNANT HEMOPOIETIC CLONE OF MYELOFIBROSIS: AN IN 

VITRO STUDY 

D. Sollazzo*, D. Forte*, N. Polverelli, M. Romano, M. Perricone, L. Rossi, E. Ottaviani, S. Luatti, 

G. Martinelli, N. Vianelli, M. Cavo, F. Palandri§, L. Catani§  

(* or §:equally contributed) 

Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. e A. 

Seràgnoli”, University of Bologna, Bologna, Italy.   

Key words: Circulating CD34
+
 cells, Myelofibrosis, Inflammatory microenvironment, 

Migration, Survival 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5190072/
https://dx.doi.org/10.18632%2Foncotarget.9949


23  

 

ABSTRACT 
 

Along with molecular abnormalities (mutations in JAK2, CALR and MPL genes), chronic 

inflammation is the major hallmark of MF. Here, we investigated the in vitro effects of crucial 

factors of the inflammatory microenvironment (IL-1β, TNF-α, TIMP-1 and ATP) on the functional 

behaviour of MF-derived circulating CD34
+
 cells.  

We found that, regardless mutation status, IL-1β or TNF-α increase the survival of MF-

derived CD34
+
 cells. In addition, along with stimulation of cell cycle progression to the S-phase, 

IL-1β or TNF-α ± TIMP-1 significantly stimulate(s) the in vitro clonogenic ability of CD34
+
 cells 

from JAK2
V617

 mutated patients.   Whereas in the JAK2
V617F

mutated group, the addition of IL-1β or 

TNF-α + TIMP-1 decreased the erythroid compartment of the CALR mutated patients. 

Megakaryocyte progenitors were stimulated by IL-1β (JAK2
V617F

mutated patients only) and 

inhibited by TNF-α. IL-1β + TNF-α + C-X-C motif chemokine 12 (CXCL12) ± TIMP-1 highly 

stimulates the in vitro migration of MF-derived CD34
+
 cells. Interestingly, after migration toward 

IL-1β + TNF-α + CXCL12 ± TIMP-1, CD34
+
 cells from JAK2

V617F
 mutated patients show increased 

clonogenic ability.  

Here we demonstrate that the interplay of these inflammatory factors promotes and selects 

the circulating MF-derived CD34+ cells with higher proliferative activity, clonogenic potential and 

migration ability. Targeting these micro-environmental interactions may be a clinically relevant 

approach. 
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INTRODUCTION 
 

MF is a life-threatening chronic myeloproliferative neoplasia (MPN) of the hematopoietic 

stem/progenitor cell (HSPC) clinically characterized by progressive anemia, splenomegaly and 

constitutional symptoms and by an increased risk to develop acute leukemia (AL). It can arise de 

novo (primary MF; PMF) or can evolve from Polycythemia Vera (PV; PPV MF) or Essential 

Thrombocythemia (ET; PET MF).
71-73

 

Approximately 50 to 60% of MF patients carry a mutation in the Janus kinase 2 (JAK2) 

gene, while 20-25% of patients show recurrent mutations in the CALR and an additional 5 to 10% 

have activating mutations in the myeloproliferative leukemia virus oncogene (MPL) gene. Around 

10% of patients have non-mutated JAK2, MPL and CALR genes (“triple negative”).  Regardless of 

molecular status, all patients have a deregulation in the JAK/STAT signalling.
74-79

 

Besides molecular abnormalities, the inflammatory microenvironment has emerged in the 

last few years as a key-player in MF pathogenesis.
80

 Abnormal expression and activity of several 

cytokines involved in inflammation and immunoregulation are associated with MF
81

 and correlate 

with more severe marrow fibrosis,
82,83

 worsening systemic symptoms and decreased survival.
84

 

Also, the constitutive mobilization of CD34
+
 cells into the peripheral blood has been associated 

with profound alterations in the CXC chemokine receptor 4 (CXCR4)/ C-X-C motif chemokine 12 

(CXCL12) axis.
85-87

 Up-regulated production of proinflammatory cytokines by HSPCs and 

surrounding stromal cells generates a microenvironment that selects for the malignant clone.
81,88-92

 

Interestingly, HSPCs actively sense pro-inflammatory factors.
24,93

 However, the key players 

linking inflammation and cancer in MF are still to be defined. Particularly, the plasma levels of IL-

1β, TNF-α and TIMP-1 are increased in MF patients,
75,84,94

 but their contribution to disease 

pathogenesis in MF has been poorly
95

 or never investigated. This is also true for the extracellular 

ATP nucleotide.
96

 Under inflammatory conditions, IL-1β stimulates leukocytosis and 

thrombocytosis by inducing various cytokines (i.e. Granulocyte-Colony Stimulating Factor, IL-6) 

that are overexpressed in MF; also, IL-1β regulates the survival/proliferation of AL cells.
97,98

 IL-1β 

has been recognized as the main trigger for neural damage and Schwann cell death caused by bone 

marrow mutant HSPC. Notably, mutant-HSPC-driven niche damage seems to critically contribute 

to MPN pathogenesis.
51

 TNF-α promotes survival of human quiescent bone marrow-derived CD34
+
 

Burst Forming Unit-Erythrocyte (BFU-E) and facilitates the clonal expansion of JAK2
V617F

-positive 

cells in MPNs.
95,99

 TIMP-1, through receptor (CD63) binding, promotes cell survival, 

differentiation and migration; also, TIMP-1 displays cytokine-like features in the HSPC 
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compartment.
100-102

 It was initially found to enhance the proliferation of erythroid cells;
103

 also, we 

recently demonstrated that TIMP-1 increases the clonogenic efficiency of normal CB-derived 

progenitor cells.
104

 Finally, extracellular nucleotides, mainly ATP, are important mediators in 

inflammation and modulation of cell proliferation, migration and death, including AL CD34
+
 

stem/progenitor cells.
104-109

 

Here, we addressed the functional effects of these pro-inflammatory factors on the in vitro 

behaviour of HSPCs derived from MF patients, with the aim to investigate their putative role in 

disease pathogenesis.  
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RESULTS 
 

Regardless of mutation status, the plasma levels of IL-1β, TNF-α and TIMP-1 are increased in 

MF patients 

To evaluate the pro-inflammatory profile, selected plasma cytokines were measured. Compared 

with controls, IL-1β, TNF-α and TIMP-1 plasma levels were significantly increased in MF patients 

(regardless of IPSS risk stratification values) (Figure 1 A, B, C). We found a trend, albeit not 

statistically significant (p=0.06), toward increased IL-1β plasma levels in CALR mutated patients. 

Targeting TNF-α and TIMP-1, no significant differences were observed between JAK2
V617F

 and 

CALR mutated groups. 
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Figure 1 

Regardless mutation status, the plasma levels of IL-1β, TNF-α and TIMP-1 are increased in MF patients 

IL-1β (A), TNF-α (B) and TIMP-1 (C) plasma levels were measured by ELISA in MF patients. (n = 

26; JAK2
V617F

 positive n =16; CALR positive n = 10) and healthy controls (n = 15). Compared with controls, cytokines 

plasma levels were significantly increased in MF patients. Of note, there was no significant difference 

between JAK2
V617F

 or CALR mutated patients. All data are presented as mean ± SEM (**p ≤ 0.01; ***p ≤ 0.001; 

****p ≤ 0.0001). 

 

Selected subsets of circulating HSPCs are expanded in MF patients 

To determine the extent of the circulating HSPCs compartment according to mutations, we 

phenotypically analysed the whole blood of MF patients.  

Irrespective of mutation status, the mean number of circulating CD34
+
 cells was significantly higher 

in MF patients than in controls (p ≤ 0.0001). No significant differences were observed between the 

two mutated groups (Figure 2 A).  Of note, the number of CD34
+
 cells correlated with IPSS risk in 

JAK2
V617F

 mutated patients (r=0.88; p= 0.02; data not shown). 

Along with CD34
+
CD38

-
 and CD34

+
CD133

+
 cells (Figure 2 B, C), circulating CD34

+
 cells co-

expressing adhesion molecules (CD49d, CD47 and CD44; Figure 2 D-F) were also significantly 

increased in MF patients. Once again, no significant difference was observed between the two 

mutated groups. 

The median number of circulating MF-derived CD34
+
 cells co-expressing the TIMP-1 (CD63)  or 

the CXCL12 receptor (CD184; CXCR4) was significantly higher (p ≤ 0.001 and p ≤ 

0.01,respectively) than the CB counterparts (Figure 2 G, H). CALR mutated patients showed 

increased number of circulating CD34
+
CD63

+
 and CD34

+
CD184

+
 cells compared to JAK2

V617F
 

mutated patients (p ≤ 0.01 forCD34
+
CD63

+
) or the CB-counterparts (p ≤ 0.01 and p ≤ 0.05, 

respectively). CD34
+
CD63

+
 cells of JAK2

V617F
 mutated patients were also increased compared with 

the CB-derived cells (p ≤ 0.05).  

As shown in Figure 2 I, circulating megakaryocyte (MK) progenitors (CD34
+
CD41

+
) were also 

significantly increased (p ≤ 0.01). CALR mutated patients showed increased number of 

CD34
+
CD41

+
  cells compared to JAK2

V617F
 mutated patients (p ≤ 0.01) or the CB-counterparts (p 

≤0.001).  

Of note, except of the decreased expression of CD184 in MF cells, the analysis of  mean 

fluorescence intensity (MFI) of CD133, CD63,CD41, CD49d, CD44 and CD47 antigens on the 

CD34
+
 cells did not reveal any difference between patients and controls or between the two mutated 

groups (data not shown).  
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These data demonstrate that in MF, irrespective of mutation status, there is an in vivo expansion of 

the HSPCs compartment. However, the CALR mutated patients show an increased number of 

circulating CD34
+
CD63

+
 and CD34

+
CD41

+
 cells compared to the JAK2

V617F
 mutated counterparts. 
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Figure 2 

Selected subsets of circulating HSPCs are expanded in MF patients 

The circulating absolute number of MF (total (n = 30) and subdivided into JAK2V617F (n = 20) or CALR (n = 10) 

mutated groups) and CB (n = 10) CD34
+
 cells coexpressing the CD133, CD49d, CD47, CD44, CD63, CD184 and 

CD41 antigens together with the CD34
+
 CD38

− 
subset are shown (A–I). All subsets were increased in MF patients as 

compared with the CB counterparts. No significant differences were observed between the two mutated groups, except 

the CD34
+
 CD63

+ 
and the CD34

+ 
CD41

+
 cells of CALR mutated patients which were significantly increased as 

compared with the JAK2V617F counterparts. All data are presented as mean ± SEM (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 

0.001; ****p ≤ 0.0001). 

 

Survival of CD34
+
 cells from MF patients is increased by IL-1β and TNF-α 

To investigate whether inflammatory signals may regulate the survival of HSPCs, CD34
+
 cells from 

MF patients or CB were in vitro cultured with the selected pro-inflammatory factors, alone or in 

combination, at concentrations previously shown to be effective in dose-response experiments 

(Supplementary Figure 1).  

We firstly assessed the effects of factors alone on the in vitro survival of CD34
+
 cells. As shown in 

Figure 3 A, the survival of CD34
+
 cells from MF patients was significantly promoted by IL-1β or 

TNF-α as compared with the CB CD34
+
 cells (p ≤ 0.01 and p ≤ 0.05, respectively) or with the 

untreated MF cells (p ≤ 0.001 and p ≤ 0.01,  respectively). No significant differences in survival 

were observed between the two mutated groups in all tested conditions (data not shown). 

As shown in Supplementary Figure 2, the combinations of factors two-by-two significantly 

promoted the MF-derived CD34
+
 cells survival as compared with untreated cells. However, no 

significant differences in cell viability were observed as compared with factors alone.  Interestingly, 

the two by two combined factors did not significantly enhance the survival of CB-derived CD34
+
 

cells, except for IL-1β + TNF-α (p ≤ 0.01). Comparing MF vs CB-derived cells, the survival of MF 

CD34
+
 cells was significantly enhanced by IL-1β + TIMP-1 (p ≤ 0.01) and IL-1β + ATP (p≤ 0.01). 

When multiple factors were combined no significant differences were observed between MF and 

CB-derived CD34
+
 cells. Only TNF-α + TIMP-1 + ATP significantly promoted the survival of 

JAK2
V617F

CD34
+
 cells as compared with the CALR (p ≤ 0.01) or CB counterparts (p ≤ 0.001) (data 

not shown). 
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Figure 3 

Survival of CD34
+
 cells from MF patients is increased by IL-1β and TNF-α 

(A) CD34
+
 cells from MF patients (n = 20) or CB (n = 8) were in vitro treated for 4 days with factors alone and the 

percentage of cell viability was assessed after Annexin V/PI staining, as described in Methods. At variance with CB-

derived cells, TNF-α and IL-1β alone significantly stimulated the survival of MF-derived CD34
+
 cells as compared with 

untreated cells and the CB-derived counterparts. Conversely, ATP and TIMP-1 were ineffective in normal and diseased 

cells.(B) In selected experiments, before Annexin V/PI staining, MF- (n = 10) and CB- (n = 6) derived CD34
+
 cells 

were also labeled with a MoAb against the human CD38 antigen and the CD34
+
 CD38

−
 cells were gated and cell 

viability was analyzed. Once again, multiple combinations of cytokines with IL-1β or TNF-α significantly stimulated the 

survival of MF- and CB-derived CD34
+
 CD38

−
 cells. Notably, this was not true for ATP+ TNF-α+ TIMP-1. No 

differences were observed between MF patients and CB. All data are presented as mean ± SEM. (**p ≤ 0.01; ***p ≤ 

0.001; ****p ≤ 0.0001 vs untreated cells (CTR)) (
#
p ≤ 0.05; 

##
p ≤ 0.01 vs CB). 

 

When we analyzed the CD34
+
 CD38

-
 cells (Figure 3 B), we found that multiple factors 

combinations (particularly those including IL-1β) significantly stimulated the cell survival of MF 

and CB-derived cells as compared with untreated cells. However, no significant differences were 

observed between patients/controls (Figure 3 B) or the two mutated groups (data not shown) 

Taken together these data demonstrate that, regardless of mutation status, the survival of MF-

derived CD34
+
 cells is highly stimulated by the in vitro treatment with IL-1β or TNF-α.  

Combinations of pro-inflammatory factors do not have synergistic effects.  
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Clonogenic output of circulating MF-derived CD34
+
 cells is positively enhanced by IL-1β + TNF-

α ± TIMP-1 combinations 

To analyse the functional role of the selected pro-inflammatory cytokines on HSPCs, we 

investigated their effects on the clonogenic output of circulating MF and CB-derived CD34
+
 cells.  

Factors alone did not induce a significant CFU-C growth from MF CD34
+
 cells (data not shown). 

However, when MF-derived CD34
+
 cells were tested in the presence of combinations of factors 

two-by-two, the IL-1β + TIMP-1 combination was the only one effective in stimulating the CFU-C 

growth as compared with untreated cells (p ≤ 0.05) or CB-derived CD34
+
 cells (p ≤ 0.05)  (Figure 4 

A). IL-1β + TNF-α and IL-1β + TIMP-1 significantly promoted the BFU-E growth of the MF-

derived CD34
+
 cells as compared with the untreated samples and the CB counterparts. The CFU-

GM growth was positively enhanced by IL-1β + TIMP-1 (Supplementary Figure 3 A, B).  Of 

note, when combinations of multiple factors were tested, only IL-1β +TNF-α + TIMP-1 

significantly promoted the CFU-C growth (p ≤ 0.05) of CD34
+
 cells from CB (data not shown).   

As shown in Figure 4 B, when the growth of MK progenitors was investigated in the presence of 

inflammatory factors alone, we found that, at variance with CB, the MF-derived CFU-MK growth 

was significantly inhibited by TNF-α. By contrast, IL-1β has stimulatory activity on MK colony 

formation. Factors in combination did not significantly modify the growth of patients/CB pure 

CFU-MK as compared with factors alone. 

We also examined the cell-cycle profile of MF-derived and CB-derived CD34
+
 cells after in vitro 

exposure to the cytokines. We found that most of the untreated CD34
+
 cells from MF patients were 

in a dormant state. Factors alone did not significantly increased the percentage of CD34
+
 cells in S 

phase as compared with untreated cells, both in MF patients and CB (data not shown).  

Conversely, in MF patients, irrespective of mutation status, cell-cycle progression was observed in 

presence of various cytokines combinations, with the notable exception of ATP + TNF-α + TIMP-1 

(Figure 4 C, D). 
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Figure 4 

Proliferation of circulating MF-derived CD34+ cells is positively enhanced by IL-1β + TNF-α ± TIMP-1 

combinations 

Circulating CD34+ cells were isolated from MF patients (n = 20) and CB units (n = 8) and cultured in the presence of 

the selected two-by-two pro-inflammatory factors. After 14 days, the total CFU-C output was assessed as described in 

Methods (A). Circulating CD34+ cells were isolated from MF patients (n = 10) and CB units (n = 8) and cultured in 

the presence or absence of inflammatory factors alone or combined. After 12 days, the CFU-MK growth was assessed 

as described in Methods (B). The results are expressed as growth fold change versus untreated CTR samples. (A) The 

clonogenic output of the MF-derived CD34+ cells was significantly stimulated by the IL-1β + TIMP-1 combination as 

compared with untreated cells or the CB-derived counterparts. No other combinations of factors two-by-two were 

effective. The mean number of colonies in MF-derived and CB-derived untreated samples was 59 ± 8 and 63 ± 6, 

respectively. (B) The MF-derived CFU-MK growth was significantly inhibited by TNF-α. By contrast, IL-1β has 

stimulatory activity on MK colony formation. Factors in combination did not significantly modify the growth of 

patients/CB CFU-MK as compared with factors alone. Factors alone or in combination did not significantly modify the 

CFU-MK growth of the CB counterparts. The mean number of CFU-MK in MF- and CB-derived untreated samples was 
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26 ± 11 and 46 ± 10, respectively. In (C and D ) are shown the results of cell-cycle analysis of MF-derived (n = 10) and 

CB-derived (n = 8) CD34+ cells after in vitro incubation for 24 hours in the presence or absence of various 

combinations of pro-inflammatory factors. Results are expressed as the percentage of cells in different phases of the 

cell cycle. IL-1β plus TNF-α highly promote cell cycling of CD34+ cells from MF patients. IL-1β + TNF-α + TIMP-1 

and IL-1β + TNF-α + TIMP-1 + ATP were also effective (C). Conversely, no significant differences were observed 

when CB-derived cells were analysed (D). All data are presented as mean ± SEM. (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 

vs untreated cells) (#p ≤ 0.05; ##p ≤ 0.01 vs CB). 

 

 

Opposite effects of pro-inflammatory cytokines on clonogenic potential of CD34
+
 cells from 

JAK2
V617F

 or CALR mutated patients 

When clonogenic potential was analysed according to mutation status and in the presence of pro-

inflammatory factors alone, no differences were observed between the two mutated groups. Colony 

composition analysis demonstrated that only IL-1β enhanced the erythroid compartment of the 

JAK2
V617F

mutated group (Supplementary Figure 4 A and B). 

By contrast, (Figure 5 A), the combination of IL-1β + TIMP-1 and IL-1β + TNF-α significantly 

promoted the CFU-C growth of JAK2
V617F

 mutated patients compared with the CALR mutated 

counterparts. Similar results were obtained when CFU-GM and BFU-E growth were distinctly 

analysed (data not shown).  
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Figure 5 

Opposite effects of pro-inflammatory cytokines on cells from JAK2
V617F

 or CALR mutated patients 

(A) When clonogenic activity was analyzed according to mutation status, the CFU-C growth of JAK2
V617F

 mutated 

patients was significantly up-regulated by IL-1β + TIMP-1 and IL-1β + TNF-α as compared with untreated control 

samples, the CALR mutated counterparts and the CB-derived cells (only IL-1β + TIMP-1). The results are expressed as 

growth fold change versus untreated CTR samples. All data are presented as mean ± SEM. (*p ≤ 0.05; **p ≤ 0.01 vs 

untreated cells) (
#
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according to mutation status, we found that the erythroid compartment of the untreated samples was reduced in both 

mutated groups as compared with the CB counterparts. However, no significant differences were observed between the 

two mutated groups. Interestingly, in the JAK2
V617F

 mutated group, the addition of IL-1β + TIMP-1 and IL-1β + TNF-α 

enhanced the erythroid compartment as compared with untreated samples. Conversely, some cytokines combinations 

significantly impaired BFU-E growth in CALR mutated patients. The results are expressed as mean percentage of CFU-

GM/BFU-E as compared with the total CFU-C count. 

 

When colony composition was analysed according to mutation status (Figure 5 B), both mutated 

groups showed reduced BFU-E growth of the untreated samples as compared with the CB 

counterparts. Interestingly, in the JAK2
V617F

 mutated group, the addition of different combinations 

of pro-inflammatory factors enhanced the erythroid compartment as compared with untreated 

samples. Conversely, some cytokines combinations significantly decreased BFU-E growth in 

CALR-mutated patients.  

Multiple combinations did not significantly modify the clonogenic activity and colony composition 

of the two mutated groups (data not shown). 

When we analyzed the percentage of JAK2
V617F

 and CALR mutant colonies in the absence or 

presence of IL-1β+ TNFα, we found that the percentage of JAK2
V617F

, but not CALR, mutated 

colonies was increased (data not shown).  

MK progenitors of JAK2
V617F

 mutated patients were highly stimulated by IL-1β alone. By contrast, 

TNF-α significantly inhibited the CFU-Mk growth of both JAK2
V617F

 and CALR mutated patients as 

compared with CB counterparts (Supplementary Figure 5). 

Taken together these results demonstrate that the hemopoietic function of MF-derived CD34
+
 cells 

is highly promoted by the IL-1β or TNF-α ± TIMP-1 combinations, even though TNF-α alone show 

inhibitory effects on MK progenitors. Interestingly, whereas in the JAK2
V617F

 mutated group, the 

addition of various combinations of growth factors decreased the erythroid compartment of the 

CALR mutated patients. 

 

IL-1β and TNF-α significantly promote migration of MF-derived CD34
+
 cells showing enhanced 

clonogenic ability after migration in JAK2
V617F

 mutated patients  

 

To evaluate whether selected pro-inflammatory factors may differentially regulate the migratory 

ability of HSPCs from MF patients, we firstly analyzed the plasma concentration of CXCL12. 

CXCL12 plasma level was markedly higher in patients than in controls, either total (p ≤ 0.05) or 
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subdivided according to mutation status (JAK2
V617F

 p ≤ 0.05; CALR p ≤ 0.05). Conversely, no 

significant differences were observed between the two mutated groups (Figure 6 A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 

IL-1β and TNF-α significantly increases migration of MF-derived CD34
+
 cells 

(A) CXCL12 plasma levels of MF patients (total n =24; JAK2
V617F

 mutated patients n = 16; CALR mutated patients n = 

8) and controls (n = 10). Regardless mutation status, CXCL12 concentration was significantly higher in MF patients 

(*p ≤ 0.05 vs controls). (B) When cells were migrated toward CXCL12 alone, an increased migration ability was 

observed in MF-derived (n = 15) CD34
+
 cells as compared with the CB-derived (n = 8) counterparts. The addition of 

inflammatory factors alone (IL-1β/TNF-α) plus CXCL12 significantly increased the migratory behaviour of MF-derived 

CD34
+
 cells as compared with CXCL12 alone. IL-1β + TNF-α synergistically enhanced the migratory behaviour of 

CD34
+
 cells as compared with spontaneous migration (****p < 0.0001), CXCL12 alone (**p <0.001) and the CB-

counterpart (
####

p <0.0001). Results are expressed as mean percentages ± SEM of input. (**p ≤ 0.01; ***p ≤ 0.001 vs 

CXCL12 alone for CB-derived CD34
+
cells) (*p ≤ 0.05; **p ≤ 0.01; ****p < 0.0001 vs spontaneous migration for MF-

derived CD34
+
 cells) (

#
p ≤ 0.05; 

####
p <0.0001 vs CB). 

 

 

To mirror the in vivo pattern of MF, we set up in vitro migration experiments in the presence of the 

identified inflammatory factors and CXCL12. The migration rate of MF- or CB-derived CD34
+
cells 

toward inflammatory factors alone (without CXCL12) was not significantly different from that of 

untreated cells (data not shown). 

As shown in Figure 6 B, CXCL12 significantly increased the migratory behaviour of MF-derived 

CD34
+
 cells as compared with CB counterparts (p ≤ 0.05). The addition ofIL-1β or TNF-α + 

CXCL12 shows a trend toward increased migration of CD34
+
 cells from MF patients, but doesn't 
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reach statistical significance. At variance with CB derived cells, the addition of both cytokines 

significantly increased the migratory potential of CD34
+
 cells from MF patients (p ≤ 0.01).  No 

differences were observed between the two mutated groups (data not shown). 

The addition of TIMP-1 and ATP alone or inflammatory factors two by two in the presence of 

CXCL12 did not significantly increase the migration ability of MF-derived CD34
+
 cells as 

compared with CXCL12 alone (data not shown). The migratory behavior of the MF-derived CD34
+
 

cells toward multiple combinations of factors was significantly enhanced as compared with the CB-

derived counterparts in all tested combinations. Conversely, CB-derived CD34
+ 

cells were almost 

insensitive (Supplementary Figure 6).  

To evaluate whether migrated cells toward various pro-inflammatory gradients show different 

hemopoietic function, we also tested the clonogenic potential of CD34
+
 cells from MF patients or 

CB after migration toward CXCL12  alone or CXCL12 plus various combinations of factors 

(Figure 7 A, B). Interestingly, at variance with the CFU-C growth  of unmigrated HSPCs from MF 

patients, IL-1β + TNF-α + CXCL12 and IL-1β + TNF-α + TIMP-1 + CXCL12  selected a subset of 

MF-derived CD34
+
 cells with higher clonogenic potential as compared with CXCL12 alone (p ≤ 

0.05, respectively) (Figure 7 B). Conversely, the clonogenic output of CB-derived CD34
+
 cells 

after migration toward various combinations of pro-inflammatory factors was unaffected (Figure 7 

A). Notably, according to mutation status, the CFU-C post migration assay demonstrated once 

again that various combinations of pro-inflammatory factors significantly stimulate the clonogenic 

ability of migrated CD34
+
 cells from JAK2

V617F
 , but not CALR,  mutated patients (Supplementary 

Figure 7).  

When the number of granulocyte and erythroid colonies were analysed individually, only BFU-E 

growth was significantly increased with respect to controls (p ≤ 0.05) after cells were migrated 

toward IL-1β+ TNF-α + CXCL12 ±  TIMP-1. Of note, IL-1β + TNF-α + TIMP-1 + CXCL12 

significantly stimulated also CFU-GM growth as compared with CXCL12 alone (p ≤ 0.05, 

respectively) (data not shown).  

Taken together these results demonstrate that, irrespective of mutation status, IL-1β+ TNF-α + 

CXCL12 ± TIMP-1 selectively enhance the migratory ability of MF-derived CD34
+
 cells.  

Interestingly, IL-1β + TNF-α + CXCL12 ± TIMP-1 promotes and selects the circulating HSPCs of 

JAK2
V617F

mutated patients with higher clonogenic potential. 
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Figure 7 

The clonogenic output of MF-derived CD34
+
 cells after migration toward IL-1β + TNF-α + CXCL12 ± TIMP-1 is 

potently enhanced 

Panels (A and B) show the clonogenic potential of CB-derived (A; n = 6) and MF-derived CD34
+
 cells (B; n = 14) at 

baseline with or without various combinations of pro-inflammatory factors (CFU-C) and after migration toward 

CXCL12 alone or various combinations of pro-inflammatory factors + CXCL12 (CFU-C post-migration). After 

migration toward IL-1β + TNF-α + CXCL12 ± TIMP-1, the MF-derived, but not CB-derived, CD34
+
 cells show 

significantly increased clonogenic potential. Results are expressed as mean fold change of CFU-C ± SEM. (*p ≤ 0.05 vs 

untreated cells (A) and CXCL12 alone (B)). 
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DISCUSSION 

 

Here, we evaluated the in vitro effects of four main crucial factors of the inflammatory 

microenvironment (IL-1β, TNF-α, TIMP-1 and ATP) on survival, clonogenic output and migration 

ability of MF HSPCs.  

First, this study demonstrates that, regardless of mutation status, IL-1β, TNF-α and TIMP-1  are 

increased in the plasma of MF patients and the presence of IL-1β, TNF-α ± TIMP-1 confers a 

survival advantage of MF-derived HSPCs. Second, HSPCs from JAK2
V617F

 show in vitro enhanced 

proliferation over untreated cells and the CB counterparts in response to  IL-1β, TNF-α ± TIMP-1 

exposure (alone or, mostly, in combination). Accordingly, IL-1β + TNF-α stimulates cell cycle 

progression of MF-derived CD34
+
 cells to the S-phase. Third, IL-1β + TNF-α combination 

promotes the in vitro migration of MF-derived HSPCs. Interestingly, after migration  toward IL-1β 

+ TNF-α + CXCL12 ± TIMP-1, MF-derived CD34
+
 cells show increased clonogenic ability as 

compared with CXCL12 alone or the CB counterparts. This finding was mainly due to stimulation 

of the clonogenic growth of HSPCs from JAK2
V617F

 mutated patients.  

TNF-α has already been shown to facilitate clonal expansion of JAK2
V617F

-positive cells in MF.
95

 

The results of this study provide new evidences that, in addition to TNF-α, IL-1β and TIMP-1 

promote the in vitro maintenance of the HSPCs.  

Mutation status is associated with dysregulated hemopoietic function (clonogenic output and colony 

composition) of MF-derived CD34
+
 cells in presence of IL-1β + TNF-α ± TIMP-1. Specifically, 

when pro-inflammatory factors were added in culture, CD34
+
 cells from JAK2

V617F
mutated patients 

showed increased clonogenic potential and increased size of the erythroid progenitors compartment 

as compared with the CALR-mutated counterparts. Along with the CFU-C growth, IL-1β stimulates 

the in vitro growth of Mk progenitors of JAK2
V617F

 mutated patients only. Consistent data on single 

cell assays suggested that HSC self-renewal capacity is negatively affected by JAK2
V617F

, but 

progenitor cells have increased proliferation capacity.
110

 In addition, these findings can be related to 

the fact that JAK2
V617F

 mutant, in contrast with the CALR counterpart, activates not only the Mk cell 

line but also the erythroid and granulocytic lineages.
111

 

Despite increased frequency of MK progenitors (CD34
+ 

CD41
+
 cells)  in the PB of CALR mutated 

patients, we clearly demonstrate that the hemopoietic function of CD34
+
 cells from CALR mutated 

patients is unmodified (megakaryocytic compartment) or significantly inhibited (erythroid 

compartment) by IL-1β or various combinations of inflammatory factors including IL-1β. It is 

therefore likely that these functional abnormalities may contribute to explain the lower haemoglobin 
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concentration that is displayed by CALR-positive patients compared to JAK2
V617F

-mutated 

patients.
78

 Interestingly, at variance with JAK2
V617F

, CALR mutants moderately activate the 

PI3K/AKT pathway, a critical determinant of erythropoiesis and megakaryocytopoiesis.
111-114

  

Of note, we also found increased number of circulating CD34
+
CD63

+
 cells in MF. However, 

despite TIMP-1 alone was ineffective, various combinations including TIMP-1 increased the 

proliferation/migration of MF-derived CD34
+
 cells. This finding was not due to upregulated 

expression of CD63 receptor on MF-derived CD34
+
 cells after exposure to IL-1β and/or TNF-α 

(data not shown). It is therefore likely that downstream intracellular signaling pathways are 

hyperactivated and stimulate clonogenic activity. 

Overall, our data indicate that the in vitro behavior of the MF-derived HSPCs can be upregulated by 

regulatory signals provided by the microenvironment and, specifically, through the cooperation 

between various pro-inflammatory factors. Therefore, the increased number of HSPCs in the 

peripheral blood of MF may be due not only to the displacement of HSPCs from bone marrow into 

peripheral blood, but also to the proliferative/survival signals coming from the pro-inflammatory 

factors within the peripheral blood niche. As a consequence, the pro-inflammatory 

microenvironment emerges as central site for cell division and proliferation. 

In conclusion, the in vitro interplay between identified pro-inflammatory cytokines, which are 

abnormally increased, promotes and selects the circulating MF-derived HSPCs with higher 

proliferative activity, clonogenic potential and migration ability. Thus, it is likely that the in vivo 

inflammatory niche plays a key role in the maintenance of the malignant hemopoietic clone. 

Targeting these inflammatory micro-environmental interactions may be a clinically relevant 

approach for MF. 
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MATERIALS AND METHODS 
 

Patients and samples 

Peripheral blood (PB) was obtained from 10 normal age-matched volunteers and 36 patients with 

MF in chronic phase. Patients' characteristics according to mutational status are shown in Table I. 

At the time of the study, patients were at diagnosis (19 cases) or untreated for at least two months. 

Previous therapies were: hydroxyurea (12 cases) and Ruxolitinib (3 cases). The diagnosis of MF 

was made according to WHO 2008 criteria.
115

 Patients and controls provided written informed 

consent for the study. This study was approved by the medical Ethical Committee of the University 

Hospital of Bologna and was conducted in accordance with the Declaration of Helsinki. During the 

last trimester of pregnancy, an increased number of CD34
+
 HSPC are mobilized from the fetal liver 

and can be found in the circulating blood, including umbilical cord blood (CB). Therefore, since 

HSPC trafficking characterizes both the PB of MF patients and CB, we choose this physiological 

source for comparison. CB collections (14 cases) from normal full-term deliveries were provided by 

the Cord Blood Bank of the University Hospital of Bologna after written informed consent.   

 

 

Cell isolation 

PB, anticoagulated with ethylenediamine tetraacetic acid (EDTA), was obtained from 

patients/controls. Mononuclear cells (MNCs) were separated from MF and CB samples by 

stratification on Lympholyte-H 1.077 g/cm
3
 gradient (Gibco-Invitrogen, Milan, Italy), followed by 

red blood cell lysis for 15 min at 4°C. MNCs were then processed on magnetic columns for 
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CD34
+
cell isolation (mean purity 94% ± 5%) (MACS CD34 Isolation kit; Miltenyi Biotech, 

Bologna, Italy), as previously described.
64

 

 

Plasma levels measurement of selected circulating cytokines 

We measured the cytokines plasma levels of patients/controls by ELISA, according to the 

manufacturer’s instructions. EDTA-anticoagulated PB was centrifuged for 15 minutes at 1000g 

within 30 minutes of collection. The plasma was then collected and stored at -80°C until 

quantification. In particular, the TIMP-1 ELISA kit was provided from Boster Immunoleader 

(Boster Biological Technology Co., Pleasanton, CA, USA) and CXCL12 ELISA kit from Krishgen 

ByoSistems (Ashley CT, Whittier, CA, USA). The Ciraplex
TM

 immunoassay kit / Human 9-Plex 

Array (Aushon BioSystems, Billerica, MA, USA) was used for the measurement of various 

cytokines including IL-1β  and TNF-α.   

 

Phenotype of circulating CD34
+
 cells  

The phenotype of circulating CD34
+
 cells was evaluated in PB from MF patients and in CB samples 

by conventional immunofluorescence, as previously described.
116

 Antibodies used to characterize 

the CD34
+
 cells are listed in Supplementary Table S1. A minimum of 1x10

4
 CD34

+
 cells were 

acquired by flow cytometer BD Accuri C6 (Becton Dickinson). Analysis was performed excluding 

cellular debris in a SSC/FSC dot plot. The percentage of positive cells was calculated subtracting 

the value of the appropriate isotype controls. The absolute number of positive cells/l was 

calculated as follows: percentage of positive cells x White Blood Cells count/100.             

 

Apoptosis assay 

Freshly isolated CD34
+
 HSPCs (2-5 x 10

5
) from MF patients or CB units were maintained in RPMI 

1640 with 10% FBS, with or without IL-1β (1,10 ng/mL), TNF-α (10,100 ng/mL), TIMP-1 

(100,300 ng/mL), and ATP (100,1000 µM), alone or in different combinations. After 4 days, cells 

were stained for 15 min at RT with Annexin-V-FLUOS Staining Kit (Roche, Penzberg, Germany). 

Samples were then immediately analyzed by BD Accuri C6 (BD Bioscience).  Results are 

expressed as percentage of live cells compared to the whole cells. 

 

Erythroid and granulocytic progenitors assays 

MF/CB-derived CD34
+
 cells were cultured in vitro to achieve hematopoietic cell differentiation and 

the formation of multi-lineage colony-forming units (CFU-Cs), including colony forming unit-
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granulocyte macrophage (CFU-GM) and BFU-E. Specifically, CD34
+
 cells were seeded in 

methylcellulose-based medium (human StemMACS HSC-CFU lite w/Epo, Miltenyi Biotech) at 5 x 

10
2
 cells/mL in 35-mm Petri dishes in the presence or absence of the selected pro-inflammatory 

factors: TIMP-1 (100 ng/mL; Thermo Scientific, Pierce Biotechnology, Rockford, IL, USA), ATP 

(1000 µM; Sigma Aldrich, Milan, Italy), TNF-α (10 ng/mL; Thermo Scientific) and IL-1β (1 

ng/mL; Thermo Scientific), alone or in combination. After 2 weeks of incubation at 37°Cin 5% 

humidified CO2 atmosphere, CFU-C growth was evaluated by standard morphologic criteria using 

an inverted microscope (Axiovert 40, Zeiss). 

 

Megakaryocytic progenitors assay 

Megakaryocytic colonies (Colony Forming Unit-Megakaryocyte (CFU-MK)) were obtained using 

MegaCult™-C assay (Stem Cell Technologies; Vancouver, BC, Canada), according to the 

manufacturer’s protocols. Briefly, 5 × 10
3 

MF/CB-derived CD34
+ 

cells were seeded in a collagen-

based medium in double chamber slides in the presence or absence of the inflammatory factors, 

alone or in combination. Cultures were incubated for 12 days and then dehydrated, fixed and 

stained with a primary antibody to the Mk-specific antigen GPllb/llla (CD41) linked to a secondary 

biotinylated antibody-alkaline phosphatase avidin conjugated detection system. CFU-Mk were 

counted using a light microscope. 

 

Cell cycle analysis 

A total of 10
6
 CD34

+
 cells was maintained in Roswell Park Memorial Institute (RPMI)-1640 

(Lonza) supplemented with 10% fetal bovine serum (FBS Thermo Fisher Scientific, Waltham, MA 

USA). Cells were resuspended in complete medium at a concentration of 1 x 10
6
/mL, and primed 

for 24 hours with the pro-inflammatory cytokines (1 ng/mL IL-1β, 10 ng/mL TNF-α, 100 ng/mL 

TIMP-1, 1000 μM ATP), alone or in combination. Treated cells were first permeabilized with NP-

40 (15 min at RT) and then labeled with propidium iodide (PI)/RNAse staining kit (BD Bioscience) 

for 15 min at RT, in the dark. The DNA content was assessed by BD Accuri C6 (BD Bioscience) 

and results were analyzed by FCS express 4 software. 

Changes in the cell-cycle distribution were evaluated using PI. The percentage of cells in the 

G0/G1, S, and G2/M phases was determined by measuring simultaneously the DNA and RNA total 

cellular content. 
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Migration assay 

Migration of MF/CB purified CD34
+
 cells was assayed towards a CXCL12 gradient (150 ng/mL) in 

transwell chambers (diameter 6.5 mm, pore size 8 µm; Costar; Corning), as previously described 

[38]. Briefly, 50 µl of RPMI 1640 plus 10% FBS containing 0,5 x 10
5
 cells were added to the upper 

chamber and 150 µl of medium with or without CXCL12 ± IL-1β (1 ng/mL), TNF-α (10 ng/mL), 

TIMP-1 (100 ng/mL), and ATP (1000 µM) (alone or in combination) were added to the bottom 

chamber. After overnight incubation at 37°C in 5% humidified CO2 atmosphere, inserts (upper 

chambers) were removed and cells transmigrated into lower chamber were recovered and counted 

by Trypan Blue exclusion test in a Neubauer chamber using an inverted microscope (Nikon) with a 

10x magnification. The amount of migrated cells was expressed as a percentage of the input, 

applying the following formula: (number of migrated cells recovered from the lower 

compartment/total number of cells loaded in the upper compartment) x 100. In addition, migrated 

cells were assayed in methylcellulose-based medium for their ability to form hematopoietic colonies 

(as above described). 

 

Mutation analysis 

JAK2
V617F

 allele-burden was assessed in granulocyte DNA by quantitative polymerase chain 

reaction–based allelic discrimination assay (ipsogen JAK2 MutaQuant Kit) on 7900 HT Fast Real 

Time PCR System (Applied Biosystem).
117

 CALR exon 9 sequencing was performed by Next 

Generation Sequencing (NGS) approach with GS Junior (Roche-454 platform); analysis was carried 

out with AVA Software (GRCh38 as reference).
118

 Rare CALR mutations identified by NGS were 

confirmed by Sanger sequencing.  

Individual colonies were harvested at day 12-14 from 3JAK2
V617F

 and 3 CALR mutated patients (20 

individual colonies each condition).Molecular characterization of single colonies was performed on 

DNA extracted using REPLI-g Single Cell Kit (QIAGEN, Marseille, France), which provides 

accurate genome amplification from single cells or limited samples with high efficiency. Briefly, 4 

μL of cell material (supplied with PBS) were firstly lysed. After denaturation, isothermal 

amplification reaction was performed and amplified DNA was used for JAK2
V617F

 and CALR 

mutations assessment, as above described.  

Cytogenetic analysis 

Chromosome banding analysis was performed on bone marrow cells by standard banding 

techniques according to the International System for Human Cytogenetic Nomenclature.  At least 
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20 metaphases were required. Unfavourable karyotype  included complex karyotype or single or 

two abnormalities including +8, -7/7q-, i(17q), -5%5q-, 12p-, inv(3) or 11q23 rearrangement.
119,120

 

 

Statistical analysis 

Numerical variables have been summarized by their median and range, and categorical variables by 

count and relative frequency (%) of each category. Comparisons of quantitative variables between 

groups of patients were carried out by the nonparametric Wilcoxon rank-sum test. All p values were 

considered statistically significant when ≤ 0.05 (2-tailed). Statistical analyses were performed using 

Graphpad (Graphpad Software Inc., La Jolla, CA) and SPSS software (PASW Statistics for 

Windows, Version 18.0. Chicago, IL). 
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Supplemetary Materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S1:  

Survival of MF- and CB-derived CD34+ cells after in vitro treatment with increasing doses of inflammatory factors. 

CD34+ cells from MF patients (n = 4) or CB (n = 3) were in vitro treated for 4 days with factors alone (ATP (100, 

1000 µM), TNF-α (10,100 ng/mL), TIMP-1 (100,300 ng/mL) and IL-1β (1,20 ng/mL)) and the percentage of cell 

viability was assessed after AnnexinV/PI staining, as described in methods. (*p ≤ 0.05 vs untreated cells). 
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Supplementary Figure S2:  

Survival of CD34
+
 cells from MF patients is increased by various combinations of pro-inflammatory factors.  

CD34
+ 

cells from MF patients (n = 20) or CB (n = 8) were in vitro treated for 4 days with factors two by two and the 

percentage of cell viability was assessed after AnnexinV/PI staining, as described in Methods. Cells viability of MF-

derived CD34
+ 

cells was significantly increased by IL-1β + TNF-α, IL-1β + TIMP-1, TNF-α + TIMP-1 and IL-1β + 

ATP as compared with untreated cells. Conversely, only the IL-1β + TNF-α combination was effective in stimulating 

the in vitro survival of the CB-derived CD34
+ 

cells. Comparing MF vs CB, IL-1β + TIMP-1 and IL-1β + ATP 

significantly promoted the survival of the MF-derived cells. All data are presented as mean ± SEM. (*p ≤ 0.05; **p ≤ 

0.01; ***p ≤ 0.001; ****p ≤ 0.0001 vs untreated cells (CTR)) (##p ≤ 0.01 vs CB). 
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Supplementary Figure S3: 

 Effects of inflammatory factors on BFU-E/CFU-GM growth from MF- and CB-derived CD34
+ 

cells. Circulating 

CD34
+
 cells were isolated from MF patients (n = 20) and CB units (n = 8) and cultured in semisolid medium in the 

presence of the selected two-by-two or multiple pro-inflammatory factors. After 14 days, the BFU-E/CFU-GM (A and 

B) and the total CFU-C (C) output was assessed. (A) When IL-1β + TIMP-1 and IL-1β + TNF-α were added in culture, 

the BFU-E growth of MF-derived, but not CB-derived, CD34
+
 cells was significantly increased as compared with the 

untreated samples and the CB counterparts. None of the others combinations were effective. (B) The growth of CFU-

GM from MF-derived CD34
+
 cells showed the same pattern displayed by BFU-E. (C) When various combinations of 

inflammatory factors were tested, MF-derived CD34
+
 cells showed a decreased number of CFU-C compared to CB in 

response to ATP, TNFα, and TIMP. All data are presented as mean ± SEM. (*p ≤ 0.05 vs untreated cells) (# p ≤ 0.05; 

##p ≤ 0.01 vs CB). 
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Supplementary Figure S4:  

Effects of pro-inflammatory factors alone on CFU-C growth of CD34+ cells from JAK2V617F and CALR mutated 

patients. (A) When CFU-C growth of CD34+ cells from JAK2V617F (n = 10) and CALR (n = 6) mutated patients was 

assessed in the presence of factors alone, no differences were observed between CB samples and between the two 

mutated groups. (B) Colony composition analysis demonstrated that only IL-1β enhanced the erythroid compartment of 

the JAK2V617F mutated group. 
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Supplementary Figure S5: 

CFU-MK growth according to mutation status. CFU-MK growth from JAK2V617F (n = 6) and CALR (n = 4) mutated 

patients was significantly inhibited by TNF-α as compared with CB counterparts. By contrast, IL-1β and IL1β + TNF-α 

stimulated the CFU-MK growth of JAK2V617F mutated patients (*p ≤ 0.05 vs untreated cells) (# p ≤ 0.05; ##p ≤ 0.01 

JAK2V617F/CALR mutated patients vs CB). 
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Supplementary Figure S6:  

Various combinations of pro-inflammatory factors significantly promote migration of MFderived CD34
+
 cells.  

When migration toward multiple combinations of factors + CXCL12 was analysed, the migration ability of MFderived 

(n = 15), but not CB-derived (n = 8), CD34
+
 cells was significantly increased. (*p ≤ 0.05; **p ≤ 0.01 vs spontaneous 

migration) (# p ≤ 0.05;##p ≤ 0.01 vs CB). Results are expressed as mean percentages ± SEM of input. 
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Supplementary Figure S7: 

CFU-C post-migration assay according to mutation status. The clonogenic potential of CD34
+
 cells from JAK2V617F 

(n = 8)/CALR (n = 6) mutated patients after migration toward CXCL12 alone or various combinations of 

proinflammatory factors + CXCL12 (CFU-C post-migration) is shown. After migration toward various combinations of 

pro-inflammatory factors, only the JAK2V617F-derived CD34
+
 cells show significantly increased clonogenic potential. 

Results are expressed as mean fold change of CFU-C ± SEM. (*p ≤ 0.05 vs spontaneous migration) (##p ≤ 0.01 

JAK2V617F vs CALR mutated patients) 
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 Results Ib 
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ABSTRACT 
 

MF is a clonal neoplasia of the hemopoietic stem/progenitor cells associated with genetic mutations 

in the Janus kinase 2 (JAK2), myeloproliferative leukemia virus oncogene (MPL) and CALR genes. 

MF is also characterized by a state of chronic inflammation. Calreticulin (CRT), as a 

multifunctional protein, is involved in a spectrum of cellular processes including inflammation and 

cancer initiation/progression. Based on this background, we hypothesised that in MF circulating 

CRT might reflect the inflammatory process and potentially serve as a previously undescribed 

marker of the disease. In the present study we show that, irrespective of mutational status, 

circulating CRT is increased in MF compared to healthy controls. Also, in MF CRT levels highly 

correlate with bone marrow (BM) fibrosis, splenomegaly and Interleukin-(IL)-6 plasma levels.In 

turn, higher IL-6 levels also correlated with disease severity in terms of increased spleen size, 

marrow fibrosis, number of circulating CD34
+
 cells and lower hemoglobin values. These results 

suggest that the abnormally elevated circulating CRT takes part in the inflammatory network of 

MF, correlates with disease severity and may therefore be considered as a novel biomarker of 

disease activity. 

 

  



56  

 

INTRODUCTION 
 

MF is a Philadelphia-negative myeloproliferative neoplasm (Ph-neg MPN) that may arise de 

novo (Primary Myelofibrosis, PMF) or after Essential Thrombocythemia (ET; PET-MF) and 

Polycythemia Vera (PV; PPV-MF). It is a clonal disorder of the hemopoietic stem/progenitor cells 

that is clinically characterized by worsening constitutional symptoms, progressive splenomegaly, 

bone marrow (BM) fibrosis and cytopenias as well as by an increased risk to develop thrombotic 

complications, second neoplasia and acute leukemia. MF is characterized by unfavourable 

prognosis with greatly shortened surviva.
71-73,121

 

Approximately 50 to 60% of MF patients carry a mutation in the JAK2 gene, while 20-25% 

of patients show recurrent mutations in the CALR gene and an additional 5 to 10% have activating 

mutations in the thrombopoietin receptor gene (myeloproliferative leukemia virus oncogene, MPL). 

Finally, less than 10% of patients have non-mutated JAK2, MPL and CALR genes (“triple 

negative”).
76,79,121

 Regardless of molecular status, all patients have a dysregulation in the 

JAK/STAT signalling.
76,122

 

Together with molecular abnormalities, MF is characterized by abnormal expression of 

several pro-inflammatory and immunoregulating cytokines secreted by activated leukocytes and 

platelets/megakaryocytes. This inflammatory microenvironment has emerged as a key-player in MF 

pathogenesis, since it has been suggested that in MF stromal cells are primed by the malignant 

hematopoietic clone, which, in turn, conditions the stroma to create a favourable microenvironment 

that nurtures and protects the malignant cells. The up-regulated production of several pro-

inflammatory cytokines, including TNF-α and IL-6, by both hemopoietic stem/progenitor cells and 

the surrounding stromal cells generates a microenvironment that selects for the malignant clone, 

leading to genomic instability and cancer progression.
80,81,91,123,124

 Interestingly, cytokines levels 

were found to correlate with survival in PMF.
84

 

Physiologically, CRT was first described as an endoplasmic reticulum protein responsible 

for Ca
2+

 homeostasis and glycoprotein folding; currently, CRT is recognized as a multifunctional 

chaperone detected in other cellular compartments, such as cytosol, nucleus and at the cell surface, 

as well as extracellularly, where it is involved in cell proliferation, apoptosis, adhesion, innate and 

adaptive immune processes including cancer cell elimination by immunogenic cell death and 

fibrosis.
125

CRT, both in vitro and in vivo, can inhibit the process of tumor-related 

angiogenesis.
126,127

 In addition to its physiological roles, CRT over-expression is linked to various 

pathological conditions including chronic inflammatory diseases, autoimmunity, fibrosis-related 



57  

 

disorders and malignant evolution.
128-130

 CRT may interact with different ligand/receptors to affect 

their signalling and therefore impact on apoptosis induction and/or phagocytic removal of apoptotic 

cells.
126

 In MF, the mutated CRT protein was found to constitutively activate the MPL receptor 

signalling.
112,131 

Given the CRT involvement in inflammation, fibrosis and cancer, we hypothesised that in 

MF circulating CRT might reflect the inflammatory process and potentially serve as a previously 

undescribed marker of the disease. Here, for the first time, we characterized the circulating CRT 

levels of MF patients. Moreover, we investigated the correlation between CRT levels and various 

clinical and laboratory parameters. 
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RESULTS 
 

Here we investigated 30 patients with MF: they were JAK2
V617F

 (16 cases), CALR (10 cases) 

and MPL (3 cases) mutated. One patient was triple-negative. Patients characteristics according to 

mutational status are shown in Table I. At the time of the study, patients were at diagnosis (17 

cases) or untreated for at least two months. Previous therapies were: hydroxyurea (10 cases) and 

ruxolitinib (3 cases). 

As shown in Figure 1A, we found significantly higher CRT plasma levels in MF patients as 

compared with healthy subjects (median: 5.2 ng/mL, range 1.4-25, vs 1.8 ng/mL, range 1.2-3.7; 

p<0.0003). Among MF patients, CRT plasma levels were not affected by mutational status, with no 

significant differences among patients carrying the JAK2, CALR or the MPL mutation (Figure 1B). 

No differences were observed between the CRT plasma levels of type 1 (8 cases) and type 2 (2 

cases) CALR mutated patients. Also CRT plasma levels did not correlate with JAK2
V617F

 and CALR 

mutation load. No correlation was also observed between circulating CRT levels and hemoglobin 

levels, white blood cells/ platelets count, and circulating CD34
+
 cells number.  
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Figure 1 

Analysis of the circulating levels of CRT, IL-6, and TNF-α proteins. The CRT plasma levels of total MF (a) or MF 

subdivided into JAK2
V617F

-mutated (n = 16), CALR-mutated (n = 10), MPL-mutated (n = 3), and triple-negative-

mutated (n = 1) groups (b) were measured by ELISA. Compared with age-matched controls (HD; n = 10), CRT 

plasma levels were significantly increased in MF patients (p = 0.0028). Of note, there was no significant difference 

between the mutated groups. Irrespective of mutational status, TNF-α (c) and IL-6 (d) blood plasma levels were also 

increased in MF (p = 0.008). For all graphs, one symbol represents one individual, and the height of the bar represents 

the median value. ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001. 

 

 

Along with CRT plasma levels, circulating TNF-α (median: 2.62 pg/mL, range 0.05-9.37) 

and IL-6 (median: 33.3 pg/mL, range 8.7-258.9) were also increased in MF patients as compared to 

healthy subjects (median: 0.26 pg/mL, range 0-0.84 and median: 6.37 pg/mL, range 4.5-32.8, 

respectively; p<0.0001) (Figure 1C and 1D). TNF-α and IL-6 plasma levels were not affected by 

mutational status and allele burden (data not shown). Interestingly, in MF patients there was a 

positive correlation between the plasma levels of CRT and BM fibrosis (p<0.04; r=0.39), 

splenomegaly (p<0.009; r=0.47) and circulating IL-6 (p<0.03; r=0.42) (Figure 2A, 2B, 2C). This 



60  

 

correlation was also irrespective of mutational status. In turn, IL-6 plasma levels correlated with 

BM fibrosis (p<0.006; r=0.49), splenomegaly (p<0.02; r=0.46), the number of circulating CD34
+
 

cells (p<0.03; r=0.48) and negatively with hemoglobin values (p<0.05; r=-0.39; Figure 3A, 3B, 3C, 

3D).  

 

 

 

 

 

Figure 2 

Correlation between CRT plasma levels and BM fibrosis, splenomegaly, and circulating IL-6. Circulating CRT 

positively correlates with fibrosis, splenomegaly, and soluble IL-6 in MF. Scatter plots demonstrating correlation 

between the plasma levels of CRT and BM fibrosis (p = 0.038; r = 0.39), splenomegaly (p = 0.0089; r = 0.47), and 

circulating IL-6 (p = 0.028; r = 0.42) in MF patients (a, b, and c, resp.) are shown. x-axis of (a) shows BM fibrosis 

scale. 
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Figure 3 

Correlation between IL-6 plasma levels and BM fibrosis, splenomegaly, number of circulating CD34 
+
 cells, and 

hemoglobin values. Irrespective of mutational status, IL-6 plasma levels correlated with BM fibrosis (p = 0.0056; r = 

0.49), splenomegaly (p = 0.018; r = 0.46), and the absolute number of circulating CD34
+
 cells (p = 0.029; r = 0.48) 

and negatively correlated with hemoglobin values (p = 0.047; r = −0.39); (a, b, c, and d, resp.). x-axis of (a) shows BM 

fibrosis scale 

 

 

 

 

 

7 8 9 10 11 12 13 14 15 16
0

25

50

75

100

125

150

175

200

225

250

275

r=-0.39

Hemoglobin values

(g/dL)

IL
-6

 (
p

g
/m

l)
(D) 

0 5 10 15 20 25 30 35
0

25

50

75

100

125

150

175

200

225

250

275

r=0.46

Splenomegaly (cm)

IL
-6

 (
p

g
/m

L
)

(B) (A) 

0 1 2 3
0

25

50

75

100

125

150

175

200

225

250

275

Bone marrow fibrosis

IL
-6

 (
p

g
/m

l)

(C) 

103 104 105 106 107

0

25

50

75

100

125

150

175

200

225

250

275

r=0.48

Circulating CD34+ cells
(absolute number)

IL
-6

 (
p

g
/m

L
)

 



62  

 

DISCUSSION 

 

There has been a lack of understanding regarding the role of soluble CRT in MF. The first result of 

this study is that in MF CRT plasma levels are increased compared to healthy controls. CRT has 

been found to have a preferential expression in megakaryocyte/platelets, either from normal 

subjects or patients with Ph-neg MPN (and regardless of mutational status).
132

 Therefore, these 

cells, which show abnormal number/function in MF, are likely to be the major contributors to the 

augmented amount of circulating CRT. Previous studies support the hypothesis that extracellular 

and soluble CRT is mainly released from dead, dying or inflamed/stressed cells.
125,128

 

Consequently, the high CRT levels detected in MF may primarily be due to the chronic 

inflammatory state that characterizes both the marrow and peripheral niche, and reflect an 

impairment in tissue homeostasis. 

The second result is that CRT plasma levels are equally increased in JAK2
V617F

 and CALR 

mutated MF patients. In this study, we used an antibody that is directed against the N terminus of 

CRT and is expected to label both mutated and unmutated proteins. Therefore, the circulating 

protein that was detected in CALR positive patients is likely to be the sum of mutated (hemopoietic 

restricted) and unmutated molecules. This datum may suggest that the acquisition of mutations in 

the CALR gene, although causing the hyper-activation of the MPL receptor,
112,131

 does not induce an 

increased circulating CRT amount.  

Herein, we demonstrated also that CRT protein levels were found to directly correlate with 

the clinical aggressiveness of the disease in terms of larger spleen size and more severe marrow 

fibrosis. In addition, we found a direct correlation between circulating plasma levels of CRT and 

IL-6, one of the most potent pro-inflammatory cytokines that is up-regulated in MF.
133

 In turn, 

higher IL-6 levels also correlated with disease severity in terms of increased spleen size, marrow 

fibrosis, number of circulating CD34
+
 cells and lower hemoglobin values. The correspondence 

between CRT and IL-6 plasma levels may be at least partially justified by the recent discovery that 

soluble CRT induces active mRNA transcription through MAPK and NF-kB activation in 

macrophages, thereby augmenting their IL-6 and TNF-α production.
134

 In addition, recently, 

conditioned media from cells expressing type I mutant CALR have been shown to exaggerate 

cytokines production from normal monocytes.
135

 It is therefore likely that in MF the increased 

circulating CRT may contribute to the disease-related inflammation/fibrosis through positively 

enhancing IL-6 production. By contrast, despite TNF-α is a negative regulator of CRT 
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expression,
136

 no correlation was observed between circulating CRT and TNF-α plasma levels in 

our MF patients, suggesting the presence of a TNF-α-independent mechanism of regulation. 

Finally, considering the role of CRT in cancer, high abundance of the protein may have a 

positive or negative prognostic value. This may relate to the differential role of the endoplasmic 

reticulum-associated protein that promote cancer cells survival in harsh condition through its 

chaperone/Ca
2+

 homeostasis function versus the role of cell surface CRT on cancer cells that may 

induce anticancer immune response [as reviewed in 
130

]. Moreover, since CRT overexpression 

increases the growth of various types of cancer cells,
129

 including solid tumors and acute myeloid 

leukemia, we can hypothesize that the increased circulating CRT might promote the 

survival/growth of myeloid cells in the PB niche of MF.  

Taken together, our data highlight the role of this protein in the inflammatory network of 

MF. A mutual interaction among CRT and other inflammatory cytokines including IL-6 may indeed 

contribute to the generation/maintenance of inflammation/fibrosis of MF. Further studies may 

elucidate whether other cytokines may also contribute to the generation/maintenance of BM 

fibrosis. Particularly, TGF-β, which is up-regulated in MF, has been recently recognized as a potent 

upstream regulator of CRT expression
137

 and might therefore be involved in a pro-fibrotic bi-

directional cross-talk with circulating CRT.  

Potential limitation of the present study is the small sample size of patients. Nonetheless, our 

data create the rational basis for future studies investigating the role of circulating CRT in the 

inflammatory network of MF and other Ph-negative MPNs in larger cohorts of patients. Indeed, 

high CRT plasma levels in MF are signs of chronic systemic inflammation. Notably, due to 

correlation with fibrosis and splenomegaly, circulating CRT may be considered as a novel 

biomarker of disease activity/burden in MF patients and its measurement may be useful in clinical 

practice.  

 

Although further research is needed to determine the spectrum of functions of CRT outside the 

cells, here we conclude that in MF the abnormally elevated plasma CRT levels are independent on 

mutation status but parallel the degree of disease activity and inflammation. Therefore, since 

soluble CRT links with disease activity and inflammatory status, our findings may contribute to 

identify patients with more severe disease, who might benefit from tailored therapy.    
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MATERIALS AND METHODS
 

 

Study population 

Peripheral blood (PB) was obtained from 30 patients with MF in chronic phase and in 10 healthy 

age-matched volunteers. The diagnosis of MF was made according to WHO 2008 criteria.
138

 

Patients and controls provided written informed consent for the study. This study was approved by 

the medical Ethical Committee of the University Hospital of Bologna and was conducted in 

accordance with the Declaration of Helsinki.  

 

Table 1 

Patients characteristics according to mutational status. Compared to CALR-mutated patients, 

patients with JAK2
V617F

 mutation were older (p = 0.01) and had higher hemoglobin levels (p = 

0.04). 

 

 

 

Assay of circulating proteins 

Here we analysed the plasma levels of CRT in patients/controls. EDTA-anticoagulated PB was 

centrifuged for 15 minutes at 1000g within 30 minutes of collection. The plasma was then collected 

and stored at -80°C until quantification. CRT was evaluated by a commercially available ELISA 

assay (Cusabio Biotech Co., Wuhan, P.R.China), according to the manufacturer’s instructions. 
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Briefly, a standard curve of 100-μl aliquots of known concentrations of recombinant CRT was run 

and triplicate 100 µL samples were added to the wells. CRT binding was detected using a 

biotin/avidin system. The plates were then assessed by ELISA on a plate reader at 450 nm. The 

Ciraplex
TM

 immunoassay kit / Human 9-Plex Array (Aushon BioSystems, Billerica, MA, USA) was 

used for the measurement of circulating IL-6 and TNF-α.  

 

Molecular pattern 

Molecular analyses were assessed at diagnosis or before treatment start on DNA obtained from 

granulocytes. Driver mutations were analysed as previously described.
115

 Specifically, JAK2
V617F

 

mutation was evaluated with ipsogen JAK2 MutaQuant Kit (Qiagen, Marseille, France) on 7900 HT 

Fast Real Time PCR System (Applied Biosystem, Monza, Italy). The percentage of mutant 

JAK2
V617F

 allele was expressed as the ratio of JAK2
V617F

 copies to total copy number (CN) of JAK2 

(CN of JAK2
V617F

 + CN of JAK2 wild type). CALR exon 9 sequencing was performed by Next 

Generation Sequencing (NGS) approach with GS Junior (Roche-454 platform; Roche Diagnostics, 

Monza, Italy); analysis was carried out with AVA Software (GRCh38 as referenced). Type 1 and 

type 2 CALR mutations were identified as previously described.
76

 Rare CALR mutations identified 

by NGS were confirmed by Sanger sequencing. MPL mutations were investigated by ipsogen 

MPLW515K/L MutaScreen Kit (Qiagen) and by Sanger sequencing (for MPLS505N and other 

secondary exon 10 mutations). 

 

Cytogenetic analysis 

Chromosome banding analysis was performed on BM cells by standard banding techniques 

according to the International System for Human Cytogenetic Nomenclature. At least 20 

metaphases were required. Unfavorable karyotype was defined according the Dynamic International 

Prognostic Score System - plus (DIPSS, 
139

) and included complex karyotype or single or two 

abnormalities including +8, -7/7q-, i(17q), -5%5q-, 12p-, inv(3) or 11q23 rearrangement. 

 

Statistical analysis 

Statistical analyses (Student’s T Test and Spearman correlation analysis) were performed using 

Graphpad (Graphpad Software Inc., La Jolla, CA). All p values were considered statistically 

significant when ≤0.05 (2-tailed). 
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 Results II 
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ABSTRACT 
 

We and others have shown that the TIMP-1, a member of the inflammatory network exerting 

pleiotropic effects in the BM microenvironment, regulates the survival and proliferation of different 

cell types, including normal hematopoietic progenitor cells. Moreover, TIMP-1 has been shown to 

be involved in cancer progression. However, its role in leukemic microenvironment has not been 

addressed. Here, we investigated the activity of TIMP-1 on Acute Myelogenous Leukemia (AML) 

cell functions. First, we found that TIMP-1 levels were increased in the BM plasma of AML 

patients at diagnosis. In vitro, recombinant human (rh)TIMP-1 promoted the survival and cell cycle 

S-phase entry of AML cells. These kinetic effects were related to the downregulation of cyclin-

dependent kinase inhibitor p21. rhTIMP-1 increases CXCL12-driven migration of leukemic cells 

through PI3K signaling. Interestingly, activation of CD63 receptor was required for TIMP-1’s 

cytokine/chemokine activity. Of note, rhTIMP-1 stimulation modulated mRNA expression of HIF-

1α, downstream of PI3K/Akt activation. We then co-cultured AML cells with normal or leukemic 

MSCs to investigate the interaction of TIMP-1 with cellular component(s) of BM 

microenvironment. Our results showed that the proliferation and migration of leukemic cells were 

greatly enhanced by rhTIMP-1 in presence of AML-MSCs as compared to normal MSCs. Thus, we 

demonstrated that TIMP-1 modulates leukemic blasts survival, migration and function via 

CD63/PI3K/Akt/p21 signaling. As a “bad actor” in a “bad soil”, we propose TIMP-1 as a potential 

novel therapeutic target in leukemic BM microenvironment. 
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INTRODUCTION 
 

AML is a clonal disorder which originates from a rare population of leukemia stem cells (LSCs).
140

 

Over the last years major efforts have been made to improve the clinical outcome of AML patients; 

however, their overall prognosis is still poor especially for patients harboring unfavorable biologic 

factors at diagnosis.
141,142

 

Recent reports have unveiled a pathogenetic link between inflammation and oncogenesis.
143-146

 

Whereas this finding is well-accepted for solid tumors, the relationship between inflammatory 

networks and leukemogenesis has not been fully elucidated. Nonetheless, recent data highlight how 

HSPCs fate is dictated by intrinsic and extrinsic factors and how HSPCs may actively sense danger 

signals and pro-inflammatory cytokines.
2,147,148

 Moreover, the cross-talk between leukemic cells and 

BM stromal cells may create a suitable environment that promotes malignant transformation and 

disease progression. Several factors and pathways have been implicated and described.
149,150

 

Among them, the tuned regulation of the balance between synthesis and degradation of extra-

cellular matrix (ECM) macromolecules by matrix metalloproteinases (MMPs) and their inhibitors is 

critical.
151

 Indeed, an altered MMPs/Tissue Inhibitor of MetalloProteinases-1 (TIMP-1) expression 

or activity affects steady state hematopoiesis and results in increased cell proliferation, thus 

favoring oncogenesis, including leukemogenesis.
152

 Indeed, TIMP-1 levels increase in response to 

inflammation.
101

 Initially described as an endogenous inhibitor of MMPs and the membrane-bound 

metalloproteinase ADAM-10, TIMP-1 also displays cytokine-like functions, mediated by the 

engagement of a specific membrane receptor, namely CD63.
153

 CD63 is known as a member of the 

tetraspanins, that are a superfamily of cell surface-associated membrane proteins involved in cell 

activation, adhesion, differentiation and tumor invasion.
154

 In breast cancer and melanoma cells, 

CD63 is abundantly expressed and interacts with TIMP-1 at cell surface, resulting in activation of 

cell survival signalling.
155,156

 At the functional level, TIMP-1 exerts pleiotropic effects in the BM 

microenvironment, such as the regulation of cellular proliferation, apoptosis and differentiation.
156-

158
 In particular, we previously found that TIMP-1 regulates the function of HSPCs promoting 

clonogenic efficiency and survival of normal CD34
+
 cells via the activation of the CD63/PI3K/pAkt 

signaling pathway, suggesting that TIMP-1 may be a key player in the network of pro-inflammatory 

factors modulating HSPC functions. Similarly, in solid tumors, TIMP-1 improves the metastatic 

potential of cancer cells.
159

 Interestingly, upregulated TIMP-1 levels are associated with 

unfavourable prognosis in several tumors including breast or colorectal cancer and lung 
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carcinoma.
160-162

 In hematological malignancies, TIMP-1 promotes differentiation of lymphoma 

cells whereas increased TIMP-1 serum levels are associated with advanced myeloma.
163-166

 

In the present study we investigated, in vitro, the function and molecular pathways mediated by 

TIMP-1 in the microenvironment of AML, providing further evidence to support the relationship 

between inflammation and leukemia. A better definition of the mechanisms regulating the interplay 

of leukemic cells within BM microenvironment, may have important clinical implications for the 

development of novel and effective therapeutical strategies.  
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RESULTS 
 

TIMP-1 is detectable in BM and PB of AML patients  

In normal hematopoiesis, TIMP-1 regulates the survival and proliferation of different cell 

types.
101,104

 However, its role in AML BM microenvironment is not yet clear. Therefore, we first 

evaluated the BM plasma and PB serum level of TIMP-1 in leukemic patients at diagnosis. We 

found detectable amounts of TIMP-1 both in BM and PB with a median concentration of 112.6 

ng/ml (range 72.25-157.3 ng/ml) and 139.4 ng/ml (range 84.47-273.9 ng/ml), respectively (Figure 

1A-B). In particular, compared with control BM samples, the plasma levels were increased in AML 

patients (p ≤ 0.05). These results extend previous data in other hematological malignancies, such as 

pediatric ALL
167

 and suggest the potential functional role of TIMP-1 within AML 

microenvironment. Moreover, they indicate the optimal concentration of TIMP-1 for functional 

studies. 

 

 

 

 

 

 

 

 

Figure 1 

TIMP-1 levels were measured by ELISA in in plasma and serum of AML patients and control samples. A) BM 

plasma concentrations of TIMP-1 were compared between AML patients at diagnosis (n=6) and control samples (*p < 

0.05). B) In addition, PB serum concentrations of TIMP-1 were quantified in patients (n=12) and compared to control 

samples. 
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TIMP-1 increases the clonogenic efficiency of AML blasts maintaining an apoptosis-resistant 

phenotype  

In our previous work,
104

 we found that TIMP-1 increases the clonogenic efficiency of normal 

HSPCs isolated from umbilical CB units. Thus, we studied the effects of increasing concentration 

of TIMP-1 (ranging between 10-300 ng/ml) on the clonogenic output of 14 primary AML at 

diagnosis. As shown in Figure 2A, TIMP-1 (at 100 ng/mL) significantly increased colony 

formation (CFU-L) from AML patients (p ≤ 0.01). In addition, the CFU-GM growth was positively 

enhanced by TIMP-1 (Supplementary Figure 1, p ≤ 0.01).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

Clonogenic output and survival of leukemic blasts is positively enhanced by exposition to TIMP-1 

Circulating leukemic blasts were isolated from AML patients (n=12) and cultured in semisolid medium in the presence 

of TIMP-1. After 14 days, the total CFU-L output was assessed as above described. A) The clonogenic output of the 

AML-derived leukemic cells was significantly stimulated by TIMP-1 (100 ng/ml, **p ≤ 0.01). No other concentration of 
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TIMP-1 were effective. The results are expressed as growth fold change versus untreated control samples. The mean 

number of colonies in untreated (0 ng/ml) and treated (100 ng/ml) AML samples was 18.8 ± 5.8 vs 30.2 ± 9.2, 

respectively. Specifically, only 2 patients (PT #6 and #13 in the Table patients) were not responsive to TIMP-1 

treatment in CFU-L assay. Data are presented as mean ± SEM of 12 patients, the error bars are the mean of each 

duplicate.  

Survival of leukemic blasts from AML patients is positively enhanced by TIMP-1. B) AML blasts were cultured for 24-

48-72 hrs in the presence of TIMP-1 (48-72 hrs, *** p ≤ 0.001; n=3). Survival rate is evaluated by cell titer assay and 

expressed as fold-change taking the value of untreated cells at each time point as 1. C) AML cells from 14 patients were 

in vitro treated for 2 days with TIMP-1 and the percentage of cell viability was assessed after AnnexinV/PI staining, as 

described in methods. Representative dot-plots showing the percentage of live, apoptotic and necrotic cells in leukemic 

blasts as determined by flow cytometry. Mean of percentage in apoptotic cell (Annexin V positive and both Annexin V/ 

PI positive cells) in the presence or absence of TIMP-1 (***p ≤ 0.001). The mean percentage of apoptotic cells 

(Annexin V positive and both Annexin V/ PI positive cells) was 53.0 ± 3.1% (range: 34.5-74.6) for control and 33.0 ± 

3.5% (range: 15.4-53.0) for TIMP-1 treated cells. Data are presented as mean ± SEM 

When we tested myeloid differentiation markers (CD38 and CD11b) or hemopoietic 

stem/progenitor cells marker (CD34) in the blasts of AML patients, we did not find any differences 

between untreated or TIMP-1 treated AML samples (data not shown). We then investigated whether 

TIMP-1 promotes the survival of AML blasts. To this end, we treated leukemic cells with the 

optimal concentration of TIMP-1 (i.e. 100 ng/mL) and we evaluated cell viability at different time 

points by colorimetric assay (MTS assay). As summarized in Figure 2B, after 48 and 72 hours, the 

addition of TIMP-1 significantly increased the number of viable leukemic blasts, as evaluated as 

fold-change over control sample (5.6- and 5.9-fold increase, respectively; p ≤ 0.001). Moreover, 

when we evaluated the apoptotic rate of leukemic blasts, we found that AML cells incubated for up 

to 72 hours in presence of TIMP-1 showed a significant decrease in their programmed cell death 

(Figure 2C). In particular, the mean percentage of apoptotic cells was reduced in presence of 

TIMP-1 as compared to control samples (33 ± 3.5% and 53 ± 3.14%, respectively; p ≤ 0.001). 

Overall results and data from a representative example (panel C) are shown in Figure 2 and from 

individual patients (Supplementary Figure 2). Taken together, these data demonstrate that TIMP-1 

promotes the survival and the clonogenic activity of leukemic blasts by significantly reducing 

apoptosis. 
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TIMP-1 stimulates cell cycling of leukemic blasts in association with p21
WAF1/CIP1 

downregulation 

We then studied the effect of TIMP-1 on cycling of AML cells. As shown in Figure 3A, after 24 

hours of TIMP-1 incubation, we observed a reduced percentage of cells in G0/G1 phase (percentage 

of untreated G0/G1-phase cells 86.66 ± 1.34 % vs 77 ± 3.03 % of TIMP-1-treated cells; p ≤ 0.05). 

Simultaneously, we detected a slight, but significant, increase in the percentage of leukemic cells in 

S-phase (percentage of untreated S-phase cells 7.4 ± 0.77  % vs  15.5 ± 3.1% of TIMP-1-treated 

cells; p ≤ 0.01). These data suggested a role of TIMP-1 in promoting AML cell cycle progression. 

In order to confirm this observation, we analyzed the effect of TIMP-1 on expression of 

p21
WAF1/CIP1

, a cell cycle inhibitor (Figure 3B).
168

 Interestingly, the normalized mean fluorescence 

intensity (nMFI) of p21 expression was significantly reduced in leukemic cells after exposure to 

TIMP-1 for 24 hours as compared with untreated cells (nMFI: 3.1±1.1 vs 4.5±1.5, respectively; p ≤ 

0.05; data not shown). To further confirm our results, we analysed p21 protein reduction by western 

blot (Figure 3C). This assay confirmed the reduction of p21 protein after treatment with TIMP-1, 

whereas transcript levels were not affected (data not shown). These results suggest that TIMP-1 

stimulates cell-cycle progression of leukemic blasts from AML patients. 
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Figure 3 

TIMP-1 promotes cell cycle of leukemic blasts. 

A) Results are expressed as the percentage of cells in different phases of the cell cycle. TIMP-1 promote cell cycling of 

leukemic blasts cells from AML patients (phase G1 *p ≤ 0.05 and phase S **p ≤ 0,01; n=9). Their distribution in the 

different phases of cell cycle was assessed by PI staining after 24 hrs. Data are presented as mean ± SEM. B) 

Representative histogram of p21
WAF1/CIP1

 of leukemic blasts after exposure to TIMP-1 for 24 hrs. The downregulation of 

cyclin-dependent kinase inhibitor p21WAF1/CIP1, which promotes cell cycle progression, were measured by flow 

cytometry as MFI, and is shown only in the presence of TIMP-1 (MFI: 2275 ± 524 TIMP-1 treated cells vs 3110 ± 

223,1 untreated cells; n=12). Specifically, only 2 patients (PT #11 and #15 in the Table patients) were not responsive to 

TIMP-1 treatment in p21 downregulation. C) AML cells were incubated with TIMP-1 for 24 hrs and the relative level of 

p21 protein was determined by western blotting (n=2). Representative western blot of one AML patient. β-actin was 

used as a loading control.  

 

TIMP-1 enhances CXCL12-driven migration of AML blasts  

To test the effect of TIMP-1 on the migratory capacity of AML cells, we assessed, in vitro, the 

response of AML cells toward a CXCL12 gradient in presence or absence of TIMP-1. As reported 

in Figure 4A, the migration rate of AML cells, when TIMP-1 was added in absence of CXCL12, 

was not significantly higher than control samples. Although these results could rely, at least in part, 

on TIMP-1’s survival effects, the addition of TIMP-1, in presence of CXCL12, increased the 

migration rate of leukemic cells over that observed with medium (spontaneous migration) and 

CXCL12 alone (p ≤ 0.0001 and p ≤ 0.01, respectively). Conversely, when TIMP-1 was added to 

CXCL12 as chemo-attractant, the migration of AML cells was not significantly increased. No 

differences in spontaneous or CXCL12-induced migration were observed when PB or BM cells 

were compared (data not shown). However, migration of TIMP-1 treated PB cells toward CXCL12 

gradient was slightly higher than the migration of the BM cells (PB vs BM, 57.14% ± 5.5% vs 

46.09% ± 7.7%, respectively; p=ns). To further support this finding, we investigated the migratory 

response of AML cells after pre-incubation with AMD3465, a potent and selective CXCR4 

antagonist and anti-TIMP-1 neutralizing Ab. After incubation with AMD3465, the migration of 

leukemic blasts was inhibited and the effect of CXCL12 was comparable to medium alone (Figure 

4B). Importantly, pre-incubation with the CXCR4 inhibitor completely abrogated the effect of 

TIMP-1 treatment toward CXCL12-gradient (p ≤ 0.001). Also, anti-TIMP -1 neutralizing Ab 

reversed the effects of TIMP-1 on migratory response of AML cells.  
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Figure4 

Pre-treatment with TIMP-1 significantly promotes migration of AML cells. 

A) AML cells were seeded in the upper compartment of a chamber Transwell migration assay ±TIMP-1 (100 ng/ml) 

(n=18). TIMP-1 was added to the bottom compartment with or without CXCL12 (100 ng/ml), whereas was used alone 

in the top compartment. After over-night at 37°C, cells in the bottom compartments were counted and percentage of 

migrated cells calculated. (**p ≤ 0.01; ****p ≤ 0.0001; n=18). The mean number of migrated cells was 13031 ± 2161 

for spontaneous migration, 15410 ± 2367 for migration toward CXCL12 gradient, 23581 ± 3204 in the presence of 

TIMP-1 toward CXCL12 gradient and 22070 ± 4050 in the presence of TIMP-1 and CXCL12 as chemo-attractants. 

B) Migrated AML-derived leukemic blasts toward CXCL12 gradient after pre-treatment with AMD3465 (CXCR4 

antagonist) for 30 min ± TIMP-1 (n=9) or anti-TIMP-1 neutralizing Ab (5µg/ml; n=3) to evaluate the effects on 

migratory rate (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001).  Data are presented as mean ± SEM 

 

CD63 is required for TIMP-1-mediated effects on AML blasts 

To elucidate the molecular pathway ignited by TIMP-1 and its cytokine-like activity in leukemic 

blasts, we first investigated the expression and the functionality of CD63, which is known to 

mediate TIMP-1 effect.
153

 The mean percentage of CD63-positive blasts from the total of AML 

patients was 60.83% ± 5.485% (range, 26.40-93.40). In particular, the mean percentage was 64.05% 

± 8.024% (range, 32.1-93.4) in PB samples and 56.53% ± 7.476% (range, 26.4-79.6) in BM 

samples. Of note, we did not find any significant correlation between patient characteristics and 

CD63 expression or different functions mediated by TIMP-1 (data not shown). Interestingly, 

migrated leukemic blasts toward CXCL12 plus TIMP-1 had a significantly increased expression of 

CD63 as compared to the cells migrated toward CXCL12 alone (p ≤ 0.05) (Figure 5A). We then, 
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sorted CD63 positive and negative leukemic blasts and tested their ability to respond to TIMP-1 in 

migration assay. Noteworthy, only the migratory capacity of CD63
+
 fraction appeared significantly 

promoted (p ≤ 0.05; Figure 5B), while the proportion of migrating CD63
-
 AML cells in presence of 

TIMP-1 cells was comparable to that migrated with CXCL12-gradient alone. Overall, these findings 

support the hypothesis that TIMP-1 modulates the CXCL12-mediated migration through the 

interaction with the CD63 receptor, exerting cytokine-like function in leukemic blasts. 

 

 

 

 

 

 

 

 

Figure 5 

TIMP-1’s effects on migration are mediated by the CD63 tetraspanin receptor.  

A)AML cells were seeded in the upper compartment of a chamber transwell migration assay ±TIMP-1 (100 ng/ml). 

After 24 hrs migrated AML-derived leukemic blasts toward CXCL12 gradient after pre-treatment with TIMP-1 show 

increased expression of TIMP-1 receptor (CD63) as compared with untreated cells. Results are expressed as 

normalized Mean Fluorescence Intensity (nMFI). (*p ≤ 0.05; n=10).  

B) Based on CD63 expression, leukemic blasts were sorted in two separate fractions, CD63
-
 and CD63

+
, and their 

capability to respond to TIMP-1 stimulation was assessed by migration assay. AML cell fractioning were seeded in the 

upper compartment of a chamber Transwell migration assay ± TIMP-1 (100 ng/ml) toward CXCL12 (*p ≤ 0.05; n=3). 

The mean number of migrated CD63
+
 cells was 705 ± 46 for spontaneous migration, 2213 ± 287 for migration toward 

CXCL12 gradient, 3720 ± 600 in the presence of TIMP-1 toward CXCL12 gradient. The mean number of migrated 

CD63
- 
cells was 805 ± 52 for spontaneous migration, 2695 ± 555 for migration toward CXCL12 gradient, 2575 ± 370 

in the presence of TIMP-1 toward CXCL12 gradient. Data are presented as mean ± SEM. 

 

 

 

 

U p p e r

               T IM P -1

0

2

4

6

8

1 0

M
F

I

- +

+ +
Low e r

     C X C L 1 2

*

C D 6 3
+

U p p e r

              T IM P - 1

Lo w e r

               C X C L 1 2

0

1 0

2 0

3 0

4 0

5 0

%
 M

ig
r
a

te
d

 C
e

ll
s

C D 6 3
+

C D 6 3
-

ns*

- - + - - +

- + + - + +

ns

BA



78  

 

TIMP-1 induced PI3K/Akt and HIF-1α signaling pathway in leukemic blasts 

We then investigated the signaling pathway activated by TIMP-1 exposure. We previously 

demonstrated that in normal CD34
+
 cells PI3K/AKT is the main signaling pathway induced by 

TIMP-1.
103

 Based on these results, we tested TIMP-1 effects on AML cell function in presence of 

the PI3K-inhibitor LY294002. Pre-incubation of AML cells with LY294002 plus TIMP-1 

significantly decreased their clonogenic output as compared to TIMP-1 alone (p ≤ 0.05) (Figure 

6A), reverted TIMP-1-mediated anti-apoptotic activity (p ≤ 0.0001) (Figure 6B) and its migratory 

capacity on AML cells (Figure 6C) (p ≤ 0.0001).These results suggest that, similarly to normal 

HSC, in leukemic blasts the pathway of PI3K/AKT may be involved in the signaling induced by 

TIMP-1. To further support this hypothesis, we examined the activation/phosphorylation of Akt in 

TIMP-1-treated AML cells. We firstly observed that the addition of TIMP-1 resulted in pAkt-

Thr308 phosphorylation of CD63
+
, but not CD63

-
, AML cells (Figure 6D), confirming that CD63 

binding may be important to pAkt activation by TIMP-1. Next, we assessed by flow cytometry the 

levels of Akt phosphorylation in leukemic blasts after exposure to TIMP-1. As indicated in Figure 

6E, the mean value of nMFI of phospho-Akt was 3.5 ± 0.32 in untreated cells vs 4.8 ± 0.7 after 

TIMP-1 treatment (p ≤ 0.05). Moreover, we determined the levels of pAkt upon TIMP-1 treatment 

in AML cells by Western blotting (Supplementary Figure 3). As expected, after PI3K inhibition 

the treatment with TIMP-1 had no effect on Akt phosphorylation. Finally, we examined the effect 

of TIMP-1 on the expression of HIF-1α, described as a downstream pathway following PI3K/Akt 

activation. Of note, the expression of HIF-1α mRNA in leukemic blasts was found to be modulated 

by TIMP-1 stimulation. Specifically, after 24 hours in presence of TIMP-1, a significant increase in 

the expression of HIF-1α was observed (p ≤ 0.05; Supplementary Figure 4). Together, these data 

support the hypothesis that TIMP-1 modulates the function of leukemic blasts via PI3K/Akt and 

HIF-1α axis. 
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Figure 6 

TIMP-1 effects in AML cells are mediated by PI3K/Akt and HIF-1α signaling axis 

A) AML cells were cultured in the presence or absence of TIMP-1 (100 ng/mL) after pre-treatment with LY294002 (20 

μM) and the correspondent clonogenic output was assessed after 14 days of culture (*p ≤ 0.05; **p ≤ 0.01; n=3). The 
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mean number of CFU-L was 19.7 ± 5.6, 30.3 ± 9.6 and 14.0 ± 6.2 for control, TIMP-1-treated and LY294002-pre-

treated AML cells, respectively. The results are expressed as growth fold-change versus untreated control samples. B-

C) In the same culture condition we tested apoptosis after 24 hrs (n=8) and migratory behaviour toward CXCL12 

gradient (**p ≤ 0.01; ****p ≤ 0.0001; n=8). The mean numbers of migrated cells were 9032 ± 2970, 16432 ± 3881 and 

8450 ± 1638 for control, TIMP-1-treated and LY294002-pre-treated AML cells, respectively. The results are expressed 

as fold-change versus untreated control samples and as mean of migrated cells, respectively. D) Representative panel 

of pAkt levels in TIMP-1-treated versus untreated cells of CD63
-
 leukemic blasts (left panel) or CD63

+
 leukemic blasts 

(right) (n=3). E) Level of Akt phosphorylation (Thr308) in total AML cells exposed for 15 minutes to TIMP-1 (100 

ng/mL) or after pre-treated with LY294002, as assessed by flow cytometry. Results are expressed as normalized MFI: 

3.5 ± 0.32 (MFI 1387 ± 264) untreated cells vs 4.8 ± 0.7 (MFI 1524 ± 274) TIMP-1 treated cells (*p ≤ 0.05; n=13). 

Specifically, only 3 patients (PT #4-#7-#8 in the Table patients) were not responsive to TIMP-1 treatment in pAkt 

activation (*p ≤ 0.05; n=13).  

 

The leukemic BM microenvironment enhances the effects of TIMP-1 on migration of leukemic 

blasts 

It is known that migration of AML cells is regulated by stromal cells, such as MSCs, producing 

CXCL12.
169,170

 To further investigate the role of TIMP-1 within BM microenvironment of AML 

patients, we tested the migratory ability of leukemic blasts after co-cultures with normal or 

leukemic MSCs in presence or absence of TIMP-1. No significant biological difference was found 

between normal and AML-MSCs in terms of phenotype and differentiation capacity (data not 

shown). As shown in Figure 7A, the CXCL12-driven migration of leukemic blasts was not affected 

by TIMP-1 pre-incubation in co-cultures with normal MSCs. Conversely, when leukemic blasts 

were co-cultured with AML-MSCs, the addition of TIMP-1 resulted in increased migration rate as 

compared to that observed in presence of normal MSCs (p ≤ 0.01). Interestingly, when we analyzed 

the levels of TIMP-1 in the supernatants of co-cultures of AML cells with leukemic or normal 

MSCs, we found that TIMP-1 level was higher in presence of HD-MSCs over AML-MSCs (263 ± 

19.68 ng/ml and 162 ± 24.43 ng/ml, respectively; p ≤ 0.05; Figure 7B). 
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Figure 7 

TIMP-1’s effects on BM microenvironment: TIMP-1 significantly promotes migration of AML-derived leukemic 

cells after co-culture with AML MSCs 

AML cells were co-cultured with normal (n=2) or leukemic MSCs (n=3) for 3 days ± TIMP-1 (100 ng/ml). After co-

culture, AML cells were collected, counted and seeded in the upper compartment of a chamber Transwell migration 

assay toward CXCL12-gradient (100 ng/ml). A) The addition of TIMP-1 for 3 days in the presence of leukemic MSCs 

affects the migratory behaviour of AML-derived blasts cells toward CXCL12 alone (**p ≤ 0.01) (n=6). The mean 

numbers of migrated cells were 7784 ± 2794 for spontaneous migration, 7315 ± 1776 for migration CXCL12-driven 

and 17732 ± 6735 for migration CXCL12-driven after TIMP-1 treatment after co-cultures with AML-MSCs. On the 

contrary the mean numbers of migrated cells were 2730 ± 770 for spontaneous migration, 6223 ± 1811 for migration 

CXCL12-driven and 5613 ± 1167 for migration CXCL12-driven after TIMP-1 treatment after co-cultures with HD-

MSCs. B) Leukemic cells were co-cultured in presence of a normal or leukemic stroma layer. After 3 days of co-culture, 

supernatants were collected and analysed for TIMP-1 level using ELISA (*p<0.05; n=3). Data are mean ± SEM. "HD" 

means healthy donor.  

 

TIMP-1 enhances leukemic cell survival and proliferation in presence of leukemic MSCs 

Recently, several studies have demonstrated the essential role of BM stromal-derived factors in 

regulation AML cell proliferation, thus conferring chemo-resistance to leukemic cells.
141,149

 To test 

the differential effect of TIMP-1 on AML cell survival in presence of normal versus leukemic 

MSCs, co-cultures were set up in the presence or absence of TIMP-1. As shown in Figure 8A, the 

survival of leukemic blasts was not affected by TIMP-1 in co-cultures with normal MSCs. 

However, TIMP-1 showed a slight reduction in apoptotic rate in co-culture with AML-MSC (p ≤ 

0.05). Moreover, AML cell proliferation was evaluated with normal MSCs or AML-MSCs in the 

presence or absence of TIMP-1 plus growth factors, thus mimicking the BM microenvironment. 
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When AML cells were co-cultured with normal MSCs cell proliferation was not significantly 

modified after exposure to TIMP-1. By contrast, in co-cultures with AML-MSCs, the combination 

of TIMP-1 plus growth factors resulted in highly significant increase of the proliferation index as 

compared with blasts co-cultured with growth factors alone (p ≤ 0.01; Figure 8B-C). In addition, a 

non-significant trend to increased cell proliferation was found from CD63-positive fractions in 

AML cells (data not shown).  

Taken together, the results reported in Figures 7 and 8 support the notion that leukemic 

microenvironment is deeply dysregulated in AML and TIMP-1 may preferentially exert its effects 

on leukemic cells in presence of leukemia-derived MSCs.  
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Figure 8 

TIMP-1’s effects on BM microenvironment: TIMP-1 promotes cell survival and proliferation in AML-derived blasts 

in the presence of AML-MSCs.  

A) AML cells were co-cultured with normal (n=2) or leukemic MSCs (n=3) for 3 days ± TIMP-1 (100 ng/ml) to test 

survival of leukemic cells (*p < 0.05; n=4). B) AML cells were co-cultured with normal or leukemic MSCs for 5 days 

with growth factors ± TIMP-1 (100 ng/ml). Proliferation index of CFSE-labeled leukemic blasts was calculated. Cells 
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maintained in culture in the presence of medium alone was evaluated as 1 of proliferation index. AML MSCs displayed, 

at culture day 5, a significantly increased proliferation index, as compared to leukemic cells co-coltured with normal 

MSCs (**p ≤ 0.01; n=12). C) Representative dot-plots showing the percentage of proliferative cells gated with reduced 

CFSE content by flow cytometry. Left panels, AML cells were co-cultured with normal (on the top) or leukemic MSCs 

(on the bottom) for 5 days with growth factors only. Right panels, AML cells were co-cultured with normal (on the top) 

or leukemic MSCs (on the bottom) for 5 days with growth factors ± TIMP-1. Data are mean ± SEM. GF, growth 

factors. 
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DISCUSSION 
 

Here we demonstrate that TIMP-1 increases the clonogenic efficiency, the survival and the 

migratory capacity of AML blasts by binding to CD63 receptor which, in turn, results in the 

activation of PI3K, Akt phosphorylation and regulation of downstream targets, such as p21 and 

HIF-1α. Moreover, we showed the potential role of TIMP-1 in the interplay between leukemic 

blasts and AML MSCs. Together, these findings suggest that TIMP-1 displays cytokine-like 

features in the BM microenvironment of AML patients, suggesting a link between the inflammatory 

microenvironment and leukemogenesis.  

Several papers report that the activation of PI3K/Akt signaling is associated with poor outcome in 

hematological malignancies and this pathway is crucial to cancer cell survival and growth.
171

 Here 

we demonstrate that, similarly to CB-derived CD34
+
,
104

 binding of TIMP-1 to CD63 receptor is 

instrumental for modulation of AML cell functions. Whereas the role of CD63 in regulating cancer 

cell functions, such as cell activation, adhesion, differentiation and migration, is well-established in 

solid tumors,
153,156

 its role remain unclear as for hematological disease. Schubert et al.
172

 showed 

higher CD63 expression in AML-long-term surviving capacity (LTSC) growth in NOD/SCID mice, 

hinting the potential role in cell adhesion and motility. In the present paper we demonstrate that 

about half of leukemic blasts are CD63 positive. At the functional level, binding to CD63 is 

required for TIMP-1-mediated main effects on AML blasts along the PI3K/Akt pathway, as 

previously observed in CB CD34
+ 

cells. In addition, we found that TIMP-1 stimulates the cell-cycle 

progression of leukemic blasts with a subsequent down-regulation of the cell-cycle inhibitor p21. 

Similarly to other pro-inflammatory cytokines (e.g. IFN-γ and IL-4), TIMP-1 was shown to be an 

inducer of HIF-1α expression in a liver metastasis model.
173

 Moreover, HIF-1α mRNA and protein 

are overexpressed in human cancer and leukemic stem cells.
174,175

 Our data suggest, for the first 

time, that upregulation of HIF-1α mRNA may be mediated by TIMP-1 in AML. 

Leukemic blasts have been shown to have higher levels of TIMP-1 transcripts and increased TIMP-

1 expression was also observed in Non-Hodgkin lymphomas and Burkitt B-cell lymphoma cell 

lines.
164-166

 Accordingly,
167

 in the present work we found that the BM plasma levels of TIMP-1 are 

detectable in AML patients. At variance from normal CB-derived CD34
+
 cells, where TIMP-1 was 

shown to affect only the clonogenic potential, in AML TIMP-1 exerts additional effects, such as 

improving cell survival and CXCL12-mediated migration. In the leukemic microenvironment, 

CXCL12 is secreted both by BM stromal and AML cells and critically modulates cell survival and 

retention of LSCs within BM.
176,177

 Our demonstration that TIMP-1 pre-treatment of leukemic 
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blasts promotes their migration towards CXCL12 support the finding of high levels of TIMP-1 in 

the BM of AML patients, suggesting a role for this molecule in promoting the migration of 

leukemic blasts and their dissemination in extramedullary site. 

The dynamic interplay between leukemic cells and stromal cells is a crucial aspect of AML.
178

 It is 

clear that leukemic cells alter their BM microenvironment to support leukemic hematopoiesis while 

disrupting normal HSC homeostasis.
65

 This interaction via cytokines, chemokines and adhesion 

molecules is responsible for reduced chemo-sensitivity of leukemic sub-clones.
179

 By contrast, the 

potential role of TIMP-1 in the interaction of leukemic cells with BM stromal cells is mostly 

unknown. Of note, previous investigations demonstrated that among 23 cytokines differentially 

expressed, at the molecular level, between normal and leukemic BM, only TIMP-1 was confirmed 

at the protein level suggesting a role in leukemia initiation and progression.
167

 Moreover, the 

crosstalk between the matrix metalloproteinases system and chemokines network may modulate 

different regulators of cytokine release by primary human AML cells (e.g. NF-kB).
152

 In this view, 

our functional data support a role of TIMP-1 as an adverse factor within leukemic 

microenvironment. Interestingly, TIMP-1 has been shown to preferentially increase AML blasts 

survival, proliferation and migration in presence of AML-MSCs. Such discrepancy in comparison 

to normal MSCs is far to be completely elucidated. A possible explanation is that secreted TIMP-1 

from normal MSCs saturate potential TIMP-1 receptors, reverting and masking the pro-survival and 

pro-migratory effects of exogenous TIMP-1. Indeed, previous studies demonstrated the different 

production of TIMP-1 by normal human MSCs (hMSCs), AML long-term marrow cultures 

(LTMC) and leukemic BM.
180,181

 Although limitation of the present study is the small sample size 

of patients, our findings point to an abnormal interplay between leukemic cells and their 

microenvironment and suggest that AML stroma may be a novel target to prevent the development 

of leukemia. 

In conclusion, according to the "bad seeds in bad soil" concept,
92

 our data provide new evidence for 

TIMP-1 as a ‘bad’ linker between inflammation and leukemogenesis. Our preclinical results may 

provide the biological background for further investigating TIMP-1 as a potential therapeutic target 

in the context of leukemic microenvironment. 
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MATERIALS AND METHODS 
 

Primary samples 

Peripheral blood (PB, n=9) and bone marrow (BM, n=9) samples were obtained from AML patients 

(n=18) at diagnosis after informed consent was signed. The percentage of AML blasts was always > 

90%. Patient characteristics are summarized in Supplementary Table 1. As control samples, buffy-

coats from blood transfusion processing and BM samples from patients with lymphomas, 

undergoing staging, with no sign of BM involvement were used. Control samples were rendered 

anonymous and not referred to individuals. Mononuclear cells (MNCs) were separated by 

stratification on Lympholyte-H 1.077 g/cm
3
 gradient (Gibco-Invitrogen, Milan, Italy), followed by 

red blood cell lysis for 15 min at 4°C. Briefly, AML blasts were cultured in RPMI 1640 (Thermo 

Fisher Scientific,Waltham, MA), supplemented with 10% fetal calf serum (Thermo Fisher 

Scientific,Waltham, MA). Mesenchymal stromal cells (MSCs) were obtained from BM of healthy 

donors (n=2) or AML patients (n=3) as previously described.
182

 MSCs were cultered at a density of 

5,000 to 10,000 cell/cm
2
 in DMEM (Lonza, Veriers, Belgium) supplemented with 10% FBS. The 

isolated MSCs at passage 3 was evaluated by flow cytometric analysis for immunophenotype and 

were used for co-culture experiments (passage 3 to 5) after irradiation (10,000 Gy).  

 

Measurement of TIMP-1 levels 

Serum was obtained from PB and plasma from BM samples of AML patients at diagnosis and 

stored at -80°C. The concentration of TIMP-1 in the supernatants from primary AML cells co-

cultured with MSCs and the serum/plasma samples have been analysed by an ELISA assay (Boster 

Biological Technology Co., Pleasanton, CA) according to manufacturing instruction. 

 

Colony-forming unit (CFU) assays 

AML cells were cultured in methylcellulose medium (human StemMACS HSC-CFU lite w/ Epo, 

Miltenyi Biotech, Germany) at 1-5x10
5
cells/mL in 35-mm Petri dishes in the presence or absence of 

TIMP-1 (10-300 ng/mL, Thermo Scientific, Pierce Biotechnology, Rockford, IL, USA). Cell 

cultures were maintained at 37°C in a fully humidified atmosphere with 5% CO2 and after 14 days 
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CFU-Ls were scored. The experiments were performed in duplicates plates and a colony was 

considered to be an aggregate of 20 and more cells. 

Apoptosis assay 

AML cells were cultured in the presence of TIMP-1 (100 ng/mL) and the apoptotic rate was 

evaluated at different time points by AnnexinV/Propidium Iodide Staining (Annexin-V-FLUOS-

kit,Roche, Penzberg, Germany). Sample acquisition and analysis was performed on a BD Accuri C6 

flow cytometer (BD Biosciences). Where indicated, cells were cultured in the presence of 

LY294002 (PI3K inhibitor). Cell viability was also measured by CellTiter 96 Aqueous One 

Solution (Promega). AML cells were cultured in presence of TIMP-1 (100 ng/mL) for 24-48 hours 

and cell cycle distribution were evaluated at different time points. Treated cells were first 

permeabilized with NP-40 (15 min at RT) and then labelled with propidium iodide (PI)/RNAse 

staining kit (BD Bioscience) (15 min at RT, in the dark). The DNA content was assessed by BD 

Accuri
TM

C6 (BD Bioscience) and results were analyzed by FCS express 4 software. 

 

Cell sorting and flow cytometry 

Flow cytometry studies were performed as previously described.
104

 Leukemic blasts were labelled 

with an anti-CD63 antibody phycoerythrin (PE)-conjugated (eBioscience, San Diego, CA) and 

sorted on a FACS Aria (Becton Dickinson, BD Bioscience, San Jose, CA). 

Cells were acquired and sorted on a FACS Aria (Becton Dickinson, BD Bioscience). Sorting gates 

were carefully drawn in order to avoid any cross-contamination among the two populations. Purity 

checks by flow cytometry was performed on each isolated cell population and the mean purity was 

90% ± 5%. 

Phospho-Akt intracellular staining was performed as previously described.
104

 Leukemic blasts were 

treated with TIMP-1 (100 ng/ml) for 3.5-15 min at 37°C, 5% CO2. After fixation in 4% 

paraformaldehyde (PFA) in PBS/permeabilization, cells were washed with phosphate-buffered 

saline (PBS), 0.1% bovine serum albumin (BSA) and incubated with pAkt (Thr308) (C31E5E) 

Rabbit monoclonal antibody (PE-conjugate; Cell Signaling) for 30 min at room temperature (RT) in 

the dark. Data were analyzed using FCS express 4 Flow Cytometry analysis software (De Novo 

Software, Glendale, CA, USA). 
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For intracellular analysis of p21 protein, leukemic blasts were treated with TIMP-1 (100 ng/ml) for 

24 hours at 37°C, 5% CO2. After fixation in 4% PFA, 0.1% Saponin was used to permeabilize the 

cells.  As above cells were incubated with p21 antibody or negative control antibody and analysed 

by flow cytometry. 

Where indicated, cells were cultured in the presence of 20μM PI3K inhibitor (LY294002) (Sigma-

Aldrich,Saint Louis, MO, USA) or 5μM CXCR4 antagonist (AMD3465) for 30 minutes (Abcam, 

Cambridge, UK), followed by exposure to TIMP-1 (100 ng/ml). In selected experiments, cells were 

cultured in the presence of anti-TIMP1 antibody (5µg/ml) (ab77847, Abcam, Cambridge, UK). 

Negative controls were isotype-matched irrelevant MoAbs from BD Pharmingen or eBioscience 

and were used for setting limits of nonspecific immunoglobulin cell binding. Specifically, the 

following MoAbs were used: APC or PE Mouse IgG1, κ Isotype Control (Clone MOPC-21) and 

PE-Cyanine7 or FITC IgG1, k Isotype Control (Clone P3.6.2.8.1). 

In order to normalize our data for p21 and pAkt staining, we calculated the normalized MFI (nMFI), 

as MFI of the stained sample/MFI of the negative control sample. 

 

CFSE labelling and analysis 

Leukemic proliferation was monitored by flow cytometry, monitoring Green fluorochrome carboxyl 

fluorescein diacetate succinimidyl ester (CFSE, Molecular Probes Europe, Leiden). AML cells were 

labelled with CFSE (5µM) for 4 min at RT in PBS, 0.1% BSA, followed by the addition of ice-cold 

RPMI with 10% FBS to prevent further dye uptake. Cells were washed 3 times in ice-cold medium 

and maintained in culture for 5 days in RPMI with 10% FBS, with or without TIMP-1 (100 ng/ml) 

supplemented with growth factors (GF): stem cell factor (SCF; 50 ng/mL, Amgen, Thousand Oaks, 

CA), interleukin (IL)-3 (50 ng/mL, Miltenyi Biotech, BO, Italy), granulocyte macrophage colony-

stimulating factor (GM-CSF; 10 ng/ml, Peprotech, London, UK). Data were analyzed by FCS 

express 4 Flow Cytometry analysis software. 

 

Migration assay 

Migration of leukemic blasts was assayed towards a CXCL12 gradient (100 ng/mL, Meridian Life 

Science,Memphis, TN) in trans-well chambers (diameter 6.5 mm, pore size 8 µm; Costar; Corning, 
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New York, USA). Briefly, 50 µl of RPMI 1640 plus 10% FBS containing 0,5x10
5
 cells pre-

incubated or not with TIMP-1 were added to the upper chamber and 150 µl of medium ± CXCL12 

were added to the bottom chamber. After overnight incubation at 37°C in 5% humidified CO2 

atmosphere, inserts (upper chambers) were removed and transmigrated cells were counted by 

Trypan Blue exclusion test in a Neubauer chamber. The amount of migrated cells was expressed as 

a percentage of the input, applying the following formula: (number of cells recovered from the 

lower compartment/total number of cells loaded in the upper compartment) x 100%.  

 

Co-culture experiments 

AML cells were cultured with MSCs at ratio 1:10 in a direct cell-to-cell contact co-cultures. After 3 

days in presence or absence of TIMP-1 (100 ng/ml) the migratory behaviour of leukemic blasts was 

assessed by migration assay toward CXCL12 gradient. After 5 days with SCF (50 ng/mL), IL-3 (50 

ng/mL), GM-CSF (10 ng/ml) ± TIMP-1 proliferation was evaluated by flow cytometry, monitoring 

CFSE labelling. After separation, MSC monolayers were examined by microscopy to confirm that 

the monolayer was not damaged. To verify lack of significant contamination in collected AML 

cells, the expression of CD45 was measured. 

 

Western blot analysis 

AML cells were collected by centrifugation, washed with PBS 1% Phenylmethanesulfonyl fluoride 

PMSF (Sigma-Aldrich) and total protein extracts were separated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis, transferred onto nitrocellulose membrane (GE Healthcare, 

Buckinghamshire, UK), and then subjected to Western blotting. Membranes were saturated for 1 

hour at room temperature in blocking buffer (1X tris-buffered saline, 5 M NaCl, 20 mM Tris-HCl; 

pH 8.0, 0.1% Tween-20, 4% BSA) and then incubated overnight at 4°C with the specific primary 

antibodies: rabbit anti-pAkt Thr308 [1:3000] (18F.H11; Abcam) or p21 [1:1000] (#2947, Cell 

Signaling) in 4% BSA in TTBS (TBS 0,1% Tween-20) for 15–20 h at 4°C. Membranes were 

washed three times for 5 min in TTBS and secondary antibodies (donkey anti-rabbit HRP (sc-

2313), donkey anti-mouse HRP (sc-2314) [1:40000] (Santa Cruz Biotecnology) were added for 1h 

at room temperature, and then membrane-bound were washed three times for 5 min in TTBS as 

described previously. Signal intensities in single blots were measured by means of ChemiDoc-It 
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instrument equipped with a dedicated software (Launch VIsionWorksLS, Euroclone). Protein 

expression was quantified by band densitometric analysis using IMAGEJ 1.44p Launcher software 

(National Institutes of Health, Bethesda, MD, USA). 

 

RNA Extraction and Real-time polymerase chain reaction (Real Time PCR) analysis 

Total RNA was isolated from treated cells using RNAeasy Micro Plus Kit (Qiagen, MI, Italy). 

First-strand synthesis was performed with Improm2 (Promega,Madison, WI) and Real Time PCR 

was performed with Taqman probe sets (Applied Biosystems,Foster City, CA) on a ABI Prism 

7700 Sequence Detector for 40 cycles. Primer sequence used for HIF-1α or p21. A human internal 

control glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was included in every reaction for 

normalization and expression was measured for each assay relative to the GAPDH internal standard 

(ΔCt). The fold change was calculated from the formula 2
ΔΔCt

. 

 

Statistical analysis 

The results are expressed as the mean ± SEM. Differences between groups were compared by using 

either a Student’s t-test or ANOVA (GraphPad software, La Jolla, CA). P values ≤0.05 were 

considered statistically significant. 
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SUPPLEMENTARY FIGURES 

 

 

 

 

 

Supplementary Figure S1: 

Effects of TIMP-1 on CFU-GM/BFU-E growth from AML-derived cells. 

Circulating leukemic blasts were isolated from AML patients and cultured in semisolid medium in the presence of 

TIMP-1. After 14 days, the total CFU-L output was assessed as above described. A) The CFU-GM growth of the AML-

derived leukemic cells was significantly stimulated by TIMP-1 (100 ng/ml, **p ≤ 0.01) (n=12). The mean number of 

CFU-GM colonies in untreated (0 ng/ml) and treated (100 ng/ml) AML samples was 17.5 ± 5.5 vs 28 ± 9.6, 

respectively. B) The growth of BFU-E showed the same pattern displayed by CFU-GM but not significantly (n=5). The 

mean number of BFU-E colonies in untreated (0 ng/ml) and treated (100 ng/ml) AML samples was 7.4 ± 4.49 vs 11 ± 

4.7, respectively. The results are expressed as growth fold change versus untreated control samples. 
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Supplementary Figure S2: 

Effects of TIMP-1 on survival in 14 AML patients 

AML cells from 14 patients were in vitro treated for 2 days with TIMP-1 and the percentage of cell viability was 

assessed after AnnexinV/PI staining, as described in methods. For each patient the percentage of apoptotic cells was 

reported in the absence (black columns) or in presence of TIMP-1 (grey columns). 

 

Supplementary Figure S3: 

Western blot analysis and absolute quantification of pAkt in AML cells after TIMP-1 treatment. 

Representative Western-blot bands of leukemic blasts from two AML patients. Western-blot bands for pAkt (first lane) 

in AML cells untreated (left band, control) and TIMP-1 treated (right band, TIMP-1) for patient #13 (A) and patient 

#18 (B). Graphic representation of quantification for pAkt expression and the relative β-actin (data shown below). 

 

 

 

 

 

Supplemetnary Figure S4: 

TIMP-1 increased the expression of HIF-1αat mRNA level 

After 24 hours, total RNA was extracted and the correspondent levels HIF-1α was assessed by Real-Time PCR. Results 

was expressed as fold-change taking the value of untreated cells as 1 (*p ≤ 0.05; n=5).  
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 Results III 
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LEUKEMIC STEM CELLS CO-OPT NORMAL BONE MARROW NICHES 

AS A SOURCE OF ENERGY AND ANTIOXIDANT DEFENCE  

INTRODUCTION 
 

Acute Myeloid Leukemia (AML) is a heterogeneous disease caused by various genetic lesions. In 

infants, translocations between the mixed lineage leukemia 1 gene (MLL1) and other genes occur in 

more than 70% AML cases, which exhibit a particularly aggressive phenotype. One of the most 

common MLL translocation affects the MLLT3/AF9 gene.
183,184

 AML patients often poorly respond 

to chemotherapy and conventional high-dose chemotherapy ultimately results in drug resistance. 

Studies have shown that a decrease in apoptosis may be an indicator of progression since certain 

defects in the normal apoptotic process could favor the accumulation of genetic abnormalities in 

AML. Particularly, a cell population capable of initiating leukemia, named Leukemia-initiating cells 

(LICs), are considered to be involved in disease initiation, progression, and relapse.
185-188

 Firstly 

described as a rare and quiescent population, LICs (often called Leukemic Stem cells, LSCs) 

therefore share some similarities with normal HSCs, but differ from them inmetabolic pathways.
189

 

LSCs have a high metabolic demand for their activity, since the disruption of either glycolysis or 

mitochondrial respiration impairs leukemogenesis.
36,190

 Notably, LSCs of human AML present low 

oxidative stress and utilize mitochondrial respiration to support metabolic homeostasis.
36

 Cancer 

cells adapt to metabolically adverse conditions in several tumors and this metabolic reprogramming 

is fundamental for cancer survival and drug-resistance. Intriguingly, cancer cells take advantage of 

environmental stress and metabolic changes. This ‘metabolic rewiring’ of tumor cells favors their 

survival by promoting energy metabolism and drug resistance.
144

 LICs maintain low oxidative 

stress compared to the bulk of the leukemia. Cummulative evidence suggests remodel and exploit 

the HSC microenvironment for survival.
17,35,191,192

 

Among different niche cells,bone marrow stromal stem/progenitor cells (BMSCs) have been 

recognized as important HSC supportive cells.
193

 BMSCs cultured traditionally as adherent cells 

can support ex vivo expansion of hematopoietic progenitors but cannot preserve/expand HSCs.
194

 A 

subset of BMSCs identified by the expression of the intermediate filament protein nestin have HSC 

niche functions. Moreover, Nes
+ 

BMSCs are highly enriched in fibroblastic colony-forming units in 

culture (CFU-F) and exhibit increased capacity for self-renewal and multilineage differentiation, 

compared with traditional plastic-adherent BMSCs. Nes
+
 BMSCs localize near HSCs and support 

HSC maintenance and homing in the BM.
195
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Nes
+
 BMSCs can be propagated in vitro as non-adherent ‘mesenspheres’, which can self-renew and 

expand in serial transplantations. When propagated under these conditions, human Nes
+
 BMSCs 

preserve better their primitive properties (compared with standard adherent culture), including their 

capacity for multilineage differentiation and their ability to support HSCs. Although the underlying 

mechanisms remain largely unclear, we hypothesize that this system might allow to study the 

interaction of BMSCs with LSCs ex vivo. The dynamic interplay between leukemic cells and 

stromal cells is regarded as a crucial aspect in AML progression.
56

 However, the contribution of the 

microenvironment to tumorigenesis has been best studied in solid tumors, whereas elucidating its 

role in leukaemogenesis is still in its infancy.  

 

ROS are mainly generated by mithocondria. Several works have demonstrated the alteration of 

antioxidant status as a distinct feature of  AML, and oxygen radical levels were significantly higher 

in malignant cells than in normal leukocytes.
196,197

 Altered intracellular and extracellular ROS may 

participate in AML. The antioxidant molecules eliminate ROS that otherwise damage cellular 

components such as DNA, proteins, and lipids. Surprisingly, leukemic cells maintain relatively high 

ROS levels, without displaying a detrimental output that would compromise their survival.
69

 

Reflecting their activated oxidative energetic metabolism, an increase of ROS level could increase 

the proliferation, differentiation, and maturation of HSCs.
198

 One proposed mechanism that allows 

normal HSCs to maintain low level of ROS is the preferential mitochondria transfer from HSCs to 

BMSCs. In leukemia,Moschoi et al.
199

 proposed a mitochondrial transfer between AML cells and 

BMScs through endocytic pathways. Strikingly, mitochondrial transfer is associated with increased 

oxidative phosphorylation andprotection/recovery from chemotherapy-induced DNA damage. As 

reported in other studies, HSCs containing more mitochondriaexhibit increased levels of oxygen 

consumption and ROS.However, ROS-mediated (geno)toxicity in HSCs is counterbalanced by 

higher levels of DNA repair and antioxidant pathway gene expression.
200

 

Non-adherent mesensphere cultures represent a useful platform to study the crosstalk between 

BMSCs and LSCs and highlight mitochondrial exchange under chemotherapeutic drug. 

The driving hypothesis of this study is that co-opting mechanisms of the BM microenironment 

promote AML resistance under microenvironmental stress. 

Regarding this, we designed a novel protocol to co-culture mesenspheres with leukemic blasts, in 

order to assess whether survival advantage through combined effects on ROS and metabolic 

reprogramming.  
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RESULTS 

 

Co-cultures with BM mesenspheres from wild-type (WT) mice promotes survival in MLL-AF9 

leukemic blasts 

BM mesenspheres from WT mice were grown and expanded under specific culture conditions, with 

chicken embryo extract (CEE, a culture supplement that stimulates stem cell self-renewal) and 

cytokine-rich medium.. The BM-derived cells were isolated from long bones or spines of WT mice. 

The spheres could be serially expanded under this culture conditions and generated more spheres 

over serial passages. In addition, the mesenspheres remained in suspension and morphologically 

identical over >2 months on Poly-HEMA coated plates. Although only a small number of primary 

mesenspheres could be obtained from murine long bones compared to spines, they could be 

propagated during multiple divisions at the same culture conditions with pronounced properties. 

Expanded mesensphere-forming cells maintained expression of CD105, CD146 and CD63, but did 

not express CD45, CD31 (data not shown).  

We investigated the effects of mesenspheres from WT mice on the survival of leukemic cells of 

doxycycline-inducible rtTA;MLL-AF9 mouse strain and we set up a novel cultures system. Firstly, 

to mimic a metabolic stress cellular condition, the mesenspheres (~50 aggregates spheres) were 

added to leukemic cells (40.000 cells) in medium lacking FBS. In particular, the percentage of 

apoptotic leukemic cells in mono-cultures was 77.15% ± 3.452 as compared to a significant 

decrease in co-cultures, 53.34% ± 3.415 (p<0.0001) (Figure 1A, left columns). Furthermore, the 

anti-apoptotic effects of the mesenspheres were stimulated with increasing co-culture times (data 

not shown).  

In addition, although it has previously been reported that MSCs support tumor development by 

increasing drug resistance,
149

 we tested the protection from chemotherapy-induced apoptosis by 

their interactions with mesenspheres in our co-cultures system (Figure 1A, right columns). Cell 

cultures were treated for 24 h with cytarabine (AraC), a chemotherapeutic agent used in AML 

therapy.
201

 As shown in Figure 1, the co-cultures with mesenspheres reduced the cytotoxicity of 

AraC in the leukemic cells (~20% less apoptosis than that observed in the AraC-treated leukemic 

cells cultured alone, p< 0.0002). 

These results suggest amesenspheres-driven microenvironmental protective effects by modulating 

metabolic stress and drug-response. 
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Figure 1 

WT mouse BM-mesenspheres effects on survival, ROS levels and lipid peroxidation of co-cultured MLL-AF9 mouse 

leukemic blasts.  

A, Leukemic blasts (200 x 10
3

 cells/ml) were cultured with WT mice BM-derived mesenspheres (~250/ml) and the 

apoptotic rate was determined after 24 h by flow-cytometry following staining with Annexin V and DAPI, as described 

in Materials and Methods section. Significant differences of leukemic blasts in co-cultures (stained with CD45, red and 

green columns) from the corresponding mono-cultures of leukemic blasts (black columns) with FBS deprivation (left 

panel, n=22; ****P < 0.0001) and AraC-treated groups (right panel, n=19; *** P < 0.001). Unpaired two-tailed t test. 

B, the above cultures described were also assessed by intracellular ROS production with DHR123 by flow-cytometry. 

Geometrical mean (G Mean) values of the fluorescence intensities normalized to the FBS deprivation- or Ara-induced 

ROS production from mono-cultures (leukemic blasts, black columns). Significant differences of leukemic blasts in co-
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cultures (stained with CD45, red and green columns) from the corresponding mono-cultures of leukemic blasts with 

FBS deprivation (left columns, n=11; *P < 0.05) or AraC-treated groups (right columns, n=15; *P < 0.05) with co-

cultures. Representative histograms showing the fluorescent intensities of mono-cultures (leukemic blasts, grey) and co-

cultures (red or green) with FBS deprivation (left panel) or Ara-induced condition (right panel). Unpaired two-tailed t 

test.  

C, the above cultures described were also subjected to detection of lipid peroxidation using C(11)-BODIPY(581/591) 

by flow-cytometry. Geometrical mean (G mean) values of the fluorescence intensities normalized to the FBS 

deprivation- or Ara-induced lipid peroxidation. Significant differences of leukemic blasts in co-cultures (stained with 

CD45, red and green columns) from the corresponding mono-cultures of leukemic blasts with FBS deprivation (left 

columns, n=6; ****P < 0.0001) and AraC-treated groups (right columns, n=23; ****P < 0.0001) with co-cultures. 

Representative histograms showing the fluorescent intensities of lipid peroxidation of mono-cultures (leukemic blasts, 

grey) and co-cultures (red or green), on the left panel with FBS deprivation and on the right with AraC-treated 

condition. Unpaired two-tailed t test.  

Error bars represent mean values ± SEM. 

 

BM WT mice mesenspheres inhibit ROS production in MLL-AF9 leukemic blasts   

Because leukemic phenotype was found to correlate with ROS-dependent signaling and elevated 

ROS levels,
196

 we further estimated how mesenspheres influenced the levels of ROS and 

mitochondrial oxidants on leukemic cells. DHR123, uncharged and nonfluorescent probe used as 

ROS indicator, is known to accumulate in mitochondria. Moreover, DHR123 is generated by 

oxidation of rhodamine123 (RH123), which displays an intense green fluorescence. We found a 

down-regulation of ROS levels in leukemic blasts after 24 hours co-cultures in FBS-deprivated 

medium. Indeed, decreasing amounts of DHR123 fluorescence were detected in co-cultured 

leukemic cells after FBS-deprivation (p<0.0335) (Figure 1B, left columns and related overlay of 

DHR123-FITC histograms). 

Because AraC enhanced the ROS production,
202

 we treated leukemic blasts with AraC to examine 

AraC-induced ROS effects. Our data indicated that in the presence of mesenspheres leukemic blasts 

showed a reduced amount of RH123 fluorescence expression in comparison with mono-cultured 

leukemic blasts (p<0.0228) (Figure 1B, right columns). 

Overall, these findings demonstrate that mesenspheres reduce oxidative stress of leukemic blasts in 

the presence of AraC, supporting the idea that stromal cells-mediated chemoprotection of leukemic 

blasts may depend on the mitochondrial ROS levels modulation. 
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BM Mesenpsheres from WT mice down-regulated ROS-mediated lipid peroxidation tested by 

BODIPY C-11 
591/581

 

Excessive ROS levels can cause detrimental oxidative stress that results in cell death and lipid 

peroxidation.
203

 Mitochondrial ROS production in living cells can be tested by assessing the extent 

of lipid peroxidation as an indirect means. To figure out these effects in our novel co-cultures 

experiments, we measured the oxidative sensitivity of C11-BODIPY
581/591

 of leukemic blasts. 

Specifically, when cells were labeled with C11-BODIPY
581/591

 reagent and upon oxidation, the 

fluorescence of this fluorophore shifts from red to green, indicating the increasing lipid 

peroxidation.As reflected by the increase in green fluorescence of the C11-BODIPY dye, lipid 

peroxidation of mono-cultured leukemic blasts significantly (p<0.0001) increased as compared to 

co-cultures in FBS-deprivated medium (Figure 1C and related overlay of C11-BODIPY
581/591

-FITC 

histograms). Co-cultures of leukemic blasts with mesenspheres in the absence of FBS was 

associated with significant decreased lipid peroxidation (fold-change with 0.56 ± 0.03 in co-

cultures, ns). 

Concomitantly, AraC-treated leukemic cells showed a significant reduction of lipid peroxidation 

after co-cultures with mesenspheres (fold-change 0.53 ± 0.2; p<0.0001) (Figure 1 C, right columns 

and related overlay histograms). 
 

Taken together, mesenspheres reduce lipid peroxidation both in FSB-deprivated and AraC-added 

medium, providing further evidences on the protective role of mesenspheres against induction of 

oxidative stress. 

 

Effects of conditioned medium (CM) from mono-cultures and co-cultures on MLL-AF9 leukemic 

blasts 

Because direct contact has a positive effect on leukemic cell survival and reduce ROS/lipid 

peroxidation levels, it could be interesting to investigate also the role of CM. We used CM from 

mono-cultured (leukemic blasts or mesenspheres) and co-cultured cells in the presence or the 

absence of FBS and AraC. Apoptosis, ROS levels and lipid peroxidation were tested in CM-treated 

leukemic blasts. 

Only when we used CM from FBS-deprived co-culture experiments, we found an improvement in 

survival of leukemic blasts (p<0.05) (Figure 2A). Interestingly, the CM from mesenspheres alone 

was sufficient to support the survival of leukemic blasts, in the absence of FBS. On the contrary, the 

CM from mono/cocultures with AraC-treatment was not able to support leukemic blasts survival. 

Regarding ROS levels (Figure 2B) and lipid peroxidation analysis (Figure 2C), CM from co-
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cultures were able to sustain a decrease in ROS levels. Similar resultswere observed when we tested 

the lipid peroxidation in the same conditions with CM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

Influences of CM or transwell systems on survival, lipid peroxidation and ROS levels of MLL-AF9 mouse leukemic 

blasts co-cultured with WT mouse BM-mesesnpheres. 

Leukemic blasts (200 x 10
3

 cells/ml) and mesenspheres (~250/ml)  were grown in serum-free or AraC-induced medium 

either in isolation or in co-cultures. After 24 h the CM collected from each conditions (from leukemic blasts alone, from 

spheres alone and co-cultures) was used to seed new leukemic blasts (200 x 10
3

 cells/ml) as described in Materials and 

Methods section. 

A, the percentage of apoptotic leukemic blasts exposed to CM were determined after 24 h by flow-cytometry following 

staining with Annexin V and DAPI in CD45 positive cells. Significant differences between the corresponding leukemic 

blasts grown in CM from mono-cultures of leukemic blasts and leukemic blasts grown in CM from spheres alone 

(***P < 0.001, grey columns) or in CM from co-cultures (**P < 0.01, red columns),  in the conditions without FBS 

(left columns, n=13). No significant difference in the AraC-induced CM conditions (right columns, n=15 for each 

group). One-way ANOVA followed by post-hoc  multiple comparison. 
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B, the level of ROS production using DHR123 by flow-cytometry. Geometrical mean values of the fluorescence 

intensities normalized to the FBS deprivation- or Ara-induced ROS production from mono-cultures (leukemic blasts) 

with CM from mono-cultures of leukemic blasts. Any significant differences from the corresponding mono-cultures of 

leukemic blasts with FBS-deprivated CM (left panel, n=6) and AraC-treated CM (right panel, n=12). One-way ANOVA 

followed by post-hoc  multiple comparison. 

C, the level of lipid peroxidation using C(11)-BODIPY(581/591) in the above cultures described with CM. Geometrical 

mean values of the fluorescence intensities normalized to the FBS deprivation- or Ara-induced lipid peroxidation from 

mono-cultures (leukemic blasts) CM. Any significant differences from the corresponding mono-cultures of leukemic 

blasts with FBS deprivated CM (left panel, n=5) and AraC-treated CM (right panel, n=6). One-way ANOVA followed 

by post-hoc  multiple comparison. 

WT mice mesenspheres (in the upper chamber) and leukemic blasts (in the lower chamber) were cultured for 24 h in 

96-well Transwell. 

D, Detection of apoptosis with Annexin V/DAPI by flow cytometry of mono-cultures (black columns) and co-cultures 

(red and green) using 96-well Transwell. Significant differences between the corresponding mono-cultures of leukemic 

blasts and co-cultures with FBS deprivation (left panel, n=6;**P < 0.01) . Any significant differences between mono-

cultures and co-cultures in Transwell experiments with Arac-induced conditions (right panel, n=10). Unpaired two-

tailed t test. E, level of ROS production using DHR123 by flow cytometry of mono-cultures and co-cultures in 96-well 

Transwell. Significant differences from the corresponding mono-cultures of leukemic blasts with FBS deprivation 

compared to co-cultures (left panel, n=4; *P < 0.05). Any significant difference in AraC-treated groups with Transwell 

experiments (right panel, n=6). Unpaired two-tailed t test.  

F, lipid peroxidation production using C(11)-BODIPY(581/591)by flow cytometry of mono-cultures (black column) and 

co-cultures (red and green columns) in 96-well Transwell. Any significant difference in FBS deprivation (left panel, 

n=4) and AraC-treated groups with Transwell experiments (right panel, n=4). Unpaired two-tailed t test.   

 

 

Cell-cell contact is required for AraC-mediated protective effects of mesenspheres on leukemic 

blasts  

To confirm the effects of co-cultures, we repeated the same experiments in transwell conditions, 

allowing exchange of soluble factors without any physical contact between two cell populations. 

Under this condition in the absence of FBS, we found a significant reduction of apoptotic leukemic 

cells in the presence of mesenspheres (p<0.01). 

As shown in Figure 2D in the presence of AraC, separation of leukemic blasts and mesenspheres 

did not allow protection of leukemic blasts from mesenpsheres, which points out the requirement of 

direct cell-to-cell interactions. 

Moreover, we did not find any protective role from mesenspheres on lipid peroxidation and ROS 

levels of leukemic blasts, in both conditions, FBS-deprivated and AraC-treated (Figure 2D, E, F). 
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Altogether we demonstrated that the effects of mesenspheres could be contact-dependent, excluding 

the involvement of paracrine signaling. 

 

 

Mesenpheres promote the increase of intracellular GSH in leukemic blasts tested with 

Mitotracker and mBCI  

The GSH/GSSG pool is considered a major indicator of the cellular redox status and oxidative 

stress.
204

 Accordingly, we checked how GSH levels were altered in the presence of mesenspheres or 

after drug treatment. We therefore measured reduced  GSH in leukemic blasts with the membrane 

indicator monochlorobimane (mBCI) to support the hypothesis that mesenspheres counterbalance 

the oxidative stress. As shown in the Figure 3, we reported a profile of reduced GSH (expressed as 

histograms) of leukemic blasts under different conditions. In particular, we found a significant 

(p<0.001) increase of GSH level in leukemic blasts co-cultured with mesenspheres (mean of mono-

cultures 49.95 ± 4.3 vs mean of co-cultured leukemic blasts of 75.33 ± 3.34). 

This effect was maintained after treatment with AraC. After 24 hrs of co-cultures with AraC, we 

observed a significant increase of GSH in leukemic blasts (81.5 ± 8.6),compared with mono-

cultures (mean of 47.08 ± 1.289; p<0.001)  

Mitochondria are not able to synthesize GSH but they transport and accumulate GSH.
204 

We co-stained the leukemic cells with Mitotracker Red CMXRos and mBCI to observe possible 

differences in the proportion of mitochondria with GSH. In our representative dot plot, we showed a 

reduction of mitochondria stained also with mBCI in co-cultures, suggesting a presence of anti-

oxidant GSH after co-cultures. After AraC treatment, the mean percentage of mitochondria 

unstained for mBCI was significantly reduced in leukemic blasts co-cultured (4.3% ± 0.62) as 

compared to an incerease of unstained mitochondria for mBCI in mono-cultures (16.14% ± 4.68; 

p<0.05). 

Altogether these results demonstrated a GSH increase in leukemic blasts in the presence of 

mesenspheres, confirming the anti-oxidant rescue provided by mesenspheres.  
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Figure 3 

The presence of mesenspheres in cultures with MLL-AF9 leukemic blasts increases intracellular GSH.  

Leukemic blasts and mesenspheres were co-cultured in the absence or presence of AraC (1µM) and stained with mBCI. 

GSH levels were monitored by flow cytometry after 24 hrs. A, Representative histograms of GSH levels and G mean of 

each conditions: leukemic blasts in mono-cultures (black) or co-cultures (red) and in mono-cultures (grey) and co-

cultures (green) after AraC treatment, respectively. The data shown are representative of six independent experiments.  

B, the fluorescence of mBCI expressed as G mean in mono-cultures (black columns) and co-cultures (green) in the 

absence or presence of AraC. Significant differences between mono-cultures and co-cultures in both conditions ( ** P 

<0.01). Unpaired two-tailed t test. 

C,Leukemic blasts and mesenspheres were co-cultured in the absence or presence of AraC (1µM) and stained with 

mBCI and Mitotracker CMXRos red. The dot plots shown are representative of four independent experiments. Leukemic 
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blasts (mono-cultures or in co-cultures) were treated with AraC and their depletion of GSH evaluated in combination 

with mitochondria staining (n=4).  

 

Effects of AraC treatments in vivo using Prdx6 KO mice 

We then investigated the RSL3 molecule, a GPX4 enzyme inhibitor that metabolizes lipid peroxides 

(including arachidonic acid metabolites) and increases lipid peroxidation. 

Antioxidant Prdx6 protein rescues cells from oxidative stress.
205

 To highlight a possible 

involvement of antioxidant molecules in leukaemia drug-resistance mechanism in vivo, we set up 

experiments using a Prdx6 KO mouse model. 

We therefore injected CD45.1 leukemic blasts from MLL-AF9 mice into sub lethally irradiated WT 

mice (n=5) and Prdx6 KO (n=5) recipients and, after 13 days,we treated both groups with AraC (5 

injections), as summarized by Figure 4A. Around 2 weeks after 5 injections of AraC, mice were 

sacrificed and we isolated new spheres from femur and tibia andBM cells were characterized for 

apoptosis, ROS and lipid peroxidation changes by flow cytometry analysis.  

First, we investigated the in vivo AraC effects by measuring the blood cell counts, size of liver and 

spleen of WT and KO mice. When blood count was analyzed, we did not find any significant 

differences between WT and KO mice with the exception of a significant reduction (p<0.05) in 

WBC counts between Prdx6 KO mice (193±20.74 x 10
9
) and control mice(307.5± 7.5 x 10

9
) 

(Figure 4B). 

Then, we compared spleen and liver weight of WT and KO mice and we found a significant 

increase (p<0.0179) in spleen size in KO mice (mean of weight: 0.64 ± 0.032 g) as compared to the 

WT counterparts (mean of 0.449±0.01462 g); no differences were observed in liver size (Figure 

4C-D). 

To test whether Prdx6 deficiency could alter the BM cellularity, the absolute numbers of BM cells 

were compared between WT and KO mice. The absolute number of total BM cells was not 

significantly different between WT and KO mice (mean of 21.25±6.25 x 10
6
 in WT vs 13.33±0.2 x 

10
6
 in KO mice) (data not shown). Moreover, we demonstrated that the percentage of leukemic 

cells (expressing CD45.1, Lineage-negative and c-Kit-positive) did not differ between WT 

(68.36%±21) and KO mice(77.87%±11.27).  

As shown in Figure 4E-F-G, we tested the apoptosis, ROS levels and lipid peroxidation in the 

leukemic cells of each mouseto study whether some antioxidant capacity is mediated Prdx6. For 

this set of experiments, BM cells were stained with anti-CD45.1 and -CD45.2 antibodies to 

discriminate leukemic cells (CD45.1) from normal BM cells (CD45.2) (as gated in the lineage-

negative and c-Kit positive cells fraction). As regards apoptotic rate, the mean percentage of live 
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cells (c-kit+/Lin-) in leukemic fraction was 60.42%±25 in WT mice vs 92.09%± 0.7191 in Prdx6 

KO mice (not significant). Regarding ROS staining, we found an increased, but not significant, 

geometric mean value of ROS levels in Prdx6-KO (Gmean of 2.727)as compared to control mice 

(Gmean of 1.74±0.3). Similarly, the geometric mean value of lipid peroxidation showed a slight 

increase in Prdx6-KO mice (mean of 260±20.6) as compared to control mice (201.8±3.175). 

In summary, we found that, in vivo, the Prdx6 pathway does not seem to be critically involved in 

the stromal protection of leukemic blasts from ARA-C toxicity. 
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Figure 4 

Differences in WT and Prdx6 KO mice and protective role of mesenspheres from Prdx6 KO mice in combination 

with Gpx4 inhibition.  

A, Schematic of AraC treaments in a Prdx6 KO model. Lethally irradiated Prdx6 KO or control mice were transplanted 

with rtTA;MLL-AF9;CD45.1
+

 BM (10
6

 cells each). Doxycycline induction began 2 weeks post-transplant; AraC was 

initiated 2 weeks post-transplant and continued for 5 injections and sacrifice after 2 weeks. 
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B, Number of WBC total cells, and spleen weight (C) and liver (D) at sacrifice.  Lineage-negative cells, lin- c-kit+ cells 

in the leukemic fraction of the bone marrow of mice stained with Annexin V and DAPI (E) and ROS and lipid 

peroxidation using DHR123 (F) and C(11)-BODIPY(581/591) (G), respectively, by flow-cytometry. Numbers of WT 

and Prdx6 KO cells are represented separately. Unpaired two-tailed t-test. 

 

 

Mesenspheres from Prdx6-KO in combination with Gpx4 inhibitor did not lose their protective 

effects on leukemic blasts 

To study in vitro the potential effects of inhibition of anti-oxidants molecules on our co-cultures 

system, we isolated mesenspheres from WT or Prdx6-KO mice from the above described 

experiments.  

Firstly, we studied the potential effects of mesenspheres from KO mice in co-cultures with 

leukemic blasts. As previously reported, we set up new co-cultures experiments using WT or KO 

mesenspheres and leukemic blasts. Regarding the analysis of apoptosis in the presence of AraC, as 

expected, we found a significant (p<0.05) reduction in the percentage of apoptotic cells in leukemic 

blasts after co-cultures with WT spheres (percentage of apoptotic cells 56.48% ±6.569 in mono-

cultures vs 19.41% ±5.835 in co-cultures with WT spheres) and a slight but not significant 

reduction of the mean apoptotic value(32.39 ± 15.5),when leukemic blasts were cultured with Prdx6 

KO mice (Figure 4H).  
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Figure 4 

Potential of isolated mesenspheres by WT or Prdx6 KO mice in co-cultures with MLL-AF9 leukemic blasts after 

AraC treaments (first left group for each graph), RSL3 (Gpx4 inhibitor, middle group) and combination of 

AraC/RSL3 (right group).  

H, Leukemic blasts (200 x 10
3
 cells/ml) were cultured with WT or Prdx6 KO mice BM-derived mesenspheres (~250/ml) 

and the apoptotic rate was determined after 24 h by flow-cytometry following staining with Annexin V and DAPI, as 

described in Materials and Methods section. Significant differences of leukemic blasts in co-cultures with WT 

mesenspheres (red column) from the corresponding mono-cultures of leukemic blasts (black columns) in the presence of 

AraC(left panel, n=3; *P < 0.05) and AraC in combination with RSL3 (right panel, n=3; ** P < 0.01). Significant 

difference between leukemic blasts in the presence of KO mesenspheres and mono-cultures in the presence of 

AraC/RSL3 (n=3, *P < 0.05). One-way ANOVA followed by post-hoc  multiple comparison. 

I, the above cultures described were also assessed by intracellular ROS production with DHR123 by flow-cytometry. 

Geometrical mean (G Mean) values of the fluorescence intensities normalized to Ara-induced ROS production from 

mono-cultures (leukemic blasts, black columns). Significant differences of leukemic blasts in co-cultures with WT 

spheres and KO mesenspheres from the corresponding mono-cultures of leukemic blasts in the presence of AraC(red 

and green columns, respectively; n=3; *P <0.05) and in the presence of AraC/Gpx4 (red and green columns, 

respectively; n=3; *P <0.05). One-way ANOVA followed by post-hoc  multiple comparison. 

L, the above cultures described were also subjected to detection of lipid peroxidation using C(11)-BODIPY(581/591) by 

flow-cytometry. Geometrical mean (G mean) values of the fluorescence intensities normalized Ara-induced lipid 

peroxidation. Significant differences between leukemic blasts and leukemic blasts co-cultured with WT spheres in the 

presence of AraC (p< 0.05), RSL3 (p< 0.001) and RSL£/AraC (p<0.001). Significant difference also between leukemic 

blasts and leukemic blasts co-cultured with KO mesenspheres with AraC (p< 0.05), RSL3 (p< 0.0001) and RSL3/AraC 

(p<0.0001).   

Error bars represent mean values ± SEM. 

 

As reported in our previous experiments, using a combination of inhibitors to block the protective 

effects of mesenspheres on leukemic blasts in co-cultures, we added RSL3 (GPX4 inhibitor) to 

Prdx6 KO spheres.  

The survival of leukemic blasts in presence of WT or KO mesenspheres was not affected by RSL3 

inhibitor alone. Surprisingly, when we added AraC in the presence of Gpx4 inhibiton, we found that 

the percentage of apoptotic leukemic blasts was 81.59% ±11.3 and strongly decreased in the co-

cultures with WT (32.39% ±15.5; p<0.0085) and KO(35.92% ±18.09; p<0.013) spheres.  

We also tested the ROS and lipid peroxidation changes and we found similar results. No differences 

were observed between KO and WT spheres but a strong protective effect on leukemic blasts was 

shown in the presence of AraC and RSL3 (Figure 4I-L). Specifically, when we treated cells with 

RSL3 alone or RSL3 with AraC, we found a significant reduction of lipid peroxidation in the 

presence of mesenspheres, both from WT (p<0.0001) or Prdx6 KO mice (p<0.00001) (Figure 4L). 
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In summary, these experiments demonstrate that the lack of Prdx6 only in the spheres, together with 

the inhibition of GPX4, is not sufficient to block the protective role of mesenspheres.  

 

Effects of mesenspheres on MLL-AF9 leukemic cell metabolism and functional properties 

We next investigated the effect of mesenspheres on leukemic cell metabolic activity. After mono-

cultures and co-cultures for 24 h, the leukemic cells in different conditions were collected, counted 

and transferred to the SeaHorse plates for Extracellular Flux analysis.  

The seeding density and concentrations of the injection compounds were optimized for our co-

cultures and evaluated in measurements of oxygen consumption rates (respiration) and proton 

production rates (medium acidification). Oxidative phosphorylation (OXPHOS) and glycolysis 

activities were measured 24 h after the co-cultures and all activities were normalized to the number 

of leukemic cells present in the wells, as counted immediately before and after the SeaHorse 

measures. 
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Figure 5 

Agilent Seahorse XF Cell Mito Stress Test Profile for mitochondrial respiration in leukemic blasts, mouse BM 

mesenspheres and leukemic blasts co-cultured. 

Data from Mito Stress Test demonstrated absolute and baseline values of OCR (A, B and C) and ECAR (D). Leukemic 

blasts (200 x 10
3
 cells/ml) and WT mice BM-derived mesenspheres (~250/ml) were cultured alone or in co-cultures for 

24 h and then seeded on a Cell-Tak-treated XF96 cell culture plate as described in Materials and Methods section. 

A, Respiration (OCR) is measured under basal conditions and in response to the indicated mitochondrial inhibitors in 

MLL-AF9 mouse leukemic blasts (grey and black lines) and WT mouse BM mesenspheres (red lines) or in co-cultures 

(green lines), also in the presence of AraC. Changes after oligomycin (I.), FCCP (II.) and Antimycin A/Rotenone (III.) 

application are indicative for mitochondrial respiration. Individual parameters for basal respiration and spare 

respiratory capacity for each conditions. About basal respiration (B), significant differences from the corresponding 

mono-cultures of leukemic blasts or mesenspheres to leukamic blasts co-cultured, in the presence of AraC (n = 6 

independent experiments; ****P < 0.0001). About spare respiratory capacity (C), significant differences from the 

corresponding mono-cultures of leukemic blasts or mesenspheres to leukamic blasts co-cultured, in absence of AraC 

(n = 6;**P < 0.01 and * P< 0.05, respectively) or between mono-cultures (leukemic blasts) vs leukemic co-cultured in 

the presence of AraC (**P < 0.01).  One-way ANOVA followed by post-hoc multiple comparison. 

D, ECAR is measured under basal conditions and in response to the indicated mitochondrial inhibitors, considered as 

the result of anaerobic glycolysis.  

Error bars represent mean values ± SEM. 

  

 

For OXPHOS, the oxygen consumption rate (OCR) was measured under basal conditions and in 

response to mitochondrial inhibitors. As shown in Figure 5A-B, the basal OCR values of the 

leukemic cells (OCR mean value of 10,03 ± 2.144) were increased in co-cultures(OCR mean value 

of 26,63 ± 3.924). Moreover, when we tested the basal respiration after AraC-treatment, we found a 

significantly (p<0.0001) enhance for the leukemic blasts in co-culture(mean value of 56,09 ± 10.25 

in co-cultures vs 8,577 ± 9.19 in mono-cultures) (Figure 5B). This indicated that the mesenspheres 

could modify the metabolic activity of the leukemic cells by increasing basal respiration under 

AraC treatment.  

Consequently, we evaluated the spare reserve capacity, that reflects the difference between basal 

and maximal respiratory rate. Consistent with our previous results, the spare reserve capacity were 

increased in co-cultures as compared to mono-cultures (OCR mean 164,8 ± 25.58 and 50,34± 15.68 

for co-cultures and leukemic blasts,respectively).   

We next sought the extracellular acidification rate (ECAR), indicative of the glycolytic activity. 

Leukemic blasts displayed a significantly higher compensatory increase of the aerobic glycolysis 

for meeting their energetic demands after using mitochondrial inhibitory (ECAR value after 

oligomycin and FCCP respectively of 46.49 ± 17.2 and 69.64 ± 24.79 in leukemic blasts vs 55.91 ± 
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5.242 and 92.98± 6.804 in co-culturedleukemic cells) (Figure 5C). Of note, when we considered 

AraC-treated cells, leukemic cells in co-cultures had a significant increase with a mean ECAR value 

of 75±10.13 and 107.6 ± 19.46 after oligomycin and FCCP as compared with 28±4.113and 

33.87±6.65 in mono-cultures. The glycolytic reserve were increased in leukemic blasts in co-

cultures conditions, above all in the presence of AraC. 

We also checked the effect of CM from mesenspheres, leukemic blasts or co-cultures on metabolic 

activity. Interestingly, although both the basal respiration and spare reserve capacity of leukemic 

cells were increased upon normal co-cultures, these effects were not observed for CM experiments, 

suggesting the importance of direct contact for the leukemic cells (Figure 6A, B, C). 
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Figure 6. 

Agilent Seahorse XF Cell Mito Stress Test Profile for mitochondrial respiration in leukemic blasts, mouse BM 

mesenspheres and co-cultures. 

Data from Mito Stress Test demonstrated absolute and baseline values of OCR (A, B and C) and ECAR (D). Leukemic 

blasts (200 x 10
3
 cells/ml) and WT mice BM-derived mesenspheres (~250/ml) were cultured alone or in co-cultures for 

24 h and then CM collected to seed new leukemic blasts (with CM from previous cultures) for 24 hrs. After that cells, 

counted and seeded on a Cell-Tak-treated XF96 cell culture plate as described in Materials and Methods section. 

A, Respiration (OCR) is measured under basal conditions and in response to the indicated mitochondrial inhibitors in 

MLL-AF9 mouse leukemic blasts (grey and black lines) and WT mouse BM mesenspheres (green lines) or in co-cultures 

(blue lines), also in the presence of AraC. Changes after oligomycin (I.), FCCP (II.) and Antimycin A/Rotenone (III.) 

application are indicative for mitochondrial respiration. B, C  Individual parameters for basal respiration and spare 

respiratory capacity for each conditions. No significant differences between the corresponding mono-cultures of 

leukemic blasts or mesenspheres to leukemic blasts co-cultured, also in the presence of AraC (n = 4 independent 

experiments. D, ECAR is measured under basal conditions and in response to the indicated mitochondrial inhibitors, 

considered as the result of anaerobic glycolysis. One-way ANOVA followed by post-hoc multiple comparison.Error 

bars represent mean values ± SEM. 

 

Functional mitochondria from BM mesenspheres enter into MLL-AF9 leukemic blasts  

Mitochondria serves a major source and 'a sink' of ROS cells that displayed a crucial role in cell 

metabolism and signaling of leukemic cells.
206

 We found different amounts of intracellular ROS in 

leukemic blasts in co-cultures with mesenspheres. Therefore, we hypothesized that the opposite 

metabolic state and ROS levels of leukemic blasts, in mono-cultures vs co-cultures, was due to 

mitochondrial transfer between the two populations. We performed co-cultures experiments after 

staining of leukemic blasts and mesenspheres with Miotracker dye. To demonstrate whether 

mitochondria were involved in this transfer, mesenspheres were stained with a MitoTracker 

CMXRos Red and incubated with unlabeled or Mitotracker Green FM-stained leukemic cells for 24 

hours before analysis (Figure 7).  

To set-up our experimentsand argue against passive dye transfer, we washed stained cells several 

times and left in cultures alone before co-cultures,so that excess MitoTracker dye could be washed 

out. Moreover, we repeated experiments with transwell to exclude any possible leakage of the 

Mitotracker dye in the medium. 

As shown in the Figure 7A-D, the Mitotracker labeled mitochondria transfer was checked by flow 

cytometry to quantify the efficiency of the mitochondria transfer. We found a percentage of 

leukemic blasts (around 47.15% ±8.046) positive for MitotrackerCMXRos Red from mesenspheres, 

previously stained. This observation led to the hypothesis that leukemic blasts acquiring 

mesenspheres mitochondria would display greater chemoresistance. Therefore, we repeated these 
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experiments in the presence of AraC treatment. To note, we found a percentage of cells stained for 

Mitotracker CMXRos Red around 72.2% ±12.1, with a higher ratio as compared to normal medium 

after drug treatment. Importanlty, Mitotracker Red CMXRos is a fluorescent dye that stains 

mitochondria and its accumulation is dependent upon membrane potential, suggesting a 

mitochondrial function evaluation. 

We could also detect uptake of leukemic blasts mitochondria by mesenspheres, more difficult to 

evaluate for problems associated with aggregation and intrinsic morphology of spheres. Anyway, 

our data provided evidence for a preferential transfer of mitochondria from mesenspheres under our 

culture conditions (data not shown). 

 

We also tested a transwell experiment setting to confirm the role of direct cell contact in the transfer 

of mitochondrian in the absence or presence of AraC (Figure 7C). We seeded leukemic blasts on 

the bottom or the top of the transwell chamber and mitotracker on the other side. In a transwell 

system, we calculated a percentage of Mitotracker Red CMXRos mitochondria around 0.5% ±0.092 

in normal medium and 1%±0.8 with AraC treatment, significantly decreased as compared to cell-

contact transfer (P<0.001, respectively; Figure 7D).  

Under these conditions any Mitochondria exchanges were observed in transwell experiments, 

suggesting that cell-cell contact- in required for mitochondrial transfer from BMSCs to leukemic 

blasts.  
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Figure 7 

Mitochondrial transfer from WT mouse BM mesenspheres to MLL-AF9 mouse leukemic blasts. Mesenspheres 

mitochondria were labeled with Mitotracker Red CMXRos (red) and leukemic blasts with Mitotracker FM Green 

(green). A, Representative flow cytometry dot plot defining the population of leukemic blasts cultured alone (mono-

culture) gated on CD45
+

, previously stained with Mitotracker FM Green (green dot plot) as described in Material and 

Methods section. In coculture with mesenspheres for 24 hours, co-staining of green and red (yellow), indicated robust 

transfer of mitochondria from mesenspheres (red) to leukemic blasts (green) (second panel). B, Population of leukemic 

blasts (stained with CD45 APC and previously with Mitotracker FM Green) cultured with mesenspheres (previously 

stained with Mitotracker Red CMXRos) for 24 h in control condition  (left panel) compared to condition in the presence 

of AraC (right panel). After 24 hours in coculture with AraC, more than 75% of CD45
+

 leukemic blasts demonstrate 

acquisition of MitoTracker Red fluorescence as compared to more than 60% in control situation, indicating extensive 

mitochondrial transfer from mesenpsheres. Data representative of at least six independent experiments. 

Mitochondrial transfer from WT mouse BM mesenspheres to MLL-AF9 mouse leukemic blasts in 96-well transwell.  C, 

A representative dot plots defining the population of CD45-APC leukemic blasts previously stained with Mitotracker 

FM Green (in the lower chamber) and co-cultured for 24 h with spheres previously stained with Mitotracker Red 

CMXRos (in the upper chamber), left panel. Under the same conditions, CD45 APC leukemic blasts previously stained 

with Mitotracker FM Green (in the lower chamber) and co-cultured for 24 h, as described above, with Mitotracker Red 

CMXRos spheres (in the upper chamber) in the presence of AraC, right panel. Data representative of at least three 

independent experiments.  

D, Percentage of leukamic blasts positive for CD45 co-cultured with Mitotracker red-mesenspheres, also positive for 

Mitotracker red in contact (red columns) or separated by Mitotracker red-mesenpsheres separated by transwell 

systems.  

 

Mitochondria transferred from BMSCs rescue excessive ROS levels in the leukemic blasts 

The mitochondrion is a key regulator of apoptosis, and its intercellular transfer has been associated 

with the recovery of injured cells.
207

 Therefore, we examined whether Mitotracker Red 

mitochondria from mesenspheres were also labelled with the specific fluorescent dyeDHR123 in 

leukemic blasts. We observed that DHR123-labelled mitochondria also stained for Mitotracker 

CMXRos Red were present in a different percentage in AraC-treated and untreated cells (Figure 

7E-F). In particular, we found a mean of 79.17 %± 4.227 in untreated cells and a mean of 

96.94%±1.279 for double positive cells. By contrast, we found a very small fraction of Mitotracker 

Red-positive cells, also negative for DHR123 (around 2.04%±0.67in untreated cells and around 

2.4± 0.57 in AraC treated cells), totally absent in mono-cultures of leukemic blasts after 24 h in 

cultures (Figure 7G).  

The fraction of DHR123-negative mitochondria were detected in both conditions, untreated and 

AraC-treated cells. Altogether, these results suggest that mitochondria transferred from BMSCs to 
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the leukemic blasts can enhance metabolism and provide antioxidant defence, decreasing excessive 

and damaging ROS levels. 
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Figure 7  

Mitochondrial transfer from WT mouse BM mesenspheres to MLL-AF9 mouse leukemic blasts and changes in ROS 

levels.  

Mesenspheres mitochondria were labeled with Mitotracker Red CMXRos (red) and leukemic blasts unstained were 

seeded alone or in co-cultures. After 24 h, ROS levels, using DHR123 (FITC), were assessed in leukemic blasts alone 

(first panels, E) or in co-cultures (bottom panels, F) to check double-staining with Mitotracker Red CMXRos, 

indicating  changes in mitochondrial ROS production levels, also in the presence of AraC (right panels). 

G, Percentage of CD45 positive cells unstained for ROS dye (indicated as DHR123
- 

 cells in green). Percentage of 

CD45 positive cells, negative for DHR123 (DHR123
-

) also positive for Mitotracker Red only in the presence of 

mesenspheres in cultures. 

Data representative of at least two independent experiments. 
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DISCUSSION 
 

Here we delineate a novel method of isolating and culturing mouse BMSCs to underline the cross-

talk between BMSCs as non-adherent 'mesenspheres' and leukemic blasts from a MLL-AF9 mouse 

model. Ex vivo expansion of hematopoietic progenitors is supported also by BMSCs cultured under 

standard adherent conditions,
194,208-210

 but may be insufficient to preserve primitive HSCs.
211

 

Characteristics and features of 2D cultures are compromised because a highly artificial and less 

physiological environment. In addition, several studies have suggested that adherence to plastic 

promotes BMSC differentiation. Moreover, 3D cultures resembles the native configuration of 

cells in vivo with a microenvironment allowing for direct cell-cell signaling and cell-matrix 

interplay. In addition, BMSCs cultured as spheroids have improved cell survival, after 

transplantation,enhancing anti-inflammatory, angiogenic, and regenerative properties.
18,193,212

 

Isern et al.
193

 showed a detailed characterization ofmurine and human BM cell population that was 

able to form mesenspheres. Particularly, self-renewing murine mesenspheres are able to transfer 

hematopoietic activity to an engineered bone scaffold and human mesenspheres are capable to 

support cord blood HSCs. 

In our current work, data demonstrate that nestin
+
 BMSCs can also support the survival of leukemic 

blasts MLL-AF9. We did not need to use specific surface markers to grow murine mesenspheres, 

because we could simply derive them from immunomagnetically enriched BM CD45
-
/Ter119

-
cells 

using a specific culture medium. Cross-talk between leukemic cells and bone marrow stromal cells 

favors blasts progression and drug resistance. Therefore, understanding the interaction between 

leukemic cells and their environment by co-culture systems is an attractive tool to find out the 

mechanisms mediated by these interactions, already elusive.  

In a set of experiments, we investigated the effects of minimal medium in our co-cultures, 

mimicking the nutritional limitations encountered in the leukemic BM. Fetal bovine serum (FBS) is 

frequently used as supplementation to a basal medium that contains certain nutritional and 

macromolecular growth factors in order to promote cell growth.
213

 Serum deprivation, as 

environmental stress, is a common model of cellular stress in vitro and is used to study the anti-

apoptosis peculiarity of tumor cells. Surprisingly, cellular stress could be considered as one of the 

crucial factors responsible for initiating the carcinogenic process and treatment resistance. Serum 

deprivation induces apoptosis and reduces basal cellular activity in various cells.
214

 Moreover, 

nutrient deprivation induces cell apoptosis, which is accompanied by the induction of reactive 

oxygen species (ROS).
215

 

http://topics.sciencedirect.com/topics/page/Progenitor_cell
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Tumor cells initiate and activate defence mechanisms against apoptosis under serum deprivation.
214

 

In this study, we observed a protective role of mesenspheres by FBS deprivation, suggesting a 

mesenpshere-mediated metabolic adaptation of leukemic blasts in co-culture. Indeed, leukemic 

blasts were more resistant to FBS starvation, as confirmed by ROS and lipid peroxidation reduction 

in co-cultures. Probably, mesenspheres are able to alleviate mitochondrial stress by diminishing 

oxidative injury of ROS in leukemic blasts. 

 

Interestingly, CM from mesenspheres, alone and from co-cultures, were able to restore this 

protection only in absence of FBS. Similarly the same positive effects were found in transwell 

experiments. On the contrary, in our experiments with AraC treatments, neither CM from 

mesenspheres and co-cultures or transwell system were able to recapitulate protections from spheres 

in leukemic blasts. Concomitantly, further works showed that contact-mediated signals to LSCs  

were necessary to drug response.
150

 As confirmed by our results, cell-cell contact is necessary 

between leukemia cells and stromal cells to provide survival signals and induce drug resistance to 

cytotoxic drug therapy.
216

 Essentially, under FBS deprivation direct cell–cell contact mechanism 

and BMSC-secreted soluble factors seems to be both involved in our cultures system.  

 

It is clearly demonstrated that cells' fate depends on the levels of ROS and a pathogenic role of 

ROS. Particularly, low levels of ROS provide beneficial effects, but altered ROS levels stimulate 

leukemogenesis.
196

 Notably, in primary AML cells studies, the ROS production is characterized by 

heterogeneity in the bulk leukemic cell population: leukemic ROS-low cells that are quiescent cells 

exerting functional properties of LSCs and ROS-high cells that are more proliferating. In addition, 

ROS-low leukemic cells are metabolically dormant and are dependent on oxidative respiration 

rather than glycolysis for energy generation.
36

 More primitive leukemic cells are more dependent of 

mitochondrial respiration than on glycolysis to sustain their energetic metabolism and survival.
36

 In 

our novel system, after AraC treatments, we showed a supportive role by mesenspheres with a 

reduction of ROS level and lipid peroxidation.  

For these reasons, we also evaluated the oxygen consumption rate (OCR) to study a key parameters 

of mitochondrial function, such as basal respiration and spare respiratory capacity. Here, we 

observed an increasing on mitochondrial respiration with a parallel increase in glycolytic capacity, 

suggesting a balance in energy metabolism in the presence of mesenpsheres. In addition, we noted 

an increased spare reserve capacity in leukemic blasts co-cultured with mesenspheres also after 

AraC treatment, suggesting a role of mesenspheres to counterbalance against increase oxidative 
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stress. As reported in other study under radiation,
217

 in our model the cross-talk with mesenspheres 

could drive a re-activation or a switch preferably to mitochondrial oxidative metabolism under 

AraC treatment. It is noteworthy that tumor microenvironment modulates cancer cell's 

bioenergetics.
218

 Energy metabolism is influenced by presence of mesenspheres, providing a 

metabolic profile in support to chemotherapy.
219

 

 

Phospholipids are a major structural component of all cell membrane and lipid peroxidation alters 

the physiological functions of cell membranes. Peroxidation of cell membrane-associated 

phospholipids has been implicated in the pathogenesis of various disorders
220

 and it also consider as 

marker of apoptosis,
221

 as destructive process which cause leakage of cellular membranes.
222

 Thus, 

the ability to reduce lipid peroxidation is of primary importance in the recovery of cells from 

oxidative stress.
220

 Here, we studied the effects of AraC on lipid peroxidation. As reported in a 

previous study, AraC induces apoptosis and lipid peroxidation in NF-kB expressed cells.
221

 In the 

present study, the reduction of lipid peroxidation could be explained by the presence of 

mesenspheres due to release of soluble factor or partly release of secrete cytoprotective factors as 

fatty acid to prevent lipid peroxidation. The surrounding stroma is known to modulate the response 

to chemotherapy by either direct cell-cell interactions with tumor cells, or through the release of a 

large spectrum of growth factors and cytokines.
223-226

 Particularly, Jeanine M. L. Roodhart et al.
227

 

found that MSC-Induced Resistance is mediated by the Release of Polyunsaturated Fatty Acids. 

Indeed, polyunsaturated fatty acids (PUFA) are prone to oxidation by ROS and subsequent lipid 

peroxidation. On a speculative view, these results suggest that mesenspheres could provide more 

resistant PUFA to leukemic blasts and/or downregulating ROS levels.  

 

Mitochondria are essential organelles for the survival of cells and play a crucial role in oxidative 

phosphorylation (OXPHOS), ATP production and diverse cell signaling pathways.
228

 

When mitochondrial ROS production exceeds the capacity of the cell’s antioxidant systems or when 

the latter systems are less active, increased ROS levels can induce cell damage, as oxidative 

stress.
229

To prevent the damage from ROS, cells possess several antioxidant enzymes, which are 

located in the mitochondria and the cytosol, respectively. One fundamental antioxidant defense 

mechanism is provided by nonenzymatic antioxidants such as GSH, which functions in the cellular 

thiol/disulfide system. Therefore, it seems reasonable to hypothesize that the presence of GSH 

reduced provides protection against ROS damage, as shown in our co-cultures. However, as 

reported by Harris et al.
230

, the GSH antioxidant pathway is required for cancer initiation but after 

http://www.sciencedirect.com/science/article/pii/S1535610811003072
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cancer initiation, GSH is dispensable due to alternative antioxidant pathways. Intracellularly the 

majority of GSH is formed in the cytosol (90%) while mitochondria contain nearly 10 % and 

reticulum endplasmatic contains a very small percentage.
231

 Accordingly, is described a peculiar 

function of the leukemia niche as metabolic support, as reflected by the selective dependence on 

stromal cysteine to control ROS in leukemia cells. Specifically it is showed the dependence of CLL 

and ALL cells on stromal cysteine supply to maintain GSH synthesis in order to mitigate oxidative 

stress.
66,67

 Accordingly, we observed an increase level of intracellular GSH in the presence of 

mesenspheres, which confer protection against AraC-induced apoptosis. Interestingly, we found a 

correlation between mitochondria and GSH, indicating a further association with a decrease of GSH 

and concomitant increase in ROS only in mono-cultures.The cells in co-culture were less responsive 

to oxidative stress induced by AraC compared to leukemic cells alone. 

 

However, the use of antioxidants to inhibit the ROS‐ inflicted damage elsewhere have so far been 

unsuccessful.
232

 Indeed, in our in vivo experiments using Prdx6 KO mice we did not provide any 

important difference in terms of ROS levels and lipid peroxidation. As crucial anti-oxidant enzyme, 

Prdx6 is the bifunctional molecule with peroxidase and phospholipase A2(PLA2) activities, that are 

known to play a critical role in antioxidant defense of lung and other organs.
220

Both the peroxidase 

and PLA2 activities are important in protecting cells against death associated with oxidant stress. 

Prdx6 is a thioredoxin-like protein  with a 1-Cys peroxidase that utilizes GSH or ascorbate to 

recycle the oxidized form.
233

 In particular, the cellular functions of PLA2 are responsible for 

phospholipid remodeling and for generation of arachidonic acid (AA) and lysophospholipid, related 

to multicellular functions, such as cell proliferation, apoptosis, and inflammatory 

events.
234

Regarding inhibition of anti-oxidant in vivo, we used a mouse model for Prdx6 KO. 

Specifically, our hypothesis was to find a significant increase on ROS level and lipid peroxidation 

in the leukemic fraction of cells transplanted in mice without protection from Prdx6 (Prdx6
-/-

 mice). 

As described, in BM leukemic fraction (expressing CD45.1), we observed only a trend, albeit not 

significant toward increased ROS and peroxidation levels.These results may be the consequence of 

the treatment timing, which led to a massive infiltration of the BM with a shorter survival, already 

before treatment with AraC. Moreover, related to these problems the limited numbers of samples 

are not sufficient to deeply understanding of this mechanism.  

In our experiments in vitro,we aimed to combine the KO for Prdx6 in the mesenspheres with the 

inhibiton of GPX4. Beside Prdx6, only GSH peroxidase 4 (GPx4) has been identified as another 

protein withsignificant PHGPx (phospholipid hydroperoxide GSH peroxidise) activity.
235

 As one of 
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the most important mammalian redox enzymes, GPX4 has considered important of this finely tuned 

antioxidant defense. Recent data suggested an important role of Gpx4 for the survival of T cells and 

renal tubular cells by preventing ferroptosis.
236

 Using mesenspheres from WT or Prdx6KO mice in 

vitro, we expected to block mesenspheres protection in leukemic blasts in response to oxidative 

stress. Notably, we set up co-cultures using WT or Prdx6
-/-

 mice mesenspheres from in vivo 

experiments and MLL-AF9 leukemic blasts in the absence or presence of Gpx4 inhibitor, RSL3. 

Surprisingly, we did not observe a reverse effects on leukemic blasts mediated by mesenspheres as 

regard to survival and effects on ROS levels and lipid peroxidation in the presence of RSL3. In 

summary, this finding demonstrates that it is not sufficient to block anti-oxidant Prdx6 only in 

spheres (from Prdx6 KO mice) and Gpx4 in both type of cells, using inhibitor in cultures. Previous 

results have already shown that KO of Prdx6 has no significant effect on the expression of anti-

oxidant enzymes other than Prdx6,
220

 providing support to the conclusion that the described effects 

in our co-cultures are not sufficient to remove protection from mesenspheres. Indeed, as reported in 

other works,
230

 if malignant transformation has already occurred, upregulation of alternative 

antioxidant pathways, render treatment with anti-oxidant alone ineffective. 

 

It is relevant that mesenchymal stromal cells are capable of transferring mitochondria, rescuing 

cellular bioenergetics.
237

 To better understand which mechanism could activate this dependence of 

leukemic blast by their niche, we hypothesized a new mechanism of mitochondria exchanges as fuel 

of bioenergetic, anti-oxidants and chemo protection for leukemic blasts.In our cell culture settings, 

we demonstrated transfer of mitochondria from stromal cells to leukamic cells. Our analysis 

demonstrated the preferential transfer of mitochondria from mesenspheres. Mitochondria transfer 

has already been described in different models,
238

 and the mechanism of cancer cells acquiring 

mitochondria displaying chemoresistance is not new. However, for the first time, we demonstrated 

this mechanism of mitochondria transfer related to ROS in leukemia using mesenspheres by 

performing a novel co-cultures. Of note, we detected high percentage of leukemic mitochondria 

with GSH in co-cultures. Strikingly, we highlighted a proportion of mesenspheres-mitochondria 

with less ROS level in leukemic blasts co-cultured. This could provide another proof of a 

directional transfer of mitochondria as supportive for oxidative stress. Singularly, we described a 

heterogeneity in ROS levels of leukemic blasts mitochondria in the presence of mesenspheres. On 

the contrary, in terms of GSH levels, we showed a more consistent homogeneity in mitochondria of 

leukemic blasts co-cultured. On the other hand, mitochondrial heterogeneity emphasizes the novel 

level of mitochondrial complexity with an understanding mechanisms of mitochondrial function.
239
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In addition, our study demonstrates that AraC treatment could enhance intercellular mitochondria 

transfer between mesenspheres and leukemic blasts, in which the ROS signaling pathway is 

involved. Indeed, AraC treatment increased ROS levels that may subsequently increase lipid 

peroxidation as damage also to mitochondria. This, in turn, contributes to mitochondrial donation 

from mesenspheres to leukemic cells as emergency mechanism. When mitochondrial ROS 

production exceeds the capacity of the cell’s antioxidant systems or when the latter systems are less 

active, increased ROS levels can induce cell damage (oxidative stress).
229

 Mitochondrial energy 

imbalance lead to ROS production, so for this reason a donation from mesenspheres of 

mitochondria with decreased level of ROS could offer a unique advantage to leukemic blasts. In this 

instance, mitochondria, which possess powerful antioxidant systems,
229

 could be donate by 

mesenspheres as protective and defence systems. In line of these results, the prevailing view could 

be explained by a cooperation between leukemic blasts and mesenspheres focused on anti-oxidant 

defence and source of energy mitochondria-mediated. 

As microenvironmental resistance is one of the main problems for leukemia, elucidating the 

underlying mechanisms will be helpful to eradicate leukemia. Studies in this field will critically 

pave the way for novel approaches to try to improve clinical outcome. Our work highlights a new 

isolation and culture system to study the crosstalk of leukemic blasts with BMSCs. Although our 

data has uncovered that mitochondrial transfer from BMSCs endows leukemic cells with increased 

bioenergetics and resistance, the detailed networks and the mechanisms that drives this protection 

on leukemic blasts have only partially been examined. Future work will dissect specific pathways 

by which BMSCs boost energy availability and antioxidant defense in leukemic cells. 
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MATERIAL AND METHODS 
 

Cell Isolation and Culture 

Mesenspheres were cultured from mouse primary BM cells. Clean mouse bones were crushed in a 

mortar with 2 ml of a solution containing 0.25% type I collagenase and 20% FBS in PBS (StemCell 

Technologies). The suspension was incubated for 45 minutes at 37 ºC in a water bath under 

shaking. After addition of PBS+ 2% FBS and passage through a 40 um cell strainer, erythocytes 

were lysed by incubation on ice with RBS Lysis Buffer. After this, erythoid and hematopoietic cells 

were removed by magnetic depletion after incubation with biotin-conjugated primary antidodies 

against CD45 and Ter119 (BD Biosciences, 1:100) and subsequent incubation with streptavidin-

conjugated magnetic beads (BD Biosciences)For sphere formation, isolated cells were plated at low 

density (<500,000 cells/cm
2
) in ultralow-adherence 35 mm dishes (StemCell Technologies) after 

treatment with Poly-Hema (Sigma). The growth medium for spheres contained 0.1 mM β-

mercaptoethanol; 1% nonessential amino acids (Sigma); 1% N2 and 2% B27 supplements 

(Invitrogen); recombinant human fibroblast growth factor (FGF)-basic, recombinant 

human epidermal growth factor (EGF), recombinant human platelet-derived growth factor (PDGF-

AA), recombinant human oncostatin M (227 aa OSM, 20 ng/ml) and recombinant human IGF-

1 (40 ng/ml; Peprotech) in Dulbecco’s modified Eagle’s medium (DMEM)/F12 (1:1) / 

human endothelial (1:2) serum-free medium (Invitrogen). Mesenspheres medium was supplemented 

with 15% CEE prepared as described previously.
240

 The cultures were incubated at 37°C with 5% 

CO2, 20% O2 in a water-jacketed incubator and left untouched for 1 week. Afterward, half-medium 

changes were performed twice a week. For passage, spheres were enzymatically dissociated in 

100 μl of a solution containing 0.25% type I collagenase and 20% FBS in PBS (StemCell 

Technologies) or Trypsin (EDTA-free) for 15 min at 37°C, with mechanical dispersion every 

10 min. Cells were then washed with PBS once and replated with mesensphere medium in ultralow-

adherence 35 mm dishes (StemCell Technologies) at 37°C in a water-jacketed incubator with 5% 

CO2 and 20% O2. 

MLL-AF9 mouse leukemic blasts were isolated from bones of a doxycycline-inducible rtTA;MLL-

AF9 mouse strain and maintained in 6 well plates in RPMI 1640 (Invitrogen) without phenol red 

and charcoal-depleted FBS, mouse (m)IL3, mSCF and hIL-6 (10 ng/ml), 1% Penicillin-

Streptomycin, 1 ug/ml doxycycline) at 37°C in a water-jacketed incubator with 5% CO2 and 20% 

O2. Cells were split every 2 days and seeded at 500,000 cells/ml.  

 

Co-culture experiments  

http://topics.sciencedirect.com/topics/page/Essential_amino_acid
http://topics.sciencedirect.com/topics/page/Fibroblast_growth_factor
http://topics.sciencedirect.com/topics/page/Fibroblast_growth_factor
http://topics.sciencedirect.com/topics/page/Epidermal_growth_factor
http://topics.sciencedirect.com/topics/page/Epidermal_growth_factor
http://topics.sciencedirect.com/topics/page/Platelet-derived_growth_factor
http://topics.sciencedirect.com/topics/page/Oncostatin_M
http://topics.sciencedirect.com/topics/page/Insulin-like_growth_factor_1
http://topics.sciencedirect.com/topics/page/Insulin-like_growth_factor_1
http://topics.sciencedirect.com/topics/page/Endothelium
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We set up co-cultures systems with mesenspheres (~200 cells/ml) and leukemic blasts (250,000 

cells/ml) for 24 hrs in RPMI without phenol red and without FBS or with FBS (± AraC, 1µM) in a 

flat-bottom 96-well low adherance tissue cultures plates (Costar) at 37 C and 5% CO2. Cultures 

were grown for 24 hrs before flow-cytometry staining (apoptosis, ROS levels, lipid peroxidation). 

To investigate the influence of AML-derived supernatants on BMSC functionality, spheres were 

cultured with different dilutions of conditioned medium from AML blasts, previously cultured 

alone or in combination with mesenspheres.  

Co-cultures in transwell systems and preparation of conditioned medium 

Non-contacting co-culture transwell cell culture systems were developed to study the cross 

biological activity of leukemic blasts and mesenspheres which allow bidirectional diffusion of 

soluble factors. The non-contacting co-cultured cells were prepared as follows: leukemic blasts 

were plated on the bottom of the s96-well transwell cell culture system (Pore size 0.4 μm; Costar 

Corp. USA) using the 235µl complete media and culture environment as describe above. The 

mesenspheres were cultured onto the membrane of transwell cell culture inserts and allowed to 

grow overnight using the above mentioned condition. The next day the cells were washed with PBS 

and used for various experiments.  

In selected experiments, the cells were seeded following the protocol with minor modifications.  

We evaluated the biological activity of conditioned medium (CM) obtained from mono-cultures of 

leukemic blasts (as LB-CM) or mesenspheres (M-CM) and co-cultures (C-CM). Specifically, 

leukemic blasts were seeded as above mentioned for 24 hrs. Mono-cultures of mesenspheres were 

cultured also in RPMI medium used for leukemic blasts. Finally, the CM was collected and, after 

centrifugation at 1300 rpm for 10 min to remove cellular components or cells debris, filtered 

through 0.2-μm filters (Millipore, Billerica, MA) before use. Medium from dishes under normal 

conditions was used as a control.  

 

Cell mitostress test assay (Seahorse) 

Leukemic blasts, mono-cultured or in co-cultured, were seeded in a 24-well plate as above 

described. After a 24 hrs incubation, growth medium from each well was removed and cells were 

washed twice with 1,000 µL of pre-warmed assay medium (XF base medium supplemented with 25 

mM glucose, 2 mM glutamine and 1 mM sodium pyruvate; pH 7.4) and counted. Cell were seeded 
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at 50,000/well in Seahorse 96-well platescoated with CellTak (BD Biosciences, San Jose, CA, 

USA). Then incubated in un-buffered DMEM pH 7.4 at 37 °C in a non-CO2 incubator for 40 min to 

allow to pre-equilibratewith the assay medium before being transferred to the XF96 analyzer. The 

cartridge was calibrated by the XF96 analyzer (Seahorse Bioscience, Billerica, MA, USA), and the 

assay continued using cell mito stress test assay protocol as described byNicholls et al.
241

 Load pre-

warmed oligomycin, FCCP, rotenone & antimycin A were injected into the injector ports A, B and 

C of sensor cartridge, respectively. The final concentrations of injections were as follows: 0.25 µM 

oligomycin, 1 µM FCCP, 1 µM rotenone & antimycin A. 

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were detected under 

basal conditions followed by the sequential addition of oligomycin, FCCP, as well as rotenone & 

antimycin A. This allowed for an estimation of the contribution of individual parameters for basal 

respiration, proton leak, maximal respiration, spare respiratory capacity, non-mitochondrial 

respiration and ATP production. 

 

Flow cytometry staining and apoptosis 

Leukemic blasts, mono-cultured or in co-cultured, were incubated with the appropriate dilution (2-5 

µg/ml) of fluorescent antibody conjugates and werestained in PBS containing 2% FBSat 4°C, 

washed, and analysed on LSRFortessa flow cytometer (BD Biosciences, Franklin Lakes, NJ) 

equipped with FACSDiva Software (BD Biosciences)or on Gallios flow cytometer (Beckman 

Coulter, Miami Lakes, FL)using Kaluza (analysis software from Beckman Coulter). The following 

antibodies were used: fluorescent CD45.1 (A20), CD45.2 (104),c-kit (2B8) (eBioscience) and 

biotinylated lineage (lin) antibodies; biotinylated antibodies were detected with fluorochrome-

conjugated streptavidin (BD Biosciences). 4',6-dia
m

idino-2-phenylindole (DAPI) was used for dead 

cell exclusion. 

Apoptosis was analyzed in leukemicblasts by flow cytometric measurement of CD45 expression in 

combination with annexin V binding (BD Bioscience)and DAPI. 

 

 

Determination of ROS generation 

Intracellular reactive oxygen species (ROS) were detected by staining cells with dihydrorhodamine 

123 (DHR123, Thermo Fisher) and followed by flow cytometry analysis. DHR123 was prepared by 

dissolving 1 mg of the product in Dimethyl sulfoxide (DMSO) to a concentration of 1 mM. Briefly, 

cells were stained with DHR123 (1µM) in medium without phenol red at 37 ºC for 20 minutes, and 
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then finally washed with PBS and resuspended in PBS with DAPI to identify viable cells and to 

assess their reactive oxygen level. To discriminate between the leukemic blasts and mesenspheres in 

co-cultures, CD45-APC was used. For multi-parameter experiments using Mitotracker Red 

CMXRos (50 nm), 1µM DHR123 was added to leukemic cells and incubated for 25 min at 37 ºC as 

described. Cellular appearance of DHR123-Mitotracker Red fluorescence was monitored by flow 

cytometry. 

 

Assessment of lipid peroxidation 

The stock solution of C11-BODIPY
581/591

 (Life technologies-Invitrogen, Carlsbad, USA), a 

fluorescent fatty acid analogue which incorporates into membranes, was prepared by dissolving 1 

mg of the product in Dimethyl sulfoxide (DMSO) to a concentration of 1 mM. Upon oxidation, 

emission fluorescence of the dye shiftfrom red to green fluorescence emission.Regarding probe 

incorporation, leukemic blasts were incubated in medium without FBS at a final concentration of 

5 μM C11-BODIPY
581/591

 for 30 min at 37 °C and 5% CO2,and then washed with PBS and 

resuspended in PBS with DAPI (1:2000) to identify viable cells and lipid peroxidation.To 

discriminate between the leukemic blasts and mesenspheres in co-cultures, CD45-APC was used. 

 

Determination of intracellular GSH levels 

A cell-permeant probe,monochloromobimane (mBCI, Molecular Probes)for quantifying glutathione 

levels in cells was used in leukemic cells, mono-cultured or co-cultured. Cells were incubated for 

20 min at 37 ºC in the dark with RPMI without phenol red containing 40 μM mBCI. The cells were 

washed and then stained with CD45-APC.The emission of fluorescence was measured by flow 

cytometry. For multi-parameter  experiments using Mitotracker Red CMXRos (50 nm), 40µM 

mBCI was added to leukemic cells and incubated for 25 min at 37 ºC as described. Cellular  

appearance  of  GSH-Mitotracker Red fluorescence was monitored.  

 

BM cell extraction, flow cytometry in vivo experiments 

For BM haematopoietic cell isolation, bones from WT and PRDX6 KO mice were crushed in a 

mortar, filtered through a 40-μm strainer to obtain single cell suspensions. The tissues were 

depleted of red blood cells by lysis in 0.15 M NH4Cl for 10 min at 4ºC. Cells were incubated with 

the appropriate dilution (2-5 µg/ml) of fluorescent antibody conjugates and DAPI for dead cell 

exclusion, and analysed on LSRFortessa flow cytometer (BD Biosciences, Franklin Lakes, NJ) 

equipped with FACSDiva Software (BD Biosciences). The following antibodies were used: 
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fluorescent CD45.1 (A20), CD45.2 (104), C-Kit (2B8) (eBioscience) and biotinylated lineage 

antibodies (Lineage). Biotinylated antibodies were detected with fluorochrome-conjugated 

streptavidin (BD Biosciences). 

To isolate Nes+ cells, bones were cleaned from surrounding tissue, crushed in a mortar with a 

pestle, and collagenase-digested (catalog number C2674, Sigma; 0.25% collagenase in PBS 

supplemented with 20% fetal bovine serum) as described above.  

 

Mitotracker staining 

The transfer of mitochondria was performed using a green-fluorescent mitochondrial stain  

(Mitotracker Green FM)and a red-fluorescent dye  (MitoTracker Red CMXRos) (Thermo 

FisherWaltham, MA USA). Briefly, leukemic blasts wereunlabeled or stained with Mitotracker 

Green FM (100 ng) and co-cultured with mesenspheres stained with Mitotracker Red CMXRos (50 

ng) in RPMI (without phenol red) and incubated for 20 min at 37 ºC. After incubation, the unbound 

dyes were removed by extensively washing and then leukemic blasts and mesenspheres were seed 

separately in medium for many hrs at 37 ºC. Before co-cultures, both type of cells were washed 

twice, collected and counted. After 24 hrs of cultures, transfer of mitochondria from mesenspheres 

to leukemic blasts was evaluated by flow cytometry. 

 

 

Mouse strains 

Age and sex-matched Prdx6 KO and doxycycline-inducible rtTA;MLL-AF9 mouse strain CD45.1 

and CD45.2 C57BL/6J mice (Jackson Laboratories) were used in this study.
70

 Mice were housed in 

specific pathogen free facilities. All experiments using mice followed protocols approved by the 

Animal Welfare Ethical Committees and were compliant with EU recommendations. To study 

AraC effects on oxidative stress pathway in Prdx6 KO recipients, Prdx6KOmice and control mice 

were lethally irradiated (137Cs source, 9.5 Gy whole body irradiation, one dose). Then CD45.1 

cells from MLL-AF9 mice wereinjected and 2 weeks after Prdx6 KOmice and control mice were 

treated with AraC (100 mg/kg, Intraperitoneal injection,i.p.).  

Data analysis 

The XF mito stress test report generator automatically calculate the XF cell mito stress test 

parameters from Wave data that have been exported from Excel. All parameters for Respiration and 

acidification rates are presented as the mean ± SEM of 4-6 independent experiments. All 
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experiments were performed with 2 to 4 replicate wells in the Seahorse XF96 analyzer. For 

experiment of energy substrates on mitochondrial respiration, significance level was determined by 

performing ANOVA on the complete data set with Tukey׳s post-hoc testing. 
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 Conclusion 
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Like their normal counterparts, leukemic cells depend upon both cell-intrinsic and –extrinsic 

regulatory signals generated by their surrounding microenvironment for survival and proliferation. 

However, it remains unclear whether malignancy represents a cell autonomous characteristic of 

leukemia or is influenced also by the microenvironment. Moreover, more detailed insights into 

similarities and differences of the interplay between the malignant hemopoietic clone and its 

microenvironment are important areas to investigate into different types of leukemias (i.e. acute and 

chronic malignancies). 

The present thesis aimed to investigate novel and unexplored mechanisms regulating the interplay 

between the leukemic clone and its microenvironment. Specifically, we investigated whether and to 

what extent the microenvironment, either as proinflammatory soluble factors or cell-mediated 

signals, may affect the development/maintenance of the leukemic clone in acute and chronic 

hemopoietic malignancies. 

 

I) Environment-driven inflammation has long been suspected to contribute to tumor growth. MPNs 

are characterized by a state of chronic inflammation. Based on experimental evidences, it is argued 

that, besides molecular alterations, a state of chronic inflammation involving the malignant HSPCs 

and the non-malignant/malignant microenvironment has been indicated as main contributor in MPN 

initiation/clonal evolution. The driving hypothesis of this first part of my thesis was that the 

analysis of the in vitro biological effects of key pro-inflammatory mediators on the stem/progenitor 

cell compartments will contribute to clarify the role of inflammation in the pathogenesis of MF. 

Specifically, we observed potent effects of combinations of pro-inflammatory cytokines on survival 

and migration of CD34
+
 cells from MF patients but not from the normal counterparts. These data 

demonstrate the pivotal role of the pro-inflammatory microenvironment in shaping the malignant 

hematopoiesis behaviour. It is however likely that in MF a combination of microenvironmental 

factors and intrinsic mechanisms may contribute to the generation of malignancy. In conclusion, 

according to first objective, we showed that in MF up-regulated production of pro-inflammatory 

cytokines by HSPCs and stromal cells generates a microenvironment that selects for the malignant 

clone. Taking into account not only the malignant clone but also the inflammatory 

microenvironmemt networks will likely improve the development of therapeutic strategies.  
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II) In addition to the well-recognized role in extracellular matrix remodelling, TIMP-1 is involved 

in cell proliferation and survival of normal HSCs. We therefore hypothesized that TIMP-1 might be 

also involved in the regulation of the functional behaviour of the leukemic clone. The second aim of 

this thesis was to get insight into the TIMP-1-based mechanisms underpinning the behaviour and 

the cross-talk between leukemic cells and MSCs, a major constituent of the of the HCS niche, in the 

setting of AML. We showed that this inhibitor of metalloproteinases can be considered as a ‘bad 

actor’ in the leukemic context. Specifically, we demonstrated that TIMP-1, through its receptor 

CD63 and PI3K/Akt/p21 pathway, modulates the survival, migration and proliferation of leukemic 

blasts.  The dynamic interplay between leukemic cells and stromal cells is a crucial aspect in AML. 

It is clear that leukemic cells alter their BM microenvironment to support leukemic hematopoiesis 

while disrupting normal HSC homeostasis. In this context, our data support a role of TIMP-1 as a 

favouring factor within the leukemic microenvironment. Interestingly, AML-MSCs, but not normal 

MSCs, have been shown to increase AML blast proliferation and migration capacity in the presence 

of TIMP-1. Therefore, the combination of a pro-inflammatory factor, TIMP-1, with cellular 

elements of the leukemic microenvironment, the AML-MSCs, could be provide a potent device for 

leukemic cells in term of drug resistance. In conclusion, our findings point toward a crucial role of 

TIMP-1 within the leukemic microenvironment.  

 

III) Based on a mouse model, the third aim of my thesis was focused on study of the cross-talk 

between the recent characterized BM stromal stem/progenitor cells, namely mesenspheres, with 

self-renewal ability and the leukemic clone. Specifically, we investigate whether mouse BM-

derived mesenspheres show the ability to support the mouse leukemic blasts and whether their 

cross-talks create a protective effect where mesensheres could mediate chemoresistance. By using a 

novel system of co-culture, we demonstrated the supportive and protective role of BMSCs, as non-

adherent cells. In this cross-talk we found a reduction of ROS levels and lipid peroxidation, in 

stressed conditions. Importantly, we also found that the chemoprotective role of mesenspheres is 

mediated by mitochondria transfer from mesenspheres to leukemic cells. This interaction could be 

explained as sources of anti-oxidants and nutrients. These data therefore suggest that, due to this 

mitochondria-driven mechanism, it will be critical to develop tools blocking this donation between 

cells. Importantly, this work may well substantially contribute to validate preclinical findings from 

mouse models in the human system. 
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In conclusion, this thesis provides scientific advances in the understanding of how leukemia cells 

modify their microenvironment and how these changes reinforce leukemic homeostasis.Therefore, 

in myeloid malignancies both pathogenetic hypothesis and therapeutic attempts should take into 

account not just the malignant clone but also the activity of the microenvironment. Indeed, the 

better understanding of the mechanisms underlying the interplay between the malignant clone and 

its microenvironment has the potential to draw therapeutic strategies based on the manipulation of 

key components within the leukemic microenvironment.  
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