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Summary 

 

The transmission of phytoplasmas by seed in Sesamum indicum, Brassica napus, Solanum 

lycopersicum and Zea mays, was studied. The seeds, derived from infected mother-plants, were 

sown in sterile substrates and their germination percentage was evaluated. The seedlings were 

analyzed for the presence of phytoplasmas in different stages of growth by "nested"-PCR/RFLP 

analysis. The four species resulted positive for phytoplasmas belonging to different ribosomal 

groups and the number of positive plants decreased in the later stages of growth. For S. 

lycopersicum samples the presence of phytoplasmas was also analyzed in second generation 

plants: 7 seedlings out of the 60 tested resulted positive for phytoplasmas. Phytoplasma isolation 

in artificial medium CB was performed for all samples resulted positive, to verify the viability of the 

phytoplasmas. From Z. mays samples, colonies positive to phytoplasmas belonging to ribosomal 

groups 16SrI and 16SrXII were obtained. These colonies positive to 16SrI were reproducible for at 

least three subsequent passages liquid/solid media carried out every 5 days. Some of these 

samples produced colonies also from broth maintained for seven months at 25°C after isolation. 

These preliminary results indicate the viability of 16SrI phytoplasmas isolated from corn seedlings 

and confirm seed transmission of viable phytoplasmas. 

A quantitative PCR assay with SYBR Green chemistry, with generic "primers" to detect 

phytoplasmas belonging to different ribosomal groups was successfully applied both to seedlings 

and symptomatic field infected plants. Contrasting results were obtained from phytoplasma in 

liquid media and colonies. This technique demonstrated high sensitivity for phytoplasma at low 

concentrations and high specificity for the Mollicutes that can be differentiated from non-

Mollicutes by the analysis of melting temperatures.  

In carrot samples from Gran Canaria Island (Spain), symptoms of shoot and root malformation 

were observed. ‘Candidatus Liberibacter solanacearum’, haplotype D, and phytoplasmas belonging 

to the ribosomal group 16SrI were detected. 
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1. Phytoplasmas 

 

 

1.1. What phytoplasmas are? 

In 1967 Doi and collaborators showed that several plant diseases were associated with prokaryotic 

organisms similar to mycoplasmas. Because of their morphologic and ultrastructural similarities 

with the mycoplasmas pathogens of animals and humans, known as agents of pneumonia diseases 

since the end of 1800 (Nocard and Roux, 1898), these organisms were named MLO, mycoplasma-

like organisms. They were then designed with the trivial name of “phytoplasmas” by the 

Phytoplasma Working Team during the 10th Congress of the International Organization of 

Mycoplasmology in 1994, and then in 2004 the name ‘Candidatus phytoplasma’ was officially 

adopted for the taxon (IRPCM, 2004) considering their incomplete biologic description mainly due 

to the lack of their cultivation in media (Murray and Stackebrandt, 1995). 

Phytoplasmas are now associated to many different diseases showing different symptoms in 

plants as stunting, yellows, dwarf, phyllody, witches’ brooms, redness and virescence. These 

bacteria are associated with devastating diseases in diverse crops worldwide with severe 

economic losses.  

The application of molecular technologies made it possible to investigate the phytoplasma 

phylogeny, and indicated that they form a monophyletic group in the class Mollicutes (Sears and 

Kirkpatrick, 1994; Gundersen et al., 1994; Seemüller et al., 1994) and are related to each other 

more closely than with the other groups of prokaryotes of this class as mycoplasmas, ureaplasmas, 

spiroplasmas and acholeplasmas (Razin et al., 1998). 

Restriction enzyme-based studies on the 16S rRNA gene allowed dividing the monophyletic group 

of phytoplasmas into ribosomal groups and subgroups (Lee et al., 1998).  

 

1.2. Morphology 

Phytoplasmas are pleomorphic bacteria surrounded by a lipopropteic membrane, but lacking the 

cell wall and for this reason they are resistant to all the antibiotics that act on the cell wall; they 

have a very small genome ranging from 350 to 1,350 kb and a low G+C content (Dickinson et al., 

2013). Their average diameter is ranging from 0.2 to 1 μm and they are phloem-limited mainly 

located in mature sieve tubes (Hogenhout et al., 2008). The distribution of phytoplasmas in the 
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host plant is variable according with the season and the type of plant infected (Bertaccini and 

Duduk, 2009). For instance, their concentration in the roots is usually lower than in the stems, and 

they are more concentrated in leaves than in sink tissues. The phytoplasma ancestor is considered 

a Gram-positive bacterium as Clostridium or Lactobacillus spp. (Woese, 1987; Gundersen et al., 

1994; Lee et al., 1998b; Seemuller et al., 1994). Extrachromosomal DNAs similar to plasmids were 

also detected in different phytoplasmas as maize bushy stunt (Davis et al., 1990), western aster 

yellows (WAY) (Kuske et al., 1991), tomato big bud (Tran-Nguyen and Gibb, 2006) periwinkle little 

leaf (Davis et al., 1990), chrysanthemum yellows, American aster yellows (Bertaccini et al., 1990a), 

aster yellows witches’ broom (AYWB) (Bai et al., 2006). These plasmids contain also geminivirus-

like sequences, and have the ability to recombine with phytoplasma chromosomes (Bai et al., 

2006) and between each other (Nishigawa et al., 2002; Liefting et al., 2004), increasing the 

biological diversity of phytoplasmas. For instance, 'Candidatus Phytoplasma asteris', onion yellows 

strain (OY), contains two types of plasmids, each of which possesses a gene encoding a putative 

transmembrane protein, ORF3, that plays a role in the interactions of OY with the insect host of 

this phytoplasma (Ishii et al., 2009). 

 

1.3. Economic importance 

Among the phytoplasma affected species there are many crops of agricultural interest because 

food reserves, ornamental and forest plant species (Bertaccini, 2007; Bertaccini et al., 1992a; Lee 

et al., 2007). The principal diseases associated with phytoplasma presence worldwide are 

described below: fruit trees decline, citrus witches’ broom, grapevine yellows and palm lethal 

yellowing. Others important diseases are those diseases associated to corn, tomato, Sesamum 

indicum and Brassica napus (See chapter 2).  

1.3.1. Fruit trees decline 

Phytoplasma economically important diseases in Europe affecting apple, pear, apricot, peach and 

plum trees are apple proliferation (AP), pear decline (PD) and European stone fruit yellows (ESFY). 

These diseases are associated with 3 different quarantine pathogens: ‘Ca. P. mali’, ‘Ca. P. pyri’ and 

‘Ca. P. prunorum’ transmitted by diverse psyllids and having some host range specificity (Seemüller 

and Schneider, 2004).  

AP is present in almost all Europe (Rui et al., 1950; Seemüller and Schneider, 2004) and apple is 

the main host of ‘Ca. P. mali’, but it was also detected in wild and ornamental Malus species 

(Seemüller et al., 2008), in hazelnut (Corylus spp.) (Marcone et al., 1996), cherry (Prunus avium), 
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apricot (P. armeniaca) and plum (P. domestica) (Mehle et al., 2007). The psyllids Cacopsylla picta 

(Forster), C. melanoneura (Frisinghelli et al., 2000; Jarausch et al., 2004) and Fieberiella florii are 

the main responsible of the transmission of AP in Italy and Germany.  

PD was firstly reported in North American pear orchards affecting more than one million of pear 

trees (McLarty, 1948; Woodbridge et al., 1957). In northern Italy it was known with the name 

“moria” (Refatti, 1948) and recently was described also in southern Italy (Marcone et al., 1996). In 

North America and UK, the vector is Cacopsylla pyricola (Foerster), instead Cacopsylla pyri (L.) has 

been reported in Europe.  

ESFY disease it is due to ‘Candidatus Phytoplasma prunorum’ presence (Seemüller and Schneider, 

2004) and belongs to the ribosomal subgroup 16SrX-B. It is affecting several stone fruit species 

including apricot (Morvan, 1977), plum (Giunchedi et al., 1982), almond (Seemüller et al., 1998) 

and peach (Poggi Pollini et al., 2001), but it infects also several other wild and cultivated Prunus 

species. When the conditions are favorable for host-plants and insect vectors, ESFY disease can 

have a rapid and widespread diffusion. Symptom are variable: foliar yellowing, leaf roll and leaf 

reddening, reduction or suppression of dormancy with the consequent risk of frost damage, 

severe and progressive necrosis, decline and mortality (Figure 1.1). 

 

 

Figure 1.1. Symptoms associated with ESFY phytoplasma in peach in Italy. 

 

1.3.2. Citrus witches’ broom disease 

Witches’ broom disease of lime (WBDL), associated with the presence of ‘Ca. P. aurantifolia’, is 

responsible for major losses of Mexican lime trees (Citrus aurantifolia L.) (Mardi et al., 2011). The 

disease was first observed more than 30 years ago, in Oman (Garnier et al., 1991; Zreik et al., 

1995) where the destruction of 98% of Mexican lime trees occurred and it has after spread to the 
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United Arab Emirates, Iran (Bové et al., 2000), and India (Ghosh et al., 1999). Infected lime trees 

produced large number of shoots with small and clustered leaves and branches (Garnier et al., 

1991; Chung et al., 2006). In Brazil in 2007, phytoplasmas belonging 16SrI and 16SrIX were 

described associated with a devastating citrus disease known as huanglongbing (HLB) mainly 

attributed to three species of Gram negative bacteria in the ‘Candidatus Liberibacter’ genus, highly 

destructive to citrus production worldwide (Chen et al., 2008). Mixed infection of ‘Ca. P. asteris’ 

and ‘Ca. L. asiaticus’ was also reported (Teixeira et al., 2009). 

1.3.3. “Flavescence dorée” and “bois noir” 

The main phytoplasma diseases of grapevine in Europe are “flavescence dorée” (FD) and “bois 

noir” (BN). The first is a quarantine disease associated with phytoplasmas belonging to 16SrV-C 

and 16SrV-D ribosomal subgroups (Bertaccini et al., 1995; Daire et al., 1997; Martini et al., 1999) 

and is transmitted by the leafhopper of American origin Scaphoideus titanus Ball (Schvester et al., 

1969); however the transmission by Dictiofora europea from Clematis vitalba to grapevine under 

experimental condition was also reported (Filippin et al., 2009). Oncopsis alni transmits 16SrV-C 

phytoplasma from alder to grapevine and the disease is known as Palatinate grapevine yellows 

(Maixner et al., 200). Recently another insect species was associated with 16SrV phytoplasmas in 

vineyards: the Orientus ishidae that resulted positive to 16SrV-C and -D in Slovenia, Italy e 

Switzerland (Mehle et al., 2010; 2011; Gaffuri et al., 2011; Trivellone et al., 2015). The BN disease 

is associated with phytoplasmas belonging to ribosomal subgroup 16SrXII-A, “stolbur”, that are 

transmitted by the occasional grapevine feeder, the cixiid Hyalesthes obsoletus Signoret (Sforza et 

al., 1998) and by Reptalus panzeri as recently reported in Serbia (Cvrković et al., 2014). 

1.3.4. Lethal yellowing 

Lethal yellowing (LY) is a severe disease that affects coconut (Cocos nucifera L.) and 36 other palm 

species in the Americas (Harrison and Jones, 2004). The phytoplasmas associated with LY in North 

America and in the Caribbean are members of group 16SrIV. There is more than one phytoplasmas 

associated with coconut diseases according with the location, thus the collective name of these 

diseases is “lethal yellowing-type diseases” (LYTD). The symptoms begin with a premature 

shedding of most or all fruit. Aborted fruit usually develop a brownish black calyx-end rot and 

reduced seed viability. Other symptoms are: inflorescence necrosis, leaf discoloration from the 

oldest to the youngest. Affected leaves can turn brown, desiccate and hang down forming a skirt 

around the trunk for several days before falling to the ground (Bertaccini et al., 2014). 
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1.4. Symptomatology 

Characteristic symptoms of phytoplasma infection are: phyllody which in tomatoes was 

demonstrated to be associated to deregulation of a gene involved in the formation of the 

inflorescence (Pracros et al., 2006); yellowing of the leaves, due to the presence of phytoplasmas 

in the phloem that reduce the functionality and can induce changes in the translocation of 

carbohydrate or, since phytoplasmas affect the physiological processes of photosynthesis, plants 

infected by these pathogens often show a yellowing caused by the drastic reduction in the 

concentration of chlorophyll and carotenoids, whose biosynthesis is inhibited (Bertamini and 

Nedunchezhian, 2001); virescence, development of green flowers because of the change and/or 

loss of the pigments of the petals cells (Lee et al., 2000); witches’ broom due to the elimination of 

apical dominance resulting in proliferation of the secondary side shoots (Lee et al., 2000) and 

reduction of the internode length. 

 

1.5. Phytoplasmas transmission  

Phytoplasmas are distributed within the host plant not homogeneously, but subjected to seasonal 

fluctuation (Bertaccini and Duduk, 2009): their concentration is high in mature leaves and low in 

sink leaves. Phytoplasmas can be transmitted by insect vector, vegetative propagation as grafting, 

cuttings, tubers or rhizomes, micropropagation (Bertaccini et al., 1992b), and dodder (Cuscuta 

sp.). Another method for phytoplasma transmission is by seed, considered a controversial issue 

until few years ago (Cordova et al., 2003; Khan et al., 2002; Botti e Bertaccini, 2006; Calari et al., 

2011) (See chapter 2). 

1.5.1. Transmission by insects 

Insect vectors have a stinging-sucking mouthparts and feed in phloem cells, obtaining nutrition 

from free amino acids and sugars; but only a small number of insects have been confirmed as 

vectors of phytoplasmas, they mainly belong to the families Cicadellidae, Fulgoromorpha and 

Psyllidae (Weintraub and Beanland, 2006). The acquisition access period (APP) is the period of 

feeding necessary to the insect to acquire phytoplasmas, which is very variable. The period of time 

from initial acquisition to the ability to transmit the phytoplasma is known as the latent period (LP) 

or incubation period. During this time, the phytoplasmas move through the insect body and 

replicate. The phytoplasmas enter into the insects through the stylet together with the lymph, 

they then pass through the intestine, are absorbed and transported by hemolymph until the 

salivary glands. The phytoplasmas can also spend the winter inside insect vectors or in perennial 
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host plants; the effect of their presence in the insect can be either an increase or a reduction of 

their fitness (Christensen et al., 2005). 

Generally, the insect vector-phytoplasma relationship is very close, and greatly influences the 

number of insects and / or plant possible hosts. It was identified in phytoplasmas an antigenic 

protein (amp) that is the main component of the cell membrane protein capable of interacting 

with the complex of microfilaments of intestinal muscles of insect vectors and therefore is 

considered very important for the specific transmission of phytoplasmas and their subsequent 

ability to induce disease (Suzuki et al., 2006; Hoshi et al., 2007). 

1.5.2. Transovarial transmission 

For many years phytoplasmas were considered not transmissible vertically to the progeny of 

infected insects. However, until now the transovarian transmission of phytoplasmas was described 

for the following insect-phytoplasma combinations: Scaphoideus titanus / aster yellows (Danielli et 

al., 1996; Alma et al., 1997); Hishimonoides sellatiformis / mulberry dwarf (Kawakita et al., 2000), 

Matsumuratettix hiroglyphicus (Matsumura) / sugarcane white leaf (Hanboonsong et al., 2002), 

and Cacopsylla melanoneura / European stone fruit yellows (Tedeschi et al., 2006). 

 

1.6. Phytoplasma detection 

Before the possibility to use molecular biology to detect phytoplasmas, the diagnostic methods 

employed were the observation of the symptomatology (Errampalli et al., 1991; Lee and Davis, 

1992) and the pathogens transmission by grafting or insect to healthy plants (mainly periwinkle or 

celery) (Bertaccini and Duduk, 2009). With the advent of the transmission electron microscopy 

(TEM) phytoplasma presence was described in sieve tubes (Doi et al., 1967). Fluorescence 

microscopy with DAPI staining was developed resulting sufficiently able to detect structures 

referable to phytoplasmas (Lederer and Seemüller, 1992). To detect phytoplasmas in vital plant 

tissue, Christensen and collaborators in 2004 developed a confocal laser scanning microscope 

technique with the use of fluorescent dyes. Serological techniques were also employed for 

phytoplasma detection since the early ‘80s. Monoclonal and polyclonal antisera were used for the 

identification of phytoplasma (Lee et al., 1993b; Chen et al., 1993; 1994), and some of them are 

still commercially available. By serological tools, different phytoplasmas were successfully 

identified in the insect vectors by immunoelectron microscopy (Lherminier et al., 1990), classical 

serology (Sinha, 1979; Sinha and Benhamou, 1983), "dot blot" or ELISA (Boudon-Padieu et al., 

1989), tissue blotting that allows the direct or indirect detection of antigens in the infected tissue 



17 
 

(Lin and Chen, 1985; 1996). Antibodies binding partial sequences of immunodominant proteins of 

some phytoplasmas were produced (Berg et al., 1999; Blomquist et al., 2001; Hong et al., 2001; 

Mergenthaler et al., 2001) and in some cases, they were successfully expressed in planta 

(Kakizawa et al., 2009). 

1.6.1. PCR and nested-PCR 

Kirkpatrick and collaborators in 1987 succeeded with the first phytoplasma DNA cloning, and then 

probes, obtained by random cloning phytoplasma nucleic acids, were employed for the detection 

and differentiation of phytoplasmas in plants and insect vectors (Lee and Davis, 1988; Bertaccini et 

al., 1990a; Bonnet et al., 1990; Harrison et al., 1992). In the early 1990s, detection based on the 

16SrRNA gene allowed the identification and differentiation of a wide range of phytoplasmas (Lee 

and Davis, 1988; Bertaccini et al., 1990b; Deng and Hiruki, 1991; Namba et al., 1993; Gundersen 

and Lee, 1996). With the use of the restriction fragment length polymorphism (RFLP) analysis on 

the amplicons of the 16S rDNA obtained in PCR it was then possible to classify the phytoplasmas in 

ribosomal groups and subgroups using universal and group-specific primers (Namba et al., 1993; 

Lee et al., 1993a; Schneider et al., 1993). Universal primers amplifying conserved region (16S rRNA 

and intergenic spacer region 16S-23S) allowed to identify phytoplasmas associated with plants and 

insects (Deng and Hiruki, 1991; Ahrens and Seemüller, 1992; Bertaccini et al., 1992a; Davis and 

Lee, 1993; Lorenz et al., 1995; Gundersen and Lee, 1996; Schneider et al., 1997; Lee et al., 1993a, 

1998a; 1998b); primers for the amplification of ribosomal proteins (rp), secY, secA and tuf genes 

(Gundersen et al., 1996; Schneider et al., 1997; Marcone et al., 2000; Martini et al., 2002; 2007; 

Hodgetts et al., 2008), membrane protein genes (imp, amp, stamp, groEL) (Danet et al., 2007; 

Kakizawa et al., 2006; Fabre et al., 2011; Mitrović et al., 2011a; 2011b; 2015) allow a finer 

differentiation of phytoplasmas. To have good amplification results in PCR analysis, a clean DNA is 

required (Firrao et al., 2007), and several protocols of DNA extraction were developed. Another 

issue is represented by the low phytoplasma DNA concentration in plants that is usually less than 

1% on the total amount of plant DNA (Bertaccini, 2007). To overcome this problem, the nested-

PCR tool was developed: this technique provides a first amplification (direct PCR) using universal 

primers to amplify a region of the 16SrRNA gene phytoplasmas in all ribosomal groups and then a 

second amplification using primers amplifying an inner region; in this second step, universal 

primers or group-specific primers can be used; using specific primers it is possible to detect also 

phytoplasmas present in mixed infection in hosts (Lee et al., 1994). This system allows increasing 
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both the sensitivity and the specificity of the assay; however it is also possible false positive 

detection. 

1.6.2. LAMP 

A rapid tool for phytoplasma detection is the loop-mediated isothermal amplification (LAMP). It 

provides phytoplasma detection in an hour and the sensitivity level is reported as comparable to 

that obtained by nested PCR; moreover, the assay is specific for the phytoplasmas it is designed 

for (Tomlinson et al., 2010). Several studies confirm the application of this methodology for the 

detection of phytoplasmas belonging to different ribosomal groups (Bekele et al., 2011; Hodgetts 

et al., 2011; Kogovšek et al., 2015; 2016). 

1.6.3. DNA barcoding 

DNA barcoding is an identification method based on the comparison of short DNA sequences 

(barcodes) of unknown species with sequences present in a database and for phytoplasmas allows 

assigning the sample to a ‘Candidatus Phytoplasma’ species (Makarova et al., 2012). Two 

barcodes, based on tuf and 16S rRNA genes (Makarova et al., 2012) have been developed and one 

based on SecA gene has been proposed (Bertaccini et al., 2011; Contaldo et al., 2015). Thus, 

sequences of phytoplasmas infecting plants worldwide were collected in a Q-Bank Phytoplasma 

database that can be freely used for phytoplasma identification (http://www.q-

bank.eu/Phytoplasmas/). 

1.6.4. Quantitative PCR (qPCR) 

To avoid cross-contamination and time-consuming q-PCR method can also be employed for 

phytoplasmas. This method allows to amplify, and also quantify the target DNA. The PCR mix 

contains a fluorescent dye that binding the DNA molecule, after each PCR cycle, emits florescence 

captured by a detection system. During the exponential phase, there is a threshold cycle (Ct) at 

which the emission of fluorescence is detected because of the accumulation of the PCR product. 

The increase in fluorescence is directly proportional to the initial amount of DNA target. The DNA 

concentration, in term of copy number or relative amount, is calculated building standard curves 

of serial dilution of the PCR target by plotting the log of the starting quantity against the Ct value 

obtained in the amplification of each dilution. Different types of chemistry are available: TaqMan, 

Molecular Beacons and Scorpion are probes labeled with a fluorescent dye and specific for a 

determined amplicon. The advantages of these probes are high specificity and ability to perform 

multiplex reactions; disadvantages are the high cost, difficulty in use and the possibility of false 

negatives when variable target DNAs are used (Anderson et al., 2003; Papin et al., 2004). Other 
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products are DNA dyes as SYBR Green I and EvaGreen: they are not sequence-specific, but bind the 

minor groove of the dsDNA. These probes are cheap and easy to use, but are non-specific and can 

overestimate the pathogen concentration. To overcome the low-specificity a melting curve 

analysis is needed to be built after the amplification reaction. The fluorescence decreases when 

the dsDNA denatures and the negative first derivative of the change in fluorescence is plotted 

against temperature. In fact, the melting temperature (Tm) is the peak of temperature of the 

amplicon that can distinguish true from false positives. 

1.6.5. Droplet digital PCR 

Droplet digital PCR (ddPCR) is a detection method very useful to quantify the nucleic-acid copy 

number without the construction of standard curves (Hindson et al., 2011). It was successfully 

applied to viruses, bacteria and genetically modified organisms quantification (Henrich et al., 

2012; Hayden et al., 2013; Strain et al., 2013; Rothrock et al., 2013; Morisset et al., 2013; Racki et 

al., 2014). Each sample is fractionated into a large number of droplets, and PCR amplification 

occurs in each individual droplet containing different copies of the target. The number of copies in 

the original sample can be calculated from the ratio of positive to total partitions using binomial 

Poisson statistics (Hindson et al., 2011; Pinheiro et al., 2012). This method was firstly applied to 

phytoplasma associated to “flavescence dorée” by Mehle et al. (2014) in comparison to qPCR 

suggesting a good overlap of the two techniques.  

 

1.7. Phytoplasma classification 

The RFLP analysis is the main method used for the phytoplasma classification. The amplified 16S 

rDNA sequence is analyzed with different restriction enzymes to differentiate among 

phytoplasmas ribosomal groups on the restriction profile obtained (Lee et al., 1998a; 1998b; 

2000). Nevertheless, in some cases like for ‘Ca. P. asteris’ that is associated with different diseases, 

it is needed to be more precise in the differentiation of closely related strains, thus, analysis of rp, 

secY and tuf genes have a complementary discrimination role (Lee et al., 2007; 2010; Martini et al., 

2007; Makarova et al., 2012).  

On the other hand, a new species of 'Candidatus Phytoplasma' can be defined if the sequence of 

the 16S rRNA gene is at least 1.200 nucleotides, and if its homology is less than 97.5% with the 

others 'Ca. Phytoplasma' species described. Up today, 40 ‘Ca. Phytoplasma’ species, 33 ribosomal 

groups and 130 ribosomal subgroups have been described (Table 1.1). In some cases, for the high 

conservation of the 16S rRNA gene, is not possible to differentiate among different phytoplasmas 
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and specific biologic properties as host plants, insect vectors, specific antibodies, and other criteria 

must be included for ‘Candidtus Phytoplasma’ speciation (Seemüller and Schneider, 2004). 

 

Table 1.1. Classification of phytoplasmas based on RFLP analyses and/or sequencing of 16S rDNA. 

16Sr group/subgroup Strain (acronym) 'Candidatus sp.' GenBank number 

16SrI: aster yellows (America, Europe, Asia, Africa) 

I-A Aster yellows witches’ broom (AYWB) NC007716 
I-A Tomato big bud (BB) L33760 
I-B Onion yellows mild strain (OY-M) NC005303 
I-B Aster yellows (MAY) ‘Ca. P. asteris’ M30790 
I-C Clover phyllody (CPh) AF222065 
I-D Paulownia witches’ broom (PaWB) AY265206 
I-E Blueberry stunt (BBS3) AY265213 
I-F Aster yellows apricot - Spain (A-AY) AY265211 
I-I Strawberry witches’ broom (STRAWB1) U96614 
I-K Strawberry witches’ broom (STRAWB2) U96616 
I-L Aster yellows (AV2192) AY180957 
I-M Aster yellows (AVUT) AY265209 
I-N Aster yellows (IoWB) AY265205 
I-O Soybean purple stem (SPS) AF268405 
I-P Aster yellows from Populus (PopAY) AF503568 
I-Q Cherry little leaf (ChLL) AY034089 
I-R Strawberry phylloid fruit (StrawbPhF) AY102275 
I-S Mexican potato purple top phytoplasma (COAH10) FJ914654 
I-U Mexican potato purple top phytoplasma (JAL6) FJ914650 
I-V Mexican potato purple top phytoplasma (SON18) FJ914642 
I-W Peach rosette-like disease (PRU0382) HQ450211 
I-Y “Brote grande” of tomato 'Ca. P. lycopersici' EF199549 

16SrII: peanut witches’ broom (America, Africa, Europe, Asia, Australia) 

II-A Peanut witches’ broom (PnWB) L33765 
II-B Lime witches’ broom (WBDL) ‘Ca. P. aurantifolia’ U15442 
II-C Faba bean phyllody (FBP) X83432 
II-D Papaya mosaic (PpM) ‘Ca. P. australasiae’ Y10096 
II-E Pichris echioides phyllody (PEY) Y16393 
II-F Cotton phyllody (CoP) EF186827 

16SrIII: X-disease (America, Europe, Asia) 

III-A Peach X-disease (PX11CT1) ‘Ca. P. pruni’ JQ044392/JQ044393 
III-B Clover yellow edge (CYE) AF173558 
III-C Pecan bunch (PBT) GU004371 
III-D Goldenrod yellows (GR1) GU004372 
III-E Spiraea stunt (SP1) AF190228 
III-F Milkweed yellows (MW1) AF510724 
III-G Walnut witches’ broom (WWB) AF190226/AF190227 
III-H Poinsettia branch-inducing (PoiBI) AF190223 
III-I Virginia grapevine yellows (VGYIII) AF060875 
III-J Chayote witches’ broom (ChWBIII) AF147706 
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III-K Strawberry leafy fruit (SLF) AF274876 
III-L Cassava frog skin disease (CFSD) EU346761 
III-M Potato purple top (MT117) FJ226074 
III-N Potato purple top (AKpot6) GU004365 
III-P Dandelion virescence (DanV) AF370119/AF370120 
III-Q Black raspberry witches’ broom (BRWB7) AF302841 
III-T Sweet and sour cherry (ChD) FJ231728 
III-U Cirsium white leaf (CWL) AF373105/AF373106 
III-V Passion fruit phytoplasma (PassWB-Br4) GU292082 

16SrIV: coconut lethal yellows (America, Africa) 

IV-A Coconut lethal yellowing (LYJ-C8) AF498307 
IV-B Yucatan coconut lethal decline (LDY) U18753 
IV-C Tanzanian coconut lethal decline (LDT)  X80117 

16SrV: elm yellows (Europe, America, Asia, Africa) 

V-A Elm yellows (EY) ‘Ca. P. ulmi’ AY197655 
V-B Jujube witches’ broom (JWB-G1) ‘Ca. P. ziziphi’ AB052876 
V-C “Flavescence dorée” (FD-C)  X76560 
V-D “Flavescence dorée” (FD-D) ‘ AJ548787 
V-E Rubus stunt (RuS) ‘Ca. P. rubi’ AY197648 
V-F Balanite witches’ broom (BltWB) ‘Ca. P. balanitae’ AB689678 
V-G Korean jujube witches’ broom AB052897 
V-H Bischofia polycarpa witches’ broom KJ452547 

16SrVI: clover proliferation (Europe, America, Asia) 

VI-A Clover proliferation (CP) ‘Ca. P. trifolii’ AY390261 
VI-B Strawberry multiplier disease (MC) AF190224 
VI-C Illinois elm yellows (EY-IL1) AF409069/AF409070 
VI-D Periwinkle little leaf (PLL-Bd) AF228053 
VI-E Centarurea solstitialis virescence (CSVI) AY270156 
VI-F Catharanthus phyllody phytoplasma (CPS) EF186819 
VI-H Portulaca little leaf phytoplasma (PLL-Ind) EF651786 
VI-I Passionfruit (WB-Br3) ‘Ca. P. sudamericanum’ GU292081 

16SrVII: ash yellows (America, Europe) 

VII-A Ash yellows (AshY) ‘Ca. P. fraxini’ AF092209 
VII-B Erigeron witches’ broom (ErWB) AY034608 
VII-C Argentinian alfalfa witches’ broom (ArAWB) AY147038 
VII-D Erigeron bonariensis witches’ broom (EboWB) KJ831066 
VII-E Vernonia brasiliana shoot proliferation (VbSP) KX342018 

16SrVIII: Loofah witches’ broom (Asia) 

VIII-A Loofah witches’ broom (LufWB) AF086621 

16SrIX: pigeon pea witches’ broom (Europe, Asia, America) 

IX-A Pigeon pea witches’ broom (PPWB) AF248957 
IX-B Almond witches’ broom (AlWB) ‘Ca. P. phoenicium’ AF515636 
IX-C Naxos periwinkle virescence (NAXOS) HQ589191 
IX-D Almond witches’ broom (AlWB) AF515637 
IX-E Juniperus witches’ broom GQ925918 
IX-F Almond and stone fruit witches’ broom (N27-2) HQ407532 
IX-G Almond and stone fruit witches’ broom (A1-1) HQ407514 
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IX-H Sarson phyllody and witches’ broom (SAR-2) KU892213 

16SrX: apple proliferation (Europe, America) 

X-A Apple proliferation (AP) ‘Ca. P. mali’ AJ542541 
X-B European stone fruit yellows (ESFY) ‘Ca. P. prunorum’ AJ542544 
X-C Pear decline (PD) ‘Ca. P. pyri’ AJ542543 
X-D Spartium witches’ broom (SpaWB) ‘Ca. P. spartii’ X92869 
X-E Black alder witches’ broom (BAWB[BWB]) X76431 

16SrXI: rice yellow dwarf (Europe, Asia, Africa) 

XI-A Rice yellow dwarf (RYD) ‘Ca. P. oryzae’ AB052873 
XI-B Sugarcane white leaf (SCWL) X76432 
XI-C Leafhopper-borne (BVK) X76429 
XI-D Sugar cane white leaf (SCWL) China KR020685 
XI-E Cirsium yellows and stunting (CirYS) ‘Ca. P. cirsii’ KR869146 

16SrXII: “stolbur” (Europe, Asia, America, Africa, Australia) 

XII-A Stolbur (STOL11) ’Ca. P. solani’ AF248959 
XII-B Australian grapevine yellows ‘Ca. P. australiense’ L76865 
XII-C Strawberry lethal yellows (StrawLY) AJ243045 
XII-D Japanese hydrangea phyllody ‘Ca. P. japonicum’ (JHp) AB010425 
XII-E Yellows diseased strawberry (StrawY) ‘Ca. P. fragariae’ DQ086423 
XII-F “Bois noir” (BN-Op121) EU836651 
XII-G “Bois noir” (BN-Fc3) EU836647 
XII-H Bindweed yellows (BY-S57/11) ‘Ca. P. convolvuli’ JN833705 

16SrXIII: Mexican periwinkle virescence (America) 

XIII-A Mexican periwinkle virescence ‘Ca. P. hispanicum’ AF248960 
XIII-B Strawberry green petal (SGP) U96616 
XIII-C China-tree yellows (CbY1) AF495882 
XIII-D Potato purple top-PPT/SINPV FJ914647 
XIII-E Papaya apical curl necrosis (PACN) JQ792171 
XIII-F Strawberry red leaf (Argentina) KJ921641 
XIII-G China tree yellows (ChTY) ‘Ca. P. meliae’ KU850940 

16SrXIV: Bermudagrass white leaf (Europe) 

XIV-A Bermudagrass white leaf (BGWL) ‘Ca. P. cynodontis’ AJ550984 
XIV-B Bermudagrass white leaf Iran EF444485 

16SrXV: hibiscus witches’ broom (America) 

XV-A Hibiscus witches’ broom (HibWB) ‘Ca. P. brasiliense’ AF147708 
XV-B Guazuma witches’ broom (GWB) HQ258882 

16SrXVI: sugarcane yellow leaf syndrome (America) 

XVI-A Sugarcane yellow leaf syndrome ‘Ca. P. graminis’ AY725228 

16SrXVII: papaya bunchy top (America) 

XVII-A Papaya bunchy top ‘Ca. P. caricae’ AY725234 

16SrXVIII: American potato purple top wilt (America) 

XVIII-A American potato purple top wilt ‘Ca. P. americanum’ DQ174122 

16SrXIX: Chestnut witches’ broom (Asia) 

XIX-A Chestnut witches’ broom ‘Ca. P. castaneae’ AB054986 

16SrXX: Rhamnus witches’ broom (Europe) 

XX-A Rhamnus witches’ broom ‘Ca. P. rhamni’ AJ583009 

16SrXXI: Pinus phytoplasmas (Europe) 
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XXI-A Pinus phytoplasma (PinP) ‘Ca. P. pini’ AJ310849 

16SrXXII: Lethal yellowing-type (Africa) 

XXII-A Coconut lethal yellowing-Nigerian Awka disease (LDN) Y14175 
XXII-A Mozambique coconut (LYDM-185) ‘Ca. P. palmicola’ KF751388 
XXII-B Cape St. Paul wilt (CSPW) KF419286 

16SrXXIII: - 

XXIII-A Buckland valley grapevine yellows AY083605 

16SrXXIV: - 

XXIV-A Sorghum bunchy shoot AF509322 

16SrXXV: - 

XXV-A Weeping tea witches’ broom AF521672 

16SrXXVI: - 

XXVI-A Sugarcane phytoplasma D3T1 AJ539179 

16SrXXVII: - 

XXVII-A Sugarcane phytoplasma D3T2 AY539180 

16SrXXVIII: - 

XXVIII-A Derbid phytoplasma AY744945 

16SXXIX: Cassia witches’ broom (Asia) 

XXIX-A Cassia witches’ broom (CaWB) ‘Ca. P. omanense’ EF666051 
XXIX-B Bindweed witches’ broom (RBiWB) KY047493 

16SXXX: Salt cedar witches’ broom (Asia) 

XXX-A Salt cedar witches’ broom ‘Ca. P. tamaricis’ FJ432664 

16SXXXI: Soybean stunt (America) 

XXXI-A Soybean stunt (SoyST1c1) ‘Ca. P. costaricanum’ HQ225630 

16SXXXII: Malaysian periwinkle virescence and phyllody (Asia) 

XXXII-A Malaysian p. virescence (MaPV) ‘Ca. P. malaysianum’ EU371934 
XXXII-B Malayan yellow dwarf phytoplasma (MYD) EU498727 
XXXII-C Malayan oil palm phytoplasma (MOP) EU498728 

16SXXXIII: Allocasuarina muelleriana phytoplasma (Australia) 

XXXIII-A Allocasuarina phytoplasma ‘Ca. P. allocasuarinae’ AY135523 
- the ribosomal group has no designation since only Genbank sequences were employed for its 
determination 

 

1.8. Genomics 

As members of the Mollicutes group, phytoplasmas have a circular double-stranded DNA molecule 

(Lim and Sears, 1989; 1991a; 1991b; Neimark and Kirkpatrick, 1993). Sequence analysis of 16S 

rDNA and other housekeeping genes indicate that are closely related to the Acholeplasma spp. or 

to some of the mycoplasmas rather than to the Spiroplasma spp., other plant pathogenic 

Mollicutes (Lim and Sears, 1992). Ancestor of phytoplasmas is considered Acholeplasma laidlawii: 

in this specie the tryptophan is encoded by the triplet UGG, while in the other prokaryotes as 

mycoplasmas and spiroplasmas it is encoded by UGA. In phytoplasma UGA is a stop-codon. 

Between the 16Sr and 23Sr genes there is a characteristics intergenic spacer region (about 300 
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bp), encoding for the isoleucine tRNA and part of the sequence for the alanine tRNA, this is one of 

the regions that allow genetic differentiation between phytoplasmas and mycoplasmas. 

Phytoplasma genome has a low content in G+C, but several genes are present in two or more 

copies; they contain two RNA operons. Moreover, there is a huge number of transposons and 

insertion sequences unique of these microorganims and named variable mosaic (SVM) 

(Jomantiene and Davis, 2006; Jomantiene et al., 2007; Wei et al., 2008) or potential mobile units 

(PMUs) (Bai et al., 2006; Toruno et al., 2010; Ku et al., 2013), all these elements are important for 

the genetic variability and the phytoplasma adaptation to different environments.  

Differences in the chromosomes size among phytoplasmas have also been described; for example, 

'Ca. P. cynodontis' and a strain of "stolbur" have the chromosomal size of respectively 530 and 

1,350 kb; phytoplasmas of rape virescence and hydrangea phyllody, both belonging to ribosomal 

subgroup 16SrI-B, have a chromosome respectively of 1,130 kb and 660 kb (Marcone et al., 1999). 

This variability is usually due to gene duplication and redundancy. In the genome of OY, it has 

been estimated that the 18% of the genes is the result of repeated copies of only five genes: uvrD 

(ATP-dependent DNA helicase, 3,117 nucleotides, 7 copies), hflB (ATP-dependent Zn protease, 

1,551 nucleotides, 17 copies), tmk (thymidylate kinase, 624 nucleotides, 6 copies), dam (DNA 

methylase, 660 nucleotides, 4 copies) and ssb (single-stranded DNA-binding protein, 345 

nucleotides, 15 copies). These genes are not always present or they are present usually in a single 

copy in the other Mollicutes. Moreover, 5 genes encoding components of the transport system 

have multiple copies, probably not all functional (Oshima et al., 2004). Multiple copies of 

sequences similar to insertion elements and functional genes for thymidine kinase are present in 

the genome of OY and other phytoplasmas (Lee et al., 2005; Miyata et al., 2003). Phytoplasmas 

lack several genes for the classic metabolic function, while they have a sec transport pathway (Bai 

et al., 2006) and other genes encoding transporter systems (Oshima et al., 2001). Their genome 

encodes for even less metabolic functions than that of mycoplasmas (Razin, 2007). 

The OY genomic size is approximately 861 kb and contains 754 ORF, corresponding to 73% of the 

coding capacity. As other Mollicutes, this phytoplasma lack genes for the biosynthesis of amino 

acids and fatty acids, the tricarboxylic acid cycle (TCA) and the oxidative phosphorylation (ATP 

production), while, on the contrary of what occurs in mycoplasmas, OY lacks genes for 

phosphotransferase system and for the metabolism of UDP-galactose to glucose-1-phosphate, 

suggesting that this phytoplasma has a unique source of sugars and a specific metabolic system 

(Oshima et al., 2004). In addition, phytoplasmas have not the pentose phosphate pathway and the 
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subunits for the ATP synthesis, which are believed to be essential for life, suggesting that 

phytoplasmas imports ATP from the host through a yet unknown mechanism, or that the synthesis 

of ATP is highly dependent on glycolysis. The absence of these important functions can explain 

their parasitic life (Oshima et al., 2004). Two sets of 5 glycolytic enzymes are present in a tandem 

duplicated region of ‘Ca. P. asteris’ OY-W (Oshima et al., 2007) but not in AY-WB (Bai et al., 2006) 

and OY-M that have a glycolytic gene organization more similar. Phytoplasmas also have maltose 

ABC transporter, but not the enzymes to converts sugars to glucose-6-phosphate (Christensen et 

al., 2005). The ‘Ca. P. asteris’ OY-M genome encodes for a number of genes for folate biosynthesis 

as folk, folP, folC, and folA. ‘Ca. P. mali’ and ‘Ca. P. australiense’ genomes encode only folA, while 

in the ‘Ca. P. asteris’ AY-WB strain genome the folA gene is complete, but folk and folP are 

pseudogenes (Oshima et al., 2013). Even if there are only a few metabolic genes in phytoplasma 

genome, many genes encoding malate, aminoacids and metal-ions transport systems are present; 

some of these genes are present in multiple copies, suggesting an aggressive import of many 

metabolites from host cells, which may explain also the expression of disease symptoms. Their 

genome is also capable of encoding the synthesis of folate, which could allow the phytoplasma to 

adapt to different environments in plants and insects (Oshima et al., 2004). Recently, in 

phytoplasma genomes six types of ATP-binding cassette (ABC) transporters are observed. Through 

these ABC transporters, metabolites can cross bacterial membranes, and nutrient and metabolites 

can be uptaken from the host. A superoxide dismutase enzyme (SOD), was also observed involved 

in counteracting reactive oxygen species produced by hosts (Miura et al., 2012). 

 

1.9. Interaction with hosts 

Studies on the translocation of phytoplasmas (Garcia-Chapa et al., 2003; Wei et al., 2004b) provide 

evidence that it cannot be explained only by assimilate flow, however active movement seems 

unlikely, considering the lack of genes coding for cytoskeleton elements or flagella (Christensen et 

al., 2005). Phytoplasmas may overwinter in insect vectors or in perennial plants; their 

concentration varies greatly from plant to plant, and periwinkle is the species able to accumulate 

them at the highest concentration (Berges et al., 2000). Different strains of the same phytoplasma 

can reach different concentrations in the same host (Sinclair and Griffiths, 2000). Furthermore, the 

concentration of phytoplasmas in the tree species can largely differ depending on the season, as in 

the case of pear decline (Errea et al., 2002; Garcia-Chapa et al., 2003), European stone fruit 

yellows (Jarausch et al., 1999) and "bois noir" (Škorić et al., 1998). 



26 
 

Immunodominant membrane proteins were described for the first time in mycoplasmalike 

organisms (MLO) by Shen and Lin in 1993. Serological studies demonstrated the localization of 

these proteins with transmembrane domains. Most of the surface proteins of Mollicutes have an 

important role in host-pathogen recognition and subsequent adherence to the host cells. They are 

also involved in the expression of pathogenicity and in triggering of host resistance responses 

(Christensen et al., 2005). The presence on the surface of epitopes characteristic for each 

phytoplasmas group suggests that these proteins may be involved in specific interactions with 

host cells. 

Genes encoding immunodominant membrane proteins have been identified in several 

phytoplasmas and the corresponding proteins have been classified into four types: (1) immune-

dominant membrane protein (Imp) identified in sweet potato witches' broom (SPWB) (Yu et al., 

1998), apple proliferation (AP ) (Berg et al., 1999), European stone fruit yellows (ESFY) (Morton et 

al., 2003), pear decline (PD) (Morton et al., 2003), and peach yellow leaf roll (PYLR) (Morton et al., 

2003); (2) immunodominant membrane protein A (IdpA) identified in western X-disease (WX) 

(Blomquist et al., 2001); (3) membrane protein antigen (Amp) detected in aster yellows (AY) 

(Barbara et al., 2001; 2002), clover phyllody (CPh) (Barbara et al., 2002), and onion yellows (OY) 

(Kakizawa et al., 2004; and (4) putative membrane protein (vmp1) studied in the “stolbur” 

phytoplasmas (STOL) (Cimerman et al., 2009). A high level of Amp protein expression was 

confirmed in phytoplasmas AY, CPh, and OY (Barbara et al., 2002; Kakizawa et al., 2004) where the 

protein is transported by the sec system, after the cleavage of the N-terminal signal (Kakizawa et 

al., 2004). Suzuki et al., in 2006 showed that Amp in OY phytoplasma form complexes with 

microfilaments of actin-myosin of insects and this is related to the transmissibility of the 

phytoplasma by leafhoppers.  

The isolation of the genes encoding Imp having identical sequence in different phytoplasmas 

(Morton et al., 2003) has shown that there is no correlation between membrane proteins and the 

16S rRNA gene, thus the variability of these proteins is not linked to evolutionary factors.  

Recently, experiments with leafhopper vector fed with monoclonal anti-AMP from ‘Candidatus 

Phytoplasma asteris’ chrysanthemums yellows strain (CY), demonstrated a reduction in the 

phytoplasma internalization and transmission, implying that anti-Amp reduces attachment of the 

bacteria in the vector gut (Rashidi et al., 2015). Studies regarding other types of immunodominant 

membrane proteins is still in progress (Kakizawa et al., 2009). 
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1.10. Virulence and pathogenicity 

Up today, phytoplasmas remain a poorly characterized group of plant pathogens and understand 

the energetic metabolism could be important to understand phytoplasmas’ biology. Some 

evidences of disorders in different plant species were observed: Sears et al. in 1997 described the 

alteration of oxygen and carbon dioxide levels in Oenothera crops; Lepka et al. in 1999 and Maust 

et al. in 2003 observed changes in carbohydrates concentration in phloem, roots and leaves of 

plants infected by phytoplasmas: this is due to the inhibition of the phloem transport in 

phytoplasma-infected plants, that leads to accumulation of carbohydrates in source leaves, and 

reduction of these sugars in sink organs as roots. The accumulation of sugar in source leaves is 

generally believed to be the result of photosynthesis inhibition and the cause of typical chlorosis 

(Lepka et al., 1999; Bertamini et al., 2002; Maust et al., 2003). Infected plants present changes in 

photosynthate translocation, reduced photosynthesis, alteration in stomata conductance and root 

respiration, altered secondary metabolism and disturbed plant hormone balance (Marcone, 2010). 

However, due to the wide range of symptoms exhibited by infected plants it seems that also other 

nutrients are subjected to changes, and this was confirmed by the discovered reduction in the 

concentration of photosynthetic pigments and of total soluble proteins (Bertamini and 

Nedunchezhian, 2001; Bertamini et al., 2002; Musetti et al., 2005), as well as alterations in the 

hormone balance (Jagoueix-Eveillard et al., 2001; Maust et al., 2003), amino-acid transport (Lepka 

et al., 1999) and the occurrence of folate and endopetidase gene homologues in phytoplasma 

genomes (Davis et al., 2003). A marked reduction in the phloem translocation, until obstructing 

the lumen of sieve tubes, can also be assumed in cases of high multiplication rate, although this 

phenomenon has been observed in plants with a very low level of phytoplasma titer, suggesting an 

indirect influence on phloematic functions and host metabolism (Siddique et al., 1998; Guthrie et 

al., 2001). Recently, in infected A. thaliana plants, phytoplasmas were reported as inducing 

phloem disorganization and impairment (Musetti et al., 2013). In fact, the plant responds to 

phytoplasma infection by the agglutination of phloem protein that change their configuration, and 

by callose deposition, responses calcium-mediated, in order to occlude the sieve elements (Marco 

et al., 2016).  

Phytoplasmas do not have virulence genes, as the hrp, present in other phytopathogenic bacteria 

(Oshima et al., 2004) and, the comparative study of the two strains OY-M, causing mild 

proliferation and yellowing, and OY-W causing severe yellowing, stunting, proliferation and 

witches’ broom, showed that five glycolytic genes were duplicated in the severe strain OY-W. 
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Oshima et al. in 2011 reported that OY-W phytoplasma titter is higher than OY-M. So, the higher 

consumption of carbon source (due to the duplication of these genes) may affect the growth rate 

of this phytoplasma and may also directly or indirectly produce more severe symptoms (Oshima et 

al., 2007).  

Recently, a single virulence factor, "tengu-su" (TENGU), was discovered inducing witches' broom 

and dwarfism after cloning and expression in transgenic plants of Nicotiana benthamiana and 

Arabidopsis thaliana (Hoshi et al., 2009; Sugawara et al., 2013). Although the location of 

phytoplasmas is restricted to the phloem, the TENGU protein has been identified in apical buds 

suggesting that it was transported from the phloem to other cells. Moreover, the genes 

responsible for the metabolism of auxin were significantly down-regulated in TENGU-transgenic 

plants suggesting that it inhibits the pathway of the auxin metabolism (Hoshi et al., 2009). 

Moreover, Minato et al., 2014 demonstrated that TENGU induces both male and female sterility 

without floral malformations in transgenic A. thaliana affecting the expression of flower 

maturation genes and altering jasmonic acid and auxin syntheses also in flowers. 

Phytoplasmas have two secretion systems: the YidC system for the integration of membrane 

proteins and the Sec system for the integration and secretion of proteins into the host cell 

cytoplasm (Kakizawa et al., 2001; Wei et al., 2004a; 2004b; Lee et al., 2012). In the ‘Ca. P. asteris’ 

AY-WB strain genome more than 56 genes encoding secreted proteins were identified, but the 

two more studied are SAP11 and SAP54. SAP11 contains a signal required for nuclear targeting in 

plant cells (Bai et al., 2008; Sugio et al., 2014). The SAP11-expressing plants exhibit crinkled leaves 

and produce many stems morphologic changes in transgenic A. thaliana flower development and 

also induce altered root architecture. Recently it was found that transgenic N. benthamiana plants 

expressing SAP11 from ‘Ca. P. mali’ exhibit an altered aroma phenotype leading to understand 

that this phytoplasma effector has the ability to modulate host volatile organic compound 

emissions (Tan et al., 2016). Moreover, SAP11 destabilizes the proliferation cell transcription 

factors suppressing the jasmonic acid responses in N. benthamiana (Sugio et al., 2011). SAP54 is 

an effector protein that alters floral development in A. thaliana resulting in the production of leaf-

like flowers (Bai et al., 2006; MacLean et al., 2011; Lu et al., 2014). Another effector recently 

discovered is PHYL1, homologue of SAP54 that was identified in OY–W phytoplasma induces 

phyllody-like floral abnormalities (Maejima et al., 2014). SAP54/PHYL1 interacts and promotes the 

degradation of floral transcription factors MAD-box proteins, critical for floral development 

(McLean et al., 2014; Maejima et al., 2014). Another recently discovered protein is P38, a 
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conserved Mollicutes adhesion motif (MAM) identified in the onion yellows phytoplasma genome 

that interacts with crude insect extracts and plants extracts but its specific hosts are still unknown 

(Neriya et al., 2014). Moreover, HflB, an ATP- and Zn2+-dependent proteases, is a virulence factor 

for ‘Ca. P. mali’ (Seemüller et al., 2013; Wang et al., 2014): hflB gene is present in phytoplasmas 

genomes in high copy number that is unusual in other prokaryotes but it is not clear how these 

proteins are involved in parasitism. The study of variable membrane protein A (VmpA) expressing 

the protein in S. citri showed that VmpA is involves in interaction with insects and provides a new 

method for studying interactions of phytoplasma surface proteins with host cells (Renaudin et al., 

2015). 

 

1.11. Control and prevention strategies 

The principal management strategy to reduce the phytoplasma spread is acting on the insect 

vectors, however despite the large use of insecticides, phytoplasma diseases continue to be severe 

in several areas of the world (Firrao et al., 2007) Others methods are thermotherapy and 

chemotherapy (Bertaccini, 2007). However, these methods are not sufficient and in some cases, 

they could also be environmentally unsafe. The use of healthy plant material and the reduction of 

the sources of inoculum are very important prevention tools when the vectors are polyphagous 

and can feed wild plants as the case of Hyalesthes obsoletus that transmit “stolbur” phytoplasma 

to grapevine from bindweed and nettle (Bertaccini and Duduk, 2009). The use of antibiotics is 

expensive and forbidden in many countries. The use of kaolin power, reducing the insect mobility 

and eggs anchorage on the leaf gave good results also at the environmental level (Tedeschi and 

Alma, 2007). Alternative strategies are based on biocontrol agents (Bextine et al., 2004) and the 

use of RNA interference (RNAi), a regulatory mechanism that causes specific gene silencing 

(Tedeschi, 2012): the host organism recognizes as foreign a double-stranded RNA (dsRNA) and 

hydrolyzes it with a ribonuclease. This hydrolysis produces small and specific RNA fragments (21–

28 nucleotides) called small interfering RNAs (siRNAs) that combine with constitutive proteins to 

form the RNA-induced silencing complex (RISC). The RISC diffuses in the cell, and its siRNA 

hybridizes to the specific messenger RNAs (mRNAs) with sequences complementary to that of the 

siRNA. The new double-stranded region stimulates the hydrolysis of that mRNA to produce more 

siRNAs. This process is repeated each time the siRNA hybridizes to its complementary mRNA, 

effectively destroying and preventing that mRNA from being translated, thus “silencing” the 

expression of that specific gene (Eamens et al., 2008). The RNAi is widely applied in entomologic 
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field, but there are some problems to overcome as selecting the target sequence (Tedeschi, 2012), 

the massive production of dsRNA (Tenllado et al., 2004) and the choice of a dsRNA delivery system 

(Turner et al., 2006; Whyard et al., 2009; Huvenne and Smagghe, 2010). 
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2. Phytoplasma seed transmission and cultivation 

 

 

2.1. Introduction 

2.1.1. Phytoplasma diseases in tomato and corn 

The symptoms of phytoplasma presence in tomato are yellowing and reduction of leaves, sterility 

or fruit alterations, stunting of the plants (Figure 2.1a and b). Different groups of phytoplasmas 

were identified in symptomatic tomatoes including aster yellows (16SrI) subgroups -A (Lee et al., 

1998a) and -B (Marcone and Ragozzino, 1995; Marcone et al., 1997; Okuda et al., 1997; Arocha et 

al., 2007), peanut witches' broom (16srII) subgroups -A (Xu et al., 2013 ) and -D (Omar and Foissac, 

2012; Singh et al., 2012), Western-X (16SrIII) (Del Serrone et al., 2001; Tapia-Tussell et al., 2012; 

Amaral Mello et al., 2006), elm yellows (16SrV) (Del Serrone et al., 2001; Gungoosingh-Bunwaree 

et al., 2013), clover proliferation (16SrVI) (Boudon-Padieu et al., 1996; Lee et al., 1998a; Anfoka et 

al., 2003; Du et al., 2013) and “stolbur” (16SrXII-A) in several countries as Italy (Del Serrone et al., 

2001), Bulgaria (Vibio et al., 1996), Turkey (Sertkaya et al., 2007), Greece (Alivizatos, 1989; Vellios 

and Lioliopoulou, 2007), Israel (Zimmermann-Gries and Klein, 1978), Iran (Salehi et al., 2014), in 

USA (Dale and Smith, 1975) and Australia (Samuel et al., 1933; Gibb et al., 1996).  

Diseases associated with Mollicutes in corn are reported worldwide and are maize bushy stunt 

(MBS) and corn stunt (CS), both present in North, Central, and South America (Ebbert et al., 2001; 

Harrison et al., 1996; Lee et al., 2004). MBS is associated with a phytoplasma that is a member of 

the aster yellows 16SrI-B subgroup (Lee et al., 2004). CS is a disease caused by Spiroplasma 

kunkelii (Chen and Liao 1975; Williamson and Whitcomb, 1975). These pathogens are both 

transmitted by the leafhopper Dalbulus maidis and by other Dalbulus species (Ebbert et al., 2001). 

Corn reddening is another phytoplasma-associated disease of corn, described for the first time in 

Serbia in 1957 (Marić and Savić, 1965) with reddening symptoms that involve the main leaf midrib, 

then they spread to the stalk and eventually to the whole plant. Typical symptoms in cobs are: 

reduction in grain filling and weight, drying of the poor and shrivelled grains. The disease was 

recently associated to “stolbur” phytoplasma (Duduk and Bertaccini, 2006) reporting, for the first 

time, “stolbur” phytoplasma in corn (Figures 2.2a and b). 
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a   b 

Figure 2.1. a) Symptoms referable to phytoplasma presence in a tomato field; b) reduction in seeds 
production in infected tomato. 

 

 

 a     b 

Figure 2.2. a) Symptoms of corn reddening in field in Serbia; b) cobs with reduction in grain filling and 
weight. 

 

2.1.2. Phytoplasma diseases in Sesamum indicum 

Sesamum indicum L. is an economically important species because of its high oil content (50–60%) 

with a high ratio of unsaturated fatty acids (Uzun et al., 2008). The most common phytoplasmas’ 

symptom in sesame is phyllody that appears as stunting of the plants and transformation of the 

floral parts into leafy structures bearing no capsule nor seeds (Figure 2.3). This disease was 

described in Turkey, India, Iran, Iraq, Israel, Burma, Sudan, Nigeria, Tanzania, Pakistan, Ethiopia, 

Thailand, Uganda, Upper Volta, and Mexico (Akhtar et al., 2009a; 2009b; Ikten et al., 2014; Tseng 

et al., 2014; Pamei and Makandar, 2016). 
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Figure 2.3. Symptoms referable to phytoplasmas in S. indicum. 
https://www.apsnet.org/publications/imageresources/Pages/FI00148.aspx 

 

2.1.3. Phytoplasma diseases in Brassica napus 

Winter oilseed rape (Brassica napus L.) is an important oil-yielding crop for industrial processing 

and human and animal feed, and also for biodiesel production (Maliogka et al., 2009). The 

phytoplasma infected plants show stunted growth, leaf reddening, virescence and flower 

malformation (Figure 2.4). A few flowers are able to complete the maturation, carrying an 

extremely limited production and small, shriveled and malformed seeds. In different parts of the 

world oilseed has proved susceptible to phytoplasma diseases, and phytoplasmas belonging to 

subgroup 16SrI-B are the main detected ('Ca. P. asteris') (Bertaccini et al., 1998; Olivier et al., 

2008; Maliogka et al., 2009). 

  

Figure 2.4. Symptoms referable to phytoplasma presence in B. napus. 
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2.1.4. Transmission by seeds 

Since the lack of a direct connection between the phloem system and the embryos, the 

phytoplasma transmission by seed was considered not possible, (Menon and Pandalai, 1960). 

Moreover, floral abnormalities and fruit malformations led to believe that the seeds originated 

from infected plants were not viable and germinating (McCoy et al., 1989). 

However, phytoplasmas are pleomorphic and have a small size that allow them to pass through 

the pores of the phloem, and be transported by the flow of the assimilates; therefore, they are 

potentially able to reach organs connected to the phloem. Thus, they were found in different 

organs of plants as in floral structures (Bertaccini and Marani, 1982; Clark et al., 1989), in 

inflorescences and also in stems, racemes, male and female flowers in palms infected by the "Cape 

St. Paul wilt disease" (CSPWD) (Nipah et al., 2007). European stone fruit yellows (ESFY) 

phytoplasmas were tedected in apricot in flowers, fruits, but not in pollen samples (Nečas et al., 

2008). In mulberry trees (Morus spp.) infected with mulberry dwarf (MD), phytoplasmas were 

found in the ovary, filaments, stigmas, sepals and anthers (Jiang et al., 2004). The demonstration 

of LY phytoplasma presence in coconut palm fruits embryos (Cocos nucifera L.) using nested PCR 

(Harrison et al., 1994; Harrison and Oropeza, 1997; Nipah et al., 2007) and in situ PCR (Cordova et 

al., 2003), led to the national and international legislation to prohibit commercial movement of 

coconuts from areas where lethal yellowing (LY) is epidemic (“Centre for Information on Coconut 

Lethal Yellowing” http://www.avxl82.dsl.pipex.com/ CICLY/main.html). Phytoplasmas have been 

identified in seed tegument and kernels of apricot and mulberry infected respectively by ESFY 

(Nečas et al., 2008) and MD (Jiang et al., 2004) and in corn kernels infected by 'Ca. P. asteris' (aster 

yellows: AY) (Nipah et al., 2007). AY has been detected also in Brassica rapa seeds in Canada 

(Olivier et al., 2006). 

The phloem is the ideal tissues for phytoplasma propagation and plant colonization. The sieve 

tubes consist of cells without nuclei with a reduced cytoplasm which offer low resistance to flow 

of assimilates (van Bel et al., 2002); oligopeptides, lipids, proteins and phytoplasmas migrate 

through the pores of sieve plates (Sugio and Hogenhout, 2012). Phytoplasmas were also found in 

the companion (Sears and Klomparens, 1989) and parenchyma (Siller et al., 1987) cells even if 

their dimensions are not suitable to pass through the plasmodesmata (Stadler et al., 2005). 

Ultrastructural changes in cytoskeleton were never observed in this type of cells in infected plants 

(Siller et al., 1987; Rudzinska-Langwald et al., 1999): viruses, for example, can open passages, 

dilating plasmodesmata pores with the help of movement proteins (Oparka, 2004), while in the 
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genomes of phytoplasmas was not identified any gene encoding comparable proteins (Zambryski, 

2004). In general, many plant bacteria have the type-III secretion system that injects bacterial 

proteins (effectors) into the host cytoplasm (Cornelis and van Gijsegem, 2000; Büttner and Bonas, 

2003); and some type-III effectors are virulence factors that suppress plant defense responses 

(Jackson et al., 1999; Abramovitch et al., 2003; Hauck et al., 2003), but up today there are no 

descriptions of effectors able to modify the cytoskeleton, except for Xanthomonas campestris, 

that produces a protein inducing mesophyll cell swelling (Marois et al., 2002), indicating a possible 

disruption to the plant microtubule cytoskeleton. Pseudomonas syringae pv. tomato DC3000 

contains more than 36 type-III effectors whose function was not defined (Collmer et al., 2002), but 

the plant cytoskeleton could be a target for some of these proteins. 

The production of seeds from infected plants is severely compromised by phytoplasma presence 

in mother plants both in quantity and quality, due to malformations, withering, small size and low 

weight. A frequent symptom is early germination of the seeds. De La Rue et al., in 2002 conducted 

a two years’ study on the effect of stylosanthes little leaf disease on production of Stylosanthes 

scabra seeds and no significant reductions of seed were observed in plants in case of late 

infections, while a decrease of 98.8% and 56.5% has been observed in plants showing symptoms 

respectively at 79 and 110 days after planting, indicating that the seed production was closely 

linked to the precocity of the infection. Other observations in coconut palm suggest that, if the 

infection occurs in the early stages of development, the flowers became necrotic and unable to 

ripe the fruits. The time between pollination and maturity of the fruit is around 12 months that is 

also the time of incubation of LY, thus only the fruits under development before the infection are 

able to complete the maturation (Cordova et al., 2003). Data on the germination percentage are 

variable and depending on the species and on the precocity of the infection. For instance, apricot 

seeds infected by ESFY showed a vitality 4.5 times lower (21.6%) and a germination 7 times less 

(9.4%) of the healthy control (Nečas et al., 2008); on the contrary, in coconuts, higher germination 

values (72.1%) were reported for diseased plants compared to the healthy ones (57.6%) (Nipah et 

al., 2007). Olivier and Galka in 2008 demonstrated the presence of two different types of seeds 

from plants of Brassica napus infected by AY. Malformed seeds, from symptomatic and 

asymptomatic plants were positive to phytoplasma presence respectively in the 25-80% and in 9-

20% of the cases, while normal seeds were positive in the 20-60% and 2-10% of the cases. 

Malformed seeds, both from symptomatic and asymptomatic plants, had no germination, while 

normal seeds reached values of 50-90%. 
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In all these studies phytoplasma DNAs were detected in plants by PCR methodologies, but it was 

not possible confirm their presence by microscopy, thus the criticism is that only phytoplasma 

DNA is present in these tissues, and that it cannot be associated with a living organism able to 

survive the during the plant growth stages. In 2002 Khan and co-author presented the first 

evidence of symptomatic and phytoplasma positive plants sowing in vitro seeds of alfalfa from 

phytoplasma infected plants. A similar research was shown in 2004 regarding carnation (Dianthus 

L.) (Šeruga Music et al., 2004) and in 2006 regarding tomato (Solanum lycopersicum) and Citrus 

aurantifolia (Botti and Bertaccini, 2006). The identification of phytoplasmas in pea plants (Pisum 

sativum) germinated and grown in a protected environment and produced from seed derived 

from "stolbur" infected plants was also reported (Zwolińska et al., 2010). One hundred plants of S. 

indicum and the same number of Cicer aretinum (chickpea) plants obtained from plants infected 

by phytoplasmas belonging to the ribosomal group 16SrII-D were kept under observation in an 

insect-proof greenhouse until maturity without detecting any symptom referable to the presence 

of phytoplasmas (Akhtar et al., 2009a; 2009b). It was also not possible to identify phytoplasmas by 

nested PCR techniques in plants of C. aurantifolia originated from seeds of plants affected by 

WBDL (witches' broom disease of lime) cultivated for two years in an insect-proof greenhouse. The 

DNA of phytoplasmas was however detected in seed tegument, but not in embryos, while the 

analysis carried out every three months, was negative for leaves, stems and roots of these 

seedlings. No symptoms referable to WBDL have been observed in individuals generated from 

symptomatic plants. However, the germination percentage of the seeds derived from 

symptomatic plants was higher when compared with the percentages of seeds resulting from 

healthy plants (Faghihi et al., 2011). 

Seeds from plants of Brassica napus infected by AY show malformations such as an increase in the 

number of trichomes, a reduced growth, enlargement of the stem, leaf wilting and a generalized 

developmental delay. In addition, it was possible to identify DNA of phytoplasmas belonging to the 

16SrI-B group in the stem of these young plants, but it was very surprising that, after the fourth 

leaf stage of these individuals, PCR results previously positive for the presence of phytoplasmas, 

become negative (Olivier and Galka, 2008). Lebsky et al. (2010) observed by scanning electron 

microscopy (SEM), but not supported by molecular analysis, the presence of structures related to 

phytoplasmas in different phloem tissues and organs, including flowers, mature seeds and 

germinated seeds within the fruit in papaya plants (Carica papaya) showing symptoms referable to 
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phytoplasmas. Phytoplasma presence was also identified in seedlings of tomato, corn and oilseed 

rape derived from infected plants (Calari et al., 2011). 

In conclusion, phytoplasmas appear able to infect the floral structures, the fruits, the seeds and 

even the embryos. The seeds produced by infected plants are generally viable and capable of 

germinating, although the production would result qualitatively and quantitatively affected 

according with the relationship flowering stage / time of infection.  

For a confirmation of phytoplasma transmission by seeds, obtaining progeny in which the 

bacterium is maintained over the time and induce symptoms, is therefore to be demonstrated 

together with the ability of seed phytoplasmas to transmit the disease to healthy plants by 

grafting or insect vectors or their isolation in artificial media. 

Furthermore, since phytoplasmas are not yet contemplate in propagation material by the plant 

protection quarantine protocols, the movement of seeds from infected plants imply the 

geographic dissemination of the pathogen, and therefore of the associated diseases in still 

uncontaminated areas. 

2.1.5. Phytoplasma cultivation  

The term mycoplasma was first used by A.B. Frank in 1889 to define some filamentous 

microorganisms similar to fungi; then Julien Nowak, in 1929 used the same term to define the 

contagious bovine pleuropneumonia. In 1955 E. A. Freundt and D. G. Edward used the term 

mycoplasma to describe organisms similar in colonial morphology and filterability to the agent of 

the contagious bovine pleuropneumonia (PPLO, pleuropneumonia-like” organisms). The name 

mycoplasma, because of the similarity in the morphology of this organism with other organisms 

(MLOs, Mycoplasma-like organisms) became the name including also L-form bacteria (Sabin, 1941; 

Edward, 1967). These latter were first isolated by Klieneberger in 1935 and are bacteria that may 

exist in two status: (1) unstable and revert to the original bacterial form or (2) stable which cannot 

revert. They can be produced in laboratory by inhibiting the wall formation and are not 

pathogenic. L-form bacteria are morphologically identical to mycoplasma (Dienes and Bullivant, 

1968), but they are genetically differentiable (Somerson et al., 1967; McGee et al., 1967). 

Originally mycoplasmas were characterized by Sabin in 1941 studying their behavior in culture, but 

only between 1967 and 1969 they were better morphologically described thanks to the electron 

microscopy (Edward, 1967; Hayflick, 1969; Razin 1969). 
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Phytoplasmas were discovered in these same years, but were considered for long time impossible 

to cultivate in artificial media and this is till today a controversial issue even if same elucidating 

contributions were provided (Contaldo et al., 2012; 2016). 

For many decades, the agent causing yellows-type diseases (Kunkel, 1926) was considered a virus 

but in 1967 Doi and collaborators described after electron microscopy studies many structures 

resembling mycoplasmas (MLOs) in association with yellows-type and witches’ broom symptoms 

in diverse plant species. The electron microscopy was for long time used as instrument to 

investigate the MLO morphology by cutting thin section of plants and insects showing that a high 

accumulation of MLO could be detected in sieve tubes of infected plants. Moreover, from these 

studies resulted that small and big cells were simultaneous present suggesting a co-presence of 

different stage of growth (Ploaie et al., 1968) or, considering the modern studies, a possible mix 

infection of phytoplasma belonging to different ribosomal groups (Lee et al., 1995). To satisfy the 

Koch’s postulates, attempts to cultivate MLO were carried out. 

At the beginning, artificial media similar to those used for mycoplasmas growth supplemented 

with components used for vertebrate and invertebrates were tried (Jones et al., 1977). For 

instance, Lombardo and Pignatelli in 1970 described the cultivation of the agent present in 

Catharanthus roseus showing symptoms of phyllody in flowers. In 1971 Saglio and collaborators 

were able to grow in solid and liquid media the agent of the stubborn disease of citrus. In the 

same year, Gianotti and Vago reported the success of cultivating the MLO of the clover phyllody; 

while the corn stunt agent was maintained in liquid media for a long period (Chen and Granados, 

1970). Other studies, then demonstrated that the agent of the corn stunt is the Spiroplasma 

kunkelii (Chen and Liao 1975; Williamson and Whitcomb, 1975) belonging to genus Mollicutes, 

morphologically different from phytoplasmas. Despite spiroplasmas were successfully cultivated in 

artificial media, MLO remained uncultured. Many attempts to cultivate MLOs were described 

(Müller et al., 1975; Elmendorf, 1977; Whitcomb and Tully, 1979) but the experiments resulted not 

repeatable in other laboratories (Maramorosch, 2011). Thus, the claims of the MLOs cultivation 

were not accepted by the scientific community also because the isolates were not deposited in 

collections and were not available for comparison with other Mollicutes isolated strains according 

to the rules established by the International Organization of Mycoplasmology (IOM) 

(Maramorosch and Harris, 1981). 
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The scientists started asking why it was so difficult to cultivate plant MLOs; their intracellular 

location in plants and insects, together with their status of parasites very well adapted to the host 

condition were suggested as main difficulties to develop an appropriate artificial medium.  

Nevertheless, it is important to note that also some mycoplasmas were not cultivable when 

discovered, for instance, this is the case of M. hyopneumoniae. It is well known that in many 

laboratories, mycoplasmas grow very easily as contaminant in cellular lines, but they are very 

difficult to grow in artificial cell-free media. The cause could be that the mycoplasma is dependent 

on the other cells to grow (Hopps et al., 1976). Thus, to explain the difficult in cultivating MLO, two 

hypotheses were formulated: (1) the media developed are lacking essential elements and (2) the 

MLO are cell-dependent to grow. However, since using phloem saps as nutrient in the media did 

not permit their multiplication, the second explanation seems more plausible. A fascinating story 

about the phytoplasmas cultivation concerns the so named “Olympic Guide to MLO Cultivation” 

unpublished document written by the “MLO Dream Team” composed by K. Hackett, D. Pollack and 

F.F. Whitcomb that is a report prepared for the MLO culture session which was held during the 9th 

IOM congress in Ames (Iowa, USA) in 1992. However, no cultivation was tried again or at least 

published until very recently, when a preliminary method of phytoplasma cultivation was 

described by Bertaccini and collaborators during the 18th Congress IOM in Chianciano Terme, Italy 

(Bertaccini et al., 2010). This methodology was eventually implemented and first in 2012 and then 

in 2016, the phytoplasma cultivation was described in scientific journals from Contaldo and 

collaborators. The first described methodology of cultivation was reported for some phytoplasma 

strains from micropropagated periwinkles, however the used media composition PivL® (liquid) and 

PivS® (solid) that were complimentary provided by the UK company Mycoplasma Experience Ltd, 

are covered by patent. Only in 2016 a new medium was developed and published (Contaldo et al., 

2016) comparing three different complex media enclosing Piv®. Grapevine field-collected 

materials showing symptoms and infected by “flavescence dorée”, “bois noir” and aster yellows 

were used as phytoplasma source. The new developed medium CB, composed by TSB, an Oxoid 

medium containing tryptone and soya peptone enriched with horse serum, yeast extract, phenol 

red and antibiotics, supported the phytoplasma growth in the same manner as Piv medium, but 

with the advantage that it is possible to modify its composition increasing the specificity for the 

diverse phytoplasmas and adapting the medium to the different stages of the phytoplasma 

growth.  
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2.2. Materials and methods 

2.2.1. Plant material 

2.2.1.1. Sesamum indicum 

Sesame is an annual plant and is one of the oldest and traditional oilseed crops. Phytoplasmas 

associated with sesame induce phyllody, witches' broom, virescence, yellowing, floral sterility 

(Akhtar et al., 2008). So far diverse phytoplasmas were detected in sesame and classified as: 16SrI-

B in Myanmar, 16SrII-A in Thailand and Taiwan, 16SrII-D in Oman and India, 16SrIX-C in Iran, and 

16SrVI-A and 16SrIX in Turkey (Catal et al., 2013). Sesame phytoplasmas are transmitted by 

leafhopper (Vasudeva and Sahambi, 1955) and the associated disease causes significant economic 

losses also because it affects the seeds production (Ikten et al., 2014). Some seeds deriving form 

infected mother plants were sown in sterile soil in order to test the deriving seedlings for 

phytoplasma presence. In this experiment 200 seeds from 5 genotypes were sown in soil. The 

plantlets were grouped in batches of 10 for the testing (Table 2.1). 

 

Sample Number of sown seeds in Murashige 
and Skoog (MS) medium (1962) 

Number of tested seedlings 

Sesame 2 20 20 
Sesame 6 42 40 
Sesame 7 83 80 
Sesame 8 30 30 
Sesame 14 25 20 

Total 200 190 
Table 2.1. Sesame seedlings tested to verify the phytoplasma presence. 

 

2.2.1.2. Brassica napus 

B. napus phytoplasma infected plants show stunted growth, leaf reddening, virescence and floral 

malformation. Only a few flowers are able to complete the maturation; the seeds production is 

very limited and they are small, shriveled and malformed. In different parts of the world, these 

symptoms are associated with phytoplasma presence; in particular, phytoplasmas belonging to 

ribosomal subgroup 16SrI-B ('Ca. P. asteris') were identified in symptomatic samples (Bertaccini et 

al. 1998; Olivier et al., 2008; Maliogka et al., 2009). In this experiment, 130 seeds from 3 plants 

were sown directly in soil. The plantlets were grouped in batches of 10 seedlings and each batch 

was tested for phytoplasma presence (Table 2.2). 
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Sample Number of sown seeds in MS Number of tested seedlings 

Rape 5 42 40 
Rape 6 10 10 
Rape 7 81 80 

Total 133 130 
Table 2.2. B. napus seedlings tested to verify the phytoplasma presence. 

 

2.2.1.3. Solanum lycopersicum  

Phytoplasma infections in tomato have been described in different parts of the world and indicate 

that this plant species is host of numerous phytoplasmas belonging to different ribosomal groups. 

The symptoms generally consist of stunted growth, leaf yellowing or reddening, proliferation of 

lateral buds and emission of adventitious roots, hypertrophy of goblets, virescence, phyllody, 

malformations and abortion of the floral organs. The plant also produces a few berries, of small 

size and only on older branches. The berries ripen early and have inappropriate texture and flavor. 

The phytoplasmas most frequently identified in Italy, and more generally in Europe, belong to the 

ribosomal subgroups 16SrXII-A ("stolbur") and 16SrI-B ("aster yellows"), even if sporadically 

phytoplasmas belonging to groups 16SrV and 16SrIII were also found (Del Serrone et al., 2001). In 

Italy, the disease is mainly localized in the central and southern regions: Puglia (Martelli et al., 

1969; Giuliani et al., 2010), Calabria (Albanese et al., 1998), Campania (Marcone and Ragozzino, 

1995), Basilicata (Marcone et al., 1997), Sicily (Polizzi et al., 1990) and Sardinia (Lisa et al., 1983; 

Minucci and Boccardo, 1997). Some cases were also reported in northern region as Veneto, 

Piedmont (Marzachì et al., 2000) and Emilia Romagna (Favali et al., 2000). “Stolbur” phytoplasma 

present in tomato crops in the districts of Piacenza, Parma, Ferrara and Ravenna was identified 

and characterized by Terlizzi et al. in 2010 on the tuf gene as tuf-type b. Tomato seeds from 

symptomatic plants were collected from farms in the district of Parma and the same plants were 

assayed for the presence of phytoplasmas. Two groups of seeds consisting in 40 (group A) and 250 

(group B) seeds respectively were sown in soil (Table 2.3). Germination percentage was verified 

two weeks after the in vitro sowing and the seed viability was evaluated one month after the 

sowing. 

 

Sample  Number of sown seeds in MS Number of tested seedlings 

Tomato group A 68 44 

 
Tomato group B 

 
250 

196  
(28 batches of 7 plants each) 

Table 2.3. Tomato seedlings tested to verify the phytoplasma presence. 
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2.2.1.4. Zea mays 

The most well-known and widespread diseases due to Mollicutes in maize plants are the “bushy 

stunt" (MBS) and the "corn stunt" (CS), both present in the American continent. MBS is associated 

with a phytoplasma belonging to the ribosomal group 16SrI-B ("aster yellows") and is 

characterized by symptoms as marginal chlorosis of young leaves, gradual reddening of the base 

and the proliferation of axillary buds, which are also showing chlorosis and redness. In case of 

early infection, the plant has very short internodes and numerous small cobs with a limited 

number of seeds (Ebbert et al., 2001; Harrison et al., 1996; Lee et al., 2004). CS is a disease caused 

by Spiroplasma kunkelii and characterized by symptoms similar to that of MBS (Chen and Liao 

1975; Williamson and Whitcomb, 1975). Both pathogens are transmitted in America by 

leafhoppers belonging to the genus Dalbulus. In Europe, a disease named redness was reported 

since 1957 in Serbia (Mari and Savić, 1965). The disease became epidemic in the early 60s and in 

the late 90s (Šutić et al., 2003). During these epidemic stages, symptoms can be present in more 

than 90% of the plants and these can cause crop losses of more than 50% (Blaženčić, 1982; 

Starovič et al., 2004). In the middle of July, the redness affects the midribs, and then spreads to 

the entire leaf blade, then to the sword, and finally to the whole plant, reaching the maximum in 

August and September and culminating in the premature withering of the infected plant. The 

dimensions of the symptomatic plants are similar to those of asymptomatic, but the kernels are 

dry and their weight is severely compromised. In particular, the few seeds are malformed and 

ripen earlier. Duduk and Bertaccini in 2006 detected phytoplasmas belonging to ribosomal 

subgroup 16SrXII-A (“stolbur”) only in symptomatic samples, and suggested their association with 

the redness disease. In most cases corn infected fields have the most severely infected plants 

along the edges suggesting that the infection could come, through insect vectors, from wild or 

cultivated plants nearby. Some symptomatic plants were sampled in Serbia (Bojan Duduk, Institute 

of Pesticides and Environmental Protection, Belgrade, Serbia) and tested for phytoplasma 

presence, resulting positive for “stolbur” phytoplasmas. From these symptomatic and 

phytoplasma infected plant the whole cobs were collected in order to verify the phytoplasma 

transmission by seed. In total 109 seeds deriving from 6 cobs from Serbia were sterilized and then 

placed in vitro in groups of 5 in Magenta boxes on MS agar for germination. Because of the 

microbial load, it was difficult to maintain the plantlets in aseptic conditions, thus some seeds 

were directly sown in soil in the green-house under insect- proof cages. The corn gemination 

started at 3 days until one week after sowing. At 10 days from germination, each plant was tested 
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for the presence of phytoplasmas. From each plant 0.5 g of tissue was sampled for the extraction 

of nucleic acids without killing the plant. The same sampling was done after 90 days from the 

germination. The percentage of germination in vitro was also determined calculating the average 

percentages after one week from sowing (Table 2.4).  

 

Sample  Number of sown seeds in MS Number of tested seedlings 

Corn cob H 14 9 
Corn cob 1 19 13 
Corn cob 2 19 12 
Corn cob 3 19 18 
Corn cob 4 19 17 
Corn cob 5 19 10 

Total 109 79 

Table 2.4. Corn seedlings tested to analyze the phytoplasma presence. 

 

2.2.2. Seed sterilization 

According with the seed tissue two protocols of sterilization were used: 

1) Protocol A for small seeds and for thin skins seeds (sesame, tomato and oil seed rape). 

• Batches of 5-10 seeds were put in 2 ml sterile Eppendorf tubes; 

• the seeds were suspended in a solution of 1.5 ml of NaClO (sodium hypochlorite) at 15% (in 

sterile distilled water) and 2 drops of Tween 20 under laminar flow hood, in sterile tubes 

and put in gentle agitation for 15 min in a shaker; 

• NaClO solution was discarded and the seeds were washed in sterile distilled water (SDW); 

• then the seeds were washed with ethanol at 70% in SDW for 3 min, under gentle agitation; 

• discarded the ethanol, the seeds were washed 4 times with SDW dried and stored at 4°C 

until use; 

2) protocol B (corn seeds) 

• Batches of 5 seeds were put in 15 ml tubes after washing with soapy water and rinsing in 

running water for 5-10 min.  

• Under the hood, 8 ml of a solution at 80% ethanol were added for 3 minutes, maintaining 

the tubes under constant agitation. 

• Removed the ethanol, a 50% solution of NaClO (in SDW) was added for 20 minutes with the 

addition of two drops of Tween 20, maintaining the tubes under constant agitation. 

• The above two points have been repeated two times. 
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• The seeds were washed 4 times with SDW, dried maintained in Eppendorf tubes at 8°C 

until use. 

 

2.2.3. In vitro seed sowing  

After the sterilization processes the seeds were placed in groups of 5, under sterile laminar flow 

hood, in Magenta boxes containing approximately 12 ml of agar medium sterilized by autoclaving 

at 121°C for 20 minutes at a pressure of 1 atmosphere. 

The medium, based for macronutrients, micronutrients and vitamins on components and 

quantities indicated by Murashige and Skoog (1962), was solidified with the addition of 8 g/l of 

agar and enriched with 20 g/l of sucrose, the pH was adjusted to 5.80 (Table 2.5). 

The cultures were maintained in climatic chambers at a temperature of about 24±1°C and 

subjected to an illumination of 3,000 lux for a photoperiod of 16 hours per day. 

 

Macronutrients Micronutrients Vitamins 

KNO₃ 1,90 g/l H₃BO₃ 6,20 mg/l Nicotinic Acid 0,5 mg/l 

NH₄NO₃ 1,65 g/l MnSO₄ 4H₂O 22,30 mg/l Glycine 2 mg/l 

KH₂PO₄ 0,17 g/l ZnSO₄ 4H₂O 8,60 mg/l Pyridoxine 0,5 mg/l 

CaCl₂ 2H₂O 0,44 g/l KJ 0,83 mg/l Thiamine 0,1 mg/l 

MgSO₄ 7H₂O 0,37 g/l NaMoO₄ 2H₂O 0,25 mg/l   

Fe-EDTA 0,04 g/l CuSO₄ 5H₂O 0,025 mg/l Myo-Inositol 100 mg/l 
  CoCl₂ 6H₂O 0,025 mg/l   

Table 2.5. Medium composition for seed sowing (Murashige e Skoog, 1962). 

 

2.2.4. DNA extraction  

Total DNA from 0.5 g of plant leaves of S. indicum, B. napus, S. lycopersicum and Z. mays seedlings 

was extracted using a method based on chloroform and final precipitation in isopropanol 

described by Angelini et al., 2001 (Appendix 1). The DNAs extracted were then stored at -20°C 

until use. 
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2.2.5. PCR assay 

To detect the presence of phytoplasmas, PCR assays with REDtaq DNA polymerase (Sigma-Aldrich, 

Co., St. Louis, MO, USA), were carried out using universal and specific primers combinations to 

amplify the phytoplasma 16S rDNA region. In particular, in direct PCR assays P1/P7 or 

R16F2n/R16R2 or fU5/rU3 primers pairs were employed, followed by nested PCR assays on these 

amplicons diluted 1:30 using the universal primers R16F2n/R16R2 or fU5/rU3 or 

16R758f/16S1232r (=M1/M2) and the group specific primers R16(I)F1/R1. The nested PCR was 

sometime followed by a second nested PCR on the amplicons of the first reaction diluted 1:30 with 

the primers M1/M2 (Appendix 2-Table 1A). PCR analysis was performed also on tuf gene: two pairs 

of primer cocktails were used, Tuf340/Tuf890 and Tuf400/Tuf835 in direct and nested PCR assays 

respectively (Appendix 2). In each amplification assay, sterile distilled water as negative control and 

DNA of selected reference strains (Bertaccini, 2014) extracted from periwinkles as positive 

controls were added.  

2.2.6. Restriction fragment length polymorphism (RFLP) analysis 

The identification of detected phytoplasmas was performed using RFLP analyses that are based on 

the use of endonucleases able to recognize specific sequences of DNA and generating a specific 

restriction pattern. The fragments of amplified 16S rDNA region using R16(I)F1/R1, fU5/rU3 and 

M1/M2 primer pairs were subjected to digestion with Tru1I and Tsp509I restriction enzymes according 

to the manufacturer’s instructions (Appendix 3). 

2.2.7. Sequencing and phylogenetic analyses 

Selected amplicons obtained with primer pairs R16(I)F1/R1, fU5/rU3 and M1/M2 were sequenced 

directly after purification with Nucleospin extract II kit (Macherey-Nagel, Germany) at a private 

company (Macrogene, NL). The sequences were edited, assembled and analyzed following the 

methodologies described in the Appendix 4. 

2.2.8. Phytoplasma cultivation in artificial media 

2.2.8.1. Media 

In order to demonstrate that the detected phytoplasmas were viable in the plants generated from 

seeds deriving from infected mother plant, two artificial media were used: 

• PivL®: pH 7.3 ± 0.2 (Contaldo et al., 2012) Mycoplasma Experience (composition covered by 

patent), ready to use. 

• CB (Contaldo et al., 2016): pH 7.3 ± 0.2, containing TSB (Oxoid, UK; CM 1065), tryptone and 

soya peptone. This medium was sterilized for 20 min at 121°C and then a supplement 
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containing 20 ml of sterile porcine serum (Oxoid, SR0035), 25 µg/ml of ampicillin (Sigma, 

A9393) and 50 µg/ml of nystatin (Sigma, N6261) both 0.22 µm filter sterilized, 10 ml of 

autoclaved yeast extract (25% w/v) and 0.005% of phenol red for each 80 ml of medium 

were added. 

2.2.8.2. Isolation and growing condition 

The isolation trials were performed from 2 midribs per sample (tomato, corn, oilseed rape, 

sesame). The midribs were surface sterilized for 1 min in 1% NaClO, rinsed in deionized, distilled, 

sterile water (DDSW), and dried on sterile filter paper disks under sterile hood. After the ends 

discarding, midribs were moistened in 2.5 ml of each of the 2 media and sliced with sterile 

scalpels. The slurry was then transferred to an 8 ml Monovette urine tubes (Sigma Aldrich) and 

incubated at 25±1°C under atmospheric conditions. Uninoculated tubes (UT) and tubes inoculated 

with midribs from healthy (phytoplasma negative) seedlings were also maintained under the same 

conditions. The isolation procedure was repeated twice for each sample in each medium at each 

isolation time. 

When colour change from orange-red to orange-yellow occurred, 100 µl of broth cultures were 

inoculated onto plates containing 8 ml of the corresponding solid media: PivS® and CBs (solid). The 

last medium contains TSB 30 g/l, NaCl 20 g/l, agar No. 3 12 g/l (Oxoid, LP0013), autoclaved and 

then added with 0.22 µm filter sterilized ampicillin and nystatin 50 µg/ml. The incubation was 

carried out in a 2.5 l anaerobic jar (Oxoid, AG0025) in a microaerophilic atmosphere using 

CampyGen sachets (Oxoid, CN0025).  

2.2.8.3. Culture purification by sequential passages liquid/solid media 

After 24-48 hours from the agar insemination, distinct single colonies were picked and transferred 

into the corresponding fresh liquid media, for subsequent purification steps, following a slightly 

modified procedure from ICSB (1979). After colour change 100 µl of each broth culture was 0.8 µm 

filtered using syringe filter non-pyrogenic hydrophilic (Sartorius Stedim, Biotech, Germany) and 

again plated; this procedure was repeated three times per selected colony of each sample in each 

medium when there was colony formation. After the above procedure one colony was picked, 

transferred in broth medium and plated after 2 days of incubation using 1: 1,000 and 1: 10,000 

dilutions. The procedure was repeated 2 times. The two and five days old colonies were 

photographed on the plates and also under optical bifocal microscope at 40X magnification. Single 

colonies were then collected, dissolved in 100 µl DDSW, and subjected to nucleic acid extraction 
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by DNeasy Plant Minikit (Qiagen, Germany). The agar surface between colonies was also collected 

and extracted separately as negative control for each of the media that allowed colony growth. 

 

2.2.8.4. Culture purification by differential centrifugations 

After colour change, 1 ml of broth culture was centrifuged at 6,000 rpm for 10 min and the 

supernatants were centrifuged again at 14,000 rpm for 10 min. The DNAs were extracted from the 

obtained pellets by DNeasy Plant Minikit (Qiagen, Germany). The supernatants obtained from the 

first centrifugation at 6,000 rpm were plated. 

2.2.8.5. Phytoplasma molecular identification from colonies 

Phytoplasma detection and identification was carried out from colonies by specific nested 

PCR/RFLP assays on 16S rRNA gene. One microliter of extracted nucleic acid was employed as 

template using primers R16(I)F1/R1 followed by nested PCR with primers M1/M2. In each PCR and 

nested-PCR two negative control samples represented by DDSW and media not inseminated were 

used. Each 25 µl of PCR reaction mix contained 12.5 µl of 2 x Red PCR Master Mix (Rovalab, 

Germany), 10.5 µl of DDSW (Sigma) and 0.4 mM of each primer. Nested-PCR assays were carried 

out using 1 µl of a 1: 30 dilution of amplicons from direct PCR as template. Six microliters of PCR 

products were separated in 1% agarose gel, stained with ethidium bromide and visualized under 

UV transilluminator. Identification of detected phytoplasmas was done using RFLP analyses with 

Tru1I (Fermentas, Vilnius, Lithuania) restriction enzyme. RFLP products were separated in a 6.7% 

polyacrylamide gel, stained with ethidium bromide and visualized under UV transilluminator as 

reported above. 

Phytoplasma detection was also carried out in corn samples, both in colonies and liquid CB 

medium by qPCR method with SYBR Green I chemistry, as described in chapter 3. 

 

2.3. Results  

2.3.1. Germination percentage 

2.3.1.1. Sesamum indicum 

S. indicum seeds were sown both in MS medium and directly in sterile soil. After the sterilization, 

according to protocol A, 208 seeds deriving from 9 plants were sown in MS medium. The total 

germination was 17.3% with 36 germinated seeds. The germination percentage was higher for full 

and pulpy seeds as samples 5, 6, 7 and 8, but lower for empty seed as samples 1, 2, 3, 4, 9. In total 

8 seedlings were tested by PCR/RFLP analysis (Table 2.6). 
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Samples Sown seeds in MS Germinated 
seeds 

Germination 
percentages 

Tested 
seedlings 

Sesame 1 31 0 0% 0 
Sesame 2 23 2 8.7% 1 
Sesame 3 25 0 0% 0 
Sesame 4 14 0 0% 0 
Sesame 5 19 4 21.1% 1 
Sesame 6 25 9 36% 2 
Sesame 7 24 2 8.3% 1 
Sesame 8 30 19 63.3% 2 
Sesame 9 17 0 0% 1 

Total 208 36 17.3% 8 
Table 2.6. Germination percentages for S. indicum seeds sown in MS medium. 

 

After the sterilization, according to protocol A, 200 seeds deriving from 5 plants were sown in 

sterile soil (Figure 2.5.). The samples with a high germination percentage in the first sowing were 

chosen (6 and 8), but also the sample 2 in order to estimate if the cause of the difficult 

germination was the medium or the seed condition; a new sample (14) was chosen too because it 

showed slightly malformed seeds. The total germination was 95% with 190 germinated seeds. The 

germination percentage was again higher for full and pulpy seeds (2, 6, 7 and 8) and slightly lower 

for empty seed as the sample 14, but the percentage of germinated seeds was increased sowing 

them directly in sterile soil. In total 190 samples grouped in 10 seedlings per sample were tested 

by PCR/RFLP analysis (Table 2.7). 

 

Sample Sown seeds in 
soil 

Germinated 
seeds 

Germination 
percentages 

Tested seedlings (in 
groups of 10) 

Sesame 2 20 20 100% 20 
Sesame 6 42 40 95.2% 40 
Sesame 7 83 80 96.4% 80 
Sesame 8 30 30 100% 30 
Sesame 14 25 20 80% 20 
Total 200 190 95% 190 

Table 2.7. Germination percentage for S. indicum seeds sown in sterile soil. 

 



49 
 

 

Figure 2.5. S. indicum seedlings in the greenhouse. 
 

2.3.1.2. Brassica napus 

After the sterilization, according to the protocol A, 133 seeds deriving from 3 plants were sown in 

sterile soil (Figure 2.6). The total germination was 97.7% with 130 germinated seeds grouped in 10 

seedlings per sample that were tested by PCR/RFLP analysis (Table 2.8). 

 

Sample Sown seeds in 
MS 

Germinated 
seeds 

Germination 
percentage 

Tested seedlings (in 
groups of 10) 

Rape 5 42 40 95.2% 40 

Rape 6 10 10 100% 10 
Rape 7 81 80 98.8% 80 

Total 133 130 97.7% 130 
Table 2.8. Germination percentage for B. napus seeds sown in sterile soil. 

 

 

Figure 2.6. B. napus seedlings in the greenhouse. 

 

2.3.1.3. Solanum lycopersicum  

After the sterilization, according to the protocol A, 68 seeds deriving from a pool of plants of the 

same field were sown in MS medium. The total germination was 64.7% with 44 germinated seeds 

and all were tested by PCR/RFLP analysis (Table 2.9). 
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Tomato sample 
group A 

Sown seeds in MS Germinated 
seeds 

Germination 
percentage 

Tested seedlings 

Total 68 44 64.7% 44 
Table 2.9. Germination percentage for S. lycopersicum group A seeds sown in MS medium. 

 

From the S. lycopersicum plants resulted positive to phytoplasmas, it was also possible to obtain 

new seeds that were sterilized according to the protocol A and 85 seeds from 5 plants were sown 

in MS medium and transplanted in sterile soil (Figure 2.7) producing 58 plants of second 

generation with a germination percentage of 68.2%; they were all tested (Table 2.10). 

 

Sample Collected-sown 
seeds 

Germinated 
seeds 

Germination 
percentages 

Tested seedlings 

Positive samples 

Tomato 1a 0 - - - 
Tomato 1b 0 - - - 
Tomato 2 34 27 79.4% 27 
Tomato 3 0 - - - 
Tomato 9  0 - - - 
Tomato 11 7 4 57.1% 4 
Tomato 20 23 23 100% 23 
Tomato 23 4 4 100% 4 

Negative samples 

Tomato 24 17 0 0% - 
Tomato 26 85 20/20 100% 14 
Tomato 31 41 20/20 100% 14 

Table 2.10. Germination percentage for S. lycopersicum second generation seeds sown in MS medium. 

 

After the sterilization, according to the protocol A, 250 seeds deriving from a pool of plants of the 

same field were sown in MS medium. The total germination was 78.4% with 196 germinated seeds 

and all were tested by PCR/RFLP analysis (Table 2.11). 

 

Tomato sample 
group B 

Sown seeds in MS Germinated 
seeds 

Germination 
percentage 

Tested seedlings 

Total 250 196 78.4% 196 

Table 2.11. Germination percentage for S. lycopersicum group B seeds sown in MS medium. 
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Figure 2.7. S. lycopersicum seedlings in greenhouse. 

 

2.3.1.4. Zea Mays 

Z. mays seeds were sown both in MS medium and directly in sterile soil. After the sterilization, 

according to the protocol B, 36 seeds deriving from 6 plants were sown in MS medium. The total 

germination was 66.7% with 24 germinated seeds. The seeds from sample cob 5 were malformed 

and maybe this is the cause of the low germination observed. In total 10 seedlings were tested 

(Table 2.12). After the sterilization, according to protocol B, 109 seeds deriving from 6 plants were 

sown in sterile soil (Figure 2.8). The germination percentage was 82.6 % with 90 germinated seeds. 

To note that the germination performed better in soil than in MS medium increasing the 

percentage of almost 20% and 79 seedlings were tested by PCR/RFLP analysis (Table 2.13). 

Sample Sown seeds in 
MS 

Germinated seeds in 
MS 

Germination 
percentages 

Tested seedlings 

Corn cob H 6 5 83.3% 3 
Corn cob 1 6 5 83.3% - 
Corn cob 2 6 5 83.3% 1 
Corn cob 3 6 3 50% 1 
Corn cob 4 6 6 100% 5 
Corn cob 5 6 0 0% - 
Total 36 24 66.7% 10 

Table 2.12. Germination percentage for Z. mays seeds sown in MS medium. 

 

Sample Sown seeds in 
soil 

Germinated 
seeds 

Germination 
percentages 

Tested seedlings 

Corn cob H 14 12 85.7% 9 
Corn cob 1 19 14 73.7% 13 
Corn cob 2 19 12 63.2% 12 
Corn cob 3 19 18 94.7% 18 
Corn cob 4 19 19 100% 17 
Corn cob 5 19 15 78.9% 10 
Total 109 90  82.6% 79 

Table 2.13. Germination percentage for Z. mays seeds sown in sterile soil. 
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Figure 2.8. Z. mays seedlings in greenhouse. 

 

2.3.2. Phytoplasma detection 

2.3.2.1. Sesamum indicum 

The seedlings sown in MS medium were tested at 30 days after germination, the 7 seedlings 

survived to the transplanting were all negative for phytoplasma presence. The 190 plantlets 

obtained from the soil germination were grouped in 19 batches: the DNAs were extracted at 30 

days after germination and as shown in Table 2.15, 15 samples out of 19 resulted positive for 

phytoplasmas belonging to ribosomal groups 16SrI, 16SrII and 16SrXII-A.  

 

Sample Germination percentages Phytoplasma detected at 30 days 

Sesame 2A 100% 16SrXII-A*  
Sesame 2B 16SrXII-A 
Sesame 6A  

95.2% 
16SrXII-A 

Sesame 6B 16Sr? 
Sesame 6C 16SrXII-A**  
Sesame 6D 16SrII 
Sesame 7A  

 
 
 

96.4% 

16SrI 
Sesame 7B 16SrI 
Sesame 7C Negative 
Sesame 7D Negative 
Sesame 7E 16SrI 
Sesame 7F 16SrI 
Sesame 7G 16SrII 
Sesame 7H Negative 
Sesame 8A  

100% 
16SrI 

Sesame 8B 16SrI 
Sesame 8C 16SrI 
Sesame 14A 80% Negative 
Sesame 14B 16SrI 
Table 2.15. Results of phytoplasma detection in S. indicum samples (batches). * and **, RFLP 
profile is different from16SrXII-A, sequence homology is 99%, see Fig. 2.9 and 2.10. 
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a b

   c 

Figure 2.9. RFLP analyses in polyacrylamide gels of sesame samples amplified in nested PCR with primers 
fU5/rU3 and digested with Tru1I restriction enzyme; a) 1-13: samples positive to 16SrI; 14: sesame 6A 
positive to 16SrXII-A; 15: sesame 6B positive to 16Sr?; 16: sesame 6C positive to 16SrXII-A (RFLP difference 
for a SNP, single nucleotide polymorphism in sequence); 17: sesame 6D positive to 16SrII; b) 1: sesame 2A 
positive to 16SrXII-A (RFLP difference for a SNP in sequence); 2: sesame 2B positive to 16SrXII-A; c) 
reference phytoplasma strains: AY27, 16SrI-B; CrP, 16SrII-C; JR, 16SrIII; CX, 16SrIII-A; EY, 16SrV-A; FD-D, 
16SrV-D; PWB, 16SrVI; CP-1, 16SrVI-A; ASHY, 16SrVII-A; PEY, IX-C; SuV, 16SrXV; BGWL, 16SrXIV-A; CoWB, 
16SrII-F; CLP, 16SrII-A; WBDL, 16SrII-B; FBPSA, 16SrII-C; TBB, 16SrII-D; PTV, 16SrXII-A; P, marker phiX174 
HaeIII digested with fragment sizes in base pairs from top to bottom of 1,353; 1,078; 872; 603; 310; 281; 
271; 234; 194; 118 and 72.  
 

The amplicons were obtained with primers fU5/rU3 (Figure 2.9), R16(I)F1/R1 (Figure 2.10) and 

M1/M2 (data not shown). RFLP analyses on fU5/rU3 amplicons indicated the presence of 

phytoplasmas belonging to 16SrII ribosomal group, they were sequenced and showed 99% of 

identity to the sequence of 16SrII, peanut witches’ broom available in GenBank (accession number 

KX358563). Sample sesame 2A and sesame 6C amplified with primers 16R(I)F1/R1 resulted 

positive for “stolbur” and showed 99% of identity to the sequence of ‘Ca. P. solani’ available in 

GenBank (accession number KT595210). 

The samples sesame 6D and sesame 14B were also individually tested at 80 days from 

germination. The amplicons were obtained with primers fU5/rU3, R16(I)F1/R1 and M1/M2 (Figure 

2.11). Nineteen out of 20 plantlets resulted positive for phytoplasmas in groups 16SrI, 16SrII and 

16SrXII-A, in some cases in mixed infection (Table 2.16). 
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a b c 
Figure 2.10. a) RFLP analyses in polyacrylamide gels of sesame samples amplified in nested PCR with 
primers R16(I)F1/R1 and digested with Tru1I restriction enzyme; 1, 3: samples positive to 16SrI; 2, 4, 6: 
sesame positive to 16SrXII-A; 5: sesame 2A positive to 16SrXII-A (RFLP difference for a SNP in sequence); 7: 

sesame 6C positive to 16SrXII-A (RFLP difference for a SNP in sequence); 8: sesame 6D positive to 16SrII; b) 
reference phytoplasma strains: CLP, 16SrII-A; LWB, 16SrII-B; CrP, 16SrII-C; TBB, 16SrII-D; PEP, 16SrII-E; CoP, 
16SrII-F; c) CHRY, 16SrI-A; DIV, 16SrI-B; KVF, 16SrI-C; P, marker phiX174 HaeIII digested with fragment sizes 
in base pairs from top to bottom of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 72. 

 

Sample Germination percentage Phytoplasma detected in single tested 
seedlings at 80 days 

Sesame 6D1  
 

95.2% 

16SrI 
Sesame 6D2 16SrXII-A 
Sesame 6D3 16SrXII-A 
Sesame 6D4 16SrXII-A 
Sesame 6D5 16SrXII-A 
Sesame 6D6 16SrII + 16SrI 
Sesame 6D7 16SrXII-A 
Sesame 6D8 Negative 
Sesame 6D9 16SrII + 16SrI 
Sesame 14B1  

 
 
 

80% 

16SrI 
Sesame 14B2 16SrI 
Sesame 14B3 16SrII + 16SrI 
Sesame 14B4 16SrXII-A 
Sesame 14B5 16SrII + 16SrI 
Sesame 14B6 16SrI 
Sesame 14B7 16SrII+ 16SrI 
Sesame 14B8 16SrI 
Sesame 14B9 16SrXII-A 
Sesame 14B10 16SrII + 16SrI 
Sesame 14B11 16SrII + 16SrI 

Table 2.16. Results of phytoplasma detection in S. indicum single seedlings. 
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a b 

Figure 2.11. RFLP analyses in polyacrylamide gels of sesame samples amplified in nested PCR with primers 
M1/M2 and digested with Tru1I restriction enzyme; a) 1, 2, 8: sesame positive to 16SrXII-A; 6, 10: sesame 
positive to 16SrI; 3, 5, 7, 9, 11-13: sesame positive to 16SrII + 16SrI; b) reference strains: PRIVA, 16SrI-B; 
KVM, 16SrI-C; AAY, 16SrI-F; FBPSA, 16SrII-C; GVX, 16SrIII-A; EY-C, 16SrV-A; LUM, 16SrVI-A; ASHY, 16SrVII-A; 
PEY, IX-C; AT, 16SrX-A; AP-15, 16SrX-A; GSFY-1 16SrX-B; GSFY-2, 16SrX-B; LNS I, 16SrX-B; LNS II, 16SrX-B; PD, 
16SrX-C; BVK, 16SrXI-C; MOL, 16SrXII-A. P, marker phiX174 HaeIII digested with fragment sizes in base pairs 
from top to bottom of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 72. 

 

2.3.2.2. Brassica napus 

The 130 plantlets grouped to form 13 batches were tested carrying out the DNA extraction at 30 

days after germination and performing PCR analysis with primers fU5/rU3, R16(I)F1/R1 and 

M1/M2. Seven samples out of 13 resulted positive for phytoplasmas in 16SrI and 16SrXII-A groups 

at 30 days (Table 2.17, Figure 2.12). 

 

Sample Germination percentages Phytoplasma detected at 30 days 

B. napus 5°  
95.2% 

16SrI 
B. napus 5B 16SrI 
B. napus 5C Negative 
B. napus 5D Negative 
B. napus 6 100% Negative 
B. napus 7°  

 
 

98.8% 

16SrI 
B. napus 7B 16SrXII-A 
B. napus 7C 16SrI 
B. napus 7D 16SrXII-A 
B. napus 7E 16SrXII-A 
B. napus 7F Negative 
B. napus 7G Negative 
B. napus 7H Negative 

Table 2.17. Results of phytoplasma detection in B. napus samples (batches). 
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Figure 2.12. RFLP analyses in polyacrylamide gels of B. napus samples amplified in nested PCR with primers 
fU5/rU3 and digested with Tru1I restriction enzyme. B. napus 5A positive to 16SrI; B. napus 7B and 7D are 
positive to 16SrXII-A. P, marker phiX174 HaeIII digested with fragment sizes in base pairs from top to 
bottom of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 72. 

 

The 10 seedlings of samples B. napus 5B, 7A and 7E were also singly tested at 80 days from 

germination and 7 seedlings out of 20 resulted positive as shown in Table 2.18 for phytoplasmas 

belonging to ribosomal groups 16SrI, 16SrVI and 16SrXII-A (Figure 2.13). Sample 5B1 obtained in 

amplification with primers fU5/rU3 resulted positive for phytoplasmas belonging to 16SrVI 

ribosomal group, and its sequence showed 99% of identity to the sequence of 16SrVI, ‘Ca. P. 

trifolii’ available in GenBank (accession number KX092011). 

Sample Germination percentages Phytoplasma detected in single 
tested seedlings at 80 days 

B. napus 5B1  
 

95.2% 
 

16SrVI 
B. napus 5B2 16SrI 
B. napus 5B3 16SrI 
B. napus 5B4 16SrI 
B. napus 5B5 16SrI 
B. napus 5B6 Negative 
B. napus 5B7 16SrI 
B. napus 7A1  

98.8% 
16SrXII-A 

B. napus 7A2 16Sr? 
B. napus 7A3 16SrI 
B. napus 7A4 Negative 
B. napus 7A5 16SrI 
B. napus 7A6 Negative 
B. napus 7A7 16SrI 
B. napus 7E1  

 
98.8% 

16SrI 
B. napus 7E2 16Sr?  
B. napus 7E3 16SrI 
B. napus 7E4 16SrI 
B. napus 7E5 16SrI 
B. napus 7E6 16SrI 

Table 2.18. Results of phytoplasma detection in B. napus single seedlings. 
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a   b 

Figure 2.13. a) RFLP analyses in polyacrylamide gels of samples amplified in nested PCR with primers 
M1/M2 and digested with Tru1I restriction enzyme. 1: B. napus 7A2 positive to 16Sr?; 2-13: B. napus 
positive to 16SrI; b) RFLP analyses of samples amplified in nested PCR with primers fU5/rU3 and digested 
with Tru1I restriction enzyme; 1: B. napus 7A1 positive to 16SrXII-A; 2: B. napus 7E2 positive to 16Sr?; 3, 4: 
B. napus positive to 16SrI; 5: B. napus 5B1 positive to 16SrVI; P, marker phiX174 HaeIII digested with 
fragment sizes in base pairs from top to bottom of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 
72. 

 

2.3.2.3. Solanum lycopersicum 

The 44 seedlings of group A were tested at 30 and 150 days after germination: 8 resulted positive 

for phytoplasma presence at 30 days and showed the predominant presece of for phytoplasmas in 

group 16SrI; only one sample resulted belonging to subgroup 16SrXII-A (Figure 2.14a) in nested-

PCR with primers R16(I)F1/R1 and M1/M2. The sample tomato 11 resulted 16SrI positive also at 

150 days after germination (Table 2.19). 

Sample Germination 
percentages 

Phytoplasma detected 
at 30 days 

Phytoplasma detected at 
150 days 

Positive samples 

Tomato 1°  
 

64.7% 

16SrI Negative 

Tomato 1b 16SrXII-A Negative 

Tomato 2 16SrI Negative 

Tomato 3 16SrI Negative 

Tomato 9  16SrI Negative 

Tomato 11 16SrI 16SrI 

Tomato 20 16SrI Negative 

Tomato 23 16SrI Negative 

Negative samples 

Tomato 24  
64.7% 

Negative Negative 

Tomato 26 Negative Negative 

Tomato 31 Negative Negative 

Table 2.19. Results of phytoplasma detection in S. lycopersicum seedlings group A. 
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Sample Second generation 
positive/tested samples 

Second generation 
positive samples 

Phytoplasma detected 
at 30 days 

Positive samples 

Tomato 2 3/27 Tomato 2.3 16SrXII-A 

Tomato 2.12 16SrIII 

Tomato 2.19 16SrXII-A 

Tomato 11 0/4 - - 

Tomato 20 4/23 Tomato 20.5 16SrXII-A 

Tomato 20.8 16SrI 

Tomato 20.13 16SrI 

Tomato 20.17 16SrI 

Tomato 23 0/4 - - 

Negative samples 

Tomato 26 0/14 - - 

Tomato 31 0/14 - - 

Table 2.20. Results of phytoplasma detection in S. lycopersicum second generation seedlings 
obtained both from positive and negative samples. 

 

Fifty-eight second generation seedlings deriving from positive plants and 28 second generation 

seedlings deriving from negative plants were also tested at 30 days after germination: in nested-

PCR with primers R16(I)F1/R1 and M1/M2, 7 seedlings deriving from positive plants resulted 

positive for 16SrI and 16SrXII-A phytoplasmas and one sample resulted positive for 16SrIII 

phytoplasmas also with ribosomal group III specific primers (Figure 2.14b). The seedlings deriving 

from first generation negative plants resulted all negative (Table 2.20). 

 

a b 
Figure 2.14. a) RFLP analyses in polyacrylamide gels of tomato samples amplified in nested PCR with 
primers M1/M2 and digested with Tru1I restriction enzyme. Tomato 1b positive to 16SrXII-A; tomato 2 
positive to 16SrI; b) RFLP analyses of samples amplified in nested PCR with primers R16(III)F2/R1 and 
digested with Tru1I restriction enzyme. Tomato 2.12 positive to 16SrIII; CX, reference strain (16SrIII-A); P, 
marker phiX174 HaeIII digested with fragment sizes in base pairs from top to bottom of 1,353; 1,078; 872; 
603; 310; 281; 271; 234; 194; 118 and 72. 
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The 196 seedlings of group B were tested grouped in 28 batches (7 seedlings per batch) at 30 days 

after germination: 15 of them resulted positive for phytoplasma presence at 30 days from the 

germination showing positivity for phytoplasmas of groups 16SrI, 16SrV and 16SrII with primers 

fU5/rU3 and M1/M2 (Table 2.21, Figures 2.15, 2.16 and 2.17). The amplicons obtained with 

primers M1/M2 were sequenced and showed 99% of identity to the sequence of 16SrII, peanut 

witches’ broom present in GenBank (accession number KX358572). 

 

Sample Germination percentages Phytoplasma detected at 30 days 

Tomato a  
 
 
 
 
 
 
 

78.4% 

16SrI 
Tomato b Negative 
Tomato c Negative 
Tomato d 16SrI 
Tomato e Negative 
Tomato f 16SrII 
Tomato g 16SrI 
Tomato h 16SrI 
Tomato i Negative 
Tomato j 16SrII 
Tomato k Negative 
Tomato l 16SrI 
Tomato m Negative 
Tomato n Negative 
Tomato o Negative 
Tomato p Negative 
Tomato q 16SrI 
Tomato r 16SrV 
Tomato s 16SrV 
Tomato t Negative 
Tomato u 16SrI 
Tomato v 16SrI 
Tomato w 16SrI 
Tomato x 16SrI 

Tomato y Negative 
Tomato z Negative 
Tomato a1 16SrI 
Tomato b1 Negative 

Table 2.21. Results of phytoplasma detection in S. lycopersicum seedlings group B. 
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Figure 2.15. RFLP analyses in polyacrylamide gels of tomato samples amplified in nested PCR with primers 
fU5/rU3 and digested with Tru1I restriction enzyme. Tomato a, g and h positive to 16SrI; tomato f and j 
positive to 16SrII. P, marker phiX174 HaeIII digested with fragment sizes in base pairs from top to bottom of 
1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 72. 
 

a  b 
Figure 2.16. RFLP analyses in polyacrylamide gels of samples amplified in nested PCR with primers M1/M2 
and digested with Tsp509I restriction enzyme; a) tomato q and u positive to 16SrI; tomato r and s positive 
to 16SrV; b) reference strains: PRIVA, 16SrI-B; KVM, 16SrI-C; AAY, 16SrI-F; FBPSA, 16SrII-C; GVX, 16SrIII-A; 
EY-C, 16SrV-A; LUM, 16SrVI-A; ASHY, 16SrVII-A; PEY, 16SrIX-C; AP-15, 16SrX-A; GSFY-1 16SrX-B; PD, 16SrX-C; 
BVK, 16SrXI-C; MOL, 16SrXII-A. P, marker phiX174 HaeIII digested with fragment sizes in base pairs from top 
to bottom of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 72. 

 

Figure 2.17. RFLP analyses in polyacrylamide gels of tomato samples amplified in nested PCR with primers 
M1/M2 and digested with Tru1I restriction enzyme. Tomato q and u positive to 16SrI; tomato r and s 
positive to 16SrV. P, marker phiX174 HaeIII digested with fragment sizes in base pairs from top to bottom 
of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 72. 



61 
 

2.3.2.4. Zea mays 

In MS medium 24 seedlings were obtained, but only 9 were tested and, as shows the Table 2.22, 6 

were positive for 16SrI phytoplasmas alone or in mixed infection with 16SrXII-A phytoplasmas at 

30 days after germination in nested-PCR with primers R16(I)F1/R1 and M1/M2. 

Sample Germination percentages Phytoplasma detected at 30 days 

Corn H  
83.3% 

16SrI 
Corn HA 16SrI+16SrXII-A 
Corn HB+HC 16SrI+16SrXII-A 
Corn 2 83.3% Negative 
Corn 3 50% Negative 
Corn 4  

 
100% 

16SrI 
Corn 4A 16SrI 
Corn 4B Negative 
Corn 4C 16SrI 
Corn 4D Negative 

Table 2.22. Results of phytoplasma detection in Z. mays seedlings obtained in MS medium. 

 

From the sowing in sterile soil 79 corn plants were tested, and 17 were positive mostly for 16SrI 

and 16SrXII-A phytoplasmas at 40 days after germination. Of these plants, 6 were still positive at 

90 days after germination in nested-PCR with primers M1/M2, R16(I)F1/R1 and Tuf400/Tuf835 

(Table 2.23, Figures 2.18, 2.19 and 2.20). 

Sample Germination 
percentages 

Phytoplasma detected 
at 40 days 

Phytoplasma detected at 
90 days 

Corn HF 85.7% 16SrI 16SrI 
Corn HD 16SrI Negative 
Corn 1.1 73.7% 16SrI 16SrX-A 
Corn 1.2 16SrXII-A Negative 
Corn 1.4 16SrI Negative 
Corn 1D 16SrI 16SrI 
Corn 3F 94.7% 16SrV Negative 
Corn 3E 16SrI Negative 
Corn 3.1v 16SrI 16SrXII-A 
Corn 4A 100% 16SrXII-A 16SrI 
Corn 4.5 16SrI Negative 
Corn 4.3v 16SrI 16SrXII-A 
Corn 4.1v 16SrXII-A Negative 
Corn 4.4v 16SrI Negative 
Corn 4.1n 16SrI Negative 
Corn 5B 78.9% 16SrI Negative 
Corn 5.4 16SrI Negative 

Table 2.23. Results of phytoplasma detection in Z. mays seedlings obtained in sterile soil at 40 and 90 
days after germination. 
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Figure 2.18. RFLP analyses in polyacrylamide gels of corn samples amplified in nested PCR with primers 
M1/M2 and digested with Tru1I restriction enzyme. Corn 4A and 1.2 are positive to 16SrXII-A; corn 3E and 
1.1 are positive to 16SrI phytoplasmas. P, marker phiX174 HaeIII digested with fragment sizes in base pairs 
from top to bottom of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 72. 

 

 
Figure 2.19. RFLP analyses in polyacrylamide gels of corn samples amplified in nested PCR with primers 
R16(I)F1/ R16(I)R1 and digested with Tru1I restriction enzyme. Corn 3E and 1.1 are positive to 16SrI 
phytoplasmas. P, marker phiX174 HaeIII digested with fragment sizes in base pairs from top to bottom of 
1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 72. 
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a  b 

Figure 2.20. RFLP analyses in polyacrylamide gels of corn samples amplified in nested PCR with primers Tuf 
and digested with Tru1I restriction enzyme; a) corn 3E and 1.1 are positive to 16SrI; corn 4A is positive to 
16SrXII-A and corn 3F is positive to 16SrV phytoplasmas; b) reference strains: CHRYM, 16SrI-A; AY-1, 16SrI-
B; KVE, 16SrI-C; SEPT, 16SrI-II-C; WBDL, 16SrII-B; PEP, 16SrII-E; CR, 16SrIII-B; SPI,16SrIII-F; RuS, 16SrV-A; FD-
VE, 16SrV-D; FD-AS, 16SrV-C; LUM, 16SrVI-A; ASHY, 16SrVII-A; AP-15, 16SrX-A; LNp, 16SrX-B; BVK, 16SrXI-C; 
A-SLO, 16SrXII-A; BA, 16SrXII-A; SUV, 16SrXV-A; ‘Ca. P. americanum’, 16SrXVIII-A; PEY, 16SrIX-C; P, marker 
phiX174 HaeIII digested with fragment sizes in base pairs from top to bottom of 1,353; 1,078; 872; 603; 
310; 281; 271; 234; 194; 118 and 72. 

 

2.3.3. Cultivation in artificial media 

The samples of S. indicum, B. napus, S. lycopersicum and Z. mays obtained from seeds resulted 

positive for phytoplasma presence, and were also employed for phytoplasmas isolation in artificial 

media: S. indicum and B. napus did not show color changing in broth and no colonies where 

obtained. Some samples of S. lycopersicum showed color changing in broth, but the liquid medium 

resulted negative in PCR/RFLP analysis and no colonies were obtained. 

 

2.3.3.1. Zea mays 

The Table 2.24 shows the 10 corn seedlings obtained from the sowing in MS medium tested in PCR 

and used for the isolation trials in medium PivL®. Thirty tubes were tested and three samples 

resulted positive for 16SrI and 16SrI plus 16SrXII-A phytoplasmas. 
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Sample Phytoplasmas detected 
in seedlings 

Inoculated tubes tested by PCR 
after DNA extraction 

Phytoplasma detected in 
inoculated tubes 

Corn H 16SrI 3 Negative 
Corn HA 16SrI + 16SrXII-A 3 Negative 

Corn HB+HC 16SrI + 16SrXII-A 3 Negative 
Corn 2 Negative 3 Negative 

Corn 3 Negative 3 16SrI 

Corn 4 16SrI 3 16SrI+16SrXII-A 
Corn 4A 16SrI 3 Negative 

Corn 4B Negative 3 Negative 

Corn 4C 16SrI 3 16SrI+16SrXII-A 

Corn 4D Negative 3 Negative 

Total positive 6 30 3 

Table 2.24. Z. mays samples obtained in MS medium and positive to phytoplasma presence in PivL® 
medium. 

 

The 17 positive samples at 40 days and the 6 positive samples at 90 days after germination 

obtained from the sowing in sterile soil were also used for isolation trials in CB liquid medium 

obtaining after subsequent passages for purification, 52 tubes from the 40 day-old samples and 67 

tubes from the 90 day-old samples. Three tubes from both the first and the second group of 

isolated samples resulted positive for phytoplasma presence after testing by PCR/RFLP analysis 

(Table 2.25). 

 

Cob 
sample 

40 day-old 
seedlings used 
in phytoplasma 

isolation 

Tested tubes 
inoculated 

with 40 days-
old seedlings 

Positive 
tubes 

inoculated 
with 40 days-
old seedlings 

90 day-old 
seedlings used 
in phytoplasma 

isolation 

Tested tubes 
inoculated 

with 90 days-
old seedlings 

Positive 
tubes 

inoculated 
with 90 days-
old seedlings 

Corn H 2 3 0 1 2 0 
Corn 1 4 16 0 2 14 0 
Corn 3 3 16 1 1 20 1 

Corn 4 6 9 2 2 26 2 

Corn 5 2 8 0 0 5 0 

Total 17 52 3 6 67 3 

Table 2.25. Tubes of CB liquid medium inoculated with corn seedlings and tested for phytoplasmas 
presence. 
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Sample Phytoplasma 
detected in 40 

days-old 
seedlings 

Phytoplasma detected in 
tubes inoculated with 40 

days-old seedlings 

Phytoplasma 
detected in 90 

days-old seedlings 

Phytoplasma detected in 
tubes inoculated with 90 

days-old seedlings 

Corn HD 16SrI Negative Negative Negative 

Corn HF 16SrI Negative 16SrI Negative 
Corn 1.1 16SrI Negative 16SrX-A Negative 

Corn 1.2 16SrXII-A Negative Negative Negative 

Corn 1.4 16SrI Negative Negative Negative 
Corn 1D 16SrI Negative 16SrI Negative 

Corn 3.1 16SrI Negative 16SrXII-A Negative 

Corn 3E 16SrI 16SrI+16SrVII Negative 16SrI+16SrIII+16SrXII-A 
Corn 3F 16SrV Negative Negative Negative 

Corn 4E 16SrXII-A 16SrXII-A 16SrI 16SrXII-A 

Corn 4.1 16SrXII-A Negative Negative Negative 

Corn 4.2 16SrI Negative Negative Negative 

Corn 4.3 16SrI Negative 16SrXII-A Negative 
Corn 4.4 16SrI Negative Negative Negative 

Corn 4.5 16SrI 16SrI Negative 16XII-A+16SrI+16SrIII 

Corn 5B 16SrII Negative Negative Negative 

Corn 5.4 16SrI Negative Negative Negative 

Total 17 3 6 3 

Table 2.26. Z. mays samples positive in CB medium with isolation carried out at 40 and 90 days in sterile 
soil. 
 

Sample Phytoplasma detected in 
tubes inoculated with 40 

day-old seedlings 

Colonies in 
plates 

Phytoplasma detected in 
tubes inoculated with 90 

day-old seedlings 

Colonies in 
plates 

Corn HD Negative Negative Negative Negative 

Corn HF Negative Negative Negative Negative 

Corn 1.1 Negative Negative Negative 16SrI 

Corn 1.2 Negative Negative Negative 16SrI 

Corn 1.4 Negative Negative Negative Negative 

Corn 1D Negative Negative Negative Bacteria 
Corn 3.1 Negative Negative Negative Negative 

Corn 3E 16SrI+16SrVII Negative 16SrI+16SrIII+16SrXII-A 16SrI 
Corn 3F Negative Negative Negative Negative 

Corn 4E 16SrXII-A Negative 16SrXII-A Bacteria 

Corn 4.1 Negative Negative Negative Negative 

Corn 4.2 Negative Negative Negative Negative 

Corn 4.3 Negative Negative Negative Negative 
Corn 4.4 Negative Negative Negative Negative 

Corn 4.5 16SrI Negative 16XII-A+16SrI+16SrIII Bacteria 
Corn 5B Negative Negative Negative Negative 

Corn 5.4 Negative Negative Negative Negative 

Total positive 3 0 3 6 

Table 2.27. Z. mays positive samples isolated from 40 and 90 days old seedlings giving colonies positive for 
phytoplasma presence in CB medium. 
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The same 3 samples resulted positive for phytoplasma after 40 and 90 days from germination. 

Sample corn 3E was positive for mixed infection of phytoplasmas 16SrI and 16SrVII after 40 days 

and for 16SrI, 16SrIII and 16SrXII-A phytoplasmas after 90 days; sample corn 4E was positive for 

16srXII-A; sample corn 4.5 was positive for 16SrI after 40 days and for a mixed infection of 16XII-A, 

16SrI and 16SrIII after 90 days (Table 2.26). 

 

a b 

c  d 

Figure 2.22. Colonies obtained in CB medium from samples corn 1.1 (a), 4.5 (b), 3E (c) and 4E (d). 
 
 

Using tubes inseminated with plant materials from seedlings at 90 days after germination, it was 

possible to obtain colonies of different sizes and shapes for the samples corn 3E, 4.5, 4E, 1.1, 1.2 

and 1D (Table 2.27). Samples corn 3E, 4.5 and 4E generated colonies also from tubes maintained 

for seven months at 25°C after initial isolation (Figure 2.22). Single colonies were picked and 

transferred in broth for purification steps. Small size colonies resulting positive to 16SrI (aster 

yellows) were obtained from sample corn 3E. (Figure 2.23). These colonies were observed for at 

least 3 subsequent passages liquid/solid media carried out every 5 days.  

Phytoplasma presence in colonies and in CB liquid medium was also tested by qPCR analysis and 

the results are shown in chapter 3. 
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Figure 2.23. RFLP analyses in polyacrylamide gels of samples amplified in nested PCR with primers M1/M2 
and digested with Tru1I of two single colonies of samples corn 3E positive to 16SrI (corn 3Ec1, c2) and 
samples corn 4E and 3E from broth positive respectively to 16SrXII-A and 16SrI; P, marker phiX174 HaeIII 
digested with fragment sizes in base pairs from top to bottom of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 
194; 118 and 72. 

 

2.3.3.2. Differential centrifugations  

The CB broth cultures corresponding to different subsequent passages of the sample corn 3E that 

gave small colonies positive to 16SrI phytoplasmas were employed for differential centrifugations, 

DNA extraction and PCR/RFLP analysis. The analysis of the pellet obtained after a first 

centrifugation at 6,000 rpm gave negative results for phytoplasma presence, while the pellet 

obtained after a father centrifugation at 14,000 rpm resulted positive for 16SrI and 16SrXII-A 

phytoplasmas (Table 2.28). The supernatants obtained from the first centrifugation at 6,000 rpm 

were plated and small single colonies positive to 16SrI and 16SrXII-A phytoplasmas were obtained. 

 

Sample 1st pellet 2nd pellet 3rd pellet Colonies from 1st supernatant 

Corn 3Ea Negative 16SrXII - 16SrI 
Corn 3Eb Negative 16SrXII 16SrI 16SrXII 
Corn 3Ec Negative 16SrI 16SrI 16SrI 
Table 2.28. Analysis by PCR/RFLP of sample corn 3E pellets obtained from CB broth after differential 

centrifugations and analysis of the colonies obtained from first centrifugation supernatant plated. 
 

 

2.4. Discussion 

Generally, phytoplasmas spreading is explained by propagation of plant material and accidental or 

feeding movement of insect vectors. However, the sudden epidemic events associated with the 
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presence of phytoplasmas molecularly indistinguishable, in very distant geographical areas, on the 

same herbaceous species, seem to indicate the transmission of these prokaryotes also by seeds. 

In this study the germination percentages detected depend on the species and on the sowing 

substrate: when the seeds were sown in sterile soil the chance of obtain seeglings was higer then 

in sterile substarte, indicating that there is not a decreasing in germination percentage in seeds 

deriving from phytoplasma-infected mother-plants. Previous studies reported contrasting data on 

the germination percentage, for instance, Nečas et al. (2008) demonstrated that apricot seeds 

infected by ESFY showed viability and germination lower than the healthy ones, on the contrary, 

Nipah et al. (2007) reported higher germination values for seeds from diseased plants than from 

healthy plants in coconuts, indicating that the germination is variable and depending on the 

species and possibly also on the precocity of the infection. 

There are some studies that described the presence of phytoplasmas in seeds (Harrison e 

Oropeza, 1997; Harrison et al., 1994; Nipah et al., 2007; Nečas et al., 2008; Olivier e Galka, 2008; 

Calari et al., 2011) even if is still not clear how they can pass to the seed from the mother-plant 

because of structural, physical and morphological conformation of the seed. However, there are 

studies reporting the detection of phytoplasmas in seedlings from a few days after germination 

(Khan et al., 2002; Šeruga Music et al., 2004; Botti e Bertaccini, 2006; Zwolinska et al., 2010; Calari et 

al., 2011). 

In this study, the phytoplasma passage from an infected mother-plant to the first generation 

seedling through the seed was investigated: the transmission was confirmed by the detection of 

phytoplasmas in the first generation seedlings. In the case of S. lycopersicum, phytoplasmas 

presence was also detected until the second generation seedlings: this could be considered an 

evidence of the pathogens transmission because it seems unlikely to be able to detect only 

phytoplasma DNA after two generations.  

Moreover, the seedlings positive to phytoplasmas at about 30-40 days after germination were 

tested again at about 80-90 (150 for S. lycopersicum) days after germination: some samples were 

still positive even if a lower number of positive samples were detected respect the first testing.  

If the phytoplasma detected in both seeds and seedlings, were only in the form of DNA of the 

pathogen or were a viable and capable of self-replication organism was the subsequent aim of this 

research. In order to answer this question, isolation in artificial media from the seedlings was 

performed, obtaining, in the case of some samples of Z. mays, colonies positive for phytoplasmas. 
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These preliminary results indicate the viability of 16SrI (aster yellows) phytoplasmas isolated from 

corn seedlings and obtained from phytoplasma-infected mother plants and confirm the 

transmission of viable phytoplasmas trough the seeds. 

In all the analyzed species, the phytoplasmas detected in seedlings belong to different ribosomal 

groups (S. indicum: 16SrI, 16SrII and 16SrXII-A, in some cases in mixed infection; B. napus: 16SrI, 

16SrVI and 16SrXII-A; S. lycopersicum group A: 16SrI, 16SrIII, and 16SrXII-A; group B: 16SrI, 16SrII 

and 16SrV; Z. mays: 16SrI, 16srV and 16SrXII-A) indicating a mixed infection of different 

phytoplasmas, and thus supporting the always present issue of their difficult detection. However, 

in some Z. mays samples, the mixed infection of 16SrI and 16SrXII-A (aster yellows and “stolbur” 

respectively) was detected in the same seedlings.  

This range of phytoplasmas was detected employing different system and combination of primers 

in the amplification assays. For instance, the use of specific primers sometimes does not allow 

detecting some phytoplasma groups, but it was useful to confirm the presence of specific 

phytoplasmas. The use of phytoplasma generic primers instead allows to amplify phytoplasma 

groups sometimes present at lower concentration in mixed infection with, for example aster 

yellows, that is the more common phytoplasma detected in the seedlings of the species studied. 

To control the spread by seeds of phytoplasma related diseases is of relevant importance mostly 

about Z. mays that, in some areas of the word as their subtropics, undergoes two consecutive 

sowing in the same field and seeds deriving from the first growing cycle possibly infected by 

phytoplasmas could remain as disease source allowing the phytoplasmas spread through the 

insect vectors (D. maydis) to the second sowing cycle plants. 
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3. General phytoplasma detection by a q-PCR 

method using mycoplasma primers  
 

 

3.1. Introduction 

Phytoplasmas and mycoplasmas are pathogenic bacteria belonging to the class Mollicutes (trivial 

name mollicutes) because they lack a rigid cell wall (Lee et al., 1998a; Razin et al., 1998). They are 

the living prokaryotes with the smaller genome size having also a low G+C content, capable of self-

replication but with relatively limited metabolic capacities (Razin and Freundt, 1994; Oshima et al., 

2004; Kube et al., 2012). Both bacteria have economic and clinical importance. Despite their 

phylogenetic relatedness, phytoplasmas and mycoplasmas differ in several aspects, and while 

phytoplasmas are plant pathogens, mycoplasmas are vertebrate parasites (Chen et al., 2012). 

Phytoplasmas are phloem limited bacteria and cause devastating diseases in many agricultural 

important crops; they are transmitted by insects, grafting, dodder or seeds (Lee et al., 2000; Calari 

et al., 2011; Bertaccini et al., 2014). Considering that phytoplasmas pure axenic culture is still a 

problematic issue (Contaldo et al., 2016), the availability of fast and reliable molecular methods 

able to increase the sensitivity of their detection is very important. The nested-PCR method, using 

primers based on conserved genes, is the most used and sensitive methodology for phytoplasma 

detection (Lee et al., 1995), but this method may encounter contamination problems and reduced 

sensitivity due to the presence of inhibitors in plant extracts (Heinrich et al., 2001). A quantitative 

PCR (qPCR) approach could help to overcome these issues, considering the low levels of manual 

operation obtained also by system automatization that is reducing the contamination possibility 

and does not need gel electrophoresis to verify results reducing therefore the testing time. Several 

qPCR assays were developed to detect group specific phytoplasmas (Angelini et al., 2007; Torres et 

al., 2005; Baric et al., 2006; Aldaghi et al., 2009; Nejat et al., 2010; Monti et al., 2013; Mehle et al., 

2013a). However, only some qPCR assays were developed to detect all phytoplasmas based on 

both 16S rRNA (Christensen et al., 2004; Galetto et al., 2005) and 23S rRNA genes (Hodgetts et al., 

2009); these studies or considered only a limited number of ribosomal groups or they are 

expensive because based on TaqMan chemistry. A general qPCR assay able to verify phytoplasma 

presence at very low concentrations, such as in plant propagation materials (dormant cuttings, 

seedlings) or in cultures is of great practical relevance. Vega-Orellana et al. (unpublished) 
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optimised a SYBR Green-based real time PCR assays from a conventional PCR previously described 

by Botes et al. (2005) being able to detect mycoplasmas, acholeplasmas, mesoplasmas, 

hemoplasmas, spiroplasmas and ureaplasmas in a highly sensitive and specific manner with the 

combination of fluorescence reading and melting peak temperature analysis. In this study a qPCR 

analysis with these universal mycoplasmas primers pair targeting the 16S rRNA gene (Botes et al., 

2005) was tested to detect phytoplasmas belonging to several ribosomal groups. 

 

3.2. Materials and methods 

3.2.1. DNA samples 

Catharanthus roseus healthy and phytoplasma infected micropropagated shoots were used as 

source of phytoplasma DNA (Bertaccini, 2014). The following phytoplasma strains were used: 

‘Candidatus Phytoplasma asteris’ (primula virescence, PRIVA, 16SrI-B), ‘Ca. P. australasia’ (tomato 

big bud, TBB, 16SrII-D), faba bean phyllody (FBPSA, 16SrII-C), ‘Ca. P. pruni’ (peach X-disease, CX, 

16SrIII-A), ‘Ca. P. ulmi’ (elm yellows, EY, 16SrV-A), lucerne virescence (LUM, 16SrVI), ‘Ca. P. faxini’ 

(ash yellows, ASHY, 16SrVII-A), Pichris echioides yellows (PEY, 16SrIX-C), ‘Ca. P. prunorum’ 

(European stone fruit yellows, ESFY, 16SrX-B), ‘Ca. P. mali’ (apple proliferation, AP-15, 16SrX-A), 

‘Ca. P. pyri’ (pear decline, PD, 16SrX-C), leafhopper-borne phytoplasma (BVK, 16SrXI-C), ‘Ca. P. 

solani’ (“stolbur”, STOL, 16SrXII-A), Suriname virescence (SuV, 16SrXV). Field infected samples 

were also tested: peach (Prunus persica), plum (Prunus domestica) and apricot (Prunus armeniaca) 

showing symptoms of leptonecrosis (plum), chlorotic leafroll, (apricot) and yellows (peach). 

Moreover, tomato (Solanum licopersicum) and corn (Zea mays) plantlets deriving from seeds 

produced by phytoplasma-infected mother-plants were analysed (Table 3.1 and 3.2). Total DNA 

was extracted grinding with liquid nitrogen 1 g of tissue from each sample with pestles in sterile 

porcelain mortars. A healthy periwinkle shoot was prepared in the same way and employed as 

negative control. The DNA was then extracted with a phenol/chloroform method (Prince et al., 

1993) (Appendix 1) and re-suspended in 1X TE buffer, quantified by spectrophotometer at 260 nm 

and diluted until 20 ng/µl. Some DNAs extracted from both phytoplasma liquid CB medium 

(Contaldo et al., 2016) and from colonies derived from these liquid cultures were also analysed: 

Corn 3E, Corn 4.5, Corn 4E and Corn 1.1 (Table 3.3). For these samples the DNA was extracted by 

DNaesy Plant Minikit, QIAGEN (Appendix 1). 
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3.2.2. Phytoplasma detection by qualitative analyses 

The presence of phytoplasmas in the above materials was verified by conventional PCR and 

nested-PCR using 16Sr DNA universal primers. In particular, for the phytoplasma infected 

micropropagated shoots, P1 (5’-AAG AGT TTG ATC CTG GCT CAG GAT T-3’) as forward (Deng and 

Hiruki, 1991) and P7 (5’-CGT CCT TCA TCG GCT CTT-3’) as reverse (Schneider et al., 1995) generic 

primers for phytoplasma detection, were used. In nested PCR, primer pairs R16F2n (5’-

GAAACGACTGCTAAGACTGG-3’) (Gundersen and Lee, 1996) /R16R2 (5’-

TGACGGGCGGTGTGTACAAACCCCG-3’) (Lee et al., 1993a) and 16R758f (=M1) (5’-

GTCTTTACTGACGCTGAGGC-3’)/16R1232r (=M2) (5’-CTTCAGCTACCCTTT GTAAC-3’) (Gibb et al., 

1995) were used for the field-collected plants and seedlings produced by infected mother-plants. 

For the DNA samples from liquid CB medium and colonies, primers pair R16F2n /R16R2 in direct 

PCR and M1/M2 in nested PCR were employed for the qualitative analysis. 

Further PCR using GPO3F as forward (5’-TGGGGAGCAAACAGGATTAGATACC-3’) and MGSO as 

reverse (5’-TGCACCATCTGTCACTCTGTTAACCTC-3’) (Botes et al., 2005), generic primers originally 

designed for mycoplasma conventional PCR detection, were used for all samples. The PCR protocol 

described in Appendix 2 was done using the Cabru Red Taq DNA polymerase, Rovalab. In order to 

confirm phytoplasma identity, RFLP analysis of P1/P7, M1/M2 and GPO3F/MGSO PCR products 

was performed with Tru1I (Fermentas, Vilnius, Lithuania) restriction enzyme according with the 

instruction of the manufacturer (Appendix 3).  

 

3.2.3. q-PCR conditions  

The same DNAs were then tested by qPCR using the primer pair GPO3F/MGSO in an ICycler-IQ5 

(Bio-Rad). The reaction mixture was prepared in a final volume of 25 μl, including 12.5 μl of 2X 

SYBR Green I (Bio-Rad), 1 μl of GPO3F/MGSO primers, and 2.5 μl of diluted DNA (20 ng/µl). 

Amplifications were performed in 96-well Hard-shell PCR plates (Bio-Rad). The following thermal 

cycling conditions were used: one cycle at 95°C for 3 min followed by 35 cycles at 95°C for 1 min, 

61°C for 1 min, and 72°C for 1 min. To verify the specificity of the product obtained, a melting 

curve was performed at the end of the PCR reaction with an increase of the temperature 

specificity of 0.5°C/s, from 60 to 97.5°C. The assays were carried out in duplicate, each experiment 

was repeated three times and the mean comparisons were evaluated. An additional samples 

containing water instead of DNA, were added to each plate in triplicate as DNA-free negative 

controls. 
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3.2.4. qPCR specificity evaluation 

In order to determine the assay specificity, DNAs of bacteria were used as controls in qPCR assays: 

‘Ca. L. solanacearum’ from carrot (Satta et al., 2016) and X. fastidiosa strain CoDiRO-SC from olive 

from Apulia, Salento (Italy) (Contaldo et al., unpublished), Ralstonia solanacearum (strain IPV-BO 

5836) and Clavibacter michiganensis (strain IPV-BO 7695) (Biondi et al., 2014; Blasioli et al., 2014) 

from pure cultures. These latter were extracted by DNeasy Plant Mini Kit- QIAGEN and suspended 

in 1X TE buffer. All these DNAs were quantified by spectrophotometer at 260 nm and diluted until 

20 ng/µl. They were positive for specific pathogen presence with the specific primer pairs (Liefting 

et al., 2009; Jagoueix et al., 1996; Munyaneza et al., 2009; Minsavage et al., 1994; Seal et al., 1993; 

Pastrik, 2000) respectively.  

 

3.2.5. Establishment of standard curves for DNA quantification  

For phytoplasma quantification two standard curves were produced. The PCR products obtained 

from the phytoplasma strains ESFY (16SrX-B) and STOL (16SrXII-A) with the primer pair 

GPO3F/MGSO were extracted from the electrophoresis gel by Promega Wizard Gel and PCR Clean-

Up System kit, ligated into pGEM-T Easy Vector plasmid and transformed into competent 

Escherichia coli strain JM109 (Promega). The DNA fragments were then excised from plasmid and 

sequenced to verify the cloned fragment sequences. The DNA extracted was suspended in 1X TE 

buffer, quantified by using NanoQuant Infinite M200 PRO (Tecan), and stored at -20°C until use. 

3.2.5.1. Insert isolation and plasmid ligation 

The ESFY and STOL amplicons obtained with primer pair GPO3F/MGSO were run in agarose gel 1% 

in 1X TBE buffer, stained in ethidium bromide and visualized by UV. The corresponding bands were 

recovered from gel in Eppendorf tubes and purified by Wizard® SV Gel a PCR Clean-Up System 

(Promega): 10 µl per mg of membrane binding solution was added to each sample. The mixtures 

were vortexed for a few seconds and then incubated at 65°C in a thermo-block; every 2-3 minutes, 

the Eppendorf tubes were vortexed to faster dissolve the gel. Subsequently, the content of the 

tube was transferred to the SV minicolumn placed in a 2 ml collection tube and incubated at room 

temperature for 1 minute. The tube was then centrifuged for 1 minute 11,000 rpm to link only 

DNA to the membrane of the column. The eluate was eliminated and the column was put back in 

the collection tube; 700 μl of Membrane Wash solution were added. The tube was centrifuged and 

the eluate was again eliminated. The washing was repeated with 500 µl of Membrane Wash 

Solution, followed by a centrifugation at 11,000 rpm for 5 minutes. The contents of the collection 
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tube were eliminated again and the column replaced on the tube and centrifuged for 1 min. The 

column was transferred to a 1.5 ml Eppendorf tube and 50 µl of nuclease free water were added 

in the centre of the column. After a centrifugation for 1 min at 11,000 rpm, the eluate was 

recovered and stored at -20°C until use. The recovered amplicons were then ligated in the plasmid 

pGEM-T Easy Vector (Promega) following the cloning manufacturer instructions. The reaction 

mixtures were prepared in a final volume of 10 µl containing 1 µl of plasmid pGEM-T, 1 µl of T4 

DNA Ligase, 5 µl of Buffer 2X and 3 µl of insert. The ligation reaction was set up at 4°C overnight. 

3.2.5.2. Transformation and cloning in competent cells 

Three µl of ligase mixture were added to 100 µl of competent cells JM109 (Promega) and 

maintained for 30 min in ice. After that, the cells were put at 42°C for 90 seconds and in ice for 2 

min in order to obtain the plasmid uptake through the open membrane pores of the cells. After 

the addition of 900 µl of SOC medium (Fluka SOC broth), the cells were incubated, in agitation, at 

37°C for 2 hours. The cells were then plated (200 and 400 µl) in LB agar medium (Sigma) 

containing ampicillin (100 µg/ml), IPTG (isopropil-β-D-tiogalattopyranoside; 0.5 mM; Promega) 

and X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside; 80 μg/ml; Promega). The plates were 

incubated al 37°C overnight and the day after the white colonies were counted. PCR with universal 

primer pair M13f (5’-TGTAAAACGACGGCCAGT-3’) and M13r (5’-CAGGAAACAGCTATGACC-3’) was 

carried out to confirm successful transformation. Some isolated colonies were transferred with 

sterile loop on another plate of LB agar medium (Sigma) containing IPTG, X-Gal and Ampicillin, on 

which a numbered grid was drawn. The plate was incubated at 37°C overnight and then stored at 

4°C. Each sterile loop was put in PCR tube containing SDW and washed. Of this SDW, 5 µl were 

used for PCR that was visualized in agarose gel 1% in 1X TBE buffer. 

3.2.5.3. Purification and quantification of the plasmid 

The DNA of the transformed cells was extracted: from 10 ml of bacterial culture, the pellet was 

collected by centrifugation for 5 min at 10,000 rpm, and the supernatant was eliminated; 250 μl of 

resuspeding solution from Wizard Plus SV Minipreps kit were added and the pellet was re-

suspended by vortexing. Then 250 μl of cell lysis buffer were added and mixed by inverting the 

tube four times; the tubes were incubated at room temperature for 1-5 min. After that, 10 µl of 

alkaline protease solution were added and mixed. Subsequently, 350 µl of neutralization solution 

were added and mixed. The bacterial lysate was centrifuged for 10 min at 14,000 rpm at room 

temperature. Approximately 850 μl of lysate were transferred with a micropipette in a "Wizard 

Plus SV Minipreps spin column" contained in a 2 ml collection tube. The samples were centrifuged 
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for 1 min at 14,000 rpm at room temperature and subsequently, the flow-through was eliminated. 

The column was washed adding 750 µl of washing solution previously diluted with 95% ethanol. 

After centrifugation for 1 min at 14,000 rpm at room temperature, the flow-through was 

eliminated. This step was repeated adding 250 µl of washing solution, again centrifuged for 2 min 

at 14,000 rpm at room temperature. The "Wizard Plus SV Minipreps spin column" was transferred 

to a clean Eppendorf tube and the DNA Plasmid was eluted by adding 100 µl of nuclease free 

water. It was centrifuged for 1 min at 14,000 rpm at room temperature. Finally, the column was 

removed from the tube and discarded; the sample obtained was stored at -20°C until use. 

The plasmid DNA was then digested with the restriction enzyme EcoRI. The mix was composed by 

1 µl buffer 10X, EcoRI (12 U) 0.5 µl, DNA 1 µl and SDW 7.5 µl. The samples were incubated for 3 

hours at 37°C and digestion products were examined after electrophoresis in 0.8% agarose gel. 

The ligated amplicons were used in qPCR to perform the standard curves that were obtained using 

10-fold serial dilutions ranging from 2 ng ×10-3 to 2 ng ×10-8 of plasmid with insert amplicon 

GPO3F/MGSO of pESFY and pSTOL. The standard curves were constructed by the interpolation of 

the log10 of the copy number of each standard with their respective Ct values. The concentration 

was converted in copy number of insert per sample, obtaining dilutions ranging from 6.86 ×106 to 

6.86 ×102 copy numbers/µl. The number of copies of template (phytoplasma 16S rRNA gene) in the 

sample was calculated by the formula: number of copies = (amount * 6.022x1023) / (length * 

1x109 * 650). The tool used for the calculation is available at URI Genomics & Sequencing Center, 

http://cels.uri.edu/gsc/cndna.html.  

 

3.2.6. qPCR sensitivity, accuracy and repeatability evaluation 

To test the sensitivity of the qPCR, a comparison with the conventional nested PCR approach was 

carried out: 10-fold serial dilutions (from 2 ng ×10-3 to 2 ng ×10-8) of pESFY and pSTOL DNAs were 

tested in both methods with primers pair GPO3F/MGSO. According to Vaerman et al., 2004, 

accuracy was taken in care by a careful design, and calibration of the DNA standard curves. 

Repeatability of the assay was evaluated by running three replicates for each sample with a 

standard curve in each run (Bustin et al., 2009). 

 

3.2.7. qPCR data interpretation 

Analysis of the Ct value was performed using the machine supplied qPCR software (Real-Time 

Detection System software version 3.0. Bio-Rad, for Windows). About the melt-curve analysis, the 
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iCycler iQ5 system allows to record the fluorescence generated by the SYBR Green I that binds to 

the double-strand DNA and converts this florescence in temperature changes. A melt curve is a 

plot of the first derivative of the change in fluorescence intensity as a function of temperature. 

The -dF/dT on the temperature gives the peaks and the Tm for a sample is the temperature at 

which the peak is higher. A sample was considered positive for phytoplasma DNA if it had a Tm of 

82.5 ± 0.5°C. The results are reported as means ± SE. 

The software allows to calculate the fluorescence acquisition and the Ct. The slope (k) of the linear 

regression line between logarithmic values of relative DNA concentrations (y-axis) and Ct values (x-

axis) was used to calculate the amplification efficiency, E =(10[-1/k])-1, where a value of one 

corresponds to 100% amplification efficiency. The squared regression coefficient after the linear 

regression (R2) was determined. The dynamic range, that is the range of concentrations for which 

Ct values were in linear relationship with logarithms of concentrations and range of detection, was 

also determined. Relative quantification of phytoplasma samples was estimated from the 

extrapolation of the values from a 10-fold dilution standard curve. 

 

 

3.3. Results 

3.3.1. Qualitative PCR assay 

Tables 3.1 and 3.2 show the list of phytoplasma DNAs extracted from periwinkles, from field 

infected plants and seedlings and the results of their testing in conventional nested PCR with 

primer pairs P1/P7 or M1/M2 and GPO3F/MGSO. The melting temperature of the phytoplasma 

DNAs varied between 82-83ºC. The DNAs from seedlings were positive in direct PCR with primers 

GPO3F/MGSO and in second nested PCR with the system P1/P7, R16F2n/R16R2, 

16R758/16R1232r. The phytoplasma groups characterization by RFLP analysis on GPO3F/MGSO 

amplicons shows different patterns in agreement with the available classification (Lee et al., 

1998a; 1998b) (Figure 3.1). The field infected plants resulted positive in direct PCR with primers 

P1/P7 and were classified as ESFY-infected after appropriate RFLP analyses (data not shown). The 

seedlings were positive for 16SrI and 16SrXII phytoplasma ribosomal group in nested PCR/RFLP 

analyses (data not shown). 
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Table 3.1. Phytoplasmas and other bacteria used in conventional PCR/RFLP analysis and qPCR amplified 
with primer pair GPO3F/MGSO (Botes et al., 2005); n.a., not applicable; -, not obtained. 

 

 

Figure. 3.1. RFLP analyses in polyacrylamide 6.7% gels of samples amplified in PCR with primers 
GPO3F/MGSO and digested with Tru1I. From the left: marker phiX174 HaeIII digested with fragment sizes in 
base pairs from top to bottom of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 72. Phytoplasma 
strains: PRIVA, primula virescence (16SrI-B); TBB, tomato big bud (16SrII-D), FBPSA, faba bean phyllody 
(16SrII-C) CX, peach X disease (16SrIII-A); LUM, lucerne virescence (16SrVI); EY, elm yellows (16SrV-A); 
ASHY, ash yellows (16SrVII-A); PEY, Pichris echioides yellows (16SrIX-C). ESFY, European stone fruit yellows 
(16SrX-B); BVK, leafhopper-borne (16SrXI-C); STOL, “stolbur” (16SrXII-A); SuV, Suriname virescence (16SrXV-
A). 

Phytoplasma strain and acronym  
Subgroup determined by 
conventional PCR /RFLP 

Tm 
(°C)  

Ct values (°) 
(±SE) 

Primula virescence - PRIVA  16SrI-B 83.0 26.22 (±0.34) 
Tomato big bud - TBB 16SrII-D 82.5 23.84 (±0.23) 
Faba bean phyllody - FBPSA 16SrII-C  82.5 27.26 (±0.40) 
Peach X-disease - CX  16SrIII-A  - -  
Elm yellows - EY 16SrV-A  82.5 24.72 (±0.38) 
Lucerne virescence - LUM  16SrVI  82.5 20.91 (±0.13) 
Ash yellows - ASHY 16SrVII-A  82.5 26.07 (±0.29) 
Pichris echioides yellows - PEY  16SrIX-C  - -  
European stone fruit yellows - ESFY 16SrX-B  82.5 24.52 (±0.18) 
Apple proliferation - AP-15 16SrX-A  82.5 26.68 (±0.21) 
Pear decline - PD 16SrX-C  82.5 24.83 (±0.01) 
Leafhopper-borne - BVK 16SrXI-C  83.0 23.37 (±0.08) 
“Stolbur” - STOL 16SrXII-A  82.5 22.22 (±0.01) 
Suriname virescence - SuV 16SrXV  83.0 25.35 (±0.43) 

Other bacteria 

Ralstonia solanacearum n.a. - - 

Clavibacter michiganensis subsp. 
sepedonicus 

n.a. - - 

‘Ca. Liberibacter solanacearum’ n.a. 85 27.52 (±0.01) 
Xylella fastidiosa subsp. pauca strain 
CoDIRO-SC 

n.a. - - 



79 
 

 

Sample Conventional PCR/RFLP Tm (°C)  Ct values (°) (±SE)  

Corn 1.1 16SrI/X-A - - 
Corn 1.2 16SrXII-A 82.0 28.02 (±0.41) 

Corn 4.1v 16SrXII-A - - 
Corn 4.1n 16SrI - - 
Corn 3.1v 16SrI/XII-A 83.0 30.79 (±0.15) 
Corn 4.4v 16SrI 82.0 25.86 (±0.39) 

Corn 4.3v 16SrI/XII-A - - 
Corn 4.5 16SrI - - 

Tomato 9 16SrI - - 
Tomato 11 16SrI 82.5 27.44 (±0.24) 
Tomato 23 16SrI 82.5 30.01 (±0.26) 
Apricot 1C2 16SrX-B 82.5 24.55 (±0.39) 

Plum Rome 4 16SrX-B 82.5 24.69 (±0.37) 
Apricot 1A7 16SrX-B - - 

Plum Rome 7 16SrX-B - - 
Peach Verona 8 16SrX-B - - 
Peach Verona 5 16SrX-B 82.5 26.24 (±0.37) 

Table 3.2. Conventional PCR/RFLP analysis and qPCR results from field infected and seedling samples 
amplified with primer pair GPO3F/MGSO (Botes et al., 2005); -, not obtained. 

 

Sample 
Subgroup determined by 
conventional PCR /RFLP 

GPO3F/MGSO 

Tm (°C) /Ct values (°) (±SE) 

Corn 3E (liquid) 16SrI, -VII, -III, -XII Double peak: 80.5-83.0/30.56 (± 0.15) 
Corn 3E (colonies) 16SrI - 
Corn 4.5 (liquid) 16SrI, -XII - 
Corn 4.5 (colonies) Bacteria Double peak: 77.0-81.0/ 30.19 (± 0.47) 
Corn 4E (liquid) 16SrXII, -I, -III Double peak: 77.0-82.5/ 27.61 (± 0.05) 
Corn 1.1 (colonies) 16SrI - 

Table 3.3. Results of qPCR on phytoplasmas in liquid media and colonies. -, not obtained. 

 

The table 3.3 shows the result of the qPCR on DNAs from colonies and CB liquid medium: in the 

samples Corn 3E from CB liquid medium a double peak was generated indicating the presence of 

phytoplasma DNA detected by the melting at 83.0°C but also the presence of another organism 

because of the other peak at 80.5°C. The figure 3.2 shows the double peak. The same for the 

sample Corn 4E (liquid). Different is the double peak of the sample Corn 4.5 (DNA from colonies) 

where no phytoplasma was detected in fact, the two peaks have a Tm different from 82.5 ± 0.5 °C 

that is the one indicating phytoplasma presence. 
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Figure 3.2. Sample corn 3E liquid CB medium amplified in qPCR with primers GPO3F/MGSO. Two peaks 
were obtained indicating the presence of phytoplasmas, (Tm peak at 83.0°C), and another bacterium for 
the other peak (Tm peak at 80.5°C). 
 

3.3.2. q-PCR assay specificity 

The q-PCR assay using primers GPO3F/MGSO detected a wide range of phytoplasma groups (Table 

3.1), but no amplification curves were observed with the tested bacteria: R. solanacearum, C. 

michiganensis subsp. sepedonicus, and X. fastidiosa subps. pauca. ‘Ca. L. solanacearum’ instead 

was amplified but with a different Tm (85°C) and a Ct of 27.52 (±0.01). In fact, the analysis of the 

Tm allowed discriminating the results obtained from phytoplasmas to those of non-mollicutes. All 

the dissociation curves from phytoplasma DNAs showed a single peak at 82.5°C (±0.5) and 

amplification curves at Ct values from 21 and 27. The Tm of the field infected apricot, peach and 

plum samples resulted 82.5°C with Cts of 24.55, 26.24 and 24.69 respectively, in the same range of 

the phytoplasma control Ct values. Moreover, also tomato and corn seedlings positive for the 

presence of phytoplasmas belonging to the ribosomal groups 16SrI or 16SrXII resulted positive in 

qPCR with a Tm of 82.5 ± 0.5 and Ct values between 25.9 and 30.8 respectively.  

 

3.3.3. Evaluation of standard curves efficiency and phytoplasma quantification 

The melting temperature analysis of the standard curves showed a single peak at Tm 82.5°C (±0.5) 

and non-specific products were not detected. To simplify the quantification analysis, the pESFY 

and pSTOL curves were overlapped showing a perfect match in term of efficiency, thus the pESFY 

curve was selected as reference to quantify the phytoplasma titer in the samples. A mean slope of 

-3.228 and a R2 > 0.995 demonstrated an efficiency of 104.1% (Figure 3.3). Samples with Ct higher 

than the one of the last standard (standard 10-7), which corresponds to Ct 31.56, were considered 
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negative. Phytoplasma titer and copy number were evaluated as shown in table 3.4: phytoplasma 

copy number ranged from 1.75×106 (± 1.62×105) to 1.15×103 (± 4.54×102) depending on sample. 

 

 
Figure 3.3. CT values obtained with 10-fold serial dilutions ranging from 2 ng ×10-3 to 2 ng ×10-7 of plasmid 
with insert amplicon GPO3F/MGSO ESFY phytoplasma DNA. 
 
 

Sample Ct Mean (±SE) Quantity/ ng (±SE) Quantity/ copy number (±SE) 

ESFY 2×10-3 18.68 (± 0.15) 2.00×10-3 (-) 6.86×106 (-) 
ESFY 2×10-4 22.29 (± 0.16) 2.00×10-4 (-) 6.86×105 (-) 
ESFY 2×10-5 25.88 (± 0.15) 2.00×10-5 (-) 6.86×104 (-) 
ESFY 2×10-6 28.84 (± 0.37) 2.00×10-6 (-) 6.86×103 (-) 
ESFY 2×10-7 31.56 (± 0.12) 2.00×10-7 (-) 6.86×102 (-) 

PRIVA 26.22 (± 0.33) 1.15×10-5 (± 2.74×10-6) 3.95×104 (± 9.40×103) 
ASHY 26.07 (± 0.28) 1.81×10-5 (± 2.60×10-6) 4.41×104 (± 8.91×103) 
TBB 23.84 (± 0.22) 6.30×10-5 (± 9.85×10-6) 2.16×105 (± 3.38×104) 

FBPSA 27.26 (± 0.40) 5.49×10-6 (± 1.56×10-6) 1.89×105 (± 5.37×103) 
ESFY 24.52 (± 0.21) 3.88×10-5 (± 5.92×10-6) 1.33×105 (± 2.03×104) 
AP 26.68 (±0.21) 8.34×10-6 (± 1.31×10-6)  2.86×104 (± 4.48×103) 
PD 24.83 (±0.01) 3.15×10-5 (± 6.36×10-7) 1.08×105 (± 2.18×103) 

BVK 23.37 (± 0.08) 8.82×10-5 (± 4.70×10-6) 3.03×105 (± 1.61×104) 
LUM 20.91 (± 0.13) 5.09×10-4 (± 4.72×10-5) 1.75×106 (± 1.62×105) 
STOL 22.22 (± 0.01) 1.99×10-4 (± 5.16×10-7) 6.84×105 (± 1.77×103) 

EY 24.72 (± 0.39) 3.36×10-5 (± 9.31×10-6) 1.15×105 (± 3.19×104) 
SuV 25.35 (± 0.45) 2.14×10-5 (± 6.85×10-6) 7.34×104 (± 2.35×104) 

Apricot 1C2 24.39 (± 0.42) 4.35×10-5 (± 1.30×10-5) 1.49×105 (± 4.45×104) 
Plum Rome 4 24.51 (± 0.40) 3.98×10-5 (± 1.11×10-5) 1.37×105 (± 3.81×104) 

Peach Verona 5 26.07 (± 0.45) 1.30×10-5 (± 3.25×10-6) 4.47×104 (± 1.12×104) 
Corn 1.2 28.02 (± 0.41) 3.36×10-6 (± 2.37×10-7) 1.15×104 (± 8.14×102) 

Corn 3.1v 30.79 (± 0.15) 3.36×10-7 (± 1.32×10-7) 1.15×103 (± 4.54×102) 
Corn 4.4v 25.86 (± 0.39) 2.01×10-5 (± 8.65×10-6) 6.90×104 (± 2.97×104) 

Tomato 11 27.44 (± 0.24) 5.00×10-6 (± 2.53×10-7) 1.72×104 (± 8.67×102) 
Tomato 23 30.01 (± 0.26) 8.78×10-7 (± 1.60×10-7) 3.01×103 (± 5.49×102) 

Table 3.4. qPCR quantification results for standard curves, phytoplasma controls and phytoplasma infected 
samples in terms of Ct values and quantity in ng and copy number. 
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3.3.4. q-PCR assay sensitivity 

To test the sensitivity of the qPCR assay developed, the serial dilutions of the cloned fragment 

GPO3F/MGSO from ESFY phytoplasma DNA were compared with the same serial dilutions 

obtained in conventional PCR.  

 

 

Figure 3.4. Sensitivity of conventional PCR in 1% agarose gel of samples amplified with primers 
GPO3F/MGSO. From the left: standard dilutions of ESFY plasmid from 2 ×10-3 (1) to 2 ×10-8 (6); negative 
control, water (7); standard dilutions of STOL plasmid from 2 ×10-3 (8) to 2 ×10-8 (13); marker 1Kb (14), 
fragment sizes in base pairs from top to bottom of 10,000; 8,000; 6,000; 5,000; 4,000; 3,500; 3,000; 2,500; 
2,000; 1,500; 1,000; 750; 500 and 250. 
 

The last dilution observed in conventional PCR was 10-6, while the last dilution detected by this 

qPCR method was 10-7 corresponding to Ct 31.56 indicating a better performance of the qPCR; in 

Figure 3.4 it is shown the sensitivity of the qualitative PCR with primers GPO3F/MGSO where 

differences in band intensity of the different sample dilutions from 2 ng ×10-3 to 2 ng ×10-8 are 

present. The last dilution in which the DNA was detected is 2×10-6. 

 

3.4. Discussion 

Several qPCR protocols for phytoplasma specific detection and quantification were developed, 

however they mostly concern the detection of specific phytoplasma ribosomal groups. For 

example, many studies regard the detection of ‘Ca. P. mali’, ‘Ca. P. prunorum’ and ‘Ca. P. pyri’ 

representing respectively the subgroups -A, -B and -C of the ribosomal group 16SrX (Torres et al., 

2005; Nikolic et al., 2010; Yvon et al., 2009; Monti et al., 2013; Mehle et al., 2013a). Similar studies 

concern the detection of ‘Ca. P. phoenicium’ (Jawhari et al., 2015) in stone fruit, “flavescence 

dorée” (FD) and “bois noir” (BN) phytoplasmas in grapevine (Mehle et al., 2013b; Galetto et al., 

2005). However only a few qPCR universal phytoplasma assays were developed (Galetto et al., 

2005; Hodgetts et al., 2009). These studies mentioned above were obtained utilizing different 

chemistry, from SYBR Green and EvaGreen to TaqMan probes. Moreover, the primer pairs used in 
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previous studies of universal qPCR produced 500-600 bp amplicons (Christensen et al., 2004; 

Hodgetts et al., 2009) while the primer pair GPO3F/MGSO are 270 bp long, allowing to achieve 

better sensitivity. On the other hand, amplicon shorter than GPO3F/MGSO were also employed 

(Galetto et al., 2005) but they were tested only for phytoplasmas belonging to ribosomal groups 

16SrV -XII and -X. 

The aim of this study was to develop a quick very sensitive assay for the detection of a wide range 

of phytoplasmas and not just a phytoplasma-group specific assay. Among the different chemistry 

available for qPCR analysis as mentioned before SYBR Green I was chosen. SYBR green I is a 

generic dye that binds in the minor groove of the double-stranded DNA, it exhibits minimal 

fluorescence when free in solution and it is very easy to use with minimal cost. SYBR Green I has 

however the disadvantage that non-specific double stranded reaction products could be detected, 

but this fact could be overcome with a precise experimental design, such as assay specificity, 

standard curve establishment as reference, and a very careful melting peak temperature 

evaluation. With the use of SYBR Green I a melt curve of each product is required and the data are 

analysed at the end of each run.  

The Tm was already demonstrated as a valid parameter to discriminate among different viruses 

(Nicolas et al., 2002a; 2002b; Mouillesseaux et al., 2003; Varga and James, 2005; 2006), protists 

(Robinson et al., 2006) and bacteria (Tseng et al., 2003; Winder et al., 2011) because it is 

nucleotide sequence specific, and depends on the length of the amplicon and on its GC/AT 

content. 

The Tm of the field infected plants resulted in the same range of the phytoplasma controls Tm 

values. These results indicate that the qPCR assay developed in this study is able to detect 

phytoplasma presence in symptomatic field-collected plants. This confirms the data reported by 

Vega-Orellana et al. (2016) indicating that the mollicutes have a Tm different from the one of the 

non-mollicutes species such as mycoplasmas. However, to achieve comparable results it is 

important to be consistent with the use of qPCR machine and qPCR master-mix because the Tm 

can change up to 2°C depending on these parameters (Ramírez et al., 2016).  

In this study the assay specificity was clearly demonstrated: in facts, no detection or, in the case of 

‘Ca. Liberibacter solanacearum’, a different melting peak temperature (Tm 85°C) was observed 

when bacteria were tested, demonstrating that with primers GPO3F/MGSO the qPCR assay, could 

discriminate non-mollicutes also from phytoplasmas. 
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Since phytoplasmas can be present at low concentration in infected plants (Lee et al., 2000), it is 

useful to have a high-sensitive assay to detect them. An universal assay is very often less sensitive 

than a specific assay because of the mismatches present in the primers for widening their 

detection ability, nevertheless this study showed a high sensitivity, maybe due to the short size of 

the amplicons obtained. In fact, the last dilution observed in conventional PCR was 10-6, while the 

last dilution detected by this qPCR method was 10-7. Furthermore, in qualitative PCR, the 

phytoplasma sample DNAs were amplified in direct PCR with primers GPO3F/MGSO, instead with 

other phytoplasma primer pairs at least a nested PCR was needed for this. 

In order to quantify the phytoplasma titer in the samples, two standards curves were built using 

serial dilutions of the two plasmids pESFY and pSTOL containing GPO3F/MGSO amplicon. Several 

tests to set the qPCR conditions and standards curves were performed, and it was observed that 

the curves of the two plasmids were overlapped; therefore the use of pESFY curve simplify the 

quantification of the samples from field (plum, apricot and peach) in agreement with several 

reported qPCR experiments (Torres et al., 2005; Pignatta et al., 2008; Yvon et al., 2009; Nikolić et 

al., 2010).  

With this assay a wide range of phytoplasmas belonging to different ribosomal groups can be 

detected and quantified based on a single standard curve. This work could contribute to 

implement phytoplasma detection in plant materials, as seedlings which have very low 

phytoplasma titer, until 1.15×103 (± 4.54×102) copy number.  

Up today the phytoplasma cultivation in artificial media is still problematic, even if good results 

were recently obtained (Contaldo et al., 2016). In this study, the DNAs extracted from colonies and 

CB liquid medium are sometimes the results of a co-presence of phytoplasma and other bacteria, 

because selective media for phytoplasmas are not yet developed. The application of the same 

protocol used for DNAs from plants, to DNAs from colonies and from CB liquid medium showed a 

partial gap in the ability of the primer pair GPO3F/MGSO to detect phytoplasmas: the presence of 

double peaks indicates detection of two organisms. A good deal is represented by possibility to 

detect phytoplasmas by the Tm value that must be 82 ± 0.5 °C. The setting of a different qPCR 

assay with other primers specific only for phytoplasmas has to be considered for the future in 

order to detect and quantify the phytoplasma titre and verify effectiveness of different developed 

media in supporting specific phytoplasma growth. 
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4. Simultaneous detection of mixed ‘Candidatus 

Phytoplasma asteris’ and ‘Ca. Liberibacter 

solanacearum’ infection in carrot  
 

(From Satta et al., Phytopathologia Mediterranea (2016) 55, 3, 401−409 
with permit of the senior editor) 

 

 

4.1. Introduction 

‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ are phloem limited and insect-transmitted 

bacteria associated with economically important plant diseases. During surveys on carrot (Daucus 

carota L.) carried out in the municipality of Guía, on the North Atlantic island of Gran Canaria 

(Spain), symptoms of leaf curling with yellow, bronze, and purple discoloration, twisting of 

petioles, stunted growth of shoots and roots, and proliferation of secondary roots were observed. 

Nine fields showing symptoms possibly related to ‘Candidatus Liberibacter’ and ‘Candidatus 

Phytoplasma’ presence were observed. The percentage of symptomatic plants ranged from 

approx. 5 to 35% per field and no psyllids were detected in any of the fields at the time of the 

survey. 

The symptom observed (Figure 4.1) resembled those reported by Duduk et al., (2009) and 

Munyaneza (2010a), associated with the presence of phloem-inhabiting bacteria, in particular 

‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ species. The first group are prokaryotes 

related to the α-Proteobacteria, which are Gram negative bacteria with thin cell walls 

(Munyaneza, 2012), and are associated with economically important diseases such as citrus 

huanglongbing (HLB) (Bové, 2006) and zebra chip (ZC) of potato (Solanum tuberosum) in America 

(Crosslin et al., 2010; Secor et al., 2009; Wen et al., 2009). Yellows in tomato (Solanum 

lycopersicum) associated with the presence of potato psyllids (EPPO, 2013; Munyaneza et al., 

2010b) and vegetative disorders in celery (Apium graveolens) evidenced by abnormal numbers of 

shoots, curling of stems, and yellowing (Teresani et al., 2014), were linked with the presence of 

these prokaryotes and in particular of ‘Candidatus Liberibacter solanacearum’ haplotypes. 

Phytoplasmas are also phloem limited and insect-transmitted bacteria that lack cell walls and are 

associated with severe diseases in many important crops worldwide (Bertaccini et al., 2014). Aster 
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yellows (16SrI-B) phytoplasmas have previously been detected in carrots in mainland Spain, while 

“stolbur” (16SrXII-A) phytoplasmas were detected in the Canary Islands, Spain (Font et al., 1999).  

 

    

Figure 4.1. Two fields showing disease symptoms in carrot (variety Cordoba), in Guía, Gran Canaria Island 
(Spain). 

 

4.2. Materials and methods 

4.2.1. Field sampling 

Samples from carrot (variety Cordoba) collected in 2015 and 2016 from, respectively, 26 and eight 

symptomatic plants were randomly selected in two fields located in the North of Gran Canaria 

Island. Samples were also collected from two asymptomatic plants in each year and each field as 

negative controls. 

4.2.2. Total DNA extraction 

Total DNA was extracted from 1 g of leaf tissue samples ground in mortars with liquid nitrogen, 

using a reported method based on cetyl-trimethyl-ammonium-bromide (CTAB) (Angelini et al., 

2001) (Appendix 1). 

4.2.3. Amplification protocols 

The extracted DNA samples were tested by PCR using the primer pairs reported in Table 4.1 to 

verify the presence of ‘Ca. L. solanacearum’ and ‘Ca. Phytoplasma’ spp. DNA samples from 

phytoplasma strains maintained in collection (Bertaccini, 2014) were also employed as positive 

controls for phytoplasma detection: in particular, ash yellows (ASHY, (16SrVII-A); European stone 

fruit yellows (ESFY, 16SrX-B); “stolbur” (STOL, 16SrXII-A); aster yellows (AY, 16SrI-B); faba bean 

phyllody (FBPSA, 16SrII-C); peach X disease (CX, 16SrIII-A) and Picris echioides yellows (PEY, 16SrIX-
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C) were used. DNA samples from asymptomatic carrots and samples containing sterile distilled 

water as template were used as negative controls.  

 

Table 4.1. The table describes the PCR systems used to detect ‘Ca. L. solanacearum’ presence in carrot 
DNAs using primer pairs specific for its 16S rRNA (Clipo-F /O12c and OA2/O12c) and ribosomal protein 
rplJ/rplL (CL514F/CL514R). To detect ‘Ca. Phytoplasma’ spp. The phytoplasma universal (P1/P7, 
R16F2n/R16R2 and M1/M2) and group 16SrI- specific primers (R16(I)F1/R16(I)R1) were employed. 
 

To detect phytoplasmas, the direct PCRs were carried out with primer pair P1/P7 and the first 

nested amplification was performed in two systems: system I, with the primer pair R16F2n/R16R2; 

and system II, with primer pair R16(I)F1/R16(I)R1 (Table 4.1). A second nested PCR was carried out 

with the primer pair 16R758f/16S1232r (=M1/M2) in both systems (Table 4.1). For the PCR 

protocols followed, Promega Taq was used as described in Appendix 2. Identification of detected 

phytoplasmas was performed using RFLP analyses with Tru1I (Fermentas) (Appendix 3). Virtual 

RFLP analyses were also carried out on 967 bp of the 16S ribosomal gene from the obtained ‘Ca. L. 

Name Sequence 5’-3’ Literature  Amplicon length (bp)  Gene(s) 

Reported target ‘Ca. L. solanacearum’ 

Clipo-F (f) TACGCCCTGAGAAGGGGAAAGATT Secor et al., 2009 
1,070 16S rRNA 

O12c (r) GCCTCGCGACTTCGCAACCCAT Jagoueix et al., 1996 

OA2 (f) GCGCTTATTTTTAATAGGAGCGGCA Liefting et al., 2009 
1,168 16S rRNA 

O12c (r) GCCTCGCGACTTCGCAACCCAT Jagoueix et al., 1996 

CL514F CTCTAAGATTTCGGTTGGTT 

Munyaneza et al., 2009 669 

ribosomal 

protein 

rplJ/rplL 

CL514R TATATCTATCGTTGCACCAG 

Reported target ‘Ca. Phytoplasma’ spp. 

P1 AAGAGTTTGATCCTGGCTCAGGATT Deng & Hiruki, 1991 

1,784 

16S rRNA + 

spacer + 

beginning of 

23S rRNA 

P7 CGTCCTTCATCGGCTCTT Schneider et al., 1995 

R16F2n GAAACGACTGCTAAGACTGG  Gundersen & Lee, 1996 
1,248 16S rRNA 

R16R2 TGACGGGCGGTGTGTACAAACCCCG  Lee et al., 1993a 

R16(I)F1 

R16(I)R1 

TAA AAG ACC TAG CAA TAG G 

CAA TCC GAA CTA AGA CTC T 
Lee et al.,, 1994 1,095 16S rRNA 

16R758f 

(=M1) 

GTCTTTACTGACGCTGAGGC 

Gibb et al., 1995 509 16S rRNA 
16S1232

r (=M2) 

CTTCAGCTACCCTTTGTAAC 
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solanacearum’ sequences and reference sequences for the reported haplotypes (A, B, C, D and E) 

available in Genbank, using pDRAW32 (http://www.acaclone.com/). 

 

4.2.4. Phylogenetic analyses 

Amplified products of selected DNA samples obtained from all the primer pairs employed were 

purified and directly sequenced in both directions with the primers used in amplification by 

Macrogene (the Netherlands). The sequences were aligned using CromasPro 2.4 software. They 

were then compared with nucleotide sequences in the GenBank database using BLAST at the 

National Center for Biotechnology Information (NCBI) website (http://ncbi.nlm.nih.gov/BLAST). 

Phylogenetic analyses were carried out using the obtained 16S rDNA sequences, sequences from 

ribosomal protein gene rplJ/rplL and sequences of ‘Ca. L. solanacearum’ haplotypes described in 

the literature. ‘Ca. P. asteris’, carrot 2 sequence and ‘Ca. L. asiaticus’ were used as outgroups 

according with the sequence employed. The evolutionary history in both cases was inferred using 

the Minimum Evolution method (Rzhetsky and Nei, 1992). The evolutionary distances were 

computed using the Maximum Composite Likelihood method (Tamura et al., 2004) and were in 

the units of the number of base substitutions per site. The ME trees were searched using the 

Close-Neighbor-Interchange (CNI) algorithm (Nei and Kumar, 2000) at a search level of 1. The 

Neighbor-joining algorithm (Saitou and Nei, 1987) was used to generate the initial trees. All 

positions containing gaps and missing data were eliminated. Evolutionary analyses were 

conducted in MEGA6 (Tamura et al., 2013). 

 

 

4.3. Results 

Positive results were obtained in PCR and nested PCR with all the primer pairs and primers 

combinations used. The negative controls as well as four of the symptomatic samples resulted 

negative with all the primers and systems employed. In particular, in 2015 and 2016 respectively, 

the results were: 16 of 26 (61.5%) and four of eight (50%) positive samples with primer pair Clipo-

F/O12c (998 bp), 22 of 26 (84.6%) and eight of eight (100%) with primers OA2/O12c (1,168 bp), 

and 22 (84.6) and six (75%) with primers CL514F/R (669 bp). All the amplicons were of the 

expected length (data not shown). Twenty-six positive samples were obtained with primer pairs 

M1/M2 in nested amplification: 16 (61.5%) in 2015 and six (75%) in 2016 were obtained by system 

I, and four (15.4%) in 2015 by system II (Table 4.2).  
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Primers and primer 

combinations 

2015 2016 

‘Ca. P. asteris’ ‘Ca. L. solanacearum’ ‘Ca. L. solanacearum’ 

16S rRNA gene primer combinations 

ClipoF/O12c - 61.5% 50.0% 

OA2/O12c - 84.6% 100% 

System I (P1/P7 + R16F2n/R2 

+ M1/M2) 
- 61.5% 75.0% 

System II (P1/P7 + 

R16(I)F1/R1 + M1/M2) 
15.4%* - - 

Ribosomal protein gene rplJ/rplL primer 

CL514 F/R - 84.6% 75.0% 

Table 4.2. Results of ‘Ca. L. solanacearum’ and ‘Ca. P. asteris’ detection in carrot with the different primer 
combinations. ‘Ca. L. solanacearum’ was detected with the primers ClipoF/O12c, OA2/O12c and CL514 F/R 
but also with the System I (P1/P7 + R16F2n/R2 + M1/M2). ‘Ca. P. asteris’ was detected with the System II 
(P1/P7 + R16(I)F1/R1 + M1/M2); *Mixed infection with ‘Ca. L. solanacearum’; -, not tested. 

 

RFLP analyses carried out on the M1/M2 amplicons using Tru1I restriction enzyme showed the 

presence of diverse profiles. In particular, 22 positive samples, amplified with nested PCR system I, 

showed RFLP profiles identical to each other that matched with the virtual profile of the same 

amplicon from carrot 1 (Figure 4.2a). The remaining four amplicons obtained with nested PCR 

system II showed profiles referable to those of phytoplasmas belonging to the ribosomal group 

16SrI (Figure 4.2b). 

The CL514F/R sequenced amplicons showed 100% identity to each other and to the homologous 

sequence of a ‘Ca. L. solanacearum’ strain from Morocco [GenBank accession number (AC) 

KJ754507]; the 526 bp sequence of sample carrot 1 was deposited in GenBank under AC 

KX181862. The direct sequencing and alignment of selected ClipoF/O12c and OA2/O12c amplicons 

showed 100% of sequence homology to each other and to the ‘Ca. L. solanacearum’ strain found 

in carrots in Morocco (AC KJ740160). The aligned sequence of 967 bp from OA2/O12c amplicon of 

the same carrot 1 strain was deposited in GenBank under AC KX163276. 
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a b 

Figure 4.2. RFLP analyses in polyacrylamide gels of samples amplified in nested PCR with primers M1/M2 
and digested with TruI (= Tru1I). In a), carrot samples 7, 1, 5, 9 amplified with system I and the virtual RFLP 
profile of the strain carrot 1 (AC KX163276) sequence cut at the same length as the M1/M2 amplicons and 
digested with the same enzyme (MseI and Tru1I are isoschizomers). The middle bands present in the real 
RFLP (on the left) represents non-specific amplification (primer dimers). In b) carrot sample 2 amplified 
with system II and reference phytoplasma strains: ash yellows (ASHY, 16SrVII-A); European stone fruit 
yellows (ESFY, 16SrX-B); “stolbur” (STOL, 16SrXII-A); aster yellows (AY, 16SrI-B); faba bean phyllody (FBPSA, 
16SrII-C); CX, peach X disease (16SrIII-A); Picris echioides yellows (PEY, 16SrIX-C). P, marker phiX174 HaeIII 
digested with fragment sizes in base pairs from top to bottom of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 
194; 118 and 72. 
 

The sequences obtained from M1/M2 amplicons in nested PCR system I (510 bp) were identical to 

each other and showed 99% of identity to ‘Ca. L. solanacearum’ strain detected in carrots in 

Finland (AC GU373048); in particular they showed one single nucleotide polymorphism (SNP) at 

position 116 nt where a T was substituted with a C. One or two further SNPs were also present to 

other ‘Ca. L. solanacearum’ strains detected in Bactericera cockerelli, in pepper, potato and 

tomato in the USA, Mexico and Thailand (AC KF776424, KF776423, KF776422 and KC771216). The 

carrot sequence from sample 1 was deposited in Genbank under AC KX163277. The sequenced 

strains amplified with nested PCR system II were 100% identical to each other, and the 498 bp 

sequence of strain carrot 2 was deposited in GenBank (AC KX163275). These sequences showed 

99% identity to aster yellows phytoplasma strains available in GenBank, with one SNP at position 

269 nt where a C substitution of a T was present. 

These sequencing results verify that the profile obtained in RFLP analyses in all the samples 

amplified in nested PCR with system I was referable to the ‘Ca. L. solanacearum’ profile: (Figure 

4.2a). On the other hand, the four positive samples obtained in amplification system II showed 

RFLP profiles referable to phytoplasmas (Figure 4.2b), in particular to aster yellows (16SrI) as 

confirmed by the sequencing results. Phytoplasma presence was therefore detected in only four 

samples and in mixed infection with ‘Ca. L. solanacearum’. The primer pair M1/M2, known as 
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universal for phytoplasmas, detected ‘Ca. L. solanacearum’ when used in nested PCR system I and 

aster yellows phytoplasmas in nested PCR system II (Table 4.2). 

The detected SNPs in the 16S rRNA, 16S/23S ISR and rplJ/rplL ribosomal protein sequences of ‘Ca. 

L. solanacearum’ strains from Gran Canaria agreed with those present in the haplotype D (Nelson 

et al., 2012). The same results were obtained using the virtual RFLP analyses on OA2/O12c 

amplicon sequences. These further confirm the assignment of the studied ‘Ca. L. solanacearum’ 

strains to the haplotype D, and allow differentiation of all the reported haplotypes (Figure. 4.3). In 

particular, StuI (Figure 4.3A) differentiates haplotype B from all the others; MboI, BsmAI, SetI 

(Figures 4.3B, C and D) and BsaI (data not shown) differentiate haplotype E from all the others; 

SetI (Figure 4.3D) differentiates haplotypes C and D from haplotypes A and B, BstAPI (Figure 4.3E) 

and MwoI (data not shown) differentiate haplotypes C and D from all the others; while XbaI 

(Figure 4.3F) differentiate the haplotype C from all the others. 

 

 

Figure 4.3. Virtual RFLP gel DNA with selected restriction enzymes showing the polymorphisms among ‘Ca. 
L. solanacearum’ detected in carrot and the diverse haplotypes reported on full length OA2/O12c 
sequences, obtained in this work (Carrot) and retrieved from Genbank. Enzymes used are reported at the 
bottom of each gel. P, marker phiX174 HaeIII digested with fragment sizes in base pairs from top to bottom 
of 1,353; 1,078; 872; 603; 310; 281; 271; 234; 194; 118 and 72. 
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Figure 4.4. Phylogenetic tree showing the evolutionary history using the Minimum Evolution method 
enclosing ribosomal protein gene rplJ/rplL sequences from 'Ca. L. solanacearum' from different geographic 
areas; 'Ca. L. asiaticus' was used as outgroup. In bold sequences of strains obtained from carrots 1, 2 & 7 
from Guia, Gran Canaria, Canary Islands, Spain; on the right geographic distribution and in parenthesis 
GenBank accession numbers. The percentage of replicate trees in which the associated taxa clustered 
together in the bootstrap test (1,000 replicates) is shown next to the branches (Felsenstein, 1985). The 
analysis involved 15 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All 
positions containing gaps and missing data were eliminated. There were a total of 524 positions in the final 
dataset. 

 

Phylogenetic analyses on CL514F/R sequences confirmed the clustering of the obtained sequences 

with those of ‘Ca. L. solanacearum, in particular with haplotype D sequences (GenBank AC 

HQ454302). The CL514F/R sequences showed 100% identity with ‘Ca. L. solanacearum’ strains 

haplotype D (Figure 4.4). 

 

4.4. Discussion 

The results obtained in this study indicate the presence of ‘Ca. L. solanacearum’ and phytoplasmas 

belonging to the ribosomal group 16SrI in mixed infections in samples of carrots from Gran 

Canaria Island (Spain). Virtual RFLP analyses were applicable for ‘Ca. L. solanacearum’ as an 

alternative tool for haplotype discrimination. It could be easier than SNPs detection on two genes 

as required now since only one gene and no sequencing can provide the same result. The nested 

PCR system(s) reported also allowed detection and RFLP differentiation of the two detected 

prokaryotes, as confirmed by the sequencing results. 
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‘Ca. L. solanacearum’ was described in 2008 (Hansen et al., 2008; Liefting et al., 2008) and it was 

shown to be associated with zebra chip disease of potato tubers, an economically important 

pathogen for solanaceous crops in New Zealand and the USA. In Europe, Ca. L. solanacearum’ has 

only been previously detected in carrot and celery (Alfaro-Fernández et al., 2012a; Hansen et al., 

2008; Liefting et al., 2009; Secor et al., 2009; Munyaneza et al., 2010a; Munyaneza, 2012; 

Munyaneza et al., 2010b; Buchman et al., 2011; EPPO, 2012). In addition, the bacterium causes 

serious damage in pepper (Capsicum annuum) in Mexico, aubergine (Solanum melongena) in 

Honduras, tamarillo (Solanum betaceum) and tomatillo (Physalis peruviana) in New Zealand, and 

tobacco (Nicotiana tabacum) in Honduras. It also infects weeds in the family Solanaceae 

(Munyaneza, 2012; EPPO 2013). Five haplotypes of ‘Ca. L. solanacearum’ have been described that 

are discriminated by the presence of specific single SNPs in the 16S rRNA, 16S/23S ISR and 50S rplJ 

and rplL ribosomal protein genes (Nelson et al., 2011). Two haplotypes (LsoA and LsoB) are 

transmitted by the psyllid Bactericera cockerelli. A third (LsoC) was detected in carrots in Finland, 

Sweden and Norway, and is transmitted by the carrot psyllid Trioza apicalis (Nissinen et al., 2007; 

Nelson et al., 2011). Haplotypes D and E were associated with carrots and celery in Spain and in 

the Canary Islands and are vectored by the psyllid Bactericera trigonica (Alfaro-Fernández et al., 

2012b; Teresani et al., 2014). The same psyllid was previously demonstrated to vector the disease 

from carrot to carrot, when only phytoplasmas were reported to be associated with the disease 

(Font et al., 1999). 

Further research is in progress to confirm the transmission of both prokaryotes by seeds (Bertolini 

et al., 2015; Calari et al., 2011) and/or by insect vectors, considering that psyllids were not 

detected in the present survey and that the disease is present in Gran Canaria at epidemic levels 

similar to those reported in other affected areas. 
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5. Appendix 

 

Appendix 1: DNA extraction methods 

 

• Angelini et al., 2001 

This method of extraction was employed for the purification of nucleic acids from 0.5 g of plant 

tissue through the use of chloroform and final precipitation in isopropanol. 

The samples were grinded in sterile porcelain mortars through the use of liquid nitrogen and 

sterile pestles; 7 ml of 3% CTAB (cetyltrimethylammonium bromide) buffer per gram of material 

(with addition of 2 µl of 0.2% 2-mercaptoethanol per ml of buffer) were used for the 

homogenization of the tissue. Then 1 ml of each sample was transferred in 2 ml Eppendorf tubes 

and incubated at 65°C for 20 minutes; 1 ml of chloroform was added to each sample; the samples 

were subjected to centrifugation at 11,000 rpm for 10 minutes in a microcentrifuge. The 

supernatant obtained was mixed with 1 ml of isopropanol and incubated at -20°C for 5 min. After 

centrifugation at 11,000 rpm for 15 minutes and elimination of the supernatant, the pellet was 

washed with 1 ml of ethanol 70% and centrifuged at 11,000 rpm for 5 min, ethanol is discarded 

and the samples are air-dried at room temperature. The pellet was re-suspended in 100 µl of TE 

(Tris-EDTA: ethylenediaminetetraacetic acid; 10 mM Tris-HCl, pH 8.0 and 1 mM EDTA) buffer. 

 

• Prince et al., 1993  

Total nucleic acid was extracted from 1 g of tissue of each sample (frozen until use) and ground in 

liquid nitrogen using a sterilized mortar and pestle with the addition of 8 ml of grinding buffer 

[K2HPO4 3H2O, 21.7 g/l; KH2PO4, 4.1 g/l; sucrose, 100 g/l; BSA (Fraction V), 1.5 g/l; PVP-10, 20 g/l; 

L-ascorbic acid, 0.53 g and adjust pH to 7.6 with 2N NaOH]. The tissue was transferred in plastic 

tubes and centrifuged at 13,000 rpm for 20 min at 4°C. The supernatant was discarded, and 4 ml 

of extraction buffer (100 mM Tris-HCl pH 8.0, 100 mM EDTA, 250 mM NaCl) and 80 μl of 

proteinase K (5 mg/ml in Sterile Distilled Water-SDW) were added. The pellet was gently re-

suspended, adding 440 μl of 10% sarkosyl and incubating 1-2 hours at 55°C. The samples were 

centrifuged for 10 min at 8,000 rpm at 4°C, the supernatant was then saved and 0.6 volumes of 

isopropanol (2.5 ml) were added and mixed gently. The tubes were placed at –20°C for 30 min. 

After centrifugation at 8,000 rpm for 15 min the pellet was re-suspended in 3 ml Tris-EDTA (10 



96 
 

mM Tris-HCl, pH 8.0 and 1 mM EDTA) buffer, adding 75 μl 20% SDS and 60 μl of proteinase K, 

mixed gently and incubated 1 hour at 37°C. Afterward, 525 μl 5 M NaCl and 420 μl CTAB/NaCl 

(10% CTAB in 0.7 M NaCl) solutions were added, mix thoroughly and incubated 10 min at 65°C. 

Then 2 ml of chloroform/isoamylic alcohol and 2 ml of phenol were added, mixed thoroughly and 

centrifuged at 8,000 rpm for 10 min. The supernatant was transferred to a new tube and an equal 

volume of chloroform was added, centrifugation at 8,000 rpm for 10 min was then performed. The 

supernatant was transferred to a Corex tube and added with 2.5 ml of isopropanol alcohol then 

placed at 4°C overnight. Next day, tubes were centrifuged at 11,000 rpm for 30 min at 4°C. The 

supernatant was eliminated and the pellet washed in 1 ml of cold ethanol 70% and then 

centrifuged 11,000 rpm for 10 min at 4°C. Pellet was dried and suspended in 50-100 μl of TE buffer 

and maintained at 8°C for one month or at –20°C for longer periods. 

 

• DNaesy Plant Minikit, QIAGEN 

Total nucleic acid was extracted from 250 µl of liquid medium or from single colonies added to 250 

µl of SDW. Firstly, 400 µl of lysis buffer AP1 were added and the samples were vortexed. The tubes 

placed at 65°C for 10 min were shacked 2-3 times during incubation; 130 μl Buffer AP2 (containing 

acetic acid) were added to precipitate proteins, polysaccharides and detergent, the tubes were put 

5 min on ice and centrifuged at 13,000 rpm for 5 min. The lysate was then transferred, taking care 

to not disturb the pellet in a column with a membrane, placed on a 2 ml tube and subjected to 

centrifugation for 2 min at 13,000 rpm. This membrane retains the majority of the precipitates and 

cell fragments. Subsequently, 1.5 volumes of Buffer AP3 (containing guanidine hydrochloride) 

were added. The obtained mixtures were transferred to a new column containing a membrane, 

placed on a 2 ml tube, and subjected to centrifugation for 1 min at 8,000 rpm. In this step the 

impurities are removed, thanks to the silica gel membrane that retains the DNA. Placing the 

column into a new 2 ml collection tube, the membrane was washed through the addition of 1,000 

μl in two times of Buffer AW and centrifuging for 1 min at 8,000 rpm and for 2 min at 13,000 rpm. 

The DNA bounded to the membrane was eluted in a new 1.5 ml tube, adding for 2 times 25 µl of 

Buffer AE, incubated for 5 min at room temperature and centrifuged for 1 min at 8,000 rpm. 
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Appendix 2: 16Sr gene and elongation factor (tuf) gene amplification (PCR and nested-PCR)   

 

• REDtaqDNA polymerase, Sigma-Aldrich, Co., St. Louis, MO, USA 

Direct PCR was performed in a 25 μl reaction (Schaff et al., 1992) prepared by mixing, in 0.5-

ml tubes, 17.5 µl SDW, 10X REDtaq PCR reaction buffer, 0.2 mM dNTPs (Invitrogen Life 

Technologies, Carlsbad, CA, USA), 0.4 µM of each primer, 0.05 U/µl REDtaqDNA polymerase 

(Sigma-Aldrich, Co., St. Louis, MO, USA). As template, 1 μl of DNA extracted by Angelini et al., 

2001 method and diluted 1: 30, was used. The reactions were performed in a Thermal Cycler 

BIOMETRA (Germany) without hot lid, with the following parameters for 16Sr gene: 94°C for 

10 min, 35 cycle of 94°C for 1 min, 55°C (or 50°C according to the primers annealing 

temperature) (Table 1A) for 2 min, 72°C for 3 min and a final extension for 10 min at 72°C. PCR 

and nested-PCR reactions were carried out as described above. For tuf gene, two pairs of 

primer cocktails were used (Table 1A). Each primer cocktail consisted of several variants of the 

same primer mixed in equimolar proportions to the final concentration of 10 μM. PCR thermal 

conditions for direct and nested-PCR were 94°C for 3 min followed by 35 cycles of 94°C for 15 

sec, 54°C for 30 sec and 72°C for 1 min and a final extension step of 72°C for 7 min. Some 

drops of mineral oil were added to each tube to prevent evaporation of the mixture. The first 

nested PCR was performed using as template 1 µl of a 1: 30 dilution in SDW of each amplicon 

obtained from the direct PCR and to increase sensibility and specificity, a second nested PCR was 

also implemented using as template 1 µl of a 1: 30 dilution in SDW of each amplicon obtained 

from the first nested PCR. PCR products were visualized in 1% agarose gels (Agarose 1%, TAE 

buffer 1X) stained with ethidium bromide 1% for 10 min then moved in distilled water to wash 

away the excess of bromide and documented with a bench top UV transilluminator at 312 nm. 

The gel results were recorded by a digital camera Kodak Edas 290. 

 

• Promega GoTaq G2 DNA polymerase, Promega 

A 25 μl reaction was prepared by mixing 5 μl PCR 5× Buffer with MgCl2 (Promega), 2 μl of 10 mM 

dNTPs, 0.5 μl (20 μM) forward and reverse primer, 0.5 μl (20 μM), 0.16 μl (1.25 units) Promega 

GoTaq G2 DNA polymerase (Promega), and 15.4 μl nuclease-free molecular biology H2O (Sigma) 

(Schaff et al., 1992). To detect ‘Ca. Liberibacter’, 1 μl of DNA template, extracted by Angelini et al., 

2001 method, was added directly in the PCR mix; while to detect phytoplasmas presence, 1 μl of 

the same DNA template diluted 1:30 was employed. Reactions were performed in a Thermal 
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Cycler BIOMETRA (Germany) with the following parameters: i) for primer pair ClipoF/O12c: 94°C 

for 2 min, 35 cycles of 94°C for 30 s, 58°C for 1 min, and 72°C for 1 min, and a final extension cycle 

of 72°C for 10 min; ii) for primer pair OA2/O12c: 94°C 3min, 35 cycles of 94°C 45 s, 66°C 45 s, 72°C 

for 1 min and 10 min at 72°C; and iii) for primer pair CL514F/R: 94°C 3 min, 35 cycle of 94°C 45 s, 

54°C 45 s, 72° 1 min and 10 min at 72°C. To detect phytoplasma, primers P1/P7, R16F2n/R16R2, 

R16(I)F1/R16(I)R1 and M1/M2 were used and the reactions were performed in a Thermal Cycler 

BIOMETRA (Germany) without hot lid, with the following parameters: 94°C for 10 min, 35 cycle of 

94°C for 1 min, 55°C (or 50°C according to the primers annealing temperature) (Table 1A) for 2 

min, 72°C for 3 min and a final extension for 10 min at 72°C. Some drops of mineral oil were added 

to each tube to prevent evaporation of the mixture. The first nested PCR was performed using as 

template 1 µl of a 1:30 dilution in SDW of each amplicon obtained from the direct PCR and to 

increase sensibility and specificity, a second nested PCR was also implemented using as template 1 µl 

of a 1:30 dilution in SDW of each amplicon obtained from the first nested PCR. PCR products were 

visualized in 1% agarose gels stained with ethidium bromide 1% for 10 min and then moved in 

distilled water to wash away the excess of bromide and documented with a bench top UV 

transilluminator at 312 nm. The gel results were recorded by a digital camera Kodak Edas 290. 

 

• Rovalab, Teltow, Germany 

A 25 μl reaction was prepared by mixing 2.5 μl PCR 10X Buffer, 1 µl of MgCl2 (Rovalab, Teltow, 

Germany), 2 μl of 10 mM dNTPs, 0.5 μl (20 μM) forward and reverse primer, 0.5 μl (20 μM), 1 μl 

(100 U) Cabru Red Taq DNA polymerase (Rovalab) and 16.5 μl nuclease free water for molecular 

biology (Sigma). To detect phytoplasma presence in DNA from plants, 1 µl of DNA diluted at 20 

ng/µl, extracted by Prince et al., 1993 method was added to the PCR mix. To detect phytoplasma 

from colonies and liquid medium, 1 µl of DNA, extracted by DNaesy Plant Minikit, QIAGEN, was used 

as template. Reactions were performed in a Thermal Cycler BIOMETRA (Germany) with the 

following parameters: for primer pair P1/P7, R16F2n/R16R2 and M1/M2: 95°C 2 min, 35 cycles 

94°C 45 s, 55°C (or 50°C according to the primers annealing temperature) (Table 1A) 55 s, 72°C 2 

min and 72°C 10 min; for primer GPO3F/MGSO 94°C 4 min, 35 cycles 94°C 45 s, 61°C 45 s, 72°C 1 

min 30 s and 72°C 7 min. 
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PCR Primers Sequence 5’-3’ Annealing 
temperature 

°C 

References Amplificati
on length 

(bp) 

Target 

D
ir

ec
t 

P1 AAGAGTTTGATCCTGGCTC
AGGATT 

 Deng & 
Hiruki, 1991 

1,784 

16S rDNA + 
spacer + 
beginning of 
23S rDNA 

P7 CGTCCTTCATCGGCTCTT 55 Schneider et 

al., 1995 

D
ir

ec
t/

I 

n
es

te
d

 

R16F2n GAAACGACTGCTAAGACTG
G  

 Gundersen 
& Lee, 1996 

1,248 16S rDNA 
R16R2 TGACGGGCGGTGTGTACAA

ACCCCG  
55 Lee et al., 

1993 

D
ir

ec
t

/I
/I

I 

n
es

te

fU5 
 
rU3 

CGGCAATGGAGGAAACT 
 
TTCAGCTACTCTTTGTAACA 

 
50 

Lorenz et al., 
1995 862 16S rDNA 

I/
II

 

n
es

te
d

 R16(I)F1 
 
R16(I)R1 

TAAAAGACCTAGCAATAGG 
 
CAATCCGAACTAAGACTCT 

 
50 Lee et al., 

1994 
1,095 16S rDNA 

I/
II

 

n
es

te
d

 16R758f (=M1) GTCTTTACTGACGCTGAGG
C 

 
50 Gibb et al., 

1995 
509 16S rDNA 

16S1232r (=M2) CTTCAGCTACCCTTTGTAAC 

I n
es

te
d

 R16(III)F2 
 
R16(III)R1 

AAGAGTGGAAAAACTCCC 
 
TCCGAACTGAGATTGA 

50 
Lee et al., 

1994 
800 16S rDNA 

I n
es

te
d

 

Tuf340a 
 
Tuf340b 
 
Tuf890a 
 
Tuf890b 
 
Tuf890c 

GCTCCTGAAGAAARAGAACGT
GG 
ACTAAAGAAGAAAAAGAACGT
GG 
ACTTGDCCTCTTTCKACTCTAC
CAGT 
ATTTGTCCTCTTTCWACACGTC
CTGT 
ACCATTCCTCTTTCAACACGTC
CAGT 

54 
Makarova et 

al., 2012 
531-553 

Elongation 
factor Tu 

II
 n

es
te

d
 

Tuf400aM13 
 
 
Tuf400bM13 
 
 
Tuf400cM13 
 
 
Tuf400dM13 
 
 
Tuf400eM13 
 
 
Tuf835aT7 
 
 
Tuf835bT7 
 
 
Tuf835cT7 

GTAAAAACGACGGCCAGTGAA
ACAGAAAAACGTCAYTATGCT
CA 
GTAAAAACGACGGCCAGTGAA
ACTTCTAAAAGACATTACGCTC
A 
GTAAAAACGACGGCCAGTGAA
ACATCAAAAAGACAYTATGCTC
A 
GTAAAAACGACGGCCAGTGAA
ACAGAAAAAAGACAYTATGCT
CA 
GTAAAAACGACGGCCAGTCAA
ACAGATAAAAGACATTATYCTC
A 
TAATACGACTCACTATAGGGA
ACATCTTCWACHGGCATTAAG
AAAGG 
TAATACGACTCACTATAGGGA
ACACCTTCAATAGGCATTAAAA
AWGG 
TAATACGACTCACTATAGGGA
ACATCTTCTATAGGTAATAAAA
AAGG 

54 
Makarova et 

al., 2012 
420-444 

Elongation 
factor Tu 

Table 1A. Primer pairs employed for the amplification of phytoplasmas DNAs. 
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Appendix 3: Restriction Fragment Length Polymorphism (RFLP) analyses 

After PCR analysis, RFLP was carried out with commercial fast restrictions enzymes (New England, 

BioLabs Ipswich, MA, USA; and Fermentas, Vilnius, Lithuania), following the manufacturer’s 

instructions. Usually, 100-200 ng of DNA (generally 3 µl of the amplicons) obtained from the 

nested PCR were digested with 3 U of the restriction enzymes, according to the brightness of the 

bands obtained in agarose gel. This quantity is added to a mix of 9.75 µl of SDW, 2 µl of buffer and 

0.25 µl of enzyme, and incubated for 10 min at 37 or 65°C depending on the enzyme used. The 

Tru1I, Tsp509I and RsaI (New England, BioLabs Ipswich, MA, USA; and Fermentas, Vilnius, 

Lithuania) enzymes were used. The analysis was carried out in a 6.7% polyacrylamide gel (Table 

2A), stained with ethidium bromide 1% for 10 min, visualized under UV transilluminator at 312 nm 

and recorded by a digital camera Kodak Edas 290. 

 

Reagent Quantity 

Distilled H2O 18 ml 

TBE 10X 2.5 ml 

Acrylamide 4.2 ml 

Ammonium persulfate 0.1% 310 µl 

TEMED 16 µl 

Table 2A. Polyacrylamide gel composition. 

 

 

 

 

 

Appendix 4: Sequences edition and assembling 

Sequences were assembled and edited using ChromasPro v1.7.5 (Technelysium Pty Ltd, Tewantin, 

QLD, Australia) software, aligned using ClustalW as implemented in MEGA v5.1 (Tamura et al., 

2011) and adjusted manually. They were then compared with selected nucleotide sequences in 

the NCBI GenBank database (National Center for Biotechnology Information, Bethesda, MD) using 

BLAST program (version BLASTN 2.2.18). 
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