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Abstra
t

The original results presented in this thesis regard two very 
ommon top-

i
s of dis
ussion in the quantum gravity debate: the dynami
al dimensional

redu
tion of spa
etime and lo
ality in quantum gravity regime. The di-

mensionality of the quantum spa
etime is often understood in terms of the

spe
tral dimension; here, a di�erent notion of dimensionality, the thermal

dimension, is proposed. I dis
uss its physi
al properties in relation to those

of the spe
tral dimension through the study of spe
i�
 models of quantum

gravity, in
luding preliminary results obtained in the 
ase of models with

relative lo
ality. I show that, in those 
ases where the spe
tral dimension

has puzzling properties, the thermal dimension gives a di�erent and more

meaningful pi
ture. The statisti
al me
hani
s developed to de�ne the ther-

mal dimension is applied also to the study of the produ
tion of primordial


osmologi
al perturbations assuming a running Newton 
onstant and Rain-

bow Gravity. Con
erning lo
ality, I study in parti
ular the theory of Relative

Lo
ality, a theoreti
al framework in whi
h di�erent observers may des
ribe

the same event as being lo
al or non-lo
al, depending whether it happens in

the origin of their referen
e frame or far away from it, respe
tively. I show

that requiring that lo
ality is relative is enough to guarantee the obje
tivity

of 
ause-e�e
t relation in 
hains of events, the absen
e of 
ausality-violating

loops and pro
esses violating the law of 
onservation of momentum.
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Introdu
tion

The quantum gravity problem

The general relativisti
 des
ription of gravitational phenomena and the quan-

tum me
hani
s of the Standard Model of parti
les physi
s are the most fun-

damental physi
al theories known today. Ea
h of them is spe
ta
ularly 
on-

�rmed by experiments, but until now gravitational physi
s and quantum

physi
s barely �speak� to ea
h other. In fa
t, GR has been 
on�rmed by

experiments on s
ales between 10−6
m and about 1020 m (at this s
ale one

has to postulate the existen
e of dark matter in order to make general rela-

tivity agree with the experimental results), whereas the typi
al appli
ations

of QM and the SM 
on
ern physi
al phenomena at s
ales between 10−8
m

and 10−20
m, the latter being the order of magnitude of the wavelength of the

parti
les 
olliding at LHC. The gap between these two regimes 
overed by

experiments 
omes from the fa
t that gravity is too weak at the energy s
ales

at whi
h quantum physi
s has been tested to dete
t its 
ontribution in the

measurements, whereas the other for
es are either short range or their quan-

tum properties averaged out at the s
ales at whi
h gravitational intera
tion

is relevant, as in the 
ase of ele
tromagneti
 intera
tion. The goal of formu-

lating a theory of Quantum Gravity originates not only from the dis
omfort

that some might have in realizing that the two theories (GR and QM) are

based on very di�erent des
riptions of the world, but is indeed justi�ed by

several genuine s
ienti�
 arguments.

For example, as long as one ignores gravity, the SM gives de�nite pre-

di
tions on the results of a s
attering pro
ess between two parti
les ea
h at

energy of e.g. ∼ 1030 GeV. Su
h high energy pro
esses are not presently

within our te
hnologi
al rea
h, but 
ontemplating them sheds light on the


on
eptual stru
ture of our theories. It is known that the gravitational inter-

a
tion for 
ollisions between two parti
les of energy approximately (or greater

than) the Plan
k energy EP =

√

~c5

G
∼ 1016 TeV 
annot be negle
ted. Es-

timating the gravitational 
ontribution to the s
attering amplitudes (from

7



some e�e
tive-�eld-theory formulation of gravitational intera
tions) one ob-

tains unmanageable divergen
es.

Indeed, the attempts to formulate a lo
al quantum �eld theory of gravity

meet many problems, starting from the formalization of the mi
ro
ausality

postulate, i.e. that two lo
al observables A(x) and B(y)must 
ommute when

x and y are separated by a spa
elike interval. This postulate makes sense in

the spe
ial-relativisti
 lo
al quantum �eld theory sin
e in that 
ontext the

spa
etime metri
 is �xed to be Minkowskian, whereas in GR the metri
 is a

dynami
al variable and therefore, in general, is not given at the beginning of

the analysis. The standard approa
h is then to assume a ba
kground metri


that �xes the spa
etime intervals from the beginning and a perturbation

of the metri
 that 
hara
terizes the gravitational intera
tions. The theory

that one obtains from this pro
edure is non-renormalizable (at least in the

standard sense; it will be 
onsidered in this thesis also the proposal �rst

given by Steven Weinberg of Asymptoti
 Safety, whi
h gives an alternative

understanding of renormalizability in a broader sense).

It appears to be still possible developing QFT on a �xed ba
kground

spa
etime metri
 that is not Minkowskian. In this 
ontext, Hawking found

the famous e�e
t of bla
k hole's radiation ([1℄) studying this kind of theory

on a S
hwarzs
hild ba
kground metri
. Hawking's result represents a serious

theoreti
al 
hallenge sin
e it suggests that information is not 
onserved in

the pro
ess of formation and evaporation of a bla
k hole (see Ref. [2℄ for

re
ent developments in the understanding of the problem).

An argument indi
ating rather 
learly how QG requires a radi
al 
hange

in our des
ription of Nature is Bronstein's argument on the measurability

of the gravitational �eld. He applies to the gravitational �eld the measure-

ment pro
edure 
onsidered by Landau and Peierls in their 
ritique to the

logi
al 
onsisten
y of the newborn QED. In order to measure the ele
tro-

magneti
 �eld in a small region of spa
etime (ideally a point), they studied

the asymptoti
 states of a probe with ele
tri
 
harge e that intera
ts with the

ele
tromagneti
 �eld in that region. What they found is that the un
ertainty

in the value of the �eld in that region is proportional to the ratio e/mi where

mi is the inertial mass of the probe. So the ideal probe would have e/mi ∼ 0
and 
ould be used to determine the ele
tromagneti
 �eld with arbitrary a
-


ura
y. As far as it is known today, there is not su
h ideal ele
tromagneti


probe in Nature. Therefore, Landau and Peierls 
on
luded that sin
e it will

never be possible to make a sharp measurement of the ele
tromagneti
 �eld,

than QED, whi
h admits also eigenstates of ele
tromagneti
 �eld as a basis

of the Hilbert spa
e, is logi
ally in
onsistent. It was then re
ognized by Bohr

and Rosenfeld that QED is instead logi
ally 
onsistent, as the fa
t that there

is no su
h ideal probe is to be taken as a te
hnologi
al limit, sin
e the deter-

8



mination of the existen
e of su
h a parti
le is outside the s
opes of QED

1

.

Bronstein realized the importan
e of this argument for the 
ase of quantum

gravity: for the gravitational �eld the ratio e/mi be
omes mg/mi (mg being

the gravitational mass), but for the Equivalen
e Prin
iple this is for
ed to

equal 1. This means that the gravitational �eld is fundamentally not sharply

measurable. QM formalism allows sharply measurable eigenvalues for all ob-

servable, it might only limits the a

ura
y of simultaneous measurement of

two observables. Bronstein then argued that a new theoreti
al paradigm is

needed to take this 
hara
teristi
 of gravity into a

ount.

This new theoreti
al paradigm is likely to deal with e�e
ts that provide

striking departures from our 
urrent theories. Unfortunately, today one 
an

only spe
ulate about su
h e�e
ts be
ause experimental eviden
e of them

is still missing. A
tually, for a very long time it was a general 
onvi
tion

that QG e�e
ts were observable only for parti
les with Plan
k-s
ale energy,

whi
h is not a

essible in laboratories neither at present nor in the foresee-

able future. Even if it is not possible for present te
hnology to a

elerate

parti
les to Plan
kian energies, it has been observed in the late 90's that it is

possible to have indire
t a

ess to that s
ale by astrophysi
al and 
osmolog-

i
al observations

2

(see Refs.[4℄,[5℄,[6℄,[7℄,[8℄,[9℄ and [10℄ for a re
ent review on

quantum spa
etime phenomenology). In parti
ular, some e�e
ts due to the

quantum stru
ture of spa
etime may sum up along the travel of a parti
le


oming from a far away sour
e. This in
ludes possible modi�
ation to the

energy-momentum relation

E2 − p2 = m2

su
h as, for instan
e to leading order in Plan
k length LP = c~
EP

,

E2 = p2 +m2 + αLPEp
2 +O(LP )

2, (1)

where α is a dimensionless 
onstant of order one. The typi
al e�e
t that

one expe
ts from su
h modi�
ation is to observe an unexpe
ted delay in the

time of arrival of a very high energy parti
le and a low energy one 
oming

from the same short-lived sour
e at an astrophysi
al or 
osmologi
al distan
e.

The quantitative predi
tion on the delay although depends on the details of

the theory, in parti
ular on how the Plan
k length is in
orporated in the

theoreti
al s
heme in relation to Lorentz symmetry.

1

The interest reader may �nd the 
omplete report of this debate in Ref.[3℄.

2

More re
ently it has been argued that quantum opti
s might be used to dire
tly

measure the 
anoni
al 
ommutation relation (and the possible deformation due to the

quantum stru
ture of spa
etime) of the 
enter-of-mass mode of a me
hani
al os
illator with

a mass 
lose to the Plan
k mass (see Refs.[11℄, [12℄, [13℄ for a more 
omplete dis
ussion of

this possibility).
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In fa
t, the Plan
k length is often de�ned as LP =

√

~G

c3
, via the 
ombi-

nation of three relativisti
 
onstants

3

. As long as this is the only operative

de�nition of the Plan
k length, it is simply identifying a length s
ale and

does not pose any problem to the relativisti
 pi
ture of the theory. However,

the moment it a
quires a physi
al meaning as the length of something via

an independent operative de�nition, for example via the deformed dispersion

relation (1) and therefore independently measurable via the time-of-arrival

delay of the kind mentioned above, one has to investigate if su
h operative

de�nition is 
ompatible or not with the other relativisti
 postulates in the

proposed QG theory, as lengths are 
ontra
ted by Lorentz transformations

a

ording to the relative motions of the observers. Then, a �rst possibility is

that there is a preferred frame in whi
h formulate our QG theory. Example

of su
h theories are Ho°ava-Lifshitz gravity and Magueijo-Smolin formulation

of Rainbow gravity. A se
ond possibility is instead that the Lorentz trans-

formations are just a low-energy approximation of a more 
ompli
ated set

of transformations that relates the measurements of two inertial observers

and these transformations are su
h that Plan
k length is a relativisti
 in-

variant just as the speed of light is in Spe
ial Relativity. This is the general

idea of Doubly Spe
ial Relativity (DSR). Some doubly-spe
ial-relativisti


quantum gravity models are k-Minkowski non-
ommutative spa
etime, 2+1
gravity and Relative Lo
ality. A third possibility 
onsidered in this thesis is

that Lorentz transformation are still a valid symmetry of the physi
al laws

and these are su
h that there is no 
ontradi
tion between the existen
e of a

di�erent physi
al regime set by Plan
k s
ale and Lorentz symmetry. Su
h

perspe
tive is that of String Theory, some interpretations of Loop Quantum

Gravity, Causal Sets and Asymptoti
 Safety, to mention the most popular

ones. In this 
ategory, a model inspired by the Asymptoti
 Safety approa
h

will be 
onsider.

Two 
hallenges for quantum spa
etime resear
h

Part of the work presented in this thesis wants to 
ontribute to the devel-

opment of theories formulated on a quantum spa
etime. In fa
t, several

argument suggest that our usual des
ription of spa
etime, whi
h is stri
tly

3

Although very di�erent among ea
h other: c is a relativisti
 invariant by postulate and
Lorentz transformation respe
t this postulate in a non-trivial way, ~ invarian
e is related

to the fa
t that it has dimension of an a
tion and Newton 
onstant is the out
ome of a

IR measurement (�infrared", i.e. for probes of wavelength mu
h longer than the Plan
k

length).
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lassi
al in GR as well as in QM and in QFT, needs to be deeply modi-

�ed in QG, ultimately requiring the formulation of an appropriate notion of

quantum geometry.

Consider for example the following argument. In QM an inertial observer


an in prin
iple operatively 
onstru
t a 
oordinates system with labels on

ea
h spa
etime point by setting up a dense array of pointlike syn
hronized


lo
ks. Ea
h 
lo
k marks the time 
oordinate of the event while spa
e 
oor-

dinates are given by the position of the 
lo
k and are all sharply measurable

sin
e position operators 
ommutes with ea
h other. For the Heisenberg prin-


iple, if ea
h 
lo
k has �nite mass, the observer should still worry about

un
ertainties in time evolution of the referen
e frame, sin
e it is not possible

to determine both position and velo
ity of ea
h 
lo
k sharply, unless she uses


lo
ks with in�nite mass. By this it is really meant that it is possible to adopt

a limiting pro
edure in whi
h heavier and heavier 
lo
ks are used, so that,

using a set of 
lo
ks with an appropriate mass, it is possible to 
onstru
t

a referen
e frame that is "
lassi
al enough" (i.e. the un
ertainties in the

time evolution of the position of ea
h 
lo
k 
an be negle
ted) for any given

sensibility of the experimental apparatus. Sin
e QM ignores gravitational

e�e
ts, this limiting pro
edure is legitimate and logi
ally 
onsistent within

the theory. The same reasoning 
an be applied in the 
ontext of QFT, with

the only di�eren
e that even if spa
etime 
oordinates of events are sharply

measurable, a parti
le with �nite mass is just approximately lo
alized in a

region of radius equal to the parti
le's Compton wavelength, δx ∼ ~/cm.

If one tries to lo
alize the position of the parti
le better than this by using

probes with wavelength shorter than parti
le's Compton wavelength, other

parti
les are produ
ed in the measurement pro
edure and so this position

measurement is a
tually meaningless.

Of 
ourse, when gravitational e�e
ts are taken into a

ount the observer


annot use this 
onstru
tion of referen
e frames by in�nitely massive 
lo
ks,

sin
e it 
an be shown that when a 
lo
k with mass m ∼ EP/c
2
is 
onsidered,

then a probe 
annot get 
loser to the 
lo
k than the S
hwarzs
hild radius

R ∼ LP . These arguments for an intrinsi
 limit in the lo
alization of an

event lead to a general 
onvi
tion of the quantum gravity 
ommunity that

the des
ription of spa
etime as a Riemannian manifold must be repla
ed by

a �quantum geometry� of �fuzzy� points.

This thesis deals with two di�erent questions about quantum spa
etime,

very popular in the QG 
ommunity: "what is the dimension of spa
etime at

s
ales of the order of the Plan
k length?" and "what happens to our usual

notion of lo
ality in the quantum gravity regime?"

The many alternative approa
hes to the study of the quantum-gravity

problem are based on formalizations and physi
al pi
tures that are signif-

11



i
antly di�erent, in most 
ases o�ering very few opportunities to 
ompare

predi
tions between one approa
h and another. As a result, there is strong

interest for the few features whi
h are found to arise in several alternative

models. In fa
t, the interest in the dis
ussion about the number of dimension

of spa
etime at the Plan
k s
ale originates from the results obtained in the

last de
ade by many groups, showing the 
ommon me
hanism of �dynam-

i
al dimensional redu
tion": the familiar four-dimensional 
lassi
al pi
ture

of spa
etime in the IR is repla
ed by a quantum pi
ture with an e�e
tive

number of spa
etime dimensions smaller than four in the UV (�ultraviolet",

i.e. for probes of wavelength 
omparable to the Plan
k length). These ex-


iting re
ent developments fa
e the 
hallenge that the standard 
on
ept of

dimension of a spa
etime, the �Hausdor� dimension", is inappli
able to a

quantum spa
etime [14, 68℄, and therefore one must rely on some suitable

new 
on
ept. This 
hallenge has been handled so far mostly

4

by resorting

to the notion of �spe
tral dimension", whose key ingredient is the (modi�ed)

d'Alembertian of the theory

5

and for 
lassi
al �at spa
etimes reprodu
es the

Hausdor� dimension. It was in terms of the spe
tral dimension that dy-

nami
al dimensional redu
tion was des
ribed for several approa
hes to the

quantum-gravity problem, in
luding the approa
h based on Causal Dynami-


al Triangulations [53℄, the Asymptoti
-Safety approa
h [54℄, Ho°ava-Lifshitz

gravity [55℄, the Causal-Sets approa
h [57℄, Loop Quantum Gravity [58, 59℄,

Spa
etime Non
ommutativity [60℄ and theories with Plan
k-s
ale 
urvature

of momentum spa
e [61, 62℄.

The fa
t that so mu
h of the intuition about the quantum-gravity realm

is being atta
hed to analyses based on the spe
tral dimension, whi
h it is

here argued not to be a physi
al 
hara
terization of a theory, should be

reason of 
on
ern. For su
h pre
ious 
ases where a feature is found in many

approa
hes to the quantum-gravity problem, and therefore might be a �true

feature" of the quantum-gravity realm, one should ask for no less than a

fully physi
al 
hara
terization. The �rst original result presented in this

thesis work 
onsists in the de�nition of su
h more physi
al 
hara
terization

of quantum spa
etime dimension, the "thermal dimension".

Con
erning the se
ond question posed to the quantum spa
etime, the fate

of lo
ality is another topi
 widely dis
ussed in the 
ommunity, a 
onsistent

part of whi
h believes our usual notion of absolute lo
ality will be lost. Here

4

Other 
andidates for the 
hara
terization of the dimension of a quantum spa
etime

have been proposed in Refs. [68, 69, 70, 71, 72℄.

5

There are 
ases, su
h as in Causal Dynami
al Triangulations, where the d'Alembertian

of the theory is not known, but it is possible to 
al
ulate the spe
tral dimension with other

te
hniques. It has been established [73℄ that in these 
ases it is then possible to re
onstru
t

the d'Alembertian.
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I fo
us on the parti
ular theory of Relative Lo
ality, in whi
h the Plan
k

s
ale enters as the 
hara
teristi
 s
ale of the 
urvature of momentum spa
e;

the non-trivial geometry of momentum spa
e has its spa
etime 
ounterpart

in a weakening of lo
ality. It will be shown, as a 
larifying example of the

origin of the basi
 idea of relative lo
ality, how in the extensively studied non-


ommutative k-Minkowski spa
etime two events may be 
oin
ident or not de-

pending on the distan
e of the observer from the events. In this framework

there is no notion of absolute lo
ality, di�erent observers see di�erent spa
e-

times, and the spa
etime they observe are energy and momentum-dependent.

Lo
ality, a 
oin
iden
e of events, be
omes relative: 
oin
iden
es of events are

still obje
tive for all lo
al observers, but they are not in general manifest in

the spa
etime 
oordinates 
onstru
ted by distant observers.

There have been 
on
erns [107℄,[109℄ that this notion of lo
ality might

have pathologi
al impli
ations for what 
on
erns 
ausality and momentum


onservation. Some original results of this thesis show that no su
h patholo-

gies a
tually arise.

Outline of the thesis

The �rst part of the thesis presents the di�erent quantum gravity models that

will be 
onsidered throughout the thesis, in
luding Relative Lo
ality. The

fo
us then goes to the �rst question, regarding the 
hara
terization of the

dimensional redu
tion of spa
etime via the thermal dimension. Afterwards,

the 
ausality and momentum 
onservation topi
s in Relative Lo
ality will be

dis
ussed.

Chapter 1 presents the theories in whi
h Lorentz invarian
e is either pre-

served (as in Asymptoti
 Safety) or deformed that are of interest in the thesis

work. It starts with some known results obtained in the study of s
enarios for

spa
etime quantization, reviewed with the s
ope of highlighting the 
onne
-

tion between non
ommutative quantum spa
etime and relativisti
 theories of

intera
ting parti
les with nonlinear momentum spa
e. The latter is the 
lass

of theories in whi
h a 
onsiderable part of the original results presented in

this thesis have been obtained. Se
tion 1.1 presents an example of quantum

spa
etime, k-Minkowski. This non
ommutative spa
etime is used as a �sto-

ryteller� in the �rst part of the thesis and will lead to the 
on
epts whi
h are

useful in the following. It will be re
ognized as a model of Doubly Spe
ial

Relativity (DSR), where Plan
k length is a fundamental length s
ale 
onsis-

tent with the Prin
iple of Relativity. Examples of DSR theories 
ome from a

notable sour
e su
h as 2 + 1 gravity 
oupled to matter, as qui
kly dis
ussed

in Se
tion 1.3. Se
tion 1.4 reviews the basi
 notions of Asymptoti
 Safety.
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Chapter 2 introdu
es the 
on
epts in Relative Lo
ality whi
h are relevant

for this thesis. Se
tion 2.1 shows qui
kly how k-Minkowski non-
ommutative

spa
etime is an example of spa
etime with relative lo
ality. The presentation

of Relative Lo
ality 
ontinues independently on any pre-existing model in

Se
tion 2.2, and in Se
tion 2.3 the model of Relative Lo
ality used in the

rest of the thesis is introdu
ed.

Chapter 3 introdu
es some already known proposal for some QG theo-

ries in whi
h Plan
k s
ale breaks Lorentz invarian
e su
h as Ho°ava-Lifshitz

gravity and Magueijo-Smolin Rainbow gravity, here reviewed in Se
tion 3.1

and 3.2 respe
tively.

Chapter 4 introdu
es the �rst original 
ontribution of this thesis; after

reviewing the properties of the spe
tral dimension and its appli
ation in quan-

tum gravity in Se
tion 4.1, it is observed in Se
tion 4.2 that some thermody-

nami
al properties of radiation gas (su
h as the equation of state parameter

and the s
aling of temperature with energy density) 
ould be used to assign

a thermal dimension to the quantum spa
etime. The good properties of this

notion of dimension will be shown and dis
ussed against those of the spe
-

tral dimension. Se
tion 4.3 shows some preliminary results obtained so far

in trying to extend the notion of thermal dimension of quantum spa
etime

with relative lo
ality.

Then in Chapter 5 another original 
ontribution is presented, 
onsisting

in the appli
ation of the modi�ed statisti
al me
hani
s, introdu
ed in the

previous 
hapter, to the study of primordial 
osmologi
al perturbation in a

rainbow universe with running Newton 
onstant. It begins 
omputing the

Friedmann and s
alar perturbations equations for a Rainbow metri
 asso
i-

ated to a dispersion relation of the Ho°ava-Lifshitz type in Se
tions 5.1 and

5.2. Then, Se
tions 5.3 and 5.4 
ompute the spe
tral index for both va
uum

and hydrodynami
al �u
tuations respe
tively, noti
ing that the 
ondition for

obtaining the observed spe
tral index and solving the horizon problem is that

Newton 
onstant de
reases in the UV. This is 
onsistent with some pre
edent

results where quantum gravity is responsible for solving the horizon problem

without appealing to in�ation.

Chapter 6 
ontains the original results obtained in the 
ontext of Rela-

tive Lo
ality, beginning with the analysis of the 
ausal behavior of the theory.

Spe
i�
ally, in Subse
tion 6.1.1 it is shown the obje
tivity of 
ause-and-e�e
t

relations and in Subse
tion 6.1.2 that the theory does not admit 
ausally vio-

lating pro
esses (
ausally violating loops). Se
tion 6.2 dis
uss those pro
esses

in whi
h the law of momentum 
onservation is violated, proving that they

are not allowed in Relative Lo
ality. Finally, Se
tion 6.3 also shows that the

theory does not admit even non-
ausally-violating loops (it must be stressed

that the theory, as treated here, is 
lassi
al, so these loops are not of the kind

14



met in Feynman diagrams in perturbative Quantum Field Theory).

Chapter 7 brie�y summarizes the original results presented in this work.
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Chapter 1

Theories preserving relativity of

inertial frames

In the introdu
tion few arguments suggesting that short-s
ale stru
ture of

spa
etime might be 
hara
terized by a minimum length LP , setting a limit

on the lo
alization of events, have been dis
ussed. Other robust arguments

indi
ate a se
ond possible role of this length s
ale as that of wavelength at

whi
h new physi
al e�e
ts o

ur, while standard physi
s des
ribes parti
les

of larger wavelength. The latter proposal is often 
odi�ed in deformed mass-

shell relations su
h as, for example, E2 = c2p2 + c4m2 ± cLPEp
2
. Be
ause

of FitzGerald-Lorentz 
ontra
tions, LP 
annot be a fundamental spe
ial-

relativisti
 invariant s
ale in neither of the two possible roles (minimum

length and 
hara
teristi
 wavelength), sin
e two boosted observers will not

agree on the fa
t that the minimum length/
hara
teristi
 wavelength is equal

to LP . But the Relativity Prin
iple demands that physi
al laws should be

the same in all inertial frames, in
luding the laws that attribute to LP a

fundamental role in the stru
ture of spa
etime. In the mid-1990s studies ad-

vo
ating a role for the Plan
k length in spa
etime stru
ture often ended up

introdu
ing (more or less expli
itly) a preferred family of inertial observers

(usually identi�ed with the natural observers of the 
osmi
 mi
rowave ba
k-

ground radiation), therefore breaking Lorentz symmetry (see, e.g. Ref.[18℄).

The alternative possibility of introdu
ing the Plan
k length in spa
etime

stru
ture in a fully relativisti
 manner was proposed in 2000 ([19℄, [20℄) and

is the Doubly Spe
ial Relativity framework. A DSR theory requires the in-

varian
e of the minimum length/
hara
teristi
 wavelength denoted by

1 LDSR

in addition to the request of invarian
e of the speed-of-light s
ale.

1

Here the 
hara
teristi
 length s
ale is indi
ated as LDSR rather than Lp to indi
ate a

possible extra fa
tor that multiplies Lp.
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Se
tion 1.1 introdu
es an example of quantum spa
etime in whi
h Lorentz

symmetry is preserved, although the transformations are modi�ed with re-

spe
t to those of subPlan
kian-energy physi
s. This provides guidan
e for

getting some intuition for formulating a theory in whi
h the speed of light

s
ale and a length s
ale are both fundamental relativisti
 invariants (DSR).

This general proposal is presented in Se
tion 1.2. Se
tion 1.3 dis
usses the


ase of 2 + 1 gravity as a notable example of this kind of theory. Se
tion 1.4

reviews the very di�erent paradigm of asymptoti
 safety, where it is supposed

that Lorentz symmetry is not modi�ed and still a symmetry of physi
s.

1.1 k-Minkowski non
ommutative spa
etime

One of the most appealing realizations of the DSR 
on
ept is that of a Hopf-

algebra s
enario with k-Poin
aré stru
ture and the related k-Minkowski non-


ommutative spa
etime. Non
ommutative spa
etimes are toy models where

one tries to 
hara
terize the limitation in the lo
alization of an event promot-

ing spa
etime 
oordinates to non
ommuting operators. The physi
al regime


onsidered might be that of a freely propagating parti
le whose energy is

high enough to probe the quantum stru
ture of spa
etime, but its in�uen
e

on the ma
ros
opi
 s
ale stru
ture of spa
etime is still negligible. Therefore,

the only 
ontribution of gravity in determining the non-trivial stru
ture of

spa
etime 
omes from this non
ommutative 
hara
ter of the 
oordinates.

The 
hara
teristi
 spa
etime-
oordinate non
ommutativity of k-Minkowski

is given by

[x̂j , x̂0] = iℓx̂j (1.1)

[x̂j , x̂k] = 0 (1.2)

where x̂0 is the time 
oordinate, x̂j is the spa
e 
oordinate (j, k ∈ {1, 2, 3})
and ℓ is a length s
ale. Fun
tions of these non
ommuting 
oordinates admit

a "Fourier transform"

f(x̂) =

∫

d4k f̃(k)e−i~k·~̂xeik0x̂0
(1.3)

where the "Fourier parameters" k0, ki are ordinary 
ommutative variables.

It is therefore possible to 
hara
terize the a
tion of transformations genera-

tors on the fun
tions of non
ommutative variables by studying their a
tion

dire
tly on the basis exponentials e−i~k·~̂xeik0x̂0
.

A frequently used 
hara
terization of symmetry of k-Minkowski intro-

du
es the following de�nitions of generators of translations, spa
e-rotations
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and boosts:

Pµ ⊲ e
−i~k·~̂xeik0x̂0 = kµe

−i~k·~̂xeik0x̂0, (1.4)

Mj ⊲ e
−i~k·~̂xeik0x̂0 = ǫjklxkkle

−i~k·~̂xeik0x̂0, (1.5)

Nj ⊲ e
−i~k·~̂xeik0x̂0 =− kje−i~k·~̂xeik0x̂0x̂0+

+

[

x̂j

(

1− e2ℓk0
2ℓ

+
ℓ

2
|~k|2
)

+ ℓx̂lklkj

]

e−i~k·~̂xeik0x̂0 .
(1.6)

The fa
t that one here deals with a (k-Poin
aré) Hopf algebra is essentially

seen by a
ting with these generators on produ
ts of fun
tions, observing,

for example, that, from the k-Minkowski 
ommutators (1.1),(1.2) and the

Baker-Campbell-Hausdor� formula, one has

e−ikj x̂jeik0x̂0e−iqj x̂jeiq0x̂0 = e−ikj x̂je−ieℓk0qj x̂jeik0x̂0eiq0x̂0 = e−i(kj+eℓk0qj)x̂jei(k0+q0)x̂0 .
(1.7)

Then the a
tion of the translation generators is

Pµ ⊲ e
−i~k·~̂xeik0x̂0e−i~q·~̂xeiq0x̂0 =

(

kµ + eℓk0(1−δ0µ)qµ

)

e−i~k·~̂xeik0x̂0e−i~q·~̂xeiq0x̂0 . (1.8)

For a pair of fun
tions f(x̂) and g(x̂) one �nds

Pµ ⊲ (f(x̂)g(x̂)) = (Pµ ⊲ f(x̂)) g(x̂) +
(

eℓP0(1−δ0µ) ⊲ f(x̂)
)

(Pµ ⊲ g(x̂)) (1.9)

i.e. one �nds a �non primitive 
oprodu
t

2

� ∆Pµ = Pµ ⊗ 1 + eℓP0δ1µ ⊗ Pµ,

di�erent from the �primitive 
oprodu
t� ∆Pµ = Pµ ⊗ 1 + 1 ⊗ Pµ typi
al of

ordinary di�erential operators. The 
oprodu
t has an important role in de-

termining the form of generators reported above. Those generators in fa
t


an be obtained assuming the standard a
tion of translation and rotation

generators (1.4), (1.5) and realizing then that using the undeformed boost

does not allow getting the 10 generators 
losed Hopf algebra (the 
oprodu
ts

of undeformed boosts introdu
e an undesired generator of dilatation trans-

formations) that would 
orrespond to the Poin
aré algebra of Minkowski

spa
etime symmetries. The deformed boosts a
tion (1.6) is then obtained


onsidering the most general deformation of boosts generators with the right


lassi
al limit admitted by the other symmetries, and requiring that together

2

Given an algebra A, the 
oprodu
t is a linear map ∆ : A→ A⊗A that is �
oasso
ia-

tive�, that is (∆⊗ id) ◦∆ = (id⊗∆) ◦∆.
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with translation and rotation generators form a 10 generators 
losed Hopf

algebra.

The 
ommutators between the generators (1.4), (1.5), (1.6) are

[Mµν , Mρτ ] = i (ηµτMνρ − ηµρMντ + ηνρMµτ − ηντMµρ) ,

[Mi, Pj] = iǫijkPk, [Mi, P0] = 0,

[Ni, Pj] = iδij

(

1

2ℓ

(

1− e2ℓP0
)

+
ℓ

2
PiPi

)

− iℓPiPj,

[Ni, P0] = iPi,

[Pµ, Pν ] = 0,

where Pµ = (P0, Pi) are the time and spa
e 
omponents of the translations

generators and Mµν are modi�ed Lorentz generators with rotations Mk =
1
2
ǫijkMij and boosts Ni =M0i.

With the 
oprodu
ts (1.9) the 
ommutators (1.1) and (1.2) are left in-

variant under the a
tion of the generators in the sense that for translations,

for example, one has

3

Pµ ⊲ [x̂j , x̂0] = iℓPµ ⊲ x̂j ,

Pµ ⊲ [x̂j , x̂k] = 0.

(1.10)

One also �nds a deformed mass Casimir for this algebra, obtained from the

generators given above

Cℓ =
(

2

ℓ

)2

sinh2

(

ℓ

2
P0

)

− e−ℓP0PiPi. (1.11)

The idea that this mathemati
s provides a possible basis for a DSR theory

originates from the left-invarian
e of the k-Minkowski 
ommutators under

3

The interested reader 
an veri�ed this 
ommutator invarian
e straightforwardly by

expressing x̂µ =
(

−i ∂
∂kµ e

ikj x̂jeik
0x̂0

)

|k=0, a
ting on the basis exponentials with the gen-

erators Pµ and then take kν = 0. Indi
es are raised and lowered with Minkowski metri


tensor ηµν = (1,−1,−1,−1).
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the a
tion of the k-Poin
aré generators as in Eq.(1.10) and the 
onsequent

identi�
ation of ℓ with LDSR. Furthermore, the Casimir (1.11) 
an inspire a

deformed on-shell relation for relativisti
 parti
les. For a low energy parti
le,

at �rst order in ℓ, this takes the form

m2 = P 2
0 − PiPi + ℓP0PiPi. (1.12)

The generators are not the only nontrivial stru
ture needed to imple-

ment symmetry transformations in k-Minkowski. Considering the 
ase of

translations, one of 
ourse wants that non
ommuting variables x̂′µ used by a

translated observer are obtainable from the old ones by a rule of the type

x̂′µ = x̂µ − âµ and that these also satisfy the k-Minkowski 
ommutators

(1.1),(1.2). It is 
lear that the translation parameters âµ 
an not be 
om-

mutative variables but must have non
ommutative properties themselves, in

parti
ular one 
an adopt the following pres
riptions

[âj , x̂0] = iℓâj , [âµ, x̂j ] = 0, [â0, x̂0] = 0. (1.13)

In this way the translation operator takes the familiar form

T = 1 + d, d = iâµP
µ. (1.14)

where P µ = ηµνPν , η
µν

is the inverse of the Minkowski metri
 tensor.

The 
hoi
e of the basis exponentials is arbitrary. For example, one 
ould


hoose the basis eik
µx̂µ

or eik
0x̂0eik

j x̂j
. These di�erent 
hoi
es yield di�erent

form of the transformations generators, depending on the parti
ular order

one writes the basis exponentials. Consider for simpli
ity the translation

generators. Denoting the translation generators used until now PRµ (be
ause

the basis exponential with the time 
oordinate is to the right of that with

spatial 
oordinates), one 
ould de�ne other translation generators by setting

PLµ ⊲ e
ik0x̂0e−i~k·~̂x = kµe

ik0x̂0e−i~k·~̂x
. Then it is straightforward to verify that

PRµe
ik0x̂0e−i~k·~̂x 6= PLµe

ik0x̂0e−i~k·~̂x
, whi
h implies PRµ 6= PLµ. However, this

abundan
e of possible translation generators is not really a problem, sin
e

to ea
h 
hoi
e of ordering of the basis exponentials 
orrespond also di�erent

translation parameters âµ. Therefore, fo
using on the two 
hoi
es of time-to-

the-right and time-to-the-left basis exponentials, one �nds also that âRµ 6=
âLµ, where âRµ denote the translation parameters related to the time-to-

the-right basis whereas âLµ denote the translation parameters related to the

time-to-the-left basis. It turns out that the translation operator T , de�ned in

Eq.(1.14), is order-independent, i.e. its a
tion on a fun
tion of non
ommuting
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variables does not depend on the arbitrary 
hoi
e of ordering of the basis

exponentials when Fourier transforming (see Ref.[21℄ for more details).

It is also important highlighting that the possibility of removing all anoma-

lies of the 
ommutators by nonlinear rede�nitions of the generators does not

imply that one �re
overs� Spe
ial Relativity. In fa
t, a proper des
ription

of Hopf algebra symmetries must take into a

ount both 
ommutators and


oprodu
ts of the generators; 
on
urrently, a rede�nition of the generators

ne
essarily modi�es also the 
oprodu
ts in su
h a way that the physi
al dif-

feren
es between k-Minkowski and Spe
ial Relativity remain. Moreover, by

using the whole ma
hinery of 
ommutators and 
oprodu
ts it is possible

([21℄, [22℄) to obtain 
onserved 
harges asso
iated to the Hopf symmetries

for a theory with 
lassi
al �elds in the non
ommutative k-Minkowski spa
e-

time, whereas other attempts to obtain 
onserved 
harged, ignoring the role

of 
oprodu
ts, had failed.

In k-Minkowski the des
ription of translations ne
essarily requires some

new stru
ture, as it 
an be most elementarily seen by looking at the 
ompo-

sition law of basis exponentials and the a
tion of the translation generators

on this produ
t of fun
tions, i.e. its 
oprodu
t (1.8). Cleary the spa
etime

non
ommutativity is leading to a new 
omposition of energy and momentum

(p, E)⊕ (q, ω) = (p+ eℓEq, E +ω), whi
h involves a 
lear non-linearity. This

non-linear 
omposition law of momenta might be seen as suggesting a non-

linear geometry of momentum spa
e. Indeed, it has been shown in Refs. [23℄,

[24℄, [25℄, [26℄ that k-Poin
aré Hopf algebra des
ribes a 
urved momentum

spa
e with de Sitter metri
, torsion and nonmetri
ity (the usual geometry of

momentum spa
e is re
overed by letting ℓ→ 0, so that ℓ (or LDSR) might be

seen as a deformation parameter). This geometry, in the appropriate regime

in whi
h relative lo
ality is studied today, will be the basis for the expli
it

example of relative lo
ality presented in Se
tion 2.3.

1.2 The Doubly Spe
ial Relativity proposal

Besides k-Minkowski non
ommutative spa
etime there are many other DSR

theories. It is therefore useful to des
ribe here the general prin
iples of the

DSR proposal, independently on their spe
i�
 formalization. A good starting

point for introdu
ing DSR is the analysis of the step from Galilean Relativity

to Spe
ial Relativity as a solution to the problem of attributing to c the role of
speed of light, a universal 
onstant that is the same for every observer. From

this perspe
tive, one 
ould regard Galilean Relativity as a theory based on the

Relativity Prin
iple and the assumption that there would be no fundamental

s
ales of length or velo
ity.
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The Relativity Prin
iple introdu
ed by Galilei 
an be stated as follows:

(R.P.) : The laws of physi
s take the same form in all inertial frames (i.e.

these laws are the same for all inertial observers).

This prin
iple has strong impli
ations on geometry and kinemati
s when


ombined with the assumption of existen
e of fundamental s
ales. In fa
t, the

hypothesis that there is some fundamental s
ale is to be regarded as a physi
al

law itself. The Relativity Prin
iple then implies that the relations between

the measurements performed by di�erent inertial observers must be su
h that

every inertial observer agree with the value and the physi
al interpretation of

this s
ale. Combining the Relativity Prin
iple with the assumption that there

are not absolute s
ales one 
an obtain the Galilean rules of transformation

between observers. For example, if v is the velo
ity of a body with respe
t

to an inertial observer, and a se
ond observer moves with 
onstant velo
ity

v0 with respe
t to the �rst observer, the velo
ity of the body with respe
t

to the se
ond observer, in absen
e of a fundamental velo
ity s
ale, 
an be

only of the form v′ = f(v, v0). Considering other reasonable assumptions

(f(v, 0) = v, f(0, v0) = v0, f(v, v0) = f(v0, v), f(−v,−v0) = −f(v, v0)), the
well-known Galilean formula of 
omposition of velo
ities v′ = v + v0 follows.

The step made by Einstein was introdu
ing a fundamental velo
ity s
ale


onsistently with the Relativity Prin
iple. To do so, it must be spe
i�ed a

unique experimental pro
edure that allows every inertial observer to mea-

sure the value of this fundamental s
ale. These two postulates might be

summarized as follows:

(E.L.1) : The laws of physi
s involve a fundamental s
ale of velo
ity c.

(E.L.1b) : The value of the fundamental velo
ity s
ale c 
an be measured by

ea
h inertial observer as the speed of light.

One 
ould have expe
ted a more pre
ise des
ription of the measurement

pro
edure to adopt in order to establish the value of c; for example, one 
ould

have expe
ted the speed of light to depend on the velo
ity of the sour
e or

on the wavelength of the light. However, it is important to realize the role

that the Relativity Prin
iple and the postulate (E.L.1) have in determining

the form of (E.L.1b): the spe
i�
ation of a wavelength dependen
e would

have required a referen
e fundamental s
ale of length, whereas a dependen
e

of the speed of light on the velo
ity of the sour
e would be in 
on�i
t with

the fundamental nature of c as a s
ale on whi
h, a

ording to the Relativity

Prin
iple, all inertial observers agree.
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From the Relativity Prin
iple, (E.L.1) and (E.L.1b) one 
an obtain the

rules that relate the observations performed by di�erent inertial observers,

whi
h are the Lorentz transformations. Famously, the transition from Galilean

Relativity to Spe
ial Relativity requires the repla
ement of the simple for-

mula of Galilean 
omposition of velo
ities with a mu
h ri
her spe
ial rela-

tivisti
 version

~v1 ⊕ ~v2 =
1

1 + ~v1·~v2
c2

(

~v1 +
1

γ1
~v2 +

1

c2
γ1

1 + γ1
(~v1 · ~v2)~v1

)

. (1.15)

Furthermore, the introdu
tion of c requires to abandon the 
on
ept of

absolute simultaneity, whi
h would 
ontrast with the fa
t that the ex
hange

of information between two 
lo
ks in relative motion is strongly 
onstrained

by (E.L.1) and (E.L.1b).

It is natural then, in order to introdu
e Plan
k length in a relativisti


theory, to modify (E.L.1) and (E.L.1b) allowing for a fundamental length

s
ale. (E.L.1) simply be
omes:

(L.1) : The laws of physi
s involve a fundamental length s
ale LDSR and a

fundamental velo
ity s
ale c.

The new relativisti
 theory is de�ned on
e one gives the experimental pro
e-

dures to measure c and LDSR that substitute (E.L.1b). The introdu
tion of

LDSR makes possible a wavelength dependen
e of the value of c; however, it
is still possible that no su
h dependen
e o

urs. Sin
e experiments dealt only

with wavelength mu
h larger than LDSR, one shall be 
autious and modify

(E.L.1b) as follows:

(L.1b) : The value of the fundamental velo
ity s
ale c 
an be measured by

ea
h inertial observer as the speed of light with wavelength λ mu
h

larger than LDSR (more rigorously, c is obtained as the λ/LDSR → ∞
limit of speed of light).

The pro
edure (L.1
) by whi
h every inertial observer 
an measure the value

of LDSR should be determined by experimental data. As already said, there

are many theoreti
al arguments suggesting a role for the Plan
k length in

the small-distan
e stru
ture of spa
etime. An example of a possible form for

(L.1
) is

(L.1
*) : Ea
h inertial observer 
an establish the value of LDSR, whi
h is the

same for all inertial observers, by determining the dispersion relation

for photons. This takes the form E2 = c2p2− f(E, p;LDSR), where the
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fun
tion f is the same for all inertial observers and in parti
ular all

inertial observers agree on the leading LDSR dependen
e, whi
h might

be, for example, f : f(E, p;LDSR) ≃ LDSRcp
2E.

The obje
tive that motivates DSR resear
h is that of 
oherently 
onstru
t-

ing a relativisti
 theory with two fundamental s
ales, c and LDSR, whi
h

are non-trivial relativisti
 invariants. An example of what one refers to as

trivial relativisti
 invariant is the rest mass of the ele
tron. Another ex-

ample of a trivial relativisti
 invariant is the Quantum Me
hani
s s
ale ~

that, as c does, establishes properties of the results of the measurements

of 
ertain observables; ~, for example, sets the minimum non zero value of

angular momentum. But the dis
retization of angular momentum and the

limitation in the measurement of its 
omponents does not a�e
t spa
etime

symmetry under 
lassi
al spa
e-rotations, as shown in Ref.[27℄, sin
e the

measurements that QM allows are still subje
t to the same rules imposed by


lassi
al rotation symmetry. The reason is that ~ is not a s
ale pertaining

to the spa
etime stru
ture of the rotation transformations, and in fa
t the

introdu
tion of ~ does not require any modi�
ation of the a
tion of the ro-

tation transformations. Galilei's boosts are ne
essarily deformed on
e c is

introdu
ed as a fundamental relativisti
 invariant and c itself has a role in

the transformations that relate the measurements of two inertial observers

in relative motion. In a DSR theory LDSR must have a similar role to that

of c in Spe
ial Relativity, i.e. it must parti
ipate in the transformations that

relates the observations of two inertial observers.

Note that DSR is a very spe
i�
 alternative to Spe
ial Relativity: only

a 
ertain 
lass of deformations of Spe
ial Relativity is DSR 
ompatible. For

example, de Sitter Relativity is a deformation of Spe
ial Relativity by the

s
ale of 
urvature. But de Sitter spa
etime is a deformation of Minkowski

spa
etime by a long-distan
e s
ale (one 
an obtain Minkowski spa
etime from

de Sitter spa
etime as the deformation length is sent to in�nity), whereas one

of the requirements for a DSR theory is that the deformation s
ale must be

a short-distan
e s
ale (one should obtain Minkowski spa
etime by sending to

zero the deformation s
ale).

1.3 Aside on 2 + 1 gravity

It is important to mention that it has been observed ([28℄,[29℄,[30℄,[31℄,[32℄)

that 
lassi
al gravity for point parti
les in 2+1 dimensions o�ers an example

of DSR theory.

Of parti
ular interest for the path followed in this thesis is the 
onne
tion

between the geometry of momentum spa
e and spa
etime non
ommutativity.
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In fa
t, in 
lassi
al 2+1 gravity without 
osmologi
al 
onstant the momentum

spa
e has anti-de Sitter geometry or, more pre
isely, it is the Lie group

SL(2,R), the group of linear transformations a
ting on R
2
with determinant

equal to one.

This follows from the fa
t that Einstein gravity in 2 + 1 dimensions does

not possess lo
al degrees of freedom and a point parti
le is introdu
ed as a

topologi
al defe
t surrounded by �at spa
etime. For the 
ase of a spinless

parti
le of massm one obtains the metri
 ds2 = −dτ 2+dr2+(1−4Gm)r2dφ2
,

whi
h des
ribes a 
oni
al spa
etime, the parti
le being lo
ated at the tip of

the 
one, r = 0. It is possible to show that ve
tors parallel transported along


losed loops around the origin turns to be rotated by an angle α = 8πGm.

This be
ause the 
urvature vanishes everywhere ex
ept at the singularity

r = 0. As in ordinary 2 + 1 Minkowski spa
etime one 
an 
hara
terize the

physi
al momentum of the parti
le, on
e its mass is given, by spe
ifying two

additional parameters that des
ribe the linear momentum and that are in

one-to-one 
orresponden
e with boosts. Alternatively one 
an take three-

momentum of the parti
le at rest (spe
i�ed by its rest mass) and boost

it to the appropriate value of the linear momentum. In this 
ase three-

momentum at rest is given by a ve
tor in 2 + 1 Minkowski spa
e. This

spa
e is isomorphi
 to the Lorentz algebra sl(2,R) as a ve
tor spa
e. In

fa
t, when the parti
le is des
ribed by a 
oni
al defe
t, its mass (the three-

momentum at rest) is determined by a rotation by the angle α = 8πGm, i.e.

by exp(αJ0) = g0 ∈ SL(2,R), where J0 is the generator of rotations. The

physi
al momentum 
an be obtained by boosting the three-momentum at

rest by 
onjugating g0 by a Lorentz boost L ∈ SL(2,R), that is g = L−1g0L.
Thus the kinemati
s of a massive parti
le is in this 
ontext determined by

the set of rotation-like Lorentz transformations. The extended momentum

spa
e is given by the group manifold SL(2,R).
In order to expose the anti-de Sitter geometry of momentum spa
e, it is


onvenient to write the generi
 element p of SL(2,R) as a 
ombination of

the identity matrix and of the elements of a basis of sl(2,R), i.e. the Lie

algebra of SL(2,R)4:
p = uI− 2ξµX

µ. (1.16)

Here I is the identity 2× 2 matrix and the Xµ
are

X0 =
1

2

(

0 1
−1 0

)

, X1 =
1

2

(

0 −1
−1 0

)

, X2 =
1

2

(

−1 0
0 1

)

,

4

Throughout this se
tion indi
es will be raised and lowered using the metri
 ηµν =
(−1, 1, 1).
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whi
h 
onstitute a basis of sl(2,R), and the requirement of having determi-

nant equal to one (detp = 1) implies that the parameters u, ξµ must satisfy

the 
onstraint

u2 − ξµξµ = 1. (1.17)

This 
onstraint provides, as announ
ed, the de�nition of a 3 dimensional

anti-de Sitter geometry.

Among the 
hoi
es of 
oordinates for this momentum spa
e geometry

used in the 3D-gravity literature, parti
ularly 
onvenient for the purpose of

this se
tion is the 
hoi
e of 
oordinates pµ su
h that

p =
√

1 + ℓ2pµpµI− 2ℓpµX
µ, (1.18)

sin
e it is then easy to obtain the (non-linear) 
omposition law of momenta

using the algebrai
 properties of Xµ
matri
es. Multiplying two elements

p =
√

1 + ℓ2pµpµI− 2ℓpµX
µ,

q =
√

1 + ℓ2qµqµI− 2ℓqµX
µ,

and using the identity

XµXν =
1

4
ηµνI+

1

2
ǫµν ρX

ρ, (1.19)

where for the antisymmetri
 tensor ǫµνρ the 
onve
tion adopted is ǫ012 = −1,
one obtains a simple but non linear relation between the 
oordinates (p⊕q)µ
of pq and the 
oordinates pµ and qµ of p,q respe
tively:

(p⊕ q)µ =
√

1 + ℓ2qνqνpµ +
√

1 + ℓ2pνpνqµ − ℓǫµ νρpνqρ. (1.20)

Finally, the identity (1.19) implies that Xµ
satisfy by 
onstru
tion (up to a

dimensional 
onstant) the 
ommutation relations

[Xµ, Xν ] = ǫµν ρX
ρ. (1.21)

When one pro
eeds to the quantization of this theory (see for example

Ref.[33℄), the 
ommutation rules (1.21) of the basis Xµ
of sl(2,R) 
ontribute

in the determination of the symple
ti
 stru
ture of the theory and one ends

up with the same geometry for momentum spa
e as in the 
lassi
al theory

and a non
ommutative spa
etime whose 
oordinates obey the 
ommutation

relations

[xµ, xν ] = i~ℓǫµν ρx
ρ. (1.22)

The DSR-relativisti
 symmetries of the emerging framework are already

evident in the 
lassi
al limit of the 
onstru
tion just des
ribed. In fa
t, the
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lassi
al limit is 
hara
terized by spa
etime 
oordinates with Poisson bra
kets

given by

{xµ, xν} = ℓǫµν ρx
ρ, (1.23)

and by a momentum spa
e with 
oordinates pµ 
onstrained on a mass shell

governed by

ℓ−2
(

arcsin
(

√

−ℓ2pµpµ
))2

= m2, (1.24)

and with law of 
omposition

(p⊕ q)µ =
√

1 + ℓ2qνqνpµ +
√

1 + ℓ2pνpνqµ − ℓǫµ νρpνqρ. (1.25)

The relevant DSR-deformed relativisti
 symmetries are parti
ularly sim-

ple sin
e the a
tion of Lorentz-se
tor generators on momenta remains unde-

formed. Indeed by posing

{N1, p0} = p1, {N2, p0} = p2, {R, p0} = 0, (1.26)

{N1, p1} = p0, {N2, p1} = 0, {R, p1} = −p2, (1.27)

{N1, p2} = 0, {N2, p2} = p0, {R, p2} = p1, (1.28)

one �nds that the mass-shell (1.24) is invariant and the 
omposition law

(1.25) is 
ovariant. So one here is dealing with a DSR-relativisti
 frame-

work where the 
ore aspe
t of the deformation is the a
tion of translation

transformation on multiparti
les states. This was so far only left impli
it

by noti
ing that the momentum 
harges must be 
omposed following the

nonlinear law (1.25). Noti
e that this implies a deformed a
tion of transla-

tion transformations on multiparti
les states. Consider for example a system


omposed of only two parti
les, respe
tively with phase-spa
e 
oordinates

pµ, x
µ
and qµ, y

µ
: then a translation parametrized by bρ, and generated by

the total-momentum 
harge (p ⊕ q)ρ, a
ts for example on the parti
le with

phase-spa
e 
oordinates pµ, x
µ
as follows

bρ{(p⊕ q)ρ, xν} ≃ bρ{pρ, xν} − ℓbρǫρ σγqγ{pσ, xν} (1.29)

where on the right-hand side it is shown only the leading-order Plan
k-s
ale

modi�
ation.

Con
erning translations a
ting on single-parti
le momenta one 
an noti
e

that sin
e the spa
etime 
oordinates are su
h that {xµ, xν} = ℓǫµν ρx
ρ, one


ould not possibly adopt the standard {pµ, xν} = −δνµ sin
e then the Ja
obi
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identities would not be satis�ed. Ja
obi identities are satis�ed if one adopts

the des
ription of translations a
ting on single-parti
le momenta given by

{pµ, xν} = −δνµ
√

1 +
ℓ2

4
pρpρ +

ℓ

2
ǫµ

νρpρ. (1.30)

Another example is that treated in Ref.[28℄, where it was argued that

quantum gravity in 2 + 1 dimensions with vanishing 
osmologi
al 
onstant

must be invariant under some version of a k-Poin
aré symmetry.

The argument there depends only on the assumption that quantum grav-

ity in 2+1 dimensions with the 
osmologi
al 
onstant Λ = 0must be derivable

from the Λ → 0 limit of 2 + 1 quantum gravity with non-zero 
osmologi
al


onstant; in fa
t, in many approa
hes it is ne
essary to in
lude a bare 
osmo-

logi
al 
onstant in order to do perturbative 
al
ulations properly. Then, it is

shown that the symmetry whi
h 
hara
terizes transformations of ex
itations

of the ground states of a quantum gravity theory in 2 + 1 dimensions with

Λ > 0 is a
tually quantum deformed de Sitter algebra SOq(3, 1), with the

quantum deformation parameter given by

z = ln(q) ≈ LP

√
Λ.

The limit Λ → 0 then involves the simultaneous limit z ≈ LP

√
Λ → 0, and

it is possible to see that this 
ontra
tion of SOq(3, 1) is not the 
lassi
al

Poin
aré algebra, as would be the 
ase if q = 1 throughout, but it is a

modi�ed Poin
aré algebra with the dimensional parameter k ≈ L−1
P . Sin
e

some of these algebras provide a basis for DSR theory, it means that the

theory is a DSR theory, and indeed all the features of DSR (relativity of

inertial frames, non-linear a
tion of boosts that preserve a preferred energy

s
ale, non-linear modi�
ations of energy-momentum relations...) has been

seen in the literature of 2 + 1 gravity.

The study of 2+1 gravity models, su
h as those with gravity 
oupled to N
point parti
les, gives a 
lass of non-trivial DSR theories that are 
ompletely

expli
it and solvable, both 
lassi
ally and quantum me
hani
ally. The ex-

isten
e of these well-understood examples in the 2 + 1 gravity 
ontext is a

powerful tool for the 
on
eptual analysis of DSR theories.

The debate on DSR often 
on
erns whether these relativisti
 deformations

should at all be 
onsidered in relation to the quantum gravity problem, and

the fa
t that they ne
essarily arise in the 2 + 1 quantum gravity 
ontext

provides a strong element of support for the legitima
y of the study of DSR-

deformed relativisti
 symmetries.
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1.4 Asymptoti
 Safety

A QFT is said to be an "e�e
tive �eld theory" (EFT) if it breaks down at

some energy s
ale, and "fundamental" or "UV 
omplete" if it makes sense

up to arbitrarily high energy s
ales. QCD is an example of the latter 
ase.

Before introdu
ing the basi
 ideas of Asymptoti
 Safety, the reason for whi
h

Einstein theory of gravity is instead regarded as an EFT is here reviewed, in

parti
ular why it is not perturbatively renormalizable. Asymptoti
 safety, in

fa
t, proposes a strategy to over
ome this problem.

1.4.1 Non-renormalizability of General Relativity

The reason for whi
h General Relativity is not perturbatively renormaliz-

able, in the s
heme of standard quantum �eld theory, 
an be understood

by dimensional analyzing the degree of divergen
e of one-parti
le irredu
ible

Feynman diagrams. The propagator of a �eld is the 4-dimensional Fourier

transform of the va
uum expe
tation value of a time-ordered produ
t of a

pair of free �elds, so a �eld φ with momentum dimensionality Dφ has a prop-

agator with dimensionality dprop φ = −4 + 2Dφ. An intera
tion term with

nφ i su
h �elds and nder derivatives has dimensionality nder + nφ iDφ. If dif-

ferent �elds intera
t, this generalizes to nder +
∑

φ nφ iDφ. Sin
e the a
tion

must be dimensionless in our ~ = 1 units, ea
h term in the Lagrangian must

be 4-dimensional to 
an
el the dimensionality −4 of the di�erential term

d4x. Hen
e the intera
tion must have a 
oupling 
onstant g with dimension

dg = 4 − nder −
∑

φ niDφ. If the Feynman diagram has next φ external lines

for a parti
ular �eld φ, the amplitude in the momentum representation has

dimension

∑

φ−4next φ + nextφDφ. Of this dimensionality −4 
ome from the

momentum delta fun
tion and next φdpropφ 
ome from the propagators of the

external lines; the 
oupling 
onstants for a given Feynman diagram with Ni

verti
es have total dimensionalityNidg, leaving the momentum spa
e integral

with dimensionality

∑

φ

(−4next φ+nextφDφ)−(−4)−
∑

φ

(next φdprop φ)−Nidg = 4−
∑

φ

next φDφ−Nidg.

In estimating the degree of divergen
e D of a diagram the interest goes

mostly in the region of momentum spa
e where all momenta go to in�nity

together. Then the degree of divergen
e 
oin
ides with the dimensionality of

the diagram,

D = 4−
∑

φ

next φDφ −Nidg. (1.31)

29



If all intera
tions have dg > 0, then Eq.(1.31) sets an upper limit on D that

depends only on the number of external lines; that is, on the physi
al pro
ess

in 
onsideration,

D ≤ 4−
∑

φ

next φDφ. (1.32)

This implies that only a �nite number of external lines 
an yield super�
ially

divergent integrals. In general one 
an show that a limited number of diver-

gen
es appears in 
ase dg ≥ 0 for all intera
tions and these are removed by

rede�nition of a �nite number of physi
al 
onstants and a renormalization of

the �elds.

On the other hand, if one has dg < 0 the degree of divergen
e be
omes

larger and larger as more verti
es are in
luded. No matter how many external

lines are added, eventually there will be enough verti
es to make the integral

divergent. This is the 
ase of gravity, where Newton 
onstant has dimen-

sion [GN ] = −2. The Feynman rules also involve the graviton propagator,

whi
h s
ales with the four momentum kµ s
hemati
ally as k−2 = 1
E2−p2

. At

in
reasing loop orders, the Feynman diagrams of the theory would require


ounterterms of ever-in
reasing degree in 
urvature. The resulting theory


an still be treated as an e�e
tive quantum �eld theory, but it would still

require a UV 
ompletion.

1.4.2 Asymptoti
ally safe gravity

Asymptoti
 Safety gives an alternative notion of renormalizability ensuring

UV 
ompleteness that may lead to a 
onsistent theory of quantum gravity.

Let gi(µ) denote the full set of all renormalized 
oupling parameters of a

theory, de�ned at a renormalization point with momenta 
hara
terized by an

energy s
ale µ. If gi(µ) has momentum dimension of dgi, it 
an be repla
ed

with a dimensionless 
oupling,

g̃i(µ) = µ−dgigi(µ). (1.33)

Any sort of partial or total rea
tion rate R may be written in the form

R = µDf

(

E

µ
,X, g̃i(µ)

)

(1.34)

where D is the ordinary dimensionality of R (e.g., for total 
ross se
tion

D = −2), E is some energy 
hara
terizing the pro
ess and X stands for all

other dimensionless physi
al variables, in
luding the ratios of energies. The


entral idea of the renormalization group methods is to re
ognize that the

rea
tion rate 
annot depend on the arbitrary 
hoi
e of the renormalization
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point µ at whi
h 
ouplings are de�ned, so µ 
an be taken to be whatever is

preferable, as in parti
ular µ = E, in whi
h 
ase one has,

R = EDf (1, X, g̃i(E)) . (1.35)

Thus, apart the fa
tor ED
, the behavior of the rea
tion rates depends on the

behavior of the 
ouplings g̃i(µ) as µ→∞.

The emphasis here on rea
tion rates rather then o�-shell Green's fun
tions

has a very important advantage. Mass-shell matrix elements and rea
tion

rates do not depend on how the �eld are de�ned, so they are fun
tions only

of "essential" 
oupling parameters, i.e. those 
ombinations of the 
oupling

parameters in the Lagrangian that do not 
hange when the �eld is subje
ted

to a point transformation, su
h as φ→ φ+φ2
for a s
alar �eld φ. In 
ontrast,

the o�-shell Green's fun
tions will of 
ourse re�e
t the de�nition of the �elds

involved and will therefore be fun
tions of all the 
oupling parameters in

the Lagrangian, in
luding those inessential parameters that 
hange under a

rede�nition of the �elds. In the following, g̃i(µ) are only the essential 
oupling
parameters of the theory.

In order to 
larify how to distinguish an essential parameter by an inessen-

tial parameter one 
an apply the following test. When one 
hanges any un-

renormalized 
oupling parameter γ by an in�nitesimal amount ǫ the whole

Lagrangian 
hanges by

L→ L+ ǫ
∂L

∂γ
. (1.36)

Suppose one tries to reprodu
e this 
hange by a mere rede�nition of the �elds

ψn(x)→ ψn(x) + ǫFn(ψn(x), ∂µψn(x), ...). (1.37)

The 
hange in L indu
ed thereby is

δL = ǫ
∑

n

(

∂L

∂ψn(x)
Fn +

(

∂L

∂(∂µψn(x))

)

∂µFn + ...

)

= ǫ
∑

n

(

∂L

∂ψn(x)
− ∂µ

(

∂L

∂(∂µψn(x))

)

+ ...

)

Fn + total derivatives.

(1.38)

Thus a 
hange in the Lagrangian due to a variation of the parameter γ 
an

be reprodu
ed by a rede�nition of the �elds by a fun
tion Fn su
h that

∂L

∂γ
=
∑

n

(

∂L

∂ψn(x)
− ∂µ

(

∂L

∂(∂µψn(x))

)

+ ...

)

Fn + total derivatives.

(1.39)
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So the 
oupling parameter γ is an inessential 
oupling if and only if

∂L

∂γ
vanishes or is a total derivative along the solutions of the equations of motion.

For example, in the renormalizable s
alar �eld theory with Lagrangian

L = −1
2
Z(∂µφ∂

µφ+m2φ2)− 1

24
λZ2φ4

(1.40)

the �eld renormalization 
onstant is an inessential 
oupling, be
ause one 
an

write

∂L

∂Z
= −1

2
∂µ(φ∂

µφ) (1.41)

along the solution of the equations of motion. On the other hand, neither the

mass m or the 
oupling λ are inessential. Working with essential 
oupling

only allows one to formulate the 
ondition for asymptoti
 safety in a very


on
ise way.

Consider again the problem of determine the behavior of the essential


ouplings g̃i(µ). The 
hange in g̃i(µ) under a given fra
tional 
hange in µ is

a dimensionless quantity, and 
an therefore depend on all the g̃i(µ) but not
on µ itself being the only dimensional parameter left after res
aling. Thus

the rate of 
hange of g̃i(µ) with respe
t to res
aling of the renormalization

point µ may be written as a generalized Gell-Mann-Low equation

µ
d

dµ
g̃i(µ) = βi(g̃(µ)). (1.42)

Ea
h spe
i�
 theory is 
hara
terized by a traje
tory in 
oupling 
onstant

spa
e, generated by the solution of Eq.(1.42) with given initial 
onditions. If

the 
oupling g̃i(µ) approa
h a �xed point g∗ as µ→∞ then Eq.(1.35) gives a

simple s
aling behavior R→ ED
for E →∞. In order for g̃i(µ) to approa
h

the �xed point it is ne
essary that the beta fun
tions vanish at that point

and also that the 
oupling lie on a traje
tory g̃i(µ) that a
tually hits the �xed
point in the UV. The surfa
e formed by su
h traje
tories is 
alled "ultraviolet


riti
al surfa
e", and theories lying on the UV 
riti
al surfa
e have a sensible

UV limit, sin
e all the essential 
ouplings hit the �xed point. In parti
ular,

if the UV 
riti
al surfa
e is �nite dimensional, the arbitrariness of the 
hoi
e

of the 
oupling 
onstants is redu
ed to the 
hoi
e of a �nite number of them,

whi
h 
an be determined by a �nite number of experiments. A theory will

be 
alled "asymptoti
ally safe" if its essential 
oupling 
onstants lie on the

�nite-dimensional ultraviolet 
riti
al surfa
e of some �xed point, therefore

being UV-
omplete and predi
tive. A perturbatively renormalizable, asymp-

toti
ally free �eld theory su
h as QCD is a parti
ular 
ase of asymptoti
ally

safe theory. In that 
ase the �xed point of the renormalization group is
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a Gaussian �xed point, where all 
ouplings vanish, and the 
riti
al surfa
e

is spanned, near the �xed point, by the 
ouplings whi
h are perturbatively

renormalizable.

Without entering in the detail of the dis
ussion about the eviden
e for a

�xed point, this subse
tion fo
uses on having an understanding of the running

of Newton 
onstant, following Ref. [35℄. The 
oe�
ient of Einstein-Hilbert

a
tion is the square of Plan
k mass M2
P l =

1

16πG
. In the quantum theory it

is expe
ted to diverge quadrati
ally, leading to a beta fun
tion of the form

µ
d

dµ
M2

P l = 2aµ2, (1.43)

where a is a positive 
onstant. This expe
tation 
omes from a number of dif-

ferent 
al
ulations that show that the beta fun
tion has this kind of behavior

([36℄-[40℄). Let G̃ = Gµ2
be the dimensionless Newton 
onstant. Then, the

beta fun
tion for G̃ is

µ
dG̃

dµ
= 2G̃− 32πaG̃2. (1.44)

This beta fun
tion has a IR attra
tive �xed point at G̃ = 0 and, if a > 0,
also a UV attra
tive nontrivial �xed point at G̃ = 1/16πa. The solution of

the RG equation (1.43) is

M2
P l(µ) =M2

P l(0) + aµ2. (1.45)

One 
an see then that for µ≪MP l(0) the dimensionful G is 
onstant while

the dimensionless G̃ s
ales like µ2
. This is the regime experien
ed in everyday

life. On the other hand, for µ ≫ MP l(0) the dimensionful G s
ales as µ−2

and the dimensionless G̃ is 
onstant. This is the UV �xed point regime.

Assuming that this is the true behavior of Newton 
onstant and of all

other 
ouplings in the theory, it would seem that one 
an take the limit

µ→∞ and hen
e resolve arbitrarily small distan
e s
ales, in apparent 
on-

�i
t with all the arguments attributing a non 
lassi
al, smooth geometry to

spa
etime at very small s
ales. Is this really the 
ase? The point is that

any dimensionful quantity su
h as µ does not have any intrinsi
 value, but

one 
an attribute to it a value only when one measures it in some unity. So

far µ has been used as a unity itself, but µ will always be equal to 1 in µ
unity so, in order to give meaning to the limit µ→∞, one has to use some

other units. For example, one 
ould use Plan
k units, where the value of µ
is µ
√
G, having set c = ~ = 1. Sin
e G is a running 
oupling, one should

spe
ify at what s
ale it is to be evaluated. If one wants to measure the size of

obje
ts at very small s
ales, then the value of G that is more relevant for this
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measurement is its value at the s
ale of the experiment. Therefore, one has

that the more proper value of the 
uto� in Plan
k units is µ
√

G(µ) =
√

G̃,
whi
h means that in the 
orre
t units µ is indeed limited. Sin
e µ itself

is the upper bound for the momenta one 
an talk about in the theory, one


on
ludes that one 
annot talk about momenta greater then Plan
k mass,

or proper distan
es shorter than Plan
k length. Noti
e that using another


oupling gi of dimension di and g
1/di
i as a unit of mass gives the same result

as using Plan
k units. In fa
t sin
e the theory is asymptoti
ally safe, giµ
d

will still go to a 
onstant value in the UV.

The very de�nition of asymptoti
ally safe theory implies that if one re-

stri
t himself to "proper" measurements, one 
annot probe distan
es shorter

than the Plan
k length. The reason is that, sin
e the theory is fundamental

one 
annot appeal to any external unit of mass or length. The unit has to be


hosen within the theory, and in the �xed point regime all the possible 
an-

didates appear in 
onstant, �nite ratios between themselves and the 
uto�.

In this sense one 
an never have a "trans-Plan
kian" regime in Asymptoti


Safety. After all, at the �xed point one has s
ale-invarian
e and in a fun-

damental, s
ale-invariant theory one 
annot talk of distan
es. One 
an only

speak about distan
es in the low energy, sub-Plan
kian regime, and in that

regime the shortest length is the Plan
k distan
e.
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Chapter 2

Preliminaries on Relative Lo
ality

�Do we share the same time?�. Probably, this question 
ould never re
eive

a di�erent answer from �Of 
ourse we do!�, if posed to someone that ignores

Spe
ial Relativity. Independently on the fa
t that the answer turns to be

the unexpe
ted �no�, Einstein taught us that su
h a question is not silly nor

merely philosophi
al, but it is an experimental question. Then, on
e spa
e-

time substitutes spa
e and time, there is no reason for whi
h one should not

ask �how does an observer know that she lives in a spa
etime? And if so how

does she know that it is the same spa
etime of any another observer?�. These

are the fundamental questions that Relative Lo
ality poses as a starting point

of re�e
tion.

A lo
al observer does not dire
tly observe any event ma
ros
opi
ally dis-

tant from the measuring apparatus. The lo
al observer 
ould 
onsider herself

as a �
alorimeter� with a 
lo
k. Her most fundamental measurements are the

energies and angles of the quanta she emits and absorbs, and the time of

these events. The idea that she lives in a spa
etime is 
onstru
ted by in-

feren
es from her measurements of energies and momenta. This was vividly

illustrated by Einstein's pro
edure to give spa
etime 
oordinates to distant

events by ex
hanges of light signals. Adopting this pro
edure, the observer

measures the time it takes the photon to travel forth and ba
k but does not


are about the energy of the photon, resulting in a proje
tion into spa
etime.

When she does so, she presumes that the same spa
etime is re
onstru
ted

by the ex
hange of light signals of di�erent frequen
ies. One is also used to

assume that di�erent lo
al observers, distant from ea
h other, re
onstru
t

the same spa
etime by measurement of photons they send and re
eive.

But why should the information about the energy of the photon one uses

to probe the spa
etime be inessential? Might that be just a low energy

approximation? And why should one presume that the same spa
etime is

re
onstru
ted by two observers at a 
osmologi
al distan
e from ea
h other?
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One 
an see (following Refs.[102℄,[103℄) that absolute lo
ality, whi
h pos-

tulates that all observers live in the same spa
etime, is equivalent to the

assumption that momentum spa
e is a linear manifold. This 
orresponds

to an idealization in whi
h one throws away the information about the en-

ergy of the quanta one uses to probe spa
etime and it 
an be trans
ended in

a simple and powerful generalization of spe
ial relativisti
 physi
s whi
h is

motivated by 
onsiderations on uni�
ation of gravity and quantum physi
s

su
h as those dis
ussed previously. Lo
ality will turn to be linked with the as-

sumptions made about the geometry of momentum spa
e. Thus, the 
on
ept

of absolute lo
ality is relaxed in a 
ontrolled manner by linking this to a new

understanding of the geometry of momentum spa
e. In this framework there

is no notion of absolute lo
ality, di�erent observers see di�erent spa
etimes,

and the spa
etimes they observe are energy and momentum-dependent. Lo-


ality, a 
oin
iden
e of events, be
omes relative: 
oin
iden
es of events are

still obje
tive for all lo
al observers, but they are not in general manifest in

the spa
etime 
oordinates 
onstru
ted by distant observers.

In the next se
tion it will be shown how Relative Lo
ality manifests in our

"story teller" model, the k-Minkowski non-
ommutative spa
etime. Then in

Se
tion 2.2, the basi
 prin
iples and formulation of relative lo
ality are given,

independently on any pre-existing model. Then in Se
tion 2.3 a spe
i�
 real-

ization of a theory with relative lo
ality will be given. This will be the 
ontext

in whi
h the original results of this thesis are dis
ussed in the following.

2.1 k-Minkowski fuzziness

For the original obje
tive of spa
etime non
ommutativity, i.e. that of pro-

viding a 
hara
terization of spa
etime fuzziness at the Plan
k length, the

impli
ation of the k-Minkowski 
ommutators [x̂j , x̂0] = iℓx̂j remained un-


lear for relatively long time.

This se
tion reports what might be signi�
ant steps forward in the 
om-

prehension of this problem made in Refs.[99℄, [100℄, [101℄. The key in the

strategy of analysis proposed is a new type of �pregeometri
 representation�

of k-Minkowski. The idea of pregeometri
 representation originates (see, e.g.,

[98℄) from the 
onje
ture that k-Minkowski might be an e�e
tive des
ription

of parti
ular physi
al regimes of a more fundamental theory of quantum

gravity. From this perspe
tive it might be natural to des
ribe k-Minkowski

non
ommutativity in terms of standard Heisenberg quantum me
hani
s, in-

trodu
ed at some level of the des
ription. Te
hni
ally su
h a des
ription

allows reformulating the 
omplexity of k-Minkowski 
ommutation relations

in terms of (a few 
opy of) the familiar Heisenberg algebra.
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Before developing this pregeometri
 des
ription, it is better to stop think-

ing on when and how one should make room for non
ommutativity of spa
e-

time 
oordinates, taking as starting point our 
urrent theories. Evidently

the formalism of 
lassi
al me
hani
s do not make room for non
ommutative

spa
etime 
oordinates. There is no problem with this, sin
e it is expe
ted

that 
lassi
al me
hani
s would emerge as an approximate des
ription in a

regime for whi
h one 
an 
onsider ~→ 0, and this limiting pro
edure might

be su
h that also the non
ommutativity of spa
etime 
oordinates is removed.

The problem is that it is not straightforward to allow k-Minkowski spa
etime

non
ommutativity also in ordinary quantum me
hani
s. This is due to the

fa
t that in ordinary quantum me
hani
s time is not a self-adjoint opera-

tor but just an evolution parameter (therefore 
lassi
al and 
ommutative),

whereas for k-Minkowski it should be an operator that does not 
ommute

with the spa
e 
oordinates operators.

In Ref. [99℄, authors proposed to address this issue using the 
ovariant

formulation of quantum me
hani
s. In this formulation both the time 
oordi-

nate and the spa
ial 
oordinates are well-de�ned operators on a �kinemati
al

Hilbert spa
e� and both play the same role of �partial observables�. In the

formulation of 
ovariant quantum me
hani
s they 
ommute with ea
h other

and do not 
ommute with their respe
tive 
onjugate momenta. The proposal

is that this is the right point to introdu
e the k-Minkowski 
ommutators

(1.1),(1.2).

In this perspe
tive, the kinemati
al Hilbert spa
e plays a role within the


ovariant formulation of quantum me
hani
s that is analogous to the role

that Minkowski spa
etime plays in 
lassi
al me
hani
s of spe
ial-relativisti


parti
les. In fa
t, Minkowski spa
etime is the arena where the dynami
s of

relativisti
 parti
les is determined by enfor
ing the Hamiltonian 
onstraint.

In the same way, the kinemati
al Hilbert spa
e (that 
odi�es the geometry of

spa
etime) is the arena where the dynami
s of relativisti
 quantum parti
les

is produ
ed by enfor
ing the Hamiltonian quantum operator 
onstraint.

After introdu
ing the basi
 
on
epts of 
ovariant quantum me
hani
s in

the next subse
tion, the properties and in parti
ular the relativisti
 symme-

tries of empty k-Minkowski spa
etime will be analyzed in Sube
tion 2.1.2.

This analysis has its analogous in the study of the relativisti
 stru
ture of

Minkowski spa
etime. Even if none of the properties of spa
etime is dire
tly

observable (Minkowski spa
etime properties are inferred from observation on

the motion of 
lassi
al relativisti
 parti
les in it), it is nevertheless an exer
ise

that needs to be done sin
e these formal properties a�e
t the physi
al prop-

erties of the theories formulated on this spa
etime. Similarly the properties

of observables-operators on the kinemati
al Hilbert spa
e are not themselves

subje
table to measurement, but they usefully 
hara
terize the spa
etime
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arena where then the quantum dynami
s of parti
les on the physi
al Hilbert

spa
e takes pla
e. Finally the des
ription of a free parti
le propagating in

this quantum spa
etime will be dis
ussed in Sube
tion 2.1.3.

2.1.1 Covariant Quantum Me
hani
s

Here the basi
 
on
epts of 
ovariant formulation of quantum me
hani
s that

will be used in the following des
ription of the fuzziness of k-Minkowski will

be introdu
ed. For more details the reader 
an refer to Refs. [93℄,[94℄,[95℄,[96℄,

[97℄ and referen
es therein.

Consider a free non-relativisti
 parti
le in one spa
e dimension. Let

ψ(X, T ) be its S
hrödinger wave fun
tion, namely a solution of the free

S
hrödinger equation

1

i
∂

∂T
ψ(X, T ) = − 1

2m

∂2

∂X2
ψ(X, T ). (2.1)

The Hilbert spa
e H0 of the quantum theory is the spa
e of normalizable so-

lutions of the S
hrödinger equation. It 
an be represented by the spa
e L2[R]
of square integrable fun
tions on spa
e alone

2

. The wavefun
tion ψ(X, T ) is
represented by the square integrable fun
tion Ψ(X) = ψ(X, 0) at �xed time

T = 0, and the state is denoted by |Ψ〉. In this representation the s
alar

produ
t is

〈Ψ|Ψ′〉 =
∫

dXΨ(X)Ψ′(X). (2.2)

The spa
etime wavefun
tion ψ 
an be re
onstru
ted from Ψ using the prop-

agator. The generalized eigenstate of the position operator X is denoted by

|X〉 and the generalized eigenstate of the unitarily evolving Heisenberg posi-

tion operator X(T ) by |X ;T 〉 (so that |X〉 = |X ; 0〉). Thus Ψ(X) = 〈X|Ψ〉
1

Using units su
h that ~ = 1.
2

More pre
isely, the theory is de�ned on a rigged Hilbert spa
e S ⊂ H0 ⊂ S ′ formed

by a Hilbert spa
e H0, a proper subset S in H0 and its dual S ′, with their natural

identi�
ations. A manifold M and a measure dµ determines su
h a rigged Hilbert spa
e

SM ⊂ HM ⊂ S ′M where SM is the spa
e of smooth fun
tion on M with fast de
rease

(S
hwarz spa
e), HM = L2[M,dµ], and S ′M is the spa
e of tempered distributions on M .
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and ψ(X, T ) = 〈X ;T |Ψ〉. The propagator of the S
hrödinger equation is

W (X, T ;X ′, T ′) = 〈X ;T |X ′;T ′〉 = 〈X|e−iH(T−T ′)|X ′〉

=

∫

dp 〈X|e−iH(T−T ′)|p〉〈p|X ′〉

=

∫

dp ei[p(X−X′)− p2

2m
(T−T ′)]

=

(

2πm

i(T − T ′)

)
1
2

exp

[

i
m(X −X ′)2

2(T − T ′)

]

,

(2.3)

where H is the Hamiltonian and to solve the last integral one has to analyt-

i
ally 
ontinue time to the 
omplex plane in order to render the integrand


onvergent, then to take limit for vanishing imaginary part of the 
omplex

time variable. When viewed as a fun
tion of X and T , with X ′
ant T ′

held

�xed, this is a solution of the S
hrödinger equation whi
h at time T = T ′
is

a delta distribution 
entered at X = X ′
. Ea
h fun
tion Ψ(X) determines a

solution of the S
hrödinger equation by

ψ(X, T ) =

∫

dX ′W (X, T ;X ′, 0)Ψ(X ′). (2.4)

Thus the wavefun
tions of the S
hrödinger equation 
an be 
hara
terized by

the fun
tions Ψ(X) of spa
e only.
It is also 
onvenient to 
onsider the following states. Given any 
ompa
t

support 
omplex fun
tion f(X, T ), the state

|f〉 =
∫

dXdT f(X, T )|X ;T 〉 (2.5)

is in H0, for the S
hrödinger wavefun
tion of |f〉 is

ψf(X, T ) = 〈X ;T |f〉

= 〈X ;T |
∫

dX ′dT ′ f(X ′, T ′)|X ′;T ′〉

=

∫

dX ′dT ′W (X, T ;X ′, T ′)f(X ′, T ′)

(2.6)

and it is a solution of the S
hrödinger equation as well. |f〉 is 
alled the

�spa
etime smeared state� of the fun
tion f . The s
alar produ
t of two

spa
etime smeared states is

〈f |f ′〉 =
∫

dXdTdX ′dT ′ f(X, T )W (X, T ;X ′, T ′)f ′(X ′, T ′). (2.7)
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These states generalize the usual wave pa
kets for whi
h f(X, T ) = f(X)δ(T ).
Conventional wave pa
kets 
an be thought as being asso
iated with results

of instantaneous position measurements with �nite resolution in spa
e. It


an be shown that these spa
etime smeared states 
an be asso
iated with re-

alisti
 measurements, where the measuring devi
e has �nite resolution both

in spa
e and in time.

A 
onventional Hamiltonian system, like the free parti
le is, is formulated

in terms of a 
on�guration spa
e C0 and a HamiltonianH0 whi
h is a fun
tion

on the phase spa
e Γ0 = T ∗C0, i.e. the 
otangent bundle of the 
on�guration
spa
e. The Hamiltonian generates the evolution of the system in an external

(independent) variable T . The predi
tions of the theory are the values of the

phase spa
e variables as fun
tion of T as, for the example here 
onsidered,

X(T ). Thus, more a

urately, what the theory a
tually predi
ts are not the

individual values of T and X , but rather the relations between these values.

A basi
 example is the uniform motion X(T ) = vT , whi
h 
an be expressed

by means of the two equations X = s, vT = s: although s is an arbitrary

parameter, these two equations determine a relation between X and vT that

is not arbitrary, and is the a
tual predi
tion of the theory. In the 
onventional

dynami
al system, the time variable 
an be naturally 
hosen as the evolution

parameter, but in general this is not the 
ase, as happens for example in

General Relativity. One is then interested in a des
ription of the system

that establishes relations between values of T and X , and these relations

are what an observer 
an 
ompare with 
ombined measurements of T and

X . Thus, T and X are 
alled �partial observables�, whereas X(T ) is 
alled
a �
omplete observable�. This suggests that, in order to reformulate this

system in a 
ovariant form, one should promote T to a 
on�guration spa
e

variable: the extended 
on�guration spa
e (the spa
e of partial observables)

in
ludes the 
onventional 
on�guration spa
e C0 and time T . So for the


onventional Hamiltonian system one has C = C0 × R, where the 
oordinate

of R is identi�ed with T . Also, one poses the general Hamiltonian to be

H = pT +H0, where pT is the 
onjugate momentum to T (that turns out to

be minus the energy). Now, a relativisti
 system generally has an extended


on�guration spa
e that is not redu
ible to the simple form C = C0 × R and

the Hamiltonian would be a fun
tion on the extended phase spa
e Γ = T ∗C
and H 6= pT +H0. This means that time is treated in the same way as the

other 
on�guration variables.

So, one is now interested in quantizing a system of the form (C, H). Sin
e
the kinemati
s of the 
lassi
al system is de�ned by the extended 
on�guration

spa
e, in order to pro
eed with its quantization it is natural to 
onsider the

�kinemati
al� rigged Hilbert spa
e S ⊂ K ⊂ S ′
de�ned by C and the measure

dXdT . That is, S is the spa
e of smooth fun
tions f(X, T ) on C with fast
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de
rease, K = L2[C, dXdT ], and S ′
is the spa
e of tempered distributions

on C. S is the so-
alled �kinemati
al state spa
e� and its elements f(X, T )
�kinemati
al states�.

The quantum dynami
s is determined by the �Wheeler-DeWitt� (WdW)

equation

Hψ(X, T ) = 0. (2.8)

The S
hrödinger equation 
an be written in this form, of 
ourse,

(

i
∂

∂T
+

1

2m

∂2

∂X2

)

ψ(X, T ) = 0, (2.9)

but the WdW equation applies also for more general Hamiltonian fun
tions

for whi
h H 6= pT +H0. The solutions of this equation form a linear spa
e

H.
The key obje
t for the relativisti
 quantum theory is the operator

P =

∫

dτ eiτH (2.10)

from S to S ′
. In what follows, it may also be denoted by δ(H). It 
an be

shown that this operator maps arbitrary fun
tions f(X, T ) of S into solutions

of the WdW equation. For the 
ase of the S
hrödinger equation, for example,

one has

[Pf ](X, T ) =

∫

dτ eiτ(i∂/∂T+ 1
2m

∂2/∂X2)f(X, T )

=

∫

dτeiτ(i∂/∂T+ 1
2m

∂2/∂X2)

∫

dpdE ei(pX−ET )f̃(p, E)

=

∫

dτ

∫

dpdE eiτ(E− p2

2m
)ei(pX−ET )f̃(p, E)

=

∫

dpdE δ(E − p2

2m
)ei(pX−ET )f̃(p, E)

=

∫

dp ei(pX− p2

2m
T )f̃(p, E(p))

(2.11)

whi
h is a solution of the S
hrödinger equation, indeed. One 
an also develop
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further the 
al
ulation and write

[Pf ](X, T ) =

∫

dpdE δ(E − p2

2m
)ei(pX−ET )f̃(p, E)

=

∫

dpdE δ(E − p2

2m
)ei(pX−ET )

∫

dX ′dT ′e−i(pX′−ET ′)f(X ′, T ′)

=

∫

dX ′dT ′
∫

dpdE δ(E − p2

2m
)ei[p(X−X′)−E(T−T ′)]f(X ′, T ′)

=

∫

dX ′dT ′W (X, T ;X ′, T ′)f(X ′, T ′).

(2.12)

The matrix elements of P ,

〈f |P |f ′〉K =

∫

dXdTdX ′dT ′ f(X, T )W (X, T ;X ′, T ′)f ′(X ′, T ′), (2.13)

de�ne a degenerate inner produ
t in S. Dividing S by the kernel of this

inner produ
t, that is, identifying f and f ′
if Pf = Pf ′

, and 
ompleting in

norm, one obtains a Hilbert spa
e that might be denoted (S, 〈·|P |·〉). But

if Pf = Pf ′
, then f and f ′

de�ne the same solution of the WdW equation.

They de�ne the solution that 
orresponds to the spa
etime smeared state

|f〉 de�ned previously (
ompare equations (2.12) and (2.6)). Therefore, an

element of this Hilbert spa
e (S, 〈·|P |·〉) 
orresponds to a solution of WdW

equation: this Hilbert spa
e (S, 〈·|P |·〉) 
an be identi�ed with the spa
e of

the solutions of the WdW equation H. So
P :S → H

f 7→ |f〉. (2.14)

It follows that P equips the linear spa
e H of the solutions of the WdW

equation with a Hilbert spa
e stru
ture: if ψ = Pf and ψ′ = Pf ′
are two

solutions of the WdW equation, their s
alar produ
t is de�ned by

〈ψ|ψ′〉H ≡ 〈f |P |f ′〉K. (2.15)

The partial observables T and X are des
ribed as self-adjoint operators

on K whi
h a
t simply by multipli
ation. Their 
ommon generalized eigen-

states |X, T 〉 are in S. Noti
e that these states are di�erent from the states

|X ;T 〉, whi
h are eigenstates of the 
omplete observable X(T ) and deter-

mine solutions to the S
hrödinger equation. The relation between the two is

|X ;T 〉 = P |X, T 〉. These states |X, T 〉 satisfy

〈X, T |P |X ′, T ′〉K =W (X, T ;X ′, T ′). (2.16)
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Noti
e that one also �nds

W (X, T ;X ′, T ′) = 〈X ;T |X ′;T ′〉H = 〈X, T |P †P |X ′, T ′〉H, (2.17)

whi
h is 
onsistent with Eq.(2.16) be
ause the de�nition of the s
alar produ
t

in H is given by Eq.(2.15).

One 
an view these states |X, T 〉 as �kinemati
al states� that do not know

anything about dynami
s. They 
orrespond to a single �quantum event�.

Their (�kinemati
al�) s
alar produ
t inK, 〈X, T |X ′, T ′〉 = δ(X−X ′)δ(T−T ′),
expresses only their independen
e, while their �physi
al� s
alar produ
t (2.16)

in H expresses the physi
al relation between the two events by mean of the

presen
e of the parti
le propagator.

One 
an now propose the following axioms of a 
ovariant quantum me-


hani
s (only those axioms whi
h are used in the following appli
ation to

k-Minkowski are reported here):

• Kinemati
al states: Kinemati
al states form a spa
e S in a rigged

Hilbert spa
e S ⊂ K ⊂ S ′
.

• Partial observables: A partial observable is represented by a self-adjoint

operator in K. Common eigenstates |s〉 of a 
omplete set of 
ommuting

partial observables are denoted quantum events.

• Dynami
s: The dynami
s is determined by a self-adjoint operator H
in K, the (relativisti
) Hamiltonian. The operator from S to S ′

P =

∫

dτeiτH (2.18)

is (improperly) 
alled �proje
tor� and its matrix elements

W (s, s′) = 〈s|P |s′〉 (2.19)

are 
alled transition amplitudes.

• Physi
al states: A physi
al state is a solution of the Wheeler-DeWitt

equation

Hψ = 0. (2.20)

Equivalently, it is an element of the Hilbert spa
e H de�ned by the

quadrati
 form 〈·|P |·〉 on S.

• Complete observables: A 
omplete observable A is represented by a

self-adjoint operator on H. A self-adjoint operator A in K de�nes a


omplete observable if it 
ommutes with the relativisti
 Hamiltonian

H .
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2.1.2 Pregeometry of k-Minkowski and fuzzy points

This se
tion deals with the study of the properties of the non
ommuting


oordinates of a 1+1-dimensional k-Minkowski spa
etime at the level of the

kinemati
al Hilbert spa
e of a 
ovariant formulation of quantum me
hani
s.

The units adopted are su
h that c = ~ = 1 and the 
onventions for the

Minkowski metri
 tensor ηµν = {1,−1}.
The pregeometri
 representation is given as follows. Given the phase

spa
e observables for the 
ovariant formulation of 2D quantum me
hani
s,

[π̂0, q̂0] = i, [π̂0, q̂1] = 0,

[π̂1, q̂0] = 0, [π̂1, q̂1] = −i,
(2.21)

the k-Minkowski 
oordinates x̂0, x̂1 are des
ribed as

x̂0 = q̂0, x̂1 = q̂1e
ℓπ̂0 , (2.22)

that indeed satisfy (1.1) and (1.2). In fa
t, for example,

[x̂1, x̂0] = [q̂1e
ℓπ̂0, q̂0] = q̂1[e

ℓπ̂0, q̂0] = iℓq̂1e
ℓπ̂0 = iℓx̂1.

One �nds in this pregeometri
 des
ription also opportunities for des
rib-

ing the k-Minkowski di�erential 
al
ulus and the k-Poin
aré transformations

generators. For the translation generators, by posing

P0 ⊲ f(x̂0, x̂1)←→
[

π̂0, f(q̂0, q̂1e
ℓπ̂0)
]

,

P1 ⊲ f(x̂0, x̂1)←→ e−ℓπ̂0
[

π̂1, f(q̂0, q̂1e
ℓπ̂0)
]

,

(2.23)

one does reprodu
e all the properties of k-Poin
aré translation generators

summarized earlier in Chapter 1. Noti
e that the properties of the elements

âµ of the di�erential 
al
ulus given in (1.13) 
an be reprodu
ed by 
ombining

ordinary parameters aµ and the (partial) observable π̂0:

â0 = a0, â1 = a1e
ℓπ̂0. (2.24)

In 2D k-Minkowski spa
etime boost generator should satisfy the following
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properties of 
ommutation with translation generators and of 
oprodu
t

3

:

−i [N, P0] ⊲ f(x̂) ≡ P1 ⊲ f(x̂),

−i [N, P1] ⊲ f(x̂) ≡
(

1− e−2ℓP0

2ℓ
− ℓ

2
P 2
1

)

⊲ f(x̂),

∆N = N ⊗ 1 + e−ℓP0 ⊗N.

The boost operator takes the form

B = 1 + dN , dN = iξ̂N, (2.25)

and the non
ommutative boost-transformation parameter is

[

ξ̂, x̂0

]

= iℓξ̂,
[

ξ̂, x̂1

]

= 0. (2.26)

The pregeometri
 des
ription of boost parameter and generator is given by

ξ̂ = ξeℓπ̂0,

N ⊲ f(x̂) ≡ e−ℓπ̂0
[

η̂, f(q̂0, q̂1e
ℓπ̂0)
]

,

with

η̂ ≡
(

e2ℓπ̂0 − 1

2ℓ
+
ℓ

2
π̂2
1

)

q̂1 − π̂1q̂0. (2.27)

3

Noti
e that in 2D k-Minkowski the 
oprodu
t of boost generator has the same form

of the 
oprodu
t of translation generators. Then, sin
e the non
ommutativity properties

of the transformation parameters are proven to be dire
tly linked to the 
oprodu
t of the

generators of the transformation, the properties of boost transformation parameters will

immediately follow. In 4D this would no longer be the 
ase, the 
oprodu
ts of boosts

generators being di�erent from those of translation generators. This 
oin
iden
e in the

2D 
ase simpli�es the analysis from a te
hni
al point of view, but 
on
eptually there is no

di�eren
e with the 4D k-Minkowski.
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From these de�nitions one �nds that under the a
tion of boost

π̂′
0 =π̂0 + iξ̂(N ⊲ π̂0)

=π̂0 +
(

iξeℓπ̂0
)

e−ℓπ̂0

[(

e2ℓπ̂0 − 1

2ℓ
+
ℓ

2
π̂2
1

)

q̂1 − π̂1q̂0, π̂0
]

=π̂0 − ξπ̂1,

π̂′
1 =π̂1 + iξ̂(N ⊲ π̂1)

=π̂1 +
(

iξeℓπ̂0
)

e−ℓπ̂0

[(

e2ℓπ̂0 − 1

2ℓ
+
ℓ

2
π̂2
1

)

q̂1 − π̂1q̂0, π̂1
]

=π̂1 − ξ
(

e2ℓπ̂0 − 1

2ℓ
+
ℓ

2
π̂2
1

)

.

(2.28)

It has been already impli
itly spe
i�ed that the states of the kinemati
al

Hilbert spa
e for k-Minkowski will admit a representation (in the "pregeo-

metri
 momentum spa
e representation") as square-integrable fun
tions of

variables π̂0 and π̂1. In order to de�ne properly the pres
ription of square-

integrability one has to spe
ify a measure on this kinemati
al Hilbert spa
e.

One shall 
hara
terize the s
alar produ
t in momentum spa
e as

〈Ô〉 = 〈ψ|Ô|ψ〉 =
∫

D(πµ)ψ⋆(πµ)O(πµ)ψ(πµ), (2.29)

where the measure (that must be invariant under the a
tion of boost) is

D(πµ) = dπ0dπ1e
−ℓπ0 . (2.30)

One sees that, with this measure, η̂ is Hermitian, so the boost transformation

operator (2.25) is unitary and preserves the s
alar produ
t:

〈ψ′|ψ′〉 = 〈ψ|U †(B)U(B)|ψ〉 = 〈ψ|eiξη̂e−iξη̂|ψ〉 = 〈ψ|ψ〉. (2.31)

It is now time for des
ribing fuzzy points of k-Minkowski and analyze this

fuzziness from the perspe
tive of distant observers in relative rest, observers


onne
ted by a pure translation. First one needs a des
ription of these fuzzy

points. Evidently within the pregeometri
 des
ription a point of k-Minkowski

will be des
ribed as a state in the pregeometri
 Hilbert spa
e (the Hilbert

spa
e on whi
h the pregeometri
 operators q̂µ and π̂µ are de�ned). It is indeed
easy to see that no state in the pregeometri
 Hilbert spa
e gives absolutely

sharp values to x̂0 and x̂1 simultaneously: in light of x̂0 = q̂0, x̂1 = q̂1e
ℓπ̂0

, in

order to have a sharp value on x̂0 requires an eigenstate of q̂0 but, for su
h
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eigenstate, π̂0 is in�nitely fuzzy (δπ0 ≈ ∞), whi
h in turn implies that x̂1

annot be sharp. So all points in k-Minkowski must be fuzzy

4

.

In order to study the properties of k-Minkowski fuzziness one 
an 
onsider

Gaussian states on the pregeometri
 Hilbert spa
e. Adopting a pregeometri


momentum-spa
e representation this states take the form

Ψq̄0, q̄1(πµ; π̄µ, σµ) = Ne
− (π0−π̄0)

2

4σ2
0

− (π0−π̄0)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

(2.32)

with parameters π̄0, π̄1, σ0, σ1, and q̄0, q̄1, these being highlighted in the no-

tation sin
e the issue of lo
alization of the parti
le is predominantly 
on-

ne
ted with those two parameters, whi
h determine the expe
ted values for

the pregeometri
 position 
oordinates q̂0, q̂1. Essentially π̄0, π̄1 have the role
of expe
ted values for the pregeometri
 momenta π̂0, π̂1, whereas σ0, σ1 
har-
a
terize the un
ertainty for π̂0, π̂1. N is a normalization 
onstant obtained

by requiring 〈Ψ|Ψ〉 = 1, from whi
h

N2 =
eℓπ̄0e−(ℓσ0)2/2

2πσ0σ1
. (2.33)

The properties of points of k-Minkowski spa
etime are 
hara
terized by

evaluating in the Gaussian pregeometri
 state the mean values and the un-


ertainties of the operators x̂0, x̂1. Beginning with the time 
oordinate:

4

This is true with the only ex
eption of the origin x̂0 = x̂1 = 0 but this 
an be added as

a limiting 
ase for what is to be dis
ussed in the following, where it is made evident that

even if an observer des
ribes the point in his origin as absolutely sharp, a distant observer

des
ribes that same point as fuzzy.
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〈x̂0〉 =N2

∫

dπ0dπ1e
−ℓπ0Ψ∗

(

−i ∂
∂π0

)

e
− (π0−π̄0)

2

4σ2
0 e

− (π1−π̄1)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

=N2

∫

dπ0dπ1e
−ℓπ0Ψ∗

(

q̄0 +
i

2σ2
0

(π0 − π̄0)
)

e
− (π0−π̄0)

2

4σ2
0 e

− (π1−π̄1)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

=q̄0 +N2

∫

dπ0dπ1e
−ℓπ0

i

2σ2
0

(π0 − π̄0)e
− (π0−π̄0)

2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄0 +
i

2σ2
0

eℓπ̄0e−(ℓσ0)2/2

2πσ0σ1

∫

dπ0dπ1e
−ℓπ0(π0 − π̄0)e

− (π0−π̄0)
2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄0 +
i

2σ2
0

e−(ℓσ0)2/2

√
2πσ0

∫

dπ0e
−ℓ(π0−π̄0)(π0 − π̄0)e

− (π0−π̄0)
2

2σ2
0

=q̄0 +
i

2σ2
0

e−(ℓσ0)2/2

√
2πσ0

(

− ∂

∂ℓ

)
∫

dπ0e
−ℓ(π0−π̄0)e

− (π0−π̄0)
2

2σ2
0

=q̄0 +
i

2σ2
0

e−(ℓσ0)2/2

(

− ∂

∂ℓ

)

e(ℓσ0)2/2

=q̄0 − i
ℓ

2
.

This 
onstant 
ontribution to x̄0 is expe
ted on the basis of the fa
t that q̂0 is
not Hermitian, and the Hermitian operator obtainable by q̂0 that 
an be used

as k-Minkowski time 
oordinate is x̂∗0 = q̂0 − iℓ/2. However, one 
an keep

working with the previous 
hoi
e of time 
oordinate for two main reasons: the

�rst is that the physi
al properties of k-Minkowski will have to be formulated

in terms of operators that 
ommute with the Hamiltonian 
onstraint, and k-
Minkowski time 
oordinate is not one of these. The se
ond is that, when one

is interested in x̂0 as a partial observable on the physi
al Hilbert spa
e, the

most meaningful features are found to be inevitably formulated in terms of

di�eren
es among values of this operator. Therefore this 
onstant does not

give any 
ontribution.

Continuing the 
al
ulations one has
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〈x̂20〉 =N2

∫

dπ0dπ1e
−ℓπ0Ψ∗

(

− ∂2

∂π2
0

)

e
− (π0−π̄0)

2

4σ2
0 e

− (π1−π̄1)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

=N2

∫

dπ0dπ1e
−ℓπ0

(

q̄20 +
1

2σ2
0

+
iq̄0
σ2
0

(π0 − π̄0)−
1

4σ4
0

(π0 − π̄0)2
)

e
− (π0−π̄0)

2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄20 +
1

2σ2
0

− iℓq̄0 −
1

4σ4
0

N2

∫

dπ0dπ1e
−ℓπ0(π0 − π̄0)2e

− (π0−π̄0)
2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄20 +
1

2σ2
0

− iℓq̄0 −
1

4σ4
0

e−(ℓσ0)2/2

√
2πσ0

(

∂2

∂ℓ2

)
∫

dπ0e
−ℓ(π0−π̄0)e

− (π0−π̄0)
2

2σ2
0

=q̄20 +
1

2σ2
0

− iℓq̄0 −
1

4σ4
0

e−(ℓσ0)2/2
(

σ2
0e

(ℓσ0)2/2 + ℓ2σ4
0e

(ℓσ0)2/2
)

=q̄20 +
1

4σ2
0

− iℓq̄0 −
ℓ2

4
.

Then

δx̂0 =
√

〈x̂20〉 − 〈x̂0〉2 =
√

q̄20 +
1

4σ2
0

− iℓq̄0 −
ℓ2

4
− (q̄20 − iℓq̄0 −

ℓ2

4
) =

1

2σ0
.

Now for the spatial 
oordinate:

〈x̂1〉 =〈q̂1eℓπ̂0〉 = N2

∫

dπ0dπ1e
−ℓπ0Ψ∗

(

i
∂

∂π1
eℓπ0

)

e
− (π0−π̄0)

2

4σ2
0 e

− (π1−π̄1)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

=N2

∫

dπ0dπ1Ψ
∗
(

q̄1 −
i

2σ2
1

(π1 − π̄1)
)

e
− (π0−π̄0)

2

4σ2
0 e

− (π1−π̄1)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

=N2

∫

dπ0dπ1

(

q̄1 −
i

2σ2
1

(π1 − π̄1)
)

e
− (π0−π̄0)

2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄1
eℓπ̄0e−(ℓσ0)2/2

2πσ0σ1

∫

dπ0dπ1e
− (π0−π̄0)

2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄1e
ℓπ̄0e−(ℓσ0)2/2;
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〈x̂21〉 =〈(q̂1eℓπ̂0)2〉 = N2

∫

dπ0dπ1e
ℓπ0

(

q̄21 +
1

2σ2
1

− 1

4σ4
1

(π1 − π̄1)2
)

e
− (π0−π̄0)

2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=

(

q̄21 +
1

2σ2
1

(

1 +
∂

∂β

))

|β=1

N2

∫

dπ0dπ1e
ℓπ0e

− (π0−π̄0)
2

2σ2
0 e

−β
(π1−π̄1)

2

2σ2
1

=

(

q̄21 +
1

2σ2
1

(

1 +
∂

∂β

))

|β=1

N2

√

2πσ2
1

β

√

2πσ2
0 e

(ℓσ0)2/2eℓπ̄0

=

(

q̄21 +
1

2σ2
1

(

1− 1

2

))

eℓπ̄0e−(ℓσ0)2/2

2πσ0σ1

√

2πσ2
1

√

2πσ2
0 e

(ℓσ0)2/2eℓπ̄0

=

(

q̄21 +
1

4σ2
1

)

e2ℓπ̄0;

Therefore one has

δx̂1 =
√

〈x̂21〉 − 〈x̂1〉2 =
√

(

q̄21 +
1

4σ2
1

)

e2ℓπ̄0 − q̄21e2ℓπ̄0e−(ℓσ0)2

=eℓπ̄0

[

1

4σ2
1

+ q̄21

(

1− e−(ℓσ0)2
)

]1/2

.

In summary, the following expression for mean values and un
ertainties

of the operators x̂0 and x̂1 have been found:

x̄0 = 〈q̂0〉 = q̄0 − i
ℓ

2
, (2.34a)

δx̂0 =
√

〈q̂20〉 − x̄20 =
1

2σ0
, (2.34b)

and

x̄1 = 〈q̂1eℓπ̂0〉 = q̄1e
ℓπ̄0e−(ℓσ0)2/2, (2.35a)

δx̂1 =
√

〈(q̂1eℓπ̂0)2〉 − x̄21 = eℓπ̄0

[

1

4σ2
1

+ q̄21

(

1− e−(ℓσ0)2
)

]1/2

. (2.35b)

From these expressions one 
an already see that for �xed values of q̄0, π̄0, σ0, σ1
one �nds larger fuzziness of x̂1 at large values of q̄1, be
ause of the 
ontri-

bution to δx̂1 by the term with q̄21 in the last equation. However it is more

interesting to study how distin
t observers related by a pure translation 
har-

a
terize the fuzziness of the same point. To see this one has to implement

a translation transformation on a fuzzy point of k-Minkowski. Within this
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pregeometri
 des
ription the a
tion of the operator dP of Eq.(1.14) on a

fun
tion f(x̂) is easily found to be

dP ⊲ f(x̂0, x̂1)←→ iaµ[π̂µ, f(q̂0, q̂1e
ℓπ̂)], (2.36)

sin
e

dP = iâµP
µ = iâ0P0 − iâ1P1 = ia0P0 − ia1eℓπ̂0P1

and then re
alling the a
tion (2.23) of translation generators. So this a
tion

involves only familiar 
ommutative transformation parameters aµ and stan-

dard translations (a
ting by 
ommutators) at the pregeometri
 level. This

allows implementing translation transformations straightforwardly:

T ⊲ x̂0 = x̂0 + dP ⊲ x̂0 = x̂0 + iaµ[π̂µ, q̂0]

= x̂0 − a0 = q̂0 − a0,
(2.37)

T ⊲ x̂1 = x̂1 + iaµ[π̂µ, q̂1e
ℓπ̂0]

= x̂1 + ia1[π̂1, q̂1]e
ℓπ̂0

= x̂1 − ia1(−i)eℓπ̂0

= x̂1 − â1 = eℓπ̂0(q̂1 − a1).

(2.38)

The mean values of un
ertainties of T ⊲ x̂µ on the Gaussian state (2.32),

are then immediately found:

〈T ⊲ x̂0〉 = q̄0 − a0 − i
ℓ

2
, (2.39a)

δ(T ⊲ x̂0) =
1

2σ0
, (2.39b)

and

〈T ⊲ x̂1〉 = (q̄1 − a1)eℓπ̄0e−
ℓ2σ2

0
2 , (2.40a)

δ(T ⊲ x̂1) = eℓπ̄0

[

1

4σ2
1

+ (q̄1 − a1)2
(

1− e−ℓ2σ2
0

)

]1/2

. (2.40b)

The interpretation here is of 
ourse that operators x̂µ are operators 
har-

a
terizing the distan
e of a given (fuzzy) point from the frame origin of some

observer Ali
e, and T ⊲ x̂µ are the operators 
hara
terizing the distan
e of

that point from the origin of another observer Bob, purely translated with

respe
t to Ali
e. Comparing Eqs.(2.34),(2.35) with Eqs.(2.39), (2.40) one


an re
ognize two main features:
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• The same point appears to be more fuzzy to a distant observer than to

a nearby observer.

• The point at Ali
e is not des
ribed as at Ali
e in the 
oordinatization

of spa
etime of observer Bob, and vi
e versa the point at Bob is not

des
ribed as at Bob in the 
oordinatization of spa
etime of observer

Ali
e.

This se
ond feature is 
hara
teristi
 of Relative Lo
ality and will be dis
ussed

in detail in the following. As anti
ipated in the introdu
tion, one 
an see

that it is possible to formulate a 
onsistent relativisti
 theory of intera
ting

parti
les in whi
h the 
on
ept of lo
ality is weakened, from the absolute

lo
ality of the standard physi
s to a relative lo
ality. In the �rst 
ase all

observers agree on 
hara
terizing all the intera
tions as lo
al (there are no

instantaneous-intera
tion-at-a-distan
e, the parti
les intera
t at one point

of spa
etime), independently on their distan
e from the intera
tion event

or on their motion relative to the intera
ting parti
les; in the other 
ase

observers whi
h are lo
al (�near�) to the intera
tion 
hara
terize it as lo
al

but distant observers might (erroneously) infer from their observations that

the intera
tion is not lo
al.

2.1.3 Fuzzy worldlines

The properties of boost strongly 
hara
terize the form of the on-shell 
on-

dition, whi
h in turn, as it has been seen in the se
tion dedi
ated to the


ovariant formulation of quantum me
hani
s, through an appropriate Hamil-

tonian 
onstraint governs the relationship between the kinemati
al Hilbert

spa
e and the physi
al Hilbert spa
e. On the basis of the properties derived

above one �nds that the d'Alambertian operator that is invariant under the

a
tion of boosts is the ℓ-deformed

�ℓ =

(

2

ℓ

)2

sinh2

(

ℓπ̂0
2

)

− e−ℓπ̂0π̂2
1 . (2.41)

Then for massless parti
les the Hamiltonian operator that enfor
es the on-

shellness 
ondition and should vanish on physi
al states (WdW equation) is

simply

H =

(

2

ℓ

)2

sinh2

(

ℓπ̂0
2

)

− e−ℓπ̂0π̂2
1 . (2.42)

One 
an pro
eed to study the physi
al s
alar produ
t 〈ψ|φ〉H = 〈ψ|δ(H)Θ(π0)|φ〉,
where Θ(π0) spe
i�es a restri
tion to positive-energy solutions only. In the
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momentum spa
e representation this writes

〈ψ|φ〉H =

∫

dπ1dπ0 e
−ℓπ0δ(H)Θ(π0)ψ

⋆(πµ)φ(πµ). (2.43)

Here it will be now 
onsidered the 
ase of a lo
alized massless parti
le, de-

s
ribable in terms of the Gaussian state

5

Ψq̄0, q̄1(πµ; π̄µ, σµ) = Ne
− (π0−π̄0)

2

4σ2
0

− (π0−π̄0)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

(2.44)

where N now is a new normalization 
onstant that is 
omputed by

N−2 =

∫

dπ1dπ0 e
−ℓπ0δ(H)Θ(π0)|Ψq̂0, q̂1(πµ; π̄µ, σµ)|2. (2.45)

Ψq̄0, q̄1 is a state in the physi
al Hilbert spa
e of relativisti
 free-parti
le quan-

tum me
hani
s, so it identi�es a worldline that is fuzzy, as will be 
lear

shortly. The expe
tation in Ψq̄0, q̄1 of the measurable quantity des
ribed by

the self-adjoint operator O is 
omputed in terms of 〈Ψq̄0, q̄1|O|Ψq̄0, q̄1〉H.
One now has to look for a well-de�ned 
omplete observable suitable for

the 
hara
terization of the fuzziness of the worldline. The apparently obvious


hoi
es x̂0, x̂1 are a
tually not suitable for this task be
ause they are not self-
adjoint operators on the physi
al Hilbert spa
e (in parti
ular they do not


ommute with H). One should expe
t this sin
e these two operators are the

k-Minkowski version of the partial observable time and position operators

of 
ovariant quantum me
hani
s. So what is really needed is a 
ombination

between these two quantities that gives a 
omplete observable. Considering

a free parti
le, 
lassi
ally speaking, one 
ould imagine that it should go on a

straight line. This line is determined 
ompletely on
e the inter
ept and the

velo
ity are known. Authors in [101℄ found the following operator:

A = eℓπ̂0

(

q̂1 − V̂ q̂0 −
1

2
[q̂0, V̂]

)

, (2.46)

where V̂ is de�ned as V̂ ≡ (∂H/∂π̂0)−1∂H/∂π̂1
. A is self-adjoint and 
om-

mutes with H , and so it is a good observable on the physi
al Hilbert spa
e.

Also, in the 
lassi
al limit it evidently redu
es to the inter
ept of the parti-


le worldline with the x1 axis. One may noti
e that A is des
ribable as an

ℓ-deformed Newton-Wigner operator, whi
h is well known to being the best

5

In the massless parti
le limit, one must pro
eed 
autiously: Ψq̂0, q̂1(πµ; π̄µ, σµ)must be

repla
ed by Ψα
q̂0, q̂1

(πµ; π̄µ, σµ) = exp(−α/π2
0)Ψq̂0, q̂1(πµ; π̄µ, σµ) with α a small infrared

regulator whi
h never a
tually matters in the results here reported.
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lo
alization estimator within spe
ial-relativisti
 quantum me
hani
s (it 
an

only be questioned for lo
alization 
omparable to the Compton wavelength

of the parti
le, but this 
on
eptual limit is not very relevant for the level of

lo
alization a
hieved by parti
le produ
tion at, say, a quasar).

For 
on
eptual 
larity, the fo
us here is on the analysis of the properties

of A for the 
ase of Ψ0, 0, i.e. for q̄0 = q̄1 = 0. One �nds that

〈Ψ0, 0|A|Ψ0, 0〉H = 0, (2.47)

so this is a 
ase where the parti
le inter
epts the observer Ali
e in her origin.

The fa
t that this inter
ept is fuzzy re�e
ts the fuzziness of the worldline

des
ribed by Ψ0, 0, and in parti
ular the leading ℓ-dependent 
ontribution to

this fuzziness is 
hara
terized by

δA2
[ℓ] = (〈Ψ0, 0|A2|Ψ0, 0〉H)[ℓ] ≈

ℓ〈π̂0〉
2σ2

, (2.48)

where for simpli
ity it has been assumed that σ1 is small enough, in 
ompar-

ison with σ0, π̄1 to allow a saddle point approximation in the π1 integration;
then σ (without indi
es) is the e�e
tive Gaussian width after the saddle point

approximation in π1 : σ
−2 ≡ σ−2

1 + 〈V̂〉2σ−2
0 .

In the interpretation of the formalism proposed by the authors in Ref.[101℄

Eq.(2.48) gives the fuzziness of the worldline at the point where it 
rosses

the origin of Ali
e's referen
e frame. It is of interest also 
onsidering the

perspe
tive given by observers rea
hed by the parti
les at a 
osmologi
al

distan
e from Ali
e. These observers are those 
onne
ted to Ali
e by a pure

translation, so that for them the state of the parti
le is Ψa0, a1 and are su
h

that 〈A〉 = 〈Ψa0, a1 |A|Ψa0, a1〉H = 0. Finding these observers 
onsists in

�nding the translation parameters a0, a1 su
h that 〈Ψ0, 0|T−1AT |Ψ0, 0〉H = 0,
where T is the translation operator previously de�ned. This leads to a one-

parameter family of solutions (the family of observers on the worldline),

whi
h takes the form a1 = 〈V̂〉a0.
It is important to noti
e that these observers with vanishing expe
tation

value for the inter
ept have values of the un
ertainties of the inter
ept δA
given by

δA2
[ℓ] = (〈Ψa0, 〈V̂〉a0 |A

2|Ψa0, 〈V̂〉a0〉H ≈
(

ℓ〈π̂0〉
2σ2

+ ℓ2σ2a20

)

. (2.49)

So a quantum spa
etime pi
ture is o�ered here: one 
an interpret our observer

Ali
e, the observer on the worldline for whom the fuzziness of the inter
ept

takes the minimum value, as the observer at the sour
e (where the parti
le

is produ
ed); then the inter
ept of the parti
le worldline with the origin of
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the referen
e frame of a distant observer (whi
h might dete
t the parti
le)

has larger un
ertainties. Noti
e that, sin
e δA2
[ℓ] goes as (ℓa0)

2
, if the parti
le

travels a long distan
e (a 
osmologi
al distan
e) its fuzziness �bene�ts� of a

sort of ampli�
ation. Therefore, from this formalization of k-Minkowski it

is possible to extra
t (if one pro
eeds with the analysis) in prin
iple observ-

able phenomenologi
al predi
tions as, for example, an anomalous blurring of

images of distant quasars.

2.2 The prin
iple of relative lo
ality

The previous se
tion showed how relativity of lo
ality emerges in k-Minkowski

non-
ommutative spa
etime. Here the basi
 formulation of Relative Lo
ality

will be given, without relying on any spe
i�
 model of quantum spa
etime.

In fa
t the main ingredient is the geometry of momentum spa
e.

The approximation used in this study is that in whi
h both ~ and GNewton

may be negle
ted while their ratio MP l =

√

~

GNewton

is held �xed

6

. In this

approximation gravitational and quantum e�e
ts may both be negle
ted, but

there may be new phenomena on s
ales of momentum or energy given byMP l.

At the same time, be
ause LP =
√
~GNewton → 0 no features of quantum

spa
etime geometry are expe
ted to be relevant.

Sin
e this approximation gives an energy s
ale, but not a length s
ale,

one presumes that momentum spa
e is more fundamental than spa
etime,

a

ording to the operational point of view mentioned before. Thus, on
e the

deformation of the geometry of momentum spa
e by the s
ale MP l has been

established, the properties of spa
etime will be derived from the dynami
s

formulated in momentum spa
e.

2.2.1 De�ning the geometry of momentum spa
e

The theoreti
al framework of Relative Lo
ality takes an operational point of

view in whi
h one des
ribes physi
s from the perspe
tive of a lo
al observer

who is equipped with devi
es to measure energy and momenta of elementary

parti
les in her vi
inity. It is also supposed that the observer 
an measure a

"lo
al proper time" with a 
lo
k. She 
onstru
ts the geometry of momentum

spa
e from measurements made of the dynami
s of intera
ting parti
les. It

is assumed that ea
h 
hoi
e of 
alorimeter is a preferred 
hoi
e of lo
al 
o-

ordinates kµ on momentum spa
e. Noti
e that kµ measure the energy and

6

Units are su
h that c = 1.
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momenta of ex
itations above the ground state, hen
e the origin of momen-

tum spa
e, kµ = 0, is physi
ally well de�ned.

A lo
al observer 
an make two kinds of measurements. One type of

measurement 
an be done only with a single parti
le and it de�nes a metri


on momentum spa
e P. In fa
t, it is assumed that the mass represents

the geodesi
 distan
e from the origin of momentum spa
e. This gives the

dispersion relation

D2(p) ≡ D2(p, 0) = m2. (2.50)

The observer 
an also measure the kineti
 energy of a parti
le of mass m
moving with respe
t to her but lo
al to her. It is postulated that this measure

de�nes the geodeti
 distan
e between a parti
le p at rest and a parti
le p′ of
identi
al mass and kineti
 energy K, that is D2(p) = D2(p′) = m2

and

D2(p, p′) = −2mK. (2.51)

The minus sign expresses the fa
t that the geometry of momentum spa
e is

Lorentzian.

The other type of measurement involves many parti
les and de�nes a


onne
tion. Consider a pro
ess in whi
h n parti
les intera
t. Asso
iated to

ea
h intera
tion there must be a 
ombination rule for momenta, whi
h will

be in general non-linear. This rule for two parti
les is denoted by

(p, q)→ p′µ = (p⊕ q)µ. (2.52)

Hen
e the momentum spa
e has the stru
ture of an algebra de�ned by the

produ
t rule �⊕�. It is assumed that more 
ompli
ated pro
esses are built

up by iterations of this produ
t (that in prin
iple 
ould be non-linear, non-


ommutative and non-asso
iative). The inverse (�antipode�) of �⊕� is denoted
by �⊖� and satis�es⊖p⊕p = p⊕(⊖p) = 0. Then one has the 
onservation law
for energy and momentum for any pro
ess, giving, for ea
h type of intera
tion,

four fun
tions on Pn
, depending on momenta of intera
ting parti
les, whi
h

vanish

Kµ(k
I) = 0. (2.53)

For example, for a pro
ess with three in
oming parti
les with momenta pµ, qµ
and kµ one has

Kµ(p, q, k) = (p⊕ (q ⊕ k))µ = 0. (2.54)

These 
onservation laws will be dis
ussed in the next se
tion in greater detail.
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From the algebra of 
ombinations of momenta one 
an de�ne an a�ne


onne
tion

7

on P, in parti
ular

∂

∂pµ

∂

∂qν
(p⊕ q)ρ|q,p=0 = −Γµν

ρ (0). (2.55)

The torsion of the 
onne
tion is a measure of the asymmetri
 part of the


ombination rule

− ∂

∂pµ

∂

∂qν
((p⊕ q)ρ − (q ⊕ p)ρ)|q,p=0 = T µν

ρ (0). (2.56)

Similarly the 
urvature of P is a measure of the la
k of asso
iativity of the


ombination rule

2
∂

∂p[µ

∂

∂qν]

∂

∂kσ
(((p⊕ q)⊕ k)ρ − (p⊕ (q ⊕ k))ρ)|q,p=0 = Rµνσ

ρ (0), (2.57)

where the bra
kets denote antisymmetrization.

Noti
e that there is no physi
al reason to expe
t a 
ombination rule for

momentum to be asso
iative on
e it is non-linear. Indeed, the la
k of asso-


iativity means that there is a physi
al distin
tion between the two pro
esses

of Fig.2.1, whi
h is equivalent to saying that there is a de�nite mi
ros
opi



ausal stru
ture. That is, 
ausal stru
ture of the physi
s maps to nonasso
ia-

tivity of the 
ombination rule for momentum whi
h in turn maps to 
urvature

of momentum spa
e. The 
urvature of momentum spa
e makes mi
ros
opi



ausal orders distinguishable, hen
e meaningful.

To determine the 
onne
tion, torsion and 
urvature away from the origin

of momentum spa
e one has to 
onsider translations on momentum spa
e,

i.e. one 
an denote

p⊕k q = k ⊕ ((⊖k ⊕ p)⊕ (⊖k ⊕ q)) (2.58)

∂

∂pµ

∂

∂qν
(p⊕k q)ρ|q,p=k = −Γµν

ρ (k), (2.59)

the identity for this produ
t is at 0k = k.
Thus, the a
tion of adding an in�nitesimal momentum dqµ from parti
le

J to a �nite momentum pµ of parti
le I de�nes a parallel transport on P
7

One 
ould also de�ne other a�ne 
onne
tion, for example, by de�ning an appropriate

notion of parallel transport of the mass-geodesi
 of one parti
le along the mass-geodesi


of a se
ond parti
le and obtaining in this way the 
omposite momentum (see Ref.[105℄).

These mathemati
al aspe
ts are presently under investigation. In this thesis, however,

these alternative de�nitions of a�ne 
onne
tion are not 
onsidered.

57



p q k

(p⊕ q)⊕ k

6=

p⊕ (q ⊕ k)

p q k

Figure 2.1: Curvature of the 
onne
tion on momentum spa
e produ
es nonas-

so
iativity of the 
omposition rule.

pµ ⊕ dqµ = pµ + dqντ
ν
µ (p) (2.60)

where τ νµ (p) is the parallel transport operation from the identity to p. It 
an
be expanded around p = 0

τ νµ (p) = δνµ − Γνσ
µ pσ − Γνσρ

µ pσpρ + ... (2.61)

with

Γνσρ
µ = ∂ρpΓ

νσ
µ − Γρν

α Γασ
µ − Γρσ

α Γνα
µ . (2.62)

The 
orresponding 
onservation law has the form to se
ond order

Kµ(k) =
∑

I

kIµ +
∑

J∈J (I)

CI, JΓ
νσ
µ k

I
νk

J
σ + ... (2.63)

where J (I) is the set of parti
les that intera
t with the I's one and CI, J are


oe�
ients that depend on the form of the 
onservation law.

2.2.2 A variational prin
iple

Here spa
etime is viewed as an auxiliary 
on
ept that emerges when one

seeks to de�ne dynami
s in momentum spa
e. If the momenta of elementary

parti
les are taken to be primary, then they themselves need momenta in

order to develop a 
anoni
al dynami
s. Momenta of momenta are quantities

xµ that live in the 
otangent spa
e of Pn
at a point kµ; these quantities are


alled Hamiltonian spa
etime 
oordinates. The a
tion proposed to de�ne the

dynami
s of a free parti
le is

Sfree =

∫

ds
(

xµk̇µ +NkC(k)
)

(2.64)
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where s is an arbitrary evolution parameter andNk is the Lagrange multiplier

enfor
ing mass shell 
ondition

C(k) ≡ D2(k)−m2 = 0. (2.65)

It shall be emphasized that the 
ontra
tion xµkµ does not involve any metri
,

and the dynami
s is given by 
onstraints whi
h are fun
tions only of 
oordi-

nates on P and depend only on the geometry of P. This leads to the Poisson
bra
kets

{xµI , kJν } = δµν δ
J
I (2.66)

where the indexes I, J identify the parti
le whose 
oordinates refer to.

One then has a phase spa
e Γ of a single parti
le whi
h is the 
otangent

bundle of P. Note that there is neither an invariant proje
tion to a spa
etime

M, nor is de�ned any invariant spa
etime metri
. Still this stru
ture is su�-


ient to des
ribe the dynami
s of free parti
les. Spa
etime is also unne
essary

to des
ribe how parti
les intera
t.

Consider the following a
tion:

S =
∑

J

∫ 0

−∞
ds
(

xµJ k̇
J
µ +NJCJ(k)

)

− ξµKµ(k(s = 0)). (2.67)

It des
ribes the simple (yet unrealisti
) pro
ess in whi
h n in
oming parti
les

intera
t at the intera
tion vertex (here the intera
tion is set to take pla
e at

the value s = 0 for ea
h of the parti
les) and no outgoing parti
le is produ
ed.

One wants to impose 
onservation of momentum and this is done introdu
ing

the Lagrange multiplier ξµ enfor
ing this 
onstraint.

To obtain the equations of motion one varies the a
tion and, after inte-

grating by parts in ea
h of the free a
tions, one obtains

δS =
∑

J

∫ 0

−∞
ds

(

δxµJ k̇
J
µ − δkJµ

[

ẋµJ −NJ
δCJ
δkJµ

]

+ δNJCJ(k)
)

+R. (2.68)

Here R 
ontains both the results of varying the intera
tion term and the

boundary terms from the integration by parts. The equations of motion are

the expe
ted ones

k̇Jµ = 0, ẋµJ = NJ
δCJ
δkJµ

, CJ(k) = 0. (2.69)

One 
an �x δkJµ = 0 at s = −∞ and examine the remaining terms of the

variation

R = −Kµ(k)δξ
µ +

(

xµJ (0)− ξν
δKν

δkJµ

)

δkJµ . (2.70)
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Here xµJ and kJµ are taken for ea
h parti
le at the value s = 0. R has to

vanish as the variational prin
iple must have a solution. From the vanishing

of the 
oe�
ient of δξµ one gets the four 
onservation laws of the intera
-

tion, Kµ(k) = 0. From the vanishing of the 
oe�
ient of δkJµ one �nds 4n

onditions that hold at the intera
tion

xµJ (0) = ξν
δKν

δkJµ
. (2.71)

By using (2.63), this gives the 
onditions

xµJ(0) = ξµ − ξν
∑

L∈J (J)

CJ,LΓ
µσ
ν kLσ + ... (2.72)

This implies that to leading order, in whi
h the nonlinearity of momentum

spa
e is ignored, all of the parti
les involved in the intera
tion meet at a single

spa
etime event, for they are all equal to ξµ (whi
h in general should not be

regarded as the event itself, but rather as an auxiliary variable that sets the

observable relations between the xµJ(0)). The 
hoi
e of ξ
µ
is not 
onstrained

and 
annot be, for its variation gives the 
onservation laws Kµ(k) = 0. Thus,
the usual notion that intera
tion of parti
les takes pla
e at single spa
etime

event from the 
onservation of energy and momentum has been re
overed.

However, 
onsidering the 
ontributions due to the nonlinearity of momen-

tum spa
e, one �nds that the intera
tion takes pla
e at n distin
t events,

separated from ξµ by an interval

∆xµJ (0) = −ξν
∑

L∈J (J)

CJ,LΓ
µσ
ν kLσ + ... (2.73)

These relations (2.72), (2.73) illustrate 
on
isely the relativity of lo
ality.

For some fortunate observers the intera
tion takes pla
e at the origin of their

systems of 
oordinates, so that ξµ = xµJ (0) = 0 in whi
h 
ase the intera
tion

is observed to be lo
al. Any other observer, translated with respe
t to these,

has a non-vanishing ξµ and hen
e sees the intera
tion to take pla
e at a

distant set of events. These are 
entered around ξµ but are not pre
isely at

the same values of the 
oordinates.

Is it a real, physi
al non-lo
ality or a new kind of 
oordinate artifa
t? It

is easy to see that it is the latter, be
ause the ∆xµJ 
an be made to vanish by

making a translation to the 
oordinates of another observer. In a 
anoni
al

formulation, translations are generated by the laws of 
onservation of energy

and momentum. Given any lo
al observable in phase spa
e O observed by a

lo
al observer, Ali
e, one 
an 
onstru
t the observable as seen in 
oordinates
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onstru
ted by another observer, Bob, distant from Ali
e, by a translation

parameter bµ

δbO = bν{Kν , O}. (2.74)

Sin
e momentum spa
e is 
urved, and Kµ is non-linear, it follows that the

"spa
etime 
oordinates" xµJ of a parti
le translate in a way that is dependent

on the energies and momenta of the parti
les it intera
ts with, xµJ → x′µJ (0) =
xµJ (0) + δbx

µ
J(0) where

δbx
µ
J (0) = bν{Kν , x

µ
J} = −bµ + bν

∑

L∈J (J)

CJ,LΓ
µσ
ν kLσ + ... (2.75)

This is a manifestation of the relativity of lo
ality, i.e. lo
al spa
etime 
oor-

dinates for one observer mix up energy and momenta on translation to the


oordinates of a distant observer.

This mixing under translations e�e
t also entirely a

ounts for the separa-

tion of an intera
tion into apparently distin
t events, be
ause with bν = −ξν ,
one sees that ∆xµJ of (2.73) is equal to δbx

µ
J of (2.75). Thus, the observer

whose new 
oordinates one has translated to observes a single intera
tion

taking pla
e at xµJ → x′µJ (0) = 0.

p

k

Alice

Bob

q

p′

k′

x1A

x0A

x1B

x0B

p

k

q

Bob

Alice

x0B

x1B

x1A

x0A

k′

p′

Figure 2.2: A pro
ess des
ribed in the relative lo
ality framework by two

observers: the �gure on the left represents the des
ription given by Ali
e,

the one on the right represents Bob's des
ription of the pro
ess.

Thus, if a lo
al observer sees an intera
tion to take pla
e via a 
ollision

at the origin of her 
oordinates system, a distant observer will generally see

it in her own 
oordinates as spread out over a region of spa
etime a

ording

to Eq.(2.73) and vi
e versa, as represented in Fig.2.2. There is not a physi
al

non-lo
ality sin
e all momentum 
onserving intera
tions are seen as happen-

ing at a single spa
etime event by some family of observers, who are lo
al
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to the intera
tion. But it be
omes impossible to lo
alize distant intera
tions

in an absolute manner: distant observers do not share the same spa
etime.

Furthermore, all observers related by a translation agree about the momenta

of parti
les in the intera
tion, be
ause under translations (2.74) δbk
J
µ = 0.

Note that if the 
urvature and torsion vanish there is no mixing of spa
e-

time 
oordinates with momenta under translations, so there is an invariant

de�nition of spa
etime. Therefore, the �atness of momentum spa
e is respon-

sible for the notion of an absolute spa
etime, just as the Galilean additivity

of velo
ities allows Newtonian physi
s to have an absolute time.

2.3 k-de Sitter momentum spa
e

In this se
tion an expli
it example of formalization of Relative Lo
ality will be

obtained. Again k-Minkowski is the sour
e of inspiration in Subse
tion 2.3.1:

in the relative lo
ality regime the non
ommutativity of spa
etime 
oordinates

is suppressed, but the non primitive 
oprodu
t of translation generators sur-

vives. From this one gets the a�ne 
onne
tion of momentum spa
e. The

metri
 on momentum spa
e is de Sitter, and the 
onstru
tion of the on-shell

relation as the geodesi
 distan
e from the origin of momentum spa
e is 
on-

sistent with the relative lo
ality limit of the mass Casimir of k-Minkowski.

A parti
ular e�ort is dedi
ated in Subse
tion 2.3.2 in dis
ussing the role of

the intera
tion terms in relation to the translational symmetry, highlighting

that even though the same 
onservation laws of energy-momentum may be

enfor
ed by di�erent intera
tion terms, di�erent intera
tion terms lead to

physi
ally distinguished theories. The key 
on
ept is that one 
an obtain

a relativisti
 theory with 
urved momentum spa
e (therefore, with relative

lo
ality) if the momentum spa
e is maximally symmetri
 and the a
tion is


ompatible with the symmetries of momentum spa
e. Finally in Subse
tion

2.3.3 it is introdu
ed the strategy of analysis of the problem of determining

the physi
al velo
ity of parti
les in Relative Lo
ality, an exer
ise that is made


on
eptually less trivial than usual by the non trivial 
hara
ter of translation

transformations and that will be largely used in the rest of the thesis.

2.3.1 Relative Lo
ality limit of k-Minkowski

It has been shown in Refs. [23℄, [24℄, [25℄, [26℄ that k-Poin
aré Hopf alge-

bra des
ribes a 
urved momentum spa
e with de Sitter metri
, torsion and

nonmetri
ity. One 
an then study the properties of k-Minkowski momentum

spa
e in the Relative Lo
ality regime. As it has been assumed in the previ-

ous se
tion, the metri
 determines the distan
e of a point pµ from the origin
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in momentum spa
e P. The 
omposition law for momenta is determined

by the 
omposition law of basis exponentials e−ipj x̂jeip0x̂0
of k-Minkowski. In

fa
t, from the k-Minkowski 
ommutators (1.1),(1.2) and the Baker-Campbell-

Hausdor� formula one has, writing expli
itly ~ and using the Plan
k length

instead of ℓ in the de�nition of k-Minkowski 
ommutators,

e−
i
~
pj x̂je

i
~
p0x̂0e−

i
~
qj x̂je

i
~
q0x̂0 = e−

i
~
pj x̂je−

i
~
e
LP
~

p0qj x̂je
i
~
p0x̂0e

i
~
q0x̂0

= e−
i
~
(pj+e

LP
~

p0qj)x̂je
i
~
(p0+q0)x̂0 .

(2.76)

Thus in the Relative Lo
ality regime, where ~→ 0, LP → 0 while
~

LP

=MP l

is kept 
onstant, the non
ommutativity properties of spa
etime 
oordinates

disappear but the non primitive 
oprodu
t of translation generators remains.

This expression 
an be used as the rule of 
omposition of momenta:

(p⊕ q)0 = p0 + q0, (p⊕ q)i = pi + eℓp0qi, (2.77)

where it has been introdu
ed the notation M−1
P l = ℓ = lim

~,LP→0

LP

~
, whi
h is

widely used in the relative lo
ality literature and therefore will be used from

now on. This deformed 
omposition law is evidently non
ommutative but it

is found to be asso
iative.

In what follows a parti
ular attention will be dedi
ated in 
hara
terizing

the non trivial geometry of momentum spa
e only at leading order in ℓ,
for it is unlikely that experiments would be sensible enough to determine


orre
tions to standard physi
s phenomenology of greater orders. Therefore,

one 
an use the 
omposition law obtained developing the deformed sum of

momenta in powers of ℓ:

(p⊕ q)µ ≃ pµ + qµ + ℓδiµp0qi. (2.78)

The exa
t antipode is

(⊖p)0 = −p0, (⊖p)i = −e−ℓp0pi, (2.79)

while at leading order in ℓ it be
omes

(⊖p)µ ≃ −pµ + ℓδiµp0pi. (2.80)

In what follows it will be 
onsidered a 1+1-dimensional momentum spa
e.

The metri
 is

dk2 = (dp0)
2 − e−2ℓp0(dp1)

2
(2.81)
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Solving the geodesi
 equation and 
omputing the geodesi
 distan
e from the

origin of momentum spa
e for a generi
 momentum pµ = (p0, p1) one has

D2(p, 0) = m2 = p2 + Cρµνpρpµpν , (2.82)

where Cρµν
are the Christo�el symbols for the metri
. At leading order they

are

C011 = −ℓe−2ℓp0 ≃ −ℓ
C110 = C101 = ℓ

(2.83)

and therefore,

D2(p, 0) = m2 = p2 + 2ℓp0p
2
1 − ℓe−2ℓp0p0p

2
1 ≃ p20 − p21 + ℓp0p

2
1. (2.84)

Noti
e that this is also 
onsistent with the expansion in powers of ℓ to �rst

order of the k-Minkowski mass Casimir (1.11). Then, the a
tion of the pro
ess


onsidered in the previous se
tion in the 
ase n = 2 is

S =

∫ 0

−∞
ds (xµṗµ +NpC(p)) +

∫ 0

−∞
ds (yµq̇µ +NqC(q))− ξµKµ (2.85)

with

Kµ = pµ + qµ + ℓδ1µp0q1,
C(p) = p20 − p21 + ℓp0p

2
1 −m2

p,
C(q) = q20 − q21 + ℓq0q

2
1 −m2

q .

2.3.2 On the 
hoi
e of the intera
tion terms Kµ

It is important now to fo
us on the sour
es of ambiguity in the 
hoi
e of

the laws of 
onservation of energy-momentum. One issue 
omes from the

non
ommutativity of the sum (2.78), whi
h suggests that an ordering pre-

s
ription for summing momenta should be given. However, it is easy to

realize that the multipli
ity of possible 
onservation laws is smaller than one

may expe
t on the basis of the properties of the 
omposition law. In fa
t, for

arbitrary momenta p and q, from Eq.(2.78) one has p ⊕ q 6= q ⊕ p. Noti
e,

however, that from (p⊕ q)µ = 0 one gets

0 = pµ + qµ + ℓδ1µp0q1 = pµ + qµ + ℓδ1µ(−q0)(−p1) = (q ⊕ p)µ, (2.86)

using leading order 
orre
tions only. Thus, when the 
omposition rule (2.78)

is used to write a 
onservation law, one a
tually does have

p⊕ q = 0⇐⇒ q ⊕ p = 0. (2.87)
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Moreover, this is true for any 
hoi
e of a�ne 
onne
tion of momentum spa
e,

as one 
an see from the following 
hain properties:

p⊕ q = 0 =⇒ p = ⊖q =⇒ q ⊕ p = q ⊕ (⊖q) = 0. (2.88)

This observation also simpli�es the des
ription of a three-parti
les intera
-

tion:

p⊕ q ⊕ k = 0⇐⇒ k ⊕ p⊕ q = 0. (2.89)

So, when the rule of 
omposition of momenta is used for a 
onservation

law it produ
es a 
onservation law with 
y
li
ity, redu
ing then the possible

independent 
hoi
es for the law K = 0.
A se
ond issue regards intera
tions with in
oming and outgoing parti
les.

Until now in fa
t only in
oming parti
les have been here 
onsidered. One


ould be tempted to write the 
onservation law of total momentum using

antipodes to denote momenta of outgoing parti
les. Thus, for example, one


ould write

K = p⊕ q ⊕ (⊖p′)⊕ (⊖q′),
K = p⊕ q ⊕ (⊖(p′ ⊕ q′)),
K = p⊕ q − (p′ ⊕ q′),

(2.90)

where the prime denotes outgoing parti
les. The �rst two expressions di�er

from ea
h other for it 
an be shown that ⊖(p′ ⊕ q′) = (⊖q′) ⊕ (⊖p′). The

last two expressions, when set equal to zero, give the same 
onservation laws,

sin
e

p⊕ q ⊕ (⊖(p′ ⊕ q′)) = 0 =⇒ p′ ⊕ q′ = p⊕ q =⇒ p⊕ q − p′ ⊕ q′ = 0. (2.91)

As will be 
lear shortly, these di�erent forms of K, even if they enfor
e the

same 
onservation law, lead to physi
ally di�erent theories. It is of great

importan
e to realize that a key 
on
ept of Relative Lo
ality is that there

must be a notion/pres
ription of translation transformations that makes the

theory symmetri
 (as in the previous se
tion) in order for the theory to be


ompatible with the relativity prin
iple and to allow an intera
tion to be


hara
terized as lo
al for observers whi
h are lo
al to it, otherwise one would

have a non-relativisti
 theory with physi
al non-lo
ality, i.e. one that 
annot

be removed by a 
hange of 
oordinates. Then, re
alling the role that K has

in determining the spa
etime 
oordinates of the parti
les whi
h parti
ipate

in the intera
tion (2.71), the 
hoi
e of K must ensure the symmetry of the

a
tion under a 
ertain realization of translation transformations.

Consider the pro
ess shown in Fig.2.3. It might be des
ribed by the
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k, z
p, x

q, y

p′, x′

p′′, x′′

K(0)

K(1)

Figure 2.3: Example of pro
ess with both in
oming and outgoing parti
les

and a �nite worldline.

following a
tion, written by some observer Ali
e:

SA =

∫ s0

−∞
ds (zµAk̇µ +NkC(k)) +

∫ s1

s0

ds (xµAṗµ +NpC(p))+

+

∫ ∞

s0

ds (yµAq̇µ +NqC(q)) +
∫ ∞

s1

ds (x′µA ṗ
′
µ +Np′C(p′))+

+

∫ ∞

s1

ds (x′′µA ṗ
′′
µ +Np′′C(p′′))− ξµ(0),AK(0)

µ − ξµ(1),AK(1)
µ .

(2.92)

The subs
ript A is omitted for momenta sin
e they are invariant under trans-

lation transformations, whi
h are generated by some 
ombination of mo-

menta. For what follows it is important to noti
e that Eq.(2.75) 
an be

viewed as a pres
ription for translations generated by the �total momentum�,

whi
h for that 
ase 
orresponds to Kµ. In fa
t, one 
an write, for example

δxµb = bν{(p⊕ q)ν , xµ} = bν{Kν , x
µ} = −bν δKν

δpµ
. (2.93)

Now it will be made evident the e�e
t of di�erent 
hoi
es of the form of

K. Following Ref.[104℄, one might �rst start 
onsidering the expressions:

K(0)
µ = kµ − (p⊕ q)µ = kµ − pµ − qµ − ℓδ1µp0q1

K(1)
µ = (p⊕ q)µ − (p′ ⊕ p′′ ⊕ q)µ

= pµ − p′µ − p′′µ + ℓδ1µ((p0 − p′0 − p′′0)q1 − p′0p′′1).

(2.94)

Noti
e that it has been used the pres
ription of writing the deformed sum

of the total momentum before and after the intera
tion. One 
ould feel

un
omfortable with the presen
e of momentum q in the vertex K(1)
µ , whi
h

des
ribes an intera
tion in whi
h the parti
le with momentum q does not

parti
ipate, but it is immediate to 
he
k that the 
onservation laws K(1)
µ = 0
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do not depend on q, for the only term of q that appears in these expressions

is multiplied by K(1)
0 . The equations of motion are

k̇µ = 0, ṗµ = 0, q̇µ = 0, ṗ′µ = 0, ṗ′′µ = 0,

C(k) = 0, C(p) = 0, C(q) = 0, C(p′) = 0, C(p′′) = 0,

K(0)
µ = 0, K(1)

µ = 0

żµA = Nk
δC(k)
δkµ

= Nk(δ
µ
0 (2k0 + ℓk21) + δµ1 (−2k1 + 2ℓk0k1)),

ẋµA = Np
δC(p)
δpµ

= Np(δ
µ
0 (2p0 + ℓp21) + δµ1 (−2p1 + 2ℓp0p1)),

ẏµA = Nq
δC(q)
δqµ

= Nq(δ
µ
0 (2q0 + ℓq21) + δµ1 (−2q1 + 2ℓq0q1)),

ẋ′µA = Np′
δC(p′)
δp′µ

= Np′(δ
µ
0 (2p

′
0 + ℓp′21 ) + δµ1 (−2p′1 + 2ℓp′0p

′
1)),

ẋ′′µA = Np′′
δC(p′′)
δp′′µ

= Np′′(δ
µ
0 (2p

′′
0 + ℓp′′21 ) + δµ1 (−2p′′1 + 2ℓp′′0p

′′
1)),

while the boundary 
onditions are

zµA(s0) = ξν(0),A
δK(0)

ν

δkµ
= ξµ(0),A,

yµA(s0) = −ξν(0),A
δK(0)

ν

δqµ
= ξµ(0),A + ℓξ1(0),Aδ

µ
1 p0,

xµA(s0) = −ξν(0),A
δK(0)

ν

δpµ
= ξµ(0),A + ℓξ1(0),Aδ

µ
0 q1,

xµA(s1) = ξν(1),A
δK(1)

ν

δpµ
= ξµ(1),A + ℓξ1(1),Aδ

µ
0 q1,

x′µA (s1) = −ξν(1),A
δK(1)

ν

δp′µ
= ξµ(1),A − ℓξ1(1),Aδ

µ
0 (q1 + p′′1),

x′′µA (s1) = −ξν(1),A
δK(1)

ν

δp′′µ
= ξµ(1),A − ℓξ1(1),A(δ

µ
0 q1 + δµ1 p

′
0).
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Thanks to the form of the 
onstraints K(i)
here 
onsidered, one 
an extend to

an intera
tion in whi
h parti
ipate both in
oming and outgoing parti
les the

rather standard pres
ription of translations generated by total momentum

used previously in the 
ase of in
oming parti
les only. It is also immediate

to see that these pres
riptions on the form of K and translation transforma-

tions make the equations of motion and boundary terms symmetri
 under

translations, and, furthermore, not only at �rst order in ℓ, but to all orders.

In fa
t one has

zµB(s) = zµA(s) + bν{kν , zµ} = zµA(s) + bν{kν − (p⊕ q)ν , zµ}

= zµA(s) + bν{K(0)
ν , zµ} = zµA(s)− bν

δK(0)
ν

δkµ
,

where it has been exploited the property that the terms added in the se
ond

equality have null Poisson bra
kets with z. Using the same argument for the

others parti
les one has

8

zµB(s) = zµA(s)− bν
δK(0)

ν

δkµ
, yµB(s) = yµA(s) + bν

δK(0)
ν

δqµ
,

xµB(s) = xµA(s) + bν
δK(0)

ν

δpµ
, xµB(s) = xµA(s)− bν

δK(1)
ν

δpµ
,

x′µB (s) = x′µA (s) + bν
δK(1)

ν

δp′µ
, x′′µB (s) = x′′µA (s) + bν

δK(1)
ν

δp′′µ
.

(2.95)

A dire
t 
al
ulation shows that, substituting these expression in a
tion SA
one �nds the same a
tion for observer Bob

9

provided that one takes

ξµ(i),B = ξµ(i),A − bµ. (2.96)

So this might be regarded as a pres
ription for �strong� translation transfor-

mations, that is the ξ's translate 
lassi
ally.
Furthermore, from Eqs.(2.95) for the �nite worldline xµ, one obtains a


ondition on the derivatives of K(i)
that must be satis�ed for the theory to be

8

For the worldline xµ
two di�erent 
hoi
es are possible, depending on what one adds to

{(p⊕ q)ν , x
µ}, either 0 = {−kν , xµ} or 0 = {−(p′ ⊕ p′′ ⊕ q)ν , x

µ}; thus, one 
an translate

equivalently with K(0)
or with K(1)

.

9

Up to terms that do not add any other 
ondition on the dynami
al variables to those

already obtained from the equations of motion and boundary 
onditions, so they 
an be

safely negle
ted.
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symmetri
 under this parti
ular pres
ription for translation transformations.

In fa
t, evaluating the two expressions at s = s0 and s = s1 one has

xµB(s0) = xµA(s0) + bν
δK(0)

ν

δpµ
= −ξν(0),A

δK(0)
ν

δpµ
+ bν

δK(0)
ν

δpµ

= xµA(s0)− bν
δK(1)

ν

δpµ
= −ξν(0),A

δK(0)
ν

δpµ
− bν δK

(1)
ν

δpµ
,

xµB(s1) = xµA(s1) + bν
δK(0)

ν

δpµ
= ξν(1),A

δK(1)
ν

δpµ
+ bν

δK(0)
ν

δpµ

= xµA(s1)− bν
δK(1)

ν

δpµ
= ξν(1),A

δK(1)
ν

δpµ
− bν δK

(1)
ν

δpµ
,

both requiring

δK(1)
ν

δpµ
= −δK

(0)
ν

δpµ
(2.97)

in order for Ali
e and Bob to have boundary 
onditions of the same form

(xµ(si) = ±ξν(i)
δK(i)

ν

δpµ
) for the �nite worldline xµ. It is immediate seeing that

this 
ondition is indeed satis�ed when the 
onstraints K(i)
are written as in

(2.94). In the spe
ial-relativisti
 limit ℓ −→ 0 
ondition (2.97) is always

trivial, for every non trivial term of the derivatives of K is proportional to ℓ;
this aspe
t of these 
onditions will be further dis
ussed during the analysis

of the so-
alled Möbius diagram in se
tion 6.2.

At this point it 
an be noti
ed that if one would have 
hosen to write the

K's in the form

K(0)
µ = (k ⊕ (⊖p)⊕ (⊖q))µ

= kµ − pµ − qµ − ℓδ1µ((k0 − p0)p1 + q1(k0 − p0 − q0))

K(1)
µ = (p⊕ (⊖p′′)⊕ (⊖p′))µ

= pµ − p′′µ − p′µ − ℓδ1µ((p0 − p′′0)p′′1 + p′1(p0 − p′0 − p′′0))

ondition (2.97) would not be satis�ed, for

δK(1)
ν

δpµ
= δµν − ℓδ1νδµ0 (p′′1 + p′1) 6=

6= −δK
(0)
ν

δpµ
= δµν − ℓδ1ν(δµ0 (p1 + q1)− δµ1 (k0 − p0)).
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The same must be said for the third possible 
hoi
e of K previously 
onsid-

ered, K(0)
µ = (k ⊕ (⊖(p ⊕ q))µ, K(1)

µ = (p ⊕ (⊖(p′′ ⊕ p′))µ. Then, using the

pres
ription for strong translation transformations (2.96), the only form of

K(i)
suitable for a relativisti
 des
ription of the �nite worldline for Ali
e and

Bob, purely translated with respe
t to ea
h other, is that given in Eqs.(2.94).

Otherwise, the theory obtained by adopting other expressions of K(i)
would

des
ribe non-lo
al intera
tions. Thus, the role that K has in determining

translation symmetry of the theory 
ontributes to further redu
ing the pos-

sible sour
es of ambiguity in the 
hoi
e of the appropriate form of K, even
among those whi
h enfor
e equivalent 
onservation laws.

In Se
tion 6 a weaker 
ondition of the kind of (2.97) will be obtained from

requiring that Ali
e and Bob, purely translated with respe
t to ea
h other,

des
ribe �nite worldlines in the same way, regardless of the spe
i�
 form of


onstraints K(i)
. These alternative translations are not expli
itly 
onstru
ted

as it has done in this se
tion, for it is an unne
essary exer
ise for the s
ope

of this thesis, but it will be shown that, in prin
iple, di�erent pres
riptions

are admissible.

2.3.3 Physi
al velo
ity

The previous se
tion presented some basi
 notions and key 
hara
terizing

results of an expli
it example of pres
ription for boundary terms, ensuring

a relativisti
 des
ription of distant observers within the Relative Lo
ality

framework, by a Lagrangian formulation of intera
ting parti
les. This se
-

tion fo
uses on a �rst point of phenomenologi
al relevan
e, 
on
erning the

observation of distant bursts of massless parti
les, whi
h will be useful for

subsequent dis
ussions.

Consider the �rst part of the pro
ess studied in the previous se
tion, that

is the initial de
ay of the parti
le k, z in the parti
les p, x and q, y (vertex

K(0)
in Fig. 2.3). For the s
ope of this se
tion, the momenta q and p are

assumed to be su
h that |p| ≫ |q|, ℓq ≈ 0 and ℓp 6= 0. Noti
e that this

situation is also relevant for the des
ription of observation of a gamma-ray

burst, in whi
h a high-energy pion (k, z) de
ays at the sour
e into a high-

energy (�hard�) photon (p, x) and a low-energy (�soft�) photon (q, y). It 
an
be asked if and how the time of dete
tion of the gamma ray depends on its

momentum p, thereby obtaining a predi
tion for the large 
lass of studies that
are 
onsidering possible energy/time-of-arrival 
orrelations for observations
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of gamma-ray bursts. The a
tion des
ribing the pro
ess is

S =

∫ s0

−∞
ds (zµk̇µ +NkC(k)) +

∫ ∞

s0

ds (xµṗµ +NpC(p))+

+

∫ ∞

s0

ds (yµq̇µ +NqC(q))− ξµ(0)K(0)
µ ,

(2.98)

where again K(0)
µ = kµ − (p ⊕ q)µ = kµ − pµ − qµ − ℓδ1µp0q1. The equations

of motion are exa
tly the same that were obtained in the previous se
tion,

of 
ourse. From the on-shell relation one �nds the expression for p0, at �rst
order in ℓ,

p0 =
√

p21 +m2 − ℓ

2
p21. (2.99)

Then, for the massless 
ase (or whenever |ℓp1| ≫ m2/p21) one �nds the velo
-
ity

v1 =
ẋ1

ẋ0
=
−2p1 + 2ℓp0p1

2p0 + ℓp21
≃ − p1
|p1|

(1− ℓ|p1|). (2.100)

For the 
hoi
e of 
onventions here adopted, one needs p1 < 0 in order to have

v1 > 0, and in su
h a 
ase one has

v1 = 1 + ℓp1. (2.101)

Then, Ali
e's des
ription of the worldline of the parti
le (p, x) is x1A(x
0
A) =

x̄1A + v1(x0A − x̄0A), with x̄1, x̄0 �xed. Assuming that both parti
les p, x and

q, y are emitted at Ali
e's origin of spa
etime 
oordinates, her des
ription on

the inferred propagation of the parti
les is simply

x1A(x
0
A) = (1 + ℓp1)x

0
A, y1A(y

0
A) = y0A. (2.102)

Sin
e −1 < ℓp1 < 0, from Ali
e's perspe
tive the hard photon goes slower

than the soft photon; therefore she infers that a distant observer Bob would

measure a delay between the time-of-arrival of the two photons. But 
an this

distant 
hara
terization of the relation between events be trusted? The two

events that a

ording to Ali
e are not 
oin
ident are the 
rossing of Bob's

worldline with the worldline of the soft photon and the 
rossing of Bob's

worldline with the worldline of the hard photon. To 
larify the situation one

should look at the two worldlines by Bob's perspe
tive, sin
e he is the one

lo
al to the dete
tion.

For what 
on
erns spe
i�
ally the analysis of the problem so far reported

in this se
tion, the main 
hallenge is related to the fa
t that one is used to
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read velo
ity from the formulae of worldlines, but this impli
itly assumes

that translation transformations are trivial. It is known that in 
lassi
al

spa
etime with 
urvature the 
oordinate velo
ity may be a�e
ted by some


oordinates artifa
t: for an observer in 
lassi
al de Sitter spa
etime, for ex-

ample, the speed of a lo
al photon is always 1, but this does not apply to the


oordinate velo
ity that the observer attributes to distant photons. These

features are not expe
ted in a 
lassi
al �at spa
etime, where translations are

trivial. In Relative Lo
ality, however, the non triviality of translation trans-

formations requires a more 
areful approa
h. Essentially, one is used to take

the worldline written by Ali
e to des
ribe both the emission of the photons

�at Ali
e� (in Ali
e's origin) and their dete
tion far away from Ali
e. The

observer/dete
tor Bob, who a
tually dete
ts the photons, should be properly

des
ribed by a
ting with a translation transformation on Ali
e's worldline.

And the determination of the time-of-arrival at Bob should be determined

on the basis of Bob's des
ription of the worldline, just as mu
h as the time-

of-emission should be based on Ali
e's des
ription of the worldline. When

translations are trivial (translation generators 
onjugate to the spa
etime 
o-

ordinates) one 
an go by without worrying about this more 
areful level of

dis
ussion. This is be
ause the naive argument based only on Ali
e's des
rip-

tion of the worldline gives the same results as the more 
areful analysis using

Ali
e's des
ription of the worldline for the emission and Bob's des
ription

of the same worldline for dete
tion. But when translations are nontrivial,

as in Relative Lo
ality, this luxury is lost. This will be shown for the 
ase


onsidered so far.

Bob's des
ription of worldlines is, by dropping the 
ontributions due to

soft parti
les,

xµB(s) = xµA(s) + bν{(p⊕ q)ν , xµ} = xµA − bµ − ℓb1δµ0 q1 ≃ xµA − bµ,
yµB(s) = yµA(s) + bν{(p⊕ q)ν , yµ} = yµA − bµ − ℓb1δµ1 p0.

(2.103)

Substituting these expressions in (2.102) one obtains

x1B(x
0
B) = (1 + ℓp1)(x

0
B + b0)− b1,

y1B(y
0
B) = (y0B + b0)− b1 − ℓb1p0.

(2.104)

One 
an then 
ompute the delay between the two parti
les assuming that

Bob dete
ts the soft photon at its spa
etime origin and the hard one at its

spatial origin.

It is taken into a

ount here that there are no relative-lo
ality e�e
ts in

the des
ription given by Bob whenever the intera
tions o

ur �in the vi
inity

of Bob�: the leading-order analysis assumes that the measuring apparatus
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has sensitivity su�
ient to dete
t the manifestation of relativity of lo
ality

of order ℓphL (where L is the distan
e from the intera
tion-event to the origin

of the observer and ph is a suitably high momentum), with L set in this 
ase

by the distan
e Ali
e-Bob; so even a hard-parti
le intera
tion whi
h is at a

distant d from Bob will be treated as absolutely lo
al by Bob if L≫ d.
A

ording to this, both �dete
tion events� are absolutely lo
al for Bob: of


ourse this is true for the event of dete
tion of the soft photon and it is also

true for the intera
tion-event of �dete
tion near Bob� of the hard photon.

Ultimately this allows handling the time 
omponent of the 
oordinate four-

ve
tor as the a
tual delay that Bob measures between the dete
tion times.

Thus, from the se
ond of equations (2.104), setting yµB = 0 (dete
tion at

Bob's spa
etime origin) one determines the translation parameter b0 in terms

of b1: b0 = (1+ ℓp0)b
1
. Substituting this in the �rst of equations (2.104) and

setting x1B = 0 (dete
tion at Bob's spatial origin), one gets

(1 + ℓp1)(x
0
B + (1 + ℓp0)b

1)− b1 = 0 (2.105)

from whi
h, re
alling the expression (2.99) and the sign 
onve
tion on p1,

x0B = (1− ℓp1)b1 − (1 + ℓp0)b
1 = 0 +O(ℓ2). (2.106)

Therefore Bob does not measure any delay between the dete
tions of the

two photons, up to se
ond order 
ontributions. Only now one 
an 
on
lude

that the two parti
les have the same physi
al velo
ity, although they have

di�erent 
oordinate velo
ities.

The message that one should get from the dis
ussion proposed in this

se
tion is not that massless parti
les have the same physi
al velo
ity under

any 
onditions; the thesis author merely intended to dis
uss a representa-

tive example of the strategy of analysis of this kind of problems in Relative

Lo
ality that will be largely used in the following.
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Chapter 3

Theories violating relativity of

inertial frames

3.1 Ho°ava-Lifshitz gravity

In re
ent years, Ho°ava-Lifshitz gravity [41℄,[42℄ has attra
ted 
onsiderable

interest in the quantum gravity 
ommunity. Its basi
 idea is to break Lorentz

symmetry through an anisotropi
 s
aling between spa
e and time in order

to eliminate the divergen
es of the quantum �eld theory of gravity in the

UV without ghosts. The next Subse
tion gives a very qui
k presentation

of Ho°ava implementation of this idea in gravity, as in Subse
tion 3.1.2 it

will be explained in greater 
larity how anisotropi
 s
aling 
an solve QFT

divergen
es in a mu
h simpler 
ontext su
h as an intera
ting s
alar �eld

theory.

3.1.1 Ho°ava proposal

It is known that an improved UV behavior of divergent quantum �eld theo-

ries, su
h as General Relativity, 
an be obtained if relativisti
 higher-derivatives


orre
tions are added to the Lagrangian. Terms quadrati
 in spa
etime 
ur-

vature not only yield new intera
tions (with a dimensionless 
oupling), but

they also modify the propagator. S
hemati
ally, denoting p2 = ω2 − k2, the
propagator takes the form

1

p2
+

1

p2
GNp

4 1

p2
+

1

p2
GNp

4 1

p2
GNp

4 1

p2
+ ... =

1

p2 −GNp4
. (3.1)

At high energies it is dominated by the p4 term. This 
ures the UV di-

vergen
es, and in fa
t the 
al
ulations in Eu
lidean signature suggest that
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the theory exhibits asymptoti
 freedom. However, this 
ure simultaneously

produ
es a new pathology, whi
h prevents this modi�ed theory from being

a solution to the problem of quantum gravity. In fa
t, the propagator above

exhibits two poles,

1

p2 −GNp4
=

1

p2
− 1

p2 − 1/GN

. (3.2)

One pole des
ribes 
andidate massless gravitons, but the other 
orresponds

to ghost exitations, whi
h are states of negative norm. These are problem-

ati
 be
ause they 
an break unitarity, whi
h is a key ingredient of quantum

me
hani
s

1

. Violating unitarity in order to regularize the mathemati
al quan-

tities may be regarded as quite a strong mutilation of the founding physi
al

prin
iples of the theory.

In 
ontrast, breaking Lorentz symmetry to regularize the mathemati
al

obje
ts, while it is 
ertainly a radi
al step, does not damage the logi
al

foundations of the theory as it is more an experimental observation rather

then a logi
al ne
essity. Ho°ava-Lifshitz gravity adopts this strategy to 
an
el

the UV divergen
es of General Relativity, introdu
ing an anisotropi
 s
aling

between spa
e and time. This means that the theory will be symmetri
 under

the transformation

~x→ b~x,

t→ bzt.
(3.3)

Su
h an anisotropi
 s
aling is 
ommon in 
ondensed matter systems, where

the degree of anisotropy between spa
e and time is 
hara
terized by the

"dynami
al 
riti
al exponent" z. Relativisti
 systems automati
ally satisfy

z = 1 as a 
onsequen
e of Lorentz invarian
e.

The te
hniques used in the 
onstru
tion of gravity models with anisotropi


s
aling in [42℄ follow methods developed in the theory of dynami
al 
riti
al

system [44℄,[45℄ and quantum 
riti
ality [46℄.

As a 
onsequen
e of su
h anisotropy, the propagator of the graviton takes

the form

1

ω2 − c2k2 − k2zG (3.4)

where G is a 
oupling 
onstant. In general there will be terms with powers of

k2 between 1 and z but one 
an simplify the dis
ussion keeping the leading

1

A way to in
lude ghosts in the theory without breaking unitarity has been studied

by Lee and Wi
k; in [43℄ they show that using a negative metri
 in quantum me
hani
s


an lead to a unitary S-matrix, provided that all stable parti
le states are positive square

length. In su
h a way, the negative-norm states are not asymptoti
 states and the unitarity

of the S matrix is preserved.
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term in the UV. In fa
t at high energy the propagator is 
learly dominated by

the anisotropi
 term 1/(ω2− k2zG). The high-energy behavior of the theory

is 
ontrolled by a free-�eld �xed point with anisotropi
 s
aling. For a suitably


hosen z, this modi�
ation improves the short-distan
e behavior, shifting the

dimension at whi
h the theory is power 
ounting renormalizable, so 
alled

"
riti
al dimension". The ck2 term in the propagator be
omes important

only at low energies. The massless dispersion relation E2−p2− ℓ2z−2p2z = 0,
suggested by this propagator, will be used in the later appli
ations for the


ase of Ho°ava-Lifshitz gravity.

3.1.2 Lorentz symmetry breaking as a UV regulator

In order to obtain a basi
 understanding of how the anisotropi
 s
aling be-

tween time and spa
e 
an solve the divergen
es of the quantum theory of

gravity, without getting lost in the huge algebra of the full theory, it is here

brie�y shown how how it works in a simple s
alar �eld theory

2

.

Consider the following a
tion of a s
alar �eld in �at (d + 1)-dimensional

spa
etime

Sfree =

∫

ddx dt [φ̇2 − φ(−∆z)φ], (3.5)

where ∆ = ∇2
is the spatial Lapla
ian. Noti
e that here the units are su
h

that the 
oe�
ient in front of the kineti
 term is the same as that of the

spatial derivative term, whi
h is not the 
ommon c = 1 set of units; Plan
k


onstant is set to be ~ = 1. In these units one has that [∂t] = [∇]z and

[dt] = [dx]z. But sin
e the a
tion has to be dimensionless one has that

[φ] = [dx](z−d)/2
. This suggests that the 
ase z = d will play a spe
ial role

in the dis
ussion, sin
e the s
alar �eld would then be dimensionless. It is


onvenient to de�ne formal symbols κ andm having dimension of momentum

and energy, [κ] = [dx]−1
and [m] = [dt]−1

respe
tively. It 
an also be noti
ed

that [φ] = [κ](d−z)/2 = [m](d−z)/2z
.

Consider now also the various sub-leading terms to this free Lagrangian

Sfree =

∫

dt ddx [φ̇2 − φ(m2 − c2∆+ ...+ (−∆)z)φ]. (3.6)

Noti
e that [c] = [dx/dt] = [dx]1−z = [κ]z−1
, whi
h is the reason for whi
h,

with the 
hoi
e of units explained earlier, one does not have the freedom to

set c = 1, unless the trivial 
ase z = 1 is under 
onsideration.

2

The interest reader 
an �nd a broader dis
ussion of this topi
 in [47℄.
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Consider now a polynomial intera
tion

Sinteraction =

∫

dt ddxP (φ) =

∫

dt ddx

N
∑

n=1

gnφ
n. (3.7)

The 
ouplings have dimension [gn] = [κ]d+z−n(d−z)/2
. So the 
ouplings have

non negative dimension as long as

d+ z − n(d− z)
2

≥ 0. (3.8)

Sin
e z, d and n are all positive integers by de�nition this is equivalent to

either

n ≤ 2(d+ z)

d− z if z < d,

or

z ≤ ∞ if z ≥ d.

Consider now a generi
 Feynman diagram with L loops and I internal

propagators. For ea
h internal line one has a Lorentz violating propagator

G(ω,~k) =
1

(ωL − ωe)2 − (m2 + c2(~kL − ~ke)2 + ...+ (~kL − ~ke)2z)
, (3.9)

where ωe and
~ke are some linear 
ombination of the external momenta, and ωL

and

~kL are the loop energy and momentum. Ea
h loop integral 
ontributes

to the total dimension as

∫

dω ddk → [dω][dk]d = [κ]d+z

and for ea
h propagator one has instead [G(ω,~k)] = [κ]−2z
. The total 
ontri-

bution for dimensionality 
oming from loop integrals for the entire Feynman

diagram is

δ = (d+ z)L− 2zI = (d− z)L− 2(I − L)z, (3.10)

whi
h reprodu
es the standard result in the 
ase z = 1. Sin
e the number of

internal propagators I is always at least equal to the number of loops, one

has

δ ≤ (d− z)L. (3.11)

It is a standard result that if the super�
ial degree of divergen
e is nega-

tive, and the super�
ial degree of divergen
e of every internal sub-graph is

negative, then the Feynman diagram is 
onvergent. Therefore, if one 
hoose

d = z then one has δ ≤ 0 for any diagram, and the worse divergen
e one 
an

meet is logarithmi
, whi
h 
an o

ur only when L = I whi
h are the so-
alled

"rosette" Feynman diagram. This observation is enough to guarantee that

the theory is power 
ounting renormalizable.
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3.2 Rainbow Gravity

As previously stated, the most promising opportunities for quantum gravity

phenomenology 
ome from the propagation of high-energy parti
les from a

sour
e at 
osmologi
al or astrophysi
al distan
e and it is therefore important

to 
onsider also the e�e
ts due to the geometry of spa
etime on large s
ales.

Indeed, the s
ope of Rainbow Gravity is to in
lude Plan
k s
ale 
orre
tions

to Einstein's theory of gravity. The next subse
tion is devoted to introdu
-

ing the original proposal by Magueijo and Smolin. Subse
tion 3.2.2 brie�y

reviews the most re
ent approa
h to the original purpose of Rainbow gravity,

using the te
hnology of Finsler geometry.

3.2.1 Magueijo-Smolin Rainbow Gravity

Rainbow Gravity has �rst been proposed in [48℄ with the goal to extend the

idea of DSR to General Relativity. The theory does not mean to be funda-

mental but rather a leading 
orre
tion to a 
lassi
al spa
etime pi
ture 
oming

from a full quantum spa
etime theory. Therefore, the main interest resides

in 
omputing e�e
ts at leading order in Plan
k s
ale on the propagation of

quanta with energies smaller then the Plan
k s
ale EP but with wavelengths

mu
h shorter than the lo
al radius of 
urvature R. This latter assumption

allows then not to take into a

ount terms in R∂p
p
whi
h should be 
onsidered

otherwise.

The starting point is the deformed dispersion relation

f 2(ℓE)E2 − g2(ℓE)p2 = m2, (3.12)

where f and g are arbitrary fun
tions and ℓ is a length s
ale whi
h is assumed

to be of the order of the Plan
k length. This 
an be obtained by the a
tion

of a non-linear map from momentum spa
e to itself, denoted, U : P → P,
given by

U · (E, pi) = (U0, Ui) = (f (ℓE)E, g (ℓE) pi) (3.13)

whi
h implies that momentum spa
e has a non-linear norm of the form

p2 = ηabUa(p)Ub(p). (3.14)

This norm is preserved by a non-linear realization of the Lorentz group, given

by

L̃b
a = U−1 · Lb

a · U (3.15)

where L are the usual Lorentz generators.
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Theories with deformed Lorentz transformations are usually formulated

on momentum spa
e. In order to develop the spa
etime 
ounter part, a suit-

able de�nition of the dual spa
e has been looked for. This is a non trivial task

due to the fa
t that the momentum transformation are non-linear (among the

di�erent answers proposed there are also non-
ommutative geometries, su
h

as κ-Minkowksi non-
ommutative spa
etime). Rainbow Gravity instead as-

sumes that the resear
h for a single dual spa
e is not stri
tly ne
essary, sin
e

there is no single 
lassi
al spa
etime geometry when e�e
ts of order ℓE are

taken into a

ount. Instead, one has to 
onsider a family of one-parameter

spa
etime metri
s that des
ribe the leading 
orre
tions to the 
lassi
al spa
e-

time, parametrized by ℓE. So, just as the properties of a material may depend

on the energy of the phonon propagating through it, Rainbow Gravity adopts

the view that the geometry of spa
etime may depend on the energy of the

parti
le moving in it. The Einstein equivalen
e prin
iple 
an be maintained,

with the spe
i�
ation that it is valid for regions of spa
etime for whi
h the

radius of 
urvature is mu
h larger then ℓ and that the parti
les moving in it

have energies mu
h below ℓ−1
. One further requires that in the limit ℓE → 0

General Relativity is re
overed.

It must be stressed that the parameter ℓE does not represent the energy of

spa
etime, but the energy s
ale at whi
h it is probed a

ording to a parti
ular

observer. Therefore, if an observer uses the motion of a parti
le or a system

of parti
les to measure the geometry of the spa
etime, E is the total energy

of that parti
le or system of parti
les, as measured by that observer.

Another way to des
ribe these properties is by saying that, in the absen
e

of gravity, spa
etime has an energy-dependent geometry, in the sense that

parti
les of energy E move in a geometry given by an energy-dependent set

of orthonormal frame �elds,

e0 = f−1(ℓE)ẽ0, ei = g−1(ℓE)ẽi (3.16)

where the tilde quantities represent energy-independent frame �elds that

spe
ify the geometry probed by low energy parti
les. The metri
 given by

g(E) = ηabea ⊗ eb (3.17)

is �at for all E. The obje
t g(E) 
an be 
onsidered as a one-parameter

family of �at rainbow metri
s, parametrized by E. The metri
s share the

same set of inertial frames but, due to s
alings, generally they do not share

all their geodesi
s; instead, geodesi
s are generally energy-dependent. This

is equivalent to saying that the energy-momentum relations are no longer

quadrati
.

The Rainbow Gravity pi
ture is 
losely related to the work presented in

[49℄ for 
onstru
ting position spa
e in DSR. In this approa
h one requires that
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free �eld theories in �at spa
etime have plane waves solutions, even though

the 4-momentum they 
arry satis�es deformed dispersion relations. For this

to be possible the 
ontra
tion between position and momentum providing

the phase for su
h waves must remain linear, that is,

dxapa = dx0p0 + dxipi. (3.18)

If momentum transforms non-linearly then the dxa transformations must be

energy-dependent, as explained in [49℄. Authors 
laim that, for a U of the

form given above, spa
etime dual has invariant

ds2 =
dt2

f 2(E)
− dx2

g2(E)
. (3.19)

Thus, the dual spa
e dxa is endowed with an energy-dependent quadrati


invariant, that is an energy-dependent metri
.

This example further elu
idates the meaning of E in the metri
. If a

given observer sees a parti
le (or a plane wave, or a wave pa
ket) with energy

E, then he 
on
ludes that this parti
le is probing the metri
 g(E). If the

parti
le has energy E ′ 6= E for a di�erent observer, then the latter will assign

to spa
etime a di�erent metri
 g(E ′). Of 
ourse, as required by 
ovarian
e,

if the �rst observer probes the spa
etime using two parti
les with di�erent

energies E and E ′
then it will attribute a di�erent metri
 to ea
h parti
le,

even at the same spa
etime 
oordinates.

Essentially, this 
onstru
tion justi�es, in some sense, the naive guess that,

if the dispersion relation is given in metri
 terms as m2 = gµν(E)pµpν and is

a (deformed) Lorentz s
alar, then the spa
etime metri
 is the tensor gµν(E)
su
h that gµν(E)g

νσ(E) = δσµ and ds2 = gµν(E)dx
µdxν is also a s
alar.

The reason for whi
h this formulation of Rainbow Gravity breaks Lorentz

symmetry is that the dispersion relation is indeed invariant under the de-

formed boosts, but the line element is not [50℄. Consider for example the

very 
ommonly studied DSR dispersion relation

C = a−2(η)(Ω2 − Π2) + ℓa−3(η)(γΩ3 + βΩΠ2) = m2, (3.20)

where (η, x) are the 
onformal 
oordinates on spa
etime and (Ω,Π) are their

onjugate momenta, a(η) is the s
ale fa
tor, β and γ two numeri
al param-

eters. Consider for simpli
ity of argument on the stati
 
ase a(η) = 1 in two

dimensions. Denoting the 
onjugate momenta in the �at 
ase (p0, p1), one

an write the dispersion relation as C = (1+ ℓγp0)p

2
0− (1− ℓβp0)p21, and the

line element asso
iated with it is, at �rst order in ℓ,

ds2 = (1− ℓγp0)(dx0)2 − (1 + ℓβp0)(dx
1)2. (3.21)
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The dispersion relation (3.20) is invariant under a ℓ-deformed Lorentz boost

N = x0p1(1− ℓγp0) + x1
(

p0 + (β +
γ

2
)ℓp20 +

ℓ

2
βp21

)

, (3.22)

as it 
an be shown that the Poisson bra
ket {N , C} = 0. This guarantees

that the dispersion relation is in fa
t invariant also for a �nite boost, sin
e

the a
tion of a boost on an observable O 
an be expressed as

O′ = O + ξ{N , O}+ ξ2

2!
{N , {N , O}}+ ...

where ξ is the rapidity parameter. Under the same a
tion of the boost, the

line element (3.21) is not invariant, as it transform to

(ds2)′ = ds2 − ℓξ(βp1(dx1)2 + γp1(dx
0)2). (3.23)

This non-invarian
e is evidently problemati
 from a relativisti
 point of view,

as the norm of ve
tors would not be invariant under su
h transformation.

This is the reason for whi
h, even if the initial goal of Rainbow Gravity is to

preserve the relativity of lo
al inertial frames, it is in fa
t breaking Lorentz

symmetry.

3.2.2 Conne
tion with Finsler geometry

The original program of Rainbow Gravity has been further investigated and

more rigorously understood in terms of a generalization of Riemannian ge-

ometry known as Finsler geometry in Ref.[51℄. In Ref.[52℄,[50℄ the 
onne
tion

between Finsler geometries and DSR-relativisti
 theories has been 
lari�ed

in greater details.

Finsler geometry fundamental ingredient is the norm F (x, v), a real fun
-
tion of a spa
etime point x and a tangent ve
tor v, su
h that it satis�es the

usual norm properties, that is

F (x, v) 6= 0 if v 6= 0,

F (x, λv) = |λ|F (x, v), (3.24)

where λ is a real number. From the norm squared F 2(x, v) one 
an de�ne

the so 
alled Finsler metri


gµν(x, v) =
1

2

∂2F 2

∂vµ∂vν
, (3.25)
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whi
h is required to be 
ontinuous and non-degenerate. Using Euler's the-

orem, stating that if f(x) is a homogeneous fun
tion of degree r, then

xi ∂f
∂xi = rf(x), it 
an be shown that (3.25) is equivalent to

F (x, v) =
√

gµν(x, v)vµvν . (3.26)

This shows that gµν(x, v) is a homogeneous fun
tion of degree zero of the

ve
tor v. Also, sin
e by de�nition is non-degenerate, it admits an inverse

gµν(x, v) su
h that gµν(x, v)g
νσ(x, v) = δσµ . From the norm F (x, v) one 
an

also derive the norm for a form ω as

G(x, ω) = F (x, v(ω)), (3.27)

and the metri
 on the dual spa
e

hµν(x, ω) =
1

2

∂G2(x, ω)

∂ωµ∂ων
= gµν(x, v(ω)). (3.28)

The a
tion of a parti
le moving on a Finsler manifold is

S = m

∫

F (x, ẋ)ds (3.29)

whi
h from (3.26) takes the form of a straightforward generalization of the

standard relativisti
 parti
le a
tion

S = m

∫

√

gµν(x)ẋµẋνds.

Using Euler-Lagrange equations of motion one �nds the momenta

pµ = m
∂F

∂ẋµ
= m

gµν(x, ẋ)ẋ
ν

F
, (3.30)

whi
h satis�es the generalized on-shell relation

hµν(x, p)pµpν = m2gµν
gµρẋ

ρgνσẋ
σ

gαβẋαẋβ
= m2. (3.31)

In order to dedu
e the Finsler spa
etime metri
 
orresponding to a par-

ti
ular dispersion relation, as in the spirit of Rainbow Gravity, one should

start from the a
tion

S =

∫

ds[ẋµpµ − λ
(

Cp −m2
)

] (3.32)
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where λ is a Lagrange multiplier enfor
ing on-shell relation Cp = m2
. Using

Hamilton equation

ẋµ = λ
∂Cp
∂pµ

, (3.33)

one 
an express momenta p in terms of velo
ities ẋ and �nd the a
tion

S =

∫

l(ẋ, λ). (3.34)

Then by varying the a
tion with respe
t to the Lagrange multiplier λ one


an express it in terms of the velo
ities as well and obtaining the Lagrangian

S =

∫

L(ẋ, λ(ẋ)), (3.35)

from whi
h one 
an identify Finsler norm

F (x, ẋ) =
L(x, ẋ)
m

(3.36)

whi
h satis�es the properties of a Finsler norm (3.24). Form this one 
an

obtain the spa
etime metri
 as already shown.
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Chapter 4

Introdu
ing the thermal

dimension of quantum spa
etime

This 
hapter is dedi
ated to one of the original results of this thesis [116℄,


on
erning the problem of the physi
al 
hara
terization of the dimension of

spa
etime at s
ales 
omparable to Plan
k length. The next session reviews

what is a notion of dimensionality of spa
etime whi
h is broadly used in

the QG 
ommunity, the spe
tral dimension. The original proposal of ther-

mal dimension of spa
etime is then presented and its physi
al properties are


ompared with those of the spe
tral dimension, using examples of deformed

dispersion relation inspired by the QG models reviewed in the previous 
hap-

ters.

4.1 The spe
tral dimension

The spe
tral dimension has been proposed as a possible observable 
hara
-

terizing the geometry in dis
rete quantum gravity [53℄ and attra
ted a lot of

interest in 
ausal dynami
al triangulations (CDTs) sin
e �nding meaningful

observable in dis
rete geometry is a non trivial task. The hope of the 
ommu-

nities working on dis
rete geometry is that su
h observable may provide the

mu
h needed 
onne
tion between the dis
rete theory and its 
ontinuum limit.

The spe
tral dimension 
an also be de�ned in 
ontinuum quantum gravity

models and 
an be used to 
hara
terize and understand their short-distan
e

behavior (see [55℄,[68℄,[66℄,[56℄). Furthermore, it was shown in [55℄ that both

CDTs and Ho°ava-Lifshitz gravity lead to a value of 2 for the spe
tral di-

mension in the UV, while it mat
hes the value of the topologi
al dimension

in the IR. These results en
ouraged the use of the spe
tral dimension as a

tool in the pro
ess of linking the dis
rete and 
ontinuum theories.
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Here the basi
 de�nition of the spe
tral dimension, whose origin is Rie-

mannian geometry, will be given; the following se
tion will brie�y show how

it is linked to the dispersion relation of the theory in 
onsideration. It has

been shown in fa
t in [73℄ that, given a spe
i�ed topologi
al dimension n, it
is possible to de�ne a s
ale-dependent notion of spe
tral dimension for any

arbitrary dispersion relation. Furthermore, also the other dedu
tive way is

possible: given a 
ertain spe
tral dimension as a fun
tion of the di�usion

time s, it is possible, in prin
iple, to re
onstru
t the dispersion relation.

4.1.1 Basi
 de�nitions

The spe
tral dimension 
an be viewed as an e�e
tive notion of dimension

de�ned through a �
titious di�usion pro
ess on a 
ertain dis
rete geome-

try. In pra
ti
e the di�usion pro
ess 
an be thought as a sto
hasti
 random

walk, and the spe
tral dimension is de�ned in terms of the average return

probability P (s).
In the 
lassi
al Brownian motion, the di�usion of the parti
le is des
ribed

by the di�erential "heat" equation

∂

∂t
K(x, y; t)− b∆xK(x, y; t) = 0 (4.1)

where b is a 
onstant, t is the di�usion time, K(x, y; t) is the probability

density for the parti
le to di�use from point x to point y in a time t and the

initial 
ondition K(x, y; 0) = δ(x − y) indi
ates the point-like nature of the

parti
le.

Similarly, the di�usion pro
ess on a n-dimensional Eu
lidean geometry

with a �xed smooth metri
 gµν(x) is governed in fa
t by the equation the

heat equation

∂sK(x, y; s)−∆xK(x, y; s) = 0, (4.2)

with the initial 
onditionK(x, y; 0+) = δ(x−y)g−1/2(x). Here ∆ = gµν∇µ∇ν

is the Lapla
ian and ∇ν is the 
ovariant derivative. The parameter s plays

the role of �
titious di�usion time and K(x, y; s) is the probability density of

di�usion from the event x to the event y in a "time" s. The return probability
is then easily de�ned as

P (s) =

∫

dnx g1/2K(x, x; s)
∫

dnx g1/2
≈ 1

(4πs)n/2

∞
∑

i=0

ais
i, (4.3)

where the 
oe�
ients are metri
-dependent invariants whi
h 
an be 
om-

puted via re
ursion formulas, with a0 = 1.
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For an in�nite �at spa
e the solution to the heat equation is given by

K(x, y; s) =
e−d2g(x,y)/4s

(4πs)n/2
(4.4)

where dg(x, y) is the geodesi
 distan
e between the two points. It follows that√
s is an e�e
tive measure of the spread of the Gaussian at di�usion time s.

Be
ause Pg(s) = s−n/2
in the �at 
ase, one 
an obtain the dimension n of

the manifold by taking the logarithmi
 derivative of the return probability,

de�ning the spe
tral dimension,

ds ≡ −2
∂ logPg(s)

∂ log s
= n, (4.5)

where the last equality is true only in the �at 
ase.

For 
urved spa
es and/or �nite spa
es of volume V one 
an still use Eq.

(4.5) to extra
t the dimension, but there will be 
orrelations for su�
iently

large s. For a 
urved spa
e, probing a di�usion s
ale 
omparable or larger

than the radius of 
urvature will a�e
t the value of the spe
tral dimension

via the details of the geometry of the spa
e and the presen
e of gravitational

sour
es. The spe
tral dimension then would deviate from the topologi
al

dimension as an e�e
t of the 
urvature. At intermediate s
ales, smaller then

the radius of 
urvature but larger then the Plan
k s
ale, the spa
e is e�e
-

tively �at and the spe
tral dimension has the same value of the topologi
al

dimension, as shown above. At s
ales 
omparable to Plan
k s
ale the de-

viation of the spe
tral dimension from the topologi
al dimension is due to

e�e
ts other then 
urvature.

4.1.2 Conne
tion with the dispersion relation

Further interest in the spe
tral dimension 
omes from the work of Sotiriou,

Visser and Weinfurtner [73℄, in whi
h they demonstrated that the spe
tral

dimension is not ne
essarily intrinsi
ally geometri
. At s
ales small enough

for 
urvature e�e
ts to be negligible, its deviation from the topologi
al di-

mension a
tually be
omes an analyti
 property of the di�erential operator

that one is using as input to de�ne the �
titious di�usion pro
ess. In turn,

this operator a
ts as the propagator of some dynami
al degree of freedom

in �at spa
e. In this sense, the spe
tral dimension a
ts, at suitable s
ales,

as a probe of the kinemati
s of the parti
ular degree of freedom, allowing to

dedu
e a dispersion relation; therefore the spe
tral dimension is an interest-

ing observable even for those theories for whi
h is di�
ult to �nd the return

probability of a di�usion pro
ess on their quantum spa
etimes, but whi
h

have a modi�ed dispersion relation.
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Consider in fa
t a (n+1)-dimensional spa
etime and a dispersion relation

E = E(p). This 
an always be viewed as 
ompletely spe
i�ed by the solution

of the di�erential equation

DLΦ = (−∂2t − f(−∇2))Φ = 0, (4.6)

where f(p2) = E(p)2. The reason for whi
h the time derivative is only se
ond

order is that in this 
ase the di�erential equation en
oding the dispersion

relation 
an typi
ally be derived by a ghost-free Lagrangian,

L =
1

2
ΦDLΦ. (4.7)

In order to 
ompute the spe
tral dimension one has �rst to Wi
k rotate

the physi
al time t to 
onsider Eu
lideanized di�erential operatorDE in n+1
topologi
al dimension

DEΦ = (−∂2t + f(−∇2))Φ. (4.8)

The di�usion pro
ess is governed by the equation

∂

∂s
K(x, y; s) +DEK(x, y; s) = 0, (4.9)

with the initial 
ondition K(x, y; 0) = δn+1(x− y). Again, x is the set (t, ~x)
and s is an auxiliary "�
titious di�usion time" or, more properly, a parameter


hara
terizing the s
ale at whi
h the parti
le is probing the spa
etime. The

general solution of the di�erential equation above is

K(x, y; s) =

∫

dE dnp

V (2π)n+1
ei(~p·(~x−~y)+E(x0−y0))e−s(E2+f(p2)), (4.10)

and the return probability is then

P (s) =

∫

dnxK(x, x; s) =

∫

dE dnp

(2π)n+1
e−s(E2+f(p2)). (4.11)

Fa
torizing it in the time-like and spa
e-like 
ontribution

P (s) =

∫

dE

(2π)
e−sE2

∫

dnp

(2π)n
e−sf(p2) =

1√
4πs

∫

dnp

(2π)n
e−sf(p2), (4.12)

one obtains

lnP (s) = −1
2
ln s+ ln

∫

dp pn−1e−sf(p2) + C (4.13)
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where C is a 
onstant. Taking the derivatives with respe
t to ln s one gets

the expression for the spe
tral dimension

dS(s) = 1 + 2s

∫

dp pn−1f(p2)e−sf(p2)

∫

dp pn−1e−sf(p2)
. (4.14)

Re
alling now that E2 = E(p)2 = f(p2), one 
an write

dS(s) = 1 + 2s

∫

dp pn−1E(p)2e−sE(p)2

∫

dp pn−1e−sE(p)2
. (4.15)

Note that the 
ontribution 1 
omes from the fa
t that the time derivatives

appear only in the term ∂2t . If one has to 
onsider more general operators

su
h as DΦ = f(∂2t ,∇2)Φ, the dispersion relation is expressed impli
itly by

Cp(E2, p2) = 0. The return probability is then

P (s) =

∫

dE dnp

(2π)n+1
e−sCp(E2,p2), (4.16)

and therefore the spe
tral dimension is

dS(s) = 2s

∫

dE dnp Cp(E2, p2)e−sCp(E2,p2)

∫

dE dnp e−sCp(E2,p2)
. (4.17)

This shows that from an arbitrary dispersion relation (but of the kind in

whi
h energy 
an be expressed in terms of the momentum) and spe
i�ed

topologi
al dimension n a suitable di�erential operator 
an be 
onstru
t that

en
ode the dispersion relation and this 
an be used to de�ne the 
orrespond-

ing spe
tral dimension. To show that the other way around is possible, one

may noti
e that, de�ning the "partition fun
tion"

Z(s) =

∫

dp pn−1e−sE(p)2, (4.18)

one 
an write Eq.(4.15) as

dS(s) = 1− 2s
dZ(s)

ds
. (4.19)

Note that the fun
tion Z(s) en
odes relatively simple information on the

dispersion relation of the degree of freedom in 
onsideration. If a theory

gives us only the possibility to study the spe
tral dimension but it does not

have a di�erential operator (as in the 
ase of CDT) one 
an infer an e�e
tive

dispersion relation by inverting formally Eq.(4.15) as a fun
tion of s,

Z(s)

ds
= −dS(s)− 1

2s
, (4.20)
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from whi
h

Z(s) = Z(s0)e
− 1

2

∫ s
s0

ds′
dS(s′)−1

s′ . (4.21)

The aim though is not to know just the fun
tion Z(s) but to obtain the

fun
tion E(p). In order to get it, one 
an write the partition fun
tion as

Z(s) =
1

n

∫ ∞

0

dE2dp
n(E)

dE2
e−sE2

. (4.22)

Integrating by parts one obtains

∫ ∞

0

dE2 pn(E)e−sE2

=
n

s
Z(s), (4.23)

whi
h has the form of a Lapla
e transformation, in the variable E2
, of the

fun
tion pn(E).
Implementing the inverse Lapla
e transformation via 
omplex integration,

one has

pn(E) =
1

2πi

∫

C

ds
n

s
Z(s)esE

2

, (4.24)

where C is an appropriate 
ontour in the 
omplex plane and Z(s) is given
by Eq.(4.21). Therefore, one 
an 
ompute the e�e
tive dispersion relation

for the degree of freedom in 
onsideration when the spe
tral dimension is

analyti
ally known as a fun
tion of s on the 
omplex plane.

4.2 Thermal dimension

As it has already been mentioned in the introdu
tion, many di�erent quan-

tum gravity models share the 
ommon feature of �dynami
al dimensional re-

du
tion": the familiar four-dimensional 
lassi
al pi
ture of spa
etime in the

IR is repla
ed by a quantum pi
ture with an e�e
tive number of spa
etime

dimensions smaller than four in the UV.

This phenomenon has been studied mostly in terms of the spe
tral di-

mension, whi
h provides a valuable 
hara
terization of properties of 
lassi
al

Riemannian geometries [60, 63℄, but its proposed appli
ability to the des
rip-

tion of the dimension of a quantum spa
etime involves some adaptations, as

des
ribed in the previous se
tion. In this se
tion it will be shown that these

adaptations are responsible for some of its inadequa
ies.

When the IR Hausdor� dimension of spa
etime isD+1, and the Eu
lidean
d'Alembertian of the theory is represented on momentum spa
e as CEuc

p (E, p),
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the return probability is given by

1

P (s) ∝
∫

dE dp pD−1 e−s CEuc
p (E,p) . (4.25)

The fa
t that the Eu
lidean version of the d'Alembertian intervenes should

be 
ause of 
on
ern

2

. It is in fa
t well known that the Eu
lidean version

of a quantum-gravity model 
an be profoundly di�erent from the original

model in Lorentzian spa
etime (see, e.g., Ref.[67℄). Moreover, evidently in

(4.25) an important role is played by o�-shell modes, a role so important

that, as it will be here shown, one 
an obtain wildly di�erent values for

the spe
tral dimension for di�erent formulations of the same physi
al theory

(
ases where the formulations 
oin
ide on-shell but are di�erent o�-shell).

It is also 
on
erning the fa
t that evidently the P (s) of (4.25) is invariant
under a
tive di�eomorphisms on momentum spa
e (an a
tive di�eomorphism

on momentum spa
e amounts to an irrelevant 
hange of integration variable

for P (s)). Sin
e an a
tive di�eomorphism 
an map a given physi
al theory

into a very di�erent one (also see here below), this degenera
y of the spe
tral

dimension is worrisome.

While these 
on
erns are very serious, it must be a
knowledged that sev-

eral analyses 
entered on the spe
tral dimension give rather meaningful re-

sults. Therefore, the guiding idea is that it is ne
essary to repla
e the spe
-

tral dimension with some other fully physi
al notion of dimensionality of a

quantum spa
etime, with the requirement that in most 
ases the new notion

should agree with the spe
tral dimension. Only when the unphysi
al 
on-

tent of the spe
tral dimension plays a parti
ularly signi�
ant role should the

new notion di�er signi�
antly from the spe
tral dimension. The guidan
e

adopted in sear
hing for su
h a new notion is the observation reported in

re
ent studies [76, 129, 78℄ (see also [79℄ for earlier related proposals) that in

some instan
es the Stefan-Boltzmann law gives indi
ations on the dimension-

ality of spa
etime that are 
onsistent with the spe
tral dimension. One 
an

view the Stefan-Boltzmann law as an indi
ator of spa
etime dimensionality

sin
e for a gas of radiation in a 
lassi
al spa
etime with D + 1 dimensions

the Stefan-Boltzmann law takes the form

U ∝ TD+1. (4.26)

1

The thesis supported here is that even if (4.25) did des
ribe the return probability

(as usually assumed) still the spe
tral dimension would be unsatisfa
tory. It is interesting

however that, as stressed in Ref. [64℄, the interpretation of (4.25) as return probability is

not always appli
able.

2

Con
erns for the Eu
lideanization involved were also raised in Ref.[65℄, within a study


on
erning the 
ausal-set approa
h. Ref.[65℄ proposed a possible rede�nition of the spe
tral

dimension suitable for in
luding Lorentzian signature and found that it gave di�erent

results with respe
t to the standard (Eu
lideanized) spe
tral dimension.
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A
tually several thermodynami
al relations are sensitive to the dimension-

ality of spa
etime, another example being the equation of state parameter

w ≡ P/ρ, relating pressure P and energy density ρ, whi
h for radiation in a


lassi
al spa
etime with D + 1 dimensions takes the form

w =
1

D
. (4.27)

These observations inspire the proposal of assigning a �thermal dimension" to

a quantum spa
etime. The re
ipe presented in this thesis involves studying

the thermodynami
al properties of radiation with on-shellness 
hara
terized

by the (deformed) d'Alembertian of the relevant quantum-spa
etime the-

ory (the same deformed d'Alembertian used when evaluating the spe
tral

dimension, but in its Lorentzian form). By looking at the resulting Stefan-

Boltzmann law and equation of state one 
an infer the e�e
tive dimension-

ality of the relevant quantum spa
etime. This notion of dimensionality has

the advantage of being dire
tly observable, a genuine physi
al property of

the quantum spa
etime, and, as it will be here shown, �xes the short
om-

ings of the spe
tral dimension, while agreeing with it in some parti
ularly

noteworthy 
ases.

4.2.1 Appli
ation to generalized Ho°ava-Lifshitz s
enar-

ios

To start the quantitative part of the present study, 
onsider a 
lass of gen-

eralized Ho°ava-Lifshitz s
enarios, whi
h has been the most a
tive area of

resear
h on dynami
al dimensional redu
tion [55, 73, 61℄. These are 
ases

where the momentum-spa
e representation of the deformed d'Alembertian

takes the form

Cγtγx(E, p) = E2 − p2 + ℓ2γtt E2(1+γt) − ℓ2γxx p2(1+γx) . (4.28)

where E is the energy, p is the modulus of the spatial momentum, γt and γx
are dimensionless parameters, and ℓt and ℓx are parameters with dimension

of length (usually assumed to be of the order of the Plan
k length).

For this model it is known [61, 73℄ that the UV value of the spe
tral

dimension, obtained from the Eu
lidean version of the above d'Alembertian

(E2 + p2 + ℓ2γtt E2(1+γt) + ℓ2γxx p2(1+γx)
), is

dS(0) =
1

1 + γt
+

D

1 + γx
. (4.29)

In deriving the thermal dimension for this 
ase one 
an start from the

logarithm of the thermodynami
al partition fun
tion [80℄, written so that
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the integration is expli
itly taken over the full energy-momentum spa
e:

logQγtγx = − 2V

(2π)3

∫

dE d3p
[

δ(Cγtγx) Θ(E) ·

· 2E log
(

1− e−βE
)

]

. (4.30)

Here β is related to the Boltzmann 
onstant kB and temperature via β =
1

kBT
, and the delta fun
tion δ(Cγtγx) enfor
es the on-shell relation Cγtγx = 0.
From (4.30) one obtains the energy density and the pressure respe
tively

as

ργtγx ≡ −
1

V

∂

∂β
logQγtγx , pγtγx ≡

1

β

∂

∂V
logQγtγx . (4.31)

Figure 4.1 shows (for a few 
hoi
es of γx, γt) the resulting temperature de-

penden
e for the energy density and for the equation of state parameter. For

the UV/high-temperature values of ργtγx and wγtγx one 
an easily establish

the following behaviors at high temperature, in agreement with the 
ontent

of Figure 4.1

ργtγx ∝ T 1+3
1+γt
1+γx , wγtγx =

1 + γx
3(1 + γt)

. (4.32)

By 
omparison to (4.26) and (4.27) one sees that both of these results

give a 
onsistent predi
tion for the �thermal dimension" at high temperature,

whi
h is

dT = 1 + 3
1 + γt
1 + γx

. (4.33)

Interestingly, in this 
ase of generalized Ho°ava-Lifshitz s
enarios the thermal

dimension agrees with spe
tral dimension, Eq. (4.29), for γt = 0, but di�ers
from the spe
tral dimension when γt 6= 0.

4.2.2 Impli
ations of a
tive di�eomorphisms on momen-

tum spa
e

Generalized Ho°ava-Lifshitz s
enarios also give us an easy opportunity for


omparing the properties of the thermal dimension and of the spe
tral di-

mension under a
tive di�eomorphisms on momentum spa
e. From this per-

spe
tive the analysis is parti
ularly simple for the 
ase γx = 0, γt = 1, where
one has

C1,0(E, p) = E2 − p2 + ℓ2tE
4 . (4.34)

In light of the results reviewed and derived above it is known now that in this


ase the UV spe
tral dimension is dS = 3.5, while the UV thermal dimension

is dT = 7.
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Figure 4.1: Behavior of the energy density ρ in arbitrary units (top panel)

and of the equation of state parameter w (bottom panel) as a fun
tion of

β∗ ≡ 10−3βkBTP , a

ording to the partition fun
tion Qγtγx , for γt = 0 and

γx = 2 (blue), γx = 4 (orange), γx = 6 (green), γx = 8 (red). The purple line

is the standard 
ase, ρ ∝ T 4
(top panel) and w = 1/3 (bottom panel).

Consider a simple di�eomorphism on momentum spa
e, the following

reparameterization of the energy variable: E → Ẽ =
√

E2 + ℓ2tE
4
. In terms

of Ẽ the d'Alembertian takes the standard spe
ial-relativisti
 form, C1,0 =
Ẽ2 − p2, while the momentum spa
e measure be
omes non-trivial:

dµ(Ẽ, p) =
dẼdp

√
2ℓtp

2Ẽ
√

(1 + 4ℓ2t Ẽ
2)(−1 +

√

1 + 4ℓ2t Ẽ
2)

(4.35)

When the above di�eomorphism on momentum spa
e is an a
tive one, the

laws of physi
s are not invariant. This is indeed what is found when 
ompar-

ing the thermodynami
al properties of the �Ẽ, p theory" with d'Alembertian
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Ẽ2 − p2 and momentum-spa
e integration measure (4.35) and the �E, p the-
ory" with (deformed) d'Alembertian C1,0(E, p) = E2 − p2 + ℓ2tE

4
and inte-

gration measure dE d3p. In the �Ẽ, p theory" the logarithm of the thermo-

dynami
al partition fun
tion is

log Q̃act. = − 2V

(2π)3

∫

dµ(Ẽ, p)
[

δ(Ẽ2 − p2)Θ(Ẽ) ·

·2Ẽ log
(

1− e−βẼ
) ]

6= logQ. (4.36)

Of 
ourse ultimately this leads to di�erent values for the thermal dimension

of these two theories. In fa
t, from the partition fun
tion (4.36) one 
an easily

�nd that at high temperatures the energy density behaves as ρ ∼ T 3.5
, while

the equation of state parameter is w = 0.4. These values point at a value of

the UV thermal dimension of dT = 3.5. Note that this result is di�erent from
the one that would follow from a passive di�eomorphism. In this 
ase, the

partition fun
tion in the Ẽ, p variables would be straightforwardly obtained

by a 
hange of variables in Eq. (4.30):

log Q̃pass. = − 2V

(2π)3

∫

dµ(Ẽ, p)
[

δ(Ẽ2 − p2) ·

Θ(E(Ẽ))2E(Ẽ) log
(

1− e−βE(Ẽ)
) ]

= logQ . (4.37)

A passive di�eomorphism just relabels the same physi
al pi
ture and of


ourse the thermal dimension is not a�e
ted. On the other hand, it 
an be

easily seen that the spe
tral dimension is not only invariant under passive

di�eomorphisms but also under a
tive di�eomorphisms on momentum spa
e.

In fa
t, a
tive and passive di�eomorphisms have the same e�e
t on the return

probability P (s), that of 
hanging the integration variable (without 
hang-

ing the integral). Therefore the "Ẽ, p theory" has the same UV spe
tral

dimension (ds = 3.5) as the "E, p theory".
In summary, one �nds that the UV spe
tral dimension of both the �Ẽ, p

theory" and the �E, p theory" is 3.5, and 3.5 is also the value of the ther-

mal dimension of the �Ẽ, p theory", but the �E, p theory" has UV thermal

dimension of 7. It should be evidently seen as advantageous for the thermal

dimension

3

the fa
t that it assigns di�erent UV dimension to the two very

3

Previous works [61, 114, 81℄ 
ontemplated the possibility of des
ribing the dimension

of a quantum spa
etime in terms of the duality with momentum spa
e, by resorting to the

�Hausdor� dimension of momentum spa
e". However, at least as formulated in [61, 114,

81℄, that notion is only appli
able to theories of the type of the �Ẽ, p theory", i.e. with

undeformed d'Alembertian (but possibly deformed measure of integration on momentum

spa
e).
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di�erent �E, p theory" and �Ẽ, p theory".

4.2.3 Appli
ation to f(E2−p2) s
enarios
Another s
enario of signi�
ant interest is the one where the d'Alembertian

is deformed into a fun
tion of itself: E2−p2 → f(E2−p2). The stru
ture

of this s
enario is very valuable for the purposes of the argument presented

here, but it also has intrinsi
 interest sin
e it has been proposed on the basis

of studies of the Asymptoti
-Safety approa
h [82℄ and of the approa
h based

on Causal Sets [83℄. This subse
tion 
onsiders a 
ase whi
h might deserve

spe
ial interest from the quantum-gravity perspe
tive, as stressed in Ref.[82℄,

su
h that the deformed d'Alembertian takes the form

Cγ(E, p) = E2 − p2 − ℓ2γ
(

E2 − p2
)1+γ

, (4.38)

where the parameter γ takes integer positive values and ℓ is a parameter with

dimension of length.

For this 
ase one easily �nds that the UV spe
tral dimension is

dS(0) =
4

1 + γ
, (4.39)

but the fa
t that this notion of the UV dimensionality of spa
etime depends

on γ is puzzling and points very 
learly to the type of inadequa
ies of the

spe
tral dimension that this study is 
on
erned with. In fa
t, in the UV limit

the parameter γ has no impli
ations for the on-shell/physi
al properties of

the (massless) theory. In general, massless parti
les governed by Cγ will be

on-shell only either when

E2 = p2

or when

E2 = p2 +
1

ℓ2
,

independently of the value of γ. At low energies only E2 = p2 is viable. For
energies su
h that E ≥ 1/ℓ also the se
ond possibility, E2 = p2+ 1

ℓ2
, be
omes

viable. However, in the UV limit the two possibilities be
ome indistinguish-

able, all parti
les are governed by E ≃ p just like in any 4-dimensional

spa
etime, be
ause as E → ∞ one has that p2 + 1
ℓ2
≃ p2. So without any

need to resort to 
ompli
ated analyses one knows that this theory in the

UV limit must behave like a 4-dimensional theory, in 
ontradi
tion with the

mentioned result for the UV spe
tral dimension.
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The UV value of the �thermal dimension" is 
orre
tly 4, independently of

γ. This is easily seen by taking into a

ount the deformation of d'Alembertian

present in the Cγ of (4.38) for the analysis of the partition fun
tion:

logQγ = − 2V

(2π)3

∫

dEd3pδ(Cγ)Θ(E)2E log
(

1− e−βE
)

, (4.40)

Using the fa
t that

δ(Cγ) =
δ(E − p)

2p
+
δ(E −

√

p2 + 1
ℓ2
)

2γ
√

p2 + 1
ℓ2

. (4.41)

one easily �nds that the UV behavior of thermodynami
al quantities whi
h

is relevant to determine the thermal dimension is independent of γ, and in

parti
ular in the UV the Stefan-Boltzmann law and the equation-of-state

parameter take the form known for a standard 4-dimensional spa
etime:

ρ ∝ T 4 , w =
1

3
. (4.42)

So indeed in this s
enario the UV value of the thermal dimension is 4. The

theory does have �dynami
al running of the dimensionality of spa
etime" in

a regime where the temperature is 
lose to the Plan
kian temperature, as one

should expe
t on the basis of the fa
t that the parameter γ does have a role in
the theory for energies greater than 1/ℓ but still small enough to distinguish

between p2 and p2 + 1
ℓ2
. This is shown in Figure 4.2, where the thermal

dimension (inferred from the behaviour of the equation of state parameter

and from the running of the energy density with temperature) is plotted as

a fun
tion of β.
The disastrous failures of the spe
tral dimension in this 
ase is to be

attributed to a 
ombination of its sensitivity to o�-shell properties and its

relian
e on the Eu
lidean d'Alembertian. It is noteworthy that for the Eu-


lidean d'Alembertian

4

,

C[Euclidean]
γ = E2 + p2 + ℓ2γ(E2 + p2)1+γ , (4.43)

in the UV limit one 
an negle
t E2 + p2 with respe
t to ℓ2γ(E2 + p2)1+γ
.

Instead for on-shell modes of the original Lorentzian Cγ one 
an never negle
t

E2 − p2 with respe
t to ℓ2γ(E2 − p2)1+γ
.

4

Note that in order to have the Eu
lidean version of the d'Alembertian Cγ(E, p) one
has to Wi
k-rotate also the parameter ℓ [84℄.
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Figure 4.2: Behaviour of the thermal dimension dT as a fun
tion of β. The
thermal dimension is 
omputed as dT = 1 + 1

w
, where the equation of state

parameter is the one asso
iated with to the logQγ, with γ = 1. β is in units

of 103βP (where βP = 1
kBTP

and TP is the Plan
k temperature.

4.3 Thermal dimension in Relative Lo
ality mod-

els

The present se
tion shows the preliminary results obtained in trying to ex-

tend the notion of thermal dimension of quantum spa
etime to models with

relative lo
ality. This would allow us to give further strength to the argu-

ments developed in the previous se
tion.

Two di�erent sets of 
oordinates on the momentum spa
e, the bi
rossprod-

u
t and Judes Visser 
oordinates [110℄ of k-de Sitter momentum spa
e, will

be used to 
ompute the relevant thermodynami
al quantities and dis
uss

the properties of thermal dimension. In parti
ular the dis
ussion about the

di�erent sensibility of spe
tral and thermal dimension under the a
tion of

a
tive and passive di�eomorphism will be 
ontinued. Also, it is shown that

the bi
rossprodu
t and the Judes Visser 
oordinates des
ribe in general dif-

ferent theories although they have equivalent on-shell relations; this allows

a more detailed dis
ussion of the problem of the o�-shellness of the spe
tral

dimension.

The starting point to study the thermodynami
s is the de�nition of (log-

arithm of the) partition fun
tion, written in 
ovariant form:

logQ =− 2V

(2π)3

∫

dµ(p0, ~p)δ(Cp)Θ(Uµpµ)2U
µpµ×

× log
(

1− e−βUµpµ
)

.

(4.44)
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Here, pµ is the four-momentum of the photons in the radiation gas, Uµ
is the

four-velo
ity of the observer with respe
t to the system (so that the energy

measured by the observer is E = Uµpµ), β is related to the Boltzmann


onstant kB via β = 1
kBT

, Cp is the on-shell relation and dµ(p0, ~p) is the

invariant measure on momentum spa
e (these be
omes Cp = p20 − ~p2 and

dµ(p0, ~p) = d4p in the undeformed 
ase and (4.44) takes the usual form in

the 
omoving referen
e frame Uµ = (1,~0)). Writing the partition fun
tion

in 
ovariant form allows to introdu
e non-trivial dispersion relations and


urvature on momentum spa
e 
onsistently with the relativisti
 setup of the

model. From this, following Se
tion 4.2, all the thermodynami
al quantities


an be derived in the usual way. In parti
ular, the main fo
us will be on the

energy density

ρ ≡ − 1

V

∂

∂β
logQ (4.45)

and the pressure

p ≡ 1

β

∂

∂V
logQ . (4.46)

4.3.1 Thermal dimension of k-de Sitter in bi
rossprod-

u
t 
oordinates

The metri
 on (D + 1)-dimensional momentum spa
e in bi
rossprodu
t 
o-

ordinates takes the form:

ds2 = gµνdpµdpν = dE2 − e2ℓE
D
∑

j=1

dp2j , (4.47)

so that the measure of integration of momentum spa
e is (in 3+1 dimensions)

dµbp(E, p) =
√−gdEd3p = p2e3ℓEdEdp. (4.48)

The momentum spa
e representation of the mass Casimir operator gives the

on-shell relation. This operator must of 
ourse be an invariant under the

deformed symmetries of the model. The invariant that is mostly used in the

literature is

Cbp =
4

ℓ2
sinh2

(

ℓE

2

)

− eℓE|~p|2 , (4.49)

and the on-shell relation is then given by

4

ℓ2
sinh2

(

ℓE

2

)

− eℓE |~p|2 = 4

ℓ2
sinh2

(

ℓm

2

)

, (4.50)
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where m is the rest energy. The Lorentz transformations are non linear

transformations for these 
oordinates. Sin
e the spa
etime and momentum

spa
e here 
onsidered are isotropi
 one 
an work just with the modulus of

spatial momentum, p.
The thermodynami
al partition fun
tion for this model is

logQ ∝
∫

dEdp p2 e3ℓEδ(Cbp)Θ(E)2E log
(

1− e−βE
)

. (4.51)

The delta fun
tion 
an be rewritten as:

δ(Cbp) =
ℓ

2(eℓE − 1)
δ

(

p− 1− e−ℓE

ℓ

)

(4.52)

from whi
h one 
an see that the model has a maximum momentum, pmax =
ℓ−1

. The expression for the energy density, after integration over the p vari-

able, reads:

ρ ∝
∫

dE eℓE
eℓE − 1

ℓ(eβE − 1)
E2 . (4.53)

The integrand is divergent for β < 2ℓ, from whi
h one 
an dedu
e the ex-

isten
e of a maximal temperature, Tmax = 0.5 TP , where TP is Plan
k tem-

perature. The same 
on
lusion 
an be drawn from the examination of the

expression for the pressure:

p ∝ 1

β

∫

dE eℓE
eℓE − 1

ℓ
E log

(

1− e−βE
)

. (4.54)

So this is a 
ase where the UV regime 
an not be de�ned by T → ∞, but

it will be then 
onsidered the T → Tmax regime. When the temperature is


lose to its maximum the energy density behaves like:

ρ ∼ (β − 2λ)−3
(4.55)

and the equation of state parameter runs to the value

w = 0. (4.56)

From the de�nition of thermal dimension given in Se
tion 4.2, one 
an 
on-


lude that dT = ∞. However it should be kept in mind that expressions

(4.26) and (4.27) that link the exponent of the Stefan-Boltzmann law and

the equation of state parameter to the number of dimension of spa
etime do

not 
ontemplate a maximal temperature. One 
ould be tempted, by looking

at the expression (4.55), to 
laim that in presen
e of a non zero βmin what
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is the number of dimension of spa
etime is not the exponential of β but that

of (β − βmin)
−1
. So in this 
ase, on the basis of (4.55) one would say that

D + 1 = 3. One way to make this 
laim more reliable is to �nd an equation

of state parameter 
oherent with this number of dimension. And sin
e on

the basis of our intuition is that the relavant 
ombination is β − βmin, if one

de�nes the pressure as

p ≡ 1

β − βmin

∂

∂V
logQ , (4.57)

then one �nds the value of the equation of state parameter whi
h is 
oherent

with the exponent of the Stefan-Boltzmann law,

w = 0.5 . (4.58)

In this opti
s, both (4.55) and (4.58) suggest that the e�e
tive thermal dimen-

sion of the model, 
lose to the maximal temperature, is the less problemati


dT = 3 . (4.59)

4.3.2 Thermal dimension of k-de Sitter in Judes Visser


oordinates

The Judes Visser 
oordinates [110℄ ǫ(E, p) and π(E, p) are de�ned in su
h a

way that they transform as the usual 4-momentum under Lorentz transfor-

mation and the mass Casimir takes the standard form ǫ2 − π2 = µ2
. They

are obtained as follows. Authors in Ref.[110℄ started from the expression of

E and p as boosted rest energy m

eℓE = eℓm(1 + sinh(ℓm)e−ℓm(cosh ξ − 1)),

p =
1

ℓ

sinh(ℓm)e−ℓm sinh ξ

1 + sinh(ℓm)e−ℓm(cosh ξ − 1)
,

(4.60)

where ξ is the boost rapidity parameter. By inverting these relations to get

the expression of the rapidity they get

cosh ξ =
eℓE − cosh(ℓm)

sinh(ℓm)
,

sinh ξ =
ℓpeℓE

sinh(ℓm)
,

(4.61)

and using the identity cosh ξ2 − sinh ξ2 = 1 rewrite the on-shell relation in

the following way:

cosh(ℓE) = cosh(ℓm) +
1

2
ℓ2p2eℓE. (4.62)
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Comparison with the standard dispersion relation �xes the relation between

the rest energy m and the mass Casimir µ,

cosh(ℓm) = 1 +
1

2
ℓ2µ2. (4.63)

This �xes the ǫ and π 
oordinates as

ǫ = µ cosh ξ =
eℓE − cosh(ℓm)

ℓ cosh(ℓm/2)
,

π = µ sinh ξ =
peℓE

cosh(ℓm/2)
.

(4.64)

It is here reported also the expression of the bi
rossprodu
t 
oordinates in

terms of the Judes Visser

E =
1

ℓ
ln(1 + ℓǫ

√

1 +
ℓ2µ2

4
+
ℓ2µ2

2
),

p =
π
√

1 + ℓ2µ2

4

1 + ℓǫ
√

1 + ℓ2µ2

4
+ ℓ2µ2

2

.

(4.65)

The invariant measure (4.48) in these 
oordinates takes the form

dE dp p2e3ℓE → dµ̃JV (ǫ, π, µ) = dǫ dπ
π2
(

1 + ℓ2µ2

4

)

1 + ℓǫ
√

1 + ℓ2µ2

4
+ ℓ2µ2

2

. (4.66)

What it is important to noti
e for the following is that if one substitutes the

expressions (4.65) into the bi
rossprodu
t mass Casimir (4.49) one �nds

CJV (ǫ, π, µ) =
ǫ2 − π2 + ℓµ2ǫ

√

1 + ℓ2µ2

4
+ ℓ2µ2

2
(µ2 + ǫ2 − π2)

1 + ℓǫ
√

1 + ℓ2µ2

4
+ ℓ2µ2

2

, (4.67)

whi
h redu
es to the standard

CJV (ǫ, π) = ǫ2 − π2
(4.68)

only when one enfor
es the on-shell relation for the Judes Visser 
oordinates,

ǫ2 − π2 = µ2. (4.69)
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So what one a
tually has is that the two set of 
oordinates give equivalent

dispersion relations (4.50)-(4.69) but non equivalent d'Alambertians (4.49)-

(4.67). The dis
ussion will 
ome ba
k later on this important fa
t to dis
uss

in more detail the di�erent properties of spe
tral dimension and thermal

dimension.

The "on-shell" expression of the bi
rossprodu
t 
oordinates in terms of

the Judes Visser 
oordinates are simply obtained by expli
itly substituting

µ2 = ǫ2 − π2
,

E =
1

ℓ
ln(1 + ℓǫ

√

1 +
ℓ2(ǫ2 − π2)

4
+
ℓ2(ǫ2 − π2)

2
),

p =
π
√

1 + ℓ2(ǫ2−π2)
4

1 + ℓǫ
√

1 + ℓ2(ǫ2−π2)
4

+ ℓ2(ǫ2−π2)
2

.

(4.70)

Starting from these expression to 
ompute the measure one obtains,

dµJV (ǫ, π) = dǫ dπ π2

(

1 +
ℓ2(ǫ2 − π2)

4

)

. (4.71)

For what 
on
erns the thermal dimension, however, sin
e the on-shellness

is enfor
ed by the Dira
 delta fun
tion, this di�eren
e in the measures makes

no di�eren
e in the �nal value of the integral sin
e one 
an easily see that

dµ̃JV (ǫ, π, µ)δ(CJV (ǫ, π, µ)− µ2)θ(ǫ) =

= dµJV (ǫ, π)δ(CJV (ǫ, π)− µ2)θ(ǫ)

= dǫ dπ π2

(

1 +
ℓ2µ2

4

)2

δ(ǫ2 − π2 − µ2)θ(ǫ).

(4.72)

Noti
e than apart a 
onstant fa
tor the measure that ultimately enters in

the relevant integral is the standard measure over minkowskian momentum

spa
e and it is exa
tly the standard one in the massless 
ase µ = 0, whi
h is

the 
ase of interest to study the Stefan-Boltzmann law and equation of state

parameter.

This result immediately tells us that the thermal dimension is sensible

to the di�eren
e between a
tive and passive di�eomorphisms on momentum

spa
e. In fa
t, if one swit
hes 
oordinates from the bi
rossprodu
t to the

Judes Visser as a passive di�eomorphism, it a
tually is a mere 
hange of 
o-

ordinates in 
omputing the relevant integrals, the resulting Stefan-Boltzmann

law and w then being those 
omputed in the previous se
tion. However, if the

Judes Visser 
oordinates are introdu
ed as an a
tive di�eomorphism, then
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the logarithm of the partition fun
tion is

logQ ∝
∫

dǫ dπ π2δ(ǫ2 − π2)θ(ǫ)2ǫ log(1− eβǫ), (4.73)

whi
h therefore leads to the usual value dT = 4. It is therefore evident

that in this 
ontext physi
s is not invariant under a
tive di�eomorphims on

momentum spa
e.

4.3.3 Spe
tral Dimension in Judes Visser 
oordinates

In the previous se
tion it has been noti
ed that one has two set of transforma-

tions relating the bi
rossprodu
t to the Judes Visser 
oordinates: the �rst,

Eqs.(4.65), may 
alled "o�-shell Judes Visser", sin
e the expression of the bi-


rossprodu
t mass Casimir (4.49) in terms of these 
oordinates takes the non

standard form shown in Eq.(4.67); the se
ond, Eqs.(4.70), may 
alled "on-

shell Judes Visser", sin
e the expression of the bi
rossprodu
t mass Casimir

(4.49) in terms of these 
oordinates takes the standard form Eq.(4.68). The

measure on momentum spa
e in the two 
ases are respe
tively dµ̃JV (ǫ, π, µ)
and dµJV (ǫ, π). It has been shown also that these di�erent sets of 
oordi-

nates still give the same value of thermal dimension be
ause the integrals

de�ning the thermodynami
al quantities are 
omputed on-shell. One 
ould

be interested in looking whether the value of thermal dimension 
omputed

for these models 
oin
ides with that of spe
tral dimension.

The UV spe
tral dimension for the Eu
lidean version [111℄ of this model


an be 
omputed using the return probability

P (s) ∝
∫

dEdp p2 e3ℓE e−s( 4
ℓ2

sinh2( ℓE
2 )+eℓE |~p|2) . (4.74)

and turns out to be [60, 61℄

dS(0) = 6 . (4.75)

In the 
ase of Judes Visser 
oordinates one has to deal with the fa
t that

one has two alternatives, the o�-shell and on-shell 
oordinates.

For the o�-shell 
oordinates the return probability takes the form

P (s) ∝
∫

dǫdπ
π2

1 + ℓǫ
e−s ǫ2+π2

1+ℓǫ , (4.76)

giving the value dS(0) = 6.
For the on-shell 
oordinates however this takes the form

P (s) ∝
∫

dǫdππ2

(

1 +
ℓ2(ǫ2 + π2)

4

)

e−s(ǫ2+π2), (4.77)

103



whi
h gives again dS(0) = 6.
This results should not surprise, as it has been already noti
ed that the

spe
tral dimension is not sensible to the di�eren
e between a
tive and passive

di�eomorphisms. Therefore, no matter whi
h 
oordinates one 
hooses for

P (s) in (4.74) it will give dS(0) = 6.

4.4 Remarks on the thermal dimension

The ex
iting realization that the UV dimension of spa
etime might be di�er-

ent from its IR dimension adds signi�
an
e to the old 
hallenge of des
ribing

the dimension of a quantum spa
etime and it is argued that it is 
ru
ial to

link this issue to observable properties. After all, what it is meant in physi
s

by �dimension of spa
etime" must inevitably be something one 
an measure.

Moreover, only by relying on a truly physi
al/observable 
hara
terization one

is assured to 
ompare di�erent theories in 
on
lusive manner.

The inadequa
y of the spe
tral dimension for these purposes has been

fully exposed in the previous pages. The fa
t that this notion involves an

unphysi
al Eu
lideanization 
ould already lead to this 
on
lusion. The ob-

servation about the undesirable invarian
e of the spe
tral dimension under

a
tive di�eomorphisms of momentum spa
e should 
ast another shadow on

the usefulness of the spe
tral dimension. The fa
t that one obtains di�erent

spe
tral dimensions for alternative formulations of the same physi
al the-

ory as in Subse
tion 4.2.3 (formulations that di�er only for what 
on
erns

unphysi
al o�-shell modes) should leave no residual doubts.

The notion of thermal dimension presented here is free from the short-


omings of the spe
tral dimension, sin
e it relies on the analysis of observ-

able thermodynami
al properties of radiation in the quantum spa
etime. The

next Chapter shows how the notion of thermal dimension of a quantum spa
e-

time is not only physi
al but also parti
ularly useful, at least for studies of

the early universe, whi
h is anyway the 
ontext where the UV dimension of

spa
etime should �nd its most signi�
ant appli
ations [85, 86℄.
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Chapter 5

Primordial perturbations in a

rainbow universe with running

Newton 
onstant

The standard model of 
osmology la
ks of a 
ausal explanation of the high

degree of homogeneity seen at large s
ales in the universe, the sky being a

mosai
 of regions that have never been in 
ausal 
onta
t but still are puzzling

similar. Without a 
ausal explanation for su
h homogeneity, it has to be given

as extremely �ne-tuned initial 
ondition. This is the well known "horizon

paradox". This weakness brought the development of di�erent me
hanism

to solve the paradox, most notably in�ation. There, a s
alar �eld drives an

exponential expansion of the universe, and the quantum va
uum �u
tuations,

in 
ausal 
onta
t, are stret
hed and grown 
lassi
al, be
oming the seeds of

the stru
tures observed today.

Re
ent results suggest that the properties of the spe
trum of primordial

�u
tuations might not need in�ationary expansion to be explained, but 
ould

instead be a 
onsequen
e of quantum-gravitational e�e
ts, whi
h are relevant

in the early universe [85, 112℄. In parti
ular in [85, 113, 114℄ it was shown

that a s
ale invariant power spe
trum 
an be obtained if the perturbations

satisfy the Plan
k-s
ale-modi�ed dispersion relation emerging in the high-

energy regime of Horava-Lifshitz gravity [55℄:

E2 = p2(1 + (ℓp)4) . (5.1)

As it has been shown earlier, this dispersion relation implies a running

of spa
etime dimensionality, so that the spa
etime dimension in the deep

Plan
kian regime is 2 [73, 115, 116℄. The possibility of generalising this re-

sult to any theory with Plan
k-s
ale dimensional redu
tion to 2 was suggested

in [86, 81℄. These results rely on a number of assumptions, su
h as that the
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se
ond order a
tion for perturbations is the one of Einstein gravity and that

the perturbations are produ
ed in a quantum va
uum state. This rigidity in

the assumptions makes it hard to �nd a me
hanism that would produ
e the

observed small departure from exa
t s
ale invarian
e.

This study [127℄ relaxes several of the assumptions previously made in

the literature. Firstly, it is assumed the more general framework of rainbow

gravity [48℄ previously introdu
ed. The ba
kground 
osmologi
al evolution

will then be des
ribed in terms of a metri
 whi
h �runs� with the energy. For

the dispersion relation:

f 2(E)E2 − g2(E)p2 = m2, (5.2)

(where the 
ontinuous fun
tions f and g approa
h the 
onstant value 1 when

the energy is well below the Plan
k energy), the asso
iated rainbow line

element is

ds2 =
dt2

f 2(E)
− 1

g2(E)
δijdx

idxj . (5.3)

Se
ondly, both perturbations of quantum origin for a va
uum state and per-

turbations that are originated in a thermal state [117, 118, 119, 120, 121℄

will be 
onsidered. In the latter 
ase it will be assumed that the universe

is �lled with radiation and that both the ba
kground and the �u
tuations

are thermalized, so that they share the same (modi�ed) thermodynami
al

properties [122℄. Finally, it will be allowed for the Newton 
onstant to also

run with energy. This is motivated by results in Ho°ava-Lifshitz gravity and

in Asymptoti
 Safety [123, 124, 125, 126℄, where the Newton 
onstant tends

to zero at super-Plan
kian energies.The Newton 
onstant is allowed to both

in
rease and de
rease with energy. However, it will turn out that in order

to solve the horizon problem and to produ
e perturbations with the required

spe
tral index, the Newton 
onstant must indeed be a de
reasing fun
tion of

energy at super-Plan
kian s
ales. This is true for both va
uum and thermal

initial 
onditions for the perturbations.

Regarding the work on thermal �u
tuations, the following motivating fa
-

tors must be stressed. As it has been shown in the previous 
hapter, radiation

obeying a deformed dispersion relation also has deformed thermodynami
al

properties [116, 128, 129℄. This study of 
osmologi
al perturbations fo
uses

on a generalization of the Ho°ava-Lifshitz dispersion relation (5.1):

E2 = p2(1 + (ℓp)2γ) , (5.4)

and it is here assumed to be in a regime where only the ultraviolet 
orre
tion

term is relevant, E2 ≈ p2(ℓp)2γ. A

ording to the results obtained in the
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previous 
hapter, in this regime the asso
iated Stefan-Boltzmann law and

equation of state parameter w ≡ P/ρ are:

ρ ∝ T 1+ 3
1+γ

(5.5)

w =
1 + γ

3
. (5.6)

The present 
hapter is stru
tured as follows. Se
tion 5.1 starts by working

out the evolution of the ba
kground, in
luding modi�ed thermodynami
al re-

lations. Se
tion 5.2 obtains the equation for the evolution of primordial s
alar

perturbations, the 
onstraints on the modi�ed dispersion relation and on the

running of the Newton 
onstant whi
h ensure an expanding universe and a

solution to the horizon problem. Se
tion 5.3 is devoted to the 
omputation of

the spe
tral index for perturbations generated in a quantum va
uum, while

Se
tion 5.4 shows the analogous results for perturbations with thermal initial


onditions. Some 
on
lusions are presented in Se
tion 5.5.

5.1 Ba
kground evolution of a rainbow FLRW

universe with deformed thermodynami
s

The rainbow fun
tions asso
iated to the dispersion relation (5.4) are:

f 2 = 1 g2 = 1 + (ℓp)2γ . (5.7)

They enter in the rainbow line element for a FLRW spa
etime in the following

way [48, 129℄:

ds2 =
dt2

f 2(E)
− a2(t)

g2(E)
δijdx

idxj. (5.8)

It is here assumed that the universe 
ontains a perfe
t �uid, whose stress-

energy tensor is T µ
ν = (ρ+ P )uµuν − Pδµν , where ρ is the energy density, P

the pressure and uµ the �uid four velo
ity

1

. Then the Friedmann equations

read [48℄:

H2 =
8πG(E)

3f 2
ρ

H2 − ä

a
=

4πG(E)

f 2
(ρ+ P ),

(5.9)

1

As mentioned in the introdu
tion, a possible energy dependen
e of the Newton 
on-

stant G is allowed.
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where H = da/dt
a

. From these the 
ontinuity equation follows

ρ̇ = −3H(ρ+ P ). (5.10)

The solution of the 
ontinuity equation 
an be stated in terms of the equation

of state parameter as usual, and if the universe is �lled with radiation this

translates into a dependen
e on the parameter γ appearing in the dispersion

relation (5.4):

ρ = ρ̄a−3(1+w) = ρ̄a−(4+γ). (5.11)

Of 
ourse in the 
ase of standard thermodynami
s in four spa
etime dimen-

sions dT = 4 and one re
overs the usual s
aling ρ = ρ̄a−4
in a radiation-�lled

universe.

Using the Stefan-Boltzmann law one �nds that the deformed thermody-

nami
s also a�e
ts the evolution of the temperature with the s
ale fa
tor:

T ∝ a−3w = a−(1+γ) . (5.12)

5.2 Evolution of s
alar perturbations in a rain-

bow universe and solution to the horizon

problem

The perturbed rainbow FLRW metri
 in the longitudinal gauge

2

reads:

ds2 =
dt2

f 2(E)
(1 + 2φ(t, x))− a2(t)

g2(E)
(1− 2ψ(t, x))δijdx

idxj . (5.13)

In order to work out the evolution equation for the perturbations one 
an

introdu
e an energy-dependent time variable,

dt̃ =
dt

f(E)
, (5.14)

so that the time-dependent fun
tions appearing in the metri
 read

ã2(E, t̃) =
a2(t̃)

g2(E)
, φ̃(t̃, x) = φ(t, x), ψ̃(t̃, x) = ψ(t, x) .

(5.15)

2

By this it is here meant that in the limit where the energy dependen
e of the metri


disappears, f = g = 1, one is left with the metri
 in longitudinal gauge.

108



The perturbed line element takes the standard form in terms of the new

fun
tions:

ds2 = dt̃2(1 + 2φ̃(t̃, x))− ã2(E, t̃)(1− 2ψ̃(t̃, x))δijdx
idxj . (5.16)

Using these new variables one 
an just follow a standard pro
edure (see e.g.

[122℄) to obtain perturbation equations.

From the standard equations, with the prime denoting the derivative

d

dη̃
≡ ã(E, t̃)

d

dt̃
,

∇2φ̃− 3H̃(H̃φ̃+ φ̃′) = 4πGã2δρ̃
[

H̃φ̃+ φ̃′
]

,i = 4πGã2(ρ̃+ P̃ )δũi

φ̃′′ + 3H̃φ̃′ + (2H̃′ + H̃2)φ̃ = 4πGã2δP̃

(5.17)

one 
an 
ombine the �rst and third equation of Eqs.(5.17) to get

φ̃′′ + 6φ̃′H̃ + (2H̃′ + 4H̃2 −∇2)φ̃ = 0, (5.18)

where we set c̃2s =
δP̃

δρ̃
= 1. De�ning the quantity

ζ̃ = φ̃
5 + 3w

3(1 + w)
+
φ̃′

H̃
2

3(1 + w)
, (5.19)

Eq.(5.18) 
an be written as

ζ̃ ′ =
2

3

∇2φ̃

H̃(1 + w)
(5.20)

and from this one 
an get the following

ζ̃ ′′ + 2
z̃′

z̃
ζ̃ −∇2ζ̃ = 0, (5.21)

with z̃ =

√

3(1 + w)

2
ã. Finally, de�ning the quantity ṽ = z̃ζ̃, Eq.(5.18) takes

the familiar form

ṽ′′ −
(

∇2 +
z̃′′

z̃

)

ṽ = 0. (5.22)

Going ba
k to the energy-independent time variable one �nds that the


urvature perturbation is left un
hanged,

ζ̃ = φ
5 + 3w

3(1 + w)
+
adφ/dt

da/dt

2

3(1 + w)
= ζ , (5.23)

109



while

z̃ =

√

3(1 + w)

2
ã =

√

3(1 + w)

2

a

g
= z/g. (5.24)

Therefore, v = ṽg satis�es the following evolution equation in Fourier spa
e

v′′ −
(

g2

f 2
k2 +

a′′

a

)

v = 0 . (5.25)

From now on, the prime stands for the derivative with respe
t to the energy-

independent 
onformal time,

d

dη
≡ a

d

dt
. This equation is very similar to

the standard one, with the fa
tor (f/g)2 whi
h plays the role of an energy-

dependent speed of sound.

Note that a possible energy dependen
e of the Newton 
onstant does not

appear expli
itly in the evolution equations of the perturbations; however,

it will be shown in the following that it a�e
ts the s
ale of the horizon and

the 
onditions under whi
h the horizon problem is solved within rainbow


osmology models.

A 
osmologi
al model that solves the horizon problem is su
h that modes

start inside the horizon, where the �rst term in parentheses in the evolution

equation (5.25) dominates, and subsequently exit the horizon, where the se
-

ond term dominates [122, 130℄. Here the 
onditions under whi
h the horizon

problem is solved are investigated spe
ialising to the dispersion relation (5.4),

with asso
iated rainbow fun
tions (5.7) and assuming to be in a regime where

only the ultraviolet 
orre
tion terms are relevant. It is important to bear in

mind that the energy appearing in the rainbow fun
tions is the physi
al one,

related to the 
omoving k via E =
(

ℓk
a(η)

)2γ

.

The behaviour of the two terms in parenthesis in Eq. (5.25) is governed

by the evolution of the s
ale fa
tor a(η). This is found by integrating the

�rst Friedmann equation (5.9), leading to

η2 =
a1+3w

(1 + 3w)2
1

2
3
πρ̄G

=
a2+γ

(2 + γ)2
1

2
3
πρ̄G

. (5.26)

Here, ρ̄ is the initial energy density and the relation between the equa-

tion of state parameter w and the deformation parameter γ is given by the

modi�ed thermodynami
al relation (5.6). If the Newton 
onstant is energy-

independent, the s
ale fa
tor evolves as:

a(η) = (Cη2)
1

2+γ , (5.27)
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where C = G2
3
πρ̄(2+γ)2 and η in
reases from 0 in order to have 
osmologi
al

expansion with time. Then the two terms in parentheses in (5.25) take the

form

k2
(

ℓk

a(η)

)2γ

= k2(ℓk)2γC− 2γ
2+γ η−

4γ
2+γ

(5.28)

and

a′′

a
= η−2 2

2 + γ

(

2

2 + γ
− 1

)

. (5.29)

The horizon is then found at

ηH =

(

k2(ℓk)2γC− 2γ
2+γ

(2 + γ)2

2γ

)

2+γ
2(γ−2)

, (5.30)

and in order to solve the horizon problem one needs

γ > 2 . (5.31)

If the Newton 
onstant has a power-law dependen
e on energy in the

ultraviolet regime,

G(E) = ℓ2(ℓE)α ∼ ℓ2
(

ℓk

a

)(1+γ)α

, (5.32)

then the evolution of the s
ale fa
tor with time is

a(η) = (C̄η2(ℓk)(1+γ)α)1/ν , (5.33)

where ν = 2+ γ + (1+ γ)α and C̄ = 2
3
πℓ2ρ̄(2 + γ)2. Note that depending on

ν the 
onformal time 
an either be positive or negative. In fa
t, in order to

have 
osmologi
al expansion with time if ν > 0 then η must be positive and

in
reasing from 0, while if ν < 0 then η must be negative and approa
hing 0
from −∞.

The terms in parenthesis in the perturbation equation (5.25) are now:

k2
(

ℓk

a(η)

)2γ

= C̄− 2γ
ν η−

4γ
ν k2(ℓk)

2γ(2+γ)
ν , (5.34)

and

a′′

a
=

2

ν

(

2

ν
− 1

)

η−2 . (5.35)

The horizon is then found at

ηH =

(

ν C̄− 2γ
ν

2
(

2
ν
− 1
)k2(ℓk)

2γ(2+γ)
ν

)
ν

4γ−2ν

(5.36)
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and the horizon problem is solved for

4γ
ν
> 2 if η is positive and for

4γ
ν
< 2

otherwise. Then the overall 
onditions on α that ensure 
osmologi
al expan-

sion and solution of the horizon problem are

−2 + γ

1 + γ
< α <

γ − 2

1 + γ
(5.37)

for positive η and

α < −2 + γ

1 + γ
, α >

γ − 2

1 + γ
(5.38)

for negative η. The latter possibility is obviously ex
luded. The �rst option


orre
tly redu
es to γ > 2 when α = 0, while in general it 
onstrains α to be

in the range −2 < α < 1.

5.3 Va
uum perturbations

One 
an study the power spe
trum of va
uum �u
tuations dire
tly in the

general 
ase where the UV energy dependen
e of G is en
oded in (5.32). The

limit α = 0 gives the results for energy-independent G.

The dynami
s of modes inside the horizon is governed by the �rst term

in parentheses in (5.25). Up to a phase, the va
uum �u
tuations inside the

horizon take the form [85, 113℄:

vV ∼
aγ/2√
ℓγk1+γ

. (5.39)

The solution of (5.25) for modes outside the horizon 
an be 
ast in the ansatz:

vV ∼ F (k)a , (5.40)

where the fun
tion F is found by asking that the two solutions mat
h at the

horizon:

F (k) =
aγ/2−1(ηH)√

ℓγk1+γ
. (5.41)

The dimensionless power spe
trum of 
urvature perturbations ζ is given by

k3Pζ ∼ k3
(v

z

)2

≡ A2kns−1
. Its spe
tral index ns is found from (5.41) and

(5.36):

nV
s − 1 =

(γ + 4)(2− γ)
2− γ + α(1 + γ)

. (5.42)

Clearly γ = 2 gives a s
ale invariant power spe
trum for any value of α al-

lowed by the 
onstraint (5.37), whi
h for γ = 2 reads −4
3
< α < 0. The
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fa
t that s
ale invarian
e is a
hieved independently of how the Newton 
on-

stant s
ales with energy is due to the time perturbations being already s
ale-

invariant and proportional to the s
ale fa
tor a inside the horizon. So the

gluing pro
edure is trivial, bypassing whatever modi�ed evolution of the

ba
kground was introdu
ed. Also a near-s
ale invariant power spe
trum is

allowed. In parti
ular one 
an ask that nV
s = 0.968 ± 0.006, whi
h is the

present observational 
onstraint from Plan
k [131℄, obtaining the allowed

range of values shown in Fig. 5.1. Note that now the energy dependen
e

of the Newton 
onstant is relevant. In parti
ular, the values of α that are

sele
ted by observational 
onstraints are all negative, suggesting a vanish-

ing Newton 
onstant in the deep UV regime. On the other hand, from Eq.

(5.35) one 
an see that observational 
onstraints allow for both an a

eler-

ated or de
elerated expansion. This is a 
ru
ial di�eren
e with respe
t to

the 
onstraints 
oming from thermal �u
tuations, as shown in the following

se
tion.

Figure 5.1: The 
onstraint ns = 0.968 ± 0.006 is plotted in red , assuming

va
uum �u
tuations (the error bar is too small to be seen on the plot). The

region satisfying the 
onstraint ensuring solution of the horizon problem, Eq.

(5.37) is plotted in blue .

In the limiting 
ase α = 0 (energy-independent Newton 
onstant) the

gluing 
ondition at the horizon gives a spe
tral index whi
h is far from s
ale

invarian
e, nV
s − 1 = 4 + γ. However, when γ = 2 both the terms governing
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the evolution of perturbations, (5.28) and (5.29), s
ale like η−2
. Therefore a

mode is either inside or outside the horizon, unable to 
ross it. Whether a

mode is inside or outside the horizon is set by the s
ale

kH =

(

G
8π

3

ρ̄

ℓ4

)1/6

= H0

(

1

(ℓH0)4
ρ̄

ρcr

)1/6

, (5.43)

where H0 is the 
urrent value of the Hubble 
onstant and ρcr is the 
riti
al

energy density. If the modes are well inside the horizon, k ≫ kH , the per-

turbations behave like vV ∼ a√
ℓ2k3

, and so they are s
ale-invariant, but never

exit the horizon.

5.4 Thermal perturbations

Without an in�ationary phase, there is no real reason to ex
lude the 
ontri-

bution to the perturbations power spe
trum 
oming from thermalised pertur-

bations, sin
e this is not suppressed by a period of super-
ooling [120, 117℄.

The thermal 
ontribution to the power spe
trum is here 
omputed applying

the method outlined in [118℄, but taking into a

ount that in our model both

ba
kground and perturbations are thermalised. This in parti
ular means

that the same thermodynami
al 
onstraints (5.6) hold for ba
kground and

perturbations. The expe
tation value of a quantum operator is

〈O〉 =
∑

n ρnn〈n|Ô|n〉
∑

n ρnn〈n|n〉
, (5.44)

where |n〉 is the n-parti
le state. It is here assumed that the density matrix

follows the Boltzmann distribution ρnn = e−βEn
, where β = 1/kBT and

En = pn
√

1 + (ℓpn)2γ is the energy of a mode with o

upation number n.
Then the 
orrelation fun
tion of the quantised perturbation variable v̂ is

[120℄

〈v̂(~x)v̂(~x+ ~r)〉 =
∫

d3k

(2π)3/2
|vk(η)|2(2n(k, η) + 1)ei

~k·~r , (5.45)

where the number density is given by the Bose-Einstein distribution:

n(k, η) =
1

eβE(k,η) − 1
. (5.46)

The power spe
trum of thermal perturbations imprinted at the horizon is

therefore

PTherm(k) = PV ac(k)(2n(k, ηH) + 1). (5.47)
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Sin
e the regime of �u
tuations being studied is in the Rayleigh-Jeans limit,

one 
an set:

n(k, ηH) ≈ (βE)−1 =
kBTcℓ

(ℓk)γ+1
, (5.48)

where the 
onformal temperature Tc ≡ Taγ+1
is 
onstant in time. As in

[118, 132℄, the relation between the physi
al and 
onformal temperature is

found by asking that the number density is independent of time. If c is

k independent, this is just Tc = Ta/c. Here one should strip o� the k

dependen
e in c from the de�nition of Tc, so that it does not be
ome k
dependent.

In
luding the thermal 
ontribution, the spe
tral index of perturbations

be
omes

nT
s = nV

s − 1− γ. (5.49)

Note that this result di�ers form the one in [133℄, be
ause a mistake has been

made there. In the Rayleigh-Jeans limit, n ∼ T/E, not just T/k. The fa
t

that c has an extra dependen
e in k is responsible for the last term in (5.49).

This result is also independent of how the Newton 
onstant runs with energy.

Using the value of the va
uum spe
tral index found in the previous se
-

tion, Eq. (5.42), the thermal spe
tral index 
an be written as

nT
s =

4(2− γ)− αγ (1 + γ)

2− γ + α(1 + γ)
. (5.50)

For energy-independent Newton 
onstant, α = 0, the thermal spe
tral

index is

nT
s = 4 , (5.51)

regardless of the value of γ. This result mat
hes the one found in [120, 117℄

and of 
ourse it is ruled out by observational 
onstraints.

For α 6= 0, asking that the perturbations are s
ale invariant leads to a


onstraint linking α and γ. Asking in addition that the horizon problem is

solved, Eq. (5.37), introdu
es an inferior bound γ > 2 on the allowed values

of γ. Then the values of α that are 
ompatible with s
ale invarian
e and

whi
h allow to solve the horizon problem fall in the range −1/4 < α < 0.
It is also possible to mat
h the spe
tral index to the Plan
k observed

value ns = 0.968 ± 0.006 [131℄, giving the 
onstraints shown in Fig. 5.2.

A

ording to Eq.(5.35), these observational 
onstraint on α and γ only allow

for a de
elerating expansion of the universe.
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Figure 5.2: The 
onstraint ns = 0.968 ± 0.006 is plotted in red, assuming

thermal �u
tuations (the error bar is too small to be seen on the plot). The

region satisfying the 
onstraint ensuring a solution of the horizon problem,

Eq. (5.37) is plotted in blue.

5.5 Con
luding remarks

It has been investigated in this 
hapter the possibility that a rainbow universe

with running Newton 
onstant 
an a

ommodate primordial perturbations

whose spe
tral index mat
hes 
urrent 
onstraints, without relying on in�ation

to solve the horizon problem. Starting form a universe �lled with radiation

subje
t to deformed dispersion relations (of the Ho°ava-Lifshitz type), both

va
uum and thermal initial 
onditions for the perturbations have been 
on-

sidered and a power-law dependen
e of the Newton 
onstant on energy has

been assumed. Cru
ially, it has been assumed that the ba
kground satis-

�es the thermodynami
al relations pe
uliar to radiation subje
t to deformed

dispersion relations.

For both kinds of initial 
onditions for the perturbations (va
uum and

thermal) the running of the Newton 
onstant is essential in a
hieving a viable

pi
ture. In parti
ular, the Newton 
onstant is 
onstrained to be de
reasing

with energy in the ultraviolet regime. This is 
onsistent with intuition from

quantum gravity theories, su
h as Ho°ava-Lifshitz gravity and Asymptoti


safety. It also resonates with the 
onje
ture put forward in [86℄. In s
enarios


onsidered, va
uum and thermal initial 
onditions 
an be distinguished be-

116




ause, while for the former the observational 
onstraints are 
ompatible with

either an a

elerating or de
elerating expansion of the universe, for the latter

only a de
elerated expansion is allowed.

One may question the wisdom of enfor
ing thermodynami
al 
onstraints

on the ba
kground as well as on the �u
tuations. A 
ounter-example is a

s
alar �eld, for whi
h the ba
kground does not need to be thermalized even

when the �u
tuations are [118℄. Nonetheless it is 
urious that when, for

the sake of minimality, one imposes thermal 
onditions on both ba
kground

and perturbations of a s
alar �eld, one re
overs the universal result nT
s = 4

previously derived for a thermodynami
al �uid [120℄. Just as with [120℄ one

needs to relax standard assumptions to evade this result. Here the running

of Newton's 
onstant was the 
ru
ial ingredient.
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Chapter 6

Analysis of 
ausality and

momentum 
onservation with

Relative Lo
ality

6.1 Causality from Relative lo
ality

The present se
tion o�ers a dis
ussion on 
ausality in Relative Lo
ality. In

Subse
tion 6.1.1 it is shown that the relativity of lo
ality does not imply

a relativity of 
ausal relations: the 
ausal 
onne
tion between events is ob-

je
tive even in the relative lo
ality framework. The only di�eren
e with

respe
t to the standard 
ase is that now the observer should not trust the in-

feren
es about distant events obtained from her 
oordinatization, but rather

use translation transformations in 
ombination with her des
ription of world-

lines. This is done analyzing a 
ase of two 
ausally dis
onne
ted 
hains of

pro
esses whi
h are, nevertheless, tangled in su
h a way that a single observer

would obtain a 
ompletely misleading pi
ture of the pro
ess if she adopts only

her own 
oordinatization to des
ribe the pro
ess. A 
areful analysis shows

that with the help of a proper use of translation transformations she 
an


ompletely disentangle the two 
hains.

After this, in Subse
tion 6.1.2, opposite to what has been 
laimed in a

re
ent paper ([107℄), it is shown that 
ausal loops, whi
h in general are not

ex
luded by the equations of motion in 
urved-momentum-spa
e theories,

are indeed ex
luded as soon as the extra requirement of relativity of lo
ality

is enfor
ed in this 
lass of theories. In fa
t, for a generi
 theory with 
urved

momentum spa
e, it is possible to obtain general 
onditions on the derivatives

of the K's that must be satis�ed in order for that theory to be symmetri


under an appropriate notion of translation transformation. These 
onditions
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are translated into 
onditions on energies and momenta of the intera
ting

parti
les. If these 
onditions are not satis�ed, the 
ausal loop is allowed,

whereas when these are satis�ed the only solution of the equations of motion

is that the whole loop 
ollapses to a single event.

6.1.1 Cause and e�e
t, with relative lo
ality

Consider a situation where two pairs of 
ausally-linked events are present,

arranged in su
h a way that the 
oordinatization by an observer may not

render manifest the 
ausal link (then �nding that awareness of the form of

translation transformations allows de
oding the 
ausal link). Spe
i�
ally this

situation 
onsists in two atoms, that are ex
ited by two photons, propagate

and �nally de-ex
ite, ea
h re-emitting a photon. Sin
e it will be important

in the subsequent analysis, it must be remarked that ea
h pair of 
ausally-

linked events are 
ausally independent from the other. It is also assumed

that there is an observer Ali
e whi
h is lo
al to the ex
itation of the atoms,

for whi
h the two ex
itation events 
oin
ide, and an observer Bob, whi
h

is lo
al to the de-ex
itation of the two atoms. Ali
e and Bob are taken in

relative rest and the relation between their 
oordinazation of the worldlines

of the parti
les is given by a translation transformation. Fig. 6.1 shows the

two pairs of 
ausally-linked events, together with the observers lo
al to them.

For purposes of this se
tion, two 
onditions on the energies of the parti
les

must be satis�ed. The �rst one is that the energies of the in
oming photons

are su
h that both atoms in the ex
ited states 
an be 
onsidered as ultra-

relativisti
 i.e. p′0 ≫ mp′ , q
′
0 ≫ mq′. The other one is that some parti
les

have their energy negligible with respe
t to the energy s
ale of the theory ℓ−1

while the energy of the other parti
les 
annot be negle
ted. The �rst kind of

parti
les is 
alled �soft� and the se
ond �hard�. In Fig. 6.1 solid lines stand

for hard parti
les while dashed lines stand for soft ones. In parti
ular both

atoms before ex
itations are soft parti
les, then the one labeled as (p′, x′)
be
omes hard when it absorbs the hard photon (p, x) and after propagating

it re-emits the hard photon (p′′, x′′).
Now the relative lo
ality framework inspired by the κ-momentum spa
e

with �time-to-the-right� 
oordinates is introdu
ed (see [104℄). This implies

that the on-shell relation for a parti
le of momentum p and mass m is

Cp = p20 − p21 + ℓp0p
2
1 −m2 = 0 , (6.1)

while the 
omposition of two momenta p, q is

(p⊕ q)0 = p0 + q0 ,

(p⊕ q)1 = p1 + q1 + ℓp0q1 .
(6.2)
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p′, x′

K(0)

K(1)
q′, y′

q′′, y′′

r′, u′

p′′, x′′

k′, z′

p, x

k, z

r, u

q, y

Alice Bob

K(3)

K(2)

Figure 6.1: A pro
ess involving two 
ausally-linked pairs of events. Di�erent

pairs are distinguished by di�erent 
olors, while solid lines stand for �hard�

parti
les and dashed lines for �soft� parti
les.

Then the pro
ess of Fig. 6.1 is des
ribed by the following a
tion

S =

∫ s0

−∞
ds
(

zµk̇µ +NkCk
)

+

∫ s0

−∞
ds (xµṗµ +NpCp) +

∫ s1

−∞
ds (yµq̇µ +NqCq)+

+

∫ s1

−∞
ds (uµṙµ +NrCr) +

∫ s3

s0

ds
(

x′
µ
ṗ′µ +Np′Cp′

)

+

∫ s2

s1

ds
(

y′µq̇′µ +Nq′Cq′
)

+

∫ +∞

s2

ds
(

y′′µq̇′′µ +Nq′′Cq′′
)

+

∫ +∞

s2

ds
(

u′
µ
ṙ′µ +Nr′Cr′

)

+

∫ +∞

s3

ds
(

x′′µṗ′′µ +Np′′Cp′′
)

+

∫ +∞

s3

ds
(

z′µk̇′µ +Nk′Ck′
)

− ξµ(0)K(0)
µ − ξµ(1)K(1)

µ − ξµ(2)K(2)
µ − ξµ(3)K(3)

µ ,

(6.3)

where the K(i)
µ appearing in the boundary terms are de�ned as

K(0)
µ = (k ⊕ p)µ − p′µ ,

K(1)
µ = (r ⊕ q)µ − q′µ ,

K(2)
µ = p′µ − (k′ ⊕ p′′)µ ,

K(3)
µ = q′µ − (r′ ⊕ q′′)µ .

(6.4)

Before going on it 
an be noti
ed that the a
tion 
an be split into the

sum of two parts, ea
h des
ribing one pair of 
ausally-linked events.
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By varying the a
tion (6.3), one obtains the following equations of motion

ṗµ = 0 , q̇µ = 0 , k̇µ = 0 , ṙµ = 0 , ṗ′µ = 0 ,

q̇′µ = 0 , ṗ′′µ = 0 , q̇′′µ = 0 , k̇′µ = 0 , ṙ′µ = 0 ,

Cp = 0 , Cq = 0 , Ck = 0 , Cr = 0 , Cp′ = 0 ,

Cq′ = 0 , Cp′′ = 0 , Cq′′ = 0 , Ck′ = 0 , Cr′ = 0 ,

K(0)
µ = 0 , K(1)

µ = 0 , K(2)
µ = 0 , K(3)

µ = 0 ,

ẋµ = Np
∂Cp
∂pµ

, ẏµ = Nq
∂Cq
∂qµ

, żµ = Nk
∂Ck
∂kµ

, u̇µ = Nr
∂Cr
∂rµ

, ẋ′µ = Np′
∂Cp′
∂p′µ

,

ẏ′µ = Nq′
∂Cq′
∂q′µ

, ẋ′′µ = Np′′
∂Cp′′
∂p′′µ

, ẏ′′µ = Nq′′
∂Cq′′
∂q′′µ

, ż′µ = Nk′
∂Ck′
∂k′µ

, u̇′µ = Nr′
∂Cr′
∂r′µ

,

and the following boundary 
onditions for the endpoints of the worldlines

xµ(s0) = ξν(0)
∂K(0)

ν

∂pµ
, yµ(s1) = ξν(1)

∂K(1)
ν

∂qµ
, zµ(s0) = ξν(0)

∂K(0)
ν

∂kµ
,

uµ(s1) = ξν(1)
∂K(1)

ν

∂rµ
, x′µ(s0) = −ξν(0)

∂K(0)
ν

∂p′µ
, x′µ(s3) = ξν(3)

∂K(3)
ν

∂p′µ
,

y′µ(s1) = −ξν(1)
∂K(1)

ν

∂q′µ
, y′µ(s2) = ξν(2)

∂K(2)
ν

∂q′µ
, x′′µ(s3) = −ξν(3)

∂K(3)
ν

∂p′′µ
,

y′′µ(s2) = −ξν(2)
∂K(2)

ν

∂q′′µ
, z′µ(s3) = −ξν(3)

∂K(3)
ν

∂k′µ
, u′µ(s2) = −ξν(2)

∂K(2)
ν

∂r′µ
.

It is easy to 
he
k that the above equations of motion and boundary 
ondi-
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tions are invariant under the following translation transformation:

xµB = xµA + bν{(k ⊕ p)ν , xµ} ,
yµB = yµA + bν{(r ⊕ q)ν , yµ} ,
zµB = zµA + bν{(k ⊕ p)ν , zµ} ,
uµB = uµ + bν{(r ⊕ q)ν , uµ} ,
x′

µ
B = x′

µ
A + bν{p′ν , x′µ} ,

y′
µ
B = y′

µ
A + bν{q′ν , y′µ} ,

x′′
µ
B = x′′µA + bν{(k′ ⊕ p′′)µ, x′′µ} ,

y′′
µ
B = y′′µA + bν{(r′ ⊕ q′′)ν , y′′µ} ,

z′
µ
B = z′µA + bν{k′ ⊕ p′′)µ, z′µ} ,

u′
µ
B = u′µA + bν{(r′ ⊕ q′′)ν , u′µ} ,

(6.5)

where bµ are the translation parameters.

Now it is supposed that the two atoms are ex
ited at Ali
e's spa
etime

origin i.e. x′µA = y′µA = 0 and the soft atom de-ex
ites at Bob's spa
etime

origin i.e y′µB = 0. It is supposed instead that the hard atom de-ex
ites just

in the spa
e origin of Bob i.e. x′1B = 0. At �rst order in ℓ, the equations of
motion yield

ẋ′1

ẋ′0
= 1 + ℓp′1 ,

ẏ′1

ẏ′0
= 1 , (6.6)

where it has been 
onsidered that p′0 ≫ mp′ , q
′
0 ≫ mq′ (being p

′
1, q

′
1 < 0,

with the 
onventions adopted). So Ali
e des
ribes the worldlines of the two

ex
ited atoms as

x′
1
A = (1 + ℓp′1)x

′0
A ,

y′
1
A = y′

0
A .

(6.7)

To 
ompute at whi
h times Bob sees these events to happen, one should use

the worldlines in Bob's 
oordinazation, as it has been explained in Se
tion

2.3.3. These worldlines 
an be obtained by introdu
ing in (6.7) the transla-

tion trasformation whi
h relates the 
oordinatization of Ali
e and Bob. For

the 
oordinates of the two ex
ited atoms the translation transformation is

undeformed:

x′
µ
B(s) = x′

µ
A(s) + bν{p′ν , x′µ} = x′

µ
A(s)− bµ ,

y′
µ
B(s) = y′

µ
A(s) + bν{q′ν , y′µ} = y′

µ
A(s)− bµ .

(6.8)

So the worldlines in Bob's 
oordinatization are

x′1B = (1 + ℓp′1)x
′0
B − b1 + b0 + b0ℓp′1 ,

y′1B = y′0B − b1 + b0 .
(6.9)
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Imposing y′µB = 0, it is found that b0 = b1; then, using x1B = 0, one gets

x′0B = −b1ℓp′1 . (6.10)

So the result is that Bob sees the hard atom arriving after the soft one in his

spa
e origin, with a time delay between them given by ∆t = −b1ℓp′1.
The attention 
an now be fo
used on what Ali
e infers about the two

pro
esses of de-ex
itation happening lo
ally at Bob. It will be found that

there are some puzzling features in her inferen
es. First of all one noti
es

that the translations (6.8) are undeformed, so that Ali
e infers the same

time delay measured by Bob as the time delay between the arrival of the soft

and hard atoms in Bob's spa
e origin. Then it is ne
essary to look at the

boundary 
onditions in Ali
e's 
oordinatization for the parti
les involved in

those pro
esses:

y′′µA (s3) = u′µA (s3) = ξµ(2)A = (b1, b1) ,

x′′0A (s2) = b1 − b1ℓp′1 ,
x′′1A (s2) = b1 + b1ℓk′1 ≈ b1,

z′0A(s2) = b1 − b1ℓp′1 + b1ℓp′′1 ,

z′1A(s2) = b1 .

(6.11)

Figg. 6.2 and 6.3 give a pi
torial representation of the pro
esses as seen

and inferred by the two observers, Ali
e and Bob. Noti
e that, a

ording

to Ali
e's des
ription, a hard photon is emitted by the hard atom, whi
h

a
tually after the de-ex
itation appears to be far from the pla
e where the

emission of the photon took pla
e. More pre
isely it appears to emerge from

the pro
ess of de-ex
itation of the soft atom (p′µ ≈ p′′µ).
Through this analysis it has been shown that two pairs of 
ausally-


onne
ted events 
an provide a puzzling pi
ture to observer Ali
e if she trusts

her inferen
es about distant events: one 
ould arrange the two events at Bob

to be simultaneous, a

ording to Bob and , sin
e the two events appear to be

delo
alized in Ali
e's 
oordinates, then Ali
e might get misleading input in

her analysis of 
ausal links. However, if Ali
e uses in her analysis the trans-

lation transformations, so that she 
an establish how the two events distant

from her a
tually appear to the nearby observer Bob, then Ali
e 
an 
leanly

disentangle the 
ausal links.
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Alice Bob

p′, x′

q′, y′

p, x

q, y

r, u

k, z

p′′, x′′

q′′, y′′

k′, z′

r′, u′

K(1)

K(0)

K(2)

K(3)

Figure 6.2: The two pairs of 
ausally-linked events as seen (if lo
al) or inferred

(if distant) by Ali
e.

Alice Bob
k, z

p, x

q, y

r, u

q′, y′

p′, x′

k′, z′

p′′, x′′

q′′, y′′

r′, u′

K(0)

K(1)

K(3)

K(2)

Figure 6.3: The two pairs of 
ausally-linked events as seen (if lo
al) or inferred

(if distant) by Bob.

6.1.2 Causal Loop

The next task is to test 
ausality beyond simple 
ausal 
hains, i.e. 
onsidering

the possibility of 
ausality-violating loops (whi
h for short shall often be

labeled as �
ausal loops�). This is a possibility whi
h was already 
onsidered
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in Ref. [107℄, yet by a perspe
tive somewhat di�erent from that dis
ussed in

Se
tions 2.2 and 2.3.

q′

q

p′

p

k′

k

K(0) K(1)

Figure 6.4: A 
ausal 
hain whi
h des
ribe a 
ausal loop as proposed in [107℄.

An a
tion that reprodu
es the equations of motion and the boundary


onditions that lead to the emergen
e of 
ausal loops as des
ribed in [107℄

must be found. The results obtained shall be that 
ausal loops are indeed in

general allowed in theories with 
urved momentum spa
es but they 
annot

be present when the theory with 
urved momentum spa
e enjoys relative

lo
ality. Referring to Fig. 6.4, the a
tion reads

S =

∫ s0

−∞
ds yµq̇µ+NqC(q)+

∫ ∞

s0

ds y′µq̇′µ+Nq′C(q′)+
∫ s1

−∞
ds zµk̇µ+NkC(k)+

+

∫ ∞

s1

ds z′µk̇′µ+Nk′C(k′)+
∫ s1

s0

ds x′µṗ′µ+Np′C(p′)+
∫ s0

s1

ds xµṗµ+NpC(p)−

−ξµ(0)Kµ
(0) − ξµ(1)Kµ

(1),

where K(0) = q ⊕ p ⊕ (⊖(p′ ⊕ q′)) and K(1) = p′ ⊕ k ⊕ (⊖(k′ ⊕ p)). Noti
e

that the last integral, whi
h stands for the free propagation of the parti
le

that is traveling ba
k in time, has inverted integration extrema. By varying

this a
tion one obtains the following equations of motion
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ṗµ = 0, ṗ′µ = 0, q̇µ = 0, q̇′µ = 0, k̇µ = 0, k̇′µ = 0,

Cp = 0, Cp′ = 0, Cq = 0, Cq′ = 0, Ck′ = 0, Ck = 0,

ẋµ(s) = Np
∂Cp
∂pµ

, ẋ′µ(s) = Np′
∂Cp′
∂p′µ

, ẏµ(s) = Nq
∂Cq
∂qµ

,

ẏ′µ(s) = Nq′
∂Cq′
∂q′µ

, żµ(s) = Nk
∂Ck
∂kµ

, ż′µ(s) = Nk′
∂Ck′
∂k′µ

,

and boundary terms

K(0)
µ = 0, K(1)

µ = 0,

yµ(s0) = ξν(0)
∂K(0)

ν

∂qµ
, y′µ(s0) = −ξν(0)

∂K(0)
ν

∂q′µ
, zµ(s1) = ξν(1)

∂K(1)
ν

∂kµ
,

z′µ(s1) = −ξν(1)
∂K(1)

ν

∂k′µ
, x′µ(s0) = −ξν(0)

∂K(0)
ν

∂p′µ
, x′µ(s1) = ξν(1)

∂K(1)
ν

∂p′µ
,

xµ(s0) = ξν(0)
∂K(0)

ν

∂pµ
, xµ(s1) = −ξν(1)

∂K(1)
ν

∂pµ
.

In this way the �rst goal has been rea
hed: proposing an a
tion that seems to

reprodu
e the 
ausal loop pro
ess anylized in [107℄. In order to understand

the properties of this a
tion a step by step analysis is undertaken, �rst study-

ing its Spe
ial Relativisti
 limit, then taking into a

ount the deformations

indu
ed by the 
urvature over momentum spa
e.

Noti
e that with this 
hoi
e of the 
onstraints K, this a
tion does not sat-

isfy the pres
riptions that guarantee translational invarian
e used in Se
tion

2.3. Translation symmetry has a key role in distinguishing non-lo
al theories

from relative lo
ality theories. Therefore, the 
al
ulations will 
ontinue in

what follows taking 
are of �nding an alternative pres
ription that makes

this a
tion symmetri
 under translations.

Causal loop in Spe
ial Relativity

In this subse
tion a 1 + 1 spa
etime with metri
 η00 = 1, η11 = −1 is 
on-

sidered. It is �rst worth remarking the equations of motion that will be
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needed for the subsequent analysis. Consider, as an example, the world-

line of the parti
le of momentum p (for the other parti
les the same remark

holds). Sin
e, in the spe
ial relativisti
 limit, the dispersion relation redu
es

to Cp = p20 − p21 − m2
p = 0, the equation of motion for the parti
le with

momentum p be
omes

ẋµ(s) = 2Npp
µ. (6.12)

One 
an noti
e that

ẋµẋµ = 4N 2
p p

µpµ = 4N 2
pm

2
p, (6.13)

so that

Np =
(ẋµẋµ)

1
2

2mp

(6.14)

and one 
an then rewrite the equation (6.12) in the following way

ẋµ(s) = (ẋµẋµ)
1
2
pµ

mp
. (6.15)

Now the system is asked to satisfy two requirements:

1. All parti
les involved in the pro
ess travel along timelike worldlines;

the velo
ity ẋµ (de�ned with respe
t to the arbitrary parameter s) and
the momentum pµ must satisfy that ẋ2 > 0, ẋ0 > 0; p2 = m2

p > 0, p0 ≥
mp > 0. This states simply that exoti
 parti
les are not 
onsidered in

this dis
ussion.

2. The 
lass of physi
al referen
e frames 
onsidered here is that of all those

that 
an be mutually obtained by means of a proper ortho
hronous

Lorentz transformation (det Λ = 1, Λ0
0 ≥ 1), i.e. the 
lass of trans-

formations that do not 
hange the dire
tion of time in going from a

referen
e frame to another one; this means that two observers, ea
h

traveling in relative rest with respe
t to one of the two parti
les that

form the loop, have 
lo
ks that go in the same dire
tion. Furthermore,

observers 
onne
ted by an anti
hronous transformation (Λ0
0 ≤ −1),

would also disagree on the sign of the parti
les' energies.

These may be seen as too limiting assumptions to admit the possibility of


ausal loops. Nevertheless, these 
ome from the parti
ular kind of 
ausal

loop that has been studied in Ref.[107℄, that is one in whi
h two observers,

ea
h lo
al to a parti
ular vertex of intera
tion of the loop, do not dete
t any

anomaly; the anomaly of the pro
ess as a whole is re
onstru
ted a posteriori.

Proper time, as usual, is de�ned by
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dτ = ds (ẋµẋµ)
1
2 = dsẋ0

√

1−
(

ẋ1

ẋ0

)2

= dsẋ0

√

1−
(

p1

p0

)2

= dsẋ0γ−1
p ,

where γp is the usual Lorentz fa
tor and in the third equality the equation

(6.15) was used.

For the (p′, x′) worldline whi
h travels from x′µ(s0) to x
′µ(s1) the following


hain of equalities holds

x′µ(s1)− x′µ(s0) =

∫ s1

s0

ds
dx′µ

ds
=

∫ s1

s0

ds
(

ẋ′µẋ′µ
)

1
2
p′µ

mp′
=

=

∫ τ ′(s1)

τ ′(s0)

dτ ′
p′µ

mp′
= ∆τ ′u′µ,

(6.16)

with u′µ =
p′µ

mp′
. Similarly, for the (p, x) worldline, whi
h travels from xµ(s0)

to xµ(s1), holds

xµ(s0)− xµ(s1) =

∫ s0

s1

ds
dxµ

ds
=

∫ s0

s1

ds (ẋν ẋν)
1
2
pµ

mp
=

=

∫ τ(s0)

τ(s1)

dτ
pµ

mp

= ∆τ uµ,
(6.17)

In the Spe
ial Relativisti
 limit the terms enfor
ing the 
onservation laws

take the simple form K(0)
µ = qµ + pµ − p′µ − q′µ and K(1)

µ = p′µ + kµ − k′µ − pµ,
giving for the parti
les inside the loop the boundary terms

ξµ(0) = x′µ(s0), (6.18)

ξµ(0) = xµ(s0), (6.19)

ξµ(1) = x′µ(s1), (6.20)

ξµ(1) = xµ(s1). (6.21)

Subtra
ting (6.20) from (6.18) and (6.19) from (6.21) and using the equations

(6.16) and (6.17) the following relations are obtained

ξµ(1) − ξ
µ
(0) = x′µ(s1)− x′µ(s0) = ∆τ ′u′µ, (6.22)

ξµ(0) − ξ
µ
(1) = xµ(s0)− xµ(s1) = ∆τ uµ, (6.23)

whi
h imply

∆τ uµ +∆τ ′u′µ = 0. (6.24)
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After the de�nition of 
ausal loop stated before, the only solution to (6.24)

is ∆τ = ∆τ ′ = 0 and ξµ(0) = ξµ(1) = 0.
It is also observed that 
omputing dire
tly the proper time interval of the

parti
les inside the loop, one obtains

∆τ =

∫ s0

s1

ds ẋ0γ−1
p = γ−1

p

(

x0(s0)− x0(s1)
)

= γ−1
p

(

ξ0(0) − ξ0(1)
)

, (6.25)

∆τ ′ =

∫ s1

s0

ds ẋ′0γ−1
p′ = γ−1

p′

(

x′0(s1)− x′0(s0)
)

= γ−1
p′

(

ξ0(1) − ξ0(0)
)

. (6.26)

and, imposing (from the se
ond requirement) ∆τ ≥ 0, ∆τ ′ ≥ 0, gets ξ0(0) =

ξ0(1). Equations of motion imply that parti
les 
onne
t only events whose


oordinates satisfy

(

ξ(1) − ξ(0)
)2 ≥ 0 thus the loop 
ollapses to a single event

ξµ(0) = ξµ(1).

Causal loop with 
urved momentum spa
e

The next step is to take into a

ount the deformations indu
ed by the 
urva-

ture of the momentum spa
e. The se
ond requirement above must be slightly

modi�ed in order to allow DSR-deformed relativisti
 transformations.

In order to perform quantitative 
omputations the well-known κ-momentum

spa
e and its DSR-relativisti
 symmetries is 
hosen. Thus spa
etime is

Minkowskian with metri
 ηµν = diag(1,−1), but the dispersion relation at

leading order reads as

Cp = p20 − p21 + ℓp0p
2
1 −m2

p = 0, (6.27)

while 
onservation laws at �rst order be
ome

K(0)
0 = q0 + p0 − q′0 − p′0, (6.28a)

K(0)
1 = q1 + p1 − q′1 − p′1 + ℓ

(

q0p1 −K(0)
0 p

′
1 − (q0 + p0 − q′0)q′1

)

, (6.28b)

K(1)
0 = p′0 + k0 − p0 − k′0, (6.28
)

K(1)
1 = p′1 + k1 − p1 − k′1 + ℓ

(

p′0k1 −K(1)
0 k

′
1 − (p′0 + k0 − p0)p1

)

. (6.28d)

Taking as before, for example, the �rst of (6.1.2)

1

, one obtains

2

ẋµ(s) = Np

[

2pµ + ℓ
(

δµ0 p
2
1 + δµ1 2p0p1

)]

. (6.29)

1

The 
omputations for the other worldlines are still the same.

2

All 
omputations are made at �rst order in ℓ.
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where the notation pµ ≡ ηµνpν has been introdu
ed. Similarly, introdu
ing

xµ ≡ ηµνx
ν
, the norm of both sides 
an be 
omputed

ẋµẋµ = 4N 2
p

(

m2
p + 2ℓp0p

2
1

)

, (6.30)

so

Np =
(ẋµẋµ)

1
2

2mp

(

1− ℓp0p
2
1

m2
p

)

(6.31)

and �nally

ẋµ(s) = (ẋµẋµ)
1
2
pµ

mp
− ℓ(ẋ

µẋµ)
1
2

2mp

(

2
p0p

2
1

m2
p

pµ − δµ0 p21 − δµ1 2p0p1
)

= (ẋν ẋν)
1
2 uµ,

(6.32)

with uµ =
pµ

mp

− ℓ

2mp

(

2
p0p

2
1

m2
p

pµ − δµ0 p21 − δµ1 2p0p1
)

.

Following the same pattern used in (6.16) and (6.17) one obtains that

x′µ(s1)− x′µ(s0) = ∆τ ′u′µ, (6.33)

xµ(s0)− xµ(s1) = ∆τ uµ. (6.34)

Manipulating the boundary terms related to the parti
les (p, x) and (p′, x′),
it follows that

3

ξν(0) = −x′µ(s0)
(

∂K(0)
ν

∂p′µ

)−1

= xµ(s0)

(

∂K(0)
ν

∂pµ

)−1

, (6.35)

ξν(1) = x′µ(s1)

(

∂K(1)
ν

∂p′µ

)−1

= −xµ(s1)
(

∂K(1)
ν

∂pµ

)−1

. (6.36)

Equation (6.35) 
ombined with (6.34) implies

−x′µ(s0)
(

∂K(0)
ν

∂p′µ

)−1
∂K(0)

ν

∂pρ
= xρ(s0) = xρ(s1) + ∆τuρp, (6.37)

3

Here and in the following

(

∂K(1)
ν

∂p′

µ

)−1

denotes the (ν, µ) element of the matrix made of

the derivatives of the di�erent 
omponents of K(1)
with respe
t to the di�erent 
omponents

of p′,
∂K(1)

ν

∂p′

µ
. That is,

(

∂K(1)
ν

∂p′

ρ

)(

∂K(1)
ν

∂p′

µ

)−1

= δρν . Another possible notation in substitution

of

(

∂K(1)
ν

∂p′

µ

)−1


ould have been

(

∂K(1) −1

∂p′

)ν

µ
.
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while equation (6.36) 
ombined with (6.33) implies

xρ(s1) = −x′µ(s1)
(

∂K(1)
ν

∂p′µ

)−1
∂K(1)

ν

∂pρ
=

= −(x′µ(s0) + ∆τ ′u′µ)

(

∂K(1)
ν

∂p′µ

)−1
∂K(1)

ν

∂pρ
.

(6.38)

Finally, repla
ing the value of xρ(s1), given by equation (6.38), in equation
(6.37), one obtains the same 
ondition given in [107℄:





∂K(1)
ν

∂pρ

(

∂K(1)
ν

∂p′µ

)−1

− ∂K(0)
ν

∂pρ

(

∂K(0)
ν

∂p′µ

)−1


 x′µ(s0) =

= −∂K
(1)
ν

∂pρ

(

∂K(1)
ν

∂p′µ

)−1

∆τ ′u′µ +∆τuρ.

(6.39)

Keeping only terms up to the �rst order in ℓ, it be
omes

ℓ [δρ0 (k1 − q′1) + δρ1 (q0 − k′0)] x′1(s0) =
= ∆τuρ +∆τ ′

[

u′ρ + u′1ℓ (δρ1k
′
0 − δρ0k1)

]

.
(6.40)

This (6.40) is what repla
es (6.24) when the 
ausal loop is analyzed on a


urved momentum spa
e without enfor
ing relative lo
ality. Noti
e that

this (6.40), when its left-hand side does not vanish, 
an have solutions with

positive ∆τ and ∆τ ′ and positive zero 
omponents of the four-velo
ities,

whi
h was not possible with (6.24). This means that 
ontrary to the spe
ial-

relativisti
 
ase (Minkowski momentum spa
e) 
ausal loops are possible on

a 
urved momentum spa
e, at least if one does not enfor
e relative lo
ality.

Some interesting equalities follow from (6.40) and therefore must hold for

the 
ausal loop to be allowed

∆τ = −∆τ ′u
′0

u0
+ ℓx′1(s0)

(

q′1 − k1
u0

)

− ℓ∆τ ′
(

u′1k1
u0

)

, (6.41)

ℓx′1(s0) = ∆τ ′
u1u′0 − u0u′1 + ℓu′1(k1u

1 + k′0u
0)

u0(q0 − k′0) + u1(q′1 − k1)
(6.42)

and imply that in order for (6.41) to have a

eptable solutions one must have

that

x′1(s0) >
∆τ ′(u′0 + ℓu′1k1)

ℓ|q′1 − k1|
. (6.43)
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This is in good agreement with the results of Ref. [107℄, but it is useful to add

some observations to those reported in Ref. [107℄. A �rst point to noti
e is

that Eq. (6.43) appears to suggest that x′1 should take pe
uliarly large values,
as in some of the estimates given in Ref. [107℄, sin
e x′1 has magnitude set by a

formula with the small s
ale ℓ in the denominator. If one 
ould 
on
lude that

only 
ases with ultralarge x′1 allowed su
h a 
ausal loop, then the violations

of 
ausality would be to some extent less 
on
erning (if 
on�ned to a range of

values of x′1 large enough to fall outside our observational window). However,
it is easy to see that (6.43) does not really impose any restri
tion on the size

of x′1: one will have that typi
ally x′1 is mu
h larger than ∆τ ′ but there

are 
ausal loops for any value of x′1 (under the 
ondition of taking suitable

values of ∆τ ′ and ∆τ). So when momentum spa
e is 
urved and one does

not enfor
e the relativity of spa
etime lo
ality the violations of 
ausality are

rather pervasive.

There is also a te
hni
al point that deserves some 
omments and is related

to this pervasiveness of the violations of 
ausality: it might appear to be

surprising that within a perturbative expansion, assuming small ℓ, one arrives
at a formula like (6.43), with ℓ in the denominator. This is however not

so surprising 
onsidering the role of x′1 in this sort of analysis. The main


lari�
ation 
omes from observing that in the unperturbed theory (the ℓ = 0
theory, i.e. spe
ial relativity) x′1 is 
ompletely undetermined: as shown in

the previous subse
tion the only 
ausal loops allowed in spe
ial relativity are

those that 
ollapse (no violation of 
ausality) and su
h 
ollapsed 
ausal loops

are allowed for any however large or however small value of x′1. As stressed
above this fa
t that x′1 
an take any value is preserved by the ℓ 
orre
tions.
The apparently surprising fa
tor of 1/ℓ only appears in a relationship between
x′1 and ∆τ ′. If x′1 and ∆τ ′ both had some �xed �nite value in the ℓ = 0
theory than at �nite small ℓ their values should 
hange by very little. But

sin
e in the ℓ = 0 theory x′1 is un
onstrained (in parti
ular it 
ould take

any however large value) and its value is not linked in any way to the value

∆τ ′, then it is not surprising that the ℓ 
orre
tions take the form shown for

example in (6.43).

Causal loop analysis in 3+1 dimensions

So far the 1+1-dimensional 
ase has been examined, but it is rather evident

that the features dis
ussed in the previous subse
tion are not an artifa
t of

that dimensional redu
tion. Nonetheless it is worth pausing brie�y in this

subse
tion for verifying that indeed those features are still present in 3 + 1
dimensions. In this 
ase the on-shellness is governed by Cp = p20 − ~p2 − ℓp0~p2
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while 
onservation laws at �rst order take the form

K(0)
0 = q0 + p0 − q′0 − p′0 , (6.44a)

K(0)
i = qi + pi − q′i − p′i − ℓδji

[

q0pj − (q0 + p0 − q′0 − p′0)p′j − (q0 + p0 − q′0)q′j
]

,

(6.44b)

K(1)
0 = p′0 + k0 − p0 − k′0 , (6.44
)

K(1)
i = p′i + ki − pi − k′i − ℓδji

[

p′0kj − (p′0 + k0 − p0 − k′0)k′j − (p′0 + k0 − p0)pj
]

,

(6.44d)

where i, j = 1, 2, 3.
Adopting these expressions, eq.(6.39), keeping only terms up to �rst order

in ℓ in the matri
es like

∂K(0)
ν

∂pρ
and their produ
ts, takes the form

ℓ [δρi (k
′
0 − q0) + δρ0 (q

′
i − ki)] x′i(s0) =

[

u′ρ + u′iℓ (δρ0ki − δρi k′0)
]

∆τ ′ + uρ∆τ ,
(6.45)

or, more 
learly, using the energy 
onservation laws,

ℓ(q′1 − k1)x′1(s0) + ℓ(q′2 − k2)x′2(s0) + ℓ(q′3 − k3)x′3(s0) = (u′0 + ℓk1u
′1 + ℓk2u

′2 + ℓk3u
′3)∆τ ′+

+ u0∆τ,

ℓ(k0 − q′0)x′1(s0) = (1− ℓk′0)u′1∆τ ′ + u1∆τ,

ℓ(k0 − q′0)x′2(s0) = (1− ℓk′0)u′2∆τ ′ + u2∆τ,

ℓ(k0 − q′0)x′3(s0) = (1− ℓk′0)u′3∆τ ′ + u3∆τ.

(6.46)

Without really loosing any generality one 
an analyze the impli
ations of

this for an observer orienting her axis of the referen
e frame so that pi = 0
and p′i = 0 for i = 2, 3. As a result one also has that ui = 0 and u′i = 0
for i = 2, 3. For what 
on
erns the other momenta involved in the analysis,

q, q′, k, k′. this 
hoi
e of orientation of axis only a�e
ts rather mildly the


onservation laws:

q2 = q′2 − ℓp′0q′2, q3 = q′3 − ℓp′0q′3, q′2 = q2 + ℓp′0q2, q′3 = q3 + ℓp′0q3,

k2 = k′2 + ℓp′0k
′
2, k3 = k′3 + ℓp′0k

′
3, k′2 = k2 − ℓp′0k2, k′3 = k3 − ℓp′0k3.

Sin
e ui = 0 and u′i = 0 for i = 2, 3 the last two equations of eq.(6.46) imply

x′2 = 0 and x′3 = 0, whi
h in turn (looking then at the �rst two equations of

eq.(6.46)) takes the 
omputation ba
k to (6.41)-(6.42)

∆τ = −∆τ ′u
′0

u0
+ ℓx′1(s0)

(

q′1 − k1
u0

)

− ℓ∆τ ′
(

u′1k1
u0

)

,
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ℓx′1(s0) = ∆τ ′
u1u′0 − u0u′1 + ℓu′1(k1u

1 + k′0u
0)

u0(q0 − k′0) + u1(q′1 − k1)
.

Evidently then all the features dis
ussed for the 1+1-dimensional in the pre-

vious subse
tion are also present in the 3+1-dimensional 
ase.

Enfor
ing Relative Lo
ality

It will be now shown that there are no 
ausal loops in theories with 
urved

momentum spa
es if these theories have relative lo
ality. Relative lo
ality is

evidently a weaker notion than absolute lo
ality but is still strong enough as

to enfor
e 
ausality.

By de�nition [102℄ Relative Lo
ality is su
h that the lo
ality of events

may not be manifest in 
oordinatizations by distant observers, but for the


oordinatizations of observers near an event (ideally at the event) it enfor
es

lo
ality in a way that is not weaker than ordinary lo
ality.

It shall also be noti
ed that the de�nition of Relative Lo
ality imposes

that translation transformations be formalized in the theory: sin
e one must

verify that events are lo
al a

ording to nearby observers (while they may

be des
ribed as nonlo
al by distant observers), these need to use translation

transformations in order to ensure that the Prin
iple of Relative Lo
ality is

enfor
ed.

In Ref. [104℄ it has been introdu
ed a pres
ription for having a very pow-

erful implementation of translational invarian
e in relative-lo
ality theories.

One 
an easily see that the 
ausal loop des
ribed in the previous subse
tions

is not 
ompatible with that strong implementation of translational invari-

an
e. Evidently then 
ausality is preserved in theories with 
urved momen-

tum spa
es if the strong notion of translational invarian
e of Ref. [104℄ is

enfor
ed by postulate.

What is here intended to be shown is that, however, 
ausal loops are for-

bidden even without enfor
ing su
h a strong notion of translational invari-

an
e. Causal loops are forbidden even by a minimal notion of translational

invarian
e, i.e. the bare minimum needed in order to 
ontemplate relative

lo
ality (as stressed just above, one 
annot even speak of relative lo
ality in

la
k of a notion of translational invarian
e).

Consistently with this obje
tive, it is only required the availability of some

translation generator (possibly momentum-dependent) that 
an enfor
e the


ovarian
e of the equations of motion and the boundary 
onditions. Con-

sider a �rst observer, Ali
e, and a se
ond one, Bob, purely translated by a

parameter bµ with respe
t to Ali
e. For the parti
le involved inside the loop
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one has

xµB(s) = xµA(s)− bνT µ
ν , (6.47)

x′µB (s) = x′µA (s)− bνT ′µ
ν . (6.48)

Combining the boundaries (6.1.2) with the transformation (6.47) one obtains

−ξνB(1)

∂K(1)
ν

∂pµ
= xµB(s1) = xµA(s1)− bνT µ

ν = −ξνA(1)

∂K(1)
ν

∂pµ
− bνT µ

ν (6.49)

ξνB(0)

∂K(0)
ν

∂pµ
= xµB(s0) = xµA(s0)− bνT µ

ν = ξνA(0)

∂K(0)
ν

∂pµ
− bνT µ

ν . (6.50)

De�ning δξν(i) = ξνB(i) − ξνA(i), equations (6.49) and (6.50) read as

bνT µ
ν = δξν(1)

∂K(1)
ν

∂pµ
, (6.51)

bνT µ
ν = −δξν(0)

∂K(0)
ν

∂pµ
. (6.52)

So

δξν(1)
∂K(1)

ν

∂pµ
= −δξν(0)

∂K(0)
ν

∂pµ
(6.53)

Similarly, 
ombining the last two boundaries of (6.1.2) with the transforma-

tion (6.48) one obtains

−ξνB(0)

∂K(0)
ν

∂p′µ
= x′µB (s0) = x′µA (s0)− bνT ′µ

ν = −ξνA(0)

∂K(0)
ν

∂p′µ
− bνT ′µ

ν , (6.54)

ξνB(1)

∂K(1)
ν

∂p′µ
= x′µB (s1) = x′µA (s1)− bνT ′µ

ν = ξνA(1)

∂K(1)
ν

∂p′µ
− bνT ′µ

ν , (6.55)

from whi
h it follows that

−δξν(1)
∂K(1)

ν

∂p′µ
= δξν(0)

∂K(0)
ν

∂p′µ
. (6.56)

Before going on with the analysis it 
an be noti
ed that the equations (6.53)

and (6.56) lead to 
onditions already analyzed in literature. Writing the


onservation laws as

i=n
⊕

i=1

P i
in−

i=m
⊕

i=1

P i
out, where P

i
in are the ingoing momenta in

a vertex and P i
out are the outgoing momenta, one obtains the same 
onditions
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found in [108℄, while assuming that δξν(1) = δξν(0) = −bν the same 
onditions

found in [104℄ are derived.

Going ba
k to our analysis of the 
ausal loop, from Eq.(6.56) one gets

δξν(0) = −δξσ(1)
∂K(1)

σ

∂p′µ

(

∂K(0)
ν

∂p′µ

)−1

, (6.57)

repla
ing it in equation (6.53) gives

δξσ(1)





∂K(1)
σ

∂pρ
− ∂K(1)

σ

∂p′µ

(

∂K(0)
ν

∂p′µ

)−1
∂K(0)

ν

∂pρ



 = 0, (6.58)

and �nally, imposing δξσ(1) 6= 0,

∂K(1)
ν

∂pρ

(

∂K(1)
ν

∂p′µ

)−1

− ∂K(0)
ν

∂pρ

(

∂K(0)
ν

∂p′µ

)−1

= 0. (6.59)

Equation (6.59) is then a 
ondition on the boundary terms whi
h 
omes

from insisting that the theory be 
ompatible with the enfor
ement of relative

lo
ality and, therefore, be 
ompatible with a least the weakest possible notion

of translational invarian
e. Using it into equation (6.39) it is observed that

indeed the dependen
e on the position disappears. With the 
hoi
e of the


onservation laws made in [107℄, equation (6.59) be
omes a 
ondition on the

momenta involved in the pro
ess. Expli
itly, keeping only terms up to �rst

order equations (6.59) be
omes

ℓδ1µ [δ
ρ
0 (q

′
1 − k1)− δρ1 (k′0 − q0)] = 0, (6.60)

whi
h implies that k′0 = q0 +O(ℓ) and q′1 = k1 +O(ℓ).
The fa
t that then the 
ausal loop is forbidden 
an then be seen easily

for example by looking ba
k at equation (6.40), now enfor
ing (6.60): one

obtains

∆τuρ +∆τ ′
[

u′ρ + u′1ℓ (δρ1k
′
0 − δρ0k1)

]

= 0. (6.61)

Analyzing it for ρ = 0, it is evident that in order to have solutions, either one

between ∆τ and ∆τ ′ must be negative, or the zeroth 
omponent of one of the

two 4-velo
ity must be negative as it is found in the Spe
ial Relativisti
 
ase.

This be
ause the terms proportional to ℓ is only a small 
orre
tion whi
h


annot 
ause a 
hange of sign of the 
oe�
ient of ∆τ ′. The only a

eptable

solution is then ∆τ = ∆τ ′ = 0.
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The values of ∆τ and ∆τ ′ 
an also be 
omputed dire
tly. Following

equations (6.25) and (6.26) the interval of proper times

4

between the two

events for the two parti
les inside the loop are

∆τ =

∫ s0

s1

ds ẋ0γ−1
p = γ−1

p

(

x0(s0)− x0(s1)
)

, (6.62)

∆τ ′ =

∫ s1

s0

ds ẋ′0γ−1
p′ = γ−1

p′

(

x′0(s1)− x′0(s0)
)

. (6.63)

The two Lorentz fa
tor 
an be 
omputed as in the Spe
ial Relativisti
 
ase:

γp =
1

√

1− β2
p

. The only di�eren
e is that now βp =
ẋ1

ẋ0
, where one has to

use for the ẋµs the expression (6.32). Using the boundary 
onditions (6.1.2)

and (6.1.2) the expressions for the interval of proper times at leading order

be
omes

∆τ =

[

√

1− p21
p20

(

1 +
ℓ

2

2p20p
2
1 + p41

p30 − p21p0

)

](

ξν(1)
∂K(1)

ν

∂p0
+ ξν(0)

∂K(0)
ν

∂p0

)

, (6.64)

∆τ ′ =

[

√

1− p′21
p′20

(

1 +
ℓ

2

2p′20 p
′2
1 + p′41

p′30 − p′21 p′0

)

](

ξν(1)
∂K(1)

ν

∂p′0
+ ξν(0)

∂K(0)
ν

∂p′0

)

. (6.65)

They are positive provided that















ξν(1)
∂K(1)

ν

∂p0
+ ξν(0)

∂K(0)
ν

∂p0
≥ 0

ξν(1)
∂K(1)

ν

∂p′0
+ ξν(0)

∂K(0)
ν

∂p′0
≥ 0.

(6.66)

At leading-order in ℓ, this system be
omes







ξ0(1) − ξ0(0) − ℓp′1
(

ξ1(1) − ξ1(0)
)

≥ 0

ξ0(0) − ξ0(1) − ℓp′1
(

ξ1(0) − ξ1(1)
)

− ℓ
(

ξ1(0)q
′
1 − ξ1(1)k1

)

≥ 0.
(6.67)

4

The physi
al meaning of this a�ne parameter 
alled here �proper time� is related to the

geometry of momentum spa
e: for geometries that do not deform the 
omposition law for

energy (as in Spe
ial Relativity and κ-Minkowski) there are not e�e
ts of relative lo
ality

for pure time translations, i.e. those translations in whi
h the only non null parameter is

b0. In su
h 
ases, one 
an attribute to the interval ∆τ the usual meaning of time interval

measured by a 
lo
k at rest relative to that referen
e frame. If there is relative lo
ality

also for pure time translations, the measurement of ∆τ involves a lo
al measurement and

an inferen
e. Then τ would not be an observable any more.
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Then the ξµ(i)s are expanded into powers of ℓ, i.e. ξµ(i) = ξ
µ[0]
(i) +ℓξ

µ[1]
(i) . In this

way it is known that the zeroth order of the expansion assumes the Spe
ial

Relativisti
 value of the ξµ(i). Substituting this expansion in the system (6.67),

and using the Spe
ial Relativisti
 result ξ
µ[0]
(1) = ξ

µ[0]
(0) , one obtains







ℓ
(

ξ
0[1]
(1) − ξ

0[1]
(0)

)

≥ 0

ℓ
(

ξ
0[1]
(0) − ξ

0[1]
(1)

)

− ℓξ1[0](0) (q′1 − k1) ≥ 0.
(6.68)

It is re
alled now that the translational 
ovarian
e is re
overed by impos-

ing the 
ondition q′1 = k1 +O(ℓ) , so the system (6.68) be
omes







ℓ
(

ξ
0[1]
(1) − ξ

0[1]
(0)

)

≥ 0

ℓ
(

ξ
0[1]
(0) − ξ

0[1]
(1)

)

≥ 0,
(6.69)

whi
h implies that ξ
0[1]
(1) = ξ

0[1]
(0) +O(ℓ) and then ξ0(1) = ξ0(0)+O(ℓ2). From this


ondition it follows that ∆τ = ∆τ ′ = 0 +O(ℓ2). Now it 
an be shown that

from the equations of motion one gets also ξ
1[1]
(1) = ξ

1[1]
(0) + O(ℓ). In fa
t one

has

0 +O(ℓ) = ∆τ ′u′1 = x′1(s1)− x′1(s0) =

= ξν(1)
∂K(1)

ν

∂p′1
+ ξν(0)

∂K(0)
ν

∂p′1
=

= ξ
1[1]
(0) − ξ

1[1]
(1) − ℓξ

1[0]
(0) (q0 + p0 − p′0 − q′0) =

= ξ
1[1]
(0) − ξ

1[1]
(1)

(6.70)

where in the se
ond equality has been exploited that the zeroth order terms

of the ξs 
oin
ide and in the last that the term in parenthesis is exa
tly K(0)
0 .

The same thing 
an be veri�ed 
onsidering the other worldline, for whi
h

one �nds that

0 +O(ℓ) = ∆τu1 = x1(s1)− x1(s0) =

= ξν(1)
∂K(1)

ν

∂p1
+ ξν(0)

∂K(0)
ν

∂p1
=

= ξ1(0) − ξ1(1) + ℓξ1(0)q0 − ℓξ1(1)(p0 + k0 − p′0) =
= ℓ(ξ

1[1]
(0) − ξ

1[1]
(1) )− ℓξ

1[0]
(0) (p0 + k0 − p′0 − q0).

(6.71)

Sin
e for the 
ovarian
e under translations q0 = k′0, ℓξ
1[0]
(0) is multiplied again

by K(1)
0 , from whi
h the result follows.

Summarizing, it has been demonstrated that ξµ(1) = ξµ(0) + O(ℓ2), so the

request of translational 
ovarian
e of the system leads to the 
ollapse of the
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ausal loop into a single event (up to the se
ond order in ℓ) in the Relative

Lo
ality framework as well as in Spe
ial Relativity. This 
ausal loop is indeed

forbidden on
e Relative Lo
ality is enfor
ed.

6.2 Momentum 
onservation from Relative Lo-


ality

Having shown that 
ausal loop of Ref. [107℄ is indeed allowed in generi


theories on 
urved momentum spa
es, but is forbidden when relative spa
e-

time lo
ality is enfor
ed, it is time to move on to the next announ
ed task

whi
h 
on
erns two other spe
ies of loops: those that violates 
onservation

of momentum and those that are non-
ausally violating.

This se
tion fo
uses on a translational-invarian
e-violating diagram stud-

ied in Ref. [109℄. There, the author 
onsidered theories on a 
urved momen-

tum spa
e, without enfor
ing relative spa
etime lo
ality, and showed that

in general the diagram shown in Fig. 6.5 
an produ
e violations of global

momentum 
onservation. These violations take the shape [109℄ of k′ 6= k,
i.e. the momentum in
oming into the diagram is not equal to the momen-

tum outgoing from the diagram. Similarly to what has been shown in the

previous se
tion for a 
ausal loop, it will be found that these violations of

global momentum 
onservation from the diagram in Fig. 6.5 do not o

ur if

one enfor
es relative spa
etime lo
ality.

p′

p

k

K(0) K(1)

k′

p′

p

Figure 6.5: A Möbius diagram loop pro
ess.
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6.2.1 Möbius diagram and translational invarian
e

The relative-lo
ality-framework des
ription of the diagram in Fig. 6.5 is

obtained through the a
tion

S =

∫ s0

−∞
ds
(

zµk̇µ +NkCk
)

+

∫ +∞

s1

ds
(

z′µk̇′µ +Nk′Ck′
)

+

+

∫ s1

s0

ds
(

x′µṗ′µ +Np′Cp′
)

+

∫ s1

s0

ds (xµṗµ +NpCp) +

− ξµ(0)K
(0)
µ − ξµ(1)K

(1)
µ ,

(6.72)

where the 
onservation law is given by the same fun
tions 
onsidered in

Ref. [109℄

K(0)
µ = (k ⊕ (⊖ (p⊕ p′)))µ
≃ kµ − pµ − p′µ − δ1µℓ [p1 (k0 − p0 − p′0) + p′1 (k0 − p′0)] ,

K(1)
µ = ((p′ ⊕ p)⊕ (⊖k′))µ
≃ p′µ + pµ − k′µ − δ1µℓ [k′1 (p′0 + p0 − k′0)− p′0p1] .

(6.73)

From the stru
ture of (6.73) it is 
lear why the diagram in Fig. 6.5 has

been labelled �Möbius diagram�: the laws of 
onservation at the two verti
es

are setup in su
h a way to use the non
ommutativity of the 
omposition law

in su
h a way that the parti
le outgoing from the �rst vertex with momentum

appearing on the right-hand side of the 
omposition law enters the se
ond

vertex with momentum appearing on the left-hand side of the 
omposition

law (Of 
ourse, the opposite applies to the other parti
le ex
hanged between

the verti
es). If one then draws the diagram with the 
onvention that the

orientation of pairs of legs entering/exiting a vertex 
onsistently re�e
ts the

order in whi
h the momenta are 
omposed then the only way to draw the

diagram makes it resemble a Möbius strip.

Evidently there is no room for su
h a stru
ture when the momentum

spa
e has 
omposition law whi
h is 
ommutative. In parti
ular there is no

way to 
ontemplate su
h a Möbius diagram in Spe
ial Relativity. But on

k-momentum spa
e this stru
ture is possible and its impli
ation surely need

to be studied.

Consistently with what has been reported in the previous se
tion, the

interest of this se
tion is into understanding how the properties of the Möbius

diagram are a�e
ted if one enfor
es relative spa
etime lo
ality in theories on

the k-momentum spa
e. In parti
ular, it will be here shown that k′ = k (no

violation of global momentum 
onservation) is required by relative spa
etime

lo
ality.
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And, as also already stressed above, relative spa
etime lo
ality in a rela-

tivisti
 theory on 
urved momentum spa
e ne
essarily requires at least a weak

form of translational invarian
e. This insisten
e on at least the weakest pos-

sible notion of translational invarian
e yield equations (6.53) and (6.56) for

the 
ausal loop, and, as one 
an easily verify, for the 
ase of the Möbius

diagram it leads to the equations

δξν(0)
∂K(0)

ν

∂pµ
= −δξν(1)

∂K(1)
ν

∂pµ
, (6.74a)

δξν(0)
∂K(0)

ν

∂p′µ
= −δξν(1)

∂K(1)
ν

∂p′µ
. (6.74b)

Expli
ating, for example, δξν(0) in the se
ond 
ondition and substituting it

ba
k in the �rst, one 
an obtain the equation

δξσ(1)





∂K(1)
σ

∂pµ
− ∂K(1)

σ

∂p′ρ

(

∂K(0)
ν

∂p′ρ

)−1
∂K(0)

ν

∂pµ



 = 0. (6.75)

Sin
e translated observers must 
oordinatize the same event in di�erent ways,

one 
an impose δξσ(i) 6= 0. So the term in parenthesis of equation (6.75) have to

be zero. This is 
learly a 
ondition over the momenta that are now analyzed

at �rst order in ℓ. Writing �rst the expression of the matri
es involved in the

equation (6.75)

∂K(1)
σ

∂pµ
= δµσ − ℓδ1σ (δµ0 k′1 − δµ1 p′0) , (6.76a)

∂K(1)
σ

∂p′ρ
= δρσ − ℓδ1σδρ0 (k′1 − p1) , (6.76b)

(

∂K(0)
ν

∂p′ρ

)−1

= −δνρ + ℓδ1ρ [δ
ν
1 (k0 − p′0)− δν0 (p1 + p′1)] , (6.76
)

∂K(0)
ν

∂pµ
= −δµν + ℓδµ0 δ

1
νp1. (6.76d)

So from (6.75) one �nds the 
ondition

ℓ [δµ1k0 − δµ0 (p1 + p′1)] = 0 (6.77)

Using this result in 
ombination with the 
onservation laws K(0)
µ = 0 and

K(1)
µ = 0 one 
an easily establish that

pµ + p′µ = 0 +O(ℓ) , (6.78)
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and one 
an also rewrite those 
onservation laws as follows

0 = kµ − pµ − p′µ − δ1µℓp′1p′0, (6.79)

0 = p′µ + pµ − k′µ − δ1µℓp′0p1 . (6.80)

Summing these (6.79) and (6.80), also using (6.78), we get to the sought

result

kµ = k′µ +O(ℓ2) , (6.81)

showing that indeed by insisting on a having a translational invariant pi
ture

with asso
iated relativity of spa
etime lo
ality, one �nds no global violation

of momentum 
onservation (at least at order in ℓ, whi
h is the level of a

u-

ra
y pursued in this work). Were it not a limitation on a leading-order-in-ℓ
analysis, one 
ould perhaps 
hara
terize this result on the Möbius diagram

even more strongly: at leading order translational invarian
e essentially for-

bids Möbius diagrams. This 
an be seen in parti
ular from Eq.(6.77) whi
h

also imposes

5 ℓk0 = 0. So, up to possible 
orre
tions of order ℓ2, Möbius

diagrams are anly allowed if the energies of the in
oming and outgoing par-

ti
les vanish. We interpret this as implying that, at least to leading order,

translational invarian
e essentially forbids Möbius diagrams.

The same results hold when the Möbius diagram is obtained using the

pres
riptions for 
onstru
ting the 
onstraints K given in [104℄:

K(0)
µ = kµ − (p⊕ p′)µ ≃ kµ − pµ − p′µ − ℓδ1µp0p′1,
K(1)

µ = (p′ ⊕ p)µ − k′µ ≃ p′µ + pµ − kµ + ℓδ1µp
′
0p1.

(6.82)

In this 
ase, in fa
t, one repla
es Eq. (6.76) with

5

It should be underlined that this 
ondition ℓk0 = 0 is a striking manifestation of how

Möbius diagrams are foregn to translationally invariant implementations of the relative

lo
ality framework. The implied requirement k0 = 0 is not a smooth 
orre
tion to ℓ = 0
theory, where k0 is free (that is, 
an take any value). This is a similar me
hanism to the

one des
ribed after Eq.(6.43): a quantity whi
h was 
ompletely free in the original theory

(Spe
ial Relativity, with ℓ = 0) ends up being governed by an equation in the deformed

theory, or else the diagram must be dis
arded.
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∂K(1)
σ

∂pµ
= δµσ + ℓδ1σδ

µ
1 p

′
0, (6.83a)

∂K(1)
σ

∂p′ρ
= δρσ + ℓδ1σδ

ρ
0p1, (6.83b)

(

∂K(0)
ν

∂p′ρ

)−1

= −δνρ + ℓδ1ρδ
ν
1p0, (6.83
)

∂K(0)
ν

∂pµ
= −δµν − ℓδµ0 δ1νp′1. (6.83d)

So from (6.75) one �nds the 
ondition

ℓ (δµ1 (p0 + p′0)− δµ0 (p1 + p′1)) = 0 (6.84)

From µ = 1 and from µ = 0 one �nds that pµ+ p′µ = 0+O(ℓ). Summing the


onservation laws enfor
ed by the 
onstraints (6.88) one has

0 = kµ − k′µ − ℓp0p′1 + ℓp′0p1.

The 
ondition pµ + p′µ = 0 + O(ℓ) then again implies 
onservation of the

spatial momentum kµ = k′µ +O(ℓ2).

6.2.2 Possible impli
ations for the quantum theory: Fuzzy

Momentum 
onservation

The results presented in the previous se
tions suggest that 
ausality and

global momentum 
onservation are prote
ted by relative lo
ality in theories

with 
urved momentum spa
es. It should be noti
ed that the obje
tive of

enfor
ing relative spa
etime lo
ality led to the introdu
tion of some restri
-

tions on the 
hoi
e of boundary terms, parti
ularly for 
ausally 
onne
ted

intera
tions. The relevant 
lass of theories has been studied so far only in

the 
ontext of 
lassi
al me
hani
s and therefore su
h pres
riptions 
on
erning

boundary terms are meaningful and unproblemati
, as they 
an be enfor
ed

by prin
iple, as a postulate. The quantum version of Relative Lo
ality is still

not known, but if one tries to imagine whi
h shape it might take, it seems

that enfor
ing the prin
iple of relative lo
ality in a quantum theory might be

very 
hallenging: think in parti
ular of quantum �eld theories formulated in

terms of a generating fun
tional. There is no spe
i�
 result addressing this

point to report here, but it is still worthy to provide eviden
e for the fa
t
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that 
ombinations of diagrams on 
urved momentum spa
e might have fewer

anomalous properties, even without enfor
ing relative lo
ality, than single

diagrams.

Essentially it is here observed that the violations of 
ausality and global

translational symmetry that arise on 
urved momentum spa
es (if one does

not enfor
e relative lo
ality) are not systemati
, in the sense that for ea
h

diagram 
ontributing an e�e
t of a 
ertain magnitude and sign there is always

another equally a

eptable diagram that gives e�e
ts of the same magnitude

and opposite sign. This may be indeed relevant for quantum �eld theory

sin
e there one 
annot 
hoose whi
h diagrams 
onne
t a given "in" state to

a given "out" state: the formalism automati
ally takes into a

ount all the

diagrams that possibly 
onne
t the "in" state to the "out" state.

In an appropriate sense it is here attempted to provide �rst elements in

support of a pi
ture that might ultimately be somewhat analogous to what

happens, for example, in the analysis of the gauge invarian
e of the �rst


ontribution to the matrix element of the Compton s
attering e−+γ → e−+γ
in standard QED. In fa
t in that 
ase there are only two Feynman diagrams

and the invariant matrix element is given by

Mfi = (−ie)2
(

ūp′/ǫ(q
′)

i

/p+ /q −m
/ǫ(q)up + ūp′/ǫ(q)

i

/p− /q′ −m
/ǫ(q′)up

)

(6.85)

where p and q are the momenta of the ele
tron and the photon respe
-

tively, in the initial state, p′ and q′ are the momenta of the ele
tron and

the photon respe
tively, in the �nal state, up and ūp are Dira
 spinors,

ǫµ the photon polarization 4-ve
tor. For a free photon des
ribed in the

Lorentz gauge by a plane wave Aµ(x) ∝ ǫµ(k)e
±ikνxν

, the gauge transfor-

mation AΛ
µ (x) = Aµ(x) + ∂µΛ(x) with Λ(x) = Λ̃(k)e±ikνxν


orresponds to a

transformation of the polarization 4-ve
tor ǫΛµ(k) = ǫµ(k) − ikµΛ̃(k). Then

the 
ontribution to the matrix element due to this transformation of, for

example, 4-ve
tor ǫµ(q) is (apart from a 
ommon fa
tor) for the �rst term

ūp′/ǫ(q
′)

i

/p+ /q −m/
qup = ūp′/ǫ(q

′)
i

/p+ /q −m
(/p+ /q −m)up = iūp′/ǫ(q

′)up,

(6.86)

where the relation (/p−m)up = 0 has been used. The se
ond term gives the
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ontribution

ūp′/q
i

/p− /q′ −m
/ǫ(q′)up = ūp′(/q − /p′ +m)

i

/p− /q′ −m
/ǫ(q′)up

= ūp′(/q − /p′ +m)
i

/p′ − /q −m
/ǫ(q′)up = −iūp′/ǫ(q′)up,

(6.87)

where in the �rst equality ūp′(/p
′−m) = 0 has been used and in the se
ond the

equality p− q′ = q − p′ has been used, whi
h 
omes from global momentum


onservation. Thus the matrix element is indeed gauge invariant even though

the Feynman diagrams are not gauge invariant by themselves.

A 
on
lusive eviden
e that a similar me
hanism is at work for 
ausality

and global momentum 
onservation is of 
ourse still to be found (it would be

impossible without knowing how to formulate su
h a quantum �eld theory),

but it may nonetheless be interesting to note that one 
an �nd points of


onne
tion, at least at intuition level, with the story su
h as gauge invarian
e

for Compton s
attering.

For de�niteness and simpli
ity, the expli
it analysis in this se
tion is for

global translational symmetries, and therefore, the Möbius diagrams. In

the previous subse
tion this 
ase has been analyzed using the the 
hoi
e of

boundary terms adopted in Ref.[109℄ sin
e the appre
iation of the presen
e

of a 
hallenge due to Möbius diagrams originated from the study reported

there. Here however the argument evolves beyond the s
opes of Ref.[109℄ and

it is therefore adopted the 
onvention on boundary terms preferred by the

author, whi
h allows also to streamline the derivation of the results, the one

given in [104℄. Consider the Möbius diagram obtained using the pres
riptions

for 
onstru
ting the 
onstraints K given in [104℄:

K(0)
µ = kµ − (p⊕ p′)µ ≃ kµ − pµ − p′µ − ℓδ1µp0p′1,
K(1)

µ = (p′ ⊕ p)µ − k′µ ≃ p′µ + pµ − kµ + ℓδ1µp
′
0p1.

(6.88)

From the 
onservation of four-momentum at ea
h vertex K(0)
µ = 0, K(1)

µ = 0
one gets

kµ − k′µ = −ℓδ1µ(p′0p1 − p0p′1) = −ℓδ1µ(
m2

pp
′
1

2p1
−
m2

p′p1

2p′1
) ≡ −ℓδ1µ∆ (6.89)

where, sin
e the energy-momentum of the parti
les here 
onsidered are su
h

that ℓ−1 ≫ pµ ≫ m, from the on-shell 
ondition (6.1) the energy of the parti-


les has been expressed in terms of the spatial momentum

6 p0 =
√

p21 +m2−
ℓp21
2
≈ −p1 − m2

2p1
− ℓp21

2
and only the leading 
orre
tion terms have been kept.

6

The readers should remind that the 
onventions adopted here are su
h that p1 < 0.
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Evidently, the only alternative possible Möbius diagram is obtained from

the other form of the 
onstraints K 
ompatible with our pres
ription, that is

by 
hanging the order of p and p′:

K̃(0)
µ = kµ − (p′ ⊕ p)µ ≃ kµ − p′µ − pµ − ℓδ1µp′0p1,
K̃(1)

µ = (p⊕ p′)µ − k′µ ≃ p′µ + pµ − k′µ + ℓδ1µp0p
′
1.

(6.90)

Pro
eeding as for the previous one, one gets

kµ − k′µ = ℓδ1µ∆. (6.91)

Of 
ourse, in light of what it has been established in the previous subse
-

tion, both Möbius diagrams must be ex
luded if one enfor
es the prin
iple

of relative spa
etime lo
ality. But is it interesting to noti
e that if we were

to allow these Möbius diagrams, the violation of global momentum 
onser-

vation produ
ed by one of them, (6.89), is exa
tly the opposite of the one

produ
ed by the other one, (6.91). In a quantum �eld theory version of

the 
lassi
al theories analyzed here, one might have to in
lude these opposite


ontributions together, in whi
h 
ase it is here 
onje
tured that the net result

would not be some systemati
 predi
tion of violation of global momentum


onservation, but rather something of the sort rendering global momentum

still 
onserved but fuzzy.

Of 
ourse, the main 
hallenge for the development of this novel resear
h

program is the 
onstru
tion of a quantum �eld theory. A general frame-

work for introdu
ing su
h quantum �eld theories was re
ently proposed in

Ref. [134℄. While presently this proposal appears to be still at too early and

too formal a stage of development for addressing the 
hallenges that were

here of interest, it is legitimate to hope that, as its understanding deepens,

a 
onsistent quantum pi
ture of 
ausality and momentum 
onservation with


urved momentum spa
es will arise.

Going ba
k to the 
lassi
al me
hani
s version of these theories, it is amus-

ing to noti
e that a 
hain 
omposed of two Möbius diagrams 
onsidered in

this subse
tion would have as a net result no violation of global momentum.

6.3 Non-
ausality-violating loops

A se
ond spe
ies of loop, the so-
alled non-
ausality-violating loops repre-

sented in Fig.6.6, is analyzed in the present se
tion. In Spe
ial Relativity,

with its absolute lo
ality, loops of this kind are trivial: they des
ribe in some

sense a 
omposite of two parts at rest, with the two parts �splitting� for a

while and then �re
ombining�. This is a 
ase of �history without a history�:
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all that one has is a single 
omposite at rest throughout the history of the

system, having allowed, for mere language, a split/re
ombination storyline.

It is shown that relative lo
ality is a strong-enough notion of lo
ality to

preserve this aspe
t of triviality of the non-
ausality-violating loops of the

spe
ies shown in Fig.6.6.

Consider the following a
tion des
ribing the pro
ess of Fig. 6.6

q′

q

p′

p

k′

kK(0) K(1)

Figure 6.6: An example of non-
ausality-violating loop.

S =

∫ s0

−∞
ds (yµq̇µ +NqCq) +

∫ s0

−∞
ds
(

y′µq̇′µ +Nq′Cq′
)

+

+

∫ +∞

s1

ds
(

zµk̇µ +NkCk
)

+

∫ +∞

s1

ds
(

z′µk̇′µ +Nk′Ck′
)

+

+

∫ s1

s0

ds
(

x′µṗ′µ +Np′Cp′
)

+

∫ s1

s0

ds (xµṗµ +NpCp) +

− ξµ(0)Kµ
(0) − ξµ(1)Kµ

(1),

(6.92)

with

K(0)
µ = (q′ ⊕ q)µ − (p′ ⊕ p)µ ≃ q′µ + qµ − p′µ − pµ + ℓδ1µ (q

′
0q1 − p′0p1) , (6.93)

K(1)
µ = (p′ ⊕ p)µ − (k′ ⊕ k)µ ≃ p′µ + pµ − k′µ − kµ + ℓδ1µ (p

′
0p1 − k′0k1) .

(6.94)

The equations of motion are then
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ṗµ = 0, ṗ′µ = 0, q̇µ = 0, q̇′µ = 0, k̇µ = 0, k̇′µ = 0,

Cp = 0, Cp′ = 0, Cq = 0, Cq′ = 0, Ck′ = 0, Ck = 0,

ẋµ(s) = Np
∂Cp
∂pµ

, ẋ′µ(s) = Np′
∂Cp′
∂p′µ

, ẏµ(s) = Nq
∂Cq
∂qµ

, (6.95)

ẏ′µ(s) = Nq′
∂Cq′
∂q′µ

, żµ(s) = Nk
∂Ck
∂kµ

, ż′µ(s) = Nk′
∂Ck′
∂k′µ

, (6.96)

and the boundary terms are

K(0)
µ = 0, K(1)

µ = 0,

yµ(s0) = ξν(0)
∂K(0)

ν

∂qµ
, y′µ(s0) = ξν(0)

∂K(0)
ν

∂q′µ
, zµ(s1) = −ξν(1)

∂K(1)
ν

∂kµ
,

z′µ(s1) = −ξν(1)
∂K(1)

ν

∂k′µ
, x′µ(s0) = −ξν(0)

∂K(0)
ν

∂p′µ
, x′µ(s1) = ξν(1)

∂K(1)
ν

∂p′µ
,

xµ(s0) = −ξν(0)
∂K(0)

ν

∂pµ
, xµ(s1) = ξν(1)

∂K(1)
ν

∂pµ
.

As it has been done in the previous se
tion, the pro
ess is �rst analyzed in

Spe
ial Relativity, then in Relative Lo
ality. It is shown now that in Relative

Lo
ality, as well as in Spe
ial Relativity, only trivial loops are allowed by the

kinemati
s.

An example of trivial loop is the following: 
onsider a mole
ule of hydro-

gen. Its motion may be des
ribed as that of a single parti
le. The loop starts

when the motion of the mole
ule is des
ribed in terms of the motions of its

two atoms and ends on
e one goes ba
k to the des
ription of the motion of

the mole
ule as that of a single parti
le.

6.3.1 Non-
ausality violating loop in Spe
ial Relativity

In Spe
ial Relativity the analysis of the problem is simple. As one 
ould

expe
t, the loop might happen provided that x and x′ travel in the same
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dire
tion with the same velo
ity. Indeed, in the Spe
ial Relativisti
 limit the


onservation laws (6.93) and (6.94) take the simple form

K(0)
µ = q′µ + qµ − p′µ − pµ, (6.97)

K(1)
µ = p′µ + pµ − k′µ − kµ. (6.98)

From the boundary terms related to the parti
les forming the loop, it follows

that

xµ(s0) = ξµ(0), x′µ(s0) = ξµ(0), (6.99)

xµ(s1) = ξµ(1), x′µ(s1) = ξµ(1). (6.100)

Using the 
onditions (6.99), the equations of motion for the (p, x) and (p′, x′)
parti
les 
an be written as











x1 =
p1
p0

(

x0 − ξ0(0)
)

+ ξ1(0)

x′1 =
p′1
p′0

(

x′0 − ξ0(0)
)

+ ξ1(0).
(6.101)

Enfor
ing then the 
onditions (6.100), one obtains that the equations of

motion (6.101) imply that

p1
p0

=
p′1
p′0
, (6.102)

whi
h means that the two parti
les must obviously travel with the same

speed. Computing the invariant mass of the system 
omposed by these two

parti
les, from the dispersion relations one has

mp′

mp
=
p′0

√

1−
(

p′1
p′0

)2

p0

√

1−
(

p1
p0

)2
=
p′0
p0
, (6.103)

then

M2 = (pµ + p′µ)
(

pµ + p′µ
)

= m2
p +m2

p′ + 2pµp′µ

=m2
p +m2

p′ + 2 (p0p
′
0 − p1p′1)

=m2
p +m2

p′ + 2

(

p0p
′
0 −

p′0
p0
p21

)

=m2
p +m2

p′ + 2
p′0
p0
m2

p = (mp +mp′)
2 .

(6.104)
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Equation (6.104), 
ombined with equation (6.102), reveals what are the kine-

mati
al properties of a loop in Spe
ial Relativity. From equation (6.102) it

is known that the two parti
les must have the same speed; moreover, from

equation (6.104), it is understood that they must be in relative rest sin
e

the invariant mass of the system is given only by the sum of their masses.

So, in Spe
ial Relativity, if the laboratory is at rest with respe
t to the two

parti
les, the non-
ausality-violating loop redu
es to the des
ription of two

parti
les standing at the same point, whi
h before and after the loop are


onsidered as a whole.

6.3.2 Non-
ausality-violating loop in Relative Lo
ality

Relative Lo
ality requires a more 
areful analysis. However, one still looks for

a 
ondition of equal physi
al velo
ities (whi
h would not 
ome from a 
ondi-

tion of equal 
oordinates velo
ities, as an e�e
t of the non trivial translations

[106℄) and it is expe
ted that this will imply againM2 = (m+m′)2. Sin
e in
Relative Lo
ality only lo
al observations are meaningful, two observers are

needed to re
onstru
t that the loop e�e
tively took pla
e: one lo
al with the

emission of the two parti
les, and a se
ond observer lo
al with the absorption

of them. One 
ould dedu
e that the loop o

urred if for the �rst observer,

Ali
e, holds xµA(s0) = x′A
µ(s0) = 0 and for the se
ond observer, Bob, purely

translated with respe
t to Ali
e by a ve
tor bµ, holds xµB(s1) = x′B
µ(s1) = 0.

This is, evidently, the 
ondition of equal physi
al velo
ities. The relation

between the two observers, using the pres
ription for translations used [104℄,

is then







xµB = xµA + bν {(p′ ⊕ p)ν , xµ} ≃ xµA − bµ − δµ1 b1ℓp′0

x′B
µ = x′A

µ + bν {(p′ ⊕ p)ν , x′µ} ≃ x′A
µ − bµ − δµ0 b1ℓp1.

(6.105)

Using the dispersion relation (6.27), the �rst of the (6.95) be
omes

ẋ0 = Np (−2p1 + 2ℓp1p0) , ẋ1 = Np

(

2p0 + ℓp21
)

, (6.106)

so the 
oordinate velo
ity for the (p, x) worldline is

v =
ẋ1

ẋ0
=
−2p1 + 2ℓp1p0

2p0 + ℓp21
≃ −2p1 (1− ℓp0)

2p0

(

1− ℓ p
2
1

2p0

)

=− p1
p0

(

1− ℓp0 − ℓ
p21
2p0

)

.

(6.107)

In what follows it is more useful to make the substitution p21 = p20 − m2
p +

ℓp0
(

p20 −m2
p

)

, whi
h 
omes from the dispersion relation, thus the relation
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(6.107) be
omes

v = −p1
p0
− ℓp1

(

m2
p

2p20
− 3

2

)

. (6.108)

With exa
tly the same 
omputations the 
oordinate velo
ity for the (p′, x′)
worldline reads as

v′ = −p
′
1

p′0
− ℓp′1

(

m2
p′

2p′0
2 −

3

2

)

. (6.109)

Now one 
an write the 
oordinate des
ription performed by Ali
e of the two

parti
les

x1A = vx0A, (6.110)

x′A
1
= v′x′A

0
. (6.111)

Using the transformations (6.105), one �nds the des
ription made by Bob

x1B = v
(

x0B + b0
)

− b1 − b1ℓp′0, (6.112)

x′B
1
= v′

(

x′B
0
+ b0 + b1ℓp1

)

− b1. (6.113)

Enfor
ing the 
ondition xµB(s1) = x′B
µ(s1) = 0, one �nds at leading order the

two 
onditions

{

b1 = b0v (1− ℓp′0)
v′ = v [1− ℓ(p′0 + vp1)] .

(6.114)

Fo
using on the se
ond one of these equations, after expli
ating the velo
ities,

it be
omes

−p
′
1

p′0
− ℓp′1

(

m2
p′

2p′20
− 3

2

)

=
−p1

p0
− ℓp1

(

m2
p

2p20
− 3

2

)

+ ℓp1
p0
p′0

(

1− ℓp21
p0

) . (6.115)
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The se
ond member of (6.115) is manipulated as follows:

−p1
p0
− ℓp1

(

m2
p

2p20
− 3

2

)

+ ℓp1
p0
p′0

(

1− ℓp21
p0

) =

(

−p1
p0
− ℓp1

(

m2
p

2p20
− 3

2

)

+ ℓ
p1
p0
p′0

)(

1 + ℓ
p21
p0

)

= −p1
p0
− ℓp1

(

m2
p

2p20
− 3

2

)

+ ℓ
p1
p0
p′0 − ℓ

p1
p20
p21

= −p1
p0
− ℓp1

(

m2
p

2p20
− 3

2
− p′0
p0

+
p21
p20

)

= −p1
p0
− ℓp1

(

m2
p

2p20
− 3

2
− p′0
p0

+ 1− m2
p

p20

)

= −p1
p0

+ ℓp1

(

m2
p

2p20
+
p′0
p0

+
1

2

)

.

(6.116)

A 
onvenient way to express the �rst member is

−p
′
1

p′0
− ℓp′1

(

m2
p′

2p′20
− 3

2

)

= −p
′
1

p′0

(

1 + ℓ

(

m2
p′ − 3p′20
2p′0

))

.

Eq.(6.115) then be
omes

p′1
p′0

(

1 + ℓ

(

m2
p′ − 3p′20
2p′0

))

=
p1
p0
− ℓp1

(

m2
p

2p20
+
p′0
p0

+
1

2

)

(6.117)

from whi
h one 
an expli
it p′1, after some manipulations:

p′1 =
p1
p0
p′0 − ℓp1p′0

(

m2
p

2p20
+
p′0
p0

+
1

2

)

− ℓ
(

m2
p′ − 3p′20
2p′0

)

p1
p0
p′0

=
p1
p0
p′0 − ℓ

1

2

p1
p0

(

m2
p

p′0
p0

+ 2p′20 + p0p
′
0

)

− ℓ1
2

p1
p0

(

m2
p′ − 3p′20

)

=
p1
p0
p′0 − ℓ

1

2

p1
p0

(

m2
p

p′0
p0

+ p0p
′
0 +m2

p′ − p′02
)

,

(6.118)

whi
h is 
learly a deformation at the leading-order of the Spe
ial Relativisti


expression (6.102) as expe
ted.

Now it is possible to 
ompute the invariant mass of the system, similarly
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to what has been done in the previous subse
tion

M2 =(p′ ⊕ p)20 − (p′ ⊕ p)21 + ℓ (p′ ⊕ p)0 (p′ ⊕ p)
2
1 =

=p′0
2
+ p20 + 2p′0p0 − p′12 − p21 − 2p′1p1−

− 2ℓp′0p
′
1p1 − 2ℓp′0p

2
1 + ℓ (p′0 + p0)

(

p′1
2
+ p21 + 2p′1p1

)

=

=m2
p +m2

p′ + 2p′0p0 − 2p′1p1 + ℓ
(

p0p
′
1
2
+ 2p′1p1p0 − p′0p21

)

=

(6.119)

now using the equation (6.118), yields

M2 =m2
p +m2

p′ + 2p′0p0 − 2
p21
p0
p′0+

+ ℓ
p21
p0

(

m2
p

p′0
p0

+ p0p
′
0 +m2

p′ − p′02
)

+ ℓ

(

p21
p0
p′0

2
+ 2p21p

′
0 − p′0p21

)

=m2
p +m2

p′ + 2mp

(

mpp
′
0

p0
+ ℓ

mpp
2
1p

′
0

2p20
+ ℓ

m2
p′p

2
1

2mpp0

)

= m2
p +m2

p′ + 2mpmp′.

(6.120)

The last equality 
omes from the following 
hain of equalities

m2
p′ = p′0

2 − p′12 + ℓp′0p
′
1
2

= p′0
2 −

[

p21
p20
p′0

2 − ℓp
2
1

p20
p′0

(

m2
p

p′0
p0

+ p0p
′
0 +m2

p′ − p′02
)]

+ ℓ
p21
p20
p′0

3

= p′0
2 − p21

p20
p′0

2
+ ℓ

p21
p0
p′0

2
+ ℓ

p21p
′
0
2

p30
m2

p + ℓ
p21
p20
p′0m

2
p′

=
p′0

2

p20
m2

p + ℓ
p21p

′
0
2

p30
m2

p + ℓ
p21
p20
p′0m

2
p′

=
p′0

2

p20
m2

p

[

1 + ℓ
p21
p0

+ ℓ
p21
p′0

(

mp′

mp

)2
]

,

(6.121)

so

mp′ =
p′0
p0
mp

(

1 + ℓ
p21
2p0

+ ℓ
p21
2p′0

(

mp′

mp

)2
)

=
mpp

′
0

p0
+ ℓ

mpp
2
1p

′
0

2p20
+ ℓ

m2
p′p

2
1

2mpp0
.

(6.122)

From equation (6.120) has been found that the two parti
les must be in

relative rest in the Relative Lo
ality framework too in order to produ
e a

loop. So this loop is trivial for the same argument that applies to the Spe
ial

Relativisti
 
ase.
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Chapter 7

Con
lusions

This thesis ta
kled two main topi
s of resear
h in quantum gravity: quantum

spa
etime dimensionality and the departures from absolute lo
ality of events

due to the stru
ture of spa
etime at the Plan
k s
ale.

The observation that the dimension of spa
time at very short s
ales may

be di�erent from 4 (typi
ally less), whi
h has been found in many di�erent

approa
hes to quantum gravity, is of extreme interest, as it may point towards

a "true feature" of quantum spa
etime that our 
urrent models try to grasp.

The analysis of this phenomenon relied mostly on the spe
tral dimension

of quantum spa
etime, whi
h is a notion of dimension adapted for the s
ope

from its original de�nition in Riemannian geometry. It is here argued that the

spe
tral dimension is not a reliable physi
al observable, as the modi�
ations

to its de�nition employed for its use in des
ribing a quantum spa
etime are

su
h that its physi
al meaning is severely weakened. For su
h an interesting


ommon feature as running spa
etime dimension one should look for a robust

physi
al 
hara
terization of the phenomenon. For this s
ope, it has been here

proposed a notion of spa
etime dimension, the thermal dimension, whi
h is

based on thermodynami
al observables related to the behavior of a gas of

radiation at very high temperature. It has been shown, by detailed study of

a variety of quantum gravity models, how its properties are physi
ally more

appealing with respe
t to those of the spe
tral dimension. It is therefore

argued that the thermal dimension 
ould be a valuable physi
al observable

to test the behavior of running spa
etime dimension, in parti
ular for those

theories whose dispersion relation is su
h that the physi
al meaning of the

spe
tral dimension is parti
ularly un
lear.

A further appli
ation of the deformed thermodynami
s of high-energy ra-

diation is the investigation of the produ
tion of primordial perturbations in

a universe des
ribed by Rainbow Gravity with a running Newton 
onstant.

Both va
uum and thermal initial 
onditions for the perturbations have been
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onsidered and a power-law dependen
e of the Newton 
onstant on energy has

been assumed, together with the fa
t that the ba
kground satis�es the ther-

modynami
al relations pe
uliar to radiation subje
t to deformed dispersion

relations. This model is then able to produ
e primordial s
alar perturbations

whose spe
tral index respe
ts the 
onstraint set re
ently by the Plan
k satel-

lite. For both kinds of initial 
onditions for the perturbations (va
uum and

thermal) the running of the Newton 
onstant is essential in a
hieving a viable

pi
ture. In parti
ular, the Newton 
onstant is 
onstrained to be de
reasing

with energy in the ultraviolet regime. This is 
onsistent with intuition from

quantum gravity theories, su
h as Ho°ava-Lifshitz gravity and Asymptoti


safety. It also resonates with the 
onje
ture put forward in [86℄ and deserves

further investigations.

Con
erning the possible departure from absolute lo
ality of standard

physi
s, some aspe
ts of the theory of Relative Lo
ality has been analyzed.

This theory is studied in its 
lassi
al-me
hani
s formulation, where Plan
k

mass plays the role of relativisti
 invariant (in the sense of DSR) s
ale of


urvature of momentum spa
e. Relativity of spa
etime lo
ality is then a

re�e
tion of the introdu
tion of this new relativisti
 invariant: as the in-

trodu
tion of a relativisti
 invariant speed of light implied the relativity of

simultaneity (relativity of time 
oin
iden
e of events), the introdu
tion of a

relativisti
 invariant 
urvature of momentum spa
e implies the relativity of

lo
ality (relativity of spa
etime 
oin
iden
e of events). As original results, it

has �rst been shown that the relativity of spa
etime lo
ality does not spoil

the obje
tivity of 
ause-e�e
t relation in a 
hain of events. This has been

shown 
onsidering a 
ouple of dis
onne
ted 
hains of events, set up in su
h

a way that an observer may infer a very misleading pi
tures if she relies

on a des
ription of the events based only on her 
oordinates. A proper use

of translation transformations gives her ba
k the 
orre
t, obje
tive pi
ture.

Se
ondly, it has been shown that those phenomena that may be pathologi
al

for what 
on
erns 
ausality (
ausal loops) or violation of momentum 
on-

servation ("Möbius loops"), while may o

ur in generi
 theories with 
urved

momentum spa
e, are ex
luded when the theory is formulated in su
h a

way that the (deformed) relativisti
 symmetries are satis�ed, as is Relative

Lo
ality. In fa
t, for a generi
 theory with 
urved momentum spa
e, it is

possible to obtain general 
onditions on the generators of translation trans-

formations that must be satis�ed in order for that theory to be symmetri


under an appropriate notion of translation transformation. These 
onditions

are translated into 
onditions on energies and momenta of the intera
ting

parti
les. If these 
onditions are not satis�ed, the 
ausal loop is allowed,

whereas when these are satis�ed the only solution of the equations of motion

is that the whole loop 
ollapses to a single event. The same applies to the
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Möbius diagrams.

It has then been proposed a point of re�e
tion on the possible me
hanism

that may guarantee the relativity of spa
etime lo
ality even in the quantum

version of the theory, whi
h is still unknown. In a similar way to what hap-

pens on standard QED, where gauge-symmetry-violating Feynman diagrams

add up to give a gauge symmetri
 matrix element (see, for example, the

Compton s
attering), symmetry-violating diagrams su
h as Möbius diagram

may add up to give a symmetri
 matrix element.

Finally, it has been shown how non-
ausality-violating loops are trivial in

Relative Lo
ality, as well as they are in Spe
ial Relativity.
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A
ronyms and symbols

QM : Quantum Me
hani
s.

GR : General Relativity.

SM : Standard Model.

QFT : Quantum Field Theory.

QG : Quantum Gravity.

DSR : Doubly Spe
ial Relativity.

ℓ : Deformation parameter.

LP : Plan
k length.

LDSR : Fundamental relativisti
 invariant length s
ale.

⊲ : Right a
tion.

x̂ : Non
ommutative 
oordinate.

⊕ : Deformed sum.

⊖ : Inverse of the deformed sum.

Greek indi
es take the value {0, ..., D} where D is the number of spatial

dimensions of spa
etime. Latin indi
es take the value {1, ..., D}.
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