Documenti full-text disponibili:
Anteprima |
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (5MB)
| Anteprima
|
Abstract
Due to the low cost of GNSS receivers and their consequent diffusion, a wide range of location-aware applications are arising. Some of these applications are critical and have strict requirements in terms of availability, integrity and reliability. Examples of critical applications are precision landing and en-route navigation in air transportations; automated highways and mileage-based toll in road transportations; search and rescue in safety of life applications. A failure in fulfilling one or more requirements of a critical application may have dramatic consequences and cause serious damage. One of the most challenging threats for critical GNSS application, is represented by interference. In particular, jamming devices, operating inside GNSS bands, are easily and cheaply purchasable on the Internet. These devices transmit disturbing signals with the aim of preventing the correct operations of GNSS receivers. In order to satisfy the requirements of critical applications, it is necessary to promptly detect, localize and remove such interfering sources. Moreover, it is important to characterize the interfering signals in order to develop interference avoidance and mitigation techniques that ensure robustness of GNSS receivers to interference. This thesis studies the problem of interference in GNSS, from a cooperative perspective.
Abstract
Due to the low cost of GNSS receivers and their consequent diffusion, a wide range of location-aware applications are arising. Some of these applications are critical and have strict requirements in terms of availability, integrity and reliability. Examples of critical applications are precision landing and en-route navigation in air transportations; automated highways and mileage-based toll in road transportations; search and rescue in safety of life applications. A failure in fulfilling one or more requirements of a critical application may have dramatic consequences and cause serious damage. One of the most challenging threats for critical GNSS application, is represented by interference. In particular, jamming devices, operating inside GNSS bands, are easily and cheaply purchasable on the Internet. These devices transmit disturbing signals with the aim of preventing the correct operations of GNSS receivers. In order to satisfy the requirements of critical applications, it is necessary to promptly detect, localize and remove such interfering sources. Moreover, it is important to characterize the interfering signals in order to develop interference avoidance and mitigation techniques that ensure robustness of GNSS receivers to interference. This thesis studies the problem of interference in GNSS, from a cooperative perspective.
Tipologia del documento
Tesi di dottorato
Autore
Bartolucci, Marco
Supervisore
Dottorato di ricerca
Ciclo
29
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
GNSS, Interference, Jamming, Cooperative, Kalman Filter
URN:NBN
DOI
10.6092/unibo/amsdottorato/7826
Data di discussione
11 Maggio 2017
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Bartolucci, Marco
Supervisore
Dottorato di ricerca
Ciclo
29
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
GNSS, Interference, Jamming, Cooperative, Kalman Filter
URN:NBN
DOI
10.6092/unibo/amsdottorato/7826
Data di discussione
11 Maggio 2017
URI
Statistica sui download
Gestione del documento: