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Abstract

The original results presented in this thesis regard two very common top-
ics of discussion in the quantum gravity debate: the dynamical dimensional
reduction of spacetime and locality in quantum gravity regime. The di-
mensionality of the quantum spacetime is often understood in terms of the
spectral dimension; here, a different notion of dimensionality, the thermal
dimension, is proposed. I discuss its physical properties in relation to those
of the spectral dimension through the study of specific models of quantum
gravity, including preliminary results obtained in the case of models with
relative locality. I show that, in those cases where the spectral dimension
has puzzling properties, the thermal dimension gives a different and more
meaningful picture. The statistical mechanics developed to define the ther-
mal dimension is applied also to the study of the production of primordial
cosmological perturbations assuming a running Newton constant and Rain-
bow Gravity. Concerning locality, I study in particular the theory of Relative
Locality, a theoretical framework in which different observers may describe
the same event as being local or non-local, depending whether it happens in
the origin of their reference frame or far away from it, respectively. 1 show
that requiring that locality is relative is enough to guarantee the objectivity
of cause-effect relation in chains of events, the absence of causality-violating
loops and processes violating the law of conservation of momentum.
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Introduction

The quantum gravity problem

The general relativistic description of gravitational phenomena and the quan-
tum mechanics of the Standard Model of particles physics are the most fun-
damental physical theories known today. Each of them is spectacularly con-
firmed by experiments, but until now gravitational physics and quantum
physics barely 7speak” to each other. In fact, GR has been confirmed by
experiments on scales between 107° m and about 10?° m (at this scale one
has to postulate the existence of dark matter in order to make general rela-
tivity agree with the experimental results), whereas the typical applications
of QM and the SM concern physical phenomena at scales between 10~% m
and 1072° m, the latter being the order of magnitude of the wavelength of the
particles colliding at LHC. The gap between these two regimes covered by
experiments comes from the fact that gravity is too weak at the energy scales
at which quantum physics has been tested to detect its contribution in the
measurements, whereas the other forces are either short range or their quan-
tum properties averaged out at the scales at which gravitational interaction
is relevant, as in the case of electromagnetic interaction. The goal of formu-
lating a theory of Quantum Gravity originates not only from the discomfort
that some might have in realizing that the two theories (GR and QM) are
based on very different descriptions of the world, but is indeed justified by
several genuine scientific arguments.

For example, as long as one ignores gravity, the SM gives definite pre-
dictions on the results of a scattering process between two particles each at
energy of e.g. ~ 1030 GeV. Such high energy processes are not presently
within our technological reach, but contemplating them sheds light on the
conceptual structure of our theories. It is known that the gravitational inter-
action for collisions between two particles of energy approximately (or greater

[hes
than) the Planck energy Fp = % ~ 10" TeV cannot be neglected. Es-

timating the gravitational contribution to the scattering amplitudes (from



some effective-field-theory formulation of gravitational interactions) one ob-
tains unmanageable divergences.

Indeed, the attempts to formulate a local quantum field theory of gravity
meet many problems, starting from the formalization of the microcausality
postulate, i.e. that two local observables A(z) and B(y) must commute when
x and y are separated by a spacelike interval. This postulate makes sense in
the special-relativistic local quantum field theory since in that context the
spacetime metric is fixed to be Minkowskian, whereas in GR the metric is a
dynamical variable and therefore, in general, is not given at the beginning of
the analysis. The standard approach is then to assume a background metric
that fixes the spacetime intervals from the beginning and a perturbation
of the metric that characterizes the gravitational interactions. The theory
that one obtains from this procedure is non-renormalizable (at least in the
standard sense; it will be considered in this thesis also the proposal first
given by Steven Weinberg of Asymptotic Safety, which gives an alternative
understanding of renormalizability in a broader sense).

It appears to be still possible developing QFT on a fixed background
spacetime metric that is not Minkowskian. In this context, Hawking found
the famous effect of black hole’s radiation (|1]) studying this kind of theory
on a Schwarzschild background metric. Hawking’s result represents a serious
theoretical challenge since it suggests that information is not conserved in
the process of formation and evaporation of a black hole (see Ref. [2] for
recent developments in the understanding of the problem).

An argument indicating rather clearly how QG requires a radical change
in our description of Nature is Bronstein’s argument on the measurability
of the gravitational field. He applies to the gravitational field the measure-
ment procedure considered by Landau and Peierls in their critique to the
logical comnsistency of the newborn QED. In order to measure the electro-
magnetic field in a small region of spacetime (ideally a point), they studied
the asymptotic states of a probe with electric charge e that interacts with the
electromagnetic field in that region. What they found is that the uncertainty
in the value of the field in that region is proportional to the ratio e/m; where
m; is the inertial mass of the probe. So the ideal probe would have e/m; ~ 0
and could be used to determine the electromagnetic field with arbitrary ac-
curacy. As far as it is known today, there is not such ideal electromagnetic
probe in Nature. Therefore, Landau and Peierls concluded that since it will
never be possible to make a sharp measurement of the electromagnetic field,
than QED, which admits also eigenstates of electromagnetic field as a basis
of the Hilbert space, is logically inconsistent. It was then recognized by Bohr
and Rosenfeld that QED is instead logically consistent, as the fact that there
is no such ideal probe is to be taken as a technological limit, since the deter-



mination of the existence of such a particle is outside the scopes of QED!.
Bronstein realized the importance of this argument for the case of quantum
gravity: for the gravitational field the ratio e/m; becomes m,/m; (m, being
the gravitational mass), but for the Equivalence Principle this is forced to
equal 1. This means that the gravitational field is fundamentally not sharply
measurable. QM formalism allows sharply measurable eigenvalues for all ob-
servable, it might only limits the accuracy of simultaneous measurement of
two observables. Bronstein then argued that a new theoretical paradigm is
needed to take this characteristic of gravity into account.

This new theoretical paradigm is likely to deal with effects that provide
striking departures from our current theories. Unfortunately, today one can
only speculate about such effects because experimental evidence of them
is still missing. Actually, for a very long time it was a general conviction
that QG effects were observable only for particles with Planck-scale energy,
which is not accessible in laboratories neither at present nor in the foresee-
able future. Even if it is not possible for present technology to accelerate
particles to Planckian energies, it has been observed in the late 90’s that it is
possible to have indirect access to that scale by astrophysical and cosmolog-
ical observations? (see Refs.|4],|5],[6],7],|8],|9] and [10] for a recent review on
quantum spacetime phenomenology). In particular, some effects due to the
quantum structure of spacetime may sum up along the travel of a particle
coming from a far away source. This includes possible modification to the
energy-momentum relation

E? —p? = m?
such as, for instance to leading order in Planck length Lp = g—z,
E? = p* +m? + aLpEp* + O(Lp)?, (1)

where « is a dimensionless constant of order one. The typical effect that
one expects from such modification is to observe an unexpected delay in the
time of arrival of a very high energy particle and a low energy one coming
from the same short-lived source at an astrophysical or cosmological distance.
The quantitative prediction on the delay although depends on the details of
the theory, in particular on how the Planck length is incorporated in the
theoretical scheme in relation to Lorentz symmetry.

!The interest reader may find the complete report of this debate in Ref.[3].

2More recently it has been argued that quantum optics might be used to directly
measure the canonical commutation relation (and the possible deformation due to the
quantum structure of spacetime) of the center-of-mass mode of a mechanical oscillator with
a mass close to the Planck mass (see Refs.[11], [12], [13] for a more complete discussion of
this possibility).



| hG
In fact, the Planck length is often defined as Lp = |/ —, via the combi-
c

nation of three relativistic constants®. As long as this is the only operative
definition of the Planck length, it is simply identifying a length scale and
does not pose any problem to the relativistic picture of the theory. However,
the moment it acquires a physical meaning as the length of something via
an independent operative definition, for example via the deformed dispersion
relation (1) and therefore independently measurable via the time-of-arrival
delay of the kind mentioned above, one has to investigate if such operative
definition is compatible or not with the other relativistic postulates in the
proposed QG theory, as lengths are contracted by Lorentz transformations
according to the relative motions of the observers. Then, a first possibility is
that there is a preferred frame in which formulate our QG theory. Example
of such theories are Hotrava-Lifshitz gravity and Magueijo-Smolin formulation
of Rainbow gravity. A second possibility is instead that the Lorentz trans-
formations are just a low-energy approximation of a more complicated set
of transformations that relates the measurements of two inertial observers
and these transformations are such that Planck length is a relativistic in-
variant just as the speed of light is in Special Relativity. This is the general
idea of Doubly Special Relativity (DSR). Some doubly-special-relativistic
quantum gravity models are k-Minkowski non-commutative spacetime, 2 4 1
gravity and Relative Locality. A third possibility considered in this thesis is
that Lorentz transformation are still a valid symmetry of the physical laws
and these are such that there is no contradiction between the existence of a
different physical regime set by Planck scale and Lorentz symmetry. Such
perspective is that of String Theory, some interpretations of Loop Quantum
Gravity, Causal Sets and Asymptotic Safety, to mention the most popular
ones. In this category, a model inspired by the Asymptotic Safety approach
will be consider.

Two challenges for quantum spacetime research
Part of the work presented in this thesis wants to contribute to the devel-

opment of theories formulated on a quantum spacetime. In fact, several
argument suggest that our usual description of spacetime, which is strictly

3 Although very different among each other: c is a relativistic invariant by postulate and
Lorentz transformation respect this postulate in a non-trivial way, /& invariance is related
to the fact that it has dimension of an action and Newton constant is the outcome of a
IR measurement (“infrared", i.e. for probes of wavelength much longer than the Planck
length).

10



classical in GR as well as in QM and in QFT, needs to be deeply modi-
fied in QG, ultimately requiring the formulation of an appropriate notion of
quantum geometry.

Consider for example the following argument. In QM an inertial observer
can in principle operatively construct a coordinates system with labels on
each spacetime point by setting up a dense array of pointlike synchronized
clocks. Each clock marks the time coordinate of the event while space coor-
dinates are given by the position of the clock and are all sharply measurable
since position operators commutes with each other. For the Heisenberg prin-
ciple, if each clock has finite mass, the observer should still worry about
uncertainties in time evolution of the reference frame, since it is not possible
to determine both position and velocity of each clock sharply, unless she uses
clocks with infinite mass. By this it is really meant that it is possible to adopt
a limiting procedure in which heavier and heavier clocks are used, so that,
using a set of clocks with an appropriate mass, it is possible to construct
a reference frame that is "classical enough" (i.e. the uncertainties in the
time evolution of the position of each clock can be neglected) for any given
sensibility of the experimental apparatus. Since QM ignores gravitational
effects, this limiting procedure is legitimate and logically consistent within
the theory. The same reasoning can be applied in the context of QFT, with
the only difference that even if spacetime coordinates of events are sharply
measurable, a particle with finite mass is just approximately localized in a
region of radius equal to the particle’s Compton wavelength, dx ~ h/cm.
If one tries to localize the position of the particle better than this by using
probes with wavelength shorter than particle’s Compton wavelength, other
particles are produced in the measurement procedure and so this position
measurement is actually meaningless.

Of course, when gravitational effects are taken into account the observer
cannot use this construction of reference frames by infinitely massive clocks,
since it can be shown that when a clock with mass m ~ Ep/c? is considered,
then a probe cannot get closer to the clock than the Schwarzschild radius
R ~ Lp. These arguments for an intrinsic limit in the localization of an
event lead to a general conviction of the quantum gravity community that
the description of spacetime as a Riemannian manifold must be replaced by
a "quantum geometry” of "fuzzy” points.

This thesis deals with two different questions about quantum spacetime,
very popular in the QG community: "what is the dimension of spacetime at
scales of the order of the Planck length?" and "what happens to our usual
notion of locality in the quantum gravity regime?”

The many alternative approaches to the study of the quantum-gravity
problem are based on formalizations and physical pictures that are signif-

11



icantly different, in most cases offering very few opportunities to compare
predictions between one approach and another. As a result, there is strong
interest for the few features which are found to arise in several alternative
models. In fact, the interest in the discussion about the number of dimension
of spacetime at the Planck scale originates from the results obtained in the
last decade by many groups, showing the common mechanism of “dynam-
ical dimensional reduction": the familiar four-dimensional classical picture
of spacetime in the IR is replaced by a quantum picture with an effective
number of spacetime dimensions smaller than four in the UV (“ultraviolet",
i.e. for probes of wavelength comparable to the Planck length). These ex-
citing recent developments face the challenge that the standard concept of
dimension of a spacetime, the “Hausdorff dimension", is inapplicable to a
quantum spacetime [14, 68|, and therefore one must rely on some suitable
new concept. This challenge has been handled so far mostly* by resorting
to the notion of “spectral dimension", whose key ingredient is the (modified)
d’Alembertian of the theory® and for classical flat spacetimes reproduces the
Hausdorff dimension. It was in terms of the spectral dimension that dy-
namical dimensional reduction was described for several approaches to the
quantum-gravity problem, including the approach based on Causal Dynami-
cal Triangulations [53|, the Asymptotic-Safety approach |54|, Hofava-Lifshitz
gravity |55], the Causal-Sets approach |57|, Loop Quantum Gravity |58, 59],
Spacetime Noncommutativity [60] and theories with Planck-scale curvature
of momentum space [61, 62].

The fact that so much of the intuition about the quantum-gravity realm
is being attached to analyses based on the spectral dimension, which it is
here argued not to be a physical characterization of a theory, should be
reason of concern. For such precious cases where a feature is found in many
approaches to the quantum-gravity problem, and therefore might be a “true
feature" of the quantum-gravity realm, one should ask for no less than a
fully physical characterization. The first original result presented in this
thesis work consists in the definition of such more physical characterization
of quantum spacetime dimension, the "thermal dimension”.

Concerning the second question posed to the quantum spacetime, the fate
of locality is another topic widely discussed in the community, a consistent
part of which believes our usual notion of absolute locality will be lost. Here

4Other candidates for the characterization of the dimension of a quantum spacetime
have been proposed in Refs. [68, 69, 70, 71, 72].

SThere are cases, such as in Causal Dynamical Triangulations, where the d’Alembertian
of the theory is not known, but it is possible to calculate the spectral dimension with other
techniques. It has been established [73] that in these cases it is then possible to reconstruct
the d’Alembertian.

12



I focus on the particular theory of Relative Locality, in which the Planck
scale enters as the characteristic scale of the curvature of momentum space;
the non-trivial geometry of momentum space has its spacetime counterpart
in a weakening of locality. It will be shown, as a clarifying example of the
origin of the basic idea of relative locality, how in the extensively studied non-
commutative k-Minkowski spacetime two events may be coincident or not de-
pending on the distance of the observer from the events. In this framework
there is no notion of absolute locality, different observers see different space-
times, and the spacetime they observe are energy and momentum-dependent.
Locality, a coincidence of events, becomes relative: coincidences of events are
still objective for all local observers, but they are not in general manifest in
the spacetime coordinates constructed by distant observers.

There have been concerns [107],[109] that this notion of locality might
have pathological implications for what concerns causality and momentum
conservation. Some original results of this thesis show that no such patholo-
gies actually arise.

Outline of the thesis

The first part of the thesis presents the different quantum gravity models that
will be considered throughout the thesis, including Relative Locality. The
focus then goes to the first question, regarding the characterization of the
dimensional reduction of spacetime via the thermal dimension. Afterwards,
the causality and momentum conservation topics in Relative Locality will be
discussed.

Chapter 1 presents the theories in which Lorentz invariance is either pre-
served (as in Asymptotic Safety) or deformed that are of interest in the thesis
work. It starts with some known results obtained in the study of scenarios for
spacetime quantization, reviewed with the scope of highlighting the connec-
tion between noncommutative quantum spacetime and relativistic theories of
interacting particles with nonlinear momentum space. The latter is the class
of theories in which a considerable part of the original results presented in
this thesis have been obtained. Section 1.1 presents an example of quantum
spacetime, k-Minkowski. This noncommutative spacetime is used as a ”sto-
ryteller” in the first part of the thesis and will lead to the concepts which are
useful in the following. It will be recognized as a model of Doubly Special
Relativity (DSR), where Planck length is a fundamental length scale consis-
tent with the Principle of Relativity. Examples of DSR theories come from a
notable source such as 2 + 1 gravity coupled to matter, as quickly discussed
in Section 1.3. Section 1.4 reviews the basic notions of Asymptotic Safety.

13



Chapter 2 introduces the concepts in Relative Locality which are relevant
for this thesis. Section 2.1 shows quickly how &-Minkowski non-commutative
spacetime is an example of spacetime with relative locality. The presentation
of Relative Locality continues independently on any pre-existing model in
Section 2.2, and in Section 2.3 the model of Relative Locality used in the
rest of the thesis is introduced.

Chapter 3 introduces some already known proposal for some QG theo-
ries in which Planck scale breaks Lorentz invariance such as Hotava-Lifshitz
gravity and Magueijo-Smolin Rainbow gravity, here reviewed in Section 3.1
and 3.2 respectively.

Chapter 4 introduces the first original contribution of this thesis; after
reviewing the properties of the spectral dimension and its application in quan-
tum gravity in Section 4.1, it is observed in Section 4.2 that some thermody-
namical properties of radiation gas (such as the equation of state parameter
and the scaling of temperature with energy density) could be used to assign
a thermal dimension to the quantum spacetime. The good properties of this
notion of dimension will be shown and discussed against those of the spec-
tral dimension. Section 4.3 shows some preliminary results obtained so far
in trying to extend the notion of thermal dimension of quantum spacetime
with relative locality.

Then in Chapter 5 another original contribution is presented, consisting
in the application of the modified statistical mechanics, introduced in the
previous chapter, to the study of primordial cosmological perturbation in a
rainbow universe with running Newton constant. It begins computing the
Friedmann and scalar perturbations equations for a Rainbow metric associ-
ated to a dispersion relation of the Hotava-Lifshitz type in Sections 5.1 and
5.2. Then, Sections 5.3 and 5.4 compute the spectral index for both vacuum
and hydrodynamical fluctuations respectively, noticing that the condition for
obtaining the observed spectral index and solving the horizon problem is that
Newton constant decreases in the UV. This is consistent with some precedent
results where quantum gravity is responsible for solving the horizon problem
without appealing to inflation.

Chapter 6 contains the original results obtained in the context of Rela-
tive Locality, beginning with the analysis of the causal behavior of the theory.
Specifically, in Subsection 6.1.1 it is shown the objectivity of cause-and-effect
relations and in Subsection 6.1.2 that the theory does not admit causally vio-
lating processes (causally violating loops). Section 6.2 discuss those processes
in which the law of momentum conservation is violated, proving that they
are not allowed in Relative Locality. Finally, Section 6.3 also shows that the
theory does not admit even non-causally-violating loops (it must be stressed
that the theory, as treated here, is classical, so these loops are not of the kind

14



met in Feynman diagrams in perturbative Quantum Field Theory).
Chapter 7 briefly summarizes the original results presented in this work.
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Chapter 1

Theories preserving relativity of
inertial frames

In the introduction few arguments suggesting that short-scale structure of
spacetime might be characterized by a minimum length Lp, setting a limit
on the localization of events, have been discussed. Other robust arguments
indicate a second possible role of this length scale as that of wavelength at
which new physical effects occur, while standard physics describes particles
of larger wavelength. The latter proposal is often codified in deformed mass-
shell relations such as, for example, £? = ¢?p? + ¢*m? £ cLpEp?. Because
of FitzGerald-Lorentz contractions, Lp cannot be a fundamental special-
relativistic invariant scale in neither of the two possible roles (minimum
length and characteristic wavelength), since two boosted observers will not
agree on the fact that the minimum length /characteristic wavelength is equal
to Lp. But the Relativity Principle demands that physical laws should be
the same in all inertial frames, including the laws that attribute to Lp a
fundamental role in the structure of spacetime. In the mid-1990s studies ad-
vocating a role for the Planck length in spacetime structure often ended up
introducing (more or less explicitly) a preferred family of inertial observers
(usually identified with the natural observers of the cosmic microwave back-
ground radiation), therefore breaking Lorentz symmetry (see, e.g. Ref.[18]).

The alternative possibility of introducing the Planck length in spacetime
structure in a fully relativistic manner was proposed in 2000 ([19], [20]) and
is the Doubly Special Relativity framework. A DSR theory requires the in-
variance of the minimum length /characteristic wavelength denoted by' Lpsg
in addition to the request of invariance of the speed-of-light scale.

!Here the characteristic length scale is indicated as Lpsg rather than L, to indicate a
possible extra factor that multiplies L,,.
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Section 1.1 introduces an example of quantum spacetime in which Lorentz
symmetry is preserved, although the transformations are modified with re-
spect to those of subPlanckian-energy physics. This provides guidance for
getting some intuition for formulating a theory in which the speed of light
scale and a length scale are both fundamental relativistic invariants (DSR).
This general proposal is presented in Section 1.2. Section 1.3 discusses the
case of 2+ 1 gravity as a notable example of this kind of theory. Section 1.4
reviews the very different paradigm of asymptotic safety, where it is supposed
that Lorentz symmetry is not modified and still a symmetry of physics.

1.1 k-Minkowski noncommutative spacetime

One of the most appealing realizations of the DSR concept is that of a Hopf-
algebra scenario with k-Poincaré structure and the related k-Minkowski non-
commutative spacetime. Noncommutative spacetimes are toy models where
one tries to characterize the limitation in the localization of an event promot-
ing spacetime coordinates to noncommuting operators. The physical regime
considered might be that of a freely propagating particle whose energy is
high enough to probe the quantum structure of spacetime, but its influence
on the macroscopic scale structure of spacetime is still negligible. Therefore,
the only contribution of gravity in determining the non-trivial structure of
spacetime comes from this noncommutative character of the coordinates.

The characteristic spacetime-coordinate noncommutativity of k-Minkowski
is given by

[z, Zo| = il (1.1)

[, 4] = 0 (1.2)

where Zy is the time coordinate, Z; is the space coordinate (j, k € {1, 2, 3})
and / is a length scale. Functions of these noncommuting coordinates admit
a "Fourier transform"

F(@) = / d'k f(k)e~ = gikodo (1.3)

where the "Fourier parameters" kg, k; are ordinary commutative variables.
It is therefore possible to characterize the action of transformations genera-
tors on the functions of noncommutative variables by studying their action
directly on the basis exponentials e~*%¢ikoo,

A frequently used characterization of symmetry of k-Minkowski intro-
duces the following definitions of generators of translations, space-rotations

17



and boosts:

Py, > e—ikiﬁeikozﬁo — kﬂe—ibieikoio, (14)
M; > e FEeikoto — ¢ iqy ke~ eihodo, (1.5)
Nj > e—ikvmeikomo - k‘je_ik'xeikomoi’o—‘—
1=k X . (L)
+ {$j (T + §|]€|2 + €xlklk- e ik xezkoxo.

The fact that one here deals with a (k-Poincaré) Hopf algebra is essentially
seen by acting with these generators on products of functions, observing,
for example, that, from the k-Minkowski commutators (1.1),(1.2) and the
Baker-Campbell-Hausdorff formula, one has

e—ik:ji‘j eik‘o:?:()e—iqj:?:j e’iq():?:() — e—ik‘ji‘je—ieek()qj:?:j eikoi‘o e’iqoi‘o _ e—i(kj +eek0qj)i‘j 6i(ko+qo):@0'
(1.7)
Then the action of the translation generators is

CGBR kA iz . Okeo (1—80 - O NSy
PMI>6 zkzezkoxoe 0T igoo — <k‘u+6 o( M)Q;L) e zkxezkoxoe T igodo (18)

For a pair of functions f(%) and g(&) one finds

Py (f(@)9(@) = (Pu> £(@)) g(@) + (P00 o £(2)) (Puo g(2)  (19)

i.e. one finds a "non primitive coproduct?”” AP, = P, ® 1 + etPdy P,
different from the "primitive coproduct” AP, = P, ® 1 +1 ® P, typical of
ordinary differential operators. The coproduct has an important role in de-
termining the form of generators reported above. Those generators in fact
can be obtained assuming the standard action of translation and rotation
generators (1.4), (1.5) and realizing then that using the undeformed boost
does not allow getting the 10 generators closed Hopf algebra (the coproducts
of undeformed boosts introduce an undesired generator of dilatation trans-
formations) that would correspond to the Poincaré algebra of Minkowski
spacetime symmetries. The deformed boosts action (1.6) is then obtained
considering the most general deformation of boosts generators with the right
classical limit admitted by the other symmetries, and requiring that together

2Given an algebra A, the coproduct is a linear map A : A — A ® A that is "coassocia-
tive”, that is (A ®id) o A = (id ® A) o A.
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with translation and rotation generators form a 10 generators closed Hopf
algebra.
The commutators between the generators (1.4), (1.5), (1.6) are

(M, Myr] =i (e Moy — 0o Mor + 0up Mz — 10 M)

[Miu Pj] - ZEZ]kka [Mlv PO] = 07
. 1 20 P, 4 .
[NZ', P]] = Z(Sij 2—€ (]. — e O) + §P1Pz — ZEPZ'P]',

[Niv PO] = ZPZ?

[PM>PV]:O>

where P, = ([, P;) are the time and space components of the translations
generators and M, are modified Lorentz generators with rotations M =
%EijkMij and boosts Nz = MOi'

With the coproducts (1.9) the commutators (1.1) and (1.2) are left in-
variant under the action of the generators in the sense that for translations,
for example, one has®

PMD [i‘j, Lf?‘o] = ’l[PMDLfZ‘j,
(1.10)
P, o [#, i) = 0.

One also finds a deformed mass Casimir for this algebra, obtained from the
generators given above

2\ ? (
Co = (Z) sinh? <§P0) —ethpp, (1.11)

The idea that this mathematics provides a possible basis for a DSR theory
originates from the left-invariance of the k-Minkowski commutators under

3The interested reader can verified this commutator invariance straightforwardly by
expressing £, = (—ia%ew j eik%") |k=0, acting on the basis exponentials with the gen-
erators P, and then take k¥ = 0. Indices are raised and lowered with Minkowski metric

tensor 7, = (1,—1,—-1,—1).
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the action of the k-Poincaré generators as in Eq.(1.10) and the consequent
identification of ¢ with Lpgg. Furthermore, the Casimir (1.11) can inspire a
deformed on-shell relation for relativistic particles. For a low energy particle,
at first order in ¢, this takes the form

m? = Py — P,P, + (P, P;P;. (1.12)

The generators are not the only nontrivial structure needed to imple-
ment symmetry transformations in k-Minkowski. Considering the case of
translations, one of course wants that noncommuting variables i/, used by a
translated observer are obtainable from the old ones by a rule of the type
% = I, — a, and that these also satisfy the A-Minkowski commutators
(1.1),(1.2). It is clear that the translation parameters a, can not be com-
mutative variables but must have noncommutative properties themselves, in

particular one can adopt the following prescriptions

[a;, 20] = ila;,  [a, &) =0,  [ao, &) = 0. (1.13)

In this way the translation operator takes the familiar form

T=1+d, d=ia,P" (1.14)

where P* = n"* P, n* is the inverse of the Minkowski metric tensor.

The choice of the basis exponentials is arbitrary. For example, one could
choose the basis e @ or e*'#0¢i*’#; Thege different choices yield different
form of the transformations generators, depending on the particular order
one writes the basis exponentials. Consider for simplicity the translation
generators. Denoting the translation generators used until now Pg, (because
the basis exponential with the time coordinate is to the right of that with
spatial coordinates), one could define other translation generators by setting
Pr, > eikotog—ik-& kueikoioe_“;'f. Then it is straightforward to verify that
PRueikoiOe_“;i + PLueikoiOe_“;i, which implies Pg, # Pr,. However, this
abundance of possible translation generators is not really a problem, since
to each choice of ordering of the basis exponentials correspond also different
translation parameters a,. Therefore, focusing on the two choices of time-to-
the-right and time-to-the-left basis exponentials, one finds also that agp, #
aryu, where ap, denote the translation parameters related to the time-to-
the-right basis whereas ar, denote the translation parameters related to the
time-to-the-left basis. It turns out that the translation operator T, defined in
Eq.(1.14), is order-independent, i.e. its action on a function of noncommuting
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variables does not depend on the arbitrary choice of ordering of the basis
exponentials when Fourier transforming (see Ref.[21] for more details).

It is also important highlighting that the possibility of removing all anoma-
lies of the commutators by nonlinear redefinitions of the generators does not
imply that one "recovers” Special Relativity. In fact, a proper description
of Hopf algebra symmetries must take into account both commutators and
coproducts of the generators; concurrently, a redefinition of the generators
necessarily modifies also the coproducts in such a way that the physical dif-
ferences between k-Minkowski and Special Relativity remain. Moreover, by
using the whole machinery of commutators and coproducts it is possible
(]21], |22]) to obtain conserved charges associated to the Hopf symmetries
for a theory with classical fields in the noncommutative k-Minkowski space-
time, whereas other attempts to obtain conserved charged, ignoring the role
of coproducts, had failed.

In k-Minkowski the description of translations necessarily requires some
new structure, as it can be most elementarily seen by looking at the compo-
sition law of basis exponentials and the action of the translation generators
on this product of functions, i.e. its coproduct (1.8). Cleary the spacetime
noncommutativity is leading to a new composition of energy and momentum
(p, E)® (¢q,w) = (p+ eFq, E + w), which involves a clear non-linearity. This
non-linear composition law of momenta might be seen as suggesting a non-
linear geometry of momentum space. Indeed, it has been shown in Refs. [23],
[24], [25], [26] that k-Poincaré Hopf algebra describes a curved momentum
space with de Sitter metric, torsion and nonmetricity (the usual geometry of
momentum space is recovered by letting ¢ — 0, so that ¢ (or Lpgsr) might be
seen as a deformation parameter). This geometry, in the appropriate regime
in which relative locality is studied today, will be the basis for the explicit
example of relative locality presented in Section 2.3.

1.2 The Doubly Special Relativity proposal

Besides k-Minkowski noncommutative spacetime there are many other DSR
theories. It is therefore useful to describe here the general principles of the
DSR proposal, independently on their specific formalization. A good starting
point for introducing DSR is the analysis of the step from Galilean Relativity
to Special Relativity as a solution to the problem of attributing to ¢ the role of
speed of light, a universal constant that is the same for every observer. From
this perspective, one could regard Galilean Relativity as a theory based on the
Relativity Principle and the assumption that there would be no fundamental
scales of length or velocity.
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The Relativity Principle introduced by Galilei can be stated as follows:

(R.P.) : The laws of physics take the same form in all inertial frames (i.e.
these laws are the same for all inertial observers).

This principle has strong implications on geometry and kinematics when
combined with the assumption of existence of fundamental scales. In fact, the
hypothesis that there is some fundamental scale is to be regarded as a physical
law itself. The Relativity Principle then implies that the relations between
the measurements performed by different inertial observers must be such that
every inertial observer agree with the value and the physical interpretation of
this scale. Combining the Relativity Principle with the assumption that there
are not absolute scales one can obtain the Galilean rules of transformation
between observers. For example, if v is the velocity of a body with respect
to an inertial observer, and a second observer moves with constant velocity
vp with respect to the first observer, the velocity of the body with respect
to the second observer, in absence of a fundamental velocity scale, can be
only of the form v' = f(v,v9). Considering other reasonable assumptions
(f(vv O) =1, f(O,UO) = Yo, f(U,UO) = f(v(b U)v f(_vv _UO) = _f(vv UO))J the
well-known Galilean formula of composition of velocities v' = v + vy follows.

The step made by Einstein was introducing a fundamental velocity scale
consistently with the Relativity Principle. To do so, it must be specified a
unique experimental procedure that allows every inertial observer to mea-
sure the value of this fundamental scale. These two postulates might be
summarized as follows:

(E.L.1) : The laws of physics involve a fundamental scale of velocity c.

(E.L.1b) : The value of the fundamental velocity scale ¢ can be measured by
each inertial observer as the speed of light.

One could have expected a more precise description of the measurement
procedure to adopt in order to establish the value of ¢; for example, one could
have expected the speed of light to depend on the velocity of the source or
on the wavelength of the light. However, it is important to realize the role
that the Relativity Principle and the postulate (E.L.1) have in determining
the form of (E.L.1b): the specification of a wavelength dependence would
have required a reference fundamental scale of length, whereas a dependence
of the speed of light on the velocity of the source would be in conflict with
the fundamental nature of ¢ as a scale on which, according to the Relativity
Principle, all inertial observers agree.
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From the Relativity Principle, (E.L.1) and (E.L.1b) one can obtain the
rules that relate the observations performed by different inertial observers,
which are the Lorentz transformations. Famously, the transition from Galilean
Relativity to Special Relativity requires the replacement of the simple for-
mula of Galilean composition of velocities with a much richer special rela-
tivistic version

. 1 R R T
Prvg=—"—— |11+ —V+ — V1 -V2)U . 1.15
1 2 1 + ”Ulcvzvz ( 1 71 2 C2 1 _I_ ,}/1 ( 1 2) 1) ( )

Furthermore, the introduction of ¢ requires to abandon the concept of
absolute simultaneity, which would contrast with the fact that the exchange
of information between two clocks in relative motion is strongly constrained
by (E.L.1) and (E.L.1b).

It is natural then, in order to introduce Planck length in a relativistic
theory, to modify (E.L.1) and (E.L.1b) allowing for a fundamental length
scale. (E.L.1) simply becomes:

(L.1) : The laws of physics involve a fundamental length scale Lpsr and a
fundamental velocity scale c.

The new relativistic theory is defined once one gives the experimental proce-
dures to measure ¢ and Lpgg that substitute (E.L.1b). The introduction of
Lpsr makes possible a wavelength dependence of the value of ¢; however, it
is still possible that no such dependence occurs. Since experiments dealt only
with wavelength much larger than Lpgg, one shall be cautious and modify
(E.L.1b) as follows:

(L.1b) : The value of the fundamental velocity scale ¢ can be measured by
each inertial observer as the speed of light with wavelength A much
larger than Lpsgr (more rigorously, ¢ is obtained as the \/Lpsr — o0
limit of speed of light).

The procedure (L.1c) by which every inertial observer can measure the value
of Lpsgr should be determined by experimental data. As already said, there
are many theoretical arguments suggesting a role for the Planck length in

the small-distance structure of spacetime. An example of a possible form for
(L.1c) is

(L.1c*) : Each inertial observer can establish the value of Lpsgr, which is the
same for all inertial observers, by determining the dispersion relation
for photons. This takes the form E* = ¢*p* — f(E,p; Lpsr), where the
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function f is the same for all inertial observers and in particular all
inertial observers agree on the leading Lpsr dependence, which might
be, for example, f: f(E,p; Lpsg) ~ Lpsrcp®E.

The objective that motivates DSR research is that of coherently construct-
ing a relativistic theory with two fundamental scales, ¢ and Lpsgr, which
are non-trivial relativistic invariants. An example of what one refers to as
trivial relativistic invariant is the rest mass of the electron. Another ex-
ample of a trivial relativistic invariant is the Quantum Mechanics scale A
that, as ¢ does, establishes properties of the results of the measurements
of certain observables; h, for example, sets the minimum non zero value of
angular momentum. But the discretization of angular momentum and the
limitation in the measurement of its components does not affect spacetime
symmetry under classical space-rotations, as shown in Ref.[27], since the
measurements that QM allows are still subject to the same rules imposed by
classical rotation symmetry. The reason is that & is not a scale pertaining
to the spacetime structure of the rotation transformations, and in fact the
introduction of A does not require any modification of the action of the ro-
tation transformations. Galilei’s boosts are necessarily deformed once c is
introduced as a fundamental relativistic invariant and c itself has a role in
the transformations that relate the measurements of two inertial observers
in relative motion. In a DSR theory Lpsr must have a similar role to that
of ¢ in Special Relativity, i.e. it must participate in the transformations that
relates the observations of two inertial observers.

Note that DSR is a very specific alternative to Special Relativity: only
a certain class of deformations of Special Relativity is DSR compatible. For
example, de Sitter Relativity is a deformation of Special Relativity by the
scale of curvature. But de Sitter spacetime is a deformation of Minkowski
spacetime by a long-distance scale (one can obtain Minkowski spacetime from
de Sitter spacetime as the deformation length is sent to infinity), whereas one
of the requirements for a DSR theory is that the deformation scale must be
a short-distance scale (one should obtain Minkowski spacetime by sending to
zero the deformation scale).

1.3 Aside on 2+ 1 gravity

It is important to mention that it has been observed ([|28],[29],[30],[31],[32])
that classical gravity for point particles in 2+ 1 dimensions offers an example
of DSR theory.

Of particular interest for the path followed in this thesis is the connection
between the geometry of momentum space and spacetime noncommutativity.
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In fact, in classical 2+1 gravity without cosmological constant the momentum
space has anti-de Sitter geometry or, more precisely, it is the Lie group
SL(2,R), the group of linear transformations acting on R? with determinant
equal to one.

This follows from the fact that Einstein gravity in 2 + 1 dimensions does
not possess local degrees of freedom and a point particle is introduced as a
topological defect surrounded by flat spacetime. For the case of a spinless
particle of mass m one obtains the metric ds? = —d7?+dr?+(1—4Gm)r3d¢?,
which describes a conical spacetime, the particle being located at the tip of
the cone, r = 0. It is possible to show that vectors parallel transported along
closed loops around the origin turns to be rotated by an angle o = 87Gm.
This because the curvature vanishes everywhere except at the singularity
r = 0. As in ordinary 2 + 1 Minkowski spacetime one can characterize the
physical momentum of the particle, once its mass is given, by specifying two
additional parameters that describe the linear momentum and that are in
one-to-one correspondence with boosts. Alternatively one can take three-
momentum of the particle at rest (specified by its rest mass) and boost
it to the appropriate value of the linear momentum. In this case three-
momentum at rest is given by a vector in 2 + 1 Minkowski space. This
space is isomorphic to the Lorentz algebra si(2,R) as a vector space. In
fact, when the particle is described by a conical defect, its mass (the three-
momentum at rest) is determined by a rotation by the angle o = 87Gm, i.e.
by exp(ay) = go € SL(2,R), where J; is the generator of rotations. The
physical momentum can be obtained by boosting the three-momentum at
rest by conjugating go by a Lorentz boost L € SL(2,R), that is g = L™ 'goL.
Thus the kinematics of a massive particle is in this context determined by
the set of rotation-like Lorentz transformations. The extended momentum
space is given by the group manifold SL(2,R).

In order to expose the anti-de Sitter geometry of momentum space, it is
convenient to write the generic element p of SL(2,R) as a combination of
the identity matrix and of the elements of a basis of sl(2,R), i.e. the Lie
algebra of SL(2,R)*:

p =ull — 2§, X" (1.16)

Here I is the identity 2 x 2 matrix and the X* are

1 0 1 1 0 -1 1/ -1 0
0o_ * 1_ = 2 _ -
X_Q(—l 0)’ X 2(—1 O)’ X 2(0 1)’

“Throughout this section indices will be raised and lowered using the metric 7,, =
(-1, 1, 1).
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which constitute a basis of sl(2,R), and the requirement of having determi-
nant equal to one (det p = 1) implies that the parameters u, £, must satisfy
the constraint

u® — e, = 1. (1.17)

This constraint provides, as announced, the definition of a 3 dimensional
anti-de Sitter geometry.

Among the choices of coordinates for this momentum space geometry
used in the 3D-gravity literature, particularly convenient for the purpose of
this section is the choice of coordinates p* such that

p=+/1+p,prl —20p, X", (1.18)

since it is then easy to obtain the (non-linear) composition law of momenta
using the algebraic properties of X# matrices. Multiplying two elements

p=+/1+p,prl —20p, X",
q=+/1+ 2q,q"l—20q, X",

and using the identity

1 1
XrXY = 177“”}1 + 56’“/ p X7, (1.19)
where for the antisymmetric tensor €,,, the convection adopted is €y = —1,

one obtains a simple but non linear relation between the coordinates (p®q),,
of pq and the coordinates p, and g, of p,q respectively:

P® @y =V1+Cqqp,+ 1+ Cppuq —Lle, " pug,. (1.20)

Finally, the identity (1.19) implies that X* satisfy by construction (up to a
dimensional constant) the commutation relations

(X" XY] = e X7, (1.21)

When one proceeds to the quantization of this theory (see for example
Ref.[33]), the commutation rules (1.21) of the basis X* of s{(2, R) contribute
in the determination of the symplectic structure of the theory and one ends
up with the same geometry for momentum space as in the classical theory
and a noncommutative spacetime whose coordinates obey the commutation
relations

[zF, x"] = ihle"” ,aP. (1.22)

The DSR-relativistic symmetries of the emerging framework are already
evident in the classical limit of the construction just described. In fact, the
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classical limit is characterized by spacetime coordinates with Poisson brackets
given by
{a, 2"} = L' a”, (1.23)

and by a momentum space with coordinates p, constrained on a mass shell

governed by
2 <arcsin <\/W))2 =m?, (1.24)

and with law of composition

(p D q)# =V I+ £2quyp# + V 1+ gzp”puqu - gEu Vpp,,qp. (125)

The relevant DSR-deformed relativistic symmetries are particularly sim-
ple since the action of Lorentz-sector generators on momenta remains unde-
formed. Indeed by posing

{N17p0} = P1, {N27p0} = P2, {Rvpo} = O? (126)
{N1,p1} = po. {N2,p1} =0, {R,p1} = —pa, (1.27)
{N17p2} = 07 {N27p2} = Po, {R7p2} = P1, (128)

one finds that the mass-shell (1.24) is invariant and the composition law
(1.25) is covariant. So one here is dealing with a DSR-relativistic frame-
work where the core aspect of the deformation is the action of translation
transformation on multiparticles states. This was so far only left implicit
by noticing that the momentum charges must be composed following the
nonlinear law (1.25). Notice that this implies a deformed action of transla-
tion transformations on multiparticles states. Consider for example a system
composed of only two particles, respectively with phase-space coordinates
Pu, 2" and gq,,y": then a translation parametrized by b, and generated by
the total-momentum charge (p @ ¢q),, acts for example on the particle with
phase-space coordinates p,, 2" as follows

V{p®q)yz"} = {p,,a"} — ¢, g {ps, "} (1.29)

where on the right-hand side it is shown only the leading-order Planck-scale
modification.

Concerning translations acting on single-particle momenta one can notice
that since the spacetime coordinates are such that {z*, 2"} = (e ,a”, one
could not possibly adopt the standard {p,,z"} = —oy, since then the Jacobi
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identities would not be satisfied. Jacobi identities are satisfied if one adopts
the description of translations acting on single-particle momenta given by

2
P a"}y = =61+ %pppp + geﬂ “Pp,. (1.30)

Another example is that treated in Ref.[28], where it was argued that
quantum gravity in 2 + 1 dimensions with vanishing cosmological constant
must be invariant under some version of a k-Poincaré symmetry.

The argument there depends only on the assumption that quantum grav-
ity in 241 dimensions with the cosmological constant A = 0 must be derivable
from the A — 0 limit of 2 + 1 quantum gravity with non-zero cosmological
constant; in fact, in many approaches it is necessary to include a bare cosmo-
logical constant in order to do perturbative calculations properly. Then, it is
shown that the symmetry which characterizes transformations of excitations
of the ground states of a quantum gravity theory in 2 4+ 1 dimensions with
A > 0 is actually quantum deformed de Sitter algebra SO,(3,1), with the
quantum deformation parameter given by

z=In(q) ~ LpVA.

The limit A — 0 then involves the simultaneous limit z ~ Lpv/A — 0, and
it is possible to see that this contraction of SO,(3,1) is not the classical
Poincaré algebra, as would be the case if ¢ = 1 throughout, but it is a
modified Poincaré algebra with the dimensional parameter k ~ L5'. Since
some of these algebras provide a basis for DSR theory, it means that the
theory is a DSR theory, and indeed all the features of DSR (relativity of
inertial frames, non-linear action of boosts that preserve a preferred energy
scale, non-linear modifications of energy-momentum relations...) has been
seen in the literature of 2 + 1 gravity.

The study of 2+1 gravity models, such as those with gravity coupled to N
point particles, gives a class of non-trivial DSR, theories that are completely
explicit and solvable, both classically and quantum mechanically. The ex-
istence of these well-understood examples in the 2 4+ 1 gravity context is a
powerful tool for the conceptual analysis of DSR theories.

The debate on DSR often concerns whether these relativistic deformations
should at all be considered in relation to the quantum gravity problem, and
the fact that they necessarily arise in the 2 + 1 quantum gravity context
provides a strong element of support for the legitimacy of the study of DSR-
deformed relativistic symmetries.
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1.4 Asymptotic Safety

A QFT is said to be an "effective field theory" (EFT) if it breaks down at
some energy scale, and "fundamental" or "UV complete" if it makes sense
up to arbitrarily high energy scales. QCD is an example of the latter case.
Before introducing the basic ideas of Asymptotic Safety, the reason for which
Einstein theory of gravity is instead regarded as an EFT is here reviewed, in
particular why it is not perturbatively renormalizable. Asymptotic safety, in
fact, proposes a strategy to overcome this problem.

1.4.1 Non-renormalizability of General Relativity

The reason for which General Relativity is not perturbatively renormaliz-
able, in the scheme of standard quantum field theory, can be understood
by dimensional analyzing the degree of divergence of one-particle irreducible
Feynman diagrams. The propagator of a field is the 4-dimensional Fourier
transform of the vacuum expectation value of a time-ordered product of a
pair of free fields, so a field ¢ with momentum dimensionality D, has a prop-
agator with dimensionality dp.ope = —4 + 2D4. An interaction term with
ne; such fields and ng., derivatives has dimensionality nge, + 14Dy If dif-
ferent fields interact, this generalizes to nge, + Y 8 ne;Dy. Since the action
must be dimensionless in our & = 1 units, each term in the Lagrangian must
be 4-dimensional to cancel the dimensionality —4 of the differential term
d*z. Hence the interaction must have a coupling constant g with dimension
dg =4 — nger — Z¢ n;Dy. If the Feynman diagram has 7., 4 external lines
for a particular field ¢, the amplitude in the momentum representation has
dimension Z¢> —4Neat ¢ + Negtp Dy. Of this dimensionality —4 come from the
momentum delta function and ey ¢dprope come from the propagators of the
external lines; the coupling constants for a given Feynman diagram with N;
vertices have total dimensionality NV;d,, leaving the momentum space integral
with dimensionality

D (—Ancars+near Do) = (=4) =Y (Newt oprops)—Nidg = 4= nar s Dy—Nidy.
s s s

In estimating the degree of divergence D of a diagram the interest goes
mostly in the region of momentum space where all momenta go to infinity
together. Then the degree of divergence coincides with the dimensionality of
the diagram,
D=4= newysDy — Nidy. (1.31)
¢
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If all interactions have d, > 0, then Eq.(1.31) sets an upper limit on D that
depends only on the number of external lines; that is, on the physical process
in consideration,

D<4= NewgDy. (1.32)
¢

This implies that only a finite number of external lines can yield superficially
divergent integrals. In general one can show that a limited number of diver-
gences appears in case d, > 0 for all interactions and these are removed by
redefinition of a finite number of physical constants and a renormalization of
the fields.

On the other hand, if one has d;, < 0 the degree of divergence becomes
larger and larger as more vertices are included. No matter how many external
lines are added, eventually there will be enough vertices to make the integral
divergent. This is the case of gravity, where Newton constant has dimen-
sion [Gy] = —2. The Feynman rules also involve the graviton propagator,
which scales with the four momentum %, schematically as k=2 = E+—;>2' At
increasing loop orders, the Feynman diagrams of the theory would require
counterterms of ever-increasing degree in curvature. The resulting theory
can still be treated as an effective quantum field theory, but it would still
require a UV completion.

1.4.2 Asymptotically safe gravity

Asymptotic Safety gives an alternative notion of renormalizability ensuring
UV completeness that may lead to a consistent theory of quantum gravity.

Let g;(1) denote the full set of all renormalized coupling parameters of a
theory, defined at a renormalization point with momenta characterized by an
energy scale p. If g;(1) has momentum dimension of dg,, it can be replaced
with a dimensionless coupling,

Gi(p) = p~ % g;(p). (1.33)

Any sort of partial or total reaction rate R may be written in the form
p,(E ~

where D is the ordinary dimensionality of R (e.g., for total cross section
D = —2), E is some energy characterizing the process and X stands for all
other dimensionless physical variables, including the ratios of energies. The
central idea of the renormalization group methods is to recognize that the
reaction rate cannot depend on the arbitrary choice of the renormalization
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point p at which couplings are defined, so i can be taken to be whatever is
preferable, as in particular g = F, in which case one has,

R=FEPf(1,X,5(E)). (1.35)

Thus, apart the factor £, the behavior of the reaction rates depends on the
behavior of the couplings g;(u) as p — oc.

The emphasis here on reaction rates rather then off-shell Green’s functions
has a very important advantage. Mass-shell matrix elements and reaction
rates do not depend on how the field are defined, so they are functions only
of "essential" coupling parameters, i.e. those combinations of the coupling
parameters in the Lagrangian that do not change when the field is subjected
to a point transformation, such as ¢ — ¢+ ¢? for a scalar field ¢. In contrast,
the off-shell Green’s functions will of course reflect the definition of the fields
involved and will therefore be functions of all the coupling parameters in
the Lagrangian, including those inessential parameters that change under a
redefinition of the fields. In the following, g;(x) are only the essential coupling
parameters of the theory.

In order to clarify how to distinguish an essential parameter by an inessen-
tial parameter one can apply the following test. When one changes any un-
renormalized coupling parameter v by an infinitesimal amount e the whole
Lagrangian changes by

0L
L—L+e—. 1.36
+e€ o (1.36)
Suppose one tries to reproduce this change by a mere redefinition of the fields
U (2) = Vp(2) + €F(Un (), Opthn (), ...). (1.37)

The change in L induced thereby is

oL oL L.
= e; (m -0, (m) + ) F,, + total derivatives.
(1.38)

Thus a change in the Lagrangian due to a variation of the parameter v can
be reproduced by a redefinition of the fields by a function F;, such that

oL oL oL
— = -0, | =——— | +... | F,, + total derivatives.
5y 2 (awn@) " (a@m(x))) )

(1.39)
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So the coupling parameter v is an inessential coupling if and only if 7

vanishes or is a total derivative along the solutions of the equations of motion.
For example, in the renormalizable scalar field theory with Lagrangian

1 1
L= —§Z(8u¢8“¢ +m?¢*) — ﬁ)\Z%‘* (1.40)
the field renormalization constant is an inessential coupling, because one can
write 5L

1
57 = ~50u(00"0) (1.41)

along the solution of the equations of motion. On the other hand, neither the
mass m or the coupling A are inessential. Working with essential coupling
only allows one to formulate the condition for asymptotic safety in a very
concise way.

Consider again the problem of determine the behavior of the essential
couplings g;(p). The change in g;(x) under a given fractional change in p is
a dimensionless quantity, and can therefore depend on all the g;(x) but not
on g itself being the only dimensional parameter left after rescaling. Thus
the rate of change of g;(x) with respect to rescaling of the renormalization
point x may be written as a generalized Gell-Mann-Low equation

ugﬁmoz@@m». (1.42)

Each specific theory is characterized by a trajectory in coupling constant
space, generated by the solution of Eq.(1.42) with given initial conditions. If
the coupling g;(u) approach a fixed point ¢* as u — oo then Eq.(1.35) gives a
simple scaling behavior R — EP for E — oo. In order for g;(u) to approach
the fixed point it is necessary that the beta functions vanish at that point
and also that the coupling lie on a trajectory g;(x) that actually hits the fixed
point in the UV. The surface formed by such trajectories is called "ultraviolet
critical surface", and theories lying on the UV critical surface have a sensible
UV limit, since all the essential couplings hit the fixed point. In particular,
if the UV critical surface is finite dimensional, the arbitrariness of the choice
of the coupling constants is reduced to the choice of a finite number of them,
which can be determined by a finite number of experiments. A theory will
be called "asymptotically safe" if its essential coupling constants lie on the
finite-dimensional ultraviolet critical surface of some fixed point, therefore
being UV-complete and predictive. A perturbatively renormalizable, asymp-
totically free field theory such as QCD is a particular case of asymptotically
safe theory. In that case the fixed point of the renormalization group is
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a Gaussian fixed point, where all couplings vanish, and the critical surface
is spanned, near the fixed point, by the couplings which are perturbatively
renormalizable.

Without entering in the detail of the discussion about the evidence for a
fixed point, this subsection focuses on having an understanding of the running
of Newton constant, following Ref. [35]. The coefficient of Einstein-Hilbert

action is the square of Planck mass Mp, = T6nC In the quantum theory it

is expected to diverge quadratically, leading to a beta function of the form
uiM,%l = 2ay/%, (1.43)
dp

where a is a positive constant. This expectation comes from a number of dif-

ferent calculations that show that the beta function has this kind of behavior

([36]-[40]). Let G = Gu? be the dimensionless Newton constant. Then, the

beta function for G is ~

dG

M dji

This beta function has a IR attractive fixed point at G = 0 and, if a > 0,

also a UV attractive nontrivial fixed point at G = 1/16ma. The solution of
the RG equation (1.43) is

= 2G — 32maG?. (1.44)

My(n) = Mp(0) + ap’. (1.45)

One can see then that for < Mp;(0) the dimensionful G is constant while
the dimensionless G scales like (2. This is the regime experienced in everyday
life. On the other hand, for p > Mp(0) the dimensionful G scales as p~>
and the dimensionless G is constant. This is the UV fixed point regime.
Assuming that this is the true behavior of Newton constant and of all
other couplings in the theory, it would seem that one can take the limit
1 — oo and hence resolve arbitrarily small distance scales, in apparent, con-
flict with all the arguments attributing a non classical, smooth geometry to
spacetime at very small scales. Is this really the case? The point is that
any dimensionful quantity such as p does not have any intrinsic value, but
one can attribute to it a value only when one measures it in some unity. So
far ;1 has been used as a unity itself, but p will always be equal to 1 in u
unity so, in order to give meaning to the limit ;4 — oo, one has to use some
other units. For example, one could use Planck units, where the value of
is /G, having set ¢ = A = 1. Since G is a running coupling, one should
specify at what scale it is to be evaluated. If one wants to measure the size of
objects at very small scales, then the value of G that is more relevant for this
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measurement is its value at the scale of the experiment. Therefore, one has

that the more proper value of the cutoff in Planck units is u/G(u) = \/5,
which means that in the correct units p is indeed limited. Since p itself
is the upper bound for the momenta one can talk about in the theory, one
concludes that one cannot talk about momenta greater then Planck mass,
or proper distances shorter than Planck length. Notice that using another
coupling g; of dimension d; and 9@1 /% a8 a unit of mass gives the same result
as using Planck units. In fact since the theory is asymptotically safe, g;u?
will still go to a constant value in the UV.

The very definition of asymptotically safe theory implies that if one re-
strict himself to "proper" measurements, one cannot probe distances shorter
than the Planck length. The reason is that, since the theory is fundamental
one cannot appeal to any external unit of mass or length. The unit has to be
chosen within the theory, and in the fixed point regime all the possible can-
didates appear in constant, finite ratios between themselves and the cutoff.
In this sense one can never have a "trans-Planckian" regime in Asymptotic
Safety. After all, at the fixed point one has scale-invariance and in a fun-
damental, scale-invariant theory one cannot talk of distances. One can only
speak about distances in the low energy, sub-Planckian regime, and in that
regime the shortest length is the Planck distance.
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Chapter 2

Preliminaries on Relative Locality

"Do we share the same time?”. Probably, this question could never receive
a different answer from “Of course we do!”, if posed to someone that ignores
Special Relativity. Independently on the fact that the answer turns to be
the unexpected "no”, Einstein taught us that such a question is not silly nor
merely philosophical, but it is an experimental question. Then, once space-
time substitutes space and time, there is no reason for which one should not
ask "how does an observer know that she lives in a spacetime? And if so how
does she know that it is the same spacetime of any another observer?”. These
are the fundamental questions that Relative Locality poses as a starting point
of reflection.

A local observer does not directly observe any event macroscopically dis-
tant from the measuring apparatus. The local observer could consider herself
as a “calorimeter” with a clock. Her most fundamental measurements are the
energies and angles of the quanta she emits and absorbs, and the time of
these events. The idea that she lives in a spacetime is constructed by in-
ferences from her measurements of energies and momenta. This was vividly
illustrated by Einstein’s procedure to give spacetime coordinates to distant
events by exchanges of light signals. Adopting this procedure, the observer
measures the time it takes the photon to travel forth and back but does not
care about the energy of the photon, resulting in a projection into spacetime.
When she does so, she presumes that the same spacetime is reconstructed
by the exchange of light signals of different frequencies. One is also used to
assume that different local observers, distant from each other, reconstruct
the same spacetime by measurement of photons they send and receive.

But why should the information about the energy of the photon one uses
to probe the spacetime be inessential? Might that be just a low energy
approximation? And why should one presume that the same spacetime is
reconstructed by two observers at a cosmological distance from each other?
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One can see (following Refs.[102],[103]) that absolute locality, which pos-
tulates that all observers live in the same spacetime, is equivalent to the
assumption that momentum space is a linear manifold. This corresponds
to an idealization in which one throws away the information about the en-
ergy of the quanta one uses to probe spacetime and it can be transcended in
a simple and powerful generalization of special relativistic physics which is
motivated by considerations on unification of gravity and quantum physics
such as those discussed previously. Locality will turn to be linked with the as-
sumptions made about the geometry of momentum space. Thus, the concept
of absolute locality is relaxed in a controlled manner by linking this to a new
understanding of the geometry of momentum space. In this framework there
is no notion of absolute locality, different observers see different spacetimes,
and the spacetimes they observe are energy and momentum-dependent. Lo-
cality, a coincidence of events, becomes relative: coincidences of events are
still objective for all local observers, but they are not in general manifest in
the spacetime coordinates constructed by distant observers.

In the next section it will be shown how Relative Locality manifests in our
"story teller" model, the k-Minkowski non-commutative spacetime. Then in
Section 2.2, the basic principles and formulation of relative locality are given,
independently on any pre-existing model. Then in Section 2.3 a specific real-
ization of a theory with relative locality will be given. This will be the context
in which the original results of this thesis are discussed in the following.

2.1 k-Minkowski fuzziness

For the original objective of spacetime noncommutativity, ¢.e. that of pro-
viding a characterization of spacetime fuzziness at the Planck length, the
implication of the k-Minkowski commutators [Z;,Zo] = iZ; remained un-
clear for relatively long time.

This section reports what might be significant steps forward in the com-
prehension of this problem made in Refs.[99], [100], [101]. The key in the
strategy of analysis proposed is a new type of "pregeometric representation”
of k-Minkowski. The idea of pregeometric representation originates (see, e.g.,
|98|) from the conjecture that k-Minkowski might be an effective description
of particular physical regimes of a more fundamental theory of quantum
gravity. From this perspective it might be natural to describe k-Minkowski
noncommutativity in terms of standard Heisenberg quantum mechanics, in-
troduced at some level of the description. Technically such a description
allows reformulating the complexity of k-Minkowski commutation relations
in terms of (a few copy of) the familiar Heisenberg algebra.
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Before developing this pregeometric description, it is better to stop think-
ing on when and how one should make room for noncommutativity of space-
time coordinates, taking as starting point our current theories. Evidently
the formalism of classical mechanics do not make room for noncommutative
spacetime coordinates. There is no problem with this, since it is expected
that classical mechanics would emerge as an approximate description in a
regime for which one can consider i — 0, and this limiting procedure might
be such that also the noncommutativity of spacetime coordinates is removed.
The problem is that it is not straightforward to allow k-Minkowski spacetime
noncommutativity also in ordinary quantum mechanics. This is due to the
fact that in ordinary quantum mechanics time is not a self-adjoint opera-
tor but just an evolution parameter (therefore classical and commutative),
whereas for k-Minkowski it should be an operator that does not commute
with the space coordinates operators.

In Ref. [99], authors proposed to address this issue using the covariant
formulation of quantum mechanics. In this formulation both the time coordi-
nate and the spacial coordinates are well-defined operators on a "kinematical
Hilbert space” and both play the same role of ”partial observables”. In the
formulation of covariant quantum mechanics they commute with each other
and do not commute with their respective conjugate momenta. The proposal
is that this is the right point to introduce the k-Minkowski commutators
(1.1),(1.2).

In this perspective, the kinematical Hilbert space plays a role within the
covariant formulation of quantum mechanics that is analogous to the role
that Minkowski spacetime plays in classical mechanics of special-relativistic
particles. In fact, Minkowski spacetime is the arena where the dynamics of
relativistic particles is determined by enforcing the Hamiltonian constraint.
In the same way, the kinematical Hilbert space (that codifies the geometry of
spacetime) is the arena where the dynamics of relativistic quantum particles
is produced by enforcing the Hamiltonian quantum operator constraint.

After introducing the basic concepts of covariant quantum mechanics in
the next subsection, the properties and in particular the relativistic symme-
tries of empty k-Minkowski spacetime will be analyzed in Subection 2.1.2.
This analysis has its analogous in the study of the relativistic structure of
Minkowski spacetime. Even if none of the properties of spacetime is directly
observable (Minkowski spacetime properties are inferred from observation on
the motion of classical relativistic particles in it), it is nevertheless an exercise
that needs to be done since these formal properties affect the physical prop-
erties of the theories formulated on this spacetime. Similarly the properties
of observables-operators on the kinematical Hilbert space are not themselves
subjectable to measurement, but they usefully characterize the spacetime
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arena where then the quantum dynamics of particles on the physical Hilbert
space takes place. Finally the description of a free particle propagating in
this quantum spacetime will be discussed in Subection 2.1.3.

2.1.1 Covariant Quantum Mechanics

Here the basic concepts of covariant formulation of quantum mechanics that
will be used in the following description of the fuzziness of k-Minkowski will
be introduced. For more details the reader can refer to Refs. |93],[94],|95],[96],
|97| and references therein.

Consider a free non-relativistic particle in one space dimension. Let
(X, T) be its Schrodinger wave function, namely a solution of the free
Schréodinger equation!

1 o

X1 =5 0x2

ir ( (X, T). (2.1)
The Hilbert space H of the quantum theory is the space of normalizable so-
lutions of the Schrédinger equation. It can be represented by the space L*[R]
of square integrable functions on space alone?. The wavefunction ¢ (X, T) is
represented by the square integrable function W(X) = ¢ (X, 0) at fixed time
T = 0, and the state is denoted by |¥). In this representation the scalar
product is

([0 — / AXT(X)W(X), (2.2)

The spacetime wavefunction ¢ can be reconstructed from ¥ using the prop-
agator. The generalized eigenstate of the position operator X is denoted by
|X') and the generalized eigenstate of the unitarily evolving Heisenberg posi-
tion operator X (7°) by |X;7T) (so that |X) = |X;0)). Thus ¥(X) = (X|¥)

! Using units such that A = 1.

2More precisely, the theory is defined on a rigged Hilbert space S C Ho C S’ formed
by a Hilbert space Hg, a proper subset S in Hp and its dual &, with their natural
identifications. A manifold M and a measure du determines such a rigged Hilbert space
Su C Hum C Sy where Sy is the space of smooth function on M with fast decrease
(Schwarz space), Ha = L2[M,du], and S}, is the space of tempered distributions on M.
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and (X, T) = (X;T|V). The propagator of the Schrodinger equation is
WX, T: X'\ T') = (X; T|XT') = (X[ T X)
= [ dpxie T )

_ / dp P =X~ o (1=T")] (2.3)

( 2mm ) [,m(X - X’)Q]
=|——=) exp|li———F+]|,

(T -1 2(T—=1)

where H is the Hamiltonian and to solve the last integral one has to analyt-
ically continue time to the complex plane in order to render the integrand
convergent, then to take limit for vanishing imaginary part of the complex
time variable. When viewed as a function of X and 7', with X’ ant 7" held
fixed, this is a solution of the Schrédinger equation which at time 7' = T" is
a delta distribution centered at X = X’. Each function U(X) determines a
solution of the Schrédinger equation by

WX, T) = / AX'W(X,T; X', 0)¥(X"). (2.4)

Thus the wavefunctions of the Schrodinger equation can be characterized by
the functions W(X) of space only.

It is also convenient to consider the following states. Given any compact
support complex function f(X,T'), the state

|f):/dXde(X,T)\X;T) (2.5)

is in Ho, for the Schrodinger wavefunction of |f) is

(X, T) = (X;T1f)
= (X;T|/dX’dT’f(X’,T')|X’;T’) (2.6)
:/dX’dT’W(X,T;X’,T’)f(X’,T’)
and it is a solution of the Schrodinger equation as well. |f) is called the

“spacetime smeared state” of the function f. The scalar product of two
spacetime smeared states is

(FIF) = / AXdTdX'dT' (X, T)W (X, T; X', T f' (X', T"). (2.7)

39



These states generalize the usual wave packets for which f(X,T) = f(X)d(T).
Conventional wave packets can be thought as being associated with results
of instantaneous position measurements with finite resolution in space. It
can be shown that these spacetime smeared states can be associated with re-
alistic measurements, where the measuring device has finite resolution both
in space and in time.

A conventional Hamiltonian system, like the free particle is, is formulated
in terms of a configuration space Cy and a Hamiltonian H, which is a function
on the phase space I'g = T%Cy, i.e. the cotangent bundle of the configuration
space. The Hamiltonian generates the evolution of the system in an external
(independent) variable T'. The predictions of the theory are the values of the
phase space variables as function of 7T as, for the example here considered,
X(T). Thus, more accurately, what the theory actually predicts are not the
individual values of T" and X, but rather the relations between these values.
A basic example is the uniform motion X (7') = vT', which can be expressed
by means of the two equations X = s, vT'" = s: although s is an arbitrary
parameter, these two equations determine a relation between X and v that
is not arbitrary, and is the actual prediction of the theory. In the conventional
dynamical system, the time variable can be naturally chosen as the evolution
parameter, but in general this is not the case, as happens for example in
General Relativity. One is then interested in a description of the system
that establishes relations between values of T and X, and these relations
are what an observer can compare with combined measurements of 7" and
X. Thus, T and X are called "partial observables”, whereas X (T') is called
a “complete observable”. This suggests that, in order to reformulate this
system in a covariant form, one should promote 7' to a configuration space
variable: the extended configuration space (the space of partial observables)
includes the conventional configuration space Cy and time 7. So for the
conventional Hamiltonian system one has C = Cy x R, where the coordinate
of R is identified with 7. Also, one poses the general Hamiltonian to be
H = pr + Hy, where pr is the conjugate momentum to 7" (that turns out to
be minus the energy). Now, a relativistic system generally has an extended
configuration space that is not reducible to the simple form C = Cy x R and
the Hamiltonian would be a function on the extended phase space I' = T*C
and H # pr + Hy. This means that time is treated in the same way as the
other configuration variables.

So, one is now interested in quantizing a system of the form (C, H). Since
the kinematics of the classical system is defined by the extended configuration
space, in order to proceed with its quantization it is natural to consider the
“kinematical” rigged Hilbert space S C KL C &’ defined by C and the measure
dXdT. That is, S is the space of smooth functions f(X,7T") on C with fast
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decrease, K = L?|C,dXdT), and & is the space of tempered distributions
on C. S is the so-called "kinematical state space” and its elements f(X,T)
“kinematical states”.

The quantum dynamics is determined by the "Wheeler-DeWitt” (WdW)
equation

Hy(X,T)=0. (2.8)
The Schrodinger equation can be written in this form, of course,
.0 1 02

but the WdW equation applies also for more general Hamiltonian functions
for which H # pr + Hy. The solutions of this equation form a linear space
H.

The key object for the relativistic quantum theory is the operator

P:/mﬂﬂ (2.10)
from S to S’. In what follows, it may also be denoted by 0(H). It can be
shown that this operator maps arbitrary functions f(X,T) of S into solutions

of the WAW equation. For the case of the Schrodinger equation, for example,
one has

[PFIX,T) = / dr T/ £ (X, T)
_ /dmw(za/aﬂ . 62/8X2)/dpdEei(pX_ET)f(% E)
p_ i(pX—ET) [
_/dpdEa( — e 'f(p. B)

Z/WﬂMQZVWE@)

which is a solution of the Schrédinger equation, indeed. One can also develop
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further the calculation and write
PAXT) = [ dpab (e~ 20D fp, )
= / dpdE §(E — %)ei@X—Eﬂ / dX'dT"e”"PX'=ET) (X' T
= / dx'dT’ / dpdE §(E — %)ei[ﬂx—x’)—E(T—T’ﬂ f(X, 1"

= / AX'dT' W(X,T; X', T) f(X',T").
(2.12)

The matrix elements of P,

(fIP| " = /dXdeX’dT’f(X, TYW(X,T; X" T (X', T, (2.13)

define a degenerate inner product in S. Dividing S by the kernel of this
inner product, that is, identifying f and f’ if Pf = Pf’, and completing in
norm, one obtains a Hilbert space that might be denoted (S, (:|P|-)). But
if Pf=Pf then f and f’ define the same solution of the WdW equation.
They define the solution that corresponds to the spacetime smeared state
|f) defined previously (compare equations (2.12) and (2.6)). Therefore, an
element of this Hilbert space (S, (-|P|-)) corresponds to a solution of WdW
equation: this Hilbert space (S, (-|P|-)) can be identified with the space of
the solutions of the WdW equation H. So

P:§S—H
f= 10

It follows that P equips the linear space H of the solutions of the WdW
equation with a Hilbert space structure: if ¢» = Pf and ¢/ = Pf’ are two
solutions of the WdW equation, their scalar product is defined by

(W) = (fIPIf k- (2.15)

The partial observables T and X are described as self-adjoint operators
on K which act simply by multiplication. Their common generalized eigen-
states |X,T") are in S. Notice that these states are different from the states
|X; T, which are eigenstates of the complete observable X (7") and deter-
mine solutions to the Schrédinger equation. The relation between the two is
|X;T) = P|X,T). These states | X, T) satisfy

(2.14)

(X,T|P|X", T = W(X,T; X', T"). (2.16)
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Notice that one also finds
W(X7 T le T/) = <X7 T|X/7 T/>7'[ = <X7 T|PTP|X/7 Tl)’Hv (217)

which is consistent with Eq.(2.16) because the definition of the scalar product
in # is given by Eq.(2.15).

One can view these states | X, T') as "kinematical states” that do not know
anything about dynamics. They correspond to a single "quantum event”.
Their ("kinematical”) scalar product in IC, (X, T'| X", T") = §(X—=X")6(T—T"),
expresses only their independence, while their "physical” scalar product (2.16)
in H expresses the physical relation between the two events by mean of the
presence of the particle propagator.

One can now propose the following axioms of a covariant quantum me-
chanics (only those axioms which are used in the following application to
k-Minkowski are reported here):

o Kinematical states: Kinematical states form a space S in a rigged
Hilbert space S C K C §'.

e Partial observables: A partial observable is represented by a self-adjoint
operator in K. Common eigenstates |s) of a complete set of commuting
partial observables are denoted quantum events.

e Dynamics: The dynamics is determined by a self-adjoint operator H
in IC, the (relativistic) Hamiltonian. The operator from S to &’

P = /dre”H (2.18)

is (improperly) called "projector” and its matrix elements
W(s,s") = (s|P|s) (2.19)
are called transition amplitudes.

e Physical states: A physical state is a solution of the Wheeler-DeWitt
equation
Hy = 0. (2.20)

Equivalently, it is an element of the Hilbert space H defined by the
quadratic form (-|P|-) on S.

o Complete observables: A complete observable A is represented by a
self-adjoint operator on H. A self-adjoint operator A in I defines a

complete observable if it commutes with the relativistic Hamiltonian
H.
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2.1.2 Pregeometry of k-Minkowski and fuzzy points

This section deals with the study of the properties of the noncommuting
coordinates of a 1+1-dimensional k-Minkowski spacetime at the level of the
kinematical Hilbert space of a covariant formulation of quantum mechanics.
The units adopted are such that ¢ = A = 1 and the conventions for the
Minkowski metric tensor 7, = {1, —1}.

The pregeometric representation is given as follows. Given the phase
space observables for the covariant formulation of 2D quantum mechanics,

[7?‘-07 qAO] = i? [7%07 qu] = 07
(2.21)
(71, Go] = 0, [T1, @1] = —1,
the k-Minkowski coordinates y, 21 are described as
Zo = qo, T = (jﬁmoa (2.22)

that indeed satisfy (1.1) and (1.2). In fact, for example,

(21, %0] = [G1€°, Go] = @[, Go] = ilGie"™ = il3.

One finds in this pregeometric description also opportunities for describ-
ing the k-Minkowski differential calculus and the k-Poincaré transformations
generators. For the translation generators, by posing

Py f(&o, #1) <— [7o, f(dos 1e™)]
(2.23)

P> f(&o, #1) «— e 7 [71, fdo, G1e™)],

one does reproduce all the properties of k-Poincaré translation generators
summarized earlier in Chapter 1. Notice that the properties of the elements
a,, of the differential calculus given in (1.13) can be reproduced by combining
ordinary parameters a, and the (partial) observable 7:

do = Qop, dl = 0,1667?0. (224)

In 2D k-Minkowski spacetime boost generator should satisfy the following
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properties of commutation with translation generators and of coproduct?:

—i [N, B> f(z) = P> f(2),

[N, P £(2) (1‘— d

Yo
AN=N®@1l+e " ®N.
The boost operator takes the form
B=1+dy, dy=iéN, (2.25)
and the noncommutative boost-transformation parameter is
o] =itd, |6 ] =0, (2.26)

The pregeometric description of boost parameter and generator is given by
£=ge™,
Nrv f(j) = 6—57?0 [ﬁ> f(qA0> leegﬁo)} )

with

R 6257?0 . 1 E R R o
n= (T + 57?%) q1 — T1qo. (2.27)

3Notice that in 2D k-Minkowski the coproduct of boost generator has the same form
of the coproduct of translation generators. Then, since the noncommutativity properties
of the transformation parameters are proven to be directly linked to the coproduct of the
generators of the transformation, the properties of boost transformation parameters will
immediately follow. In 4D this would no longer be the case, the coproducts of boosts
generators being different from those of translation generators. This coincidence in the
2D case simplifies the analysis from a technical point of view, but conceptually there is no
difference with the 4D k-Minkowski.
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From these definitions one finds that under the action of boost

7 =g 4+ i€(N > 7o)

. o o\ LA e — 1 l.5)\ . NN
=g + (i€e™) e~ oy T 371 ) v Mo, To
=Ty — {7,
~/ ~ .o ~ (228)
7y =71 + (N >7)
. . A o 6257?0 -1 g . . o
=T + (Zfem) et {(T + 5”%) Q1 — 7T1€_I0>7T1}

. e2ro 1 ¢
:”1‘5<7+§”f)'

It has been already implicitly specified that the states of the kinematical
Hilbert space for k-Minkowski will admit a representation (in the "pregeo-
metric momentum space representation') as square-integrable functions of
variables 7y and 7;. In order to define properly the prescription of square-
integrability one has to specify a measure on this kinematical Hilbert space.
One shall characterize the scalar product in momentum space as

(0) = WlOlw) = [ Drm)w (m)OmIo(m),  (229)
where the measure (that must be invariant under the action of boost) is
D(m,) = dmodme” ™. (2.30)

One sees that, with this measure, 7 is Hermitian, so the boost transformation
operator (2.25) is unitary and preserves the scalar product:

W'y = IUNB)U(B) W) = (¥le*7e™ M y) = (¥[v). (2.31)

It is now time for describing fuzzy points of k-Minkowski and analyze this
fuzziness from the perspective of distant observers in relative rest, observers
connected by a pure translation. First one needs a description of these fuzzy
points. Evidently within the pregeometric description a point of k-Minkowski
will be described as a state in the pregeometric Hilbert space (the Hilbert
space on which the pregeometric operators ¢, and 7, are defined). It is indeed
easy to see that no state in the pregeometric Hilbert space gives absolutely
sharp values to 2y and #; simultaneously: in light of 2y = 4o, 21 = ¢1€™, in
order to have a sharp value on zy requires an eigenstate of ¢y but, for such
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eigenstate, 7y is infinitely fuzzy (dmp =~ oc), which in turn implies that Z;
cannot be sharp. So all points in k-Minkowski must be fuzzy?.

In order to study the properties of k-Minkowski fuzziness one can consider
Gaussian states on the pregeometric Hilbert space. Adopting a pregeometric
momentum-space representation this states take the form

_(mg—7)? _ (mg—7g)? S
102 103 eim0do—im1q1 (2_32)

Vo, a1 (Wm e Uu) = Ne

with parameters 7y, 71, 09, 01, and ¢y, q1, these being highlighted in the no-
tation since the issue of localization of the particle is predominantly con-
nected with those two parameters, which determine the expected values for
the pregeometric position coordinates ¢y, ¢;. Essentially 7, 7; have the role
of expected values for the pregeometric momenta 7, 71, whereas og, o char-
acterize the uncertainty for @y, 7. /N is a normalization constant obtained
by requiring (V|W) = 1, from which

efﬁoe—(£00)2/2

N? = (2.33)

2mog0

The properties of points of k-Minkowski spacetime are characterized by

evaluating in the Gaussian pregeometric state the mean values and the un-
certainties of the operators Zo, ;. Beginning with the time coordinate:

4This is true with the only exception of the origin 29 = #; = 0 but this can be added as
a limiting case for what is to be discussed in the following, where it is made evident that
even if an observer describes the point in his origin as absolutely sharp, a distant observer
describes that same point as fuzzy.
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This constant contribution to Z( is expected on the basis of the fact that ¢ is
not Hermitian, and the Hermitian operator obtainable by ¢y that can be used
as k-Minkowski time coordinate is & = ¢y — i//2. However, one can keep
working with the previous choice of time coordinate for two main reasons: the
first is that the physical properties of k-Minkowski will have to be formulated
in terms of operators that commute with the Hamiltonian constraint, and k-
Minkowski time coordinate is not one of these. The second is that, when one
is interested in Zo as a partial observable on the physical Hilbert space, the
most meaningful features are found to be inevitably formulated in terms of
differences among values of this operator. Therefore this constant does not
give any contribution.
Continuing the calculations one has
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In summary, the following expression for mean values and uncertainties
of the operators zy and Z; have been found:

. I
. . - 1
0%o =1/ {G5) — 7§ = 200 (2.34b)
and
71 = (G1e'™) = grefMe(t00)/2, (2.35a)
1

, 1/2
0%y = \/<(dlefﬁ0)2> — 72 = el {@ +q (1 — e~ to0) )} . (2.35b)
1

From these expressions one can already see that for fixed values of ¢y, 79, 09, 01
one finds larger fuzziness of ; at large values of ¢, because of the contri-
bution to §%; by the term with ¢? in the last equation. However it is more
interesting to study how distinct observers related by a pure translation char-
acterize the fuzziness of the same point. To see this one has to implement
a translation transformation on a fuzzy point of k-Minkowski. Within this
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pregeometric description the action of the operator dp of Eq.(1.14) on a
function f(Z) is easily found to be

dp > (g, 1) +— ia"[7,, f(do, Ge™)], (2.36)
since
dp = iCALMPu = idoPo — idlpl = ’éa,opo — 'éa,1€Z7FOP1

and then recalling the action (2.23) of translation generators. So this action
involves only familiar commutative transformation parameters a* and stan-
dard translations (acting by commutators) at the pregeometric level. This
allows implementing translation transformations straightforwardly:

Tl>£i’0 :Zi'0+dpl>£i’o ::i“0+ia“[fru,(j0]

. N (2.37)
= To — @p = qo — Qo,
T> i’l = i’l + ia“[fru, Cj1€ﬁr0]
= &y +ia' [y, §1)e™
Lo (2.38)

=Ty —iay(—i)e

The mean values of uncertainties of 7'> z,, on the Gaussian state (2.32),
are then immediately found:

14
(T'>20) = Go — ap — ZE, (2.39a)
1
and
202

(T 1) = (G — a))e™e 50, (2.40a)

B 1 ) s 1/2
S(T > &) = e’ P (@1 — ar)” (1 —et "o)} : (2.40D)

1

The interpretation here is of course that operators z, are operators char-
acterizing the distance of a given (fuzzy) point from the frame origin of some
observer Alice, and T' >, are the operators characterizing the distance of
that point from the origin of another observer Bob, purely translated with
respect to Alice. Comparing Egs.(2.34),(2.35) with Eqgs.(2.39), (2.40) one
can recognize two main features:
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e The same point appears to be more fuzzy to a distant observer than to
a nearby observer.

e The point at Alice is not described as at Alice in the coordinatization
of spacetime of observer Bob, and wvice versa the point at Bob is not

described as at Bob in the coordinatization of spacetime of observer
Alice.

This second feature is characteristic of Relative Locality and will be discussed
in detail in the following. As anticipated in the introduction, one can see
that it is possible to formulate a consistent relativistic theory of interacting
particles in which the concept of locality is weakened, from the absolute
locality of the standard physics to a relative locality. In the first case all
observers agree on characterizing all the interactions as local (there are no
instantaneous-interaction-at-a-distance, the particles interact at one point
of spacetime), independently on their distance from the interaction event
or on their motion relative to the interacting particles; in the other case
observers which are local ("near”) to the interaction characterize it as local
but distant observers might (erroneously) infer from their observations that
the interaction is not local.

2.1.3 Fuzzy worldlines

The properties of boost strongly characterize the form of the on-shell con-
dition, which in turn, as it has been seen in the section dedicated to the
covariant formulation of quantum mechanics, through an appropriate Hamil-
tonian constraint governs the relationship between the kinematical Hilbert
space and the physical Hilbert space. On the basis of the properties derived
above one finds that the d’Alambertian operator that is invariant under the
action of boosts is the /-deformed

2\° i i
Of = (Z) sinh® (70) — e toq2, (2.41)

Then for massless particles the Hamiltonian operator that enforces the on-
shellness condition and should vanish on physical states (WdW equation) is

simply
2 2 . 2 67/:‘-0 — b7 ~2
H = 7 sinh - )¢ o (2.42)

One can proceed to study the physical scalar product (¢|¢)y = (¥|6(H)O(mo)|9),
where ©(m) specifies a restriction to positive-energy solutions only. In the
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momentum space representation this writes

(Pl = / dmydmg ™ §(H)O (o)™ (m,) (). (2.43)
Here it will be now considered the case of a localized massless particle, de-
scribable in terms of the Gaussian state®

_ (7’0*7;0)2 _ ("0*7;0)2 o
. oqr — 4o 4o 1T0q0—1T1q1
\1160761 (Wua T s Uu) = Ne 0 e (2.44)

where N now is a new normalization constant that is computed by
N2 = / drmydy e S(H)O(10) [ Wy (i Ty )2 (2.45)

W4, 4 1s a state in the physical Hilbert space of relativistic free-particle quan-
tum mechanics, so it identifies a worldline that is fuzzy, as will be clear
shortly. The expectation in W; 5 of the measurable quantity described by
the self-adjoint operator O is computed in terms of (Vg 4 |O|Wq 4 ).

One now has to look for a well-defined complete observable suitable for
the characterization of the fuzziness of the worldline. The apparently obvious
choices 2y, 1 are actually not suitable for this task because they are not self-
adjoint operators on the physical Hilbert space (in particular they do not
commute with H). One should expect this since these two operators are the
k-Minkowski version of the partial observable time and position operators
of covariant quantum mechanics. So what is really needed is a combination
between these two quantities that gives a complete observable. Considering
a free particle, classically speaking, one could imagine that it should go on a
straight line. This line is determined completely once the intercept and the
velocity are known. Authors in [101] found the following operator:

A = o (gl — Vi — %[q}), V]) : (2.46)
where V is defined as V = (9H/07°)'0H/0x'. A is self-adjoint and com-
mutes with H, and so it is a good observable on the physical Hilbert space.
Also, in the classical limit it evidently reduces to the intercept of the parti-
cle worldline with the z; axis. One may notice that A is describable as an
(-deformed Newton-Wigner operator, which is well known to being the best

°In the massless particle limit, one must proceed cautiously: W;,. g, (7,; 7, 0,,) must be
replaced by W . (7,; Ty, 04) = exp(—a/73) W4, 4, (Ty; Ty 04) With o a small infrared
regulator which never actually matters in the results here reported.
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localization estimator within special-relativistic quantum mechanics (it can
only be questioned for localization comparable to the Compton wavelength
of the particle, but this conceptual limit is not very relevant for the level of
localization achieved by particle production at, say, a quasar).

For conceptual clarity, the focus here is on the analysis of the properties
of A for the case of ¥y g, i.e. for o = ¢ = 0. One finds that

(Wo,0|A[¥o,0)% = 0, (2.47)

so this is a case where the particle intercepts the observer Alice in her origin.
The fact that this intercept is fuzzy reflects the fuzziness of the worldline
described by Wy ¢, and in particular the leading ¢-dependent contribution to
this fuzziness is characterized by

£{mo)

202’

3 Af = ((Wo,0[ A% Wo,0)2)1g = (2.48)
where for simplicity it has been assumed that oy is small enough, in compar-
ison with oy, 7 to allow a saddle point approximation in the 7, integration;
then o (without indices) is the effective Gaussian width after the saddle point
approximation in m : 072 = o7 % + (V)%052.

In the interpretation of the formalism proposed by the authors in Ref.[101]
Eq.(2.48) gives the fuzziness of the worldline at the point where it crosses
the origin of Alice’s reference frame. It is of interest also considering the
perspective given by observers reached by the particles at a cosmological
distance from Alice. These observers are those connected to Alice by a pure
translation, so that for them the state of the particle is ¥,, ,, and are such
that (A) = (Vo 0| AWy 0,0 = 0. Finding these observers consists in
finding the translation parameters ag, a; such that (Vg o| T~ AT | Vg o)g = 0,
where T is the translation operator previously defined. This leads to a one-
parameter family of solutions (the family of observers on the worldline),
which takes the form a; = (V)aq.

It is important to notice that these observers with vanishing expectation
value for the intercept have values of the uncertainties of the intercept 6.4

given by

t(a)
Oy = (W, a0y, o~ (Gl + B0%3) . (2)

So a quantum spacetime picture is offered here: one can interpret our observer
Alice, the observer on the worldline for whom the fuzziness of the intercept
takes the minimum value, as the observer at the source (where the particle
is produced); then the intercept of the particle worldline with the origin of
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the reference frame of a distant observer (which might detect the particle)
has larger uncertainties. Notice that, since 5.,4[25] goes as (Lag)?, if the particle
travels a long distance (a cosmological distance) its fuzziness "benefits” of a
sort of amplification. Therefore, from this formalization of k-Minkowski it
is possible to extract (if one proceeds with the analysis) in principle observ-
able phenomenological predictions as, for example, an anomalous blurring of
images of distant quasars.

2.2 The principle of relative locality

The previous section showed how relativity of locality emerges in k-Minkowski
non-commutative spacetime. Here the basic formulation of Relative Locality
will be given, without relying on any specific model of quantum spacetime.
In fact the main ingredient is the geometry of momentum space.

The approximation used in this study is that in which both A and G yewion

/| h
may be neglected while their ratio Mp; = o is held fixed®. In this
Newt
approximation gravitational and quantum effects erlrliz;; both be neglected, but

there may be new phenomena on scales of momentum or energy given by Mp;.
At the same time, because Lp = /hG newton — 0 no features of quantum
spacetime geometry are expected to be relevant.

Since this approximation gives an energy scale, but not a length scale,
one presumes that momentum space is more fundamental than spacetime,
according to the operational point of view mentioned before. Thus, once the
deformation of the geometry of momentum space by the scale Mp; has been
established, the properties of spacetime will be derived from the dynamics
formulated in momentum space.

2.2.1 Defining the geometry of momentum space

The theoretical framework of Relative Locality takes an operational point of
view in which one describes physics from the perspective of a local observer
who is equipped with devices to measure energy and momenta of elementary
particles in her vicinity. It is also supposed that the observer can measure a
"local proper time" with a clock. She constructs the geometry of momentum
space from measurements made of the dynamics of interacting particles. It
is assumed that each choice of calorimeter is a preferred choice of local co-
ordinates k, on momentum space. Notice that k, measure the energy and

6Units are such that ¢ = 1.
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momenta of excitations above the ground state, hence the origin of momen-
tum space, k, = 0, is physically well defined.

A local observer can make two kinds of measurements. One type of
measurement, can be done only with a single particle and it defines a metric
on momentum space P. In fact, it is assumed that the mass represents
the geodesic distance from the origin of momentum space. This gives the
dispersion relation

D?*(p) = D*(p,0) = m>. (2.50)

The observer can also measure the kinetic energy of a particle of mass m
moving with respect to her but local to her. It is postulated that this measure
defines the geodetic distance between a particle p at rest and a particle p’ of
identical mass and kinetic energy K, that is D?(p) = D?(p’) = m? and

D?*(p,p) = —2mK. (2.51)

The minus sign expresses the fact that the geometry of momentum space is
Lorentzian.

The other type of measurement involves many particles and defines a
connection. Consider a process in which n particles interact. Associated to
each interaction there must be a combination rule for momenta, which will
be in general non-linear. This rule for two particles is denoted by

(:q) = 1, = (PO Q- (2.52)

Hence the momentum space has the structure of an algebra defined by the
product rule "@”. It is assumed that more complicated processes are built
up by iterations of this product (that in principle could be non-linear, non-
commutative and non-associative). The inverse ("antipode”) of "&®” is denoted
by ”&” and satisfies ©p &p = p@&(©p) = 0. Then one has the conservation law
for energy and momentum for any process, giving, for each type of interaction,
four functions on P", depending on momenta of interacting particles, which
vanish

K.(k") = 0. (2.53)

For example, for a process with three incoming particles with momenta p,,, g,
and k, one has

Ku(p, . k)= (p@ (& k), = 0. (2.54)

These conservation laws will be discussed in the next section in greater detail.
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From the algebra of combinations of momenta one can define an affine
connection’ on P, in particular

0 9
ap,u dq,

(P ® @)plgp=0 = _Fl;y(o)- (2.55)

The torsion of the connection is a measure of the asymmetric part of the
combination rule

508 0, = @@ ) lygmo = T2 (0. (2.56)

Similarly the curvature of P is a measure of the lack of associativity of the
combination rule

S5 (80 @8, = 0@ @8 k), = B70). (25)

where the brackets denote antisymmetrization.

Notice that there is no physical reason to expect a combination rule for
momentum to be associative once it is non-linear. Indeed, the lack of asso-
ciativity means that there is a physical distinction between the two processes
of Fig.2.1, which is equivalent to saying that there is a definite microscopic
causal structure. That is, causal structure of the physics maps to nonassocia-
tivity of the combination rule for momentum which in turn maps to curvature
of momentum space. The curvature of momentum space makes microscopic
causal orders distinguishable, hence meaningful.

To determine the connection, torsion and curvature away from the origin
of momentum space one has to consider translations on momentum space,
i.e. one can denote

pPErq=ke((6kop) ®(Sk®q)) (2.58)
o 0 )
a—p#aqy (p D Q)plq,p:k = —F‘Z (k)v (259)

the identity for this product is at 0y = k.
Thus, the action of adding an infinitesimal momentum dg, from particle
J to a finite momentum p,, of particle I defines a parallel transport on P

"One could also define other affine connection, for example, by defining an appropriate
notion of parallel transport of the mass-geodesic of one particle along the mass-geodesic
of a second particle and obtaining in this way the composite momentum (see Ref.[105]).
These mathematical aspects are presently under investigation. In this thesis, however,
these alternative definitions of affine connection are not considered.
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poq @k p® (gD k)

Figure 2.1: Curvature of the connection on momentum space produces nonas-
sociativity of the composition rule.

Ppu ) qu =p,+ qu/T;,:(p> (260)
where 77(p) is the parallel transport operation from the identity to p. It can
be expanded around p =0

7/(p) =0, — U7 ps — T} popp + .. (2.61)
with
e =007 — I — Terre. (2.62)
The corresponding conservation law has the form to second order
Kuk) =Y ki+ Y CruTioklkl+ .. (2.63)
I JeJ ()

where J(I) is the set of particles that interact with the I’s one and Cj ; are
coefficients that depend on the form of the conservation law.

2.2.2 A variational principle

Here spacetime is viewed as an auxiliary concept that emerges when one
seeks to define dynamics in momentum space. If the momenta of elementary
particles are taken to be primary, then they themselves need momenta in
order to develop a canonical dynamics. Momenta of momenta are quantities
x* that live in the cotangent space of P" at a point k,; these quantities are
called Hamiltonian spacetime coordinates. The action proposed to define the
dynamics of a free particle is

Spree = / ds (x”ku+NkC(k)> (2.64)
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where s is an arbitrary evolution parameter and N}, is the Lagrange multiplier
enforcing mass shell condition

C(k) = D*(k) —m?* = 0. (2.65)

It shall be emphasized that the contraction x#k, does not involve any metric,
and the dynamics is given by constraints which are functions only of coordi-
nates on P and depend only on the geometry of P. This leads to the Poisson
brackets

{ah, K]} = o167 (2.66)

where the indexes I, J identify the particle whose coordinates refer to.

One then has a phase space ' of a single particle which is the cotangent
bundle of P. Note that there is neither an invariant projection to a spacetime
M, nor is defined any invariant spacetime metric. Still this structure is suffi-
cient to describe the dynamics of free particles. Spacetime is also unnecessary
to describe how particles interact.

Consider the following action:

S = ; /_ : ds (:cf;l%:,{ +NJCJ(k)) — K, (k(s = 0)). (2.67)

It describes the simple (yet unrealistic) process in which n incoming particles
interact at the interaction vertex (here the interaction is set to take place at
the value s = 0 for each of the particles) and no outgoing particle is produced.
One wants to impose conservation of momentum and this is done introducing
the Lagrange multiplier £ enforcing this constraint.

To obtain the equations of motion one varies the action and, after inte-
grating by parts in each of the free actions, one obtains

0 : J
05=2_ / ds (55’35’“5 — ok, [C’U’} - Nf;%} - (chJ(k;)) FR.(268)
J —o° I

Here R contains both the results of varying the interaction term and the
boundary terms from the integration by parts. The equations of motion are
the expected ones

.J N Yo J
k# = 0, €Ty = Jw, C (k) =0. (269)
One can fix 5k/{ = 0 at s = —oo and examine the remaining terms of the
variation 5K
— v v J
R = —K,(k)o&" + (x’j(o) —¢ 51{";{) ok, (2.70)
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Here 2/, and k;f are taken for each particle at the value s = 0. R has to
vanish as the variational principle must have a solution. From the vanishing
of the coefficient of d£* one gets the four conservation laws of the interac-
tion, K, (k) = 0. From the vanishing of the coefficient of 5k;{ one finds 4n
conditions that hold at the interaction

LOKC,
25(0) =¢ S (2.71)
By using (2.63), this gives the conditions
2 (0) =& — ¢ > Cu Wkl + . (2.72)

Leg(J)

This implies that to leading order, in which the nonlinearity of momentum
space is ignored, all of the particles involved in the interaction meet at a single
spacetime event, for they are all equal to £* (which in general should not be
regarded as the event itself, but rather as an auxiliary variable that sets the
observable relations between the z;(0)). The choice of " is not constrained
and cannot be, for its variation gives the conservation laws K, (k) = 0. Thus,
the usual notion that interaction of particles takes place at single spacetime
event from the conservation of energy and momentum has been recovered.

However, considering the contributions due to the nonlinearity of momen-
tum space, one finds that the interaction takes place at n distinct events,
separated from &* by an interval

A(0) = =& Y Cy Ikl + . (2.73)
Leg(J)

These relations (2.72), (2.73) illustrate concisely the relativity of locality.
For some fortunate observers the interaction takes place at the origin of their
systems of coordinates, so that {# = 2/;(0) = 0 in which case the interaction
is observed to be local. Any other observer, translated with respect to these,
has a non-vanishing &* and hence sees the interaction to take place at a
distant set of events. These are centered around &* but are not precisely at
the same values of the coordinates.

Is it a real, physical non-locality or a new kind of coordinate artifact? It
is easy to see that it is the latter, because the Az’; can be made to vanish by
making a translation to the coordinates of another observer. In a canonical
formulation, translations are generated by the laws of conservation of energy
and momentum. Given any local observable in phase space O observed by a
local observer, Alice, one can construct the observable as seen in coordinates
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constructed by another observer, Bob, distant from Alice, by a translation
parameter b*

5,0 = bv'{K,, O}. (2.74)

Since momentum space is curved, and K, is non-linear, it follows that the
"spacetime coordinates" z/; of a particle translate in a way that is dependent
on the energies and momenta of the particles it interacts with, 2/, — 2/'(0) =
217(0) + 02";(0) where

02t (0) = b{K,, ah} = b+ > Cy Tk + . (2.75)
LeJg(J)

This is a manifestation of the relativity of locality, i.e. local spacetime coor-
dinates for one observer mix up energy and momenta on translation to the
coordinates of a distant observer.

This mixing under translations effect also entirely accounts for the separa-
tion of an interaction into apparently distinct events, because with 0¥ = —&¥,
one sees that Az/; of (2.73) is equal to &2 of (2.75). Thus, the observer
whose new coordinates one has translated to observes a single interaction
taking place at 2%, — 2"(0) = 0.

pl
Figure 2.2: A process described in the relative locality framework by two

observers: the figure on the left represents the description given by Alice,
the one on the right represents Bob’s description of the process.

Thus, if a local observer sees an interaction to take place via a collision
at the origin of her coordinates system, a distant observer will generally see
it in her own coordinates as spread out over a region of spacetime according
to Eq.(2.73) and vice versa, as represented in Fig.2.2. There is not a physical
non-locality since all momentum conserving interactions are seen as happen-
ing at a single spacetime event by some family of observers, who are local
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to the interaction. But it becomes impossible to localize distant interactions
in an absolute manner: distant observers do not share the same spacetime.
Furthermore, all observers related by a translation agree about the momenta
of particles in the interaction, because under translations (2.74) 5bk;{ = 0.

Note that if the curvature and torsion vanish there is no mixing of space-
time coordinates with momenta under translations, so there is an invariant
definition of spacetime. Therefore, the flatness of momentum space is respon-
sible for the notion of an absolute spacetime, just as the Galilean additivity
of velocities allows Newtonian physics to have an absolute time.

2.3 k-de Sitter momentum space

In this section an explicit example of formalization of Relative Locality will be
obtained. Again k-Minkowski is the source of inspiration in Subsection 2.3.1:
in the relative locality regime the noncommutativity of spacetime coordinates
is suppressed, but the non primitive coproduct of translation generators sur-
vives. From this one gets the affine connection of momentum space. The
metric on momentum space is de Sitter, and the construction of the on-shell
relation as the geodesic distance from the origin of momentum space is con-
sistent with the relative locality limit of the mass Casimir of k-Minkowski.
A particular effort is dedicated in Subsection 2.3.2 in discussing the role of
the interaction terms in relation to the translational symmetry, highlighting
that even though the same conservation laws of energy-momentum may be
enforced by different interaction terms, different interaction terms lead to
physically distinguished theories. The key concept is that one can obtain
a relativistic theory with curved momentum space (therefore, with relative
locality) if the momentum space is mazimally symmetric and the action is
compatible with the symmetries of momentum space. Finally in Subsection
2.3.3 it is introduced the strategy of analysis of the problem of determining
the physical velocity of particles in Relative Locality, an exercise that is made
conceptually less trivial than usual by the non trivial character of translation
transformations and that will be largely used in the rest of the thesis.

2.3.1 Relative Locality limit of k-Minkowski

It has been shown in Refs. |23|, |24], [25], [26] that k-Poincaré Hopf alge-
bra describes a curved momentum space with de Sitter metric, torsion and
nonmetricity. One can then study the properties of k-Minkowski momentum
space in the Relative Locality regime. As it has been assumed in the previ-
ous section, the metric determines the distance of a point p, from the origin
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in momentum space P. The composition law for momenta is determined
by the composition law of basis exponentials e=i%ieiPo?o of k-Minkowski. In
fact, from the k-Minkowski commutators (1.1),(1.2) and the Baker-Campbell-
Hausdorff formula one has, writing explicitly 7 and using the Planck length
instead of £ in the definition of k-Minkowski commutators,

. . . . . CLp . .
e~ TPi% o 7P0R0 =7 0i% o5 a0%0 — o= 7Pi%j o— g B P04585 o fP0%0 o 1 q0%0

(2.76)

Lp .4 N
— o1 Pite 025 o 1 (Potgo)do

h

Thus in the Relative Locality regime, where h — 0, Lp — 0 while .= Mp,
P

is kept constant, the noncommutativity properties of spacetime coordinates

disappear but the non primitive coproduct of translation generators remains.
This expression can be used as the rule of composition of momenta:

(P@a)y=rot+a  PDa),;=p+c"q, (2.77)

. . . -1 . LP . .

where it has been introduced the notation My = { = h]l;nn et which is
yLp—

widely used in the relative locality literature and therefore will be used from
now on. This deformed composition law is evidently noncommutative but it
is found to be associative.

In what follows a particular attention will be dedicated in characterizing
the non trivial geometry of momentum space only at leading order in /¢,
for it is unlikely that experiments would be sensible enough to determine
corrections to standard physics phenomenology of greater orders. Therefore,
one can use the composition law obtained developing the deformed sum of
momenta in powers of £:

(P ©q), = Du+ @+ £5,004:- (2.78)
The exact antipode is
(©p)o=—po,  (©p)i = —e "p;, (2.79)
while at leading order in ¢ it becomes
(©p)y = —py + €6, pop;- (2.80)

In what follows it will be considered a 1+1-dimensional momentum space.
The metric is
dk? = (dpo)* — e 2P0 (dp,)? (2.81)
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Solving the geodesic equation and computing the geodesic distance from the
origin of momentum space for a generic momentum p,, = (po, p1) one has

D*(p, 0) = m? = p* + C*" p,p,p., (2.82)

where CP* are the Christoffel symbols for the metric. At leading order they
are

0011 _ _ge—2fpo ~ _g

0110 — 0101 _ e (283)

and therefore,
D?(p, 0) = m? = p* + 2pop? — Le *Popop? ~ p2 — p? + Lpop?. (2.84)

Notice that this is also consistent with the expansion in powers of ¢ to first
order of the k-Minkowski mass Casimir (1.11). Then, the action of the process
considered in the previous section in the case n = 2 is

0 0
S= [ ds @i New) + [ ds (P4 NC@) - K 259)
with
]C,u = pu + 'm + 55}}70(117
C(p) = pg — pi + Lpopi — ms,
Clq) = a5 — qi + Lqoqi — m;,

2.3.2  On the choice of the interaction terms K,

It is important now to focus on the sources of ambiguity in the choice of
the laws of conservation of energy-momentum. One issue comes from the
noncommutativity of the sum (2.78), which suggests that an ordering pre-
scription for summing momenta should be given. However, it is easy to
realize that the multiplicity of possible conservation laws is smaller than one
may expect on the basis of the properties of the composition law. In fact, for
arbitrary momenta p and ¢, from Eq.(2.78) one has p & ¢ # g @ p. Notice,
however, that from (p @ ¢), = 0 one gets

0= pu+ qu+ 0,001 = P+ qu + L6, (—qo)(=p1) = (¢ @ p),  (2.86)

using leading order corrections only. Thus, when the composition rule (2.78)
is used to write a conservation law, one actually does have

p®Hqg=0<=qgdp=0. (2.87)
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Moreover, this is true for any choice of affine connection of momentum space,
as one can see from the following chain properties:

POe=0=p=0¢=qDp=q®(0q) = 0. (2.88)

This observation also simplifies the description of a three-particles interac-
tion:
PEqPk=0<kdpbdq=0. (2.89)

So, when the rule of composition of momenta is used for a conservation
law it produces a conservation law with cyclicity, reducing then the possible
independent choices for the law C = 0.

A second issue regards interactions with incoming and outgoing particles.
Until now in fact only incoming particles have been here considered. One
could be tempted to write the conservation law of total momentum using
antipodes to denote momenta of outgoing particles. Thus, for example, one
could write

K=peqe(ep)e(ed),

K=poqo (el &q)), (2.90)

K=p®q— {0 &),
where the prime denotes outgoing particles. The first two expressions differ
from each other for it can be shown that &S(p' @ ¢') = (&¢) & (&p'). The
last two expressions, when set equal to zero, give the same conservation laws,
since

pPEqd (@) =0=ped=pdg=p®q—p dq¢ =0. (2.91)

As will be clear shortly, these different forms of I, even if they enforce the
same conservation law, lead to physically different theories. It is of great
importance to realize that a key concept of Relative Locality is that there
must be a notion/prescription of translation transformations that makes the
theory symmetric (as in the previous section) in order for the theory to be
compatible with the relativity principle and to allow an interaction to be
characterized as local for observers which are local to it, otherwise one would
have a non-relativistic theory with physical non-locality, 7.e. one that cannot
be removed by a change of coordinates. Then, recalling the role that /C has
in determining the spacetime coordinates of the particles which participate
in the interaction (2.71), the choice of K must ensure the symmetry of the
action under a certain realization of translation transformations.

Consider the process shown in Fig.2.3. It might be described by the
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KO 0y

Figure 2.3: Example of process with both incoming and outgoing particles
and a finite worldline.

following action, written by some observer Alice:

Sy — / s (s, + NC(R)) + / " s (2, + NC(p))+

—00

+/ ds (yhdu + N,C(q) / ds (2§p/, + NpyCp)+  (2.92)

S0

+ / ds (2}'p", + N C(p")) — &l S — &4 LD
S1

The subscript A is omitted for momenta since they are invariant under trans-
lation transformations, which are generated by some combination of mo-
menta. For what follows it is important to notice that Eq.(2.75) can be
viewed as a prescription for translations generated by the "total momentum?”,
which for that case corresponds to KC,,. In fact, one can write, for example

b” MC”.
opy,

oz = 0"{(p® q)u, 2} = 0"{K,, 2"} = — (2.93)

Now it will be made evident the effect of different choices of the form of
K. Following Ref.[104], one might first start considering the expressions:

IC;(LO) = ku - (p ) Q)u = ku —Pu —qu — &Slllpo(h
2.94)
W _ o (
KV =poq,— @ op ®q,

= Pu — P, — Py + £6,((po — po — P0)ar — Pop)-
Notice that it has been used the prescription of writing the deformed sum
of the total momentum before and after the interaction. One could feel
uncomfortable with the presence of momentum ¢ in the vertex IC , which

describes an interaction in which the particle with momentum ¢ does not
participate, but it is immediate to check that the conservation laws ICS) =0
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do not depend on ?, for the only term of ¢ that appears in these expressions
is multiplied by Kol). The equations of motion are

ky=0,  pu=0, ¢=0  p,=0 pl=0,

o= N 5((;5? = Nu(66 (2ko + CkT) + 68 (—2ky + 20koky)),
= N ) Nt 857) + 121+ 20
4= A2 — Nt + )+ 520+ 2
= N% — N (022 + ) + G20+ 20).
0 = NP NG G 2t )+ 3120+ 200,
1

while the boundary conditions are

L oKW
Zy(s0) = f(o),A—ék = %)A’
1%

s .
Yia(so) = —%),Am = &oy.a 1 €€(0),401 Po,

SKY .
'y (s0) = —5210),/1—5]9 = 5{6“; + 55(0),A5gQ17
m

s .
wli(s1) = 561),,4—5]9 = fﬁm + ffu),A‘Sg%,
m

1
u _ v 5IC’(/) _ ¢k / 1 S /"
w4 (s1) = =€) 4 o y,a = ) a o (@1 +p7),
o

B w5
o
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Thanks to the form of the constraints K® here considered, one can extend to
an interaction in which participate both incoming and outgoing particles the
rather standard prescription of translations generated by total momentum
used previously in the case of incoming particles only. It is also immediate
to see that these prescriptions on the form of I and translation transforma-
tions make the equations of motion and boundary terms symmetric under
translations, and, furthermore, not only at first order in ¢, but to all orders.
In fact one has

zp(s) = 24 (s) + 0"{ky, 2"} = 24 (s) + b"{k, — (P © q)v, 2"}
sIcY
ok,

h(s) + BIKD, 2} = (s) — b

where it has been exploited the property that the terms added in the second
equality have null Poisson brackets with z. Using the same argument for the
others particles one has®

S S

K M _ WY 1 M v

2h(s) = 24(s) —b T yp(s) =yh(s) +b —5% ;
S sKcs)

aly(s) = ahy(s) +b” , ahy(s) = 2’y (s) — b” , 2.95

B(s) = 24(s) 5 B(s) = 24(s) 5 (2.95)
5}C(1) 5}C(1)

yn 1 v v un M v v

(o) = i)+ i) = (o) v

A direct calculation shows that, substituting these expression in action Sy
one finds the same action for observer Bob? provided that one takes

€y =€ (2.96)

So this might be regarded as a prescription for “strong” translation transfor-
mations, that is the &’s translate classically.

Furthermore, from Eqs.(2.95) for the finite worldline x#, one obtains a
condition on the derivatives of K that must be satisfied for the theory to be

8For the worldline 2# two different choices are possible, depending on what one adds to
{(p® q),,x"}, either 0 = {—Fk,,x*} or 0 ={—(p' ®p" ® q),, x"}; thus, one can translate
equivalently with £©) or with £,

9Up to terms that do not add any other condition on the dynamical variables to those
already obtained from the equations of motion and boundary conditions, so they can be
safely neglected.
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symmetric under this particular prescription for translation transformations.
In fact, evaluating the two expressions at s = sg and s = s; one has

ey oKy Ky
x'y(s0) = 2’4 (s0) + b —— = =&, +0
B( 0) A( 0) 5pu (0),A 5p“ 517#
sKM ISR o
=zl (s0) = b'——— = —¢{o) .4 — b :
5]9# 7 5pu 529“
ey g oKy
2 — y bl/ — 14 bl/
xB(Sl> xA(Sl) + 5pu g(l),A 5pu + (5]?”
(1) (1) (1)
T I L Ay A L 2
op,, opy, op,,
both requiring
oKy ey
- (2.97)
Pu Pu
in order for Alice and Bob to have boundary conditions of the same form
Ky
xH(s;) = £ IC— for the finite worldline x*. It is immediate seeing that
O
Py

this condition is indeed satisfied when the constraints ) are written as in
(2.94). In the special-relativistic limit { — 0 condition (2.97) is always
trivial, for every non trivial term of the derivatives of K is proportional to /;
this aspect of these conditions will be further discussed during the analysis
of the so-called Md&bius diagram in section 6.2.

At this point it can be noticed that if one would have chosen to write the
K’s in the form

K = (k@ (ep) @ (69)),
=ky—DPp—Qu — 55};((]?0 — po)p1 + q1(ko — po — qo))

KD = (e ep') & (&),
= P — D — P — 18, ((po — P3)p1 + Pi(po — 1y — 1))
condition (2.97) would not be satisfied, for

iy "
5P =0, — 65555(]?1 +ph) #
n
oK 1
£ — 5 = oy, — €6, (5 (p1 + q1) — 67 (ko — po))-
"
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The same must be said for the third possible choice of K previously consid-
ered, K = (k@ (8(p © q)), K = (p @ (0" @ p')) Then, using the
prescription for strong translation transformations (2.96), the only form of
K@ suitable for a relativistic description of the finite worldline for Alice and
Bob, purely translated with respect to each other, is that given in Eqs.(2.94).
Otherwise, the theory obtained by adopting other expressions of X would
describe non-local interactions. Thus, the role that IC has in determining
translation symmetry of the theory contributes to further reducing the pos-
sible sources of ambiguity in the choice of the appropriate form of IC, even
among those which enforce equivalent conservation laws.

In Section 6 a weaker condition of the kind of (2.97) will be obtained from
requiring that Alice and Bob, purely translated with respect to each other,
describe finite worldlines in the same way, regardless of the specific form of
constraints V). These alternative translations are not explicitly constructed
as it has done in this section, for it is an unnecessary exercise for the scope
of this thesis, but it will be shown that, in principle, different prescriptions
are admissible.

2.3.3 Physical velocity

The previous section presented some basic notions and key characterizing
results of an explicit example of prescription for boundary terms, ensuring
a relativistic description of distant observers within the Relative Locality
framework, by a Lagrangian formulation of interacting particles. This sec-
tion focuses on a first point of phenomenological relevance, concerning the
observation of distant bursts of massless particles, which will be useful for
subsequent discussions.

Consider the first part of the process studied in the previous section, that
is the initial decay of the particle k, z in the particles p, x and ¢,y (vertex
K© in Fig. 2.3). For the scope of this section, the momenta ¢ and p are
assumed to be such that |p| > |q|, g = 0 and ¢p # 0. Notice that this
situation is also relevant for the description of observation of a gamma-ray
burst, in which a high-energy pion (k, z) decays at the source into a high-
energy ("hard”) photon (p,z) and a low-energy ("soft”) photon (¢,y). It can
be asked if and how the time of detection of the gamma ray depends on its
momentum p, thereby obtaining a prediction for the large class of studies that
are considering possible energy /time-of-arrival correlations for observations
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of gamma-ray bursts. The action describing the process is

S :/80 ds (z“icu + NiC(k)) + /Oo ds (z"p, + N,C(p))+
R 0 (2.98)
4 [ ds M) - o kL,

S0

where again ICELO) =k = (P®qQu = ku—pu— qu — 0,pogr. The equations
of motion are exactly the same that were obtained in the previous section,
of course. From the on-shell relation one finds the expression for pg, at first

order in /,
l
po=/pi +m?— 529%- (2.99)

Then, for the massless case (or whenever |¢p;| > m?/p?) one finds the veloc-
ity
1

) 20
ST 2t 26popy PL ). (2.100)

0 2po + (p? B

For the choice of conventions here adopted, one needs p; < 0 in order to have
v! > 0, and in such a case one has

o' =1+ lp;. (2.101)

Then, Alice’s description of the worldline of the particle (p, z) is 2} (2%) =
zh + vl(2Y% — 29), with 2!, 7° fixed. Assuming that both particles p, z and
q,y are emitted at Alice’s origin of spacetime coordinates, her description on
the inferred propagation of the particles is simply

wh(@%) = L+ )%, yh(h) =y (2.102)

Since —1 < fp; < 0, from Alice’s perspective the hard photon goes slower
than the soft photon; therefore she infers that a distant observer Bob would
measure a delay between the time-of-arrival of the two photons. But can this
distant characterization of the relation between events be trusted? The two
events that according to Alice are not coincident are the crossing of Bob’s
worldline with the worldline of the soft photon and the crossing of Bob’s
worldline with the worldline of the hard photon. To clarify the situation one
should look at the two worldlines by Bob’s perspective, since he is the one
local to the detection.

For what concerns specifically the analysis of the problem so far reported
in this section, the main challenge is related to the fact that one is used to
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read velocity from the formulae of worldlines, but this implicitly assumes
that translation transformations are trivial. It is known that in classical
spacetime with curvature the coordinate velocity may be affected by some
coordinates artifact: for an observer in classical de Sitter spacetime, for ex-
ample, the speed of a local photon is always 1, but this does not apply to the
coordinate velocity that the observer attributes to distant photons. These
features are not expected in a classical flat spacetime, where translations are
trivial. In Relative Locality, however, the non triviality of translation trans-
formations requires a more careful approach. Essentially, one is used to take
the worldline written by Alice to describe both the emission of the photons
"at Alice” (in Alice’s origin) and their detection far away from Alice. The
observer/detector Bob, who actually detects the photons, should be properly
described by acting with a translation transformation on Alice’s worldline.
And the determination of the time-of-arrival at Bob should be determined
on the basis of Bob’s description of the worldline, just as much as the time-
of-emission should be based on Alice’s description of the worldline. When
translations are trivial (translation generators conjugate to the spacetime co-
ordinates) one can go by without worrying about this more careful level of
discussion. This is because the naive argument based only on Alice’s descrip-
tion of the worldline gives the same results as the more careful analysis using
Alice’s description of the worldline for the emission and Bob’s description
of the same worldline for detection. But when translations are nontrivial,
as in Relative Locality, this luxury is lost. This will be shown for the case
considered so far.

Bob’s description of worldlines is, by dropping the contributions due to
soft particles,

Phls) = 20) < B @ sy = o~V BB =0
yi(s) = yals) + 0" {(p ® @), y"} = s — V' — (b0} po. '
Substituting these expressions in (2.102) one obtains
rh(2%) = (1 + py) (2% + b)) — b,
J_f( B) = ( p1)(zp ) (2.104)

(y% + %) — b — Lb'py.

Yp (y%)

One can then compute the delay between the two particles assuming that
Bob detects the soft photon at its spacetime origin and the hard one at its
spatial origin.

It is taken into account here that there are no relative-locality effects in
the description given by Bob whenever the interactions occur "in the vicinity
of Bob”: the leading-order analysis assumes that the measuring apparatus

72



has sensitivity sufficient to detect the manifestation of relativity of locality
of order ¢p, L (where L is the distance from the interaction-event to the origin
of the observer and pj, is a suitably high momentum), with L set in this case
by the distance Alice-Bob; so even a hard-particle interaction which is at a
distant d from Bob will be treated as absolutely local by Bob if L > d.

According to this, both ”"detection events” are absolutely local for Bob: of
course this is true for the event of detection of the soft photon and it is also
true for the interaction-event of "detection near Bob” of the hard photon.
Ultimately this allows handling the time component of the coordinate four-
vector as the actual delay that Bob measures between the detection times.

Thus, from the second of equations (2.104), setting y/5 = 0 (detection at
Bob’s spacetime origin) one determines the translation parameter 0° in terms
of b': ° = (14 fpy)bt. Substituting this in the first of equations (2.104) and
setting 5 = 0 (detection at Bob’s spatial origin), one gets

(1+€p1) (2% + (1 + fpo)b') — b =0 (2.105)
from which, recalling the expression (2.99) and the sign convection on p,
2% = (1 — lp)b" — (1 + po)b* = 0+ O(F?). (2.106)

Therefore Bob does not measure any delay between the detections of the
two photons, up to second order contributions. Only now one can conclude
that the two particles have the same physical velocity, although they have
different coordinate velocities.

The message that one should get from the discussion proposed in this
section is not that massless particles have the same physical velocity under
any conditions; the thesis author merely intended to discuss a representa-
tive example of the strategy of analysis of this kind of problems in Relative
Locality that will be largely used in the following.
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Chapter 3

Theories violating relativity of
inertial frames

3.1 Horava-Lifshitz gravity

In recent years, Hofava-Lifshitz gravity [41],[42] has attracted considerable
interest in the quantum gravity community. Its basic idea is to break Lorentz
symmetry through an anisotropic scaling between space and time in order
to eliminate the divergences of the quantum field theory of gravity in the
UV without ghosts. The next Subsection gives a very quick presentation
of Horava implementation of this idea in gravity, as in Subsection 3.1.2 it
will be explained in greater clarity how anisotropic scaling can solve QFT
divergences in a much simpler context such as an interacting scalar field
theory.

3.1.1 Horava proposal

It is known that an improved UV behavior of divergent quantum field theo-
ries, such as General Relativity, can be obtained if relativistic higher-derivatives
corrections are added to the Lagrangian. Terms quadratic in spacetime cur-
vature not only yield new interactions (with a dimensionless coupling), but
they also modify the propagator. Schematically, denoting p? = w? — k2, the
propagator takes the form

1 1 1 1 1 1 1
— + EGNPLL_Q + PGNPA‘—GNPLLP t. =

S 3.1
p? P p? p? — Gnp? (3.1)

At high energies it is dominated by the p* term. This cures the UV di-
vergences, and in fact the calculations in Euclidean signature suggest that
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the theory exhibits asymptotic freedom. However, this cure simultaneously
produces a new pathology, which prevents this modified theory from being
a solution to the problem of quantum gravity. In fact, the propagator above
exhibits two poles,

1 1 1

p*—Gypt p? p?—1/Gy
One pole describes candidate massless gravitons, but the other corresponds
to ghost exitations, which are states of negative norm. These are problem-
atic because they can break unitarity, which is a key ingredient of quantum
mechanics!. Violating unitarity in order to regularize the mathematical quan-
tities may be regarded as quite a strong mutilation of the founding physical
principles of the theory.

In contrast, breaking Lorentz symmetry to regularize the mathematical
objects, while it is certainly a radical step, does not damage the logical
foundations of the theory as it is more an experimental observation rather
then a logical necessity. Horava-Lifshitz gravity adopts this strategy to cancel
the UV divergences of General Relativity, introducing an anisotropic scaling
between space and time. This means that the theory will be symmetric under
the transformation

(3.2)

T — b,

3.3
t — b°t. (3:3)

Such an anisotropic scaling is common in condensed matter systems, where
the degree of anisotropy between space and time is characterized by the
"dynamical critical exponent” z. Relativistic systems automatically satisfy
z =1 as a consequence of Lorentz invariance.

The techniques used in the construction of gravity models with anisotropic
scaling in [42] follow methods developed in the theory of dynamical critical
system [44],|45] and quantum criticality [46].

As a consequence of such anisotropy, the propagator of the graviton takes

the form
1

w? — 2k? — k*G
where G is a coupling constant. In general there will be terms with powers of
k* between 1 and z but one can simplify the discussion keeping the leading

(3.4)

!A way to include ghosts in the theory without breaking unitarity has been studied
by Lee and Wick; in [43] they show that using a negative metric in quantum mechanics
can lead to a unitary S-matrix, provided that all stable particle states are positive square
length. In such a way, the negative-norm states are not asymptotic states and the unitarity
of the S matrix is preserved.
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term in the UV. In fact at high energy the propagator is clearly dominated by
the anisotropic term 1/(w? — k?*G). The high-energy behavior of the theory
is controlled by a free-field fixed point with anisotropic scaling. For a suitably
chosen z, this modification improves the short-distance behavior, shifting the
dimension at which the theory is power counting renormalizable, so called
"critical dimension". The ck? term in the propagator becomes important
only at low energies. The massless dispersion relation E? —p? — (372p?* = (),
suggested by this propagator, will be used in the later applications for the
case of Horava-Lifshitz gravity.

3.1.2 Lorentz symmetry breaking as a UV regulator

In order to obtain a basic understanding of how the anisotropic scaling be-
tween time and space can solve the divergences of the quantum theory of
gravity, without getting lost in the huge algebra of the full theory, it is here
briefly shown how how it works in a simple scalar field theory?.

Consider the following action of a scalar field in flat (d 4+ 1)-dimensional
spacetime

Spree = / e dt [ — o(~ A7), (3.5)

where A = V? is the spatial Laplacian. Notice that here the units are such
that the coefficient in front of the kinetic term is the same as that of the
spatial derivative term, which is not the common ¢ = 1 set of units; Planck
constant is set to be i = 1. In these units one has that [0;] = [V]* and
[dt] = [dz]*. But since the action has to be dimensionless one has that
[¢] = [d]*=9/2. This suggests that the case z = d will play a special role
in the discussion, since the scalar field would then be dimensionless. It is
convenient to define formal symbols x and m having dimension of momentum
and energy, [rx] = [dz]™! and [m] = [dt] ™! respectively. It can also be noticed
that [¢] — [H](d—z)/Q — [m](d—z)/2z.

Consider now also the various sub-leading terms to this free Lagrangian

Stree = /dt A%z [¢? — p(m® — EA + ...+ (=A)7)g). (3.6)
Notice that [c] = [dx/dt] = [dx]'~* = [k]*~!, which is the reason for which,

with the choice of units explained earlier, one does not have the freedom to
set ¢ = 1, unless the trivial case z = 1 is under consideration.

2The interest reader can find a broader discussion of this topic in [47].
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Consider now a polynomial interaction

N
Sinteraction = /dt dde(QS) = /dt dda'; Zgn¢n (37)
n=1
The couplings have dimension [g,] = [k]9+*7"(@=2)/2, So the couplings have
non negative dimension as long as
d—
PRl Y (3.8)

Since z, d and n are all positive integers by definition this is equivalent to
either
2(d+ 2)

n <
— d—z

if 2z <d,

or
z<oo if z>d.

Consider now a generic Feynman diagram with L loops and I internal
propagators. For each internal line one has a Lorentz violating propagator

- 1
Gw, k) = = = = = , (3.9)
(wp —we)? — (M2 + A2(kp — ke)® + ... + (kp — ke)??)
Wherg w, and Ee are some linear combination of the external momenta, and wy,
and kp are the loop energy and momentum. Each loop integral contributes
to the total dimension as

/dw dk — [dw][dk]? = [K]*T

and for each propagator one has instead [G(w, k)] = [5]"%. The total contri-
bution for dimensionality coming from loop integrals for the entire Feynman
diagram is

d=(d+2)L—221=(d—2)L—2(I — L)z, (3.10)

which reproduces the standard result in the case z = 1. Since the number of
internal propagators I is always at least equal to the number of loops, one
has

6 <(d-=z)L. (3.11)

It is a standard result that if the superficial degree of divergence is nega-
tive, and the superficial degree of divergence of every internal sub-graph is
negative, then the Feynman diagram is convergent. Therefore, if one choose
d = z then one has § < 0 for any diagram, and the worse divergence one can
meet, is logarithmic, which can occur only when L = I which are the so-called
"rosette" Feynman diagram. This observation is enough to guarantee that
the theory is power counting renormalizable.
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3.2 Rainbow Gravity

As previously stated, the most promising opportunities for quantum gravity
phenomenology come from the propagation of high-energy particles from a
source at cosmological or astrophysical distance and it is therefore important
to consider also the effects due to the geometry of spacetime on large scales.
Indeed, the scope of Rainbow Gravity is to include Planck scale corrections
to Einstein’s theory of gravity. The next subsection is devoted to introduc-
ing the original proposal by Magueijo and Smolin. Subsection 3.2.2 briefly
reviews the most recent approach to the original purpose of Rainbow gravity,
using the technology of Finsler geometry.

3.2.1 Magueijo-Smolin Rainbow Gravity

Rainbow Gravity has first been proposed in [48| with the goal to extend the
idea of DSR to General Relativity. The theory does not mean to be funda-
mental but rather a leading correction to a classical spacetime picture coming
from a full quantum spacetime theory. Therefore, the main interest resides
in computing effects at leading order in Planck scale on the propagation of
quanta with energies smaller then the Planck scale Ep but with wavelengths
much shorter than the local radius of curvature R. This latter assumption
allows then not to take into account terms in R% which should be considered
otherwise.
The starting point is the deformed dispersion relation

fALEE? — g*(CE)p* = m?, (3.12)

where f and g are arbitrary functions and / is a length scale which is assumed
to be of the order of the Planck length. This can be obtained by the action
of a non-linear map from momentum space to itself, denoted, U : P — P,
given by

U-(E,pi) = (U, U;) = (f (LE) E, g ((E) p:) (3.13)

which implies that momentum space has a non-linear norm of the form

p* = n"Ua(p)Us(p). (3.14)

This norm is preserved by a non-linear realization of the Lorentz group, given
by 3
L=vu-t.rt.u (3.15)

a

where L are the usual Lorentz generators.
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Theories with deformed Lorentz transformations are usually formulated
on momentum space. In order to develop the spacetime counter part, a suit-
able definition of the dual space has been looked for. This is a non trivial task
due to the fact that the momentum transformation are non-linear (among the
different answers proposed there are also non-commutative geometries, such
as r-Minkowksi non-commutative spacetime). Rainbow Gravity instead as-
sumes that the research for a single dual space is not strictly necessary, since
there is no single classical spacetime geometry when effects of order (£ are
taken into account. Instead, one has to consider a family of one-parameter
spacetime metrics that describe the leading corrections to the classical space-
time, parametrized by (E. So, just as the properties of a material may depend
on the energy of the phonon propagating through it, Rainbow Gravity adopts
the view that the geometry of spacetime may depend on the energy of the
particle moving in it. The Einstein equivalence principle can be maintained,
with the specification that it is valid for regions of spacetime for which the
radius of curvature is much larger then ¢ and that the particles moving in it
have energies much below /=1, One further requires that in the limit /E — 0
General Relativity is recovered.

It must be stressed that the parameter /£ does not represent the energy of
spacetime, but the energy scale at which it is probed according to a particular
observer. Therefore, if an observer uses the motion of a particle or a system
of particles to measure the geometry of the spacetime, F is the total energy
of that particle or system of particles, as measured by that observer.

Another way to describe these properties is by saying that, in the absence
of gravity, spacetime has an energy-dependent geometry, in the sense that
particles of energy E move in a geometry given by an energy-dependent set
of orthonormal frame fields,

€y — f_l(gE)éo, €; = g_l(ﬁE)éZ (316)

where the tilde quantities represent energy-independent frame fields that
specify the geometry probed by low energy particles. The metric given by

9(E) = n"eq @ e (3.17)

is flat for all E. The object g(FE) can be considered as a one-parameter
family of flat rainbow metrics, parametrized by E. The metrics share the
same set of inertial frames but, due to scalings, generally they do not share
all their geodesics; instead, geodesics are generally energy-dependent. This
is equivalent to saying that the energy-momentum relations are no longer
quadratic.

The Rainbow Gravity picture is closely related to the work presented in
|49] for constructing position space in DSR. In this approach one requires that
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free field theories in flat spacetime have plane waves solutions, even though
the 4-momentum they carry satisfies deformed dispersion relations. For this
to be possible the contraction between position and momentum providing
the phase for such waves must remain linear, that is,

dzp, = dx’py + da'p;. (3.18)

If momentum transforms non-linearly then the dx® transformations must be
energy-dependent, as explained in [49|. Authors claim that, for a U of the
form given above, spacetime dual has invariant
o da?

FAE)  g(E)
Thus, the dual space dz® is endowed with an energy-dependent quadratic
invariant, that is an energy-dependent metric.

This example further elucidates the meaning of E in the metric. If a
given observer sees a particle (or a plane wave, or a wave packet) with energy
E, then he concludes that this particle is probing the metric g(E). If the
particle has energy £’ # E for a different observer, then the latter will assign
to spacetime a different metric g(E’). Of course, as required by covariance,
if the first observer probes the spacetime using two particles with different
energies £/ and E’ then it will attribute a different metric to each particle,
even at the same spacetime coordinates.

Essentially, this construction justifies, in some sense, the naive guess that,
if the dispersion relation is given in metric terms as m? = g"’(E)p,p, and is
a (deformed) Lorentz scalar, then the spacetime metric is the tensor g, (E)
such that g,,(E)g"(E) = 07 and ds® = g,,(E)dxz*dz" is also a scalar.

The reason for which this formulation of Rainbow Gravity breaks Lorentz
symmetry is that the dispersion relation is indeed invariant under the de-
formed boosts, but the line element is not [50]. Consider for example the
very commonly studied DSR dispersion relation

ds?

(3.19)

C=a%(n)(Q* —1I?) + La 3 (n) (vQ® + BOIT?) = m?, (3.20)

where (7, z) are the conformal coordinates on spacetime and (€2, IT) are their
conjugate momenta, a(n) is the scale factor, 5 and v two numerical param-
eters. Consider for simplicity of argument on the static case a(n) = 1 in two
dimensions. Denoting the conjugate momenta in the flat case (pg,p;), one
can write the dispersion relation as C = (1 + fypo)p2 — (1 — £8po)p?, and the
line element associated with it is, at first order in ¢,

ds® = (1 — lypo)(dz®)* — (1 4 £Bpo)(dz")?. (3.21)
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The dispersion relation (3.20) is invariant under a ¢-deformed Lorentz boost

/
N = 2"pi(1 = lypy) + 2! (po +(B+ %)fpg + 55}9?) : (3.22)

as it can be shown that the Poisson bracket {N,C} = 0. This guarantees
that the dispersion relation is in fact invariant also for a finite boost, since
the action of a boost on an observable O can be expressed as

O’:O+§{N,O}+§—T{N,{N,O}}+...

where ¢ is the rapidity parameter. Under the same action of the boost, the
line element (3.21) is not invariant, as it transform to

(ds?)' = ds® — 0&(Bpy(dat)? + ypi(da®)?). (3.23)

This non-invariance is evidently problematic from a relativistic point of view,
as the norm of vectors would not be invariant under such transformation.
This is the reason for which, even if the initial goal of Rainbow Gravity is to
preserve the relativity of local inertial frames, it is in fact breaking Lorentz
symmetry.

3.2.2 Connection with Finsler geometry

The original program of Rainbow Gravity has been further investigated and
more rigorously understood in terms of a generalization of Riemannian ge-
ometry known as Finsler geometry in Ref.[51]. In Ref.[52],|50| the connection
between Finsler geometries and DSR-relativistic theories has been clarified
in greater details.

Finsler geometry fundamental ingredient is the norm F'(x,v), a real func-
tion of a spacetime point z and a tangent vector v, such that it satisfies the
usual norm properties, that is

F(z,v) #0 if v #0,

F(z, \v) = |A|[F(z,v), (3.24)

where ) is a real number. From the norm squared F?(z,v) one can define
the so called Finsler metric

1 0*F?
2 Qvkdvv’

guu($av) - (325)
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which is required to be continuous and non-degenerate. Using Euler’s the-
orem, stating that if f(z) is a homogeneous function of degree r, then
o' 2L — f(x), it can be shown that (3.25) is equivalent to

a7
F(z,v) = \/gu(x,v)vrovr. (3.26)

This shows that g,,(x,v) is a homogeneous function of degree zero of the
vector v. Also, since by definition is non-degenerate, it admits an inverse
g"(x,v) such that g,,(r,v)g"(z,v) = 7. From the norm F(z,v) one can
also derive the norm for a form w as

G(r,w) = F(z,v(w)), (3.27)
and the metric on the dual space

_ 190G (z,w)

W, w) = 2 Ow, 0w
nYWy

= g"(z,v(w)). (3.28)
The action of a particle moving on a Finsler manifold is
S = m/F(a:,x")ds (3.29)

which from (3.26) takes the form of a straightforward generalization of the
standard relativistic particle action

S = m/ \/ G (x)TPavds.

Using Euler-Lagrange equations of motion one finds the momenta

OF G (T, )T

P =M = M (3.30)

which satisfies the generalized on-shell relation

- p .
uugﬂﬁx Juol 2

I (2, p)pupy = m’g ogiein = (3.31)

In order to deduce the Finsler spacetime metric corresponding to a par-
ticular dispersion relation, as in the spirit of Rainbow Gravity, one should
start from the action

S = / dslitp, — X (C, — m?)] (3.32)
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where ) is a Lagrange multiplier enforcing on-shell relation C, = m?. Using
Hamilton equation

aC,
Opu
one can express momenta p in terms of velocities # and find the action

it = A2, (3.33)

sz/ﬂ@m. (3.34)

Then by varying the action with respect to the Lagrange multiplier A one
can express it in terms of the velocities as well and obtaining the Lagrangian

SZ/Z@J@» (3.35)

from which one can identify Finsler norm

L(x,T)

F(z,t) = -

(3.36)

which satisfies the properties of a Finsler norm (3.24). Form this one can
obtain the spacetime metric as already shown.
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Chapter 4

Introducing the thermal
dimension of quantum spacetime

This chapter is dedicated to one of the original results of this thesis [116],
concerning the problem of the physical characterization of the dimension of
spacetime at scales comparable to Planck length. The next session reviews
what is a notion of dimensionality of spacetime which is broadly used in
the QG community, the spectral dimension. The original proposal of ther-
mal dimension of spacetime is then presented and its physical properties are
compared with those of the spectral dimension, using examples of deformed
dispersion relation inspired by the QG models reviewed in the previous chap-
ters.

4.1 The spectral dimension

The spectral dimension has been proposed as a possible observable charac-
terizing the geometry in discrete quantum gravity [53] and attracted a lot of
interest in causal dynamical triangulations (CDTs) since finding meaningful
observable in discrete geometry is a non trivial task. The hope of the commu-
nities working on discrete geometry is that such observable may provide the
much needed connection between the discrete theory and its continuum limit.
The spectral dimension can also be defined in continuum quantum gravity
models and can be used to characterize and understand their short-distance
behavior (see [55],|68],[66],|56]). Furthermore, it was shown in [55| that both
CDTs and Horava-Lifshitz gravity lead to a value of 2 for the spectral di-
mension in the UV, while it matches the value of the topological dimension
in the IR. These results encouraged the use of the spectral dimension as a
tool in the process of linking the discrete and continuum theories.
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Here the basic definition of the spectral dimension, whose origin is Rie-
mannian geometry, will be given; the following section will briefly show how
it is linked to the dispersion relation of the theory in consideration. It has
been shown in fact in [73] that, given a specified topological dimension n, it
is possible to define a scale-dependent notion of spectral dimension for any
arbitrary dispersion relation. Furthermore, also the other deductive way is
possible: given a certain spectral dimension as a function of the diffusion
time s, it is possible, in principle, to reconstruct the dispersion relation.

4.1.1 Basic definitions

The spectral dimension can be viewed as an effective notion of dimension
defined through a fictitious diffusion process on a certain discrete geome-
try. In practice the diffusion process can be thought as a stochastic random
walk, and the spectral dimension is defined in terms of the average return
probability P(s).

In the classical Brownian motion, the diffusion of the particle is described
by the differential "heat" equation

%K(Jc, y;t) — bAL K (z,y;t) =0 (4.1)
where b is a constant, t is the diffusion time, K(z,y;t) is the probability
density for the particle to diffuse from point = to point y in a time ¢ and the
initial condition K (z,y;0) = d(x — y) indicates the point-like nature of the
particle.

Similarly, the diffusion process on a n-dimensional Euclidean geometry
with a fixed smooth metric g,,(z) is governed in fact by the equation the

heat equation
aSK(xvyu S) o AIK('Tuva) = 07 (42)

with the initial condition K (z,y;0,) = §(z—y)g~'/%(x). Here A = g"*V,V,
is the Laplacian and V, is the covariant derivative. The parameter s plays
the role of fictitious diffusion time and K (z, y; s) is the probability density of
diffusion from the event x to the event y in a "time" s. The return probability
is then easily defined as

_ Jdrag' PR (z,xs) 1 =
Pls) = [ dra g'/? ~ (4ms)n/? ;ais ’ (43)

where the coefficients are metric-dependent invariants which can be com-
puted via recursion formulas, with ag = 1.
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For an infinite flat space the solution to the heat equation is given by

K(i,y;s):W

(4.4)
where dy(x,y) is the geodesic distance between the two points. It follows that
/s is an effective measure of the spread of the Gaussian at diffusion time s.
Because P,(s) = s7™?2 in the flat case, one can obtain the dimension n of
the manifold by taking the logarithmic derivative of the return probability,
defining the spectral dimension,

q. = _2810ng(5) o (4.5)

dlog s

where the last equality is true only in the flat case.

For curved spaces and/or finite spaces of volume V' one can still use Eq.
(4.5) to extract the dimension, but there will be correlations for sufficiently
large s. For a curved space, probing a diffusion scale comparable or larger
than the radius of curvature will affect the value of the spectral dimension
via the details of the geometry of the space and the presence of gravitational
sources. The spectral dimension then would deviate from the topological
dimension as an effect of the curvature. At intermediate scales, smaller then
the radius of curvature but larger then the Planck scale, the space is effec-
tively flat and the spectral dimension has the same value of the topological
dimension, as shown above. At scales comparable to Planck scale the de-
viation of the spectral dimension from the topological dimension is due to
effects other then curvature.

4.1.2 Connection with the dispersion relation

Further interest in the spectral dimension comes from the work of Sotiriou,
Visser and Weinfurtner |73], in which they demonstrated that the spectral
dimension is not necessarily intrinsically geometric. At scales small enough
for curvature effects to be negligible, its deviation from the topological di-
mension actually becomes an analytic property of the differential operator
that one is using as input to define the fictitious diffusion process. In turn,
this operator acts as the propagator of some dynamical degree of freedom
in flat space. In this sense, the spectral dimension acts, at suitable scales,
as a probe of the kinematics of the particular degree of freedom, allowing to
deduce a dispersion relation; therefore the spectral dimension is an interest-
ing observable even for those theories for which is difficult to find the return
probability of a diffusion process on their quantum spacetimes, but which
have a modified dispersion relation.
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Consider in fact a (n+ 1)-dimensional spacetime and a dispersion relation
E = E(p). This can always be viewed as completely specified by the solution
of the differential equation

Dy® = (=3 — f(~V2)® =0, (4.6)

where f(p?) = E(p)?. The reason for which the time derivative is only second
order is that in this case the differential equation encoding the dispersion
relation can typically be derived by a ghost-free Lagrangian,

1
L= 2D%. (4.7)

In order to compute the spectral dimension one has first to Wick rotate
the physical time ¢ to consider Euclideanized differential operator Dg in n+1
topological dimension

Dp® = (=0} + f(=V?))®. (4.8)

The diffusion process is governed by the equation

D K(w.y:5) + Dek(r.:9) = 0. (4.9)

with the initial condition K (x,y;0) = 6" (z — y). Again, x is the set (¢, T)
and s is an auxiliary "fictitious diffusion time" or, more properly, a parameter
characterizing the scale at which the particle is probing the spacetime. The
general solution of the differential equation above is

dEd"p (B (Z—1 2040 _s(E2 2

and the return probability is then

dE d"
P(s) = / A"z K (x,2;5) = / 7(2W)nﬁe—s<E2+f@2>>. (4.11)

Factorizing it in the time-like and space-like contribution

dE d"p 2 1 d"p 2
P _ sk sf(p?) — / sf(»?) 4.12
(5) / (27T)6 / (27T)”e Vs (27T)”e o (412)

one obtains

In P(s) = —% Ins+ ln/dpp"_le_sf(pz) +C (4.13)
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where C'is a constant. Taking the derivatives with respect to Ins one gets
the expression for the spectral dimension

[dpptf(p?)e /)

ds(s) = 1+ 25" (4.14)
Recalling now that E? = FE(p)? = f(p?), one can write
do " 1E(p)? —sE(p)?
do(s) = 1+ 251 WP Ep)e . (4.15)

f dp pn—le—sE(p)2

Note that the contribution 1 comes from the fact that the time derivatives
appear only in the term 9?. If one has to consider more general operators
such as D® = f(9?,V?)®, the dispersion relation is expressed implicitly by
C,(E? p*) = 0. The return probability is then

dEd”p s 2 2

and therefore the spectral dimension is

JAE d"pCy(E?, p*)e(F*3")

dS(S) = 2s dednp e—st(E27p2)

(4.17)

This shows that from an arbitrary dispersion relation (but of the kind in
which energy can be expressed in terms of the momentum) and specified
topological dimension n a suitable differential operator can be construct that
encode the dispersion relation and this can be used to define the correspond-
ing spectral dimension. To show that the other way around is possible, one
may notice that, defining the "partition function"

Z(s) = / - (4.18)

one can write Eq.(4.15) as

dZ(s)
ds

Note that the function Z(s) encodes relatively simple information on the
dispersion relation of the degree of freedom in consideration. If a theory
gives us only the possibility to study the spectral dimension but it does not
have a differential operator (as in the case of CDT) one can infer an effective
dispersion relation by inverting formally Eq.(4.15) as a function of s,

Z(s) ds(s) — 1

— 4.2
ds 2s (4.20)

ds(s) =1—2s

(4.19)
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from which
_1ys gy dstol
Z(s) = Z(sg)e 2’0 CA (4.21)

The aim though is not to know just the function Z(s) but to obtain the
function E(p). In order to get it, one can write the partition function as

Z(s) = % /0 dEdeE(QE)e‘SEz. (4.22)

Integrating by parts one obtains

/0 B (e = 22(5), (4.23)

which has the form of a Laplace transformation, in the variable E2?, of the
function p™(FE).
Implementing the inverse Laplace transformation via complex integration,

one has .
n 2
"E)=— [ ds—Z(s)e*F 4.24
(B =5 [ as Tz, (4.21)
where C' is an appropriate contour in the complex plane and Z(s) is given
by Eq.(4.21). Therefore, one can compute the effective dispersion relation
for the degree of freedom in consideration when the spectral dimension is

analytically known as a function of s on the complex plane.

4.2 Thermal dimension

As it has already been mentioned in the introduction, many different quan-
tum gravity models share the common feature of “dynamical dimensional re-
duction": the familiar four-dimensional classical picture of spacetime in the
IR is replaced by a quantum picture with an effective number of spacetime
dimensions smaller than four in the UV.

This phenomenon has been studied mostly in terms of the spectral di-
mension, which provides a valuable characterization of properties of classical
Riemannian geometries |60, 63|, but its proposed applicability to the descrip-
tion of the dimension of a quantum spacetime involves some adaptations, as
described in the previous section. In this section it will be shown that these
adaptations are responsible for some of its inadequacies.

When the IR Hausdorff dimension of spacetime is D+1, and the Euclidean
d’Alembertian of the theory is represented on momentum space as Cf“C(E, D),
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the return probability is given by!
P(s) /dE dppPte=sG B (4.25)

The fact that the Euclidean version of the d’Alembertian intervenes should
be cause of concern 2. It is in fact well known that the Euclidean version
of a quantum-gravity model can be profoundly different from the original
model in Lorentzian spacetime (see, e.g., Ref.|67]). Moreover, evidently in
(4.25) an important role is played by off-shell modes, a role so important
that, as it will be here shown, one can obtain wildly different values for
the spectral dimension for different formulations of the same physical theory
(cases where the formulations coincide on-shell but are different off-shell).
It is also concerning the fact that evidently the P(s) of (4.25) is invariant
under active diffeomorphisms on momentum space (an active diffeomorphism
on momentum space amounts to an irrelevant change of integration variable
for P(s)). Since an active diffeomorphism can map a given physical theory
into a very different one (also see here below), this degeneracy of the spectral
dimension is worrisome.

While these concerns are very serious, it must be acknowledged that sev-
eral analyses centered on the spectral dimension give rather meaningful re-
sults. Therefore, the guiding idea is that it is necessary to replace the spec-
tral dimension with some other fully physical notion of dimensionality of a
quantum spacetime, with the requirement that in most cases the new notion
should agree with the spectral dimension. Only when the unphysical con-
tent of the spectral dimension plays a particularly significant role should the
new notion differ significantly from the spectral dimension. The guidance
adopted in searching for such a new notion is the observation reported in
recent studies |76, 129, 78| (see also |79] for earlier related proposals) that in
some instances the Stefan-Boltzmann law gives indications on the dimension-
ality of spacetime that are consistent with the spectral dimension. One can
view the Stefan-Boltzmann law as an indicator of spacetime dimensionality
since for a gas of radiation in a classical spacetime with D + 1 dimensions
the Stefan-Boltzmann law takes the form

U o TP (4.26)

!The thesis supported here is that even if (4.25) did describe the return probability
(as usually assumed) still the spectral dimension would be unsatisfactory. It is interesting
however that, as stressed in Ref. [64], the interpretation of (4.25) as return probability is
not always applicable.

2Concerns for the Euclideanization involved were also raised in Ref.[65], within a study
concerning the causal-set approach. Ref.[65] proposed a possible redefinition of the spectral
dimension suitable for including Lorentzian signature and found that it gave different
results with respect to the standard (Euclideanized) spectral dimension.
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Actually several thermodynamical relations are sensitive to the dimension-
ality of spacetime, another example being the equation of state parameter
w = P/p, relating pressure P and energy density p, which for radiation in a
classical spacetime with D + 1 dimensions takes the form

1
= —. 4.2
w= (427)

These observations inspire the proposal of assigning a “thermal dimension" to
a quantum spacetime. The recipe presented in this thesis involves studying
the thermodynamical properties of radiation with on-shellness characterized
by the (deformed) d’Alembertian of the relevant quantum-spacetime the-
ory (the same deformed d’Alembertian used when evaluating the spectral
dimension, but in its Lorentzian form). By looking at the resulting Stefan-
Boltzmann law and equation of state one can infer the effective dimension-
ality of the relevant quantum spacetime. This notion of dimensionality has
the advantage of being directly observable, a genuine physical property of
the quantum spacetime, and, as it will be here shown, fixes the shortcom-
ings of the spectral dimension, while agreeing with it in some particularly
noteworthy cases.

4.2.1 Application to generalized Hoirava-Lifshitz scenar-
ios

To start the quantitative part of the present study, consider a class of gen-
eralized Hotava-Lifshitz scenarios, which has been the most active area of
research on dynamical dimensional reduction [55, 73, 61]. These are cases
where the momentum-space representation of the deformed d’Alembertian
takes the form

C

e (B, p) = E? — p? 4 (77 B2 _ g2 2(0470) (4.28)

where F is the energy, p is the modulus of the spatial momentum, ~, and ~,
are dimensionless parameters, and ¢; and ¢, are parameters with dimension
of length (usually assumed to be of the order of the Planck length).

For this model it is known [61, 73] that the UV value of the spectral
dimension, obtained from the Euclidean version of the above d’Alembertian
(E2 +p2 + Ef%EZ(”W) + f?ﬂ’”pQ(H%)), is

_ 1, D
T

In deriving the thermal dimension for this case one can start from the
logarithm of the thermodynamical partition function |80], written so that

ds(0) (4.29)
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the integration is explicitly taken over the full energy-momentum space:

2V ;
108 Q. =~ [ AR [3C) OE) -
2Blog (1— ¢ ) |. (4.30)

Here [ is related to the Boltzmann constant kg and temperature via § =
kB%T, and the delta function 6(C,,,,) enforces the on-shell relation C,,,, = 0.
From (4.30) one obtains the energy density and the pressure respectively

10 10
Pryive = _V% log Q'Yt'Yac » Py = BW log Q’Yt%c : (4'31)

as

Figure 4.1 shows (for a few choices of 7,,7;) the resulting temperature de-
pendence for the energy density and for the equation of state parameter. For
the UV /high-temperature values of p,,, and w,,, one can easily establish
the following behaviors at high temperature, in agreement with the content

of Figure 4.1 .
1+t T
Pryeye X T » Wy = ﬁ (4.32)

By comparison to (4.26) and (4.27) one sees that both of these results
give a consistent prediction for the “thermal dimension" at high temperature,
which is
1+ Yt
1+7,
Interestingly, in this case of generalized Hotava-Lifshitz scenarios the thermal
dimension agrees with spectral dimension, Eq. (4.29), for v, = 0, but differs
from the spectral dimension when ~; # 0.

dp =1+3 (4.33)

4.2.2 Implications of active diffeomorphisms on momen-
tum space

Generalized Hotava-Lifshitz scenarios also give us an easy opportunity for
comparing the properties of the thermal dimension and of the spectral di-
mension under active diffeomorphisms on momentum space. From this per-
spective the analysis is particularly simple for the case v, = 0,7, = 1, where
one has

Cio(E,p) = E? —p* + 2E*. (4.34)

In light of the results reviewed and derived above it is known now that in this
case the UV spectral dimension is dg = 3.5, while the UV thermal dimension
is dT =T7.
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Figure 4.1: Behavior of the energy density p in arbitrary units (top panel)
and of the equation of state parameter w (bottom panel) as a function of
B* = 1073BkgTp, according to the partition function @.,,,, for 7, = 0 and
Yz = 2 (blue), 7, = 4 (orange), v, = 6 (green), 7, = 8 (red). The purple line
is the standard case, p oc T* (top panel) and w = 1/3 (bottom panel).

Consider a simple diffeomorphism on momentum space, the following
reparameterization of the energy variable: £ — E=.\/E%+ (2E*. In terms
of E the d’Alembertian takes the standard special-relativistic form, Cip =
E? — p?, while the momentum space measure becomes non-trivial:

3 Edp~/20,0*E
du(E.p) = dEdp V24 (4.35)

\/(1 FA2E2)(—1 4 /1 + 402E2)

When the above diffeomorphism on momentum space is an active one, the
laws of physics are not invariant. This is indeed what is found when compar-
ing the thermodynamical properties of the “E, p theory" with d’Alembertian
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E? — p? and momentum-space integration measure (4.35) and the “E, p the-
ory" with (deformed) d’Alembertian Cy o(E,p) = E? — p? + (?E* and inte-
gration measure dE d®p. In the “E,p theory" the logarithm of the thermo-
dynamical partition function is

_(227‘:)3 / au(E,p) [3(E2 ~ p)O(E) -

2F log (1 - e‘BE) } #+log Q. (4.36)

Of course ultimately this leads to different values for the thermal dimension
of these two theories. In fact, from the partition function (4.36) one can easily
find that at high temperatures the energy density behaves as p ~ T3, while
the equation of state parameter is w = 0.4. These values point at a value of
the UV thermal dimension of d = 3.5. Note that this result is different from
the one that would follow from a passive diffeomorphism. In this case, the
partition function in the E, p variables would be straightforwardly obtained
by a change of variables in Eq. (4.30):

1Og C~Qact.

10g@pass. = _% /d,u(E,p) |:5(E~'2 —p2) .
O(B(E))2E(E)log (1 - ¢ ##5)) |
= log@. (4.37)

A passive diffeomorphism just relabels the same physical picture and of
course the thermal dimension is not affected. On the other hand, it can be
easily seen that the spectral dimension is not only invariant under passive
diffeomorphisms but also under active diffeomorphisms on momentum space.
In fact, active and passive diffeomorphisms have the same effect on the return
probability P(s), that of changing the integration variable (without chang-
ing the integral). Therefore the "E,p theory" has the same UV spectral
dimension (ds = 3.5) as the "E, p theory".

In summary, one finds that the UV spectral dimension of both the “F, P
theory" and the “FE p theory" is 3.5, and 3.5 is also the value of the ther-
mal dimension of the “E,p theory", but the “E,p theory" has UV thermal
dimension of 7. It should be evidently seen as advantageous for the thermal
dimension® the fact that it assigns different UV dimension to the two very

3Previous works [61, 114, 81| contemplated the possibility of describing the dimension
of a quantum spacetime in terms of the duality with momentum space, by resorting to the
“Hausdorff dimension of momentum space". However, at least as formulated in [61, 114,
81], that notion is only applicable to theories of the type of the “FE, p theory", i.e. with
undeformed d’Alembertian (but possibly deformed measure of integration on momentum
space).
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different “E, p theory" and “E, p theory".

4.2.3 Application to f(E?—p?) scenarios

Another scenario of significant interest is the one where the d’Alembertian
is deformed into a function of itself: E?—p? — f(E*—p?). The structure
of this scenario is very valuable for the purposes of the argument presented
here, but it also has intrinsic interest since it has been proposed on the basis
of studies of the Asymptotic-Safety approach [82] and of the approach based
on Causal Sets [83]. This subsection considers a case which might deserve
special interest from the quantum-gravity perspective, as stressed in Ref.[82],
such that the deformed d’Alembertian takes the form

C,(E,p) = B> —p* — (7 (B = p")'"" | (4.38)

where the parameter v takes integer positive values and ¢ is a parameter with
dimension of length.
For this case one easily finds that the UV spectral dimension is

4

d5(0> = mv

(4.39)
but the fact that this notion of the UV dimensionality of spacetime depends
on 7 is puzzling and points very clearly to the type of inadequacies of the
spectral dimension that this study is concerned with. In fact, in the UV limit
the parameter v has no implications for the on-shell /physical properties of
the (massless) theory. In general, massless particles governed by C, will be
on-shell only either when
E? =

or when ]

B = p?+ =
independently of the value of 7. At low energies only E? = p? is viable. For
energies such that £ > 1// also the second possibility, E? = p?+ %2, becomes
viable. However, in the UV limit the two possibilities become indistinguish-
able, all particles are governed by E =~ p just like in any 4-dimensional
spacetime, because as £ — oo one has that p? + giz ~ p?. So without any
need to resort to complicated analyses one knows that this theory in the
UV limit must behave like a 4-dimensional theory, in contradiction with the
mentioned result for the UV spectral dimension.
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The UV value of the “thermal dimension" is correctly 4, independently of
~. This is easily seen by taking into account the deformation of d’Alembertian
present in the C, of (4.38) for the analysis of the partition function:

2
(2m)?

Using the fact that

sc,) = 2E—P) oyt (4.41)

2P 29\/P* +

one easily finds that the UV behavior of thermodynamical quantities which
is relevant to determine the thermal dimension is independent of 7, and in
particular in the UV the Stefan-Boltzmann law and the equation-of-state
parameter take the form known for a standard 4-dimensional spacetime:

log Q., = — / dEd*ps(C,)O(E)2E log (1 — e ), (4.40)

poc T, w=-. (4.42)

So indeed in this scenario the UV value of the thermal dimension is 4. The
theory does have “dynamical running of the dimensionality of spacetime" in
a regime where the temperature is close to the Planckian temperature, as one
should expect on the basis of the fact that the parameter v does have a role in
the theory for energies greater than 1/¢ but still small enough to distinguish
between p* and p* + 4. This is shown in Figure 4.2, where the thermal
dimension (inferred from the behaviour of the equation of state parameter
and from the running of the energy density with temperature) is plotted as
a function of 3.

The disastrous failures of the spectral dimension in this case is to be
attributed to a combination of its sensitivity to off-shell properties and its
reliance on the Euclidean d’Alembertian. It is noteworthy that for the Eu-
clidean d’Alembertian?,

Cﬂ[yE‘uclidean] _ E2 +p2 4 £2V(E2 _|_p2)1+7 , (443)

in the UV limit one can neglect E? 4+ p? with respect to €2V(E2 n p2>1+’y'
Instead for on-shell modes of the original Lorentzian C, one can never neglect
E? — p? with respect to (27(E? — p?)117,

“Note that in order to have the Euclidean version of the d’Alembertian C,(E,p) one
has to Wick-rotate also the parameter ¢ [84].

96



dr

441
43t

42+

Ll I Lol I Lo L
1075 1074 1073 1072 0.1 1

Figure 4.2: Behaviour of the thermal dimension dr as a function of 5. The
thermal dimension is computed as dp = 1 + i, where the equation of state
parameter is the one associated with to the log ()., with v = 1. f is in units

of 1038p (where Sp = ﬁ and T'p is the Planck temperature.

4.3 Thermal dimension in Relative Locality mod-
els

The present section shows the preliminary results obtained in trying to ex-
tend the notion of thermal dimension of quantum spacetime to models with
relative locality. This would allow us to give further strength to the argu-
ments developed in the previous section.

Two different sets of coordinates on the momentum space, the bicrossprod-
uct and Judes Visser coordinates [110] of k-de Sitter momentum space, will
be used to compute the relevant thermodynamical quantities and discuss
the properties of thermal dimension. In particular the discussion about the
different sensibility of spectral and thermal dimension under the action of
active and passive diffeomorphism will be continued. Also, it is shown that
the bicrossproduct and the Judes Visser coordinates describe in general dif-
ferent theories although they have equivalent on-shell relations; this allows
a more detailed discussion of the problem of the off-shellness of the spectral
dimension.

The starting point to study the thermodynamics is the definition of (log-
arithm of the) partition function, written in covariant form:

log Q) = — % /du(po,ﬁ)é(Cp)@(U“pM)QU“pux

x log (1 — e_BUM”“) .

(4.44)
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Here, p, is the four-momentum of the photons in the radiation gas, U* is the
four-velocity of the observer with respect to the system (so that the energy
measured by the observer is £ = Utp,), f is related to the Boltzmann
constant kp via [ = kBLT, C, is the on-shell relation and du(po,p) is the
invariant measure on momentum space (these becomes C, = p? — p* and
du(po, p) = d*p in the undeformed case and (4.44) takes the usual form in
the comoving reference frame U* = (1,0)). Writing the partition function
in covariant form allows to introduce non-trivial dispersion relations and
curvature on momentum space consistently with the relativistic setup of the
model. From this, following Section 4.2, all the thermodynamical quantities
can be derived in the usual way. In particular, the main focus will be on the
energy density

19
and the pressure
19

4.3.1 Thermal dimension of k-de Sitter in bicrossprod-
uct coordinates

The metric on (D + 1)-dimensional momentum space in bicrossproduct co-
ordinates takes the form:

D
ds* = ¢"dp,dp, = dE* — Py " dpf (4.47)
j=1

so that the measure of integration of momentum space is (in 3+1 dimensions)
diy(E,p) = /—gdEd*p = p*c*FdEdp. (4.48)

The momentum space representation of the mass Casimir operator gives the
on-shell relation. This operator must of course be an invariant under the
deformed symmetries of the model. The invariant that is mostly used in the
literature is

4 . (E
Cbp = £—2 Slnh2 (7) — €ZE‘]§’|2, (449)
and the on-shell relation is then given by
4 (E 4 14
7 sinh? (7) —eFp? = ” sinh” <7m) , (4.50)
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where m is the rest energy. The Lorentz transformations are non linear
transformations for these coordinates. Since the spacetime and momentum
space here considered are isotropic one can work just with the modulus of
spatial momentum, p.

The thermodynamical partition function for this model is

log @ /dEalpp2 e*F6(Cyp)O(E)2E log (1 — e 7F) . (4.51)

The delta function can be rewritten as:

5(Cop) = ﬁ(s (p _ 1‘76_) (4.52)

from which one can see that the model has a maximum momentum, p,,., =
¢!, The expression for the energy density, after integration over the p vari-
able, reads:
w =1,
x [ dE e ——FE". 4.53
po [apet s (453)
The integrand is divergent for § < 2¢, from which one can deduce the ex-
istence of a maximal temperature, 7},,, = 0.5Tp, where Tp is Planck tem-
perature. The same conclusion can be drawn from the examination of the
expression for the pressure:
pocg dE e TElog(l—e ) - (4.54)
So this is a case where the UV regime can not be defined by 7" — oo, but
it will be then considered the T" — T),,, regime. When the temperature is
close to its maximum the energy density behaves like:

o (8207 (4.55)
and the equation of state parameter runs to the value
w = 0. (4.56)

From the definition of thermal dimension given in Section 4.2, one can con-
clude that dr = oo. However it should be kept in mind that expressions
(4.26) and (4.27) that link the exponent of the Stefan-Boltzmann law and
the equation of state parameter to the number of dimension of spacetime do
not contemplate a maximal temperature. One could be tempted, by looking
at the expression (4.55), to claim that in presence of a non zero f3,,;, what
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is the number of dimension of spacetime is not the exponential of 5 but that
of (8 — Bmin)~'. So in this case, on the basis of (4.55) one would say that
D +1 = 3. One way to make this claim more reliable is to find an equation
of state parameter coherent with this number of dimension. And since on
the basis of our intuition is that the relavant combination is 8 — [, if one
defines the pressure as

1 0
= B 0V 2 0

then one finds the value of the equation of state parameter which is coherent
with the exponent of the Stefan-Boltzmann law,

w=05. (4.58)

In this optics, both (4.55) and (4.58) suggest that the effective thermal dimen-
sion of the model, close to the maximal temperature, is the less problematic

dr = 3. (4.59)

p=

4.3.2 Thermal dimension of k-de Sitter in Judes Visser
coordinates

The Judes Visser coordinates [110] ¢(F, p) and w(E, p) are defined in such a

way that they transform as the usual 4-momentum under Lorentz transfor-

mation and the mass Casimir takes the standard form e — 72 = p2. They

are obtained as follows. Authors in Ref.[110] started from the expression of
E and p as boosted rest energy m

e = e (1 + sinh(¢m)e " (cosh & — 1)),
1 sinh(¢m)e="" sinh & (4.60)
(1 +sinh(fm)efm(cosh & — 1)

where ¢ is the boost rapidity parameter. By inverting these relations to get
the expression of the rapidity they get

e'® — cosh(fm)

p

cosh & = - ,
sinh(¢m) (4.61)
b g = P |
~ sinh(¢m)’

and using the identity cosh &2 — sinh €2 = 1 rewrite the on-shell relation in
the following way:

1
cosh(¢/F) = cosh(¢m) + iﬁzpzew. (4.62)
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Comparison with the standard dispersion relation fixes the relation between
the rest energy m and the mass Casimir pu,

cosh(fm) =1+ %EQ,uz. (4.63)

This fixes the € and 7 coordinates as
e'® — cosh(fm)
Ccosh(fm/2)
pelE
cosh(fm/2)

€ = pcosh¢é =
(4.64)
™= psinh& =

It is here reported also the expression of the bicrossproduct coordinates in
terms of the Judes Visser

E= %ln(l—l—ﬁq/le%—l—gz—'[ﬂ),

. W\/@ | (4.65)
1+ 66\/@ + %

The invariant measure (4.48) in these coordinates takes the form

w2 <1 + %)

Lt tey/1+ 2 4 25

What it is important to notice for the following is that if one substitutes the
expressions (4.65) into the bicrossproduct mass Casimir (4.49) one finds

€2 — 2+ lpler /1 + % + @(;ﬂ + €2 — 7?)
(4.67)

CJV(EaT(a,U) = )
Lt teyf1+ O 4+ 2

which reduces to the standard

dE dp p*e*F — djiyy (e, m, 1) = dedn

(4.66)

Cry(e,m) = — 72 (4.68)
only when one enforces the on-shell relation for the Judes Visser coordinates,

e — %=’ (4.69)
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So what one actually has is that the two set of coordinates give equivalent
dispersion relations (4.50)-(4.69) but non equivalent d’Alambertians (4.49)-
(4.67). The discussion will come back later on this important fact to discuss
in more detail the different properties of spectral dimension and thermal
dimension.

The "on-shell" expression of the bicrossproduct coordinates in terms of
the Judes Visser coordinates are simply obtained by explicitly substituting

p2 =t n?

_ 2 20,2 2
1n1+66\/1+ 7T)+£(€ ™)),

(@) (4.70)

1_'_€€ /1+ E—7T2 E—7T2

Starting from these expression to compute the measure one obtains,

2(,2 _ -2
dpyy (e, 7) = dedm (1 + Lﬂ) . (4.71)

For what concerns the thermal dimension, however, since the on-shellness
is enforced by the Dirac delta function, this difference in the measures makes
no difference in the final value of the integral since one can easily see that

diiyv (e, 7, 11)S(Cry (e, m, 1) — pu?)0(e) =
= dyuyv (e, m)3(Cov (€, ) — 11)0(e)

N (4.72)
= dedr 7 (1 + _,u) §(e — 7w — u®)f(e).

4

Notice than apart a constant factor the measure that ultimately enters in
the relevant integral is the standard measure over minkowskian momentum
space and it is exactly the standard one in the massless case @ = 0, which is
the case of interest to study the Stefan-Boltzmann law and equation of state
parameter.

This result immediately tells us that the thermal dimension is sensible
to the difference between active and passive diffeomorphisms on momentum
space. In fact, if one switches coordinates from the bicrossproduct to the
Judes Visser as a passive diffeomorphism, it actually is a mere change of co-
ordinates in computing the relevant integrals, the resulting Stefan-Boltzmann
law and w then being those computed in the previous section. However, if the
Judes Visser coordinates are introduced as an active diffeomorphism, then
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the logarithm of the partition function is
log @ /de dr m26(e* — 72)0(e)2¢log(1 — €), (4.73)

which therefore leads to the usual value dr = 4. It is therefore evident
that in this context physics is not invariant under active diffeomorphims on
momentum space.

4.3.3 Spectral Dimension in Judes Visser coordinates

In the previous section it has been noticed that one has two set of transforma-
tions relating the bicrossproduct to the Judes Visser coordinates: the first,
Eqs.(4.65), may called "off-shell Judes Visser", since the expression of the bi-
crossproduct mass Casimir (4.49) in terms of these coordinates takes the non
standard form shown in Eq.(4.67); the second, Eqs.(4.70), may called "on-
shell Judes Visser", since the expression of the bicrossproduct mass Casimir
(4.49) in terms of these coordinates takes the standard form Eq.(4.68). The
measure on momentum space in the two cases are respectively dfiyy (e, 7, p)
and dpu gy (e, 7). It has been shown also that these different sets of coordi-
nates still give the same value of thermal dimension because the integrals
defining the thermodynamical quantities are computed on-shell. One could
be interested in looking whether the value of thermal dimension computed
for these models coincides with that of spectral dimension.

The UV spectral dimension for the Euclidean version [111] of this model
can be computed using the return probability

P(s) /dEalpp2 B o= (g sinb? (55 ) +eF1pl?) (4.74)

and turns out to be |60, 61|
ds(0) =6. (4.75)

In the case of Judes Visser coordinates one has to deal with the fact that
one has two alternatives, the off-shell and on-shell coordinates.
For the off-shell coordinates the return probability takes the form

7T2 62+7r2

P(s) x /dedﬂ e % T (4.76)

1+ /le ’

giving the value dg(0) = 6.
For the on-shell coordinates however this takes the form

2( .2 2
P(s) o / dednr® <1 + N%HT)) () (4.77)
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which gives again dg(0) = 6.

This results should not surprise, as it has been already noticed that the
spectral dimension is not sensible to the difference between active and passive
diffeomorphisms. Therefore, no matter which coordinates one chooses for
P(s) in (4.74) it will give dg(0) = 6.

4.4 Remarks on the thermal dimension

The exciting realization that the UV dimension of spacetime might be differ-
ent from its IR dimension adds significance to the old challenge of describing
the dimension of a quantum spacetime and it is argued that it is crucial to
link this issue to observable properties. After all, what it is meant in physics
by “dimension of spacetime" must inevitably be something one can measure.
Moreover, only by relying on a truly physical /observable characterization one
is assured to compare different theories in conclusive manner.

The inadequacy of the spectral dimension for these purposes has been
fully exposed in the previous pages. The fact that this notion involves an
unphysical Euclideanization could already lead to this conclusion. The ob-
servation about the undesirable invariance of the spectral dimension under
active diffeomorphisms of momentum space should cast another shadow on
the usefulness of the spectral dimension. The fact that one obtains different
spectral dimensions for alternative formulations of the same physical the-
ory as in Subsection 4.2.3 (formulations that differ only for what concerns
unphysical off-shell modes) should leave no residual doubts.

The notion of thermal dimension presented here is free from the short-
comings of the spectral dimension, since it relies on the analysis of observ-
able thermodynamical properties of radiation in the quantum spacetime. The
next Chapter shows how the notion of thermal dimension of a quantum space-
time is not only physical but also particularly useful, at least for studies of
the early universe, which is anyway the context where the UV dimension of
spacetime should find its most significant applications [85, 86].
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Chapter 5

Primordial perturbations in a
rainbow universe with running
Newton constant

The standard model of cosmology lacks of a causal explanation of the high
degree of homogeneity seen at large scales in the universe, the sky being a
mosaic of regions that have never been in causal contact but still are puzzling
similar. Without a causal explanation for such homogeneity, it has to be given
as extremely fine-tuned initial condition. This is the well known "horizon
paradox". This weakness brought the development of different mechanism
to solve the paradox, most notably inflation. There, a scalar field drives an
exponential expansion of the universe, and the quantum vacuum fluctuations,
in causal contact, are stretched and grown classical, becoming the seeds of
the structures observed today.

Recent results suggest that the properties of the spectrum of primordial
fluctuations might not need inflationary expansion to be explained, but could
instead be a consequence of quantum-gravitational effects, which are relevant
in the early universe |85, 112|. In particular in |85, 113, 114] it was shown
that a scale invariant power spectrum can be obtained if the perturbations
satisfy the Planck-scale-modified dispersion relation emerging in the high-
energy regime of Horava-Lifshitz gravity [55]:

E? = (1 + (tp)"). (5.1)

As it has been shown earlier, this dispersion relation implies a running
of spacetime dimensionality, so that the spacetime dimension in the deep
Planckian regime is 2 |73, 115, 116]. The possibility of generalising this re-
sult to any theory with Planck-scale dimensional reduction to 2 was suggested
in (86, 81]. These results rely on a number of assumptions, such as that the
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second order action for perturbations is the one of Einstein gravity and that
the perturbations are produced in a quantum vacuum state. This rigidity in
the assumptions makes it hard to find a mechanism that would produce the
observed small departure from exact scale invariance.

This study [127| relaxes several of the assumptions previously made in
the literature. Firstly, it is assumed the more general framework of rainbow
gravity [48] previously introduced. The background cosmological evolution
will then be described in terms of a metric which “runs” with the energy. For
the dispersion relation:

FA(E)E? — ¢*(E)p® =m?, (5.2)

(where the continuous functions f and g approach the constant value 1 when
the energy is well below the Planck energy), the associated rainbow line
element is
_dr? 1
FAE)  g*(E)
Secondly, both perturbations of quantum origin for a vacuum state and per-
turbations that are originated in a thermal state [117, 118, 119, 120, 121]
will be considered. In the latter case it will be assumed that the universe
is filled with radiation and that both the background and the fluctuations
are thermalized, so that they share the same (modified) thermodynamical
properties [122]. Finally, it will be allowed for the Newton constant to also
run with energy. This is motivated by results in Hotava-Lifshitz gravity and
in Asymptotic Safety [123, 124, 125, 126|, where the Newton constant tends
to zero at super-Planckian energies.The Newton constant is allowed to both
increase and decrease with energy. However, it will turn out that in order
to solve the horizon problem and to produce perturbations with the required
spectral index, the Newton constant must indeed be a decreasing function of
energy at super-Planckian scales. This is true for both vacuum and thermal
initial conditions for the perturbations.

Regarding the work on thermal fluctuations, the following motivating fac-
tors must be stressed. As it has been shown in the previous chapter, radiation
obeying a deformed dispersion relation also has deformed thermodynamical
properties [116, 128, 129]. This study of cosmological perturbations focuses
on a generalization of the Hofava-Lifshitz dispersion relation (5.1):

ds* Sijdx'da’ . (5.3)

E? = p(1+ (tp)"). (5.4)

and it is here assumed to be in a regime where only the ultraviolet correction
term is relevant, E? ~ p*(¢p)*’. According to the results obtained in the
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previous chapter, in this regime the associated Stefan-Boltzmann law and
equation of state parameter w = P/p are:

p X T (5.5)
1
w = % (5.6)

The present chapter is structured as follows. Section 5.1 starts by working
out the evolution of the background, including modified thermodynamical re-
lations. Section 5.2 obtains the equation for the evolution of primordial scalar
perturbations, the constraints on the modified dispersion relation and on the
running of the Newton constant which ensure an expanding universe and a
solution to the horizon problem. Section 5.3 is devoted to the computation of
the spectral index for perturbations generated in a quantum vacuum, while
Section 5.4 shows the analogous results for perturbations with thermal initial
conditions. Some conclusions are presented in Section 5.5.

5.1 Background evolution of a rainbow FLRW
universe with deformed thermodynamics

The rainbow functions associated to the dispersion relation (5.4) are:
fP=1 g¢*=1+(tp)*. (5.7)

They enter in the rainbow line element for a FLRW spacetime in the following

way |48, 129]:

o dr? a’(t)
fAE)  g*(E)
It is here assumed that the universe contains a perfect fluid, whose stress-

energy tensor is T = (p + P)u*u, — Pd¥, where p is the energy density, P

the pressure and u* the fluid four velocity !. Then the Friedmann equations

read [48]:

ds® Sijdr'da?. (5.8)

_ 8nG(E)
H2 I (5.9)
H? — g = %ﬁm(pﬂﬂ,

! As mentioned in the introduction, a possible energy dependence of the Newton con-
stant G is allowed.
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where H = daé % From these the continuity equation follows

p=—3H(p+ P). (5.10)

The solution of the continuity equation can be stated in terms of the equation
of state parameter as usual, and if the universe is filled with radiation this
translates into a dependence on the parameter v appearing in the dispersion
relation (5.4):

p = pa 30 = pg= @), (5.11)

Of course in the case of standard thermodynamics in four spacetime dimen-
sions dr = 4 and one recovers the usual scaling p = pa~* in a radiation-filled
universe.

Using the Stefan-Boltzmann law one finds that the deformed thermody-
namics also affects the evolution of the temperature with the scale factor:

T oca =a ), (5.12)

5.2 Evolution of scalar perturbations in a rain-
bow universe and solution to the horizon
problem

The perturbed rainbow FLRW metric in the longitudinal gauge? reads:

o dr? 2 a’(t)
= 7m0~ gy

In order to work out the evolution equation for the perturbations one can
introduce an energy-dependent time variable,

ds* (1 — 2¢(t, x))d;;dx'da’. (5.13)

- dt
dt = ———, 5.14
7(E) o1
so that the time-dependent functions appearing in the metric read
(B0 = 20 3i.x) = o(t.0), 9(Fa) = Uit o).
) gz(E) ) ) ) ) Y )
(5.15)

2By this it is here meant that in the limit where the energy dependence of the metric
disappears, f = g = 1, one is left with the metric in longitudinal gauge.
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The perturbed line element takes the standard form in terms of the new
functions:

ds? = di*(1 + 26(t, ) — a*(B, 1) (1 — 20(t, 2))d; da’da? . (5.16)

Using these new variables one can just follow a standard procedure (see e.g.

[122]) to obtain perturbation equations.
From the standard equations, with the prime denoting the derivative

dn

V26— 3H(Ho + ¢) = 4xGa*sp

[3% + g?s’] = 4nGaE(p + P)oa, (5.17)
"+ 3HY + (2H + H>)p = AnGa’s P
one can combine the first and third equation of Eqs.(5.17) to get
¢+ 60'H + (2H + 4H? — V) =0, (5.18)
where we set ¢ = i—lg = 1. Defining the quantity
¢= ¢3E()1++BZ) * %3(1 i w)’ (5.19)
Eq.(5.18) can be written as

o2 V5 (5.20)

TS ALw)
(5.21)

4220 - v =0,

and from this one can get the following
g// + 2

ISTERSE:

3(1 -
with Z = Md. Finally, defining the quantity o = 2¢, Eq.(5.18) takes
the familiar form i

' (V2 + ZT) 5 =0. (5.22)
z
Going back to the energy-independent time variable one finds that the
curvature perturbation is left unchanged,

> 5+3w  ade/dt 2

= 2
T et 30t w) (5:23)

C= 93w
109



while

= \/Ma: \/Mg = z/g. (5.24)

2 2
Therefore, v = vg satisfies the following evolution equation in Fourier space
2 "
V(e D) v =0 5.25
(g0t o

From now on, the prime stands for the derivative with respect to the energy-

d
independent conformal time, a = a%. This equation is very similar to
Ui

the standard one, with the factor (f/g)? which plays the role of an energy-
dependent speed of sound.

Note that a possible energy dependence of the Newton constant does not
appear explicitly in the evolution equations of the perturbations; however,
it will be shown in the following that it affects the scale of the horizon and
the conditions under which the horizon problem is solved within rainbow
cosmology models.

A cosmological model that solves the horizon problem is such that modes
start inside the horizon, where the first term in parentheses in the evolution
equation (5.25) dominates, and subsequently exit the horizon, where the sec-
ond term dominates [122, 130]. Here the conditions under which the horizon
problem is solved are investigated specialising to the dispersion relation (5.4),
with associated rainbow functions (5.7) and assuming to be in a regime where
only the ultraviolet correction terms are relevant. It is important to bear in
mind that the energy appearing in the rainbow functions is the physical one,

2y
related to the comoving k via F = (%) .

The behaviour of the two terms in parenthesis in Eq. (5.25) is governed
by the evolution of the scale factor a(n). This is found by integrating the
first Friedmann equation (5.9), leading to

) a1+3w 1 a2+ﬁ/ 1

= (14 3w)? 2mpG - (24 7)? 27pG

(5.26)

Here, p is the initial energy density and the relation between the equa-
tion of state parameter w and the deformation parameter v is given by the
modified thermodynamical relation (5.6). If the Newton constant is energy-
independent, the scale factor evolves as:

a(n) = ("> , (5.27)
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where C' = G%ﬂﬁ(2+7)2 and 7 increases from 0 in order to have cosmological
expansion with time. Then the two terms in parentheses in (5.25) take the
form

£k 2 2y 4y
k? (—) = K> (LK) C™ 2F 5.28
e (¢k) (5.28)
and , 5 )
a -2
— = _ | — 1. 5.29
e 24, (2 S ) (5:29)

The horizon is then found at

24+
v (2 2\ 26-2
N = <k2(£k)2”’6’_2‘2+w %) , (5.30)
and in order to solve the horizon problem one needs
v > 2. (5.31)

If the Newton constant has a power-law dependence on energy in the
ultraviolet regime,

147y
G(E) = *(tE)™ ~ 1? (g—k) , (5.32)

a

then the evolution of the scale factor with time is
a(n) = (CnP(tk)HD*) . (5.33)

where v =244 (1 + 7)o and C = 272p(2 + )2 Note that depending on
v the conformal time can either be positive or negative. In fact, in order to
have cosmological expansion with time if ¥ > 0 then n must be positive and
increasing from 0, while if » < 0 then 7 must be negative and approaching 0
from —oo.

The terms in parenthesis in the perturbation equation (5.25) are now:

2y
= <%) = C~F VR (k) 25, (5.34)
and o9 /o
—=- (5 — 1) n?. (5.35)
The horizon is then found at
~ 2y M%%
P (2”(%07_”1)#(61{)@) (5.36)



and the horizon problem is solved for 477 > 2 if n is positive and for 47” <2
otherwise. Then the overall conditions on « that ensure cosmological expan-
sion and solution of the horizon problem are

247 v —2
——<a< — 5.37
1+~ I+~ (5.37)
for positive n and
2 —2
a< 20 02 (5.38)

1479’ 1y v
for negative n. The latter possibility is obviously excluded. The first option
correctly reduces to v > 2 when o = 0, while in general it constrains a to be
in the range —2 < a < 1.

5.3 Vacuum perturbations

One can study the power spectrum of vacuum fluctuations directly in the
general case where the UV energy dependence of GG is encoded in (5.32). The
limit o« = 0 gives the results for energy-independent G.

The dynamics of modes inside the horizon is governed by the first term
in parentheses in (5.25). Up to a phase, the vacuum fluctuations inside the
horizon take the form [85, 113]:

a/?
Vy ~—Y—.
O Y

The solution of (5.25) for modes outside the horizon can be cast in the ansatz:

(5.39)

vy ~ F(k)a, (5.40)

where the function F'is found by asking that the two solutions match at the

horizon:
a’*(ny)

The dimensionless power spectrum of curvature perturbations ( is given by
Py ~ K <E>2 = A%k™ . Tts spectral index n, is found from (5.41) and
(5.36): -

(5.41)

V1o (1 +4)2-9)
s 2—v+all+7)’
Clearly v = 2 gives a scale invariant power spectrum for any value of « al-
lowed by the constraint (5.37), which for v = 2 reads —3 < o < 0. The

(5.42)
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fact that scale invariance is achieved independently of how the Newton con-
stant scales with energy is due to the time perturbations being already scale-
invariant and proportional to the scale factor a inside the horizon. So the
gluing procedure is trivial, bypassing whatever modified evolution of the
background was introduced. Also a near-scale invariant power spectrum is
allowed. In particular one can ask that n! = 0.968 £ 0.006, which is the
present observational constraint from Planck [131], obtaining the allowed
range of values shown in Fig. 5.1. Note that now the energy dependence
of the Newton constant is relevant. In particular, the values of «a that are
selected by observational constraints are all negative, suggesting a vanish-
ing Newton constant in the deep UV regime. On the other hand, from Eq.
(5.35) one can see that observational constraints allow for both an acceler-
ated or decelerated expansion. This is a crucial difference with respect to
the constraints coming from thermal fluctuations, as shown in the following
section.

0.5+ -

a -0.5- B

-10 B

Figure 5.1: The constraint ny, = 0.968 £ 0.006 is plotted in red , assuming
vacuum fluctuations (the error bar is too small to be seen on the plot). The
region satisfying the constraint ensuring solution of the horizon problem, Eq.
(5.37) is plotted in blue .

In the limiting case & = 0 (energy-independent Newton constant) the
gluing condition at the horizon gives a spectral index which is far from scale
invariance, nY’ — 1 = 4 + . However, when v = 2 both the terms governing
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the evolution of perturbations, (5.28) and (5.29), scale like 2. Therefore a
mode is either inside or outside the horizon, unable to cross it. Whether a
mode is inside or outside the horizon is set by the scale

B 87 1/6_ 1 5 1/6
e (655) () - 69

where Hj is the current value of the Hubble constant and p.,. is the critical
energy density. If the modes are well inside the horizon, k > kg, the per-
turbations behave like vy ~ ﬁ, and so they are scale-invariant, but never

exit the horizon.

5.4 Thermal perturbations

Without an inflationary phase, there is no real reason to exclude the contri-
bution to the perturbations power spectrum coming from thermalised pertur-
bations, since this is not suppressed by a period of super-cooling [120, 117].
The thermal contribution to the power spectrum is here computed applying
the method outlined in [118], but taking into account that in our model both
background and perturbations are thermalised. This in particular means
that the same thermodynamical constraints (5.6) hold for background and
perturbations. The expectation value of a quantum operator is

_ annn<n|é|n>
(0) = IRCTRE (5.44)

where |n) is the n-particle state. It is here assumed that the density matrix
follows the Boltzmann distribution p,, = e ?P» where 8 = 1/kpT and
E, = pay/ 1+ (€p,)?7 is the energy of a mode with occupation number n.

Then the correlation function of the quantised perturbation variable v is
[120]

JU . d3k iR
0@+ ) = [ GlnmPenen) + e, G5)
where the number density is given by the Bose-Einstein distribution:
1
(k1) = —3EGy =1 (5.46)

The power spectrum of thermal perturbations imprinted at the horizon is
therefore

PTherm(k) = PVac(k;) (2”(]{3, nH) + 1) (547)
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Since the regime of fluctuations being studied is in the Rayleigh-Jeans limit,
one can set: T ¢
~ -1 Blc
n(k,nu) =~ (BE)" = TRy (5.48)
where the conformal temperature 7, = Ta ™! is constant in time. As in
[118, 132|, the relation between the physical and conformal temperature is
found by asking that the number density is independent of time. If ¢ is
k independent, this is just 7, = Ta/c. Here one should strip off the k
dependence in ¢ from the definition of T,, so that it does not become k
dependent.
Including the thermal contribution, the spectral index of perturbations
becomes

nl=n! —1-17. (5.49)

Note that this result differs form the one in [133], because a mistake has been
made there. In the Rayleigh-Jeans limit, n ~ T'/E, not just T'/k. The fact
that ¢ has an extra dependence in k is responsible for the last term in (5.49).
This result is also independent of how the Newton constant runs with energy.

Using the value of the vacuum spectral index found in the previous sec-
tion, Eq. (5.42), the thermal spectral index can be written as

v 42-=7)—ay(l+9)
ke sy (g (5.50)

For energy-independent Newton constant, a = 0, the thermal spectral
index is
nl =4, (5.51)

regardless of the value of 7. This result matches the one found in {120, 117
and of course it is ruled out by observational constraints.

For a # 0, asking that the perturbations are scale invariant leads to a
constraint linking o and ~. Asking in addition that the horizon problem is
solved, Eq. (5.37), introduces an inferior bound v > 2 on the allowed values
of 7. Then the values of o that are compatible with scale invariance and
which allow to solve the horizon problem fall in the range —1/4 < a < 0.

It is also possible to match the spectral index to the Planck observed
value ngy = 0.968 + 0.006 [131], giving the constraints shown in Fig. 5.2.
According to Eq.(5.35), these observational constraint on v and 7 only allow
for a decelerating expansion of the universe.
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Figure 5.2: The constraint ny, = 0.968 £ 0.006 is plotted in red, assuming
thermal fluctuations (the error bar is too small to be seen on the plot). The
region satisfying the constraint ensuring a solution of the horizon problem,
Eq. (5.37) is plotted in blue.

5.5 Concluding remarks

It has been investigated in this chapter the possibility that a rainbow universe
with running Newton constant can accommodate primordial perturbations
whose spectral index matches current constraints, without relying on inflation
to solve the horizon problem. Starting form a universe filled with radiation
subject to deformed dispersion relations (of the Hotava-Lifshitz type), both
vacuum and thermal initial conditions for the perturbations have been con-
sidered and a power-law dependence of the Newton constant on energy has
been assumed. Crucially, it has been assumed that the background satis-
fies the thermodynamical relations peculiar to radiation subject to deformed
dispersion relations.

For both kinds of initial conditions for the perturbations (vacuum and
thermal) the running of the Newton constant is essential in achieving a viable
picture. In particular, the Newton constant is constrained to be decreasing
with energy in the ultraviolet regime. This is consistent with intuition from
quantum gravity theories, such as Hofava-Lifshitz gravity and Asymptotic
safety. It also resonates with the conjecture put forward in [86]. In scenarios
considered, vacuum and thermal initial conditions can be distinguished be-
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cause, while for the former the observational constraints are compatible with
either an accelerating or decelerating expansion of the universe, for the latter
only a decelerated expansion is allowed.

One may question the wisdom of enforcing thermodynamical constraints
on the background as well as on the fluctuations. A counter-example is a
scalar field, for which the background does not need to be thermalized even
when the fluctuations are [118]. Nonetheless it is curious that when, for
the sake of minimality, one imposes thermal conditions on both background
and perturbations of a scalar field, one recovers the universal result n? = 4
previously derived for a thermodynamical fluid [120]. Just as with [120] one
needs to relax standard assumptions to evade this result. Here the running
of Newton’s constant was the crucial ingredient.
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Chapter 6

Analysis of causality and
momentum conservation with
Relative Locality

6.1 Causality from Relative locality

The present section offers a discussion on causality in Relative Locality. In
Subsection 6.1.1 it is shown that the relativity of locality does not imply
a relativity of causal relations: the causal connection between events is ob-
jective even in the relative locality framework. The only difference with
respect to the standard case is that now the observer should not trust the in-
ferences about distant events obtained from her coordinatization, but rather
use translation transformations in combination with her description of world-
lines. This is done analyzing a case of two causally disconnected chains of
processes which are, nevertheless, tangled in such a way that a single observer
would obtain a completely misleading picture of the process if she adopts only
her own coordinatization to describe the process. A careful analysis shows
that with the help of a proper use of translation transformations she can
completely disentangle the two chains.

After this, in Subsection 6.1.2, opposite to what has been claimed in a
recent paper ([107]), it is shown that causal loops, which in general are not
excluded by the equations of motion in curved-momentum-space theories,
are indeed excluded as soon as the extra requirement of relativity of locality
is enforced in this class of theories. In fact, for a generic theory with curved
momentum space, it is possible to obtain general conditions on the derivatives
of the K’s that must be satisfied in order for that theory to be symmetric
under an appropriate notion of translation transformation. These conditions
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are translated into conditions on energies and momenta of the interacting
particles. If these conditions are not satisfied, the causal loop is allowed,
whereas when these are satisfied the only solution of the equations of motion
is that the whole loop collapses to a single event.

6.1.1 Cause and effect, with relative locality

Consider a situation where two pairs of causally-linked events are present,
arranged in such a way that the coordinatization by an observer may not
render manifest the causal link (then finding that awareness of the form of
translation transformations allows decoding the causal link). Specifically this
situation consists in two atoms, that are excited by two photons, propagate
and finally de-excite, each re-emitting a photon. Since it will be important
in the subsequent analysis, it must be remarked that each pair of causally-
linked events are causally independent from the other. It is also assumed
that there is an observer Alice which is local to the excitation of the atoms,
for which the two excitation events coincide, and an observer Bob, which
is local to the de-excitation of the two atoms. Alice and Bob are taken in
relative rest and the relation between their coordinazation of the worldlines
of the particles is given by a translation transformation. Fig. 6.1 shows the
two pairs of causally-linked events, together with the observers local to them.

For purposes of this section, two conditions on the energies of the particles
must be satisfied. The first one is that the energies of the incoming photons
are such that both atoms in the excited states can be considered as ultra-
relativistic i.e. p{, > my, g} > my. The other one is that some particles
have their energy negligible with respect to the energy scale of the theory ¢~*
while the energy of the other particles cannot be neglected. The first kind of
particles is called “soft” and the second “hard”. In Fig. 6.1 solid lines stand
for hard particles while dashed lines stand for soft ones. In particular both
atoms before excitations are soft particles, then the one labeled as (p/, z’)
becomes hard when it absorbs the hard photon (p,z) and after propagating
it re-emits the hard photon (p”, z").

Now the relative locality framework inspired by the sk-momentum space
with “time-to-the-right” coordinates is introduced (see [104|). This implies
that the on-shell relation for a particle of momentum p and mass m is

Cp =Py — P} + Lpopt —m* =0, (6.1)
while the composition of two momenta p, ¢ is

(P®Bq)o=po+q,

6.2
(p®agh =p1+q + g . (6.2)
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! Bob

Figure 6.1: A process involving two causally-linked pairs of events. Different
pairs are distinguished by different colors, while solid lines stand for “hard”
particles and dashed lines for “soft” particles.

Then the process of Fig. 6.1 is described by the following action

S :/_80 ds (z“l%:u +Nka> +/

—00

+/ ds (utr, + N,C,) +/ ds (z"'pl, + NyCy) —i—/ ds (y"q, + NyCq)

S

ds (z*p, + N,Cp) + / ds (y"q, + N,Cy) +

[e.9]

0 50 51
+ /+00 ds ("™, + Ng:Cqr) + /+OO ds (u"7, + NowChr) + /+°0 ds ("l + Ny Cprr)
o2 s2 53
b [ (e M) — K — AT — €l K
N (6.3)
where the IC(Q appearing in the boundary terms are defined as
KO = (k@ p),—v, .
IC(Z) =(r®oqu—d,, (6.4)

]C(M) — p:; _ (l{}, @p”)u ’

3
]C(M) — qL _ (7,/ @ q”)u ]

Before going on it can be noticed that the action can be split into the
sum of two parts, each describing one pair of causally-linked events.
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By varying the action (6.3), one obtains the following equations of motion

Pu=0, ¢.=0, k,=0, 7, =0, |, =0,
g, =0, p)=0, ¢/=0, k,=0, #,=0,

C,=0, C,=0, Co=0, C,=0, Cy=0,
CqIZO, CPHZO, CqHZO, Co =0, Co=0,

0) _ 1) 2) 3) _
K =0, KPV=0, KP=0, KP=0,

. ocC . oC ) ICy, ) oC ) oC,,
H — P H — 74 g __ H — r e — , P
i Npapu .U Nq@qu , Nk@k‘u .U /\/}am . @ N, o,
oC, oC,n dC,n 0Cys oC,
T , q I . p I . q - , - , T
7 N, oq, ° T N, —0p;j .y N, —(9q,’j , 2 N or, U N, o,

and the following boundary conditions for the endpoints of the worldlines

2 (s0) = €y 88’2( L e = 5(1)88“—5 L 2h(sp) = 550)88’C—,5) |
W (sy) = sza)&a’%) Ca(so) = —fzfm%(i) L a(se) = & aa’j -
y"(s1) = —56)8(5—5 , yH(s2) = £y 855) , o a(sg) = —553)6(575) :
y"(s2) = —5(”2)8;—5 , 2M(s3) = —553)8;—]3 ;o uM(se) = —5(”2)88IC—7:(5) :

It is easy to check that the above equations of motion and boundary condi-
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tions are invariant under the following translation transformation:

xhy = aly + 0{(k ® p),, "},

yp =yh +0{(r @ q)u, ¥},

zp =2y +0{(k&p), 2"},

uly = ut +0"{(r ®q),,ut} ,
a'y =2y + 0 {p, 2"},

Y =y +0{q, v},
a"p =l 0K @), 2™}
y”’é = yff;“ +0{(r" ®q")u, y"™} ,
iy =2+ 0K @p"), MY
u'y = uly + {0 @ ")y, u"}

(6.5)

where 0* are the translation parameters.

Now it is supposed that the two atoms are excited at Alice’s spacetime
origin .e. xA = y'{ = 0 and the soft atom de-excites at Bob’s spacetime
origin i.e 3 = 0. It is supposed instead that the hard atom de-excites just
in the space origin of Bob i.e. a/f = 0. At first order in ¢, the equations of
motion yield

/1 y/l

—0:1+€p'1, ﬁzl, (6.6)
where it has been considered that p{ > my, ¢, > my (being pi, ¢} < 0,
with the conventions adopted). So Alice describes the worldlines of the two

excited atoms as
xA_ (1+£pl)xA )
y A = y A .

(6.7)

To compute at which times Bob sees these events to happen, one should use
the worldlines in Bob’s coordinazation, as it has been explained in Section
2.3.3. These worldlines can be obtained by introducing in (6.7) the transla-
tion trasformation which relates the coordinatization of Alice and Bob. For
the coordinates of the two excited atoms the translation transformation is
undeformed:

'p(s) = a4 (s) + 0{p,, 2} = 2"y (s) = V",

. (6.8)
y's(s) = y"h(s) + 0 {q,, "} = y"a(s) — V" .
So the worldlines in Bob’s coordinatization are
xB = (14 £p))ap — b +0° + 0y, | (69)

v =yp— b+
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Imposing y5 = 0, it is found that b° = b'; then, using % = 0, one gets
o'y = —b'p) . (6.10)

So the result is that Bob sees the hard atom arriving after the soft one in his
space origin, with a time delay between them given by At = —b'¢p/.

The attention can now be focused on what Alice infers about the two
processes of de-excitation happening locally at Bob. It will be found that
there are some puzzling features in her inferences. First of all one notices
that the translations (6.8) are undeformed, so that Alice infers the same
time delay measured by Bob as the time delay between the arrival of the soft
and hard atoms in Bob’s space origin. Then it is necessary to look at the
boundary conditions in Alice’s coordinatization for the particles involved in
those processes:

1 (55) = h(53) = €l = (1, 51)

'} (s2) = bt =My

2"t (s9) = bt + b K] ~ b (6.11)
2 (s9) = bt — bHep), + bl

Zi(s2) = b

Figg. 6.2 and 6.3 give a pictorial representation of the processes as seen
and inferred by the two observers, Alice and Bob. Notice that, according
to Alice’s description, a hard photon is emitted by the hard atom, which
actually after the de-excitation appears to be far from the place where the
emission of the photon took place. More precisely it appears to emerge from
the process of de-excitation of the soft atom (p, ~ p},).

Through this analysis it has been shown that two pairs of causally-
connected events can provide a puzzling picture to observer Alice if she trusts
her inferences about distant events: one could arrange the two events at Bob
to be simultaneous, according to Bob and , since the two events appear to be
delocalized in Alice’s coordinates, then Alice might get misleading input in
her analysis of causal links. However, if Alice uses in her analysis the trans-
lation transformations, so that she can establish how the two events distant
from her actually appear to the nearby observer Bob, then Alice can cleanly
disentangle the causal links.
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Alice Bob

Figure 6.2: The two pairs of causally-linked events as seen (if local) or inferred
(if distant) by Alice.

z H
P i Alice Bob

Figure 6.3: The two pairs of causally-linked events as seen (if local) or inferred
(if distant) by Bob.

6.1.2 Causal Loop

The next task is to test causality beyond simple causal chains, 7.e. considering
the possibility of causality-violating loops (which for short shall often be
labeled as “causal loops”). This is a possibility which was already considered
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in Ref. [107], yet by a perspective somewhat different from that discussed in
Sections 2.2 and 2.3.

Figure 6.4: A causal chain which describe a causal loop as proposed in [107].

An action that reproduces the equations of motion and the boundary
conditions that lead to the emergence of causal loops as described in [107]
must be found. The results obtained shall be that causal loops are indeed in
general allowed in theories with curved momentum spaces but they cannot
be present when the theory with curved momentum space enjoys relative
locality. Referring to Fig. 6.4, the action reads

s

S:/ dsy“quNqC(q)%—/ dsy'“q’L%—/\/;/C(q')jL/ ds 2"k, + NiC(k)+

0o 0 —00

o] . S1 50
+/ dsz’“k’u+Ner(k')+/ dsx'”pL+Np/C(p')+/ ds 2"p, +N,C(p)—

S1 S0 S1
_gélo)/cu(o) _ fé)lcu(l)>

where KO = q@p @ (0 @ ¢)) and KV = p' @ k@ (©(K @ p)). Notice

that the last integral, which stands for the free propagation of the particle

that is traveling back in time, has inverted integration extrema. By varying
this action one obtains the following equations of motion
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aC OCy aC,
i'(s) = Nog By () =N () = Nog
12 w 2
, 9Cy ac , ACh
) =N ) =N ) = N
W H

u u
, K oKy 8K
( )_5(0)0—% y™*(s0) = —£{o) ) oq, #(s1) = 5(1 :
, oKt oKy 1,8KJ)
ZH(s1) = =¢ ok a'"(s0) = f(o Bp . ) a't(s1) = 5(1)W7
ju 1
, oK , oK)
ZL'M(S()) = 5(0)8—m’ [L’M(Sl) = —5(1)8—pu

In this way the first goal has been reached: proposing an action that seems to
reproduce the causal loop process anylized in [107]. In order to understand
the properties of this action a step by step analysis is undertaken, first study-
ing its Special Relativistic limit, then taking into account the deformations
induced by the curvature over momentum space.

Notice that with this choice of the constraints /C, this action does not sat-
isfy the prescriptions that guarantee translational invariance used in Section
2.3. Translation symmetry has a key role in distinguishing non-local theories
from relative locality theories. Therefore, the calculations will continue in
what follows taking care of finding an alternative prescription that makes
this action symmetric under translations.

Causal loop in Special Relativity

In this subsection a 1 4 1 spacetime with metric 9oy = 1, ;1 = —1 is con-
sidered. It is first worth remarking the equations of motion that will be
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needed for the subsequent analysis. Consider, as an example, the world-
line of the particle of momentum p (for the other particles the same remark
holds). Since, in the special relativistic limit, the dispersion relation reduces
to C, = p3 — pi —m? = 0, the equation of motion for the particle with

p
momentum p becomes

H(s) = 2Npt. (6.12)
One can notice that
itd, = AN, = ANZm?, (6.13)
so that N
N, = % (6.14)

and one can then rewrite the equation (6.12) in the following way

"
mp

=

() = (iti,) (6.15)

Now the system is asked to satisfy two requirements:

1. All particles involved in the process travel along timelike worldlines;
the velocity i (defined with respect to the arbitrary parameter s) and
the momentum p,, must satisfy that 2 >0, 2°>0; p? = mf, >0, p° >
m, > 0. This states simply that exotic particles are not considered in
this discussion.

2. The class of physical reference frames considered here is that of all those
that can be mutually obtained by means of a proper orthochronous
Lorentz transformation (det A = 1, A% > 1), i.e. the class of trans-
formations that do not change the direction of time in going from a
reference frame to another one; this means that two observers, each
traveling in relative rest with respect to one of the two particles that
form the loop, have clocks that go in the same direction. Furthermore,
observers connected by an antichronous transformation (A% < —1),
would also disagree on the sign of the particles’ energies.

These may be seen as too limiting assumptions to admit the possibility of

causal loops. Nevertheless, these come from the particular kind of causal

loop that has been studied in Ref.[107], that is one in which two observers,

each local to a particular vertex of interaction of the loop, do not detect any

anomaly; the anomaly of the process as a whole is reconstructed a posteriori.
Proper time, as usual, is defined by
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D=

dr =ds (i"1,)

_d'O 1 j;l 2_d-0 pl 2_d'0—1
= dsz _E = asx 1—& = asTry,

where 7, is the usual Lorentz factor and in the third equality the equation
(6.15) was used.

For the (p/, 2") worldline which travels from z'#(so) to 2’#(s1) the following
chain of equalities holds

S1 d 3y S1 1 m
S0

mp/
7'/(81) yn
= / dr' P — Ay
)
T ) My

(6.16)

1

with u* = . Similarly, for the (p, z) worldline, which travels from z#(sg)

i

P
to z#(s1), holds

dxt

S0 50 P
xh(sg) — xt(s1) = / ds — = / ds (",)? — =
S1 S1

mp
7(s0) pr
= / dr— = At u",

(s1) my

D=

(6.17)

In the Special Relativistic limit the terms enforcing the conservation laws
take the simple form IC,(LO) = qu + Pu — P, — q, and IC,(}) =p,thky—k, —pp,
giving for the particles inside the loop the boundary terms

Subtracting (6.20) from (6.18) and (6.19) from (6.21) and using the equations
(6.16) and (6.17) the following relations are obtained

$y = oy = (1) — 2(s0) = Ar'u, (6.22)
£y — &Gy = 2" (s0) — 2" (1) = AT U, (6.23)

which imply
AT u* + AT'u™ = 0. (6.24)
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After the definition of causal loop stated before, the only solution to (6.24)

is A7 = A7" =0 and 5{6) = fé‘l) = 0.
It is also observed that computing directly the proper time interval of the

particles inside the loop, one obtains

AT = / 0 ds x'07p_1 — %—1 (xo(so) — xo(sl)) _ %—1 (5?0) . 5?1)) (6.25)

1

s1
AT = / ds 9'5’07;1 = 7;1 (2"(s1) — 2"(s0)) = 7;1 (5?1) - 5?0)) . (6.26)
50
and, imposing (from the second requirement) A7 > 0, A7’ > 0, gets 5?0) =
5?1). Equations of motion imply that particles connect only events whose

coordinates satisfy (5(1) — 5(0))2 > 0 thus the loop collapses to a single event
§o) = €

Causal loop with curved momentum space

The next step is to take into account the deformations induced by the curva-
ture of the momentum space. The second requirement above must be slightly
modified in order to allow DSR-deformed relativistic transformations.

In order to perform quantitative computations the well-known s-momentum
space and its DSR-relativistic symmetries is chosen. Thus spacetime is
Minkowskian with metric 7, = diag(1,—1), but the dispersion relation at
leading order reads as

Cp = 1o — P} + Lpop} — mj =0, (6.27)
while conservation laws at first order become

6.28a
6.28b

K = g0+ po — ¢ — pi: (6.28a)
IC(?) =q+p—q —p)+/ (%pl - ’C(g)Pi — (g0 +po — Q(l))qo o ( )
K = v + ko — po — ki, (6.28¢)
K =pl+ ki —pi— K+ <p6k1 — Kk, = (0 + ko —po)Pl) . (6.28d)

Taking as before, for example, the first of (6.1.2)', one obtains?

it (s) = N, [2p" + € (08D} + 61 2pop1) ] - (6.29)

!The computations for the other worldlines are still the same.
2All computations are made at first order in £.
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where the notation p* = n*”p, has been introduced. Similarly, introducing
x, = 12", the norm of both sides can be computed

it = AN (m) + 20pop7) | (6.30)
SO )
.u . 5 2
N, = M 1— g% (6.31)
2m,, m?
and finally

1
vpt o @M)® (ot 1
" — (5 )2 .y I ke DTS YONC S V1)) = (i1,)2 u”
Z (S) (I IH) m, 2mp ( mgp 0P1 1 4PoP1 (I T ) u,

L (. poni 2
= 2——=pt — §p7 — 012 .
m,  2m, ( m127 p 0P1 14PoP1
Following the same pattern used in (6.16) and (6.17) one obtains that
" (s1) — 2™ (so) = AU, (6.33)
x#(sg) — 2t(s1) = AT ut. (6.34)

Manipulating the boundary terms related to the particles (p, x) and (p/, 2'),
it follows that?

1 —1
oKy oKy
£y = —x™(s0) = 2" (s0) : (6.35)
0) 0 o, I “op,
-1 -1
L, oK) oK
€y = "(1) < o ) — 2 (s1) ( ) - )
I
Equation (6.35) combined with (6.34) implies
-1
oKy \ oKy
—x(s) - = a’(so) = 2”(s1) + ATu?, (6.37)
0 (57) D =t =t s

y ~1
3Here and in the following (aéi y ) denotes the (v, 1) element of the matrix made of
I

the derivatives of the different components of K1) with respect to the different components

(1) (1) (1
of p/, 85‘; . That is, (ag“, ) (Bg“, ) = 6. Another possible notation in substitution
I IA A

my 1 (1) —1\Y
of (8/@ ) could have been (a’%p, ) .
o

opy,
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while equation (6.36) combined with (6.33) implies

oKy ) oy

2’ (s1) = —a™(s1) (

op’ op
8 p(l) E— (6.38)
oKy oK,
= —(a2™(s9) + AT U )

Finally, replacing the value of z*(s;), given by equation (6.38), in equation
(6.37), one obtains the same condition given in [107]:

ok (okP\ " ok (o®\ (o) —
ap, \ ap, op, \ p, 0

. (6.39)
(1) M\
= —8’CV 8’Cl: AT WP + ATuP.
op, op,,
Keeping only terms up to the first order in ¢, it becomes
0108 (ky — q)) + 6% (qo — k)] 2™ (s0) =
(05 (k1 — ¢)) 7 (90 0)] 2" (s0) (6.40)

= Atu’ + AT [u” + W (67K — 0fky)] -

This (6.40) is what replaces (6.24) when the causal loop is analyzed on a
curved momentum space without enforcing relative locality. Notice that
this (6.40), when its left-hand side does not vanish, can have solutions with
positive A7 and A7’ and positive zero components of the four-velocities,
which was not possible with (6.24). This means that contrary to the special-
relativistic case (Minkowski momentum space) causal loops are possible on
a curved momentum space, at least if one does not enforce relative locality.

Some interesting equalities follow from (6.40) and therefore must hold for
the causal loop to be allowed

0

o il
Ar=—A7" (" (s0) (ql kl) — (AT (u kl) : (6.41)

u0
Jutu’® — uOut + e (kyut + k)
u®(go — ko) +ul(qr — k1)

and imply that in order for (6.41) to have acceptable solutions one must have
that

lx' (s0) = AT (6.42)

AT (u° + k)
e“]i - ]f1|

2 (sg) > (6.43)
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This is in good agreement with the results of Ref. [107], but it is useful to add
some observations to those reported in Ref. [107]. A first point to notice is
that Eq. (6.43) appears to suggest that 2’* should take peculiarly large values,
as in some of the estimates given in Ref. [107], since 2’! has magnitude set by a
formula with the small scale £ in the denominator. If one could conclude that
only cases with ultralarge 2/' allowed such a causal loop, then the violations
of causality would be to some extent less concerning (if confined to a range of
values of 2! large enough to fall outside our observational window). However,
it is easy to see that (6.43) does not really impose any restriction on the size
of 2'': one will have that typically /' is much larger than A7’ but there
are causal loops for any value of z/* (under the condition of taking suitable
values of A7 and A7). So when momentum space is curved and one does
not enforce the relativity of spacetime locality the violations of causality are
rather pervasive.

There is also a technical point that deserves some comments and is related
to this pervasiveness of the violations of causality: it might appear to be
surprising that within a perturbative expansion, assuming small ¢, one arrives
at a formula like (6.43), with ¢ in the denominator. This is however not
so surprising considering the role of 2! in this sort of analysis. The main
clarification comes from observing that in the unperturbed theory (the ¢ =0
theory, i.e. special relativity) z'! is completely undetermined: as shown in
the previous subsection the only causal loops allowed in special relativity are
those that collapse (no violation of causality) and such collapsed causal loops
are allowed for any however large or however small value of 2’!. As stressed
above this fact that 2/' can take any value is preserved by the ¢ corrections.
The apparently surprising factor of 1/¢ only appears in a relationship between
2’V and A7, If /' and A7’ both had some fixed finite value in the ¢ = 0
theory than at finite small ¢ their values should change by very little. But
since in the ¢ = 0 theory 2! is unconstrained (in particular it could take
any however large value) and its value is not linked in any way to the value
AT’ then it is not surprising that the ¢ corrections take the form shown for
example in (6.43).

Causal loop analysis in 3+1 dimensions

So far the 1+1-dimensional case has been examined, but it is rather evident
that the features discussed in the previous subsection are not an artifact of
that dimensional reduction. Nonetheless it is worth pausing briefly in this
subsection for verifying that indeed those features are still present in 3 + 1
dimensions. In this case the on-shellness is governed by C, = p3 — p? — {pop?
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while conservation laws at first order take the form

K = g0 +po—a)— v} . (6.44a)
K =g +pi — & — 1} — €57 [aop; — (g0 + po — @b — 0o)0; — (g0 + po — 4] .
(6.44D)
KQ = ph+ ko — po — k. (6.44c)
’C(? =p; + ki —pi— ki — 555 [Pf)kj - (P6 + ko —po — k?f))k‘; - (pé) + ko — Po)Pj} )
(6.44d)

where 7,7 = 1,2, 3.
Adopting these expressions, eq.(6.39), keeping only terms up to first order

(0) ‘
86%,) and their products, takes the form

in ¢ in the matrices like

C[6P (K — qo) + 68 (¢, — K;)] 2" (s0) = [u'p + "l (60k; — 5fk6)] AT +ulAT
(6.45)

or, more clearly, using the energy conservation laws,

U(q, — k1) (s0) + 0(qh — ko)a™(s0) + £(qh — k3)a™(so) = (u° + Chyu'™ + Chou® + Chsu/*) AT +
+ u’Ar,
ko — g))a" (s0) = (1 — Lhp)u* A" + u' AT,
(Ko — qp)a"™(s0) = (1 — Lho)u At + u?Ar,
(ko — qb)2" (s0) = (1 — LR AT + uP AT,
(6.46)

Without really loosing any generality one can analyze the implications of
this for an observer orienting her axis of the reference frame so that p; = 0
and p, = 0 for i = 2,3. As a result one also has that v’ = 0 and v =
for 1 = 2,3. For what concerns the other momenta involved in the analysis,
q, ¢, k, K'. this choice of orientation of axis only affects rather mildly the
conservation laws:

¢ = ¢y — Ipyqs, a3 = q5 — Ipogs, ¢5 = G2 + poqa, q5 = g3 + pogs,
ko = Ky + lpoky, ks =Ky + poky, kb = ko — lpoks, kG = ks — (poks.

Since u’ = 0 and u"* = 0 for i = 2,3 the last two equations of eq.(6.46) imply
2" = 0 and 2”® = 0, which in turn (looking then at the first two equations of
eq.(6.46)) takes the computation back to (6.41)-(6.42)

0 r 1
Ar =AY + 02" (s0) (ql kl) — (AT (u kl) ’

u? u?

133



juta® — w4 e (kyut + kju®)

u®(qo — ko) + u'(q) — k1)
Evidently then all the features discussed for the 1+1-dimensional in the pre-
vious subsection are also present in the 3-+1-dimensional case.

02" (s0) = AT

Enforcing Relative Locality

It will be now shown that there are no causal loops in theories with curved
momentum spaces if these theories have relative locality. Relative locality is
evidently a weaker notion than absolute locality but is still strong enough as
to enforce causality.

By definition [102]| Relative Locality is such that the locality of events
may not be manifest in coordinatizations by distant observers, but for the
coordinatizations of observers near an event (ideally at the event) it enforces
locality in a way that is not weaker than ordinary locality.

It shall also be noticed that the definition of Relative Locality imposes
that translation transformations be formalized in the theory: since one must
verify that events are local according to nearby observers (while they may
be described as nonlocal by distant observers), these need to use translation
transformations in order to ensure that the Principle of Relative Locality is
enforced.

In Ref. |104] it has been introduced a prescription for having a very pow-
erful implementation of translational invariance in relative-locality theories.
One can easily see that the causal loop described in the previous subsections
is not compatible with that strong implementation of translational invari-
ance. Evidently then causality is preserved in theories with curved momen-
tum spaces if the strong notion of translational invariance of Ref. [104] is
enforced by postulate.

What is here intended to be shown is that, however, causal loops are for-
bidden even without enforcing such a strong notion of translational invari-
ance. Causal loops are forbidden even by a minimal notion of translational
invariance, ¢.e. the bare minimum needed in order to contemplate relative
locality (as stressed just above, one cannot even speak of relative locality in
lack of a notion of translational invariance).

Consistently with this objective, it is only required the availability of some
translation generator (possibly momentum-dependent) that can enforce the
covariance of the equations of motion and the boundary conditions. Con-
sider a first observer, Alice, and a second one, Bob, purely translated by a
parameter b* with respect to Alice. For the particle involved inside the loop
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one has

rhy(s) = :Ei(s) —b"Tr, (6.47)
2 (s) = 2 (s) — " T (6.48)

Combining the boundaries (6.1.2) with the transformation (6.47) one obtains

, 0K , oKy
B0 o, wp(s1) = @y (s1) = VT = =4 M op. VTr o (6.49)
oy ., oK)
BO) = = VT =& — DT 6.50
fB(O) 8Pu :EB(SO) 23,4(50) 7; €A(0) 3]?“ 7,: ( )

Defining 6¢f;) = &) — €4()> quations (6.49) and (6.50) read as

(1)
bTH = 55(1 oKy , (6.51)
Py
oY
bVTH = =66 ——. .52
7, §(0) on (6.52)
So 0
oK, oY
050y — = —08(0) 5 — (6.53)
Py Pu

Similarly, combining the last two boundaries of (6.1.2) with the transforma-
tion (6.48) one obtains

oKk ) . ok
~E50) g, = 2p(s0) = 24 (s0) — V"TH = =) T, VT, (6.54)
pu p
oKy ) , a/cf} ,
€50y o, =xf(s1) = 2} (s1) = VT = Eay 7 — T (6.55)
Dy
from which it follows that
(1) (0)
e, a/c — ¢t a/c | (6.56)

Before going on with the analysis it can be noticed that the equations (6.53)
and (6.56) lead to conditions already analyzed in literature. Writing the

i=n

conservation laws as @ @ " » where P! are the ingoing momenta in
=1

a vertex and P! , are the outgomg momenta, one obtains the same conditions
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found in [108], while assuming that 6§}, = 6§ = —b” the same conditions
found in |104] are derived.
Going back to our analysis of the causal loop, from Eq.(6.56) one gets

-1
} Lok ol
080y = _5£(1)W (W : (6.57)

replacing it in equation (6.53) gives

oKy o (a/d}”)_l oK)

5€G,, =0, (6.58)

p, a op,, op,, p,

and finally, imposing 0&7), #0,

(1) m\ ! (0) O\ !
K (a/cy> oK (am) o (6.5

op, op,, op, op,,

Equation (6.59) is then a condition on the boundary terms which comes
from insisting that the theory be compatible with the enforcement of relative
locality and, therefore, be compatible with a least the weakest possible notion
of translational invariance. Using it into equation (6.39) it is observed that
indeed the dependence on the position disappears. With the choice of the
conservation laws made in [107], equation (6.59) becomes a condition on the
momenta involved in the process. Explicitly, keeping only terms up to first
order equations (6.59) becomes

08,08 (a1 — k1) — 0F (ko — q0)] = 0, (6.60)

which implies that &k = o + O({) and ¢; = k; + O(¢).

The fact that then the causal loop is forbidden can then be seen easily
for example by looking back at equation (6.40), now enforcing (6.60): one
obtains

ATuf + A" [u? + " 0 (87ky — 5ky)] = 0. (6.61)

Analyzing it for p = 0, it is evident that in order to have solutions, either one
between A7 and A7’ must be negative, or the zeroth component of one of the
two 4-velocity must be negative as it is found in the Special Relativistic case.
This because the terms proportional to ¢ is only a small correction which
cannot cause a change of sign of the coefficient of A7’. The only acceptable
solution is then AT = A7’/ = 0.
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The values of A7 and A7’ can also be computed directly. Following
equations (6.25) and (6.26) the interval of proper times* between the two
events for the two particles inside the loop are

50
AT = / ds i%y, ' =~ (2%(so) — 2°(s1)) (6.62)
s1
AT = / ds &%y, =~ (2"(s1) — 2"(s0)) - (6.63)
50
The two Lorentz factor can be computed as in the Special Relativistic case:
1 it
Vp = —=—==. The only difference is that now 3, = *_ where one has to

Ny oy
use for the s the expression (6.32). Using the boundary conditions (6.1.2)
and (6.1.2) the expressions for the interval of proper times at leading order

becomes
2 2,2 4 (1) (0)
P 0 2pgps +p , OKy , OKy
- _; <1 T35 30 : 2 1) 36 0 . (6.64)
Po 2 Py — PiPo Ipo Ipo
P2 (. L206p? +pt oKy ., oK
AT = ——<1+—7) e | . (6.6
i\ 2, 0y ) 0P

D a7
W Py 0
They are positive provided that

AT =

W opy Y Opy = (6.66)
€V alcl(/l) +§V 8]CI(/O)
1) oy (0) oy

At leading-order in ¢, this system becomes

&y — oy — P4 (S —€0)) 20

0 0 / 1 1 1 7 1 (6'67)
5(0) - 5(1) - £p1 5(0) - 5(1) -/ <£(0)q1 — 5(1)k1> Z 0.

“The physical meaning of this affine parameter called here “proper time” is related to the
geometry of momentum space: for geometries that do not deform the composition law for
energy (as in Special Relativity and x-Minkowski) there are not effects of relative locality
for pure time translations, i.e. those translations in which the only non null parameter is
b°. In such cases, one can attribute to the interval A7 the usual meaning of time interval
measured by a clock at rest relative to that reference frame. If there is relative locality
also for pure time translations, the measurement of A7 involves a local measurement, and
an inference. Then 7 would not be an observable any more.
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Then the f“ s are expanded into powers of /, i.e. S( 5“[0 —I—EE( 01 this
way it is known that the zeroth order of the expansion assumes the Special
Relativistic value of the 55.). Substituting this expansion in the system (6.67),

5#[0}

and using the Special Relativistic result fﬁ[)o] = §(g) » one obtains

fl] 50[1 >0

£ (00— ) — e (g1 — k1) > 0. (0.65)

It is recalled now that the translational covariance is recovered by impos-
ing the condition ¢; = k; + O({) , so the system (6.68) becomes

51] 50[1 >0

o (&) > o, (6.69)

which implies that 50[1 551 + O(¢) and then 5?1) = 5?0) +O(f%). From this
condition it follows that AT =AT =0+ O(fz) Now it can be shown that

from the equations of motion one gets also &) = 51[1 + O(¥). In fact one
has

0+0U) =ATvV" = o (81) 517/1(50) =

azc azc&o’
= 51[1 5(11[;] ff 0)}(% +po— 1o — ) =
_ 51[1 511[;]

where in the second equality has been exploited that the zeroth order terms
of the &s coincide and in the last that the term in parenthesis is exactly IC(%).

The same thing can be verified considering the other worldline, for which
one finds that

0+0U) =Aru! = 2'(sy) — xl(so)
oKt oKy
— + =
0 Fp op: S0 ) Op, 1 / (6.71)
f(o 5 + gf(o)% — L&y (po + ko — pp) =
101 11 1[0 /
= 6(5(0[)] - 5(1[)}) - ﬁf(é)}(po + ko — Po — QO)-

Since for the covariance under translations gy = k), €§(1(£())} is multiplied again

by K, from which the result follows.
Summarizing, it has been demonstrated that 5{‘1) = 5{6) + O(£?), so the
request of translational covariance of the system leads to the collapse of the
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causal loop into a single event (up to the second order in /) in the Relative
Locality framework as well as in Special Relativity. This causal loop is indeed
forbidden once Relative Locality is enforced.

6.2 Momentum conservation from Relative Lo-
cality

Having shown that causal loop of Ref. [107]| is indeed allowed in generic
theories on curved momentum spaces, but is forbidden when relative space-
time locality is enforced, it is time to move on to the next announced task
which concerns two other species of loops: those that violates conservation
of momentum and those that are non-causally violating.

This section focuses on a translational-invariance-violating diagram stud-
ied in Ref. [109]. There, the author considered theories on a curved momen-
tum space, without enforcing relative spacetime locality, and showed that
in general the diagram shown in Fig. 6.5 can produce violations of global
momentum conservation. These violations take the shape [109] of k" # k,
i.e. the momentum incoming into the diagram is not equal to the momen-
tum outgoing from the diagram. Similarly to what has been shown in the
previous section for a causal loop, it will be found that these violations of
global momentum conservation from the diagram in Fig. 6.5 do not occur if
one enforces relative spacetime locality.

Figure 6.5: A Mobius diagram loop process.
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6.2.1 Mobius diagram and translational invariance

The relative-locality-framework description of the diagram in Fig. 6.5 is
obtained through the action

S = /SO ds <z”ku +Nkck> + /+OO ds <z"‘fcl’t +Nk/Ck/> +

—00

+ / ds (z"'p), + NyCp) + /

0 S0

0 1
- okl -k,

s

ds (z"p, + NoCp) + (6.72)

where the conservation law is given by the same functions considered in

Ref. [109]

KO =(ke(©@ap)),

=~ Ky — pu = P, — 0,L [p1 (ko — po — pip) + 1y (ko — p))]
KW = (' ®p) @ (0k)),

~ pl, + pu — kK, — L [KS (ph + po — kG) — popa] -

(6.73)

From the structure of (6.73) it is clear why the diagram in Fig. 6.5 has
been labelled "M&bius diagram™: the laws of conservation at the two vertices
are setup in such a way to use the noncommutativity of the composition law
in such a way that the particle outgoing from the first vertex with momentum
appearing on the right-hand side of the composition law enters the second
vertex with momentum appearing on the left-hand side of the composition
law (Of course, the opposite applies to the other particle exchanged between
the vertices). If one then draws the diagram with the convention that the
orientation of pairs of legs entering/exiting a vertex consistently reflects the
order in which the momenta are composed then the only way to draw the
diagram makes it resemble a Mdbius strip.

Evidently there is no room for such a structure when the momentum
space has composition law which is commutative. In particular there is no
way to contemplate such a Mobius diagram in Special Relativity. But on
k-momentum space this structure is possible and its implication surely need
to be studied.

Consistently with what has been reported in the previous section, the
interest of this section is into understanding how the properties of the Mobius
diagram are affected if one enforces relative spacetime locality in theories on
the k-momentum space. In particular, it will be here shown that ¥ = &k (no
violation of global momentum conservation) is required by relative spacetime
locality.

140



And, as also already stressed above, relative spacetime locality in a rela-
tivistic theory on curved momentum space necessarily requires at least a weak
form of translational invariance. This insistence on at least the weakest pos-
sible notion of translational invariance yield equations (6.53) and (6.56) for
the causal loop, and, as one can easily verify, for the case of the Mobius
diagram it leads to the equations

, oK L, okt
, oK L, okt
5§«n‘g§27'=:'-5€u>j55;—' (6.74b)

Explicating, for example, 552’0) in the second condition and substituting it
back in the first, one can obtain the equation

oKy arcV (a/c,ﬂo))_l oK

0&7, -
30 Opu op,, op,, Opu

= 0. (6.75)

Since translated observers must coordinatize the same event in different ways,
one can impose 6£7;) # 0. So the term in parenthesis of equation (6.75) have to
be zero. This is clearly a condition over the momenta that are now analyzed
at first order in ¢. Writing first the expression of the matrices involved in the
equation (6.75)

()
D = 8~ (5L (3L~ B, (6.762)
“w
()
O 5 — 534 (K]~ p). (6.76b)
Pp
oK\
o = =0y + 06, 67 (ko — po) — 0 (pr + p1)] (6.76¢)
P
alc(o)
L= P LS. 6.76d
apu 09uP1 ( )
So from (6.75) one finds the condition
U161 ko — o (p1 +py)] =0 (6.77)

Using this result in combination with the conservation laws ICELO) = 0 and
leLl) = 0 one can easily establish that

Dy +pL =04+0(), (6.78)
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and one can also rewrite those conservation laws as follows

0= ku — DPu — p; - 5;11@9/1]967 (679)
0 =p), +pu — K, — 6,lpop1 - (6.80)

Summing these (6.79) and (6.80), also using (6.78), we get to the sought
result
ky =k, +O() (6.81)

showing that indeed by insisting on a having a translational invariant picture
with associated relativity of spacetime locality, one finds no global violation
of momentum conservation (at least at order in ¢, which is the level of accu-
racy pursued in this work). Were it not a limitation on a leading-order-in-¢
analysis, one could perhaps characterize this result on the M&bius diagram
even more strongly: at leading order translational invariance essentially for-
bids M&bius diagrams. This can be seen in particular from Eq.(6.77) which
also imposes® lkyg = 0. So, up to possible corrections of order 2, Mobius
diagrams are anly allowed if the energies of the incoming and outgoing par-
ticles vanish. We interpret this as implying that, at least to leading order,
translational invariance essentially forbids Mobius diagrams.

The same results hold when the Mobius diagram is obtained using the
prescriptions for constructing the constraints K given in [104]:

KW = k= (0@ ) = by = — ), — (500D

(6.82)
KL = (0 ® D) — K, = b, + pu = ki + (5,00p1.

In this case, in fact, one replaces Eq. (6.76) with

°It should be underlined that this condition kg = 0 is a striking manifestation of how
Mobius diagrams are foregn to translationally invariant implementations of the relative
locality framework. The implied requirement ky = 0 is not a smooth correction to £ = 0
theory, where ko is free (that is, can take any value). This is a similar mechanism to the
one described after Eq.(6.43): a quantity which was completely free in the original theory
(Special Relativity, with ¢ = 0) ends up being governed by an equation in the deformed
theory, or else the diagram must be discarded.
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= 0¥ + 0516 ph, (6.83a)
8pu 1170
orcs)
= 0P + (51601, (6.83b)
op,,
-1
oy
( 3 ) = —08Y + 05,0 po, (6.83c)
P
(0)
8(;2 L= ot — 18 (6.83d)
1]

So from (6.75) one finds the condition
(07 (po+ o) = 0 (1 +p1) =0 (6.84)

From g =1 and from p = 0 one finds that p, +p, = 0+ O({). Summing the
conservation laws enforced by the constraints (6.88) one has

0=k — Kk, — lpopy + Lpopr-

The condition p, + p, = 0+ O({) then again implies conservation of the
spatial momentum &, = k|, + O((?).

6.2.2 Possible implications for the quantum theory: Fuzzy
Momentum conservation

The results presented in the previous sections suggest that causality and
global momentum conservation are protected by relative locality in theories
with curved momentum spaces. It should be noticed that the objective of
enforcing relative spacetime locality led to the introduction of some restric-
tions on the choice of boundary terms, particularly for causally connected
interactions. The relevant class of theories has been studied so far only in
the context of classical mechanics and therefore such prescriptions concerning
boundary terms are meaningful and unproblematic, as they can be enforced
by principle, as a postulate. The quantum version of Relative Locality is still
not known, but if one tries to imagine which shape it might take, it seems
that enforcing the principle of relative locality in a quantum theory might be
very challenging: think in particular of quantum field theories formulated in
terms of a generating functional. There is no specific result addressing this
point to report here, but it is still worthy to provide evidence for the fact
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that combinations of diagrams on curved momentum space might have fewer
anomalous properties, even without enforcing relative locality, than single
diagrams.

Essentially it is here observed that the violations of causality and global
translational symmetry that arise on curved momentum spaces (if one does
not enforce relative locality) are not systematic, in the sense that for each
diagram contributing an effect of a certain magnitude and sign there is always
another equally acceptable diagram that gives effects of the same magnitude
and opposite sign. This may be indeed relevant for quantum field theory
since there one cannot choose which diagrams connect a given "in" state to
a given "out" state: the formalism automatically takes into account all the
diagrams that possibly connect the "in" state to the "out" state.

In an appropriate sense it is here attempted to provide first elements in
support of a picture that might ultimately be somewhat analogous to what
happens, for example, in the analysis of the gauge invariance of the first
contribution to the matrix element of the Compton scattering e™+v — e~ +7
in standard QED. In fact in that case there are only two Feynman diagrams
and the invariant matrix element is given by

My = (e (a0 a0+ ) s,
(6.85)

where p and ¢ are the momenta of the electron and the photon respec-
tively, in the initial state, p’ and ¢’ are the momenta of the electron and
the photon respectively, in the final state, uw, and %, are Dirac spinors,
€, the photon polarization 4-vector. For a free photon described in the
Lorentz gauge by a plane wave A, (z) o< €,(k)e*® " the gauge transfor-
mation A% (z) = A,(z) + 9,A(z) with A(z) = A(k)e*™* =" corresponds to a
transformation of the polarization 4-vector e} (k) = €, (k) — ik, A(k). Then
the contribution to the matrix element due to this transformation of, for
example, 4-vector €,(q) is (apart from a common factor) for the first term

ﬂp'}f(q/)m%% = ¢( )]ﬁ—l-ﬁ m(¢+9i m) iﬂp’¢(q/>upv
(6.86)

where the relation (p —m)u, = 0 has been used. The second term gives the
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contribution
)

=

ﬂp/

H(¢ )y = Ty — f + ) ————

yf(q')up = —iﬂp/,é(q’)up,
(6.87)

where in the first equality u, (' —m) = 0 has been used and in the second the
equality p — ¢' = ¢ — p’ has been used, which comes from global momentum
conservation. Thus the matrix element is indeed gauge invariant even though
the Feynman diagrams are not gauge invariant by themselves.

A conclusive evidence that a similar mechanism is at work for causality
and global momentum conservation is of course still to be found (it would be
impossible without knowing how to formulate such a quantum field theory),
but it may nonetheless be interesting to note that one can find points of
connection, at least at intuition level, with the story such as gauge invariance
for Compton scattering.

For definiteness and simplicity, the explicit analysis in this section is for
global translational symmetries, and therefore, the Mobius diagrams. In
the previous subsection this case has been analyzed using the the choice of
boundary terms adopted in Ref.[109] since the appreciation of the presence
of a challenge due to Mobius diagrams originated from the study reported
there. Here however the argument evolves beyond the scopes of Ref.[109] and
it is therefore adopted the convention on boundary terms preferred by the
author, which allows also to streamline the derivation of the results, the one
given in [104]. Consider the Mobius diagram obtained using the prescriptions
for constructing the constraints IC given in [104]:

KW = k= (0@ ) = by = — 1}, — 5 pop,

IC(l) (] Iy o —k 651 / (688)
W =0 @p)y—k, =p, +p.— ku+06,pp1.

From the conservation of four-momentum at each vertex IC,(P) =0, IC,(}) =0
one gets

mf,pﬁ B m?,/pl
2py 2p
where, since the energy-momentum of the particles here considered are such
that £71 > p,, > m, from the on-shell condition (6.1) the energy of the parti-
cles has been expressed in terms of the spatial momentum® py = \/p? + m? —
03 m2  p?

TR g T o and only the leading correction terms have been kept.

ky — K, = —€5,(popr — popy) = —€0,( )= —05,A  (6.89)

6The readers should remind that the conventions adopted here are such that p; < 0.
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Evidently, the only alternative possible M6bius diagram is obtained from
the other form of the constraints I compatible with our prescription, that is
by changing the order of p and p':

0 = b~ /09~ by~ i

- (6.90)
ICE}) =(p®p),— K, >, +pu— K, + 15, pop}.
Proceeding as for the previous one, one gets
ky — ki, = (6, A (6.91)

Of course, in light of what it has been established in the previous subsec-
tion, both Mobius diagrams must be excluded if one enforces the principle
of relative spacetime locality. But is it interesting to notice that if we were
to allow these Mobius diagrams, the violation of global momentum conser-
vation produced by one of them, (6.89), is exactly the opposite of the one
produced by the other one, (6.91). In a quantum field theory version of
the classical theories analyzed here, one might have to include these opposite
contributions together, in which case it is here conjectured that the net result
would not be some systematic prediction of violation of global momentum
conservation, but rather something of the sort rendering global momentum
still conserved but fuzzy.

Of course, the main challenge for the development of this novel research
program is the construction of a quantum field theory. A general frame-
work for introducing such quantum field theories was recently proposed in
Ref. [134]. While presently this proposal appears to be still at too early and
too formal a stage of development for addressing the challenges that were
here of interest, it is legitimate to hope that, as its understanding deepens,
a consistent quantum picture of causality and momentum conservation with
curved momentum spaces will arise.

Going back to the classical mechanics version of these theories, it is amus-
ing to notice that a chain composed of two Md6bius diagrams considered in
this subsection would have as a net result no violation of global momentum.

6.3 Non-causality-violating loops

A second species of loop, the so-called non-causality-violating loops repre-
sented in Fig.6.6, is analyzed in the present section. In Special Relativity,
with its absolute locality, loops of this kind are trivial: they describe in some
sense a composite of two parts at rest, with the two parts “splitting” for a
while and then "recombining”. This is a case of “history without a history™
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all that one has is a single composite at rest throughout the history of the
system, having allowed, for mere language, a split/recombination storyline.
It is shown that relative locality is a strong-enough notion of locality to
preserve this aspect of triviality of the non-causality-violating loops of the
species shown in Fig.6.6.

Consider the following action describing the process of Fig. 6.6

/

p

Figure 6.6: An example of non-causality-violating loop.

S:/ ds (y"q, + NCy) —I—/ ds (y"q, + NyCy) +

[e%¢) o]
—+00

+oo
—i—/ ds <z“k +Nkck> —i—/ ds Py —i—./\fk/Ck,)
. . (6.92)
—I—/ ds (2"p), + Ny C, )—I—/ ds (x"p, + N,o,Cp) +
= ol = €K,
with

KY =(d©q,—0ep),~d +aq—p,—pu+ 6, (@a — o), (6.93)
KV =@ ep),— (K ek),~p,+p.—k, —k.+ 5, (phpr — kokr) .
(6.94)

The equations of motion are then
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acC 0C,, acC,
- b _ p yn — , p nw — q .
" (s) N;)—apu’ (s) =N, —82%, (s) /\/'q—aqu, (6.95)
yn — , q w — I — , )
yH(s) = N, —(961;’ ZH(s) Nk—ak‘u’ ZH(s) = Ny —8%, (6.96)
and the boundary terms are
kY=o, K=o,
, oK , 0K , oKy
yu(SO) = 5(0) 8(]“ ) y/H(SO) = 5(0) 8qL ) Z“(Sl) = _g(l) 8]{:“ )
o oK oK)
yn _ _¢v m — _ ¢V i — ¢V
ZH(s1) 6(1)—8%’ 2™ (s0) 5(0)—8%, a"(s1) 5(1)—8%,
oKy oKy
1 _ gV 1 _ v
z*(s0) £0) p, 2 (s1) =y op,

As it has been done in the previous section, the process is first analyzed in
Special Relativity, then in Relative Locality. It is shown now that in Relative
Locality, as well as in Special Relativity, only trivial loops are allowed by the
kinematics.

An example of trivial loop is the following: consider a molecule of hydro-
gen. Its motion may be described as that of a single particle. The loop starts
when the motion of the molecule is described in terms of the motions of its
two atoms and ends once one goes back to the description of the motion of
the molecule as that of a single particle.

6.3.1 Non-causality violating loop in Special Relativity

In Special Relativity the analysis of the problem is simple. As one could
expect, the loop might happen provided that x and 2z’ travel in the same
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direction with the same velocity. Indeed, in the Special Relativistic limit the
conservation laws (6.93) and (6.94) take the simple form

KO =q, + 4. — ), — Py (6.97)
K =pl, +pu — k), — ky. (6.98)

From the boundary terms related to the particles forming the loop, it follows
that

Iu(So) = gﬁ))v Jf/'u(So) = fég), (699)
a#(s1) = &fy; 2" (s1) = &y (6.100)

Using the conditions (6.99), the equations of motion for the (p,z) and (p/, 2")
particles can be written as

Po (6.101)

Enforcing then the conditions (6.100), one obtains that the equations of
motion (6.101) imply that
PL_ P
o Dy
which means that the two particles must obviously travel with the same
speed. Computing the invariant mass of the system composed by these two
particles, from the dispersion relations one has

N\ 2
/ _ (P
my Poy/ 1 (P’o) 2

(6.102)

- Ly (6.103)
mp n\2  Po
poy/ 1 — <p—o>
then
M? = (p" + p™) (pu +1),) = m2 +m, + 2p"p),
=m’ + my, + 2 (poply — p1py)

/

=m. +m’ + 2 (pop'o — ]]j—;]p%) (6.104)

/
2 2 Do o 2
=m,, + m, + 2p—0mp = (my +mpy)”~.
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Equation (6.104), combined with equation (6.102), reveals what are the kine-
matical properties of a loop in Special Relativity. From equation (6.102) it
is known that the two particles must have the same speed; moreover, from
equation (6.104), it is understood that they must be in relative rest since
the invariant mass of the system is given only by the sum of their masses.
So, in Special Relativity, if the laboratory is at rest with respect to the two
particles, the non-causality-violating loop reduces to the description of two
particles standing at the same point, which before and after the loop are
considered as a whole.

6.3.2 Non-causality-violating loop in Relative Locality

Relative Locality requires a more careful analysis. However, one still looks for
a condition of equal physical velocities (which would not come from a condi-
tion of equal coordinates velocities, as an effect of the non trivial translations
[106]) and it is expected that this will imply again M? = (m +m’)%. Since in
Relative Locality only local observations are meaningful, two observers are
needed to reconstruct that the loop effectively took place: one local with the
emission of the two particles, and a second observer local with the absorption
of them. One could deduce that the loop occurred if for the first observer,
Alice, holds 2'4(sg) = 2/4"(s0) = 0 and for the second observer, Bob, purely
translated with respect to Alice by a vector b, holds z/;(s1) = 2’5" (s1) = 0.
This is, evidently, the condition of equal physical velocities. The relation
between the two observers, using the prescription for translations used [104],
is then

dy = 0 {(p @p), M} = 2l — b= 60N,

(6.105)
v =2y {0 @), 2" = ) = V= 5Gbpy.
Using the dispersion relation (6.27), the first of the (6.95) becomes
i =N, (—=2p1 + 20pipo) @' =N, (2po + £p}) (6.106)
so the coordinate velocity for the (p, x) worldline is
. :9:5_; _ 2pi At 26}921290 . —2p1 (1~ fpo) (1 B gﬁ)
T 2po + Lpy 2po 2po (6.107)

2
:_]ﬁ(l_gpo_ p_l)

Po 2po
In what follows it is more useful to make the substitution p? = pZ — mf, +

Ipg (pg — mf)), which comes from the dispersion relation, thus the relation
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(6.107) becomes

2
P1 mp 3)
v=———/p (——— . 6.108
Po ' 2p5 2 ( )
With exactly the same computations the coordinate velocity for the (p/, ")
worldline reads as )
/ pll o Ty 3)
V=== =1/ —= . 6.109
B (55 (6.109)

Now one can write the coordinate description performed by Alice of the two
particles

ol = v, (6.110)
1

(6.111)
Using the transformations (6.105), one finds the description made by Bob

rp =0 (z +0°) — 0" — by, (6.112)

2t = (xjgo B0+ blepl) — B (6.113)

Enforcing the condition z/5(s1) = 25" (s1) = 0, one finds at leading order the
two conditions ) 0 /

{ bt =0"v (1 — lpp) (6.114)

v =v[l—L(py + vp1)].

Focusing on the second one of these equations, after explicating the velocities,
it becomes

L (2 (6.115)

2
_p my P,/

pll 0 (ml%’ 3 _ _ P tp1 <2p% ) * gpopo

) '
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The second member of (6.115) is manipulated as follows:

P1 m3 3) P,/
— 0o — <—2—— + L2 pg m2 3 2
B (T = (hn (G n) + ) (1)
1 6—1)
Po

I

|

|

|
<
<

I
|
|’B
S [Sry
|
=
[y
N N N N
DN
= .OEI\D"BSI\D
DN Lo
= |'B
S |lo~
Sl =
N————

DO
gm‘ﬁgw
|
N W
N—
+
~
3
—
3
—

(N

2 / 2
P1 my, 3 o P
Po Po Po 0
b1 ; p6 1
=——+|2+=2+ )
Po 205 po 2

(6.116)

A convenient way to express the first member is

B, (M 3\ _ my — 39
/ €p1 2 - / 1+£ :
Po 2pg 2 Po 2pg

Eq.(6.115) then becomes

2 12
d(14+0( L)) ==—In My P L 6.117
Po 2pf Po 205 po 2 (6-117)

from which one can explicit p}, after some manipulations:

2 12
;b1 / pO 1 My — 3p0 b1,
b1 =—D — Ipip <— + =+ ) —{ <7 —P
po " \208 po 2 2 po’ "

p Ip 2 1p
="lph — (== < 2p° + 22 +pop6) L(m2 —3pF)  (6.118)

Do 2 po 2p * P 0
P, 1P1< 2p0 ,2)
=—po—t5— +popy +my =1y )

o 0 2po \ Ppo 0 0

which is clearly a deformation at the leading-order of the Special Relativistic
expression (6.102) as expected.
Now it is possible to compute the invariant mass of the system, similarly
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to what has been done in the previous subsection
M* =@ ®p):— @ @p): +€(p @p)y (W ®p)i =
=pb” + 2 + 2phpo — 1) — P} — 21—
/W] /2 / ;2 2 / (6.119)
— 2lpypipr — 2lpypy + ¢ (py + po) <p1 +pi + 2p1p1> =
=m_ + m>, + 2popo — 2pip1 + ¢ (pop’12 + 2p\pipo — pé}ﬁ) =

now using the equation (6.118), yields

2
M? =m2 + m% + 2plypo — 2%p6+

2 /
+ 6& ( p_o + popy + m p62) + ¢ (il 2 2p1p0 pépf)

Po
=m_ +m’ +2m mpp°+€m”p%p/° +£m’2"p% =m> +m2 + 2mum
P v P Do ng 2mppo P P’ plTp’ -
(6.120)
The last equality comes from the following chain of equalities
my = py" — o+ o
/2 b1 42 b1 2Po /2 b1 43
=py — |=pP — = p(m—+pop +m —p )}jtﬁ —D
’ {pé pg O\ P ’ ’ p
:p/OZ pl /2+€p1 /2_‘_€p1p0 +€p1 / 12)
P PO P P (6.121)
2 2
Po o plpo Pl
=—=m;+/ m2 + (= pym
pg " 2% P} p
2 - 2
=20 2 |14 Mp—}( ”) ,
0 Do Do \ My
SO
n, my\
My =— 1+£2 +£2 ( ”)
m
_ Myl +£mpp§p6 Lot
Po 2p5 2mypo

From equation (6.120) has been found that the two particles must be in
relative rest in the Relative Locality framework too in order to produce a
loop. So this loop is trivial for the same argument that applies to the Special
Relativistic case.
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Chapter 7

Conclusions

This thesis tackled two main topics of research in quantum gravity: quantum
spacetime dimensionality and the departures from absolute locality of events
due to the structure of spacetime at the Planck scale.

The observation that the dimension of spactime at very short scales may
be different from 4 (typically less), which has been found in many different
approaches to quantum gravity, is of extreme interest, as it may point towards
a "true feature" of quantum spacetime that our current models try to grasp.
The analysis of this phenomenon relied mostly on the spectral dimension
of quantum spacetime, which is a notion of dimension adapted for the scope
from its original definition in Riemannian geometry. It is here argued that the
spectral dimension is not a reliable physical observable, as the modifications
to its definition employed for its use in describing a quantum spacetime are
such that its physical meaning is severely weakened. For such an interesting
common feature as running spacetime dimension one should look for a robust
physical characterization of the phenomenon. For this scope, it has been here
proposed a notion of spacetime dimension, the thermal dimension, which is
based on thermodynamical observables related to the behavior of a gas of
radiation at very high temperature. It has been shown, by detailed study of
a variety of quantum gravity models, how its properties are physically more
appealing with respect to those of the spectral dimension. It is therefore
argued that the thermal dimension could be a valuable physical observable
to test the behavior of running spacetime dimension, in particular for those
theories whose dispersion relation is such that the physical meaning of the
spectral dimension is particularly unclear.

A further application of the deformed thermodynamics of high-energy ra-
diation is the investigation of the production of primordial perturbations in
a universe described by Rainbow Gravity with a running Newton constant.
Both vacuum and thermal initial conditions for the perturbations have been
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considered and a power-law dependence of the Newton constant on energy has
been assumed, together with the fact that the background satisfies the ther-
modynamical relations peculiar to radiation subject to deformed dispersion
relations. This model is then able to produce primordial scalar perturbations
whose spectral index respects the constraint set recently by the Planck satel-
lite. For both kinds of initial conditions for the perturbations (vacuum and
thermal) the running of the Newton constant is essential in achieving a viable
picture. In particular, the Newton constant is constrained to be decreasing
with energy in the ultraviolet regime. This is consistent with intuition from
quantum gravity theories, such as Hofava-Lifshitz gravity and Asymptotic
safety. It also resonates with the conjecture put forward in [86] and deserves
further investigations.

Concerning the possible departure from absolute locality of standard
physics, some aspects of the theory of Relative Locality has been analyzed.
This theory is studied in its classical-mechanics formulation, where Planck
mass plays the role of relativistic invariant (in the sense of DSR) scale of
curvature of momentum space. Relativity of spacetime locality is then a
reflection of the introduction of this new relativistic invariant: as the in-
troduction of a relativistic invariant speed of light implied the relativity of
simultaneity (relativity of ¢ime coincidence of events), the introduction of a
relativistic invariant curvature of momentum space implies the relativity of
locality (relativity of spacetime coincidence of events). As original results, it
has first been shown that the relativity of spacetime locality does not spoil
the objectivity of cause-effect relation in a chain of events. This has been
shown considering a couple of disconnected chains of events, set up in such
a way that an observer may infer a very misleading pictures if she relies
on a description of the events based only on her coordinates. A proper use
of translation transformations gives her back the correct, objective picture.
Secondly, it has been shown that those phenomena that may be pathological
for what concerns causality (causal loops) or violation of momentum con-
servation ("Mdbius loops"), while may occur in generic theories with curved
momentum space, are excluded when the theory is formulated in such a
way that the (deformed) relativistic symmetries are satisfied, as is Relative
Locality. In fact, for a generic theory with curved momentum space, it is
possible to obtain general conditions on the generators of translation trans-
formations that must be satisfied in order for that theory to be symmetric
under an appropriate notion of translation transformation. These conditions
are translated into conditions on energies and momenta of the interacting
particles. If these conditions are not satisfied, the causal loop is allowed,
whereas when these are satisfied the only solution of the equations of motion
is that the whole loop collapses to a single event. The same applies to the
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Mobius diagrams.

It has then been proposed a point of reflection on the possible mechanism
that may guarantee the relativity of spacetime locality even in the quantum
version of the theory, which is still unknown. In a similar way to what hap-
pens on standard QED, where gauge-symmetry-violating Feynman diagrams
add up to give a gauge symmetric matrix element (see, for example, the
Compton scattering), symmetry-violating diagrams such as M6bius diagram
may add up to give a symmetric matrix element.

Finally, it has been shown how non-causality-violating loops are trivial in
Relative Locality, as well as they are in Special Relativity.
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Acronyms and symbols

QM : Quantum Mechanics.

GR : General Relativity.

SM : Standard Model.

QFT : Quantum Field Theory.
QG : Quantum Gravity.

DSR : Doubly Special Relativity.
¢ : Deformation parameter.

Lp : Planck length.

Lpsgr : Fundamental relativistic invariant length scale.
> : Right action.

2 : Noncommutative coordinate.
@ : Deformed sum.

S : Inverse of the deformed sum.

Greek indices take the value {0, ..., D} where D is the number of spatial
dimensions of spacetime. Latin indices take the value {1,..., D}.
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