
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN FISICA

Cilo 29

Settore Conorsuale di a�erenza: 02/A2

Settore Sienti�o disiplinare: FIS/02

Quantum gravity phenomenology:

thermal dimension of quantum

spaetime,

ausality and momentum

onservation from Relative

Loality

Presentata da Franeso Brighenti

Coordinatore dottorato Supervisore

Prof. Gastone Castellani Prof. Roberto Balbinot

Relatore

Prof. Giovanni Amelino-Camelia

Esame �nale anno 2017



1



Abstrat

The original results presented in this thesis regard two very ommon top-

is of disussion in the quantum gravity debate: the dynamial dimensional

redution of spaetime and loality in quantum gravity regime. The di-

mensionality of the quantum spaetime is often understood in terms of the

spetral dimension; here, a di�erent notion of dimensionality, the thermal

dimension, is proposed. I disuss its physial properties in relation to those

of the spetral dimension through the study of spei� models of quantum

gravity, inluding preliminary results obtained in the ase of models with

relative loality. I show that, in those ases where the spetral dimension

has puzzling properties, the thermal dimension gives a di�erent and more

meaningful piture. The statistial mehanis developed to de�ne the ther-

mal dimension is applied also to the study of the prodution of primordial

osmologial perturbations assuming a running Newton onstant and Rain-

bow Gravity. Conerning loality, I study in partiular the theory of Relative

Loality, a theoretial framework in whih di�erent observers may desribe

the same event as being loal or non-loal, depending whether it happens in

the origin of their referene frame or far away from it, respetively. I show

that requiring that loality is relative is enough to guarantee the objetivity

of ause-e�et relation in hains of events, the absene of ausality-violating

loops and proesses violating the law of onservation of momentum.
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Introdution

The quantum gravity problem

The general relativisti desription of gravitational phenomena and the quan-

tum mehanis of the Standard Model of partiles physis are the most fun-

damental physial theories known today. Eah of them is spetaularly on-

�rmed by experiments, but until now gravitational physis and quantum

physis barely �speak� to eah other. In fat, GR has been on�rmed by

experiments on sales between 10−6
m and about 1020 m (at this sale one

has to postulate the existene of dark matter in order to make general rela-

tivity agree with the experimental results), whereas the typial appliations

of QM and the SM onern physial phenomena at sales between 10−8
m

and 10−20
m, the latter being the order of magnitude of the wavelength of the

partiles olliding at LHC. The gap between these two regimes overed by

experiments omes from the fat that gravity is too weak at the energy sales

at whih quantum physis has been tested to detet its ontribution in the

measurements, whereas the other fores are either short range or their quan-

tum properties averaged out at the sales at whih gravitational interation

is relevant, as in the ase of eletromagneti interation. The goal of formu-

lating a theory of Quantum Gravity originates not only from the disomfort

that some might have in realizing that the two theories (GR and QM) are

based on very di�erent desriptions of the world, but is indeed justi�ed by

several genuine sienti� arguments.

For example, as long as one ignores gravity, the SM gives de�nite pre-

ditions on the results of a sattering proess between two partiles eah at

energy of e.g. ∼ 1030 GeV. Suh high energy proesses are not presently

within our tehnologial reah, but ontemplating them sheds light on the

oneptual struture of our theories. It is known that the gravitational inter-

ation for ollisions between two partiles of energy approximately (or greater

than) the Plank energy EP =

√

~c5

G
∼ 1016 TeV annot be negleted. Es-

timating the gravitational ontribution to the sattering amplitudes (from
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some e�etive-�eld-theory formulation of gravitational interations) one ob-

tains unmanageable divergenes.

Indeed, the attempts to formulate a loal quantum �eld theory of gravity

meet many problems, starting from the formalization of the miroausality

postulate, i.e. that two loal observables A(x) and B(y)must ommute when

x and y are separated by a spaelike interval. This postulate makes sense in

the speial-relativisti loal quantum �eld theory sine in that ontext the

spaetime metri is �xed to be Minkowskian, whereas in GR the metri is a

dynamial variable and therefore, in general, is not given at the beginning of

the analysis. The standard approah is then to assume a bakground metri

that �xes the spaetime intervals from the beginning and a perturbation

of the metri that haraterizes the gravitational interations. The theory

that one obtains from this proedure is non-renormalizable (at least in the

standard sense; it will be onsidered in this thesis also the proposal �rst

given by Steven Weinberg of Asymptoti Safety, whih gives an alternative

understanding of renormalizability in a broader sense).

It appears to be still possible developing QFT on a �xed bakground

spaetime metri that is not Minkowskian. In this ontext, Hawking found

the famous e�et of blak hole's radiation ([1℄) studying this kind of theory

on a Shwarzshild bakground metri. Hawking's result represents a serious

theoretial hallenge sine it suggests that information is not onserved in

the proess of formation and evaporation of a blak hole (see Ref. [2℄ for

reent developments in the understanding of the problem).

An argument indiating rather learly how QG requires a radial hange

in our desription of Nature is Bronstein's argument on the measurability

of the gravitational �eld. He applies to the gravitational �eld the measure-

ment proedure onsidered by Landau and Peierls in their ritique to the

logial onsisteny of the newborn QED. In order to measure the eletro-

magneti �eld in a small region of spaetime (ideally a point), they studied

the asymptoti states of a probe with eletri harge e that interats with the

eletromagneti �eld in that region. What they found is that the unertainty

in the value of the �eld in that region is proportional to the ratio e/mi where

mi is the inertial mass of the probe. So the ideal probe would have e/mi ∼ 0
and ould be used to determine the eletromagneti �eld with arbitrary a-

uray. As far as it is known today, there is not suh ideal eletromagneti

probe in Nature. Therefore, Landau and Peierls onluded that sine it will

never be possible to make a sharp measurement of the eletromagneti �eld,

than QED, whih admits also eigenstates of eletromagneti �eld as a basis

of the Hilbert spae, is logially inonsistent. It was then reognized by Bohr

and Rosenfeld that QED is instead logially onsistent, as the fat that there

is no suh ideal probe is to be taken as a tehnologial limit, sine the deter-
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mination of the existene of suh a partile is outside the sopes of QED

1

.

Bronstein realized the importane of this argument for the ase of quantum

gravity: for the gravitational �eld the ratio e/mi beomes mg/mi (mg being

the gravitational mass), but for the Equivalene Priniple this is fored to

equal 1. This means that the gravitational �eld is fundamentally not sharply

measurable. QM formalism allows sharply measurable eigenvalues for all ob-

servable, it might only limits the auray of simultaneous measurement of

two observables. Bronstein then argued that a new theoretial paradigm is

needed to take this harateristi of gravity into aount.

This new theoretial paradigm is likely to deal with e�ets that provide

striking departures from our urrent theories. Unfortunately, today one an

only speulate about suh e�ets beause experimental evidene of them

is still missing. Atually, for a very long time it was a general onvition

that QG e�ets were observable only for partiles with Plank-sale energy,

whih is not aessible in laboratories neither at present nor in the foresee-

able future. Even if it is not possible for present tehnology to aelerate

partiles to Plankian energies, it has been observed in the late 90's that it is

possible to have indiret aess to that sale by astrophysial and osmolog-

ial observations

2

(see Refs.[4℄,[5℄,[6℄,[7℄,[8℄,[9℄ and [10℄ for a reent review on

quantum spaetime phenomenology). In partiular, some e�ets due to the

quantum struture of spaetime may sum up along the travel of a partile

oming from a far away soure. This inludes possible modi�ation to the

energy-momentum relation

E2 − p2 = m2

suh as, for instane to leading order in Plank length LP = c~
EP

,

E2 = p2 +m2 + αLPEp
2 +O(LP )

2, (1)

where α is a dimensionless onstant of order one. The typial e�et that

one expets from suh modi�ation is to observe an unexpeted delay in the

time of arrival of a very high energy partile and a low energy one oming

from the same short-lived soure at an astrophysial or osmologial distane.

The quantitative predition on the delay although depends on the details of

the theory, in partiular on how the Plank length is inorporated in the

theoretial sheme in relation to Lorentz symmetry.

1

The interest reader may �nd the omplete report of this debate in Ref.[3℄.

2

More reently it has been argued that quantum optis might be used to diretly

measure the anonial ommutation relation (and the possible deformation due to the

quantum struture of spaetime) of the enter-of-mass mode of a mehanial osillator with

a mass lose to the Plank mass (see Refs.[11℄, [12℄, [13℄ for a more omplete disussion of

this possibility).
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In fat, the Plank length is often de�ned as LP =

√

~G

c3
, via the ombi-

nation of three relativisti onstants

3

. As long as this is the only operative

de�nition of the Plank length, it is simply identifying a length sale and

does not pose any problem to the relativisti piture of the theory. However,

the moment it aquires a physial meaning as the length of something via

an independent operative de�nition, for example via the deformed dispersion

relation (1) and therefore independently measurable via the time-of-arrival

delay of the kind mentioned above, one has to investigate if suh operative

de�nition is ompatible or not with the other relativisti postulates in the

proposed QG theory, as lengths are ontrated by Lorentz transformations

aording to the relative motions of the observers. Then, a �rst possibility is

that there is a preferred frame in whih formulate our QG theory. Example

of suh theories are Ho°ava-Lifshitz gravity and Magueijo-Smolin formulation

of Rainbow gravity. A seond possibility is instead that the Lorentz trans-

formations are just a low-energy approximation of a more ompliated set

of transformations that relates the measurements of two inertial observers

and these transformations are suh that Plank length is a relativisti in-

variant just as the speed of light is in Speial Relativity. This is the general

idea of Doubly Speial Relativity (DSR). Some doubly-speial-relativisti

quantum gravity models are k-Minkowski non-ommutative spaetime, 2+1
gravity and Relative Loality. A third possibility onsidered in this thesis is

that Lorentz transformation are still a valid symmetry of the physial laws

and these are suh that there is no ontradition between the existene of a

di�erent physial regime set by Plank sale and Lorentz symmetry. Suh

perspetive is that of String Theory, some interpretations of Loop Quantum

Gravity, Causal Sets and Asymptoti Safety, to mention the most popular

ones. In this ategory, a model inspired by the Asymptoti Safety approah

will be onsider.

Two hallenges for quantum spaetime researh

Part of the work presented in this thesis wants to ontribute to the devel-

opment of theories formulated on a quantum spaetime. In fat, several

argument suggest that our usual desription of spaetime, whih is stritly

3

Although very di�erent among eah other: c is a relativisti invariant by postulate and
Lorentz transformation respet this postulate in a non-trivial way, ~ invariane is related

to the fat that it has dimension of an ation and Newton onstant is the outome of a

IR measurement (�infrared", i.e. for probes of wavelength muh longer than the Plank

length).
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lassial in GR as well as in QM and in QFT, needs to be deeply modi-

�ed in QG, ultimately requiring the formulation of an appropriate notion of

quantum geometry.

Consider for example the following argument. In QM an inertial observer

an in priniple operatively onstrut a oordinates system with labels on

eah spaetime point by setting up a dense array of pointlike synhronized

loks. Eah lok marks the time oordinate of the event while spae oor-

dinates are given by the position of the lok and are all sharply measurable

sine position operators ommutes with eah other. For the Heisenberg prin-

iple, if eah lok has �nite mass, the observer should still worry about

unertainties in time evolution of the referene frame, sine it is not possible

to determine both position and veloity of eah lok sharply, unless she uses

loks with in�nite mass. By this it is really meant that it is possible to adopt

a limiting proedure in whih heavier and heavier loks are used, so that,

using a set of loks with an appropriate mass, it is possible to onstrut

a referene frame that is "lassial enough" (i.e. the unertainties in the

time evolution of the position of eah lok an be negleted) for any given

sensibility of the experimental apparatus. Sine QM ignores gravitational

e�ets, this limiting proedure is legitimate and logially onsistent within

the theory. The same reasoning an be applied in the ontext of QFT, with

the only di�erene that even if spaetime oordinates of events are sharply

measurable, a partile with �nite mass is just approximately loalized in a

region of radius equal to the partile's Compton wavelength, δx ∼ ~/cm.

If one tries to loalize the position of the partile better than this by using

probes with wavelength shorter than partile's Compton wavelength, other

partiles are produed in the measurement proedure and so this position

measurement is atually meaningless.

Of ourse, when gravitational e�ets are taken into aount the observer

annot use this onstrution of referene frames by in�nitely massive loks,

sine it an be shown that when a lok with mass m ∼ EP/c
2
is onsidered,

then a probe annot get loser to the lok than the Shwarzshild radius

R ∼ LP . These arguments for an intrinsi limit in the loalization of an

event lead to a general onvition of the quantum gravity ommunity that

the desription of spaetime as a Riemannian manifold must be replaed by

a �quantum geometry� of �fuzzy� points.

This thesis deals with two di�erent questions about quantum spaetime,

very popular in the QG ommunity: "what is the dimension of spaetime at

sales of the order of the Plank length?" and "what happens to our usual

notion of loality in the quantum gravity regime?"

The many alternative approahes to the study of the quantum-gravity

problem are based on formalizations and physial pitures that are signif-

11



iantly di�erent, in most ases o�ering very few opportunities to ompare

preditions between one approah and another. As a result, there is strong

interest for the few features whih are found to arise in several alternative

models. In fat, the interest in the disussion about the number of dimension

of spaetime at the Plank sale originates from the results obtained in the

last deade by many groups, showing the ommon mehanism of �dynam-

ial dimensional redution": the familiar four-dimensional lassial piture

of spaetime in the IR is replaed by a quantum piture with an e�etive

number of spaetime dimensions smaller than four in the UV (�ultraviolet",

i.e. for probes of wavelength omparable to the Plank length). These ex-

iting reent developments fae the hallenge that the standard onept of

dimension of a spaetime, the �Hausdor� dimension", is inappliable to a

quantum spaetime [14, 68℄, and therefore one must rely on some suitable

new onept. This hallenge has been handled so far mostly

4

by resorting

to the notion of �spetral dimension", whose key ingredient is the (modi�ed)

d'Alembertian of the theory

5

and for lassial �at spaetimes reprodues the

Hausdor� dimension. It was in terms of the spetral dimension that dy-

namial dimensional redution was desribed for several approahes to the

quantum-gravity problem, inluding the approah based on Causal Dynami-

al Triangulations [53℄, the Asymptoti-Safety approah [54℄, Ho°ava-Lifshitz

gravity [55℄, the Causal-Sets approah [57℄, Loop Quantum Gravity [58, 59℄,

Spaetime Nonommutativity [60℄ and theories with Plank-sale urvature

of momentum spae [61, 62℄.

The fat that so muh of the intuition about the quantum-gravity realm

is being attahed to analyses based on the spetral dimension, whih it is

here argued not to be a physial haraterization of a theory, should be

reason of onern. For suh preious ases where a feature is found in many

approahes to the quantum-gravity problem, and therefore might be a �true

feature" of the quantum-gravity realm, one should ask for no less than a

fully physial haraterization. The �rst original result presented in this

thesis work onsists in the de�nition of suh more physial haraterization

of quantum spaetime dimension, the "thermal dimension".

Conerning the seond question posed to the quantum spaetime, the fate

of loality is another topi widely disussed in the ommunity, a onsistent

part of whih believes our usual notion of absolute loality will be lost. Here

4

Other andidates for the haraterization of the dimension of a quantum spaetime

have been proposed in Refs. [68, 69, 70, 71, 72℄.

5

There are ases, suh as in Causal Dynamial Triangulations, where the d'Alembertian

of the theory is not known, but it is possible to alulate the spetral dimension with other

tehniques. It has been established [73℄ that in these ases it is then possible to reonstrut

the d'Alembertian.
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I fous on the partiular theory of Relative Loality, in whih the Plank

sale enters as the harateristi sale of the urvature of momentum spae;

the non-trivial geometry of momentum spae has its spaetime ounterpart

in a weakening of loality. It will be shown, as a larifying example of the

origin of the basi idea of relative loality, how in the extensively studied non-

ommutative k-Minkowski spaetime two events may be oinident or not de-

pending on the distane of the observer from the events. In this framework

there is no notion of absolute loality, di�erent observers see di�erent spae-

times, and the spaetime they observe are energy and momentum-dependent.

Loality, a oinidene of events, beomes relative: oinidenes of events are

still objetive for all loal observers, but they are not in general manifest in

the spaetime oordinates onstruted by distant observers.

There have been onerns [107℄,[109℄ that this notion of loality might

have pathologial impliations for what onerns ausality and momentum

onservation. Some original results of this thesis show that no suh patholo-

gies atually arise.

Outline of the thesis

The �rst part of the thesis presents the di�erent quantum gravity models that

will be onsidered throughout the thesis, inluding Relative Loality. The

fous then goes to the �rst question, regarding the haraterization of the

dimensional redution of spaetime via the thermal dimension. Afterwards,

the ausality and momentum onservation topis in Relative Loality will be

disussed.

Chapter 1 presents the theories in whih Lorentz invariane is either pre-

served (as in Asymptoti Safety) or deformed that are of interest in the thesis

work. It starts with some known results obtained in the study of senarios for

spaetime quantization, reviewed with the sope of highlighting the onne-

tion between nonommutative quantum spaetime and relativisti theories of

interating partiles with nonlinear momentum spae. The latter is the lass

of theories in whih a onsiderable part of the original results presented in

this thesis have been obtained. Setion 1.1 presents an example of quantum

spaetime, k-Minkowski. This nonommutative spaetime is used as a �sto-

ryteller� in the �rst part of the thesis and will lead to the onepts whih are

useful in the following. It will be reognized as a model of Doubly Speial

Relativity (DSR), where Plank length is a fundamental length sale onsis-

tent with the Priniple of Relativity. Examples of DSR theories ome from a

notable soure suh as 2 + 1 gravity oupled to matter, as quikly disussed

in Setion 1.3. Setion 1.4 reviews the basi notions of Asymptoti Safety.

13



Chapter 2 introdues the onepts in Relative Loality whih are relevant

for this thesis. Setion 2.1 shows quikly how k-Minkowski non-ommutative

spaetime is an example of spaetime with relative loality. The presentation

of Relative Loality ontinues independently on any pre-existing model in

Setion 2.2, and in Setion 2.3 the model of Relative Loality used in the

rest of the thesis is introdued.

Chapter 3 introdues some already known proposal for some QG theo-

ries in whih Plank sale breaks Lorentz invariane suh as Ho°ava-Lifshitz

gravity and Magueijo-Smolin Rainbow gravity, here reviewed in Setion 3.1

and 3.2 respetively.

Chapter 4 introdues the �rst original ontribution of this thesis; after

reviewing the properties of the spetral dimension and its appliation in quan-

tum gravity in Setion 4.1, it is observed in Setion 4.2 that some thermody-

namial properties of radiation gas (suh as the equation of state parameter

and the saling of temperature with energy density) ould be used to assign

a thermal dimension to the quantum spaetime. The good properties of this

notion of dimension will be shown and disussed against those of the spe-

tral dimension. Setion 4.3 shows some preliminary results obtained so far

in trying to extend the notion of thermal dimension of quantum spaetime

with relative loality.

Then in Chapter 5 another original ontribution is presented, onsisting

in the appliation of the modi�ed statistial mehanis, introdued in the

previous hapter, to the study of primordial osmologial perturbation in a

rainbow universe with running Newton onstant. It begins omputing the

Friedmann and salar perturbations equations for a Rainbow metri assoi-

ated to a dispersion relation of the Ho°ava-Lifshitz type in Setions 5.1 and

5.2. Then, Setions 5.3 and 5.4 ompute the spetral index for both vauum

and hydrodynamial �utuations respetively, notiing that the ondition for

obtaining the observed spetral index and solving the horizon problem is that

Newton onstant dereases in the UV. This is onsistent with some preedent

results where quantum gravity is responsible for solving the horizon problem

without appealing to in�ation.

Chapter 6 ontains the original results obtained in the ontext of Rela-

tive Loality, beginning with the analysis of the ausal behavior of the theory.

Spei�ally, in Subsetion 6.1.1 it is shown the objetivity of ause-and-e�et

relations and in Subsetion 6.1.2 that the theory does not admit ausally vio-

lating proesses (ausally violating loops). Setion 6.2 disuss those proesses

in whih the law of momentum onservation is violated, proving that they

are not allowed in Relative Loality. Finally, Setion 6.3 also shows that the

theory does not admit even non-ausally-violating loops (it must be stressed

that the theory, as treated here, is lassial, so these loops are not of the kind
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met in Feynman diagrams in perturbative Quantum Field Theory).

Chapter 7 brie�y summarizes the original results presented in this work.
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Chapter 1

Theories preserving relativity of

inertial frames

In the introdution few arguments suggesting that short-sale struture of

spaetime might be haraterized by a minimum length LP , setting a limit

on the loalization of events, have been disussed. Other robust arguments

indiate a seond possible role of this length sale as that of wavelength at

whih new physial e�ets our, while standard physis desribes partiles

of larger wavelength. The latter proposal is often odi�ed in deformed mass-

shell relations suh as, for example, E2 = c2p2 + c4m2 ± cLPEp
2
. Beause

of FitzGerald-Lorentz ontrations, LP annot be a fundamental speial-

relativisti invariant sale in neither of the two possible roles (minimum

length and harateristi wavelength), sine two boosted observers will not

agree on the fat that the minimum length/harateristi wavelength is equal

to LP . But the Relativity Priniple demands that physial laws should be

the same in all inertial frames, inluding the laws that attribute to LP a

fundamental role in the struture of spaetime. In the mid-1990s studies ad-

voating a role for the Plank length in spaetime struture often ended up

introduing (more or less expliitly) a preferred family of inertial observers

(usually identi�ed with the natural observers of the osmi mirowave bak-

ground radiation), therefore breaking Lorentz symmetry (see, e.g. Ref.[18℄).

The alternative possibility of introduing the Plank length in spaetime

struture in a fully relativisti manner was proposed in 2000 ([19℄, [20℄) and

is the Doubly Speial Relativity framework. A DSR theory requires the in-

variane of the minimum length/harateristi wavelength denoted by

1 LDSR

in addition to the request of invariane of the speed-of-light sale.

1

Here the harateristi length sale is indiated as LDSR rather than Lp to indiate a

possible extra fator that multiplies Lp.
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Setion 1.1 introdues an example of quantum spaetime in whih Lorentz

symmetry is preserved, although the transformations are modi�ed with re-

spet to those of subPlankian-energy physis. This provides guidane for

getting some intuition for formulating a theory in whih the speed of light

sale and a length sale are both fundamental relativisti invariants (DSR).

This general proposal is presented in Setion 1.2. Setion 1.3 disusses the

ase of 2 + 1 gravity as a notable example of this kind of theory. Setion 1.4

reviews the very di�erent paradigm of asymptoti safety, where it is supposed

that Lorentz symmetry is not modi�ed and still a symmetry of physis.

1.1 k-Minkowski nonommutative spaetime

One of the most appealing realizations of the DSR onept is that of a Hopf-

algebra senario with k-Poinaré struture and the related k-Minkowski non-

ommutative spaetime. Nonommutative spaetimes are toy models where

one tries to haraterize the limitation in the loalization of an event promot-

ing spaetime oordinates to nonommuting operators. The physial regime

onsidered might be that of a freely propagating partile whose energy is

high enough to probe the quantum struture of spaetime, but its in�uene

on the marosopi sale struture of spaetime is still negligible. Therefore,

the only ontribution of gravity in determining the non-trivial struture of

spaetime omes from this nonommutative harater of the oordinates.

The harateristi spaetime-oordinate nonommutativity of k-Minkowski

is given by

[x̂j , x̂0] = iℓx̂j (1.1)

[x̂j , x̂k] = 0 (1.2)

where x̂0 is the time oordinate, x̂j is the spae oordinate (j, k ∈ {1, 2, 3})
and ℓ is a length sale. Funtions of these nonommuting oordinates admit

a "Fourier transform"

f(x̂) =

∫

d4k f̃(k)e−i~k·~̂xeik0x̂0
(1.3)

where the "Fourier parameters" k0, ki are ordinary ommutative variables.

It is therefore possible to haraterize the ation of transformations genera-

tors on the funtions of nonommutative variables by studying their ation

diretly on the basis exponentials e−i~k·~̂xeik0x̂0
.

A frequently used haraterization of symmetry of k-Minkowski intro-

dues the following de�nitions of generators of translations, spae-rotations
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and boosts:

Pµ ⊲ e
−i~k·~̂xeik0x̂0 = kµe

−i~k·~̂xeik0x̂0, (1.4)

Mj ⊲ e
−i~k·~̂xeik0x̂0 = ǫjklxkkle

−i~k·~̂xeik0x̂0, (1.5)

Nj ⊲ e
−i~k·~̂xeik0x̂0 =− kje−i~k·~̂xeik0x̂0x̂0+

+

[

x̂j

(

1− e2ℓk0
2ℓ

+
ℓ

2
|~k|2
)

+ ℓx̂lklkj

]

e−i~k·~̂xeik0x̂0 .
(1.6)

The fat that one here deals with a (k-Poinaré) Hopf algebra is essentially

seen by ating with these generators on produts of funtions, observing,

for example, that, from the k-Minkowski ommutators (1.1),(1.2) and the

Baker-Campbell-Hausdor� formula, one has

e−ikj x̂jeik0x̂0e−iqj x̂jeiq0x̂0 = e−ikj x̂je−ieℓk0qj x̂jeik0x̂0eiq0x̂0 = e−i(kj+eℓk0qj)x̂jei(k0+q0)x̂0 .
(1.7)

Then the ation of the translation generators is

Pµ ⊲ e
−i~k·~̂xeik0x̂0e−i~q·~̂xeiq0x̂0 =

(

kµ + eℓk0(1−δ0µ)qµ

)

e−i~k·~̂xeik0x̂0e−i~q·~̂xeiq0x̂0 . (1.8)

For a pair of funtions f(x̂) and g(x̂) one �nds

Pµ ⊲ (f(x̂)g(x̂)) = (Pµ ⊲ f(x̂)) g(x̂) +
(

eℓP0(1−δ0µ) ⊲ f(x̂)
)

(Pµ ⊲ g(x̂)) (1.9)

i.e. one �nds a �non primitive oprodut

2

� ∆Pµ = Pµ ⊗ 1 + eℓP0δ1µ ⊗ Pµ,

di�erent from the �primitive oprodut� ∆Pµ = Pµ ⊗ 1 + 1 ⊗ Pµ typial of

ordinary di�erential operators. The oprodut has an important role in de-

termining the form of generators reported above. Those generators in fat

an be obtained assuming the standard ation of translation and rotation

generators (1.4), (1.5) and realizing then that using the undeformed boost

does not allow getting the 10 generators losed Hopf algebra (the oproduts

of undeformed boosts introdue an undesired generator of dilatation trans-

formations) that would orrespond to the Poinaré algebra of Minkowski

spaetime symmetries. The deformed boosts ation (1.6) is then obtained

onsidering the most general deformation of boosts generators with the right

lassial limit admitted by the other symmetries, and requiring that together

2

Given an algebra A, the oprodut is a linear map ∆ : A→ A⊗A that is �oassoia-

tive�, that is (∆⊗ id) ◦∆ = (id⊗∆) ◦∆.
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with translation and rotation generators form a 10 generators losed Hopf

algebra.

The ommutators between the generators (1.4), (1.5), (1.6) are

[Mµν , Mρτ ] = i (ηµτMνρ − ηµρMντ + ηνρMµτ − ηντMµρ) ,

[Mi, Pj] = iǫijkPk, [Mi, P0] = 0,

[Ni, Pj] = iδij

(

1

2ℓ

(

1− e2ℓP0
)

+
ℓ

2
PiPi

)

− iℓPiPj,

[Ni, P0] = iPi,

[Pµ, Pν ] = 0,

where Pµ = (P0, Pi) are the time and spae omponents of the translations

generators and Mµν are modi�ed Lorentz generators with rotations Mk =
1
2
ǫijkMij and boosts Ni =M0i.

With the oproduts (1.9) the ommutators (1.1) and (1.2) are left in-

variant under the ation of the generators in the sense that for translations,

for example, one has

3

Pµ ⊲ [x̂j , x̂0] = iℓPµ ⊲ x̂j ,

Pµ ⊲ [x̂j , x̂k] = 0.

(1.10)

One also �nds a deformed mass Casimir for this algebra, obtained from the

generators given above

Cℓ =
(

2

ℓ

)2

sinh2

(

ℓ

2
P0

)

− e−ℓP0PiPi. (1.11)

The idea that this mathematis provides a possible basis for a DSR theory

originates from the left-invariane of the k-Minkowski ommutators under

3

The interested reader an veri�ed this ommutator invariane straightforwardly by

expressing x̂µ =
(

−i ∂
∂kµ e

ikj x̂jeik
0x̂0

)

|k=0, ating on the basis exponentials with the gen-

erators Pµ and then take kν = 0. Indies are raised and lowered with Minkowski metri

tensor ηµν = (1,−1,−1,−1).
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the ation of the k-Poinaré generators as in Eq.(1.10) and the onsequent

identi�ation of ℓ with LDSR. Furthermore, the Casimir (1.11) an inspire a

deformed on-shell relation for relativisti partiles. For a low energy partile,

at �rst order in ℓ, this takes the form

m2 = P 2
0 − PiPi + ℓP0PiPi. (1.12)

The generators are not the only nontrivial struture needed to imple-

ment symmetry transformations in k-Minkowski. Considering the ase of

translations, one of ourse wants that nonommuting variables x̂′µ used by a

translated observer are obtainable from the old ones by a rule of the type

x̂′µ = x̂µ − âµ and that these also satisfy the k-Minkowski ommutators

(1.1),(1.2). It is lear that the translation parameters âµ an not be om-

mutative variables but must have nonommutative properties themselves, in

partiular one an adopt the following presriptions

[âj , x̂0] = iℓâj , [âµ, x̂j ] = 0, [â0, x̂0] = 0. (1.13)

In this way the translation operator takes the familiar form

T = 1 + d, d = iâµP
µ. (1.14)

where P µ = ηµνPν , η
µν

is the inverse of the Minkowski metri tensor.

The hoie of the basis exponentials is arbitrary. For example, one ould

hoose the basis eik
µx̂µ

or eik
0x̂0eik

j x̂j
. These di�erent hoies yield di�erent

form of the transformations generators, depending on the partiular order

one writes the basis exponentials. Consider for simpliity the translation

generators. Denoting the translation generators used until now PRµ (beause

the basis exponential with the time oordinate is to the right of that with

spatial oordinates), one ould de�ne other translation generators by setting

PLµ ⊲ e
ik0x̂0e−i~k·~̂x = kµe

ik0x̂0e−i~k·~̂x
. Then it is straightforward to verify that

PRµe
ik0x̂0e−i~k·~̂x 6= PLµe

ik0x̂0e−i~k·~̂x
, whih implies PRµ 6= PLµ. However, this

abundane of possible translation generators is not really a problem, sine

to eah hoie of ordering of the basis exponentials orrespond also di�erent

translation parameters âµ. Therefore, fousing on the two hoies of time-to-

the-right and time-to-the-left basis exponentials, one �nds also that âRµ 6=
âLµ, where âRµ denote the translation parameters related to the time-to-

the-right basis whereas âLµ denote the translation parameters related to the

time-to-the-left basis. It turns out that the translation operator T , de�ned in

Eq.(1.14), is order-independent, i.e. its ation on a funtion of nonommuting
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variables does not depend on the arbitrary hoie of ordering of the basis

exponentials when Fourier transforming (see Ref.[21℄ for more details).

It is also important highlighting that the possibility of removing all anoma-

lies of the ommutators by nonlinear rede�nitions of the generators does not

imply that one �reovers� Speial Relativity. In fat, a proper desription

of Hopf algebra symmetries must take into aount both ommutators and

oproduts of the generators; onurrently, a rede�nition of the generators

neessarily modi�es also the oproduts in suh a way that the physial dif-

ferenes between k-Minkowski and Speial Relativity remain. Moreover, by

using the whole mahinery of ommutators and oproduts it is possible

([21℄, [22℄) to obtain onserved harges assoiated to the Hopf symmetries

for a theory with lassial �elds in the nonommutative k-Minkowski spae-

time, whereas other attempts to obtain onserved harged, ignoring the role

of oproduts, had failed.

In k-Minkowski the desription of translations neessarily requires some

new struture, as it an be most elementarily seen by looking at the ompo-

sition law of basis exponentials and the ation of the translation generators

on this produt of funtions, i.e. its oprodut (1.8). Cleary the spaetime

nonommutativity is leading to a new omposition of energy and momentum

(p, E)⊕ (q, ω) = (p+ eℓEq, E +ω), whih involves a lear non-linearity. This

non-linear omposition law of momenta might be seen as suggesting a non-

linear geometry of momentum spae. Indeed, it has been shown in Refs. [23℄,

[24℄, [25℄, [26℄ that k-Poinaré Hopf algebra desribes a urved momentum

spae with de Sitter metri, torsion and nonmetriity (the usual geometry of

momentum spae is reovered by letting ℓ→ 0, so that ℓ (or LDSR) might be

seen as a deformation parameter). This geometry, in the appropriate regime

in whih relative loality is studied today, will be the basis for the expliit

example of relative loality presented in Setion 2.3.

1.2 The Doubly Speial Relativity proposal

Besides k-Minkowski nonommutative spaetime there are many other DSR

theories. It is therefore useful to desribe here the general priniples of the

DSR proposal, independently on their spei� formalization. A good starting

point for introduing DSR is the analysis of the step from Galilean Relativity

to Speial Relativity as a solution to the problem of attributing to c the role of
speed of light, a universal onstant that is the same for every observer. From

this perspetive, one ould regard Galilean Relativity as a theory based on the

Relativity Priniple and the assumption that there would be no fundamental

sales of length or veloity.
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The Relativity Priniple introdued by Galilei an be stated as follows:

(R.P.) : The laws of physis take the same form in all inertial frames (i.e.

these laws are the same for all inertial observers).

This priniple has strong impliations on geometry and kinematis when

ombined with the assumption of existene of fundamental sales. In fat, the

hypothesis that there is some fundamental sale is to be regarded as a physial

law itself. The Relativity Priniple then implies that the relations between

the measurements performed by di�erent inertial observers must be suh that

every inertial observer agree with the value and the physial interpretation of

this sale. Combining the Relativity Priniple with the assumption that there

are not absolute sales one an obtain the Galilean rules of transformation

between observers. For example, if v is the veloity of a body with respet

to an inertial observer, and a seond observer moves with onstant veloity

v0 with respet to the �rst observer, the veloity of the body with respet

to the seond observer, in absene of a fundamental veloity sale, an be

only of the form v′ = f(v, v0). Considering other reasonable assumptions

(f(v, 0) = v, f(0, v0) = v0, f(v, v0) = f(v0, v), f(−v,−v0) = −f(v, v0)), the
well-known Galilean formula of omposition of veloities v′ = v + v0 follows.

The step made by Einstein was introduing a fundamental veloity sale

onsistently with the Relativity Priniple. To do so, it must be spei�ed a

unique experimental proedure that allows every inertial observer to mea-

sure the value of this fundamental sale. These two postulates might be

summarized as follows:

(E.L.1) : The laws of physis involve a fundamental sale of veloity c.

(E.L.1b) : The value of the fundamental veloity sale c an be measured by

eah inertial observer as the speed of light.

One ould have expeted a more preise desription of the measurement

proedure to adopt in order to establish the value of c; for example, one ould

have expeted the speed of light to depend on the veloity of the soure or

on the wavelength of the light. However, it is important to realize the role

that the Relativity Priniple and the postulate (E.L.1) have in determining

the form of (E.L.1b): the spei�ation of a wavelength dependene would

have required a referene fundamental sale of length, whereas a dependene

of the speed of light on the veloity of the soure would be in on�it with

the fundamental nature of c as a sale on whih, aording to the Relativity

Priniple, all inertial observers agree.
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From the Relativity Priniple, (E.L.1) and (E.L.1b) one an obtain the

rules that relate the observations performed by di�erent inertial observers,

whih are the Lorentz transformations. Famously, the transition from Galilean

Relativity to Speial Relativity requires the replaement of the simple for-

mula of Galilean omposition of veloities with a muh riher speial rela-

tivisti version

~v1 ⊕ ~v2 =
1

1 + ~v1·~v2
c2

(

~v1 +
1

γ1
~v2 +

1

c2
γ1

1 + γ1
(~v1 · ~v2)~v1

)

. (1.15)

Furthermore, the introdution of c requires to abandon the onept of

absolute simultaneity, whih would ontrast with the fat that the exhange

of information between two loks in relative motion is strongly onstrained

by (E.L.1) and (E.L.1b).

It is natural then, in order to introdue Plank length in a relativisti

theory, to modify (E.L.1) and (E.L.1b) allowing for a fundamental length

sale. (E.L.1) simply beomes:

(L.1) : The laws of physis involve a fundamental length sale LDSR and a

fundamental veloity sale c.

The new relativisti theory is de�ned one one gives the experimental proe-

dures to measure c and LDSR that substitute (E.L.1b). The introdution of

LDSR makes possible a wavelength dependene of the value of c; however, it
is still possible that no suh dependene ours. Sine experiments dealt only

with wavelength muh larger than LDSR, one shall be autious and modify

(E.L.1b) as follows:

(L.1b) : The value of the fundamental veloity sale c an be measured by

eah inertial observer as the speed of light with wavelength λ muh

larger than LDSR (more rigorously, c is obtained as the λ/LDSR → ∞
limit of speed of light).

The proedure (L.1) by whih every inertial observer an measure the value

of LDSR should be determined by experimental data. As already said, there

are many theoretial arguments suggesting a role for the Plank length in

the small-distane struture of spaetime. An example of a possible form for

(L.1) is

(L.1*) : Eah inertial observer an establish the value of LDSR, whih is the

same for all inertial observers, by determining the dispersion relation

for photons. This takes the form E2 = c2p2− f(E, p;LDSR), where the
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funtion f is the same for all inertial observers and in partiular all

inertial observers agree on the leading LDSR dependene, whih might

be, for example, f : f(E, p;LDSR) ≃ LDSRcp
2E.

The objetive that motivates DSR researh is that of oherently onstrut-

ing a relativisti theory with two fundamental sales, c and LDSR, whih

are non-trivial relativisti invariants. An example of what one refers to as

trivial relativisti invariant is the rest mass of the eletron. Another ex-

ample of a trivial relativisti invariant is the Quantum Mehanis sale ~

that, as c does, establishes properties of the results of the measurements

of ertain observables; ~, for example, sets the minimum non zero value of

angular momentum. But the disretization of angular momentum and the

limitation in the measurement of its omponents does not a�et spaetime

symmetry under lassial spae-rotations, as shown in Ref.[27℄, sine the

measurements that QM allows are still subjet to the same rules imposed by

lassial rotation symmetry. The reason is that ~ is not a sale pertaining

to the spaetime struture of the rotation transformations, and in fat the

introdution of ~ does not require any modi�ation of the ation of the ro-

tation transformations. Galilei's boosts are neessarily deformed one c is

introdued as a fundamental relativisti invariant and c itself has a role in

the transformations that relate the measurements of two inertial observers

in relative motion. In a DSR theory LDSR must have a similar role to that

of c in Speial Relativity, i.e. it must partiipate in the transformations that

relates the observations of two inertial observers.

Note that DSR is a very spei� alternative to Speial Relativity: only

a ertain lass of deformations of Speial Relativity is DSR ompatible. For

example, de Sitter Relativity is a deformation of Speial Relativity by the

sale of urvature. But de Sitter spaetime is a deformation of Minkowski

spaetime by a long-distane sale (one an obtain Minkowski spaetime from

de Sitter spaetime as the deformation length is sent to in�nity), whereas one

of the requirements for a DSR theory is that the deformation sale must be

a short-distane sale (one should obtain Minkowski spaetime by sending to

zero the deformation sale).

1.3 Aside on 2 + 1 gravity

It is important to mention that it has been observed ([28℄,[29℄,[30℄,[31℄,[32℄)

that lassial gravity for point partiles in 2+1 dimensions o�ers an example

of DSR theory.

Of partiular interest for the path followed in this thesis is the onnetion

between the geometry of momentum spae and spaetime nonommutativity.
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In fat, in lassial 2+1 gravity without osmologial onstant the momentum

spae has anti-de Sitter geometry or, more preisely, it is the Lie group

SL(2,R), the group of linear transformations ating on R
2
with determinant

equal to one.

This follows from the fat that Einstein gravity in 2 + 1 dimensions does

not possess loal degrees of freedom and a point partile is introdued as a

topologial defet surrounded by �at spaetime. For the ase of a spinless

partile of massm one obtains the metri ds2 = −dτ 2+dr2+(1−4Gm)r2dφ2
,

whih desribes a onial spaetime, the partile being loated at the tip of

the one, r = 0. It is possible to show that vetors parallel transported along

losed loops around the origin turns to be rotated by an angle α = 8πGm.

This beause the urvature vanishes everywhere exept at the singularity

r = 0. As in ordinary 2 + 1 Minkowski spaetime one an haraterize the

physial momentum of the partile, one its mass is given, by speifying two

additional parameters that desribe the linear momentum and that are in

one-to-one orrespondene with boosts. Alternatively one an take three-

momentum of the partile at rest (spei�ed by its rest mass) and boost

it to the appropriate value of the linear momentum. In this ase three-

momentum at rest is given by a vetor in 2 + 1 Minkowski spae. This

spae is isomorphi to the Lorentz algebra sl(2,R) as a vetor spae. In

fat, when the partile is desribed by a onial defet, its mass (the three-

momentum at rest) is determined by a rotation by the angle α = 8πGm, i.e.

by exp(αJ0) = g0 ∈ SL(2,R), where J0 is the generator of rotations. The

physial momentum an be obtained by boosting the three-momentum at

rest by onjugating g0 by a Lorentz boost L ∈ SL(2,R), that is g = L−1g0L.
Thus the kinematis of a massive partile is in this ontext determined by

the set of rotation-like Lorentz transformations. The extended momentum

spae is given by the group manifold SL(2,R).
In order to expose the anti-de Sitter geometry of momentum spae, it is

onvenient to write the generi element p of SL(2,R) as a ombination of

the identity matrix and of the elements of a basis of sl(2,R), i.e. the Lie

algebra of SL(2,R)4:
p = uI− 2ξµX

µ. (1.16)

Here I is the identity 2× 2 matrix and the Xµ
are

X0 =
1

2

(

0 1
−1 0

)

, X1 =
1

2

(

0 −1
−1 0

)

, X2 =
1

2

(

−1 0
0 1

)

,

4

Throughout this setion indies will be raised and lowered using the metri ηµν =
(−1, 1, 1).
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whih onstitute a basis of sl(2,R), and the requirement of having determi-

nant equal to one (detp = 1) implies that the parameters u, ξµ must satisfy

the onstraint

u2 − ξµξµ = 1. (1.17)

This onstraint provides, as announed, the de�nition of a 3 dimensional

anti-de Sitter geometry.

Among the hoies of oordinates for this momentum spae geometry

used in the 3D-gravity literature, partiularly onvenient for the purpose of

this setion is the hoie of oordinates pµ suh that

p =
√

1 + ℓ2pµpµI− 2ℓpµX
µ, (1.18)

sine it is then easy to obtain the (non-linear) omposition law of momenta

using the algebrai properties of Xµ
matries. Multiplying two elements

p =
√

1 + ℓ2pµpµI− 2ℓpµX
µ,

q =
√

1 + ℓ2qµqµI− 2ℓqµX
µ,

and using the identity

XµXν =
1

4
ηµνI+

1

2
ǫµν ρX

ρ, (1.19)

where for the antisymmetri tensor ǫµνρ the onvetion adopted is ǫ012 = −1,
one obtains a simple but non linear relation between the oordinates (p⊕q)µ
of pq and the oordinates pµ and qµ of p,q respetively:

(p⊕ q)µ =
√

1 + ℓ2qνqνpµ +
√

1 + ℓ2pνpνqµ − ℓǫµ νρpνqρ. (1.20)

Finally, the identity (1.19) implies that Xµ
satisfy by onstrution (up to a

dimensional onstant) the ommutation relations

[Xµ, Xν ] = ǫµν ρX
ρ. (1.21)

When one proeeds to the quantization of this theory (see for example

Ref.[33℄), the ommutation rules (1.21) of the basis Xµ
of sl(2,R) ontribute

in the determination of the sympleti struture of the theory and one ends

up with the same geometry for momentum spae as in the lassial theory

and a nonommutative spaetime whose oordinates obey the ommutation

relations

[xµ, xν ] = i~ℓǫµν ρx
ρ. (1.22)

The DSR-relativisti symmetries of the emerging framework are already

evident in the lassial limit of the onstrution just desribed. In fat, the
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lassial limit is haraterized by spaetime oordinates with Poisson brakets

given by

{xµ, xν} = ℓǫµν ρx
ρ, (1.23)

and by a momentum spae with oordinates pµ onstrained on a mass shell

governed by

ℓ−2
(

arcsin
(

√

−ℓ2pµpµ
))2

= m2, (1.24)

and with law of omposition

(p⊕ q)µ =
√

1 + ℓ2qνqνpµ +
√

1 + ℓ2pνpνqµ − ℓǫµ νρpνqρ. (1.25)

The relevant DSR-deformed relativisti symmetries are partiularly sim-

ple sine the ation of Lorentz-setor generators on momenta remains unde-

formed. Indeed by posing

{N1, p0} = p1, {N2, p0} = p2, {R, p0} = 0, (1.26)

{N1, p1} = p0, {N2, p1} = 0, {R, p1} = −p2, (1.27)

{N1, p2} = 0, {N2, p2} = p0, {R, p2} = p1, (1.28)

one �nds that the mass-shell (1.24) is invariant and the omposition law

(1.25) is ovariant. So one here is dealing with a DSR-relativisti frame-

work where the ore aspet of the deformation is the ation of translation

transformation on multipartiles states. This was so far only left impliit

by notiing that the momentum harges must be omposed following the

nonlinear law (1.25). Notie that this implies a deformed ation of transla-

tion transformations on multipartiles states. Consider for example a system

omposed of only two partiles, respetively with phase-spae oordinates

pµ, x
µ
and qµ, y

µ
: then a translation parametrized by bρ, and generated by

the total-momentum harge (p ⊕ q)ρ, ats for example on the partile with

phase-spae oordinates pµ, x
µ
as follows

bρ{(p⊕ q)ρ, xν} ≃ bρ{pρ, xν} − ℓbρǫρ σγqγ{pσ, xν} (1.29)

where on the right-hand side it is shown only the leading-order Plank-sale

modi�ation.

Conerning translations ating on single-partile momenta one an notie

that sine the spaetime oordinates are suh that {xµ, xν} = ℓǫµν ρx
ρ, one

ould not possibly adopt the standard {pµ, xν} = −δνµ sine then the Jaobi
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identities would not be satis�ed. Jaobi identities are satis�ed if one adopts

the desription of translations ating on single-partile momenta given by

{pµ, xν} = −δνµ
√

1 +
ℓ2

4
pρpρ +

ℓ

2
ǫµ

νρpρ. (1.30)

Another example is that treated in Ref.[28℄, where it was argued that

quantum gravity in 2 + 1 dimensions with vanishing osmologial onstant

must be invariant under some version of a k-Poinaré symmetry.

The argument there depends only on the assumption that quantum grav-

ity in 2+1 dimensions with the osmologial onstant Λ = 0must be derivable

from the Λ → 0 limit of 2 + 1 quantum gravity with non-zero osmologial

onstant; in fat, in many approahes it is neessary to inlude a bare osmo-

logial onstant in order to do perturbative alulations properly. Then, it is

shown that the symmetry whih haraterizes transformations of exitations

of the ground states of a quantum gravity theory in 2 + 1 dimensions with

Λ > 0 is atually quantum deformed de Sitter algebra SOq(3, 1), with the

quantum deformation parameter given by

z = ln(q) ≈ LP

√
Λ.

The limit Λ → 0 then involves the simultaneous limit z ≈ LP

√
Λ → 0, and

it is possible to see that this ontration of SOq(3, 1) is not the lassial

Poinaré algebra, as would be the ase if q = 1 throughout, but it is a

modi�ed Poinaré algebra with the dimensional parameter k ≈ L−1
P . Sine

some of these algebras provide a basis for DSR theory, it means that the

theory is a DSR theory, and indeed all the features of DSR (relativity of

inertial frames, non-linear ation of boosts that preserve a preferred energy

sale, non-linear modi�ations of energy-momentum relations...) has been

seen in the literature of 2 + 1 gravity.

The study of 2+1 gravity models, suh as those with gravity oupled to N
point partiles, gives a lass of non-trivial DSR theories that are ompletely

expliit and solvable, both lassially and quantum mehanially. The ex-

istene of these well-understood examples in the 2 + 1 gravity ontext is a

powerful tool for the oneptual analysis of DSR theories.

The debate on DSR often onerns whether these relativisti deformations

should at all be onsidered in relation to the quantum gravity problem, and

the fat that they neessarily arise in the 2 + 1 quantum gravity ontext

provides a strong element of support for the legitimay of the study of DSR-

deformed relativisti symmetries.
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1.4 Asymptoti Safety

A QFT is said to be an "e�etive �eld theory" (EFT) if it breaks down at

some energy sale, and "fundamental" or "UV omplete" if it makes sense

up to arbitrarily high energy sales. QCD is an example of the latter ase.

Before introduing the basi ideas of Asymptoti Safety, the reason for whih

Einstein theory of gravity is instead regarded as an EFT is here reviewed, in

partiular why it is not perturbatively renormalizable. Asymptoti safety, in

fat, proposes a strategy to overome this problem.

1.4.1 Non-renormalizability of General Relativity

The reason for whih General Relativity is not perturbatively renormaliz-

able, in the sheme of standard quantum �eld theory, an be understood

by dimensional analyzing the degree of divergene of one-partile irreduible

Feynman diagrams. The propagator of a �eld is the 4-dimensional Fourier

transform of the vauum expetation value of a time-ordered produt of a

pair of free �elds, so a �eld φ with momentum dimensionality Dφ has a prop-

agator with dimensionality dprop φ = −4 + 2Dφ. An interation term with

nφ i suh �elds and nder derivatives has dimensionality nder + nφ iDφ. If dif-

ferent �elds interat, this generalizes to nder +
∑

φ nφ iDφ. Sine the ation

must be dimensionless in our ~ = 1 units, eah term in the Lagrangian must

be 4-dimensional to anel the dimensionality −4 of the di�erential term

d4x. Hene the interation must have a oupling onstant g with dimension

dg = 4 − nder −
∑

φ niDφ. If the Feynman diagram has next φ external lines

for a partiular �eld φ, the amplitude in the momentum representation has

dimension

∑

φ−4next φ + nextφDφ. Of this dimensionality −4 ome from the

momentum delta funtion and next φdpropφ ome from the propagators of the

external lines; the oupling onstants for a given Feynman diagram with Ni

verties have total dimensionalityNidg, leaving the momentum spae integral

with dimensionality

∑

φ

(−4next φ+nextφDφ)−(−4)−
∑

φ

(next φdprop φ)−Nidg = 4−
∑

φ

next φDφ−Nidg.

In estimating the degree of divergene D of a diagram the interest goes

mostly in the region of momentum spae where all momenta go to in�nity

together. Then the degree of divergene oinides with the dimensionality of

the diagram,

D = 4−
∑

φ

next φDφ −Nidg. (1.31)
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If all interations have dg > 0, then Eq.(1.31) sets an upper limit on D that

depends only on the number of external lines; that is, on the physial proess

in onsideration,

D ≤ 4−
∑

φ

next φDφ. (1.32)

This implies that only a �nite number of external lines an yield super�ially

divergent integrals. In general one an show that a limited number of diver-

genes appears in ase dg ≥ 0 for all interations and these are removed by

rede�nition of a �nite number of physial onstants and a renormalization of

the �elds.

On the other hand, if one has dg < 0 the degree of divergene beomes

larger and larger as more verties are inluded. No matter how many external

lines are added, eventually there will be enough verties to make the integral

divergent. This is the ase of gravity, where Newton onstant has dimen-

sion [GN ] = −2. The Feynman rules also involve the graviton propagator,

whih sales with the four momentum kµ shematially as k−2 = 1
E2−p2

. At

inreasing loop orders, the Feynman diagrams of the theory would require

ounterterms of ever-inreasing degree in urvature. The resulting theory

an still be treated as an e�etive quantum �eld theory, but it would still

require a UV ompletion.

1.4.2 Asymptotially safe gravity

Asymptoti Safety gives an alternative notion of renormalizability ensuring

UV ompleteness that may lead to a onsistent theory of quantum gravity.

Let gi(µ) denote the full set of all renormalized oupling parameters of a

theory, de�ned at a renormalization point with momenta haraterized by an

energy sale µ. If gi(µ) has momentum dimension of dgi, it an be replaed

with a dimensionless oupling,

g̃i(µ) = µ−dgigi(µ). (1.33)

Any sort of partial or total reation rate R may be written in the form

R = µDf

(

E

µ
,X, g̃i(µ)

)

(1.34)

where D is the ordinary dimensionality of R (e.g., for total ross setion

D = −2), E is some energy haraterizing the proess and X stands for all

other dimensionless physial variables, inluding the ratios of energies. The

entral idea of the renormalization group methods is to reognize that the

reation rate annot depend on the arbitrary hoie of the renormalization
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point µ at whih ouplings are de�ned, so µ an be taken to be whatever is

preferable, as in partiular µ = E, in whih ase one has,

R = EDf (1, X, g̃i(E)) . (1.35)

Thus, apart the fator ED
, the behavior of the reation rates depends on the

behavior of the ouplings g̃i(µ) as µ→∞.

The emphasis here on reation rates rather then o�-shell Green's funtions

has a very important advantage. Mass-shell matrix elements and reation

rates do not depend on how the �eld are de�ned, so they are funtions only

of "essential" oupling parameters, i.e. those ombinations of the oupling

parameters in the Lagrangian that do not hange when the �eld is subjeted

to a point transformation, suh as φ→ φ+φ2
for a salar �eld φ. In ontrast,

the o�-shell Green's funtions will of ourse re�et the de�nition of the �elds

involved and will therefore be funtions of all the oupling parameters in

the Lagrangian, inluding those inessential parameters that hange under a

rede�nition of the �elds. In the following, g̃i(µ) are only the essential oupling
parameters of the theory.

In order to larify how to distinguish an essential parameter by an inessen-

tial parameter one an apply the following test. When one hanges any un-

renormalized oupling parameter γ by an in�nitesimal amount ǫ the whole

Lagrangian hanges by

L→ L+ ǫ
∂L

∂γ
. (1.36)

Suppose one tries to reprodue this hange by a mere rede�nition of the �elds

ψn(x)→ ψn(x) + ǫFn(ψn(x), ∂µψn(x), ...). (1.37)

The hange in L indued thereby is

δL = ǫ
∑

n

(

∂L

∂ψn(x)
Fn +

(

∂L

∂(∂µψn(x))

)

∂µFn + ...

)

= ǫ
∑

n

(

∂L

∂ψn(x)
− ∂µ

(

∂L

∂(∂µψn(x))

)

+ ...

)

Fn + total derivatives.

(1.38)

Thus a hange in the Lagrangian due to a variation of the parameter γ an

be reprodued by a rede�nition of the �elds by a funtion Fn suh that

∂L

∂γ
=
∑

n

(

∂L

∂ψn(x)
− ∂µ

(

∂L

∂(∂µψn(x))

)

+ ...

)

Fn + total derivatives.

(1.39)
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So the oupling parameter γ is an inessential oupling if and only if

∂L

∂γ
vanishes or is a total derivative along the solutions of the equations of motion.

For example, in the renormalizable salar �eld theory with Lagrangian

L = −1
2
Z(∂µφ∂

µφ+m2φ2)− 1

24
λZ2φ4

(1.40)

the �eld renormalization onstant is an inessential oupling, beause one an

write

∂L

∂Z
= −1

2
∂µ(φ∂

µφ) (1.41)

along the solution of the equations of motion. On the other hand, neither the

mass m or the oupling λ are inessential. Working with essential oupling

only allows one to formulate the ondition for asymptoti safety in a very

onise way.

Consider again the problem of determine the behavior of the essential

ouplings g̃i(µ). The hange in g̃i(µ) under a given frational hange in µ is

a dimensionless quantity, and an therefore depend on all the g̃i(µ) but not
on µ itself being the only dimensional parameter left after resaling. Thus

the rate of hange of g̃i(µ) with respet to resaling of the renormalization

point µ may be written as a generalized Gell-Mann-Low equation

µ
d

dµ
g̃i(µ) = βi(g̃(µ)). (1.42)

Eah spei� theory is haraterized by a trajetory in oupling onstant

spae, generated by the solution of Eq.(1.42) with given initial onditions. If

the oupling g̃i(µ) approah a �xed point g∗ as µ→∞ then Eq.(1.35) gives a

simple saling behavior R→ ED
for E →∞. In order for g̃i(µ) to approah

the �xed point it is neessary that the beta funtions vanish at that point

and also that the oupling lie on a trajetory g̃i(µ) that atually hits the �xed
point in the UV. The surfae formed by suh trajetories is alled "ultraviolet

ritial surfae", and theories lying on the UV ritial surfae have a sensible

UV limit, sine all the essential ouplings hit the �xed point. In partiular,

if the UV ritial surfae is �nite dimensional, the arbitrariness of the hoie

of the oupling onstants is redued to the hoie of a �nite number of them,

whih an be determined by a �nite number of experiments. A theory will

be alled "asymptotially safe" if its essential oupling onstants lie on the

�nite-dimensional ultraviolet ritial surfae of some �xed point, therefore

being UV-omplete and preditive. A perturbatively renormalizable, asymp-

totially free �eld theory suh as QCD is a partiular ase of asymptotially

safe theory. In that ase the �xed point of the renormalization group is
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a Gaussian �xed point, where all ouplings vanish, and the ritial surfae

is spanned, near the �xed point, by the ouplings whih are perturbatively

renormalizable.

Without entering in the detail of the disussion about the evidene for a

�xed point, this subsetion fouses on having an understanding of the running

of Newton onstant, following Ref. [35℄. The oe�ient of Einstein-Hilbert

ation is the square of Plank mass M2
P l =

1

16πG
. In the quantum theory it

is expeted to diverge quadratially, leading to a beta funtion of the form

µ
d

dµ
M2

P l = 2aµ2, (1.43)

where a is a positive onstant. This expetation omes from a number of dif-

ferent alulations that show that the beta funtion has this kind of behavior

([36℄-[40℄). Let G̃ = Gµ2
be the dimensionless Newton onstant. Then, the

beta funtion for G̃ is

µ
dG̃

dµ
= 2G̃− 32πaG̃2. (1.44)

This beta funtion has a IR attrative �xed point at G̃ = 0 and, if a > 0,
also a UV attrative nontrivial �xed point at G̃ = 1/16πa. The solution of

the RG equation (1.43) is

M2
P l(µ) =M2

P l(0) + aµ2. (1.45)

One an see then that for µ≪MP l(0) the dimensionful G is onstant while

the dimensionless G̃ sales like µ2
. This is the regime experiened in everyday

life. On the other hand, for µ ≫ MP l(0) the dimensionful G sales as µ−2

and the dimensionless G̃ is onstant. This is the UV �xed point regime.

Assuming that this is the true behavior of Newton onstant and of all

other ouplings in the theory, it would seem that one an take the limit

µ→∞ and hene resolve arbitrarily small distane sales, in apparent on-

�it with all the arguments attributing a non lassial, smooth geometry to

spaetime at very small sales. Is this really the ase? The point is that

any dimensionful quantity suh as µ does not have any intrinsi value, but

one an attribute to it a value only when one measures it in some unity. So

far µ has been used as a unity itself, but µ will always be equal to 1 in µ
unity so, in order to give meaning to the limit µ→∞, one has to use some

other units. For example, one ould use Plank units, where the value of µ
is µ
√
G, having set c = ~ = 1. Sine G is a running oupling, one should

speify at what sale it is to be evaluated. If one wants to measure the size of

objets at very small sales, then the value of G that is more relevant for this
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measurement is its value at the sale of the experiment. Therefore, one has

that the more proper value of the uto� in Plank units is µ
√

G(µ) =
√

G̃,
whih means that in the orret units µ is indeed limited. Sine µ itself

is the upper bound for the momenta one an talk about in the theory, one

onludes that one annot talk about momenta greater then Plank mass,

or proper distanes shorter than Plank length. Notie that using another

oupling gi of dimension di and g
1/di
i as a unit of mass gives the same result

as using Plank units. In fat sine the theory is asymptotially safe, giµ
d

will still go to a onstant value in the UV.

The very de�nition of asymptotially safe theory implies that if one re-

strit himself to "proper" measurements, one annot probe distanes shorter

than the Plank length. The reason is that, sine the theory is fundamental

one annot appeal to any external unit of mass or length. The unit has to be

hosen within the theory, and in the �xed point regime all the possible an-

didates appear in onstant, �nite ratios between themselves and the uto�.

In this sense one an never have a "trans-Plankian" regime in Asymptoti

Safety. After all, at the �xed point one has sale-invariane and in a fun-

damental, sale-invariant theory one annot talk of distanes. One an only

speak about distanes in the low energy, sub-Plankian regime, and in that

regime the shortest length is the Plank distane.
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Chapter 2

Preliminaries on Relative Loality

�Do we share the same time?�. Probably, this question ould never reeive

a di�erent answer from �Of ourse we do!�, if posed to someone that ignores

Speial Relativity. Independently on the fat that the answer turns to be

the unexpeted �no�, Einstein taught us that suh a question is not silly nor

merely philosophial, but it is an experimental question. Then, one spae-

time substitutes spae and time, there is no reason for whih one should not

ask �how does an observer know that she lives in a spaetime? And if so how

does she know that it is the same spaetime of any another observer?�. These

are the fundamental questions that Relative Loality poses as a starting point

of re�etion.

A loal observer does not diretly observe any event marosopially dis-

tant from the measuring apparatus. The loal observer ould onsider herself

as a �alorimeter� with a lok. Her most fundamental measurements are the

energies and angles of the quanta she emits and absorbs, and the time of

these events. The idea that she lives in a spaetime is onstruted by in-

ferenes from her measurements of energies and momenta. This was vividly

illustrated by Einstein's proedure to give spaetime oordinates to distant

events by exhanges of light signals. Adopting this proedure, the observer

measures the time it takes the photon to travel forth and bak but does not

are about the energy of the photon, resulting in a projetion into spaetime.

When she does so, she presumes that the same spaetime is reonstruted

by the exhange of light signals of di�erent frequenies. One is also used to

assume that di�erent loal observers, distant from eah other, reonstrut

the same spaetime by measurement of photons they send and reeive.

But why should the information about the energy of the photon one uses

to probe the spaetime be inessential? Might that be just a low energy

approximation? And why should one presume that the same spaetime is

reonstruted by two observers at a osmologial distane from eah other?
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One an see (following Refs.[102℄,[103℄) that absolute loality, whih pos-

tulates that all observers live in the same spaetime, is equivalent to the

assumption that momentum spae is a linear manifold. This orresponds

to an idealization in whih one throws away the information about the en-

ergy of the quanta one uses to probe spaetime and it an be transended in

a simple and powerful generalization of speial relativisti physis whih is

motivated by onsiderations on uni�ation of gravity and quantum physis

suh as those disussed previously. Loality will turn to be linked with the as-

sumptions made about the geometry of momentum spae. Thus, the onept

of absolute loality is relaxed in a ontrolled manner by linking this to a new

understanding of the geometry of momentum spae. In this framework there

is no notion of absolute loality, di�erent observers see di�erent spaetimes,

and the spaetimes they observe are energy and momentum-dependent. Lo-

ality, a oinidene of events, beomes relative: oinidenes of events are

still objetive for all loal observers, but they are not in general manifest in

the spaetime oordinates onstruted by distant observers.

In the next setion it will be shown how Relative Loality manifests in our

"story teller" model, the k-Minkowski non-ommutative spaetime. Then in

Setion 2.2, the basi priniples and formulation of relative loality are given,

independently on any pre-existing model. Then in Setion 2.3 a spei� real-

ization of a theory with relative loality will be given. This will be the ontext

in whih the original results of this thesis are disussed in the following.

2.1 k-Minkowski fuzziness

For the original objetive of spaetime nonommutativity, i.e. that of pro-

viding a haraterization of spaetime fuzziness at the Plank length, the

impliation of the k-Minkowski ommutators [x̂j , x̂0] = iℓx̂j remained un-

lear for relatively long time.

This setion reports what might be signi�ant steps forward in the om-

prehension of this problem made in Refs.[99℄, [100℄, [101℄. The key in the

strategy of analysis proposed is a new type of �pregeometri representation�

of k-Minkowski. The idea of pregeometri representation originates (see, e.g.,

[98℄) from the onjeture that k-Minkowski might be an e�etive desription

of partiular physial regimes of a more fundamental theory of quantum

gravity. From this perspetive it might be natural to desribe k-Minkowski

nonommutativity in terms of standard Heisenberg quantum mehanis, in-

trodued at some level of the desription. Tehnially suh a desription

allows reformulating the omplexity of k-Minkowski ommutation relations

in terms of (a few opy of) the familiar Heisenberg algebra.
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Before developing this pregeometri desription, it is better to stop think-

ing on when and how one should make room for nonommutativity of spae-

time oordinates, taking as starting point our urrent theories. Evidently

the formalism of lassial mehanis do not make room for nonommutative

spaetime oordinates. There is no problem with this, sine it is expeted

that lassial mehanis would emerge as an approximate desription in a

regime for whih one an onsider ~→ 0, and this limiting proedure might

be suh that also the nonommutativity of spaetime oordinates is removed.

The problem is that it is not straightforward to allow k-Minkowski spaetime

nonommutativity also in ordinary quantum mehanis. This is due to the

fat that in ordinary quantum mehanis time is not a self-adjoint opera-

tor but just an evolution parameter (therefore lassial and ommutative),

whereas for k-Minkowski it should be an operator that does not ommute

with the spae oordinates operators.

In Ref. [99℄, authors proposed to address this issue using the ovariant

formulation of quantum mehanis. In this formulation both the time oordi-

nate and the spaial oordinates are well-de�ned operators on a �kinematial

Hilbert spae� and both play the same role of �partial observables�. In the

formulation of ovariant quantum mehanis they ommute with eah other

and do not ommute with their respetive onjugate momenta. The proposal

is that this is the right point to introdue the k-Minkowski ommutators

(1.1),(1.2).

In this perspetive, the kinematial Hilbert spae plays a role within the

ovariant formulation of quantum mehanis that is analogous to the role

that Minkowski spaetime plays in lassial mehanis of speial-relativisti

partiles. In fat, Minkowski spaetime is the arena where the dynamis of

relativisti partiles is determined by enforing the Hamiltonian onstraint.

In the same way, the kinematial Hilbert spae (that odi�es the geometry of

spaetime) is the arena where the dynamis of relativisti quantum partiles

is produed by enforing the Hamiltonian quantum operator onstraint.

After introduing the basi onepts of ovariant quantum mehanis in

the next subsetion, the properties and in partiular the relativisti symme-

tries of empty k-Minkowski spaetime will be analyzed in Subetion 2.1.2.

This analysis has its analogous in the study of the relativisti struture of

Minkowski spaetime. Even if none of the properties of spaetime is diretly

observable (Minkowski spaetime properties are inferred from observation on

the motion of lassial relativisti partiles in it), it is nevertheless an exerise

that needs to be done sine these formal properties a�et the physial prop-

erties of the theories formulated on this spaetime. Similarly the properties

of observables-operators on the kinematial Hilbert spae are not themselves

subjetable to measurement, but they usefully haraterize the spaetime
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arena where then the quantum dynamis of partiles on the physial Hilbert

spae takes plae. Finally the desription of a free partile propagating in

this quantum spaetime will be disussed in Subetion 2.1.3.

2.1.1 Covariant Quantum Mehanis

Here the basi onepts of ovariant formulation of quantum mehanis that

will be used in the following desription of the fuzziness of k-Minkowski will

be introdued. For more details the reader an refer to Refs. [93℄,[94℄,[95℄,[96℄,

[97℄ and referenes therein.

Consider a free non-relativisti partile in one spae dimension. Let

ψ(X, T ) be its Shrödinger wave funtion, namely a solution of the free

Shrödinger equation

1

i
∂

∂T
ψ(X, T ) = − 1

2m

∂2

∂X2
ψ(X, T ). (2.1)

The Hilbert spae H0 of the quantum theory is the spae of normalizable so-

lutions of the Shrödinger equation. It an be represented by the spae L2[R]
of square integrable funtions on spae alone

2

. The wavefuntion ψ(X, T ) is
represented by the square integrable funtion Ψ(X) = ψ(X, 0) at �xed time

T = 0, and the state is denoted by |Ψ〉. In this representation the salar

produt is

〈Ψ|Ψ′〉 =
∫

dXΨ(X)Ψ′(X). (2.2)

The spaetime wavefuntion ψ an be reonstruted from Ψ using the prop-

agator. The generalized eigenstate of the position operator X is denoted by

|X〉 and the generalized eigenstate of the unitarily evolving Heisenberg posi-

tion operator X(T ) by |X ;T 〉 (so that |X〉 = |X ; 0〉). Thus Ψ(X) = 〈X|Ψ〉
1

Using units suh that ~ = 1.
2

More preisely, the theory is de�ned on a rigged Hilbert spae S ⊂ H0 ⊂ S ′ formed

by a Hilbert spae H0, a proper subset S in H0 and its dual S ′, with their natural

identi�ations. A manifold M and a measure dµ determines suh a rigged Hilbert spae

SM ⊂ HM ⊂ S ′M where SM is the spae of smooth funtion on M with fast derease

(Shwarz spae), HM = L2[M,dµ], and S ′M is the spae of tempered distributions on M .
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and ψ(X, T ) = 〈X ;T |Ψ〉. The propagator of the Shrödinger equation is

W (X, T ;X ′, T ′) = 〈X ;T |X ′;T ′〉 = 〈X|e−iH(T−T ′)|X ′〉

=

∫

dp 〈X|e−iH(T−T ′)|p〉〈p|X ′〉

=

∫

dp ei[p(X−X′)− p2

2m
(T−T ′)]

=

(

2πm

i(T − T ′)

)
1
2

exp

[

i
m(X −X ′)2

2(T − T ′)

]

,

(2.3)

where H is the Hamiltonian and to solve the last integral one has to analyt-

ially ontinue time to the omplex plane in order to render the integrand

onvergent, then to take limit for vanishing imaginary part of the omplex

time variable. When viewed as a funtion of X and T , with X ′
ant T ′

held

�xed, this is a solution of the Shrödinger equation whih at time T = T ′
is

a delta distribution entered at X = X ′
. Eah funtion Ψ(X) determines a

solution of the Shrödinger equation by

ψ(X, T ) =

∫

dX ′W (X, T ;X ′, 0)Ψ(X ′). (2.4)

Thus the wavefuntions of the Shrödinger equation an be haraterized by

the funtions Ψ(X) of spae only.
It is also onvenient to onsider the following states. Given any ompat

support omplex funtion f(X, T ), the state

|f〉 =
∫

dXdT f(X, T )|X ;T 〉 (2.5)

is in H0, for the Shrödinger wavefuntion of |f〉 is

ψf(X, T ) = 〈X ;T |f〉

= 〈X ;T |
∫

dX ′dT ′ f(X ′, T ′)|X ′;T ′〉

=

∫

dX ′dT ′W (X, T ;X ′, T ′)f(X ′, T ′)

(2.6)

and it is a solution of the Shrödinger equation as well. |f〉 is alled the

�spaetime smeared state� of the funtion f . The salar produt of two

spaetime smeared states is

〈f |f ′〉 =
∫

dXdTdX ′dT ′ f(X, T )W (X, T ;X ′, T ′)f ′(X ′, T ′). (2.7)
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These states generalize the usual wave pakets for whih f(X, T ) = f(X)δ(T ).
Conventional wave pakets an be thought as being assoiated with results

of instantaneous position measurements with �nite resolution in spae. It

an be shown that these spaetime smeared states an be assoiated with re-

alisti measurements, where the measuring devie has �nite resolution both

in spae and in time.

A onventional Hamiltonian system, like the free partile is, is formulated

in terms of a on�guration spae C0 and a HamiltonianH0 whih is a funtion

on the phase spae Γ0 = T ∗C0, i.e. the otangent bundle of the on�guration
spae. The Hamiltonian generates the evolution of the system in an external

(independent) variable T . The preditions of the theory are the values of the

phase spae variables as funtion of T as, for the example here onsidered,

X(T ). Thus, more aurately, what the theory atually predits are not the

individual values of T and X , but rather the relations between these values.

A basi example is the uniform motion X(T ) = vT , whih an be expressed

by means of the two equations X = s, vT = s: although s is an arbitrary

parameter, these two equations determine a relation between X and vT that

is not arbitrary, and is the atual predition of the theory. In the onventional

dynamial system, the time variable an be naturally hosen as the evolution

parameter, but in general this is not the ase, as happens for example in

General Relativity. One is then interested in a desription of the system

that establishes relations between values of T and X , and these relations

are what an observer an ompare with ombined measurements of T and

X . Thus, T and X are alled �partial observables�, whereas X(T ) is alled
a �omplete observable�. This suggests that, in order to reformulate this

system in a ovariant form, one should promote T to a on�guration spae

variable: the extended on�guration spae (the spae of partial observables)

inludes the onventional on�guration spae C0 and time T . So for the

onventional Hamiltonian system one has C = C0 × R, where the oordinate

of R is identi�ed with T . Also, one poses the general Hamiltonian to be

H = pT +H0, where pT is the onjugate momentum to T (that turns out to

be minus the energy). Now, a relativisti system generally has an extended

on�guration spae that is not reduible to the simple form C = C0 × R and

the Hamiltonian would be a funtion on the extended phase spae Γ = T ∗C
and H 6= pT +H0. This means that time is treated in the same way as the

other on�guration variables.

So, one is now interested in quantizing a system of the form (C, H). Sine
the kinematis of the lassial system is de�ned by the extended on�guration

spae, in order to proeed with its quantization it is natural to onsider the

�kinematial� rigged Hilbert spae S ⊂ K ⊂ S ′
de�ned by C and the measure

dXdT . That is, S is the spae of smooth funtions f(X, T ) on C with fast
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derease, K = L2[C, dXdT ], and S ′
is the spae of tempered distributions

on C. S is the so-alled �kinematial state spae� and its elements f(X, T )
�kinematial states�.

The quantum dynamis is determined by the �Wheeler-DeWitt� (WdW)

equation

Hψ(X, T ) = 0. (2.8)

The Shrödinger equation an be written in this form, of ourse,

(

i
∂

∂T
+

1

2m

∂2

∂X2

)

ψ(X, T ) = 0, (2.9)

but the WdW equation applies also for more general Hamiltonian funtions

for whih H 6= pT +H0. The solutions of this equation form a linear spae

H.
The key objet for the relativisti quantum theory is the operator

P =

∫

dτ eiτH (2.10)

from S to S ′
. In what follows, it may also be denoted by δ(H). It an be

shown that this operator maps arbitrary funtions f(X, T ) of S into solutions

of the WdW equation. For the ase of the Shrödinger equation, for example,

one has

[Pf ](X, T ) =

∫

dτ eiτ(i∂/∂T+ 1
2m

∂2/∂X2)f(X, T )

=

∫

dτeiτ(i∂/∂T+ 1
2m

∂2/∂X2)

∫

dpdE ei(pX−ET )f̃(p, E)

=

∫

dτ

∫

dpdE eiτ(E− p2

2m
)ei(pX−ET )f̃(p, E)

=

∫

dpdE δ(E − p2

2m
)ei(pX−ET )f̃(p, E)

=

∫

dp ei(pX− p2

2m
T )f̃(p, E(p))

(2.11)

whih is a solution of the Shrödinger equation, indeed. One an also develop
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further the alulation and write

[Pf ](X, T ) =

∫

dpdE δ(E − p2

2m
)ei(pX−ET )f̃(p, E)

=

∫

dpdE δ(E − p2

2m
)ei(pX−ET )

∫

dX ′dT ′e−i(pX′−ET ′)f(X ′, T ′)

=

∫

dX ′dT ′
∫

dpdE δ(E − p2

2m
)ei[p(X−X′)−E(T−T ′)]f(X ′, T ′)

=

∫

dX ′dT ′W (X, T ;X ′, T ′)f(X ′, T ′).

(2.12)

The matrix elements of P ,

〈f |P |f ′〉K =

∫

dXdTdX ′dT ′ f(X, T )W (X, T ;X ′, T ′)f ′(X ′, T ′), (2.13)

de�ne a degenerate inner produt in S. Dividing S by the kernel of this

inner produt, that is, identifying f and f ′
if Pf = Pf ′

, and ompleting in

norm, one obtains a Hilbert spae that might be denoted (S, 〈·|P |·〉). But

if Pf = Pf ′
, then f and f ′

de�ne the same solution of the WdW equation.

They de�ne the solution that orresponds to the spaetime smeared state

|f〉 de�ned previously (ompare equations (2.12) and (2.6)). Therefore, an

element of this Hilbert spae (S, 〈·|P |·〉) orresponds to a solution of WdW

equation: this Hilbert spae (S, 〈·|P |·〉) an be identi�ed with the spae of

the solutions of the WdW equation H. So
P :S → H

f 7→ |f〉. (2.14)

It follows that P equips the linear spae H of the solutions of the WdW

equation with a Hilbert spae struture: if ψ = Pf and ψ′ = Pf ′
are two

solutions of the WdW equation, their salar produt is de�ned by

〈ψ|ψ′〉H ≡ 〈f |P |f ′〉K. (2.15)

The partial observables T and X are desribed as self-adjoint operators

on K whih at simply by multipliation. Their ommon generalized eigen-

states |X, T 〉 are in S. Notie that these states are di�erent from the states

|X ;T 〉, whih are eigenstates of the omplete observable X(T ) and deter-

mine solutions to the Shrödinger equation. The relation between the two is

|X ;T 〉 = P |X, T 〉. These states |X, T 〉 satisfy

〈X, T |P |X ′, T ′〉K =W (X, T ;X ′, T ′). (2.16)
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Notie that one also �nds

W (X, T ;X ′, T ′) = 〈X ;T |X ′;T ′〉H = 〈X, T |P †P |X ′, T ′〉H, (2.17)

whih is onsistent with Eq.(2.16) beause the de�nition of the salar produt

in H is given by Eq.(2.15).

One an view these states |X, T 〉 as �kinematial states� that do not know

anything about dynamis. They orrespond to a single �quantum event�.

Their (�kinematial�) salar produt inK, 〈X, T |X ′, T ′〉 = δ(X−X ′)δ(T−T ′),
expresses only their independene, while their �physial� salar produt (2.16)

in H expresses the physial relation between the two events by mean of the

presene of the partile propagator.

One an now propose the following axioms of a ovariant quantum me-

hanis (only those axioms whih are used in the following appliation to

k-Minkowski are reported here):

• Kinematial states: Kinematial states form a spae S in a rigged

Hilbert spae S ⊂ K ⊂ S ′
.

• Partial observables: A partial observable is represented by a self-adjoint

operator in K. Common eigenstates |s〉 of a omplete set of ommuting

partial observables are denoted quantum events.

• Dynamis: The dynamis is determined by a self-adjoint operator H
in K, the (relativisti) Hamiltonian. The operator from S to S ′

P =

∫

dτeiτH (2.18)

is (improperly) alled �projetor� and its matrix elements

W (s, s′) = 〈s|P |s′〉 (2.19)

are alled transition amplitudes.

• Physial states: A physial state is a solution of the Wheeler-DeWitt

equation

Hψ = 0. (2.20)

Equivalently, it is an element of the Hilbert spae H de�ned by the

quadrati form 〈·|P |·〉 on S.

• Complete observables: A omplete observable A is represented by a

self-adjoint operator on H. A self-adjoint operator A in K de�nes a

omplete observable if it ommutes with the relativisti Hamiltonian

H .
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2.1.2 Pregeometry of k-Minkowski and fuzzy points

This setion deals with the study of the properties of the nonommuting

oordinates of a 1+1-dimensional k-Minkowski spaetime at the level of the

kinematial Hilbert spae of a ovariant formulation of quantum mehanis.

The units adopted are suh that c = ~ = 1 and the onventions for the

Minkowski metri tensor ηµν = {1,−1}.
The pregeometri representation is given as follows. Given the phase

spae observables for the ovariant formulation of 2D quantum mehanis,

[π̂0, q̂0] = i, [π̂0, q̂1] = 0,

[π̂1, q̂0] = 0, [π̂1, q̂1] = −i,
(2.21)

the k-Minkowski oordinates x̂0, x̂1 are desribed as

x̂0 = q̂0, x̂1 = q̂1e
ℓπ̂0 , (2.22)

that indeed satisfy (1.1) and (1.2). In fat, for example,

[x̂1, x̂0] = [q̂1e
ℓπ̂0, q̂0] = q̂1[e

ℓπ̂0, q̂0] = iℓq̂1e
ℓπ̂0 = iℓx̂1.

One �nds in this pregeometri desription also opportunities for desrib-

ing the k-Minkowski di�erential alulus and the k-Poinaré transformations

generators. For the translation generators, by posing

P0 ⊲ f(x̂0, x̂1)←→
[

π̂0, f(q̂0, q̂1e
ℓπ̂0)
]

,

P1 ⊲ f(x̂0, x̂1)←→ e−ℓπ̂0
[

π̂1, f(q̂0, q̂1e
ℓπ̂0)
]

,

(2.23)

one does reprodue all the properties of k-Poinaré translation generators

summarized earlier in Chapter 1. Notie that the properties of the elements

âµ of the di�erential alulus given in (1.13) an be reprodued by ombining

ordinary parameters aµ and the (partial) observable π̂0:

â0 = a0, â1 = a1e
ℓπ̂0. (2.24)

In 2D k-Minkowski spaetime boost generator should satisfy the following
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properties of ommutation with translation generators and of oprodut

3

:

−i [N, P0] ⊲ f(x̂) ≡ P1 ⊲ f(x̂),

−i [N, P1] ⊲ f(x̂) ≡
(

1− e−2ℓP0

2ℓ
− ℓ

2
P 2
1

)

⊲ f(x̂),

∆N = N ⊗ 1 + e−ℓP0 ⊗N.

The boost operator takes the form

B = 1 + dN , dN = iξ̂N, (2.25)

and the nonommutative boost-transformation parameter is

[

ξ̂, x̂0

]

= iℓξ̂,
[

ξ̂, x̂1

]

= 0. (2.26)

The pregeometri desription of boost parameter and generator is given by

ξ̂ = ξeℓπ̂0,

N ⊲ f(x̂) ≡ e−ℓπ̂0
[

η̂, f(q̂0, q̂1e
ℓπ̂0)
]

,

with

η̂ ≡
(

e2ℓπ̂0 − 1

2ℓ
+
ℓ

2
π̂2
1

)

q̂1 − π̂1q̂0. (2.27)

3

Notie that in 2D k-Minkowski the oprodut of boost generator has the same form

of the oprodut of translation generators. Then, sine the nonommutativity properties

of the transformation parameters are proven to be diretly linked to the oprodut of the

generators of the transformation, the properties of boost transformation parameters will

immediately follow. In 4D this would no longer be the ase, the oproduts of boosts

generators being di�erent from those of translation generators. This oinidene in the

2D ase simpli�es the analysis from a tehnial point of view, but oneptually there is no

di�erene with the 4D k-Minkowski.
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From these de�nitions one �nds that under the ation of boost

π̂′
0 =π̂0 + iξ̂(N ⊲ π̂0)

=π̂0 +
(

iξeℓπ̂0
)

e−ℓπ̂0

[(

e2ℓπ̂0 − 1

2ℓ
+
ℓ

2
π̂2
1

)

q̂1 − π̂1q̂0, π̂0
]

=π̂0 − ξπ̂1,

π̂′
1 =π̂1 + iξ̂(N ⊲ π̂1)

=π̂1 +
(

iξeℓπ̂0
)

e−ℓπ̂0

[(

e2ℓπ̂0 − 1

2ℓ
+
ℓ

2
π̂2
1

)

q̂1 − π̂1q̂0, π̂1
]

=π̂1 − ξ
(

e2ℓπ̂0 − 1

2ℓ
+
ℓ

2
π̂2
1

)

.

(2.28)

It has been already impliitly spei�ed that the states of the kinematial

Hilbert spae for k-Minkowski will admit a representation (in the "pregeo-

metri momentum spae representation") as square-integrable funtions of

variables π̂0 and π̂1. In order to de�ne properly the presription of square-

integrability one has to speify a measure on this kinematial Hilbert spae.

One shall haraterize the salar produt in momentum spae as

〈Ô〉 = 〈ψ|Ô|ψ〉 =
∫

D(πµ)ψ⋆(πµ)O(πµ)ψ(πµ), (2.29)

where the measure (that must be invariant under the ation of boost) is

D(πµ) = dπ0dπ1e
−ℓπ0 . (2.30)

One sees that, with this measure, η̂ is Hermitian, so the boost transformation

operator (2.25) is unitary and preserves the salar produt:

〈ψ′|ψ′〉 = 〈ψ|U †(B)U(B)|ψ〉 = 〈ψ|eiξη̂e−iξη̂|ψ〉 = 〈ψ|ψ〉. (2.31)

It is now time for desribing fuzzy points of k-Minkowski and analyze this

fuzziness from the perspetive of distant observers in relative rest, observers

onneted by a pure translation. First one needs a desription of these fuzzy

points. Evidently within the pregeometri desription a point of k-Minkowski

will be desribed as a state in the pregeometri Hilbert spae (the Hilbert

spae on whih the pregeometri operators q̂µ and π̂µ are de�ned). It is indeed
easy to see that no state in the pregeometri Hilbert spae gives absolutely

sharp values to x̂0 and x̂1 simultaneously: in light of x̂0 = q̂0, x̂1 = q̂1e
ℓπ̂0

, in

order to have a sharp value on x̂0 requires an eigenstate of q̂0 but, for suh
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eigenstate, π̂0 is in�nitely fuzzy (δπ0 ≈ ∞), whih in turn implies that x̂1
annot be sharp. So all points in k-Minkowski must be fuzzy

4

.

In order to study the properties of k-Minkowski fuzziness one an onsider

Gaussian states on the pregeometri Hilbert spae. Adopting a pregeometri

momentum-spae representation this states take the form

Ψq̄0, q̄1(πµ; π̄µ, σµ) = Ne
− (π0−π̄0)

2

4σ2
0

− (π0−π̄0)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

(2.32)

with parameters π̄0, π̄1, σ0, σ1, and q̄0, q̄1, these being highlighted in the no-

tation sine the issue of loalization of the partile is predominantly on-

neted with those two parameters, whih determine the expeted values for

the pregeometri position oordinates q̂0, q̂1. Essentially π̄0, π̄1 have the role
of expeted values for the pregeometri momenta π̂0, π̂1, whereas σ0, σ1 har-
aterize the unertainty for π̂0, π̂1. N is a normalization onstant obtained

by requiring 〈Ψ|Ψ〉 = 1, from whih

N2 =
eℓπ̄0e−(ℓσ0)2/2

2πσ0σ1
. (2.33)

The properties of points of k-Minkowski spaetime are haraterized by

evaluating in the Gaussian pregeometri state the mean values and the un-

ertainties of the operators x̂0, x̂1. Beginning with the time oordinate:

4

This is true with the only exeption of the origin x̂0 = x̂1 = 0 but this an be added as

a limiting ase for what is to be disussed in the following, where it is made evident that

even if an observer desribes the point in his origin as absolutely sharp, a distant observer

desribes that same point as fuzzy.
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〈x̂0〉 =N2

∫

dπ0dπ1e
−ℓπ0Ψ∗

(

−i ∂
∂π0

)

e
− (π0−π̄0)

2

4σ2
0 e

− (π1−π̄1)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

=N2

∫

dπ0dπ1e
−ℓπ0Ψ∗

(

q̄0 +
i

2σ2
0

(π0 − π̄0)
)

e
− (π0−π̄0)

2

4σ2
0 e

− (π1−π̄1)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

=q̄0 +N2

∫

dπ0dπ1e
−ℓπ0

i

2σ2
0

(π0 − π̄0)e
− (π0−π̄0)

2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄0 +
i

2σ2
0

eℓπ̄0e−(ℓσ0)2/2

2πσ0σ1

∫

dπ0dπ1e
−ℓπ0(π0 − π̄0)e

− (π0−π̄0)
2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄0 +
i

2σ2
0

e−(ℓσ0)2/2

√
2πσ0

∫

dπ0e
−ℓ(π0−π̄0)(π0 − π̄0)e

− (π0−π̄0)
2

2σ2
0

=q̄0 +
i

2σ2
0

e−(ℓσ0)2/2

√
2πσ0

(

− ∂

∂ℓ

)
∫

dπ0e
−ℓ(π0−π̄0)e

− (π0−π̄0)
2

2σ2
0

=q̄0 +
i

2σ2
0

e−(ℓσ0)2/2

(

− ∂

∂ℓ

)

e(ℓσ0)2/2

=q̄0 − i
ℓ

2
.

This onstant ontribution to x̄0 is expeted on the basis of the fat that q̂0 is
not Hermitian, and the Hermitian operator obtainable by q̂0 that an be used

as k-Minkowski time oordinate is x̂∗0 = q̂0 − iℓ/2. However, one an keep

working with the previous hoie of time oordinate for two main reasons: the

�rst is that the physial properties of k-Minkowski will have to be formulated

in terms of operators that ommute with the Hamiltonian onstraint, and k-
Minkowski time oordinate is not one of these. The seond is that, when one

is interested in x̂0 as a partial observable on the physial Hilbert spae, the

most meaningful features are found to be inevitably formulated in terms of

di�erenes among values of this operator. Therefore this onstant does not

give any ontribution.

Continuing the alulations one has
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〈x̂20〉 =N2

∫

dπ0dπ1e
−ℓπ0Ψ∗

(

− ∂2

∂π2
0

)

e
− (π0−π̄0)

2

4σ2
0 e

− (π1−π̄1)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

=N2

∫

dπ0dπ1e
−ℓπ0

(

q̄20 +
1

2σ2
0

+
iq̄0
σ2
0

(π0 − π̄0)−
1

4σ4
0

(π0 − π̄0)2
)

e
− (π0−π̄0)

2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄20 +
1

2σ2
0

− iℓq̄0 −
1

4σ4
0

N2

∫

dπ0dπ1e
−ℓπ0(π0 − π̄0)2e

− (π0−π̄0)
2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄20 +
1

2σ2
0

− iℓq̄0 −
1

4σ4
0

e−(ℓσ0)2/2

√
2πσ0

(

∂2

∂ℓ2

)
∫

dπ0e
−ℓ(π0−π̄0)e

− (π0−π̄0)
2

2σ2
0

=q̄20 +
1

2σ2
0

− iℓq̄0 −
1

4σ4
0

e−(ℓσ0)2/2
(

σ2
0e

(ℓσ0)2/2 + ℓ2σ4
0e

(ℓσ0)2/2
)

=q̄20 +
1

4σ2
0

− iℓq̄0 −
ℓ2

4
.

Then

δx̂0 =
√

〈x̂20〉 − 〈x̂0〉2 =
√

q̄20 +
1

4σ2
0

− iℓq̄0 −
ℓ2

4
− (q̄20 − iℓq̄0 −

ℓ2

4
) =

1

2σ0
.

Now for the spatial oordinate:

〈x̂1〉 =〈q̂1eℓπ̂0〉 = N2

∫

dπ0dπ1e
−ℓπ0Ψ∗

(

i
∂

∂π1
eℓπ0

)

e
− (π0−π̄0)

2

4σ2
0 e

− (π1−π̄1)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

=N2

∫

dπ0dπ1Ψ
∗
(

q̄1 −
i

2σ2
1

(π1 − π̄1)
)

e
− (π0−π̄0)

2

4σ2
0 e

− (π1−π̄1)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

=N2

∫

dπ0dπ1

(

q̄1 −
i

2σ2
1

(π1 − π̄1)
)

e
− (π0−π̄0)

2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄1
eℓπ̄0e−(ℓσ0)2/2

2πσ0σ1

∫

dπ0dπ1e
− (π0−π̄0)

2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=q̄1e
ℓπ̄0e−(ℓσ0)2/2;
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〈x̂21〉 =〈(q̂1eℓπ̂0)2〉 = N2

∫

dπ0dπ1e
ℓπ0

(

q̄21 +
1

2σ2
1

− 1

4σ4
1

(π1 − π̄1)2
)

e
− (π0−π̄0)

2

2σ2
0 e

− (π1−π̄1)
2

2σ2
1

=

(

q̄21 +
1

2σ2
1

(

1 +
∂

∂β

))

|β=1

N2

∫

dπ0dπ1e
ℓπ0e

− (π0−π̄0)
2

2σ2
0 e

−β
(π1−π̄1)

2

2σ2
1

=

(

q̄21 +
1

2σ2
1

(

1 +
∂

∂β

))

|β=1

N2

√

2πσ2
1

β

√

2πσ2
0 e

(ℓσ0)2/2eℓπ̄0

=

(

q̄21 +
1

2σ2
1

(

1− 1

2

))

eℓπ̄0e−(ℓσ0)2/2

2πσ0σ1

√

2πσ2
1

√

2πσ2
0 e

(ℓσ0)2/2eℓπ̄0

=

(

q̄21 +
1

4σ2
1

)

e2ℓπ̄0;

Therefore one has

δx̂1 =
√

〈x̂21〉 − 〈x̂1〉2 =
√

(

q̄21 +
1

4σ2
1

)

e2ℓπ̄0 − q̄21e2ℓπ̄0e−(ℓσ0)2

=eℓπ̄0

[

1

4σ2
1

+ q̄21

(

1− e−(ℓσ0)2
)

]1/2

.

In summary, the following expression for mean values and unertainties

of the operators x̂0 and x̂1 have been found:

x̄0 = 〈q̂0〉 = q̄0 − i
ℓ

2
, (2.34a)

δx̂0 =
√

〈q̂20〉 − x̄20 =
1

2σ0
, (2.34b)

and

x̄1 = 〈q̂1eℓπ̂0〉 = q̄1e
ℓπ̄0e−(ℓσ0)2/2, (2.35a)

δx̂1 =
√

〈(q̂1eℓπ̂0)2〉 − x̄21 = eℓπ̄0

[

1

4σ2
1

+ q̄21

(

1− e−(ℓσ0)2
)

]1/2

. (2.35b)

From these expressions one an already see that for �xed values of q̄0, π̄0, σ0, σ1
one �nds larger fuzziness of x̂1 at large values of q̄1, beause of the ontri-

bution to δx̂1 by the term with q̄21 in the last equation. However it is more

interesting to study how distint observers related by a pure translation har-

aterize the fuzziness of the same point. To see this one has to implement

a translation transformation on a fuzzy point of k-Minkowski. Within this
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pregeometri desription the ation of the operator dP of Eq.(1.14) on a

funtion f(x̂) is easily found to be

dP ⊲ f(x̂0, x̂1)←→ iaµ[π̂µ, f(q̂0, q̂1e
ℓπ̂)], (2.36)

sine

dP = iâµP
µ = iâ0P0 − iâ1P1 = ia0P0 − ia1eℓπ̂0P1

and then realling the ation (2.23) of translation generators. So this ation

involves only familiar ommutative transformation parameters aµ and stan-

dard translations (ating by ommutators) at the pregeometri level. This

allows implementing translation transformations straightforwardly:

T ⊲ x̂0 = x̂0 + dP ⊲ x̂0 = x̂0 + iaµ[π̂µ, q̂0]

= x̂0 − a0 = q̂0 − a0,
(2.37)

T ⊲ x̂1 = x̂1 + iaµ[π̂µ, q̂1e
ℓπ̂0]

= x̂1 + ia1[π̂1, q̂1]e
ℓπ̂0

= x̂1 − ia1(−i)eℓπ̂0

= x̂1 − â1 = eℓπ̂0(q̂1 − a1).

(2.38)

The mean values of unertainties of T ⊲ x̂µ on the Gaussian state (2.32),

are then immediately found:

〈T ⊲ x̂0〉 = q̄0 − a0 − i
ℓ

2
, (2.39a)

δ(T ⊲ x̂0) =
1

2σ0
, (2.39b)

and

〈T ⊲ x̂1〉 = (q̄1 − a1)eℓπ̄0e−
ℓ2σ2

0
2 , (2.40a)

δ(T ⊲ x̂1) = eℓπ̄0

[

1

4σ2
1

+ (q̄1 − a1)2
(

1− e−ℓ2σ2
0

)

]1/2

. (2.40b)

The interpretation here is of ourse that operators x̂µ are operators har-

aterizing the distane of a given (fuzzy) point from the frame origin of some

observer Alie, and T ⊲ x̂µ are the operators haraterizing the distane of

that point from the origin of another observer Bob, purely translated with

respet to Alie. Comparing Eqs.(2.34),(2.35) with Eqs.(2.39), (2.40) one

an reognize two main features:
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• The same point appears to be more fuzzy to a distant observer than to

a nearby observer.

• The point at Alie is not desribed as at Alie in the oordinatization

of spaetime of observer Bob, and vie versa the point at Bob is not

desribed as at Bob in the oordinatization of spaetime of observer

Alie.

This seond feature is harateristi of Relative Loality and will be disussed

in detail in the following. As antiipated in the introdution, one an see

that it is possible to formulate a onsistent relativisti theory of interating

partiles in whih the onept of loality is weakened, from the absolute

loality of the standard physis to a relative loality. In the �rst ase all

observers agree on haraterizing all the interations as loal (there are no

instantaneous-interation-at-a-distane, the partiles interat at one point

of spaetime), independently on their distane from the interation event

or on their motion relative to the interating partiles; in the other ase

observers whih are loal (�near�) to the interation haraterize it as loal

but distant observers might (erroneously) infer from their observations that

the interation is not loal.

2.1.3 Fuzzy worldlines

The properties of boost strongly haraterize the form of the on-shell on-

dition, whih in turn, as it has been seen in the setion dediated to the

ovariant formulation of quantum mehanis, through an appropriate Hamil-

tonian onstraint governs the relationship between the kinematial Hilbert

spae and the physial Hilbert spae. On the basis of the properties derived

above one �nds that the d'Alambertian operator that is invariant under the

ation of boosts is the ℓ-deformed

�ℓ =

(

2

ℓ

)2

sinh2

(

ℓπ̂0
2

)

− e−ℓπ̂0π̂2
1 . (2.41)

Then for massless partiles the Hamiltonian operator that enfores the on-

shellness ondition and should vanish on physial states (WdW equation) is

simply

H =

(

2

ℓ

)2

sinh2

(

ℓπ̂0
2

)

− e−ℓπ̂0π̂2
1 . (2.42)

One an proeed to study the physial salar produt 〈ψ|φ〉H = 〈ψ|δ(H)Θ(π0)|φ〉,
where Θ(π0) spei�es a restrition to positive-energy solutions only. In the
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momentum spae representation this writes

〈ψ|φ〉H =

∫

dπ1dπ0 e
−ℓπ0δ(H)Θ(π0)ψ

⋆(πµ)φ(πµ). (2.43)

Here it will be now onsidered the ase of a loalized massless partile, de-

sribable in terms of the Gaussian state

5

Ψq̄0, q̄1(πµ; π̄µ, σµ) = Ne
− (π0−π̄0)

2

4σ2
0

− (π0−π̄0)
2

4σ2
1 eiπ0q̄0−iπ1q̄1

(2.44)

where N now is a new normalization onstant that is omputed by

N−2 =

∫

dπ1dπ0 e
−ℓπ0δ(H)Θ(π0)|Ψq̂0, q̂1(πµ; π̄µ, σµ)|2. (2.45)

Ψq̄0, q̄1 is a state in the physial Hilbert spae of relativisti free-partile quan-

tum mehanis, so it identi�es a worldline that is fuzzy, as will be lear

shortly. The expetation in Ψq̄0, q̄1 of the measurable quantity desribed by

the self-adjoint operator O is omputed in terms of 〈Ψq̄0, q̄1|O|Ψq̄0, q̄1〉H.
One now has to look for a well-de�ned omplete observable suitable for

the haraterization of the fuzziness of the worldline. The apparently obvious

hoies x̂0, x̂1 are atually not suitable for this task beause they are not self-
adjoint operators on the physial Hilbert spae (in partiular they do not

ommute with H). One should expet this sine these two operators are the

k-Minkowski version of the partial observable time and position operators

of ovariant quantum mehanis. So what is really needed is a ombination

between these two quantities that gives a omplete observable. Considering

a free partile, lassially speaking, one ould imagine that it should go on a

straight line. This line is determined ompletely one the interept and the

veloity are known. Authors in [101℄ found the following operator:

A = eℓπ̂0

(

q̂1 − V̂ q̂0 −
1

2
[q̂0, V̂]

)

, (2.46)

where V̂ is de�ned as V̂ ≡ (∂H/∂π̂0)−1∂H/∂π̂1
. A is self-adjoint and om-

mutes with H , and so it is a good observable on the physial Hilbert spae.

Also, in the lassial limit it evidently redues to the interept of the parti-

le worldline with the x1 axis. One may notie that A is desribable as an

ℓ-deformed Newton-Wigner operator, whih is well known to being the best

5

In the massless partile limit, one must proeed autiously: Ψq̂0, q̂1(πµ; π̄µ, σµ)must be

replaed by Ψα
q̂0, q̂1

(πµ; π̄µ, σµ) = exp(−α/π2
0)Ψq̂0, q̂1(πµ; π̄µ, σµ) with α a small infrared

regulator whih never atually matters in the results here reported.
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loalization estimator within speial-relativisti quantum mehanis (it an

only be questioned for loalization omparable to the Compton wavelength

of the partile, but this oneptual limit is not very relevant for the level of

loalization ahieved by partile prodution at, say, a quasar).

For oneptual larity, the fous here is on the analysis of the properties

of A for the ase of Ψ0, 0, i.e. for q̄0 = q̄1 = 0. One �nds that

〈Ψ0, 0|A|Ψ0, 0〉H = 0, (2.47)

so this is a ase where the partile interepts the observer Alie in her origin.

The fat that this interept is fuzzy re�ets the fuzziness of the worldline

desribed by Ψ0, 0, and in partiular the leading ℓ-dependent ontribution to

this fuzziness is haraterized by

δA2
[ℓ] = (〈Ψ0, 0|A2|Ψ0, 0〉H)[ℓ] ≈

ℓ〈π̂0〉
2σ2

, (2.48)

where for simpliity it has been assumed that σ1 is small enough, in ompar-

ison with σ0, π̄1 to allow a saddle point approximation in the π1 integration;
then σ (without indies) is the e�etive Gaussian width after the saddle point

approximation in π1 : σ
−2 ≡ σ−2

1 + 〈V̂〉2σ−2
0 .

In the interpretation of the formalism proposed by the authors in Ref.[101℄

Eq.(2.48) gives the fuzziness of the worldline at the point where it rosses

the origin of Alie's referene frame. It is of interest also onsidering the

perspetive given by observers reahed by the partiles at a osmologial

distane from Alie. These observers are those onneted to Alie by a pure

translation, so that for them the state of the partile is Ψa0, a1 and are suh

that 〈A〉 = 〈Ψa0, a1 |A|Ψa0, a1〉H = 0. Finding these observers onsists in

�nding the translation parameters a0, a1 suh that 〈Ψ0, 0|T−1AT |Ψ0, 0〉H = 0,
where T is the translation operator previously de�ned. This leads to a one-

parameter family of solutions (the family of observers on the worldline),

whih takes the form a1 = 〈V̂〉a0.
It is important to notie that these observers with vanishing expetation

value for the interept have values of the unertainties of the interept δA
given by

δA2
[ℓ] = (〈Ψa0, 〈V̂〉a0 |A

2|Ψa0, 〈V̂〉a0〉H ≈
(

ℓ〈π̂0〉
2σ2

+ ℓ2σ2a20

)

. (2.49)

So a quantum spaetime piture is o�ered here: one an interpret our observer

Alie, the observer on the worldline for whom the fuzziness of the interept

takes the minimum value, as the observer at the soure (where the partile

is produed); then the interept of the partile worldline with the origin of
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the referene frame of a distant observer (whih might detet the partile)

has larger unertainties. Notie that, sine δA2
[ℓ] goes as (ℓa0)

2
, if the partile

travels a long distane (a osmologial distane) its fuzziness �bene�ts� of a

sort of ampli�ation. Therefore, from this formalization of k-Minkowski it

is possible to extrat (if one proeeds with the analysis) in priniple observ-

able phenomenologial preditions as, for example, an anomalous blurring of

images of distant quasars.

2.2 The priniple of relative loality

The previous setion showed how relativity of loality emerges in k-Minkowski

non-ommutative spaetime. Here the basi formulation of Relative Loality

will be given, without relying on any spei� model of quantum spaetime.

In fat the main ingredient is the geometry of momentum spae.

The approximation used in this study is that in whih both ~ and GNewton

may be negleted while their ratio MP l =

√

~

GNewton

is held �xed

6

. In this

approximation gravitational and quantum e�ets may both be negleted, but

there may be new phenomena on sales of momentum or energy given byMP l.

At the same time, beause LP =
√
~GNewton → 0 no features of quantum

spaetime geometry are expeted to be relevant.

Sine this approximation gives an energy sale, but not a length sale,

one presumes that momentum spae is more fundamental than spaetime,

aording to the operational point of view mentioned before. Thus, one the

deformation of the geometry of momentum spae by the sale MP l has been

established, the properties of spaetime will be derived from the dynamis

formulated in momentum spae.

2.2.1 De�ning the geometry of momentum spae

The theoretial framework of Relative Loality takes an operational point of

view in whih one desribes physis from the perspetive of a loal observer

who is equipped with devies to measure energy and momenta of elementary

partiles in her viinity. It is also supposed that the observer an measure a

"loal proper time" with a lok. She onstruts the geometry of momentum

spae from measurements made of the dynamis of interating partiles. It

is assumed that eah hoie of alorimeter is a preferred hoie of loal o-

ordinates kµ on momentum spae. Notie that kµ measure the energy and

6

Units are suh that c = 1.
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momenta of exitations above the ground state, hene the origin of momen-

tum spae, kµ = 0, is physially well de�ned.

A loal observer an make two kinds of measurements. One type of

measurement an be done only with a single partile and it de�nes a metri

on momentum spae P. In fat, it is assumed that the mass represents

the geodesi distane from the origin of momentum spae. This gives the

dispersion relation

D2(p) ≡ D2(p, 0) = m2. (2.50)

The observer an also measure the kineti energy of a partile of mass m
moving with respet to her but loal to her. It is postulated that this measure

de�nes the geodeti distane between a partile p at rest and a partile p′ of
idential mass and kineti energy K, that is D2(p) = D2(p′) = m2

and

D2(p, p′) = −2mK. (2.51)

The minus sign expresses the fat that the geometry of momentum spae is

Lorentzian.

The other type of measurement involves many partiles and de�nes a

onnetion. Consider a proess in whih n partiles interat. Assoiated to

eah interation there must be a ombination rule for momenta, whih will

be in general non-linear. This rule for two partiles is denoted by

(p, q)→ p′µ = (p⊕ q)µ. (2.52)

Hene the momentum spae has the struture of an algebra de�ned by the

produt rule �⊕�. It is assumed that more ompliated proesses are built

up by iterations of this produt (that in priniple ould be non-linear, non-

ommutative and non-assoiative). The inverse (�antipode�) of �⊕� is denoted
by �⊖� and satis�es⊖p⊕p = p⊕(⊖p) = 0. Then one has the onservation law
for energy and momentum for any proess, giving, for eah type of interation,

four funtions on Pn
, depending on momenta of interating partiles, whih

vanish

Kµ(k
I) = 0. (2.53)

For example, for a proess with three inoming partiles with momenta pµ, qµ
and kµ one has

Kµ(p, q, k) = (p⊕ (q ⊕ k))µ = 0. (2.54)

These onservation laws will be disussed in the next setion in greater detail.
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From the algebra of ombinations of momenta one an de�ne an a�ne

onnetion

7

on P, in partiular

∂

∂pµ

∂

∂qν
(p⊕ q)ρ|q,p=0 = −Γµν

ρ (0). (2.55)

The torsion of the onnetion is a measure of the asymmetri part of the

ombination rule

− ∂

∂pµ

∂

∂qν
((p⊕ q)ρ − (q ⊕ p)ρ)|q,p=0 = T µν

ρ (0). (2.56)

Similarly the urvature of P is a measure of the lak of assoiativity of the

ombination rule

2
∂

∂p[µ

∂

∂qν]

∂

∂kσ
(((p⊕ q)⊕ k)ρ − (p⊕ (q ⊕ k))ρ)|q,p=0 = Rµνσ

ρ (0), (2.57)

where the brakets denote antisymmetrization.

Notie that there is no physial reason to expet a ombination rule for

momentum to be assoiative one it is non-linear. Indeed, the lak of asso-

iativity means that there is a physial distintion between the two proesses

of Fig.2.1, whih is equivalent to saying that there is a de�nite mirosopi

ausal struture. That is, ausal struture of the physis maps to nonassoia-

tivity of the ombination rule for momentum whih in turn maps to urvature

of momentum spae. The urvature of momentum spae makes mirosopi

ausal orders distinguishable, hene meaningful.

To determine the onnetion, torsion and urvature away from the origin

of momentum spae one has to onsider translations on momentum spae,

i.e. one an denote

p⊕k q = k ⊕ ((⊖k ⊕ p)⊕ (⊖k ⊕ q)) (2.58)

∂

∂pµ

∂

∂qν
(p⊕k q)ρ|q,p=k = −Γµν

ρ (k), (2.59)

the identity for this produt is at 0k = k.
Thus, the ation of adding an in�nitesimal momentum dqµ from partile

J to a �nite momentum pµ of partile I de�nes a parallel transport on P
7

One ould also de�ne other a�ne onnetion, for example, by de�ning an appropriate

notion of parallel transport of the mass-geodesi of one partile along the mass-geodesi

of a seond partile and obtaining in this way the omposite momentum (see Ref.[105℄).

These mathematial aspets are presently under investigation. In this thesis, however,

these alternative de�nitions of a�ne onnetion are not onsidered.
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p q k

(p⊕ q)⊕ k

6=

p⊕ (q ⊕ k)

p q k

Figure 2.1: Curvature of the onnetion on momentum spae produes nonas-

soiativity of the omposition rule.

pµ ⊕ dqµ = pµ + dqντ
ν
µ (p) (2.60)

where τ νµ (p) is the parallel transport operation from the identity to p. It an
be expanded around p = 0

τ νµ (p) = δνµ − Γνσ
µ pσ − Γνσρ

µ pσpρ + ... (2.61)

with

Γνσρ
µ = ∂ρpΓ

νσ
µ − Γρν

α Γασ
µ − Γρσ

α Γνα
µ . (2.62)

The orresponding onservation law has the form to seond order

Kµ(k) =
∑

I

kIµ +
∑

J∈J (I)

CI, JΓ
νσ
µ k

I
νk

J
σ + ... (2.63)

where J (I) is the set of partiles that interat with the I's one and CI, J are

oe�ients that depend on the form of the onservation law.

2.2.2 A variational priniple

Here spaetime is viewed as an auxiliary onept that emerges when one

seeks to de�ne dynamis in momentum spae. If the momenta of elementary

partiles are taken to be primary, then they themselves need momenta in

order to develop a anonial dynamis. Momenta of momenta are quantities

xµ that live in the otangent spae of Pn
at a point kµ; these quantities are

alled Hamiltonian spaetime oordinates. The ation proposed to de�ne the

dynamis of a free partile is

Sfree =

∫

ds
(

xµk̇µ +NkC(k)
)

(2.64)
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where s is an arbitrary evolution parameter andNk is the Lagrange multiplier

enforing mass shell ondition

C(k) ≡ D2(k)−m2 = 0. (2.65)

It shall be emphasized that the ontration xµkµ does not involve any metri,

and the dynamis is given by onstraints whih are funtions only of oordi-

nates on P and depend only on the geometry of P. This leads to the Poisson
brakets

{xµI , kJν } = δµν δ
J
I (2.66)

where the indexes I, J identify the partile whose oordinates refer to.

One then has a phase spae Γ of a single partile whih is the otangent

bundle of P. Note that there is neither an invariant projetion to a spaetime

M, nor is de�ned any invariant spaetime metri. Still this struture is su�-

ient to desribe the dynamis of free partiles. Spaetime is also unneessary

to desribe how partiles interat.

Consider the following ation:

S =
∑

J

∫ 0

−∞
ds
(

xµJ k̇
J
µ +NJCJ(k)

)

− ξµKµ(k(s = 0)). (2.67)

It desribes the simple (yet unrealisti) proess in whih n inoming partiles

interat at the interation vertex (here the interation is set to take plae at

the value s = 0 for eah of the partiles) and no outgoing partile is produed.

One wants to impose onservation of momentum and this is done introduing

the Lagrange multiplier ξµ enforing this onstraint.

To obtain the equations of motion one varies the ation and, after inte-

grating by parts in eah of the free ations, one obtains

δS =
∑

J

∫ 0

−∞
ds

(

δxµJ k̇
J
µ − δkJµ

[

ẋµJ −NJ
δCJ
δkJµ

]

+ δNJCJ(k)
)

+R. (2.68)

Here R ontains both the results of varying the interation term and the

boundary terms from the integration by parts. The equations of motion are

the expeted ones

k̇Jµ = 0, ẋµJ = NJ
δCJ
δkJµ

, CJ(k) = 0. (2.69)

One an �x δkJµ = 0 at s = −∞ and examine the remaining terms of the

variation

R = −Kµ(k)δξ
µ +

(

xµJ (0)− ξν
δKν

δkJµ

)

δkJµ . (2.70)
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Here xµJ and kJµ are taken for eah partile at the value s = 0. R has to

vanish as the variational priniple must have a solution. From the vanishing

of the oe�ient of δξµ one gets the four onservation laws of the intera-

tion, Kµ(k) = 0. From the vanishing of the oe�ient of δkJµ one �nds 4n
onditions that hold at the interation

xµJ (0) = ξν
δKν

δkJµ
. (2.71)

By using (2.63), this gives the onditions

xµJ(0) = ξµ − ξν
∑

L∈J (J)

CJ,LΓ
µσ
ν kLσ + ... (2.72)

This implies that to leading order, in whih the nonlinearity of momentum

spae is ignored, all of the partiles involved in the interation meet at a single

spaetime event, for they are all equal to ξµ (whih in general should not be

regarded as the event itself, but rather as an auxiliary variable that sets the

observable relations between the xµJ(0)). The hoie of ξ
µ
is not onstrained

and annot be, for its variation gives the onservation laws Kµ(k) = 0. Thus,
the usual notion that interation of partiles takes plae at single spaetime

event from the onservation of energy and momentum has been reovered.

However, onsidering the ontributions due to the nonlinearity of momen-

tum spae, one �nds that the interation takes plae at n distint events,

separated from ξµ by an interval

∆xµJ (0) = −ξν
∑

L∈J (J)

CJ,LΓ
µσ
ν kLσ + ... (2.73)

These relations (2.72), (2.73) illustrate onisely the relativity of loality.

For some fortunate observers the interation takes plae at the origin of their

systems of oordinates, so that ξµ = xµJ (0) = 0 in whih ase the interation

is observed to be loal. Any other observer, translated with respet to these,

has a non-vanishing ξµ and hene sees the interation to take plae at a

distant set of events. These are entered around ξµ but are not preisely at

the same values of the oordinates.

Is it a real, physial non-loality or a new kind of oordinate artifat? It

is easy to see that it is the latter, beause the ∆xµJ an be made to vanish by

making a translation to the oordinates of another observer. In a anonial

formulation, translations are generated by the laws of onservation of energy

and momentum. Given any loal observable in phase spae O observed by a

loal observer, Alie, one an onstrut the observable as seen in oordinates
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onstruted by another observer, Bob, distant from Alie, by a translation

parameter bµ

δbO = bν{Kν , O}. (2.74)

Sine momentum spae is urved, and Kµ is non-linear, it follows that the

"spaetime oordinates" xµJ of a partile translate in a way that is dependent

on the energies and momenta of the partiles it interats with, xµJ → x′µJ (0) =
xµJ (0) + δbx

µ
J(0) where

δbx
µ
J (0) = bν{Kν , x

µ
J} = −bµ + bν

∑

L∈J (J)

CJ,LΓ
µσ
ν kLσ + ... (2.75)

This is a manifestation of the relativity of loality, i.e. loal spaetime oor-

dinates for one observer mix up energy and momenta on translation to the

oordinates of a distant observer.

This mixing under translations e�et also entirely aounts for the separa-

tion of an interation into apparently distint events, beause with bν = −ξν ,
one sees that ∆xµJ of (2.73) is equal to δbx

µ
J of (2.75). Thus, the observer

whose new oordinates one has translated to observes a single interation

taking plae at xµJ → x′µJ (0) = 0.

p

k

Alice

Bob

q

p′

k′

x1A

x0A

x1B

x0B

p

k

q

Bob

Alice

x0B

x1B

x1A

x0A

k′

p′

Figure 2.2: A proess desribed in the relative loality framework by two

observers: the �gure on the left represents the desription given by Alie,

the one on the right represents Bob's desription of the proess.

Thus, if a loal observer sees an interation to take plae via a ollision

at the origin of her oordinates system, a distant observer will generally see

it in her own oordinates as spread out over a region of spaetime aording

to Eq.(2.73) and vie versa, as represented in Fig.2.2. There is not a physial

non-loality sine all momentum onserving interations are seen as happen-

ing at a single spaetime event by some family of observers, who are loal
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to the interation. But it beomes impossible to loalize distant interations

in an absolute manner: distant observers do not share the same spaetime.

Furthermore, all observers related by a translation agree about the momenta

of partiles in the interation, beause under translations (2.74) δbk
J
µ = 0.

Note that if the urvature and torsion vanish there is no mixing of spae-

time oordinates with momenta under translations, so there is an invariant

de�nition of spaetime. Therefore, the �atness of momentum spae is respon-

sible for the notion of an absolute spaetime, just as the Galilean additivity

of veloities allows Newtonian physis to have an absolute time.

2.3 k-de Sitter momentum spae

In this setion an expliit example of formalization of Relative Loality will be

obtained. Again k-Minkowski is the soure of inspiration in Subsetion 2.3.1:

in the relative loality regime the nonommutativity of spaetime oordinates

is suppressed, but the non primitive oprodut of translation generators sur-

vives. From this one gets the a�ne onnetion of momentum spae. The

metri on momentum spae is de Sitter, and the onstrution of the on-shell

relation as the geodesi distane from the origin of momentum spae is on-

sistent with the relative loality limit of the mass Casimir of k-Minkowski.

A partiular e�ort is dediated in Subsetion 2.3.2 in disussing the role of

the interation terms in relation to the translational symmetry, highlighting

that even though the same onservation laws of energy-momentum may be

enfored by di�erent interation terms, di�erent interation terms lead to

physially distinguished theories. The key onept is that one an obtain

a relativisti theory with urved momentum spae (therefore, with relative

loality) if the momentum spae is maximally symmetri and the ation is

ompatible with the symmetries of momentum spae. Finally in Subsetion

2.3.3 it is introdued the strategy of analysis of the problem of determining

the physial veloity of partiles in Relative Loality, an exerise that is made

oneptually less trivial than usual by the non trivial harater of translation

transformations and that will be largely used in the rest of the thesis.

2.3.1 Relative Loality limit of k-Minkowski

It has been shown in Refs. [23℄, [24℄, [25℄, [26℄ that k-Poinaré Hopf alge-

bra desribes a urved momentum spae with de Sitter metri, torsion and

nonmetriity. One an then study the properties of k-Minkowski momentum

spae in the Relative Loality regime. As it has been assumed in the previ-

ous setion, the metri determines the distane of a point pµ from the origin
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in momentum spae P. The omposition law for momenta is determined

by the omposition law of basis exponentials e−ipj x̂jeip0x̂0
of k-Minkowski. In

fat, from the k-Minkowski ommutators (1.1),(1.2) and the Baker-Campbell-

Hausdor� formula one has, writing expliitly ~ and using the Plank length

instead of ℓ in the de�nition of k-Minkowski ommutators,

e−
i
~
pj x̂je

i
~
p0x̂0e−

i
~
qj x̂je

i
~
q0x̂0 = e−

i
~
pj x̂je−

i
~
e
LP
~

p0qj x̂je
i
~
p0x̂0e

i
~
q0x̂0

= e−
i
~
(pj+e

LP
~

p0qj)x̂je
i
~
(p0+q0)x̂0 .

(2.76)

Thus in the Relative Loality regime, where ~→ 0, LP → 0 while
~

LP

=MP l

is kept onstant, the nonommutativity properties of spaetime oordinates

disappear but the non primitive oprodut of translation generators remains.

This expression an be used as the rule of omposition of momenta:

(p⊕ q)0 = p0 + q0, (p⊕ q)i = pi + eℓp0qi, (2.77)

where it has been introdued the notation M−1
P l = ℓ = lim

~,LP→0

LP

~
, whih is

widely used in the relative loality literature and therefore will be used from

now on. This deformed omposition law is evidently nonommutative but it

is found to be assoiative.

In what follows a partiular attention will be dediated in haraterizing

the non trivial geometry of momentum spae only at leading order in ℓ,
for it is unlikely that experiments would be sensible enough to determine

orretions to standard physis phenomenology of greater orders. Therefore,

one an use the omposition law obtained developing the deformed sum of

momenta in powers of ℓ:

(p⊕ q)µ ≃ pµ + qµ + ℓδiµp0qi. (2.78)

The exat antipode is

(⊖p)0 = −p0, (⊖p)i = −e−ℓp0pi, (2.79)

while at leading order in ℓ it beomes

(⊖p)µ ≃ −pµ + ℓδiµp0pi. (2.80)

In what follows it will be onsidered a 1+1-dimensional momentum spae.

The metri is

dk2 = (dp0)
2 − e−2ℓp0(dp1)

2
(2.81)
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Solving the geodesi equation and omputing the geodesi distane from the

origin of momentum spae for a generi momentum pµ = (p0, p1) one has

D2(p, 0) = m2 = p2 + Cρµνpρpµpν , (2.82)

where Cρµν
are the Christo�el symbols for the metri. At leading order they

are

C011 = −ℓe−2ℓp0 ≃ −ℓ
C110 = C101 = ℓ

(2.83)

and therefore,

D2(p, 0) = m2 = p2 + 2ℓp0p
2
1 − ℓe−2ℓp0p0p

2
1 ≃ p20 − p21 + ℓp0p

2
1. (2.84)

Notie that this is also onsistent with the expansion in powers of ℓ to �rst

order of the k-Minkowski mass Casimir (1.11). Then, the ation of the proess

onsidered in the previous setion in the ase n = 2 is

S =

∫ 0

−∞
ds (xµṗµ +NpC(p)) +

∫ 0

−∞
ds (yµq̇µ +NqC(q))− ξµKµ (2.85)

with

Kµ = pµ + qµ + ℓδ1µp0q1,
C(p) = p20 − p21 + ℓp0p

2
1 −m2

p,
C(q) = q20 − q21 + ℓq0q

2
1 −m2

q .

2.3.2 On the hoie of the interation terms Kµ

It is important now to fous on the soures of ambiguity in the hoie of

the laws of onservation of energy-momentum. One issue omes from the

nonommutativity of the sum (2.78), whih suggests that an ordering pre-

sription for summing momenta should be given. However, it is easy to

realize that the multipliity of possible onservation laws is smaller than one

may expet on the basis of the properties of the omposition law. In fat, for

arbitrary momenta p and q, from Eq.(2.78) one has p ⊕ q 6= q ⊕ p. Notie,

however, that from (p⊕ q)µ = 0 one gets

0 = pµ + qµ + ℓδ1µp0q1 = pµ + qµ + ℓδ1µ(−q0)(−p1) = (q ⊕ p)µ, (2.86)

using leading order orretions only. Thus, when the omposition rule (2.78)

is used to write a onservation law, one atually does have

p⊕ q = 0⇐⇒ q ⊕ p = 0. (2.87)
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Moreover, this is true for any hoie of a�ne onnetion of momentum spae,

as one an see from the following hain properties:

p⊕ q = 0 =⇒ p = ⊖q =⇒ q ⊕ p = q ⊕ (⊖q) = 0. (2.88)

This observation also simpli�es the desription of a three-partiles intera-

tion:

p⊕ q ⊕ k = 0⇐⇒ k ⊕ p⊕ q = 0. (2.89)

So, when the rule of omposition of momenta is used for a onservation

law it produes a onservation law with yliity, reduing then the possible

independent hoies for the law K = 0.
A seond issue regards interations with inoming and outgoing partiles.

Until now in fat only inoming partiles have been here onsidered. One

ould be tempted to write the onservation law of total momentum using

antipodes to denote momenta of outgoing partiles. Thus, for example, one

ould write

K = p⊕ q ⊕ (⊖p′)⊕ (⊖q′),
K = p⊕ q ⊕ (⊖(p′ ⊕ q′)),
K = p⊕ q − (p′ ⊕ q′),

(2.90)

where the prime denotes outgoing partiles. The �rst two expressions di�er

from eah other for it an be shown that ⊖(p′ ⊕ q′) = (⊖q′) ⊕ (⊖p′). The

last two expressions, when set equal to zero, give the same onservation laws,

sine

p⊕ q ⊕ (⊖(p′ ⊕ q′)) = 0 =⇒ p′ ⊕ q′ = p⊕ q =⇒ p⊕ q − p′ ⊕ q′ = 0. (2.91)

As will be lear shortly, these di�erent forms of K, even if they enfore the

same onservation law, lead to physially di�erent theories. It is of great

importane to realize that a key onept of Relative Loality is that there

must be a notion/presription of translation transformations that makes the

theory symmetri (as in the previous setion) in order for the theory to be

ompatible with the relativity priniple and to allow an interation to be

haraterized as loal for observers whih are loal to it, otherwise one would

have a non-relativisti theory with physial non-loality, i.e. one that annot

be removed by a hange of oordinates. Then, realling the role that K has

in determining the spaetime oordinates of the partiles whih partiipate

in the interation (2.71), the hoie of K must ensure the symmetry of the

ation under a ertain realization of translation transformations.

Consider the proess shown in Fig.2.3. It might be desribed by the
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k, z
p, x

q, y

p′, x′

p′′, x′′

K(0)

K(1)

Figure 2.3: Example of proess with both inoming and outgoing partiles

and a �nite worldline.

following ation, written by some observer Alie:

SA =

∫ s0

−∞
ds (zµAk̇µ +NkC(k)) +

∫ s1

s0

ds (xµAṗµ +NpC(p))+

+

∫ ∞

s0

ds (yµAq̇µ +NqC(q)) +
∫ ∞

s1

ds (x′µA ṗ
′
µ +Np′C(p′))+

+

∫ ∞

s1

ds (x′′µA ṗ
′′
µ +Np′′C(p′′))− ξµ(0),AK(0)

µ − ξµ(1),AK(1)
µ .

(2.92)

The subsript A is omitted for momenta sine they are invariant under trans-

lation transformations, whih are generated by some ombination of mo-

menta. For what follows it is important to notie that Eq.(2.75) an be

viewed as a presription for translations generated by the �total momentum�,

whih for that ase orresponds to Kµ. In fat, one an write, for example

δxµb = bν{(p⊕ q)ν , xµ} = bν{Kν , x
µ} = −bν δKν

δpµ
. (2.93)

Now it will be made evident the e�et of di�erent hoies of the form of

K. Following Ref.[104℄, one might �rst start onsidering the expressions:

K(0)
µ = kµ − (p⊕ q)µ = kµ − pµ − qµ − ℓδ1µp0q1

K(1)
µ = (p⊕ q)µ − (p′ ⊕ p′′ ⊕ q)µ

= pµ − p′µ − p′′µ + ℓδ1µ((p0 − p′0 − p′′0)q1 − p′0p′′1).

(2.94)

Notie that it has been used the presription of writing the deformed sum

of the total momentum before and after the interation. One ould feel

unomfortable with the presene of momentum q in the vertex K(1)
µ , whih

desribes an interation in whih the partile with momentum q does not

partiipate, but it is immediate to hek that the onservation laws K(1)
µ = 0
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do not depend on q, for the only term of q that appears in these expressions

is multiplied by K(1)
0 . The equations of motion are

k̇µ = 0, ṗµ = 0, q̇µ = 0, ṗ′µ = 0, ṗ′′µ = 0,

C(k) = 0, C(p) = 0, C(q) = 0, C(p′) = 0, C(p′′) = 0,

K(0)
µ = 0, K(1)

µ = 0

żµA = Nk
δC(k)
δkµ

= Nk(δ
µ
0 (2k0 + ℓk21) + δµ1 (−2k1 + 2ℓk0k1)),

ẋµA = Np
δC(p)
δpµ

= Np(δ
µ
0 (2p0 + ℓp21) + δµ1 (−2p1 + 2ℓp0p1)),

ẏµA = Nq
δC(q)
δqµ

= Nq(δ
µ
0 (2q0 + ℓq21) + δµ1 (−2q1 + 2ℓq0q1)),

ẋ′µA = Np′
δC(p′)
δp′µ

= Np′(δ
µ
0 (2p

′
0 + ℓp′21 ) + δµ1 (−2p′1 + 2ℓp′0p

′
1)),

ẋ′′µA = Np′′
δC(p′′)
δp′′µ

= Np′′(δ
µ
0 (2p

′′
0 + ℓp′′21 ) + δµ1 (−2p′′1 + 2ℓp′′0p

′′
1)),

while the boundary onditions are

zµA(s0) = ξν(0),A
δK(0)

ν

δkµ
= ξµ(0),A,

yµA(s0) = −ξν(0),A
δK(0)

ν

δqµ
= ξµ(0),A + ℓξ1(0),Aδ

µ
1 p0,

xµA(s0) = −ξν(0),A
δK(0)

ν

δpµ
= ξµ(0),A + ℓξ1(0),Aδ

µ
0 q1,

xµA(s1) = ξν(1),A
δK(1)

ν

δpµ
= ξµ(1),A + ℓξ1(1),Aδ

µ
0 q1,

x′µA (s1) = −ξν(1),A
δK(1)

ν

δp′µ
= ξµ(1),A − ℓξ1(1),Aδ

µ
0 (q1 + p′′1),

x′′µA (s1) = −ξν(1),A
δK(1)

ν

δp′′µ
= ξµ(1),A − ℓξ1(1),A(δ

µ
0 q1 + δµ1 p

′
0).
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Thanks to the form of the onstraints K(i)
here onsidered, one an extend to

an interation in whih partiipate both inoming and outgoing partiles the

rather standard presription of translations generated by total momentum

used previously in the ase of inoming partiles only. It is also immediate

to see that these presriptions on the form of K and translation transforma-

tions make the equations of motion and boundary terms symmetri under

translations, and, furthermore, not only at �rst order in ℓ, but to all orders.

In fat one has

zµB(s) = zµA(s) + bν{kν , zµ} = zµA(s) + bν{kν − (p⊕ q)ν , zµ}

= zµA(s) + bν{K(0)
ν , zµ} = zµA(s)− bν

δK(0)
ν

δkµ
,

where it has been exploited the property that the terms added in the seond

equality have null Poisson brakets with z. Using the same argument for the

others partiles one has

8

zµB(s) = zµA(s)− bν
δK(0)

ν

δkµ
, yµB(s) = yµA(s) + bν

δK(0)
ν

δqµ
,

xµB(s) = xµA(s) + bν
δK(0)

ν

δpµ
, xµB(s) = xµA(s)− bν

δK(1)
ν

δpµ
,

x′µB (s) = x′µA (s) + bν
δK(1)

ν

δp′µ
, x′′µB (s) = x′′µA (s) + bν

δK(1)
ν

δp′′µ
.

(2.95)

A diret alulation shows that, substituting these expression in ation SA
one �nds the same ation for observer Bob

9

provided that one takes

ξµ(i),B = ξµ(i),A − bµ. (2.96)

So this might be regarded as a presription for �strong� translation transfor-

mations, that is the ξ's translate lassially.
Furthermore, from Eqs.(2.95) for the �nite worldline xµ, one obtains a

ondition on the derivatives of K(i)
that must be satis�ed for the theory to be

8

For the worldline xµ
two di�erent hoies are possible, depending on what one adds to

{(p⊕ q)ν , x
µ}, either 0 = {−kν , xµ} or 0 = {−(p′ ⊕ p′′ ⊕ q)ν , x

µ}; thus, one an translate

equivalently with K(0)
or with K(1)

.

9

Up to terms that do not add any other ondition on the dynamial variables to those

already obtained from the equations of motion and boundary onditions, so they an be

safely negleted.
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symmetri under this partiular presription for translation transformations.

In fat, evaluating the two expressions at s = s0 and s = s1 one has

xµB(s0) = xµA(s0) + bν
δK(0)

ν

δpµ
= −ξν(0),A

δK(0)
ν

δpµ
+ bν

δK(0)
ν

δpµ

= xµA(s0)− bν
δK(1)

ν

δpµ
= −ξν(0),A

δK(0)
ν

δpµ
− bν δK

(1)
ν

δpµ
,

xµB(s1) = xµA(s1) + bν
δK(0)

ν

δpµ
= ξν(1),A

δK(1)
ν

δpµ
+ bν

δK(0)
ν

δpµ

= xµA(s1)− bν
δK(1)

ν

δpµ
= ξν(1),A

δK(1)
ν

δpµ
− bν δK

(1)
ν

δpµ
,

both requiring

δK(1)
ν

δpµ
= −δK

(0)
ν

δpµ
(2.97)

in order for Alie and Bob to have boundary onditions of the same form

(xµ(si) = ±ξν(i)
δK(i)

ν

δpµ
) for the �nite worldline xµ. It is immediate seeing that

this ondition is indeed satis�ed when the onstraints K(i)
are written as in

(2.94). In the speial-relativisti limit ℓ −→ 0 ondition (2.97) is always

trivial, for every non trivial term of the derivatives of K is proportional to ℓ;
this aspet of these onditions will be further disussed during the analysis

of the so-alled Möbius diagram in setion 6.2.

At this point it an be notied that if one would have hosen to write the

K's in the form

K(0)
µ = (k ⊕ (⊖p)⊕ (⊖q))µ

= kµ − pµ − qµ − ℓδ1µ((k0 − p0)p1 + q1(k0 − p0 − q0))

K(1)
µ = (p⊕ (⊖p′′)⊕ (⊖p′))µ

= pµ − p′′µ − p′µ − ℓδ1µ((p0 − p′′0)p′′1 + p′1(p0 − p′0 − p′′0))
ondition (2.97) would not be satis�ed, for

δK(1)
ν

δpµ
= δµν − ℓδ1νδµ0 (p′′1 + p′1) 6=

6= −δK
(0)
ν

δpµ
= δµν − ℓδ1ν(δµ0 (p1 + q1)− δµ1 (k0 − p0)).
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The same must be said for the third possible hoie of K previously onsid-

ered, K(0)
µ = (k ⊕ (⊖(p ⊕ q))µ, K(1)

µ = (p ⊕ (⊖(p′′ ⊕ p′))µ. Then, using the

presription for strong translation transformations (2.96), the only form of

K(i)
suitable for a relativisti desription of the �nite worldline for Alie and

Bob, purely translated with respet to eah other, is that given in Eqs.(2.94).

Otherwise, the theory obtained by adopting other expressions of K(i)
would

desribe non-loal interations. Thus, the role that K has in determining

translation symmetry of the theory ontributes to further reduing the pos-

sible soures of ambiguity in the hoie of the appropriate form of K, even
among those whih enfore equivalent onservation laws.

In Setion 6 a weaker ondition of the kind of (2.97) will be obtained from

requiring that Alie and Bob, purely translated with respet to eah other,

desribe �nite worldlines in the same way, regardless of the spei� form of

onstraints K(i)
. These alternative translations are not expliitly onstruted

as it has done in this setion, for it is an unneessary exerise for the sope

of this thesis, but it will be shown that, in priniple, di�erent presriptions

are admissible.

2.3.3 Physial veloity

The previous setion presented some basi notions and key haraterizing

results of an expliit example of presription for boundary terms, ensuring

a relativisti desription of distant observers within the Relative Loality

framework, by a Lagrangian formulation of interating partiles. This se-

tion fouses on a �rst point of phenomenologial relevane, onerning the

observation of distant bursts of massless partiles, whih will be useful for

subsequent disussions.

Consider the �rst part of the proess studied in the previous setion, that

is the initial deay of the partile k, z in the partiles p, x and q, y (vertex

K(0)
in Fig. 2.3). For the sope of this setion, the momenta q and p are

assumed to be suh that |p| ≫ |q|, ℓq ≈ 0 and ℓp 6= 0. Notie that this

situation is also relevant for the desription of observation of a gamma-ray

burst, in whih a high-energy pion (k, z) deays at the soure into a high-

energy (�hard�) photon (p, x) and a low-energy (�soft�) photon (q, y). It an
be asked if and how the time of detetion of the gamma ray depends on its

momentum p, thereby obtaining a predition for the large lass of studies that
are onsidering possible energy/time-of-arrival orrelations for observations
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of gamma-ray bursts. The ation desribing the proess is

S =

∫ s0

−∞
ds (zµk̇µ +NkC(k)) +

∫ ∞

s0

ds (xµṗµ +NpC(p))+

+

∫ ∞

s0

ds (yµq̇µ +NqC(q))− ξµ(0)K(0)
µ ,

(2.98)

where again K(0)
µ = kµ − (p ⊕ q)µ = kµ − pµ − qµ − ℓδ1µp0q1. The equations

of motion are exatly the same that were obtained in the previous setion,

of ourse. From the on-shell relation one �nds the expression for p0, at �rst
order in ℓ,

p0 =
√

p21 +m2 − ℓ

2
p21. (2.99)

Then, for the massless ase (or whenever |ℓp1| ≫ m2/p21) one �nds the velo-
ity

v1 =
ẋ1

ẋ0
=
−2p1 + 2ℓp0p1

2p0 + ℓp21
≃ − p1
|p1|

(1− ℓ|p1|). (2.100)

For the hoie of onventions here adopted, one needs p1 < 0 in order to have

v1 > 0, and in suh a ase one has

v1 = 1 + ℓp1. (2.101)

Then, Alie's desription of the worldline of the partile (p, x) is x1A(x
0
A) =

x̄1A + v1(x0A − x̄0A), with x̄1, x̄0 �xed. Assuming that both partiles p, x and

q, y are emitted at Alie's origin of spaetime oordinates, her desription on

the inferred propagation of the partiles is simply

x1A(x
0
A) = (1 + ℓp1)x

0
A, y1A(y

0
A) = y0A. (2.102)

Sine −1 < ℓp1 < 0, from Alie's perspetive the hard photon goes slower

than the soft photon; therefore she infers that a distant observer Bob would

measure a delay between the time-of-arrival of the two photons. But an this

distant haraterization of the relation between events be trusted? The two

events that aording to Alie are not oinident are the rossing of Bob's

worldline with the worldline of the soft photon and the rossing of Bob's

worldline with the worldline of the hard photon. To larify the situation one

should look at the two worldlines by Bob's perspetive, sine he is the one

loal to the detetion.

For what onerns spei�ally the analysis of the problem so far reported

in this setion, the main hallenge is related to the fat that one is used to
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read veloity from the formulae of worldlines, but this impliitly assumes

that translation transformations are trivial. It is known that in lassial

spaetime with urvature the oordinate veloity may be a�eted by some

oordinates artifat: for an observer in lassial de Sitter spaetime, for ex-

ample, the speed of a loal photon is always 1, but this does not apply to the

oordinate veloity that the observer attributes to distant photons. These

features are not expeted in a lassial �at spaetime, where translations are

trivial. In Relative Loality, however, the non triviality of translation trans-

formations requires a more areful approah. Essentially, one is used to take

the worldline written by Alie to desribe both the emission of the photons

�at Alie� (in Alie's origin) and their detetion far away from Alie. The

observer/detetor Bob, who atually detets the photons, should be properly

desribed by ating with a translation transformation on Alie's worldline.

And the determination of the time-of-arrival at Bob should be determined

on the basis of Bob's desription of the worldline, just as muh as the time-

of-emission should be based on Alie's desription of the worldline. When

translations are trivial (translation generators onjugate to the spaetime o-

ordinates) one an go by without worrying about this more areful level of

disussion. This is beause the naive argument based only on Alie's desrip-

tion of the worldline gives the same results as the more areful analysis using

Alie's desription of the worldline for the emission and Bob's desription

of the same worldline for detetion. But when translations are nontrivial,

as in Relative Loality, this luxury is lost. This will be shown for the ase

onsidered so far.

Bob's desription of worldlines is, by dropping the ontributions due to

soft partiles,

xµB(s) = xµA(s) + bν{(p⊕ q)ν , xµ} = xµA − bµ − ℓb1δµ0 q1 ≃ xµA − bµ,
yµB(s) = yµA(s) + bν{(p⊕ q)ν , yµ} = yµA − bµ − ℓb1δµ1 p0.

(2.103)

Substituting these expressions in (2.102) one obtains

x1B(x
0
B) = (1 + ℓp1)(x

0
B + b0)− b1,

y1B(y
0
B) = (y0B + b0)− b1 − ℓb1p0.

(2.104)

One an then ompute the delay between the two partiles assuming that

Bob detets the soft photon at its spaetime origin and the hard one at its

spatial origin.

It is taken into aount here that there are no relative-loality e�ets in

the desription given by Bob whenever the interations our �in the viinity

of Bob�: the leading-order analysis assumes that the measuring apparatus
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has sensitivity su�ient to detet the manifestation of relativity of loality

of order ℓphL (where L is the distane from the interation-event to the origin

of the observer and ph is a suitably high momentum), with L set in this ase

by the distane Alie-Bob; so even a hard-partile interation whih is at a

distant d from Bob will be treated as absolutely loal by Bob if L≫ d.
Aording to this, both �detetion events� are absolutely loal for Bob: of

ourse this is true for the event of detetion of the soft photon and it is also

true for the interation-event of �detetion near Bob� of the hard photon.

Ultimately this allows handling the time omponent of the oordinate four-

vetor as the atual delay that Bob measures between the detetion times.

Thus, from the seond of equations (2.104), setting yµB = 0 (detetion at

Bob's spaetime origin) one determines the translation parameter b0 in terms

of b1: b0 = (1+ ℓp0)b
1
. Substituting this in the �rst of equations (2.104) and

setting x1B = 0 (detetion at Bob's spatial origin), one gets

(1 + ℓp1)(x
0
B + (1 + ℓp0)b

1)− b1 = 0 (2.105)

from whih, realling the expression (2.99) and the sign onvetion on p1,

x0B = (1− ℓp1)b1 − (1 + ℓp0)b
1 = 0 +O(ℓ2). (2.106)

Therefore Bob does not measure any delay between the detetions of the

two photons, up to seond order ontributions. Only now one an onlude

that the two partiles have the same physial veloity, although they have

di�erent oordinate veloities.

The message that one should get from the disussion proposed in this

setion is not that massless partiles have the same physial veloity under

any onditions; the thesis author merely intended to disuss a representa-

tive example of the strategy of analysis of this kind of problems in Relative

Loality that will be largely used in the following.
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Chapter 3

Theories violating relativity of

inertial frames

3.1 Ho°ava-Lifshitz gravity

In reent years, Ho°ava-Lifshitz gravity [41℄,[42℄ has attrated onsiderable

interest in the quantum gravity ommunity. Its basi idea is to break Lorentz

symmetry through an anisotropi saling between spae and time in order

to eliminate the divergenes of the quantum �eld theory of gravity in the

UV without ghosts. The next Subsetion gives a very quik presentation

of Ho°ava implementation of this idea in gravity, as in Subsetion 3.1.2 it

will be explained in greater larity how anisotropi saling an solve QFT

divergenes in a muh simpler ontext suh as an interating salar �eld

theory.

3.1.1 Ho°ava proposal

It is known that an improved UV behavior of divergent quantum �eld theo-

ries, suh as General Relativity, an be obtained if relativisti higher-derivatives

orretions are added to the Lagrangian. Terms quadrati in spaetime ur-

vature not only yield new interations (with a dimensionless oupling), but

they also modify the propagator. Shematially, denoting p2 = ω2 − k2, the
propagator takes the form

1

p2
+

1

p2
GNp

4 1

p2
+

1

p2
GNp

4 1

p2
GNp

4 1

p2
+ ... =

1

p2 −GNp4
. (3.1)

At high energies it is dominated by the p4 term. This ures the UV di-

vergenes, and in fat the alulations in Eulidean signature suggest that
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the theory exhibits asymptoti freedom. However, this ure simultaneously

produes a new pathology, whih prevents this modi�ed theory from being

a solution to the problem of quantum gravity. In fat, the propagator above

exhibits two poles,

1

p2 −GNp4
=

1

p2
− 1

p2 − 1/GN

. (3.2)

One pole desribes andidate massless gravitons, but the other orresponds

to ghost exitations, whih are states of negative norm. These are problem-

ati beause they an break unitarity, whih is a key ingredient of quantum

mehanis

1

. Violating unitarity in order to regularize the mathematial quan-

tities may be regarded as quite a strong mutilation of the founding physial

priniples of the theory.

In ontrast, breaking Lorentz symmetry to regularize the mathematial

objets, while it is ertainly a radial step, does not damage the logial

foundations of the theory as it is more an experimental observation rather

then a logial neessity. Ho°ava-Lifshitz gravity adopts this strategy to anel

the UV divergenes of General Relativity, introduing an anisotropi saling

between spae and time. This means that the theory will be symmetri under

the transformation

~x→ b~x,

t→ bzt.
(3.3)

Suh an anisotropi saling is ommon in ondensed matter systems, where

the degree of anisotropy between spae and time is haraterized by the

"dynamial ritial exponent" z. Relativisti systems automatially satisfy

z = 1 as a onsequene of Lorentz invariane.

The tehniques used in the onstrution of gravity models with anisotropi

saling in [42℄ follow methods developed in the theory of dynamial ritial

system [44℄,[45℄ and quantum ritiality [46℄.

As a onsequene of suh anisotropy, the propagator of the graviton takes

the form

1

ω2 − c2k2 − k2zG (3.4)

where G is a oupling onstant. In general there will be terms with powers of

k2 between 1 and z but one an simplify the disussion keeping the leading

1

A way to inlude ghosts in the theory without breaking unitarity has been studied

by Lee and Wik; in [43℄ they show that using a negative metri in quantum mehanis

an lead to a unitary S-matrix, provided that all stable partile states are positive square

length. In suh a way, the negative-norm states are not asymptoti states and the unitarity

of the S matrix is preserved.
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term in the UV. In fat at high energy the propagator is learly dominated by

the anisotropi term 1/(ω2− k2zG). The high-energy behavior of the theory

is ontrolled by a free-�eld �xed point with anisotropi saling. For a suitably

hosen z, this modi�ation improves the short-distane behavior, shifting the

dimension at whih the theory is power ounting renormalizable, so alled

"ritial dimension". The ck2 term in the propagator beomes important

only at low energies. The massless dispersion relation E2−p2− ℓ2z−2p2z = 0,
suggested by this propagator, will be used in the later appliations for the

ase of Ho°ava-Lifshitz gravity.

3.1.2 Lorentz symmetry breaking as a UV regulator

In order to obtain a basi understanding of how the anisotropi saling be-

tween time and spae an solve the divergenes of the quantum theory of

gravity, without getting lost in the huge algebra of the full theory, it is here

brie�y shown how how it works in a simple salar �eld theory

2

.

Consider the following ation of a salar �eld in �at (d + 1)-dimensional

spaetime

Sfree =

∫

ddx dt [φ̇2 − φ(−∆z)φ], (3.5)

where ∆ = ∇2
is the spatial Laplaian. Notie that here the units are suh

that the oe�ient in front of the kineti term is the same as that of the

spatial derivative term, whih is not the ommon c = 1 set of units; Plank

onstant is set to be ~ = 1. In these units one has that [∂t] = [∇]z and

[dt] = [dx]z. But sine the ation has to be dimensionless one has that

[φ] = [dx](z−d)/2
. This suggests that the ase z = d will play a speial role

in the disussion, sine the salar �eld would then be dimensionless. It is

onvenient to de�ne formal symbols κ andm having dimension of momentum

and energy, [κ] = [dx]−1
and [m] = [dt]−1

respetively. It an also be notied

that [φ] = [κ](d−z)/2 = [m](d−z)/2z
.

Consider now also the various sub-leading terms to this free Lagrangian

Sfree =

∫

dt ddx [φ̇2 − φ(m2 − c2∆+ ...+ (−∆)z)φ]. (3.6)

Notie that [c] = [dx/dt] = [dx]1−z = [κ]z−1
, whih is the reason for whih,

with the hoie of units explained earlier, one does not have the freedom to

set c = 1, unless the trivial ase z = 1 is under onsideration.

2

The interest reader an �nd a broader disussion of this topi in [47℄.
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Consider now a polynomial interation

Sinteraction =

∫

dt ddxP (φ) =

∫

dt ddx

N
∑

n=1

gnφ
n. (3.7)

The ouplings have dimension [gn] = [κ]d+z−n(d−z)/2
. So the ouplings have

non negative dimension as long as

d+ z − n(d− z)
2

≥ 0. (3.8)

Sine z, d and n are all positive integers by de�nition this is equivalent to

either

n ≤ 2(d+ z)

d− z if z < d,

or

z ≤ ∞ if z ≥ d.

Consider now a generi Feynman diagram with L loops and I internal

propagators. For eah internal line one has a Lorentz violating propagator

G(ω,~k) =
1

(ωL − ωe)2 − (m2 + c2(~kL − ~ke)2 + ...+ (~kL − ~ke)2z)
, (3.9)

where ωe and
~ke are some linear ombination of the external momenta, and ωL

and

~kL are the loop energy and momentum. Eah loop integral ontributes

to the total dimension as

∫

dω ddk → [dω][dk]d = [κ]d+z

and for eah propagator one has instead [G(ω,~k)] = [κ]−2z
. The total ontri-

bution for dimensionality oming from loop integrals for the entire Feynman

diagram is

δ = (d+ z)L− 2zI = (d− z)L− 2(I − L)z, (3.10)

whih reprodues the standard result in the ase z = 1. Sine the number of

internal propagators I is always at least equal to the number of loops, one

has

δ ≤ (d− z)L. (3.11)

It is a standard result that if the super�ial degree of divergene is nega-

tive, and the super�ial degree of divergene of every internal sub-graph is

negative, then the Feynman diagram is onvergent. Therefore, if one hoose

d = z then one has δ ≤ 0 for any diagram, and the worse divergene one an

meet is logarithmi, whih an our only when L = I whih are the so-alled

"rosette" Feynman diagram. This observation is enough to guarantee that

the theory is power ounting renormalizable.

77



3.2 Rainbow Gravity

As previously stated, the most promising opportunities for quantum gravity

phenomenology ome from the propagation of high-energy partiles from a

soure at osmologial or astrophysial distane and it is therefore important

to onsider also the e�ets due to the geometry of spaetime on large sales.

Indeed, the sope of Rainbow Gravity is to inlude Plank sale orretions

to Einstein's theory of gravity. The next subsetion is devoted to introdu-

ing the original proposal by Magueijo and Smolin. Subsetion 3.2.2 brie�y

reviews the most reent approah to the original purpose of Rainbow gravity,

using the tehnology of Finsler geometry.

3.2.1 Magueijo-Smolin Rainbow Gravity

Rainbow Gravity has �rst been proposed in [48℄ with the goal to extend the

idea of DSR to General Relativity. The theory does not mean to be funda-

mental but rather a leading orretion to a lassial spaetime piture oming

from a full quantum spaetime theory. Therefore, the main interest resides

in omputing e�ets at leading order in Plank sale on the propagation of

quanta with energies smaller then the Plank sale EP but with wavelengths

muh shorter than the loal radius of urvature R. This latter assumption

allows then not to take into aount terms in R∂p
p
whih should be onsidered

otherwise.

The starting point is the deformed dispersion relation

f 2(ℓE)E2 − g2(ℓE)p2 = m2, (3.12)

where f and g are arbitrary funtions and ℓ is a length sale whih is assumed

to be of the order of the Plank length. This an be obtained by the ation

of a non-linear map from momentum spae to itself, denoted, U : P → P,
given by

U · (E, pi) = (U0, Ui) = (f (ℓE)E, g (ℓE) pi) (3.13)

whih implies that momentum spae has a non-linear norm of the form

p2 = ηabUa(p)Ub(p). (3.14)

This norm is preserved by a non-linear realization of the Lorentz group, given

by

L̃b
a = U−1 · Lb

a · U (3.15)

where L are the usual Lorentz generators.
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Theories with deformed Lorentz transformations are usually formulated

on momentum spae. In order to develop the spaetime ounter part, a suit-

able de�nition of the dual spae has been looked for. This is a non trivial task

due to the fat that the momentum transformation are non-linear (among the

di�erent answers proposed there are also non-ommutative geometries, suh

as κ-Minkowksi non-ommutative spaetime). Rainbow Gravity instead as-

sumes that the researh for a single dual spae is not stritly neessary, sine

there is no single lassial spaetime geometry when e�ets of order ℓE are

taken into aount. Instead, one has to onsider a family of one-parameter

spaetime metris that desribe the leading orretions to the lassial spae-

time, parametrized by ℓE. So, just as the properties of a material may depend

on the energy of the phonon propagating through it, Rainbow Gravity adopts

the view that the geometry of spaetime may depend on the energy of the

partile moving in it. The Einstein equivalene priniple an be maintained,

with the spei�ation that it is valid for regions of spaetime for whih the

radius of urvature is muh larger then ℓ and that the partiles moving in it

have energies muh below ℓ−1
. One further requires that in the limit ℓE → 0

General Relativity is reovered.

It must be stressed that the parameter ℓE does not represent the energy of

spaetime, but the energy sale at whih it is probed aording to a partiular

observer. Therefore, if an observer uses the motion of a partile or a system

of partiles to measure the geometry of the spaetime, E is the total energy

of that partile or system of partiles, as measured by that observer.

Another way to desribe these properties is by saying that, in the absene

of gravity, spaetime has an energy-dependent geometry, in the sense that

partiles of energy E move in a geometry given by an energy-dependent set

of orthonormal frame �elds,

e0 = f−1(ℓE)ẽ0, ei = g−1(ℓE)ẽi (3.16)

where the tilde quantities represent energy-independent frame �elds that

speify the geometry probed by low energy partiles. The metri given by

g(E) = ηabea ⊗ eb (3.17)

is �at for all E. The objet g(E) an be onsidered as a one-parameter

family of �at rainbow metris, parametrized by E. The metris share the

same set of inertial frames but, due to salings, generally they do not share

all their geodesis; instead, geodesis are generally energy-dependent. This

is equivalent to saying that the energy-momentum relations are no longer

quadrati.

The Rainbow Gravity piture is losely related to the work presented in

[49℄ for onstruting position spae in DSR. In this approah one requires that
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free �eld theories in �at spaetime have plane waves solutions, even though

the 4-momentum they arry satis�es deformed dispersion relations. For this

to be possible the ontration between position and momentum providing

the phase for suh waves must remain linear, that is,

dxapa = dx0p0 + dxipi. (3.18)

If momentum transforms non-linearly then the dxa transformations must be

energy-dependent, as explained in [49℄. Authors laim that, for a U of the

form given above, spaetime dual has invariant

ds2 =
dt2

f 2(E)
− dx2

g2(E)
. (3.19)

Thus, the dual spae dxa is endowed with an energy-dependent quadrati

invariant, that is an energy-dependent metri.

This example further eluidates the meaning of E in the metri. If a

given observer sees a partile (or a plane wave, or a wave paket) with energy

E, then he onludes that this partile is probing the metri g(E). If the

partile has energy E ′ 6= E for a di�erent observer, then the latter will assign

to spaetime a di�erent metri g(E ′). Of ourse, as required by ovariane,

if the �rst observer probes the spaetime using two partiles with di�erent

energies E and E ′
then it will attribute a di�erent metri to eah partile,

even at the same spaetime oordinates.

Essentially, this onstrution justi�es, in some sense, the naive guess that,

if the dispersion relation is given in metri terms as m2 = gµν(E)pµpν and is

a (deformed) Lorentz salar, then the spaetime metri is the tensor gµν(E)
suh that gµν(E)g

νσ(E) = δσµ and ds2 = gµν(E)dx
µdxν is also a salar.

The reason for whih this formulation of Rainbow Gravity breaks Lorentz

symmetry is that the dispersion relation is indeed invariant under the de-

formed boosts, but the line element is not [50℄. Consider for example the

very ommonly studied DSR dispersion relation

C = a−2(η)(Ω2 − Π2) + ℓa−3(η)(γΩ3 + βΩΠ2) = m2, (3.20)

where (η, x) are the onformal oordinates on spaetime and (Ω,Π) are their
onjugate momenta, a(η) is the sale fator, β and γ two numerial param-

eters. Consider for simpliity of argument on the stati ase a(η) = 1 in two

dimensions. Denoting the onjugate momenta in the �at ase (p0, p1), one
an write the dispersion relation as C = (1+ ℓγp0)p

2
0− (1− ℓβp0)p21, and the

line element assoiated with it is, at �rst order in ℓ,

ds2 = (1− ℓγp0)(dx0)2 − (1 + ℓβp0)(dx
1)2. (3.21)
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The dispersion relation (3.20) is invariant under a ℓ-deformed Lorentz boost

N = x0p1(1− ℓγp0) + x1
(

p0 + (β +
γ

2
)ℓp20 +

ℓ

2
βp21

)

, (3.22)

as it an be shown that the Poisson braket {N , C} = 0. This guarantees

that the dispersion relation is in fat invariant also for a �nite boost, sine

the ation of a boost on an observable O an be expressed as

O′ = O + ξ{N , O}+ ξ2

2!
{N , {N , O}}+ ...

where ξ is the rapidity parameter. Under the same ation of the boost, the

line element (3.21) is not invariant, as it transform to

(ds2)′ = ds2 − ℓξ(βp1(dx1)2 + γp1(dx
0)2). (3.23)

This non-invariane is evidently problemati from a relativisti point of view,

as the norm of vetors would not be invariant under suh transformation.

This is the reason for whih, even if the initial goal of Rainbow Gravity is to

preserve the relativity of loal inertial frames, it is in fat breaking Lorentz

symmetry.

3.2.2 Connetion with Finsler geometry

The original program of Rainbow Gravity has been further investigated and

more rigorously understood in terms of a generalization of Riemannian ge-

ometry known as Finsler geometry in Ref.[51℄. In Ref.[52℄,[50℄ the onnetion

between Finsler geometries and DSR-relativisti theories has been lari�ed

in greater details.

Finsler geometry fundamental ingredient is the norm F (x, v), a real fun-
tion of a spaetime point x and a tangent vetor v, suh that it satis�es the

usual norm properties, that is

F (x, v) 6= 0 if v 6= 0,

F (x, λv) = |λ|F (x, v), (3.24)

where λ is a real number. From the norm squared F 2(x, v) one an de�ne

the so alled Finsler metri

gµν(x, v) =
1

2

∂2F 2

∂vµ∂vν
, (3.25)
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whih is required to be ontinuous and non-degenerate. Using Euler's the-

orem, stating that if f(x) is a homogeneous funtion of degree r, then

xi ∂f
∂xi = rf(x), it an be shown that (3.25) is equivalent to

F (x, v) =
√

gµν(x, v)vµvν . (3.26)

This shows that gµν(x, v) is a homogeneous funtion of degree zero of the

vetor v. Also, sine by de�nition is non-degenerate, it admits an inverse

gµν(x, v) suh that gµν(x, v)g
νσ(x, v) = δσµ . From the norm F (x, v) one an

also derive the norm for a form ω as

G(x, ω) = F (x, v(ω)), (3.27)

and the metri on the dual spae

hµν(x, ω) =
1

2

∂G2(x, ω)

∂ωµ∂ων
= gµν(x, v(ω)). (3.28)

The ation of a partile moving on a Finsler manifold is

S = m

∫

F (x, ẋ)ds (3.29)

whih from (3.26) takes the form of a straightforward generalization of the

standard relativisti partile ation

S = m

∫

√

gµν(x)ẋµẋνds.

Using Euler-Lagrange equations of motion one �nds the momenta

pµ = m
∂F

∂ẋµ
= m

gµν(x, ẋ)ẋ
ν

F
, (3.30)

whih satis�es the generalized on-shell relation

hµν(x, p)pµpν = m2gµν
gµρẋ

ρgνσẋ
σ

gαβẋαẋβ
= m2. (3.31)

In order to dedue the Finsler spaetime metri orresponding to a par-

tiular dispersion relation, as in the spirit of Rainbow Gravity, one should

start from the ation

S =

∫

ds[ẋµpµ − λ
(

Cp −m2
)

] (3.32)
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where λ is a Lagrange multiplier enforing on-shell relation Cp = m2
. Using

Hamilton equation

ẋµ = λ
∂Cp
∂pµ

, (3.33)

one an express momenta p in terms of veloities ẋ and �nd the ation

S =

∫

l(ẋ, λ). (3.34)

Then by varying the ation with respet to the Lagrange multiplier λ one

an express it in terms of the veloities as well and obtaining the Lagrangian

S =

∫

L(ẋ, λ(ẋ)), (3.35)

from whih one an identify Finsler norm

F (x, ẋ) =
L(x, ẋ)
m

(3.36)

whih satis�es the properties of a Finsler norm (3.24). Form this one an

obtain the spaetime metri as already shown.
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Chapter 4

Introduing the thermal

dimension of quantum spaetime

This hapter is dediated to one of the original results of this thesis [116℄,

onerning the problem of the physial haraterization of the dimension of

spaetime at sales omparable to Plank length. The next session reviews

what is a notion of dimensionality of spaetime whih is broadly used in

the QG ommunity, the spetral dimension. The original proposal of ther-

mal dimension of spaetime is then presented and its physial properties are

ompared with those of the spetral dimension, using examples of deformed

dispersion relation inspired by the QG models reviewed in the previous hap-

ters.

4.1 The spetral dimension

The spetral dimension has been proposed as a possible observable hara-

terizing the geometry in disrete quantum gravity [53℄ and attrated a lot of

interest in ausal dynamial triangulations (CDTs) sine �nding meaningful

observable in disrete geometry is a non trivial task. The hope of the ommu-

nities working on disrete geometry is that suh observable may provide the

muh needed onnetion between the disrete theory and its ontinuum limit.

The spetral dimension an also be de�ned in ontinuum quantum gravity

models and an be used to haraterize and understand their short-distane

behavior (see [55℄,[68℄,[66℄,[56℄). Furthermore, it was shown in [55℄ that both

CDTs and Ho°ava-Lifshitz gravity lead to a value of 2 for the spetral di-

mension in the UV, while it mathes the value of the topologial dimension

in the IR. These results enouraged the use of the spetral dimension as a

tool in the proess of linking the disrete and ontinuum theories.
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Here the basi de�nition of the spetral dimension, whose origin is Rie-

mannian geometry, will be given; the following setion will brie�y show how

it is linked to the dispersion relation of the theory in onsideration. It has

been shown in fat in [73℄ that, given a spei�ed topologial dimension n, it
is possible to de�ne a sale-dependent notion of spetral dimension for any

arbitrary dispersion relation. Furthermore, also the other dedutive way is

possible: given a ertain spetral dimension as a funtion of the di�usion

time s, it is possible, in priniple, to reonstrut the dispersion relation.

4.1.1 Basi de�nitions

The spetral dimension an be viewed as an e�etive notion of dimension

de�ned through a �titious di�usion proess on a ertain disrete geome-

try. In pratie the di�usion proess an be thought as a stohasti random

walk, and the spetral dimension is de�ned in terms of the average return

probability P (s).
In the lassial Brownian motion, the di�usion of the partile is desribed

by the di�erential "heat" equation

∂

∂t
K(x, y; t)− b∆xK(x, y; t) = 0 (4.1)

where b is a onstant, t is the di�usion time, K(x, y; t) is the probability

density for the partile to di�use from point x to point y in a time t and the

initial ondition K(x, y; 0) = δ(x − y) indiates the point-like nature of the

partile.

Similarly, the di�usion proess on a n-dimensional Eulidean geometry

with a �xed smooth metri gµν(x) is governed in fat by the equation the

heat equation

∂sK(x, y; s)−∆xK(x, y; s) = 0, (4.2)

with the initial onditionK(x, y; 0+) = δ(x−y)g−1/2(x). Here ∆ = gµν∇µ∇ν

is the Laplaian and ∇ν is the ovariant derivative. The parameter s plays

the role of �titious di�usion time and K(x, y; s) is the probability density of

di�usion from the event x to the event y in a "time" s. The return probability
is then easily de�ned as

P (s) =

∫

dnx g1/2K(x, x; s)
∫

dnx g1/2
≈ 1

(4πs)n/2

∞
∑

i=0

ais
i, (4.3)

where the oe�ients are metri-dependent invariants whih an be om-

puted via reursion formulas, with a0 = 1.
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For an in�nite �at spae the solution to the heat equation is given by

K(x, y; s) =
e−d2g(x,y)/4s

(4πs)n/2
(4.4)

where dg(x, y) is the geodesi distane between the two points. It follows that√
s is an e�etive measure of the spread of the Gaussian at di�usion time s.

Beause Pg(s) = s−n/2
in the �at ase, one an obtain the dimension n of

the manifold by taking the logarithmi derivative of the return probability,

de�ning the spetral dimension,

ds ≡ −2
∂ logPg(s)

∂ log s
= n, (4.5)

where the last equality is true only in the �at ase.

For urved spaes and/or �nite spaes of volume V one an still use Eq.

(4.5) to extrat the dimension, but there will be orrelations for su�iently

large s. For a urved spae, probing a di�usion sale omparable or larger

than the radius of urvature will a�et the value of the spetral dimension

via the details of the geometry of the spae and the presene of gravitational

soures. The spetral dimension then would deviate from the topologial

dimension as an e�et of the urvature. At intermediate sales, smaller then

the radius of urvature but larger then the Plank sale, the spae is e�e-

tively �at and the spetral dimension has the same value of the topologial

dimension, as shown above. At sales omparable to Plank sale the de-

viation of the spetral dimension from the topologial dimension is due to

e�ets other then urvature.

4.1.2 Connetion with the dispersion relation

Further interest in the spetral dimension omes from the work of Sotiriou,

Visser and Weinfurtner [73℄, in whih they demonstrated that the spetral

dimension is not neessarily intrinsially geometri. At sales small enough

for urvature e�ets to be negligible, its deviation from the topologial di-

mension atually beomes an analyti property of the di�erential operator

that one is using as input to de�ne the �titious di�usion proess. In turn,

this operator ats as the propagator of some dynamial degree of freedom

in �at spae. In this sense, the spetral dimension ats, at suitable sales,

as a probe of the kinematis of the partiular degree of freedom, allowing to

dedue a dispersion relation; therefore the spetral dimension is an interest-

ing observable even for those theories for whih is di�ult to �nd the return

probability of a di�usion proess on their quantum spaetimes, but whih

have a modi�ed dispersion relation.
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Consider in fat a (n+1)-dimensional spaetime and a dispersion relation

E = E(p). This an always be viewed as ompletely spei�ed by the solution

of the di�erential equation

DLΦ = (−∂2t − f(−∇2))Φ = 0, (4.6)

where f(p2) = E(p)2. The reason for whih the time derivative is only seond

order is that in this ase the di�erential equation enoding the dispersion

relation an typially be derived by a ghost-free Lagrangian,

L =
1

2
ΦDLΦ. (4.7)

In order to ompute the spetral dimension one has �rst to Wik rotate

the physial time t to onsider Eulideanized di�erential operatorDE in n+1
topologial dimension

DEΦ = (−∂2t + f(−∇2))Φ. (4.8)

The di�usion proess is governed by the equation

∂

∂s
K(x, y; s) +DEK(x, y; s) = 0, (4.9)

with the initial ondition K(x, y; 0) = δn+1(x− y). Again, x is the set (t, ~x)
and s is an auxiliary "�titious di�usion time" or, more properly, a parameter

haraterizing the sale at whih the partile is probing the spaetime. The

general solution of the di�erential equation above is

K(x, y; s) =

∫

dE dnp

V (2π)n+1
ei(~p·(~x−~y)+E(x0−y0))e−s(E2+f(p2)), (4.10)

and the return probability is then

P (s) =

∫

dnxK(x, x; s) =

∫

dE dnp

(2π)n+1
e−s(E2+f(p2)). (4.11)

Fatorizing it in the time-like and spae-like ontribution

P (s) =

∫

dE

(2π)
e−sE2

∫

dnp

(2π)n
e−sf(p2) =

1√
4πs

∫

dnp

(2π)n
e−sf(p2), (4.12)

one obtains

lnP (s) = −1
2
ln s+ ln

∫

dp pn−1e−sf(p2) + C (4.13)
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where C is a onstant. Taking the derivatives with respet to ln s one gets

the expression for the spetral dimension

dS(s) = 1 + 2s

∫

dp pn−1f(p2)e−sf(p2)

∫

dp pn−1e−sf(p2)
. (4.14)

Realling now that E2 = E(p)2 = f(p2), one an write

dS(s) = 1 + 2s

∫

dp pn−1E(p)2e−sE(p)2

∫

dp pn−1e−sE(p)2
. (4.15)

Note that the ontribution 1 omes from the fat that the time derivatives

appear only in the term ∂2t . If one has to onsider more general operators

suh as DΦ = f(∂2t ,∇2)Φ, the dispersion relation is expressed impliitly by

Cp(E2, p2) = 0. The return probability is then

P (s) =

∫

dE dnp

(2π)n+1
e−sCp(E2,p2), (4.16)

and therefore the spetral dimension is

dS(s) = 2s

∫

dE dnp Cp(E2, p2)e−sCp(E2,p2)

∫

dE dnp e−sCp(E2,p2)
. (4.17)

This shows that from an arbitrary dispersion relation (but of the kind in

whih energy an be expressed in terms of the momentum) and spei�ed

topologial dimension n a suitable di�erential operator an be onstrut that

enode the dispersion relation and this an be used to de�ne the orrespond-

ing spetral dimension. To show that the other way around is possible, one

may notie that, de�ning the "partition funtion"

Z(s) =

∫

dp pn−1e−sE(p)2, (4.18)

one an write Eq.(4.15) as

dS(s) = 1− 2s
dZ(s)

ds
. (4.19)

Note that the funtion Z(s) enodes relatively simple information on the

dispersion relation of the degree of freedom in onsideration. If a theory

gives us only the possibility to study the spetral dimension but it does not

have a di�erential operator (as in the ase of CDT) one an infer an e�etive

dispersion relation by inverting formally Eq.(4.15) as a funtion of s,

Z(s)

ds
= −dS(s)− 1

2s
, (4.20)
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from whih

Z(s) = Z(s0)e
− 1

2

∫ s
s0

ds′
dS(s′)−1

s′ . (4.21)

The aim though is not to know just the funtion Z(s) but to obtain the

funtion E(p). In order to get it, one an write the partition funtion as

Z(s) =
1

n

∫ ∞

0

dE2dp
n(E)

dE2
e−sE2

. (4.22)

Integrating by parts one obtains

∫ ∞

0

dE2 pn(E)e−sE2

=
n

s
Z(s), (4.23)

whih has the form of a Laplae transformation, in the variable E2
, of the

funtion pn(E).
Implementing the inverse Laplae transformation via omplex integration,

one has

pn(E) =
1

2πi

∫

C

ds
n

s
Z(s)esE

2

, (4.24)

where C is an appropriate ontour in the omplex plane and Z(s) is given
by Eq.(4.21). Therefore, one an ompute the e�etive dispersion relation

for the degree of freedom in onsideration when the spetral dimension is

analytially known as a funtion of s on the omplex plane.

4.2 Thermal dimension

As it has already been mentioned in the introdution, many di�erent quan-

tum gravity models share the ommon feature of �dynamial dimensional re-

dution": the familiar four-dimensional lassial piture of spaetime in the

IR is replaed by a quantum piture with an e�etive number of spaetime

dimensions smaller than four in the UV.

This phenomenon has been studied mostly in terms of the spetral di-

mension, whih provides a valuable haraterization of properties of lassial

Riemannian geometries [60, 63℄, but its proposed appliability to the desrip-

tion of the dimension of a quantum spaetime involves some adaptations, as

desribed in the previous setion. In this setion it will be shown that these

adaptations are responsible for some of its inadequaies.

When the IR Hausdor� dimension of spaetime isD+1, and the Eulidean
d'Alembertian of the theory is represented on momentum spae as CEuc

p (E, p),
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the return probability is given by

1

P (s) ∝
∫

dE dp pD−1 e−s CEuc
p (E,p) . (4.25)

The fat that the Eulidean version of the d'Alembertian intervenes should

be ause of onern

2

. It is in fat well known that the Eulidean version

of a quantum-gravity model an be profoundly di�erent from the original

model in Lorentzian spaetime (see, e.g., Ref.[67℄). Moreover, evidently in

(4.25) an important role is played by o�-shell modes, a role so important

that, as it will be here shown, one an obtain wildly di�erent values for

the spetral dimension for di�erent formulations of the same physial theory

(ases where the formulations oinide on-shell but are di�erent o�-shell).

It is also onerning the fat that evidently the P (s) of (4.25) is invariant
under ative di�eomorphisms on momentum spae (an ative di�eomorphism

on momentum spae amounts to an irrelevant hange of integration variable

for P (s)). Sine an ative di�eomorphism an map a given physial theory

into a very di�erent one (also see here below), this degeneray of the spetral

dimension is worrisome.

While these onerns are very serious, it must be aknowledged that sev-

eral analyses entered on the spetral dimension give rather meaningful re-

sults. Therefore, the guiding idea is that it is neessary to replae the spe-

tral dimension with some other fully physial notion of dimensionality of a

quantum spaetime, with the requirement that in most ases the new notion

should agree with the spetral dimension. Only when the unphysial on-

tent of the spetral dimension plays a partiularly signi�ant role should the

new notion di�er signi�antly from the spetral dimension. The guidane

adopted in searhing for suh a new notion is the observation reported in

reent studies [76, 129, 78℄ (see also [79℄ for earlier related proposals) that in

some instanes the Stefan-Boltzmann law gives indiations on the dimension-

ality of spaetime that are onsistent with the spetral dimension. One an

view the Stefan-Boltzmann law as an indiator of spaetime dimensionality

sine for a gas of radiation in a lassial spaetime with D + 1 dimensions

the Stefan-Boltzmann law takes the form

U ∝ TD+1. (4.26)

1

The thesis supported here is that even if (4.25) did desribe the return probability

(as usually assumed) still the spetral dimension would be unsatisfatory. It is interesting

however that, as stressed in Ref. [64℄, the interpretation of (4.25) as return probability is

not always appliable.

2

Conerns for the Eulideanization involved were also raised in Ref.[65℄, within a study

onerning the ausal-set approah. Ref.[65℄ proposed a possible rede�nition of the spetral

dimension suitable for inluding Lorentzian signature and found that it gave di�erent

results with respet to the standard (Eulideanized) spetral dimension.
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Atually several thermodynamial relations are sensitive to the dimension-

ality of spaetime, another example being the equation of state parameter

w ≡ P/ρ, relating pressure P and energy density ρ, whih for radiation in a

lassial spaetime with D + 1 dimensions takes the form

w =
1

D
. (4.27)

These observations inspire the proposal of assigning a �thermal dimension" to

a quantum spaetime. The reipe presented in this thesis involves studying

the thermodynamial properties of radiation with on-shellness haraterized

by the (deformed) d'Alembertian of the relevant quantum-spaetime the-

ory (the same deformed d'Alembertian used when evaluating the spetral

dimension, but in its Lorentzian form). By looking at the resulting Stefan-

Boltzmann law and equation of state one an infer the e�etive dimension-

ality of the relevant quantum spaetime. This notion of dimensionality has

the advantage of being diretly observable, a genuine physial property of

the quantum spaetime, and, as it will be here shown, �xes the shortom-

ings of the spetral dimension, while agreeing with it in some partiularly

noteworthy ases.

4.2.1 Appliation to generalized Ho°ava-Lifshitz senar-

ios

To start the quantitative part of the present study, onsider a lass of gen-

eralized Ho°ava-Lifshitz senarios, whih has been the most ative area of

researh on dynamial dimensional redution [55, 73, 61℄. These are ases

where the momentum-spae representation of the deformed d'Alembertian

takes the form

Cγtγx(E, p) = E2 − p2 + ℓ2γtt E2(1+γt) − ℓ2γxx p2(1+γx) . (4.28)

where E is the energy, p is the modulus of the spatial momentum, γt and γx
are dimensionless parameters, and ℓt and ℓx are parameters with dimension

of length (usually assumed to be of the order of the Plank length).

For this model it is known [61, 73℄ that the UV value of the spetral

dimension, obtained from the Eulidean version of the above d'Alembertian

(E2 + p2 + ℓ2γtt E2(1+γt) + ℓ2γxx p2(1+γx)
), is

dS(0) =
1

1 + γt
+

D

1 + γx
. (4.29)

In deriving the thermal dimension for this ase one an start from the

logarithm of the thermodynamial partition funtion [80℄, written so that
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the integration is expliitly taken over the full energy-momentum spae:

logQγtγx = − 2V

(2π)3

∫

dE d3p
[

δ(Cγtγx) Θ(E) ·

· 2E log
(

1− e−βE
)

]

. (4.30)

Here β is related to the Boltzmann onstant kB and temperature via β =
1

kBT
, and the delta funtion δ(Cγtγx) enfores the on-shell relation Cγtγx = 0.
From (4.30) one obtains the energy density and the pressure respetively

as

ργtγx ≡ −
1

V

∂

∂β
logQγtγx , pγtγx ≡

1

β

∂

∂V
logQγtγx . (4.31)

Figure 4.1 shows (for a few hoies of γx, γt) the resulting temperature de-

pendene for the energy density and for the equation of state parameter. For

the UV/high-temperature values of ργtγx and wγtγx one an easily establish

the following behaviors at high temperature, in agreement with the ontent

of Figure 4.1

ργtγx ∝ T 1+3
1+γt
1+γx , wγtγx =

1 + γx
3(1 + γt)

. (4.32)

By omparison to (4.26) and (4.27) one sees that both of these results

give a onsistent predition for the �thermal dimension" at high temperature,

whih is

dT = 1 + 3
1 + γt
1 + γx

. (4.33)

Interestingly, in this ase of generalized Ho°ava-Lifshitz senarios the thermal

dimension agrees with spetral dimension, Eq. (4.29), for γt = 0, but di�ers
from the spetral dimension when γt 6= 0.

4.2.2 Impliations of ative di�eomorphisms on momen-

tum spae

Generalized Ho°ava-Lifshitz senarios also give us an easy opportunity for

omparing the properties of the thermal dimension and of the spetral di-

mension under ative di�eomorphisms on momentum spae. From this per-

spetive the analysis is partiularly simple for the ase γx = 0, γt = 1, where
one has

C1,0(E, p) = E2 − p2 + ℓ2tE
4 . (4.34)

In light of the results reviewed and derived above it is known now that in this

ase the UV spetral dimension is dS = 3.5, while the UV thermal dimension

is dT = 7.
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Figure 4.1: Behavior of the energy density ρ in arbitrary units (top panel)

and of the equation of state parameter w (bottom panel) as a funtion of

β∗ ≡ 10−3βkBTP , aording to the partition funtion Qγtγx , for γt = 0 and

γx = 2 (blue), γx = 4 (orange), γx = 6 (green), γx = 8 (red). The purple line

is the standard ase, ρ ∝ T 4
(top panel) and w = 1/3 (bottom panel).

Consider a simple di�eomorphism on momentum spae, the following

reparameterization of the energy variable: E → Ẽ =
√

E2 + ℓ2tE
4
. In terms

of Ẽ the d'Alembertian takes the standard speial-relativisti form, C1,0 =
Ẽ2 − p2, while the momentum spae measure beomes non-trivial:

dµ(Ẽ, p) =
dẼdp

√
2ℓtp

2Ẽ
√

(1 + 4ℓ2t Ẽ
2)(−1 +

√

1 + 4ℓ2t Ẽ
2)

(4.35)

When the above di�eomorphism on momentum spae is an ative one, the

laws of physis are not invariant. This is indeed what is found when ompar-

ing the thermodynamial properties of the �Ẽ, p theory" with d'Alembertian
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Ẽ2 − p2 and momentum-spae integration measure (4.35) and the �E, p the-
ory" with (deformed) d'Alembertian C1,0(E, p) = E2 − p2 + ℓ2tE

4
and inte-

gration measure dE d3p. In the �Ẽ, p theory" the logarithm of the thermo-

dynamial partition funtion is

log Q̃act. = − 2V

(2π)3

∫

dµ(Ẽ, p)
[

δ(Ẽ2 − p2)Θ(Ẽ) ·

·2Ẽ log
(

1− e−βẼ
) ]

6= logQ. (4.36)

Of ourse ultimately this leads to di�erent values for the thermal dimension

of these two theories. In fat, from the partition funtion (4.36) one an easily

�nd that at high temperatures the energy density behaves as ρ ∼ T 3.5
, while

the equation of state parameter is w = 0.4. These values point at a value of

the UV thermal dimension of dT = 3.5. Note that this result is di�erent from
the one that would follow from a passive di�eomorphism. In this ase, the

partition funtion in the Ẽ, p variables would be straightforwardly obtained

by a hange of variables in Eq. (4.30):

log Q̃pass. = − 2V

(2π)3

∫

dµ(Ẽ, p)
[

δ(Ẽ2 − p2) ·

Θ(E(Ẽ))2E(Ẽ) log
(

1− e−βE(Ẽ)
) ]

= logQ . (4.37)

A passive di�eomorphism just relabels the same physial piture and of

ourse the thermal dimension is not a�eted. On the other hand, it an be

easily seen that the spetral dimension is not only invariant under passive

di�eomorphisms but also under ative di�eomorphisms on momentum spae.

In fat, ative and passive di�eomorphisms have the same e�et on the return

probability P (s), that of hanging the integration variable (without hang-

ing the integral). Therefore the "Ẽ, p theory" has the same UV spetral

dimension (ds = 3.5) as the "E, p theory".
In summary, one �nds that the UV spetral dimension of both the �Ẽ, p

theory" and the �E, p theory" is 3.5, and 3.5 is also the value of the ther-

mal dimension of the �Ẽ, p theory", but the �E, p theory" has UV thermal

dimension of 7. It should be evidently seen as advantageous for the thermal

dimension

3

the fat that it assigns di�erent UV dimension to the two very

3

Previous works [61, 114, 81℄ ontemplated the possibility of desribing the dimension

of a quantum spaetime in terms of the duality with momentum spae, by resorting to the

�Hausdor� dimension of momentum spae". However, at least as formulated in [61, 114,

81℄, that notion is only appliable to theories of the type of the �Ẽ, p theory", i.e. with

undeformed d'Alembertian (but possibly deformed measure of integration on momentum

spae).
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di�erent �E, p theory" and �Ẽ, p theory".

4.2.3 Appliation to f(E2−p2) senarios
Another senario of signi�ant interest is the one where the d'Alembertian

is deformed into a funtion of itself: E2−p2 → f(E2−p2). The struture

of this senario is very valuable for the purposes of the argument presented

here, but it also has intrinsi interest sine it has been proposed on the basis

of studies of the Asymptoti-Safety approah [82℄ and of the approah based

on Causal Sets [83℄. This subsetion onsiders a ase whih might deserve

speial interest from the quantum-gravity perspetive, as stressed in Ref.[82℄,

suh that the deformed d'Alembertian takes the form

Cγ(E, p) = E2 − p2 − ℓ2γ
(

E2 − p2
)1+γ

, (4.38)

where the parameter γ takes integer positive values and ℓ is a parameter with

dimension of length.

For this ase one easily �nds that the UV spetral dimension is

dS(0) =
4

1 + γ
, (4.39)

but the fat that this notion of the UV dimensionality of spaetime depends

on γ is puzzling and points very learly to the type of inadequaies of the

spetral dimension that this study is onerned with. In fat, in the UV limit

the parameter γ has no impliations for the on-shell/physial properties of

the (massless) theory. In general, massless partiles governed by Cγ will be

on-shell only either when

E2 = p2

or when

E2 = p2 +
1

ℓ2
,

independently of the value of γ. At low energies only E2 = p2 is viable. For
energies suh that E ≥ 1/ℓ also the seond possibility, E2 = p2+ 1

ℓ2
, beomes

viable. However, in the UV limit the two possibilities beome indistinguish-

able, all partiles are governed by E ≃ p just like in any 4-dimensional

spaetime, beause as E → ∞ one has that p2 + 1
ℓ2
≃ p2. So without any

need to resort to ompliated analyses one knows that this theory in the

UV limit must behave like a 4-dimensional theory, in ontradition with the

mentioned result for the UV spetral dimension.
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The UV value of the �thermal dimension" is orretly 4, independently of

γ. This is easily seen by taking into aount the deformation of d'Alembertian

present in the Cγ of (4.38) for the analysis of the partition funtion:

logQγ = − 2V

(2π)3

∫

dEd3pδ(Cγ)Θ(E)2E log
(

1− e−βE
)

, (4.40)

Using the fat that

δ(Cγ) =
δ(E − p)

2p
+
δ(E −

√

p2 + 1
ℓ2
)

2γ
√

p2 + 1
ℓ2

. (4.41)

one easily �nds that the UV behavior of thermodynamial quantities whih

is relevant to determine the thermal dimension is independent of γ, and in

partiular in the UV the Stefan-Boltzmann law and the equation-of-state

parameter take the form known for a standard 4-dimensional spaetime:

ρ ∝ T 4 , w =
1

3
. (4.42)

So indeed in this senario the UV value of the thermal dimension is 4. The

theory does have �dynamial running of the dimensionality of spaetime" in

a regime where the temperature is lose to the Plankian temperature, as one

should expet on the basis of the fat that the parameter γ does have a role in
the theory for energies greater than 1/ℓ but still small enough to distinguish

between p2 and p2 + 1
ℓ2
. This is shown in Figure 4.2, where the thermal

dimension (inferred from the behaviour of the equation of state parameter

and from the running of the energy density with temperature) is plotted as

a funtion of β.
The disastrous failures of the spetral dimension in this ase is to be

attributed to a ombination of its sensitivity to o�-shell properties and its

reliane on the Eulidean d'Alembertian. It is noteworthy that for the Eu-

lidean d'Alembertian

4

,

C[Euclidean]
γ = E2 + p2 + ℓ2γ(E2 + p2)1+γ , (4.43)

in the UV limit one an neglet E2 + p2 with respet to ℓ2γ(E2 + p2)1+γ
.

Instead for on-shell modes of the original Lorentzian Cγ one an never neglet

E2 − p2 with respet to ℓ2γ(E2 − p2)1+γ
.

4

Note that in order to have the Eulidean version of the d'Alembertian Cγ(E, p) one
has to Wik-rotate also the parameter ℓ [84℄.
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Figure 4.2: Behaviour of the thermal dimension dT as a funtion of β. The
thermal dimension is omputed as dT = 1 + 1

w
, where the equation of state

parameter is the one assoiated with to the logQγ, with γ = 1. β is in units

of 103βP (where βP = 1
kBTP

and TP is the Plank temperature.

4.3 Thermal dimension in Relative Loality mod-

els

The present setion shows the preliminary results obtained in trying to ex-

tend the notion of thermal dimension of quantum spaetime to models with

relative loality. This would allow us to give further strength to the argu-

ments developed in the previous setion.

Two di�erent sets of oordinates on the momentum spae, the birossprod-

ut and Judes Visser oordinates [110℄ of k-de Sitter momentum spae, will

be used to ompute the relevant thermodynamial quantities and disuss

the properties of thermal dimension. In partiular the disussion about the

di�erent sensibility of spetral and thermal dimension under the ation of

ative and passive di�eomorphism will be ontinued. Also, it is shown that

the birossprodut and the Judes Visser oordinates desribe in general dif-

ferent theories although they have equivalent on-shell relations; this allows

a more detailed disussion of the problem of the o�-shellness of the spetral

dimension.

The starting point to study the thermodynamis is the de�nition of (log-

arithm of the) partition funtion, written in ovariant form:

logQ =− 2V

(2π)3

∫

dµ(p0, ~p)δ(Cp)Θ(Uµpµ)2U
µpµ×

× log
(

1− e−βUµpµ
)

.

(4.44)
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Here, pµ is the four-momentum of the photons in the radiation gas, Uµ
is the

four-veloity of the observer with respet to the system (so that the energy

measured by the observer is E = Uµpµ), β is related to the Boltzmann

onstant kB via β = 1
kBT

, Cp is the on-shell relation and dµ(p0, ~p) is the

invariant measure on momentum spae (these beomes Cp = p20 − ~p2 and

dµ(p0, ~p) = d4p in the undeformed ase and (4.44) takes the usual form in

the omoving referene frame Uµ = (1,~0)). Writing the partition funtion

in ovariant form allows to introdue non-trivial dispersion relations and

urvature on momentum spae onsistently with the relativisti setup of the

model. From this, following Setion 4.2, all the thermodynamial quantities

an be derived in the usual way. In partiular, the main fous will be on the

energy density

ρ ≡ − 1

V

∂

∂β
logQ (4.45)

and the pressure

p ≡ 1

β

∂

∂V
logQ . (4.46)

4.3.1 Thermal dimension of k-de Sitter in birossprod-

ut oordinates

The metri on (D + 1)-dimensional momentum spae in birossprodut o-

ordinates takes the form:

ds2 = gµνdpµdpν = dE2 − e2ℓE
D
∑

j=1

dp2j , (4.47)

so that the measure of integration of momentum spae is (in 3+1 dimensions)

dµbp(E, p) =
√−gdEd3p = p2e3ℓEdEdp. (4.48)

The momentum spae representation of the mass Casimir operator gives the

on-shell relation. This operator must of ourse be an invariant under the

deformed symmetries of the model. The invariant that is mostly used in the

literature is

Cbp =
4

ℓ2
sinh2

(

ℓE

2

)

− eℓE|~p|2 , (4.49)

and the on-shell relation is then given by

4

ℓ2
sinh2

(

ℓE

2

)

− eℓE |~p|2 = 4

ℓ2
sinh2

(

ℓm

2

)

, (4.50)
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where m is the rest energy. The Lorentz transformations are non linear

transformations for these oordinates. Sine the spaetime and momentum

spae here onsidered are isotropi one an work just with the modulus of

spatial momentum, p.
The thermodynamial partition funtion for this model is

logQ ∝
∫

dEdp p2 e3ℓEδ(Cbp)Θ(E)2E log
(

1− e−βE
)

. (4.51)

The delta funtion an be rewritten as:

δ(Cbp) =
ℓ

2(eℓE − 1)
δ

(

p− 1− e−ℓE

ℓ

)

(4.52)

from whih one an see that the model has a maximum momentum, pmax =
ℓ−1

. The expression for the energy density, after integration over the p vari-

able, reads:

ρ ∝
∫

dE eℓE
eℓE − 1

ℓ(eβE − 1)
E2 . (4.53)

The integrand is divergent for β < 2ℓ, from whih one an dedue the ex-

istene of a maximal temperature, Tmax = 0.5 TP , where TP is Plank tem-

perature. The same onlusion an be drawn from the examination of the

expression for the pressure:

p ∝ 1

β

∫

dE eℓE
eℓE − 1

ℓ
E log

(

1− e−βE
)

. (4.54)

So this is a ase where the UV regime an not be de�ned by T → ∞, but

it will be then onsidered the T → Tmax regime. When the temperature is

lose to its maximum the energy density behaves like:

ρ ∼ (β − 2λ)−3
(4.55)

and the equation of state parameter runs to the value

w = 0. (4.56)

From the de�nition of thermal dimension given in Setion 4.2, one an on-

lude that dT = ∞. However it should be kept in mind that expressions

(4.26) and (4.27) that link the exponent of the Stefan-Boltzmann law and

the equation of state parameter to the number of dimension of spaetime do

not ontemplate a maximal temperature. One ould be tempted, by looking

at the expression (4.55), to laim that in presene of a non zero βmin what
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is the number of dimension of spaetime is not the exponential of β but that

of (β − βmin)
−1
. So in this ase, on the basis of (4.55) one would say that

D + 1 = 3. One way to make this laim more reliable is to �nd an equation

of state parameter oherent with this number of dimension. And sine on

the basis of our intuition is that the relavant ombination is β − βmin, if one

de�nes the pressure as

p ≡ 1

β − βmin

∂

∂V
logQ , (4.57)

then one �nds the value of the equation of state parameter whih is oherent

with the exponent of the Stefan-Boltzmann law,

w = 0.5 . (4.58)

In this optis, both (4.55) and (4.58) suggest that the e�etive thermal dimen-

sion of the model, lose to the maximal temperature, is the less problemati

dT = 3 . (4.59)

4.3.2 Thermal dimension of k-de Sitter in Judes Visser

oordinates

The Judes Visser oordinates [110℄ ǫ(E, p) and π(E, p) are de�ned in suh a

way that they transform as the usual 4-momentum under Lorentz transfor-

mation and the mass Casimir takes the standard form ǫ2 − π2 = µ2
. They

are obtained as follows. Authors in Ref.[110℄ started from the expression of

E and p as boosted rest energy m

eℓE = eℓm(1 + sinh(ℓm)e−ℓm(cosh ξ − 1)),

p =
1

ℓ

sinh(ℓm)e−ℓm sinh ξ

1 + sinh(ℓm)e−ℓm(cosh ξ − 1)
,

(4.60)

where ξ is the boost rapidity parameter. By inverting these relations to get

the expression of the rapidity they get

cosh ξ =
eℓE − cosh(ℓm)

sinh(ℓm)
,

sinh ξ =
ℓpeℓE

sinh(ℓm)
,

(4.61)

and using the identity cosh ξ2 − sinh ξ2 = 1 rewrite the on-shell relation in

the following way:

cosh(ℓE) = cosh(ℓm) +
1

2
ℓ2p2eℓE. (4.62)
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Comparison with the standard dispersion relation �xes the relation between

the rest energy m and the mass Casimir µ,

cosh(ℓm) = 1 +
1

2
ℓ2µ2. (4.63)

This �xes the ǫ and π oordinates as

ǫ = µ cosh ξ =
eℓE − cosh(ℓm)

ℓ cosh(ℓm/2)
,

π = µ sinh ξ =
peℓE

cosh(ℓm/2)
.

(4.64)

It is here reported also the expression of the birossprodut oordinates in

terms of the Judes Visser

E =
1

ℓ
ln(1 + ℓǫ

√

1 +
ℓ2µ2

4
+
ℓ2µ2

2
),

p =
π
√

1 + ℓ2µ2

4

1 + ℓǫ
√

1 + ℓ2µ2

4
+ ℓ2µ2

2

.

(4.65)

The invariant measure (4.48) in these oordinates takes the form

dE dp p2e3ℓE → dµ̃JV (ǫ, π, µ) = dǫ dπ
π2
(

1 + ℓ2µ2

4

)

1 + ℓǫ
√

1 + ℓ2µ2

4
+ ℓ2µ2

2

. (4.66)

What it is important to notie for the following is that if one substitutes the

expressions (4.65) into the birossprodut mass Casimir (4.49) one �nds

CJV (ǫ, π, µ) =
ǫ2 − π2 + ℓµ2ǫ

√

1 + ℓ2µ2

4
+ ℓ2µ2

2
(µ2 + ǫ2 − π2)

1 + ℓǫ
√

1 + ℓ2µ2

4
+ ℓ2µ2

2

, (4.67)

whih redues to the standard

CJV (ǫ, π) = ǫ2 − π2
(4.68)

only when one enfores the on-shell relation for the Judes Visser oordinates,

ǫ2 − π2 = µ2. (4.69)
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So what one atually has is that the two set of oordinates give equivalent

dispersion relations (4.50)-(4.69) but non equivalent d'Alambertians (4.49)-

(4.67). The disussion will ome bak later on this important fat to disuss

in more detail the di�erent properties of spetral dimension and thermal

dimension.

The "on-shell" expression of the birossprodut oordinates in terms of

the Judes Visser oordinates are simply obtained by expliitly substituting

µ2 = ǫ2 − π2
,

E =
1

ℓ
ln(1 + ℓǫ

√

1 +
ℓ2(ǫ2 − π2)

4
+
ℓ2(ǫ2 − π2)

2
),

p =
π
√

1 + ℓ2(ǫ2−π2)
4

1 + ℓǫ
√

1 + ℓ2(ǫ2−π2)
4

+ ℓ2(ǫ2−π2)
2

.

(4.70)

Starting from these expression to ompute the measure one obtains,

dµJV (ǫ, π) = dǫ dπ π2

(

1 +
ℓ2(ǫ2 − π2)

4

)

. (4.71)

For what onerns the thermal dimension, however, sine the on-shellness

is enfored by the Dira delta funtion, this di�erene in the measures makes

no di�erene in the �nal value of the integral sine one an easily see that

dµ̃JV (ǫ, π, µ)δ(CJV (ǫ, π, µ)− µ2)θ(ǫ) =

= dµJV (ǫ, π)δ(CJV (ǫ, π)− µ2)θ(ǫ)

= dǫ dπ π2

(

1 +
ℓ2µ2

4

)2

δ(ǫ2 − π2 − µ2)θ(ǫ).

(4.72)

Notie than apart a onstant fator the measure that ultimately enters in

the relevant integral is the standard measure over minkowskian momentum

spae and it is exatly the standard one in the massless ase µ = 0, whih is

the ase of interest to study the Stefan-Boltzmann law and equation of state

parameter.

This result immediately tells us that the thermal dimension is sensible

to the di�erene between ative and passive di�eomorphisms on momentum

spae. In fat, if one swithes oordinates from the birossprodut to the

Judes Visser as a passive di�eomorphism, it atually is a mere hange of o-

ordinates in omputing the relevant integrals, the resulting Stefan-Boltzmann

law and w then being those omputed in the previous setion. However, if the

Judes Visser oordinates are introdued as an ative di�eomorphism, then

102



the logarithm of the partition funtion is

logQ ∝
∫

dǫ dπ π2δ(ǫ2 − π2)θ(ǫ)2ǫ log(1− eβǫ), (4.73)

whih therefore leads to the usual value dT = 4. It is therefore evident

that in this ontext physis is not invariant under ative di�eomorphims on

momentum spae.

4.3.3 Spetral Dimension in Judes Visser oordinates

In the previous setion it has been notied that one has two set of transforma-

tions relating the birossprodut to the Judes Visser oordinates: the �rst,

Eqs.(4.65), may alled "o�-shell Judes Visser", sine the expression of the bi-

rossprodut mass Casimir (4.49) in terms of these oordinates takes the non

standard form shown in Eq.(4.67); the seond, Eqs.(4.70), may alled "on-

shell Judes Visser", sine the expression of the birossprodut mass Casimir

(4.49) in terms of these oordinates takes the standard form Eq.(4.68). The

measure on momentum spae in the two ases are respetively dµ̃JV (ǫ, π, µ)
and dµJV (ǫ, π). It has been shown also that these di�erent sets of oordi-

nates still give the same value of thermal dimension beause the integrals

de�ning the thermodynamial quantities are omputed on-shell. One ould

be interested in looking whether the value of thermal dimension omputed

for these models oinides with that of spetral dimension.

The UV spetral dimension for the Eulidean version [111℄ of this model

an be omputed using the return probability

P (s) ∝
∫

dEdp p2 e3ℓE e−s( 4
ℓ2

sinh2( ℓE
2 )+eℓE |~p|2) . (4.74)

and turns out to be [60, 61℄

dS(0) = 6 . (4.75)

In the ase of Judes Visser oordinates one has to deal with the fat that

one has two alternatives, the o�-shell and on-shell oordinates.

For the o�-shell oordinates the return probability takes the form

P (s) ∝
∫

dǫdπ
π2

1 + ℓǫ
e−s ǫ2+π2

1+ℓǫ , (4.76)

giving the value dS(0) = 6.
For the on-shell oordinates however this takes the form

P (s) ∝
∫

dǫdππ2

(

1 +
ℓ2(ǫ2 + π2)

4

)

e−s(ǫ2+π2), (4.77)
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whih gives again dS(0) = 6.
This results should not surprise, as it has been already notied that the

spetral dimension is not sensible to the di�erene between ative and passive

di�eomorphisms. Therefore, no matter whih oordinates one hooses for

P (s) in (4.74) it will give dS(0) = 6.

4.4 Remarks on the thermal dimension

The exiting realization that the UV dimension of spaetime might be di�er-

ent from its IR dimension adds signi�ane to the old hallenge of desribing

the dimension of a quantum spaetime and it is argued that it is ruial to

link this issue to observable properties. After all, what it is meant in physis

by �dimension of spaetime" must inevitably be something one an measure.

Moreover, only by relying on a truly physial/observable haraterization one

is assured to ompare di�erent theories in onlusive manner.

The inadequay of the spetral dimension for these purposes has been

fully exposed in the previous pages. The fat that this notion involves an

unphysial Eulideanization ould already lead to this onlusion. The ob-

servation about the undesirable invariane of the spetral dimension under

ative di�eomorphisms of momentum spae should ast another shadow on

the usefulness of the spetral dimension. The fat that one obtains di�erent

spetral dimensions for alternative formulations of the same physial the-

ory as in Subsetion 4.2.3 (formulations that di�er only for what onerns

unphysial o�-shell modes) should leave no residual doubts.

The notion of thermal dimension presented here is free from the short-

omings of the spetral dimension, sine it relies on the analysis of observ-

able thermodynamial properties of radiation in the quantum spaetime. The

next Chapter shows how the notion of thermal dimension of a quantum spae-

time is not only physial but also partiularly useful, at least for studies of

the early universe, whih is anyway the ontext where the UV dimension of

spaetime should �nd its most signi�ant appliations [85, 86℄.
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Chapter 5

Primordial perturbations in a

rainbow universe with running

Newton onstant

The standard model of osmology laks of a ausal explanation of the high

degree of homogeneity seen at large sales in the universe, the sky being a

mosai of regions that have never been in ausal ontat but still are puzzling

similar. Without a ausal explanation for suh homogeneity, it has to be given

as extremely �ne-tuned initial ondition. This is the well known "horizon

paradox". This weakness brought the development of di�erent mehanism

to solve the paradox, most notably in�ation. There, a salar �eld drives an

exponential expansion of the universe, and the quantum vauum �utuations,

in ausal ontat, are strethed and grown lassial, beoming the seeds of

the strutures observed today.

Reent results suggest that the properties of the spetrum of primordial

�utuations might not need in�ationary expansion to be explained, but ould

instead be a onsequene of quantum-gravitational e�ets, whih are relevant

in the early universe [85, 112℄. In partiular in [85, 113, 114℄ it was shown

that a sale invariant power spetrum an be obtained if the perturbations

satisfy the Plank-sale-modi�ed dispersion relation emerging in the high-

energy regime of Horava-Lifshitz gravity [55℄:

E2 = p2(1 + (ℓp)4) . (5.1)

As it has been shown earlier, this dispersion relation implies a running

of spaetime dimensionality, so that the spaetime dimension in the deep

Plankian regime is 2 [73, 115, 116℄. The possibility of generalising this re-

sult to any theory with Plank-sale dimensional redution to 2 was suggested

in [86, 81℄. These results rely on a number of assumptions, suh as that the
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seond order ation for perturbations is the one of Einstein gravity and that

the perturbations are produed in a quantum vauum state. This rigidity in

the assumptions makes it hard to �nd a mehanism that would produe the

observed small departure from exat sale invariane.

This study [127℄ relaxes several of the assumptions previously made in

the literature. Firstly, it is assumed the more general framework of rainbow

gravity [48℄ previously introdued. The bakground osmologial evolution

will then be desribed in terms of a metri whih �runs� with the energy. For

the dispersion relation:

f 2(E)E2 − g2(E)p2 = m2, (5.2)

(where the ontinuous funtions f and g approah the onstant value 1 when

the energy is well below the Plank energy), the assoiated rainbow line

element is

ds2 =
dt2

f 2(E)
− 1

g2(E)
δijdx

idxj . (5.3)

Seondly, both perturbations of quantum origin for a vauum state and per-

turbations that are originated in a thermal state [117, 118, 119, 120, 121℄

will be onsidered. In the latter ase it will be assumed that the universe

is �lled with radiation and that both the bakground and the �utuations

are thermalized, so that they share the same (modi�ed) thermodynamial

properties [122℄. Finally, it will be allowed for the Newton onstant to also

run with energy. This is motivated by results in Ho°ava-Lifshitz gravity and

in Asymptoti Safety [123, 124, 125, 126℄, where the Newton onstant tends

to zero at super-Plankian energies.The Newton onstant is allowed to both

inrease and derease with energy. However, it will turn out that in order

to solve the horizon problem and to produe perturbations with the required

spetral index, the Newton onstant must indeed be a dereasing funtion of

energy at super-Plankian sales. This is true for both vauum and thermal

initial onditions for the perturbations.

Regarding the work on thermal �utuations, the following motivating fa-

tors must be stressed. As it has been shown in the previous hapter, radiation

obeying a deformed dispersion relation also has deformed thermodynamial

properties [116, 128, 129℄. This study of osmologial perturbations fouses

on a generalization of the Ho°ava-Lifshitz dispersion relation (5.1):

E2 = p2(1 + (ℓp)2γ) , (5.4)

and it is here assumed to be in a regime where only the ultraviolet orretion

term is relevant, E2 ≈ p2(ℓp)2γ. Aording to the results obtained in the
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previous hapter, in this regime the assoiated Stefan-Boltzmann law and

equation of state parameter w ≡ P/ρ are:

ρ ∝ T 1+ 3
1+γ

(5.5)

w =
1 + γ

3
. (5.6)

The present hapter is strutured as follows. Setion 5.1 starts by working

out the evolution of the bakground, inluding modi�ed thermodynamial re-

lations. Setion 5.2 obtains the equation for the evolution of primordial salar

perturbations, the onstraints on the modi�ed dispersion relation and on the

running of the Newton onstant whih ensure an expanding universe and a

solution to the horizon problem. Setion 5.3 is devoted to the omputation of

the spetral index for perturbations generated in a quantum vauum, while

Setion 5.4 shows the analogous results for perturbations with thermal initial

onditions. Some onlusions are presented in Setion 5.5.

5.1 Bakground evolution of a rainbow FLRW

universe with deformed thermodynamis

The rainbow funtions assoiated to the dispersion relation (5.4) are:

f 2 = 1 g2 = 1 + (ℓp)2γ . (5.7)

They enter in the rainbow line element for a FLRW spaetime in the following

way [48, 129℄:

ds2 =
dt2

f 2(E)
− a2(t)

g2(E)
δijdx

idxj. (5.8)

It is here assumed that the universe ontains a perfet �uid, whose stress-

energy tensor is T µ
ν = (ρ+ P )uµuν − Pδµν , where ρ is the energy density, P

the pressure and uµ the �uid four veloity

1

. Then the Friedmann equations

read [48℄:

H2 =
8πG(E)

3f 2
ρ

H2 − ä

a
=

4πG(E)

f 2
(ρ+ P ),

(5.9)

1

As mentioned in the introdution, a possible energy dependene of the Newton on-

stant G is allowed.
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where H = da/dt
a

. From these the ontinuity equation follows

ρ̇ = −3H(ρ+ P ). (5.10)

The solution of the ontinuity equation an be stated in terms of the equation

of state parameter as usual, and if the universe is �lled with radiation this

translates into a dependene on the parameter γ appearing in the dispersion

relation (5.4):

ρ = ρ̄a−3(1+w) = ρ̄a−(4+γ). (5.11)

Of ourse in the ase of standard thermodynamis in four spaetime dimen-

sions dT = 4 and one reovers the usual saling ρ = ρ̄a−4
in a radiation-�lled

universe.

Using the Stefan-Boltzmann law one �nds that the deformed thermody-

namis also a�ets the evolution of the temperature with the sale fator:

T ∝ a−3w = a−(1+γ) . (5.12)

5.2 Evolution of salar perturbations in a rain-

bow universe and solution to the horizon

problem

The perturbed rainbow FLRW metri in the longitudinal gauge

2

reads:

ds2 =
dt2

f 2(E)
(1 + 2φ(t, x))− a2(t)

g2(E)
(1− 2ψ(t, x))δijdx

idxj . (5.13)

In order to work out the evolution equation for the perturbations one an

introdue an energy-dependent time variable,

dt̃ =
dt

f(E)
, (5.14)

so that the time-dependent funtions appearing in the metri read

ã2(E, t̃) =
a2(t̃)

g2(E)
, φ̃(t̃, x) = φ(t, x), ψ̃(t̃, x) = ψ(t, x) .

(5.15)

2

By this it is here meant that in the limit where the energy dependene of the metri

disappears, f = g = 1, one is left with the metri in longitudinal gauge.
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The perturbed line element takes the standard form in terms of the new

funtions:

ds2 = dt̃2(1 + 2φ̃(t̃, x))− ã2(E, t̃)(1− 2ψ̃(t̃, x))δijdx
idxj . (5.16)

Using these new variables one an just follow a standard proedure (see e.g.

[122℄) to obtain perturbation equations.

From the standard equations, with the prime denoting the derivative

d

dη̃
≡ ã(E, t̃)

d

dt̃
,

∇2φ̃− 3H̃(H̃φ̃+ φ̃′) = 4πGã2δρ̃
[

H̃φ̃+ φ̃′
]

,i = 4πGã2(ρ̃+ P̃ )δũi

φ̃′′ + 3H̃φ̃′ + (2H̃′ + H̃2)φ̃ = 4πGã2δP̃

(5.17)

one an ombine the �rst and third equation of Eqs.(5.17) to get

φ̃′′ + 6φ̃′H̃ + (2H̃′ + 4H̃2 −∇2)φ̃ = 0, (5.18)

where we set c̃2s =
δP̃

δρ̃
= 1. De�ning the quantity

ζ̃ = φ̃
5 + 3w

3(1 + w)
+
φ̃′

H̃
2

3(1 + w)
, (5.19)

Eq.(5.18) an be written as

ζ̃ ′ =
2

3

∇2φ̃

H̃(1 + w)
(5.20)

and from this one an get the following

ζ̃ ′′ + 2
z̃′

z̃
ζ̃ −∇2ζ̃ = 0, (5.21)

with z̃ =

√

3(1 + w)

2
ã. Finally, de�ning the quantity ṽ = z̃ζ̃, Eq.(5.18) takes

the familiar form

ṽ′′ −
(

∇2 +
z̃′′

z̃

)

ṽ = 0. (5.22)

Going bak to the energy-independent time variable one �nds that the

urvature perturbation is left unhanged,

ζ̃ = φ
5 + 3w

3(1 + w)
+
adφ/dt

da/dt

2

3(1 + w)
= ζ , (5.23)
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while

z̃ =

√

3(1 + w)

2
ã =

√

3(1 + w)

2

a

g
= z/g. (5.24)

Therefore, v = ṽg satis�es the following evolution equation in Fourier spae

v′′ −
(

g2

f 2
k2 +

a′′

a

)

v = 0 . (5.25)

From now on, the prime stands for the derivative with respet to the energy-

independent onformal time,

d

dη
≡ a

d

dt
. This equation is very similar to

the standard one, with the fator (f/g)2 whih plays the role of an energy-

dependent speed of sound.

Note that a possible energy dependene of the Newton onstant does not

appear expliitly in the evolution equations of the perturbations; however,

it will be shown in the following that it a�ets the sale of the horizon and

the onditions under whih the horizon problem is solved within rainbow

osmology models.

A osmologial model that solves the horizon problem is suh that modes

start inside the horizon, where the �rst term in parentheses in the evolution

equation (5.25) dominates, and subsequently exit the horizon, where the se-

ond term dominates [122, 130℄. Here the onditions under whih the horizon

problem is solved are investigated speialising to the dispersion relation (5.4),

with assoiated rainbow funtions (5.7) and assuming to be in a regime where

only the ultraviolet orretion terms are relevant. It is important to bear in

mind that the energy appearing in the rainbow funtions is the physial one,

related to the omoving k via E =
(

ℓk
a(η)

)2γ

.

The behaviour of the two terms in parenthesis in Eq. (5.25) is governed

by the evolution of the sale fator a(η). This is found by integrating the

�rst Friedmann equation (5.9), leading to

η2 =
a1+3w

(1 + 3w)2
1

2
3
πρ̄G

=
a2+γ

(2 + γ)2
1

2
3
πρ̄G

. (5.26)

Here, ρ̄ is the initial energy density and the relation between the equa-

tion of state parameter w and the deformation parameter γ is given by the

modi�ed thermodynamial relation (5.6). If the Newton onstant is energy-

independent, the sale fator evolves as:

a(η) = (Cη2)
1

2+γ , (5.27)
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where C = G2
3
πρ̄(2+γ)2 and η inreases from 0 in order to have osmologial

expansion with time. Then the two terms in parentheses in (5.25) take the

form

k2
(

ℓk

a(η)

)2γ

= k2(ℓk)2γC− 2γ
2+γ η−

4γ
2+γ

(5.28)

and

a′′

a
= η−2 2

2 + γ

(

2

2 + γ
− 1

)

. (5.29)

The horizon is then found at

ηH =

(

k2(ℓk)2γC− 2γ
2+γ

(2 + γ)2

2γ

)

2+γ
2(γ−2)

, (5.30)

and in order to solve the horizon problem one needs

γ > 2 . (5.31)

If the Newton onstant has a power-law dependene on energy in the

ultraviolet regime,

G(E) = ℓ2(ℓE)α ∼ ℓ2
(

ℓk

a

)(1+γ)α

, (5.32)

then the evolution of the sale fator with time is

a(η) = (C̄η2(ℓk)(1+γ)α)1/ν , (5.33)

where ν = 2+ γ + (1+ γ)α and C̄ = 2
3
πℓ2ρ̄(2 + γ)2. Note that depending on

ν the onformal time an either be positive or negative. In fat, in order to

have osmologial expansion with time if ν > 0 then η must be positive and

inreasing from 0, while if ν < 0 then η must be negative and approahing 0
from −∞.

The terms in parenthesis in the perturbation equation (5.25) are now:

k2
(

ℓk

a(η)

)2γ

= C̄− 2γ
ν η−

4γ
ν k2(ℓk)

2γ(2+γ)
ν , (5.34)

and

a′′

a
=

2

ν

(

2

ν
− 1

)

η−2 . (5.35)

The horizon is then found at

ηH =

(

ν C̄− 2γ
ν

2
(

2
ν
− 1
)k2(ℓk)

2γ(2+γ)
ν

)
ν

4γ−2ν

(5.36)
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and the horizon problem is solved for

4γ
ν
> 2 if η is positive and for

4γ
ν
< 2

otherwise. Then the overall onditions on α that ensure osmologial expan-

sion and solution of the horizon problem are

−2 + γ

1 + γ
< α <

γ − 2

1 + γ
(5.37)

for positive η and

α < −2 + γ

1 + γ
, α >

γ − 2

1 + γ
(5.38)

for negative η. The latter possibility is obviously exluded. The �rst option

orretly redues to γ > 2 when α = 0, while in general it onstrains α to be

in the range −2 < α < 1.

5.3 Vauum perturbations

One an study the power spetrum of vauum �utuations diretly in the

general ase where the UV energy dependene of G is enoded in (5.32). The

limit α = 0 gives the results for energy-independent G.

The dynamis of modes inside the horizon is governed by the �rst term

in parentheses in (5.25). Up to a phase, the vauum �utuations inside the

horizon take the form [85, 113℄:

vV ∼
aγ/2√
ℓγk1+γ

. (5.39)

The solution of (5.25) for modes outside the horizon an be ast in the ansatz:

vV ∼ F (k)a , (5.40)

where the funtion F is found by asking that the two solutions math at the

horizon:

F (k) =
aγ/2−1(ηH)√

ℓγk1+γ
. (5.41)

The dimensionless power spetrum of urvature perturbations ζ is given by

k3Pζ ∼ k3
(v

z

)2

≡ A2kns−1
. Its spetral index ns is found from (5.41) and

(5.36):

nV
s − 1 =

(γ + 4)(2− γ)
2− γ + α(1 + γ)

. (5.42)

Clearly γ = 2 gives a sale invariant power spetrum for any value of α al-

lowed by the onstraint (5.37), whih for γ = 2 reads −4
3
< α < 0. The
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fat that sale invariane is ahieved independently of how the Newton on-

stant sales with energy is due to the time perturbations being already sale-

invariant and proportional to the sale fator a inside the horizon. So the

gluing proedure is trivial, bypassing whatever modi�ed evolution of the

bakground was introdued. Also a near-sale invariant power spetrum is

allowed. In partiular one an ask that nV
s = 0.968 ± 0.006, whih is the

present observational onstraint from Plank [131℄, obtaining the allowed

range of values shown in Fig. 5.1. Note that now the energy dependene

of the Newton onstant is relevant. In partiular, the values of α that are

seleted by observational onstraints are all negative, suggesting a vanish-

ing Newton onstant in the deep UV regime. On the other hand, from Eq.

(5.35) one an see that observational onstraints allow for both an aeler-

ated or deelerated expansion. This is a ruial di�erene with respet to

the onstraints oming from thermal �utuations, as shown in the following

setion.

Figure 5.1: The onstraint ns = 0.968 ± 0.006 is plotted in red , assuming

vauum �utuations (the error bar is too small to be seen on the plot). The

region satisfying the onstraint ensuring solution of the horizon problem, Eq.

(5.37) is plotted in blue .

In the limiting ase α = 0 (energy-independent Newton onstant) the

gluing ondition at the horizon gives a spetral index whih is far from sale

invariane, nV
s − 1 = 4 + γ. However, when γ = 2 both the terms governing
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the evolution of perturbations, (5.28) and (5.29), sale like η−2
. Therefore a

mode is either inside or outside the horizon, unable to ross it. Whether a

mode is inside or outside the horizon is set by the sale

kH =

(

G
8π

3

ρ̄

ℓ4

)1/6

= H0

(

1

(ℓH0)4
ρ̄

ρcr

)1/6

, (5.43)

where H0 is the urrent value of the Hubble onstant and ρcr is the ritial

energy density. If the modes are well inside the horizon, k ≫ kH , the per-

turbations behave like vV ∼ a√
ℓ2k3

, and so they are sale-invariant, but never

exit the horizon.

5.4 Thermal perturbations

Without an in�ationary phase, there is no real reason to exlude the ontri-

bution to the perturbations power spetrum oming from thermalised pertur-

bations, sine this is not suppressed by a period of super-ooling [120, 117℄.

The thermal ontribution to the power spetrum is here omputed applying

the method outlined in [118℄, but taking into aount that in our model both

bakground and perturbations are thermalised. This in partiular means

that the same thermodynamial onstraints (5.6) hold for bakground and

perturbations. The expetation value of a quantum operator is

〈O〉 =
∑

n ρnn〈n|Ô|n〉
∑

n ρnn〈n|n〉
, (5.44)

where |n〉 is the n-partile state. It is here assumed that the density matrix

follows the Boltzmann distribution ρnn = e−βEn
, where β = 1/kBT and

En = pn
√

1 + (ℓpn)2γ is the energy of a mode with oupation number n.
Then the orrelation funtion of the quantised perturbation variable v̂ is

[120℄

〈v̂(~x)v̂(~x+ ~r)〉 =
∫

d3k

(2π)3/2
|vk(η)|2(2n(k, η) + 1)ei

~k·~r , (5.45)

where the number density is given by the Bose-Einstein distribution:

n(k, η) =
1

eβE(k,η) − 1
. (5.46)

The power spetrum of thermal perturbations imprinted at the horizon is

therefore

PTherm(k) = PV ac(k)(2n(k, ηH) + 1). (5.47)
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Sine the regime of �utuations being studied is in the Rayleigh-Jeans limit,

one an set:

n(k, ηH) ≈ (βE)−1 =
kBTcℓ

(ℓk)γ+1
, (5.48)

where the onformal temperature Tc ≡ Taγ+1
is onstant in time. As in

[118, 132℄, the relation between the physial and onformal temperature is

found by asking that the number density is independent of time. If c is

k independent, this is just Tc = Ta/c. Here one should strip o� the k

dependene in c from the de�nition of Tc, so that it does not beome k
dependent.

Inluding the thermal ontribution, the spetral index of perturbations

beomes

nT
s = nV

s − 1− γ. (5.49)

Note that this result di�ers form the one in [133℄, beause a mistake has been

made there. In the Rayleigh-Jeans limit, n ∼ T/E, not just T/k. The fat

that c has an extra dependene in k is responsible for the last term in (5.49).

This result is also independent of how the Newton onstant runs with energy.

Using the value of the vauum spetral index found in the previous se-

tion, Eq. (5.42), the thermal spetral index an be written as

nT
s =

4(2− γ)− αγ (1 + γ)

2− γ + α(1 + γ)
. (5.50)

For energy-independent Newton onstant, α = 0, the thermal spetral

index is

nT
s = 4 , (5.51)

regardless of the value of γ. This result mathes the one found in [120, 117℄

and of ourse it is ruled out by observational onstraints.

For α 6= 0, asking that the perturbations are sale invariant leads to a

onstraint linking α and γ. Asking in addition that the horizon problem is

solved, Eq. (5.37), introdues an inferior bound γ > 2 on the allowed values

of γ. Then the values of α that are ompatible with sale invariane and

whih allow to solve the horizon problem fall in the range −1/4 < α < 0.
It is also possible to math the spetral index to the Plank observed

value ns = 0.968 ± 0.006 [131℄, giving the onstraints shown in Fig. 5.2.

Aording to Eq.(5.35), these observational onstraint on α and γ only allow

for a deelerating expansion of the universe.
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Figure 5.2: The onstraint ns = 0.968 ± 0.006 is plotted in red, assuming

thermal �utuations (the error bar is too small to be seen on the plot). The

region satisfying the onstraint ensuring a solution of the horizon problem,

Eq. (5.37) is plotted in blue.

5.5 Conluding remarks

It has been investigated in this hapter the possibility that a rainbow universe

with running Newton onstant an aommodate primordial perturbations

whose spetral index mathes urrent onstraints, without relying on in�ation

to solve the horizon problem. Starting form a universe �lled with radiation

subjet to deformed dispersion relations (of the Ho°ava-Lifshitz type), both

vauum and thermal initial onditions for the perturbations have been on-

sidered and a power-law dependene of the Newton onstant on energy has

been assumed. Cruially, it has been assumed that the bakground satis-

�es the thermodynamial relations peuliar to radiation subjet to deformed

dispersion relations.

For both kinds of initial onditions for the perturbations (vauum and

thermal) the running of the Newton onstant is essential in ahieving a viable

piture. In partiular, the Newton onstant is onstrained to be dereasing

with energy in the ultraviolet regime. This is onsistent with intuition from

quantum gravity theories, suh as Ho°ava-Lifshitz gravity and Asymptoti

safety. It also resonates with the onjeture put forward in [86℄. In senarios

onsidered, vauum and thermal initial onditions an be distinguished be-
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ause, while for the former the observational onstraints are ompatible with

either an aelerating or deelerating expansion of the universe, for the latter

only a deelerated expansion is allowed.

One may question the wisdom of enforing thermodynamial onstraints

on the bakground as well as on the �utuations. A ounter-example is a

salar �eld, for whih the bakground does not need to be thermalized even

when the �utuations are [118℄. Nonetheless it is urious that when, for

the sake of minimality, one imposes thermal onditions on both bakground

and perturbations of a salar �eld, one reovers the universal result nT
s = 4

previously derived for a thermodynamial �uid [120℄. Just as with [120℄ one

needs to relax standard assumptions to evade this result. Here the running

of Newton's onstant was the ruial ingredient.
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Chapter 6

Analysis of ausality and

momentum onservation with

Relative Loality

6.1 Causality from Relative loality

The present setion o�ers a disussion on ausality in Relative Loality. In

Subsetion 6.1.1 it is shown that the relativity of loality does not imply

a relativity of ausal relations: the ausal onnetion between events is ob-

jetive even in the relative loality framework. The only di�erene with

respet to the standard ase is that now the observer should not trust the in-

ferenes about distant events obtained from her oordinatization, but rather

use translation transformations in ombination with her desription of world-

lines. This is done analyzing a ase of two ausally disonneted hains of

proesses whih are, nevertheless, tangled in suh a way that a single observer

would obtain a ompletely misleading piture of the proess if she adopts only

her own oordinatization to desribe the proess. A areful analysis shows

that with the help of a proper use of translation transformations she an

ompletely disentangle the two hains.

After this, in Subsetion 6.1.2, opposite to what has been laimed in a

reent paper ([107℄), it is shown that ausal loops, whih in general are not

exluded by the equations of motion in urved-momentum-spae theories,

are indeed exluded as soon as the extra requirement of relativity of loality

is enfored in this lass of theories. In fat, for a generi theory with urved

momentum spae, it is possible to obtain general onditions on the derivatives

of the K's that must be satis�ed in order for that theory to be symmetri

under an appropriate notion of translation transformation. These onditions

118



are translated into onditions on energies and momenta of the interating

partiles. If these onditions are not satis�ed, the ausal loop is allowed,

whereas when these are satis�ed the only solution of the equations of motion

is that the whole loop ollapses to a single event.

6.1.1 Cause and e�et, with relative loality

Consider a situation where two pairs of ausally-linked events are present,

arranged in suh a way that the oordinatization by an observer may not

render manifest the ausal link (then �nding that awareness of the form of

translation transformations allows deoding the ausal link). Spei�ally this

situation onsists in two atoms, that are exited by two photons, propagate

and �nally de-exite, eah re-emitting a photon. Sine it will be important

in the subsequent analysis, it must be remarked that eah pair of ausally-

linked events are ausally independent from the other. It is also assumed

that there is an observer Alie whih is loal to the exitation of the atoms,

for whih the two exitation events oinide, and an observer Bob, whih

is loal to the de-exitation of the two atoms. Alie and Bob are taken in

relative rest and the relation between their oordinazation of the worldlines

of the partiles is given by a translation transformation. Fig. 6.1 shows the

two pairs of ausally-linked events, together with the observers loal to them.

For purposes of this setion, two onditions on the energies of the partiles

must be satis�ed. The �rst one is that the energies of the inoming photons

are suh that both atoms in the exited states an be onsidered as ultra-

relativisti i.e. p′0 ≫ mp′ , q
′
0 ≫ mq′. The other one is that some partiles

have their energy negligible with respet to the energy sale of the theory ℓ−1

while the energy of the other partiles annot be negleted. The �rst kind of

partiles is alled �soft� and the seond �hard�. In Fig. 6.1 solid lines stand

for hard partiles while dashed lines stand for soft ones. In partiular both

atoms before exitations are soft partiles, then the one labeled as (p′, x′)
beomes hard when it absorbs the hard photon (p, x) and after propagating

it re-emits the hard photon (p′′, x′′).
Now the relative loality framework inspired by the κ-momentum spae

with �time-to-the-right� oordinates is introdued (see [104℄). This implies

that the on-shell relation for a partile of momentum p and mass m is

Cp = p20 − p21 + ℓp0p
2
1 −m2 = 0 , (6.1)

while the omposition of two momenta p, q is

(p⊕ q)0 = p0 + q0 ,

(p⊕ q)1 = p1 + q1 + ℓp0q1 .
(6.2)
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p′, x′

K(0)

K(1)
q′, y′

q′′, y′′

r′, u′

p′′, x′′

k′, z′

p, x

k, z

r, u

q, y

Alice Bob

K(3)

K(2)

Figure 6.1: A proess involving two ausally-linked pairs of events. Di�erent

pairs are distinguished by di�erent olors, while solid lines stand for �hard�

partiles and dashed lines for �soft� partiles.

Then the proess of Fig. 6.1 is desribed by the following ation

S =

∫ s0

−∞
ds
(

zµk̇µ +NkCk
)

+

∫ s0

−∞
ds (xµṗµ +NpCp) +

∫ s1

−∞
ds (yµq̇µ +NqCq)+

+

∫ s1

−∞
ds (uµṙµ +NrCr) +

∫ s3

s0

ds
(

x′
µ
ṗ′µ +Np′Cp′

)

+

∫ s2

s1

ds
(

y′µq̇′µ +Nq′Cq′
)

+

∫ +∞

s2

ds
(

y′′µq̇′′µ +Nq′′Cq′′
)

+

∫ +∞

s2

ds
(

u′
µ
ṙ′µ +Nr′Cr′

)

+

∫ +∞

s3

ds
(

x′′µṗ′′µ +Np′′Cp′′
)

+

∫ +∞

s3

ds
(

z′µk̇′µ +Nk′Ck′
)

− ξµ(0)K(0)
µ − ξµ(1)K(1)

µ − ξµ(2)K(2)
µ − ξµ(3)K(3)

µ ,

(6.3)

where the K(i)
µ appearing in the boundary terms are de�ned as

K(0)
µ = (k ⊕ p)µ − p′µ ,

K(1)
µ = (r ⊕ q)µ − q′µ ,

K(2)
µ = p′µ − (k′ ⊕ p′′)µ ,

K(3)
µ = q′µ − (r′ ⊕ q′′)µ .

(6.4)

Before going on it an be notied that the ation an be split into the

sum of two parts, eah desribing one pair of ausally-linked events.
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By varying the ation (6.3), one obtains the following equations of motion

ṗµ = 0 , q̇µ = 0 , k̇µ = 0 , ṙµ = 0 , ṗ′µ = 0 ,

q̇′µ = 0 , ṗ′′µ = 0 , q̇′′µ = 0 , k̇′µ = 0 , ṙ′µ = 0 ,

Cp = 0 , Cq = 0 , Ck = 0 , Cr = 0 , Cp′ = 0 ,

Cq′ = 0 , Cp′′ = 0 , Cq′′ = 0 , Ck′ = 0 , Cr′ = 0 ,

K(0)
µ = 0 , K(1)

µ = 0 , K(2)
µ = 0 , K(3)

µ = 0 ,

ẋµ = Np
∂Cp
∂pµ

, ẏµ = Nq
∂Cq
∂qµ

, żµ = Nk
∂Ck
∂kµ

, u̇µ = Nr
∂Cr
∂rµ

, ẋ′µ = Np′
∂Cp′
∂p′µ

,

ẏ′µ = Nq′
∂Cq′
∂q′µ

, ẋ′′µ = Np′′
∂Cp′′
∂p′′µ

, ẏ′′µ = Nq′′
∂Cq′′
∂q′′µ

, ż′µ = Nk′
∂Ck′
∂k′µ

, u̇′µ = Nr′
∂Cr′
∂r′µ

,

and the following boundary onditions for the endpoints of the worldlines

xµ(s0) = ξν(0)
∂K(0)

ν

∂pµ
, yµ(s1) = ξν(1)

∂K(1)
ν

∂qµ
, zµ(s0) = ξν(0)

∂K(0)
ν

∂kµ
,

uµ(s1) = ξν(1)
∂K(1)

ν

∂rµ
, x′µ(s0) = −ξν(0)

∂K(0)
ν

∂p′µ
, x′µ(s3) = ξν(3)

∂K(3)
ν

∂p′µ
,

y′µ(s1) = −ξν(1)
∂K(1)

ν

∂q′µ
, y′µ(s2) = ξν(2)

∂K(2)
ν

∂q′µ
, x′′µ(s3) = −ξν(3)

∂K(3)
ν

∂p′′µ
,

y′′µ(s2) = −ξν(2)
∂K(2)

ν

∂q′′µ
, z′µ(s3) = −ξν(3)

∂K(3)
ν

∂k′µ
, u′µ(s2) = −ξν(2)

∂K(2)
ν

∂r′µ
.

It is easy to hek that the above equations of motion and boundary ondi-
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tions are invariant under the following translation transformation:

xµB = xµA + bν{(k ⊕ p)ν , xµ} ,
yµB = yµA + bν{(r ⊕ q)ν , yµ} ,
zµB = zµA + bν{(k ⊕ p)ν , zµ} ,
uµB = uµ + bν{(r ⊕ q)ν , uµ} ,
x′

µ
B = x′

µ
A + bν{p′ν , x′µ} ,

y′
µ
B = y′

µ
A + bν{q′ν , y′µ} ,

x′′
µ
B = x′′µA + bν{(k′ ⊕ p′′)µ, x′′µ} ,

y′′
µ
B = y′′µA + bν{(r′ ⊕ q′′)ν , y′′µ} ,

z′
µ
B = z′µA + bν{k′ ⊕ p′′)µ, z′µ} ,

u′
µ
B = u′µA + bν{(r′ ⊕ q′′)ν , u′µ} ,

(6.5)

where bµ are the translation parameters.

Now it is supposed that the two atoms are exited at Alie's spaetime

origin i.e. x′µA = y′µA = 0 and the soft atom de-exites at Bob's spaetime

origin i.e y′µB = 0. It is supposed instead that the hard atom de-exites just

in the spae origin of Bob i.e. x′1B = 0. At �rst order in ℓ, the equations of
motion yield

ẋ′1

ẋ′0
= 1 + ℓp′1 ,

ẏ′1

ẏ′0
= 1 , (6.6)

where it has been onsidered that p′0 ≫ mp′ , q
′
0 ≫ mq′ (being p

′
1, q

′
1 < 0,

with the onventions adopted). So Alie desribes the worldlines of the two

exited atoms as

x′
1
A = (1 + ℓp′1)x

′0
A ,

y′
1
A = y′

0
A .

(6.7)

To ompute at whih times Bob sees these events to happen, one should use

the worldlines in Bob's oordinazation, as it has been explained in Setion

2.3.3. These worldlines an be obtained by introduing in (6.7) the transla-

tion trasformation whih relates the oordinatization of Alie and Bob. For

the oordinates of the two exited atoms the translation transformation is

undeformed:

x′
µ
B(s) = x′

µ
A(s) + bν{p′ν , x′µ} = x′

µ
A(s)− bµ ,

y′
µ
B(s) = y′

µ
A(s) + bν{q′ν , y′µ} = y′

µ
A(s)− bµ .

(6.8)

So the worldlines in Bob's oordinatization are

x′1B = (1 + ℓp′1)x
′0
B − b1 + b0 + b0ℓp′1 ,

y′1B = y′0B − b1 + b0 .
(6.9)
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Imposing y′µB = 0, it is found that b0 = b1; then, using x1B = 0, one gets

x′0B = −b1ℓp′1 . (6.10)

So the result is that Bob sees the hard atom arriving after the soft one in his

spae origin, with a time delay between them given by ∆t = −b1ℓp′1.
The attention an now be foused on what Alie infers about the two

proesses of de-exitation happening loally at Bob. It will be found that

there are some puzzling features in her inferenes. First of all one noties

that the translations (6.8) are undeformed, so that Alie infers the same

time delay measured by Bob as the time delay between the arrival of the soft

and hard atoms in Bob's spae origin. Then it is neessary to look at the

boundary onditions in Alie's oordinatization for the partiles involved in

those proesses:

y′′µA (s3) = u′µA (s3) = ξµ(2)A = (b1, b1) ,

x′′0A (s2) = b1 − b1ℓp′1 ,
x′′1A (s2) = b1 + b1ℓk′1 ≈ b1,

z′0A(s2) = b1 − b1ℓp′1 + b1ℓp′′1 ,

z′1A(s2) = b1 .

(6.11)

Figg. 6.2 and 6.3 give a pitorial representation of the proesses as seen

and inferred by the two observers, Alie and Bob. Notie that, aording

to Alie's desription, a hard photon is emitted by the hard atom, whih

atually after the de-exitation appears to be far from the plae where the

emission of the photon took plae. More preisely it appears to emerge from

the proess of de-exitation of the soft atom (p′µ ≈ p′′µ).
Through this analysis it has been shown that two pairs of ausally-

onneted events an provide a puzzling piture to observer Alie if she trusts

her inferenes about distant events: one ould arrange the two events at Bob

to be simultaneous, aording to Bob and , sine the two events appear to be

deloalized in Alie's oordinates, then Alie might get misleading input in

her analysis of ausal links. However, if Alie uses in her analysis the trans-

lation transformations, so that she an establish how the two events distant

from her atually appear to the nearby observer Bob, then Alie an leanly

disentangle the ausal links.
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Alice Bob

p′, x′

q′, y′

p, x

q, y

r, u

k, z

p′′, x′′

q′′, y′′

k′, z′

r′, u′

K(1)

K(0)

K(2)

K(3)

Figure 6.2: The two pairs of ausally-linked events as seen (if loal) or inferred

(if distant) by Alie.

Alice Bob
k, z

p, x

q, y

r, u

q′, y′

p′, x′

k′, z′

p′′, x′′

q′′, y′′

r′, u′

K(0)

K(1)

K(3)

K(2)

Figure 6.3: The two pairs of ausally-linked events as seen (if loal) or inferred

(if distant) by Bob.

6.1.2 Causal Loop

The next task is to test ausality beyond simple ausal hains, i.e. onsidering

the possibility of ausality-violating loops (whih for short shall often be

labeled as �ausal loops�). This is a possibility whih was already onsidered
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in Ref. [107℄, yet by a perspetive somewhat di�erent from that disussed in

Setions 2.2 and 2.3.

q′

q

p′

p

k′

k

K(0) K(1)

Figure 6.4: A ausal hain whih desribe a ausal loop as proposed in [107℄.

An ation that reprodues the equations of motion and the boundary

onditions that lead to the emergene of ausal loops as desribed in [107℄

must be found. The results obtained shall be that ausal loops are indeed in

general allowed in theories with urved momentum spaes but they annot

be present when the theory with urved momentum spae enjoys relative

loality. Referring to Fig. 6.4, the ation reads

S =

∫ s0

−∞
ds yµq̇µ+NqC(q)+

∫ ∞

s0

ds y′µq̇′µ+Nq′C(q′)+
∫ s1

−∞
ds zµk̇µ+NkC(k)+

+

∫ ∞

s1

ds z′µk̇′µ+Nk′C(k′)+
∫ s1

s0

ds x′µṗ′µ+Np′C(p′)+
∫ s0

s1

ds xµṗµ+NpC(p)−

−ξµ(0)Kµ
(0) − ξµ(1)Kµ

(1),

where K(0) = q ⊕ p ⊕ (⊖(p′ ⊕ q′)) and K(1) = p′ ⊕ k ⊕ (⊖(k′ ⊕ p)). Notie

that the last integral, whih stands for the free propagation of the partile

that is traveling bak in time, has inverted integration extrema. By varying

this ation one obtains the following equations of motion

125



ṗµ = 0, ṗ′µ = 0, q̇µ = 0, q̇′µ = 0, k̇µ = 0, k̇′µ = 0,

Cp = 0, Cp′ = 0, Cq = 0, Cq′ = 0, Ck′ = 0, Ck = 0,

ẋµ(s) = Np
∂Cp
∂pµ

, ẋ′µ(s) = Np′
∂Cp′
∂p′µ

, ẏµ(s) = Nq
∂Cq
∂qµ

,

ẏ′µ(s) = Nq′
∂Cq′
∂q′µ

, żµ(s) = Nk
∂Ck
∂kµ

, ż′µ(s) = Nk′
∂Ck′
∂k′µ

,

and boundary terms

K(0)
µ = 0, K(1)

µ = 0,

yµ(s0) = ξν(0)
∂K(0)

ν

∂qµ
, y′µ(s0) = −ξν(0)

∂K(0)
ν

∂q′µ
, zµ(s1) = ξν(1)

∂K(1)
ν

∂kµ
,

z′µ(s1) = −ξν(1)
∂K(1)

ν

∂k′µ
, x′µ(s0) = −ξν(0)

∂K(0)
ν

∂p′µ
, x′µ(s1) = ξν(1)

∂K(1)
ν

∂p′µ
,

xµ(s0) = ξν(0)
∂K(0)

ν

∂pµ
, xµ(s1) = −ξν(1)

∂K(1)
ν

∂pµ
.

In this way the �rst goal has been reahed: proposing an ation that seems to

reprodue the ausal loop proess anylized in [107℄. In order to understand

the properties of this ation a step by step analysis is undertaken, �rst study-

ing its Speial Relativisti limit, then taking into aount the deformations

indued by the urvature over momentum spae.

Notie that with this hoie of the onstraints K, this ation does not sat-

isfy the presriptions that guarantee translational invariane used in Setion

2.3. Translation symmetry has a key role in distinguishing non-loal theories

from relative loality theories. Therefore, the alulations will ontinue in

what follows taking are of �nding an alternative presription that makes

this ation symmetri under translations.

Causal loop in Speial Relativity

In this subsetion a 1 + 1 spaetime with metri η00 = 1, η11 = −1 is on-

sidered. It is �rst worth remarking the equations of motion that will be
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needed for the subsequent analysis. Consider, as an example, the world-

line of the partile of momentum p (for the other partiles the same remark

holds). Sine, in the speial relativisti limit, the dispersion relation redues

to Cp = p20 − p21 − m2
p = 0, the equation of motion for the partile with

momentum p beomes

ẋµ(s) = 2Npp
µ. (6.12)

One an notie that

ẋµẋµ = 4N 2
p p

µpµ = 4N 2
pm

2
p, (6.13)

so that

Np =
(ẋµẋµ)

1
2

2mp

(6.14)

and one an then rewrite the equation (6.12) in the following way

ẋµ(s) = (ẋµẋµ)
1
2
pµ

mp
. (6.15)

Now the system is asked to satisfy two requirements:

1. All partiles involved in the proess travel along timelike worldlines;

the veloity ẋµ (de�ned with respet to the arbitrary parameter s) and
the momentum pµ must satisfy that ẋ2 > 0, ẋ0 > 0; p2 = m2

p > 0, p0 ≥
mp > 0. This states simply that exoti partiles are not onsidered in

this disussion.

2. The lass of physial referene frames onsidered here is that of all those

that an be mutually obtained by means of a proper orthohronous

Lorentz transformation (det Λ = 1, Λ0
0 ≥ 1), i.e. the lass of trans-

formations that do not hange the diretion of time in going from a

referene frame to another one; this means that two observers, eah

traveling in relative rest with respet to one of the two partiles that

form the loop, have loks that go in the same diretion. Furthermore,

observers onneted by an antihronous transformation (Λ0
0 ≤ −1),

would also disagree on the sign of the partiles' energies.

These may be seen as too limiting assumptions to admit the possibility of

ausal loops. Nevertheless, these ome from the partiular kind of ausal

loop that has been studied in Ref.[107℄, that is one in whih two observers,

eah loal to a partiular vertex of interation of the loop, do not detet any

anomaly; the anomaly of the proess as a whole is reonstruted a posteriori.

Proper time, as usual, is de�ned by
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dτ = ds (ẋµẋµ)
1
2 = dsẋ0

√

1−
(

ẋ1

ẋ0

)2

= dsẋ0

√

1−
(

p1

p0

)2

= dsẋ0γ−1
p ,

where γp is the usual Lorentz fator and in the third equality the equation

(6.15) was used.

For the (p′, x′) worldline whih travels from x′µ(s0) to x
′µ(s1) the following

hain of equalities holds

x′µ(s1)− x′µ(s0) =

∫ s1

s0

ds
dx′µ

ds
=

∫ s1

s0

ds
(

ẋ′µẋ′µ
)

1
2
p′µ

mp′
=

=

∫ τ ′(s1)

τ ′(s0)

dτ ′
p′µ

mp′
= ∆τ ′u′µ,

(6.16)

with u′µ =
p′µ

mp′
. Similarly, for the (p, x) worldline, whih travels from xµ(s0)

to xµ(s1), holds

xµ(s0)− xµ(s1) =

∫ s0

s1

ds
dxµ

ds
=

∫ s0

s1

ds (ẋν ẋν)
1
2
pµ

mp
=

=

∫ τ(s0)

τ(s1)

dτ
pµ

mp

= ∆τ uµ,
(6.17)

In the Speial Relativisti limit the terms enforing the onservation laws

take the simple form K(0)
µ = qµ + pµ − p′µ − q′µ and K(1)

µ = p′µ + kµ − k′µ − pµ,
giving for the partiles inside the loop the boundary terms

ξµ(0) = x′µ(s0), (6.18)

ξµ(0) = xµ(s0), (6.19)

ξµ(1) = x′µ(s1), (6.20)

ξµ(1) = xµ(s1). (6.21)

Subtrating (6.20) from (6.18) and (6.19) from (6.21) and using the equations

(6.16) and (6.17) the following relations are obtained

ξµ(1) − ξ
µ
(0) = x′µ(s1)− x′µ(s0) = ∆τ ′u′µ, (6.22)

ξµ(0) − ξ
µ
(1) = xµ(s0)− xµ(s1) = ∆τ uµ, (6.23)

whih imply

∆τ uµ +∆τ ′u′µ = 0. (6.24)
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After the de�nition of ausal loop stated before, the only solution to (6.24)

is ∆τ = ∆τ ′ = 0 and ξµ(0) = ξµ(1) = 0.
It is also observed that omputing diretly the proper time interval of the

partiles inside the loop, one obtains

∆τ =

∫ s0

s1

ds ẋ0γ−1
p = γ−1

p

(

x0(s0)− x0(s1)
)

= γ−1
p

(

ξ0(0) − ξ0(1)
)

, (6.25)

∆τ ′ =

∫ s1

s0

ds ẋ′0γ−1
p′ = γ−1

p′

(

x′0(s1)− x′0(s0)
)

= γ−1
p′

(

ξ0(1) − ξ0(0)
)

. (6.26)

and, imposing (from the seond requirement) ∆τ ≥ 0, ∆τ ′ ≥ 0, gets ξ0(0) =

ξ0(1). Equations of motion imply that partiles onnet only events whose

oordinates satisfy

(

ξ(1) − ξ(0)
)2 ≥ 0 thus the loop ollapses to a single event

ξµ(0) = ξµ(1).

Causal loop with urved momentum spae

The next step is to take into aount the deformations indued by the urva-

ture of the momentum spae. The seond requirement above must be slightly

modi�ed in order to allow DSR-deformed relativisti transformations.

In order to perform quantitative omputations the well-known κ-momentum

spae and its DSR-relativisti symmetries is hosen. Thus spaetime is

Minkowskian with metri ηµν = diag(1,−1), but the dispersion relation at

leading order reads as

Cp = p20 − p21 + ℓp0p
2
1 −m2

p = 0, (6.27)

while onservation laws at �rst order beome

K(0)
0 = q0 + p0 − q′0 − p′0, (6.28a)

K(0)
1 = q1 + p1 − q′1 − p′1 + ℓ

(

q0p1 −K(0)
0 p

′
1 − (q0 + p0 − q′0)q′1

)

, (6.28b)

K(1)
0 = p′0 + k0 − p0 − k′0, (6.28)

K(1)
1 = p′1 + k1 − p1 − k′1 + ℓ

(

p′0k1 −K(1)
0 k

′
1 − (p′0 + k0 − p0)p1

)

. (6.28d)

Taking as before, for example, the �rst of (6.1.2)

1

, one obtains

2

ẋµ(s) = Np

[

2pµ + ℓ
(

δµ0 p
2
1 + δµ1 2p0p1

)]

. (6.29)

1

The omputations for the other worldlines are still the same.

2

All omputations are made at �rst order in ℓ.
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where the notation pµ ≡ ηµνpν has been introdued. Similarly, introduing

xµ ≡ ηµνx
ν
, the norm of both sides an be omputed

ẋµẋµ = 4N 2
p

(

m2
p + 2ℓp0p

2
1

)

, (6.30)

so

Np =
(ẋµẋµ)

1
2

2mp

(

1− ℓp0p
2
1

m2
p

)

(6.31)

and �nally

ẋµ(s) = (ẋµẋµ)
1
2
pµ

mp
− ℓ(ẋ

µẋµ)
1
2

2mp

(

2
p0p

2
1

m2
p

pµ − δµ0 p21 − δµ1 2p0p1
)

= (ẋν ẋν)
1
2 uµ,

(6.32)

with uµ =
pµ

mp

− ℓ

2mp

(

2
p0p

2
1

m2
p

pµ − δµ0 p21 − δµ1 2p0p1
)

.

Following the same pattern used in (6.16) and (6.17) one obtains that

x′µ(s1)− x′µ(s0) = ∆τ ′u′µ, (6.33)

xµ(s0)− xµ(s1) = ∆τ uµ. (6.34)

Manipulating the boundary terms related to the partiles (p, x) and (p′, x′),
it follows that

3

ξν(0) = −x′µ(s0)
(

∂K(0)
ν

∂p′µ

)−1

= xµ(s0)

(

∂K(0)
ν

∂pµ

)−1

, (6.35)

ξν(1) = x′µ(s1)

(

∂K(1)
ν

∂p′µ

)−1

= −xµ(s1)
(

∂K(1)
ν

∂pµ

)−1

. (6.36)

Equation (6.35) ombined with (6.34) implies

−x′µ(s0)
(

∂K(0)
ν

∂p′µ

)−1
∂K(0)

ν

∂pρ
= xρ(s0) = xρ(s1) + ∆τuρp, (6.37)

3

Here and in the following

(

∂K(1)
ν

∂p′

µ

)−1

denotes the (ν, µ) element of the matrix made of

the derivatives of the di�erent omponents of K(1)
with respet to the di�erent omponents

of p′,
∂K(1)

ν

∂p′

µ
. That is,

(

∂K(1)
ν

∂p′

ρ

)(

∂K(1)
ν

∂p′

µ

)−1

= δρν . Another possible notation in substitution

of

(

∂K(1)
ν

∂p′

µ

)−1

ould have been

(

∂K(1) −1

∂p′

)ν

µ
.
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while equation (6.36) ombined with (6.33) implies

xρ(s1) = −x′µ(s1)
(

∂K(1)
ν

∂p′µ

)−1
∂K(1)

ν

∂pρ
=

= −(x′µ(s0) + ∆τ ′u′µ)

(

∂K(1)
ν

∂p′µ

)−1
∂K(1)

ν

∂pρ
.

(6.38)

Finally, replaing the value of xρ(s1), given by equation (6.38), in equation
(6.37), one obtains the same ondition given in [107℄:





∂K(1)
ν

∂pρ

(

∂K(1)
ν

∂p′µ

)−1

− ∂K(0)
ν

∂pρ

(

∂K(0)
ν

∂p′µ

)−1


 x′µ(s0) =

= −∂K
(1)
ν

∂pρ

(

∂K(1)
ν

∂p′µ

)−1

∆τ ′u′µ +∆τuρ.

(6.39)

Keeping only terms up to the �rst order in ℓ, it beomes

ℓ [δρ0 (k1 − q′1) + δρ1 (q0 − k′0)] x′1(s0) =
= ∆τuρ +∆τ ′

[

u′ρ + u′1ℓ (δρ1k
′
0 − δρ0k1)

]

.
(6.40)

This (6.40) is what replaes (6.24) when the ausal loop is analyzed on a

urved momentum spae without enforing relative loality. Notie that

this (6.40), when its left-hand side does not vanish, an have solutions with

positive ∆τ and ∆τ ′ and positive zero omponents of the four-veloities,

whih was not possible with (6.24). This means that ontrary to the speial-

relativisti ase (Minkowski momentum spae) ausal loops are possible on

a urved momentum spae, at least if one does not enfore relative loality.

Some interesting equalities follow from (6.40) and therefore must hold for

the ausal loop to be allowed

∆τ = −∆τ ′u
′0

u0
+ ℓx′1(s0)

(

q′1 − k1
u0

)

− ℓ∆τ ′
(

u′1k1
u0

)

, (6.41)

ℓx′1(s0) = ∆τ ′
u1u′0 − u0u′1 + ℓu′1(k1u

1 + k′0u
0)

u0(q0 − k′0) + u1(q′1 − k1)
(6.42)

and imply that in order for (6.41) to have aeptable solutions one must have

that

x′1(s0) >
∆τ ′(u′0 + ℓu′1k1)

ℓ|q′1 − k1|
. (6.43)
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This is in good agreement with the results of Ref. [107℄, but it is useful to add

some observations to those reported in Ref. [107℄. A �rst point to notie is

that Eq. (6.43) appears to suggest that x′1 should take peuliarly large values,
as in some of the estimates given in Ref. [107℄, sine x′1 has magnitude set by a

formula with the small sale ℓ in the denominator. If one ould onlude that

only ases with ultralarge x′1 allowed suh a ausal loop, then the violations

of ausality would be to some extent less onerning (if on�ned to a range of

values of x′1 large enough to fall outside our observational window). However,
it is easy to see that (6.43) does not really impose any restrition on the size

of x′1: one will have that typially x′1 is muh larger than ∆τ ′ but there

are ausal loops for any value of x′1 (under the ondition of taking suitable

values of ∆τ ′ and ∆τ). So when momentum spae is urved and one does

not enfore the relativity of spaetime loality the violations of ausality are

rather pervasive.

There is also a tehnial point that deserves some omments and is related

to this pervasiveness of the violations of ausality: it might appear to be

surprising that within a perturbative expansion, assuming small ℓ, one arrives
at a formula like (6.43), with ℓ in the denominator. This is however not

so surprising onsidering the role of x′1 in this sort of analysis. The main

lari�ation omes from observing that in the unperturbed theory (the ℓ = 0
theory, i.e. speial relativity) x′1 is ompletely undetermined: as shown in

the previous subsetion the only ausal loops allowed in speial relativity are

those that ollapse (no violation of ausality) and suh ollapsed ausal loops

are allowed for any however large or however small value of x′1. As stressed
above this fat that x′1 an take any value is preserved by the ℓ orretions.
The apparently surprising fator of 1/ℓ only appears in a relationship between
x′1 and ∆τ ′. If x′1 and ∆τ ′ both had some �xed �nite value in the ℓ = 0
theory than at �nite small ℓ their values should hange by very little. But

sine in the ℓ = 0 theory x′1 is unonstrained (in partiular it ould take

any however large value) and its value is not linked in any way to the value

∆τ ′, then it is not surprising that the ℓ orretions take the form shown for

example in (6.43).

Causal loop analysis in 3+1 dimensions

So far the 1+1-dimensional ase has been examined, but it is rather evident

that the features disussed in the previous subsetion are not an artifat of

that dimensional redution. Nonetheless it is worth pausing brie�y in this

subsetion for verifying that indeed those features are still present in 3 + 1
dimensions. In this ase the on-shellness is governed by Cp = p20 − ~p2 − ℓp0~p2
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while onservation laws at �rst order take the form

K(0)
0 = q0 + p0 − q′0 − p′0 , (6.44a)

K(0)
i = qi + pi − q′i − p′i − ℓδji

[

q0pj − (q0 + p0 − q′0 − p′0)p′j − (q0 + p0 − q′0)q′j
]

,

(6.44b)

K(1)
0 = p′0 + k0 − p0 − k′0 , (6.44)

K(1)
i = p′i + ki − pi − k′i − ℓδji

[

p′0kj − (p′0 + k0 − p0 − k′0)k′j − (p′0 + k0 − p0)pj
]

,

(6.44d)

where i, j = 1, 2, 3.
Adopting these expressions, eq.(6.39), keeping only terms up to �rst order

in ℓ in the matries like

∂K(0)
ν

∂pρ
and their produts, takes the form

ℓ [δρi (k
′
0 − q0) + δρ0 (q

′
i − ki)] x′i(s0) =

[

u′ρ + u′iℓ (δρ0ki − δρi k′0)
]

∆τ ′ + uρ∆τ ,
(6.45)

or, more learly, using the energy onservation laws,

ℓ(q′1 − k1)x′1(s0) + ℓ(q′2 − k2)x′2(s0) + ℓ(q′3 − k3)x′3(s0) = (u′0 + ℓk1u
′1 + ℓk2u

′2 + ℓk3u
′3)∆τ ′+

+ u0∆τ,

ℓ(k0 − q′0)x′1(s0) = (1− ℓk′0)u′1∆τ ′ + u1∆τ,

ℓ(k0 − q′0)x′2(s0) = (1− ℓk′0)u′2∆τ ′ + u2∆τ,

ℓ(k0 − q′0)x′3(s0) = (1− ℓk′0)u′3∆τ ′ + u3∆τ.

(6.46)

Without really loosing any generality one an analyze the impliations of

this for an observer orienting her axis of the referene frame so that pi = 0
and p′i = 0 for i = 2, 3. As a result one also has that ui = 0 and u′i = 0
for i = 2, 3. For what onerns the other momenta involved in the analysis,

q, q′, k, k′. this hoie of orientation of axis only a�ets rather mildly the

onservation laws:

q2 = q′2 − ℓp′0q′2, q3 = q′3 − ℓp′0q′3, q′2 = q2 + ℓp′0q2, q′3 = q3 + ℓp′0q3,

k2 = k′2 + ℓp′0k
′
2, k3 = k′3 + ℓp′0k

′
3, k′2 = k2 − ℓp′0k2, k′3 = k3 − ℓp′0k3.

Sine ui = 0 and u′i = 0 for i = 2, 3 the last two equations of eq.(6.46) imply

x′2 = 0 and x′3 = 0, whih in turn (looking then at the �rst two equations of

eq.(6.46)) takes the omputation bak to (6.41)-(6.42)

∆τ = −∆τ ′u
′0

u0
+ ℓx′1(s0)

(

q′1 − k1
u0

)

− ℓ∆τ ′
(

u′1k1
u0

)

,
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ℓx′1(s0) = ∆τ ′
u1u′0 − u0u′1 + ℓu′1(k1u

1 + k′0u
0)

u0(q0 − k′0) + u1(q′1 − k1)
.

Evidently then all the features disussed for the 1+1-dimensional in the pre-

vious subsetion are also present in the 3+1-dimensional ase.

Enforing Relative Loality

It will be now shown that there are no ausal loops in theories with urved

momentum spaes if these theories have relative loality. Relative loality is

evidently a weaker notion than absolute loality but is still strong enough as

to enfore ausality.

By de�nition [102℄ Relative Loality is suh that the loality of events

may not be manifest in oordinatizations by distant observers, but for the

oordinatizations of observers near an event (ideally at the event) it enfores

loality in a way that is not weaker than ordinary loality.

It shall also be notied that the de�nition of Relative Loality imposes

that translation transformations be formalized in the theory: sine one must

verify that events are loal aording to nearby observers (while they may

be desribed as nonloal by distant observers), these need to use translation

transformations in order to ensure that the Priniple of Relative Loality is

enfored.

In Ref. [104℄ it has been introdued a presription for having a very pow-

erful implementation of translational invariane in relative-loality theories.

One an easily see that the ausal loop desribed in the previous subsetions

is not ompatible with that strong implementation of translational invari-

ane. Evidently then ausality is preserved in theories with urved momen-

tum spaes if the strong notion of translational invariane of Ref. [104℄ is

enfored by postulate.

What is here intended to be shown is that, however, ausal loops are for-

bidden even without enforing suh a strong notion of translational invari-

ane. Causal loops are forbidden even by a minimal notion of translational

invariane, i.e. the bare minimum needed in order to ontemplate relative

loality (as stressed just above, one annot even speak of relative loality in

lak of a notion of translational invariane).

Consistently with this objetive, it is only required the availability of some

translation generator (possibly momentum-dependent) that an enfore the

ovariane of the equations of motion and the boundary onditions. Con-

sider a �rst observer, Alie, and a seond one, Bob, purely translated by a

parameter bµ with respet to Alie. For the partile involved inside the loop
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one has

xµB(s) = xµA(s)− bνT µ
ν , (6.47)

x′µB (s) = x′µA (s)− bνT ′µ
ν . (6.48)

Combining the boundaries (6.1.2) with the transformation (6.47) one obtains

−ξνB(1)

∂K(1)
ν

∂pµ
= xµB(s1) = xµA(s1)− bνT µ

ν = −ξνA(1)

∂K(1)
ν

∂pµ
− bνT µ

ν (6.49)

ξνB(0)

∂K(0)
ν

∂pµ
= xµB(s0) = xµA(s0)− bνT µ

ν = ξνA(0)

∂K(0)
ν

∂pµ
− bνT µ

ν . (6.50)

De�ning δξν(i) = ξνB(i) − ξνA(i), equations (6.49) and (6.50) read as

bνT µ
ν = δξν(1)

∂K(1)
ν

∂pµ
, (6.51)

bνT µ
ν = −δξν(0)

∂K(0)
ν

∂pµ
. (6.52)

So

δξν(1)
∂K(1)

ν

∂pµ
= −δξν(0)

∂K(0)
ν

∂pµ
(6.53)

Similarly, ombining the last two boundaries of (6.1.2) with the transforma-

tion (6.48) one obtains

−ξνB(0)

∂K(0)
ν

∂p′µ
= x′µB (s0) = x′µA (s0)− bνT ′µ

ν = −ξνA(0)

∂K(0)
ν

∂p′µ
− bνT ′µ

ν , (6.54)

ξνB(1)

∂K(1)
ν

∂p′µ
= x′µB (s1) = x′µA (s1)− bνT ′µ

ν = ξνA(1)

∂K(1)
ν

∂p′µ
− bνT ′µ

ν , (6.55)

from whih it follows that

−δξν(1)
∂K(1)

ν

∂p′µ
= δξν(0)

∂K(0)
ν

∂p′µ
. (6.56)

Before going on with the analysis it an be notied that the equations (6.53)

and (6.56) lead to onditions already analyzed in literature. Writing the

onservation laws as

i=n
⊕

i=1

P i
in−

i=m
⊕

i=1

P i
out, where P

i
in are the ingoing momenta in

a vertex and P i
out are the outgoing momenta, one obtains the same onditions
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found in [108℄, while assuming that δξν(1) = δξν(0) = −bν the same onditions

found in [104℄ are derived.

Going bak to our analysis of the ausal loop, from Eq.(6.56) one gets

δξν(0) = −δξσ(1)
∂K(1)

σ

∂p′µ

(

∂K(0)
ν

∂p′µ

)−1

, (6.57)

replaing it in equation (6.53) gives

δξσ(1)





∂K(1)
σ

∂pρ
− ∂K(1)

σ

∂p′µ

(

∂K(0)
ν

∂p′µ

)−1
∂K(0)

ν

∂pρ



 = 0, (6.58)

and �nally, imposing δξσ(1) 6= 0,

∂K(1)
ν

∂pρ

(

∂K(1)
ν

∂p′µ

)−1

− ∂K(0)
ν

∂pρ

(

∂K(0)
ν

∂p′µ

)−1

= 0. (6.59)

Equation (6.59) is then a ondition on the boundary terms whih omes

from insisting that the theory be ompatible with the enforement of relative

loality and, therefore, be ompatible with a least the weakest possible notion

of translational invariane. Using it into equation (6.39) it is observed that

indeed the dependene on the position disappears. With the hoie of the

onservation laws made in [107℄, equation (6.59) beomes a ondition on the

momenta involved in the proess. Expliitly, keeping only terms up to �rst

order equations (6.59) beomes

ℓδ1µ [δ
ρ
0 (q

′
1 − k1)− δρ1 (k′0 − q0)] = 0, (6.60)

whih implies that k′0 = q0 +O(ℓ) and q′1 = k1 +O(ℓ).
The fat that then the ausal loop is forbidden an then be seen easily

for example by looking bak at equation (6.40), now enforing (6.60): one

obtains

∆τuρ +∆τ ′
[

u′ρ + u′1ℓ (δρ1k
′
0 − δρ0k1)

]

= 0. (6.61)

Analyzing it for ρ = 0, it is evident that in order to have solutions, either one

between ∆τ and ∆τ ′ must be negative, or the zeroth omponent of one of the

two 4-veloity must be negative as it is found in the Speial Relativisti ase.

This beause the terms proportional to ℓ is only a small orretion whih

annot ause a hange of sign of the oe�ient of ∆τ ′. The only aeptable

solution is then ∆τ = ∆τ ′ = 0.
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The values of ∆τ and ∆τ ′ an also be omputed diretly. Following

equations (6.25) and (6.26) the interval of proper times

4

between the two

events for the two partiles inside the loop are

∆τ =

∫ s0

s1

ds ẋ0γ−1
p = γ−1

p

(

x0(s0)− x0(s1)
)

, (6.62)

∆τ ′ =

∫ s1

s0

ds ẋ′0γ−1
p′ = γ−1

p′

(

x′0(s1)− x′0(s0)
)

. (6.63)

The two Lorentz fator an be omputed as in the Speial Relativisti ase:

γp =
1

√

1− β2
p

. The only di�erene is that now βp =
ẋ1

ẋ0
, where one has to

use for the ẋµs the expression (6.32). Using the boundary onditions (6.1.2)

and (6.1.2) the expressions for the interval of proper times at leading order

beomes

∆τ =

[

√

1− p21
p20

(

1 +
ℓ

2

2p20p
2
1 + p41

p30 − p21p0

)

](

ξν(1)
∂K(1)

ν

∂p0
+ ξν(0)

∂K(0)
ν

∂p0

)

, (6.64)

∆τ ′ =

[

√

1− p′21
p′20

(

1 +
ℓ

2

2p′20 p
′2
1 + p′41

p′30 − p′21 p′0

)

](

ξν(1)
∂K(1)

ν

∂p′0
+ ξν(0)

∂K(0)
ν

∂p′0

)

. (6.65)

They are positive provided that















ξν(1)
∂K(1)

ν

∂p0
+ ξν(0)

∂K(0)
ν

∂p0
≥ 0

ξν(1)
∂K(1)

ν

∂p′0
+ ξν(0)

∂K(0)
ν

∂p′0
≥ 0.

(6.66)

At leading-order in ℓ, this system beomes







ξ0(1) − ξ0(0) − ℓp′1
(

ξ1(1) − ξ1(0)
)

≥ 0

ξ0(0) − ξ0(1) − ℓp′1
(

ξ1(0) − ξ1(1)
)

− ℓ
(

ξ1(0)q
′
1 − ξ1(1)k1

)

≥ 0.
(6.67)

4

The physial meaning of this a�ne parameter alled here �proper time� is related to the

geometry of momentum spae: for geometries that do not deform the omposition law for

energy (as in Speial Relativity and κ-Minkowski) there are not e�ets of relative loality

for pure time translations, i.e. those translations in whih the only non null parameter is

b0. In suh ases, one an attribute to the interval ∆τ the usual meaning of time interval

measured by a lok at rest relative to that referene frame. If there is relative loality

also for pure time translations, the measurement of ∆τ involves a loal measurement and

an inferene. Then τ would not be an observable any more.
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Then the ξµ(i)s are expanded into powers of ℓ, i.e. ξµ(i) = ξ
µ[0]
(i) +ℓξ

µ[1]
(i) . In this

way it is known that the zeroth order of the expansion assumes the Speial

Relativisti value of the ξµ(i). Substituting this expansion in the system (6.67),

and using the Speial Relativisti result ξ
µ[0]
(1) = ξ

µ[0]
(0) , one obtains







ℓ
(

ξ
0[1]
(1) − ξ

0[1]
(0)

)

≥ 0

ℓ
(

ξ
0[1]
(0) − ξ

0[1]
(1)

)

− ℓξ1[0](0) (q′1 − k1) ≥ 0.
(6.68)

It is realled now that the translational ovariane is reovered by impos-

ing the ondition q′1 = k1 +O(ℓ) , so the system (6.68) beomes







ℓ
(

ξ
0[1]
(1) − ξ

0[1]
(0)

)

≥ 0

ℓ
(

ξ
0[1]
(0) − ξ

0[1]
(1)

)

≥ 0,
(6.69)

whih implies that ξ
0[1]
(1) = ξ

0[1]
(0) +O(ℓ) and then ξ0(1) = ξ0(0)+O(ℓ2). From this

ondition it follows that ∆τ = ∆τ ′ = 0 +O(ℓ2). Now it an be shown that

from the equations of motion one gets also ξ
1[1]
(1) = ξ

1[1]
(0) + O(ℓ). In fat one

has

0 +O(ℓ) = ∆τ ′u′1 = x′1(s1)− x′1(s0) =

= ξν(1)
∂K(1)

ν

∂p′1
+ ξν(0)

∂K(0)
ν

∂p′1
=

= ξ
1[1]
(0) − ξ

1[1]
(1) − ℓξ

1[0]
(0) (q0 + p0 − p′0 − q′0) =

= ξ
1[1]
(0) − ξ

1[1]
(1)

(6.70)

where in the seond equality has been exploited that the zeroth order terms

of the ξs oinide and in the last that the term in parenthesis is exatly K(0)
0 .

The same thing an be veri�ed onsidering the other worldline, for whih

one �nds that

0 +O(ℓ) = ∆τu1 = x1(s1)− x1(s0) =

= ξν(1)
∂K(1)

ν

∂p1
+ ξν(0)

∂K(0)
ν

∂p1
=

= ξ1(0) − ξ1(1) + ℓξ1(0)q0 − ℓξ1(1)(p0 + k0 − p′0) =
= ℓ(ξ

1[1]
(0) − ξ

1[1]
(1) )− ℓξ

1[0]
(0) (p0 + k0 − p′0 − q0).

(6.71)

Sine for the ovariane under translations q0 = k′0, ℓξ
1[0]
(0) is multiplied again

by K(1)
0 , from whih the result follows.

Summarizing, it has been demonstrated that ξµ(1) = ξµ(0) + O(ℓ2), so the

request of translational ovariane of the system leads to the ollapse of the
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ausal loop into a single event (up to the seond order in ℓ) in the Relative

Loality framework as well as in Speial Relativity. This ausal loop is indeed

forbidden one Relative Loality is enfored.

6.2 Momentum onservation from Relative Lo-

ality

Having shown that ausal loop of Ref. [107℄ is indeed allowed in generi

theories on urved momentum spaes, but is forbidden when relative spae-

time loality is enfored, it is time to move on to the next announed task

whih onerns two other speies of loops: those that violates onservation

of momentum and those that are non-ausally violating.

This setion fouses on a translational-invariane-violating diagram stud-

ied in Ref. [109℄. There, the author onsidered theories on a urved momen-

tum spae, without enforing relative spaetime loality, and showed that

in general the diagram shown in Fig. 6.5 an produe violations of global

momentum onservation. These violations take the shape [109℄ of k′ 6= k,
i.e. the momentum inoming into the diagram is not equal to the momen-

tum outgoing from the diagram. Similarly to what has been shown in the

previous setion for a ausal loop, it will be found that these violations of

global momentum onservation from the diagram in Fig. 6.5 do not our if

one enfores relative spaetime loality.

p′

p

k

K(0) K(1)

k′

p′

p

Figure 6.5: A Möbius diagram loop proess.

139



6.2.1 Möbius diagram and translational invariane

The relative-loality-framework desription of the diagram in Fig. 6.5 is

obtained through the ation

S =

∫ s0

−∞
ds
(

zµk̇µ +NkCk
)

+

∫ +∞

s1

ds
(

z′µk̇′µ +Nk′Ck′
)

+

+

∫ s1

s0

ds
(

x′µṗ′µ +Np′Cp′
)

+

∫ s1

s0

ds (xµṗµ +NpCp) +

− ξµ(0)K
(0)
µ − ξµ(1)K

(1)
µ ,

(6.72)

where the onservation law is given by the same funtions onsidered in

Ref. [109℄

K(0)
µ = (k ⊕ (⊖ (p⊕ p′)))µ
≃ kµ − pµ − p′µ − δ1µℓ [p1 (k0 − p0 − p′0) + p′1 (k0 − p′0)] ,

K(1)
µ = ((p′ ⊕ p)⊕ (⊖k′))µ
≃ p′µ + pµ − k′µ − δ1µℓ [k′1 (p′0 + p0 − k′0)− p′0p1] .

(6.73)

From the struture of (6.73) it is lear why the diagram in Fig. 6.5 has

been labelled �Möbius diagram�: the laws of onservation at the two verties

are setup in suh a way to use the nonommutativity of the omposition law

in suh a way that the partile outgoing from the �rst vertex with momentum

appearing on the right-hand side of the omposition law enters the seond

vertex with momentum appearing on the left-hand side of the omposition

law (Of ourse, the opposite applies to the other partile exhanged between

the verties). If one then draws the diagram with the onvention that the

orientation of pairs of legs entering/exiting a vertex onsistently re�ets the

order in whih the momenta are omposed then the only way to draw the

diagram makes it resemble a Möbius strip.

Evidently there is no room for suh a struture when the momentum

spae has omposition law whih is ommutative. In partiular there is no

way to ontemplate suh a Möbius diagram in Speial Relativity. But on

k-momentum spae this struture is possible and its impliation surely need

to be studied.

Consistently with what has been reported in the previous setion, the

interest of this setion is into understanding how the properties of the Möbius

diagram are a�eted if one enfores relative spaetime loality in theories on

the k-momentum spae. In partiular, it will be here shown that k′ = k (no

violation of global momentum onservation) is required by relative spaetime

loality.
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And, as also already stressed above, relative spaetime loality in a rela-

tivisti theory on urved momentum spae neessarily requires at least a weak

form of translational invariane. This insistene on at least the weakest pos-

sible notion of translational invariane yield equations (6.53) and (6.56) for

the ausal loop, and, as one an easily verify, for the ase of the Möbius

diagram it leads to the equations

δξν(0)
∂K(0)

ν

∂pµ
= −δξν(1)

∂K(1)
ν

∂pµ
, (6.74a)

δξν(0)
∂K(0)

ν

∂p′µ
= −δξν(1)

∂K(1)
ν

∂p′µ
. (6.74b)

Expliating, for example, δξν(0) in the seond ondition and substituting it

bak in the �rst, one an obtain the equation

δξσ(1)





∂K(1)
σ

∂pµ
− ∂K(1)

σ

∂p′ρ

(

∂K(0)
ν

∂p′ρ

)−1
∂K(0)

ν

∂pµ



 = 0. (6.75)

Sine translated observers must oordinatize the same event in di�erent ways,

one an impose δξσ(i) 6= 0. So the term in parenthesis of equation (6.75) have to

be zero. This is learly a ondition over the momenta that are now analyzed

at �rst order in ℓ. Writing �rst the expression of the matries involved in the

equation (6.75)

∂K(1)
σ

∂pµ
= δµσ − ℓδ1σ (δµ0 k′1 − δµ1 p′0) , (6.76a)

∂K(1)
σ

∂p′ρ
= δρσ − ℓδ1σδρ0 (k′1 − p1) , (6.76b)

(

∂K(0)
ν

∂p′ρ

)−1

= −δνρ + ℓδ1ρ [δ
ν
1 (k0 − p′0)− δν0 (p1 + p′1)] , (6.76)

∂K(0)
ν

∂pµ
= −δµν + ℓδµ0 δ

1
νp1. (6.76d)

So from (6.75) one �nds the ondition

ℓ [δµ1k0 − δµ0 (p1 + p′1)] = 0 (6.77)

Using this result in ombination with the onservation laws K(0)
µ = 0 and

K(1)
µ = 0 one an easily establish that

pµ + p′µ = 0 +O(ℓ) , (6.78)
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and one an also rewrite those onservation laws as follows

0 = kµ − pµ − p′µ − δ1µℓp′1p′0, (6.79)

0 = p′µ + pµ − k′µ − δ1µℓp′0p1 . (6.80)

Summing these (6.79) and (6.80), also using (6.78), we get to the sought

result

kµ = k′µ +O(ℓ2) , (6.81)

showing that indeed by insisting on a having a translational invariant piture

with assoiated relativity of spaetime loality, one �nds no global violation

of momentum onservation (at least at order in ℓ, whih is the level of au-

ray pursued in this work). Were it not a limitation on a leading-order-in-ℓ
analysis, one ould perhaps haraterize this result on the Möbius diagram

even more strongly: at leading order translational invariane essentially for-

bids Möbius diagrams. This an be seen in partiular from Eq.(6.77) whih

also imposes

5 ℓk0 = 0. So, up to possible orretions of order ℓ2, Möbius

diagrams are anly allowed if the energies of the inoming and outgoing par-

tiles vanish. We interpret this as implying that, at least to leading order,

translational invariane essentially forbids Möbius diagrams.

The same results hold when the Möbius diagram is obtained using the

presriptions for onstruting the onstraints K given in [104℄:

K(0)
µ = kµ − (p⊕ p′)µ ≃ kµ − pµ − p′µ − ℓδ1µp0p′1,
K(1)

µ = (p′ ⊕ p)µ − k′µ ≃ p′µ + pµ − kµ + ℓδ1µp
′
0p1.

(6.82)

In this ase, in fat, one replaes Eq. (6.76) with

5

It should be underlined that this ondition ℓk0 = 0 is a striking manifestation of how

Möbius diagrams are foregn to translationally invariant implementations of the relative

loality framework. The implied requirement k0 = 0 is not a smooth orretion to ℓ = 0
theory, where k0 is free (that is, an take any value). This is a similar mehanism to the

one desribed after Eq.(6.43): a quantity whih was ompletely free in the original theory

(Speial Relativity, with ℓ = 0) ends up being governed by an equation in the deformed

theory, or else the diagram must be disarded.
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∂K(1)
σ

∂pµ
= δµσ + ℓδ1σδ

µ
1 p

′
0, (6.83a)

∂K(1)
σ

∂p′ρ
= δρσ + ℓδ1σδ

ρ
0p1, (6.83b)

(

∂K(0)
ν

∂p′ρ

)−1

= −δνρ + ℓδ1ρδ
ν
1p0, (6.83)

∂K(0)
ν

∂pµ
= −δµν − ℓδµ0 δ1νp′1. (6.83d)

So from (6.75) one �nds the ondition

ℓ (δµ1 (p0 + p′0)− δµ0 (p1 + p′1)) = 0 (6.84)

From µ = 1 and from µ = 0 one �nds that pµ+ p′µ = 0+O(ℓ). Summing the

onservation laws enfored by the onstraints (6.88) one has

0 = kµ − k′µ − ℓp0p′1 + ℓp′0p1.

The ondition pµ + p′µ = 0 + O(ℓ) then again implies onservation of the

spatial momentum kµ = k′µ +O(ℓ2).

6.2.2 Possible impliations for the quantum theory: Fuzzy

Momentum onservation

The results presented in the previous setions suggest that ausality and

global momentum onservation are proteted by relative loality in theories

with urved momentum spaes. It should be notied that the objetive of

enforing relative spaetime loality led to the introdution of some restri-

tions on the hoie of boundary terms, partiularly for ausally onneted

interations. The relevant lass of theories has been studied so far only in

the ontext of lassial mehanis and therefore suh presriptions onerning

boundary terms are meaningful and unproblemati, as they an be enfored

by priniple, as a postulate. The quantum version of Relative Loality is still

not known, but if one tries to imagine whih shape it might take, it seems

that enforing the priniple of relative loality in a quantum theory might be

very hallenging: think in partiular of quantum �eld theories formulated in

terms of a generating funtional. There is no spei� result addressing this

point to report here, but it is still worthy to provide evidene for the fat
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that ombinations of diagrams on urved momentum spae might have fewer

anomalous properties, even without enforing relative loality, than single

diagrams.

Essentially it is here observed that the violations of ausality and global

translational symmetry that arise on urved momentum spaes (if one does

not enfore relative loality) are not systemati, in the sense that for eah

diagram ontributing an e�et of a ertain magnitude and sign there is always

another equally aeptable diagram that gives e�ets of the same magnitude

and opposite sign. This may be indeed relevant for quantum �eld theory

sine there one annot hoose whih diagrams onnet a given "in" state to

a given "out" state: the formalism automatially takes into aount all the

diagrams that possibly onnet the "in" state to the "out" state.

In an appropriate sense it is here attempted to provide �rst elements in

support of a piture that might ultimately be somewhat analogous to what

happens, for example, in the analysis of the gauge invariane of the �rst

ontribution to the matrix element of the Compton sattering e−+γ → e−+γ
in standard QED. In fat in that ase there are only two Feynman diagrams

and the invariant matrix element is given by

Mfi = (−ie)2
(

ūp′/ǫ(q
′)

i

/p+ /q −m
/ǫ(q)up + ūp′/ǫ(q)

i

/p− /q′ −m
/ǫ(q′)up

)

(6.85)

where p and q are the momenta of the eletron and the photon respe-

tively, in the initial state, p′ and q′ are the momenta of the eletron and

the photon respetively, in the �nal state, up and ūp are Dira spinors,

ǫµ the photon polarization 4-vetor. For a free photon desribed in the

Lorentz gauge by a plane wave Aµ(x) ∝ ǫµ(k)e
±ikνxν

, the gauge transfor-

mation AΛ
µ (x) = Aµ(x) + ∂µΛ(x) with Λ(x) = Λ̃(k)e±ikνxν

orresponds to a

transformation of the polarization 4-vetor ǫΛµ(k) = ǫµ(k) − ikµΛ̃(k). Then

the ontribution to the matrix element due to this transformation of, for

example, 4-vetor ǫµ(q) is (apart from a ommon fator) for the �rst term

ūp′/ǫ(q
′)

i

/p+ /q −m/
qup = ūp′/ǫ(q

′)
i

/p+ /q −m
(/p+ /q −m)up = iūp′/ǫ(q

′)up,

(6.86)

where the relation (/p−m)up = 0 has been used. The seond term gives the
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ontribution

ūp′/q
i

/p− /q′ −m
/ǫ(q′)up = ūp′(/q − /p′ +m)

i

/p− /q′ −m
/ǫ(q′)up

= ūp′(/q − /p′ +m)
i

/p′ − /q −m
/ǫ(q′)up = −iūp′/ǫ(q′)up,

(6.87)

where in the �rst equality ūp′(/p
′−m) = 0 has been used and in the seond the

equality p− q′ = q − p′ has been used, whih omes from global momentum

onservation. Thus the matrix element is indeed gauge invariant even though

the Feynman diagrams are not gauge invariant by themselves.

A onlusive evidene that a similar mehanism is at work for ausality

and global momentum onservation is of ourse still to be found (it would be

impossible without knowing how to formulate suh a quantum �eld theory),

but it may nonetheless be interesting to note that one an �nd points of

onnetion, at least at intuition level, with the story suh as gauge invariane

for Compton sattering.

For de�niteness and simpliity, the expliit analysis in this setion is for

global translational symmetries, and therefore, the Möbius diagrams. In

the previous subsetion this ase has been analyzed using the the hoie of

boundary terms adopted in Ref.[109℄ sine the appreiation of the presene

of a hallenge due to Möbius diagrams originated from the study reported

there. Here however the argument evolves beyond the sopes of Ref.[109℄ and

it is therefore adopted the onvention on boundary terms preferred by the

author, whih allows also to streamline the derivation of the results, the one

given in [104℄. Consider the Möbius diagram obtained using the presriptions

for onstruting the onstraints K given in [104℄:

K(0)
µ = kµ − (p⊕ p′)µ ≃ kµ − pµ − p′µ − ℓδ1µp0p′1,
K(1)

µ = (p′ ⊕ p)µ − k′µ ≃ p′µ + pµ − kµ + ℓδ1µp
′
0p1.

(6.88)

From the onservation of four-momentum at eah vertex K(0)
µ = 0, K(1)

µ = 0
one gets

kµ − k′µ = −ℓδ1µ(p′0p1 − p0p′1) = −ℓδ1µ(
m2

pp
′
1

2p1
−
m2

p′p1

2p′1
) ≡ −ℓδ1µ∆ (6.89)

where, sine the energy-momentum of the partiles here onsidered are suh

that ℓ−1 ≫ pµ ≫ m, from the on-shell ondition (6.1) the energy of the parti-

les has been expressed in terms of the spatial momentum

6 p0 =
√

p21 +m2−
ℓp21
2
≈ −p1 − m2

2p1
− ℓp21

2
and only the leading orretion terms have been kept.

6

The readers should remind that the onventions adopted here are suh that p1 < 0.
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Evidently, the only alternative possible Möbius diagram is obtained from

the other form of the onstraints K ompatible with our presription, that is

by hanging the order of p and p′:

K̃(0)
µ = kµ − (p′ ⊕ p)µ ≃ kµ − p′µ − pµ − ℓδ1µp′0p1,
K̃(1)

µ = (p⊕ p′)µ − k′µ ≃ p′µ + pµ − k′µ + ℓδ1µp0p
′
1.

(6.90)

Proeeding as for the previous one, one gets

kµ − k′µ = ℓδ1µ∆. (6.91)

Of ourse, in light of what it has been established in the previous subse-

tion, both Möbius diagrams must be exluded if one enfores the priniple

of relative spaetime loality. But is it interesting to notie that if we were

to allow these Möbius diagrams, the violation of global momentum onser-

vation produed by one of them, (6.89), is exatly the opposite of the one

produed by the other one, (6.91). In a quantum �eld theory version of

the lassial theories analyzed here, one might have to inlude these opposite

ontributions together, in whih ase it is here onjetured that the net result

would not be some systemati predition of violation of global momentum

onservation, but rather something of the sort rendering global momentum

still onserved but fuzzy.

Of ourse, the main hallenge for the development of this novel researh

program is the onstrution of a quantum �eld theory. A general frame-

work for introduing suh quantum �eld theories was reently proposed in

Ref. [134℄. While presently this proposal appears to be still at too early and

too formal a stage of development for addressing the hallenges that were

here of interest, it is legitimate to hope that, as its understanding deepens,

a onsistent quantum piture of ausality and momentum onservation with

urved momentum spaes will arise.

Going bak to the lassial mehanis version of these theories, it is amus-

ing to notie that a hain omposed of two Möbius diagrams onsidered in

this subsetion would have as a net result no violation of global momentum.

6.3 Non-ausality-violating loops

A seond speies of loop, the so-alled non-ausality-violating loops repre-

sented in Fig.6.6, is analyzed in the present setion. In Speial Relativity,

with its absolute loality, loops of this kind are trivial: they desribe in some

sense a omposite of two parts at rest, with the two parts �splitting� for a

while and then �reombining�. This is a ase of �history without a history�:
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all that one has is a single omposite at rest throughout the history of the

system, having allowed, for mere language, a split/reombination storyline.

It is shown that relative loality is a strong-enough notion of loality to

preserve this aspet of triviality of the non-ausality-violating loops of the

speies shown in Fig.6.6.

Consider the following ation desribing the proess of Fig. 6.6

q′

q

p′

p

k′

kK(0) K(1)

Figure 6.6: An example of non-ausality-violating loop.

S =

∫ s0

−∞
ds (yµq̇µ +NqCq) +

∫ s0

−∞
ds
(

y′µq̇′µ +Nq′Cq′
)

+

+

∫ +∞

s1

ds
(

zµk̇µ +NkCk
)

+

∫ +∞

s1

ds
(

z′µk̇′µ +Nk′Ck′
)

+

+

∫ s1

s0

ds
(

x′µṗ′µ +Np′Cp′
)

+

∫ s1

s0

ds (xµṗµ +NpCp) +

− ξµ(0)Kµ
(0) − ξµ(1)Kµ

(1),

(6.92)

with

K(0)
µ = (q′ ⊕ q)µ − (p′ ⊕ p)µ ≃ q′µ + qµ − p′µ − pµ + ℓδ1µ (q

′
0q1 − p′0p1) , (6.93)

K(1)
µ = (p′ ⊕ p)µ − (k′ ⊕ k)µ ≃ p′µ + pµ − k′µ − kµ + ℓδ1µ (p

′
0p1 − k′0k1) .

(6.94)

The equations of motion are then
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ṗµ = 0, ṗ′µ = 0, q̇µ = 0, q̇′µ = 0, k̇µ = 0, k̇′µ = 0,

Cp = 0, Cp′ = 0, Cq = 0, Cq′ = 0, Ck′ = 0, Ck = 0,

ẋµ(s) = Np
∂Cp
∂pµ

, ẋ′µ(s) = Np′
∂Cp′
∂p′µ

, ẏµ(s) = Nq
∂Cq
∂qµ

, (6.95)

ẏ′µ(s) = Nq′
∂Cq′
∂q′µ

, żµ(s) = Nk
∂Ck
∂kµ

, ż′µ(s) = Nk′
∂Ck′
∂k′µ

, (6.96)

and the boundary terms are

K(0)
µ = 0, K(1)

µ = 0,

yµ(s0) = ξν(0)
∂K(0)

ν

∂qµ
, y′µ(s0) = ξν(0)

∂K(0)
ν

∂q′µ
, zµ(s1) = −ξν(1)

∂K(1)
ν

∂kµ
,

z′µ(s1) = −ξν(1)
∂K(1)

ν

∂k′µ
, x′µ(s0) = −ξν(0)

∂K(0)
ν

∂p′µ
, x′µ(s1) = ξν(1)

∂K(1)
ν

∂p′µ
,

xµ(s0) = −ξν(0)
∂K(0)

ν

∂pµ
, xµ(s1) = ξν(1)

∂K(1)
ν

∂pµ
.

As it has been done in the previous setion, the proess is �rst analyzed in

Speial Relativity, then in Relative Loality. It is shown now that in Relative

Loality, as well as in Speial Relativity, only trivial loops are allowed by the

kinematis.

An example of trivial loop is the following: onsider a moleule of hydro-

gen. Its motion may be desribed as that of a single partile. The loop starts

when the motion of the moleule is desribed in terms of the motions of its

two atoms and ends one one goes bak to the desription of the motion of

the moleule as that of a single partile.

6.3.1 Non-ausality violating loop in Speial Relativity

In Speial Relativity the analysis of the problem is simple. As one ould

expet, the loop might happen provided that x and x′ travel in the same
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diretion with the same veloity. Indeed, in the Speial Relativisti limit the

onservation laws (6.93) and (6.94) take the simple form

K(0)
µ = q′µ + qµ − p′µ − pµ, (6.97)

K(1)
µ = p′µ + pµ − k′µ − kµ. (6.98)

From the boundary terms related to the partiles forming the loop, it follows

that

xµ(s0) = ξµ(0), x′µ(s0) = ξµ(0), (6.99)

xµ(s1) = ξµ(1), x′µ(s1) = ξµ(1). (6.100)

Using the onditions (6.99), the equations of motion for the (p, x) and (p′, x′)
partiles an be written as











x1 =
p1
p0

(

x0 − ξ0(0)
)

+ ξ1(0)

x′1 =
p′1
p′0

(

x′0 − ξ0(0)
)

+ ξ1(0).
(6.101)

Enforing then the onditions (6.100), one obtains that the equations of

motion (6.101) imply that

p1
p0

=
p′1
p′0
, (6.102)

whih means that the two partiles must obviously travel with the same

speed. Computing the invariant mass of the system omposed by these two

partiles, from the dispersion relations one has

mp′

mp
=
p′0

√

1−
(

p′1
p′0

)2

p0

√

1−
(

p1
p0

)2
=
p′0
p0
, (6.103)

then

M2 = (pµ + p′µ)
(

pµ + p′µ
)

= m2
p +m2

p′ + 2pµp′µ

=m2
p +m2

p′ + 2 (p0p
′
0 − p1p′1)

=m2
p +m2

p′ + 2

(

p0p
′
0 −

p′0
p0
p21

)

=m2
p +m2

p′ + 2
p′0
p0
m2

p = (mp +mp′)
2 .

(6.104)
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Equation (6.104), ombined with equation (6.102), reveals what are the kine-

matial properties of a loop in Speial Relativity. From equation (6.102) it

is known that the two partiles must have the same speed; moreover, from

equation (6.104), it is understood that they must be in relative rest sine

the invariant mass of the system is given only by the sum of their masses.

So, in Speial Relativity, if the laboratory is at rest with respet to the two

partiles, the non-ausality-violating loop redues to the desription of two

partiles standing at the same point, whih before and after the loop are

onsidered as a whole.

6.3.2 Non-ausality-violating loop in Relative Loality

Relative Loality requires a more areful analysis. However, one still looks for

a ondition of equal physial veloities (whih would not ome from a ondi-

tion of equal oordinates veloities, as an e�et of the non trivial translations

[106℄) and it is expeted that this will imply againM2 = (m+m′)2. Sine in
Relative Loality only loal observations are meaningful, two observers are

needed to reonstrut that the loop e�etively took plae: one loal with the

emission of the two partiles, and a seond observer loal with the absorption

of them. One ould dedue that the loop ourred if for the �rst observer,

Alie, holds xµA(s0) = x′A
µ(s0) = 0 and for the seond observer, Bob, purely

translated with respet to Alie by a vetor bµ, holds xµB(s1) = x′B
µ(s1) = 0.

This is, evidently, the ondition of equal physial veloities. The relation

between the two observers, using the presription for translations used [104℄,

is then







xµB = xµA + bν {(p′ ⊕ p)ν , xµ} ≃ xµA − bµ − δµ1 b1ℓp′0

x′B
µ = x′A

µ + bν {(p′ ⊕ p)ν , x′µ} ≃ x′A
µ − bµ − δµ0 b1ℓp1.

(6.105)

Using the dispersion relation (6.27), the �rst of the (6.95) beomes

ẋ0 = Np (−2p1 + 2ℓp1p0) , ẋ1 = Np

(

2p0 + ℓp21
)

, (6.106)

so the oordinate veloity for the (p, x) worldline is

v =
ẋ1

ẋ0
=
−2p1 + 2ℓp1p0

2p0 + ℓp21
≃ −2p1 (1− ℓp0)

2p0

(

1− ℓ p
2
1

2p0

)

=− p1
p0

(

1− ℓp0 − ℓ
p21
2p0

)

.

(6.107)

In what follows it is more useful to make the substitution p21 = p20 − m2
p +

ℓp0
(

p20 −m2
p

)

, whih omes from the dispersion relation, thus the relation
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(6.107) beomes

v = −p1
p0
− ℓp1

(

m2
p

2p20
− 3

2

)

. (6.108)

With exatly the same omputations the oordinate veloity for the (p′, x′)
worldline reads as

v′ = −p
′
1

p′0
− ℓp′1

(

m2
p′

2p′0
2 −

3

2

)

. (6.109)

Now one an write the oordinate desription performed by Alie of the two

partiles

x1A = vx0A, (6.110)

x′A
1
= v′x′A

0
. (6.111)

Using the transformations (6.105), one �nds the desription made by Bob

x1B = v
(

x0B + b0
)

− b1 − b1ℓp′0, (6.112)

x′B
1
= v′

(

x′B
0
+ b0 + b1ℓp1

)

− b1. (6.113)

Enforing the ondition xµB(s1) = x′B
µ(s1) = 0, one �nds at leading order the

two onditions

{

b1 = b0v (1− ℓp′0)
v′ = v [1− ℓ(p′0 + vp1)] .

(6.114)

Fousing on the seond one of these equations, after expliating the veloities,

it beomes

−p
′
1

p′0
− ℓp′1

(

m2
p′

2p′20
− 3

2

)

=
−p1

p0
− ℓp1

(

m2
p

2p20
− 3

2

)

+ ℓp1
p0
p′0

(

1− ℓp21
p0

) . (6.115)
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The seond member of (6.115) is manipulated as follows:

−p1
p0
− ℓp1

(

m2
p

2p20
− 3

2

)

+ ℓp1
p0
p′0

(

1− ℓp21
p0

) =

(

−p1
p0
− ℓp1

(

m2
p

2p20
− 3

2

)

+ ℓ
p1
p0
p′0

)(

1 + ℓ
p21
p0

)

= −p1
p0
− ℓp1

(

m2
p

2p20
− 3

2

)

+ ℓ
p1
p0
p′0 − ℓ

p1
p20
p21

= −p1
p0
− ℓp1

(

m2
p

2p20
− 3

2
− p′0
p0

+
p21
p20

)

= −p1
p0
− ℓp1

(

m2
p

2p20
− 3

2
− p′0
p0

+ 1− m2
p

p20

)

= −p1
p0

+ ℓp1

(

m2
p

2p20
+
p′0
p0

+
1

2

)

.

(6.116)

A onvenient way to express the �rst member is

−p
′
1

p′0
− ℓp′1

(

m2
p′

2p′20
− 3

2

)

= −p
′
1

p′0

(

1 + ℓ

(

m2
p′ − 3p′20
2p′0

))

.

Eq.(6.115) then beomes

p′1
p′0

(

1 + ℓ

(

m2
p′ − 3p′20
2p′0

))

=
p1
p0
− ℓp1

(

m2
p

2p20
+
p′0
p0

+
1

2

)

(6.117)

from whih one an expliit p′1, after some manipulations:

p′1 =
p1
p0
p′0 − ℓp1p′0

(

m2
p

2p20
+
p′0
p0

+
1

2

)

− ℓ
(

m2
p′ − 3p′20
2p′0

)

p1
p0
p′0

=
p1
p0
p′0 − ℓ

1

2

p1
p0

(

m2
p

p′0
p0

+ 2p′20 + p0p
′
0

)

− ℓ1
2

p1
p0

(

m2
p′ − 3p′20

)

=
p1
p0
p′0 − ℓ

1

2

p1
p0

(

m2
p

p′0
p0

+ p0p
′
0 +m2

p′ − p′02
)

,

(6.118)

whih is learly a deformation at the leading-order of the Speial Relativisti

expression (6.102) as expeted.

Now it is possible to ompute the invariant mass of the system, similarly
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to what has been done in the previous subsetion

M2 =(p′ ⊕ p)20 − (p′ ⊕ p)21 + ℓ (p′ ⊕ p)0 (p′ ⊕ p)
2
1 =

=p′0
2
+ p20 + 2p′0p0 − p′12 − p21 − 2p′1p1−

− 2ℓp′0p
′
1p1 − 2ℓp′0p

2
1 + ℓ (p′0 + p0)

(

p′1
2
+ p21 + 2p′1p1

)

=

=m2
p +m2

p′ + 2p′0p0 − 2p′1p1 + ℓ
(

p0p
′
1
2
+ 2p′1p1p0 − p′0p21

)

=

(6.119)

now using the equation (6.118), yields

M2 =m2
p +m2

p′ + 2p′0p0 − 2
p21
p0
p′0+

+ ℓ
p21
p0

(

m2
p

p′0
p0

+ p0p
′
0 +m2

p′ − p′02
)

+ ℓ

(

p21
p0
p′0

2
+ 2p21p

′
0 − p′0p21

)

=m2
p +m2

p′ + 2mp

(

mpp
′
0

p0
+ ℓ

mpp
2
1p

′
0

2p20
+ ℓ

m2
p′p

2
1

2mpp0

)

= m2
p +m2

p′ + 2mpmp′.

(6.120)

The last equality omes from the following hain of equalities

m2
p′ = p′0

2 − p′12 + ℓp′0p
′
1
2

= p′0
2 −

[

p21
p20
p′0

2 − ℓp
2
1

p20
p′0

(

m2
p

p′0
p0

+ p0p
′
0 +m2

p′ − p′02
)]

+ ℓ
p21
p20
p′0

3

= p′0
2 − p21

p20
p′0

2
+ ℓ

p21
p0
p′0

2
+ ℓ

p21p
′
0
2

p30
m2

p + ℓ
p21
p20
p′0m

2
p′

=
p′0

2

p20
m2

p + ℓ
p21p

′
0
2

p30
m2

p + ℓ
p21
p20
p′0m

2
p′

=
p′0

2

p20
m2

p

[

1 + ℓ
p21
p0

+ ℓ
p21
p′0

(

mp′

mp

)2
]

,

(6.121)

so

mp′ =
p′0
p0
mp

(

1 + ℓ
p21
2p0

+ ℓ
p21
2p′0

(

mp′

mp

)2
)

=
mpp

′
0

p0
+ ℓ

mpp
2
1p

′
0

2p20
+ ℓ

m2
p′p

2
1

2mpp0
.

(6.122)

From equation (6.120) has been found that the two partiles must be in

relative rest in the Relative Loality framework too in order to produe a

loop. So this loop is trivial for the same argument that applies to the Speial

Relativisti ase.
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Chapter 7

Conlusions

This thesis takled two main topis of researh in quantum gravity: quantum

spaetime dimensionality and the departures from absolute loality of events

due to the struture of spaetime at the Plank sale.

The observation that the dimension of spatime at very short sales may

be di�erent from 4 (typially less), whih has been found in many di�erent

approahes to quantum gravity, is of extreme interest, as it may point towards

a "true feature" of quantum spaetime that our urrent models try to grasp.

The analysis of this phenomenon relied mostly on the spetral dimension

of quantum spaetime, whih is a notion of dimension adapted for the sope

from its original de�nition in Riemannian geometry. It is here argued that the

spetral dimension is not a reliable physial observable, as the modi�ations

to its de�nition employed for its use in desribing a quantum spaetime are

suh that its physial meaning is severely weakened. For suh an interesting

ommon feature as running spaetime dimension one should look for a robust

physial haraterization of the phenomenon. For this sope, it has been here

proposed a notion of spaetime dimension, the thermal dimension, whih is

based on thermodynamial observables related to the behavior of a gas of

radiation at very high temperature. It has been shown, by detailed study of

a variety of quantum gravity models, how its properties are physially more

appealing with respet to those of the spetral dimension. It is therefore

argued that the thermal dimension ould be a valuable physial observable

to test the behavior of running spaetime dimension, in partiular for those

theories whose dispersion relation is suh that the physial meaning of the

spetral dimension is partiularly unlear.

A further appliation of the deformed thermodynamis of high-energy ra-

diation is the investigation of the prodution of primordial perturbations in

a universe desribed by Rainbow Gravity with a running Newton onstant.

Both vauum and thermal initial onditions for the perturbations have been
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onsidered and a power-law dependene of the Newton onstant on energy has

been assumed, together with the fat that the bakground satis�es the ther-

modynamial relations peuliar to radiation subjet to deformed dispersion

relations. This model is then able to produe primordial salar perturbations

whose spetral index respets the onstraint set reently by the Plank satel-

lite. For both kinds of initial onditions for the perturbations (vauum and

thermal) the running of the Newton onstant is essential in ahieving a viable

piture. In partiular, the Newton onstant is onstrained to be dereasing

with energy in the ultraviolet regime. This is onsistent with intuition from

quantum gravity theories, suh as Ho°ava-Lifshitz gravity and Asymptoti

safety. It also resonates with the onjeture put forward in [86℄ and deserves

further investigations.

Conerning the possible departure from absolute loality of standard

physis, some aspets of the theory of Relative Loality has been analyzed.

This theory is studied in its lassial-mehanis formulation, where Plank

mass plays the role of relativisti invariant (in the sense of DSR) sale of

urvature of momentum spae. Relativity of spaetime loality is then a

re�etion of the introdution of this new relativisti invariant: as the in-

trodution of a relativisti invariant speed of light implied the relativity of

simultaneity (relativity of time oinidene of events), the introdution of a

relativisti invariant urvature of momentum spae implies the relativity of

loality (relativity of spaetime oinidene of events). As original results, it

has �rst been shown that the relativity of spaetime loality does not spoil

the objetivity of ause-e�et relation in a hain of events. This has been

shown onsidering a ouple of disonneted hains of events, set up in suh

a way that an observer may infer a very misleading pitures if she relies

on a desription of the events based only on her oordinates. A proper use

of translation transformations gives her bak the orret, objetive piture.

Seondly, it has been shown that those phenomena that may be pathologial

for what onerns ausality (ausal loops) or violation of momentum on-

servation ("Möbius loops"), while may our in generi theories with urved

momentum spae, are exluded when the theory is formulated in suh a

way that the (deformed) relativisti symmetries are satis�ed, as is Relative

Loality. In fat, for a generi theory with urved momentum spae, it is

possible to obtain general onditions on the generators of translation trans-

formations that must be satis�ed in order for that theory to be symmetri

under an appropriate notion of translation transformation. These onditions

are translated into onditions on energies and momenta of the interating

partiles. If these onditions are not satis�ed, the ausal loop is allowed,

whereas when these are satis�ed the only solution of the equations of motion

is that the whole loop ollapses to a single event. The same applies to the
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Möbius diagrams.

It has then been proposed a point of re�etion on the possible mehanism

that may guarantee the relativity of spaetime loality even in the quantum

version of the theory, whih is still unknown. In a similar way to what hap-

pens on standard QED, where gauge-symmetry-violating Feynman diagrams

add up to give a gauge symmetri matrix element (see, for example, the

Compton sattering), symmetry-violating diagrams suh as Möbius diagram

may add up to give a symmetri matrix element.

Finally, it has been shown how non-ausality-violating loops are trivial in

Relative Loality, as well as they are in Speial Relativity.
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Aronyms and symbols

QM : Quantum Mehanis.

GR : General Relativity.

SM : Standard Model.

QFT : Quantum Field Theory.

QG : Quantum Gravity.

DSR : Doubly Speial Relativity.

ℓ : Deformation parameter.

LP : Plank length.

LDSR : Fundamental relativisti invariant length sale.

⊲ : Right ation.

x̂ : Nonommutative oordinate.

⊕ : Deformed sum.

⊖ : Inverse of the deformed sum.

Greek indies take the value {0, ..., D} where D is the number of spatial

dimensions of spaetime. Latin indies take the value {1, ..., D}.

157



Bibliography

[1℄ S. W. Hawking, Comm. math. Phys. 43, 199-220 (1975).

[2℄ S. W. Hawking, M. J. Perry, A. Strominger, Phys. Rev. Lett. 116, 231301

(2016).

[3℄ J. A. Wheeler, W. H. Zurek, Quantum theory and measurement, Prine-

ton University Press, 1983.

[4℄ G. Amelino-Camelia, Let.Notes Phys. 541 (2000) 1-49 [arXiv:gr-

q/9910089℄.

[5℄ G. Amelino-Camelia, D. Guetta, T. Piran, [arXiv:1303.1826 [astro-

ph.HE℄℄.

[6℄ G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos,

S. Sarkar, Nature 393:763-765,1998 [arXiv:astro-ph/9712103℄.

[7℄ G. Amelino-Camelia, T. Piran, Phys.Rev. D64 (2001) 036005

[arXiv:astro-ph/0008107℄.

[8℄ G. Amelino-Camelia, Phys.Lett. B528 (2002) 181-187 [arXiv:gr-

q/0107086℄.

[9℄ G. Amelino-Camelia, F. Fiore, D. Guetta, S. Puetti,

[arXiv:1305.2626v2 [astro-ph.HE℄℄.

[10℄ G. Amelino-Camelia, Living Rev. Relativity, 16, (2013), 5.

[11℄ M. Zyh, F. Costa, I. Pikovski, T. C. Ralph, C. Brukner, Class.

Quantum Grav. 29 (2012) 224010 [arXiv:1206.0965 [quant-ph℄℄.

[12℄ I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. Kim, C. Brukner,

Nature Physis 8, 393-397 (2012) [arXiv:1111.1979 [quant-ph℄℄.

[13℄ G. Amelino-Camelia, [arXiv:1304.7271 [gr-q℄℄.

158



[14℄ J. F. Wheater and J. Correia, Nul. Phys. Pro. Suppl. 73 (1999) 783

[arXiv:hep-lat/9808020℄.

[15℄ G. Amelino-Camelia, Mod.Phys.Lett. A9 (1994) 3415-3422 [arXiv:gr-

q/9603014℄.

[16℄ G. Amelino-Camelia, Mod.Phys.Lett. A11 (1996) 1411-1416 [arXiv:gr-

q/9603013℄.

[17℄ L. J. Garay, Int.J.Mod.Phys. A10 (1995) 145-166 [arXiv:gr-q/9403008℄.

[18℄ G. 't Hooft, Class. Quant. Grav. 13 (1996) 1023.

[19℄ G. Amelino-Camelia, Int.J.Mod.Phys. D11 (2002) 35-60 [arXiv:gr-

q/0012051℄.

[20℄ G. Amelino-Camelia, Phys.Lett. B510 (2001) 255-263 [arXiv:hep-

th/0012238℄.

[21℄ A. Agostini, G. Amelino-Camelia, M. Arzano, A. Marianò, R. A. Ta-

hi Mod. Phys. Lett. 2007, A22, 1779-1786.[arXiv:hep-th/0607221℄.

[22℄ G. Amelino-Camelia, G. Gubitosi, A. Marianò, P. Martinetti, F.

Merati, Phys. Lett. 2000, B671, 298-302.[arXiv: 0707.1863 [hep-th℄℄.

[23℄ J. Kowalski-Glikman, Phys. Lett. B547 (2002) 291-296, [arXiv:hep-

th/0207279v2 [hep-th℄℄.

[24℄ J. Kowalski-Glikman, S. Nowak, Class. Quant. Grav. 20 (2003) 4799-

4816, [arXiv:hep-th/0304101v3 [hep-th℄℄.

[25℄ J. Kowalski-Glikman, S. Nowak. [arXiv:hep-th/0411154v1 [hep-th℄℄.

[26℄ G. Gubitosi, F. Merati, [arXiv:1106.5710 [gr-q℄℄.

[27℄ G. Amelino-Camelia, [arXiv:gr-q/0205125℄.

[28℄ G. Amelino-Camelia, L. Smolin, A. Starodubstev, Class.Quant.Grav.

21 (2004) 3095-3110 [arXiv:hep-th/0306134℄.

[29℄ L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D69 (2004)

044001.

[30℄ L. Freidel, E. R. Livine, Phys. Rev. Lett. 96 (2006) 221301, [arXiv:

0512113 [hep-th℄℄.

159



[31℄ F. Girelli, E. R. Livine, D. Oriti, Nul. Phys. B708 (2005) 411, [arXiv:

0406100 [gr-q℄℄.

[32℄ K. Imilkowska, J. Kowalski-Glikman, Let.NotesPhys.702:279-298,2006

[arXiv:gr-q/0506084℄.

[33℄ E. Batista, S. Majid, J. Math. Phys. 44 (2003) 107 [arXiv:hep-

th/0205128℄.

[34℄ G. Amelino-Camelia, M. Arzano, S. Biano, R. J. Buonoore,[arXiv:

1210.7834 [hep-th℄℄.

[35℄ R. Perai, G. P. Vaa, Class. Quant. Grav. 27:245026, 2010,

[arXiv:1008.3621v2[hep-th℄℄.

[36℄ W. Souma, Prog. Theor. Phys. 102, 181, [arXiv:hep-th/9907027℄.

[37℄ O. Lausher, M. Reuter, Phys. Rev. D 65 (2002) 025013, [arXiv:hep-

th/0108040℄.

[38℄ M.Reuter, F. Saueressing, Phys. Rev D 65 (2002) 065016 [arXiv:hep-

th/0110054℄.

[39℄ D. Litim, Phys. Rev. D 6 105007 (2001), [arXiv:hep-th/0103195℄; Phys.

Rev. Lett. 92 201301 (2004), [arXiv:hep-th/0312114℄.

[40℄ A. Codello, R. Perai, C. Rahmede, Int. J. Mod. Phys. A 23 (2008)

143, [arXiv:0705.1769[hep-th℄℄; A. Codello, R. Perai, C. Rahmede,

Annals Phys. 324 (2009) 414, [arXiv:0805.2909[hep-th℄℄.

[41℄ P. Ho°ava, Phys. Rev. D 79, 084008 (2009), [arXiv:0901.3775v2[hep-th℄℄.

[42℄ P. Ho°ava, JHEP 0903:020, 2009, [arXiv:0812.4287v3[hep-th℄℄.

[43℄ T.D. Lee, G. C. Wik, Nul. Phys. B9 (1969) 209-243

[44℄ P.C. Hohenberg, B. I. Halperin, Rev. Mod. Phys. 49 (1977) 435.

[45℄ S.-K. Ma, Modern theory of ritial phenomena, Frontiers in Physis 46,

Benjamin (1976).

[46℄ S. Sahdev, Quantum phase transition, Cambridge U.P. (1999).

[47℄ M. Visser, Phys.Rev.D80:025011,2009. arXiv:0902.0590[hep-th℄.

[48℄ J. Magueijo, L. Smolin, Class. Quant. Grav. 21 (2004) 1725-1736,

[arXiv:gr-q/0305055℄.

160



[49℄ D. Kimberly, J. Magueijo, J. Medeiros,Phys. Rev. D70 (2004)

084007,[arXiv:gr-q/0303067℄.

[50℄ I. P. Lobo, N. Loret, F. Nettel, [arXiv:1610.04277[gr-q℄℄.

[51℄ F. Girelli, S. Liberati, L. Sindoni, Phys. Rev. D 75, 064015 (2007),

[arXiv:gr-q/0611024v3℄.

[52℄ G. Amelino-Camelia, L. Bararoli, G. Gubitosi, S. Liberati, N. Loret,

Phys. Rev, D 90, 125030 (2014), [arXiv:1407.8143[gr-q℄℄.

[53℄ J. Ambjorn, J. Jurkiewiz and R. Loll, Phys. Rev. Lett. 95 (2005)

171301 [hep-th/0505113℄.

[54℄ D. F. Litim, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114℄.

[55℄ P. Ho°ava, Phys. Rev. Lett. 102 (2009) 161301 [arXiv:0902.3657 [hep-

th℄℄.

[56℄ L. Modesto, P. Niolini, Phys. Rev. D 81, 104040 (2010).

[57℄ A. Belenhia, D. M. T. Beninasa, A. Mariano and L. Modesto,

arXiv:1507.00330 [gr-q℄.

[58℄ L. Modesto, Class. Quant. Grav. 26 (2009) 242002 [arXiv:0812.2214 [gr-

q℄℄

[59℄ G. Calagni, D. Oriti and J. Thürigen, Class. Quant. Grav. 31 (2014)

135014 [arXiv:1311.3340 [hep-th℄℄.

[60℄ D. Benedetti, Phys. Rev. Lett. 102 (2009) 111303 [arXiv:0811.1396 [hep-

th℄℄.

[61℄ G. Amelino-Camelia, M. Arzano, G. Gubitosi and J. Magueijo, Phys.

Lett. B 736 (2014) 317 [arXiv:1311.3135 [gr-q℄℄.

[62℄ M. Arzano, G. Gubitosi, J. Magueijo and G. Amelino-Camelia, Phys.

Rev. D 92 (2015) 2, 024028 [arXiv:1412.2054 [gr-q℄℄.

[63℄ D. V. Vassilevih, Phys. Rept. 388 (2003) 279

doi:10.1016/j.physrep.2003.09.002 [hep-th/0306138℄.

[64℄ G. Calagni, A. Eihhorn and F. Saueressig, Phys. Rev. D 87 (2013)

124028 [arXiv:1304.7247 [hep-th℄℄.

161



[65℄ A. Eihhorn and S. Mizera, Class. Quant. Grav. 31 (2014) 125007

doi:10.1088/0264-9381/31/12/125007 [arXiv:1311.2530 [gr-q℄℄.

[66℄ S. Carlip, [arXiv:1009.1136[gr-q℄℄.

[67℄ S. Carlip, Class. Quant. Grav. 32 (2015) 23, 232001 [arXiv:1506.08775

[gr-q℄℄.

[68℄ S. Carlip, AIP Conf. Pro. 1196 (2009) 72 [arXiv:0909.3329 [gr-q℄℄.

[69℄ G. Calagni, Phys. Rev. E 87 (2013) no.1, 012123

doi:10.1103/PhysRevE.87.012123 [arXiv:1205.5046 [hep-th℄℄.

[70℄ M. Reuter and F. Saueressig, JHEP 1112 (2011) 012

doi:10.1007/JHEP12(2011)012 [arXiv:1110.5224 [hep-th℄℄.

[71℄ M. Niedermaier, Class. Quant. Grav. 24 (2007) R171 doi:10.1088/0264-

9381/24/18/R01 [gr-q/0610018℄.

[72℄ T. Padmanabhan, S. Chakraborty and D. Kothawala, arXiv:1507.05669

[gr-q℄.

[73℄ T. P. Sotiriou, M. Visser and S. Weinfurtner, Phys. Rev. D 84 (2011)

104018 [arXiv:1105.6098 [hep-th℄℄.

[74℄ G. Amelino-Camelia, Symmetry 2 (2010) 230-271 [arXiv:1003.3942 [gr-

q℄℄.

[75℄ J. Kowalski-Glikman, Let.NotesPhys.669:131-159,2005 [arXiv:hep-

th/0405273℄.

[76℄ V. Husain, S. S. Seahra and E. J. Webster, Phys. Rev. D 88 (2013) 2,

024014 [arXiv:1305.2814 [hep-th℄℄.

[77℄ G. Santos, G. Gubitosi and G. Amelino-Camelia, JCAP 1508 (2015)

08, 005 [arXiv:1502.02833 [gr-q℄℄.

[78℄ K. Nozari, V. Hosseinzadeh and M. A. Gorji, Phys. Lett. B 750 (2015)

218 doi:10.1016/j.physletb.2015.09.014 [arXiv:1504.07117 [hep-th℄℄.

[79℄ J. J. Atik and E. Witten, Nul. Phys. B 310 (1988) 291.

doi:10.1016/0550-3213(88)90151-4

[80℄ K. Huang, �Statistial Mehanis�, Wiley, 1987.

162



[81℄ M. Arzano, G. Gubitosi, J. Magueijo and G. Amelino-Camelia, Phys.

Rev. D 91 (2015) 12, 125031 [arXiv:1505.05021 [gr-q℄℄.

[82℄ R. Perai, In *Oriti, D. (ed.): Approahes to quantum gravity* 111-

128 [arXiv:0709.3851 [hep-th℄℄.

[83℄ A. Belenhia, D. M. T. Beninasa and S. Liberati, JHEP 1503 (2015)

036 [arXiv:1411.6513 [gr-q℄℄.

[84℄ G. Calagni, L. Modesto and G. Nardelli, arXiv:1408.0199 [hep-th℄.

[85℄ G. Amelino-Camelia, M. Arzano, G. Gubitosi and J. Magueijo, Phys.

Rev. D 87 (2013) 12, 123532 [arXiv:1305.3153 [gr-q℄℄.

[86℄ G. Amelino-Camelia, M. Arzano, G. Gubitosi and J. Magueijo, Int. J.

Mod. Phys. D 24 (2015) 12, 1543002 [arXiv:1505.04649 [gr-q℄℄.

[87℄ V.F. Mukhanov, H. Feldman, R. H. Brandenberger, Phys. Rept. 215,203

(1992).

[88℄ M.Niedermaier, M. Reuter, "The Asymptoti Safety Senario in Quan-

tum Gravity", Living Rev. Relativity 9, (2006) 5.

[89℄ A.A. Ungar, Found. Phys. 30 (2000) 331; J. Chen, A.A. Ungar, Found.

Phys. 31 (2001) 1611.

[90℄ J.mM. Vigoureux, Eur. J. Phys. 22 (2001) 149.

[91℄ F. Girelli, E. R. Livine, [arXiv:gr-q/0407098℄.

[92℄ F. Girelli, E. R. Livine, [arXiv:gr-q/0412004℄.

[93℄ J.J. Halliwell, Phys. Rev. D64 (2001) 04408.[arXiv:008046 [gr-q℄℄.

[94℄ R. Gambini, R.A. Porto, Phys. Rev. D63 (2001) 105014; Phys. Lett.

A294 (2002) 129.

[95℄ M. Reisenberger, C. Rovelli, Phys. Rev. D65 (2002) 125016.

[arXiv:0111016 [gr-q℄℄.

[96℄ C. Rovelli, Phys. Rev. D65 (2002) 124013. [arXiv: gr-q/0110035v3℄.

[97℄ C. Rovelli, Quantum Gravity, Cambridge University Press, 2010.

[98℄ G. Amelino-Camelia, S. Majid, Int. J. Mod. Phys. A15 (2000) 4301,

[arXiv: hep-th/9907110℄.

163



[99℄ G. Amelino-Camelia, V. Astuti, G. Rosati, [arXiv:1206.3805 [hep-th℄℄.

[100℄ G. Amelino-Camelia, V. Astuti, G. Rosati, Int. J. Mod. Phys. D 21

(2012) 1242012 [arXiv:1207.2509 [gr-q℄℄.

[101℄ G. Amelino-Camelia, V. Astuti, G. Rosati, Phys.Rev. D 87 (2013)

084023 [arXiv:1304.7630 [hep-th℄℄.

[102℄ G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin,

[arXiv:1101.0931 [hep-th℄℄.

[103℄ G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin,

[arXiv:1106.0313 [hep-th℄℄.

[104℄ G. Amelino-Camelia, M. Arzano, J. Kowalski-Glikman, G. Rosati and

G. Trevisan, Class. Quant. Grav. 29 (2012) 075007 [arXiv:1107.1724

[hep-th℄℄.

[105℄ G. Amelino-Camelia, G. Gubitosi, G. Palmisano, [arXiv:

arXiv:1307.7988 [gr-q℄℄.

[106℄ G. Amelino-Camelia, N. Loret and G. Rosati, Phys. Lett. B 700 (2011)

150 [arXiv:1102.4637 [hep-ph℄℄ .

[107℄ Lin-Qing Chen, Phys.Rev. D 88 024052 (2013) [arXiv:1212.5233 [gr-

q℄℄.

[108℄ J. M. Carmona, J. L. Cortes, D. Mazon, F. Merati, Phys. Rev. D84

(2011) 085010 [arXiv:1107.0939 [hep-th℄℄.

[109℄ Andrzej Banburski, [arXiv:1305.7289 [gr-q℄℄;

[110℄ S. Judes, M. Visser, Phys. Rev. D 68, 045001 (2003) [arXiv:gr-

q/0205067℄.

[111℄ J. Lukierski, A. Nowiki, H. Ruegg, J. Math. Phys. 35 (1994) 2607.

[112℄ S. Mukohyama, JCAP 0906 (2009) 001 doi:10.1088/1475-

7516/2009/06/001 [arXiv:0904.2190 [hep-th℄℄.

[113℄ G. Amelino-Camelia, M. Arzano, G. Gubitosi and J. Magueijo,

Phys. Rev. D 88 (2013) no.4, 041303 doi:10.1103/PhysRevD.88.041303

[arXiv:1307.0745 [gr-q℄℄.

164



[114℄ G. Amelino-Camelia, M. Arzano, G. Gubitosi and J. Magueijo,

Phys. Rev. D 88 (2013) no.10, 103524 doi:10.1103/PhysRevD.88.103524

[arXiv:1309.3999 [gr-q℄℄.

[115℄ G. Amelino-Camelia, M. Arzano, G. Gubitosi and J. Magueijo,

Phys. Lett. B 736 (2014) 317 doi:10.1016/j.physletb.2014.07.030

[arXiv:1311.3135 [gr-q℄℄.

[116℄ G. Amelino-Camelia, F. Brighenti, G. Gubitosi and G. Santos,

arXiv:1602.08020 [hep-th℄, aepted for publiation on Phys. Lett. B.

[117℄ T. Biswas, R. Brandenberger, T. Koivisto and A. Mazumdar,

Phys. Rev. D 88 (2013) no.2, 023517 doi:10.1103/PhysRevD.88.023517

[arXiv:1302.6463 [astro-ph.CO℄℄.

[118℄ P. Ferreira and J. Magueijo, Phys. Rev. D 78 (2008) 061301

doi:10.1103/PhysRevD.78.061301 [arXiv:0708.0429 [astro-ph℄℄.

[119℄ J. Magueijo and L. Pogosian, Phys. Rev. D 67 (2003) 043518

doi:10.1103/PhysRevD.67.043518 [astro-ph/0211337℄.

[120℄ J. Magueijo and P. Singh, Phys. Rev. D 76 (2007) 023510

doi:10.1103/PhysRevD.76.023510 [astro-ph/0703566 [ASTRO-PH℄℄.

[121℄ S. Koh and R. H. Brandenberger, JCAP 0706 (2007) 021

doi:10.1088/1475-7516/2007/06/021 [hep-th/0702217 [HEP-TH℄℄.

[122℄ J. Magueijo and J. Noller, Phys. Rev. D 81 (2010) 043509

doi:10.1103/PhysRevD.81.043509 [arXiv:0907.1772 [astro-ph.CO℄℄.

[123℄ D. Benedetti and F. Guarnieri, JHEP 1403 (2014) 078

doi:10.1007/JHEP03(2014)078 [arXiv:1311.6253 [hep-th℄℄.

[124℄ G. D'Odorio, J. W. Goossens and F. Saueressig, JHEP 1510 (2015)

126 doi:10.1007/JHEP10(2015)126 [arXiv:1508.00590 [hep-th℄℄.

[125℄ O. Lausher and M. Reuter, Class. Quant. Grav. 19 (2002) 483

doi:10.1088/0264-9381/19/3/304 [hep-th/0110021℄.

[126℄ M. Niedermaier and M. Reuter, Living Rev. Rel. 9 (2006) 5.

doi:10.12942/lrr-2006-5

[127℄ F. Brighenti, G. Gubitosi, J. Magueijo, [arXiv:1612.06378[gr-q℄℄.

[128℄ S. Alexander, R. Brandenberger and J. Magueijo, Phys. Rev. D 67

(2003) 081301 doi:10.1103/PhysRevD.67.081301 [hep-th/0108190℄.

165



[129℄ G. Santos, G. Gubitosi and G. Amelino-Camelia, JCAP 1508 (2015)

no.08, 005 doi:10.1088/1475-7516/2015/08/005 [arXiv:1502.02833 [gr-

q℄℄.

[130℄ J. Noller and J. Magueijo, Class. Quant. Grav. 28 (2011) 105008

doi:10.1088/0264-9381/28/10/105008 [arXiv:0911.1907 [astro-ph.CO℄℄.

[131℄ P. A. R. Ade et al. [Plank Collaboration℄, Astron. Astrophys. 594

(2016) A13 doi:10.1051/0004-6361/201525830 [arXiv:1502.01589 [astro-

ph.CO℄℄.

[132℄ A. Agarwal and N. Afshordi, Phys. Rev. D 90 (2014) no.4, 043528

doi:10.1103/PhysRevD.90.043528 [arXiv:1406.0575 [astro-ph.CO℄℄.

[133℄ J. Magueijo, Class. Quant. Grav. 25 (2008) 202002 doi:10.1088/0264-

9381/25/20/202002 [arXiv:0807.1854 [gr-q℄℄.

[134℄ L. Freidel and T. Rempel, arXiv:1312.3674.

166


