
Alma Mater Studiorum - Università di Bologna

Dottorato di Ricerca in

Automatica e Ricerca Operativa

Ciclo XXIX

Settore concorsuale di afferenza: 01/A6 - RICERCA OPERATIVA

Settore scientifico disciplinare: MAT/09 - RICERCA OPERATIVA

Mathematical Models and

Decomposition Algorithms for

Cutting and Packing Problems

Presentata da Maxence Delorme

Coordinatore Dottorato Relatore

Prof. Daniele Vigo Prof. Silvano Martello

Co-relatore

Prof. Manuel Iori

Esame finale anno 2017

Contents

Acknowledgments v

1 Introduction 1

2 BPP and CSP: Mathematical Models and Exact Algorithms 7

2.1 Introduction . 7

2.2 Formal statement . 10

2.3 Upper and lower bounds . 11

2.3.1 Approximation algorithms . 12

2.3.2 Lower bounds . 13

2.3.3 Heuristics and metaheuristics . 15

2.4 Pseudo-polynomial formulations . 17

2.4.1 Considerations on the basic ILP model 17

2.4.2 One-cut formulation . 19

2.4.3 DP-flow formulation . 21

2.4.4 Arc-flow formulations . 23

2.5 Enumeration algorithms . 24

2.5.1 Branch-and-bound . 24

2.5.2 Constraint programming approaches 26

2.6 Branch-and-price . 26

2.6.1 Set covering formulation and column generation 26

2.6.2 Integer round-up property . 29

2.6.3 Branch(-and-cut)-and-price algorithms 30

2.7 Experimental evaluation . 33

2.7.1 Benchmarks . 33

2.7.2 Computer codes . 35

2.7.3 Experiments . 37

2.8 Conclusions . 46

i

ii CONTENTS

3 BPPLIB: A Library for Bin Packing and Cutting Stock Problems 47

3.1 Introduction . 47

3.2 Computer codes . 49

3.3 Benchmarks . 53

3.4 Computational experiments . 54

3.4.1 GI instances . 56

4 Enhanced PP Formulations for Bin Packing and Cutting Stock Problems 59

4.1 Introduction . 60

4.2 The BPP, the CSP, and their well-known formulations 62

4.2.1 Problem description and notation . 63

4.2.2 Pattern-based formulations . 63

4.2.3 Pseudo-polynomial formulations . 65

4.3 Relations among models . 67

4.4 Reflect, an improved arc-flow formulation 72

4.4.1 Adapting reflect to solve large size instances: Reflect+ 75

4.5 Generalizations . 78

4.5.1 Variable sized BPP . 78

4.5.2 BPP with item fragmentation . 80

4.6 Computational results . 82

4.6.1 Results on BPP and CSP . 82

4.6.2 Results on the VSBPP . 86

4.6.3 Results on the BPPIF . 88

4.7 Conclusion . 89

Supplementary material 4.A Details for Lemma 1 91

Supplementary material 4.B Proof of Lemma 2 91

Supplementary material 4.C Proof of Theorem 1 93

Supplementary material 4.D Proof of Theorem 2 101

Supplementary material 4.E Proof of Theorem 3 102

Supplementary material 4.F Proof of Theorem 4 104

Supplementary material 4.G Algorithms for reflect 104

Supplementary material 4.H Proof of Theorem 5 108

CONTENTS iii

5 Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Prob-

lems 109

5.1 Introduction . 109

5.2 Literature review . 110

5.3 Mathematical model . 112

5.4 Preprocessing . 114

5.5 Decomposition algorithm . 115

5.6 Master problem . 117

5.7 Slave problem and cut generation . 120

5.8 The case of identical item copies . 122

5.9 Computational experiments . 123

5.9.1 SCP instances . 124

5.9.2 Rectangle packings . 126

5.9.3 Pallet loading . 127

5.10 Conclusion . 129

6 A Training Software for Orthogonal Packing Problems 131

6.1 Introduction . 131

6.2 Orthogonal packing problems . 134

6.3 Software . 137

6.4 Experiments . 140

6.4.1 Setup . 141

6.4.2 Results . 142

6.5 Conclusions . 146

7 Mathematical Models and Decomposition Algorithms for the PRPP 147

7.1 Introduction . 148

7.2 Problem Description . 151

7.3 A Compact Mathematical Formulation . 153

7.4 Lower Bounds based on a Decomposition Method 155

7.4.1 Cutting component (CC) . 156

7.4.2 Scheduling component (SC) . 159

7.5 Upper Bounding Procedures . 161

7.5.1 A Heuristic Based on a Generalized Assignment Problem 162

iv CONTENTS

7.5.2 An Iterated Local Search Algorithm 163

7.6 Computational Experiments . 165

7.6.1 Instances . 165

7.6.2 Algorithm performance . 167

7.7 Concluding Remarks . 169

8 ILP and CP for Project Scheduling Problems 171

8.1 Introduction . 171

8.2 Literature review . 172

8.3 Mathematical models . 173

8.3.1 RCPSP formulations . 174

8.3.2 DTCTP formulations . 175

8.3.3 MMRCPSP formulations . 176

8.4 Proposed approaches . 176

8.4.1 RCPSP improved algorithm . 177

8.4.2 DTCTP improved algorithm . 179

8.4.3 MMRCPSP improved algorithm . 180

8.5 Computational experiments . 180

8.5.1 Computational experiments for the RCPSP 181

8.5.2 Computational experiments for the DTCTP 182

8.5.3 Computational experiments for the MMRCPSP 183

8.6 Conclusion . 184

Bibliography 185

Acknowledgments

First of all, I would like to thank my tutors Prof. Silvano Martello and Prof. Manuel

Iori for the help they provided during three years of Ph.D. studies, for giving me the

opportunity to work on many different and interesting research projects, and for teaching

me a lot about Operations Research and Combinatorial Optimization.

I would also like to thank all the other components of the group of Operations Research

of the Department of Electrical, Electronic and Information Engineering ”Guglielmo Mar-

coni” (DEI) of the University of Bologna, namely Prof. Paolo Toth, Prof. Daniele Vigo,

Prof. Andrea Lodi, Prof. Enrico Malaguti, Prof. Michele Monaci, Dr. Valentina Cacchiani,

Dr. Paolo Tubertini, Ph.D. students Carlos Emilio Contreras Bolton, Alberto Santini, and

the former members Dr. Claudo Gambella, Dr. Tiziano Parriani, Dr. Dimitri Thomopulos,

and Dr. Sven Wiese.

I am grateful to my co-authors, who helped me in writing the reports that form part of

this thesis: Prof. Jean François Côté from the Université Laval, and Prof. Anand Subra-

manian from the Federal University of Paráıba. Thanks are also due to the undergraduate

and master students I collaborated with during these years, in particular Gianluca Costa

and Vitor Nesello.

I would also like to thank the Ministero dell’Istruzione, dell’Università e della Ricerca

(MIUR) for the financial support given to my Ph.D. course

Special thanks are addressed to Prof. François Clautiaux, Prof. Joshua D. Habiger,

and Prof. Alexandru-Adrian Tantar for encouraging me to pursue a Ph.D. and to Prof.

Clarisse Dhaenens, who made me discover and enjoy Combinatorial Optimization.

Finally, I would like to thank my friends Damien and Julien, my mother, my father,

and all my family for always supporting me in my decisions.

Bologna, March 27, 2017

Maxence Delorme

v

List of Figures

1.1 Number of papers dealing with bin packing and cutting stock problems,

1991-2016 . 2

2.1 DP-flow graph construction for Example 1 22

2.2 Arc-flow representation of the graph of Figure 2.1 23

3.1 The interactive visual solver . 52

4.1 L(FAF) solution and path decomposition for Example 2 68

4.2 An L(FOC) solution of Example 2 represented as a set of trees (z̄t = value

of tree t). 69

4.3 An L(FDP) solution of Example 2 (selected arcs in bold, values taken by

the selected variables on the arcs) . 69

4.4 Graphical representation of relations among CSP formulations. 70

4.5 Set of arcs required by the standard arc-flow (above) and by reflect (below)

for Example 2 (item arcs are depicted in straight lines, loss arcs in dotted

lines) . 73

4.6 Solution of L(FRE) for Example 2 (selected item arcs are depicted in straight

lines, selected loss arcs in dotted lines, variable values on the arcs) 74

4.7 Set of arcs required by reflect for Example 3 (item arcs are depicted in

straight lines) . 79

4.8 Set of arcs built by arc-flow for the BPPIF Example 4 (item arcs are depicted

in straight lines) . 80

4.9 Construction of an L(FAF) solution for Example 2 through Algorithm 5.

Each iteration, from top to bottom, processes the cut associated with the ȳ

variable given on the left. 100

4.10 An invalid L(FAF) solution of Example 2 with a negative flow (cycle), ob-

tained by executing Algorithm 5 on an input L(FOC) solution that does not

satisfy (4.51). 101

4.11 Example 2 shows that FAF is not included in FDP 102

vii

viii LIST OF FIGURES

4.12 Transforming a path from FDP into a column from FPR 103

5.1 (a) master problem solution; (b) corresponding SCP solution 116

5.2 Arcs generated for the example instance . 118

5.3 Set of arcs selected in the optimal solution of the master for the example

instance . 120

5.4 Graphical representation of an optimal master solution for the example in-

stance . 120

5.5 Optimal solution found for GCUT02 (W = 250, zopt = 1118) 126

6.1 The architecture stack. 138

6.2 A strip packing instance. 139

6.3 A solution for the instance of Figure 6.2. 140

6.4 The user view for the instance of Figure 6.2. 140

6.5 Solutions of the difficult instance . 146

7.1 A simple PRPP instance. 149

7.2 An optimal solution for the instance in Figure 7.1. 150

7.3 A flowchart of the complete algorithm. 156

7.4 Evolution of the lower bound produced by the SC. 166

7.5 Comparison of the upper bounds on some small instances 169

List of Tables

2.1 Number of literature instances (average gap wrt lower bound) solved in less

than one minute . 38

2.2 Average time in seconds (standard deviation) for solving literature instances 38

2.3 Number of literature instances solved in less than ten minutes 38

2.4 Number of random instances solved in less than one minute (average gap

wrt lower bound) when varying n. 41

2.5 Number of random instances solved in less than one minute (average gap

wrt lower bound) when varying c. 41

2.6 Number of random instances solved in less than one minute (average gap

wrt lower bound) when varying weight range. 41

2.7 Average time in seconds (standard dev.) for solving random instances when

varying n. 42

2.8 Average time in seconds (standard deviation) for solving random instances

when varying c. 42

2.9 Average time in seconds (standard deviation) for solving random instances

when varying weight range. 42

2.10 Number of random instances solved in less than one minute when varying

the average item multiplicity µ. 44

2.11 Number of random instances solved in less than ten minutes when varying n. 44

2.12 Number of difficult instances (ANI) solved in less than 1 hour (average gap

wrt lower bound). The AI instances are included for the sake of comparison. 44

2.13 Average time in seconds (standard deviation) for solving difficult instances

(ANI). The AI instances are included for the sake of comparison. 45

2.14 Number of selected instances solved [average time in seconds] using different

versions of CPLEX. 45

3.1 Literature instances, enumerative algorithms. Number of instances solved

in less than one minute (average CPU time in seconds). 55

3.2 Literature instances, pseudo polynomial models. Number of instances solved

in less than one minute (average CPU time in seconds). 55

ix

x LIST OF TABLES

3.3 Random instances, enumerative algorithms. Number of instances solved in

less than one minute (average CPU time in seconds). 56

3.4 Random instances, pseudo polynomial models. Number of instances solved

in less than one minute (average CPU time in seconds). 56

3.5 Number of GI instances solved in less than one hour (average time in seconds). 57

4.1 Evaluation of heuristic 1 with restricted sets of patterns P1 and P2 for the

CSP . 84

4.2 Evaluation of reflect with respect to arc-flow for the CSP 85

4.3 Comparison of reflect and reflect+ with literature algorithms for the CSP . 86

4.4 Evaluation of reflect+ with respect to literature algorithms for the VSBPP 88

4.5 Evaluation of reflect with respect to literature algorithms for the BPPIF . . 90

5.1 SCP instances. CPU times to be multiplied by 0.058 for [13] 125

5.2 Rectangle packing instances. CPU times to be multiplied by 0.611 for [211] 127

5.3 Pallet loading instances. CPU times to be multiplied by 0.700 for [2], and

by 0.05 for [5] . 130

6.1 Evaluation by varying n . 143

6.2 Evaluation by varying the optimum solution range 143

6.3 Evaluation by varying the strip height H 144

6.4 Evaluation by varying the item dimensions’ range 144

6.5 Evaluation by allowing/disregarding rotation 145

6.6 Solution quality for the difficult shared instances by varying time 145

7.1 Relevant PRPP variants under different input parameters. 152

7.2 Instance parameters . 166

7.3 Aggregate results for the compact formulation 167

7.4 Results obtained by CS-LB, GAPBA, and ILS-RVND for the small instances 168

7.5 Results obtained by DM and ILS-RVND for the large instances 170

8.1 Evaluation of the RCPSP approaches on the KSD30 instances 181

8.2 Evaluation of the DTCTP approaches . 182

8.3 Evaluation of the MMRCPSP approaches on the J30 instances 183

List of Acronyms

Acronym Meaning

BFD Best-Fit Decreasing
BPP Bin Packing Problem
BPPIF Bin Packing Problem with Item Fragmentation
CBP Contiguous Bin-Packing Problem
C&PP Cutting and Packing Problems
CP Constraint Programming
CSP Cutting Stock Problem
DDT Disaggregated Discrete-Time
DP Dynamic Programming
DT Discrete-time
DTCTP Discrete Time-Cost Tradeoff Problem
FFD First-Fit Decreasing
ILP Integer Linear Programming
IRUP Integer Round-Up Property
LB Lower Bound
LP Linear Programming
MILP Mixed Integer Linear Programming
MIRUP Modified Integer Round-Up Property
MMRCPSP Multi-Mode Resource-Constrained Project Scheduling Problem
PLP Pallet Loading Problem
PRPP Plastic Rolls Production Problem
PRSR Packing Rectangles into a Square with Rotation
PSS Packing Squares into a Square
RCPSP Resource-Constrained Project Scheduling Problem
SCP orthogonal Stock Cutting Problem
SPP Strip Packing Problem
UB Upper Bound
VSBPP Variable-Sized Bin Packing Problem
WCPR Worst-Case Performance Ratio

xi

Chapter 1

Introduction

Many real world optimization problems we face nowadays belong to the category of

cutting and packing problems (C&PP). Wether one wants to pack a set of goods in a con-

tainer, cut a set of small items from large pieces of wood, position articles in a newspaper,

or even play the famous Tetris video game, they solve a C&PP. In addition, C&PP enter as

a component of an incredible amount of more complex problems, such as routing problems

with capacity and scheduling problems with resources constraints. It is therefore not sur-

prising that researchers have focused on developing effective methods to deal with C&PP.

Figure 1.1 shows the number of articles having in the title either the term bin packing, or

the term cutting stock, two subclasses of C&PP, according to different bibliographic data

bases, in the years 1991-2016. The picture shows the growing interest in these specific

problems, with sharp increase in recent years.

As most of the problems from the C&PP family are NP-hard, see Garey and Johnson

[130], they are very difficult to solve to optimality in practice and many exact approaches

have been proposed in the literature, including branch-and-bound and branch-and-cut

algorithms.

With the recent improvements of mixed integer linear programming (MILP) solvers

(see, e.g., Achterberg and Wunderling [1] and Lodi [192]), an alternative axe of research

consists in finding better MILP formulations for the problem. For example, through the

last decades, no less than six different MILP models have been proposed for the classical

bin packing problem: in chronological order, the textbook model by Martello and Toth

[214] derived from the work of Kantorovich [167], the set covering formulation by Gilmore

and Gomory [134, 135], the one-cut by Dyckoff [111], the arc-flow by Valério de Carvalho

[278], the DP-flow by Cambazard and O’Sullivan [52], and the general arc-flow with graph

compression by Brandão and Pedroso [45]. A seventh, more powerful, formulation is even

proposed in this thesis (Chapter 4). Vanderbeck and Wolsey [287] described in details

generic procedures to obtain reformulations, and categorized them in several categories. In

the extended formulations, new variables are introduced so as to better model the structure

1

2 Chapter 1. Introduction

0

20

40

60

80

100

120

140

160

1991 1996 2001 2006 2011 2016

* * * * * * * * * * *

*
*

*
* *

* * *

*
*

*

*

*
*

*

ut
ut

ut
ut

ut
ut ut ut ut

ut

ut

ut
ut

ut

ut

ut

ut
ut ut

ut

ut

ut
ut

ut

ut

ut

b
b b

b b
b b b b b b

b

b
b

b b
b

b b
b

b b

b
b

b

b

* * Scopusut ut Google Scholar b b Web of Science

Figure 1.1: Number of papers dealing with bin packing and cutting stock problems, 1991-
2016

of the problem. These new variables typically allow one to model some combinatorial

structure more precisely and to induce integrality through tighter linear constraints linking

the variables. The reformulations that use projection allow one to reduce the number of

variables so that calculations are typically faster. Some other reformulations are just

alternative formulations that aim at treating or eliminating symmetry among solutions or

obtaining variables that are more effective as branching variables, or variables for which

one can develop effective valid inequalities.

When the problem is very complex, which is often the case when C&PP involve two or

three dimensions with non overlapping restrictions, MILP models usually struggle to find

optimal solutions, as the number of variables and constraints they involve are too high.

Therefore, other tools such as decomposition methods, e.g., Benders’ decomposition [34],

are used. Hooker and Ottosson[157] described the Benders’ decomposition as a method

that begins by partitioning the variables of a problem into two vectors x and y. It fixes y

to a trial value in the master problem so as to define a slave problem that only contains

x. If the solution of the slave reveals that the trial value of y is unacceptable, the slave’s

dual is used to identify a number of other values of y that are likewise unacceptable and

3

are removed from the master problem by means of cuts. The next trial value must be

one that has not been excluded. Eventually only acceptable values remain, and if all goes

well, the algorithm terminates after enumerating only a few of the possible values of y.

In the classical Benders’ decomposition, the master is an MILP and the slave is a linear

programming (LP) model. Hooker and Ottosson[157] proposed a similar decomposition

called logic-based Benders decomposition, in which both the master and the subproblem

are MILPs. They solved the slave problem by logical deduction methods, such as con-

straint programming, whose outcome was used to produce valid cuts. Côté et al. [83]

also used Benders’ decomposition where both subproblems were MILPs solved by combi-

natorial algorithm. To produce effective valid cuts, they used the combinatorial Benders’

cuts introduced by Codato and Fischetti [69], in which a third combinatorial algorithm is

used to find the cuts that are added to the master. Note that modern implementation of

Benders’ cuts involve branch-and-cut algorithms (see, e.g., Padberg and Rinaldi [228] for

a description of branch-and-cut algorithms).

An alternative way to handle MILP models with too many variables is to use Dantzig-

Wolfe decomposition [89]. As described by Vanderbeck [284], DantzigWolfe decomposition

is a specific form of problem reformulation that aims at providing a tighter linear pro-

gramming relaxation bound. The reformulation gives rise to an integer master problem,

whose typically large number of variables is dealt by using an integer programming column

generation procedure. Vance [281] showed that, when applied to the textbook model of

Martello and Toth [214], the Dantzig-Wolfe decomposition leads to the set covering for-

mulation of Gilmore and Gomory [134, 135]. Dantzig-Wolfe decomposition often leads to

branch-and-price algorithms. As described in Barnhart et al. [23], in a branch-and-price

algorithm, sets of columns are left out of the LP relaxation because there are too many

columns to handle efficiently and most of them will have their associated variable equal

to zero in an optimal solution anyway. Then to check the optimality of an LP solution,

a subproblem, called the pricing problem, which is a separation problem for the dual LP,

is solved to try to identify columns to enter the basis. If such columns are found, the LP

is reoptimized. Branching occurs when no columns price out to enter the basis and the

LP solution does not satisfy the integrality conditions. Branch-and-price allows column

generation to be applied throughout the branch-and-bound tree.

The general scope of this thesis is to review or provide new and effective algorithms

based on alternative MILP models and/or decomposition approaches to solve exactly var-

ious cutting and packing problems. Each chapter of the thesis is self-contained and can

4 Chapter 1. Introduction

be read independently of the others. A unique bibliography is provided at the end of the

thesis, to avoid the repetition of references.

In Chapter 2, we propose a survey on the classical bin packing and cutting stock prob-

lems. After a detailed review of the literature (over 150 references), we implement and

computationally test the most common methods used to solve the problems, including

branch-and-price, constraint programming and mixed integer programming, and we suc-

cessfully propose new sets of instances that are difficult to solve in practice.

In Chapter 3, we describe the BPPLIB, a library for bin packing and cutting stock

problems. We gather the most important results from Chapter 2, test some of the algo-

rithms with free solvers, and make their code publicly available. We also make additional

experimental results on new sets of instances and introduce BppGame, an interactive visual

solver for the bin packing problem.

In Chapter 4, we study in details the main pattern-based and pseudo-polynomial MILP

formulations that have been proposed for the bin packing problems and we provide a clear

picture of the dominance and equivalence relations that exist among them. In addition, we

introduce a new MILP formulation for the problem and show its effectiveness through some

tests on benchmark instances, achieving state of the art results and finding several new

proven optimal solutions. We also show how to adapt the formulation to the variable-sized

bin packing problem and the bin packing problem with item fragmentation, and obtain

results that consistently improve those available in the literature.

In Chapter 5, we propose a method based on Logic based Benders’ decomposition for

the orthogonal stock cutting problem and some extensions. We solve the master problem

through an MILP model while constraint programming is used to solve the slave problem.

The resulting method is hybridized with a state-of-the-art branch-and-bound algorithm

and computational experiments on classical benchmarks from the literature show the ef-

fectiveness of the proposed approach.

In Chapter 6, we compare human performances with respect to simple heuristics and

exact approaches on two-dimensional packing problems. After introducing TwoBinGame, a

visual application we developed for students to interactively solve two-dimensional packing

problems, we detail the experimental plan we adopted to measure human efficiency when

various parameters of the test instances (e.g., the number of items to pack or the possibility

of rotation) change. We analyze the results obtained by about 200 students and show that

the human brain is able to obtain, for relatively small instances, results comparable or

better than those produced by simple heuristics such as bottom left or best fit, even when

5

coupled with powerful post-processing.

In Chapter 7, we study an optimization problem that originates from the packaging

industry, in particular from the process of blown film extrusion, where a plastic film is used

to produce rolls of different dimensions and colors. The film can be cut along its width, thus

producing multiple rolls in parallel, and set-up times must be considered when changing

from one color to another. The optimization problem that we face is to produce a given

set of rolls on a number of identical parallel machines by minimizing the makespan. The

problem combines cutting and scheduling decisions, and is very difficult to solve exactly.

For its solution, we propose mathematical models and heuristic algorithms that involve

a non-trivial decomposition method. By means of extensive computational experiments

we show that proven optimality can be achieved on small instances, whereas for larger

instances good quality solutions can be obtained especially by the use of an iterated local

search algorithm.

In Chapter 8, we study the time-indexed formulations of the resource constrained

project scheduling problem and propose some improvements based on preprocessing and

lifting techniques. Then, we study the discrete time-cost tradeoff problem and introduce

a new MILP model to solve the problem. Finally, we study the multi-mode resource-

constrained project scheduling problem and propose a hybridized algorithm. For each of

these problem, we compare the new algorithm we propose with a classical MILP formula-

tion and a constraint programming approach from the literature.

Chapter 2

Bin Packing and Cutting Stock

Problems: Mathematical Models

and Exact Algorithms

1

In this chapter we review the most important mathematical models and algorithms

developed for the exact solution of the one-dimensional bin packing and cutting stock

problems, and experimentally evaluate, on state-of-the art computers, the performance of

the main available software tools.

Keywords: Bin packing, Cutting stock, Exact algorithms, Computational evaluation.

2.1 Introduction

The (one-dimensional) bin packing problem is one of the most famous problems in

combinatorial optimization. Its structure and its applications have been studied since the

thirties, see Kantorovich [167]. In 1961 Gilmore and Gomory [134] introduced, for this class

of problems, the concept of column generation, by deriving it from earlier ideas of Ford and

Fulkerson [125] and Dantzig and Wolfe [89]. This is one of the first problems for which,

since the early seventies, the worst-case performance of approximation algorithms was

investigated. In the next decades lower bounds were studied and exact algorithms proposed.

As the problem is strongly NP-hard, many heuristic and metaheuristic approaches have

also been proposed along the years.

The bin packing problem (BPP) can be informally defined in a very simple way. We are

1The results of this chapter appears in: M. Delorme, M. Iori, and S. Martello, Bin Packing and Cutting
Stock Problems: Mathematical Models and Exact Algorithms, European Journal of Operations Research,
255:1-20, 2016 [98].

7

8 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

given n items, each having an integer weight wj (j = 1, . . . , n), and an unlimited number of

identical bins of integer capacity c. The objective is to pack all the items into the minimum

number of bins so that the total weight packed in any bin does not exceed the capacity.

(In a different but equivalent normalized definition, the weights are real numbers in [0, 1],

and the capacity is 1.) We assume, with no loss of generality, that 0 < wj < c for all j.

Many variants and generalizations of the BPP arise in practical contexts. One of the

most important applications, studied since the sixties, is the Cutting Stock Problem (CSP).

Although it has been defined in different ways according to specific real world cases, its

basic definition, using the BPP terminology, is as follows. We are given m item types, each

having an integer weight wj and an integer demand dj (j = 1, . . . ,m), and a sufficiently

large number of identical bins of integer capacity c. (In the CSP literature the bins are

frequently called rolls, the term coming from early applications in the paper industry, and

“cutting” is normally used instead of “packing”.) The objective is to produce dj copies of

each item type j (i.e., to cut/pack them) using the minimum number of bins so that the

total weight in any bin does not exceed the capacity.

This chapter is devoted to a presentation of the main mathematical models that have

been proposed, and to an experimental evaluation of the main available software tools

that have been developed. The main motivations for writing this survey are to present,

for the first time, a complete overview on these problems and to assess, through extensive

computational experiments, the performance of the main computer codes that are available

for their optimal solution. All the codes we evaluated are either linked or downloadable

from a dedicated web page, but one that can be obtained by the authors. The same web

page also provides the test instances we used, including new instances that were specifically

created as challenging test cases. We believe that this study and the accompanying web

page will be useful to many researchers who are still intensively studying this area. Indeed,

a search on different bibliographic data bases for articles having in the title either the term

”bin packing”, or the term ”cutting stock”, or both, shows a growing interest in these

problems in the last 25 years, with sharp increase in recent years (over 150 Google Scholar

entries in 2015).

For exhaustive studies on specific research areas concerning the BPP and the CSP, the

reader is referred to many surveys that have been published along the years. To the best

of our knowledge, the following reviews have been proposed.

The first literature review on these problems was published in 1992 by Sweeney and

Paternoster [270], who collected more than 400 books, articles, dissertations, and working

2.1. Introduction 9

papers appeared from 1961 to 1990. In 1990 Dyckhoff [112] proposed a typology of cutting

and packing problems, and classified the BPP and the CSP as 1/V/I/M and 1/V/I/R,

respectively. In the same year Martello and Toth included a chapter on the BPP in their

book [214] on knapsack problems. Two years later Dyckhoff and Finke [113] published

a book on cutting and packing problems arising in production and distribution, where

they investigated the different structure of these problems, and classified the literature

accordingly. A bibliography on the BPP has been compiled by Coffman et al. [76]. More

recently, Wäscher et al. [289] re-visited the typology by Dyckhoff [112] and proposed more

detailed categorization criteria: the problems we consider are classified as 1-dimensional

SBSBPP (Single Bin Size Bin Packing Problem) and 1-dimensional SSSCSP (Single Stock

Size Cutting Stock Problem).

Besides the general surveys discussed above, a number of reviews concerning specific

methodologies have been proposed. Already in the early eighties Garey and Johnson [131]

and Coffman et al. [77] presented surveys on approximation algorithms for the BPP.

Other surveys on approximation algorithms for the BPP and a number of its variants were

later proposed by Coffman et al. [72, 71] and Coffman and Csirik [74]. Coffman and

Csirik [73] also proposed a four-field classification scheme for papers on bin packing, aimed

at highlighting the results in bin packing theory to be found in a certain article. More

recently, Coffman et al. [75] presented an overview of approximation algorithms for the

BPP and a number of its variants, and classified all references according to [73].

Valério de Carvalho [279] presented a survey of the most popular Linear Programming

(LP) methods for the BPP and the CSP. A review of models and solution methods was

included by Belov [28] in his PhD thesis dedicated to one- and two-dimensional cutting

stock problems.

We finally mention that extensions to higher dimensions have been investigated too.

In the early nineties, Haessler and Sweeney [146] provided a description of one- and two-

dimensional cutting stock problems, and a review of some of the methods to solve them.

More recently, surveys on two-dimensional packing problems have been presented by Lodi

et al. [193, 194, 197].

In the next section we provide a formal definition of the BPP and the CSP. In Section

2.3 we briefly review the most successful upper and lower bounding techniques for the

considered problems. In Sections 2.4, 2.5, and 2.6 we examine pseudo-polynomial formu-

lations, enumeration algorithms, and branch-and-price approaches, respectively. Finally,

in Section 2.7, we experimentally evaluate the computational performance of twelve com-

10 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

puter programs available for the solution of the considered problems. Conclusions follow

in Section 2.8.

2.2 Formal statement

In order to give a formal definition of the problems, let u be any upper bound on the

minimum number of bins needed (for example, the value of any approximate solution),

and assume that the potential bins are numbered as 1, . . . , u. By introducing two types of

binary decision variables

yi =

{
1 if bin i is used in the solution;

0 otherwise
(i = 1, . . . , u),

xij =

{
1 if item j is packed into bin i;

0 otherwise
(i = 1, . . . , u; j = 1, . . . , n),

we can model the BPP as a basic Integer Linear Program (ILP) of the form (see Martello

and Toth [214])

min
u∑

i=1

yi (2.1)

s.t.

n∑

j=1

wjxij ≤ cyi (i = 1, . . . , u), (2.2)

u∑

i=1

xij = 1 (j = 1, . . . , n), (2.3)

yi ∈ {0, 1} (i = 1, . . . , u), (2.4)

xij ∈ {0, 1} (i = 1, . . . , u; j = 1, . . . , n). (2.5)

Constraints (2.2) impose that the capacity of any used bin is not exceeded, while constraints

(2.3) ensure that each item is packed into exactly one bin.

For the CSP let us define u and yi as above, and let

ξij = number of items of type j packed into bin i (i = 1, . . . , u; j = 1, . . . ,m).

2.3. Upper and lower bounds 11

The CSP is then

min

u∑

i=1

yi (2.6)

s.t.

m∑

j=1

wjξij ≤ cyi (i = 1, . . . , u), (2.7)

u∑

i=1

ξij = dj (j = 1, . . . ,m), (2.8)

yi ∈ {0, 1} (i = 1, . . . , u), (2.9)

ξij ≥ 0, integer (i = 1, . . . , u; j = 1, . . . ,m). (2.10)

The BPP can be seen as a special case of the CSP in which dj = 1 for all j. In turn, the

CSP can be modeled by a BPP in which the item set includes dj copies of each item type

j.

The BPP (and hence the CSP) has been proved to be NP-hard in the strong sense by

Garey and Johnson [130] through transformation from the 3-Partition problem.

2.3 Upper and lower bounds

Most exact algorithms for bin packing problems make use of upper and lower bound

computations in order to guide the search in the solution space, and to fathom partial

solutions that cannot lead to optimal ones. As previously mentioned, for deep reviews on

these specific domains, the reader is referred to the surveys listed in Section 2.1. In this

section we briefly review the most successful upper and lower bounding techniques that

have been developed, with some focus on areas for which no specific survey is available.

We use the term approximation algorithm for methods for which theoretical results (like,

e.g., worst-case performance) can be established, while the term heuristic denotes methods

for which the main interest relies in their practical behavior.

A classical way for evaluating upper and lower bounds is their absolute worst-case

performance ratio. Given a minimization problem and an approximation algorithm A, let

A(I) and OPT(I) be the solution value provided by A and the optimal solution value,

respectively, for an instance I of the problem. The worst-case performance ratio (WCPR)

of A is then defined as the smallest real number r(A) > 1 such that A(I)/OPT (I) ≤ r(A)

12 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

for all instances I, i.e.,

r(A) = sup
I
{A(I)/OPT (I)}.

Similarly, the WCPR of a lower bound L is the largest real number r(L) < 1 such that,

for all instances I, the lower bound value L(I) satisfies L(I)/OPT (I) ≥ r(L), i.e.,

r(L) = inf
I
{L(I)/OPT (I)}.

2.3.1 Approximation algorithms

The simplest BPP approximation algorithms consider the items in any sequence. Al-

gorithm Next-Fit (NF) at each iteration packs the next item into the current bin (initially,

into bin 1) if it fits, or into a new bin (which becomes the current one) if it does not fit.

The WCPR of NF is r(NF) = 2. Algorithm First-Fit (FF) at each iteration packs the

next item into the lowest indexed bin where it fits, or into a new bin if it does not fit in any

open bin. Algorithm Best-Fit (BF) at each iteration packs the next item into the feasible

bin (if any) where it fits by leaving the smallest residual space, or into a new one if no open

bin can accommodate it. The exact WCPR of FF and BF has been an open problem for

forty years, until recently Dósa and Sgall [107, 108] proved that r(FF) = r(BF) = 17
10 .

Better performances are obtained by preventively sorting the items according to de-

creasing weight. The WCPR of the resulting algorithms First-Fit Deacreasing (FFD) and

Best-Fit decreasing (BFD) is r(FFD) = r(BFD) = 3
2 (Simchi-Levi [263]). Moreover, this

is the best achievable performance, in the following sense:

Property 1 No polynomial-time approximation algorithm for the BPP can have a WCPR

smaller than 3
2 unless P = NP.

Proof Consider an instance of the NP-complete Partition problem: is it possible

to partition S = {w1, . . . , wn} into S1, S2 so that
∑

j∈S1
wj =

∑
j∈S2

wj? Assume a

polynomial-time approximation algorithm A for the BPP exists such that OPT(I) > 2
3 A(I)

for all instances I, and execute A for an instance Î of the BPP defined by (w1, . . . , wn)

and c =
∑n

j=1wj/2. If A(Î) = 2 then we know that the answer to Partition is yes.

If instead A(Î) ≥ 3 then we know that OPT(Î) > 2
3 3, i.e., that OPT(Î) > 2, hence the

answer to Partition is no. It follows that we could solve Partition in polynomial time. �

Since FFD and BFD provide the best possible WCPR, most research on approximation

algorithms for the BPP focused on the asymptotic WCPR, defined as the minimum real

2.3. Upper and lower bounds 13

number r∞(A) such that, for some positive integer k, A(I)/OPT (I) ≤ r∞(A) for all

instances I satisfying OPT (I) ≥ k. The number of results in this area is impressive and

beyond the purpose of this study: we refer the reader to the various surveys that were

listed in Section 2.1. The most recent survey (2013), by Coffman et al. [75], examines 200

references from the literature. Among the papers that appeared subsequently, we mention

those by Dósa et al. [106] on the FFD algorithm, by Rothvoß [242], who improved a

classical result by Karmarkar and Karp [169], and by Balogh et al. [21], who closed a long

standing open issue on on-line bin packing.

2.3.2 Lower bounds

To our knowledge, no general survey on lower bounds for the BPP is available. Hence we

provide in the following a brief review of the corresponding literature. An obvious lower

bound for the BPP, computable in O(n) time, is provided by the so-called continuous

relaxation, namely

L1 =




n∑

j=1

wj/c



, (2.11)

which gives the rounded solution value of the linear programming relaxation of (2.1)-(2.5).

It is easily seen that r(L1) =
1
2 (see, e.g., Martello and Toth [214]).

A better lower bound was obtained by Martello and Toth [215]. Given any integer

α (0 ≤ α ≤ c/2), let

J1 = {j ∈ N : wj > c− α};
J2 = {j ∈ N : c− α ≥ wj > c/2};
J3 = {j ∈ N : c/2 ≥ wj ≥ α},

and observe that each item in J1∪J2 needs a separate bin, and that no item of J3 can go to a

bin containing an item of J1. Then L(α) = |J1|+|J2|+max

(
0,

⌈∑
j∈J3

wj−(|J2|c−
∑

j∈J2
wj)

c

⌉)

is a valid lower bound. It can be shown that the overall bound

L2 = max{L(α) : 0 ≤ α ≤ c/2, α integer} (2.12)

can be computed in O(n log n) time and has WCPR equal to 2
3 . Similarly to what happens

for algorithms FFD and BFD, this is the best achievable performance, namely:

14 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

Property 2 No lower bound, computable in polynomial time, for the BPP can have a

WCPR greater than 2
3 unless P = NP.

Proof We use the same instance of Partition as in the proof of Property 1, and the

same induced BPP instance Î. Assume a polynomial-time lower bound L for the BPP

exists such that OPT(I) < 3
2 L(I) for all instances I, and compute L for instance Î. If

L(Î) ≥ 3 then we know that the answer to Partition is no. If L(Î) = 2 then we know

that OPT(Î) < 3
2 2, hence OPT(Î) = 2, i.e., that the answer to Partition is yes. We

could then solve Partition in polynomial time. �

Lower bounds that generalize L2 and can have better practical performance have been

proposed by Labbé et al. [182] (lower bound L2LLM), and by Chen and Srivastava [62].

Theoretical properties of such bounds were studied by Elhedhli [117]. Bourjolly and Re-

betez [44] proved that the asymptotic WCPR of the bound L2LLM proposed in [182] is

r∞(L2LLM) = 3
4 .

Another lower bound, L3, dominating L2 was obtained by Martello and Toth [215]

by iteratively reducing the instance, and invoking L2 on the reduced instance. The time

complexity grows to O(n3), and the asymptotic WCPR is r∞(L3) =
3
4 , as proved by Crainic

et al. [85].

A different type of lower bound computation had been considered in the eighties by

Lueker [203], who proposed a bounding strategy for the case where all the items are drawn

from a uniform distribution, based on dual feasible functions, which were originally intro-

duced by Johnson [164]. Consider the normalized definition of the BPP (see Section 2.1):

a real-valued function u(x) is called dual feasible if, for any finite set S of nonnegative real

numbers, condition
∑

x∈S x ≤ 1 implies
∑

x∈S u(x) ≤ 1. It follows that any lower bound

computed over weights u(w) is also valid for the original weights w.

Later on, Fekete and Schepers [122] used dual feasible functions to produce new classes

of fast BPP lower bounds. For example, given any normalized instance I of the BPP, any

α (0 ≤ α ≤ 1/2), and an item weight w, let w′ = w/c and define

U (α)(w′) =





1 if w′ > 1− α;

w′ if 1− α ≥ w′ ≥ α;

0 if w′ < α.

Then U (α)(w′) is a dual feasible function. (Observe in particular that, by considering all α

values in [0, 12] and computing the corresponding bounds L1, the maximum resulting value

coincides with the value provided by L2.)

2.3. Upper and lower bounds 15

A number of other dual feasible functions have been proposed in the literature. We

refer the reader to Clautiaux et al. [66] and Alves et al. [9] for recent surveys on these

functions and their use for the computation of BPP lower bounds.

Chao et al. [60] and Crainic et al. [86] studied methods for computing “fast” lower

bounds for the BPP, i.e., bounds requiring no more than O(n log n) time. Once a lower

bound value, say ℓ, has been computed, it can sometimes be improved through additional

considerations: for example, if it can be established that no feasible solution using ℓ bins

exists, then ℓ+ 1 is a valid lower bound value. Improvement techniques of this kind have

been studied by Dell’Amico and Martello [95], Alvim et al. [11], Haouari and Gharbi [147],

and Jarboui et al. [163].

Other effective lower bounds, which however require a non-polynomial time, including

the famous Gilmore-Gomory column generation method, are discussed in Section 2.6.

2.3.3 Heuristics and metaheuristics

The focus of this chapter is on the optimal solution of bin packing and cutting stock

problems. Approximate and heuristic solutions have thus marginal interest here, but they

are commonly used to provide an initial solution to exact algorithms. For the sake of

completeness, in this section we briefly review a number of heuristic and metaheuristic

approaches.

Heuristics

The first relevant contribution of this kind is probably the one by Eilon and Christofides

[114] who presented a heuristic for a number of packing problems, basically consisting of

algorithm BFD (see Section 2.3.1), plus a reshuffle routine when the solution is not equal

to the continuous relaxation L1. Roodman [239] presented a set of heuristics for variants

of the CSP, mainly based on an initial greedy solution improved through local search.

Vahrenkamp [277] proposed a random search for the CSP, based on a heuristic developed

by Haessler [145] for generating cutting patterns for trim problems. Wäscher and Gau [288]

considered a generalization of the CSP, and studied the computational behavior of heuristics

based on rounding the solutions obtained from the LP relaxation of a generalization of the

Gilmore and Gomory [134] model (see Section 2.6). The experiments were performed on

random instances produced by their generator, CUTGEN (see Gau and Wäscher [132]),

which creates CSP instances depending on five parameters: number of item types, minimum

and maximum weight, bin capacity, and average demand.

16 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

Gupta and Ho [143] proposed a heuristic algorithm based on the minimization of the

unused bin capacities, and successfully compared it with FFD and BFD (although at the

expenses of higher CPU times). Mukhacheva et al. [222] presented a modified FFD algo-

rithm which was later embedded in the exact algorithm by Belov and Scheithauer [30] (see

Section 2.6.3). Osogami and Okano [226] proposed variants of some classical approximation

algorithms, and investigated the effect of a local search based on item exchanges. Other

modifications of classical approximation algorithms were proposed by Bhatia et al. [40],

Kim and Wy [173], and Fleszar and Charalambous [123]. The effectiveness of a hill climb-

ing local search strategy for the BPP, also based on item exchanges, was later investigated

by Lewis [187].

As for most NP-hard problems, starting from the early nineties many metaheuristic ap-

proaches of all kinds have been proposed for the BPP and the CSP. In the following, we list,

grouped by metaheuristic paradigm, a number of contributions that provided interesting

insights into the problems at hand.

Simulated annealing and Tabu search

A classical simulated annealing approach to the BPP was implemented by Kämpke

[166], while a variant of the method (called weight annealing) was proposed by Loh et al.

[199]. Scholl et al. [251] used a Tabu search procedure to speed up their well-known exact

algorithm (BISON) for the BPP, treated in Section 2.5.1. Alvim et al. [11] embedded a

Tabu search in a hybrid improvement heuristic for the BPP.

Population based algorithms

Probably, the first genetic approach to the BPP is the one by Falkenauer and Delcham-

bre [120]: they showed that the classical genetic approach cannot work efficiently for certain

kinds of problems (like the BPP), and presented a variant (the grouping genetic algo-

rithm) capable of producing a good computational behavior. Falkenauer [119] improved

this method through hybridization with the dominance criterion by Martello and Toth [215]

(see Section 2.5.1), and proposed a set of benchmark instances that was later adopted by

many authors for computationally testing BPP algorithms. Although Gent [133] showed

that the majority of them are very easy, these instances were used, e.g., for testing the

genetic approaches by Reeves [235], Bhatia and Basu [39], Singh and Gupta [264], Ülker et

al. [276], and Stawowy [267]. Other genetic algorithms were proposed by Poli et al. [230]

and by Rohlfshagen and Bullinaria [237, 238]. Recently, a very effective genetic algorithm

2.4. Pseudo-polynomial formulations 17

was proposed by Quiroz-Castellanos et al. [233].

Levine and Ducatelle [186] used an ant colony approach combined with a local search

to solve the BPP. Liang et al. [188] proposed an evolutionary programming algorithm for

the CSP and some of its variants.

Hyper-heuristics

Ross et al. [240, 241] attacked the BPP through combinations of genetic algorithms

and hyper-heuristics. Other combinations of evolutionary algorithms and hyper-heuristics

for the BPP were proposed by López-Camacho et al. [200], Sim et al. [262], and Burke et

al. [50].

Bai et al. [17] tested on BPP instances their simulated annealing hyper-heuristic ap-

proach. Sim and Heart [261] used genetic programming as a generative hyper-heuristic to

create deterministic heuristics.

Other meta-heuristic approaches

Fleszar and Hindi [124] obtained new heuristics for the BPP by modifying the heuristic

of Gupta and Ho [143] and proposed a variable neighborhood search algorithm. Gómez-

Meneses and Randall [137] proposed a hybrid extremal optimization approach with local

search for the BPP.

2.4 Pseudo-polynomial formulations

In this section we introduce considerations on polynomial and pseudo-polynomial mod-

els, we present the main pseudo-polynomial formulations proposed in the literature, and

highlight some relations among them.

2.4.1 Considerations on the basic ILP model

The textbook BPP model (2.1)–(2.5), which has its roots in the seminal work by Kan-

torovich [167], was formally defined in 1990 by Martello and Toth [214]. It involves a

polynomial number of variables and constraints but is not very efficient in practice, as

shown in Section 2.7. Several attempts have been made since then to try and improve the

computational behavior of the model, especially by providing families of valid inequalities.

The simple inequality yi ≥ yi+1 for i = 1, . . . , u − 1 reduces the size of the enumeration

tree by imposing that the bins are used in increasing order of index. Symmetric solutions

18 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

can be further removed by setting xij = 0 for all j = 1, . . . , u − 1 and i = j + 1, . . . , u,

as there is always an optimal solution in which item 1 is packed in bin 1, item 2 either in

bin 1 or 2, and so on. The linear relaxation of the model can be further strengthened by

imposing that full items cannot be packed into bins i with fractional yi value, i.e., xij ≤ yi

for all i = 1, . . . , u and j = 1, . . . , n. A number of enhanced families of inequalities, includ-

ing the well-known cover inequalities and their generalizations, derive from studies on the

knapsack polytope. For a detailed description of these inequalities, as well as of efficient

separation procedures, we refer the reader to Gabrel and Minoux [128] and Kaparis and

Letchford [168].

Despite these results, the computational behavior of model (2.1)–(2.5) remains quite

poor. The literature has consequently focused on the study of models with better compu-

tational performance, including pseudo-polynomial models. The drawback of these models

is that the number of variables depends not only on the number of items but also on the

bin capacity. On the other hand, they provide a stronger linear relaxation than that given

by (2.1)–(2.5).

In Section 2.4.2 we address the oldest such model, independently developed by Rao

[234] in 1976 and by Dyckhoff [111] few years later. The most relevant approach of this

kind (somehow anticipated by Wolsey [293] in 1977) was presented in 1999 by Valério de

Carvalho [278] for the CSP. In 2010, Cambazard and O’Sullivan [52] presented a BPP

pseudo-polynomial model based on a similar idea, but described in a form inspired by the

graph construction used by Trick [274] for propagating knapsack constraints. We anticipate

its description in Section 2.4.3, since this makes it easier to understand the Valério de

Carvalho model, which is then discussed in Section 2.4.4 together with a recently proposed

variant.

2.4. Pseudo-polynomial formulations 19

The following example is resumed a number of times in the next sections.

Example 1 For the BPP, we consider an instance with n=6, c=9, and w=(4, 4, 3, 3, 2, 2).

The equivalent CSP instance has m = 3, c = 9, w = (4, 3, 2), and d = (2, 2, 2). An optimal

solution has value 2, and packs three items (of weight 4, 3, and 2) in each bin. �

2.4.2 One-cut formulation

The idea behind the Rao [234] and Dyckhoff [111] model for the CSP is to simulate

the physical cutting process, by first dividing an ideal bin into two pieces (left and right),

where the left piece is an item that has been cut, while the right piece is either a residual

that can be re-used to produce other items or it is another item. The process is iterated

on cutting residuals or new bins, until all demands are fulfilled. For the sake of clarity, we

use in this section the term “width” for “weight”.

Let W = {w1, w2, . . . , wm} be the set of item widths. Let R be the set of all possible

relevant residual widths, computed by subtracting from the bin capacity c all feasible

combinations of item widths (including the empty combination), provided the resulting

value is not less than the minimum item width. Formally,

R = {c− w̄ : w̄ =

m∑

j=1

wjxj , w̄ ≤ c−min
j
{wj}, xj ∈ {0, 1, . . . , bj}(j = 1. . . . ,m)}.

The level of demand for a certain width q is

Lq =

{
di if q = wi for some item type i;

0 otherwise.
(q ∈W ∪R).

Additionally, for each q ∈W ∪R, let

• A(q) = {p ∈ R : p > q} if q ∈ W (and A(q) = ∅ otherwise) denote the set of piece

widths that can be used for producing a left piece (item) of width q,

• B(q) = {p ∈W : p+ q ∈ R} denote the set of item widths that, if cut as a left piece,

would leave a right piece (residual) of width q, and

• C(q) = {p ∈W : p < q} denote the set of item widths that can be cut, as a left piece,

from a residual of width q.

20 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

By introducing an integer variable xpq, that gives the number of times a bin, or a

residual of width p, is cut into a left piece of width q and a right piece of width p − q

(p ∈ R, q ∈W,p > q), the one-cut model can be defined as the ILP

min
∑

q∈W

xcq (2.13)

s.t.
∑

p∈A(q)

xpq +
∑

p∈B(q)

xp+q,p ≥ Lq +
∑

r∈C(q)

xqr q ∈ (W ∪R)\{c}, (2.14)

xpq ≥ 0 and integer p ∈ R, q ∈W,p > q. (2.15)

The objective function (2.13) minimizes the number of times an item is cut from a bin.

Constraints (2.14) impose that, for each width q, the sum of the left pieces of width q plus

the sum of the right pieces of width q is not smaller than the level of demand of width q

plus the number of times a residual of width q is used to produce smaller items.

Example 1 (resumed) For the CSP instance we have W={2, 3, 4} and R={2, 3, 4, 5, 6, 7, 9}.
We obtain:

• A(2) = {3, 4, 5, 6, 7, 9}, A(3) = {4, 5, 6, 7, 9}, A(4) = {5, 6, 7, 9}, A(5) = A(6) =

A(7) = A(9) = ∅;

• B(2) = B(3) = {2, 3, 4}, B(4) = {2, 3}, B(5) = {2, 4}, B(6) = {3}, B(7) =

{2}, B(9) = ∅;

• C(2) = ∅, C(3) = {2}, C(4) = {2, 3}, C(5) = C(6) = C(7) = C(9) = {2, 3, 4}.

An optimal solution is then given by x9,4 = 2, x5,3 = 2, and xpq = 0 otherwise. In other

words, we cut two items of width 4 from two bins, and two items of width 3 from the two

residuals we have obtained. The two resulting residuals provide two items of width 2. �

Set R can be obtained by running a standard dynamic programming algorithm, or

a recursive algorithm, that generates all possible item combinations. The one-cut model

(2.13)-(2.15) has O(mc) variables and O(c) constraints.

Stadtler [266] studied the combinatorial structure of the one-cut model and extended

it by including additional variables and constraints. He also worked on comparing the

model and the classical column generation approach, and concluded that “The set of real

world cutting stock problems solvable by the one-cut model (of Rao and Dyckhoff) is only

2.4. Pseudo-polynomial formulations 21

a subset of those which could be tackled by the column generation approach (of Gilmore

and Gomory)”.

2.4.3 DP-flow formulation

A simple pseudo-polynomial model is obtained by associating variables to the decisions

taken in a classical dynamic programming (DP) table. In the BPP model proposed by

Cambazard and O’Sullivan [52], known as DP-flow, the DP states are represented by

a graph in which a path that starts from an initial node and ends at a terminal node

represents a feasible filling of a bin. Let us denote by (j, d) (j = 0, . . . , n and d = 0, . . . , c)

a DP state in which decisions have been taken up to item j and result in a partial bin

filling of d units. Let us also denote by ((j, d), (j +1, e)) an arc connecting states (j, d) and

(j + 1, e). Such arc expresses the decision on whether packing or not item j + 1 starting

from the current state (j, d): the state reached by the arc is (j + 1, d+wj+1) if item j + 1

is packed, and (j + 1, d) otherwise.

Example 1 (resumed) The DP table associated with our instance is shown in Figure 2.1,

where states are represented by nodes and organized in n + 1 horizontal layers. The table

includes an additional terminal state (n + 1, c), and states in layer n are connected to it

by loss arcs (dashed lines), that express the amount of unused capacity in a given bin. �

Let A denote the set of all arcs. As a feasible bin filling is represented by a path

that starts from node (0, 0) and ends at node (n+1, c), the BPP is to select the minimum

number of paths that contain all items. To formulate this decision problem, let us associate

an integer variable xj,d,j+1,e to arc ((j, d), (j +1, e)) ∈ A, representing the number of times

the arc has been chosen to form paths. Let δ−((j, d)) (resp. δ+((j, d))) denote the set of

arcs entering (resp. emanating from) state (j, d). The BPP can be then modeled as

min z (2.16)

s.t.
∑

((j,d),(j+1,e))∈δ+((j,d))

xj,d,j+1,e −
∑

((j−1,e),(j,d))∈δ−((j,d))

xj−1,e,j,d =





z if (j, d) = (0, 0);

−z if (j, d) = (n+ 1, c);

0 otherwise,

(2.17)
∑

((j−1,d),(j,d+wj))∈A

xj−1,d,j,d+wj
= 1 (j = 1, . . . , n), (2.18)

22 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

0, 0

1, 0

2, 0

3, 0

4, 0

5, 0

6, 0

1, 4

2, 4

3, 4

4, 4

5, 4

6, 4

2, 8

3, 8

4, 8

5, 8

6, 8

3, 3

4, 3

5, 3

6, 3

3, 7

4, 7

5, 7

6, 7

4, 6

5, 6

6, 6

5, 9

6, 9

5, 2

6, 2

5, 5

6, 5

7, 9

Figure 2.1: DP-flow graph construction for Example 1

xj,d,j+1,e ≥ 0 and integer ((j, d), (j + 1, e)) ∈ A. (2.19)

The objective function (2.16) minimizes the number of bins. Constraints (2.17) impose the

flow (number of bins) conservation at all nodes, while constraints (2.18) ensure that each

item is packed exactly once. Note that a “≥” sign could be used in (2.18) without affecting

the correctness of the model.

Example 1 (resumed) For the BPP instance an optimal solution is produced by the two

paths highlighted in Figure 2.1, namely [(0,0), (1,4), (2,4), (3,7), (4,7), (5,9), (6,9), (7,9)]

and [(0,0), (1,0), (2,4), (3,4), (4,7), (5,7), (6,9), (7,9)]. �

The DP-flow model (2.16)-(2.19) has O(nc) variables and constraints. This formulation

was developed in [52] for the BPP, but it could be extended to the CSP. The formulations

2.4. Pseudo-polynomial formulations 23

introduced in the next section were instead specifically tailored on the CSP.

2.4.4 Arc-flow formulations

An effective CSP pseudo-polynomial formulation, denoted arc-flow, was presented by

Valério de Carvalho [278], who used it in a branch-and-price algorithm (see Section 2.6).

To make its comprehension easier, consider again Example 1, and the DP representation

depicted in Figure 2.1. Now imagine that the graph is vertically shrunk, by grouping all

states with the same partial bin filling into a single one. In this way, the “vertical” arcs

disappear, while the “slanting” ones that connect the same pair of nodes merge into a single

arc. Figure 2.2 shows the counterpart of Figure 2.1. Note that the loss arcs, which imply

no bin filling variation, connect here consecutive nodes instead of (equivalently) going to

the terminal node. Let A′ denote the resulting arc set, and xde the number of times arc

(d, e) ∈ A′ is chosen. The filling of a single bin corresponds to a path from node 0 to node

c in this graph. The CSP can then be modeled as the following ILP:

min z (2.20)

s.t. −
∑

(d,e)∈δ−(e)

xde +
∑

(e,f)∈δ+(e)

xef =





z if e = 0;

−z for e = c;

0 otherwise,

(2.21)

∑

(d,d+wi)∈A′

xd,d+wi
≥ bi (i = 1, . . . ,m), (2.22)

xde ≥ 0 and integer (d, e) ∈ A′, (2.23)

where δ−(e) (resp. δ+(e)) denotes the set of arcs entering (resp. emanating from) e.

Constraints (2.21) impose the flow conservation at all nodes. Constraints (2.22) impose

that, for each item type i, at least bi arcs of length wi are used, i.e., that at least bi copies

of item type i are packed.

0 2 3 4 5 6 7 8 9

Figure 2.2: Arc-flow representation of the graph of Figure 2.1

24 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

Example 1 (resumed) An optimal solution to the CSP instance consists of two identical

paths [0, 4, 7, 9], highlighted in Figure 2.2. �

The arc-flow model (2.20)-(2.23) has O(mc) variables and O(m+c) constraints. Valério

de Carvalho [278] proposed however a number of improvements to the above basic model,

aimed at reducing the number of arcs. For example (see again Figure 2.2), it is enough to

only create nodes that correspond to feasible combinations of item weights. In addition,

it is proved in [278] that the linear programming relaxation of (2.20)-(2.23) has the same

solution value as the Gilmore and Gomory [134] model (see Section 2.6).

Very recently, Brandão and Pedroso [45] proposed an alternative CSP arc-flow formu-

lation. They start with a multi-graph generalization of the arc-flow formulation by Valério

de Carvalho [278] which uses a level per item type and can be seen as a CSP version of the

DP-flow formulation. A three-index variable, say xdei, is consequently associated with each

arc (d, e, i), where d and e are the tail and the head, while i represents the item type. This

leads to a three-index model analogous to (2.20)-(2.23) in which, however, those inequality

constraints (2.22) for which bi = 1 are changed to equalities. The resulting graph is then

reduced through graph compression techniques, and solved through a standard ILP solver.

The overall code (see Section 2.7) proved to be very efficient on benchmark instances.

2.5 Enumeration algorithms

The first attempts to exactly solve the BPP and the CSP were developed in the fifties

and in the sixties using LP relaxations and dynamic programming (see Eisemann [115] and

Gilmore and Gomory [134, 135, 136]). Starting from the early seventies, research in this

field focused on branch-and-bound.

2.5.1 Branch-and-bound

To the best of our knowledge, the first branch-and-bound algorithm for the BPP was

proposed by Elion and Christofides [114], who adapted the general enumerative scheme

proposed by Balas [19] for solving LPs with zero-one variables. Their algorithm produces a

binary decision tree in which a node generates two descendant nodes by assigning a certain

item to a certain bin, or by excluding it from that bin. The process is initialized by the

heuristic solution produced by the BFD algorithm (see Section 2.3.1) followed by a reshuffle

2.5. Enumeration algorithms 25

routine. Lower bounds are obtained from a standard LP relaxation. The algorithm could

only solve instances of very moderate size.

Later on, thanks to the development of better heuristics, improved lower bounds, and

reduction procedures, a more powerful branch-and-bound algorithm for the BPP, called

MTP, was developed by Martello and Toth [214]. During the nineties, this algorithm,

whose Fortran code was available, has been the standard reference for the exact solution

of the BPP. Their reduction procedures, which were later adopted by several authors, are

based on the following dominance criterion. Given an instance I of the BPP, define a

feasible set F as a set of items such that
∑

j∈F wj ≤ c. A feasible set F1 dominates another

feasible set F2 if the optimal solution obtained by imposing F1 as the content of a bin is

not greater than that obtained by imposing F2 as the content of a bin. Martello and Toth

[215] proved the following

Property 3 Given two distinct feasible sets F1 and F2, if there exists a partition P =

{P1, . . . , Pℓ} of F2, and a subset {j1, . . . , jℓ} of F1 such that wjh ≥
∑

k∈Ph
wk for h =

1, . . . , ℓ, then F1 dominates F2.

Clearly, if a feasible set F containing an item j dominates all other feasible sets contain-

ing the same item j, then we can impose F to a bin and reduce the instance accordingly.

Checking all such sets is computationally too heavy, and hence the Martello-Toth reduc-

tion procedure MTRP limits the search to feasible sets of cardinality at most three and has

O(n2) time complexity. The procedure was also used (iteratively) to produce, in O(n3)

time, an improved lower bound L3. Algorithm MTP sorts the items according to non-

increasing weight, and indexes the bins according to the order in which they are initialized:

at each decision node, the next free item is assigned, in turn, to all initialized bins that

can accommodate it, and to a new bin. The branch-decision tree is searched according to

a depth-first strategy.

Some years after the development of MTP, Scholl et al. [251] proposed the other most

successful branch-and-bound algorithm for the BPP, known as BISON. They adopted some

of the most powerful tools fromMTP, and added new lower bounds and emerging techniques

like Tabu search, obtaining an improved exact method for the BPP. A couple of years later,

Schwerin and Wäscher [255] improved the competitiveness of MTP with respect to BISON

through a lower bound provided by the column generation method developed by Gilmore

and Gomory [134] (see Section 2.6) for the CSP.

26 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

In the early noughties Mukhacheva et al. [222] proposed a pattern oriented branch-

and-bound algorithm for both the BPP and the CSP, while Korf [179, 180] proposed a “bin

completion” algorithm (later improved on by Schreiber and Korf [252]) in which decision

nodes are produced by assigning a feasible set to a bin. However, starting from the late

nineties, branch-and-price (see Section 2.6) proved to be very effective, and became the

most popular choice for the exact solution of the BPP. Tree search enumeration is also an

ingredient of constraint programming approaches, that are briefly examined in the next

section.

2.5.2 Constraint programming approaches

In the last decade some attempts have been proposed to solve the BPP through Con-

straint Programming (CP). Shaw [257] presented a new dedicated constraint (later on

implemented in the CP optimizer of CPLEX as IloPack) based on a set of pruning and

propagation rules that also make use of lower bound L2. In the following years, some

improvements on Shaw’s constraint were proposed. Cambazard and O’Sullivan [52] inte-

grated pseudo-polynomial formulations discussed in Section 2.4 within the CP approach by

Shaw. Dupuis et al. [110] used lower bound L2LLM by Labbé et al. [182] and an additional

reduction algorithm. Schaus et al. [245] introduced a filtering rule based on cardinality

considerations.

2.6 Branch-and-price

The Branch-and-Price algorithms for the BPP and the CSP are based on the seminal

work by Gilmore and Gomory [134, 135], who presented the classical set covering formula-

tion for the CSP, and showed how to solve its continuous relaxation by means of a column

generation approach. Although the branch-and-price approach could be used to solve all

the models of Section 2.4, to the best of our knowledge, in the BPP and CSP literature it

was mainly adopted for Gilmore-Gomory formulations, and hence our description follows

such model.

2.6.1 Set covering formulation and column generation

The set covering formulation is based on the enumeration of all patterns, i.e., of all

combinations of items that can fit into a bin. For the sake of conciseness, in the following

2.6. Branch-and-price 27

we use p to define both a pattern and its index, and P to define both the set of patterns

and the set of patterns indices.

For the CSP, a pattern p is described by an integer array (a1p, a2p, . . . , amp), where

ajp gives the number of copies of item j that are contained in pattern p, and satisfies
∑m

j=1 ajpwj ≤ c, and ajp ≥ 0, integer (j = 1, . . . ,m). Let us introduce an integer variable

yp that gives, for each p ∈ P , the number of times pattern p is used. The set covering

formulation of the CSP is given by the ILP

min
∑

p∈P

yp (2.24)

s.t.
∑

p∈P

ajpyp ≥ dj (j = 1, . . . ,m), (2.25)

yp ≥ 0 and integer (p ∈ P). (2.26)

Objective function (2.24) requires the minimization of the number of bins, whereas con-

straints (2.25) impose that the subset of selected patterns contains at least dj copies of

each item j.

Similarly, for the BPP: (i) a pattern p is defined by a binary array (a1p, a2p, . . . , anp),

where ajp is equal to 1 if item j is contained in pattern p and 0 otherwise; (ii) yp is a decision

variable taking the value 1 iff pattern p is used in the solution. The set covering formulation

is then obtained by modifying (2.25) and (2.26) as
∑

p∈P ajpyp ≥ 1 (j = 1, . . . , n) and

yp ∈ {0, 1} (p ∈ P), respectively.

Contrary to what happens with pseudo-polynomial models, in these formulations the

number of feasible patterns is exponential in the number of items, so enumerating all of

them is prohibitive even for moderate-size instances. Column generation techniques are

consequently adopted for these cases, while they are less frequent for the other models. Let

us briefly describe the basic technique for the CSP. We first define the continuous relaxation

of (2.24)-(2.26) by removing the integrality constraints, and heuristically initialize it with a

reduced set of patterns P ′ ⊆ P that provides a feasible solution. The resulting optimization

problem, called the restricted master problem (RMP), is

min
∑

p∈P ′

yp (2.27)

s.t.
∑

p∈P ′

ajpyp ≥ dj (j = 1, . . . ,m), (2.28)

28 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

yp ≥ 0 (p ∈ P ′). (2.29)

Once (2.27)-(2.29) has been solved, let πj be the dual variable associated with the jth

constraint (2.28). The existence of a column p 6∈ P ′ that could reduce the objective

function value (pricing problem) is determined by the reduced costs cp = 1−∑m
j=1 ajpπj (p 6∈

P ′). The column with the most negative reduced cost may be determined by solving an

unbounded knapsack problem in which the profits are given by the dual variables πj, i.e.,

the slave problem (SP):

max

m∑

j=1

πjvj , (2.30)

m∑

j=1

wjvj ≤ c, (2.31)

vj ≥ 0 and integer (j = 1, . . . ,m), (2.32)

where vj is the number of times item type j is used. If the solution to the SP has value

greater than 1, then the corresponding column (i.e., the corresponding pattern) has negative

reduced cost and it is added to the RMP. The process is iterated until no column with

negative reduced cost is found, thus providing the optimal solution value to the continuous

relaxation of the set covering formulation.

We finally observe that a pattern, as defined above, could contain more than dj copies of

an item j, and hence an equivalent definition (proper pattern) is obtained by also imposing

ajp ≤ dj (j = 1, . . . ,m). If this formulation is used, the SP consists of a bounded knapsack

problem, defined by (2.30)-(2.32), and vj ≤ dj (j = 1, . . . ,m).

This results in a (slightly) stronger lower bound, as the number of feasible patterns

becomes smaller. Thorough discussions on this issue may be found in Nitsche et al. [225],

and Caprara and Monaci [56]. The lower bound produced by the continuous relaxation is

usually very tight, and has been extensively studied in the literature, both from a theoretical

and a practical point of view. These studies are presented in the next section.

Alternative column generation approaches make use of the set partitioning formulation,

in which the ‘≥’ sign is replaced by ‘=’ in constraints (2.25). Indeed, if an optimal solution

to model (2.24)-(2.26) contains more than dj copies of an item j, then an equivalent solution

can be obtained by arbitrarily removing excess copies from the bins. Consequently the set

covering and the set partitioning formulations for the CSP lead to the same optimal solution

2.6. Branch-and-price 29

value. Similar considerations hold for the BPP.

Valério de Carvalho [280] proposed dual cuts to accelerate the column generation pro-

cess for the CSP. The idea is to add to the RMP “extra” columns (cuts in the dual) that

can be found in a fast way and can accelerate the convergence to the continuous optimal

solution by reducing the number of “standard” columns generated by the SP. This line of

research was pursued by Ben Amor et al. [32], who used dual constraints that are satisfied

by at least one optimal dual solution to reduce the typical long-tail effect of column gener-

ation. Clautiaux et al. [67] introduced additional dual cuts, as well as a method to tighten

lower and upper bounds on the dual variables, in order to stabilize the column generation

approach.

Most of the above methods have been used as a basis to produce effective branch-and-

price algorithms, that we survey in Section 2.6.3.

We conclude this section by mentioning some variants of column generation. Briant et

al. [46] compared bundle methods and column generation for solving the LP relaxation

of the set covering model, testing them on some BPP and CSP instances. Kiwiel [174]

proposed a special bundle method that allows inaccurate solutions to the SP, paired with

a rounding heuristic to produce a feasible solution, and experimented it on the CSP. El-

hedhli and Gzara [118] recently proposed another heuristic approach to the BPP, based on

Lagrangian relaxation and column generation.

2.6.2 Integer round-up property

Let LLP be the solution value of the continuous relaxation of the set covering formu-

lation, and zopt the optimal solution value. A BPP (or a CSP) instance is said to have

the Integer Round-Up Property (IRUP) if the rounded up value of LLP, ⌈LLP⌉, is equal

to zopt. We call such an instance an IRUP instance. On the basis of early computational

experiments, it was conjectured in the seventies that the IRUP held for any BPP and CSP

instance.

The IRUP conjecture was only proved for some special classes of instances (see, e.g.,

Berge and Johnson [37], and Marcotte [209]), until it was disproved in the eighties. Mar-

cotte [210] provided an instance for which the IRUP does not hold (Non-IRUP instance

in the following) with n = 24 and c = 3397 386 255. Later on, Chan et al. [59] presented

a smaller disproving instance, with n = 15 and c = 1111 139. For both instances the gap

between the rounded up lower bound and the optimal solution is exactly one bin. It was

30 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

then conjectured (see, e.g., Scheithauer and Terno [247, 248]) that zopt − ⌈LLP⌉ ≤ 1 holds

for any BPP and CSP instance (Modified Integer Round-Up Property, MIRUP).

To the best of our knowledge the MIRUP conjecture is still open both for the BPP

and the CSP, but a number of interesting results have been obtained while attempting to

close it. Kartak [170] presented sufficient conditions under which an instance is Non-IRUP,

as well as an algorithm to check them. By performing a huge number of computational

tests on randomly generated instances, Schoenfield [250] (see also Belov and Scheithauer

[30]) created a set of hard instances, including some satisfying zopt − LLP > 1. Rietz and

Dempe [236] presented methods to construct Non-IRUP instances through perturbations

of the item weights that make certain cutting patterns infeasible. Caprara et al. [54]

produced a large set of Non-IRUP instances by using a relationship between the BPP

and the edge coloring problem. The smallest such instances have n = 13 and c = 100,

showing that Non-IRUP instances may also appear in practical contexts. They also gave

a method to transform an IRUP instance into a Non-IRUP one. Very recently, Kartak et

al. [171] generated classes of Non-IRUP instances through an enumerative method, and

showed that the IRUP holds when n ≤ 9. Furthermore, they produced Non-IRUP instances

with 10 items. Eisenbrand et al. [116] and Newman et al. [224] studied the relationship

between the MIRUP conjecture for the BPP and the Becks three-permutation conjecture

for discrepancy theory (see Beck and Sós [27]).

For the CSP, the MIRUP conjecture is an open issue both in the case where proper

patterns are imposed or not. For the latter case it is easier to find Non-IRUP instances,

because, as previously mentioned, the resulting lower bound is weaker.

We conclude by observing that all Non-IRUP instances of the literature have been

solved exactly. In Section 2.7.1 we discuss a method to generate Non-IRUP instances that

are difficult to solve exactly.

2.6.3 Branch(-and-cut)-and-price algorithms

When the solution obtained at the end of the column generation method of Section

2.6.1 is fractional, an additional effort is required to find a feasible integer solution. The

generation of all possible patterns followed by the direct solution of (2.24)-(2.26) at inte-

grality is the most obvious option, but it can only be adopted for instances of small size, or

characterized by a special structure (see, e.g., Goulimis [138]). Other, non exact, methods

simply use rounding heuristics (like, e.g., Roodman [239], Haessler and Sweeney [146], and

2.6. Branch-and-price 31

Holthaus [154]), but their efficiency strongly depends on the instances at hand. When

these methods fail in producing an optimal integer solution, one can embed the column

generation lower bound LLP into an enumeration tree, thus obtaining a branch-and-price

algorithm. The main difficulty of this approach is that the branching decisions that have

been taken during the enumeration must be embedded in the master and/or the slave

problem, so as to avoid the generation of columns that have been excluded by the branch

decisions. We review in this section the main methods that have been proposed in the

literature to handle this issue.

The first branch-and-price algorithm for the BPP is probably the one proposed by

Vance et al. [282] in 1994. At each decision node the algorithm considers those bins

for which the decision variable yp is fractional, and selects the pair of items that are

fractionally packed into the same bin and have largest total weight: following a branching

rule originally developed by Ryan and Foster [243] for set partitioning problems, such items

are then forced to be packed either together or separately. In the latter case the resulting

subproblem is a knapsack problem with an additional constraint, while in the former case it

is sufficient to merge the two items into a unique one. Early termination of nodes without

performing the complete column generation is obtained by using a lower bound on the

objective function value due to Farley [121]. The following year Scheithauer and Terno

[246] proposed a hybrid strategy for the CSP, oriented to the conjecture that the MIRUP

holds for the instance at hand. They first reduce the instance by solving its continuous

relaxation and rounding down the solution, so as to obtain a partial integer solution and

a residual instance. The residual instance is then attacked through heuristic algorithms

and, if they fail in producing an overall optimal solution, it is exactly solved through a

branch-and-bound algorithm which includes pricing ideas.

Some years later, Vance [281] focused on the CSP and showed that the application of

the classical Dantzig–Wolfe [89] decomposition to the CSP model (2.6)-(2.10) leads to the

set covering model (2.24)-(2.26), and used this result to implement two specifically tailored

branching rules.

In the late nineties, Valério de Carvalho [278] proposed a column generation approach

which is not based on the traditional Gilmore-Gomory model but on the arc-flow formula-

tion of Section 2.4.4. The algorithm branches on a fractional flow variable x by imposing

it to be either not smaller than ⌈x⌉ or not greater than ⌊x⌋. The branching constraints are

directly added to the master. The slave is in this case a longest path problem in an acyclic

directed graph, which is solved through dynamic programming.

32 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

Vanderbeck [283] introduced a branch-and-price algorithm whose rule is to branch on

a set of columns. This is obtained by adding a constraint to the master to impose that

the sum s of the variables associated with such set are either not smaller than ⌈s⌉ or not
greater than ⌊s⌋. In this way the descendant nodes involve a complicated variant of the

knapsack problem. The convergence of the algorithm is improved by cut generation at the

decision nodes, so that the method can be seen as a Branch-and-Cut-and-Price algorithm.

Later on, Vanderbeck [284, 286] tested on BPP and CSP instances some branching schemes

he developed for general branch-and-price algorithms.

Degraeve and Schrage [93] proposed a branch-and-price approach to the CSP, which

selects for branching a pattern associated with a fractional variable. A specific constraint

is added to the slave in order to prevent such pattern to be generated at descendant nodes.

Degraeve and Peeters [92] improved the algorithm by adding heuristics, pruning rules, and

a sub-gradient procedure to speed up the solution of the LP relaxations. In addition, they

adopted an efficient way to handle decision nodes, by focusing on the solution of the sub-

problem obtained by subtracting from the item demands the values of the rounded-down

LP solution.

In the early noughties, Scheithauer et al. [249] proposed an exact solution approach

for the CSP based on cutting plane generation. The algorithm computes a lower bound

by solving the continuous relaxation of the set covering formulation, and an upper bound

by using heuristics. If there is a gap between these two values, Chvátal-Gomory cuts [65]

are added to the formulation to possibly increase the lower bound value, and the process is

iterated. The slave is solved by a specifically tailored branch-and-bound method that takes

into account the dual variables associated with the additional constraints. The method

was improved in Belov and Scheithauer [29], and then embedded into a branch-and-price

algorithm in Belov and Scheithauer [30]. The resulting algorithm directly branches on

the variables associated with the patterns, selecting the variable whose fractional value

is closer to 0.5. Later on, Belov et al. [31] investigated the performance of combining

Chvátal-Gomory cuts and arc-flow formulations, which however did not prove to be very

effective.

The list of papers commented in this section is not exhaustive, as the literature on

branch-and-price algorithms for the BPP and the CSP is huge. We mention here De-

saulniers et al. [104], who introduce a generic framework for dealing with cutting planes in

branch-and-price algorithms. For further details, we refer the reader to the specific survey

by Ben Amor and Valério de Carvalho [33], who show how the set covering formulation

2.7. Experimental evaluation 33

(2.24)-(2.26) can be derived from various compact formulations though Dantzig-Wolfe de-

compositions. Other relevant remarks can be found in the general survey by Lübbecke and

Desrosiers [202], who treat a number of implementation issues, including specific consider-

ations on the BPP and the CSP.

2.7 Experimental evaluation

Besides presenting the main mathematical models that have been proposed for the

BPP and the CSP, one main purpose of this survey is to experimentally compare the

different solution methods in order to evaluate their average efficiency. The objective

of this section is twofold: provide information and benchmarks to researchers interested

in developing new solution approaches and give a hands-on picture of the algorithmic

landscape to practitioners having to deal with the practical solution of the problems. We

performed the experiments on various sets of instances (all defined in BPP form) in order to

understand which problem parameters make instances difficult to solve and which classes

of problem instances are particularly hard. Benchmarks and computer codes are available

in a dedicated web page.

2.7.1 Benchmarks

We used 3 different benchmarks: instances previously used in the literature, randomly

generated instances, and instances especially designed so that an exact algorithm can hardly

prove the optimality of a solution. All instances are downloadable from the web page

http://or.dei.unibo.it/library/bpplib (referred to in the following as the BPPLIB).

Literature instances

We tested the algorithms on the instances proposed by:

• Falkenauer [119]: two classes of 80 instances each, available at Beasley’s [24] OR

library: the first class has uniformly distributed item sizes (‘Falkenauer U’) with n

between 120 and 1000, and c = 150. The second class (‘Falkenauer T’) includes the

so-called triplets, i.e., groups of three items (one large, two small) that need to be

assigned to the same bin in any optimal packing, with n between 60 and 501, and

c = 1000;

http://or.dei.unibo.it/library/bpplib

34 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

• Scholl et al. [251]: three sets of 720, 480, and 10, respectively, uniformly distributed

instances (from http://www.wiwi.uni-jena.de/entscheidung/binpp/) with n be-

tween 50 and 500. The capacity c is between 100 and 150 (set ‘Scholl 1’), equal to

1000 (set ‘Scholl 2’), and equal to 100 000 (set ‘Scholl 3’), respectively;

• Wäscher and Gau [288]: 17 hard instances (‘Wäscher’ in the tables) available at page

http://paginas.fe.up.pt/~esicup/tiki-list_file_gallery.php?galleryId=1

(which also hosts the next two sets), with n between 57 and 239, and c = 10 000;

• Schwerin and Wäscher [254]: two sets (‘Schwerin 1’ and ‘Schwerin 2’) of 100 instances

each with n = 100 and n = 120, respectively, and c = 1000;

• Schoenfield [250]: 28 instances (‘Hard28’) with n between 160 and 200, and c = 1000.

Randomly generated instances

In order to better evaluate the behavior of the exact algorithms with respect to the

instance characteristics, we randomly generated BPP instances with different values of

– n ∈ {50, 100, 200, 300, 400, 500, 750, 1000},
– c ∈ {50, 75, 100, 120, 125, 150, 200, 300, 400, 500, 750, 1000},
– wmin ∈ {0.1c, 0.2c},

– wmax ∈ {0.7c, 0.8c},
For each quadruplet, 10 instances were obtained by uniformly randomly generating the

weights in [wmin, wmax], producing in total 3840 instances.

Difficult instances

As it is shown in Section 2.7.3, all the above instances can be solved in less than 10

minutes by at least one of the softwares we tested. In order to test them on more challenging

benchmarks, we designed a new class of instances.

The augmented Non-IRUP (ANI) instances were derived from a benchmark, called B in

the following, proposed by Caprara et al. [54]. Benchmark B (available at http://www.or.

unimore.it/resources/BPP_non_IRUP/instances.html) consists of 15-item BPP Non-

IRUP instances satisfying
∑15

j=1wj = 3 c (see Section 2.6.2), for which LLP = 3 and the

optimal solution has value 4. An augmented Non-IRUP instance was obtained from an

http://www.wiwi.uni-jena.de/entscheidung/binpp/
http://paginas.fe.up.pt/~esicup/tiki-list_file_gallery.php?galleryId=1
http://www.or.unimore.it/resources/BPP_non_IRUP/instances.html
http://www.or.unimore.it/resources/BPP_non_IRUP/instances.html

2.7. Experimental evaluation 35

instance of B by iteratively adding to it a triplet of items such that: (i) their total weight

equals c, and (ii) for at least one of them, say having weight wk, there is no subset S of items

currently in the instance such that wk+
∑

j∈S wj = c. Whenever (ii) could not be satisfied

for the current triplet, both the current capacity and the weights generated so far were dou-

bled. We generated five sets of 50 ANI instances each, with n ∈ {201, 402, 600, 801, 1002}
(remind that n must be a multiple of 3). Concerning the capacities, it was imposed to the

five sets that the value of c could not exceed an upper bound c, respectively equal to 2 500,

10 000, 20 000, 40 000, and 80 000. Whenever this could not be ensured, the instance was

discarded and a new instance was generated.

It is necessary to clarify in which sense the above ANI instances are difficult to solve

exactly. Exact algorithms (or specifically tailored heuristics or metaheuristics) can indeed

find an optimal solution, but they struggle with proving its optimality, as the solution value

is higher than lower bound LLP. For the sake of comparison, we also generated five sets of

“easier” augmented IRUP (AI) instances with n+1 items, obtained from the ANI ones by

splitting one of the 15 original items into two items so that the resulting 16 items fit into

3 bins, i.e., the Non-IRUP is lost. For the AI instances, all bins are completely filled, so

the continuous relaxation provides the optimal solution value, and the only difficulty is to

construct a feasible solution having the same value.

2.7.2 Computer codes

We computationally evaluated, among the solution methods treated in the previous

sections, all those for which the corresponding source code is available online, plus the

classical Pascal code of Bison, provided by the authors. In addition, we included a number

of methods for which the computer code can be easily implemented. The computer codes

are either linked or downloadable from the BPPLIB.

We tested the following computer codes:

• Branch-and-bound (see Section 2.5.1):

– MTP, Fortran code by Martello and Toth [214];

– BISON, Pascal code by Scholl et al. [251];

– CVRPSEP, C code by J. Lysgaard, included in a package, CVRPSEP, as a

part of a separation routine for the Capacitated Vehicle Routing Problem (see

36 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

[205]). The code has been produced using the procedures of MTP. The whole

package is available at http://www.hha.dk/lys/CVRPSEP.htm.

• Branch-and-price (see Section 2.6.3):

– VANCE, C++ implementation of the algorithm by Vance et al. [282], using

CPLEX 12.6.0 for the LP relaxations and the knapsack problems with additional

constraints;

– BELOV, C++ implementation by Belov of the algorithm by Belov and Schei-

thauer [30], using CPLEX 12.6.0 for the inner routines, available at web page

http://www.math.tu-dresden.de/~capad/cpd-sw.html;

– SCIP-BP, freeware SCIP 3.0.2 C code for a branch-and-price BPP algorithm,

available at http://scip.zib.de/doc/examples/Binpacking/BRANCHING.php,

that uses the Ryan and Foster [243] branching rule (also adopted in VANCE).

• Pseudo-polynomial formulations solved via ILP (see Section 2.4):

– ONECUT, C++ implementation of the one-cut model by Rao [234], Dyck-

hoff [111], and Stadtler [266], solving the resulting ILP through CPLEX 12.6.0,

available at the BPPLIB;

– ARCFLOW, C++ implementation of the arc-flow model by Valério de Car-

valho [278], solving the resulting ILP through CPLEX 12.6.0, available at the

BPPLIB;

– DPFLOW, C++ implementation of the DP-flow model by Cambazard and

O’Sullivan [52], solving the resulting ILP through CPLEX 12.6.0, available at

the BPPLIB;

– VPSOLVER, C++ implementation by Brandão and Pedroso [45], which uses

Gurobi 5.6 as inner routine, available at https://code.google.com/p/vpsolver.

• Other methods:

– BASIC ILP, C++ implementation of the introductory ILP model (2.1)-(2.5),

implemented using CPLEX 12.6.0;

– CSTRPROG, C++ implementation of a simple constraint programming al-

gorithm (Section 2.5.2), using the CP optimizer of CPLEX 12.6.0 and selecting

http://www.hha.dk/lys/CVRPSEP.htm
http://www.math.tu-dresden.de/~capad/cpd-sw.html
http://scip.zib.de/doc/examples/Binpacking/BRANCHING.php
https://code.google.com/p/vpsolver

2.7. Experimental evaluation 37

constraint IloPack (see Shaw [257]), and a search phase based on an FFD strat-

egy.

All codes are oriented to the BPP but BELOV, ONECUT, ARCFLOW, and VPSOLVER,

which are designed for the CSP. The Pascal code was compiled with fpc (version 2.6.0-9

[2013/04/14] for x86 64), while the Fortran and C++ codes were all compiled with gcc

(version 4.4.7 20120313), using command gfortran and g++, respectively.

We preliminary computed lower and upper bounds through a simple procedure,BFDL2,

which includes approximation algorithm BFD of Section 2.3.1 and lower bound L2 of Sec-

tion 2.3.2. The codes were only executed on instances for which lower and upper bound

did not coincide. For our C++ implementations, the BFD upper bound was passed to

CPLEX.

2.7.3 Experiments

All the experiments but those in Table 2.14 were executed on an Intel Xeon 3.10 GHz

with 8 GB RAM, equipped with four cores. In order to allow fair comparisons with other

algorithms and machines, all our experiments were performed with a single core, and the

number of threads was set to one for all solvers.

Tables 2.1-2.3 give the results for the literature instances. Table 2.1 provides the results

obtained by running the codes with a time limit of one minute. Columns 1 and 2 identify

the benchmark and give the number of instances for which the codes were executed. The

column associated with each code provides the number of such instances that were solved to

proven optimality and, in parentheses, the average value of the absolute gap g between the

solution value and the lower bound produced by the code. For the cases where an algorithm

could solve all instances, the corresponding number appears in bold. When the time limit

is very small, codes BELOV, SCIP-BP, and VPSOLVER can sometimes terminate

Table 2.1: Number of literature instances (average gap wrt lower bound) solved in less than one minute

Set tested
inst.

Branch-and-bound Branch-and-price Pseudo-polynomial Others

MTP BISON CVRPSEP VANCE BELOV SCIP-BP ONECUT ARCFLOW DPFLOW VPSOLVER BASIC ILP CSTRPROG

Falkenauer U 74 22 (1.7) 44 (0.4) 22 (1.8) 53 (1.2) 74 (0.0) 18 (2.1) 74 (0.0) 74 (0.0) 37 (1.8) 74 (0.0) 10 (2.3) 28 (2.0)
Falkenauer T 80 6 (7.0) 42 (0.5) 0 (11.0) 76 (0.1) 57 (0.3) 35 (4.5) 80 (0.0) 80 (0.0) 40 (8.8) 80 (0.0) 7 (7.0) 39 (8.8)
Scholl 1 323 242 (0.3) 288 (0.1) 223 (0.3) 323 (0.0) 323 (0.0) 244 (0.2) 323 (0.0) 323 (0.0) 289 (0.1) 323 (0.0) 212 (0.3) 90 (0.6)
Scholl 2 244 130 (0.6) 233 (0.0) 65 (1.4) 204 (0.2) 244 (0.0) 67 (1.2) 118 (0.4) 202 (0.1) 58 (1.3) 208 (0.1) 90 (1.0) 122 (1.3)
Scholl 3 10 0 (1.5) 3 (0.7) 0 (4.1) 10 (0.0) 10 (0.0) 0 (4.1) 0 (4.1) 0 (4.1) 0 (4.1) 10 (0.0) 0 (2.7) 0 (4.1)
Wäscher 17 0 (1.0) 10 (0.4) 0 (1.0) 6 (0.6) 17 (0.0) 0 (1.0) 0 (1.0) 0 (1.0) 0 (1.0) 6 (0.6) 4 (0.8) 7 (0.6)
Schwerin 1 100 15 (0.9) 100 (0.0) 9 (0.9) 100 (0.0) 100 (0.0) 0 (1.0) 100 (0.0) 100 (0.0) 0 (1.0) 100 (0.0) 32 (0.7) 100 (0.0)
Schwerin 2 100 4 (1.4) 63 (0.4) 0 (1.4) 100 (0.0) 100 (0.0) 0 (1.4) 100 (0.0) 100 (0.0) 0 (1.4) 100 (0.0) 36 (0.7) 60 (0.8)
Hard28 28 0 (1.0) 0 (1.0) 0 (1.0) 11 (0.6) 28 (0.0) 7 (0.8) 6 (0.8) 16 (0.4) 0 (1.0) 27 (0.0) 0 (1.0) 0 (1.0)

Total 976 419 (0.9) 783 (0.1) 319 (1.4) 883 (0.1) 953 (0.0) 371 (1.0) 801 (0.2) 895 (0.1) 424 (1.2) 928 (0.0) 391 (1.0) 446 (1.3)

Table 2.2: Average time in seconds (standard deviation) for solving literature instances

Set tested
inst.

Branch-and-bound Branch-and-price Pseudo-polynomial Others

MTP BISON CVRPSEP VANCE BELOV SCIP-BP ONECUT ARCFLOW DPFLOW VPSOLVER BASIC ILP CSTRPROG

Falkenauer U 74 42.8 (27.2) 24.5 (29.5) 42.2 (27.6) 24.1 (25.2) 0.0 (0.0) 50.1 (19.1) 0.2 (0.1) 0.2 (0.1) 38.8 (23.9) 0.1 (0.0) 61.4 (41.2) 38.8 (27.9)
Falkenauer T 80 55.5 (15.9) 30.6 (29.3) 60.2 (0.3) 14.8 (19.2) 24.7 (26.8) 39.4 (25.6) 8.7 (10.7) 3.5 (6.8) 41.7 (22.0) 0.4 (0.5) 58.1 (8.9) 34.2 (27.6)
Scholl 1 323 15.1 (26.0) 7.0 (18.8) 19.4 (27.6) 3.6 (7.5) 0.0 (0.0) 22.4 (24.3) 0.1 (0.1) 0.1 (0.3) 13.0 (19.1) 0.1 (0.1) 23.1 (28.3) 44.3 (25.9)
Scholl 2 244 28.2 (29.9) 3.0 (12.7) 44.2 (26.4) 18.6 (24.3) 0.3 (0.4) 49.2 (20.2) 38.7 (25.6) 18.9 (23.1) 50.4 (19.4) 14.0 (21.5) 40.7 (27.2) 31.7 (29.0)
Scholl 3 10 60.0 (0.0) 42.0 (29.0) 60.0 (0.0) 1.9 (0.8) 14.1 (1.5) 60.0 (0.0) 63.9 (3.1) 61.1 (0.3) 60.0 (0.0) 6.3 (3.9) 60.0 (0.0) 60.0 (0.0)
Wäscher 17 60.0 (0.0) 24.7 (30.4) 60.0 (0.0) 52.0 (18.9) 0.1 (0.1) 60.0 (0.1) 60.7 (0.2) 60.5 (0.3) 60.0 (0.0) 49.4 (26.6) 49.9 (19.3) 37.2 (28.4)
Schwerin 1 100 51.1 (21.3) 0.0 (0.0) 55.4 (15.6) 0.3 (0.0) 1.0 (0.3) 60.1 (0.0) 13.1 (9.5) 1.5 (0.6) 59.6 (0.3) 0.3 (0.2) 43.0 (25.8) 4.4 (7.4)
Schwerin 2 100 57.6 (11.8) 22.2 (29.1) 60.0 (0.0) 0.5 (0.1) 1.4 (0.3) 60.1 (0.0) 11.7 (7.8) 1.5 (0.7) 59.6 (0.3) 0.3 (0.1) 43.1 (25.3) 27.1 (27.8)
Hard28 28 60.0 (0.0) 60.0 (0.0) 60.0 (0.0) 48.9 (20.8) 7.3 (11.9) 51.2 (16.8) 54.6 (11.4) 40.6 (20.0) 60.0 (0.0) 14.2 (17.9) 60.0 (0.0) 60.0 (0.0)

Total 976 34.4 (22.8) 12.3 (17.9) 40.8 (19.5) 11.3 (13.0) 2.7 (2.7) 42.2 (17.1) 16.3 (9.5) 8.2 (7.2) 38.9 (14.8) 5.0 (6.5) 39.3 (25.6) 34.6 (24.3)

Table 2.3: Number of literature instances solved in less than ten minutes

Set
tested
inst.

BISON BELOV ARCFLOW VPSOLVER

Falkenauer U 74 50 74 74 74

Falkenauer T 80 47 80 80 80

Scholl 1 323 290 323 323 323

Scholl 2 244 234 244 231 242
Scholl 3 10 3 10 0 10

Wäscher 17 10 17 4 13
Schwerin 1 100 100 100 100 100

Schwerin 2 100 63 100 100 100

Hard28 28 0 28 26 26

Total 976 797 976 938 968

2.7. Experimental evaluation 39

without producing a decent lower and/or upper bound. In such cases the value of g could

be huge or undefined, so, in order to avoid anomalous results, the gap was always computed

as the minimum between g and the gap produced by BFDL2. The last line of the table

reports the total number of solved instances and, in parentheses, the overall average gap.

Table 2.2 has the same structure as Table 2.1 but the entries provide, for each computer

code, the average CPU time expressed in seconds and, in parentheses, the corresponding

standard deviation. The entries in the last line give in this case the average CPU time

and, in parentheses, the standard deviation computed over all instances for which the code

was executed. It must be observed that, for the computer codes that invoke CPLEX,

SCIP, or Gurobi, the actual CPU time spent on an instance turns out, in some cases, to

be greater than the time limit. In most cases the difference was irrelevant but for BASIC

ILP. Indeed, when solving model (2.1)-(2.5), CPLEX can get stuck in the cutting plane

loop, which needs a high time and cannot be interrupted freely. This explains a couple of

average times higher that 60 seconds (in Tables 2.2 and 2.7). The instances that required

a CPU time much larger than 60 seconds were counted as unsolved by BASIC ILP (while

the improvement coming from the additional CPU time spent turned out to be irrelevant).

Tables 2.1 and 2.2 show that, for the literature instances,

1. among the (old) branch-and-bound codes, BISON is the only one capable of solving

many instances;

2. two branch-and-price algorithms (VANCE and, in particular, BELOV) have satisfac-

tory results, while SCIP-BP does not appear to be competitive. The only difficult

instances for BELOV appear to be Falkenauer T, which are instead easily solved by

the pseudo-polynomial models, probably because of the small capacities involved;

3. ARCFLOW and VPSOLVER are the most efficient algorithms among those that

use pseudo-polynomial models. ONECUT, even if based on an older model, has an

overall decent performance. We additionally observe that the computational exper-

iments showed that its LP relaxation has the same quality as the LP relaxation of

ARCFLOW;

4. as it could be expected, the efficiency of BASIC ILP and CSTRPROG is quite low.

We selected the winner of each algorithmic class (BISON, BELOV, and VPSOLVER)

for an additional round of tests (on the same instances) with a time limit of 10 minutes. By

40 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

considering that the performance of ARCFLOW is competitive with that of VPSOLVER,

and that its graph construction is considerably simpler, we decided to include it in this

round. The number of solved instances within the larger time limit are provided in Table

2.3. Overall, the four algorithms exhibited a satisfactory behavior. In particular BELOV

solved all instances and VPSOLVER almost all of them. ARCFLOW and BISON solved

96% and 82% of the instances, respectively. Instances with very large capacity values

turned out to be particularly hard for ARCFLOW.

The next group of six tables refers to the randomly generated instances. Tables 2.4-

2.6 provide the number of instances solved by each computer code (and, in parentheses,

the gap), with a time limit of one minute, when varying the items characteristics. In

Table 2.4 the results are listed according to the number of items, in Table 2.5 according

to the capacity, and in Table 2.6 according to the weight over capacity ratios. The entries

give the same information as in Table 2.1. Similarly, Tables 2.7-2.9 report average CPU

times and standard deviations with the same grouping policy. Globally, the results confirm

observations 1.-4. made for the literature instances. We additionally observe that:

5. BELOV solved all instances within one minute, and it appears to be clearly superior

to all other codes but VPSOLVER, which solved just 10 instances less (out of the

2901 instances for which the initial lower and upper bound did not coincide);

6. SCIP-BP is effective on small-size instances (n ≤ 100);

7. the performance of branch-and-price algorithms is not affected by the capacity, while

that of algorithms based on pseudo-polynomial models is. In particular, the behavior

of ARCFLOW and DPFLOW depends on the three considered parameters, especially

on the capacity and the item weights.

Overall, the best-in-class algorithms turned out to be the same as for the previous

benchmark.

Moreover, additional computational experiments with different weight ranges (0.1/0.4,

0.1/0.5, 0.2/0.4, 0.2/0.5) produced similar results and the same ranking of the algorithms.

In this case too, we created 3840 instances. We ran the codes, for one minute, on the 3403

instances for which the initial lower and upper bound did not coincide. BELOV solved all

of them but one, while VPSOLVER, ARCFLOW, and ONECUT solved 3346, 3283, and

3027 instances, respectively. (BELOV and VPSOLVER solved however all of them in less

than ten minutes.)

Table 2.4: Number of random instances solved in less than one minute (average gap wrt lower bound) when varying
n.

n tested
inst.

Branch-and-bound Branch-and-price Pseudo-polynomial Others

MTP BISON CVRPSEP VANCE BELOV SCIP-BP ONECUT ARCFLOW DPFLOW VPSOLVER BASIC ILP CSTRPROG

50 165 163 (0.0) 165 (0.0) 164 (0.0) 165 (0.0) 165 (0.0) 165 (0.0) 165 (0.0) 165 (0.0) 165 (0.0) 165 (0.0) 157 (0.0) 71 (0.7)
100 271 243 (0.1) 257 (0.1) 239 (0.1) 271 (0.0) 271 (0.0) 271 (0.0) 271 (0.0) 271 (0.0) 271 (0.0) 271 (0.0) 237 (0.1) 132 (0.6)
200 359 237 (0.4) 290 (0.2) 220 (0.6) 358 (0.0) 359 (0.0) 293 (0.2) 358 (0.0) 359 (0.0) 292 (0.2) 359 (0.0) 201 (0.4) 171 (0.8)
300 393 166 (0.8) 265 (0.3) 144 (1.1) 387 (0.0) 393 (0.0) 155 (0.8) 385 (0.0) 391 (0.0) 243 (0.6) 393 (0.0) 115 (0.8) 140 (1.2)
400 425 151 (1.1) 244 (0.5) 138 (1.4) 416 (0.0) 425 (0.0) 114 (1.1) 408 (0.1) 421 (0.0) 193 (1.1) 425 (0.0) 92 (1.0) 104 (1.7)
500 414 121 (1.4) 208 (0.6) 128 (1.6) 394 (0.0) 414 (0.0) 69 (1.7) 394 (0.1) 402 (0.0) 169 (1.3) 413 (0.0) 60 (1.5) 61 (2.0)
750 433 93 (2.0) 214 (0.7) 98 (2.3) 99 (2.1) 433 (0.0) 22 (2.7) 401 (0.2) 415 (0.1) 120 (2.0) 431 (0.0) 54 (2.5) 23 (2.8)

1000 441 78 (2.6) 196 (0.8) 73 (3.1) 62 (2.8) 441 (0.0) 0 (3.6) 407 (0.2) 416 (0.1) 67 (3.1) 434 (0.0) 39 (3.3) 7 (3.6)

Overall 2901 1252 (1.2) 1839 (0.5) 1204 (1.5) 2152 (0.8) 2901 (0.0) 1089 (1.5) 2789 (0.1) 2840 (0.0) 1520 (1.2) 2891 (0.0) 955 (1.4) 709 (1.9)

Table 2.5: Number of random instances solved in less than one minute (average gap wrt lower bound) when varying
c.

c tested
inst.

Branch-and-bound Branch-and-price Pseudo-polynomial Others

MTP BISON CVRPSEP VANCE BELOV SCIP-BP ONECUT ARCFLOW DPFLOW VPSOLVER BASIC ILP CSTRPROG

50 223 125 (0.5) 191 (0.1) 145 (0.6) 162 (0.4) 223 (0.0) 86 (0.8) 223 (0.0) 223 (0.0) 205 (0.1) 223 (0.0) 83 (0.8) 73 (0.9)
75 240 137 (0.7) 187 (0.2) 141 (0.8) 176 (0.5) 240 (0.0) 96 (1.0) 240 (0.0) 240 (0.0) 208 (0.2) 240 (0.0) 92 (0.9) 84 (1.2)

100 234 111 (0.8) 177 (0.2) 116 (1.0) 172 (0.6) 234 (0.0) 89 (1.1) 234 (0.0) 234 (0.0) 185 (0.3) 234 (0.0) 71 (1.0) 64 (1.3)
120 241 110 (0.8) 172 (0.3) 112 (1.0) 181 (0.5) 241 (0.0) 91 (1.1) 241 (0.0) 241 (0.0) 168 (0.5) 241 (0.0) 82 (1.0) 66 (1.3)
125 251 127 (0.8) 176 (0.3) 129 (1.0) 192 (0.5) 251 (0.0) 101 (1.1) 251 (0.0) 251 (0.0) 174 (0.6) 251 (0.0) 84 (1.1) 77 (1.3)
150 240 101 (0.9) 165 (0.3) 90 (1.2) 181 (0.6) 240 (0.0) 95 (1.1) 240 (0.0) 240 (0.0) 143 (0.8) 240 (0.0) 72 (1.1) 57 (1.5)
200 246 95 (1.0) 156 (0.3) 89 (1.2) 184 (0.6) 246 (0.0) 99 (1.1) 246 (0.0) 246 (0.0) 127 (0.9) 246 (0.0) 74 (1.1) 53 (1.5)
300 237 86 (1.0) 134 (0.4) 77 (1.2) 172 (0.6) 237 (0.0) 80 (1.2) 237 (0.0) 237 (0.0) 79 (1.3) 237 (0.0) 67 (1.2) 59 (1.5)
400 245 96 (1.1) 122 (0.5) 81 (1.4) 184 (0.6) 245 (0.0) 95 (1.3) 245 (0.0) 245 (0.0) 71 (1.5) 245 (0.0) 80 (1.2) 51 (1.6)
500 243 90 (1.1) 125 (0.5) 76 (1.4) 179 (0.6) 243 (0.0) 77 (1.3) 241 (0.0) 242 (0.0) 56 (1.6) 243 (0.0) 79 (1.2) 45 (1.6)
750 249 82 (1.1) 119 (0.6) 70 (1.4) 183 (0.6) 249 (0.0) 91 (1.3) 211 (0.2) 229 (0.1) 55 (1.6) 249 (0.0) 84 (1.2) 36 (1.7)

1000 252 92 (1.1) 115 (0.6) 78 (1.4) 186 (0.6) 252 (0.0) 89 (1.3) 180 (0.5) 212 (0.3) 49 (1.6) 242 (0.0) 87 (1.2) 44 (1.6)

Overall 2901 1252 (0.9) 1839 (0.3) 1204 (1.1) 2152 (0.6) 2901 (0.0) 1089 (1.1) 2789 (0.1) 2840 (0.0) 1520 (0.9) 2891 (0.0) 955 (1.1) 709 (1.4)

Table 2.6: Number of random instances solved in less than one minute (average gap wrt lower bound) when varying
weight range.

Range tested
inst.

Branch-and-bound Branch-and-price Pseudo-polynomial Others

MTP BISON CVRPSEP VANCE BELOV SCIP-BP ONECUT ARCFLOW DPFLOW VPSOLVER BASIC ILP CSTRPROG

0.1 / 0.7 785 337 (0.7) 590 (0.2) 385 (0.6) 541 (0.6) 785 (0.0) 162 (1.1) 700 (0.2) 737 (0.1) 274 (1.0) 776 (0.0) 106 (1.1) 384 (0.8)
0.1 / 0.8 729 222 (0.7) 339 (0.5) 242 (0.7) 476 (0.5) 729 (0.0) 233 (0.9) 703 (0.1) 716 (0.0) 328 (0.8) 728 (0.0) 197 (0.9) 171 (1.0)
0.2 / 0.7 878 229 (2.2) 406 (0.7) 206 (2.9) 646 (1.2) 878 (0.0) 340 (2.3) 877 (0.0) 878 (0.0) 569 (1.6) 878 (0.0) 281 (2.1) 116 (3.0)
0.2 / 0.8 509 464 (0.1) 504 (0.0) 371 (0.3) 489 (0.0) 509 (0.0) 354 (0.3) 509 (0.0) 509 (0.0) 349 (0.3) 509 (0.0) 371 (0.2) 38 (0.9)

Overall 2901 1252 (0.9) 1839 (0.3) 1204 (1.1) 2152 (0.6) 2901 (0.0) 1089 (1.1) 2789 (0.1) 2840 (0.0) 1520 (0.9) 2891 (0.0) 955 (1.1) 709 (1.4)

Table 2.7: Average time in seconds (standard dev.) for solving random instances when varying n.

n tested
inst.

Branch-and-bound Branch-and-price Pseudo-polynomial Others

MTP BISON CVRPSEP VANCE BELOV SCIP-BP ONECUT ARCFLOW DPFLOW VPSOLVER BASIC ILP CSTRPROG

50 165 0.8 (6.6) 0.0 (0.0) 0.4 (4.7) 0.0 (0.1) 0.0 (0.0) 0.9 (0.7) 0.1 (0.3) 0.1 (0.1) 0.5 (0.8) 0.0 (0.0) 4.5 (14.8) 34.8 (29.4)
100 271 7.4 (18.9) 3.8 (13.7) 8.4 (19.7) 0.1 (0.2) 0.0 (0.0) 4.6 (7.1) 0.8 (2.5) 0.3 (0.4) 5.0 (7.5) 0.1 (0.1) 9.4 (20.5) 31.4 (29.6)
200 359 21.6 (28.3) 12.0 (23.7) 25.0 (28.9) 1.1 (4.1) 0.0 (0.0) 22.6 (21.8) 2.4 (7.0) 0.8 (2.6) 21.0 (22.1) 0.3 (0.9) 29.4 (28.8) 33.0 (29.0)
300 393 35.7 (29.1) 20.7 (28.2) 38.7 (28.3) 4.3 (8.0) 0.1 (0.2) 44.1 (21.6) 4.5 (11.6) 2.0 (6.3) 33.9 (23.9) 0.6 (1.4) 45.4 (24.4) 41.6 (26.0)
400 425 39.1 (28.4) 26.1 (29.5) 41.2 (27.4) 9.3 (10.2) 0.2 (0.3) 49.8 (17.7) 5.1 (13.3) 3.0 (8.7) 42.4 (22.0) 0.8 (2.0) 49.5 (21.4) 47.7 (22.7)
500 414 43.0 (26.7) 30.3 (29.8) 42.6 (26.7) 19.2 (14.1) 0.2 (0.5) 55.1 (12.1) 6.3 (14.8) 4.0 (11.2) 44.8 (20.4) 1.7 (6.4) 53.5 (18.7) 53.1 (17.3)
750 433 47.3 (24.4) 30.9 (29.9) 47.3 (24.2) 50.4 (21.6) 0.4 (1.0) 59.5 (2.6) 7.8 (17.2) 6.0 (14.3) 52.6 (14.3) 2.4 (7.1) 59.0 (23.3) 58.0 (9.6)

1000 441 49.5 (22.7) 33.9 (29.5) 50.8 (21.3) 52.4 (20.5) 0.7 (1.8) 60.0 (0.0) 8.1 (17.4) 6.8 (15.6) 56.4 (10.0) 3.4 (10.3) 90.4 (57.4) 59.2 (6.2)

Overall 2901 34.7 (29.4) 22.6 (28.8) 36.0 (28.9) 20.3 (25.3) 0.2 (0.9) 42.4 (24.4) 5.0 (13.4) 3.3 (10.4) 36.7 (25.1) 1.4 (5.6) 48.4 (39.0) 46.9 (23.9)

Table 2.8: Average time in seconds (standard deviation) for solving random instances when varying c.

c tested
inst.

Branch-and-bound Branch-and-price Pseudo-polynomial Others

MTP BISON CVRPSEP VANCE BELOV SCIP-BP ONECUT ARCFLOW DPFLOW VPSOLVER BASIC ILP CSTRPROG

50 223 27.2 (29.5) 9.4 (21.5) 23.2 (27.9) 20.2 (25.5) 0.0 (0.0) 43.0 (23.5) 0.0 (0.0) 0.0 (0.0) 13.6 (17.7) 0.0 (0.0) 48.7 (44.7) 42.6 (25.9)
75 240 26.1 (29.6) 14.8 (25.5) 26.4 (29.2) 20.2 (25.5) 0.0 (0.0) 42.0 (24.3) 0.0 (0.0) 0.0 (0.0) 19.5 (20.7) 0.0 (0.0) 53.2 (58.9) 41.1 (26.7)

100 234 32.0 (29.7) 14.9 (25.7) 31.1 (29.6) 20.3 (25.2) 0.0 (0.0) 42.8 (24.3) 0.0 (0.0) 0.1 (0.0) 26.4 (23.1) 0.0 (0.0) 50.5 (38.0) 45.0 (25.2)
120 241 33.5 (29.5) 17.8 (27.1) 33.7 (29.3) 19.7 (25.0) 0.0 (0.0) 42.2 (24.5) 0.1 (0.1) 0.1 (0.1) 29.6 (24.2) 0.1 (0.0) 49.8 (40.7) 45.1 (25.0)
125 251 30.0 (29.8) 18.0 (27.5) 30.0 (29.6) 19.2 (24.8) 0.0 (0.0) 41.0 (25.1) 0.1 (0.1) 0.1 (0.1) 30.9 (24.6) 0.1 (0.1) 50.4 (45.4) 44.3 (25.3)
150 240 35.1 (29.4) 19.3 (27.8) 38.2 (28.6) 19.5 (24.9) 0.0 (0.0) 41.8 (24.5) 0.1 (0.1) 0.2 (0.1) 34.9 (24.2) 0.1 (0.1) 50.9 (40.7) 47.3 (23.6)
200 246 37.6 (28.8) 22.8 (28.8) 39.2 (28.1) 20.5 (25.4) 0.0 (0.0) 40.8 (25.1) 0.3 (0.3) 0.3 (0.4) 39.3 (24.1) 0.2 (0.2) 51.4 (39.7) 48.7 (22.3)
300 237 39.0 (28.3) 26.8 (29.5) 41.4 (27.2) 21.9 (25.5) 0.1 (0.3) 44.4 (23.7) 1.5 (2.0) 1.3 (2.2) 45.6 (22.6) 0.6 (0.7) 48.1 (29.0) 46.5 (24.2)
400 245 36.7 (29.2) 30.5 (29.8) 40.4 (28.0) 20.3 (25.4) 0.2 (0.1) 41.6 (24.8) 3.9 (5.7) 2.8 (5.7) 47.4 (21.7) 1.1 (1.9) 47.0 (31.8) 48.8 (22.6)
500 243 38.3 (28.6) 29.5 (29.8) 41.8 (27.3) 20.7 (25.4) 0.3 (0.4) 44.8 (23.8) 8.6 (11.6) 5.1 (10.2) 49.2 (20.9) 1.9 (4.5) 45.7 (31.0) 50.0 (21.6)
750 249 40.8 (27.8) 32.0 (29.7) 43.4 (26.7) 21.0 (25.8) 0.8 (1.2) 42.4 (24.5) 18.6 (22.1) 11.2 (17.2) 49.9 (20.2) 4.3 (8.2) 43.1 (28.6) 52.0 (19.9)

1000 252 39.0 (28.4) 33.1 (29.8) 41.9 (27.4) 20.7 (25.6) 1.3 (2.3) 42.5 (24.8) 25.3 (25.1) 17.6 (21.9) 51.5 (18.9) 7.4 (14.8) 42.1 (27.5) 50.5 (21.3)

Overall 2901 34.7 (29.4) 22.6 (28.8) 36.0 (28.9) 20.3 (25.3) 0.2 (0.9) 42.4 (24.4) 5.0 (13.4) 3.3 (10.4) 36.7 (25.1) 1.4 (5.6) 48.4 (39.0) 46.9 (23.9)

Table 2.9: Average time in seconds (standard deviation) for solving random instances when varying weight range.

Range tested
inst.

Branch-and-bound Branch-and-price Pseudo-polynomial Others

MTP BISON CVRPSEP VANCE BELOV SCIP-BP ONECUT ARCFLOW DPFLOW VPSOLVER BASIC ILP CSTRPROG

0.1 / 0.7 785 35.1 (29.1) 15.3 (25.9) 31.9 (29.3) 25.3 (25.2) 0.2 (0.4) 50.6 (19.9) 11.0 (19.7) 7.3 (16.2) 45.5 (22.2) 3.5 (9.8) 60.6 (35.1) 33.7 (28.1)
0.1 / 0.8 729 42.2 (27.2) 33.3 (29.4) 41.3 (27.2) 25.7 (26.5) 0.2 (0.6) 45.0 (23.5) 5.9 (13.7) 3.9 (10.3) 40.8 (23.9) 1.2 (3.8) 48.7 (28.5) 47.7 (23.2)
0.2 / 0.7 878 44.8 (25.8) 32.8 (29.6) 46.5 (24.7) 20.8 (25.6) 0.3 (1.4) 41.2 (25.3) 1.7 (5.5) 1.0 (2.9) 30.2 (25.3) 0.3 (0.6) 53.1 (47.5) 52.8 (19.0)
0.2 / 0.8 509 5.8 (17.4) 0.7 (6.2) 16.8 (26.7) 4.2 (13.8) 0.2 (0.4) 28.4 (24.3) 0.3 (0.7) 0.4 (1.3) 28.7 (25.0) 0.2 (0.3) 20.8 (25.8) 55.9 (14.9)

Overall 2901 34.7 (29.4) 22.6 (28.8) 36.0 (28.9) 20.3 (25.3) 0.2 (0.9) 42.4 (24.4) 5.0 (13.4) 3.3 (10.4) 36.7 (25.1) 1.4 (5.6) 48.4 (39.0) 46.9 (23.9)

2.7. Experimental evaluation 43

All algorithms were also evaluated, on a subset of the instances of Tables 2.4-2.9, with

respect to the average item multiplicity, computed as µ = n/m, where m is the number

of item types in the equivalent minimal CSP instance (see Section 2.2). We considered

instances with capacity not greater than 150, as for higher capacities µ turned out to always

be very small. The results are reported in Table 2.10 and, as usual, refer to instances

for which the initial lower and upper bound did not coincide. As it could be expected,

the methods devoted to the solution of the CSP are unaffected by the item multiplicity.

Indeed, BELOV, ONECUT, ARCFLOW, and VPSOLVER can solve all instances to proven

optimality within one minute. Instead, the performance of all other algorithms (which are

devoted to the BPP) gets worse when the value of µ increases. This is particularly evident

for SCIP-BP, that can solve to optimality all instances with µ ≤ 2, but less than one tenth

of those with µ ≥ 10.

In Table 2.11 (the counterpart of Table 2.3) we consider again the instances studied in

Tables 2.4-2.9, and show the results obtained by the four best codes within a time limit of

10 minutes, grouped by number of items. The results confirm the algorithms’ ranking.

As all the considered instances were solved to optimality, we used the four selected

algorithms for a set of experiments on the new, difficult, ANI instances we have described

in Section 2.7.1. In this case, each algorithm was given a time limit of one hour per

instance. The outcome of the experiments is reported in Tables 2.12 (number of solved

instances and average absolute gap with respect to the lower bound) and 2.13 (average

CPU time and standard deviation). The results confirm that the ANI instances are not

solved satisfactorily: even BELOV, which closed all other instances, was unable to solve

them to proven optimality. It turns out that the AI instances as well look quite hard,

although a good heuristic, specially tailored wrt the special structure of these instances, is

likely to find an optimal solution (whose optimality could then easily be proved).

Overall, our experiments show that, among the algorithms we tested, BELOV and

VPSOLVER are the best ones. As both use quite complex tools, ARCFLOW can be seen

as a reasonable compromise between simplicity and performance. Basic ILP and SCIP-

BP can be used for small instances. Branch-and-bound algorithms MTP, CVRPSEP and,

in particular, BISON can be an alternative when one wants to avoid the use of solvers.

CSTRPROG is generally inefficient, but it has the advantage of easily allowing additional

constraints. Although ONECUT is based on a very old model, it is competitive with

much more recent approaches. Among the approaches based on pseudo-polynomial models,

DPFLOW has mainly theoretical interest, but has the advantage of being easily understan-

Table 2.10: Number of random instances solved in less than one minute when varying the average item multiplicity
µ.

µ
tested
inst.

Branch-and-bound Branch-and-price Pseudo-polynomial Others

MTP BISON CVRPSEP VANCE BELOV SCIP-BP ONECUT ARCFLOW DPFLOW VPSOLVER BASIC ILP CSTRPROG

[1, 2) 138 133 137 136 138 138 138 138 138 138 138 127 69
[2, 3) 119 104 113 103 119 119 109 119 119 119 119 81 68
[3, 5) 251 154 199 144 249 251 141 251 251 221 251 96 104
[5, 10) 458 192 316 198 390 458 133 458 458 333 458 115 122
[10, n] 463 128 303 152 168 463 37 463 463 272 463 65 58

Total 1429 711 1068 733 1064 1429 558 1429 1429 1083 1429 484 421

Table 2.11: Number of random instances solved in less than ten minutes when varying n.

n tested
inst.

BISON BELOV ARCFLOW VPSOLVER

50 165 165 165 165 165

100 271 261 271 271 271

200 359 299 359 359 359

300 393 269 393 393 393

400 425 250 425 425 425

500 414 212 414 414 414

750 433 217 433 431 433

1000 441 200 441 434 441

Total 2901 1873 2901 2892 2901

Table 2.12: Number of difficult instances (ANI) solved in less than 1 hour (average gap wrt lower bound). The AI
instances are included for the sake of comparison.

n(ANI) n(AI) c
BISON BELOV ARCFLOW VPSOLVER

ANI AI ANI AI ANI AI ANI AI

201 202 2500 0 (1.0) 3 (0.9) 50 (0.0) 50 (0.0) 16 (0.7) 44 (0.1) 47 (0.1) 50 (0.0)
402 403 10000 0 (1.0) 0 (1.0) 1 (1.0) 45 (0.1) 0 (1.0) 0 (1.0) 6 (0.9) 42 (0.2)
600 601 20000 - - 0 (1.0) 21 (0.6) - - 0 (1.0) 8 (0.8)
801 802 40000 - - 0 (1.0) 0 (1.0) - - 0 (1.0) 0 (1.0)

1002 1003 80000 - - - - - - - -

Overall 0 (1.0) 3 (1.0) 51 (0.7) 116 (0.4) 16 (0.8) 44 (0.6) 53 (0.7) 100 (0.5)

2.7. Experimental evaluation 45

Table 2.13: Average time in seconds (standard deviation) for solving difficult instances
(ANI). The AI instances are included for the sake of comparison.

n(ANI) n(AI) c
BISON BELOV ARCFLOW VPSOLVER

ANI AI ANI AI ANI AI ANI AI

201 202 2500 3600 (0) 3384 (862) 144 (119) 91 (119) 2723 (1376) 964 (1099) 415 (1056) 54 (128)
402 403 10000 3600 (0) 3600 (0) 3556 (321) 699 (1043) 3601 (0) 3601 (0) 3304 (846) 1130 (1201)
600 601 20000 - - 3602 (3) 2539 (1321) - - 3600 (0) 3509 (293)
801 802 40000 - - 3602 (5) 3601 (5) - - 3600 (0) 3600 (0)

1002 1003 80000 - - - - - - - -

Overall 3600 (0) 3492 (616) 2726 (1504) 1733 (1639) 1581 (1064) 2943 (1269) 2730 (1504) 2073 (1653)

-dable. Among branch-and-price algorithms, VANCE has mainly historical interests, but

it has an acceptable performance.

A final relevant observation concerns the fact that, in the past, the pseudo-polynomial

models were not seen as realistic solution approaches because of the huge number of con-

straints and variables they involve, and hence they were rarely directly used in practice

as ILP formulations. Our results show that they turn out to be extremely competitive

today. This phenomenon is explained by Table 2.14, produced thanks to IBM CPLEX,

which compares the performance of eight versions of the code (from CPLEX 6.0, dated

1998, to CPLEX 12.6.0, dated 2013) in the solution of the ILPs produced by ARCFLOW

for 20 selected random instances. The instances had n ranging between 300 and 1000,

and c ranging between 400 and 1000. The resulting ILPs had a number of rows (resp.

columns) ranging between 482 and 1093 (resp. between 32 059 and 111 537). Each CPLEX

version was run on a single core of an Intel Xeon Processor E5430 running at 2.66 GHz and

equipped with 24 GB of memory, both with a time limit of 10 minutes and a time limit of

one hour. The entries provide the number of instances solved to proven optimality and, in

square brackets, the average CPU time.

Table 2.14: Number of selected instances solved [average time in seconds] using different
versions of CPLEX.

Time tested
inst.

6.0 (1998) 7.0 (1999) 8.0 (2002) 9.0 (2003) 10.0 (2006) 11.0 (2007) 12.1 (2009) 12.6.0 (2013)

10 minutes 20 13 [366] 10 [420] 5 [570] 17 [268] 19 [162] 20 [65] 19 [117] 20 [114]
60 minutes 20 16 [897] 15 [1210] 15 [2009] 20 [343] 20 [186] 20 [65] 19 [267] 20 [114]

The results in the first line show that, up to the early noughties, only a relatively small

number of these instances could be solved within ten minutes, while the recent versions

46 Chapter 2. BPP and CSP: Mathematical Models and Exact Algorithms

are very effective. The “irregular” behavior of the solver (previous versions give sometimes

better results) is only apparently surprising. It is indeed known (see, e.g., Lodi [192] or

Achterberg and Wunderling [1]) that, on specific instances, an older version of CPLEX can

beat a newer one. In our case, the experiments were made on a small set of instances of

a specific problem, so a fortiori irregularities could be expected. The second line shows

that, in one CPU hour, about 75% of our instances could be solved prior to 2003 while the

subsequent versions could solve practically all of them. The number of solved instances is

in this case much more regular, but the average CPU time is not: compare, e.g., versions

11.0 and 12.6.0. Overall, by considering that ONECUT was developed in the mid-seventies,

and ARCFLOW in the late nineties, these results well explain on one hand the choice of

not pursuing their direct use, and on the other hand the good computational performance

obtained nowadays.

2.8 Conclusions

We have reviewed the mathematical models and the exact algorithms developed in the

last fifty years for one of the most famous combinatorial optimization problems. The bin

packing problem and its main generalization (the cutting stock problem) have attracted

many researchers, whose contributions have accompanied the development of algorithmic

tools for the exact solution of combinatorial optimization problems. We have discussed

the main approaches proposed in the literature, and we have provided an experimental

evaluation of the available software on different classes of benchmarks, including a newly

developed class of instances for which the exact algorithms can hardly obtain a provably

optimal solution. We have additionally evaluated the influence that the improvement of

ILP solvers has had on the performance of pseudo-polynomial formulations. The tested

software and the benchmarks are now available in a dedicated library. Our study also

shows that there is room for future research. While many classes of instances are more

or less closed, there are still benchmarks (the AI and the ANI instances) which are not

satisfactorily solved by the best available algorithms, even in the case of moderate sizes. In

addition, branch-and-cut-and-price appears today to be the most effective approach, but

the improving computational power of the ILP solvers could stimulate new algorithmic

research lines on pseudo-polynomial methods. From a theoretical point of view, a relevant

issue concerns the MIRUP conjecture, which is still open. We hope that our picture will

stimulate future research in this fascinating area.

Chapter 3

BPPLIB: A Library for Bin

Packing and Cutting Stock

Problems

1

In this chapter, we present a library of computer codes, benchmark instances, and

pointers to relevant surveys for these two problems. The computer code section includes

twelve programs: seven are directly downloadable from the library page, while for the

remaining five we provide addresses where they can be obtained or downloaded. Some

of the codes for which we provide an original C++ implementation need an ILP solver.

For such cases, the library provides two versions: one that uses the commercial solver

Cplex, and one that uses the freeware solver SCIP. The benchmark section provides over

six thousands instances (partly coming from the literature and partly randomly generated),

together with the corresponding solutions. Instances that are difficult to solve to proven

optimality are included. The library also includes a BibTeX file of more than 150 references

on this topic and an interactive visual tool to manually solve bin packing and cutting

stock instances. We conclude this chapter by reporting the results of new computational

experiments on a number of computer codes and benchmark instances.

Keywords: Bin packing, Cutting stock, Computer codes, Benchmark instances, Surveys.

3.1 Introduction

In the bin packing problem (BPP), n items of given integer weight wj (j = 1, . . . , n) have

to be packed into the minimum number of identical containers (bins) of integer capacity

1The results of this chapter appears in: M. Delorme, M. Iori, and S. Martello, BPPLIB: A Library for
Bin Packing and Cutting Stock Problems, Technical Report, 2016 [99].

47

48 Chapter 3. BPPLIB: A Library for Bin Packing and Cutting Stock Problems

c. Let u be any upper bound on the solution value. Let us introduce two sets of binary

variables: yi (i = 1, . . . , u), taking the value one if and only if bin i is used in the solution,

and xij (i = 1, . . . , u; j = 1, . . . , n), taking the value one if and only if item j is packed into

bin i. A possible simple Integer Linear Programming (ILP) model of the problem is then

(see Martello and Toth [214])

min

u∑

i=1

yi (3.1)

s.t.
n∑

j=1

wjxij ≤ cyi (i = 1, . . . , u), (3.2)

u∑

i=1

xij = 1 (j = 1, . . . , n), (3.3)

yi ∈ {0, 1} (i = 1, . . . , u), (3.4)

xij ∈ {0, 1} (i = 1, . . . , u; j = 1, . . . , n). (3.5)

Among the many variants and generalizations of the problem, the most intensively

studied is probably the Cutting Stock Problem (CSP). In this case, instead of single items,

we have m item types of weight wj and an integer demand dj (j = 1, . . . ,m) per item type.

The objective is to pack dj copies of each item type j into the minimum number of bins.

By introducing an additional set of integer variables ξij (i = 1, . . . , u; j = 1, . . . ,m) giving

the number of items of type j packed into bin i, the CSP can be modeled by the ILP

min

u∑

i=1

yi (3.6)

s.t.
m∑

j=1

wjξij ≤ cyi (i = 1, . . . , u), (3.7)

u∑

i=1

ξij = dj (j = 1, . . . ,m), (3.8)

yi ∈ {0, 1} (i = 1, . . . , u), (3.9)

ξij ≥ 0, integer (i = 1, . . . , u; j = 1, . . . ,m). (3.10)

The BPP is known to be NP-hard in the strong sense (by transformation from the

3-Partition problem, see Garey and Johnson [130]). As any instance of either problem can

3.2. Computer codes 49

easily be transformed into an equivalent instance of the other, the same holds for the CSP.

These two problems are among the most intensively studied problems in combinatorial

optimization. Two recent surveys on exact methods (Delorme et al. [98]) and approx-

imation algorithms (Coffman et al. [75]) consider in total over 230 different references.

Previous surveys were presented by Garey and Johnson [131], Coffman et al. [77, 72],

Sweeney and Paternoster [270], Dyckhoff [112], Martello and Toth [214] (Chapter 8), Dy-

ckhoff and Finke [113], Valério de Carvalho [279], Wäscher et al. [289], among others. Most

solution methodologies have been tried on these problems: different kinds of ILP models,

lower bound computations, branch-and-bound, branch-and-price, constraint programming,

approximation algorithms, heuristics, and metaheuristics.

A number of web-based libraries for optimization problems can be found on the Inter-

net. The oldest one is probably the famous OR-Library, a collection of test data sets for a

variety of Operations Research problems, implemented by Beasley [24]. Other relevant li-

braries are those implemented by Burkard et al. [48, 49] (Quadratic Assignment Problem),

Applegate et al. [12] (the well-known TSP web page http://www.math.uwaterloo.ca/

tsp/), Groër et al. [141] and Uchoa et. al [275] (Vehicle Routing Problems), Koch et al.

[176] (Mixed Integer Programming), and Friberg [126] (Conic Optimization). An earlier,

smaller version of the BPPLIB was implemented as an auxiliary instrument for the com-

putational experiments presented in [98]. The current BPPLIB contains pointers to the

literature, original computer codes, links to computer codes from the Internet, benchmark

instances, and an open source visual application to interactively solve BPP instances.

In the next section we introduce the computer codes and the visual solver provided

by the BPPLIB. In Section 3.3 we describe the available benchmarks: some of them were

used in [98] for the computational evaluations of the different exact approaches, using

commercial solver Cplex when needed. As the library has been enriched by also providing

versions based on the freeware solver SCIP, in Section 3.4 we provide new experiments

aiming at evaluating the computational difference between the two versions. In addition,

we describe new test instances, that appeared after the publication of [98], and present the

corresponding computational experiments.

3.2 Computer codes

The BPPLIB provides twelve computer codes of different types for the exact solution

of the BPP and the CSP.

http://www.math.uwaterloo.ca/tsp/
http://www.math.uwaterloo.ca/tsp/

50 Chapter 3. BPPLIB: A Library for Bin Packing and Cutting Stock Problems

Branch-and-bound

The first effective exact algorithms for the BPP were based on a branch-and-bound

approach. The library provides, in chronological order:

• MTP: Fortran code of the BPP algorithm by Martello and Toth [214], originally

available in the diskette accompanying the book. The algorithm adopts a depth-

first strategy to explore a branch-decision tree that considers one item per level:

descendant nodes are generated by assigning the current item, in turn, to all already

initialized bins and possibly to a new bin. While the approach is effective for BPP

instances, considering one item at a time is clearly inefficient for CSP instances with

high item multiplicity. The code can be run using the Fortran front end of the GNU

Compiler Collection GCC;

• BISON: Scholl et al. [251] obtained a very efficient BPP algorithm by enriching

MTP through new lower bounds and a Tabu search algorithm to help the search by

means of effective heuristic solutions. The code was implemented in Pascal, and can

be obtained from the authors, using the address provided in the library. Worth is

mentioning that, in spite of its ‘age’, this program is still working and quite effective

(see [98]): at the time of writing, it can be run using compiler fpc (version 3.0.0

for x86 64);

• CVRPSEP: we provide a link to the C code implemented by J. Lysgaard as part of

a separation routine within the algorithm by Lysgaard et al. [205] for the capacitated

vehicle routing problem. The routine was obtained by using procedures from MTP.

It is generally less efficient than MTP, but we decided to include it in the library

mainly because one may prefer a C code to a Fortran code. The implementation

details can be found in a technical report by Lysgaard [204].

Branch-and-price

This modern evolution of the branch-and-bound approach can produce very effective

algorithms for the problems at hand. We provide links to two computer codes:

• BELOV: C++ implementation by G. Belov of the algorithm by Belov and Schei-

thauer [30], using Cplex for the inner routines. The algorithm is tailored to the exact

3.2. Computer codes 51

solution of CSP instances, and it computationally proved to be the most powerful

approach both in the case of low and high item multiplicity;

• SCIP-BP: freeware SCIP C code for a branch-and-price BPP algorithm based on

the classical Ryan and Foster [243] branching rule and available at the SCIP web

page. This code is only effective for instances with small number of item types and

low item multiplicity.

Pseudo-polynomial formulations solved via ILP

Already in the Seventies, pseudo-polynomial models coming from a graph represen-

tation of the solution space were proposed. For many years, solution approaches based

on such models have been regarded as very theoretical, with no practical interest, due

to the huge number of variables and constraints they imply. Up to few years ago, these

methods were mainly used within branch-and-price algorithms (see, e.g., Valério de Car-

valho [278]). However, nowadays computational power of ILP solvers made them compet-

itive with branch-and-price algorithm also for the case of realistic size instances, provided

the number of generated variables (that depends on capacity, number of items, and item

weights) is not too big. The BPPLIB provides four algorithms based on pseudo-polynomial

models:

• ONECUT: C++ implementation of the one-cut CSP model independently defined

in the Seventies by Rao [234], and Dyckhoff [111];

• ARCFLOW: C++ implementation of the arc-flow CSP model by Valério de Car-

valho [278];

• DPFLOW: C++ implementation of the DP-flow BPP model by Cambazard and

O’Sullivan [52];

• VPSOLVER: link to the C++ implementation by Brandão and Pedroso [45] of their

CSP algorithm. This is currently the most effective pseudo-polynomial approach, and

its performance is often competitive with that of BELOV.

For the first three codes we provide both a version that uses Cplex as an inner routine,

and a version that uses SCIP. Code VPSOLVER was instead implemented by the authors

in a version that invokes Gurobi.

52 Chapter 3. BPPLIB: A Library for Bin Packing and Cutting Stock Problems

BppGame: An interactive visual solver

The library includes the pointer to an open source visual ScalaFX application to inter-

actively solve BPP and CSP instances. The application is derived from a more general tool

for the solution of two-dimensional packing problems, see Costa et al. [82]. It allows an easy

interaction to obtain a feasible solution of a given problem instance. The application has a

number of features, that are fully described in its own web page http://gianlucacosta.

info/BppGame/. The easiest way to test it consists in following the hyperlink and executing

the sequence of actions: Download zip and extract its contents → BppGame-x.x → bin →
BppGame.bat (Windows) or BppGame (Linux)→ Sample problems. Figure 3.1 shows the

BppGame visualization of an instance. The user can click on an item on the right frame,

and drag and drop it to a selected position in the left frame.

Figure 3.1: The interactive visual solver

http://gianlucacosta.info/BppGame/
http://gianlucacosta.info/BppGame/

3.3. Benchmarks 53

3.3 Benchmarks

The BPPLIB provides in total 6 195 test instances belonging to four categories. Each

instance is provided, using unified formats, both in BPP and CSP version.

Literature instances

This section contains the 1 615 instances proposed by

• Falkenauer [119]: 80 (easy) instances with uniformly distributed item sizes and 80

(more difficult) instances obtained through triplets of items that must be packed into

the same bin in any optimal solution;

• Scholl et al. [251]: three sets of instances with uniformly distributed item sizes. The

first set is composed by 720 easy instances, the second set by 480 instances of medium

difficulty, and the third set by 10 difficult instances characterized by huge capacities;

• Wäscher and Gau [288]: 17 very hard instances selected by the authors from a much

larger set of instances belonging to different typologies;

• Schwerin and Wäscher [254]: two sets of 100 relatively easy instances each;

• Schoenfield [250]: 28 hard instances that do not involve huge capacities.

In the library, each set is identified by the name of the (first) author.

Randomly generated instances

The library provides the 3 840 instances that were randomly generated for the compu-

tational experiments reported in [98]. The instances have different values of n (50, 100,

200, 300, 400, 500, 750, 1 000), of c (50, 75, 100, 120, 125, 150, 200, 300, 400, 500, 750,

1 000), and of the minimum (0.1 c, 0.2 c) and maximum (0.7 c, 0.8 c) item weight. The

benchmark contains 10 instances for each of the 384 quadruplets (n, c, minimum weight,

maximum weight). These instances are relatively easy, and the algorithms listed in Section

3.2 could solve most of them within reasonable CPU times.

54 Chapter 3. BPPLIB: A Library for Bin Packing and Cutting Stock Problems

Hard instances

In order to perform experiments on challenging instances, a number of so called aug-

mented Non-IRUP and augmented IRUP instances were proposed in [98], using as a basis

a set of Non-IRUP instances presented in Caprara et al. [54]. For the 250 instances of

the former class an optimal solution is easy to find, but its optimality is very difficult to

prove. Even the continuous relaxation of the set covering formulation (the basis of branch-

and-price algorithms) and that of the pseudo-polynomial formulations fail in reaching the

optimal value. As a consequence, algorithms based on such relaxations require either a

huge branching process or a heavy cut generation: already for n ≈ 400, no algorithm is

capable of solving all of them to proven optimality. For the 250 instances of the latter

class, it is easy to produce a lower bound whose value is equal to the optimum, but it is

difficult to build an optimal solution.

GI instances

The library includes 240 new instances, proposed by Gschwind and Irnich [142] after

the publication of [98]. Such instances, uniformly randomly generated, are characterized

by very large capacities. They are organized into four sets of 60 instances each. As shown

in the next section, two of such sets are generally difficult to solve.

3.4 Computational experiments

We report the results of some experiments executed on an Intel Xeon 3.10 GHz (equipped

with four cores) with 8 GB RAM, all executed with a single core. In order to test the codes

on non-trivial instances, we preliminarily obtained an upper bound through the classical

best fit decreasing heuristic and computed the lower bound value known as L2 (see [24]):

only instances for which these two values were different were then tested.

Tables 3.1 and 3.2 give the number of literature instances that were solved in one CPU

minute (and, in parentheses, the average CPU time), by, respectively, the enumeration

algorithms and the pseudo-polynomial models. (For the non-solved instances, one CPU

minute was considered.) For each instance set, boldface highlights the cases where all

instances were solved to proven optimality.

The results in Table 3.1 summarize the (much more detailed) tables presented in [98]:

they are provided here in order to give the reader information on the performance of the

3.4. Computational experiments 55

codes provided in the BPPLIB. The results in Table 3.2 include new results obtained

using SCIP as the ILP solver. The tables confirm the clear superiority of BELOV and

VPSOLVER over the other algorithms.

Table 3.1: Literature instances, enumerative algorithms. Number of instances solved in
less than one minute (average CPU time in seconds).

Set
Number
of tested
instances

Branch-and-bound Branch-and-price

MTP BISON CVRPSEP BELOV SCIP-BP

Falkenauer U 74 22 (42.8) 44 (24.5) 22 (42.2) 74 (0.0) 18 (50.1)
Falkenauer T 80 6 (55.5) 42 (30.6) 0 (60.0) 57 (24.7) 35 (39.4)
Scholl1 323 242 (15.1) 288 (7.0) 223 (19.4) 323 (0.0) 244 (22.4)
Scholl2 244 130 (28.2) 233 (3.0) 65 (44.2) 244 (0.3) 67 (49.2)
Scholl3 10 0 (60.0) 3 (42.0) 0 (60.0) 10 (14.1) 0 (60.0)
Wäscher 17 0 (60.0) 10 (24.7) 0 (60.0) 17 (0.1) 0 (60.0)
Schwerin1 100 15 (51.1) 100 (0.0) 9 (55.4) 100 (1.0) 0 (60.0)
Schwerin2 100 4 (57.6) 63 (22.2) 0 (60.0) 100 (1.4) 0 (60.0)
Hard28 28 0 (60.0) 0 (60.0) 0 (60.0) 28 (7.3) 7 (51.2)

Total (average) 976 419 (34.4) 783 (12.3) 319 (40.8) 953 (2.7) 371 (42.2)

Table 3.2: Literature instances, pseudo polynomial models. Number of instances solved in
less than one minute (average CPU time in seconds).

Set
Number
of tested
instances

ONECUT ARCFLOW DPFLOW
VPSOLVER

Cplex SCIP Cplex SCIP Cplex SCIP

Falkenauer U 74 74 (0.2) 67 (23.8) 74 (0.2) 70 (18.7) 37 (38.8) 0 (60.0) 74 (0.1)
Falkenauer T 80 80 (8.7) 21 (44.9) 80 (3.5) 33 (41.4) 40 (41.7) 20 (50.8) 80 (0.4)
Scholl1 323 323 (0.1) 318 (5.0) 323 (0.1) 320 (5.1) 289 (13.0) 178 (34.0) 323 (0.1)
Scholl2 244 118 (38.7) 20 (56.3) 202 (18.9) 39 (53.7) 58 (50.4) 11 (58.5) 208 (14.0)
Scholl3 10 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 10 (6.3)
Wäscher 17 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 0 (60.0) 6 (49.4)
Schwerin1 100 100 (13.1) 0 (60.0) 100 (1.5) 0 (60.0) 0 (60.0) 0 (60.0) 100 (0.3)
Schwerin2 100 100 (11.7) 0 (60.0) 100 (1.5) 1 (59.5) 0 (60.0) 0 (60.0) 100 (0.3)
Hard28 28 6 (54.6) 0 (60.0) 16 (40.6) 0 (60.0) 0 (60.0) 0 (60.0) 27 (14.2)

Total (average) 976 801 (16.3) 426 (36.9) 895 (8.2) 463 (35.6) 424 (38.9) 209 (50.3) 928 (5.0)

Table 3.2 shows in addition that the performance of ONECUT and ARCFLOW is not

affected by the ILP solver for most of the easy instances, while their performance for the

difficult instances sharply worsens when SCIP is used instead of Cplex. This behavior could

be explained by the difference in the number of generated variables and constraints between

different benchmarks. For example, ARCFLOW produces, on average, 1 735 variables and

103 constraints for Scholl 1 instances, while for “Scholl 2” it produces, on average, 39 307

variables and 840 constraints.

Tables 3.3 and 3.4 refer to the randomly generated instances used in [98], and provide

the same information as in Tables 3.1 and 3.2. The previous observations are confirmed:

56 Chapter 3. BPPLIB: A Library for Bin Packing and Cutting Stock Problems

BELOV and VPSOLVER outperform the other approaches, and the use of SCIP decreases

the algorithms’ performance, especially for large values of n.

Table 3.3: Random instances, enumerative algorithms. Number of instances solved in less
than one minute (average CPU time in seconds).

n
Number
of tested
instances

Branch-and-bound Branch-and-price

MTP BISON CVRPSEP BELOV SCIP-BP

50 165 163 (0.8) 165 (0.0) 164 (0.4) 165 (0.0) 165 (0.9)
100 271 243 (7.4) 257 (3.8) 239 (8.4) 271 (0.0) 271 (4.6)
200 359 237 (21.6) 290 (12.0) 220 (25.0) 359 (0.0) 293 (22.6)
300 393 166 (35.7) 265 (20.7) 144 (38.7) 393 (0.1) 155 (44.1)
400 425 151 (39.1) 244 (26.1) 138 (41.2) 425 (0.2) 114 (49.8)
500 414 121 (43.0) 208 (30.3) 128 (42.6) 414 (0.2) 69 (55.1)
750 433 93 (47.3) 214 (30.9) 98 (47.3) 433 (0.4) 22 (59.5)
1000 441 78 (49.5) 196 (33.9) 73 (50.8) 441 (0.7) 0 (60.0)

Total (average) 2901 1252 (34.7) 1839 (22.6) 1204 (36.0) 2901 (0.2) 1089 (42.4)

Table 3.4: Random instances, pseudo polynomial models. Number of instances solved in
less than one minute (average CPU time in seconds).

n
Number
of tested
instances

ONECUT ARCFLOW DPFLOW
VPSOLVER

Cplex SCIP Cplex SCIP Cplex SCIP

50 165 165 (0.1) 163 (2.0) 165 (0.1) 165 (1.6) 165 (0.5) 162 (5.1) 165 (0.0)
100 271 271 (0.8) 249 (8.6) 271 (0.3) 262 (10.1) 271 (5.0) 168 (34.5) 271 (0.1)
200 359 358 (2.4) 286 (15.4) 359 (0.8) 278 (20.2) 292 (21.0) 76 (51.8) 359 (0.3)
300 393 385 (4.5) 272 (22.2) 391 (2.0) 262 (24.9) 243 (33.9) 31 (57.3) 393 (0.6)
400 425 408 (5.1) 293 (22.0) 421 (3.0) 276 (25.8) 193 (42.4) 23 (58.1) 425 (0.8)
500 414 394 (6.3) 275 (24.0) 402 (4.0) 258 (26.5) 169 (44.8) 13 (58.8) 413 (1.7)
750 433 401 (7.8) 284 (24.3) 415 (6.0) 279 (25.7) 120 (52.6) 12 (59.1) 431 (2.4)
1000 441 407 (8.1) 280 (25.8) 416 (6.8) 281 (26.1) 67 (56.4) 7 (59.6) 434 (3.4)

Total (average) 2901 2789 (5.0) 2102 (20.0) 2840 (3.3) 2061 (22.3) 1520 (36.7) 492 (52.5) 2891 (1.4)

3.4.1 GI instances

We report in Table 3.5 the results of computational experiments for the GI benchmark,

a set of CSP instances recently proposed by Gschwind and Irnich [142] for testing their

dual inequalities aimed at stabilizing column generation processes. They are organized

into four groups (AA, AB, BA, and BB), characterized by different item weight ranges and

capacities. Each group has three sets of 20 instances each, characterized by the number

of item types (125, 250, and 500). We tested the best enumerative algorithm (BELOV)

and the best pseudo-polynomial approaches (ARCFLOW and VPSOLVER) with a time

3.4. Computational experiments 57

Table 3.5: Number of GI instances solved in less than one hour (average time in seconds).

Set m
Number
of tested
instances

BELOV ARCFLOW VPSOLVER

AA 125 20 20 (0.1) 19 (1 092.6) 20 (0.9)
250 20 20 (0.9) 0 (3 600.0) 20 (14.5)
500 20 20 (7.5) 0 (3 600.0) 16 (1 345.9)

AB 125 20 20 (0.7) 0 (3 600.0) 0 (3 600.0)
250 20 20 (2.1) 0 (3 600.0) 0 (3 600.0)
500 20 20 (29.9) 0 (3 600.0) 0 (3 600.0)

BA 125 20 20 (0.1) 20 (1 120.9) 20 (1.4)
250 20 20 (1.3) 0 (3 600.0) 20 (23.1)
500 20 20 (7.2) 0 (3 600.0) 17 (1 450.2)

BB 125 20 20 (0.2) 0 (3 600.0) 0 (3 600.0)
250 20 20 (2.3) 0 (3 600.0) 0 (3 600.0)
500 20 20 (29.1) 0 (3 600.0) 0 (3 600.0)

Total (average) 240 240 (6.8) 39 (3 234.8) 113 (2 036.3)

limit of one hour. BELOV could solve all of these instances very quickly, while they turned

out to be extremely difficult for the pseudo-polynomial models. The behavior of the latter

approaches was particularly poor for the instances that have items with very small weight

and huge capacities (AB and BB, with c ≥ 500 000), which induce a high number of

variables and constraints. For example, the ILP model produced by ARCFLOW has on

average 549 441 variables and 131 219 constraints for instances AA with m = 125, but

5 754 617 variables and 404 283 constraints for instances AB with m = 125.

Chapter 4

Enhanced Pseudo-Polynomial

Formulations for Bin Packing and

Cutting Stock Problems

1

In this chapter, we study pseudo-polynomial formulations for the one dimensional bin

packing and cutting stock problems. We first give a complete overview of the dominance

and equivalence relations that exist among the main pattern-based and pseudo-polynomial

MILP formulations that have been proposed in the literature: Gilmore and Gomory, the

proper relaxation, the one-cut, the arc-flow and the DP-flow formulations. Then, we intro-

duce reflect, a new MILP formulation that uses just half of the bin and needs significantly

less constraints and variables than the classical arc-flow. We propose heuristics and lower

bounding techniques that can be used to compensate reflect weaknesses when the capacity

of the instance is too hight and we show how reflect can be modified to solve the vari-

able size bin packing problem and the bin packing problem with item fragmentation. We

test reflect on benchmark instances of the three problems and achieve state of the art re-

sults, improving upon previous algorithms in the literature and finding several new proven

optimal solutions.

Keywords: Bin packing, Cutting stock, Pseudo-Polynomial, Equivalent Models, Variable

Size, Fragmentation.

1The results of this chapter appears in: M. Delorme and M. Iori, Enhanced Pseudo-Polynomial Formu-
lations for Bin Packing and Cutting Stock Problems, Technical Report, 2017 [97].

59

60 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

4.1 Introduction

The bin packing problem (BPP) requires to pack a set of weighted items into the min-

imum number of identical capacitated bins. The cutting stock problem (CSP) is the BPP

version in which all items having the same weight are grouped together into item types.

The term packing is normally adopted for applications devoted to the minimization of the

number of boxes (containers, cells, . . .) required to allocate a set of items, and the term

cutting for industrial process where stocks of a material (steel bars, pipes, . . .) have to be

cut into demanded items while minimizing waste. Apart from these applications, the BPP

and the CSP also serve in the optimization of a variety of real-world problems, includ-

ing capacitated vehicle routing, resource-constrained scheduling problems, and production

systems, just to name a few.

Their wide range of applications motivated a large research interest, and, indeed, the

two problems have been tackled by almost all known combinatorial optimization techniques.

We refer the interested readers to the recent surveys by Coffman et al. [75], who focused

on approximation algorithms, by Alves et al. [9], who studied the use of dual-feasible

functions, and by Delorme et al. [98], who reviewed and tested exact algorithms and

mathematical models.

The BPP and the CSP have also been the training ground of some mixed integer linear

programming (MILP) models, and corresponding solution algorithms, that later became

useful tools for many other combinatorial problems. Gilmore and Gomory [134] modeled

the CSP as a set-covering by using a pattern-based representation, and then proposed the

well-known column generation algorithm. The strength of this model comes from the very

high-quality of its continuous relaxation value. This relaxation (and other variants, which

are discussed in detail in Section 4.3) are at the basis of the most effective branch-and-price

algorithms for the solution of the BPP and the CSP (see, e.g., Vanderbeck [283] and Belov

and Scheithauer [30]).

The number of variables in the pattern-based models is exponential in the number of

items. A different branch of the literature focused, instead, on modeling the BPP and the

CSP with pseudo-polynomial MILP models, that is, formulations in which the numbers

of variables and constraints are polynomials in both the number of items and in the bin

capacity. Already in the 1960s, Shapiro [256] showed the connection that exists between

integer programming and dynamic programming (DP), by studying the knapsack problem

as a shortest path problem on a network of pseudo-polynomial size, where (i) nodes are

4.1. Introduction 61

associated with different levels of occupation of the knapsack, (ii) items are associated with

arcs having length equal to the item weight, and (iii) decision variables are associated with

arcs. Wolsey [293] extended this idea to the case of problems involving multiple knapsack

inequalities, showing how to solve the CSP as a network flow problem with additional

constraints. The research was later continued by Valério de Carvalho [278], who solved the

CSP with a model called arc-flow, and showed that the continuous relaxation value of this

model is equal to that of Gilmore and Gomory [134]. A related MILP model, known as

one-cut, was independently developed by Rao [234] and Dyckhoff [112]. One-cut does not

associate variables with arcs on a network, but solves instead the CSP by using variables

that represent the physical positions of the cuts. Items are obtained by performing the

selected cuts one at a time, either along the bin or along residual bin portions obtained by

previous cuts.

The mentioned research on pseudo-polynomial formulations mainly had a theoretical

interest, due to the fact that the large size of these models made them unsolvable in prac-

tice even for moderate-size instances. In recent years, however, the sharp development of

MILP commercial software and the increase in computational power made these formula-

tions a viable tool to solve the BPP, the CSP, and other related combinatorial optimization

problems. Among others, Brandão and Pedroso [45] obtained good results on a number of

cutting and packing problems, by embedding into arc-flow a set of improvements. Furini et

al. [127] generalized one-cut model to solve a set of two-dimensional guillotine cutting prob-

lems. Delorme et al. [100] used a modified arc-flow as stepping stone of a decomposition

algorithm for two-dimensional packing problems with items rotation.

In this chapter, we continue this established line of research by providing new re-

sults that are interesting both from a theoretical and from a computational point of view.

We first focus on the relation that exists among well-known pattern-based and pseudo-

polynomial formulations, providing a complete picture of equivalences and dominances

among them. Then, we select one of these formulations, namely, the arc-flow, and show

how its size can be conveniently reduced leading to an equivalent model formulation called

reflect, in which just half of the bin is needed to model a CSP instance. We then generalize

reflect to deal with other important BPP and CSP variants, showing that on each variant

our exact algorithm achieves state of the art computational results.

In detail, we provide the following contributions:

• We prove that one-cut and arc-flow formulations for the CSP are equivalent (i.e.,

62 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

they have the same continuous relaxation value), closing a long-standing research

question.

• We extend the previous result and provide a clear picture of the dominance and equiv-

alence relations that exist among the main pattern-based and pseudo-polynomial

MILP formulations that have been proposed for the BPP and the CSP.

• We introduce a new formulation, called reflect, that improves the classical arc-flow by

using just half of the bin and thus needing significantly less constraints and variables.

• We test reflect on BPP and CSP benchmark instances, achieving state of the art

results and finding several new proven optimal solutions.

• We also efficiently solve instances with very large bin capacities, by devising heuris-

tics and lower bounding techniques that are based on the combined use of column

generation and reflect. In particular, we demonstrate that our heuristics are faster

and more efficient than traditional approaches based on solving set-covering MILP

models with restricted sets of columns.

• We show the easy replicability of our results, by adapting reflect to solve the variable-

sized BPP (VSBPP) and the BPP with item fragmentation (BPPIF). For both prob-

lems, we obtain results that consistently improve those available in the literature.

The remainder of the chapter is organized as follows. In Section 4.2, we give the

necessary notation and review the main formulations proposed for the BPP and the CSP. In

Section 4.3, we establish the full set of relations among the existing formulations. In Section

4.4, we present reflect and other procedures that we developed to improve its performance.

In Section 4.5, we extend our results and algorithms to deal with the VSBPP and the

BPPIF. In Section 4.6, we present the outcome of extensive computational experiments

and then, in Section 4.7, we draw some conclusions. For the sake of conciseness, all proofs

are reported in the Supplementary Material (SM).

4.2 The BPP, the CSP, and their well-known formulations

In this section, we formally describe the problems, give the necessary notation, and

present the main formulations developed for the BPP and the CSP.

4.2. The BPP, the CSP, and their well-known formulations 63

4.2.1 Problem description and notation

In the BPP, we are given a set of n items, each having weight wj (j = 1, . . . , n), and

an unlimited supply of identical bins of capacity c. The aim is to pack all items into the

minimum number of bins, so that the sum of the item weights in any bin does not exceed

the capacity. To better adapt to either the concept of packing or that of cutting, in the

following we use alternatively the terms weight and width when referring to wj. We suppose

that all input values are integer and 0 < wj < c holds for any j. The CSP has the same

aim of the BPP, but, apart from the unlimited supply of bins (stocks) of capacity c, its

input consists of a set of m item types. Each item type j has a demand of dj items, all

having width wj (j = 1, . . . ,m). A CSP instance can be obtained from a BPP one by

grouping into item types all items having the same width. So, a solution method for the

CSP also solves the BPP, and viceversa. Unless stated otherwise, the formulations that we

report below refer to the CSP.

We use FXX to denote a given MILP formulation. We use L(FXX) to denote the

continuous (linear programming) relaxation of FXX , which is obtained by dropping the

integrality constraints from FXX . When no confusion arises, we also use L(FXX) to define

the optimal solution value of L(FXX). We say that a formulation FXX is equivalent to

a formulation FY Y , if L(FXX) = L(FY Y) holds for any problem instance. We say that

a formulation FXX dominates a formulation FY Y , if L(FXX) ≥ L(FY Y) holds for any

instance and L(FXX) > L(FY Y) holds for at least one instance. If FXX dominates FY Y ,

then the convex hull of FXX is included into that of FY Y ; in such a case we also say that

FXX is included into FY Y . Suppose a given formulation contains a variable x; we use the

notation x̄ to denote the value taken by x in a given solution of the formulation.

4.2.2 Pattern-based formulations

We define a pattern p as an array (a1p, . . . , amp), with ajp being a non-negative integer

that gives the number of items of type j that are included in the pattern. Let P define the

class of feasible patterns, i.e., those patterns p for which
∑m

j=1 ajpwj ≤ c holds. Gilmore

and Gomory [134] associated with each pattern an integer decision variable ξp, indicating

the number of times pattern p is selected, and modeled the CSP as the following set-covering

64 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

formulation

(FGG)



min z =

∑

p∈P

ξp :
∑

p∈P

ajpξp ≥ dj for j = 1, . . . ,m, ξp ∈ N for p ∈ P



 . (4.1)

Note that in (4.1) nothing prevents ajp from being larger than dj, thus there could be

optimal solutions of FGG, or of its continuous relaxation L(FGG), with patterns containing

a number of items greater than their demands. Consider the following example.

Example 2 A CSP instance with m = 3, w = (7, 4, 3), d = (1, 1, 1), and c = 11.

An optimal solution of L(FGG) has value 4/3 and consists of selecting three patterns:

pattern (1, 1, 0) (i.e., a pattern containing a copy of the item of width 7 and a copy of the

item of width 4) with value ξ̄1 = 2/3, pattern (1, 0, 1) with value ξ̄2 = 1/3, and pattern

(0, 1, 2) with value ξ̄3 = 1/3.

The proper relaxation (see, e.g., Nitsche et al. [225]) tries to overcome this drawback

by focusing on a restricted set P ′ of feasible patterns. Each pattern p ∈ P ′ satisfies

0 ≤ ajp ≤ dj , for j = 1, . . . ,m, and
∑m

j=1 ajpwj ≤ c. The CSP can then be modeled as

(FPR)



min z =

∑

p∈P ′

ξp :
∑

p∈P ′

ajpξp ≥ dj for j = 1, . . . ,m, ξp ∈ N for p ∈ P ′



 . (4.2)

Because P ′ ⊆ P , we can state that L(FPR) ≥ L(FGG). Consider now Example 2.

An optimal solution of L(FPR) has value 3/2 and consists of selecting the three following

patterns: (1, 1, 0) with value ξ̄1 = 1/2, (1, 0, 1) with value ξ̄2 = 1/2, and (0, 1, 1) with value

ξ̄3 = 1/2. We can thus conclude with the (known) fact that FPR dominates FGG.

Note that, after rounding up to the nearest integer, for most of the CSP instances

the lower bound values obtained by solving L(FPR) and L(FGG) coincide. Still, there are

many instances for which this fact does not hold. Such instances have been investigated

intensively in studies over the Mixed-Integer Round-Up (MIRUP) conjecture, which states

that both (zopt − ⌈L(FGG)⌉) ≤ 1 and (zopt − ⌈L(FPR)⌉) ≤ 1 hold for any instance of the

CSP, with zopt being the optimal integer value. For further details on this branch of the

literature, we refer to, e.g., Caprara et al. [54] and Kartak et al. [171]. Note also that

practically all branch-and-price algorithms devoted to the solution of the BPP are based

on patterns with binary ajp values, and hence they use the proper relaxation.

4.2. The BPP, the CSP, and their well-known formulations 65

4.2.3 Pseudo-polynomial formulations

Pseudo-polynomial formulations involve a large number of variables and constraints,

and hence they have been usually proposed in the literature together with appropriate

reduction techniques. In this section, we describe basic models that do not make use of

any reduction technique. Existing and new reduction techniques are discussed in the next

Sections 4.3 and 4.4.

The one-cut formulation (FOC) was formally introduced by Rao [234] and Dyckhoff

[111]. It simulates the physical cutting process by choosing a series of cuts each dividing

the bin (or a portion of the bin) into two smaller pieces, a left one and a right one. While

the left piece is an item, the right piece is either an item or a residual that can be re-

used to produce smaller items with successive cuts. To describe the model, we need some

additional notation. Let W = {w1, w2, ..., wm} define the set of item widths. Let S be

the set of all combinations of item widths whose total width does not exceed c. This can

computed trough a standard DP, obtaining

S =
{
w̄ =

∑m

j=1
wjxj , w̄ ≤ c, xj ∈ N for j = 1, . . . ,m

}
. (4.3)

Let R define the set of residual widths, computed as R = {c − w̄ : w̄ ∈ S and w̄ ≤
c −minj{wj}}. The length of any left piece is in W, while the length of any right piece

(including the full bin capacity) is in R. For a given width q ∈ W ∪ R, let Lq = dj if

there exists an item j having width wj = q, and 0 otherwise. In other words, Lq gives the

demand of a certain width q. The model makes use of three additional sets of widths. Set

A(q) contains the piece widths that can be used for producing a left piece having width q,

if any; formally, A(q) = {p ∈ R : p > q} for any q ∈ W, and A(q) = ∅ for any q /∈ W.

Set B(q) contains all item widths that, whether cut as a left piece, would leave a right

piece having width q; formally, B(q) = {p ∈ W : p + q ∈ R}. Set C(q) contains the set

of item widths that can be cut as a left piece by using a residual of width q; formally,

C(q) = {p ∈ W : p < q}.
We consider an integer decision variable ypq, which provides the number of times a piece

of width p is cut into a left piece (item) of width q and a right piece (item or residual) of

width p− q. The one-cut model is then defined as

(FOC) min z =
∑

q∈W

ycq (4.4)

66 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

s.t.
∑

p∈A(q)

ypq +
∑

p∈B(q)

yp+q,p ≥ Lq +
∑

r∈C(q)

yqr q ∈ W ∪R \ {c} (4.5)

ypq ∈ N p ∈ R, q ∈ W, p > q. (4.6)

While function (4.4) minimizes the number of bins used, constraints (4.5) ensures that the

sum of the left and right pieces having width q is not smaller than the demand of width q

plus the number of times a residual of width q is re-cut to produce other items.

The arc-flow formulation (FAF), formally proposed for the CSP by Valério de Carvalho

[278], is a position-indexed formulation that builds upon the graph used in Shapiro [256] and

Wolsey [293]. Formally, let G = (V,A) be a graph having vertex set V = {0, 1, . . . , c− 1, c}
and arc set A = AI ∪Aℓ, where AI = {(d, e) : 0 ≤ d < e ≤ c, d ∈ S, and ∃ j ∈ {1, . . . ,m} :
e − d = wj} is the set of item arcs, and Aℓ = {(d, d + 1) : d = 0, 1, . . . , c − 1} is the set

of loss arcs. Items arcs model the position of the items in the bin, which are limited by

(4.3), whereas loss arcs model empty bin portions. The filling of a bin corresponds then to

a path from root node 0 to sink node c. Let δ−(e) (respectively, δ+(e)) give the subset of

arcs entering (respectively, emanating from) vertex e. By introducing an integer variable

xde giving the number of times arc (d, e) is chosen, the CSP can be modeled as

(FAF) min z (4.7)

s.t.
∑

(e,f)∈δ+(e)

xef −
∑

(d,e)∈δ−(e)

xde =





z if e = 0

−z if e = c

0 for e = 1, . . . , c− 1

(4.8)

∑

(d,d+wi)∈A

xd,d+wi
≥ di i = 1, . . . ,m (4.9)

xde ∈ N (d, e) ∈ A. (4.10)

Constraints (4.8) impose flow conservation and constraints (4.9) ensure that the demand

is fulfilled.

The dynamic programming-flow formulation (FDP) has been formally introduced for

the BPP only by Cambazard and O’Sullivan [52], but, similarly to the arc-flow, has origins

in the early works by Shapiro [256] and Wolsey [293]. It can be seen as a disaggregated

form of FAF , which uses an expanded graph directly obtained from a DP table to model

the bin fillings. In detail, let G′ = (V ′,A′) be the DP graph. Set V ′ = {(j, d) : j =

0, . . . , n; d = 0, . . . , c} ∪ {(n + 1, c)} has a vertex for each DP state plus a dummy node

4.3. Relations among models 67

(n + 1, c), whereas set A′ = {((j, d), (j + 1, e)) : (j, d) ∈ V ′; (j + 1, e) ∈ V ′} contains arcs

connecting two consecutive DP states. There are two types of arcs ((j, d), (j +1, e)): those

for which e = d+wj, that model the selection of item j when the bin is partially filled by

d units; and those having e = d, that state that the selection of j in d has been discarded.

All vertices (j, d) having d = c are connected to the last dummy vertex (n+ 1, c). A path

from (0, 0) to (n+1, c) represents a feasible bin filling. With each arc ((j, d), (j+1, e)) ∈ A′

we associate an integer decision variable ϕj,d,j+1,e. By setting V ′0 = V ′ \ {(0, 0), (n + 1, c)},
we can model the BPP as

(FDP) min z (4.11)

s.t.
∑

((j,d),(j+1,e))∈δ+((j,d))

ϕj,d,j+1,e −
∑

((j−1,e),(j,d))∈δ−((j,d))

ϕj−1,e,j,d =





z if (j, d) = (0, 0)

−z if (j, d) = (n+ 1, c)

0 if (j, d) ∈ V ′0
(4.12)

∑

((j−1,d),(j,d+wj))∈A

ϕj−1,d,j,d+wj
= 1 j = 1, . . . , n (4.13)

ϕj,d,j+1,e ∈ N ((j, d), (j + 1, e)) ∈ A′. (4.14)

Constraints (4.12) force flow conservation and constraints (4.13) impose that each item

(adopting the BPP notation) is selected once. A CSP instance can be modeled by FDP

by splitting each item type j into dj items, obtaining a BPP instances with n =
∑m

i=1 dj

items.

4.3 Relations among models

In this section, we prove the relations that exist among the introduced patterns-based

and pseudo-polynomial formulations. To the best of our knowledge, this is the first time

that a complete characterization of this area of research is provided in the literature. We

first need two preliminary results.

Lemma 1 (Valério de Carvalho [278]) Any solution of arc-flow or of its continuous relax-

ation can be decomposed into a set of paths.

The mentioned decomposition is based on the decomposition of non-negative flows into

paths and cycles (see Ahuja et al. [3], Chapter 3), with the only remark that, being the

68 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

arc-flow graph acyclic, only paths may occur. For the sake of clarity, the procedure that

we use for this decomposition is given in Section 4.A of the SM. Consider Example 2. An

optimal solution of L(FAF) has value 4/3 and consists of x̄0,7 = 1, x̄0,4 = 1/3, x̄4,7 =

1/3, x̄7,10 = 2/3, x̄7,11 = 2/3, and x̄10,11 = 2/3, as shown in Figure 4.1-(a). By applying

Algorithm 2 of Section 4.A, we obtain a decomposed flow that is made by three paths and

is depicted in Figure 4.1-(b).

0 4 7 10 11

1

2/3

2/3

2/3

1/3 1/3

(a) Optimal L(FAF) solution of value 4/3

z̄3 = 2/3 0 7 11

z̄2 = 1/3 0 7 10 11

z̄1 = 1/3 0 4 7 10 11

(b) Decomposition of L(FAF) into paths (z̄p = flow on path p).

Figure 4.1: L(FAF) solution and path decomposition for Example 2

Lemma 2 Any solution of one-cut or of its continuous relaxation can be decomposed into

a set of binary trees.

Proof. Proof Given in Section 4.B of the SM.

Consider again Example 2. An optimal solution of L(FOC) has value 4/3 and consists

of ȳ11,7 = 1, ȳ11,4 = 1/3, ȳ7,3 = 1/3, and ȳ4,3 = 2/3. By applying the modified algorithm 3

of Section 4.B to this solution, we obtain the three trees depicted in Figure 4.2. The leaves

of each tree correspond to either items produced (as leaves 4, 3, and 3 in the left-most tree)

or residuals (as leaf 1 in the left-most tree).

Intuitively, we can state a relation between the paths of the decomposed arc-flow so-

lution and the trees of the decomposed one-cut solution. Figures 4.1 and 4.2 show a

well-constructed example of this relation, which can be noticed by considering one at a

time the paths from top to bottom and the trees from left to right. In reality, a few cases

should be considered, especially in consideration of the fact that solutions of arc-flow and

one-cut are not guaranteed to be left-aligned (as happens in the figures). We leave the

technicalities to the SM, and provide our first result in terms of models relations.

4.3. Relations among models 69

z̄3 = 2/3

11

7 4

z̄2 = 1/3

11

7 4

3 1

z̄1 = 1/3

11

4 7

3 4

3 1

Figure 4.2: An L(FOC) solution of Example 2 represented as a set of trees (z̄t = value of
tree t).

.

Theorem 1 FAF is equivalent to FOC .

Proof. Proof Given in Section 4.C of the SM.

Note that the proof of Theorem 1 contains two algorithmic transformations, from FAF

to FOC and viceversa, which we believe can be useful when implementing solutions algo-

rithms for the CSP (and for some of its generalizations). Note also that, by using the

equivalence between FAF and FGG proved in Valério de Carvalho [278], we can observe

that FOC too is equivalent to FGG.

0, 0

1, 0

2, 0

3, 0 3, 3

2, 4

3, 4

1, 7

2, 7

3, 7 3, 10

2, 11

3, 11

4, 11

0.5 1

0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

Figure 4.3: An L(FDP) solution of Example 2 (selected arcs in bold, values taken by the
selected variables on the arcs)

70 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

Now, let us concentrate on FDP . An optimal L(FDP) solution of Example 2 has value

3/2 and is shown in Figure 4.3. The arcs in bold lines are associated with the selected

variables (whose values are reported on the corresponding arcs). This example is useful for

the second relation that we prove.

Theorem 2 FDP dominates FAF (and hence FOC).

Proof. Proof Given in Section 4.D of the SM.

The relations among the pseudo-polynomial formulations are graphically depicted in

the right part of Figure 4.4. The discussed equivalence of FAF and FOC with FGG is

depicted by the use of a dashed line. The other dashed line depicts our next result.

Theorem 3 FDP is equivalent to FPR.

Proof. Proof Given in Section 4.E of the SM.

G
ilmore and Gom

or
y

proper

relaxation

arc-flow, one-c
ut

DP-flow

Pattern-based formulations Pseudo-polynomial formulations

Figure 4.4: Graphical representation of relations among CSP formulations.

We conclude this section with some remarks. Figure 4.4 does not depict the “descrip-

tive” formulation of the CSP (using integer variables for the assignments items-bins and

binary variables for the bins), which is dominated by all other formulations (see, e.g.,

Martello and Toth [214]). As previously noted, the main pseudo-polynomial formulations

were proposed with some reduction criteria. Dyckhoff [111] reduced the size of set S in

(4.3) by forcing xj ≤ dj , thus focusing on the set of so-called normal patterns (see Herz

[153] and Christofides and Whitlock [64]):

N =
{
w̄ =

∑m

j=1
wjxj , w̄ ≤ c, xj ∈ N, xj ≤ dj for j = 1, . . . ,m

}
. (4.15)

4.3. Relations among models 71

This improves FOC but does not make it equivalent to FPR. To state this fact, it is enough

to consider that the L(FOC) solution of Example 2 already accomplishes with (4.15) but

is worse than the L(FDP) solution. Valério de Carvalho [278] proposed a set of reduction

techniques for FAF , namely, he built the arcs by using a DP algorithm that considers

item types according to decreasing width, thus reducing symmetries, and removed loss

arcs whose head is lower than or equal to the minimum item width. But also in this

case, the continuous relaxation of the resulting formulation is not as strong as that of FDP

(once again, the L(FAF) solution of Example 2 already accomplishes with the proposed

reductions but is worse than the one found by L(FDP). Formulation FDP provides a very

high-quality lower bound, but at the expenses of an excessive number of variables. The

extensive tests in Delorme et al. [98] show indeed that the computational performance of

FDP is much weaker than that of FAF and FOC on all CSP benchmarks.

Other formulations which are equivalent to FAF but have a better computational per-

formance have been recently presented by Brandão and Pedroso [45] and Côté and Iori

[84]. Brandão and Pedroso [45] proposed, among other improvements, a lifting procedure

that is based on the fact that the packing an item in a given position might lead to an

unused capacity in the bin. For each possible packing, the procedure estimates the min-

imum certified unused capacity by solving a subset sum problem, and then makes use of

this value to extend the head of the arc that corresponds to the packing. The underlying

graph has to be modified into a multi-graph, because arcs having the same widths may

now correspond to different items, but the process leads to a speed-up in the solution time.

Côté and Iori [84] considered the normal patterns in (4.15), but conveniently decreased

their number by means of a meet-in-the-middle procedure. Instead of performing a classical

DP, they solved a two-way DP which created valid patterns starting from the left and from

the right. They then built an arc-flow formulation that makes use of this reduced set of

patterns, thus requiring less variables, less constraints, and a quicker solution time.

Côté and Iori [84] also proposed to modify FAF by removing the unit-width loss arcs

(d, d + 1) and considering only loss arcs that connect two consecutive vertices d, e ∈ N .

If c /∈ N , a final loss arc connects the last normal pattern vertex to c (see top part of

Figure 4.5). Note that this leads to reducing constraints (4.8) to e ∈ N ∪{c}, and adopting

a multi-graph structure for the model (because there can be standard and reflected arcs

having the same head and tail values). From now on we consider this straightforward

improvement in all our formulations.

72 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

4.4 Reflect, an improved arc-flow formulation

In this section, we propose a new arc-flow formulation, called reflect (FRE), which

models a CSP instance by considering only half of the bin capacity, thus resulting in a

sharp decrease in the required number of variables and constraints. The two main features

of FRE are:

• In terms of vertices, FRE considers only those corresponding to normal patterns with

size smaller than c/2 (including 0), plus an additional vertex, called R, corresponding

to the size c/2;

• In terms of arcs, FRE considers the same ones of FAF , but: (i) it “reflects” each item

arc (d, e) having d < c/2 and e > c/2 into an arc (d, c− e); (ii) removes all item and

loss arcs (d, e) having d ≥ c/2; and (iii) creates a last loss arc by connecting the right

most vertex before R with R.

Intuitively, a path in FAF becomes in FRE a pair of colliding paths, i.e., two paths both

starting in 0 and ending in the same vertex, but only one of the two passing through R.

For Example 2, the arcs required by FAF and FRE are shown in Figure 4.5. FAF contains

6 items arcs and 5 loss arcs. To build FRE , (i) we reflect item arcs (0,7) in (0,4) and (4,7)

in (4,4); (ii) we remove item arcs (7,10) and (7,11) and loss arcs (7,10) and (10,11); and

(iii) we replace loss arc (4,7) with (4,R), thus resulting in 4 item arcs and 3 loss arcs. The

reduction is small for this toy instance, but can be impressive for large-size instances (see

Section 4.6).

Before presenting a formal mathematical model, we first define the multi-graph G =

(V,A) that is at the basis of FRE . The set of vertices is V = {0} ∪ {e ∈ N , 0 < e <

c/2} ∪ {c/2}. The set or arcs A is partitioned into As and Ar, where As denotes the set

of standard arcs, i.e., all those item and loss arcs that proceed from left to right as in FAF ,

and Ar denotes the set of reflected arcs, i.e., those item arcs (d, e) from FAF that have been

reflected into item arcs (d, c− e). Each arc in As is defined by the triplet (d, e, s), whereas

each arc in Ar by the triplet (d, e, r) (note indeed there can be a standard and a reflected

arc having the same head and tail values). We also include in Ar an arc (c/2, c/2, r) to

express pairs of paths that collide in c/2. We use (d, e, κ) to denote a generic arc belonging

to either As or Ar and Aj to define the subset of item arcs associated with item type j,

formally Aj = {(d, d + wj, s) ∈ As} ∪ {(d, c − (d + wj, r)) ∈ Ar}. Let also δ−s (e) ⊆ As

(respectively, δ−r (e) ⊆ Ar) denote the subset of standard (respectively, reflected) arcs that

4.4. Reflect, an improved arc-flow formulation 73

0 3 4 7 10 11

0 3 4 R

Figure 4.5: Set of arcs required by the standard arc-flow (above) and by reflect (below) for
Example 2 (item arcs are depicted in straight lines, loss arcs in dotted lines)

enters e. By associating an integer decision variables ξdeκ to each arc (d, e, κ) ∈ A, we can

model the CSP as

(FRE) min z =
∑

(d,e,r)∈Ar

ξder (4.16)

s.t.
∑

(d,e,s)∈δ−s (e)

ξdes =
∑

(d,e,r)∈δ−r (e)

ξder +
∑

(e,f,κ)∈δ+(e)

ξefκ e ∈ N , 0 < e < c/2 (4.17)

∑

(0,e,κ)∈δ+(0)

ξ0eκ = 2
∑

(d,e,r)∈Ar

ξder (4.18)

∑

(d,e,κ)∈Aj

ξdeκ ≥ dj j = 1, . . . ,m (4.19)

ξdeκ ∈ N κ ∈ {s, r}, (d, e, κ) ∈ Aκ (4.20)

The objective function (4.16) minimizes the number of reflected arcs, which is equivalent

to the number of bins. Constraints (4.17) ensure that the amount of flow from standard

arcs entering a node e is equal to the amount of flow (for both standard and reflected arcs)

emanating from e plus the amount of flow from reflected arcs entering e. Constraint (4.18)

impose boundary conditions by enforcing the amount of flow emanating from of 0 to be

twice the amount of bins used. Constraints (4.19) ensure that the demand of each item

type is fulfilled.

An optimal L(FRE) solution for Example 2 having value 4/3 is given in Figure 4.6-(a),

and is decomposed in the pairs of colliding paths shown in Figure 4.6-(b). The first bin

74 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

contains an item of width 4 and another of width 7, and is made by the standard arc

(0, 4, s) and the reflected arc (0, 4, r), which collide in 4. The second bin is constructed by

the standard arcs (0, 3, s) and (3, 4, s), and the reflected arc (4, 4, r). Note that the two arcs

(0, 3, s) and (3, 4, s) are both depicted twice in the figure, to show that the flow on these

arcs is split to form the two colliding paths: the first path is {(0, 3, s), (3, 4, s)}, and the

second is {(0, 3, s), (3, 4, s), (4, 4, r)}, both with flow 1/3. Note also that, if no reflected arc

enters e, then e is just a partial filling of one or more bins (e.g., vertex 3 in the example),

if instead some reflected arcs enter e, then e is a vertex of collision for one or more bins

(e.g., vertex 4).

0 3 4

1

1

2/3

2/3

1/3

(a) Solution of L(FRE)

0 4

1

1

0 3 4

1/3
1/3

1/3

1/3
1/3

(b) Solution of L(FRE) decomposed into pairs of colliding paths

Figure 4.6: Solution of L(FRE) for Example 2 (selected item arcs are depicted in straight
lines, selected loss arcs in dotted lines, variable values on the arcs)

The following result proves the correctness of FRE .

Theorem 4 FRE models the CSP.

Proof. Proof Given in Section 4.F of the SM.

For the sake of completeness, we provide in Algorithm 7 (Section 4.G of the EC) the

required steps to construct the multigraph required by FRE . In the same section, we also

provide, in Algorithm 8, the procedure that we use to decompose a FRE (or L(FRE))

solution into pairs of colliding paths. One can notice that Algorithm 7 does not create any

reflected arc (d, e, r) having d > e (step 16 of the algorithm). This reduction criterion is

4.4. Reflect, an improved arc-flow formulation 75

motivated by the following result.

Theorem 5 Any feasible pattern can be represented in FRE by a pair of colliding paths

whose reflected arc (d, e) has d ≤ e .

Proof. Proof Given in Section 4.H of the SM.

4.4.1 Adapting reflect to solve large size instances: Reflect+

Even if the number of arcs used by reflect is considerably reduced with respect to

those used by arc-flow, some instances with huge capacity and many small items may still

generate models that contain millions of variables and are thus too difficult to tackle. To

overcome this issue, we propose some lower and upper bounding techniques and embed

them into a new algorithm, called reflect+, that produces solutions of very good quality

even for difficult instances.

Column generation. We first solve L(FPR), the linear relaxation of (4.2), by means

of a standard column generation technique. The reduced master problem is initialized with

the identity matrix and solved as a linear program to obtain dual variable values π̄j for

each item type j. Columns with negative reduced costs are found and added to the reduced

master on the fly, by solving a knapsack subproblem, until a proof of optimality is reached.

For the subproblem, we make use of combo by Martello et al. [213], which solves the binary

knapsack. We first use combo as a heuristic by feeding it with m items j of profit π̄j and

weight wj (just one item per item type). If this attempt fails in finding a negative reduced

cost column, then we use combo as an exact approach by feeding it with the entire set

of items, but invoking a binary expansion (see, e.g., Vanderbeck and Wolsey [287]): each

item type j having demand dj is represented by ⌊log dj⌋+ 1 items having profit 2kπj and

weight 2kwj, for k = 0, 1, . . . , ⌊log dj⌋ − 1. To avoid patterns that contain more than dj

items, the values of the last item l = ⌊log dj⌋ are set to (dj − (2l − 1))πj for the price and

(dj − (2l− 1))wj . The first heuristic has the purpose of avoiding patterns with many small

items that can appear in early iterations of the column generation approach and slightly

deteriorate our successive upper bounding procedure.

Let LB = ⌈L(FPR)⌉ denote the lower bound that we obtained, PA ⊆ P ′ the set of

columns that have been generated to reach linear optimality, and PB ⊆ PA the set of

columns that belong to the optimal basis. A classical way to obtain an upper bound from

this information is to solve to optimal integrality the restricted master problem with the

76 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

set PA of columns. This heuristic is easy to implement but might produce low quality

solutions, and several attempts have been proposed for trying to improve it (see, e.g.,

Sadykov et al. [244]). Here we propose a simple yet effective improvement, that consists in

solving FRE with a small time limit on a multigraph that contains only the arcs produced

by PA. In detail, we consider all items contained in a column p by non-increasing weight

and generate an arc in the FRE multigraph for each item in that order. We repeat the

process for all p ∈ PA and then solve FRE on this reduced graph.

Our method is motivated by the following remark: Let z(FPR(PA)) be the optimal

solution value of the restricted FPR that contains only the columns in PA, and z(FRE(PA))

be the optimal solution value of the restricted FRE that contains only the arcs produced

by the columns in PA, then z(FRE(PA)) ≤ z(FPR(PA)). The remark follows from the fact

all patterns p ∈ Pa can be produced by FRE , but FRE can also produce patterns that do

not belong to P . Consider for example the bottom part of Figure 4.5 that may be obtained

through the mapping of patterns (1,0,1) and (0,1,1). It is possible for FRE to produce the

additional pattern (1,1,0) through arcs {(0,4,r),(0,4,s)}. Note that it could also produce

the non-proper patterns (0,2,1) through arcs {(0,4,s),(4,4,r),(0,4,s)}, (0,1,2) through arcs

{(0,4,s),(4,4,r),(0,3,s), (3,4,s)}, and (0,3,0) through arcs {(0,3,s),(3,4,s),(4,4,r),(0,3,s),(3,4,s)},
thus providing a large number of possible heuristic solutions. In our implementation we

first solve z(FPR(PB)), and then z(FPR(PA)) if needed.

Node deactivation and dual cuts. We solve L(FRE) with the complete set of arcs,

and then use its linear solution ξ̄ as a basis for our second heuristic attempt. This consists

in first splitting the set of vertices in V = Va ∪ Vn, where Va = {d ∈ V : ∃ξ̄(d,e,κ) > ǫ} is

the set of active vertices, and Vn = {d ∈ V :6 ∃ξ̄(d,e,κ) > ǫ} is the set of non-active vertices.

Then, we solve FRE with the additional set of constraints

ξdeκ = 0 d ∈ Vn, κ ∈ {s, r}, (d, e, κ) ∈ Aκ (4.21)

Constraints (4.21) make the solution of the model much faster but might remove too many

feasible solutions. We experimentally noticed that better solutions could be found by

allowing some large items to be split into smaller items. To this aim, we create a set T of

possible transformations (i, j, k), in which i, j, k = 1, . . . ,m,, i < j ≤ k, and wi = wj +wk.

We add to the model a set of integer variables tijk, for (i, j, k) ∈ T , each counts the number

4.4. Reflect, an improved arc-flow formulation 77

of times an item i is transformed into items j and k, we replace (4.19) with

∑

(d,e,κ)∈Aj

ξdeκ +
∑

(i,j,k)∈T

ti,j,k +
∑

(i,k,j)∈T

ti,k,j −
∑

(j,k,l)∈T

tj,k,l ≥ dj j = 1, . . . ,m (4.22)

tijk ∈ N (i, j, k) ∈ T (4.23)

and then solve model (4.16)–(4.18), (4.20)–(4.23). This procedure is reminiscent of the

dual cuts by Valério de Carvalho [280].

Arc deactivation. Our third heuristic attempts to find a solution having exactly

value LB = ⌈L(FRE)⌉. To this aim, we gather in a set Az all arcs whose reduced cost is

greater than LB − L(FRE) + ǫ, and restrict the FRE model by setting

ξdeκ = 0 (d, e, κ) ∈ Az (4.24)

Indeed, the selection of one or more of arcs in Az would lead to a solution of value greater

than LB. We then solve (4.16)–(4.20) and (4.24). If no solution of value LB is found, we

increase LB by one unit, update Az, and iterate the process. Note that, if the MIRUP

conjecture holds, then the process is iterated at most once.

The resulting algorithm reflect+ makes use of these techniques in the order in which

we presented them. An informal pseudocode is given in Algorithm 1. The algorithm stops

as soon as upper and lower bound values are equal. Each time a model is solved as an

MILP, it is allowed only a restricted execution time, as discussed in Section 4.6 below.

Algorithm 1 reflect+

1: solve L(FPR) through column generation and obtain PA, PB , and LB = ⌈L(FPR)⌉
2: solve FRE(PB) and obtain U1

3: solve FRE(PA) and obtain U2

4: solve L(FRE) and obtain ξ̄, Vn, and Az

5: solve FRE + (4.21) − (4.23) and obtain U3

6: UB ← min(U1, U2, U3)
7: while UB > LB do
8: solve FRE + (4.24) and obtain U4

9: UB = min(UB,U4)
10: update Az and set LB ← LB + 1
11: end while.

78 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

4.5 Generalizations

In this section, we detail the modifications that we used on reflect to handle the variable

sized bin packing problem (VSBPP) and the bin packing problem with item fragmentation

(BPPIF).

4.5.1 Variable sized BPP

In the VSBPP, instead of a unique bin of capacity c, we are given a set of K bin types

with capacity ck, price pk, and availability bk, k = 1, . . . ,K. The objective is now to pack

all the items into a minimum cost set of bins that respects the availability and the capacity

of each bin type. The problem was extensively studied in the literature and various exact

and heuristic approaches were proposed, see, e.g., Belov and Scheithauer [29], Alves and

Valério de Carvalho [10], and Hemmelmayr et al. [152]).

Valério de Carvalho [279] described a possible adaptation for the arc-flow model in which

he considered some additional integer variables for each bin type, modified accordingly the

objective function (4.7) and the flow conservation constraints (4.8), and added a set of

specific constraints that limit to bk the number of times bin type k is selected. Such an

extension is not as straightforward for reflect, as we have to ensure that the variables

associated with the bin types are selected exactly once per pair of colliding paths. To

satisfy this constraint, we integrate the bin type decision into the reflected arcs.

To this aim, we partition the set of reflected arcs Ar into A1,A2, . . . ,AK . Each arc in

Ak is defined by the triplet (d, e, k), where k = 1, . . . ,K represents the bin type.

Example 3 A VSBPP instance with K = 2, m = 3, w = (7, 4, 3), d = (1, 1, 1), c =

(11, 6), p = (11, 6), and b = (2, 2).

For Example 3, the arcs required by reflect are shown in Figure 4.7. The construction

is very similar to the one of Example 2, but as we have to consider an additional bin of

size 6, node 3 becomes a reflection point. Thus, a copy of arc (0,4,s) is reflected in 3 and

creates the new reflected arc (0, 3, r), where r = 2 and corresponds to a reflection of the

second bin type. To ensure the feasibility of the model, an additional arc (3,3,2) is also

created.

By introducing Wk, a set of integer variables that counts the number of times bin type

4.5. Generalizations 79

0 2 3 4 R

Figure 4.7: Set of arcs required by reflect for Example 3 (item arcs are depicted in straight
lines)

k is selected, for k = 1, . . . ,K, the VBSPP can be modelled as

min z =

K∑

k=1

pk Wk (4.25)

s.t.
∑

(d,e,s)∈δ−s (e)

ξdes =
∑

(d,e,r)∈δ−r (e)

ξder +
∑

(e,f,κ)∈δ+(e)

ξefκ e ∈ N , 0 < e < c/2 (4.26)

∑

(0,e,κ)∈δ+(0)

ξ0eκ +
∑

(d,0,r)∈δ−(0)

ξd0r = 2

K∑

k=1

Wk (4.27)

∑

(d,e,k)∈Ak

ξd,e,k = Wk k = 1, . . . ,K (4.28)

Wk ≤ bk k = 1, . . . ,K (4.29)
∑

(d,e,κ)∈Aj

ξdeκ ≥ dj j = 1, . . . ,m (4.30)

ξdeκ ∈ N κ ∈ {s, r}, (d, e, κ) ∈ Aκ (4.31)

Wk ∈ N k = 1, . . . ,K (4.32)

The objective function (4.25) minimizes now the price of the bins selected, while con-

straints (4.26) remain unchanged. Constraints (4.27) still force the amount of flow ema-

nating from 0 to be twice the number of bins used, but takes into account the fact that it

is now possible for a reflected arcs to directly enter vertex 0. Constraints (4.28) match the

variables Wk with the sum of the variables associated with their corresponding reflected

arcs having r = k, and constraints (4.29) ensure that the bin availabilities are respected.

Note that variables Wk are not strictly mandatory in the model and could be replaced

by
∑

(d,e,k)∈Ak

ξd,e,k, but there use proved to be computationally useful, especially for the

instances where pk are not proportional to ck.

80 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

4.5.2 BPP with item fragmentation

In the BPPIF, the constraint imposing that an item has to be packed into a unique bin

is removed. Now an item is allowed to be fractionally packed into different bins, as long as

the sum of the fractions is equal to the weight of the item. Several variants of the BPPIF

have been studied in the literature, see, e.g., the recent work by Casazza and Ceselli [57].

In this section, we study two variants of the BPPIF: one whose objective is to minimize

the number of bins used while the number of fragmentation is limited (bm-BPPIF) and

another one whose objective is to minimize the number of fragmentation while the number

of bins is limited (fm-BPPIF). We first propose an extension of the classical arc-flow model

for the BPPIF and then we show how the VSBPP can be used to derive valid upper bounds

for the BPPIF.

In contrast with reflect, where the arcs were reflected into the first half of the bin, now

we develop a version of arc-flow which allows the arcs to go over the capacity of the bin c.

When such an arc (d, e), e > c is created, its tail e is transposed into e mod c. We gather

in At the set of transposed arcs.

Example 4 A BPPIF instance with m = 3, w = (7, 4), d = (2, 1), and c = 11.

0 3 4 7 11

Figure 4.8: Set of arcs built by arc-flow for the BPPIF Example 4 (item arcs are depicted
in straight lines)

For Example 4, the arcs required by the adaptation of arc-flow are shown in Figure 4.8.

A first arc (0,7) is created by the first item of width 7. An arc (7,14) is created by the

second item of width 7 and is transposed into (7,3). Then, arcs (7,11),(3,7), and (0,4) are

created by the item of width 4. Finally, loss arcs link all the active nodes to the following

one. For the bm-BPPIF, if we denote by F the maximum number of fragmentation allowed,

the problem can be modelled as follow

min z +
∑

(d,e)∈At

xde (4.33)

4.5. Generalizations 81

s.t.
∑

(e,f)∈δ+(e)

xef −
∑

(d,e)∈δ−(e)

xde =





z if e = 0

−z if e = c

0 for e ∈ N , 0 < e < c/2

(4.34)

∑

(d,d+wi)∈A

xd,d+wi
≥ di i = 1, . . . ,m (4.35)

∑

(d,e)∈At

xde ≤ F (4.36)

xde ∈ N (d, e) ∈ A. (4.37)

The objective function (4.33) minimizes the number of bins, that is equal to the number

of flow emanating from 0 plus the amount of transposed flows. While the flow conservation

constraints (4.34) and the item satisfaction constraints (4.35) remain unchanged, constraint

(4.36) ensures that the number of fragmentation is not greater than F . The adaptation of

the model to the fm-BPPIF is very straightforward as it is sufficient to consider the number

of fragmentation
∑

(d,e)∈At
xde in the objective function (4.33) and transform (4.36) to

z +
∑

(d,e)∈At
xde ≤ B, where B is the maximum number of bins allowed.

As it will be shown in the experimental evaluation in Section 4.6, this approach does

not lead to outstanding results, but is useful to get good quality lower bounds. To obtain

good quality upper bounds, we solve with reflect a VSBPP in which the price of a bin is

equal to the number of fragmentations it represents, and its capacity is set to a multiple of

c. We create K bins of capacity ck = k c and price pk = k − 1 for k = 1, . . . ,K and model

the fm-BPPIF as

min z =

K∑

k=1

pk Wk (4.38)

s.t.
∑

(d,e,s)∈δ−s (e)

ξdes =
∑

(d,e,r)∈δ−r (e)

ξder +
∑

(e,f,κ)∈δ+(e)

ξefκ e ∈ N , 0 < e < c/2 (4.39)

∑

(0,e,κ)∈δ+(0)

ξ0eκ +
∑

(d,0,r)∈δ−(0)

ξd0r = 2
K∑

k=1

Wk (4.40)

∑

(d,e,k)∈Ak

ξd,e,k = Wk k = 1, . . . ,K (4.41)

K∑

k=1

k Wk ≤ B (4.42)

82 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

∑

(d,e,κ)∈Aj

ξdeκ ≥ dj j = 1, . . . ,m (4.43)

ξdeκ ∈ N κ ∈ {s, r}, (d, e, κ) ∈ Aκ (4.44)

Wk ∈ N k = 1, . . . ,K (4.45)

Objective function (4.38) minimizes the number of fragmentations, while constraints

(4.39)-(4.41) and (4.43) remain unchanged. Constraint (4.42) ensures that the total number

of bins used does not exceed the bin limit. Again, the adaptation of the model for the bm-

BPPIF is easy as it only requires to consider the total number of bins
∑K

k=1 k Wk in (4.38)

and transform (4.42) into
∑K

k=1 pk Wk ≤ F .

When used with sufficiently large value of K (for example, K = (
∑m

j=1 dj) − 1), this

approach is exact. However, as huge values of K implies huge capacities, it is not advisable

to use this approach to solve exactly the BPPIF. According to our experimental results, it is

generally enough to consider restricted values, e.g., K ≤ 3, to solve most of the benchmark

instances to proven optimality.

4.6 Computational results

In this section, we experimentally compare the efficiency of reflect and its improvements

with the classical arc-flow and the best algorithms that have been proposed in the literature

on diverse benchmark instances. All our experiments were executed on an Intel Xeon 3.10

GigaHertz with 8 GigaByte RAM, equipped with four cores, and we used Gurobi 6.5 as

MILP solver. All our experiments were performed with a single core, and the number of

threads was set to one for the MILP solver. In each table, the formulation that finds the

largest number of optimal solutions is highlighted in bold, and when an instance is not

solved, its associated time is set to the time limit.

4.6.1 Results on BPP and CSP

We used three BPP and CSP benchmark sets:

• Literature instances (1), a set of 1615 instances that have been proposed in various

articles related to the BPP these last decades. These instances have diverse charac-

teristics and a complete description on their parameters can be found in Delorme et

al. [98].

4.6. Computational results 83

• Difficult instances (2), two classes of 100 instances each that were proposed in De-

lorme et al. [98]. The instances of the first class, called ANI instances, do not have

the integer round up property (IRUP), and their difficulty resides in raising the con-

tinuous lower bound. The 50 first instances have n = 201 and c < 2500, while the 50

last instances have n = 402 and c < 10000. Each instance of the first set has a copy

in the second set in which exactly one item has been split into two smaller pieces so

that the IRUP is recovered.

• Large capacitated instances (3), 4 sets of 60 instances each that were proposed in

Gschwind and Irnich [142]. The instances are uniformly randomly generated fol-

lowing 2 parameters, c ∈ {500 000, 1 500 000} and [wmin, wmax] ∈ {[(2/15)c, (2/3)c],
[(1/150)c, (2/3)c]}. For each duet, 60 instances were generated, 20 for each value of

m ∈ {125, 250, 500}.

Table 4.1 provides the results obtained by running FRE and FPR with the restricted

set of patterns PA and PB and a time limit of 300 seconds. The 2 first columns identify

the benchmark and the corresponding number of instances. Each of the 4 following set of

columns associate with each formulation the number of instances that were solved within

the time limit, the average CPU time expressed in seconds, and the number of times the

solution obtained was optimal (i.e., matched with ⌈L(FPR)⌉).
Table 4.1 shows that, when used on a restricted set of patterns P ′, FPR(P

′) is clearly

outperformed by FRE(P
′). Sometimes, e.g., for Waescher instances, FPR(P

′) is very fast,

but terminates with a solution that does not match with ⌈L(FPR)⌉ while some other times,

e.g., for Scholl 3 instances, FPR(P
′) does not finish within the time limit. We obtained

outstanding results for both FRE(PB) and FRE(PA), as they can close all but 30 tested

instances. When it comes to select which restricted set of patterns should be chosen for

FRE(P
′), no clear conclusion can be drawn from the results: indeed, it looks like FRE(PB)

is faster, especially for instances with very large capacity. However, FRE(PA) terminates

more often with a proven optimal solution, especially for the triplet instances Falkenauer

T.

Table 4.2 provides the results obtained by running FAF and FRE with their complete set

of arcs and a time limit of 3600 seconds. The 2 first columns identify the benchmark and the

corresponding number of instances. Each of the 2 following set of columns associate with

each formulation the number of instances that were solved to proven optimality, the average

CPU time expressed in seconds, the number of variables, and the number of constraints

84 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

Table 4.1: Evaluation of heuristic 1 with restricted sets of patterns P1 and P2 for the CSP

Set of instances # inst.
FRE(PB) FPR(PB) FRE(PA) FPR(PA)

term. time # opt # term. time # opt # term. time # opt # term. time # opt

Waescher 17 15 72.9 12 17 3.5 2 15 100.3 14 16 26.8 6
Hard28 28 28 0.5 10 28 0.8 2 28 5.5 19 28 1.1 9

Falkenauer U 80 80 0.0 80 80 0.1 44 80 0.1 80 80 0.2 66
Falkenauer T 80 80 0.2 16 80 10.2 16 80 1.4 78 80 4.4 16

Schwerin 1 100 100 0.1 100 100 0.6 0 100 0.2 100 100 31.2 16
Schwerin 2 100 100 0.1 100 100 1.1 0 100 0.2 100 97 29.6 47

Scholl 1 720 720 0.0 719 720 0.1 449 720 0.0 720 720 0.3 523
Scholl 2 480 479 3.7 479 339 97.0 21 477 6.8 477 257 156.2 116
Scholl 3 10 10 0.8 10 6 205.7 0 10 8.8 10 0 300.1 0

Total (1) 1615 1612 1.9 1526 1470 30.8 534 1610 3.3 1598 1378 52.7 799

Inrich AA 60 60 1.4 60 39 108.6 7 60 10.0 60 48 92 38
Inrich AB 60 60 3.6 59 34 145.9 8 54 90.1 54 34 151.2 33
Inrich BA 60 60 1.2 59 40 109.1 9 60 7.7 60 45 92.3 35
Inrich BB 60 59 8.0 59 36 144.4 7 53 98.1 53 34 149.3 32

Total (3) 240 239 3.6 237 149 127.0 31 227 51.5 227 161 121.2 138

Total (1)+(3) 1855 1851 2.1 1763 1619 43.3 565 1837 9.6 1825 1539 61.5 937

involved in the model.

Table 4.2 shows that FRE clearly outperforms FAF both in terms of number of optimal

solution found and in terms of required time. This can be explained by the drastic variable

and constraint reduction obtained in reflect, with an average of 81.2% of arc reduction

(from 64.5% for the AI 400 instances up to 98% for the Scholl 3 instances) and an average

of 64.1% of constraint reduction (from 31.9% for the Scholl 1 instances up to 92.2% for

the Inrich BA instances). However, even with these considerable reductions, reflect cannot

handle the millions of variables and the hundreds of thousands constraints from the Irnich

AB and Irnich BB instances.

Table 4.3 provides the results obtained by running the branch-and-cut-and-price by

Belov and Scheithauer [30], vpsolver by Brandão and Pedroso [45], reflect, and reflect+

with a time limit of 3600 seconds. As their codes are available online, we rerun both

algorithms on our machine. As required by the original codes, Cplex 12.6 was used for

the branch-and-cut-and-price and Gurobi 6.5 was used for vpsolver. The 2 first columns

identify the benchmark and the corresponding number of instances. Each of the 3 following

set of columns associate with each code the number of instances that were solved to proven

optimality and the average CPU time expressed in seconds. In addition, for reflect+,

4.6. Computational results 85

Table 4.2: Evaluation of reflect with respect to arc-flow for the CSP

Set of instances # inst.
arc-flow reflect

opt time nb. var. nb. cons. # opt time nb. var. nb. cons.

Waescher 17 9 1780.5 174 722 9256 17 555.5 52 006 4257
Hard28 28 28 10.9 36 816 1134 28 19.0 10 932 635

Falkenauer U 80 80 0.1 3023 205 80 0.0 765 131
Falkenauer T 80 80 1.3 16 246 735 80 0.3 2490 332

Schwerin 1 100 100 0.9 11 636 733 100 0.3 3408 287
Schwerin 2 100 100 0.7 12 442 739 100 0.2 3664 292

Scholl 1 720 720 0.1 1735 166 720 0.0 510 113
Scholl 2 480 480 84.3 39 307 938 480 9.6 13 187 453
Scholl 3 10 10 324.2 1 529 969 49 268 10 8.6 29 938 10 923

Total (1) 1615 1607 46.2 26 853 913 1615 9.1 5668 367

AI 200 50 50 233.7 121 251 2249 50 45.5 42 803 1140
AI 400 50 19 2461.3 940 036 7686 21 2297.4 335 723 3768

ANI 200 50 35 1397.7 119 496 2245 50 67.2 42 021 1136
ANI 400 50 3 3474.4 935 117 7683 10 3083.6 334 149 3765

Total (2) 200 107 1891.8 528 975 4966 131 1373.4 188 674 2452

Inrich AA 60 20 307.6 4 878 777 205 208 60 179.8 82 069 23 436
Inrich AB 60 0 102.6 19 852 031 441 111 0 1013.9 4 493 237 191 111
Inrich BA 60 20 343.5 10 113 134 510 332 60 380.1 99 396 39 627
Inrich BB 60 0 2915.9 52 020 717 1 281 154 0 121.5 11 271 290 531 165

Total (3) 240 40 917.4 21 716 164 614 405 120 423.8 3 986 498 201 288

Total (1)+(2)+(3) 2055 1754 327.6 2 608 779 72 956 1866 190.3 488 393 24 035

we specify the number of times each heuristic could close an instance. Reflect+ follows

Algorithm 1 in which we allowed FRE(PB) (called H1B in the following) to be run for

60 seconds maximum, FRE(PA) (or H1A) was not called. 1200 seconds were allowed to

FRE + (22) + (23) (or H2) and the rest of the time was devoted to FRE + (24) (or H3).

Considering the limited results of the two last heuristics when too many variables and

constraints were involved in the model, we added a specific rule in which, if the number of

variables plus 10 times the number of constraints was greater than 1 000 000, no local time

limit was imposed to H1B , and in case the solution obtained is not sufficient to close the

instance, H1A was also called with no local time limit.

Table 4.3 shows that reflect+ outperforms on average state-of-the-art algorithms for

the CSP and the BPP. While only H1 and H2 are required to find the optimal solutions of

benchmark (1) (H3 is required 7 times to prove the optimality of the 7 NIRUP instances of

the benchmark), H2 appears to be particularly effective on the AI instances of benchmark

(2). Finally, allowing a longer time limit for H1 and running it with both sets of patterns

86 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

Table 4.3: Comparison of reflect and reflect+ with literature algorithms for the CSP

Set of instances # inst.
Belov vpsolver reflect reflect+

opt time # opt time # opt time # opt time # H1 # H2 # H3

Waescher 17 17 0.1 16 886.2 17 555.5 17 41.3 7 8 2
Hard28 28 28 7.5 28 33.0 28 19.0 28 4.2 0 23 5

Falkenauer U 80 80 0.0 80 0.1 80 0.0 80 0.1 79 1 0
Falkenauer T 80 80 56.9 80 0.4 80 0.3 80 1.0 10 70 0

Schwerin 1 100 100 1.0 100 0.3 100 0.3 100 0.1 100 0 0
Schwerin 2 100 100 1.3 100 0.3 100 0.2 100 0.1 100 0 0

Scholl 1 720 720 0.0 720 0.0 720 0.0 720 0.1 717 3 0
Scholl 2 480 480 0.3 479 107.7 480 9.6 480 2.8 475 5 0
Scholl 3 10 10 14.1 10 8.5 10 8.6 10 3.7 10 0 0

Total (1) 1615 1615 3.3 1613 42.1 1615 9.1 1615 1.5 1498 110 7

AI 200 50 50 90.6 50 105.8 50 45.5 50 8.5 1 48 1
AI 400 50 45 699.4 36 1430.5 21 2297.4 40 1205 0 30 10

ANI 200 50 50 144.2 49 119.5 50 67.2 50 49.3 0 0 50
ANI 400 50 1 3555.6 11 3170.2 10 3083.6 17 2703.9 0 0 17

Total (2) 200 146 1222.5 146 1206.5 131 1373.4 157 991.7 1 78 78

Inrich AA 60 60 2.8 56 453.8 60 179.8 60 11.7 60 0 0
Inrich AB 60 60 10.9 0 3600.0 0 1013.9 60 29.6 60 0 0
Inrich BA 60 60 2.8 57 491.6 60 380.1 60 16.4 59 1 0
Inrich BB 60 60 10.5 0 3600.0 0 121.5 60 47.5 60 0 0

Total (3) 240 240 6.8 113 1968.4 120 423.8 240 26.3 239 1 0

Total (1)+(2)+(3) 2055 2001 122.3 1872 372.6 1866 190.3 2012 100.7 1738 189 85

when many variables and constraints are involved seems to be worthy for benchmark (3)

as reflect+ can solve all instances of the benchmark to proven optimality. When compared

with vpsolver, reflect+ always finds more or the same amount of optimal solution in the

same or less amount of time. When compared with the branch-and-cut-and-price by by

Belov and Scheithauer [30], reflect+ seems less powerful on the AI 400 instances, a set in

which the upper bound is very difficult to find. In the opposite, it seems better for the

ANI 400 instances, a set in which the lower bound is very difficult to raise.

4.6.2 Results on the VSBPP

We used three VSBPP benchmark sets:

• Belov instances (4), a set of 50 instances that was proposed by Belov and Scheithauer

[29]. These instances have K = 4, ck ∈ [5000, 10000], bk ∈ [625, 2500], pk = ck,

m = 100, wi ∈ [1, 7500], and di ∈ [1, 100]. For some instances, some bins of the same

4.6. Computational results 87

sizes were sometimes generated, this explains why it is possible to obtain K < 4 and

bk > 2500. The same remark holds for the item types.

• Crainic instances (5), three sets instances used in Crainic et al. [87]. The first set

was originally proposed in Monacci [220] and is composed of 300 instances with K ∈
{3, 5}, ck ∈ {60, 80, 100, 120, 150}, unlimited bk, pk = ck, n ∈ {25, 50, 100, 200, 500},
and wi ∈ [1, 100]. The second set was originally proposed in Correia et al. [79] and is

composed of 60 instances with K ∈ {3, 12}, ck ∈ [25, 300], limited bk, pk = 100
√
ck,

n ∈ {100, 200, 500, 1000}, and wi ∈ [1, 20]. As the instances of both sets are given

on a bin packing format, no specific information is available on di and is expected to

be in the order of n/(wmax −wmin). The third set was introduced in the paper itself

and is composed of 480 instances with various parameters.

• Hemmelmayr instances (6), two sets of instances used in Hemmelmayr et al.[152].

The first was originally proposed in Haouari and Serairi [148] and is composed of

150 instances with K = 7, ck ∈ {70, 100, 130, 160, 190, 220, 250}, unlimited bk, pk ∈
{ck, 10

√
ck, 0.1 c

3/2
k }, n ∈ {100, 200, 500, 1000, 2000}, and wi ∈ [1, 250]. Again, as

the instances of the set are given on a bin packing format, no specific information is

available on di and is expected to be in the order of n/(wmax − wmin). The second

set is a subset of 50 instances proposed in Monacci [220].

Table 4.4 provides the results obtained by the cutting plane algorithm by Belov and

Scheithauer [29], the branch-and-price-and-cut by Alves and Valério de Carvalho [10], the

variable neighbourhood search by Hemmelmayr et al. [152], arc-flow, reflect, and reflect+

with a time limit of 3600 seconds. We reran only [29] on our machine, the other results were

copied (and uniformized) from the original papers. For [152], we compared the solutions

they provided in their paper for each instance with the optimal solution provided by our

exact approaches to obtain their number of optimal solutions. The 2 first columns identify

the benchmark and the corresponding number of instances. Each of the 5 following set

of columns associate with each code the number of instances that were solved to proven

optimality and the average CPU time expressed in seconds. Reflect+ follows Algorithm

1 in which we allowed H1B and H1A to be run for 60 seconds maximum each. H2 was

deactivated as it did not appear to be useful for these benchmarks, and the rest of the

time was devoted to H3. Step 14 is modified and LB is increased to min
∑K

k=1 pk xk :
∑K

k=1 pk xk > LB, xk < bk, xk ∈ N (k = 1, . . . ,K). As some instances involved very few

88 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

variables and constraints, we add a specific rule in which, if the number of constraints was

less than 500, reflect was called instead of reflect+.

Table 4.4: Evaluation of reflect+ with respect to literature algorithms for the VSBPP

Set of instances # inst.
Belov Alves Hemmelmayr arc-flow reflect reflect+

opt time # opt time # opt time # opt time # opt time # opt time

Total (4) 50 36 1052.5 47 227.5 - - 32 1646.7 45 613.2 50 3.0

Crainic 1 300 - - 300 0.2 - - 300 1.1 300 0.3 300 0.3
Crainic 2 60 - - - - - - 60 3.4 60 2.2 60 2.5
Crainic 3 480 - - - - - - 480 0.6 480 0.2 480 0.2

Total (5) 840 - - - - - - 840 1 840 0.4 840 0.4

Hemmelmayr 1 150 - - - - 78 13.4 150 2.7 150 1.2 150 1.1
Hemmelmayr 2 50 - - - - 50 0.7 50 1.5 50 0.5 50 0.8

Total (6) 200 - - - - 128 10.3 200 2.4 200 1 200 1

Total (4)+(5)+(6) 1090 - - - - - - 1072 76.7 1085 28.6 1090 0.6

Table 4.4 shows that pseudo-polynomial formulations are in general very effective for

most of the VSBPP instances available in the literature as their capacity is usually very

low. In fact, the heuristics of reflect+ were called only for the instances of benchmark (4).

H1A and H1B found 47 optimal solutions, and H3 was called the 3 remaining times to

close the instance. When compared with literature algorithms, reflect+ outperforms the

results of every code on every set of instances.

4.6.3 Results on the BPPIF

We used two BPPIF benchmark sets:

• fm-BPPIF (7), a set of 540 instances that was proposed by Casazza and Ceselli [57].

These instances have c = 1000, n ∈ {20, 50, 100, 150, 200, 250, 500, 7500, 1000}, and

[wmin, wmax] ∈ {[0.1c, 0.9c], [0.5c, 0.9c], [0.1c, 0.5c]}. The maximal number of allowed

bins was set either to B = ⌈0.5 ∗ (wmin + wmax) ∗ n/c⌉ to obtain tights instances, or

to B ∗ 10/9 to obtain loose instances.

• bm-BPPIF (8), a set of 540 instances that was proposed by Casazza and Ceselli [57]

and is a copy of benchmark (7). Parameter B is removed and parameter F is set to

0.5 F∗ where F∗ is the optimal solution of the corresponding fm-BPPIF instance.

In our experiments, for odd values of F∗, we set F to ⌊0.5 F∗⌋, and we preliminary

4.7. Conclusion 89

solved all fm-BPPIF instances to optimality to obtain the full set of F∗ values (the
longest instance to solve to optimality required 4858.7 seconds).

After solving the linear relaxation of (4.33)-(4.37) to obtain a valid lower bound LB,

we transformed the BPPIF instance into a VSBPP instances with K bins, and successively

solved (4.38)-(4.45) with a value K restricted to 1, 2, and 3. If LB and the solutions given

by the model do not match after K = 3, we solved (4.33)-(4.37).

Table 4.5 provides the results obtained by the branch-and-price algorithm of Casazza

and Ceselli [57], the adaptation of arc-flow for the BPPIF, and the adaptation of reflect with

a time limit of 3600 seconds. The results from the literature were copied from the original

papers, and the time was adjusted to incorporate unsolved instances in the average time.

The 2 first columns identify the benchmark and the corresponding number of instances.

Each of the 3 following set of columns associate with each code the number of instances

that were solved to proven optimality and the average CPU time expressed in seconds. In

addition, for reflect, we specify the number of times each transformation to the VSBPP

with a given value of K was enough to close the instance.

Table 4.5 shows that pseudo-polynomial formulations are also effective for BPPIF in-

stances, as an adaptation of arc-flow can already produce results comparable with the

literature. Using the VSBPP to obtain valid upper bounds for the BPPIF seems to be

very efficient to solve the problem, as all instances but 22 are closed by our algorithm with

a restricted value of K ≤ 3. The set of instances that appear to be the most difficult for

our algorithm are the fm-BPPIF tight instances with n = 1000 large items.

4.7 Conclusion

We studied pseudo-polynomial formulations for the one dimensional bin packing and

cutting stock problems and gave a complete overview of the dominance and equivalence

relations that exist among the main pattern-based and pseudo-polynomial MILP formula-

tions that have been proposed in the literature. We also introduced reflect, a new MILP

formulation that uses just half of the bin and needs significantly less constraints and vari-

ables than the classical arc-flow. We proposed heuristics and lower bounding techniques

that can be used to compensate reflect weaknesses when the capacity of the instance is too

hight. In addition, we showed how reflect could be modified to solve the VSBPP and the

BPPIF, two relevant variants of the BPP. We tested reflect on benchmark instances of the

90 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

Table 4.5: Evaluation of reflect with respect to literature algorithms for the BPPIF

Set of instances # inst.
Casazza arc-flow reflect

opt time # opt time # opt time # K=1 # K=2 # K=3 # arc-flow

FM

20-100 loose free 30 30 2.1 30 6.6 30 1.3 26 4 0 0
20-100 loose large 30 30 2 30 6.1 30 1.2 0 30 0 0
20-100 loose small 30 30 0.3 30 9.6 30 1.1 30 0 0 0
20-100 tight free 30 30 85.7 28 328.8 30 28.7 0 13 11 6
20-100 tight large 30 30 81.4 30 55.5 30 11.1 0 0 18 12
20-100 tight small 30 30 12.4 30 193.9 30 3.4 15 14 0 1

150-1000 loose free 60 0 3600 60 24.9 60 6.1 60 0 0 0
150-1000 loose large 60 59 1044.6 60 42.7 60 5.4 0 60 0 0
150-1000 loose small 60 0 3600 60 12.2 60 5.4 60 0 0 0
150-1000 tight free 60 11 3382 11 3080.6 60 217 0 58 0 2
150-1000 tight large 60 39 1885.5 39 1694.6 59* 621.3 0 0 59 0
150-1000 tight small 60 0 3600 27 2453.5 60 80.6 60 0 0 0

Total (1) 540 289 1441.3 435 845.4 539 106.6 251 179 88 21

BM

20-100 loose free 30 30 2.8 30 1.2 30 0.6 29 1 0 0
20-100 loose large 30 30 1.8 30 3.3 30 1.4 0 30 0 0
20-100 loose small 30 30 18.1 30 35 30 1 30 0 0 0
20-100 tight free 30 30 4.3 30 9.3 30 1.9 11 19 0 0
20-100 tight large 30 30 1.5 30 4.1 30 1.5 0 30 0 0
20-100 tight small 30 30 3.5 30 7.8 30 1.6 30 0 0 0

150-1000 loose free 60 42 1591.8 60 6.9 60 3.4 60 0 0 0
150-1000 loose large 60 50 1205.7 60 17.5 60 7.3 0 60 0 0
150-1000 loose small 60 30 1950.5 47 1528.2 60 16.5 60 0 0 0
150-1000 tight free 60 44 1891.6 60 140 60 25.7 0 60 0 0
150-1000 tight large 60 49 1514.8 60 19.8 60 6.4 0 60 0 0
150-1000 tight small 60 48 1453 49 1176 60 28.5 60 0 0 0

Total (2) 540 443 803.3 516 324.3 540 10.2 280 260 0 0

Total (1) + (2) 1080 732 1122.3 951 584.9 1079 58.4 531 439 88 21

*remaining instance solved in 4858.7s

three problems and achieved state of the art results, improving upon previous algorithms

in the literature and finding several new proven optimal solutions.

4.A. Details for Lemma 1 91

Supplementary material 4.A Details for Lemma 1

For the sake of clarity, we provide in Algorithm 2 the procedure that we use for the

decomposition into paths of a solution of the continuous relaxation of arc-flow. The algo-

rithm receives in input a generic solution x̄de of L(FAF), that is, the linear programming

relaxation of model (4.7)–(4.10), in which (4.10) is replaced by xde ≥ 0. Let P define a

set of paths. For short, let p define both a path and the index of such path, for p ∈ P .

Algorithm 2 selects an arc emanating from the source node 0 to initialize a path (step 3).

Then, it iteratively extends the path until it reaches the sink node c (steps 5–8). The flow

on the path is set as the minimum among the flows on the selected arcs (steps 9 and 10).

The process is then iterated until all variables take value 0, and the set P is returned.

Algorithm 2 DecomposeAF

1: Input: an L(FAF) solution x̄de
2: P ← ∅
3: while ∃ an arc (0, e) with x̄0e > 0 do
4: p← ∅; d← 0
5: while d 6= c do
6: select the first arc (d, e) ∈ δ+(d) with x̄de > 0 and add it to p
7: d← e
8: end while
9: z̄p ← min(d,e)∈p{x̄de}

10: for all (d, e) ∈ p, x̄de ← x̄de − z̄p
11: P ← P ∪ {p}
12: end while
13: return P

Supplementary material 4.B Proof of Lemma 2

Lemma 2. Any solution of one-cut or of its continuous relaxation can be decomposed into

a set of binary trees.

Proof. The proof is based on the procedure that we use to decompose the solution into

trees, which is given in Algorithm 3. The algorithm receives in input a generic solution ȳrq

of L(FOC) (that is, the linear programming relaxation of model (4.4)–(4.6), in which (4.6)

is replaced by ypq ≥ 0), having objective function value z̄. Let T define a set of binary

92 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

trees. Let t define both a tree and the index of such tree, for t ∈ T . Each tree is formed

by a set of leaves, each having at most two children, a left one and a right one. Intuitively,

children nodes are created by a cut on the piece (entire bin or residual) corresponding to

their parent node. Let us use [r, q] to denote a cut on a piece of length r that produces a

left child of size q (and a right child of size r− q). Let C(⊔) denote the set of cuts used to

generate tree t, for t ∈ T .

Algorithm 3 DecomposeOC

1: Input: an L(FOC) solution ȳrq
2: T ← ∅
3: while ∃ a cut [c, q] with ȳcq > 0 do
4: t← {c}; L ← {c}
5: while ∃ a cut [r, q] with r ∈ L and ȳrq > 0 do
6: L ← L \ {r}
7: add q as left child of r in t, and r − q as right child of r in t
8: L ← L ∪ {q} ∪ {r − q} ⊲ Duplicate entries, if any, are kept
9: C(t)← C(t) ∪ {[r, q]}

10: end while
11: z̄t ← min[r,q]∈t{ȳrq/b[r,q]} ⊲ where b[r,q] is the number of times [r, q] appears in C(t)
12: for all [r, q] ∈ t, ȳrq ← ȳrq − z̄t ∗ b[r,q]
13: T ← T ∪ {t}
14: end while
15: return T

Algorithm 3 selects a cut [c, q] with positive ȳcq value to initialize a tree t (step 3). Apart

from the tree and the corresponding set of cuts C(t), the algorithm also stores a temporary

list of leaves L, which is initialized to {c} and updated during the iterations. As long as

there is a cut on a piece r that belongs to the list, then the tree and the corresponding set

of cuts are enlarged (steps 5–10). The list is updated by removing the piece that was cut

and inserting the two children. Note that, at step 8, the two children are always added to

the list, even if their sizes are identical or are equal to the size of other entries in the list.

The process of enlarging the tree terminates when no cut is found, and then the value z̄t

of the tree is set as the minimum among the values of the variables associated to the cuts

of the tree divided by the number of times they appear in the tree. The residual variables

values are updated at step 12, and the process continues until all trees have been generated.

To prove that Algorithm 3 effectively decomposes a one-cut solution into binary trees,

we show that after updating the variables associated to the cuts of the tree, it is impossible

4.C. Proof of Theorem 1 93

to find:

q ∈ W ∪R \ {c} :
∑

r∈C(q)

ȳqr > 0,
∑

p∈A(q)

ȳpq = 0,
∑

p∈B(q)

ȳp+q,p = 0 (4.46)

Indeed, after a tree t has been created and the variables have been updated, for each

q ∈ W ∪R \ {c}, there are two possible cases:

• q ∈ L, or in other words, q belongs (at least once) to the final leafs of the tree (like,

e.g., 7, 3, and 1 in the first tree). According to Step 5, this means that for such q,

∄ȳqr > 0, and then, (4.46) does not exist for such q.

• q /∈ L, or in other words, q does not belong to any of the final leafs of the tree (like,

e.g., 4 in the first tree). This means that in tree t,
∑

p∈A(q) ȳpq +
∑

p∈B(q) ȳp+q,p =
∑

r∈C(q) ȳqr, or in other words, that the amount of leafs where q is a child is equal

to the amount of leafs where q is a father. By reminding that if inequality (4.5) is

initially satisfied, then it is also satisfied even after removing an equal amount from

its two sides, and thus, (4.46) does not exist for such q.

Supplementary material 4.C Proof of Theorem 1

Theorem 1. FAF is equivalent to FOC .

Proof. The sketch of the proof was already included in [96]. We first prove that FAF is

included in FOC , and then that FOC in included in FAF .

Arc-flow is included in one-cut.

Let us consider a generic solution x̄de to L(FAF), that is, the linear programming

relaxation of model (4.7)–(4.10) in which (4.10) is replaced by xde ≥ 0. According to

Lemma 1, x̄de can be decomposed into paths. In the following, we suppose that all paths

are left-aligned. If that was not the case, one could easy left-align the paths by moving

each arc as much as possible to the left, until no arc could be further moved. An easy

way to obtain a left-aligned solution is to replace in A each loss arc (d, d + 1) with a new

loss arc (d, c). These new loss arcs can only appear at the end of a path, thus imposing a

left-alignment. Then, a solution with these alternative loss arcs can be easily mapped into

94 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

an original L(FAF) solution by replacing each selected (d, c) arc with a chain of (d, d + 1)

arcs.

We use x̄de to build a feasible and same-cost solution ȳpq to L(FOC) by using Algorithm

4. The intuition behind the algorithm, is that any item arc (d, e) becomes a cut on a piece

of length (c− d) to obtain a left piece of length (e− d).

Algorithm 4 Transform AF into OC

1: Input: a left aligned solution x̄de of L(FAF)
2: for all p ∈ R, q ∈ W, p > q do ȳpq ← 0
3: for all (d, e) ∈ AI : x̄de > 0, e < c do ȳc−d,e−d ← x̄de
4: return ȳ

Algorithm 4 first initializes all y variables to 0, and then modifies them by considering

the x̄ input values associated with item arcs. To prove the correctness of the procedure, we

first show the existence of all the invoked y variables. The existence of the variables invoked

at step 2 derives from the definition of the FOC model itself. For step 3, because (d, e) is

an item arc we know that (i) d ∈ S and e − d ∈ W, and thus c − d ∈ R. Consequently,

yc−d,e−d is an FOC variable providing that c− d > e− d, which is verified when e < c.

We now prove that ȳ has the same solution cost of x̄. By using constraints (4.8) and

recalling that no arc enters the source node 0, we know that z̄ =
∑

(0,f)∈δ+(0) x̄0f . All

paths in x̄de are left-aligned and so they start with one of the m item arcs. Moreover, we

can equivalently use wi for i = 1, . . . ,m or q ∈ W to state the item width. By using these

considerations, in the given order, and then applying Algorithm 4 to x̄0q, we get

z̄ =
∑

(0,f)∈δ+(0)

x̄0f =

m∑

i=1

x̄0wi =
∑

q∈W

x̄0q =
∑

q∈W

ȳc−0,e−0 =
∑

q∈W

ȳcq,

which is equivalent to (4.4).

To prove the feasibility of ȳ, we first note that Algorithm 4 only creates non-negative

variable values, so constraints (4.6) are automatically satisfied and we only have to show

that constraints (4.5) are satisfied for any q ∈ W ∪ R \ {c}. We first focus on the case

in which q is a residual width but not an item width, that is, q ∈ R \ W \ {c}. This

case is easier because it implies Lq = 0 and A(q) = ∅, and so we just need to show

that
∑

p∈B(q) ȳp+q,p ≥
∑

r∈C(q) ȳqr. To this aim, we first rewrite the flow conservation at

4.C. Proof of Theorem 1 95

intermediate nodes e = 1, . . . , c− 1 in (4.8) as

∑

(d,e)∈δ−(e)

x̄de =
∑

(e,f)∈δ+(e)

x̄ef =
∑

(e,f)∈δ+(e),
f 6=c

x̄ef +
∑

(e,c)∈δ+(e)

x̄ec ≥
∑

(e,f)∈δ+(e),
f 6=c

x̄ef . (4.47)

After applying Algorithm 4 to the leftmost and rightmost elements, (4.47) can be rewritten

by replacing x̄ with ȳ, thus obtaining

∑

d∈S,e−d∈W

ȳc−d,e−d ≥
∑

e∈S,f−e∈W

ȳc−e,f−e e = 1, . . . , c− 1.

This can be modified, by using the definitions of sets B ad C (see Section 4.2.3), as

∑

e−d∈B(c−e)

ȳc−d,e−d ≥
∑

f−e∈C(c−e)

ȳc−e,f−e e = 1, . . . , c− 1.

Then, by renaming the indices as c− e = q, e− d = p, and f − e = r, we obtain

∑

p∈B(q)

ȳp+q,p ≥
∑

r∈C(q)

ȳqr q = 1, . . . , c− 1,

which proves that (4.5) is satisfied for any q ∈ R \W \ {c} (as R \W \ {c} is included in

{1, . . . , c− 1}).
We now concentrate on the case in which q is an item width, for which we also have to

take into account Lq and A(q). We consider again flow conservation constraint (4.8), but

this time focus on a vertex e = c − wi. By replacing e with c − wi in the incoming and

outgoing flow, and then splitting the outgoing flow in two parts, we get

∑

(d,c−wi)∈δ−(c−wi)

xd,c−wi
=

∑

(c−wi,f)∈δ+(c−wi)

xc−wi,f =
∑

(c−wi,f)∈δ+(c−wi),
f 6=c

xc−wi,f +
∑

(c−wi,c)∈δ+(c−wi)

xc−wi,c,

from which we derive

∑

(c−wi,c)∈δ+(c−wi)

xc−wi,c =
∑

(d,c−wi)∈δ−(c−wi)

xd,c−wi
−

∑

(c−wi,f)∈δ+(c−wi),
f 6=c

xc−wi,f . (4.48)

96 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

We now consider demand constraints (4.9) and rewrite their left hand side as

∑

(d,d+wi)∈A

xd,d+wi
=

∑

(d,d+wi)∈A,
d+wi 6=c

x̄d,d+wi
+

∑

(d,d+wi)∈A,
d+wi=c

x̄d,d+wi
=

∑

(d,d+wi)∈A,
d+wi 6=c

x̄d,d+wi
+

∑

(c−wi,c)∈δ+(c−wi)

xc−wi,c.

We embed (4.48) into this last equation, and then use it to rewrite (4.9) as

∑

(d,d+wi)∈A,
d+wi 6=c

x̄d,d+wi
+

∑

(d,c−wi)∈δ−(c−wi)

x̄d,c−wi
−

∑

(c−wi,f)∈δ+(c−wi),
f 6=c

x̄c−wi,f ≥ di. (4.49)

We now apply the transformation involved in Algorithm 4 to each member of the left hand

side of (4.49), namely:
∑

(d,d+wi)∈A,
d+wi 6=c

x̄d,d+wi
=

∑
e∈S,wi∈W

ȳc−e,wi;
∑

(d,c−wi)∈δ−(c−wi)

x̄d,c−wi
=

∑
d∈S,c−d−wi∈W

ȳc−d,c−wi−d; and
∑

(c−wi,f)∈δ+(c−wi),
f 6=c

x̄c−wi,f =
∑

c−wi∈S,f−(c−wi)∈W

ȳwi,f−(c−wi).

We can thus rewrite (4.49) as

∑

e∈S,wi∈W

ȳc−e,wi +
∑

d∈S,c−d−wi∈W

ȳc−d,c−wi−d −
∑

c−wi∈S,f−(c−wi)∈W

ȳwi,f−(c−wi) ≥ di. (4.50)

We now use the definitions of sets A, B, and C, to rewrite the three components of the

left hand side of (4.50), replace di with Lwi in the right hand side, obtaining

∑

c−e∈A(wi)

ȳc−e,wi +
∑

c−wi−d∈B(wi)

ȳc−d,c−wi−d −
∑

f−(c−wi)∈C(wi)

ȳwi,f−(c−wi) ≥ Lwi .

We use index q ∈ W instead of wi for i = 1, . . . ,m and rewrite the variables indices, so we

get ∑

p∈A(q)

ȳpq +
∑

p∈B(q)

ȳp+q,p −
∑

r∈C(q)

ȳqr ≥ Lq

which proves that (4.5) is also feasible for any q ∈ W and concludes the first part of the

proof.

One-cut is included in arc-flow.

Let us consider a solution ȳpq of L(FOC). From Lemma 2 we know that ȳpq can be

decomposed in a set of trees. In the following, we consider the stronger fact that ȳpq > 0

can be decomposed into a set of right-sided trees, i.e., trees in which only right children

4.C. Proof of Theorem 1 97

are allowed to have their own children. This requirement is equivalent to the one that we

discussed at the beginning of the first part of the proof (arc-flow solution is left aligned),

and can also be made without loss of generality. Indeed, the decomposition into right-sided

trees can be obtained by either (i) modifying the positions of the cuts, or (ii) enforcing an

additional constraint in the model and applying a modification to Algorithm 3. Here we

describe the second option, whose implementation is simpler. It consists of first adding to

model (4.4)–(4.6) the inequality

∑

r∈C(q)

yqr ≤
∑

p∈B(q)

yp+q,p q ∈ W ∪R \ {c} (4.51)

and then transforming step 8 of Algorithm 3 from L ← L∪{q}∪{r−q} in L ← L∪{r−q}.
Inequality (4.51) imposes that the number of times q is recut (left-hand side) is not greater

than the number of times it appears as a right child (right-hand side), thus ensuring that

all recuts may be performed on a right child. Then, the modification in Algorithm 3

guarantees that no left child enters the candidate list for recutting, thus producing only

right-sided trees.

We use ȳpq to build a feasible and same-cost solution x̄de to L(FAF) by using Algorithm

5. The algorithm considers the alternative loss arcs (d, c) that we discussed at the beginning

of the first part of the proof to have a left aligned arc-flow solution. Recall that these can

be easily mapped into chains of unit width loss arcs (d, d + 1) if needed. The intuition

behind algorithm 5 is that each cut becomes either a path that increases flow on two arcs

or a cycle that decreases flow on one arc and increases it on two other arcs (two examples

are provided right at the end of the proof to clarify this aspect).

Algorithm 5 Transform OC into AF

1: Input: a solution ȳpq of L(FOC) + (4.51)
2: for all (d, e) ∈ A′ do x̄de ← 0
3: for all p ∈ R, q ∈ W, p > q : ȳpq > 0 do
4: x̄c−p,c−p+q ← x̄c−p,c−p+q + ȳpq
5: x̄c−p+q,c ← x̄c−p+q,c + ȳpq
6: if p 6= c then x̄c−p,c ← x̄c−p,c − ȳpq end-if
7: end-for
8: return x̄

The algorithm initializes all x̄ values to 0, and then increases (steps 4 and 5) or decreases

98 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

(step 6) their values on the basis of the cuts selected in the solution of L(FOC) + (4.51).

Step 4 of Algorithm 5 is invoked at most once for each pair of p and q values, thus

leading to

x̄c−p,c−p+q = ȳpq p ∈ R, q ∈ W, p > q. (4.52)

Steps 5 and 6 may instead modify multiple times the same variable xc−q,c for a given value

of q. By considering all generic cuts [r, s] for which r − s = q, step 5 leads to x̄c−q,c ←∑
r∈R,s∈W ,r>s:r−s=q ȳrs =

∑
s+q∈R,s∈W ȳs+q,s. By considering all generic cuts [r, s] for

which r = q, step 6 leads instead to x̄c−q,c ← −
∑

r∈W ,s∈R,r>s:r=q ȳrs =
∑

q∈W ,s∈R,q>s ȳqs.

By merging these two components and recalling that B(q) = {p ∈ W : p + q ∈ R} and

C(q) = {p ∈ W : p < q} we obtain

x̄c−q,c =
∑

p∈B(q)

ȳp+q,p −
∑

r∈C(q)

ȳqr q ∈ R \ {c} (4.53)

Equations (4.52) and (4.53) are at the basis of the correctness of Algorithm 5, that we

are going to prove. First of all, we demonstrate the existence of all the x variables invoked

by the algorithm by showing that they are all associated with arcs belonging to set A. The
existence of the variables at step 2 derives from the definition of the FAF model itself. For

step 4, because [p, q] is a cut, we know that c − p ∈ S, q ∈ W, and q < p. Consequently

c − p + q ∈ S and c − p + q < c, which certifies that (c − p, c − p + q) ∈ A. A similar

reasoning is used for steps 5 and 6: because [p, q] is a cut, then both c − p and c − p + q

belong to S, and thus arcs (c− p, c) and (c− p+ q, c) belong to A, either in form of items

arcs or in form of the long loss arcs that we introduced at the beginning of the proof.

To show that x̄ has the same cost of ȳ, it is enough to apply (4.52) to (4.4), obtaining

z =
∑

q∈W

ȳcq =
∑

q∈W

x̄c−c,c−c+q =
∑

q∈W

x̄0,q =
∑

(0,e)∈δ+(0)

x̄0,e

which is equivalent to (4.7).

We now focus on the constraints. We first show that constraints (4.8) remain satisfied

during any iteration of Algorithm 5. This can be intuitively noticed by the example that we

present, for the sake of clarity, right after the proof (see Figure 4.9). Formally, constraints

(4.8) are clearly satisfied after the initialization step as all flows take value 0. Then, let us

first consider the flow variation involved by ȳpq > 0, p 6= c. At step 4, the amount of flow

4.C. Proof of Theorem 1 99

leaving c− p is increased by ȳpq but is reduced by the same amount at step 6 resulting in

no flow variation. The same observation can be made for the flow entering c at steps 5 and

6. For the flows entering and leaving c − p + q, they are increased by the same amount

at steps 4 and 5. Now, let us consider the flow variations involved by ȳcq > 0. Again, the

flows entering and leaving q are increased by the same amount at steps 4 and 5. At step

4, the amount of flow leaving 0 is increased by ȳcq, the same amount added to the flow

entering c at step 5. Consequently, constraints (4.8) are satisfied by the built x̄ values.

To prove that demand constraints (4.9) are satisfied, we start by rewriting (4.5) for

q ∈ W as

∑

p∈A(q)

ȳpq +
∑

p∈B(q)

ȳp+q,p −
∑

r∈C(q)

ȳqr ≥ Lq q ∈ W,

which, by applying (4.52) and (4.53), can be modified as

∑

(c−p,c−p+q)∈A′,
c−p+q 6=c

x̄c−p,c−p+q + x̄c−q,c ≥ Lq q ∈ W.

We now set wi = q and e = c− p, replace Lwi widt di, and obtain

∑

(e,e+wi)∈A,
e+wi 6=c

x̄e,e+wi + x̄c−wi,c =
∑

(e,e+wi)∈A

x̄e,e+wi ≥ di i = 1, . . . ,m.

For what concerns non-negativity, this may be an issue only for variables xc−q,c, as

they are the only ones affected by step 6 of Algorithm 5. We can notice, however, that the

right-hand side of (4.53) is forced to be non-negative by (4.51), thus imposing x̄c−q,c ≥ 0

(an example of a solution that does not satisfy (4.51) and leads to a negative x̄ value is

shown below). This shows that x̄ is a feasible L(FAF) solution and thus concludes the

proof.

For the sake of clarity, we conclude this section by two examples that might be useful

for understanding the details of the proof. In Figure 4.9 we graphically depict the four

steps performed by Algorithm 5 when applied to the ȳpq solution of Example 2 discussed in

Section 4.3. The solution consists of four cuts (ȳ11,7 = 1, ȳ11,4 = 1/3, ȳ7,3 = 1/3, and ȳ4,3

100 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

= 2/3) and thus requires four iterations, shown in the figure from the top to the bottom.

Suppose the algorithm selects the cuts at step 3 in the order in which we gave them. At

iteration 1, it selects [11, 7] and sets x̄0,7 = x̄7,11 = 1, obtaining the path shown in the

top-most part of the figure. At iteration 2, it selects [11, 4], thus setting x̄0,4 = x̄4,11 = 1/3

and creating a second path. At iteration 3 it processes [7, 3], and, because p = 7 6= c, it

sets x̄4,7 = 1/3, increases x̄7,11 to 4/3, and decreases x̄4,11 to 0, thus moving the precedent

flow on (4,11) to (4,7) and (7,11). At the last iteration, it selects [4, 3], thus imposing

x̄7,10 = x̄10,11 = 2/3 and x̄7,11 = 2/3, moving part of the flow on (7,11) to (7,10) and

(10,11).

ȳ11,7 = 1 0 7 11

1

1

ȳ11,4 = 1/3 0 4 7 11

1

1

1/3
1/3

ȳ7,3 = 1/3 0 4 7 11

1
4/3

1/3 1/3

ȳ4,3 = 2/3 0 4 7 10 11

1
2/3

1/3 1/3 2/3
2/3

Figure 4.9: Construction of an L(FAF) solution for Example 2 through Algorithm 5. Each
iteration, from top to bottom, processes the cut associated with the ȳ variable given on
the left.

The second example that we present shows that, without additional constraints (4.51),

negative flows could appear in the solution produced by Algorithm 5. Indeed, let us consider

an optimal solution of the relaxed version of L(FOC) for Example 2, having value 4/3 and

consisting of ȳ11,7 = 4/3, ȳ7,3 = 1/3, and ȳ4,3 = 2/3. The three iterations, one per cut,

produced by Algorithm 5 are graphically depicted in Figure 4.10. It can be noticed, at

the last iteration, that x̄4,11 = −1/3. Intuitively, this corresponds to a cycle in the flow

decomposition.

4.D. Proof of Theorem 2 101

ȳ11,7 = 4/3 0 7 11

4/3

4/3

ȳ7,3 = 1/3 0 4 7 11

4/3

5/3

-1/3

1/3

ȳ4,3 = 2/3 0 4 7 10 11

4/3

1

-1/3

1/3 2/3
2/3

Figure 4.10: An invalid L(FAF) solution of Example 2 with a negative flow (cycle), obtained
by executing Algorithm 5 on an input L(FOC) solution that does not satisfy (4.51).

Supplementary material 4.D Proof of Theorem 2

Theorem 2. FDP dominates FAF (and hence FOC).

Proof. We first prove that FDP is included in FAF , and then give an example that shows

that FAF is not included in FDP . For the first part, we make use of Algorithm 6. The

algorithm takes in input an optimal solution ϕ̄j,d,j+1,e of L(FDP) and uses it to create a

feasible solution x̄de of L(FDP). The idea, already noted in [98], is to vertically “shrink”

all states with the same partial bin filling into a single node, and merge all arcs entering

(resp. emanating) from the node into a unique entering (resp. emanating) arc. Consider

again Example 2 of Section 4.2.2 and the optimal L(FDP) solution depicted in Figure 4.3.

By applying Algorithm 6 to it, we obtain the feasible L(FAF) solution shown in Figure

4.11-(a).

Formally, (i) the variables associated to item arcs in FAF are obtained in step 2 and

become equal to the sum of the values of the merged variables from FDP ; (ii) the variables

associated to the loss arcs (d, d + 1) in FAF are derived in step 3 by mapping the final

arcs of FDP (which, we recall, connect any node (n, d) with the dummy node (n + 1, c)).

The resulting x̄de values satisfy constraints (4.8) because ϕ̄j,d,j+1,e satisfy (4.12), and also

constraints (4.9) because ϕ̄j,d,j+1,e satisfy (4.13). This proves that FDP is included in FAF .

102 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

Algorithm 6 Transform DP into AF

1: Input: a solution ϕ̄j,d,j+1,e of L(FDP)
2: for all (d, e) ∈ AI do x̄de ←

∑n
j=1 ϕ̄j,d,j+1,e

3: for all (d, d+ 1) ∈ Aℓ do x̄d,d+1 ←
∑d

e=1 ϕ̄n,e,n+1,c

4: return x̄

To show instead that FAF is not included in FDP , it is enough to consider the same

example. The optimal L(FAF) solution, previously discussed in Section 4.3 has value 4/3.

For the sake of clearness, this solution is reported in Figure 4.11-(b). The reason of this

AF misbehavior is that the partial filling of value 7 can be created by both the use of item

7 and the combined used of items 4 and 3. Consequently, the path (0,4,7,10,11) cannot be

obtained in FDP but can be produced easily by FAF .

0 4 7 10 11

1

1/2

1/2

1

1/2 1/2

(a) Feasible L(FAF) solution of value 3/2 obtained by Algorithm 6 on an optimal FDP solution

0 4 7 10 11

1

2/3

2/3

2/3

1/3 1/3

(b) Optimal L(FAF) solution of value 4/3

Figure 4.11: Example 2 shows that FAF is not included in FDP .

Supplementary material 4.E Proof of Theorem 3

Theorem 3. FDP is equivalent to FPR.

Proof. We first prove that FPR is included in FDP , and then that FDP in included in FPR.

For the first part, we use the same idea than for Lemma 1 to decompose a solution of

L(FDP) into a set of paths. Then, we show that for each path in FDP , there is a pattern

in FPR. The idea, this time, is to horizontally shrink each path p to obtain a pattern p′,

4.E. Proof of Theorem 3 103

as shown in Figure 4.12. At each vertical stage of p corresponds a binary variable of p′. If

at stage j, the arc is vertical (i.e., ϕj,d,j+1,d = z̄p), then the jth binary variable of p′ takes

value 0. If instead, the arc is diagonal (i.e., ϕj,d,j+1,d+wj
= z̄p), then the jth binary variable

of p′ takes value 1.

0, 0

1, 0

2, 0

3, 0 3, 3

2, 4

3, 4

1, 7

2, 7

3, 7 3, 10

2, 11

3, 11

4, 11

0.5

0.5

0.5

0.5

1

0

1

p
′p

Figure 4.12: Transforming a path from FDP into a column from FPR

As FDP is dedicated to the BPP, the transformation produces binary columns. It is

possible to recreate afterwards integer columns by summing the binary variables associated

with the same item width. If the demand constraints (4.13) are satisfied in the solution of

L(FDP), then they are also satisfied in the transformed patterns of L(FPR).

The reverse process is easy: a pattern for the CSP from L(FPR) can be first transformed

into a binary pattern for the BPP, and then mapped into a path. By remarking that any

path created in this way respects flow conservation constraints (4.12), and that if demand

constraints are satisfied in the solution of L(FPR) then constraints (4.13) are also satisfied,

we obtain that any L(FPR) solution can be transformed into an FDP one. Additionally

remark that, to strictly respect the “ = ” sign of constraints (4.13), one should put an

“ = ” sign in the item constraints of FPR as well, otherwise, the transformation may

produce some surplus items. If one instead wants to keep the “ ≥ ” sign, then surplus

items should be detected and removed from the columns before creating the paths. This

concludes the proof.

104 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

Supplementary material 4.F Proof of Theorem 4

Theorem 4. FRE models the CSP.

Proof. Take any feasible pattern p used in a given CSP solution, order the items it contains

in non increasing weight, and put them into the subset Ic1 until the sum of the weights

in the subset is greater or equal than c/2 or until there is no more items. The rest of the

items, if any, is put in Ic2. By creating the arcs with Algorithm 7, we know that there

exists a path p1 that goes from 0 to min(c/2, c −∑
i∈Ic1

wi) that takes all the items of Ic1

whose last arc is a reflected arc (if
∑

i∈Ic1
wi ≤ c/2, then complete the path with loss arcs

until reaching (c/2, c/2), r). We also know that there exists a path p2 that goes from 0 to
∑

j∈Ic2
wj and that takes all the items of Ic2. In addition, we know that some loss arcs link

every active node to the following one, and thus, that there exists p3, a set of loss arcs that

goes from
∑

j∈Ic2
wj to min(c/2, c −∑

i∈Ic1
wi) (p3 = ∅ if the two values are the same).

Thus, there exists two colliding paths p1 and p2 ∪ p3 colliding in min(c/2, c −∑
i∈Ic1

wi)

that represent pattern p.

Supplementary material 4.G Algorithms for reflect

In Algorithm 7, we detail how to build the set of arcs As and Ar used by FRE . We keep

in V the set of activated nodes that are used to build the loss arcs. We use the array M to

keep track of the possible tails for the arcs. For a given item type, we also use the array

H to keep track of the possible tails that were already processed, to avoid unnecessary

operations. Then, for each item type i and for each demand of item i, we go through all

the possible tails k that were not already processed (step 9), and create the arc (l, l+wj).

If it is a standard arc (step 11), (l, l+wj, s) is stored in As (step 13) and l+wj becomes a

possible tail (step 12) and an activated node (step 14). If it is a reflected arc not removed

by the reduction procedure (step 15), the arc is transformed into (l, c − (l + wi), r) and is

stored in Ar (step 16) and node c − (l + wi) is only added to the set of activated nodes

(step 17). Finally, we add node c/2 to V (step 23) and create a loss arc between each pair

of successive active nodes (step 24) and terminate by adding the final arc (c/2, c/2, r) in

Ar (step 26).

4.G. Algorithms for reflect 105

Algorithm 7 Create reflect multigraph

1: Input: c: bin capacity, m: number of item types, w: item widths, d: item demands
2: As ← ∅ ; Ar ← ∅ ; V ← ∅
3: M [0 . . . c/2]← 0 ⊲ an array that keeps track of the possible tails
4: M [0]← 1 ⊲ node 0 is a possible tail
5: for i = 1 to m do
6: H[0 . . . c/2]← 0 ⊲ an array that keeps track of the tails already processed
7: for j = 1 to di do
8: for l = c/2− 1 to 0 do
9: if H[l] = 0 and M [l] = 1 then ⊲ if l is a not yet processed tail

10: H[l] = 1 ⊲ l is now processed
11: if l + wi ≤ c/2 then ⊲ if the arc is standard
12: M [l + wi]← 1
13: As ← As ∪ (l, l + wi, s)
14: V ← V ∪ {(l + wi)}
15: else if l ≤ c− (l + wi) then ⊲ if reflected arc + reduction
16: Ar ← Ar ∪ (l, c− (l + wi), r)
17: V ← V ∪ {(c − (l + wi))}
18: end if
19: end if
20: end for
21: end for
22: end for
23: V ← V ∪ {c/2}
24: for i ∈ V do As ← As ∪ {(i, j, s): j = min(l ∈ V : l > i)} ⊲ loss arcs
25: Ar ← Ar ∪ (c/2, c/2, r) ⊲ allow paths that collide in c/2
26: return V,As, Ar

Note that the algorithm works for even values of c. In case c is an odd number, an

easy adaptation is to double the capacity and the weight of all item types. (This operation

does not affect the number of normal patterns, and thus does not increase the number

of variables and constraints in FRE). Otherwise, an additional dummy node R has to be

created and taken into explicit consideration in the algorithm.

In Algorithm 8, we detail how to reconstruct a solution after solving FRE . We start by

creating a path from 0 to its collapsing node d (steps 5-12) and store it in R[d] if it contains

a reflected arc, or in S[d] otherwise (step 13). The process is iterated until no more path is

found. Finally, for each colliding node d (step 15), we match the paths from R[d] and S[d]

to reconstruct the pairs of colliding paths. Such matching is ensured by constraints (4.17)

106 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

that guarantee that each selected reflected path can be matched with a selected standard

path. Finally, we precise that such matching exists if all item types have wi < c. In the

opposite case, there could be a selected reflected path {(0, 0, r)} corresponding to an item

of size c that could not be matched with any standard path as it would represent a bin on

its own.

Algorithm 8 Reconstruct reflect solution

1: Input: a solution ξ̄deκ of L(FRE)
2: P ← ∅ ⊲ set of colliding paths
3: R[0 . . . /2]← ∅ ⊲ an array of sets of reflected paths
4: S[0 . . . /2]← ∅ ⊲ an array of sets of non-reflected paths
5: while ∃ an arc (0, e, κ) with ξ̄0eκ > 0 do ⊲ build the paths and store them in R and S
6: p← ∅; d← 0
7: while ∃ an arc (d, e, κ) and 6 ∃(d, e, r) ∈ p do
8: select the first arc (d, e, κ) ∈ δ+(d) with x̄deκ > 0 and add it to p
9: d← e

10: end while
11: z̄p ← min(d,e,κ)∈p{x̄deκ}
12: for all (d, e, κ) ∈ p, x̄deκ ← x̄deκ − z̄p
13: if ∃(d, e, r) ∈ p then R[d]← R[d] ∪ {p} else S[d]← S[d] ∪ {p}
14: end do
15: for d = 1 to c/2 do ⊲ match the pairs of colliding paths and store them in P
16: while ∃p1 ∈ R[d] with z̄p1 > 0 do
17: p← ∅;
18: select the first path p2 ∈ S[d] with z̄p2 > 0
19: p← p1 ∪ p2
20: z̄p ← min(z̄p1, z̄p2)
21: z̄p1 ← z̄p1 − z̄p; z̄p2 ← z̄p2 − z̄p
22: P ← P ∪ p
23: end do
24: end do
25: return P

In Algorithm 9, we detail how to build the set of arcs As and A1, . . . ,AK used by FRE

for the VSBPP. We keep in V the set of activated nodes that are used to build the loss arcs.

We use the array M to keep track of the possible tails for the arcs. For a given item type,

we also use the array H to keep track of the possible tails that were already processed, to

avoid unnecessary operations. Then, for each item type i and for each demand of item i,

we go through all the possible tails k that were not already processed (step 9), and create

4.G. Algorithms for reflect 107

the arc (l, l+wj). If it is a standard arc (step 11), (l, l+wj , s) is stored in As (step 13) and

l + wj becomes a possible tail (step 12) and an activated node (step 14). If it is possible

to transform the arc into a valid reflected arc for bin k(k = 1, . . . ,K), a copy of the arc is

transformed into (l, ck − (l+wi), k) and is stored in Ak (step 18) and node ck − (l+wi) is

added to the set of activated nodes (step 19). Finally, we add all nodes ck/2(k = 1, . . . ,K)

to V (step 27) and create a loss arc between each pair of successive active nodes (step 28)

and terminate by adding the final arcs (ck/2, ck/2, k) in Ak(k = 1, . . . ,K) (step 29).

Algorithm 9 Create reflect multigraph VSBPP

1: Input: ck: bin capacities, m: number of item types, w: item widths, d: item demands
2: As ← ∅ ; for k = 1 to K do Ak ← ∅ ; V ← ∅; c← maxk=1,...,K{ck}
3: M [0 . . . c/2]← 0 ⊲ an array that keeps track of the possible tails
4: M [0]← 1 ⊲ node 0 is a possible tail
5: for i = 1 to m do
6: H[0 . . . c/2]← 0 ⊲ an array that keeps track of the tails already processed
7: for j = 1 to di do
8: for l = c/2− 1 to 0 do
9: if H[l] = 0 and M [l] = 1 then ⊲ if l is a not yet processed tail

10: H[l] = 1 ⊲ l is now processed
11: if l + wi ≤ c/2 then ⊲ if the arc is standard
12: M [l + wi]← 1
13: As ← As ∪ (l, l + wi, s)
14: V ← V ∪ {(l + wi)}
15: else
16: for k = 1 to K do ⊲ for each bin type
17: if l + wi > ck and l ≤ ck − (l + wi) then ⊲ reflection in k
18: Ak ← Ak ∪ (l, ck − (l + wi), k)
19: V ← V ∪ {(ck − (l + wi))}
20: end if
21: end for
22: end if
23: end if
24: end for
25: end for
26: end for
27: for k = 1 to K do V ← V ∪ {ck/2}
28: for i ∈ V do As ← As ∪ {(i, j, s): j = min(l ∈ V : l > i)} ⊲ loss arcs
29: for k = 1 to K do Ak ← Ak ∪ (ck/2, ck/2, k) ⊲ allow paths that collide in ck/2
30: return V,A1, . . . ,Ak, Ar

108 Chapter 4. Enhanced PP Formulations for Bin Packing and Cutting Stock Problems

Supplementary material 4.H Proof of Theorem 5

Theorem 5. Each valid pattern p can be represented in FRE by two colliding paths whose

reflected arc (d, e) has d ≤ e .

Proof. The proof is very similar to the previous one, and the only change comes when

building the sets Ic1 and Ic2. Before putting an item j in Ic1 that would close the set, we

check if wj/2 +
∑

i∈Ic1
wi ≤ c/2. If yes, then the reflected arc (d, e) has d ≤ e. Otherwise,

we put j in Ic2 and repeat the process until one item closes Ic1 with the desired reflected

arc. If Ic1 has not been closed while reaching the last item, then Ic2 becomes the set with

the reflected path, and it has the correct form. Indeed, if it was not the case, we would

have (i) wj/2 +
∑

i∈Ic1
wi > c/2 and (ii) wj/2 +

∑
i∈Ic2

wi > c/2. By summing (i) and (ii),

we would obtain wj +
∑

i∈p−{j}wi > c, which is impossible as p is a valid pattern.

Chapter 5

Logic Based Benders’

Decomposition for Orthogonal

Stock Cutting Problems

1

We consider in this chapter the problem of packing a set of rectangular items into a

strip of fixed width, without overlapping, using minimum height. Items must be packed

with their edges parallel to those of the strip, but rotation by 90◦ is allowed. The problem is

usually solved through branch-and-bound algorithms. We propose an alternative method,

based on Benders’ decomposition. The master problem is solved through a new ILP model

based on the arc flow formulation, while constraint programming is used to solve the slave

problem. The resulting method is hybridized with a state-of-the-art branch-and-bound

algorithm. Computational experiments on classical benchmarks from the literature show

the effectiveness of the proposed approach. We additionally show that the algorithm can

be successfully used to solve relevant related problems, like rectangle packing and pallet

loading.

Keywords: Orthogonal stock cutting problem, Logic based Benders’ decomposition, Rect-

angle packing, Pallet loading.

5.1 Introduction

Given n rectangular items of integer width wj and height hj (j = 1, . . . , n) and a strip

of fixed width W , the orthogonal Stock Cutting Problem (SCP) consists in packing all the

1The results of this chapter appears in: M. Delorme, M. Iori, and S. Martello, Logic Based Benders’
Decomposition for Orthogonal Stock Cutting Problems, Computers & Operations Research, 78:290-298,
2017 [100].

109

110Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

items into the strip without overlapping and using the minimum strip height. Items must

be packed with their edges parallel to those of the strip, but rotation by 90◦ is allowed. The

oriented counterpart of the SCP, in which rotation is not allowed, is known in the literature

as the Strip Packing Problem (SPP, see, e.g., Martello et al. [212]). Both the SCP and the

SPP are important because they have many real world applications, especially in wood,

paper, glass, and metal industries (see, e.g., Lodi et al. [193]).

It is not difficult to see that the SCP is NP-hard in the strong sense. Consider indeed

the famous (one-dimensional) bin packing problem (BPP): partition n elements, having

values vj (j = 1, . . . , n) into the minimum number of subsets so that the sum of the values

in each subset does not exceed a given capacity V (see Delorme et al. [98] for a recent

exhaustive survey). Any BPP instance can be transformed into an equivalent SCP instance

by setting W = V and, for j = 1, . . . , n, wj = vj and hj = W + 1. Its solution will consist

of the minimum number of “shelves” of height W +1, and hence it will provide the optimal

solution to the BPP instance. The BPP is known to be NP-hard in the strong sense, so

the same holds for the SCP.

According to the classification introduced by Lodi et al. [196], the SCP and the SPP can

be characterized as 2SP|R|F and 2SP|O|F, respectively, while in the general cutting and

packing typology by Wäscher et al. [289] both problems are categorized as two-dimensional

open dimension problem.

In this chapter we present an exact algorithm for the SCP. In Section 5.2 we review

successful approaches that have been proposed in the literature for the SCP, the SPP,

and related problems. In Section 5.3 we provide a mathematical model for the SCP.

Preprocessing techniques and initial lower and upper bound computations are discussed

in Section 5.4. The proposed algorithm is given in Sections 5.5, 5.6, 5.7, and 5.8. The

outcome of extensive computational experiments is presented in Section 5.9, where we also

discuss some relevant variants of the problem.

5.2 Literature review

Most of the techniques developed in the literature to solve the SCP and the SPP

are combinatorial branch-and-bound algorithms. One of the first branch-and-bound ap-

proaches for the SPP was proposed by Martello et al. [212] in the early noughties. The

algorithm makes use of preprocessing techniques, dominance criteria, and a powerful lower

bound based on a problem oriented continuous relaxation. In the same period, Lesh et

5.2. Literature review 111

al. [185] proposed a branch-and-bound algorithm specifically tailored for perfect-packing

cases, in which the optimal solution has no loss space, i.e.,
∑n

j=1wjhj = WH, where H

denotes the height of the optimal solution. The algorithm is based on powerful cuts that

fathom nodes for which the current partial packing cannot be filled by the remaining items

without inserting a ‘hole’. Later on, Alvarez-Valdes et al. [7], as well as Boschetti and

Montaletti [43] obtained better branch-and-bound algorithms by improving the dominance

criteria and the bounding techniques proposed in [212].

In recent years, new types of exact methods were proposed by Westerlund et al. [292]

and by Castro and Oliveira [58], who tried Mixed Integer Linear Programming (MILP)

models to solve more general classes of problems, that include the SPP. The latter also

made computational experiments on SPP instances, but the results were not encouraging,

as the proposed approaches generally perform worse than the ‘old’ Martello et al. [212]

branch-and-bound algorithm. Côté et al. [83] found better results by using a Benders’

decomposition in which the master problem is a MILP model and the slave is solved

through branch-and-bound.

To the best of our knowledge, Jakobs [162] was the first to propose a metaheuristic

(genetic) algorithm for the SPP. Since then, many metaheuristics have been proposed,

e.g., by Iori et al. [160] to cite a well-known approach. As the focus of this chapter is on

exact solutions, we do not give an exhaustive list of heuristic and metaheuristic algorithms:

the interested reader can refer to the recent articles by Özcan et al. [227] and by Thomas

and Chaudhari [272] for updated reference lists.

Coming to the SCP, the literature particularly focused on heuristics and metaheuristics

rather than on exact methods: see, e.g., Burke et al. [51] for a classical approach, or Wei

et al. [291] for an extensive literature review. To the best of our knowledge, the only exact

approaches for the SCP were proposed by Kenmochi et al. [172] and by Arahori et al.

[13]. Both approaches are based on branch-and-bound techniques. The former algorithm

transforms a general instance into a perfect-packing one by adding small items of size

1 × 1. It then applies a branch-and-bound method that fathoms nodes through powerful

cuts derived from those proposed in [185] (see above). The latter algorithm improves the

enumeration scheme by adding innovative cuts and strong fathoming criteria. According

to the computational experiments presented in [13] this can be considered the state of the

art of the exact algorithms for the SCP. Note that these two algorithms are also used for

the SPP, and that both present very competitive results on this problem variant too.

In the last decades, several problems related to the SCP were also studied. We cite in

112Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

particular the problems of Packing Squares into a Square (PSS) and of Packing Rectangles

into a Square with Rotation (PRSR), which ask for the minimum area square required

to pack a given set of items. As we will see, the approach we propose can be easily

applied to solve them. In the early nineties, Leung et al. [185] proved that the PSS is

strongly NP-hard, hence the same holds for PRSR. The two problems have been studied

by Picouleau [229], who gave some simple heuristics for the PSS, by Caprara et al. [55],

who proposed lower bounds and determined their worst-case performance, and by Correa

[78], who presented a polynomial-time approximation scheme for the PRSR. To the best

of our knowledge, the only exact approach for the PSS and the PRSR is the one proposed

by Martello and Monaci [211].

Another related problem to which our approach can be extended is the Pallet Loading

Problem (PLP), which consists in packing the maximum number of identical rectangles into

a given larger rectangle. This problem, whose complexity status is currently unknown, was

introduced in the late sixties by Barnett and Kynch [22] and then extensively studied by

many researchers, who proposed both exact methods (see, e.g., Dowsland [109], Alvarez-

Valdes et al. [5], or Ahn et al. [2]) and powerful heuristics (see, e.g., Lins et al. [190] or

Birgin et al. [41]). The number of references being huge, we refer the interested reader to

the recent, very complete survey by Silva et al. [260].

The exact approach we propose is based on the logic based Benders’ decomposition, that

was formally developed by Hooker [155], and applied with success by Hooker and Ottosson

[157] to 0-1 programming and by Hooker [156] to planning and scheduling problems. The

approach was later specialized to mixed integer programming by Codato and Fischetti

[69] who introduced the so-called combinatorial Benders’ cuts. Such cuts were successfully

used by Côté et al. [83] for solving the SPP. In the logic based Benders’ decomposition, the

classical master problem is frequently solved as a MILP and the slave through constraint

programming (although other solution techniques can be used). Constraint programming

techniques were used by Clautiaux et al. [68] to solve the recognition version of the SPP.

5.3 Mathematical model

We assume the existence of a coordinate system with origin in the bottom-left corner

of the strip, having integer coordinates on the horizontal (width) and the vertical (height)

axis. For any integer coordinate i on the width axis, we call the unit-width vertical space

above interval [i, i+1) a column. We say that an item j engages a column q whenever j is

5.3. Mathematical model 113

packed so as to occupy a portion of column q. We will use the following notation

• N = {1, 2, . . . , n, n + 1, . . . , 2n} = set of the given n items (j = 1, 2, . . . , n) followed

by a copy of each of them rotated by 90◦, i.e., such that wj = hj−n and hj = wj−n

(j = n+ 1, n + 2, . . . , 2n);

• W = {0, 1, . . . ,W − 1} = set of all integer width coordinates (abscissae) where the

bottom left corner of an item can be packed;

• W(j, q) = {q−wj+1, . . . , q} = set of integer abscissae a such that, if item j is packed

with its bottom-left corner at a (at any ordinate), then it engages column q.

From now on, when no confusion arises, we will use the term ‘item’ to denote either an

input item or a rotated copy. By introducing decision variables

• xjp = binary variable taking the value 1 if the bottom-left corner of item j is packed

at abscissa p, and the value 0 otherwise (j ∈ N , p ∈ W);

• yj = ordinate at which the bottom edge of item j is packed (j ∈ N);

• z = overall height of the packing,

the SCP can be modeled as:

min z (5.1)
∑

p∈W

xjp + x(n+j)p = 1 j = 1, 2, . . . , n, (5.2)

yj + hj ≤ z j ∈ N , (5.3)

nonoverlap



[yj, yj + hj], j ∈ N :

∑

p∈W(j,q)

xjp = 1



 q ∈ W, (5.4)

xjp ∈ {0, 1} j ∈ N , p ∈ W, (5.5)

yj ≥ 0 j ∈ N , integer. (5.6)

Constraints (5.2) ensure that each item is packed exactly once, either rotated or not.

Constraints (5.3) impose that no item exceeds the height of the strip. Logical constraints

(5.4) (of “constraint programming” flavor) prevent items from overlapping by imposing,

114Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

for each column q, that the vertical intervals [yj, yj + hj) associated with all items j that

engage column q do not overlap.

Constraints (5.4) can equivalently be expressed through linear inequalities, as done

by Baldacci and Boschetti [20] and by Castro and Oliveira [58]. However computational

experiments (see, e.g., [58]) show that the direct use of the resulting mathematical model

with an MILP solver is not very effective. In the next sections we show that decomposition

techniques produce instead reduced models that can be solved more easily.

5.4 Preprocessing

We adapted a number of techniques from the literature to preprocess SCP instances

through reduction, heuristic initialization, and lower bound computations.

A size reduction of strip and item width is attempted through an adaptation to the

SCP of two techniques proposed by Boschetti and Montaletti [43] for the SPP:

(a) determine, through dynamic programming, the maximum width W ′ ≤ W that can

be obtained by packing side by side any subset of the given items: if W ′ < W , then

the strip width can be set to W ′;

(b) for each item j ∈ N compute, through dynamic programming, the maximum width

w′
j that a subset of items can take when packed side by side with j: if wj +w′

j < W ,

then the item width can be increased to W − w′
j. Note that, after this process, the

width (resp. height) of an item j > n is no longer necessarily equal to the height

(resp. width) of item j − n (see Section 5.3).

A third reduction technique, also presented in [43] but developed by Martello et al. [212] for

the SPP, is based on a dominance criterion that packs at the bottom of the strip some large

items and all the small items that would fit side by side with the large ones, provided such

a packing is possible. However, its extension to the SCP appears to have little usefulness,

due to difficulty in handling the possible rotation of the considered large items.

As mentioned in Section 5.2, several heuristics exist for the SCP. We adopted the

best-fit heuristic by Burke et al. [51], which is relatively simple and has a good average

performance. We implemented the three versions proposed in [51], that differ from each

other in the position where the next item is packed (Leftmost, Next to Tallest Neighbor,

Next to Shortest Neighbor).

Concerning lower bounds, we computed a value LB as the best (higher) between

5.5. Decomposition algorithm 115

(i) the simple bound L1 = max
(
⌈∑n

j=1wjhj/W ⌉,maxj=1,...,n{min(wj , hj)}
)
, and

(ii) L2 = rounded up solution value of the continuous relaxation of the Integer Linear

Programming (ILP) model that will be introduced in Section 5.6.

Once LB has been computed, we execute a truncated (heuristic) version of the branch-

and-bound algorithm proposed by Kenmochi et al. [172], which looks for a feasible solution

of value LB: we selected the so called G-staircase placement with DP cuts, as its perfor-

mance on particular types of instance (where the unused space is very small) was shown to

be very good. Such strategy maintains, at each decision node, a staircase-shape envelope

that separates the two regions where the next items may or may not be placed. We limited

the exploration of the branch-decision tree by: (i) heuristically killing decision nodes that

are unlikely to lead to an optimal solution, and (ii) cutting out “small” portions of the

strip region available to the next packings with the objective of maintaining a low number

of steps in the staircase.

5.5 Decomposition algorithm

The decomposition introduced by Benders [34] solves a difficult problem through the

iterative solution of two subproblems: the master problem and the slave problem. The

master is generally a relaxation of the given problem, while the slave either provides an

overall optimal solution or generates cuts to be added to the master at the next iteration.

The algorithm we propose is derived from relatively recent developments of this technique:

the logic based Benders’ decomposition (Hooker [155]) and the combinatorial Benders’ cuts

(Codato and Fischetti [69]). The latter method was used by Côté et al. [83] for the SPP.

Our master problem is an extension of the One-Dimensional Contiguous Bin-Packing

Problem (1CBP), a relaxation that was introduced by Martello et al. [212] for the SPP.

For the SPP, the 1CBP is obtained by horizontally ‘cutting’ each two-dimensional wj × hj

item into hj unit height slices of length wj, and the objective is to pack all resulting slices

into the minimum number of one-dimensional bins of capacity W so that slices belonging

to the same item are packed into contiguous bins.

The master problem we developed solves a variant of the 1CBP in which each item j is

vertically cut into wj unit width slices of height hj . It then looks for a feasible solution of

threshold value LB (the capacity of the one-dimensional bin) that contiguously packs the

slices into at most W bins. In addition, it is necessary to take into account the possibility

116Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

of rotating the items, and hence both copies of each two-dimensional item (see Section 5.3)

are cut into slices, and we impose that the solution packs only one of the two sets of slices.

Figure 5.1(a) provides a pictorial representation of a master problem solution.

In Section 5.6 we describe the approach we developed for solving the master problem.

Once the master has been solved, the slave must check the feasibility of the resulting

solution for the original SCP by looking for a rearrangement of the slices that reconstructs

the original two-dimensional items without exceeding the height of the strip produced by

the master. Figure 5.1(b) shows an SCP solution corresponding to the master solution of

Figure 5.1(a). In Section 5.7 we discuss the approach we adopted for its solution.

The overall approach we propose starts with preprocessing and sets a possible strip

height at a threshold provided by a lower bound. At each iteration, it looks for a feasible

solution of value equal to the current threshold through the above master-slave method.

If it can prove that no such solution exists, then the threshold is conveniently increased.

The method can be summarized as follows.

Algorithm SINGLE:

1. reduce the instance (see Section 5.4);

2. execute the best-fit heuristics to obtain an upper bound UB, and compute lower bound

1 1 1

2 2

3

3 3

4

5

5 5

6 6 6

6

7

7

(a)

1

2

3

4

5

6

7

(b)

Figure 5.1: (a) master problem solution; (b) corresponding SCP solution

5.6. Master problem 117

LB (see Section 5.4);

3. execute the truncated branch-and-bound heuristic (see Section 5.4);

4. if a solution of value LB has been obtained then UB := LB and terminate;

while UB > LB do

5. exactly solve the master problem with threshold height LB (see Section 5.4);

6. if no solution of value LB is found then remove all cuts, increase LB, and continue;

7. exactly solve the slave problem;

8. if a solution of value LB is obtained then UB := LB and terminate;

9. add improved Benders’ cuts to the master problem (see Section 5.7)

end while.

In many cases, the value of UB is not much higher than that of LB, and hence increasing

LB by one at Step 6 is a reasonable choice. (In our computational experiments, we rarely

found instances with z > LB + 1.) For different cases, a binary search between LB and

UB could be preferable.

5.6 Master problem

As mentioned in Section 5.5, the aim of the master problem is to find a feasible solution

of given value LB (threshold) to an adaptation of the one-dimensional bin packing problem

with contiguity constraints. In [83], the master arising from the SPP was solved using two

exact algorithms: a combinatorial branch-and-bound and, when it fails due to time limit,

the Benders’ decomposition of a mathematical model given by the oriented version of (5.1),

(5.2), and (5.5), with an additional constraint imposing that, for any column, the sum of

the heights of the items engaging it does not exceed z.

Our master was solved through an ILP model of an adaptation of the 1CBP introduced

in [212] for the SPP (see Section 5.5). The type of modeling we adopted has its roots in the

ARCFLOW model proposed by Valério de Carvalho [278] for the one-dimensional cutting

stock problem. (Note that, in spite of its similar name, this problem is totally different

from the two-dimensional problem we are considering.) We make use of a directed graph

with W + 1 vertices 0, 1, . . . ,W , and arc set A = A1 ∪ · · · ∪A2n ∪A0 where

Aj = {(d, e) : 0 ≤ d < e ≤W and e− d = wj} (j = 1, . . . , 2n) (5.7)

118Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

and A0 = {(d, d + 1) : 0 ≤ d < W}. In other words, there is an arc between two vertices d

and e if there is an item (either an input item or a rotated copy) whose width is equal to

e − d. In addition, there is a set A0 of loss arcs, corresponding to identical dummy items

having unit width and height, used for ensuring flow conservation, as it will be clear from

the model.

Consider the following numerical example: n = 3, W = 5, w1 = 5, h1 = 1, w2 = h2 = 3,

w3 = h3 = 2: Figure 5.2 shows the resulting graph (disregard by the moment the values on

the arcs, which give the item heights). The topmost arc corresponds to input item 1, non

rotated (A1). Then we have the three arcs corresponding to input item 2 (A2 ≡ A5) and

the four arcs corresponding to input item 3 (A3 ≡ A6). Finally , the loss arcs (A0, dotted)

and, on the bottom, the five arcs corresponding to the rotated copy of item 1 (A4). (Note

that, formally, one should also have a second, useless, copy of the arc sets corresponding

to input items 2 and 3, for which, however, rotation does not make sense.)

Let us introduce variables x̄jde (j = 0, . . . , 2n, d = 0, . . . ,W − 1, e = 1, . . . ,W) to

represent the number of times arc (d, e) ∈ Aj is selected. For j = 1, 2, . . . , 2n, binary

variable x̄jde takes the value 1 iff item j is selected and packed with its bottom left corner

at abscissa d, engaging columns d, d+1, . . . , e−1. For j = 0, x̄jde is a non-negative integer

variable giving the number of 1× 1 dummy items packed at abscissa d. Let us denote by

δ−j (e) (resp. δ+j (e)) the set of arcs of Aj entering (resp. emanating from) vertex e. The

0 1 2 3 4 51 1 1 1 1

3 3 3

2 2 2 2

5 5 5 5 5

1

Figure 5.2: Arcs generated for the example instance

5.6. Master problem 119

master problem is then to find a feasible solution to

2n∑

j=0


−

∑

(d,e)∈δ−j (e)

hj x̄jde +
∑

(e,f)∈δ+j (e)

hj x̄jef


 =





LB if e = 0;

−LB if e = W ;

0 otherwise,

e = 0, 1, . . . ,W,

(5.8)

∑

(d,e)∈Aj

x̄jde +
∑

(d,e)∈An+j

x̄(n+j)de = 1 j = 1, 2, . . . , n,

(5.9)

x̄jde ∈ {0, 1} j = 1, 2 . . . , 2n; (d, e) ∈ Aj ,

(5.10)

x̄0de ≥ 0, integer (d, e) ∈ A0.

(5.11)

Constraints (5.8) impose: (i) the solution value LB to the flow emanating from node 0

and to that entering node W (hence ensuring that every item is entirely packed within the

strip), and (ii) the flow conservation at nodes 1, . . . ,W − 1. Constraints (5.9) impose that,

for each item j, either the original item or its rotated version is packed. The model has

W + n + 1 constraints and O(nW) variables (as, from (5.7), each arc set Aj has no more

than W arcs).

In Figure 5.2, the values on the arcs represent the height of the corresponding items,

i.e., in the model, the flow that circulates along the arc every time it is selected. For the

previous numerical example, Figure 5.3 shows the arcs selected in a feasible solution of

threshold value 3, while Figure 5.4 provides a possible graphical representation of such

solution. The non-zero x̄jde values are

• x̄2,0,3 = 1, i.e., item 2 has its bottom left corner packed at abscissa 0, it engages

columns 0, 1, 2, occupying three height units in each of them;

• x̄3,3,5 = 1, i.e., item 3 has its bottom left corner packed at abscissa 3, it engages

columns 3, 4, occupying two height units in each of them;

• x̄4,0,5 = 1, i.e., item 4 (the rotated copy of item 1) has its bottom left corner packed

at abscissa 0, it engages columns 0, 1, 2, 3, 4, occupying one height unit in each of

them;

120Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

0 1 2 3 4 51 1

3

2

1

Figure 5.3: Set of arcs selected in the optimal solution of the master for the example
instance

• x̄0,3,4 = x̄0,4,5 = 1, i.e., loss arcs engage one height unit (waste) in columns 3 and 4

(to satisfy the flow conservation constraints).

5.7 Slave problem and cut generation

Let [x̄sjde] be the solution to the current master problem, and zs (equal to the current

threshold LB) its value. The solution identifies a subset N s ⊂ N containing one copy

(either rotated or not) of each of the n input items, together with the corresponding

abscissa, and hence the columns engaged by the item. The slave problem, y-check in the

following, is then to decide if there exists an ordinate for each item j ∈ N s such that all

items are packed without overlapping and without exceeding the height of the strip. This

problem is known to be NP-hard, as shown by Côté et al. [83].

2 2 2

33

4 4 4

4 4

Figure 5.4: Graphical representation of an optimal master solution for the example instance

5.7. Slave problem and cut generation 121

The y-check problem arising for the SPP was attacked in [83] through a specialized

branch-and-bound algorithm. We preferred to explore the possibility of obtaining an ef-

fective overall algorithm by solving the slave through a simpler, non-tailored constraint

programming approach. Remind that, for each item j, wj and hj give its width and

height in the selected orientation. The slave problem is then to find ordinates yj (j ∈ N s)

satisfying (see (5.1)-(5.6))

yj + hj ≤ zs j ∈ N s, (5.12)

nonoverlap



[yj , yj + hj], j ∈ N s :

∑

p∈W(j,q)

x̄sjp(p+wj)
= 1



 q ∈ W, (5.13)

yj ≥ 0, integer j ∈ N s. (5.14)

Constraints (5.12) impose that no item exceeds the height of the strip, while constraints

(5.13) impose that no two items overlap. If the slave problem returns a solution satisfying

(5.12)-(5.14), then we know that the original SCP instance has been optimally solved.

If instead the slave can prove that no feasible solution to (5.12)-(5.14) exists, we generate

a set of lifted combinatorial Benders’ cuts, following the method developed in [83] for the

SPP:

(i) heuristically find a (possibly small) subset Ñ s ⊆ N s of items such that any solution

including them at their current abscissa is infeasible for the slave;

(ii) solve an LP to identify, for each item j ∈ Ñ s, an interval [lsj , r
s
j] that includes its

current abscissa, and has the following property: If all the items j ∈ Ñ s are in the

master solution, each with the abscissa in [lsj , r
s
j], then the same (infeasible) slave

problem will be obtained;

(iii) add a cut to prohibit this, i.e.,

∑

j∈Ñ s

∑

(d,e)∈Aj ,lsj≤d≤rsj

x̄jde ≤ |Ñ s| − 1. (5.15)

Observe that cuts (5.15) are only valid for a given threshold value zs = LB: a certain

master solution [x̄sjde] can be infeasible for LB, but feasible, at a subsequent iteration, for

a higher threshold value. This corrects an imprecision in the overall descriptive model of

122Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

Section 2.3 in [83], that was pointed out by Hashimoto et al. [150].

5.8 The case of identical item copies

The approach we have introduced so far is obviously valid if the input instance includes

a number of identical items. For such cases however, a more effective algorithm, called

MULTI in the following, can be obtained through simple modifications of SINGLE:

• at Step 1, the item width increase (b) of Section 5.4 is deactivated in order to avoid

the creation of dissimilarities among copies of identical items;

• at Step 5, we can group together identical items: let m denote the number of

items that are different from each other and bj the number of copies of item j

(j = 1, 2, . . . ,m). We then perform a modified version of the master (5.8)-(5.11),

in which n is replaced by m, constraints (5.9) become

∑

(d,e)∈Aj

x̄jde +
∑

(d,e)∈Am+j

x̄(m+j)de = bj j = 1, 2, . . . ,m, (5.16)

while (5.10) and (5.11) merge to

x̄jde ≥ 0, integer j = 0, 1, . . . , 2m; (d, e) ∈ Aj . (5.17)

For j = 1, 2, . . . , 2m, x̄jde is now a non-negative integer variable giving the number of

copies of item j that are selected and packed with their bottom left corner at abscissa

d, engaging columns d, d+ 1, . . . , e− 1. The meaning of x̄0de does not change. Once

the master problem has been solved, we map its solution into the original instance;

• at Step 7, for pairs of identical items (j, k) (j, k ∈ N s, j < k) assigned to the same

abscissa, it is imposed that yj < yk, in order to avoid symmetries in the slave problem;

• at Step 9, as constraint (5.15) does not extend to general integer variables, when the

slave proves that (5.12)-(5.14) has no solution, instead of adding a cut, we kill the

decision node producing x̄jde in the master enumeration tree.

Our overall approach, referred to as DIM in the following, executes algorithm SINGLE of

Section 5.5 when all items are different, and algorithm MULTI otherwise.

5.9. Computational experiments 123

5.9 Computational experiments

In order to test the effectiveness of the proposed approach we performed extensive

computational experiments on classical SCP instances from the literature. As we will see,

our approach can be easily modified to handle relevant variants of the problem. We thus

also tested it on literature instances of the square and rectangle packing problems PSS and

PRSR, as well as of the pallet loading problem PLP (see Section 5.2).

We used CPLEX 12.6.0 for all steps of the algorithm: master, slave, and cuts. The

logical constraints used in the slave were IloNoOverlap (which models constraints (5.13))

and in addition, for MULTI, IloEndBeforeStart (to avoid symmetries). In the implemen-

tation of SINGLE, the slave problem was invoked within the lazy callback procedure,

while in that of MULTI it was invoked within the incumbent callback procedure. Both

procedures are available in the branch-and-cut framework, so, as soon as the master pro-

duces a decision node with integer solution, the slave checks it for feasibility: if the check

fails, SINGLE adds new cuts (5.15) to the master, while MULTI just kills the corresponding

decision node. This implementation of the logic based Benders’ decomposition is sometimes

called branch-and-check (see Thorsteinsson [273]).

The experiments were performed on an Intel Xeon E3-1220 3.10 GHz with 8 GB RAM,

equipped with four cores. In order to have a fair comparison with other algorithms and

machines, we always used a single core. The time limit was set to 3 600 seconds per instance,

with a limit of 10 seconds for the execution of the truncated heuristic of Section 5.4.

The performance of DIM was compared with that of other algorithms, in most cases

using the results published by their authors. As the involved computers used have different

speeds, we evaluated the CPU performances using the indicators given by PassMark c© Soft-

ware (see https://www.cpubenchmark.net/). The indicator for our computer is 6 106.

Concerning G-Staircase, the best algorithm among those presented by Kenmochi et al.

[172], the experiments were re-run using a working copy of the original code, kindly pro-

vided by the authors. (These experiments confirmed a good reliability of the PassMark

indicators.)

Furthermore, different authors adopted different ways for handling the cases of time

limit in the evaluation of the average CPU time: some included the time limits in the

computations, some did not. In order to allow comparisons, our tables provide, for each

algorithm, the average CPU times (in seconds) relative to the instances solved to proven

optimality, and their number (# opt). The highest number of solved instances is highlighted

https://www.cpubenchmark.net/

124Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

in bold.

All the instances we used for our experiments can be downloaded from the library of

codes and instances of the University of Bologna Operations Research Group, http://or.

dei.unibo.it/library. In the following, we examine the outcome of the computational

experiments on the different instance classes.

5.9.1 SCP instances

This is the main benchmark, as it refers to instances of the problem DIM is tailored

for. We used the following classical two dimensional instances from the literature:

• NGCUT: a set of 12 knapsack instances proposed by Beasley [26];

• CGCUT: a set of 3 knapsack instances proposed by Christofides and Whitlock [64];

• GCUT: a set of 13 knapsack instances proposed by Beasley [25];

• BENG: a set of 10 packing instances proposed by Bengtsson [35];

• HT: a set of 9 SCP instances proposed by Hopper and Turton [158];

• BKW: a set of 13 SCP instances proposed by Burke et al. [51];

• CLASS01, ..., CLASS10: ten sets of 50 bin packing instances each (six proposed by

Berkey and Wang [38], and four later proposed by Martello and Vigo [216]). Each

class is composed by five groups of 10 instances each, with n = 20, 40, 60, 80, and

100, respectively.

For all cases, but HT and BKW, the strip width W was set to the width of the original

two-dimensional container (knapsack or bin).

The performance of Algorithm DIM was compared with that of the algorithms by Ken-

mochi et al. [172] and by Arahori et al. [13]. The experiments reported in the latter

paper were made on a Pentium 4 3.0GHz, with a time limit of 3 600 seconds. The perfor-

mance indicators of this machine is 357, i.e., the entries in Table 5.1 for the algorithm in

[13] should be multiplied by 0.058. For the instances for which a comparison with both

other SCP algorithms can be done, it turns out that DIM always solved at least all the in-

stances solved by the best between the algorithms in [172] and [13], sometimes with higher,

sometimes with smaller CPU times. Similar results were obtained for instances CLASS*,

http://or.dei.unibo.it/library
http://or.dei.unibo.it/library

5.9. Computational experiments 125

that could only be compared with the working code provided by the authors of [172]. It

can be observed that, for both algorithms, CLASS01 and CLASS02 are relatively easy,

CLASS03 and CLASS04 are difficult, while CLASS05, CLASS06, CLASS07, CLASS08,

and CLASS10 are extremely hard. The most relevant difference concerns CLASS09, for

which DIM appears especially powerful. This could be explained by the fact that the in-

stances of such class have a number of items with large width and height: their packing

frequently creates large “holes” in the strip, and hence lower bounds are not tight, while

the ARCFLOW model performs well because the number of arcs is small.

By comparing our experiments with those in [83], we can observe that allowing item

rotation considerably increases the difficulty of the problem. For example, the instances of

CLASS07 (which were all solved in the oriented case) have many oblong horizontal items:

this allows a powerful initial reduction through dominance criteria when the items are

oriented (which makes the instance quite easy to solve), but no reduction at all when they

can be rotated.

Worth is mentioning that we solved for the first time instance GCUT02: The optimal

solution is reported in Figure 5.5, where item numbers and (possibly rotated) sizes are

provided within the rectangles. The solution was obtained in 108 CPU seconds.

Table 5.1: SCP instances. CPU times to be multiplied by 0.058 for [13]

Name # inst.
Arahori et. al [13] Kenmochi et. al [172] Algorithm DIM

opt. Avg. time (s) # opt. Avg. time (s) # opt. Avg. time (s)

NGCUT 12 12 0.4 11 1.0 12 25.8
CGCUT 3 2 0.0 2 0.2 2 0.2

GCUT1-4 4 1 0.8 1 141.6 2 59.2
GCUT5-13 9 - - 2 425.7 5 35.9

BENG 10 10 0.1 10 0.2 10 0.2
HT 9 9 0.0 9 0.1 9 0.2

BKW1-12 12 - - 9 6.7 9 1.0
BKW13 1 - - 0 - 0 -

CLASS01 50 - - 44 2 50 0.4
CLASS02 50 - - 50 0 50 0.3
CLASS03 50 - - 2 82.9 9 846.2
CLASS04 50 - - 18 35.6 19 145.3
CLASS05 50 - - 0 - 1 1289.4
CLASS06 50 - - 0 - 0 -
CLASS07 50 - - 0 - 0 -
CLASS08 50 - - 0 - 0 -
CLASS09 50 - - 0 - 45 293.3
CLASS10 50 - - 0 - 2 1400.4

126Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

2(135;186)

8(176;131)

9(176;71)

7(91;175)

12(107;168)

15(159;132)

18(158;121)

20(155;76)

10(72;153)

16(152;93)

11(87;148)

14(109;140)

6(97;135)

17(68;135)

1(133;120)

13(90;118)

4(73;103)

19(94;68)

3(86;75)

5(85;66)

Figure 5.5: Optimal solution found for GCUT02 (W = 250, zopt = 1118)

5.9.2 Rectangle packings

In this section we deal with the rectangle packing problems mentioned in Section 5.2.

Given n rectangular items of integer width wj and height hj (j = 1, . . . , n), problem

PRSR asks for the minimum area square needed to pack all the items without overlapping.

The special case in which wj = hj for all j is denoted as PSS. Both problems can be

solved through Algorithm DIM as follows. We set W = LB =
⌈√∑n

j=1wjhj

⌉
, and we

execute DIM. While no feasible solution is found, we increase both W and LB by one

unit, and iterate. We evaluated this approach on classical instances from the literature,

and compared our results with those obtained by Martello and Monaci [211] through a

specialized algorithm that attempts squares of different size through binary search, namely:

• NGCUT, CGCUT, GCUT, BENG: see Section 5.9.1;

• GARD: PSS instances with wj = hj = j for j = 1, . . . , n, proposed by Gardner [129];

5.9. Computational experiments 127

• KORF: PRSR instances with wj = j, hj = j + 1 for j = 1, . . . , n, proposed by Korf

et al. [181].

• RND S: 200 PSS instances proposed by Martello and Monaci [211];

• RND R: 200 PRSR instances proposed by Martello and Monaci [211].

Both RND S and RND R consist of four groups of 50 instances each, with n = 5, 10, 15,

and 20, respectively.

The experiments in [211] were made on an Intel i5-750 CPU (2.67 GHz), using IBM-

ILOG Cplex 12.5.1 and Gurobi 5.6, with a time limit of 3 600 seconds per instance. The

performance indicator for such computer is 3 732, so the entries given in Table 5.2 for this

algorithm should be multiplied by 0.611. The results show that Algorithm DIM always

solved at least all the instances solved in [211], in several cases with smaller CPU times.

In particular, all BENG instances were solved to proven optimality, and 5 more GARD

instances were solved with respect to [211]. (Note however that 6 additional instances were

solved by Korf et al. [181] through a highly specialized algorithm.) Worth is mentioning

that instances RND * with n ≥ 15 confirm to be very difficult to solve exactly. We tested

DIM with a larger time limit on the only RND R 10 instance it could not solve: a proven

optimal solution was found in 3 918 seconds.

Table 5.2: Rectangle packing instances. CPU times to be multiplied by 0.611 for [211]

Name # inst.
Martello and Monaci [211] Algorithm DIM
opt. Avg. time (s) # opt. Avg. time (s)

NGCUT 12 10 357.1 12 67.1
BENG 10 3 0.0 10 0.2

CGCUT 3 0 - 1 734.6
GCUT 13 3 560 3 742.7
KORF 40 17 73.6 24 2.2
GARD 40 16 2.2 21 191.1

RND S 05 50 50 0.0 50 0.3
RND S 10 50 50 341.2 50 81.8
RND S 15 50 5 186.9 5 894.3
RND S 20 50 0 - 0 -
RND R 05 50 50 0.0 50 0.4
RND R 10 50 39 384.2 49 464.2
RND R 15 50 0 - 0 -
RND R 20 50 0 - 0 -

5.9.3 Pallet loading

Our last set of experiments was performed on instances of the pallet loading problem

(PLP). Given a rectangle of width W and height H, the problem is to pack into it, without

128Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

overlapping, the maximum number of identical rectangular items of integer width w1 and

height h1. We attacked the problem through Algorithm DIM as follows. We initialize n

to
⌊

WH
w1h1

⌋
(an obvious upper bound on the solution value), we define wj = w1, hj = h1 for

j = 2, . . . , n, we set LB = H, and we execute DIM. While no feasible solution is found, we

decrease n by one, and iterate.

The PLP has been intensively studied since the sixties, and many specialized algorithms

have been proposed for its solution. The comprehensive recent survey by Silva et al. [260]

has a bibliography of over fifty references, and examines computational experiments from

the literature involving some three million instances. Additional experiments are reported

by Ahn et al. [2]. (The two articles appeared almost at the same time, so they do not cite

each other.).

Although the MULTI version of our approach exploits the identical item property, it

is not guided in any way by the very strong property that all items are identical, nor it

uses the powerful heuristics and upper bounds that such property exploits. Our objective

here was not to beat very specialized algorithms, but to see if we could solve to proven

optimality some previously unsolved, or very difficult to solve, instances from the literature.

We thus tested MULTI on

• GROUP1, ..., GROUP5: five sets, each containing between 10 and 21 instances, used

by Ahn et al. [2];

• HARD II: a set of 241 instances that were identified by Alvarez-Valdes et al. [5] as

the most difficult ones among the 40 609 “Cover II” instances they tested. (All these

instances have been solved to proven optimality (see Birgin et al. [41]);

• HARD III: a subset of 970 instances for which optimality is hard to prove, among the

98016 initially proposed in set “Cover III” by Alvarez-Valdeset al. [6]. Attempts to

exactly solve such instances, identified by Birgin et al. [41], is currently underway (see

the web page http://lagrange.ime.usp.br/~lobato/packing/cover3.php they

maintain);

• SAMPLE59: a set of 59 instances selected by Silva et al. [260] as particularly sig-

nificant, as they have been used as benchmark instances in at least two numerical

experiments from the literature.

For all instances but most of those in HARD III, the optimal solution is known. The

available information about the solution times is not uniform. For GROUP*, Ahn et al. [2]

http://lagrange.ime.usp.br/~lobato/packing/cover3.php

5.10. Conclusion 129

provide the average CPU times for their exact solution, obtained on an Intel I5-750 CPU,

3 GB, with performance indicator 4 277 (i.e., their times should be multiplied by 0.7).

For HARD II, Alvarez-Valdes et al. [5] provide the median CPU time obtained by using

CPLEX 7.0 on a PC Pentium III 850 MHz, CPLEX 7.0. We found no precise indicator

for such computer: on the basis of indicators for similar machines, it should be very low

(below 300), so their times should be multiplied by 0.05. For HARD III and SAMPLE59,

no complete information on the solution times is available. In Table 5.3 we provide the

comparable information for our approach.

The results show a good performance of DIM on all GROUP* instances but GROUP4

(probably because such instances are characterized by very large W and H values). The

algorithm was also successful for HARD II instances, although no significant comparison

with [5] can be done because of the big difference between the two CPLEX versions used.

We solved to proven optimality the great majority of HARD III and SAMPLE59 instances

within reasonable CPU times. The only unsolved SAMPLE59 instance is #58. Worth is

mentioning that we solved 28 out of the 29 instances that have been indicated by Silva et al.

[260] as those on which exact algorithms should be tested. Such instances (in parentheses

the CPU times) are: #18 (7.4 s), #40 (0.6 s), #42 to #45 (0.3 s, 15.1 s, 1.5 s, 80.5 s), #26

to #34 (each in less than 0.7 s), #46 to #51 (each in less than 1.0 s), #52 (68.0 s), #53

(0.2 s), #54 (236.8 s), #55 (697.2 s), #56 (2.1 s), #57 (0.7 s), #58 (unsolved after 3 600

s), and #59 (5.5 s).

The results obtained on HARD III are particularly relevant, as optimality was still not

proven for most (683) of these 970 instances. We were able to solve exactly 849 instances.

In all such cases, it turned out that the lower bound found by the most powerful PLP

heuristics was the optimal solution value, enforcing the conjecture of Birgin et al. [41] that

their recursive partitioning approach always finds the optimal solution.

5.10 Conclusion

We have presented a logic based Benders’ decomposition approach for the orthogonal

stock cutting problem. We initially consider as the master a relaxation of the problem, that

consists of a one-dimensional bin packing problem with contiguity constraints. We solve

it through an ILP model based on the ARCFLOW formulation. The slave then checks,

through constraint programming, if the solution obtained can lead to a feasible solution for

the original problem. If the attempt is unsuccessful, we prevent the master to replicate the

130Chapter 5. Logic Based Benders’ Decomposition for Orthogonal Stock Cutting Problems

Table 5.3: Pallet loading instances. CPU times to be multiplied by 0.700 for [2], and by
0.05 for [5]

Name # inst.
Ahn et. al [2] Alvarez-Valdes et. al [5] Algorithm DIM

opt. Avg. time (s) # opt. Med. time (s) # opt. Avg. time (s) Med. time (s)

G1 17 17 0.0 17 0.3 0.3
G2 21 20 2.3 21 4.6 0.4
G3 17 17 2.9 17 8.3 0.4
G4 15 14 530.5 9 11.3 39.9
G5 10 8 278.8 10 20.1 7.3

HARD II 241 204 506.9 237 17.9 1.3

HARD III 970 849 282.8 0.3
SAMPLE59 59 58 19.5 0.2

current solution, either by adding cuts or by killing the corresponding decision node, and

iterate. Computational experiments on classical benchmarks from the literature show that

the algorithm compares favorably with state-of-the art approaches. In particular, it solved

for the first time instance GCUT02. We also tested an adaptation of the algorithm to other

relevant problems. For rectangle packing problems, the algorithm compared favorably with

a recent specialized algorithm. It also showed a good performance on hard instances of

the pallet loading problem, solving 849 out of 970 instances for most of which the known

solutions were not proved to be optimal.

Chapter 6

A Training Software for

Orthogonal Packing Problems

1

We present an open source architecture for the interactive solution of packing problems

in two dimensions. Although primarily developed for helping engineering students to un-

derstand the algorithmic approaches to the solution of difficult combinatorial optimization

problems, thanks to its visual tools, the application can be useful to practitioners and

developers. We give intuitive and formal definitions of the problems at hand, discuss two

natural heuristic approaches, provide technical information on the application, and report

the results of classroom experimental testings.

Keywords: Training software, Combinatorial optimization, Orthogonal packing, Visual-

ization, Classroom experiments.

6.1 Introduction

In the teaching of combinatorial optimization algorithms it is helpful that students

can use tools to easily understand the features and the difficulty of specific optimization

problems. In this chapter we illustrate TwoBinGame, an open source visual application

for interactively “playing” with (i.e., trying to solve) two-dimensional packing problems.

The application was developed at the Universities of Bologna and of Modena and Reggio

Emilia with the primary scope of guiding engineering students, but it can also be useful

to practitioners and developers to visualize, test, and evaluate possible exact or heuristic

algorithms. In TwoBinGame, the user operates in a computer generated environment where

it is possible to interact and look for solutions by manipulating virtual objects. The

1The results of this chapter appears in: G. Costa, M. Delorme, M. Iori, E. Malaguti, and S. Martello,
Training Software for Orthogonal Packing Problems, Technical Report OR-17-4, 2017 [82].

131

132 Chapter 6. A Training Software for Orthogonal Packing Problems

application was developed in Scala. We refer the reader to http://scala-lang.org/

documentation/books.html for an overview of recent books on the Scala language.

Two-dimensional packing problems arise in a variety of industrial applications, when

it is requested to allocate a given set of rectangular objects (items) to rectangular stan-

dardized stock units so as to minimize the waste area. In wood or glass industries, large

rectangular sheets of material (bins) are cut to obtain given sets of rectangular elements.

In warehouses, goods have to be allocated to shelves. When paging journals, it is necessary

to place articles, photographs, and advertisements in the various pages. In all such cases,

the standardized stock units can be seen as “large” rectangles to which smaller rectangles

have to be allocated without overlapping. In other industrial applications, such as, e.g.,

paper or cloth production, the standardized stock unit consists of a roll of material (strip)

from which one has to obtain the desired rectangular items by minimizing the used roll

length. In both cases, two main variants occur in practice: either the items to be packed

have a fixed orientation (e.g., when the material is corrugated or decorated), or they can be

rotated (usually by 90 degrees). The interactive application we describe is capable of han-

dling the resulting four variants (fixed length stock units or infinite length rolls; oriented

or non oriented items).

Besides their industrial relevance, two-dimensional packing problems have considerable

theoretical interest in the field of algorithmic combinatorial optimization. Already in 1965,

Gilmore and Gomory [136] studied a two-dimensional packing problem and presented a

column generation approach for its optimal solution. The analysis of the vast literature

produced in the following 50 years is beyond the scope of this chapter. We refer the

interested reader, e.g., to the book by Dyckhoff and Finke [113], to the more recent surveys

by Lodi et al. [193, 195], and to the typology proposed by Wäscher et al. [289].

In order to experiment the developed application, we constructed a set of two-dimens-

ional packing instances, and we asked a set of engineering students to test their skills by

using the application to find good-quality feasible solutions with a prefixed time limit.

Their solutions were compared to optimal and approximate solutions produced by ad-hoc

algorithms from the literature.

The literature that presents interactive systems to study and solve decision problems

is very varied and multidisciplinary. Although a complete survey is out of the scope of this

chapter, some interesting contributions are briefly discussed in the following.

A first branch of this literature focused on the way interactive systems can be used

in teaching. An early discussion was given in Asfahl et al. [16], who emphasized the

http://scala-lang.org/documentation/books.html
http://scala-lang.org/documentation/books.html

6.1. Introduction 133

fact that computer training programs can help capturing the attention of the audience and

teaching non-conventional subjects. A few years later, Llaugel and Confesor [191] presented

a computerized interactive program to teach quality control and quality improvement to

undergraduate students. The program was based on the simulation of the process of filling

medicine bottles, where over filling and under filling have a cost, and was assigned to

groups of students who competed with each other to get lowest cost solutions. Crumpton

and Harden [88] discussed the outcome of a test conducted on 20 students, who were asked

to interact with a virtual reality tool simulating a pick and pack problem in the cereal

industry: cereal boxes were proceeding down a conveyor and the operator was required to

grab them, orient them, and then pack them into a larger box. The results were discussed

mainly from an ergonomics point of view. Bodin and Gass [42] discussed key aspects in

the teaching of the analytic hierarchy process. They developed a series of educational tests

by using the Expert Choice Software and assigned them as classroom exercises to groups

of students. Several pedagogical insights were discussed for the attempted tests. More

recently, Costa et al. [80, 81] discussed Java tools developed for the teaching of graph

theory, including applications to solve a number of optimization problems such as, e.g.,

shortest spanning trees, shortest paths, and maximum flows.

Another branch of this literature focused on the comparison between computerized and

human behavior in the solution of optimization problems. Large attention was devoted

to the well-known Traveling Salesman Problem (TSP), which requires to find a minimal

cost hamiltonian cycle in a weighted graph. Mac Gregor and Ormerod [208] showed that

humans are efficient in solving Euclidean TSP instances when compared to basic heuristics.

They also discussed the practical difficulty of TSP instances as a function of the number

of non-boundary points. A related discussion can be found in Chapter 4 of the TSP book

by Applegate et al. [12]. A review of this area of research is provided by MacGregor and

Chu [207]. Recently, Miyata et al. [218] studied the performance of young children on the

TSP using a city-block metric. They showed that children tended to use strategies such as

traveling straight to the farthest goal first, whereas adults relied more on nearest neighbor

attempts.

In the next section we give a formal definition of the problems at hand. In Section 6.3

we provide technical information on the developed visual application, and in Section 6.4

we report the results of our experimental testing. Conclusions follow in Section 6.5.

134 Chapter 6. A Training Software for Orthogonal Packing Problems

6.2 Orthogonal packing problems

Let n be the number of items to pack, and denote as wj and hj the width and height

of item j (j = 1, 2, . . . , n). When packing in a strip, the traditional representation is to see

it as a vertical band, having fixed width and infinite height. In order to obtain a better

display on a monitor, we decided instead of adopting an horizontal view, i.e., our strip has

fixed height and infinite width.

Let H be the height of the bin or strip, and W be either the width of the bin or any

upper bound on the maximum strip width. We consider two optimization problems, each

in two variants. In the strip case, the objective is to pack all the n items by minimizing the

width at which the strip is used. In the bin case, the objective is to pack a subset of items

having the largest total area. In both cases the items are either oriented (they cannot be

rotated) or they can be rotated by 90◦ degrees. We denote the resulting four variants as:

• [SO:] the stock unit is a strip and the items are oriented;

• [SR:] the stock unit is a strip and the items can be rotated by 90◦;

• [BO:] the stock unit is a bin and the items are oriented;

• [BR:] the stock unit is a bin and the items can be rotated by 90◦.

All problems we consider are strongly NP-hard and can be modeled in different ways.

In the following we adopt, for the sake of clarity, the modeling approach originally devel-

oped by Beasley [26], where the variables represent the coordinates at which the items are

packed in the bin/strip. As it will be clear later, such variables correspond to the decisions

that the user has to take when using our visual tool. We assume in the following that all nu-

merical data are positive integers. Consider a Cartesian system restricted to non-negative

integer coordinates with origin (0, 0) in the bottom-left corner of the bin/strip.

We first consider problem SO. The following Integer Linear Programming (ILP) model

makes use of a pseudo-polynomial number of binary decision variables

xjpq =

{
1 if item j is packed with its bottom-left corner at (p, q);

0 otherwise
(6.1)

for j = 1, . . . , n, p ∈Wj , q ∈ Hj, whereWj = {0, 1, . . . ,W−wj} andHj = {0, 1, . . . ,H−hj}
denote all positions where the bottom-left corner of item j may be placed. The ILP model

6.2. Orthogonal packing problems 135

is:

min z (6.2)
∑

p∈Wj

∑

q∈Hj

xjpq = 1 (j = 1, . . . , n) (6.3)

n∑

j=1

r∑

p=r−wj+1
p∈Wj

s∑

q=s−hj+1
q∈Hj

xjpq ≤ 1 (r = 0, . . . ,W − 1; s = 0, . . . ,H − 1) (6.4)

∑

p∈Wj

∑

q∈Hj

(p +wj)x
j
pq ≤ z (j = 1, . . . , n) (6.5)

xjpq ∈{0, 1} (j=1, . . . , n;p ∈Wj; q ∈ Hj). (6.6)

3 The objective function (6.2) minimizes the width z at which the strip is used. Equations

(6.3) impose that each item is packed in exactly one position. Inequalities (6.4) impose

that at most one item occupies any unit square of the strip. Constraints (6.5) set the

value of the objective function. Note that, for each item j, definitions (6.6) only consider

variables corresponding to feasible positions for the bottom-left corner of the item, so no

packed item can exceed the height of the strip.

In order to model problem SR, we add to (6.1) a twin set of variables,

yjpq =

{
1 if item j is packed, rotated, with its (new) bottom-left corner at (p, q);

0 otherwise
(6.7)

for j = 1, . . . , n, p ∈W j , q ∈ Hj, where W j = {0, 1, . . . ,W − hj} and Hj = {0, 1, . . . ,H −
wj} denote all positions where the bottom-left corner of the rotated item may be placed.

The resulting ILP model for SR has the same objective function as SO, while constraints

become

∑

p∈Wj

∑

q∈Hj

xjpq +
∑

p∈W j

∑

q∈Hj

yjpq =1 (j = 1, . . . , n) (6.8)

n∑

j=1

(r∑

p=r−wj+1
p∈Wj

s∑

q=s−hj+1
q∈Hj

xjpq+
r∑

p=r−hj+1

p∈W j

s∑

q=s−wj+1

q∈Hj

yjpq

)
≤1(r=0, ..,W−1;s=0, ..,H − 1) (6.9)

∑

p∈Wj

∑

q∈Hj

(p +wj)x
j
pq +

∑

p∈W j

∑

q∈Hj

(p + hj) y
j
pq ≤z (j = 1, . . . , n) (6.10)

136 Chapter 6. A Training Software for Orthogonal Packing Problems

xjpq ∈ {0, 1} (j=1, . . . , n;p ∈Wj; q ∈ Hj) (6.11)

yjpq ∈ {0, 1} (j=1, . . . , n;p ∈ Hj; q ∈W j) (6.12)

5 to impose feasibility with respect to the two possible orientations.

An ILP model for problem BO (pack oriented items in a bin) can be immediately

derived from (6.2)-(6.6) by: (i) eliminating constraints (6.5), as definitions (6.6) guarantee

that no packed item can exceed the borders of the bin; (ii) replacing objective function

(6.2) with

max

n∑

j=1

wj hj

(∑

p∈Wj

∑

q∈Hj

xjpq

)
, (6.13)

that maximizes the packed area; (iii) replacing the ‘=’ sign with ‘≤’ in (6.3), as not all

items must be packed.

Finally it is easily seen that the non-oriented bin packing version BR can be modeled,

by introducing the twin variables (6.7), as

max
n∑

j=1

wj hj

(∑

p∈Wj

∑

q∈Hj

xjpq +
∑

p∈W j

∑

q∈Hj

yjpq

)
(6.14)

∑

p∈Wj

∑

q∈Hj

xjpq +
∑

p∈W j

∑

q∈Hj

yjpq ≤ 1 (j = 1, . . . , n) (6.15)

(6.9), (6.10), (6.11), (6.12).

As already mentioned, the purpose of this chapter is not to present the state-of-the-art of

algorithms for the exact or approximate solution of two-dimensional packing problems. In

order to be self-contained, we give however a brief description of two classical and intuitive

heuristic algorithms that we used to evaluate the solutions produced by the students who

took part in the classroom tests. (The exact solutions were obtained through the exact

approaches proposed by Côté et al. [83] and Delorme et al. [100].)

The classical Bottom-Left algorithm was introduced by Baker et al. [18] for problem SO,

in the (equivalent) version in which the strip is vertical (see Section 6.2). It preliminary

sorts the items according to a prefixed policy (non increasing width, or non increasing

height, or non increasing area), and packs one item at a time, in the lowest possible

position, left justified. Its worst-case performance is 3, i.e., it is guaranteed to produce a

6.3. Software 137

vertical strip whose hight does not exceed by more than three times the hight of the optimal

solution. The algorithm can be implemented so as to run in O(n2) time (see Chazelle [61]).

In our case (horizontal strip), the item is packed in the leftmost possible position, top

justified.

As the classroom tests were performed both on problems SO and SR, we also imple-

mented a simple variation that preliminarily sorts the items according to a given policy

(non-increasing max(width,height) or non-increasing area) and, at every iteration, packs

the current item in the leftmost-top position: if both orientations are feasible, the item is

packed by selecting the smallest side as the width.

Another stream of heuristics (Best-fit algorithms, see Burke et al. [51]) first finds, in the

current packing, holes (empty orthogonal spaces) at which the next item may be packed

(initially, the bottom of the strip/bin is the unique hole). It selects the bottommost hole

and inserts in it the largest item that fits. If the item width is smaller than that of the

hole, it is packed according to a prefixed policy (leftmost, or close to the tallest neighbor,

or close to the smallest neighbor). If no item can be packed in the selected hole, the hole

is “closed” (filled with empty space). When rotation is allowed, the algorithm considers

both orientations when checking if an item fits in a hole, and selects the largest item that

fits, selecting the highest one in case of tie.

For both families of algorithms, our approach performs a separate execution for each of

the three prefixed policies, and returns the best solution. For the cases with rotation, a so

called tower reduction post process is executed, that tries to rotate, if possible, the items

whose top edges touch the top of the strip, in order to reduce the strip height.

An instance of any problem variant can obviously include a number of identical items.

In order to obtain a compact definition and visual rendering, our representation of an

instance handles it without duplicating the items, but defining the number of copies of

each item type.

6.3 Software

In this section, we detail TwoBinPack, the open source Scala architecture that was

developed to host TwoBinGame. Scala is a general purpose programming language that

combines ideas from functional programming and object-oriented programming. It runs on

the Java platform and its distribution is released under a BSD licence. Full documentation

can be found at http://scala-lang.org/documentation.

http://scala-lang.org/documentation

138 Chapter 6. A Training Software for Orthogonal Packing Problems

The application we describe is released under the GPLv3 license. A self-contained ver-

sion is available for free download, as a compressed file, from http://www.or.deis.unibo.

it/staff_pages/martello/Tools/T.html. Instructions, additional information, and (fu-

ture) enhanced versions can be found at http://gianlucacosta.info/TwoBinPack/. A

visual tutorial can be seen online at https://youtu.be/SS6mJxugyxc.

The architecture includes three main components:

1. TwoBinManager, that manages the problem instances (creation, modification, re-

moval, import, export) and the solutions (import, visualization);

2. TwoBinGame, that loads the instances created by TwoBinManager and allows the user

to interactively solve them;

3. TwoBinKernel, a Scala library referenced by the two previous components.

In addition, TwoBinPack is based on four modules of the general-purpose library Helios

(see https://www.facebook.com/pages/Helios/206962992779275): Helios-core, Helios-

fx, Helios-jpa, and Helios-reflection. The overall architecture is summarized in Figure 6.1.

Figure 6.1: The architecture stack.

TwoBinKernel is the core of the TwoBinPack architecture. It provides the ScalaFX

rendering components used to model the two-dimensional packing problems, as well as

the tools required to obtain a user-friendly interface in terms of, e.g, dimensions, frames,

coordinate system, templates, problem, and user solution. TwoBinKernel is also an open

source Scala library, released under the GPLv3 license, available for the creation of new ap-

plications (see https://github.com/giancosta86/TwoBinKernel). In the next sections

we provide some details on the two other components of the architecture.

http://www.or.deis.unibo.it/staff_pages/martello/Tools/T.html
http://www.or.deis.unibo.it/staff_pages/martello/Tools/T.html
http://gianlucacosta.info/TwoBinPack/
https://youtu.be/SS6mJxugyxc
https://www.facebook.com/pages/Helios/206962992779275
https://github.com/giancosta86/TwoBinKernel

6.3. Software 139

TwoBinManager

TwoBinManager is a ScalaFX application designed to manage instances, bundles, and

solutions through a local HyperSQL database residing in the user’s home directory.

An instance corresponds to a certain problem variant, it allows rotation or not, it has

a total number of items (called blocks in the application), a number of item types, and the

amount of items of each type. In addition it has a time limit assigned to the user to find

a solution. Figure 6.2 shows a strip packing instance with 10 items of 8 item types, for

which rotation is not allowed and 6 minutes are given to find a solution.

Figure 6.2: A strip packing instance.

An instance can be generated within the program, or it can be read from a standard

text file or from a bundle file (a set of one or more instances) previously generated by

TwoBinManager. Some parameters of the instance can be modified in TwoBinManager

(e.g., the time limit).

TwoBinGame

TwoBinGame is a ScalaFX application enabling users to interactively solve two-dimensional

packing problems. It reads the bundles created by TwoBinManager and returns a file that

contains the best solution found by the user for each instance in the bundle and the time

required to obtain it. Figure 6.3 shows the solution given by a student for the instance

shown in Figure 6.2, that packs the items into a strip of width 14, found in 3 minutes and

17 seconds. Upon reading a bundle file, the user tries to solve, one after the other, all

the instances in the bundle. Once the time limit is expired (or if the user decides to pass

to the next instance), TwoBinGame stores the best solution found for the current instance.

When all instances of the bundle have been tried, the user can save the obtained results.

TwoBinGame provides two different ways for building a solution: usual drag and drop, or a

140 Chapter 6. A Training Software for Orthogonal Packing Problems

Figure 6.3: A solution for the instance of Figure 6.2.

mouse-wheel and click approach (for a faster interaction).

Figure 6.4 shows the visual interface of TwoBinGame for the instance of Figure 6.2.

Figure 6.4: The user view for the instance of Figure 6.2.

6.4 Experiments

We used TwoBinGame to perform a series of classroom tests on the SO and SR variants

with students of Engineering (Degrees in Management Engineering) of the Universities of

6.4. Experiments 141

Bologna and of Modena and Reggio Emilia. Classroom tests were optional and competitive.

Each student that accepted to participate received a small bonus in her/his final mark.

The students achieving the best solutions received a larger bonus. In the next section we

describe in details the setup of the tests, whereas in Section 6.4.2 we discuss the results

that were obtained.

6.4.1 Setup

We decided to focus on SO and SR random instances having the following characteris-

tics:

1. n ∈ {10, 13, 17, 20};

2. H ∈ {10, 15, 20};

3. wj and hj values uniformly randomly distributed in [H/4,H/2], [1, 2H/3];

4. rotation either allowed or forbidden.

For each quadruplet (n, H, range, rotation) one instance was generated, producing in

total 48 instances. After a manual check, we removed the instances that could be trivially

solved, and generated others with the same parameters. We fairly distributed the 48

instances into 8 bundles of 6 standard instances each. For statistical purposes, we added

to each bundle an additional instance, having either medium or high difficulty. The one

of medium difficulty had 13 items to be packed into a strip of height 15 without rotation,

while the difficult one had 20 items to be packed into a strip of height 20 allowing rotation.

According to the presumed difficulty, each instance was allowed a time limit of x minutes,

with x ∈ {4, 5, 6, 7, 8}.
Each student was assigned a bundle. Each test lasted about one hour: 20 initial minutes

were used to instruct the students on how to download the software, solve a toy instance,

and learn on a standard instance with no time limit. The remaining 40 minutes were used

to solve the seven instances in the assigned bundle. At the end of the test, each student

sent by email the file containing the best solution obtained for each instance.

Four classroom tests were performed. At the University of Bologna, 65 students of

the second year of the Bachelor Degree performed the test in the university lab, while 18

students from the same class performed the test at home using their own PCs. In the

latter case, links and instructions on how to download TwoBinGame, as well as the bundle

142 Chapter 6. A Training Software for Orthogonal Packing Problems

number, were communicated to the students by email. At the University of Modena and

Reggio Emilia, two tests were performed in the university lab: the former one involved 72

students of the first year of the Master Degree, while the latter involved 58 students of the

third year of the Bachelor Degree. Overall, 213 students performed the test: 195 in the

lab and 18 online.

The outcome of the tests showed no remarkable difference in the performance of students

of different courses so, in the next section, we evaluate the results through aggregate

information.

6.4.2 Results

We report in the following the outcome of 201 tests out of the 213 that were performed.

The results of the remaining 12 tests were disregarded because either incomplete informa-

tion was provided via email or the student did not reach a minimum of 5 feasible solutions

out of 7. We evaluate in Tables 6.1–6.5 the 201 × 6 = 1206 solutions of the six standard

instances in the bundles, while in Table 6.6 and Figure 6.5 we comment on the 201 solutions

of the additional, more difficult, instances.

The tables aggregate the instances into subgroups, one per line, according to different

characteristics. Let zopt be the optimal solution value. The tables provide, for each line,

the number of tests performed on the corresponding instances and, respectively for the

humans and the heuristics,

• average percentage of optimal solutions (avg. perc. opt.);

• average absolute gap (avg. abs. gap) between solution value and optimal value;

• average relative gap (avg. rel. gap), computed as (solution value - zopt)/zopt.

The last line of each table provides the overall average values.

Table 6.1 evaluates the solution quality when varying the number n of items. As it

could be expected, the students found good quality solutions for instances with a small

number of items and worse solutions when this number was larger. A similar behavior

cannot be clearly established for the heuristics. Overall, the students beat the heuristics in

finding proven optimal solutions (22.5% vs 18%), but they resulted slightly worse in terms

of average solution quality (1.83 vs 1.65, and 6.1% vs 5.7%).

Table 6.2 ranks the solutions according to the range of the optimal solution value

(strip length). The students performed very well on the 168 tests made on instances for

6.4. Experiments 143

Table 6.1: Evaluation by varying n

n # tests
avg. perc. opt. avg. abs. gap avg. rel. gap

human heuristic human heuristic human heuristic

10 304 28% 9.2% 1.35 1.41 7% 7.5%
13 299 25.4% 29.1% 1.62 1.48 5.9% 5%
17 299 19.1% 11% 2.12 2.05 6.4% 6.5%
20 304 17.4% 22.7% 2.23 1.66 5.2% 3.9%

overall 1206 22.5% 18% 1.83 1.65 6.1% 5.7%

which zopt ∈ [5; 14], optimally solving almost 40% of them. Their performance decreased

consistently when the range increased, and no instance with zopt ≥ 55 could be solved to

optimality. A similar behavior can be noticed for the heuristics, confirming that the range

of the optimal solution value has considerable impact on the difficulty of an instance. It

is interesting to observe that the students clearly beat the heuristics in finding optimal

solutions, probably because the visualization gives good opportunities for a clever post-

processing of near-optimal solutions.

Table 6.2: Evaluation by varying the optimum solution range

zopt range # tests
avg. perc. opt. avg. abs. gap avg. rel. gap

human heuristic human heuristic human heuristic

[5; 14] 168 39.3% 35.1% 0.73 0.74 5.6% 5.7%
[15; 24] 289 32.2% 23.5% 1.15 1.03 5.9% 5.5%
[25; 34] 462 20.8% 16.7% 1.58 1.73 5.5% 6%
[35; 44] 124 9.7% 10.5% 2.96 2.19 7.5% 5.3%
[45; 54] 90 4.4% 0% 4.16 3.11 8.3% 6.2%
[55; 64] 73 0% 0% 4.25 3.05 7.3% 5.3%

overall 1206 22.5% 18% 1.83 1.65 6.1% 5.7%

Table 6.3 takes the variation of the strip height into account. Both students and

heuristics found better solutions for instances with small strip height. The strong impact

of the strip height on the instance difficulty is also shown by the increase in the absolute

and relative gaps when H increases. The reason for this behavior is probably that a small

strip height gives few possibilities for the vertical placement of an item.

Table 6.4 shows the results for the two ranges adopted for the items dimensions: in

the former range the items have comparable dimensions, while in the latter they are quite

144 Chapter 6. A Training Software for Orthogonal Packing Problems

Table 6.3: Evaluation by varying the strip height H

H # tests
avg. perc. opt. avg. abs. gap avg. rel. gap

human heuristic human heuristic human heuristic

10 402 39.8% 39.3% 0.78 0.66 4.2% 3.8%
15 402 21.4% 14.7% 1.56 1.64 6.2% 6.7%
20 402 6.2% 0% 3.22 2.65 8% 6.7%

overall 1206 22.5% 18% 1.83 1.65 6.1% 5.7%

dissimilar from each other. This parameter only marginally affected the performance of the

students who, however, performed slightly better for the wider range. The fact that such

range appears to produce easier instances is confirmed by the heuristics, whose performance

is clearly better for it.

Table 6.4: Evaluation by varying the item dimensions’ range

item range # tests
avg. perc. opt. avg. abs. gap avg. rel. gap

human heuristic human heuristic human heuristic

[H/4;H/2] 603 21.4% 14.6% 1.97 2.01 6.2% 6.5%
[1; 2H/3] 603 23.5% 21.4% 1.69 1.29 6% 4.9%

overall 1206 22.5% 18% 1.83 1.65 6.1% 5.7%

Table 6.5 concerns the possibility of rotating the items (by 90 degrees). On average,

allowing rotation helps the students in finding optimal or good-quality solutions. A similar

behavior cannot be observed for the heuristics: when rotation is allowed they find less

optimal solutions, but at the same time they provide better absolute and relative gaps.

This could be produced by the tower-reduction post processing: when rotation is allowed,

the algorithm repositions some long and thin items packed at the top of the strip, which

helps in reducing the gap but not in reaching optimality.

Table 6.6 presents results for the two additional instances that were included in the

bundles. The instance having a supposed medium difficulty was attempted 71 times by the

students, whereas the difficult one was attempted 130 times. Just one of these attempts

resulted in an optimal solution (for the medium difficulty instance). The table shows the

impact of the allowed time limit (from 4 to 7 minutes). For the medium difficulty instance,

the time appears to be a relevant factor to decrease the gaps. For the difficult instance,

6.4. Experiments 145

Table 6.5: Evaluation by allowing/disregarding rotation

rotation # tests
avg. perc. opt. avg. abs. gap avg. rel. gap

human heuristic human heuristic human heuristic

not allowed 603 19.2% 18.4% 1.85 1.8 6.8% 6.6%
allowed 603 25.7% 17.6% 1.81 1.51 5.4% 4.9%

overall 1206 22.5% 18% 1.83 1.65 6.1% 5.7%

instead, it does not allow to produce better solutions, probably because the instance was

“too difficult”.

Table 6.6: Solution quality for the difficult shared instances by varying time

time limit
Medium instance Difficult instance

tests avg. abs. gap avg. rel. gap # tests avg. abs. gap avg. rel. gap

4 16 2.9 9.8% 33 5.0 7.3%
5 19 2.5 8.7% 32 3.7 5.5%
6 15 1.9 6.6% 31 4.9 7.1%
7 21 1.9 6.7% 34 4.9 7.2%

overall 71 2.3 7.9% 130 4.6 6.8%

The medium difficulty instance had zopt = 26, which was found just by one student

(in 4:44 minutes), whereas the heuristics found a strip of length 28. The difficult instance

had zopt = 62: the best student found a solution with z = 63 in 7:02 minutes, while the

heuristic solutions (both the one found by bottom-left and the one found by best-fit) had

z = 67. The four solutions obtained for this instance are shown in Figure 6.5, which gives

some insight in the packing processes. The best student solution is very good: some small

waste portions of the strip are accepted even at an early stage of the packing, but this

results in a small final waste of just 24 units out of 1240. The possibility of rotating the

items has been conveniently exploited (see the light blue items). The heuristic solutions

are instead quite bad. Best-fit managed to produce a very dense packing at the beginning

of the strip, but this resulted in a large waste towards the end. Bottom-left had a similar

behavior. Note that both heuristics left for the final portion of the strip the yellow, red,

and purple items. In particular, the yellow items appear to be difficult to pack, and the

optimal solution is the only one that managed to conveniently pack them together with a

light blue item.

146 Chapter 6. A Training Software for Orthogonal Packing Problems

(a) optimal, z = 62 (b) bottom-left, z = 67

(c) best human, z = 63 (d) best-fit, z = 67

Figure 6.5: Solutions of the difficult instance

6.5 Conclusions

We have presented TwoBinGame, an open source visual application for interactively

solving two-dimensional packing problems. The application was developed for guiding

engineering students to understand how difficult combinatorial optimization problems can

be solved through heuristic approaches. Although mainly conceived for didactical purposes,

the application can be conveniently used in professional contexts. Practitioners can find

it useful to build good quality solutions for real world two-dimensional packing instances

arising, e.g., in the glass, steel or paper industry. On the other hand, TwoBinGame can

help developers in the design of effective algorithms for the solution of these problems. We

have additionally reported on classroom experiments that proved to be useful in testing

students’ skills versus exact and heuristic approaches.

Chapter 7

Mathematical Models and

Decomposition Algorithms for

Makespan Minimization in Plastic

Rolls Production

1

In this chapter, we study an optimization problem that originates from the packaging

industry, and in particular in the process of blown film extrusion, where a plastic film is

used to produce rolls of different dimensions and colors. The film can be cut along its

width, thus producing multiple rolls in parallel, and set-up times must be considered when

changing from one color to another.

The optimization problem that we face is to produce a given set of rolls on a number of

identical parallel machines by minimizing the makespan. The problem combines together

cutting and scheduling decisions, and is of high complexity. For its solution we propose

mathematical models and heuristic algorithms that involve a non-trivial decomposition

method. By means of extensive computational experiments we show that proven optimality

can be achieved only on small instances, whereas for larger instances good quality solutions

can be obtained especially by the use of an iterated local search algorithm.

Keywords: Plastic Rolls Production, Blown Film Extrusion, Optimization, Mixed Integer

Linear Programming, Iterated Local Search.

1The results of this chapter appears in: V. Nesello, M. Delorme, M. Iori, and A. Subramanian, Math-
ematical Models and Decomposition Algorithms for Makespan Minimization in Plastic Rolls Production,
Journal of the Operational Research Society, to appear [223].

147

148 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

7.1 Introduction

In the packaging industry, plastic films are commonly obtained by blown film extrusion.

A tube of polymer is inflated to form a thin film bubble. The bubble is collapsed to obtain a

flat film, which is then used to produce the required items. A common process is to first use

the film to produce plastic rolls, and then use the rolls later on the production process to

obtain smaller items. The rolls have a certain width that depends on the extruder machine

at use, and a (possibly very large) length that depends from the adopted operating time.

To obtain the desired roll dimensions, the film can be cut both along its width and along

its length. The cutting along the width is obtained by one or more devices called slits and

allows to produce multiple rolls in parallel on the same machine. We refer to, e.g., Cantor

[53] for a wide description of the blown film extrusion characteristics.

In this chapter we focus on a problem that originates from an industry producing plastic

bags for the South American market. Multiple identical extruded machines, each equipped

with a limited number of slits, are available to produce in parallel a set of required plastic

rolls. Each roll has a specific color, thickness, width, and length. The extruder machines

make use of raw polymer, thus a colorant is required for the plastic bags to have the desired

color. This implies that the rolls processed at the same time on the same machine have the

same color and thickness, although they might have different width and length. The width

of the film can be adjusted at any time so as to waste neither time nor plastic. A setup

time is incurred when switching from one color to another, while changing the thickness is

instantaneous. The aim is to produce the required set of rolls by minimizing the makespan,

i.e., the completion time of the last item.

Note that the cutting process can be seen as a three-stage two-dimensional guillotine

cutting (see, e.g., Silva et al. [259]): the first-stage of vertical cuts separates blocks of

rolls having different colors; the second-stage of horizontal cuts separates shelves of rolls

produced in parallel; the third-stage of vertical cuts separates a roll from the subsequent

one thus obtaining the required products.

To better understand this complex problem, a simple example involving 12 items of 3

different colors and a unique thickness is depicted in Figure 7.1. The numbers on the arcs

represent the setup times between pairs of colors. The widths of the items are proportional

to the vertical dimensions of the depicted rectangles, whereas lengths are proportional to

the horizontal dimensions (roll lengths have been scaled down to better fit the graphical

representation). An optimal solution with two machines, both equipped with one slit and

7.1. Introduction 149

having maximum width 5, is provided in Figure 7.2. Machine 1 processes a first block

containing only item 1 for 5 time units, then incurs in a setup of 4 units, and finally

processes a second block containing items from 5 to 8 for 11 time units. The slit is used

only in the second block to separate the shelf containing item 8 from the shelf containing

the remaining items. Note that no plastic is wasted during the processing of the second

block. The width of the film can indeed be reduced by lowering down by one unit the

upper part when processing items 8 and 6, and by two units when processing 8 and 7.

Similarly, the bottom can be lift up by one unit when processing only 7. A similar process

is performed by machine 2, that processes two blocks, both made by two shelves. The

slit is used in the first block to separate item 4 from 2 and 3, and in the second block to

separate items 9 and 10 from 11 and 12. The resulting makespan is of 20 time units.

2 3

4

1

8

5
6

7

12

10

11

9

4

3

10

Figure 7.1: A simple PRPP instance.

The resulting optimization problem, that we hereafter call plastic rolls production prob-

lem (PRPP), embeds a cutting component (the 3-stage two-dimensional guillotine cutting)

into a classical scheduling problem of makespan minimization with setup times on parallel

machines. Problems arising in the so-called cutting and packing research area are fre-

quently encountered in practical industrial applications (see, e.g., Kallrath et al. [165] and

the special issue edited by Bennell et al. [36]). Cutting and packing problems are frequently

combined with problems from other optimization areas so as to better model real-world

situations. Iori et al. [161] combined two-dimensional loading problem and vehicle-routing,

Gramani et al. [140] and Silva et al. [258] integrated lot-sizing with cutting stock prob-

150 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

0 5 10 15 20

0 5 10 15 20

0

1

2

3

4

5

0

1

2

3

4

5

2

3

4

1

5

8

6

7

11

9

10

12

Figure 7.2: An optimal solution for the instance in Figure 7.1.

lems, and Hu et al. [159] considered two-dimensional spatial resource constraints in project

scheduling, just to cite some examples.

To the best of our knowledge, the problem that is most similar to the PRPP is the

three-stage two-dimensional guillotine cutting problem studied by Vanderbeck [285]. In

this problem, rectangular bins of fixed width and length are cut into blocks, then blocks

are cut into shelves, and shelves are cut into items. Fixed setup times occur between

blocks, and the objective is mainly waste minimization. The problem was solved by a

decomposition based on the recursive use of a column generation approach. The PRPP is

however different from the problem in [285] because it has a limit on the number of shelves

per block, it has sequence-dependent setup times, it involves rolls instead of bins of fixed

length, and aims at minimizing makespan instead of waste material.

The aim of this charpter is to formally introduce the PRPP, present exact and heuristic

methods for its optimization, and perform an extensive computational evaluation of the

proposed solution strategies. In details, we first model the PRPP using a compact mixed

integer linear programming (MILP) formulation, i.e., a formulation that has a polynomial

number of variables and constraints. We then decompose the problem by separating the

cutting component from the scheduling one, and use this to derive valid lower and upper

bounds on the optimal makespan. Notably, these bounds are obtained by solving three

different MILP models, one involving a non-trivial pseudo-polynomial arc-flow formulation,

another one requiring a tailored branch-and-cut implementation and the last one based on

the generalized assignment problem. These techniques work well for small- and medium-

size instances, thus, to efficiently address large-size instances, we developed a metaheuristic

based on an iterated local search framework.

7.2. Problem Description 151

The remainder of the chapter is organized as follows: (i) the PRPP is formally in-

troduced and the relevant literature is discussed; (ii) the compact MILP formulation is

presented; (iii) the decomposition approach and the lower bounds are explained; (iv) the

upper bounding methods are described; (v) the proposed techniques are computationally

evaluated; and (vi) conclusions are drawn in the last section.

7.2 Problem Description

The PRPP requires to produce n plastic rolls, called items for short in the following,

on m identical parallel machines. Each item j has width wj , length lj , and belongs to a

class γj , for j = 1, . . . , n. Without loss of generality we suppose that the processing time

of an item j is equal to its length lj . Two items belong to the same class if they have the

same color and thickness, thus allowing both of them to be processed at the same machine

simultaneously. A setup cost sij occurs when a machine processes an item j after having

processed an item i. A machine cannot process items during setup. Each machine has

a maximum width W and is equipped with σ slits. A block is a subset of items of the

same class, whereas a shelf is a sequence of items packed at the same width in a block.

A machine can process items in parallel by using a three-stage two-dimensional guillotine

cutting process: the first-stage vertical cuts separate blocks, the second-stage horizontal

cuts separate shelves, and the third-stage vertical cuts separate items. The width of a

shelf is given by the wider item in that shelf. The total width of the shelves produced in

parallel on a machine cannot exceed W , whereas their total number cannot exceed σ + 1.

The processing time of a shelf is given by the sum of the lengths of the items in that shelf,

and the processing time of a block is the maximum processing time of the shelves in that

block. The objective of the PRPP is to feasibly schedule the items into the machines by

minimizing the makespan.

We consider that a fixed identical setup cost occurs on each machine at the beginning

of the activities. As this cost is the same for all the machines it has no impact on the

optimal solution, thus we simply disregard it from our study. Moreover, our models and

algorithms could be easily adapted to include a starting setup cost that depends from an

initial configuration on each machine.

The PRPP is composed by a two-dimensional cutting component (creating the blocks)

and a scheduling component (assigning the blocks to the machines with sequence-dependent

setup times). Because of its nature, it generalizes a number of quite different combinatorial

152 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

optimization problems, as noticed in Table 7.1. If a single machine with 0 slits is available

and all items have the same color, then the problem is trivial because there are no setup

costs and items must be processed one after the other, so the makespan is simply the sum

of all processing times. If a single machine with 0 slits is available and the items have

different colors, then the PRPP reduces to the well-known traveling salesman problem

(TSP), see, e.g., Applegate et al. [12], because items cannot be produced in parallel and

thus minimizing the makespan is equivalent to finding the permutation of the items that

leads to the lowest setup cost. If all items have the same color, and multiple machines

are available but none of them has slits, then the PRPP is equivalent to the identical

parallel machine scheduling problem (P||Cmax), see, e.g., DellAmico et al. [94]. In this

case, indeed, no setup cost is paid, items cannot be produced in parallel on a machine,

and thus the problem is to distribute the items among the machines to obtain the best

makespan. If all items have the same color and just one machine is available, then the

PRPP becomes a three-stage cardinality-constrained two-dimensional strip packing problem

(3SC2SPP), where the cardinality limit is imposed on the number of shelves. The strip

packing problem (SPP) is to pack a set of rectangles into a strip of fixed width and minimum

length, without overlapping and without rotation (see, e.g., Côté et al. [83]). Several SPP

variants including multi-stage guillotine cuts have been studied in the literature (see, e.g.,

Silva et al. [259] and Mrad [221] among others), but, to the best of our knowledge, the

3SC2SPP is a new problem.

With the exception of the trivial case, all the discussed problem variants are NP-hard,

so the same holds for the PRPP.

Table 7.1: Relevant PRPP variants under different input parameters.

colors machines slits problem

1 1 0 trivial
2 or more 1 0 traveling salesman problem
1 2 or more 0 identical parallel machines scheduling problem
1 1 1 or more three-stage two-dim. card.-constr. SPP
2 or more 2 or more 1 or more plastic rolls production problem (this chapter)

7.3. A Compact Mathematical Formulation 153

7.3 A Compact Mathematical Formulation

In this section we propose a compact model for the PRPP that generalizes the one

presented by Lodi and Monaci [198] for the two-stage two-dimensional knapsack problem

by considering three-stage cutting and setup costs. In the following, let items be sorted

by non-increasing width, breaking ties by non-increasing length. Let us say that an item

initializes a shelf if it is the lowest-index item in that shelf, and that it initializes a block

if it is the lowest-index item in that block.

Now, let us first model the cutting part of the PRPP by using the decision variable

• xjik =

{
1 if item j is in shelf i of block k;

0 otherwise;
for 1 ≤ k ≤ i ≤ j ≤ n, γk = γi = γj .

Variable x has a threefold meaning: if xkkk = 1, then item k initializes block k, meaning

that item k has the greatest width of all items in block k; if xiik = 1, k < i, then item

i initializes shelf i in the block initialized by a previous item k, meaning that item i has

the greatest width of all items in shelf i, but there is at least one item with greater width

that initializes another shelf in block k; if xjik = 1, k < i < j, then item j is packed

into the shelf initialized by a previous item i in the block initialized by a previous item k,

meaning that item j is placed in a shelf containing at least one item of greater width. This

is necessary to enforce items with lower width to be packed to the right of the larger ones,

therefore meeting the three-stage two-dimensional guillotine cutting configuration of the

problem. For example, in Figure 7.2, the block containing items 2, 3, and 4 is the block

number 2, because the item 2 is the one with greatest width. Hence, we say that item 2

initializes the block and shelf of the same number, and we have x222 = 1. Item 3 is packed

on the shelf initialized by item 2, so x322 = 1, and item 4 initializes the shelf number 4, so

x442 = 1. The other variables that take value 1 are x111, x555, x655, x755, x885, x999, x10,9,9,

x11,11,9, and x12,11,9.

Let us call for short “block k” the block initialized by item k and “shelf i” the shelf

initialized by item i. To model the scheduling part of the PRPP let us introduce two

dummy items, 0 and n + 1, having 0 length and no setup costs from and to other items.

Item 0 represents the beginning of the activities and item n+1 represents the end. Let us

also denote N = {1, 2, . . . , n} and N ′ = {0, 1, . . . , n, n + 1}. We make use of the following

decision variables:

154 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

• ξhk =

{
1 if block h is followed by block k;

0 otherwise;
for h, k ∈ N ′, h 6= n + 1, k 6= 0,

h 6= k;

• αk : setup required for block k, for k ∈ N ;

• βk : processing time of block k, for k ∈ N ;

• ϑhk : time flow between blocks h and k, for h, k ∈ N ′, h 6= n+ 1, k 6= 0, h 6= k;

• z : makespan.

In practice, the ξhk variables keep track of the sequences of blocks in each machine, whereas

the other variables are used to compute the completion times of the jobs and the makespan.

For the example depicted in Figure 7.2, we have: β1 = 5, β2 = 7, β5 = 11, β9 = 10, ξ01 = 1,

ξ15 = 1, ξ5,13 = 1, ξ02 = 1, ξ29 = 1, ξ9,13 = 1, α5 = 4, α9 = 3, ϑ15 = 5, ϑ5,13 = 20, ϑ29 = 7,

ϑ9,13 = 20, and z = 20.

The PRPP can then be formulated as the following MILP model:

min z (7.1)

subject to

j∑

i=1

i∑

k=1

xjik = 1 j ∈ N (7.2)

n∑

i=k

wixiik ≤Wxkkk k ∈ N (7.3)

n∑

i=k

xiik ≤ σ + 1 k ∈ N (7.4)

xjik ≤ xiik j, i, k ∈ N, k ≤ i ≤ j (7.5)
∑

h∈N ′\{k,n+1}

ξhk = xkkk k ∈ N (7.6)

αk ≥
∑

h∈N ′\{k,n+1}

shkξhk k ∈ N (7.7)

βk ≥
n∑

j=i

ljxjik i, k ∈ N, k ≤ i (7.8)

7.4. Lower Bounds based on a Decomposition Method 155

∑

h∈N ′\{0,k}

ξkh −
∑

h∈N ′\{k,n+1}

ξhk =





m if k = 0;

−m if k = n+ 1;

0 otherwise

k ∈ N ′ (7.9)

∑

h∈N ′\{0,k}

ϑkh −
∑

h∈N ′\{k,n+1}

ϑhk =

{
0 if k = 0;

αk + βk otherwise
k ∈ N ′ \ {n+ 1} (7.10)

z ≥ ϑh,n+1 h ∈ N ′ \ {n+ 1} (7.11)

αk, βk ≥ 0 k ∈ N (7.12)

0 ≤ ϑhk ≤ Uξhk h, k ∈ N ′, h 6= n+ 1,

k 6= 0, h 6= k (7.13)

ξhk ∈ {0, 1} h, k ∈ N ′, h 6= n+ 1,

k 6= 0, h 6= k (7.14)

xjik ∈ {0, 1} j, i, k ∈ N, k ≤ i ≤ j,

γk = γi = γj (7.15)

The objective function (7.1) minimizes the makespan. Constraints (7.2) ensure that every

item is scheduled. Constraints (7.3) state that the maximum width of each block is not

exceeded. Constraints (7.4) impose that the number of shelves in a block is not greater

than the maximum number of slits plus one. Constraints (7.5) state that an item j can

assigned to a shelf i only if the shelf has been initialized by i. Constraints (7.6) state that if

a block k is used, then exactly one ξhk variable incoming into k should be used. Constraints

(7.7) and (7.8) compute, respectively, the setup time and the processing time required for

each block k, if any. Note that the processing time of the block is given by the maximum

of the sums of the processing times on each shelf. Constraints (7.9) ensure that exactly m

sequences are created and that these sequences are connected. Constraints (7.10) use the

variables ϑhk as a commodity to compute the increasing time along the sequences. This

has the effect of disregarding subtours, and also allows to compute, through constraint

(7.11), the value of the makespan. Finally, constraints (7.12)-(7.15) impose the bounds on

the variables, with U being a valid upper bound value on the makespan.

7.4 Lower Bounds based on a Decomposition Method

Model (7.1)-(7.15) has the merit of unambiguously describe the PRPP, but, as later

shown, it has a poor computational performance. In this section and in the following one we

156 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

study a natural decomposition of the PRPP into its two main components, namely, cutting

and scheduling, and show how this can lead to the computation of lower and upper bounds

on the optimal solution value. Figure 7.3 presents a flowchart of our decomposition. The

cutting component (CC) solves a pure cutting problem, producing a set of possible cutting

patterns and a set of selected blocks. The patterns are passed to a scheduling component

(SC), that computes a color sequence for a pure scheduling problem and obtains a valid

lower bound. Two algorithms, namely, an iterated local search and an approach based on

a generalized assignment problem, use the selected blocks (the latter also uses the color

sequence) to produce a feasible solution of good quality.

problem input

feasible
solution

lower
bound

cutting
component

iterated
local search

scheduling
component

GAP
approach

selected blocksnormal patterns

color sequence

selected
blocks

Figure 7.3: A flowchart of the complete algorithm.

7.4.1 Cutting component (CC)

Let S be the set of all item classes, and Ns = {j ∈ N : γj = s} be the subset of items

whose class is s, for s ∈ S. As described in the problem description Section, the problem

of producing all items belonging to the same class from a film of minimum length is the

3SC2SPP. In this section we propose a method to solve the 3SC2SPP that is based on

the arc-flow formulation introduced by Valério de Carvalho [278] for the one-dimensional

cutting stock problem, and later extended to the two-stage two-dimensional case by Macedo

et al. [206].

We need some additional notation to describe our formulation. First of all, let us define,

7.4. Lower Bounds based on a Decomposition Method 157

for each s ∈ S, m∗
s as the number of different item widths andW∗

s = {w∗
1 , w

∗
2, . . . , w

∗
m∗

s
} the

corresponding width set. Additionally, we compute the set Ls of all possible combinations

of item lengths as

Ls =
{
x =

∑
j∈T

lj : 0 ≤ x ≤ Λs, T ⊆ Ns

}
, (7.16)

with Λs being an upper bound on the maximum length of a block of items of class s. Using

the definitions by Herz [153] and Christofides and Whitlock [64], Ls can be either called the

set of canonical dissections or of normal patterns. Here we use the term normal patterns.

The computation of Ls may be obtained by invoking a standard dynamic programming

procedure. We use Ls to determine the possible positions of the first-stage cuts.

To model the second-stage cuts, we make use of a graph G′
s = (V ′

s , A
′
s). The vertex set

is V ′
s = {(a, b): a = 0, 1, . . . ,W ; b = 0, 1, . . . , σ + 1}. The arc set A′

s is composed by so-

called item arcs and loss arcs: items arcs represent a second-stage cut corresponding to an

item and their set is {((d, u), (e, u + 1)): 0 ≤ u ≤ σ; 0 ≤ d < e ≤ W and e− d ∈ W∗
s }; loss

arcs represent unused portions of the film and their set is {((a, b), (W,σ+1)): (a, b) ∈ V ′
s}.

In addition, let A′
j∗s = {a = ((d, u), (e, v)) ∈ A′

s : e − d = w∗
j∗}, for w∗

j∗ ∈ W∗
s . Let also

δ+(e, u), respectively δ−(e, u), be the subset of arcs of A′
s that leaves, respectively enters,

a node (e, u).

Third-stage cuts induced on a shelf by a width w∗
j∗ ∈ W∗

s , for j∗ = 1, . . . ,m∗
s, are

modeled by the use of a multi-graph G′′
j∗s = (V ′′

s , A
′′
j∗s), where the vertex set is V ′′

s =

{0, 1, . . . ,Λs} and the arc set is composed by a subset of item arcs and two subsets of

loss arcs as A′′
j∗s = {(k, d, e): 0 ≤ d < e ≤ Λs and ∃ k ∈ Ns: e − d = lk and wk ≤

w∗
j∗}∪ {(0, d,Λs) : d = 0, 1, . . . ,Λs− 1}∪ {(0, d, d+1) : d = 0, 1, . . . ,Λs− 1}. Moreover, for

any j∗ = 1, . . . ,m∗
s we define δ+j∗(e), respectively δ−j∗(e), as the subset of arcs of A′′

j∗s that

leaves, respectively enters, a node e.

Let us introduce the following decision variables:

• ϕp = number of times a block of length p ∈ Ls is chosen (first-stage vertical cuts);

• ϕ′
pa = number of times arc a ∈ A′

s is chosen as a second-stage horizontal cut on a

block of length p ∈ Ls;

• ϕ′′
j∗a = number of times arc a ∈ A′′

j∗s is used as a third-stage vertical cut on a shelf

of width w∗
j∗ ∈ W∗

s .

158 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

The film of minimum length required to produce all items of class s ∈ S can be obtained

by solving the following MILP model:

min zCC
s =

∑

p∈Ls

pϕp (7.17)

subject to

∑

a∈δ+(e,u)

ϕ′
pa −

∑

a∈δ−(e,u)

ϕ′
pa =






ϕp if (e, u) = (0, 0);

−ϕp if (e, u) = (W,σ + 1);

0 otherwise,

(e, u) ∈ V ′
s , p ∈ Ls (7.18)

∑

a∈δ
+
j∗

(e)

ϕ′′
j∗a −

∑

a∈δ
−

j∗
(e)

ϕ′′
j∗a =






∑
p∈L

∑
a∈A′

j∗s

ϕ′
pa if e = 0;

− ∑
p∈L

∑
a∈A′

j∗s

ϕ′
pa if e = Λs;

0 otherwise,

j∗ = 1, . . . ,m∗
s (7.19)

∑

j∗=1,...,m∗

s ,w
∗

j∗
≥wk

∑

a∈A′′

j∗s

ϕ′′
j∗a = 1 k ∈ Ns (7.20)

ϕ′′
j∗(0pΛs)

=
∑

a∈A′

j∗s

ϕ′
pa j∗ = 1, . . . ,m∗

s,

p ∈ Ls (7.21)

ϕp ≥ 0, integer p ∈ Ls (7.22)

ϕ′
pa ≥ 0, integer p ∈ Ls, a ∈ A′

s (7.23)

ϕ′′
j∗a ≥ 0, integer j∗ = 1, . . . ,m∗

s,

a ∈ A′′
j∗s (7.24)

The objective function (7.17) minimizes the total used length. Constraints (7.18) im-

pose flow conservation among the ϕ′ variables, and also link together ϕ′ with ϕ by stating

that shelves can be created only in those blocks p that have a positive ϕp value. Similarly,

constraints (7.19) ensure flow conservation among the third-stage cuts and allow to pro-

duce items only in shelves that have been created by second-stage cuts. Constraints (7.20)

ensure that all items are produced, while constraints (7.21) force an empty space from p

to Λs for shelves produced in block p.

For example, to model the solution depicted in the left-most block of the bottom ma-

chine in Figure 7.2, supposing Λs = 9 and σ = 3, the following variables would take

value 1: ϕ7, ϕ′
7((0,0),(1,1)), ϕ′

7((1,1),(4,2)) , ϕ
′
7((4,2),(5,4)) , ϕ′′

1(4,0,7), ϕ
′′
1(0,7,9), ϕ′′

4(2,0,3), ϕ′′
4(3,3,7),

7.4. Lower Bounds based on a Decomposition Method 159

and ϕ′′
4(0,7,9). For the right-most block in the same machine, the following variables would

instead take value 1: ϕ10, ϕ
′
10((0,0),(2,1)), ϕ

′
10((2,1),(5,2)) , ϕ

′
10((5,2),(5,4)) , ϕ

′′
2(11,0,6), ϕ

′′
2(12,6,10),

ϕ′′
2(0,10,19), ϕ

′′
3(9,0,3), ϕ

′′
3(10,3,9), ϕ

′′
3(0,9,10), and ϕ′′

3(0,10,19).

Model (7.17)–(7.24) may have a slow convergence to an optimal solution because it

may contain a large number of variables: O(Λs) for the first set of cuts, O(Λsm
∗
sσ) for the

second, and O(Λsm
∗
sn) for the third. We use a heuristic to limit the value of Λs and some

preprocessing techniques to improve its computational performance.

In terms of preprocessing, we adopted the two following techniques:

• for each item j ∈ Ns we compute, through dynamic programming, the maximum

width w′
j ≤W −wj that can be taken by a subset of items packed side by side with

j. If wj + w′
j < W , then the width of item j is increased to wj = W −w′

j .

• let p be the item with smallest width and q the item with second smallest width. If

there is an item j (j 6= p 6= q), such that, wj + wp ≤ W , wj + wq > W , and lj ≥ lp,

then we pack items j and p alone in a single block of length lj .

A consequence of the first preprocessing is that if w′
j = 0 (that is, no item can be packed

side by side with j) then wj is set to W and j is packed alone in a block of length lj.

Limiting the value taken by Λs may decrease consistently the number of variables. We

pursue this by means of a two-step algorithm. By remarking that any upper bound for

zCC
s is also a valid upper bound for Λs, we first solve model (7.17)–(7.24) heuristically, by

limiting Λs to a small value (in our implementation we chose Λs = 1.5 × maxj∈Ns{lj}).
If the solution obtained, say, z̄CC

s , satisfies z̄CC
s ≤ Λs, then we terminate with a proof of

optimality. If instead z̄CC
s > Λs, we set Λs = z̄CC

s and solve the model once more. A

solution obtained for a given Λs can be easily mapped into a solution for another Λ′
s > Λs,

thus, the solution obtained at the end of first step is given as a “warm start” to the solver

at the beginning of the second step.

7.4.2 Scheduling component (SC)

The second component of our decomposition approach is a scheduling problem that

takes as input the information provided by solution of the cutting component. Recall that

S is the set of item classes (defined by thickness and color). Let us now define by C the

set of colors, and by Sc ⊆ S the subset of classes whose color is c, for c ∈ C. Model (7.17)-

(7.24) is invoked for each class s ∈ S to determine the minimum length film necessary to

160 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

produce all items in that class. Let z̄CC
s be the optimal solution value of the model and let

bc =
∑

s∈Sc
z̄CC
s (7.25)

be the minimum film length required to produce all items of color c. Let us also determine

all possible positions for a first-stage cut on items of color c by computing

Lc =
{
x =

∑
j∈T

lj : 0 ≤ x ≤ bc, T ⊆
⋃

s∈Sc
{Ns}

}
. (7.26)

Production typically happens on more than one machine, and in such a case the length

bc will be split among the machines. The values used to split bc can be limited to those in

(7.26). This consideration is at the basis of a MILP model that we developed to solve the

SC.

To this purpose, we build a graph G̃ = (C̃, Ã). The vertex set is C̃ = C ∪ {0}, where
0 is a dummy vertex that represents the beginning and the end of the activities. The arc

set Ã connects each pair of vertices in C̃. Let scd be the value of the setup length when

changing production from color c to color d (recall that no setup occurs when keeping the

same color and just changing the thickness). We aim at creating a working sequence for

each machine p ∈ M , specifying the order in which colors are processed on that machine,

and their corresponding quantity.

Let us first introduce a variable zSC indicating the value of the optimal makespan. Let

us also introduce two sets of three-index binary variables:

• ycdp =

{
1 if vertex c is followed by vertex d on machine p;

0 otherwise;
for c, d ∈ C̃, p ∈

M ;

• ωcℓp =

{
1 if ℓ units of film of color c are used on machine p;

0 otherwise;
for c ∈ C, ℓ ∈

Lc, p ∈M .

The scheduling component can be modeled as the following MILP model:

min zSC (7.27)

subject to

zSC ≥
∑

c∈C̃

∑

d∈C̃

scdycdp +
∑

c∈C

∑

ℓ∈Lc

ℓωcℓp p ∈M (7.28)

7.5. Upper Bounding Procedures 161

∑

c∈C̃

y0cp = 1 p ∈M (7.29)

∑

c∈C̃

yc0p = 1 p ∈M (7.30)

∑

p∈M

∑

ℓ∈Lc

ℓωcℓp = bc c ∈ C (7.31)

∑

d∈C̃

ydcp =
∑

d∈C̃

ycdp c ∈ C̃, p ∈M (7.32)

∑

ℓ∈Lc

ωcℓp ≤
∑

d∈C̃

ydcp c ∈ C, p ∈M (7.33)

∑

c∈T

∑

d∈T

ycdp ≤ |T | − 1 T ⊂ C, |T | ≥ 1, p ∈M (7.34)

ycdp ∈ {0, 1} c, d ∈ C̃, p ∈M (7.35)

ωcℓp ∈ {0, 1} c ∈ C, ℓ ∈ Lc, p ∈M (7.36)

The objective function (7.27) minimizes the makespan of the schedule. This is forced to be

not lower than the total workload (including setup and production times) on each machine

p by constraints (7.28). Constraints (7.29) and (7.30) ensure, respectively, that a single

path starts and ends at vertex 0 for each machine. Note that y00p=1 would correspond to

an empty path for machine p. Constraints (7.31) guarantee that bc units are processed in

total for each color c. Constraints (7.32) impose flow conservation for each path on each

vertex. Constraints (7.33) impose that if color c is processed on machine p then the path

adopted for p should enter vertex c. Constraints (7.34) are the classical subtour elimination

constraints and are used to impose the connectivity of the solution.

The optimal solution value for zSC represents a lower bound on the optimal PRPP

solution value. The values taken by the y and ω variables are used to derive also a valid

upper bound, as explained in the following.

7.5 Upper Bounding Procedures

The solution of the CC consists of a series of selected blocks. These can be used to

produce all the items, but , in order to produce a feasible PRPP solution, they must be

allocated to the machines by taking into account set-up times and makespan minimization.

In this section we propose two upper bounding procedures that make use of this idea, that

is, they take in input the blocks generated by the CC and then focus on the best way to

162 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

schedule them on the machines.

7.5.1 A Heuristic Based on a Generalized Assignment Problem

The solution of the CC consists of the blocks defined by the selected ϕ̄p variables

(selected first-stage vertical cuts of length p), whose total length is equal to z̄CC
s as stated

in (7.17). The set of selected blocks for a color c is thus given by the union of the selected

blocks for all s ∈ Sc, and their total length is bc as stated in (7.25).

The solution of the SC does not directly consider the item lengths, but partitions bc

into a set of film segments whose length is determined by the selected ω̄cℓp variables, each

corresponding to a segment of length ℓ (refer also to (7.31)) .

If we manage to allocate the selected blocks from the CC into the film segments pro-

duced by the SC, then we would produce a proven optimal solution (being feasible for

both cutting and scheduling and having cost equal to the lower bound zSC). If this is not

possible, we can at least use the allocation of minimum excess, which produces a heuristic

solution. This idea is at the basis of our first upper bounding procedure.

To simplify notation, let B be the set of blocks selected by the cutting component, l′j
the length of each block j ∈ B, and c′j the color of each block j ∈ B. Let F be the set of

film segments produced by the scheduling component, l′′i the length of each segment i ∈ F

and c′′i the color of each segment i ∈ F . Let also mi be the index of the machine processing

block i ∈ F anf ζp the total time (working and setup) of machine p ∈M in the solution of

the SC.

By introducing the following decision variables

• xij = 1 if block j ∈ B is assigned to segment i ∈ F , 0 otherwise;

• si = value of the slack of segment i ∈ F ;

• z = makespan,

the problem of allocating blocks to segments can be modeled as the following MILP:

min z (7.37)

subject to

∑

i∈F

xij = 1 j ∈ B (7.38)

7.5. Upper Bounding Procedures 163

∑

j∈B,c′j=c′′i

l′jxij ≤ si + l′′i i ∈ F (7.39)

z ≥
∑

i∈F,mi=p

si + ζp p ∈M (7.40)

xij ∈ {0, 1} i ∈ F, j ∈ B (7.41)

The objective function (7.37) minimizes the makespan. Constraints (7.38) state that

every block must be assigned exactly once. Constraints (7.39) force the sum of the slack

variable si and the length l′′i of the segment i ∈ F to be not smaller than the sum of the

lengths l′j of the blocks assigned to that segment. Constraints (7.40) compute the makespan

by forcing z to be greater than or equal to the original working time of a machine p plus

the total slack assigned to that machine.

Model (7.37)–(7.41) is reminiscent of the well-known generalized assignment problem

(GAP), so our first upper bounding procedure is called GAP based approach (GAPBA) in

the following.

7.5.2 An Iterated Local Search Algorithm

Our second upper bounding procedure relies on scheduling the set B of blocks generated

by the CC on m identical machines (see the previous Section for a formal definition of B).

The objective is to minimize the makespan, i.e., the maximum completion time of a block,

but, as the blocks may be of different colors, sequence-dependent setup times must be

taken into account. According to the three-field notation proposed by Graham et al. [139],

this NP-hard problem can be denoted as P |shk|Cmax.

The algorithm that we use to solve the P |shk|Cmax is an adapted version of the ILS-

RVND heuristic by Subramanian [268], originally designed to solve vehicle routing problems

(VRPs). The most common objective function in VRPs is to minimize the total tour

length, which is equivalent, on scheduling problems, to minimize the total time spent

by the machines to process all jobs. However, the objective function of the P |shk|Cmax

minimizes the makespan, which is equivalent to minimizing the longest route length on

VRPs. The adaptations that we implemented to take care of this difference essentially

consist in modifying the way the objective function is computed throughout the algorithm.

The input data for the ILS-RVND is basically a matrix that stores the time spent by a

machine to process a block k immediately after a block h, which is computed by summing

164 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

up the processing time of block k plus the setup time between h and k. The values for the

processing times are derived from the length of the blocks generated by the CC and the

setup times come directly from the PRPP input data, more precisely, from the setup times

between different colors.

In short, ILS-RVND is a multi-start heuristic that combines iterated local search (ILS),

see, e.g., Lourenço et al. [201], with randomized variable neighborhood descent (RVND), see,

e.g., Mladenović and Hansen[219] and Subramanian et al. [269]. The algorithm alternates

between local search and perturbation procedures, where the latter modifies a local optimal

solution by randomly moving or swapping items between different machines. Initial solu-

tions are generated using a greedy randomized algorithm. A detailed and comprehensive

description of ILS-RVND can be found in Subramanian [268].

The local search is performed in two different levels: (i) inter-machine, that is, moves

involving different machines; (ii) intra-machine, i.e., moves involving a single machine. In

what follows, we describe each of the neighborhood structures used in ILS-RVND. They

are exhaustively examined in a random order using the best improvement strategy.

Inter-machine neighborhoods:

• Insertion inter(1,0): a block is removed and inserted in another machine;

• Insertion inter(2,0): two adjacent blocks are removed and inserted in another

machine;

• Swap inter(1,1): permutation of two blocks assigned to different machines;

• Swap inter(2,1): permutation of a block in a machine with two adjacent blocks in

another machine;

• Swap inter(2,2): permutation of two pairs of adjacent blocks in two different ma-

chines;

• Cross: the sequences of two distinct machines are split into two, creating two initial

and two final subsequences. The initial subsequences are interchanged to build two

new sequences (each containing an initial and a final subsequence provided by two

distinct machines).

Intra-machine neighborhoods:

• Swap: permutation of two blocks in the same machine;

• 1-block insertion: a block is removed from its current position and inserted in

another position in the same machine;

7.6. Computational Experiments 165

• 2-block insertion: two adjacent blocks are removed and inserted in another posi-

tion in the same machine;

• 3-block insertion: three adjacent blocks are removed and inserted in another

position in the same machine.

7.6 Computational Experiments

The algorithms were coded in C++ and the experiments were conducted on a single core

of an Intel Core i7 processor with 3.4 Ghz and 16 GB of RAM, running Ubuntu 12.04. All

formulations were solved using CPLEX 12.6. A time limit of 3600 seconds and a memory

limit of 10 GB were imposed for the compact formulation. For the CC, we set a time limit

of 1200 seconds because only one instance could not be solved to optimality within such

limit (and the remaining instances could not be solved even allowing a much larger time).

The ILS-RVND algorithm was executed 10 times for each instance by adopting the same

parameter values as in the original work Subramanian [268]. As for the SC, we first imposed

a time limit of 3600 seconds but we later verified that this value was overestimated. Figure

7.4 depicts the value of the average gap considering all instances (described in details in

the next section) between the lower bound after a particular runtime and the lower bound

found after 3600 seconds. We can observe that the average initial gap is already small

(0.17%) and after 300 seconds it reduces to 0.12%. The improvement obtained from that

point on is not significant. Therefore, we decided to adopt 300 seconds as time limit for

the SC, as it seems that this setting offers good compromise between time spent and lower

bound quality.

7.6.1 Instances

Two sets of instances have been created on the basis of observations of processes in

the industry producing plastic bags that was at the origin of our research. The values of

the parameters were generated using uniform distribution considering the minimum and

maximum values observed in practice. The first set contains 50 small instances with number

of items ranging from 10 to 50, while the second one is composed of larger instances with

number of items ranging from 100 to 250. For each value of n (independently of the set), two

different numbers of machines were selected and two groups of instances were created, each

group containing 5 randomly generated instances. Table 7.2 shows the parameters adopted

166 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

✥

✥�✥✁

✥�✥✂

✥�✥✄

✥�✥☎

✥�✆

✥�✆✁

✥�✆✂

✥�✆✄

✥�✆☎

✥ ✝✥✥ ✆✥✥✥ ✆✝✥✥ ✁✥✥✥ ✁✝✥✥ ✞✥✥✥ ✞✝✥✥

●
✟
✠
✡☛
☞

❚✌✍✎ ✏✑✒

Figure 7.4: Evolution of the lower bound produced by the SC.

for each group of instances. The number of colors (#colors), the number of classes (#γ),

and the number of slits (σ) were generated by using a random integer uniform distribution

within the indicated intervals. For all instances, the value of W was set to 180, whereas the

values of w, l, and s were uniformly randomly generated as integer values in the intervals

[30,180], [10,200], and [10,30], respectively, with s being restricted to take values that are

multiples of 5.

Table 7.2: Instance parameters

Small instances Large instances

n m #colors #γ σ n m #colors #γ σ

10
2 [2,3] [#colors,3] [1,2]

100
4 [4,6] [#colors,10] [1,4]

3 [2,3] [#colors,3] [1,2] 6 [4,6] [#colors,10] [1,4]

20
2 [2,3] [#colors,4] [1,2]

150
6 [4,8] [#colors,14] [1,4]

3 [2,3] [#colors,4] [1,2] 8 [4,8] [#colors,14] [1,4]

30
3 [2,4] [#colors,6] [1,3]

200
6 [4,8] [#colors,14] [1,5]

4 [2,4] [#colors,6] [1,3] 8 [4,8] [#colors,14] [1,5]

40
3 [2,4] [#colors,8] [1,3]

250
8 [4,10] [#colors,18] [1,5]

4 [2,4] [#colors,8] [1,3] 10 [4,10] [#colors,18] [1,5]

50
4 [2,5] [#colors,10] [1,4]
5 [2,5] [#colors,10] [1,4]

7.6. Computational Experiments 167

7.6.2 Algorithm performance

With respect to the small instances, we report the results for all algorithms proposed

in this chapter, whereas for the larger instances, we only present the results found by

the lower bounding procedure (cutting plus scheduling component) and by the ILS-RVND

heuristic. In the latter case it is prohibitively expensive to use the compact formulation,

and the GAPBA approach produces poor upper bounds because it relies on the output of

the SC, which is executed for a short time period, thus generating low quality sequences.

In the tables presented hereafter, #inst represents the number of instances of a group,

LB and UB correspond to the lower and upper bound, respectively, #opt denotes the

number of optimal solutions found, time (s) indicates the CPU time in seconds, BKLB

represents the best known lower bound and gap (%) is the percentage gap between the UB

found by a given method and BKLB, that is: 100(UB −BKLB)/UB.

Table 7.3 presents the aggregate results obtained by the compact formulation on the

small instances. The formulation finds proven optimal solutions for 13 instances with up

to 20 items, but cannot prove optimality for any of the larger instances. The average CPU

time for the 10-item instances is acceptable, but it increases rapidly with the number of

items. Nonetheless, the average gaps between the UBs an the BKLBs are of high quality,

even for the 50-item instances. Furthermore, we notice that the average gaps tend to

increase with the number of machines.

Table 7.3: Aggregate results for the compact formulation

Compact formulation
n m #inst

avg.
avg. avg. gap time

BKLB
UB LB (%)

#opt
(s)

10
2 5 571.2 571.2 571.2 0.0 5 18.3
3 5 287.8 287.8 287.8 0.0 5 32.5

20
2 5 1001.0 1001.0 993.5 0.0 1 2895.4
3 5 595.6 596.4 585.6 0.1 2 2961.7

30
3 5 826.1 827.6 819.5 0.2 0 3488.8
4 5 640.2 643.8 602.4 0.6 0 3153.6

40
3 5 1027.6 1035.2 834.2 0.8 0 3595.5
4 5 972.2 982.6 806.6 1.1 0 3595.8

50
4 5 1088.8 1092.4 682.9 0.4 0 3596.4
5 5 806.6 823.4 441.2 2.1 0 3595.9

avg/total 50 781.7 786.1 662.5 0.5 13 2693.4

Table 7.4 presents, for the small instances, the average results obtained in terms of

168 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

lower bound by the CC followed by the SC (CS-LB), and in terms of upper bounds by

GAPBA and ILS-RVND. For CS-LB we report the average CPU time spent by the CC

(timeCC) and by the SC (timeSC), and the average lower bound produced for each group of

instances. For GAPBA we provide the average values of CPU time, gap, and upper bound,

as well as the number of proven optimal solutions found (#opt). As for ILS-RVND, we

compute for each instance the average time, the best and average gaps, and the average

UB (by considering the 10 runs). Then in the table we report the means of these values

considering the 5 instances per line, as well as the number of proven optimal solutions.

Table 7.4: Results obtained by CS-LB, GAPBA, and ILS-RVND for the small instances

CS-LB GAPBA ILS-RVND
n m #inst timeCC timeSC avg. time gap avg. avg. best avg. avg.

(s) (s) LB (s) (%) UB
#opt

time (s) gap (%) gap (%) UB
#opt

10
2 5 < 0.1 < 0.1 571.2 < 0.1 0.0 571.2 5 0.1 0.1 0.0 571.2 5
3 5 < 0.1 0.2 287.4 < 0.1 1.4 292.0 3 0.1 0.8 0.9 290.4 3

20
2 5 < 0.1 22.5 1001.0 < 0.1 0.0 1001.0 5 0.1 0.1 0.0 1001.0 5
3 5 0.1 3.9 595.6 < 0.1 0.9 601.0 3 0.1 0.9 1.0 601.0 3

30
3 5 0.7 58.8 826.1 < 0.1 0.2 827.4 2 0.1 0.2 0.2 827.4 2
4 5 1.2 146.4 640.2 < 0.1 0.5 643.2 2 0.1 0.5 0.5 643.2 2

40
3 5 1.6 155.8 1027.6 < 0.1 0.5 1032.8 2 0.1 0.4 0.4 1032.0 2
4 5 0.2 299.3 972.2 < 0.1 0.9 981.2 0 0.2 0.4 0.4 976.9 0

50
4 5 1.9 178.6 1088.8 < 0.1 0.2 1091.4 3 0.2 0.2 0.2 1090.8 3
5 5 10.2 299.6 806.6 0.1 0.9 814.2 0 0.2 0.7 0.7 812.6 0

avg/total 50 1.5 116.5 781.7 < 0.1 0.6 785.5 25 0.1 0.4 0.4 784.6 25

The combination of the two components clearly runs faster than the compact model

and the former finds much better LBs than the latter, except for some 10-item instances

and very few 20-item instances. We can also observe that scheduling is much more time

consuming than cutting. GAPBA and ILS-RVND have an equivalent performance and

both methods were capable of finding 25 proven optimal solutions, meaning that CS-LB

was equal to the best UB found by GAPBA and ILS-RVND in half of the total number of

instances.

GAPBA and ILS-RVND are very competitive in terms of CPU time and solution quality,

the former is slightly faster, while the later provides solutions with better gaps. Both

find the same number of optimal solutions and the average gap difference is of only 0.2%.

Regarding the scalability of the methods with respect to the instance size, they both appear

to be much better suited for practical applications, as shown by the experiments.

Figure 7.5 illustrates the average gap obtained by the compact formulation, GAPBA,

and ILS-RVND for the small instances. The formulation found, on average, the best gaps

for the instances with n ≤ 20, but it is outperformed by the other two approaches as

7.7. Concluding Remarks 169

the size of the instances increase. Moreover, the solutions found by ILS-RVND appear

to be systematically better than or equal to those found by GAPBA, with just a very

limited increase in the required computational effort. Overall, the proposed decomposition

manages to find good quality solutions and small average gaps within a much smaller

computational effort that the one required by the compact formulation.

 0

 0.5

 1

 1.5

 2

 2.5

10_2 10_3 20_2 20_3 30_3 30_4 40_3 30_4 50_4 50_5

A
ve

ra
ge

 g
ap

 (
%

)

Subgroup of Instances

Compact formulation
GAPBA

ILS

Figure 7.5: Comparison of the upper bounds on some small instances

Table 7.5 shows the aggregate results obtained by CS-LB and ILS-RVND for the large

instances involving 100 to 250 items. We do not prove the optimality for any instance, but

we report significantly small gaps for instances with 100 items. The gap is considerably

small for instances with up to 150 items, but for the larger instances (200 and 250 items) it

tends to increase considerably, especially when the number of machines is large. Neverthe-

less, this does not necessarily imply that the UBs found by ILS-RVND are of poor quality,

since one cannot ensure that the CS-LBs are of high quality. In addition, the difficulty

in producing high quality blocks by the CC may affect the performance of ILS-RVND in

finding high quality solutions.

7.7 Concluding Remarks

In this chapter we introduced the Plastic Rolls Production Problem (PRPP), which

integrates cutting and scheduling decisions, thus generalizing several well-known optimiza-

tion problems. We proposed different approaches for obtaining lower and upper bounds for

170 Chapter 7. Mathematical Models and Decomposition Algorithms for the PRPP

Table 7.5: Results obtained by DM and ILS-RVND for the large instances

CS-LB ILS-RVND
n m #inst timeCC timeSC avg. avg. best avg. avg.

(s) (s) LB time (s) gap (%) gap (%) UB

100
4 5 18.4 300.0 2056.8 1.4 0.4 0.4 2065.8
6 5 4.2 300.0 1440.7 1.8 0.7 0.8 1452.7

150
6 5 188.4 300.0 1909.6 4.0 4.5 4.6 1990.4
8 5 123.0 300.0 1615.9 5.4 0.8 0.9 1631.2

200
6 5 225.5 300.0 2774.2 13.9 3.5 3.5 2857.4
8 5 496.0 300.0 1449.1 3.6 17.5 17.6 1771.7

250
8 5 360.2 300.0 1590.1 6.5 9.4 9.5 2260.4
10 5 634.3 300.0 2040.3 13.2 20.8 20.9 1965.8

avg/total 40 289.6 300.0 1859.6 6.3 7.2 7.3 1999.4

the PRPP. The first one is a compact mathematical formulation that works quite well for

instances involving up to 20 items. The second approach is based on a two-phase decom-

position method designed to generate improved lower bounds, especially for instances with

more than 20 items, and a heuristic information on the way to cut items into blocks. These

blocks are later used in a generalized assignment problem based approach (GAPBA), as

well as in a iterated local search (ILS-RVND) heuristic, to produce feasible solutions. The

compact formulation found high quality lower and upper bounds for very small instances,

but failed in producing good solutions for larger instances. The decomposition method

found high quality lower bounds for instances with up to 100 items, although its perfor-

mance seems to degradate for larger instances. Both GAPBA and ILS-RVND generated

high quality solutions for instances with up to 50 items, but only the latter managed to

produce good solutions for larger instances with up to 250 items.

As for future work, one can improve the quality of the performance of the two-phase de-

composition by implementing a combinatorial branch-and-bound approach for solving the

cutting component, as well as a column generation based algorithm for solving the schedul-

ing component. Additionally, improved upper bounds could be obtained by proposing al-

ternative ways of generating blocks for the ILS-RVND heuristic. The study of different

problem variants, with alternative objective functions or machine characteristics, is also of

interest.

Chapter 8

Integer Linear and Constraint

Programming for Project

Scheduling Problems

1

In project scheduling problems, a set of tasks has to be scheduled so that the total

makespan of the project is minimized. In this chapter, we study three kinds of project

scheduling problems: the resource constrained project scheduling problem, for which we

propose improvements to existing time-indexed formulations; the discrete time-cost trade-

off problem for which we introduce a new MILP model; and the multi-mode resource-

constrained project scheduling problem for which we propose an hybridized algorithm. For

each of the problems, we compare the proposed algorithms with classical MILP formula-

tions and constraint programming approaches from the literature.

Keywords: Resource constrained project scheduling problem, Discrete time-cost tradeoff

problem, Multi-mode resource-constrained project scheduling problem, Exact algorithms.

8.1 Introduction

Given a set of p renewable resources with availability bk (k = 1, . . . , p), a set p′ of non-

renewable resources with availability b′k (k = 1, . . . , p′), a set of n tasks with mi execution

modes (i = 1, . . . , n), each consisting in a combination of duration dij (i = 1, . . . , n; j =

1, . . . ,mi), renewable resources consumption rijk (i = 1, . . . , n; j = 1, . . . ,mi; k = 1, . . . , p),

and non-renewable resources consumption r′ijk (i = 1, . . . , n; j = 1, . . . ,mi; k = 1, . . . , p′),

and a list of precedence constraints H, the Multi-Mode Resource-Constrained Project

1This chapter gathers the results of preliminary research conducted by J.F. Côté, M. Delorme, M. Iori,
and S. Martello.

171

172 Chapter 8. ILP and CP for Project Scheduling Problems

Scheduling Problem (MMRCPSP) consists in finding the execution mode and the start-

ing time for each task so that the resource availabilities and the precedence relations are

satisfied, and the project makespan is minimized.

The MMRCPSP is a very general problem that can also be used to model some other,

less constrained, problems. For example, when no non-renewable resources are considered

and only one mode per task is available, the problem is called the Resource-Constrained

Project Scheduling Problem (RCPSP). When no renewable resource is considered, and

only one non-renewable resource is available, the problem is called the Discrete Time-

Cost Tradeoff Problem (DTCTP). These problems are important because they have many

real world applications, especially in material and human resource management (see, e.g.,

Artiguez et al. [14]).

The RCPSP is NP-hard in the strong sense. Indeed, consider the bin packing problem

(BPP), in which we are given a set of n items of weight wi (i = 1, . . . , n) to pack into

the minimum number of bins with capacity c (see, e.g., Delorme et al. [98] for a recent

survey). Any BPP instance can be seen as an RCPSP by setting p = 1, b1 = c, H = ∅
and, for i = 1, . . . , n, di1 = 1 and ri11 = wi. The minimum makespan found by the RCPSP

would be the minimum number of bins required for the BPP. As the BPP is known to be

NP-hard in the strong sense (see, e.g., Garey and Johnson [130]), the same holds for the

RCPSP, and thus, for the MMRCPSP. As far as the DTCTP is concerned, it was shown

to be NP-hard in the strong sense as well by De et al. [90].

In this chapter, we strengthen existing time indexed formulations for the RCPSP, we

introduce a new mixed integer linear programming (MILP) formulation for the DTCTP,

and we propose a hybridized algorithm for the MMRCPSP. In Section 8.2, we review the

existing literature for the three problems while we detail some mathematical formulations

in Section 8.3. The proposed algorithms are given in Section 8.4 and the outcome of

extensive computational experiments is presented in Section 8.5.

8.2 Literature review

The literature on project scheduling problems is very dense and a complete review of it

is beyond the scope of this study. We mention, however, relevant surveys and interesting

approaches that have been proposed for the RCPSP, the DTCTP, and the MMRCPSP.

Among the three problems, the RCPSP is probably the one that was the most studied

in the literature. A recent survey proposed by Artiguez et al. [14] reviewed around 300

8.3. Mathematical models 173

references on the RCPSP and its extensions. TheDiscrete-time (DT) formulation, probably

the first mathematical model for the RCPSP, was proposed almost 50 years ago by Pritsker

et al. [232]. The Disaggregated Discrete-Time (DDT) formulation was proposed in the late

Eighties by Christofides et al. [63]. Other MILP models were proposed later on by Alvarez-

Valdes and Tamarit [8], Mingozzi et al. [217], Artigues et al. [15], and Koné et al. [178],

but they appear to have mainly theoretical interests as the results they exhibit when solved

through MILP solvers tend to be worse than those obtained by DT and DDT (see Koné

et al. [178]). Among the exact approaches that were tried to solve the RCPSP, we cite

branch-and-bound algorithms (see, e.g., Demeulemeester and Herroelen [102, 103], Brucker

et al. [47], Klein and Scholl [175], and Sprecher [265]), and constraint programming (CP)

approaches (see, e.g., Dorndorf et al. [105], Laborie [183], Liess and Michelon [189], and

Schutt et al. [253]).

The DTCTP was also extensively studied in the literature, we mention the very detailed

surveys by Hartmann and Briskorn [149] and by Wȩglarz et al. [290], who identified three

different objective functions for the problem. The one that can be obtained from the

MMRCPSP is called the budget problem (b-DTCTP), and aims at minimizing the makespan

while the budget (the unique non-renewable resource) is bounded. In the deadline problem

(d-DTCTP), the objective is to minimize the budget while the deadline is bounded. In

the curve problem (c-DTCTP), the objective is to provide a time-cost efficient curve, i.e.,

the minimum budget required for a given deadline that is allowed to vary. In terms of

exact approaches, we mention the branch-and-bound procedures by Demeulemeester et al.

[101] and by Değirmenci and Azizoğlu [91], and the decomposition approaches by Hazır et

al. [151] and Hadjiconstantinou and Klerides [144]. In terms of heuristics, we mention the

upper and lower bounding procedures based on column generation by Akkan et al. [4].

For the MMRCPSP, we refer the reader to the detailed survey by Wȩglarz et al. [290].

We mention in addition the work by Coelho and Vanhoucke [70] that solves heuristically

the MMRCPSP by decomposing it into successions of two phases: a mode selection step

(b-DTCTP) and a task scheduling step (RCPSP).

8.3 Mathematical models

In this section, we gather the most common mathematical models that have been pro-

posed in the literature for the three problems we study. As often happens in project

scheduling problems, we make use of a dummy tasks 0 with duration 0, no resource con-

174 Chapter 8. ILP and CP for Project Scheduling Problems

sumption, and being predecessor of all tasks, which represents the beginning of the project.

We use a similar dummy task n+1, successor of all tasks, which represents the end of the

project.

8.3.1 RCPSP formulations

The DT formulation by Pritsker et al. [232] associates for each task i (i = 0, . . . , n+1)

and each unit of time t (t = 0, . . . , T), a variable decision xit that takes value 1 if task i

starts at time t, and 0 otherwise. It makes use of an upper bound T on the total makespan

of the project and of ES(i) (resp. LS(i)) the earliest start (resp. the latest start) of task

i (i = 0, . . . , n + 1). A trivial value of T can be computed as T =
∑n

i=0 di, while ES(i)

and LS(i) can be computed by the critical path method, for example, and LS(n + 1) is

bounded by T . The DT model for the RCPSP is the following

min z =

LS(n+1)∑

t=ES(n+1)

t xn+1,t (8.1)

s.t.

LS(i)∑

t=ES(i)

xit = 1 i = 0, . . . , n+ 1, (8.2)

LS(l)∑

t=ES(l)

t xlt −
LS(i)∑

t=ES(i)

t xit ≥ di (i, l) ∈ H, (8.3)

n+1∑

i=0

rik

t∑

τ=max(0,t−di+1)

xiτ ≤ bk t = 0, . . . , LS(n+ 1); k = 1, . . . , p, (8.4)

xit ∈ {0, 1} i = 0, . . . , n+ 1; t = ES(i), . . . , LS(i). (8.5)

Objective function (8.1) minimizes the makespan of the project, while constraints (8.2)

impose that each task is scheduled exactly once. Constraints (8.3) ensure that the prece-

dence constraints are satisfied and constraints (8.4) ensure that the resource availabilities

are respected.

In the DDT formulation by Christofides et al. [63], the precedence constraints (8.3) are

8.3. Mathematical models 175

disaggregated and replaced by

LS(i)∑

τ=t

xiτ +

min(LS(l),t+di−1)∑

τ=ES(l)

xlτ ≤ 1 (i, l) ∈ H; t = ES(i), . . . , LS(i). (8.6)

8.3.2 DTCTP formulations

The textbook formulation for the DTCTP can be found in Akkan et al. [4]. It associates

for each task i (i = 0, . . . , n + 1) and each mode j (j = 1, . . . ,mi) a variable decision xij

that takes value 1 if task i is chosen in mode j, and 0 otherwise. In addition, it makes

use of variables Si (i = 0, . . . , n+ 1) that represents the starting time of task i. Values dij

and cij represent the duration and the cost of tasks i in mode j. The d-DTCTP can be

modelled as follow:

min z =

n+1∑

i=0

mi∑

j=1

xij cij, (8.7)

s.t. Sl ≥ Si +

mi∑

j=1

xij dij (i, l) ∈ H, (8.8)

Sn+1 ≤ D, (8.9)
mi∑

j=1

xij = 1 i = 0, . . . , n+ 1, (8.10)

xij ∈ {0, 1} i = 0, . . . , n + 1; j = 1, . . . ,mi, (8.11)

Si ≥ 0 i = 0, . . . , n+ 1. (8.12)

Objective function (8.7) minimizes the budget of the project while constraints (8.8)

ensure that the precedence constraints are satisfied. Constraint (8.9) impose the deadline

restriction, while constraints (8.10) ensure that exactly one mode is chosen for each task.

The b-DTCTP can be modelled in a very similar way by minimizing Sn+1 instead of

the sum of the costs in the objective function (8.7), and replacing (8.9) by

n+1∑

i=0

mi∑

j=1

xij cij ≤ B (8.13)

176 Chapter 8. ILP and CP for Project Scheduling Problems

to satisfy the budget constraint. As far as the c-DTCTP is concerned, it can be modelled

by multiple d-DTCTP in which the deadline D is modified.

8.3.3 MMRCPSP formulations

A DT formulation adapted to the MMRCPSP was given by Talbot [271]. It associates

for each task i (i = 0, . . . , n + 1), each mode j (j = 1, . . . ,mi), and each unit of time

t (t = 0, . . . , T) a variable decision xijt that takes value 1 if task i is chosen in mode j, and

starts at time t, and 0 otherwise. The resulting MILP formulation is

min z =

LS(n+1)∑

t=ES(n+1)

t xn+1,1,t, (8.14)

s.t.

mi∑

j=1

LS(i)∑

t=ES(i)

xijt = 1 i = 0, . . . , n + 1, (8.15)

ml∑

j=1

LS(l)∑

t=ES(l)

t xljt −
mi∑

j=1

LS(i)∑

t=ES(i)

(t+ dij) xijt ≥ 0 (i, l) ∈ H, (8.16)

n+1∑

i=0

mi∑

j=1

rijk

t∑

τ=max(0,t−dij+1)

xijτ ≤ bk t = 0, . . . , LS(n+ 1); k = 1, . . . , p, (8.17)

n+1∑

i=0

mi∑

j=1

rijk′

LS(i)∑

t=ES(i)

xijt ≤ b′k k = 1, . . . , p′, (8.18)

xijt ∈ {0, 1} i = 0, . . . , n+ 1; j = 1, . . . ,mi; t = ES(i), . . . , LS(i). (8.19)

Objective function (8.14) minimizes the makespan of the project, while constraints

(8.15) impose that each task is scheduled exactly once, in only one mode. Constraints

(8.16) ensure that the precedence constraints are satisfied, and constraints (8.17) and (8.18)

impose that the renewable and non-renewable resource availabilities are respected.

8.4 Proposed approaches

In this section, we describe the improved algorithms that we developed for each of the

three problems.

8.4. Proposed approaches 177

8.4.1 RCPSP improved algorithm

We used the DDT model of Christofides et al. [63], in which we added the following

procedures and preprocessing techniques.

Improved ES and LS

Mingozzi et al. [217] proposed a global lower bound on the duration of the project

by solving a relaxation of the RCPSP in which preemption is allowed and precedence

constraints are relaxed. The method usually leads to a better ES(n + 1) than the one

given by the critical path method. This approach makes use of the concept of maximal

feasible sets F of activities, where a set of tasks f belongs to F if all the tasks that belong

to f can be processed at the same time (i.e., respecting the resource and the precedence

constraints). We extended this approach and used it to each task by solving the following

MILP

min ES(l) =
∑

f∈F

xf , (8.20)

s.t.
∑

f∈F :i∈f

xf ≥ di (i, l) ∈ H, (8.21)

xf ∈ N f ∈ F. (8.22)

Objective function (8.20) minimizes the number of feasible sets used, while constraints

(8.21) ensure that for each predecessor i, at least di feasible sets containing task i are

selected. When the upper bound T of the project is fixed, a similar approach using the

successors of tasks l can be used to obtain LS(l).

Destructive bounds

The concept of destructive bounds was described by Klein and Scholl [175] and trans-

forms a minimization problem into a sequence of feasibility problems. For the RCPSP, we

set T to ES(n + 1). If a solution is found, then it is optimal and we stop the process. If

we prove that no solution exists, then we increase ES(n+1) by one unit and iterate. This

very common approach was also used for other optimization problem, e.g., by Delorme and

Iori [97] for the BPP, or by Côté et al. [83] for the strip packing problem.

178 Chapter 8. ILP and CP for Project Scheduling Problems

Task fixing

The concept of task fixing is derived from the preprocessing techniques usually adopted

for packing problems (see, e.g., Martello and Toth [214]). At this stage, we try to fix

a given task i with no unfixed predecessors to ES(i). We use the concept of temporal

maximal feasible sets Ft of activities, where a set of tasks f belongs to Ft if all the tasks

that belong to f can be processed at the same time t (i.e., respecting the resource and the

precedence constraints, and satisfying ES(i) ≤ t, LS(i) ≥ t(i ∈ f)). If task i belongs to

all Ft for t = ES(i), . . . , ES(i) + di − 1, then i can be fixed at ES(i). Indeed, as task i

does not have any unfixed predecessor, no constraint (8.6) with (h, i) ∈ H is considered in

the model. In addition, as we fix i to ES(i), no specific restriction is added by constraints

(8.6) with (i, l) ∈ H. Finally, as i belongs to all temporal maximal feasible sets Ft for

t = ES(i), . . . , ES(i) + di − 1, i can be processed in parallel with any set of tasks at time

t, t = ES(i), . . . , ES(i) + di − 1, thus, constraints (8.4) do not remove any valid solution

by setting i to ES(i). When destructive bounds are used, a similar preprocessing fixes a

task with no unfixed successors at LS(i). Task fixing can be iterated and is particularly

useful when short tasks, or tasks using very small amount of resources, are considered at

the beginning or at the end of the project.

Normal Patterns

The concept of normal patterns was introduced by Herz [153] and by Christofides

and Whitlock [64] for packing problems and is nowadays widely used as a preprocessing

techniques for combinatorial optimization problem (see, e.g., Côté et al. [83]). Using

normal patterns, we can reduce PS(i), the set of possible starts of task i, to

PS(i) =



x =

∑

j∈O

dj ξj : ES(i) ≤ x ≤ LS(i) ξj ∈ {0, 1}



 , (8.23)

where O is the set of tasks that can be processed before the beggining of task i.

Weight lifting

Weight lifting is also a very common preprocessing in packing problems (see, e.g.,

Boschetti and Montaletti [43] and Martello and Toth [214]), and has the objective to

increase the resource consumption without removing any maximal feasible sets of activities.

8.4. Proposed approaches 179

Instead of a unique resource consumption, we make use of a resource consumption per unit

time rikt and determine sikt, the maximum resource consumption that can be used while

task i is processed at time t, by solving a subset-sum problem. We then set rikt to bk− sikt

and modify constraints (8.4) to

t∑

τ=max(0,t−di+1)

n+1∑

i=0

rikτxiτ ≤ bk t = 0, . . . , LS(n + 1); k = 1, . . . , p. (8.24)

8.4.2 DTCTP improved algorithm

Pritsker and Watters [231] introduced the step model for the RCPSP, in which a binary

variable xit takes value 1 if task i starts at time t or before. We extended this approach to

the d-DTCTP and propose the following model

min z =
n+1∑

i=0

xi1 ci1 +
n+1∑

i=0

mi∑

j=2

(xij − xi,j−1) cij , (8.25)

s.t. Sl ≥ Si + xi1 di1 +

mi∑

j=2

(xij − xi,j−1) dij (i, l) ∈ H, (8.26)

Sn+1+ ≤ D, (8.27)

xi,mi = 1 i = 0, . . . , n+ 1, (8.28)

xij ≥ xi,j−1 i = 0, . . . , n + 1; j = 2, . . . ,mi, (8.29)

xij ∈ {0, 1} i = 0, . . . , n + 1; j = 1, . . . ,mi, (8.30)

Si ≥ 0 i = 0, . . . , n+ 1, (8.31)

in which xij takes value 1 is task i is used in mode m, m ≤ j. Objective function (8.25)

minimizes the budget of the project while constraints (8.26) ensure that the precedence

constraints are satisfied. Constraint (8.27) impose the deadline restriction while constraints

(8.28) ensure that a mode has been selected for each task. Constraints (8.29) impose that

if a variables xij takes value one, then all variables xim for m > j take value one as well.

Again, the b-DTCTP can be modelled in a very similar way by minimizing Sn+1 in the

180 Chapter 8. ILP and CP for Project Scheduling Problems

objective function (8.25), and modifying (8.27) by

n+1∑

i=0

xi1 ci1 +

n+1∑

i=0

mi∑

j=2

(xij − xi,j−1) cij ≤ B (8.32)

to satisfy the budget constraint.

8.4.3 MMRCPSP improved algorithm

Based on the idea proposed by Coelho and Vanhoucke [70], we decompose the MM-

RCPSP into two phases: first, we solve a b-DTCTP (with one constraint (8.32) for each

non-renewable resource) that fixes the modes selected for the tasks and gives a lower bound

ES(n + 1) for the project makespan. At a second stage, we solve a RCPSP with a fixed

deadline LS(n + 1) = ES(n + 1) and the modes selected at the first stage. If a solution

exists, then the problem is solved. Otherwise, we use the complete CP approach described

in Section 8.5.

8.5 Computational experiments

In this section, we experimentally compare the efficiency of the approaches proposed

in Section 8.4 with mathematical formulations from the literature (see Section 8.3) and a

CP approach. We used the examples given in Cplex 12.6 as a base for our CP algorithms,

that run the following constraints:

• IloMinimize(IloEndOf(n+ 1)): models the objective function that minimizes the

makespan of the project, i.e., the ending time of task n+ 1;

• IloEndBeforeStart(i, l) (i, l) ∈ H: model the precedence constraints, i.e., task i

has to be finished before task l starts;

• IloPulse(i, k) (i = 0, . . . , n+ 1; k = 1, . . . , p): model the renewable resource k used

by task i;

• IloCumulFunctionExpr(k) (k = 1, . . . , p): model the total renewable resource con-

sumption of k and is associated with the sum of the IloPulse for resource k;

• IloAlternative(i, j) (i = 0, . . . , n + 1; j = 1, . . . ,mi): model the possible modes j

for task i.

8.5. Computational experiments 181

We refer the reader to Laborie [184] for more details about CP optimizer for scheduling

problems. The CP optimizer of Cplex 12.6 uses two concurrent search strategies by default:

a large neighbourhood search produces feasible solutions of good quality and a failure

directed search proves the infeasibility of a solution strictly better than the current solution.

All our experiments were executed on an Intel Xeon 3.10 GigaHertz with 8 GigaByte

RAM, equipped with four cores, and we used Cplex 12.6 as MILP and CP solver. All

our experiments were performed with a single core, and the number of threads was set to

one for the solver. In each table, the approach that finds the largest number of optimal

solutions is highlighted in bold, and when an instance is not solved, its associated time is

set to the time limit.

8.5.1 Computational experiments for the RCPSP

We used the benchmark KSD30, a set of 480 instances available at the PSPLIB of

Kolisch and Sprecher [177]. Each instance has n = 30 tasks (plus the 2 dummy initial and

final tasks), p = 4 resources, durations di ∈ [1, 10] (i = 1, . . . , n) and resource consumptions

rik ∈ [0, 10] (i = 1, . . . , n; k = 1, . . . , p).

Table 8.1 provides the results obtained by running models DT, DDT, DDT with the

improvements described in Section 8.4, DDT with the improvements and some modifica-

tions in the solver parameters (e.g., branching priorities and cut generation), and the CP

approach, with a time limit of 300 seconds. The first column identifies the model, the two

following columns count the number of instances that were solved within the time limit,

and the last column represents the average CPU time expressed in seconds.

Table 8.1: Evaluation of the RCPSP approaches on the KSD30 instances

approach # optimal solution % optimal solution time

DT model 420 88% 47.2
DDT model 430 90% 37.9

DDT model + improvements 461 96% 19.3
DDT model + improvements + solver tuning 467 97% 15.9

CP approach 480 100% 1.4

Table 8.1 shows that the MILP formulations DT and DDT are already effective, as they

can solve respectively 88% and 90% of the KSD30 instances. These results are concordant

with those proposed by Koné et al. [178] who obtained respectively 78% and 82% when the

182 Chapter 8. ILP and CP for Project Scheduling Problems

models where solved by a branch-and-bound algorithm. When improvements are applied

to the DDT model, we managed to increase this ratio to 96%, (97% if solver tuning is

considered). However, we cannot compete on this set of instance with the CP approach,

as it can solve all the tested instances with an average time of just 1.4 second.

8.5.2 Computational experiments for the DTCTP

We used three benchmarks proposed in the literature: the first one, introduced by

Demeulemeester et al. [101], is composed of 1800 instances, with n = {10, 20, 30, 40, 50},
mi ∈ [1, 11] (i = 1, . . . , n), di and cij ∈ [1, 100] (i = 1, . . . , n; j = 1, . . . ,mi). The two

remaining sets, initially introduced by Akkan et al. [4], have diverse parameters: coefficient

of network complexity (CNC), complexity index (CI), mi, time-cost function, and θ, a

parameter that gives the project deadline D depending on the minimum and maximum

time required to realize the project. They were used by Hadjiconstantinou and Klerides

[144] who also provided us with some of the instances in those sets.

Table 8.2 provides the results obtained by running the textbook model by Akkan et

al. [4], the step model described in Section 8.4, a CP approach, and the decomposition

approach proposed by Hadjiconstantinou and Klerides [144], with a time limit of 200 sec-

onds for the c-DTCTP and the d-DTCTP, and 7200 seconds for the b-DTCTP. The two

first columns identify the benchmark and the corresponding number of instances. Each of

the four following set of columns associate with each formulation the number of instances

that were solved to proven optimality, the ratio of instances that were solved to proven

optimality, and the average CPU time expressed in seconds. As the number of optimal

solutions were not provided in [144], we only report the ratio of optimal solution found.

Table 8.2: Evaluation of the DTCTP approaches

Set of instances # inst.
textbook model step model CP approach Hadjiconstantinou

opt % opt time # opt % opt time # opt % opt time % opt time

Demeulemesteer - c-DTCTP 1800 1798 100% 6.9 1799 100% 6.6 1018 57% 109.3 93% 35.6
Akkan 1 - d-DTCTP 960 917 96% 14.5 941 98% 10.6 0 0% 200.0 59% 115.8
Akkan 1 - b-DTCTP 240 234 98% 445.5 240 100% 50.0 38 16% 5309.2 - -
Akkan 2 - d-DTCTP 1920 1920 100% 0.2 1920 100% 0.1 539 28% 165.7 100% 6.4

Table 8.2 shows that the textbook MILP formulation is already very effective, as it

can solve around 99% of the tested instances. The step formulation is even better as

8.5. Computational experiments 183

it can solve all but 20 instances, and seems faster for the b-DTCTP. Both formulations

seem better than the decomposition approach proposed by Hadjiconstantinou and Klerides

[144], but the results should be interpreted with caution, as (1) the indicator given by

PassMark c© Software (see https://www.cpubenchmark.net/) for the computer they used

is at 628 while ours is at 6106, indicating that our computer is about ten times faster, and

(2), the version of Cplex they use (11.1) is older with respect to ours (12.6). As far as the

CP approach is concerned, we can state that it is definitely not competitive.

8.5.3 Computational experiments for the MMRCPSP

We used the benchmark J30, a set of 640 instances available at the PSPLIB of Kolisch

and Sprecher [177]. Each instance has n = 30 tasks (plus the 2 dummy initial and final

tasks), mi = 3 (i = 1, . . . , n) modes p = 2 renewable resources, p′ = 2 non-renewable

resources, durations dij ∈ [1, 10] (i = 1, . . . , n; j = 1, . . . ,mi), renewable resource consump-

tions rijk ∈ [0, 10] (i = 1, . . . , n; j = 1, . . . ,mi; k = 1, . . . , p), and non-renewable resource

consumptions r′ijk ∈ [0, 10] (i = 1, . . . , n; j = 1, . . . ,mi; k = 1, . . . , p′). As out of the 640

instances, 88 are infeasible because of the non-renewable resource constraints, we consider

a reduced set of 552 instances.

Table 8.3 provides the results obtained by running model DT, a CP approach, and the

hybridized algorithm described in Section 8.4 with a time limit of 300 seconds. Consider-

ing the computational results we obtained on the other problems, we solved the DTCTP

component of the problem with the step model, and the RCPSP component with the CP

approach. In case the decomposition was unsuccessful, we used the CP approach for the

overall problem. The first column identifies the approach used, the two following columns

count the number of instances that were solved within the time limit, and the last column

represents the average CPU time expressed in seconds. In addition, for the hybridized

algorithm, we add in parenthesis the number of times the decomposition of the problem

managed to close the instance.

Table 8.3: Evaluation of the MMRCPSP approaches on the J30 instances

approach # optimal solution % optimal solution time

DT model 478 87% 50.5
CP approach 523 95% 23.5

Hybridized algorithm 523 (251) 95% (45%) 23.1

https://www.cpubenchmark.net/

184

Table 8.3 shows that the DT MILP formulation for the MMRCPSP is less effective

than the CP approach. The proposed hybridized algorithm performs slightly better than

the pure CP approach, especially on the two first instances of the set, for which CP uses

respectively 5.0 and 177.9 seconds to close the instance, while the hybridized approach

takes less than 0.1 second for both of them. This seems to indicate that a decomposition

approach might be useful for some instances with specific parameters.

8.6 Conclusion

We have studied three project scheduling problems: the resource-constrained project

scheduling problem, the discrete time-cost tradeoff problem, and the multi-mode resource-

constrained project scheduling problem. For each problem, we proposed a set of improve-

ments with respect to existing algorithms from the literature, we evaluated them through

extensive computation experiments, and we compared them with standard mixed integer

linear programming models and constraint programming approaches. The tests demon-

strate that the proposed algorithms are useful tools for the solution of the three problems.

Bibliography 185

Bibliography

[1] T. Achterberg and R.Wunderling. Mixed integer programming: Analyzing 12 years of

progress. In M. Jünger and G.Reinelt, editors, Facets of Combinatorial Optimization,

pages 449–481. Springer Berlin Heidelberg, 2013.

[2] S. Ahn, C. Park, and K. Yoon. An improved best-first branch and bound algo-

rithm for the pallet-loading problem using a staircase structure. Expert Systems with

Applications, 42:7676–7683, 2015.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms,

and applications. Prentice-Hall, Upper Saddle River, 1993.

[4] C. Akkan, A. Drexl, and A. Kimms. Network decomposition-based benchmark results

for the discrete timecost tradeoff problem. European Journal of Operational Research,

165:339–358, 2005.

[5] R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. A branch-and-cut algorithm for

the pallet loading problem. Computers & Operations Research, 32:3007–3029, 2005.

[6] R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. A tabu search algorithm for the

pallet loading problem. OR Spectrum, 27:43–61, 2005.

[7] R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. A branch and bound algorithm

for the strip packing problem. OR Spectrum, 31:431–459, 2009.

[8] R. Alvarez-Valdes and J.M. Tamarit. The project scheduling polyhedron: Dimension,

facets and lifting theorems. European Journal of Operational Research, 67:204–220,

1993.

[9] C. Alves, F. Clautiaux, J.M. Valério de Carvalho, and J. Rietz. Dual-Feasible Func-

tions for Integer Programming and Combinatorial Optimization. Springer Interna-

tional Publishing, Cham, 2016.

[10] C Alves and J.M. Valério de Carvalho. A stabilized branch-and-price-and-cut al-

gorithm for the multiple length cutting stock problem. Computers & Operations

Research, 35:1315–1328, 2008.

186

[11] A.C.F. Alvim, C.C. Ribeiro, F. Glover, and D.J. Aloise. A hybrid improvement

heuristic for the one-dimensional bin packing problem. Journal of Heuristics, 10:205–

229, 2004.

[12] D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The Traveling Sales-

man Problem: A Computational Study (Princeton Series in Applied Mathematics).

Princeton University Press, Princeton, NJ, USA, 2007.

[13] Y. Arahori, T. Imamichi, and H. Nagamochi. An exact strip packing algorithm based

on canonical forms. Computers & Operations Research, 39:2991–3011, 2012.

[14] C. Artigues, S. Demassey, and E. Neron. Resource-constrained project scheduling:

models, algorithms, extensions and applications. John Wiley & Sons, New York,

2013.

[15] C. Artigues, P. Michelon, and S. Reusser. Insertion techniques for static and dynamic

resource-constrained project scheduling. European Journal of Operational Research,

149:249–267, 2003.

[16] C.R. Asfahl, S. Swayze, J. Lee, and R.R. Safford. An interactive computer training

programming for industry. Computers & Industrial Engineering, 25:57–60, 1993.

[17] R. Bai, J. Blazewicz, E.K. Burke, G. Kendall, and B. McCollum. A simulated an-

nealing hyper-heuristic methodology for flexible decision support. 4OR, 10:43–66,

2012.

[18] B.S. Baker, E.G. Coffman, Jr., and R.L. Rivest. Orthogonal packing in two dimen-

sions. SIAM Journal on Computing, 9:846–855, 1980.

[19] E. Balas. An additive algorithm for solving linear programs with zero-one variables.

Operations Research, 13:517–546, 1965.

[20] R. Baldacci and M.A. Boschetti. A cutting-plane approach for the two-dimensional

orthogonal non-guillotine cutting problem. European Journal of Operational Re-

search, 183:1136 – 1149, 2007.

[21] J. Balogh, J. Békési, G. Dósa, J. Sgall, and R. van Stee. The optimal absolute

ratio for online bin packing. In Proceedings of the Twenty-Sixth Annual ACM-SIAM

Symposium on Discrete Algorithms – SODA 2015, pages 1425–1438, 2015.

Bibliography 187

[22] S. Barnett and G.J. Kynch. Exact solution of a simple cutting problem. Operations

Research, 15:1051–1056, 1967.

[23] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance.

Branch-and-price: Column generation for solving huge integer programs. Operations

Research, 46:316–329, 1998.

[24] J. E. Beasley. OR-library: distributing test problems by electronic mail. Journal of

the Operational Research Society, 41:1069–1072, 1990.

[25] J.E. Beasley. Algorithms for unconstrained two-dimensional guillotine cutting. Jour-

nal of the Operational Research Society, 36:297–306, 1985.

[26] J.E. Beasley. An exact two-dimensional non-guillotine cutting tree search procedure.

Operations Research, 33:49–64, 1985.

[27] J. Beck and V. Sós. Discrepancy theory, pages 1405–1446. Elsevier, Amsterdam,

1995.

[28] G. Belov. Problems, models and algorithms in one-and two-dimensional cutting. PhD

thesis, Otto-von-Guericke Universität Magdeburg, 2003.

[29] G. Belov and G. Scheithauer. A cutting plane algorithm for the one-dimensional

cutting stock problem with multiple stock lengths. European Journal of Operational

Research, 141:274–294, 2002.

[30] G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-

dimensional stock cutting and two-dimensional two-stage cutting. European Journal

of Operational Research, 171:85–106, 2006.

[31] G. Belov, G. Scheithauer, C. Alves, and J.M. Valério de Carvalho. Gomory cuts from

a position-indexed formulation of 1D stock cutting. In A. Bortfeldt, J. Homberger,

H. Kopfer, G.r Pankratz, and R. Strangmeier, editors, Intelligent Decision Support,

pages 3–14. Gabler, 2008.

[32] H. Ben Amor, J. Desrosiers, and J.M. Valério de Carvalho. Dual-optimal inequalities

for stabilized column generation. Operations Research, 54:454–463, 2006.

188

[33] H. Ben Amor and J. Valério de Carvalho. Cutting stock problems. In G. De-

saulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation, pages 131–

161. Springer US, 2005.

[34] J.F. Benders. Partitioning procedures for solving mixed-variables programming prob-

lems. Numerische Mathematik, 4:238–252, 1962.

[35] B.E. Bengtsson. Packing rectangular pieces – a heuristic approach. The Computer

Journal, 25:353–357, 1982.

[36] J.A. Bennell, J.F. Oliveira, and G. Wäscher. Cutting and packing. International

Journal of Production Economics, 145(2):449 – 450, 2013.

[37] C. Berge and E.L. Johnson. Coloring the edges of a hypergraph and linear program-

ming techniques. Annals of Discrete Mathematics, 1:65–78, 1977.

[38] J.O. Berkey and P.Y. Wang. Two-dimensional finite bin-packing algorithms. Journal

of the Operational Research Society, 38:423–429, 1987.

[39] A.K. Bhatia and S.K. Basu. Packing bins using multi-chromosomal genetic repre-

sentation and better fit heuristic. In Neural Information Processing – ICONIP 2004,

volume 3316 of Lecture Notes in Computer Science, pages 181–186. Springer Berlin

Heidelberg, 2004.

[40] A.K. Bhatia, M. Hazra, and S.K. Basu. Better-fit heuristic for one-dimensional

bin-packing problem. In Proceedings of the IEEE international advance computing

conference – IACC 2009, pages 193–196. IEEE, 2009.

[41] E.G. Birgin, R.D. Lobato, and R. Morabito. An effective recursive partitioning

approach for the packing of identical rectangles in a rectangle. Journal of the Oper-

ational Research Society, 61:306–320, 2010.

[42] L. Bodin and S.I. Gass. On teaching the analytic hierarchy process. Computers &

Operations Research, 30:1487–1497, 2003.

[43] M.A. Boschetti and L. Montaletti. An exact algorithm for the two-dimensional strip-

packing problem. Operations Research, 58:1774–1791, 2010.

Bibliography 189

[44] J.-C. Bourjolly and V. Rebetez. An analysis of lower bound procedures for the bin

packing problem. Computers & Operations Research, 32:395–405, 2005.

[45] F. Brandão and J.P. Pedroso. Bin packing and related problems: General arc-flow

formulation with graph compression. Computers & Operations Research, 69:56–67,

2016.

[46] O. Briant, C. Lemaréchal, P. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck.

Comparison of bundle and classical column generation. Mathematical Programming,

113:299–344, 2008.

[47] P. Brucker, S. Knust, A. Schoo, and O. Thiele. A branch and bound algorithm for the

resource-constrained project scheduling problem. European Journal of Operational

Research, 107:272–288, 1998.

[48] R.E. Burkard, S.E Karisch, and F. Rendl. QAPLIB– a quadratic assignment problem

library. European Journal of Operational Research, 55:115 – 119, 1991.

[49] R.E. Burkard, S.E. Karisch, and F. Rendl. QAPLIB– a quadratic assignment problem

library. Journal of Global Optimization, 10:391–403, 1997.

[50] E.K. Burke, M.R. Hyde, and G. Kendall. Evolving bin packing heuristics with genetic

programming. In Parallel Problem Solving from Nature - PPSN IX, volume 4193 of

Lecture Notes in Computer Science, pages 860–869. Springer Berlin Heidelberg, 2006.

[51] E.K. Burke, G. Kendall, and G. Whitwell. A new placement heuristic for the orthog-

onal stock-cutting problem. Operations Research, 52:655–671, 2004.

[52] H. Cambazard and B. O’Sullivan. Propagating the bin packing constraint using

linear programming. In Principles and Practice of Constraint Programming – CP

2010, volume 6308 of Lecture Notes in Computer Science, pages 129–136. Springer

Berlin Heidelberg, 2010.

[53] K. Cantor. Blown Film Extrusion: An Introduction. Hanser Publishers, Munich,

second edition, 2011.

[54] A. Caprara, M. Dell’Amico, J.C. Dı́az Dı́az, M. Iori, and R. Rizzi. Friendly bin

packing instances without integer round-up property. Mathematical Programming,

150:5–17, 2015.

190

[55] A. Caprara, A. Lodi, S. Martello, and M. Monaci. Packing into the smallest square:

Worst-case analysis of lower bounds. Discrete Optimization, 3:317–326, 2006.

[56] A. Caprara and M. Monaci. Bidimensional packing by bilinear programming. Math-

ematical Programming, 118:75–108, 2009.

[57] M. Casazza and A. Ceselli. Exactly solving packing problems with fragmentation.

Computers & Operations Research, 75:202–213, 2016.

[58] P.M. Castro and J.F. Oliveira. Scheduling inspired models for two-dimensional pack-

ing problems. European Journal of Operational Research, 215:45–56, 2011.

[59] L.M.A. Chan, D. Simchi-Levi, and J. Branel. Worst-case analyses, linear program-

ming and the bin-packing problem. Mathematical Programming, 83:213–227, 1998.

[60] H-Y Chao, M.P. Harper, and R.W. Quong. A tight lower bound for optimal bin

packing. Operations Research Letters, 18:133–138, 1995.

[61] B. Chazelle. The bottom-left bin packing heuristic: An efficient implementation.

IEEE Transactions on Computers, 32:697–707, 1983.

[62] B. Chen and B. Srivastava. An improved lower bound for the bin-packing problem.

Discrete Applied Mathematics, 66:81–94, 1996.

[63] N. Christofides, R. Alvarez-Valdes, and J.M. Tamarit. Project scheduling with re-

source constraints: A branch and bound approach. European Journal of Operational

Research, 29:262–273, 1987.

[64] N. Christofides and C. Whitlock. An algorithm for two-dimensional cutting problems.

Operations Research, 25:30–44, 1977.

[65] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete

Mathematics, 4:305–337, 1973.

[66] F. Clautiaux, C. Alves, and J.M. Valério de Carvalho. A survey of dual-feasible and

superadditive functions. Annals of Operations Research, 179:317–342, 2010.

[67] F. Clautiaux, C. Alves, J.M. Valério de Carvalho, and J. Rietz. New stabilization

procedures for the cutting stock problem. INFORMS Journal on Computing, 23:530–

545, 2011.

Bibliography 191

[68] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A new constraint programming

approach for the orthogonal packing problem. Computers & Operations Research,

35:944–959, 2008.

[69] G. Codato and M. Fischetti. Combinatorial Benders’ cuts for mixed-integer linear

programming. Operations Research, 54:756–766, 2006.

[70] J. Coelho and M. Vanhoucke. The multi-mode resource-constrained project schedul-

ing problem. In C. Schwindt and J. Zimmermann, editors, Handbook on Project

Management and Scheduling Vol.1, pages 491–511. Springer International Publish-

ing, Cham, 2015.

[71] E. G. Coffman, Jr., G. Galambos, S. Martello, and D. Vigo. Bin packing approxima-

tion algorithms: Combinatorial analysis. In D.-Z. Du and P. M. Pardalos, editors,

Handbook of Combinatorial Optimization. Kluwer Academic Publishers, Boston, MA,

1999.

[72] E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson. Approximation algorithms for

bin packing: A survey. In D.S. Hochbaum, editor, Approximation Algorithms for

NP-Hard Problems. PWS Publishing Company, Boston, 1997.

[73] E.G. Coffman Jr. and J. Csirik. A classification scheme for bin packing theory. Acta

Cybernetica, 18:47–60, 2007.

[74] E.G. Coffman Jr. and J. Csirik. Performance guarantees for one-dimensional bin

packing. In T.F. Gonzalez, editor, Handbook of Approximation Algorithms and Meta-

heuristics, chapter 32, pages 1–18. Chapman & Hall, 2007.

[75] E.G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin packing

approximation algorithms: Survey and classification. In P.M. Pardalos, D.-Z. Du,

and R.L. Graham, editors, Handbook of Combinatorial Optimization. Springer New

York, 2013.

[76] E.G. Coffman Jr., J. Csirik, D.S. Johnson, and G.J. Woeginger. An introduction

to bin packing. Unpublished manuscript, available at https://www.inf.u-szeged.

hu/~csirik/ed5ut.pdf, 2004.

https://www.inf.u-szeged.hu/~csirik/ed5ut.pdf
https://www.inf.u-szeged.hu/~csirik/ed5ut.pdf

192

[77] E.G. Coffman Jr., M.R. Garey, and D.S. Johnson. Approximation algorithms for bin-

packing - an updated survey. In G. Ausiello, M. Lucentini, and P. Serafini, editors,

Algorithm Design for Computer System Design, pages 49–106. Springer Vienna, 1984.

[78] J.R. Correa. Resource augmentation in two-dimensional packing with orthogonal

rotations. Operations Research Letters, 34:85–93, 2006.

[79] I. Correia, L. Gouveia, and F. Saldanha da Gama. Solving the variable size bin

packing problem with discretized formulations. Computers & Operations Research,

35:2103–2113, 2008.

[80] G. Costa, C. D’Ambrosio, and S. Martello. A free educational java framework for

graph algorithms. Journal of Computer Science, 6:87–91, 2010.

[81] G. Costa, C. D’Ambrosio, and S. Martello. GraphsJ 3: A modern didactic application

for graph algorithms. Journal of Computer Science, 10:1115–1119, 2014.

[82] G. Costa, M. Delorme, M. Iori, E. Malaguti, and S. Martello. A training software for

orthogonal packing problems. Technical Report OR-17-4, DEI “Guglielmo Marconi”,

University of Bologna, Italy, 2017.

[83] J.F. Côté, M. Dell’Amico, and M. Iori. Combinatorial Benders’ cuts for the strip

packing problem. Operations Research, 62:643–661, 2014.

[84] J.F. Côté and M. Iori. The meet-in-the-middle principle for cutting and packing

problems. Technical Report CIRRELT-2016-28, CIRRELT, Montreal, Canada, 2016.

[85] T.G. Crainic, G. Perboli, M. Pezzuto, and R. Tadei. Computing the asymptotic

worst-case of bin packing lower bounds. European Journal of Operational Research,

183:1295–1303, 2007.

[86] T.G. Crainic, G. Perboli, M. Pezzuto, and R. Tadei. New bin packing fast lower

bounds. Computers & Operations Research, 34:3439–3457, 2007.

[87] T.G. Crainic, G. Perboli, W. Rei, and R. Tadei. Efficient lower bounds and heuristics

for the variable cost and size bin packing problem. Computers & Operations Research,

38:1474–1482, 2011.

Bibliography 193

[88] L.L. Crumpton and E.L. Harden. Using virtual reality as a tool to enhance classroom

instruction. Computers & Industrial Engineering, 33:217–220, 1997.

[89] G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations

research, 8:101–111, 1960.

[90] P. De, E. J. Dunne, J.B. Ghosh, and C.E. Wells. Complexity of the discrete time-cost

tradeoff problem for project networks. Operations Research, 45:302–306, 1997.

[91] G. Değirmenci and M. Azizoğlu. Branch and bound based solution algorithms for the

budget constrained discrete time/cost trade-off problem. Journal of the Operational

Research Society, 64:1474–1484, 2013.

[92] Z. Degraeve and M. Peeters. Optimal integer solutions to industrial cutting-stock

problems: Part 2, benchmark results. INFORMS Journal on Computing, 15:58–81,

2003.

[93] Z. Degraeve and L. Schrage. Optimal integer solutions to industrial cutting stock

problems. INFORMS Journal on Computing, 11:406–419, 1999.

[94] M. Dell’Amico, M. Iori, S. Martello, and M. Monaci. Heuristic and exact algorithms

for the identical parallel machine scheduling problem. INFORMS Journal on Com-

puting, 20(3):333 – 344, 2008.

[95] M. Dell’Amico and S. Martello. Optimal scheduling of tasks on identical parallel

processors. ORSA Journal on Computing, 7:191–200, 1995.

[96] M. Delorme and M. Iori. Pseudo-polynomial formulations for bin packing and cut-

ting stock problems. Column Generation 2016, Búzios (Brazil), 2016. Available on

line at https://www.gerad.ca/colloques/ColumnGeneration2016/PDF/Iori.pdf

(last accessed: April 2017).

[97] M. Delorme and M Iori. Enhanced pseudo-polynomial formulations for bin packing

and cutting stock problems. Technical report, DEI “Guglielmo Marconi”, University

of Bologna, Italy, 2017.

[98] M. Delorme, M. Iori, and S. Martello. Bin packing and cutting stock problems: Math-

ematical models and exact algorithms. European Journal of Operational Research,

255:1–20, 2016.

https://www.gerad.ca/colloques/ColumnGeneration2016/PDF/Iori.pdf

194

[99] M. Delorme, M. Iori, and S. Martello. Bpplib: A library for bin packing and cutting

stock problems. Technical report, DEI “Guglielmo Marconi”, University of Bologna,

Italy, 2017.

[100] M. Delorme, M. Iori, and S. Martello. Logic based Benders’ decomposition for or-

thogonal stock cutting problems. Computers & Operations Research, 78:290–298,

2017.

[101] E. Demeulemeester, B. De Reyck, B. Foubert, W. Herroelen, and M Vanhoucke.

New computational results on the discrete time/cost trade-off problem in project

networks. Journal of the Operational Research Society, 49:1153–1163, 1998.

[102] E. Demeulemeester and W. Herroelen. A branch-and-bound procedure for the multi-

ple resource-constrained project scheduling problem. Management Science, 38:1803–

1818, 1992.

[103] E. Demeulemeester and W. Herroelen. New benchmark results for the resource-

constrained project scheduling problem. Management Science, 43:1485–1492, 1997.

[104] G. Desaulniers, J. Desrosiers, and S. Spoorendonk. Cutting planes for branch-and-

price algorithms. Networks, 58:301–310, 2011.

[105] U. Dorndorf, E. Pesch, and T. Phan-Huy. A branch-and-bound algorithm for the

resource-constrained project scheduling problem. Mathematical Methods of Opera-

tions Research, 52:413–439, 2000.

[106] G. Dósa, R. Li, X. Han, and Z. Tuza. Tight absolute bound for First Fit Decreasing

bin-packing: FFD (l) ≤ 11/9opt (l) + 6/9. Theoretical Computer Science, 510:13–61,

2013.

[107] G. Dósa and J. Sgall. First Fit bin packing: A tight analysis. In Proceedings of the

30th International Symposium on Theoretical Aspects of Computer Science – STACS

2013, volume 20, pages 538–549, 2013.

[108] G. Dósa and J. Sgall. Optimal analysis of Best Fit bin packing. In Automata,

Languages, and Programming, volume 8572 of Lecture Notes in Computer Science,

pages 429–441. Springer Berlin Heidelberg, 2014.

Bibliography 195

[109] K.A. Dowsland. An exact algorithm for the pallet loading problem. European Journal

of Operational Research, 31:78–84, 1987.

[110] J. Dupuis, P. Schaus, and Y. Deville. Consistency check for the bin packing constraint

revisited. In Integration of AI and OR Techniques in Constraint Programming for

Combinatorial Optimization Problems – CPAIOR 2010, volume 6140 of Lecture Notes

in Computer Science, pages 117–122. Springer Berlin Heidelberg, 2010.

[111] H. Dyckhoff. A new linear programming approach to the cutting stock problem.

Operations Research, 29:1092–1104, 1981.

[112] H. Dyckhoff. A typology of cutting and packing problems. European Journal of

Operational Research, 44:145–159, 1990.

[113] H. Dyckhoff and U. Finke. Cutting and Packing in Production and Distribution.

Physica-Verlag, Heidelberg, 1992.

[114] S. Eilon and N. Christofides. The loading problem. Management Science, 17:259–268,

1971.

[115] K. Eisemann. The trim problem. Management Science, 3:279–284, 1957.

[116] F. Eisenbrand, D. Pálvölgyi, and T. Rothvoß. Bin packing via discrepancy of per-

mutations. ACM Transactions on Algorithms (TALG), 9:1–15, 2013.

[117] S. Elhedhli. Ranking lower bounds for the bin packing problem. European Journal

of Operational Research, 160:34–46, 2005.

[118] S. Elhedhli and F. Gzara. Characterizing the optimality gap and the optimal packings

for the bin packing problem. Optimization Letters, 9:209–223, 2015.

[119] E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. J. of Heuristics,

2:5–30, 1996.

[120] E. Falkenauer and A. Delchambre. A genetic algorithm for bin packing and line

balancing. In Proceedings of the IEEE international Conference on Robotics and

Automation – ICRA 1992, pages 1186–1192. IEEE, 1992.

[121] A.A. Farley. A note on bounding a class of linear programming problems, including

cutting stock problems. Operations Research, 38:922–923, 1990.

196

[122] S.P. Fekete and J. Schepers. New classes of fast lower bounds for bin packing prob-

lems. Mathematical Programming, 91:11–31, 2001.

[123] K. Fleszar and C. Charalambous. Average-weight-controlled bin-oriented heuristics

for the one-dimensional bin-packing problem. European Journal of Operational Re-

search, 210:176–184, 2011.

[124] K. Fleszar and K.S. Hindi. New heuristics for one-dimensional bin-packing. Com-

puters & Operations Research, 29:821–839, 2002.

[125] L.R. Ford Jr. and D.R. Fulkerson. A suggested computation for maximal multi-

commodity network flows. Management Science, 5:97–101, 1958.

[126] H.A. Friberg. CBLIB 2014: a benchmark library for conic mixed-integer and contin-

uous optimization. Mathematical Programming Computation, 8:191–214, 2016.

[127] F. Furini, E. Malaguti, and D. Thomopulos. Modeling two-dimensional guillotine cut-

ting problems via integer programming. INFORMS Journal on Computing, 28:736–

751, 2016.

[128] V. Gabrel and M. Minoux. A scheme for exact separation of extended cover inequal-

ities and application to multidimensional knapsack problems. Operations Research

Letters, 30:252–264, 2002.

[129] M. Gardner. Mathematical games: the problem of Mrs. Perkins’ quilt, and answers

to last month’s puzzles. Scientific American, 215:264–272, 1966.

[130] M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory

of NP-completeness. Freeman, New York, 1979.

[131] M.R. Garey and D.S. Johnson. Approximation algorithms for bin-packing problems:

A survey. In G. Ausiello and Lucertini, editors, Analysis and Design of Algorithms

in Combinatorial Optimization, pages 147–172. Springer Vienna, 1981.

[132] T. Gau and G. Wäscher. CUTGEN1: A problem generator for the standard one-

dimensional cutting stock problem. European Journal of Operational Research,

84:572–579, 1995.

Bibliography 197

[133] I.P. Gent. Heuristic solution of open bin packing problems. J. of Heuristics, 3:299–

304, 1998.

[134] P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting-stock

problem. Operations Research, 9:849–859, 1961.

[135] P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting-stock

problem. Operations Research, 11:863–888, 1963.

[136] P.C. Gilmore and R.E. Gomory. Multistage cutting stock problems of two and more

dimensions. Operations Research, 13:94–120, 1965.

[137] P. Gómez-Meneses and M. Randall. A hybrid extremal optimisation approach for

the bin packing problem. In Artificial Life: Borrowing from Biology – ACAL 2009,

volume 5865 of Lecture Notes in Computer Science, pages 242–251. Springer-Verlag

Berlin Heidelberg, 2009.

[138] C. Goulimis. Optimal solutions for the cutting stock problem. European Journal of

Operational Research, 44:197–208, 1990.

[139] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization and

approximation in deterministic sequencing and scheduling: a survey. In E.L. Johnson

P.L. Hammer and B.H. Korte, editors, Discrete Optimization II Proceedings of the

Advanced Research Institute on Discrete Optimization and Systems Applications of

the Systems Science Panel of NATO and of the Discrete Optimization Symposium

co-sponsored by IBM Canada and SIAM Banff, Aha. and Vancouver, volume 5 of

Annals of Discrete Mathematics, pages 287 – 326. Elsevier, 1979.

[140] M.C.N. Gramani, P.M. França, and M.N. Arenales. A lagrangian relaxation approach

to a coupled lot-sizing and cutting stock problem. International Journal of Production

Economics, 119(2):219 – 227, 2009.

[141] C. Groër, B. Golden, and E. Wasil. A library of local search heuristics for the vehicle

routing problem. Mathematical Programming Computation, 2:79–101, 2010.

[142] T. Gschwind and S. Irnich. Dual inequalities for stabilized column generation revis-

ited. INFORMS Journal on Computing, 28:175–194, 2016.

198

[143] J.N.D. Gupta and J.C. Ho. A new heuristic algorithm for the one-dimensional bin-

packing problem. Production Planning and Control, 10:598–603, 1999.

[144] E. Hadjiconstantinou and E. Klerides. A new path-based cutting plane approach

for the discrete time-cost tradeoff problem. Computational Management Science,

7:313–336, 2010.

[145] R.W. Haessler. Controlling cutting pattern changes in one dimensional trim problems.

Operations Research, 23:483–493, 1975.

[146] R.W. Haessler and P.E. Sweeney. Cutting stock problems and solution procedures.

European Journal of Operational Research, 54:141–150, 1991.

[147] M. Haouari and A. Gharbi. Fast lifting procedures for the bin packing problem.

Discrete Optimization, 2:201–218, 2005.

[148] M. Haouari and M. Serairi. Heuristics for the variable sized bin-packing problem.

Computers & Operations Research, 36:2877–2884, 2009.

[149] S. Hartmann and D. Briskorn. A survey of variants and extensions of the resource-

constrained project scheduling problem. European Journal of Operational Research,

207:1–14, 2010.

[150] H. Hashimoto, Y. Hu, S. Imahori, and M. Yagiura. Private communication, 2015.

[151] Ö. Hazır, M. Haouari, and E. Erel. Discrete time/cost trade-off problem: A

decomposition-based solution algorithm for the budget version. Computers & Oper-

ations Research, 37:649 – 655, 2010.

[152] V. Hemmelmayr, V. Schmid, and C. Blum. Variable neighbourhood search for the

variable sized bin packing problem. Computers & Operations Research, 39:1097–1108,

2012.

[153] J.C Herz. Recursive computational procedure for two-dimensional stock cutting.

IBM Journal of Research and Development, 16:462–469, 1972.

[154] O. Holthaus. Decomposition approaches for solving the integer one-dimensional cut-

ting stock problem with different types of standard lengths. European Journal of

Operational Research, 141:295–312, 2002.

Bibliography 199

[155] J.N Hooker. Logic-based methods for optimization: combining optimization and con-

straint satisfaction. John Wiley & Sons, 2000.

[156] J.N. Hooker. Planning and scheduling by logic-based Benders decomposition. Oper-

ations Research, 55:588–602, 2007.

[157] J.N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical

Programming, 96:33–60, 2003.

[158] E. Hopper and B.C.H. Turton. An empirical investigation of meta-heuristic and

heuristic algorithms for a 2D packing problem. European Journal of Operational

Research, 128:34–57, 2001.

[159] S. Hu, S. Wang, Y. Kao, T. Ito, and X. Sun. A branch and bound algorithm for

project scheduling problem with spatial resource constraints. Mathematical Problems

in Engineering, 2015:9, 2015.

[160] M. Iori, S. Martello, and M. Monaci. Metaheuristic algorithms for the strip packing

problem. In P. Pardalos and V. Korotkich, editors, Optimization and Industry: New

Frontiers, pages 159–179. Kluwer, Boston, 2003.

[161] M. Iori, J. J. Salazar-González, and D. Vigo. An exact approach for the vehicle

routing problem with two-dimensional loading constraints. Transportation Science,

41(2):253 – 264, 2007.

[162] S. Jakobs. On genetic algorithms for the packing of polygons. European Journal of

Operational Research, 88:165–181, 1996.

[163] B. Jarboui, S. Ibrahim, and A. Rebai. A new destructive bounding scheme for the

bin packing problem. Annals of Operations Research, 179:187–202, 2010.

[164] D.S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge,

MA, 1973.

[165] J. Kallrath, S. Rebennack, J. Kallrath, and R. Kusche. Solving real-world cutting

stock-problems in the paper industry: Mathematical approaches, experience and

challenges. European Journal of Operational Research, 238:374 – 389, 2014.

200

[166] T. Kämpke. Simulated annealing: use of a new tool in bin packing. Annals of

Operations Research, 16:327–332, 1988.

[167] L.V. Kantorovich. Mathematical methods of organizing and planning production.

Management Science, English translation of a 1939 paper written in Russian, 6:366–

422, 1960.

[168] K. Kaparis and A.N. Letchford. Separation algorithms for 0-1 knapsack polytopes.

Mathematical Programming, 124:69–91, 2010.

[169] N. Karmarkar and R.M. Karp. An efficient approximation scheme for the one-

dimensional bin-packing problem. In Proceedings of the 23rd Annual IEEE Sym-

posium on Foundations of Computer Science – SFCS 1982, pages 312–320. IEEE,

1982.

[170] V.M. Kartak. Sufficient conditions for the integer round-up property to be violated

for the linear cutting stock problem. Automation and Remote Control, 65:407–412,

2004.

[171] V.M. Kartak, A.V. Ripatti, G. Scheithauer, and S. Kurz. Minimal proper non-IRUP

instances of the one-dimensional cutting stock problem. Discrete Applied Mathemat-

ics, 187:120–129, 2015.

[172] M. Kenmochi, T. Imamichi, K. Nonobe, M. Yagiura, and H. Nagamochi. Exact

algorithms for the two-dimensional strip packing problem with and without rotations.

European Journal of Operational Research, 198:73–83, 2009.

[173] B.I. Kim and J. Wy. Last two fit augmentation to the well-known construction heuris-

tics for one-dimensional bin-packing problem: an empirical study. The International

Journal of Advanced Manufacturing Technology, 50:1145–1152, 2010.

[174] K.C. Kiwiel. An inexact bundle approach to cutting-stock problems. INFORMS

Journal on Computing, 22:131–143, 2010.

[175] R. Klein and A. Scholl. Scattered branch and bound: an adaptive search strategy

applied to resource-constrained project scheduling. Central European Journal of

Operations Research, 7:177–201, 1999.

Bibliography 201

[176] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby, E. Danna,

G. Gamrath, A.M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Sal-

vagnin, D.E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical Programming

Computation, 3:103, 2011.

[177] R. Kolisch and A. Sprecher. Psplib - a project scheduling problem library. European

Journal of Operational Research, 96:205–216, 1997.

[178] O. Koné, C. Artigues, P. Lopez, and M. Mongeau. Event-based MILP models for

resource-constrained project scheduling problems. Computers & Operations Research,

38:3–13, 2011.

[179] R.E. Korf. A new algorithm for optimal bin packing. In Proceedings of the Eighteenth

National Conference on Articial Intelligence – AAAI 2002, pages 731–736. AAAI

Press, 2002.

[180] R.E. Korf. An improved algorithm for optimal bin packing. In Proceedings of the

Eighteenth International Joint Conference on Artificial Intelligence – IJCAI 2003,

pages 1252–1258. Morgan Kaufmann Publishers Inc., 2003.

[181] R.E. Korf, M.D. Moffitt, and M.E. Pollack. Optimal rectangle packing. Annals of

Operations Research, 179:261–295, 2010.

[182] M. Labbé, G. Laporte, and H. Mercure. Capacitated vehicle routing on trees. Oper-

ations Research, 39:616–622, 1991.

[183] P. Laborie. Complete MCS-based search: Application to resource constrained project

scheduling. In International joint conferences on artificial intelligence, pages 181–

186, 2005.

[184] P. Laborie. IBM ILOG CP optimizer for detailed scheduling illustrated on three

problems. In W.-J. van Hoeve and J.N. Hooker, editors, Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems:

6th International Conference, CPAIOR 2009 Pittsburgh, PA, USA, May 27-31, 2009

Proceedings, pages 148–162. Springer, Berlin, Heidelberg, 2009.

[185] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. Exhaustive approaches to

2D rectangular perfect packings. Information Processing Letters, 90:7–14, 2004.

202

[186] J. Levine and F. Ducatelle. Ant colony optimization and local search for bin packing

and cutting stock problems. Journal of the Operational Research Society, 55:705–716,

2004.

[187] R. Lewis. A general-purpose hill-climbing method for order independent minimum

grouping problems: A case study in graph colouring and bin packing. Computers &

Operations Research, 36:2295–2310, 2009.

[188] K.H. Liang, X. Yao, C. Newton, and D. Hoffman. A new evolutionary approach

to cutting stock problems with and without contiguity. Computers & Operations

Research, 29:1641–1659, 2002.

[189] O. Liess and P. Michelon. A constraint programming approach for the resource-

constrained project scheduling problem. Annals of Operations Research, 157:25–36,

2007.

[190] L. Lins, S. Lins, and R. Morabito. An l-approach for packing (l,w)-rectangles into

rectangular and l-shaped pieces. Journal of the Operational Research Society, 54:777–

789, 2003.

[191] F. Llaugel and S. Confesor. Computer-aided statistical quality control learning.

Computers & Industrial Engineering, 33:125–128, 1997.

[192] A. Lodi. Mixed integer programming computation. In M. Jünger, T. Liebling,

D. Naddef, G.L. Nemhauser, W.R. Pulleyblank, G.Reinelt, G. Rinaldi, and L.A.

Wolsey, editors, 50 Years of Integer Programming 1958-2008, pages 619–645.

Springer-Verlag, 2009.

[193] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A survey.

European Journal of Operational Research, 141:241–252, 2002.

[194] A. Lodi, S. Martello, M. Monaci, and D. Vigo. Two-dimensional bin packing prob-

lems. Paradigms of Combinatorial Optimization: Problems and New Approaches,

Volume 2, pages 107–129, 2010.

[195] A. Lodi, S. Martello, M. Monaci, and D. Vigo. Two-dimensional bin packing prob-

lems. In V. Th. Paschos, editor, Paradigms of Combinatorial Optimization: Problems

and New Approaches, chapter 5, pages 107–129. ISTE and John Wiley & Sons, 2014.

Bibliography 203

[196] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches for a

class of two-dimensional bin packing problems. INFORMS Journal on Computing,

11:345–357, 1999.

[197] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin packing

problems. Discrete Applied Mathematics, 123:379–396, 2002.

[198] A. Lodi and M. Monaci. Integer linear programming models for 2-staged two-

dimensional Knapsack problems. Mathematical Programming, Series B, 94(2):257

– 278, 2003.

[199] K.H Loh, B. Golden, and E. Wasil. Solving the one-dimensional bin packing problem

with a weight annealing heuristic. Computers & Operations Research, 35:2283–2291,

2008.

[200] E. López-Camacho, H. Terashima-Maŕın, and P. Ross. A hyper-heuristic for solving

one and two-dimensional bin packing problems. In Proceedings of the 13th annual

conference on Genetic and evolutionary computation – GECCO 2011, pages 257–258.

ACM, 2011.

[201] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search: Framework and

applications. In Michel Gendreau and Jean-Yves Potvin, editors, Handbook of Meta-

heuristics, volume 146 of International Series in Operations Research & Management

Science, pages 363 – 397. Springer US, 2010.

[202] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, 53:1007–1023, 2005.

[203] G.S. Lueker. Bin packing with items uniformly distributed over intervals [a, b]. In

Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer Sci-

ence SFCS 1983, pages 289–297. IEEE, 1983.

[204] J. Lysgaard. CVRPSEP: A package of separation routines for the capacitated vehicle

routing problem. Technical report, Aarhus School of Business, Denmark, 2003.

[205] J. Lysgaard, A.N. Letchford, and R.W. Eglese. A new branch-and-cut algorithm for

the capacitated vehicle routing problem. Mathematical Programming, 100:423–445,

2004.

204

[206] R. Macedo, C. Alves, and J.M. Valério de Carvalho. Arc-flow model for the two-

dimensional guillotine cutting stock problem. Computers & Operations Research,

37:991 – 1001, 2010.

[207] J.N. MacGregor and Y. Chu. Human performance on the traveling salesman and

related problems: A review. The Journal of Problem Solving, 3:1–19, 2011.

[208] J.N. MacGregor and T. Ormerod. Human performance on the traveling salesman

problem. Perception & Psychophysics, 58:527–539, 1996.

[209] O. Marcotte. The cutting stock problem and integer rounding. Mathematical Pro-

gramming, 33:82–92, 1985.

[210] O. Marcotte. An instance of the cutting stock problem for which the rounding

property does not hold. Operations Research Letters, 4:239–243, 1986.

[211] S. Martello and M. Monaci. Models and algorithms for packing rectangles into the

smallest square. Computers & Operations Research, 63:161–171, 2015.

[212] S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-packing prob-

lem. INFORMS Journal on Computing, 15:310–319, 2003.

[213] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for

the 0-1 knapsack problem. Management Science, 45:414–424, 1999.

[214] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-

tations. John Wiley & Sons, Chichester, 1990. available on line at www.or.deis.

unibo.it.

[215] S. Martello and P. Toth. Lower bounds and reduction procedures for the bin packing

problem. Discrete Applied Mathematics, 28:59–70, 1990.

[216] S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing

problem. Management Science, 44:388–399, 1998.

[217] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm for

the resource-constrained project scheduling problem based on a new mathematical

formulation. Management Science, 44:714–729, 1998.

www.or.deis.unibo.it
www.or.deis.unibo.it

Bibliography 205

[218] H. Miyata, S. Watanabe, and Y. Minagawa. Performance of young children on trav-

eling salesperson navigation tasks presented on a touch screen. PLOS ONE, 9:1–19,

2014.

[219] N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Opera-

tions Research, 24:1097 – 1100, 1997.

[220] M. Monacci. Algorithms for packing and scheduling problems. PhD thesis, Universit

di Bologna, 2002.

[221] M. Mrad. An arc flow-based optimization approach for the two-stage guillotine strip

cutting problem. Journal of the Operational Research Society, 66:1850–1859, 2015.

[222] E.A. Mukhacheva, G.N. Belov, V.M. Kartack, and A.S. Mukhacheva. Linear one-

dimensional cutting-packing problems: numerical experiments with the sequential

value correction method (SVC) and a modified branch-and-bound method (MBB).

Pesquisa Operacional, 20:153–168, 2000.

[223] V. Nesello, M. Delorme, M. Iori, and A. Subramanian. Mathematical models and de-

composition algorithms for makespan minimization in plastic rolls production. Jour-

nal of the Operational Research Society, 2017. To appear.

[224] A. Newman, O. Neiman, and A. Nikolov. Beck’s three permutations conjecture:

A counterexample and some consequences. In Proceedings of the 53rd Annual IEEE

Symposium on Foundations of Computer Science FOCS 2012, pages 253–262. IEEE,

2012.

[225] C. Nitsche, G. Scheithauer, and J. Terno. Tighter relaxations for the cutting stock

problem. European Journal of Operational Research, 112:654–663, 1999.

[226] T. Osogami and H. Okano. Local search algorithms for the bin packing problem and

their relationships to various construction heuristics. J. of Heuristics, 9:29–49, 2003.

[227] E. Özcan, Z. Kai, and J.H. Drake. Bidirectional best-fit heuristic considering com-

pound placement for two dimensional orthogonal rectangular strip packing. Expert

Systems with Applications, 40:4035–4043, 2013.

[228] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-

scale symmetric traveling salesman problems. SIAM Review, 33:60–100, 1991.

206

[229] C. Picouleau. Worst-case analysis of fast heuristics for packing squares into a square.

Theoretical Computer Science, 164:59–72, 1996.

[230] R. Poli, J. Woodward, and E.K. Burke. A histogram-matching approach to the evolu-

tion of bin-packing strategies. In Proceedings of the IEEE Congress on Evolutionary

Computation – CEC 2007, pages 3500–3507. IEEE, 2007.

[231] A.A.B. Pritsker and L.J. Watters. A zero-one programming approach to scheduling

with limited resources. Technical report, RAND Corporation, RM-5561-PR, 1968.

[232] A.A.B. Pritsker, L.J. Watters, and P.M. Wolfe. Multiproject scheduling with limited

resources: A zero-one programming approach. Management Science, 16:93–108, 1969.

[233] M. Quiroz-Castellanos, L. Cruz-Reyes, J. Torres-Jimenez, C. Gómez S.,

H. Fraire Huacuja, and A. Alvim. A grouping genetic algorithm with controlled

gene transmission for the bin packing problem. Computers & Operations Research,

55:52–64, 2015.

[234] M.R. Rao. On the cutting stock problem. Journal of the Computer Society of India,

7:35–39, 1976.

[235] C. Reeves. Hybrid genetic algorithms for bin-packing and related problems. Annals

of Operations Research, 63:371–396, 1996.

[236] J. Rietz and S. Dempe. Large gaps in one-dimensional cutting stock problems. Dis-

crete Applied Mathematics, 156:1929–1935, 2008.

[237] P. Rohlfshagen and J.A. Bullinaria. A genetic algorithm with exon shuffling crossover

for hard bin packing problems. In Proceedings of the 9th Annual Conference on

Genetic and Evolutionary Computation – GECCO 2007, pages 1365–1371. ACM,

2007.

[238] P. Rohlfshagen and J.A. Bullinaria. Nature inspired genetic algorithms for hard

packing problems. Annals of Operations Research, 179:393–419, 2010.

[239] G.M. Roodman. Near optimal solutions to one-dimensional cutting stock problem.

Computers & Operations Research, 13:713–719, 1986.

Bibliography 207

[240] P. Ross, J.G. Maŕın-Blázquez, S. Schulenburg, and E. Hart. Learning a procedure

that can solve hard bin-packing problems: A new GA-based approach to hyper-

heuristics. In Proceedings of the Genetic and Evolutionary Computation Conference

– GECCO 2003, volume 2724 of Lecture Notes in Computer Science, pages 1295–

1306. Springer Berlin Heidelberg, 2003.

[241] P. Ross, S. Schulenburg, J.G. Maŕın-Blázquez, and E. Hart. Hyper-heuristics: learn-

ing to combine simple heuristics in bin-packing problems. In Proceedings of the

Genetic and Evolutionary Computation Conference – GECCO 2002, pages 942–948.

Morgan Kaufmann Publishers Inc, 2002.

[242] T. Rothvoß. Approximating Bin Packing within O(log OPT * log log OPT) bins.

In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer

Science – FOCS 2013, pages 20–29. IEEE, 2013.

[243] D. M. Ryan and B. A. Foster. An integer programming approach to scheduling. In

A. Wren, editor, Computer scheduling of public transport urban passenger vehicle and

crew scheduling, pages 269–280. North-Holland, 1981.

[244] R. Sadykov, F. Vanderbeck, A. Pessoa, I. Tahiri, and E. Uchoa. Primal Heuristics

for Branch-and-Price: the assets of diving methods. working paper or preprint, 2016.

[245] P. Schaus, J.-C. Régin, R. Van Schären, W. Dullärt, and B. Raa. Cardinality rea-

soning for bin-packing constraint: Application to a tank allocation problem. In

Principles and Practice of Constraint Programming, volume 7514 of Lecture Notes

in Computer Science, pages 815–822. Springer Berlin Heidelberg, 2012.

[246] G. Scheithauer and J. Terno. A branch-and-bound algorithm for solving one-

dimensional cutting stock problems exactly. Applicationes Mathematicae, 23:151–167,

1995.

[247] G. Scheithauer and J. Terno. The modified integer round-up property of the one-

dimensional cutting stock problem. European Journal of Operational Research,

84:562–571, 1995.

[248] G. Scheithauer and J. Terno. Theoretical investigations on the modified integer

round-up property for the one-dimensional cutting stock problem. Operations Re-

search Letters, 20:93–100, 1997.

208

[249] G. Scheithauer, J. Terno, A. Müller, and G. Belov. Solving one-dimensional cutting

stock problems exactly with a cutting plane algorithm. Journal of the Operational

Research Society, 52:1390–1401, 2001.

[250] J.E. Schoenfield. Fast, exact solution of open bin packing problems without linear

programming. Technical report, US Army Space and Missile Defense Command,

Huntsville, Alabama, USA, 2002.

[251] A. Scholl, R. Klein, and C. Jürgens. Bison: a fast hybrid procedure for exactly

solving the one-dimensional bin packing problem. Computers & Operations Research,

24:627–645, 1997.

[252] E.L. Schreiber and R.E. Korf. Improved bin completion for optimal bin packing

and number partitioning. In Proceedings of the Twenty-Third international joint

conference on Artificial Intelligence – IJCAI 2013, pages 651–658. AAAI Press, 2013.

[253] A. Schutt, T. Feydy, P.J. Stuckey, and M.G. Wallace. Explaining the cumulative

propagator. Constraints, 16:250–282, 2010.

[254] P. Schwerin and G. Wäscher. The bin-packing problem: a problem generator and

some numerical experiments with FFD packing and MTP. International Transactions

in Operational Research, 4:377–389, 1997.

[255] P. Schwerin and G. Wäscher. A new lower bound for the bin-packing problem and

its integration into mtp. Pesquisa Operacional, 19:111–129, 1999.

[256] J.F. Shapiro. Dynamic programming algorithms for the integer programming

problem-I: The integer programming problem viewed as a knapsack type problem.

Operations Research, 16:103–121, 1968.

[257] P. Shaw. A constraint for bin packing. In Principles and Practice of Constraint

Programming – CP 2004, volume 3258 of Lecture Notes in Computer Science, pages

648–662. Springer Berlin Heidelberg, 2004.

[258] E. Silva, F. Alvelos, and J. M. Valério de Carvalho. Integrating two-dimensional

cutting stock and lot-sizing problems. Journal of the Operational Research Society,

65(1):108–123, 2014.

Bibliography 209

[259] E. Silva, F. Filipe Alvelos, and J.M. Valério de Carvalho. An integer programming

model for two- and three-stage two-dimensional cutting stock problems. European

Journal of Operational Research, 205(3):699 – 708, 2010.

[260] E. Silva, J.F. Oliveira, and G. Wäscher. The pallet loading problem: a review

of solution methods and computational experiments. International Transactions in

Operational Research, 23:147–172, 2016.

[261] K. Sim and E. Hart. Generating single and multiple cooperative heuristics for the

one dimensional bin packing problem using a single node genetic programming island

model. In Proceedings of the 15th annual conference on Genetic and evolutionary

computation GECCO 2013, pages 1549–1556. ACM, 2013.

[262] K. Sim, E. Hart, and B. Paechter. A hyper-heuristic classifier for one dimensional

bin packing problems: Improving classification accuracy by attribute evolution. In

Parallel Problem Solving from Nature - PPSN XII, volume 7492 of Lecture Notes in

Computer Science, pages 348–357. Springer Berlin Heidelberg, 2012.

[263] D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Research

Logistics, 41:579, 1994.

[264] A. Singh and A.K. Gupta. Two heuristics for the one-dimensional bin-packing prob-

lem. OR Spectrum, 29:765–781, 2007.

[265] A. Sprecher. Scheduling resource-constrained projects competitively at modest mem-

ory requirements. Management Science, 46:710–723, 2000.

[266] H. Stadtler. A comparison of two optimization procedures for 1-and 1 1/2-dimensional

cutting stock problems. Operations-Research-Spektrum, 10:97–111, 1988.

[267] A. Stawowy. Evolutionary based heuristic for bin packing problem. Computers &

Industrial Engineering, 55:465–474, 2008.

[268] A. Subramanian. Heuristic Exact and Hybrid Approaches for Vehicle Routing Prob-

lems. PhD thesis, Universidade Federal Fluminense, 2012.

[269] A. Subramanian, L.M.A. Drummond, C. Bentes, L.S. Ochi, and R. Farias. A paral-

lel heuristic for the vehicle routing problem with simultaneous pickup and delivery.

210

Computers & Operations Research, 37:1899 – 1911, 2010. Metaheuristics for Logistics

and Vehicle Routing.

[270] P.E. Sweeney and E.R. Paternoster. Cutting and packing problems: a categorized,

application-orientated research bibliography. Journal of the Operational Research

Society, 43:691–706, 1992.

[271] F. B. Talbot. Resource-constrained project scheduling with time-resource tradeoffs:

The nonpreemptive case. Management Science, 28:1197–1210, 1982.

[272] J. Thomas and N.S. Chaudhari. A new metaheuristic genetic-based placement algo-

rithm for 2D strip packing. Journal of Industrial Engineering International, 10:1–16,

2014.

[273] E.S. Thorsteinsson. Branch and check: A hybrid framework integrating mixed integer

programming and constraint programming. In Proceedings of the Seventh Interna-

tional Conference on Principles and Practice of Constraint Programming (CP2001),

pages 16–30. Springer-Verlag, Berlin, 2001.

[274] M.A. Trick. A dynamic programming approach for consistency and propagation for

knapsack constraints. Annals of Operations Research, 118:73–84, 2003.

[275] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian. New

benchmark instances for the capacitated vehicle routing problem. European Journal

of Operational Research, 257:845–858, 2017.

[276] Ö. Ülker, E.E. Korkmaz, and E. Özcan. A grouping genetic algorithm using linear

linkage encoding for bin packing. In Parallel Problem Solving from Nature – PPSN

X, volume 5199 of Lecture Notes in Computer Science, pages 1140–1149. Springer

Berlin Heidelberg, 2008.

[277] R. Vahrenkamp. Random search in the one-dimensional cutting stock problem. Eu-

ropean Journal of Operational Research, 95:191–200, 1996.

[278] J.M. Valério de Carvalho. Exact solution of bin packing problems using column

generation and branch and bound. Annals of Operations Research, 86:629–659, 1999.

[279] J.M. Valério de Carvalho. LP models for bin packing and cutting stock problems.

European Journal of Operational Research, 141:253–273, 2002.

Bibliography 211

[280] J.M. Valério de Carvalho. Using extra dual cuts to accelerate column generation.

INFORMS Journal on Computing, 17:175–182, 2005.

[281] P.H. Vance. Branch-and-price algorithms for the one-dimensional cutting stock prob-

lem. Computational Optimization and Applications, 9:211–228, 1998.

[282] P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser. Solving binary cut-

ting stock problems by column generation and branch-and-bound. Computational

Optimization and Applications, 3:111–130, 1994.

[283] F. Vanderbeck. Computational study of a column generation algorithm for bin pack-

ing and cutting stock problems. Mathematical Programming, 86:565–594, 1999.

[284] F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming and ways

to perform branching in a branch-and-price algorithm. Operations Research, 48:111–

128, 2000.

[285] F. Vanderbeck. A nested decomposition approach to a three-stage, two-dimensional

cutting-stock problem. Management Science, 47:864 – 879, 2001.

[286] F. Vanderbeck. Branching in branch-and-price: a generic scheme. Mathematical

Programming, 130:249–294, 2011.

[287] F. Vanderbeck and L.A. Wolsey. Reformulation and decomposition of integer pro-

grams. In M. Jünger, T.M. Liebling, D. Naddef, G.L. Nemhauser, W.R. Pulleyblank,

G. Reinelt, G. Rinaldi, and L.A. Wolsey, editors, 50 Years of Integer Programming

1958-2008: From the Early Years to the State-of-the-Art, pages 431–502. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2010.

[288] G. Wäscher and T. Gau. Heuristics for the integer one-dimensional cutting stock

problem: a computational study. Operations-Research-Spektrum, 18:131–144, 1996.

[289] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of cutting and

packing problems. European Journal of Operational Research, 183:1109–1130, 2007.

[290] J. Wȩglarz, J. Józefowska, M. Mika, and G. Waligóra. Project scheduling with finite

or infinite number of activity processing modes a survey. European Journal of

Operational Research, 208:177–205, 2011.

212

[291] L. Wei, W.C. Oon, W. Zhu, and A. Lim. A skyline heuristic for the 2D rectangular

packing and strip packing problems. European Journal of Operational Research,

215:337–346, 2011.

[292] J. Westerlund, L.G. Papageorgiou, and T. Westerlund. A MILP model for N-

dimensional allocation. Computers & Chemical Engineering, 31:1702–1714, 2007.

[293] L.A. Wolsey. Valid inequalities, covering problems and discrete dynamic programs.

Annals of Discrete Mathematics, 1:527–538, 1977.

	Acknowledgments
	Introduction
	BPP and CSP: Mathematical Models and Exact Algorithms
	Introduction
	Formal statement
	Upper and lower bounds
	Approximation algorithms
	Lower bounds
	Heuristics and metaheuristics

	Pseudo-polynomial formulations
	Considerations on the basic ILP model
	One-cut formulation
	DP-flow formulation
	Arc-flow formulations

	Enumeration algorithms
	Branch-and-bound
	Constraint programming approaches

	Branch-and-price
	Set covering formulation and column generation
	Integer round-up property
	Branch(-and-cut)-and-price algorithms

	Experimental evaluation
	Benchmarks
	Computer codes
	Experiments

	Conclusions

	BPPLIB: A Library for Bin Packing and Cutting Stock Problems
	Introduction
	Computer codes
	Benchmarks
	Computational experiments
	GI instances

	Enhanced PP Formulations for Bin Packing and Cutting Stock Problems
	Introduction
	The BPP, the CSP, and their well-known formulations
	Problem description and notation
	Pattern-based formulations
	Pseudo-polynomial formulations

	Relations among models
	Reflect, an improved arc-flow formulation
	Adapting reflect to solve large size instances: Reflect+

	Generalizations
	Variable sized BPP
	BPP with item fragmentation

	Computational results
	Results on BPP and CSP
	Results on the VSBPP
	Results on the BPPIF

	Conclusion
	Supplementary material Details for Lemma 1
	Supplementary material Proof of Lemma 2
	Supplementary material Proof of Theorem 1
	Supplementary material Proof of Theorem 2
	Supplementary material Proof of Theorem 3
	Supplementary material Proof of Theorem 4
	Supplementary material Algorithms for reflect
	Supplementary material Proof of Theorem 5

	Logic Based Benders' Decomposition for Orthogonal Stock Cutting Problems
	Introduction
	Literature review
	Mathematical model
	Preprocessing
	Decomposition algorithm
	Master problem
	Slave problem and cut generation
	The case of identical item copies
	Computational experiments
	SCP instances
	Rectangle packings
	Pallet loading

	Conclusion

	A Training Software for Orthogonal Packing Problems
	Introduction
	Orthogonal packing problems
	Software
	Experiments
	Setup
	Results

	Conclusions

	Mathematical Models and Decomposition Algorithms for the PRPP
	Introduction
	Problem Description
	A Compact Mathematical Formulation
	Lower Bounds based on a Decomposition Method
	Cutting component (CC)
	Scheduling component (SC)

	Upper Bounding Procedures
	A Heuristic Based on a Generalized Assignment Problem
	An Iterated Local Search Algorithm

	Computational Experiments
	Instances
	Algorithm performance

	Concluding Remarks

	ILP and CP for Project Scheduling Problems
	Introduction
	Literature review
	Mathematical models
	RCPSP formulations
	DTCTP formulations
	MMRCPSP formulations

	Proposed approaches
	RCPSP improved algorithm
	DTCTP improved algorithm
	MMRCPSP improved algorithm

	Computational experiments
	Computational experiments for the RCPSP
	Computational experiments for the DTCTP
	Computational experiments for the MMRCPSP

	Conclusion

	Bibliography

