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Introduction

The data volume from �xed and mobile Internet usage has grown enormously
during the last years and has brought to new model of operating the Internet
based on Information technology (IT) infra-structures, as data centers and su-
percomputers, where the data are stored and processed and provisioning takes
place. The demand to exchange this amount of data via interconnects represents
an extremely challenging technological issue that lately has led to a redesign of
the communication platform actually based on electrical transmission lines. As
a matter of fact, the growth rate of the electrical communication links was
not able to match that of data volume: this is ultimately due to physical lim-
its, mainly imposed by the ohmic resistance and capacitance of the conductors
tracks the line is based on, that impair data exchange at communication bit rate
greater than some GHz. The introduction of optics in interconnects and switch-
ing fabrics has proved the potential to scale to higher capacities, reduce the
power consumption and heat generation. In this context, a new research area,
named silicon photonics (SiPh), has raised growing interest, combining outcomes
from material and semiconductor sciences with photonics and micro-fabrication
technologies. SiPh proved to e�ectively leverage the mature complementary
metal-oxide semiconductor (CMOS) nanofabrication technique to develop pho-
tonic and electronic integration on silicon chips. SiPh is therefore expected to
provide reliable and low-cost solutions to this so-called �bandwidth wall�: this is
the reason why data center equipment manufacturers and semiconductors chip
makers massively invest on SiPh research.

Important functionalities for interconnect solutions, such as signal modula-
tion and frequency conversion, require the presence of second order nonlinear
e�ects in the employed materials. Unfortunately, these e�ects are too weak in
pure silicon and cannot be exploited. This characteristic limited the employ-
ment of this material to passive optical devices and brought to development of
hybrid solutions to accomplish more complex tasks that strongly complicates
the manufacturing process and rises the cost of the fabrication. The recent
discovery of nonlinear e�ects, such as Pockels e�ect and second-harmonic gen-
eration (SHG), in silicon structures that are strained by the deposition of high
intrinsic stress �lm, paved the way for the realization of SiPh nonlinear and
active devices. Since that discovery, several interferometric strained silicon de-
vices achieving modulation functionalities have been reported and frequency
conversion has been demonstrated in strained silicon structures.
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In this Thesis dissertation I have described the outcomes of an extensive set
of simulative and experimental analyses carried out on strained-silicon micro-
metric and nanomentric structures and devices for photonic applications. The
scope of this study was to perform a thorough analysis on the novel material
properties, as well as to develop accurate and reliable simulative models for the
design of photonic devices based on strained silicon technology, and assess the
possible use of innovative experimental techniques for the strain measurement in
photonic structures. In addition, this analysis allowed us to estimate the quality
of the nanofabrication processes and techniques employed for the manufacturing
of the devices.

Firstly a simulative model, based on the �nite element method (FEM), has
been developed to estimate the strain and stress distribution across the silicon
structures and devices deformed by a high intrinsic stress silicon nitride �lm.
The accuracy and the reliability of the model have been assessed through a
comparative analysis between the simulative estimations and the experimental
strain measurements carried out with the Convergent Beam Electron Di�rac-
tion (CBED) technique. Since CBED technique had never been employed for
strain measurements of this type of structures, this analysis allowed to assess
the possibility to extend the �eld of application of this technique to photonic
devices. Subsequently, the model has been integrated in a multiphysical sim-
ulative model capable of estimating the electromagnetic properties of strained
silion-on-insulator (SOI) single mode waveguide. The multiphysical model takes
into account the e�ects induced by the lattice deformation on the optical prop-
erties of silicon through the photoelastic e�ect. Finally, the optical properties
of the manufactured strained SOI waveguide have been analyzed through mea-
surements of guiding properties and optical losses employing the Fabry-Perot
resonances technique. All the experimental analysis allowed to evaluate the
quality of the manufacturing processes, and in particular the adequacy of the
Spacer Pattering Method (SPM) technique that had never been employed for
the realization of photonic devices.

In Chapter 1 overview the potential and the advantages of introducing op-
tics, and in particular the silicon photonics technology, in the interconnects of
IT infrastructures are discussed. Then, the commonly exploited e�ects for ac-
complishing modulation functionalities on silicon-based devices are described.
Subsequently a brief review of the state-of-the-art of the strained silicon tech-
nology is given, focusing on novel optical devices employing strained silicon as
electro-optic material.

In Chapter 2 the mechanical properties of silicon crystal are described and
the lattice deformation induced by the deposition of a silicon nitride high-
intrinsic stress layer on SiPh structures is discussed. Then, the optical proper-
ties of silicon are described with a focus on the electro-optic and photoelastic
e�ect. Subsequently, the working principles underlying the guiding mechanism
of optical waveguides are analyzed together with the sources of propagation and
bending loss su�ered by the radiation traveling in SOI waveguides. Following,
the mathematical formulation of the FEM is introduced and its application to
structural and electromagnetic problems are analyzed. Finally, I outlined the
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basic working principles of silicon microring resonators and of radiation scatter-
ing by di�raction gratings.

In Chapter 3 the technological processes employed for the manufacturing
of the strained silicon devices are described. The process �ow, for the micro-
fabrication of the micrometric strained silicon structures, is detailed and the
operating principles of the main employed fabrication steps, such as the pho-
tolithography and dry etching, are analyzed. Then the fabrication processes
employed for the realization of the nanometric structures on silicon substrate
and SOI waveguide-based devices are described; the spacer technique, utilized
for the manufacturing of the submicrometric feature and gaps, is detailed. The
description of the manufacturing processes is supported by optical microscopy,
Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy
(TEM) analysis that provided images in correspondence of intermediate fabri-
cation steps for novel manufacturing process assessment and validation.

In Chapter 4 the Convergent Beam Electron Di�raction (CBED) technique
used for the strain measurements of the manufactured structures is described.
The physical principles underlying the electron di�raction microscopy are in-
troduced and the operating principles of the TEM at the basis of the CBED
technique are described. Subsequently, the procedure for estimating the com-
ponents of the strain tensor through the analysis of the di�raction patterns is
described. Finally, some results of the STEM analysis and SEM analysis of
the manufactured micrometric and nanometric strained silicon structures are
reported through which the quality of the manufacturing processes has been
assessed.

In Chapter 5 the results of simulative analysis of stress and strain tensors
components are reported for the geometries observed in the micrometric and
nanometric manufactured silicon ridges. The results of the comparative analysis
between the estimated lattice deformation and strain measurement through the
CBED technique are reported. Then the results of the simulative analysis on
the optical properties of the strained SOI waveguides, obtained through the
employment of the multyphisical simulative model, are discussed: in particular
the estimation of modal intensity distribution, e�ective refractive index, e�ective
group index and birefringence have been evaluated. Finally the results of the
propagation loss measurements on the manufactured SOI devices are discussed.

SiPh technology also provides solutions in �elds where the deployment of
bulk optical components, due to their large size and the slow switching speed,
proved to be unsuitable, as the case of Orbital Angular Momentum (OAM)-
based optical communications. The optical orbital angular momentum is a
degree of freedom of the photon in addition to the polarization/spin. After
the demonstration that physically realizable beams with intensity distributions
u(r, φ, z) = uo(r, z)exp(iφl) carry a well de�ned OAM about the axis, OAM
beams have been employed in di�erent �elds for various applications. In par-
ticular, light-carrying orbital angular momentum (OAM) has proved to have
great potential in enhancing the information channel capacity in both classical
and quantum optical communications. Initially, the OAM order was exploited
as a new degree of freedom for modulation schemes of the signal beside the
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traditional solutions relying on modulation of intensity, frequency, or polari-
sation of the radiation. Lately, mutliplexing schemes based on di�erent OAM
orders have been studied in which the capacity of the links is signi�cantly en-
hanced through the inclusion of the OAM degree of freedom on the traditional
envisioned switching domains (space, wavelength, and time).

In Chapter 6 I reported the results of an experimental study carried out
on SiPh integrated emitters of beams carrying a well-de�ned OAM order. The
OAM emitters are basically ring-shaped resonator photonic structures embed-
ding second order angular grating capable of extracting circulating light and
imposing a particular phase distribution, together with a well de�ned OAM or-
der, to the radiation. Two types of integrated OAM beam emitters have been
studied: the �rst type are micrometer-sized SOI ring resonators while the sec-
ond are quasi circular waveguide with a small opening angle in the resonant
structures. The second type of OAM devices are said Omega-emitters due to
the similarity of the layout with the last latter of the Greek alphabet. This ge-
ometry allows to pack, in one planar substrate, several emitters with the same
optical axis allowing the multiplexing of beams with di�erent OAM orders. The
radiation e�ciency analysis of the ring emitter provided information on the
combined e�ects of the geometrical parameters of ring layout and the grating
geometry on the performance of the devices and produced a guideline for the
design optimization of the device. The characterization of the OAM beams
emitted by the Omega multiplexers, in terms of purity of the radiated modes, is
aimed at providing a proof of concept of the working principle of this innovative
devices and supply information on the possible use of these geometry in e�cient
multiplexing schemes.

8



Chapter 1

Overview: strained silicon

and optical interconnects

1.1 Optical interconnects in datacom applications

Due to the even-growing data volume exchanged in �xed and mobile internet us-
age tra�c, new models of operating the Internet, such as the `Cloud', have been
introduced: they are based on large information technology (IT) infra-structures
as data centers and supercomputers, where the data are stored, processed and
provisioning takes place[1]. The constant improvement in the computational
performance of these IT infrastructures is jeopardized by the interconnection
networks based on the electronics, that cannot e�ciently accomplish the trans-
fer of data at frequencies greater than Gb/s[2]. In particular bandwidth, wiring
density, and power consumption of the metal wires are proving to be bottle-
necks to the further scaling of speed and capacity of the high performance
computing platforms as interconnect density rises[3]. Recently, active optical
cable technology has been adopted for the transfer of data between the servers
(inter-rack level) and copper-based Ethernet runs have been replaced by �ber
optics links[4, 5]. At the same time intra-chip, inter-chip, and inter-board com-
munications are still based on copper networks and data switching and routing
functionalities are still implemented at electronic level.

The introduction of optics in interconnects and switching fabrics has the
potential to scale to higher capacities, reduce the power consumption and heat
generation and increase the reliability in a cost-e�ective manner[6]. Silicon
photonics (SiPh) aims at leveraging the mature complementary metal-oxide
semiconductor (CMOS) nanofabrication technique to develop photonic and elec-
tronic integration on silicon chips[7]. Furthermore SiPh enables much greater
I/O bandwidth into and out of the chip overcoming the physical limitation
faced by the metal wires[8]. Much e�ort has been devoted by semiconductor
manufacturers to the development of SiPh optical functionalities and lately im-
portant goals have been scored: in 2013 a Cisco-funded start-up, Compass EOS,
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unveiled a modular router with silicon photonic chips [9]and Intel in 2016 an-
nounced an inter-rack optical transceiver employing Indium Phosphide laser on
silicon chips aligned to optical �ber capable of 100 Gb/s communications over
several kilometers[10].

Microring resonators (MRR) and Mach-Zhender interferometers (MZI), due
to their unique properties in terms of wavelength selectivity and �ltering proper-
ties [11, 12], have been extensively studied as the basic building block for silicon
photonic chip implementing optical routing and switching functionalities[13, 14,
15]. These devices are usually studied and manufactured employing silicon-on-
insulator (SOI) platform that uses a layered silicon-silicon dioxide-silicon sub-
strate as starting wafers. The SOI platform is fully CMOS compatible and a
complete integration of the optical devices with the electronics boards is pos-
sible with a consequent reduction of the possible failures that could arise from
bonding or metal connections present in hybrid integration solution[16]. The
wavelength response of the MRR and MZI can be controlled, in dynamical
scheme, modifying the refractive index of the silicon wire patterned in the sili-
con layer that con�nes the radiation[17][18]. The change of the refractive index
can be accomplished through the exploitation of various physical e�ects present
in silicon: in the next section some of the physical e�ect commonly employed
in modulation scheme in semiconductor and in silicon are described.

1.2 Optical modulation in silicon

Optical modulation consists of the variation of the amplitude, phase or polar-
ization of a light beam and is one of the main required functionalities for any
optical interconnect solution[19]. Various e�ects are exploited to modulate a
radiation: in electro-refractive modulators the application of an electric �eld in-
duces a change in the real part of the refractive index causing a variation in the
phase velocity of the radiation. In electro-absorption modulators the presence
of an electric �eld changes the imaginary part of the refractive index reducing
or enhancing the loss of the medium. The commonly exploited electric �eld
e�ects for semiconductor materials are the linear electro-optic e�ect (also said
Pockels e�ect) and Kerr e�ect for (electro-refraction) and Franz-Heldysh e�ect
(electro-absorbtion)[20][21]. These e�ects are absent or weak in pure silicon
at the telecommunication wavelength of 1.3 um and 1.55 um and cannot be
employed in e�cient modulation schemes.

The silicon modulator can be implemented using thermo-optic e�ect, that is
the variation of the refractive index in response to a temperature variation[22].
Owing to the large thermo-optic coe�cient of silicon, 4n = 1.86 · 10−4K−1

and 4α = 10−4cm−1at λ = 1550nm, [23]TO modulation has a key merit of
wide wavelength tuning range if utilized in resonator or interferometric devices.
For example, a temperature rise of 100K results in a variation of the refractive
index of about 2 · 10−2 that determines a resonance wavelength shift of several
nanometers in SOI microring resonator inducing at the same time negligible loss
(0.04bB/cm), as demonstrated in[24].
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Figure 1.1: (a) Schematic of a typical metallic microheater fabricated over a Si
waveguide on an SOI wafer. (b) Simulative estimation of temperature distribu-
tion at the cross-section of an SOI waveguide when current �ows in the metallic
microheater and heat is generated, from [25].

The common approach to control the silicon waveguide temperature is to
integrate a microheater on the top of the device, (see Fig. 1.1)[25]:

the microheater is basically of a high-resistive metallic layer that dissipates,
due to Joule e�ect, some power of the current passing through it in correspon-
dence of the waveguide and acting as a heat source. Despite the high resonance
wavelength tunability of TO modulators and the negligible loss induced, these
modulation scheme are not suitable for modern telecomunication applications
due to the low tuning speed (of the order of um) imposed by the slow thermal
di�usion processes.

The most common modulation mechanism employs the free-carrier disper-
sion e�ect in which the real and imaginary part of the refractive index is de-
pendent on the concentration of the free carriers present in the material, i.e
electrons and holes. The empirical equations for FCD-induced refractive index
change 4n and absorption coe�cient change 4α , at λ = 1550nm, are given
as[26]:

4n = −(8.8 · 10−224Ne + 8.5 · 10−184N0.8
h ) (1.1)

4α = 8.5 · 10−184Ne + 6.0 · 10−184Nh (1.2)

where 4Ne and 4Nhare the changes in electrons and holes concentrations.
The electrical manipulation of the concentration of the free carriers interact-
ing with the propagating light is implemented in p-i-n diode structures through
di�erent mechanisms: carrier injection, current depletion and carrier accumu-
lation. Fig 1.2 illustrates a schematic of the structures employed for optical
intensity modulation through carrier injection in a p-i-n diode embedded in a
microresonator.
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Figure 1.2: (a) Schematic of top-down and cross-sectional views of a FCD-based
ring resonator structure. (b) Cross-section of a device structure implementing
carrier depletion mechanism, from [19].

The plasma dispersion-based EO modulators have sub-ns to ns tuning speed
and sub-mW power consumption, but the wavelength tuning range is limited by
the induced FCA loss. For instance, a 2·1019 cm−3 injected carrier concentration
causing 2 nm spectral blueshift for the device represented in Fig. 1.2 induces a
100 dB/cm loss[7].

The slow response time of TO modulation and the high carrier-induced prop-
agation loss represent major obstacle to the mass-usage of these mechanisms in
modulation schemes. Furthermore, both e�ects exhibit non-negligible power
consumption, due to resistive heating for thermo-optic e�ect or related to cur-
rent propagation for carrier injection technique[27].

As summoned before, pure silicon doesn't show Pockels e�ect due to its
centrosymmetric crystalline lattice arrangement. Nevertheless in 2006 it has
been showed that is possible to enable the presence of this electro-optic e�ect
depositing a high intrinsic stress �lm on the material. The Pockels e�ect presents
potentially the advantages of both the described mechanisms of modulation: it
allows switching speed performance as fast as FCD injection and wavelength
tunability of the order to the ones obtained through TO e�ect. Furthermore
it o�ers higher power e�ciency since no current is required and the strained
silicon technology requires much lower number of processing steps lowering the
manufacturing production cost. In the next section a brief review on the history
of strained silicon technology in silicon photonics is reported.
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1.3 Strained silicon photonics

Lattice deformation in strained silicon photonic structures has been initially
studied due to its e�ects on the waveguide optical anisotropy, i.e. birenfrin-
gence. In SOI waveguide, the mismatch in the thermal expansion coe�cients
between the silicon core and the silicon dioxide substrate and cladding layers
produces stresses across the waveguide cross-section[28]. In particular, since sili-
con has larger thermal expansion coe�cient than the oxide (αSi = 3.6·10=6K=1

and αox = 5.4 · 10−7K−1) a signi�cant compressive stress is generated at the
Si/SiO2 interface. The resulting deformation, through photelastic e�ect gen-
erates a certain amount of birefringence in the waveguide that adds to the
geometrical contribution originating from the di�erent boundary conditions for
the perpendicular and transverse electric �eld components of the optical modes.

A large body of research has been devoted to the understanding and the
control of the birefringence in SOI devices generated by the straining cladding
layer. For example Xu et al[29], demonstrated that it is possible to modify or
eliminate the birefringence for a wide range of waveguide cross-section shapes
through the stress engineering of the SiO2 cladding layer. In the experiment de-
scribed, the silicon dioxide layer is deposited through Plasma Enhanced Chemi-
cal Vapour Deposition (PECVD). For thickness values about 1 µm the SiO2 has
a compressive stress of −320 MPa that compensates the original geometrical
birerfringence reducing its value from 1.2 · 10−3 down to 4.5 · 10−5.

In 2006 the discovery of Jacobsen at al. promoted strained silicon as a key
technology for the development of active silicon photonics[30]. Jacobsen et al.
demonstrated that signi�cant linear electro-optic e�ect and second-order nonlin-
earitites can be induced in silicon by breaking the symmetry of its crystal struc-
ture. As will be described in Chapter 2, the Pockels e�ect, i.e. linear electro-
optic e�ects and second-order nonlinearities are prohibited by centrosymmet-
rical crystalline structure of silicon. The authors show that depositing a thick
high intrinsic stress silicon nitride (Si3N4) layer on top of the silicon waveguide
is possible to e�ciently remove the silicon centrosymmetry and enable the pres-
ence of these e�ects. The silicon nitride �lm employed in the experiments, is
deposited through PECVD technique on a 1.2 µm thick SiO2 cladding layer.
For thickness values of about 0.75 µm the intrinsic stress obtained is about
1 GPa. The authors demonstrated for the �rst time a Mach-Zender interfer-
ometer in silicon exploiting the induced Pockels e�ect and obtained nonlinear
coe�cient, χ(2) ≈ 15 pmV −1 employing slow light photonic crystal waveguide
(PCW) to enhance the material nonlinearity, see Fig. 1.3.

Since the discover of Jacobsen, many works and studies on stress-induced
electro-optic and nonlinear properties in silicon have been published. They
aimed at the investigation of the potential of strained silicon to be a platform
for a new class of integrated active optical devices. Cazzanelli at al [31]carried
out second-harmonic-generation experiments and �rst-principle calculations on
strained silicon photonic stuctures yielding second order nonlinear susceptibility
up to 40 pm/V . In particular the analysis was carried out on strip SOI waveg-
uide with micrometric dimensions stressed by silicon nitride cap layer with dif-
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Figure 1.3: a) Schematic of a Mach�Zehnder modulator employing strain-
induced Pockels e�ect in photonic crystal (PC) silicon waveguide. b) Diagram
of the photonic crystal structure employed for the nanofabrication of the Mach-
Zehnder interferometer, from [30].

ferent thickness and deposited through di�erent techniques. The largest values
for χ(2) are obtained for a 150 nm thick SiN layer deposited through Low Pres-
sure Chemical Vapour Deposition (LPCVD) technique resulting in a 1.2 GPa
intrinsic stress that generated a sign inversion of the strain across the waveg-
uide silicon core. The observed strong dependence of χ(2) on the extent and the
anysotropy of the induced strain �eld induced the authors to suggest that such
a second-order susceptibility is mainly caused by the spatially inhomogeneous
distribution of the crystalline deformation.

Chmielak at al demonstrated a fully integrated electro-optic Mach-Zehnder
modulator based on strained SOI rib waveguide and obtainined a second-order
susceptibility value of χ(2) = 122 pm/V [32][33]. The considerable enhancement
in the nonlinearity values in comparison to the one observed in [30] is due to
fundamental di�erences in the device design and processes. Firstly the rib lay-
out allows the formation of an asymmetric strain with regard to the PCW of
[30] and the silicon nitride �lm is deposited through remote plasma-enhanced
chemical vapour deposition (RPECVD) directly on the top of the waveguide.
Furthermore an annealing step is added to the manufacturing processes that
increased to the magnitude of the thermal stress. The electro-optic charachteri-
zation yields a strict linear dependence between the refractive index change and
the applied voltage demonstrating the presence of the Pockels e�ect. The results
of Micro-Raman spectroscopy analysis carried on strained SOI devices show the
presence of the Pockels e�ect is mainly determined by the spatial strain gradi-
ent across the waveguide. This outcome con�rmed the hypothesis suggested on
the fundamental role played by inhomoegenous spatial strain distribution in the
formation of the second-order nonlinearities.

Azadeh at al [37], highlighted the in�uence of the capacitely-induced free
carrier e�ect in the electro-optical properties of strained silicon devices. De-
spite in the previous papers these e�ect had never been considered, the authors
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Figure 1.4: Strained SOI waveguide used in [31] for the SHG measurements. (a)
Cross-section of the strained SOI waveguide. (b) Representation of the second-
harmonic generation: a radiation at a wavelength λω is injected into the strained
SOI waveguide and two pulses, at wavelengths λω and λ2ω are observed at the
output of the waveguide.

Figure 1.5: a) Schematic cross sectional view of crystalline deformation of the
SOI rib-waveguide with a Si3N4 strain layer and a SiO2 cladding, employed in
[32]. b) A scanning electron microscope (SEM) picture of the structure.
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Figure 1.6: Mach-Zehnder interferometer employed in [37] for the analysis of
the capacitely-induced free carrier e�ect (a) Layout of the Mach�Zehnder inter-
ferometer used for the experiments, (b) cross section of the capacitive structure
of the and (c) particular of the waveguide junction.

demonstrate that in the devices studied in [30, 31, 32, 33] they a�ect severely
the response of the material to an applied voltage. In particular, the Si3N4

stressing �lm accumulates surface charge due to the presence of defects at the
Si − SiN interface that are generated by the Si dangling bonds. Positively
charged defects are thermodinamically favored over the neutral or negatively
charged state but their polarity can be inverted by applying a strong positive
voltage[34][35]. As demonstrated by Sharma[36], the silicon free carrier redistri-
bution, due to the presence of the �xed charge, can induce a shielding e�ect on
an external electric �eld reducing the interaction of silicon with the capacitively
applied bias �elds. In [37] the analysis was carried out on a Mach Zhender
interferometer based on (400 × 200) nm SOI waveguide strained by a350 nm
thick silicon nitride layer deposited through LPCVD. The experimental analy-
sis shows an hysteresis in the phase shift response if the applied voltage sweep
from −200 V to 200 V and an accompanying variation loss. These outcome
are ascribable to a polarity inversion of the surface defects and to the variation
of the free carriers absorption-induced propagation loss. The results highlight
the necessity of taking into account these e�ects in the interpretation of the
electro-optical measurements since under some circumstances they can cancel
or reduce the stress-induced response of the device.
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Figure 1.7: Simulative estimation of electric �eld distribution within strained
SOI waveguide, considering the presence of the �xed charge and assuming ver-
tical bias voltages of either −10V (above) or +10V (below), from [36].
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Chapter 2

Theory and simulative

methods

2.1 Mechanical properties of silicon

As described in Chapter 1, the presence of lattice deformation in micrometric
and submicrometric optical devices can dramatically a�ect their performance:
strained silicon structures, for example, exhibit signi�cant values Pockels e�ect
and second order nonlinearities which are not present in pure silicon. The
theoretical framework of the simulative and experimental analysis which we have
carried out on strained silicon technology is provided by the theory of elasticity;
such theory studies how solid bodies deform and become internally stressed due
to the applications of forces. In this section the fundamental quantities used
to describe the deformation and the force distribution of a solid are introduced
and the dynamic equations employed in the simulative models are described.

The theory of elasticity studies the mechanics of solid bodies regarded as
continuous media. When forces are applied on solid bodies, the positions of its
atoms or molecules change so that a new state of equilibrium is achieved. Given
r the radius of the position of a point and r′ its position after the deformation,
the displacement of this point u(r) is expressed by the di�erence between the
two radii[38]:

u(x, y, z) = r′(x, y, x)− r(x, y, z) (2.1)

This tensor �eld is called displacement vector �eld and represents a math-
ematical description of the deformation of a solid: if the values of this tensor
are given as a function of the position, the deformation of the solid is entirely
determined.

When a deformation is present in the body, the distances between its points
change. Given the radius vector joining two points dl′ = (dx′1dx

′
2, dx

′
3) and the

vector joining the same two points in the undeformed body, dl = (dx1dx2, dx3),
the di�erence between the modules is given by:
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Figure 2.1: Deformation of a square structure (a). (b) Pure hydrostatic defor-
mation ( xy = 0), (c) pure shear deformation (xx = yy = 0), and (d) mixed
deformation, from [39].

dl′2 = dl2 + 2uikdxidxk (2.2)

where uik is the strain tensorial �eld is de�ned as:

uik(x, y, z) =
1

2
(
∂ui
∂xk

+
∂uk
∂xi

+
∂ui
∂xk

∂uk
∂xi

) (2.3)

Since the strain tensor is symmetrical, i.e. uik = uki, at any given point
it's possible, by a proper choice of the coordinate axis, said principal axes, to
diagonalize the tensor. In this way only the diagonal terms u(1), u(2), u(3), named
principal values of the strain tensor, are di�erent from zero. The vector dl′ can
therefore be expressed as:

dl′2 = (1 + 2u(1))dx21 + (1 + 2u(2))dx22 + (1 + 2u(3))dx23 (2.4)

It can be shown that the induced change of an in�nitesimal volume dV can
be expressed in terms of the sum of the diagonal components of the the strain
tensor:

dV ′ = dV (1 + u11 + u22 + u33) (2.5)

The sum of the diagonal terms, called trace Tr(u), is invariant to any change
of the co-ordinate system and represents the relative volume change Tr(u) =
dV ′−dV
dV .
The diagonal coe�cients of the strain tensor describe a deformation along the

main axis which doesn't change the shape of a volume (hydrostatic deformation).
On the other hand, the non-diagonal coe�cients, said shear strain components,
represent the gradient of the displacement vectors along a transverse direction
and describe a deformation the alters the shape of the the volume but not its
area (shear deformation)[39]:

As described, when a solid body is deformed, the original arrangement of the
atoms or of the molecules is altered. This new disposition gives rises to stresses
that tend to return the body to the original equilibrium state. Such stresses
are due to the forces of interactions between the atoms and molecules and are
said internal forces. Singe the range of actions of these forces is really small,
the internal forces exerted on a portion of the body act only on the surfaces
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surrounding the in�nitesimal volume. Given Fi the components of the internal
forces acting on a in�nitesimal volume dV , the total force acting on the portion
is given by ∫

FidV (2.6)

Expressing the components Fias a divergence of a vector σik, the Green's
theorem can be applied and the force exerted on the volume can be expressed
as surface volume: ∫

FidV =

∫
∂σik
∂xk

dV = σikdsk (2.7)

where dsk is the surface element vector directed along the outward normal.
The tensor σik is called stress tensor and represents the ith component of the

internal forces acting on a surface oriented along the axis k. Under conditions
of equilibrium, the sum of the forces acting on each part of the body is zero and
if no external forces are applied this conditions gives:

∇ · [σik] = 0 (2.8)

If external forces are present, the relative volume density Fextmust be bal-
anced by the internal forces:

Fext = −∇ · [σik] (2.9)

Eq. (2.9) can be expressed in terms of the tensor L:

Fext = −LT [σik] (2.10)

where

L =


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x

 (2.11)

The reaction of a solid to internal stress depends on the crystal symmetry
of the lattice and on the length and orientation of the atomic bonds. Stress and
strain tensor components are usually related by constitutive equations in terms
of the sti�ness and compliance constants which are experimentally determined.

The elastic properties of an anisotropic material are therefore described by
the fourth rank tensors sti�ness tensor cijkl and compliance tensor sijkl relating
stress tensor σij and εij [40]:

σij = cijklεkl εij = sijklσkl (2.12)

Due to the the symmetry of the stress and strain tensors, σij = σji and
εij = εji, most of the elastic constants are equal, and the number of independent
elements reduce to 21. For orthotropic material as silicon, i.e. material having
at least two orthogonal planes of symmetry, the constitutive relation between
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Figure 2.2: Young's modulus and Poisson's ratio versus orientation in silicon,
from [41].

the strain and stress tensor can be expressed in terms of the elasticity quantities
of Young's modulus E, Poisson's ratio ν and the shear modulus G as[41]:


εxx
εyy
εzz
εyz
εxz
εxy

 =


1/Ex −νyx/Ey −νzx/Ez 0 0 0
−νxy/Ex 1/Ey −νxz/Ez 0 0 0
−νxz/Ez −νyz/Ey 1/Ez 0 0 0

0 0 0 1/Gyz 0 0
0 0 0 0 1/Gxz 0
0 0 0 0 0 1/Gxy




σxx
σyy
σzz
σyz
σxz
σxy


(2.13)

where Ei, νij and Gyzare de�ned with regard to the axes of interest. In Fig
2.2, the values of Young's modulus and Poisson's ration as a function of orien-
tation for the (100) plane, obtained through measurements of acoustic waves
propagation, are reported.

In the silicon wafer employed for the manufacturing of the structures which
we analyzed in this work, the primary �at is aligned with the [110] direction
and the frame of reference is the one indicated in Fig 2.3. The elasticity values
and sti�ness matrix coe�cients are:

Ex = Ey = 169 GPa Ez = 130 GPa (2.14)

νyz = 0.36 νzx = 0.28 νxy = 0.064 (2.15)

Gyz = Gzx = 79.6 GPa Gxy = 50.9GPa (2.16)
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Figure 2.3: Crystal orientation in the silicon wafers, from [41].

C =


194.5 35.7 64.1 0 0 0
35.7 35.7 64.1 0 0 0
64.1 64.1 165.7 0 0 0

0 0 0 79.6 0 0
0 0 0 0 79.6 0
0 0 0 0 0 79.6

 (2.17)

The orthotropic sti�ness tensor, given by Eq. 2.17, will be used in the
simulative estimations of the stress and strain distribution of the manufactured
silicon rib structures.

2.2 High intrinsic stress �lms in silicon devices

As will be described in Chapter 3, the lattice deformation of the manufactured
devices has been induced through the deposition of a thin stoichiometric silicon
nitride (Si3N4) layer. Chemical vapor deposited Si3N4 layers are commonly
used in microelectronic devices as di�usion barriers and passivation layer or as
dielectric materials due to the electrical properties and resistance to chemical
attack[42]. Silicon nitride is also one of the basic structural materials in micro
electro-mechanical systems (MEMS) devices due to its mechanical properties:
extreme aspect ratio structures like long cantilevers or large membranes can be
built of thin silicon nitride �lms[43]. Recently, after the discover of Jacobsen at
al [30]reported in Chapter 2, Si3N4 has been employed in SOI opto-electronic
devices as a stressing layer �lm capable of inducing signi�cant deformation on
the waveguides structures.

When thin �lms are deposited on a substrate, a certain amount of stress,
named residual stress, can arise. Residual stress, in thin �lms, is usually modeled
as a biaxial stress. Under this assumption, the shear stress and the components
in the direction orthogonal to the interface are assumed negligible in comparison
to the other stress components and are equated to zero, i.e. σxy = σxy = σzz =
0, where the coordinate system is indicated in Fig. 2.4. Since the stress lies
only in the �lm plane, the stress tensor can be expressed as a 2× 2 matrix:
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Figure 2.4: Biaxial stress in a thin �lm deposited on a substrate.

σ =

(
σxx 0
0 σyy

)
(2.18)

The nature (tensile or compressive) and intensity of the residual stress is
determined by the interaction of the �lm with the substrate (extrinsic stress)
and the chemical and physical variation of the thin �lm during the deposition
(internal stress):

σres = σint + σext (2.19)

Both intrinsic and extrinsic contributes are strongly dependent on the type of
deposition process which are employed as well as on the experimental nanofabti-
cation parameters.

The extrinsic stress is mainly determined by the mismatch of thermal ex-
pansion between the �lm and the substrate upon cooling from the deposition
temperature to ambient[44]. For the manufactured structures, the Si3N4 is de-
posited through Low Pressure Chemical Vapor Deposition (LPCVD) at 780 C◦.
When the structure is brought to room temperature, the �lms and substrate
shrink. Since the �lm is attached to the substrate, the strain of the �lm, εfilm
is expected to be that of the substrate:

εfilm = −αs4T (2.20)

where αf is the thermal expansion coe�cient (CET) of the substrate and4T
is the di�erence between the deposition temperature and the room temperature.
On the other hand, the strain of the unattached �lm at room temperature would
be:

εfilm,un = −αf4T (2.21)
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where αs is the thermal expansion coe�cient of the �lm. This mismatch
leads to a stress in the �lm, called thermal stress σth, given by:

σth =
E

1− ν
(εfilm − εfilm,un) =

E

1− ν
(αf − αs)4T (2.22)

where E and v are the (isotropic) Young's modulus and Poisson's ratio of
Si3N4[45]. If αf > αs the thermal stress is positive (tensile), if the αf < α is
negative, (compressive).

Let's consider the thermal expansion coe�cient of the materials involved in
the manufactured devices:

Silicon Silicon Dioxide LPCVD Silicon Nitride

2.61 · 10−6 0.52 · 10−6 2 · 10−6

The mismatch between the CET of silicon and silicon nitride is quite small,
and generates, using deposition temperature, of 780°, an extrinsic compressive
stress of:

σext = −75MPa (2.23)

As will be described in the next section, this value gives a negligible con-
tribute to the overall residual stress value of the �lm.

On the other hand the large mismatch between the silicon and silicon dioxide
CET leads to a signi�cant compressive stress in silicon dioxide layer the must
be taken into account for the analysis of the SOI waveguides.

The intrinsic stress is due to many factors; in particular, the technique of
deposition, the chemistry employed and the conditions of deposition a�ect dra-
matically the residual stress [46, 47, 48]. For silicon nitride �lms, stress values
sweeping from−3 GPa to +1.6 GPa, have been reported in the literature due
to the employment of di�erent deposition techniques.

A fundamental role in the determination of the nature and amount of in-
trinsic stress is played by the Si−richness of the silicon nitride �lm. Fig 2.5
reports the values of residual stress versus refractive index of silicon nitride �lm,
which is deposited through Low Pressure Chemical Vapor Deposition (LPCVD),
Plasma Enhanced Chemical Vapor Deposition (PECVD), Atomic Layer Deposi-
tion (ALD) and Rapid Thermal Chemical Vapor Deposition (RTCVD), from[49]
.

The trend observed in the relationship between the stress and the refractive
index highlights the in�uence of the chemical composition obtained, that is
the Si/N ratio, on the the mechanical properties. All the experimental data
lie in a straigth line which described a linear correlation between the residual
stress values and the refractive index, i.e. to density of the material. This can
be explained in this way: on one hand the increase of the Si-richness results
in higher density, since silicon is more dense than nitrogen, and therefore in
higher refractive index. On the other hand, the Si − N chemical bonds, that
are stretched due to the di�erent bond length with regard to the substrate, are
replaced by Si − Si bonds. This implies that the mean stress generated by
di�erent bond length of Si− Si and Si−N bonds is reduced.
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Figure 2.5: Intrinsic stress values versus refractive index n for the LPCVD
(square), ALD (lozenge), RTCVD (triangle) and PECVD (circle) �lms, from
[49].

The deposition technique employed for the microfabrication and nanofabri-
cation of the structures analyzed is the Low Pressure Chemical Vapor Depo-
sition (LPCVD). This technique assures uniform density in the layer and the
stoichiometry of the chemical composition[50]. The residual stress obtained
through this deposition technique is positive, i.e. tensile stress is observed, and
of the order of 1− 1.2GPa. Comparing these values with the contribute of the
extrinsic stress, it's clear that the main contribute to the residual stress is given
by the intrinsic stress.

2.3 Electro-optic e�ect in silicon

The electro-optic e�ect is the modi�cation of the optical property of a medium
in response to an external static or slowly varying electric �eld. This e�ect
encompasses several phenomena describing the variation of the imaginary part
of the refractive index, such as Franz-Keldysh e�ect, Quantum-Stark e�ect and
other describing the change in the real part of the refractive index such as Pockels
e�ect and Kerr e�ect. In the Pockels e�ect, the change in the refractive index
of the medium is proportional to the applied electric �eld. The Pockels e�ect
is exploited in electro-optic modulator employing nonlinear crystal material as
Deuterated potassium dihydrogen phosphate (KD2PO4) and lithium niobate
(LiNbO3).

As described in Chapter 1, the symmetry of silicon crystal prohibits the
existence of Pockels e�ect. In this section, such property will be demonstrated
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on the basis of simple symmetry considerations. In order to do so, it is necessary
to introduce some tensorial quantities which will be useful for the description
of the optical properties of anisotropic materials.

The dielectric properties of the medium can be described through the electric
permettivity tensor εij that relates the components of the electric �ux density
Di and the components of electric �eld Ej in a medium[51]:

Di = εijEj (2.24)

The impermeability tensor ηij is de�ned by:

ηij = ε0ε
−1
ij (2.25)

and contains important information on the optical properties of the material.
In particular, the coe�cientsηij can be used to determine the refractive index of
electromagnetic waves propagating in the medium with arbitrarily polarization
through a simple geometric construction called optical index ellipsoid or optical
indicatrix.

The index ellipsoid is the quadratic representation of the electric imperme-
ability tensor η: ∑

ij

ηijxixj = 1 (2.26)

Using the principal axes as a coordinate system, the index ellipsoid is de-
scribed by:

x21
n21

+
x22
n22

+
x23
n23

= 1 (2.27)

where 1/n21,1/n
2
2,1/n

2
3 are called the principal values of the tensor η. A

schematic representation of the index ellispoid and of the principal values of the
tensor η is given in Fig 2.6.

The index ellipsoid is used for determining the refractive index of a the
material in a simple way. Let's consider a wave propagating in the direction
indicated by the versor u with a polarization oriented as the versor p (see Fig.
2.7). Intersecting the plane normal to the direction of propagation u with index
ellipsoid, one obtains an ellipse, called the index ellipse. It can be shown that the
half lengths of the major and minor axes of the ellipse are the refractive index
na and nb of the wave propagating along the direction u with the polarization
oriented with the direction of the axes, called normal modes. The refractive
index of the electromagnetic waves with arbitrarily polarization can be obtained
through the decomposition as as sum of the normal modes.

It's clear that the impermeability tensor represents a generalization of the
refractive index for optical anisotropic material and a change in its components
results in a variation of the �anisotropic� refractive index of the material. In
order to take into account the variation of the impermeability tensor, and conse-
quently of the refractive index, in response to the application of a steady electric
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Figure 2.6: Schematic representation of the index ellipsoid, from [51].

Figure 2.7: Normal modes of the crystal, determined by the index ellipsoid,
from [51].
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�eld E, each coe�cient of the impermeability tensor η can be expanded in a
Taylor's series around the steady electric �eld valuesE = 0:

ηij(E) = ηij + rijkEk + sijklEkEl (2.28)

where E represents the applied electric �eld components, i.e. E = (E1, E2, E3)
and ηij ≡ ηij(0) . The elements {rijk}are known as the linear electro-optic or

Pockels coe�cients and are given by rijk =
∂ηij
∂Ek

(0) while the elements {sijk}are
known as quadratic electro-optic or Kerr e�ect coe�cients and are given by

sijk =
∂2ηij
∂E2

k
(0).

According to the Neumann's principle[52], if a crystal is invariant with re-
spect to certain symmetry operations, any of its physical properties must also
be invariant with respect to the same symmetry operations. Silicon crystal lat-
tice is centrosymmetric, i.e. is invariant under the inversion of the coordinates,
r → −r. Requiring that the impermeability tensor is invariant under this trans-
formation, it's possible to demonstrate that the third rank tensor {rijk}vanishes.
This implies that the crystal symmetry prohibits the linear response of the ma-
terial to the application of the electric �eld: the Pockels e�ect is not observed
in pure silicon.

In strained silicon, as described in Chapter 1, second order nonlinearity ef-
fects, such as second harmonic generation (SHG), accompany the presence of
Pockels e�ect. The relation between the Pockels e�ect and second order nonlin-
earities in centrosymmetric and non centrosymmetric media can be explained
through a microscopic model which employs an extended Lorentz model of the
atom[53].

The canonical Lorentz model, that treats atom as a harmonic oscillator,
provides a good description of linear optical properties of vapors and nonmetallic
solids. Introducing nonlinear contributes in the restoring force exerted on the
electron, it's possible to take into account the possibility of interaction between
�elds oscillating at di�erent wavelengths.

Let's take the equation of motion for the electron position x to be of the
form, for 1-D case:

m
∂2x

∂t2
+ 2γ

∂x

∂t
+ Frest = −qE (2.29)

where m and q are the mass and the charge of the electron respectively and
γ the dipole damping rate. Frest is the restoring force on the electron and E is
the electric �eld.

For a noncentrosymmetric medium, the resorting force contains a term with
an even power of x since the potential function U(x) = −

∫
Frestdx is not

symmetric, i.e. U(x) 6= U(−x), Fig. 2.8

Frest = −mω2
0x−max2 (2.30)

Let's consider a su�ciently weak applied �eld, E = λE where λ is a param-
eter ranging between 0 and 1, and an electric �eld containing terms oscillating
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Figure 2.8: Potential energy function for a noncentrosymmetric medium (left)
and centrosymmetric medium (right), from [53].

at frequency ω1and ω2, E = E1e
iω1t + E2e

iω2t + c.c. We seek a solution in the
form of a power series expansion in strength λ:

x = λx(1) + λ2x(2) + λ3x(3) + ... (2.31)

In order for the function given by Eq. (2.31) to be a solution of Eq. (2.29)
for any value of the coupling strength λ, the terms proportional to λ, λ2 andλ3

must separately satisfy the equation.
These requirements lead to the following equations for the coe�cients x(i):

∂2x(1)

∂t2
+ 2γ

∂x(1)

∂t
+ ω2

0x
(1) = −qE

m
(2.32)

∂2x(2)

∂t2
+ 2γ

∂x(2)

∂t
+ ω2

0x
(2) + a[x(1)]2 = 0 (2.33)

∂2x(3)

∂t2
+ 2γ

∂x(3)

∂t
+ ω2

0x
(3) + 2ax(1)x(2) = 0 (2.34)

The lowest order contribution x(1) is governed by the equation of the linear
Lorentz model. It's steady state solution is:

x(1) = − qE1

mD(ω1)
e(−iω1t) +− qE2

mD(ω2)
e(−iω2t) + c.c (2.35)

where
D(ωj) = ω2

0 − ω2
j − 2iωjγ (2.36)

The expression for x(1) is then squared and inserted in Eq. (2.33). The
square of x(1), contain oscillations at frequencies ω(2) = ±2ω1,±2ω2,±(ω1 +
ω2),±(ω1 − ω2), 0. This implies that second-order contribution x(2) contains
terms oscillating at these frequency. The contribute given by the coe�cients
x(2) to the second order polarization at frequency ωi , is:
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P (2)(ωi) = −Nqx(2)(ωi) (2.37)

where x(2)(ωi) is the coe�cients x(2) oscillating at frequency ωi and ωi is
one of the possible frequency values of ω(2).

On the other hand, the second order susceptibility χ(2)(ωi) is de�ned through
the relation:

P (2)(ωi) = ε0χ
(2)(ωi)E(ω1)E(ω2) (2.38)

Comparing (37) and (38) it's clear that nonlinear susceptibilities of the sec-
ond order can be observed in noncentrosymmetric medium.

For centrosymmetric media, for the reasons explained above, the restoring
force assumes the form:

Frest = −mω2
0x+mbx3 (2.39)

Following the same considerations for the noncentrosymmetric medial we ob-
tain analogous equations for x(1). Nevertheless, the equation for x(2) is di�erent
since the electronic oscillator is dumped and not driven:

∂2x(2)

∂t2
+ 2γ

∂x(2)

∂t
+ ω2

0x
(2) = 0 (2.40)

This implies that steady state solution for Eq. (2.40) vanishes and no con-
tributions to second-order polarization are obtained. An important result is
obtained from this analysis: second-order e�ects are not permitted in cen-
trosymmetric media and the lowest-order nonlinear response, generated from
the restoring force, is a third order contribution.

Now, the linear electro-optic e�ect can be described in terms of a second
order non linear polarization that mediates the interaction between a static
�eld E0, oscillating at frequency ω1 = 0, and the optical �eld Eω oscillating at
frequency ω2 = ω. The change in the complex dielectric constant due to the

polarization term P
(2)
ω generated by x(2)term is given by:

∆ε =
P

(2)
ω

ε0E2
= χ(2)(ωi = ω + 0) =

−aNq3E0

ε0m2ω2
0(ω2

0 − ω2 − iωΓ )2
(2.41)

The variation of the dielectric constant is proportional to the static electric
�eld E0. It can be easily shown that the resulting variation in the refractive
index is proportional to E0 as well. This analysis shows that the Pockels e�ect
is mediated by the second order nonlinearity and can be therefore considered a
second order e�ect.
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2.4 Photoelastic e�ect in silicon

As described above, the centrosymmetric crystals do not not show Pockels e�ect.
On the other hand, the presence of a perturbation to the perfectly periodic
atomic arrangement breaks the crystal symmetry and enables the presence of
this e�ect. On a microscopic scale, when a material is subject to mechanical
distortions, such as the stress induced on silicon by the deposition of a straining
Si3N4 �lm, the resulting deformation changes the bond length between the
atoms. The perturbation in binding force of the electrons to atoms generates a
change in the optical properties: this phenomenon is said photoeleastic e�ect.

If a material is deformed, the impermeability changes so that the tensor
components ηij become a function of the strain tensor components εkl, i.e.ηij ≡
ηij(εkl). In analogy with the expression of the impermeability tensor in terms of
an applied �eld, the components ηijcan be expanded in a Taylor's series about
εkl = 0[51]:

ηij(εkl) = ηij + pijklεkl (2.42)

where constants pijkl =
∂ηij
∂εkl

form the fourth rank tensor known as photoe-
lastic or strain-optic tensor.

In cubic crystals, as silicon, only 3 components of photoelastic tensor are non-
vanishing and the variation of the refractive index with the contracted tensor
notation is given by[54]:

4


1/n2xx
1/n2yy
1/n2zz
1/n2yz
1/n2xz
1/n2xy

 =


p11 p12 p12 0 0 0
p12 p11 p12 0 0 0
p12 p12 p11 0 0 0
0 0 0 p44 0 0
0 0 0 0 p44 0
0 0 0 0 0 p44




εxx
εyy
εzz
εyz
εxz
εxy

 (2.43)

where p11, p12 and p44are the photoelastic coe�cients. The pair of indices
(i, j) and (k.l) have been renamed as single index in accordance with table:

j (or l) i (or k): 1 2 3

1 1 6 5
2 6 2 4
3 5 4 3

From Eq. (2.43) the strain-induced refractive index change for light polarized
along the principal axis can be obtained:

ni − n0 = −1

2
n30pijεij (2.44)

with i = 1, 2, 3. For waveguide structures the plane strain approximation is
employed: since the waveguide is usually very long in the propagation direction
z , the shear strain in this direction can be ignored. Using the stress and strain
relation, the expression for the refractive index for the polarizations are given
by:
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nx − n0 = −C1σx − C2(σy + σz) (2.45)

ny − n0 = −C1σy − C2(σx + σz) (2.46)

where the stress-optic constant C1and C2 are related to the Young's modulus
E, the Poisson's ratio υ and the photoelastic coe�cients p11and p12as:

C1 =
n30
2E

(p11 − 2νp12) (2.47)

C2 =
n30
2E

(−νp11 + (1− ν)p12) (2.48)

The values measured by in are reported in the table
p11 p11 p12 C1(10−12Pa−1) C2(10−12Pa−1)

Si -0.101 0.0094 =17.13 5.51
SiO2 0.16 0.27 1.17 3.73

Eq. (2.45) and Eq. (2.46) will be used in the multiphysical model which
we have employed for the simulative estimations of the optical properties of the
strained SOI waveguide.

2.5 Optical waveguides and propagation Losses

2.5.1 Silicon-on-insulator (SOI) waveguides

A waveguide is an optical structure that allows the con�nement of light within
its boundaries by total internal re�ection[55]. In order for the total internal
re�ection to occur, the refractive index of medium where most of the radiation
is concentrated nc must be higher than the refractive index of the surrounding
material ns. The rays that travel with an angle, with respect to the interfaces,
greater than the critical angle θc = sin−1(ns/nc) su�er total internal re�ection
and remain trapped inside the �lm, as shown in Fig. 2.9.

Optical waveguides can be classi�ed on the base of the number of dimen-
sions in which the light is con�ned: planar waveguide (1D con�nement), chan-
nel waveguide (2D con�nement) and photonic crystals (3D con�nement), (Fig.
2.10). If a light pulse is transferred from one point to another, the broadening
of the beam in the transverse plane, i.e. in the plane orthogonal to the propa-
gation, must be minimum. In order to avoid any spread in the transverse plane,
channel waveguide are required. In Fig. 2.11 the three most common structures
for channel waveguide are reported: stripe waveguide, rib waveguide and buried
waveguide.

When the cross-section dimensions of the waveguide are comparable to the
wavelength of the radiation, the interference between the beams re�ected at the
interfaces limits the possible angles of propagation. To each of the permitted
angle corresponds a radiation with an electromagnetic �eld that maintains the
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Figure 2.9: Light con�nement through total internal re�ection in optical waveg-
uide, adapted from [56].

Figure 2.10: Basic types of waveguide geometries: (a) planar waveguide, (b)
channel waveguide and (c) photonic crystal, from [55].

Figure 2.11: Main types of channel waveguides (2D waveguides): (a) stripe
waveguide; (b) rib waveguide; (c) buried waveguide, from [55].
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same transverse distribution along the propagation. These radiations propa-
gating without di�raction are said normal modes of the waveguide[57]. The
knowledge of the properties of the radiation modes in terms of propagation
loss, phase and group velocity are of paramount importance in the design of a
photonic circuit.

From a mathematical point of view, a normal mode represents a solution to
the Maxwell harmonic equations for the waveguide in the form:

E(x, y, z) = Et(x, y)e(i(βz−ωt)) (2.49)

where Et(x, y) is the transverse electric �eld distributions and β, said prop-
agation constant, represents the wavevector along the direction of propagation.
β is usually expressed in terms of the wavevector in the vacuum k0 = λ0/2Π
as:

β = k0 · neff (2.50)

where neff is said e�ective refractive index of the waveguide. The boundary
conditions at the interfaces, imposed by the waveguide geometry and the mate-
rials, limit the values which the propagation constant can assume. With regard
to the values of the e�ective refractive index, the normal modes can be classi-
�ed into guided modes and radiation modes. Guided modes have a discrete set
of possible propagation constant and have an e�ective refractive index greater
than the one of cladding or substrate layer. The high value neff implies that the
radiation interacts mainly with the core, i.e. the radiation is well con�ned and
propagates with no loss. The radiation modes have a continuous set of possible
propagation constant values and are characterized by a non null �ow of energy
in the transverse direction that induces a loss in the power of the radiation along
the propagation.

The reduction of the dimension of the waveguide below certain values leads
to the condition at which just one guided mode is permitted. This condition
is said single mode condition and for SOI stripe waveguide with rectangular
shape is obtained for core dimension of about (450× 220) nm[58]. On the other
hand, further reducing the ratio between the dimension of the waveguide and
the wavelength, the guided modes tend to be progressively less con�ned in the
core region and the cut-o� region is attained: no solution to Maxwell equations
in the form of guided modes are allowed[59]. The con�nement of the radiation
plays a fundamental role in the mechanisms underlying the propagation loss of
a high-index contrast waveguide. The e�ects of the modal con�nement on the
propagation loss together with the contribute related to the e�ective refractive
index and wavelength of the radiation are described in next section.

2.5.2 SOI waveguide propagation losses

The high index contrast in SOI waveguide allows a high con�nement of the
traveling radiation. The total internal re�ection at the interface between the
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silicon and the air or oxide cladding layer allows light to travel without di�rac-
tion inside the waveguide despite its sub-wavelength dimensions. As outlined in
the previous section, for z invariant waveguide out of the cut-o� condition, the
mode theoretically propagates maintaining the intensity pro�le and conserving
its power. A perfect waveguide has no loss and the totality of the modes, guided
modes and radiation modes, form an orthogonal basis: no power is transferred
between each other.

On the other hand, any perturbation to the waveguide section induced by
nonidealities in the manufacturing processes or by the presence of sections with
di�erent geometries in the device, couples the guided mode to radiation modes
and induces propagation loss. In particular, the strongest contribute is given by
the light scattering induced by the roughness of the sidewalls. As a matter of
fact, the photolithographic processes, in transferring the pattern of a mask onto
silicon device layer, unavoidably generate corrugation on the vertical sidewalls
of the waveguides[60]. The depth of the sidewall roughness is considered a
stochastic process with a correlation function given by a gaussian function with
variance and correlation length determined by the lithographic processes.

An analytical model, reported in [61], leads to the following expression for
the propagation loss α:

α =
σ22Πn2effh

λ0
Es∆n

2 (2.51)

where σ is the interface roughness, h is the transverse propagation constant
in the core, Es is the normalized electric �eld intensity at the interface and ∆n
is the di�erence between the refractive indices of core and cladding. It's worth
noticing that the scattering-induced loss is expected to be weaker for longer
wavelength and stronger for radiation with high intensity in correspondence of
the interface.

The scattering at horizontal sidewalls is much less severe since the top and
bottom surfaces of the SOI silicon device show lower values of roughness. The
root mean square (RMS) square roughness is of the order of 0.1nm and is
much smaller, approximately a order of magnitude, than the one observed at
vertical sidewall. This di�erence is due to the chemical and mechanical polishing
employed in the SOI wafers fabrication processes that smooths the surfaces to
angstrom-level roughness values.

Other contributes to propagation loss given by: the surface state absorption
by the silicon dangling bonds at the sidewall and the Rayleigh scattering asso-
ciated to sub-wavelength perturbation of the refractive index. Furthermore, if
the power carried by the guided mode is high, non-linear e�ects can occur such
as two-photon absorption or Stimulated Raman Scattering e�ect (SRS) which
enhance the propagation losses. Nevertheless, the sidewall roughness scattering
remains the dominant e�ect and sets the lower limit for the propagation loss:
much e�ort has been devoted to optimize the microfabrication process in order
to reduce the surface roughness and loss values down to 2− 3 dB/cm have been
obtained.
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Figure 2.12: Simulated intensity distribution of the modal radiation of TE and
TM polarization for (450×220) nm SOI strip waveguide at 1300 nm wavelength,
from [62].

It can be shown, that the intensity of the coupling between two modes of
a waveguide, is given by the overlap integral between the modes and the per-
turbation of the dielectric constant. In accordance to this consideration, the
Transverse Electric (TE) mode and Transverse Magnetic (TM) mode, which
are the only guided modes in a single mode SOI waveguide, are expected to
be e�ected in a di�erent way by the roughness scattering, (Fig. 2.12). The
TE mode is con�ned in the vertical direction but the electromagnetic intensity
outside the vertical waveguide in not negligible, due to the continuity of the
displacement vector component imposed by the boundary conditions. On the
contrary, the TM mode is horizontally well con�ned but the pro�le extends out-
side the horizontal surfaces. Therefore the overlap integral between the TE or
TM mode, and the dielecric perturbation at the vertical sidewalls, are expected
to be quite di�erent.

Fig. 2.13 shows the experimental results of loss spectrum for (445×220)nm
SOI stripe waveguide obtained through the employment of the cut-back method,
from [62]. For wavelengths shorter than 1370 nm the losses of TM polarization
are lower than those su�ered by TE polarization. In this range the TM mode is
out of the cut-o� condition and the high con�nement of the mode in the hori-
zontal direction makes the interaction with the sidewall roughness less strong in
comparison with the TE polarization case. Moving toward longer wavelengths,
the TM mode reaches the cut-o� condition and becomes radiative: the loss in-
duced by the bad con�nement overcome the roughness scattering contribute of
the TE mode loss. As a result, in the range of wavelength longer than 1400 nm
the TE losses are much smaller than those observed for TM polarization. It's
worth noting that both the polarizations show a parabolic-like behavior cen-
tered around di�erent wavelengths corresponding to their minimal losses. Such
results is related to two e�ects: for longer wavelengths, as explained, the cut-o�
condition is the most important contribute to the propagation losses due to the
radiant nature of the mode and its reduced con�nement. On the other hand,
for shorter wavelengths, the relative amplitude of the roughness over the wave-
length increases and leads to an enhancement of the scattering with the mode,
as expected, (see Eq. 2.51).
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Figure 2.13: Loss spectrum for (445 × 220)nm SOI strip waveguide. Blue line
corresponds to TE polarization and red line correspond to TM polarization,
from [62].

2.5.3 Losses in SOI waveguides bends

It has been showed that guided light traveling along curved path su�ers radi-
ation losses: this contribute is commonly said bend loss and can overcome the
propagation loss for not well designed devices[63]. The reason behind the bend
loss can be easily understood considering a circular bend curve, as the one rep-
resented in Fig. 2.14. The radial velocity of each point of the mode increases as
the distance from the axis enlarges: at some height, marked by a dashed line in
�gure, the evanescent �eld would exceeds the speed of light in the cladding layer.
As this is not possible, this part of the mode curves and the energy associated is
lost through radiation: i.e. part of the power carried by the fundamental mode
is transferred to radiating modes. Furthermore, the bend loss is expected to be
stronger for bend with smaller radius of curvature: the angular speed and the
peripheral velocity of the radiation increases enhancing the radiation loss.

The bend loss α can be expresses related to the radius of curvarure R and
the e�ective refractive index of the waveguide neff [62]:

α = K exp(−cR), c = β ∗ (2∆neff/neff )3/2 (2.52)

Beside the losses induced by the curvature of the wavefront, a contribution
to the bend losses is given by the enhancement of sidewall roughness scattering
described in the previous section. Indeed, it can be showed that the curvature
of the waveguide induced a spatial shift of the mode �eld distribution toward
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Figure 2.14: Schematic representation at a �ber bend, from [64].

the outer vertical sidewall. This implies that the fraction of radiation intensity
interacting with roughness of the outer vertical sidewall increases. Since the
shift of the radiation is di�erent for TE and TM modes, as for the case of the
propagation loss the two guided modes are expected to su�er di�erent bend
losses.

Fig. 2.15 reports the spectra of bending losses for SOI waveguide with the
same geometry of Fig. 2.12 for di�erent radius of curvature, from [62]. For both
polarization TE and TM the bend loss increase for smaller radius of curvature
but due to the high index contrast and the consequent good mode con�nement
the losses small: values less than 0.1 dB/turn and 0.3 dB/turn are obtained for
a wide band of the spectrum analyzed and for a radius of curvature of 5 um,
the losses are negligible. As for the propagation loss analysis, the obtained loss
values are greter for longer wavelengths since TE and TM polarization approach
to the cut-o� condition. It's worth nothing that di�erently from the propagation
losses case, the TM bend losses are higher than TE losses despite its stronger
better con�nement in horizontal direction. In the case of bend waveguide, the
dominant e�ect is the di�erence in the overall con�nement of the mode between
the two polarization: for TE mode the strong con�nement reduces the shift
toward the outer edge in comparison with the less con�ned TM inducing a
weaker interaction with the sidewall roughness.

2.6 Finite Element Method (FEM) numerical method

An extensive set of simulative analyses have been carried out to estimate the
mechanical and electromagnetic properties of the manufactured strained sili-
con structures. The simulative models which we have developed and employed
for such analyses are based on the Finite Element Method (FEM) numerical
method. In this section, the basic principles of the FEM numerical model are
provided together with a description of its application for the discretization
of the di�erential equations which we have used in the developed simulative
models.
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Figure 2.15: Spectra of bending losses for TE (a) and TM (b) polarizations for
(445× 220) nm SOI strip waveguide, from[62].

The Finite Element Method

Generally speaking, the equations governing physical phenomena usually con-
tain time and space partial derivatives and are therefore said Partial Di�erential
Equations (PDE). These equations cannot be solved analytically for the major-
ity of the encountered problems and require approximate solutions. In numeri-
cal approximation schemes, the PDE are reformulated in an algebraic equations
that are solved through numerical routines implemented in computer software.

The FEM numerical method uses a weak or variational formulation of the
PDE that reduces the requirements on the smoothness of the solution, i.e. the
required number of its derivatives which are continous [65]. Let's consider the
one-dimension homogeneous Dirichlet problem for the unknown function u(x):{

u′′(x) = f(x) 0 < x < 1

u(0) = 0 u(1) = 0
, (2.53)

Multiplying both sides of the equation by a test function v and integrating
over the domain Ω, one obtains:∫

u′v′ =

∫
fv (2.54)

with the assumption that v belong to the Sobolev space H1
0 (Ω), i.e. v and
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their derivatives v′ are square integrable on the domain aΩ and vanish at the
boundary.

The weak formulation, or variational formulation, of Eq. (2.53) is obtained
by requiring this equality to hold for all test functions in the Hilbert space.
It is called �weak� because it relaxes the requirements of Eq. 2.53, where all
the terms of the PDE must be well de�ned in all points. The relations in Eq.
(2.54), instead, only requires an equality in an integral sense. For example, a
discontinuity of a �rst derivative for the solution is perfectly allowed by the
weak formulation since it does not hinder the integration.

The Dirichlet problem of Eq. (2.53), in the weak formulation, can be there-
fore expressed as: ∫

u′v′ =

∫
fv ∀v ∈ H1

0 (Ω) (2.55)

It can be shown, see for example [65], that the �eld u is a solution of the
problem of Eq. (2.55) solely if it minimizes the functional de�ned by:

J(v) =
1

2

∫
(v′)2 −

∫
fv (2.56)

This formulation is said variational and is equivalent to the weak formulation
and leads to the same results.

Seeking an approximate solution for (57) in a �nite-dimensional subspace of
V , Vh ⊂ V , the solution can be expressed as a linear combination of the basis
function ϕj of the space Vh:

uh(x) =

Nh∑
i=1

ujϕj(x) (2.57)

In the Galerkin method the same basis is used for the unknown functions u
and test functions v. Inserting Eq. (2.57) in Eq. (2.55), the following matricial
equations for the coe�cients uj , contained in the vector u, is given by:

Au = F (2.58)

where Aij are said sti�ness matrix components and are given by:

Aij =

∫
ϕi(x)ϕj(x) (2.59)

and

Fi =

∫
f(x)ϕi(x) (2.60)

Selecting carefully the basis function, it is possible to reduce the number
of non null components of the sti�ness matrix and simplify the calculations of
the integrals. In particular, choosing function basis that are supported over a
very small geometrical region, said �nite elements, the integrals in Eq. (2.59)
are zero everywhere, except in very limited regions where they overlap. The
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Figure 2.16: Tent-shaped linear basis functions that have a value of 1 at the
corresponding node and zero on all other nodes. Two base functions that share
an element have a basis function overlap, from [66].

employment of polynomial bases, such as Lagrangian polynomial, simpli�es the
calculation of these overlap integral.

The principles of the FEM presented for this simple 1D problem are valid
for more complex analysis such as structural mechanics and electromagnetic
analysis in 2D or 3D domain. In these cases the expressions of the sti�ness
matrix coe�cients are di�erent from those given by Eq. (2.58), Eq. (2.59)
and Eq. (2.60), and the supports of the basis functions are selected to have
polygonal area or volumes. Nevertheless, the weak formulation of the problem
leads to matricial equations similar to the ones obtained for the 1D problem.

2.6.1 FEM formulation for mechanical analysis

For the estimations of the mechanical properties of the strained structures, the
FEM numerical method has been used to solve the equilibrium equations for
stress and strain tensors in linear elasticity regime. In particular, the equations
governing the deformation tensor distribution u(r) of a solid, caused by external
forces and internal stress, are given by:

LTσ + F = 0 (2.61)

L =


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z

∂
∂y 0 ∂

∂z

 (2.62)

σij = Dijklεij (2.63)
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εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (2.64)

where F is the external force, σ is the stress tensor and ε is the strain tensor.
It can be shown that the deformation tensor which is solution of the problem,
minimizes the potential energy potential functional given by:

Φ(u) =
1

2

∫
dV εTDε− (

∫
dV FTu+

∫
dSfTu) (2.65)

Seeking solutions in the form of linear combination of basis function

u =
∑

aiNi(x) (2.66)

with coe�cients ai, Eq. 2.65 can be rewritten as:

Φ(a) =
1

2
aT (

∫
dV QTDQ)a− aT (

∫
dV NTF +

∫
dSNT f) (2.67)

where a is the vector of the coe�cients ai and Q = LN .
The minimization of the functional brings to the following matricial equation

Ka = P (2.68)

where the sti�ness matrix are given by:K =
∫
dV QTDQ and the equivalent

force vector P is given byP =
∫
dV NTF+

∫
dSNT f . The solution of Eq. (2.68)

provides the coe�cients ai that can be used to express the deformation �eld,
the strain �eld and the stress �eld, through Eq. (2.66).

2.6.2 FEM formulation for electromagnetic analysis

The FEM-based simulative model has been also employed for the estimation
of the electric and magnetic �eld distribution and propagation constant for the
mode radiation propagating along the strained SOI waveguide. The starting
point is the Maxwell equations for harmonic electric and magnetic �eld in di-
electric materials:

∇×H(x, y, z) = iωε(x, y, z)E(x, y, z) (2.69)

∇× E(x, y, z) = −iωµH(x, y, z) (2.70)

Substituting Eq. (2.69) in equation (2.70), one obtains

∇× [ε−1∇×H]− k20H = 0 (2.71)

where k20 = (ω/c)2εrµr.
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The unknown function for the FEM analysis is the magnetic �eld and it can
be shown that the solutions of equation is a stationary point of the operator L
given by:

L = ∇× (ε∇×H)− k20 (2.72)

Eq. (2.72) can therefore be rewritten as

L′(H) = 0 (2.73)

Seeking a solution in the form of a linear combination of a basis function of
Vh, uh(x) =

∑
ujϕj(x), and imposing that a solution is a stationary point of

the operator L, one obtains the following eigenvalue matricial equations for the
coe�cients uj :

(

Nk∑
j=1

< Lϕj , ϕj > −λδij) · uj = 0 (2.74)

Eq. (2.74) represents a formulation of the Maxwell equations for a general
geometry. As described in the previous section, cylindrically symmetric waveg-
uide structures admits solutions in the form:

H(x, y, z) = H(x, y)e−iβz (2.75)

where β is the propagation constant of the mode andH(x, y) is the transverse
mode distribution. The dimensions of the problem can be therefore reduced
and Eq. (2.74) can be solved in the domain given by the cross-section of the
waveguide given the boundary conditions at the interfaces between the di�erent
material. The refractive index can be extracted by the attained value of β
through the relation:

β = neff · ko (2.76)

and the magnetic �eld H and the electric �eld E can be reconstructed as
the linear combination of the polynomial functions chosen as basis with the
obtained coe�cients uj .

2.7 Microring resonators

A part of the research activity reported in this Dissertation thesis has been
focused on SiPh integrated orbital angular momentum (OAM) emitters. Such
innovative devices are based on microring geometry and exploit the wavelength-
dependent electromagnetic properties of the optical resonators. In this section
I will describe the fundamental working equations required to understand the
behavior of a microring resonator and will provide the theoretical basis for
the experimental analysis, carried out on the OAM emitter devices, which is
reported in Chapter 6.
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Figure 2.17: Schematic representation of dielectric waveguide coupled to ring
resonator, from[69].

Optical Resonators (OR) are devices that exhibit resonance behaviors, that
is the amplitude of the response is more intense for solicitations at some fre-
quency called, resonance frequency, than the others. The OR represent a funda-
mental building block for each optical system that require any kind of spectral
selectivity: its application sweep from frequency �ltering, packet switching and
modulation[67, 68]. In silicon photonics (SiPh), the OR are usually implemented
in the form of microrings: the development of SiPh technology enables the man-
ufacturing of microring resonators with radius values of few micrometers. The
basic layout employed for a silicon microring consists of a looped SOI waveguide
distanced from a straight waveguide by a submicrometric gap[69], (Fig. 2.17).

When the gap is su�ciently small, evanescent coupling can occur and a
certain amount of radiation can be transferred between the straight waveguide
and the ring. The exchange of optical power between the resonant structure
and the waveguide at steady state condition is governed by the constructive
and distructive infererence between the circulating radiation and the injected
power.

Under the conditions that just a single mode of the resonator and waveguide
is excited, the response of the microring can be described trough a matricial
relation between the complex mode amplitudes ai and bi:∣∣∣∣ b1b2

∣∣∣∣ =

[
t k
−k∗ t∗

] ∣∣∣∣ a1a2
∣∣∣∣ (2.77)

were r is the self-coupling coe�cient and k the cross coupling coe�cients. If
no power is lost in the coupling section, the matrix is unitary:|k|2 + |t|2 = 1.

The radiation after a round trip undergoes a phase shift and looses a certain
amount of power due to propagation loss, bending loss and other e�ects:
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a2 = b2e
iφeiα (2.78)

where φ = (2Π/λ)nL is the round trip phase shift, α is the propagation loss
and L is the round trip length.

Solving Eq. (2.77) and Eq. (2.78) , one obtains the transmission spectrum
Tn given by:

Tn =
|b1|2

|a1|2
=

a2 − 2ra cos(φ) + r2

1− 2ra cos(φ) + (ra)2
(2.79)

The ring is said to be on resonance when the phaseφ is a multiple of 2π, or
when the wavelength of the light �ts a whole number of times inside the optical
length of the ring. In this case the transmission reduces to:

Tn =
a2 − r2

1− (ra)2
(2.80)

When the internal losses a equal the coupling power r the transmitted power
vanishes, i.e. the transmission resonance drops to zero. This condition, known
as critical coupling is the e�ect of complete destructive interference in the outgo-
ing waveguide between the transmitted radiation and the internal �eld coupled
out[70]. Under critical coupling, the microring acts as an optical power �collec-
tor�: a signi�cant part of the injected power is stored as circulating radiation.
Due to the increase of the optical intensity inside the ring with regard to the
single-pass waveguide, intensity-dependent e�ects as well as nonlinear e�ects
are enhanced. In the vortex beam emitters described in the Chapter 6, this
condition is required to enhance the interaction of the �eld with the sidewall
grating and achieve a good radiation e�ciency.

Fig. 2.18 shows a typical transmission spectrum of a microresonators with
Lorentzian linseshape dips in correspondence of the resonance wavelength and
an almost �at transmission out of the phase matching condition.

Useful parameters characterizing the wavelength dependent response of the
microring are the free-spectral range (FSR) and the full-width hal maximum
(FWHM):

FSR =
λ2res
ngL

(2.81)

FWHM =
(1− ra)λ2res
ΠngL

√
ra

(2.82)

where ngis the group index given by ng = neff − λdneff

dλ .

2.8 Di�raction gratings

The vortex beam emitters are basically microrings with gratings patterned on
the vertical sidewalls of the rings. In analogy with the described-above mech-
anism of scattering induced the vertical roughness at the vertical sidewall of a
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Figure 2.18: Typical transmission spectrum of a microring resonator, from [71].

Figure 2.19: Schematic representation of a di�raction grating, from [72].

SOI waveguide, the sidewall grating leads to a transfer of power from the guided
circulating mode and radiation modes. Nevertheless, in this case the distribu-
tion of the scattering elements is designed so that the scattered waves coherently
interfere and giving rise to a well-de�ned phase pattern of the emitted beam.
In this section a general analysis on the functioning mechanisms of a di�raction
grating will be provided. A thorough analysis of the radiation e�ciency of the
grating and on the properties of the radiated beam will be provided in Chapter
6.

Let's consider a plane wave with a wavelength λ incident at an angle θion
a periodic grating structure with which contain elements spaced at a period Λ,
(Fig. 2.19).

Given θd the angle of di�raction, the phase shift φ between radiations scat-
tered by two consecutive elements is (2Π/λ)(sin(θi) −sin(θd)). In order for the
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Figure 2.20: Feedback and radiation loss for a di�raction grating, from [72].

two beams to constructively interfere, the phase shift between the incident and
scattered radiation need to be a multiple of the wavelength[72]:

Λ(sin(θi)− sin(θd)) = Mλ (2.83)

The integer valued M is called di�raction order and represents the phase
shift, normalized to the wavelength, between the waves that are di�racted by
adjacent elements. Considering the di�racted waves in the medium 2, it is
necessary to take into account the di�erent values of wavelength in the media
and Eq. (2.83) becomes:

Λ(sin(θi)

λ1
+
Λ(sin(θd)

λ2
= M (2.84)

where λ1 and λ2 are the wavelengths in the semi-planes de�ned in Fig. 2.19.
Such considerations are general and can be applied for the analysis of any

re�ection or transmission gratings. Considering the case of a optical mode which
propagates in the medium 1, as the case of a guided mode traveling in an optical
waveguide. In this case the radiation travels in the parallel direction with regard
to the interface, θi = 0, and the di�raction angle θd in the medium 1 is:

sin(θd) = (
2M

p
+ 1) (2.85)

where p = 2 Λ
λ2

is called grating order. In order for the radiation to be scattered
forward or backward in the waveguide, the left-hand side of Eq. (2.85) needs
to be −1 or +1. It's easy to show that feed-forward and feed-back scattering,
corresponding to di�raction angles θd = −Π and θd = Π, are always possible
and occur for di�raction order 0 and p.

Considering the case of di�raction in medium 2, normal di�raction (θd = 1)
is obtained if the following condition is satis�ed:

2M

p
= 1 (2.86)

Since the order of di�raction is integer valued, the condition described by Eq.
(2.86) requires the grating order to be an even number. In the table reported in
Fig. 2.20, such results are summarized assuming normal incidence, i.e. θi = 0:

It's clear from this analysis that structures the exploit feedback in guided
structures, such as distributed feedback (DFB) laser, employ grating with odd
power in order to avoid radiation out of the waveguide. At the same time devices
that requires an e�cient radiation, as the beam vortex emitters, are expected
to embed di�raction gratings with even di�raction order.
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Chapter 3

Micrometric and nanometric

silicon and SOI devices

manufacturing

In order to carry out the experimental study on strained silicon technology that
is reported in this work, various types of silicon structures and devices have
been realized. Firstly, micrometric strained silicon straight ridges have been
manufactured on silicon wafer and utilized in the lattice deformation measure-
ments accomplished through the Convergent Beam Electron Di�raction (CBED)
technique. This technique is carried out at Transmission Electron Microscope
(TEM) facility and will be described in Chapter 4. The experimental results
have been compared with the simulative analysis obtained through the Finite
Element Method (FEM) based model described in Chapter 2.

Subsequently silicon ridge-based structures with nanometric dimensions have
been fabricated on silicon wafers, through the Spacer Patterning Method (SPM)
technique. These structures are shaped as microrings resonators, Mach-Zehnder
interferometers and other optical devices. The rib geometry and the dimensions
are the ones commonly employed for single mode Silicon-On-Insulator (SOI)
waveguides-based devices. CBED strain measurements have been carried out
on the nanofabricated structures in order to validate the FEM-based simulative
model for structures similar to SOI single mode waveguides and to estimate the
variation in the strain distribution induced by the shrink of the ridges dimen-
sions.

Finally, the same nanometric structures have been manufactured, through
SPM method, on SOI wafer realizing real SOI devices with single mode stripe
waveguide geometry. The SOI devices have been optically characterized in terms
of guiding properties and propagation loss. The results of all the experimental
and simulative analysis carried out on the microfabricated and nanofabricated
devices are reported in Chapter 5.

As described in Chapter 1, the attractiveness of Silicon Photonics (SiPh)
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lies in the possibility to cheaply manufacture optical devices using standard
semiconductor fabrication techniques and integrate them with the electronic
devices. In particular the SiPh leverages the mature and low-cost Comple-
mentary Metal-Oxide Semiconductor (CMOS) nanofabrication technique that
represents the state of the art for the manufacturing of microprocessors, micro
controllers, RAM and other semiconductor based digital logic circuits. Since the
framework of this study on strained silicon technology is the silicon photonics,
only CMOS compatible fabrication steps have been employed. In particular the
used photolitographic and etching processes and deposition techniques are com-
monly utilized in CMOS front-end-of-line and the materials employed, such as
the stoichiometric silicon nitride covering the manufactured silicon structures,
are compatible with the electronic devices.

In this Chapter the technological processes employed for the manufacturing
of the strained silicon devices are described. In the �rst section, the process
�ow for the microfabrication of the straight silicon ridges is detailed and the
operating principles of the main fabrication steps, such as the photolithography
and dry etching, are analyzed. In the second section the fabrication processes
employed for the realization of the nanometric structures on silicon substrate
and SOI platform are detailed and the spacer technique, utilized for the manu-
facturing of the submicrometric feature and gaps, is analyzed. Some images of
the devices are reported in correspondence of di�erent fabrication steps: these
images have been taken at optical microscope, TEM and Scanning Electron Mi-
croscope (SEM) facilities. The results of SEM and TEM analyses have been
presented in works: [86, 87, 88, 89, 90, 91, 92]. In the Chapter 4 further results
of TEM and SEM analyses are reported together with a thorough analysis of
the obtained manufacturing quality.

3.1 Manufacturing of silicon micrometric ridges

In this section of the Chapter, the CMOS compatible processes employed for
the manufacturing of the micrometric strained silicon ridges are described. The
layout featured micrometric straight silicon ridges on silicon substrates covered
by a 350 nm thick stoichiometric silicon nitride layer. The width values of the
ridges and of the trenches that separate the structures range from 2 um to
10 um and from 3 um to 8 um respectively.

Firstly a 500 nm thick silicon dioxide �lm is deposited on the silicon sub-
strate wafer. This deposition has been carried out at low temperature (420 °C)
in a low pressure chemical vapor deposition (LPCVD) reactor and utilizes a
reaction of silane SiH4 and molecular oxygen to form a SiO2 layer.

Subsequently photolitographic processes have been employed to de�ne the
geometries of the analyzed structure in the low temperature silicon dioxide layer.
These processes consist of several steps and allow to transfer a geometry from
a mask, a plate containing clear and opaque features de�ning the pattern to be
created, to a substrate layer.

In particular the photolitographic process carried out for the devices under
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Figure 3.1: Process �ow for the fabrication of the micrometric strained silicon
ridges.

Figure 3.2: Schematic of the main photolithographic processes employed for the
transfer of a geometry from a mask to a layer.

51



analysis requires:

� deposition of the photoresist

� thermal treatment: soft bake

� exposition

� development

� thermal treatment: hard bake.

Firstly, the surface wafer containing the deposited silicon dioxide layer is coated
with a pre-resist layer of Hexamethyldisilazane (HMDS) said primer. This layer,
deposited in form of vapor, makes the wafer surface hydrophobic increasing the
adhesion of the photoresist.

Then the photoresist (PR) is deposited as a thin �lm on the substrate.
The PR responds to exposing ultra violet (UVA) radiation in such a way that
the mask image can be replicated and protects the underlying layer to the
subsequent processes. It's made up of a organic photosensible resin, a catalyst
enhancing the PR sensitivity to the UVA radiation and an organic solvent that
controls the PR viscosity keeping it the the liquid state. The PR employed for
these process is HPR-504 produced by Fuji�lm. In order to obtain a uniform
and controlled PR deposition, a spin coating technique has been utilized: 4 ml
of PR has been dispensed on the wafer that is spun at 5000 rpm for 30 seconds
through rotational stages. Given the viscosity of PR, with the spin velocity and
time employed the thickness of the PR is around 1080 nm.

After the PR has been coated, the wafer is undergone to a soft bake at
110 °C for 60 seconds. This temperature step drives o� solvent from the span
resist, improves the adhesion of the resist the substrate and anneals the eventual
shear forces the PR and wafers induced by the rotation that could damage the
sample.

In the next step the resist is exposed to UV radiation through a mask made
up of sodalime, a UVA transparent material with the geometries to be trans-
ferred in crome Cr, opaque to radiation. In the contact printing photolitographic
method, employed in the reported process, the mask is clamped to the spin-
coated wafer with sub micrometric precision alignment through a mask aligner
and exposed through UV light. The resolution, de�ned as the minimum feature
size of the mask geometries replicable on the wafer, is a�ected by the wavelength
of the radiation employed in the exposition and the thickness of the PR. For the
processes under analysis the minimum feature size is approximately 1250 nm.

The wafer is therefore immersed in a solvent solution, said developer, that
removes the area of the PR exposed to the radiation. The HPR-504 employed is
indeed a positive PR, i.e. contains a stabilizer that slows down the dissolution
rate of the resist in a developer and that breaks down when exposed to light,
leading to the preferential removal of the exposed regions.

Finally the wafer is undergone a thermal process, hard bake, at 105 °C
that removes residual solvent and humidity traces, improves the adhesion and
increase the PR resistance to the following etching processes.
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Figure 3.3: Schematic of a RIE setup.

The resist pattern is then transferred to the underlying low-temperature
oxide (LTO) through dry etching (RIE). This process is carried out in a high-
void chamber said Reactive Ion Etcher: applying an high frequency tension (in
this case 13.56 MHz) between the electrodes to a mixture of gas, a plasma is
obtained: a partially ionized gas composed by ions, electrons and neutral species
[73].

With regard to the type of dry etching employed, the generation of plasma
accomplishes di�erent purposes: if the etching action is purely chemical the
plasma plays no role than to produce the reactant species. In this case the pro-
duced energetic species react chemically with the exposed region of the material
to be etched. This kind of etching is usually isotropic, i.e no preference in direc-
tion is observed and the removal of substrate material proceeds laterally under
the resist as well as vertically toward the silicon surface with the result that the
etched features are generally larger than the dimensions of the resist patterns.
On the other hand chemical dry etching o�ers high selectivity in the species to
be etched. In the physical dry etching the removal is carried out through sput-
tering: the ions produced in the plasma are directed by the potential toward
the substrate and hit the surface vertically: the etching in this case is highly di-
rectional but no selection in the removed material is realized. By proper choices
of the chemical species of the gas employed and pressure and potential values, a
trade-o� between the pure physical and pure chemical etching can be obtained
with suitable selectivity and anisotropy.

In the microfabrication of the analyzed devices, plasma containing CHF3

is employed: the �uorine atoms produced by the collision between electrons
and gas molecules break the covalent bonding of silicon dioxide. The oxygen in
vapor leaves the substrate and the remaining silicon atom bonds to �uorine ion
or radial present in plasma and the resulting product SiF4 is volatile.

Subsequently the photoresist present after the dry etch is removed from
the wafer through plasma ashing: reactive atom oxigen present in the plasma
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Figure 3.4: Etching pro�les generated with physical RIE (left), chemical RIE
(center) and ion-assisted RIE (right).

produced employing microwave combines with the photoresist to form ash that
is removed by vacuum pump.

At the next step, the geometries de�ned in the silicon dioxide layer are
transferred on the silicon layer with the SiO2 ridges acting as protective masks.
As for the SiO2 case, energetic ion-assisted etching is accomplished: the plasma
employed for the silicon dry etching contained SiCl4. Chlorine chemistry, due
to simultaneous physical and chemical contributes to the silicon etching assures
an high anisotropic, i.e vertical, patterning and a good etching depth control.
Furthermore the chlorine chemistry exhibits a good selectivity on SiO2: this
implies that no signi�cant variation in the geometry of the SiO2 mask during
the etching process expected. It's worth pointing out that a chlorine chemistry
could not be employed on silicon with PR masks due to its aggressiveness with
organic compounds.

After the LTO mask is removed through a solution a 7% HF solution said
bu�ered oxide etch (BOE), super�cial organic and metallic contaminants are
removed through an accurate sequence of aqueous acid and basic solutions (RCA
cleaning procedures) [74].

Fig. 3.5 and Fig. 3.6 show optical images of one set of micrometric silicon
ridges after the removal of the silicon dioxide mask. The shown structures are
expected to be 2 µm wide and distanced by 3 µm wide trenches.

Finally a thin layer of stoichiometric silicon nitride �lm is deposited on the
silicon structures through low pressure chemical vapor deposition. The LPCVD
silicon nitride is obtained by reacting dichloro silane SiClH2 and ammonia NH3

at 780 °C.

In Fig. 3.7 is reported a STEM image of a microfabricated silicon ridge after
the deposition of the silicon nitride layer. The white color corresponds to the
silicon nitride layer, the gray color to silicon and the black to the epoxy resin
utilized in the sample preparation.
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Figure 3.5: Optical image of a set of micrometric silicon ridges after the removal
of the silicon dioxide mask.

Figure 3.6: Particular of a set of micrometric silicon ridges after the removal of
the silicon dioxide mask.
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Figure 3.7: STEM image of a microfabricated silicon ridge after the deposition
of the silicon nitride layer.

3.2 CMOS nanofabrication processes through the
spacer technique

In the second part of the study, various nanometric silicon structures have been
fabricated on silicon substrates and silicon-on-insulator (SOI) substrates . These
devices, based on (450× 220) nm silicon nanowires geometry, have been shaped
as microring resonators, Mach-Zender interferometers and directional couplers
in order to study the strain distribution on structures with the geometry typ-
ically employed for SOI devices. The process �ow for the fabrication of the
micrometric rib structures, described in the previous section, is not suitable for
the manufacturing of these structures since the dimensions of the silicon wires
and of the gaps and voids present in the layout, are far smaller than the res-
olution of the lithographic technique employed. This limit has been overcome
through the employment of a multiple patterning technique that required the
addition of several intermediate steps with regard to the processes described
in the previous section. A detailed description of the multiple patterning tech-
nique utilized and of the manufacturing steps employed for the nanofabrication
is reported in the next sections.

3.2.1 Spacer patterning method

The patterning of the nanometric silicon structures has been accomplished
through the spacer patterning method (SPM): this technique is commonly em-
ployed in microeletronics manufacturing processes that require an enhancement
of the feature density imposed by the lithographic processes. The SPM tech-
nique has been adopted, for example, for sub-20 nm logic nodes, such as 14 nm
and 10 nm [75]. In particular the SPM enables the realization of geometries with
structures or gaps smaller than the minimum feature size that can be transferred
by the photolithographic processes employed through the exploitation of the
high anisotropy of dry etching processes. Recently the SPM nanofabrication
technique has been employed for the fabrication of Micro Electro-Mechanical
Systems (MEMS) devices in SOI technology [76].

In Fig. 3.8 is reported a sketch describing the most important steps of the
SPM process �ow:
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Figure 3.8: Process �ow employed for the Spacer Patterning Method nanofab-
rication technique.

Firstly, the initial pattern (a) contains structures and gaps with the dimen-
sion imposed by the photolithographic processes. A conformal layer is deposited
on the initial pattern (a) and etched back: due to the anisotropy of the dry etch-
ing processes the spacer portion covering the initial structure is removed while
the portion on the sidewall remains (c). Once the �rst pattern is removed only
the spacer features remain (d) and act as a mask for the etching of the under-
neath layer (e). The width of the SPM outcome features (e) is then controlled
by the spacer deposition parameters and the gap value obtained is given by the
di�erence of initial mandrel gaps and the features width. This technique can
be cascaded in order to obtain narrower widths, as for the case of the manu-
facturing �ow of the devices under analysis: in this case the technique is said
multiple SPM. It's clear from this description that the conformal deposition of
the spacer layer and the anisotropy of the dry etching process play fundamental
roles in the SPM.

3.2.2 Manufacturing of nanowires-based structures

As described above, the nanofabrication of the the structures and devices under
analysis required the use of the SPM. The photolitographic system use deep
ultraviolet (DUV) ligth (λ = 250 nm) and allows a minimum feature size down
to about 700 nm and is not suitable for the dimensions of the structures and
the gaps to pattern: in particular single mode SOI waveguide are 450 nm wide
and the distance between the waveguides in the coupling section of the devices
are shorter than 300 nm. The SPM enables the realization of the designed
geometries avoiding the employment of other technologies which are commonly
employed for the fabrication of silicon photonic devices, such as Electron Beam
Lithography (EBL) [77].

In the Fig. 3.9 is reported the process �ow for the realization of the nano-
metric structures and devices. In particular the technological processes have
been carried out starting from a 4� silicon wafers for the manufacturing of the
structures used for the Convergent Beam Electron Di�raction measurements
whereas the SiPh devices have been nanofrabricated starting from a 4� SOI
wafer.

Firstly a 300 nm thick �lm of stoichiometric silicon nitride Si3N4 is deposited
through LPCVD at 780 °C(2) on the silicon substrate followed by a 1 um thick
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Figure 3.9: Process �ow for the fabrication of the micrometric strained silicon
ridges for the Si-on-Si optical test structures and SOI devices.

Figure 3.10: Layout mask of a directional coupler.

SiO2 �lm. As for the case of the micrometric structures, the LTO deposition has
been carried out in a low pressure chemical vapor deposition (LPCVD) reactor
utilizing a reaction of silane SiH4 and molecular oxygen. Subsequently the
mask geometry is transferred on the SiO2 layer through DUV photolithographic
process. Some structures contained in the mask pattern are reported in Figg.
3.10, 3.11 and 3.12.

The red part corresponds to the chrome pattern: due to employment of a
positive PR this part will not be removed by the developer and will act as a
mask for the etching processes. It's worth noting that due to the employment
of the SPM technique, the layout patterned on the mask do not duplicate the
devices geometry as shown in Fig. 3.13.

The width of the nanowires are not de�ned and only the outer edge with
regard to the gap is patterned in the LTO, (light blue). The gap has to contain
the waveguide spacer of polysilicon (yellow), and is enlarged in comparison to
the real one: the real one is of 300nm while the one patterned in the mask is
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Figure 3.11: Layout mask of a microring resonator.

Figure 3.12: Layout mask of a Mach-Zehnder interferometer.

Figure 3.13: Schematic of the coupling sections of the nanofabricated structures.
The yellow, purple and light blue colors represent polycristal silicon, silicon
nitride and silicon, respectively.
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Figure 3.14: Technological steps for the de�nition of the Si3N4 nanometric
structures. Yellow, purple and blue colors represent polycrystalline silicon, sili-
con nitride and silicon, respectively.

1.2um since, to the width the of the real one are added the width of 2 waveguides
of the coupling section.

The positive DUV photoresist UV6 was spun at 2000 rpm obtaining a
800 nm thick layer. After a softbake treatment at 130 °C for 3 minutes, the
photoresist is exposed to the mask and is undergone to a post exposure bake at
140 °C for 90 seconds. The exposed area of the photoresist is removed through
the DUV developer AZ 726 MIF and the LTO is dry etched with a �uorine-based
plasma.

After the removal of the PR by a oxygen plasma and the surface wet clean-
ing, a 480 nm thick polysilicon layer is deposited through LPCVD at 610 ◦C
through pyrolysis of sylane (SiH4) on the patterned LTO layer acting as spacer
layer for the SPT patterning. The polysilicon �lm was etched back without
additional mask by anisotropic chlorine-based plasma. As for the silicon, chlo-
rine plasma is found to carry out a anisotropic etching of polysilicon and to
exhibit excellent selectivity over SiO2. As a next step the LTO hard mask are
removed through BOE solution and the silicon nitride layer is partially etched
by an anisotropic �uorine-based plasma with the polysilicon acting as hard
mask. The polysilicon spacers are then wet etched using the aqueous solution
H2O : HNO3 : HF (20 : 50 : 1). In order to prevent the silicon device layer to
be removed by the polysilicon wet etching, a thin layer of silicon nitride layer
has been left during the Si3N4 etching. This protective layer is then removed
through a second Si3N4 etch back while a thin Si3N4 layer is left in correspon-
dence of the structures to pattern acting as an hard mask for silicon patterning
(see Fig. 3.14).

In Figg. 3.15, 3.16 and 3.17 are reported optical images of the devices follow-
ing the second Si3N4 etching. In particular the area of the sample containing
the spacer masks for a directional coupler, a microring and a microring net-
work are observed. The green pattern corresponds to the Si3N4 mask laid on
the silicon substrate (lighter color). The layout appear sharply de�ned for the
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Figure 3.15: Optical image of a directional coupler manufactured on silicon
wafer, after the RIE etching of silicon.

straight section and bent sections and no interruptions and discontinuity can be
observed.

The silicon layer is �nally patterned by a chlorine chemistry plasma etching
with the Si3N4 acting as a hard mask. As described above, the chlorine chem-
istry assures a good etching depth control: the etching rate is about 50 nm/min.
The time etching is set to obtain a height value of 220 nm for the realization
of the silicon structures employed in the CBED measurements. As for the SOI
devices, the silicon nanowires are patterned by a deep-etch through the silicon
device layer using the silicon dioxide as an etch stop layer.

In Fig. 3.15 and 3.16, optical images of the samples containing a directional
coupler and a microring resonator which have been manufactured on a silicon
wafer, are reported at the step following the RIE etching of silicon. The silicon
nitride cap (green) covers the silicon ridges laid on the silicon substrate (light
color).

In Fig. 3.17 is reported an optical image of one directional coupler which
has been manufactured on SOI platform. The silicon nitride (brown) was used
as mask for the RIE �deep� etching that removed the unprotected silicon device
layer exposing the buried oxide (BOX) (light brown).

Fig. 3.18 shows SEM images of a single silicon rib (top) and of two �coupled�
silicon ribs (bottom) patterned on the silicon wafer. The images have been taken
before the silicon nitride layer deposition. The silicon nitride cap that has been
used as protective mask in the SPM method is visible on the top of the rib.

Fig.3.19 reports a SEM image of a manufactured SOI waveguide after the
FIB ablation used to expose the device cross-section (this technique will be
described in the Chapter 4). The nanowire on the BOX layer has been patterned
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Figure 3.16: Optical image of a microring resonator manufactured on silicon
wafer, after the RIE etching of silicon.

Figure 3.17: Optical image of one directional coupler manufactured on SOI
platform after the RIE etching of silicon.
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Figure 3.18: SEM images of a Si-on-Si single (up) and coupled (down) ridges
before the Si3N4 deposition.
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Figure 3.19: SEM image of a manufactured SOI waveguide before Si3N4 depo-
sition.

in the silicon device layer and is covered by the silicon nitride cap.
Finally300 nm thick stoichiometric layer Si3N4 layer is deposited through

LPCVD at 780 °C.
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Chapter 4

Electron microscopy analysis

of the microfabricated and

nanofabricated devices

4.1 Electron microscopy analysis

The microfabricated and nanofabricated strained silicon devices have been char-
acterized through an extensive set of experimental measurements and analyses
of their structural and mechanical properties. Firstly, we have evaluated the
quality of the technological processes as well as the accuracy of the Spacer Pat-
terning Method nanofabrication technique which we have employed for the man-
ufacturing of the strained silicon and silicon on insulator (SOI) devices. Then,
we have estimated, through the employment of the Convergent Beam Electron
Di�raction (CBED) technique, the lattice deformation on the manufactured sil-
icon micrometric and nanometric structures; the observed strain, as described
in Chapter 2, is generated by the high intrinsic stress silicon nitride �lm which
is deposited, through Low Pressure Chemical Vapor Deposition (LPCVD), on
the structures. Such analyses have been performed through the employment of
experimental measurements techniques carried out at Transmission Electron Mi-
croscopy (TEM) and Scanning Electron Microscopy (SEM) facilities. The aim
of such analysis is to provide information on the possible use of the employed
microfabrication processes and SPM technique for the manufacturing of silicon
photonic devices and assess their compatibility with the strained silicon tech-
nology. Furthermore, the outcomes of the CBED measurements are expected
to provide useful information for the validation of the FEM based simulative
model, described in Chapter 2, which we have used in the analysis of the strain
distributions of the manufactured devices, reported in Chapter 5. The results of
the comparative analysis between the FEM-based simulative method and CBED
measurements are reported in Chapter 5.
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Figure 4.1: Schematic representation of the di�erence path length of the incident
wave k at the point O and r for the di�racted wave k′, from [78].

In this Chapter we describe the physical principles underlying the electron
di�raction microscopy (section 1) and the operating principles of the transmis-
sion electron microscopy (TEM) for structural analyses (section 2). In section
3 we describe the CBED technique, which we have employed for the structural
characterization, and the procedure used to obtain the components of the strain
tensor starting from the analysis of CBED patterns. In section 4 and 5 we re-
port some results of the STEM and SEM analyses which we have performed on
the manufactured silicon structures and silicon on insulator (SOI) devices. Part
of such results has been presented in the works: [86, 87, 88, 89, 90, 91, 92].

4.1.1 Electron di�raction

The crystal structure of matter can be studied through the analysis of the
di�raction pattern which results from the interaction of an electron beam with
the atoms constituting the material. The relation between the crystal structure
and the di�raction pattern allows to extract useful information on the symme-
tries, lattice parameters and deformations of the sample.

The Coulomb interaction between the incident electrons and the charged
particles of the material produces a scattering of the waves associated to the
beam electrons. Considering an electron beam with a wavevector k directed
toward a specimen, as depicted in Fig. 4.1., the phase di�erence between the
electron waves scattered by the two elements of volume at wavevector k′ is given
by:

exp(i(k− k′) · r) (4.1)

The amplitude of the electronic wave scattered by the in�nitesimal volume
is proportional to the charge concentration n(r) with the same periodicity of
the lattice. Under the assumption that the amplitude of the incident beam is
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constant throughout the sample volume (Born approximation) and that absorp-
tion, refraction and multiple scattering can be neglected (kinematic di�raction
regime), the contribute to the amplitude of the scattered electronic beam given
by whole volume is:

F =

∫
dV n(r)e(i(4k)·r) (4.2)

where 4k is said scattering vector and is given by

4k = k′ − k (4.3)

Expanding n(r) in terms of the reciprocal vectors of the latticeG with coef-
�cients nG

n(r) =
∑
G

nGe
−iG·r (4.4)

Eq. (4.2) can be expressed as:

F =
∑
G

∫
dV nGe

(i(G−4k)·r) (4.5)

. When the scattering vector equals one of the reciprocal lattice, i.e.

4k = G, (4.6)

the exponential vanishes and the amplitude is simply given by F = V nG.
Considering the case of elastic scattering, the modulus of the incident beam and
of the emergent beam are the same |k| = |k′| so that:

2k ·G + G2 = 0 (4.7)

The equation can be rewritten as:

2d sin(θ) = nλ (4.8)

where d is the distance between the parallel lattice planes normal to the
direction of G, θ is the angle between the planes and the incident beam and λ
is the wavelength of the electron beam. The condition expressed by Eq. (4.8) is
said Bragg condition. Taking the scalar product of Eq. (4.6) with the primitive
vectors of the lattice a1, a2 and a3, one obtains the so called Laue equations:

a1 · 4k = 2Πv1 (4.9)

a2 · 4k = 2Πv2 (4.10)

a3 · 4k = 2Πv3 (4.11)
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Figure 4.2: Representation of the Ewald sphere for the di�raction condition,
from[78].

The Laue equations can be interpreted in a simple way: Eq. (4.9) tells us
that4k lies inside inside a certain cone about the directiona1, Eq. (4.10) that
4k lies inside inside a certain cone about the direction a2 and Eq. (4.11) that4k
lies inside inside a certain cone about the direction a3. Therefore, in order for
the re�ection to takes place, the scattering vector 4k lies at the common line
of intersection of such 3 cones.

A geometrical construction, said Ewald sphere, helps to visualize the Laue
condition: the vector k is drawn in the direction of the incident beam and
terminates in the origin of the reciprocal space which are drawn as void points
(see Fig. 4.2). If the sphere of radius 2Π/λ ,centered about the origin of k
intersects a point of the reciprocal lattice, then constructive interference occurs
in the direction k′.

Because of the thin nature of the specimen, the reciprocal lattice points can
be considered to have an elongated shape with an height inversely proportional
to the sample thickness (Fig. 4.3).

The intersection of the Ewald sphere with points laying on di�erent planes
gives rises to the so called Laue Zones: the Zero Order Laue Zone (ZOLZ) cor-
responds to the reciprocal space vectors orthogonal to the incident beam while
Higher Order Laue Zone (HOLZ) give rise to interference with vectors possess-
ing non vanishing parallel components. The di�raction pattern, according to
the electron beam characteristics and the imaging technique carried out, can
contain points or lines belonging to ZOLZ and HOLZ and can be used to obtain
information on the structural properties of the material.
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Figure 4.3: Schematic representation of the intersection of the Ewald sphere
with the reciprocal lattice at Zero Order Laue Zone and Higher Order Laue
Zone.
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4.2 Transmission Electron Microscopy (TEM) anal-
ysis

4.2.1 Transmission electron microscope

A schematic of the TEMmicroscope employed for the CBED analysis is reported
in Fig. 4.4. The electrons used for �illuminating� the sample are extracted from
a source and accelerated along the optical axis toward the specimen in the elec-
tron gun. In a �eld emitter gun (FEG), as the Schottky FEG of the TEM
facility which we have used for the STEM and CBED analysis, the electrons are
extracted from a source made by coating a tungsten tip with a layer of zirconium
oxide by applying a large electric potential between the tip and an anode. The
beam generated by this type of FEG possesses a high degree of intensity collima-
tion and coherency which are necessary for high resolution analysis. Particular
electron lenses, said condenser lenses, representing TEM's equivalent of the glass
lenses in a visible light microscope, collect the electron beam and modify its di-
mension, intensity and incidence angle in accordance to the type of the analysis
to perform: for CBED and STEM analysis the beam in focused on an area of
the sample with nanometric dimensions. The electron beam is directed on the
sample holder which can be tilted in two orthogonal planes. The objective lens,
placed below the sample, collects and focuses the transmitted electrons setting
the magni�cation of the image and producing the di�raction pattern. The ob-
jective aperture limits the collection angle of the lens allowing certain beam of
the di�raction image to pass through and exclude the others causing them to
hit the metallic diaphragm. In particular for bright �eld (BF), the transmitted
�eld is selected while for dark �eld (DF) imaging the di�racted beam is passed
through the aperture. The focal plane of intermediate lens is conjugated to the
image plane of the objective lens in the imaging modality or to the back focal
plane in the di�raction modality. The projector lenses enlarges the images of
the intermediate lens to form the �nal image on the phosphor screen or on other
detection systems.

4.2.2 TEM sample preparation procedure

The sample is undergone to a procedure aimed at the achievement of the suitable
thickness, dimensions and shape for the TEM/CBED analysis. First of all, the
TEM specimens are required to be at most some hundreds of nanometers thick
in order for the analyzing electron beam to penetrate it and the approximations
described in section 1 to hold (Born approximation and kinematic di�raction).
In particular, the thickness values of the sample which we have employed is
about 200 nm. On the other hand, in order to avoid breaks and fragmentation
during the movement and rotation of the specimen, it's required that the sample
is mechanically sound and cohesive. Furthermore, the dimensions and the shape
of the sample must perfectly �t with the holder's ones so that a good contact is
assured and mechanical, electrical and thermal drifts are prevented.

Firstly the die containing the devices is glued with epoxy resin to various
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Figure 4.4: Schematic representation of a Transmission Electron Microscope.
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silicon handles so that a 3 mm thickness is achieved. Then the sample is un-
dergone to acetone ultrasonic cleaning bath in order to remove impurity and
increase the adhesion of the glue. The specimen is then cut into 2 mm thick
slices and a lapping process with abrasive materials with sequentially decreasing
grit sizes (from 20 um to 10 um) is employed to slim the thickness down to ap-
proximately 20 um. Then a polishing process with abrasive liquids is employed
to reduce the super�cial inhomogeneity down to submicrometric level and 3 mm
wide donuts shaped metallic disks are applied on the area of the cross-section to
be analyzed. The thickness of the sample is further reduced through ion milling:
ions of an inert gas, Ar, are accelerated from a wide beam ion source into the
surface in order to remove material until a hole is produced in the center of the
disk. Given the incidence of the ion beams, the thickness values of the sample
grows, approximately, as a linear function from the hole to the 20 um thick
border of the specimen. Finally the metallic disks are removed and through a
low energy ion beam milling, the super�cial damages and amorphous layer of
redeposited material are carried away.

4.3 Convergent Beam Electron Di�raction (CBED)
technique

4.3.1 CBED technique

The CBED technique is the oldest electron-di�raction technique used in TEM
analysis: it was developed in the late '40 by Kossel and Mollenstedt well before
LePoole developed the Selective Area Di�raction (SAD) that employs a parallel
beam incident on the sample[79]. While much of the electron di�raction-theory
was historically developed for SAD and standard imagine technique are based
on such patterns, the CBED o�ers an improved spatial resolution with regard
to its parallel-beam counterpart and CBED patterns contain much more crys-
tallographic data though harder to extract. Since '70 the CBED technique is
employed for structural characterization of crystals and analysis of lattice de-
formation for analysis which require a submicrometric resolution.

As mentioned, in CBED analyses the electron beam is focused in an area
of nanometric dimensions: due to the increased range of the incident electron
angles, instead of usual di�raction spots, di�raction disks are observed in CBED
patterns (see Fig. 4.5 (A) and (D)). Under particular incidence conditions, the
disks overlap and the di�raction intensity within a disk shows speci�c symmetry,
which enables to determine the local crystalline structure of the sample, as
shown in Fig. 4.5 (B),(C),(E) and (F).

If the beam convergence is su�ciently high, spots belonging to higher order
Laue zones (HOLZ) will appear.

As described above, reciprocal lattice points in the HOLZ, unlike the ZOLZ
ones, have non vanishing components along the axis parallel to the incident
beam. This implies that the CBED di�raction patterns give fully three-dimensional
information on the crystal lattice. If the Bragg condition is satis�ed, a bright
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Figure 4.5: Ray diagrams, (A), (B) and (C), and CBED patterns (D), (E) and
(F), for di�erent convergent angle α, from [80].

Figure 4.6: Ewald sphere, for a convergent electron beam, intercepting
reciprocal-lattice points from planes not parallel to the beam, from [80].
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Figure 4.7: CBED pattern with a set of HOLZ lines inside the central disk (left).
Sketch of the same pattern: 3 pairs of HOLZ lines are evidenced (right), from
[81].

line will be observed inside each di�racted disk, located at the exact intersection
of the reciprocal lattice disk with the surface of the sphere. Since the electron
wavelength is short, the modulus of vector k and the radius of curvature of the
sphere is big: the Ewald sphere is relatively �at and HOLZ lines appear approx-
imately straight. The electrons are transferred from the incident to a di�racted
beam making the HOLZ lines to occur in pairs: to each bright line in a di�racted
disk (excess line) corresponds a dark line (de�cit line) in the central disk of the
CBED pattern (left pattern of Fig. 4.7). The formation of the HOLZ lines is
clearly represented in the sketch in the right pattern of Fig 4.7, where a number
of bright (excess) HOLZ lines, due to the intersection of the Ewald sphere with
the reciprocal lattice points, are shown. The corresponding dark (de�cit) lines
appear in a disk at a distance imposed by the imaging lens system.

Since the position of the excess or de�cit lines depend on the crystal lattice
arrangement, slight variations in the lattice parameters result in shifts of the
HOLZ lines in the central disks. Consequently the TEM/CBED technique can
be exploited to analyze strain tensors in crystals; since the di�raction pattern
is the result of the interaction of the beam with the nanometric area of sample
irradiated, this analysis can be performed on a nanometric scale.

4.3.2 Analysis of localized strains in crystals by CBED

The techniques currently available to measure lattice strain, such as crystal X-
ray di�raction, Rutherford backscattering spectrometry and Raman spectrom-
etry, o�er a spatial resolution in the micrometric scale. It's clear that these
techniques are not suitable for mapping the crystalline deformation along the
cross-section of the manufactured devices given the submicrometric dimension
of the structures. On the other hand, as described above, through the analysis of
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the HOLZ lines in the CBED di�raction pattern is possible to extract informa-
tion on the atomic arrangement of a material with nanometric resolution; this
implies that the CBED technique could be employed for localized strain analy-
sis of the nanofabricated structures. In this section we describe the procedure
for deducing the values of strain tensor components from the CBED di�raction
patterns.

Considering an isotropic deformation on a cubic crystal, within small angle
approximation (which holds for the electron energies typical of a TEM) the
di�erentiation of the Bragg law gives:

4θ
θ
∝ −4a

a
∝ −4E

E
(4.12)

where a is the the lattice parameter and E is the energy of the electron
beam. Eq. (4.12) shows that a variation in the distance between the re�ecting
plane generates a deviation of the Bragg angle at which re�ection occurs. It's
worth noticing that since the analyzed HOLZ lines are generated by high angle
di�raction, small lattice variations can be measured.

As summoned before, any variation or uncertainty in the evaluation on the
electron beam energy leads to misinterpretation on the di�raction pattern. In
order to remove this ambiguity, in the preliminary step of the pattern analysis,
a CBED pattern of an undeformed region of the sample is used a reference for
a comparison with simulative di�raction pattern obtained through through the
routine HOLZFIT. The kinematical di�raction is assumed in the simulative es-
timations and di�erent di�raction patterns are simulated varying the electron
accelerating voltage. The `e�ective' voltage that best �ts the experimental re-
sults is obtained using a χ2 minimization criterion and is used as the e�ective
voltage assuming that it to hold in the strained region. The kinematical char-
acter of the set of HOLZ lines chosen for the strain analysis is checked through
simulative estimation of the dynamical CBED pattern for di�erent angle of in-
cidence of the beam, through the use of EMS software package by Stadelmann.
An example of a dynamically simulated pattern at 200 kV for the case of a
< 230 > oriented, 240 nm thick silicon sample is shown in Fig. 4.8. If the
HOLZ lines are rectilinear and their position are not dependent on the sample
thickness, the kinematical di�raction regime correct: this condition has been
veri�ed for the < 230 > zone axis of silicon at 200 kV , which can thus be
safely employed for the strain analysis, according to the procedure that will be
discussed.

The position and the distance between the HOLZ lines are then recorded
through the Analysis software SIS and compared with the simulated pattern
with the e�ective energy obtained in the preliminary stage and for di�erent
lattice parameters set (ax, ay, az, α, β, γ). The simulations have been carried
out through the routine HOLZFIT. In Fig. 4.9 we report the CBED pattern for
a < 230 >200 kV detected by the analysis software superimposed to the one
obtained through HOLZFIT simulative software. All six lattice parameters are
then extracted from a single CBED pattern, as the output of a minimization
routine and the strain tensor components are calculated using the equations:
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Figure 4.8: Dynamically simulated CBED pattern in < 230 > zone at 200 kV
of a 240 nm thick sample, from [81].

εxx =
axs − a
a

(4.13)
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For small strain measurements and for poor quality patterns, the uncer-
tainty associated to the HOLZ lines positions give raise to di�erent cell param-
eters matching with the obtained pattern. In order to reduce the number of
parameters to calculate, the symmetry on the geometry of the structures un-
der analysis can be exploited. Let's consider for example the structure of Fig.
4.11 , similar to the ones under analysis: it's easy to show the deformation and
the stress, if present, along the the crystallographic directions X ([100]) and Y
([010]) are expected to be the same since both directions form a 45° angle with
[110] direction.
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Figure 4.9: Undeformed silicon CBED pattern for a < 230 > and 200 kV
electron beam. The HOLZ lines, detected through the Analysis software (colored
lines), have been superimposed to the experimental ones, from [81].

ax = ay (4.19)

α = Π − β (4.20)

A good quality pattern can be obtained only if a su�ciently large, homoge-
neously strained volume of crystal is probed by the electron beam: this `bulk'
region increases with the specimen thickness. On the other hand the extension
of area where a stress gradient is present is bigger for bulk high stress values,
(see Fig. 4.10).

It's worth noting that the information visible in the di�raction pattern comes
from the whole analyzed specimen volume. Then, as a general rule, if a good
quality (analyzable) pattern is recorded in su�ciently thick specimens, it can
be concluded that in that region the strain relaxation that causes the pattern to
blur or disappear, although present, can be neglected. This consideration leads
to the conclusion that the bulk condition can be assumed for the sample, and
consequently the so-called plane strain approximation az = 0, can be used. Due
to this assumption, the number of parameters is further reduced, as shown in
Fig 4.12, ax = ay and α = Π − β, and the deformation can be expressed as:

4ax
ax

=
4ay
ay

=
4γ/2

1−4γ/2
' 4γ/2 (4.21)

77



Figure 4.10: Schematic of the bulk and relaxed volume, sampled by the electron
beam as a function of sample thickness and strain, from[81].

Figure 4.11: Crystal axes orientation (X,Y,Z) with regard to the sample refer-
ence axes (x,y,z) for a Shallow Thrench Isolation structure, from[81].

Figure 4.12: Relation between the strain tensor components εxx(= εyy) and the
parameter 4γ under plain strain approximation (∆ay = 0), from [81].
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Figure 4.13: STEM image of the micrometric silicon ridge.

4.4 Results of Scanning Transmission Electron
Microscopy (STEM) analysis

Scanning transmission electron microscopy (STEM) is an analysis technique
carried out at TEM facility that combines the principles of TEM and SEM. The
electron beam is focused on a submicrometric area, as for the CBED technique,
and scanned across the sample section in a raster pattern. Through an high an-
gle annular disk detector the scattered electrons are collected and the produced
signal is ampli�ed and used for the generation of the image. This kind of signal
is the result of the incoherent scattering between the beam and the atomic nu-
clei and provides point-to-point information on the elements of the sample. In
particular, the contrast between the signal corresponding to 2 di�erent points
is due solely to the atomic number Z and not to the orientation of the speci-
men, as for low-angle coherent di�raction. Therefore this technique allows to
observe details at the interfaces between regions of di�erent Z with nanometric
resolution limited only by the spot diameter since no objective lenses are used
for directing the images on the screen.

In Fig. 4.13 a STEM image of the micro fabricated silicon ridge is reported.
As described, in STEM images a correspondence between the image contrast,
coded in gray scale, at any point and the atomic number of the area irradiated
by the electron beam is observed. In the images under analysis the white color
corresponds to the silicon nitride layer, the gray color to silicon and the black
to the epoxy resin uses in sample preparation.

The geometry of the ridge is well de�ned: the vertical and the horizontal
sidewalls are sharp and no cracks or jaggedness are observed. The ridge shape
is trapezoidal as expected due to the chemistry employed in the plasma based
dry etching processes. The silicon nitride layer has been conformally deposited
on the silicon structure. Despite the high intrinsic stress of the Si3N4 �lm, no
delaminations or detachments have occurred at the interface due to the good
adhesion between the �lms which has been obtained through the deposition
technique employed. Swellings at the upper vertices of the ridge can be observed
as a result of the kinetics in the step coverage; the dimension and the shape of the
bumps are dependent on the aspect ratio of the structure and on the deposition
technique parameters.
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Figure 4.14: Particular of Fig. 4.13, focused on the vertical sidewall of the
microfabricated silicon ridge.

Fig. 4.14 reports a particular of Fig 4.13 focused on the shape of the vertical
sidewall. The edge is not straight and a slight a curvature toward the inner part
of the ridge is observed. As described in Chapter 3, the chlorine chemistry based
dry etching employed is not purely physical and the chemical contribute brings
to a partially isotropic etching which generates a spherical shaped patterning.

Fig. 4.15 reports a STEM image of the silicon ridge which has been nanofab-
ricated through the employment of the spacer pattering method technique.

As for the microfabricated ribs, the geometry is well-de�ned: the sidewalls
of the structure do not present any appreciable defects and no jaggedness or
undulations, that in SOI waveguides would cause scattering and losses on the
traveling radiation, are observed along the vertical edges. The silicon nitride
spacer dimensions and the anisotropy of the dry etching processes employed
proved to be suitable for the patterning of the silicon nanowire: the observed
dimensions, around (220× 450) nm, match the expected dimensions of a single
mode SOI waveguide. The trapezoidal shape of the ridge and the light curvature
in the vertical sidewalls directed to the interior of the waveguide are similar to
those observed for micrometric silicon ridge. No �aws ascribable to the fabri-
cation process is present in the inner area of the ridge or in the surrounding
area: the shading observed under the structure are induced by the lapping pro-
cesses and the FIB milling employed in the TEM sample preparation procedure.
The observed dark spots, which are scattered in a disordered pattern inside the
waveguide and in the substrate, are the points where the high energetic electron
beam has been focused.

Fig 4.15 shows a conformal adhesion of the stoichiometric silicon nitride
layer which has been deposited through the LPCVD technique. The Si3N4 �lm
uniformly covers the ridge sidewalls and the substrate and does not show any
detachment or irregularity in the adhesion along the interface. Despite the high
intrinsic stress of the �lm and the signi�cant expected strain along the ridge
section, no cracks or delaminations are observed in the ridge or in the cladding
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Figure 4.15: STEM image of the nanometric silicon rib structure (rib-cross
section (450× 220) nm).

layer. It's worth noting that the shape of the silicon nitride layer is quite di�erent
from the one observed for the micrometric waveguide: no bumps are visible in
correspondence of the ridge vertices. This absence is likely to stem from the
di�erent height of the structure with regard to the micrometric structures: the
reduced aspect ratio of the nanometric structures limits the insurgence of the
step coverage phenomenon.

The thickness of the silicon nitride layer on the top of the ridge is greater
than the one observed in the rest of the interface: this di�erence is due to the
presence of the spacer mask topping the horizontal sidewall of the structure. In
Fig. 4.16, the discontinuity in SiN distribution reveal the presence of the thin
layer used as a hard mask for the nanopatterning that has been covered by the
300 nm thick SiN layer subsequently deposited. The di�erent timing of the
deposition causes the distribution of the silicon nitride layer not to be uniform.

Fig. 4.17 reports a STEM image of the coupling region in one of the nanofra-
bicated structures. The de�nition of the geometry is good and the shape of the
ridges is trapezoidal as the case of the single nanometric guide. No imperfec-
tions in the inner sidewalls of the structure or any asymmetry in the patterning
of the structures can be observed. The height values of the ridges on both side-
walls don't show appreciable di�erences; this implies that the patterning has
been successfully carried out over all the coupling section. The STEM analysis
show that the etching processes have not been impaired by the closeness of the
silicon ribs and the technologically challenging submicrometric gap de�nition,
in this case around 300 nm wide, has been correctly accomplished. The silicon
nitride layer has been conformally deposited on the waveguides in the coupling
section and no delaminations or imperfections are observed in correspondence of
the center of the gap. It's worth noting that the Si3N4 distribution is uniform
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Figure 4.16: STEM image of the nanometric silicon ridge geometry.

Figure 4.17: STEM image of the nanometric coupled silicon rib structure (rib-
cross section (450× 220) nm)).
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Figure 4.18: Particular of Fig. 4.17: step coverage at the coupling region of the
rib structure.

across all the section except a tiny section, as shown in Fig. 4.18 where a small
void is observed: the presence of this nonideality is probably the result of the
junction between the two Si3N4 layers covering the two waveguides occurred at
an intermediate step of the deposition. At height values greater than this point
the Si3N4 distribution is uniform; this implies that deposition of the upper
layers has been approximately planar.

4.5 Results of scanning electron microscopy (SEM)
analysis

The scanning electron microscope (SEM) uses a focused beam of high-energy
electrons to generate a variety of signals at the surface of solid specimens. The
signals that derive from electron-specimen interactions reveal information about
morphology, chemical composition, crystalline structure and orientation of the
materials of the sample[83]. In particular, when the electron beam is irradiated
on a specimen surface, the interaction with the atoms at di�erent depth values
produce various kinds of signals carrying di�erent types of information, (see Fig.
4.19), as listed in table reported below:

Signal Information Carried

Secondary Electrons Topographical observation of the surface
Backscattered Electrons Compositional observation of the surface

X-Rays Elemental analysis of specimen
Transmitted Electrons Internal structure observation
Cathodoluminescence Internal characteristic observation
Electromotive Force Internal characteristic observation

SEM analyes has been carried out on the nanofrabricated devices in order
to obtain topographical information on the quality of the structures and on the
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Figure 4.19: Schematic representation of the signals emitted from the sample
(left) and the theirs interaction volume (right), from [84].

Figure 4.20: SEM image of a silicon rib structure (rib-cross section (450 ×
220) nm)).

reliability of the nanofabrication processes employed for the manufacturing.

Fig. 4.20 reports a SEM image of a silicon rib cross-section at the intermedi-
ate fabrication step preceding the silicon nitride layer deposition. The geometry
is well de�ned and width and height values of the ridge observed are the ones
observed at at STEM analysis.

Fig. 4.21 reports STEM images of two waveguides, distanced by a submicro-
metric gap (less than 600 nm), which are observed at tilted angle with regard
to the sample plane. As for Fig. 4.21, the image has been captured before the
deposition of silicon nitride straining layer. This inclination allows to observe
both the planar geometry of the nanofabricated devices and the transverse sec-
tion of the facets. The two ridges are straight and parallel and no interruptions
or discontinuities are observed along the direction of propagation. The SEM
analysis shows that the structure geometry does not vary in the observed area
of the sample and that no defects or unwanted microbending, that could impair
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Figure 4.21: SEM image of the nanometric coupled silicon rib structure (rib-
cross section (450× 220) nm)).

the propagation of light traveling in SOI devices with the same geometries, are
present. At the same time, it's possible to observe undulations on the vertical
sidewalls, which are uniformly distributed along the structures. As described
in Chapter 2, such nonidealities stem from the dry etching patterning process
employed and can't be avoided. The impairment which the radiation scattering,
induced bu such surface roughness, induces on the SOI waveguides performance,
has been estimated through propagation loss measurements. The results of such
measurements are reported in Chapter 5.

Fig. 4.22 reports a SEM image of the coupling section of a nanofabricated
silicon rib microring. The obtained geometry are equal to those observed in
the straight single and coupled rib structures and no �aws are shown. The
ring coupling section lies in the center of the sample, at a distance of about
2.3 mm from the facets of Fig. 4.21 and Fig. 4.22. Comparing such STEM
images, it's possible to observe that all structures are equally sharply de�ned;
these results, together with other STEM images non reported here, show that
the patterning of the structures has been uniformly accomplished across the the
whole area of the sample. The bent section, despite the relatively small values of
the microring radius of curvature ( about 30 µm), is well de�ned; comparing the
observed results with the STEM images of straight waveguides, no appreciable
di�erences in surface roughness at vertical sidewalls can be observed.

Fig. 4.23 reports a SEM image of ridge silicon waveguide, which as been
manufactured on SOI platform, before deposition of the silicon nitride cladding
�lm. The observed structure is solely topped by the Si3N4 cap used as hard
mask in the nanopatterning processes. The buried oxide (BOX) layer is visible
due to the deep etching of the silicon device layer. The SEM analysis shows
that the geometry of the waveguide is uniform in the whole are of the sample
which is represented in the image. No abrupt variation in the cross-section the
waveguide or microbendings, that could impair the optical propagation of the
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Figure 4.22: SEM image of a nanofabricated silicon microring at the coupling
region (rib cross-section (450× 220) nm)).

Figure 4.23: SEM images of a nanofabricated SOI waveguide (ridge cross-section
(450× 220) nm)).
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Figure 4.24: SEM images of a manufactured SOI waveguide in correspondence
of the FIB ablation.

device, are observed.

In the SEM images some holes can be observed where the width of the
waveguide is reduced and the BOX layer is partially etched. In such area we
have used a Focused Ion Beam (FIB) to bare a cross-section of the device and
obtain information on the geometry and dimensions of the silicon nanowire. This
ablation technique requires an ion beam, with a nanometric spot, to be focused
the sample surface and scanned across a micrometric area. The high-energy
gallium ions strike the sample and sputter atoms from the surface removing the
material in the selected area uncovering part of the section.

A detail of the area undergone to the FIB ablation is reported in Fig. 4.24.
The ion beam caused the thinning of the waveguide and the removal of the
super�cial layer of the BOX that allowed us to observe the cross-section of the
structure. The observed geometry of the silicon nanowire is well de�ned and
the shape is trapezoidal as the case for the nanometric structures manufactured
on silicon substrate. The obained dimension of the silicon nanowire (450 ×
220) nm), match the expected dimensions of a single mode SOI waveguide.

Fig. 4.25 reports a SEM image of a waveguide endface undergone to the
lapping process, described in Chapter 5 after the deposition of the silicon nitride
layer. The waveguide structure does not appear damaged by the polishing
process: the geometry is still neatly visible and no fragmentation or cracks in
correspondence of the sidewalls or in the inner part have occurred. Furthermore,
the adhesion of the silicon waveguide to the buried oxide has proved to be
resistant to the pulling action produced by the lapping. Due to the strong
adhesion of the silicon nitride layer to the silicon, the Si3N4/Si interface does
not show any detachment or fragmentation. Also for the SiN/SiO2 interface,
the adhesion proved to be strong enough to withstand the mechanical stress
induced by the lapping processes.

Along the horizontal direction, at approximately 100 nm below the base of
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Figure 4.25: SEM image of the facet of a manufactured SOI waveguide under-
gone the lapping process.

the waveguide, it's possible to observe a delamination in the BOX layer. Similar
cracks in the BOX have been observed in other SOI waveguide facets undergone
lapping process or or other polishing processes, such as those employed for TEM
sample preparation. The detachment extends along the width of the sample
distancing the substrate from the pulled part containing the waveguide and a
thin layer of silicon dioxide. Inside the crack, few nanometers high, particulate
dirt can be collected, as shown Fig. 4.26.

The structural weakness shown by BOX layer is likely to be determined by
the wafer bonding technique employed in the SOI fabrication processes which
make that part of the section more to break or delaminate. In comparison with
the Si/SiO2 or Si/Si3N4 interfaces, the bonding area is weaker and if it is
undergone to mechanical stress as those induced by the lapping processes, could
break. On the other hand the waveguide does not have interruptions or breaks
along the direction of propagation. Only a slight bend, directed upward, can be
observed near the edge of the sample; nevertheless, due to the smoothness of
the curvature we don't expect that impairments on the optical properties of the
waveguide could stem form this defect. The experimental meaurements of the
propagation losses of the manufactured SOI waveguides have con�rmed such
hypotheses and are reported in Chapter 5.

In conclusion, the TEM and SEM analyses, which we have carried out on the
manufactured silicon structures and SOI waveguides, show that the employed
CMOS nanofabrication processes and the SPM technique can be fruitfully em-
ployed for the manufacturing of micrometric and nanometric silicon structures.
Furthermore the SPM techniques allowed us the accurately de�ne nanomet-
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Figure 4.26: SEM image of the SOI waveguide of Fig. 4.25 at a distance. A small
bend is observable in correspondence of the detachment of the layer containing
the SOI waveguide.

ric features and gaps starting from micrometric lithography and, in particular,
to nanofabricate SOI waveguides with the expected geometry and dimensions.
Nevertheless, such analyses show that the strained silicon technology and SPM
technique are compatible and can be employed for the manufacturing of strained
silicon photonic devices.
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Chapter 5

Results: strain analysis of

silicon structures and

electromagnetic properties of

SOI devices

As discussed in Chapter 1, the optical properties of strained silicon photonic de-
vices are strongly dependent on the extent and spatial distribution of the lattice
deformation. In order to perform reliable analysis on the behavior of such de-
vices, it is therefore necessary to have accurate tools for the estimation of stress
and strain distributions on photonic structures. In the light of these considera-
tions, we have developed a simulative model, based on the �nite element method
(FEM), for the estimation of the mechanical properties of strained silicon de-
vices. We have employed the developed FEM simulative model to estimate the
lattice deformation on the manufactured silicon rib structures and compared
these results with the strain distributions which have been experimentally es-
timated through the convergent beam electron di�raction (CBED) technique.
The CBED technique is carried out at TEM facilities and provides nanomet-
ric spatial resolution as well as sensitivity of the order of tens of microstrain.
The comparative analyses allowed us to validate the FEM model and assess the
accuracy of the strain estimations. Then, we have employed a multiphysical
simulative model, based on the validated FEM model, to estimate the optical
properties of the strained silicon-on-insulator (SOI) waveguides, and the impact
of experimental technological nanofabrication parameters on the performance
of such devices. Finally, we have carried out a simulative and experimental
analysis on the guiding properties of the nanofabricated (SiPh) devices in order
to assess the quality of the manufacturing processes employed as well as the
compatibility the Spacer Patterning Method technique with the strained sili-
con technology. In particular, we have performed the characterization of the

91



manufactured strained SOI waveguides in terms of guiding properties and the
propagation loss, through the employment of the Fabry-Perot (FP) resonance
technique.

In this Chapter we report some results of the discussed-above simulative and
experimental analysis which we have carried out on the mechanical, structural
and electromagnetic properties of the strained silicon photonic devices. Part of
the reported results has been presented in the works: [86, 87, 88, 89, 90, 91, 92].
In Section 1 of this Chapter we report the outcomes of the simulative estimations
of stress and strain distributions on the microfabricated and nanofabricated sil-
icon ridges. Then, we present the results of the comparative analysis between
such estimations and the measurements of lattice deformation which have been
obtained through the employment of the CBED strain measurement technique.
In section 2 we describe some results of the simulative analysis which we have
carried out on the electromagnetic properties of the strained SOI devices, fo-
cusing on e�ective refractive index, e�ective group index and birefringence of
the manufacured waveguides. Finally, in section 3, we present the results of the
propagation loss measurements, performed on the manufactured SOI devices,
through the employment of the Fabry-Perot resonance technique.

5.1 Lattice deformation analysis of the micromet-
ric and nanometric strained silicon ridges

As discussed above, induced strain and stress �elds on fabricated micrometric
and nanometric silicon rib structures have been numerically estimated using the
simulative model which we have described in Chapter 2. Such model is based
on the �nite element method (FEM) numerical technique and has been imple-
mented through the employment of the commercial software COMSOL. The
geometries and dimensions of the structures and other experimental technolog-
ical nanofabrication parameters, such as the Si3N4 �lm thickness, have been
inferred through the analysis of Scanning Transmission Electron Microscopy
(STEM) images and Scanning Electron Micorscopy (SEM) images, which we
have reported in Chapter 4.

5.1.1 Strain analysis

The performed STEM analyses show that the shape of the micrometric silicon
ridges, determined by the dry etching patterning processes, is trapezoidal. The
vertical sidewalls are inclined at 7◦ to the normal direction to the substrate
plane. The observed width and height values of the manufactured silicon ridges
are 2.32 µm and 465 nm, respectively. A 345 nm thick silicon nitride �lm
has been conformally deposited on the structures and swelling, induced by the
occurrence of the step coverage phenomenon, can be observed at upper ridge
vertices, as shown in Fig 5.1.

Fig. 5.2 reports the STEM images of the nanofabricated silicon ridge and the
corresponding geometry employed in the simulative model. With regard to the
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Figure 5.1: STEM image of a manufactures micrmetric silicon rib structure (left)
and corresponding geometry employed in the FEM-based simulative estimation
(right).

Figure 5.2: STEM image of a nanofabricated silicon rib structure (left) and
corresponding geometry employed the simulative estimation (right).

micrometric ridge, the inclination of the vertical sidewalls is reduced to 3◦ and
the swellings in the silicon nitride �lm are less pronounced. Furthermore, the
Si3N4 thickness is not uniform: a di�erence of more than 100 nm between the
part covering the waveguide and the one topping the silicon substrate is observed
due to the presence of the Si3N4 cap used as hard mask for the patterning of the
structure, as described in Chapter 2. The obtained values for height and basis
width of the ridge are 220 nm and 481 nm, respectively, and the silicon nitride
thickness values for the cladding layer of the substrate and the waveguide are
325 nm and 440 nm respectively.

In order to estimate the stress and strain distributions on the ridge cross-
section, the elastostatics equilibrium equations, described in Chapter 2, have
been numerically solved through the FEM method using the inferred geometries.
The sti�ness tensor given in Eq. (2.17) has been employed in the constituive
equations for silicon, in order to take into account the anisotropic mechanical
properties of such material, as described in Chapter 2. As for silicon nitride, the
following isotropic elastic values for the Young's modulus E and Poisson's ratio
ν have been used:E = 270MPa and ν = 0.27. The intrinsic stress of the Si3N4

layer σint, evaluated through experimental measurements of wafer curvature, is
1.1GPa.
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Figure 5.3: Simulative contour plot of total displacement over the manufactured
micrometric rib cross-section.

Fig. 5.3 and Fig. 5.4 show the estimated total displacement distributions |u|,
de�ned in Eq. 2.1, for the silicon micrometric ridge and nanometric ridge. The
displacement distributions, enhanced by a 100× deformation scale factor, show
that for both the nanometric and micrometic ridges, the high tensile intrinsic
stress �lm tends to curve the substrate so that the silicon wafer is bent upward.
As a result, the waveguide is expanded in the horizontal direction and shrunk
in the vertical direction as can be observed through the comparison between
the displacement distributions (the contour plot) and the original geometry
(continuous black line).

Then, we have estimated the distributions of the in-plane strain tensor com-
ponents εxx, εzz, εxz , where x and z directions are the horizontal and vertical
directions of the cross section, respectively. The simulative results for the mi-
crometrc ridge, reported in Fig. 5.5, show strain values of the order of the
millistrain with maximum values obtained at the Si/Si3N4 interface. The εxx
and εzz components are symmetrically distributed with regard to the rib ver-
tical axis and their sign is positive and negative around the entire rib cross
section, respectively. The maximum values for the εxxcomponent are 2.3 mε
while for εzzthe maximum values obtained are −2.2 mε. The silicon nitride �lm
is compressive-strained in both directions; this gives rise to a discontinuity in
the strain distribution across the interface for the εxxcomponent. The spatial
distribution of the shear strain component εxz is found to be anti-symmetric
to the rib vertical axis, as expected from theory. The maximum values for the
strain tensor component εxz , which have been obtained at the ridge vertexes,
are ±1.8 mε. Vertical and shear strain components do not show discontinuity
across the Si− Si3N4interface.

The FEM-based simulative model has been therefore employed for the es-
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Figure 5.4: Simulative contour plot of total displacement over the nanometric
rib cross-section.

timation of the strain distributions on the nanofabricated single and coupled
rib structures. The results for the strain tensor components εxx, εxz and εzz
are reported in Fig. 5.6. The strain �eld spatial distribution across the nano-
metric single waveguide cross-section are similar to the ones observed for the
micrometric ridge analysis: we have obtained symmetric behaviors for εxx and
εzz components and anti-symmetric behavior for εxz component. Large strain
values of the order of a few mε for all tensor components are observed near rib
sidewalls. In particular, maximum strain values of 2.8 mε for εxx, −3.1 mε for
εzz and ±3.5 mε for εxz have been obtained. The simulative results show that
no remarkable di�erences are expected to occur between the strain distributions
of the micrometric and nanometric structures. On the other hand, the reduced
dimensions of the ridge leads to an increase of the surface/volume ratio of the
silicon wire; this implies that the nanometric area where remarkable strain val-
ues are observed, which is con�ned at Si/Si3N4 interface in the micrometric
ridge, extends over the entire nanometric structure. In particular, horizontal
and vertical strain tensor components, εxx and εzz, show values of the order of
the millistrain in correspondence of the center of the waveguide. Since the TE
mode intensity distribution, as described in Chapter 2, is mainly concentrated
in the center of the silicon nanowire, the strain �eld induced by the high intrinsic
stress Si3N4 �lm is expected to signi�cantly a�ect the optical properties of the
SOI waveguide.

The simulative results which we have obtained for the coupled rib structures,
(Fig. 5.6 (b)), do not show signi�cant di�erences with regard to analysis carried
out on the single rib: the attained order of magnitude of the strain tensor
components values together with the symmetry of their spatial distribution are
comparable. A slight deviation from the results obtained for the single rib
structure is observed for the vertical strain component: Fig 5.6 (b) shows greater
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Figure 5.5: Simulative contour plots of strain distribution over the micrometric
rib cross-section (εxx, εxz and εzz components).
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Figure 5.6: Simulative contour plots of strain distribution (εxx, εxz and εzz
components), over the cross-section for single rib (a) and coupled rib (b) struc-
tures.
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Figure 5.7: Estimated and measured distributions for strain tensor components
εxx and εzz, along the micrometric rib width at 65 nm from rib bottom �oor.

εzz values at the inner vertical sidewall and an asymmetric distribution with
regard the center of the rib. Such result is likely to stem from the di�erent
amount of silicon nitride that is deposited on the sidewalls . We therefore expect
that the optical properties of the SOI waveguides, in the coupling section, do
not signi�cantly di�er from those of single waveguides and the performance of
such devices is not impaired by modal mismatch between the single and coupling
sections that could be generated by di�erent strain distributions.

5.1.2 CBED strain measurements

We have carried out a comparative analysis between the results reported in the
previous section and the strain values distributions, obtained through TEM/CBED
measurements, on the manufactured strained structures. The aim of such in-
vestigation is to evaluate the possible use of such analysis techniques for the
study of micrometric and nanometric silicon structures and the accuracy such
simulative and experimental estimations. As described in Chapter 4, the com-
monly employed techniques for measuring lattice strain, such as crystal X-ray
di�raction and Raman spectrometry, have micrometric spatial resolution and
are not suitable for the analysis of nanometric devices. This implies that no
experimental data on lattice deformation of similar structures are available and
that the accuracy of the FEM-based method and CBED technique cannot be
evaluated through a comparison with literature data. We therefore believe that
a comparative analysis between the values obtained through the FEM simula-
tive method and the CBED technique can provide important information for
the validation of the two analysis techniques as well as the evaluation of the
accuracy of theirs results.

Some results of the comparative analysis between the FEM-based simulative
estimations and the CBED measurements are reported in Fig. 5.7 and Fig 5.8.
Fig. 5.7 reports the εxz andεzz strain tensors components distributions along
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Figure 5.8: Estimated and measured strain distributions, for strain tensor com-
ponents εxx, εxz and εzz, along the nanometric width (at 92 nm and 12 nm
height from rib bottom �oor).
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the silicon micrometric ridge at 65 nm height from the rib bottom �oor. Fig.
5.8 shows the distributions of the strain tensor components εxx, εxz and εzz
along the silicon nanometric ridge at 92 nm (a) and 12 nm (b) height from the
rib bottom �oor. A qualitative agreement can be observed for both micro-ridge
and nano-ridge analyses: simulative and experimental data show a symmetric
behavior with regard to the center of the waveguide for εxx and εzz components
and an asymmetric behavior for εxz component; the sign and the order of mag-
nitude of the strain values of all the analyzed components match. Furthermore,
the measured values of εxx and εxz show a quantitative agreement with the esti-
mated ones while for εzz a systematic discrepancy is observed. The results show
that the vertical deformation extent is systematically underestimated: for the
nanometric ridge at 12 nm height, the CBED measurement yield strain values
around t−6µε while the estimated ones reach values of about−2µε. On the
other hand both data sets are distributed in an approximately �at line along
the region of analysis. This o�set is likely to be determined by the preparation
technique employed for the TEM analysis. This procedure, described in Chap-
ter 4, requires the thinning of the sample, along the direction normal to cross
section, down to200 nm. The reduction of slices thickness down to submicro-
metric values alter the bulk condition assumed for the simulative model and
make the sample subject to deformations until an equilibrium state is achieved.
This phenomenon, named strain relaxation, could also cause a variation on the
orthogonal deformation of the sample and consequently a discrepancy with the
estimated data, since, as summoned before, the simulative model assumes a
plain strain condition and does not take into account the insurgence of this ef-
fect. It's worth noting that the observed discrepancy in the micrometric ridge
analysis is less evident. As explained in the Chapter 4, the stress relaxation
and consequently the volume in witch the strain is relaxed is larger for greater
amount of strain. Since in the micrometric analysis the extend of the obtained
strain is less the one observed in nanometric structure, the stress relaxation
induced by the thinning is expected to e�ect less severely the sample justifying
the better agreement between the simulative and experimental data.

In conclusions, the comparative analysis between the FEM-based developed
model and CBED measurement technique, which we have carried out on the
manufactured silicon structures, has demonstrated a good agreement between
the simulative estimations and the experimental measurements. The investi-
gated analysis techniques have been shown to provide accurate evaluations of
lattice deformations on micrometric and nanometric silicon structures which
can be used for the investigation of the electromagnetic properties of photonic
devices based on strained silicon technology.
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5.2 Electromagnetic properties of the manufac-
tured strained SOI waveguides

In the previous section, we reported the results of a comparative analysis be-
tween the developed FEM-based simulative model and the CBED measurement
technique that allowed us to estimate the accuracy of the two analysis tech-
niques. In particular, the FEM-based model has been shown to provide reliable
estimations of strain distribution and can be therefore employed for the analysis
of strained silicon devices. In the following section, we report some results of
a simulative study which we carried out on the electromagnetic properties of
the nanofabricated strained SOI waveguides; in particular we have estimated
the e�ective refractive index, e�ective refractive group index, modal intensity
distribution and birefringence of the strained SOI waveguide basing our analysis
on the validated FEM-based model.

In such analysis we have employed a multiphysical simulative model, de-
scribed in Chapter 2, in order to evaluate the e�ects which the crystalline defor-
mation induces on the optical properties of the silicon nanometric devices. In
particular, the validated FEM model has been used to estimate the strain and
stress distribution across the section of the SOI waveguide using the geometries
of the manufactured devices, which are inferred through the SEM analysis of
the structures. The variation of the impermeability tensor, due to the photoe-
lastic e�ect, is estimated through the theoretical model described in section 2.4
and the electromagnetic properties in the strained SOI waveguide are evaluated
through the FEM-based numerical model described in section 2.6.

As discussed above, the geometries employed in the multi-physical simulative
estimations have been extrapolated through the analysis of SEM images of the
SOI waveguides, see for example Fig. 4.25. The SEM analysis shows that the
manufactured waveguide is 482 nm wide and 220 nm high and that the thickness
values of the deposited silicon nitride layer is 325 nm for the cladding layer
on the silicon substrate and 440 nm for the part covering the waveguide. The
simulative estimations of the TE mode intensity distribution for the strained SOI
waveguide, with the inferred geometry, is reported in Fig. 5.9 for wavelength
λ = 1.55 µm.

Fig. 5.9 shows that a large amount of TE mode radiation is con�ned in the
silicon nanowire despite the presence of the high refractive index silicon nitride
�lm (nSi3N4 ∼ 2). The high index-contrast between Si and SiO2 and between
Si ans Si3N4 leads most of the modal intensity to be impounded in the silicon
structure. Since most of the optical power carried by the mode is con�ned in
the center of the silicon nanowire, the interaction between the radiation and
the vertical sidewall roughness is expected to be weak. As described in Chapter
2, due to the nature of the lithography fabrication processes, roughness on the
vertical sidewalls of the waveguide is unavoidable and generates light scattering
that is considered the strongest e�ect of propagation loss. The small amount
of electromagnetic power at the vertical sidewall suggest that the manufactured
strained SOI waveguide should be weakly e�ected by manufacturing non ide-
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Figure 5.9: Simulation of TE-mode power distribution on the plane perpen-
dicular to propagation direction for the manufactured SOI waveguides. The
intensity is expressed in arbitrary units.

alities and are expected to show low scattering-induced propagation losses. At
the same time, the simulative estimations show that SOI waveguides with the
observed geometry operate in single mode regime for λ = 1.55 µm: no other
guided modes are obtained in the range of wavelengths 1545− 1555 nm. These
results show that manufactured geometries allow good modal con�nement, small
interaction of the radiation with surface roughness and single mode condition
and can therefore be employed in low-loss single mode SOI waveguides.

Fig. 5.10 reports the obtained dispersion curves for the stress-free SOI
waveguides TE mode and strained SOI waveguide TE mode, in the wavelength
range of 1545− 1555 nm.

The results show that the presence of the high intrinsic stress �lm a�ects
the electromagnetic properties of the SOI waveguide, as expected. The mode
e�ective refractive index and e�ective group index values of the strained SOI
waveguide show a variation of about +0.005 and +0.009, respectively, with re-
gard to the stress-free structures. On the other hand, the obtained behaviors
are not altered by the presence of the lattice deformation: e�ective group index
values are approximately constant in the considered range while the e�ective re-
fractive index decreases as a linear function of the wavelength, for both strained
and unstrained structures. Furthermore, the high values which we have obtained
for the e�ective refractive index show that the radiation mode is well con�ned,
assuming the geometry observed in the manufactured waveguides, and that the
radiation is far from the cut-o� condition, con�rming the results of the modal
intensity distribution analysis. Such results show that, despite the interaction
between the optical �eld and the strain �elds a�ects the elecotromagnetic prop-
erties of the manufactured waveguides, no impairments on the guiding properties
are expected.
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Figure 5.10: Estimated e�ective refractive index and e�ective group index of
the manufactured SOI waveguides.
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The multyphyisical model described above has been employed to evaluate
the optical anisotropy of the strained SOI waveguide through the estimation of
the induced birefringence. In particular, the refractive index nxand nz for the
TE and TM polarization, i.e. the radiation with polarization vector oriented in
the horizontal and vertical direction, are estimated and theirs di�erence, said
birefringence, nx − ny, is averaged across the section of the silicon core. In or-
der to assess the impact of the experimental nanofabrication parameters as well
as the amount of induced strain on the optical properties of the waveguides,
di�erent values of thickness for the silicon nitride �lm have been considered.
The results, reported in Fig. 5.11, show that the birefringence values increase
with the growing of silicon nitride thickness values, as expected. While for low
thickness, the amount of silicon nitride is not enough to induce an appreciable
crystalline deformation in the silicon nanowire, with the growing of the Si3N4

amount deposited, the stress in the layer tend to deform and bend more and
more the wafer until a steady state is reached at witch the Si − N bonds at
the interface are not e�ected anymore by the deposition of other layers. For
the range of values of SiN thickness that we have analyzed (<400 nm), a neat
saturation has not been achieved yet; this suggests that the thickness can be
increased up to values grater to0.5 um to induce grater values of birefringence.
On the other hand, thickness values greater than 450 nm, due to the high in-
trinsic stress, would bring to tensions which could excessively bend the wafer
and induced cracks or delaminations. For thickness values around 400 nm, the
obtained mean birefringence is 0.014. It's worth noting the lithium niobate
(LiNbO3), commonly employed in modulator devices, shows values of birefrin-
gence of the same order of magnitude: for wavelength around 1550 nm the
birefringence is about 0.08−0.09. The simulative estimations show that the de-
formation induced by the presence of the high intrinsic stress SiN is capable of
e�ectively modifying the optical properties of the SOI waveguide and to induce
signi�cant values of mean birefringence on the silicon nanowire.

5.3 Measurements of propagation loss of the nanofab-
ricated strained SOI waveguides

5.3.1 Fabry-Perot resonance method

The optical performance of the manufactured strained SOI waveguides has been
evaluated through an experimental analysis of the propagation loss of such de-
vices. The aim of these measurements is to estimate the quality of the CMOS
nanofabrication processes which have been employed for the manufacturing of
the SOI waveguides as well as to assess the possible use of the innovative Spacer
Patterning Method technique for the realization of photonic devices. Further-
more, since SPM technique has never been employed for the manufacturing
of strained silicon devices, these results can provide useful information on the
compatibility of such nanofabrication processes with the strained silicon tech-
nology. The propagation losses of the manufactured SOI waveguides have been
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Figure 5.11: Estimated mean birefringence of the nanofabricated SOI waveguide
as a function of silicon nitride thickness.

performed through the employment of the Fabry-Perot (FP) resonance method.

The (FP) resonance method is one of the most commonly employed ex-
perimental techniques for propagation loss measurements of SOI devices: this
technique exploits the resonant cavity constituted by the optical waveguide with
polished facets for extracting information on the loss su�ered by the radiation
[85]. The propagating light is re�ected at either facets by an amount which is de-
termined by refractive index contrast between the waveguide and the cladding
layer or air and undergoes several re�ections along the path. The structure
can therefore be regarded as a Fabry-Perot resonator with the optical intensity
transmission It , normalized to the incident light intensity Ii, given by:

It
Ii

=
(1−R2)e−αL

((1−Re−αL)2 + 4Re−αLsin2(φ/2)
(5.1)

where R is the re�ectivity at the facet, L is the waveguide length and φ is
the phase di�erence between successive radiations. The coe�cient α is the loss
su�ered by the radiation and has the dimensions of [cm−1]. The ratio between
the maximum Imax and minimum value Imin of Eq. (5.1), corresponding to
wavelengths with φ = 0 and φ = Π respectively, is given by:

ζ =
Imax
Imin

=
(1 +Re−αL)2

(1−Re−αL)2
(5.2)

Rearranging Eq. (5.2) it is possible to extract the loss coe�cient α :

α = − 1

L
ln(

1

R

√
ζ − 1√
ζ + 1

) (5.3)
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Figure 5.12: Experimental set-up for the propagation loss measurements.

Eq. (5.3) shows that the loss coe�cient loss α can be evaluated simply
measuring the ratio of the maximum intensity to minimum intensity ζ . It's
clear from Eq. (5.3) that, under the assumption that the coupling e�ciency is
not dependent on the radiation wavelength, propagation loss measurement is
not a�ected by the coupling loss and can be easily evaluated starting from the
transmission spectrum of the waveguide.

5.3.2 Results of the propagation loss measurements

Fig. 5.12 shows the experimental set-up that we employed for the loss measure-
ment of the singlemode strained SOI waveguides. The radiation is generated
by a tunable laser source sweeping frequencies in the C-band. The �eld passes
through a polarization controller and a polarizer in order to control the ratio of
TE and TM modes power excited in the waveguide and is injected into the chip
containing the waveguides through a polarization single mode tapered lensed
�ber. This type of �ber, with regard to cleaved standard single mode �bers,
improves the coupling e�ciency and the mode matching between the �ber mode
and the waveguide mode. In particular, due to its laser shaped tapered lensed
end, the �ber shrinks the dimensions of the traveling radiation in correspon-
dence of the �nal tip and focuses it at distance of few microns. The lensed �ber
employed in this set-up have a nominal spot size of less than 2 µm. The light
injected in the waveguide is collected at the end facet through a 20× magni�ca-
tion objective lens. Due to the micrometric precision required by the coupling
between the �ber and the waveguide and the alignment between the waveguide
and the lens, 3 axis stages with micrometric precision control have been em-
ployed for the movement of �ber lens and lens, while 2 axis and rotating stage
have been used for the sample. The collimated ligth passes through an iris in
order for spurious light not to be collected and is then focused by a plano-convex
lens at IR camera recording the intensity distribution of the radiation.

Fig. 5.13 shows an image, taken at the IR camera, of the radiation collected
by the objective lens at the endface of a manufactured waveguide.

A spot light is clearly visible in the center of the �gure: it corresponds to the
light exiting the endface of the SOI waveguide. The dimensions of the bright
point match those of the nanometric silicon core, i.e (482×220) nm, with a 20×
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Figure 5.13: Infrared image of the collected at the endface of the waveguide.

magni�cation due to lens system used in the setup. The tunable laser light has
been e�ciently injected in the waveguide through the butt-coupling technique
and con�ned in the sub-wavelength silicon nanowire that directs the radiation
toward the endface of the sample. Other small bright points can be observed at
the same height of the waveguide. Their presence is due to spurious light which
is scattered by the other silicon structures of the chip or dirt at the boarder of
the sample. Such spurious light is due to radiation that has not been collected
by the waveguide due to the modal mismatch between the silicon core and the
injected light and to light that is scattered out of the waveguide through surface
roughness. The silicon nitride straining layer acts a slab waveguides con�ning
the spurious light in vertical direction and directing toward the endface of the
sample. The scattered light is therefore directed toward the camera giving rise
to the observed blurry point. The di�erent brightness between the waveguide
and the scattering elements show that a signi�cant amount of the injected power
has been collected in the device and e�ciently directed to the endface of the
sample.

The graphs reported in Fig. 5.13 and Fig. 5.14 show the obtained transmis-
sion spectra, expressed in arbitrary unit, for one of the manufactured strained
SOI waveguide. The spectra have been recorded at the IR camera at two wave-
length intervals, namely at1545− 1547 nm range and at1555− 1557 nm range.
The graphs show quite sharp peaks arranged in pattern similar to a typical Fabry
Perot resonator transmittance spectrum. The quality of the waveguide facets
is high enough to induce a signi�cant part of the power carried by the mode
radiation to be re�ected feeding a feedback resonance mechanism. The peak-
to-peak amplitude is approximately constant over the frequency range while
an overall increase of the mean intensity is observed for longer wavelengths.
This phenomenon is probably induced by the mechanical drift on the microp-
ositioners or to the polarization instability of the laser along the interval of
frequency. The distance separating the peaks is approximately constant across
all the wavelength range: the observed free spectral range (FSR) is 60 pm
and is in accordance with the theoretical FSR of the resonance cavity given by
λ2/ngL ' 62 pm where L is the resonator cavity length and ngis group index of
the SOI waveguide.

The propagation loss values for the singlemode strained SOI waveguide have
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Figure 5.14: Fabry-Perot scan of the manufactured singlemode SOI waveguide
for the wavelength interval 1545− 1547 nm (up) and 1555− 1557 nm (down).
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been evaluated using the data extracted from the intensity spectrum reported
in Fig. 5.14. In particular, the maximum and minimum values for di�erent
peaks have been recorded and the averaged value of the ζ ratio is fed into Eq.
(5.2) and Eq. (5.3). The facet re�ectivity R used in Eq. (5.2) is assumed
to be 0.31 corresponding to a Fresnel silicon/air interface re�ection coe�cient.
The propagation loss values obtained are α = 5.8 ± 0.8 dB/cm for the range
1545− 1547 nm and α = 8.8± 0.8 dB/cm for the range 1555− 1557 nm.

The obtained loss values are comparable with those of the state-of-the-art
SOI waveguides, around 2− 3 dB/cm, which are commonly fabricated with the
193nm optical lithography or electron beam lithography, as described in Chapter
2. Furthermore, the Fabry Perot resonance method can overestimate the loss
coe�cient values since it assumes perfectly �at waveguide facets. In fact, in our
case, the waveguide facets have undergone a lapping process that could reduce
the quality of the facets. This procedure consists of a polishing of the sample
facets with abrasive materials with sequentially decreasing grit sizes and can
induce a certain amount of roughness and a slight curvature on the end facet,
not present in the ideally �at surfaces assumed in the FB method. As a result,
the re�ectivity values of the facets are reduced and the propagation losses are
overestimated. The commonly employed procedure for the facet preparation,
the cleavin, is carried by mechanically introducing a small crack at the edge of
the sample, in the orthogonal plane to the direction of propagation, and applying
a pressure so that it craks along a primary crystal plane. This technique allows
to allow an high degree of �atness and a very high reclectivity. Unfortunately,
this technique could not be employed in the manufactured waveguides due to
the presence of the silicon nitride �lm that would induce serious damages to the
sample.

At the light of these considerations, the obtained propagation loss values
prove the high quality of the nanofabrication processes employed and in partic-
ular the accuracy of the innovative SPM technique. The SPM technique allowed
to realize the expected geometries employable in high-performance photonic de-
vices. The etching processes has successfully de�ned the silicon nanowires with
a low RMS surface roughness as shown by the low loss values obtained. Fur-
thermore, the deposition of the high intrinsic stress silicon nitride �lm has not
impaired the guiding properties of the devices showing the compatiblity of the
strained silicon technology with the SPM technique. W therefore believe that
the SPM nanofabrication technique can be fruitfully employed for the manu-
facturing of strained high-performance SOI devices employing strained silicon
technology and that can represent a low-cost and high yield alternative solu-
tion to EBL (Electron Beam Lithography) of DUV (Lased Deep Ultraviolet)
lithography.
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Chapter 6

Ultra compact OAM beam

emitters based on angular

gratings

The optical orbital angular momentum (OAM) is a degree of freedom of the pho-
ton in addition to the polarization/spin. After the demonstration that physically
realizable beams with intensity distributions u(r, φ, z) = uo(r, z)exp(iφl) carry
a well de�ned OAM about the axis, OAM beams have been employed in di�er-
ent �elds for various applications. In particular, light-carrying orbital angular
momentum (OAM) has been recently shown to have the potential for e�ciently
enhancing the information channel capacity in both classical and quantum op-
tical communications. Lately, integrated optical devices for the generation and
manipulations of OAM carrying beams have been proposed and employed in ex-
perimental communication links. These devices promise to address the demand
for switching speed between OAM modes and routing �exibility, essential for an
e�cient OAM-based communications systems. In this Chapter, we report the
results of an experimental study on ultracompact OAM beam emitters based on
angular grating with two di�erent geometries: emitters based on microring res-
onators and omega-shaped emitters. The analyzed devices are based on silicon
photonics technology and can be employed in communications the require fast
switching of OAM modes, multi-wavelength and multi-OAM state emission.

In the �rst section of this Chapter a brief review of the story of the orbital
angular momentum of light and its applications in communication systems is
reported. In section 2 we describe the properties of OAM beams and the demod-
ulation technique used in the experimental analysis. In section 3 we analyze the
properties of the OAM devices under study and the physical principles under-
lying the emission of light carrying well de�ned OAM by the embedded angular
gratings. The results of the experimental analysis on the radiation e�ciency
of OAM emitters based on microring geometry are discussed in section 4 and
the analysis of the OAM beams emitted by the omega-shaped multiplexers is
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reported in section 5.

6.1 History of Orbital Angular Momentum of Light
and its applications

6.1.1 History of Orbital Angular Momentum of Light

The hypothesis that light should have mechanical properties dates back to the
sixteenth century, since Kepler suggested that the comet tails were due to radia-
tion pressure associated with sun light [93]. After the development of Maxwell's
uni�ed theory of electricity, magnetism and optics, light radiation pressure could
be quantitatively studied but no detailed analysis were carried out on the me-
chanical properties of light [94]. It was Poynting who quanti�ed the energy �ux
of an electromagnetic radiation and its linear momentum density [95]: in modern
terms the energy �ux, called the Poyinting vector, can be expressed as S = E×H
and the linear momentum per unit volume g is: g = (E×H)/c2 [96]. The an-
gular momentum density L can be therefore expressed as L = r× (E×H)/c2.

Few years later, Poynting [97] suggested that a circularly polarized (CP)
light carries an angular momentum (AM) basing his analysis on the analogy
with the wave motion associated with a line of dots marked on a rotating cylin-
drical shaft. In his theoretical work, Poynting demonstrates that the CP light
carries an angular momentum per unit of area and time of Eλ/2Π where E is
the energy density per unit volume and λ is the wavelength. In order to detect
the AM associated with the radiation, he proposed to pass the CP light through
a suspending quarter-wave plates and measure the rotational movement induced
by the AM transfer. In 1936 Beth [98] carried out Poyinting idea and measured
the torque exerted by CP light impinging into single quarter wave plate provid-
ing, for the �rst time, evidences of the AM possessed by the light. The state of
polarization (SOP) does not take into account the total orbital momentum car-
ried by a radiation: beside the polarization contribute, known as spin angular
momentum (SAM), another contribute is associated with the azimuthal phase
distribution of light. This part is said orbital angular momentum (OAM).

The modern study of AM of light, and particularly of the OAM contribute,
is considered to have started with the paper of Allen at al [99]. In this work,
the authors demonstrated that any beam with the amplitude distribution in
the form u(r, φ, z) = uo(r, z)exp(iφl), where l is integer-valued, carries a well
de�ned angular momentum about the beam axis. Furthermore, the OAM con-
tribute is uniquely determined by the azimuthal phase distribution and assumes
quantized values equal to l~ per photon with l the azimuthal mode index. The
authors highlight that the Laguerre-Gaussian modes, solutions to scalar parax-
ial Helmoltz equation, represent a physically realizable example of well-de�ned
OAM beams since they are natural modes of cylindrically symmetric resonators.
Since the publication of this work, other types of beams have been demonstrated
to have well de�ned orbital angular momentum as, for example, cylindrical vec-
tor (CV) beams [100]and (HOB) order Bessel beam [101]. Higher order Bessel
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beams are solutions of the exact Helmoltz equation and have a radial depen-
dence on the form of Bessel function of the �rst kind. HOB are di�raction free
solutions: the intensity distribution maintain their shape with no scaling factor
during the propagation di�erently than LG beam. The second type is a solution
to vectorial paraxial Helmoltz equations and are characterized by a cylindrically
symmetric space distribution of the state of polarization (SOP). A section of
this Chapter is devoted to the description of CV beams.

6.1.2 OAM communications

Light-carrying orbital angular momentum (OAM) has found many applications
in several areas of science and technology. Some examples are represented by op-
tical manipulation and trapping in optical tweezers, high-precision optical mea-
surements, studies of fundamental quantum physics, high-capacity free-space
and �ber-optic communications. In particular, the employment of OAM of light
in communication has proved to have the potential for signi�cantly enhancing
the information channel capacity of the systems in both classical and quantum
domains. In communication systems the optical OAM has been mainly exploited
in 2 ways: in the �rst one the information is encoded as OAM states while in
the second one beams with di�erent OAM orders are used as information car-
riers for multiplexing schemes. In the next section we report a brief review of
the experimental realizations of OAM-based free space communication which
implement these two schemes.

In the last decade, many experimental demonstrations of free-space OAM-
based optical communications have been reported. Initially, the OAM order
was exploited as a new degree of freedom for modulation schemes of the signal.
Traditional links rely on modulation of intensity, frequency, or polarisation of
the radiation. The OAM of light, with a theoretically in�nite number of pos-
sible values of the OAM states l, can be used to encode an alphabet with an
in�nite number of �letters�. In 2004 Gibson at al. [102] demonstrated the trans-
fer of information encoded as OAM states of infrared light with a good level
of eavesdropping resistance. Spatial light modulators were employed for both
transmitting and receiving OAM beams in a 15 m long free-space communica-
tion based on 8 OAM orders alphabet. Since then, communications encoded as
OAM orders up to several Gb/s in free-space under strong atmospheric turbo-
lence, in deep-space and near earth communication[103][104]. Moreover, OAM
based comunication has been demonstrated for free-space radio data link[105].
OAM beams have also been employed in quantum key distribution schemes:
Malik in [106], reports a free-space 11-dimensional communication system using
OAM modes with a maximum measured channel capacity of 2.12 bits/photon.

In addition to OAM modulation, mutliplexing schemes based on di�erent
OAM orders have been studied. As will be discussed in the following section,
beams with di�erent OAM orders l are orthogonal with each other. This prop-
erty enables multiple beams of di�erent OAM values to be multiplexed and
demultiplexed with no crosstalk between them. OAM order represents there-
fore a further degree of freedom added to the traditional envisioned switch-
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ing domains (space, wavelength, and time) that could be employed in multi-
plexing schemes for the enhancement of the capacity of the channel. In fact,
since each OAM beam can carry an independent data stream, the total capac-
ity of link that transfers multiple spatially overlapped beams, equals the data
rate of a single channel multiplied by the number of the beams. Multiplex-
ing schemes for OAM based communications have been recently demonstrated.
In 2010 Awaji et al. [107]demonstrates, for the �rst time, a free-space op-
tical OAM communication employing multiplexed Laguerre-Gaussian beams.
In their work, the authors report error-freely propagation of multiplexed LG
pulses at 10Gbit/s in telecommunication wavelength (C-band) and their de-
multiplexing. Subsequently, other groups have demonstrated the compatibil-
ity of OAM multiplexing with other conventional multiplexing schemes. Wang
[108]at al. demonstrated a communication based on both polarization and OAM
multiplexing schemes with a capacity of 2.56Tbits−1 and spectral e�ciency of
95.7 bits−1Hz−1. The authors also reported data exchange between orbital an-
gular momentum beams encoded with 100 Gbit/s di�erential quadrature phase-
shift keying signals. Huang [109]demonstrates a free-space data link combining
OAM-, polarization-, and wavelength-division multiplexing. In particular, the
authors report the multiplexing/demultiplexing of 1008 data channels carried
on 12 OAM beams, 2 polarizations, and 42 wavelengths with each channel en-
coding 100 Gbit/s quadrature phase-shift keying data, providing an aggregate
capacity of 100.8 Tbit/s.

6.1.3 Generation of beams carrying OAM

In the majority of the summoned experiments, the OAM beams are generated
using free-space optical components. In [102] the transmitter unit consisted of
a HeNe laser, a telescope and a computer-controlled phase hologram generated
through the employment of a re�ective spatial light modulator. In [110] heli-
cal modes of visible light are generated through q-plates exploiting patterned
liquid crystal technology. In [111]Laguerre-Gaussian and vortex orbital-angular-
momentum modes are generated using digital micro-mirror devices (DMD),
which are amplitude-only spatial modulator consisting of a series of micro-
mirrors with electronically controllable de�ection angle. The use of such bulk
components is not suitable for optical communication due to large size of the
devices and the the slow switching speed between the OAM modes which is
limited to a few kHz [112].

In the last few years, several groups have demonstrated integrated optical
devices, wich have been micofabricated using the mature and reliable CMOS-
compatible processes, capable of generating and manipulating OAM beams.
These devices can be employed in highly e�cient OAM data channels and rout-
ing links due to their compactness, robustness and fast tunability. Doerr at
al. in [113] demonstrated a silicon PIC employing a circular grating coupler for
generating and receiving focused azimuthally and radially polarized beams. Su
et al. in [114] exploits tunable-phase arrayed waveguides with vertical grating
couplers to achieve space division OAM multiplexing and demultiplexing. Cai
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et al. [115]demonstrated ultracompact silicon-integrated optical vortex emitters
based on angular gratings capable of extracting light, which is con�ned in whis-
pering gallery modes of the resonant cavity, into free-space high OAM beams.
These devices are ultracompact: the smallest device has radius of 3.9 µm. In
this work OAM emitters based on suc geometry are investigated.

6.2 Theory of OAM beams

In this section, we analyze the properties of beams carrying a well de�ned OAM,
in terms of amplitude and phase distribution for the case of Laguerre Gaussian
(LG) beams. LG beams represent a well understood example of physically
realizable beams carrying OAM and their properties are valid for most of the
optical vortex. Then, the working principles of the demodulation technique
used in the experimental analysis of the omega-shaped devices are described.
The employed technique is based on the phase-only modulation of the OAM
beams that is imparted through a spatial light modulator. The e�ects of phase
modulation on the OAM order of the beams together with the issues related to
the conversion e�ciency will be discussed for the simple case of helical-wavefront
beams conversion produced with a spiral phase plate.

6.2.1 OAM of Laguerre Gaussian beams

The LG beams represent a well understood example of beams carrying a de�ned
OAM. Most of their properties are common to all OAM beams and in particular
to the cylindrical vectorial (CV) beams which are analyzed in this Chapter. The
LG beams are a solution to the linear Helmholtz paraxial equation in cylindrical
coordinates. A convenient representation of a linearly polarized LG beams in
the Lorentz gauge, is given, using the vector potential A by:

A = xupl(r, ρ, φ) (6.1)

where x represents the unit vector in the direction of polarization and upl is
the complex scalar function describing the intensity of the �eld:

upl(r, ρ, φ) =
C

(1 + z2/z2R)1/2

[
r
√

2

w(z)

]l
Llp

[
2r2

w2(z)

]
exp(− r2

w2(z)
) (6.2)

exp(
−ikr2z

2(z2 + z2R)
) exp(−ilφ) exp

[
i(2p+ l + 1) tan−1(z/zr)

]
where C is a constant, zris the Rayleigh range, w(z) is the radius of the

beam, Llpis the associated Laguerre polinomial, and the beam waist is at z =
0. l and p are two integers and are said azimuthal order and radial order,
respectively. As suggested by the name, LG beams can be separated in two
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parts: one part describing the radial dependence of the intensity distribution
in the form of Laguerre polinomials and a Guassian-like part describing the
curvature of phase wavefront. It's worth noting that the the phase spacial
dependence on the azimuthal coordinate φ is solely expressed by the exponential
function exp(−ilφ).

The angular momentum density, de�ned by M = ε0r× < E ×B >, is:

M = − l

ω

z

r
|u|2r +

r

c
[

z2

(z2 + z2R)
− 1]|u|2φ+

l

ω
|u|2z (6.3)

The contribution of the radial and azimuthal components to the integration
of M over the beam pro�le vanish due to their symmetry about the axis. Solely
the z component of angular momentum density contributes to the total angular
momentum. M is therefore only dependent on the azimuthal order l and on the
wavelength ω and is directed along the propagation of direction z. Considering
the ratio of the �ux of angular momentum L to that of the energy E, one obtains
the angular momentum per photon:

L

E
=

l

ω
(6.4)

Since the energy associated to a photon is E = hω, the LG beams result to have
a well de�ned and quantized orbital angular momentum per photon equal l~,
labeled by the azimuthal order l.

When the vector potential is generalized to arbitrary state of polarization,
a contribute is added to the z component of the angular momentum M :

Mz =
l

ω
|u|2 +

σzr

2ω

∂|u|2

∂r
(6.5)

where σz = ±1 for left-handed and right-handed respectively and σz = 0
for linearly polarized radiation. The polarization dependent contribute to the
z oriented angular momentum density is dependent upon the gradient of the
intensity. The ratio of the angular momentum �ux to energy, for arbitrary
polarized LG beams, becomes:

L

E
=

(l + σz)

ω
(6.6)

For LG beams, the contributes of OAM and SAM are separated and well
de�ned. LG beams posses other important properties: they form a complete
set of solutions to the paraxial Helmholtz equation; it implies that any other
solution can be written as a superposition of these beams. Furthermore LG
beams with di�erent azimuthal order are orthogonal: no power is exchanged
between each other along that propagate in free space.

It can be shown that the results obtained for LG beams and their properties
in terms of OAM, are valid for any beam with a intensity distribution u(r, φ, z) =
uo(r, z)exp(iφl) and in particular for the CV beams wich we have analyzed in
this experimental analysis.
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Figure 6.1: Schematic of the spiral phase plate, from [116].

6.2.2 OAM order transformation with spiral phaseplate

In the experimental measurements which we will describe in the following chap-
ter, the demodulation of the OAM beams has been carried out through a phase-
only modulation technique. A spatial light modulator (SLM), by imparting a
particular phase change pattern to a impinging beam, transforms any OAM
order l into l = 0 order; the e�ciency of such transformation depends on the
intensity distribution of the beam. The SLM emulates the behavior of the Spiral
Phase Plate (SPP) used for the conversion of laser beam into helical-wavefront
laser beams [116]. The working principles of the SPP conversion are also valid
for the demodulation technique which we have employed in the reported exper-
imental analysis and are discussed here.

The SPP is a transparent plate with a thickness proportional to the angle
φ around the middle of the plate, see Fig 6.1. For small divergence beams and
for height of the plate su�ciently small, the paraxial regime is maintained and
the e�ect of the phase plate can be considered to a�ect solely the phase of the
beam. The complex amplitude u(ρ, φ, z) of the beam after crossing the plate
results is[116]:

u′ = u(ρ, φ, z)exp(−i∆lφ) (6.7)

where∆l is the height of the step normalized to the wavelength λ given by:

∆l = ∆nh/λ (6.8)

Eq. (6.7) shows that the phaseplate imposes a spiral twist to the phase distri-
bution of the beam but it doesn't a�ect its amplitude. The SPP may therefore
transform a non-helical beam into a helical-one or change its helicity. Tak-
ing into account the relation, that we have described in the previous section,
between the azimuthal phase distribution and orbital angular momentum of a
beam, it's clear that the SPP alters the OAM order of a beam passing through.
Nevertheless, in most cases, the resulting beam is no longer a pure mode any-
more and can be represented as a superposition of pure modes. Again, it is
useful to consider LG beams in order to better understand the behavior of a
SPP.

The e�ect of the SPP on a LG beam can be expressed, in ket notation, by:

u∗nmLG = exp(−i∆lφ)|uLGnm > (6.9)
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Figure 6.2: Mode contents of a LG00 beam that has acquired the phase shift
due to ∆l = 1 spiral phaseplate. The index s in on the horizontal axis and the
index t is in the vertical axis, from[116].

Figure 6.3: Mode contents of a LG00,LG01and LG02 that has acquired the phase
shift due to ∆l = 2 spiral phaseplate, from[116].

where the new indices n and m are de�ned by p = min(n,m) and l = n−m,
where p and l are the indices used in Eq. (6.2). Employing the LG beams as
a complete set of modes, with Rayleigh range and the coordinate of the waist
equal to those of the incident beam, it is possible to express the beam of Eq.
(6.9) as a superposition of modes with expansion coe�cients amn,st given by:

anm,st =< uLGst | exp(−i∆lφ)|uLGst > (6.10)

where < | > denotes the integration in the transverse plane. The integral is
non null for s and t satisfying the following equation:

s− t = n−m+ ∆l (6.11)

In the tables of Fig. 6.2 and Fig. 6.3, we report the numerical estimations
of the coe�cients anm,st for a LG00beam passed through a ∆l = 1 phase plate
and for LG00, LG01and LG02beams passed through∆l = 2 phase plates, from
[116].

The values reported, demonstrate that most of the power of the incoming
beam LG00 , about 78, is carried by LG0,1mode but more than 20 ends up in
other orders. The values of table in Fig 6.3 show that, generally, the transfer of
power from one mode to another is not complete, except the case:

∆l = −2(n−m) (6.12)

In these transformations, the conversion is complete since the incoming beam
and the considered one have the same intensity but inverted phase. In the other
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Figure 6.4: Layout of a microring (left) and of OAM beam emitters based on
angular gratings (right), from [115].

cases, the mismatch between the intensity pattern forbids a complete transfer
of power from one mode to another: the spiral phase plate is not in general a
pure mode converter. Furthermore, the purity of the converted mode reduces for
high OAM order l since the phase and amplitude distribution of the transformed
mode give rise to low values of overlap integral with the pure beam.

These consideration for the SPP plate transformation on LG beam can be
applied to the demodulation technique employed in the experimental analysis
where the phase modulation is imparted through a SLM. The phase pattern used
for the demodulation has, indeed, the same azimuthal dependence of the one
imparted by the spiral phase plate. The details on the demodulation procedure
employed are provided in the section 5.

6.3 Ultra compact OAM beam emitters based on
angular gratings

6.3.1 Coupled mode theory (CMT) analysis of angular
sidewall gratings

In the experimental analysis reported in this work, two types of integrated
OAM beam emitters have been studied. The �rst type are micrometer-sized
SOI ring resonators embedding second order angular gratings. In such devices,
the grating is patterned in the inner vertical sidewalls of the ring and allow to
extract the resonant con�ned light imparting well de�ned phase distribution and
polarization state to the radiated beam. The OAM order of the emitted beam
is determined solely by the periodicity of the grating and the wavelength of the
radiation. The working principles of the OAM emitters as well as the properties
of the radiated beam can be described through a Coupled Mode Theory (CMT)
based analysis.
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It's well known that the presence of a perturbation, in the cross-section
of a waveguide, induces coupling between the eigenmodes of the unperturbed
waveguide. In the OAM emitters, the embedded gratings can be considered as
a periodic perturbation that coherently couples the guided mode of the micror-
ing resonators with the radiative modes generating a radiated beam with well
de�ned optical properties. In the cylindrical coordinate system (r, z, θ), de�ned
in Fig. 6.4, the electric �eld of the perturbed waveguide, can be expressed as a
linear combination of the unperturbed eigen-modes of the structure[115]:

E =
∑

Am(θ)Em(r, z) exp(iωt− νm(θ)) (6.13)

where Am(θ) are the coe�cients of the guided and radiative modes propa-
gating in θ direction, Em(r, z) is the transverse mode pro�le, and νm = βmR is
the angular propagation constant for a ring with radius R.

The dielectric constant, as a function of space, can be written as:

ε(r, z, θ) = εu(r, z) +4ε(r, z, θ) (6.14)

where εu is the unperturbed part of the dielectric constant, and 4ε(r, z, θ)
is the perturbed dielectric constant which is periodic in θ direction.

Assuming the slowly varying amplitude (SVA) approximation, the evolution
of coe�cients As(θ) can be shown to determined by the following relation:

〈s|s〉 dAs
dθ

=
ω2µ

2iνs

∑
n

〈
s|∆ε(r, z, θ) r2|n

〉
An exp(±(i(νs − νn)) (6.15)

where

〈s|s〉 =

∫
E∗s(r, z)Es(r, z)drdz (6.16)

〈
s|∆ε(r, z, θ) r2|n

〉
=

∫
E∗s(r, z)∆ε(r, z, θ)r

2En(r, z)drdz (6.17)

The RHS of Eq (6.17), said overlap integral of the modes, represents the
coupling strength between the 2 eigen-modes mediated by the perturbation.

A general consideration can be made on the expected state of polarization of
the scattered radiation. In SOI waveguides, strong electric �elds polarized in the
propagation (azimuthal) direction, Eaz, are present due to tight con�nement.
Their maxima are located at the vertical sidewalls of the waveguide in corre-
spondence of the scattering elements (see Fig. 6.5). It's clear that in order for
the overlap integral not to be negligible and consequently the transfer of power
to be e�cient, it is necessary that the polarization of the radiation mode must
be parallel to that of the guided mode in correspondence of the dielectric per-
turbation. At the light of these considerations, the radiation excited by a quasi
transverse-electric mode TE is expected to be mainly longitudinally polarized.
The e�ects on the state of polarization of the radiated beam steaming from the
constructive interference of the radiation of the singular di�ractive element will
be discussed later.
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Figure 6.5: Simulated �eld distribution of azimuthal electric �eld Eaz and trans-
verse electric �eld ET for quasi-TE WGM mode in silicon bend waveguide at
1550 nm, from [115].

The perturbation of the dielectric constant ∆ε, i.e. the grating, is periodic
in the angular direction θ and can be expressed as a Fourier series:

∆ε(r, z, θ) =
∑
g

εg(r, z) exp(igqθ) (6.18)

where g is an integer and q = 2ΠR/Λ represents the number of scattering
elements. Substituting Eq. (6.18) in Eq. (6.17), we obtain:

〈s|s〉 dAs
dθ

=
ω2µ

2iνs

∑
n

〈
s|εg(r, z) r2|n

〉
An exp(i(νs − νn + gq)θ) (6.19)

Integrating Eq. (6.19) over an arc longer than the grating period and shorter
than the variation scale of the amplitude, one obtains the increment of the sth
�eld amplitude As , due to the mode coupling and mediated by the g component
of the dielectric perturbation:

∆As(θ) =
ω2µ

2iνs

∑
n

〈
s|εg(r, z) r2|n

〉
An

∫ θ

exp(i(νs − νn + gq)θ′)dθ′ (6.20)

The integral does not equal zero, and consequently the radiation is coherently
scattered by the di�raction elements so that a signi�cant amount of power is
transferred to the radiated beam, only if the exponent is zero:

νs − νn + gq = 0 g = ±1,±2,±3 . . . (6.21)

The Eq. (6.21) is said angular phase matching condition for the di�raction order
g.

When the phase matching condition is satis�ed, power from of the mode s
can be transferred to a mode n with an e�ciency determined by the overlap
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integral:
〈
s|εg(r, z) r2|n

〉
An. Theoretically, a large number of modes can be

coupled as long as their propagation constants match with a Fourier component
of the grating. Nevertheless, the possible values of g are limited by the materials
used in the system. Firstly of all the frequencies ν are tied to the propagation
constant β through the relation: β = ν/R and βn = βwg = νwg/R = 2Π/λneff .
Than |βs| = |βrad| = |νs/R| ≤ 2Π/λ since the radiation mode propagates in
vacuum.

These requirements impose a condition on the pitch given by:

(neff − 1)
Λ

λ
< g < (neff + 1)

Λ

λ
(6.22)

For TE mode in SOI waveguide neff is around 2.5, λ is around 1550 nm
and Λ is around 650 nm since this period corresponds to a second order grating.
The only possible value for g is 1. Therefore, Eq. (6.21) can be rewritten as:

νrad = p− q (6.23)

where p = νwg. Since the guided mode is a resonant mode of the ring, νwg
has is integer valued and represents the number of times the wavelength of the
light �ts the optical length of the ring. νrad represents the angular velocity of the
vortex emerging from the emitters and, in accordance with the considerations
of the previous section, the OAM order l of the generated beam. Since both p
and q are integer values, the OAM order l is integer as well and Eq. (6.23) can
be rewritten as:

l = p− q (6.24)

Eq. (6.24) shows that the OAM order of the emitted beam depends only
on the resonant order p of the wavelength circulating in the microring and the
number of scattering elements q of the embedded second order grating.

6.3.2 State of polarization of the radiated beam

As described above, since the polarization for quasi-TE mode in a SOI waveguide
is mainly longitudinal in correspondence of the scattering elements, the radiated
�eld is supposed to be mainly longitudinally polarized. Furthermore the angular
grating structure is cylindrically simmetric, hence we expect that the radiated
beam maintain this symmetry. The polarization of the emitted beam is therefore
supposed to change its direction about the optical axis in a cylindrically sym-
metric pattern. Optical vortex with SOP that possess these properties are said
cylindrical vector (CV) beams. Zhu et al. in [117] theoretically demonstrated
these properties for optical vortex generated by angular grating-based emitters
and provided analytical expression for the far �eld-components of the radiated
beam. We report some of such results which are useful to the understanding of
the properties of the OAM beams analyzed in this work.

In theoretical work reported in [117], azimuthally polarized dipole oscilla-
tors Pm = ϕ̂mP0 exp(jlϕm) are used to describe the emission of the scattering
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Figure 6.6: Schematic diagram of the dipole model used in [117].

elements. The radiated electric �eld in each point Q (ρ, ϕ, χ) of the upper hemi-
sphere, see Fig. 6.6, is given by the interference among the radiation of all the
dipoles:

El(ρ, ϕ, χ) =
A

R3

q∑
m=1

exp(jνrm) exp(jlφm)

[
(
ν2

rm
− j ν

r2m
− 1

r3m
)(rm × φm)×

]
(6.25)

× rm − (j
2ν

r2m
+

2

r3m
)(rm · φm) · rm]

where A = P0/4Πε0, rm is the distance between Q and the mth dipole
Pm(1, φm, 0) and rmis the unit vector in the direction of PmQ pointing from
Pm.

Neglecting the near-zone terms (∼ 1
r2 and ∼ 1

r3 ) and using the Fresnel
di�raction paraxial approximation, one obtains the far-�eld analytical expres-
sion of the radiative �eld components:

Eρ,l(ρ, ϕ, ς) = jl
Alq

R3

ν

ρ
Φ(ρ, ς) exp(jlφm)Jl(−νtan(Θ)) (6.26)

Eϕ,l(ρ, ϕ, ς) = jl−1
Aq

R3

ν2

ς
Φ(ρ, ς) exp(jlφm)J ′l (−νtan(Θ)) (6.27)

Eς,l(ρ, ϕ, ς) = −jlAlq
R3

ν

ς
Φ(ρ, ς) exp(jlφm)J l(−νtan(Θ)) (6.28)

where Φ(ρ, ς) = exp{jν[ς + (ρ2 + 1)/2ς],Jl are Bessel functions of the �rst
kind and Θ = tan−1(ρ/ς).

The expressions represent a set of orthogonal cylindrical vector Bessel beam
(CVB) for each component. Each component has well de�ned OAM order de-
termined by the azimuthal order l in the phase factor exp(jlϕ). The spiral-like
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Figure 6.7: Far-�eld transversal phase distribution of Eφ(l = 0) (a), Eρ(l = 1)
(b), Eρ(l = 2) (c) and Eφ(l = 3) (d), from[117].

pattern of the complex phase distributions of radial and azimuthal components
is shown in Fig. 6.7 for di�erent OAM orders.

Each component's amplitude is proportional to the lthorder Bessel function
of the �rst kind or to its derivative and propagate in constant angle (−νtan(Θ))
to the ς axis . Nevertheless, each component has a di�erent scaling factor and
the amplitude of the radial and longitudinal components are proportional to
OAM order l. This implies that that for l = 0 the far �eld emitted beam is
purely azimuthal-polarized.

Considering the azimuthally polarized radiated beam, the electric �eld is
given by:

Eϕ,l(ρ, ϕ, ς) =

[
Ex(ρ, ϕ, ς)
Ey(ρ, ϕ, ς)

]
= El(ρ, ς)

{
− sin(ϕ)

cos(ϕ)
exp(ilϕ) (6.29)

Using Euler relations and Jones vectors, Eq. (6.29) can be rewritten as:

Eϕ,l(ρ, ϕ, ς) = El(ρ, ς)
i

2

[
1
−i

]
exp(i(l + 1)ϕ) + El(ρ, ς)

i

2

[
1
i

]
exp(i(l − 1)ϕ)

(6.30)
The �eld can be therefore described as the sum of a right hand circularly

polarized (RHCP) beam, described by the Jones vector

(
1
i

)
, with topological

charge of l − 1 and a a left hand circuarly polarized (LHCP), Jones vector(
1
−i

)
bean with topological charge of l + 1. This is a fundamental property

of azimuthally polarized CV beam and will be exploited in the demodulation
scheme employed in the experimental analysis.

6.3.3 Omega-shaped OAM multiplexer

The second type of the analyzed OAM emitters consist of non-resonant cav-
ity made by a quasi-circular waveguides wich are connected to bus waveguides
through a gap in correspondence of an opening-angle α (see Fig. 6.8). In or-
der to extract the light traveling in the omega-shaped waveguide, second order
angular grating are embedded in the inner vertical sidewalls as for the case of
microring OAM emitters which we have described in the previous section. The
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Figure 6.8: Layout of Omega-Shaped OAM multipliplexer.

innovative omega-shaped geometry allows to pack, in the same planar substrate,
several emitters with the same optical axis allowing the multiplexing of beams
with di�erent OAM orders. The theoretical analysis of the OAM beam emission
carried out for microring-based emitters can be still applied to these devices.
Nevertheless there are important di�erences related to the selectivity in the
emitted frequency which must be considered in terms of purity of the beams.

When all the waveguides of the omega-shaped device are excited, due to the
orthogonality between the OAM orders, the radiated beam is simply the sum of
the di�erent beams emitted by the single waevguides. The relationship between
the OAM order of the emitted beam and the input optical wavelengths is:

lemit =
∑
i

li =
∑
i

sign(p)(p− qi) (6.31)

where sign(p) = + or - represents the CW or CCW traveling optical modes
inside each arc waveguide, piis the azimuthal order of the equivalent microring
and qi is the number of grating periods.

In single-pass open microrings, no conditions on the round trip phase shift
need to be satis�ed in order for the wavelength to circulate in the device. The
requirement of integer azimuthal order, that imposed an integer valued OAM
order in microring emitters, is relaxed and all the circulating frequencies are
emitted as long as the phase matching condition, given by Eq. (6.29), is ful-
�lled. The OAM order, of the emitted beam is not necessarily integer. For
the resonance wavelengths of the equivalent microrings, a better purity of the
emitted beam is expected since the radiated beam has an integer valued topo-
logical charge matching with the phase distribution of the proper OAM beams.
This implies that OAM beams corresponding to these wavelength have a OAM
order dominant on the others resulting in higher side mode suppression ratios
(SMSR). On the other hand the transmittance and the overall radiative power
is not expected to change with the frequency.
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The value of the opening angle α plays a fundamental role in the performance
of the omega-shaped devices. Wide angles are preferable since more micror-
ings can be inserted concentrically and/or more space is available for the bend
waveguides connecting the omega-devices to the bus waveguide. Sharp bends
and abrupt variation of the e�ective refractive index along the optical path in-
troduce excess losses and consistent back-re�ection and must be avoided. On
the other hand, small angles ensure a better purity on the OAM vortex emitters
due to a smaller perturbation in the azimutally distribution of the radiation.

In Fig. 6.9, we report simulative estimations of side mode suppression ration
(SMSR) for OAM orders l = 0,±1,±2,±3,±4 emitted by the studied devices for
the resonance wavelength of the equivalent microring as a function of opening
angle. The SMSR values considered are calculated as the ratio between the
power of the dominant mode over that of second highest mode. The values show,
as expected, that SMSR degrades as the opening angles increases but that for
opening angle values smaller than 10°, SMSR is high: SMSR values grater than
100 or 20 dB are obtained for all the OAM orders considered. Furthermore,
for wider angles only the OAM orders l = 0,±1 achieve SMSR values grater
than 100 while the purity of the other OAM orders reduces to SMSR values
contained in the range 10− 100 for angle equal 15°. This simulative estimation
show that the opening angle a�ects dramatically the purity of emitted OAM
beam and demonstrate that coupling angle values smaller than 10 are required
for acceptable SMRS values (> 20 dB) with OAM orders l ≤ 5. At the same
time low OAM orders beam seem not to be considerably a�ected by the aperture
and can be used with wide opening angles. The properties of the OAM beams
emitted by wide angle omega-shaped emitters , α > 10°, have been analyzed in
the experimental analysis and will be discussed later.

6.4 Results of radiation e�ciency measurements
of microring-shaped emitters

In the �rst part of the study, the research activity focused on the optimization of
the grating and layout design of microring OAM emitters. In particular, devices
with di�erent geometrical layouts and embedding scattering elements of several
shape and dimensions have been characterized in terms of emitted and trans-
mitted power. The experimental analysis on the radiation e�ciency is aimed at
providing information on the combined e�ect of the geometrical parameters on
the performance of devices and to give a guideline for the optimization of the
design of such type of emitters.

The layout of the OAM microrings emitters is reported in Fig. 6.10:

As for the layout, di�erent values for the Euler Bend EuPi and the coupling
angle θ have been considered. The Euler band EuPi is de�ned as EuPi = Π/φ
where φ is the half-angle of the arc connecting the bus waveguide and the
coupling section. The coupling angle θ is the angle corresponding to coupling
section, i.e. the section where the ring and the bus waveguide are parallel. These
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Figure 6.9: Simulative estimation of SMSR for di�erent OAM orders as a func-
tion of the omega-shaped device opening angle. Such simulations have been
carried out by Dr. Ning Zhang of the University of Glasgow.

Figure 6.10: Schematic representation of the microring resonator OAM emitter.
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Figure 6.11: Schematic representation of the symmetry of the OAM emitters.

two geometrical parameters play a fundamental role in the coupling e�ciency
between the bus waveguide and microring and are therefore expect to a�ect the
performance, and in particular the radiation e�ciency, of the device, as will be
described later.

A preliminary remark on the maximum radiation e�ciency has to be done.
Since the SOI device is covered by a silica protective �lm; the stack made up of
the BOX layer, silicon device layer and silica protective layer is therefore sym-
metrical with regard the waveguide plane. This symmetry limits the maximum
power that can be emitted: considering the ideal case of a complete emission
of radiation by the waveguide, half of the power is radiated upward and half
downward. The emission e�ciency in these devices cannot therefore exceed
50%. Higher values can be obtained either breaking the symmetry of the struc-
ture or re�ecting upward part of the radiation directed toward the substrate. In
this work, we focus our attention on the analysis of the grating and microring
design in order to approach the maximum theoretical radiation e�ciency for
symmetrical SOI devices.

In order to maximize the radiated power two issues must be addressed: the
loss of the resonant structure and the critical coupling. As for the �rst, it is
quite intuitive that the scattering induced by the gratings should be the most
e�ective source of loss of the radiation circulating in resonator: the lifetime of
a photon should be long enough to allow the photon be scattered. The state-
of-art technology for SOI waveguide shows a propagation loss, as described in
Chapter 2, of few dB/cm. For small rings as the ones analyzed here, with radius
values < 30 µm, the propagation loss is negligible and the biggest contribute
is due to the mismatch between the mode of the coupling region and that of
the single waveguide. This perturbation in the waveguide cross-section causes a
certain amount of the circulating radiation to be re�ected back in the waveguide
or scattered to the radiating modes. The typical value of loss induced by the
modal mismatch are are about 0.03 dB per round trip. On the other hand, due
to the high index contrast contrast of silicon waveguide, even shallow grating
brings to signi�cant coupling. The typical �loss� induced by the grating is of
the order of 0.12 dB per round trip. This means that if the microring is well
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Figure 6.12: Standard point coupler geometry (left) and optimized geometry
(right) of the microring OAM emitter.

designed, the �rst requirement is easily met in a sidewall grating technology.

Concerning the second issue, as explained in Chapter 2, the minimum trans-
mittance of a ring resonator and consequently the maximum power stored, is
observed when the device operates at the critical coupling condition. Under
critical coupling condition, the internal losses equal the coupling power; slight
deviations from this value induces drastic variation of the performance of the
device. Since the embedded second order gratings are designed to e�ciently ex-
tract light from the waveguide, coupling strength greater than 10 are required to
achieve critical coupling. In standard point coupler geometry, similar coupling
strength require a reduction of the gap down to distances less than 100 nm
which add modal mismatch loss and cause technological complications in the
lithographic and etching processes. The extension of the coupling region from a
point to a section where bus waveguide and ring are straight and parallel, sim-
ilarly to racetrack geometry would impair the cylindrical symmetry and reduce
the purity of the emitted mode.

In order to address this issue, the geometry employed in the microring devices
analyzed makes use of a curved bus waveguide running parallel to a section of
microring, as depicted in Fig. 6.12.

This layout allows not to impair the cylindrical symmetry of the structure,
essential for the emission of the OAM optical vortex and to the other hand
enlarges the coupling region. The power transferred from the bus waveguide to
the ring and viceversa is determined by the the angular extent of the coupling
section. This geometry solution arises challenging issues in the layout design:
�rstly the radiation traveling in the curve bus waveguide may su�er bend loss
and the e�ective power in the coupling section may be signi�cantly lower than
the injected one. Furthermore, a modal mismatch appears at the beginning at
the end of the coupling region, in correspondence of the bend connecting the
straight waveguide to the curved section. In addition, the radiation circulating
in the microring and the one passing through the bus waveguide may run out of
phase the path due to the di�erent radius of curvature. One solution can be the
reduction of the e�ective refractive index of the bus waveguide by narrowing its
width. This solution reduces the optical path of the outer radiation and restores
the phase-matching condition.

As for the scattering elements, two geometries have been employed: one with
sinusoidal shape and one with rectangular shape (see Fig 6.13). Furthermore
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Figure 6.13: Sine geometry and rectangular geometry of the second-order grat-
ings which are embedded in the OAM emitter.

Figure 6.14: Optical image of a manufactured ring-shaped emitter with metallic
tracks and pads for thermal tuning of the coupling section.

rectangular gratings with di�erent values of height and width (i.e. duty cycle)
have been considered. The details of the grating layout will be given in the next
section. Each of these parameters can alter signi�cantly the power of the circu-
lating radiation that is extracted by the second order grating as demonstrated
in di�erent works, see for example [118, 119]. In fact, the height of the teeth
determines the extent of the dielectric function perturbation and consequently
the coupling strength of the grating. On the other hand, the shape and width
of the gratin teeth set the spatial Fourier components of the gratings and con-
sequently the orders of di�raction of the gratings that can be exploited for the
phase-matched scattering.

Keeping in mind these considerations, it's clear that the variation of just one
the considered layout parameter can dramatically alters the propriety of the de-
vices. Furthermore it's hard to predict how the variations of the parameters are
correlated and to know a priori the combination that optimizes the layout. For
this reason, the measurements of radiation e�ciency for various combinations of
these parameters could provide important infrormation for the understanding
the impact of these parameters on the properties of the emitted OAM beam
and on the performance of the devices.

The microring OV emitters have been manufactured starting with a SOI
wafer containing a 220 nm silicon device layer and 2 µm-thick buried oxide
(BOX) layer. The device geometry was patterned through electron lithogra-

130



Figure 6.15: Experimental set-up for the measurement of the radiation e�ciency.

phy on a negative photoresist, hydrogen silsesquioxane (HSQ), and dry-etched
anisotropically on silicon layer down to the BOX layer. Finally, the manufac-
tured devices have been covered by a protective layer of silica. The expected
geometry of the bus waveguide and of the ring waveguide is (500 × 220) nm.
The coupling distance is 150 nm, the radius of the microring is 29 µm and the
period of the embedded second order grating is 650 nm. The radiation e�-
ciency of the nanofabricated angular grating-based microring emitters has been
estimated analyzing the spectrum of transmittance and radiance.

The setup employed for these measurements is reported in Fig 6.15. A tun-
able laser source is uused for generating a stable polarization radiation injected
into the bus waveguide through a singlemode tapered lensed �ber with a spot
diameter matching the dimension of the polymer waveguide hosting the nano-
taper.

The polarization of the �eld is adjusted through a polarization controller
in order to excite the quasi TE mode of the silicon waveguide. The power of
the transmitted �eld Ptra at the endface of the sample and the power of the
optical vortex beam Prad are collected through a high sensitivity Germanium
power meter. Due to the high divergence of the transmitted �eld exiting the
waveguide and of the emitted radiation, we used objective lenses to collimate the
beams and direct them toward the camera and the other optical instruments.

The emission e�ciency η of the device is de�ned by the ratio of the emitted
power Prad to the optical power in the midpoint of the access waveguide Pin:

η = Prad(dBm)− Pin(dBm) (6.32)

Assuming the same coupling loss at the two facets,Pin can be calculated as:
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Figure 6.16: IR image captured of the lensed �ber used to inject light in the
polymer waveguide (up) and of the scattered light at the end of the polymer
taper (down).

Pin(dBm) =
Pinj + Ptra

2
(dBm) (6.33)

where Pinj is the power emitted from the input �ber lens.
The transmission spectrum of one of the microring OAM emitter for the

wavelength range of 1540 − 1565nm is reported in Fig. 6.17 . The spectrum
shows dips arranged in a periodic pattern similar to the ones observed for mi-
croring resonators without gratings in the sidewalls, see for example Fig. 2.18.
The wavelengths of the dips correspond to the resonance wavelengths of the
microring at which the radiation is stored in the ring. The distance between the
dips is about 3.1 nm gap and is in accordance with the expected free spectral
range of the microring, which is calculated using the group index of SOI waveg-
uide 4.1 and the microring perimeter of 182 um. The observed extinction ratio
is high for all the dips (more than 10 dB); this results show that the coupling
strength is high enough to e�ciently feed the resonance mechanism.

Fig 6.17 reports the transmission spectrum and radiation spectrum of one of
the manufactured microring emitters. In this case, the range and the wavelength
step of the tunable laser sweep have been reduced to enhance the accuracy
and the precision of the measurements. The obtained peaks and the dips are
observed at the same wavelengths; this demonstrates that when the microring
operates in resonant condition, the light is stored in the resonator and is partly
extracted by the embedded grating as expected. The observed spectra show
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Figure 6.17: Measured transmission spectrum for a microring OAM emitter.

transmittance dips vales of about 7 dB while the radiation peak values grater
than 4 dB; the values obtained in the measurements of other microrings are
comparable with such values. It's possible to observe that the shape and the
full width half maximum (FWHM) of the obtained peaks are more similar to
the ones of a lossy microring resonators. In fact, the phenomenon of scattering
of the circulating light by the di�racting elements represents, as described, a
signi�cant source of loss for the resonator. Di�erently with an ideal resonator
which is not a�ected by any kind of loss and shows delta-like peaks, a lossy
resonator, due to the limited photon life time, presents reduced the extinction
ratio and a broadening of the peaks as observed in the spectra of the analyzed
emitters.

The transmission and radiation spectra recorded have been used for the
estimation of the radiation e�ciency of the ultracompact OAM beam emitters
with di�erent geometrical parameters. Some results of the emission e�ciency
estimations are reported in Figg. 6.19, 6.20 and 6.21.

First of all, high values of radiation e�ciency have been obtained, greater
than 20%, for di�erent geometries analyzed proving the e�ciency of these de-
vices in trapping ed emitting light. The gratings with 90 nm high and 90 nm
wide scattering elements show the highest value of radiation e�ciency: for Eu-
ler bend angle of 5° the e�ciency obtained is around 26%. Furthermore, valuer
greater than 13% have been obtained for Euler bend sweeping from 4° to 12°.
Nevertheless, grating with geometries of (120 × 60) nm and(90 × 60) nm have
achieved high value of emission e�ciency with maximum e�ciency about 20%
and values greater than 13 for almost all the geometry considered. These grating
layouts resulted to have the greatest coupling strength and will be employed in
future analysis for the optimization of the devices. As for the other grating ge-
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Figure 6.18: Measured transmission and radiation spectra for a microring OAM
emitter.
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Figure 6.19: Measured radiation e�ciency as a function of Euler bend angle
EuPi and coupling angle θ, for di�erent sine and rectangular grating geometries.

Figure 6.20: Measured radiation e�ciency as a function of Euler bend angle
EuPi and coupling angle θ, for di�erent sine and rectangular grating geometries.

Figure 6.21: Radiation e�ciency as a function of Euler bend angle for di�erent
grating geometries.
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ometry, the sinusoidal shaped gratings show promising e�ciency values as well,
taking into consideration the small eight of the protrusion analyzed: in fact
values around 11% have been obtained for 20 nm of extension. Nevertheless,
sine grating with bigger heights have brought to lower radiation e�ciency: this
is likely to stem from technological issues arisen by the requirement of continu-
ously varying patterning of the structures on bigger scale. Further analysis are
again required for exploring the potential of this grating geometry.

Beside the grating layout, the results highlight the in�uence of the microring
layout on the emission e�ciency. In particular, the Euler bend angle has proved
to a�ect dramatically the emission for (90 × 90) nm gratings: sweeping the
Euler bend angle values in the range 4°-15°, the emission e�ciency values vary
from 9° to 26°. The same behavior can be observed for other squared gratings
geometries, in particular(120 × 60) nm and(90 × 60) nm but within a reduced
range of radiation e�ciency values. On the other hand, the performance of sinu-
soidal shaped gratings emitters proved to be less a�ected by variation in Euler
band and coupling angle values: radiation e�ciency values about 11 have been
obtained for all the Euler band and coupling angle combination considered. The
same happens for squared gratings with low emission e�ciency as (60x100) nm.
Furthermore, gratings with di�erent radial protrusions are di�erently a�ected
by the variation of geometrical parameters: maximum values of radiation e�-
ciency for (90×60) nm, (60×60) nm and (120×60) nm correspond to di�erent
values of Euler bend, in particular 5°, 9°and 10° respectively. On the other
hand, highest e�ciency values for grating with the same height, (90 × 60) nm
and (60× 60) nm have been obtained for the same Euler bend angle. These re-
sults can be explained considering that the grating strength determines the loss
of the resonator and consequently the coupling strength at which the critical
coupling condition occurs. Therefore, di�erent grating height can shift geomet-
rical parameters values, as Euler band angle, that make the emitters operate at
critical coupling condition.

In conclusion, the experimental values obtained show that the greatest emis-
sion e�ciency is obtained for squared grating with height values of 90 nm and
width values of 60 nm and 90 nm, corresponding to duty ratio of 10% and15%,
respectively, and with Euler band angle of 5°. Such outcome highlights this
layout as a promising starting point for the optimization of the OAM beam
emitters radiation e�ciency. Nevertheless, due to the extreme sensitivity of the
device to the variation of geometrical parameters and to geometrical nonideal-
ities induced by the nanofabrication processes, it is not possible to understand
whether the ring is or not in critical coupling condition and attribute the ob-
tained e�ciency solely to the grating and ring design. Further analyses will be
carried out in order to remove this ambiguity and evaluate the maximum po-
tential radiation e�ciency of the various layout. In particular, the experimental
measurements of radiation e�ciency will be performed employing metallic mi-
croheater for thermally tuning the coupling strength of the ring and reaching
critical coupling condition.
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6.5 Results of the characterization of the omega-
shaped multiplexers

In the second part of this study on integrated OAM beam emitters, the re-
search activity has been focused on omega-shaped emitters for OAM radiation
multiplexing. The working principles of this innovative type of OAM emitter
have been assessed through the analysis of the optical properties of the radiated
beams in terms of phase distribution, state of polarization and order purity.
The characterization of the OAM beams required a demodulation scheme that
transforms any OAM order l of into zero order. The demodulation technique
employed in these measurements consists, basically, of imparting a phase mod-
ulation pattern wich match the one of the beam itself but with opposite topo-
logical charge. The principle is analogous to the modulation scheme, described
in section 6.2, where a spiral phase plate (SPP) is employed to convert TEM
laser beam into OAM beam of any order. Nevertheless, in the measurements
reported, the phase modulation is not imparted through a SPP, but through a
spatial light modulator (SLM) that allows to electronically con�gure the phase
pattern to impose. The mode purity of the OAM beam, i.e. the fraction of power
carried by a single OAM order with regard the overall power of the beam, can
be estimated comparing the pattern of the demodulated beam with a Gaussian
like beam. In fact, as described before, a zero order CV beam has an intensity
distribution comparable to a Gaussian beam and by estimating the amount of
normalized power contained in the central spot of each demodulated beam, it's
possible to quantify the purity of the order.

The setup employed for the analysis of the optical vortex beam emitted by
the omega-shaped devices is reported in Fig. 6.22. The complexity of the de-
modulation procedure required the addition of several tools to the setup used
for the analysis of radiation e�ciency for ring-shape OAM emitters. The opti-
cal vortex beam radiated by the devices is collected by the objective lens and
passed through a quarter waveplate. This plate, built combining multi-order
crystalline quartz waveplate, induce an optical phase shift of λ/4 between the
polarization aligned with its fast and slow axis. This phase shift transforms cir-
cularly polarized light into linear polarized light with the direction of the electric
�eld oriented at 45° to the fast axis. According to the decomposition of a CV
beam described above, an OAM order l beam can be decomposed in 2 linearly
polarized beam with di�erent orientation of order l − 1 andl + 1. An high ex-
tinction ratio (> 50 dB) nanoparticle �lm linear polarizer selects the beam with
the polarization aligned with its axis which impinges on the (SLM). The (SLM)
which we have employed is basically a re�ective liquid crystal (LC), mounted on
silicon layer, containing anisotropic rod-like molecules. The orientation of these
molecules, in each pixel, is controlled by an electric �eld which rotates the fast
and slow axis of this birefringence crystal. This mechanism allows to impose
a electronically controlled phase pattern modulation to incident light which is
re�ected by the silicon substrate, after passing the LC layer. The SLM works
with linear polarized radiation which is vertically aligned to the screen; the axis
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Figure 6.22: Experimental set-up for the measurement for the Omega-shaped
OAM emitters.
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Figure 6.23: Phase pattern employed in the SLM for the OAM beam demodu-
lation withl = 5 (left). The same pattern with the lens phase factor (right).

of the polarizer and the axis of the SLM are therefore aligned. Finally, the
collimated optical vortex beam is focused on the screen of a high sensitivity and
high resolution InGaAs camera. For the observation and recording of far-�eld
image of the radiation pattern, a plano convex lens is posed along the optical
path focusing on the back focal plane of the objective lens.

An example of the phase pattern used in the SLM is reported in Fig 6.23:
this pattern is used for the demodulation of beam with OAM orderl = 5. On
the right, we report the same pattern with the addition of a lens phase factor
∝exp(jρ2/2f), where ρ is the radial coordinate and f the focal length. Compar-
ing this pattern with the phase distribution reported in Fig. 6.7, it's clear that
the lens phase factor improves the matching between the modulation pattern
and the impinging CV beam: a very good emulation of the Bessel-like radial
dependence in the spiral pattern of the OAM beam, expressed by Eq. (6.25),
can be obtained. In order to improve the matching between the impinging beam
and the SLM pattern, it is possible to modify the �focal length� of the lens phase
until a good demodulated pattern is obtained. The demodulated optical vortex
beam, which theoretically has OAM order l = 0 , shows a Gaussian-like intensity
distribution which can be observed and recorded through the InGaAs camera.

The omega-shaped devices have been nanofabricated employing the same
manufacturing technological processes used for the nanofabrication of the mi-
croring emitters which have been described in the previous section.

Fig. 6.24 shows two images of the omega-shaped devices analyzed which have
been captured through a visible camera. In the image on the left, it's possible to
observe the complete layout of the device: the single pass emitters, the straight
and curved section of the bus waveguides, and the metallization which can be
used for tuning the resonance wavelength of the equivalent microrings. On the
right we report is a particular of the omega-shaped emitters showing solely the
waveguides embedding the second order angular grating; the device is realized
packing concentrically four microrings with an opening angle of about 15°. The
layout allows to obtain a compact device with reduced footprint: such device
is contained in a (250 µm × 250) µm area. At the same time, the device does
not contain sharp bends or abrupt discontinuities in the waveguide section that
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Figure 6.24: Layout of the OMEGA-shaped devices.

Figure 6.25: Near-�eld intensity distribution of the beam radiated by the
Omega-shaped emitter exciting one waveguide.

could induce bend losses, back scattering or unwanted re�ections.
In the �rst part of such experimental analysis which we have carried out

on omega-shaped devices, we evaluated the optical properties of the emitted
beams with di�erent OAM orders exciting the waveguides singularly. At this
stage we have analyzed the intensity distributions of the emitted OAM beams
without the employment of the described-above modulation technique and we
have estimated the resonance wavelengths of the equiavalent microrings of the
devices. Such values have been employed for the analysis of the demodulated
beams which is discussed later.

Fig. 6.25 shows the obtained near-�eld intensity distribution when the inner
omega-shaped emitter is excited.

The pattern is clearly visible and neat, and match, as expected, with the
geometry of the device. The numerical aperture of the objective lens allows to
collect a su�cient amount of the spatial frequencies contained in the radiation.
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Figure 6.26: Near-�eld intensity distribution of the beam of Fig. 6.24 after a po-
larizer horizontally (left) and vertically (right) oriented. Rotating the polarizer
the two.lobe pattern rotates in the same manner.

The intensity distribution is quite uniform along the azimutal direction; this im-
plies that the device e�ciently extracts and directs the circulating light toward
the lens with almost the same intensity all along the optical path.

Then, we have analyzed the state of polarization of the emitted beams
through the employment of a polarizer after the objective lens. When the
polarizer is aligned along the horizontal direction solely horizontally polirized
radiation is transmitted and low intensity area are visible on the equatorial
points, see Fig. 6.26 (left). In these points the radiation is therefore vertically
polarized. Rotating the polarizer of 90◦, the lower intensity is observed at the
poles. The same results are obtained for arbitrary orientation of the polarizer.
Such outcomes show that the emitted beams have no radial components: as ex-
pected, the SOP of the beam emitted by omega-shaped device is predominantly
azimuthally polarized analogously to case of CV radiation of microring-based
devices.

As discussed in section 6.3.3, due to the open geometry of the device and the
absence of resonance mechanism, the response in frequency of the omega-shaped
emitters is expected to be quite �at. In fact, the radiation and transmittance
spectrum obtained for the omega-shaped devices don't show sharp peaks or dips
di�erently with the case of microring-based devices. Nevertheless, it is possible
to identify the wavelength corresponding to OAM order l = 0 taking advantage
of the decomposition of the mode in circularly polarized radiations of di�erent
OAM orders, which we have described in the section 6.3.2.

The l = 0 beam can be decomposed as the sum of two beams with l = −1,+1
that possess donuts-like intensity distribution. On the other hand, the emitted
beam with OAM order l = ±1, can be decomposed respectively in the OAM
orders l = 0,+2 and l = −2, 0. This implies that the intensity pattern of beam
with l = 0 is expected to be less intense in the center and that the order l = ±1
have a maximum of intensity in the center. Fig. 6.27 reports the radiation
spectrum recorded in correspondence of the center of the pattern. The radiated
power corresponding to the parts of the pattern which are far from the center
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Figure 6.27: Radiation spectrum for the Omega-shaped device exciting one
waveguide utilizing an iris to collect light in the center of the beam solely.

has been blocked through the employment of an iris. In the obtained image, as
expected, a dip is clearly visible for wavelength values about λ = 1512nm while
a peak is observed for wavelength values about λ = 1509nm. Such wavelengths,
λ = 1512nm and λ = 1509nm, are used as starting point for the pursuit of the
OAM order l = +1 and l = 0.

The wavelength corresponding to the OAM orderl = +1 is therefore selected
through the observation of the far �eld pattern for wavelengths values which
are accurately tuned around λ = 1509nm until a Gaussian-like spot is clearly
visible, (Fig. 6.28(a)). The same procedure is applied for the wavelength cor-
responding to l = 0 ; in this case we seek a far-�eld image with a well de�ned
donuts-like pattern, as shown in Fig. 6.28(c). Once inferred the FSR for the
omega-devices under analysis, the OAM order l = −1 can be obtained in the
same way (Fig. 6.28(b)). This procedure yielded the wavelengths 1508.75 nm,
1513.825 nm and 1511.25 nm for the OAM order l = +1, 0,−1 respectively and
FSR values of about 2.54 nm, as expected from theory.

The obtained patterns, reported in Fig. 6.28 are well de�ned with a sharp
point in the center and intensity minima and maxima which alternate along
the radial direction, for OAM order l = ±1. In correspondence to halfway
wavelength, (l = 0), the pattern shows a hole in the center and brighter points
collected in ordered rings around the optical axis; this is an expected result
since a zero order beam has component of the order l = ±1 whit a donuts
like pattern, as described in previous sections. The outer maxima and minima,
which are arranged concentrically, correspond to higher OAM order beams that
are excited due to the discontinuity of the radiative pattern in correspondence
of the opening angle.
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Figure 6.28: Far-�eld intensity distribution of the emitted beam for wavelengths
λ = 1508.75nm (a), λ = 1513.85nm (b) and λ = 1511.25nm (c) corresponding
to OAM order l = +1, l = −1 and l = 0 respectively.

The wavelengths values corresponding to the OAM orders l = +1, 0,−1 and
the obtained FSR are subsequently employed for the analyses of the OAM order
purity and modal contents of the emitted beams. Such analysis has required the
demodulation of the radiated beams which we have carried out following the pro-
cedure described above . The pattern of the demodulated beams and the phase
patterns imposed by the SLM are reported for OAM order l = +1, 0,−1,−2,−3.
In order to set the wavelengths corresponding the OAM orders, we started from
the wavelengths with OAM order l = +1, shifted of the FSR inferred from
the previous analysis and �nely tuned the injected wavelength in order to ob-
tain a well de�ned gaussian pattern, analogously to technique used for not-
demodulated beams.

For all the OAM orders under analysis, the intensity pattern of the demod-
ulated beams shows a bright disk in the center, where most of the energy is
concentrated, and surrounding areas with lower intensity. Comparing thel = 0
beam in Fig. 6.28 (c) with the corresponding demodulated beam, it's possible
to appreciate how the demodulation e�ectively redistributes the intensity of the
radiated beam. The hole has disappeared, and most of the power is concentrated
around the center. The energy around the disk has been �spatially� scattered
destroying the Bessel-like radial dependence visible in the original pattern. Fur-
thermore, the OAM order obtained is in accordance with the theoretical one
determined by the relation given by Eq. (6.24).

As described in section 6.2, a pure mode conversion obtained through demod-
ulated technique which we have employed, is theoretically impossible. Beams
with di�erent OAM order have di�erent intensity distribution patterns and SLM
imparts a phase-only modulation: the decomposition is therefore expected to
contain di�erent modes. Nevertheless, the demodulated patterns are good for
all the OAM order beams analyzed: since the intensity distribution of the pat-
tern is concentrated in the center of the pattern, most of the emitted radiation
power is expected to be carried solely by one OAM order.

We therefore carried out an extensive set of measurements to quantify the
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fraction of power of the demodulated beams which is carried by each OAM
order, i.e. their purity. The purity has been analyzed through the analysis
of the obtained intensity distribution patterns of the demodulated beams. In
particular, for each of the wavelengths under analysis, the far �eld pattern has
been demodulated using phase modulation patterns, through the employment
of the SLM , with di�erent OAM orders. The intensity of the obtained Gaussian
spot contained in the demodulated patterns, has been calculated through image
software processing of the recorded images and normalized to the power of the
radiated beams. Fig 6.29 shows the obtained values for the purity of the beams
with OAM order l = 5. The results shows that most of the power of the
radiated beam is carried solely by one mode. The grating wavelength selectivity
combined with the constructive phase interference of the scattered radiation in
a single round trip proved to e�ciently select a preferential OAM order in the
radiated beam. The results show that the performance of the omega-shaped
devices in terms of sideband suppression are good despite the wide opening
angle (around 15◦): the principal mode carries approximately 80% of the total
power less than 10% is contained in the other modes. These values correspond to
SMRS values of 10 dB for the device under analysis; comparable SMRS values,
about 10 dB, have been obtained in the experimental analysis which we have
carried out on the other OAM orders and omega-shaped emitters with di�erent
dimensions. It's worth noting that the design of the grating and layout has not
been optimized; the performance of such devices, in terms of OAM order purity,
can be signi�cantly improved through systematic analysis like those which we
have carried out on the ring-shaped emitters. At the light of these consideration,
these results show that the omega-shaped devices, despite the open geometry
and signi�cant discontinuity (α = 15°) in the emission pattern, have proved
to emit OAM orders beams with high modal purity and SMRS values around
10 dB.

Fig. 6.31 shows the near �eld intensity distributions and relative demodu-
lated patterns of the beam, radiated by one omega device with four waveguides
separately (a,b,c,d) excited. The device is designed so that for the same wave-
length λ ' 1513.4, all the omega-shaped waveguide radiate beams with the
OAM order l = +1. The demodulated patterns are similar to those reported in
the previous analysis, as expected, see for example Fig. 6.25 and Fig. 6.26. Fig.
6.31 report the-near �eld and far-�eld intensity pattern of the radiated beam
when all the waveguides are excited at the wavelength λ ' 1513.4. In the far
�eld, the zero OAM order contained in each of the emitted beams, give rise to
a perfectly centered gaussian-like pattern. Despite the observed pattern is the
sum of the beams emitted by the four omega shaped waveguide, no distortion
to the symmetry can be observed; the pattern is similar to the one observed for
the single omega device. This implies that all the radiated beams are coaxially
emitted and that theirs patterns sum maintaining the cylindrical symmetry of
the single beam. Similar results have been obtained for the other fabricated
omega-shaped emitters. Considering the high divergence angle of the radiated
beams and the long between the emitters and the IR camera (about > 1 m) used
for the observation of the emitted patterns, misalignments between the optical

144



Figure 6.29: Intensity distribution of the demodulated beams for di�erent wave-
lengths and OAM orders (right) and phase patterns used in SLM (left).
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Figure 6.30: Modal purity of a OAM beam, at λ = 1520, 81 nm, emitted by two
distinct waveguides of the OAM emitter. The principal OAM order is l = −5.

axis of the OAM beams would give rise to evident asymmetries in the recorded
images. Nevertheless, the obtained pattern do not show any evidences of such
imperfections; these results prove that the proposed layouts allows to e�ciently
mix beams with di�erent OAM orders without signi�cant impairments on the
symmetry of the emitted radiation with regard to the single emission case. Fur-
ther analyses, employing experimental setup with longer distances between the
emitter and the recording instruments, are necessary but these results suggest
that the devices represent a possible solution for Mode-Division-Multiplexing
schemes employing OAM-carrying beams.
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Figure 6.31: Near �eld intensity pro�les (up) and relative demodulated patterns
(down) of the beams radiated by a Omega-shaped emitter with four waveguides
separately excited (a,b,c,d). In the last column near �eld intensity distribution
and far �eld intensity distribution of the beam radiated with the four waveguides
excited.
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Conclusions

This Thesis dissertation has been focused on the analysis of the physical proper-
ties of strained silicon structures, and in particular of the structural, mechanical
and electromagnetic properties of the photonic devices based on strained sili-
con technology. Strained silicon has been recently shown to induce nonlinear
e�ects, (not observed in pure silicon due to its crystal symmetry properties)
which can be fruitfully exploited for the realization of novel optical functionali-
ties. The aim is to study the e�ects induced by lattice deformations, which are
generated through the deposition of high intrinsic stress �lms, in the structures
under analysis and the impact on the optical properties of such semiconductor
devices to obtain a deeper understanding of the physical principles underly-
ing the insurgence of nonlinear e�ects in deformed silicon structures and to
investigate their dependency on the experimental technological nanofabrication
parameters. In order to accomplish this task, we carried out a set of simulative
and experimental studies on strained silicon structures and SOI devices that
allowed us to estimate, through the employment of the developed FEM-based
simulative model, the lattice deformations induced on micrometric and nano-
metric stilicon rib structures by the deposition of a silicon nitride layer and to
measure the strain �eld distribution through the employment of the Conver-
gent Beam Electron Di�raction (CBED) technique. We have also assessed the
e�ectiveness of lattice deformation, observed in the analyzed photonic devices,
in altering the optical properties of strained SOI waveguides through the em-
ployment of a multhyphysical simulative model and of experimental techniques
for the measurements of the performance of the manufactured SOI devices. We
manufactured the silicon structures and SOI devices that we have used for the
the experimental measurements employing the novel Space Pattering Method
manufacturing technique that allowed us to realize nanometric features starting
from conventional photolithography and we carried out experimental analysis
on the quality of the processes that provided useful information on the possible
use of this nanofabrication technique for the manufacturing of strained silicon
photonic devices.

An overview of the proposed silicon photonic devices employing the strained
silicon technology was provided in Chapter 1 focusing on the advantages that
could stem from their use in interconnects and switching fabrics of IT-infrastructures
in terms of bandwidth, power consumption and wiring density. In particular,
we described the e�ects that are commonly exploited in silicon based optical
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devices to achieve modulation functionalities, i.e thermo-optic and free carrier
dispersion e�ect, and highlighted the limits of performance of these devices con-
cerning the tunability range, the induced loss and power consumption. Then we
described the strained silicon photonic devices that have been proposed for the
realization of optical functionalities exploiting nonlinear e�ects, such as Pockels
e�ect and Second Harmonic Generation, induced by lattice deformation showing
the potential of strained silicon photonics technology.

In Chapter 2 we provided the theoretical framework for the analysis of struc-
tural and optical properties of strained SiPh devices. In particular, I introduced
the mathematical equations that describe mechanical and electromagnetic prob-
lems and the implementation of this theoretical model in the FEM-based sim-
ulative tools that we have developed for the analysis of the lattice deformation
and their e�ects on the optical properties of the manufactured devices. Then
we described the sources of loss su�ered by radiation traveling in SOI waveg-
uides for straight and bent rib and ridge structures highlighting the in�uence
of geometrical imperfections, stemming from nonidalities in the manufacturing
processes, on the performance of the devices and provided state-of-the-art val-
ues of optical losses that have been used as reference to assess the quality of the
manufacturing processes employed for the realization of SOI waveguide.

Strained silicon rib structures and devices have been successfully manufac-
tured starting from Si and SOI wafer through the employment of the Spacer
Pattering Method (SPM) technique, discussed in Chapter 3, and an experimen-
tal analysis based on electron microscopy techniques has been carried on the
micro- and nano-fabricated devices. The results, reported in Chapter 3, proved
the reliability and accuracy of the CMOS processes employed and in partic-
ular of the SPM nanofabtication technique. The SPM, that had never been
employed for the realization of photonic devices, allowed to successfully de�ne
nanometric structures and gaps starting from conventional photolitography ob-
taining the expected dimensions. In particular, the layout contained ribs and
ridges with(450×220) nm geometry separated by gaps with minimal dimension
of 200 nm. The etching processes have not been impaired by the closeness of
the other structure and the delicate gap de�nition has been accomplished cor-
rectly also for coupling ribs sections. The LPCVD Si3N4 layer was conformally
deposited on the structures and, despite the high intrinsic stress that produced
signi�cant strain values in the devices, it has not induced crack or delamina-
tions in the ridge or in the structures. These results con�rm the employability of
these technological processes and techniques for the manufacturing of photonic
devices.

A simulative and experimental analysis of the lattice deformation of the
manufactured devices as well as of the optical properties of the nanofabricated
strained SOI devices has been carried out and its results are reported in Chap-
ters 4 and 5. In particular the distributions of strain tensor components εxx,
εxz and εzz across the silicon rib structures have been estimated through the
employment of a �nite element method (FEM) based simulative model. The
simulative estimations, reported in Chapter 4, that have been obtained assum-
ing the geometries observed on the manufactured structures, show strain values
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of the order of the millistrain for all the considered components, with maximum
values obtained at theSi/Si3N4 interface, for both micrometric and nanomet-
ric ridges. In particular, maximum values of 2.2 mε for εxx, −2.3 mε for εzz
and ±1.8 mε have been obtained in the micrometric structures. Instead, For
the nanometric case, we attained maximum strain values of 2.8 mε for εxx,
−3.1 mε for εzz and ±3.5 mε for εxz. Both εxx and εzz show a symmetric be-
havior with respect to the rib vertical axis, while an anti-symmetric one is found
for εxz, as expected from theory. Around the rib center, the amplitude of εxx
and εzz components is found to be still signi�cant for the nanometric structures
di�erently from the micrometric case while the εxz component approaches to
negligible values for both the structures. These results con�rm the possibility
to attain signi�cant values for all the strain tensor components analyzed in pho-
tonic structures through the deposition of a high intrinsic stress silicon nitride
layer.

A comparative analysis between the strain values estimated through the
FEM based simulative model and those obtained through the Convergent Beam
Electron Di�raction (CBED) technique, has been carried out obtaining a good
agreement between the expected and the experimental values. The measured
strain components behaviors of the manufactured structures, reported in Chap-
ter 5 follow the theoretical expectations con�rming, in particular, a symmetric
behavior for εxx and εzz, and an anti-symmetric behavior for εxz. Further-
more, the estimated values of εxx and εxz show a quantitative agreement with
those measured through the CBED technique. For vertical deformation, i.e.
for the case of εzzcomponent, the amount of strain is underestimated by sim-
ulative predictions for both the micrometric and nanometric structures. This
discrepancy can be linked to the reduction of sample thickness down to 200 nm
required for the TEM analysis. This procedure makes the sample subject to
deformation assessment and phenomena of strain relaxation that the simulative
model, assuming a bulk condition for the sample, does not take into considera-
tion. These results show that the developed simulative model and CBED strain
measurement technique represent reliable and accurate tools for the analysis of
structural properties of strained silicon structures and that can be employed in
the design of photonic structures exploiting strained silicon technology.

The optical properties of single and coupling strained SOI waveguides have
been evaluated through a multiphysical simulative model and the results are
reported in Chapter 5. A good modal con�nement and values of birefringence
of 1.3·10−2 have been obtained together with a variation of 5·10−3 and 9·10−3 for
the e�ective refractive index and e�ective group index, respectively, with regard
to the stress-free case when a 350 nm Si3N4 thick layer is deposited. Note that
the attained values of the analyzed electromagnetic properties are of the same
order of magnitude of those possessed by lithium niobate commonly employed
in modulating devices; this paves the way for an e�ective use of strained silicon
technology. The presence of the high intrinsic �lm is therefore expected to
a�ect signi�cantly the optical properties of the silicon nanowire, in particular
inducing a signi�cant optical anisotropy and enabling the presence of second
order nonlinear e�ects without deteriorating the guiding properties of the SOI
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waveguides.
The propagation losses of the manufactured strained SOI waveguides have

been evaluated through the experimental Fabry-Perot (FP) resonance technique,
discussed in Chapter 5. Propagation losses of (5.8 ± 0.8) dB/cm for the range
1545− 1547 nm and (8.8± 0.8) dB/cm for the range 1555− 1557 nm have been
obtained. Despite the FP technique can overestimate the loss coe�cients, (since
it assumes perfect waveguide facets while the re�ectivity is usually lower than
the ideal Si/air interface), the obtained values are of the same order of magnitude
of those reported in literature for the state-of-the art waveguides fabricated with
the 193 nm optical lithography or electron beam lithography. These results
con�rm, therefore, the quality of the manufacturing processes employed and in
particular the reliability of the SMP technique for the realization of low loss
SOI waveguide-based devices.

In addition to the described research activity, we carried out an experimental
study on the electromagnetic properties of novel integrated emitters of optical
beams carrying a well-de�ned orbital angular momentum (OAM ) order. These
devices are based on silicon photonics technology and represent an innovative
type of structures that has gained growing interest due to its potential use as
multiplexer in free-air optical communication. We carried out this research ac-
tivity during an internship as visiting postgraduate researcher at the Electronics
and Nanoscale Engineering Division of the School of engineering of the Univer-
sity of Glasgow. The outcomes of this activity, reported in Chapter 6, provided
important information for the understanding of the optical properties of the
OAM carrying radiated beams and the impact of the experimental technology
nanafabrication parameters on performance of the devices, in particular on the
phase distribution and OAM purity of the emitted beams. Furthermore this
analysis allowed to explore the potential use of SiPh OAM emitters in telecom
and datacom applications as well as to estimate the advantages, in terms of
crosstalk and switching speed, brought by the replacement of the actually em-
ployed bulk OAM emitters with the proposed devices. The results show that
radiation e�ciency values of 27% can be obtained for ring-shaped emitters and
that the adjustment of geometrical parameters could bring to a signi�cant en-
hancement of the emitted power. We showed that omega-shaped emitters can
e�ciently accomplish multiplexing operations in OAM-based free-space commu-
nication showing high values of OAM purity in the emitted beams; in particular
side mode suppression ratio (SMSR) values around 10 dB have been obtained
for 4-OAM orders multiplexing schemes for all the geometries that have been
considered. In view of these results, we believe that SiPh integrated OAM emit-
ters can be fruitfully employed in multiplexing techniques for free-space and
�ber-optic communications and that the replacement of bulk OAM emitters
with the proposed devices could bring to signi�cant advantages.

In conclusion, the outcomes of the simulative and experimental analysis re-
ported in this Thesis dissertation provided important information on the ma-
terial properties of strained silicon structures as well as on experimental and
simulative tools that could be employed to implement this technology in SiPh
devices and provide accurate and reliable analysis on strained silicon structures.
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In particular, the results show that the deposition of a high intrinsic stress sili-
con nitride �lm on silicon structures is exerting a strong straining e�ect that, in
accordance with the multiphysical analysis, induces signi�cant nonlinear e�ects
in silicon devices for datacom and telecom applications. At the same time, we
assessed the quality and reliability of the Spacer Patterning Technique method
employed for the manufacturing of strained silicon photonic devices: due to its
low-cost and high yield processing the SPM represents a promising alternative
to actually employed technology and can provide bene�ces to the development
of SiPh, and in particular to the strained SiPh. Within this work we also proved
the accuracy of the developed FEM-based models and of the CBED experimen-
tal technique for the estimation and measurements of lattice deformation in
silicon photonic structures and the strain-induced optical properties, showing
that these two techniques can be e�ectively employed for the analysis of pho-
tonics devices based on strained silicon technology. Finally, we believe that the
SPM nanofabrication technique can be fruitfully employed for the manufactur-
ing of strained silicon devices and that the developed FEM-based simulative
models together with the CBED strain measurement technique represent accu-
rate and reliable tools for the analysis of strained SiPh devices. The results of
the simulative and experimental analysis that we have reported in this Thesis,
in particular the signi�cant values of birefringence as well as the low propaga-
tion losses of strained SOI devices that we have obtained, show that strained
silicon technology can be fruitfully employed as a technological platform for the
manufacturing of novel and high-performance optoelectronic silicon photonic
devices.
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