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Introduction

This thesis is the outcome of the three-year work done during the Ph.D. course in

"Electronics, Telecommunications and Information Technologies Engineering". The

main research topic is focused on cooperative interference countermeasures in Global

Navigation Satellite Systems (GNSS).

Due to the low cost of GNSS receivers and their consequent diffusion, a wide

range of location-aware applications are arising. Some of these applications are crit-

ical and have strict requirements in terms of availability, integrity and reliability.

Examples of critical applications are precision landing and en-route navigation in

air transportations; automated highways and mileage-based toll in road transporta-

tions; search and rescue in safety of life applications. A failure in fulfilling one or

more requirements of a critical application may have dramatic consequences and

cause serious damage. One of the most challenging threats for critical GNSS ap-

plication, is represented by interference. In particular, jamming devices, operating

inside GNSS bands, are easily and cheaply purchasable on the Internet. These de-

vices transmit disturbing signals with the aim of preventing the correct operations of

GNSS receivers. In order to satisfy the requirements of critical applications, it is nec-

essary to promptly detect, localize and remove such interfering sources. Moreover,

it is important to characterize the interfering signals in order to develop interference

avoidance and mitigation techniques that ensure robustness of GNSS receivers to

interference.

This work is organized as follows. The Introduction discusses the problem of

interference in GNSS and gives the motivation for this work.

Chapter 1 tackles the problems of interference detection and localization. These

problems are solved by a novel family of algorithms in a joint and cooperative fashion.

Chapter 2 treats the interference mitigation problem. The chapter illustrates two
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interference mitigation techniques, one based on the cooperative interfering waveform

estimation and the other based on multisensor integration.

Chapter 3 describes a novel synchronization technique suitable for low-cost software-

defined radios. The synchronization technique allows for an easy and accessible im-

plementation of navigation-related applications.

Chapter 4 contains the conclusions.

Appendix A provides the useful theoretical background.

GNSS applications

The worldwide availability and accuracy of GNSS for location and timing, has made

GNSS the preferred solution for a wide and growing range of applications in disparate

fields: i.e., transport, law enforcement, highways management, health services, fi-

nancial services, information services, cartography, safety monitoring, scientific and

environmental studies, search and rescue, telecommunications, and asset tracking. In

the road transport field GNSS is used for in-car navigation, commercial fleet manage-

ment, taxi services, public transport monitoring, emergency vehicle location, distance

based charging systems. In aviation, GNSS is currently used in commercial aircrafts

for en-route navigation and approaches to enabled airports (e.g., using European geo-

stationary navigation overlay service (EGNOS)); automatic dependent surveillance

- broadcast (ADS-B) is used in the areas where there is no radar coverage; this in-

volves aircrafts calculating their position using GNSS and inertial navigation systems

and broadcasting it to other aircrafts. Scientific applications include surveying, en-

vironmental and atmosphere monitoring, animal behavior studies, meteorology and

climate research. GNSS timing is of paramount importance for telecommunications

applications. Synchronous technologies require a time source with appropriate accu-

racy, stability and reliability and GNSS is the preferred synchronization solution.

A few of the aforementioned applications are critical, a failure affecting any of

these applications may lead to hazardous situations, risk of death, or extensive dam-

age or losses. Indeed, critical applications have typically strict requirements in terms

of accuracy, availability, and integrity. On the other hand, the intrinsic vulnera-

bility of GNSS signals to interference, makes the fulfilment of these requirements a

challenging task [1]. For this reason, the issue of interference has been extensively

investigated and studied by the scientific community. The next section provides a

classification of the most common interfering sources.
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Interfering sources

The first and intuitive classification is based on intention. Interfering sources can be

organized in unintentional and intentional: the former is the accidental or undesired

transmission of radio-frequency signals over one or more GNSS bands; the latter is

the deliberate transmission of disturbing or malicious signals to disrupt or mislead

GNSS receivers.

Unintentional interference

Unintentional interference can be further classified into natural or man-made inter-

ference. The former is due to natural phenomena, such as solar radiation bursts. As

an example, in 2006 a solar flare caused the unavailability of GPS signals over a large

area of the globe, as reported in [2]. Man-made unintentional interference typically

arises from malfunction of electronic devices. As an example tv broadcasters are

potential interference source because higher order harmonics fall in GNSS bands. In

addition, falls in this category the intrinsic interference caused by the coexistence of

GNSS and traditional aircraft navigation systems, such as distance measuring equip-

ment (DME) and tactical air navigation (TACAN), as they transmit in the proximity

of the L5/E5A band [3]. Other unintentional man-made sources are due to weather

and radar systems.

Intentional interference

Intentional interference can be further split in two categories, jamming and spoofing.

Jamming is the transmission of a disturbing signal in one or more GNSS bands

with the objective to overwhelm nearby receivers [2], [4]. Depending on the power

of jamming signals at the receivers, the interferer may cause a deterioration of the

position solution accuracy, or undermine its availability.

Spoofing is the transmission of counterfeit GNSS signals in order to deceive re-

ceivers [5]. In this dissertation we focus on jammers as they are more likely to affect

civil GNSS user [2].

Civil GNSS jammers

Civil GNSS jammers can generate a variety of different waveforms. According to [4]

the waveforms can be classified based on their complexity:

• Class I, continuous wave;
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• Class II, chirp with one saw-tooth function;

• Class III, chirp with multiple saw-tooth functions;

• Classe IV, chirp with frequency-hopping.

Class I jammers are the most simple ones. They transmit a tone, i.e., a continuous

wave signal. This kind of waveform is very narrowband and easy to mitigate. More

harmful jammers are the ones of Class II, III, and IV. They transmit wideband

swept-frequency continuous wave signal (i.e., chirp signals). An example of Class II

jamming signal is shown in Figure 1 [2]. The radio-frequency carrier is modulated

by a single saw-tooth function, resulting in a bandwidth of about 12 MHz around

the L1/E1 center frequency. The waveform repeats with a chirp period of 8 µs.

According to [6], most of the jammers are modulated by a single saw-toot function.

Even Class III jammers are ideally modulated by a single saw-tooth function, multiple

saw-tooths arise due to the nonlinearities in jammers front-ends.

Civil jammers are usually available for purchase on the Internet as personal pri-

vacy devices (PPD). These kind of devices promise to disable GNSS receivers in order

to avoid tracking [7], [4]. PPD feature peak transmit powers from a few milliwatts

to tens of Watts. They are usually installed in vehicles and are intended to make

GNSS signals unavailable within a few tens of meters around the jammer. However

evidence show that these devices cause problems well beyond the nominal operating

range [6], [7]. A few examples of in-car jammers are shown in Figure 2 [4].

Cheap in-car jammers have been involved in a few incidents in the past. In

the late 2009, the ground bases augmentation system (GBAS) of Newark Liberty

International Airport (New Jersey, USA) was suffering from brief daily outages due

to the emissions of an in-car jammer used in a vehicle traveling on the nearby highway.

[8]. A measurement campaign conducted in London in 2012, showed the presence of

jamming events repeating every working day at the same time [2]. In April 2012,

the police in Kent (UK) had arrested a gang of car thieves responsible for the theft

of more than 150 high-valued vehicles. The thieves where using GNSS jammers to

disable in-car tracking systems. In November 2013 a Melbourne newspaper reported

the that a hundred of taxi drivers where using jammers in order to fool their employer

company into giving them jobs, even if they were not in the area. The devices

were discovered as they were interfering with the receivers of nearby police cars and

ambulances.

These incidents suggest that the threat represented by jammers should not be
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Figure 1: Spectrogram of a typical Class II jamming signal
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Figure 2: Examples of in-car PPD



10 Introduction

underestimated. With a growing number of new applications relying on GNSS, we

expect an increase of jammer events frequency. Therefore, it is important to develop

suitable jammer detection, localization and mitigation techniques.

The following section describes the adopted jamming signal model that will be

used in this dissertation.

Jamming signal model

Jammer interfering signals are generated through phase/frequency modulation of a

sine wave with a generic periodic signal z(t), with period Tj . For civil jammers z(t)

is typically a periodic saw-tooth waveform, expressed as:

z(t) = fi + (ff − fi)
(

1

2
+
t− Tj/2
Tj

−
⌊1

2
+
t− Tj/2
Tj

⌋)
(1)

where fi and ff are the initial and final frequencies, respectively, and Tj is the chirp

period. A jamming signal can be represented according to [9].

s(t) = A(t) exp {j [2πfct+ ϕ(t)]} (2)

where A(t), fc, and φ(t) represent amplitude, carrier frequency and phase ofd the

signal, respectively.

ϕ(t) =





2π

∫ t

0
z(ξ) dξ for FM signals (3a)

z(t) for PM signals (3b)

Since the modulating signal is periodic with period Tj , it can be written as

z(t) =
+∞∑

k=−∞
z0 (t− kTj) (4)

with z0(t) null outside [0, Tj ]. If the signal amplitude is slowly varying, it is safe to

assume it constant within each repetition period:

A(t) = Ak ∈ R, t ∈ [kTj , (k + 1)Tj [ (5)

and the jamming signal can be expressed as

s(t) =

+∞∑

k=−∞
AkS0(t− kTj)ejφk (6)
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with

S0(t) = 1[0,Tj [(t)





exp

{
j2π

[
fct+

∫ t

0
z0(ξ) dξ

]}
FM signals (7a)

exp {j [2πfct+ z0(t)]} PM signals (7b)

φk =





2π

[
fckTj + k

∫ Tj

0
z0(ξ) dξ

]
for FM signals (8a)

2πfcktj for PM signals (8b)

where 1[a,b[(t) is the indicator function defined as:

1[a,b[(t) =

{
1 if t ∈ [a, b[ (9a)

0 if t /∈ [a, b[ (9b)





Chapter 1
Joint Interference Detection and
Localization

Several countermeasures to interference have been studied since the early days of

GNSS. The first necessity is to detect the presence of interference, which as a min-

imum allows to reduce the trust on the position velocity and time (PVT) solution.

But this may not be sufficient in many application scenarios, particularly those in

which integrity must be preserved by civil/military servants. In these conditions, lo-

calization of the interference source is also essential, in order to identify and resolve

the problem at its roots. For This purpose, cooperation between different nodes can

be conceived. Before going into the details of our solution to the interference detec-

tion and localization problem. we shall review the main state-of-the-art techniques

in this topic.

1.0.1 Interference detection

In the literature, interference detectors are mostly implemented into GNSS signal

processing chains. At the expense of additional hardware, other architectures could

integrate sensors (e.g., inertial navigation systems) to cross-check the position solu-

tion or use multiple antennas to distinguish the angles of arrival. Hereinafter, we

focus on cost-effective detection methods, which are performed either by processing

the whole pre-correlation signal or by monitoring the post-correlation and channel-

specific measurements available.

Detectors based on pre-correlation observables (i.e., computed before despread-

ing), share an inherent advantage: they do not require any a-priori knowledge of the
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jamming waveform. They search the incoming signal for interference by examining

either the quantized amplitude levels at the automatic gain control (AGC) output or

the raw data captured at baseband, or at intermediate frequency (IF). As proposed

in [10], the adaptive digitization loop is a valuable tool for assessing the presence of

jammers within the processing chain of a standard receiver. Nevertheless, this stage

is not specifically designed to cope with interference: its dynamic range falls short

of flexibility, because either the quantization accuracy or the additional resolution

could be insufficient. Alternatively, other pre-correlation detectors inspect the raw

data of the analog-to-digital converter (ADC), in order to test the noise-like prop-

erties of the interference-free GNSS signal. Indeed, temporal correlations between

samples, distortions of the power spectral density (PSD), and inconsistent statistics

are evidence of possible radio-frequency interference (RFI). In this category fall the

conventional detection and excision methods, which analyze the energy computed

in either the time or the frequency domains, as described in [11] [12] [13] [14] [15].

Similarly, recent and promising techniques proposed in [16] [17] [18] analyze the

intensity of a time-frequency representation of the signal. However, regardless of

the domain, energy detectors are limited by the noise level uncertainty. Therefore,

their decision threshold depends on the real-time estimation of the time-varying noise

variance, other methods provide non-parametric RFI detection and may be referred

to as blind. For instance, the spectrum-sensing technique in [19] takes a decision

depending on the eigenvalues of the covariance sample matrix. Another example is

the chi-square goodness-of-fit test exploited in [20], which assumes that a zero-mean

white Gaussian process can model the received GNSS signal, as it is dominated by

noise, in the absence of interference and multipath fading.

As opposed to pre-correlation observables, jamming attacks can be revealed also

by combining several post-correlation measurements derived for each channel, al-

though the despreading operation generally reduces detection performance and re-

sponsiveness. In [21], the estimated correlator output power is the only candidate

test statistics showing consistent performance with continuous, pulsed, and broad-

band interference, but it requires the calculation of the receiver-specific expected

noise floor. A more sophisticated approach is presented in [22], which detects RFI

at the tracking loop by examining the autocorrelation peak shape through a multi-

correlator receiver. In [23], the presence of jammers can be determined based on the

positioning error estimated through the time difference between pseudo-range and

carrier phase. This estimation process features low sensitivity to the jammer char-
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acteristics, however it inevitably introduces a significant delay. A well-established

technique is presented in [24] based on monitoring the channel carrier-to-noise spec-

tral density ratio (CN0), which is estimated from the relative signal-to-noise ratio

(SNR) measured for each visible satellite. The purpose is taking advantage of the fea-

tures of off-the-shelf commercial GNSS receivers. Even though commercial receivers

usually provide CN0 values, yet their internal estimation process is unknown. There-

fore, the channel thresholds are designed by resorting to an information-demanding

statistical characterization of the CN0 curve against satellite elevation angles. Fur-

thermore, separate CN0 estimates cannot provide reliable detection, since they do

not distinguish between drops in GNSS signal strength and rise in interference power,

as asserted in [25]. They are meaningful in well-surveyed static scenarios only. For

example in [26], in-car jammers are detected by measuring SNR levels by means

of stations placed along roadside. As far as dynamic scenarios are concerned, CN0

values of multiple satellites should rather be collectively taken into account with a

unique decision metric. A sum of squared CN0 variations is proposed in [27], under

the assumption that jammers cause correlated changes in all the channels.

All of the above methods foresee a receiver working in isolation. However, in

particular for mission critical applications, it is conceivable to deploy a network of

cooperating nodes, which can provide decisive performance improvement.

1.0.2 Interference localization

Once the detector flags a jamming attempt, the position of the interference source

is determined, possibly leading to the removal of the device responsible of the event.

Here, we consider the techniques employing a network of sensor nodes and a fusion

center (FC), equipped with more computation power, which collects data from the

nodes and performs signal processing.

Traditional localization techniques are mainly based on ranging: the distance be-

tween the transmitter and each receiver is estimated from either the power, delay, or

bearing of the interference, with little or no a-priori knowledge about the waveform

of interest. These measurements are compared in terms of dilution of precision in

[28]. On the one hand, the effectiveness of the differential received signal strength

(DRSS) scheme, depends on the accuracy of the underlying propagation model, the

level of noise, and the geometry of node deployment. On the other hand, time differ-

ence of arrival (TDOA) calculated through cross-correlation guarantees superior and

reliable performance, even in the presence of multipath fading, at the expense of a
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heavier communication and computational burden. For the same reasons mentioned

regarding detection, we neglect angle of arrival, which requires multiple antennas for

beamforming. The authors of [29] use both power and time information for detect-

ing and localizing a jammer. However, they obtain the DRSS from the amplitude

quantized levels of the AGC. As a result, due to the aforementioned non-linearity of

the AGC voltage, the power/distance relation has some intrinsic boundaries, beyond

which the position solution results inaccurate or impossible. They also employ hy-

perbolic localization thorough TDOA, similarly to [30, 31], under the assumption

that all nodes running independently are strictly synchronized among themselves.

Such a scheme indeed relies on the fine alignment of all the data streams in both

time and frequency. In principle, this requirement could be fulfilled through the

GNSS time solution in the interference-free sections of each signal record. However,

since RFI is likely to be excessive, every node usually resort to a coarse alignment by

estimating the current time from its internal clock. Another requirement underlying

the TDOA scheme regards the communication bandwidth necessary for transferring

the datasets of each node to the FC, which performs the cross-correlation. In [32], a

technique is presented to relax the demand for bandwidth, by partially distributing

the computational load among the nodes. This method accurately tracks a single

jammer by means of an extended Kalman filter (EKF), which makes use of TDOA

measurements obtained as the time when the interfering tone passes through a chosen

frequency. Nevertheless, this technique implies that the jammer waveform is known.

On the contrary, the approach presented here, combines the use of an EKF with the

adoption of the DRSS scheme. This solution enables the localization of the interfer-

ence source with minimum computational burden and data exchange, regardless of

the jammer characteristics.

1.1 Joint jammer detection and localization algorithm

This chapter describes a novel technique, called joint jammer detection and local-

ization (JJDL), for simultaneously detecting and localizing a single jammer through

the cooperation of low-complexity nodes. The original concept for the JJDL algo-

rithm was to use the notion of system observability for jammer detection. in the

observability-driven joint jammer detection and localization (O-JJDL) algorithm

[P1], the nodes are equipped with an energy detector (ED) and they take a par-

tial decision on the absence/ presence of a jammer. Moreover, they estimate the
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normalised distance from the potential jammer and send it to a FC. The FC, based

on the degree of observability of an EKF, takes an aggregate decision on the pres-

ence or absence of a jammer. In case a jammer is detected, a second EKF estimates

the jammer’s position. However, this initial concept of JJDL algorithm presented a

few issues and it is reported here merely for historical reasons. Those issues have

been solved in the improved version of the algorithm, called innovation-driven joint

jammer detection and localization (I-JJDL) [P2].

In the I-JJDL algorithm, each node collects simple observables from the incoming

raw signal samples, these observables are a function of the distance from the interfer-

ence source and/or relative velocity of the jammer. The observables are then sent to a

FC, where an EKF tracks the source position (and velocity), even in dynamic scenar-

ios. Concurrently, the observation of the filter innovation provides a non-parametric

test statistics for jamming detection, which is both independent from the waveform

characteristics and robust to the noise level uncertainty. The decision threshold can

be conveniently set in order to obtain a constant false alarm rate (CFAR). Moreover,

as proven by simulation results, this metric has also a high detection capability, and

yet it is fast in revealing jammer presence.

1.2 System model

We consider an area of interest that must be kept free from interference sources,

identified as service area (SA). The SA, of size l×l, is populated withM sensor nodes,

which have known positions and unitary antenna gains. They monitor a selected

GNSS band, store signal samples, and are able to communicate with the FC. The

communication link between the FC and the nodes is not object of this dissertation

and, therefore, it is assumed as ideal. For the sake of simplicity the considered

scenario is two-dimensional. The extension to three dimensions is straightforward.

A jammer starts transmitting an unknown waveform, with carrier frequency fc at

time instant tJ from an unknown location within the SA. Figure 1.1 shows a generic

scenario: the i-th sensor node, located in (Xi, Yi) is depicted as a white dot, the

jammer located in (X,Y ), is depicted as a black dot, and di is the distance between

them. The goal of the JJDL method is to reveal the presence of a potential jammer

and to estimate its location. For this purpose, we model the detection problem as a

binary decision problem with the following hypotheses:
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(X1, Y1)

(X2, Y2)

(Xi, Yi)
(XM , YM )

(X, Y )

di

x

y

Figure 1.1: Scenario

{
H0, Jammer absent (1.1a)

H1, Jammer present. (1.1b)

The hypothesis H0 describes an interference-free scenario, while the hypothesis H1

represents the presence of a jammer. In absence of interference, nodes will receive

the GNSS signal plus the additive white Gaussian noise (AWGN) term ni(t). In

the presence of interference, nodes will also receive the jamming waveform sr.i(t).

Therefore, the signal received by the i-th node can be written as:

ri(t) =

{
ni(t), if H0 holds (1.2a)

sr,i(t) + ni(t), if H1 holds (1.2b)

whose discrete-time formulation is given by

ri =

{
ni, if H0 holds (1.3a)

sr,i + ni, if H1 holds, (1.3b)

In the following, we present first the original concept of the algorithm (O-JJDL) and

then the improved version (I-JJDL)

1.3 Observability-driven JJDL algorithm

The O-JJDL algorithm consists of three main phases:

(i) Energy detection;

(ii) Aggregate decision;
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(iii) Jammer localization.

In the first phase, each node measures the received power and takes a partial

decision on the absence or presence of an interfering signal. Whenever the detection

is asserted, the single node estimates a measure of its distance di from the jammer.

During the second phase, an EKF takes an aggregate decision on the same hypothesis.

If the aggregate decision is asserted, the position of jammer is recursively estimated

with higher accuracy by a second EKF.

1.3.1 Energy detection

Each node is equipped with an ED and is able to decide if an interfering signal

is present (Ĥ1) or absent (Ĥ0), with a given constant false alarm probability Pfa,

as explained in appendix A.2. According to this partial decision, the radiometer

converts the received power into an observable yi, defined as:

yi =





c

4πfc
α

√
Pt

T (ri)− PN
if Ĥ1 (1.4a)

Y if Ĥ0 (1.4b)

where c is the light velocity in vacuum, fc is the jammer carrier frequency, Pt is

the jammer transmit power, PN is the receiver noise power, Y is an arbitrary large

number, and T (ri) is the test statistics of the ED, i.e. the average squared magnitude

of N samples of the received signal:

T (ri) =
1

N

N∑

n=1

|ri[n]|2 (1.5)

In the following, the path-loss exponent is set to α = 2 for simplicity but it can be

fitted to the desired propagation environment. Since the jamming transmit power

is unknown, we are unable to determine the true distance between nodes and the

jammer. Instead, we suppose a transmit power of 1W. This assumption leads to

inevitable errors in the interferer’s position estimation, which do not affect detection

performance. This issue of positioning accuracy is later resumed and addressed in

the localization stage of the algorithm. A diagram summarizing the operation of each

individual node is shown in Figure 1.2. Although it is easy to detect a high power

interfering signals by means of energy detectors, this becomes quite challenging when

the received signal power is comparable with noise power. In this case, indeed, the

decision threshold results to be very low and false alarms are very likely to occur. A

combined solution capable of solving this issue is presented in the next subsection.
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1

N

NX

n=1

|ri[n]|2ri

Ĥ1

?
Ĥ0

⇠ Ĥ1 true?

YES

NO

Normalized 
distance 

estimation

yi

yi = Y

Figure 1.2: O-JJDL node block diagram

1.3.2 Aggregate decision

The detection Kalman filter’s unknown state vector to be estimated is composed by

the jammer’s coordinates, xk = (Xk, Yk)
T . Here the index k indicates a generic

EKF iteration. The equations describing the optimal EKF (see §A.1) are

{
x̂−k = Akx̂k−1 + Bkuk (1.6a)

P−k = AkPk−1A
T
k + Qk (1.6b)





Kk = P−k HT
k

(
HkP

−
k HT

k + Rk

)−1 (1.7a)

x̂k = x̂−k + Kk

(
yk −Hkx̂

−
k

)
(1.7b)

Pk = P−k −KkHkP
−
k (1.7c)

where x̂−k and x̂k are the a-priori and a-posteriori state estimates, respectively; Ak is

the state transition matrix describing the evolution of the system in absence of state

noise and control inputs; Bk is the control-input matrix; P−k and Pk are the a-priori

and a-posteriori estimation error covariance matrices, respectively; Qk and Rk are

the process noise and measurement noise covariance matrices, respectively; Hk is

the observation matrix, and Kk is the optimal EKF gain. We suppose a stationary

transition model with an identity matrix Ak = I2 for each time instant k, which is

equivalent of assuming a fixed interferer location. Furthermore, no controlled input

signals are considered in the system, B = 0. As far as observations are concerned,

the nonlinear relation connecting measurements and the state vector is given by:

hDi,k(xk) =
√

(Xi −Xk)2 + (Yi − Yk)2 (1.8)

The observation model HD
k of size 2×M is described by the Jacobian matrix of hDi,k:
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HD
k =




− X1−Xk√
(X1−Xk)2+(Y1−Yk)2

− Y1−Yk√
(X1−Xk)2+(Y1−Yk)2

...
...

− XM−Xk√
(XM−Xk)2+(YM−Yk)2

− YM−Yk√
(XM−Xk)2+(YM−Yk)2


 (1.9)

The fundamental idea of this algorithm comes from the intuition that the ob-

servables yi match this model if and only if an interfering signal is detected. On

the contrary, if no interference is recognized, the EKF is not optimal and thus does

not provide a minimum mean square error (MMSE) solution to the state estimation

problem. More information on EKF observability can be found in §A.1.2.

Let us now consider the eigenvalues of the estimation error covariance matrix Pk:

its largest eigenvalue corresponds to the least observable linear combination of state

components (Xk, Yk). Therefore, the maximum eigenvalue of Pk measures the degree

of observability of the EKF. Based on this remark, we can define a discriminating

function as the maximum eigenvalue of Pk:

D(Pk) = max
i=1,2
{λi} (1.10)

Whenever the discriminating function takes low values, the system is characterized

by high observability, indicating the presence of a jammer. As a consequence, we can

define a threshold ξe for an aggregate decision test on the aforementioned hypothesis

based on measurements collected from all the nodes:

D(P)
Ĥ0
≷
Ĥ1

ξe (1.11)

where Ĥ0 is chosen if the discriminating function is above the threshold and Ĥ1 is

chosen otherwise. An example of discriminating function is shown in Figure 1.3.

The figure shows the behaviour of the discriminating function over time for different

values of average SNR at the nodes: the jammer starts transmitting at tJ = 500 and

the discriminating function clearly falls in correspondence of this instant.

1.3.3 Jammer localization

Once an interference source is detected, a second EKF is initialized to estimate its

position. This localization filter differs from the detection EKF in the observation

model only. At this stage, we want to obtain a precise estimate of the jammer

location through a more accurate distance evaluation. This is done by estimating
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Figure 1.3: Example of O-JJDL discriminating function

also the interfering signal transmit power Pt in eq. (1.4a). Thus the unknown state

vector has an additional component and becomes x = (Xk, Yk, Pt) In this case, the

nonlinear observation function is:

hLi,k =

√
(Xi −Xk)2 + (Yi − Yk)2

√
Pt

(1.12)

The partial derivatives of this function and the observation model are given by:

∂hLi,k
∂Xk

=− Xi −Xk√
[(Xi −Xk)2 + (Yi − Yk)2]Pt

(1.13)

∂hLi,k
∂Yk

=− Yi − Yk√
[(Xi −Xk)2 + (Yi − Yk)2]Pt

(1.14)

∂hLi,k
∂Pt

=−
√

(Xi −Xk)2 + (Yi − Yk)2

2
√
P 3
t

(1.15)

Hl
k =




∂hL1,k
∂Xk

∂hL1,k
∂Yk

∂hL1,k
∂Pt

...
...

...

∂hLM,k
∂Xk

∂hLM,k
∂Yk

∂hLM,k
∂Pt




(1.16)

A diagram of the complete algorithm with both detection and localization filters is

represented in Figure 1.4. Although the initial concept of the O-JJDL algorithm
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EDr1

ED

ED

r2

rM

...
...

E2D

E2D

E2D

...

Detection 
EKF
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eig Test
P

Ĥ0 or Ĥ1

y1

y2

yM

Localization 
EKF

Ĥ1 true?

YES

Start 
Localization

NO
NOP

Figure 1.4: O-JJDL block diagram

comes from an original and interesting idea, the algorithm presents a few drawbacks

that make its use difficult:

1. Dependence of the discriminating function on the scenario;

2. Dependence of the discriminating function on Rk and Qk;

3. Necessity two EKF;

4. No a-priori information on detection performance.

The I-JJDL algorithm is an evolution of the original algorithm, overcomes these

drawbacks and it is more suitable for real-life applications.

1.4 Innovation-driven JJDL algorithm

The I-JJDL algorithm consists of three main phases:

(i) Observables estimation;

(ii) Jammer position tracking;

(iii) Jammer detection.

In step (i), the observables are estimated from the received signal; in step (ii) the FC

estimates the current position (and velocity) of the potential jammer with an EKF;

in step (iii) the FC takes a decision on the presence or absence of a jammer, based
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on the FC behaviour. Here two versions of the I-JJDL algorithm are presented: the

first version employs power-based observables, while the second one makes use of

TDOA and frequency difference of arrival (FDOA) measurements [P3]. Step (iii) is

identical in both algorithms, while steps (i-ii) depend on the kind of observables.

It is wort mentioning that the algorithm can be adapted to cope with different

kinds of observables, as long as they are a function of the relative distance/velocity

of the jammer.

1.5 Observables estimation

1.5.1 Power-based I-JJDL algorithm

In the power-based I-JJDL algorithm, the nodes estimate the received power from the

incoming signal. In order to do so, the following assumptions are made. The jamming

signal is assumed to have narrower bandwidth than that of the receivers equipping

the sensor nodes, and a constant power. Clearly, the relationship between received

power, transmit power, and distance is in general a complex function of propagation

characteristics. These are in turn dependent on the selected environment. In order

to show a solution which is both simple and agnostic, we assume a classic exponential

path loss model with parameter α, which can be fit to the environment. With the

aforementioned assumptions, the power received by the i-th node can be expressed

as:

Pr,i =





PN,i, if H0 holds (1.17a)

Pt

(
c

4πfcdi

)α
+ PN,i, if H1 holds (1.17b)

where PN,i is the noise power, Pt is the jammer transmit power, and c is light velocity

in vacuum. The received signal is then discretized as in eq. (1.3a-1.3b).

Using an observation window with N samples, nodes estimate the received power

through the following estimator [P1]:

Pr,i,k ≈ T (ri,k) =
1

N

N∑

n=1

|ri,k [n]|2 (1.18)

which averages the square magnitude of N samples of the incoming signal. This

operation is performed for every epoch k of the EKF execution. The equation relating

the estimated received power to the distance between the jammer and the i-th node
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depends on the transmit power Pt, as expressed in:

di,k =
c

4πfc
α

√
Pt

T (ri,k)− PN
(1.19)

However, the problem of retrieving the distance from the received power is undeter-

mined when the transmit power is unknown. For this reason, we introduce a new

observable called distance per unit of transmit power that is measured in meter per

Watt:

yi,k =
c

4πfc
α

√
1

T (ri,k)− PN
(1.20)

The nodes compute these observables, which are then sent to the FC and collected

in the vector yk ∈ RM . The ambiguity related to Pt will be solved by the EKF.

1.5.2 TDOA/FDOA-based I-JJDL algorithm

This version of the algorithm exploits TDOA and FDOA measurements instead of

received power. Although the processing of these kind of observables is more cum-

bersome and strict synchronization of sensing nodes is required, TDOA and FDOA

provide a more robust and accurate alternative to power-based measurements. More-

over, as suggested in [P6] and §3, synchronization of low-cost software-defined radio

(SDR) is today possible and affordable.

TDOA is defined as the difference in time between the reception of a signal

by different nodes. FDOA is the differential Doppler between different nodes. In

TDOA /TDOA localization, one of the M sensing nodes is designated as reference

node (i = r). Observables will be estimated with respect to the reference node only,

as:

TDOAi = TOAr − TOAi (1.21)

FDOAI = FOAr − FOAi (1.22)

where TDOA is the difference of time of arrivals and FDOA is the difference of

frequency of arrivals. In the presence ofM nodes, the number of linearly independent

TDOA or FDOA observables is M − 1. Each node records the raw samples of the

received signal and sends them to the FC which is in charge of estimating the M − 1

TDOA/FDOA observables. The observable estimation phase of the I-JJDL, unlike

the power-based case, is performed by the FC. TDOA and FDOA measurements are
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obtained from the signals thanks to the processing of the complex ambiguity function

(CAF), defined as [33]:

χi (τ, k) =

N−1∑

n=0

sr (n) s∗i (τ + n) e−j2π
kn
N (1.23)

where sr and si are the digital signals received by node r and i, respectively; τ is the

lag, k is the digital Doppler frequency, and N is the number of signal samples used

for the computation of the CAF. The expression of the CAF can be rewritten in a

more computationally efficient way as:

χi (τ, k) = DFT {sr (n) s∗i (τ + n)} (1.24)

The TDOA and FDOA measurements are obtained by finding the maximum point

of the CAF’s magnitude in the lag-doppler domain.
(

̂TDOAi, ̂FDOAi
)

= argmax
τ,k

{|χi (τ, k)|} (1.25)

Once the observables are obtained, they are used in the next step of the algorithm

for tracking the position and velocity of a potential jammer.

1.6 Jammer position tracking

The task of this phase is to estimate the position of the potential jammer by running

the EKF with the observables collected in the previous step. As introduced in [34],

the optimal EKF can be described by equations (1.26a)–(1.26b) and (1.27a)–(1.27c),

where x̂−k and x̂k are the a-priori and a-posteriori state estimates, respectively; Ak

is the state transition matrix describing the evolution of the system in absence of

state noise and control inputs; Bk is the control-input matrix; P−k and Pk are the

a-priori and a-posteriori estimation error covariance matrices, respectively; Qk and

Rk are the process noise and measurement noise covariance matrices, respectively;

Hk is the observation matrix, and Kk is the optimal EKF gain (§A.1).
{

x̂−k = Akx̂k−1 + Bkuk (1.26a)

P−k = AkPk−1A
T
k + Qk (1.26b)





Kk = P−k HT
k

(
HkP

−
k HT

k + Rk

)−1 (1.27a)

x̂k = x̂−k + Kk

(
yk −Hkx̂

−
k

)
(1.27b)

Pk = P−k −KkHkP
−
k (1.27c)
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1.6.1 Power-based algorithm

In the power-based case, the state vector to be estimated is xk =
(
Xk, Yk, α

√
Pt,k

)
.

The use of α
√
Pt,k in place of Pt,k simplifies the EKF equations and improves the

filter convergence properties. The equation describing the dependence of the state

vector on the i-th observable is the following nonlinear function:

hi.k (xk) =

√
(Xi −Xk)

2 + (Yi − Yk)2

α
√
Pt,k

, (1.28)

Therefore, the whole observation model is described by the function hk : R3 → RM

defined as hk = (h1,k, h2,k, . . . , hM,k)
T . The observation matrix is obtained from

(1.28) by linearization (eq. (1.29)–(1.32)).

Hk =J hk =




∂h1,k
∂Xk

∂h1,k
∂Yk

∂h1,k

∂
√
Pt,k

∂h2,k
∂Xk

∂h2,k
∂Yk

∂h2,k

∂
√
Pt,k

...
...

...

∂hM,k
∂Xk

∂hM,k
∂Yk

∂hM,k

∂
√
Pt,k




(1.29)

∂hi,k
∂Xk

=− Xi −Xk√[
(Xi −Xk)

2 + (Yi − Yk)2
]
α
√
Pt,k

(1.30)

∂hi,k
∂Yk

=− Yi − Yk√[
(Xi −Xk)

2 + (Yi − Yk)2
]
α
√
Pt,k

(1.31)

∂hi,k

∂
√
Pt,k

=−

√
(Xi −Xk)

2 + (Yi − Yk)2

α

√
P 2
t,k

(1.32)

The determination of the optimal Qk and Rk is beyond the scope of this dissertation,

but the interested reader can refer to [34], [35], and [36]. Pragmatically, it is

reasonable to assume the components of the process noise and the measurement noise

from different nodes as uncorrelated. This translates into diagonal noise covariance

matrices and, we can set these matrices as:
{

Qk = σQI3 ∀k (1.33a)

Rk = σRIM ∀k (1.33b)
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Figure 1.5: Power-based algorithm block diagram

As far as the a-priori model is concerned, the jammer can be assumed to be quasi

static. This assumption can be shown to hold in most application scenarios, given

the coherence time involved by typical dynamic settings. Since the jamming power

is constant, the state transition matrix Ak is an identity matrix. The absence of

controlled inputs translates into a null Bk matrix.




Ak = I3, ∀k (1.34a)

Bk = 0, ∀k (1.34b)

x̂−k = Akx̂k−1 (1.34c)

It is worth noticing that the EKF estimates a state vector regardless of the actual

presence of a jammer. Indeed, this forms the basis for the detection phase.The

algorithm is summarized by the block diagram in Figure 1.5.

1.6.2 TDOA/FDOA-based algorithm

In the TDOA/FDOA version of the TDOA algorithm, the unknown system state to

be estimated, includes the position and velocity of the jammer along the X and Y

axes.

xk = (Xk, Yk, Vx,k, Vy,k) (1.35)

For TDOA measurements, equation 1.28 relating observables to the system state,

becomes

hTDOAi,k (xk, ) =

√
(Xr −Xk)

2 + (Yr − Yk)2

c
−

√
(Xi −Xk)

2 + (Yi − Yk)2

c
(1.36)
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For FDOA, instead eq. 1.28 becomes

hFDOAi,k (xk) =

=
fc
c

〈(Vx,k, Vy,k) , (Xk, Yk)− (Xr, Yr)〉
‖(Xk, Yk)− (Xr, Yr)‖

− fc
c

〈(Vx,k, Vy,k) , (Xk, Yk)− (Xi, Yi)〉
‖(Xk, Yk)− (Xi, Yi)‖

(1.37)

where ‖·‖ and 〈·, ·〉 indicate the Euclidean norm and the dot product, respectively.

The observation model, in this case, is described by the function hk : R4 → R2M−2

defined as hk =
(
hTDOA1,k , . . . , hTDOAM−1,k, h

FDOA
1,k . . . , hFDOAM−1,k

)T
, and the observation

matrix of equations (1.38)-(1.44) is the Jacobian matrix of the observation model.

Hk = J hk =




∂hTDOA1,k

∂Xk

∂hTDOA1,k

∂Yk
0 0

...
...

...
...

∂hTDOAM−1,k

∂Xk

∂hTDOAM−1,k

∂Yk
0 0

∂hFDOA1,k

∂Xk

∂hFDOA1,k

∂Yk

∂hFDOA1,k

∂Vx,k

∂hFDOA1,k

∂Vy,k

...
...

...
...

∂hFDOAM−1,k

∂Xk

∂hFDOAM−1,k

∂Yk

∂hFDOAM−1,k

∂Vx,k

∂hFDOAM−1,k

∂Vy,k




(1.38)

∂hTDOAi,k

∂Xk
=

1

c

Xk −Xr√
(Xr −Xk)

2 + (Yr − Yk)2
− 1

c

Xk −Xi√
(Xi −Xk)

2 + (Yi − Yk)2
(1.39)

∂hTDOAi,k

∂Yk
=

1

c

Yk − Yr√
(Xr −Xk)

2 + (Yr − Yk)2
− 1

c

Yk − Yi√
(Xi −Xk)

2 + (Yi − Yk)2
(1.40)
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∂hFDOAi,k

∂Xk
=− fc

c
(Yk − Yr)

〈(Vx,k, Vy,k) , (Xk, Yk)− (Xr, Yr)〉√
‖(Xk, Yk)− (Xr, Yr)‖3

+
fc
c

(Yk − Yi)
〈(Vx,k, Vy,k) , (Xk, Yk)− (Xi, Yi)〉√

‖(Xk, Yk)− (Xi, Yi)‖3
(1.41)

∂hFDOAi,k

∂Yk
= +

fc
c

(Xk −Xr)
〈(Vx,k, Vy,k) , (Xk, Yk)− (Xr, Yr)〉√

‖(Xk, Yk)− (Xr, Yr)‖3

− fc
c

(Xk −Xi)
〈(Vx,k, Vy,k) , (Xk, Yk)− (Xi, Yi)〉√

‖(Xk, Yk)− (Xi, Yi)‖3
(1.42)

∂hFDOAi,k

∂Vx,k
= +

fc
c

(Xk −Xr)
〈(Vx,k, Vy,k) , (Xk, Yk)− (Xr, Yr)〉

‖(Xk, Yk)− (Xr, Yr)‖

− fc
c

(Xk −Xi)
〈(Vx,k, Vy,k) , (Xk, Yk)− (Xi, Yi)〉

‖(Xk, Yk)− (Xi, Yi)‖
(1.43)

∂hFDOAi,k

∂Vy,k
= +

fc
c

(Yk − Yr)
〈(Vx,k, Vy,k) , (Xk, Yk)− (Xr, Yr)〉

‖(Xk, Yk)− (Xr, Yr)‖

− fc
c

(Yk − Yi)
〈(Vx,k, Vy,k) , (Xk, Yk)− (Xi, Yi)〉

‖(Xk, Yk)− (Xi, Yi)‖
(1.44)

The a-priori model, in this case, assumes the jammer is moving with a constant

velocity.

ak =





Xk+1 = Xk + Vx,kdt ∀k (1.45a)

Yk+1 = Yk + Vy,kdt ∀k (1.45b)

Vx,k+1 = Vx,k ∀k (1.45c)

Vy,k+1 = Vy,k ∀k (1.45d)

where dt is the time interval between two consecutive EKF iterations, in seconds.

The state transition matrix Ak is the Jacobian matrix of ak:

Ak = J ak =




1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 0




(1.46)

Controlled inputs are absent and Bk = 0 ∀k. The same considerations for the

measurement and noise covariance matrices in the power-based case, hold also in
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Figure 1.6: TDOA/FDOA-based algorithm block diagram

this context. Allowing different measurement error variances for TDOA and FDOA

the covariance matrices are:




Qk = σQI4 ∀k (1.47a)

Rk = diag


σ2

TDOA, . . . , σ
2
TDOA︸ ︷︷ ︸

M−1

, σ2
FDOA, . . . , σ

2
FDOA︸ ︷︷ ︸

M−1


 ∀k (1.47b)

The optimal values for σTDOA and σFDOA can be set according to §A.3.

The complete algorithm is summarized by the block diagram in Figure 1.6.

1.7 Jammer detection

At this step, the task is to take a decision about the presence or absence of inter-

ference, based on the output error of the EKF. More specifically, we monitor the

innovation of the filter, which is the difference between the actual observables and

the measurements predicted using the a-priori state estimate and the observation

model. The innovation vector εk ∈ RM is defined as:

εk = yk −Hkx̂
−
k (1.48)

Let F0(x) be the cumulative density function (CDF) of the squared magnitude of

the innovation, in the absence of jamming attempts. This function can be accurately

estimated by initially running the algorithm in a controlled interference-free scenario.

F0(x) = Prob
{
‖εk‖2 ≤ x

}
(1.49)
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Let FND(x) be the empirical CDF of the squared magnitude of the innovation, es-

timated using the last ND samples (εk−Nd+1, . . . , εk). If i = k − ND + 1, then the

empirical CDF is expressed as:

FND (x) =
1

ND

i+Nd−1∑

n=i

1
(
‖εn‖2 ≤ x

)
(1.50)

where 1 (·) is the indicator function, defined as

1 (Zi ≤ x) =

{
1 if Zi ≤ x (1.51a)

0 otherwise (1.51b)

Now it is possible to introduce the decision statistics which yield the main proper-

ties and benefits of the proposed algorithm. Once the empirical CDF is available,

it is compared with that computed in the absence of jammers by means of the

Kolmogorov-Smirnov test (KST):

DND (d) = sup |FND (x)− F0 (x)| Ĥ1
≷
Ĥ0

d (1.52)

The KST compares the supremum of the difference between the empirical distribution

and the distribution of the innovation in the absence of jammer, with a threshold d.

The algorithm decides in favour of Ĥ1 whenever the test statistics DND exceeds the

threshold; it decides in favour of Ĥ0 if the test statistics is below the threshold. The

desirable property of the KST is that its test statistics do not depend on F0. In fact,

it depends only on the number ND of samples used in the empirical CDF estimation

and on the test threshold d. Once these two parameters are set, the false-alarm

probability is constant. This probability is defined as that of the test statistics to

exceed the threshold, given that H0 is true:

Pfa = Prob {DND > d | H0} (1.53)

Although no closed form of the false-alarm probability exists, Marsaglia et al. [37]

proposed an algorithm to compute this probability. This algorithm becomes more

and more accurate by increasing the product d
√
ND and reaches accuracies com-

parable to the machine precision. Figure 1.7 shows the theoretical false alarm

probability as a function of the number of samples for estimating the empirical CDF

and the KST threshold.
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Figure 1.7: Theoretical probability of false alarm from eq. (1.53)

1.8 Numerical results

In our reference scenario, used for performance evaluation, we consider a square SA

of size l × l. By selecting the bottom-left corner of this region as the origin of the

axes, we arrange the nodes in a grid with coordinates given by the Cartesian product

of the following linearly-spaced sets:




0, . . . , l︸ ︷︷ ︸√
M




×





0, . . . , l︸ ︷︷ ︸√
M




,
√
M ∈ N>0, (1.54)

which results in the node deployment of Figure 1.8. Note that the algorithm perfor-

mance does not depend critically on regularity, but on achieving sufficiently small

dilution of precisions. The experiment starts in the absence of interference. At

the time instant tJ , a jammer starts to transmit a chirp signal from a random and

unknown position within the SA and keeps transmitting until the experiment ends at

instant tN . In the TDOA/FDOA-based algorithm, the jammer moves with constant

velocity, towards a random direction. The performance of the algorithm is evalu-

ated with Monte Carlo simulations. Simulation parameters are collected in Tables

1.1-1.2. Jammer detection capabilities are evaluated in terms of false-alarm rate

(P̂fa), missed-detection rate (P̂md), and detection delay (δ̂). For the localization,

the chosen metrics are the root mean square position (and velocity) error (R̂MSE

and ̂RMSEV )). False-alarm (missed-detection) rate is measured as the ratio be-
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Table 1.1: Simulation parameters (power-based algorithm)

Symbol Description Value

Tc Chirp period 50µs

Bc Chirp bandwidth 5 MHz

α Path loss exponent 2

Pt Jammer transmit power -20 dBW

fc Jammer carrier frequency 1575.42 MHz

Br Node receiver bandwidth 10 MHz

Rs Node receiver sampling rate 20 Msps

PN Node receiver noise power -127 dBW

σQ EKF process noise standard deviation 10−6

σR EKF measurement noise standard deviation 1

N Number of samples used for power estimation 100

tN Experiment duration (EKF iterations) 20000

tj Jammer starting instant (EKF iterations) 10000
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Table 1.2: Simulation parameters (TDOA/FDOA-based algorithm)

Symbol Description Value

Tc Chirp period 50µs

Bc Chirp bandwidth 5 MHz

α Path loss exponent 2

Pt Jammer transmit power -20 dBW

fc Jammer carrier frequency 1575.42 MHz

Br Node receiver bandwidth 10 MHz

Rs Node receiver sampling rate 20 Msps

PN Node receiver noise power -127 dBW

σQ EKF process noise standard deviation 10−6

σR EKF measurement noise standard deviation 1

N CAF observation interval 1 ms

V Jammer velocity 50 km/h

tN Experiment duration (EKF iterations) 20000

tj Jammer starting instant (EKF iterations) 10000
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Figure 1.8: Node positions in the service area

tween the number of false-alarm (missed-detection) events over the total number of

experiments, as indicated in (1.55-1.56)

P̂fa =
#false alarm events

#experiments
≈ Prob

{
Ĥ1 | H0

}
(1.55)

P̂md =
#missed detection events

#experiments
≈ Prob

{
Ĥ0 | H1

}
(1.56)

The detection delay is the time difference between the instant when interference

(t̂J) is detected and the actual instant when the jammer starts transmitting (tJ),

measured in EKF epochs, as follows:

δ̂ = t̂J − tJ (1.57)

Both R̂MSE and ̂RMSEV are measured only when the jammer is transmitting, as

displayed according to the following expression:

R̂MSE =

√√√√
tN∑

k=tJ

‖X − X̂k, Y − Ŷk‖2
tN − tJ

(1.58)

̂RMSEV =

√√√√
tN∑

k=tJ

‖Vx − X̂x,k, Vy − Ŷy,k‖2
tN − tJ

(1.59)
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Figure 1.9: Error between theoretical false-alarm probability and measured false-

alarm rate

Detection results are valid for both versions of the algorithm. On the contrary

localization results are shown separately for the power-based and TDOA/FDOA-

based algorithms.

1.8.1 Detection performance

The first significant result worth analyzing is the behavior of the false-alarm rate

compared to the corresponding theoretical probability. Figure 1.9 shows the error be-

tween the theoretical false-alarm probability and the measured rate (|P̂fa−Pfa|/Pfa)
as a function of the KST threshold d, by varying the number of nodes M and the

number ND of innovation samples used for the CDF estimation. From the figure,

we may notice that for increasing ND and d, the error decreases, as indeed suggested

in [37]. The maximum error of 32% is obtained for d = 0.1 and ND = 100 and it

is located in a region where the false-alarm probability is too high (of the order of

0.1) to be of practical interest (see Figure 1.7). In the region of practical interest

(Pfa < 10−3), the error falls rapidly below 1%. Moreover, the fact that the error does

not depend significantly on the number of sensor nodes M is remarkable. In fact,

as highlighted before, false-alarm probability essentially depends on ND and d. This

property is very important, as it possibly allows for designing a jammer-detecting

network of nodes with CFAR characteristics, by selecting the appropriate values of
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Figure 1.10: Missed detection rate

ND and d.

Regarding missed detection probability, due to the intrinsic characteristics of the

decision metric, it presents a step-wise behaviour for growing values of the threshold,

so that it is null for all practical means, as shown in Fig. 1.10. About the accuracy of

Figures 1.9-1.10, the curves have been obtain by repeating the reference experiment

until 1000 false-alarms/missed-detection events occurred with the maximum number

of iterations set to 10000. The final result is the average of these multiple realizations

The choice of ND and d has an obvious impact on the detection delay. Figure

1.11 shows this dependence. However, since practical applications can often tolerate

delays up to seconds, ND and d are not critical design parameter, as far as delay is

concerned. Moreover, the delay is fairly linear with the KST threshold, and the

slope of the lines is exactly ND. As a consequence, the delay can be described by

(1.60).

δ = δ0 +Ndd (1.60)

1.8.2 Localization performance

The localization performance of the power-based algorithm is compared with the

square root of the Cramér-Rao lower bound (SR-CRB) (§A.3). Figure 1.12 shows

the RMSE as a function of the number of nodes. The localization RMSE is limited

to 0.2m with M = 4 and approaches the SR-CRB by increasing the number of
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4 9 16 25
10

−3

10
−2

10
−1

10
0

number of nodes (M)

R
M

S
E

 [
m

]

 

 
RMSE

SR−CRB

99th percentile

Figure 1.12: Localization root mean square error (power-based algorithm)
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Figure 1.13: Localization root mean square error (TDOA/FDOA-based algorithm)

monitoring nodes.

One may argue that the algorithm has not been tested in a dynamic scenario

with a moving jammer, which is a quite usual situation. Actually, the velocity of

the jammer does not compromise the performance of the algorithm. Indeed, in this

case, the only problem that may rise is the underestimation of the received power

caused by the Doppler shift, which could shift part of the signal spectrum outside

of the receiver band. However, in order for this to happen, the frequency shift has

to be dramatic, in the order of hundreds of kHz, which corresponds to to unrealistic

speeds.

In the TDOA/FDOA-based version of the algorithm, we compare R̂MSE and
̂RMSEV with the lower bounds in Figures 1.13-1.14. We obtain similar results to

the power-based case, but we are able to estimate the jammer velocity as well.
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Figure 1.14: Velocity estimation root mean square error (TDOA/FDOA-based algo-

rithm)

1.9 TDOA/FDOA-based I-JJDL on low-cost SDR

As a proof of concept, this section describes the implementation of the TDOA/FDOA-

based I-JJDL algorithm using low-cost SDR. The experiment has been carried out

in the RF System and Payload laboratory, ESTEC (Figure 1.15) . A diagram of the

test setup is shown in Figure 1.16. The jammer is emulated using a HackRF (see

§XX), which transmits a chirp signal with a band of 20MHz, a chirp period of 50 us,

and a transmit power of 1 mW. The interfering signal is fed to a RF power divider

and then to a SPIRENT VR5 HD Spatial Channel Emulator. The SPIRENT VR5

emulates the scenario in Figure 1.17.

Four HackRF have been used to emulate the four sensor nodes. Each HackRF

is synchronized in frequency using a high accuracy clock. The time synchronization

is provided thanks to two mass market GNSS receivers. The sampling frequency

of the sensor node is 10 MHz, the receiver bandwidth is 5 MHz, and the CAF

integration interval is 1 ms. The experiment has been repeated 1000 times and, for

each realization each node records 200 ms. The jammer starts transmitting at a

random instant within this 200ms interval. The signals have been processed using

the TDOA/FDOA-based algorithm described in the present chapter.

Figure 1.18 shows the probability density function (PDF) of the localization error.

The localization error is limited to 25 m, and the mode is 4 m. This error is the effect
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Figure 1.15: Laboratory setup

Figure 1.16: Diagram of the test setup
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of the residual synchronization error (100 ns) on the TDOA estimation. Although

the residual synchronization error introduces a bias in the EKF observables (30 m),

the algorithm is still able to provide a sufficient accuracy for the jammer localization

application.

Figure 1.19 shows the probability density function (PDF) of the velocity esti-

mation error. This error is limited to 3 m/s and the mode is below 1 m/s. The

velocity estimation shows a better accuracy because all the sensor nodes share the

same clock.



Chapter 2
Interference Mitigation

In this chapter, we consider two possible approaches to the interference mitigation

problem. The first approach is described by the distributed-sensing waveform esti-

mation (DSWE) algorithm which allows for interference cancellation in time domain,

thanks to cooperative multi-node interfering waveform estimation [P8].

The second approach does not involve interference cancellation, but achieves in-

terference mitigation thanks to integration of GNSS and inertial navigation system

(INS). Notwithstanding this method has been devised in order to improve the track-

ing accuracy in racing vehicles, it can be successfully applied in order to improve

reliability, accuracy and availability of the position solution in interfered scenarios

[P5].

2.1 Distributed-sensing waveform estimation

Several techniques have been proposed for wide-band interference characterization

and mitigation. Traditional time-domain interference mitigation technique, such

as pulse blanking are ineffective against chirp jammers [38]. The most promising

techniques are the transformed-domain ones. Borio et al. proposed time-frequency

analysis for interference excision [16]; Wavelet transform has been used for the same

purpose in [39]; The first attempts at using Karhunen-Loève transform for interfer-

ence mitigation appeared in [40] and [41]. However, none of the aforementioned

techniques exploits the cooperation of multiple users for interference characterization

and mitigation.

Here, we present the DSWE algorithm based on Karhunen-Loève expansion

(KLE). Karhunen-Loève Expansion (§A.4) (sometimes denoted as Karhunen-Loève
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Transform or Principal Component Analysis) allows to represent a signal, in the

proper vector space, such that noise and redundancy are removed. As an intuitive

example, it is possible to consider an object that is moving on a straight line in a

three-dimensional Euclidean space. Suppose three cameras, one for each orthogonal

Cartesian direction, are observing the experiment. It is intuitive stating that the

best representation of the object’s trajectory would be the one recorded by the cam-

era which is orthogonal to the straight line on which the object is moving: even if

the object’s motion takes place in a three-dimensional space, we are interested just

in what happens in a single direction, all the information is contained in a single

direction. Even if there is no camera in the privileged direction, by combining in

the appropriate way the contributions of the three cameras, it is always possible

to represent the trajectory in a single direction. In a similar way, we apply this

idea to waveform estimation. The proposed algorithm, applied to interfering signals,

provides accurate waveform estimates suitable for interference cancellation. More-

over, the estimation algorithm is robust against channel model mismatch and offers

superior performance, even in the presence of very low SNR.

After waveform estimation, each node is able to cancel the effect of interference,

by coherently subtracting the disturbing signal, after frequency and phase estimation

(obtainable using traditional non data aided estimation). Notwithstanding the algo-

rithm has been tested on chirp signals, it is meant to be applied to any wide-sense

stationary signal, that is basically most of modulated signals.

2.1.1 System model

We consider a network of M waveform estimating nodes placed on a grid, as shown

in 2.1. We refer to the region occupied by nodes as service area.

Assume that a jammer is transmitting an interfering signal within the service

area. The network of nodes, by exploiting the structure of the jamming signal,

must provide an estimate of the interfering signal waveform, suitable for interference

cancellation.

2.1.2 Algorithm description

The DSWE algorithm exploits the structure of interfering signal in order to charac-

terize them. The waveform estimation algorithm is composed by three main phases:

(i) Period estimation
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Figure 2.1: Grid of waveform estimating nodes

(ii) Averaging

(iii) Interfering signal reconstruction

The first two steps are performed by nodes, while the third one is performed by a

FC, which collects the data from nodes. In the following it is assumed that each

node records the received interfering signals in an observation interval TO, with a

sampling frequency fs.

Period estimation

The objective of the first step is to provide an estimate of the duration of the in-

terfering signal period: this is obtained thanks to the autocorrelation properties of

the signal. The autocorrelation function of the interfering signal is periodic and its

repetition period is equal to the period of z(t). Figure 2.2 shows a block diagram

of the period estimation algorithm. Firstly, the autocorrelation function of the
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Figure 2.2: Block diagram of the period estimation phase

interfering signal is estimated:

R̂k(m) =





1√
R̂k(0)

N−m−1∑

n=0

s∗r,k(n+m)sr,k(n) m ≥ 0 (2.1a)

R̂k(−m) m < 0 (2.1b)

After the autocorrelation is estimated, the correlation peaks are found by comparing

the modulus of R̂k with a threshold γ, then the distance between any two consecutive

peaks is computed and the most probable distance is selected as the estimated period

T̂j,k, where k indicates the k-th node. Once the firts node has estimated the period,

the value of T̂j is broadcast to all the nodes.

Averaging

In the second step, the average waveform in a period is computed:

s̄r,k =
1

bNs/T̂jc

bNs/T̂jc∑

n=1

sr,k

(
t− nT̂j

)
e−jφ̂n (2.2)

where Ns is the number of samples per observation interval Ns = TOfs. In order

to average out noise and boost the SNR, it is important to sum coherently the

samples of the recorded waveform. To this aim, an open loop phase estimator is

used, allowing the correction of the waveform’s phase φn. Moreover, the expected

value of the waveform is removed, in order to simplify the equations in the following

steps, without loss of generality. The operations performed by each node in phase

(ii) are depicted in Figure 2.3.

2.1.3 Interference signal reconstruction

The averaged samples of the interfering signal waveform s̄r,k, k = 1, . . . ,M are sent

to the FC, which aims to reconstruct the transmitted modulating signal waveform
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Ŝ0

Figure 2.4: Fusion center block diagram

z(t), using KLE (§A.4). First, the averaged samples of the signal waveform recorded

by nodes, are collected in the matrix Sr ∈MM×Ns(R), then the signal autocovariance

matrix Cs ∈MNs(R) is estimated by:

Cs = SrS
H
r (2.3)

where (·)H is the Hermitian operator. The eigenvalues λ = (λ1, . . . , λNs)
T ∈ CNs

and the corresponding eigenvectors η ∈ MNs(C), are computed by diagonalization

of the matrix Cs. Then the KLE coefficients are obtained by projecting the signal

space onto the eigenvector space:

y = SHr · η (2.4)

and the eigenvalue with maximum magnitude is determined

λ̄max = max
n=1,...,Ns

{λn} (2.5)

The interfering signal modulating waveform samples Ŝ0, are reconstructed using the

eigenvector corresponding to the eigenvalue with maximum amplitude only:

Ŝ0 = ynη
H
n (2.6)

thus, reducing the number of dimensions of the signal space to 1. By tracking the

received signal frequency and phase, it is possible to subtract the interfering signal

waveform from the received signal in time domain. The interference reconstruction

phase is summarized in Figure 2.4
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Table 2.1: Simulation parameters (Distributed-sensing waveform estimation algo-

rithm

Symbol Description Value

Pt Jammer transmit power 20 dBm

α Path-loss exponent 3

fd Maximum Doppler frequency 600 Hz

N0 AWGN power spectral density -196 dBW/Hz

B Receiver bandwidth 5 MHz

fs Sampling frequency 16 MHz

fc Jamming signal carrier frequency 1575.42 MHz

ε Maximum tolerated MSE 0.5

2.1.4 Numerical results

In order to evaluate the algorithm performance, we used Monte-Carlo simulations.

Before commenting the simulations results, we define a waveform estimation success

probability PS as the probability of a correct period and waveform estimation, that

is the probability that at least one node is able to estimate the period and the mean

square error (MSE) between the transmitted interfering waveform and the estimated

one is below the maximum tolerated MSE, ε:

PS = Prob

{∣∣∣T̂j,k − Tj
∣∣∣ < 1

fs
∧MSE[Ŝ0,S0] < ε

}
(2.7)

MSE, in the following, is computed on normalized signals. In order to evaluate the

success probability, we used a network ofM nodes, as shown in Figure 2.1, placed on

a 1 km × 1 km square region. The jamming source position is randomly chosen with

uniform distribution within the service area and an estimate of the interfering signal

waveform is obtained thanks to the algorithm described in the previous section.

The results presented in the remainder of this section are obtained by averaging

ten thousands repetition of the same experiment, in order to have statistically valid

results. Simulation parameters are summarized in Table 2.1. A generic node k

receives the interfering signal transmitted by the jammer through a time-varying

flat-fading channel, with impulse response h. The signal received by the k−th node
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Figure 2.5: Waveform estimation success probability (AWGN)

can be written as

sr,k(t) = s(t) ∗ h(t, τ) (2.8)

where ∗ denotes the convolution operator. Assuming two-dimensional isotropic scat-

tering and vertical monopole antennas at the nodes, the PSD fo the received fading

signal can be modelled as in [42]:

S(f) =





1

πfd

√
1−

(
f
fd

)2
|f | < fd (2.9a)

0 elsewhere (2.9b)

In order to understand the impact of a dynamic channel on performance, we

tested the algorithm both in static and dynamic channel conditions: the reference

algorithm performance is obtained in AWGN. With this simple model, the received

signal is an attenuated and delayed version of the transmitted one:

sr,k(t) = s(t− τk)
√
K

dαk
(2.10)

where dk is the distance between the k-th node and the jamming source, α is the

path-loss exponent and K is the path-loss at the reference distance. The perfor-

mance in AWGN, are shown in Figures 2.5-2.6 Figure 2.5 shows the waveform

estimation success probability dependence on the ratio between period and obser-

vation interval duration Tj/TO , for different network dimensions M . The success
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Figure 2.6: mean squared error between transmitted and estimated waveforms

(AWGN)
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Figure 2.7: Waveform estimation success probability (dynamic channel)
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Figure 2.8: mean squared error between transmitted and estimated waveforms (dy-

namic channel)

probability decreases when increasing Tj/TO, and we have PS > 0.8 for M > 9 and

Tj/TO < 3: the observation of just 3 chirp periods is sufficient to obtain very good

performance. For M < 9, we have a lower success probability and we need to record

hundreds of chirp periods to have success probabilities better than 70%. As far as

MSE is concerned, we have outstanding performance, as shown in Figure 2.6: MSE is

always below 0.15. Its behavior is decreasing for decreasing values of Tj/TO and for

increasing size of the network. A saturation effect is present: increasing the network

size beyond M = 9 does not provide enough benefits to justify the higher network

complexity.

Then the algorithm has been tested using the dynamic channel and simulation

results are collected in Figures 2.7-2.8 . The results show a similar behavior for both

channels, with performance degradation in terms of both success probability and

MSE, in the dynamic channel scenario. Thus, we can draw the same conclusions as in

the AWGN case. Figure 2.7 shows the waveform estimation success probability in the

dynamic channel case: for low values of Tj/TO (≤ 1/100) and forM ≥ 16, the success

probability is analogous to the AWGN case but, for increasing value of the ratio

between period duration and observation interval, we have a stronger performance

degradation. For Tj/TO < 1/100, the success probability in the dynamic channel case

is 5-8% worse with respect to the AWGN scenario. Talking about MSE and looking

at Figure 2.8, we notice a stronger performance degradation: while in AWGN, mean
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squared error can be lower than 0.01 forM = 25 and Tj/TO < 1/10, we can not reach

values below 0.08 in the dynamic channel case. Moreover, the curves associated to

different values of M are more distant from each other, meaning that increasing the

network size gives more consistent benefits in the dynamic channel scenario. The

DSWE algorithm improves MSE from values greater than 0.4 to values lower than

0.08. This means that, using our algorithm we can obtain a very low residual after

interference cancellation. Notwithstanding the moderate performance degradation

with respect to the MSE case, the algorithm shows outstanding performance even in

presence of mobility.

2.2 Optimal EKF for Quasi-Tightly Coupled GNSS/INS

Integration

As many emerging automotive applications (e.g. autonomous navigation, dynamic

control, driving assistance, route guidance, etc.) rely on localization services, en-

hanced reliability of vehicles positioning is becoming a crucial constraint. However,

requirements in terms of both accuracy and availability turn out to be challenging

in typical vehicular scenarios. The position solution is indeed potentially subject to

harsh electromagnetic environments (e.g. urban canyons, interference), where rang-

ing signals are hindered or disturbed, and to large dynamics whenever high speeds

occur. With an increasing number of sensors being made available in modern vehi-

cles, large amounts of data can be used to aid in the localization process together

with satellite systems. Because of their complementary features, GGNSS are often

employed together with INS in order to improve the localization reliability [43]. As

well known, the satellites constellation provides unbiased and repeatable position

estimates, which are however available at slow rates and with limited precision. On

the other hand, inertial sensors (such as accelerometers, magnetometers, and gyros)

continuously allow for position updates at high rates, but their inner drift grow pro-

gressively into potentially unbounded errors. With the aim of balancing out these

drawbacks, the received GNSS information is exploited to periodically calibrate the

INS, thus preventing the overall accuracy from degrading with time. As a result,

this fusion effectively increases the average performance of a navigation system over

long periods as well as its robustness to temporary service blockage or outage.

In this section, we present a navigation technique that enables the tracking of ve-

hicles moving at high speeds with limited complexity. In particular, we consider the
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Figure 2.9: Quasi-tight GNSS/INS integration

development of a precise tracking system for Formula Society of Automotive Engi-

neers (SAE) prototypes as our exemplary application. For this purpose, we resort ot

a particular quasi-tight GNSS/INS integration [44] that blends the final positioning

estimate computed by the receiver and several raw measurements collected by an

inertial platform in a closed-loop form. Unlike more complex tight and ultra-tight

couplings [45], this method works with no modification of the GNSS engine, since

it combines given coordinates and sensing data in a single solution, as shown in Fig.

2.9. At the same time, a configuration of this kind can potentially achieve a higher

accuracy than a simpler loose level of integration, which is instead characterized by

a weighted average of two independent solutions. In brief, the system we target is

capable of performing well with moderate complexity in order to be within the reach

of a low-cost implementation. At this regard, we carry out a specific quasi-tight cou-

pling by adopting suitable deterministic description of the model that estimates the

vehicle position in real-time. The mathematical formulation we propose represents

a novel realization of this integration.

An EKF is used to merge GNSS and INS information, as velocities and accel-

erations of the tracked vehicle are described through time-variant relationships that

are nonlinear. Moreover, we address the optimization of the stochastic properties

of the mathematical model underlying the estimation process. The noise covariance
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matrices are indeed tuning parameters of the Kalman filter and their identification

increases the quality of the state estimation. Our goal is therefore to achieve a quasi-

optimal performance of the EKF. For this task, we choose the Bayesian approach

proposed in [46] by P. Matisko and V. Havlena, since it can provide more infor-

mation about the entering noise parameters than other procedures reported in the

literature (e.g. Autocovariance Least Squares [47]). This technique numerically ap-

proximates the probability distributions of noise matrices from output measurements

along an important sampling method. Even though the formulation of the principle

underlying this approach results straightforward, its implementation was once im-

practical due to its demand for high computational power. Nowadays, the processing

requirements of this Bayesian method can be handled even by entry-level devices. In

[46], its computation complexity and time consumption are compared to those given

for Autocovariance Least Squares, highlighting the obtained advantages in terms of

memory saving. Hence, a real-time execution of such a recursive algorithm is then

expected to be already feasible into current GNSS/INS like the proposed quasi-tight

integration.

2.2.1 Deterministic model

The deterministic model we use to describe the motion of the vehicle under test is

based on the following assumptions. First of all, the dynamic physical quantities

identifying the current state (i.e. position, velocity, and acceleration) are related to

a so-called main two-dimensional reference system XY with the Y axis pointing to

the North of a geodetic system east-north-up (ENU), as illustrated in Figure 2.10.

Hence, the vehicle is supposed to move on a flat surface, as the Z axis corresponding to

the Up direction is not taken into account. Such an hypothesis proves to be realistic

as we consider the scenario of a typical Formula SAE racetrack, which usually does

not feature either significant altitude differences or large dimensions. The curvature

of the earth in each point may be consequently neglected. Further, the orientation

of the motion with respect to the main axes is taken into account by defining a

two-dimensional body reference system xbodyybody, which is in-built with the vehicle

and the inertial platform. This has a tangential ybody axis along the trajectory and

a perpendicular xbody axis outgoing from the right side. The instantaneous rotation

angle between Y and ybody is denoted by θ and its measure is available thanks to

the magnetometer on board. Before starting the simulation, when the vehicle is still

stationary, we assume to align the two reference systems through the initial value θ0.
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Figure 2.10: Main and body reference systems

Without loss of generality, we also set the first position coordinates into the origin

of the main reference system and we finally sketch the vehicle size as a point-like

particle. With the goal of testing the situations that may occur in classic Formula

SAE (FSAE) racetracks, we design some basic types of motions for our particle-like

vehicle:

1. straight lines with uniform acceleration;

2. quick turns at constant velocity;

3. circular hairpins at constant velocity;

4. slaloms at constant velocity.

These trajectories can be generated separately or rather be assembled together to

arrange a whole circuit.

The vehicle dynamics are modelled according to the kinematic equations of a

point-like particle motion over time. They are described through several time-varying

interdependent variables: the coordinates (X,Y ) and the ground speed fvGNSS

read from the GNSS receiver with respect to the main reference system and the

velocity magnitude vINS and the acceleration components (axbody , aybody) respectively

measured by a gyroscope and an accelerometer in the body reference system.

Since the task of the Kalman filter is a position reckoning as accurate as possible,

it suitably combines redundant sequential observations to average out the estimate
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errors. For this reason, in addition to the position coordinates of interest, the ac-

tual state vector x includes also four variables related to the axial velocities and

accelerations, which aid the estimation process, since they contain useful positional

information that are extracted through the deterministic model. Hence, according

to a discrete-time formulation, at each k-th iteration the state has six components

that are all related to the main reference system XY :

xk = (Xk, Yk, Vx,k, Vy,k, ax,k, ay,k)
T (2.11)

The a-priori EKF model considers the vehicle as a point moving with constant ac-

celeration:

ak =





Xk−1 + vx,k−1dt+
1

2
ax,k−1dt

2 ∀k (2.12a)

Yk−1 + vy,k−1dt+
1

2
ay,k−1dt

2 ∀k (2.12b)

vx,k−1 + ax,k−1dt ∀k (2.12c)

vy,k−1 + ay,k−1dt ∀k (2.12d)

ax,k−1 ∀k (2.12e)

ay,k−1 ∀k (2.12f)

Where dt is the time interval between two consecutive EKF iterations. Hence, the

state transition matrix is

Ak = J ak =




1 0 dt 0 1
2dt

2 0

0 1 0 dt 0 1
2dt

2

0 0 1 0 dt 0

0 0 0 1 0 dt

0 0 0 0 1 0

0 0 0 0 0 1




(2.13)

Controlled inputs are absent and Bk = 0 ∀k. In this case, the equation relating the

system state to the measurements is:

hk =




XGNSS,k

YGNSS,k

VGNSS,k

VINS,k

ax,INS,k

ay,INS,k




=




Xk

Yk√
V 2
x,k + V 2

y,k√
V 2
x,k + V 2

y,k

ax,k

ay,k




(2.14)
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Therefore, the observation matrix is

Hk = J hk =




1 0 0 0 0 0

0 1 0 0 0 0

0 0
v2x,k√

v2x,k+v2y,k

v2y,k√
v2x,k+v2y,k

0 0

0 0
v2x,k√

v2x,k+v2y,k

v2y,k√
v2x,k+v2y,k

0 0

0 0 0 0 1 0

0 0 0 0 0 1




(2.15)

Usually the GNSS solution is available with a lower rate with respect to INS mea-

surements. Therefore, GNSS measurements may quickly become obsolete. In order

to solve this problem, we use the following observation matrix whenever the GNSS

measurements are not up to date:

Hk = J hk =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0
v2x,k√

v2x,k+v2y,k

v2y,k√
v2x,k+v2y,k

0 0

0 0 0 0 1 0

0 0 0 0 0 1




(2.16)

In other words, whenever the up-to-date GNSS position is available, it is then used

to calibrate the inertial platform. Otherwise the sensing measurements would lead

to wrong estimates after a while, due to their growing biases.

2.2.2 Stochastic model

The stochastic model represents the uncertainties that characterize the dynamic

system. As usual in the reference literature, we consider both the state noise and the

observation noise to be mutually independent to each other and to have multivariate

Gaussian N distributions with zero mean:

p(wk) = N (0; Qk),∀k (2.17)

p(vk) = N (0; Rk), ∀k (2.18)

where Q ∈ M6×6(R) and R ∈ M6×6(R) denote the state and observation noise

covariance matrices respectively. While the matrix Qk is intended to be recursively

optimized by the proposed algorithm, the matrix Rk is instead assumed to be known
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at each time step. Coherently with the definition of Hk for the observation model,

this noise covariance matrix has two alternative formulations. The first definition is

valid whenever the GNSS information are up-to-date:

Rk =



σ2
X

0 0 0 0 0

0 σ2
Y

0 0 0 0

0 0 σ2
v
GNSS

0 0 0

0 0 0 σ2
v
INS

0 0

0 0 0 0 σ2
axbody

0

0 0 0 0 0 σ2
aybody




(2.19)

On the contrary, the following expression is built so that the Kalman filter relies

more on the other measurements coming from the inertial sensors:

Rk =




Σ 0 0 0 0 0

0 Σ 0 0 0 0

0 0 Σ 0 0 0

0 0 0 σ2
v
INS

0 0

0 0 0 0 σ2
axbody

0

0 0 0 0 0 σ2
aybody




(2.20)

where Σ ∈ R+ indicates an arbitrary large value.

2.2.3 Statistical model optimization

The goal of the following discussion is to ensure that the extended Kalman filter

performance is close to the optimum by getting an insight into the optimal noise

covariance matrices. For this purpose, we recursively compute at every iteration the

matrices Qk and Rk that maximize the probability of observing the current and past

output measurements. The advantage of a recursive algorithm is that it performs

an adaptive filtering, which is necessary if the true noise covariance matrices are

time-varying. In brief, this technique returns the noise covariance matrices that are

characterized by the maximal probability density function (pdf) [46]. Let us define a

likelihood function as the probability distribution of the actual output observed vector

yk conditioned by the previous measured data Yk−1 and by the current matrices Qk

and Rk. Since the entering noise is assumed white and Gaussian as usual, this



2.2 Optimal EKF for Quasi-Tightly Coupled GNSS/INS Integration 61

function results a multivariate Gaussian N distribution with the mean vector ȳk and

the covariance matrix Py
k that are predicted for the current output yk:

Yk = {y0,y1, ...,yk} (2.21)

p(yk|Yk−1,Qk,Rk) = N (ȳk; P
y
k) = N (ŷk; P

y
k) (2.22)

The posterior conditional pdf of Qk and Rk conditioned on the observed data Yk (up

to the current k-th time step) is updated by recursively multiplying the likelihood

function with the prior conditioned pdf, as follows:

p(Qk,Rk|Yk) =
p(yk|Yk−1,Qk,Rk)

p(yk|Yk−1)
· p(Qk,Rk|Yk−1) (2.23)

In other words, the most probable pair of noise covariances matrices is found by

numerically approximating the Bayes formula at every iteration. This approach is

employed in a recursive algorithm that is in order of optimizing the statistical model.

2.2.4 Recursive algorithm

Chosen a suitable parameters vector Ω, we define a set S of state noise covariance

matrices according to the prior knowledge about the stochastic model. The initial

parameters have usually a logarithmic scale to assure a higher density for smaller

covariances. For the sake of simplicity, the matrix Q is parametrized as a multiplier

of the unit matrix:

Ωk = (Ω1
k,Ω

2
k, ...,Ω

N
k ), N ∈ N (2.24)

Sk = S(Ωk) = {Q(Ωi
k) = Ωi

k · I6,∀i},Ωi ∈ R+ (2.25)

As far as the observation noise covariance is concerned, the matrix R is instead fixed

according to Eq (2.19) and (2.20), because we assume to know the exact measure-

ments statistics.

Given a grid of noise covariances matrices, the algorithm executes multiple EKF

at every iteration, one for each pair (Q(Ωi
k),Rk), parallelizing the state estimation.

In the meanwhile, the conditional posterior probability distribution p(Q(Ωi
k),Rk|Yk)

is also recursively computed using Eq. (2.23) for all the covariances covered by the

grid at the current time step. After all the desired matrices have been processed, the

optimal state noise covariance matrix to be used by the filter is selected according

to the maximum a-posteriori (MAP) criterion:

Q̂k = argmax
Ωik

p(Q(Ωi
k),Rk|Yk) (2.26)



62 Interference Mitigation

Before the next iteration, the algorithm generates new points for the set Sk+1 from

the last posterior pdf values by resorting to the importance sampling method, which

belongs to the Monte Carlo family. Then, a prior PDF is assigned to these points

and the whole estimation and optimization process is repeated again.

At first, the algorithm enters an initialization phase to train the conditional pos-

terior probability distribution through the Bayesian approach, without updating the

grid of parameters and thus keeping the first set S0. The length of this starting period

depends on the dynamic system order and the available measured data. Afterwards,

the iterative generation of new sets of state noise covariances is also enabled in or-

der to improve the search for the maximum by the MAP criterion. Since parameters

with high posterior PDF are desired, those with low probability are suitably replaced

at each time step. The optimization of the matrix Q therefore aims at identifying

and selecting the current optimal (i.e. best possible) estimate among all the possible

state vectors x̂ that are computed through parallel EKFs.

We implemented an algorithm that is an improved version of the recursive es-

timation method described in [46]. Indeed, we devised a mechanism to prevent

the probabilities of all the possible noise covariances from being nullified when the

deterministic model undergoes a fast change in the measured dynamics, as it may

happen with high speeds along critical trajectories. If the conditional posterior pdf

results to be zero for each point of the parametrization grid, the initialization phase

is run again and a new probability distribution shape is then re-formed. The iterative

operation of the algorithm we used is summarized in the diagram of Fig. 2.11.

2.2.5 Numerical results

The overall performance of the presented navigation system is evaluated by simu-

lating the tracking of a fast-moving vehicle on different trajectories as well as on a

whole circuit. In this regard, the chosen figure of merit is root mean square error

(RMSE) of the position estimates that are computed by our quasi-tight GNSS/INS

implementation based on EKF. In order to verify the benefit of recursively adapting

the state noise covariance matrix, the RMSE is calculated both with and without

the proposed optimization process and parallel estimation. For all the tests, the sim-

ulations are repeated 100 times sweeping through the following initial logarithmic

parametrization:

Ω0 = (0.0010, 0.0017, 0.0028, 0.0046, 0.0077,

0.0129, 0.0215, 0.3590, 0.0599, 0.1000)
(2.27)
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For every k-th iteration

Kalman Filter - Time Update equations

Replace a priori information
computed with old parameters ? (k-1) (*)

Compute the likelihood function

Update the posterior conditional pdf

Kalman Filter - Data Update equations

Save a posteriori information

Read and align output observations
and compute measurements residuals

Re-build matrices H(k) and R(k)

Normalize posterior conditional pdf values

Assign next prior conditional pdf values

Perturb the parameters ? (k-1)
associated to lowest probabilities

Generate a new set S(k) including new parameters

Choose a posteriori information
and posterior pdf values to be replaced (*)

Replace prior conditional pdf values
computed with old parameters ? (k-1) (*)

Find the optimal Q through MAP criterion

Select the estimated vector x(k)
computed with optimal Q

For every i-th parameter

After initialization

If the pdf results 
zero, the algorithm 

is re-initialized

Figure 2.11: Stochastic model optimization diagram
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µ σ

eX , eY 0 10m

ev
GNSS

, ev
INS

0 1m/s

eaxbody
, eaybody

0 0.03m/s2

e
θ

0 0.044 rad

Table 2.2: First order statistics of measurement errors

The simulation configuration is briefly characterized as follows. The specific param-

eters that shape the uncertainty affecting the output observations are listed in Table

2.2, where eα is the error vector on the measurement α. Then, we consider an up-

date frequency factor of 10 between the measured data coming from the GNSS and

the INS. As far as the estimation process is concerned, we assume to identify the

exact transition model and observation model for the Kalman filter. This means the

deterministic information are known.

Four different types of trajectories are generated, each one has a simulation time

of 10 seconds, as shown in Fig. 2.12, 2.13, 2.14, and 2.15. The aim of these tests

is to separately analyze the algorithm efficiency while tracking the basic motions of

a particle-like vehicle. The GNSS/INS estimation process is run with two configu-

rations: a recursively optimized matrix Q̂opt based on parallel filtering and a single

filter with fixed minimal noise covariance matrix that is defined as:

Qmin = Q(Ω1) = Q(0.001) (2.28)

In other words, we compare the positional accuracy of the optimizing tech-

nique with those achieved with minimum state noise, which hence is associated to

a well-identified deterministic model. The constants characterizing the kinematic

equations and the RMSE values along the X and Y axes for both the configurations

are reported in Table 2.3. The obtained results demonstrate that adapting the noise

covariance enhances the average performance in terms of tracking accuracy, even if

there is just a little uncertainty left on the state, which already represents an advan-

tageous situation. In the simplest case of a linear motion, the RMSE is reduced by
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Figure 2.12: Example of straight line (1)

Figure 2.13: Example of quick turn (2)

Figure 2.14: Example of circular hairpin (3)
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RMSE(Q̂opt) RMSE(Qmin)

X Y X Y

1) aX = 9.4m/s2 0.46m 0.2m 1.92m 0.3m

2) |v| = 20m/s 0.98m 0.58m 9.98m 11.64m

3) |v| = 10m/s 0.64m 0.35m 7.07m 6.1m

4) |v| = 10m/s 1.28m 1.88m 15.47m 12.58m

Table 2.3: Single racetracks results

a factor of about 4, but the improvement significantly grows as trajectory become

more intricate. Whenever the transition and observation models do not fit the real-

ity, optimizing the filter statistic inputs is expected to be necessary. As far as the

state is concerned, different degrees of uncertainty are investigated by examining the

vehicle moving on a circuit.

A final test is carried out on a circuit clearly inspired inspiration from a typical

scenario of a FSAE competition. The route is designed to assemble all the analyzed

segments with either uniform accelerations or constant velocities, as depicted in Fig.

2.16. In addition to the two previous configurations, we also consider the case of

Figure 2.15: Example of slalom (4)
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RMSE(Q̂opt) RMSE(Qmin) RMSE(Qrand)

X Y X Y X Y

1.17m 2.39m 9.29m 5.94m 71.5m 39.63m

Table 2.4: Complete circuit results

Figure 2.16: Circuit design with colored vehicle speed

a matrix Qrand that is randomly chosen in the set based on the parameters of Eq.

(2.27). At each simulation, a different state noise covariance is thus entering the

Kalman filter. This event could happen when the deterministic model is poorly

characterized over time. The performance achieved after one lap of 44.06 seconds

are summarized in Table 2.4. As expected, the best accuracy of about 1-2 meters

is enabled by selecting Qopt (Fig. 2.17), whereas Qmin ensures a decent precision

on average, and a random Qrand can cause the EKF to diverge from the actual

positions. Here the improvements reaches again a factor of 4. These results show the

great potentiality of implementing the presented optimization method for a quasi-

tightly coupled GNSS/INS system as well as other automotive applications.



Figure 2.17: Optimized tracking on the circuit under test



Chapter 3
Synchronisation of low-cost open SDR
for navigation applications

In the early 2000s, SDR started to gain popularity in the scientific community but,

due to their high cost, they have been accessible only to researchers and not to or-

dinary users. This trend has changed in the last few years with the introduction

of low-cost SDR on the market, which has made this technology available to ev-

eryone. The cost of these devices is at least one order of magnitude lower than a

comparable professional SDR. Moreover most low-cost SDR are open-hardware and

open-software, hence fully customisable. Professional SDR offer time and frequency

synchronisation of multiple SDR, enabling a wide range of navigation applications.

All of these applications require accurate time and frequency synchronisation, but

low-cost SDR generally do not support time synchronisation.

Time and frequency synchronisation of multiple SDR enables or improves a wide

range of navigation applications. It is possible to classify these navigation applica-

tions in two main categories: receiver- and network-oriented applications. Receiver-

oriented applications are the ones that allow a single receiver to compute its own

position, while network-oriented applications are the ones involving more than one

receiver that are not usually colocated.

Receiver-oriented applications may take advantage of the synchronisation of mul-

tiple SDR to build multi-band and/or multi-system receivers. An important exam-

ple of this possible use case is represented by hybrid navigation applications, i.e.,

receivers able to determine their own position by exploiting multiple sources or sys-

tems. This kind of receivers perform ranging measurements from different signals of
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opportunity (SoO) [48], such as WiFi, Bluetooth, Ultrawide Band (UWB), 3G, 4G

Long Term Evolution (LTE), and prospectively 5G, as well as GNSS, in order to solve

the positioning problem. Hence, these receivers must be able to tune their radios to

different bands and demodulate different signals simultaneously. This can be done

by using multiple SDR, but synchronisation is required among them for time-based

or frequency-based ranging. Another possible application falling into this category is

represented by multi-band GNSS receivers, where different GNSS signals in different

frequency bands are simultaneously processed, for better accuracy and robustness in

harsh environments [49].

An example of network-oriented application is cooperative or peer-to-peer (P2P)

positioning [50], in which multiple GNSS users cooperate to achieve a position

solution in difficult environments. In this application, users need to communicate

with each other either to exchange navigation data or to perform terrestrial ranging

between users. The communication between users or the terrestrial ranging can

be implemented using SDR and synchronisation is mandatory for time-based and

frequency-based terrestrial ranging. Another important network-oriented application

is the detection and localisation of GNSS jammers or spoofers: in this case multiple

sensor nodes monitor the GNSS bands and send snapshots of the signal to a server

in the cloud, which detects and localise potential jammers using TDOA and FDOA

[51]. Sensor nodes can be implemented using SDR and strict synchronisation is

required for TDOA/FDOA-based ranging.

Although these navigation applications are feasible with current professional

SDR, they cannot be exploited with very low-cost equipment. In this chapter, we

propose and validate an algorithm that enables sample-level synchronisation of mul-

tiple low-cost SDR by using an off-the-shelf GNSS receiver.

3.1 Open-source and open-hardware SDR

Different definitions of software-defined radio are possible and we adopt the one given

in [52]: a software-defined radio is a radio in which some or all of the physical layer

functions are software defined. In the last decade the cost of SDR has dropped,

enabling a widespread diffusion of this technology. Most of the low-cost SDR are

open-source and open-hardware: schematics and PCB layouts are public; the code of

the firmware and software is available free of charge and can be modified according

to the users’ need. Example of popular low-cost SDR are RTL-SDR [53], a digital
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RF Front end 
and Mixer ADC/DAC USB Interface

Figure 3.1: Generic SDR architecture

RF Front end 
and Mixer
RFFC5071/2

Transciever
MAX2837

ADC/DAC
MAX5864

CPLD
XC2C64A

MCU
LPC43XX

IF BBRF

Figure 3.2: Selected SDB architecture

TV tuner that may be used as SDR (receive only); HackRF One [54], featuring

a wide frequency range and a wide bandwidth (half-duplex transmit and receive),

BladeRF [55], featuring USB 3.0 (full-duplex transmit and receive).

The aforementioned SDR share a common architecture, shown in Figure 3.1: in

receive mode, the signal coming from the antenna is filtered, amplified, and downcon-

verted to baseband by the RF front end and mixer, then the signal is discretised and

quantised by an Analogue to Digital Converter (ADC) and the samples are trans-

mitted to a computer (host) in charge of signal processing, via an USB interface.

In transmit mode, signal samples are fed to a Digital to Analogue Converter (DAC)

through the USB interface, then the signal is upconverted, amplified by the RF front

end, and transmitted.

3.1.1 Selected development board

Our selected development board (SDB) is HackRF One [54], a low-cost open-source

and open-hardware SDR, capable of transmitting or receiving signals from 1 MHz

to 6 GHz. The ADC/DAC operates at up to 20 Msps (8 bit I/Q samples). Base-

band filter and transmit/receive gain are configurable by software, and pin headers

on the PCB allow future expansions. The architecture of the SDB is shown in Fig-

ure 3.2 and it is composed by three stages: RF, Intermediate Frequency (IF), and

baseband (BB). In receive mode, the RF signal is converted to IF by an RFMD

RFFC5071/2, a wideband synthesiser with integrated 6 GHz mixer, and a Maxim

Integrated MAX2837 wireless broadband transceiver, is responsible for the conversion

from IF to BB and the ADC/DAC (codec) functions. A Xilinx XC2C64A Complex

Programmable Logic Device (CPLD) acts as glue logic between the codec and the

NxP LPC43XX micro controller (MCU) which provides the USB interface to the
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user. The same components are responsible for the opposite functions in transmit

mode. The SDB provides clock input and clock output ports for frequency syn-

chronisation of multiple SDR. Time synchronisation is not supported by the current

firmware but, thanks to the hardware and software openness, it is possible to use a

time pulse for time synchronisation purposes. The next section describes in detail

the synchronisation algorithm and the necessary hardware connections.

3.2 Synchronisation Algorithm

In the following we tackle the synchronisation of SDBs in receive mode. A similar

approach may be applied to achieve the same result in transmit mode. The algorithm

can be also applied with minor modification to other open source SDRs with similar

architectures. The idea is to use an expansion pin header on the PCB to add new

signals for time synchronisation: the start of reception should be triggered by a

time pulse; the pulse may be generated by one of the SDBs or by external hardware.

Figure 3.3 shows the hardware connections between two SDBs: the signal SYNC_IN

(pin 16 of the expansion header P28, top and bottom SDBs) is the input for the

synchronisation pulse. SYNC_CMD (pin 15 of the expansion header P28, top SDB)

is the pulse command signal. We consider two configurations: in the first one (A),

the pulse command is generated by one of the SDBs; in the second configuration

(B) the pulse command is the 1PPS signal of a GNSS receiver, i.e., a time pulse

with a one-second period, synchronised with GPS time. While configuration (A)

does not require additional hardware, it requires the receivers to be colocated. In

configuration (B), instead, SDBs may be located far away from each other. Moreover,

in this case, the recordings are synchronised with GPS time. The signals SYNC_IN

and SYNC_CMD are connected to the CPLD, as shown in Figure 3.4, along with

other signals involved in the receive mode. During the initial setup, the center

frequency, filters bandwidth, gains, and ADC sampling rate are configured. Then,

the ADC starts streaming the samples of the received signal to the CPLD (signal

ADC_DATA[7..0]). The samples are available on both rising (I) and falling edge (Q)

of CODEC_CLK. The CPLD simply makes the data (HOST_DATA[7..0]) available

to the MCU on the rising edge of HOST_CLK, whose frequency is doubled with

respect to CODEC_CLK. The MCU communicates to the CPLD the wish to start

the recording, setting HOST_DISABLE to ’0’. At this stage the MCU is ignoring

the data samples and it will continue until the CPLD sets HOST_CAPTURE to
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Figure 3.3: Synchronisation of two SDBs: hardware connections
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Figure 3.4: CPLD and MCU signals
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’1’. The CPLD controls HOST_CAPTURE in order to ensure the correct alignment

of interleaved I/Q samples. Once the I/Q data alignment is correct, the MCU may

finally start streaming the samples via USB. When the recording phase ends, the

MCU pulls HOST_DISABLE high, to signal the CPLD the end of the recording. A

snippet of the original VHDL controlling the signal HOST_CAPTURE is available

in Listing 3.1.

Listing 3.1: Original VHDL (simplified)�
-- MCU ignores data samples when HOST_CAPTURE = ’0’. The following code guarantees

that the MCU receives I/Q interleaved samples with I samples in the odd

positions and Q samples in the even ones.

process(HOST_CLK)

begin

if rising_edge(HOST_CLK) then

if CODEC_CLOCK = ’0’ then

HOST_CAPTURE <= not HOST_DISABLE

end if;

end if;

end process;
� �
This architecture leads to the conclusion that signal HOST_CAPTURE is a good

candidate for time synchronisation. In principle, it is sufficient to hold HOST_CAPTURE

low when SYNC_IN is low or HOST_DISABLE is high. This should be enough to

ensure that the synchronisation error is below one sampling period. However, the

time pulse must stay high during the whole receiving phase, otherwise the stream of

samples to the user is interrupted. Therefore, this method does not work with the

1PPS signal, which is typically a low duty-cycle square wave. This approach may

be improved by using a latched version of the signal SYNC_IN, as shown in Listing

3.2. In this case, it is not required that the pulse command stays high during the

whole receiving phase and this approach works with 1PPS signals.

Listing 3.2: Modified VHDL (simplified)�
-- The MCU ignores data when HOST_DISABLE=’1’ or sync_in_latched=’0’. The

following code allows multiple SDBs to start receiving samples synchronously.

process(HOST_CLK)

begin

if rising_edge(HOST_CLK) then

if CODEC_CLOCK = ’0’ then

HOST_CAPTURE <= not HOST_DISABLE and sync_in_latched;

end if;

end if;

end process;
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-- When the MCU pulls HOST_DISABLE low, HOST_SYNC_CMD becomes high (the

synchronisation pulse is sent to the other SDBs). sync_in_latched is high when

HOST_DISABLE is low and there is a rising edge of SYNC_IN; it is low when

HOST_DISABLE is high.

process(HOST_DISABLE, SYNC_IN)

begin

SYNC_CMD <= not HOST_DISABLE;

if HOST_DISABLE = ’0’ then

if rising_edge(SYNC_IN) then

sync_in_latched <= SYNC_IN;

end if;

else

sync_in_latched = ’0’;

end if;

end process;
� �
In order to validate the synchronisation algorithm, we are using two different ap-

proaches in the next section, based on GNSS and LTE signal processing.

3.3 Experimental Results

This section discusses the laboratory setup, the GNSS and LTE validation ap-

proaches, and the experimental results on the synchronisation offset. A statistical

model is then proposed to characterise the resulting synchronisation offset.

3.3.1 Experimental setup

The experimental testbed is located in the RF Systems and Payload laboratory of

the European Space Agency (ESTEC, The Netherlands). A diagram of the test setup

is shown in Figure 3.5, where the signal source is either a GNSS antenna (GNSS) or

a LTE network emulator (LTE). A high-end active GNSS antenna is located at the

roof of the building in open-sky conditions. The Spirent E2010S network emulator

generates the LTE signal from one base station (BS) at a system bandwidth of 1.4

MHz in AWGN conditions, with a signal-to-noise ratio (SNR) around 30 dB.

The input signal goes through a RF power divider and then to the two SDBs. A

reference signal of 10 MHz generated by an active hydrogen maser is used to syn-

chronise, in frequency, the clocks of the LTE network emulator and the two SDBs.

The time synchronisation is achieved with square pulse of 1 Hz obtained from either

a GNSS receiver (1PPS) or an Arbitrary Function Generator (AFG). Hardware con-

nections between the synchronisation pulse and the two SDBs, described in Section

3.2, are implemented in a prototyping PCB, as shown in Figure 3.8. The
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Figure 3.8: SDB connection board
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signals received by the SDBs are recorded at a sampling rate Fs by a laptop PC

(host) and processed using either the GNSS- or LTE-based approaches. In order to

obtain statistically stable results, experiments are repeated 1000 times. SDBs are

reset after each recording, to ensure that the experiments are performed in the same

conditions. This has required the modification of the MCU firmware and the SDB

Linux tools: a new function has been added to allow the host to reset SDBs using

the USB interface. A few recordings experienced losses of samples at high sampling

rates, because the slow hard drive installed in the laptop could not cope with the

high data rate sample stream. To avoid this problem signals are recorded in a tmpfs

[56] virtual memory disk, a disk residing in RAM memory. Another possible issue

that may occur is due to the drift of the host clock with respect to GNSS time: if

the host starts a recording when the 1PPS synchronisation pulse is high, the CPLD

will not be able to detect a rising edge and the signal will not be recorded. To avoid

this problem is possible to use a GNSS receiver to synchronise the clock of the host,

using GPSD in combination with NTP [57].

3.3.2 GNSS validation approach

The GNSS validation approach is based on the estimation of the position, velocity

and time (PVT) solution using the SoftGNSS v3.0 software GPS receiver [58]. This

software was originally meant to work at IF with real samples, but the recordings

captured by the SDBs are at BB and the samples are complex. Therefore, we mod-

ified the acquisition and tracking stages of SoftGNSS, in order to be able to work

with this kind of signals. A further modification to the acquisition and the tracking

phases has been done in order to use the same satellites: only the satellites that are

visible to both SDBs are taken into account for acquisition and tracking, in order to

have comparable solution accuracies for both SDBs. Moreover, the software requires

at least 36 seconds of recorded signals, in order to compute a PVT solution. This is

due to the fact that the receiver needs to demodulate the navigation data, in order

to extract the ephemeris and determine the orbit of the visible satellites: the receiver

needs to demodulate 5 subframes, each composed by 300 bits (6 s, since the bit time

is 20 ms). The additional 6 seconds are needed because the tracking phase may start

in the middle of a subframe. Since processing 36-seconds recordings is cumbersome

and time consuming, we propose an assisted GNSS (A-GNSS) method: instead of

retrieving the ephemeris data from the signals, we download Receiver Independent

Exchange Format (RINEX) files coming from the International GNSS Service (IGS)
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station located in Delft. IGS provides open access, high quality GNSS data, prod-

ucts, and services in support of research. The data downloaded from the IGS station

is used to assist the SoftGNSS receiver and allows to obtain a PVT solution in ten

seconds. The knowledge of the time of week (TOW), which is the number of 1.5

seconds elapsed from the beginning of the GPS week, is still required to compute the

pseudorange measurements and hence, to obtain the navigation solution. The TOW

can be read at the beginning of each subframe, therefore requires to demodulate at

least 6 seconds of GPS signal. In order to further reduce the processing time, we

applied the so-called coarse time positioning method [59], which allows to obtain a

navigation solution without the need of reading the TOW. In this method, the time

of week is treated as an additional unknown by the least squares algorithm, therefore

the unknown navigation solution vector is (X,Y, Z, c dt, tW )T , where (X,Y, Z) is the

position of the receiver, dt is the clock offset between the GPS time and the time

of the receiver, c is the light velocity, and tW is the TOW. The observation model

relating pseudoranges to the navigation solution vector is given by

Pi =

√
(Xi −X)2 + (Yi − Y )2 + (Zi − Z)2 + c dt+ c

fd,i
fL1

tW + ei, (3.1)

where (Xi, Yi, Zi) is the position of i-th satellite, fd,i is the Doppler frequency, fL1

is L1 band center frequency, i.e., 1575.42 MHz, and ei is a measurement error term.

Using this model, the least squares algorithm requires at least five visible satellites in

order to find a navigation solution. If the total number of visible satellite is N , the

geometry matrix, i.e., the Jacobian matrix of the observation model, A ∈MN×5(R)

is given by

A =




∆x1 ∆y1 ∆z1 1 cfd,1/fL1

∆x2 ∆y2 ∆z2 1 cfd,2/fL1

...
...

...
...

...

∆xN ∆yN ∆zN 1 cfd,N/fL1



, (3.2)

where the first four columns are unchanged with respect to the traditional least

squares navigation algorithm [58], and the last column is added for the TOW es-

timation. The synchronisation offset between the two SDBs is computed after the

PVT solution, as the difference between the clock offsets of the two SDRs, i.e.,

θ = dt0−dt1. The GNSS approach is summarised in Figure 3.6. Since GNSS signals

have been specifically designed for precise timing, the use of GNSS signals can be a

natural choice to validate the proposed synchronisation method. However, a number

of possible problems may arise using this approach. The most important drawback
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Figure 3.9: Synchronisation offset using the GNSS approach

of this validation method is that the accuracy of the clock offset estimator is not

constant and depends on the number of visible satellites, on the carrier-to-noise-

density ratio (C/N0) of the received signals, and on the geometry of the satellite

constellation. The high variability of the aforementioned accuracy and the fact that,

occasionally it is not easy to have the same five satellites visible to both SDBs, make

the use of this validation method impractical and the analysis of results troublesome.

An example of synchronisation offset between the two SDBs obtained with the GNSS

approach is shown in Figure 3.9. The synchronisation offset is estimated every 1 ms

in a 5 seconds recording taken at a sampling frequency Fs = 10 MHz. The synchro-

nisation offset, in this case, should be limited to ±1/Fs = ±100 ns but, in spite of

the fact that the majority of the estimates fall within this interval, many outliers are

present. This phenomenon is due to the low accuracy of the clock offset estimation

caused by low C/N0. Therefore, the GNSS approach is in practice cumbersome with

the original least squares algorithm because it requires 36 seconds of data and it is

not accurate enough when using the coarse time method with the described modifi-

cation of the SoftGNSS receiver. In the following, we present a simpler yet effective

LTE-based validation approach.
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3.3.3 LTE validation approach

Terrestrial signals can be used as signals of opportunity to validate or calibrate

the synchronisation procedure, in case there is a lack of visible GNSS satellites.

This opportunistic approach can be based on cellular systems (e.g. 2G, 3G or 4G),

broadcast television (e.g. DVB-T), Wi-Fi, Bluetooth or any other radio signal. The

selection of the opportunistic system depends on the signal availability, and the signal

bandwidth to achieve a certain time-delay estimation (TDE) accuracy. An accessible

time reference within the signal can be useful to validate the synchronisation over

time. Thus, this thesis considers the 4G LTE system due to its wide adoption in

urban environments, high signal bandwidth (up to 20 MHz), and periodical time

reference, i.e. system frame number (SFN) every 10 ms. In contrast to the GNSS

approach described in the previous section, the LTE validation procedure is based on

the estimation of the time-delay from the signal transmitted by a single base station

with unknown location.

As it is shown in Figure 3.5 and 3.7, the LTE signal is first split and fed to

the two SDBs that record a snapshot of 200 ms. The signal is then resampled to 2

MHz. The UAB LTE SDR software receiver, which is described in [60] and [61],

is used to acquire and track the 1.4-MHz LTE signal captured by each SDB. The

noise bandwidth of the delay-locked loop and frequency-locked loop is set to 30 Hz

and 50 Hz, respectively, and the resolution of the TDE is defined to 0.25 ns. The

SFN is calculated by using the LTE Cell Scanner software developed by [62]. Only

ten LTE radio frames are tracked, and the last time-delay estimate of each processed

capture is used to calculate the synchronisation offset between the two SDBs. The

synchronisation is validated between multiple captures by using the time between

recordings and the SFN.

3.3.4 Synchronisation offset

The PDF of the synchronisation offset is computed based on the LTE approach, by

considering the 1PPS and AFG pulses. As it is shown in Figure 3.10, the resulting

synchronisation offset is within ±1/Fs, i.e., ±200, ±100 and ±50 ns for Fs equal

to 5, 10 and 20 MHz, respectively. This test confirms the achievable accuracy of

the proposed synchronisation procedure, which is bounded by the sampling period

of the SDB. In addition, the same results are obtained with both synchronisation

pulses, demonstrating the flexibility and reproducibility of the proposed algorithm.

These results are validated by measuring the error of the TDE. As it is shown in
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Figure 3.10: PDF of the synchronisation offset using the LTE approach

Figure 3.11, the PDF of this error is confined within ±5 ns. Thus, the estimation

error of the test practically has no effect on the results. The mean µθ and standard

deviation σθ of the synchronisation offset and the mean µτ and standard deviation

στ of the TDE error can be seen in Table 3.0(a). The main difference between the

use of a synchronisation pulse generated by a GNSS receiver and a signal generator

is the clock drift. Since the GNSS receiver is synchronised to the accurate atomic

clocks of the satellites, the resulting square pulse is very stable. In contrast, the

synchronisation pulse of the AFG has a clock drift due to its local oscillator. This

effect can be observed in Figure 3.12, where the TDE of a single SDB is plotted over

time. The TDE obtained with the AFG for different signal captures has a noticeable

drift, which is wrapped to 10 ms (i.e., length of a radio frame) in the case of LTE,

while there is no TDE drift with 1PPS.

3.3.5 Statistical model of the synchronisation offset

Due to the familiarity of the previous test results, a statistical model is here defined to

characterise the synchronisation offset of the proposed algorithm. For this purpose,

the synchronisation offset is normalised by 1/Fs for each test, resulting in the bar

plot of Figure 3.13. These results lead to the conclusion that a truncated normal

distribution [63] can fit the synchronisation offset to the algorithm. Thus, the
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Figure 3.11: PDF of TDE error with the LTE approach

(a)

Sampling Signal Sync. Sync. offset TDE error

frequency source pulse µθ (ns) σθ (ns) µτ (ns) στ (ns)

5 MHz LTE AFG 1.45 82.56 0.40 1.34

1PPS -0.55 80.10 0.44 1.34

10 MHz LTE AFG 2.12 40.19 0.47 1.32

1PPS 0.91 40.69 0.42 1.36

20 MHz LTE AFG 0.60 19.73 0.49 1.46

1PPS 0.81 20.62 0.13 1.49

(b)

Signal Normalised Sync. offset

source µθ (samples) σθ (samples)

LTE 0.01 0.40

Table 3.1: Mean µθ and standard deviation σθ of the synchronisation offset and TDE

error for the LTE approach.
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Figure 3.12: Synchronisation offset over time with the LTE approach

resulting synchronisation offset can be modelled as

θ ∼




N (µθ, σθ), if θ ∈ (−1, 1),

0, otherwise,
(3.3)

where the PDF of the truncated Gaussian distribution is

f(θ, µθ, σθ) =

1√
2πσ2

exp

{
−(θ − µθ)2

2σ2

}

1

2
erf

{
1− µθ
σθ
√

2

}
− 1

2
erf

{−1− µθ
σθ
√

2

} , (3.4)

and erf {·} is the error function. The truncated normal distribution is shown in

Figure 3.13 by using the fitting parameters of Table 3.0(b), obtained with maximum

likelihood estimators [63]. The observed resemblance suggests the validity of the

model and confirms the performance of the proposed synchronisation method, whose

accuracy is confined within a sampling period.
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Chapter 4
Conclusions

This thesis dealt with the problem of interference detection, localization, and miti-

gation in GNSS. The problem has been tackled in a cooperative fashion. The JJDL

algorithm has been proposed for the detection and localization of jamming inter-

ference sources. The algorithm guarantees a constant false alarm rate with an easy

design flow. The algorithm is customizable in order to cope with different localization

techniques, and here two different flavours have been presented.

The DSWE algorithm has been proposed as a cooperative jamming waveform

estimation tool, suitable for interference cancellation. The problem of interference

mitigation has been tackled also from the point of view of GNSS and INS integration,

thanks to an optimized implementation of the quasi-tight integration paradigm.

Finally, the development of a new strategy for synchronization of low-cost software-

defined radios has allowed the succesful implementation of the TDOA/FDOA-based

JJDL algorithm on low-cost hardware.





Appendix A
Kalman filters

A.1 Kalman filters

The Kalman filter (KF) is a linear recursive MMSE estimator of a hidden system

state (i.e. not directly measurable) as a function of the previous estimate and of

multiple sequential observations [34]. According to a discrete formulation of the

problem, given k time samples, the actual state vector xk is described as a linear

dynamic system having the form:

xk = Akxk−1 + Bkuk + wk (A.1)

where Ak is the matrix representing the transition model (i.e. free evolution), Bk is

the control model (i.e. forced response), uk is the input control vector, and wk is the

state noise vector. The actual state vector xk is also linearly related to the current

output measurements vector yk through:

yk = Hkxk + vk (A.2)

where Hk is the observation model and vk is the measurement noise vector. The

problem consists in computing the estimate x̂ of the actual state xk from the obser-

vations y0, . . . ,yk, so as to minimize the expected value E{·} of the squared norm

of the unknown estimation error vector ek, defined as:

ek = xk − x̂k (A.3)

The KF is a computational efficient solution that provides optimal estimation under

the following hypothesis:
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• the vectors wk and vk are white-noise sequences and thus also mutually inde-

pendent and independent of the initial state vector x0:

E
{
vkw

T
k

}
= E

{
vkx

T
0

}
= E

{
wkx

T
0

}
= 0, ∀k, j ∈ N \ {0} (A.4)

• the real dynamic system is accurately identified, both in its deterministic inputs

consisting of the model matrices Ak , Bk , and Hk and in its stochastic inputs

represented by the vectors wk and vk.

Hence, if a reliable description of the system and of its initial conditions is available,

the KF recursively provides maximum likelihood estimates of the state x̂k and of its

error covariance matrix Pk that satisfy the following equalities:

E{ek} =0 (A.5)

Pk = E{ekeTk } (A.6)

x̂k = arg min
x̂k

E{‖ek‖2} = arg min
x̂k

Tr(Pk) (A.7)

Moreover, let us suppose the entering noise vectors wk and vk to have a multivariate

Gaussian distributionN with zero mean and known covariance matrices, respectively

denoted as Qk and Rk:

wk ≈∼N (0,Qk) (A.8)

vk ≈∼N (0,Rk) (A.9)

In particular, the matrices Qk and Rk are chosen to reflect the degree of confidence

that is placed in the model eq. (A.1) and (A.2), respectively. In case the KF ensures

estimation optimality and is affected by AWGN, its operation may be expressed as

the recursion of a system of simple equations defined in two steps: time update and

data update. In the first phase, the a priori estimates x−k and P−k are predicted by

projecting the previous estimates as follows:
{

x̂−k = Akx̂k−1 + Bkuk (A.10a)

P−k = AkPk−1A
T
k + Qk (A.10b)

The error εk associated to the predicted output measurements ŷk is called innovation

(or residual). Note that, under the conditions underlying the previous assumptions,

the residuals are expected to form a white-noise Gaussian sequence. In other words,

the error statistics propagate through the linear system dynamics. Consequently,
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the whiteness property of the residual sequence may be considered as a measure of

filter performance.

εk =yk − ŷk = yk −Hkx̂
−
k ∼ N (0,Sk) (A.11)

Sk =HkP
−
k HT

k + Rk (A.12)

In the second phase, the state estimate is refined a posteriori by a weighted average

that combines the a priori state predictions with the current residual εk through the

Kalman optimal gain Kk:

Kk =P−k HT
k S−1

k (A.13)
{

x̂k = x̂−k + Kkεk (A.14a)

Pk = P−k −KkHkP
−
k (A.14b)

In the next subsection, the KF theory is applied to nonlinear systems.

A.1.1 Extended Kalman filter

Given a generic discrete-time nonlinear dynamic system, such as:

xk =fk(xk−1,uk−1,wk) (A.15)

yk =hk(xk,vk) (A.16)

where fk and hk are used to denote differentiable nonlinear functions. The EKF is an

efficient method for nonlinear estimation. At each step, it essentially provides first-

order approximations (Taylor series expansion) to the actual model terms around

the mean value x̄k predicted for the current state xk, as shown below:

xk ≈x̄k + Ak(xk−1 − x̂k−1) + wk−1 (A.17)

yk ≈ȳk + Hk(xk − x̂k + vk (A.18)

x̄k = E {fk(x̂k−1,uk−1,wk)} = fk( ˆxk−1,uk−1,0) , x̂−k (A.19)

ȳk = E{hk(x̄k,vk)} = hk(x̄k,0) , ŷk (A.20)

where Ak and Hk are computed as the Jacobian matrices of ! and h respectively;

they describe the linear deviations from the reference mean values x̄k and ȳk. Such a

linear approximation however impairs the accuracy of the system model and can lead

to a suboptimal performance and even divergence of the filter. In order to control

the divergence, the noise covariance matrices Qk and Rk can be tuned so that the

residuals feature the desired statistical distribution, which is white and Gaussian,

according to the initial assumptions.
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A.1.2 Observability

As a recursive least-squares estimator, the KF relies on the fact that the errors can be

averaged out by suitably combining more observations than the number strictly nec-

essary to determine the desired unknowns. For a discrete-time system, observability

means that the redundant observation of the output measurements over a time span

{t1, . . . , tk} provides sufficient information to estimate the initial state x0 [64]. This,

along with the knowledge of the system model, uniquely specifies the state vector at

each time instant. In particular, a system is defined observable when the rank of its

so-called observability matrix is maximum. This test returns a binary response that

nevertheless does not provide any insight into the current degree of observability of

the system. On the contrary, the eigenvalues λi of the error covariance matrix Pk are

proved to be equal to the variances of the different linear combinations of the state

components. Indeed, the least observable linear combination of state components is

indicated by the largest eigenvalue of !!, while the most observable one is evidenced

by the smallest eigenvalue. According to eq. (A.7), it is plain to see that the system

gets more observable as the KF optimally minimizes the mean square error:

Tr(Pk) =
∑

i

λi (A.21)

Finally, it is convenient to adopt the following normalization in order to obtain

adimensional eigenvalues:

P
′
k = (P0)−1 Pk (P0)−1 (A.22)

A.2 Energy detection

Given a certain bandwidth, the problem of the detecting an unknown signal can be

effectively solved by means of a precise radiometer [65]. The energy detection indeed

applies to any deterministic signal, as far as its statistical characteristics are known,

and is regardless of its waveform structure. By assuming a discrete AWGN channel,

the energy measured over a certain sensing time returns a decision test static T

consisting of the sum of N squares of Gaussian variables:

T (ri) =
1

N

N∑

n=1

|ri[n]|2 (A.23)
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where ri refers a generic received sample vector. A suitable sampling span is chosen

in order to have a sufficient number of terms:

N ≥ T0B (A.24)

where T0 is the observation interval and B denotes the band of interest. Under the

simplifying assumption of having no uncertainty on the entering noise, the test statis-

tic is approximated by a normal distribution N whether the signal is hypothesized

present (H1) or absent (H0):

T (ri) ∼





N
(
σ2,

2σ4

N

)
if H0 (A.25a)

N
(
P + σ2,

2(P + σ2)2

N

)
if H1 (A.25b)

where P is the received signal power and σ2 is the noise variance that identify the

SNR, SNR = P/σ2. Hence, the energy detection is characterized by the following

theoretical probabilities of false alarm Pfa and missed detection Pmd:

Pfa = Prob {T (ri) > ξ|H0} = Q


 ξ − σ2

√
2
N σ

2


 (A.26)

Pmd = Prob {T (ri) < ξ|H1} = 1−Q


 ξ − (P + σ2)√

2
N (P + σ2)


 (A.27)

in which Q(·) represents the complementary cumulative density function of the stan-

dard normal distribution and ξ is the radiometer threshold. As a consequence of

these approximations, any input signal results to be detectable at arbitrarily low

SNR by increasing the number N of samples. In other words, the so-called SNR wall

is neglected, as the energy detection is supposed robust to channel modelling uncer-

tainties. By fixing a target Pfa it is possible to obtain a constant false alarm energy

detector in which the test threshold may be computed by inverting eq. (A.26):

ξ =

√
2

N
σ2Q−1(Pfa) + σ2 (A.28)

where Q−1(·) is the inverse of Q(·).

A.3 Estimation bounds

The Cramér-Rao bound (CRB) provides the estimation performance lower bound.

When an EKF is used, the CRB depends on the accuracy of the deterministic and

stochastic models.
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A.3.1 Accuracy of TDOA and FDOA measurements

The accuracy of TDOA and FDOA estimation using CAF is given in [33]:

σTDOA =
1

β
√
BTSi

(A.29)

σFDOA =
1

Te
√
BTSi

(A.30)

where B is the emitter signal bandwidth, T is the observation interval, Si is the

input SNR. β and Te are the root mean square (RMS) bandwidth and duration of

the emitter signal, respectively:

β = 2π

√√√√
∫ +∞
−∞ f2Ws(f) df
∫ +∞
−∞ Ws(f) df

(A.31)

Te = 2π

√√√√
∫ +∞
−∞ t2 |a(t)|dt
∫ +∞
−∞ |a(t)|dt

(A.32)

where Ws(f) denotes the emitter signal power spectral density and |a(t)| indicates
the emitter signal complex envelope. Using σTDOA and σFDOA it is possible to

build the optimal EKF measurement error covariance matrix Rk. The process noise

covariance matrix Qk can be optimized as described in §2.2.3. Once those two

matrices are known, it is possible to compute the CRB.

A.3.2 Cramér Rao bound for EKF

The posterior CRB for EKF is given in [66]. In the specific case of TDOA/FDOA-

based localization. The Fisher information matrix (FIM) can be computed iteratively

as

Jk = Q−1
k HT

kR−1
k Hk −

(
AT
kQ−1

k

)T (
Jk−1 + AkQ

−1
k AT

)−1
AT
kQ−1

k (A.33)

The initial FIM J0 can be set according to the available a-priori information. The

CRB is then

Pk ≥ CRB = J−k 1 (A.34)

where A ≥ B indicates that A−B is positive definite. In order to compare position

errors and velocity estimation errors with the CRB we define the SR-CRB as

σSR−CRB =
√

Tr J−1
k (A.35)
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A.4 Karhunen-Loéve expansion

KLE is a promising signal processing method because provides some advantages with

respect to Fourier series (FS) Both KLE and FS provide a spectral decomposition

of the signal using a set of basis functions, KLE is more flexible because its basis

function can be of any form, the basis functions can be tailored to a specific signal

in order to have a better spectral decomposition. FS basis functions are limited to

sine and cosine [67] [40]. KLE merges deterministic and stochastic analyses of the

signal; although the set of basis function is deterministic, it also provides stochastic

information about the signal. KLE weighs the basis functions with respect to their

probable power contribution, allowing one to efficiently distinguish the signal from

the noise. On the other hand, FS uses only one parameter per basis function that

represents its exact power. Moreover, KLE is able to detect much weaker signals

than FS or Fourier Transform, because of the ability to separate stochastic and

deterministic informations. The main disadvantage of KLE with respect to FS is

the complexity. it is well known that FS?s complexity is of O(n · log(n)), while KLE

complexity is much higher, O(n2). This difference is due to the basis functions: FS

uses predefined basis functions, while KLE looks for the best representation for each

individual signal.

A.4.1 From Fourier series to Karhunen-Loéve expansion

FS and KLE have many similarities, but also many differences. As well known any

periodic signal can be represented as a Fourier series:

x(t) =
a0

2
+
∞∑

n=1

[an cos (ωnt) + bn sin (ωnt)] (A.36)

where the coefficients are

an =
2

T

∫

T
x(t) cos(ωn) dt (A.37)

bn =
2

T

∫

T
x(t) sin(ωn) dt (A.38)

These coefficients are the projection of the basis functions (sine and cosine) on the

signal. In an similar way, it is possible to represent a stochastic process X(t) over

the finite time interval 0 ≤ t ≤ T using KLE:

X(t) =
∞∑

n=1

ZnΦn(t) (A.39)
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Now the coefficients Zn are random variables, and the deterministic functions Φn

are eigenfunctions. These can assume any form as long as they are orthonormal.

Similarly to the coefficients of Fourier series, KLE coefficients are obtained projecting

the signal onto the eigenfunctions:

Zn =

∫ T

0
X(t)Φn(t) dt (A.40)

Since Zn are random variables, their variance is more important than the coefficients

themselves. The variance is in fact the eigenvalue λn associated to the eigenfunction

φn(t). Each eigenvalue represents the expected power of the corresponding eigen-

function. KLE computes at first the covariance of the processed signal and then

allows to find eigenvalues and eigenfunctions:
∫ T

0
E {X(t1)X(t2)Φn(t1) dt1} = λnΦn(t2) (A.41)

Assuming E {X(t)} = 0, E {X(t1)X(t2)} is the autocovariance of the process X(t)

at the instants t1 and t2. This is the only known quantity of eq. (A.41); eigenvalues

and eigenfunctions are unknown. If we represents X(t) in the discrete-time, the same

equation becomes:

N∑

k=1

E {XkXl}Φn,k∆t = λnΦn,l (A.42)

which is a set of N linear equations in N unknowns; the autocovariance is now a

Toeplitz matrix E {XkXl} ∈ MN (R) and ∆t denotes the sampling interval. Equa-

tion (A.42) can be solved using linear algebra and always admits an unique solution.
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