
Alma Mater Studiorum

Università di Bologna

DOTTORATO DI RICERCA IN
SCIENZE STATISTICHE

Ciclo XXIX

Settore Concorsuale di a�erenza: 13/D1
Settore Scienti�co disciplinare: SECS-S/01

Statistical Methods for the Detection of the

Parent-of-Origin E�ect in Genome-Wide

Genotype Data

Presentata da: Chiara Sacco

Coordinatrice di Dottorato: Relatori:

Prof.ssa Alessandra Luati Prof.ssa Cinzia Viroli

Co-Relatori:

Dr. Leonardo Bottolo

Dr. Mario Falchi

Esame Finale Anno 2017





Alma Mater Studiorum

Università di Bologna

DIPARTIMENTO DI SCIENZE STATISTICHE �PAOLO FORTUNATI�
DOTTORATO DI RICERCA IN

Author: Chiara Sacco

Title: Statistical Methods for the Detection

of the Parent-of-Origin E�ect in Genome-Wide Genotype Data

Degree: Ph.D.

Convocation: January 2017

Permission is herewith granted to Università degli Studi di Bologna to
circulate and to have copied for non-commercial purposes, at its discretion,

the above title upon the request of individuals or institutions.

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT

MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE
AUTHOR'S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN
THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY
PROPER ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND

THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.





Abstract

Genomic imprinting is an epigenetic mechanism that leads to di�erential

contributions of maternal and paternal alleles to o�spring gene expression in

parent-of-origin (POE) manner. Recently, parent-of-origin e�ects have at-

tracted attention due to their potential contribution in the explanation of

�missing heritability�. We propose two di�erent procedures for detecting the

POEs in genome wide genotype data from related individuals (twins) when

the parental origin cannot be inferred. In the �rst approach we suggest a

multistep procedure to detect POEs based on a variance test to evaluate the

gene expression heterogeneity between the homozygous and the heterozygous

groups. The second method exploits a �nite mixture of linear mixed models

to propose a test for capturing the presence of POEs; the key idea is that

in the case of POEs the population can be clustered in two di�erent groups

in which the reference allele is inherited by a di�erent parent. The core ad-

vantage of the second method is that it is an integrated procedure developed

speci�cally for the detection of the parental e�ects, while the �rst method a

multistep procedure which results computationally faster. The performance

of the proposed tests are evaluated through a wide simulation study. A dis-

covery analysis on microarray gene expression data of the MuTHER study

is performed by both methods.
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Chapter 1

Introduction

The context

One of the most important and challenging aims of the human genetics is the

identi�cation of genes involved in human diseases. Genome-wide association

studies (GWAS) for common variants o�er a powerful approach for identify-

ing casual variants and genes for complex diseases (Bush and Moore, 2012;

Hirschhorn and Daly, 2005). GWAS require the knowledge about common

form of genetic variants, the single nucleotide polymorphisms (SNPs), and

the possibility to genotype hundreds of thousands of SNPs in large patient

samples.

Usually, GWAS assume that the e�ect of a genetic variant is the same regard-

less of whether they are inherited from the mother or the father; so in all such

studies the two parental alleles are considered to be functionally equivalent.

The existence of biological mechanism as genomic imprinting demonstrates

that this assumption could be wrong (Lawson et al., 2013). Genomic im-
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2 Chapter 1. Introduction

printing results in a reduction of our genome to a functionally haploid state

and is one of the epigenetic phenomena that can lead to the manifestation of

parent-of-origin e�ects (POEs). In other words, if the allele inherited from

the father is imprinted, it means that the allele is partially or totally in-

activated and only the maternal allele is expressed (Guilmatre and Sharp,

2012), and viceversa. So, parent-of-origin phenomena is observed when the

phenotypic e�ect of an allele depends on the sex of the parent from which

it has been inherited. Indeed, it appears as a phenotypic di�erence between

heterozygotes, where the paternal allele is di�erent from the maternal one,

depending on the allelic parent of origin.

Several human diseases, such as obesity, diabetes, Beckwith�Wiedemann,

Prader�Willi and Angelman syndromes, and behavioural traits are demon-

strated to be connected with imprinted genes (Peters, 2014). For identify-

ing genes related to complex disease, the power of GWAS can be increased

through the inclusion of the POEs information into the association model.

While GWASs have been shown to be a successful tool for investigating the

genetic architecture of complex diseases by �nding a large number of signi�-

cant variants, on the other hand, it has led to a hotly debated issue, indeed

these variants typically account only for a minority part of the heritability,i.e.

the portion of variance of a particular trait in a population that is due to ge-

netic factors. For example, Visscher (2008) shows that a total of 54 variants

are associated with the human height, that is a highly heritable quantitative

trait (about the 80% of the height variation is explained by genetic factors).

However, the 54 loci explain only 5% of the phenotypic variance, despite the

variants have been identi�ed using GWAS with hundreds of thousand of ge-
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netic marker on ∼ 63000 people. This is known as the �missing heritability�

problem and an important and widely debated issue is where the �missing

heritability� of a complex disease might be found (Eichler et al., 2010; Mano-

lio et al., 2009).

Several strategies have been suggested to investigate the �missing heritabil-

ity� and a successful identi�cation of parent-of-origin e�ects could also help

in shedding light on it. Indeed these e�ects, if not carefully accounted for,

could mask the associations and reduce the portion of explained heritability.

State of the art

Usually, GWASs include unrelated individuals only and the parental origin of

the alleles cannot be inferred. In fact, current methods for detecting parent-

of-origin e�ects are based on the identi�cation of the parental ancestry for

each inherited alleles. Data from cases and their parents can be analysed by

likelihood-based test method (Weinberg, 1999; Weinberg et al., 1998); this

approach produces estimates of the relative risks associated with a particular

variant allele for imprinting. In the contest of linkage analysis of quantitative

trait, Hanson et al. (2001) develop a method based on the estimation of the

proportion of marker alleles shared identical by descent between siblings; to

assess POEs, it is necessary to partition the proportion of identical copies of

the same allele shared between the siblings into a component derived from

the mother and a component derived from the father. These two di�erent

matrices can be used as kinship matrix in the linear mixed model to estimate

the association. Clearly, the ability to partition alleles shared identical by
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descent into maternal and paternal components requires the genotype data

on at least one parent. Cui et al. (2006) suggest to testing imprinted quanti-

tive trait loci in inbred F 2 mice by a two-component mixture distribution for

the heterozygous group and by a two component mixture for the homozy-

gous group. In case of case-parent-triad data or pedigree data, Belonogova

et al. (2010) introduce a two-steps approach for detecting POEs in association

studies of quantitative traits. First, for each locus studied, the probability of

an allele parental origin is estimated using multipoint haplotype reconstruc-

tion. Next, the parental origin of these alleles are included as a covariate

in regression models during the second step of GRAMMAR, Genome-wide

Rapid Association using Mixed Model And Regression (Aulchenko et al.,

2007). If the genotype data of the parents is not available then it is not

possible to apply the methods proposed in the current literature.

A novel interesting approach to detect POEs in genome-wide genotype data

of unrelated individual is presented in Hoggart et al. (2014). The key idea

is to verify the presence of POEs through a test on di�erence between the

phenotypic variance of the heterozygous genotype group and the variance

observed in the homozygous genotype group. The assumption is that an in-

creased variance in the heterozygous group arises because the heterozygous

genotype group consists of two sub-populations depending on whether the

reference allele is inherited from the mother or the father, each showing a

di�erent means. By considering a bi-allelic SNP, in which "A" is the refer-

ence allele and "B" is the alternative one, Hoggart et al. (2014) suggest that

in the homozygous genotype groups (i.e., "AA" and "BB") a phenotype y is

distributed as a normal with mean equals to µAA or µAA+βM +βP according
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to the genotype group membership and with same variance: σ2
E. The mean

in the AA genotype group is denoted as µAA, whereas βM and βP stand for

the maternal and the paternal e�ects of the B allele, respectively. The trait

y in the heterozygous groups is modelled in the following way:

yAB = µAA + zβM + (1− z) βP + ε (1.1)

where z is a Bernoulli random variable with parameter 1
2
, and ε is an indi-

vidual level error with mean zero and variance σ2
E. The key element of this

model is the random variable z that allow to identify the two sub-population

in the heterozygous genotype group and implicate an increase of the variance.

Indeed, it is possible write the equation 1.1 in the following way:

yAB = (µAA + βP ) + z(βM − βP ) + ε (1.2)

Thus, the variance of the trait y in the heterozygous group is given by

V ar(yAB) = V ar(z)(βM − βP )2 + V ar(ε)

=
1

4
(βM − βP )2 + σ2

E

= σ2
AB

(1.3)

In presence of POEs the e�ect of the allele B inherited from the mother is

di�erent from the e�ect of the allele B inherited from the father, βM 6= βP ;

thus, σ2
AB > σ2

E.

This results in a two-steps approach that can be applied in case of unrelated

data. In the �rst step the standard GWAS is computed; in the second step,
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to investigate the presence of POEs, a non parametric test for the equality of

the two variances is performed. This approach is di�erent from those present

in the state of the art because it can be used in case of unrelated data, so it

is not necessary the parental genotype data, but on the other side the main

limitation of this approach is that it can be applied only in case of unrelated

data.

Thesis Objective, Solutions and Organization

We propose two di�erent procedures for detecting the POEs in genome wide

genotype data from related individuals (monozygous and dizygous twins)

when the parental origin cannot be inferred. Firstly, an extension of the ap-

proach proposed by Hoggart is developed and it is described in the Chapter

2. The proposed procedure, that we named �Variance Approach�, is com-

posed by two di�erent phases: a �rst test for the detection of POEs and a

second test for the association, the choice of the association model is related

to the presence of POEs. A simulation study has been developed to show the

performance of the proposed statistical procedures. The procedures has been

applied on gene expression data of multiple human tissues of the MuTHER

Study (Nica et al., 2011). The second contribution, discussed in the Chapter

3, explores a �nite mixture model approach (McLachlan and Basford, 1988)

and it is based on the idea that in case of POEs the population can be clus-

tered in two di�erent groups in which the reference allele is inherited by a

di�erent parent. Thus, our statistical model is developed within the context

of the �nite mixture of linear mixed model and we propose a statistical test
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for capturing the presence of the POEs. A large simulation study and a study

on gene expression data (Nica et al., 2011) has been conducted.





Chapter 2

Contribution 1

2.1 Introduction

Several measures can be used to describe a quantitative trait and to infer a

particular biological phenomena. The e�ect of a SNP on the mean values of

a trait of interest is widely studied through genetic association studies which

lead to the identi�cation of genetic determinants. The use of di�erences

in the variance of these traits per genotype is an important topic, because

it is well known that a certain number of biological scenarios can lead to

variance-heterogeneity across the genotype group of a SNP. For instance, an

underlying interaction between two genetic markers, or between a SNP and

an environmental factor, can result in variance heterogeneity of trait of inter-

est (Deng et al., 2014; Forsberg et al., 2015; Struchalin et al., 2010). Variance

heterogeneity can also be generated by aware and unaware transformations

on a phenotype (Sun et al., 2013). Usually, aware transformations can hap-

9
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pen for statistical purposes (e.g., log(Y)) whereas unaware transformations

can occur due to the wrong selection of the phenotype measurement. Hog-

gart et al. (2014) have shown that it is possible to detect POEs by exploiting

a variance test between the heterozygotes and homozygotes.

Several methods have been proposed to investigate the variance heterogene-

ity. The most popular one to evaluate the heterogeneity between k groups is

the Levene's test (Levene, 1960) that has proven to be excellent in terms of

power and robustness under non-normality. The Levene's test consists of ap-

plying the standard one-way analysis of variance (ANOVA) on the absolute

deviations of the trait of interest from the group means. Since its introduction

various modi�cations of the Levene's test have been proposed. Parra-Frutos

(2009) proposes a large simulation study to analyse the robustness properties

in terms of type I error and power of several heteroscedasticity tests based on

the Levene's test, as the Brown-Forsythe test (Brown and Forsythe, 1974),

in which a robust estimate of location (median and 10% trimmed mean) has

been proposed as alternative to the mean in computing the absolute devi-

ations, and the Levene's test modi�ed by Keyes-Levy's adjustment (Keyes

and Levy, 1997) and Satterthwaite's correction (Satterthwaite, 1946) for un-

balance design, with and without bootstrap. All these tests work under the

assumption of independence of observations. Our aim is to evaluate the vari-

ance heterogeneity in case of twin data, where individuals are correlated.

Only few scale tests deal with correlated data. Iachine et al. (2010) proposed

a speci�c method to test heteroscedasticity in twin studies, but it does not

control the type I error in the presence of non-normal data or in the case of

small and unequal group sizes.
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Furthermore this topic has been abundantly studied in the econometric �eld

too (Breusch and Pagan, 1979; Glejser, 1969; Goldfeld and Quandt, 1965;

Koenker, 1981; White, 1980); in particular as diagnostic methods to verify

the validity of the homoscedasticity assumption in regression models. In the

presence of uncorrelated observations, the analysis of the residuals of a linear

regression model is suggested to verify the homoscedasticity assumption. Es-

sentially, the regression analysis is applied under the assumption that there

is no heteroscedasticity, and the residuals or the squared residuals are used as

proxy of the error. Graphical methods are largely used to verify the presence

of some kinds of regular pattern in the residuals but, in the big data settings,

they result computationally demanding. Breusch and Pagan (1979) propose

a multi-step procedure based on the Lagrange Multiplier test as test for the

heteroscedasticity, in which the key idea is to compute a auxiliary regression

using the residuals as dependent variable. The Breusch-Pagan has shown to

be sensitive to any violation of the normality assumption, a generalization

of Breusch-Pagan test in the case of deviation from the normality has been

proposed by Koenker (1981).

Our idea is to propose for the detection of the parent-of-origin e�ect a multi-

step approach where the residuals of a linear mixed model are used as proxy

of the error. The linear mixed models (LMMs) constitute the most popular

alternative to analyse correlated data (Pinheiro and Bates, 2006) and they

are widely used in the contest of twin data (Guo and Wang, 2002; Neale and

Maes, 2004; Rabe-Hesketh et al., 2008) because they are able to represent

properly such data structures. In the section 2.2 we will review three di�er-

ent type of residuals in linear mixed models; then, in the section 2.3 we will
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show the steps of the procedure for testing the presence of POEs. Finally, in

section 2.4 and 2.5, we will present a simulation study to evaluate the per-

formance of the procedure and the results of the analysis of the MuTHER

data, respectively.

2.2 Residuals in linear mixed models

The general speci�cation of LMMs can be written as:

yi = Xiβ + Ziai + εi (2.1)

where yi is (ni×1) a vector of response variable measured on the group/family

i, β is a p×1 vector of the �xed e�ects coe�cients, Xi and Zi are (ni×p) and

(ni× q) design matrices, respectively, ai is a (q× 1) vector of random e�ects

and εi is a (ni × 1) vector of measurement errors. ai and εi are independent

and normally distributed:

ai ∼ Nq
(
0, σ2

AG
)
and εi ∼ Nni

(
0, σ2

ERi

)
, for i = 1, ...,m (2.2)

where m denotes the number of group/family and G and Ri are (q × q) and

(n× n) positive de�nite matrices. We can write the model (2.1) in standard

matrix notation:

y = Xβ +Za+ ε (2.3)
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that implies

V ar

 a
ε

 =

 σ2
AD 0

0 σ2
EΣ

 (2.4)

whereD = Im⊗G and Σ = ⊕mi=1Ri, with ⊗ denoting the Kronecker product,

⊕ denoting the direct sum and Im the identity matrix of order m.

The classic de�nition of residual, introduced by Cox and Snell (1968), allows

for a single source of variability. Hilden-Minton (1995), Verbeke and Lesa�re

(1996) and Pinheiro and Bates (2006) de�ne three types of residual that

manage the presence of the extra source of variability:

• Marginal residuals, ξ̂ = y−Xβ̂ that predict the marginal errors, given

by Za+ ε;

• Conditional residuals ε̂ = y − Xβ̂ − Zâ that predict the conditional

errors;

• BLUP, Zâ, that predicts the random e�ects.

Santos Nobre and Da Motta Singer (2007) summarize which type of resid-

uals can be used for the diagnostic of LMM, e.g. assessing normality and

homoscedasticity of residuals, checking linearity of the e�ects and checking

for outliers. For the evaluation of the normality and the homoscedasticity of

the LMM Pinheiro and Bates (2006) consider a plot of the elements of ε̂
σ̂E
,

where σ̂E is an estimate of σE, versus the predict value ŷ = Xβ̂ − Zâ. Sim-

ilar proposals to check for homoscedasticity are suggested by Oman (1995);

Weiss and Lazaro (1992).

Thus, the conditional residuals are the more appropriate proxy of the error
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for the evaluation of the variance heterogeneity between the genotype groups.

Furthermore, the conditional residuals are widely used in the GWASs. In-

deed, Aulchenko et al. (2007) proposes a genome-wide rapid association using

mixed model and regression (GRAMMAR) implemented in the well-known

GenABEL software where �rst the residuals from a LMM are estimated un-

der the null model (no SNP e�ect) and then they are treated as dependent

variable (phenotype) for a genome-wide analysis by a standard linear model.

Clearly, this approximated approach reduces substantially the computational

time per-SNP.

2.3 Detection of POEs

2.3.1 Hoggart's test

Let us denote the alleles of a bi-allelic SNP as �A� (reference) and �B�

(causal), so the possible genotypes are AA, AB and BB. In the GWAS study

the major interest is to test the association between a particular SNP and

the trait of interest, y; genetic association studies assume that the e�ect of

a casual allele is the same regardless of its origin is paternal or maternal.

Hoggart et al. (2014) showed that in presence of POEs the heterozygous

genotype group is split into two subgroups, depending on the parental origin

of the A and B alleles. As discussed in the Introduction, Hoggart et al. (2014)

assumed that a trait y of any individual i in each genotype group j = AA,
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AB, BB , can be modelled in the following way:

yi =


µAA + εi

µAA + ziβM + (1− zi) βP + εi

µAA + βM + βP + εi

if gi ∈ AA

if gi ∈ AB

if gi ∈ BB

(2.5)

where µj denotes the mean of the genotype group j, gi indicates the genotype

group for the individual i, zi is a Bernoulli random variable with parame-

ter 1
2
, βM and βP are the maternal and the paternal e�ects of the B allele

respectively, and ε is an individual level error with mean zero and variance

σ2
E. The average of the maternal- and the paternal e�ects (i.e. βM+βP

2
) is

equal to the association e�ect size β, the �xed e�ect of a SNP codi�ed in a

numerical form (0,1,2) denoting the number of the minor alleles B.

In the equation (1.3), we observe that the variance in the heterozygous group

increases because the random variable z, that, instead is not present in the

case of the homozygous genotype groups.

Hoggart et al. (2014) propose a robust version of the Brown-Forsythe test in

which he computes the deviation from the median of the phenotype in each

group:

ỹi =


yi − µAA if gi = AA

yi − µAB if gi = AB

yi − µBB if gi = BB

(2.6)

where the general µj is the median of the genotype group j. The absolute

deviation |ỹi| is regressed on a dummy variable, that assumes value 1 for
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heterozygous and 0 for homozygous individuals, in order to estimate the

POE e�ect size, b. The POE test statistic, for large n, is:

b̂

SEb
∼ N (0, 1) (2.7)

where b̂ is the estimated POE e�ect size and SEb is the corresponding stan-

dard error that can be write in the following way

SE2
b =

RSS

n− 1

/
nAB (nAA + nBB)

n

where

RSS =
n∑
i=1

(ỹi − α)2 − b̂2nAB
(nAA + nBB)

n
and α =

n∑
i=1

|ỹi|
n

2.3.2 Proposed method

In this section, our aim is to expose the procedure proposed for the detection

of the POEs in the case of related subjects using twin data. As shown in

the Sections 2.1 and 2.2, the use of the residuals for the study of the het-

eroscedasticity is very common. For the analysis of twin data, we suggest to

use the conditional residuals of a LMMs where the random e�ect a of the

equation (2.1) represents the covariance structure of the related individuals.

In particular, in genetic models in case of related data, the total variance of

the trait y is decomposed in two components (Falconer et al., 1996; Fisher,

1919): additive genetic and a unique environmental e�ects (ε), that corre-
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spond to the random e�ects a and the measurement error ε in the equation

(2.1). The additive genetic variance is estimated using only within-family

di�erences.

Thus, by exploiting the LMMs, we can write the model in the equation (2.5)

for the related model in the following way:

yij =


µAA + ai + εij

µAA + zijβM + (1− zij) βP + ai + εij

µAA + βM + βP + ai + εij

if gij ∈ AA

if gij ∈ AB

if gij ∈ BB

(2.8)

where gij de�nes the genotype group of the jth individual of the ith twin

pair, with j = 1, 2 and i = 1, ...,m. Since ai, εij and zij are assumed to be

mutually independent, the variance of the trait in the homozygous groups,

(i.e. yhom), is

V ar
(
yhom

)
= V ar (a) + V ar (ε) = σ2

A + σ2
E (2.9)

and in the heterozygous group (i.e. yAB) is

V ar
(
yAB

)
= V ar (z) (βM − βP )2 + V ar (a) + V ar (ε) (2.10)

=
1

4
(βM − βP )2 + σ2

A + σ2
E (2.11)

In presence of POEs βM 6= βP , therefore V ar
(
yAB

)
> V ar

(
yhom

)
. Thus, as

proposed by Hoggart et al. (2014), we can detect POE via the increased trait

variance in the heterozygous group relative to the homozygous groups. To
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test the POEs we propose a �Variance Approach� in a three steps procedure

to avoid spurious POEs caused by population structure, unequal relatedness

among individuals in a given cohort and covariates as the age. Then, our pro-

cedure is completed by a further step to test the association. The �Variance

Approach� can be summarized in the following steps:

STEP-1 Estimating a linear mixed model under the null model (without SNP

e�ect, see Section 2.5);

STEP-2 Computing the conditional residuals of the linear mixed model ;

STEP-3 Computing the test statistic (2.7) using the residuals obtained by

the STEP 2.

STEP-4 Estimating in presence of POEs a linear heteroscedastic mixed model,

otherwise a linear homoscedastic model.

Le us stress that the presence of POEs leads to heteroscedasticity in the

trait y. To detect association and to take into account the heteroscedasticity

caused by the POEs, we can relax the assumption of homoscedasticity using

a variance function model for the within-group errors in the linear mixed

model framework (Davidian and Giltinan, 1995; Pinheiro and Bates, 2006).

By adding a stratum-speci�c variance parameter, δsl , we can impose that the

variance of the error is given by σ2
Eδ

2
sl
, l = 1, 2, thus we can estimate di�erent

variances for the di�erent levels of the strati�cation variable S. In presence

of POEs, the variance of the homozygous group is di�erent from the one of

the heterozygous group, thus we introduce as strati�cation variable S a 0-1
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coded genotype group identi�er (1 for heterozygous and 0 for homozygous

individual).

2.4 Simulation study

We explored the power and the e�ciency of the �residual approach� to de-

tect the POEs through a simulation study. We simulated a continuous trait

according to the model in equation (2.8); we imposed m = 500 twin pairs,

divided into MZ and DZ, the 30% and 70%, respectively. In this way, we

are able to simulate complete and partial POE. Thus, the variance of the

simulated trait is given by the sum of σ2
β, the variance explained from the

main allelic e�ect β, σ2
A, the additive variance, and σ2

E, the environmental

variance, where σ2
β +σ2

A+σ2
E = 1. σ2

E has been �xed to three di�erent values

(0.70, 0.50, 0.30), corresponding to a total heritability, h2, (i.e. sum of σ2
β

and σ2
A), of 0.30, 0.50, 0.70. The main allelic e�ect β has been derived from

the variance explained σ2
β that has been �xed to 1%, 10%, 20% and 30% of

the total trait variation. As illustrated in the Appendix (A.2), the explained

variance can be written in the following way:

σ2
β = 4β2

(
2k2 − 2k + 1

)
pq. (2.12)

The parameter k indicates the proportion of the main allelic e�ect explained

from the allele B inherited from the parents "M", in other words, we can say

that k denotes the absence/presence of POE and its intensity. It is possible to
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say that the POE are not observed only when k = 0.5. In all other situations,

the maternal and paternal alleles contribute to the POE in a percentage equal

to k e 1-k. In the extreme cases, where k is equal to 1 or 0, we face a paternal

POE (the paternally derived allele is completely silenced) or a maternal POE

(the maternally derived allele is completely silenced), respectively.

Under the null hypothesis, we have that βM = βP , thus we impose k = 0.5.

Under the alternative hypothesis, we assume βM 6= βP and we analyse three

di�erent levels of POEs, k = 1, 0.9 and 0.8. Let us note that the equation

(2.12) highlights the possibility of underestimate the h2 when a missed POE

identi�cation occurs. Indeed, from the equation (2.12) is it possible to observe

that, by keeping constant β and p, the explained variance in the case of

k 6= 0.5 is always lower than the explained variance in presence of POEs. In

particular when k is equal to 1 or 0 the variance explained by the main allelic

e�ect is doubled than the variance explained under the null hypothesis. This

is the reason why a successful identi�cation of parent-of-origin e�ects and an

exact estimation of the variance explained by the genetic marker could help

in shedding light on �missing heritability� problem.

Summing up, to evaluate the power and the type I error of our procedure we

have simulated 36 and 12 di�erent scenarios, respectively. Each scenarios is

replicated for four levels of minor frequency allele (MAF = 0.1, 0.2, 0.3, and

0.5).
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2.4.1 Results of simulation study

Type I error rates at a signi�cance level of 0.05 for the evaluated methods are

shown in Figure 2.2 where we can see that the type I error of the test is in

good agreement with the nominal 5% level for low values of heritability, h2,

and for high values of MAF. In case of h2 = 0.7 and low MAF, the test in less

conservative; indeed in case of MAF = 0.2 and MAF = 0.1 the type I error

rate is approximately the 8% and the 10%, respectively. Moreover, from the

error bars we can observe that in case of MAF = 0.1, the type I error is more

variable; in other words, for di�erent levels of variance explained by the main

allelic e�ect the type I error assumes di�erent values.

Regarding the power of the test, from the Figure 2.1, we can immediately

observe that the power of the test increases as the variance explained σ2
β

increases. Indeed, if the proportion of the variance explained by the marker

is ∼ 1%, the power of the test is nearly 0. On the contrary, the power

approaches to 1 when the marker explains the 20% or 30% of the total trait

variation, in particular in the case of a 100% maternal POE. Moreover, we

note that the power increases when the MAF becomes smaller. It occurs

because, as the MAF decreases the coe�cient β has to assume high value

to explain the same proportion of the total trait variation (as shown in the

Appendix A.2).

We can conclude that in general, under the null hypothesis, the probability

to detect POE is equivalent to the nominal value, and that the test is in�ated

only in the case of high heritability and low MAF. On the other hand, the

performances in terms of power are good only in case of high values of the
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variance explained by the main allelic e�ect. Usually, in real data, a SNP

explains around the 1% - 5% of the total trait variation when the analysed

trait is a phenotype, while in the case of gene expression data the proportion

of the variance explained by the genetic component is higher, ∼ 10% - 40%.

2.5 Application to MuTHER Study Data

In this study, we analyse the gene expression microarray data of the MuTHER

study in a diverse set of human tissues, skin and fat, and the lymphoblas-

toid cell lines, LCL. The data are described in the details in the Appendix

A.1. Brie�y, the sample is composed by a total of 856 female twins (of which

154 monozygotic and 84 singletons). The gene expression is measured on

∼ 48000 probes and, after quality control, the genotype data is constituted

by ∼ 1 million of SNPs. For the detection of the parent-of-origin e�ects, we

selected SNPs in eQTLs in cis within a 1Mb window of the gene transcripts

at a FDR of 5%. The linear mixed model of the STEP 1 was adjusted for

age, experimental batch and BMI (only for skin and fat), as �xed e�ects, and

for twin pairing as random e�ects.

In the Figure 2.3 and 2.4, we can observe the p-values of the POE test for

the three di�erent tissues in the case of the Bonferroni correction and the

FDR adjustment. We identi�ed one gene with POE p-values statistically

signi�cant with both the multiple testing correction, in more of 20 loci that

are overlapped in the three tissues in the chromosome 14 (region 14q23.3,

gene CHURCH1), although the signals are higher in more loci in the lym-

phoblastoid cell lines. As explained in the Introduction of this chapter, the
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Figure 2.1: Power to detect POEs by the �Variance Approach�. The columns
show power for di�erent MAF; the power achieved under three heritability
model is shown in rows. The y axis of each panel shows power, whereas the
x axis shows the proportion of total variance explained by the allelic e�ect.
POE size was set to 80%, 90% and 100% of the allelic e�ect size.



24 Chapter 2. Contribution 1

Figure 2.2: Type I Error for the proposed test of POEs . The columns
show type I error under four di�erent level of MAF. The y axis of each
panel shows type I error, whereas Di�erent colours indicates the level of the
heritability (0.3, 0.5, 0.7). Keeping constant the MAF and the heritability,
the type I errors corresponding to the di�erent levels of explained variance
is synthesized in error bars at 95% con�dence interval. intervals.
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Figure 2.3: Manhattan Plot of POE p-values, the blue horizontal line is the
Bonferroni correction

variance heterogeneity between the genotype groups can be the result of other

biological phenomena. For this reason, all these results are validated check-

ing the assumption of homoscedasticity in the homozygous groups thought

the classic Levene's test. The regional signal plots of the CHURCH1 locus

for the three tissues are in the Figure 2.5. The region 14q23.3 is a deletion

region, that regulates neurological development and seems to be associated

with some neuronal disorder as the autism (Griswold et al., 2011). The anal-

ysis conducted by Hu et al. (2015) revealed the father is a carrier for the

14q23.3 deletion.
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Figure 2.4: Manhattan Plot of POE FDR-adjusted p-values, the blue hori-
zontal line is signi�cance level at 5%

Moreover we identi�ed in LCL other three most likely imprinted genes (Fig-

ure 2.6): C20orf194 in 30 loci (chr 20), SERPINB10 in 29 loci (chr18) and

SERPIND1 in 49 loci (chr 22). To assess the validity of the genetic results,

we have veri�ed that in the identi�ed regions the gene expression variation

is not caused by the presence of the copy number variations (CNVs). The

CNVs consist in deletions or duplications of chromosomal segments and they

constitute the major source of variation between the individuals. From a fast

analysis of the CNVs, from the TwinsUK genotype data, we have observed

that in these region only one individual show a CNV in the chromosome
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Figure 2.5: Regional signal plots at the CHURCH1 locus.

22 close by the gene SERPIND1. Moreover, one of the mechanism under-

lying the allele-speci�c expression is the DNA methylation, the addition of

a methyl group to DNA, that controls gene expression. The allele-speci�c

methylation of di�erentially methylated regions (DMRs) is the primary epi-

genetic mechanism of imprinting, controlling monoallelic expression (Skaar

et al., 2012). In order to validate the results, we will analyse the methylation

data as suggested by Baran et al. (2015) and Joshi et al. (2016). Further-

more, an additional validation of the genetic results will be proposed in the

Section 3.6.1.
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(a) (b)

(c)

Figure 2.6: Regional POE signal plots at locus (a) SERPINB10, (b)
C20orf194 and (c) SERPIND1. LCL.

2.5.1 Spurious association due to data trasformation

One crucial step in the analysis of microarray data is the normalization. Nor-

malization aims at adjusting microarray data for e�ects which arise from vari-

ations in the technology rather than from biological di�erences between the

RNA samples or between the printed probes (Quackenbush, 2002). Indeed,

normalization is necessary to eliminate low-quality measurements, to adjust

the measured intensities and to allow direct array-to-array comparisons. A

Log2 transformation is applied on gene expression data to improve the sym-

metry of the distribution and to make the distribution more Gaussian-like.

Then, the Log2-transformed expression signals were normalized separately
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by quantile normalization across individuals.

Sun et al. (2013) state that the scales on which we measure interval-scale

quantitative traits are man-made and have little intrinsic biological relevance.

Therefore, Sun et al. (2013) argue that can be di�cult to detect and interpret

di�erences in trait variances among SNP-speci�c genotype. Before claim a

biological interpretation for genotype di�erences in variance, we should be

sure that no monotonic transformation of the data can reduce/eliminate or

amplify/generate these di�erences.

Before the Log2 transformation we can assume that the gene expression can

be approximated as a gamma distribution, ỹ ∼ Γ (k, θ). Let µ be the trait

mean in the heterozygous group and δ the marginal e�ect of the SNP (on

the original scale) and let g () denotes a Log2 transformation. By using a

�rst order Taylor expansion, the variance of the transformed trait in the

heterozygous group can be approximates as follows:

V ar (g (ỹ|G = AB)) ' g
′
(µ)2 V ar (ỹ|G = AB)

=

(
1

µlog2

)2

kθ2

=

(
1

kθlog2

)2

kθ2

=
1

2klog2
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Similarly, it is possible estimate the variance in AA genotype group. Thus,

V ar (g (ỹ|G = AB))− V ar (g (ỹ|G = AA)) is approximately equal to:

g
′
(µ)2 V ar (ỹ|G = AB)− g′

(µ− δ)2 V ar (ỹ|G = AA)

=
1

2klog2
− kθ2

(kθ − δ)2 2log2

(2.13)

Therefore, in the presence of a strong marginal association, (i.e. δ → ∞),

the Log2 transformation can implicate a spurious association using variance

tests. For this reason, we recommend to validate the top hits obtained by

our POE test by excluding all the SNPs that violate the homoscedasticity

assumption in the homozygous groups, by comparing the results in the case

of transformed and untransformed trait, if it is possible, and by analysing

the methylation data as suggested by Baran et al. (2015) and Joshi et al.

(2016).
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3.1 Introduction

Twin designs are commonly used to study and measure the environmental

and genetic e�ects on a trait of interest (Falconer et al., 1996; Fisher, 1919;

Neale and Maes, 2004). A major advantage of twin studies is the possibil-

ity to control and to establish the environmental e�ect on an observed trait

because twins share the same genes. Indeed, monozygotic (MZ) twins share

all of their genes and consequently become more similar than dizygotic (DZ)

twins that share only about 50% of them. As proposed by Guo and Wang

(2002) and Rabe-Hesketh et al. (2008), we handle the twin structure within

the contest of linear mixed models. To the best of our knowledge, in the

literature there are no models to detect the POEs in case of correlated data

but in absence of the parental genetic information. The aim of this work is to

propose a statistical approach for testing the POEs in case of twin studies. To

31
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achieve this goal we interpret the problem of the POEs detections as a model-

based clustering problem. Indeed, we assume that, in presence of POEs, the

population Ω can be considered as the union of two disjoint sub-populations,

ΩM and ΩP , such that Ω = ΩM∪ΩP , where ΩM and ΩP represent, the group

of individuals that receive the causal allele "B" from the �rst parent M and

from the second parent P , respectively. We account for the correlation be-

tween twins and we model the unobserved heterogeneity among individuals,

due to the presence of POEs, at the same time. The method proposed for

detecting the POEs is developed in the framework of mixtures of linear mixed

e�ects models (MLMMs). Since their introduction by Pearson (1894), �nite

mixture models (FMMs) have been widely considered in statistical modelling

in several research areas. FMMs provide a useful and powerful tool to deal

with population heterogeneity (McLachlan and Basford, 1988) . In the last

decades FMMs have been extended in several ways; contributions relative to

the their estimation and application have increased thanks to the develop-

ment of Expectation-Maximization (EM) algorithm (Dempster et al., 1977),

that has reduced the complexity of the maximum likelihood (ML) estimation.

Celeux et al. (2005) have extended FMM to linear mixed model context in

order to introduce a model-based cluster analysis method for repeated data

for the clustering of time-course gene expression data. Ng et al. (2006) and

Wang et al. (2012) have incorporated multilevel and nested random e�ects

and autoregressive random e�ects in the MLMM , respectively. In these

works to take into account the correlation between the correlated observa-

tions and to model the heterogeneity between the components, they assume

that the correlated measures of a statistical unit belong to the same mixture
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component, however, this assumption can be too much restrictive to describe

some phenomena. Indeed, in the contest of the twin data and to meet ge-

netic requirements, our model have to be more �exible: we assume that the

monozygotic twin brothers have to belong to the same mixture component,

on the contrary each individual of the dizygotic twin pair can belong to a

di�erent mixture component.

In Section 3.2, we introduce the proposed model and in Section 3.3 we de-

scribe the EM algorithm for the ML estimation and we highlight how we

solve some of the main issues of the EM algorithm. Next, in Section 3.4, we

derive the statistical test proposed for the detection of the POEs. Finally,

we show a description of the simulation study results, in section 3.5, and we

apply the proposed method on the gene expression data of the MuTHER

study, (section 3.6).

3.2 Mixture Model for Twin data

Suppose we observem unrelated twin-pairs, with i = 1, . . . ,m, with twins j =

1, 2 for each pair. Data contain two types of genetically related individuals,

MZ and DZ twins; we denote 1MZ (i) the indicator function of i, having value

1 for all MZ twins and value 0 for all DZ twins.

We indicate the alleles of a bi-allelic SNP by �A� (reference) and �B� causal,

so the possible genotype groups gij of the j-th individual of the i-th twin

pair are AA, AB and BB. Let wBBij and wABij be two dichotomic variables
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that identify the genotype group gij :

wBBij =


1 if gij = BB

0 otherwise

(3.1)

and

wABij =


1 if gij = AB

0 otherwise

(3.2)

As proposed by Hoggart et al. (2014), in presence of POEs the heterozygous

genotype group, AB, consists of two sub-populations depending on the ref-

erence allele is inherited from the father, ΩP , or from the mother, ΩM . In

the contest of FMM, we take into account the unobserved heterogeneity due

to the POEs, assuming that the mixture is composed by two components,

where the component weights are known and equal to 1
2
.

Treating individuals as level-one units and the twin pairs as level-two units,

we denote by yij the random variable that represents the trait of interest

for the i-th twin pair and and the j-th individual. The trait is assumed to

depend on �xed and random e�ects as follows:

yij = α + (βM + βP )wBBij + βPw
AB
ij + 1MZ (i) zMZ

i (βM − βP )wABij

+ (1− 1MZ (i)) zDZij (βM − βP )wABij +X
′
ijγ + ui + εij

(3.3)

where α is the intercept, βM and βP are the maternal and paternal e�ects

of the �B� allele, respectively, Xij ∈ Rp is a known covariate vector for �xed

e�ects, γ ∈ Rp is a vector of �xed e�ects to be estimated. The random e�ects

ui, used to describe the correlation within each twin pair, is distributed as
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N (0, τ 2), independently from the error εij ∼ N (0, σ2). zMZ
i and zDZij are

the latent component variables of the mixture. Indeed, depending on the

zygosity of the i-th twin pair the two component mixture of mixed linear

models is determined from a di�erent latent variable:

• if 1MZ (i) = 1, we introduce

zMZ
i =


0 if the ith MZ pair ∈ ΩP

1 if the ith MZ pair ∈ ΩM

(3.4)

that is a realization of a random variable ZM
i ∼ Ber (1/2);

• if 1MZ (i) = 0, we introduce

zDZij =


0 if the jth individual of the ith DZ pair ∈ ΩP

1 if the jth individual of the ith DZ pair ∈ ΩM

(3.5)

that is a realization of a random variable ZDZ
ij ∼ Ber (1/2).

So to take into account the correlation between the twin pair and under the

genetic assumption, we assume that the monozygotic twin pair belong to the

same mixture component, as assumed by Celeux et al. (2005) in a di�erent

contest; on the contrary the dizygotic twin pair can belong to a di�erent

mixture component.

The components of the model proposed in equation (3.3) are the following:

f
(
Yij|ZMZ

i = 0
)

= f
(
Yij|ZDZ

ij = 0
)

= N
(
µ1ij , σ

2 + τ 2
)

= f1 (yij; θ1) (3.6)
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where µ1ij = α + (βM + βP )wBBij + βPw
AB
ij +X

′
ijγ, θ1 =

{
µ1ij , σ

2, τ 2
}
, and

f
(
Yij|ZMZ

i = 1
)

= f
(
Yij|ZDZ

ij = 1
)

= N
(
µ2ij , σ

2 + τ 2
)

= f2 (yij; θ2) (3.7)

where µ2ij = α + (βM + βP )wBBij + βMw
AB
ij + X

′
ijγ, θ2 =

{
µ2ij , σ

2, τ 2
}
. We

de�ne θ = {α, βM , βP , γ, σ2, τ 2} the vector of parameters that is (5 + p)× 1

dimensional.

Thus, the �nite mixture density of mixed e�ects models with two components

is given for the observation of the individual j of the twin pair i by

f (yij; θ) =
2∑

k=1

fk (yij; θk) =
1

2
N
(
yij;µ1ij, σ

2 + τ 2
)

+
1

2
N
(
yij;µ2ij, σ

2 + τ 2
)
.

(3.8)

Finite mixture models allow to estimate the posterior probability of belonging

to each component. For the MZ twins, 1MZ (i) = 1, we estimate the posterior

probability that the i-th pair belongs to the k component:

τMZ
k (yi; θk) = Pr (ith MZ pair ∈ Ωk|yi)

= Pr
(
ZMZ
ik = 1|yi

)
=

Pr
(
yi|ZMZ

ik = 1
)

Pr
(
ZMZ
ik = 1

)
Pr (yi)

=
1
2

∏2
j=1 fk (yij; θk)∑2

k=1
1
2

∏2
j=1 fk (yij; θk)
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For the DZ twins, 1MZ (i) = 0, we estimate the posterior probability that

the j-th individual of the i-th couple of twins belongs to the k component:

τDZk (yij; θk) = Pr (the jth individual of the ith DZ pair ∈ Ωk|yij)

= Pr
(
ZDZ
kij = 1|yij

)
=

Pr
(
yij|ZDZ

kij = 1
)

Pr
(
ZDZ
kij = 1

)
Pr (yij)

=
1
2
fk (yij; θk)∑2

k=1
1
2
fk (yij; θk)

3.3 Estimation with EM algorithm

Let θ = {α, βM , βP , γ, σ2, τ 2} be the vector of model parameters. The log-

likelihood of the model is given by

L (θ) =
m∑
i=1

2∑
j=1

ln f (yij; θ) =
m∑
i=1

2∑
j=1

ln

(
2∑

k=1

1

2
fk (yij; θk)

)
. (3.9)

The direct maximization of the log-likelihood function, L (θ), is complicated;

a general technique for �nding maximum likelihood estimators of the param-

eters in �nite mixture models is the Expectation-Maximization algorithm

(Dempster et al., 1977; McLachlan and Basford, 1988). The EM algorithm

is an iterative procedure to compute MLEs in the contest of incomplete-data

problems. Each iteration of the EM algorithm is composed by two steps: the

E-step and the M-step and they are repeated until convergence. The aim of

the EM algorithm is the maximization of the conditional expectation of the

log-likelihood of the so called complete data given the observable data. The
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complete log-likelihood is the joint density of the observable and missing data

of the model. In the proposed model there are two types of missing data: the

latent allocation variables, zMZ
i and zDZij , and the random e�ects, ui. The

log-likelihood function associated to the complete data can be de�ned by

LC (θ) =
2∑

k=1

m∑
i=1

2∑
j=1

{
1MZ(i)

[
zMZ
ik ln

1

2
+ zMZ

ik ln fk(yij, ui|zMZ
ik ; θk)

]
+ (1− 1MZ(i))

[
zDZkij ln

1

2
+ zDZkij ln fk(yij, ui|zDZkij ; θk)

]}
(3.10)

where ln fk() is the log-density function of the joint distribution of yij and ui

conditionally to the component k from which it arise, and it is given by

ln fk(yij, ui|·; θk) ∝ −
1

2
lnσ2 − 1

2σ2
(yij − µkij − ui)2 −−

1

2
ln τ 2 − 1

2τ 2
u2i

(3.11)

At the iteration r > 0, the E-step consists of computing the expectation

of the complete log-likelihood function given the observed data, Y , and the

current values of the parameters θ(r), where the r represents the iteration

index. Thus, the expectation of the complete log-likelihood is de�ned by

Q(θ, θ(r)) = Eθ(r){LC (θ) |Y }

∝
2∑

k=1

m∑
i=1

2∑
j=1

{
1MZ(i)τMZ

k (yi; θ
(r)
k )Eθ(r)

[
ln fk(yi, ui|zMZ

ik ; θk)|yi
]

+ (1− 1MZ(i)) τDZk (yij; θ
(r)
k )Eθ(r)

[
ln fk(yij, ui|zDZkij ; θk)|yij

]}
.

(3.12)
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where we assume that MZ and DZ twin pair are conditioned to yi and to yij,

respectively, and the posterior probabilities are given by

τMZ
k (yi; θ

(r)
k ) = f(zMZ

ik |yi; θ
(r)
k ) =

1
2

∏2
j=1N (yij;µkij, τ

2 + σ2)∑2
k=1

1
2

∏2
j=1N (yij;µkij, τ 2 + σ2)

(3.13)

τDZk (yij; θ
(r)
k ) = f(zDZkij |yij; θ

(r)
k ) =

1
2
N (yij;µkij, τ

2 + σ2)∑2
k=1

1
2
N (yij;µkij, τ 2 + σ2)

. (3.14)

For sake of brevity we denote the posterior probability in case of MZ twins

as τMZ
k (yi) and τ

DZ
k (yij), for DZ twin pairs.

For this variant of the E-step, in order to compute Q(θ, θ(r)), we require the

conditional variance and the conditional mean. For the MZ twin pair, the

conditional variance is

ΣMZ
ui

=

(
1

τ 2
+

2

σ2

)−1
(3.15)

and the conditional mean is given by

µMZ
ui,k

= Σui

1

σ2
1
′(yi − µik)2 (3.16)

where yi is the observed data vector 2× 1 dimensional of the i-th twin pair

and µik is the mean vector 2×1 dimensional of the i-th twin pair of the k-th

component.

If 1MZ(i) = 0, we obtain that the conditional variance is de�ned by

ΣDZ
ui,k

= (τ 2 + σ2)−1σ2τ 2 (3.17)
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and the conditional mean is given by

µDZui,kj = (1 + σ2τ−2)−1(yij − µkij)2 (3.18)

The computation of conditional mean and conditional variance of ui for both

cases are reported in the appendix B.1.

The M-step consists of determining the values maximizing the equation (3.12)

where

E
[
ln f(yi, ui|zMZ

ik ; θk)
]
∝ − lnσ2 − 1

2

[(
yi − µik − µMZ

ui,k

)2
+ ΣMZ

ui,k

]
− 1

2
ln τ 2 − 1

2τ 2
(
µMZ
ui,k

+ ΣMZ
ui,k

) (3.19)

and

E
[
ln f(yij, ui|zDZijk ; θk)

]
∝ −1

2
lnσ2 − 1

2

[(
yij − µkij − µDZui,kj

)2
+ ΣDZ

ui,k

]
− 1

2
ln τ 2 − 1

2τ 2
(
µDZui,kj + ΣDZ

ui,k

)
.

(3.20)

It follows that

Q(θ, θ(r)) ∝
2∑

k=1

m∑
i=1

2∑
j=1

{
−1

2
lnσ2 − 1

2
ln τ 2

− 1

2
1MZ(i)

[(
yij − µijk − µMZ

ui,k

)2
+ ΣMZ

ui,k

σ2
− 1

τ 2
(
µMZ
ui,k

+ ΣMZ
ui,k

)]}

− 1

2
(1− 1MZ(i))

[(
yij − µijk − µDZui,kj

)2
+ ΣDZ

ui,k

σ2
− 1

τ 2
(
µDZui,kj + ΣDZ

ui,k

)]}
(3.21)
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For this model the parameters can be determined in closed form by solving

the equations derived by computing the derivatives of the expected complete

likelihood, (3.21), with respect to parameters α, βM , βP , γ, τ 2 and σ2, and

setting them to zero. Thus we obtain:

α̂ =
1

N

2∑
k=1

m∑
i=1

2∑
j=1

ỹkij
(
1MZ(i)τMZ

k + (1− 1MZ(i))τDZk

)
(3.22)

where N = 2m and

ỹkij =


yij − (βM + βP )wBBij − βPwABij −X ′ijγ − µui,1 k = 1

yij − (βM + βP )wBBij − βMwABij −X ′ijγ − µui,2 k = 2

, (3.23)

where µui,k = 1MZ(i)µMZ
ui,k

+ (1− 1MZ(i))µDZui,kj.

We have that the parental e�ect of the "B" allele are equal, respectively,

β̂M =
1

nBB +
∑m

i=1

∑2
j=1 τ2w

AB
ij

{ 2∑
k=1

m∑
i=1

2∑
j=1

wBBij (yij − α−Xijγ − βP − Tk)

+
m∑
i=1

2∑
j=1

τ2w
AB
ij (yij − α−Xijγ − µui,2)

}
(3.24)
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where nBB =
∑m

i=1

∑2
j=1w

BB
ij ,τk = 1MZ(i)τMZ

k (yi) + (1 − 1MZ(i))τDZk (yij)

and Tk = τkµui,k and

β̂P =
1

nBB +
∑m

i=1

∑2
j=1 τ1w

AB
ij

{ 2∑
k=1

m∑
i=1

2∑
j=1

wBBij (yij − α−Xijγ − βM − Tk)

+
m∑
i=1

2∑
j=1

τ1w
AB
ij (yij − α−Xijγ − µui,1)

}
(3.25)

The covariate coe�cients γ are

γ̂ =

(
m∑
i=1

2∑
j=1

XijX
′
ij

)−1 2∑
k=1

m∑
i=1

2∑
j=1

τkXij(ÿkij) (3.26)

where

ÿkij =


yij − α− (βM + βP )wBBij − βPwABij − µui,1 k = 1

yij − α− (βM + βP )wBBij − βMwABij − µui,2 k = 2

. (3.27)

Finally, tha variance parameters of the model are de�ned by:

τ 2 =
1

N

2∑
k=1

m∑
i=1

2∑
j=1

τk (µui,k + Σui,k) (3.28)

where Σui,k = 1MZ(i)ΣMZ
ui,k

+ (1− 1MZ(i))ΣDZ
ui,k

, and

σ2 =
1

N

2∑
k=1

m∑
i=1

2∑
j=1

τke
2
ijk (3.29)
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where

e2ijk = 1MZ(i)
(
yij − µijk − µMZ

ui,k

)2
+ (1− 1MZ(i))

(
yij − µijk − µDZui,kj

)2

Computational Issues

A well known problem of the EM solutions is that can be highly dependent

on its starting values, θ0, and can get stuck in a local optimum. To increase

the chance to converge to a global optimum, it is recommended to perform

multiple short runs of the EM algorithms, starting each run from a di�er-

ent random starting points (McLachlan and Peel, 2004) and choosing the

one with maximum likelihood value. Short run means that the algorithm

is stopped after a limited number of iteration without waiting for the con-

vergence (Biernacki et al., 2003). However, using random initial values can

often not solve the problem of �nding bad local optimum. For the proposed

model, we suggest to initialize the EM from B = 10 starting points obtained

by �tting a linear mixed model, using the R package nlme (Pinheiro and

Bates, 2006), on a random sub-sample of the data.

Another important issue with mixture estimation is the label switching. That

problem arises because the likelihood of a mixture model can be invariant

to permutations of the components labels. In other words, the values of the

parameters βM and βP are exchangeable and lead to the same value of the

likelihood function, (3.10). In order to take into account for this problem, we
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impose an identi�ability constraint on the parameters βM and βP : βM > βP .

Due to that, we assume the �rst component represents always the group of

individuals where the allele "B" received from the parent, denoted by ”M”,

has the largest e�ect size whereas the second component, denoted by ”P”,

represents the group of individuals that receive the allele "B" from the other

parent.

3.4 The Statistical Test for POEs

One of the major advantage of the proposed method is the possibility to ob-

tain the estimated values of the parameters βM and βP , as shown in equations

(3.24) and (3.25), respectively. The parent-of-origin phenomena is observed

when the e�ect of the allele "B" inherited from mother is di�erent from

the e�ect of the allele "B" given from the father. This occurs because only

the allele inherited from one parents is expressed, the other one is silenced

(completely or partially). In order to verify the presence of POEs, we are

interested in evaluating the equality between βM and βP . Thus, the null

hypothesis of our test can be represented in the following way:

H0 : βM − βP = 0 (3.30)

Since the EM estimators are maximum likelihood estimators and consider-

ing the constraint imposed to avoid the identi�ability problem, we have that

βM − βP is always greater than 0 and is distributed according an Half Nor-

mal distribution with scale parameter equal to the variance of the di�erence
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between the parameters, V ar(βM − βP ).

Thus, the test-statistics based on the EM estimates, under the null hypoth-

esis, is asymptotically distributed according a χ2 distribution with 1 degree

of freedom:  β̂M − β̂P√
V ar(β̂M − β̂P )

2 ∣∣∣∣H0 ∼ χ2
1. (3.31)

where β̂M and β̂P are the EM-estimators. For computing the test statistic,

we need to estimate the variance V ar(β̂M − β̂P ) that is equal to V ar(β̂M) +

V ar(β̂P )− 2Cov(β̂M , β̂P ).

One of the criticisms of the EM algorithm is that it does not provide au-

tomatically the covariance matrix of the MLE. The asymptotic covariance

matrix of θ̂, the vector of ML estimators, can be obtained in several ways.

First of all we propose to compute the robust sandwich covariance matrix

estimator that is obtained using Fisher information approximated by the em-

pirical information matrix, IG(θ̂) =
∑n

j=1[qj(θ̂)qj(θ̂)
′], and by the observed

information matrix, IH(θ̂) = −
∑n

j=1[Qj(θ̂)], where q and Q denote the gra-

dient and Hessian of the likelihood function in equation (3.9) in the maximum

point, θ̂. Thus the asymptotic sandwich variance of θ̂ is given by:

ÎH(θ)−1ÎG(θ)ÎH(θ)−1. (3.32)

The standard error estimated by the observed information matrix can be neg-

ative due numerical problem. In this case the standard errors are �xed equal

to 0.001. Moreover the standard errors are estimated through a parametric

and a non parametric bootstrap procedure.
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3.5 Simulation Study

Here, simulation studies are performed under di�erent scenarios to investigate

the type I error and the power of the test.

We simulate m = 500 families, each family composed by a twin pair. We

assume that around the 30% of the twin pairs is identical (MZ) and that the

remaining part is constituted by fraternal (DZ) twins.

In the �rst simulation study we assess the adequateness of the statistical

procedure evaluating the convergence of the empirical type I error to the

nominal value as the number of replicates increases and for di�erent level

of signi�cance of the test (α = 0.1, 0.05 and 0.01). We have simulated a

quantitative trait under the null hypothesis controlled by one SNP, simulated

under Hardy Weinberg Equilibrium, with minor allele frequency of 0.5. In

this simulation we assume that, under the null hypothesis, the trait variance

is given by a SNP e�ect, that explain the 30% of the total trait variation (see

Appendix A.2), of a polygenic additive variance, τ 2 = 0.4, and a of a normally

distributed environmental e�ect with a variance of σ2 = 0.3. The Figure

3.1 shows the behaviour of the type I error when the simulations number

increases. For all levels of signi�cance the empirical type I error approaches

to the corresponding nominal value. In the second column of the Figure 3.1

it is represented the distribution of the p-values under the null hypothesis

in the case of one thousand of replicates. The uniform distribution of the

p-values under the null hypothesis at the nominal signi�cance level and the

convergence of the test statistic at the increasing of the simulations number

ensure the capability of controlling the �rst-type error.
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In the second simulation study we evaluate the performance of the proposed

test in terms of power and type I error under several scenarios. In particular,

the structure of the simulation study proposed here is the same used in the

Section 2.4; the only di�erence is that, in this case, the number of replicates

is equal to one hundred. All the results are represented in the Figures 3.2 and

3.3. Let us note that the power of the POE test is nearly 1 in all scenarios

in correspondence of a proportion of the total trait variation explained by

the simulated marker (σβ2) equal at least to 10%. When σβ2 = 0.01 the

power ranges from 0.5 to 0.20. In the case of 100% maternal POE the power

assumes clearly higher values; when βM represents the 80%-90% of the SNP

e�ect and σβ2 = 0.01, we have an higher probability of detect the POEs in

correspondence of small MAF.

Regarding the �rst-type error, with only one hundred of replicate, we can

say that the test statistic is not in�ated. The type I error, under di�erent

scenarios, results in good agreement with the nominal signi�cance 5% level.

3.6 Application to MuTHER Study Data

3.6.1 Validation of the gene CHURCH1

The discovery analysis proposed in the Section 2.5 has leaded to the iden-

ti�cation of several regions in imprinting. In particular, we identi�ed the

CHURCH1 gene in the region 14q23.3 in correspondence of 20 loci in the

three tissues. As explained in the Section 2.5.1, the Log2 transformation

applied on the gene expression data to normalize the data can implicate a
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Type I Error behaviour at the increasing of simulations number
and p-value distribution for di�erent levels of the tests: (a-b) α = 0.1 (c-d)
α = 0.05 and (e-f) α = 0.01
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Figure 3.2: Power to detect POEs by the the test on the di�erence between
βM and βP . The columns show power for di�erent MAF; the power achieved
under three heritability model is shown in rows. The y axis of each panel
shows power, whereas the x axis shows the proportion of total variance ex-
plained by the allelic e�ect. POE size was set to 80%, 90% and 100% of the
allelic e�ect size.



50 Chapter 3. Contribution 2

Figure 3.3: Type I Error for the proposed test of POEs. The columns show
type I error under four di�erent level of MAF. The y axis of each panel shows
type I error, whereas di�erent colours indicates the level of the heritability
(0.3, 0.5, 0.7). Keeping constant the MAF and the heritability, the type I er-
rors corresponding to the di�erent levels of explained variance is synthesized
in error bars at 95% con�dence interval.
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spurious association using the variance test in presence of a strong marginal

association. For this reason, we validate the founded results �tting the mix-

ture model approach.

The tables 3.1, 3.2 and 3.3 shows the list of the con�rmed SNPs in corre-

spondence of each tissues. In each table the estimated e�ects βM and βP ,

the corresponding standard errors computed by using a parametric boot-

strap procedure and the by the robust sandwich covariance matrix estimator

are reported. For each kind of standard error, the statistical test and the

corresponding p-value are shown.

3.6.2 Study on the imprinting genes

We have analysed the gene expression microarray data of the MuTHER study

in the lymphoblastoid cell lines, LCL. The data are described in the de-

tails in the Appendix B.1. We focused on the known imprinted genes using

the Imprinted Gene Database (http://www.geneimprint.com/site/genes-by-

species) gathered from the NCBI (National Center for Biotechnology Infor-

mation). We selected 110 transcripts on 68 imprinted genes. Furthmore, we

considered only the transcript associated at FDR level of 1% with the all

the SNPs located within a 1Mb window of the gene transcript. Thus, we

focused only on 12 genes for a total of 212 tests; the number of test per-

formed for each transcripts is reported in the fourth column of the table 3.4.

In correspondence of each transcript and each SNP the mixture model has

been �tted and for the detection of the POEs the statistical test (denoted by

MLMM ) proposed in the Section 3.4 has been computed. Several approaches
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Table 3.4: Number of SNPs in POEs

Probe ID Gene Chr Nr. Tested SNPs
Nr. Identi�ed SNPs

VarT MLMM

ILMN_1740711 KIAA1571 2 10
ILMN_1815121 PLAGL1 6 4
ILMN_1669479 MEST 7 6
ILMN_1674620 SGCE 7 31 2 4
ILMN_1784294 CPA4 7 21 2 4
ILMN_1679301 ZFAT 8 111 2
ILMN_1664099 GLIS3 9 2
ILMN_1693427 GLIS3 9 2 1
ILMN_1688569 KCNQ1 11 1
ILMN_2263086 NTM 11 2
ILMN_2382505 SLC22A18 11 1
ILMN_1786429 P2RY5 13 3 1
ILMN_1664878 NLRP2 19 18 18

have been proposed in the statistical literature for the POE identi�cation but

they are not suitable in case of related data without information about the

alleles parental origin. Thus, for comparative purposes we have performed

the variance test presented in Hoggart et al. (2014), although the proposed

test works under the assumption of independence of observations; in order to

apply the modi�ed version of the Brown-Forsythe test proposed by Hoggart

(denoted by VarT ), we sampled for each twin pair a single individual. The

Table 3.4 shows the number of SNPs identi�ed with the two methods.





Chapter 4

Conclusion

We proposed two novel frameworks for the detection of the parent-of-origin

e�ects in related samples when information on the parental generation is

missing, in particular for the special case of twin data. Several approaches

for POE identi�cation have been proposed in the statistical literature but

they are not suitable in case of related data without information about the

alleles parental origins. The two proposes methods address this issue. They

stemmed from the method proposed by Hoggart et al. (2014) that identi�es

POE e�ects in the absence of parental information, but it is only applicable

to unrelated samples. The �rst method that we propose extends the idea of

the variance test to detect POEs proposed by Hoggart et al. (2014) to the case

of twins data related samples and it is based on the use of the residuals of a

linear mixed model, resulting in a multistep procedure. On the contrary, the

second method is a uni�ed approach developed speci�cally for the problem

of the POEs detection . In our second approach we use a mixture of linear
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mixed models to estimate the e�ect of the causal allele inherited from the

mother and the e�ect of the casual allele inherited from the father. The

estimation of these coe�cients through the EM algorithm allows us to test

directly the di�erence between these parameters and to identify the POEs.

The estimate of these coe�cients is not computed in the �rst procedure and

so far the only way to obtain the estimate of parental e�ects was by exploiting

family data. On the other side the �Variance Approach� results clearly to

be computationally faster than �Mixture Approach� (see Table 4.1), indeed,

it is well known that one of the criticisms of the EM algorithm is that its

convergence may be quite slow.

Table 4.1: Computational times comparison

Method user system elapsed

�Variance Approach� 0.63 0.00 8.50

�Mixture Approach� 30.08 0.07 44.94

Furthermore, the in�ated variance can be caused by several phenomena. In-

deed �Variance Approach� major weakness is that it can lead to spurious

association produced by the combination of the transformation of the scale

on which the trait is measured and a strong association with the marker.

For this reason a validation of the results is always required. Instead, the

�Mixture Approach� overcomes this problem, because the proposed test for

identifying the POEs is not a�ected by trait transformation. Moreover, by

using mixture model, if the trait of interest is not normally distributed, it is

always possible to relax the normality assumption working with a mixture of

di�erent density functions.
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By comparing the simulation study in the Section 2.4, Figures 2.1 and 2.2,

and the one in the Section 3.5, Figures 3.2 and 3.3, we observe that the power

of the �Mixture Approach� is always higher than the power of the �Variance

Approach�. Moreover the statistical test proposed in the Section 3.4 results

to be consistent in terms of parameters estimation and the type I error is

controlled at the selected signi�cance levels.

From a genetic point of view, the application proposed in Section 2.5 has

leaded to interesting results because the regions identi�ed from the �Vari-

ance Approach� are deletion-type regions. The CHURCH1 gene has been

validated through the �Mixture Approach�. A study on the known imprinted

genes of the MuTHER data has been conducted to compare the performance

of the �Mixture Approach� and the test proposed by Hoggart.
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Appendix A

A.1 Description of MuTHER Data

A.1.1 Sample Collection

The MuTHER (Multiple Tissue Human Expression Resource, Grundberg

et al. (2012); Nica et al. (2011)) includes a total of 856 female twins (154

monozygotic twin pair and 84 singletons) of European descent aged between

40 and 87 years old (mean age 62) recruited from the TwinsUK Adult twin

registry (Spector and Williams, 2006). Skin punch biopsies were taken from

a relatively photoprotected area adjacent and inferior to the umbilicus. The

fat tissue was then carefully dissected from the same skin biopsy. Peripheral

blood samples were collected to generate lymphoblastoid cell lines (LCL).

A.1.2 Gene expression measurements and genotyping

Expression pro�ling of the samples, of skin and adipose tissues and LCLs,

were performed using Illumina Human HT-12 V3 BeadChips (IlluminaInc)
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including more that 48,000 probes. All samples were randomized prior to

array hybridization and the technical replicates were always hybridized on

di�erent BeadChips.

Genotyping of TwinsUK dataset was done with a combination of Illumina

arrays (HumanHap300, HumanHap610Q, 1M-Duo, and 1.2MDuo 1M). For

samples, the following exclusion criteria were utilized: (i) sample call rate

98%; (ii) heterozygosity across all SNPs ≤ 2 standard deviations from the

sample mean; (iii) evidence of non-European ancestry are assessed by princi-

pal component analysis; (iv) observed pairwise identity by descent probabili-

ties suggestive of sample identity errors. Instead, for the SNPs, the exclusion

criteria are the followed: (i) Hardy-Weinberg P < 10−6, assessed in a set of

unrelated samples; (ii) MAF < 1%, assesed in a set of unrelated samples; or

(iii) SNP call rate < 97%.

A.1.3 Post experimental normalization of gene expres-

sion data

Log2-transformed expression signals were normalized separately per tissue

as follows: quantile normalization was performed across the replicates of

each individual followed by quantile normalization across all individuals as

previously described (Nica et al., 2011).
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A.2 Main allelic addittive e�ect

In our simulation study we suppose an additive e�ects of the locus on the trait

of interest. Under the null hypothesis, the main allelic addittive e�ects, β, is

derived from the explained variance of the e�ect, denoted by σ2
β, according

to the biometrical model shown in the table (A.1).

Table A.1: Biometrical addittive model for a single biallelic SNP

Genotype AA AB BB

E�ect 0 β 2β

Frequency q2 2pq p2

The genotypic e�ect of the homozygotes AA and BB are 0 and 2β, respec-

tively. The genotypic e�ect of the heterozygote AB is β. The gene frequency

of the allele A and B are denoted by q and p, respectvely, where p + q = 1.

Thus we have that, under the null hypothesis, the variance explained of the

main allelic e�ect is given by

σ2
β = E

(
E�ect2

)
− E (E�ect)2 (A.1)

where

E (E�ect) = 2βp (A.2)

and

E
(
E�ect2

)
= 2β2p (1 + p) (A.3)
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In this way, we can write

σ2
β = 2β2p (1 + p)− [2βp]2

= 2β2pq

From the equation A.4 we can obtain easily the value of the parameter β.

It is clear that, with the same level of explained variance, the allelic e�ect β

increases as the minor frequecy allele decreases.

In presence of POEs, the biometrical model of the table A.1 is not valid.

Indeed the e�ect of the herozygous group AB is di�erent from the e�ect of

heterozygous BA. Thus, under the alternative hypothesis, we assume the

biometrical model in the table (A.2).

Table A.2: Biometrical addittive model for a single biallelic SNP in presence
of POE

Genotype AA AB BA BB

E�ect 0 βM βP 2β

Frequency q2 pq pq p2

Similarly, we obtain that

E (E�ect) = 2βp (A.4)

and

E
(
E�ect2

)
= β2

Mpq + β2
Ppq + (2β)2p2

= (β2
M + β2

P )(pq + p2)

(A.5)

Under the null and alternative hypothesis, the expectation of the e�ect is the

same, whereas the the expectation of the squared e�ect is di�erent. Thus,
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under the alternative hypothesis, the variance explained from the main allelic

e�ect is given by:

σ2
β =

(
β2
M + β2

P

)
pq (A.6)

If we assume that βM = kβ and βP = (1−k)β , where k denote the proportion

of the main allelic e�ect explained from the allele B inherited from the �rst

parent M, we can generalize the equation (A.4) and (A.6) in the following

way:

σ2
β = 4β2

(
2k2 − 2k + 1

)
pq (A.7)

It is clear that in case of k = 0.5, we have that βM = βP and the equation

(A.6) is equal to the variance explained in (A.4). In presence of POE k 6= 0.5,

indeed for k = 1 we have a paternal POE, the parternally derived allele is

silenced, and for k = 0 the contrary.
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B.1 Random e�ects as missing data

For this variant of the E-step, we need to compute the mean, µkui , and the

variance, Σk
ui
, of the random e�ects ui conditional on the current parameter

estimates and the observed data. In case of monozygotic twins, 1MZ(i) = 1,

we have to condition on the vector 2 × 1 dimensional of the observed data

yi; whereas if 1MZ(i) = 0 we have to condition to the observed data yij.

In the next sections we will show the derivation of the conditional moments

for the identical and fraternal twins.

B.1.1 Case MZ twin pair

We have that yi
ui

 ∼ N

µik

0

 ,
 V 1τ 2

1
′τ 2 τ 2


 (B.1)
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where 1 is a 2× 1 unit vector and V is the variance matrix (2× 2) of yi,

V =

τ 2 + σ2 τ 2

τ 2 τ 2 + σ2

 . (B.2)

From the well known results of the multivariate theory, we obtain that the

conditional variance of ui is given by

Vθr(ui|yi) = τ 2 − τ 21′V −11τ 2

= τ 2 − (σ2τ−2 + 2)2τ 2

= σ2(σ2τ−2 + 2)−1

=

(
1

τ 2
+

2

σ2

)−1
= ΣMZ

ui
.

(B.3)

The conditional mean of ui is de�ned by

Eθr(ui|yi) = 1
′V −1(yi − µik)2

=

(
1

τ 2
+

2

σ2

)−1
1

σ2
1
′(yi − µik)2

= Σui

1

σ2
1
′(yi − µik)2

= µMZ
ui,k

(B.4)

where yi is the observed data vector 2× 1 dimensional of the i-th twin pair

and µkui is the mean vector 2× 1 dimensional of the i-th twin pair of the k-th

component.
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B.1.2 Case DZ twin pair

In case of DZ twin pair, we have

yij
ui

 ∼ N

µijk

0

 ,
τ 2 + σ2 τ 2

τ 2 τ 2


 (B.5)

Thus, the conditional mean of ui is

Eθr(ui|yij) = τ 2(τ 2 + σ2)−1(yij − µijk)2

= (1 + σ2τ−2)−1(yij − µijk)

= µDZui,kj

(B.6)

and the conditional variance is given by

Vθr(ui|yij) = τ 2 − τ 2(τ 2 + σ2)−1τ 2

= (τ 2 + σ2)−1{τ 2(τ 2 + σ2)− τ 4}

= (τ 2 + σ2)−1σ2τ 2

= ΣMZ
ui

(B.7)





Bibliography

Yurii S Aulchenko, Dirk-Jan De Koning, and Chris Haley. Genomewide rapid

association using mixed model and regression: a fast and simple method

for genomewide pedigree-based quantitative trait loci association analysis.

Genetics, 177(1):577�585, 2007.

Yael Baran, Meena Subramaniam, Anne Biton, Taru Tukiainen, Emily K

Tsang, Manuel A Rivas, Matti Pirinen, Maria Gutierrez-Arcelus, Kevin S

Smith, Kim R Kukurba, et al. The landscape of genomic imprinting across

diverse adult human tissues. Genome research, 25(7):927�936, 2015.

Nadezhda M Belonogova, Tatiana I Axenovich, and Yurii S Aulchenko. A

powerful genome-wide feasible approach to detect parent-of-origin e�ects

in studies of quantitative traits. European Journal of Human Genetics, 18

(3):379�384, 2010.

Christophe Biernacki, Gilles Celeux, and Gérard Govaert. Choosing starting

values for the em algorithm for getting the highest likelihood in multivari-

ate gaussian mixture models. Computational Statistics & Data Analysis,

41(3):561�575, 2003.

73



74 BIBLIOGRAPHY

Trevor S Breusch and Adrian R Pagan. A simple test for heteroscedasticity

and random coe�cient variation. Econometrica: Journal of the Economet-

ric Society, pages 1287�1294, 1979.

Morton B Brown and Alan B Forsythe. Robust tests for the equality of

variances. Journal of the American Statistical Association, 69(346):364�

367, 1974.

William S Bush and Jason H Moore. Genome-wide association studies. PLoS

Comput Biol, 8(12):e1002822, 2012.

Gilles Celeux, Olivier Martin, and Christian Lavergne. Mixture of linear

mixed models for clustering gene expression pro�les from repeated mi-

croarray experiments. Statistical Modelling, 5(3):243�267, 2005.

David R Cox and E Joyce Snell. A general de�nition of residuals. Journal

of the Royal Statistical Society. Series B (Methodological), pages 248�275,

1968.

Yuehua Cui, Qing Lu, James M Cheverud, Ramon C Littell, and Rongling

Wu. Model for mapping imprinted quantitative trait loci in an inbred f 2

design. Genomics, 87(4):543�551, 2006.

Marie Davidian and David M Giltinan. Nonlinear models for repeated mea-

surement data, volume 62. CRC press, 1995.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the royal statistical

society. Series B (methodological), pages 1�38, 1977.



BIBLIOGRAPHY 75

Wei Q Deng, Senay Asma, and Guillaume Paré. Meta-analysis of snps in-

volved in variance heterogeneity using levene's test for equal variances.

European Journal of Human Genetics, 22(3), 2014.

Evan E Eichler, Jonathan Flint, Greg Gibson, Augustine Kong, Suzanne M

Leal, Jason H Moore, and Joseph H Nadeau. Missing heritability and

strategies for �nding the underlying causes of complex disease. Nature

Reviews Genetics, 11(6):446�450, 2010.

Douglas S Falconer, Trudy FC Mackay, and Richard Frankham. Introduction

to quantitative genetics (4th edn). Trends in Genetics, 12(7):280, 1996.

Ronald A Fisher. Xv. the correlation between relatives on the supposition of

mendelian inheritance. Transactions of the royal society of Edinburgh, 52

(02):399�433, 1919.

Simon KG Forsberg, Matthew E Andreatta, Xin-Yuan Huang, John Danku,

David E Salt, and Örjan Carlborg. The multi-allelic genetic architecture

of a variance-heterogeneity locus for molybdenum concentration in leaves

acts as a source of unexplained additive genetic variance. PLoS Genet, 11

(11):e1005648, 2015.

Herbert Glejser. A new test for heteroskedasticity. Journal of the American

Statistical Association, 64(325):316�323, 1969.

Stephen M Goldfeld and Richard E Quandt. Some tests for homoscedasticity.

Journal of the American statistical Association, 60(310):539�547, 1965.



76 BIBLIOGRAPHY

Anthony J Griswold, Deqiong Ma, Stephanie J Sacharow, Joycelyn L Robin-

son, James M Jaworski, Harry H Wright, Ruth K Abramson, Helle Lybæk,

Nina Øyen, Michael L Cuccaro, et al. A de novo 1.5 mb microdeletion on

chromosome 14q23. 2-23.3 in a patient with autism and spherocytosis.

Autism Research, 4(3):221�227, 2011.

Elin Grundberg, Kerrin S Small, Åsa K Hedman, Alexandra C Nica, Alfonso

Buil, Sarah Keildson, Jordana T Bell, Tsun-Po Yang, Eshwar Meduri, Amy

Barrett, et al. Mapping cis-and trans-regulatory e�ects across multiple

tissues in twins. Nature genetics, 44(10):1084�1089, 2012.

A Guilmatre and AJ Sharp. Parent of origin e�ects. Clinical genetics, 81(3):

201�209, 2012.

Guang Guo and Jianmin Wang. The mixed or multilevel model for behavior

genetic analysis. Behavior genetics, 32(1):37�49, 2002.

Robert L Hanson, Sayuko Kobes, Robert S Lindsay, and William C Knowler.

Assessment of parent-of-origin e�ects in linkage analysis of quantitative

traits. The American Journal of Human Genetics, 68(4):951�962, 2001.

James Andrew Hilden-Minton. Multilevel diagnostics for mixed and hier-

archical linear models. PhD thesis, University of California Los Angeles,

1995.

Joel N Hirschhorn and Mark J Daly. Genome-wide association studies for

common diseases and complex traits. Nature Reviews Genetics, 6(2):95�

108, 2005.



BIBLIOGRAPHY 77

Clive J Hoggart, Giulia Venturini, Massimo Mangino, Felicia Gomez, Giulia

Ascari, Jing Hua Zhao, Alexander Teumer, Thomas W Winkler, Natalia

T²ernikova, Jian'an Luan, et al. Novel approach identi�es snps in slc2a10

and kcnk9 with evidence for parent-of-origin e�ect on body mass index.

PLoS Genet, 10(7):e1004508, 2014.

Jie Hu, Malini Sathanoori, Sally Kochmar, Meron Azage, Susan Mann,

Suneeta Madan-Khetarpal, Amy Goldstein, and Urvashi Surti. A novel

maternally inherited 8q24. 3 and a rare paternally inherited 14q23. 3 cnvs

in a family with neurodevelopmental disorders. American Journal of Med-

ical Genetics Part A, 167(8):1921�1926, 2015.

Ivan Iachine, Hans Chr Petersen, and Kirsten O Kyvik. Robust tests for the

equality of variances for clustered data. Journal of Statistical Computation

and Simulation, 80(4):365�377, 2010.

Ricky S Joshi, Paras Garg, Noah Zaitlen, Tuuli Lappalainen, Corey T Wat-

son, Nidha Azam, Daniel Ho, Xin Li, Stylianos E Antonarakis, Han G

Brunner, et al. Dna methylation pro�ling of uniparental disomy subjects

provides a map of parental epigenetic bias in the human genome. The

American Journal of Human Genetics, 99(3):555�566, 2016.

Tim K Keyes and Martin S Levy. Analysis of levene's test under design

imbalance. Journal of Educational and Behavioral Statistics, 22(2):227�

236, 1997.

Roger Koenker. A note on studentizing a test for heteroscedasticity. Journal

of Econometrics, 17(1):107�112, 1981.



78 BIBLIOGRAPHY

Heather A Lawson, James M Cheverud, and Jason B Wolf. Genomic im-

printing and parent-of-origin e�ects on complex traits. Nature Reviews

Genetics, 14(9):609�617, 2013.

Howard Levene. Robust tests for equality of variances1. Contributions to

probability and statistics: Essays in honor of Harold Hotelling, 2:278�292,

1960.

Teri A Manolio, Francis S Collins, Nancy J Cox, David B Goldstein, Lu-

cia A Hindor�, David J Hunter, Mark I McCarthy, Erin M Ramos, Lon R

Cardon, Aravinda Chakravarti, et al. Finding the missing heritability of

complex diseases. Nature, 461(7265):747�753, 2009.

Geo�rey McLachlan and David Peel. Finite mixture models. John Wiley &

Sons, 2004.

Geo�rey J McLachlan and Kaye E Basford. Mixture models. inference and

applications to clustering. Statistics: Textbooks and Monographs, New

York: Dekker, 1988, 1, 1988.

Michael Neale and Hermine H. Maes. Methodology for genetic studies of

twins and families. Richmond, VA: Virginia Commonwealth University,

Department of Psychiatry, 2004.

Shu-Kay Ng, Geo�rey J McLachlan, Kui Wang, L Ben-Tovim Jones, and

S-W Ng. A mixture model with random-e�ects components for cluster-

ing correlated gene-expression pro�les. Bioinformatics, 22(14):1745�1752,

2006.



BIBLIOGRAPHY 79

Alexandra C Nica, Leopold Parts, Daniel Glass, James Nisbet, Amy Bar-

rett, Magdalena Sekowska, Mary Travers, Simon Potter, Elin Grundberg,

Kerrin Small, et al. The architecture of gene regulatory variation across

multiple human tissues: the muther study. PLoS Genet, 7(2):e1002003,

2011.

Samuel D Oman. Checking the assumptions in mixed-model analysis of

variance: a residual analysis approach. Computational statistics & data

analysis, 20(3):309�330, 1995.

Isabel Parra-Frutos. The behaviour of the modi�ed levene's test when data

are not normally distributed. Computational Statistics, 24(4):671�693,

2009.

Karl Pearson. Contributions to the mathematical theory of evolution. Philo-

sophical Transactions of the Royal Society of London. A, 185:71�110, 1894.

Jo Peters. The role of genomic imprinting in biology and disease: an expand-

ing view. Nature Reviews Genetics, 15(8):517�530, 2014.

Jose Pinheiro and Douglas Bates. Mixed-e�ects models in S and S-PLUS.

Springer Science & Business Media, 2006.

John Quackenbush. Microarray data normalization and transformation. Na-

ture genetics, 32:496�501, 2002.

Sophia Rabe-Hesketh, Anders Skrondal, and Hakon K Gjessing. Biometrical

modeling of twin and family data using standard mixed model software.

Biometrics, 64(1):280�288, 2008.



80 BIBLIOGRAPHY

Juvêncio Santos Nobre and Julio Da Motta Singer. Residual analysis for

linear mixed models. Biometrical Journal, 49(6):863�875, 2007.

Franklin E Satterthwaite. An approximate distribution of estimates of vari-

ance components. Biometrics bulletin, 2(6):110�114, 1946.

David A Skaar, Yue Li, Autumn J Bernal, Cathrine Hoyo, Susan K Mur-

phy, and Randy L Jirtle. The human imprintome: regulatory mechanisms,

methods of ascertainment, and roles in disease susceptibility. ILAR jour-

nal, 53(3-4):341�358, 2012.

Tim D Spector and Frances MK Williams. The uk adult twin registry (twin-

suk). Twin Research and Human Genetics, 9(6):899�906, 2006.

Maksim V Struchalin, Abbas Dehghan, Jacqueline CM Witteman, Cornelia

van Duijn, and Yurii S Aulchenko. Variance heterogeneity analysis for

detection of potentially interacting genetic loci: method and its limitations.

BMC genetics, 11(1):92, 2010.

Xiangqing Sun, Robert Elston, Nathan Morris, and Xiaofeng Zhu. What

is the signi�cance of di�erence in phenotypic variability across snp geno-

types? The American Journal of Human Genetics, 93(2):390�397, 2013.

Geert Verbeke and Emmanuel Lesa�re. A linear mixed-e�ects model with

heterogeneity in the random-e�ects population. Journal of the American

Statistical Association, 91(433):217�221, 1996.

Peter M Visscher. Sizing up human height variation. Nature genetics, 40(5):

489�490, 2008.



BIBLIOGRAPHY 81

Kui Wang, Shu Kay Ng, and Geo�rey J McLachlan. Clustering of time-course

gene expression pro�les using normal mixture models with autoregressive

random e�ects. BMC bioinformatics, 13(1):1, 2012.

Clarice R Weinberg. Methods for detection of parent-of-origin e�ects in

genetic studies of case-parents triads. The American Journal of Human

Genetics, 65(1):229�235, 1999.

CR Weinberg, AJ Wilcox, and RT Lie. A log-linear approach to case-parent�

triad data: assessing e�ects of disease genes that act either directly or

through maternal e�ects and that may be subject to parental imprinting.

The American Journal of Human Genetics, 62(4):969�978, 1998.

Robert E Weiss and Carlos G Lazaro. Residual plots for repeated measures.

Statistics in Medicine, 11(1):115�124, 1992.

Halbert White. A heteroskedasticity-consistent covariance matrix estimator

and a direct test for heteroskedasticity. Econometrica: Journal of the

Econometric Society, pages 817�838, 1980.


