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Introduction

Nowadays different types of high-throughput technologies allow us to collect in-
formation on the molecular components of biological systems. Each of such tech-
nologies (e.g. nucleotide sequencing, DNA-chips and protein mass spectrometry) is
designed to simultaneously collect a large set of molecular data of a specific kind:
e.g. nucleotide sequences, gene expression and protein abundances. The biolog-
ical information retrieved is measured at different “omic” levels. The word omic
comes from the suffix common to most of the layers of molecular information re-
trievable (e.g. genomics, transcriptiomics, proteomics, metabolomics). In order to
draw a more comprehensive view of biological processes, experimental data made
on different layers have to be integrated and analyzed. The complexity of biological
systems, the technological limits, the large number of biological variables and the
relatively low number of biological samples make integrative analyses a challenging
issue. Hence, the development of methods for the integrative analysis of multi-layer
datasets is one of the most relevant problems computational scientists are addressing
nowadays.
In the first part of the work we describe the issues arising from the analysis of omics
and multi-omics datasets focusing ourselves on the mathematical aspects. Several
omics data integration methods are presented and broadly divided into categories
in order to get a first synthetic glance of the most representative and promising
techniques used for the analysis of complex multi-level biological data. In the lit-
erature we noticed a growing interest around network-based methods. With the
word network-based we mean approaches that use graphs for modeling and ana-
lyzing relationships among omic variables. Networks allow to model the intricate
cellular molecular interactions and to use it as a framework for the integrated anal-
ysis of layers of biological information. In particular we found that algorithms that
propagate molecular information on networks are being proposed in several appli-
cations and are often related to actual physical models. In order to set up a general
physical mathematical framework to study the exchange of information in biological
networks we considered the chemical master equation (CME). The CME is adapted
to be descriptive of a stochastic process taking place on the network. We show that
the macroscopic behavior of the network CME consists of a dynamical system from
which it is possible to build up efficient algorithms and define new pipelines for the
analysis and integration of omics.
In this work we propose two novel network-based methods with applications to both
synthetic datasets and prostate ardenocarcinoma (PRAD) data. In both the appli-
cations the deleterious molecular information (e.g. somatic mutations) are mapped
on the protein-protein interaction (PPI) interactome. In the first application we
defined a novel methodology with the purpose of extracting differentially enriched
modules (DEM) from the interactome that uses first a network diffusion algorithm
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to propagate the omic information on the network, and then defines the network
smoothing index (NSI) and network resampling (NR) in order to extract the signif-
icantly connected network regions carrying most of the differential molecular infor-
mation between two classes of samples (DEM). In the second application we study
how the deleterious molecular information alters the normal information flow rep-
resented as a random walk on the network. Differently from the first application,
the nodes of the network carrying deleterious information are modeled as exchang-
ing information with an external node whose inner and outer connections to the
existing network represent a perturbation of the biological network. The impact
such perturbation is measured comparing the non-perturbed information flow in the
network and the perturbed one that is characterized by the exchange of information
with the external node. We define a critical threshold on the basis of the spectral
properties of the existing network that characterizes a macroscopic shift in the in-
formation flow on the network. In such fashion it is possible to measure to which
degree a distribution of altered molecular information on a given network deviates
the normal trajectories of information flow.
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Chapter 1

Omics and multi-omics data
integration methods

In this first chapter we describe the issues arising from the analysis of omics and
multi-omics datasets focusing ourselves on the mathematical aspects. Several multi-
omics data integration methods are presented and broadly divided into categories
in order to get a first synthetic glance of the challenges arising from the analysis
of complex multi-level biological data. Complete insights and further connections
to other related literature can be found in the publeshed article “Methods for the
integration of multi-omics data, mathematical aspects” [1].

1.1 Introduction to omics and multi-omics data

Biological functions are exploited by systems of interacting molecules and macro-
molecules that take part in physical and biochemical processes in structured environ-
ments. Different types of high-throughput technologies allow us to collect informa-
tion on the molecular components of biological systems. Each of such technologies
(e.g. nucleotide sequencing, DNA-chips and protein mass spectrometry) is designed
to simultaneously collect a large set of molecular data of a specific kind: e.g. nu-
cleotide sequences, gene expression and protein abundances. Therefore, in order to
draw a more comprehensive view of biological processes, experimental data made
on different layers have to be integrated and analyzed. The complexity of biological
systems, the technological limits, the large number of biological variables and the
relatively low number of biological samples make integrative analyses a challenging
issue. Hence, the development of methods for the integrative analysis of multi-layer
datasets is one of the most relevant problems computational scientists are addressing
nowadays.
A few reviews exist on this topic. For example, Berger et al. [2] described integrative
approaches in one of the sections of their review, which is also focused on tools for
the analysis of single omics layers, while Kristensen et al. [3] presented objectives,
methods and computational tools of integrative genomics, with a particular focus
on the applications related to cancer research. Conversely, we would like to focus
on mathematical aspects and illustrate the solutions found to the problem of multi-
omics data integration.
The classification of the approaches presented in the literature as multi-omics meth-
ods is a non-trivial task for at least three reasons. First, most of the computational
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Chapter 1

Figure 1.1: Overview of omics data. A. Omic data are seen as complementary layers of
molecular information. On the right the complexity and the order of magnitude of the retrievable
data for E. Coli microbe as an example. B. Main objectives of omic data integration

approaches developed so far are pipelines of analysis that apply several methods
to carry out a sequence of tasks; therefore, different pipelines share some methods:
for example, partial least squares regression is included in both Integromics [4] and
sMBPLS [5]. Second, pipelines presented for addressing a particular problem can be
also used, with minor modifications, to solve another problem, possibly with other
types of omics. Third, several tools can be used in a supervised or unsupervised
setting, according to the formulation of the problem.
On the basis of methodological aspects, we will consider two main criteria. The
first is whether the approach uses graphs to model the interactions among variables.
These approaches, designated as “network-based” (NB), take into account currently
known (e.g. protein-protein interactions) or predicted (e.g. from correlation anal-
ysis) relationships between biological variables. In this class, graph measures (e.g.
degree, connectivity, centrality) and graph algorithms (e.g. sub-network identifica-
tion) are used to identify valuable biological information. Importantly, networks
are used in the modeling of the cell’s intricate wiring diagram and suggest possible
mechanisms of action at the basis of healthy and pathological phenotypes [6].
The second criterion is whether the approach is bayesian (BY) [7], that is, it uses a
statistical model in which, starting from an a priori reasonable assumption about
the data probability distribution, parametric or non-parametric, it is possible to
compute the updated posterior probability distribution making use of the Bayes’
rule; of course the posterior distribution depends on dataset measurements [8]. In
the network-based area, bayesian networks [9, 10, 11] are another promising solution
for the analysis multi-omics data.
Therefore, we will arrange integrative methods in four classes: network-free non-
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Chapter 1

Figure 1.2: Overview of omics and multi-omics methods. Methods are placed in boxes
according to whether they make use of networks and bayesian theory; the types of omics that each
method takes in input (or has been applied to in a case study) is indicated between parentheses.
Grey: network-free, non-bayesian methods; yellow: network-free, bayesian methods; blue: network-
based, non-bayesian methods; green: network-based bayesian methods. Abbreviations: GEN =
genome, CC = ChIP-chip, CN = copy number variations, DM = DNA methylation, DS = DNA
sequence, Hi-C = genome-wide data of chromosomal interactions, LOH = loss of heterozigosity,
GT = genotype, GE = gene expression, PE = protein expression.

bayesian (NF-NBY), network-free bayesian (NF-BY), network-based non-bayesian
(NB-NBY) and network-based bayesian (NB-BY) methods. We will give an overview
of the methods that have been proposed for the analysis of at least two different
types of omics datasets and get an insight of the specific mathematical grounds. In
particular, we choose to consider in detail the mathematical aspects of the most
common, representative or promising methods of each category.

1.1.1 Methods overview

Mathematically, the general problem of analyzing multiple omics datasets can be
formulated as the sequential or joint analysis of multiple component-by-sample ma-
trices, possibly using other data that carry prior information on components and
samples.
The objectives of integrative analysis can be summarized into the following [3] (Fig.
1.2): (i) the discovery of molecular mechanisms; (ii) the clustering of samples (e.g.
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Chapter 1

individuals); (iii) the prediction of an outcome, such as survival or efficacy of therapy.
Most of the methods are developed for the first and second objectives, while less
methods carry out prediction.
Integrative approaches can be more or less stringent on the types of omics considered
in input: some methods are designed to analyze a specific combination of datasets,
while others are more general. For example, Conexic [12] is tailored for DNA copy
number variations (CNV) and gene expression data, while iCluster [13] can be in
principle used for the analysis of any combination of omics encoded as quantitative
values on the same set of samples (Tab. 1).
As already mentioned, a distinction can be done between sequential and simultane-
ous analysis of multiple layers. In the former case, the results of the analysis of one
layer are refined by means of the subsequent analyses of further layers. This is the
case, for example, of methods that are designed assuming a causal effect of an omics
(e.g. genomics) on another (e.g. transcriptomics), like MCD [14] and iPAC [15].
The joint analysis of multiple omics can be carried out by means of models that
consider each layer as a separate entity: two examples are multivariate regression
[16] and multi-objective optimization [17, 18]. Simultaneous analysis may require a
preliminary step of data fusion, which usually involves objects derived from single-
layer analysis: two examples are the fusion of sample-sample similarity matrices [19]
and of gene-gene kernels matrices [20] calculated on different omics.

1.2 Network-free non-bayesian (NF-NBY)

Among the approaches that have been developed for specific types of omics there
are iPAC [15], MCD [14], CNAmet [21], sMB-PLS [5] and Camelot [16]. iPAC [15]
is an unsupervised approach for the sequential analysis of CNV and gene expression
data on the basis of a series of gene selection criteria: aberrant genes identified by
the analysis of CNV are further studied by correlation analysis of gene expression in
order to find the subset of aberrant genes potentially leading to a substantial shift in
transcriptional programs. MCD [14] (Multiple Concerted Disruption) is another se-
quential approach. CNVs, loss of heterozygosity (LOH) and DNA methylations are
analyzed sequentially in order to find changes in gene copy number accompanied by
allelic imbalances and variations in DNA methylation resulting in gene expression
differences. CNAmet [21] uses gene-wise weights calculated considering the gene
expression in classes of samples with different CNVs or DNA methylation pattern;
weights for CNV and DNA methylation are then linearly combined to define gene-
wise statistics, whose significance is assessed by permutation analysis. In 2012 Li
et al. presented the sparse Multi-Block Partial Least Squares (sMB-PLS) regres-
sion method [5] for the identification of regulatory modules from multiple omics.
Common weights are found in order to maximize the covariance between summary
vectors of the input matrices (CNV, DNA methylation and miRNA expression) and
the summary vector of the output matrix (mRNA expression). A multi-dimensional
regulatory module contains sets of regulatory factors from different layers that are
likely to jointly contribute to a “gene expression factory”. Camelot [16] finds the
optimal regression model for phenotype prediction (drug response) on the basis of
matched genotype and gene expression data. This method suggests the molecular
mechanisms that predict the phenotype under analysis.
Conversely from the methods above, Integromics [4], MCIA [22] and the approach of
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Liu et al. [23] are based on models of data integration that can be easily applied to
different types of omics. Integromics [4] performs integrative analysis of two types of
omics with the main objective of finding similarities among samples and correlation
among molecular components. It uses a regularized version of canonical correlation
analysis to highlight correlations between the two datasets and a sparse version of
partial least squares regression that includes simultaneous variable selection in both
datasets. In principle, it can be applied to any pairs of omics that can be encoded
as continuous sample-by-components matrices. Multiple co-inertia analysis MCIA
[22] is an exploratory data analysis method that identifies co-relationships between
multiple high-dimensional datasets. Based on a covariance optimization criterion,
MCIA simultaneously projects several datasets into the same dimensional space,
transforming diverse sets of features onto the same scale. This analysis leads to the
identification of biological markers and clusters of samples. Liu et al. [23] presented
a method (shortly FALDA) based on standardization and merger of several omics
(namely mRNA, miRNA and protein data) into a joint (standardized) molecule-by-
sample matrix. Then, factor analysis (FA) and linear discriminant analysis (LDA)
are used to highlight molecular mechanisms that discriminate different classes of
samples.
Many variations of PLS, a common dimensionality reduction method, have been
introduced for the integration of complex datasets: for example, Integromics [4] relies
on a sparse version of PLS (sPLS), and other variants of PLS, such as Orthogonal
PLS [24], Kernel PLS [25] or O2-PLS [26], have been described in the literature. The
idea of weighting the behavior of a gene at different levels and then combining such
weights in order to get an integrated picture, applied so far for gene expression, CNV
and methylation data [21], is a versatile approach that can be applicable to other
types of datasets (e.g. gene expression, somatic mutations and protein expression).
Thus, below we will describe in more detail Partial Least Squares (PLS) and the
use of signal-to-noise statistics for the integrative analysis of multiple datasets [21].

1.2.1 Partial least squares

PLS and PCA (Principal Component Analysis) are techniques that seek to identify
a small set of features that work as predictors of the response dataset. While PCA
works in a purely unsupervised fashion, PLS makes use of the response in order
to find appropriate linear combinations of the predictors that define a new set of
features. In PLS the coefficients of the linear combination are chosen so that the
highest weight is assigned to variables that are most strongly correlated to the
response. In this sense we can say that PLS is a supervised alternative to PCA, for
details see [27].
Multi-block PLS [5] is a method for performing PLS on a multi-layered dataset. Like
any supervised PLS regression problem, sMBPLS’s set up consists of n (e.g. n = 3)
input layers X1, X2, X3 and a response dataset Y , where observations are made
on the same set of samples. The goal is to identify MDRMs (Multi dimensional
regulatory modules) that are column subsets of the input datasets on the same
samples that are strongly associated to the response. First each layer is represented
as the first PLS predictor for i = 1, 2, 3, (Zi = Xi · wi) and the response Y is
treated the same way (U = Y · v), where wi, v are the loadings and Zi and U
are the summary vectors or latent variables of respectively the input and response
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datasets. Then sMBPLS defines Z = b1Z1 + b2Z2 + b3Z3 that is a summary vector
of the three datasets. The weights bi are supposed to account for the contribution
of the i-th dataset to the total covariance. Mathematically the problem can be
described as finding the optimal parameters so that the covariance between input and
response (summarized in Z and U) is optimized. The results improve substantially
by introducing a constraint or a penalization to the objective function that needs
to be optimized: sMBPLS uses a Lasso penalization - many different penalization
choices are possible (for details see e.g. [27]). The effect of this penalization is often
called sparsity, meaning that negligible coefficients tend to be drawn to zero. So the
final function to be maximized can be expressed as

Ω(Z,U,wi,v,b) = cov(Z,U)−
3∑
i=1

Pλi(wi)−Pλ4(v) (1.1)

with the further restrictions that vectors wi,v,b must have norm equal to 1; here
Pλi are the Lasso penalizations. In order to estimate the optimal parameters in (1.1)
Li et al. develop an ad hoc algorithm [5].

1.2.2 Gene-wise weights

Multi-omics gene-wise weights have been proposed to fuse three types of omics into
a unique summary score for each gene [21]. These scores si are defined using gene
expression, DNA methylation and CNV data:

si = (wmei + wcni ) · εi, (1.2)

where wmei and wcni are measures of the expression difference of the i-th gene between
samples with high and low values of DNA methylation wmei and CNV wcni , while
εi is a normalization term. More precisely, layer-specific weights for each gene are
calculated using the mean and standard deviation of gene expression

wi =
mi,1 −mi,0

σi,1 + σi,0
, (1.3)

where the suffixes 1 and 0 indicate, respectively, samples having high and low val-
ues of the other omics (DNA methylation or CNV). In summary, each variable is
associated with the sum of a set of signal-to-noise scores, each of which is calculated
considering the means and standard deviations of the variable using two subsets of
samples of a given dataset (e.g. gene expression) defined on the basis of the values
of the same variable in another layer (e.g. CNV or methylation).

1.3 Network-free bayesian (NF-BY)

Parametric or “strict” bayesian frameworks assume that the prior probability distri-
bution follows a specific model dependent on one or more parameters. If the prior
fits the data well parametric bayesian methods usually outperform non-parametric
ones. On the other hand, if the initial guess for the prior is hard or even impossible
to formalize, non-parametric or distribution-free methods are preferred [8]. It is
important to remark that non-parametric or distribution-free methods are charac-
terized by the fact that - unlike their parametric counterpart - the priors are not
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identifiable with a given family of probability distributions depending on one or more
parameters, since this family would be too large, therefore introducing the need of
an alternative definition of the priors in which - roughly speaking - the parameters
themselves are supposed to be random. In this context, Antoniak [28] defined Mix-
tures of Dirichelet Processes (DPM) a useful set of priors for many non-parametric
problems, that was taken as a starting point for many recent works aiming at the
integration of multi-omics, such as TMD [29], MDI [30], PSFD [31], while, for ex-
ample, iCluster [13] is a parametric method. The choice between parametric and
non-parametric models is often not arbitrary, but it is driven by the type of data to
be modeled.
iCluster [13] and MDI [30] have been developed with the main objective of sample
clustering and can be applied to different types of omics. iCluster [13] takes as
input two or more matrices and finds multi-omics clusters jointly estimating, by
means of a prior-posterior bayesian structure, the clustering Z, which is modeled
as a Gaussian latent variable having layer-specific weights and parameters. MDI
(multiple dataset integration) [30] carries out the same objective (clustering) using
a bayesian approach to jointly estimate the parameters of Dirichelet Process Mixture
models. These models are applied to find clusters and relevant genes (features).
An approach closely related to MDI is Savage’s Transcriptional Modules Discov-
ery (TMD) [29] who also adopts a mixture modeling approach, using hierarchical
Dirichelet process to perform integrative modeling of two datasets. Conversely to
MDI, TMD aims at the identification of molecular mechanisms.
Patient-Specific Data Fusion (PSDF) [31] extends the TMD model for assessing the
concordance of biological signals of samples in the two datasets taken into account
(CNV and gene expression data). PSDF can be used to shed light on molecular
mechanisms and cluster samples.
Coalesce [32] is a combinatorial algorithm specifically developed for the identification
of regulatory modules from the analysis of gene expression and DNA sequence data.
The multi-omics probability for a gene to be included into a module is calculated
combining omics specific probabilities through the Bayes’ rule.
Since iCluster was introduced, it is often being cited by subsequent works as an in-
novative reference approach for multi-omics clustering of samples, while, as already
said, MDI shares a multi-layer analysis approach (based on Dirichelet Process Mix-
ture models) with other recent methods. Hence, we will focus on iCluster and MDI
in the following.

1.3.1 Bayesian latent variable models

In 2009, Shen et al. developed a joint variable model for integrative clustering,
naming the resulting methodology iCluster [13] . Considering N datasets referred
to the same group of samples, iCluster formulates sample clustering as a joint latent
variable that needs to be simultaneously estimated from multiple genomic data
types. The first step is to capture the similarities among genomic information in each
data set, so that the within-cluster variance is minimized. This task is performed by
an optimization through PCA of the classical K-means clustering algorithm, with
the additional advantage of reducing the dimensionality of the data: if k is the
number of clusters, the dimensionality n of the genomic data is basically reduced
to the first k-1 principal directions. Second, the clustering scheme in each layer is
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represented as a Gaussian latent variable model with the Gaussian latent component
Z capturing the dependencies across the data types. Dealing with N different omics
measurements on the same p samples X1, X2, ..., XN , each one of dimension p × ni
with usually p << ni, the model can be written in the following fashion:

Xi = Wi · Z + εi (1.4)

where the matrices Wi are the p× k− 1 weight matrices and εi are the independent
error terms. After taking a continuous parametrization Z∗ of Z and assuming Z∗ ∼
N(0, I) and ε = (ε1, ..., εN) ∼ N(0, cov(ε)), likelihood-based inference is obtained
through the Expectation-Maximization (EM) algorithm [33]. iCluster requires the
number of desired clusters k as input for the algorithm.
Recently, Kirk et al. [30] presented a bayesian method for the unsupervised integra-
tive modeling of multiple datasets. MDI integrates information from a wide range of
different datasets and data types simultaneously. In a general N -components mix-
ture model, the probability density for the data p(X) is modeled using Dirichelet-
multinomial allocation mixture model,

p(X) =
N∑
k=1

wk · π(X|θk) (1.5)

where wk are the mixture proportions, θk are the parameters associated to the k-th
component and π is a parametric density. Component allocation variables and some
additional parameters - conversely from the TMD model [29] - are introduced in
order to capture the dependencies among these models and find clusters of genomic
entities having the same behavior in different datasets. The modeling structure
of the multi-layer dataset exploits the mathematical connection between mixture
models and Dirichelet Processes, a non-trivial problem: for details see [34]. In this
way is possible to construct a prior probability for each dataset where the probability
distribution is parametrized by component allocation variables. Inference on such
parameters is performed through Gibbs sampling. Finally, in order to identify groups
that tend to cluster together in multiple datasets, it is natural to exploit the posterior
probability as a metric in order to decide whether or not a connection among each
couple of genes is strong enough across the dataset.
Both MDI and iCluster carry out simultaneous integrative clustering of multiple
omics datasets. However, in contrast to MDI, iCluster seeks to find a single common
clustering structure for all datasets.

1.4 Network-based non-bayesian (NB-NBY)

Methods that we have assigned to this category make either use of molecular inter-
action data or use networks defined from correlation analysis.
SteinerNet [35], the method proposed by Mosca et al. [17, 18], stSVM [36] and
nuChart [37] share a common strategy: the analysis of a multi-weighted graph that
carry multi-omics information. SteinerNet [35] is a method that identifies molecular
sub-networks using omics datasets and a given molecular network. In order to
reconstruct response pathways, SteinerNet finds a solution to the prize-collecting
Steiner tree (PCST) problem, a minimum-weighted subtree that find an optimal
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network subject to weights assigned to vertexes and edges on the basis of input
datasets. Similarly, multi-objective optimization (MOO) has been recently proposed
for the extraction of sub-networks enriched in multi-omics information [17, 18]. Sub-
networks are extracted on the basis of multiple criteria applied to a network that
encodes several layers of biological information as vertex and edge weights. Also
stSVM (smoothed t-statistic support vector machine) method [36] loads gene-wise
statistics from multiple omics (miRNA and mRNA) on a molecular network known a
priori. Then, a network diffusion method is used to smooth the statistics according
to network topology. Significant genes are then used to train a classifier (a SVM)
that predicts the type of sample (e.g. early versus late disease relapse). NuChart
[37] is a method for the annotation and statistical analysis of a list of genes with
information relying on Hi-C data (genome-wide data of chromosomal interactions
[38]). NuChart identifies Hi-C fragments by means of DNA sequencing data and
creates gene-centric neighborhood graphs on which other omics data (e.g. gene
expression) are mapped and jointly analyzed.
ENDEAVOUR [39] calculates gene-wise statistics from heterogeneous genome-wide
data sources (including molecular interactions) and ranks genes according to their
similarity to known genes involved in the biological process under analysis. Single
layer prioritizations are then integrated into a global ranking by means of order
statistics. In 2007 De Bie et al. [20] proposed a kernel-based data fusion method for
gene prioritization, which operates in the same setting of ENDEAVOUR. Kernels
representing gene information in each layer are linearly combined in order to fuse
the information and identify disease genes.
SNF (Similarity Network Fusion) [19] is a method that computes and fuses patient
similarity networks obtained from each omics separately, in order to find disease
subtypes and predict phenotypes. Conversely from the other methods of this section,
SNF uses sample-sample networks obtained from correlation analysis. The key step
of SNF is to iteratively and simultaneously update the global patient similarity
matrix of each layer using a local K-nearest neighbours (KNN) approach combined
with the global similarity matrices of the other layers. Fusion is then completed by
averaging the similarity matrices once the iterative upgrading is performed.
Recently, a type of multi-partite network (multiplex) has been introduced as a novel
theoretical framework for network-based multi-layer integrative analysis [40]. Mul-
tiplex networks are multi-layer systems of vertexes that can be linked in multiple
interacting and co-evolving layers. This approach has been proposed for the anal-
ysis of gene expression data in brain [41] and cancer [42]. In the second example,
a sample-sample duplex (two-layers network) has been generated based on correla-
tion between gene expression profiles, revealing structural similarities and differences
between two classes of samples. Thanks to their general formalism, in principle mul-
tiplex networks can be applied to the joint analysis of several types of omics (e.g.
one type of omics for each layer), also for multi-level clustering purposes [43].
In the following subsections, we will discuss in more detail network diffusion, fusion
of similarity networks and heterogeneous/multiplex networks. Methods that simu-
late the diffusion of information throughout a network are being increasingly used,
since they allow to study how the information (e.g. differential expression, sequence
variations) initially available in one or more network components (vertexes) affects
other network regions [44]. SNF [19] is a diffusion-based strategy that can be eas-
ily extended to the analysis of a wide range of multi-omics data. Heterogeneous
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and multiplex networks are promising frameworks for innovative multi-omics data
analysis.

1.4.1 Diffusion processes on networks

Network diffusion algorithms define a vector of scores σ associated with network
vertexes on the basis of initial conditions x0 and network topology τ , usually repre-
sented by the adjacency matrix A or the Laplacian matrix L of the graph.
An application of such techniques is found in stSVM [36], where a p-step random
walk kernel K is used in order to smooth the t-statistics x0, which assess the differ-
ential expression of genes. The kernel is defined as

K = (α · I − L′)p (1.6)

where α is a constant, L′ is the symmetrically normalized Laplacian matrix of the
graph and p is the number of random walk steps. The smoothing of the t-statistic
x is simply computed using the kernel K:

x = xT0 ·K (1.7)

In this case the influence of a node on the network is controlled by the parameter
p. Basically, the information initially available in each vertex is distributed to its
neighbors by means of the application of K. For a deeper insight of diffusion kernels
see [45].
In other diffusion models, the network-based scores σ = σ(X0, τ) are the steady
state solution of a discrete or continuous diffusion process on the network that can
have either a deterministic or a stochastic interpretation. An example of such a
technique is the network propagation algorithm [57] exploited in the work of Hofree
et al. [46]: after mapping a patient mutation profile onto a molecular network,
network propagation is used to “smooth” the mutation signal across the network.
Network propagation uses a process that simulates a random walk on a network
with restarts according to the function:

x(t) = αA′ · x(t) + (1− α)x0, (1.8)

where x0 is a vector representing some kind of genomic information about a patient
(in this case mutation signal), A′ is the symmetrically normalized adjacency matrix
capturing correlations among genes, and α ∈ (0, 1) controls how much information is
retained in the nodes with respect to how much is not. For t→∞ for each patient,
the discrete array x0 is smoothed into a real-valued array σ = x(∞).
Network diffusion processes are often based on an actual physical model, having
the benefit of exploiting physical quantities and concepts to drive the setting of the
parameters. For example Vandin and Upfal [47] presented a computationally efficient
strategy for the identification of sub-networks considering the hydrodynamic model
introduced by Qi et al. [48]: fluid is pumped into the source node s at a constant
rate, diffuses through the graph along the edges, and is lost from each node at a
constant first-order rate until a steady-flow solution is reached.
The presence of random walks on a graph allows connections to many other phys-
ical models. For example, another interesting framework is represented by electric
circuits [49], where the relation between the random walk of electrons on a circuit
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and Kirkhoff laws is exploited. eQed is a recent application of the latter [50]. Re-
cently Mirzaev and Gunawardena have collected and rigorously demonstrated some
of the most important mathematical results in the context of information dynamics
in a linear framework, also suggesting a possible stochastic interpretation of such
diffusion processes on the network in the Chemical Master Equation formalism [51].

1.4.2 Fusion of similarity networks

An interesting strategy to perform simultaneous network-based integration of omics
is the one at the basis of SNF [19]. A number N of different patient similarity net-
works with associated global similarity matrices Pi,0 are defined from N datasets.
Let’s assume N = 2 for the sake of clarity. Then, for each layer a KNN local similar-
ity matrix Si is introduced in order to retain only robust information. Subsequently,
global similarity matrices are smoothed by two parallel interchanging diffusion pro-
cesses that consist of the upgrading of the global similarity matrices with respect to
the local similarity matrices of the other layer:

P1(t+ 1) = S1 · P2(t) · ST1
P2(t+ 1) = S2 · P1(t) · ST2 (1.9)

having initial condition Pi(0) = Pi,0. After convergence, the fused similarity matrix
is then defined as the average of P1 and P2 . The result is a similarity matrix that
can be viewed as the weighted adjacency matrix of a network built by fusing the
similarity networks associated with each layer [19].

1.4.3 Heterogeneous networks and Multiplex

In the context of multi-omics data analyses, multiple (k) layers can be represented
by means of k networks. In this context, we can distinguish between two kinds of
formalism: heterogeneous networks and multiplex networks.
Heterogeneous networks consider k different kinds of nodes, each type corresponding
to a different layer of biological information. In this framework, intra-layer connec-
tions and inter-layer connections are formally treated in the same way, even if they
can be weighed differently. The multi-layered information is therefore somehow
squeezed on just one dimension and the properties of the resulting graph can be
used to manipulate the data. For example, for k = 2 we can have vertexes of genes
layer g1, g2, . . . , gn and proteins layer p1, p2, . . . , pm. The Laplacian matrix of this
heterogeneous network is a (n+m)× (n+m) matrix:

Lgp =

[
Lg Bgp

Bpg Lp

]
, (1.10)

where Lg and Lp are the Laplacian matrices of respectively gene and protein layers,
while the matrices Bgp and Bpg contain the information about inter-layer connec-
tions; in the case the graph is undirected Bpg = BT

gp. An example of application of
heterogeneous network for modeling gene-phenotype networks was presented by Li
and Patra [52].
Multiplex networks [40] are instead multi-partite networks in which each of the k
layers models a different information about the same set of vertexes v1, v2, . . . , vn.
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For example, let us consider two omics, represented as a two-layered multiplex com-
posed of two sample × sample networks, where the edges of each network are placed
in function of the sample-sample correlations found in the associated omics. Then,
it is possible to analyze inter-layer correlations by means of multilnks, a quantity
that summarizes the connectivity of each pair of samples across the layers. More
precisely, a multilink is a k-dimensional binary array whose i-th component is set to
1 if the two samples are connected in the i-th layer and 0 otherwise. The formalism
of multilink is the basis to define weighted measures and overlaps of the multiplex
networks and other physical quantities, such as entropy, which introduces a theoret-
ical framework to quantify and detect the information stored in complex networks
[40, 42].

1.5 Network-based bayesian (NB-BY)

In this section we deal with methods that can be classified as both network-based
and bayesian; these features select mainly those methods that are somehow related
to bayesian networks (BNs). BNs are probabilistic models composed of a graph and
a local probability model that can be either parametric or not. BNs represent an
important area of machine learning theory and many applications of this topic are
found in diverse fields. BNs can be thought as a combination of network theory and
probability theory.
Within the BN framework an important method for multi-omics data integration
is Paradigm [53]. Its goal is the definition of patient-specific pathway activities
by means of probabilistic inference. Each biological entity (gene, protein, etc.) is
modeled as a factor graph that can be defined to host a wide range of multi-omics
information, and is associated with a prior probability of being activated in a given
pathway.
Conexic, a bayesian network-based algorithm, has been introduced for the identifi-
cation of driver mutations in cancer through the integration of gene expression and
CNVs [12]. Conexic is based on a bayesian scoring function that evaluates how each
candidate gene, or a combination of genes, predicts the behavior of a gene expression
module across tumor samples. Networks, more precisely regression trees, are used
to encode regulation programs.
Below, we will focus on the theoretical setup of the BN developed by Paradigm [53].

1.5.1 Paradigm: an application of bayesian networks

The goal of Paradigm is the definition of an entities × samples matrix called IPA
(inferred pathway activity) where IPAij reports a score that accounts for how likely
the biological entity i is activated/null/deactivated in sample j.
The model is network-based since correlations between data points are modeled
as factor graphs Φ = (φ1, ..., φm) that are used for assigning a probability for the
genomic entities or variables X = (X1, ..., Xn):

PΦ(X) =
1

Z
·
m∏
j=1

φj(Xj) (1.11)

where Z is a normalization constant accounting for all of the possible settings of the
variables X and Xj is a set constituted by xj and its “parents” Pa(xj) that are the
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nodes that have a link directed to xj in the network. It is important to underline
that the number of features m is much less than 2n − 1 (the number of possible
edges in the graph): this “sparsity” facilitates integration. In this way it is possible
to assign to each gene’s xi activity a first a prior probability distribution and then
probability distribution consistent with the dataset measurements D:

PΦ(xi = a,D) ∝
m∏
j=1

∑
S⊂Ai(a)∪DXj

φj(S) (1.12)

where Φ is the fully specified factor graph, S ⊂Ai(a)∪D Xj are all the possible config-
urations consistent with both the dataset measurements D and the fact that gene i
is activated (Ai(a) is the the singleton assignment set {xi = a}); the proportionality
constant is the same as equation (1.11). The junction free inference algorithm and
the belief propagation algorithm are used to infer the probabilities while EM algo-
rithm [33] is used to learn the parameters. After inference log odds of the posterior
probability distribution are used to measure the activity of each gene.

1.6 Discussion and conclusions

Methods for the analysis of multiple layers of biological information pave the way
for a more comprehensive and deeper understanding of biological systems. Indeed,
several authors were able to show that the integration of multi-dimensional datasets
leads to better results from a statistical and a biological point of view than single
layer analyses. For example, using MCD, Charj et al . [14] showed that the inte-
gration of DNA copy number, LOH, DNA methylation and gene expression data
permits the identification of a higher number of DNA explained gene expression
changes and a set of genes that would have been missed in standard single layer
analysis; Liu et al. [23] reported an improvement in the identification of pathways
and networks integrating miRNA, mRNA and proteins; Wang et al. [19] showed
that their network fusion approach applied to gene expression and DNA methyla-
tion lead to clusters of patients (corresponding to cancer subtypes) with significantly
different survival rates.
A better understanding of the algorithms underlying integrative approaches is im-
portant for their correct application and further development. Network-based ap-
proaches use graphs for modeling and analyzing relationships among variables and
are one of the most important classes of multi-omics methods. These approaches
take advantage of algorithms for graph analysis. In particular, algorithms that prop-
agate information on networks are being proposed in several applications and are
often related to actual physical models. Networks allow to model the intricate cell’s
wiring diagram and to use it as a framework for the integrated analysis of layers
of biological information. However the incompleteness of experimentally detected
molecular interactions is still a significant limit. Further, better tools of analysis
are required, because assumptions like normality and variable independence are of-
ten not fulfilled [6]. Multi-layer network-based frameworks, such as heterogeneous
and multiplex networks, allow the definition of novel tools for the integration of
omics. For example, the already mentioned methods of network diffusion can be ex-
tended to such frameworks in order to get multi-omics propagation scores, and new
clustering algorithms could be developed based on these multi-layer relationships.
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Moreover, multiple omics data can be naturally embedded in a heterogeneous net-
work framework, for example metabolomics and genomics data, considering genes
that codify for enzymes as inter-layer links, and intra-layer relationship given by a
priori biological knowledge (like protein-protein interaction network) or by network
reconstruction based on metabolomics and transcriptomics data.
Another class of interesting approaches relies on Bayes’ rule. Multilevel bayesian
models (parametric or not) are facing the multi-omics challenge by building frame-
works that facilitate a biologically appropriate formalism for the assumptions on the
prior distribution (e.g. factor graphs, mixture models) and by programming non-
trivial and efficient algorithms for parameter estimation. Assuming the bayesian
framework is an interesting choice because it reduces the integration to the estimate
of a smaller set of parameters, simultaneously suggesting a clear integration scheme.
A limitation of such models is that for parametric methods the output strongly
depends on how well the prior distribution assumption is able to capture the core
information of the given dataset. Distribution-free approaches do not have such
a problem but sometimes tend to lack in accuracy. In the network-based context
the application of bayesian networks represents an interesting compromise between
networks and probability theory. The bayesian framework is promising also regard-
ing the issue of noise, because errors have the possibility to be formally taken into
account from the beginning of the analysis.
Not surprisingly, genomics and transcriptomics are the two omics for which many
and more established approaches of multi-layer analysis exist. However, the avail-
ability of methods that are not tailored for specific types of omics extends the
applicability of integrative approaches also to omics that are still less covered by
specific methods, such as proteomics, metabolomics or glycomics.
One of the main limitations of integrative approaches is related to dimensionality.
In fact, if on one hand more layers correspond to a more complete picture of the
biological system, on the other hand the dimensionality of the problem increases.
However, a priori information on the relationships among the components of the
biological system should help in reducing false discoveries.
Several methods are implemented using R [54], confirming the prominent role of
this programming language in the analysis of biological data, and Matlab [55]. The
availability of well-documented and user-friendly implementations is a crucial factor
for the usability and spread of interesting methods. However, there are still several
cases in which software packages are not provided.
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Table 1.1: Methods for the analysis of multi-omics datasets. Specificity (S/G) indicates
whether the method was designed for a specific combination of omics (specific) or not (general).
Impl. stands for implementation. Legend: MWG = multi-weighted graph; FA = factor analysis;
LDA = linear discriminant analysis; CCA = canonical correlation analysis; PLS = partial least
squares; DMA = Dirichelet multinomial allocation

Method S/G Multi-omics approach Impl.
Camelot [16] specific bivariate predictive regression model NA
CNAmet [21] specific multi-omics gene-wise scores R
FALDA [23] general FA + LDA of a joint matrix NA

Integromics [4] general Regularized CCA, sparse PLS R
iPAC [15] specific sequential NA
MCD [14] specific sequential NA
MCIA [22] general multiple co-inertia analysis R

sMBPLS [5] general sparse Multi-Block PLS regression Matlab
Coalesce [32] specific multi-omics probabilities C++
iCluster [13] general joint Gaussian latent variable models R

MDI [30] general DMA mixture models Matlab
PSDF [31] general hierarchical DMA mixture models Matlab
TMD [29] general hierarchical DMA mixture models Matlab

Kernel Fusion [20] general integration of omics-specific kernels Matlab
Endeavour [39] general omics-specific ranks and order statistics webserver
MOO [17, 18] general sub-network extraction on MWG R
Multiplex [40] general joint analysis of multi-layered networks NA
NuChart [37] specific analysis of a MWG R

SNF [19] general similarity network fusion Matlab, R
SteinerNet [35] specific sub-network extraction on MWG webserver

stSVM [36] specific MWG R
Paradigm [53] general multi-omics bayesian factor graphs C++
Conexic [12] specific sequential Java
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The chemical master equation
framework

In this chapter we propose the theoretical formalism of the chemical master equation
(CME) as a valuable ground to build up new data-integration methods or give a
physcal meaning to some of the existing ones. In the first secition we derive the
CME following the Van Kampen [56], in the second section we adapt the CME
to a network dynamics in the form of a random walk; finally in the last section
we show the connection between the master equation and the network propagation
algorithm [57], a known network-diffusion algorithm that has been already exploited
for omics data manipulation [46]. Both the biological applications described in
further chapters (Part III) are referable to the CME framework.

2.1 General formulation of the chemical master

equation

The chemical master equation is a useful stochastic equation to model the mesoscopic
evolution of - in general - any Markov stochastic process Y that has the Markov
property. Most of the results presented in this section are extensively treated in Van
Kampen work [56]; we now try to focus on the aspects found to be most applicable
to the omics data analysis context.

2.1.1 Markov processes

A stochastic Markov process is characterized by the ”loss of memory” property which
states that the probability of the realization (yn, tn) of the state n conditioned on
(yn−1, tn−1) is uniquely determined and not affected by any of the values at earlier
times. Formally, considering any set of n succesive times t1 < t2 < · · · < tn

P (yn, tn|yn−1, tn−1; yn−2, tn−2; · · · ; y1, t1) = P (yn, tn|yn−1, tn−1) (2.1)

A direct consequence of the Markov property is that the process is fully determined
by the initial probability distribution and transition probability

P (y1, t1), P (y2, t2|y1, t1) (2.2)
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All the hierarchy of probability distributions can be derived directly from (2.2). For
simplicity in this section we assume each random variable Yn to be one-dimensional,
but the formulation will be generalized in the next section.

Lemma Condition (2.1) together with the obvious assumption

P (y2, t2) =

∫
P (y2, t2|y1, t1)P (y1, t1)dy1 (2.3)

Is equivalent to the Chapman-Kolmogorov equation

P (y3, t3|y1, t1) =

∫
P (y3, t3|y2, t2)P (y2, t2|y1, t1)dy2 (2.4)

Proof

Assuming t1 < t2 < t3, from the Markov property we get

P (y3, t3; y2; t2; y1, t1) = P (y3, t3|y2t2; y1, t1)P (y2t2; y1, t1)

= P (y3, t3|y2t2)P (y2t2|y1, t1)P (y1, t1)

Integrating over y2 we get

P (y3, t3; y1, t1) = P (y1, t1)

∫
P (y3, t3|y2t2)P (y2t2|y1, t1)dy2

P (y3, t3|y1, t1)P (y1, t1) = P (y1, t1)

∫
P (y3, t3|y2t2)P (y2t2|y1, t1)dy2

dividing both sides by P (y1, t1) we get equation (2.4). The vice-versa is trivial
�.

The Chapman-Kolmogorov equation therefore characterizes Markov processes.

2.1.2 Markov chains

The most simple but very useful class of Markov processes are the Markov chains.
Formally, given a stochastic process Y they are characterized by the following prop-
erties:

i. Y has a discrete range.

ii. Y has a discrete time variable that take only integer values.

iii. Y is stationary or at least homogeneus.

We call a Markov chain finite when its range consists of a finite set of states 1, · · · ,M .
Finite Markov chains have been studied deeply in since they are the simplest Markov
process that still presents most of the significant features. Considering now on only
finite Markov chains, propertiy (iii.) reads

Tτ = T τ , τ = 0, 1, 2, · · · (2.5)
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where the transition probability T = T (y2|y1) is a M×M matrix. Given any ini-
tial probability distribution for the states ~p(0) (an array of M components), any
probability distribution generating from ~p(0) can be written as

~p(t) = T t~p(0) (2.6)

Here pi(t) is the probability to find the system in state i at time t with i =
1, 2, · · · ,M . It is therefore clear that the study of finite Markov chains mostly
reduces to explore the powers of the transition matrix T that in general is a stochas-
tic matrix meaning that its entries are all non-negative elements and each column
sums up to 1 because of the probabilistic interpretation of the variable ~p. Perron
and Frobenius [56] showed mathematically that, apart from some exceptional cases,
that given any stochastic matrix T the process converges to a unique stationary
distribution as t approaches ∞. These results will be exploited in next section for
the random walk modelling.

2.1.3 Derivation of the chemical master equation

Let’s consider a homogeneus Markov process Y ; we can therefore use the notation
Tτ for the transition probability that depends only on the time difference τ :=
t2 − t1. We now derive the Master equation that is more appealing and physically
interpretable than the Chapman-Kolmogorov equation (2.4). We assume the Markov
process to be stationary (or at least homogeneus) so that we can simplify the notation
(P (y2, t2|y1, t1) = Tτ (y2|y1)), since the transition probability depends on the time
difference alone τ = t2 − t1. Equation (2.4) reads

Tτ+τ ′(y3|y1) =

∫
Tτ ′(y3|y2)Tτ (y2|y1)dy2 (2.7)

The Master equation basically consist of the continuous limit of the differential
version of equation (2.4) as the time difference τ ′ vanishes. We assume that, for
small values of τ ′ = t3 − t2 the Taylor expansion of the transition probability takes
the following form for small τ ′

Tτ ′(y3|y2) = δ(y3 − y2) + τ ′W (y3|y2) + o(τ ′) (2.8)

where W (y3|y2) is the time derivative of the transition probability evaluated in
τ ′ = 0, therefore called the transition probability per unit time. In order to satisfy
the normalizing condition (

∫
Tτ ′(y3|y2)dy3 = 1) we introduce a correction

Tτ ′(y3|y2) = (1− a0(y2)τ ′)δ(y3 − y2) + τ ′W (y2|y1) + o(τ ′) (2.9)

where in the first right-hand side term the coefficient a0 is

a0(y2) =

∫
W (y3|y2)dy3 (2.10)

so that 1 − a0τ
′ in front of the delta function represents the probability that no

exchanges take place during the time interval τ ′. We now substitute expression
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(2.9) into (2.7) and get, exploiting the linearity of the integral operator

Tτ+τ ′(y3|y1) =

∫
Tτ (y2 − y1)δ(y3 − y2)dy2

+ τ ′
∫
Tτ (y2|y1)a0δ(y3 − y2)dy2

+ τ ′
∫
Tτ (y2|y1)W (y3|y2)dy2

The second term on the right-hand side due to the definition (2.10) becomes−τ ′
∫
W (y2|y3)Tτ (y3|y1)dy2,

while the first term on the right hand side becomes Tτ (y3|y1) after integration; we
bring it to the left, divide both sides by τ ′ and take the limit τ ′ → 0 in order to get
the Master equation:

∂Tτ (y3|y1)

∂τ
=

∫
[W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)] dy2 (2.11)

that, omitting the discrete indices becomes

∂P (y, t)

∂t
=

∫
[W (y|y′)P (y′, t)−W (y′|y)P (y, t)] dy′ (2.12)

When the range of Y is discrete (let’s suppose M different states), the master
equation reads:

∂pi(t)

∂t
=

M∑
j=1

[Wijpj(t)−Wjipi(t)] (2.13)

where pi(t) is the probability to find the system in state i at time t. From equations
(2.11, 2.12, 2.13) it is clear that the Master equation is a gain-loss equation for
the probability for the system to be in a certain state (y or i) describing its time
evolution.

2.1.4 The stationary distribution and detailed balance

One of the most important goals once the Master equation is derived is to find the
stationary distribution that consists of the relaxation of the solution of equation
(2.12, 2.13) for t going to ∞. We now refer only to equation (2.13) for simplicity.
Many different proofs show how, in non-degenerate cases and when the space state is
finite, for equation (2.13) it exist a unique stationary distribution. Some exceptions
exist when we deal with an infinite number of states such as the random walk [56].
We do not want to treat this argument into detail; we just mention a few possibilities:
a formal way to prove the existence and the uniqueness of the stationary distribution
is using the time-discretiztion and then re-adapt the Perron-Frobenious theorem
valid for Markov chains; a more ”physical” approach is through an entropy function
or a Lyapunov function optimization. Other proofs are due to Uhlmann and Kirchoff,
who used network theory, while the Van Kampen itself gives a synthetic proof [56].
However in the formulation of the master equation for a random walk on a network
the existence and uniqueness of the stationary distribution will follow directly from
the Laplacian condition defined in the next section.
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Figure 2.1: Detailed Balance a. System that satisfies the detailed balance condition b. System
at stationary state not satisfying the detailed balance condition. α and β are the transition rates
between states.

From equation (2.12) we see that that for the stationary distribution it must hold∑
j

Wijpj(t) =
∑
j

Wjipi(t) (2.14)

which reflects the obvious fact that in the stationary condition the sum of all tran-
sitions to the state n from the other states n′ and the transitions from n to other
states n′ must balance. The detailed balance condition asserts a stronger fact

Wijpj(t) = Wjipi(t) ∀i, j (2.15)

imposing that the transitions between any two states separately must balance. A
simple example is shown in Fig. 2.1. Detailed balance condition (2.15) implies the
stationary condition (2.14). We also remark that in quantum mechanics detailed
balance follows from thermodynamic equilibrium. Therefore detailed balance is a
necessary condition for thermodynamic equilibrium. In Van Kampen is proved that
in closed isolated physical systems the stationary distribution of the master equation
must satisfy the delailed balance condition. With the word ”physical” we mean the
system can be described microscopically in terms of Hamilton or Schrodinger equa-
tions. Closed and isolated respectively means that there’s no exchange of particles
with the environment and that no external force or field is acting on the system so
that we can think of the energy of the system as a constant.

2.1.5 One-step processes

A one-step process is a Markov process in which transition probabilities assume a
particularly simple and interpretable form. Such processes are also called generation-
recombination or bith and death processes. We define a one-step process a Markov
process with continuous time and discrete range whose transition matrix allows with
high probability jumps only to adjacent states (the probability to jump two steps in
a time interval ∆t is o(∆t)), therefore giving rise to a tridiagonal Laplacian matrix
where the off-diagonal transitions are given by:

Wij = rjδi,j−1 + gjδi,j+1 ifi 6= j (2.16)
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while and on the diagonal we have

Wii = −(ri + gi) (2.17)

where ri and gi are the probabilities per unit time for a particle to jump respectively
to the state i− 1 and i + 1 so that the general form of the master equation can be
written as

ṗi = ri+1pi+1 + gi−1pi−1 − (ri + gi)pi (2.18)

that, using the Van Kampen step operators

E±f(i) = f(i± 1), for any suitable functionf

becomes
ṗi = (E+ − 1)ripi + (E− − 1)gipi (2.19)

The one step processes are classified depending on the range (Z, N or finite i =
0, 1, · · ·M). In the last two cases appropriate boundary conditions are needed.
Another classification arises looking at the coefficients rn and gn of (2.19):

i. Random Walk when both coefficients are constant.

ii. Linear One-step process when at least one between the coefficients is a linear
functions of the state n.

iii. Non-linear One-step process when at list one coefficient is a non-linear function
of the state n.

Remark The terms ”linear” or ”non-linear” here are always referred to the coef-
ficients and not to the unknown pi: the master equation is always a linear function
of pi.
An interesting property of One step processes (2.19) is that the stationary distribu-
tion assumes a particularly manageable form. For instance

psi =
gi−1gi−2 · · · g1g0

riri−1 · · · r2r1

ps0 (2.20)

with the constraint
1

ps0
= 1 +

M∑
i=1

gi−1gi−2 · · · g1g0

riri−1 · · · r2r1

(2.21)

Proof From equation 2.19 we can see that in the stationary solution it holds

(E+ − 1)rip
s
i + (E− − 1)gip

s
i = 0

(E+ − 1)[rip
s
i − E−gipsi ] = 0

where the quantity in the square brachets represents the probability flow J from i
to i− 1. Substituting into J the boundary conditions

ṗ0 = r1p1 − g0p0

or
r0 = g−1 = 0
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we find J = 0 and therefore

rip
s
i = gi−1p

s
i−1 (2.22)

so that by applying this relation iteratively one finds the stationary distribution
(2.20) on all the range (starting from 0 and finishing with M). Such results can
be easily extendend to both the half-infinite and two-sided infinite range. For the
detailed proof of statements see Van Kampen. �

Remark In a close isolated physical system the detailed balance condition for
one-step processes reads

rip
e
i = gi−1p

e
i−1 (2.23)

that has the same form as (2.22), implying that in such conditions the stationary
solution ~ps is equivalent to thermodynamic equilibrium ~pe. However we underline
that this equivalence holds only for closed isolated systems, while condition (2.22)
applies to open systems as well.

One-step processes of fundamental importance are the Poisson process, the decay
process,the birth and death process and many other. We do not analize these Markov
processes into detail, since it deviates from the main purposes of this work. However
the applicability of one-step processes in the biological context would deserve more
discussion; just to mention an example, the relative species abundance in rainforests,
coral reefs [58] or the relative molecular species abundance in the gut microbiota [59]
can be modelled as one-step processes. The major limitation for the applicability of
one-step processes to omics data manipulation lies on the fact that the data must
somehow fit in a sub-sequent set of states, which is not trivial given the complexity
of the data and a network structure. In fact a one-step process is strictly one-
dimensional: on a given network it is possible to define a one-step process only in
restricted situations.

2.2 Random walk on networks

In the perspective of applying the Master equation mathematical framework to
the context of omics and multi-omics data analysis, we now adapt the formalism
described in the previous section to a physical situation in which molecular species
that have state ~n = (n1, · · · , nM)T are forced to move and interact on a graph; the
vertices represent the molecular species and the edges of the graph represent their
(directed or undirected) interactions. In the physical context the word ”network” is
generally preferred instead of the word ”graph”: network theory is a specific subject
that has been applied to the study of Complex Systems. In the most general case the
transition probabilities from a node i to another node j can be any (linear or non-
linear) function of the number of molecular species ni leading to a reaction-diffusion
network that is usually hard to solve analytically [60]. Leaving such genaralizations
and its implications to next sections we now focus on the random walk since it’ll turn
out to be at the basis of some important network-based algorithms exploited in the
analysis of omic datasets. In this section we will develop a network-based version of
the Master equation following as exploring guideline the arguments treated in the
previous chapter.
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Figure 2.2: Laplacian Matrices With a simple toy network we illustrate the definitions choosen
for this work.

For sake of clarity we illustrate the main matrices associated with a given undirected
network with a simple example in Fig. 2.2. We remark that while the adjacency
matrix, the degree matrix, the graph Laplacian are univocally defined, the other
matrices are not unique (e.g. there are infinite stochastic matrices describing possible
transitions on a given graph). We clarify the definitions since in literature the word
”Laplacian” is used for many different concepts. In particular in the present work
a Laplacian matrix is equivalent to the Van Kampen’s W matrix [56].

2.2.1 Network master equation for the random walk

Considering an M nodes network, we introduce an M ×M stochastic connection
matrix π. Its entries πij describe the probability that in a given time interval ∆t a
particle jumps from node j to node i following an existing edge of the network. We
consider the random walk ofN particles, where the state of the system is summarized
by the vector ~n with the constraint that the number of molecular species id fixed
N =

∑
i ni(t) ∀t; it is therefore not considered the possibility of birth/death or

creation/annihilation of the molecular species. In the general case the particles
may interact with each other leading to non-trivial behaviors; if the particles do
not interact the entries of the stochastic matrix πij can be seen as the probability
distribution of independent random variables.
Let’s now consider the single particle’s a dynamic; we define δai (t), a = 1, · · · , N
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and i = 1 · · · ,M so that

δai (t) =

{
1 if a is in node i at time t

0 otherwise

and we can write respectively the probability to find a single particle in a given node
i at time t and the number of species living on node i at time t as

pai (t) = 〈δai (t)〉, ni(t) =
∑
a

δai (t) (2.24)

here we average δai (t) over all the possible realizations of the process. We can now
introduce the stochastic jump matrix Ψa that realizes the jump of the particle a along
the existing network edges. It must hold that the average values of the jump matrix
entries ψaij are the correspondent etries πij of the stochastic matrix. Formally Ψa

needs to be a change of base in RM : a single particle state ~δa(t) = (δa1(t), · · · , δaM(t))T

is equal to ~ei if and only if δai (t) = 1. Given a time interval ∆t the particle a is in
node i at time t+ ∆t only if

δai (t+ ∆t) =
∑
j

ψaij(t)δ
a
j (t) (2.25)

When we consider the N particles case, we naturally generalize the single particle
jump matrix to the matrix Ψ

ψij =
1

nj(t)

∑
a

ψaij(t)δ
a
j (t) (2.26)

where nj(t) 6= 0; here the normalization by nj(t) makes sure that the matrix Ψ
is stochastic. The evolution of the state of node i, assuming that particles do not
interact is therefore

ni(t+ ∆t) =
∑
a

δai (t+ ∆t) =
∑
a

∑
j

ψaij(t)δ
a
j (t) =

∑
j,nj 6=0

ψij(t)nj(t) (2.27)

where, given equation (2.26) we need to assume that nj(t) 6= 0 for any time value t.
This is an intrinsic limit of the model: the number of particles N must be sufficiently
big to leave a negligible probability to find a node completely empty. We will show
later on that such probability decreases exponentially with N . Equation (2.27),
since the columns of Ψ sum up to 1, can be written as:

ni(t+ ∆t)− ni(t) =
∑
j,nj 6=0

ψij(t)nj(t)− ψjini(t) (2.28)

When we get the continuous limit of the evolution dynamics of the model we cannot
assume complete independence among the particles, because of the possibility that
in equations (2.26, 2.27, 2.28) to find nj(t) = 0 for a certain time t.
In order to simplify the calculation but not eliminating the ”empty node” issue just
stated we assume a regularization condition. We set the probability for a couple
of particles to jump simultaneousy in a time interval ∆t to be proportional to ∆t2;
formally
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πij = π̂ij∆t+ o(∆t) i 6= j

πii = 1− π̂ii∆t = 1−∆t
∑
i 6=j

π̂ij (2.29)

so that, when we take the continuous limit only the contribution of the first order
matters. Taking the average and having ∆t→ 0 we get the mean-field equation:

d〈ni〉
dt

=
∑
j

π̂ij〈nj〉 −
∑
j

π̂ji〈ni〉 (2.30)

where the terms in the right-hand side are respectively the ingoing and outgoing
flow of node i. Equation (2.30) with the regularization condition, limits the possible
movements in the time interval ∆t. This implies that any admissible combination
of elementary exchanges ∆~n = ~n(t + ∆t) − ~n(t) of independent particles has a
probability distribution p(~n, t) that can be derived by the Kolmogorov equation:

p(~n, t+ ∆t) =
∑
∆~n

π(∆~n|~n−∆~n)p(~n−∆~n, t) (2.31)

where the sum is made on all the admissible combinations of elementary exchanges
∆~n leading to the state ~n. In the regularization condition and assuming ∆t → 0
only one elementary exchange is possible therefore reducing ∆~n = ~ei − ~ej to the
passage of a single particle from node j to node i so that

π(~ei − ~ej|~n; ∆t) =
1

N
π̂ijnj∆t+ o(∆t)

substituting this quantiy in equation (2.31) we obtain

p(~n, t+ ∆t) =
1

N

∑
i,j

E+
j E

−
i π̂ijnj∆tp(~n, t) + o(∆t) (2.32)

where the Van Kampen step operators, given any appropriate function f are defined
by

E±i f(n1, · · · , ni−1, ni, ni+1, · · · , nM) = f(n1, · · · , ni−1, ni ± 1, ni+1, · · · , nM).

subtracting to both side p(~n, t) and exploiting the regularization condition (2.29),
we re-write equation (2.32)

p(~n, t+ ∆t)− p(~n, t) =
1

N

∑
i,j

E+
j E

−
i π̂ijnj∆tp(~n, t) +

− 1

N

∑
i,j

π̂jini∆tp(~n, t) + o(∆t)

and finally divide both sides by ∆t we take the continuous limit ∆t→ 0 and derive
the Master equation

∂p

∂t
=

1

N

∑
i,j

E+
j E

−
i π̂ijnjp(~n, t)−

1

N

∑
i,j

π̂jinip(~n, t) (2.33)

At this point we solve the ”empty node” issue by extending the probability distri-
bution range to ZM and setting the boundary condition

p(~n, t) = 0 if |~n| 6= N. (2.34)

PART II 32



Chapter 2

2.2.2 Exact solution and stationary distribution

The exact solution of equation (2.33) can be computed using the expansion eigen-
vectors ~vλ of eigenvalue λ of the regularized stochastic matrix π̂. We recall that,
when π̂ formalizes the transition rates of a connected network, it has a left eigen-
vector equal to (1, · · · , 1) of egenvalue 1. The corresponding right eigenvector ~v is
the stationary solution of (2.33) with N = 1 if properly normalized (

∑
i vi = 1).

The remaining eigenvectors (that in principle can have complex entries) have value
|λ| < 1 and satisfy their entries sum up to 0∑

i

vλi = 0 ∀λ 6= 1

Lemma Given any eigenvalue λ of the transition matrix π̂, each function of the
form

f(~n, t) = e−βt
M∏
k=1

(vλk )nk

nk!

is a solution of Master equation (2.33) if β is defined by

β = (1− λ) (2.35)

Proof

By direct substitution, the left-hand side of (2.33) becomes −βf(~n, t), while
the first term on the right-hand side reads

=
1

N

∑
i,j

E+
j E

−
i π̂ijnje

−βt
M∏
k=1

(vλk )nk

nk!

=
1

N

∑
i,j

π̂ij(nj + 1)e−βt
(vλi )ni−1

(ni − 1)!

(vλj )nj+1

(nj + 1)!

∏
k 6=i,j

(vλk )nk

nk!

=
1

N

∑
i,j

π̂ijni
vλj
vλi
f(~n, t)

gathering all the terms of the master equation right-hand side we verify

=
1

N

∑
i,j

π̂ijni
vλj
vλi
f(~n, t)− 1

N

∑
i,j

π̂jinif(~n, t)

=
1

N

∑
i,j

[
vλj
vλi
π̂ij − π̂ji

]
nif(~n, t)

=
1

N

∑
i

1

vλi

[∑
j

vλj π̂ij − vλi π̂ji

]
nif(vecn, t)

=
1

N

∑
i

1

vλi

[
λvλi − vλi

]
nif(~n, t)

=
1

N

∑
i

ni [λ− 1] f(~n, t)

= −βf(~n, t)
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that is the left-hand side of (2.33) after substitution. �.

We can therefore write the general solution of the master equation (2.33)

p(~n, t) = N !
∑
λ

e−βtcλ

M∏
k=1

(vλk )nk

nk!
(2.36)

with the constant c1 = 1 in order to satisfy the normalizing condition∑
|~n|=N

p(~n, t) = 1 |~n| =
∑
i

ni (2.37)

the solution (2.35) converges toward the stationary distribution ps as t→∞

ps(~n) = N !
M∏
k=1

vnk
k

nk!
(2.38)

which is a multinomial distribution with marginal distributions having average and
variances respectively

〈ni〉 = Nvi, σ2(ni) = N(1− vi)vi

When vi � 1 (a condition easy to verify in network of big size) the marginal distri-
bution on the nodes is approximated by a Poisson distribution

pi(k) =
µki
k!
e−µi where Nvi = µi (2.39)

From this result one, besides the average solution, the value of the variance in each
node (σ2(ni) = Nvi(1 − vi)) implies that the expected fluctuations are of order
O(
√
N), a typical result of the law of large numbers. We look at the covariance

matrix Σij

Σij = cov(ni, nj) =
∑
|~n=N |

ninj
∏
k

vnk
k

nk!
−N2vivj

= N(N − 1)vivj −N2vivj = (δij − vi)viN (2.40)

which implies a negative correlation among the states, as expected.

Remark Restrictions (2.29) on the transition probability together with the con-
straint on the number of particles are strong assumptions for the random walk
dynamics. Indeed the only real issue that could arise would be the ”empty node
problem”; in order to have a reasonable description of the phenomenon we need to
quantify the probability to find an empty node. At stationary state we get

ps(ni = 0) = N !
∑
|~n|=N

M∏
k 6=i

vnk
k

nk!
= (1− vi)N =

(
1− n̄i

N

)N
≈ e−n̄i (2.41)

which decreases exponentially as N increases.
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2.2.3 The Macroscopic equation

Assuming now N big enough to leave a very small probability for a node to be found
empty at any step of the process, and expecting [56], [60] the probability distribution
of ~n to have a width of N1/2, we operate the classical Linear Noise Approximation
(LNA) transformation. In the sequel ~φ is the deterministic particle concentration
function, that can be proved to be the limit as N → ∞ of the stochastic concen-
tration ~n/N . In this way we do not need to assume that the function ~φ satisfies
any particular differential equation; if we simply choose it to follow the peak of the
distribution as it evolves in time, then the equation it satisfies will emerge. Usu-
ally the LNA technique is exploited to study the fluctuations of a stochastic model;
however in this special case we use the LNA technique only for the definition of
the macroscopic equation since the exact solution of the Master equation (2.33) is
already known. In order to perform the LNA of equation (2.33) we rescale time
t = Nτ so that it becomes

∂p

∂τ
= N

(∑
i,j

E−i E
+
j π̂ij

nj
N
p(~n, τ)−

∑
i,j

π̂ji
ni
N
p(~n, τ)

)
(2.42)

We define the new random variable ~ξ accounting for the fluctuations of particles
number on each node so that

~n = N~φ+N1/2~ξ (2.43)

with probability distribution Π so that

p(~n, τ) = p(N~φ+N1/2~ξ, τ) = Π(~ξ, τ) (2.44)

In order to perform the linear noise approximation we also expand the Van Kampen
step operators in equation (2.42) excluding o(N−1) terms

E−i E
+
j = 1 +

1√
N

(
∂

∂ξj
− ∂

∂ξi

)
+

1

2N

(
∂2

∂ξ2
i

+
∂2

∂ξ2
j

− 2
∂2

∂ξi∂ξj

)
(2.45)

The left-hand side of equation (2.42) becomes:

∂p

∂τ
=
∂Π

∂τ
+
∑
k

∂ξk
∂τ

∂Π

∂ξk
=
∂Π

∂τ
−N1/2

∑
k

∂φk
∂τ

∂Π

∂ξ
(2.46)

where the last term comes form the fact that we assume ∂ni/∂τ = 0 when the system
is at equilibrium. We now substitute quantites (2.44, 2.45, 2.46) into equation (2.42)
and we compare the expressions having the same order in the expansion. For the
terms relative to N1/2 we obtain:

−
∑
k

∂φk
∂τ

∂Π

∂ξk
=
∑
i,j

π̂ijφj

(
∂Π

∂ξj
− ∂Π

∂ξi

)
(2.47)

that holds if ~φ satisfies the macroscopic equation

φ̇i =
∑
j

π̂ijφj −
∑
j

π̂jiφi (2.48)
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Proof

we show 2.48 ⇒ 2.47. After a change of index (2.48) reads:∑
j

∂φj
∂τ

∂Π

∂ξj
+
∑
i,j

π̂ijφj

(
∂Π

∂ξj
− ∂Π

∂ξi

)
= 0

∑
j

∂φj
∂τ

∂Π

∂ξj
+
∑
i,j

π̂ijφj
∂Π

∂ξj
−
∑
i,j

π̂ijφj
∂Π

∂ξi
= 0

∑
j

∂φj
∂τ

∂Π

∂ξj
+
∑
i,j

π̂ijφj
∂Π

∂ξj
−
∑
i,j

π̂jiφi
∂Π

∂ξj
= 0

∑
j

∂Π

∂ξj

(
∂φj
∂τ

+
∑
i

π̂ijφj −
∑
i

π̂jiφi

)
= 0

(2.49)

where the terms in the round brackets are all null if the macroscopic equation
(2.48) holds. We can therefore say that if equation (2.48) holds then equation
(2.47) is verified. �

Equation (2.48) written in matrix notation becomes

d~φ

dt
+ L~φ = 0 (2.50)

where we recall the Laplacian matrix of the system

Lij = diδij − π̂ij di =
∑
j

π̂ji (2.51)

The stationary solution ~φs corresponds to the unique eigenvector of null eigenvalue
of matrix L.

Remark The macroscopic equation (2.48) obtained through the LNA is formally
equivalent to the microscopic mean-field equation (2.30). However the two equa-
tions have a different physical meaning and the connection between them is not
straightforward. Mirzaev and Gunawardeena ([51]) in their exaustive review about
Laplacian dynamics notice that the diffusion of a substance on a graph can be seen
as a Master equation when the substance represents an average probability to find
a particle a in node i at time t.
For sake of completeness, we conclude the LNA approximation: equalizing the N0

terms, neglecting higher orders and after some algebra, we obtain a linear Fokker-
Plank equation

∂Π

∂τ
= −~∇T

ξ · (−L) · ~ξΠ +
1

2
~∇T
ξ ·
[
LDφs + (LDφs)

T
]
· ~∇ξΠ

∂Π

∂τ
= −~∇T

ξ · A · ~ξΠ +
1

2
~∇T
ξ ·B · ~∇ξΠ (2.52)

where we highlight the drift matrix A = −L and the diffusion matrix B = LDφs +

(LDφs)
T ; here ~∇ξ = (∂/∂ξ1, · · · , ∂/∂ξM)T and Dφs = diag(~φs). Equation (2.52) has
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a Gaussian stationary distribution with average given by the macroscopic solution
~φs and covariance matrix Σ being the solution of the Lyapunov equation:

AΣ + ΣAT +B = 0. (2.53)

Solution of equation (2.53) is normally non-trivial and in most cases numerical
approaches are needed [60]. As previously mentioned the linear noise approximation
approach can be exploited to solve with a good approximation the Master equation
fluctuations and in this context would be redundant since the exact solution can be
obtained from direct calculation. However in more general cases, for example if one
models the transitions among states as chemical reactions an approach as LNA is
fundamental.

2.2.4 Maximal entropy principle

We now show that in the network-based random walk the stationary distribution is
a maximal entropy solution. We underline that in equation (2.33) the nodes are not
independent since the number of particles is limited to N and of course the average
value of particles in each node is finite

n̄i =
∑
|~n|=N

nip(~n).

we use the last M equations as a constraint to the Gibbs Entropy

S = −
∑
|~n|=N

p(~n) ln(ω(~n)p(~n))−
∑
i

µi
∑
|~n|=N

nip(~n) (2.54)

where µi are the Lagrangian multipliers and ω(~n) is a coefficient describing the
statistical weight of the network state ~n depending on the microscopical dynamics

ω(~n) =
M∏
i=1

ni! |~n| = N (2.55)

Namely ω(~n) associates a weight to the state ~n on the basis of how many ways the
random walkers can reach such a state. Once we perturb the probability distribution
we obtain

δS = −
∑
|~n|=N

ln(ω(~n)p(~n))δp(~n)−
∑
i

µi
∑
|~n|=N

niδp(~n) = 0 (2.56)

that leads to

ln(ω(~n)p(~n)) =
∑
i

µini ⇒ p(~n) ∝ 1

ω(~n)
e−

∑
i µini

and we identify µi = − ln(n̄i/N). We showed that the stationary distribution is a
Maximal Entropy solution.
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2.2.5 Detailed balance

In this paragraph we derive the detailed balance condition assuming independency
among the nodes of the network. The probability distribution dynamics for a single
node marginal distribution pi(k, t) (the probability to find k particles in node i at
time t), with this assumption becomes

∂pi(k, t)

∂t
=
∑
k

∑
j

π̂ij
k

N
pj(k, t)−

∑
k

∑
j

π̂ji
k

N
pi(k, t) (2.57)

This equation is not capable of explaining the transient states of the process; however
it converges for any node to its marginal stationary poisson distribution pi(k) =
(Nvi)

k

k!
e−Nvi , where ~v = ~ps is the eigenvector of eigenvalue 1 of the stochastic matrix

π. Plugging it in in (2.57) we get

0 =
∑
k

∑
j

π̂ij
k

N

(Nvj)
k

k!
e−Nvj −

∑
k

∑
j

π̂ji
k

N

(Nvi)
k

k!
e−Nvi

=
∑
j

π̂ijvje
−Nvj

∑
k

(Nvj)
k−1

k − 1!
−
∑
j

π̂jivie
−Nvi

∑
k

(Nvi)
k−1

k − 1!

=
∑
j

π̂ijvj −
∑
j

π̂jivi

=
∑
j

π̂ijvj − vi

where the last quantity is null by definition of ~v and π̂. Equation (2.14) can also be
written in a more compact form

∂pi(k, t)

∂t
=
∑
j

Jij

where the currents (or fluxes) Jij in the link j → i are defined as

Jij =
∑
k

π̂ij
k

N
pj(k, t)−

∑
k

π̂ji
k

N
pi(k, t)

In this perspective is easy to see that detailed balance implies that the probability
currents Jij = 0 for for each couple of connected nodes of the network in the station-
ary state. This condition implies that the stationary state satisfies the condition

π̂ij
π̂ji
vj = vi (2.58)

The detailed balance condition derives from the node-independency assumption. In
this context all internal forces acting in the system are conservative so that one can
define the potential Vi = − ln vi; such quantity is positive by definition. The detailed
balance condition now reads

Vj − Vi = ln
π̂ij
π̂ji

i 6= j

so that the left-hand side can be interpreted as potential energy, while the right-hand
side is the work to move one particle through the link j → i. Under the detailed
balance condition (2.58) the internal forces are therefore conservative: the work to
move a particle from any node to another one doesn’t depend on the path.
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2.2.6 Stochastic matrices and detailed balance

Now we focus on the properties of stochastic matrices in relation to the detailed
balance condition. We consider a stochastic matrix π with correspondent stationary
state e−V ; here we omit the hat over the entries of the matrix π. Given any couple
of vectors ~u, ~w ∈ RM we define a scalar product as

~w · ~u =
∑
i

wie
Viui (2.59)

that is evidently defined on the basis of the stationary distribution e−Vi . We define
the adjoint matrix π∗ of the stochastic matrix π with respect to the scalar product
· as

π∗ij = e−Viπjie
Vj ∀i, j (2.60)

We state the following

Lemma Given a stochastic matrix π

i. The adjoint matrix π∗ is still stochastic with the same stationary state e−V .

ii. Given any couple of vectors ~u, ~w ∈ RM the adjoint matrix π∗ satisfies the
equation

~w · π~u = π∗ ~w · ~u

where the scalar product is defined as in (2.59).

Proof

i. We consider the adjoint matrix π∗ij := e−Viπjie
Vj ; we verify the stocasticity of

such matrix: ∑
j

π∗ij =
∑
j

e−Viπjie
Vj = 1

We verify by direct substitution that e−V is the stationary solution

π∗e−V = e−V πT =
∑
j

e−Vjπji = e−V �

ii.

~w · π~u =
∑
k

wke
Vk(π~u)k =

∑
k

wke
Vk
∑
j

πkjuj∑
k,j

e−Vjπkje
Vkwke

Vjuj = π∗ ~w · ~u. �

Thanks to this lemma we see that the detailed balance condition (2.58) is equivalent
to the self-adjoint condition with respect to the scalar product (2.59):

πij = e−Viπjie
Vj ∀i, j (2.61)
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We also remark that if we use the change of base ~u′ = eV/2~u, the scalar product
(2.60) gains the standard form

~w · ~u =
∑
k

e−Vk/2w′ke
Vke−Vk/2u′k =

∑
k

w′ku
′
k (2.62)

and the matrix π is normalized as

π′ = eV/2πe−V/2 (2.63)

It is straightforward to notice that if π is self adjoint then π′ is symmetric:

π′ij = eVi/2πije
−Vj/2 = eVi/2

(
e−Viπjie

Vj
)
e−Vj/2 = eVj/2πjie

−Vi/2 = π′ji

In addition the state e−V/2 is the stationary distribution of the normalized matrix
(2.63). We use these results for identifying stochastic matrices that fit Master equa-
tions satisfying the detailed balance condition. We basically prove that the contrary
of the last remark holds as well:

Lemma Given any stochastic matrix S with positive entries and an eigenvector
e−V/2 with eigenvalue 1, then the matrix found with the transformation:

π = e−V/2SeV/2 (2.64)

is stochastic with stationary state e−V . In addition all the eigenvalues are real
numbers smaller than 1 and satisfies the detailed balance condition (2.58).

Proof we prove the stochasticity of the matrix π by direct calculation:∑
i

πij =
∑
i

e−Vi/2Sije
Vj/2 = e−Vi/2

∑
i

Sjie
Vj/2 = e−Vi/2eVi/2 = 1

where in the second passage we used that S is symmetric. The stationary state of
π is e−V : ∑

j

πije
−Vj =

∑
j

e−Vi/2Sije
Vj/2e−Vj =

∑
j

e−Vi/2Sije
−Vj/2 = e−Vi

the detailed balance condition is satisfied by definition

πij
πji

=
e−Vi/2Sije

Vj/2

e−Vj/2SijeVi/2
= e−(Vi−Vj) (2.65)

Therefore the matrix πij has all real eigenvalues �.
We now generalize the previous lemma, characterizing all the stochastic matrices π,
satisfying detailed balance (2.58):

Theorem Consider a stochastic matrix π that is symmetric with respect to a real
positive defined quadratic form

(~u, ~w) =
∑
i,j

uihijwj

then π satisfies detailed balance (2.58).
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Proof We start by the symmetric condition

πH = HπT (2.66)

where H is a symmetric positive defined matrix. Then H is a distributed stationary
state: ∑

i,j

πijhjk =
∑
i,j

hijπkj =
∑
j

πkj

(∑
i

hij

)
where

e−Vi :=
∑
j

hji

and detailed balance reads formally as (2.65) �.
When we say that H ia a distributed stationary state, we mean that its actual
stationary state e−V has components equal to the sums of the columns of H. This
implies that the term πijgjk can be seen as the flow on the link j → i thanks to
the k-th component of the distributed stationary state H and summing up all such
contributions ∑

j

π̂ijhjk

one gets the incoming flow on the node i associated to the k-th component of the
stationary state. In this context one can interpret condition (2.66) as another for-
mulation of detailed balance.

2.2.7 Biochemical networks

So far we developed the random walk on a network, and under choosen assumptions
we discussed the phenomenon accurately. Now, we want to propose the discussed
random walk model as a particular case of Biochemical network framework that
is discussed exensively in the work by Elf and Ehremberg [60]. The idea is that,
given a biological network, the transitions between states are modelled by linear
or non-linear functions of the states. The reason why this generalization could be
important relies on the fact that intra or inter omics exchanges could be poorly
described by a random walk. Of course the random walk model is interesting for
many reasons - not last its applicability - but it remains fundamentally at the base
of many computational tools that can be exploited on the interactome to perform
several tasks as we will show in the sequel.
In the perspective that a more accurate mathematical description of the intra-cellular
biological process should lead to better performing statistical tools, we can think of
the nodes of the network as intracellular species interacting with each other accord-
ing to dependent or independent exchanges of individuals. For example one could
allow the birth and the death of individual particles leading to a model that would
be the generalization of a One-step process in M variables, where M is the size of
the network. Another choice could be to model the exchanges between states as
chemical reactions with a given transition probability and stochiometry.
We now consider the array of random varibles ~n with a constant volume of particles
N =

∑
i ni(t),∀t with each state having discrete range. The most general form of
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Figure 2.3: Stochiometrics and Laplacian We explicitely give the toy network of example 1
the numerical quantites treated. L is the Laplacian matrix of the closed system; S and f are
respectively the stochiomeric matrix and the macroscopic transition rates for the closed system

Master equation on a network written in compact form:

∂P (~n, t)

∂t
= N

R∑
j=1

[
M∏
i=1

E−Sij − 1

]
fj(~n/N)P (~n, t) (2.67)

where we are considering R possible exchanges with transition rates f1, · · · , fR, S
is a M × R matrix describing in each column a different reaction fj; such matrix is
called S since in the context of biochemical networks it would be the Stoichiometric
matrix defining the macroscopic exchanges between states. In equation (2.13) we
introduce the Van Kampen step operator E−Sij that is defined by its action on any
function g of the state ~n

E−Sijg(~n) = g(n1, · · · , ni − Sij, · · ·nM)

We remark that this is the general case meaning that form (2.67) includes also the
case in which exchanges of particles or reactions are dependent from one another
so that the products on the right hand side may not commute making solution of
(2.13) very difficult. We also underline that the transitions between states can in
principle be linear or non-linear functions of the states ~n. Of course non-linearity of
such transitions increases as well the complexity of the problem.
In the undirected toy network shown in Fig. 2.3 we write down the stochiometric
matrix S and the macroscopic transition rates fj as in (2.3) and we observe that if
we choose the kj to be constant and equal to the reciprocal of the degree from which
the reaction starts, the macroscopic equation becomes equivalent to a random walk.
More precisely, if we take k1 = 1

2
, k2 = 1

3
, k3 = 1

2
, k4 = 1

3
, k5 = 1

2
, k6 = 1

2
, k7 = 1, k3 =

1
3
, at stationary state we get:

Sf(~φs) = LgG
−1~φs = L~φs = 0⇔ ~φs =

N

2a
(g1, · · · , gM)T

where a is the total number of connections and gi is the degree of node i in the net-
work. Such solution is reached at infinite time starting from any initial distribution
of the substance on the network.
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With this simple observation (Fig. 2.3) we suggest that the random walk on the
network can be seen as a special case of reaction network. The general model (2.67)
could be useful for more accurate modelling of exchanges between molecular species
in the omics data context. However the following questions remain undiscussed in
this work: when and how is it possible to shift from a stochiometric matrix S and
associated transition rates describing the exchanges among states to a Laplacian for-
mulation? Or at least when and to which grade of error is it possible to approximate
a complex reaction network with a Laplacian dynamics?

2.3 The macroscopic equation as a hydrodynamic

model

In the previous sections we defined and studied some stochastic models with the
purpose of introducing a theoretical framework to be applied to omic data integra-
tion. The underlying assumption is that relations between molecular entities can be
modeled through (direct or undirect) networks.
In principle each omic layer has its own way to be modeled and at the state of the art
the complexity of the cell is far away to be described with a good approximation with
a unique mathematical framework. In this perspective the formulation of a general
model like (2.67) could lead to a better description of omic-specific or inter-omic
intracellular dynamics. However the formulation of such models is often still far away
from the methodology and tools used by applied scientists; the statistical challenges
arising in the analysis of an omic (or multi-omic) dataset usually needs a more
practical ”down to earth” approach since sophisticated mathematical approaches on
one hand would sometimes have to rely on a weak or incomplete a priori knowledge
and on the other hand the concrete goals of biological and medical scientists need
fast and simple solutions.
As described in chapter 1 network-diffusion based methods are an example of how
more sophisticated mathematical modeling of the data can lead to better results.
When we speak about network-diffusion based methods we mean data manipulation
methods that diffuse the initial information about molecular entities on a given
network that - to a certain degree of accuracy - quantifies the relationships between
such molecular entities. Network diffusion methods consists of ad hoc algorithms
with parameters that can be tuned depending on the scientists’ goal. In chapter 1 we
mentioned diffusion kernels [36, 45] and the propagation algorithms [46, 47, 48, 57]
as two possible approaches to perform such network diffusion. Now we focus on the
second one and we show that the network propagation algorithm can be derived by
the master equation model described in the previous sections.

2.3.1 An open source/sink model

The linear Laplacian dynamics is well described and exaustively treated by Mirzaev
and Gunawardeena [51]. With Laplacian dynamics we mean the diffusion of a sub-
stance on a network having Laplacian matrix L. Such equation - as they suggest -
is formally equivalent to the macroscopic equation arising from the master equation
described in the previus section (2.50) that we write in compact form:
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d~φ

dt
+ L~φ = 0 (2.68)

where we recall the definition the Laplacian matrix of the system

Lij = diδij − π̂ij di =
∑
j

π̂ji

Such equation can be interpreted as a master equation itself: the substance diffusing
on the network ~φ can be seen as the average probability for a particle to be found
in a given node at a given time if we introduce the constraint∑

k

φk(t) = 1.

We demonstrated that equation (2.68) can be derived as the macroscopic equation
(2.48) associated to the general master for a random walk of particles on the network
(2.33). If dk = 1 the matrix Π̂ becomes a stochastic matrix with the stationary

solution ~φs being the right eigenvector corresponding to the null eigenvalue of the
matrix L. Equation (2.68) describes a closed isolated system in which starting from

any initial probability distribution ~φ0 = ~φ(0), the dynamics relaxes to the same
stationary solution. In fact since the eigenvalues of L are all positive except the null
one, ~φs is unique and attractive.
Introducing a source-sink perturbation to this isolated system we get an open system:

d~φ

dt
+ L~φ− s0~πin + I · ~πout · ~φ = 0

d~φ

dt
+ (L+ I · ~πout) · ~φ− s0~πin = 0 (2.69)

where ~πin = (π10, · · · , πM0)T are the input connections and ~πout = (π01, · · · , π0M)T

are the sink rates from each node. Equation (2.69) can be solved since the cor-
respondent homogeneous system admits a unique solution (L + I~πout is diagonally
dominant). The stationary state is given by

~φs = (L+ I · ~πout)−1s0~πin (2.70)

2.3.2 The hydrodynamic interpretation

Starting from equation (2.69) and assuming the sink vector ~πout to be a constant
vector with entries equal to a first order sink rate γ, we can write in compact form

d~φ

dt
= −Lγ~φ+ s0

~φ0 = 0 (2.71)

where ~φ0 := ~πin is the input array whose i-th entry is 1 if the node i is a source node
and 0 otherwise and Lγ := L + Iγ. In this case L is the symmetric version of the
Laplacian after change of base (2.62). Some interesting biological applications(ref)
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Figure 2.4: Network Propagation and source/sink model The Network Propagation algo-
rithm can be used to recover the stationary distribution of the perturbed hydrodynamical system
(2.69). Here we use the restrictions on the sources and sinks that we found in literature.

of equation (2.71) are based on its hydrodynamic interpretation. The source nodes

are decribed by the M-components vector ~φ0. Now we assume that the source nodes
on the network are thought as valves that open at time t = 0 with a constant
incoming flow rate s0. So starting from t = 0 the fluid coming from the opened
valves spreads throughout the network according to the existing connections among
the nodes and exits from the nodes according to the constant sink rate γ. The effect
of such a set up leads to a steady flow state where at infinite time the amount of fluid
remaining in each node is constant even if it continues to enter the network through
the valves and exit from the sinks. In Fig. 2.4 we show a simple visualization of the
model.
The hydrodynamic system (2.71) and its generalization (2.69) can be used on a bio-
logical network for example for gene prioritization. Another application is the ”hot”
subnetworks extraction. With the word ”hot” we mean those areas of the network
that are enriched in sources that usually represent abnormal data information. In
this work we deduce the dynamical system (2.71) from the Master equation adapted
on the network getting to a general model. In fact equation (2.69) can in principle
differenciate the incoming flow rate s0 from node to node using real inputs ~πin as
well as the sinks ~πout.

2.3.3 Connection to the network propagation algorithm

Since for big networks inverting the matrix L + I · ~πout is computationally out of
reach one can use a numerical approach as shown in figure (2.4); in order to write a
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forward Euler version of (2.69) we first assume that the sinks ~πout are all equal to a
positive constant πk0 = γ as well as the sources s0 = γ; substituting into (2.69) we
get

d~φ

dt
= −(L+ Iγ) · ~φ+ γ~φ0

d~φ

dt
= −(I − π̂ + Iγ) · ~φ+ γ~φ0

d~φ

dt
= −(I(1 + γ)− π̂) · ~φ+ γ~φ0 (2.72)

where ~φ0 := ~πin is thought as the input and π̂ = I − L is the transition matrix;
re-parametrizing γ = (1− α)/α, with 0 < α < 1,

d~φ

dt
= −

(
I

1

α
− π̂

)
· ~φ+

1− α
α

~φ0 (2.73)

so that after multiplying by the parameter α and rescaling time equation (2.73)
becomes

d~φ

dτ
= − (I − απ̂) · ~φ+ (1− α)~φ0 (2.74)

At this point we discretize time using a time step ∆τ and re-adapt equation (2.73)

~φ(τ + ∆τ)− ~φ(τ)

∆τ
= − (I − απ̂) · ~φ(τ) + (1− α)~φ0

~φ(τ + ∆τ)− ~φ(τ) = − (I − απ̂) · ~φ(τ)∆τ + (1− α)~φ0∆τ (2.75)

assuming now a unitary time step ∆τ = 1 so that ~φ(τ + ∆τ) = ~φτ+1 (2.75) and we
can re-write equation as

~φτ+1 = απ̂ · ~φτ + (1− α)~φ0 (2.76)

In equation (2.76) during each iteration each node receives the information from its
neighbors, and also retains its initial information and self-reinforcement is avoided.
The information is spread according to the transition matrix π̂. We now demonstrate
that algorithm (2.76) converges to the stationary distribution (2.70) that written
substituting the parameter α reads

~φs = (1− α)(I − απ̂)−1~φ0 (2.77)

Proof we demonstrate that (2.76) converges to (2.77) through the power expan-
sion method; starting from φ0 (omitting the vector subscript) and we apply some
iterations:

φ1 = απ̂φ0 + (1− α)φ0,

φ2 = απ̂φ1 + (1− α)φ0

= απ̂(απ̂φ0 + (1− α)φ0) + (1− α)φ0

= (απ̂)2φ0 + (1− α)(απ̂ + I)φ0

= (απ̂)2φ0 + (1− α)((απ̂) + (απ̂)0)φ0
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Figure 2.5: Comparison between Network Propagation and source/sink model Numerical

comparison on a simple undirected toy network with initial condition ~φ0 = (1, 0, 0, 0, 0)T where we
put the source in the node A. In green we perform the numerical solution of the dynamical system
(2.71) seen as distinct components and we compare it with the network propagation algorithm
(2.76) in blue.

Iterating this procedure at step t we get:

φt = (απ̂)tφ0 + (1− α)
t−1∑
i=0

(απ̂)iφ0,

Since 0 < α < 1 and the eigenvalues of π̂ are in [−1; 1], if the transition matrix is
properly taken (*). when we take the limit for t→∞ we get:

φs = (1− α)(I − απ̂)−1φ0

that is (2.77). �
(*) The previous demonstration is valid for all transition matrices π̂ whose eigen-
values have module smaller than 1. We remark that several choices of transition
matrices are acceptable. Starting from an undirected graph with adjacency matrix
A and diagonal degree matrix G, the most interesting choices are the stochastic
matrix π̂′ = AG−1 or the symmetric matrix G−1/2AG−1/2. The last choice comes
from the change of base (2.62) from the stochastic matrix π̂ to the symmetric matrix
π̂′ = G−1/2π̂G1/2. For clarification about matrix notation see Fig. 2.2.
Choosing π̂′, equation (2.76) is a known network diffusion algorithm known as ”net-
work propagation” [57]. This method is successfully exploited by Hofree et al. [46]
in their network based approach applied to somatic mutation profiles. The physical
interpretation of such a diffusive algorithm inherits some helpful concepts from the
associated physical model. The parameter α describes how much the fluid is free to
propagate in the network versus how much it tends to remain in the source nodes.
We demonstrated, under simplified assumptions, that the network propagation al-
gorithm is an Euler forward discretization of the macroscopic equation derived from
the random walk on the network. In Fig. 2.5 we see how the network propagation
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algorithm helps find the stationary solution as it rapidly converges to the stationary
distribution of the source/sink model.
We remark that introducing the sources and the sinks gives rise to an open system,
where the amount of fluid in the network is not conserved. In fact the stationary
solution (2.70, 2.77) is a constant-flow solution where the incoming flow stabilizes
at infinite time with the outgoing one. The only possibility to allow the fluid con-
servation is the introduction of a source/sink node that extends the network so that
~φ can be still interpreted as a probability distribution with the constraint∑

k

φk(t) = 1.

and equation (2.68) can be thought as an actual Master equation. The source/sink
node extension and its implications are developed in chapter 4.
The network propagation algorithm is exploited mainly in the next chapter where
we describe an application to differentially active module discovery. However the
general master equation model (2.68, 2.69) from which it is derived will be exploited
in chapter 4 for perturbation analysis and control theory.
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Network-diffusion based analysis
of high-throughput data

This chapter describes the application of the hydrodynamic model described in the
previous chapter to the analysis of omics data. In particular we exploit the connec-
tion between the hydrodynamic model and the network propagation algorithm to
define novel omics measures based on the network diffusion of the omic information
on the network. We apply such techniques to the discovery of differentially enriched
modules that consist of network regions enriched in statistics derived from different
types of omics datasets. Supplementary information and further insights are avail-
able on the published paper “Network diffusion-based analysis of high-throughput
data for the detection of differentially enriched modules” [61].

3.1 Biological networks and diffusion techniques

Cellular functions are carried out by modules of interacting molecular entities [62].
Complex intracellular circuits can be modeled as networks in which vertices are
molecular entities and links are (direct and indirect) interactions among entities.
According to the so-called local hypothesis, functional similarity is related to network
proximity and, in line with it, the molecular entities involved in the same disease
have an increased tendency to interact with each other [6]. This knowledge, in
combination with the growing availability of molecular interactions data, offers the
opportunity to develop computational approaches that use network proximity as a
tool to predict molecular species function and disease association [44, 63].
More generally, the definition of the network regions associated to biological func-
tions and diseases is a major goal in systems biology[6, 64]. Several integrative
approaches, which jointly analyse interactions and molecular profiles, have been
proposed [46, 47, 65, 66, 67, 68, 69] and were recently classified into four broad cat-
egories: identification of active modules, identification of conserved modules across
species, identification of differential modules and identification of composite mod-
ules [70]. However, this task is still an open challenge in bioinformatics research.
First of all, the size of biological networks makes the search for subnetworks time-
consuming. Secondly, technological biases in high-throughput approaches for inter-
action detection and molecular profiling can compromise analyses accuracy. Thirdly,
our biological knowledge is still limited: just to mention two relevant examples, ac-
cording to recent estimates, only the 10% of protein-protein interactions (PPIs) may
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be known [71] and while more than half of all proteins are glycosylated, knowledge
about the glycosylation process is still limited [72]. Another challenging aspect is
that while topological communities often represent functional modules, they do not
overlap with disease modules: therefore, the search for disease subnetworks can not
be faced using only community detection methods [6, 65].
Recently, diffusion-based approaches, which simulate the diffusion of a quantity
throughout a network in order to calculate a global measure of network proximity,
have been successfully proposed in several applications, taking advantage of the
local hypothesis. A few examples are the association of genes and protein complexes
with diseases [57], the stratification of tumour mutations [46], the identification of
biomarkers in genome-wide studies [73, 74] and the study of virus-host molecular
interactions [75, 76].
Examples of diffusion-based bioinformatics tools include NBS [46], HotNet [47],
TieDie [67], ResponseNet [68], RegMod [69] and stSVM [77]. NBS [46] smooths
somatic mutations profiles and than uses neetwork-based non-negative matrix fac-
torisation to stratify subjects. Hotnet [47] uses summary statistics derived from
somatic mutations as input for a diffusion process in order to identify active net-
work regions. Hotnet2 [66] uses an insulated heat diffusion that, roughly speaking,
comes from a non-symmetrical normalization of the network’s adjacency matrix
which correct for vertex degree, thus intrinsically reducing the weight of hubs. In
fact, the output of several diffusion-based methods shows a dependency on vertex de-
gree [65, 74, 76]. Hotnet2 integrates the diffusion matrix, which contains topological
information, with somatic mutations and, then, identifies hot subnetworks selecting
high scoring links. The significance of the number and size of the subnetworks is
calculated using a two-stage statistical test. TieDie (Tied Diffusion Through Inter-
acting Events) [67] and ResponseNet [68] use two different approaches to find the
subnetwork that connects two sets (sources and targets) of network vertices, which
can represent genomic perturbations and gene expression variations. TieDie [67]
uses a diffusion approach to find a subnetwork of sources, targets and (predicted)
linkers that are “logically consistent” in relation to their molecular profiles. Respon-
seNet [68] formulates a minimum-cost flow optimisation problem that is solved by
linear programming. RegMod [69] was proposed to find disease-associated modules
using interactions and gene expression data; this approach uses the support vector
regression method with a diffusion kernel in order to find active modules. stSVM
smoothes a vector of t statistics by mean of a random walk kernel and uses a support
vector machine (SVM) to select a set of significant genes [77].
In this paper, we describe a pipeline to outline network regions enriched in statis-
tics derived from different types of omics datasets (Fig. 3.1). We show that the
network smoothing index (S), a network diffusion-based quantity introduced here,
is a simple and informative measure to jointly quantify the amount of “-omics” in-
formation associated with a molecular entity (e.g. gene, mRNA, protein) and the
information in network proximity to it. Consequently, we describe two general ap-
plications of S for finding differentially enriched regions, in relation to the type of
input statistics S is derived from: the variation of S between two sets of samples
(∆S) or the permutation-adjustment of S (Sp) for, respectively, descriptive statis-
tics or inferential statistics. We also describe a procedure (network resampling) for
the assessment of the presence of significantly connected components among entities
with the highest ∆S or Sp.
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Figure 3.1: Network-diffusion based analysis of omics for the identification of differen-
tially enriched network regions. (a) Statistics (descriptive on the left, inferential on the right)
carrying molecular information are smoothed by means of network propagation, and the NSI score
is computed. (b) Identification of significantly connected components among genes ranked by ∆S
or Sp, and network-based functional characterisation.

We show the performance of network diffusion, ∆S, Sp and network resampling in
a simulated dataset. Then, as a proof of principle, we apply these tools to spot
PPI network regions differentially enriched in somatic mutations (SM) and gene
expression (GE) variations between two prognostic groups of patients affected by
prostate adenocarcinoma (PRAD). We carry out the analyses of molecular profiles
using five datasets of molecular interactions.
The strategy described here can be in principle applied to two-classes analyses of
any high-throughput dataset that can be mapped to a network of interactions. We
implemented the pipeline used in our study into an R package available upon request
for non-commercial entities.

3.1.1 Identification of differentially enriched modules

Network diffusion methods can be applied to different types of initial quantities,
like molecular entities-by-samples matrices [46] and real valued summary statis-
tics [66, 67, 77]. Such differences are mainly motivated by the type of input data,
the objective of the analysis and the algorithm used to generate the results. We con-
sider two apply network diffusion on two types of input: descriptive statistics that
summarise the information of a group of samples (Fig. 3.1a left-hand side); inferen-
tial statistics that describes the molecular variations between two classes (Fig. 3.1a
right-hand side).
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In relation to the physical model of diffusion we have used, we refer to the positive
elements of the input as “sources” and to the represented molecular quantity as in-
formation or fluid. Network diffusion allows to “smooth” the information associated
with molecular entities according to a given pattern of interactions among entities,
encoded in the adjacency matrix A, a square binary matrix where positive elements
aij indicate the presence of an interaction between entities i and j. We consider
the diffusion method designated as “network propagation” [57] to smooth any input
statistic x0 :

xt+1 = αW · xt + (1− α)x0 (3.1)

where W is a symmetrically normalised version of A (see Methods) and 0 < α < 1
controls the contribution of the two addends. At each iteration t, the amount of in-
formation in each vertex is the sum of its initial information and the total amount of
information associated with its neighbours at the previous iteration. This iterative
procedure will converge in a finite number of iterations to a particular state x∗ [78].
Note that we can interpret the iterative procedure of equation (3.1) as a diffusion
process in which a fluid enters from sources, flows through the links between vertices
and exits at a constant first order rate from each vertex. In particular, after a proper
rescaling, network propagation is equivalent to the laplacian dynamics of the open
system of type dx/dt = −L′x + b, where L′ = αW − I and b represents the molec-
ular profile; this equivalence implies that the steady state reached by the laplacian
dynamics is the same state x∗ to which equation (3.1) converges (see Supplementary
Note S1 online). At steady state, high values are associated with sources and with
vertices in network proximity to sources. Note that network diffusion, in contrast to
other methods, is a global measure of network proximity, i.e. it considers the whole
network [44].
In order to quantify the average amount of information at steady state (x∗) in
relation to the initial one (x0) in a subset of samples, we introduce the network
smoothing index (NSI) Sj of a molecular entity j:

Sj(x0) =
x∗j

x0j + ε
(3.2)

where ε is a parameter that weights the relative importance of initial and final states.
Small values of ε underline the gain of information in relation to the initial state,
while when ε→∞ only the final state (x∗j) matters. A reasonable compromise can
be found in order to prioritise both sources and entities in network proximity to
sources (see below the results for PRAD data).
At this point, NSI based on within-class statistics relative to a set of controls (u1)
can be subtracted to the NSI calculated on within-class statistics relative to a set of
cases (u2):

∆Sj = Sj(u2)− Sj(u1) (3.3)

where the ∆Sj jointly quantifies the differential amount of molecular variation ob-
served in entity j and in its neighbourhood between two classes of samples. Note
that the calculation of ∆Sj contrasts the effect of hubs that assume high Sj in both
classes only because of their centrality. In other words, since the topology of the
network is the same for the two subsets of samples, the effects ascribable only to
topology are mitigated.
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If the NSI is obtained from the smoothing of a differential statistics (u) then permu-
tations can be used to mitigate the effect of hubs. In this case, we define the PNSI
(Sp) value for each gene j:

Spj(u) = −log10(pj) · Sj(u) (3.4)

where pj is the fraction of times an Sj obtained from the smoothing of a randomised
differential statistic is equal or greater than the real Sj. The quantities S,∆S and
Sp are vectors of length equal to the entire number of molecular entities considered
as well as the input within-classes or differential statistics.
At this point, the top molecular entities sorted in decreasing order of ∆S (or Sp)
belong to regions with a differential content of information. In order to identify
one or more differentially enriched modules we need to cut this list and extract
the subnetworks composed of such top entities. Accordingly, we define the non-
decreasing objective function Ω for ∆S (or Sp):

Ω(n) = ∆ST (n) ·An ·∆S(n) (3.5)

where An is the adjacency matrix for only the first n top scoring molecular entities.
In other words, the function Ω(n) is the sum of all the products ∆Si∆Sj between
the pairs (i, j) of interacting (aij = 1) molecular entities. According to the local
hypothesis [6], if the difference between the two classes is the consequence of an
underlying biological function or pathobiological process, we should expect a signif-
icant pattern of connection among the molecular entities with the highest ∆S [65].
In order to quantify such significance, for each rank n, we calculate the values of
Ω(n) using k resampled adjacency matrices, where we randomly assign the existing
links among vertices conserving the same degree distribution. Then, we calculate
the corresponding network resampling p values (pnr), which are equal to the mean
number of times a random assignment of the links among the first n molecular en-
tities determines a value of Ω(n) higher than or equal to the one observed with
real links (see Supplementary Note S2 online). Following this procedure, the ranks
associated with low values of pnr indicate the presence of connected genes with high
∆S (or Sp).

3.1.2 Performance on simulated data

We have designed a series of simulated datasets to study the NSI ability to prioritise
genes belonging to network regions (shortly modules) with a higher content of omics
information in comparison to the rest of the network. We have considered the generic
definition of module as random subnetworks, where the existence of a finite path that
connect each pair of module gene is the only topological requirement, because disease
proteins do not necessarily reside within locally dense communities [65] and, more
generally, it is not clear to which extent functional modules, topological modules
and disease modules overlap [6]. We have associated with each module a specific
amount of signal (ω) non-uniformly distributed among the genes, in order to have
a few module genes contributing to the most of the signal and all the other module
genes with lower or not significant amounts of signal (Fig. 3.2a). This distribution
was inspired by what is observed in real datasets, like the “mountains” (highly
mutated genes) and “hills” (genes altered infrequently) observed in cancer mutation

PART III 54



Chapter 3

landscape [79]. Moreover, it models a more general scenario in which the alteration
of some module genes is observed in many individuals (higher signal), other module
genes are altered more specifically (lower signal) and, lastly, some module genes
are marginally altered. Conversely, outside the module the signal was randomly
distributed. The simulated datasets were defined such that the real amounts of
mutation per patient and per gene were not modified.
We have explored several configurations, varying ω, the distribution of ω, the pa-
rameter ε (equation 3.2), module size and module topological density. We used
STRING [80] and PRAD SM data (from TCGA [81]) as sources, respectively, of
molecular interactions and biological signal (see methods). For each confuguration
we have computed S and calculated the recall as the fraction of module genes that
appear among the top M genes ranked in descending order of S, where M is module
size.
We have observed high recalls either in modules enriched in mountains and in those
enriched in hills (Fig. 3.2b). When the biological signal is particularly high the best
performance is obtained for high values of ε, while when the module is composed
of a mixture of genes with strong and marginal variation , we have observed the
maximum recall for smaller values of ε (ε ≈ 0.25) (Fig. 3.2c). The performance of
the NSI increases with increasing topological density (number of existing links over
all possible links among the module’s genes (Fig. 3.2d)). This behaviour is particu-
larly highlighted for low values of fh, underlying that a high density of connections
strengthens the ability of the index to prioritise genes in network proximity to those
with a high content of molecular alterations. The use of S determines higher recall
than the non-network quantity f (variation of relative frequency of gene mutation),
apart from the extreme case in which the module genes are exactly the top ranking
genes by f (Fig. 3.2e). S determined the identification of more connected network
regions with a higher content of module genes compared to what we observed using
f (Fig. 3.2f).
We assessed the ability of network resampling in the prediction of module size. For
this analysis, we have ordered genes by ∆S, which quantified the difference between
a simulated dataset with a gene module enriched in biological information (as de-
scribed above) and a simulated dataset without such enrichment (see methods).
Also in this case, the real amounts of mutation per patient and per gene were not
modified. As the signal ω increases, the size of significantly connected components
approaches module’s size (Fig. 3.3). We observed that the optimisation of pnr values
reaches a good accuracy around ω = 12%. The difference that we have observed,
for lower values of ω, between the size of significantly connected components and
module’s size M , indicates that differential information (amount of mutations) is
enriched in a subregion of the gene module (Fig. 3.3).

3.1.3 Prostate adenocarcinoma

As a proof of principle, we have applied the network-based pipeline to the identi-
fication of molecular interaction networks enriched in genes with a higher content
of SMs and GE differences between two distinct PRAD prognostic grade groups,
G5 and G2, where the higher the grade the poorer the prognosis. We have used
these datasets to illustrate two possible types of input data. In particular, in the
case of SM data, we have calculated the relative frequency of gene mutation within
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Figure 3.2: Performance of differential network smoothing index in simulated datasets
containing gene modules enriched in omics information. (a) Somatic gene mutation rel-
ative frequencies ranked in decreasing order to underline mountains and hills. (b) On a sample
of 100 vertices modules the recall heatmap with varying percentage of mountain genes (m%) and
average hill frequency (h). (c) The fraction of recalled genes for different values of parameter ε,
on a typical 100 vertices module, with varying signal strength (m% = 0.1, the signal ω increases
with h). (d) Average recall vs signal strength obtained on several toy datasets of different sizes
(100, 150, 200 nodes) and topological density (d). (e) Comparison between the network smoothing
index recalls (ε = 0.25 and ε = 1) and ∆f recalls with varying signal strength obtained on a sample
of several 100 nodes toy datasets. (f) the gain both in number of links (solid line) and number of
connected vertices on top of f , and S. (a-f) Simulations were run using STRING PPIs.
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Figure 3.3: Identification of significantly connected genes with network resampling p
values in simulated datasets containing a gene module enriched in molecular alter-
ations. Network resampling p values (pnr) calculated for each rank (n) of genes ordered by
decreasing values of ∆S in datasets containing gene modules of different size (red lines, M) and
signal (ω). Yellow lines indicate the smallest ranks associated with the presence of significantly
connected components. Simulations were run using STRING PPIs.

each prognostic group (f), obtaining two vectors of descriptive statistics (f1, f2),
and the variation between the two (∆f). We have applied network diffusion on f1

and f2 and calculated the corresponding S1, S2 and ∆S. In the case of GE data,
we have calculated a differential statistics (lfcp, which combines basolute gene log
fold change and adjusted p value of a moderated t statistics) between G5 and G2.
We have applied network diffusion to lfcp, calculated the corresponding S and then
Sp. We have repeated these analysis using five collections of direct (physical) and
indirect (functional) PPIs (see Methods).
Of course, genes for which no interaction information is available in the considered
interactome will not have a network-based value (Fig. 3.4 a-b). As expected, ∆S
and Sp have prioritised genes jointly considering the relevance of the “network-
free” statistics associated with each gene and the network-free statistics of genes in
network proximity to each gene (Fig. 3.4 a-b). Genes with the highest variations of
∆f or lfcp are also associated with the highest values of ∆S or SP respectively. In
particular, the overlap between network-free and network-based gene rankings can
be tuned using the parameter ε (see [61] supplementary Fig. S2 and supplementary
Fig. S3). Genes with similar values of ∆f or lfcp are discriminated in relation to
their network location: the higher the network proximity of a gene to other genes
associated with relevant ∆f or lfcp, the higher its ∆S or Sp respectively. As a
consequence, top ranking genes ordered by ∆S and Sp are more connected and
form bigger networks than genes ordered by network-free quantities (Fig. 3.4 c-d).
We have applied the network resampling procedure to genes ranked by decreasing
values of ∆S (enrichment of SM in G5 in comparison to G2) and Sp (enrichment in
GE variations between G5 and G2), and found significantly connected modules in
both cases (Fig. 3.5a). SM gene modules range from 109 and 231 genes depending on
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Figure 3.4: Comparison of network-based and network-free quantities calculated on
somatic mutation and gene expression data from PRAD samples associated with two
different prognostic groups. (a-b) Scatter plot with network (y−axis) vs network-free (x−axis)
gene scores calculated on PRAD SM (a) and GE (b) data. (c-d) Number of links (y−axis, left)
and number of vertices (y−axis, right) within the first 500 genes ordered by network (∆S, Sp)
and network-free (∆f , lfcp) gene scores calculated on PRAD SM (c) and PRAD GE (d) data.
(a-d) ∆S and Sp were calculated using ε = 0.25 and ε = 1 respectively and using STRING PPIs.
Legend: # = number of links (vertical axis, left) or number of veritces (vertical axis, right).
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Figure 3.5: Gene modules enriched in genes with different somatic mutations and gene
expression levels between two PRAD prognostic groups. (a) pnr value of gene lists ranked
by ∆S (SM, yellow) and Sp (GE, blue); vertical lines indicate the top ranking genes selected to
be part of the corresponding gene modules. (b) Network of genes belonging to SM gene module
(yellow), GE gene module (blue) or both (green); the pink border indicates genes that occur in
at least 10 articles on PRAD. Legend: circle = gene found using networks; square = gene found
using network and using network-free quantities (∆f or lfcp); vertex size = the larger the size the
higher the gene score (maximum between ∆S and Sp).

the interactome (Tab. 3.1). A total of 342 distinct genes occur in these modules while
45 genes occur in all of them. Similarly, the GE gene modules range from 100 to 351
genes, with a total of 518 distinct genes and 33 found in all interactomes (Tab. 3.1).
In addition to genes associated with the most extreme molecular variations between
G5 and G2 (and therefore highly ranked also by network-free approaches) these
modules contain genes specifically prioritised by ∆S and Sp. SM and GE modules
contain genes that are highly cited in the literature of PRAD, some of which were
specifically prioritised using networks (Tab. 3.2). The two genes TP53 and CDK2,
the expression of which do not vary significantly, are examples of highly ranked
genes because of their network proximity to differentially expressed genes (GE data),
while, analogously, MEFV and TRPS1 are two examples of genes specifically found
using networks in the analysis of SM data (Tab. 3.2). Other genes are not part of
the current PRAD literature, but could be interesting candidate for further studies,
since are in network proximity to genes with molecular alterations and/or already
associated with the pathology ([61] supplementary Tabb. S1-2). Even if only a few
genes belong to both SM module and GE module (e.g. TP53 and ANO4 using
STRING, Supplementary Tabb. S5-6), several molecular interactions exist among
genes of the two modules (Fig. 3.5b).
We carried out gene set enrichment analysis (GSEA) [82] to identify the molecular
pathways regulated by genes with high ∆S and high Sp. We have found a total of
737 pathways with p < 0.005 (estimated with 1000 permutations) in at least one
interactome, of which 270 in SM, 556 in GE and 89 in common. Comprehensively,
the significant pathways cover the 8 capabilities (also known as hallmarks) acquired
during the pathogenesis of cancer [83] (Fig. 3.6). The number of pathways found
by GSEA with p < 0.005 (estimated with 1000 permutations) on gene lists gener-
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Figure 3.6: Network of pathways enriched in genes with different somatic mutations
and gene expression levels between two PRAD prognostic groups. Vertices are pathways
with p < 0.003 (GSEA, estimated with permutations) in at least one interactome and links indicate
the similarity between pathways (o ≥ 0.95); communities of similar pathways are underlined by
pink background and numbers (Supplementary Tab. S8); pathways that are not similar to any
other pathway are not shown. Legend: green = pathway found in SM and GE data; yellow =
SM only; blue = GE only; circle = pathway found only when using network based quantities (∆S
or Sp); triangle = pathway found only when using network-free quantities (∆f or lfcp); square =
pathway found by network-based quantities and network-free statistics; numbers refer to identifiers
of communities of superpathways. (For complete legend see [61] supplementary Tab. S3).
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Table 3.1: Module size and common genes across interactomes. Overview of the module
size found in specific interactomes and the overlap among them.

Interactome (genes) SM modules GE modules
FP60 109 100

GHIASSIAN 117 351
HI 231 308

NCBI 117 100
STRING 126 177
n ≥ 1 342 518
n ≥ 2 132 257
n ≥ 3 104 144
n ≥ 4 77 84
n = 5 44 33

n: number of interactomes

Table 3.2: Ranking of module genes with the highest occurrence in the literature of
PRAD. The occurrence is reported as number of papers; the symbol ”-” indicates genes not
included in gene modules; these results are relative to STRING PPIs.

gene symbols ∆S (SM) ∆f (SM) Sp (GE) lfcp (GE) citations
TP53 1 1 155 2401 2075

PIK3CA 85 104.5 - - 935
BIRC5 - - 24 361 589
PTGS2 30 64 - - 465
EZH2 - - 57 412 395
CDK2 - - 172 3324 391
CDK1 - - 1 83 380

BRCA2 82 125.5 - - 376
E2F1 - - 44 235 305

CCNB1 - - 174 639 284
CC-2 - - 21 222 239

SERPINB5 - - 67 151 239
CBX2 - - 45 154 201

SMAD4 20 64 - - 139
MEFV 73 707.5 - - 81
HDAC6 42 64 - - 48
CHD1 55 64 - - 29
TRPS1 119 707.5 - - 26
IDH1 14 16.5 - - 14

MST1R 39 64 - - 13

ated using networks are more than those found by GSEA on gene lists ordered by
network-free statistics. Therefore, using networks it was possible to create a more
comprehensive enrichment map, which displays pathways clustered in communities
on the basis of common genes (Fig. 3.6). Apart few exceptions, the majority of path-
ways missed by network analysis are similar to pathways found by network analysis
(Fig. 3.6).

3.1.4 Comparison with other diffusion-based methods

We have used a non parametric method (SAM [84]) to compare quantile normalised
(QN), network-smoothed (NP) SM profiles of G5 and G2 (STRING PPIs), anal-
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ogously to what was done in a recent work [46]. However, due to the sparsity of
PRAD SM data, such approach (NP+QN+SAM) produced a gene ranking charac-
terised by a small overlap with ∆S (and ∆f , see Fig. 3.7a-b). In fact, many genes
with a marginal difference of mutations between G5 and G2 were highly ranked by
NP+QN+SAM, because these genes had very conserved differences of their quantile
normalised, network-smoothed values between G5 and G2 (Fig. 3.7a-b).
We applied the stSVM method [77] on PRAD GE data (G5 and G2) and STRING
PPIs. We have calculated S using the inferential statistics used by stSVM (t) and
obtained a strong overlap among the top ranking genes ordered by NSI (Fig. 3.7c-e).
An accurate description of the stSVM method is given in chapter 1.

3.2 Methods

3.2.1 Network Diffusion

The adjacency matrix A was normalised by dividing each element aij by the square
root of the product of the degrees (ki, kj) of the corresponding vertices:

wij =
aij√
kikj

Network propagation (equation 3.1) was run iteratively for t = [0, 1, 2, . . .] until
convergence: |xt+1−xt| < 10−6. The choice of parameter α influences the behaviour
of the diffusion algorithm, since α controls how much information is kept in vertices
versus how much tends to be spread through the network. From a physical point
of view it is reasonable to assume that α > 0.5, which corresponds to an increase
in the importance of network topology. Therefore, α was set to 0.7, a value that
determined consistent results in previous studies [46, 76] and is a good trade off
between diffusion rate and computational cost (which increases as α→ 1).

3.2.2 Molecular interaction data

Five sources of PPI data were considered, abbreviated as STRING, NCBI, HI, FP60
and GHIASSIAN. Native identifiers were mapped to Entrez Gene [85] identifiers
using NCBI data released June 26th 2015. STRING interactions were downloaded
from STRING (version 10) web site, a database of direct and indirect PPIs [80]; in
case multiple proteins mapped to the same gene identifier, only the pair of gene ids
with the highest STRING confidence score was considered; a total of 11,535 genes
and 207,157 links with confidence score ≥ 700 were retained. NCBI interactions
were downloaded from NCBI ftp service, for a total of 15,098 genes and 159,092
links. HI protein links were collected from Rolland et al. [86] and a total of 7,760
genes and 25,040 links were obtained. FP60 interactions were collected from Kotlyar
et al. [71] and a total of 10,363 genes and 258,923 links were retained. GHIASSIAN
protein interactions were collected from Ghiassian et al. [65], for a total of 13,253
genes and 138,126 links.

3.2.3 Prostate adenocarcinoma data

PRAD clinical data were downloaded from the TCGA portal [81]. Prognostic
grade groups based on the Gleason grading system were calculated as proposed
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Figure 3.7: Comparison of network smoothing index with other diffusion-based methods
on two-classes analysis of PRAD somatic mutation (SM) and gene expression data
(GE). (a) Scatter plot with SAM q values and ∆S calculated on PRAD SM data. (b) Network
of STRING PPIs formed by the top 300 genes order by SAM q or ∆S; the number of genes with
at least one interaction is indicated between parenthesis. (c) Percentage of stSVM extracted genes
recalled on top of the list (from 50 to 200) of Sp. (d) Network resampling applied to the Sp array
suggests to cut around 55 top scoring genes. (e) Overlap between st-SVM and NSI on STRING
interactome.
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in Pierorazio et al. [87]: Gleason score ≤ 6 (prognostic grade group 1, G1); Gleason
score 3+4=7 (G2); Gleason score 4+3=7 (G3); Gleason score 4+4=8 (G4); and
Gleason score 9-10 (G5). Groups G2 and G5 contained respectively 110 and 41
subjects (see Supplementary Table S9 online).
Prostate adenocarcinoma (PRAD) curated somatic mutation (SM) data (collected
with the Illumina Genome Analyzer platform) and PRAD RNA sequencing data
(GE) (collected with the Illumina HiSeq 2000 RNA Sequencing (Version 2) plat-
form) were downloaded from the TCGA portal for the 179 subjects. Only primary
solid tumors (TCGA short letter code “TP”) were considered. Both datasets were
updated to Entrez Gene [85] identifiers released June 26th 2015.
SM dataset was composed of a total of 151 subjects (G2 and G5) with mutations in
6,898 genes (subjects with < 10 mutations or with > 200 were not considered). This
dataset was encoded as a binary genes-by-samples matrix where the generic element
aij was set to 1 if the patient j had at least one mutation in gene i, analogously to
Hofree[46]. Then a vector of relative frequencies of gene mutation was calculated
for each prognostic group.
Multiple gene expression profiles mapped to the same gene were collapsed consid-
ering the “MaxMean” criterion (implemented in the WGCNA package [88]). Only
genes with more than 5 counts in at least 25% of subjects were considered. The
dataset was normalized using the TMM method (trimmed mean of M values [89])
available in edgeR [90] R package , and log-cpm (count-per-milion) values were ob-
tained using the “voom” function available in limma [91] R package. Only genes
with cpm > in at least 25% of subjects were considered. A total of 14,676 genes and
151 subjects (G2 and G5) were obtained. A vector of absolute differential statistics
was calculated (as described in Xiao et al. [92]) from fold changes (FC) between
G5 and G2, and the corresponding p values adjusted for false discovery rate (from
limma [91]): lfcp = − log10(p)| log2(FC)|.

3.2.4 Simulated datasets

Simulated modules were defined as random subnetworks of the STRING [80] PPI
network, as previously described in Mosca et al. [76]. Briefly, a “seed” gene is ran-
domly selected and, then, up to 5 direct interactors are added to the current module.
This procedure is repeated randomly selecting a new seed among the current mod-
ule genes until the desired module size is reached. Note that this procedure defines
connected subnetworks with different topological features (modularity, clustering
coefficient, etc.).
The vector of frequencies of gene SM across individuals (f) was permuted, such
that the initial sums of SM per patient and per gene across all subjects were not
modified. At this point, genes labels were re-assigned in order to obtain the desired
frequencies on the module. The re-assignment is controlled by the two parameters
m%, the percentage of mountains (the highest frequencies) within the module, and
h, the average mutation frequency of hills (genes with lower frequencies) (Fig. ??a).
We define the fraction of “signal” (ω) associated with a module as:

ω =

∑
j∈M fj

ωtot
(3.6)

where ωtot =
∑

j fj. Therefore for any fixed value of m%, the amount of signal lying
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on a given synthetic module increases with the average hill?s mutation frequency h
and module size M (See Supplementary figure).
The recall was defined as the fraction of the top ranking genes sorted by decreasing
order of ∆S that belong to the a priori considered module of size M : Recall = |H∩G|

M
,

where H is the set of the first M genes ranked by decreasing order of ∆S and G are
module genes.

3.2.5 Pathway analysis

Pathway analysis was carried out using the gene set enrichment analysis approach [82].
Genes were ranked in decreasing order of ∆S. NCBI Biosystems [93] was used as
source of gene-pathway associations; only pathways with a number (n) of genes
10 ≤ n ≤ 300 were considered. Enrichment scores and associated p values were
calculated by means of the HTSAnalyzeR [94] R package using 999 permutations
[95]. The p values calculated by HTSAnalyzeR were updated according to the equa-
tion p′ = (p · 999 + 1)/1, 000, in order to count the real gene ranking as one among
the 1,000 permutations, and then adjusted for false discovery rate using R function
“p.adjust”. The similarity between two gene sets (A,B) was calculated using the

overlap index: o = |A∩B|
min(|A|,|B|) .

3.2.6 Data mining of PRAD literature.

Literature-based text mining was performed using ProteinQuest (PQ) [96]. PQ is
a web based platform for biomedical literature retrieval and analysis. PQ searches
within PubMed abstracts and image captions from free full text articles. PQ text-
mining tool parses target documents searching for terms related to curated ontologies
(e.g. diseases, bioprocesses, pathways, body parts). Multiple searches for more than
one alias were used to resolve ambiguities in the terminology. PQ was queried in
order to retrieve the co-occurrence of genes and PRAD in the scientific literature.

3.2.7 Other diffusion-based methods.

Network smoothed somatic mutation profiles were quantile normalised with the
normalizeQuantiles function of limma [91] R package. SAM statistics were com-
puted with the samr [97] R package, using parameters “Two class unpaired” and
“wilcoxon”. The netClass [36] R package was used as implementaton of stSVM [77].

3.3 Discussion and conclusions

We have introduced the network smoothing index (S), a network diffusion-based
way of interpreting the molecular profiles in the context of an interaction network.
S summarises the amount of omics information of an entity jointly with the amount
of information of its network neighbourhood, defined considering the whole network
topology via network diffusion. The comparison of S between two groups of samples
(∆S) is a network-based measure that indicates the differential amount of molecular
variation and intrinsically mitigates the influence of topology on network smoothed

PART III 65



Chapter 3

values of the two groups. Alternatively, S can be adjusted by means of p values
estimated with permutations, obtaining Sp.
In general, S, ∆S and Sp determine a network-based prioritization of molecular
entities that highlights network regions enriched in molecular alterations. For ex-
ample, such quantities allow: to find altered genes that are also involved in similar
biological processes; to discriminate genes with similar molecular profiles, which is
especially useful in case of ties; to highlight possible co-players of a pathological
process, which have marginal molecular variations but are in network proximity to
genes with relevant variations.
The complexity of biological networks makes the precise definition of a network
region involved in a biological process or pathology a challenge, and several approx-
imations or heuristics approaches exist to deal with this challenge [70]. We have
shown that the application of network resampling to a list of genes sorted by ∆S
or Sp suggests possible definitions of such regions on the basis of the significance of
the distribution of ∆S or Sp values over the network.
Molecular entities sorted by ∆S or Sp values can be used as input for further
analyses, including for example pathway analysis. When used in combination with
a method of pathway analysis, like GSEA [82], ∆S or SP allow the quantification
of molecular variations occurring in functional modules (pathway-topology based
analysis [98]).
We have showed that network propagation, after proper rescaling, is equivalent to
a physical model that describes the diffusion of a virtual quantity throughout a
network [47, 48]. The connection of the two models allows a better understanding
of the meaning of the used parameters and allows a better comparison with similar
approaches.
As a proof of principle, we have calculated ∆S on somatic mutations and Sp on gene
expression data from PRAD samples of different prognostic groups (G5 and G2).
We have shown that ∆S and Sp highlight, respectively, network regions enriched
in a higher content of SM and GE variations of G5 in comparison to G2. We have
focused on ∆S > 0, but also the opposite or its absolute value can be meaningful,
depending on the objective of the analysis. A deeper investigation of PRAD biology
is beyond the scope of our work, nevertheless, we provide several genes which are
very likely to have a role in the different prognostic outcome. In fact, these genes lie
in network proximity to genes already associated to PRAD and in regions of the PPI
network enriched in mutated and/or differentially expressed genes. In line with the
local hypothesis our analysis revealed the existence of a large connected component
of genes that are associated with molecular variations (genetic mutations and/or
differential expression) between subjects of different prognostic groups.
If the molecular variations are the consequence of an underlying biological function
or pathobiological process and hence, in line with the local hypothesis, the molec-
ular entities associated with such function or process are in network proximity, the
network-based approach described in this work identifies a significantly connected
component associated with the hypothetical biological function or pathobiological
process.
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Perturbative approach

In this chapter we describe a novel network-based method for approaching the anal-
ysis of one or more layers of omics information. We call such method “perturbative”
since the molecular alterations lying in an omic dataset are interpreted as a perturba-
tion of the normal biological state. For example genes presenting somatic mutations
or significant levels of over/under expression are considered as abnormalities that
deviate the normal trajectories of information flow within the cell. The normal in-
formation flow between molecular species is represented by a random walk taking
place on the network of physical interactions (2). In this work we limit ourselves to
the PPI (protein-protein interaction network), but other important biological net-
works are available like metabolic networks, or gene regulation networks [99] to cite
a couple. In this sense we map the molecular alterations on the network: a node
carrying molecular alterations is defined as a query node (Fig. 4.1).
Up to this point there is no conceptual difference from the network propagation
method described in the previous chapter. However instead of a direct application
of the diffusion process in order to investigate biological insights (3), we focus on
the differences between the stationary distributions ~ps and ~p∗ of the random walk
respectively without and with the perturbation. In this sense we aim to measure
the perturbation in terms of how much it deviates the trajectories of information
flow.
The networks considered for the analysis are mainly connected subnetworks of the
PPI network that can either be pathways significant for a given disease or subnet-
works enriched with molecular alterations. In order to mantain the probabilistic
interpretation of the information flow on the network we connect the query nodes to
an external node with which the query nodes exchange information, deviating from
normal behavior (Fig. 4.1). In this context it is possible to define the perturbation
as a matrix ∆L so that the perturbed dynamic of information flow on the network
is driven by the matrix L+ ∆L where L is the Laplacian matrix of the unperturbed
network.
In the next sections we first describe the mathematical methods, then we study
the applications of the method both on synthetic data and TCGA prostate cancer
database (PRAD [81]).
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Figure 4.1: Extended source/sink network. From a given protein-protein interaction network
and abnormal molecular information (e.g somatic mutations, SNP, over/under expressed genes) is
extracted a smaller subnetwork (or pathway) to be analyzed. The introduction of the source/sink
node (representing the environment) shifts the abnormal information from the query nodes of the
network to the connections to/from the environment.
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4.1 Methods: master equation external source

In chapter 2 we derived the general master equation model (2.33) for the random
walk of N particles on an undirected network of M-nodes. Such model was built
considering the dynamics of a finite number of particles N on the network and a
regular condition (2.29) in the transitions between a node to another. We define πkj
the transition rate from node j to node k. Let pk(t) be the average probability to
find a particle in the node k; we have the mean-field Master equation (2.68)

ṗk =
∑
j

(πkjpj − πjkpk) k = 1, · · · ,M (4.1)

that corresponds to the continuity equation for the constraint∑
k

pk(t) = 1

here we use the variable ~p = (p1, p2, · · · , pM)T instead of ~φ because of the proba-

bilistic interpretation: the substance diffusing on the network ~φ can be seen as the
average probability for a particle to be found in a given node at a given time; it is
convenient to introduce the Laplacian matrix

Lkj = dkδkj − πkj, dk =
∑
j

πjk (4.2)

the master equation reads

~̇p+ L~p = 0 (4.3)

and the stationary solution ~ps = (ps1, p
s
2, · · · , psM) corresponds to the eigenvector of

zero eigenvalue of the matrix L. If dk = 1 then πkj is a stochastic matrix. In a
generic case L has all positive eigenvalues except the zero one, so that ~ps is unique
and attractive. Different methods can be applied to compute the stationary solution
without solving the characteristic equation of the matrix L. We consider the problem
of the presence of a source and sinks in the network. Let p0(t) the probability to
introduce a particle in the source and πj0 the transition rate from the source to the
node j, we have

ṗ0 = s0 −
∑
j

πj0p0 (4.4)

where s0 is the source rate. Let ε =
∑

j πj0; we have the stationary state for the
source

ps0 =
s0

ε

If we set ε = 1 we preserve the stochastic character of the matrix πjk. If we fix
s0 (or p0), the stationary solution is determined. Let us define π0k the transition
probability to enter in the sink from the node k, the master equation is modified as

ṗk =
∑
j≥0

(πkjpj − πjkpk) (4.5)
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The modified master equation has a M+1 components stationary solution ~q∗ =
(ps0, ~p∗)T . With abuse of notation in the sequel we consider ~p∗ a M+1 components
vector, therefore identifying ~q∗ with ~p∗. Indeed using the definition of ps0 we get the
non-homogeneous system.

ṗk =
∑
j>0

(πkjpj − πjkpk) + πk0s0 − π0kpk (4.6)

that can be solved since the matrix of the corresponding homogeneous system is
invertible.

Lemma The stationary solution ~p∗ = (p∗0, p
∗
1, · · · , p∗M)T satisfies the condition

s0 =
∑
k

π0kp
∗
k (4.7)

Proof : from the equation∑
k≥0

ṗk =
∑
j

πj0p0 +
∑
k

∑
j≥0

(πkjpj − πjkpk) = s0 −
∑
k

π0kpk

the condition (4.7) follows. �
Then if we consider the extended master equation (4.6) where we have substituted
condition (4.7), the stationary solution of the extended system is formally equivalent
to the solution of the isolated system. We remark that∑

j≥0

pj = const

so that the constraint (4.7) defines univocally the (non-normalized) stationary solu-
tion. We define the extended Laplacian matrix

Lexkj = dexk δkj − πkj, dexk =
∑
j≥0

πjk, k, j ≥ 0 (4.8)

and the stationary solution of the extended system is the eigenvector of zero eigen-
value for Lex. The structure of the extended Laplacian matrix is the following:
the first row contains the transition rates which defines the dynamics of the source
(i.e. the transition rates from the nodes to the source due to the dissipation); the
first column defines the transition rate form the source to the nodes (i.e. the forcing
terms). Finally the diagonal terms are modified with respect to the initial Laplacian
matrix to preserve the Laplacian character of the extended matrix. It is convenient
to write Lex in a perturbative form Lex = L0 + ∆L where
L0 

0 0 0 · · · 0
0 π11 −π12 · · · π1M

· · · · · · · · · · · · · · ·
0 −πM1 −πM2 · · · πMM


∆L = 

ε −π01 −π02 · · · −π0M

−π10 π01 0 · · · 0
· · · · · · · · · · · · · · ·
−πM0 0 0 · · · π0M
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Both the matrices are Laplacian. The constraint (4.7) points out the effect of the
choice of s0 on the stationary solution for fixed π0k. Control theory should consider
the effect of changing π0k and πk0 on the stationary solution. It is interesting to
compute the condition which preserves the stationary solution ~ps of the isolated
system (4.1). By a direct substitution we have:

πk0

ε
− π0kp

s
k = 0 ∀k

that is equivalent to a detailed balance condition between the source and each sink,
since the probability flow is zero for each link.

Remark When we build the matrix L0, the source must be independent from
the rest of the network so that for any quantity s0, the vector (s0, ~ps)

T is still a
stationary solution of the extended system ~̇q + L0~q = 0.

4.1.1 Exact solution of the perturbed system

Introducing a source-sink perturbation to this isolated system we get an open system
we can re-write equation (4.6) as

~̇p+ L · ~p− s0~πin + I · ~πout · ~p = 0,

~̇p+ (L+ I · ~πout) · ~p− s0~πin = 0 (4.9)

where ~p has M components, s0 is the source rate, ~πin = (π10, · · · , πM0)T are the
weighted connections to the nodes from the source and ~πout = (π01, · · · , π0M)T are
the weighted connections to the sink from node each node. The stationary solution
of equation (4.9) is unique and depends on the source-sink choices; it is also easy
to verify that it is formally equivalent to the the steady flow solution of the open
system described in chapter 2 (2.70):

~p∗ = k(L+ I · ~πout)−1 · ~πin (4.10)

with k being an appropriate constant. Assuming the probababilistic interpretation
of the substance moving in the network and the addition of the source/sink node
with the constraint (4.7) the solution of the perturbed system can be solved with
equation (4.10) if and only if k = s0/ε, where ε =

∑
j πj0.

Proof We write an extended master equation by using an extended Laplacian
matrix

~̇q + Lex · ~q = 0, (4.11)

where now ~q = (p0, ~p)
T has size M + 1 as well as the (M + 1)× (M + 1) extended

Laplacian Lex: (
ε −~πTout
−~πin L+ I · ~πout

)
By direct substitution we see that

Lex · ~q = 0⇔ (a), (b)
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where (a) and (b) are

(a) p0ε− ~πout~p = 0

(b) −~πinp0 + (L+ I~πout)~p = 0

in equation (a) the second addend is equivalent to s0 if and only if condition (4.7)
holds; so we can subtitute (a) p0 = s0/ε into (b) and find

~p∗ =
s0

ε
(L+ I · ~πout)−1 · ~πin �

4.1.2 Iterative scheme set up

The effect of external source on the stationary solution of a master equation can
be understood using a perturbative approach starting from the extended Laplacian
matrix L0 where the source s0 is initially decoupled with the initial network. The
stationary state is the direct product of the stationary state of the initial network ~ps
and any state p0 of the source. The introduction of the connections πk0 can be seen
as a perturbation ∆L of the matrix L0 (to quantify the perturbation we could use a
matrix norm). The problem is to compute the change in the stationary state ~p∗ due
to the perturbation ∆L. We explicitly consider the case when the Laplacian matrix
L is self-adjoint respect to a scalar product: given any couple of vectors ~w, ~u ∈ RM

~w · L~u = L~w · ~u (4.12)

where

~w · ~u =
∑
ij

wihijuj

for a metric matrix H. This is the case when L = LgH where Lg is the graph
Laplacian (see Fig. 2.2), while the matrix H is a diagonal matrix with the inverse
of the node degree along the diagonal (H = G−1). In such a case if ~v1 and ~v2 are
two eigenvectors of L with eigenvalues λ1 and λ2 respectively (λ1 6= λ2), it follows

~v1 · ~v2 = 0

Proof:

λ1~v1 · ~v2 = LgH~v1H~v2 = H~v1LgH~v2 = λ2~v2 · ~v1

Then if λ1 6= λ2 the thesis follows �.
In Chapter 2 we showed that finding a scalar product with respect to which the
matrix L results self-adjoint implies that the system is in detailed balance, a correct
assumption in a closed isolated system. In addition the introduction of such scalar
product also allows to find a base {~v1, · · · , ~vM} of orthogonal eigenvectors of L.

PART III 72



Chapter 4

4.1.3 Perturbation without the source/sink

Let us consider the following problem: we have a perturbed Laplacian matrix L+∆L;
is it possible to compute in a perturbative recursive way the stationary solution

(L+ ∆L)p∗ = 0 (4.13)

assuming that there exists a unique stationary solution p∗ (apart from a normalizing
condition); we leave the vector notation for ~ps and ~p∗ to simplify the writing. Let ps
be the stationary solution of the unperturbed Laplacian L, we look for a stationary
solution of the form

p∗ = p̂− αps (4.14)

where ps · p̂ = 0, i.e. ps is orthogonal to p̂. We are decomposing the solution into two
orthogonal components. Since ps = v1 (the eigenvector of null eigenvalue in matrix
L), we can think of p̂ as the component of p∗ in the orthogonal complement of the
stationary solution of the unperturbed system. In other words p̂ = 〈v2, · · · , vm〉; the
following equation holds

Lp̂ = −∆Lp̂+ α∆Lps (4.15)

which is equivalent to the system

Lp̂ = −(I − Π)∆Lp̂+ α(I − Π)∆Lps

αps ·∆Lps = ps ·∆Lp̂ (4.16)

where we introduce the projector Π on the one-dimensional kernel of L

Πv :=
ps · (ps)T

‖ps‖
v

If ps ·∆Lps = 0, system (4.16) reads

Lp̂ = −∆Lp̂+ α∆Lps (4.17)

has a unique solution p∗ for any value of α: i.e. we can set α = 1 and after normalize
the solution.
If ps ·∆Lps 6= 0 (generic case) then we define

α =
p̂ ·∆Lps
ps ·∆Lps

(4.18)

and we consider the system

Lp̂ = −(I − Π)∆Lp̂+
p̂ ·∆Lps
ps ·∆Lps

(I − Π)∆Lps (4.19)

If p̂ is a non-trivial solution of previous system, then the staionary solution of (4.13)
is given by (4.14) with α defined in (4.18). We compute the solution of the sys-
tem (4.19) using a fixed point principle (contraction principle). Let’s consider the
sequence

p̂0 = 0, α = 1
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and

Lp̂n = −(I − Π)∆Lp̂n−1 + αn−1(I − Π)∆Lps

αn =
ps ·∆Lp̂n
ps ·∆Lps

(4.20)

It is now convenient to expand p̂n on the eigenvectors of the unperturbed matrix L:

p̂n =
M∑
k=1

cn,kvk, ∀n

Remark cn,1 = 0 since it must hold that p̂n · ps = p̂n · v1 = 0.
By direct substitution first equation in (4.20) gives∑

k

cn,kλk = −
∑
k

cn−1,k(I − Π)∆Lvk + αn−1(I − Π)∆Lv1 (4.21)

By projecting on the j-th eigenvector we obtain ∀j ≥ 2

λjcn,j = −
∑
k

cn−1,k∆Lj,k + αn−1∆Lj,1

αn =
1

∆L1,1

∑
k

cn,k∆L1,k (4.22)

where

∆Lj,k := vj ·∆Lvk = vTj H∆Lvk (4.23)

4.1.4 Perturbation with the source/sink

To consider the case with an external source we define the extended matrix Lex =
L0 + ∆L. Since the unperturbed network is disconnected, the matrix L0 has a two
dimensional kernel, we look for a stationary solution of the perturbed system in the
form

p∗ = p̂+ αps + e0 (4.24)

where e0 is a vector with only the 0-component (i.e. the source) equal to 1. p̂ is
orthogonal to both ps and e0, therefore

p̂ =
∑
k≥0

ckvk (4.25)

with c0 = c1 = 0 where v0 = e0 and v1 = ps. We consider the recurrence:

L0p̂n = −(I − Π)∆Lp̂n−1 + αn−1(I − Π)∆Lps + (I − Π)∆Le0

αnps ·∆Lps = −ps ·∆Lp̂− ps ·∆Le0

αne0 ·∆Lps = −e0 ·∆Lp̂− e0 ·∆Le0 (4.26)

where Π is the projection on the 2d kernel of L0. The last two equations has to be
linearly dependent, so one equation has to be sufficient. In the case of the existence
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of an orthogonal base for L, the projector Π can be explicitly computed using the
normalized eigenvectors vk. Let

p̂n =
∑
k≥1

cn,kvk (4.27)

where v1 = ps. Substituting decomposition (4.27) in system (4.26) we obtain

∑
k

cn,kL0vk = −(I − Π)
∑
k

cn−1,k∆Lvk + αn−1(I − Π)∆Lps + (I − Π)∆Le0∑
k

cn,kλk = −(I − Π)
∑
k

cn−1,k∆Lvk + αn−1(I − Π)∆Lps + (I − Π)∆Le0

the iterative scheme is defined by the following couple of equations, projecting equa-
tion (4.28) on the eigenspaces of vj, and using definitions (4.23)

cn,j = −
∑
k>1

cn−1,k

λj
∆Lj,k − αn−1∆Lj,1 −∆Lj,0 (4.28)

αn = −
∑
k>1

cn,k
∆L1,k

∆L1,1

− ∆L1,0

∆L0,0

(4.29)

When the sequence converges with the initial condition

p̂0 = 0, α0 = 1

we get the stationary solution of the extended system.

4.2 Numerical considerations and first results

So far we described an external source perturbation approach to a close isolated
Laplacian system in which the perturbation takes the matrix form ∆L. We defined
a numerical scheme that, startig from the stationary solution of the closed isolated
system should converge to the stationary solution of the perturbed system. We
demonstrated that the solution of the perturbed system always exists. However
the behavior of the numerical scheme depends on the features of the perturbation
matrix ∆L. In fact, given a perturbation matrix ∆L (fixing the “topology” of the
perturbation) the iterative scheme converges or diverges depending on the values
of the input s0: if the input value is strong the dynamics of on the network may
not be able to converge, since the perturbation implies a network dynamics that is
sensibly different than the one observed in the closed system. On the other hand,
fixing the input value s0 there are topological configurations that may be much more
perturbative than others. The main goal of the iterative scheme is not the approx-
imation of the perturbed stationary solution (which anyways may be useful for big
networks), but the definition of an intrinsic measure of network stability: fixing the
appropriate boundary conditions there exist a critical perturbation value ∆L that
distinguishes between “weak perturbations” (the iterative scheme converges) and
“strong perturbations” (the iterative scheme diverges).
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Figure 4.2: Critical threshold. a. We perturb a fully connected 25-nodes network with the
source/sink node E connecting to the query nodes colored in black. On the right we plot the L1
distance between the exact stationary solution of the perturbed network and the correspondent
quantity computed by the iterative scheme for increasing values of s0. The jump corresponds to
the critical threshold µt. b. We plot the components of the probability distribution evolution
according to the iterative scheme before (left) and after (right) the critical threshold.
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The critical threshold from a numerical point of view arises in equation (4.29) when
we find positive values of the perturbation matrix ∆Lk,h that divided by small
eigenvalues start to contribute more to the coefficients cn,k of the eigenvectors vk
with k > 1 than to the coefficient αn relative to the eigenvector v1 = ps. In
particular the driving factor is the increase of ∆L2,h/λF where λF = λ2 is the
smallest eigenvalue after the null one, commonly called the Fiedler number of the
graph. We can therefore say that from a spectral point of view the iterative scheme
captures the first input value ∆L in which the stationary solution of the perturbed
system p∗ decomposed in the base of eigenvectors of L has a major contribution
from the eigenvectors different from v1 = ps; technically this happens when the
coefficients cn,k (in particular cn,2) start to dominate the coefficient αn.
In Fig. 4.2 on a synthetic dataset we a fully connected 25-nodes network with the
source/sink node E connecting to the query nodes colored in black. For simplicity
we assume the sink-rates equal to one another π0i = 1 and we compute the distance
between the exact stationary perturbed solution p∗ and the approximation computed
by the iterative scheme. We find the critical threshold µt where the iterative scheme
starts to fail the approximation of the exact solution (Fig. 4.2a). The critical
threshold at level of components consists of a critical value µt so that for s0 < µt
the components p̂n converge to the exact perturbed solution p∗, while for s0 > µt
the components of p̂n present a divergent behavior (Fig. 4.2b).
The algorithm (4.29) can therefore be used to define an intrinsic measure of stability
of a given network. When the perturbation ∆L is fixed from a topological point
of view, the critical threshold consist of a critical input value s0; when we vary the
perturbation’s topology (the number of query nodes and their positions) the concept
of critical stability threshold is not a trivial definition. However we can find a lower
boundary for critical stability threshold that is represented by the Fiedler number
of the network λF

Lemma Given any connected undirected network with Laplacian matrix L and a
perturbation ∆L the critical threshold is bounded by the Fiedler number: µt ≥ λF .

Proof : we consider the matrix norm ‖ · ‖ defined by:

‖M‖ := sup
v

|Mv|
|v|

so that when M is symmetric its norm corresponds to the absolute value of its
biggest eigenvalue. We operate a direct substitution in equation (4.29) and obtain:

cn,j =
1

λj

M∑
k=2

[
∆Ljk −

∆Lj1
∆L1,1

∆L1k

]
cn−1,j

We now consider the matrix ∆L′ defined as:

∆L′ij := ∆Lij −
∆Li1
∆L1,1

∆L1j

The iterative scheme recurrence is driven by ∆L′ and the inverse of matrix L in the
subspace Π0 so that the condition for (4.29) to be a contraction becomes:

‖L−1‖‖∆L′‖ < 1

PART III 77



Chapter 4

using the fiedler number λF = λ2 the previous contraction condition reads:

‖∆L′‖
λF

< 1

We now underline that ‖∆L′‖ ≤ ‖∆L‖ since the perturbation ∆L′ is the restriction
of ∆L on the subspace Π0. So we find a sufficient condition for the convergence of
the recurrence:

‖∆L‖ < λF (4.30)

We can therefore affirm that the set of critical threshols has λF as a lower bound.
�

Remark Because of the previous lemma it’s appropriate to measure the critical
threshold a perturbation ∆L in terms of ratio between critical input value µt and
Fiedler number λF as well as the intensity of the input (s0/λF ).

Remark Condition (4.30) is an sense also a necessary condition for the conver-
gence: if ‖∆L‖ < λF it is always possible to find a perturbation matrix ∆L that
degenerates the network dynamics.
When the sequence p̂n diverges, the map (4.29) fails to be a contraction and one
cannot follow by continuity the transition between the isolated and the perturbed
stationary states. In the divergent case the perturbation is able to degenerate the
zero eigenvalue and collapse the eigenvectors relative to λ1 = 0 and λ2 = λF : the
network may be disconnected by ∆L. We can therefore affirm that the Fiedler’s
eigenvalue λF is related to the minimal norm of the matrix ∆L to disconnect the
network.

4.2.1 Steady flow currents

We now investigate the behavior of the perturbed master equation (4.11) at sta-
tionary state with input values near to the critical threshold µt. Once the iterative
scheme finds the critical threshold µt we focus on the stationary currents remain-
ing in the network at infinite time and we observe such currents for values around
µt. Using a manageable example (Fig. 4.3) we compute the exact solution of the
perturbed system p∗. We define the stationary current from node i to node j:

Jij = πijp
∗
j − πjip∗i

We first observe the presence of peaks of currents intensity in correspondence of
certain critical input values (Fig. 4.3B); in particular the first peak of currents
intensity (Fig. 4.3C) corresponds to the critical threshold found by the iterative
scheme µt (red-dashed line); then we plot the steady flow currents remaining in
the network (Fig. 4.3D) with edge widths proportional to the currents intensity
for significant input values: comparing Fig. 4.3D1 and Fig. 4.3D3 we notice a
qualitatively different behavior of the stationary currents before and after the critical
threshold. The steady flow currents are subject to a dramatic change across the edge
value µt confirming such value as a reliable turning point for the perturbed master
equation dynamics.
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Figure 4.3: Steady flow currents. A. Network of 25 nodes extracted from STRING database. 4
nodes are chosen as query nodes and linked to the source/sink node (blue vertex). B. Steady flow
current intensity (

∑
i

∑
j Jij) is plotted vs increasing input intensity s0 normalized by the Fiedler

number of the network λF . C. Zoom in of the previous. The dashed vertical red line corresponds
to the critical threshold. D. Steady flow currents remaining in the network at infinite time for
increasing values of the input. D2 corresponds to the critical threshold.
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As the input value increases above the threshold we notice the presence of other
peaks of currents intensity (e.g. Fig. 4.3D4) that represent other turning points
for the network dynamics. This interesting behavior is connected to the number
of independent loops formed by the stationary currents present on the network.
This fact is not a central point in our discussion, however it would require more
investigation.

4.2.2 Stability and network measures

Given a a set of synthetic networks (Fig. 4.4) we investigate which perturbations
give rise to lower critical thresholds (unstable configurations) and which ones give
rise to higher critical thresholds (stable configurations). We remark that the sizes of
synthetic networks are in line with the sizes of the biological pathways / subnetworks
used for the analysis. We see that for any 2-modules composition (open / closed
ring, clique or star) the distribution of critical thresholds in condition A (the two
query nodes lie in the same module) is more stable than when condition B holds
(the two query nodes lie in the different modules). This observation is related to a
sort of ”centrality” measure of the perturbation: a perturbation tends to result more
stable if confined to only one part of the network (A), while unstablity increases when
more network modules are involved in the perturbation (B). In fact we find that the
stability or instability of a perturbation is related to the betweenness centrality β0 of
the external node in the extended network with Laplacian matrix L0 +∆L (Fig. 4.4
e,f,g,h); β0 is defined as the fraction of minimal paths connecting any couple of nodes
passing from the external node. The higher the perturbation node betweenness the
higher the probability to find an unstable configuration. The betweenness of the
source-sink node well characterizes the stability of a given configuration on chains
(Fig. 4.4 e, f) while cliques and stars (Fig. 4.4 g, h) would need more insights from
this perspective.

4.2.3 Application to STRING hot subnetwork

On STRING protein-protein interaction network we selected the 25-nodes biggest
connected component among the top 100 frequently mutated genes (f is the muta-
tion frequency) in PRAD dataset [81]. The genes involved in such “hot” network
for prostate cancer disease are characterized by mutations frequencies that go from
a minimum f = 2% up to a maximum f = 12% (TP53 and SPOP). As we can see
in figure (Fig. 4.5-left) the network has a hub in TP53, that is one of the most stud-
ied cancer-related genes [100, 101]. In this case we are interested in understanding
which configurations including TP53 cause more unstability to the network informa-
tion flow. For simplicity we consider only couples of query nodes. It is interesting to
notice that the configuration that gives rise to the most unstable network dynamics
includes TP53 (the other query node is CDH23), and that at the same time we find
stable configurations including TP53 (Fig. 4.5-right).
Even if for a clear biological interpretation would be required more statistical work
(e.g. many variables enter the choice of the ”hot” subnetwork), from a techni-
cal point of view this observation suggests that hubs carrying abnormal content
of molecular information can play important roles in the stability regulation of a
network information flow depending on the distribution of the other less connected
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Figure 4.4: Synthetic Modules. Stability of synthetic modules perturbed with 2 query nodes
measured using the critical threshold (µt/λF ). Network characterization of simple 10-nodes mod-
ules (a, b, c, d) and their correspondent compositions (e, f, g, h). The boxplot labels indicate
wether the two query nodes lie in the same module (A) or different ones (B), while the x-axis
variable β0 is the betweenness centrality of the external perturbation node. The horizontal dashed
red lines represent the lower bound for the threshold given by the fidelr number λF .
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Figure 4.5: PRAD hot subnetwork. On STRING P.P.I. Network we selected the 25-nodes
biggest connected component among the first 100 frequently mutated genes (f is the mutation
frequency) in TCGA dataset. We measured the stability of the all the possible couples of query
nodes that include the gene TP53. On the right the plot of the stability (µt/λF ) vs the betweenness
centrality β0 of external node.

query nodes. In other words it is interesting to observe that in this context the
stability of a network is related to a collective behavior [102] that is the coordinated
local activity of many interdependent components.
Leaving the biological and statistical insights of “hot” subnetwork stability to future
work, we now focus on the biological pathways associated to prostate cancer in
literature, as they represent more significant targets from a biological point of view.

4.3 Perturbative approach applications to path-

way analysis

The definition of a network-based perturbative approach allows to investigate omics
data from a novel perspective. In general any kind of omic information can be
mapped on a biological network with the purpose of measuring the impact of such
information on the network. In the network medicine context [64, 103], a natural
application of the proposed method can be summarized in a few steps (Fig. 4.1):
first biological networks (such as pathways) must be identified as targets of the
application; second the abnormal omic information must be mapped on the target
network: the nodes carrying abnormal information (usually deleterious molecular
information in the case of a disease) become the query nodes for the extended
source/sink model. Such nodes can be mapped with weighted or unweighted edges
to the external node: many choices can be taken from this perspective. The last
step consists of the application of the iterative scheme in order to find the critical
threshold.
In this work, as a proof of principle, we mapped TGCA prostate cancer somatic
mutations data on several pathways known in literature to be associated to prostate
cancer [100, 101], with the purpose of measuring the impact of such abnormal in-
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formation on the selected pathways. In this work the pathways are simplified as
extracted undirected subgraphs from STRING protein-protein interaction network.
The links of the query nodes with the external nodes are undirected, so that the
abnormal information is pumped in the network from the external node and can re-
turn back through the sinks. We choose to perform both an aggregate analysis and
a patient-oriented analysis. For the first one we selected 38 pathways in literature
that are known to be associated with prostate cancer and we performed the pathway
stability analysis selecting the query nodes from the most frequently mutated genes
across the whole dataset. For the second we selected only 4 pathways (out of the 38
previously mentioned) and for the analysis we kept only the patients having enough
mutations to perform the stability analysis on at least 1 of the 4 selected pathways.
In fact TGCA prostate cancer data is characterized by a very poor number of muta-
tions per patient and so far the molecular characterization of the disease including
somatic mutations is still under investigation [100, 101].

4.3.1 PRAD dataset

Prostate adenocarcinoma (PRAD) clinical data were downloaded from the TCGA
portal [81]. We focused on the somatic mutation data (collected with the Illumina
Genome Analyzer platform) and PRAD RNA sequencing data (GE) (collected with
the Illumina HiSeq 2000 RNA Sequencing (Version 2) platform) were downloaded
from the TCGA portal for the 261 subjects. Only primary solid tumors (TCGA
short letter code “TP”) were considered. Both datasets were updated to Entrez
Gene [85] identifiers released June 26th 2015.
The somatic mutation dataset presents mutations in 6,898 genes. This dataset was
encoded as a binary genes-by-samples matrix where the generic element aij was set
to 1 if the patient j had at least one mutation in gene i, analogously to Hofree[46].
The median number of mutated genes per patient is 30 (out of the 11535 genes
of the STRING interactome [80]), but the data are very heterogeneous: we can
go from a patient for whom no mutations are registered to a maximum of 734.
This fact suggests that a more complete omic analysis would definitively require the
integration with more omics layers of information as we show in chapter 3; however
we proceed using only somatic mutations in order to see if in at least a considerable
percentage of patients we can perform pathway stability analysis.

4.3.2 Aggregate analysis

With the term aggregate analysis we mean that we selected the query nodes from
the most frequently mutated genes across the whole dataset (Fig. 4.6). We choose 3
different classes of signal: genes mutated in at least 5 samples (S1), genes mutated
in at least 4 samples (S2) and genes mutated in at least 3 samples (S3) (Fig. 4.6A).
Then 38 pathways were selected basing ourselves on the literature [100, 101] from
an aggregated database including Reactome, Pathway Interaction Database (P.I.D.)
and KEGG, with sizes ranging from a minimum of 10 genes to more than 250 genes.
In (Fig. 4.6B) we show the number of query nodes per pathway associated with the
class of signal. The query nodes corresponding to the signal class were mapped on
each pathway (e.g. Fig. 4.6C). It is interesting to notice how even if the selected
pathways on average present more signal that non-selected pathways (over 7000 of
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the human interactome), there are pathways of correspondent sizes that present more
query nodes (Fig. 4.6D). We remark that choosing a sample of biologically significant
pathways associated to the prostate cancer is not a trivial task; for example one
could select the pathways mostly enriched with somatic mutations. However with
this particular disease - as previously mentioned - the role of somatic mutations still
under investigation [100, 101], so that it would not be clear to which degree the
pathways enriched with the most signal are biologically meaningful. We computed
the critical threshold for each of the 38 pathways with the 3 different signals (Fig.
4.6E); plotting their distributions we see that on average the thresholds decrease
with increasing signal. This fact is expected since increasing the number of query
nodes one naturally increases the instability of a fixed network.
The results are shown in figure (Fig. 4.7). We chose to use the weaker signal
(S1) involving as query nodes only the genes mutated in 5 or more samples. After
computing each critical treshold (µt) we divide it by the Fiedler number (λF ) as-
sociated with the correspondent pathway (red vertical lines). This quantity itself
is a meaningful measure of pathway instability: the lower the threshold the higher
the pathway instability. The critical thresholds could define a natural boundary
separating the critical perturbations of the pathways (below the real tresholds) to
the less dangerous ones (above the threshold). To better understand the results, for
each pathway we randomly resampled the existing signal (S1) and computed the
critical threshold for each permutation (horizontal boxplots). An empirical p-value
is then defined as the fraction of times in which the permuted thresholds result lower
or equal to the real one and the pathways are ordered for increasing p-value. In this
way the pathways scoring low p-values are likely to be significantly altered by the
somatic mutation data.
These results depend on many different assumptions (selection of pathways, def-
inition of signal), limitations (the analysis is performed only on the STRING in-
teractome, the pathways are considered only as the biggest connected component
extractable from STRING PPI, only a small percentage of PPI links is nowadays
known) and statistical. The purpose of this analysis is to show that an application
of the proposed method is realistic and that the method is capable of capturing the
pathway instability returning so far results interesting on the true positive side and
not so accurate on the remaining because of the assumptions and limitations just
mentioned. However it is interesting to see PI3K-Akt, MAPK and Prostate Cancer
pathways as most significant unstable pathways, three of the most studied in the
context of prostate cancer disease.

4.3.3 Patient-oriented analysis

We now show the direct application of the iterative scheme to the molecular species
× patients TGCA database demonstrating the possibility of patient-oriented anal-
ysis. In principle this perspective is very interesting since the application to the
patient specific data could avoid unnecessary statistical issues arising in the aggre-
gate analysis and would consider the exact distribution of mutation of each patient
as the query nodes. Roughly speaking even if a patient presents mutations that are
rare on average, the combined distribution of such rare molecular alterations can
lead to high instability on a given pathway. This information is usually considered
as noise in an aggregate analysis. On the other hand a limitation of the proposed
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Figure 4.6: PRAD aggregate signal. A. Genes mutation frequency plotted by decreasing rank.
3 classes of signal are chosen S1, S2, S3: the query nodes are taken into each of these classes.
B. Amount of signal over 38 selected pathways known to be invoved in Prostate Cancer disease
plotted vs the pathway size. C. Example of query nodes on a target pathway correspondent to
the 3 different classes of signal. D. Signal distribution in the selected pathways compared to
non-selected ones. D. Critical Treshold distribution over the 3 classes of signal.
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Figure 4.7: PRAD pathway stability analysis. The stability of 38 selected pathways is studied.
The pathways are ordered from top to bottom for increasing p-values (100 permutations of query
nodes).
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Figure 4.8: PRAD patient oriented analysis. A. Patients and pathways available for stability
analysis B. Treshold distributions per pathway C. Treshold distributions per pathway plotted vs
pathway recurrence.

approach lies in the unavoidable elimination from the analysis of pathways and pa-
tients that present insufficient signal to perform the analysis - given the very low
number of mutations per patient.
Always as a proof of principle we considered the 4 pathways for which the pertur-
bative approach was performable for most number of patients (Fig. 4.8A). In this
way the dataset was reduced from 261 to 113 patients presenting sufficient signal in
at least 1 of the 4 selected pathways. We performed the analysis for each patient
measuring the instability of each pathway under the patient-specific mutations.
In this way we can produce pathway-specific or patient-specific profiles giving a
picture of molecular pathway instability for the examined disease (Fig. 4.8B). The
distribution of critical thresholds vs the recurrence of the pathway (fraction of pa-
tients for which the signal is sufficient to perform the analysis) could lead to further
analysis (Fig. 4.8C). Prosate cancer pathway results the most unstable pathway
however the pathway with the lower recurrence: if a patient has sufficient signal on
it the pathway tends to be highly unstable, while for example MAPK and PI3K-Akt
present higher recurrence but a more heterogeneus distribution, with a few patients
having a much more instability than others.

PART III 87



Chapter 4

4.4 Discussion and conclusions

In this chapter we developed a perturbative approach to the master equation with the
purpose of measuring how the presence of altered nodes (query nodes) exchanging
information with an external node modifies the information flow of the network. As
a proof of principle, we applied the stability measurements to both synthetic and
PRAD somatic mutations data. In the case of biological networks the query nodes
correspond to molecular alterations, but in principle the method can be adapted to
measure any kind of network (e.g. social, finantial, transportation, ecological) that
is subject to a perturbation.
We defined a theoretical method that measures the impact of a perturbation on a
fixed network where the perturbation is a matrix ∆L that defines novel connections
between “altered” nodes and the environment. The impact of a perturbation is
measured comparing the non-perturbed information flow in the network and the
perturbed one that is characterized by the exchange of information with the external
node. Such comparison is performed through the definition of an algorithm that
recursively shifts from the stationary distribution of the isolated system ps to the
perturbed one p∗. If the perturbation ∆L is ”small” the reccurrence is a contraction
and drives ps into p∗ in a finite number of steps. On the other hand if ∆L makes the
reccurrence have a divergent behavior means that the perturbation macroscopically
changed the network information dynamics. In a given configuration of sources
/ sinks, the input value s0 corresponding to the shift between convergence and
divergence is defined as a critical threshold. We showed that such threshold has the
Fiedler number of the network λF as a lower bound. An evidence of the intrinsically
strong meaning of such critical threshold is emphasized by the presence of peaks of
intensity in the steady flow currents of the exact perturbed stationary solution p∗
in correspondence of the critical input values.
The potential applicability of this method is wide since the method works for any
positive Laplacian perturbation matrix ∆L. However some issues require deeper in-
vestigation such as the definition of the critical threshold for varying number of query
nodes or the introduction of directed / weighted edges. Also a more accurate statis-
tical insight of the relationship between stability of a network and network measures
needs to be performed. For example we showed a strong connection between config-
urations of query nodes having high external node betweenness centrality β0 and low
critical thresholds; however it’s clear that even if β0 may be the driving topological
factor associated to the disruptiveness of a perturbation, more insights need to be
investigated: the results sensibly changes when the topology of the syinthetic mod-
ules varies, and there’s evidence that β0 is not the only network measure associated
to instability.
The biological applications show the possibility to apply the perturbative approach
to omic datasets both in an aggregate and patient-specific fashion. The results of
the analyses show the stability measures of the pathways associated in literature to
prostate cancer. In both the aggregate and the patient-oriented analyses we find
interesting insights even if the results are still under development.
The future work in this area follows three major guidelines. The first one is the
statistical and biological validation of the method, the second one is the computa-
tional optimization of the code performing the analysis, and finally the theoretical
development of the method in the control theory area. The term “control theory” is
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frequently used in many disciplines with disparate meanings. Here we mean it in the
strict mathematical sense of control theory, an interdisciplinary branch of engineer-
ing and mathematics [102, 104]. Control theory asks how to influence the behavior
of a dynamical system with appropriately chosen inputs so that the system’s output
follows a desired trajectory or final state. So in our case we are defining the theoret-
ical tools that would allow us to study in this perspective the effect of changing the
query nodes (and therefore the “inputs” of the dynamical system on the network)
in order to reach a desired final state p∗. In terms of biological applications these
concepts translate for example to the definition of the sets of molecular alterations
that lead to a final state p∗ that is critical for the network information flow, and
therefore likely to be associated with a given disease.
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Conclusions and future work

In this work we presented the state of the art of omics and multi-omics data integra-
tion methods trying to highlight the most challenging mathematical issues arising
from it (Part I). We revised the literature selecting the most promising data in-
tegration techniques paying particular attention to multi-omics methods. In fact
methods for the analysis of multiple layers of biological information pave the way
for a more comprehensive and deeper understanding of biological systems. Indeed,
several authors were able to show that the integration of multi-dimensional datasets
leads to better results from a statistical and a biological point of view than single
layer analyses [14, 19, 23].
In our revision of omics literature we noticed a growing interest around network-
based methods. Networks allow to model the intricate cells wiring diagram and
to use it as a framework for the integrated analysis of layers of biological informa-
tion. Such approaches use graphs for modeling and analyzing relationships among
omic variables and take advantage of algorithms for graph analysis: in particular,
algorithms that propagate information on networks are being proposed in several
applications and are often related to actual physical models. In this perspective we
noticed that the network propagation algorithm [46, 57] can be derived as a Euler
forward implementation of a hydrodynamic model in which an ideal fluid enters the
network through the “query nodes”, flows along the network edges and exits each
node with a constant first order rate.
The theoretical part of the thesis (Part II) was inspired by a work of Mirzaev and
Gunawardeena [51] in which after describing all the major results about linear Lapla-
cian dynamics on networks they point out that such dynamics can be formally seen
as a chemical master equation described by Van Kampen [56] in which the substance
diffusing on the network is the average probability to find the network in a given
state at a given time. In this perspective we studied the chemical master equation
and constructed a microscopic stochastic model for flow information on the network.
We developed the random walk on a network, and under chosen assumptions we dis-
cussed the phenomenon accurately. Of course the random walk model is interesting
for many reasons - not last its applicability - and it remains fundamentally at the
base of the omic tools defined and developed in both the applications (Part III).
Interestingly, the random walk model is a particular case of biochemical network
that is discussed exensivly in the work by Elf and Ehremberg [60]. The idea is that,
given a biological network, the transitions between states are modeled by linear
or non-linear functions of the states. The reason why this generalization could be
important relies on the fact that intra or inter omics exchanges could be poorly
described by a random walk. The definition of master equations more adequate to
omic data modeling and associated modified numerical implementations will be part
of our future work.
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In both applications of the described models to biological data (Part III) we defined
novel network measures that help finding respectively the network modules that are
mostly enriched in differential omic information (DEM) and an intrinsic measure of
stability associated to a set of altered molecular information on the network. Many
considerations and limitations were already treated in the related chapters (3,4).
As a proof of principle, we have applied the proposed methods to prostate ardeno-
carcinoma (PRAD) data. A deeper investigation of PRAD biology is beyond the
scope of our work, nevertheless, we provided interesting biological results. Regard-
ing the DEM method we provide several genes which are very likely to have a role
in the different prognostic outcome. In fact, these genes lie in network proximity
to genes already associated to PRAD and in regions of the PPI network enriched
in mutated and/or differentially expressed genes. In line with the local hypothesis
our analysis revealed the existence of a large connected component of genes that are
associated with molecular variations (genetic mutations and/or differential expres-
sion) between subjects of different prognostic groups. As regards the perturbative
approach, the biological applications to the same PRAD dataset show the possibil-
ity to apply the perturbative approach to omic datasets both in an aggregate and
patient-specific fashion. The results of the analyses show the stability measures of
the pathways associated in literature to prostate cancer. In both the aggregate and
the patient-oriented analyses we find interesting insights even if the results are still
under development. For example in the pathway oriented analysis we register a high
instability (low thresholds) associated to the prostate cancer pathways.
In the future work the two methodologies will be further developed and applied
to several omic datasets. In particular the DEM discovery is ready to be applied
to novel omic datasets both in “horizontal” perspective (e.g. analyze somatic mu-
tations in all available types of cancer) and the “vertical” one (e.g integration of
different layers of omic information for patients affected by the same disease). On
the other hand the perturbative approach still needs to be statistically validated
both in synthetic and real data, then the code performing the analysis needs to be
optimized. A particularly interesting future topic is the theoretical development of
the perturbative method in the control theory area. Control theory should study
the effect of changing the altered nodes in order to reach a desired final state. In
terms of biological applications these concepts translate for example to the definition
of the sets of molecular alterations that lead to a final state that is critical for the
network information flow, and therefore likely to be associated with a given disease.
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