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Introduction

It is well known, nowadays, that a correct description of biological systems should take
into account stochasticity rather than exclusively rely on deterministic models. Biological
processes are essentially random and randomness characterizes, for instance, both cellular
behavior and the cellular environment [1]. Stochasticity arises, for instance, because bio-
chemical reactions are generated by random intermolecular collisions and is typically due
to two sources of noise [2]: intrinsic noise, that is generated by the dynamics of the system
from the random timing of individual reactions, and extrinsic noise, that is generated by
the system interacting with other stochastic systems in the cell or with the environment.
The cell has several ways to deal with noise and to favor the reactions it needs. For
example, it produces specific enzymes, that increase the rate of the desired reactions by
lowering their activation energy. However, noise still remains a characteristic of both
collisions and bonding processes and, eventually, the cell has taken advantage from such
stochasticity, that is what allows, for instance, variability, adaptation and evolution.
The effect of noise can be disregarded in systems composed by large molecule populations,
typically in the order of 1023. In this case, in fact, what emerges is an average behavior
that is nearly deterministic and can be described by a set of ordinary differential equations.
In biology, however, the number of molecules is small. Typical molecule numbers of the
same protein specie in a cell are usually no more than a few thousands and, indeed,
fluctuations are not negligible. For instance, only one gene is involved in most activities of
gene expressions and less than 20 transcriptions of mRNAs from a single gene are present
in an individual bacteria [3].
The biological systems that we are going to consider in this thesis are treated from an
ecological point of view. In particular, in Part I we will propose a model to describe
the population dynamics of the Gut Microbiota, while in Part III we will focus on the
ensemble of protein domains in bacterial genomes and we will consider it as an ecosystem,
so that to obtain an insight in the genome evolution process. As in the single cell, also
when we consider the dynamic of a whole population, noise is an important feature.
Specifically, the dynamics of population has both deterministic and stochastic components
that operate simultaneously [4] and usually include three basic forms of noise: demographic
stochasticity, environmental stochasticity and sampling error [4].

• Demographic stochasticity refers to chance events of individual mortality and
reproduction. It is usually conceived as being independent among individuals and
is consequently modeled as an additive term in the dynamic equation, that has the
same amount on all species, independently from their abundance. Consequently,
its effect will be bigger for small populations than for the larger ones and, for this
reason, it is referred to as ‘density dependence stochasticity’.

• Environmental stochasticity refers to temporal fluctuations in the probability of
mortality and the reproductive rate of all individuals in a population in the same or
similar fashion. The impact of environmental stochasticity is roughly the same for
small and large populations and it therefore constitutes an important risk of pop-
ulation decline in all populations regardless of their abundance at a given location.
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From a mathematical point of view, environment noise is represented by a multi-
plicative term, that, being multiplied by the population abundance, has a density
independent effect.

• Measurement error, finally, is due to uncertainties in the estimate of the popula-
tion size or density, that is usually based on a sampling procedure. For populations
in which a complete and accurate census is available, measurement error can be
ignored.

It is clear, then, that in order to model biological systems, and specifically ecosystems, the
correct approach is to use a stochastic description. In the first introductory chapter we will
report some basic concepts of stochastic process theory that are required to understand
the models used in the following. We will then give an overview on ecological theory. We
will introduce the concept of biodiversity and explain how it can be described through the
Relative Species Abundance distribution (RSA). Then, we will detail some of the most
common theories that have been proposed in the past. In particular, we will focus on the
class of theories that are called neutral. These were formalized in 2001 by Hubbell [5],
that effectively introduced in community ecology the Ockham’s razor concept, according
to which science should aim at finding the minimal set of processes that can satisfactorily
explain observed phenomena. The main hypothesis of neutral theories are then that species
can be considered equivalent, meaning that they have the same dynamics rate, and that
species interaction can be neglected.
In Part I, we will show that a purely neutral model in which species are subject to demo-
graphic noise is not appropriate to describe the Gut Microbiota ecosystem and that the
assumption species equivalence needs to be relaxed. Moreover, we will also show that the
biodiversity measure obtained with our modeling is able to discriminate elderly subjects
that have a good or a worse health state and that it is able to predict healthy aging with
much better accuracy than using biodiversity indices that are simply based on the rela-
tive abundance of species and do not take into account stochasticity. The Gut Microbiota
modeling involves the computation of the RSA distribution, and as we will detail in Part I,
the correct way to construct it is by clustering together 16S rRNA sequences so that to
obtain a definition of species that does not rely on human made taxonomic classifications
but reflects the phylogenetic relationships between bacteria. In Part II we will summarize
the most common procedures that exist to cluster the 16S rRNA sequences and we will
propose to use a recently developed method that has the main advantage of being totally
parameter-free. Finally, in Part III we will consider the ecosystem composed by the set of
protein domains in the bacterial genome. We will show that, in this case, environmental
noise should also be taken into account and that differences in the RSA distribution of
protein domains reflect the phylogenetic distances between bacteria.
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Stochastic processes

Here we summarize some key concepts of stochastic processes that needed in the following,
taking the cue mainly from the two books: ‘A second course in stochastic processes’ by S.
Karlin and H.M. Taylor [6] and ‘Stochastic processes in physics and chemistry’ by N.G.
Van Kampen [7].

0.1 Stochastic processes

A stochastic process is a phenomenon that evolves with time (process) and whose evolution
depends on random factors (stochastic). We can define a stochastic process {Xt; t ∈ T},
or equivalently {X(t); t ∈ T}, as a family of random variables x1, x2, ..., xt, ... indexed by a
parameter t that runs over a suitable set T . The indices t may correspond to continuous or
discrete units of time, and in the last case, {Xt} could represent the outcomes at successive
trials like the result of tossing a coin or the successive observations of some characteristic
of a population.

0.1.1 Markov process

A Markov process is a stochastic process with the property that, given the value of Xt,
the values of Xs, s > t, do not depend on the values of Xu, u < t. This means that
the probability of any particular feature behavior of the process, when its present state
is known exactly, is not altered by additional knowledge concerning its past. Formally, a
stochastic process {Xt} is said to be Markovian if

P{a < Xt ≤ b | Xt1 = x1, Xt2 = x2, ..., Xtn = xn} = P{a < Xt ≤ b | Xtn = xn} (1)

whenever t1 < t2 < · · · < tn < t.

0.1.2 Stationary Markov process

A Markov process {X(t)} is said to be (strongly) stationary if the joint distribution of
{X(t)} at times t1 + h, t2 + h, ..., tk + h is the same for every k, h = 0, 1, 2, ... and for all
t1, t2, ..., tk. This is true if the statistical properties of X(t) do not change over time

P (Xt1 ≤ x1, Xt2 ≤ x2, ..., Xtn ≤ xn) = P (Xt1+h ≤ x1, Xt2+h ≤ x2, ..., Xtn+h ≤ xn) (2)

for every n and for every h. This relation implies that all the existing moments do not
change over time and that the family of random variables that define the process itself
are independent and identically distributed (i.i.d.). In fact, if we take n = 1, we have
P (Xt1 ≤ x) = P (Xt2 ≤ x) = ... = P (Xtk ≤ x) = P (Xt1+h ≤ x), meaning that the xt
have the same cumulative distributions. Note that the Poisson process that we are going
to describe in the next section is not a stationary process, in fact, as we will see, its mean
is µ = µ(t) = λt and depends on the time t.
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0.1.3 Poisson process

A Poisson process is a Markov process with continuous time and discrete state space N.
It describes the number of times a specific event occurs (success) during a time or space
interval, when the success probability is small but the number of trials is big. Formally,
it is defined in the following way.

Definition 1. A Poisson process {Xt} with intensity λ > 0 is a Markov process defined
on the non-negative integers which has the following properties

i) X(0) = 0.

ii) {Xt} has independent increments, meaning that the number of events happening in
two disjoint intervals of time are independent.

iii) {Xt} has stationary (or homogeneous) increments, meaning that the number of events
happening in an interval [t, t+ ∆t] depends only on the interval length ∆t and not on
the position of the interval on the time axis t.

iv) P{X(t+ h)−X(t) = 1 | X(t) = x} = λh+ o(h), as h ↓ 0, is the probability that one
event occurs in an infinitesimal interval.

v) P{X(t+ h)−X(t) = 0 | X(t) = x} = 1− λh+ o(h), as h ↓ 0, is the probability that
no event occurs in an infinitesimal interval.

vi) P{X(t+ h)−X(t) = 2 | X(t) = x} = o(h), as h ↓ 0, is the probability of two events
to occur in an infinitesimal interval.

Properties iv to vi imply that in a time interval h ↓ 0 either one event occurs or no events at
all and the probability that the event happens is proportional to the time interval h being
equal to the the frequency multiplied by the interval width. Moreover, the probability
that more than one event occurs is negligible. It follows that for a Poisson process the
probability of having n successes in a finite time interval ∆t is given by the random variable
X(∆t) that has a Poisson distribution

P{X(∆t) = n} =
(λ∆t)n

n!
e−λ∆t;n = 0, 1, ... (3)

To prove this, we can consider the approximation of the Binomial distribution for a number
of trials N →∞ and a success probability p→ 0. The Binomial distribution is given by

Bin(n;N, p) =
N !

n!(N − n)!
pn(1− p)N−n (4)

and the expected value of n following a Binomial distribution is E[n] = Np. Imagine to
divide the interval ∆t in N infinitesimal subsets δt, so that ∆t

δt = N � 1 we know that in
each δt at most one event occurs. So, counting the number of events in ∆t is equivalent to
making N trials in which p is given by the probability of a success in δt, that for a Poisson
process is p = λδt, as indicated by property iv. Then, the average number of successes is

NP = Nλδt =
∆t

δt
λδt = λ∆t. (5)

Moreover, δt is an infinitesimal interval, then p = λδt� 1, namely the success probability
is small and we expect to have few successes in δt. Consequently n � N and N !

(N−n)! =

N(N − 1)(N − 2) . . . (N −n+ 1) ≈ Nn. Moreover, we can approximate log((1− p)N−n) =
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(N − n)log(1 − p) −−−→
p�1

−p(N − n) −−−→
n�N

−Np, so that (1 − p)N−n → e−Np. Finally,

Bin(n;N, p) −−−−−−−→
N→∞;p→0

(Np)ne−Np

n! and remembering that Np = λ∆t we obtain

P{X(∆t) = n} = Bin(n;N →∞, p→ 0) =
(λ∆t)ne−λ∆t

n!
(6)

that is the notorious Poisson distribution.

0.1.4 Inhomogeneous Poisson process

If the probability of having an event varies with time, i.e. λ = λ(t), then property iii does
not hold anymore and the number of events happening in an interval [t, t + ∆t] actually
depends on the time point t. In this case, {X(t)} is called inhomogeneous Poisson process
and the probability of having n events in the time interval [s, t] is given by

P{X(t)−X(s) = n} =
1

n!

[∫ t

s
λ(t′)dt′

]n
e−

∫ t
s λ(t′)dt′ . (7)

The integral m(s = 0, t) =
∫ t

0 λ(t′)dt′ is called expected value function and the ran-
dom variable X(t)−X(s) follows now a Poisson distribution with expected value m(s, t),
0 ≤ s ≤ t.

0.1.5 Birth death process

A natural generalization of the Poisson process is to permit the chance of an event occur-
ring at a given instant of time to depend upon the number of events which have already
occurred. This is the case of the reproduction of living organisms, in which one could
suppose that the probability of a birth at a given instant is directly proportional to the
population size (abundance) at that time. Analogously, we may assume that the pop-
ulation abundance X(t) also decrease proportionally to the current abundances by the
death of members. To describe this process, we assume that X(t) is a Markov process
on the states 0, 1, 2, ... and that its transition probabilities Pij(t) are stationary, i.e.
Pij(t) = P{X(t+ s) = j|X(s) = i}. In addition we assume that Pij(t) satisfy

1. Pi,i+1(h) = bih+ o(h) as h ↓ 0, i ≥ 0;

2. Pi,i−1(h) = dih+ o(h) as h ↓ 0, i ≥ 1;

3. Pi,i(h) = 1− (bi + di)h+ o(h) as h ↓ 0, i ≥ 0;

4. Pij(0) = δij ;

5. d0 = 0, b0 > 0, di, bi > 0, i = 1, 2, ....

The parameters bi and di are called, respectively, the infinitesimal birth and death rates.
In the first two postulates we are assuming that if the process starts in state i, then in a
small interval of time the probabilities of the population increasing or decreasing by 1 are
essentially proportional to the length of the interval.
Since the Pij(t) are probabilities, we have Pij(t) ≥ 0 and

∑∞
j=0 Pij(t) = 1. Moreover,

using the Markovian property of the process we may also derive the Chapman-Kolmogorov
equation

Pij(t+ s) =
∞∑
k=0

Pik(t)Pkj(s). (8)
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This equation states that in order to move from state i to state j in time t+s, X(t) moves
to some state k in time t and then from k to j in the remaining time s. As a consequence,
the probability of moving from i to j in t + s is given by the sum of the probabilities of
all the possible paths from i to j through all possible k.

0.2 Master Equation

The Chapman-Kolmogorov equation is not easy to handle in actual applications. The
master equation is a more convenient version of the same equation. It is a differential
equation obtained by going to the limit of vanishing time difference s. For this purpose,
we first show how the transition probability Pij(s) behaves when s tends to zero. The first
order Taylor expansion of Pij(s) for s→ 0 is

Pij(s) = Pij(0) + P ′ij(s) · (s− 0) + o((s− 0)2)

=

1− s ·
∑
k 6=i

Wik

 δij + s ·Wij + o(s2), (9)

where Wij is the transition probability per unit time from i to j and (1− s ·
∑

k 6=iWik) is
the probability that no transition takes place during s.
Substituting this expression for Pij(s), the Chapman-Kolmogorov equation becomes

Pij(t+ s) =
∞∑
k=0

Pik(t)

1− s ·
∑
j′

Wkj′

 δkj + s ·Wkj


=

1− s ·
∑
j′

Wjj′

Pij(t) + s

∞∑
k=0

Pik(t)Wkj (10)

Dividing by s and going to the limit s→ 0, we obtain

dPij(t)

dt
=
∞∑
k=0

[WjkPij(t)−WkjPik(t)] . (11)

This is the differential form of the Chapman-Kolmogorov equation and is called master
equation. The equation describes the variation of the probability of the system to be in
a particular state, due to incoming and outgoing fluxes and it is usually written in the
simplified form

dPn(t)

dt
=
∑
n

[Wnn′Pn′(t)−Wn′nPn(t)] (12)

or, for a process {X(t)} defined in a continuous state space,

∂P (x, t)

∂t
=

∫ [
Wx′xP (x′, t)−Wxx′P (x, t)

]
dx′. (13)

0.2.1 Detailed Balance and stationary solution

The Master equation 12 (or 13) describes the variation of the probability of the system
with time. It is clear then that the stationary solution, that is the probability distribution
of the process when it is stationary (see Sec. 0.1.2), may be found simply setting dP/dt = 0.
However, in the general case, the master equation is impossible to solve, being a huge (or
infinite) set of degenerate differential equations. Analytical or numerical solution can be
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found for some special cases, such as, for instance, for the one-step birth death process (see
Sec. 0.1.5). Here, the stationary solution can be easily obtained with a linear expansion
of the coefficient bn and dn. The Master equation for the birth death process is given by

dPn(t)

dt
= bn−1Pn−1(t) + dn+1Pn+1(t)− (bn + dn)Pn(t), (14)

and, in the stationary state, the flux should be 0 for each step, meaning that Pnbn =
Pn+1dn+1. This condition is called detailed balance and, when it holds, the stationary
solution can be found very easily writing the recursive solution

Pn+1 = Pn
bn
dn+1

. (15)

and expanding it, so that to obtain

Pn = P0

n−1∏
i=0

bi
di+1

(16)

where P0 can be found from the normalization condition.

0.3 Diffusion process

Most Markov processes, including the Poisson process, birth-death processes, etc., satisfy
the property

lim
h↓0

1

h
P{|X(h)− x| > ε|X(0) = x} = λ(x, ε) (17)

with λ(x, ε) nonnegative and possibly positive for ε small. For a Poisson process, in
particular, the properties iv to vi reported in Sec. 0.1.3 imply in fact that

lim
h↓0

1

h
P{X(h)− i = 1|X(0) = i} = λ (18)

with i = 0, 1, ... and λ indicating the mean rate of the occurrence of events. The sample
realization of the Poisson process are discontinuous step functions having jumps of unit
increase. In contrast to condition 17, a diffusion process has to satisfy

lim
h↓0

1

h
P{|X(h)− x| > ε|X(0) = x} = 0 (19)

for every ε > 0 and for all x in the state space I. This condition describes the fact that
the sample paths of a diffusion process are continuous.
Diffusion processes are usually also characterized by two further conditions, that describe
the mean and variance of the infinitesimal displacements. Let ∆hX(t) = X(t+ h)−X(t)
be the increment in the process accumulated over a time interval of length h. These key
conditions affirm the existence of the limits

lim
h↓0

1

h
E[∆hX(t)|X(t) = x] = µ(x, t) (20)

and

lim
h↓0

1

h
E[{∆hX(t)}2|X(t) = x] = σ2(x, t). (21)
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The functions µ(x, t) and σ2(x, t) are termed infinitesimal parameters of the process and
respectively represent a drift and a diffusion component. The motivation for the name
infinitesimal mean and variance for µ(x) and σ2(x) is clear, since

E[∆hX(t)|X(t) = x] = µ(x) · h+ o(h)

E[(∆hX(t))2|X(t) = x] = σ2(x) · h+ o(h) (22)

Finally, for what concerns higher order infinitesimal parameters, the following relations
are usually satisfied:

lim
h↓0

E[|∆hX(t)|r|X(t) = x]

h
= 0, r = 3, 4, ... (23)

0.3.1 Elementary transformation of Processes

We may want to transform an arbitrary stochastic process {X(t)} into a new process
defined by Y (t) = g(X(t)), where g is a continuous strictly increasing function. If {X(t)}
is a continuous path Markov process, i.e. a diffusion, then, since g is continuous and
monotone, so is {Y (t)} . Thus, if {X(t)} has infinitesimal parameters µ(x) and σ2(x) and
g has also two continuous derivatives g′ and g′′, then {Y (t)} will also have infinitesimal
parameters, that are determined by

µY (y) =
1

2
σ2(x)g′′(x) + µ(x)g′(x)

σ2
Y (y) = σ2(x)[g′(x)]2, (24)

where y = g(x).

Proof. We consider only the case where g is strictly increasing. The strictly decreasing
case is similar. For g twice continuously differentiable, the Taylor expansion with Lagrange
remainder furnishes the representation

g(x+ ∆x) = g(x) + ∆xg′(x) +
1

2
(∆x)2g′′(x) +

1

2
(∆x)2[g′′(ξ)− g′′(x)] (25)

with x ≤ ξ ≤ x+ ∆x. If we substitute X(t) = x and ∆X = X(t+ h)−X(t), we have

g(X(t+ h)) = g(X(t)) + ∆Xg′(X(t)) +
1

2
(∆X)2g′′(X(t)) +

1

2
(∆X)2[g′′(ξ(w))− g′′(X(t))]

(26)
where ξ(w) lies between X(t) and X(t + h). We can rewrite this equation substituting
Y (t) = g(X(t)), and it becomes

Y (t+h)−Y (t) = ∆Xg′(X(t)) +
1

2
(∆X)2g′′(X(t)) +

1

2
(∆X)2[g′′(ξ(w))− g′′(X(t))]. (27)

Then, dividing by h, remembering that ∆X = X(t + h) − X(t), and introducing the
definition of µ(x) and σ2(x), we obtain

µY (y) = limh ↓ 0
1

h
E[Y (t+ h)− T (t)|y(T ) = Y ] =

µ(x)g′(x) +
1

2
σ2(x)g′′(x) +

1

2
lim
h↓0

1

h
E[(∆X)2(g′′(ξ(w))− g′′(X(t)))]. (28)

Since we assumed that g′′ is twice continuous, g′′(ξ(w)) converges to g′′(X(t)) and this
leads the last limit to tend to zero, proving the transformation for the infinitesimal mean
µY (y).
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The infinitesimal variance of Y (t) is found with a similar procedure. We square Eq. 27
and obtain

[Y (t+ h)− Y (t)]2 = (∆X)2[g′(X(t))]2 +Rh (29)

with Rh that contains only terms of order (∆X)3 or higher. We know from Eq. 23 that
for r ≥ 3 limh↓0

1
hE[|∆X|r|X(t) = x] = 0, and it follows that

σ2
Y (y) = lim

h↓0

1

h
E[(Y (t+ h)− Y (t))2|Y (t) = y] = σ2(x)[g′(x)]2 (30)

and also the transformation for the infinitesimal variance σ2
Y (y) is proven.

0.4 Fokker Planck equation

Planck derived the Fokker-Planck equation as an approximation to the continuous master
equation (Eq. 13) in the following way. First express the transition probability W as a
function of the jump size r and of the starting point x′

Wx′x = W (x′; r) (31)

with r = x− x′. The general master equation then becomes

∂P (x, t)

∂t
=

∫
{W (x− r; r)P (x− r, t)−W (x;−r)P (x, t)}dr (32)

We assume that only small jumps occur and consequently that there exists a δ > 0 such
that

W (x′, r) ≈ 0 for |r| > δ

W (x′ + ∆x; r) ≈W (x′; r) for |∆x| < δ. (33)

Secondly, we assume that the solution P (x, t) varies slowly with x, meaning that there
exists a δ > 0 such that

P (x′ + ∆x, t) ≈ P (x′, t) for |∆x| < δ. (34)

Then, it is possible to handle the shift from x to x − r in the first integral in Eq. 32 by
means of a Taylor expansion up to the second order, so that

∂P (x, t)

∂t
=

∫
W (x; r)P (x, t)dr −

∫
r
∂

∂x
{W (x; r)P (x, t)}dr+

1

2

∫
r2 ∂

2

∂x2
{W (x; r)P (x, t)}dr −

∫
W (x;−r)P (x, t)dr (35)

The first and fourth terms cancel and the other two terms can be rewritten introducing
the jump moments

aν(x) =

∫ +∞

−∞
rνW (x; r)dr =

∫ +∞

−∞
(x− x′)νW (x; r) = E[(x− x′)ν ] (36)

so that the master equation approximation becomes

∂P (x, t)

∂t
= − ∂

∂x
{a1(x)P (x, t)}+

1

2

∂2

∂x2
{a2(x)P (x, t)}. (37)

This equation is called Fokker-Planck equation. It is an approximation of the master
equation. The terms a1(x) and a2(x) correspond to the mean and variance of the jump
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r = x − x′. Note that for a diffusion process these correspond to a1(x) = µ(x)h and
a2(x) = σ2(x)h and go to zero for infinitesimal jumps h. The space state of x here has to
be continuous and the equation can be interpreted as a continuity equation

∂P (x, t)

∂t
= −∂J(x, t)

∂x
, (38)

where the probability flux J(x, t) is given by a drift and a diffusion term

J(x, t) = a1(x)P (x, t)− 1

2

∂

∂x
a2(x)P (x, t). (39)

0.4.1 The Langevin approach

Suppose we have a system whose macroscopic behavior is known and we also know that
there must be fluctuations. This may be the case, for instance, of a Brownian particle,
that is a heavy particle immersed in a fluid of light molecules that randomly collide with
it, making its velocity varying by a large number of (uncorrelated) jumps. The Langevin
approach to describe such system is the following.

1. Write the deterministic macroscopic equations of motion of the system. For the
velocity of the Brownian particle, this would be dV

dt = −γV , where γ is a constant
coefficient.

2. Add a noise term in the form of an external force L(t), that represents the effect
of the molecules of the surrounding fluid. L(t) is called white noise and has the
following properties:

(a) it has null average: 〈L(t)〉 = 0.

(b) its autocorrelation function is 〈L(t)L(t′)〉 = Γδ(t − t′), meaning that each col-
lision with the molecules of the surrounding fluid is practically instantaneous
and that successive collisions are uncorrelated.

(c) L(t) is Gaussian.

3. Γ describes the mean square fluctuations, as we prove in the following. So, adjust Γ
so that the stationary solution reproduces the correct mean square fluctuations.

Let us consider a generic physical system with an equation of motion ẋ = A(x). Following
the Langevin approach, we add a white noise term to describe fluctuations and obtain

ẋ = A(x) + L(t). (40)

Its solution is equivalent to the Fokker-Planck equation

∂P (x, t)

∂t
= − ∂

∂x
A(x)P (x, t) +

Γ

2

∂2P (x, t)

∂x2
. (41)

In fact, for each function L, Eq. 40 uniquely determines x(t) when x(0) is given. Since the
values of L at different time are stochastically independent, it follows that x is Markovian.
Hence, it obeys the master equation. We can compute the jump moments for x following
Eq. 40.

∆x =

∫ t+∆t

t
A(x(t′))dt′ +

∫ t+∆t

t
L(t′)dt′ (42)

and the average will be given by

a1(x) = 〈∆x〉 = A(x(t))∆t+O(∆t)2. (43)
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Analogously,

〈(∆x)2〉 =〈
(∫ t+∆t

t
A(x(t′))2

)2

〉

+ 2

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′〈A(x(t′))L(t′′)〉

+

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′〈L(t′)L(t′′)〉. (44)

The first term is of order (∆t)2 and therefore does not contribute to a2(x). The last
term equals Γ∆t according to the property 2b. Finally, the second term can be rewritten
expanding A(x(t′)) as

2A(x(t))∆t

∫ t+∆t

t
dt′′〈L(t′′)〉+2A′(x(t))

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′〈(x(t′)−x(t))L(t′′)〉+· · · ≈ o(∆t).

(45)
So, we proved that a2(x) = Γ∆t.
Finally, if we consider a nonlinear Langevin equation

ẋ = A(x) + C(x)L(t), (46)

we can reduce it to the preceding case dividing by C(x) and transforming x → x̃, with
x̃ =

∫
dx
C(x) :

dx̃ =
dx

C(x)

d2x̃ =
d2(x)C(x)− C ′(x)dx

C2(x)

Ã(x̃) =
A(x)

C(x)

P̃ (x̃) = P (x)C(x). (47)

The equivalent Fokker-Planck equation is then

∂P̃ (x̃, t)

∂t
= − ∂

∂x̃
Ã(x̃)P̃ (x̃, t) +

Γ

2

∂2P̃ (x̃, t)

∂x̃2
. (48)

and transforming back to the original x

∂P (x, t)

∂t
= − ∂

∂x
[A(x) +

1

2
ΓC(x)C ′(x)]P (x, t) +

Γ

2

∂2

∂x2
[C(x)]2P (x, t) (49)

and a1 = [A(x) + 1
2ΓC(x)C ′(x)]∆t and a2 = Γ[C(x)]2∆t.

Analogously, we could choose to directly estimate a1 and a2 using the same approach of
Eq. 43-44.
Note that there is a problem concerning Eq. 46. In fact, L(t) can be visualized as a
sequence of delta peaks arriving at random times. If we consider one of these times ť,
according to Eq. 46, when t = ť, the delta function in L(ť) =∞ causes a jump in x(ť) that
also goes to infinity. Hence, the value of x at the time that the delta function arrives is
undetermined, and therefore also the value of C(x). The equation does not specify whether
one should insert in C(x) the value of x before the jump, after the jump or perhaps the
mean of both. Stratonovich opted for the mean value and rewrote Eq. 46 as

x(t+ ∆t)− x(t) = A(x(t))∆t+ C

(
x(t) + x(t+ ∆t)

2

)∫ t+∆t

t
L(t′)dt′. (50)
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This choice leads to Eq. 49. First let us rewrite C as

C

(
x(t) + x(t+ ∆t)

2

)
= C

(
x(t) + x(t+ ∆t) + x(t)− x(t)

2

)
= C

(
x(t) +

∆x

2

)
. (51)

Then, assuming that C is differentiable, we expand it as

C

(
x(t) +

∆x

2

)
≈ C (x(t)) +

∆x

2

dC(x(t))

dx
+ ... (52)

It follows that the second term of Eq. 50 is∫ t+∆t

t
C

(
x(t) +

∆x

2

)
L(t′)dt′ = C (x(t))

∫ t+∆t

t
L(t′)dt′ +

dC(x(t))

dx

∫ t+∆t

t

∆x

2
L(t′)dt′

(53)
The first integral is zero according to the property 2a of the Langevin approach. The
second one can be rewritten substituting ∆X =

∫ t+∆t
t A(x(t′))dt′ +

∫ t+∆t
t (C · L)dt′, so

that it becomes

dC(x(t))

dx

∫ t+∆t

t

∆x

2
L(t′)dt′ =

=
1

2

dC(x(t))

dx

∫ t+∆t

t
dt′

[∫ t′+∆t′

t′
A(x(t′′))L(t′′)L(t′′)dt′′ +

∫ t′+∆t′

t′
C(x(t))L(t′′)L(t′′)dt′′

]
.

(54)

The first integral addend is o(∆t) as in Eq. 45. Hence,∫ t+∆t

t
C

(
x(t) +

∆x

2

)
L(t′)dt′ =

1

2

dC(x(t))

dx
C(x(t))

∫ t+∆t

t
dt′
∫ t′+∆t′

t′
L(t′′)L(t′′)dt′′ =

1

2
C(x(t))

dC(x(t))

dx
Γ (55)

and we find

〈∆x〉 ≈ A(x(t))∆t+
1

2
C(x(t))

dC(x(t))

dx
Γ∆t (56)

and then follows Eq. 49, as anticipated.
Ito, instead, opted for the value of x before the arrival of the delta peak, so that∫ t+∆t

t
C(x(t′))L(t′)dt′ = C(x(t))

∫ t+∆t

t
L(t′)dt′ = 0 (57)

where the first equivalence follows from the Ito assumption according to which the value of
C in the interval [t, t+∆t] is equal to the value at the beginning of the interval C(x(t)), and
the second equivalence comes from the property 2a for the white noise L. Consequently,

〈∆x〉 ≈ A(x)∆t (58)

and Eq. 49 is now equivalent to the Fokker-Planck equation

∂P (x, t)

∂t
= − ∂

∂x
A(x)P (x, t) +

Γ

2

∂2

∂x2
[C(x)]2P (x, t). (59)

Apparently, this interpretation is not compatible with the familiar way of transforming
variables and in fact new transformation laws have been formulated to deal with the Ito
interpretation.
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Ecological Theory

0.5 Ecosystems and biodiversity

Ecology aims to study the interactions between organisms and their environment as an
integrated system [8]. One of its main interests is biodiversity, which refers to the varieties
of species, genes, and, on a wider scale, ecosystems. Biodiversity increases the ecosystem
performances and productivity, so as its stability over time, through the supplement of
functional traits variety [9]. The total biodiversity of an ecological landscape is called
gamma diversity and is determined by two independent components, the mean species
diversity in sites or habitats at local scale (α diversity) and the differentiation among
those habitats (β diversity) [10]. When studying a single ecosystem, we are interested in
particular in the α diversity, that implies species richness and allows an healthy degree of
competition, preventing pathogenic or invasive species to prevail.

0.5.1 Diversity indices

Several definitions of α diversity exist according to what diversity itself is assumed to be.
Diversity indices, for instance, characterize how many different species compose the ecosys-
tem, taking simultaneously into account how evenly individuals are distributed among
those species. Shannon [11] and Pielou’s [12] indices are entropy measures that are maxi-
mized when all species have the same proportion of individuals, corresponding to maximum
diversity. If the total number of species in the ecosystem is S and pi is the fraction of
individuals that belong to species i, Shannon’s index is defined as

H = −
S∑
i=1

pilog(pi). (60)

Pielou’s index is the normalized version of Shannon’s index, given by

J =
H

Hmax
, (61)

where Hmax is the maximum value that H can have, that is when all species have the same
proportion of individuals: Hmax = −

∑S
i=1

1
S log( 1

S ). Simpson’s index measures the degree
of concentration when individuals are classified into species. It is the probability that two
individuals taken at random from the dataset of interest belong to the same species [13]
and is given by

γ =

S∑
i=1

p2
i . (62)

These indices, however, have been strongly criticized because of their sensitivity to the
few commonest species [14]. For this reason, fitting a model to the data seems a better
option, enabling the diversity statistics to be estimated much more efficiently than by
direct evaluation of the relative frequencies [14].
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0.5.2 Relative Species Abundance distribution (RSA)

Diversity evaluation can be obtained specifically by fitting the Relative Species Abun-
dance distribution (RSA), that refers to how common or rare a species is relative to other
species. As we will point out in the following, the usual way to represent the RSA is
in the form of Preston plot, that is plotting how many species (y−axes) have a certain
number of individuals (x−axis, usually in logarithm to base 2). RSA is closely related
to Shannon entropy. Maximum diversity, for instance, is obtained when individuals are
equally distributed into species, that is when entropy is maximal. In this situation, all
species have the same proportion of individuals and RSA is peaked in one bin, that is
the ‘1 individual’ bin if the number of individuals is equal to the number of species. In
this case, in fact, maximum diversity is obtain when each species has one individual and
consequently the number of species with one individual (RSA’s bin 1) is the total number
of species.
RSA distribution, has widely fascinated ecologists, since, in an extensive number of ecolog-
ical communities, ranging from open-ocean planktonic copepod, to tropical bat, but also
in rain forest trees and British breeding birds, RSA has been shown to follow very similar
patterns [5]. Moreover, RSA distributions appear to be drawn from a single family of
distributions, extending from the Log Series to a highly skewed and unveiled Log Normal.
This led to several efforts in modeling the RSA of ecosystems arising from statistical or
dynamical clues, that may be classified in two major approaches: inductive and deductive.
In the early years, when the study of relative species abundance was in its infancy, the
inductive approach dominated. Observed distributions of the numbers of individuals per
species in collections were fitted to statistical distributions with little or no attempt to give
a theoretical explanation or to define the sampling universes from which the collections
were made. More recently, instead, different attempt have been made in order to derive a
theory of relative species abundance from first principles, i.e. based on hypotheses about
how ecological communities were organized.

0.6 Inductive approaches

0.6.1 Fisher’s Log-Series distribution

A milestone of the inductive approach was the work proposed by Fisher, Cobert and
Williams in 1943 [15]. Fisher considered the number of individuals observed when re-
peatedly sampling a species as a counting process or, more precisely, a Poisson process
(see Sec. 0.1.3). Then, under the assumption that the population was homogeneous, the
distribution of the number of species with a certain number of individuals would be

P (n, λ) =
e−λλn

n!
. (63)

This is the Poisson distribution, where n is the number of observed individuals in each
sample and λ is the expected number of individuals E[n] = λ. Obviously, λ will depend
on the sample size and on the density of individuals in the sampled species. Moreover,
if all the species were equally frequent in the community, we would have obtained the
same distribution if, rather than considering many samples of the same species, we would
have considered a single sample from the whole community and counted the number of
individuals in each species.
On the other hand, if the community was heterogeneous, meaning that different species
are present with different frequencies, each species j would be characterized by a different
λj and the distribution of the number of individuals in each species would be a mixture of

17



Poisson distribution. In this case, in fact, the counting process would be an inhomogeneous
Poisson process (see Sec. 0.1.4).
Moreover, since the values of λ must be positive, Fisher made the simplest assumption and
proposed that they were distributed according to a Gamma distribution with parameters
p and k, so that

dP (λ) =
1

(k − 1)!
p−kλk−1e−λ/pdλ. (64)

The probability of observing n individuals is now given by

P (n) =

∫ ∞
0

dP (λ)P (n, λ)dλ

=

∫ ∞
0

1

(k − 1)!
p−kλk−1e−λ/p

e−λλn

n!
dλ

=
(k + n− 1)!

(k − 1)!n!

pn

(1 + p)k+n
(65)

that is a Negative Binomial distribution.
When the parameter k is very high, we obtain again a Poisson distribution, while when
the population is very heterogeneous, k becomes small and tends to zero and the Gamma
distribution for λ becomes very skewed. In nature, the abundance of different species
generally vary greatly, in fact a large number of species are so rare that their chance of
inclusion is small and as a consequence k → 0. However, k = 0 cannot be observed
in reality because the total number of species has to be finite. Moreover, such limiting
case could not occur if the zero abundance class was observable, because the distribution
would then wholly consist of such cases. However, Fisher considered the case k = 0 for
the truncated distribution valid for n ≥ 1. He set x ≡ p/(1 + p) and replaced the constant
factor in the denominator by a new constant factor, 1/α = (k − 1)!. The predicted RSA
distribution turned out to be the Log-Series, that is the limit case of the Negative Binomial
distribution in case of highly heterogeneity and that is valid only for n ≥ 1. The Log-Series
RSA is given by

PRSA(n) = α
xn

n
; n ≥ 1 (66)

and Fisher proved that it fits well data from butterflies in Malaya and moths collected
over a four-year period at the Rothamsted Experimental Station in England.
According to Fisher’s model, the expected number of species with 1, 2, 3, 4, ..., n individ-
uals is given by αx, αx2/2, αx3/3, αx4/4, ... , αxn/n for 0 < x < 1. Adding all terms,
the total number of species, S, is expected to be α[−ln(1 − x)], and the total number of
individuals in the collection, N , is αx/(1 − x). The parameter α is known as Fisher’s α
and, together with the total number of individuals N , completely summarizes the RSA
distribution. Fisher’s α is a widely used measure of species diversity because it is theo-
retically independent of sample size [15], even if for some datasets it turns out to be only
approximately constant, changing slowly over large ranges in sample size [5].

0.6.2 Preston Log-Normal distribution

Fisher’s α parameter has been generally used to estimate diversity. However, the Log-
Series model has been also criticized, mainly for not being a good fit to the data, espe-
cially when increasing sample sizes. In 1948, Preston argued that RSA distributions were
actually Log-Normal, partly due to the Central Limit Theorem, and that the Log-Series
resulted in fact from under-sampling [16]. Analyzing for instance bird species abundances,
Preston noted, in fact, that RSA were often bell-shaped curves, such that species hav-
ing intermediate abundances were more frequent than very rare species. Due to the
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Log-Normal behavior of the RSA, Preston proposed to represent it in with the x−axis
(number of individuals) in logarithm to base 2, so that to visualize the normality of the
logarithmic abundances. Such plot is called Preston plot and can be built categorizing the
abundances in bins (called octaves) that are limited by the powers of 2 (1, 2, 4, 8, etc.).
The Log-Normal distribution is continuous, not discrete as in the case of the Log-Series.
However, Preston’s method of categorizing abundances provides a simple way to approx-
imate the distribution by a discrete-valued function, as follows. Let S0 be the number of
species in the modal octave of abundance. Let SR be the number of species in the R−th
octave (or doubling abundance class) to the left or right of the modal octave. Then, the
so called Species Curve can be written as

SR = S0e
−a2R2

, (67)

with R = 0, 1, 2, ... and where a is a constant that depends on the parameter σ of the
Log-Normal, a = 1/

√
2σ.

Over the past half century, the Log-Normal distribution has been fitted successfully to
a far larger number of relative species abundance distributions than has the Log-Series
distribution, particularly as bigger sample sizes have become available [5]. To explain his
Log-Normal distribution, Preston argued that the shape of the RSA observed by Fisher
and his colleagues was an artifact of small sample size. In the Log-Series, the expected
number of species is always larger in the rarest abundance category, consisting of singleton
species. However, in a small sample, one should observe only a truncated distribution of
relative abundances, comprising only the most common species. This is because common
species are generally collected sooner than rare species. As sample size increases, Preston
predicted that more and more of the Log-Normal distribution would be revealed and the
reason for which Fisher had not noted it was that he did not consider the importance of
sample size, because of the theoretically expected constancy of Fisher’s α in collections
of different sizes. However, the proposal for a Log-Normal distribution let the apparent
invariance of Fisher’s α unexplained and, furthermore, in recent years, as larger sample
sizes of relative species abundance have become available and the abundances of very rare
species have become better known, it has become increasingly apparent that observed
distributions of relative species abundance are actually seldom log-normally distributed.
Empirical RSA, instead, appear to be Log-Normal to the right of the mode in the right-
hand tail representing common species. But they almost always show a strong negative
skewness that cannot be explained neither with Fisher or with Preston’s distribution.

0.7 Deductive approaches

After the initial inductive attempts, several efforts have been made to derive a theory of
relative species abundance from first principles, that was based on hypotheses about how
ecological communities were organized. The motivation to this approach was the idea
that the RSA patterns were so ubiquitous that there had to be an underlying general
mechanism that theory could elucidate.

0.7.1 Niche models and MacArthur broken stick

The first deductive theory for ecological system, was proposed by MacArthur in 1957 [17].
MacArthur hypothesized that groups of trophically similar species in ecological commu-
nities simply randomly divided up a common pool of limiting resource and their relative
abundances were proportional to the fraction of total resource each utilized. The parti-
tions in which the resource pool is subdivided are called ‘niche’ and these kind of models
that determine the distribution of abundances of individuals among species based on how
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species break up such pool are called niche apportionment models. MacArthur idealized
the resource pool as a stick of unit length. Suppose a community of S species randomly
divides up the common resource. Now randomly partition the resource pool by throwing
S− 1 random points onto the unit stick. Then, break the stick at each random point, and
rank the fragments from shortest to longest. The expected relative abundance of the i−th
rarest (shortest) species, yi, should then be given by

E[yi] =
1

S

S∑
x=i

1

x
. (68)

An extension to this formulation considers a broken-stick model in which the partition of
the limiting resource is nonrandom and was proposed independently by Motomura [18] and
Whittaker [19]. While MacArthur’s model assumed the population to be homogeneous,
Motomura and Whittaker allowed for heterogeneity, considering that the community may
be characterized by some hierarchical structure. The expected RSA was found applying
the following rule. Let the most dominant species take over a fraction k of the total
resource pool, leaving the fraction 1 − k for all other species. Then, let the second most
dominant species sequester the same fraction k of the remaining resource, leaving the
fraction (1− k)2 for all remaining species, and so on.
Sugihara [20] further improved the broken-stick model noting that repeatedly or sequen-
tially breaking the broken stick would eventually produce a Log-Normal distribution of
fragment lengths. He thus proposed the following sequential breakage rule. Take the stick
and make the first random break. Choose one of the two fragments at random and break
it randomly. Then choose one of the three fragments at random and break it, and so on.
What Sugihara discovered was that the resulting distribution was not only Log-Normal,
but it was the distribution predicted by Preston (Eq. 67). However, this model has several
shortcomings, such as, for instance, the lack of interpretation for its supposed first princi-
ples [5]: the biological analog to what is done mathematically in sequential breakage is not
clear and, moreover, there is no ‘stopping rule’ inherent in the theory that fixes how many
sequential breaks to carry out. This means that the number of species in the community
is a free parameter that does not follow from the theory. Finally, broken stick models can
also be faulted for having little or nothing to say about sampling issues or how they might
be tested with data from real communities.

0.7.2 MacArthur and Wilson model and the neutrality assumption

All the early deductive approaches belonged to the niche perspective and, going after
Lotka-Volterra’s idea of coexistence as a static equilibrium, did not take into account the
dynamical processes that may have generated a particular RSA. The first deductive model
that was also based on the idea of a dynamical equilibrium was proposed by MacArthur
and Wilson in 1967 [21]. MacArthur and Wilson were the first to introduce the concept
of neutrality in ecology. Neutrality can be considered as a null hypothesis to niche theory
and implies that, at a given trophic level in a food web, all species are equivalent in their
birth, death and dispersal rates, when measured on a per-capita basis [22].
MacArthur and Wilson noted that with the current static idea that considered island
communities fixed over ecological time-scale (∼ 103 years), it could not be explained why
islands nearly always have fewer species than areas on continents of the same size. The
authors proposed a new theory in which the number of species on the island could change
as a result of two opposing forces: immigration from the continents of species not already
present on the island, and extinction of species present on the island.
Furthermore, once island populations went extinct, it would take the same species longer
to recolonize the island than it would take them to disperse among adjacent areas on the
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mainland. Thus, other things being equal, species would spend a smaller fraction of total
time resident on a given island than in the same-sized area of the mainland. Given these
assumptions, the equation that controls the species dynamics is

dS

dt
= I(S)− E(S), (69)

where I(S) is the immigration rate of new species and E(S) is the extinction rate. The
stationary state is found setting dS/dt = 0 and is achieved when the immigration and
extinction rates become equal. Note that, at the steady state, the immigration and ex-
tinction rates are equal but not null. What remains steady is the number of species on
the island S and not their identity. For this reason, this model is called neutral, in the
sense that all species are considered as equivalent and have the same dynamic rates.

0.7.3 Caswell’s abundance random walk

Following the idea of neutrality, Caswell erected his model, considering communities as
collections of completely noninteracting species in which each species undergoes an inde-
pendent random walk in abundance. Therefore, the total size of the community fluctuates.
New species enter the community as a Poisson process (see Sec. 0.1.3) with probability λ
per unit time. This immigration probability, as in the theory of island biogeography, is
independent of the identity of the species and of the number and identities of the species
already present, except that only species not currently present are allowed to immigrate.
This is equivalent to assuming that immigration makes a negligible contribution to the
population dynamics of a species already present. Caswell assumed a linear birth-death
process in which the stochastic per capita birth and death rates, b and d, are equal: b = d.
This is a pure drift process or random walk. The transition probabilities from a population
of size Ni to size Ni−1, Ni , or Ni+1 at time t+ dt are linear functions Ni of at time t, as
follows:

P (Ni−1|Ni) = d ·Ni

P (Ni|Ni) = 1− (b+ d) ·Ni

P (Ni+1|Ni) = b ·Ni (70)

Caswell’s model is very important because it was the first one to be explicitly based
on birth, death, and dispersal processes. However, it has several problems. First, its
results differ substantially from observed community relative abundance patterns and look
decidedly not lognormal on a Preston plot of octaves of abundance. Then, the size of
the community J grows without bound over time, in fact, J turns out to be a Negative
Binomial random variable with mean E[J ] = t→∞ (elapsed time), and variance V ar[J ] =
t(t+ 1)→∞ as t→∞. Finally, the expected number of species in the community, E[S],
is linearly proportional to the colonization rate of new species per unit time, λ, and the
logarithm of the elapsed time:

E[S] = V ar[S] = ν · ln(t+ 1). (71)

Caswell’s model can be improved with the addition of the assumption of a finite community
size (due to limited resource availability) and minor changes in the birth, death, and
dispersal processes.

0.7.4 Hubbell’s Unified Neutral Theory of Biodiversity

Hubbell developed his Unified Neutral Theory of Biodiversity inspired by the ideas of neu-
trality and dynamic equilibrium of MacArthur and Wilson. He observed that, in general,

21



population densities are constant, meaning that large landscapes are always saturated
with individuals, and he thus treated communities as being formed by a fixed number
of individuals, usually denoted by J . More precisely, Hubbell distinguished between a
dispersal-limited local community of size J and a so-called metacommunity from which
species can (re)immigrate and which acts as a heat bath to the local community. The
distribution of species in the metacommunity was given by a dynamic equilibrium of spe-
ciation and extinction, as in MacArthur and Wilson’s model. Both community dynamics
were modeled by appropriate urn processes, where each individual is represented by a
ball with a color corresponding to its species. To build the metacommunity distribution,
imagine to choose randomly and with a certain rate some individuals that will reproduce.
For each chosen individual, this corresponds to add a further ball of its own color to the
urn. Since one basic assumption is saturation, reproduction has to happen at the cost of
removing another random individual from the urn. At a different rate, single individuals
in the metacommunity are replaced by elements of an entirely new species.
The urn scheme for the metacommunity of JM individuals is the following. At each time
step take one of the two possible actions:

• With probability 1 − ν draw an individual at random and replace another random
individual from the urn with a copy of the first one.

• With probability ν draw an individual and replace it with an individual of a new
species.

The urn scheme for the local community of fixed size J is very similar to the one for the
metacommunity. At each time step take one of the two actions:

• With probability (1−m) draw an individual at random and replace another random
individual from the urn with a copy of the first one.

• With probability m replace a random individual with an immigrant drawn from the
metacommunity.

The metacommunity is changing on a much larger timescale and is assumed to be fixed
during the evolution of the local community. The resulting distribution of species in the
local community and expected values depend on four parameters, J , JM , θ and m, that is
a dispersal parameter. When m = 1, that is in the limit of no dispersion, the local commu-
nity is just a sample from the metacommunity. This is the only one for which Hubbell [5]
presented analytical results. If m = 0, instead, the local community is completely isolated
from the metacommunity and all species will go extinct except one. Finally, if dispersal
limitation is present (0 < m < 1), we have an intermediate state between domination of the
most common species and a sampling from the metacommunity, where singleton species
are most abundant. This is the biologically more interesting situation and is characterized
by a unimodal species distribution in a Preston plot, often fitted by a Log-Normal distri-
bution. Hubbell provided only numerical results for this case. Analytical results, instead,
have been found successively following two different approaches classified as forwards- and
backwards-in-time [23].
The forwards-in-time perspective uses a master equation approach with a Markovian de-
scription of states and transitions. This approach is the one followed by Volkov [24] as we
will detail in the following, and has in general resulted in exact analytical expressions and
various approximations for the ‘expected number of species with a certain abundance’ in a
sample of J individuals from a dispersal-limited local community. Note that the expected
number of species with a certain abundance is the classical approach to study commonness
and rarity in community ecology and also a very useful tool in exploring the behavior of
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community models. However, it cannot be used to obtain accurate estimates of the model
parameters.
The backwards-in-time perspective takes a genealogical, coalescent-type approach where
community members are traced back to the ancestors that once immigrated into the com-
munity. This approach produces analytical expressions for the ‘joint multivariate proba-
bility of observing S species with abundances n1, n2,...,nS ’ in a sample of J individuals
from the local community. If we denote this collection by ~D, i.e. ~D = (n1, n2, ..., nS),
the joint multivariate probability is P ( ~D|θ,m, J) and can be used in maximum likelihood
estimation of model parameters from species-abundance data or other methods based on
the likelihood, but is less useful for studying the behavior of the model [23].
For the case m = 1, the species abundance distribution was found by Hubbell himself
following Ewens’s sampling formula [25][26] and is given by

P ( ~D|θ,m, J) =
J !∏S

i=1 ni
∏J
j=1 Φj !

θS

(θ)J
, (72)

where Φj is the observed number of species with abundance j and (θ)J is the Pochhammer
symbol defined as

(θ)J =

J∏
i=1

(θ + i− 1) =
Γ(θ + J)

Γ(θ)
(73)

The expected number of species in the metacommunity having exactly n individuals,
instead, was found to be [27]

E[SM (n)] =
θ

n

Γ(JM + 1)Γ(JM + θ − n)

Γ(JM + 1− n)Γ(JM + θ)
(74)

where θ = (JM − 1)ν/(1− ν) ≈ JMν is called fundamental biodiversity number. For large
metacommunities and n� JM one recovers the Fisher Log-Series distribution

E[SM (n)] ≈ θ

n

(
JM

JM + θ

)n
. (75)

The fundamental biodiversity number θ is thus asymptotically identical to Fisher’s α.
In particular, when θ is small, the expected RSA is Log-Series-like, while, as θ becomes
larger, it becomes more Log-Normal-like. At infinite diversity, in the limit θ → ∞, ev-
ery individual sampled represents a new and different species, regardless of how large a
sample is taken. At the other extreme, when θ = 0, the distribution collapses to a single
monodominant species throughout the metacommunity.
With dispersal limitation (m < 1), the joint multivariate probability distribution is derived
in [28] based on the Hypergeometric distribution, and turned out to be

P ( ~D|θ,m, J) =
J !∏S

i=1 ni
∏J
j=1 Φj !

θS

(I)J

J∑
A=S

K( ~D,A)
IA

(θ)A
, (76)

where I = (J − 1)m/(1 −m) and K( ~D,A) are coefficients fully determined by the data.
The expected number of species, instead was derived in [27] and is given by

E[S(n)] =
θ

(I)J

(
J

n

)∫ 1

0
(Ix)n[I(1− x)]J−n

(1− x)θ−1

x
dx. (77)
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0.7.5 Volkov’s Negative Binomial

In 2007, Volkov, Hubbell and others [24] derived a much simpler analytical stationary so-
lution for the birth-death process with density dependence (demographic noise), following
a master equation approach. In agreement with Hubbell’s neutrality assumption, they
considered all species as equivalent, meaning that they all have the same dynamic rates.
Moreover, inter-species interaction is neglected and the community is supposed to have
reached its steady state.
From a deterministic prospective, the number of individuals n of a given species evolves
according to the differential equation

dn

dt
= bn · n− dn · n+ S, (78)

where bn and dn denote the per-capita density-independent birth and death rates, with
b−1 = 0 and d0 = 0, while the presence of the constant influx S produces a density
dependence effect. S can arise due to effective rates of immigration, emigration, speciation
or extinction in a local community, so as due to intraspecific interactions, and, being
independent from the species abundance n, it increases all species of the same amount,
causing a rare species advantage. Because of the neutral assumption of species equivalence,
the per-capita model rates are the same for all the species and Eq. 78 describes the whole
ecosystem. Introducing stochasticity, the deterministic process 78 can be rewritten in
terms of the probability of having n individuals in a species using the master equation
(see Sec. 0.2)

∂Pn(t)

∂t
= Pn−1(t)bn−1 + Pn+1(t)dn+1 − Pn(bn + dn), (79)

where S has been included in the birth term, setting bn = b · (n+ Υ), and Υ = S/b, while
the death rate is simply dn = d · n.
The stationary solution is obtained with the linear expansion method (see Sec. 0.2.1),
exploiting the birth-death process detailed balance condition:

Pn = P0

n−1∏
i=0

bi
di+1

= P0

n−1∏
i=0

b · (Sb + i)

d · (i+ 1)
. (80)

Considering n > 0 and deducing P0 from the normalization condition
∑

n≥0 Pn = 1,
Volkov et al. obtained the stationary solution, that turns out to be a Negative Binomial
distribution

Pn = PRSA =
(1− b

d)S/b

Γ(S/b)

( bd)n

n!
Γ(n+

S

b
). (81)

The average number of species with n individuals, given the total number of species N, is

φn = N · Pn. (82)

Since the zero abundance class can not be observed, the mean number of observed species
actually is

Nobs = N − φ0 = N −N · (1− b/d)S/b, (83)

and the average number of species in the community, that is the RSA normalization factor,
is give by

N =
Nobs

1− (1− b/d)S/b
. (84)

Under these assumptions, the RSA distribution turns out to be the (truncated) Negative
Binomial

PRSA(n) =
Nobs

1− (1− b/d)S/b
(1− b/d)S/b

Γ(S/b)

(b/d)n

n!
Γ(n+ S/b). (85)
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Moreover, when the influx parameter Υ = S/b is very small, we have PRSA ∼ θ (b/d)n

n and
the RSA resembles Fisher’s Log-Series distribution with biodiversity number

θ =
Nobs(1− b/d)S/b

[1− (1− b/d)S/b]Γ(S/b)
=

Nobs

[(1− b/d)−S/b − 1]Γ(S/b)
. (86)

On the other hand, for larger Υ, the RSA distribution exhibits a clear interior mode
at abundance n > 1 and becomes Log-Normal-like, with the rare species constituting
a smaller fraction of all the species. In this way, the Negative Binomial distribution is
able to satisfactorily describe many of the situations commonly observed and discussed in
ecology, resembling both a Log-Series and a Log-Normal RSA [5]. We will see in Part I
that the birth death model with a density dependent influx is appropriate to describe
the Gut Microbiota ecosystem, even if, in this case, we will have to relax the neutrality
assumption and to consider two niches, in which the equivalence of species holds, that
are characterized by different dynamic rates. However, for other ecosystems, the RSA
still turns out to be better described by a Log-Normal distribution as originally observed
by Preston. We will see in Part II that this is the case of protein domains. A dynamic
model that results in a Log-Normal was proposed in 1996 by Engen and Lande [29]. The
main differences with Volkov’s models are the assumption of Gompertzian death and the
introduction of a constant environmental variances that acts independently on each species
and adds up to the demographic noise. In the next section we detail the derivation of the
Log-Normal distribution based on these hypothesis.

0.7.6 Engen and Lande’s Poisson Log-Normal

Engen and Lande [29] supposed that species were generated by an inhomogeneous Poisson
process, with rate w(t) and that they evolve independently.
Let f(x; t) be the distribution of the abundance X(t) of a certain species that entered the
community before the present time t0 = 0. Moreover, let p(t) be the probability that such
species has not gone extinct before the present time. Then, as reported in the following,
Engen and Lande proved that the abundances of species that are in the community at the
present time are generated by an inhomogeneous Poisson process with rate

λ(x) =

∫ ∞
0

w(−t)p(t)f(x; t)dt. (87)

Proof. Let Ω1, Ω2 ∈ R+ be non-overlapping intervals. Let Y1(t) and Y2(t) be the
contributions to the species number with abundances in Ω1 and Ω2 respectively, from
species entering the community in the time interval (t, t+ δt), t < t0. Since we supposed
that species enter the community following a Poisson process, the properties iv to vi
reported in Sec. 0.1.3 suggest that:

• the probability that no species enters the community in the time interval δt, so that
Y1(t) = Y2(t) = 0, is 1− w(t)δt+ o(δt);

• the probability that one species enters the community, i.e. Y1(t) = 1 and Y2(t) = 0
or Y1(t) = 0 and Y2(t) = 1, is w(t)δt+ o(δt);

• the probability that two species enter the community, i.e. Y1(t) = Y2(t) = 1, is
negligible.

Moreover, the probability of having a species in Y1(t) will be given by the probability
of having a new species entering the community through the Poisson process, that such
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species does not go extinct and that its abundance distribution is in Ω1. Thus,

P (Y1(t) = 1, Y2(t) = 0) = w(t)p(t0 − t)δt
∫

Ω1

f(x; t0 − t)dx+ o(δt)

P (Y1(t) = 0, Y2(t) = 1) = w(t)p(t0 − t)δt
∫

Ω2

f(x; t0 − t)dx+ o(δt)

P (Y1(t) = 0, Y2(t) = 0) = 1− w(t)p(t0 − t)δt
∫

Ω1∪Ω2

f(x; t0 − t)dx+ o(δt) (88)

(89)

Here, the (t0− t) argument in p and f indicates that we are considering species that enter
the community at a time preceding the current time t0. Let us set Ij =

∫
Ωj
f(x; t0− t)dx.

Then, the joint moment generating function Gy(k) =
∫
eikyPy(y)dy for Y1(t) and Y2(t)

takes the form

E[euY1(t)+vY2(t)] = 1+(eu−1)w(t)p(t0−t)I1(t)δt+(ev−1)w(t)p(t0−t)I2(t)δt+o(δt) (90)

Taking the logarithm and considering the approximation log(1 + x) ≈ x for small x, we
find the corresponding cumulant generating function

Kt(u, v) = [(eu − 1)I1(t) + (ev − 1)I2(t)]p(t0 − t)w(t)δt+ o(δt) (91)

The total cumulant generating function for the species number in Ω1 and Ω2 can be found
by splitting the time interval (−∞, t0) up to intervals of length δt and adding all the
contributions of Kt(u, v) for these intervals, that are given by Eq. 91.

K(u, v) =

+∞∑
−∞

[(eu − 1)I1(t) + (ev − 1)I2(t)]p(t0 − t)w(t)δt. (92)

In the limit δt→ 0, the sum converges to the integral

K(u, v) = (eu − 1)φ1 + (ev − 1)φ2 (93)

where

φj =

∫ t0

−∞
Ij(t)w(t)p(t0 − t)dt (94)

for j = 1, 2. This is the cumulant generating function of a Poisson distribution, for which
in general K(h) =

∑
j µj(e

h − 1) =
∑

j λ(xj)xj(e
h − 1). If we choose Ω1 = [x0, x], we find

that

φ1(x) =

∫ t0

−∞

∫ x

x0

f(y; t0 − t)w(t)p(t0 − t)dydt (95)

If f(x; t) is continuous, changing the order of integration and taking the derivative with
respect to x, we find that the abundances follow an inhomogeneous Poisson process with
rate

λ(x) =
dφ1

dx
=

∫ t0

−∞
w(t)f(x; t0 − t)p(t0 − t)dt (96)

that we can rewrite as

λ(x) =

∫ ∞
t0

w(t0 − t)p(t)f(x; t)dt. (97)
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Diffusion approximation In order to determine the abundance model λ(x), the species
abundances are described as a stochastic process {X(t)} that follows the dynamic equation

dx

dt
= rx− xg(x) (98)

where r = r + σr(x)dB(t)/dt is the growth rate, with dB(t)/dt being a white noise with
mean 0 and variance 1, and g(x) is the death rate that will be defined in the following
together with σr(x).
Let us introduce the transformation y = ln(x), that also implies dy = dx/x. The corre-
sponding stochastic differential equation for y is

dy

dt
= [r − g(ey)] + σr(e

y)
dB(t)

dt
. (99)

As pointed out before, we suppose that the variance σ2
r (e

y) has two components, that are
the environmental and the demographic noise (see also the Introduction). Environmental
stochasticity is due to changing environments that act simultaneously on all individuals
in the population and it is assumed to be a constant σ2

e . The demographic component, on
the other hand, reflects the differences in fertility and survival among individuals. This
effect acts on each individual independently. Consequently it is inversely proportional to
the species number, and it is assumed to be σ2

de
−y. Hence, the total variance is given by

σ2
r (y) = σ2

e + σ2
de
−y.

Applying the Ito approach (see Sec. 0.4.1, Eq. 59) to the process {Y (t)} we obtain the
corresponding Fokker-Planck equation

∂P (y)

∂t
= − ∂

∂y
[r − g(ey)]P (y) +

1

2

∂2

∂y2
σ2
r (y)P (y). (100)

By introducing the Fokker-Planck equation, we are approximating the process for each
species to a diffusion process. More precisely, {Y (t)} is a diffusion process with infinites-
imal mean µ(y) = r − g(ey) and infinitesimal variance σ2

r (y) = σ2
e + σ2

de
−y and is indeed

defined over a continuous state space. We can now transform back to x through the
transformation x = ey. Following the rules for the transformation of the infinitesimal
parameters of a diffusion process given by Eq. 24 in Sec. 0.3.1, we obtain

µ(x) =

[
r +

1

2

σ2
d

x
+

1

2
σ2
e

]
x− xg(x)

σ2(x) = σ2
dx+ σ2

ex
2 (101)

The Fokker-Planck equation for the diffusion process {X(t)} is then

∂P (x)

∂t
= − ∂

∂x
µ(x)P (x) +

1

2

∂2

∂x2
σ2(x)P (x). (102)

Note that, without the log-transformation passage, we would have obtained a different
Fokker-Planck equation. In particular, we would not have the noise terms in µ(x).
In order to find the stationary solution, we set ∂P (x)/∂t = 0 and expand the second order
derivative so that to obtain

1

2
σ2(x)

∂2P (x)

∂x2
− µ(x)

∂P (x)

∂x
− ∂µ(x)

∂x
P (x) = 0. (103)

Now, let us suppose {X(t)} to be a diffusion process with absorbing barriers a and b,
a < b. In our contest, the left-hand barrier a represents extinction, while the right-hand

27



barrier b would be an upper limit to the species abundance that we will move towards
infinity.
Eq. 103 is a second order differential equation of the form

Ly ≡ p(x)
d2y(x)

dx2
+ q(x)

dy(x)

dx
+ r(x)y(x) = f(x) (104)

with f(x) = 0 and boundary conditions at x = a and x = b

y(a) = y(b) = 0. (105)

If the homogeneous equation Ly = 0 admits no nonzero solution fulfilling the boundary
conditions, then Eq. 104 can be inverted in the form of an integral operator

y(x) =

∫ b

a
G(x, ξ)f(ξ)dξ (106)

where G(x, ξ) is commonly referred to as Green function of the boundary value problem.
The Green function has the property that, for each ξ ∈ (a, b), the function G(x, ξ) solves
the equation Ly = 0 and also satisfies the boundary conditions, so that the solution of our
problem (Eq. 103) will be given by G(x, ξ). In order to obtain the Green function, let us
consider two solutions of Ly = 0, y1(x) and y2(x), such that y1 satisfies the left boundary
condition y1(a) = 0 and y2 instead satisfies the right-hand one, y2(b) = 0. Since we
supposed that there exists no nonzero solution that satisfies both boundary conditions, we
know that y1 and y2 are linearly independent. Consequently, the Wronskian determinant
W (y1, y2) = y1y

′
2 − y′1y2 will be nonzero. We know from the differential equation theory,

that the Green function for such problem is

G(x, ξ) =

{
y1(ξ)y2(x)
p(ξ)W (ξ) , for a ≤ ξ ≤ x ≤ b
y1(x)y2(ξ)
p(ξ)W (ξ) , for a ≤ x ≤ ξ ≤ b

(107)

and is a solution of the homogeneous problem.
We expect a function of the form

S(x) =

∫
x
s(η)dη =

∫
x
e−

∫
η[2µ(u)/σ2(u)]dudη (108)

to satisfy the differential equation 103. We thus take the two solutions

y1 =
S(x)− S(a)

S(b)− S(a)

y2 =
S(b)− S(x)

S(b)− S(a)
(109)

so that y1(a) = 0 but y1(b) 6= 0 and y2(a) 6= 0 but y2(b) = 0. The Wronskian determinant
is given by

W (y1, y2) =
s(x)

S(b)− S(a)
(110)

and the Green function turns out to be

G(x, ξ) =

{
S(ξ)−S(a)
S(b)−S(a)

S(b)−S(x)
p(ξ)W (ξ) , for a ≤ ξ ≤ x ≤ b

S(x)−S(a)
S(b)−S(a)

S(b)−S(ξ)
p(ξ)W (ξ) , for a ≤ x ≤ ξ ≤ b,

(111)

as proven in [6]. Note that G(x, ξ) = G(ξ, x). Moreover, since we defined λ(x) for x ∈
Ω1 = [x0, x] (see Eq. 95), we are in the case a ≤ ξ = x0 ≤ x ≤ b, and the solution of our
problem is given by

G(x0, x) =
S(x0)− S(a)

S(b)− S(a)

S(b)− S(x)

s(x)p(x)
, for a ≤ x0 ≤ x ≤ b. (112)
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We let now b → ∞, so that to avoid an upper limit to the species abundances. Since
our model has the density regulation term −xg(x), it follows that, for x = b → ∞,

− µ(x)
σ2(x)

∼ +g(x)
x , and since S(x = b) is the integral of an increasing exponential, also

S(x = b)→∞. So, we can approximate S(b)− S(x) ∼ S(b)− S(a) ∼ S(b) and write

G(x0, x) =
S(x0)− S(a)

s(x)p(x)
, for a ≤ x0 ≤ x ≤ b. (113)

Let us define extinction to occur at x = a = 1. Then, if we choose the starting point
x0 = x(t0) = 1, we obtain G(1, x) = 0, which means that species immediately go extinct
with probability 1. This is a special property of the diffusion process that is not realistic
for processes with discrete states x = 1, 2, .... However, we can still use the diffusion
approximation for all x ≥ 1 if we redefine speciation in the following way. Suppose, that
speciation occurs when the abundance reaches the value x = 1 + δx. The Green function
for x0 = 1 + δx and a = 1 is

G(1 + δx, x) =
S(1 + δx)− S(1)

s(x)p(x)
(114)

Then, as δx → 0, S(1 + δx) = S(1) + δxS′(1) + o(δx), with S′(1) = s(1) by definition.
Hence, the Green function tends to

G(1 + δx, x) =
δx · s(1)

s(x)p(x)
+ o(δx) (115)

and substituting s(x) = e−
∫ x
−∞[2µ(u)/σ2(u)]du and p(x) = 1

2σ
2(x), we obtain

G(1 + δx, x) =
2δx

σ2(x)
e
∫ x
1 [2µ(u)/σ2(u)]du (116)

If we let the speciation rate µ0 = w0/δx → ∞ and δx → 0 so that µ0δx → w0 > 0, the
abundance model becomes

λ(x) = 2
w0

σ2(x)
e
∫ x
1 [2µ(u)/σ2(u)]du. (117)

Note that the speciation parameter w0 = µ0δx equals the speciation rate µ0 when δx = 1.
Hence, we can interpret w0 as the rate at which species reach an abundance equal to 2.
Finally, we substitute the definitions for the infinitesimal mean and variance (Eq. 101), and
we assume that the density regulation is given by the Gompertzian model g(x) = γln(x+ε)
(see Sec. 9.4 for details), where ε = σ2

e/σ
2
d. The solution of the integral is

2

∫ x

1

µ(u)

σ2(u)
du =

[
−
(
ln(x+ ε)− r

γ

)2

+

(
ln(1 + ε)− r

γ

)2
]
γ

σ2
e

+ ln(x) (118)

and the abundance model takes the form

λ(x) =
αw0

x+ ε
e
− 1

2
[ln(x+ε)−r/γ]2

σ2e/2γ (119)

where

α =
2

σ2
e

e
γ

σ2e

[
ln(1+ε)− r

γ

]2
. (120)

The abundance model, in conclusion, has a lognormal distribution translated by −ε, with
mean r/γ and variance σ2

e/2γ. Note that x = ε represents a very small abundance, and
for x � ε the translation may be ignored. The abundance model derived by Engen and
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Lande is hence mathematically equivalent to the familiar sequential broken stick model
proposed by Sugihara [20] that we described in Sec. 0.7.1. Note that, if we neglect the
translation term ε, the demographic noise σ2

d has no effect on the shape of the abundance
curve but only affects the constant α.
The model by Engen and Lande can be seen as the generalization of the broken stick
approach to the lognormal species abundance distribution with the advantage of resulting
in a stationary distribution. The abundances at each time position are the points of an
inhomogeneous Poisson process, where the rate λ(x) completely characterizes all properties
of the community structure and follows a Log-Normal distribution.

Heterogeneity case Engen and Lande proved that their formulation also includes the
case of heterogeneity, in which we consider that different species may be generated by
different stochastic processes [29]. In particular, we can suppose that the process for
one species entering the community at time t belongs to some family of processes with
parameter θ sampled from some distribution π(θ). θ is interpreted as the mean growth
rate r among species and, considering a normally distributed r, we obtain an expression
for λ(x) that is equivalent to Eq.119.

Interspecific density regulation and correlated environmental noise A further
extension of the model may be achieved introducing competition between species and
correlated environmental noise. In particular, as detailed in [29], if we add an inter-
specific density regulating term, that is a death term acting equally on all individuals, and
an environmental variance component also common to all species, the form of the diffusion
process describing the population does not change.
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Chapter 1

Introduction

The human gut is home to a diverse and complex community of trillions of microorganisms,
that play a central role in human health, including metabolism, physiology, nutrition and
immune function [30]. The collective genome of these symbiotic microorganisms (called
microbiome) is tightly integrated with the human genome, making humans ‘superorgan-
isms’ [31], whose health state is defined by the interaction between the microbiota and
the host living environment [32][33]. Disruption of the gut microbiome, termed dysbiosis,
has been observed in several pathological conditions and disorders [32][34], ranging from
metabolic diseases (e.g. metabolic syndrome, obesity, type 2 diabetes [35][36][37][38]) to
immune diseases (e.g. Crohn’s Disease, Ulcerative Colitis, type 1 diabetes mellitus [39],
multiple sclerosis [40], celiac disease and allergies [41]), but also in colorectal cancer [42],
rheumatoid arthritis [43], Irritable Bowel Syndrom [44], recurrent Clostridium difficile
colitis [45], and many others. Dysbiosis is frequently accompanied by significant loss of
microbial diversity or key functional groups, in conjunction with overgrowth of pathogenic
bacteria or fungi. This sort of changes in the gut microbiota composition are usually linked
with an increased energy harvest from ingested food [35] and an inflammatory response by
the host, which contributes to disease development. The result is the set up of a ‘vicious
circle’ in which the gut microbiota is further disrupted, beneficial bacteria are reduced
and opportunistic colonizers, typically pathogens, are permitted to compete, supporting
a persistent inflammatory state of the gut [46][32][47]. Several authors have questioned
this chicken-egg problem and some speculate that there is a causal effect of the reduction
in microbiota diversity on human disease [34]. Loss of microbiota diversity appears, in
fact, as the most constant finding of intestinal dysbiosis and related conditions [34]. For
example, obesity is associated with altered representations of specific bacterial species,
which often differ between studies, but loss of diversity is constantly retrieved with up to
20% loss of phylogenetic diversity [48][49][50]. The gut microbiota composition is influ-
enced by a range of factors including the microbial species acquired at birth, host genetics,
immunological factors and lifestyle. Loss of microbiota diversity is a feature of industri-
alized countries [34] and many of its candidate risk factors can be recognized in some
life style typical of these societies, such as certainly eating behavior [51], lack of physical
exercise [52], the disruption of biological clock [53], antibiotic consumption [54] and also
aging [55], in addition to the general health state. In the work by Claesson et al. [55] is
shown that the healthy food diversity index (HFD) positively correlates with microbiota
diversity, indicating that a healthy, diverse diet promotes a more diverse gut microbiota.
Moreover, differences in the microbiota composition and diversity were also found between
older people (> 65 years) and younger adults. Changing the amount of ingested fiber and
fat has a profound influence on the composition of the gut microbiota and its metabolic
products both over a short period and in the longer-term [54]. Phyla positively associated
with fat but negatively associated with fiber are predominantly Bacteroidetes and Acti-
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nobacteria, whereas Firmicutes and Proteobacteria show the opposite association [51] [56].
Dietary composition, modification and interventions can have a great impact on the gut
microbiota diversity. Bacteria, in fact, are specialized in the fermentation of different sub-
strates, so that complex diets provide a range of growth-promoting and growth-inhibiting
factors for specific phylotypes [57]. In particular, food components which are indigestible
for human enzymes (e.g. fiber) provide substrates for the intestinal microbial community
and this is why agrarian diets high in fruit/legume fiber are associated with enhanced gut
microbial diversity [58].
Given the importance of diversity in the development and maintenance of the gut micro-
bial community and of the host health state, we focus here on modeling the population
dynamics that may lead to a certain composition and diversity of the Gut Microbiota,
considering an ecological description. In order to fulfill such purpose, we base our analysis
on 16S rRNA sequecing data. As it turned out during the 1990s, in fact, the majority
(about 80%) of microbes observed by microscopy or sequencing of fecal specimens are not
recoverable by culture [59][33]. To overcome this limitation, Metagenomics collects and
analyses the genetic material present in an environmental sample. When studying GM, the
usually sampled gene is the 16S rRNA gene (or some of its regions), that is a component
of the 30S small subunit of prokaryotic ribosomes. This is a highly conserved sequence,
meaning that phylogenetically similar bacteria, that are closed from an evolutionary point
of view, have very similar 16S rRNA, while bacteria belonging, for instance, to distinct
phyla will have more different 16S rRNA. As a consequence, clustering 16S rRNA se-
quences according to their similarity through some de novo method, enables to identify
bacterial species independently of human made taxonomic classifications, besides without
relying on culturing techniques or needing to know in advance which microorganism to
look for, as required for example by microarrays. Clusters of 16S rRNA sequences are
called Operational Taxonomic Unites (OTUs) and constitute a new definition of species,
that is much more accurate if we aim to obtain ecological information about the Gut
Microbiota and its biodiversity.
We remind that one way to evaluate the internal diversity of an ecosystem is to compute
the so called Relative Species Abundance distribution (RSA), which counts the number of
species that have a certain number of individuals (see Sec. 0.5.2). Thus, computing OTUs
and deriving their abundances we will be able to estimate the Gut Microbiota biodiversity
by computing its RSA and we will also manage to test hypothesis over its the ecological
dynamics, as we will see.
In a previous work we have shown that a proper model to describe the Gut Microbiota
population in two cattle rumens, two swines and one chicken was the one proposed by
Volkov [24] (see Sec. 0.7.5). Moreover, we proved that animals belonging to different species
were characterized by different diversity parameters θ [60]. Here, we aim to model the GM
population of human individuals starting from 16S rRNA sequencing. As described in the
following, the analysis requires a first bioinformatic processing of the data that enables to
compute the RSA distribution. Then, we will show that a redefinition of the RSA model
is required to better describe the Gut Microbiota population. Finally, we will characterize
the GM biodiversity of subjects with different health state, age and eating behavior using
the new model biodiversity index.
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Material and Methods

2.1 The ELDERMET and ELDERMETpart datasets

We analyzed data from Claesson et al. [55], whose fasta files are available on MG-RAST
under the Project ID 154, and the ELDERMET data [61], whose fastx files are available
on the Sequence Read Archive under BioProject PRJNA283106. Here we will refer to
the first dataset as ELDERMETpart because it can be considered as a subset of the
ELDERMET dataset, as clarified in the following. In both datasets, DNA was extracted
from faecal samples, and sequence reads from 16S rRNA gene V4 amplicons were generated
with 454 Genome Sequencer FLX Titanium platform. The ELDERMETpart dataset
includes 164 elderly subjects, non-antibiotic-treated, stratified by community residence
setting: (1) community-dwelling, n = 81; (2) attending an out-patient day hospital, n =
20; (3) in short- term (<6 weeks) rehabilitation hospital care, n = 12; (4) in long-term
residential care (long-stay), n = 51. For each subject we also have dietary information. In
particular habitual dietary intake had been assessed using a validated, semiquantitative,
food frequency questionnaire (FFQ), and four dietary groups (DGs) had been identified
by authors: DG1 (‘low fat/high fibre’) and DG2 (‘moderate fat/high fibre’) included
98% of the community and day hospital subjects, and DG3 (‘moderate fat/low fibre’)
and DG4 (‘high fat/low fibre’) included 83% of the long-stay subjects. Other clinical
parameters included in the dataset are: gender, CCI, FIM, Barthel, MMSE, Weight,
BMI, CC, Diastolic BP, Systolic BP, GDT, MNA, CRP, IL-6, IL-8 and TNFα.
In particualar, the FIM [62], Barthel [63] and MMSE [64] indices are related to the physical
and cognitive state of the elderly person. The FIM score ranges from 18 (dependent) to 126
(fully independent) in the six sections of self-care, sphincter control, mobility, locomotion,
communication and social cognition. The Barthel index, instead, ranges from 0 (sever
dependence) to 20 (total independence) and is based on ten variables describing activities
of daily living and mobility. Finally, the MMSE score measure cognitive impairment
and takes values from 0 to 30, where a value greater than 24 usually indicates normal
cognition, while a value less than 9 suggests sever cognitive impairment. We found out
that in the considered datasets, these three indices were highly correlated among them and
also with the residence setting and the dietary group, so that people with lower physical
and cognitive abilities were also those in rehabilitation or long-term hospital care and
composed most of the DG3 and DG4 dietary groups, that are those richer in fatty acids
and poorer in fibers. For this reason, as shown in Sec. 3.2, we summarized the clinical
information dividing the subjects in two groups that we will call healthy and unhealthy.
The mean subject age is 78 (±8 s.d.) years, with a range of 64 to 102 years, and all are
of Caucasian (Irish) ethnicity. The study also includes 13 young adults with a mean age
of 36 (66 s.d.) years.
From the ELDERMET dataset we selected the 13 young samples, plus those subjects for
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which we had at least 3 samples. These usually refer to 3 time points, that we call T0,
T1 that is around 3 months after T0 and T2 that is around 3 months after T1. When
more than one sample was present for the same subject at the same time point, results
were averaged. The 13 young subjects are the same as those in the ELDERMETpart
dataset and are present only at time T0. In total, the ELDERMET dataset includes 97
subjects at time T0, 69 at time T1 and 77 at time T2. All the 97 subjects of time T0,
that include the 13 young controls, were also part of the ELDERMETpart dataset, that
instead did not include times T1 and T2. This is the reason for which we labeled the
first dataset as ELDERMETpart. Clinical variables for the ELDERMET dataset include:
antibiotics, Age, BMI, Gender, Stratum, MNA, FIM, MMSE, Barthel, IL6, IL8, IL10 and
TNFa. Among these, the only clinical parameter available for the young group was Age
in both datasets. Starting from 16S rRNA sequences we computed de novo OTUs, so
that to assess the phylogenetic relationships between species irrespectively of taxonomic
classification.

2.2 Preprocessing

Raw sequencing reads were filtered according to the following criteria. ELDERMET data
were preprocessed starting from fastq files with FASTX Toolkit v.0.0.13 [65]. Sequences
were trimmed to be no longer than 350 base pairs (bp) and were discarded when shorter
than 150 bp. Sequences with ambiguous bases (Ns) were also discarded and quality filtering
was performed so that all sequences had a Phred-33 quality score [66] greater than 25 in at
least 50% of their bases. Fastq files were not available for ELDERMETpart data. For this
reason, preprocessing was performed starting with fasta files. Sequences were filtered with
mothur v.1.31.2 [67] according to the following requirements: (1) no ambiguous bases (Ns);
(2) read-lengths not shorter than 150 bp or longer than 350 bp; (3) homopolymers not
longer than 8 bp. Trimmed sequences were clustered into OTUs following the UPARSE
pipeline [68]. We will discuss the importance of de novo clustering of 16S rRNA sequences
into OTUs in Part II. As we will see, many clustering procedures have been proposed for
this purpose, but here we chose to use UPARSE, that is one of the more standard and
advisable ones [68].

2.3 Clustering 16S rRNA into OTUs

After pooling samples and a first dereplication step, sequences were sorted by decreasing
abundance and singletons were discarded. Then, the clustering algorithm was applied.
UPARSE uses a greedy algorithm to find a biologically relevant set of OTUs in which
all pairs of OTU representative sequences (cluster centroids) should have pair-wise se-
quence similarity less than a specified threshold (e.g. 97%), chimeric sequences should
be discarded and all non-chimeric input sequences should match at least one OTU repre-
sentative sequence with similarity higher or equal to the threshold. Such set of OTUs is
found with the following strategy. First, sequences are ordered so that to have the more
reliable reads at the top of the input file, since these will be more likely to be chosen as
cluster centroids, as explained in the following. By default, since high-abundance reads
are more likely to be correct amplicon sequences, and hence are more likely to be true bi-
ological sequences, UPARSE considers input sequences in order of decreasing abundance.
The first input sequence will be the first sequence in the OTU database D. Then, each
other input sequence is compared to the sequences in D, that are the OTU representative
sequences (centroids), and a maximum parsimony model of the sequence is found using
UPARSE-REF. The method tries to explain a given sequence S with the fewest possible
events starting from sequences in D, where ‘events’ are mutations arisen from PCR or
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sequencing errors. This is done by constructing a model sequence M using one or more
sequences from the database (refseqs). Typically, M is a single refseq representing a non-
chimeric amplicon. Otherwise, M is made from m refseq segments that are concatenated
to represent a chimeric amplicon. If M has one segment, i.e. is a single refseq, then the
distance between M and S is defined to be the number of mismatches, which are inter-
preted as sequencer or PCR errors. This is obtained giving a score 0 for each match and
−1 for each mismatch. In case of chimeric model, a score −3 is added for each chimeric
breakpoint. There are three cases: (a) the similarity between the UPARSE-REF model
and an existing OTU is more or equal to the threshold, (b) the model is chimeric, or (c)
the model is less similar than the threshold to any existing OTU. In case (a), the input
sequence becomes a member of the OTU. In case (b), the input sequence is discarded.
In case (c), the input sequence is added to the database and becomes the representative
sequence (centroid) of a new OTU.
UPARSE requires to chose a similarity threshold, that defines the phylogenetic resolution
at which we observed the GM ecosystem. In UPARSE it is not recommended to use
similarity thresholds lower than 97%, since this would imply an increase of false negative
chimeras during the chimera detection step. However, clustering 16S rRNA sequences
into OTUs at lower similarities interestingly gives an insight in the bacteria phylogeny at
different scales. For this reason, we used the following procedure to obtain OTUs at 93%
and 95%, besides 97%, similarity thresholds [69]. We define the final required OTUs radius
r (similarity threshold = (1 − r) · 100%), and we first compute OTUs using UPARSE at
radius r/2. Then, we run UCLUST [70] to re-cluster the obtained representative sequences,
together with their whole cluster, at radius r.
UCLUST starts with an empty database in memory and then reads the sequences in in-
put order, as UPARSE. The algorithm takes the first sequence as first OTU representative
sequence, and process all other sequences according to the following statement: if a se-
quence is similar to an OTU representative sequence within the similarity threshold, then
the query is assigned to its OTU; if a sequence is instead not similar to any OTU repre-
sentative sequence, then it will become the representative sequence for a new cluster. In
this way, running UPARSE with a radius r/2 and UCLUST with a radius r, we generate
clusters in which all member sequences have a distance ≤ r to their cluster centroid.

2.4 Modeling the Gut Microbiota RSA

Once OTUs are obtained, the empirical RSA distribution is computed counting how many
OTUs have a certain number of individuals and can be used to verify theoretical hypothe-
sis. For instance, according to the neutral theory proposed by Volkov in [24], RSA should
exhibit a Negative Binomial shape (see Sec.0.7.5). As detailed in Chapter 3, our results
actually show that GM RSA has a heavy tail that could not been explain by a pure neutral
model, especially when clustering sequences into OTUs at 97% of similarity, that is when
we consider a low phylogenetic level. A similar deviation from neutrality has already been
observed in animals Gut Microbiota [60] and for the coral-reef ecosystem [71]. For this
reason, we propose to relax the neutral hypothesis of Volkov’s model and to consider two
niches within which neutrality holds.
The logistic model with interaction is given by

ẋi = xi

αi − 2∑
j=1

γ∗ijxj

 , i = 1, 2 (2.1)

where αi = b∗i−d∗i represents the net growth rate of the population, whereas the symmetric
positive defined matrix γ∗ij introduces the effect of limit resources and competition in the
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environment. We study the behavior of the system near the stable equilibrium point
through linearization of the equations 2.1. First, we compute the equilibrium point by
setting ẋi = 0, so that

αixi =

2∑
j=1

γ∗ijxjxi. (2.2)

Assuming

α1γ
∗
22 − α2γ

∗
12 > 0

α2γ
∗
11 − α1γ

∗
21 > 0 (2.3)

the only stable equilibrium point is

ẋi
eq =

2∑
j=1

γ∗−1
ij αj =

2∑
j=1

γ∗−1
ij b
∗
j −

2∑
j=1

γ∗−1
ij d

∗
j ≡ bi − di (2.4)

and from Eq. 2.3 it follows that (xeq1 , x
eq
2 ) belongs to the first quadrant and measures the

abundance of the two populations. Linearizing the system 2.1 around the equilibrium
point, we get

ẋi = xeqi

αi − 2∑
j=1

γ∗ijxj

 , i = 1, 2 (2.5)

and calling the constant xeqi αi ≡ Si and setting xeqi γ
∗
ij ≡ γij , we have the deterministic

equations

ẋi = Si −
2∑
j=1

γijxj ; i = 1, 2. (2.6)

Here, xi is the number of individuals belonging to a specific species of niche i (i = 1, 2),
Si refers to density dependent effects, and

γ =

[
(d1 − b1) γ12

γ21 (d2 − b2)

]
where bi and di are the birth and death rates in niche i, while γ12 and γ12 are the interaction
terms. The two populations, x1 and x2, belonging to the two niches, are characterized
by two ranges of the birth (b1, b2), death (d1, d2) and density dependent (S1, S2) rates.
However, because of the species equivalence assumption within each niche, equation 2.6
holds for every species in i-th niche. Moreover, in the simplest scenario in which, beyond
inter-species interaction, also inter-population interaction is neglected, γ12 = γ21 = 0 and
the time evolution of the probability that a species contains n individuals at time t, P (n, t)
is regulated by the master equation

Ṗ (n1, n2, t) =

2∑
i=1

(E+
i − 1)

[
dini − E−i bini

]
P (ni, t) (2.7)

where E is the ‘step operator’ that is defined for any function f(n) that depends on
an integer variable n as E+[f(n)] = f(n + 1) and E−[f(n)] = f(n − 1). Since the two
populations are supposed to be uncoupled, the stationary solution for the total population
is given by the product of the two stationary solutions P (n1, n2) =

∏2
i=1 P (ni), where

P (ni) satisfies the detailed balance condition

E+
i P (ni) =

bini + Si

E+
i dini

P (ni). (2.8)
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It follows that

P (n1, n2) =

n1−1∏
m1=0

b1m1 + S1

d1(m1 + 1)

n2−1∏
m2=0

b2m2 + S2

d2(m2 + 1)
P (0, 0) (2.9)

and factorizing P (n1 = 0, n2 = 0) = P (n1 = 0)P (n2 = 0), we obtain the join stationary
solution

P (n1, n2) = P (n1) · P (n2) (2.10)

=
(1− b1

d1
)
S1
b1

Γ(S1/b1)

( b1d1 )n1

n1!
Γ(n1 + S1/b1) ·

(1− b2
d2

)
S2
b2

Γ(S2/b2)

( b2d2 )n2

n2!
Γ(n2 + S2/b2), (2.11)

where P (n1 = 0)and P (n2 = 0) have been obtained normalizing the two probability
distributions to 1. The marginal distributions are

P (ni) =
(1− bi

di
)
Si
bi

Γ(Si/bi)

( bidi )
ni

ni!
Γ(ni + Si/bi), (2.12)

i = 1, 2. Equation 2.12 refers to the probability for a species belonging to population i
to have ni individuals. Following the handling of [24], the number of species observed in
population i with ni individuals is

φni =

Ni∑
k=1

Ini,k (2.13)

where Ni is the total number of species in niche i that may potentially be present in the
community and Ini,k is a random variable that takes value 1 with probability P (ni) and
0 with probability 1− P (ni). The average number of species containing ni individuals is
given by

φni =

Ni∑
k=1

Ini,k =

Ni∑
k=1

P (ni) = NiP (ni). (2.14)

However, since species with zero individuals cannot be revealed, the average number of
species observed in the population i is

Nobsi = Ni − φ0 = Ni −
Ni∑
k=1

(1− bi
di

)Si/bi , (2.15)

from which

Ni =
Nobsi

1− (1− bi
di

)Si/bi
. (2.16)

The RSA distribution for population i is given by

PRSA(ni) =
Nobsi

1− (1− bi/di)Si/bi
(1− bi/di)Si/bi

Γ(Si/bi)

( bidi )
ni

ni!
Γ(ni + Si/bi), (2.17)

where

θi =
Nobsi(1−

bi
di

)Si/bi

[1− (1− bi
di

)Si/bi ]Γ(Si/bi)
=

Nobsi

[(1− bi
di

)−Si/bi − 1]Γ(Si/bi)
. (2.18)

is the biodiversity number as previously outlined. Finally, assuming that the experimental
data are a sample of the initial populations x1,2, whose relative frequency is defined by
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the ratio of the equilibrium states xeq1 /x
eq
2 , the empirical numerousness distribution of the

different species reflects the distribution of the initial populations. The probability to
detect a specie of numerousness n is the sum of probability to find it in the population x1

or x2 separately
P (n) = P1P (x1 = n) + P2P (x2 = n)

where Pi is the probability to detect a specie of the populations xi (i = 1, 2) and, being
P (n) normalized, we can assume P1 = α and P2 = (1− α), α ∈ [0, 1] and, given the total
number of observed species Nobs, we will have Nobs1 = αNobs and Nobs2 = (1 − α)Nobs.
The total RSA distribution is described by a mixture of two Negative Binomials

PRSA(n) = Nobs

[
α · θ1

(b1/d1)n

n!
Γ(n+ S1/b1) + (1− α) · θ2

(b2/d2)n

n!
Γ(n+ S2/b2)

]
,

(2.19)
and each population is associated with a biodiversity number: θ1 and θ2.
We have seen here how the simplest relaxation for the neutrality hypothesis is obtained
considering a mixture of two Negative Binomials (2NB) rather than a single one (1NB). A
further step away from the neutral model would be, for instance, to consider a mixture of
three Negative Binomials (3NB), that would describe three non-interacting populations.
Increasing the number of Negative Binomials in the mixture, indeed, also increases the
number of parameters in the model and this may generate over-fitting issues. In order
to assess whether our hypothesized 2NB model was a better description for the Gut Mi-
crobiota RSA than 1NB and 3NB, we fitted the ELDERMET and ELDERMETpart data
with the Approximate Bayesian Computation (ABC) rejection algorithm detailed in the
following and weighted the goodness of fit with the number of parameters through the
Akaike Information Criterion (AIC), also detailed afterwards.

2.5 Fitting the Gut Microbiota RSA with ABC

When fitting the Gut Microbiota RSA data with common methods such as Maximum
Likelihood Estimation or the least squares, several problems arise. In fact, the data present
very heavy tails that, without any penalization, would dominate the fit. The method
would then weight the tail points more than the left-hand part of the curve, because
of their copiousness, and it would thus give good estimates for the abundant species and
much less accurate evaluations for the rarest ones. A solution may be to fit the logarithmic
transformed abundances. For this purpose, the Preston plot representation comes to aid.
However, fitting directly the Preston plot bins is a rough approximation and the fitting
methods usually become pretty sensitive to the initial values of parameters, besides having
difficulties in discriminating between distributions that are similar in shape, such as the
Negative Binomial and the Log-Normal, some common hypothesis for the RSA.
For these reasons, we chose to fit the model implementing the Approximate Bayesian
Computation (ABC) rejection algorithm, that has the further advantage of returning a
posterior distribution for each parameter, rather than simply its mean and error. In
ABC, a set of points for the model parameters is first sampled from their predefined prior
distributions. Then, a dataset G of the same dimension as the observed data O is simulated
from the theoretical model with the sampled parameters. If the generated dataset is too
different from the observed data, the sampled parameters values are discarded, otherwise
they are accepted. The process is iterated several times, in our case 107 times, and a
posterior distribution for the parameters is obtained from the accepted cases.
The two Negative Binomials of the RSA mixture, have been modeled through their mean
µ = (1−b/d)(S/b)

b/d and variance σ2 = (1−b/d)(S/b)
(b/d)2

. This choice was due to the fact that for

rare species, the Negative Binomial tends to a Poisson distribution, that is the success
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probability p = 1− b/d tends to 0 and the corresponding Negative Binomial shape param-
eter S/b tends to infinity. In this case, it is difficult to reach convergence in the parameters
posterior distributions and it is more feasible to deal with µ and σ2.

2.5.1 Prior distributions

In order to determine appropriate prior distributions for the model parameters, we fol-
lowed a two steps approach and exploit the fact that the RSA of the different samples are
supposed to have the same priors. In the first round, we defined very wide prior distribu-
tions so that to be sure that the true values of parameters would be included. Then we
ran ABC on all samples and kept few selected parameters: 2 values for each subject of the
ELDERMETpart database; 4 for the ELDERMET database. With all these parameters
we composed the posterior distributions of round 1. We fitted the posteriors with Gamma
(or Beta for the mixture parameters α and β) distributions via Markov Chain Monte Carlo
(MCMC) method from pymc python module. Then, we used the fitted distributions as
priors for the second round, we transformed them so that to satisfy the required condi-
tions and we re-ran the ABC fit. Finally, for each sample we considered all the accepted
parameters and obtained their posterior distributions.
The chosen priors for the first round were Inverse-Gamma distributions for µ and σ and the
Uniform distribution for the mixture parameters. In particular, as detailed in the results,
we compared the three models 1NB, 2NB and 3NB. For the single Negative Binomial
(1NB), with parameters µ and σ, we used the prior distributions:

• µ ∼ Inv-Gamma(1, 1),

• σ ∼ µ+ Inv-Gamma(1, 1),

The mixture of two Negative Binomials (2NB) has parameters µ1, σ1, µ2, σ2, plus the
mixture parameter α, and their priors were:

• µ1 ∼ Inv-Gamma(1.5, 1),

• σ1 ∼ µ1+ Inv-Gamma(1.5, 1),

• µ2 ∼ µ1+ Inv-Gamma(1.5, 1),

• σ2 ∼ µ2+ Inv-Gamma(1.5, 1),

• α ∼ Uniform(0, 1).

The mixture of three Negative Binomials (3NB) has parameters µ1, σ1, µ2, σ2, µ3, σ3 and
mixture parameters α and β and its prior distributions were:

• µ1 ∼ Inv-Gamma(1.5, 1),

• σ1 ∼ µ1+ Inv-Gamma(1.5, 1),

• µ2 ∼ µ1+ Inv-Gamma(1.5, 1),

• σ2 ∼ µ2+ Inv-Gamma(1.5, 1),

• µ3 ∼ µ1 + µ2+ Inv-Gamma(1.5, 1),

• σ3 ∼ µ3+ Inv-Gamma(1.5, 1),

• α ∼ Uniform(0, 1).

• β ∼ Uniform(0, 1− α).
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Note that, in the 2NB case (and analogously for 3NB), the definitions of σ1, µ2 and σ2

are chosen so that µi ≤ σ2
i (i = 1, 2), that is the success probabilities pi = 1 − bi/di are

less than 1. Moreover, µ2 ≥ µ1, meaning that the average number of observed individuals
is grater in NB2(µ2, σ

2
2) than in NB1(µ1, σ

2
1), or better, that NB1(µ1, σ

2
1) is associated to

rarest species while NB2(µ2, σ
2
2) describes more abundant species.

After fitting the round 1 posteriors with Gamma (or Beta) distributions and obtaining their
parameters a and b, the round 2 priors were derived with the following transformations,
so that to take into account the parameters constraints.

• µ1 ∼ Gamma(aµ1 , bµ1),

• σ2
1 ∼ µ1 +Gamma(aσ2

1
, bσ2

1
),

• µ2 ∼ µ1 +Gamma(aµ2 , bµ2),

• σ2
2 ∼ µ2 +Gamma(aσ2

2
, bσ2

2
),

• µ3 ∼ µ1 + µ2 +Gamma(aµ3 , bµ3),

• σ2
3 ∼ µ3 +Gamma(aσ2

3
, bσ2

3
),

• α ∼ Beta(aα, bα),

• β ∼ Uniform(0, 1− α).

The method to obtain the prior distributions is visually displayed in the following figures.
Results are shown for the ELDERMETpart dataset, when the RSA was obtained with a
similarity threshold of 97% and was fitted with the 2NB model. Each figure is composed
by two subfigures ((a) and (b)), each containing four plots. The left-hand subfigures refer
to the first round, while the right-hand ones refer to the second round. The four graphs
in each figure refer to the following plots. Bottom-left: prior (green) and posterior (blue)
distribution of the parameter for the corresponding round. Note that the priors in round
2 are slightly different from round 1 posteriors because of the transformations detailed
above. The posterior distributions were fitted with Gamma (or Beta for α) distributions
and the upper-left and upper-right plots show the Gamma (or Beta) parameters a and b
found by MCMC fit. Finally, the bottom-right plot shows for each sample the boxplot of
the parameters used in this elaboration.
It is clear from the bottom-left plots of all figures in the left column that in the first round
the priors (labeled as prior round 1) were chosen pretty wide. This, for instance, allows the
new priors (posterior round 1) of σ2

1 and σ2
2 to be properly found even if the initial guesses

were not peaked on their values. Moreover, the bottom-left figure in the column on the
right show that if we iterated the process computing the posteriors of round 2, that would
become the priors of an eventual round 3, we would find distributions that are very similar
to the priors (prior round 2), meaning that the latter were actually already appropriate.
Finally, we remark that our assumption was that the parameters of all samples are drawn
from the same prior distributions and thanks to this consideration, overfitting was avoided
by considering all samples at the same time, rather than computing the priors for each
RSA separately.
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(a) µ1 - round 1. (b) µ1 - round 2.

(a) σ2
1 - round 1. (b) σ2

1 - round 2.

(a) µ2 - round 1. (b) µ2 - round 2.

(a) σ2
2 - round 1. (b) σ2

2 - round 2.
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(a) α - round 1. (b) α - round 2.

Figure 2.5: Prior and posterior distributions of the 2NB model parameters for round 1 (left) and round
2 (right) of the ELDERMETpart dataset fitting. In each quartet plot, the top graphs are the estimated
parameters for the posterior distribution, while the bottom left figure represents the prior (green) and pos-
terior (blue) distributions considering all samples together and the bottom right plot shows the posteriors
for each sample separately.

2.5.2 Acceptance criterion

The similarity measure used to compare the generated and observed datasets was ground
on the two samples Chi-Squared computed over the Preston plot:

χ2
Skellam =

∑
i

(Gi −Oi)2

(Gi +Oi)
. (2.20)

Here Gi refers to the value of the i−th bin of the Preston plot simulated by ABC, while Oi
refers to the data. The variance in the denominator is the Skellam distribution variance
σ2 = Gi +Oi.
We chose to accept a set of simulated parameters when the χ2

Skellam associated p-value
was less than 0.5. When p-value = 0.5, the computed χ2

Skellam corresponds to the median
of the distribution, meaning that the deviations between O and G are comparable with
the variance, that is what you would expect statistically. The median value, in fact,
corresponds to χ2

Skellam/df ∼ 1, that is the case in which for each bin the deviation
between Oi and Gi has the same order of magnitude as the theoretical standard deviation.
Moreover, we added a further condition on each bin, according to which each bin of
the simulated Preston plot has to be at most 30% different from the empirical one. In
this way, we allowed a bigger error in higher bins, that, in GM data, refer to the rarest
species. These bins are in fact less precise for two reasons: first because sequencing errors
and inaccuracies due to the clustering method mainly affect the estimate of the number of
species with one or few individuals; secondly because in the Preston plot each bin contains
the sum of the number of species that have an abundance in the bin range. So, while in the
first bin we only count species with one individual, in the second one we count species with
2 or 3 individuals and in the last one, for example, we may count species with abundance
between 211 and 212. It is then clear how the highest bins, that refer to the left-hand side
of the curve, are those with the biggest uncertainty.
Finally, at both fitting rounds, the parameters posterior distributions were computed
considering all the accepted values.

2.5.3 Model selection

Model selection was performed computing the Akaike Information Criterion (AIC), in
order to take into account the number of parameters in the 3 nested models 1NB, 2NB
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and 3NB. For each sample, we considered all the accepted set of parameters and for each of
them we computed the corresponding theoretical distribution G = PRSA(~θ). We obtained
the residuals between G and the data O over the Preston plot bins as

RSS =
n∑
i=1

(Oi −Gi)2, (2.21)

where n are the number of bins. Finally, we derived the AIC as

AIC = 2k + nlog(RSS/n), (2.22)

where k is the number of model parameters [72]. When no set of parameters was accepted
over the 107 trials, an AIC equal to the maximum AIC found for the considered model
was assigned to the sample.

2.6 Predictive model based on biodiversity

As mention earlier, the elderly subjects may be divided in two groups (healthy and un-
healthy) according to their physical and cognitive abilities measured by the FIM, Barthel
and MMSE indices. This subdivision also reflects the differences in residence settings and
dietary habits as outlined in Sec. 2.1. Running a Principal Component Analysis based
on these covariates, shows that the healthy and unhealthy people cluster in fact in two
separate groups (see Fig. 2.6), where the healthy one is defined by: Barthel index ≥ 15,
MMSE > 24, FIM > 100 and community-dwelling or day-hospital residence setting.

(a) PCA ELDERMET. (b) PCA ELDERMETpart.

Figure 2.6: Elderly subjects represented by the first and second component of PCA. Dots color represent
the subject health state according to our classification.

We assessed the discrimination and prediction accuracy of biodiversity, performing a
Leave-One-Out Cross Validated (LOO CV) logistic regression. The predicted variable
was the health state (healthy or unhealthy) and the covariates were the biodiversity in-
dices.
Moreover, we compared the prediction power obtained using the biodiveristy index from
our modeling, i.e. θ1 and θ2 for the 2NB model, with the one computed using the first
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and second order Hill’s numbers

Hill1 = exp

(
−

S∑
i=1

pilog(pi)

)

Hill2 =

(
S∑
i=1

p2
i

)−1

(2.23)

that are commonly used biodiversity indices simply based on the species relative abun-
dances, respectively obtained as transformations of Simpson and Shannon indices (see
Sec. 0.5.1).
The prediction accuracy was measured using the Area Under the Receiver Operating
Characteristic Curve (AUC of ROC or briefly AUC). The LOO CV logistic regression,
iteratively use all but one sample as training set, find the regression coefficients for such
set and then predict the outcome (health state) for the left out sample. The predicted
value, in general, will be a real number so that, in order to assign the test sample to one
or the other class, the classifier has to decide a threshold ỹ, and assign the sample to one
class (i.e. healthy) if the output is higher than ỹ, or to the other one (i.e. unhealthy)
otherwise. Obviously, if we change such threshold, the number of true and false positives
(healthy) will also change. The ROC curve is built considering several possible thresholds
and plotting the rate of true positives versus the rate of false positives. Note that since we
are considering the true/false positives rates, the x-axis and y-axis of the plot will both
range from 0 to 1.
If the binary classifier was random, i.e. it predicted the sample to be healthy with proba-
bility 0.5 and unhealthy with probability 0.5, the ROC curve would be the line with slope
1 and the area under it would be AUC= 0.5 (worst scenario). If instead the prediction
was perfect, meaning that all and only the healthy elderly people were classified in the
healthy class, than even when the number of false positives is zero (x = 0), the rate of
true positives is 1 (y = 1). In this case the ROC curve is a vertical line from 0 to 1 for
x = 0 and then it becomes the horizontal line y = 1. The area under the curve will be in
this case AUC= 1 (best scenario).
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Results

3.1 Model selection and goodness of fit

We ran the ABC rejection algorithm (see Sec.2.5) for both the ELDERMET and the
ELDERMETpart datasets using three similarity thresholds, 97%, 95% and 93% and we
fitted the data with the three models that we want to test: the purely neutral model that
predicts a Negative Binomial (1NB), the hybrid two neutral niches model described by a
mixture of two Negative Binomials (2NB) and the hybrid three neutral niches model in
which we consider 3 non-interacting populations and a mixture a three Negative Binomials
(3NB).
In order to compare the performances of the three models we used the Akaike Information
Criterion detailed in Sec. 2.5.3. The AIC mean and 95% confidence intervals (CI) for the
three models are shown in the following tables for the three similarity thresholds 93%,
95% and 97%.

model AIC 97% CI 97% AIC 95% CI 95% AIC 93% CI 93%

1NB 100.33 (97.62,103.05) 76.00 (74.02,78.00) 70.22 (68.54,71.90)

2NB 83.08 (81.20,84.96) 75.04 (73.28,76.81) 72.11 (70.56,73.66)

3NB 89.69 (87.81,91.58) 83.96 (82.20,85.74) 80.44 (78.86,82.02)

Table 3.1: Models AIC with 97%, 95% and 93% similarity threshold for the ELDERMETpart dataset.

model AIC 97% CI 97% AIC 95% CI 95% AIC 93% CI 93%

1NB 85.30 (83.17,87.43) 74.42 (72.71,76.12) 70.76 (69.02,72.51)

2NB 75.69 (74.24,77.14) 69.96 (68.66,71.25) 66.88 (65.65,68.11)

3NB 82.10 (80.66,83.55) 77.31 (75.99,78.64) 74.38 (73.15,75.60)

Table 3.2: Models AIC with 97%, 95% and 93% similarity threshold for the ELDERMET dataset, consid-
ering the three time points together.

The 2NB model is always preferable to the 3NB, having lower AIC. For what concerns
the comparison between model 2NB and 1NB, when considering high similarity threshold
2NB is clearly better. At 93% of similarity, 2NB is still found to have better performances
than 1NB in the ELDERMET dataset, while in the ELDERMETpart dataset the two
models are comparable with a slight preference for model 1NB. This could be explained
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noting that at 93% we are considering larger OTUs, that include many different species.
Thus, we are somehow observing an average behavior of the ecosystem and this is why
the deviation from neutrality that we see at 97% may be masked.
Figure 3.1 shows the results for one ELDERMETpart sample when the RSA was computed
with the three similarity thresholds and fitted with the 2NB model. The histogram is the
empirical Preston plot. In each bin, we also show the boxplot obtained considering the
ABC accepted simulations. The green line is the median, while the box represents the first
and third quartiles (interquartile range), that is the likely range of variation. The vertical
lines, instead, are drawn so that to include the most extreme, non-outlier data points. In
each plot we also show two continuous lines that are the two Negative Binomials of the
2NB mixture obtained with the medians of the parameters posterior distributions. We
will label the magenta Negative Binomial as NB1 and its biodiversity number as θ1. The
blue Negative Binomial, instead, will be indicated as NB2 and its biodiversity number
will be θ2. Note that NB1 is the one describing the rarest species, that is the left-hand
side of the Preston plot, while NB2 fits the abundant species that form the distribution
tail.

(a) 97%. (b) 95%.

(c) 93%.

Figure 3.1: Results of ABC fit with 2NB model on a sample from the ELDERMETpart dataset for different
similarity thresholds. Boxplots represent the ABC accepted simulations. Continuous lines represent the
the Negative Binomials that summed up give the 2NB mixture.

Comparing the three graphs in Fig. 3.1 we may notice that the RSA is skewer for higher
similarities (97%). In this case, in fact, the GM species are clustered into thiner OTUs and,
as a consequence, we will have more OTUs with few individuals than when considering a
smaller threshold. Since biodiversity is related to the number of rare species, besides the
total number of species, we may expect it to be greater when the similarity threshold used
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is higher, and this is in fact what we will observe in Fig. 3.2 and 3.3. Another difference
that comes into eyes is that, while at 97% the two Negative Binomials of the mixture are
clearly different, lowering the similarity threshold they become more and more similar.
This means that at 97% the two populations are separated, while at 93% the neutrality
approximation would be more accurate. As mention before, the reason for this relies in the
fact that when using a lower threshold we allow the OTUs to put together more different
bacteria that, for instance, may belong to the population described by NB1 or to the one
described by NB2. In this way, the properties of pretty different species are averaged and
the differences in the two populations may be not visible anymore.

3.2 Healthy aging prediction

Since the 2NB model performs better the the 1NB and 3NB, especially at high similarity
thresholds, when most of the biodiversity is captured and greater differences are appre-
ciable (see also Fig. 3.2 and 3.3), we fulfilled the prediction analysis considering only this
case.

(a) θ1 versus similarity. (b) θ2 versus similarity. (c) θ1 versus θ1.

Figure 3.2: Trend of θ1 and θ2 with similarity threshold and discrimination between healthy and unhealthy
subjects. Results are shown for the ELDERMETpart dataset.

(a) θ1 versus similarity. (b) θ2 versus similarity. (c) θ1 versus θ1.

Figure 3.3: Trend of θ1 and θ2 with similarity threshold and discrimination between healthy and unhealthy
subjects. Results are shown for the ELDERMET dataset at t = 0.

We associated to each sample the median of its θ1 and θ2 and computed their mean for
the two classes healthy (blue) and unhealthy (red). Fig. 3.2 and 3.3 (a) and (b) show
the trend of θ1 and θ2 when varying the similarity threshold. The vertical bars indicate
the standard error of the mean. As expected, both biodiversity indices increase with the
similarity threshold. Moreover, the two groups are well separated and the difference is
higher for higher similarities. This also confirms that at low similarities we are observing
a sort of average of the GM ecosystem and biodiversity differences are masked. The (c)
graph in Fig. 3.2 and 3.3, instead, show the discrimination of the two classes in a θ2 versus
θ1 plot. Note that healthy elderly subjects have higher biodiversity, both considering θ1

and θ2. Moreover, the young group, represented in green, stands between the two classes.
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This may be due to the fact that the elderly classes are extreme cases or that the young
group is heterogeneous and may include people that will become part of the healthy or
the unhealthy class in their old age.
The predictive performance of θ1 and θ2 have been tested through a Leave-One-Out Cross
Validated logistic regression, as detailed in Sec. 2.6. In particular, the predicted variable
was the health state of the elderly subject and the covariates were θ1 and θ2. The logistic
modeling was also performed using two others commonly used biodiversity indices that
are based only on the relative abundances of the GM OTUs: the first and second order
Hill’s number Hill1 and Hill2 (see Sec. 2.6 for definitions). Tables 3.3 and 3.4 show the
AUC of ROC (see Sec. 2.6) values for the two datasets, considering the different similarity
thresholds. For the ELDERMET dataset, results are also shown at different time points.
Note that from time t = 0 to time t = 2, the clinical parameters slightly change, but
the health state class remains the same for all individuals. The AUC values are smaller
for t = 1 and t = 2 in part because the number of individuals at t = 0 is higher. In
the ELDERMETpart dataset, instead, we have only one time point. The AUC values
here are smaller than in the ELDERMET dataset probably because the two classes are
less separated, as can be viewed from Fig. 2.6 in Sec. 2.6. As expected, the prediction
accuracy decreases with the similarity threshold for both datasets. This is also true for the
Hill’s numbers. However, in all cases, the performances of the indices obtained through
our modeling (θ1 and θ2) are better then for these common indices, meaning that thanks
to the inclusion of stochasticity, that takes into account experimental and ecological noise,
we obtain a more suitable and useful measure of biodiversity.

Index 97%; t0 95%; t0 93%; t0 97%; t1 95%; t1 93%; t1 97%; t2 95%; t2 93%; t2

θ1, θ2 0.851 0.827 0.815 0.728 0.659 0.660 0.700 0.686 0.649
θ1 0.831 0.755 0.730 0.733 0.658 0.644 0.638 0.637 0.613
θ2 0.861 0.831 0.824 0.727 0.670 0.672 0.705 0.706 0.676

Hill1, Hill2 0.753 0.645 0.591 0.657 0.598 0.543 0.639 0.588 0.544
Hill1 0.589 0.552 0.501 0.520 0.535 0.486 0.654 0.632 0.561
Hill2 0.405 0.421 0.298 0.255 0.417 0.371 0.581 0.571 0.507

Table 3.3: AUC results for the ELDERMET dataset.

Index 97%; t0 95%; t0 93%; t0

θ1, θ2 0.741 0.694 0.665
θ1 0.733 0.677 0.614
θ2 0.745 0.706 0.677

Hill1, Hill2 0.703 0.676 0.653
Hill1 0.639 0.624 0.620
Hill2 0.559 0.555 0.570

Table 3.4: AUC results for the ELDERMETpart dataset.
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Discussion

The composition of the intestinal microbiota in older people (> 65 years) is extremely
variable between individuals, and differs from the core microbiota and diversity levels
of younger adults [73] [74]. Furthermore, the variation in the intestinal microbiota of
older subjects has an impact on immunosenescence and frailty [55]. Claesson et al. [55]
found out that community-dwelling elderly subjects and those in long-term residential care
(long-stay) were characterized by different Gut Microbiota compositions. Community-
dwelling subjects had a higher proportion of phylum Firmicutes, genera Coprococcus and
Roseburia (of the Lachnospiraceae family) and unclassified reads. Moreover, they clustered
with the younger control group. Long-stay microbiota, instead, included more bacteria
of the phylum Bacteroidetes and genera Parabacteroides, Eubacterium, Anaerotruncus,
Lactonifactor and Coprobacillus.
The authors also propose three diversity measure for the Gut Microbiota, the number of
unique OTUs, Shannon index [11] and phylogenetic diversity [75], and show that Micro-
biota diversity decreases when shifting from diet group DG1 (‘low fat/high fibre’) to diet
group DG4 (‘high fat/low fibre’). This also implies that the diversity of long-stay subjects
is lower than for the community-dwellers, since the resident setting is highly correlated
with diet in their dataset.
Later on, Jeffery et al. [61] asserted that maximal microbiota diversity was not the variable
most strongly associated with health but that a particular microbiota composition typifies
healthy community-dwelling subjects. They noticed that subjects with low microbiota
diversity often have low FIM values. However, their result was ambiguous because the
presence of bacteria associated with the long-stay group, that is characterized by lower
FIM values, actually increased diversity.
Here, we derived a biodiversity measure based on a stochastic modeling of the popula-
tion dynamics and showed that a better estimate of the Gut Microbiota diversity can be
obtained by taking noise into account.
We proved that the GM ecosystem shows deviations from the neutrality assumption of
species equivalence, especially when considering low phylogenetic levels, that roughly cor-
respond to the genus classification. The simplest relaxation of neutrality requires to con-
sider two non-interacting populations, each one characterized by its dynamic rates. This
assumption turns out to be enough to obtain a good description of the data. At higher
phylogenetic levels, the differences between the two populations are less visible. In fact, if
for instance we considered the phylum classification, we will have that a single phyla in-
cludes many different genera and species. These, in particular, may belong to both the two
populations that we distinguished at lower phylogenetic levels and what we observe will
be a summary dynamics of the two populations together, that will not be distinguishable
anymore.
Our modeling returns a biodiversity measure based on two indices, that regard the two
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populations. We proved here that this measure may be used to predict healthy aging.
The average behavior observed at high phylogenetic levels has also the effect to diminish
the variability in diversity between different subjects. For this reason, the prediction
accuracy of the biodiversity indices for healthy aging, was computed focusing on the lowest
phylogenetic level, that is the one obtained cluestering the 16S rRNA sequences into OTU
with a similarity threshold of 97%.
We noticed that the elderly population could be divided in two groups, one that is char-
acterized by healthy clinical parameters and the other one that includes unhealthy sub-
jects. Considering these two classes, we performed a logistic regression with Leave One
Out Cross-Validation to establish the prediction accuracy of our biodiversity measure.
It turned out that we obtain a much better result than using common diversity indices,
such as the Shannon index used by Claesson et al., that is simply based on the relative
abundance of species. Thus, the stochastic modeling of the Gut Microbiota may solve
the ambiguities about biodiversity that arose in previous works [61] and provide a better
measure to be investigated when we aim to determine how to improve our life style in
order to achieve an healthier aging.
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Clustering 16S rRNA into OTUs:
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Introduction

We have seen in Part I the importance of re-defining the concept of species, particularly
when the aim of the analysis is to describe the biodiversity of ecosystems, like the Gut Mi-
crobiota. There, we also highlighted that such re-definition should be based on phylogeny
rather than taxonomy. From an ecological point of view, in fact, human made taxonomic
classifications are not of great significance and may even lead to equivocal results. More-
over, since the vast majority of bacterial organisms is not accessible by traditional clonal
culture techniques [76][77], it is necessary to base the analysis on sequencing data, so that
to be able to sample the whole microbial community.The recommended approach, then, is
to obtain and sequence samples of the DNA present in the ecosystem and to determine the
evolutionary distances between the collected bacteria, so that to define species as sets of
closely related genomes, that may be detected by comparing and de novo clustering highly
conserved sequences. The newly defined species are usually called Operational Taxonomic
Units (OTUs). It is clear that one of most crucial steps in this procedure is the choice of
the algorithm used to cluster sequences into OTUs and this is the topic of the following
work. In particular, here, after summarizing some of the most commonly used cluster-
ing methods, we will introduce a new approach based on the estimation of the sequences
density, that was originally proposed in 2014 by A. Rodriguez and A. Laio [78] and that
was made fully unsupervised and parameter-free by M. d’Errico E. Facco and A. Laio in
2016 [79], that also collaborated to this work.

5.1 The concept of OTU

The DNA sequence usually employed for the re-definition of bacterial species is the one
that codes for the 16S rRNA, that is a component of the 30S small subunit of prokaryotic
ribosomes. This is a highly conserved sequence, meaning that its probability of encoun-
tering mutations is relatively low. As a consequence, we would expect two bacteria of
the same species to have very similar 16S rRNA, with at least 97% of the bases in com-
mon. The choice of 97% of similarity for species definition is an ordinary one and is based
on the assumption that rare mutations and possible errors due to the sequencing proce-
dure generate at most a difference of 3%. If, instead, we considered two bacteria that
are phylogenetically distant and belong to different species, their 16S rRNA would have
evolved independently for a longer time, gathering more mutations, and we would expect
their differences to be greater than 3%. It is logical, then, to base the re-definition of
species on the differences between 16S rRNA sequences, so that to obtain a classification
that reflects the phylogenetic relationships between bacteria. The newly defined species
are called Operational Taxonomic Units (OTUs) and are obtained by de novo clustering
the collected 16S rRNA sequences. With de novo we mean that the clustering procedure
should not be based on taxonomic databases, but should only rely on the properties of
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the sequences. In fact, even if the use of taxonomy may be appealing because it enables
to place labels onto sequences, indicating their relationships to previously cultured and
characterized microbes, it is not the recommended approach to detect bacterial species.
Taxonomic classifications are in fact human made and there are lots of examples of organ-
isms that belong to the same species and have different phenotypes and organisms with
the same phenotype belonging to different taxonomic lineages. Moreover, several organ-
isms are still unclassified and the numerous existing different curated taxonomy outlines
contain significant conflicts with each other [80]. In order to estimate the evolutionary
relationships of organisms, genes, species, etc. the tool to be used is phylogenetic analysis
and de novo OTUs computation, that despite not enabling to give names to species, has
the great advantage of avoiding the loss of information due to a taxonomic classification.

5.2 Clustering sequences into OTUs

Several clustering methods have been proposed to fulfill the task of computing OTUs, and
the choice of which one to use is critical. Ideally, the selected algorithm should be able to
cluster together similar sequences and separate those that are more different, but this is
not a simple requirement for sequencing data, because of their complex and hierarchical
structure. Moreover, the method should also optimize computational costs in terms of
both time and memory consumption, that may become important when dealing with
these kind of data.
Many of the available algorithms are based on fixing a similarity threshold so that two
sequences will belong to the same cluster if their distance is less than the threshold and will
be placed in two separate clusters otherwise. For instance, hierarchical clustering, that is
implemented in mothur [67], requires to first compute the distance matrix of the sequences
and then to cluster them at a specific level of sequence dissimilarity according to some
criteria (nearest neighbor, furthest neighbor or average neighbor). The computational
complexity, in this case, is O(N2), where N is the number of sequences, and may pose
a significant computational bottleneck when processing large-scale datasets [81]. For this
reason, greedy heuristic algorithms such as CD-HIT [82] and UCLUST [83] have been
developed to assign sequences into OTUs with lower time and space complexity.
However, these approaches still have in common with the previous ones the requirement
of a fixed threshold, and this is not necessarily the best option. Specifically, Schloss et
al. [80] asserted that it is not possible to define distance-based delineations for different
taxonomic levels. They unveiled, in fact, that the genetic distance between the most
disparate full-length 16S rRNA gene sequences within a named taxonomic group repre-
sented a continuum for each level in the hierarchy. Furthermore, the distances within
a taxonomic group are not evenly distributed within the group. Genera such as Bacil-
lus, Bacteroides, Clostridium, and Pseudomonas were very broad, with mean distances
ranging from 4 to 9%, while genera such as Bradyrhizobium, Cetobacterium, Pseudoal-
teromonas and Staphylococcus were much tighter, with average distances ranging from
1 to 3%. Moreover, considerable overlap in the maximum intra-taxon distances between
taxonomic levels was observed and groups at every level in the taxonomic outline were
found to have maximum intra-group distance less than 1.5%. Similarly, also the variation
in phylogenetic diversity represented at each taxonomic level was found to represent a
continuum.
As mentioned before, we would not suggest to rely OTUs computation only on taxonomic
classifications. However, the remarks pointed out by Schloss et al. indicate that a correct
grouping of 16S rRNA sequences should not be based on a fixed similarity threshold, but
should preferably rely on the true structure and topography of the data.
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Material and Methods

In the following, first, we review three common methods used to cluster 16S rRNA se-
quences into OTUs: mothur [67] and UCLUST [83], that were mentioned in the Intro-
duction, and CROP [84], that has the peculiarity of using a soft threshold. Then, we
introduce a new method developed by d’Errico et al. [79] (LOCk-NN) and we show this
can be adapted to deal with sequencing data. Finally, we will detailed how a simulated
dataset was generated in order to test and compare the performances of the above men-
tioned methods.

6.1 Sequences distance and similarity

Before exploring the clustering methodologies, let us mention that every method that
aims to compute OTUs from 16S rRNA data requires the definition of a distance between
sequences, or equivalently of a similarity measure. In particular, mothur and LOCk-
NN are both preceded by the computation of the dataset distance matrix, and this was
performed with mothur [67] using the following procedure. First, sequences were trimmed
so that to exclude unreliable reads or reads parts, as we will detail when describing the
simulated dataset. Then, preprocessed sequences were aligned against the silva reference
database [85]. And finally, the distance matrix was computed using default options. The
gap policy was to count a string of gaps as a single gap and to penalize also terminal gaps.
Gaps and mismatches were given a penalty of −1 while matches were given a score of +1.
Using these criteria, similarity was computed as the number of matches divided by the
length of the shortest sequence (excluding gap extensions) and distance was obtained as
(1 − similarity). Analogously, UCLUST computes the similarity between sequences by
first aligning them. Terminal gaps are discarded before identity is calculated, while internal
gaps always count as mismatches. Then, similarity is computed using the same scores and
procedure as in mothur. The main difference, as we will detail, is that UCLUST does not
require to compute all pairwise distances, but these are obtained only for an appropriate
subset. Finally, also CROP does not compare all sequences versus all but first splits the
dataset in a certain number of blocks in which it computes the distance matrix. The
pairwise alignments in CROP are obtained using the Needleman-Wunsch algorithm [86],
and the distances are determined with the Quickdist algorithm [87], which ignores terminal
gaps and treats gaps of any length as single mismatches.

6.2 mothur

Mothur [67] implements three hierarchical algorithms that compute clusters starting from
a distance matrix according to the nearest neighbor, furthest neighbor or average neighbor
rule. We chose to use the average neighbor method since it was proven to be the one with
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best performances [80]. Consequently, we obtained clusters in which the average distance
between their elements was X%, where X is the user defined threshold that we chose to be
7%, 5% or 3%. In the following we will refer to these thresholds in the form of similarities,
i.e. 93%, 95% and 97%, respectively.

6.3 UCLUST

UCLUST [83] starts with an empty database in memory, that will contain the OTUs seeds
or representative sequences. The algorithm reads the sequences in input order, takes the
first one as first seed, and then processes all the others according to the following state-
ment: if a sequence is similar to an OTU representative sequence (database seed) within
a predefined similarity threshold, then the query is assigned to its OTU; if a sequence is
instead not similar to any seed, then it will become the representative sequence for a new
cluster and will be added to the seeds database.
The comparison between the query sequence and the database seeds is performed using
the USEARCH algorithm [83]. USEARCH exploits that fact that similar sequences tend
to have several short words in common. These words have a fixed length k, and are
sometimes called k-mers. Unlike other programs that use k-mer counting, USEARCH
does not attempt to estimate sequence identity from the number of matching k-mers.
This is because identity correlates only approximately with the word count and does not
give an accurate estimate, especially for lower identities. Instead, USEARCH uses the
word count to prioritize the database search. For every query, it sorts the database seeds
in order of decreasing unique word count, so that, if a hit above the similarity threshold
exists, this will be found among the top sequences of the ordered database. The main
advantage of this technique is a great improvement in speed, due to the fact that if the
top seeds are rejected and no match is found, than the algorithm stops and create a new
cluster without investigating the rest of the database.
As mentioned before, UCLUST processes the sequences in input order and this implies
that the first sequences in the input file will be more likely to become the cluster seeds.
For this reason, the clustering procedure is usually preceded by an appropriate sorting of
the sequences. In particular, after trimming the reads at 350 bp, so that to exclude the
last bases that are known to be noisy, we sorted them by decreasing length, following the
idea that longer sequences are more reliable and hence more useful to be used as cluster
seeds.

6.3.1 CROP

Moving towards the idea of a parameter-free clustering method that relies on the structure
of the data, Hao et al. [84] proposed a Gaussian mixture model-based algorithm termed
Clustering 16S rRNA for OTU Prediction (CROP). CROP adopts an unsupervised proba-
bilistic Bayesian method and uses a soft threshold for defining OTUs, bypassing the setting
of an often subjective hard cut-off threshold and aiming to reduce the effects of PCR and
sequencing errors in inferring OTUs.
In CROP, a Gaussian mixture model is applied to the 16S rRNA sequcences, that are
indicated as x = (x1, ..., xN ) and are assumed to be independently drawn from a mixture
density with k clusters, where k is an unknown parameter

p(x|k, π, µ, σ2) =

k∑
i=1

πif(x;µi, σ
2
i ) (6.1)

where µ = (µ1, ...µk) and σ2 = (σ2
1, ...σ

2
k) indicate the centers and variances of the k

clusters, while π = (π1, ..., πk) are the non-negative mixture proportions that sum up to 1.
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Hao et al. assumed that the probability of a sequence xi to belong to cluster j, f(xi;µj , σ
2
j ),

is given by a modified univariate Gaussian distribution with mean µj , corresponding to
the center of cluster j, and variance σ2

j :

f(xi;µj , σ
2
j ) =

1√
2πσ2

j

e
−
D2(xi,µj)

2σ2
j , (6.2)

where D(xi, µj) denotes the distance between the sequence xi and µj . The the mixture
parameter and the variance are here supposed to have prior distributions

π|k ∼ Dirichlet(γ, ..., γ)

σ2
i ∼ Inverse−Gamma(α, β) (6.3)

The cluster center µj , instead, should correspond to one of the sequences of the dataset
and is thus chosen randomly from x1, ..., xN without replacement.
The parameters (π, µ, σ2) are determined maximizing the posterior distribution P (π, µ, σ2|x),
that is constructed simulating a birth death process and using the Markov Chain Monte
Carlo (MCMC) method. If the number of clusters at a certain step of the process is k,
in the next step we may have k + 1 clusters, because of the birth of a new cluster, that
occurs with probability PB/(PB + PD), or k − 1 clusters, due to the death of an existing
one, that occurs with probability PD/(PB + PD). The birth probability PB is chosen to
be constant, while the death probability PD is defined as PD =

∑k
j=1 dj , where dj is the

probability for a cluster to die.
If a birth happens, the (k + 1)-th cluster is generated using a new center µk+1 randomly
chosen among all sequences that are not already the center of any cluster. The probability
of choosing a certain xi is given by

P (µk+1 = xi) ∝
1

f(xi;µt, σ2
t )

(6.4)

where (µt, σ
2
t ) are the parameters of the cluster to which xi is assigned at the current step

t. In this way, µk+1 is more likely to be chosen among the sequences that are far away
from the center of the cluster to which they currently belong. For other parameters of the
new cluster, the priors are given as follows

πk+1 ∼ Beta(γ, kγ)

σ2
k+1 ∼ Inverse−Gamma(α, β). (6.5)

Then, the existing parameters need to be updated setting πj = πj(1− πk+1).
The death event of an existing cluster, instead, has probability

dj =
L−j
L
. (6.6)

where L−j is the likelihood without the j-th cluster and L is the likelihood with the j-th
cluster:

L =

N∏
i=1

k∑
l=1

πlf(xi;µl, σ
2
l )

L−i =
N∏
i=1

k∑
l=1,l 6=j

π′lf(xi;µl, σ
2
l ). (6.7)

Also in the case of the death of the j-th cluster, πj is updated for every j = 1, ..., k, j 6= i
becoming π′j =

πj
1−π .

In each step of the MCMC, the hierarchical mixture model parameters are updated as
follows.
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1. Update the cluster to which xi is assigned, Ci, with probability

P (Ci = j) =
πj√
σ2
j

e
−
D2(xi,µj)

2σ2
j (6.8)

2. Update π|... ∼ Dirichlet(γ+n1, ..., γ+nk), where nj , j = 1, ..., k, is the numbers of

data points belonging to the mixture cluster j: nj =
∑N

i=1 1(Ci = j).

3. Update σ2. The variances of clusters are limited with an upper bound U and a lower
bound L, so that to allow clustering results at different phylogenetic levels. Thus,
σ2
j is restarted using

σ2
j ∼ Inverse−Gamma(α, β′), (6.9)

with β′ satisfying β′

α−1 = L+U
2 .

4. Update µ by sampling the center of each cluster in the following way. Consider the
nj sequences of cluster j, that are the candidate centers. For two candidate centers
µj and µ′j , we have

P (µ′j |nj , xj , σ2
j )

P (µj |nj , xj , σ2
j )

=
P (µ′j)

∏nj
i=1 f(xji;µ

′
j , σ

2
j )

P (µj)
∏nj
i=1 f(xji;µj , σ2

j )
(6.10)

Assume that P (µj) = P (µ′j). Then, for each xji ∈ Cj , define the probability of
choosing xji as new cluster center as

δi =

∏nj
l=1 f(xjl;xji, σ

2
j )∑nj

i=1

∏nj
l=1 f(xjl;xji, σ

2
j )

(6.11)

and accordingly sample a new center for each cluster.

Hao et al. set γ = 1, α = 2, and PB = 1. The lower and upper bounds for the variances, L
and U , are instead determined according to the desired phylogenetic level. In particular,
a similarity of roughly 97% is achieved setting L = 1 and U = 6.25, while 95% is obtained
with L = 2.25 and U = 6.25. These thresholds, in particular, guarantee that at least 95%
of the sequences have at least the required similarity.

6.3.2 CROP work flow

In CROP, the dataset is first randomly split into blocks of 100-1000 sequences each. We
used 500 blocks in the first round and a block size of 400 in the others, so that the value
of the block size multiplied by the maximum sequence length (350) was less than 150000,
as suggested by authors.
Then, an independent Bayesian clustering is applied to each block. A distance matrix is
generated for each block as outlined in Sec. 6.1. The algorithm, by default, runs 20*(block
size) iterations of MCMC, considering the first 10*(block size) iterations as burn-in. We
chose to run 3000 iterations. From all the iterations that follow the burn-in, the one with
the largest posterior probability is chosen and reported as clustering result for this block.
At this point the output is the set of clusters that resulted from all the considered blocks
and the algorithm proceeds to merge them, computing for each block a slightly different
distance matrix. This is a ‘center sequences against clusters’ matrix, whose elements (i, j)
indicate the distance between the i-th center sequence and the j-th cluster. Such distance
is calculated as the average distance between the i-th center sequence and 20 randomly
chosen sequences from the j-th cluster, when available.
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Then, a weighted Bayesian clustering is performed based on this distance matrix and
using the cluster size as weight. This process will continue until one of the conditions
noted below is satisfied.

1. The number of clusters is > 90% of the number of sequences.

2. The number of clusters is smaller than a predetermined threshold.

3. The process has been running for N times, where N is a predetermined threshold.

Finally, one more round of Bayesian clustering is performed on all the remaining clusters
to generate the final result.

6.4 LOCk-NN: a new parameter-free approach

The main idea of the method proposed by d’Errico et al. [79] is to estimate the density
distribution of the data sequences space, so that to identify clusters as density peaks.
Estimating the local density in RNA real datasets, however, is a complex task, due to
the fact that these data are characterized by inhomogeneous density maxima organized in
hierarchical structures.
The core of the algorithm is an unsupervised density estimator, called LOCal k-Nearest
Neighbor (LOCk-NN) and detailed in Sec. 6.4.1. LOCk-NN automatically detects the local
length scale of density variation and also provides a measure of the estimate uncertainty
and this allows us to learn the position and height of density peaks and of the saddle
points between them and to accurately reconstruct complex density topographies.

6.4.1 The LOCal k-Nearest Neighbor

Let us consider a set of N data points in a d-dimensional space. As in the usual k-NN
density estimator [88], we suppose that the density at each point can be approximately
defined as the number k of data points in a small neighborhood divided by the volume of
the neighborhood. Once the neighborhood of a point is defined, and this is the critical
step, such volume will be given by the volume of the hypersphere in d dimensions with
radius equal to the distance between the point and its furthest (k-th) nearest neighbor.
The intrinsic dimension d of the system was inferred using the DANCo algorithm [89].
Then, for each point i we denote (rl)l=1,..k the sequence of the ordered distances with
the first k nearest neighbors and we compute the volume enclosed between two successive
neighbors as ∆vl = ωd(r

d
l − rdl−1), where the proportionality constant ωd is the volume

of the d-sphere with unitary radius. We conventionally take r0 = 0. It can be proven
that if the density is constant around point i, all the ∆vl are independently drawn from
an exponential distribution with rate equal to the density ρ at the point i, ∆vl ∼ ρ ·
exp(−ρ∆vl). Therefore, given the probability of observing the first k neighbors at distances
r1, r2,...,rk, the log-likelihood function of the parameter ρ is

L(ρ|{∆vl}l≤k) = k · log(ρ)− ρ
k∑
l=1

∆vl (6.12)

By maximizing L with respect to ρ we find

ρ =
k∑k

l=1 ∆vl
(6.13)

and noting that
∑k

l=1 ∆vl is the volume of the hypersphere with center at i containing
k data points, we have obtained the standard k-nearest neighbor estimator ρk−NNi , as
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previously anticipated. The estimated error of the density is given by

ερk−NNi
=
ρk−NNi√

k
(6.14)

and gets smaller as k increases. Therefore, the optimal choice of k would be the largest
possible value within the neighborhood, k̂.
In order to provide an appropriate definition of neighborhood, and hence to determine
k̂, d’Errico et al. noted that the density in the neighborhood of a point i is expected
to be rather constant, while if we consider further points that may not be part of the
neighborhood, we would probably observe inhomogeneities. Therefore, the neighborhood
is found as the set of points for which the density is approximately constant. The size
of the neighborhood, that is the number of points that compose it, is found testing the
hypothesis that the density is constant in the region occupied by the k nearest neighbors.
This is achieved comparing the k-NN density estimation obtained from the nearest k/4
points and the furthest k/4 for increasing values of k. When these two values become
inconsistent, according to a statistics built on a sample of points drawn from a uniform
distribution, the algorithm stops and does not enlarge the neighborhood anymore. The
algorithm hence performs the following steps:

1. estimate the density ρk−NNi according to Eq. 6.13 for increasing values of nearest
neighbors k;

2. compute the rescaled difference between the log-likelihood of the nearest k/4 neigh-
bors and the log-likelihood of the furthest k/4 neighbors:

∆Lk =
1

k/4

(
Lneark − Lfark

)
(6.15)

3. find the largest k for which ∆Lk is significantly small and call it k̂. Even if the density
is constant ∆Lk can take large values due to statistical fluctuations. Therefore k is
chosen so that to satisfy

|∆Lk| ≤ Ck ∀k ≤ k̂ or |∆Lk̂+1| > Ck̂+1, (6.16)

where Ck is defined in such a way that the probability of satisfying this condition
would be equal to p = 0.001 for a sample of points harvested from a uniform proba-
bility distribution.

4. The number of neighbors used for estimating the density of data point i is fixed to
k̂.

In this procedure, at the exit value k̂ the log-likelihood of the nearest neighbors is by
construction significantly different from the log-likelihood of the furthest ones, indicating
that the density close to the k̂-th neighbor is already substantially different from the
density close to data point i. The authors corrected this trend, computing the density
by a Jackknife procedure aimed at capturing its variation as a function of the distance
from each point. The k̂ neighbours where separated into M equal subsets. Then, for each
subset the average volume was computed as

v(j) =
M

k̂

(
vjk̂/M − v(j−1)k̂/M

)
. (6.17)

They assumed the variation of the density to be linear in j, v(j) ∼ v0 + βj, where v0 and
β are estimated by minimizing

∑M
j=1

(
v(j) − v0 − βj

)
. Jackknife procedure [90] was used
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to estimate the density and the error induced by the fit: each v(j) was, in turn, dropped
from the sample and the parameter v0 was estimated from the reduced sample, providing
a set of M estimates v0

α, α = 1, ...,M . The estimator of the density is then

ρi =
1

Mv0 − M−1
M

∑M
α=1 v

0
α

. (6.18)

The error on this estimate is ερi = ρ2
i

√
M−1
M

∑M
α=1(v0

α − v0)2. This is considered reliable
only if higher than the k-NN estimates, and if not, is substituted by this last one. The
procedure was performed for all the values of M between 4 and k̂/2, and the value of M
that maximizes ερi was chosen.
Summarizing, the method by d’Errico et al. is capable of providing accurate estimates
of the density at each point and also of its associated uncertainty and this allows us to
recognize genuine features of the probability density distribution, for instance a density
peak, and to distinguish them from statistical fluctuations due to finite sampling.

6.4.2 Detection of unreliable points

For a small but significant fraction of points the value of k̂ provided by the condition in
Eq. 6.15 may be smaller than expected due to the fact that condition 6.16 is violated
because of statistical fluctuations rather than to a drift of the density. Those points are
by construction affected by a much larger error than their neighbors, leading and are
thus classified as unreliable. In order to detect such spikes, d’Errico et al. developed an
heuristic criterion that tests the assumption that the density at a point is uniform within
the neighborhood of size defined by its k̂. They compared the estimated density at a
point with the average estimated densities at the k̂ nearest neighbors. Denoting by ρi
the density at data point i and by NNi the set of its k̂ nearest neighbors, they computed
µi = E[ρj |j ∈ NNi] and σ2

i = V ar[ρj |j ∈ NNi]. Then, they classified as unreliable

those data points for which (ρi − µi) >
√
σ2
i + ε2ρi . Finally, the values of µi and σ2

i were

recomputed, restricting the averages only to the points that were classified as reliable.
This procedure was iterated until the set of unreliable points remains unchanged in two
successive iterations.

6.4.3 Reconstruction of density topographies

The estimated density and associated error can be used to find peaks and saddle points
within the dataset and this information can be exploited to partition the dataset into
separate clusters.
In order to find the density peaks, points are ranked not according to their density, which
can be affected by non-uniform errors, but to a function of the probability of their difference

in density. Defining the pull, ∆, as the set of the ∆i =
(ρtruei −ρestimatei )

ερi
, d’Errico et al.

numerically proved that its probability distribution is accurately described by a Gaussian
with zero mean and unit variance. As a consequence, the probability that the estimated
density at point i, ρestimatei , corresponds to the true density, ρtruei , can be estimated by a
Gaussian centered on ρestimatei and with a variance equal to the estimated error ερi . Then,
every point i was ranked estimating the quantity gi

gi =
∏
l 6=i

∫ ∞
−∞

dxNx(ρl, ε
2
ρl

)

∫ ∞
x

dyNy(ρi, ε2ρi) (6.19)

where Nx(a, b) = 1√
2πb
e−

(x−a)2
2b . The quantity gi is the product over l of the probabilities

that point i has a higher density than point l. We here employ gi as an effective density
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instead of ρi, and define as cluster centers the local maxima of gi. Therefore, the centers
are the points that, with maximum probability, are surrounded by points with a lower
density. Note that the local maxima of gi coincide with the local maxima of ρi when
the error is uniform. The double integral in Eq. 6.19 has not a simple analytical form

but for computational purposes it can be parametrized as

[
1 + exp

(
−2 (ρi−ρl)√

ε2ρi+ε
2
ρl

)]−1

as

numerically verified by authors. Following the idea proposed by Rodriguez and Laio [78],
putative centers are considered as those points i for which the distance to the nearest point
with higher value of g, δi = minj:gj>gi rij , is greater than the distance with the furthest

nearest neighbor k̂i: δi > rik̂i . Thus, a data point is a center only if all its k̂-th nearest
neighbors, which contribute to determine the value of its density, have a value of g lower
than gi. In other words, cluster centers are defined as the local maxima of g, i.e. the
points that, with maximum probability, are surrounded by points with a lower density.
Afterwards, all points that were not classified as centers, are assigned in order of decreasing
g, to the same cluster of the nearest point with higher g.
Finally, clusters that are not statistically separated are merged together. For this pur-
pose, border points between two clusters c and c′ are identified according to the following
statement: a point i belonging to c is assumed to be at the border between c and c′ if its
closest point j belonging to c′ is within a distance greater than the radius of c and if i is
the closest point to j among those belonging to c.
The border density ρcc′ is defined as the density at the point with the highest value of g,
among those at the border between c and c′, and the border density error εcc′ is equal to the
density error of this point. If all the points in a cluster have density values compatible with
the border density, taking errors into account, then the cluster can be considered as the
result of a statistical fluctuation and merged with another cluster. In particular, cluster c
is merged with cluster c′ if maxi∈c(ρi− ερi) < A(ρcc′ + ερcc′), where A is a parameter that
is fixed to 1 and tunes the confidence level of the topography reconstruction, giving more
detailed but less reliable topographies for larger values. This condition is checked for all
the clusters c and c′, in order of decreasing ρcc′ . The merging step allows pruning the set
of clusters from those corresponding to density maxima that are not statistically robust,
thus recovering the topography of the underlying density function.

6.4.4 Recognizing points with ambiguous cluster assignation

For ensuring proper understanding of the data and a high correspondence between the
density topography and the taxonomic composition, we implemented a procedure that
removes points with ambiguous clustering assignment. In particular, we aimed at removing
those points belonging to the background or to a low-populated taxa that are wrongly
assigned to the same cluster of a more abundant one.
As before, let δi be the distance between i and its nearest point with higher density rank.
For each cluster, we considered the distribution of the δs of its points, excluding the center
and those points whose density reconstruction has been marked as unreliable by the LOCk-
NN algorithm (see Sec. 6.4.2). If spurious local centers are present, those are by definition
at a relatively large distance from any point with a higher density rank. Consequently,
their corresponding δ is much larger than the typical δs within the cluster and they appear
as outliers in the distribution of δ. Then, using the Tukey’s test [91], we identified as major
outliers those points that lie above the threshold δth = Q3+3(Q3−Q1), where Q1 and Q3
are the lower and upper quartiles respectively. Moreover, for background identification,
we defined a density threshold ρth equal to the lower not-null border density. Finally, we
removed points for which at least one of the following relation holds:

• δ > δth;
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• the closest point with higher rank has δ > δth;

• the density value is compatible with ρth within their errors (only if the density
measure is reliable).

6.4.5 Re-clustering halo points

The set of points that were removed in the previous step is called halo and should be
re-clustered so that to reconstruct the missing OTUs. Here we describe a preliminary
proposal to performed such re-clustering.
After using mothur to compute the distance matrix for the halo sequences only (see
Sec. 6.1), we sorted the reads according to their density and distance from the closer
point with higher density, following the idea by Rodriguez and Laio [78]. Sequences for
which these two values are bigger will more probably correspond to cluster centers and
will be processed first. Here, density was computed by counting for each sequence the
number of reads within a distance of 0.05.
Starting from the top of the sorted list, we considered, for each sequence xi, the distribution
of its distances with all the other reads that are still in the list. Using the Kernel Density
Estimation implemented in the python seaborn package [92], we detected the first local
minimum of the distances distribution. If the corresponding distance δ̂ was less than
0.2, we considered xi and all the sequences within δ̂ as belonging to the same cluster.
Otherwise, the sequence xi was classified as singleton. Here, the 0.2 cutoff was introduced
to deal with the situation in which the read is a singleton and the first local minimum is
the one that includes the closer cluster to which the read does not belong. If the local
minimum is at a distance greater than 0.2, in fact, we can confirm that the detected
cluster is not biologically significant because of the highly conservation of the 16S rRNA
sequence. Finally, all sequences detected in the cluster were removed from the list and the
next sequence, if any, was processed.

6.5 Simulated Data

In order to assess the performances of the new parameter-free approach detailed in the
previous section, we simulated a datasets of 16S rRNA sequences, in which we know by
construction which sequence belongs to which cluster. In particular, we considered a set
of representative sequences derived from the Greengenes database that are known to have
a minimum pairwise distance of about 3%.
Data are available at http : //greengenes.lbl.gov under the filename gg 97 otu 6oct2010.fasta.
This database had been generated by clustering 16S rRNA sequences into OTUs with
UCLUST at 97% similarity threshold, and keeping only the representative sequences, i.e.
clusters centroids. Note that, as priviously detailed, UCLUST is an heuristic algorithm
and it may happen that the similarity between two cluster centroids is actually bigger
than the threshold. However, as ensured by UCLUST author and also shown in Fig. 6.1,
these are rare events in practice and we thus did not take such consideration into account.
To simulate the dataset, we randomly selected 1000 sequences from the Greengenes rep-
resentative sequences, that we will call reference sequences. The number 1000 was chosen
so that to obtain a similar number of OTUs as in the ELDERMET dataset used in Part I,
when we used a similarity threshold of 97%. Among these 1000 sequences, 4 will not
be part of the simulated centroids so that the true number of clusters will be 996. For
each reference sequence, we identified the V4 region by aligning it to the universal primer
’AYTGGGYDTAAAGNG’ and trimming it so that to start at the V4 primer.
Fig. 6.1 shows the distribution of the pairwise distances among the sampled 1000 sequences.
As anticipated, only a very small number of them turns out to have a pairwise distance
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smaller than 0.03 (or 3%) and results located on the left of the red line.

Figure 6.1: Distribution of the pairwise distances between the 1000 reference sequences selected as cluster
centroids.

We used the grinder algorithm [93] to simulate 30000 sequences starting from the 1000
references. The idea of the simulation is to generate, for each reference, a cluster of
sequences that differ because of some random mutation that may be attributed to biological
or experimental noise. Moreover, clusters are produced in such a way that their abundance
will satisfy a predefined RSA distribution (see Sec. 0.5.2 for details on the RSA). In
particular, we simulated a RSA given by a mixture of two Negative Binomials, that is the
distribution that we have hypothesized in Part I. The resulting RSA is shown in Fig. 6.2.

Figure 6.2: Preston plot of the simulated OTUs abundances. The RSA distribution is a mixture of two
Negative Binomials.

The simulation was performed imposing that read lengths follow a Normal distribu-
tion with mean 250 bp and standard deviation 50 bp, so that to mimic the 454 GS
FLX Titanium sequencing platform, that is the one used in the ELDERMET dataset
(see Part I). Sequencing errors were introduced both in the form of mutations and ho-
mopolymeric stretches. The distribution for the homopolymer length n was chosen to
be ∼ N (n, 0.03494 + n · 0.06856), following Balzer’s empirical model [94], that was com-
puted for the Titanium technology. For what concerns the mutation distribution, we relied
on Gilles’ results [95] and used a linear model that sets a 0.53% error rate at the 5’ end
of reads and 1.07% at the 3’ end. The percentage of insertion and deletion among the
mutations was set at 54% and 36% respectively. Finally, a probability of 10% was set
for reads in the amplicon library to be chimeras, and the default distribution was used
for higher order chimeras. Chimeras are reads composed by two or more biological se-
quences joined together that may be formed during the sequencing procedure. Several
methods exist to remove chimera before starting the clustering algorithm, such as for in-
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stance UCHIME [96], that we used in Part I as a component of UPARSE. Here we avoid
considering this further issue and remove chimeras by checking the number of references
from which each sequence has been simulated.
Before proceeding with the clustering, the simulated sequences were preprocessed with
the same conditions required for real data in Part I. In particular, we used mothur to
trim sequences so that to exclude reads shorter than 150 bp, to cut sequences longer than
350 bp and to cull those with ambiguous bases or with homopolymers longer than 8 bp.
The preprocessing step returned 27021 filtered sequences, that reduce to 24289 sequences
belonging to 932 OTUs after chimera removal.
Finally, we clustered the simulated sequences into OTUs using the four above mentioned
methods: mothur, UCLUST, CROP and LOCk-NN.

6.6 Clustering comparison and evaluation

We compared the results obtained of the different clustering with the ground truth, or
true clustering, that is obtained by recalling for each sequence the reference from which it
was generated, that will indicate the cluster to which it belongs.
The comparison was performed based on three measures. First, we simply counted the
number of clusters detected by each method. Then, we visually compared the resulting
RSA distributions obtained by counting the number of clusters with a certain number of
elements (see Sec. 0.5.2). This was performed by plotting the RSA cumulative (cum), or
more precisely the logarithm of (1− cum). Finally, we compared each clustering outcome
with the ground truth computing the Normalized Mutual Information score (NMI) [97].
We chose to use NMI rather than, for instance, the cluster purity so that to take into
account the number of clusters, besides their composition. The NMI index, in fact, penal-
izes two types of errors: the wrong assignment of sequences with the same species label
into different clusters, and the assignment of sequences with different species labels into
the same clusters. Purity, instead, considers only the second situation and would wrongly
suggest an optimal result even when a big number of very small clusters is detected, as
may be the case, for instance, of methods that use a high similarity threshold.
Calling C1 and C2 the two clustering classifications, the NMI is defined as

NMI(C1, C2) =
MI(C1, C2)√
H(C1)H(C2)

, (6.20)

where H(Ck) is the entropy for the clustering k, H(Ck) = −
∑

i Pk(i)log(Pk(i)), with Pk(i)
being the probability that an object is picked at random from Ck, and

MI(C1, C2) =
∑
i∈C1

∑
j∈C2

P (i, j)log

(
P (i, j)

P1(i)P2(j)

)
(6.21)

is the Mutual Information (MI), that depends on P (i, j), the probability that an object
picked at random falls in both class i in C1 and class j in C2. The NMI score ranges from
0 to 1, with 1 indicating perfect correspondence between the two clustering.
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Results

The simulated dataset contains 24289 non chimera sequences and is a complex sample of
932 hierarchically related species (OTUs) with a population ranging from a few units to
thousands of elements. The intrinsic dimension of the dataset estimated by DANCo [89]
was 7 and The LOC-kNN clustering returned a total of 132 clusters, from which 2805
sequences were excluded because classified as halo. The average abundance of the recon-
structed OTUs was 162 (± 135), while the true average size of the simulated OTUs was
28 (± 61).
We may already notice that LOC-kNN detects a smaller number of clusters with a general
bigger size than expected. In particular, as shown in the following, LOC-kNN returns
good estimates for clusters that are not too small, for instance with a population bigger
than 50. The reason of such behavior relies mainly in two issues. The first one is that,
when a cluster is composed by a small number of elements, it is difficult to give a reliable
estimate of its density. The second one, instead, is related to the hierarchical relation
between bacteria. Because of this, in fact, small clusters will probably not be isolated
but, instead, they may be close to some bigger cluster. In this case, the algorithm will
probably merge the two clusters because it will not be able to detect a significant change
in the density distribution.
The halo detection step has been added to LOC-kNN as an attempt to detect sequences
that may belong to small clusters and were wrongly assigned. As we will show, this
enables to improve the LOC-kNN results, but further refinements should be performed in
the future to achieve a more truthful clustering.
Among the 2805 halo sequences, 1926 actually belong to clusters with abundance less than
50. However, other 4844 sequences are still wrongly merged to bigger clusters and are part
of the 21484 non-halo sequences.
In order to assess and compare the performances of the clustering methods that we consid-
ered, we focused on three measures. First, we checked if the number of detected clusters
was similar to the truth. Then, we computed the Normalized Mutual Information score
comparing each clustering outcome with the ground truth. And finally, we compared the
RSA distributions in the form of log(1− cum), where cum indicates its cumulative. Since
we noticed that LOC-kNN has bad performances for very small clusters but may give good
results for bigger populations, we performed the analysis considering different thresholds
and excluding the sequences that, according to the true classification, belonged to OTUs
with abundance less than the threshold. In this way, we were able to evaluate the perfor-
mances of LOC-kNN for highly populated clusters independently of the presence of the
smaller ones.
Moreover, we performed the comparison first excluding the halo sequences from all results
and then considering all the sequences and adding the OTUs of the re-clustering step to
LOC-kNN.
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7.1 Excluding halo sequences

Fig. 7.1 shows the number of clusters obtained when considering only sequences that
belong to clusters bigger than increasing thresholds (x-axis) and also excluding those of
the halo. Results are shown for all the evaluated methods and the black line indicates the
ground truth. As anticipated before, LOC-kNN shows good performances if we exclude
small clusters (abundance . 50). These are in fact not detected, as can be also seen from
the Preston plots in Fig. 7.3 that compares the obtained RSA distribution with the ground
truth in the form of Preston plot. In the other methods, it is clear that the choice of the
similarity threshold has great impacts on the performances. Both mothur and UCLUST
approximately detect the correct number of OTUs if we do not introduce a threshold in
the minimum abundance and if we use a similarity threshold of 93%. However, excluding
the rarest sequences, the number of clusters turns out to be always overestimated, even
at 93% threshold, and changing the similarity threshold produces worse results. CROP
is the method that gives better results, and this is probably due to its soft threshold. In
this case, using 95% or 97% of similarity threshold gives similar results that are both in
agreement with the ground truth.

Figure 7.1: Number of clusters (logarithmic scale) when varying the minimum cluster size. Halo sequences
were excluded.

The NMI scores are plotted in Fig. 7.2. Again, the x-axis indicates the minimum abun-
dance of the ground truth OTUs included in the comparison. Accordingly to the previous
result, LOC-kNN shows good agreement with the ground truth for clusters with more
than ∼ 50 elements, while mothur and UCLUST outcomes highly depend on the cutoff
and achieve the best performances at 93%. The dependence on the similarity threshold is
now highlighted also for CROP, whose best NMI scores are achieved at 97% but decrease
at 95%.
Finally, Fig. 7.3 compares the Preston plot obtained by LOC-kNN with the ground truth
and Fig. 7.4 compares the RSA distributions obtained with all the four methods. Also in
the log(1−cum) plots, the black line indicates the ground truth. The reported distributions
were all computed considering only sequences that belong to clusters with a minimum size
of 50 elements according to the ground truth classification. Halo sequences were also
excluded. The RSA distribution of abundant clusters obtained with LOC-kNN shows
good agreement with the ground truth and its results are comparable with those obtained
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Figure 7.2: NMI index obtained while restricting to the most abundant species, starting from the full
sample (population greater than zero). Halo sequences were excluded.

with CROP. UCLUST shows the worst performances and mothur roughly reconstructs the
true distribution only with 93% similarity threshold.

Figure 7.3: Preston plot representing the ground truth RSA (gray) and the abundances obtained with
LOC-kNN (light blue). Halo sequences were excluded.
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Figure 7.4: RSA distributions obtained for different clustering methods including only species with at
least 50 individuals and excluding halo sequences.

7.2 Re-clustering halo sequences

Re-clustering the halo sequences with the proposed procedure (LOC-kNN + KDE) pro-
duces a RSA distribution that is comparable with the one that we would obtain considering
the true classification, as shown by the Preston plots in Fig. 7.5. This suggests that, if
we collected all and only the small clusters sequences in the halo set, we would be able to
reconstruct their OUTs.

Figure 7.5: Preston plot of the halo sequences for the ground truth classification (gray) and the KDE
clustering (light blue).

The NMI scores obtained with the LOC-kNN + KDE method are still comparable with
the other methods if we only consider OTUs with at least ∼ 50 elements. Since the re-
clustering shows good performances, this implies that the problem has to be found in the
halo detection step, as suggested before. Note, moreover, that the decrease of the NMI
score for high values of the abundance minimum is due to the fact that some sequences
of the most abundant clusters have been wrongly included in the halo set, and this is
also why we did not observe this trend in Fig. 7.2, where halo sequences were excluded in
advance.
Finally, the estimate of the total RSA distribution, without excluding any sequence, is
improved by the re-clustering step, in the sense that we are able now to roughly reconstruct
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Figure 7.6: NMI index obtained while restricting to the most abundant species, starting from the full
sample (population greater than zero).

also the left-hand side of the curve, that is however still underestimated, as shown in
the Preston plots of Fig. 7.7 and in the log(1 − cum) plots in Fig.7.8 (a), in which no
threshold on the minimum OTUs abundance was applied. Moreover, excluding the OTUs
that in ground truth have less than 16 elements, i.e. using a lower threshold then before,
we already obtain a RSA that is comparable with the best results obtained with other
methods, specifically with CROP and especially for what concerns the distribution tail
(see Fig.7.8 (b)).

Figure 7.7: Preston plot representing the ground truth RSA (gray) and the abundances obtained with
LOC-kNN + KDE (light blue).
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(a) RSA distributions computed with different clustering methods without excluding any
sequence.

(b) RSA distributions computed with different clustering methods considering only se-
quences that belong to species with abundance > 16.

Figure 7.8
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Discussion

In this work we proposed to use the recently developed LOC-kNN method to cluster 16S
rRNA sequences into OTUs. This is a crucial step in the analysis of bacterial ecosystems
such as the Gut Microbiota and its main limitation is usually the dependence on a prede-
fined similarity cutoff that fixes the clusters sizes. The use of a threshold may be appealing
according to the idea of studying the system at different phylogenetic levels, as we also
did in Part I. However, a parameter-free clustering may reconstruct the data structure
in a more reliable way and may thus provide a better tool to re-define the concept of
species and learn, for instance, the ecosystem biodiversity. In LOC-kNN, the clustering is
performed by estimating the data topography and density distribution. The algorithm is
able to correctly detect clusters that are not too small (i.e. with more than 50 elements).
The NMI score for LOC-kNN, when excluding OTUs with less than 50 elements, is in
fact 0.98, indicating good agreement with the ground truth. The LOC-kNN performances
in the reconstruction of abundant clusters are actually better than those achieved with
mothur and UCLUST, considering the whole biologically meaningful range of similarity
thresholds (93% to 97%), and are comparable with CROP at 97%, with the advantage
of not relying on a predetermined cutoff. CROP is the clustering method, among the
considered ones, that gives better results and, interestingly, it is based on the use a soft
threshold. When this threshold is set to 97%, it is able to reconstruct the true clusters,
showing very good concordance with the ground truth, for what concerns both the cluster
composition and the RSA distribution. However, results worsen if we consider a different
threshold (95%).
In order to reconstruct smaller clusters, that are not detected by LOC-kNN, we proposed a
procedure that reveals sequences with ambiguous assignment (halo) and re-clusters them
on the basis of the distances distribution. The re-clustering method shows satisfying
performances, even if the halo detection step still misses a fraction of wrongly classified
sequences and thus needs some further improvement.
Finally, we remark that, even if the use of a fixed similarity threshold to cluster 16S
rRNA sequences into OTUs may be appealing, under the idea of reproducing different
phylogenetic levels, we think it would be more interesting to detect the true structure
of the dataset, avoiding, for instance, the further and incorrect partitions that would be
obtained with high similarity thresholds. When dealing with real data, in fact, it would be
difficult to know in advance which threshold to use and, probably, the best choice would
not even be the same for all species. For these reasons, we conclude that the modified
LOC-kNN method is a promising tool, that, with some further improvements, may yield
an important contribution to the study of bacterial ecosystems biodiversity.
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Introduction

9.1 Protein domains and evolution

Proteins are long unbranched polymer chains called polypeptides, created by joining amino
acids into particular sequences. Through billions of years of evolution, these sequences have
been selected to give proteins useful functions, such as catalyzing reactions, maintaining
structures, generating movement, sensing signals, and so on. Studies on the conformation,
function and evolution of proteins suggest to consider the protein as a set of independent
segments that constitute its organization units, so as its evolutionary components. These
are called protein domains and are defined as substructures produced by any contiguous
part of a polypeptide chain that can fold independently of the rest of the protein into
a compact and stable structure [98]. Different domains of a protein are often associated
with different functions. They usually contain between 40 and 350 amino acids, and they
are the modular unit from which many larger proteins are constructed. The smallest
protein molecules contain only a single domain, while larger proteins can contain several
dozen of domains, often connected to each other by short, relatively unstructured lengths
of polypeptide chain that can act as flexible hinges between domains. The particular
amino acid sequences that form protein domains and hence proteins, are determined by
the genetic code written in the cell DNA genes and are the result of billions of years of
evolution. Thanks to accidents and mistakes in the normal mechanisms by which genomes
are copied or repaired when damaged and as a consequence of natural selection and non-
random survival, genomes undergo evolutionary processes and this allows the evolution
of organisms complexity through the increase in protein repertoires. The mechanisms by
which protein evolution occurs are mainly [98][99]: (i) duplication of sequences that code
for one or more domains; (ii) divergence of the duplicated sequences by mutations, dele-
tions and insertions to produce modified structures that may have useful new properties
and be selected; (iii) recombination of genes that results in novel arrangements of do-
mains (domain shuffling); (iv) relocation of transposable DNA elements, that are parasitic
DNA sequences that spread within the genome, often disrupting or altering gene func-
tions and occasionally creating novel genes; and (v) horizontal gene transfer, by which
genes are transfered from one species of cell to another, especially in prokaryotes. All
these processes can be seen as occurring independently in each protein domain composing
the evolving protein, and for this reason protein domains are considered the evolutionary
units of proteins. Therefore, many aspects of the evolutionary process that generated the
current protein ensemble for each organism, can be investigated by studying the evolu-
tion of protein domains. Here, we describe protein domains as elements (or species) of a
population and we aim to describe the ecological dynamics that lead their evolution. As
for the Gut Microbiota (see 1), we concentrate on the RSA, that is the Relative Species
Abundance distribution. This describes how many species have a certain number of in-

74



Chapter 9

dividuals and its form is the stationary solution of the stochastic process that rules the
system evolution. We will consider the protein domain population of several Bacteria.
Taking into account thousands of bacterial species, we will also be able to compare the
differences in the protein domain distributions and to compare them with the classical
taxonomic classification.
In the following, we will describe an appropriate stochastic model for the protein domain
ecosystem. Such model predicts that protein domains are generated through an inhomo-
geneous Poisson process with Lognormal success rate. We will see how, for the protein
domain ecosystem, it is essential to introduce environmental noise, that we instead ne-
glected when describing the Gut Microbiota, and to consider Gompertzian model for the
death rate, according to which that the death probability increases with time. This is
particularly realistic for protein domains, since death is caused by mutations that nor-
mally accumulates over time, so that the longer a domain is present in the genome the
higher is the probability that mutations have transformed it into a new domain or in a
sequence that is not a domain anymore. We will explain how, starting from bacterial
genome sequences we inferred the protein domain distribution and, finally, we will present
the results and some considerations.

9.2 Birth-Death-Innovation models and drawbacks

Studies from the early 2000s, suggested that the distributions of several genome-related
quantities follow power law trends. The frequency distributions of proteins or domains in
different proteomes appeared in fact to fit the power law: P (i) ≈ ci−γ where P (i) is the
frequency of domain species including exactly i members, c is a normalization constant
and γ is a parameter, which typically assumes values between 1 and 3 [100][101][102].
Power distributions arise in an extraordinary variety of contests, from words frequencies
in linguistic, to the distribution of links between documents in the Internet, to the number
of species that become extinct within a year. Power laws have been especially studied in
network theory [103], to describe the distribution of the number of links, or degree, of
nodes. In our contest, nodes would correspond to particular kind (species) of protein
domains, while the node degree would indicate the species abundance, that is the number
of protein domain elements of that particular species. The principal pattern of network
evolution that ensures the emergence of power distributions is preferential attachment,
whereby the probability of a node (protein domain species) to acquire a new connection
(increasing its abundance) increases with the number of connections (abundance) this node
already has. A network whose degree distribution is a power law is called scale-free network
to underline the fact that the shape of such distribution remains the same regardless of
the scaling of the analyzed variable. This property reminds us of demographic noise, that
produces a constant increase in the species abundance independently of its size.
Another recent study proposed a more general distribution, claiming that many biological
systems are better described by the so-called generalized Pareto function, P (i) = c(i +
a)−γ , where a is an additional parameter [104][105]. Obviously at large i (i � a), a
generalized Pareto distribution is indistinguishable from a power law, but at small i, it
deviates significantly, with the magnitude of the deviation depending on a. The importance
of the analysis of frequency distributions of domains or proteins lies in the fact that distinct
forms of such distributions can be linked to specific models of genome evolution. For this
reason, the authors proposed a class of simple evolutionary models, which are called birth
death innovation models (BDIM) and include: (i) domain birth, due to duplication; (ii)
domain death, as a result of inactivation and loss; (iii) and innovation or emergence of a
new species, that may occur, for example, because of extensive modifications of a member
of an existing species, horizontal gene transfer or even due to the origin of a new protein
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from non-coding a sequence.
This kind of modeling completely disregards the protein domain identity, but gives rise
to equilibrium distributions of protein domain abundances that can be compared with
empirical data [106]. The authors suggested to consider linear birth and death rates,
respectively given by λi = λ(i + a) and δi = δ(i + b). This model is equivalent to the
one proposed by Volkov [24] (see Eq. 78 in Sec. 0.7.5) and the stationary distribution
is indeed a Negative Binomial, that tends to the trunkated Log-Series distribution when
innovation is small, as already pointed out when discussing Volkov’s Negative Binomial
RSA (see Eq. 85 in Sec. 0.7.5). Karev et al. showed that the simplest model that results in
a good fit to the observed domain abundance distributions for the several prokaryotic and
eukaryotic genomes that they analyzed, is the so called second-order balanced linear BDIM,
where λ = δ [107]. In this case, the asymptotic distribution turns out to be a power-law.
However, in order to obtain more consistent estimation of the genome evolution time, the
authors had to introduce a quadratic term, setting λi = λ(i+ a)(i+ 1) and δi = λ(i+ b)i
and even with this correction, the estimated mean formation time for the protein domain
species was ∼ 1011 years, while it is estimated that the common ancestor to all cellular
life may have arisen about 3.8 · 109 years ago [108].

9.3 The Log-Normal hypothesis

Here, we propose an alternative model for the protein domain RSA, that better fits the
data. The main peculiarities of this model are the presence of environmental noise, besides
the demographic one, and the hypothesis of Gompertzian death. As described in Sec. 0.7.6,
under these assumptions the RSA turns out to be a Poisson distribution with Log-Normal
rate λ(x), that is called Poisson Log-Normal. Note that the Poisson distribution rate λ(x)
describes the probability of sampling a protein domain species with x individuals in an
infinitesimal time interval and for this reason we refer to it as the abundance model.
Log-Normal behavior has been previously hypothesized for the abundances of the chem-
ical components in the cell and it was empirically observed for protein abundances in
Escherichia coli [109]. Recalling that protein domains are protein subunits, it is clear
how the Log-Normal hypothesis for protein domains abundances is consistent with this
observation. Furusawa et al. [109] also proposed a chemical reaction model to explain the
protein abundance log-normality. Intuitively, log-normality arises when the population
growth, besides depending on the number of individuals that are present, is also influ-
enced by some multiplicative noise, such as the environmental one. Biochemical reactions
inside the cell consist of a huge number of catalytic reaction processes in which several
molecular species participate. Clearly, the probability of interaction between the molecules
involved in the reactions depends on the number of available molecules. At the same time,
however, all chemical reaction processes are inevitably accompanied by fluctuations arising
from the stochastic collisions of chemicals, that act as environmental noise.
The reason for which this kind of process gives rise to a Log-Normal distribution can be
understood considering the corresponding population dynamic equation:

dx(t)

dt
= bx(t) (9.1)

where b is the growing rate. The system is subject to environmental noise, that is mul-
tiplicative. Thus, we can write b = b̄ + σ2

e , where b̄ is the temporal average of the birth
rate, while σ2

e · x(t) is the noise. Note that the environmental noise does not promote the
growth of some species, as the demographic noise would do, but has the same effect on all
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species, depending on their abundances. Substituting the expression for b, we obtain

dx(t)

dt
= (b̄+ σ2

e) · x(t)

⇒dx(t)

x(t)
= (b̄+ σ2

e)dt

⇒d(log(x(t))) = (b̄+ σ2
e)dt

⇒d(log(x(t)))

dt
= b̄+ σ2

e (9.2)

The logarithm of the species abundances x(t), thus, follows a Brownian motion and its
stationary distribution is expected to be a Normal distribution, so that the stationary
distribution of x(t) will be a Log-Normal distribution.

9.4 Population dynamic model and the Poisson Log-Normal
distribution

A more general stochastic model considers, besides the environmental noise, σ2
e , also the

demographic one (influx), σ2
d/x, so that the birth rate is given by bx = r + 1

2
σ2
d
x + 1

2σ
2
e .

Moreover, a density regulation term (death rate) should also be included to take into
account that protein domains may be lost or inactivated. An appropriate model for protein
domain death seems to be the Gompertzian one, where the death probability exponentially
increases with time [110], so that the abundance decrease is described by

− dx

dt
= rx; r = r0e

kt (9.3)

Integrating in dt we obtain x = x0e
b(1−exp(kt)), where b = r0/k, and deriving again for dt

we have

dx

dt
= −x0e

b(1−exp(kt))bkekt

= −kxlog(x/x0)− b, (9.4)

given that log(x/x0) = b(1 − exp(kt)). In particular, we write the Gompertzian death
rate as dx = −γxlog(x + ε), where ε = σ2

e/σ
2
d. As mentioned before, the Gompertzian

hypothesis is a suitable one for protein domains because their loss, or inactivation, becomes
more likely as the number of mutations due to replication errors increases. Then, since
mutations accumulate over time, it is reasonable to suppose that the probability of having
a protein domain death also increases with time. The stochastic Langevin equation for
the proposed model is

dx

dt
=

[
r +

1

2

σ2
d

x
+

1

2
σ2
e

]
· x− x · γ · log

(
x+

σ2
e

σ2
d

)
+
√
σ2
dx+ σ2

ex
2
dB(t)

dt
(9.5)

and was derived by Engen and Lande [29] as detailed in Sec. 0.7.6. The stationary dis-
tribution turns out to be an inhomogeneous Poisson distribution with Log-Normal rate
given by

λ(x) =
αw0

x+ ε
e
− 1

2
[ln(x+ε)−r/γ]2

σ2e/2γ (9.6)

where ε = σ2
e/σ

2
d and

α =
2

σ2
e

e
γ

σ2e

[
ln(1+ε)− r

γ

]2
. (9.7)
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Material and Methods

10.1 Retrieving data

In collaboration with J. Koehorst, E. Saccenti, P. Schaap and M. Suarez-Diez from the
Laboratory of Systems and Synthetic Biology of Wageningen University (Netherlands),
we downloaded the genome sequences of 3374 bacteria from the NCBI database [111].
In particular, we discarded the so-called draft genome sequences and retained only the
higher quality fully circular genome sequences, that (presumably) do not contain any gap
and are retrieved upon extensive manual curation and additional sequencing, if required.
GeneBank files containing genome sequences and existing annotations were retrieved from
the NCBI database and imported into the Semantic Annotation Platform for Prokary-
otes [112] using the EMBL/GBK to RDF SAPP module. De novo identification of ge-
netic elements (gene calling) was performed using Prodigal (2.6) [113] with codon table
11. Dedicated SPARQL queries were built to extract proteins and their sequences from
the RDF triplestore used by SAPP to store the intermediate results. InterProScan [114]
was used to identify protein domains in the corresponding sequences. Due to the high
number of distinct protein sequences to be analyzed, the SURFsara GRID was used (Grid
reference) to concurrently analyze the sequences. Dedicated SPARQL queries were used
to retrieve the identified domains and assign them to the originating protein and bacte-
rial genome. Finally, the matrix generating module from SAPP was used to generate a
matrix containing for each of the studied genomes and for each of the identified protein
domains the number of instances of the detected domain (domain abundance). Overall
3374 bacterial genomes were analyzed and 13934 distinct domains were identified.

10.2 Fitting the protein domains RSA

Protein domains RSAs were fitted with the Maximum Likelihood Estimation method
implemented in R ‘sads’ package v.0.3.1 [115]. As mentioned in Sec. 2.5, even if the
common way to visualize the RSA is in the form of Preston plot, it is better not to use this
representation when fitting experimental data. The Preston plot, in fact, is an histogram
with logarithmic bins in which every bin averages the information between its minimum
and maximum. The loss of information derived by this representation makes it difficult to
evaluate the model performances and, more importantly, to distinguish between similar
distributions, such as the Poisson Log-Normal and the Negative Binomial. In addition,
even if the RSA predicted by the proposed model is a Poisson Log-normal that depends
on x+ ε = x+ σ2

e/σ
2
d (see Eq. 9.6 in Sec. 9.4), we chose to fit the stationary distribution

in terms of x, neglecting the transposition term, so that to use the likelihood definition
derived in [116].
We modeled the data both with a truncated Poisson Log-Normal distribution and with
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a truncated Negative Binomial, so that to test and compare different ecological hypoth-
esis. In both cases, truncation was performed to exclude the 0 abundance class, that is
indeed not observable in empirical data. Akaike Information Criterion (AIC) [72] and
R-squared were computed to assess the models performances and comparison [115] (see
Part II Sec. 2.5.3).

10.3 Comparing RSA parameters with taxonomy

One sample was excluded because its Poisson Log-Normal parameters µ and σ were outliers
and its RSA was peculiar, having a maximum abundance of 32. For this reason, in the
Results we will refer to 3373 bacterial genomes.
In order to compare the distribution of µ and σ with a null model, we randomly shuffled
the abundances of protein domains between different Bacteria.
Principal Component Analysis with covariates µ, σ and the total number of protein do-
mains species S was performed to determine whether bacteria belonging to different taxa
are characterized by particular model parameters and cluster together. We performed a
Ward hierarchical clustering [117] based on the first two PCA components, computing a
number of cluster equal to the number of Species. Finally, we compared the clustering in
the PCA space with the taxonomic classification at the level of Species using the Normal-
ized Mutual Information (NMI) [97] score, that we already defined in Part II Sec. 6.6.

10.4 Comparing RSA parameters with phylogeny

As detailed in Part I and II, taxonomy is a human made classification that not always
reflects the evolutionary relations between bacteria. Hence, in order to compare the clus-
tering based on the model parameters with the phylogenetic tree, we retrieved the 16S
rRNA reference sequences of the considered bacteria from the silva database [118]. For 248
bacteria, the 16S rRNA sequence was not present, so we considered only the remaining
3124 for the following analysis.
Sequences were aligned using the SINA aligner integrated in the silva web tool [118] and the
distance matrix was then computed with mothur [67], as in Sec. 6.1. For each taxonomic
level, we considered only bacteria for which the classification was known and we compared
the clustering based on the protein domains RSA and the one computed using the 16S
rRNA distance matrix. As before, the RSA based clustering was founded on the first
two principal components of the Poisson Log-Normal parameters obtained from the fit.
In both cases we performed a Ward hierarchical clustering fixing the number of clusters
to the number of taxa at the selected taxonomic level. Then, we used the NMI score as
measure of clustering agreement. Finally, both clustering outcomes were also compared
with the taxonomic classification.
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Results

11.1 Model selection

(a) Preston plot. (b) Cumulative distribution.

(c) q-q plot.

Figure 11.1: Example of Preston plot (a), cumulative RSA (b) and q-q plot (c) obtained fitting the protein
domain population of one of the selected bacterial genomes.

The Akaike information Criterion (AIC) [72] (see Sec. 0.6.1) preferred the Poisson Log-
Normal model to the Negative Binomial in ∼ 94% of the 3373 fitted bacterial genomes.
The proposed model resulted better also compared to the Log-Series, that depends only
on one parameter, having smaller AIC in ∼ 99% of the cases. The mean R-squared for
the Poisson Log-Normal model was 0.96 with a minimum value of 0.86. Fig. 11.1 shows
one example in which data were fitted with the Poisson Log-Normal distribution. The
upper-left figure (a) shows the empirical Preston plot and the fitted curve overlapped
in orange. The upper-right plot (b) represents the logarithm of (1 − cum), where cum
is the cumulative distribution of the data RSA (black) or of the Poisson Log-Normal
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(orange). Finally, the bottom figure (c) is the quantile-quantile plot, that also indicates
good agreement between the empirical and predicted data.

11.2 Comparing RSA and taxonomy

Plotting the Poisson Log-Normal location parameter µ as a function of the square of the
scale parameter σ2 obtained for all Bacteria, reveals an inverse relationship between the
two parameters (see Fig. 11.2 (left)).

Figure 11.2: Plot of the Poisson Log-Normal parameters µ versus σ2 obtained for the 3373 bacterial
genomes. In the right-hand figure, green dots represent the results for 3373 random populations of protein
domains.

Figure 11.3: Plot of the Poisson Log-Normal parameters µ versus σ2 obtained fitting the protein domains
RSA of bacteria belonging to the Proteobacteria phylum. Different colors correspond to different orders
as indicated in the legend .

We may recognize the presence of roughly parallel stripes in the plot, that suggests a
cluster structure of the data. If we consider the null model obtained by randomly shuffling
the protein domain abundances between different bacteria, the resulting Preston plot is
still well fitted by the Poisson Log-Normal distribution and its parameters are distributed
as a single stripe in the µ versus σ2 plot, as shown in Fig. 11.2 (right). In Fig. 11.3, we
plotted with different colors different orders of the Proteobacteria phylum and it emerged
that the stripes are related to the bacterial phylogeny. The parameters of the various
bacterial genomes are not simply sampled from the null model, but are characterized
by different dynamic parameters. In Sec. 11.3 we will propose a Principal Component
Analysis representation in which the relation between the phylogenetic structure and the
model parameters is even clearer.
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We may also observe that the location parameter µ has negative values. This seems to be
counterintuitive since we defined µ = r/γ (see Eq. 9.6), and both r and γ are supposed
to be positive. However, as mentioned before, the theoretical RSA is a Poisson Log-

Normal distribution in x + ε = x + σ2
e

σ2
d

but, for simplicity, we neglected the translation

term during the fitting. However, the negativity of µ suggests that the effect of ε = σ2
e/σ

2
d

is not negligible compared to x and it is actually greater than r/γ. To understand the
shifting effect of ε, we can rewrite the exponential term of the Log-Normal in Eq. 9.6,
[log(x+ ε)− r/γ], as [log(x/ε+1)− (r/γ− log(ε)], so that the location parameter becomes

µ =
r

γ
− log(ε) =

r

γ
− log(

σ2
e

σ2
d

) = [
r

γ
− log(

σ2
e

γ
) + log(

σ2
d

γ
)] (11.1)

Moreover, since σ2
e
γ = σ2 is the Log-Normal scale parameter, we can understand now the

inverse relationship between µ and σ, or better log(σ2).

11.3 Protein domains RSAs and evolutionary distance

As noticed in the previous section, the model parameters for different bacteria seem to
reflect their phylogenetic relationship. For this reason, we performed a Principal Com-
ponent Analysis in which we transformed the data based on µ, σ and the total number
of protein domain species S, so that to visualize as much of their variance as possible.
Considering the 3251 bacteria for which the Family classification was known, the first two
PCA components turn out to be

x = −0.00014µ+ 0.00016σ + 0.99999S

y = −0.88700µ+ 0.46176σ − 0.00020S (11.2)

The x-axis is almost entirely determined by S, indicating that what mostly discriminates
bacteria is the number of different protein species. This is highly correlated with the total
number of protein domains, and finally with the genome length, so that it is comprehensible
that it may be related to the phylogeny. However, the y-axis is dominated by µ and σ. The
following figures show the 3251 bacteria for which we represented in the PCA components
space. We considered the Phyla for which we had at least 10 genomes. In the figures on
the left column, we plotted in white the parameters of all 3251 bacteria and in red those of
the considered phylum. In the central column, we only considered the selected phylum and
plotted bacteria belonging to different families with different colors. Finally, on the right-
hand column we used different colors to represent different genera. All plots show that
bacteria that have the same taxonomic classification tend to cluster together. Accordingly,
the Normalized Mutual Information (NMI) score between the taxonomic classification at
the Species level and the hierarchical clustering based on the two PCA components is
0.870, indicating good agreement. As expected, most of the variation that discriminates
bacteria in the PCA plots is enclosed in the x-axis, dominated by S. However, some
families and genera are separated towards the y-axis. This is for example the case of the
red and yellow families of the Actinobacteria phylum and suggests that our modeling is
actually capturing the mechanisms of genome evolution.
Finally, Tab. 11.1 shows the NMI scores obtained when comparing the clustering based
on the protein domains RSA, i.e. on the Poisson Log-Normal parameters, with the one
based on the 16S rRNA distances, that reflects the phylogenetic tree. Here we considered
only the 3124 bacteria for which the 16S rRNA reference sequence was available in the
silva database and, at each taxonomic level, we also excluded bacteria for which the
taxonomic classification was not known. The row ‘Number of Bacteria’ reports the total
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number of bacteria considered. Comparing the rows ‘p. domains RSA VS taxonomy’ and
‘p. domains RSA VS 16S rRNA’, we notice that the groups of bacteria determined by
the RSAs parameters reflect better the phylogenetic distances rather than the taxonomic
classification. We can conclude that the protein domains RSA of bacteria that are close
in the evolutionary tree have similar shapes, reflecting the closness with their common
ancestor. Moreover, these results confirm what we already stated in Part I and II, i.e. that
taxonomy is a biased classification. Although taxonomy and phylogeny are, as expected,
strictly related and have the highest NMI scores in Tab. 11.1, protein domains RSAs,
that describe the genome composition and evolutionary dynamics, are more congruent
with the 16S rRNA based clustering. Lastly, note that the NMI scores decreases when
considering higher taxonomic levels (i.e. from Species to Phylum). This may be due to
the fact that at the Phylum level, for instance, the number of clusters is much lower than
at the Species level, as indicated by the ‘Number of Clusters’ row. Interestingly, also the
agreement between phylogeny and taxonomy decreases at high taxonomic levels, and this
may suggest that the effect we observe is connected with the high heterogeneity of the
bacterial population at these levels.

Phylum Class Order Family Genus Species

Number of Bacteria 3123 3043 3079 3003 3096 3124

Number of Clusters 31 52 126 238 655 1523

P. domains RSA VS taxonomy 0.259 0.353 0.530 0.630 0.744 0.876

P. domains RSA VS 16S rRNA 0.428 0.506 0.600 0.660 0.770 0.882

16S rRNA VS taxonomy 0.671 0.790 0.869 0.902 0.928 0.960

Table 11.1: NMI scores that compare the clustering based on the protein domains RSAs, the one based
on the 16S rRNA distances and the taxonomic classification of bacteria. Results are shown at different
taxonomic level, as indicated by the column names.
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Figure 11.17: Representation of the 3251 bacterial genomes for which the Species classification is known in
the space defined by the first two PCA components. Left: red dots correspond to the phylum specified in
the title, white dots represent all the other bacteria. Center: different color correspond to different families
of the selected phylum. Right: different color correspond to different genera of the selected phylum.
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Discussion

The birth death model proposed by Volkov [24] is not a good assumption for the protein
domains ecosystem. Unlike what we found for the Gut Microbiota, the problem here is
not the violation of the neutrality hypothesis, but the importance of environmental noise,
that was instead neglected by Volkov. Moreover, when dealing with genome evolution,
a more suitable model for the death rate is the Gompertzian one, in which the death
probability increases with time. Under these new assumptions, the predicted stationary
distribution for the RSA is a Poisson Log-Normal [29]. The model now fits well the
protein domain abundances, as we verified on more than 3000 bacterial genomes, and
has better performances compared to Volkov’s Negative Binomial. Our results show that
the demographic noise may also be important, even if the environmental one turns out to
prevail over the whole term r/γ+ log(σ2

d). Finally, the differences in the model parameters
reflect the evolutionary distances among bacteria. The variable that mostly discriminates
among taxonomies is the total number of protein domains in the genome. This is coherent
with the fact that genome evolution manifests, for instance, through differences in the
genome length, that will be related to the number of protein domains. Nevertheless, some
genera that have approximately the same number of protein domains, are discriminated
by the other model parameters. This suggests that different taxa are characterized by
different dynamic rates. The evolutionary model is the same for all genomes, meaning
that the underlying process is the same. However, the parameters have some discrepancies
and this indicates a niche structure in the bacterial genomes, where niches correspond to
clusters in the phylogenetic tree. To better understand this concept, we may think of
considering all the protein domains of all bacteria together, as a single ecosystem. Our
results suggest that, in this case, neutrality would not hold but we would find separate
niches that, at last, will include protein domains that belong to different taxa (i.e. phyla,
genera, species, etc.), reflecting the phylogenetic relationships among bacteria.
The clusters obtained according the RSA parameters show also good agreement with the
16S rRNA based phylogenetic distances, and this confirms that the Poisson Log-Normal
model catches the mechanisms of genome evolution. We know, in fact, that bacteria that
are close from an evolutionary point of view, inherited their genomes from a close common
ancestor, and this is also why they have similar 16S rRNA sequences. Their genomes will
consequently be pretty related and their dynamic rates will also be expected to be more
similar than those of farther bacteria. It is clear, then, why obtaining a coherence between
the phylogenetic tree and the RSA modeling is an important result.
Moreover, in support to our hypothesis of genome evolution, in a previous work by Fu-
rusawa et al. [109] it was reported that the abundances of proteins inside the cell are
Log-Normal and, in an unpublished work, we also observed that the lengths of the non-
coding region of genes follow the same distribution.
To conclude, we mention that an interesting development of this work would be to derive
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an estimate for the expected protein domains formation time, as in the work by Karev et
al. [107], and to verify whether we obtain a more reliable measure.
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Conclusion

In this thesis we aimed to describe the dynamic processes that govern the evolution of
two very different ecological systems. First, we considered the ensemble of bacteria that
populate the gut (Gut Microbiota), that has been proven to have great impact on human
health, being associated, for instance, to several metabolic and immunological diseases.
Then, we dealt with the set of protein domains that populate the genome of living organ-
isms. In particular, we recovered the abundances of protein domains for several bacterial
genomes with the aim of revealing the main mechanisms of genome evolution.
In general, the neutrality hypothesis, that was proposed by Hubbell as the Ockham’s
razor for ecology [5], is a good approximation for both the Gut Microbiota and the protein
domains ecosystems. In the first case, however, the equivalence of species is not entirely
valid and a better description is obtained relaxing the neutrality assumption with the
introduction of two non-interacting populations.
In Part I we have proved the importance of the use of a stochastic framework when dealing
with biological systems. Taking noise into account, in fact, enabled us to derive a biodi-
versity index that distinguished between healthy and unhealthy aging. Biodiversity was
already supposed to play an important role in the relationship between the Gut Micro-
biota and the host health. However, using common diversity indices, that are simply based
on the relative abundances of species, would not allow us to obtain the same prediction
accuracy achieved with our stochastic modeling.
When constructing the empirical distribution of the Gut Microbiota abundances, a funda-
mental step regards the clustering of particular highly conserved DNA sequences (usually
the 16S rRNA gene). This procedure enables to redefine the concept of species, that is
now referred to as Operational Taxonomic Unit, so that to rely only on the phylogenetic
relationships between bacteria rather then on human made classifications. Many algo-
rithms have been conceived to fulfill this task and one of the main issues that still has not
been solved is the requirement of a predefined and mostly arbitrary threshold. For this
reason, in Part II we proposed the use of LOC-kNN, an original clustering method that
was recently developed by M. d’Errico et al. [79]. This is a totally parameter-free algo-
rithm that aims to reconstruct the data topography and shows promising performances
on a simulated dataset, even if some issues will need to be solved in the future to obtain
a better estimate of rarely populated species.
While for the Gut Microbiota the simple birth-death-speciation model proposed by Volkov
[24] was a good approximation of the data, given the above mentioned relaxation of the
neutrality hypothesis, this was not true for the protein domain ecosystem. In Part III
we showed that in this case, besides demographic stochasticity, also environmental noise
should be taken into account. Moreover, a Gompertzian death model seems more ap-
propriate for protein domains, since their loss or inactivation mainly happens because of
mutations or errors that accumulate over time. Following these considerations we were
able to model the Relative Species Abundance distribution of the protein domains belong-
ing to the retrieved ∼3000 bacterial genomes. Interestingly, we observed that bacteria
that are close in the phylogenetic tree, i.e. that have a close common ancestor, also have
similar dynamic rates, suggesting that we are capturing in our modeling the fundamental
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processes of genome evolution.
To conclude, stochastic modeling is a powerful tool when studying biological systems, in
which noise may have important statistical consequences. In particular, in ecology, the
inclusion of different sources of noise in the model, enables to postulate and test hypothesis
on the dynamics of populations. This is true for more standard ecosystems, such as the
Gut Microbiota, but also, for instance, when studying the distribution of the protein
domains species in the genome, and allows us to achieve interesting objectives such as the
construction of predictive models and a deeper understanding of the systems biology.
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