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Executive Summary

Device-to-Device (D2D) is one of the important proposed solutions to in-
crease the capacity, offload the traffic, and improve the energy efficiency in
next generation cellular networks. D2D communication is known as a di-
rect communication between two users without using cellular infrastructure
networks. Despite of large expected benefits in terms of capacity in D2D,
the coexistence of D2D and cellular networks in the same spectrum creates
new challenges in interference management and network design. To limit the
interference power control schemes on cellular networks and D2D networks
are typically adopted. Even though power control is introduced to limit the
interference level, it does not prevent cellular and D2D users from experienc-
ing coverage limitation when sharing the same radio resources. Therefore,
the design of such networks requires the availability of suitable methods able
to properly model the effect of interference in the presence of random ter-
minals deployment. To this purpose in this PhD dissertation studied a new
analytical model based on stochastic geometry to characterize the coverage
probability on both cellular and D2D networks taking into account the im-
pact of power control, shadowing and user’s random locations.
The above mentioned work focus on static wireless networks while in dy-
namic mobility model user mobility poses several challenges especially at
millimeter-wave (mmW). When transmitting at high frequencies, and using
beamforming techniques, the presence of obstacles and user mobility might
severely impact the wireless link blockage properties thus translating into fre-
quent handovers and channel estimate updates causing significant signaling
overhead. Unfortunately an analysis based on the coverage probability does
not provide information about link blockages duration/rate as its evaluation
usually does not include spatial/time correlation of the link state. In this
context, the link lifetime represents an important performance index able to
properly capture the dynamic behavior of the wireless link. For this reason,
in this thesis I have also addressed the effect of blockages and user mobility
in wireless networks on link lifetime.

When users in D2D communications are machines, then I refer to machine-
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to-machine (M2M) communications. Examples of M2M networks are those
devoted to improve the safety of read users like cars and cyclists. In the
last part of the Thesis, the experimental activity carried out within the Eu-
ropean H2020 project XCYCLE is reported. Such an activity regards the
investigation of a communication and localization architecture to determine
potentially dangerous situations and provide a real-time feedback to road
users. Summarizing, the main contributions of this dissertation are:

• Chapter 1: Analytical Characterization of Device-to-Device and
Cellular Networks Coexistence: In chapter 1 a new analytical frame-
work based on stochastic geometry for the characterization of the recip-
rocal impact of D2D communications and an underlay cellular network
in terms of coverage probability is presented. I consider a random
number of D2D groups where in each group devices are distributed
according to different spatial distributions to model users’ behavior.
The effect of power control, users’ spatial distribution, shadowing and
random base station (BS) deployment are accounted for in the analysis
and closed form expressions for coverage probability for both cellular
network and D2D networks are derived. The validity of the framework
developed is assessed via simulation in the numerical results where the
effect of key system parameters as well as devices spatial distribution
on cellular and D2D coverage is investigated and the amount of the
traffic that could be offloaded through D2D communications is stud-
ied. Part of the materials (text, tables and illustrations) of this chapter
have been published in [J1], [C1], [C2], c© IEEE.

• Chapter 2: Characterization of Link Lifetime in the Presence of Ran-
dom Blocking Object-Part I: In chapter 2 the statistical characteriza-
tion of the link lifetime is addressed by introducing a new mathematical
framework to model randomly deployed obstacles distributed according
to Poisson point process (PPP) and user’s mobility. I show that the
link lifetime can be computed through a Markov chain model. In the
numerical results the interplay of between obstacles’ density, transmis-
sion range and user’s speed is investigated for two different mobility
models. Part of the materials (text, tables and illustrations) of this
chapter have been submitted for publication in [J2], c© IEEE.

• Chapter 3: Characterization of Link Lifetime in the Presence of Ran-
dom Blocking Object-Part II: In chapter 3 I extend the model that I
proposed in chapter 2 where the size of obstacles are taken into ac-
count. I derive an analytical framework to characterize the statistics of
the link lifetime of a moving user in the presence of random obstacles
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with different sizes for two different mobility models. Using statisti-
cal geometry arguments, closed-forms of the cumulative distribution
function and the average link lifetime are obtained as a function of the
distance, user’s speed and direction, obstacles’ density and size. The
analytical framework is validated through simulations and allows to get
insights on the impact of system parameters on the link lifetime. Part
of the materials (text, tables and illustrations) of this chapter have
been submitted for publication in [J3], and [C3] c© IEEE.

• Chapter4:Device-to-Device (D2D) communication and localization for
road users: In chapter 4, an ultrawide-band localization system and
high-level architectures to improve the cyclists’ safety are presented.
They consist of tags placed on bikes, whose positions have to be esti-
mated, and anchors, acting as reference nodes, located at intersections
and/or on vehicles. The peculiarities of the localization system in terms
of accuracy and cost enable its adoption in enhanced risk assessment
systems situated on the infrastructure/vehicle, depending on the ar-
chitecture chosen, as well as real-time warning to road users. Part of
the materials (text, tables and illustrations) of this chapter have been
submitted for publication in [J4] c© IEEE.
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Introduction

Thesis motivations

In the last few years, user data traffic and the corresponding cellular net-

work load are increasing exponentially [1]. Most of this growth is being

generated in indoor environments where service coverage is more critical and

new heterogenous networks (HetNets), comprising a mix of small and large

overlapped cells, are being considered [2].

One of the most promising solution to offload data traffic of cellular networks

is given by D2D communications underlaid cellular networks. D2D commu-

nications have been recently proposed to increase spectral efficiency, improve

service coverage, and reduce handset power consumption [3]. They take ad-

vantage of the physical proximity of devices by enabling direct links between

them [3,4] and allow for extremely high bit rates, low delays, and low power

consumption. It is expected that, besides ad hoc designed standards such as

Zigbee, Wi-Fi and cellular, D2D networks will result particularly attractive

thanks to the worldwide availability of wireless infrastructures. However,

the perspective to have trillions of seamless connected objects poses several

technical challenges in the choice and design of D2D networks. Differently

from the traditional cellular architecture, to fully realize their potential ad-

vantages, D2D networks require new peer discovery methods, physical and

MAC layer procedures as well as radio resource management algorithms,

which make their design and adoption still an open issue.

Despite the large expected benefits in terms of capacity, the coexistence

of D2D and cellular networks in the same spectrum creates new challenges
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in interference management [3]. In fact, interference and propagation effects

are the main factors impacting the cellular network capacity. These factors

are highly dependent on network topology and devices spatial distribution.

Starting from these considerations the following research lines have been

identified and investigated:

a) Need for a general analytical model for the characterization of the

mutual interference between heterogeneous networks.

b) Inclusion of shadowing propagation effects into the coexistence char-

acterization.

c) Evaluation of the impact of power control strategies.

d) Characterization of the coverage probability in D2D and cellular net-

works to understand how much traffic can be off-loaded.

e) Characterization of the link lifetime in the presence of obstacles.

Interference Characterization in Heterogeneous

Networks

The availability of analytical models for the characterization of the mutual in-

terference is fundamental to gain a full insight on the key parameters affecting

the cellular network performance. In this perspective, stochastic geometry is

a better suited mathematical tool in scenarios where devices are randomly

deployed. One of the simplest process and most interesting to model de-

vices’ random position is the so called Poisson Point Process (PPP). The

PPP is widely used to model random ”points” in time and space. PPP may

be homogeneous and non-homogeneous. In homogeneous Poisson point pro-

cess (HPPP) a random number of points distributed randomly and uniformly

in any given set and it is described by a single parameter called the intensity

(number of points per unit area). Further, it considers that the number of

points falling in two disjoint sets are independent random variables whereas,

the points in non-homogeneous PPP (NHPPP) are not uniformly distributed

and they are distributed according to the intensity function of the process.

In this thesis, I use PPP as a reference model for the distribution of BSs,

12



Blockages, and D2D devices in which I consider the deployment of BSs and

Blockages according to HPPP with density ρBS and ρB, respectively. Instead,

in D2D networks I consider a random number of D2D groups in which D2D

are characterized by HPPP spatial distribution with density ρD2D, where

within each group devices are distributed according to a general spatial dis-

tribution ( HPPP and NHPPP ) to model user’s behavior.

Shadowing Propagation Effects

For a downlink cellular scenario, each base station serves a mobile stations

(MS) using the same radio resource. The power coming from the serving

BS will often encounters a lot of obstacles, such as building, tree, animals,

etc. The radio will be reflected, difracted and scattered by these obstacles.

Further, the received power varies as the distance between transmitter and

receiver changes. One finds several effects appearing: path loss, shadowing

and fading.

According to author’s knowledge there are several papers in stochastic

geometry related to D2D communications focusing on the uplink scenario

and a few papers focusing on the downlink scenario. Most of them account

only for fast fading and neglect the effect of shadowing [19]-[22]. In addition,

it is well-known that the effect of the shadowing is significant and should

not be neglected in the cellular network [33]. Further, the results shown in

[34] illustrate that the log-normal distribution seems to better describe the

interference probability density function (p.d.f.). It is worthwhile to remark

that only shadowing (slow fading) concurs in determining the coverage in

wireless networks as fast fading is typically averaged out by the coding and/or

diversity scheme employed in the demodulation process and accounted for

in the SINR threshold η. In our models I consider the effect of the log-

normal shadowing which is a model commonly used in the cellular network

to describe large-scale fluctuations of the signal and interference strength

[5]. In other words, the shadow loss represents the actual local-mean power

received, statistically fluctuating about the area-mean power. I use a log-

normal distribution to characterize the changing of local mean power.
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Power Control

Power control is an effective approach to mitigate interference in cellular

networks; it is widely used in current cellular system. In this thesis, I pro-

pose power control method for interference coordination and analyze their

performance in both cellular and D2D networks. In particular, I consider

(decentralized) power control against the joint effect of path loss and shad-

owing. In the absence of power control the received signal of a MS near a

BS would be much stronger than a signal received from a MS far away. In

this case, near far problem would occur. Therefore, in cellular systems power

control is always applied.

On the other hand, for D2D links I consider both the above strategy and

one in which the transmitted power is kept constant (no power control) to

evaluate the impact of power control on the coxesistence between D2D links

and a cellular network.

Coverage Probability

Coverage probability of small cells is a very important index of the system

performance since small cells deployment will dominate the topology in the

next generation cellular networks. Coverage probability is defined as the

probability that the signal-to-interference plus noise ratio (SINR) of a user

in a cell is higher than some trarget SINRs. The majority of prior works on

coverage probability focuses on the anlysis of outage probability or sucess

probability. For instance, in [6] the authors provide an overview of how

a PPP is successfully applied to make the analysis of outage probability

tractable under some random access protocols. In [5] the authors proposed an

analytical model based on a PPP to characterize a more realistic distribution

of BSs in the network. Simple path loss and Rayleigh fading models are used

to obtain some tractable results of the coverage probability and achievable

rate. However, they only obtain the ”worse-case” results that would detach

far away from the reality. In [7] the average rate of downlink heterogeneous

cellular networks with a general fading assumption is found. The analysis of

14



the coverage probability does not consider the shadowing.

Link Lifetime

Unfortunately coverage probability does not provide information about link

blockages duration/rate as its evaluation usually does not include spatial/-

time correlation of the link state. In this context, the link lifetime represents

an important performance index able to properly capture the dynamic be-

havior of the wireless link. Link blockage can arise due to the presence of

big obstacles, such as walls or cars in vehicular ad hoc networks, but also

small obstacles like furniture and people in a crowded scenario might de-

termine serious link blockages especially at mmW. Together with user’s

mobility, blockages due to obstacles may force frequent handovers between

access points (APs) and consequent signaling overhead or connection drops,

especially if narrow beamforming is performed as expected in future mmW

wireless systems. This could have a strong impact especially on device-to-

device or vehicular communications.

The aim of the second part of this thesis is to fill the gap in characterizing

the link lifetime by proposing a new analytical framework (for dynamic mo-

bility model) able to account for both users mobility and effects of blockages.

In other words, I address for the first time, based on our best knowledge, the

problem of characterizing the statistics of the link lifetime in the presence

of random blocking objects. Specifically, I consider one of the most realistic

scenario where I assume a mobile device moving along the straight line with

constant speed. Further, a random number of obstacles located in random

positions with different sizes is present. I derive closed-form expressions for

the statistical distribution of link lifetime accounting for the shadowing ef-

fect caused by obstacles depending on their dimension and distance from the

AP. In the numerical results I investigate the joint effect of the main system

parameters such as the density and size of obstacles and the communication

distance, from which network design guidelines can be easily obtained. Ana-

lytical results are compared with simulations with the purpose to assess their

validity.
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D2D communication and localization for road

user safety improvement

Today several technologies are available for the direct communications be-

tween road users and localizationn capabilities to predict dangerous situa-

tions for cyclists. The choice of the proper technology requires a deep analysis

of the most dangerous scenarios and situations and must account for several

aspects in order to make it effective, reliable, user-friendly, and low-cost.

The performance of the implemented UWB-based tracking system has

been experimentally characterized as discussed in chapter 4. The availability

of accurate real-time tracking of road users opens the door to the introduc-

tion of advanced risk assessment (RA) units, both on vehicles and in the

infrastructure (on-site), capable of predicting critical situations and provid-

ing a suitable feedback to the road user through ad-hoc human machine

interfaces (HMIs). Moreover, it also enables the possibility of offering addi-

tional services to cyclists, such as enhancing the functionality of green waves

by accounting for the amount of people approaching the traffic light.1

1These applications are currently being investigated in the Europe-funded project XCy-
cle (http://www.xcycle-h2020.eu/).
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Chapter 1

Analytical Characterization of

Device-to-Device and Cellular

Networks Coexistence

1.1 Introduction

1.1.1 Related Works

The trend towards heterogeneous networks in 4G and 5G systems charac-

terized by different cell sizes, from macro to small, and partially overlapped

coverages, has made inadequate classical analytical design tools based on the

assumption of uniform hexagonal cells [8]. A prominent approach is stochas-

tic geometry which is more accurate in modeling irregular deployment of BS

and MS, and D2D links as well. Typically, nodes are assumed to be randomly

deployed according to a HPPP.

Most of theoretical frameworks address only cellular networks without

the presence of D2D links and a rich literature is available [5, 9–14]. In [5]

the authors developed general models for coverage characterization in the

presence of multi-cell SINR using stochastic geometry. They assume that

the cellular network model consists of BS distributed according to a HPPP,

and the MS according to some independent stationary point process. Each
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MS is connected to the closest BS, and channel fading plus shadowing are

considered. The mean rate and the coverage gain from static frequency reuse

are evaluated. The extension to generalized fading channels and MIMO

systems can be found in [11, 14]. In [9] a tractable, flexible and accurate

model for k-tier downlink heterogenous cellular networks is developed to

evaluate the probability of coverage per tier. The model considers that BS in

the i-th tier and the mobiles are distributed according to a HPPP, and each

tier has different transmit power levels and different SINRs requirements.

Moreover, each MS is connected to the BS having the highest received SINR.

Exponential fast fading but no shadowing is assumed. In [10] a closed form

expression for the coverage probability of both macrocells and femtocells is

obtained for downlink femtocell-tier with power control. The authors assume

that the location of BS and femto base stations are modeled as HPPP, and

each MS is connected to the closest BS. They include path loss and small

scale fading, whereas the transmitted power of femto BS depends on different

power control techniques. In [12] the downlink coverage probability under

constraints on the transmitted power and BS density is studied.

To better fit the non-uniform deployment of BS in some urban scenarios,

other spatial distributions have been introduced. Recently, several progresses

have been obtained by applying stochastic geometry theory in modeling BS

and MS irregular spatial distribution [6,15–17]. In [15] the authors proposed

accurate models for both macrocell and microcell based on Strauss point

process and Matern cluster process (MCP), respectively. Specifically, In [16]

the authors introduced a two tier heterogeneous cellular network model with

intra-tier dependence, where macro BS and pico BS are deployed as HPPP

and MCP, respectively. Their results show that the model appears closer

to the real deployment than HPPP in same practical scenarios. In [17] the

authors investigated the impact of different spatial processes. Specifically,

they selected data from urban area and rural area separately, and verified

that the capacity-centric BS deployment in urban areas can be modeled by

a typical aggregative process such as the MCP, while the coverage centric

BS deployment in rural areas can be modeled by representative repulsive

processes such as the Strauss hard-core process.
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The above mentioned papers do not consider D2D communications, and

most of them account only for fast fading and neglect the shadowing. A

few works address D2D communications from an analytical perspective and

consider the deployment of D2D follows a HPPP [18] and NHPPP [19]. In

[18] and [19] the border effects on the coverage probability of finite cellular

network in presence D2D links are investigated. From simulation results it

can be seen that the border effects become negligible when the radius of

cellular network is at least 2-3 times the average cell radius since there are

no significant changes on coverage probability. In [20] a simple power control

scheme for the D2D communication underlaid cellular network in a single-

cell is proposed, where the D2D transmit power is regulated to protect the

existing cellular links. In [21] an analytical expression for coverage probability

of D2D underlaid uplink cellular networks under power constraint is derived,

by investigating both centralized and decentralized power control algorithms.

In [22] resource allocation for D2D communication is addressed to maximize

the overall network throughput, whereas in [23] a dynamic power control

mechanism is proposed to reduce interference and improve the performance

of cellular systems.

In [24] the authors present a resource allocation method for D2D commu-

nications underlay cellular networks to maximize the overall network through-

put, while guaranteeing the quality-of-service requirements for both D2D

and cellular users. In [25] a new power control scheme to improve the re-

liability of D2D communications is proposed. Again the location of D2D

pairs is modeled as a HPPP. The optimum transmitted power is calcu-

lated for different D2D communication distances and different noise-variance

levels. In [26] interference management for D2D communications underlay

cellular networks at the cell edge is studied. Power control and resource

allocation policies are introduced to reduce the mutual interference inside

the interference-suppression-area which contains downlink and uplink parts.

In [27] the authors propose a mechanism for spectrum allocation and mode

selection for overlay D2D communications.

In all these papers the authors concentrate on the HPPP model which is

quite unrealistic as D2D users tend to work in groups. Indeed they consider
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only fast fading and neglect shadowing effects that are predominant when

characterizing the coverage in cellular networks. At author’s knowledge, no

downlink analytical works modeling the reciprocal impact of D2D and cellular

network are available.

1.1.2 Author’s Contribution

In this chapter I investigate a cellular downlink scenario in the presence of

underlay D2D links. A new analytical framework based on stochastic geom-

etry to evaluate the coverage probability for both cellular network and D2D

communication by properly characterizing the impact of interference from

D2D links and other BSs is proposed. I consider a random number of D2D

groups where D2D groups are characterized by a HPPP spatial distribution,

whereas within each group devices are distributed according to a general

spatial distribution (homogeneous and not) to model users’ behavior. Some

particular distributions are considered as examples in the numerical results

but the analytical framework accounts for any spatial distribution, included

those coming from experimental data. Both power control, compensating

path loss and shadowing, and fixed power strategies for the D2D link are

investigated. For infinite size cellular network I derive the closed form ex-

pressions for coverage probability for cellular and D2D networks. In the

numerical results I study the amount of the traffic that could be offloaded

through D2D communications and I use the proposed analytical framework

model to investigate the reciprocal effect of D2D and cellular networks un-

der different conditions in terms of devices’ spatial distribution. Finally, I

validate my analytical framework through simulations.

1.2 System Model

As shown in Figure 1.1, I consider a downlink cellular scenario where BS

are distributed according to a HPPP with spatial density ρBS and each BS

serves a MS using the same radio resource. In addition, a random number of

groups of D2D users is present, where in each one only a D2D link is active
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Figure 1.1: System model considered

at the same time sharing the same radio resource as that used by the cellular

network as long as such use does not cause the SINR of the cellular link to fall

below the required minimum SINR threshold η [28]. Denote with DT and DR

the couple of active users communicating in the generic D2D group where,

without loss of generality, DT is the transmitter and DR is the receiver. The

D2D groups (links) are distributed according to a HPPP with density ρD.

To take properly into account the tendency of D2D users to work in

groups, devices involved in each D2D group are supposed to be distributed

according to different spatial models (uniform [29] and non-uniform [30] dis-

tributions). Here, I consider the following spatial distribution models for the

distance between DT and DR that will be used in the numerical results even

though the analytical framework applies to any spatial distribution, even

obtained from experimental data.

• Uniform spatial distribution: I assume DT is uniformly distributed
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within a circle of radius L centered on DR being L the maximum allowed

communication distance between D2D devices. Actually, the distance

between D2D device is not more than 100 meters [29, 31]. This is a

conservative assumption motivated by the fact that at low SNR it is

difficult for a D2D link to acquire beacon signals and discover other

D2D devices [32].

The corresponding probability density function (p.d.f.) of the reciprocal

distance r1 is

fR1 (rl) =
2 rl

L2
, (1.1)

for r1 ∈ [0, L], zero otherwise.

• Way-point spatial distribution: I assume DT is non-uniformly distributed

around DR according to the following distance distribution [33]

fR1 (rl) =
1

L2

(
−4 r3

l

L2
+ 4 rl

)
, (1.2)

for r1 ∈ [0, L], zero otherwise.

• Exponential spatial distribution: I assume DT is non-uniformly dis-

tributed around DR according to the following exponential distance

distribution

fR1 (rl) = α exp (−α rl) , (1.3)

where rl ∈ [0,∞) and α is the distribution rate [34].

From the above mentioned distribution models, which are examples taken

from literature, it can be noted that the uniform one can be used when no

priori knowledge on user spatial distribution is available whereas the other

two models (Way-point and Exponential models) correspond to devices con-

centrated around the receiver thus resulting in a NHPPP spatial distribution
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of D2D nodes in each group. The exponential nature of the contact distri-

bution implies that the process is memoryless in nature.

Further, a model based on the exponential distribution can be of great

importance to provide an insight into the mobile nodes arrival pattern [35,36]

whereas, the other distribution ( way-point model [37]) considers nodes more

concentrated in the middle than at the border of the D2D group. In this

chapter, these distributions will be considered as examples in the numerical

results, even though the analytical framework here proposed is more general

and can account for any spatial distribution, even obtained from experimental

data. It will be demonstrated that the only parameter affecting the coverage

is the second moment of the spatial distribution regardless its shape.

1.2.1 Coverage Probability on Cellular Downlink

I am interested in investigating the joint effect of the interference coming from

the surrounding BS and the D2D links on the downlink coverage probability.

The coverage is related to the SINR at the probe MS which is given by

SINR =
Pu∑n

i=0 Pi +
∑m

j=0 P
(d)
j + σ2

0

, (1.4)

where Pu is the power received from the serving BS, Pi is the power of

the interference coming from the ith non-serving BS, P
(d)
j is the power of

the interference from the jth D2D link, n and m are the (random) num-

ber of interfering BS and D2D, respectively, and σ2
0 is the thermal noise

power. Even though quality-based power control strategies typically guaran-

tee better performance [30], their analytical characterization is prohibitive.

Moreover, most of them require a significant signaling between devices which

could be not feasible when considering heterogeneous networks. Therefore, I

consider, as conservative approach a power control strategy [21], [38] and [39]

which purpose is to keep the signal-to-noise ratio (SNR) constant against the

joint effect of path loss and shadowing so that Pu results constant regardless

the distance and channel conditions.

Moreover, for D2D links I consider both the above strategy and one in
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which the transmitted power is kept constant (no power control) to evaluate

the impact of power control on the coxesistence between D2D links and a

cellular network. It is worthwhile to remark that under particular channel

conditions the transmitted power level necessary to compensate scarce path

loss events would end up to be unrealistically high. In practice this situation

is avoided by setting a saturation level in the power amplifier. Depending on

results in [40] it can be noted that there is a slight difference when considering

saturation with respect to unbounded power in terms of coverage and for

mathematical convenience, I do not consider power saturation being aware

that the probability of the saturation events is very low. As a consequence,

in (1.4) only the interfering terms Pi, and P
(d)
j are random variables (RVs)

in addition to n and m.1 The probability of coverage of the cellular network

is given by

Pc =Prob (SINR > η) = Prob

(
n∑
i=0

Pi +
m∑
j=0

P
(d)
j < γ

)

=Prob

(
10 log10

(
n∑
i=0

10Pi(dBm)/10 +
m∑
j=0

10P
(d)
j (dBm)/10

)
< 10 log10 γ

)

≈Prob

(
max
i,j

(
Pi (dBm) , P

(d)
j (dBm)

)
< 10 log10 γ

)
, (1.5)

with

γ = Pu/η − σ2
0 = Pu

(
1

η
− 1

η0

)
, (1.6)

where η is the target SINR and η0 is the target SNR at the cell bound-

ary in the absence of interference. In (1.5) I exploited the approximation

ln(
∑n

i=0 exp(ai) +
∑m

j=0 exp(bj)) ≈ maxi,j(ai, bj) [41]. The accuracy of the

approximation in (1.5) will be assessed in the numerical results through sim-

ulation.

For analysis convenience, I start considering a finite circular area of radius

R0 centered at the probe MS, then we will take the limit for R0 to infinity

1Their randomness is caused by the joint effect of the random position of BS and MS,
shadowing, and power control at the interfering nodes, when present.
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in order to account for an infinite plane.

In the circular area R0 the number n and m of interferes for the probe MS

are Poisson distributed RVs with mean ρBSπR
2
0, and ρDπR

2
0, respectively.

Moreover, the random number of D2D links is Poisson distributed with mean

ρDπR
2
0 and the generic transmitter DT is uniformly distributed in the circle.

Since {Pi}s, and
{
P

(d)
j

}
s have the same statistical characterization then the

coverage probability with the limited circular area is given by

Pc0 = E[Pc0|n,m] =
∞∑
m=0

∞∑
n=0

Pc0|n,m
(ρBSπR

2
0)
n

n!

(ρDπR
2
0)
m

m!
exp

(
−(ρBS + ρD)πR2

0

)
= exp

(
−ρDπR

2
0(1− FD(γ))− ρBSπR

2
0(1− FI(γ))

)
, (1.7)

with

Pc0|n,m = F n
I (γ)Fm

D (γ) (1.8)

FI(γ) = Prob (Pi < γ) ∀ i = 0, 1, . . . n (1.9)

FD(γ) = Prob
(
P

(d)
j < γ

)
∀ j = 0, 1, . . .m . (1.10)

Denote with

λBS0(γ) = ρBSπR
2
0(1− FI(γ)) , (1.11)

and

λD0(γ) = ρDπR
2
0(1− FD(γ)) , (1.12)

where (1.11) and (1.12) represent, respectively, the average number of BS

in R0 providing an interference contribution to the probe MS such that

Pi(dBm) ≥ γ and the average number of D2D links in R0 providing an

interference contribution to the probe MS such that P
(d)
j (dBm) ≥ γ. In or-

der to compute (1.5), here I am interested in finding closed-form expressions

for λBS0(γ) and λD0(γ) when R0 →∞, in particular

λBS(γ) = lim
R0→∞

λBS0(γ) . (1.13)
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and

λD(γ) = lim
R0→∞

λD0(γ) , (1.14)

By considering (1.14), (1.13) and (1.7) the coverage probability in (1.5) can

be obtained as

Pc = lim
R0→∞

Pc0 = exp (λBS(γ)) exp (λD(γ)) . (1.15)

1.2.2 Coverage Probability on D2D Links

The same approach can be used to characterize the effect of the cellular

network and other D2D groups on a probe D2D communication in terms of

coverage probability. This can be done by considering the D2D receiver DR

as the probe receiver and by referring all quantities to it. Therefore the SINR

at the probe D2D device is given by

SINR(d) =
P

(d)
u∑n

i=0 Pi +
∑m

j=0 P
(d)
j + σ2

0

, (1.16)

where now Pi and P
(d)
j are, respectively, the power of the interference coming

from the ith non-serving BS and the power of the interference coming from

the jth D2D link impinging the D2D probe receiver DR.

Following the same method as in the previous section, the D2D coverage

probability considering a finite circular area of radius R0 centered at the

probe receiver is

P (d)
c0

= Prob
(
SINR(d) > η(d)

)
= exp

(
−ρDπR

2
0

(
1− FD

(
γ(d)
))
− ρBSπR

2
0

(
1− FI

(
γ(d)
)))

, (1.17)

with FI(γ) and FD(γ) given by (1.9) and (1.10), respectively, and

γ(d) = P (d)
u

(
1

η(d)
− 1

η
(d)
0

)
, (1.18)
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being P
(d)
u the useful power received by DR (kept constant by the power

control strategy.)

In the same way the D2D coverage probability under the condition R0 →∞
is given by

P (d)
c = exp

(
λBS(γ(d))

)
exp

(
λD(γ(d))

)
. (1.19)

The characterization of (1.15) and (1.19) requires the derivation of the func-

tions λBS(γ) and λD(γ). This will be done in the next section after having

introduced a proper channel model describing the effect of path loss and

shadowing.

1.3 Analytical Characterization of the Chan-

nel Model

In this section I derive the statistics of the power gain of all wireless links

involved in the scenario considered with the purpose to obtain a full charac-

terization of the interference impinging the probe MS and D2D receivers.

Let us introduce the widely-used channel gain model (in dB) of the generic

wireless link

z = k0 − 10β log10 (r) + ξ , (1.20)

where k0 is the channel gain at the reference distance of 1 meter, β is the

path loss exponent, r is the distance between the involved devices, and ξ is a

zero mean Gaussian RV with standard deviation σ modeling the log-normal

shadowing [42].

Denote with

ν = k0 − 10β log10 (r) , (1.21)

the average channel gain with respect to the log-normal shadowing depend-

ing only on the path loss. As well-known from the literature, the effect of

shadowing is significant and should not be neglected when characterizing the

probability of coverage in cellular network [43]. Further, the results shown

in [44] illustrate that the log-normal distribution seems to be better describe
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of the interference p.d.f. Therefore, in our model I consider the effect of

the log-normal shadowing which is a model commonly used in the cellular

network to describe large-scale fluctuations of the signal and interference

strength [6]. It is worthwhile to remark that only shadowing (slow fading)

concurs in determining the coverage in wireless networks as fast fading is

typically averaged out by the coding and/or diversity scheme employed in

the demodulation process and accounted for in the SINR threshold η. In this

thesis, fast fading has not been included, even though several papers consider

it and neglect the shadowing for mathematical convenience.

1.3.1 Channel Gain Statistics with Uniform Nodes Dis-

tribution

Consider a node randomly located within a disk of radius R0 centered in the

origin with uniform distribution. Then the p.d.f. of its distance r from the

origin is given by

fR (r) =
2 r

R2
0

, (1.22)

for r ∈ [0, R0], zero otherwise.

By means of the transform method of RVs, from (1.21) and (3.3) the p.d.f.

and cumulative distribution function (CDF) of the average channel gain ν

are, respectively,

fV (ν) =
log(10)10

(
−(ν−k0)

5β

)
5 β R2

0

FV (ν) = 1−R−2
0 10

−(ν−k0)
5 β , (1.23)

for ν ∈ [k0 − 10β log10(R0),∞), and zero otherwise

The p.d.f. of the channel gain z = ν + ξ, which includes also the shadowing,

can be derived as

fZ(z) = fV (z)⊗ fξ(z) , (1.24)
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Figure 1.2: Generic interfering BS and served MS.

where fξ(z) is the Gaussian p.d.f. with zero mean and variance σ2, resulting

in

fZ(z) =c(z;R0)σ
√
πexp

(
σ2

(
log(10)

5β
− z

σ2

)2
)

×
(

1− 1

2
erfc

((
log(10)

5β
− z

σ2

)
σ√
2

))
, (1.25)

with erfc(·) being the complementary error function and

c(z;R0) =
log(10)

5βR2
0

exp

(
k0 log(10)

5β
− z2

2σ2

)
(1.26)

defined in (−∞,∞).
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1.3.2 Channel Gain Statistics from Serving BS

Consider a generic MS and denote with ri, i = 1, 2, . . . ,∞, the correspond-

ing distances from the surrounding BS. Recalling that BS are spatially dis-

tributed according to a HPPP with density ρBS, the number n of the sur-

rounding BS in a circle of radius R0 and centered on the MS is Poisson

distributed with mean ρBS π R
2
0 conditioned to the presence of at least one

MS. I denote with νm the average channel gain with respect to the clos-

est BS which is supposed to be also the serving one (see Figure 1.2). The

corresponding p.d.f. is

fVm(νm) =
∞∑
N=1

P {n = N |n ≥ 1}N FV (νm)N−1fV (νm)

=
∞∑
N=1

(ρBSπR
2
0)N exp (−ρBSπR

2
0)

N ! (1− exp(−ρBSπR2
0))

NFV (νm)N−1fV (νm)

=
ρBSπ log (10)

5β
10−

(νm−k0)
5β

∞∑
N=0

[
−ρBSπ10−

(νm−k0)
5β

]N
N ! (1− exp(−ρBSπR2

0))

=
ρBSπ log (10)

5β (1− exp(−ρBSπR2
0))

10−
(νm−k0)

5β exp
(
−ρBSπ10−

(νm−k0)
5β

)
,

(1.27)

for νm ∈ [k0 − 10β log10(R0),∞), and zero otherwise.

Note that the approach in (1.27) is not exact because the serving BS is

in general the closest one conditioned it belongs to the same Voronoi cell

as the MS. However in [45] it is shown that the problem can be overcome

by considering the unconditional closest BS with an overestimated ρBS by a

factor 1.25.

1.3.3 Statistics of the Interference from Non-serving

BS

With reference to Figure 1.2, I evaluate the p.d.f. of the channel gain averaged

with respect to the log-normal shadowing regarding the generic interfering
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BS and the probe MS. A part from a constant term, the effective average

channel gain is x = ν−νm, including the effect of power control affecting vm,

where the p.d.f.s of ν and νm are given respectively by (1.23) and (1.27). Here

I am considering that the transmitted power of the interfering BS is inversely

proportional to the average gain ( −νm in dB) of the channel between the BS

and its serving MS as a result of the power control policy aimed at keeping

the received power fixed to the target value Pu. From Appendix A we have

fX(x) =
ρBSπR

2
0 log(10)

5β (1− exp(−ρBSπR2
0))

10
x
5β

1 + (A(x)− 1)eA(x)

A(x)2
(1.28)

having defined A(x) = −ρBSπR
2
010

x
5β for x ∈ (−∞,∞).

To account also for the presence of the log-normal shadowing in both links

(interfering BS-served MS and interfering BS-probe MS) we have to sum a

Gaussian RV ξ2 with zero mean and double variance 2σ2 (the sum of the two

Gaussian RVs). Denote with y = x + ξ2 the effective channel gain between

the generic interfering BS and the probe MS and with fξ2(ξ) the p.d.f. of ξ2.

Now let us define the quantity

ΠBS (y) = lim
R0→∞

ρBSπR
2
0 (1− Fy(y)) , (1.29)

where the CDF of RV y is derived in Appendix A. Then (1.29) is given by

ΠBS (y) = 10−
y
5β 10

log (10)σ2

(5β)2 . (1.30)

It can be noted that we can write the explicit expression of λBS(γ) in

(1.13) as

λBS(γ) = ΠBS(10 log10 (γ/Pu)) . (1.31)

1.3.4 D2D Channel Gain Statistics

With reference to Figure 1.3, denote with

ν1 = k0 − 10β log10(r1) (1.32)
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Figure 1.3: Generic interfering D2D devices.

the (average) channel gain between DT and DR of the generic D2D link.

Define the quantity ∫ ∞
0

πr1
2fR1(r1)dr1 = δ2 , (1.33)

where fR1(r1) is a general distribution function for D2D link that could be

obtained from experimental data.

By means of the transform method of RVs, from (1.32) and general distri-

bution function fR1(r1), the p.d.f. of the average channel gain v1 is given

by

fV1(v1) = |dr1

dν1

|fR1(r1(v1))

=
log(10)

10β
10−

v1−k0
10β fR1(r1(v1)) (1.34)

defined in (−∞,∞).

In the following, by using (1.34) we derive the average channel gain ν1 for
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the three models of devices’ spatial distribution introduced in Sec. 3.2.

Uniform Spatial Distribution

From (1.1) and (1.34) the p.d.f. and CDF of the average channel gain ν1 are,

respectively,

fV1(ν1) =
log(10)10

(
−(ν1−k0)

5β

)
5 β L2

FV1(ν1) = 1− L−210
−(ν1−k0)

5 β , (1.35)

for ν1 ∈ [k0 − 10β log10(L),∞), and zero otherwise

The p.d.f. of the channel gain z1 = ν1 +ξ, which includes also the shadowing,

can be derived as

fZ1(z1) = fV1(z1)⊗ fξ(z1) , (1.36)

where fξ(z1) is the Gaussian p.d.f. with zero mean and variance σ2, resulting

in

fZ1(z1) =c(z1;L)σ
√
πexp

(
σ2

(
log(10)

5β
− z1

σ2

)2
)

×
(

1− 1

2
erfc

((
log(10)

5β
− z1

σ2

)
σ√
2

))
, (1.37)

with erfc(·) being the complementary error function and

c(z1;L) =
log(10)

5βL2
exp

(
k0 log(10)

5β
− z2

1

2σ2

)
(1.38)

defined in (−∞,∞).

Way-point Spatial Distribution

From (1.2) and (1.34) the p.d.f. and CDF of the average channel gain ν1 are,

respectively,
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fV1 (ν1) =
−4 log (10)

10βL4
10−4( ν1−k0

10β ) +
4 log (10)

10βL2
10−2( ν1−k0

10β ) (1.39)

FV1 (ν1) = 1 +
1

L4
10−2( ν1−k0

5β ) − 2

L2
10(− ν1−k0

5β ) , (1.40)

for ν1 ∈ [k0 − 10β log10(L),∞), and zero otherwise.

The p.d.f. of the channel gain z1 = ν1 + ξ, which includes the shadowing,

results

fZ1(z1) =
− log(10)

5βL4
10

2k0
5β exp

(
− z2

1

2σ2

)
× erfc

(
k0 − 10β log10(L)√

2σ
− σ√

2

(
z1

σ2
− 2 log(10)

5β

))
+

log(10)

5βL2
10

k0
5β exp

(
− z2

1

2σ2

)
× erfc

(
k0 − 10β log10(L)√

2σ
− σ√

2

(
z1

σ2
− log(10)

5β

))
. (1.41)

Exponential Spatial Distribution

In this case the distance distribution is given by (1.3). From (1.3) and (1.34)

the p.d.f. and CDF of the average channel gain ν1 are

fV1 (ν1) =
α log(10)

10β
10−

ν1−k0
10β exp

(
−α10−

ν1−k0
10β

)
(1.42)

FV1 (ν1) = exp
(
−α10−

ν1−k0
10β

)
(1.43)

respectively, and defined in (−∞,∞).

The p.d.f. of the channel gain z1 = ν1 + ξ is

fZ1(z1) = c(z1;α)
∞∑
k=0

√
2πσ(−ρπ)k

k!
exp

((
ln(10)

5β
+

ln(10)k0

5β
− z1

σ2

)2
σ2

2

)
.

(1.44)
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1.3.5 Statistics of the Interference from the D2D Link

The interference caused by the generic D2D link to the probe MS is due

to DT . For the integrated D2D communications scenario, I consider the

following options:

• No power control scheme (NPC): with NPC, the transmit power of

the D2D transmitter is set to some fixed value P (in dBm), then the

effective average channel gain between the interfering D2D and probe

MS is xd = v2 − P , where v2 is the average channel gain between DT

and the probe MS having p.d.f. fV2(ν2) given by (1.23) where fV2(v2) =

fV (v2). The p.d.f. of fXd(xd) is similar to the p.d.f. fV2(v2) with a shift

value P , so

fXd(xd) = fV2(xd − P ) . (1.45)

The channel gain, including also the effect of shadowing in both in-

volved links, is yd = xd + ξ, where ξ is a Gaussian RV with zero mean

and variance σ2.

Define the quantity

ΠD (yd) = lim
R0→∞

ρDπR
2
0(1− FD(yd)) , (1.46)

where the CDF of yd derived in Appendix B. Then (1.46) is given by

ΠD (yd) =
ρDπ

2
10−

yd
5β 10

log(10)σ2

(5β)2
+ Ko+P

5β . (1.47)

• Power control scheme (PC) : In this case, I consider the average channel

gain between the interfering D2D transmitter and the probe MS, in-

cluding also this power control strategy in the D2D link, is xd = ν2−ν1,

where ν1 is the average channel gain between the D2D nodes with p.d.f.

given by (1.34), depending on the spatial distribution model, and ν2 is

the average channel gain between DT and the probe MS having p.d.f.

fV2(ν2) given by (1.23). The channel gain, including also the effect of

shadowing in both involved links, is yd = xd+ξ2, where ξ2 is a Gaussian
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RV with zero mean and variance 2σ2 in which the CDF of yd is derived

in Appendix C.

For the general spatial distribution case, the p.d.f. and CDF of yd are derived

in Appendix C and are given by

fYd(yd) =
δ2

π

(
log(10)

5βR2
0

)
10

log(10)σ2

(5β)2 10
−yd
10β . (1.48)

and

FYd(yd) = 1− 2δ2

π
10

log(10)σ2

(5β)2 10
−yd
10β (1.49)

defined in (−∞,∞).

For the uniform, way-point, and exponential distributions δ2 = πL2

2
, πL

2

3
and

2π
α2 , respectively.

By substituting values of δ2 in (1.49) and substituting the results in (1.46)

then the quantity ΠD(y) for uniform, way-point, and exponential distribu-

tions distributions can be obtained.

Finally, we can write the explicit expression for λD(γ) in (1.14) as

λD(γ) = ΠD

(
10 log10

(
γ/P (d)

u

))
. (1.50)

It can be noted that I analyze the case of constant power in the D2D links

thus comparing the effect of interference caused by the power control strategy.

In general it is true that some links suffering from deep fading might cause

strong interference, but on average this might be compensated by the lower

transmitted power caused by good links. In addition, It can be observed

that the terms Pu and P
(d)
u defined in (1.31) and (1.50), respectively, account

for the fact that the nominal transmitted power at each link is controlled

in such a way at the D2D and MS receivers the average received power

levels are set to the target values, respectively, Pu, and P
(d)
u at the maximum

distance of interest, Rm (average cell radius) and L, respectively, for cellular

and D2D links. This is done by setting the nominal transmitted power to
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Table 1.1: Simulation Parameters

Parameter value
Average cell radius Rm 500 m
channel gain at reference distance of 1 meter k0 -38.5 dB
System Bandwidth 10 MHz
Carrier Frequency 2 GHz
path loss exponent β 4
Normalized received power at probe MS Pu -116 dBm

Normalized received power at probe D2D receiver P
(d)
u -78 dBm

BS density ρBS 30 BS/km2

D2D groups density ρD2D 130 Links/km2

shadowing spread for cellular network σ 7 dB
Target SNR at cell boundary η0 10 dB

Target SNR at D2D boundary η
(d)
0 4 dB

Pt(dBm) = Pu(dBm) − ν, where the average channel gain ν is evaluated

through (1.23) with r = Rm. Similarly for the D2D link. Finally, From

(1.49) it can be noted that the analytical framework can be used to account

for any spatial distribution, included those coming from experimental data.

1.4 Numerical Results

I validate my analytical framework model by Monte Carlo Simulation where

100,000 randomly generated scenarios were considered. With reference to the

scenario shown in Figure 1.1, when not otherwise specified, I simulate 1000

m × 1000 m area where I consider a probe MS located at the center of the

plane, and I assume number of BSs and D2D groups located around probe

MS and distributed randomly according to PPP. Path-loss and log-normal

shadowing are considered and the main simulation parameters are given in

Table I. Analytical results have been obtained using the derived closed-form

expressions (1.15) and (1.19), as well as the results in sec.1.3.

Figs. 1.4 and 1.5 show the effect of different spatial distributions on the

cellular and D2D coverage probability, respectively. In particular, Fig.1.4

shows the coverage probability of the cellular network in the presence of
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Figure 1.4: Impact of different D2D distributions on the cellular coverage
probability.

self-interference and D2D interference, whereas Fig. 1.5 shows the coverage

probability of D2D links in the presence of interference from the cellular

network and other D2D links. It is evident how the spatial distribution

of D2D devices could have a significant impact both on cellular and D2D

coverage. This calls for accurate models well describing the actual behavior

of D2D links. Given a particular model, also its parameters (e.g. L) might

strongly affect the performance. For comparison, the different slope near

η = 10 dB indicates that D2D links are less impaired from interference

mainly because of the shorter distance between D2D nodes with respect to

the distance between MS and BS. In addition, as can be noted the impact of

D2D links can be important and must be properly taken into account when

designing or during the operation of the cellular network. To this purpose,

our analytical framework can be efficiently used to investigate the maximum
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Figure 1.5: Impact of different D2D distributions on the D2D coverage prob-
ability.

allowable D2D link distance L, and hence the maximum transmitted power,

given a target cellular network coverage. For example, in Fig. 1.6 we study

the impact of the maximum D2D link distance L for different D2D densities

ρD on the cellular coverage probability. From the results it can be seen that

the coverage probability decreases with L and ρD. In fact, since the channel

gain of the D2D link reduces when increasing L, on average more transmitted

power is required for the D2D pair to guarantee the requirement on P
(d)
u , thus

causing higher interference to the probe MS. Similar considerations can be

drawn from Fig. 1.7 where the impact of the interference on a probe D2D

link is evaluated using (1.19). Results reported in Figs. 1.6 and 1.7 indicate

that D2D links are less sensitive to interference than cellular links provided

that their density is kept small. In particular, the maximum D2D distance L

is typically much less than the distance from the interference. This is evident
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Figure 1.6: Impact of uniform D2D distribution on the cellular coverage
probability.

in Fig. 7 in which higher robustness is obtained with lower L and D2D links

density (less interference from D2D links). On the other hand, the density

ρD of D2D groups has a strong impact on both links, especially if associated

to large L.

In Figure 1.8 the effect of power control applied to D2D links on cellular

coverage is investigated. As expected power control reduces the interference

thus increasing the coverage probability even though the gain achieved of

power control due to the short distance of D2D links.

Finally, the analytical framework is used to get engineering insights re-

garding the amount of traffic that can be offloaded from cellular network

through D2D communications. Specifically, suppose a given density ρ of

users has to be splitted between the cellular and D2D networks according to

the distribution factor d. i.e, ρBS = (1− d)ρ and ρD = ρd while mantaining
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Figure 1.7: Impact of uniform D2D distribution on the D2D coverage prob-
ability.

the same coverage probabilities by supposing Pc = P
(d)
c given by (1.15) and

(1.19). Figure 1.9 shows the distribution of users between cellular network

and D2D network for different values of ρ. For example, at a fixed target

SINR, η(d) = 4dB and ρ = 500 links/km2 it can be observed that the best

solution is to distribute 60% of users to the D2D network and 40 % of users

to the cellular network. Moreover, it can be noted that with lower users’

densities, the optimum distribution ratio decreases.

1.5 Conclusions

In this work I have presented a new analytical framework for analyzing the

coverage probability in coexisting cellular and D2D networks. The closed-

form expressions derived are based on the spatial HPPP model, for the distri-
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bution of BSs, and for any non-uniform distribution of D2D links to capture

the tendency of D2D users to work in groups. Both power control, compen-

sating path loss and shadowing, and fixed power strategies for the D2D link

have been investigated. The reciprocal impact of D2D and cellular commu-

nications on the downlink coverage has been investigated as a function of the

D2D links maximum range and density. The analytical framework model has

been used to get engineering insights regarding to the amount of the traffic

that could be offloaded through D2D communications. Finally, the accuracy

of our theoretical analysis has been corroborated by simulation results.
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Appendix A: Derivation of the average channel

gain FY (y) between non serving BS and probe

MS

With reference to Figure 1.2. Since the average channel gain is given by

x = v − vm, from (1.23) and (1.27) it is fX(x) = fV (x) ⊗ fVm(−x) which

gives

fX(x) =

∫ ∞
max(0,x)+k0−10β log10R0

fV (ν)fVm(−x+ ν)dν

=

∫ ∞
k0−10β log10(R0)

(log(10))2ρBSπ

(5β)2R2
0(1− exp (−ρBSπR2

0))
10−

ν−k0
5β

× 10−
−x+v−k0

5β exp
(
−ρBSπ10−

−x+ν−k0
5β

)
dν

=
ρBSπ(log(10))2

(5β)2R2
0(1− exp (−ρBSπR2

0))
10

x
5β

∫ ∞
k0−10β log10(R0)

× 10−2
ν−k0

5β exp
(
−ρBSπ10

x
5β 10−

ν−k0
5β

)
dν . (1.51)

By expanding the exponential function in Taylor series and solving the re-

sulting integral it is

fX(x) =
ρBSπR

2
0 log(10)

5β (1− exp(−ρBSπR2
0))

10
x
5β

∞∑
n=0

[
−ρBSπR

2
010

x
5β

]n
n!(n+ 2)

, (1.52)

from which we get the final p.d.f. in (1.28).

To account for the presence of the log-normal shadowing in both links, the

effective channel gain between the generic interfering BS and the probe MS

is y = y + ξ2. It turns out that the p.d.f. fY (y) is given by convolving (1.28)

and fξ2(ξ2), i.e.,

fY (y) =
ρBSπR

2
0 log(10)

5β

∞∑
n=0

[−ρBSπR
2
0]
n

n!(n+ 2)
10

(n+1)y
5β 10

σ2(n+1)2

(5β)2 . (1.53)
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and the CDF of FY (y) can be expressed as

FY (y) =ρBSπR
2
0

∞∑
n=0

(−ρBSπR
2
0)n

n!(n+ 2)

1

(n+ 1)

× 10
σ2(n+1)2

(5β)2 10
(n+1)y

5β

=1− 10−
y
5β 10

σ2 log(10)

(5β)2

ρBSπR2
0

. (1.54)
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Figure 1.8: The impact power control on cellular coverage probability: L =
10 m, P = 1 mW.

Appendix B: Derivation of the average channel

gain FYd(yd) between D2D and probe MS :Fixed

power strategy

From the definition of xd = v2 − P the p.d.f. fXd(xd) is similar to the p.d.f.

fV2(ν2) with a shift value P , so

fXd(xd) =
log(10)10−

xd+P−k0
5β

5βR2
0

(1.55)

for xd ∈ [k0 − P − 10β log 10(R0),∞).

The p.d.f. and CDF of the average channel gain yd = xd + ξ2, respectively,
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are given by

fYd(yd) =

log(10)10
σ2 log(10)

(5β)2
+
k0+P

5β
− y

5β

(
erf

(
log(10)(log(10)σ2−5βk0+5βP)+50β2 log(R0)

5
√

2βσ log(10)

)
+ 1

)
10βR2

0

(1.56)

FYd(yd) = 1−
10

σ2 log(10)

(5β)2
+
k0+P

5β
− y

5β

(
erf

(
log(10)(log(10)σ2−5βk0+5βP)+50β2 log(R0)

5
√

2βσ log(10)

)
+ 1

)
2R2

0

,

(1.57)

with erf(·) being the error function.
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(d)
c and L = 50 m.

Appendix C: Derivation the average channel

gain FYd(yd) between D2D and probe MS: Gen-

eral case

With reference to Figure 1.3. Since the average channel gain is given by

xd = v1−v2 in which the p.d.f. of fV1(v1) and fV2(v2) expressed in (1.34) and

(1.23), respectively, then the p.d.f. of fXd(xd) is

fXd(xd) =

∫ ∞
−∞

fV1(−v)fV2(x− v)dv

=

(
(log(10))2

50β2R2
0

)
10
−xd
10β

∫ −k0+10β log10(R0)

−∞
10−3

−ν−k0
10β fR1(r1(−v))dv .

(1.58)
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The integral in (1.58) can be calculated by using transform method between

RVs r1 and ν1 in (1.33) where∫ −k0+10β log10(R0)

−∞
10−3

−ν−k0
10β fR1(r1(−v))dv =

(
10β

log(10)

)∫ ∞
0

2πr1
2fR1(r1)dr1

=

(
10β

log(10)

)
δ2

π
(1.59)

By substituting (1.59) in (1.58), then

fXd(xd) =
δ2

π

(
log(10)

5βR2
0

)
10
−xd
10β . (1.60)

The p.d.f. of the average channel gain yd = yd + ξ2 can be obtained as

fYd(yd) = fXd(xd)⊗ fξ2(xd) , (1.61)

where RVs is a Gaussian random variable with zero mean and variance 2σ2.

Then the p.d.f. fYd(yd) is

fYd(yd) =

∫ ∞
−∞

fXd(y − x)fξ2(x)dx

=
1√
2πσ

δ2

π

(
log(10)

5βR2
0

)
10
−yd
10β

∫ ∞
−∞

exp

(
log(10)x

10β
− x2

4σ2

)
dx . (1.62)

The integral in (1.62) can be evaluated by using∫ ∞
−∞

exp
(
−p2x2 + qx

)
dx = exp

(
q2

4p2

) √
π

p
. (1.63)

Then the p.d.f. fYd(yd) can be expressed as

fYd(yd) =
δ2

π

(
log(10)

5βR2
0

)
10

log(10)σ2

(5β)2 10
−yd
10β . (1.64)
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Finally, the CDF Fyd(yd) is given by

FYd(yd) =

∫ y

−∞
fYd(yd)dyd

= 1−
∫ ∞
y

fYd(yd)dyd . (1.65)

By substituting (1.64) in (1.65) the CDF FYd(yd) results

FYd(yd) = 1− 2δ2

π
10

(
log(10)σ2

(5β)2

)
10
−yd
10β

(1.66)

defined in (−∞,∞).
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Chapter 2

Characterization of Link

Lifetime in the Presence of

Random Blocking Objects -

Part I

2.1 Related Work

Nowadays mmW spectrum represents a great opportunity to increase the

capacity of next generation cellular systems, since it offers high bandwidth

communication channels and small wavelength. The latter makes it possible

to pack a large number of antenna elements in a small space and hence realize

high directional beamforming to boost the received signal power and reduce

the impact of out-of-cell interference. Moreover, large number of antennas

enables the exploitation of multiple-input multiple-output (MIMO) commu-

nication techniques to further enhance spectral efficiency. In general dense

mmW networks are expected to achieve higher data rates and comparable

coverage relative to conventional microwave networks [46].

In addition to the above mentioned advantages, mmW technology poses

also new challenges such as the strong sensitivity to non-line-of-sight (NLOS)

channel conditions that, in most cases, lead to link blockages that prevent
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reliable communications. Link blockage can arise due to the presence of big

obstacles, such as walls or cars in vehicular ad hoc networks, but also small

obstacles like furniture and people in a crowded scenario might determine

serious link blockages at mmW. This could have a strong impact on system

performance and, subsequently, on network design. As a consequence, such

a phenomenon has received particular attention in the scientific community.

Specifically, in addition to experimental campaigns, also theoretical frame-

works have been developed to get insights on the key parameters affecting

the coverage probability. Among them, approaches based on stochastic ge-

ometry, percolation and graph theories are of particular interest as they allow

an elegant and efficient modeling of the random nature of obstacles present

in the propagation environment, especially in indoor scenarios. For exam-

ple, the coverage probability of an ad hoc network at mmW with directional

antennas and random building blockages is analyzed in [47] using stochastic

geometry, in which the transmission capacity is derived in the presence of

noise and both line-of-sight (LOS) and NLOS interference. Percolation and

graph theories have been adopted to model the size and shape of extended

obstacles [48–52]. For instance, a general framework for modeling random

blockages is derived in [52], where buildings are modeled as a process of rect-

angles with random sizes and orientations. The blockage model incorporates

the height of the transmitter, receiver and buildings.

Together with user’s mobility, blockages may force frequent handovers

between APs and consequent signaling overhead or connection drops, es-

pecially if narrow beamforming is performed as expected in future mmW

wireless systems. This could have a strong impact on device-to-device or

vehicular communications. The results of [53] show that the user’s mobil-

ity increases handovers between APs while, in indoor environment where

the coverage area of APs is small, user mobility causes significant and rapid

load fluctuation in each AP [54]. Moreover, link properties have direct im-

pact on connection time, end-to-end delay, throughput, and packet losses.

All these performance figures are closely dependent on node’s mobility and

time-varying radio channel characteristics [55,56].

Unfortunately coverage probability does not provide information about
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such effects as its evaluation usually does not include spatial/time correla-

tion of the link state. Link lifetime is the proper figure of merit that should

be introduced and characterized in order to account for user’s mobility. In

particular, link lifetime is defined as the time elapsed until a blockage or an

out-of-range (i.e., distance larger than the transmission range) are encoun-

tered when the mobile user is traveling along a certain path.

While many progresses have been made in the analytical characterization

of coverage probability, as previously summarized, less results considering

the link lifetime are available so far. In [56] the probability distribution of

link lifetime in vehicular ad-hoc networks is presented by considering free

flow traffic state and uniformly random distribution of vehicle speed. In [57]

the Authors provide a set of requirements necessary to define a mobility

metric and investigate the effect of link lifetime on the performance of mobile

ad hoc networks. In [58] the probability distribution for the link distance

between two randomly mobile radios is presented by considering two different

deployment scenarios for the mobile locations, whereas in [59] the Authors

studied the impact of radio channels and node’s mobility on link dynamics in

wireless networks by finding that the probability density function of the link

lifetime can be approximated by the exponential distribution with parameter

dependent on the ratio between the average node’s speed and the effective

transmission range.

In all mentioned papers the authors studied the impact of nodes’ mobility

on the link lifetime distribution by considering only the effect of mobility and

finite transmission range but none of them includes the impact of blockages

in the analysis.

In this context the aim of this chapter is to fill the gap in characterizing

the link lifetime by proposing a new analytically framework able to account

for both user’s mobility and effects of blockages. I consider the presence

of random obstacles modeled according to a PPP and a finite transmission

range.

Based on the proposed framework, I derive the statistical distribution of

link lifetime from which network design guidelines can be easily obtained.

In the numerical results I investigate the joint effect of the main network
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(a) User’s mobility model. (b) Random obstacles.

Figure 2.1: Scenario considered with the presence of a mobile user and ob-
stacles.

parameters such as the density of obstacles and user’s speed for two different

mobility models.

2.2 System Model

I consider the scenario shown in Figure 2.1 where node A is located at the

center of the circle with radius Re, being Re its transmission range, and a

second node B (mobile user), communicating with A, which is in movement

with respect to A. The communication link between B and A is affected by

the presence of static obstacles that might create signal blockage during the

movement of B. Obstacles are modeled as points distributed in the space

according to a homogeneous PPP with density λ. Node B starts moving

from position (X0, Y0) at time t0 with constant speed v following a certain

mobility model. The following mobility models of interest are considered:

Random Walk Model (RW) In this model, node B chooses at random a

new direction every ∆t seconds (step). During the total observation interval

of T seconds, node B changes its direction m =
⌊
T
∆t

⌋
times.1 Specifically, at

1Operator bxc denotes the smallest integer larger than x.
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Figure 2.2: Valid states when starting from state Si.

the mth step the direction of movement is ψm = ψm−1 + θm− π/2, where θm

is a RV uniformly distributed in [0− π). As illustrated in Figure 2.1 (a), the

distance ρm between A and B at the mth step is a RV that depends on the

current and next positions of node B in relation to node A. In particular,

from geometrical considerations, ρm is given by

ρm =

√
ρ2
m−1 + (v∆t)2 − 2ρm−1 v∆t cos (θm) (2.1)

from which it is

θm = cos−1

(
ρ2
m−1 + (v∆t)2 − ρ2

m

2ρm−1v∆t

)
. (2.2)

Straight Line Model (SL) In the second model, node B moves in a

straight line along a random direction for the entire observation interval so

that it never changes its direction. Note that this model can be seen as a

particular case of the previous one by setting ∆t = T and m = 1.

Now define the link drop condition as the event in which at least one

obstacle is present between A and B (blockage) or the distance between A

and B becomes larger than Re. The link lifetime TL is the time elapsed from

t0 until the first link drop condition occurs. Our purpose is to characterize

the statistics of TL as a function of λ and the mobile user’s mobility.
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2.3 Characterization of the Link Lifetime

2.3.1 Finite-state Approximation

To make the analysis tractable, I discretize the RV ρm into n uniform inter-

vals of width ε meters in the range [0 − Re]. Moreover, inspired by [60], I

model the RVs {ρ1, ρ2, . . . , ρm} as a finite-state Markov chain in which each

interval [(i− 1)ε, iε], i = 1, 2, . . . , n, is associated to a state Si = i ε approxi-

mating the distance between A and B. The accuracy of this discretization is

expected to increase with the number n of states as it will be verified in the

numerical results. In order to account for the link drop condition, I introduce

an additional state Sn+1 which takes the role of absorbing state. If during

the movement the absorbing state is reached it means a link drop condition

has been encountered.

Denote with P the n+ 1 by n+ 1 transition probability matrix modeling

the distance transition at each time step. With reference to Figure 2.2, the

transition matrix P takes the following form

P =



p1,1 ... p1,k+1 0 0 0 1−
∑n

j=1 p1,j

...
. . . . . . . . . 0 0

...

pk+1,1
. . . . . . . . . . . . 0

...

0
. . . . . . . . . . . . pi,j 1−

∑n
j=1 pi,j

0 0
. . . . . . . . .

...
...

0 0 0 pn,n−k . . . pn,n 1−
∑n

j=1 pn,j

0 0 0 0 . . . 0 1


where pi,j indicates the transition probability from the current state Si to

the next state Sj after one time step. In my model, I consider that state

Sj subsequent to Si can be only one out of the possible 2k + 1 hops from

Si, where j ∈ [max(1, i − k),min(n, i + k)], i = 1, 2, . . . , n, because of the

maximum distance v∆t that can be traveled when moving at speed v at each

step. The actual hop depends on the random direction θ taken by the mobile

user at each time step.2 The transition probabilities pi,j can be expressed as

2For the sake of notation simplicity I dropped the time step index m.
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pi,j =



Prob [0 ≤ θ ≤ θij] Prob [Kij = 0] i = j = 1

Prob [0 ≤ θ ≤ θij] Prob [Kij = 0] j = L(i), i 6= 1

1
a(i)

Prob [θii−1 ≤ θ ≤ θii] Prob [Kii = 0] L(i) < j < U(i), i 6= 1

Prob [θii ≤ θ ≤ θij] Prob [Kij = 0] j = U(i), i 6= n

1−
∑n

z=1 pi,z j = n+ 1, i 6= n+ 1

1 i = j = n+ 1

0 o.w

(2.3)

where L(i) = max(1, i − k), U(i) = min(n, i + k), and a(i) = U(i) − L(i).

Kij denotes the (random) number of obstacles falling inside the triangle

formed between state Si and state Sj. The area Aij of such a triangle can be

calculated by applying the Heron’s formula [61]

Aij =
√
cij(cij − iε)(cij − jε)(cij − v∆t) (2.4)

where cij is the semiperimeter of the triangle which is given by

cij =
iε+ jε+ v∆t

2
. (2.5)

The distribution of the number Kij of blockages in the triangle follows the

Poisson distribution and it is given by [42]

Prob [Kij = k] =
e−λAij(λAij)

k

k!
. (2.6)

It turns out that the probability no obstacles are present in Aij is

Prob [Kij = 0] = e−λAij . (2.7)

According to the analysis reported in Appendix, (2.3) can be rewritten

as
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pi,j =



θij
π
e−λAij j = i = 1

θij
π
e−λAij j = L(i), i 6= 1

θii−θii−1
πa(i)

e−λAii L(i) < j < U(i), i 6= 1

θij−θii
π

e−λAij j = U(i), i 6= n

1−
∑n

z=1 pi,z j = n+ 1, i 6= n+ 1

1 i = j = n+ 1

0 o.w

(2.8)

The derivation of the threshold angles θij and θii can be found in Ap-

pendix. By substituting their expression we obtain the final equation of the

pi,j’s as follows

pi,j =



1
π

cos−1
(
v∆t
2ε

)
e−λAij j = i = 1

1
π

cos−1

(
(iε)2+( |j−i|v∆t

k )
2
−(jε)2

2iε
|j−i|v∆t

k

)
e−λAij j = L(i), i 6= 1

1
π(a(i))

(
cos−1

(
v∆t
2iε

)
− c1(i)

)
e−λAij L(i) < j < U(i), i 6= 1

1
π

(
cos−1 (c2(i, j))− cos−1(v∆t

2iε
)
)
e−λAij j = U(i), i 6= n

1−
∑n

z=1 pi,z j = n+ 1, i 6= n+ 1

1 i = j = n+ 1

0 o.w

where

c1(i) =
1

k
cos−1

(iε)2 +
(
|L(i)−i|v∆t

k

)2

− (L(i)ε)2

2iεv∆t
k
|L(i)− i|

 (2.9)

c2(i, j) =
(iε)2 + (U(i)v∆t

k
)2 − (jε)2

2iv∆tε
. (2.10)
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2.3.2 Link Lifetime Distribution

The CDF of the link lifetime TL is defined as

PL(T ) =Prob[TL ≤ T ] = Prob[TL ≤ m∆t] (2.11)

=1− Prob [ρ1 < Re, K1 = 0, ρ2 < Re, K2 = 0, ...., ρm < Re, Km = 0]

=
[
π(0)Pm

]
(n+1)

(2.12)

where m =
⌊
T
∆t

⌋
, Ki is the number of obstacles encountered when moving

from step i− 1 to step i, and π(0) is the probability vector of the initial state

at time t0. The latter is given by

π(0) =
(
π

(0)
1 , π

(0)
2 , ....., π(0)

n , 0
)

(2.13)

with π
(0)
i being the probability node B is in state Si at time t0.

Note that the evaluation of (3.9) for the straight line mobility model leads

to

PL(T ) = Prob[TL ≤ T = ∆t] =
[
π(0)P

]
(n+1)

. (2.14)

From the previous analysis, the average link lifetime TA is given by

TA = ∆t
∞∑
m=1

m
(
[π(0)Pm](n+1) − [π(0)Pm−1](n+1)

)
. (2.15)

The last expression can be easily computed by resorting to the properties

of absorbing Markov chains. In fact by defining Q as the n × n sub-matrix

of P the fundamental matrix of the absorbing Markov chain is

N =
∞∑
m=0

Qm = (In −Q)−1 (2.16)

where In is the n×n identity matrix. The average link lifetime when starting

from state Si is the ith entry of the vector
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Figure 2.3: CDF of the link lifetime. Accuracy of the analytical model
as a function of the number n of states. Re = 20 m, v = 3 m/sec, λ =
0.01 Blocks/m2, ∆t = 1 sec

ta = ∆tN 1 (2.17)

where 1 is a length-n column vector whose entries are all 1.

2.4 Numerical Results

In this section I present our numerical results that illustrate the impact of

the blockage on the link lifetime. If not otherwise specified, in the following

I consider the RW model and that node B at the initial time t0 lies in a

random state with equal probabilities, i.e, π
(0)
i = 1

n
, i = 1, 2, . . . , n.

First I validate my theoretical framework by Monte Carlo simulations

where 1,000 randomly generated scenarios are considered. In Figure 2.3,
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Figure 2.4: CDF of the link lifetime for different values of node’s speed.
Re = 20 m, λ = 0.01 Blocks/m2, n = 20, ∆t = 1 sec

the CDF of the link lifetime derived using (3.9) and simulations is shown

with different values regarding the number n of states. We observe that the

finite-state approximation achieves fairly good accuracy when n > 10 .

The impact of mobile user’s speed is reported in Figure 2.4 where it is

evident the strong impact of the speed on link lifetime. A similar behavior

can be observed in Figure 2.5 in which the link lifetime CDF for different

transmission ranges Re is shown. Obviously, the smaller the transmission

range the higher the probability that at a certain speed the user reaches the

circle boundaries.

The joint effect of transmission range, obstacles’ density and user’s speed

can be appreciated in Figures 2.6 and 2.7 where the average link lifetime TA

is plotted as a function of λ by varying Re and v, respectively. In particular,

in Figure 2.6 it can be observed that for λ < 0.02 blocks/m2, the performance
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Figure 2.5: CDF of the link lifetime for different values of transmission range
Re. v = 3 m/sec, n = 20 and λ = 0.01 Blocks/m2, ∆t = 1 sec.

is mainly dominated by the transmission range, whereas for larger values the

link lifetime is limited by blockages. From this result one can evaluate the

convenience to further increase the transmission range (i.e., the transmitted

power) if it leads only to marginal improvements because of blockages. In

Figure 2.7 it can be noted that TA is more sensitive to obstacles’ density when

moving at low speeds. In fact the average link lifetime decreases exponentially

with respect to blockage densities regardless the node’s speed and it decreases

much quickly as the node’s speed is high. In general, for an ad hoc network

with low mobility TA is dominated by the transmission range Re. On the

contrary, in a network with faster mobile nodes, such as vehicular ad hoc

networks, TA is dominated by node’s speed.

In Figure 2.8 we study the impact of the initial state π(0) on the link

lifetime CDF. We note that the probability of link lifetime increases when
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Figure 2.6: Impact of transmission range on the average link lifetime under
different blockage densities. v = 5 m/sec and ε = 1 m, ∆t = 1 sec

the mobile node is very close to the center where the effects of blockages are

less probable.

Finally, in Figure 2.9, the comparison between the two mobility models

considered is shown. It is evident that the RW mobility model leads to a

significantly worse performance than that obtained with a user moving on a

straight line (SL). This can be explained by the fact that the angular velocity

in SL is on average higher than that in RW and the link lifetime decreases

with the angular velocity.

2.5 Conclusions

In this chapter, I presented a new analytically model to characterize the

statistics of the link lifetime in wireless networks in the presence of obstacles.
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Figure 2.7: Impact of mobile speed on the average link lifetime under different
blockage densities. Re = 10 m/sec, n = 10, ∆t = 1 sec.

For this purpose I considered two different mobility scenarios and assumed

the distribution of the blockage according to a PPP. I investigated the in-

terplay between obstacles’ density, transmission range, and user’s mobility

by highlighting the main parameters impacting the performance as well as

the conditions under which any further increase of the transmission range

becomes no more beneficial due to the presence of obstacles and user’s mo-

bility.

APPENDIX

Derivation of angle thresholds

As shown in Figure 2.1, I assume node B moves with constant speed v, and

that at each time step of ∆t seconds it changes randomly its direction. In

64



0 5 10 15

Link Life Time T
L
 (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

L
(T

L
)

ρ
0
=10 m

ρ
0
=15 m

Figure 2.8: Impact of probability of initial state on the link lifetime CDF.
Re = 20 m, n = 20, v = 3 m/sec., λ = 0.02 blocks/m2, ∆t = 1 sec

this Appendix I derive the thresholds θij on angle θ corresponding to the hop

between state Si and state Sj.

The maximum number of hops compatible with v is given by

k =

⌊
v∆t

ε

⌋
(2.18)

and the number of potential valid states starting from i is

Ni = min(n, i+ k)−max(1, i− k) + 1 (2.19)

so that the potential number of states that can be reached from state Si

becomes

N = 2k + 1 . (2.20)
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Figure 2.9: Comparison between different mobility models. Re = 20 m/sec,
n = 20, v = 2 m/sec., and λ = 0.02 blocks/m2.

The main issue is to find a mathematical expression of the probability to

get a certain state Sj from state Si. To this purpose I adopt the following

model.

With reference to Figure 2.10(b), when node B remains in state Si, the

angle θii formed with respect to node A must satisfy

(iε)2 = (iε)2 + (v∆t)2 − 2ivε cos(θii) (2.21)

from which it results

θii = cos−1

(
v∆t

2iε

)
. (2.22)

When node B moves from its current state Si to the next state Sj with
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Figure 2.10: (a) Geometric configuration when Sj < Si; (b) Geometric con-
figuration when Sj = Si; (c) Geometric configuration when Sj > Si.

max(1, i− k) < j < i, as shown in Figure 2.10(a), it is

(jε)2 = (iε)2 + (d1(i))2 − 2iv(d1(i)) cos(θij (2.23)

where

d1(i) =
|max(1, i− k)− i|v∆t

k
. (2.24)

It results:

θij = cos−1

(
(iε)2 + d2

1(i)− (jε)2

2iεd1(i)

)
. (2.25)

In the opposite case where min(n, i+ k) > j > i, it is (see Figure 2.10(c))

(jε)2 = (iε)2 + d2
2(i)− 2iv d2(i) cos(θij) (2.26)

where

d2(i) =
|min(n, i+ k)− i|v∆t

k
(2.27)

which leads to

θij = cos−1

(
(iε)2 + d2

2(i)− (jε)2

2iεd2(i)

)
. (2.28)

Values θij are used in (2.8) as thresholds to determine the probability to

jump from state Si to state Sj given θ is uniform distributed in [0, π).
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Chapter 3

Characterization of Link

Lifetime in the Presence of

Random Blocking Objects -

Part II

3.1 Introduction

In this chapter I extend part of the analysis developed in chapter 2 by con-

sidering obstacles with different sizes. Specifically, I consider one of the most

realistic scenario where I assume a mobile device moving along the straight

line with constant speed. Further, a random number of obstacles located

in random positions with different sizes is present. I derive closed-form ex-

pressions for the statistical distribution of link lifetime accounting for the

shadowing effect caused by obstacles depending on their dimension and dis-

tance from the AP. In the numerical results I investigate the joint effect of

the main system parameters such as the density and size of obstacles and

the communication distance, from which network design guidelines can be

easily obtained. Analytical results are compared with simulations with the

purpose to assess their validity.

69



Figure 3.1: Mobility Model

3.2 System Model

As shown in Figure 3.1 I consider a random number of objects (obstacles)

distributed according to a PPP in a plane. Objects are completely blocking

as usually happens when working at mmW using beamforming techniques.

Since I am only interested in the shadowing effect of obstacles when located

in between the mobile device and the AP, I approximate them by circles. The

assumption might be a good approximation in the mmW wireless networks

(D2D and vehicular communications) in which the reflections are weak due

to the higher carrier frequency, and signals are highly directive with the

deployment of adaptive antenna arrays at both transmitters and receivers

[52]. To account for obstacles with different sizes, a number n of classes of

objects with radius bi, i = 1, 2, ..., n distributed according to PPP and density

λi are considered. The following scenarios for the wireless link between the

mobile device and AP are of interest:

• Circle Mobility Model: As shown in Figure 3.1 I consider a wireless

link between a mobile device moving for D meters at constant speed

along a circle of radius R0 from the serving AP located in the center.

This model approximates situations where the radial movement is small

compared to R0 and/or D. Note that only objects inside the circle of

radius R0 might affect the link between AP and mobile device.

70



(a) Circle Scenario (b) Straight Line Scenario; where s is the
scale factor

Figure 3.2: Scenarios of a wireless link between a mobile device and AP

• Straight Line Mobility Model: As shown in Figure 3.1 a more realis-

tic scenario considers the mobile device moving for D meters along a

straight line with constant speed starting from point B (Mobile Device)

with angle θ.

The link between the mobile device and the AP is established if the

mobile device is located in visible region, that is, it is outside all shadow

sections determined by the objects. Now define the link drop condition

as the event in which the mobile device when moving falls inside at least

one shadow region. The link lifetime TL is the time elapsed from the

initial position until the first link drop condition occurs. The purpose

is to characterize the statistics of the link lifetime as a function of λi,

bi, D, θ and the initial distance R0 for both mobility models.

3.3 Characterization of the Link Lifetime

3.3.1 Circle Model Scenario

As shown in Figure 3.2(a) I consider the mobile device moving within a sector

of angle β = D
R0
≤ π at distance R0 from the AP with linear speed v. In
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the presence of one object located in a random position within the circle

R0, the probability that the shadow sector of angle α, created by the object,

intersects the sector β defined by the mobile device is

P(shadow|α) =
β + α

2π
. (3.1)

I start the analysis by considering a single object of radius b located at

distance r from the AP. As shown in Figure 3.2(a), the angle α of the

shadow sector can be calculated by using simple trigonometric rules, where

tan
(α

2

)
=

b√
(r2 − b2)

r > b . (3.2)

When r � b (small obstacles or large distances), (3.2) can be approximated

as tan
(
α
2

)
≈ b

r
. The accuracy of this approximation will be assessed by

simulation in the numerical results. According to the PPP distribution of

objects, the number of objects belonging to the ith class that fall inside

the circle of radius R0 is Poisson distributed with mean λiπR
2
0 [42]. Their

positions are independent and identically distributed (i.i.d.) with uniform

distribution so that the p.d.f. of their distance r from the origin is given by

fr (r) =
2 r

R2
0

, (3.3)

where r ∈ [0, R0], zero otherwise. Their angle distribution is uniform in

[0, 2π).

Under the approximation of (3.2), and given (3.3), the CDF of RV α results

Fα (x) = P (α ≤ x) = 1− P
(
r ≤ b

tan (x
2
)

)
= 1− b2

R2
0 tan2 (x

2
)

(3.4)
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for α ∈ [2 tan−1 ( b
R0

), π], zeros otherwise. The corresponding p.d.f. is

fα(α) =
b2 sin (α)

2R2
0 sin2 (α

2
)

(3.5)

defined in the same interval. From (3.5) the expected value of α results

ε(η) = E[α] = η(−ηπ + 2) + 2(η2 + 1) tan−1 (η) . (3.6)

Note that ε(η) depends only on the ratio η = b/R0. The unconditional

probability is

P1(β, η) = P(shadow) = Eα[P(shadow|α)]

=
β

2π
+

E[α]

2π
=

β

2π
+
ε(η)

2π
(3.7)

which is valid for 0 ≤ β ≤ π. Since there are n classes of objects, each

with a random number of objects according to the Poisson distribution, the

probability that a mobile device moving in a sector of angle β at distance R0

is not shadowed by any object is

P
(arc)
0 (β) =

n∏
i=1

∞∑
k=0

[1− P1 (β; ηi)]
k (πλiR

2
0)k

k!
e−πλiR

2
0

= exp

(
−

n∑
i=1

λiR
2
0β

2

)
exp

(
−

n∑
i=1

λiR
2
0ε(ηi)

2

)
. (3.8)

Supposing the mobile device moves along the circle at constant linear speed

ν, it turns out that the CDF of the link lifetime TL is

P
(arc)
L (TL) = P(T ≤ TL) = 1− P (arc)

0

(
νTL
R0

)
, (3.9)

being νTL = D.

From (3.8) we can note that the first term of P
(arc)
0 (β) gives the probability

that no shadows are present in a sector of angle β when considering punc-

tiform objects. In fact exp (−πλiR2
0β/2) represents the probability that no
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Figure 3.3: Comparison between a user moving on a circle and on the corre-
sponding straight line. One class of obstacles: b1 = 1 m, λ1 = 0.01 Blocks/m2,
R0 = 20m and θ = π/4.

obstacles of class i have their center in the sector of angle β. The second term

accounts for object’s dimension and its distance distribution and depends on

the ratio ηi = bi/R0 through (3.6) and not on β. This is an interesting result

which tells that the effect of object’s size is not a function of the distance

traveled by the mobile device. From the previous analysis the average link

lifetime TA can be derived by differentiating (3.9) with respect to TL and

taking the expectation resulting in

TA =
n∑
i=1

2

λiR0ν
exp

(
−

n∑
i=0

λiR
2
0

2
ε(ηi)

)
. (3.10)

The derivation can be found in Appendix A.
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Figure 3.4: Impact of link initial distance R0 on the link lifetime CDF
(Straight Line Model). Two classes of obstacles: b1 = 3 m, b2 = 1 m,
λ1 = 0.001 Blocks/m2, λ2 = 0.002 Blocks/m2 and θ = π/4.

3.3.2 Straight Line Scenario

As shown in Figure 3.2(b) I consider the mobile device moving along the

straight line BC with constant speed v and angle θ. The mobile device will

keep in contact with the AP for the entire trip from B to C if no object

or part of it falls inside the communication region which is defined by the

triangle ABC. Given an obstacle of radius b, it falls inside the communication

region if its center is located inside the augmented triangle EFG as shown in

Figure 3.2(b) .

Since I consider there are n classes of objects distributed according to PPP,

then the probability that no object falls inside the communication region can
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Figure 3.5: Impact of obstacle’s size on the link lifetime (Circle Model). One
class of obstacles: R0 = 15 m, and λ1 = 0.01 Blocks/m2.

be expressed as

P
(lin)
0 (D) = P(no obstacles in4 EFG)

≈ exp

(
−

n∑
i=1

λiA(D; si;R0, θ)

)
, (3.11)

where (3.11) is approximated since there could be some obstacles with centers

located at the edges that do not block the link. Fortunately the probability

of this event is very low as confirmed by simulations. A(D; si;R0, θ) is the

area of triangle EFG whose its derivation can be found in appendix B, and si

is a scale factor which is given by (3.18). Supposing the mobile device moves

at constant speed v, it turns out that the CDF of the link lifetime TL is

P
(lin)
L (TL) = P(T ≤ TL) = 1− P (lin)

0 (νTL) , (3.12)
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being νTL = D.

From the previous analysis the average link lifetime TA can be derived by

differentiating (3.12) with respect to TL and taking the expectation resulting

in

TA =
n∑
i=1

2biR0

2bi +R0 sin(θ)

× exp

(
n∑
i=1

−biλi(2bi csc(θ) +R0)

)
K1 (λibi csc(θ)(2bi +R0 sin(θ))) (3.13)

where K1(.) is the Modified Bessel function of the Second kind.

3.4 Numerical Results

Using the proposed analytical framework, in this section I investigate how

the link lifetime in a wireless network is affected by the presence of random

blocking obstacles. Moreover, I present some Monte Carlo simulation results

to validate our analytical framework. For the sake of illustration and without

loss of generality I study the effects of two classes of blocking objects (n = 2)

if not otherwise specified. I normalize the link lifetime in both proposed

models with respect to ν. i.e., ν = 1, so that numerically it corresponds to

D.

In Figure 3.3 the accuracy of our model when used to characterize a user

moving along a straight line is presented and compared with the circle sce-

nario in term of PL(TL). From the results, it can be seen that the circle

scenario leads to a significant worse performance compared with a user mov-

ing along the straight line (more realistic scenario) and provides an upper

bound of the link lifetime.

In Figure 3.4 I study the effect of the initial distance R0 on PL(TL) for

the straight line scenario. As expected, the initial distance has a significant

impact on the link lifetime. In fact, given a fixed obstacles’ density, the

higher the distance the higher is the probability to encounter obstacles in
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Figure 3.6: Impact of density of obstacles on the average link lifetime (Circle
Model). One class of obstacles: R0 = 10 m.

between the mobile user and the AP. The effect of obstacle’s size is shown

in Figure 3.5 in which it is evident that the error one could commit when

approximating obstacles with points (b1 = 0) could be significant. The good

matching with simulation results validates the accuracy of the analytical

framework and the approximation of (3.2) even when b is not much smaller

than r.

The behavior of the average link lifetime for the circle model for one class

of obstacles as a function of obstacle’s size b1 by varying λ1 is shown in

Figure 3.6. Results indicate that the impact of nodes’ density is higher with

small objects. In fact the average link lifetime decreases exponentially with

respect to the density of obstacles and object’s size according to different

relationship as evident in (3.6) and (3.10).
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3.5 Conclusions

In this chapter I have presented a stochastic analysis of the communication

link lifetime between a mobile device and its serving AP in the presence of n

classes of randomly located objects characterized by different densities and

sizes. I have derived closed-form expressions of the link lifetime CDF and

corresponding average, which indicate the exponential behavior of the link

lifetime as a function of obstacle’s size and allowed to get insights on the

interplay between obstacles’ density, dimension, and user’s distance. Com-

parisons with simulation results have confirmed the validity of the analytical

framework.

Appendix A: Derivation of the average Link

life time TA for the Circle Mobility Model

By differentiating (3.9) with respect to TL then the p.d.f. of link lifetime

p
(arc)
L (TL) can be expressed as

p
(arc)
L (TL) =

n∑
i=1

λiR0ν

2
exp

(
−

n∑
i=1

λiR
2
0β

2

)

× exp

(
−

n∑
i=1

λiR
2
0ε(ηi)

2

)
. (3.14)

From (3.14), the average link lifetime TA can be derived

TA =E[TL] =

∫ ∞
0

TL p
(arc)
L (TL)dTL , (3.15)

where the final result can be found in (3.10) .
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Figure 3.7: The geometric analysis of area of triangle EFG

Appendix B: Derivation of the Area of Trian-

gle EFG Shown in Fig. 3.2

As shown in Figure 3.7 I am interested in scaling the inner triangle ABC

with the scale factor s in order to obtain the area of the outer triangle EFG.

In fact, based on geometric consideration, the area of triangle EFG is given

by

A(s, R0, D, θ) = s2Ain(R0, D, θ), (3.16)

where Ain(R0, D, θ) = 1
2
R0D sin(θ) is the area of triangle ABC. On the other
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hand, the left side of (3.16) can also be expressed as

A(s, R0, D, θ) =
1

2
R0D sin(θ) +

1

2
b(R0 + sR0)

+
1

2
b(D + sD) +

1

2
b(R1 + sR1)

= Ain(R0, D, θ) +
1

2
bPin(R0, D, θ)

+
1

2
sbPin(R0, D, θ), (3.17)

where Pin(R0, D, θ) is the perimeter of triangle ABC.

By substituting (3.17) in (3.16) the scale factor s results

s =
b csc(θ)

D
+

2b csc(θ)

R0

+ 1. (3.18)

Finally, by substituting (3.18) in (3.16) the area of triangle EFG can be

obtained.
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Chapter 4

Device-to-Device

Communication and

Localization for Road Users

4.1 Related Works

In recent years, vulnerable road users (VRUs), including cyclists, injuries

and mortality has rapidly grown due to the increased road traffic: around

2000 people riding bicycle are killed every year in traffic accidents in EU

countries [62] and about 30% of cyclist fatalities take place at junction [62,63].

In this scenario, it becomes urgent to develop solutions in order to both

encourage people to cycle and make cycling safer at the same time. As

regards the last point, increasing road users’ awareness of cyclists’ presence

in the surrounding becomes an essential issue along with the possibility of

warning cyclists during cars and heavy goods vehicles (HGVs) dangerous

maneuvers.

Today several technologies are available and could be exploited to detect

dangerous situations for cyclists. The choice of the proper technology requires

a deep analysis of the most dangerous scenarios and situations and must

account for several aspects in order to make it effective, reliable, user-friendly,

and low-cost.
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To this end, in this chapter we first provide a survey of existing technolo-

gies, with a particular emphasis on their pros and cons. Second, conscious

and inspired by the limits of already available technologies, we propose a new

risk detection architecture providing high-accuracy localization and tracking

of road users based on the UWB technology [64]. UWB, in its IEEE802.15.4a

standard implementation [65], has already proved to be the best candidate in

achieving high localization accuracy at low cost thanks to its high temporal

resolution, the ability to resolve multipath and to coexist with other wireless

technologies [66–68].

The performance of the implemented UWB-based tracking system has

been experimentally characterized as discussed in the numerical results. The

availability of accurate real-time tracking of road users opens the door to the

introduction of advanced RA units, both on vehicles and in the infrastructure

(on-site), capable of predicting critical situations and providing a suitable

feedback to the road user through ad-hoc HMIs. Moreover, it also enables

the possibility of offering additional services to cyclists, such as enhancing

the functionality of green waves by accounting for the amount of people

approaching the traffic light.1

4.2 Analysis of Accident Statistics involving

Cyclists

Previous cycling safety research has found that left- and right-turning vehicles

had an effect on bicyclist injury occurrence and were frequent in bicycle

accidents taking place at intersections [69–72]. These two scenarios are so-

called left turn and right turn scenarios. I will proceed to explain them with

more detail below.

1These applications are currently being investigated in the Europe-funded project XCy-
cle (http://www.xcycle-h2020.eu/).
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Figure 4.1: Left turn scenario.

4.2.1 Left Turn Scenario

This scenario involves a vehicle turning left at an intersection and the driver

failing to yield to a cyclist that approaches the intersection from the opposite

direction, or getting in the trajectory of a cyclist approaching on the same

direction. In both situations, the cyclist and the driver start their maneuvers

on opposite sides of the road. Figure 4.1 displays the maneuver with a cyclist

approaching on the opposite direction.

In the case of bicyclists coming in the same direction of the vehicle, blind

spots or objects obstructing the view of the motorist could be a contributing

factor to the failure to detect them.

4.2.2 Right Turn Scenario

The right turn scenario involves a vehicle failing to yield a bicyclist that rides

straightforward in the same direction. It most commonly takes place when a

vehicle and a bicycle arrive at the same time at an intersection with at least

three branches [72]. Figure 4.2 shows the driver’s and cyclist’s maneuvers
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Figure 4.2: Right turn scenario.

involved in the scenario.

Among truck drivers, one of the main contributing factors of this scenario

could be that of failing to look/see the bicyclist going straight forward while

turning [73]. Blind spots may be the cause, or the contributing factor, of this

type of human error.

Cooperative systems, also exploiting infrastructure-based sensors, could

be useful to improve detection of cyclists and may assist drivers in minimizing

blind spots and “looked-but-failed-to-see” errors. New technological solutions

aimed at detecting bicyclists and conveying this information to the driver may

play an important role in the prevention of these eventual detection failures

and, consequently, of the potential collisions.

4.3 Bicyclists Detection Technologies

The statistical analysis has revealed how accidents occur due to a lack a vis-

ibility between the road users, especially at junctions and in the presence of

large vehicles. This section aims at describing the main technologies capable
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Table 4.1: On-vehicle available technologies.

Technology Pros. Cons.

Cameras Accurate detection and users’ discrimination Difficult operation in bad weather conditions, false alarms

Thermal cameras Accurate detection and users’ discrimination Cost, false alarms

Ultrasonic sensors Reliable detection in every weather condition Poor users’ discrimination

Inductive loops Average users discrimination Under-surface. Large infrastructure. Very low-range

LIDAR Accurate detection and users’ discrimination Very high cost, complex deployment and complex data processing

Radar (on-air) Reliable detection. Good angular resolution Poor users’ discrimination

Radar (under surface) Average users’ discrimination Under-surface. Battery replacement issues if not powered

RFID Accurate detection and perfect users’ discrimination Tags needed. Poor angular and ranging resolution

GPS Localization of different users GPS receivers needed. Medium localization accuracy, latency

of improving the visibility then increasing the safety of road users. Specifi-

cally, we will distinguish between on-site and on-vehicle solutions depending

on the sensors’ location. For each solution the advantages and disadvantages

will be illustrated.

Table 4.1 reports some examples on the panorama of technological solu-

tions for detection of bikes. Sensors, for example cameras of radars, can be

placed on the infrastructure (i.e., on-site) or on the vehicles. Most of the

detection approaches do not require technology on bike (e.g., radar, cam-

eras or sonar) while other approaches require on-bike modules (e.g., global

positioning system (GPS) receivers of radio frequency identification (RFID)

tags).

For what concerns the characteristics of the different technologies, narrow-

beam radars or sonar-based systems are efficient for detecting the presence of

a user in a bicycle-path and providing an alert sign. However, they are not

effective in enabling potential collision prediction or multi-target discrimi-

nation at junctions. On the other hand, cameras and especially thermo-

cameras are effective in large road junctions, and can be used for trajectory

(collision) prediction. Some weather conditions make detection with normal

cameras difficult (e.g., darkness or rain can decrease the capability of iden-

tifying cyclists). Thermo-cameras may solve in part this problem, but they

are currently still quite expensive and might fail during the summer because

the high temperature of the asphalt might hide the presence of persons. In-

ductive loops and under-surface radar are effective but have a limited range,
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infrastructural problems and poorer target discrimination.2

A common shortcoming of all these passive technologies is that there is

always a not negligible probability of false alarms that may discourage users

to trust the system. On the other side, the main advantage is that they do

not require dedicated hardware on bike.

Active technologies, such as GPS and RFID, that require bikes equipped

with dedicated technology, respectively, a GPS receiver and a RFID tag, elim-

inate the presence of false alarms but do not provide a sufficient localization

accuracy. Moreover, GPS is expensive, battery hungry, and is characterized

by a high response delay that prevents its use in RA.

As regards the on-vehicle technologies, they are often based on proximity

sensors, camera or radar and they provide warnings to other road users, such

as cyclists, by means of visible alerts. Communication operations between

vehicles, infrastructure and cyclists/pedestrians are not provided by such

systems as the majority of them relies on LEDs to prevent a possible collision

with other road users. Moreover, the few on-vehicle solutions sometimes lack

of reliability in terms of misdetections and false alarms.

To conclude, the main disadvantages of the today’s solutions also repre-

sent incentives for future improvements. Specifically we envisage the follow-

ing desired capabilities:

• Sub-meter localization and tracking with extreme low-latency (< 500 ms);

• Possibility to detect and discern different road users (reduce or elimi-

nate false alarms);

• Possibility to predict road users’ trajectories;

• Possibility to communicate with other road users (e.g., cyclists or pedes-

trians) and warn them in a specific way.

Based on the above considerations, it clearly emerges the need of a low-

cost, low-latency detection and sub-meter localization and communication

2However, they are a good strategy for traffic lights operations. In fact, they are often
adopted to detect road users approaching at a specific point, e.g., a junction.
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technology to support new generation RA systems capable of predicting the

situation of collision and provide a suitable feedback to the vehicle as well as

to the cyclist via ad-hoc HMIs.

In the following section we propose on-site and on-vehicle architectures

using the UWB technology.

4.4 Proposed System Architectures and Tech-

nologies

Inspired by the shortcomings emerged in the current available technologies, in

this section we will describe a localization system to improve cyclists visibility

and achieve sub-meter accuracy thus guaranteeing an increased safety for the

road users.

The proposed architecture is based on active, small, and low-cost tags on

the bikes. Contrarily to their passive counterparts, active tags are equipped

with a transmitting section and are able to send and/or receive interrogation

signals thus also enabling the possibility to communicate with the vehicle

and/or the infrastructure and to include HMI.

Tag detection and tracking is performed by analyzing the data exchanged

by the tag and a set of reference nodes, called anchors, placed in known po-

sitions in the space, forming the so called real time locating systems (RTLS).

In the following two architectures will be presented. The main difference of

the proposed architectures lays on where anchors are deployed.

More specifically, we consider an infrastructure-based architecture with

anchors placed in the correspondence of the crossing’s infrastructure (e.g., at

traffic-lights) and a vehicle-based architecture with reference nodes mounted

on vehicles (e.g., cars and trucks). In both solutions several anchors interact

with tags by performing different kinds of measurements, as it will be clarified

in Sec. 4.4.1; then a central unit gathers the information from all anchors,

and fuses it to estimate the position of each tag (i.e., each bike). According

to this scheme, in the first architecture the central unit is placed on the

infrastructure, while in the second, it is mounted on the vehicle.
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In the following, we will introduce the underlying UWB technology and

communication protocol and then, both architectures will be detailed.

4.4.1 UWB Technology and Communication Protocol

While the IEEE802.11p standard is emerging as the key technology for ve-

hicular communications, a similar counterpart for high-accuracy positioning

and tracking for intelligent transportation systems has not been presented

yet. Our proposal is to consider UWB signals to achieve the target sub-

meter positioning accuracy. In accordance to the FCC definition, UWB

signals are characterized by a bandwidth larger than 500 MHz. The classical

and simplest method to obtain UWB signals is by means of impulse radio

UWB (IR-UWB). In an IR-UWB system, a sequence of short pulses (typi-

cally with duration around 1 ns) is transmitted per information bit in order

to collect more energy and allow multi-user access [64]. The short dura-

tion of the pulses guarantees a fine resolution in signal time-of-arrival (TOA)

measurement and multipath discrimination so that time-based localization

algorithms can benefit to obtain accurate localization estimates [67,74]. The

UWB technology is currently utilized as baseline in high-performance short-

range RTLS using active tags according to the IEEE 802.15.4a and IEEE
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802.15.4f standards as well as proprietary schemes [65,75].

In Figure 4.3, the conceptual architecture is shown. As it is possible to

see, the different road users periodically transmit a blink packet following the

ISO/IEC 24730-62:2013 [76] standard containing their unique 64-bit identi-

fication (ID) to the on-site and/or on-vehicle anchors using the UWB link.

In our implementation, once a tag enters the monitored area, it is detected

by the anchors and the localization server assigns it a temporary 16-bits ID

(tag index ). Such a tag index is used to address the tag until it exits the area

and it allows to drastically reduce the size of the exchanged packets during

the tracking process thus reducing the risk of packets collision. The anchors

receive these blink packets and, thanks to ad-hoc processing schemes deter-

mine the road users’ positions and other tracking parameters (localization

engine). Then, if the RA unit predicts a potential dangerous situation, a

warning can be sent to a specific bike in order to activate the on-bike HMI.

In the following the two architectures proposed will be analyzed in order

to better put in evidence their main peculiarities.

4.4.2 Infrastructure-based Architecture

The infrastructure-based architecture is schematically depicted in Figure 4.4-

(a). As previously mentioned, in this solution, anchors are placed on the
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infrastructure, for example at the corners of the junction in correspondence

of the traffic light towers, while active tags are on bikes. Note that vehicles

can be equipped with active tags as well, and thus, they can be tracked by the

infrastructure sensors. This allows drawing a virtual map of all the various

road users.

Given their active nature, tags periodically send interrogation signals

compliant with the IEEE 802.15.4a standard to the anchors. The exchanged

messages contain the ID thanks to which each road user can be discrimi-

nated. The communication between vehicles and the infrastructure can be

ensured by IEEE 802.11p links, whereas infrastructure-to-bike communica-

tion is enabled by the UWB IEEE 802.15.4a link.

Each anchor node receives the UWB signals from bikes and vehicles while

keeping the synchronization with the other anchors. Starting from the sensed

data, the processing unit performs both a localization and RA process, as re-

ported in Figure 4.3. The former consists in estimating the position, relative

speed, and acceleration of each active tag. These data are then commu-

nicated to the RA unit whose main task is to establish the probability of

collisions or more generally the presence of some risky situation. For in-

stance, vehicles can inform the infrastructure whether they intend to start a

dangerous maneuver, e.g., the right and left turn, via a IEEE 802.11p link.3

Based on this information and on the estimated position of all road users

present in the junction, the RA unit could detect a dangerous situation and

send back a warning message to the involved vehicle and to the cyclist. The

on-bike device is able to activate its HMIs (e.g., a visible or audible alert) to

proper inform the bicyclist of the potential dangerous situation.

The main advantage of this solution is the good localization coverage

that can be achieved thanks to deployment of anchors at the corners of

the area to be monitored. On the other hand, this architecture is suitable

in situations in which the time needed to prevent a bicycle running into a

possible dangerous situation could be relaxed, as for example in the left turn

scenario, because of the potentially not negligible latency introduced by the

vehicle-infrastructure-bike interaction.

3An alternative option could be that of using the UWB technology.
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4.4.3 Vehicle-based Architecture

Figure 4.4-(b) reports the vehicle-based architecture. Contrarily to the previ-

ous described scenario, here vehicles are equipped with anchors. This means

that the processing unit, consisting of the localization and RA engines rep-

resented in Figure 4.3, is mounted on vehicles.

The on-vehicle anchors receive the interrogation signals from the on-bike

active tags in accordance with the UWB IEEE 802.15.4a standard. Thanks

to these interrogations, the location engine running on-vehicle is able to de-

termine the position and other navigation parameters (e.g., speed, acceler-

ation) of the bikes with respect to the vehicle. Then, based on the relative

coordinates of both vehicle and bicycle, the RA module, still working on-

vehicle, can determine whatever a dangerous situation is present or not and

take proper countermeasures. As before, exploiting the same IEEE 802.15.4a

links adopted for bicycle localization, the vehicle can send warnings to the

on-bike tag regarding the risk and properly activate the on-bike HMI.

The main novelty of this solution is that anchors are closer to each other

in comparison with the infrastructure-based approach. Therefore, the tags

are always located outside the perimeter described by the anchors. As known

in localization theory, this is not the optimal configuration for a localization

system, since geometric dilution of person (GDOP) issues can degrade the

localization accuracy [77]. For this reason, in 4.5.3, the investigation of the

impact of the geometry will be carried out, in order to understand the scale of

performance degradation. On the other hand, the main advantage of such a

configuration is that bicycle localization can be performed without the need of

a specific infrastructure placed at the intersection and no false alarms occur.

Moreover, this architecture is more promising when the decision about a

possible risky situation and the relative warning message have to be rapidly

conveyed to the vehicle driver and to the on-bike module thanks to the direct

interaction between the two road users. For example, it is well suited in the

right-turn scenario where a stringent latency requirement has to be met.
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4.4.4 Enhanced Services

The localization system described in the previous sections could also enable

new services as for example those related to green-wave scenarios. Specifi-

cally, different green-wave approaches could be implemented: one could be

aimed at informing cyclists about how to adjust their speed in order to get the

green light at the next junction, while another possibility is that of synchro-

nizing traffic lights based on the number and speeds of cyclists estimated to

arrive at next intersections. For this kind of application, the infrastructure-

based architecture is the most promising one. Indeed, the anchor nodes

placed on the crossing area can monitor the number, direction, relative speed

and acceleration of cyclists at the exit of the considered intersection. Based

on these parameters, a dedicated processing unit can estimate the number of

bikes and the time needed to arrive at the next junction and thus, the traffic

lights can be programmed accordingly to allow a safer transit of cyclists. The

mechanism through which the cyclists are localized and tracked is the same

as described in Sec. 4.4.2.

4.5 The UWB Tracking Sub-system

In this section, the RTLS proposed and implemented for this application is

described. As already introduced, the localization process is based on the

capability of extrapolating positioning information starting from the UWB

signals exchanged between nodes. Specifically, anchors receive the interro-

gation signals compliant with the IEEE 802.15.4a standard sent by active

tags powered by an on-board battery and including a radio transceiver with

transmitting/receiving capability.

4.5.1 On-bike Module

The on-bike module implemented, shown in Figure 4.5, is mainly composed of

an IEEE 802.15.4a transceiver connected to a UWB antenna. The transceiver

communicates via serial peripheral interface (SPI) interface with a micro-

controller unit (MCU). The MCU determines the sensor module behavior
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and implements all the functionalities needed for enabling localization and

communication with vehicle and/or infrastructure. Output ports of the MCU

are then adopted for activating the on-bike HMI. As reported in figure,

the on-bike module is also equipped with additional 3D sensors (i.e., 3-axis

accelerometer, 3-axis gyroscope, 3-axis magnetometer, and pressure sensor)

whose output can be processed by the RA unit present on vehicle and/or

infrastructure.

All the sensors are periodically interrogated by the MCU. After the

interrogation cycle, the sensor outputs are sent via the UWB link as payload

of the blink packets to the reference nodes and thus made available for the

location process running on vehicle or on infrastructure. The outputs of the

localization estimation process consist of the bicycle ID, position coordinates,

velocity, acceleration, absolute orientation, and the positioning accuracy.

The on-bike module also contains an HMI to proper inform the bicyclist

of a potential danger predicted by the RA unit (either considering bicycle-

vehicle interaction or bicycle-infrastructure interaction or simple detection by

on-vehicle or infrastructure sensors). The bicycle HMI should be designed
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such that it requires minimal attention and does not distract the cyclist.

Examples of HMIs are a flashing light display, an auditory alert or a com-

bination of both. The implementation of these should take into account the

lighting conditions and background noise when cycling next to a truck. Other

possibilities are, for example, HMIs based on helmet or handlebar vibrations.

Nevertheless, a detailed analysis of on-bike HMIs is out-of-the-scope of this

paper whose main aim is to describe the architectural aspects of the system.

4.5.2 Localization and Tracking Methods

The considered UWB RTLS is capable of providing sub-meter localization

accuracy without resorting to costly and less accurate technologies such as

GPS. The system deployment mainly consists on the installation of a suffi-

cient number of anchors placed in known positions. The number of anchors

depends on the area to be covered: the larger is the space where tags can be

placed, the greater the number of anchor nodes should be to guarantee an

acceptable level of tracking accuracy.

As shown in Figure 4.6 the main approaches to infer tag’s position is

by means of two way ranging (TWR) and signals time difference-of-arrival

(TDOA) estimation [77]. TWR is based on packet exchanges between a

couple of nodes (e.g., the tag and one of the anchors). The round-trip time

of this ping-pong is measured and the distance is estimated (ranging). This

96



process must be repeated for any anchor and tag couple. Considering at least

three reference nodes performing the TOA measure, it is possible estimate

the position of the device resolving a triangulation problem.

The TDOA principle lies on the idea of discovering the position of the

transmitting tag by using the difference in time at which the signal arrives at

multiple anchors. Therefore, the tag is expected to be placed on a hyperbole

where the anchors are in the foci of the curve. Having at least three anchors

(i.e., two TDOA measurements) it is possible to estimate the position of the

tag. This requires a very accurate synchronization among nodes that has to

be guaranteed by distributing a common clock via cable or wirelessly.

If from one side, TWR provides a higher positioning accuracy thanks to

the possibility to better counteract oscillators clock drifts, from the other

side TDOA permits a drastic reduction in packet exchanges between tags

and anchors, thus allowing a significant improvement in terms of refresh rate

and multiple tags management. In fact, in TDOA each tag sends a very

short blink packet which is received by the network of anchors. Due to the

short duration of the blink packet emitted, a large number of tags can be

managed at the same time, with both random channel access (e.g., aloha-

based solutions) or time-scheduled transmissions (e.g., time division multiple

access (TDMA)). In this manner, differently from the TWR scheme, a single

uplink tag-anchor is sufficient for positioning (the downlink channel is then

used only for infrastructure-to-bike or vehicle-to-bike communication). This

solution allows building an extremely simple architecture for the tag, since all

the heavy processing for localization is demanded to the central unit placed

on infrastructure or vehicle. Moreover, the short blink packets contribute in

maintaining the power consumption at tag side low, thus enabling battery-

powered, low-cost solutions.

We implemented both the TDOA (with wireless synchronization) and

TWR to make some comparisons in terms of performance, as it will be pre-

sented in the numerical results. At central unit side, based on the collected

measurements, the tag position calculation is performed through state-of-

the-art Bayesian filters. Specifically, we implemented a Bayesian filter using

the particle filter approach employing measurements fusion mechanisms and
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clock drift compensation techniques to enable TDOA. The overall latency is

less than 500 ms.

Figure 4.7 shows the classical two steps constituting the Bayesian filtering

iterations. As it can be seen, the main objective is to infer an estimate of the

state (e.g., tag’s position coordinates, absolute orientation, velocity, etc.) and

its covariance matrix (i.e., a measure of the estimation uncertainty). More

specifically, the first step consists in performing a prediction based on the his-

tory of the collected measurements (time update). Once new measurements

become available (measurement update), an estimation correction phase can

be undertaken based on the computed Kalman gain which is an indicator

of the measurements and prior predictions reliability. In our approach, the

observation model is modeled as a uni-modal Gaussian distribution centered

in the difference between the estimated TDOA and the true TDOA and with

a TOA error standard deviation of 0.2 m characterized from measurements.

Regarding the mobility model, we assumed two different solutions depending

on the availability of the speed information. In the speed-unawareness case,

the density function describing the mobility model corresponds to a Gaussian

distribution centered in the previous estimated position whereas in the sec-

ond case a speed learning approach is adopted where the speed is evaluated

from earlier estimated positions with a sliding window. For further details,

the reader is invited to refer to [78]. Note that, if tags broadcast their sensor

data, inertial measurements fusion techniques can be adopted for improved

localization accuracy [78].

4.5.3 Impact of Architecture on the Localization Ac-

curacy: Performance Limits

As anticipated in Sec. 4.4, a discussion about the anchor nodes placement is

necessary. In fact, it is well known from the localization literature how the

geometrical configuration of anchors impacts the localization accuracy. Such

effect, known as GDOP, arises when combining different measurements and

can worsen or improve the performance in given position of the space where

the tag could be present.
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Figure 4.7: Bayesian filtering iterations.

In order to access the potential localization accuracy, in particular in

the vehicle-based infrastructure which is known unfavorable from the GDOP

point of view, a theoretical analysis based on the position error bound (PEB)

is here carried out [79, 80]. PEB is a tool for determining what is the theo-

retical best positioning accuracy that an algorithm can provide starting from

a certain setting in terms of measurements and geometrical configuration of

anchors and tag.

In Figure 4.8 the PEB for the infrastructure-based architecture is shown.

Specifically, a standard deviation of 20 cm in the ranging is considered, and

the presence of 4 anchors placed in the correspondence of the traffic lights in

a 30×30 m2 junction. Anchors are depicted with brown circles and are placed

in coordinates (20,10), (20,20), (10,20), (10,10). From the figure, it is possible

to see how the localization error is equalized in the entire scenario, always

between 10 and 20 cm. On the other hand, Figure 4.9 shows the PEB for the

vehicle-based architecture. Again, a ranging standard deviation of 20 cm is

considered, and the presence of 4 anchors placed at the corners of (i) a vehicle

(small truck) of size 2 × 5 m2 and (ii) vehicle (medium-sized truck) of size

2.5× 8 m2. In both cases the truck is assumed in the middle of the scenario.

From the figures, it is possible to notice the GDOP effects, which are more

pronounced in the direction of the vehicle. In fact, the localization error

increases moving away from the vehicle, and such performance degradation is
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Figure 4.8: PEB [m] for infrastructure-based positioning.

less severe in the orthogonal direction. This is mainly due on the geometrical

placement of the anchors along the long vehicle. When adopting vehicle-

based architectures, is then fundamental to consider location estimates only

in a certain area of some meters around the vehicle, where the location process

is effective.

It is important to notice that the final localization accuracy is also im-

pacted by propagation conditions, in particular by the presence of NLOS

channels between tags and anchors. Such conditions could occur for sev-

eral reasons. In an infrastructure-based solution, NLOS condition could be

caused by the presence in the crossing area of large trucks blocking the tag-

to-anchor signal. Differently, in the vehicle-based solution, the NLOS channel

could arise due to the intrinsic shape of the vehicle, which obstructs some of

the anchors placed on it. When NLOS channel conditions are present, the
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localization accuracy decreases and ambiguities in the position can arise due

to an insufficient number of measurements. However, thanks to the consid-

ered tracking scheme, where a location engine continuously tracks a given tag

starting from new measurements and the prior location estimation, ambigu-

ities can be strongly mitigated. Moreover, NLOS conditions can be reduced

by deploying a larger number of anchors nodes and by fusing inertial data.

Notice that, thanks to the considered TDOA scheme, this translates only on

an increased complexity at the processing unit side, with no modifications

required at tag side and no additional complexity.
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4.6 Experimental Results

In this section preliminary experimental results using the implemented local-

ization system are described in order to assess the localization accuracy in

static and dynamic scenarios. The purpose is also to analyze the performance

degradation when considering TDOA with wireless synchronization instead

of TWR. The measurement campaigns have taken place in the CASY (Cen-

ter of Complex Automated SYstems) indoor flight arena at the University of

Bologna premises.
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on the right.

4.6.1 Measurement Setup

The measurements have taken place in an area of 11 × 11 × 6 m3 where

tags can move on the x − y plane with a z coordinate that ranges from 1

to 2 m. A set of 22 infrared cameras (VICON Bonita 10) installed in the

monitored area have been adopted to infer the exact tags’ positions as they

can achieve a millimeter localization accuracy. 9 anchor nodes are placed on

the infrastructure, according to the deployment represented in Figure 4.11.

Specifically, we have considered the following deployments:

• All anchors: when all the reference nodes (Ai i = 1, 2, . . . , 9) are

active;

• Lower Circle: only Ai i = 1, 2, . . . , 4;

• Upper Circle: only Ai i = 5, 6, . . . , 8;

• Mixed: mixed combination between lower and upper circle. For exam-

ple A1,A3,A6,A8.

As mentioned before, the number of active anchor nodes is one of the param-

eters that determine the localization accuracy of the system. For this reason

a preliminary study concerned the localization performance as a function of

the number of reference nodes in static conditions, i.e., with the tag placed

in a set of fixed positions. For each test position in space, 500 estimates have
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Figure 4.12: Localization error considering static tags.

been collected using a personal computer running the localization algorithm

based on Bayesian filtering.

4.6.2 Results

The performance metric adopted for assessing the localization performance

is the mean absolute error (MAE) defined as

MAE =
1

N

N∑
i=1

‖p− p̂i‖2 (4.1)

where p represents the true tag position as derived by the VICON system

while p̂i is the estimated position. N represents the number of estimates for

each set of measurements.

In static configurations, the tag is placed in different fixed unknown po-
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Table 4.2: Localization error averaged over different tag positions.

Loc. technique Anchors config. x Error [m] y Error [m] z Error [m] Global error [m]
TWR All anchors 0.26 0.06 0.20 0.15
TWR Lower-circle 0.44 0.07 1.15 0.83
TWR Upper-circle 0.13 0.11 2.55 0.74
TWR Mixed 0.06 0.03 0.31 0.18
TDOA All anchors 0.10 0.07 0.37 0.20
TDOA Lower-circle 1.41 1.22 7.49 4.34
TDOA Upper-circle 0.20 0.19 6.23 3.13
TDOA Mixed 1.97 2.23 5.44 3.18

sitions inside the area. In the following, we will indicate with p(j) with

j = 1, 2, 3 the three testing positions in the x − y plane while as regards

to the z coordinate, two different heights, i.e., z = 1 m and z = 2 m, have

been taken into account. For each tag’s position, we aim at analyzing the

localization performance as a function of the number of anchors and of the

chosen localization technique.

Figure 4.12 reports the MAE for each tag’s position and coordinate as

function of different anchors’ deployments and localization approaches. Only

anchors geometric configurations resulting in a sub-meter localization error

are reported. As one can observe, the TWR technique is more accurate

in estimating the x and y coordinates then TDOA, and this is particularly

verified for anchors at the same height. Such degradation of the localization

performance in TDOA is also due to anchors synchronization mismatches but

it can be counteracted using an increased number of reference nodes. When

considering a proper anchors deployment TDOA results are satisfactory for

the application under consideration.

Table 4.2 reports the mean square error averaged over the tag positions

and shows how the UWB localization system is able to infer the tag posi-

tions with a centimeter localization accuracy also in indoor environments,

especially when operating in TWR fashion and with a high number of an-

chors. We expect that in outdoor conditions the performance could improve

because of the absence of strong multipath caused by signal reflections on

the walls as indoor.

In dynamic configurations, the tag was free to move in the flight arena.
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Figure 4.13: Localization error considering dynamic tags.

During this test the tag did not follow only a longitudinal path but also

performed rotational movements and modifies its height. The average speed

of the tag is 4.5 km/h and the distance covered is approximately 100 m.

Figure 4.13 reports the true and estimated tag trajectories. It is possible

to observe that the estimated trajectory, marked with red circles, diverges

from the true one, indicated with a dashed blue curve, especially in correspon-

dence of rapid changes of direction. Nevertheless, this inconvenience could

be solved by refining the mobility model in the Bayesian tracking algorithm

which is one of future tasks.

4.7 Conclusions

Starting from a deep analysis of road users’ behavior and of typical danger-

ous situations, in this paper two architectures performing RA and providing
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a feedback to road users and, in particular, to cyclists on potentially danger-

ous situations have been presented. Reference nodes can be placed both at

the junctions (infrastructure-based architecture) or on vehicle (vehicle-based

architecture). To enable such architectures, we proposed a localization sys-

tem based on the UWB technology capable of guaranteeing high-accuracy

localization and tracking, in which bikes are equipped with low-cost and

low-complexity active tags and with HMI. Preliminary experimental activ-

ities have been conducted to assess the feasibility of the proposed solutions

in static and dynamic conditions. Results show the possibility of achieving

centimeter-level localization accuracy and good tracking capabilities, even in

harsh propagation environments.
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Conclusions

The main topic investigated in this thesis is related to characterization of

the performance of D2D wireless networks. Given this broad objective, ana-

lytical framework models based on stochastic geometry have been proposed.

One of them deals with the study of the coverage probability of both cellular

networks and D2D networks whereas the others are related to dynamic mo-

bility models in which the effects of blockages on the link lifetime have been

studied. On the other hand, the experimental activity based on UWB using

passive tags has been presented in which a localization system based on the

ultra-wideband (UWB) technology and high-level architectures to improve

the cyclists safety has been proposed.

Specifically, in chapter 1 a new analytical framework based on stochastic

geometry for analyzing the coverage probability in coexisting cellular net-

works and D2D networks has been proposed. The closed-form expressions

for coverage probability based on the spatial HPPP model, for the distribu-

tion of BSs, and for any non-uniform distribution of D2D links to capture

the tendency of D2D users to work in groups have been derived. Both power

control, compensating path loss and shadowing, and fixed power strategies

for the D2D link have been investigated. The reciprocal impact of D2D and

cellular communications on the downlink coverage has been investigated as

a function of the D2D links maximum range and density. The analytical

framework model has been used to get engineering insights regarding to the

amount of the traffic that could be offloaded through D2D communications.

Finally, the accuracy of our theoretical analysis has been corroborated by

simulation results.

In chapter 3 a stochastic analysis of the communication link lifetime be-
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tween a mobile device and its serving AP in the presence of n classes of

randomly located objects characterized by different densities and sizes has

been presented. Closed-form expressions of the link lifetime CDF and corre-

sponding average have been derived in which these expressions indicate the

exponential behavior of the link lifetime as a function of obstacle’s size and

allowed to get insights on the interplay between obstacles’ density, radius of

objects, and user’s distance. The validity of the analytical framework have

been confirmed through comparisons with simulation results .

In chapter 4 a different category of D2D network related to road users

has been considered two architectures performing risk assessment (RA) and

providing a feedback to road users and, in particular, to cyclists on poten-

tially dangerous situations have been presented. Reference nodes can be

placed both at the junctions (infrastructure-based architecture) or on vehi-

cle (vehicle-based architecture). To enable such architectures, I proposed a

localization system based on the UWB technology capable of guaranteeing

high-accuracy localization and tracking, in which bikes are equipped with

low-cost and low-complexity active tags and with HMI. Preliminary experi-

mental activities have been conducted to assess the feasibility of the proposed

solutions in static and dynamic conditions. Results show the possibility of

achieving centimeter-level localization accuracy and good tracking capabili-

ties, even in harsh propagation environments.

In the future work, I will explore the D2D underlay multi-tier multi chan-

nel downlink cellular networks and possibly using multiple antennas, which

is more complicated due to the mutual interference between D2D links and

multi-tier cellular links. In addition, the investigation of the blockage life-

time is of interest. The extension towards this direction can be done by using

similar argument.

Regarding to experimental activity, the next activity foresees the assess-

ment of the two architectures in a real outdoor scenario by following a mul-

tidisciplinary approach with the two-fold objective of analyzing road users

behaviors and testing user-friendly technologies to enhance cyclists safety.

The behavioral investigation takes a central role in evaluating different HMI

solutions, to alert cyclists of dangerous situations in order to enhance their
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comfort and safety, without being source of distractions or annoying the final

users, thus establishing the technology acceptance. The behavioral analysis

plays a crucial role because it puts the final user at the center of all the in-

vestigation and the ultimate aim of the technologies that will be developed.
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