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CHAPTER 1 

INTRODUCTION 

 

1.0 Background of Study 

Corrosion of the reinforcement is the main reason for deterioration of reinforced 

concrete (RC) structures with conventional steel. Corrosion is generally associated 

with the reduction of the effective area of the reinforcement causing a decrease of the 

strength and stiffness of the reinforcement and, consequently, of the RC element. In 

order to restore existing buildings that suffer deterioration problems, in the last few 

decades new strengthening materials, known as fiber reinforced polymer (FRP) 

composites, gained a wide diffusion all over the world. FRP composite materials are 

employed in all those applications related to strengthening and rehabilitation of 

existing concrete structures. FRPs have several advantages if compared to 

traditional strengthening materials that can be summarized as follow: high strength 

to weight ratio, corrosion resistance, ease of handling and installation, and design 

and construction flexibility. The application of FRP materials in civil engineering is 

worldwide recognized. Various organizations in countries such as United States, 

Canada, Great Britain, Japan, and Italy released design guidelines, recommendations, 

and standards related to FRP composites. 

 

FRP composites consist of high strength fibers embedded in an organic matrix. 

Different types of fibers are available, such as carbon (CFRP), aramid (AFRP), glass 

(GFRP), and steel (SRP). Fibers are commercially available in the form of 

plates/sheets or bundles (used as external reinforcement) and bars (used as internal 

reinforcement). 

The use FRP plates/sheets externally bonded to existing concrete elements has 

steadily emerged, over last three decades, as an efficient technique for structural 

rehabilitation, repair and strengthening of deteriorated and deficient concrete 
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components and systems, as highlighted from Karbhari et al. (2006), and Meier 

(1995). FRP composites have successfully been used for strengthening of reinforced 

concrete (RC) structures as pointed out from Teng et al. (2002). 

 

The use of internally FRP reinforcement bars as an alternative to steel reinforcement 

bars in concrete structures has been accepted in construction industry mainly due 

to their excellent electrochemical corrosion resistance and high mechanical 

performances. FRP reinforcement bars can be used as longitudinal and shear 

reinforcement. However, some properties of FRP reinforcement, such as its 

brittleness, could have adverse effects on its performance as reinforcement for 

concrete members. Since GFRP is more economical balance of cost and strength 

properties than other available FRP (CFRP and AFRP), it is more attractive for 

infrastructure application and has been used as reinforcement in concrete beams, 

bridges and slabs for more than twenty years (Benmokrane et al. 2006). GFRP has 

more resistance to corrosion and higher tensile resistance compared to steel 

(Newhook et al. 2002). Therefore, the present study discusses mainly in chapter 2 on 

the behaviour of beams reinforced internally with GFRP reinforcement bars. 

 

A steel reinforced polymer (SRP) system was also tested as part of this research in 

chapter 4 and 5. SRPs are made with high-strength twisted steel wires embedded in 

an epoxy matrix. SRPs have several benefits over traditional FRP materials including 

lower cost, better fire resistance, and compatibility with anchorage systems. 

 

Since GFRP and SRP are newly developed strengthening materials, a better 

understanding of the mechanical behaviour of these composite systems is needed. 

The current research is mainly focused on the following aspects: the use of GFRP 

bars as internal reinforcement for simply supported concrete beams as reported in 

Chapter 2 and the use of SRP system externally for debonding and confinement 

investigation as reported in chapter 5 and 6. 
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1.1 Fibre Reinforced Polymer (FRP) 

Fiber reinforced polymers (FRP) are a particular typology of composite materials, 

made of high resistance fibers impregnated with polymeric resins. The mixing result 

is a material with properties between fiber and resin Figure 1.1. 

 

 
Figure 1.1: Comparison among fiber, resin and composite tensile properties 

 

FRP materials are characterized by excellent tensile strength in the direction of the 

fibers and by negligible strength in the direction transverse to the fibers; this 

illustrates the anisotropic nature of these materials. FRP composites do not exhibit 

yielding, but instead are elastic up to failure and they are also characterized by 

relatively low modulus of elasticity in tension and low compressive properties. 

Their function usually consists in adsorbing tensile stress due to shear and flexural 

actions. Often, among the several advantages, it can be listed also the increase of the 

overall stiffness and ductility. 

FRP properties make these materials particularly suitable for structural applications, 

especially in support or substitution of steel. The general advantages of FRP 

reinforcement compared to steel are: 

• Durability in aggressive environments 

• High strength-to-density ratio 

• Magnetic and electric neutrality 

• Low specific weight 

• Low axial coefficient of thermal expansion 
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Without underlining the importance of a lower installation cost, the use of FRP 

composites possesses some advantages compared to traditional retrofitting methods; 

as an example, the disturbance of both occupants and facilities are minimal and there 

is no loss of valuable space. In addition, from the structural point of view, the 

dynamic properties of the structure remain unchanged because there is no addition of 

weight that would lead to increase the seismic forces. 

FRP products are commercialized in different shapes: rods, tendons, laminates and 

three-dimensional components. 

FRP reinforcement comes in the shape of rods of circular cross-sections, strips of 

rectangular cross-sections, strands, and laminates, which enable different types of 

applications, as shown in Figure 1.2. 

 

 
(a)                                                                      (b) 

Figure 1.2: (a) FRP rebars and (b) FRP sheets/laminates  

 

 

Generally, FRP can be classified into three types which are Glass Fiber Reinforced 

Polymer (GFRP), Carbon Fiber Reinforced Polymer (CFRP) and Aramid Fiber 

Reinforced Polymer (AFRP). 
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1.1.1 Carbon Fiber Reinforced Polymer (CFRP) 

CFRP is a composite material which consists of carbon fibre and resins. CFRP is 

more expensive composite material, compared to GFRP and AFRP, but have some 

advantages, such as high strength, stiffness and most durable.  

Although CFRP have many advantages compared to steel, such as lighter in weight 

and corrosion resistant materials, but cost of CFRP still remain as the issue of replace 

steel as reinforcement materials. Beside this, the brittle behaviour of CFRP is also 

one of the problem that been concerned. 

 

1.1.2 Aramid Fiber Reinforced Polymer (AFRP) 

AFRP is highly oriented organic fiber derived from polyamide incorporating into 

aromatic ring structure.  

AFRP offers excellent impact resistance, good electric and temperature insulating 

properties and they are also resistant to organic solvents, fuels and lubricants. AFRP 

have a medium modulus and a very low density as compared to GFRP and CFRP. It 

is available in tows, yarns and various woven cloth products. 

 

1.1.3 Glass Fiber Reinforced Polymer (GFRP) 

Fiber drawn from an inorganic product of fusion that has cooled without 

crystallizing. GFRP produces a common, low cost reinforcing fiber, but they weight 

more than CFRP or AFRP and the lower modulus requires special design treatment 

where stiffness is critical. Glass has been the predominant fiber for many civil 

engineering applications because of an economical balance of cost and specific 

strength properties. 

The two types of glass fibres most commonly used are E-glass and S-glass. E-glass 

has the lowest cost of all commercially available reinforcing fibres, and is used for 

general purposes where strength, electrical resistance, acid resistance, and low cost 

are important. S-glass has higher strength, stiffness and ultimate strain than E-glass, 

but is more expensive, and more susceptible to degradation in alkaline environments 

than E-glass (Benmokrane et.al, 1995). 
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1.2 Steel Fibers  

High strength steel fibers have recently been introduced as an alternative to FRPs 

such as carbon fiber reinforced polymer (CFRP) (Prota et al., 2006).  

It made of high strength twisted steel wires impregnated with epoxy resin, in the case 

of steel reinforced polymer (SRP), or with cementitious, in the case of steel 

reinforced grout (SRG) systems.  

 

The advantages of using these materials over FRPs, among them, the material cost is 

relatively, and SRP have some inherent ductility (Casadei et al., 2005). However, the 

application method for FRPs and SRP/SRG composite sheets for strengthening 

concrete/masonry structures are same. 

 

 
Figure 1.3: Steel fiber sheets 

 

Table 1.1. Mechanical properties for steel fibers (Kerakoll 2016). 

Density of steel 

fibers 

weight 

[g/m2] 

no 

cords/mm 

Break 

Deformation 

[%] 

Tensile 

Strength 

[MPa] 

Modulus 

[GPa] 

Equivalt 

thickness 

t* [mm] 

Medium 
density (MD) 

1200 0.314 > 2 > 3000 > 190 0.168 

High density 
(HD) 

2000 0.472 > 2 > 3000 > 190 0.254 

Ultra-High 
Density (UHD) 

3300 0.709 > 2 > 3000 > 190 0.381 

 

6 
 



 

 

The stress versus strain behavior of some typical FRP and SRP materials are 

presented in Figure 1.4. Also shown in the figure are the traditional building 

materials used in tension: mild steel reinforcing and high strength steel used in 

prestressing strands. 

 

 
Figure 1.4 Stress-strain characteristics of steel, FRP, SRP materials 

 

 

1.3 Objectives of dissertation 

The objective of this research program is to investigate a number of issues related to 

glass fiber reinforced polymer (GFRP) bars, and steel reinforced polymer (SRP) 

composite strips. 

1. To investigate the shear strength of concrete beams reinforced with glass fiber 

reinforced polymer GFRP bars. 

2. To investigate the debonding mechanism between steel reinforced polymer (SRP) 

composites strips and the concrete surface, using two different set-up;  concrete 

specimens were tested using the single-lap shear test set-up and specimens were 

tested using a three-point bending set-up, and compare the results obtained based 

on two different test set-ups. 

3. To investigate the behavior of short concrete prisms with a square cross-section 

confined by steel reinforced polymer (SRP) composite strips. 
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1.4 Scope of dissertation 

A total of 96 concrete (beams, prisms) were tested in the course of this research;  

14 as part of a shear strength of concrete beam reinforced with GFRP bar Study, 7 as 

part of the Debonding Phenomenon Study, 19 as part of the Bond Study, 31 as part 

of the Fracture Mechanics Study and 25 as part of the Confinement Study. 

The Shear Strength Study, whose experimental program is described in Chapter 2 of 

this dissertation, examined the shear behavior of simply supported concrete beams 

reinforced with longitudinally GFRP bars. The variables examined in the 

experimental program included the GFRP longitudinal reinforcement ratio and the 

concrete strength. 

The Bond Study, A state-of-the art was compiled and an indirect calibration of the 

Mode-II cohesive law for CFRP sheets bonded to concrete surface, described in 

Chapter 3 of this dissertation. 

The Bond Study, deals with the debonding phenomenon, a better understanding of FRP-

concrete bond behavior assessing some of the common cohesive material law (CML) 

relationship on the basis of the results of an experimental program conducted by 

Subramaniam et al. (2007), described in Chapter 4. 

The Bond Study (SRP) using the single-lap shear test set-up, whose experimental 

program is described in Chapter 5 of this dissertation, the bond behaviour of SRP 

composite strips externally bonded to a concrete substrate was investigated, 99 

specimens were tested. The variables examined included the bonded length, bonded 

widths, loading rate and density of SRP composite.  

The Bond Study (SRP) using the three-point bending set-up, whose experimental 

program is described in Chapter 5 as well, of this dissertation, 6 specimens were 

tested to analyze the debonding mechanism between SRP composite strips and the 

concrete surface. The variable examined was density of SRP composite. 

The Confinement Study, whose experimental program is described in Chapter 6, 

examined the effectiveness of concrete compressive members confined by SRP 

composites in terms of load-bearing capacity and ultimate strain with respect to 

unconfined prisms. The variables examined included the density of steel fibers, 

concrete corner condition, concrete surface treatment, FRP jacket height, and number 
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of confinement layers. Digital image correlation (DIC) is used to qualitatively and 

quantitatively study the displacement and strain fields on the composite surface. 

The Fracture Mechanics Study, using the three-point bending set-up, whose 

experimental program is described in Chapter 5 also of this dissertation, 31 

specimens with different sizes cast from the same concrete used for confined 

specimens were tested to evaluate the fracture energy of concrete. All concrete 

prisms had a central notch with a V-shaped tip. 

 

1.5 Outline of dissertation 

This dissertation is divided into six chapters. The following is a brief description of 

each chapter's content: 

Chapter One of the dissertation, presented an introduction, including an overview on 

FRP and SRP composites, the main characteristics and various applications of both 

composite. The objectives, scope and outline of the research project are also included 

in this chapter. 

Chapter Two of the dissertation, deals with the experimental campaign to study the 

shear strength of GFRP longitudinally reinforced concrete beams without shear 

reinforcement. All beams were simply supported and subjected to two point loads 

and known as four point bending test. It was analyzed the behavior of beams, such as 

failure load, failure mode, cracking load, crack patterns, deflections. Moreover, 

experimental results are compared using the different analytical equations provided 

by the available design codes for FRP reinforcement. 

Chapter Three of the dissertation, deals with the debonding phenomenon, of fiber 

reinforced polymer (FRP) composites applied to a concrete surface. A state-of-the art was 

compiled and a indirect calibration of the Mode-II cohesive law was attempted. 

Chapter Four of the dissertation, deals with the debonding phenomenon, a better 

understanding of FRP-concrete bond behavior assessing some of the common CML or 

bond-slip (τ-s) relationship on the basis of the results of an experimental program 

conducted by Subramaniam et al. (2007). 

Chapter Five of the dissertation, divided into two parts, and both part related to the 

debonding studies but with different methods. The first part, deals with an experimental 
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study using single-lap shear test set-up. The second part comprises, deals with an 

experimental study using three-point bending set-up and the test specimens had a central 

notch. Both methods performed to analyze the debonding mechanism of SRP composite 

strips applied onto a concrete substrate. For each test campaign describes the test set-up, 

test details and materials used. Furthermore, the results were reported and then compared. 

Chapter Six of the dissertation, presents an experimental study was carried out to 

understand the behavior of short concrete prisms with a square cross-section confined by 

SRP composite sheets embedded in an epoxy matrix subjected to a monotonic concentric 

compressive load. In additional, concrete prisms casted from the same concrete used for 

confined specimens were tested using a three point bending set-up to evaluate the fracture 

energy of concrete. All concrete prisms had a central notch with a V-shaped tip. 

Each chapter consists of background information, literature review, details of the 

experimental program, design of the specimens test and a conclusion of the results 

obtained from the experiments and analyses with respect to the issues and 

observations discussed throughout the thesis, finally, references in each chapter 

separately. 
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CHAPTER 2 

SHEAR BEHAVIOUR IN CONCRETE BEAMS 

REINFORCED WITH FRP BARS 

 

1.0 Introduction 

The  use  of  fibre  reinforced   polymer  (FRP)  bars,  as  an  alternative  to  steel 

reinforcement for reinforced concrete structures, is gaining acceptance among the 

structural engineers. These bars have some favorable properties than conventional 

steel bars; such as; corrosion resistance, high strength to weight ratio. longer 

durability and magnetic neutrality. 

The behavior of reinforced concrete beams at failure in shear is distinctly different 

form their behavior in flexure (Nawy, E.D. 2003). A failure due to shear is sudden as 

compared to a failure due to flexure.  This type of failure should be avoided in design 

of reinforced concrete structures.  Due to the fact that FRP bars behave brittle type of 

rupture and low modulus of elasticity, and the shear strength of beams reinforced 

with GFRP bears have not been adequately studied (MacGregor, J. and Wright, J. K. 

2005). The behavior of reinforced concrete beams reinforced with FRP bars failed in 

shear will become remarkable topics to investigate. In addition, although some 

equations for shear design have been provided in the most of the codes but not all of 

the behaviors of concrete beam reinforced with FRP bars have been covered 

especially on diagonal shear cracking load (Thamrin, R. et al. 2002). 

There has been extensive research on the flexural behavior of FRP reinforced 

concrete members, and it has been well established that the flexural capacity of 

concrete members reinforced with FRP bars can be predicted by traditional beam 

theory (Faza and Gangarao 1993, Nanni 1993, ISIS 2001). In contrast, the shear 

behaviour of FRP reinforced concrete members is different from that of steel-

reinforced concrete members due to their different properties;   including the 

modulus of elasticity, E, surface characteristics, and bond characteristics.  Several 
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studies on the shear capacity of FRP reinforced concrete members without shear 

reinforcement has indicated that the shear strength is influenced by the stiffness of 

the tensile reinforcement (Sonobe et al. 1997, Michaluk et al. 1998, Tureyen and 

Frosch 2002). In addition, the behaviour of FRPs is elastic-brittle with no yielding or 

ductility at failure and its modulus of elasticity is lower than that of steel. These 

characteristics make the shear behaviour of FRP reinforced concrete beams more 

complex. Therefore, it has been recognized that the shear behaviour of FRP 

reinforced concrete beams should be further investigated independently to reflect 

these specific material characteristics.  

 

The focus of this research is to investigate the size effect of concrete beams 

reinforced with GFRP bars on its shear behaviour. A total of eighteen beams 

reinforced with longitudinal reinforcement. The main variables in this investigation 

were shear span-to-depth ratio (a/d), longitudinal reinforcement ratio (ρ), concrete 

compressive strength (𝑓𝑓𝑐𝑐′) and reinforcement type. 

 

2.0 Shear in RC beams  

2.1 Shear in reinforced concrete beams without transverse reinforcement 

The shear strength of reinforced concrete beams without transverse reinforcement 

has generated a lot of research since the beginning of the last century. However, a 

clear understanding of shear behaviour of those beams is still limited. This is referred 

to the complexity of the affecting parameters that govern the shear strength of 

concrete beams without shear reinforcement. Many structural concrete members are 

constructed without transverse reinforcement such as slabs, footings, joists, and 

lightly stressed members. 

 

 

2.1.1 Shear resistance mechanism 

Shear transfer mechanisms in concrete beams are complex and difficult to identify 

clearly due to the complex stress redistributions that occur after cracking. Shear is 

transmitted between two planes in various ways in reinforced concrete members.  
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According to the ACI-ASCE committee 445 (1998) reported that after the formation 

of diagonal cracks in members without stirrups, shear is carried by concrete as a 

combination of five structural mechanisms as shown in Figure2.1: 

 

(i) Shear resistance of uncracked concrete,  Vcz 

(ii) Interface shear transfer, Va 

(iii) Dowel action of longitudinal reinforcement, Vd 

(iv) Arching action 

(v) Residual tensile stress across the inclined cracks, ft 

 

 
Figure 2.1: Internal forces in a cracked beam without stirrups 

 

 

2.1.1.1 Shear resistance of uncracked concrete,  Vcz 

This shear transfer mechanism occurs in uncracked members or in the uncracked 

portions of structural members. In an uncracked concrete member, the shear force is 

transferred by inclined principal tensile and compressive stresses.  

Failure may occur by inclined cracking or crushing of the concrete depending on 

whether the tensile or compressive stresses reach the corresponding strength of 

concrete.  

The shear force can be calculated by the integration of the shear stresses over the 

depth of the compression zone. Many researchers quantified the contribution of this 

shear mechanism is between 20% and 40% of the total shear force (ASCE-ACI 

1973). 

 

14 
 



 

2.1.1.2 Interface shear transfer, Va 

This shear transfer mechanism is based on the friction along the inclined crack 

interface, which develops due to the relative slip between the two surfaces of the 

crack. The crack passes though the aggregate or instead of around the aggregates, 

depending on the concrete strength and type. In normal strength concrete as the 

aggregates protruding from the crack surface provide resistance against slip, which is 

termed as aggregate interlock. In lightweight and high strength concrete, the cracks 

go through the aggregate rather than around the aggregate, it is still have the ability 

to transfer shear, in this case the shear is transferred by friction or interface shear.  

However, the term Friction or Interface Shear is more appropriate than aggregate 

interlock to describe this mechanism of shear transfer. Tests conducted to quantify 

the contribution of this mechanism indicated that between 33% and 50% of the total 

shear force on a beam may be carried by interface shear transfer (ASCE-ACI 1973). 

 

2.1.1.3 Dowel action of longitudinal reinforcement, Vd 

If the reinforcing bars cross a crack, shearing displacements along the crack will be 

resisted, in part, by a dowelling force in the bar. Dowel contribution is strongly 

dependent on the transverse rigidity and strength of the longitudinal bar.  

Normally, dowel action is not very significant in beams without transverse 

reinforcement, the reason behind that is the maximum shear in a dowel is limited by 

the tensile strength of the concrete cover supporting the dowel. Dowel action may be 

significant in beams with large amounts of longitudinal reinforcement. Particularly 

when the longitudinal reinforcement is distributed in more than one layer (ASCE-

ACI 1998). Many studies on dowel action indicated that the dowel shear force to the 

total shear force by about 15-25% (ASCE-ACI 1973). 

 

2.1.1.4 Arching action 

The arching action occurs in deep beams, or beams with shear span-to-depth ratio 

(a/d) having less than 2.5 (Razaqpur et al. 2004). For such members, a significant 

redistribution of internal forces can be expected after cracking, and the shear force 

can be transferred directly to the supports Figure 2.2. For arch action to develop, a 

horizontal reaction component is required at the base of the arch. In beams this is 

usually provided by the tie action of the longitudinal bars. 
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Figure 2.2: Arch action in a beam (MacGregor and Bartlett 2000) 

 

2.1.1.5 Residual tensile stress across the inclined cracks, ft 

When concrete is loaded in direct tension, there is an important descendent 

(softening) branch has been known when the peak tensile stress is reached for some 

time Gopalaratnam and Shah (1985). This softening branch is attributed to the 

residual tensile stress across the crack. Hence, small parts of concrete bridge the 

crack and continue to transmit a tensile force up to crack widths in the range of 0.05 

to 0.15 mm (ASCE-ACI 1998).  

Reineck (1991) has found that the shear stresses across inclined cracks can be related 

to the residual tensile stresses which provide a important portion of the shear 

resistance of very shallow members with depths less than about 100 mm, where the 

crack widths are small. 

 

2.1.2 Modes of failure 

For beams with low span-to-depth ratio or inadequate shear reinforcement, the 

failure can be due to shear. A failure due to shear is sudden as compared to a failure 

due to flexure.  

The following five modes of failure due to shear are identified.  

1) Diagonal tension failure  

2) Shear compression failure  

3) Shear tension failure  

4) Web crushing failure  

5) Arch rib failure  
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The occurrence of a mode of failure depends on the span-to-depth ratio, loading, 

cross-section of the beam, amount and anchorage of reinforcement. The following 

five modes of failure due to shear are identified and presented in Table 2.1. 

 

Table 2.1: Modes of failure due to shear 

Type Failure mode 

Diagonal tension failure  

In this mode, an inclined crack propagates rapidly 

due to inadequate shear reinforcement.  

Shear compression failure  

There is crushing of the concrete near the 

compression flange above the tip of the inclined 

crack.  

Shear tension failure  

Due to inadequate anchorage of the longitudinal 

bars, the diagonal cracks propagate horizontally 

along the bars.  

Web crushing failure  

The concrete in the web crushes due to inadequate 

web thickness. 
 

Arch rib failure  

For deep beams, the web may buckle and 

subsequently crush. There can be anchorage failure 

or failure of the bearing.  
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2.1.3 Factors affecting the shear strength of concrete 

Several analytical and experimental studies have revealed that the concrete 

contribution to the shear resistance (Vc) of beams without shear reinforcement is 

affected by some dominant parameters, Among them ASCE-ACI Committee 445 

(1998): 

1. Shear span-to-depth Ratio, a/d 

2. Tensile strength of concrete, 𝑓𝑓𝑐𝑐′ 

3.  Longitudinal reinforcement ratio, ρ 

4. Effective depth, d, (Size of beam) 

5.  Axial force 

However, the significance of each parameter to the shear resistance (Vc) of beams 

without shear reinforcement is still under debate.  

 

2.2 Shear design equation in the codes and guideline’s for FRP reinforced 

concrete members 

Shear design recommendations for FRP-reinforced concrete beams in current design 

codes adopt a similar approach as conventional steel reinforced concrete design 

methods. The nominal shear capacity ( Vn) of reinforced concrete beams is 

computed by: 

Vn = Vc + Vs                                                 (2.1) 

where Vc  is the shear strength of concrete beams and Vs  is the shear resistance 

offered by shear reinforcement.  

This section summarizes the design equations used to compute Vc as recommended 

by the American Concrete Institute (ACI) standard ACI 440.1R-06 (ACI 2006); 

Canadian Standards Association (CSA) standards CSA S806-02 (CSA 2002); the 

Japan Society of Civil Engineering (JSCE) standard (JSCE 1997) and Intelligent 

Sensing for Innovative Structures, Canadian Network of Excellence (ISIS 2007). 
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2.2.1 American Concrete Institute (ACI) 

According to American Concrete Institute (ACI) committee 440, the shear design of 

FRP reinforced concrete is similar to that of steel reinforced concrete as given in ACI 

318-08. However, the mechanical properties of  FRP affect the shear strength with 

the main factors being the low FRP modulus of elasticity and low  transverse shear 

strength of FRP. Using a model developed by Tureyen and Frosch (2003), the 

concrete shear capacity Vc , for flexural members with FRP as main reinforcement 

can be evaluated as follows: 

𝑉𝑉𝑐𝑐 =
2
5�

𝑓𝑓𝑐𝑐′𝑏𝑏𝑤𝑤𝑐𝑐                                                                                                                      (2.2) 

where c is the cracked transformed section neutral axis depth, for singly reinforced, 

rectangular cross sections is given as:. 

c = k d 

The computation of the neutral axis depth k dependent on the flexural FRP 

reinforcement ratio and the ratio of the modulus of elasticity of the FRP 

reinforcement to the concrete, k is calculated as; 

𝑘𝑘 = �2𝜌𝜌𝑓𝑓𝑛𝑛 + �𝜌𝜌𝑓𝑓𝑛𝑛�
2
− 𝜌𝜌𝑓𝑓𝑛𝑛 

where 𝜌𝜌𝑓𝑓 being the flexural FRP reinforcement ratio, and 𝑛𝑛 = 𝐸𝐸𝑓𝑓/𝐸𝐸𝑐𝑐, where Ef and 

Ec are the modulus of elasticity of FRP reinforcement and concrete, respectively; 𝑓𝑓𝑐𝑐′ 

is the specified compressive strength of concrete; bw is the web width; and d is the 

distance from the compression fiber to the centroid of the main tensile reinforcement. 

 

2.2.2 Japan Society of Civil Engineers (JSCE) 

The Japan Society of Civil Engineers (JSCE 1997) recommended the following 

expression for shear strength (Vc) of FRP reinforced concrete members: 

𝑉𝑉𝑐𝑐 = 𝛽𝛽𝑑𝑑𝛽𝛽𝑝𝑝𝛽𝛽𝑛𝑛𝑓𝑓𝑣𝑣𝑐𝑐𝑑𝑑𝑏𝑏𝑤𝑤/𝛾𝛾𝑏𝑏                 (2.3)  

where, 

𝛽𝛽𝑑𝑑 = (1000/𝑑𝑑)1/4           ≤ 1.5 
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𝛽𝛽𝑝𝑝 = �100𝜌𝜌𝑓𝑓𝐸𝐸𝑓𝑓/𝐸𝐸𝑠𝑠�
1/3

  ≤ 1.5 

𝛽𝛽𝑛𝑛 = 1 + 𝑀𝑀𝑐𝑐/𝑀𝑀𝑑𝑑    ≤ 2                      𝐹𝐹𝐹𝐹𝐹𝐹 (𝑁𝑁𝑑𝑑′ ≥ 0) 

𝛽𝛽𝑛𝑛 = 1 + 2𝑀𝑀𝑐𝑐/𝑀𝑀𝑑𝑑  ≥ 0                      𝐹𝐹𝐹𝐹𝐹𝐹 (𝑁𝑁𝑑𝑑′ < 0) 

𝑓𝑓𝑣𝑣𝑐𝑐𝑑𝑑 = 0.2(𝑓𝑓𝑐𝑐𝑑𝑑′ )1/3   ≤ 0.72 

 

where 𝑓𝑓𝑐𝑐′ represents concrete strength, bw reflects effective web width, d reflects 

effective depth, Ef is modulus of elasticity of flexural FRP reinforcement and Es is 

modulus of elasticity of steel, ϒb is strength reduction factor, generally equal to 1.3, 

Ma is decompression moment, Md is design bending moment, 𝑁𝑁𝑑𝑑′  is design axial 

compressive force, and βn equal to 1.0 for sections without axial force resultant.  

According to this code, the concrete contribution to the shear strength has a limiting 

value. Similar to the ACI (2006), this method does not include the effect of shear 

span-to-depth ratio (a/d), and if a section has no longitudinal reinforcement, the 

equation will give zero shear strength. 

 

2.2.3 Canadian  Standard  Association (CSA) 

According to the Canadian Standard Association (CSA-S806-02) Code. The shear 

strength of members having either at least the minimum amount of transverse 

reinforcement as specified by the CSA standard or an effective depth not exceeding 

300 mm, the shear strength calculated as: 

𝑉𝑉𝑐𝑐 = 0.035𝜆𝜆∅𝑐𝑐 �𝑓𝑓𝑐𝑐′𝜌𝜌𝑓𝑓𝐸𝐸𝑓𝑓
𝑉𝑉𝑓𝑓
𝑀𝑀𝑓𝑓

𝑑𝑑�
1/3

𝑏𝑏𝑤𝑤𝑑𝑑                                                                          (2.4) 

0.1𝜆𝜆∅𝑐𝑐�𝑓𝑓𝑐𝑐′𝑏𝑏𝑤𝑤𝑑𝑑 ≤ 𝑉𝑉𝑐𝑐 ≤ 0.2𝜆𝜆∅𝑐𝑐�𝑓𝑓𝑐𝑐′𝑏𝑏𝑤𝑤𝑑𝑑 

 

where λ reflects the concrete density factor, ∅𝑐𝑐 represents the concrete material 

resistance factor, 𝑓𝑓𝑐𝑐′ represents concrete strength, bw reflects effective web width and 

d reflects effective depth. The quantity�𝑉𝑉𝑓𝑓/𝑀𝑀𝑓𝑓�𝑑𝑑, is not to be taken as greater than 

1.0. �𝑉𝑉𝑓𝑓/𝑀𝑀𝑓𝑓�𝑑𝑑 , is the value of the factored shear, Vf, divided by the factored 
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moment, Mf, at the section under consideration and is the inverse of the a/d ratio for a 

simply supported member. This equation considers the effect of axial stiffness (Ef ρf), 

shear span-to-depth ratio (a/d), and concrete compressive strength 𝑓𝑓𝑐𝑐′ for calculating 

the shear strength. 

To account for the size effect for members having an effective depth exceeding 300 

mm and with no transverse shear reinforcement or less transverse reinforcement than 

the minimum given by CSA standard, the value of Vc is calculated using: 

𝑉𝑉𝑐𝑐 = �
130

1000 + 𝑑𝑑
� 𝜆𝜆∅𝑐𝑐�𝑓𝑓𝑐𝑐′𝑏𝑏𝑤𝑤𝑑𝑑 ≥ 0.08𝜆𝜆∅𝑐𝑐�𝑓𝑓𝑐𝑐′𝑏𝑏𝑤𝑤𝑑𝑑                                                    (2.5) 

 

This equation gives the concrete contribution to the shear strength of FRP reinforced 

concrete members regardless of the FRP reinforcement ratio or the FRP type, which 

is anomalous to the findings that the shear strength increases with an increase in the 

reinforcement ratio. Thus, the equation gives more conservative results for the beams 

with high axial stiffness ( Ef ρf ) of the longitudinal FRP bar (EI-Sayed et al. 2006). ln 

addition, the equation neglects the shear transfer by arch action and it is quite 

conservative for beams with a/d less than 2.5 (Razaqpur and Isgor 2006).  

 

2.2.4 ISIS M03-07 Design Manual 

Intelligent Sensing for Innovative Structures (ISIS) published a series of design 

manuals that address the production, testing, and use of FRP. Design Manual 03 

(ISIS 2007) provides guidance for design of concrete structures internally reinforced 

with FRP. The shear design method for FRP reinforced members is based on the 

simplified method of CSA A23.3-94 code.  

 

According to this method. The shear capacity of FRP reinforced concrete members 

containing no transverse web reinforcement and having an effective depth less than 

300 mm is calculated as: 

𝑉𝑉𝑐𝑐 = 0.2𝜆𝜆∅�𝑓𝑓𝑐𝑐′𝑏𝑏𝑤𝑤𝑑𝑑�
𝐸𝐸𝑓𝑓
𝐸𝐸𝑠𝑠

                                                                                                    (2.6) 
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where λ reflects the concrete density factor, ∅𝑐𝑐 represents the concrete material 

resistance factor, 𝑓𝑓𝑐𝑐′ represents concrete strength, bw reflects effective web width, d 

reflects effective depth, Ef is modulus of elasticity of flexural FRP reinforcement and 

Es is modulus of elasticity of steel. For beams which have an effective depth greater 

than 300 mm,  Vc , is taken as: 

𝑉𝑉𝑐𝑐 = �
260

1000 + 𝑑𝑑
� 𝜆𝜆∅𝑐𝑐�𝑓𝑓𝑐𝑐′𝑏𝑏𝑤𝑤𝑑𝑑�

𝐸𝐸𝑓𝑓
𝐸𝐸𝑠𝑠

                                                                                 (2.7) 

 

The Equation 2.6 and Equation 2.7, the reduction in Vc , compared to the steel 

reinforced concrete is based on the ratio of the modulus of elasticity. However, this 

method does not consider the effect of shear span-to-depth ratio and longitudinal 

reinforcement ratio, which are believed to affect the shear strength. 

 

3.0 Experimental program 

3.1 Introduction 

This research program a systematic experimental investigation was carried out to 

examine the effect of some of the parameters, discussed in Section 2.2.3, on the shear 

strength of Glass Fiber Reinforced Polymer (GFRP) reinforced concrete beams 

without transverse reinforcement. Besides, steel reinforced concrete beams are 

fabricated as the control beam to investigate the effect of the type of reinforcements. 

A summary of the test parameters investigated is shown in Figure 2 .3.  

In this chapter, the details of the test specimens, materials and procedure used in the 

preparation of specimens, instrumentation of the test specimens, testing procedure 

and test set-up are discussed. 
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Figure 2.3: Summary of test parameters 

 

3.2 Detail of test specimens 

There are several structural members, such as retaining walls, foundation, upper and 

lower slabs of cut-and-cover tunnel and bridge deck, where shear reinforcement is not 

used. The specimens in the current research represent those members as well as 

beams and girders without transverse shear reinforcement. The main objective of the 

current research is to determine the concrete contribution to the shear strength. Eight 

concrete beams reinforced with GFRP bars and six control concrete beams reinforced 

with steel bars, were tested until failure. In order to realize the occurrence of shear 

failure, all tested beams were reinforced with longitudinal reinforcement only, its 

means, without shear reinforcement. All beams were simply supported and subjected 

to two point loads and known as four point bending test in laboratory. Based on the 

parameters investigated (Figure 2.3). The specimens were divided into three groups 

for GFRP reinforced beams. While, the steel reinforced concrete specimens were 

divided into two groups, since the effect of reinforcement ratio was not investigated 

for this type of reinforcement. Figure 2.6 shows the relationship between the 

specimens. 

𝑓𝑓𝑐𝑐′ = 28.5 MPa for the "Low-strength"  
𝑓𝑓𝑐𝑐′ = 33.5 MPa for the "Normal-strength"  
𝑓𝑓𝑐𝑐′ = 49.1 MPa for the "High-strength"  
 

Concrete 
strength 𝑓𝑓𝑐𝑐′ 

Shear span 
to depth a/d 

Reinforcement 
ratio ρ 

 

DESIGN AND DETAILS OF 
THE BEAM SPECIMENS 

 

Reinforcement 
type 

GFRP , Steel  

df = 10 mm 
df = 12 mm 
df = 16 mm 

 

The available diameters and length of the GFRP bars 

a/d = 2.5 

a/d = 3.0 

a/d = 3.1 

ρ = 0.52% 
ρ = 0.91% 
ρ = 0.93% 
ρ = 1.27 % 
ρ = 2.29 % 
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The beams in Group A1 were designed to investigate the effect of the longitudinal 

reinforcement ratio. two sets of beams with 150 mm width, 150 mm height and 1000 

mm length were reinforced only with GFRP reinforcements, the reinforcement ratio 

for this investigation were 1.27% and 2.29%.  

To investigate a/d of normal strength concrete beams, four sets of beams were 

selected in Group A2. Two beams reinforced with GFRP reinforcement sized with 

same width of 130 mm and same high of 230 mm, but different lengths, which are 

1500 mm and 1800 mm, it’s means, different a/d ratios, which are 2.5 and 3.0. 

Similarly, for other two beams reinforced with steel reinforcement.  

The effect of concrete strength was investigated using the beams in Group A3. Eight 

sets of beams with 200 mm width, 250 mm height and 2000 mm length, four for 

beams reinforced with GFRP and four for beams reinforced with steel 

reinforcements, the concrete strengths for this investigation were, low strength 

concrete 28.5 MPa and high strength concrete 49.1 MPa.  

The specimen identifications (IDs) as shown in Figure 2.4 were defined in the 

following manner. The first letter of the specimen ID was (B), all specimens started 

with this letter, which is first letter of (Beam). The second letter was for the type of 

reinforcement used (“G” for GFRP and “S” for Steel). This was followed by 

character for concrete compressive strength “L” for Low concrete strength, “N” for 

Normal concrete strength and “H” for High concrete strength, where the concrete 

compressive strength was followed by group numbers “A1” for group 1, “A2” for 

group 2 and “A3” for group 3. The last number was for the numbers followed in each 

group. The details of beams and test parameters that were used for the identifications 

of a specimen are highlighted in Table 2.2, and cross sections of specimens are shown 

in Figure 2.5. 

 
Figure 2.4. The nomenclature of test specimen 

 

B G N - A1 - 01 

01 : Number of beam 
A1: Group number (A1, A2 and A3) 
N  : Concrete strength 𝑓𝑓𝑐𝑐′ (N: Normal), (H: High) and (L: Low) 
G  : reinforcement type (GFRP: Glass fibre and S: Steel) 
B  : Beam 
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Table 2.2: Detail of beam and test variables 
G

ro
up

 Bar 

Type 
Specimens ID 

fc' 

(MPa) 

 

bw 

(mm) 

 

h 

(mm) 

 

d 

(mm) 

 

a 

(mm) 

 

a/d 

m 

(mm) 

 

L 

(mm) 

 

Lh 

(mm) 

 

L Total 

(mm) 

 

Longitudinal 

Reinforcement 
Axial 

stiffness 

Af Ef 

(Nx106) 

Parameters 

investigated Bar 

No. 

db 

(mm) 

Af 

(mm2) 

ρ 

(%) 

A1 GFRP 
BGN-A1-01 33.5 150 150 119 300 2.50 220 820 90 1000 2 12 226.2 1.27 11.83 ρ 

BGN-A1-02 33.5 150 150 117 300 2.50 220 820 90 1000 2 16 402.1 2.29 22.81 ρ 

A2 

GFRP 
BGN-A2-01 33.5 130 230 200 500 2.50 300 1300 100 1500 3 10 235.6 0.91 12.23 a/d 

BGN-A2-02 33.5 130 230 200 600 3.00 400 1600 100 1800 3 10 235.6 0.91 12.23 a/d 

Steel 
BSN-A2-03 33.5 130 230 200 500 2.50 300 1300 100 1500 3 10 235.6 0.91 49.43 a/d 

BSN-A2-04 33.5 130 230 200 600 3.00 400 1600 100 1800 3 10 235.6 0.91 49.43 a/d 

A3 

GFRP 

BGL-A3-01 28.5 200 250 219 670 3.10 350 1690 155 2000 2 12 226.2 0.52 11.83 ρ , 𝑓𝑓𝑐𝑐′ 

BGL-A3-02 28.5 200 250 217 670 3.10 350 1690 155 2000 2 16 402.1 0.93 22.81 ρ , 𝑓𝑓𝑐𝑐′ 

BGH-A3-03 49.1 200 250 219 670 3.10 350 1690 155 2000 2 12 226.2 0.52 11.83 𝑓𝑓𝑐𝑐′ 

BGH-A3-04 49.1 200 250 217 670 3.10 350 1690 155 2000 2 16 402.1 0.93 22.81 𝑓𝑓𝑐𝑐′ 

Steel 

BSL-A3-05 28.5 200 250 219 670 3.10 350 1690 155 2000 2 12 226.2 0.52 47.46 ρ , 𝑓𝑓𝑐𝑐′ 

BSL-A3-06 28.5 200 250 217 670 3.10 350 1690 155 2000 2 16 402.1 0.93 84.37 ρ , 𝑓𝑓𝑐𝑐′ 

BSH-A3-07 49.1 200 250 219 670 3.10 350 1690 155 2000 2 12 226.2 0.52 47.46 𝑓𝑓𝑐𝑐′ 

BSH-A3-08 49.1 200 250 217 670 3.10 350 1690 155 2000 2 16 402.1 0.93 84.37 𝑓𝑓𝑐𝑐′ 
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Note: All dimensions in mm 

          25 mm clear cover and 25 mm clear spacing between layers of reinforcement. 

Figure 2.5: Specimen geometry. 
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Figure 2.6: Relationship between the specimens. 

 

 

3.3 Materials  

In addition to the structural tests, material tests were carried out to determine the 

mechanical properties of the concrete and bars that were used in the beams. These 

tests and their results are presented next. 

 

3.3.1 Concrete 

The beams were cast using ready mix concrete (Table 2.3) that was delivered from a 

local batch plant. Three different type of concrete compressive strength were used in 

this study. A low strength concrete with specified nominal strength of 28.5 MPa at 28 

days, a normal strength concrete with specified nominal strength of 33.5 MPa at 28 

days and a high strength concrete with specified nominal strength of 49.1 MPa at 28 

days, with 20 mm maximum aggregate size were used for all mixes concrete. 
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Nine control (150 x 150 x 150 mm) cubes were cast from each concrete batch and 

cured under the same conditions as the beams; the cubes were used to determine the 

compressive strength of the concrete.  Three tests were carried out at 7, 14 and 28 

days, for purposes of quality and curing control. Figure 2.7 shows the concrete cube. 

The compressive strength was taken as the average of the three cubes. The concrete 

test results are detailed in Table 2.4. 

 

Table 2.3: Concrete mix design computation 

Properties 
Specified 

49.1 MPa 

Specified 

33.5 MPa 

Specified 

28.5 MPa 

Cement Content 460 kg/m3 433 kg/m3 378 kg/m3 

Free W/C Ratio Specified 0.35 0.39 0.46 

Maximum Aggregate  Size 20 mm 20 mm 20 mm 

Coarse Aggregate 
4.75≈12.5mm 560 587 kg/m3 670 kg/m3 

12.5≈20.0mm 560 533 kg/m3 450 kg/m3 

Fine Aggregate Content 682  kg/m3 686 kg/m3 700  kg/m3 

Water Content 163   kg/m3 168 kg/m3 174   kg/m3 

Concrete Density (kg/m3) 2425 2407 2372 

 

 

 
Figure 2.7: Concrete cube tests. 
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Table 2.4: Result of cube test 

No. of 

samples 

Low strength 

(N/mm2) 

Normal strength 

(N/mm2) 

High strength 

(N/mm2) 

7 days 14 days 28 days 7 days 14 days 28 days 7 days 14 days 28 days 

1 22.24 24.32 29.60 25.80 24.67 34.52 41.95 48.77 49.72 

2 21.56 26.12 26.67 29.22 30.12 32.86 45.66 46.86 51.89 

3 22.08 27.92 29.27 28.15 33.80 33.23 44.82 44.13 45.55 

Average 21.96 26.12 28.51 27.72 29.53 33.54 44.14 46.59 49.05 

 

 

3.3.2 Reinforcements  

The reinforcing materials used in this investigation were glass FRP bars and 

conventional steel bars, as shown in Figure 2.8. One type of GFRP bars was used as 

longitudinal reinforcement: E-Glass FRP. The bars were sand coated to enhance the 

bond between the bars and the concrete. The GFRP reinforcement bars used in this 

study are manufactured by FIDIA global service.  

The glass FRP bars were used in three sizes: No. 3 (db = 9.53 mm), No. 4 (db = 12.70 

mm) and No. 5 (db = 15.88 mm). the deformed steel bars had also two different sizes: 

(db = 9.8 mm), (db = 11.93 mm) and (db = 15.96 mm) were used in reinforcing the 

control beams.  

 

 
Figure 2.8: Different types of reinforcement used in this study 

GFRP bar ∅ 16mm  
 

GFRP bar ∅ 12mm  
 

Steel bar ∅ 12mm  
 

GFRP bar ∅ 10mm  
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The GFRP samples have been tested under axial tensile load using a universal testing 

machine (UTM) having a load capacity of 500 kN. Figure 2.9 shows the 

experimental setup for the GFRP tensile specimens. 

 

 

 
Figure 2.9: The experimental setup for GFRP bar testing 

 

 

The tensile test specimens were prepared in conformance with the guidelines of the 

ACI 440.3R-04 (ACI 2004), which specifies specimen dimensions and requirements 

of the testing procedure itself, Figure 2.10 shows a schematic sample of GFRP 

reinforced wrapped epoxy at both end, and geometrical characteristics of the GFRP 

test samples shown in Table 2.5. 

 

 

Tensile Machine 

P 
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Figure 2.10: Typical GFRP bar tensile test specimen with end anchors 

 

Table 2.5: Geometrical characteristics of the GFRP test samples 

Diameter of the 

GFRP bar,  

db 

Outside 

diameter of the 

steel tube 

Nominal wall 

thickness of the 

steel tube 

length of the 

steel tube,  

La 

The free length 

L = 40db 

(mm) (mm) (mm) (mm) (mm) 

10 35 4.8 300 400 

12 42 4.8 380 480 

16 42 4.8 380 640 

 

 

The mechanical properties of the reinforcing bars were determined by performing 

tensile tests on representative specimens; 12 GFRP specimens and 12 Steel 

specimens. The characteristics of the glass FRP and steel reinforcement used in this 

study are summarized in Table 2.6 and Table 2.7. It can see that the modulus of 

elasticity of GFRP reinforcement is significantly lower than the modulus of elasticity 

of steel reinforcement. GFRP bars in tension exhibit a linear elastic stress-strain 

response up to failure as seen in Figure 2.11. Unlike steel, no plastic behaviour such 

as yielding occurs in GFRP bars and failure is sudden and brittle with a large release 

of energy. 
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Table 2.6: Mechanical properties for GFRP bar 

Properties Ø 10 Ø 12 Ø 16 

Nominal Diameter, ∅ (mm) 9.53 12.70 15.88 

Areaa, (mm2) 71.3 126.7 198 

Modulus of Elasticity, Ef (GPa) 51.91 52.32 56.72 

Tensile Strength, ffu  (MPa) 769 719 690 

Ultimate Strain, εf (%) 1.52 1.43 1.34 

 

 

Table 2.7: Mechanical properties for Mild Steel bar 

Properties Ø 10 Ø 12 Ø 16 

Nominal Diameter, ∅ (mm) 9.80 11.93 15.96 

Areaa, (mm2) 75.4 111.8 200 

Modulus of Elasticity, Es (GPa) 209 209 209 

Yield Strength, fy (MPa) 480 480 480 

Ultimate Strain, εy (%) 0.23 0.23 0.23 

 

 

 
Figure 2.11: Stress-strain relationship of GFRP bar 
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3.4 Fabrication and curing practices 

3.4.1 Formwork and reinforcement layout 

The formwork was designed and constructed using 20 mm thick plywood sheets. The 

sides of the form work were cut according to the height off each beam. Figure 2 .12 

shows a typical formwork and reinforcement layout. The beams contained 

longitudinal reinforcement only that was placed at the bottom of each beam. The bars 

were placed on plastic chairs to maintain clear cover. The surface of the form work 

was oiled a day before casting process of the beam. 

 

 
Figure 2.12: Typical formwork and reinforcement layout 

 

3.4.2 Casting and curing beam 

Specimens that used in this study were cast from each batch of concrete as shown in 

Table 2.3. Fresh concrete is placed into the formwork. The distance of placement was 

as low as possible to avoid segregation. Finally, at the end of the pour, the top surface 

of each beam was leveled with a steel trowel to produce a smoother surface. 

After the final set of the concrete, the cast specimens were curing used wet gunny 

were watered 2 times a day for 7 days. After the curing process was finished for 28 

days, the beams were removed from the formwork and stored in the laboratory until 

the day of testing. Before testing, the beams were painted using white colour paint to 

facilitate the observation of the crack propagation. Figure 2.13 shown curing process 

and removing the beams from the formworks. 
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Figure 2.13: Curing process and removing the beams from the formworks 

 

3.5 Test procedure 

All beams were simply supported and subjected to two point loads and known as 

four point bending test in laboratory Figure 2.14. The specimens were tested in a 

MTS testing frame having a load capacity of 500 kN in compression, in displacement 

control. A spreader beam was used to divide the load into two points. The load was 

applied and increased continuously at a rate within the range 1 KN/mint. At each load 

increment, the beam was inspected and the cracks were monitored and mapped 

until failure load was reached as shown in Figure 2.15. 

 

Linear Variable Differential Transducer (LVDT) was used to measure the deflection 

of the beam when the load was applied. Figure 2.14 shows the location of LVDTs 

which were placed to the behind at bottom part of the beam. A total of three LVDTs 

were used, one was placed at the center of the beam while the other two at the middle 

of shear span.  

A data logger was recorded and stored the test data for each load increment at a 

frequency of one reading per second. All components including the applied load and 

deflections were connected to data logger in order to collect the experimental data.  
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Figure 2.14: Schematic diagram of the test setup for the beam 

 

 
Figure 2.15: Test setup and cracks mapping 

 

 

4.0 Experimental results and analysis 

4.1 Introduction 

The experimental results of the current investigation are presented in this section. As 

mentioned earlier, a total of fourteen beams reinforced with GFRP and steel were 

tested. The experimental program was undertaken to investigate the influence of four 

parameters on the behaviour and shear strength of concrete beams. The parameters 

were the shear span-to-depth ratio (a/d), longitudinal reinforcement ratio (ρ), 

concrete compressive strength (𝑓𝑓𝑐𝑐′), and reinforcement type. 
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The results are presented in terms of crack patterns, load-deflection behavior and 

failure modes. The test results are analyzed to show the effect of the different 

parameters on the behaviour and capacity of the test beams. Finally, the test results 

are compared with the theoretical prediction of some of the proposed shear design 

expressions and cods predictions that are available in the literature. 

 

4.2 General  behaviour 

4.2.1 Crack patterns 

During the test and at the end of a load increment, the growth of cracks was marked 

on each beam. This was carried out to identify the direction of crack propagation and 

to determine the differences in crack patterns of the beams. Figure 2.16 shows the 

typical gradual formation of cracks in a test beam (BGN-A2-02). The thick lines in 

the figure are used to identify the cracks that were formed at failure. The slope of the 

inclined crack at failure is shown on the figures of the crack patterns.  The cracks 

were drawn to scale as in the actual tests. The extent t of a crack at the end of a load 

increment was marked by a short horizontal line. The loads shown at each crack tip 

corresponds to the actuator load in kilo-newton (KN). This load was twice the value 

of the load at each loading point. For all beams, the first flexural cracks initiated at 

the bottom of the beam in the constant moment region, where the flexural tension 

stress was the highest and the shear stress was zero. The observed flexural cracks 

propagated vertically upward to the level of the neutral axis, which reflected the 

absence of shear stress. As the load was increased, additional flexural cracks were 

developed within the shear span. Due to the presence of shear stresses, these flexural 

cracks became progressively more inclined and propagated towards the load points. 

These types of cracks are known as flexural-shear cracks. These cracks extended 

rapidly through the beam leading to the so-called diagonal-tension failure. The 

duration between the formation of an inclined crack and failure of a beam was small. 

ASCE-ACI Committee 426 (1973) reported that for beams with shear span-to-depth 

ratio between 2.5 and 6.0, the inclined flexural cracks extend to form a diagonal 

tension crack. This behavior was observed for most of the beams in the current study. 

Photographs of the crack patterns for all beams at failure are shown in Appendix I. 
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Figure 2.16: Typical formation of cracks in a beam during a test 

 

Figure 2.17 shows the crack patterns for the beams in Group A2 with variable shear 

span-to-depth ratio (a/d). In general, the slope of the inclined crack decreased as the 

a/d ratio of the beam increased for all reinforcement types. This is because; at certain 

shear load, the moment as well as flexural stress increases as the shear span to depth 

ratio of a beam increases. Higher flexural stress could lead to the reduction in the 

inclination of shear cracks. Hence, the horizontal projection of the inclined cracks 

increased with an increase in the shear span-to-depth ratio, for beams with the same 

depth.  

Beam and 
loading 

First crack 

Propagation 
of cracks and 
new cracks in 
shear span at 
18 KN 

Inclined 
cracks at  
24 KN 

Crack 
pattern at 
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It can be seen from Figure 2.17 that for the same shear span-to-depth ratio, the slope 

of the inclined shear crack was almost the same for both types of reinforcements. At 

a certain load level, and prior to the formation of inclined cracks, the flexural cracks 

penetrated deeper into the beam for GFRP reinforced beams than in steel reinforced 

beams. This could be due to the higher axial stiffness of the steel reinforcement. 

 

Figure 2 .17: Crack patterns for beams with different shear span-to-depth ratios 

 

Crack patterns for normal strength concrete beams with different depths and different 

reinforcement types are shown in Figure 2.18. The beams had a constant shear span-

to-depth ratio. It was noted that the slope of the inclined crack at failure for all beams 

was close to the 47o. This result revealed that, as the shear span-to-depth ratio of the 

beams remains constant, the horizontal projection of the inclined crack at failure was 

almost same irrespective of the reinforcement type and depth. The number of cracks  

in the  shear span  zone  during  failure was  found  to be  approximately  the  same  
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for all reinforcement  types and depths. At a certain load level, the flexural cracks 

penetrated deeper into the beam as the axial stiffness of the reinforcing bars 

decreased.  

 

 

Figure 2.18: Crack patterns for normal strength concrete beams with different depths 

The effect of reinforcement ratio on the crack patterns of Group A1 beams with 

height equal to 150 mm is shown in Figure 2.19. The beams in this set had the same 

shear span-to-depth ratio. It was noted that the slope of the inclined crack at failure 

for the two beams was almost same. Moreover, the number of cracks was found to be 

approximately the same. It can be seen from Figure 2.19 that the horizontal 

projection of the cracks for beams was less than the effective depth (d).  
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Figure 2.19: Crack patterns for beams with height equal to 150 mm 

 

The crack patterns of Group A3 beams with different compressive strengths and 

different reinforcement ratios are shown in Figure 2.20 and Figure 2.21. The concrete 

strengths and reinforcement ratios of the beams were (28.5 MPa and 49.1 MPa), and 

(0.52% and 0.93%), respectively.  

As a result, in the case of BGL-A3-01 and BGH-A3-03 with ρf = 0.52%, a number of 

random cracks was also detected in the concrete around the longitudinal tension 

reinforcement for both sides. One of the vertical cracks in the shear span became 

critical and extended towards the load point at the ultimate stage. The failure of these 

beams was observed to be mainly due to the low modulus of elasticity of the GFRP 

bars. For beam BSL-A3-05 and BSH-A3-07 with ρs = 0.52%, the initial shear 

cracking in the specimen behaves similarly as the previous specimens. The 

secondary crack also propagates for both sides as shown in Figure 2.20.  

The failure of the beams with ρ = 0.93%, the diagonal crack started first and when 

force was increased development of secondary cracks propagated on one side of the 

beam. Although vertical cracks and inclined cracks were the main cracks that 

developed during the loading stage in all the beams tested, some steel reinforced 

beams and GFRP reinforced beams exhibited horizontal cracks along the 

reinforcement. The crack width in the shear span in the beams with GFRP bar was 

observed to be more when compared to that in the corresponding beams with steel 

bar as shown in Figure 2.21.  
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In general, the beams in this group with same reinforcement ratio and different 

concrete strength had the same crack patterns. This result is in good agreement with 

the other test results of FRP reinforced concrete beams without web reinforcements 

(Tureyen and Frosch 2002, EI-Sayed et al.2006). 

 

 

Figure 2.20: Crack patterns for beams with different concrete strengths  

and reinforcement ratio (ρf = 0.52%) 
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Figure 2.21: Crack patterns for beams with different concrete strengths  

and reinforcement ratio (ρf = 0.93%) 

 

4.2.2 Cracking loads 

The load at first flexural cracking was recorded for all beams. The first flexural crack 

occurred when the moment at a section of the beam reached the cracking moment. 

Therefore, the shear load, which created first cracking at midspan, V cr-obs , will vary 

according to the loading position and the shear span of the beams. Hence, for beams 

with identical cross section, V cr-obs may not be the same. The observed cracking 

loads V cr-obs, ultimate shear loads (Vexp), and failure modes are tabulated in Table 2.8. 
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In general, and for all reinforcement types, the cracking load decreased as the shear 

span-to-depth ratio was increased, and the cracking loads increased with an increase 

in the reinforcement ratio, height of beam, and concrete strength. These results were 

expected according to the theoretical predictions of the cracking loads of these 

beams. 

 

4.2.3 Load deflection behaviour 

The deflections of all beams were measured using linear variable differential 

transducer (LVDT) and were recorded using a high-speed data acquisition system as 

mentioned in section 3.5. Typical load versus deflection curves obtained from the 

three LVDTs are shown in Figure 2.22 (Beam BGH-A2-01). The deflections of all 

beams at mid-span are tabulated in Table 2.8. The reactions at the supports are equal 

to the applied load, which are one half of the actuator load. The shear force in a beam 

is equal to the applied load. Hence, in the discussion of the results, the term shear 

load is used instead of the applied load. The load versus deflection diagram that is 

shown in the figures contains three stages behaviour: before cracking, transition from 

un-cracked to cracked stage, and after cracking. Since the beams in this investigation 

failed shortly after the formation of diagonal cracks, the shear crack induced 

deformation was small and this was neglected.  
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Table 2.8: Experimental results 
G

ro
up

 

Bar 
Type 

Specimens ID 

Beam properties Experimental observations 

𝑓𝑓𝑐𝑐′ b h d a/d L Total ρ V cr-ops P exp V exp Deff. Failure 
Modes 

(MPa) (mm) (mm) (mm) 
 

(mm) (%) (KN) (KN) (KN) (mm) 
 

A1 GFRP 
BGN-A1-01 33.50 150 150 119 2.5 1000 1.27 6.92 34.32 17.16 10.54 BF 
BGN-A1-02 33.50 150 150 117 2.5 1000 2.29 7.32 41.22 20.61 6.48 SC 

A2 
GFRP 

BGN-A2-01 33.50 130 230 200 2.5 1500 0.91 7.12 40.62 20.31 13.22 DT 
BGN-A2-02 33.50 130 230 200 3.0 1800 0.91 6.05 32.36 16.18 13.12 DT 

Steel 
BSN-A2-03 33.50 130 230 200 2.5 1500 0.91 7.63 53.86 26.93 7.02 Y-DT 
BSN-A2-04 33.50 130 230 200 3.0 1800 0.91 6.90 43.90 21.95 11.09 Y-DT 

A3 

GFRP 

BGL-A3-01 28.50 200 250 219 3.1 2000 0.52 8.90 51.80 25.90 13.35 ST 
BGL-A3-02 28.50 200 250 217 3.1 2000 0.93 9.10 71.20 35.60 9.84 SC 
BGH-A3-03 49.10 200 250 219 3.1 2000 0.52 10.45 59.52 29.76 14.12 ST 
BGH-A3-04 49.10 200 250 217 3.1 2000 0.93 12.50 74.20 37.10 10.71 ST 

Steel 

BSL-A3-05 28.50 200 250 219 3.1 2000 0.52 10.30 62.50 31.25 6.08 ST 
BSL-A3-06 28.50 200 250 217 3.1 2000 0.93 14.80 85.60 42.80 6.88 SC 
BSH-A3-07 49.10 200 250 219 3.1 2000 0.52 11.80 71.36 35.68 5.74 ST 
BSH-A3-08 49.10 200 250 217 3.1 2000 0.93 16.95 89.60 44.80 6.12 SC 

SC = Shear-compression failure 
ST = Shear-tension failure 
DT = Diagonal tension failure 
Y-DT = Diagonal tension failure after yielding (steel reinforcement) 
BF = Bond failure 
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Figure 2.22: Typical load versus deflection curves (Beam BGH-A2-01) 

 

The load-deflection behaviour of 150 mm thick beams in Group A1 for different 

reinforcement ratios. In general, the load-deflection behaviour of the beams can be 

defined by three stages: before cracking, transition from un-cracked to cracked stage, 

and after cracking, as shown in Figure 2.23. It can be seen that all beams behaved 

linear elastic at the beginning. However, the load-deflection behaviour in the second 

stage, which is the transition zone from the uncracked to the cracked stage, where the 

existing cracks grow and new flexural cracks developed in the constant moment 

zone.  

The behaviour of the beams after the second stage; for  the  same  load  level,  and  as 

expected,  the  deflection  of  the  beam decreased as the axial stiffness of GFRP bars 

increased. Table 2.9 shows the axial stiffness of GFRP bars. This result is in good 

agreement with the other test results of FRP reinforced concrete beams without web 

reinforcements (Tureyen and Frosch 2002, EI-Sayed et al.2006a). 

Table 2.9: Axial stiffness of the reinforcing bars in different beams 

Group 
Bar 

Type 
Beam ID 

Ef 

(GPa) 
ρf 

Axial 

stiffness 

(GPa) 

A1 GFRP 
BGH-A1-01 52.32 1.27 0.66 

BGH-A1-02 56.72 2.29 1.30 
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Figure 2.23: Load-deflection behaviour of 150 mm thick beams in Group A1 

 

Figure 2.24 shows the applied shear load versus mid-span deflections for all of the 

beams in Group A2 with different shear span-to-depth ratio (a/d). Before flexural 

cracking occurred, the load-deflection behaviour was approximately linear. In this 

stage, the stiffness of the beams with the same shear span to depth ratio was 

approximately the same for different reinforcement types. This indicated that the 

deflections before cracking were not affected by the reinforcement type. The beam 

progressively changed from an un-cracked to fully cracked state, where the existing 

cracks grow and new flexural cracks developed in the constant moment zone. At the 

end of this stage, the behaviour of the beams became shortly linear, this linear 

behaviour continued until failure. 

For the same shear span-to-depth ratio, and at a certain load level, the deflections of 

the GFRP reinforced beams were higher than those reinforced with steel. This could 

be attributed to the low axial stiffness of GFRP reinforcement. Nonetheless, it should 

be noted that GFRP reinforced members have greater tension stiffening than steel 

reinforced members (Biscboff and Paixao 2004). 
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(a) (b) 

Figure 2.24: Load-deflection profile of beams in Group A2: (a) a/d = 2.5,  
and (b) a/d = 3.0 

 

The concrete strength did not have a significant effect on the shape of the load-

deflection behaviour for 250 mm thick beams. All beams in Group A3 showed 

similar load-deflection characteristics as shown in Figure 2.25. It can be seen that all 

beams behaved linear elastic at the beginning, and as the load increases, the beam 

starts to behave non-linear due to the development of cracks until failure occurred. 

However, beams reinforced with steel bar had higher load compared to GFRP bar 

reinforced concrete beams. This could be attributed to their low modulus of elasticity 

of GFRP bar. 

  
(a) (b) 

Figure 2.25: Load-deflection behaviour of 250 mm thick beams with different 

concrete strengths and same reinforcement types and ratios in Group 4:  

(a) ρf = 0.52% (b) ρf = 0.93%  
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(c) (d) 

(cont.) Figure 2.25: Load-deflection behaviour of 250 mm thick beams with different 

concrete strengths and same reinforcement types and ratios in Group 4:  

(c) ρs= 0.52% and (d) ρs= 0.93% 

 

4.2.4 Failure modes 

The  observed  failure  modes  for  the  beams  tested  in  this  investigation  were 

reported  in Table 2.8. Photographs of the failure mode of all beams are shown in 

Appendix I. Some of the failure modes are discussed in this section. In general, the 

failure modes of the beams were either by shear-tension, or shear-compression, or 

diagonal tension. For some beams, a secondary bond/anchorage failure was observed 

within the shear span as shown in Figure 2.26. When shear failure was imminent, 

new type of cracks developed from the existing flexural shear cracks and propagated 

along the longitudinal reinforcement towards the support leading to a bond or 

splitting failure. This can be attributed to the fact that when aggregate interlock was 

lost due to the opening of the inclined crack, the redistribution of the internal forces 

took place. As the aggregate interlock was lost, the dowel action in the longitudinal 

reinforcement would increase to maintain equilibrium. The sudden increase in the 

dowel action increased the vertical tensile stresses in the concrete surrounding the 

bars. This stress in combination with the existing spitting stress, due to the flexural 

bond, leads to the final spitting failure along the plane of the reinforcement.  (Figure 

2.26) shown, splitting along the reinforcement stopped before the support and did not 

cause any splitting past the support, which occurred simultaneously with the diagonal 

tension crack propagating towards the concentrated load. 
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Figure 2.26: Bond/anchorage failure of beam BGN-A2-02 

 

Typical shear-compression failure mode was observed for normal strength concrete 

beams in Group 1. However, beam BGN-A1-01, for which the compressive strength 

was 33.5 MPa and reinforced with GFRP bars, failed by bond failure between the 

bars and the sand coating. One of the cracks near the loading point became 

excessively wide as the bars pulled off. The failure of this beam was sudden and 

associated with the spalling of concrete around the bars as shown in Figure 2.27. 

 

Figure 2.27: Failure pattern of beam BGN-A1-01 

 

Although beam BGL-A3-02 failed by shear-compression near the loading point, this 

beam   continued to carry load after the initial failure as shown in Figure 2.28. 

 

Figure 2.28: Failure pattern of beam BGL-A3-02 

 

 

 BGN-A2-02 

 

 BGL-A3-02 
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In general, the failure modes were found to be more brittle, when the depth and the 

reinforcement ratio of the beams were increased for each type of reinforcing bars. 

Steel reinforced beams had the highest axial stiffness of the longitudinal bars and 

these beams showed more brittle behavior than the GFRP reinforced beams. This 

means, that the ductility of the beams that failed in shear decreased as the axial 

stiffness of the beams increased, which is evident from the test results of the beams 

in these groups. 

 

4.3 Analysis of test data 

4.3.1 Shear strength 

Bažant and Kazemi (1991) considered the first peak load as the shear strength of a 

beam as this load agreed reasonably well with the overall trend of the size effect that 

the authors proposed. The authors also mentioned that it is unreasonable to design a 

beam for the second main peak load, regardless of which main peak is higher. 

Tureyen and Frosch (2002) identified the shear strength of the flexural members by 

the formation of an inclined crack and the subsequent sudden drop in load carrying 

capacity. The differences between the formation of inclined cracking loads and the 

ultimate loads were within 15% of each other.  

According to Rebeiz (1999), the shear strength at ultimate failure is a more defined 

and reliable measure than the cracking shear strength. It should be noted that for 

some beams more than one peak might appear in the load-deflection curve. This 

would occur due to the formation of an inclined crack at one end of the beam that is 

arrested and eventually the beam fails due to the inclined crack at the other end of the 

beam. 

In this investigation, the maximum load at which there was either a complete and 

abrupt failure, as shown in Figure 2.22 (Beam BGH-A2-01). For a few beams, the 

inclined cracking load was considered as the failure shear strength. This failure shear 

strength, which is the concrete contribution, Vc, is identified as  Vexp  in this chapter 

and is reported in Table 2.8. 
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4.3.2 Effect of main variables 

4.3.2.1 Effect shear span-to-depth ratio, a/d 

The effect of shear span-to-depth ratio on concrete shear strength of the test beams in 

Group A2 is shown in Figure 2.29. In general, the shear strength decreased with an 

increase in the shear span-to-depth ratio.  

 

 

Figure 2.29: Effect shear span-to-depth ratios of experimental shear strength of 

beams in Group A2 

 

4.3.2.2 Effect of Reinforcement Ratio, ρ 

The  test  results  for  different  reinforcement ratios  and  different  reinforcement 

types are illustrated in Figure 4.20 for some beams in Group A3 with height equal to 

350 mm and 𝑓𝑓𝑐𝑐′ = 28.5 MPa, the reinforcement ratios were 0.52% and 0.93% for 

GFRP and steel reinforced beams. It can be seen (Figure 2.30 a) that the shear 

strength increased with an increase in the longitudinal reinforcement ratio. This was 

more prominent in Figure 2.30 (b) when the shear strengths were normalized by 

�𝑓𝑓𝑐𝑐′𝑏𝑏𝑤𝑤𝑑𝑑 . Gross et al. (2003) also observed a slight increase in the shear strength of 

GFRP reinforced   beams with an increase in the longitudinal reinforcement ratio. It 

can be shown here (Figure 2.31) that the increase in shear strength is related to 

approximately the cubic root of the axial stiffness of the reinforcing bars.  
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Figure 2.30: Effect of reinforcement ratio for 350 mm thick beams: (a) experimental 

shear strength, (b) normalized shear strength 

 

 

Figure 2.31: Variation of normalized shear strength with respect to the cubic root of 

the axial stiffness 

 

4.3.2.3 Effect  of Concrete Compressive Strength,  𝒇𝒇𝒄𝒄′  

The effect of concrete strength was investigated beast of reinforcement ratio (ρ) 52 % 

and 93%. The results of the beams in Group A3 with height equal to 250 mm and 

compressive strengths (𝑓𝑓𝑐𝑐′) of 28.5 and 49.1 MPa are shown in Figure 2.32. For these 

beams, a slight increase in shear strength was observed for an increase in the 

concrete strength. Similar behaviour was observed for FRP reinforced slender beams 

by EI-Sayed et al. (2006).  
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(a) (b) 

Figure 2.32: Effect of concrete compressive strength, experimental shear strength for 

250 mm beams height with reinforcement ratios; (a) ρ = 52% and (b) ρ = 93%. 

 

However, the normalized shear strength (𝑉𝑉𝑒𝑒𝑒𝑒𝑝𝑝/�𝑓𝑓𝑐𝑐′𝑏𝑏𝑤𝑤𝑑𝑑) shows a decreasing trend 

with an increase in the concrete strength (Figure 2.33). The decrease in normalized 

shear strength with an increase in the concrete strength can be explained by the 

decrease in shear resistance by the aggregate interlock. For high strength concrete, 

the crack passes through the aggregate reducing the aggregate interlock forces EI-

Sayed et al. (2006).  

 

  
(a)  (b) 

Figure 2.33: Normalized shear strength for 250 mm beams height with reinforcement 

ratios; (a) ρ = 52% and (b) ρ = 93%. 
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4.4 Comparison of experimental results with major design equations 

4.4.1 Introduction 

The shear strengths of the beams were predicted using the theoretical prediction 

methods of the design codes and guidelines for FRP reinforced concrete members, 

which include the American Concrete Institute (ACI) standard ACI 440.1R-06 (ACI 

2006); Canadian Standards Association (CSA) standards CSA S806-02 (CSA 2002); 

the Japan Society of Civil Engineering (JSCE) standard (JSCE 1997); and Intelligent 

Sensing for Innovative Structures, Canadian Network of Excellence (ISIS 2007). All 

of these methods were discussed in Section 2.2. The predicted results were compared 

with the experimental results. The predicted shear strengths from different methods 

are presented and discussed in the following section. 

 

4.4.2 Comparison of the results 

The experimental shear strength of the testing data (Vexp) compared with shear 

strength (Vtheor) for different shear design methods are shown in Table 2.10.  For 

clarity, the results of major design methods (CSA, ACI, JSCE, and ISIS) are plotted 

as a bar chart in Figures 2.34 to 2.37 and these will be discussed. For consistency 

with different design methods, only the results of GFRP reinforced beams are shown. 

It should be noted that the material resistance factor (φc) and the concrete density 

factor (λ) in CSA S806-02 method were considered equal to 1.0, and member safety 

factor (ϒb) in JSCE (1997) design methods was considered equal to 1.3, while βn was 

considered equal to 1.0 for sections without axial force resultant.  It can be seen from 

Table 2.10 that the average ratios of the shear strengths between the experimental 

and the predicted values are conservative for all design methods. Notice that the 

JSCE (1997) and ISIS-M03-07 the methods predicted shear strengths are better than 

the other methods for all beams.   

The statistical results from Table 2.10 show that the average and the standard 

deviation of Vexp/Vtheor are greater than one for all four design methods. The ISIS 

method shows more consistent results than all other methods (Figure 2.34). This can 

be attributed to the fact that this method considers most of the shear strength 

parameters, which are believed to affect the shear strength. The average ratio 

predicted using this method is very close to 1.0, However, This method shows more 
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conservative results for beams BGN-A1-01, BGN-A1-02 and BGL-A3-02. On the 

other hand, the average and the standard deviation of Vexp/ Vtheor for ACI method are 

higher than the other methods. One of the possible reasons could he the fact that this 

method considers the shear strength for uncracked compression zone only and 

neglects any interface shear transfer. Another possible reason is that this method does 

not consider the shear span-to-depth ratio and size effect in shear, as shown in Figure 

2.35. Although, the average ratio predicted using the CSA is high as shown in Figure 

2.36, the standard deviation of the results are the second highest followed  by ACl 

and the number of unconservative results is the highest for this method. The 

consistency in the ratios of the experimental to the predicted values in the JSCE 

method (Figure 2.37) is less than the CSA method. 
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Table 2.10: Comparison of the experimental results with different design methods 

G
ro

up
 

Specimens ID 

Exp. 
ISIS 

M03-07 

ACI 

440.1R-06 

CSA 

S806-02 

JSCE 

(1997) 
ISIS 

M03-07 

ACI 

440.1R-06 

CSA 

S806-02 

JSCE 

(1997) 

Vexp Vtheor Vtheor Vtheor Vtheor 

(KN) (kN) (kN) (kN) (kN) Vexp/Vtheor Vexp/Vtheor Vexp/Vtheor Vexp/Vtheor 

A1 
BGN-A1-01 17.16 10.32 8.17 8.15 9.0 1.66 2.10 2.11 1.90 

BGN-A1-02 20.61 10.56 10.77 10.03 11.1 1.95 1.91 2.05 1.85 

A2 
BGN-A2-01 20.31 14.97 10.20 10.59 11.7 1.36 1.99 1.92 1.73 

BGN-A2-02 16.18 14.97 10.20 10.59 11.7 1.08 1.59 1.53 1.38 

A3 

BGL-A3-01 25.90 23.35 12.76 14.05 15.2 1.11 2.03 1.84 1.70 

BGL-A3-02 35.60 24.09 17.13 17.38 18.8 1.48 2.08 2.05 1.89 

BGH-A3-03 29.76 30.65 14.75 16.84 17.9 0.97 2.02 1.77 1.66 

BGH-A3-04 37.10 31.62 19.88 20.83 22.2 1.17 1.87 1.78 1.67 

Mean = 1.08 1.56 1.50 1.38 
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Figure 2.34: Comparison of the experimental results with ISIS M03-07 predictions 

 

 

 

Figure 2.35: Comparison of the experimental results with ACI 440.1R-06 predictions 
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Figure 2.36: Comparison of the experimental results with CSA S806-02 predictions 

 

 

 

Figure 2.37: Comparison of the experimental results with JSCE (1997) predictions 
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5.0 Conclusion 

Eight concrete beams reinforced with GFRP bars and six control concrete beams 

reinforced with steel bars were tested until failure. In order to realize the occurrence 

of shear failure, all tested beams were designed reinforced with longitudinal 

reinforcement only and without shear reinforcement. The beams were simply 

supported and subjected to two point loads and known as four point bending test in 

laboratory. Based on the Experiment results, Theoretical values and Analytical 

Results, analysis purposes are to investigate the influence of four parameters on the 

behaviour and shear strength of concrete beams. The parameters were the shear span-

to-depth ratio (a/d), longitudinal reinforcement ratio (ρ), concrete compressive 

strength (𝑓𝑓𝑐𝑐′), and reinforcement type. The following Conclusions can be drawn from 

the experimental investigation: 

1. Beams reinforced with GFRP bars showed similar shear behaviour compare to 

that of beams reinforced with steel. However the shear strength of beams 

reinforced with GFRP bars lower than that beams reinforced with steel bars. 

This fact is due to the low elastic modulus of GFRP bars. 

2. The load-deflection behaviour of the beams before cracking was governed by the 

gross section properties of the beams, and the behaviour after cracking was 

approximately directly proportional with the axial stiffness of the reinforcing 

bars. The beams reinforced with GFRP reinforcement exhibited much greater 

deflections than those with steel reinforcement. In addition, shear crack widths, 

measured at the same load levels, were also generally larger for the GFRP RC 

beams than those observed in the equivalent steel RC beams 

3. The ratio of longitudinal reinforcement, ρ is directly proportional with the 

capacity of beam. The distance of beam consisting GFRP bars and control beam 

also influence with ρ, when the ρ is increasing the distance of cracking 

increasing also. The value of angle shear cracking also reduces when the ratio of 

longitudinal reinforcement ρ is increasing. 

4. An inclined crack was formed for almost all of the beams before failure. The 

angle of the inclined crack, at failure, decreased with an increase in a/d. For 
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beams with the same a/d, the angle of inclined cracks at failure was almost the 

same for different reinforcement types and concrete strengths. 

5. Most of the beams in this investigation failed in shear. The observed failure 

modes were shear-tension, shear-compression, or diagonal-tension. For one 

beam, a bond/anchorage failure was observed. 

6. Comparisons between shear capacity calculated from four different methods 

recently developed in the literature and that measured in the current study show 

inconsistent agreement as shown in Table 2.10. 

 

6.0 Recommendation 

There are some recommendations that can be suggested to improve the usage of 

GFRP bars as reinforce in concrete. 

1.  All tested beams in this Research were reinforced with longitudinal 

reinforcement only and without shear reinforcement. Do more research on 

concrete beams reinforced with GFRP bars with consist shear reinforcement. 

2.  Research can be done on performance of other structural members with 

GFRP bars such as columns, shear wall and slabs. 

3.  Considerations on the elastic modulus and proper design method are 

important when GFRP bars are to be used as reinforcement for concrete 

beam. 

4.  Further experimental and analytical studies should be conducted to 

investigate the shear behaviour of concrete beams reinforced with GFRP bars 

with a wider range of reinforcement ratios and for both normal and high 

strength concrete. 

5.  Since the current experimental work was carried out using only GFRP 

reinforcement, similar experiments should be conducted on concrete beams 

reinforced with CFRP or AFRP to be able to formulate general design rules 

for shear behaviour of concrete beams reinforced with FRP bars. 
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6.  A series of continuous FRP reinforced concrete beams should be tested under 

different loading configurations in order to compare the experimental shear 

strength with theoretical values. For instance, in a two span continuous beam 

under symmetrical point loads, the load may be applied at various distances 

from the middle support. 
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CHAPTER 3 

DEBONDING PHENOMENON, OF FRP COMPOSITES 

APPLIED TO A CONCRETE SURFACE, A STATE-OF-

THE ART 

 

1.0 Introduction 

Fibre reinforced polymer (FRP) composites materials have experienced a continuous 

increase of use in structural strengthening and repair applications over the past 

decades. Thus such, the flexural strength of reinforced concrete (RC) beams can be 

increased significantly by externally bonded FRP sheets. Several issues related to the 

structural performance of FRP strengthened RC elements have been studied. Among 

them, the interfacial debonding mechanism between FRP composites and concrete 

substrate may be the most fundamental one, as debonding is brittle and often occurs 

in a thin layer of concrete close to the FRP composite.  

Bond behavior is influenced by the physical and mechanical properties of the FRP 

composite, concrete dimensions and properties, adhesive properties and loading 

conditions as shown in Table 3.1; the influencing factors are: 

 

Table 3.1. Factors affecting the bond behavior 

Elements Influencing Factors 

Concrete Modulus of elasticity, strength, thickness, surface condition 

FRP Composite 
Modulus of elasticity, strength, thickness, type,  surface condition, 

stiffness, width effect, length effect 

Adhesive 
Modulus of elasticity, strength, number of plies, thickness, type, 

glass transition temperature, spread 

Loading Condition Load speed, Bending, shearing, punching, cyclic 
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2.0 Failure modes in FRP-concrete bond system 

Many experimental investigations have been concerned with failure modes of 

reinforced concrete beams and slabs strengthened with FRP laminates Ritchie et al. 

(1991), Saadatmanesh and Ehsani (1991), Chajes et al. (1994), Shahawy et al. 

(1996), Arduini and Nanni (1997), Maalej and Bian (2001), Smith and Teng (2001), 

Sayed-Ahmed et al. (2009), Oehlers (2005), and Lu et al. (2005). It is worth noting 

that the terminology used to describe the various failure modes varies within the 

literature. The failure modes of concrete beams and slabs strengthened by plate 

bonding can be classified into two categories based on the duration of composite 

action between the materials fib Bulletin (2001). i) Flexural or Classical Failure 

Modes (Full Composite Action): When composite action is maintained until the 

ultimate load is reached, failure can occur in one of three modes depending on the 

reinforcement ratio and the shear strength of the beam: 

• Concrete crushing prior to or following yielding of the steel reinforcement. 

• Tensile rupture of the FRP. 

• Shear failure of the concrete beam. 

1. Concrete crushing: Concrete crushes in the compression zone before or after the 

yielding of the inner reinforcing steel, while the FRP composite is intact. This 

mode of failure will be brittle and undesirable particularly if the concrete crushes 

before steel yielding. 

2. FRP rupture: For relatively low ratios of both internal and external reinforcements, 

failure may occur through tensile fracture of the FRP strip. 

3. Shear failure: The reinforced concrete beam may reach its shear limit prior to any 

kind of flexural failure if it is not properly reinforced in shear. 

Generally, Failure can take place by concrete crushing in compression, steel yielding 

followed by concrete crushing, steel yielding followed by FRP rupturing, and FRP 

debonding Buyukozturk et al. (2004)  

 

However, when composite action is not maintained until the ultimate load is reached, 

premature failure results from debonding of the FRP laminates, termed: ii) 

Debonding Failure Modes (Loss of Composite Action): when a reinforced concrete 

beam is subjected to the external forces, high tensile and shear forces develop 
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through the beam. These stresses contribute to debonding of the FRP plate from 

the substrate.  

 

Debonding failures occur before the full strength of the FRP sheet has been reached 

and the majority of research has scrutinized the debonding failure mode for several 

reasons. 

One reason is that debonding is the most common mode of failure observed in 

flexural strengthened with FRP Buyukozturk et al. (2004). Second, when debonding 

occurs, the full FRP capacity is lost with loss of composite action Teng and Chen 

(2007), so require increased attention by structural engineers. For these reasons, it is 

important to understand and be able to accurately predict the behavior of bonded FRP 

sheets. 

 

Debonding failure may occur at one of the following different interfaces as shown in 

Figure 3.2 through Smith and Teng (2002), Teng et al. (2002), Lu et al. (2005), 

Oehler et al. (2003), Teng et al. (2004), Teng and Chen (2007). 

Debonding failures can be further grouped into two categories; 

• Plate-end interfacial debonding Figure 3.2. (d) and (e). 

• Intermediate (flexure or flexure shear) crack- induced interfacial debonding Figure 

3.2.  (f) and (g) 

 

1. Intermediate crack induced debonding (IC Debonding): where it initiates at 

flexural or flexural-shear crack in the high moment region.  The debonding crack 

then grows towards one of the laminate ends.  

2. Plate end interfacial debonding (End plate debonding, EPD): where it initiates at 

the termination of the FRP sheet, and then propagates toward the mid-span of a 

concrete beam. The failure can either travel up to the tensile reinforcement and 

then along the reinforcement, so that the concrete cover debonds, which is termed 

concrete cover separation, or it can propagate at the FRP-concrete interface, which 

is termed plate end interfacial debonding. This debonding failure is depends on 

properties of the materials as well as the interface between FRP and the substrate 

(Gunes et al. 2013). 
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Probable debonding scenarios are illustrated in Figure 3.1. Whereas, Figure 3.2. 

illustrates the possible failure modes for strengthened flexural RC member.  

 

 
Figure 3.1. Possible debonding locations 

 

 
Figure 3.2. Illustrates the possible failure modes for strengthened flexural RC 

member 

 

3.0 Test setups and methods 

Many test setups have been used in the past to determine FRP-to-concrete bond 

behavior and strength. An accurate bond strength model is necessary to accurately 

predict failures of FRP shear and flexurally strengthened RC beams, since failure is 

very often due to debonding. Chen et al. (2001) grouped existing experimental test 

setups into five types: (a) double-shear pull (Double Pull) test; (b) double-shear push 

(Double Push) test; (c) single-shear pull (Single Pull) test; (d) single-shear push 

(Single Push) test; and (e) beam (or bending) test (Beam Test). Yao et al. (2005) 

renamed these test setups (a) far end supported (FES) double- shear test; (b) near end 
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supported (NES) double-shear test; (c) far end supported (FES) single-shear test; and 

(d) near end supported (NES) single-shear test, These definitions are based on the 

loading condition in the concrete block and on the symmetry of the specimens, which are 

shown in Figures 3.3 to 3.5. 

In single shear pull/push tests and double shear pull/push tests setups the FRP is 

directly pulled from the concrete block by tensile force. For better clarity, all these 

four tests may be referred to as pull tests, as the FRP is always directly pulled by a 

tensile force. 

 

The double shear pull test and the single shear pull test are the most popular test 

setups among researchers because of their simplicity Van Gemert et al. (1999), Chen 

et al. (2001), Ueda and Dai (2005), Yao et al. (2005) and Nakaba et al. (2001). The  

results  of both  numerical  and  experimental  studies have  been conducted  the use  

of  different  test  setups  can  lead  to significantly different test results Chen et al. 

(2001) and Yao et al. (2005). Little difference can be expected between the double 

and single shear push tests and between the double and single shear pull tests Chen et 

al. (2001). it has also been reported that small variations in test setups within each 

test method such as the height of the support block may also have significant effects 

based on a recent stress analysis. Therefore, significant difference may exist between 

these two methods Chen et al. (2001). 

A considerable number of studies based on Single Pull test setup have been 

published of which some of them are reported here Chajes et al. (1996), Taljsten 

(1997), Bizindavyi and Neale (1999), Dai et al. (2005), Xia and Teng (2005), Yao et 

al. (2005), Pan and Leung (2007), Subramaniam et al. 2007, Mazzotti et al. (2008), 

Bilotta et al. (2009) and Woo and Lee (2010). some researches that applied double 

shear pull test setup are Nakaba et al. (2001), Xiao et al. (2004), Yang et al. 

(2007), Zhao et al. (2007) and Cao et al. (2007). 

The single shear push test can offer savings in both materials and labour because 

only one plate coupon is bonded to the concrete Chen et al. (2001). The double pull 

tests are more suitable for standard universal testing machines, which enable the 

application of different loading procedures at different loading speeds, including 

cycling loading and fatigue tests. This is one reason why they are used more 

commonly among researchers Van Gemert (1980), Kobatake et al. (1993), 

Yoshizawa et al, (1996), Brosens and van Gemert (1997), Hiroyuki and Wu (1997), 
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Maeda et al. (1997), Horiguchi and Saeki (1997), Ueda et al. (1999) and Casareto et 

al (2003).  

The Single Push tests are the second most popular tests after the Double Pull tests. It 

was used by Täljsten (1994, 1997), Chajes et al (1995, 1996), Bizindavyi and Neale 

(1997, 1999), Yoshizawa et al (1996), Oehlers and Seracino (2004), McSweeney and 

Lopez (2005) and Yao et al (2005). 

 

In double push test Figure 3.3(b), the pushing force acting on concrete prism is 

usually applied through a supporting wedge Swamy et al. (1986) and Neubauer and 

Rostásy (1997). In this setup the stresses generated are applied through compressive 

forces in the concrete prism, instead of tensile forces applied on FRP, as in the case 

of double pull test. This difference may lead to discrepancies among test results Chen 

et al. (2001), as well as the mechanism of fracture. 

The Single Pull test, shown in Figure 3.4(c), although no studies appear to have used 

such test setup in the past Chen et al. (2001). In this case only one FRP sheet is 

bonded on one side of the concrete block. This leads to loss of symmetry, unlike the 

Double Pull tests Chen et al. (2001). 

 

 
(a) 

  
(b) (c) 

Figure 3.3. Double shear test (a) plan, (b) double shear push test, and  

(c) double shear pull test 
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(a) 

  
(b) (c) 

Figure 3.4. Single shear test (a) plan, (b) Single shear push test, and  

(c) Single shear pull test 

 

As well as the unidirectional tests mentioned above, Figure 3.5. shows Beam Tests, 

conducted for the purpose of investigating the mechanism of bond in flexural 

members. One form of a beam test setups, shown in Figure 3.5(a) may consist of a 

concrete beam with a saw cut (notch) in the middle when the beam is under the 

load, the crack grows from the notch to the top joint. Therefore, the crack location is 

predetermined before the test. Figure 3.5(b) shown that two pieces of concrete blocks 

joined by a steel hinge on the top forming a simply supported beam, subjected to 

point loading, this set-up can simulate the effects of moment variation and shear 

force along the length of the concrete block. Similar test setups were adopted by van 

Gemert (1980) to investigate the bond behavior of surface bonded steel plates on 

concrete beams. Ziraba et ai. (1995) also used a similar setup to investigate the effect 

of concrete compressive strength on steel-concrete bond strength. In this case, the 

researchers used a solid beam, cut a certain depth to create a weak section, with a 

steel sheet surface bonded over the cut as shown in Figure 3.5(c). 

Ziraba et ai. (1995) found no dependence of the failure of the joint to concrete 

strength and concluded that the concrete-glue-plate interface behavior was rather a 

surface phenomenon. However, this contradicted with other experimental 

observations Chajes et al (1996), Horiguchi and Saeki (1997), De Lorenzis et al. 
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(2001) and Dai et al (2005). Some recent studies in which beam test set-up have 

been used to investigate the bond behavior are De Lorenzis et al. (2001), Perera et 

al. (2004), Xiao et al. (2004), Guo et al. (2005) and López et al. (2012). 

 

 
 

 (a) Beam test  

 

 

 

 

(b) Beam test, Van Gemert (1980) 

 

 

 

 

(c) Modified beam test, Ziraba et al. (1995) 

Figure 3.5. Beam Test 

71 
 



 

4.0 Bond stress-slip relationship 

Among the interface parameters have been proposed for bond strength, effective 

bond length (Le), and bond stress (τ) -slip (s) (interface shear stress vs. relative slip 

between FRP and concrete) relationship. In order to evaluate the interfacial 

debonding mechanism between FRP composites and concrete substrate the τ-s 

relationship is of fundamental importance. A number of τ-s relationships have been 

developed by different researchers Focacci et al. (2000), Nakaba et al. (2001), Yuan 

et al. (2004) and Lu et al. (2005), which differ to each other because of different 

shapes used in each of the study including: (a) Butoff type, (b) Elasto-plastic type, 

(c) Bi-linear type and (d) Popovics type, Sato et al. (1997), De Lorenzis et al. (2001), 

Nakaba et al. (2001), Sato et al. (2001) and Yoshizawa et al. (2000). 

When using the cutoff type or elasto-plastic type model, it is necessary to be careful 

because these models are unrealistic. The bilinear type model Brosens and Van 

Gemert (1997) and Brosens (2001) is divided into an elastic ascending part and 

plastic descending part based on experimental data. The maximum bond stress in the 

elastic part is defined as τmax, with s0 the relative slip corresponding to τmax. The end 

of the plastic part, which corresponds to zero bond stress, has a relative slip sf. The 

Popovics type model Nakaba et. al. (2001) originated from Popovics numerical 

approach for a complete concrete stress-strain relationship Popovics (1973). The 

surface area underneath the bond stress-slip relationships expresses the fracture 

energy (Gf) of the bond system. 

 

 
Figure 3.6. Bond stress-slip relationship 
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Figure 3.6 (cont.). Bond stress-slip relationship 

 

 

Those differences may be due to different interfacial material properties (e.g., 

concrete strength, FRP stiffness) or the bonding skills (the deviations of concrete 

surface conditions or the adhesive’s thickness) applied in different researches. In 

addition, the large scattering among the experimentally observed bond stress-slip 

relationships in different interfacial locations may be another factor, which effects on 

the shapes of the τ-s relationships and the calibration of the needed empirical 

parameters. However, even though a number of models of interfacial bond between 

FRP sheets and concrete have been proposed regarding the bond stress-slip 

relationship proper bond stress-slip model has yet to be generally accepted due to its 

complexity and many parameters. 

 

 

5.0 Current bond-slip models 

Local bond–slip (τ-s) model for FRP-concrete interface is of fundamental 

significance towards accurate modelling and therefore deeply understanding of 

failures due to debonding of the external reinforcement, as well as to estimate 

interfacial fracture energy Gf  as the area under curve. Many of different τ-s models 

available in the existing literature (Brosens and Van Gemert 1999; Neubauer and 

Rostasy 1999; Brosens 2001; Nakabaet. al. 2001; De Lorenzis et al. 2001; Monti et 

al. 2003; Ueda et al. 2003; Savioa et al. 2003; Dai and Ueda 2003; Dai et al. 2005 
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and Lu et al. 2005). They have been compared with each other based on various 

types of models; they are characterized by the following fundamental parameters: 

• The maximum local bond stress τmax 

• The slip s0 when the bond stress reaches τmax 

• The local slip when the local bond stress reduces to zero (maximum slip) sf 

In order to make an equitable comparison, all models studied have been sorted based 

on parameters related to FRP, parameters related to adhesives, and parameters related 

to concrete substrate. Those models include: 

 

• The bond -slip relationships τ - s 

• The maximum local bond stress τmax 

• The slip s0when the bond stress reaches τmax 

• The local slip when the local bond stress reduces to zero(maximum slip) sf 

• The width ratio factor βw 

• The interfacial fracture energy Gf 

 

The summary of the equations defining the models is given here, while complete 

details are given in the original references, where τ (MPa) is the local bond stress, s 

(mm) is the local slip, τmax (MPa) is the maximum local bond stress, s0 (mm) is the 

slip when the bond stress reaches τmax (( some of references using: speak or sτ)), sf 

(mm) is the local slip when the local bond stress reduces to zero (maximum slip) (( 

some of references using: sult  or smax)), se (mm) is the elastic component of local slip, 

Gf  (N/mm) is the interfacial fracture energy, βw is the width ratio factor ((some of 

references using kb)), fc (MPa) is the concrete compressive cylinder strength, ft (MPa) 

is the concrete tensile strength, Ec (MPa) is the elastic modulus of concrete, bc (mm) 

is the width of concrete prism, tc (mm) is the effective thickness of concrete 

contributing to shear deformation, bf (mm) is the width of FRP, tf (mm) is the 

thickness of FRP, Ef (MPa) is the elastic modulus of FRP, tref is various with the 

maximum size of aggregate, ta (mm) is the thickness of adhesive layer, Ea(MPa) is 

the elastic modulus of adhesive, tm (mm) is the thickness of epoxy mortar layer, Em 

(MPa) is the elastic modulus of epoxy mortar layer, Ga is the elastic shear modulus 

of adhesive, Gc is the elastic shear modulus of concrete, Ka the shear stiffness of the 

adhesive layer Ka=Ga/ta, and Kc is the shear stiffness of concrete. 
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Chen and Teng (2001) many of different τ-s models have been advanced in the last 

few years. They may be classified into three categories: empirical models based 

directly on the regression of test data, fracture mechanics models, finite element 

analysis. 

 

5.1 Empirical models 

Empirical-based models are mainly determined by regression of the interface 

parameters based on experimental data. The formulation of these models is quite 

simple and the results of these models show that high variation. This is because of 

the fact that the bond parameters are derived for specific experimental conditions 

such as, test set-up and type instrumentation, materials (concrete, adhesive or FRP 

plate), and loading regime, these conditions may change from one experiment to the 

other. 

 

  

(a) (b) 

Figure 3.7. Local bond-slip curves reported in literature (a) Mazzotti et al. (2008) and 

(b) Liu and Wu (2012). 

 

In the majority of the researches, the interface behavior is may characterizes by 

the bond strength and more importantly the local shear stress-slip profiles which 

is called the local interface law. Figure 3.7 shows the bond-slip relationships 

derived from the experiments. The local slip at any location can be derived from 

the strain values by integration of the strain profile along the bond length to that 

position while shear stress is obtained from the production of FRP stiffness and the 

gradient of the axial strain of the FRP strip. 
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5.1.1 De Lorenzis et al. (2001) 

De Lorenzis et al. (2001) followed Täljsten's (1996) analytical model but proposed 

an elastoplastic bond slip model based on their experimental data. The maximum 

shear stress, measured in MPa, can be expressed by 

 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = 0.0182�𝑛𝑛𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓          (1) 

 

5.1.2 Chen and Teng (2001) 

Based on the work of Chen and Teng (2001) and Yuan et al. (2001) concluded that 

typical values of slip corresponding to the maximum shear and local failure for 

surface bonded FRP on concrete were 0.02mm and 0.2mm, respectively. Through the 

regression analysis of experimental test data, it was shown that the analytical values 

matched well with the experimental data for bond strength and effective bond length, 

it also was stated that the bond strength was strongly consideration of significant 

effect of width ratio. Chen and Teng (2001) proposed that ultimate bond strength 

given as. 

 

𝑃𝑃𝑢𝑢 = 0,427𝛽𝛽𝑝𝑝𝛽𝛽𝑙𝑙�𝑓𝑓𝑐𝑐′𝑏𝑏𝑝𝑝𝐿𝐿𝑒𝑒        (1) 

where  

𝛽𝛽𝑝𝑝 = �
2 − 𝑏𝑏𝑝𝑝 𝑏𝑏𝑐𝑐⁄
1 + 𝑏𝑏𝑝𝑝 𝑏𝑏𝑐𝑐⁄                                                                                                                    (2) 

bp is the width of the bonded plate and bc is the width of the concrete member in mm. 

 

𝛽𝛽𝑙𝑙 = �
1                     𝐿𝐿 ≥ 𝐿𝐿𝑒𝑒
sin � πL

2Le
�        L < Le

             (3) 

 

L is the bond length, Le is the effective bond length in mm and  

 𝐿𝐿𝑒𝑒 = �𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝�𝑓𝑓𝑐𝑐′          (4) 

 

in which tp (mm) and Ep (MPa) is the thickness and Young׳s modulus of the bonded 

FRP plate, respectively. 𝑓𝑓𝑐𝑐′ is the cylinder concrete compressive strength in MPa. 
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5.1.3 Dai et al. (2005)  

Dai et al.’s model using regression analysis of experimental data, proposed a new 

single curve bond-slip model, accounting for the effect of the adhesive through its 

shear modulus Ga and thickness ta, Bond stress development as a function of slip was 

expressed as: 

 

𝜏𝜏 = 2𝐵𝐵𝐺𝐺𝑓𝑓(exp(−𝐵𝐵𝑠𝑠) − exp(−2𝐵𝐵𝑠𝑠))      (1) 

𝑠𝑠0 = 0.693/𝐵𝐵          (2) 

 

where 

 𝐵𝐵 = 6.846�𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓�
0.108

(𝐺𝐺𝑚𝑚/𝑡𝑡𝑚𝑚)0.833       (3) 

 

The fracture energy is given by Equation: 

 

𝐺𝐺𝑓𝑓 = 0.446�𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓�
0.023

(𝐺𝐺𝑚𝑚/𝑡𝑡𝑚𝑚)−0.352(𝑓𝑓𝑐𝑐
,)0.236     (4) 

 

In the above equations, Ga and ta are the modulus and the thickness of the adhesive, 

respectively. In this case, the thickness was measured microscopically after the test 

specimens failed.  The maximum bond stress can be expressed as: 

 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = 0.5𝐵𝐵𝐺𝐺𝑓𝑓         (5) 

 

 

5.2 Fracture mechanics based models 

The use of a fracture mechanics-based approach is extremely attractive since, in 

principle, it can potentially capture the critical aspects related to interfacial 

mechanics and failure initiation and propagation. In spite of the powerful analytical 

tools that fracture mechanics offer, most existing theoretical models have been 

developed on the basis of simple bond tests (single-lap or double-lap shear tests of 

FRP-bonded concrete prism, or idealized flexural test). That is why they cannot 

replicate complicated stress conditions as affected by cracks that can be seen in 

actual structural systems. Experimentally obtained models also tend to involve too 
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many parameters to be considered of practical use. In some cases these models were 

modified through the use of parameters that represent physical/mechanistic 

conditions, but derived empirically by curve fitting (Karbhari et al. 2006). 

Vilnay (1988) was among the first researchers who adopted a theoretical approach to 

describe the bond behavior of surface bonded FRP. Vilnay developed an analytical 

model and applied it to a composite beam with externally bonded steel plate. Vilnay 

obtained an expression for the maximum bond stress from the moment-deflection 

differential equation. 

 

Several researchers presented analytical models using the principles of fracture 

mechanics. Among them are; Holzenkämpfer (1994), Täljsten (1994), Brosens and 

van Gemert (1998), Yuan and Wu (1999), Yuan et al. (2001) and Wu et al. (2002). 

The fracture-mechanics based models are based on experimentally observed bond-

slip relationships. Various empirical bond-slip relationships pertaining to the FRP-

concrete interface were proposed based on specific sets of experimental observations. 

Figure 3.8 shows some bond-slip models in the literature. A number of analytical 

relationships were also developed based on mechanics. The variety of shapes used in 

describing the bond-slip phenomenon demonstrates the difficulty in defining reliable 

and comprehensive relationship based on simplistic tests, short bond transfer length, 

and local geometric and material variations. It is noted that the use of fracture 

mechanics implicitly leads to a very simple generic expression for the determination 

of bond capacity, related only to the FRP stiffness and interfacial fracture energy 

(defined as the area beneath the bond   stress-slip curve), no matter what type of 

interfacial constitutive law is adopted Täljsten (1996), Yuan et al. (2001) and Wu et 

al. (2002). 
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Figure 3.8. Bond-slip models for plate to concrete bonded joints, 

Yuan and Wu (1999) 

 

5.2.1 Täljsten (1996) 

Täljsten (1996) and Holzenkämpfer (1994) used a nonlinear fracture mechanics bond 

slip model which is shown in Figure 3.9. Täljsten simplified this model by assuming 

linear segments and used interfacial fracture energy to determine  the maximum 

transferable load or bond capacity, Pmax, in terms of interfacial fracture energy, Gf, 

and steel/FRP plate reinforcing stiffness, Eptp, Täljsten (1994). 

 

𝑃𝑃𝑚𝑚𝑚𝑚𝑒𝑒 = 𝑏𝑏𝑝𝑝�
2𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝𝐺𝐺𝑓𝑓
1 + 𝛼𝛼𝑇𝑇

                                                                                                            (1) 

 

Where, 

𝛼𝛼𝑇𝑇 =
𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝
𝐸𝐸𝑐𝑐𝑡𝑡𝑐𝑐

                                                                                                                                (2) 

 

 

Where Ec (MPa) is the elastic modulus of concrete, tc (mm) is the effective thickness 

of concrete contributing to shear deformation, bp (mm) is the width of the plate, tp 

(mm) is the thickness of the plate, Ep (MPa) is the elastic modulus of the plate 
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Figure 3.9. Bond displacement curve of an adhesive joint based on nonlinear fracture 

mechanics, Täljsten (1996) 

 

Täljsten (1996) also presented the maximum bond stress 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 as shown below 

Täljsten (1994,  1997): 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = 0.0184�𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝        (3) 

 

5.2.2 Neubauer and Rostásy (1999) 

Neubauer and Rostásy (1999) first confirmed that the bond strength model initially 

developed to describe the relationship between the steel plates and the concrete 

substrates can be valid in the application of CFRP bonded on the concrete substrates.  

 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒(𝑠𝑠/𝑠𝑠0)                                    𝑖𝑖𝑓𝑓   𝑠𝑠 ≤ 𝑠𝑠0     (1) 

 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒
𝑠𝑠𝑓𝑓−𝑠𝑠
𝑠𝑠𝑓𝑓−𝑠𝑠0

                                      𝑖𝑖𝑓𝑓   𝑠𝑠 > 𝑠𝑠0     (2) 

where 

 

𝑠𝑠0 = 0.202𝑘𝑘𝑏𝑏          (3) 

 

The maximum bond stress 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 was expressed in terms of the tensile strength of 

concrete ft as expressed below: 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = 1.8𝑘𝑘𝑏𝑏𝑓𝑓𝑡𝑡         (4) 
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Neubauer and Rostásy (1999) concluded that, for both concrete fracture failures and 

FRP delamination failures, the bond-slip relationship may be represented by the bi-

linear (triangular) model as shown in Figure 3.10. The fracture energy, Gf, can then 

be calculated using: 

 

 
Figure 3.10. Idealized local bond low of Holzenkämpfer (1994) 

 

𝐺𝐺𝑓𝑓 = 𝐶𝐶𝑓𝑓 .𝑓𝑓𝑡𝑡          (5) 

 

Where Cf is a coefficient reported to be equal to a mean value of 0.202mm for the 72 

specimens investigated and ft is the tensile strength of concrete measured following 

the CEB-FIP Model Code (1993) given below: 

 

𝑓𝑓𝑡𝑡 = 1.4(𝑓𝑓𝑐𝑐
,−8
10

)2 3⁄          (6) 

 

and kb is a geometric factor related to the width of bonded plate bp and the width of 

concrete prism bc. 

 

𝑘𝑘𝑏𝑏 = �1.125 2−(𝑏𝑏𝑝𝑝/𝑏𝑏𝑐𝑐)
1+(𝑏𝑏𝑝𝑝/400)

        (7) 

 

they proposed that bond strength was dependent on the fracture energy. 

 

𝑃𝑃𝑚𝑚𝑚𝑚𝑒𝑒 = 0.64𝑘𝑘𝑏𝑏𝑏𝑏𝑓𝑓�𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑐𝑐𝑡𝑡                              𝑤𝑤ℎ𝑒𝑒𝑛𝑛   𝐿𝐿 ≥ 𝐿𝐿0    (8) 

 

𝑃𝑃𝑚𝑚𝑚𝑚𝑒𝑒 = 0.64𝑘𝑘𝑏𝑏𝑏𝑏𝑓𝑓�𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑐𝑐𝑡𝑡
𝐿𝐿
𝐿𝐿𝑒𝑒

(2 − 𝐿𝐿
𝐿𝐿𝑒𝑒

)          𝑤𝑤ℎ𝑒𝑒𝑛𝑛   𝐿𝐿 < 𝐿𝐿0    (9) 
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where 

 

𝐿𝐿0 = �
𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝
2𝑓𝑓𝑐𝑐𝑡𝑡

                                                                                                                           (10) 

 

 

5.2.3 Brosens and Van Gemert (1999) 

Brosens and Van Gemert (1999) modified the models of Niedermeier (1996) 

included the adhesive thickness in their formulation. Furthermore, they also 

incorporated the thickness of concrete substrate near the surface which is considered 

to be effective in developing bond. This is illustrated in Figure 3.11. 

 

 
Figure 3.11. Representative schematics of configurations of different layers used for 

the computation of bond slip, Brosens and Van Gemert (1999) 

 

This layer, which essentially serves as an additional interface, can significantly affect 

both the bond transfer length and the level of bond strength.  

 

Brosens and Van Gernert (1999) derived expressions for the maximum shear stress 

and interfacial fracture energy. They modified Neubauer and Rostásy (1997) 

Equations to account for the effects of FRP width. The resulting expressions for 

maximum bond stress τmax and interfacial fracture energy Gf are shown below: 

 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒(𝑠𝑠/𝑠𝑠0)                                    𝑖𝑖𝑓𝑓   𝑠𝑠 ≤ 𝑠𝑠0     (1) 

 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒
𝑠𝑠𝑓𝑓−𝑠𝑠
𝑠𝑠𝑓𝑓−𝑠𝑠0

                                      𝑖𝑖𝑓𝑓   𝑠𝑠 > 𝑠𝑠0     (2) 

 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = 1.8𝑘𝑘𝑏𝑏𝑓𝑓𝑡𝑡         (3) 

tref 
 

ta 
 

FRP 
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The slip so corresponding to the maximum bond stress is determined as the sum of 

the slip in the adhesive and the slip in concrete shown in Figure 3.11. 

 

𝑠𝑠0 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 �
𝑡𝑡𝑎𝑎
𝐺𝐺𝑎𝑎

+ 𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓
𝐺𝐺𝑐𝑐
�         (4) 

 

where ta is the thickness of the adhesive was estimated about 0.2 mm, Ga is the shear 

modulus of the adhesive and is expressed as 𝐺𝐺𝑚𝑚 = 𝐸𝐸𝑚𝑚/2(1 + 𝜐𝜐𝑚𝑚) where Poisson's 

ratio va estimated to be 0.3 for ordinary adhesive, Ea is the young's modulus of the 

adhesive, tref is the reference distance in the concrete where the concrete is influenced 

by direct shear load, the reference thickness tref in concrete that shown in Fig.(above) 

is the reference distance in concrete over which stresses are influenced by FRP, this 

thickness can be taken as 2.5 - 3 times the maximum aggregate size and usually 

resulting in a depth of 40-50 mm, Ec is the young's modulus of the concrete which is 

determined by the CEB FIP Model Code (1993) as 𝐸𝐸𝑐𝑐 = 2.15 × 104(𝑓𝑓𝑐𝑐
,

10
)1 3⁄ , and the 

Gc is the shear modulus of the concrete and it is expressed as 𝐺𝐺𝑐𝑐 = 𝐸𝐸𝑐𝑐/2(1 + 𝜐𝜐𝑐𝑐) 

where the Poisson's ratio vc was estimated to be 0.16 in their study. 

 

The ultimate slip sf corresponding to local bond failure was computed as shown 

below based on the bilinear bond-slip model. 

 

𝑠𝑠𝑓𝑓 = 2𝐺𝐺𝑓𝑓
𝜏𝜏𝑚𝑚𝑎𝑎𝑚𝑚

          (5) 

𝑘𝑘𝑏𝑏 = �1.5�2−(𝑏𝑏𝑝𝑝/𝑏𝑏𝑐𝑐)�
1+(𝑏𝑏𝑝𝑝/100)

         (6) 

𝐺𝐺𝑓𝑓 = 𝑘𝑘𝑏𝑏2𝐶𝐶𝑓𝑓𝑓𝑓𝑡𝑡          (7) 

 

The constant Cf above was found to be 0.3 from test data. The maximum transferable 

FRP force was determined as; 

𝑃𝑃𝑢𝑢 = 𝑏𝑏𝑏𝑏�2𝐺𝐺𝑓𝑓𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝         (8) 
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5.2.4 Brosens (2001) 

Based on a microscopic study, Brosens proposed model that considers the effect of 

the adhesive layers between FRP composite materials.  

Based on microscopic study of the interfacial region, Brosens (2001) concluded that 

it was critical not only to consider size effects which could cause significant effect on 

bond level mechanisms  through  local irregularities, but also the  effect  of 

additional interfaces between layers of FRP as shown in Figure 3.12. 

 

 
Figure 3.12. Representative schematics of configurations of different layers used for 

the computation of bond slip (Brosens 2001) 

 

In addition, through a re-evaluation of the bond stress model used by Holzenkämpfer 

(1994), it was hypothesized that a state of pure shear was responsible for maximum 

bond-stress leading  to modification of the Mohr-Coulomb envelope as shown in 

Figure 3.13. 

 
Figure 3.13. Mohr-coulomb failure criterion (Brosens 2001) 
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Brosens (2001) modified the formulation as indicated below to introduce the size 

effect and local irregularities. 

 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒(𝑠𝑠/𝑠𝑠0)                                    𝑖𝑖𝑓𝑓   𝑠𝑠 ≤ 𝑠𝑠0     (1) 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒
𝑠𝑠𝑓𝑓−𝑠𝑠
𝑠𝑠𝑓𝑓−𝑠𝑠0

                                      𝑖𝑖𝑓𝑓   𝑠𝑠 > 𝑠𝑠0     (2) 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = 𝑘𝑘𝑏𝑏𝑘𝑘𝑐𝑐
𝑓𝑓𝑐𝑐′𝑓𝑓𝑡𝑡
𝑓𝑓𝑐𝑐′+𝑓𝑓𝑡𝑡

         (3) 

 

Where 𝑘𝑘𝑏𝑏 is a factor related to width ratio of FRP over concrete member 

 

𝑘𝑘𝑏𝑏 = �𝑘𝑘�2−(𝑏𝑏𝑝𝑝/𝑏𝑏𝑐𝑐)�
1+(𝑏𝑏𝑝𝑝/𝑏𝑏0)

         (4) 

and 𝑘𝑘𝑐𝑐 is factor representing the concrete surface preparation which was dependent 

on the environment and workmanship, and it is various from 0.65 to 1.00, k is a 

constant which is empirically derived from experiments to be 1.47 and b0 is a 

function in terms of reference concrete thickness. 

 

𝑏𝑏0 = 𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓
𝑘𝑘−1

          (5) 

 

leading to 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = �1.47�2−(𝑏𝑏𝑝𝑝/𝑏𝑏𝑐𝑐)�
1+(𝑏𝑏𝑝𝑝/85)

. 𝑓𝑓𝑐𝑐′𝑓𝑓𝑡𝑡
𝑓𝑓𝑐𝑐′+𝑓𝑓𝑡𝑡

        (6) 

 

Brosens (2001) concluded the slip of concrete and adhesive the slip, include the slip 

in epoxy mortar between FRP layers: 

 

𝑠𝑠0 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 �𝑛𝑛
𝑡𝑡𝑎𝑎
𝐸𝐸𝑎𝑎

+ 2.4 𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓
𝐸𝐸𝑐𝑐

+ 2.5 𝑡𝑡𝑚𝑚
𝐸𝐸𝑚𝑚
�       (7) 
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where n is the number of layers of FRP used, Em is the modulus of elasticity of epoxy 

mortar and tm is the thickness of epoxy mortar which was noted to vary between 

2mm and 5mm depending on the size of irregularities on concrete surface. 

The maximum slip and fracture energy are given by Equations: 

 

𝑠𝑠𝑓𝑓 = 2𝐺𝐺𝑓𝑓
𝜏𝜏𝑚𝑚𝑎𝑎𝑚𝑚

          (8) 

 

𝐺𝐺𝑓𝑓 = 𝑘𝑘𝑏𝑏2𝑘𝑘𝑐𝑐2𝐶𝐶𝑓𝑓𝑓𝑓𝑡𝑡         (9) 

 

Where, the value of Cf was 0.40 mm determined through calibration with 

experimental results, leading to 

 

𝐺𝐺𝑓𝑓 =
0.588�2−�𝑏𝑏𝑓𝑓/𝑏𝑏𝑐𝑐��

1+�𝑏𝑏𝑓𝑓/85�
𝑓𝑓𝑡𝑡                   (10) 

The maximum transferable FRP force was determined as; 

𝑃𝑃𝑢𝑢 = 𝑏𝑏𝑏𝑏�2𝐺𝐺𝑓𝑓𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝                  (11) 

 

 

5.2.5 Nakabaet. al. (2001) 

Nakaba et al. (2001) proposed a bond-slip relationship using series of double-lap 

shear tests with different properties of concrete and FRP and using curve-fit of 

experimental data, their shear-slip curve follows Popovics' equation and shown in is 

different from the bilinear that suggested earlier by Holzenkämpfer (1994) and 

Neubauer and Rostásy (1997) the bond-slip relationship as shown in Figure 3.14(a) 

 

According to Nakaba et al.’s study, the shear-slip response relationship Figure 

3.14(b) can be expressed by the following power law: 

 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 �
𝑠𝑠

𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚
 𝑛𝑛
(𝑛𝑛−1)+(𝑠𝑠 𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚⁄ )𝑛𝑛�       (1) 

 

86 
 



 

where s and smax both measured in mm are values of slip corresponding to local bond 

stress and the maximum bond stress, respectively, and n is empirical parameter 

related to the compressive strength, for the range of concrete compressive strengths 

of 24-58 MPa, n was determined to be 3 mm. This results in the following 

expression: 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 �
𝑠𝑠

𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚
 3
2+(𝑠𝑠 𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚⁄ )3�        (2) 

 

 

 
Figure 3.14. (a) Bi-linear Stress-Slip Relationship between Concrete and FRP and (b) 

Popvic's Expression Based Stress-Slip Relationship Concrete and FRP 

 

The maximum bond stress 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 measured in MPa as expressed below. 

 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = 3.5𝑓𝑓𝑐𝑐′0.19         (3) 

 

where smax is the slip corresponding to the maximum shear stress.  

𝑠𝑠𝑚𝑚𝑚𝑚𝑒𝑒 = 0.065          (4) 

 

The interfacial fracture energy 𝐺𝐺𝑓𝑓, defined as the area below the bond stress-slip 

curve, can then be obtained as 

 

𝐺𝐺𝑓𝑓 = ∫ 𝜏𝜏𝑑𝑑𝑠𝑠∞
0 = ∫ 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒

∞
0 � 𝑠𝑠

𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚
 3
2+(𝑠𝑠 𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚⁄ )3� 𝑑𝑑𝑠𝑠  ≈   0.184𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒   ≈   0.644𝑓𝑓𝑐𝑐′0.19 (5) 
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5.2.6 Savioa et al. (2003) 

Savioa et al. (2003) suggested the use of the bond slip curve suggested by Popovics 

with the empirical parameter n redefined as 2.86.  

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒
𝑠𝑠
�̅�𝑠

 
2.860

1.860 + (𝑠𝑠 �̅�𝑠⁄ )2.860                                                                                            (1) 

the parameters 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒, �̅�𝑠 are values of maximum shear stress in MPa and the slip 

corresponding to local shear stress in mm, respectively, were obtained as: 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = 3.5𝑓𝑓𝑐𝑐′0.19 = 6.93 MPa       (2) 

�̅�𝑠 = 0.051          (3) 

The bond - slip law is reported in Figure 3.15. 

 

 
Figure 3.15. Bond-slip curve for FRP-concrete interface obtained from 

CFJT-Plate experimental data 

 

 

5.2.7 Monti et al. (2003) 

Monti et al. (2003) developed the following equations based on a parametric study 

using finite element analysis along with experimental data. The bond slip 

relationship is assumed to be bilinear (triangular) with the following expressions: 

 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒(𝑠𝑠/𝑠𝑠0)                                    𝑖𝑖𝑓𝑓   𝑠𝑠 ≤ 𝑠𝑠0     (1) 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒
𝑠𝑠𝑓𝑓−𝑠𝑠
𝑠𝑠𝑓𝑓−𝑠𝑠0

                                      𝑖𝑖𝑓𝑓   𝑠𝑠 > 𝑠𝑠0     (2) 
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Then maximum bond stress can be expressed as with kb being the same as that 

defined by Brosens and Van Gemert (1999). 

 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = 1.8𝑘𝑘𝑏𝑏𝑓𝑓𝑡𝑡         (3) 

 

𝑠𝑠0 = 2.5𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 �
𝑡𝑡𝑎𝑎
𝐸𝐸𝑎𝑎

+ 50
𝐸𝐸𝑐𝑐
�        (4) 

 

𝑠𝑠𝑓𝑓 = 0.33𝛽𝛽𝑤𝑤          (5) 

 

𝛽𝛽𝑤𝑤 = �1.5 2−(𝑏𝑏𝑝𝑝/𝑏𝑏𝑐𝑐)
1+(𝑏𝑏𝑝𝑝/100)

         (6) 

 

 

5.2.8 Dai and Ueda (2003) 

Dai and Ueda (2003) suggested bond-slip model, as expressed below. 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 =
−1.575𝛼𝛼𝑘𝑘𝑎𝑎+�2.481𝛼𝛼2𝑘𝑘𝑎𝑎2+6.3𝛼𝛼𝛽𝛽2𝑘𝑘𝑎𝑎𝐺𝐺𝑓𝑓

2𝛽𝛽
      (1) 

𝑠𝑠0 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒/𝛼𝛼𝐾𝐾𝑚𝑚         (2) 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 �
𝑠𝑠
𝑠𝑠0
�
0.575

                         𝑖𝑖𝑓𝑓   𝑠𝑠 ≤ 𝑠𝑠0      (3) 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒−𝛽𝛽(𝑠𝑠−𝑠𝑠0)                         𝑖𝑖𝑓𝑓   𝑠𝑠 ≤ 𝑠𝑠0      (4) 

where 𝛼𝛼 = 0.028(𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝/1000)0.254  

𝛽𝛽 = 0.0035𝐾𝐾𝑚𝑚(𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝/1000)0.34       (5) 

𝐾𝐾𝑚𝑚 = 𝐺𝐺𝑚𝑚/𝑡𝑡𝑚𝑚 

 

The fracture energy is given by Equation: 

𝐺𝐺𝑓𝑓 = 7.554𝐾𝐾𝑚𝑚−0.449(𝑓𝑓𝑐𝑐
,)0.343        (6) 
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5.3 Finite Element Models 

Many researchers investigated the bond–slip (τ-s) relationship performance of FRP 

on concrete by using Finite Element Method (FEM). Among them, Kang (1996), Niu 

and Wu (2001), Chen et al. (2001), Yang et al. (2003), Chen et al. (2003), Teng et al. 

(2002), Wu and Yin(2003), Yin and Wu(2003), Yan et al. (2004), Chen and Pan 

(2004), Niu and Wu(2005) Chen and Pan (2006), Lu et al (2005, 2006), and Zhao et 

al. (2007). Lu et al. (2005) suggested several models which are shown in Figure 3.16. 

 

 

 
Figure 3.16. Bond slip models suggested by Lu et al.  (2005) 

 

Figure 3.16. shown that the precise model is accurate but somewhat complicated. Lu 

et al. (2005) conducted critical review of available bond strength models and shear 

stress-slip relationships. They compared the performance of the different models 

using an extensive experimental database of single and double shear tests, and 

suggested series of models based on empirical calibration of results from finite 

element simulations. The simplified version of their basic model, which requires 

fewer parameters to define it is given by: 

 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒�𝑠𝑠/𝑠𝑠0                                    𝑖𝑖𝑓𝑓   𝑠𝑠 ≤ 𝑠𝑠0     (1) 

 

𝜏𝜏 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[−𝛼𝛼(𝑠𝑠/𝑠𝑠0 − 1)]            𝑖𝑖𝑓𝑓   𝑠𝑠 > 𝑠𝑠0     (2) 

 

where 
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𝑠𝑠0 = 0.0195𝛽𝛽𝑤𝑤𝑓𝑓𝑡𝑡         (3) 

 

𝛼𝛼 = 1/��𝐺𝐺𝑓𝑓 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒𝑠𝑠0⁄ �/(2/3)�       (4) 

 

𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 = 1.5𝛽𝛽𝑤𝑤𝑓𝑓𝑡𝑡         (5) 

 

𝑠𝑠𝑓𝑓 = 2𝐺𝐺𝑓𝑓 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒⁄          (6) 

 

𝛽𝛽𝑤𝑤 = ��2.25 − 𝑏𝑏𝑓𝑓/𝑏𝑏𝑐𝑐�/�1.25 + 𝑏𝑏𝑓𝑓/𝑏𝑏𝑐𝑐�      (7) 

 

The fracture energy is given by Equation: 

𝐺𝐺𝑓𝑓 = 0.308𝛽𝛽𝑤𝑤2�𝑓𝑓𝑡𝑡         (8) 

 

𝑃𝑃𝑢𝑢 = 𝑏𝑏𝑏𝑏�2𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝𝐺𝐺𝑓𝑓         (9) 

 

Lu et al. (2005) Based on the predictions of meso scale Finite element model were 

tested to control their models. They then compared several models and proposed 

modification on the models to propose precise and simplified models (Figure 3.17) 

and investigate the bilinear model.  

 

 
Figure 3.17. Bond-slip curves from existing bond-slip models (Lu et al. 2005) 
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5.4 Conclusions of bond–slip models 

• The model of Neubauer and Rostasy (1999), which is modified from 

Holzenkämpfer (1994), seems unrealistic because it does not consider slip 

after maximum bond stress. 

• The models of Monti et al. (2003) and Lu et al. (2005) which are derived 

from Neubauer and Rostasy (1999) and Brosens and Van Gemert (1999), 

consider the maximum bond stress (τmax) as function of concrete tensile 

strength (ft) and width ratio factor (βw), which is the size effect parameter 

considering the influence of the FRP bonded width relative to the concrete 

width Brosens and Van Gemert (1999). 

• The slip s0 (the slip when the bond stress reaches τmax) in the models of 

Brosenset al. (2001) and Monti et al. (2003) consider characteristics of 

concrete and adhesive, while the slip s0 in the model of Lu et al. (2005) is 

composed of a function of width ratio factor (βw) and concrete tensile strength 

(ft). 

• The maximum slip sf in the models of Brosens and Van Gemert (1999), 

Brosens et al. (2001) are similar to that of Lu et al. (2005) which as function 

of maximum bond stress (τmax) in addition to the interfacial fracture energy 

(Gf), while only width ratio factor(βw) is considered in the model of Monti et 

al. (2003). 

• maximum bond stress (τmax) in the model of Savoia et al. (2003) was obtained 

of that of Nakaba et al. (2001) with some minor modification which only 

considers concrete compressive strength (fc) as parameter of maximum bond 

stress (τmax),and the value of the slip s0 changes. 

• Only the models of Brosens and Van Gemert(1999), Brosens (2001), Monti et 

al. (2003) and Lu et al. (2005) give the three parameters τmax, s0, and sf, 

whereas only the model of De Lorenzis et al. (2001) considers maximum 

bond stress τmax as a function of only FRP stiffness. The other models 

consider τmax as a function of compressive or tensile strength of concrete, not 

depending on FRP stiffness. 
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Table 3.2. Bond stress-slip relationship 

Authors 
Investigations 

Type 
τ-s Model τ-s Shapes 

Brosens and Van 

Gemert (1999) 

Experimental 

Investigations 
Bi-linear 

 

Neubauer and 

Rostasy (1999) 

Experimental 

Investigations 

Linear 

ascending 

branch and 

a sudden 

drop 

(Elastic-

brittle)  

Brosens (2001) 
Experimental 

Investigations 
Bi-linear 

 

Nakaba et al. 

(2001) 

Experimental 

Investigations 
Single Curve 
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Authors 
Investigations 

Type 
τ-s Model τ-s Shapes 

De Lorenzis et al. 

(2001) 

Experimental 

Investigations 

Elasto-

plastic 

 

 

Monti et al. 

(2003) 

Finite element 

analysis in 

conjunction with 

experiments 

Bi-linear 

 

Savioa et al. 

(2003) 

Analytical solutions 

derived from 

experimental test 

results 

Single Curve 

 

Dai and Ueda 

(2003) 

Indirect analytical 

solutions 

derived from 

experimental test 

results 

Nonlinear 
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Authors 
Investigations 

Type 
τ-s Model τ-s Shapes 

Dai et al. (2005) 

Indirect analytical 

solutions 

derived from 

experimental test 

results 

Single Curve 

 

Lu et al. (2005) 

analytical 

Investigations 

“finite element 

Analyses” 

a database 

containing the 

results of 253 tests 

 

Simplified 

 

 

 

6.0 Previous research (experimental test programs and variability) 

Chajes et al. (1996) performed tests using single-lap shear tests (Figure 3.18) with 

constant bonded lengths with variations in adhesive type, surface preparation and 

concrete strengths. The concrete mix was varied by changing the water/cement ratio 

having compressive strengths ranging from 3500 to 6500 psi. The test specimen 

consisted of a 1-in.-wide composite plate bonded to a concrete block (6-in.-wide x 6-

in.-high x 9-in.-long) with a 3-in. bond length. In the test setup, the concrete block 

was securely mounted to the bottom crosshead of a 30,000-lb capacity testing 

machine. Four different types of adhesives were used included two manufactured by 

the Sika Corp. (Sikadur 32, Hi-Mod and Sikadur 31, Hi-Mod gel), and two 
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manufactured by the Lord Corp. (Tyrite 7500 and Fusor 320/322). The surface 

preparations used were grinding with a stone wheel and mechanically abrading with a 

wire wheel. For all of the joints except those bonded with Tyrite. The results of the 

surface preparation tests showed that the failure was initiated due to the 

shearing of the concrete directly beneath the adhesive layer. To evaluate effects 

of adhesive type, the specimens that were bonded using Fusor and Tyrite were 

prepared by mechanical abrasion alone and mechanical abrasion combined with 

Chemglaze 9926 showed improved bond performance. Increased compressive 

strengths of concrete also showed increased values of failure loads. From these 

experiments it can be deduced that failure and bond performance is affected by 

adhesive/epoxy used, surface preparation and concrete compressive strength.  

 

 

 
Figure 3.18. Single-lap shear bond test setup (Chajes et al. 1996) 

 

 

Täljsten (1997) presented the result of single shear pullout tests (Figure 3.19) 

performed on concrete prisms onto which steel or CFRP plates have been bonded. 

The tests were divided into two groups, series S and series C. Mild steel was used in 

series S and CFRP plates in series C. 
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Four concrete prisms in series C were used in the tests (200mm-wide x 200mm-high x 

1200mm-long). The thickness of the steel plates was kept constant during the test, but 

the anchor length were varied (100, 200, 300, 400 mm). The thickness of the adhesive 

layer was 2.0 mm. The anchor length was defined as the minimum length of 

FRP/steel plate that contributes to the load-bearing capacity which longer lengths do 

not contribute to the capacity. The test results show that there exists critical strain 

level in the concrete at failure. It has been found that this anchor length is 

approximately 300 mm for the steel plates. The results showed that there is a specific 

anchor length for each material used. It was shown that the strain in the concrete was 

the critical factor in determining the interfacial bond failure. The observed failure 

occurs directly in the thin concrete layer under the adhesive. The load response of the 

bond was determined and the debonding process was related to the strain distribution 

in the FRP. 

 

 

 
Figure 3.19. Sketch of the test equipment used in the tensile test series, 

(Täljsten et al. 1997) 
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Brosens and Van Gemert (1997) performed shear tests on two concrete prisms used 

was 150 x 150 x 300 mm and four bonded length, 150mm, 175mm, 200mm and 250 

mm, of the CFRP laminates were adopted for test. The two concrete prisms 

connected by steel plates bonded on two opposite sides to apply the tensile force, 

while at other two opposite sides connected with 3 layers of CFRP laminates as 

shown in Figure 3.20. The results showed that increase in bonded length increases 

the fracture load, which is contrary to findings of other researchers, where they found 

that the critical bonded length is at least larger than 275 mm. 

 

 

 

Figure 3.20. Shear test specimen (Brosens and Van Gemert 1997) 

 

 

Maeda et al. (1997) performed experimental study on the bond mechanism of 

Carbon Fiber Sheets (CFS) using double-lap shear tests, where CFS loaded by 

pulling re-bars which are placed at center of the (100x100mm) concrete prism as 

seen in Figure 3.21. 

 

 

 

Figure 3.21. (a) Specimens, (b) Arrangement of strain gages (Maeda et al. 1997) 
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The variables were the bonded length (75-700mm), stiffness of CFS (1 plie, 2 plies), 

and concrete strength (40.8-44.7MPa). Based on their experimental results showed 

that as the stiffness of FRP increases ultimate load also increases. At the early stage 

of loading, load is sustained in the vicinity of loading point; the active bonding area 

was shifted as delamination propagates completely. At any stage of loading, the area 

where CFS resists through bond stress is part of the effective bond length, as seen in 

Figure 3.22. The effective bond length decreases as the stiffness of CFS increases. 

 

 
Figure 3.22. Schematic of strain distribution in CFS  

 

Their experimental program attempted to simulate the strain distribution using FEM 

program WCOMR, in which smeared crack model and average stress-strain 

relationships were adopted, while the elastic modulus and the shear modulus in the 

bond element is 1.50MPa and 0.58MPa, respectively, and thickness of the bond 

elements representing the epoxy resin was 0.1 mm. The predicted strain distributions 

in CFS were found to be fairly accurate as long as the nonlinear behavior caused by 

concrete cracking was considered. The typical mesh used for the analysis is shown in 

Figure 3.23. 

 
Figure 3.23. Finite element mesh 
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Bizindavyi and Neale (1999) conducted several experimental and analytical studies 

to investigate the load transition mechanism of composite laminates bonded to 

concrete. They performed single shear pull tests (Figure 3.24) were conducted for 

different types of laminates were (GFRP and CFRP), with different thicknesses (1, 2, 

and 3 plies) and also different types of concrete. The analytical results comparison to 

experimental results were seen to be in good agreement for loads less than  the initial 

cracking load, especially for specimens with one 1-ply for both GFRP and CFRP 

laminates.. 

The observed modes of failure were shearing of the concrete beneath the glue line 

and rupture of the composite coupon.  

Strain gauges were used to determine the strain distribution in the FRP at different 

load levels. From the strain data, the shear stress distribution along the bonded joint 

between FRP and concrete was determined. A uniform shear stress distribution along 

the bonded joint was assumed to determine the bond strength, which is the ultimate 

load divided by the bonded area. The values of the initial transfer lengths for GFRP-

concrete and CFRP-concrete joints were estimated by defining the transfer length as 

the distance from the loaded end to the point on the joint where strain reaches zero. 

 

 

 

 

Figure 3.24. (a) Specimen configuration, (b) Test Rig, Side and front view 

(Bizindavyi and Neale 1999) 
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De Lorenzis et al. (2001) studied the performance flexural tests as shown in Figure 

3.25 to determine the effectiveness of the bonded length, FRP stiffness, strength and 

surface preparation of concrete. A total of 18 T-beams were tested in which of three 

series of specimens, each series consisted of six specimens with three different 

bonded lengths. Also the thickness of FRP and the concrete strength between each 

series were varied.  

It was concluded, the FRP width does not affect the failure load, while the FRP 

stiffness influenced the ultimate load. Also, it was suggested that the surface 

preparation can significantly affect the average bond strength, where a roughened 

surface performs much better than a sand blasted surface. In addition, De Lorenzis et 

al. (2001) found that the concrete strength did not affect the bond strength. Finally, 

results showed that the bonded length does not have significant effect on the bond 

failure load. They reported that the bonded length Le to be 93 mm. 

 

 
Figure 3.25. Test specimen. (Note: 1 in. = 25.4 mm.) (De Lorenzis et al. 2001) 
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Nakaba et al. (2001) performed double lap shear pull tests. The primary test 

variables of the FRP stiffness (Ef.tf), concrete strength, and putty thickness were 

studied to determine the influence of the strength of concrete and FRP. A theoretical 

analysis of the bonding behavior between FRP and concrete also performed to 

compare with experimental results. The concrete prism size was 100 x 100 x 600 

mm, after reinforcing with FRP laminates the concrete prism was cracked at the 

center using a hammer on the notch.  where FRP laminates loaded by pulling steel 

bars which are placed at the center of the cross-section of concrete prism 

100x100mm as shown in Figure 3.26. 

 

 

 

Figure 3.26. (a) Test specimen, (b) Data acquisition sketch (Nakaba et al. 2001) 

 

There were three specimens in each combination of concrete (series C5 and series 

C2) and mortar and fiber (series M5). A total of 36 specimens were tested. The width 

and the bonding length of the FRP laminates were 50 mm and 300 mm, respectively. 

The LVDTs were used to measure the total displacement and crack width at the 

center. A total of 20 strain gages to obtain the strain distribution, the strain gages 

were installed on one face at an interval of 15 mm and one strain gage on the other 

side at the center of specimen.  

It was concluded that the putty thickness has no effect on the maximum load while 

the maximum load increases as the stiffness of FRP increases. The local bond stress-

slip is affected by concrete properties, where the increase of concrete strength 

increases the local bond stress, but the maximum local bond stress-slip is not affected 

by the FRP stiffness. The most of the specimens failed in bonding and some failed by 

FRP rupture.  
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Chen and Teng (2001) reviewed and assessed existing anchorage strength models of 

FRP and steel plates bonded to concrete with different bond lengths Hiroyuki and 

Wu (1997), Tanaka (1996), van Gemert (1980), Chaallal et al. (1998), Khalifa et al. 

(1998) and Neubauer and Rostásy (1997), they may be classified all the models into 

three categories: empirical models based directly on the regression of test data, 

models based on fracture mechanics, and models meant directly for design proposals 

that generally make use of some simple assumptions, by comparing them with 

experimental data a total of 55 specimens of single/double shear tests by Bizindavyi 

and Neale (1999), Chajes et al. (1996), Maeda et al. (1997), Täljsten (1997) and 

Swamy et al. (1986). This enabled the identification of the deficiencies of the 

existing models; they used a linearly ascending shear-slip model to describe the plate 

to concrete bond joints, as in Figure 3.27. 

 
Figure 3.27. Shear-slip model for bonded concrete joints (Chen and Teng 2001). 

 

For FRP-to-concrete bonded joints the typical values of the bond slip at maximum 

stress δ1 = 0.02 and the ultimate bond slip δf = 0.2 mm. Finally, results showed that 

an increase in the bonded length beyond the effective bond length cannot increase 

bond strength. 

 
Figure 3.28. Single and double shear tests: (a) Single shear test, (b) 

Double shear test and (c) Plan 
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Dai et al. (2005) investigated the behavior of FRP sheet-concrete interface using 

single-lap pullout tests (Figure 3.29). The concrete prism size was 400 x 200 x 400 

mm, the width of FRP laminate was kept the same width of all specimens at 100 

mm, the bond length of 330 mm was applied. In their study four different adhesives 

and 3 different FRP sheets (Carbon, Aramid and Glass) were applied. The relative 

slip between FRP laminate and concrete were measure used two LVDT's at free 

end and loaded end of the bonded area. it is not necessary attaching many strain 

gauges on the FRP sheets to obtain local bond stress-slip (τ-s) relation, instead, they 

can be derived the local bond stress-slip relations from the relationship between pull-

out forces and loaded end slips. 

The experimental studies and analytical method to define nonlinear τ-s models of 

FRP sheet-concrete interface through pull-out tests was proposed. It was observed 

that the FRP stiffness and adhesives properties and the concrete compressive strength 

affect the fracture energy Gf, where all of these affecting factors were incorporated in 

the Gf formula. The shear stiffness of adhesive Ga affects Gf most, whereas the effect 

of concrete strength is much less than that of the adhesive but slightly greater than that 

of the FRP stiffness. It was also concluded that the Gf was shown to affect the 

ultimate interfacial load carrying capacity, Another parameter B which is the 

interfacial ductility index was shown to affect the configuration of the τ-s 

relationship. 

 
Figure 3.29. Pullout test setup (Dai et al. 2005) 
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Yao et al. (2005) carried out experimental study on the bond shear strength between 

FRP strip and concrete prism using the near end supported (NES) single lap shear 

test Figure 3.30. A total of 72 specimens in 7 series (I-1-16, II-1-6, III-1-8, IV-1-14, V-1-12, 

VI-1-8 and VII-1-8) conducted to investigate the effect of the bond length of FRP strip 

Lfrp, height of concrete free edge and FRP strip to concrete prism width ratio bfrp/bc.  

The results showed that the bonded length and ratio of width of FRP strip to 

concrete prism have been identified to have an effect on the bond strength, while 

the effects of concrete free edge on the bond strength is yet unclear. All of these test 

results were compared with the prediction from Chen and Teng’s (2001) model. In 

general, the test results of Yao et al (2005) found to be quite good agreement with the 

predictions of Chen and Teng’s (2001) bond strength model. 

 

 

 
 

(a) Perspective 

  

(b) Photograph (c) Elevation 

Figure 3.30. Test specimen (Yao et al. 2005) 
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7.0 Parametric study of the bond strength 

7.1 Concrete strength 

The bond strength in adhesively bonded joints may significantly be dependent on 

the concrete strength. Considering different concrete compressive strength in the lap 

shear tests Dai et al. (2005) reported that the interfacial fracture energy is affected 

by the concrete strength. Ueda and Dai (2005) indicated that this effect will be 

noticeable when concrete compressive strength considerably changes. However, 

Chajes et al (1996) reported that the bond strength is proportional to concrete 

strength. Brosens et al (1997) reported that the bond strength is proportional to the 

square root of concrete tensile strength. Yoshizawa et al (2000) and De Lorenzis et al 

(2001) indicated that the dependence of the interfacial fracture energy on the 

concrete compressive strength is negligible. In the literature Chajes et al (1996), Sato 

et al (2000) and Nakaba et al (2001) studied that the maximum interfacial bond 

stresses are linearly proportional to 𝑓𝑓𝑐𝑐
′ 1/2,  𝑓𝑓𝑐𝑐

′ 1/5,  and  𝑓𝑓𝑐𝑐′ 0.19 respectively.  

 

 
Figure 3.31. Effects of the concrete Strength on interfacial fracture energy 

of the bond (Dai et al. 2005) 

 

7.2 Concrete surface preparation 

Concrete surface preparation is also important factor affecting bond strength. The 

test results presented by Chajes et al (1996) showed that the surface preparation of 

the concrete influences the bond strength, they studied the effect of two 

preparations: grinding with stone wheel (smooth finish) and mechanical abrasion 
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(aggregate slightly exposed), the mechanical abrasion achieved the higher average 

interfacial bond strength. Yoshizawa et al. (1996) studied two concrete surface 

preparations: water jet and ordinary sander, they concluded that water jet on the 

concrete surface yielded the highest bonding strength. In their studies, Mitsu et al. 

(2000) used optical displacement meter to quantify concrete surface roughness. 

They used the resulting 3D profiles to assess the surface roughness through 

various indexes: maximum depth, superficial area, form factor and bearing ratio 

curve. They employed also various surface preparations such as sandpaper 

polishing, disk grinding, sand blasting and chipping. It was concluded that the sand 

blasting and chipping were the most effective methods of surface preparation to 

increase the bond strength. 

 

7.3 Adhesive properties 

Regression analysis of the test results performed by Dai et al. (2005) indicates 

that the interfacial fracture energy may be reduced by application of adhesives 

with higher shear modulus (Gadh/tadh). In addition, the maximum bond stress 

increases with the shear stiffness of the adhesive layer. Since the available 

experimental data is limited the effects of the adhesive properties on the bond need to 

be investigated more. 

 

 
Figure 3.32. Effects of the adhesive properties on interfacial fracture 

energy of the bond (Dai et al. 2005) 
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7.4 Stiffness of FRP sheets 

In their studies, Yoshizawa et al. (2000), Nakaba et al. (2001) and De Lorenzis et al. 

(2001) reported the effects of the stiffness of FRP sheets (Ef.tf) in which Efrp and tfrp 

are elastic modulus and thickness, respectively. The bond strength increases as the 

FRP stiffness increases. De Lorenzis et al. (2001) showed that with the increase in 

FRP stiffness the area under the shear vs slip curve remains the same therefore 

the local bond ductility decreases. They assumed that the maximum shear stress in 

the joint is proportional to (Efrptfrp)
0.5. The test results presented by Dai et al. (2005) 

shown that the fracture energy of the interface is hardly affected by the FRP 

stiffness with a relation of (Efrptfrp)
0.023 

 

 
Figure 3.33. Effects of FRP stiffness on interfacial fracture energy of the 

bond (Dai et al. 2005) 

 

 

7.5 Effective bond length 

Many researchers have studied the effect of the FRP bond length. The previous 

studies have shown that there exists there exists an active bonding zone named called 

as the effective bond length Le, along which most of the interfacial load is transferred 

between FRP sheets and concrete. When the bond length of FRP sheet-concrete 

interfaces exceeds the Le, the bond strength will not increase significantly any longer. 
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Researchers have defined this length as the effective bond length, transfer length or 

critical anchor length Taljsten et al. (1997), Yao et al. (2005) and Cao et al. (2007). 

Generally, bond strength increases as the FRP bond length is increased. When the 

FRP bond length is increases beyond a certain extent, the bond length does not 

increase any further. Therefore, the average bond length decreases with the increase 

of sheet bond length.  

Testing results given by Yao et al. (2005) showed that the effect of bond length on 

bond strength was not a significant. Furthermore, De Lorenzis et al. (2001) reported 

that the bond length did not affect the bond failure load. This result is more 

reasonable through the notion of existing effective bond length. In addition to the 

definition of effective bond length as previously described. Although extensive 

research has been conducted to investigate the bond behavior between FRP and 

concrete, there are no commonly acceptable analytical models to predict effective 

bond length. Yuan et al. (2004) deduced the effective bond length expression based 

on the relationship between fracture energy and shear stress-bond slip relationship. 

In general, it was reported that the effective bond length increases with the stiffness 

of FRP sheets. However, due to the different materials used in various researches, the 

effective bond lengths can vary significantly such as 45 mm by Sato et al. (1997), 75 

mm by Bizindavyi et al. (1999), 93 mm by De Lorenzis et al. (2001), 100 mm by 

Ueda et al. (1999) and 275 mm by Bronses et al. (1997). 

 

7.6 Interfacial fracture energy 

The Interfacial fracture energy Gf, which is defined as the area below the shear stress-

bond slip curve, is important parameter for the bond characteristics. Based on 

different types of interfacial bond stress-slip relationships Yuan et al. (2001) proved 

that the maximum interfacial bond force can be expressed as function of the 

interfacial fracture energy Gf and FRP stiffness (Ef tf). Interfacial fracture energy 

has been clearly defined by the theory of fracture mechanics and it can be used in 

the bond equations without any deviations.  The effects of concrete strength, adhesive 

layer and stiffness of FRP sheets the on Gf have been hardly reported by Dai et al. 

(2005). 
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8.0 Conclusions based on previous research 

As  a  result  of  the  extensive  literature  review  presented  in  this  Chapter,  the 

following conclusions can be drawn: 

1. The test parameters that play significant roles in previous investigations can be 

summarized as: 

• the properties of base or substrate material (type, strength, and surface 

roughness), 

• FRP (type, mechanical properties, thickness, number of layers, width),  

• epoxy adhesive (strength, elongation, thickness),  

• the loading history and the environmental conditions (moisture, temperature, 

frost, pollution).  

These variables have impact on the effective bond length, slip-bond curve, and 

rupture or fracture energy. 

2. The test method can also play a significant role on test results. Both numerical 

and experimental studies have shown that the use of different test set-ups can 

lead to significantly different test results (Yao et al. 2005). Furthermore, it has 

been reported that small variations in test setups within a selected method, such 

as the height of the support or pushing block may also have an effect on test data 

(Yuan et al. 2004). 

3. Previously suggested expressions for the effective FRP bond length were 

primarily a function of the thickness and elastic modulus of FRP. In recent years, 

the parameters affecting concrete strength and FRP strip width have also been 

incorporated into the expressions suggested for bond length. 

4. Researchers have recently agreed that there exists an effective bond length 

beyond which the ultimate load capacity does not increase. 

5. Various experimental and analytical investigations of the behaviour of bonded 

FRP-to-concrete joints have been carried out. Researchers have proposed bond 

stress-slip relationship models including the linear cut-off model, bilinear model, 

tri-linear model, and Popovics formula (Brosens et al 1999; Nakaba et al 2001; 

Ueda et  al 1999) 
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CHAPTER 4 

THE UNSOLVED ISSUES IN THE DESIGN PROCESS 

OF FRP STRENGTHENED RC MEMBERS 

 

1.0 Introduction 

The direct calibration of the Cohesive Material Law (CML) or the interfacial τ-s 

relationship is one of the unsolved issues of the FRP-Concrete interfacial debonding 

phenomenon. Many researchers in the past tried to define a reliable method capable 

of describe the interaction between the FRP strip and the concrete substrate. In other 

words, they aimed to understand the quasi-brittle behavior of the bond between 

composites and concrete substrates via a constitutive law of a fictitious material (of 

zero thickness) that separates the two adherents. In this chapter, direct shear tests 

were used to calibrate the CML of the FRP-concrete debonding response obtained by 

Subramaniam et al. (2007). 

 

2.0     Experimental Investigation  

2.1.    Experimental details and test setup 

A test setup was designed to perform direct shear tests on FRP sheets bonded to 

concrete prisms. The experimental program was conducted by Subramaniam et al. 

(2007). In experimental tests, the loading apparatus was organized in order to apply a 

tensile load to the FRP strip, which was attached to the concrete block, while the 

concrete block was restrained against movement as shown in Figure 4.1. Details 

about the specimen geometry and the test configuration as provided by Subramaniam 

et al. 2007 are shown in Table 4.1. 

Unidirectional carbon fiber reinforced polymer (CFRP) sheets were used, with a 

thickness t equal to 0.167 mm. The tensile strength and the Young’s modulus of the 

FRP composite were equal to 3.83 GPa and 230 GPa, respectively. A length of the 
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FRP equal to 35 mm was left unbonded to provide an initial notch for the crack 

growth. Tests were performed using the global slip, g, as the control variable by 

increasing it at a constant rate equal to 0.00065 mm/s up to failure. Two LVDTs 

were mounted on the concrete prism near the loaded end of the composite to measure 

the global slip of the FRP as shown in Figure 4.1. 

 

 
 

Figure 4.1: Specimen dimensions and loading arrangement  

(Subramaniam et al. 2007) 

 

Table 4.1: Details about the specimen geometry and the test configuration considered 

for the calibration of the CML’s (Subramaniam et al. 2007). 

Specimen 
Test 

Concrete CFRP Direct shear results 

fc 
(MPa) 

tc 
(mm) 

bc 
(mm) 

Lc 
(mm) 

bf 
(mm) 

ℓf 
(mm) 

Pcrit 
(KN) 

σu= Pcrit/bf*tf 
(N/mm2) 

W_2 39 125 125 330 38 152 9.80 1544.83 
W_3 39 125 125 330 38 152 10.02 1574.80 
W_4 39 125 125 330 25 152 5.54 1326.66 
W_5 39 125 125 330 25 152 5.44 1303.62 
W_6 39 125 125 330 25 152 5.36 1284.26 
W_8 39 125 125 330 19 152 4.27 1345.62 
W_9 39 125 125 330 19 152 4.05 1275.79 
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2.2 Direct shear test results 

Figure 4.2 shows a typical load response (the average of the two LVDTs is termed 

global slip, 𝑔𝑔, while the applied load is termed P ) obtained for a 25 mm width strip 

tested by Subramaniam et al. (2007). All load-responses had a similar shape. 

Different widths were tested. The maximum load was obtained for the wider FRP 

sheet. The curves showed an initial linear ascending region followed by a non-linear 

response. The end of the non-linear part of the response was typically marked a by a 

load drop that indicated that the interfacial crack has formed. As the crack 

propagates, the load was nominally constant after the load drop and the value of the 

constant load is termed load- carrying capacity or bond strength and indicated as 

Pcrit , which is determined as the mean value of the load when the global is within 

the range g1 and g2 (for specimen in Figure 4.2, g1=0.35 mm, g2=0.75 mm). The 

global slip range (g1,g2) varied for each test and was identified on the basis of the 

strain analysis results by Subramaniam et al. (2007).  

 

 
Figure 4.2: Typical load versus global slip response of the FRP bonded to concrete 

for test W_4 in Subramaniam et al. (2007) 
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3.0      Cohesive Material Law (CML) 

As it is known, the analytical form of the bond-slip law is fundamental for a reliable 

structural analysis of concrete externally strengthened with FRP sheets. In other 

words, CML or the interfacial τ - s relationship is the most fundamental constitutive 

laws that characterize the bond of FRP sheet-concrete interfaces. The calibration of 

the cohesive material law can be derived from the analysis of the experimental load 

responses (applied load P and the corresponding slip at the loaded end smax ). 

The interfacial fracture energy, GF, which corresponds to the area under the τ - s 

curve is obtained as: 

𝐺𝐺𝐹𝐹 = � 𝜏𝜏(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑠𝑠𝑓𝑓

0
                                                                                                                   (1) 

Several expressions of CML have been proposed in order to perform the indirect 

calibration. Each CML function contains several unknown parameters that were 

determined such that the adopted values minimized the difference between the 

experimental results and analytical predictions. CML functions considered in this 

work to fit the experimental load responses are: 1) D’Ambrisi et al. (2012) function, 

and 2) Dai et al. (2005) function. 

 

 

3.1 CML based on load responses 

3.1.1     D’Ambrisi et al. (2012) 

The CML function influenced by the experimental results of PBO-FRCM materials 

used in the calibration to describe the cohesive material law, which is expressed 

D'Ambrisi et al. (2012) and is defined as: 

𝜏𝜏(𝑠𝑠) = �𝜏𝜏𝑐𝑐 + 𝐴𝐴. �𝑒𝑒−𝛼𝛼𝑠𝑠 − 𝑒𝑒−𝛽𝛽𝑠𝑠��.�1 −
𝑠𝑠
𝑠𝑠𝑓𝑓
�        0 ≤ 𝑠𝑠 ≤ 𝑠𝑠𝑓𝑓                                         (2) 

where s = slip (relative displacement between fabric and matrix); sf = final slip when 

value of bond stress is zero. The set of unknown parameters [A, α, β] (curve-fitting 

parameters); τ = bond stress; and τo = initial finite value of bond shear stress.  

The bond-slip relation Eq. (2) represents a CML characterized by nonzero shear 

stress at s = 0 ( ( ) 00 τ=τ ). A typical τ(s) curve of FRP specimens is shown in Figure 

4.3. 
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Figure 4.3: Typical CML (D’Ambrisi et al. 2012) 

 

 

3.1.2 Dai et al. (2005)  

The CML function was also fitted from the expression proposed by Dai et al. (2005).  

Eq. (3) provides the relationship of the shear stress (τ) and the relative slip (s) 

between the FRP sheet and concrete substrate. and is defined by: 

 

𝜏𝜏(𝑠𝑠) = 𝐴𝐴. (𝑒𝑒−𝛼𝛼𝑠𝑠 − 𝑒𝑒−2𝛼𝛼𝑠𝑠)       0 ≤ 𝑠𝑠 ≤ 𝑠𝑠𝑓𝑓                                                                       (3) 

 

The proposed τ(s) relationship has two unknown parameters (A, α). The τ(s) law 

given in Eq. (3) is influenced by the experimental results of FRP sheet used in the 

calibration. A typical τ(s) curve of FRP specimens is shown in Figure 4.4. 

 

 
Figure 4.4: Typical CML (Dai et al. 2005) 
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3.2   Calibration method and construction of the analytical of the strain capacity 

(SC) response εmax(ℓ) 

In the following section, a method to calibrate parameters of a given cohesive 

material law (CML) is presented together with the analytical or numerical evaluation. 

The most widely adopted method for the calibration of CML named direct method, 

which is based on the experimental εmax(ℓ) curve (i.e., the Pmax(ℓ) curve divided by 

the axial stiffness EfAf as follow. 

 

( ) ( )
ff AE

P l
l max

max =ε                                                                                                        (4) 

where Ef is the elastic modulus of the fibers, and Af  is the cross-sectional area of the 

fibers. 

 

Once the experimental εmax(ℓ) curve is selected, a best fitting procedure is used to 

calibrate the CML against the experimental data. This step requires that the εmax(ℓ) 

curve corresponding to a certain set p of parameters is obtained by solving the 

fundamental differential equation that describes the Mode-II debonding phenomenon 

Focacci F, Carloni C (2015); Carloni C, Focacci F. (2016) and Malena et al. (2016). 

The best fitting procedure entails for the definition of a calibration criterion that is 

specific for the εmax(ℓ) curve. The calibration criterion should minimize the distance 

between the experimental and the analytical curves. 

 

 

3.3     Construction of the analytical responses 

The CML consents for the analytical or numerical evaluation of the strain profiles 

ε(y), load response𝑃𝑃(𝑔𝑔), joint capacity (JC) response Pmax(ℓ), and slip capacity 

(SLC) response 𝑔𝑔max(ℓ).  

In particular, the term analytical will be used for the strain profile and the other 

responses obtained from the CML, even though numerical methods have been used 

for the solution of the differential equations and integrals herein presented. Figure 

4.5 shows an idealized CML for an FRCM material and the associated relations ε(y), 
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P(𝑔𝑔), Pmax(ℓ), and 𝑔𝑔max(ℓ) for a relatively long bonded length (Focacci F, Carloni C. 

(2015); Carloni C, Focacci F. (2016); and  Focacci F, Carloni C (2015)).  

The analytical responses associated with an assigned CML are determined by solving 

the differential equation (Focacci F, Carloni C (2015); Carloni C, Focacci F. (2016); 

Malena et al. (2016); and Focacci F, Carloni C (2015)). 

 

( )s
AE

p

dy
sd

ff

f τ=2

2
                                                                                                        (5) 

 

where Ef is the fibers Young’s modulus, Af is the area of the fibers cross section and 

s=s(y) is the slip at a distance y from the free end Figure 4.5. The boundary 

conditions must be enforced, for example, at the free end ( 0=y ,Figure 4.5). 

 

 

 

  

Figure 4.5 : (a) Typical CML for an FRCM composite. (b) Strain profiles consequent 

to the typical CML. (c) Load response corresponding to the typical CML. (d) Joint 

and slip capacity responses corresponding to the typical CML. 
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Construction of the strain profiles ε(y) 

The strain profile ε(y) associated with applied load P can be defined as: 

 

( ) ( )ys
dy
dy =ε                                                                                                              (6) 

 

where s(y) is a solution of differential Eq. (5) satisfying the condition (Figure 4.5b): 

 

P
dy
dsAE

y
ff =

=l

                                                                                                          (7) 

 

If the CML is followed by a constant shear stress τf (s≥sf ,Figure 4.5a), when the 

loaded end slip 𝑔𝑔 is greater than sf a portion of the strain profile near the loaded end 

presents a constant slope: 

 

ff

f
f AE

p
dy
d

τ=
ε                                                                                                             (8) 

 

This is a peculiarity of some FRCM materials such as the one herein investigated 

D’Antino et al. (2014). For FRP composites, the shear stress is generally assumed 

equal to zero for slips greater than a certain slip sf. Consequently, in the case of FRP 

composites, the strain profiles are constant at the loaded end for fsg ≥ . 

 

Construction of the load responses 𝑃𝑃(𝑔𝑔) 

A procedure to construct the load response 𝑃𝑃(𝑔𝑔) was applied in Focacci et al. (2000) 

in order to characterize the bond properties of FRP rebars embedded to concrete, in 

D’Ambrisi et al. (2012) to characterize the bond properties of FRCM materials 

embedded to masonry, and D’Ambrisi et al. (2013) to characterize the bond 

properties of PBO-FRCM materials embedded to concrete. 

A similar procedure is adopted herein and takes into account that the 𝑃𝑃(𝑔𝑔) response 

is comprised of two branches: in the first branch, named 𝑃𝑃1(𝑔𝑔), corresponds to null 

slips sF at the free end (Figure 4.5a,c). While in the second branch, named 𝑃𝑃2(𝑔𝑔), 
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corresponds to nonzero slips sF at the free end occur (Figure 4.5c). The procedure 

consists of the following steps. 

 

Step 1: This step consists of determining the applied force 𝑃𝑃� and consequent loaded 

end slip �̅�𝑔 at the onset of nonzero slip at the free end. These parameters can be 

determined by solving the differential Eq. (5) with the boundary conditions enforced 

at the free end ( , Figure 4.5): 

 

( )

( )







==ε

=

=

00

00

0ydy
ds

s

                                                                                                  (9a,b) 

 

The force 𝑃𝑃�  and the loaded end slip �̅�𝑔 are then determined as: 

 

( )

l

l

=

=

=

y
ff dy

sdAEP

sg

                                                                                                     (10a,b) 

 

Where �̅�𝑠(𝑦𝑦) is the solution of differential Eq. (5) with the boundary conditions in Eq. 

(9a,b). 

 

Step 2: This step consists of determining of the first branch 𝑃𝑃1(𝑔𝑔) of the 𝑃𝑃(𝑔𝑔) 

response. 𝑃𝑃1(𝑔𝑔) is obtained from Eq. (11) Focacci et al. (2000). 

 

( )

( ) ( )1
0

2
g

f f f

g s

P g p E A s dsτ

=

= ∫

l

                                                                              (11a,b) 

 

Step 3: This step consists of determining of the second branch 𝑃𝑃2(𝑔𝑔) of the 𝑃𝑃(𝑔𝑔)  

response. 𝑃𝑃2(𝑔𝑔) is determined by considering a set of values of the free end slip sF 

and solving differential Eq. (5) with boundary conditions: 

 

0=y
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( )

( )







==ε

=

=

00

0

0y

F

dy
ds

ss

                                                                                                  (12a,b) 

 

The solutions 𝑠𝑠(𝑦𝑦) = 𝑠𝑠𝑠𝑠𝐹𝐹(𝑦𝑦) of Eq. (5) with the boundary conditions in Eq. (12a,b) 

allows for associating the applied load P and loaded end slip 𝑔𝑔 with each value of the 

free end slip sF: 

 

( ) ( )

( )
l

l

=

=

=

y

sF
ffF

sFF

dy
ds

EEsP

ssg

                                                                                           (13a,b) 

 

The subscript sF in Eq. (13a,b) indicates that the corresponding slip profile ssF(y) is 

associated with a certain slip sF at the free end. Hence, for each value of the 

parameter sF the slip profile ssF(y) is determined.  

Therefore, for each value of sF the loaded end slip 𝑔𝑔(𝑠𝑠𝐹𝐹) and the applied force 𝑔𝑔(𝑠𝑠𝐹𝐹) 

are computed. The second branch 𝑃𝑃2(𝑔𝑔) of the 𝑃𝑃(𝑔𝑔) response is obtained by 

eliminating the parameter sF between the functions 𝑃𝑃(𝑠𝑠𝐹𝐹) and 𝑔𝑔(𝑠𝑠𝐹𝐹). 

 

Step 4: This step consists of determining of the 𝑃𝑃(𝑔𝑔) response. Finally, the entire 

𝑃𝑃(𝑔𝑔) response is the union of branches 𝑃𝑃1(𝑔𝑔) and 𝑃𝑃2(𝑔𝑔), as shown in Figure 4.5c. It 

is worth noting that the existence of both branches  𝑃𝑃1(𝑔𝑔) and 𝑃𝑃2(𝑔𝑔) depends on the 

shape of the adopted CML: the first branch does not exist, i.e. 𝑃𝑃�(0) = 0, for a CML 

characterized by 𝜏𝜏(0) = 0 and finite derivative at s = 0, as observed in D’Ambrisi et 

al. (2013); Focacci F, Carloni C. (2015) and Carloni C, Focacci F (2016). Figure 4.5c 

shows the shape of the load response and also the relation P(sF) consequent to the 

typical CML represented in the same figure. 

 

 

3.4   Direct calibration of CML best on strain profile 

The most widespread technique to define the interfacial τ-s relationship consists in 

the direct calculation of local bond stress and slip from the variation of the strain 

measured by a series of strain gauges on the external face of a FRP sheet. This type 
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of procedure leads to an inaccurate evaluation of the bond stresses at the interface 

due to several causes, among which the highly nonlinearity nature of local fractures, 

the random distribution of discrete cracks and aggregates in the concrete and the 

irregularity in the adhesive layer and surface preparation. Part of these drawbacks is 

overcome by the use of DIC. 

In recent years Dai et al. (2006) proposed a more reliable and accurate method in 

order to describe the behavior at the interface between the FRP strip and the concrete 

substrate considering the relationship among the strains of FRP sheets and the slips at 

the loaded end. This way appears to be more correct because the measurements of 

the load and slip at the loaded end in a pull-off test are much more stable than the 

strains obtained from strain gauges along the FRP strip. The main relationships 

considered by Dai et al. (2006) in the study of the debonding phenomenon, regarding 

shear stresses and slips along the FRP-concrete interface, are the followings: 

( ) f f
dy E t
dy
ετ =  (14) 

  

0
( ) ( )

y
s y t dtε= ∫  (15) 

  

In their analysis Dai et al. (2006) used an exponential expression of the longitudinal 

strain to fit, through a nonlinear regression, the experimental strain-slip curve at the 

loaded end of the FRP strip. In this work, following a similar approach, an 

exponential function will be used to fit the trend of experimental strains along the 

FRP strip. However, it is important to highlight that the choice of the function is not 

unique and may be interesting to investigate the influence of this choice on the 

determination of the fracture parameters of the FRP-concrete interface. 

The axial strain distribution along the FRP assumes a primary importance in the 

debonding phenomenon at the interface between FRP and concrete. If the 

detachment at the interface is already started and the bond length is long enough, this 

distribution is divided into three main regions: the stress-free zone (SFZ), the stress-

transfer zone (STZ) and the fully-debonded zone (FDZ). The former is the portion of 

the FRP strip not yet interested by the debonding phenomenon in which both the 

strain and the shear stress are equal to zero. The STZ is the part of the FRP strip 
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where the transfer of shear stress takes place and it is usually characterized by a “S” 

shape of the strain profile. Eventually, in the FDZ the FRP strip is already detached 

from the concrete substrate: the strains are equal to their maximum value while the 

exchange for shear stress is no longer possible.  

 

Ali-Ahmad et al. (2006) approximated the experimental nonlinear strain distribution 

along the bonded length using the following expression: 

𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜀𝜀0 +  
𝛼𝛼

1 + exp (−𝑦𝑦 − 𝑦𝑦0
𝛽𝛽 )

                                                                                        (16) 

This expression is similar to the one proposed by Dai et al. (2006). One of the main 

problems in the choice of an exponential function to approximate strain data along 

the FRP strip is the impossibility to define a finite effective bond length (EBL), 

which is the minimum length needed to develop the maximum capacity of the 

interface. To overcome this problem, Dai et al. (2006) defined a conventional EBL 

corresponding to 96% of the ultimate load. In fact, the EBL can be obtained directly 

analyzing how the ultimate load changes compared to different values of the bond 

length. Above a certain value of the bond length, it’s no possible to appreciate 

significant increases of the ultimate load; therefore this value corresponds to the 

EBL. As already mentioned, in Dai et al. (2006) method the load tends 

asymptotically to the maximum value, i.e. the ultimate load, so that is impossible to 

define a finite EBL without recurring to some approximation.    

In this work other functions have been considered in order to highlight their 

influence on the determination of the fracture parameters of the FRP-concrete 

interface and to obtain a finite value for the effective bond length. The functions 

considered in this work to fit the strain distribution along the bonded length are: 

1) Dai function; 

2) Sine function; 

3) Polynomial function; 

4) “BI-function”, obtained considering a bilinear behavior of the interfacial τ-s 

relationship. 
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3.4.1   Dai et al. (2006) function 

Dai et al. proposed the following function for the longitudinal strain: 

exp( ( ))( )
exp( ( )) 1
A B Ay Cy

B Ay C
ε +

=
+ +

                                                                               (17) 

where A, B, and C are parameters evaluated through a non-linear regression. 

The experimental strain at the interface were fitted through Eq. (17), while during the 

analysis it has been defined the shear stresses and the slips along the FRP-concrete 

interface through Eqs. (14) and (15). Inverting s(y) and substituting the y(s) 

expression in the τ(y) formula, it’s possible to define the cohesive material law τ-s. 

Unfortunately, not all the s(y) functions are reversible, so that is not always possible 

to define a y(s) expression. In other cases, the integral of ε(t)dt cannot be calculated 

and therefore the s(y) function cannot be evaluated. Dai solved this integral using 

some mathematical tricks, not completely correct from an analytical point of view. 

A more simple procedure to define the τ-s relationship is obtained combining the 

stresses and the slips aforementioned. Following this way, it is possible to plot the τ-s 

function and to determine on this graph the most important fracture parameters, such 

as τmax, slipmax namely the slip corresponding to τmax, and GF, the fracture energy, 

which is the area under the τ-s curve. The latter parameter was obtained using Dai 

formulations: 

2

2
f fE t

G A=                                                                          (18) 

 

3.4.2 Sine function 

Another function that has been considered is a sine-type function that can be suitable 

to represent the S-shape trend of the experimental strain profile along the FRP strip: 

 

1 1

1 1

1 1

0, ( ) ' 0 & ( ) '' 0
( ) ( ), ( ) ' 0

2 , ( ) ' 0 & ( ) '' 0

if y y
y y if y

D if y y

ε ε
ε ε ε

ε ε

> <
= >
 < <

                                      (19) 
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Where ε1(y) is the following expression: 

 

1( ) sin
2

Fy Gy D D
E

πε π
 − = − +     

                                                                       (20) 

 

and once again D, E, F, and G are parameters evaluated through a non-linear 

regression. yA and yB are the y coordinates along the FRP strip where the function 

changes from 0 to ε1(y) and from ε1(y) to 2D, respectively. 

The function is composed of three parts and showed in Eq. (19). Considering a 

reference system that starts from the free end, yA represents the position along the 

FRP strip where the transfer of shear stresses through the interface begins. Instead, 

yB indicates the position from which the exchange in shear stresses is no longer 

possible due to the fact the FRP strip is completely detached from the concrete 

substrate. Analyzing the strains along the FRP strip, it can be noted that until y ≤ yA, 

they are equal to zero, while if yA < y < yB they are represented by a sinusoidal 

function and finally if y ≥ yB they are equal to 2D (εmax). 

The value of yB is obtained analyzing the first and the second derivative of the 

sinusoidal function in Eq. (19). When the second derivative of this expression is 

negative, the position in which the first derivate changes from a positive to a negative 

value corresponds to yB. Eq. (19) was used to fit experimental strains while the shear 

stresses are calculated through Eq. (14). Unfortunately, it is no possible to evaluate 

the integral in Eq. (15) for the sine function; therefore the slips along the FRP strip 

were estimated computing the area under the ε(y) curve for each range of 

experimental data. Proceeding in this way, the slips just evaluated corresponds to the 

central value between two consecutive positions along the FRP strip. Therefore, in 

order to combine correctly the slips and shear stresses, each slip was related with the 

mean value of the shear stress between the two corresponding experimental data. 

The interfacial τ-s relationship was then plotted and the most important parameters 

were detected. It’s important to highlight that the analytical expression of τ(s) cannot 

be obtained such as for Subramaniam et al. function because the integral in Eq. (15) 

cannot be solved. The fracture energy GF was obtained computing the area under the 

τ-s curve. 
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3.4.3   Polynomial function 

Fitting of the experimental strain profile was also attempted through a polynomial 

function: 

2 2

2 2

2 2 2

0, ( ) ' 0 & ( ) '' 0
( ) ( ), ( ) ' 0

( ), ( ) ' 0 & ( ) '' 0D

if y y
y y if y

y y if y y

ε ε
ε ε ε

ε ε ε

> <
= >
 = < <

                                   (21) 

 

where ε2(y) is the following expression: 

( ) ( ) ( )3 2
2 ( ) C C Cy H y y I y y L y yε = − + − + −                                                      (22) 

where once again H, I, L, and yC are parameters evaluated through a non-linear 

regression. yC and yD are the y coordinates along the FRP strip where the function 

changes from 0 to ε2(y) and from ε2(y) to ε2(y = yD), respectively. 

Such us for the sine function also for the polynomial one the function is composed of 

three parts and showed in Eq. (21). The positions yC and yD assume the same 

meaning of yA and yB for the sine function, respectively. Therefore, until y ≤ yC, the 

strains are equal to zero, if yC < y < yD they are represented by a polynomial function 

while if y ≥ yD they are equal to εmax. It can be observed that the polynomial 

expression results zero in y = yC, where there should be no strains. 

The value of yD is obtained analyzing the first and the second derivative of the 

polynomial function in Eq. (21). When the second derivative of this expression is 

negative, the position in which the first derivate changes from a positive to a negative 

value corresponds to yD. The value of εmax is obtained from Eq. (22). 

The experimental strain at the interface were fitted through Eq. (21), while it’s 

important to highlight that for the polynomial function is possible to define in an 

analytic way the interfacial τ-s relationship. In order to investigate the cohesive 

material law only the second expression in Eq. (21) may be considered. For 

simplicity, it is useful to change the reference system starting point in y = y0 in order 

to obtain the following expression of the strains along the FRP strip: 

3 2( )y Ay By Cyε = + +                               (23) 

The slips along the FRP strip are obtained by integration of Eq. (23) as follows: 
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                             (24) 

Therefore, the y(s) relationship is obtained solving the following expression: 

4 3 2 0ay by cy e+ + + =                               (25) 

where a = A/4, b = B/3, c = C/2, and e = -s. 

Eq. (25) represents an expression of the fourth degree in y and can be solved 

referring to Cardano’s formulas, obtaining two real solutions and two complex 

solutions. The procedure is summarized in the following equations: 
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At the same time, the shear stresses along the FRP strip can be evaluated substituting 

Eq. (23) in Eq. (14), obtaining: 

( )2( ) 3 2f fy E t Ax Bx Cτ = + +                 (34) 

Once that one of the two real solutions is obtained from Eqs. (32) or (33), it can be 

substituted in Eq. (34) in order to obtain finally the analytical expression of the 

cohesive material law τ-s at the interface between the FRP strip and the concrete 

substrate.  

Another procedure to define the τ-s relationship is to combine directly the shear 

stresses and the slips calculated with Eqs. (14) and (15) in order to plot the τ-s 

function and to define the most important fracture parameters. The plot of the 

analytical function was compared with the plot obtained by combining the values of 

the stress and the slip corresponding to the same value of y. The two plots were 

identical. The fracture energy GF was obtained computing the area under the τ-s 

curve.  

 

3.4.4    Bilinear function 

Several researchers have assumed a bilinear function to describe the cohesive 

material law, which is expressed as: 

0
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(35) 

 

Figure 4.6 shows the plot of the function and the parameters that are used in Eq. (35). 

Defined the τ-s relationship at the interface between the FRP strip and the concrete 

surface, it is possible to calculate the slips and the strains along the FRP strip by 

integration of the fundamental differential equation that relate shear stresses and 

slips, expressed as: 

137 
 



 

2

2

( ) ( ) 0
f f

d s y y
dy E t

τ
− =  

(36) 

Solving Eq. (36), considering the bilinear cohesive law showed in Eq. (35), leads to 

the following expressions of the slips and the strains (as the derivative of the slips) 

along the FRP strip: 
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where A, C, and D are integration constants, while α and β depends on the 

parameters that describes the bilinear function of Eq. (35). 

Eq. (38) was used to fit experimental strains, therefore the parameters that 

characterize the bilinear function, i.e. τ0, τmax, s0, sf, and the position along the FRP 

strip where the transfer of shear stresses through the interface begins, i.e. y0, are 

evaluated through a non-linear regression.    

The function in Eq. (38) is composed of four parts. The length yr and EBL are 

represented in Figure 4.6, and can be evaluated through an analytical way. 

Some of the most important fracture parameters, such as τmax and sm are defined 

directly through the non-linear regression of experimental strain. 

The value of εmax is obtained in the fourth branch of Eq. (38). 

The fracture energy GF was obtained evaluating the area under the τ-s curve with the 

following expression: 

( ) ( ) max0 max

2 2
f mm
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s ss
G
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Figure 4.6: Typical CML (Bilinear function) 

 

5.0 Beams 

In case of the beam strengthened with FRP and subject to flexural deformation, the 

effect of the curvature should be taken into account as shown in Figure 4.7.  

Interfacial crack-induced debonding between concrete and external FRP strips 

reinforcement (debonding initiating at flexural cracks along the beam) is the failure 

mode governing maximum FRP strain which can be adopted for flexural design.  

Moreover, Fibers strain at debonding in tensile tests is lower than fibers strain at 

debonding in beams tests. 

 

 
 

Figure 4.7: Interfacial crack in beam 
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6.0 Results and discussion 

6.1     Calibrated CML functions for load responses 

The procedure for obtaining the local bond stress-slip relationship is presented in the 

section 3. The best fitting curve of the load responses of specimen W_4 based on 

D’Ambrisi's et al. (2012) function is shown as in Figure 4.8.  

 

 
Figure 4.8: The best fitting curve of the load responses of specimen W_4 

Based on the obtained best fitting curves of load responses using CML functions 

adopted by D’Ambrisi et al. (2012) and Dai et al. (2005), we can derive the 

relationship between the bond stress and the slip of the FRP and the concrete 

interface as shown in Figure 4.9. 

Comparison between experimental τ-s diagrams for eight specimens, Figure 4.9a 

using D’Ambrisi et al. (2012) and Figure 4.9b using Dai et al. (2005). From these 

figures, the shape of the bond stress-slip curve in the case of D’Ambrisi et al. (2012) 

is similar to that of Dai et al. (2005). Generally, both curves are nonlinear and have 

two branches: a branch ascending until reaching the maximum value of the bond 

stress τmax, and a descending branch until the maximum value of the slip sf at which 

bond stress falls to zero. Mover, In case of Eq. (2) a descending branch has a smaller 

slope compare to Eq. (3). Although the maximum local bond stress and fracture 

energy are almost smaller as shown in Figure 4.9 and Table 4.2. 

                   Experimental test W_4 
                   Best fitting curve Eq. (A3) 
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(a) (b) 

Figure 4.9: Bond stress-slip relationship between CFRP and concrete substrate: 

(a) all tested specimens Eq.( 2) and (b) all tested specimens Eq.( 3) 

 

 

6.2      Comparison 

CML results of specimen W_4 obtained from load responses using Eq. (2) and Eq. 

(3) are plotted together with CML results obtained from strain distribution using Eqs. 

of (Bilinear) (Polynomial) (Sinusoidal) and (Dai et al. 2006), for comparison. An 

example of the CML, which corresponds to test W_4 in Subramaniam et al. (2007), 

is depicted in Figure 4.10.  From the Figure 4.10, it can be noted that using Dai et al. 

(2005) and D’Ambrisi et al. (2012) to fit load response, and Dai et al. (2006) to fit 

the strain profile (Figure 4.11) results are similar.  

 
Figure 4.10: Cohesive material law τ-s for specimen W_4 obtained using six 

different functions to fit experimental data. 
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Figure 4.11: S-shape εyy profile for specimen W_4 using four different functions to 

fit experimental data. 
 

The polynomial function, similarly to Dai function allows obtaining a good fitting of 

the experimental data. In fact, the function is able to follow the slope variations that 

are observed by analyzing the experimental epsilons and to adapt to their trend. 

Additional considerations can be made considering the polynomial function. The 

method here considered starts from the analysis of experimental epsilon along the 

FRP strip. It is therefore an indirect measure, since the quantities that are actually 

measured during the debonding test are the slip between the FRP and the concrete 

substrate. We might consider proceeding starting from the fitting of slip along the 

FRP strip and obtaining the epsilons and the shear stresses respectively from the first 

and the second derivative. It was decided to apply the following expression: 

𝑠𝑠(𝑒𝑒) = 𝐴𝐴 ∗ (𝑒𝑒 − 𝐷𝐷)4 + 𝐵𝐵 ∗ (𝑒𝑒 − 𝐷𝐷)3 + 𝐶𝐶 ∗ (𝑒𝑒 − 𝐷𝐷)2 

Where A, B, C and D are parameters evaluated through a linear regression. Two 

stretches were added to the polynomial function. The former refers to the portion of 

the FRP strip not yet affected by the exchange of shear stresses, where slip were 

imposed to zero. The latter refers to the portion of the FRP strip in which the 

detachment from the substrate has already occurred and slip is linear with a trend that 

shows a constant slope. 

We can observe that using the latter method of fitting, similar results are obtained 

compared to those achieved starting from experimental epsilon, even if many pic 

within several tests cannot be analyzed with this procedure. It is therefore useful to 
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apply the method that starts from the analysis of the strains along the FRP strip. In 

general the polynomial function fits quite well to the “S” shape of the STZ (Stress 

Transfer Zone). In the τ-s graph there are no points of inflection, but the curve 

continues always with the same concavity. Almost all of the experimental data can 

be processed by using the polynomial function. 

The bilinear function allows obtaining a good fitting of the experimental data. The 

sinusoidal function doesn’t give a fitting close to the experimental data. This is 

because the function doesn’t allow performing rapid changes in slope and therefore it 

adapts more slowly to the S shape of the STZ (Stress Transfer Zone). From all this it 

follows a lower slope (and therefore a lower first derivative) in the epsilon fitting 

which results in lower values of shear stresses exchange in the debonding process 

between the FRP strip and the concrete substrate. In the τ-s graph inflection points 

are not detected, but the curve continues always with the same concavity. Even in 

this case, almost all of the experimental data can be processed by using the sinusoidal 

function, which means that even if there are some irregularities in the results 

obtained, the function still managed to reproduce the overall behavior. 

Table 4.2: Main parameters characterizing the CMLs  

Specimen 
Test Parameters Bilin. Polin. Sin. Dai D’Ambris Dai 

Eq. (A3) 

W_2 
τmax (MPa) 6.35 6.41 4.47 7.67 7.053 6.740 
sm (mm) 0.010 0.034 0.065 0.037 0.057 0.046 

GF (MPa.mm) 0.82 0.79 0.87 0.80 0.798 0.867 

W_3 
τmax (MPa) 8.63 8.47 4.79 9.95 7.478 8.297 
sm (mm) 0.015 0.025 0.058 0.027 0.045 0.030 

GF (MPa.mm) 0.67 0.74 0.81 0.75 0.694 0.713 

W_4 
τmax (MPa) 7.21 6.00 5.59 7.18 7.165 6.857 
sm (mm) 0.013 0.031 0.038 0.032 0.036 0.027 

GF (MPa.mm) 0.65 0.65 0.68 0.65 0.594 0.541 

W_5 
τmax (MPa) 7.97 6.65 4.24 7.95 7.356 6.842 
sm (mm) 0.013 0.025 0.052 0.026 0.053 0.028 

GF (MPa.mm) 0.59 0.58 0.65 0.58 0.616 0.555 

W_6 
τmax (MPa) 8.39 6.68 4.41 8.44 7.393 7.545 
sm (mm) 0.031 0.027 0.066 0.035 0.038 0.025 

GF (MPa.mm) 0.88 0.85 0.88 0.85 0.674 0.544 

W_8 
τmax (MPa) 7.62 6.77 4.84 8.06 6.378 6.191 
sm (mm) 0.008 0.033 0.057 0.036 0.042 0.034 

GF (MPa.mm) 0.80 0.80 0.84 0.84 0.557 0.609 

W_9 
τmax (MPa) 7.10 6.21 4.12 7.63 6.225 6.429 
sm (mm) 0.006 0.030 0.061 0.032 0.039 0.031 

GF (MPa.mm) 0.74 0.71 0.77 0.71 0.504 0.570 
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7.0    Conclusions 

In this work, available functions used to calibrate the cohesive material law (CML) 

of FRP-concrete joints, six CML were selected and calibrated. the experimental data 

conducted by Subramaniam et al. (2007).  

Based on the results presented in Table 4.2, which corresponds to results obtained 

from fitting of experimental data with the functions previously described, comparing 

for each of the investigated parameters, the following conclusions can be drawn: 

• Analyzing the fracture energy Gf, we can observe that also in this case there 

is a good affinity between all functions listed above, which it derives a value 

of Gf almost convergent. 

• The maximum shear stress 𝜏𝜏𝑚𝑚𝑚𝑚𝑒𝑒 achieved from the sinusoidal function, is 

much lower than the ones obtained with Eq. (2), Eq. (3), Dai et al. (2006), 

and polynomial functions. 

• Regarding the slip related to the maximum shear stress 𝑠𝑠𝑚𝑚, the values 

obtained with Eq. (3), Dai, and polynomial functions are almost convergent. 

At the same time Eq. (2) gives a value quite conservative, while the other 

functions differ enough from this result. 

Ultimately we can assert that Eq. (3), Dai et al. (2006), and polynomial functions 

have a good affinity between them, leading to similar results and therefore quite 

reliable. Also the bilinear function leads to quite good results, even if the 

discrepancies in the definition of the 𝑠𝑠𝑚𝑚 produce a cohesive material law τ-s slightly 

different. 
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CHAPTER 5 

BOND BEHAVIOR OF STEEL-FIBER (SRP) 

COMPOSITES APPLIED ONTO A CONCRETE 

SUBSTRATE 

 

1.0 Introduction 

FRP (Fiber reinforced polymer) composites materials have experienced a continuous 

increase of use in structural strengthening and repair applications over the past 

decades. Among the several applications in which they are commonly involved, 

FRPs are widely used in the strengthening of reinforced concrete (RC) beams 

because they can increase significantly the flexural and shear strength of the element. 

Several issues related to the structural performances of FRPs applied to RC elements 

have been studied. Among them, the interfacial debonding mechanism between FRP 

composites and concrete substrate has gained an outstanding interest, since 

debonding is a brittle phenomenon and often occurs with no visible warning at a load 

level significantly lower than the flexural or shear capacity of the strengthened 

member corresponding to the rupture of the FRP reinforcement. The problem of 

bond between FRP and substrates was already investigated by different authors 

(Chajes et al. 1996, Taljsten 1997, Bizindavyi and Neale 1999, Focacci et al. 2000, 

Nakaba et al. 2001, De Lorenzis et al. 2001, Savoia et al. 2003, Dai and Ueda 2003, 

Lu et al. 2005, Leung and Tung 2006, Mazzotti et al. 2008). Recently, a new family 

of composite materials has been introduced as alternative to traditional FRP 

composites, to overcome their relatively high cost. Steel FRP gained a terrific 

interest, due to some advantages as the lower cost with respect to traditional FRP and 

good ductility performances (Casadei et al., 2005, Huang et al. 2005, Matana et al. 

2005). SFRPs are currently considered for numerous applications in civil engineering 

such as strengthen and repair of reinforced concrete and masonry structures (Wobbe 

et al., 2004, Kim et al., 2005). They consist in high strength steel wires embedded in 

an epoxy matrix (steel reinforced polymer, SRP) or in a cementitious grout (steel 

reinforced grout, SRG). 
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Experimental investigations available in literature and related to SRP and SRG 

reinforcement systems have shown the potentialities of these new materials in 

improving the structural performance of concrete and masonry structures (Wobbe et 

al. 2004, Barton et al. 2005, Kim et al. 2005, Casadei et al. 2005, Huang et al. 2005, 

Pecce et al. 2006, Prota et al. 2006, Lopez et al. 2007, Saber et al. 2008, Mitolidis et 

al. 2012b, Balsamo et al. 2013, Menna et al. 2013, Bencardino & Condello 2014). On 

the other hand, some of these studies have also underlined differences with respect to 

FRPs, particularly in terms of bond behavior (Matana et al. 2005, Figeys et al. 2008, 

D'Ambrisi et al. 2013). This chapter presented the experimental results of concrete 

specimens subjected to two different test set-ups to investigate the debonding 

mechanism in SFRP-concrete joints. The interfacial cohesive material law for SFRP 

strips bonded to concrete is also investigated using digital image correlation (DIC). 

 

 

2.0    Literature review 

This literature review focuses only on research investigating the use and performance 

of SRP strips (high strength twisted steel wires impregnated with epoxy resin). In 

particular, regarding the bond behavior of SRP strips applied on concrete prisms, 

only few studies can be found in literature. Among these, the experimental studies 

performed by Matana et al. (2005), Figeys et al. (2005) and Mitolidis et al. (2008) are 

pointed out: 

 

Matana et al. (2005) performed direct shear tests of 12 concrete blocks with 

dimensions (191 x 191 x 394 mm) (Figure 5.1). The SRP used in the experiments is 

3X2 Hardwire embedded in polymeric resin, the properties of the fibers only 

reported in Table 5.1. The main test variables were the surface roughness and the 

bonded length. They were studied to investigate the bond behavior of SRP composite 

laminates. A summary of the test results is reported in Table 5.2, based on 

experimental results. Results showed that the surface roughness does not have 

significant effect on the bond failure load for SRP composite laminates. The failure 

of SRP specimens was shearing within the concrete substrate. It was reported that the 

bonded effective length for SRP and CFRP was about 127 mm and 102 mm, 

respectively. 

147 
 



 

 

 

 
Figure 5.1: Direct shear test setup (Matana et. al, 2005) 

 

Table 5.1: Material properties of SRP (Matana et. al, 2005) 

 
 

Table 5.2: Test results (SRP, 1-23 cords/in density) (Matana et. al, 2005) 
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Figeys et al. (2005) studied the bond mechanism between SRP laminates and 

concrete prisms. Two concrete prisms are bonded together with SRP on two opposite 

sides (Figure 5.2) with bonded length (150 mm and 200 mm). The SRP used in the 

experiments is shown in Figure 5.3. One sheet (width: 950 mm) consists of 65 steel 

cords, 18 filaments are twisted in a cord. The filament in the middle has a diameter 

of 0.25 mm; the other 18 have a diameter of 0.22 mm. Test results were compared 

with CFRP laminates. It was reported that the specimens bonded with SRP laminates 

behaves stronger and stiffer than specimens strengthened with CFRP. All tests failed 

in the concrete substrate. 

 

 
Figure 5.2: a) Scheme of shear test; b) photograph of test set  

sample (Figeys et al. 2005) 

 

 

 
Figure 5.3: The SRP used in the experiments (Figeys et al. 2005) 
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Mitolidis et al. (2008) conducted an experimental study to investigate the bond 

strength of SRP strips bonded to concrete prisms. Shear tests were conducted using 

different types of composite materials (SRP and CFRP). SRP strips were of two 

types, SRP 3X2 cords (made by twisting 5 individual wires together) and SRP 12X 

cords (made by twisting three wires and nine wires together). In addition, the 

difference in the twisted wire cords used in each type, and also with different width 

of SRP strips (50 mm and 80 mm), and different bonded length of SRP strips (150 

mm and 300 mm). The test set-up and configurations of representative specimens are 

shown in Figure 5.4, and the specimen data and key results from bond tests shown in 

Table 5.3. 

The results showed that the bond strength of SRP strips is lower than CFRP strips, 

which is contrary to findings of other researchers, which is 76% lower than in the 

case that debonding strength of CFRP. In addition, the difference in width of SRP 

strips affect the debonding strength, i.e. an increase in the width of the SRP strips 

was found to increase the bond strength, while the different length of the strips, in 

each case to the upper anchorage length, seems not to influence the debonding 

strength. It was found that the effective bonded length is less than 150 mm.  

 

 
Figure 5.4: Experimental set-up and configurations of representative  

specimens (Mitolidis et al. 2008) 
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Table 5.3: Specimen data and key results from bond tests Mitolidis et al. (2008) 

 
 

Referring to available researches on bond between SRP and concrete prisms, can be 

included that a deeper investigation is required for further research to provide a 

fundamental understanding of their behaviour. 

 

 

3.0 Experimental Program 

 

3.1 Materials 

3.1.1 Concrete:  

All concrete prisms were cast from the same batch of concrete. The concrete was 

normalweight concrete with portland cement. The maximum aggregate size was 15 

mm. Compressive strength of concrete was measured at 21, 28, 42, 56, 84, 112, 168, 

224, and 420 days after casting using 150 mm side cubes and 150 mm × 300 mm 

cylinders tested according to EN12390-3 and EN12390-6, respectively. The average 

values of 3 tests for each day are plotted in Figure 5.5.  
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Figure 5.5: Strength development of cubic and cylindrical specimens over time 

 

Three concrete prisms 600 mm length × 150 mm width × 150 mm depth and three 

concrete prisms 300 mm length x 70 mm width x 70 mm depth cast from the same 

concrete used for confined and control specimens were tested using a three point 

bending set-up (Figure 5.6 ) to evaluate the fracture energy of concrete. All concrete 

prisms had a central notch with a V-shaped tip. The notch length a0 was equal to one 

third of the depth. The net span was equal to three times the depth of the specimen. 

The loading apparatus consisted of two cylindrical rollers that supported the prism 

base and a cylindrical roller at the top of the specimen, centered with respect to its 

length that was used to apply the load. Two steel plates were glued to the bottom face 

of the specimen and lay on the support rollers to avoid friction. An S-shaped steel 

plate was glued on the top face of the concrete prism with a central V-shaped section 

to ensure a good support for the loading cylindrical roller. From both sides of the 

concrete prism, a steel element, lying on the bottom supports, fastened an LVDT that 

reacted off of the S-shaped top plate. The two LVDTs measured the vertical 

deflection of the point of the prism were the load was applied. A clip-on gage, 

mounted near the edges of the central notch, measured the crack mouth opening 

displacement (CMOD) and was used to control the test. The rate of the test was equal 

to 0.001 mm/s. 

The fracture energy, GF, was evaluated as the area under the load-deflection response 

(Hoover and Bažant 2013, Elices et al. 1992, Hillerborg 1985). 

The fracture energy obtained from three 600 mm × 150 mm × 150 mm prisms is 

equal to 0.105 N/mm (CoV = 0.048), while the fracture energy obtained from three 

300 mm × 70 mm × 70 mm is equal to 0.111 N/mm (CoV = 0.117). 

 

152 
 



 

 
(a)                                                                           (b) 

Figure 5.6: a) and b) Experimental set-up for fracture mechanics tests 

for 150 mm width specimens. 

 

 
(a)                                                                           (b) 

Figure 5.7: a) P/b – δ response for 70 mm width specimens.  

b) P/b – δ response for 150 mm width specimens. 

 

 

3.1.2 SRP Fiber 

Steel fibers were in the form of a unidirectional sheet made of ultra-high strength 

galvanized steel micro-cords fixed to glass-fiber network which confers dimensional 

stability in the installation phases. Each fiber consists of five filaments. Three of the 

five filaments are straight, and the remaining two filaments are wrapped around the 

other three with a high torque angle (Figure 5.8). The cross-sectional area of the cord 

Acord is 0.538 mm2.  

Fiber sheets with three different densities (number of cords per millimeter of width) 

were investigated and are referred to in this investigation (Figure 5.9) as medium 
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density (MD), high density (HD) and ultra-high density (UHD). The MD steel fiber 

strips had 0.314 cords/mm, the HD steel fiber strips had 0.472 cords/mm, and the 

UHD steel fiber strips had 0.709 cords/mm. Table 5.4 summarized the mechanical 

properties of the SRP used in this work as reported by the manufacturer (Kerakoll 

2016). 

 
Figure 5.8: SRP Fiber (Kerakoll S.p.A.) 

 

   
(a) Medium density (MD) (b) High density (HD) (c) Ultra-High density (UHD) 

Figure 5.9: The SRP used in this work (Kerakoll S.p.A.) 

 

Table 5.4. Properties of steel fibers provided by manufacturer (Kerakoll 2016) 

Property 
Medium 

Density  
High Density 

Ultra-High 

Density 

Number of Cords/mm 0.314 0.472 0.709 
Tensile Strength (MPa) >3000 > 3000 > 3000 
Elastic Modulus (GPa) >190 > 190 > 190 
Break Deformation (%) >2 > 2 > 2 

Equivalent Thickness (mm) ≈0.169 ≈ 0.254 ≈ 0.381 
 

Ultra-high strength 
steel filaments 

 

Cords with twisted 
filaments 

Galvanization to 
ensure durability 
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3.1.3 Adhesive  

The epoxy matrix is a two-component epoxy thixotropic gel system (Figure 5.10), 

with high wettability for the impregnation of steel textiles. The mechanical properties 

of the matrix reported by the manufacturer (Kerakoll 2016) are provided in Table 

5.5. 

 
Figure 5.10: The epoxy resin used in this work (Kerakoll S.p.A.) 

 

Table 5.5: Mechanical properties of matrix by provided by  

manufacturer (Kerakoll 2016) 

Property 

Tensile Strength (MPa) > 14 
Flexural Elastic Modulus (GPa) > 2.50 

Elastic Modulus Under Compression (GPa) > 5.30 
 

 

3.2     Test set-up’s and Methods 

Nineteen concrete specimens were tested using the single-lap shear test set-up and 

six specimens were tested using a triple-point bending (TPB) set-up to analyze the 

debonding mechanism between the composite strips and the concrete surface and 

compare the results obtained using two different test methods. Prior to apply the 

reinforcement specimens were sandblasted with silica sand. Concrete prisms were 

reinforced following the manufacturer’s recommendations, applying the steel-FRP 

strips using a wet layup process. Specimens were cured under ambient conditions for 

seven days after casting. 
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3.2.1 Single-lap shear test set-up (Method I) 

Nineteen concrete prisms were tested using a direct single-lap shear test (Figure 

5.11). FRP strips were externally bonded to one face of the concrete blocks. The 

classical push-pull configuration was adopted where fibers were pulled while the 

concrete prism was restrained. The dimensions of all concrete blocks were 150 mm 

width × 150 mm depth × 600 mm length. The epoxy resin was used to impregnate 

the fiber along the entire steel-FRP strip, also outside of the bonded area. The fibers 

were arranged across the width of the reinforcement in order to have approximately a 

distance between the external fibers of the grid and the edges of the matrix equal to 

half of the fiber spacing. The thickness of each layer of matrix was 2 mm, thus, the 

total thickness of the composite strip was equal to 4 mm. The bonded area started 70 

mm from the top edge (loaded end of the strip) of the concrete prism to obtain an 

initial interfacial notch. The FRP strips were directly gripped by the machine head. 

The concrete prism was restrained against movement by two steel plates placed 

against the square faces of the prism. The bottom square plate was bolted to a 

cylindrical steel element that was gripped by the bottom wedges of the testing 

machine. The top plate was a C-shaped steel element designed to have the centroid as 

close as possible to the centroid of the bottom plate, in order to reduce the undesired 

effects of the inherent eccentricity of the single-lap shear tests. The top plate was 

connected to the bottom one through four steel bars bolted to the two plates. Three 

strain gages, aligned with the longitudinal axis of the bar, were mounted on each 

steel bar, and arranged 120° apart one another. The average of the three strain 

measurements on each bar gives an approximate estimate of the strain along the bar, 

which is used to analyze the initial pre-compression load applied to the specimen 

prior to starting the test and evaluate the stress on each bar during the test. Direct 

shear tests were conducted under displacement control using a close-loop servo-

hydraulic universal testing machine. Two linear variable differential transducers 

(LVDT) were mounted on the concrete surface close to the top edge of the bonded 

region. The LVDTs (named LVDT a and b) reacted off of a thin aluminum Ω-shaped 

plate that was attached to the epoxy surface adjacent to the beginning of the bonded 

area. The average of LVDT a and b is defined as the global slip g in this paper. The 

global slip g was increased at a constant rate. All tests were conducted at a global slip 

rate equal to 0.00084 mm/s. Two additional LVDTs (named LVDT c and d) were 

156 
 



 

used to monitor the horizontal displacement of the concrete prism in the direction 

perpendicular to the face of the composite strip. Two LVDT holders were mounted 

onto the bottom plate using two magnets. The LVDT c and d were reacting off of the 

face of concrete block parallel to the one to which the composite was applied. The 

measuring point was approximately 300 mm from the bottom square face of the 

concrete block. The measurements of these two LVDTs were useful to monitor the 

amount of the rotation of the concrete prisms during the tests due to the eccentricity 

of the applied load. For some specimens, three-dimensional (3-D) digital image 

correlation (DIC) was used to analyze the displacement and strain fields on the FRP 

strip and on the portion of concrete close to the FRP strip. DIC is a non-contact 

measuring technique that allows for obtaining the surface displacement field. DIC 

mathematically correlates images of the specimens, taken during testing, that 

correspond to different applied load and displacement values. DIC recognizes and 

correlates points on the surface and computes their displacement with respect to the 

initial undeformed image. The surface strains are then determined as the gradients of 

the displacements after interpolating the displacement contours with a quintic B-

spline collocation method. To enable the DIC measurements, the FRP strip surface 

and the adjacent concrete were covered uniformly with a white nonreflective paint 

prior to testing. Black paint was then sprayed on the white surface to create a speckle 

pattern, which is recognized and employed by the DIC software to obtain the 

displacement field. During testing the specimen was illuminated with normal white 

light to assure uniform light intensity on the composite surface. Images were taken at 

a frequency of 0.2 Hz. 

Specimens were tested varying the density of steel fibers. For each density of steel 

fibers, the following set of parameters were considered as the standard ones: load 

rate equal to 0.00084 mm/s, bonded length equal to 300 mm and bonded width equal 

to 50 mm. Tests were conducted on different faces of the concrete prisms: the face 

opposite to the casting one was named bottom (B) side, the ones adjacent to the 

casting one were termed side (S) faces. Specimens were named following the 

notation DS-X-Y-A-B-C-Z, where X = bonded length (l) in mm, Y = bonded width 

(bf) in mm, A represents the steel fiber density (MD = medium density, HD = high 

density, UHD = ultra-high density); B indicates the use of DIC in the test (D = DIC, 

ND = no DIC); C denotes the side of the block on which test was performed (B = 

bottom, S = side), and Z = specimen number. 
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Figure 5.11: Direct-shear single lap test set-up 

 

Table 5.6. Test specimen characteristics (Direct-shear single lap test set-up) 

Specimen 
Name Side 

FRP strip Fiber 

DIC Load rate 
[mm/s] 

Bonded  
width 
(mm) 

Bonded  
length 
(mm) 

Thick. 
(mm) Density N° 

fibers 

DS_300_50_HD_D_S_1 S 50 300 4 HD 24  0.00084 
DS_300_50_HD_D_S_2 S 50 300 4 HD 24  0.00084 
DS_300_50_HD_D_S_3 S 50 300 4 HD 24  0.00084 
DS_300_50_HD_D_S_4 S 50 300 4 HD 24  0.00084 
DS_300_50_HD_D_S_5 S 50 300 4 HD 24  0.00084 
DS_300_50_HD_ND_B_1 B 50 300 4 HD 24  0.00084 
DS_300_50_HD_D_B_2 B 50 300 4 HD 24  0.00084 
DS_300_50_HD_D_B_3 B 50 300 4 HD 24  0.00084 
DS_300_50_MD_ND_B_1 B 50 300 4 MD 15  0.00084 
DS_300_50_MD_ND_B_2 B 50 300 4 MD 15  0.00084 
DS_300_50_MD_ND_B_3 B 50 300 4 MD 15  0.00084 
DS_300_50_UHD_ND_S_1 S 50 300 4 VHD 35  0.00084 
DS_300_50_UHD_ND_S_2 S 50 300 4 VHD 35  0.00084 
DS_300_50_UHD_ND_S_3 S 50 300 4 VHD 35  0.00084 
DS_300_50_UHD_ND_B_1 B 50 300 4 VHD 35  0.00084 
DS_300_50_UHD_ND_B_2 B 50 300 4 VHD 35  0.00084 
DS_300_50_UHD_D_B_3 B 50 300 4 VHD 35  0.00084 
DS_300_50_UHD_D_B_4 B 50 300 4 VHD 35  0.00084 
DS_300_50_UHD_D_B_5 B 50 300 4 VHD 35  0.00084 
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3.2.2 TPB test set-up (Method II) 

Six concrete prisms 600 mm length × 150 mm width × 150 mm depth were tested 

using a triple point bending set-up (Figure 5.12). All specimens had a central notch 

with a U-shaped tip. The notch length a0 was equal to half of the depth. The net span 

was equal to three times the depth of the specimen. For each prism the FRP strip was 

applied on the bottom face (B side) of the specimen, i.e. the same face where the 

prism was notched. The steel FRP strips were centered with respect to the bottom 

face of each block. The bonded width (bf) and bonded length (l) were equal to 50 mm 

and 400 mm respectively. Three specimens were strengthened with MD steel fibers 

while three specimens were reinforced with HD steel fibers. The test set-up is the 

same described in section (3.1.1) for the fracture mechanics tests except for the clip 

on gage that was not mounted on the specimen because of the presence of the FRP 

strip. The average of the two LVDTs measurements, that indicates the vertical 

deflection of the loading point, was used to control the test. The test rate was equal to 

0.0005 mm/s. 

Specimens were named following the notation TPB-X-Y-A-C-Z, where each symbol 

has the same meaning explained above for direct shear tests. 

 

 

 
Figure 5.12: TPB test set-up 
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Table 5.7: Test Specimen Characteristics (TPB test set-up) 

Specimen 

Name 
Side 

FRP strip Fiber 
Load 

rate 

[mm/s] 

Bonded  

width 

[mm] 

Bonded  

length 

[mm] 

Thickness 

[mm] 
Density 

N° 

fibers 

TPB_400_50_MD_B_1 B 50 400 4 MD 15 0.0005 
TPB_400_50_MD_B_2 B 50 400 4 MD 15 0.0005 
TPB_400_50_MD_B_3 B 50 400 4 MD 15 0.0005 
TPB_400_50_HD_B_1 B 50 400 4 HD 35 0.0005 
TPB_400_50_HD_B_2 B 50 400 4 HD 35 0.0005 
TPB_400_50_HD_B_3 B 50 400 4 HD 35 0.0005 

 

 

4.0 Results 

The load responses of direct shear tests are represented in Figure 5.13 for 

representative specimens, characterized by different fiber densities and different 

sides of application of the SFRP strips. The load responses of these specimens are 

similar in shape and appear to be analogous to the load-global slip response showed 

in Figure 5.13a. All load responses showed an initial linear portion, followed by a 

non-linear branch. A sudden drop in the load marked the onset of the interfacial 

crack propagation. As the crack propagated, the load remained nominally constant 

and its value Pcrit was determined as the mean value of the load corresponding to the 

range of the global slip [g1-g2]. The global slip range [g1-g2] slightly varied for each 

test. This range was identified on the basis of the strain analysis results (presented in 

the next session) for specimens, in which DIC was employed, while it was identified 

directly on the load-global slip response for other specimens. The load Pcrit is often 

termed load-carrying capacity or bond strength. Test results are summarized in Table 

5.8. The rotations measured by LVDT-c and LVDT-d are reported as wc and wd, 

respectively. The failure mode always occurred in a thin mortar-rich layer of 

concrete, where the epoxy impregnates the substrate (Figure 5.14). For few 

specimens, cracks propagated also at the matrix-fiber interface.  
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Figure 5.13. a) Typical load-global slip response for SFRP. b) Load response for 

specimen DS_300_50_MD_ND_B_2. c) Load response for specimen 

DS_300_50_HD_D_S_5. d) Load response for specimen DS_300_50_HD_ND_B_1. 

e) Load response for specimen DS_300_50_UHD_ND_S_3. f) Load response for 

specimen DS_300_50_UHD_D_B_5. 

 

g1 g2 

(a) (b) 

(c) (d) 

(f) (e) 
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Figure 5.14. Failure mode for specimen DS_300_50_UHD_D_B_3. 

 

Table 5.8: Test results (Direct-shear single lap test set-up) 

Specimen 
Name 

Actual  
width  
[mm] 

g1 

[mm] 
g2 

[mm] 
Pcrit 

[kN] 
wc wd 

DS_300_50_HD_D_S_1 51.0 0.39 0.78 12.25 0.29 0.41 
DS_300_50_HD_D_S_2 52.0 0.64 1.02 12.27 0.13 0.07 
DS_300_50_HD_D_S_3 50.0 0.48 0.80 11.92 0.06 0.13 
DS_300_50_HD_D_S_4 52.0 0.49 0.81 10.44 0.25 0.29 
DS_300_50_HD_D_S_5 52.0 0.48 0.77 11.47 0.49 0.40 
DS_300_50_HD_ND_B_1 52.0 0.44 0.98 12.78 0.70 0.72 
DS_300_50_HD_D_B_2 52.0 0.47 0.96 12.64 0.54 0.48 
DS_300_50_HD_D_B_3 52.5 0.43 0.85 12.28 0.34 0.47 
DS_300_50_MD_ND_B_1 49.0 0.42 0.83 11.48 0.49 0.40 
DS_300_50_MD_ND_B_2 48.0 0.52 1.00 10.14 0.26 0.25 
DS_300_50_MD_ND_B_3 48.5 0.68 1.12 12.41 0.95 0.89 
DS_300_50_UHD_ND_S_1 51.0 0.41 0.79 13.73 0.40 0.50 
DS_300_50_UHD_ND_S_2 51.5 0.63 1.04 17.63 0.87 0.93 
DS_300_50_UHD_ND_S_3 51.0 0.41 0.76 15.31 0.68 0.66 
DS_300_50_UHD_ND_B_1 50.5 0.45 0.87 16.29 0.95 1.51 
DS_300_50_UHD_ND_B_2 52.0 0.46 0.75 16.13 1.18 1.33 
DS_300_50_UHD_D_B_3 50.0 0.46 0.80 16.07 0.96 0.94 
DS_300_50_UHD_D_B_4 52.5 0.32 0.74 15.24 1.20 1.36 
DS_300_50_UHD_D_B_5 50.0 0.39 0.81 14.49 1.00 1.01 
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The load responses of triple point bending tests performed on notched concrete 

specimens reinforced with MD steel fibers and HD steel fibers are presented in 

Figure 5.15a and 5.15b, respectively. The behavior of the load responses is similar to 

the one showed by direct-shear tests, a part for the constant plateau that in TPB tests 

appear to be shorter. Test results are summarized in Table 5.9. The failure usually 

consisted in debonding of the steel FRP strip from one side of the notched beam with 

the detachment of a concrete wedge from the bonded area near the notch (Figure 

5.16). The concrete wedge can detach from one or both sides of the notch. The 

portion of the steel FRP strip debonded from the substrate has usually a thin layer of 

concrete attached. 

Table 5.9: Test results (TPB test set-up) 

Specimen 
Name 

Actual  
width  
[mm] 

g1 

[mm] 
g2 

[mm] 
Pcrit 

[kN] wc wd 

TPB_400_50_MD_B_1 52 / / 14.98 / / 
TPB_400_50_MD_B_2 52.5 / / 14.37 / / 
TPB_400_50_MD_B_3 51.5 / / 17.23 / / 
TPB_400_50_HD_B_1 52.5 / / 16.83 / / 
TPB_400_50_HD_B_2 51 / / 16.49 / / 
TPB_400_50_HD_B_3 51.5 / / 16.85 / / 

 

 

Figure 5.15: a) Load response for MD notched specimens tested in TPB. b) Load 

response for HD notched specimens tested in TPB.  

 

(a) (b) 
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Figure 5.16: a) Failure mode for specimen TPB_400_50_MD_B_1. b) Failure mode 

for specimen TPB_400_50_HD_B_1. 

 

4.1 Failure modes 

The failure mode of all SFRP concrete specimens tested using a direct single-lap 

shear test set-up consists in debonding of the composite strip from the concrete 

substrate, as mentioned above. A thin layer of concrete remained attached to the 

epoxy matrix for all the length of the SFRP strip, a part for the free end of the 

composite strip where a quite-large concrete bulk remained glued to the strip. The 

detachment of the concrete bulk from the substrate determines an increase in the 

amount of energy needed to fully detach the reinforcement, causing an ascending 

branch in the last portion of almost all load-responses. Specimens 

DS_300_50_MD_ND_B_3 and DS_300_50_UHD_ND_S_2 showed a slightly 

different type of rupture, characterized by the propagation of the crack at the fiber-

matrix interface in limited portions of the composite strip, as showed in Figure 5.17. 

This type of rupture affects both the global slip range and both the load bearing 

capacity, causing an increase of g1, g2 and Pcrit with respect to other specimens. Since 

results are highly affected by the propagation of the crack at the matrix-fiber 

interface, the aforementioned specimens will not be considered in the remainder of 

the work. 

(b) (a) 
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Figure 5.17 a) SFRP strip after debonding for specimen DS_300_50_MD_ND_B_3. 

b) SFRP strip after debonding for specimen DS_300_50_UHD_ND_S_2. 

 

The failure mode of all SFRP concrete prisms tested using a triple point bending set-

up consists in the detachment of the composite strip from one side of the specimen. It 

is worth to highlight that the debonding mechanism from the concrete substrate starts 

also in the opposite side of the prism. The debonded portion of the composite strip 

has usually a thin layer of concrete attached, a part for the portion near the initial 

notch, where a concrete wedge remains usually attached to the SFRP reinforcement. 

The concrete wedge can detach from one or both sides of the initial notch. 

Notwithstanding specimen TPB_400_50_MD_B_3 showed the same kind of rupture, 

the concrete wedges detached from one side of the prism appear to be greater with 

respect to other tests. This entails a higher amount of energy needed to fracture the 

concrete close to the initial notch and leads to an higher value of the maximum load 

and of Pcrit, as showed in Figure 5.15a and Table 5.9, respectively. Figure 5.18 shows 

in red the large concrete wedge detached from the right side of the specimen with 

respect to the normal concrete wedge (green) detached from the left side. For these 

reasons specimen TPB_400_50_MD_B_3 will not be considered in the remainder of 

the work.  

(a) 

(b) 
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Figure 5.18: Failure mode for specimen TPB_400_50_MD_B_3 

 

 

4.2 Strain analysis in direct-shear tests 

In this work, DIC was used for some specimens to examine the strain field on the 

surface of the FRP strip in the axial direction. Displacements and strains were 

obtained for different square areas (subsets) for a 5 pixel step size, which provided 

points spaced at approximately 1.67 mm. Different subsets of 21, 31, and 41 pixels 

were used to study the influence of subset dimension on the results obtained. Results 

determined using different subsets are similar, therefore a subset size of 21 pixels 

(approximately 7 mm) edge was employed for the remainder of the specimens. The 

strain analysis reported in this section refers to the Cartesian system shown in Figure 

5.19. The axial strain values were determined along the center line of the steel FRP 

strip by averaging the strain across a 15mm-wide strip for each value of y (Figure 

5.22). Averaging the strain across a 15 mm width allow for taking into account the 

variation of the strain due to the presence of a non-homogeneous substrate and local 

material variations in the steel-FRP strip. A 15-mm strip was chosen based on the 

aggregate size. The experimental nonlinear strain distribution along the bonded 

length was approximated using three different equations:   

 

- exp( ( ))( )
exp( ( )) 1
A B Ay Cy

B Ay C
ε +

=
+ +

                                                                                 (1) 

 

where A, B, and C are parameters evaluated through a non-linear regression analysis 

of the strains obtained from DIC. 
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Where ε1(y) is the following expression: 
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and once again D, E, F, and G are parameters evaluated through a non-linear 

regression. yA and yB are the y coordinates along the FRP strip where function (2) 

changes from 0 to ε1(y) and from ε1(y) to 2D, respectively. 
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Where ε2(y) is the following expression: 

 

- ( ) ( ) ( )3 2
2 ( ) C C Cy H y y I y y L y yε = − + − + −                                                               (5) 

 

where once again H, I, L, and yC are parameters evaluated through a non-linear 

regression. yC and yD are the y coordinates along the FRP strip where function (4) 

changes from 0 to ε2(y) and from ε2(y) to ε2(y = yD), respectively. 

Equation (1) was introduced by Dai et al (2006), equation (2) is a polynomial 

equation while equation (4) is a sinusoidal equation. 

For each equation, it’s possible to define a set of parameters that best fits the 

experimental strain behavior, obtaining an analytical representation of the strain 

profile. The strain distribution during the debonding process can be divided into three 

main regions: (A) the stress-free zone (SFZ); (B) the stress-transfer zone (STZ); and 

(C) the fully-debonded zone (FDZ). The stress transfer occurs in the STZ, usually 

characterized by an “S” shape of the strain profile. In the FDZ the composite strip is 

completely debonded from the concrete substrate, i.e. no shear transfer is still 
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possible and the strains are essentially constant. The SFZ is localized in the portion 

of the SFRP strip near the free end and represents the part of the composite strip not 

yet affected by the shear transfer. While the global slip increase during the 

debonding mechanism, the “S” shape move gradually from the loaded end to the free 

end of the composite strip, and the strain in the FDZ appeared to be constant. This 

fact is consistent with the observation that the load remained constant (Pcrit) after the 

debonding process propagated. Figure 5.20 represents the strain profiles of specimen 

DS_300_50_UHD_D_B_5 obtained at a fixed value of the global slip fitting the 

experimental values with the three different equations. Figure Y shows the 

distribution of the strain profile of the same specimen at 5 different values of the 

global slip between g1 and g2 using the equation from Dai et al (2006). It can be 

observed that a simple translation of the STZ further along the length of the SFRP 

strip occurred as the global slip increased while its shape remained constant. 

 

 
(a)                                                                      (b) 

Figure 5.19: a) Load response for specimen DS_300_50_UHD_D_B_5. b) S-shape 

εyy profile for specimen DS_300_50_UHD_D_B_5. 
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Figure 5.20: S-shape εyy profile for specimen DS_300_50_UHD_D_B_5 using three 

different functions to fit experimental data. 

 

 

4.3   Interfacial cohesive material law 

From the analytical equations representing the strain profile it’s possible to define the 

value of the shear stress at any location of the composite strip, using the following 

relationship: 

dε
τ ( )

d
yy

zy f fy E t
y

=                                                                                                       (6) 

where Ef and tf are respectively the elastic modulus and the thickness of the fibers. 

At the same time, the slip between the SFRP strip and the concrete substrate at any 

location of the composite strip can be evaluated from the strain profile: 

( )
0

ε d
y

yys y y= ∫                                                                                                           (7) 

Dai et al. (2006) showed that the bond stress-slip relationship can be obtained as 

follows: 

( ) ( )( )2 exp 1 expzy f fA BE t Bs Bsτ = − − −                                                                   (8) 

 

The interfacial τ-s relationship can be expressed thorough an analytic formula also 

starting from the polynomial expression of the strains and using the solution 
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proposed by Cardano formula. The mathematical method to obtain the bond stress-

slip relationship from the polynomial expression is showed in Appendix 1 for sake of 

brevity. 

It is no possible to obtain an analytical formulation using the sinusoidal expression of 

the strains. Therefore, in this case, the τ-s relationship can be obtained only 

combining directly the shear stress and the respective slip at the same position (y) of 

the composite strip using Eq. (6) and (7), respectively. 

The cohesive material law obtained for specimen DS_300_50_UHD_D_B_5 is 

represented in Figure 5.21. Three different equations were used to represent the 

strain profile. 

 
Figure 5.21: Cohesive material law τ-s for specimen DS_300_50_UHD_D_B_5 

obtained using three different functions to fit experimental data. 

 

The fracture energy GF, i.e. the energy required to fully break the elementary unit 

area of the cohesive crack, corresponds to the area under the entire τzy(s) curve: 

 

( )F zyG s dsτ= ∫                                                                                                          (9) 

The effective bond length, Leff, i.e. the active bonding zone along which the 

interfacial load is transferred between the SFRP strip and the concrete substrate, can 

be evaluated depending on the equation used to fit the experimental strain 
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eff B AL y y= −                                                                                                             (11) 

eff D CL y y= −                                                                                                            (12) 

 

Where α is assumed equal to 0.96. 

Equation (10) was used by Dai et al. (2006), while equations (11) and (12) were used 

to evaluate the effective bond length, Leff, for the sinusoidal and polynomial 

equation, respectively. 

Table 5.10 summarize the mean value of the maximum strain along the SFRP strip, 

εmax, the maximum shear stress, τmax, the slip corresponding to the maximum shear 

stress, sm, the effective bond length, Leff, and the fracture energy, Gf, for each 

specimen tested employing DIC.   

 

Table 5.10: Fracture mechanics parameters 

Specimen 
Name Function εmax 

τmax 
[MPa] 

sm 
[mm] 

Leff 
[mm] 

Gf 
[N/mm] 

Pcrit 
[kN] 

Ptheor 
[kN] 

Pcrit/ 
Ptheor 
[%] 

DS_300_50_HD_D_S_1 

Dai 0.0044  
(0.06) 

2.86 
(0.17) 0.056 147.5 

(0.16) 
0.47 

(0.11) 12.25 10.81 88.3% 

Sin 0.0043 
(0.04) 

2.27 
(0.12) 

0.06 
(0.15) 

147.7 
(0.12) 

0.46 
(0.08) 12.25 10.78 88.0 % 

Pol 0.0042 
(0.04) 

2.69 
(0.20) 

0.048 
(0.23) 

119.5 
(0.21) 

0.44 
(0.07) 12.25 10.46 85.4% 

DS_300_50_HD_D_S_2 

Dai 0.0042 
(0.06) 

3.17 
(0.13) 0.046 125.4 

(0.14) 
0.42 

(0.11) 12.27 10.47 85.3% 

Sin 0.0041 
(0.04) 

2.25 
(0.13) 

0.06 
(0.11) 

141.5 
(0.12) 

0.42 
(0.08) 12.27 10.47 85.3% 

Pol 0.0041 
(0.04) 

2.73 
(0.11) 

0.042 
(0.12) 

109.6 
(0.12) 

0.40 
(0.07) 12.27 10.26 83.6% 

DS_300_50_HD_D_S_3 

Dai 0.0042 
(0.08) 

2.43 
(0.19) 0.061 165.1 

(0.11) 
0.43 

(0.17) 11.92 10.16 85.2% 

Sin 0.0043 
(0.11) 

1.91 
(0.18) 

0.061 
(0.34) 

173.7 
(0.1) 

0.45 
(0.23) 11.92 10.46 87.8% 

Pol 0.0042 
(0.1) 

2.48 
(0.26) 

0.051 
(0.29) 

133.0 
(0.26) 

0.44 
(0.20) 11.92 10.27 86.2% 

DS_300_50_HD_D_S_4 

Dai 0.0035 
(0.07) 

2.29 
(0.11) 0.045 144.9 

(0.09) 
0.30 

(0.14) 10.44 8.83 84.6% 

Sin 0.0037 
(0.1) 

1.63 
(0.11) 

0.061 
(0.19) 

173.9 
(0.06) 

0.34 
(0.2) 10.44 9.46 90.6% 

Pol 0.0036 
(0.1) 

2.09 
(0.16) 

0.043 
(0.25) 

128.7 
(0.19) 

0.32 
(0.21) 10.44 9.07 86.9% 
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(cont.) Table 5.10: Fracture mechanics parameters 

Specimen 
Name Function εmax 

τmax 
[MPa] 

sm 
[mm] 

Leff 
[mm] 

Gf 
[N/mm] 

Pcrit 
[kN] 

Ptheor 
[kN] 

Pcrit/ 
Ptheor 
[%] 

DS_300_50_HD_D_S_5 

Dai 0.0038 
(0.06) 

3.25 
(0.1) 0.038 111.6 

(0.1) 
0.36 

(0.12) 11.47 9.64 84.0% 

Sin 0.0039 
(0.05) 

2.24 
(0.12) 

0.055 
(0.07) 

133.9 
(0.09) 

0.37 
(0.1) 11.47 9.89 86.2% 

Pol 0.0038 
(0.05) 

2.84 
(0.14) 

0.034 
(0.2) 

99.6 
(0.18) 

0.35 
(0.09) 11.47 9.55 83.3% 

DS_300_50_HD_D_B_2 

Dai 0.0041 
(0.06) 

3.37 
(0.22) 0.043 120 

(0.18) 
0.42 

(0.11) 12.64 10.43 82.5% 

Sin 0.0042 
(0.06) 

2.57 
(0.25) 

0.055 
(0.26) 

130.7 
(0.20) 

0.44 
(0.12) 12.64 10.69 84.6% 

Pol 0.0042 
(0.05) 

3.04 
(0.27) 

0.042 
(0.22) 

106.1 
(0.23) 

0.43 
(0.11) 12.64 10.54 83.3% 

DS_300_50_HD_D_B_3 

Dai 0.0042 
(0.06) 

2.89 
(0.16) 0.05 138.4 

(0.16) 
0.42 

(0.12) 12.28 10.46 85.2% 

Sin 0.0043 
(0.09) 

2.39 
(0.11) 

0.055 
(0.15) 

136.3 
(0.15) 

0.45 
(0.17) 12.28 10.94 89.1% 

Pol 0.0043 
(0.07) 

2.60 
(0.22) 

0.049 
(0.26) 

124.7 
(0.23) 

0.44 
(0.14) 12.28 10.85 88.4% 

DS_300_50_UHD_D_B_3 

Dai 0.0036 
(0.05) 

5.25 
(0.29) 0.031 106.7 

(0.32) 
0.48 

(0.10) 16.07 13.21 82.2% 

Sin 0.0042 
(0.05) 

2.56 
(0.08) 

0.056 
(0.23) 

186.9 
(0.09) 

0.63 
(0.09) 16.07 15.11 94.0% 

Pol 0.0038 
(0.06) 

4.71 
(0.29) 

0.036 
(0.46) 

99.7 
(0.42) 

0.54 
(0.11) 16.07 13.93 86.7% 

DS_300_50_UHD_D_B_4 

Dai 0.0041 
(0.06) 

3.50 
(0.30) 0.059 178.1 

(0.26) 
0.62 

(0.13) 15.24 15.68 102.9
% 

Sin 0.0041 
(0.05) 

2.67 
(0.12) 

0.077 
(0.18) 

176.0 
(0.13) 

0.60 
(0.1) 15.24 15.52 101.9

% 

Pol 0.004 
(0.07) 

3.28 
(0.28) 

0.054 
(0.35) 

142.4 
(0.30) 

0.58 
(0.14) 15.24 15.20 99.8% 

DS_300_50_UHD_D_B_5 

Dai 0.0035 
(0.06) 

3.25 
(0.20) 0.045 156.1 

(0.21) 
0.43 

(0.12) 14.49 12.54 86.5% 

Sin 0.0036 
(0.06) 

2.43 
(0.15) 

0.056 
(0.12) 

170.5 
(0.12) 

0.47 
(0.11) 14.49 13.05 90.1% 

Pol 0.0035 
(0.07) 

3.12 
(0.26) 

0.043 
(0.31) 

130.1 
(0.28) 

0.44 
(0.13) 14.49 12.64 87.2% 

 

 

The theoretical load carrying capacity, Ptheor, can be evaluated taking advantage of 

the expression proposed by Täljsten (1997) for FRPs bonded to a concrete surface: 

 

2theor f f f fP b E t G=                                                                                                 (13) 

Table 6 summarize the values of Ptheor, for each test performed with DIC. In addition, 

the ratio Pcrit/Ptheor (expressed as percentage) has been reported. The theoretical load 

carrying capacity, Ptheor, appear to be slightly lower than the one evaluated from 

experimental tests (Pcrit). The reason can be ascribed to the fact that the theoretical 
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formula proposed by Täljsten (1997) assume constant axial strain along all the width 

of the composite strip ignoring any possible interaction due to the concrete near the 

edges of the composite strip. In reality, strains are constant only in the central region 

of the SFRP strip (shear strains equal to zero) due to the width effect (Subramaniam 

et al. 2007). Therefore, the fracture mechanics Mode-II loading condition should be 

assumed only in the central region of the FRP strip. Neglecting the influence of the 

concrete near the edges, Ptheor must result lower if compared with Pcrit. 

 

 
Figure 5.22: Typical variation of strain as a function of x, for different locations 

along the bond length for specimen DS_300_50_UHD_D_B_5 

 

5.0 Discussion 

5.1 Fracture mechanics parameters 

In this section the fracture mechanics parameters obtained from the fitting of 

experimental results with three different functions are investigated. The analysis will 

consider only specimens tested with DIC and reported in Table 6. 

In general, the three functions, i.e. Dai et al. (2006), sinusoidal and polynomial, show 

similar results for εmax and Gf, while a large scatter can be observed considering Leff, 

sm and τmax.. Considering all the specimens, the value of Leff obtained from the 

sinusoidal function is 32.7% and 14.9% higher with respect to the ones obtained 
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from the polynomial and Dai et al. (2006) functions, respectively. It appears clear 

that the sinusoidal fitting tends to overestimate the effective bond length. Differently 

from the polynomial and Dai et al. expressions, the sinusoidal function is not able to 

reproduce sharp changes in the slope of the epsilon behavior. This fact leads to an 

increase in the length of the S-shape profile causing higher values of Leff. For this 

reason, the sinusoidal function will not be considered for the evaluation of the 

effective bond length, Leff. 

At the same way, the value of sm and τmax determined with the sinusoidal function 

appear to be different from the values defined with the polynomial and Dai et al. 

functions. As mentioned before, this aspect derived from the difficulty to reproduce 

sharp slopes with the sinusoidal fitting and lead to an overestimation of the sm and to 

an underestimation of the τmax. Therefore, the values of sm and τmax obtained from the 

sinusoidal function, could be not completely reliable.  

Comparing concrete specimens reinforced with MD steel fibers on two different 

sides (S or B) it appears clear that the effective bond length, Leff, is the same, while 

the fracture energy, Gf, seems to vary a little. The average value of Leff for S-side 

specimens is equal to 118 mm (polynomial function) and 139 mm (Dai et al. 

function), while for B-side specimens is equal to 115 mm (polynomial function) and 

129 mm. Therefore, the side on which the composite strip is applied doesn’t affect 

the effective bond length. Contrarywise, the side of application of the strip influences 

the fracture energy. The average value of Gf for S-side specimens is equal to 0.39 

N/mm (polynomial function), 0.41 N/mm (sinusoidal function) and 0.39 N/mm (Dai 

et al. function) and seems lower with respect to the average value obtained for B-side 

specimen that is equal to 0.43 N/mm (polynomial function), 0.44 N/mm (sinusoidal 

function) and 0.42 N/mm (Dai et al. function). 

The UHD specimens tested on side B confirm the increase of the fracture energy 

when the bottom side is considered. The average value of Gf for these specimens is 

equal to 0.52 N/mm (polynomial function), 0.57 N/mm (sinusoidal function) and 

0.51 N/mm (Dai et al. function). The reason of the increase of the fracture energy can 

be ascribed to the higher amount of aggregates on the bottom faces of the prisms 

with respect to the side faces. During casting, because of gravity, it is more probably 

to distribute a higher quantity of aggregates in the bottom part of the mold. 

Therefore, due to the higher amount of aggregates, it needs more energy to fracture 

the concrete surface on the bottom side with respect to the lateral one, as highlighted 
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from the experimental results. Specimen reinforced with UHD steel fibers show also 

an increase of Leff that is equal to 124 mm and 147 mm for polynomial and Dai et al. 

function, respectively. It is reasonable to assume that an increase in the stiffness of 

the composite strip lead to an increase of the effective bond length. 

 

5.2 FRP-SFRP analogy 

Experimental results showed that the failure mode of concrete specimens tested using 

a single lap shear test set-up usually entails the fracture of a thin layer of concrete on 

the surface where the strip is bonded to prism. It is therefore reasonable to assume 

that the fracture energy, Gf, for specimens tested on the same side (S or B) should be 

approximately the same, independently from the stiffness of the composite strip. 

Using this assumption, it is possible to check if equation (13) is applicable also to 

SFRP. Referring to Table 5.8, the average value of Pcrit for B-side specimens with 

MD, HD and UHD steel fibers is equal to 10.81 kN, 12.57 kN and 15.64 kN. The 

theoretical ratio between the critical load evaluated for MD steel fibers and HD steel 

fibers, PMD/PHD, and between the critical load evaluated for HD steel fibers and UHD 

steel fibers, PHD/PUHD should be equal to the following values, taking advantage of 

Täljsten formula: 

 

, ,

,,

2 0.169/ 0.816
0.2542

f f f MD f f MD
MD HD

f HDf f f HD f

b E t G t
P P

tb E t G
= = =                                            (14) 

 

, ,

,,

2 0.254/ 0.816
0.3812

f f f HD f f HD
HD UHD

f UHDf f f UHD f

b E t G t
P P

tb E t G
= = = =                                     (15) 

 

The experimental ratio between the critical load evaluated for MD steel fibers and 

HD steel fibers, Pcrit,MD/Pcrit,HD and between the critical load evaluated for HD steel 

fibers and UHD steel fibers, Pcrit,HD/Pcrit,UHD, is equal to 0.860 and 0.804, 

respectively. Similarly, comparing specimens with the composite strip applied on the 

S-side, the average value of Pcrit is equal to 11.67 kN and 14.52 kN, for HD and UHD 

steel fibers, respectively. The experimental ratio Pcrit,HD/Pcrit,UHD, is equal to 0.804. In 

both cases the experimental results appear to be very close to the theoretical ones, 
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confirming the analogous behavior between FRP and SFRP composite strip bonded 

to concrete surfaces. 

Comparing the average values of the critical load presented above, it’s possible to 

appreciate the influence of the side of application of the composite strip on the 

experimental results. For HD steel fibers, the average value of Pcrit evaluated on the 

B-side is 7.7% higher with respect to the one evaluated on the S-side. Similarly, for 

UHD steel fibers, the average value of Pcrit evaluated on the B-side is 7.7% higher 

with respect to the one evaluated on the S-side. These results validate the 

considerations of section 6.2 confirming that it’s needed a higher amount of energy 

to fracture the B-side surfaced due to the presence of a larger amount of aggregates. 

 

5.3 Influence of the bond set-up 

The influence of the bond set-up on the results can be analyzed considering tests 

conducted on specimens with MD and HD steel fibers, strengthened on side B. 

Referring to Table 5, it’s possible to evaluate the average value of Pcrit for different 

densities and different test-set-up. For specimens tested using a direct-shear test set-

up, the average value of Pcrit is equal to 10.81 kN and 12.57 kN for MD and HD steel 

fibers, respectively. For specimens tested using a TPB set-up, the average value of 

Pcrit is equal to 14.68 kN and 16.72 kN. Results obtained from TPB set-up are 35.8 % 

greater than the one obtained from direct shear tests for MD steel fibers and 33.0 % 

greater for HD steel fibers. These results highlighted as the bond set-up as a great 

influence on bond results. In TPB set-up, the curvature of the specimen during the 

test enhance the bond between the composite strip and the concrete substrate, 

determining higher values of Pcrit. It’s possible to affirm that results obtained from the 

two different set-ups are not comparable each other. 

 

6.0 Conclusions 

This work presented the experimental results of concrete specimens subjected to two 

different test set-ups to investigate the debonding mechanism in SRP-concrete joints; 

single-lap shear test set-up and TPB set-up. Test variables included different test 

setup, fiber density, concrete surface treatment (side S or B). The interfacial cohesive 

material law for SRP strips bonded to concrete is also investigated using digital 
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image correlation (DIC). Based on the results of this work, The following 

conclusions can be drawn: 

1. The behavior of the load responses of concrete specimens tested using TPB 

test set-up is similar to those using direct-shear test set-up, a part for the 

constant plateau that in TPB test appear to be shorter. 

2. The failure mode of concrete specimens tested using a single lap shear test 

set-up usually entails the fracture of a thin layer of concrete on the surface 

where the strip is bonded to prism. While, the failure mode of all concrete 

specimens tested using a triple point bending set-up consists in the 

detachment of the composite strip from one side of the specimen 

3. For HD steel fibers, the average value of Pcrit evaluated on the B-side is 

higher with respect to the one evaluated on the S-side. Similarly, for UHD 

steel fibers, the average value of Pcrit evaluated on the B-side is higher with 

respect to the one evaluated on the S-side.  

4. The three functions Dai et al. (2006), sinusoidal and polynomial, show similar 

results for εmax and Gf, while a large scatter can be observed considering Leff, 

sm and τmax.. 

5. Results obtained from TPB set-up are 35.8 % greater than the one obtained 

from direct shear tests for MD steel fibers and 33.0 % greater for HD steel 

fibers.  
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CHAPTER 6 

A STUDY OF THE COMPRESSIVE BEHAVIOR OF 

CONCRETE COLUMNS CONFINED WITH STEEL-FRP 

JACKETS USING DIGITAL IMAGE ANALYSIS 

 

6.0 Introduction 

In recent decades, the use of innovative fiber reinforced composite materials has 

gained popularity in structural strengthening applications. Confinement of 

concentrically or eccentrically loaded columns has played a key role in strengthening 

existing structures given the more stringent code requirements and the beam-column 

hierarchical relationship in a frame subjected to seismic loading. Fiber reinforced 

polymer (FRP) composites offer some advantages when compared to traditional 

materials in confinement applications of structural elements. Features such as ease of 

installation, relatively short curing time, high strength-to-weight ratio, high corrosion 

resistance, and minimal change in dimension of the strengthened member make FRP 

composites an appealing alternative to other techniques such as concrete or steel 

jackets or external steel ties. The composite is typically wrapped around the column 

with fibers oriented perpendicular to the longitudinal axis of the column or with an 

angle if the sheets are continuously wrapped around it. The use of composite 

materials as a confinement system has been proven to be effective in terms of 

improving the load-bearing capacity and deformability of confined elements e.g., 

Saafi et al. (1999), Rochette and Labossière (2000).  

 

A new type of FRP composite that is being explored for structural strengthening 

applications includes steel fiber sheets. The use of steel fibers was proposed as a 

lower-cost alternative to other fiber types, such as carbon or aramid. The resulting 

composites have been referred to in the recent literature by different names, such as 

steel reinforced polymer (SRP) composites, but are herein referred to as steel-FRP 
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composites. Different authors have studied the use of steel-FRP for flexural 

strengthening of RC beams Wobbe et al. (2004), Prota et al. (2004), Kim et al. 

(2005), Barton et al. (2005), Casadei et al. (2005), Prota et al. (2006), Pecce et al. 

(2006), Ceroni (2007), Balsamo et al. (2013), Hawileh et al. (2014) and RC slabs 

Napoli and Realfonzo (2015), and confinement of concrete columns El-Hacha and 

Mashrik (2012), Napoli and Realfonzo (2016). 

 

In this study, the behavior of concrete compressive members confined by steel-FRP 

composite is investigated. An experimental study was carried out to understand the 

behavior of short concrete prisms with a square cross-section confined by steel fiber 

sheets embedded in an epoxy matrix. The effectiveness of the confinement is studied 

in terms of load-bearing capacity and ultimate strain with respect to unconfined 

(control) prisms. Test parameters considered in this study are the density of steel 

fibers, concrete corner condition, concrete surface treatment, FRP jacket length, and 

number of confinement layers. Digital image correlation (DIC) is used to study 

qualitatively and quantitatively the displacement and strain fields on one face of the 

composite during the test.  

 

 

6.1 Background  

Numerous experimental works have been carried out to study the behavior of the 

concrete columns confined by FRP composites. Different types of fibers such as 

carbon, glass, and aramid have been investigated, although studies on FRP 

composites with steel fibers are currently limited in the technical literature El-Hacha 

and Mashrik (2012), El-Hacha and Abdelrahman (2013), Napoli and Realfonzo, 

(2016). It has been observed that the type of fiber can affect the behavior of the 

confined concrete in terms of failure mode and enhancement of strength and ultimate 

strain Saafi et al.(1999), Rochette and Labossière (2000). Rochette and Labossière 

(2000) compared the results of FRP confined columns with different fiber types and 

found that the axial stiffness of the confining material influences the concrete 

cracking pattern and plays a key role in enhancing the ductility of the column.  

The failure mode of most concrete specimens confined by FRP with carbon, glass, or 

aramid fibers is tensile fracture of the fibers. Failure has been observed to be sudden 
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and preceded by sounds attributed to micro cracking of the concrete and shifting of 

the aggregates, as well as changes in the appearance of the composite Mirmiran and 

Shahawy (1997). Failure of the fibers for FRP-confined columns with a cylindrical 

cross-section is generally reported to initiate near the mid-length of the specimen and 

extend towards the top and bottom surfaces, whereas for columns with a rectangular 

cross-section, rupture has occurred at one corner of the specimen Rochette and 

Labossière (2000). Premature failure of the confining composite, that is, rupture of 

the fibers at a strain level lower than the ultimate strain of fibers, has been observed 

in some studies De Lorenzis and Tepfers (2003). 

 

Different axial stress-strain responses have been observed for different shapes of 

cross-sections confined by FRP, with circular cross-sections having a larger ultimate 

stress and strain than comparable square cross-sections Campione and Miraglia 

(2001). For rectangular cross-sections, a variable transverse strain distribution around 

the section has been observed Rochette and Labossière (2000). For non-circular 

sections, the confinement is not as effective as for circular sections due to arching 

action. It has been observed that for a given axial stress level, the transverse strains 

measured at the mid-width of the column face are higher than those close to the 

corners Rochette and Labossière (2000). This indicates that the confinement pressure 

at the mid-width of the column faces is lower than at the corners. Rounding the 

corners of the cross-section has been shown to enhance the ultimate strength and 

ultimate strain of carbon or aramid FRP-confined concrete relative to a similar cross-

section with sharp corners Rochette and Labossière (2000).  

 

Studies have also shown that inadequate length of the overlap at the end of wrapping 

may result in premature failure due to debonding of the overlapped region prior to 

tensile rupture of the fibers De Lorenzis and Tepfers (2003). If the length of the 

overlap is such that debonding does not occur, it should not influence the confining 

behavior De Lorenzis and Tepfers (2003). However, it should be noted that studies 

on the bond behavior of single or multi-layer steel-FRP composite bonded to a 

concrete substrate are currently limited in the technical literature. 
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6.2 Experimental program 

 

6.2.1 Materials 

All concrete prisms were cast from the same batch of concrete. The concrete was 

normalweight with portland cement and a maximum aggregate size of 15 mm. 

Compressive and tensile strength of concrete were measured at different ages. 

Compressive strength was measured using 150 mm cubes and 150 mm × 300 mm 

cylinders and tested according to EN 12390-3 (2009). Tensile strength was measured 

using 150 mm × 300 mm cylinders and tested according to EN 12390-6 (2009). The 

average values of three tests for each day are plotted in Figure 6.1. The range of days 

highlighted in Figure 6.1 within the dashed lines indicates the age of concrete at 

which the confinement tests were conducted. 

 

  
Figure 6.1. Concrete strength gain: (a) compressive strength; (b) tensile strength. 

 

Three concrete prisms of width b=150 mm × depth d=150 mm × length L=600 mm 

and three concrete prisms of b=70 mm × d=70 mm × L=300 mm cast from the same 

concrete used for the confinement specimens were tested using a three point bending 

set-up to evaluate the fracture energy of concrete (Figure 6.2). All concrete prisms 

had a central notch with a V-shaped tip. The notch length a0 was equal to one third of 

the prism depth. The net span was equal to three times the depth of the prism. The 

loading apparatus consisted of two steel cylinders that supported the prism base and a 

cylinder at the top of the prism, centered with respect to its length, that was used to 

apply the load. Two steel plates were glued to the bottom face of the prism and 

positioned on the support rollers to reduce friction. An S-shaped steel plate with a 

184 
 



 

central V-shaped section was glued on the top face of the prism to position the 

loading cylinder. On both sides of the concrete prism, a steel element, positioned on 

the bottom supports, fastened a linear variable displacement transducer (LVDT) that 

reacted off of the S-shaped top plate. The two LVDTs measured the vertical 

displacement δ of the prism where the load was applied. A clip-on gage, mounted 

near the edges of the central notch, measured the crack mouth opening displacement 

(CMOD) and was used to control the test. The rate of the test was equal to 

0.001mm/s. 

 

Figures 6.3 and 6.4, show the ratio of the applied load P normalized by the width b 

versus CMOD and δ responses of the 150 mm wide prisms and the 70 mm wide 

prisms, respectively. The fracture energy, GF, was evaluated from the area under the 

load-deflection response Hillerborg (1985), Elices et al. (1992), Hoover and Bažant 

(2013). The average value of the fracture energy obtained from the three 150 mm × 

150 mm × 600 mm prisms was 0.105 N/mm (CoV = 0.048), while the average value 

of the fracture energy obtained from the three 70 mm × 70 mm × 300 mm prisms 

was 0.111 N/mm (CoV = 0.117). 

 

 

 
Figure 6.2. Experimental set-up for fracture mechanics tests for 150 

mm width prisms ( Photograph ). 
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(b) 

Figure 6.2. (cont.) Experimental set-up for fracture mechanics tests 

for 150 mm width prisms ( Sketch ) 

 

 

  

(a)                                                                 (b) 

Figure 6.3. 150 mm width prisms: (a) P/b – CMOD response; (b) P/b – δ response. 

 

  
(a)                                                                 (b) 

Figure 6.4. 70 mm width prisms: (a) P/b – CMOD response;  (b) P/b – δ response. 
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The composite material consisted of steel fiber sheets embedded in a polymeric 

matrix. Steel fibers were in the form of a unidirectional sheet made of ultra-high 

strength galvanized steel micro-cords fixed to a fiberglass micromesh to facilitate 

installation. Each micro-cord consists of five filaments. Three of the five filaments 

are straight, and the remaining two filaments are wrapped around the other three with 

a high torque angle. The cross-sectional area of the cord Acord is 0.538 mm2.  Fiber 

sheets with two different densities were investigated and are referred to in this paper 

as medium density (MD) and high density (HD). The MD steel fiber sheets had 

0.314 cords/mm, and the HD steel fiber sheets had 0.472 cords/mm. Mechanical 

properties of the fibers reported by the manufacturer (Kerakoll 2016) are provided in 

Table 6.1.  

The matrix was a two-component epoxy thixotropic gel system, with high wettability 

for the impregnation of steel textiles. The mechanical properties of the matrix 

reported by the manufacturer (Kerakoll 2016) are provided in Table 6.2. 

 

 

Table 6.1. Properties of steel fibers provided by manufacturer (Kerakoll S.p.A.) 

Property 
Medium 

Density 
High Density 

Number of Cords/mm 0.314 0.472 
Tensile Strength (MPa) >3000 > 3000 
Elastic Modulus (GPa) >190 > 190 
Ultimate Strain (%) > 2 > 2 
Equivalent Thickness (mm) ≈ 0.169 ≈ 0.254 
 

 

Table 6.2. Mechanical properties of matrix by provided by manufacturer (Kerakoll 

S.p.A.) 

Property Test Method 

Tensile Strength (MPa) > 14 EN 12188 
Flexural Elastic Modulus (GPa) > 2.50 EN ISO 178 
Elastic Modulus Under Compression (GPa) > 5.30 EN 13412 
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6.2.2 Methods 

Twenty-five specimens were tested to investigate the influence of steel-FRP 

confinement on the behavior of concrete prisms subjected to a concentric 

compressive load. All prisms had a square cross-section. The nominal dimensions of 

the concrete prisms were b=150 mm × d=150 mm × L=450 mm. All prisms were 

axially unreinforced, i.e., no internal reinforcement was provided since jacket-

internal reinforcement interaction was outside the scope of this study.  

 

Twenty confined specimens were classified in seven groups. Specimens from the 

same group were characterized by same parameters. Specimens were named 

following the notation SQ-X-A-B-C-D-Y-Z, where SQ indicates a square cross-

section, X indicates the confined length (hc) in mm, i.e. the portion of the prism 

length wrapped with the composite material; A indicates the fiber density (MD = 

medium density, HD = high density); B indicates the composite matrix (UC= 

unconfined, CE = confined epoxy-based matrix); C denotes the concrete surface 

treatment (T = treated with sand-blasting, UT = untreated); D indicates the concrete 

corner condition (R = rounded to a radius r=17.5 mm, S = sharp), Y indicates the 

number of confinement layers (1L or 2L), and Z = specimen number. Five specimens 

were unconfined and used as control specimens.  The unconfined specimens were 

named following the notation SQ-B-C-D-Z with the parameters B, C, D, and Z 

defined above. The details of the specimens and test parameters are summarized in 

Table 6.3. 

The confined prisms were wrapped following the manufacturer’s recommendations. 

The steel-FRP was applied using a wet layup process shown in Figure 6.5. Steel 

fibers sheets, with fibers oriented perpendicular to the longitudinal axis of the prism, 

were wrapped around the concrete prisms. Since the width of the fiber sheet was not 

the same as the length of the prism, the prisms were wrapped with two or three 

segments of the fiber sheet with no overlap of the different segments. The fiber 

sheets were bent before wrapping so that they were able to conform to the surface 

(Figure 6.5).  An overlap length of 150 mm, corresponding to the width of one prism 

face, was provided for all specimens, forming a vertical seam at the corner. 

Specimens were cured under ambient conditions for seven days after casting.  
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Figure 6.5. Specimen preparation: (a) application of matrix to concrete 

surface; (b) application of steel fiber sheet around the prism; (c) 

application of external layer of matrix; (d) finished specimen. 

 

Prior to testing, both ends of each prism were capped with a 4 mm thick layer of high 

strength mortar to ensure that the ends were flat and parallel to one another. The 

compression tests were performed using a 4000 kN capacity compression testing 

machine. A photo of the test setup is shown in Figure 6.6(a). The specimens were 

tested under monotonically increasing displacement until failure. The distance 

between the two pressing plates was measured using two LVDTs named LVDT-a 

and LVDT-b mounted between the pressing plates see Figure 6.6(b). The 

displacement rate, determined by average value of the two LVDTs, was maintained 

at 0.2 mm/min by continuously monitoring and controlling the machine stroke. 

Testing was completed when a significant drop in load occurred in the post-peak 

response. 

Axial strains were determined from the measurements from LVDT-a and LVDT-b. 

Certain specimens also included two additional LVDTs mounted directly to the 

specimen with bolts drilled into the concrete core (LVDT-c and LVDT-d in Figure 

6.6b). LVDT-c and LVDT-d were oriented in the axial direction of the specimen and 

were located in the central third of the specimen length on opposite sides. Readings 

of applied load and displacement were acquired with a data acquisition system and 

stored on a personal computer. 

 

For certain specimens, three-dimensional (3-D) digital image correlation (DIC) was 

used to analyze the displacement and strain fields on one face (front face) of the 
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confined prism. DIC is a non-contact measuring technique that allows for obtaining 

the surface displacement field. DIC mathematically correlates images of the 

specimen, taken during testing, that correspond to different applied load and 

displacement values. DIC recognizes and correlates points on the surface and 

computes their displacement with respect to the initial undeformed image. The 

surface strains are then determined as the gradients of the displacements after 

interpolating the displacement contours with a quintic B-spline collocation method 

Subramaniam et al. (2007). To enable the DIC measurements, the composite surface 

was covered uniformly with white nonreflective paint prior to testing. Black paint 

was then sprayed on the composite surface to create a speckle pattern (Figure 6.7a), 

which is recognized and employed by the DIC software to obtain the displacement 

field. During testing the specimen was illuminated with normal white light to assure 

uniform light intensity on the composite surface. Images were taken at a frequency of 

0.1 Hz and were processed considering the origin of the Cartesian axes located at the 

top left edge of the specimen front face. Due to the potentially brittle nature of the 

failure, readings were recorded only until shortly after the peak load was achieved in 

order to protect the DIC equipment.  

 

 

  
Figure 6.6. (a) Photo of specimen; (b) test setup. 
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Table 6.3. Test Specimen Characteristics 
G

ro
up

 

Specimen 
Name 

Jacket 
Length 
(mm) 

Fiber Density Surface Treatment 
Corner Instrumentation 

Edge Type Radius 
(mm) 

LVDT-a and 
LVDT-b 

LVDT-c and 
LVDT-d DIC 

C
on

tro
l 

SQ-UC-UT-S-1 - - None Sharp 0    
SQ-UC-UT-S-2 - - None Sharp 0    
SQ-UC-UT-S-3 - - None Sharp 0    
SQ-UC-UT-S-4 - - None Sharp 0    
SQ-UC-UT-S-5 - - None Sharp 0    

FR
P-

C
on

fin
ed

 
G

ro
up

 1
 

SQ-450-HD-CE-UT-R-1L-1 450 High Density None Rounded 17.5    
SQ-450-HD-CE-UT-R-1L-2 450 High Density None Rounded 17.5    
SQ-450-HD-CE-UT-R-1L-3 450 High Density None Rounded 17.5    

G
ro

up
 2

 SQ-450-HD-CE-UT-S-1L-1 450 High Density None Sharp 0    
SQ-450-HD-CE-UT-S-1L-2 450 High Density None Sharp 0    
SQ-450-HD-CE-UT-S-1L-3 450 High Density None Sharp 0    
SQ-450-HD-CE-UT-S-1L-4 450 High Density None Sharp 0    

G
ro

up
 3

 

SQ-450-HD-CE-T-R-1L-1 450 High Density Light Sand-Blasting Rounded 17.5    
SQ-450-HD-CE-T-R-1L-2 450 High Density Light Sand-Blasting Rounded 17.5    
SQ-450-HD-CE-T-R-1L-3 450 High Density Light Sand-Blasting Rounded 17.5    

G
ro

up
 4

 

SQ-450-MD-CE-T-R-1L-1 450 Medium Density Light Sand-Blasting Rounded 17.5    
SQ-450-MD-CE-T-R-1L-2 450 Medium Density Light Sand-Blasting Rounded 17.5    
SQ-450-MD-CE-T-R-1L-3 450 Medium Density Light Sand-Blasting Rounded 17.5    

G
ro

up
 5

 

SQ-450-MD-CE-T-S-1L-1 450 Medium Density Light Sand-Blasting Sharp 0    
SQ-450-MD-CE-T-S-1L-2 450 Medium Density Light Sand-Blasting Sharp 0    
SQ-450-MD-CE-T-S-1L-3 450 Medium Density Light Sand-Blasting Sharp 0    

G
ro

up
 6

 

SQ-440-MD-CE-T-S-1L-1 440 Medium Density Light Sand-Blasting Sharp 0    
SQ-440-MD-CE-T-S-1L-2 440 Medium Density Light Sand-Blasting Sharp 0    

G
ro

up
 7

 

SQ-450-MD-CE-T-S-2L-1 450 Medium Density Light Sand-Blasting Sharp 0    
SQ-450-MD-CE-T-S-2L-2 450 Medium Density Light Sand-Blasting Sharp 0    
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6.3 Results 

6.3.1 Failure mode, Compressive strength, and Ultimate strain 

The peak load of all unconfined and confined specimens was associated with 

crushing of concrete. After the peak load was achieved, the confined specimens 

continued to deform under decreasing applied load until failure occurred by 

separation of the FRP jacket at the vertical lap joint. For some confined specimens 

with MD steel fibers, namely specimens SQ-450-MD-CE-T-R-1L-1, SQ-450-MD-

CE-T-S-1L-1 and SQ-450-MD-CE-T-S-1L-2, the opening of the FRP jacket was 

preceded by the rupture of some steel fibers near the corners.  Failure was generally 

sudden but preceded by noises associated with cracking of the epoxy in the 

composite matrix. For most confined specimens, failure initiated near the middle 

third of the specimen length, and the FRP jacket was completely opened with 

transverse cracks (parallel to the fiber direction) that extended from the failed face to 

other faces of the specimen.  Some of the transverse cracks were consistent with the 

locations where different steel fiber sheet segments abutted one another.  Detachment 

of the overlapping layer of the jacket occurred along a limited portion of the 

specimen length. For several specimens, failure started in the layer of epoxy in 

between the two overlapping layers, and both layers of fibers opened with the 

internal layer having some concrete from the substrate attached. Photographs of a 

typical failed specimen are shown in Figure 6.7. 

 

 
Figure 6.7. Failure mode of steel-FRP confined specimen (specimen 

SQ-450-HD-CE-UT-S-1L-1 shown): (a) front face; (b) right face;        

(c) back face; (d) left face; (e) cut section. 
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In some specimens, propagation of transverse cracks in the FRP jacket was observed 

near the bolts where LVDT-c and LVDT-d were mounted. Specimens SQ-450-HD-

CE-UT-R-1L-1, SQ-450-HD-CE-UT-R-1L-3, and SQ-450-HD-CE-UT-S-1L-3 had 

LVDT-c and LVDT-d mounted on the face with the overlapping layer, and at failure 

the bolts were separated completely from specimens. Readings from LVDT-c and 

LVDT-d were also compromised for several specimens after the peak load was 

reached.  

 

After testing, the conditions of the concrete core and jacket were documented.  

Crushed concrete was observed near the side surfaces of each specimen. For 

specimens with complete opening of the jacket, the steel-FRP sheets were observed 

to have pieces of concrete attached. Each specimen was sawcut near the midlength to 

observe the condition of the concrete cross-section. The typical conical shape of the 

cross-section was observed. Additional discussion on the crack patterns observed at 

the cross-section is presented in Section 6.4.3. 

 

Table 6.4 summarizes the key experimental results obtained for each test specimen. 

Values provided for the unconfined specimens include the unconfined compressive 

strength (peak stress) f’co, the unconfined ultimate compressive stress f’co,u, and the 

corresponding values of strain εco and εco,u, respectively. Values provided for the 

confined specimens include the confined compressive strength (peak stress) f’cc, the 

confined ultimate compressive stress f’cc,u, and the corresponding values of strain εcc 

and εcc,u, respectively. Values of the ultimate stress and ultimate strain correspond to 

the stress and strain at which a significant drop in load occurred in the post-peak load 

response and are associated with specimen failure as discussed above. Values of 

stress were determined by dividing the force by the cross-sectional area of the prism 

(22,500 mm2 and 22,237 mm2 for specimens with sharp and rounded corners, 

respectively). Values of strain were determined by dividing the average of 

displacement readings from LVDT-a and LVDT-b by the initial distance between the 

pressing plates. Accordingly, the values of strain determined in this manner are 

considered to be global strain. 

For reference, the control specimens had an average unconfined compressive 

strength 𝑓𝑓′𝑐𝑐𝑐𝑐����� of 26.0 MPa and an average compressive strain at peak load 𝜀𝜀𝑐𝑐𝑐𝑐���� of 
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0.0030. Values of the ratios 𝑓𝑓′𝑐𝑐𝑐𝑐
𝑓𝑓′𝑐𝑐𝑐𝑐������   and 

𝜀𝜀𝑐𝑐𝑐𝑐,𝑢𝑢
𝜀𝜀𝑐𝑐𝑐𝑐�����  are provided in Table 4 for each 

confined specimen. Average values of the ratios 𝑓𝑓′𝑐𝑐𝑐𝑐
𝑓𝑓′𝑐𝑐𝑐𝑐������   and 

𝜀𝜀𝑐𝑐𝑐𝑐,𝑢𝑢
𝜀𝜀𝑐𝑐𝑐𝑐����� , along with 

the corresponding coefficient of variation (CoV), are also reported for each of the 

confined specimen groups. Results in Table 6.4 indicate that the steel-FRP 

confinement improves the strength and the ultimate strain of specimens relative to 

the unconfined condition. Group average values of 𝑓𝑓′𝑐𝑐𝑐𝑐
𝑓𝑓′𝑐𝑐𝑐𝑐������  ranged from 1.18 to 

1.50, with the largest value obtained from specimens of Group 2, with prisms with 

sharp corners. Group average values of  𝜀𝜀𝑐𝑐𝑐𝑐,𝑢𝑢
𝜀𝜀𝑐𝑐𝑐𝑐�����  ranged from 4.73 to 8.86, with the 

largest value obtained from specimens from Group 7, with two layers of 

confinement.  
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Table 6.4. Summary of Test Results 
G

ro
up

 Specimen 
𝑓𝑓′𝑐𝑐𝑐𝑐 𝐹𝐹𝐹𝐹 𝑓𝑓′𝑐𝑐𝑐𝑐 𝑓𝑓′𝑐𝑐𝑐𝑐,𝑢𝑢 𝐹𝐹𝐹𝐹 𝑓𝑓′𝑐𝑐𝑐𝑐𝑢𝑢 𝑓𝑓′𝑐𝑐𝑐𝑐

𝑓𝑓′𝑐𝑐𝑐𝑐����� 
Avg 

[CoV] 𝜀𝜀𝑐𝑐𝑐𝑐 𝐹𝐹𝐹𝐹 𝜀𝜀𝑐𝑐𝑐𝑐 𝜀𝜀𝑐𝑐𝑐𝑐,𝑢𝑢 𝐹𝐹𝐹𝐹 𝜀𝜀𝑐𝑐𝑐𝑐𝑢𝑢 
𝜀𝜀  
𝑐𝑐𝑐𝑐,𝑢𝑢

𝜀𝜀𝑐𝑐𝑐𝑐����
 Avg 

[CoV] 
Apeak Atotal 

Name 
(MPa) (MPa) (MPa) (MPa) 

C
on

tro
l 

SQ-UC-UT-S-1 28.9 13.6 - 

- 

0.0034 0.0049 - 

- 

- - 
SQ-UC-UT-S-2 24.1 19.1 - 0.0032 0.0043 - - - 
SQ-UC-UT-S-3 27.6 21.0 - 0.0029 0.0054 - - - 
SQ-UC-UT-S-4 25.8 20.5 - 0.0028 0.0033 - - - 
SQ-UC-UT-S-5 23.4 21.0 - 0.0027 0.0026 - - - 

St
ee

l-F
R

P 
C

on
fin

ed
 

G
ro

up
 1

 

SQ-450-HD-CE-UT-R-1L-1 34.9 31.0 1.35 1.39 
[0.033] 

0.0044 0.0111 3.72 4.73 
[0.255] 

0.103 0.324 
SQ-450-HD-CE-UT-R-1L-2 35.8 31.4 1.38 0.0048 0.0182 6.07 0.112 0.539 
SQ-450-HD-CE-UT-R-1L-3 37.3 31.1 1.44 0.0048 0.0132 4.42 0.121 0.409 

G
ro

up
 2

 SQ-450-HD-CE-UT-S-1L-1 38.2 34.0 1.47 
1.50 

[0.018] 

0.0048 0.0113 3.77 
5.13 

[0.201] 

0.134 0.365 
SQ-450-HD-CE-UT-S-1L-2 39.8 33.9 1.53 0.0055 0.0155 5.18 0.150 0.503 
SQ-450-HD-CE-UT-S-1L-3 38.6 33.1 1.49 0.0055 0.0188 6.26 0.163 0.614 
SQ-450-HD-CE-UT-S-1L-4 39.3 31.4 1.51 0.0056 0.0160 5.33 0.160 0.514 

G
ro

up
 3

 

SQ-450-HD-CE-T-R-1L-1 37.4 30.3 1.44 1.46 
[0.011] 

0.0054 0.0135 4.50 4.88 
[0.352] 

0.150 0.408 
SQ-450-HD-CE-T-R-1L-2 37.8 32.1 1.46 0.0045 0.0203 6.76 0.135 0.626 
SQ-450-HD-CE-T-R-1L-3 38.3 33.3 1.47 0.0059 0.0102 3.39 0.155 0.314 

G
ro

up
 4

 

SQ-450-MD-CE-T-R-1L-1 36.6 24.4 1.41 1.40 
[0.018] 

0.0053 0.0221 7.36 5.45 
[0.302] 

0.145 0.605 
SQ-450-MD-CE-T-R-1L-2 35.5 27.5 1.37 0.0046 0.0134 4.47 0.123 0.379 
SQ-450-MD-CE-T-R-1L-3 36.7 27.0 1.41 0.0058 0.0136 4.53 0.137 0.390 

G
ro

up
 5

 

SQ-450-MD-CE-T-S-1L-1 33.4 22.5 1.29 1.31 
[0.021] 

0.0054 0.0202 6.73 5.53 
[0.215] 

0.135 0.522 
SQ-450-MD-CE-T-S-1L-2 34.8 24.0 1.34 0.0045 0.0130 4.35 0.116 0.358 
SQ-450-MD-CE-T-S-1L-3 33.7 23.1 1.30 0.0052 0.0165 5.50 0.137 0.445 

G
ro

up
 

6 SQ-440-MD-CE-T-S-1L-1 31.0 22.3 1.19 1.18 
[0.021] 

0.0044 0.0210 7.00 6.68 
[0.069] 

0.115 0.491 
SQ-440-MD-CE-T-S-1L-2 30.1 23.4 1.16 0.0055 0.0191 6.35 0.156 0.688 

G
ro

up
 

7 SQ-450-MD-CE-T-S-2L-1 38.3 37.6 1.48 1.45 
[0.026] 

0.0064 0.0246 8.22 8.86 
[0.103] 

0.185 0.862 
SQ-450-MD-CE-T-S-2L-2 36.9 37.1 1.42 0.0062 0.0285 9.51 0.171 0.996 
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6.3.2 Axial stress – Axial strain response 

As mentioned in Section 6.2.2, LVDT-a and LVDT-b measured the displacement 

between the pressing plates, while LVDT-c and LVDT-d measured the axial 

displacement of the middle third of the specimen. Figure 6.8 shows the axial stress – 

axial strain response, determined by each individual LVDT, of representative 

specimens SQ-450-MD-CE-T-S-1L-2 (Figure 6.8a) and SQ-450-HD-CE-UT-S-1L-3 

(Figure 6.8b). The graphs in Figure 6.8 show that the strain determined by the 

individual LVDTs was consistent until the peak stress was achieved, and then the 

strain determined by LVDT-c and LVDT-d differed from values determined by 

LVDT-a and LVDT-b. The difference was more significant for specimen SQ-450-

HD-CE-UT-S-1L-3 (Figure 6.8b) than for specimen SQ-450-MD-CE-T-S-1L-2 

(Figure 8a). This difference in strains determined by the different LVDT pairs is due 

to localized effects at the location of the LVDTs mounted directly to the specimen, 

which compromised the measurements after the peak stress was achieved. In the 

remainder of the axial stress – axial strain plots in this paper, readings from LVDT-a 

and LVDT-b are used to determine the axial strain from the average of the two 

readings.  

 

 
Figure 6.8. Axial stress - axial strain response determined by each 

LVDT for representative specimens: (a) SQ-450-MD-CE-T-S-1L-2; (b) 

SQ-450-HD-CE-UT-S-1L-3. 

 

 

 

 (b) (a) 
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In Figure 6.9, the axial stress – axial strain responses of confined specimens from 

different groups are plotted and compared to illustrate the effect of a particular test 

parameter. The unconfined (control) specimens are also plotted in each graph for 

comparison. The general behavior of the steel-FRP confined specimens can be 

described as having an initial linear response that follows the unconfined behavior.  

After the unconfined strength is reached, the response of the steel-FRP specimens 

becomes non-linear, and the axial stress continues to increase until the peak stress is 

reached. Then for most specimens, a descending response is observed until failure 

occurs with a sudden drop in the axial stress, where failure is associated with jacket 

opening as discussed in Section 6.3.1.  Influence of the test variables is further 

discussed in Section 6.4.1. 

 

197 
 



 

 
 

Figure 6.9. Axial stress – axial strain response for specimens in: a) 

Groups 1 and 2; b) Groups 1 and 3; c) Groups 3 and 4; d) Groups 4 

and 5; e) Groups 5 and 6; f) Groups 5 and 7. 

 

 

a. Groups 1 and 2 b. Groups 1 and 3 

c. Groups 3 and 4 d. Groups 4 and 5 

e. Groups 5 and 6 f. Groups 5 and 7 
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6.3.3 Steel-FRP jacket strains 

Axial and hoop strains in the composite of confined concrete specimens can be 

highly variable due to the location and progression of concrete cracks. In this study, 

DIC was used to examine the strain field on the surface of the composite in the axial 

and hoop (fiber) directions.  As discussed in Section 6.2.2, DIC readings were 

recorded only until shortly after the peak load was achieved, so the DIC results 

presented in this section do not include the post-peak response. 

Displacements and strains were obtained for different square areas (subsets) for a 5 

pixel step size, which provided points spaced at approximately 1.25 mm. Different 

subsets of 21, 31, and 41 pixels were used to study the influence of subset 

dimensions on the results obtained. Figure 6.10 shows the axial stress – axial strain 

response of specimen SQ-450-HD-CE-T-R-1L-1 in which axial strain was 

determined by DIC for the three subsets. Results determined using different subsets 

are similar, therefore a subset size of 31 pixels (approximately 3.40 mm) edge was 

employed for the remainder of the specimens.  

 

In order to employ the DIC results, the strain values obtained by DIC and plotted in 

Figure 6.10 were determined considering strain values in eight squares in the central 

third of the specimen length. Each square had a side equal to 30 mm, and the 

horizontal and vertical spacing between adjacent squares was 30 mm and 10 mm, 

respectively, as shown in Figure 6.11. The strain determined by DIC was obtained by 

averaging the strains within these eight squares. Figure 10 also shows values of axial 

strain determined from measurements by LVDT-a and LVDT-b for comparison. 

Values of strain determined by DIC and the LVDTs are similar, with slight 

differences attributed to several factors. First, DIC and LVDT measurements were 

taken at different locations, i.e., DIC values were determined on the composite face, 

whereas LVDT measurements were taken outside the specimen on the pressing 

plates at opposite corners. Second, as explained above, values determined by DIC 

derive from an average of the strains in different locations of the specimen face. 
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Figure 6.10: Comparison of axial stress – axial strain response 

determined by LVDTs and DIC (specimen SQ-450-HD-CE-T-R-1L-1). 

 

 
Figure 6.11. Representation of the eight squares used to calculate the 

values of the strain using DIC technique: (a) axial strain; (b) hoop 

strain. 
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Figure 6.12 shows the axial stress versus hoop and axial strain response of each 

confined specimen determined by DIC considering strain values in eight squares in 

the central third of the specimen length as described above. Specimens SQ-450-HD-

CE-UT-S-1L-4 and SQ-450-HD-CE-T-R-1L-3 from Groups 2 and 3, respectively, 

are not shown in the graphs since DIC was not used for those specimens. Values of 

hoop strain at the peak stress were less than the fiber ultimate strain (0.02, Table 6.1) 

for all specimens. 
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Figure 6.12. Axial stress – strain response determined by DIC for 

confined specimens: (a) Group 1; (b) Group 2; (c) Group 3; (d) Group 4; 

(e) Group 5; (f) Group 6; (g) Group 7. 

e. Group 5 

b. Group 2a. 

d. Group 4 c. Group 3 

a. Group 1 

 g. Group 7 

f. Group 6 
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6.4 Discussion  

6.4.1 Influence of test variables 

The influence of corner condition is examined by comparing the results of specimens 

in Groups 1 and 2, and specimens in Groups 4 and 5. The axial stress – axial strain 

response of specimens in Groups 1 and 2, which had high density fibers and an 

untreated surface but different corner conditions (rounded vs. sharp, Groups 1 and 2, 

respectively), is shown in Figure 6.9a.  Specimens with sharp corners consistently 

had higher compressive strength f’cc (average of 8%) and ultimate strain εcc,u 

(average of 8%) than those with corners rounded to a radius of 17.5 mm. Hoop 

strains at the peak load were also larger for specimens in Group 2 compared with 

those of Group 1, as shown in Figures 6.12a and 6.12b, which indicates a larger 

participation by the jacket. Further discussion on this test variable is included in 

Section 6.4.3. 

 

Figure 6.9d compares the axial stress – axial strain response of specimens in 

Groups 4 and 5, which had medium density fibers and a treated surface but different 

corner conditions (rounded vs. sharp, Groups 4 and 5, respectively). Contrary to the 

results of Groups 1 and 2 with high density fibers, specimens with rounded corners 

had higher compressive strength than those with sharp corners. The different 

behavior can be partially explained considering the different types of failure obtained 

for specimen with medium density steel fibers, i.e., fiber rupture before jacket 

opening for specimens SQ-450-MD-CE-T-R-1L-1, SQ-450-MD-CE-T-S-1L-1 and 

SQ-450-MD-CE-T-S-1L-2 (Section 4.1). Values of compressive strength for Group 4 

were approximately 7% larger than those of Group 5,  whereas values of ultimate 

strain were approximately the same (Table 6.4). Hoop strains at peak load were 

lower for specimens in Group 4 compared with those of Group 5 (Figures 6.12d and 

6.12e). 

 

The influence of concrete surface treatment is examined by comparing the results of 

Groups 1 and 3. Figure 6.9b shows that Group 3 specimens with a sandblasted 

surface had higher compressive strength and ultimate strain than Group 1 specimens 

with no surface treatment. This increase can be attributed to better adhesion between 
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the composite material and the concrete substrate. Hoop strains at the peak load were 

also larger for specimens in Group 3 compared with those of Group 1, as shown in 

Figures 6.12c and 6.12a, which indicates a larger participation by the jacket for the 

sandblasted specimens. 

 

The influence of fiber density is examined by comparing the results of Groups 3 and 

4, with high and medium density fibers, respectively. Figure 6.9c shows that 

specimens reinforced with high density fibers (Group 3) had slightly higher 

compressive strength (average of 4%) than specimens reinforced with medium fibers 

(Group 4). On the other hand, the ultimate strain (Figure 6.9c) and the hoop strain at 

peak stress (Figures 6.12c and 6.12d) are approximately the same irrespective of 

fiber density. These results suggest that the increase in confined strength is not 

proportional to the fiber density. 

 

The influence of jacket length is examined by comparing specimens in Groups 5 and 

6. Figure 9e compares the response of specimens with a full length jacket (hc=450 

mm, Group 5) and those with a partial length jacket (hc=440 mm, Group 6).  As 

expected, Specimens in Group 5 had higher compressive strength than those in 

Group 6. Values of compressive strength for specimens in Group 5 were 

approximately 11% larger than those of Group 6. Hoop strains at the peak load were 

also larger for specimens in Group 5 compared with those of Group 6, as shown in 

Figures 6.12e and 6.12f. On the other hand, values of the ultimate strain for Group 5 

specimens were approximately 17% lower than those of Group 6 (Table 6.4). It is 

possible that the increased ultimate strain for specimens with a partial length jacket is 

due to localized deformation of the unconfined concrete outside the jacket at the 

specimen ends. As noted in Section 6.3.1, values of axial strain are global values 

considering the entire specimen length. 

 

The influence of the number of jacket layers is examined by comparing the results of 

specimens in Groups 5 and 7, with one and two layers, respectively.  Specimens in 

Group 7 had compressive strengths higher than those in Group 5. Values of 

compressive strength for specimens in Group 7, with two layers of confinement, 

were approximately 11% larger than those of Group 5, with one layer of 

confinement. Similarly, values of ultimate strain for the Group 7 specimens were 
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approximately 60% larger than those of Group 5 (Table 4). Hoop strains at the peak 

load were similar for specimens in Group 7 compared with those of Group 5, as 

shown in Figures 12g and 12e. These results suggest that increasing the number of 

jacket layers increases both the axial strength and the deformability, however the 

increase in axial strength is not proportional to the number of jacket layers. 

Additional discussion is provided in Section 6.4.2.  

 

 

6.4.2 Ductility 

Ductility can be characterized by the area under the axial stress – axial strain curve 

Rochette and Labossiere (2000). As mentioned in Section 6.3.1, failure of the 

confined specimens in this study was mostly associated with opening of the jacket. 

Accordingly, the post-peak response and the corresponding area under the axial 

stress-axial strain curve in the post-peak region are related both to the strain in the 

concrete and debonding of the composite. Since the jacket overlap length was the 

same for all specimens, it is reasonable to assume that the bond behavior of 

specimens with the same fiber density should be similar and comparable.  

 

Although the post-peak response of the confined specimens was a softening 

behavior, the post-peak axial deformability is compared in this section. In this study, 

the total area under the curve Atotal up to the ultimate strain and corresponding stress 

was compared to the area under the curve Apeak up to the peak stress and 

corresponding strain. Values of Apeak and Atotal are reported in Table 6.4 for each 

confined specimen.  

 

The ratio Atotal/Apeak provides information on the strain reserve after the peak stress is 

reached. Figure 6.13 compares the average value of Atotal/Apeak for each group. 

Specimens in Groups 1 through 5 had average values of Atotal/Apeak in the range of 

3.0-4.0. The average value for specimens in Group 6 was slightly larger (between 4.0 

and 4.5), even though the steel-FRP jacket was not full length. This may be due to 

the additional deformability of the unconfined regions at the specimen ends, as noted 

in Section 6.4.1. Specimens in Group 7, which was the only group with two layers of 

fibers, had an average value that exceeded 5.0. This shows that the ductility increases 
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with increasing composite stiffness, as noted by Rochette and Labossiere (2000). 

Thus, although two layers of fiber sheets did not significantly improve the strength of 

the specimen, it did improve the deformability. 

 

 

 
Figure 6.13. Average Atotal/Apeak for each group. 

 

 

6.4.3 Fracture surface of cross-section 

As mentioned in Section 6.3.1, the specimens were sawcut in the plane of the cross-

section near the specimen midlength after testing to study the condition of the 

concrete. In general, the concrete was observed to be crushed near the confinement 

layer, and the arching effect could be observed by the formation of parabolic zones 

of crushing that formed along the four side faces of the specimen. Figure 6.14 shows 

the cut section of specimen SQ-450-HD-CE-UT-S-1L-1, with sharp corners, and 

specimen SQ-450-HD-CE-UT-R-1L-3, with corners rounded to a radius of 17.5 mm. 

For each cross-section, the height of the parabola was measured at each of the four 

sides, and the average height was determined for each specimen. For specimens with 

the same cross-sectional dimensions, an increase in parabola height corresponds to in 

an increase in parabola length.  It was observed that the average height (and therefore 
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length) of the parabola was larger for specimens with sharp corners than those with 

rounded corners. The significance of this observation can be examined from a 

fracture mechanics point of view. The profile of the parabola reflects the crack 

propagation, therefore a longer profile of this crack corresponds to a larger amount of 

energy needed to open it. Hence, higher values of the compressive strength for 

confined prisms are related to longer profiles of the parabola in the cross-section 

areas, as confirmed by the experimental results.  

 

 
Figure 6.14. Photos of cut cross-sections after failure:  

(a) SQ-450-HD-CE-UT-S-1L-1; (b) SQ-450-HD-CE-UT-R-1L-3. 

 

In the study by El-Hacha and Mashrik (2012), steel-FRP confined concrete prisms 

with a square cross-section were tested with different corner radii, with specimens 

ranging from r=0 (sharp) to r=b/2 (corresponding to a circular cross-section). Figure 

6.15 compares the results of the Groups 1 and 2 specimens from the present study 

with those from the El-Hacha and Maskrik study in terms of the corner radius ratio, 

2r/b. Figure 6.15a plots the results in terms of the ratio of the average confined 

strength to the average unconfined strength, 𝑓𝑓′𝑐𝑐𝑐𝑐
�����

𝑓𝑓′𝑐𝑐𝑐𝑐������ , whereas Figure 6.15b plots the 

results in terms of the ratio of the average confined strength relative to the average 

confined strength of the confined specimen with sharp corners, 𝑓𝑓′𝑐𝑐𝑐𝑐
�����

𝑓𝑓′𝑐𝑐𝑐𝑐,𝑆𝑆
�������� . Test 

(a) (b) 
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results from both studies show that particular values of the ratio 2r/b correspond to 

compressive strengths that are lower than those of specimens with a sharp corner 

condition (i.e., 2r/b=0). The authors postulate that this is the result of the arching 

effect described above, and that the range of corner radius ratio values for which this 

effect is observed may be a function of the stiffness of the fiber investigated. More 

work is needed to study this issue. 

 

 
(a) 

 
(b) 
 

Figure 6.15. Variation of the ratio: a) 𝑓𝑓′𝑐𝑐𝑐𝑐
�����

𝑓𝑓′𝑐𝑐𝑐𝑐������  ; and b) 𝑓𝑓′𝑐𝑐𝑐𝑐
�����

𝑓𝑓′𝑐𝑐𝑐𝑐,𝑆𝑆
��������  

with respect to corner radius ratio 2r/b 
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6.5 Conclusions 

This work presented the experimental results of short concrete prisms confined with 

steel-FRP composite. Test variables included fiber density, concrete surface 

treatment, corner condition, jacket length, and number of jacket layers. Digital image 

correlation (DIC) is used to study qualitatively and quantitatively the displacement 

and strain fields on one face of the composite.  Based on the results of this study, the 

following conclusions can be made: 

1. The peak load of all unconfined and confined specimens was associated with 

crushing of concrete. After the peak load was achieved, the confined 

specimens continued to deform under decreasing applied load until failure 

occurred by separation of the FRP jacket at the vertical lap joint. 

2.  Steel-FRP confinement improved the strength and the ultimate strain of 

specimens relative to the unconfined condition. Group average values of 

𝑓𝑓′𝑐𝑐𝑐𝑐
𝑓𝑓′𝑐𝑐𝑐𝑐������  ranged from 1.18 to 1.50, with the largest value obtained from 

specimens of Group 2, with prisms with sharp corners. Group average values 

of  𝜀𝜀𝑐𝑐𝑐𝑐,𝑢𝑢
𝜀𝜀𝑐𝑐𝑐𝑐�����  ranged from 4.73 to 8.86, with the largest value obtained from 

specimens of Group 7, with two layers of confinement. 

3. Concrete surface treatment increased the confined compressive strength.  

4. Increases in fiber density were not proportional to increases in confined 

compressive strength.  

5. Full-length jackets were more effective in increasing the confined 

compressive strength than partial length jackets. 

6. Increasing the number of jacket layers from one to two did not increase the 

confined concrete strength significantly, but it did increase the deformability. 

7. Specimens confined with high density fibers and having a sharp corner 

condition had a larger confined compressive strength than those with a 

rounded corner condition. This was attributed to the arching effect observed 

by the formation of parabolic zones of crushing that formed along the four 

side faces of the specimens. Values of corner radius ratio 2r/b for which this 

effect is observed may be a function of the stiffness of the fiber investigated. 

More work is needed to study this issue. 
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APPENDIX I 
 

Photographs of the Failure Mode and Crack Patterns (Chapter 2) 

 

 

 
Figure I.1: Crack patterns of beam BGH-A1-01 

 

 
Figure I.2: Crack patterns of beam BGH-A1-02 

 

 

 

 

Figure I.3: Crack patterns of beam BGN-A2-01 

 

 
Figure I.4: Crack patterns of beam BGN-A2-02 

 

 
Figure I.5: Crack patterns of beam BSN-A2-03 

 

 
Figure I.6: Crack patterns of beam BSN-A2-04 
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Figure I.7: Crack patterns of beam BGL-A3-01 

 

 
Figure I.8: Crack patterns of beam BGL-A3-02 

 

 
Figure I.9: Crack patterns of beam BGH-A3-03 

 

 
Figure I.10: Crack patterns of beam BGH-A3-04 

 

 
Figure I.11: Crack patterns of beam BSL-A3-05 

 

 
Figure I.12: Crack patterns of beam BSL-A3-06 
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Figure I.13: Crack patterns of beam BSH-A3-07 

 

 
Figure I.14: Crack patterns of beam BSH-A3-08 
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APPENDIX II 
 

Photographs of the experimental program of debonding investigation  

(Chapter 5) 
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