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1 Introduction

1.1 Inductive power transfer

Despite that wireless power transfer technologies are under intensive research lately, the idea of

transmitting energy wirelessly was initially explored by Nikola Tesla in the beginning of the 20th

century [6, 7]. Wireless power transfer (WPT) systems can be divided mainly in two categories:

far-field (radiative) and near-field (non-radiative) systems. Far-field WPT or microwave power

transfer (MPT) usually refers to systems that are capable to transmit power over long distances (up

to tens of kms) and operate at frequencies from 1 to 300 GHz. On the other hand, near-field WPT

systems use inductive coupling to transfer power through distances from from a few mm [8] to a

few meters [9] and usually operate at frequencies from tens of kHz [2] up to a few MHz [10]. The

amount of power transmitted by these WPT systems is in the range of a few mW [8] to tens of kW

[2], depending on the type of applications. In fact, the reason why these inductive power transfer

(IPT) systems have gained popularity recently is due to their wide range of applications: they can

be used to power biomedical devices [8], charge small electronic devices [11] or large electrical

vehicles [2]. Moreover, these systems have the advantage of being capable of transferring power

even in harsh environments with water, dust or dirt and allow the bypass of electrical contact.

A typical IPT system, as described in [1] and depicted in Fig. 1.1, is composed of a power

source, usually a power converter that picks power from the grid and converts it into a high fre-

quency current (usually from tens to hundreds of kHz) that feeds the emitter (track) coil. The

magnetic time varying near field produced by the emitter coil is then picked up by the receiver

(pickup) coil and the current induced in the pickup coil can be used to feed a load and, if needed,

converted to DC or to another frequency. Moreover, the emitter and receiver coils are compen-

sated and tuned to a certain resonant frequency. The type of compensation depends on whether the

resonance of the RLC circuit of the emitter and receiver coils is a parallel or series one, as shown

in Fig. 1.2.

1.2 Resonator arrays

Usually, one of the drawbacks of these systems is that in situations of misalignment or large

distances between the emitter and receiver coils, the efficiency and the power transmitted to the

receiver drop abruptly. Larger distances between the transmitter and receiver were achieved for

wireless power transfer using strongly coupled resonances as in [9], where a transmission dis-

tance of 2m is achieved using a system of four coils, with the transmitter and receiver coils in

self-resonance; however, the efficiency is low (about 15% [12]). Besides using strongly coupled

resonances, another method to transfer power over long distances or with significant misalign-

ment of the emitter and receiver coils is the utilization of arrays of resonators. These arrays of

1



1. Introduction

Figure 1.1: Example of a typical IPT system [1].

Figure 1.2: Four types of compensation for the transmitter and receiver coils depending on the type
of resonance of the RLC circuit of each inductor: (a) Series-Series, (b) Series-Parallel,
(c) Parallel-Series and (d) Parallel-Parallel [2].
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(a) (b)

Figure 1.3: Example of two types of 1D resonator arrays: (a) domino resonator array with a load
at then end of the array [3] and (b) a planar resonator array with a receiver over the
array.

resonators can be placed along one direction arranged in a line (1D) [3, 13–16] or over a plane in

two directions (2D) [17, 18].

Regarding the 1D resonator arrays, we can have two types of arrays depending on the orientation

of the resonators: we can place the resonators facing each other with their axes aligned, referred

in literature as domino resonators ( [3,13,15], Fig. 1.3 (a)), that can transfer power to a load at the

end of the array, or they can be placed in a plane with their axes parallel as in [14, 16, 19], where

the power can be transferred to a receiver coil that is over the array, as shown in Fig. 1.3 (b).

Many works in literature use magnetoinductive wave theory to study and analyse resonator

arrays, that are seen as metamaterials [16, 20, 21]. Magnetoinductive wave theory considers res-

onator arrays as transmission lines and by analysing the reflected and traveling waves propagating

through the array and the matching of the resonator array, it is possible to study the power deliv-

ered to a receiver over the array or the efficiency of the system [14]. However, this type of analysis,

despite being scientifically accurate, fails to give a full understanding of the behaviour of a system

composed of an array of magnetically coupled resonators, specially for varying conditions of the

system, as for example different operating frequencies, position of the receiver, multiple receivers

or value of the termination impedance.

Eventually, a way to perform an accurate study on the power transferred by an array of res-

onators and its performance with the variation of the parameters of the array, could be to carry out

a circuit analysis of the equivalent circuit of the array, as done in [3, 15]. Nevertheless, numeri-

cal analyses on the equivalent circuit of a resonator array refers to particular situations and case

studies, not allowing one to make generalizations for different types of arrays, parameters of the

system or operating conditions.

For these reasons, in this thesis an analytical and general study is conducted on the equivalent

circuit model of a resonator array. In this way, it is possible to have a broad understanding of

these systems, by predicting their behaviour with the variation of their parameters or operating

conditions, even for different types of resonator arrays. Moreover, with this analysis it is possible

to develop closed-form expressions for the equivalent impedance of an array of resonators and

for the current in each resonator of the array. These expressions allow one to quickly obtain the

power transfer characteristics of the array for varying conditions and therefore can be a useful

tool to design this type of arrays. Thus, after the present introductive chapter, it is presented the

3
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mathematical approach based on the theory of the linear homogeneous difference equations used to

obtain the general term of the recursive sequence representing the continued fraction that defines

the equivalent impedance of a resonator array. Afterwards, in the third chapter of this thesis, a

mathematical analysis is performed on the impedance matrix that represents the equivalent circuit

of the array, by analysing the inverse of a tridiagonal matrix with one or two different elements

of the diagonal. This analysis allows the currents in each resonator to be obtained as closed form

expressions, which can then be used to calculate the power delivered to a load (or to one or two

receivers over the array) and the efficiency of the system. Then, in the following chapter a study

of the variation of the magnetic near field generated by an array of resonators with respect to the

termination impedance is carried out with simulations executed using a finite-element software

and measurements made with a circular probe. Furthermore, in the fifth chapter, the experimental

setup used to verify the theoretical and numerical results obtained in the precedent chapters is

described, along with its construction and design. Finally, the thesis is concluded commenting the

main results and outlining not only the original contribution of this thesis but also the potential

future work that can be further carried out.

1.3 Aim of the thesis

The aim of this thesis is the improvement of the performance of an IPT system composed of an

array of magnetically coupled resonators. This is achieved through the development of a math-

ematical approach for the study of the circuit model of resonator arrays, that allows analytical

expressions for the equivalent impedance and for the currents in the resonators to be obtained.

With this approach it is possible to achieve a wide understanding of the power transfer behaviour

for different types of array, different parameters and operating conditions. More specifically, with

this approach, for an array of resonators with given electrical parameters, it is possible to find the

conditions of the system which give maximum efficiency or maximum power transfer to a load, or

to one or two receivers.

Moreover, among the aims of this thesis there was the fabrication of an IPT system composed

of an array of stranded-wire resonators fed by a power inverter operating at a frequency around

hundred kHz and capable of delivering 100W to a load. Nevertheless, this IPT system was used

to validate all the theoretical results obtained throughout this thesis, thus showing a practical ap-

plication for the developed expressions and the possible utilization of resonator arrays with power

converters which have higher power transfer capability.

4



2 Mathematical modelling of the

equivalent impedance of an array of

resonators

2.1 Introduction

Resonator arrays can be modeled using a circuital approach as in [3, 14, 22, 23]. The circuit that

describes a resonator array can be simplified by representing all the resonators of the array after the

one connected to the voltage source (and possible receivers sliding over the array) by an equivalent

impedance, as seen in [14].

The equivalent impedance of a resonator array can be described by a continued fraction (

[14, 16]). Several types of continued fractions [24] are applied in a variety of branches of en-

gineering and applied sciences, as in [25, 26]. It is possible to determine numerically the value

of the continued fraction by using a computing environment, for given conditions of the system.

However, a closed-form expression for the equivalent impedance of the resonator array has not

been given yet; it is simply acknowledged that an analytical study of this fraction seems not to be

possible [16].

By representing the continued fraction as a term of a complex sequence defined by recurrence, it

is possible to develop a closed-form expression of the equivalent impedance of the resonator array

for any condition of the system. This closed-form expression is found by determining the general

term of the recursive sequence using the theory of linear homogeneous equations. Moreover, with

the obtained analytical expressions it is also possible to analyse the convergence and monotonicity

of the continuous fraction. In this way, we can achieve a better insight of the behaviour of the

system with respect to the variation of its geometrical and electrical parameters. In fact, the study

of the equivalent impedance allows one to analyse the power delivered by the source to the array

terminated in a load or facing a receiver. In addition, it allows one to examine a possible matching

of the source to the input impedance of the loaded resonator array.

Furthermore, the developed formulas can be useful for the design of the array and its power

source as they allow one to determine the equivalent impedance for several conditions of the sys-

tem (different circuit parameters, number of resonators, number of perturbations) and predict the

behaviour of the system with the variation of its parameters (for example: change of termination

impedance, change of impedance or position of the receiver). Therefore, with the closed-form

expressions designers can save time and increase the calculation accuracy compared with using a

numerical or electromagnetic simulation software.

In this chapter, after a short description of the examined circuit in section 2.2, a mathematical

study on the continued fraction is performed by developing a closed-form expression and studying

5



2. Mathematical modelling of the equivalent impedance of an array of resonators

its convergence in section 2.3. After, in section 2.4, the results obtained with the mathematical

approach are then applied to the circuit of a resonator array and then several examples are made

in order to illustrate the theoretical results and show possible applications of the closed-form ex-

pressions. The examples, carried out with the computing environment MATLAB, for different

parameters of the system, concern the equivalent impedance of an array with no receiver over it,

one or two receivers and also in the case that the resonator is connected to the source in series

or in parallel resonance. In section 2.5, a verification of the theoretical results is accomplished

with the simulation software Simulink. Finally in the last section, an experimental validation of

the closed-form expressions is achieved using the experimental setup described in Chapter 5 and

an example of practical application of the expressions is made regarding the variation of the input

power with the variation of the equivalent impedance of the resonator array.

2.2 Description of the circuit - representation of the

equivalent impedance as a continued fraction

In this chapter we perform an analysis on the circuit of a system that consists of an array of n+1

identical resonators (cells) as represented in Fig. 2.1. Each cell can be described as an R-L-C series

circuit [27], with R representing the intrinsic resistance of the resonator cell, L its self-inductance

and C the additional capacitance needed to tune the resonant frequency of the cell, given by f0 =

1/(2π
√

LC). Considering that the impedance of each cell is given by Ẑ = R+ jωL+ 1/( jωC)

(being ω = 2π f the angular frequency), at the resonant angular frequency ω0 = 2π f0 = 1/
√

LC,

the impedance of each cell is equal to its intrinsic resistance R. Moreover, as seen in Fig. 2.1, each

two adjacent resonators are spaced by the same constant distance and are magnetically coupled

with a mutual inductance M, whereas the coupling between nonadjacent resonators is neglected.

This assumption is commonly considered for planar arrays of resonators [14, 16, 23] and also

for domino resonator arrays, for a certain distance between the resonators [3, 22]. Furthermore,

the good agreement between the theoretical and experimental results shown later in this chapter

confirms the validity of this assumption. Finally, the (n+ 1)th cell of the array of resonators is

connected to a source of voltage V̂s with an internal resistance Rs and a termination impedance

ẐT is connected to the first cell of the array. Note that the cells counting is done from the cell

connected to the termination impedance to the cell connected to the voltage source. This is done

so that the mathematical analysis presented in the next section used to solve the continued fraction

and obtain a closed-form expression can be performed.

In the case when there is a receiver above the line, more specifically above the ith cell of the

array, with 1≤ i≤ n, as shown in Fig. 2.1(a), the receiver will cause a perturbation on the system.

This perturbation, caused by the magnetic coupling between the receiver and the ith cell of the

resonator array, can be represented by an impedance Ẑd , which is added to the ith cell of the array,

as represented in Fig. 2.1(b). The impedance Ẑd is the impedance of the receiver seen from the ith

cell which is below the receiver. Assuming that the receiver has the same resonant frequency as

the cells of the array, we can assume that Ẑd = Rd is real, when working at the resonant frequency

f0.
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2. Mathematical modelling of the equivalent impedance of an array of resonators

(a)

(b)

Figure 2.1: Equivalent circuits of (a) a system composed of n+1 cells with a receiver over the ith
cell and (b) the same system with the impedance Ẑd representing the receiver inserted
in the ith cell.

Figure 2.2: Equivalent circuit for the system in Figure 1 with an impedance Ẑeq representing the
resonator array (excluding the resonator connected to the source) and the receiver.
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2. Mathematical modelling of the equivalent impedance of an array of resonators

The multiple resonator system can be further simplified by introducing an equivalent impedance

Ẑeq that represents the impedance of all the resonators after the supplied one and the receivers

(if any) connected in series to the impedance of this cell, as depicted in Fig. 2.2. As seen in

[14, 16, 22], the equivalent impedance Ẑeq of the nth cells after the one connected to the source,

can be represented by a continued fraction and written as:

Ẑeq =
(ωM)2

Ẑ +
(ωM)2

· · ·+
(ωM)2

Ẑ +
(ωM)2

Ẑ + Ẑ′T

(2.1)

with Ẑ′T = ẐT + Ẑd if the receiver is placed above the first cell of the resonator array or with

Ẑ′T = ẐT in the case there is no receiver.

When the receiver coil is placed above any other cell of the resonator array, the impedance Ẑd

is introduced in the expression of Ẑeq and Ẑ′T = ẐT :

Ẑeq =
(ωM)2

Ẑ +
(ωM)2

· · ·+
(ωM)2

Ẑd + Ẑ +
(ωM)2

Ẑ +
(ωM)2

· · ·+
(ωM)2

Ẑ +
(ωM)2

Ẑ + ẐT

. (2.2)

For example, when the receiver is on the (n−1) cell, Ẑeq becomes

Ẑeq =
(ωM)2

Ẑ +
(ωM)2

Ẑd + Ẑ +
(ωM)2

Ẑ +
(ωM)2

· · ·+
(ωM)2

Ẑ + ẐT

. (2.3)

In case we are operating at the resonant frequency ω0, Ẑ = R and ẐT = RT and thus (2.1) becomes
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2. Mathematical modelling of the equivalent impedance of an array of resonators

Ẑeq =
(ω0M)2

R+
(ω0M)2

· · ·+
(ω0M)2

R+
(ω0M)2

R+ Ẑ′T

. (2.4)

and (2.3), with Ẑd = Rd , becomes

Ẑeq =
(ω0M)2

R+
(ω0M)2

· · ·+
(ω0M)2

Rd +R+
(ω0M)2

R+
(ω0M)2

· · ·+
(ω0M)2

R+
(ω0M)2

R+RT

. (2.5)

2.3 Mathematical analysis of the continued fraction

After representing the equivalent impedance of a resonator array as a continued fraction, we can

perform a mathematical analysis in order to determine its value. We do this by proving that the

fraction can be rewritten as a term of a recursive sequence whose general term can be determined

using the theory of linear homogeneous difference equations [28]. In this way, we can get an

expression for the value of the fraction that depends only on its initial conditions, number of terms

and order of the term which is affected by the perturbation. Additionally, using the analytical

expressions obtained, we can perform further mathematical analyses on the continued fraction,

namely regarding its monotonicity and convergence.

2.3.1 Value of the fraction without a perturbation

The continued fraction (2.1) can be rewritten using generic letters for any number n+ 1 of res-

onators (with n≥ 0) in the form:

xn =
a

b+
a

b+
a

b+
a

· · ·+
a

b+
p0

q0

(2.6)
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2. Mathematical modelling of the equivalent impedance of an array of resonators

with a, b, p0, q0∈ C where q0 6= 0, a and b both not equal to 0. The previous fraction (2.6) is the

nth term of the following recursive sequence (with k ≥ 1):

xk =
a

b+ xk−1
(2.7)

with

x0 =
p0

q0
. (2.8)

The term x0 corresponds to the termination impedance of the array connected to the first cell, e.g.,

Ẑ′T in (2.1) or ẐT in (2.2). As referred before and represented in Fig. 2.1, the (n+ 1) cells of the

array are labelled from 1 to n+ 1, with 1 being the cell connected to the termination impedance

and n+1 is the cell connected to the source. Thus, noting by

xk =
pk

qk
, (2.9)

we can verify by induction that {pn} and {qn} are sequences defined by the following recurrence

relations:

pn = bpn−1 +apn−2

qn = bqn−1 +aqn−2
for n≥ 2, (2.10)

being p0 and q0 fixed and p1 and q1 given by

p1 = aq0

q1 = bq0 + p0
. (2.11)

For example, for n = 2, from (2.6) we have

p2

q2
=

a

b+
a

b+
p0

q0

(2.12)

and

p2 = abq0 +ap0

q2 = b2q0 +bp0 +aq0
. (2.13)

Introducing (2.11) into (2.13) we get

p2 = bp1 +ap0

q2 = bq1 +aq0
(2.14)

which verifies (2.10) for n = 2. Now, supposing that (2.10) is verified for 2≤ k:

pk = bpk−1 +apk−2

qk = bqk−1 +aqk−2
(2.15)

we want to prove that the same relation is valid for 2 < k+1:

10



2. Mathematical modelling of the equivalent impedance of an array of resonators

pk+1 = bpk +apk−1

qk+1 = bqk +aqk−1
. (2.16)

Recalling (2.7) and (2.9), we can write

xk+1 =
a

b+ xk
(2.17)

and
pk+1

qk+1
=

a

b+ pk
qk

=
aqk

bqk + pk
(2.18)

that, under the hypothesis of expression (2.10), with n = k, becomes

pk+1

qk+1
=

a(bqk−1 +aqk−2)

b(bqk−1 +aqk−2)+bpk−1 +apk−2
. (2.19)

Knowing that pk = aqk−1, qk = bqk−1 + pk−1, pk−1 = aqk−2, qk−1 = bqk−2 + pk−2 we have

pk+1

qk+1
=

bpk +a2qk−2

b2qk−1 +bpk−1 +bpk−1 +apk−2
=

bpk +apk−1

bqk +aqk−1
. (2.20)

Thus, the sequences {pn} and {qn} are defined by linear homogeneous second order difference

equations with constant coefficients which can be solved directly. In fact, the equation in (2.10)

given by pn−bpn−1−apn−2 = 0 is a linear homogeneous second order difference equation with

constant coefficients. Therefore, from [28] its solution is given by pn = m1λn
1 +m2λn

2 supposing

that λ1 and λ2 are distinct solutions of the equation λ2−bλ−a = 0:

λ
2−bλ−a = 0⇔ λ =

b±
√

b2 +4a
2

(2.21)

in which m1 and m2 are constants that should be determined using the initial conditions. The same

considerations can be done for {qn}, considering qn = m3λn
1 +m4λn

2.

In conclusion, the general term of the sequence {xn}= {pn/qn} is given by

xn =
a1

(
b−
√

b2+4a
2

)n
+a2

(
b+
√

b2+4a
2

)n

b1

(
b−
√

b2+4a
2

)n
+b2

(
b+
√

b2+4a
2

)n (2.22)

where a1, a2, b1 and b2 are constants that can be calculated using the initial conditions x0 and x1

defined before as:

x0 =
p0

q0

x1 =
a

b+ x0
=

p1

q1

. (2.23)

Then,
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2. Mathematical modelling of the equivalent impedance of an array of resonators

pn = a1

(
b−
√

b2+4a
2

)n
+a2

(
b+
√

b2+4a
2

)n

qn = b1

(
b−
√

b2+4a
2

)n
+b2

(
b+
√

b2+4a
2

)n

(2.24)

where p0, q0 are fixed and p1 = aq0, q1 = bq0 + p0. For simplicity, setting p0 = x0 and q0=1, a1,

a2, b1 and b2 can be obtained by solving the following system:

a1 +a2 = x0

b1 +b2 = 1

a1

2

(
b−
√

b2 +4a
)
+

a2

2

(
b+
√

b2 +4a
)
= a

b1

2

(
b−
√

b2 +4a
)
+

b2

2

(
b+
√

b2 +4a
)
= b+ x0

. (2.25)

The expressions of the constants a1, a2, b1 and b2 obtained are shown in the Appendix A.

2.3.2 Value of the fraction with a perturbation in the ith term

After an expression for the value of the fraction without a perturbation is obtained, we can now

calculate the value of the fraction (2.2), which is referred to the equivalent impedance of resonator

array with a receiver placed above the ith cell of the array, as represented in Fig. 2.1. To do this,

we rewrite the fraction as a generic continued fraction with n terms with a perturbation b′ 6= b in

the step i≤ n of the recursive sequence:

xn =
a

b+
a

· · ·+
a

b′+
a

b+
a

· · ·+
a

b+
p0

q0

with a, b, b′, p0, q0∈ C. (2.26)

In order to obtain the value of (2.26), we split the fraction in two continued fractions (one with

i terms and the other with n− i terms) and we proceed in three steps: firstly, using (2.22), we

calculate xk for the (i−1)th term. Secondly, we identify the ith value xi using the perturbation b′.

Finally, using xi as an initial value, we are able to determine the value of the fraction, with the last

n− i values.

So, as in the previous subsection, we start using (2.22) to determine the term of (i−1)th order:

xi−1 =
a1

(
b−
√

b2 +4a
)i−1

+a2

(
b+
√

b2 +4a
)i−1

b1

(
b−
√

b2 +4a
)i−1

+b2

(
b+
√

b2 +4a
)i−1 (2.27)
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where a1, a2, b1 and b2 depend on the initial conditions x0 and x1 as done before, with (2.25).

Afterwards we set,

xi =
a

b′+ xi−1
= y0 (2.28)

and

a
b+ y0

= y1 (2.29)

with y0 and y1 being the initial conditions used for the fraction yn−i = xn:

yn−i = xn =
c1

(
b−
√

b2 +4a
)n−i

+ c2

(
b+
√

b2 +4a
)n−i

d1

(
b−
√

b2 +4a
)n−i

+d2

(
b+
√

b2 +4a
)n−i . (2.30)

The constants c1, c2, d1 and d2 (shown in Appendix A) are obtained by the initial conditions y0

and y1, as done with (2.24) and (2.25), where it is assumed that p0 = y0 and q0 = 1, by solving the

following system:

c1 + c2 = y0

d1 +d2 = 1

c1

2

(
b−
√

b2 +4a
)
+

c2

2

(
b+
√

b2 +4a
)
= a

d1

2

(
b−
√

b2 +4a
)
+

d2

2

(
b+
√

b2 +4a
)
= b+ y0

. (2.31)

The expression (2.30) represents the value of the fraction (2.2) for n+ 1 resonators with the

perturbation in the ith term, (receiver facing the ith resonator, i.e., i=1 corresponds to the resonator

connected to the termination impedance and i=n to the resonator after the one connected to the

source).

2.3.3 Convergence of the continued fraction

Following the determination of the value of the continued fraction, we can analyse its convergence

by determining its behaviour for an infinite number of terms, in other words, its value for n→ ∞.

Supposing that z2−bz−a = 0 has distinct roots z1 and z2, with |z1|> |z2| , we have∣∣∣∣z2

z1

∣∣∣∣< 1 (2.32)

so

lim
n→∞

(
z2

z1

)n

= 0. (2.33)

Now, using these assumptions, we can demonstrate that xn tends to the quotient of the coefficients

of zn
1. For example, considering that

∣∣∣b−√b2 +4a
∣∣∣< ∣∣∣b+√b2 +4a

∣∣∣ , i.e. z1 = b+
√

b2 +4a and

z2 = b−
√

b2 +4a from (2.22) we rewrite xn as:
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xn =
a2zn

1 +a1zn
2

b2zn
1 +b1zn

2
=

a2 +a1

(
z2
z1

)n

b2 +b1

(
z2
z1

)n (2.34)

thus

lim
n→∞

xn = lim
n→∞

a2 +a1

(
z2
z1

)n

b2 +b1

(
z2
z1

)n =
a2

b2
. (2.35)

Calculating a2/b2 using the values of the constants a2 and b2 described in Appendix A, it is very

interesting to note that the value of the limit (2.35) does not depend on the initial conditions x0

and it is always equal to 1
2

(√
4a+b2−b

)
. This proves a very important fact: for fixed a, b∈ C,

the value of the fraction is always the same when the number of terms is infinite, not depending

of the initial condition x0. So, if we set x0 equal to this value we can prove that {xn} is a constant

sequence, since for x0 = 1
2

(√
4a+b2−b

)
the constants a1, a2, b1 and b2, have the following

values:

a1 = 0

a2 =
1
2

(√
4a+b2−b

)
b1 = 0

b2 = 1

, (2.36)

resulting in

xn =

1
2

(√
4a+b2−b

)
+0
(

z2
z1

)n

1+0
(

z2
z1

)n =
1
2

(√
4a+b2−b

)
. (2.37)

Moreover, it is also important to note that for a finite number of perturbations, the behaviour of

the fraction at infinity remains the same, since for example taking (2.30) and setting its limit to

infinite, considering the assumptions in (2.32) and (2.33) we have:

lim
n→∞

yn−i = lim
n→∞

c2 + c1

(
z2
z1

)n(
z2
z1

)−i

d2 +d1

(
z2
z1

)n(
z2
z1

)−i =
c2

d2
=

1
2

(√
4a+b2−b

)
. (2.38)

Being {xn} a convergent sequence, |xn| is bounded, which means that there exists a M, P ∈ R, so

that M < |xn| < P, ∀n ∈N0. In the next subsection we calculate the upper bounds of the set of

terms of this sequence for a, b, b′, p0, q0∈ R.

2.3.4 Monotonicity of the sequence

After the study of the convergence, in order to study monotonicity of the sequence that represents

a continued fraction, we take into consideration the particular case in which the constants of the

fractions are real (i.e. a, b, b′, p0, q0 ∈ R), with a, b > 0 and x0 ≥ 0. For this case, by studying

the monotonicity of the sequence that represents the continued fraction, we can determine if it

increases or decreases with the increase of the number of terms.

Rearranging (2.34), we can write:
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xn =
a1

b1
+

a2b1−a1b2

b1

(
b1

(
z2
z1

)n
+b2

) . (2.39)

We can start by studying the monotonicity of {b1wn +b2}, with wn =
(

z2
z1

)n
. Due to the assump-

tion given by (2.32), {wn} will present an alternating behaviour with positive and negative values,

with its subsequences {w2n} and {w2n+1} having different monotonicities (one is increasing, the

other is decreasing) and both convergent to zero. Thus, {wn} yields an analogous behaviour of

the sequence {b1wn +b2}. Analysing the value of the constants b1 and b2 in Appendix A, as b2

is always positive, the sign of the sequence {b1wn +b2} depends on the sign of b1 which is nega-

tive if x0 > 1
2

(√
4a+b2−b

)
and positive otherwise. For example, if x0 > 1

2

(√
4a+b2−b

)
,

the subsequence {b1w2n +b2} is decreasing with values higher than b2, and the subsequence
{b1w2n+1 +b2} is increasing with values lower than b2, and both are converging to b2. On the

other hand, in this case, it can be seen the decrease of an even term to its consecutive odd term

and an increase of an odd term to its consecutive even term. In case x0 <
1
2

(√
4a+b2−b

)
, the

opposite occurs. We can also note that as |b1| < |b2|, we have, in any case, that {b1wn +b2} is a

sequence with positive real terms. Then, considering that

(a2b1−a1b2) =
a− x0(b+ x0)√

4a+b2
(2.40)

is negative if x0 >
1
2

(√
4a+b2−b

)
and positive otherwise, we have that

a2b1−a1b2

b1
=

1
2

(√
4a+b2 +b+2x0

)
(2.41)

is always positive.

In conclusion, the sequence is not monotonic and it converges to the limit given by (2.35) from

lower and higher values, alternatively. Furthermore, all the terms of the sequence are bounded in

the range defined by the first two terms, x0 and x1, being x0 the lower bound and x1 the higher

bound if x0 <
1
2

(√
4a+b2−b

)
and x0 the higher bound and x1 the lower bound, otherwise.

2.3.5 Speed of convergence of the sequence

Finally, we can study how fast the fraction converges to its limit. This is done by finding the order

of the term such that the absolute value of the difference (δn) between the value of the fraction

(2.34) and its limit (2.35) is smaller than a given ε. This difference δn can be then defined as:

δn =
∣∣∣xn− lim

n→∞
xn

∣∣∣= ∣∣∣∣a2zn
1 +a1zn

2
b2zn

1 +b1zn
2
− a2

b2

∣∣∣∣ . (2.42)

For any ε > 0 there exists an integer number N such that for n > N, we have δn < ε. Recalling

wn =
(

z2
z1

)n
, which is a sequence that tends to zero because

∣∣∣ z2
z1

∣∣∣< 1, as assumed before, we get:
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δn =

∣∣∣∣a2 +a1wn

b2 +b1wn
− a2

b2

∣∣∣∣= ∣∣∣∣(a1b2−a2b1)wn

b2 (b1wn +b2)

∣∣∣∣
=
|a1b2−a2b1| |wn|
|b2| |b1wn +b2|

. (2.43)

Now, assuming Q a non-zero lower bound of the convergent sequence |b1wn +b2| , we have that
|b1wn +b2|> Q and thus

δn =
|a1b2−a2b1| |wn|

|b2|Q
< ε. (2.44)

Solving for n, we can write:

N > log∣∣∣ z2
z1

∣∣∣
(

|b2|Q
|a1b2−a2b1|

ε

)
. (2.45)

We can then conclude that for any ε > 0, we can define an order N equal to the largest integer con-

tained in log∣∣∣ z2
z1

∣∣∣
(

|b2|Q
|a1b2−a2b1|ε

)
such that for n > N, xn is in the circle centered in 1

2

(√
4a+b2−b

)
and radius ε. Note that for the case where the constants of the fraction are real, we can set

Q = |b1w0 +b2| if x0 >
a2
b2

, or Q = |b1w1 +b2| otherwise.

2.4 Application of the mathematical results - Value and

characteristics of the equivalent impedance

The mathematical results obtained in the previous section can now be applied to the equivalent

circuit of an array of resonators, as represented in Fig. 2.1, and the expressions (2.1) and (2.2),

considered for the cases at the resonant frequency (ω = ω0) and at any other frequency (ω 6= ω0),

are found. Examples of the mathematical results are studied with the software MATLAB using

the values for the parameters of the circuit R, L, C and M from the stranded-wire resonator array

described in Chapter 5 (L = 12.6µH, C = 93.1nF, R = 0.11Ω, M = −1.55µH and f0 = 147kHz),

in order to illustrate possible real situations.

2.4.1 Determination of the equivalent impedance

Using the generic values of the fractions (2.22) and (2.30), we can write the expressions for the

equivalent impedance Ẑeq in terms of the parameters of the equivalent circuit of the IPT system

described previously in section 2.2.

2.4.1.1 Operating frequency di�erent from the resonant frequency, ω 6= ω0

In this case, a = (ωM)2, b = Ẑ, x0 = Ẑ′T = ẐT + Ẑd (which is reduced to ẐT when the receiver is

not over the first cell), b′ = Ẑd + Ẑ.
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2. Mathematical modelling of the equivalent impedance of an array of resonators

Figure 2.3: Real and imaginary parts of Ẑeq versus the receiver position for different values of Ẑd ,
for f = 165 kHz and for ẐT = 1.5Ω. The position of the receiver is 1 when over the
first cell and 49 when over the cell next to the one connected to the source.

For a resonator array without a receiver over the resonator line or with the receiver

over the �rst cell of the resonator line

Ẑeq =
f n(2(ωM)2−gẐ′T )+gn( f Ẑ′T −2(ωM)2)

f n( f +2Ẑ′T )−gn(g+2Ẑ′T )
(2.46)

where f = Ẑ−
√

Ẑ2 +4(ωM) 2 and g = Ẑ +
√

Ẑ2 +4(ωM) 2.

For a resonator array with a receiver over the resonator line at any position

Ẑeq =
(ωM) 2

(
e1 f ng2i + e2 f 2ign− f igi (e3 f n + e4gn)

)
f ngi (e5 f i + e6gi)+ f ign (e7 f i + e8gi)

(2.47)

where the constants e1, e2, e3, e4, e5, e6, e7, and e8 are described in Appendix A.

Using (2.47) we make an example by plotting the equivalent impedance Ẑeq versus the position

of the receiver i and for different values of the receiver impedance Ẑd , for a line of 50 resonators,

with the operating frequency equal to f = 165kHz and Ẑ′T = 1.5Ω (Fig. 2.3). Then, by observing

Fig. 2.3 we can notice that the equivalent impedance is affected more significantly as the receiver

gets closer to the cell next to the one connected to the source and that the effect of the receiver

increases with the value of Ẑd .

2.4.1.2 Resonant frequency ω = ω0

For this case, a = (ω0M)2, b = R, x0 = Ẑ′T = R′T = RT +Rd (which is reduced to RT when the

receiver is not over the first cell), b′=Rd+R. Moreover, since all the components of the expression

are real, the equivalent impedance is going to be real as well, so Ẑeq = Req.

For a resonator array without a receiver over the resonator line or with the receiver

over the �rst cell of the resonator line

Ẑeq = Req =
f n(2(ω0M)2−gR′T )+gn( f R′T −2(ω0M)2)

f n( f +2R′T )−gn(g+2R′T )
. (2.48)
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2. Mathematical modelling of the equivalent impedance of an array of resonators

Figure 2.4: Ẑeq = Req versus the position of the receiver over a line of 50 resonators for different
values of Rd , at the resonant frequency f0 =147 kHz and for RT = 1.5Ω. The position
of the receiver is 1 when over the first cell and 49 when over the cell next to the one
connected to the source.

For a resonator array with a receiver over the resonator line at any position

Ẑeq = Req =
(ω0M) 2

(
e1 f ng2i + e2 f 2ign− f igi (e3 f n + e4gn)

)
f ngi (e5 f i + e6gi)+ f ign (e7 f i + e8gi)

. (2.49)

Then, this time using (2.47), we can show an example by plotting Req versus the position of

the receiver i for different values of the receiver impedance Rd , for an array with 50 resonators,

terminated by RT = 1.5Ω, operating at the resonant frequency f = 147kHz. In Fig. 2.4, as already

observed in Fig. 2.3, the equivalent impedance is affected more significantly as the receiver gets

closer to the cell next to the one connected to the source and for higher values of Rd .

2.4.2 Convergence of the continued fraction - equivalent impedance of an

in�nite array of resonators

From the value obtained with (2.35), with a = (ωM)2, b = Ẑ, we can say that the equivalent

impedance Ẑeq , for an array with an infinite number of resonators, converges to the following

value:

lim
n→∞

Ẑeq =
1
2

(
−Ẑ +

√
Ẑ2 +4(ωM)2

)
. (2.50)

As demonstrated in section 2.3.3, (2.50) does not depend on the initial conditions, i.e., the impedance

Ẑ′T . The limit depends only on the electrical parameters of the cells, the mutual inductance M and

the angular frequency ω. Using the expression (2.1), for a frequency f =165kHz different than

the resonant frequency, we can obtain and plot the equivalent impedance Ẑeq for different num-

bers of resonators n+ 1 and for different values of Ẑ′T (Fig. 2.5). Analogously, for the resonant

frequency f0 = 147 kHz, we can plot the equivalent impedance Ẑeq = Req with (2.4), for dif-

ferent numbers of resonators n+ 1 and for different values of R′T as shown in Fig. 2.6. It can

be noticed that, as we increase the length of the resonator line, even for different values of the

impedance Ẑ′T (or resistance R′T ), the equivalent impedance converges always to (2.50). Further-

more, as demonstrated with (2.37), by introducing an impedance Ẑ′T equal to (2.50) into (2.46),
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2. Mathematical modelling of the equivalent impedance of an array of resonators

(a)

(b)

Figure 2.5: (a) Real and imaginary parts and (b) magnitude and argument of the equivalent
impedance Ẑeq versus the number of resonators of the array for f = 165kHz and dif-
ferent values of Ẑ′T .

the equivalent impedance Ẑeq obtained is constant and equal to Ẑ′T regardless of the number of

resonator cells. In this way we can define the expression given by (2.50) as the impedance that

perfectly terminates the array, Ẑeq,∞ = 1
2

(
−Ẑ +

√
Ẑ2 +4(ωM)2

)
, or at the resonant frequency,

Req,∞ = 1
2

(
−R+

√
R2 +4(ω0M)2

)
. Then, in a line terminated with R′T = Req,∞, the impedance

seen from the source terminals, for any number of resonators, is given by:

R+Req,∞ =
1
2

(
R+

√
R2 +4(ω0M)2

)
. (2.51)

Equation (2.51) coincides with the termination resistance that according to the magnetoinductive

wave theory provides matching of the structure [16]. Thus, (2.51) can be considered as the char-

acteristic impedance of the line.
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2. Mathematical modelling of the equivalent impedance of an array of resonators

Figure 2.6: Ẑeq = Req versus the number of resonators of the array at the resonant frequency f0 =
147 kHz and for different values of R′T .

This also means that, when a perturbation Ẑd is present in the ( j+ 1)th resonator and the line

is terminated with an impedance Ẑ′T = Ẑeq,∞ equal to (2.50), we can determine Ẑeq with (2.46) by

replacing Ẑ′T with Ẑeq,∞ + Ẑd and replacing n with n− j.

Furthermore, considering that we are operating at any given frequency, we can plot the impedance

Ẑeq,∞ = 1
2

(
−Ẑ +

√
Ẑ2 +4(ωM)2

)
versus frequency, as shown in Fig. 2.7.

2.4.3 Monotonicity of the equivalent impedance

As shown in subsection 2.3.4, the monotonicity of the sequence that represents the equivalent

impedance of an array of resonator, i.e. the increase or decrease of its odd or even terms, depends

on the sign of a2b1−a1b2, that, under the resonance condition, with a = (ω0M)2, b = R, x0 = R′T ,

becomes
(ω0M)2−R′2T −RR′T√

R2 +4(ω0M)2
. (2.52)

For the circuit parameter values given at the beginning of this section, a2b1−a1b2 and thus (2.52)

have the behaviour shown in Fig. 2.8.

We can notice that a2b1− a1b2 is zero for R′T = 1
2

(
−R+

√
R2 +4(ω0M)2

)
(which for this

case is equal to 1.38Ω), negative for R′T > 1
2

(
−R+

√
R2 +4(ω0M)2

)
and positive otherwise.

The constants, as described in Appendix A, a1, a2, b1 and b2 can also be plotted with respect to

R′T , as Fig. 2.9 shows.

Figures 2.8 and 2.9 illustrate the theoretical results of section 2.3.4. The values of the even

and odd terms of the sequence of the continued fraction decrease and increase, respectively, for

R′T < 1
2

(
−R+

√
R2 +4(ω0M)2

)
; otherwise, the contrary occurs, i.e., they increase and decrease,

respectively, for R′T > 1
2

(
−R+

√
R2 +4(ω0M)2

)
. Therefore, the behaviour of Fig. 2.6 confirms

the conclusions obtained regarding the monotonicity of the sequence that represents the equivalent

impedance of an array of resonators.
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(a)

(b)

Figure 2.7: (a) Real and imaginary parts and (b) magnitude and argument of the impedance Ẑeq,∞

versus frequency.

Figure 2.8: Plot of a2b1−a1b2 versus R′T .
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Figure 2.9: Constants a1, a2, b1 and b2 versus R′T .

Figure 2.10: Variation of δ with R′T .

2.4.4 Variation of the speed of convergence with the variation of the circuit

parameters

In the same way as done in the previous subsection, we consider the system in a resonance con-

dition, meaning that all the electrical parameters are real. Using (2.42) from the subsection 2.3.5,

we have that the difference between Ẑeq = Req and its limit (2.50), for n = 0 (one resonator) and

n = 1 (two resonators) is given by:

δ0 =

∣∣∣∣∣∣R+2R′T −
√

R2 +4(ω0M)2

2

∣∣∣∣∣∣ (2.53)

and

δ1 =

∣∣∣∣∣∣R−
√

R2 +4(ω0M)2

2
+

(ω0M)2

R+R′T

∣∣∣∣∣∣ . (2.54)

Firstly, for R′T = 1
2

(
−R+

√
R2 +4(ω0M)2

)
= 1.38, δ0 = 0 and δ1 = 0, as expected, since the

value of of Req is constant and equal to is limit. Otherwise, for R′T < 1
2

(
−R+

√
R2 +4(ω0M)2

)
,

δ0 < δ1 and for R′T > 1
2

(
−R+

√
R2 +4(ω0M)2

)
we have that δ0 > δ1, as it can be seen in Fig.

2.10. δ0 and δ1 represent the largest differences between the equivalent impedance Ẑeq = Req and

its limit (2.50) for n→ ∞, as Fig. 2.6 shows.

Therefore, as referred previously in section 2.3.4, the sequence {xn} is bounded by the first two

terms, x0 and x1, which means that the maximum and minimum values of the equivalent impedance
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2. Mathematical modelling of the equivalent impedance of an array of resonators

Figure 2.11: Ẑeq = Req versus the number of resonators, for R′T = 10Ω and ε = 0.40. The dashed

lines represent the range where
∣∣∣Ẑeq− lim

n→∞
Ẑeq

∣∣∣< ε.

for given conditions of the system, are obtained from (2.48) with n = 0 (equal to R′T ) and n = 1.

From (2.45), for R′T > 1
2

(
−R+

√
R2 +4(ω0M)2

)
, we have

N > log ∣∣∣∣∣ R−
√

R2+4(ω0M)2

R+
√

R2+4(ω0M)2

∣∣∣∣∣
 2

R−
√

R2 +4(ω0M)2 +2R′T

ε

 (2.55)

or for R′T < 1
2

(
−R+

√
R2 +4(ω0M)2

)

N > log ∣∣∣∣∣ R−
√

R2+4(ω0M)2

R+
√

R2+4(ω0M)2

∣∣∣∣∣

 2(R+R′T )

2(ω0M)2−R′T

(√
R2 +4(ω0M)2 +R

)ε

 . (2.56)

The integer number N represents the minimum number of resonators excluding the one con-

nected to the source such that the difference between Ẑeq and lim
n→∞

Ẑeq is within ±ε. For ex-

ample, for R′T = 10Ω and ε = 0.41, which represents 30% of lim
n→∞

Ẑeq, then 0.97 < Ẑeq < 1.79.

N is calculated as the smallest integer greater than the logarithm of (2.55), since for this case

R′T > 1
2

(
−R+

√
R2 +4(ω0M)2

)
. In this case the value of the logarithm is 35.5 and thus N = 36

(i.e., the array has 37 resonators) as Fig. 2.11 shows.

2.4.5 Equivalent impedance of a resonator array with two receivers over it

Previously, by solving the continued fraction, we obtained a closed-form expression for the equiv-

alent impedance of a resonator array, with the receiver over the first cell (or with no receiver) and

for a resonator array with a receiver over the ith cell. However, instead of using the expression

(2.47), we could use a different method, by splitting the resonator array in two equivalent circuits

and thus the continued fraction represented by 2.2 in two different fractions. Then, considering

the system represented in Fig. 2.1 but now with the receiver over the (i+ 1)th cell, splitting the

resonator array in two parts, using the expression (2.46) for each part, as in Fig. 2.12, we can write

as in [29], considering Ẑeq,i the equivalent impedance of the i resonators after the (i+1) cell

Ẑeq,i =
f i(2(ωM)2−gẐT )+gi( f ẐT −2(ωM)2)

f i( f +2ẐT )−gi(g+2ẐT )
(2.57)
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(a)

(b)

(c)

Figure 2.12: Equivalent circuits of Fig. 2.1 (b), but with the receiver over the (i+1)th cell, being
(a) the equivalent circuit of the whole resonator array, being (b) Ẑeq,i the equivalent
impedance of the i resonators and being (c) Ẑeq,n−i the impedance seen from the
supplied cell.
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and use as Ẑeq,i + Ẑd and the new termination impedance for the remaining part of the array, thus:

Ẑeq,n−i =

(
f n−i(2(ωM)2−g(Ẑd + Ẑeq,i))

+gn−i( f (̂Zd + Ẑeq,i)−2(ωM)2)

)
(

f n−i( f +2(Ẑd + Ẑeq,i))

−gn−i(g+2(Ẑd + Ẑeq,i))

) . (2.58)

Furthermore, the logic behind (2.57) and (2.58) could also be used to calculate the equivalent

impedance for an array of resonators with more than one receiver. Setting the example of an array

of n+1 resonators with two identical receivers represented by the same equivalent impedance Ẑd

above the (i+1)th and ( j+1)th resonators, with j > i, as depicted in Fig. 2.13, we can write:

Ẑeq,i =
f i(2(ωM)2−gẐT )+gi( f ẐT −2(ωM)2)

f i( f +2ẐT )−gi(g+2ẐT )
, (2.59)

Ẑeq, j−i =

(
f j−i(2(ωM)2−g(Ẑd + Ẑeq,i))

+g j−i( f (̂Zd + Ẑeq,i)−2(ωM)2)

)
(

f j−i( f +2(Ẑd + Ẑeq,i))

−g j−i(g+2(Ẑd + Ẑeq,i))

) , (2.60)

and

Ẑeq,n− j =

(
f n− j(2(ωM)2−g(Ẑd + Ẑeq, j−i))

+gn− j( f (̂Zd + Ẑeq, j−i)−2(ωM)2)

)
(

f n− j( f +2(Ẑd + Ẑeq, j−i))

−gn− j(g+2(Ẑd + Ẑeq, j−i))

) . (2.61)

Using the same method as in (2.59)-(2.61), it is possible to determine the equivalent impedance

if we have more than two receivers over the resonator array. Moreover, it is possible to analyse

the case in which the receivers are represented by different impedances, for example, replacing

Ẑd with Ẑd1 in (2.60) and Ẑd with Ẑd2 in (2.61), being Ẑd1 6= Ẑd2. Note that, as we previously

defined in this Chapter that the first cell is the one connected to the termination impedance and the

(n+ 1)th is the one connected to the source, we set that the first receiver, represented by Ẑd1, is

the one nearer to the cell of the array connected to the termination impedance, while the second

receiver Ẑd2 is the one nearer to the cell of the array connected to the source.

Previously, we considered that the receiver is represented by an impedance Ẑd . However, if we

consider that a real receiver is composed by a resonator connected to a given load, we can represent

the two receivers, assuming that they are built with identical coils, as different impedances Ẑd1 and

Ẑd2 as in [14, 16, 29]:

Ẑd1 =
(ωMr,i+1)

2

Ẑr +Rload,1
and Ẑd2 =

(ωMr, j+1)
2

Ẑr +Rload,2
(2.62)

where Mr,i+1 and Mr, j+1 are the mutual inductances between the two receivers and the cells beneath

them, Ẑr = Rr + jωLr +1/( jωCr) is the impedance of each receiver and Rload is a load resistance

connected to each receiver, as depicted in Fig. 3.55.

Assuming that the resonant frequency of the receivers is the same of the array cells (i.e. ω0,r =
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(a)

(b)

(c)

(d)

Figure 2.13: Equivalent circuits of a system composed of n resonators after the cell connected to
the voltage source with one receiver over the (i+ 1)th cell and another one over the
( j+1)th cell.
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1/
√

LrCr = ω0 = 1/
√

LC), both Ẑd,1 and Ẑd,2 are real at the resonant frequency of the cells of the

array, ω0 and so their values will depend on the load connected to each receiver and on the mutual

inductance between each receiver and the cell below it.

Figure 2.14: Equivalent circuit of Fig. 2.13 (b) including the circuits of the two receivers posi-
tioned above the (i+1)th and ( j+1)th cells.

In the following, we perform a numerical example considering a line of 20 resonators with

two receivers over the line. Using (2.59)-(2.61), considering that we are operating at the res-

onator frequency, we can calculate the equivalent impedance seen from the supplied cell of the

array, Ẑeq,n− j = Req,n− j, when the receivers are in different positions along the line, for j > i,

neglecting a possible mutual inductance between the two receivers. In these examples, in or-

der to examine possible real situations, we consider the values acquired through measurements

made with the experimental setup referred in Chapter 5 (L = 12.6µH, C = 93.1nF, R = 0.11Ω,

M = −1.55µH and f0 = 147kHz). Supposing that the mutual inductance between the receiver

and the cell of the array has the same value as the one between two adjacent cells of the ar-

ray (Mr,i+1 = Mr, j+1 = 1.55µH) and that the receiver coils are the same as the cells of the array,

so (Rr = R = 0.11Ω), the values of Ẑd1 and Ẑd2 can go from 0Ω (for Rload = ∞) to 18.6Ω (for

Rload = 0Ω), depending on the values of Rload,1 and Rload,2. Then, we can make an example

with ẐT = 1.5Ω, assuming different values of Rload,1 and Rload,2. For this example we consider

three cases, one with Ẑd,1 = Ẑd,2 = 5Ω, another with Ẑd,1 = Ẑd,2 = 10Ω and the last one with

Ẑd,1 = 10Ω, Ẑd,2 = 5Ω (Figs. 2.15, 2.16 and 2.17).

By examining Figs. 2.15, 2.16 and 2.17 we can note that the equivalent impedance seen from

the cell connected to the source has a behaviour similar to that shown in Fig. 2.4, as it oscillates be-

tween maximum and minimum values, specially when the receivers are close to the cell connected

to the source (position 19). This oscillation becomes more significant when both impedances Ẑd,1

and Ẑd,2 of the receivers are larger (Ẑd,1 = Ẑd,2 = 10Ω, Fig. 2.16) and less significant when smaller

(Ẑd,1 = Ẑd,2 = 5Ω, Fig. 2.15), the case depicted in Fig. 2.17 (Ẑd,1 = 10Ω, Ẑd,2 = 5Ω) being an

intermediate case.

It can also be observed that the maximum values of Req,n− j occur when the second receiver

is above the cell connected to the source (position 19) and the first receiver two cells before the

last one (position 17), while the minimum values occur when the first and second receivers are in

positions 16 and 18, respectively.
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Figure 2.15: Ẑeq,n− j = Req,n− j for the two receivers in different positions given by i and j (the
position 0 being when the receiver is over the first cell and the position 19 when the
receiver is over the cell connected to the source) and for Ẑd,1 = Ẑd,2 = 5Ω.

Figure 2.16: Ẑeq,n− j = Req,n− j for the two receivers in different positions given by i and j (the
position 0 being when the receiver is over the first cell and the position 19 when the
receiver is over the cell connected to the source) and for Ẑd,1 = Ẑd,2 = 10Ω.
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Figure 2.17: Ẑeq,n− j = Req,n− j for the two receivers in different positions given by i and j (the
position 0 being when the receiver is over the first cell and the position 19 when the
receiver is over the cell connected to the source) and for Ẑd,1 = 10Ω and Ẑd,2 = 5Ω.

(a) (b)

Figure 2.18: Input impedance with the cell connected to the source in (a) series and (b) parallel
resonance.

Moreover, for a fixed position of the second receiver, the first receiver in an odd position in-

creases the equivalent impedance and while in an even position it decreases the value of Req,n− j.

Also, Req,n− j will have higher values when the second receiver is on an odd position and low

values when in an even position. Generically, we can say that when both receivers are in even

positions Req,n− j has its peak values and when both receivers are in odd positions Req,n− j has its

lower values. On the other hand, by placing the first receiver on a position with different parity of

the position of the second receiver (for example, second receiver on an even position, first receiver

on an odd position) the oscillation (minima and maxima) of the equivalent impedance is smoothed.

Finally, as both receivers move further away from the source, Req,n− j tends to be constant and

have less variations when the receivers change position. In this case the equivalent impedance

Req,n− j tends to the equivalent impedance of an array with an infinite number of resonators, given

by (2.50).

2.4.6 Analysis of the input impedance for series and parallel con�guration

As described before, all the resonators of the array are R-L-C circuits which are in series reso-

nance. However, it could be possible for the cell which is connected to the source, to be in series

or in parallel resonance, as represented in Fig. 2.18. Then, using the value of Ẑeq obtained in this
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(a)

(b)

Figure 2.19: Spectra of the magnitude and phase for the input impedance for (a) series and (b)
parallel configurations for a 6-resonator array terminated with Ẑ′T = 1.5Ω.

chapter, we can determine the input impedance Ẑin for the two different resonance topologies as

in [19, 30, 31]:

Ẑin,S = R+ jωL+1/ jωC+ Ẑeq

Ẑin,P = ( jωC+ 1
R+ jωL+Ẑeq

)−1 (2.63)

at the angular frequency ω = 2π f .

Then, for the two types of resonance, we can plot the amplitude and phase spectra of Ẑin using

the values obtained through measurements for the 6-resonator array described in Chapter 5 (L =

12.6µH, C = 93.1nF, R = 0.11Ω, M = −1.55µH and f0 = 147kHz), considering a termination

impedance of ẐT = 1.5Ω. The results are presented in Figs. 2.19 and 2.20, for a number of five

(n = 5) or 7 resonators (n = 7) after the supplied cell.

Examining Fig. 2.19, it is possible to observe that the input impedance magnitude is much

higher for the parallel configuration, which can be possibly used if the source impedance is large,

provided that we want to match the source impedance to the input impedance. Also, that the

resonant frequency of the parallel configuration, i.e., the value of the frequency at which the input

impedance becomes real, has a slightly lower value than the series resonant frequency.

Moreover, when considering the series configuration, we can note that the magnitude of the

input impedance has other minima for frequencies different from the resonant one f0 = 147kHz

(approximately 133kHz, 137kHz, 159kHz and 167kHz) and additionally it is limited from about

1.1Ω to 2Ω in the 130kHz to 171kHz range. This frequency range can be related to the bandwidth

of transmission referred in [14] and [16], f0/
√

1+ k ≤ f ≤ f0/
√

1− k; for example, in the case

considered, having k = 2M/L = 0.25, we have a bandwidth 132kHz≤ f ≤ 169kHz.

For the case of an array of 8 resonators, shown in Fig. 2.20, we can see that all the conclusions

for the 6-resonators still apply; in this case there are more minima for frequencies different than

the resonant one f0 = 147kHz (approximately 136kHz, 141kHz, 154kHz, 161kHz and 168kHz).

30



2. Mathematical modelling of the equivalent impedance of an array of resonators

(a)

(b)

Figure 2.20: Spectra of the magnitude and phase for the input impedance for (a) series and (b)
parallel configurations for an 8-resonator array terminated with Ẑ′T = 1.5Ω.

(a)

(b)

Figure 2.21: Spectra of the magnitude and phase for the input impedance for (a) series and (b)
parallel configurations for a 6-resonator array terminated with Ẑ′T = 0Ω.
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(a)

(b)

Figure 2.22: Spectra of the magnitude and phase for the input impedance for (a) series and (b)
parallel configurations for an 6-resonator array terminated with Ẑ′T = 1MΩ.

Still regarding the case of a 6-resonator array, we can further consider the two opposite cases

where the array is terminated with Ẑ′T = 0Ω or Ẑ′T = 1MΩ (Figs. 2.21 and 2.22). By comparing

the results in Figs. 2.21 and 2.22 with those in Fig. 2.19 we can see that the input impedance has

much greater oscillations in both the magnitude and the phase of Ẑin , when Ẑ′T gets further away

from Ẑeq,∞. Also, due to these larger oscillations on the phase of Ẑin there will be other frequencies

for which Ẑin is real.

Eventually, using the theoretical results regarding the convergence of the continued fraction

given in subsection 2.4.2, if we want to compare the input impedance for the series or parallel

resonance of the cell connected to the source of an array with an infinite number of resonators or

an array terminated by Ẑeq,∞ we can write (2.63) replacing Ẑeq by the value given by (2.50):

Ẑin,S,∞ = 1
2

(
R+ jωL+1/ jωC+

√
(R+ jωL+1/ jωC) 2 +4(ωM)2

)
Ẑin,P,∞ = ( jωC+ 1

R+ jωL+ 1
2

(
−R− jωL−1/ jωC+

√
(R+ jωL+1/ jωC)2+4(ωM)2

))−1
. (2.64)

Then, using (2.64), we can plot the amplitude and phase spectra of Ẑin,mat for the series and

parallel resonance, using the same electric parameters of the resonator array (Fig. 2.23).

Observing Fig. 2.23, although the conclusions regarding the comparison of the magnitude and

the angle for the series and parallel still apply, in this case there will be no oscillations (minima or

maxima) in the magnitude and angle of Ẑin.

Moreover, rewriting (2.64) at the resonant frequency ω0 yields:

Ẑin,S,∞ = 1
2

(
R+

√
R2 +4(ω0M)2

)
Ẑin,P,∞ = 2L

C
(

R+
√

4(ω0M)2+R2
) − j

√
L
C

, (2.65)

we can determine the phase angle of Ẑin,P,∞ at f0, given by:
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(a)

(b)

Figure 2.23: Spectra of the magnitude and phase for the input impedance for (a) series and (b)
parallel configurations for array with an infinite number of resonators or terminated
by Ẑ′T = Ẑeq,∞.

arg(Ẑin,P,∞) = arctan

(
R+

√
4(ω0M)2 +R2

)
2

√
C
L

(2.66)

which for this case is equal to −7.28º.

Furthermore, assuming that the capacitor in the cell connected to the source (n+ 1) can be

different than those in the cells of the array, we can determine its value so that the voltage and the

current delivered by the source are in phase, i.e. the imaginary part of the input impedance Ẑin,P,∞

is equal to zero as done in [30] for a two-coil IPT system. Then, by solving

Im


 jωCn+1 +

1

R+ jωL+ 1
2

(
−R+

√
R2 +4(ω0M)2

)

−1= 0 (2.67)

for Cn+1, we obtain,

Cn+1 =
2L

2(ω0L)2 +R
√

R2 +4(ω0M)2 +2(ω0M)2 +R2

which for this example, becomes Cn+1 = 91.2nF.

2.5 Validation of the theoretical results with Simulink

After the mathematical analysis and the examples performed using the mathematical results, we

can verify the validity of the closed-form expressions presented for the equivalent impedance per-

forming simulations using the software Simulink. Then, we can simulate the circuit in Fig. 2.1 of

a resonator array with n+1 cells considering an ideal voltage source (Rs = 0), by building a cir-
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Figure 2.24: Example of a IPT system equivalent circuit simulated with Simulink representing an
array with 6 resonators and with the receiver over the 3rd cell.

cuit in Simulink using the Mutual Inductance block. The (n+1)th cell is connected to a sinusoidal

voltage source V̂s = Vs∠θv at a frequency f . The first cell is connected to a resistance R′T and an

impedance Ẑd is added to the lth cell in order to represent the effect of the receiver over that cell.

An example of the circuit is shown in Fig 2.24. The impedance Ẑd , as in (2.62), is given by:

Ẑd =
(ωMr,l)

2

Ẑ +Rload
. (2.68)

where Mr,l is the mutual inductance between the receiver and the lth cell, Rload is a load connected

to the receiver which has the same impedance Ẑ as the array cells.

Then, by determining with Simulink the current in the cell connected to the given voltage source

V̂s, În+1 = In+1∠θi, using the “Current Measurement” block, we can obtain the input impedance

Ẑin:

Ẑin =
V̂s

În+1
=

Vs

In+1
∠θv−θi (2.69)

and compare this value with the theoretical value for the input impedance calculated using (2.63)

for the series resonance case, in which Ẑeq is determined with (2.46)-(2.49):

Ẑin = Ẑ + Ẑeq. (2.70)

In both values of Ẑin presented, obtained with simulations (2.69) and with theoretical results (2.70),

the values for R, L, C and M used are the ones obtained through measurements carried out in

Chapter 5 (L = 12.6µH, C = 93.1nF, R = 0.11Ω and M =−1.55µH).
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Table 2.1: Comparison of Ẑin (Ω) at the resonant frequency f0 = 147 kHz obtained through sim-
ulations performed with Simulink (2.69) and through developed formulas ((2.70) using
(2.48)), for different values of R′T (0.4Ω, 1.5Ω and 10Ω) and different number of res-
onators.

Number of
resonators

(n+1)

Equation
(2.69)

Equation
(2.70)

Equation
(2.69)

Equation
(2.70)

Equation
(2.69)

Equation
(2.70)

R′T = 0.4Ω R′T = 1.5Ω R′T = 10Ω

2 4.1280 4.1287 1.3830 1.3830 0.3128 0.31272
3 0.6066 0.6064 1.5920 1.5920 6.6613 6.6638
4 3.4883 3.4898 1.3974 1.3974 0.4179 0.4176
5 0.6977 0.6973 1.5767 1.5766 5.0141 5.0184
6 3.0471 3.0493 1.4099 1.4010 0.5190 0.5184

Table 2.2: Comparison of Ẑin (Ω) for different frequency values from 135kHz to 165kHz obtained
through simulations performed with Simulink (2.69) and through developed formulas
((2.70) using (2.46)) for a 6-resonator array (n = 5) terminated with Ẑ′T = 1.5Ω.

f (kHz) Equation (2.69) Equation (2.70)
135 1.67∠-59.69 1.67∠-59.69
140 1.75∠-15.60 1.74∠-15.60
145 1.35∠-8.75 1.35∠-8.75
150 1.40∠13.82 1.40∠13.82
155 1.98∠18.79 1.98∠18.78
160 1.25∠47.92 1.25∠47.92
165 2.19∠43.69 2.19∠43.68

2.5.1 Equivalent impedance without a receiver over the resonator line or

with a receiver over the �rst cell of the resonator line

Starting by considering an array with 2 to 6 resonators in which the receiver is over the first cell

or is absent, from (2.70) with Ẑeq being calculated from (2.46) (with n = 1, . . . ,5) we determine

Ẑin for different values of Ẑ′T . Then, with Simulink, we use the circuit depicted in Fig. 2.24 where

Ẑd = 0. For the case where we operate at the resonant frequency f0 = 147 kHz, we can obtain Ẑin

with (2.69) or (2.70) for different values of Ẑ′T = R′T . The results of the comparison are reported

in Table 2.1.

Eventually, if we operate at a frequency different than the resonant one, Ẑin becomes a complex

quantity. By setting a fixed value of Ẑ′T = 1.5Ω for an array with 6 resonators (n = 5) we can

make a comparison of Ẑin obtained with simulations performed with Simulink (2.69) and with

developed formulas ((2.70) using (2.48)) and report the results in Table 2.2 for different operating

frequencies. As an example, for this case we can represent the voltage and current waveforms

obtained with simulations at the frequency of 165kHz (Fig. 2.25).
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Figure 2.25: Instantaneous values of voltage and current obtained with Simulink for a 6 resonator
array terminated with Ẑ′T = 1.5Ω at f = 165kHz.

Table 2.3: Comparison of Ẑin (Ω) determined at the resonant frequency f0 = 147 kHz obtained
through simulations performed with Simulink (2.69) and through developed formulas
((2.70) using (2.49)) for different positions of the receiver (i) for a 6-resonator array
(n = 5) terminated with R′T = 1.5Ω.

Position of
the receiver

(ith cell)

Equation
(2.69)

Equation
(2.70)

1 0.6171 0.6166
2 3.9651 3.9672
3 0.5219 0.5216
4 4.8712 4.8723
5 0.4217 0.4216

2.5.2 Equivalent impedance with a receiver over the resonator line at any

position

Next, analysing the case where there is a receiver over the lth cell of the resonator array, in reso-

nance condition, we can calculate Ẑin from (2.70) using (2.49). This is done by using the values

of R, L, C and M indicated previously, given an array of 6 resonators (n = 5) terminated with

R′T = 1.5Ω and assuming Mr,l = 1.55µH and Rload = 0.30Ω, which from (2.68) makes Ẑd = 5Ω.

The results for different positions of the receiver achieved with (2.70) using (2.49) are compared

with the ones determined through simulations (2.69) and shown in Table 2.3. Note that the value of

Ẑd is real at the resonance frequency, because we assumed that the receiver has the same impedance

as the cells of the array.

For a frequency different than the resonant one, both Ẑeq (2.47) and Ẑd (2.68) become complex.

Then, terminating the array with a fixed value of Ẑ′T = 1.5Ω and keeping all the other parameters as

in the previous case, we can calculate the equivalent impedance for different values of the operating

frequency and for the receiver at a given position. For example, in Table 2.4 the comparison

between (2.69) and (2.70) is shown, for a receiver over the third resonator in a 6-resonator array,

where (2.70) was calculated from (2.47) with n = 5 and l = 3.

2.5.3 Convergence of the equivalent impedance

Finally, we can also verify the theoretical results achieved regarding the convergence of the con-

tinued fraction that represents the equivalent impedance of a resonator array. As described in
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Table 2.4: Comparison of Ẑin (Ω) determined for different frequency values (from 135kHz to
165kHz) obtained through simulations performed with Simulink (2.69) and through
developed formulas ((2.70) using (2.47)) when the receiver is over the third cell (i = 3)
in a 6-resonator array (n = 5) terminated with Ẑ′T = 1.5Ω.

f (kHz) Equation (2.69) Equation (2.70)
135 1.13∠-68.33 1.14∠-67.94
140 3.03∠-7.01 3.09∠-7.58
145 0.99∠-49.48 0.98∠-49.48
150 1.42∠54.15 1.44∠54.56
155 3.44∠9.31 3.47∠9.16
160 0.78∠29.45 0.78∠29.40
165 1.92∠75.43 1.91∠74.94

Table 2.5: Comparison of Ẑin (Ω) at the operating frequency f = 165kHz obtained through simu-
lations performed with Simulink ((2.69)) and through developed formulas ((2.70) using
(2.46)) for an array with 10, 20 and 30 resonators (n = 9, n = 19 and n = 29) and for
different values of Ẑ′T .

Equation (2.69)
Number of resonators (n+1) 10 20 30

Ẑ′T = 0.4Ω 1.48∠44.55 1.60∠57.10 1.70∠57.92

Ẑ′T =
−Ẑ+

√
Ẑ2+4(ωM)2

2 1.71∠57.03 1.71∠57.04 1.71∠57.03
Ẑ′T = 10Ω 1.31∠59.70 1.65∠60.77 1.73∠58.16

Equation (2.70)
Number of resonators (n+1) 10 20 30

Ẑ′T = 0.4Ω 1.48∠44.56 1.60∠57.10 1.70∠57.93

Ẑ′T =
−Ẑ+

√
Ẑ2+4(ωM)2

2 1.71∠57.05 1.71∠57.05 1.71∠57.05
Ẑ′T = 10Ω 1.31∠59.68 1.65∠60.78 1.73∠58.16

subsection 2.4.2, setting Ẑ′T = Ẑeq,∞ = 1
2

(
−Ẑ +

√
Ẑ2 +4(ωM)2

)
into (2.46) (for any frequency

different than the resonant one) or R′T = Req,∞ = 1
2

(
−R+

√
R2 +4(ω0M)2

)
into (2.48) (for the

resonant frequency) the equivalent impedance Ẑeq is constant and equal to Ẑeq,∞ (or Req,∞) regard-

less of the number of resonator cells. Then, we can use the Mutual Inductance Simulink block to

represent an array with an increasing number of resonators, e.g., 10, 20 and 30 (n = 9, n = 19 and

n = 29). Once again, the input impedance (2.70) calculated using (2.46) or (2.48) is compared to

the input impedance (2.69) determined with Simulink, for different termination impedances. The

results of the comparison for a frequency different than the resonant one ( f = 165kHz) and for the

resonant frequency f0 = 147 kHz are shown in Tables 2.5 and 2.6, respectively.

Moreover, as seen in Tables 2.5 and 2.6, the results confirm what was demonstrated in the

theoretical study about the convergence of the continued fraction in subsection 2.3.3, i.e., that Ẑeq

tends to Ẑeq,∞ (or Req,∞) as the number of the resonators increases, meaning that (2.70) tends to

Ẑin = Ẑ + Ẑeq,∞ at any frequency other than the resonant one and Ẑin = R+Req,∞ at the resonant

frequency.
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Table 2.6: Comparison of Ẑin (Ω) at the resonant frequency f0 = 147 kHz obtained through simu-
lations performed with Simulink ((2.69)) with the one obtained through developed for-
mulas ((2.70) using (2.48)) for an array with 10, 20 and 30 (n = 9, n = 19 and n = 29)
resonators and for different values of R′T .

Equation (2.69)
Number of resonators (n+1) 10 20 30

R′T = 0.4Ω 2.4885 1.8763 1.6542

R′T =
−R+
√

R2+4(ω0M)2

2 1.4876 1.4876 1.4876
R′T = 10Ω 0.7060 1.0647 1.2762

Equation (2.70)
Number of resonators (n+1) 10 20 30

R′T = 0.4Ω 2.4914 1.8797 1.6571

R′T =
−R+
√

R2+4(ω0M)2

2 1.4876 1.4876 1.4876
R′T = 10Ω 0.7048 1.0622 1.2732

Figure 2.26: Array of resonators connected to a VNA for the measurement of the input impedance.

2.6 Experimental validation of the theoretical results

Following the verification of the theoretical results presented in this chapter through Simulink, we

can also perform an experimental verification, with the experimental setup described in Chapter

5 which uses the stranded-wire 6-resonator array. The input impedance of the resonator array

is measured by connecting it to an Agilent 4396B 100 kHz - 1.8 GHz Vector Network Analyser

(VNA), as shown in Fig. 2.26.

Subsequently, as done as in the previous subsection, the experimental results are then compared

with the theoretical values obtained with (2.70).

2.6.1 Equivalent impedance without a receiver over the resonator line or

with the receiver over the �rst cell of the resonator line

Firstly, considering an array with 2 to 6 resonators, from (2.48) with n = 1, . . . ,5, and (2.70), we

calculate Ẑin at the resonant frequency f0 = 147kHz for different values of R′T (0.4Ω, 1.5Ω and

10Ω). These results are then compared with the input impedance obtained with measurements

with the VNA under the same conditions of the system. The comparison is shown in Fig. 2.27. It

can be noticed that the 1.5Ω curve tends to the value R+Req,∞with much smaller oscillations than
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Figure 2.27: Comparison of Ẑin (Ω) measured with the VNA to that calculated through developed
formulas ((2.70) using (2.48)) for different values of R′T (0.4Ω, 1.5Ω and 10Ω) and
different number of resonators, at the resonant frequency f0 = 147 kHz.

Table 2.7: Comparison of Ẑin (Ω) measured with the VNA to that calculated through developed
formulas (2.70 using (2.48)) for a given value of Ẑ′T = 1.5Ω, for different frequency
values from 135kHz to 160kHz.

f (kHz) Equation (2.73) Equation (2.70)
135 1.78∠-55 1.67∠-60
140 1.62∠-22 1.74∠-16
145 1.35∠-2 1.35∠-9
150 1.48∠19 1.40∠14
155 2.32∠24 1.98∠19
160 1.26∠36 1.25∠48

the other two cases. In fact, R′T = 1.5Ω is the closest value to the resistance value Req,∞ = 1.38Ω,

which makes the equivalent impedance constant, confirming the theoretical results indicated in

subsections 2.3.3 and 2.4.2.

At a frequency different than the resonant one, Ẑin is a complex quantity. As an example, the

results are reported in Table 2.7 for Ẑ′T = 1.5Ω.

2.6.2 Equivalent impedance with a receiver over the resonator line at any

position

In case there is a receiver over the lth cell of resonator array, we can calculate Ẑin in resonance

conditions from (2.49) and (2.70). For an array of 6 resonators with the parameter values of R, L,

C and M indicated in section 2.5.2, the results for different positions of the receiver are shown in

Fig. 2.28. In the experimental setup, we connected a 5Ω resistor to the lth cell to represent the

additional impedance Ẑd .

2.6.3 Determination of the input power using the equivalent impedance

As referred in the Introduction of this chapter, the value of equivalent impedance could be used, for

a given voltage source, to determine the power delivered from the source to a loaded array. Then,
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Figure 2.28: Comparison of Ẑin (Ω) measured with the VNA to that calculated through (2.70)
using (2.49) for different positions of the receiver, at the resonant frequency f0 = 147
kHz.

assuming that we are working at the resonant frequency, the power delivered from a sinusoidal

voltage source with a given RMS value Vs can be given by:

Pin =
V 2

s

Req +R
(2.71)

where Req is determined with (2.48) or with (2.49). Then, through measurements, the input power

is obtained as the average value in a period of the product of the instantaneous voltage and current

measured at the terminals of the inverter:

Pin,exp = (1/T )

T̂

0

vin(t) iin(t)dt (2.72)

where T = 1/ f0 is the period of the waveforms and vin(t) and iin(t) are the measured instantaneous

values of the input voltage and current. The product of the instantaneous voltage and current and its

average value in a period were calculated with the oscilloscope using the mathematical functions

of its internal software.

Finally, setting in (2.71) Vs =Vs1 = 4.9V with Vs1, experimentally determined as in [32] :

Vs1 =
4

π
√

2
Vsq (2.73)

where Vs1 is the RMS of fundamental component of the inverter output square-wave vin, Vsq is the

measured amplitude value of the square wave, whose duty cycle is assumed to be 0.5.

Then, we can compare the values calculated with theoretical formula (2.71) with the experimen-

tal ones obtained with (2.72). This is done first considering an array of 6 resonators terminated

with different values of R′T (0.4Ω, 1.5Ω, 5Ω and 10Ω) and then an array of 6 resonators terminated

with R′T = 1.5Ω with a receiver in different positions (i). The results of these two comparisons are

presented in Figs. 2.29 and 2.30.

Figures 2.29 and 2.30 show that, for a given voltage source, the power delivered by the source

increases in an a 6-resonator array for an increasing value of R′T and that, for a fixed R′T , the power

delivered by the source has large oscillations depending on the position of the receiver. These
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Figure 2.29: Comparison of Pin (W ) at the resonant frequency f0 = 147 kHz obtained with mea-
surements using (2.72) to the one calculated through developed formulas ((2.71) us-
ing Vs = 4.9V determined with (2.73) and (2.49)) for different values of R′T (0.4Ω,
1.5Ω, 5Ω and 10Ω).

Figure 2.30: Comparison of Pin (W ) at the resonant frequency f0 = 147 kHz obtained with mea-
surements using (2.72) to the one calculated through developed formulas ((2.71) us-
ing Vs = 4.9V determined with (2.73) and (2.49)) for different positions of the receiver
(i).
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examples show some of possible practical applications of this study of the equivalent impedance

on determining and predicting the input power (and thus the input current) delivered from a given

voltage source to the resonator array for varying conditions of the system (variable R′T or variable

position i) which can be useful for the design of the array and its power source.

2.7 Conclusions

In this chapter, a mathematical approach is applied to the study of the equivalent impedance of

a resonator array, which is usually represented in literature by a continued fraction, in order to

achieve a more complete and rigorous understanding of the behaviour of this type of systems. By

applying the theory of linear homogeneous difference equations, the general term of the recursive

sequence that represents the continued fraction is obtained. In this way, an explicit closed-form

expression for the equivalent impedance is developed, which depends on the characteristics of the

system (electrical parameters of the resonator array, termination impedance, number of resonators,

position and impedance of receivers). Furthermore, by performing an analysis on convergence of

the continued fraction, it is found that for an arbitrarily large number of resonators, the equivalent

impedance is given only by the electrical parameters of the resonator array, Ẑ and ωM, and that

it does not depend on the termination impedance, Ẑ′T , and on a finite number of receivers over

the line (Ẑeq,∞ = 1
2

(
−Ẑ +

√
Ẑ2 +4(ωM)2

)
). Additionally, it is demonstrated that by terminating

the resonator array with this impedance Ẑeq,∞, the impedance of the resonator array is constant for

any number of resonators. Regarding the monotonicity of the continued fractions, it is also proved

that the recursive sequence that describes the system has an oscillating behaviour, having the even

and odd terms of the sequence opposite monotonicities (increasing or decreasing), depending on

whether the termination impedance is smaller or larger than Ẑeq,∞.

Eventually, in order to illustrate the theoretical results obtained in this chapter, some exam-

ples of equivalent impedance calculation for different system configurations are provided, and the

calculations are carried out with computing environments such as MATLAB and Mathematica.

Besides the examples presented for a resonator array with a receiver over the first cell (or an ar-

ray without receiver) and for a receiver over the lth cell using the proposed formulas, it is also

taken into consideration a resonator array with two receivers over it and it is analysed the case

in which the cell connected to the power source is in series or in parallel resonance. Concerning

the examples with one receiver or two receivers over the array the effect of the receivers on the

equivalent impedance of a resonator array is felt with higher or lower intensity (by increasing or

decreasing the equivalent impedance) depending on the position of the receiver and on the value

of its impedance; more specifically, for the case with two receivers, the first receiver can further

increase or decrease the receivers effect on the equivalent impedance depending on whether it is

on the parity of the position of both receivers (even or odd). Regarding the comparison between

the input impedance for series or parallel resonance, the parallel resonance produces a higher input

impedance but with a phase angle different than zero at the resonant frequency of the cells of the

array, while for the series resonance, other minima for the input impedance are found besides the

one at the resonant frequency.

In the last part of this chapter, the theoretical formulas are validated with circuit simulations

42



2. Mathematical modelling of the equivalent impedance of an array of resonators

using the software Simulink and experiments using the setup described in Chapter 5. The compar-

ison of the proposed formulas with simulations and measurements shows a very good agreement.

Moreover, by measuring the power delivered from the source to the array and comparing it to

the one calculated with the proposed formulas, a possible practical application for this formula is

shown.

In summary, the mathematical approach developed in this chapter gives a rigorous theoretical

basis that can be used as a powerful tool for designing resonator arrays with given properties and

behaviour. More specifically, it can be used to design the power source that supplies the resonator

array, since the current and active power delivered by a given voltage source (fixed or variable)

can be predicted accurately by knowing the equivalent impedance and its possible variations.

Appendix A

Determination of the constants a1,, a2, b1, c1,, c2, d1, d2 :

a1 =
x0
2 −

a√
b2+4a

+ bx0
2
√

b2+4a
; a2 =

x0
2 + a√

b2+4a
− bx0

2
√

b2+4a
;

b1 =
1
2 −

x0√
b2+4a

− b
2
√

b2+4a
; b2 =

1
2 +

x0√
b2+4a

+ b
2
√

b2+4a
;

c1 =
y0
2 −

a√
b2+4a

+ y0b
2
√

b2+4a
; c2 =

y0
2 + a√

b2+4a
− y0b

2
√

b2+4a
;

d1 =
1
2 −

y0√
b2+4a

− b
2
√

b2+4a
; d2 =

1
2 +

y0√
b2+4a

+ b
2
√

b2+4a
.

Constants determined for the value of the fraction:

e1 = Ẑd
(
2(ωM) 2− f ẐT

)
;

e2 = Ẑd
(
2(ωM) 2−gẐT

)
;

e3 = g
(
Ẑ− Ẑd

)
ẐT +2(ωM) 2

(
−h+ Ẑd +2ẐT

)
;

e4 = f
(
Ẑ− Ẑd

)
ẐT +2(ωM) 2

(
h+ Ẑd +2ẐT

)
;

e5 = (ωM) 2
(
4(ωM) 2 + f

(
Ẑ + Ẑd

)
+2
(
−h+ Ẑd

)
ẐT
)

;

e6 = Ẑd
(

f ẐẐT +(ωM) 2
(
− f +2ẐT

))
;

e7 = Ẑd
(
gẐẐT − (ωM) 2

(
g−2ẐT

))
;

e8 = (ωM) 2
(
4(ωM) 2 +g

(
Ẑ + Ẑd

)
+2
(
h+ Ẑd

)
ẐT
)

;

h =
√

Ẑ2 +4(ωM) 2.

Note: for (2.48) and (2.49), Ẑ, ẐT and Ẑd are replaced by R, RT and Rd , respectively.
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Impedance Matrix

3.1 Introduction

In chapter 2 we performed a study on the equivalent impedance of a resonator array, which is usu-

ally expressed by a continued fraction. Expressing the continued fraction as a recursive sequence,

we could obtain a closed-form formula using the theory of linear difference equations. The study

of the equivalent impedance of a resonator array allows one not only to have a better insight on

the behaviour of the system, but also to analyse the power delivered by the source to the array and

its variation with the change of the parameters of the system (electrical parameters of the array,

total number of resonators of the array, termination impedance, receiver impedance, position of

the receiver).

However, the study of the equivalent impedance does not allow one to determine the power

absorbed by a load at the end of the array or by a receiver sliding over the array; consequently, it

does not allow to calculate the efficiency of the system, taking into account the power delivered by

the source to the loaded array of resonators. In literature, the power delivered to a load or a receiver

is determined by the use of magnetoinductive wave theory [16] or by obtaining the currents in the

resonators through the numerical inversion of the impedance matrix [14]. Methods based on the

magnetoinductive wave theory consider the resonator array as a transmission line and thus a clear

insight of the behaviour of the resonator array as a circuit cannot be obtained, especially if one

tries to predict the behaviour of the system with the changes of its electrical parameters and in

the presence of one or two receivers over the coil. Moreover, methods that resort to the numerical

inversion of the impedance matrix have the disadvantage of allowing the calculation of the power

delivered to a receiver or a load only for specific situations.

In order to obtain a better insight of the system and predict its behaviour even with the vari-

ation of its parameters, this chapter presents an analytical analysis of the circuit that represents

an array of resonators. Through the mathematical inversion of a tridiagonal matrix, one obtains

closed-formulas for the current in each resonator. With the current values, the power supplied by

the power source and delivered to a load or receiver, and hence the total efficiency of the system,

can be obtained. Moreover, using the formulas obtained in this chapter, the maximum values of

efficiency and power absorbed by a load or a receiver for different situations can be obtained. Af-

terwards, some examples are made with the formulas obtained in this work in order to illustrate

the theoretical results obtained. Finally, using Simulink as a circuit simulator and using the exper-

imental setup described in chapter 5, a verification of the obtained formulas is performed along

with examples of applications of the theoretical results.
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3. Mathematical Modelling of the Impedance Matrix

Figure 3.1: Equivalent circuit of an array of resonators represented by (3.5).

3.2 Description of the circuit: cases of study

In this section, we describe the circuit considered and present the relevant cases in order to analyse

the power transmission using a resonator array.

Taking as an example a generic circuit composed of a resonator array with N resonators con-

nected to a termination impedance Ẑ′T , the equations that describe this system can be written in

matrix form as:

V̂ = ẐmÎ (3.1)

with

V̂ = [V̂s,0...,0]T (3.2)

being the current vector represented by

Î = [Î1, ..., Îq, ..., ÎN ]
T , (3.3)

and the impedance matrix [14, 23] by:

Ẑm =


Ẑ1 jωM12 ... jωM1N

jωM21 Ẑ2 ... jωM2N
...

...
. . .

...

jωMN1 jωMN2 ... ẐN + Ẑ′T

 . (3.4)

Then, as represented in Fig. 3.1, assuming that the mutual inductance between adjacent resonators

is given by M whereas the one between non adjacent resonators is neglected, and that all the

resonators are identical with impedance given by Ẑ = R+ jωL+ 1/( jωC), being ω = 2π f the

angular frequency, the matrix Ẑm takes the following form:

Ẑm =


Ẑ jωM ... 0

jωM Ẑ ... 0
...

...
. . . jωM

0 0 jωM Ẑ + Ẑ′T

 . (3.5)

Then, if we want the values of the current vector, i.e. the current flowing in each resonator, we

need to determine the inverse matrix Ẑ−1
m :
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Î = Ẑ−1
m V̂. (3.6)

Considering a fixed voltage vector given by (3.2) we can obtain the values of the currents by

knowing the first column of the inverse of the impedance matrix (Ẑ−1
m(1,1), ..., Ẑ

−1
m(N,1)). By deter-

mining the current in each resonator one can determine also the power transmitted to a certain load

or receiver and efficiency of the system, as it will be demonstrated later in this chapter.

Then, as (3.5) shows, the elements of the sub-diagonals of the impedance matrix are identical

and equal to jωM. However, the elements in the main diagonal are not all equal to Ẑ, as there

are one or two elements that are different, depending on whether there is a load, or one or two

receivers over the line. In this way, we can consider two different case studies, according to the

different mathematical solution of the inverse of the impedance matrix that is described later in

this chapter:

• first case: all elements of the impedance matrix main diagonal are identical and equal to Ẑ

except the last one (Ẑ−1
m(N,N) 6= Ẑ);

• second case: all elements of the impedance matrix main diagonal are identical and equal to

Ẑ, except the last one and another element in any given lth position (Ẑ−1
m(N,N) 6= Ẑ−1

m(l,l) = Ẑ,

with l = 1, ...,N−1).

3.2.1 First case

In this case, only the last element of the matrix is different than Ẑ and is represented by Ẑ + Ẑ′T ,

as in Fig. 3.1. This Ẑ′T could represent a physical load (Ẑ′T = ẐT , Fig. 3.2(a)) or a receiver

(represented by Ẑd) over the Nth cell, in an array terminated with ẐT (Ẑ′T = Ẑd + ẐT , Fig. 3.2(b)).

Moreover, considering an array with N resonators and a receiver over the lth cell (with N > l),

Ẑ′T could be equal to Ẑd + Ẑeq,N−l (Fig. 3.2(c)), considering that the matrix (3.2) becomes an lxl

matrix and that Ẑeq,N−l represents the equivalent impedance of all the resonators after the lth one

(N− l resonators). All these possible variations of the first case are represented in Fig. 3.2.

3.2.2 Second case

In this case, there will be two different elements on the main diagonal of the impedance matrix:

the last one and another element in a certain lth position. This element in the lth position will be

given by Ẑ + Ẑd1 and represents a receiver over the lth cell of the resonator array, as represented

by (3.7).

Ẑm =



Ẑ jωM · · · 0 · · · 0 0

jωM Ẑ · · · 0 · · · 0 0
...

...
. . .

...
...

...

0 0 · · · Ẑ + Ẑd1 · · · 0 0
...

...
...

. . .
...

...

0 0 · · · 0 · · · Ẑ jωM

0 0 · · · 0 · · · jωM Ẑ + Ẑ′T


(3.7)
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(a)

(b)

(c)

Figure 3.2: Equivalent circuits of different possible configurations of the system represented by
(3.5): (a) physical load (no receiver) on the Nth cell (Ẑ′T = ẐT ); (b) a receiver over the
Nth cell (Ẑ′T = Ẑd + ẐT ); (c) receiver over the lth cell (Ẑ′T = Ẑd + Ẑeq,N−l).
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(a)

(b)

(c)

Figure 3.3: Equivalent circuits of different possible configurations of the system represented by
(3.7): (a) no second receiver on the Nth cell (Ẑ′T = ẐT ); (b) a second receiver over the
Nth cell (Ẑ′T = Ẑd2+ ẐT ); (c) a second receiver over the mth cell (Ẑ′T = Ẑd2+ Ẑeq,N−m).

However, as in the previous case, Ẑ′T can have different values depending on the system that

we are representing. Therefore, matrix (3.7) can represent an array of resonators with no second

receiver over the Nth resonator (Ẑ′T =ẐT , Fig. 3.3 (a)) or with a second receiver on the Nth resonator

(Ẑ′T =Ẑd2 + ẐT , Fig. 3.3 (b)). Furthermore, considering an array with N resonators in which the

second receiver is over the mth cell (with N > m > l), Ẑ′T could be equal to Ẑd2 + Ẑeq,N−m (Fig.

3.3(c)), considering that the matrix (3.3) becomes an m×m matrix and that Ẑeq,N−m represents the

equivalent impedance of all the resonators after the mth one (N−m resonators).

3.2.2.1 With a source impedance Ẑs

Finally, in order to consider an array powered by a source with an internal impedance, we can

study another specific variation of the second case, performed in order to analyse the effects of the

source impedance on the power transmission and efficiency of the system. In this configuration,

represented by (3.8), the first and last elements of the matrix are different, such that the first

element of the matrix becomes Ẑ+ Ẑs, being Ẑs the voltage source impedance, and the Nth element

is given, as in the first case, by Ẑ+ Ẑ′T (Fig. 3.4). Regarding the value of Ẑ′T , as in the first case, Ẑ′T
could represent a physical load (Ẑ′T = ẐT ), a receiver over the Nth cell in an array terminated with

ẐT (Ẑ′T = Ẑd + ẐT ), or a receiver over the lth resonator of the array (Ẑ′T = Ẑd + Ẑeq,N−l), situation
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in which (3.8) becomes an lxl cell.

Ẑm,3 =


Ẑ + Ẑs jωM ... 0

jωM Ẑ ... 0
...

...
. . . jωM

0 0 jωM Ẑ + Ẑ′T

 (3.8)

Figure 3.4: Equivalent circuit of an array of resonators represented by (3.8).

Note that if the system is operating at the resonant angular frequency ω0 = 1/
√

LC and assuming

that the receivers have the same resonant frequency as the cells of the array, all the values of the

diagonals of the matrices presented become real and can be represented by resistances Ẑ = R,

Ẑ′T = R′T , ẐT = RT , Ẑd = Rd , Ẑd1 = Rd1, Ẑd2 = Rd2, Ẑeq = Req and Ẑs = Rs.

3.3 Mathematical determination of the inverse of a

tridiagonal matrix

After presenting some interesting practical cases, we determine analytically in this section the

inverse of a tridiagonal matrix with the above mentioned particular characteristics. First of all,

we assume that all the tridiagonal matrices that we consider are invertible, which means that their

determinant is different from zero. Then, we start by considering a generic symmetric tridiagonal

matrix N×N, with constant nondiagonal elements α and diagonal elements βk, with 1 ≤ k ≤ N,

with α,βk ∈ C :

J =



β1 α · · · 0 0

α β2 · · · 0 0
...

...
. . .

...
...

0 0 · · · βN−1 α

0 0 · · · α βN


. (3.9)

The elements of the inverse of the matrix (3.9), according to [33] and knowing that the inverse

of a symmetric matrix is still symmetric, are given by:

J−1
i j =

(−1)i+ jα j−iθi−1φ j+1

detJ
, with 1≤ i, j ≤ N, (3.10)

where
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θ−1 = 0, θ0 = 1, θk = βkθk−1−α
2
θk−2, k = 1, . . . ,N (3.11)

and

φN+2 = 0, φN+1 = 1, φk = βkφk+1−α
2
φk+2, k = N, N−1, . . . ,1. (3.12)

Then, as k is decreasing in (3.12), we make a change of variable to obtain an inversion of the

order of the index to be able to solve the difference equation defined by (3.12). Then, defining

xp = φN−p+1, in which the index p increases, we have x−1 = φN+2, x0 = φN+1, x1 = φN and

xp = βN−p+1xp−1−α
2xp−2, p≥ 2. (3.13)

So, the sequence {xn} (and consequently {φn}) is defined by one homogeneous difference equa-

tion with constant coefficients whose general term can be determined by the theory of linear ho-

mogeneous difference equations [28] similarly as done in Chapter 2.

As explained in the previous section, we only need to know the values of the elements of the first

column of the inverse matrix, J−1
i,1 . However, knowing that the inverse of a symmetric matrix is

also symmetric, we can determine the elements of the first row of the inverse matrix, J−1
1, j instead.

In this way, we get a simplified expression for these elements, as θ0 = 1 :

J−1
1, j =

(−1)1+ jα j−1φ j+1

detJ
. (3.14)

According to the two cases presented in the previous section, we will consider the following

values for the elements of matrix (3.9):

α = a, βN = c, β1 = β2 = ...= βN−1 = b; (3.15)

α = a, βN = c, β1 = β2 = ...= βl−1 = βl+1 = ...= βN−1 = b, βl = d; (3.16)

being a, b, c and d complex numbers.

3.3.1 First case

For this case, as described in (3.15) we consider the N×N matrix

T =



b a 0 · · · 0 0

a b a · · · 0 0

0 a b · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · b a

0 0 0 · · · a c


(3.17)

and x0 = φN+1 = 1 , x1 = φN = c and xp−bxp−1 +a2xp−2 = 0.

Solving this equation similarly as done in Chapter 2, supposing that b2 6= 4a2 (that is, the poly-

nomial x2−bx+a2 has two distinct roots), we can write:
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xp = e1

(
b−
√

b2−4a2

2

)p

+ e2

(
b+
√

b2−4a2

2

)p

(3.18)

with e1 and e2 being constants to be determined using the initial conditions x0 and x1:

1 = e1 + e2

2c = e1

(
b−
√

b2−4a2
)
+ e2

(
b−
√

b2−4a2
) . (3.19)

Referring to the sequence {φn}, defined as φN−p+1 = xp , we have

φp = e1

(
b−
√

b2−4a2

2

)N+1−p

+ e2

(
b+
√

b2−4a2

2

)N+1−p

. (3.20)

Then, after describing the general term of the sequence {φn}, we need to calculate the determi-

nant of the matrix T , detT .

So, having the S×S matrix:

XS =



b a · · · 0 0

a b · · · 0 0
...

...
. . .

...
...

0 0 · · · b a

0 0 · · · a b


(3.21)

we know from [34] that:

detXS = BS = aSUS

(
b
2a

)
, (3.22)

where US is a Chebychev polynomial of second kind, that can be defined as [34]:

UN

(
b
2a

)
=

(
b
2a +

√( b
2a

)2−1
)N+1

−
(

b
2a −

√( b
2a

)2−1
)N+1

2
√( b

2a

)2−1
, (3.23)

assuming that ( b
2a)

2 6= 1.

Thus, by the Laplace Expansion Theorem [35], we have

detT = det



b a · · · 0 0

a b · · · 0 0
...

...
. . .

...
...

0 0 · · · b a

0 0 · · · a c


= cBN−1−a2BN−2. (3.24)

Using (3.14) with (3.20) and 3.24, we can calculate the elements T−1
1,1 , T−1

q,1 and T−1
N,1:

T−1
1,1 = φ2

detT =

=
e1

(
b−
√

b2−4a2
2

)N−1

+e2

(
b+
√

b2−4a2
2

)N−1

caN−1UN−1( b
2a)−aNUN−2( b

2a)
,

(3.25)
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T−1
q,1 = T−1

1,q =
−(−1)qaq−1φq+1

detT =

=
−(−1)qaq−1e1

(
b−
√

b2−4a2

2

)N−q
+ e2

(
b+
√

b2−4a2

2

)N−q

caN−1UN−1( b
2a)−aNUN−2( b

2a)

(3.26)

and

T−1
N,1 = T−1

1,N =
(−a)N−1

detT =

= (−a)N−1

caN−1UN−1( b
2a)−aNUN−2( b

2a)
.

(3.27)

Therefore, determining the constants e1,e2 (described in Appendix B) from (3.20), (3.23) and

(3.24), and using the software Mathematica to simplify the expressions, we have:

T−1
1,1 =

(ε3−2c)ε
N−1
2 − (ε2−2c)ε

N−1
3

c
(
εN

3 − εN
2

)
+2a2

(
ε

N−1
2 − ε

N−1
3

) (3.28)

T−1
q,1 = T−1

1,q =
(−1)q(2a)q−1

(
(ε2−2c)ε

N−q
3 − (ε3−2c)ε

N−q
2

)
c
(
εN

3 − εN
2

)
+2a2

(
ε

N−1
2 − ε

N−1
3

) (3.29)

and

T−1
N,1 = T−1

1,N =
2Nε1(−a)N−1

c
(
εN

3 − εN
2

)
+2a2

(
ε

N−1
2 − ε

N−1
3

) (3.30)

with ε1 =
√

b2−4a2, ε2 = b−
√

b2−4a2, ε3 = b+
√

b2−4a2.

3.3.1.1 Second case

Afterwards, as described in (3.16), we consider the N×N matrix,

M =



b a · · · 0 · · · 0 0

a b · · · 0 · · · 0 0
...

...
. . .

...
...

...

0 0 · · · d · · · 0 0
...

...
...

. . .
...

...

0 0 · · · 0 · · · b a

0 0 · · · 0 · · · a c


(3.31)

where the main diagonal element in the lth position is d (1≤ l < N).

Analogously, as done in the previous case, in order to determine the values of the first column of

the inverse of the symmetric tridiagonal matrix M, we apply the results presented in (3.10)-(3.12).

In this case, according to (3.21) and (3.22) and using the Laplace Expansion Theorem [35] the

determinant of M is given by:

detM =
(cBN−l−1−a2BN−l−2)(dBl−1−a2Bl−2)

−a2Bl−1(cBN−l−2−a2BN−l−3)
. (3.32)
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Regarding the determination of the first N terms of the sequence {φn} we will consider three steps,

as done in Chapter 2 where we have defined a perturbation in the continued fraction. The N− l

last terms, from l +1 to N (l +1, l +2,. . .N), are calculated using (3.18), (3.19) and (3.20):

φu = e1

(
b−
√

b2−4a2

2

)N+1−u

+ e2

(
b+
√

b2−4a2

2

)N+1−u

, l +1≤ u≤ N (3.33)

where the constants e1 and e2 are calculated as done in the previous case and their values are

presented in Appendix B. The term of order l will be calculated taking into account the element d

with the expression:

φl = dφl+1−a2
φl+2, (3.34)

where φl+1 and φl+2 are given by (3.33). Finally, the third step consists in determining the l− 1

first terms of the sequence {φn}, from 1 to l−1 (1,...,l−1). Once again, from (3.18), (3.19) and

(3.20) we know that:

φ f = g1

(
b−
√

b2−4a2

2

)l+1− f

+g2

(
b+
√

b2−4a2

2

)l+1− f

,with f = l−1, l−2, . . . ,2,1

(3.35)

where g1 and g2 are constants that can be calculated by the initial conditions φl and φl+1, obtained

with (3.33) and (3.34):

φl+1 = g1 +g2

2φl = g1

(
b−
√

b2−4a2
)
+g2

(
b−
√

b2−4a2
) . (3.36)

In conclusion, the elements of the first column of the inverse matrix of M are given by

M−1
t,1 = M−1

1,t =
(−a)t−1φt+1

detM
, 1≤ t ≤ N (3.37)

with φt+1 being determined according to the following expression:

φh =


e1

(
b−
√

b2−4a2

2

)N+1−h
+ e2

(
b+
√

b2−4a2

2

)N+1−h
, l +1≤ h≤ N +1

dφl+1−a2φl+2, h = l

g1

(
b−
√

b2−4a2

2

)l+1−h
+g2

(
b+
√

b2−4a2

2

)l+1−h
, 1≤ h≤ l−1

. (3.38)

Thus, knowing the values of the constants e1, e2, g1 and g2 (described in Appendix B), deter-

mining detM using (3.22) and (3.32), using Mathematica software to simplify the expressions we

can write (3.37) as:
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M−1
1,1 =



2−n−1(ε2ε3)
−l−2



−32a4ε
l+1
3 ε

l+n
2 +

4a2
(

εn
2ε

l+1
3

(
2εl

2
(
2b2−b(2c+d−2ε1)− ε1(2c+d)+2cd

)
− ε2(ε3−2c)εl

3
))

−(ε2−2c)εl
2εn

3
(
2ε3(b−d)εl

2− ε2
2εl

3
)

+ε2
2(2d− ε2)ε

l+1
3

(
(ε3−2c)εn

2εl
3− (ε2−2c)εl

2εn
3
)


ε2

1 detM
, l ≥ 3

2−n+1((ε3−2c)(dε2−2a2)ε
n−3
2 +(2c−ε2)(dε3−2a2)ε

n−3
3 )

ε1 detM , l = 2
2−n((ε3−2c)ε2

n−1+(2c−ε2)ε3
n−1)

ε1 detM , l = 1
(3.39)

M−1
l,1 = M−1

1,l =
2−N(−2a)l−1

(
(ε3−2c)ε2

N−l +(2c− ε2)ε3
N−l
)

ε1 detM
, 2≤ l ≤ N−1 (3.40)

M−1
N,1 = M−1

1,N =
(−a)N−1

detM
(3.41)

with ε1 =
√

b2−4a2, ε2 = b−
√

b2−4a2, ε3 = b+
√

b2−4a2. Note that in (3.39), the particular

cases where the element d is on the first or second position of the main diagonal (l = 1 or l = 2) are

separated, since the expressions obtained for these two cases are much simpler than the expressions

for other positions.

3.4 Application of the mathematical results

In this section, we apply the mathematical results obtained in the previous section, by replacing the

generic mathematical constants (a, b, c and d) by the circuit parameters. In this way, we can obtain

expressions for the currents in each resonator for the cases presented before, and consequently ex-

pressions for the power delivered to a load or receiver and the efficiency of the system. Moreover,

with these expressions, one can determine analytically the maximum values of power delivered

and efficiency for the different cases. The expressions presented were simplified using the soft-

ware Mathematica. Finally, some examples are made in order to illustrate the results obtained.

The examples are performed using the values of R, L, C and M acquired through measurements

made on the experimental setup illustrated in Chapter 5 (L = 12.6µH, C = 93.1nF, R = 0.11Ω,

M =−1.55µH and f0 = 147kHz).

3.4.1 First case

3.4.1.1 Values of the currents in the resonators

We start by considering the first case represented by (3.5), by replacing a= jωM, b= Ẑ and c= Ẑ′T
in (3.28)-(3.30). Then, we can write the expressions for the currents in the resonators:

Î1 = V̂s

(
ι3 +2Ẑ′T

)
ι
N−1
3 −

(
ι2 +2Ẑ′T

)
ι
N−1
2(

Ẑ + Ẑ′T
)(

ιN
3 − ιN

2

)
+2(ωM) 2

(
ι
N−1
3 − ι

N−1
2

) (3.42)

55



3. Mathematical Modelling of the Impedance Matrix

Îq = V̂s

(−1)q2q−1( jωM)q−1
((

ι2 +2Ẑ′T
)

ι
N−q
2 −

(
ι3 +2Ẑ′T

)
ι
N−q
3

)
(
Ẑ + Ẑ′T

)(
ιN
3 − ιN

2

)
+2(ωM) 2

(
ι
N−1
3 − ι

N−1
2

) (3.43)

and

ÎN = V̂s
2N(− jωM)N−1ι1(

Ẑ + Ẑ′T
)(

ιN
3 − ιN

2

)
+2(ωM) 2

(
ι
N−1
3 − ι

N−1
2

) (3.44)

with ι1 =
√

4(ωM)2 + Ẑ2, ι2 = Ẑ−
√

4(ωM)2 + Ẑ2, ι3 = Ẑ+
√

4(ωM)2 + Ẑ2. Note that Î1 and ÎN

are particular cases of Îq, since q = 1, ...,N.

Then, we can perform an example, considering that we are operating at resonant frequency,

taking as a reference a voltage source with V̂s = 1∠0ºV. Then, using the expression of Îq given

by (3.43), we can obtain the values of the currents for an example of an array of 8 resonators

(with N = 8, and q from 1 to 8), terminated with different values of R′T .Thus, for R′T = 0.4Ω;

R′T = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2 and R′T = 10Ω, we have the currents shown in Fig. 3.5.

Then, keeping the same values considered before, we consider now that the resonator intrinsic AC

resistance is 3 times higher, R = 0.33Ω, and calculated Îq for the same different values of R′T . The

results are shown in Fig. 3.6.

Firstly, we can see that the currents have a phase difference of 90º due to the jω0M factor.

Furthermore, when the resonator array is perfectly terminated (R′T = Req,∞, as in Fig. 3.5 (b)

and Fig. 3.6 (b)), the absolute value of the currents decreases smoothly from the first to the last

resonator, while with different values of R′T there are bigger oscillations regarding the absolute

values of the currents, which are also represented in Fig. 3.7. The peaks of the absolute value

of the currents on the resonators will occur on even or odd resonators, depending on whether the

array is terminated by R′T <
(
−R+

√
4(ω0M)2 +R2

)
/2 or by R′T >

(
−R+

√
4(ω0M)2 +R2

)
/2,

respectively. Moreover, regarding the case when the resistance had a higher value, we can see that

the absolute value of the current has a higher decrease, but smoother oscillation.

For the perfectly terminated case, using (3.43) and setting R′T =Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2,

the value of Iq+1/Iq is equal to j, meaning that all the currents would have the same absolute value.

Note that, for these examples, we considered a negative mutual inductance M which is the case

of the planar resonators. Regarding situations where the mutual inductance is considered positive

(domino-resonators, for example [3]), the previous conclusions and results concerning the absolute

values of the currents still apply. The only difference would be that the phase difference between

the currents will be -90º instead of 90º.

Îq+1

Îq
=

−2 jω0M

R+
√

4(ω0M)2 +R2
(3.45)

whose value is 0.9562 j for the case represented in Fig. 3.5 and 0.8746 j for the case depicted

in Fig. 3.6. As seen in (3.45), for the perfect termination, the ratio between the currents in two

consecutive resonators will be constant and does not depend on the value of R′T , but only on the

electrical parameters of the line. For a low-loss line, i.e. R� ω0M, (3.45) becomes equal to j,

meaning that all the currents would have the same absolute value.

Note that, for these examples, we considered a negative mutual inductance M which is the case
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(a) (b) (c)

Figure 3.5: Real and imaginary parts for the current in each resonator, Îq, with 1 ≤ q ≤ 8, for an
array of 8 resonators, for different values of R′T : (a) R′T =0.4Ω, (b) R′T = Req,∞ and (c)
R′T =10Ω.

(a) (b) (c)

Figure 3.6: Real and imaginary parts for the current in each resonator, Îq, with 1 ≤ q ≤ 8, for an
array of 8 resonators, for R = 0.33Ω and for different values of R′T : (a) R′T =0.4Ω, (b)
R′T = Req,∞ and (c) R′T =10Ω

of the planar resonators. Regarding situations where the mutual inductance is considered positive

(domino-resonators, for example [3]), the previous conclusions and results concerning the absolute

values of the currents still apply. The only difference would be that the phase difference between

the currents will be -90º instead of 90º.

3.4.1.2 E�ciency and power delivered to a load or a receiver over the last cell

represented by RT

Now considering that we want do determine the efficiency of the power delivered to a physical

load, or a receiver over the last cell (Fig. 3.2 (a)) represented by ẐT (Ẑ′T = ẐT ), and supposing that

we are working at the resonant frequency, so Ẑ = R, ωM = ω0M and Ẑ′T = R′T = RT , we can define

the efficiency as the ratio between the power absorbed by RT and the input power:
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(a)

(b)

Figure 3.7: Absolute values of the current in each resonator, Îq, with 1 ≤ q ≤ 8, for an array of 8
resonators, for different values of R′T =0.4Ω, (b) R′T = Req,∞ and (c) R′T =10Ω and for
different values of R: (a) R = 0.11Ω and (b) R = 0.33Ω.
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Figure 3.8: Input power Pin (3.47) for different values of RT and different number of resonators N.

η =
PRT

Pin
=

IN
2RT

VsI1
(3.46)

in which I1, IN and Vs are the RMS values of the current in the first and Nth resonator and of the

voltage source, respectively.

Then, using the expressions obtained for the currents, (3.42) and (3.44) we can rewrite the

expressions for the input power, the power delivered to a load RT and the efficiency as defined by

(3.46):

Pin =
V 2

s
(
−ι

N−1
2 (ι2 +2RT )+ ι

N−1
3 (ι3 +2RT )

)
2(ω0M) 2

(
ι
N−1
3 − ι

N−1
2

)
− (R+RT )

(
ιN
2 − ιN

3

) (3.47)

PRT =
4NV 2

s RT (ω0M) 2N−2ι2
1(

(R+RT )
(
ιN
3 − ιN

2

)
+2(ω0M) 2

(
ι
N−1
3 − ι

N−1
2

))2 (3.48)

η =
4N+1RT (ω0M) 2Nι2

1( (
ιN
2

(
ι3RT −2(ω0M) 2

)
+ ιN

3

(
2(ω0M) 2− ι2RT

))(
ι1
(
ιN
2 + ιN

3

)
− (R+2RT )

(
ιN
2 − ιN

3

)) ) (3.49)

with ι1 =
√

4(ω0M)2 +R2, ι2 = R−
√

4(ω0M)2 +R2, ι3 = R+
√

4(ω0M)2 +R2.

First of all, it is interesting to notice that the value of the efficiency does not depend on the RMS

value of the voltage source Vs; it depends only on the electrical parameters of the array and the load

RT . However, the values PRT and Pin depend on Vs. So, for a simpler illustration of the formulas

obtained, considering that the resonator array is fed by a voltage source with a fixed RMS value,

Vs, in the examples we consider the values of the power per square of the RMS value of the voltage

source, i.e. PRT /V 2
s . So, we can calculate the input power, output power for different number of

resonators N and values of RT using (3.47), (3.48) and (3.49), respectively. The results are shown

in Figs. 3.8 to 3.10.
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Figure 3.9: Power absorbed by RT (3.48) for different values of RT and different number of res-
onators N.

Figure 3.10: Efficiency (%) for different values of RT and different number of resonators N.

Observing Figs. 3.8 to 3.10, we can draw some conclusions. First, the input power has the same

value for any number of resonators, if RT has a certain value. This value confirms what was demon-

strated in Chapter 2, i.e., if the line is terminated with RT = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2

(in this case RT = 1.38Ω), the input impedance remains constant for any number of resonators,

meaning that for RT = Req,∞ and a fixed voltage source we have constant input power. Secondly,

regarding Pin and PRT , we can see that both curves have different behaviour for even or odd num-

bers of cells: for a given voltage source and for a fixed value of RT we obtain higher or lower

values of power depending on whether we are considering odd or even numbers of cells. For ex-

ample, for RT = 5Ω, we have higher values of power with an even number of cells (N = 2, 4, 6 and

8). Finally, this alternating behaviour regarding even or odd numbers of cells does not affect the

value of the efficiency. Instead, for the same value of RT , the efficiency drops with the increase of
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the total number of resonators N. However, as we can observe in Fig. 3.10 there is a value of RT

that results in the maximum efficiency for every number of resonators. We can obtain this value

of RT by determining analytically the maximum efficiency with

dη

dRT
= 0 (3.50)

and solving (3.50) for RT :

RT,ηmax =±
ω0M

√
R
(
ιN
3 − ιN

2

)
+ ι1

(
ιN
2 + ιN

3

)√
R
(
ιN
2 − ιN

3

)
+ ι1

(
ιN
2 + ιN

3

) . (3.51)

Considering a very long line, and assuming that |ι2|< |ι3|, we get:

lim
N→∞

RT ,ηmax =
R+

√
4(ω0M) 2 +R2

2
. (3.52)

Using the value obtained with (3.51) in (3.49), we can obtain the maximum possible efficiency that

we can achieve for an array with certain electrical parameters, for a given number of resonators,

as

ηmax =
ι2
14N (ω0M) 2N

√
ι3ιN

2 − ι2ιN
3

√
ι
N+1
3 − ι

N+1
2 −4(ω0M) 3

(
ιN
2 − ιN

3

)(
ιN
2 + ιN

3

)2−2(ω0M)R2
((

ιN
2 −2ιN

3

)
(ι2ι3)

N +4N
(
−ι2 (ω0M) 2

)N
)

+
(
(−4)NR2 (ω0M) 2N +2(ω0M) 2

(
ι2N
2 + ι2N

3

))√
ι3ιN

2 − ι2ιN
3

√
ι
N+1
3 − ι

N+1
2

 .

(3.53)

Regarding the value of PRT , we can see in Fig. 3.9 that there is, for a given number of resonators,

a value of RT which gives the maximum power transfer to RT . As done previously, we can obtain

this value of RT through the determination the maximum value of PRT with

dPRT

dRT
= 0. (3.54)

and (3.54) for RT :

RT,PRT max =
RιN

2 − ι1ιN
2 −RιN

3 − ι1ιN
3

2ιN
2 −2ιN

3
. (3.55)

The value obtained in (3.55), if we consider a very long line, becomes:

lim
N→∞

RT,PRT max =
R+

√
4(ω0M)2 +R2

2
. (3.56)

Once again, if we want to determine the maximum power that it is possible to deliver to RT ,

for certain electrical parameters of the array, voltage source with RMS value Vs and number of

resonators, we can use the value of (3.55) in (3.48) and obtain:
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Figure 3.11: Value of RT ,ηmax for different numbers of resonators (N).

Figure 3.12: Value of RT ,PRT max for different numbers of resonators (N).

PRT ,max=−
22N−1V 2

s (ω0M)2N−2ι2
1(

ιN
2 − ιN

3

)(
ι1
(
ιN
2 + ιN

3

)
+R

(
ιN
3 − ιN

2

)) . (3.57)

Then, using (3.51) and (3.55) we can plot the value of the value of RT for different numbers of

resonators (N), as Figs. 3.11 and 3.12 show.

We can see from Figs. 3.11 and 3.12 that, although the values of RT that guarantee maximum

efficiency and power delivered tend both to the same value for a large number of resonators (RT =

1.49 from (3.52) and (3.56)), e.g., RT ,PRT max has larger oscillations from maximum to minimum

values. Moreover, it is interesting to note that the values given by (3.52) and (3.56) tend to ω0M

for a low-loss line (R� ω0M), which is considered to be the matching impedance of a long low-

loss line according to the magnetoinductive wave theory [14, 16]. Then, in order to evaluate the

maximum possible values of efficiency and power delivered to RT , we can define a parameter r as

r = R/(2ω0|M|). (3.58)

The higher this ratio, the higher the losses of the resonator array and so r tends to zero for a low-

loss line. This ratio r is simply the factor 1/|kQ| that, according to the magnetoinductive wave

theory, increases the attenuation in each cell [14, 16].Then, for different values of r, using (3.53)

and (3.57) we can plot the maximum efficiency and the maximum power transfer using (3.53) and

(3.57) that is possible to deliver to a load RT given by (3.51) and (3.55), for a resonator array with

for a determinate number of resonator and different values of r (Figs. 3.13 and 3.14).
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Figure 3.13: Maximum power transfer to a determinate load RT that is possible to obtain with a
resonator array with N resonators and given values of r.

Figure 3.14: Maximum efficiency that is possible to obtain with a resonator array with N res-
onators and given values of r.

As expected, both efficiency and power delivered to RT decrease with the increase of the ratio

r (i. e. with the decrease of |kQ|) due to higher losses and attenuation in the array and decreases

with the number of resonators N, too.

3.4.1.3 E�ciency and power transmitted to a receiver Rd over the lth cell

Eventually, considering a receiver represented by Ẑd over the lth cell (Fig. 3.2 (c)), Ẑ′T = Ẑd +

Ẑeq,N−l , and assuming that we are working at the resonant frequency, so Ẑ = R, ωM = ω0M,

Ẑ′T = R′T = Rd +Req,N−l , we can define the efficiency as the ratio between the power absorbed by

Rd and the input power as:

η =
PRd

Pin
=

Il
2Rd

VsI1
(3.59)
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Figure 3.15: Power delivered to Rd , PRd/V 2
s (W/V2), determined with (3.60) for different values

of Req,N−l and Rd and for different positions of the receiver l.

where I1, Il and Vs are the RMS values of the current in the first and lth resonators and of the

voltage source.Then, using the expressions obtained for the currents, (3.42) and (3.44), replacing

N with l, we can rewrite the expressions of the power delivered to receiver represented by Rd over

the lth position and the relevant efficiency as defined by (3.46):

PRd =
4lV 2

s Rd(ω0M)2l−2ι2
1((

R+Rd +Req,N−l
)(

ιl
3− ιl

2

)
+2(ω0M)2

(
ι
l−1
3 − ι

l−1
2

))2 , (3.60)

η =
4l+1Rd(ω0M)2lι2

1( (
ι1
(
ιl
2 + ιl

3

)
+
(
ιl
3− ιl

2

)(
R+2

(
Rd +Req,N−l

)))((
Rd +Req,N−l

)(
ι1
(
ιl
2 + ιl

3

)
+R

(
ιl
2− ιl

3

))
−2(ω0M)2

(
ιl
2− ιl

3

)) ) . (3.61)

Note that the expressions (3.60) and (3.61) can be used for the particular situation represented in

Fig. 3.2 (b), where there is a receiver over the Nth cell and the line is terminated by RT , replacing

in (3.60) and (3.61) l with N and Req,N−l with RT .Then, for different values of Rd and Req,N−l and

for distinct positions of the receiver we can plot the power delivered to the receiver Rd using (3.60)

and the efficiency using (3.61) . The results are shown in Figs. 3.15 and 3.16, respectively.

It can be observed in Fig. 3.15 that, similarly as observed in Figs. 3.8 and 3.9, the value of

the power delivered to Rd has opposite behavior for odd and even values of l. For example, for

Rd =Req = 5Ω, PRd has highest values when the receiver is on an even position (l = 2, 4 and 8)

and lowest values for odd positions (l = 1, 3, 5 and 7). Moreover, as it can be noticed in Fig. 3.16,

both the efficiency and power delivered to a receiver get higher as Req,N−l goes to zero. However,

as we saw in Chapter 2, Req,N−l can only be equal to zero if the receiver is over the last cell and
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Figure 3.16: Efficiency (%) determined with (3.61) for different values of Req,N−l and Rd and for
different positions of the receiver l.

Req,N−l = RT = 0 (which represents the situation already studied and analysed in Figs. 3.8 to

3.10). Otherwise, Req,N−l has a value that oscillates between low and high values as seen in Fig.

2.6, depending on the number of resonators after the receiver, the termination impedance at the

end of the line and the electrical parameters of the system. The only way to guarantee that Req,N−l

is constant for any number of resonators after the receiver is to terminate the line with a resistance

RT = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2, so the equivalent impedance of all the resonators after

the lth one (Req,N−l) is always equal to
(
−R+

√
4(ω0M)2 +R2

)
/2. Then, for this particular case

we can replace Req,N−l by Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2 in (3.60) and (3.61) and have

PRd (Req,N−l = Req,∞) =
4lV 2

s Rd(ω0M)2l−2ι2
1(

Rd
(
ιl
3− ιl

2

)
+ ι1ιl

3

)2 (3.62)

and

ηRd (Req,N−l = Req,∞) =
22l+1Rd(ω0M)2l

(
4(ω0M)2 +R2

)( (
ι1ιl

3 +Rd
(
ιl
3− ιl

2

))(
−R
(
ι1ιl

3−Rdιl
2 +Rdιl

3

))
+ι1Rd

(
ιl
2 + ιl

3

)
+4(ω0M)2ιl

3 +R2ιl
3

) (3.63)

Then, using (3.62) and (3.63), we can plot again the efficiency and power, for different values

of Rd and different positions of the receiver l (Figs. 3.17 and 3.18).

Again, as seen before, the power delivered to a receiver represented by a given Rd has high or

low values depending on the parity of the position of the receiver l, while the efficiency decreases
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Figure 3.17: Power delivered to Rd for different values of Rd and for different positions of the
receiver l for an array terminated with Req,∞.

Figure 3.18: Efficiency (%) for different values of Rd and for different positions of the receiver l
for an array terminated with Req,∞.
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as the position of the receiver increases. Another interesting thing to note is that for a fixed

position l of the receiver, the variation of the power delivered to Rd and the efficiency with Rd is

more limited than the one observed in Figs. 3.9 and 3.10.

Nevertheless, to obtain the maximum efficiency possible, we need to determine the value or

Rd that guarantees the maximum efficiency for a certain position l of the receiver, which can be

calculated by solving

dηRd (Req,N−l = Req,∞)

dRd
= 0 (3.64)

for Rd . Equation (3.64) gives

Rd ,ηmax.(Req,N−l=Req,∞) =

√
ι2
1(−ι2)ι

2l
3√(

ιl
3− ιl

2

)(
R
(
ιl
2− ιl

3

)
+ ι1

(
ιl
2 + ιl

3

)) . (3.65)

Finally, if the receiver is in a position which is very distant from the source, Rd ,ηmax tends to the

value given by:

lim
l→∞

Rd ,ηmax.(Req,N−l=Req,∞) =
√

4(ω0M)2 +R2. (3.66)

Using (3.65) in (3.63) we can write the expression for the maximum possible value for the effi-

ciency of an array terminated with Req,∞, with a receiver on the lth position, for given electrical

parameters of the array:

ηmax.(Req,N−l=Req,∞) =
ι14l(ω0M)2l ι1ι2l

3 −
√

ι2ι2l
3

√
ι3ι2l

2 + ι2ι2l
3 +(−1)l+122l+1R(ω0M)2l

−Rι2l
3 +(−4)lR(ω0M)2l

 . (3.67)

In the same way, the value of Rd that guarantees the maximum power transfer to the load is given

by solving

dPRd (Req,N−l = Req,∞)

dRd
= 0 (3.68)

for Rd , resulting in the following expression:

Rd,PRd max.(Req,N−l=Req,∞) =−
ι1ιl

3

ιl
2− ιl

3
. (3.69)

Again, by substituting (3.69) in (3.62), we can write the expression for the maximum possible

value of the power that can be delivered to a receiver represented by Rd on the lth position, over an

array terminated with Req,∞, with a given voltage source with RMS value Vs and given electrical

parameters of the array:

PRdmax.(Req,N−l=Req,∞) =
4l−1V 2

s (ω0M)2l−2ι1ι
−l
3

ιl
3− ιl

2
(3.70)

If the receiver is very distant from the source, Rd,PRd max tends to the value given by:

67



3. Mathematical Modelling of the Impedance Matrix

Figure 3.19: Value of Rd ,ηmax.(Req,N−l=Req,∞ for different positions of the receiver.

Figure 3.20: Value of Rd,PRd max.(Req,N−l=Req,∞ for different positions of the receiver.

lim
l→∞

Rd,PRd max.(Req,N−l=Req,∞) =
√

4(ω0M)2 +R2 (3.71)

Then, using (3.65) and (3.69) we can plot the values of Rd that guarantee the maximum efficiency

and maximum power transferred, respectively (Figs. 3.19 and 3.20).

As shown in (3.66) and (3.71), the value of the receiver impedance Rd that guarantees the

maximum efficiency and power tends to
√

4(ω0M)2 +R2 = 2.87; in the case of a very low loss

line (R� ω0M) Rd tends to 2ω0M. However, as seen in Figs 3.19 and 3.20, the value of Rd that

guarantees the maximum efficiency has less oscillations and gets closer to
√

4(ω0M)2 +R2 for a

smaller number of resonators than the value of Rd for the maximum power delivered.

If we want to know what is the maximum theoretical power and efficiency that we can obtain for

particular circuit conditions, we can use r defined in (3.58) in equations (3.67) and (3.70) and plot

the values for different values of r and different positions of the receiver l in an array terminated

with Req,∞ (Figs. 3.21 and 3.22).

As seen in Fig. 3.22, the maximum efficiency values decrease with r and with the position of

the receiver l. On the other hand, as it can be observed in Fig. 3.21, the values for the maximum

power that can be delivered to Rd decrease with r; for the same value of r, higher values are found
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Figure 3.21: Maximum power transfer to a determinate receiver Rd in the lth position that is pos-
sible to obtain for different values of r.

Figure 3.22: Maximum efficiency that is possible to obtain with a receiver Rd in the lth position
for different values of r.
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Figure 3.23: Voltage source RMS values Vs considering a fixed power PRd , for different values of
Rd and for different positions of the receiver l for an array terminated with Req,∞.

for an even position (l = 2, 4, 6 and 8) than for an odd position (l = 1, 3, 5 and 7). Moreover, the

values shown in Figs. and 3.22 and 3.21 are lower than the ones in Figs. 3.13 and 3.14, since now

we are considering that the resonator array continues after the cell under the receiver, which leads

to extra losses.

So far, we have determined the power delivered to Rd , PRd for a constant voltage source. Instead,

for a variable voltage source, we can calculate the RMS value of the voltage source Vs needed to

keep the power PRd constant for different positions of the receiver (Fig. 3.23).

3.4.2 Second case

3.4.2.1 Values of the currents on the resonators

After the analysis and examples provided for the first case, we now consider a second case, repre-

sented by (3.7). Then replacing a = jωM; b = Ẑ; c = Ẑ+ Ẑ′′T d = Ẑ+ Ẑd1, in (3.39)-(3.41) we can

write the expressions for the currents in the resonators:

Î1 =



2−2l−N−1(ωM)−2(l+1)V̂s


ι1
(
−4l
)
(ωM)2l

(
ιN
2 − ιN

3

)(
2(ωM)2 + Ẑ′T (Ẑd1−Z)

)
+4l(ωM)2l

(
ιN
2 + ιN

3

)(
2(ωM)2(Ẑd1 +2Ẑ′T )+ZẐ′T (Z− Ẑd1)

)
+(−1)lẐd2

(
ι2l
2 ιN

3

(
ι3(Z + Ẑ′T )+2(ωM)2

)
+ ιN

2 ι2l
3

(
ι2(Z + Ẑ′T )+2(ωM)2

))


ι2
1 det Ẑm

, l ≥ 3
21−NV̂s(ι

N−3
2 (ι3−2(Ẑ+Ẑ′T ))(ι2(Z+Ẑd1)+2(ωM)2)+ι

N−3
3 (ι3+2Ẑ′T )(ι3(Ẑ+Ẑd1)+2(ωM)2))

ι1 det Ẑm
, l = 2

2−NV̂s((ι3−2Ẑ′T )ι2
N−1+(2Ẑ′T−ι2)ι3

N−1)
ι1 det Ẑm

, l = 1
(3.72)

Îl = V̂s

2l−N−1(− j(ωM))l−1
(

ι
N−l
2 (ι2 +2Ẑ′T ))+ ι

N−l
3 (ι3 +2Ẑ′T )

)
ι1 det Ẑm

, for 2≤ l ≤ N−1 (3.73)

and
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ÎN = V̂s
(− jωM)N−1

det Ẑm
(3.74)

with

detẐm =

2−2l−N−1(ωM)−2l

(
4l(ωM)2l

(
(ι1− Ẑd1)ι

N
2 (ι2−2Ẑ′T )+(ι1 + Ẑd1)ι

N
3 (ι3 +2Ẑ′T )

)
+(−1)lẐd1

(
ι2l
2

(
−ιN

3

)
(ι3 +2Ẑ′T )− ιN

2 ι2l
3 (ι2 +2Ẑ′T )

) )
ι2
1

(3.75)

where ι1 =
√

4(ωM)2 + Ẑ2, ι2 = Ẑ−
√

4(ωM)2 + Ẑ2, and ι3 = Ẑ +
√

4(ωM)2 + Ẑ2

3.4.2.2 E�ciency and power delivered to a receiver Rd1 over the lth resonator

First of all, we analyse the particular situation where there is a receiver represented by Ẑd1 over the

lth cell, in a line with N resonators, terminated by Ẑ′T = ẐT , as represented in Fig. 3.3 (a). Then,

considering that we are operating at the resonant frequency, so that Ẑ = R, ωM = ω0M, Ẑd1 = Rd1

and ẐT = RT , we can define the efficiency as the ratio between the power absorbed by Rd1 and the

input power as:

ηRd1 =
PRd1

Pin
=

Il
2Rd1

VsI1
(3.76)

where I1, Il and Vs are the RMS values of the currents in the first and lth resonators and of the

voltage source, respectively.Then, using the expression obtained for the current (3.72), we can

rewrite the expressions for the power delivered to a receiver Rd1:

PRd1 =
V 2

s 4l−N−1(ω0M)−2l−2
(
ιN
2 ιl

3(ι3−2(R+RT ))+ ιl
2ιN

3 (ι3 +2RT )
)2

ι2
1

(
detẐm

)2 Rd1. (3.77)

Note that this case was already analysed in subsection 3.4.1.3, using the simplification in which

the N− l resonators after the lth one were reduced to an equivalent impedance Req,N−l . However,

using the results obtained for the currents, we can study this case with more detail, taking into

account the termination impedance RT at the end of the line.

As an example, we can start considering a receiver over an array of 7 (N = 7) or 8 resonators

(N = 8). Then, using (3.76) and (3.77) we can plot the efficiency and the power delivered to the

receiver Rd1 in the lth position for different values of Rd1 and RT , for arrays of 7 or 8 resonators.

The results are presented in Figs. 3.24 to 3.27.

Comparing the results displayed in Figs. 3.24 and 3.25, we can observe that for the 7-resonator

array the peaks of efficiency and power transferred to Rd1 occur for low values of RT when the
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Figure 3.24: Efficiency (%) determined with (3.76), for different values of RT and Rd1 and for
different positions of the receiver (l) for a 7-resonator array.

Figure 3.25: Power delivered to Rd1, PRd1/V 2
s (W/V2), determined with (3.77) for different values

of RT and Rd1 for different positions of the receiver (l) for a 7-resonator array.
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Figure 3.26: Efficiency (%) determined with (3.76), for different values of RT and Rd1 and for
different positions of the receiver (l) for a 8-resonator array.

Figure 3.27: Power delivered to Rd1, PRd1/V 2
s (W/V2), determined with (3.77) for different values

of RT and Rd1 for different positions of the receiver (l) for a 8-resonator array.
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receiver is in an odd position (l = 1, 3, 5 and 7) and for high values of RT when the receiver is in

an even position (l = 2, 4 and 6); contrarily, regarding the 8-resonator array, as seen in Figs. 3.26

and 3.27, the peaks of efficiency and PRd1 occur for low values of RT when the receiver is in an

even position (l = 2, 4, 6 and 8) and for high values of RT when the receiver is in an odd position

(l = 1, 3, 5 and 7). Therefore, in a more generic way, we can say that the peaks of efficiency

and delivered power PRd1 occur for low values of RT when the difference N− l between the total

number of resonators N and the receiver’s position l is an even number and for high values of RT

when N− l is an odd number, also confirming what shown in [14, 16].

Furthermore, the results obtained in Figs. 3.24 to 3.27 confirm what was shown previously

in Figs. 3.16 and 3.15, i.e., the efficiency and power transfer are maxima when Req,N−l is close

to zero. Req,N−l represents the N − l cells after the resonator below the receiver (lth one). In

order to obtain a low value of Req,N−l we need a high value of RT when N− l is odd and a low

value of RT when N− l is an even number. This oscillation of Req,N−l caused by higher or lower

values of RT , also demonstrated in Chapter 2, can only be smoothed by setting RT = Req,∞ =(
−R+

√
4(ω0M)2 +R2

)
/2, which was already analysed with the results being shown in Figs.

3.17 and 3.18. In fact, if we replace RT = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2 in (3.77) and

(3.76), we obtain equivalent expressions to (3.70) and (3.63) (with Rd1 = Rd).

3.4.2.3 E�ciency and power delivered to two receivers Rd1 and Rd2, with the receiver

Rd1 over the lth resonator and the receiver Rd2 over the last cell

Now, we analyse a receiver represented by Ẑd1 over the lth cell (1≤ l <N) and another one over the

Nth cell, as represented by (3.3) (b), meaning that Ẑ′T = Ẑd2+ ẐT . Assuming that we are operating

at the resonant frequency, so that Ẑ = R, ωM = ω0M, Ẑd1 = Rd1, Ẑd2 = Rd2 and ẐT = RT , we can

define the total efficiency of the system as the ratio between the sum of the powers absorbed by

Rd1 and Rd2 and the input power as:

ηtotal = ηRd1 +ηRd2 =
PRd1 +PRd2

Pin
=

Il
2Rd1 + IN

2Rd2

VsI1
. (3.78)

in which I1, Il , IN and Vs are the RMS values of the current in the first, lth, Nth resonators and

of the voltage source, respectively.Then, using the expressions obtained for the currents (3.72),

(3.73) and (3.74) we can rewrite the expressions for the powers delivered to receivers Rd1 and Rd2:

PRd1 =
V 2

s 4l−N−1(ω0M)−2l−2
(
ιN
2 ιl

3(ι3−2(R+Rd2 +RT ))+ ιl
2ιN

3 (ι3 +2(Rd2 +RT ))
)2

ι2
1

(
detẐm

)2 Rd1

(3.79)

and

PRd2 =V 2
s
(ω0M)2N−2(

detẐm
)2 Rd2. (3.80)

Considering that RT = 0, which means that the Nth cell is not connected to any termination

impedance, using (3.78), (3.79) and (3.80) we can plot the power delivered to each receiver and

also the total efficiency of the system for arrays of 7 or 8 resonators (Figs. Figs. 3.28–3.30 and
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Figure 3.28: Total efficiency (%) determined with (3.78) (with RT = 0) for different values of Rd1
and Rd2 and for different positions of the first receiver Rd1 (l) for a 7-resonator array
(N = 7) with the second receiver Rd2 over the Nth cell.

3.32– 3.31, respectively).

Again, the behaviour of the efficiency and power delivered to the receivers Rd1 and Rd2 repeats

itself for odd or even positions of the first receiver depending on the total number of resonators.

Starting by analysing the values of the total efficiency (Figs. 3.28 and 3.31), we have peak values

for low values of Rd2 when N− l is even (l = 1, 3 and 5 for the 7 resonator case and l = 2, 4

and 6 for the 8 resonator case) and for high values of Rd2 when N− l is odd (l = 2, 5 and 6 for

the 7 resonator case and l = 1, 3, 5 and 7 for the 8 resonator case). Moreover, for the cases with

an odd N− l, when Rd1 is between approximately 1Ω and 4Ω, there is a large range of values of

Rd2 which guarantee the maximum efficiency. Regarding the power delivered to Rd1 (Figs. 3.29

and 3.32), as expected, the values obtained are the same ones obtained in the previous case, see

Figs. 3.25 and 3.27. Finally, analysing the value of the power delivered to the second receiver PRd2

(Figs. 3.30 and 3.33), the highest values occur for Rd1 = 0 (i.e., no first receiver), meaning that all

the power delivered to the array is absorbed by the second receiver Rd2, which is the same result

obtained in section 3.4.1.2. However, for the same values of Rd1 and Rd2 the values of PRd2 are

higher when N− l is an even number than when N− l is an odd one.
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Figure 3.29: Power delivered to Rd1, PRd1/V 2
s (W/V2) determined with (3.79) (with RT = 0) for

different values of Rd1 and Rd2 and for different positions of the receiver Rd1 (l) for a
7-resonator array (N = 7) with the second receiver Rd2 over the Nth cell.

Figure 3.30: Power delivered to Rd2 , PRd2/V 2
s (W/V2) determined with (3.80) (with RT = 0) for

different values of Rd1 and Rd2 and for different positions of the receiver Rd1 (l) for a
7-resonator array (N = 7) with the second receiver Rd2 over the Nth cell.
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Figure 3.31: Total efficiency (%) determined with (3.78) (with RT = 0) for different values of Rd1
and Rd2 and for different positions of the first receiver Rd1 (l) for a 8-resonator array
(N = 8) with the second receiver Rd2 over the Nth cell.

Figure 3.32: Power delivered to Rd1, PRd1/V 2
s (W/V2) determined with (3.79) (with RT = 0) for

different values of Rd1 and Rd2 and for different positions of the receiver Rd1 (l) for a
8-resonator array (N = 8) with the second receiver Rd2 over the Nth cell.
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Figure 3.33: Power delivered to Rd2 , PRd2/V 2
s (W/V2) determined with (3.80) (with RT = 0) for

different values of Rd1 and Rd2 and for different positions of the receiver Rd1 (l) for a
8-resonator array (N = 8) with the second receiver Rd2 over the Nth cell.

We consider now another example where the difference PRd2−PRd1 between the power delivered

to each receiver is plotted in order to examine the conditions of the system under which the power

delivered to each resonator is the same (i.e. PRd2 −PRd1 = 0). The results are shown in Figs. 3.34

and 3.35 for 7-resonator and 8-resonator arrays (N = 7 and N = 8), respectively.

Then, from the plots in Figs. 3.34 and 3.35, using the expressions of PRd1 and PRd2 , (3.79) and

(3.80), and solving the equation PRd2 −PRd1 = 0 for Rd1, we can determine the values of Rd1 and

Rd2 which make the power delivered to both receivers equal. We can plot these values of Rd1 and

Rd2 for different positions of the first receiver l in for arrays of 7 or 8 resonators (N = 7 and N = 8)

(Figs. 3.36 and 3.36).

Observing Figs. 3.34 to 3.37 it is possible to see that the difference PRd2 −PRd1 depends on the

value of N− l being even or odd. For example, for a Rd2 = 5Ω, we need higher values of Rd1 to

keep the power constant if N− l is even and lower values of Rd1 otherwise. Considering that the

first receiver is represented by a fixed value of Rd1, we can adjust the value of receiver Rd2 on the

last cell, depending on the position l of the first receiver, in order to keep the power delivered to

both resonators equal. For example, as observed in Figs. 3.36 and 3.37, if Rd1 is equal to 0.9Ω,

we can adjust Rd2 from 2Ω to 4Ω, depending on the position of the first receiver in order to make

that the same power is delivered to both receivers.
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Figure 3.34: Difference between the powers delivered to each receiver PRd2 −PRd1(in W/V)2 (de-
termined with (3.79) and (3.80), with RT = 0) for different values of Rd1 and Rd2 and
for different positions of the first receiver (l) for a 7-resonator array (N = 7).

3.4.2.4 E�ciency and power delivered to two receivers Rd1 and Rd2 over the array

We consider now the situation represented in Fig. 3.3 (c), i.e., two receivers over different posi-

tions, e.g., over the lth resonator and mth resonator, in a resonator array with N resonators (with

1 ≤ l < m < N) terminated by a resistance RT = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2. Then, we

can use (3.78) –(3.80) with RT = Req,N−m =
(
−R+

√
4(ω0M)2 +R2

)
/2 to calculate the total ef-

ficiency of the system and the power delivered to each receiver depending on its position. Since in

this case there are too many variablesto consider in order to make a simple analysis, we consider

that the receivers are equivalent, and are in different positions on the resonator array. Thus, for

Rd1 = Rd2 = 5Ω and Rd1 = Rd2 = 1.5Ω we can plot PRd1 , PRd2 and ηtotal (Figs. 3.38– 3.40 and

3.41–3.43, respectively).

By comparing Figs. 3.38, 3.39 and 3.40 with Figs. 3.41, 3.42 and 3.43 we observe that we

can achieve higher peak values for PRd1 , PRd2 and ηtotal for higher values of Rd1 and Rd2 (5Ω),

but also lower minimum values. In other words, for smaller values of Rd1 and Rd2 (1.5Ω), there

is a smaller variation of PRd1 , PRd2 and ηtotal with the change of the position of the receivers,
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Figure 3.35: Difference between the powers delivered to each receiver PRd2 −PRd1(in W/V)2 (de-
termined with (3.79) and (3.80), with RT = 0) for different values of Rd1 and Rd2 and
for different positions of the first receiver (l) for a 8-resonator array (N = 8).

although the maximum values of the power delivered to each receiver and total efficiency are

lower. Moreover, regarding the power delivered to Rd1, we can see that it has its maximum values

for even values of l and minimum values for odd values of l, which is in agreement with what was

shown in Figs. 3.15 and 3.17, and also that the position of the second receiver has little influence

on PRd1 when it is far away from the first one (m� l). Finally, regarding the power delivered to

Rd2, we can see that its maximum values are obtained when both receivers are in even positions

(e.g., l = 2 and m = 4).

3.4.2.5 E�ciency and power delivered to a load or a receiver over the last cell

represented by RT , considering the e�ect of a source impedance Rs

Using the mathematical results obtained for the second case, we can also analyse the effect of

a source with an internal resistance in the efficiency and power transfer of the system, situation

which is represented in Fig. 3.4 and in (3.8). For simplicity, we consider the situation where there

is a receiver or a physical load over the last cell (Ẑ′T = ẐT ) using the expressions of the currents

determined in the second case considered (3.72) to (3.74), with Ẑd1 = Ẑs and l = 1. Assuming

that we are operating at the resonant frequency, so that Ẑ = R, ωM = ω0M, Ẑs = Rs, ẐT = RT , we

can write the expression for the efficiency, considering that the input power is determined at the

terminals of the voltage source, including the internal source resistance Rs:

ηRT ,w/Rs =
PRT ,w/Rs

Pin,w/Rs

=
I2
NRT

(Vs−RsI1)I1
(3.81)

where I1, IN and Vs are the RMS values of the currents in the first and Nth resonators and of

the voltage source.Then, using the expressions obtained for the currents (3.72) and (3.74) we can

rewrite the expressions for the efficiency and power delivered to a load or a receiver on the last
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Figure 3.36: Values of Rd1 and Rd2 that make the power delivered to both receivers equal, (PRd2−
PRd1=0) (determined with (3.79) and (3.80), with RT = 0) for different positions of
the first receiver l for a 7-resonator array (N = 7).

Figure 3.37: Values of Rd1 and Rd2 that make the power delivered to both receivers equal, (PRd2−
PRd1=0) (determined with (3.79) and (3.80), with RT = 0) for different positions of
the first receiver l for a 8-resonator array (N = 8).

cell represented by RT :

ηRT ,w/Rs =
22N+1RT (ω0M)2Nι2

1 −ι1
(
(ω0M)2 +R2

T
)(

ι2N
2 − ι2N

3

)
+RRT

(
2RιN

2 ιN
3 −RT

(
ιN
2 − ιN

3

)2
)

+(ω0M)2
(

4RT
(
ι2N
2 + ι2N

3

)
+R

(
ιN
2 − ιN

3

)2
)  (3.82)

and
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Figure 3.38: Power delivered to Rd1 for Rd1 = Rd2 = 5Ω and for different positions of the first and
second receiver m (1 refers to the resonator connected to the power source and 20 to
the resonator connected to the termination impedance).

Figure 3.39: Power delivered to Rd2 for Rd1 = Rd2 = 5Ω and for different positions of the first l
and second receiver m (1 refers to the resonator connected to the power source and
20 to the resonator connected to the termination impedance).

Figure 3.40: Total efficiency (ηtotal) for Rd1 = Rd2 = 5Ω and for different positions of the first l
and second receiver m (1 refers to the resonator connected to the power source and
20 to the resonator connected to the termination impedance).
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Figure 3.41: Power delivered to Rd1 for Rd1 = Rd2 = 1.5Ω and for different positions of the first
l and second receiver m (1 refers to the resonator connected to the power source and
20 to the resonator connected to the termination impedance).

Figure 3.42: Power delivered to Rd2 for Rd1 = Rd2 = 1.5Ω and for different positions of the first
l and second receiver m (1 refers to the resonator connected to the power source and
20 to the resonator connected to the termination impedance).

Figure 3.43: Total efficiency (ηtotal) for Rd1 = Rd2 = 1.5Ω and for different positions of the first
l and second receiver m (1 refers to the resonator connected to the power source and
20 to the resonator connected to the termination impedance).
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Figure 3.44: Value of RT,PRT ,w/Rs max versus the total number of resonators for different values of Rs

(Rs = 0.4, Rs = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2 and Rs = 10Ω).

PRT ,w/Rs =
ι2
14N−1V 2

s RT (ω0M)2N−2(
2(ω0M)2ι

N−2
2 (Rs +2R+RT )+ ι

N−1
2 (Rs +R)(R+RT )

+4(ω0M)4ι
N−3
2 − ι

N−3
3

(
ι3(Rs +R)+2(ω0M)2

)(
ι3(R+RT )+2(ω0M)2

) )2 .

(3.83)

It is interesting to notice that the expression for the efficiency calculated at the terminals of the

voltage source does not depend on the internal voltage source resistance Rs. One can then conclude

that all the findings regarding the efficiency values for the previous cases are also valid for the

situation where there is an internal source impedance different than zero, and that expressions

(3.49) and (3.81) are equivalent. On the other hand, the expression of the power delivered to the

load depends on Rs, considering a voltage source with a given RMS value Vs.

As seen before, we can obtain the value of RT which guarantees the maximum power transfer

by letting:

dPRT ,w/Rs

dRT
= 0, (3.84)

which, by solving it for RT , yields:

RT,PRT ,w/Rs max = −
(ω0M)2

(
ι1
(
ιN
2 + ιN

3

)
− (2Rs +R)

(
ιN
2 − ιN

3

))(
ιN
2 − ιN

3

)
(2(ω0M)2−RsR)− ι1Rs

(
ιN
2 + ιN

3

) (3.85)

which in this case depends on the value of Rs. Then we can plot RT,PRT ,w/Rs max versus the num-

ber of resonators of the array, assuming for example the following values for the internal source

impedance, Rs = 0.4Ω, Rs = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2 and Rs = 10Ω. The plots of

RT,PRT ,w/Rs max are shown in Fig. 3.44.

In order to match the source to the line of resonators, we set Rs =Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2.

For this case, RT,PRT ,w/Rs max becomes constant and does not depend on the total number of res-

onators:
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Figure 3.45: PRT ,w/Rs (W/V 2) obtained with (3.83) for Rs = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2

versus RT and for different numbers of resonators.

RT,PRT ,w/Rs max =

(
R+

√
4(ω0M)2 +R2

)
/2. (3.86)

Plotting PRT ,w/Rs using (3.83), letting Rs = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2 and for different

numbers of resonators, we can see in Fig. 3.45 that the peaks of the power delivered to the load

RT all occur for RT =
(

R+
√

4(ω0M)2 +R2
)
/2 = 1.48Ω for any total number of resonators N.

3.5 Validation with Simulink

In order to validate the formulas proposed in this chapter, we built a circuit in Simulink and

computed the currents in each resonator, the power delivered to a certain load and the efficiency

of the system for the cases presented before. In both the calculations with Simulink and with the

theoretical expressions, the values of R, L, C and M are the ones used in the numerical examples

presented in the previous section.

As done in the previous Chapter 2, we used the Simulink block Mutual inductance to represent

the array. This block contains the parameters of the intrinsic resistance of the coils, R, the self-

inductance of the coils, L and the mutual inductance between two adjacent coils, M. Then feeding

an array with a sinusoidal voltage source V̂s, adding a capacitor with a capacitance value C to each

resonator circuit and adding two resistors Rd and RT as shown in Fig. 3.46, we can simulate an

array of resonators whose circuit is depicted in Fig. 3.3 (b) (considering Ẑd = Rd and ẐT = RT ).

The currents in the resonators are determined using the block “Current measurement” and then the

RMS values of each current and the phase difference between the currents in different resonators

are calculated. Then, we can calculate the input power and the power absorbed by Rd and RT ,

by determining the voltage and current with the Simulink blocks “Voltage Measurement” (in Fig.

3.46 labelled V_IN, V_RD, V_RT) and “Current Measurement” (in Fig. 3.46 labelled I_in, I_Rd,

I_RT), respectively, and use the outputs of these blocks to calculate the active power with the
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Figure 3.46: Example of a Simulink circuit representing an array of 8 resonators with the receiver
represented by a resistance Rd in the 3rd position.

“Power” block (in Fig. 3.46 labelled P_in, P_Rd, P_RT).

In all the examples presented in the next subsections, the RMS value of the sinusoidal voltage

source is set to Vs=10V and the operating frequency of the voltage source is set to the resonant

frequency f0 = 147kHz.

3.5.1 First case

3.5.1.1 Currents in the resonators

Letting Rd = 0Ω, we obtain the waveforms of the currents in each resonator in Simulink for

different values of RT (0.4Ω, RT = Req,∞, RT = 10Ω). The waveforms of the currents in each

resonator obtained with Simulink are represented in Fig. 3.47.

As seen in the examples of Section 3.4.1, the currents in adjacent resonators have a -90º of phase

difference between them, such that after four resonators the currents are in phase again (i5 is again

in phase with i1, i6 with i2, etc.) and also the peak values of currents decrease gradually from the

first to the last one when RT = Req,∞ and oscillate when RT is lower or higher than this value.

3.5.1.2 E�ciency and power delivered to a load or a receiver over the last cell

represented by RT

Regarding the first case, we can first obtain in Simulink the power delivered to RT in a 8-resonator

array, setting Rd = 0Ω , and using the block P_RT to obtain the efficiency of the system η dividing

the values obtained with this block by the ones obtained with the block P_in (Fig. 3.46). Then, for

different values of RT we can compare the values obtained with Simulink and the ones obtained

with (3.48) and (3.49) for N = 8. The values are compared in Table 3.1.
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(a)

(b)

(c)

Figure 3.47: Waveforms of the current in each resonator, for an array of 8 resonators, for different
values of RT : (a) RT =0.4Ω, (b) RT = Req,∞ and (c) RT =10Ω
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Table 3.1: Comparison of the values of PRT and η obtained with Simulink to those obtained with
the developed formulas.

Simulink Values obtained with (3.48) and (3.49)
RT (Ω) PRT (W) η(%) PRT (W) η(%)

0.4 14.85 40.52 14.84 40.52
1.5 38.08 54.10 38.08 54.10
10 46.41 28.59 46.53 28.59

Table 3.2: Comparison of the values of PRT and η obtained with Simulink to those obtained with
the developed formulas.

Simulink Values obtained with (3.60) and (3.61)
Rd(Ω) PRd (W) η(%) PRd (W) η(%)

0.4 9.93 18.10 9.91 18.08
5 11.36 55.90 11.35 55.89
10 7.35 53.04 7.35 53.03

3.5.1.3 E�ciency and power transmitted to a receiver Rd over the lth cell

Letting RT = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2 and for different values of Rd , which is added

to the 3rd resonator (l = 3), we can compare the values obtained with Simulink for PRd and the effi-

ciency η = PRd/Pin, with the values obtained using (3.60) and (3.61). The comparison is presented

in Table 3.2.

3.5.2 Second case

3.5.2.1 E�ciency and power delivered to a receiver over the lth position Rd1

Regarding the second case, we consider the circuit represented in Fig. 3.46 and obtain with

Simulink the power PRd1 delivered to a receiver represented with Rd1, as well as the efficiency

η = PRd1/Pin for different values of Rd1 and RT . Then we compare the values obtained with the

simulations to the values determined with (3.77) and (3.79). The receiver Rd1 is on the 3rd res-

onator and the resonator array has a total of 8 resonators (l = 3 and N = 8). The results are show

in Table 3.3.

3.5.2.2 E�ciency and power delivered to two receivers Rd1 and Rd2, with the receiver

Rd2 in a �xed position

We consider now the case with the second receiver Rd2 over the last cell, thus replacing in the

scheme of Fig. 3.46 RT by Rd2 and PRT by PRd2 , and keeping the receiver Rd1 in the 3rd position

(l = 3) in a 8-resonator array (N = 8). After obtaining with Simulink the values for PRd1 , PRd2 and

ηtotal = (PRd1 +PRd2)/Pin, we can compare them with the values calculated with (3.79), (3.80) and

(3.78) (with RT = 0), respectively. The comparison is presented in Table 3.4.
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Table 3.3: Comparison of the values of PRd1 and η obtained with Simulink and those obtained with
the developed formulas.

Simulink Values obtained with (3.77)
PRd1(W) PRd1(W)

Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

RT= 0.4Ω 3.13 7.43 5.71 3.12 7.42 5.71
RT= Req,∞ 9.93 11.36 7.35 9.93 11.36 7.35
RT= 10Ω 37.38 15.60 8.75 37.42 15.60 8.75

Simulink Values obtained with (3.76)
η = PRd1/Pin (%) η = PRd1/Pin (%)

Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

RT= 0.4Ω 9.44 42.56 44.45 9.43 42.54 44.43
RT= Req,∞ 18.10 55.90 53.04 18.10 55.90 53.04
RT= 10Ω 36.87 68.14 59.79 36.87 68.14 59.79

Table 3.4: Comparison between the values of PRd1 , PRd2 and ηtotal obtained with Simulink and
the ones obtained with the developed formulas for the first receiver in the 3rd position
(l = 3) and the second receiver over the last cell of a 8-resonator array (N = 8).

Simulink Values obtained with (3.79)
PRd1(W) PRd1(W)

Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

Rd2= 0.4Ω 3.69 7.94 5.94 3.68 7.94 5.93
Rd2= 5Ω 24.87 14.33 8.34 24.90 14.33 8.34
Rd2= 10Ω 32.96 15.17 8.60 33.01 15.17 8.60

Simulink Values obtained with (3.80)
PRd2(W) PRd2(W)

Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

Rd2= 0.4Ω 11.05 1.90 0.71 11.05 1.91 0.71
Rd2= 5Ω 19.82 0.91 0.26 19.84 0.91 0.26
Rd2= 10Ω 14.12 0.52 0.15 14.14 0.52 0.15

Simulink Values obtained with (3.78)
ηtotal = (PRd1 +PRd2)/Pin (%) ηtotal = (PRd1 +PRd2)/Pin (%)

Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

Rd2= 0.4Ω 40.14 51.51 46.62 40.14 51.50 46.61
Rd2= 5Ω 52.73 65.11 54.88 52.73 65.11 54.89
Rd2= 10Ω 48.76 65.67 55.29 48.77 65.67 55.29
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Figure 3.48: Simulink circuit built for simulations representing an array of 10 resonators termi-
nated by a termination resistance RT and with the first and second receivers repre-
sented by Rd1 and Rd2 in the 3rd and 8th positions, respectively.

3.5.2.3 E�ciency and power delivered to two receivers Rd1 and Rd2 over the array

Now we consider the second receiver receiver in a given mth position of a resonator array with N

resonators terminated with Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2. For example, arranging the first

receiver Rd1 in the 3rd position (l = 3) and the second receiver Rd2 in the 8th position (m = 8),

we can calculate the power delivered to each receiver, and then calculate the total efficiency of the

system. In order to simulate this situation a different circuit was designed in Simulink, considering

an array with 10 resonators terminated by a load RT = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2, with

the first receiver in the 3rd position and the second in the 8th position, as shown in Fig. 3.48. The

results obtained with Simulink are then compared with the ones obtained using (3.79), (3.80) and

(3.78) with RT = Req,N−m = Req,∞ =
(
−R+

√
4(ω0M)2 +R2

)
/2, and shown in Table 3.5.

3.5.2.4 E�ciency and power delivered to a load or a receiver over the last cell

represented by RT , considering the e�ect of a source impedance Rs

Finally, in order to compare the effect of an internal source resistance Rs , we built a different

circuit in Simulink, adding the resistances Rs to the first cell and RT to the last one, as represented

in Fig. 3.49. Then, for a 8-resonator array and RT = 1.5Ω we can determine with Simulink the

power delivered to the load RT and the efficiency η = PRT /Pin, the input power being calculated

at the terminals of the voltage source as described in (3.81) and as represented in Fig. 3.49. The

efficiency and power delivered to RT are determined in Simulink for different values of Rs and

then compared with the values obtained with (3.83) and (3.81). The results of the comparison are

shown in Table 3.6.

We can see, as already shown before, that the value of the efficiency does not depend on the
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Table 3.5: Comparison between the values of PRd1 , PRd2and ηtotal obtained with Simulink and the
ones obtained with the developed formulas for the first receiver Rd1 in the 3rd position
(l = 3) and the second receiver in the 8th position (m = 8) in a line terminated by Req,∞.

Simulink Values obtained with (3.79)
PRd1(W) PRd1(W)

Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

Rd2= 0.4Ω 3.13 7.43 5.71 3.12 7.42 5.71
Rd2= 5Ω 27.09 14.65 8.46 27.11 14.65 8.46
Rd2= 10Ω 37.38 15.60 8.75 37.42 15.60 8.75

Simulink Values obtained with (3.80)
PRd2(W) PRd2(W)

Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

Rd2= 0.4Ω 11.70 2.22 0.85 11.69 2.22 0.86
Rd2= 5Ω 23.62 1.02 0.30 23.63 1.02 0.30
Rd2= 10Ω 17.34 0.58 0.16 17.36 0.58 0.16

Simulink Values obtained with (3.78)
ηtotal = (PRd1 +PRd2)/Pin (%) ηtotal = (PRd1 +PRd2)/Pin (%)

Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

Rd2= 0.4Ω 44.75 55.31 51.10 44.75 55.30 51.09
Rd2= 5Ω 58.20 70.11 60.47 58.20 70.11 60.47
Rd2= 10Ω 53.98 70.67 60.90 53.98 70.67 60.90

Figure 3.49: Simulink circuit built for simulations representing an array of 8 resonators with a
voltage source resistance Rs and terminated by a resistive load RT .
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Table 3.6: Comparison between the values of PRT and η obtained with Simulink and the ones
obtained with the developed formulas.

Simulink Values obtained with (3.83) and (3.81).
Rs(Ω) PRT (W) η(%) PRT (W) η(%)

0 38.08 54.10 38.08 54.10
5 1.86 54.10 1.86 54.10
50 0.03 54.10 0.03 54.10

value of Rs. However, for a given voltage source, the power delivered to RT decreases with the

increase of Rs, due to the losses in the source. We can observe a very good agreement between the

values obtained with the formulas presented in Section 3.4 and those obtained with Simulink. In

this way, it is verified that the formulas are correct and accurate and that these formulas can be used

for the design of a resonator array, since they can save time compared to numerical simulations

with Simulink, specially when we want to quickly predict the behaviour of the system regarding

variations in the conditions of the system (as total number of resonators, position of the receiver

or value of the receiver impedance).

3.6 Experimental veri�cation

After the numerical simulations, the experimental setup described in the Chapter 5 was used in

order to verify experimentally the results obtained in this chapter, first using the planar multilayer

coils and afterwards the stranded-wire, wooden core coils. Regarding the results obtained in this

section, the voltages were measured with a 500 MHz Agilent Infiniium 54825A digital oscillo-

scope using a TESTEC TT-SI 9002 voltage differential probe connected to the oscilloscope and

the currents were measured with the same oscilloscope and a Tektronix TCP305 DC to 50 MHz

current probe. The value of Vs used in the developed formulas was experimentally determined

using (2.73).

3.6.1 Measuring the power and e�ciency

The measured values for the efficiency and power transmission were obtained by measuring the

input power (Pin,exp) and the power delivered to a resistive load (PRT ,exp) or to a load that represents

a receiver (PRd1,exp or PRd2,exp) were obtained from measurements. The input power was determined

calculating the average value over a period of the product of the instantaneous voltage and current

measured at the terminals of the inverter:

Pin,exp = (1/T )

T̂

0

vin(t) iin(t)dt (3.87)

where T = 1/ f0 is the period of the waveforms and vin(t) and iin(t) are the measured instantaneous

values of the input voltage and current. The product of the instantaneous voltage and current and its

average value in a period were calculated with the oscilloscope using the mathematical functions

of its internal software. The power delivered to a given load was calculated measuring the RMS
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(a) (b)

Figure 3.50: Efficiency for different values of RT at the resonant frequency of (a) 294kHz and (b)
192 kHz calculated with (3.49) and obtained through measurements with (3.89).

value of the voltage at the terminals of the load (VT , Vd1 or Vd2) and dividing its squared value by

the value of the load (RT , Rd1 and Rd2):

PRT ,exp = V 2
T /RT ; PRd1,exp =V 2

d1/Rd1; PRd2,exp =V 2
d2/Rd2. (3.88)

Then, using the previous values, we can calculate the experimental efficiency of the system con-

sidering a load RT , one or two receivers:

ηexp,RT =PRT ,exp/Pin,exp; ηRd1,exp =PRd1,exp/Pin,exp; ηtotal,exp =(PRd1,exp+PRd2,exp)/Pin,exp. (3.89)

3.6.1.1 First case

E�ciency and power delivered to a load or a receiver over the last cell represented

by RT

E�ciency of the power delivered to RT using multilayer planar resonators

Considering the experimental setup composed of the 4-resonator array with multilayer planar res-

onators, the values of R, L, C and M and f0 as described in Chapter 5 were used to determine the

efficiency of the system with (3.49). Then, these results were compared to the values obtained

through measurements with (3.89) . The comparison between these results was then carried out

for different values of RT and is shown in Fig. 3.50. For this experimental setup, using (3.51), the

values of RT that guarantee the maximum efficiency are RT ,ηmax = 3.6Ω for f0 = 294 kHz and

RT ,ηmax = 2.4 Ω for f0 = 192 kHz.

E�ciency and power delivered to RT using stranded-wire resonators

Using the 6-resonator array with stranded-wire and wooden core, the efficiency of the system and

the power delivered to the load were calculated with (3.49) and (3.48), respectively and obtained

with (3.88) and (3.87) through measurements. For this array, using (3.51) and (3.55), the values of

RT that guarantee the maximum efficiency and maximum power transfer are RT,ηmax = 1.44Ω and

RT ,PRT ,max = 6.4 Ω, respectively.
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Figure 3.51: Comparison between the values of PRT and η obtained with measurements (using
(3.88) and (3.89)) and the ones obtained with the developed formulas (3.48) and
(3.49) for a 6-resonator array with stranded-wire resonators and for different values
of RT .

Figure 3.52: Comparison between the values of PRT and η obtained with measurements (using
(3.88) and (3.89)) and the ones obtained with the developed formulas (3.48) and
(3.49) for an array with different number of resonators terminated by RT = 1.5Ω.

The comparison between these results was then carried out versus different values of RT ,as

shown in Fig. 3.51, assuming Vs = 4.9, and versus different number of resonators (N), as shown

in Fig. 3.52, assuming Vs = 12.1.

It can be noticed that for both resonant frequencies and for the different types of coils the

efficiency is higher when RT is close to the value of RT,ηmax , and lower otherwise, as seen in Figs.

3.50 and 3.51. The same is verified regarding the maximum power transfer to a load: the maximum

power transfer occurs when RT is near RT,PRT ,max , as observed in Fig. 3.51.

Regarding the measurements done with the multilayer planar resonators, when the operating

frequency lowers the resistance decreases approximately with the square-root of the frequency,

and the quality factor Q = ωL/R decreases with the square-root of the frequency as well. Then,

for a given value of |k| = 2|M|/L, assuming that the cells of the array are in fixed positions, the

product |kQ| = 2ω0|M|/R decreases approximately with
√

f , thus increasing the losses in each

cell. Moreover, for the stranded-wire coils, the values of the efficiency are higher, due to the

higher values of 1/r = |kQ| = 2ω0|M|/R. The multilayer and the stranded-wire resonator arrays
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Figure 3.53: Measured efficiency versus the values of the coupling coefficient k.

have similar values of |k| (0.26 and 0.24, respectively); however, the multilayer resonators have

much smaller values of Q, comparing to the stranded wire resonators (39 to 106), resulting in

different maximum efficiencies measured for an array of 4 resonators: 42% to 71%.

We further consider the system with the multilayer planar resonators with a fixed termination

impedance (3.3Ω) and the same resonators and resonant frequency (f=294kHz). If we set the side

by side distance between the coils to 5mm and 10mm, we measure |k| values of |k| = 0.12 and

|k| = 0.15, respectively. The reduction of the coupling coefficient |k| for a fixed Q decreases the

product |kQ| and thus increases the attenuation in each cell. Then, if we measure the efficiency for

these lower values of k, we get lower values of efficiency, as shown in Fig. 3.53.

3.6.1.2 Second case

E�ciency and power delivered to a receiver over the lth position Rd1

In order to verify experimentally the power delivered to a receiver represented by Rd1, we used the

stranded-wire 6-resonator array (N = 6), terminated by a resistance RT , and used a resistive load

to represent the receiver Rd1. Then, for the receiver Rd1 in the 3rd position, we calculate the values

of power transmitted to the receiver Rd1 and efficiency ηRd1 using (3.79) and (3.78) with Rd2 = 0

and l = 3. We then make a comparison with the values obtained through measurements with (3.88)

and (3.89). This comparison is done for different values of Rd1 and RT , assuming Vs = 5.0V and

is shown in Table 3.7.

Furthermore, we consider another example where we set Rd1 = 5Ω and RT = 1.5Ω, assuming

the receiver in different positions and Vs = 4.9V . Then, we compare the values of power absorbed

by the receiver and efficiency of the system obtained using (3.79) and (3.78) (with Rd2 = 0 and

l = 2 to l = 5) with the ones obtained through measurements with (3.88) and (3.89). The results

are presented in Fig. 3.54.

E�ciency and power delivered to two receivers Rd1 and Rd2, with the receiver Rd2 in

a given position

Finally, analysing the situation where we want to deliver power to two receivers, being one is in a

given position, we consider an example with the first receiver Rd1 on the 3rd position (l = 3) and

the second one Rd2 on the 6th cell, for a 6-resonator array, using resistive loads to represent the

receivers. Then, we obtain the values of the total efficiency of the system and the power delivered

to each receiver using (3.79), (3.80) and (3.78) (with l = 3, RT = 0 and N = 6) and compare them

with the values obtained trough measurements with (3.88) and (3.89), considering Vs = 5.0V . The
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Table 3.7: Comparison between the values of PRd1 and ηRd1 obtained with measurements (using
(3.88) and (3.89)) and the ones obtained with the developed formulas (3.79) and (3.78),
for a 6-resonator array for different values of Rd1 and RT .

Values obtained through
measurements with (3.88)

Values obtained with
(3.79)

PRd1,exp(W) PRd1(W)
Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

RT= 0.4Ω - 1.9 1.5 - 1.7 1.3
RT= 1.5 3.0 3.1 2.1 2.7 2.9 1.9
RT= 10Ω 10.0 4.1 - 11.5 4.0 -

Values obtained through
measurements with (3.89)

Values obtained with
(3.78)

ηRd1,exp (%) ηRd1(%)
Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

RT= 0.4Ω - 38.6 40.1 - 39.7 42.4
RT= 1.5Ω 21.2 55.2 49.8 19.0 56.9 53.6
RT= 10Ω 42.6 65.9 - 41.1 69.7 -

Figure 3.54: Comparison between the values of PRd1 and ηRd1 obtained with measurements (us-
ing (3.88) and (3.89)) and the ones obtained with the developed formulas ((3.79)
and (3.78)), for a 6-resonator terminated RT = 1.5Ω array for Rd1 = 5Ω in different
positions.
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Table 3.8: Comparison between the values of PRd1 , PRd2 and ηtotal obtained with measurements
(using (3.88) and (3.89)) and the ones obtained with the developed formulas (3.79),
(3.80) and (3.78), for a 6-resonator array with the first receiver on the 3rd position
(l = 3) and the second receiver over the last cell of a 6-resonator array (N = 6).

Values obtained through
measurements with (3.88)

Values obtained with (3.79)

PRd1,exp(W) PRd1(W)
Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

Rd2= 0.4Ω 1.9 1.5 - 1.7 1.3
Rd2= 1.5Ω 3.0 3.1 2.1 2.7 2.9 1.9
Rd2= 10Ω 10.0 4.1 11.5 4.0 -

Values obtained through
measurements with (3.88)

Values obtained with (3.80)

PRd2,exp(W) PRd2(W)
Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

Rd2= 0.4Ω 0.7 0.3 - 0.7 0.3
Rd2= 1.5Ω 6.4 0.6 0.2 7.0 0.6 0.2
Rd2= 10Ω 4.6 0.2 5.6 0.2 -

Values obtained through
measurements with (3.89)

Values obtained with (3.78)

ηtotal,exp (%) ηtotal = (PRd1 +PRd2)/Pin (%)
Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω Rd1=0.4Ω Rd1 = 5Ω Rd1 = 10Ω

Rd2= 0.4Ω - 52.4 48.1 - 56.5 51.4
Rd2= 1.5Ω 66.3 65.6 54.9 67.9 68.6 59.1
Rd2= 10Ω 62.3 68.3 - 61.0 72.4 -

comparison was made for different values of Rd1 and Rd2 and is shown in Table 3.8.

We observe a good agreement between the values calculated with the formulas developed in

Section 3.4 and the values obtained through measurements. The differences found could be due

to measurement errors and to imperfections in the manufacturing of the coils, which can lead to

slightly different values of self-inductance and intrinsic resistance of the coils and extra resistance

caused by soldering of the capacitors to the coils. However, the changes in the general behaviour

of the power and efficiency with the variations of the parameters verified in Section 3.4 are also

observed from the measurements. For example, as observed in Fig. 3.51 the efficiency and power

peaks are achieved for different values of RT , as it was already been noticed before in subsection

3.4.1.2.

3.7 Power transmitted to a real receiver

In this chapter, in order to simplify the analysis and examples performed in Section (3.4), we have

considered so far that the receiver is represented by an impedance Rd , Rd1 or Rd2. However, in

the case where there is a receiver with a load Rload connected to it, we have to consider the power

delivered to Rload in order to determine the whole efficiency of the system.
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Figure 3.55: Equivalent circuit of the array with N resonators, including the circuit of the receiver
that is over the lth cell.

Figure 3.56: Equivalent circuit of the receiver that is over the lth cell.

The equivalent circuit of the array with the detailed circuit of the receiver is shown in Fig. 3.55.

The impedance that represents the receiver Rd , assuming that the receiver has the same resonant

frequency than the one of the cells of the array (1/
√

LrCr = 1/
√

LC = ω0), is given by [14]:

Rd =
(ω0Mr,l)

2

Rr +Rload
, (3.90)

where Mr,l is the mutual inductance between the receiver and the cell beneath it, Rr is the intrinsic

AC resistance of the receiver and Rload is a certain load connected to the receiver.

In this way, the power delivered to a load connected to a receiver is given by:

PRload = I2
r Rload (3.91)

where Ir is the RMS value of the current of the receiver, which can be rewritten in terms of the

RMS value of the current Il on the lth resonator of the array according to the circuit represented in

Fig. 3.56 as seen in [14, 30]:

Ir =
ω0Mr,lIl

Rr +Rload
. (3.92)

If we want to write the relation between PRd = I2
l Rd and PRload we can now rewrite:

PRload

PRd

=
Rload

Rr +Rload
. (3.93)
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Thus, in order to have minimum losses in the receiver, Rload should be much larger than the

resistance of the receiver Rr. This, however, could imply a lower value of Rd if Mr,l is not high

enough. Then, for a desired value of Rd , Mr,l and Rload should be higher as possible in order to

suppress the effect of the resistance of the receiver, so that the power and efficiency calculated

with the formulas provided in Section 3.4 can be approximately the same as the ones for a load

connected to the receiver. Otherwise, if we want to determine the value of the power delivered to a

load connected to the receiver Rload we just have to multiply (3.93) for the values PRd ,PRd1 or PRd2

obtained through the formulas presented in Section 3.4.

3.7.1 Experimental veri�cation

In order to verify the theoretical considerations made in this section, we can use one of the

stranded-wire resonators (thus Rr = R in (3.93)) and place it over different positions of the ar-

ray. We consider an example where the array is terminated by RT = 1.5Ω, a 5Ω load is connected

to the receiver resonator (Rload = 5Ω) and the mutual inductance between the receiver coil and the

cell below has the measured value Mr,l = 4.8µH. We can obtain the power delivered to the load

connected to the receiver by measuring the voltage at the terminals of the load,

PRload ,exp =V 2
load/Rload , (3.94)

the efficiency being given by:

ηRload ,exp = PRload ,exp/Pin, (3.95)

where Pin was determined as in (3.87).

Then, we can perform a comparison between between the values of PRload ,exp and ηRload ,exp ob-

tained with measurements (using (3.94) and (3.95)) and the ones obtained with the developed

formulas (3.77), (3.76) multiplying them by the factor (3.93) (equal to 0.98 in this example):

PRload =
PRd1Rload

Rr +Rload
(3.96)

and

ηRload =
ηRd1Rload

Rr +Rload
(3.97)

for a 6-resonator (N = 6) array terminated with RT = 1.5Ω with Rd1 = 3.8Ω and Rr = R, consder-

ing Vs = 4.6V . The results of the comparison are shown in Fig. 3.57.

We can see by the good agreement between the calculations and the results obtained through

measurements that all the formulas developed and all the conclusions achieved through the anal-

ysis of those formulas in Section (3.4) can also by applied to the case of a real receiver just by

taking into account the factor given by (3.93).

Finally, if we want to study the relation between the distance of the receiver from the array and

the power transfer in efficiency in different positions, we can consider distances from the array

of 4cm and 9cm. The mutual coupling values between the receiver and the cell below it are then

Mr,l = 2.7µH and Mr,l =1.2µH, respectively. Then, considering a value of Rload = 3.33Ω, we
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Figure 3.57: Comparison between the values of PRload and ηRload obtained with measurements (us-
ing (3.88) and (3.89)) and the ones obtained with the developed formulas ((3.79),
(3.78) and 3.93), for a 6-resonator array terminated by RT = 1.5Ω for a receiver with
a connected load of Rload = 5Ω, the mutual inductance between the receiver and the
cell beneath it being Mr,l = 4.8µH, versus the receiver position.

have, according to (3.90), a corresponding value of Rd of 5.7Ω, 1.8Ω and 0.4Ω for the distances

of 1, 4 and 9cm, respectively. The measurements of the power delivered to Rload and efficiency

determined with (3.94) and (3.95) are shown in Fig. (3.58), for different distances between the

receiver and the cell of the array below it, considering a voltage source with a constant RMS

value.

It is possible to notice by observing Fig. 3.58 that the efficiency, for the distances of 1cm (Rd =

5.7Ω) and 4cm (Rd = 1.8Ω), remains approximately the same from positions 2 to 6. Moreover,

regarding the power delivered to Rload , increasing the distance from the receiver to the cell of the

array below it, the variation of PRload with the receiver position decreases. However, the power

delivered to Rload and the efficiency decrease with the increase of the distance.

3.8 Conclusions

In this chapter, the impedance matrix which represents a resonator array was analysed. The study

of the inverse of the impedance matrix allows one to obtain the current in each resonator and

thus calculate the power delivered to a given load or to one or two receivers over the array and to

determine the efficiency of the system.

By performing a mathematical study on the inverse of a tridiagonal matrix, which is the structure

of the impedance matrix, analytical expressions of the currents were obtained, for two different

cases and respective subcases, which represent several possible IPT systems used to transfer power

wirelessly to a load, or to one or two receivers. For each case, using the expressions of the currents

in the resonators developed in this chapter, the expressions of the power delivered to a load or a

receiver were obtained along with the expressions for the efficiency of the system. Using these

expressions, studies and comparisons were performed, regarding the values of the delivered power

and efficiency for different conditions and parameters of the system, which allowed a better under-
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(a)

(b)

Figure 3.58: (a) Power delivered to Rload = 3.3Ω calculated with (3.94) and (b) efficiency of the
system calculated with (3.95) versus the position of the receiver and for different
distances between the receiver coil and the array cell below it .
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standing of the behaviour of power transmission using resonator arrays to be achieved. Moreover,

using the developed expressions one can determine analytically the maximum possible values of

efficiency and power transfer for given conditions and also which conditions and parameters lead

to maximum efficiency and power transfer.

To start with, regarding the values of the currents, it was found that the values of the currents

can oscillate between higher and lower values when the array is not perfectly terminated. The

analyses carried out on several examples that represent a different possible IPT system, show that

the values of the maximum power transfer and efficiency changed substantially for each case,

depending on the electrical parameters of the array, value of the impedance of the load or the

receiver or receivers, position of the receiver, number of resonators, etc. However, in several

particular situations it was found that values of the transferred power have opposite behaviour for

odd or even numbers of resonators N or for the difference between the number of resonators and

position of the receiver, N− l. Moreover, it was shown that the matching of the voltage source

to the array of resonators does not affect the efficiency of the system, but it does, however, affect

the delivered power, for a given voltage source. Afterwards, using at first Simulink as a circuit

simulator and then performing measurements using the experimental setup described in Chapter 5,

the expressions and formulas developed in this chapter were validated, thus showing their practical

applicability for the design of an IPT system composed of a resonator array. Finally, it was taken

into account that the receiver that is over the resonator array is not a physical impedance but instead

another resonator coil with a load connected, and the losses in the receiver coil when calculating

the whole efficiency of the system.

In conclusion, the expressions of the currents of the resonators, obtained through the analytical

determination of the inverse of the impedance matrix, allow one to determine accurately the values

of the power delivered to a load or to one or two receivers, and the efficiency of the system for fixed

(i.e., the electrical parameters) or variable (i.e., receiver position) parameters of the system. The

expressions developed are a powerful tool for the design of a resonator array, since one can easily

predict the behaviour of the system, for given electrical parametrs of the system and different

positions of the receiver and save time in comparison to numerical calculations or simulations. So,

depending on the application desired for the resonator array, one can use the expressions obtained

to optimize the IPT system regarding maximum power transfer, maximum efficiency or constant

power delivered.

Appendix B

Constants determined in Section 3.3:

e1 =
√

b2−4a2+b−2c
2
√

b2−4a2 ;

e2 =
√

b2−4a2−b+2c
2
√

b2−4a2 ;

g1 =
2l−n−1((b−d)(−b+2c+ε1)ε3

n−l−ε2
n−l(4a2−2b2+b(2c+d−2ε1)−2cd+2cε1+dε1))

ε12 ;

g2 =
2l−n−1(ε3

n−l(−4a2+2b2−b(2c+d+2ε1)+2c(d+ε1)+dε1)+(d−b)(ε3−2c)ε2
n−l)

ε12 .
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4 Magnetic near �eld generated from an

array of resonators

4.1 Introduction

In literature, the studies performed on arrays of resonators have been made typically with the aim

of analysing the efficiency and power transmission of these arrays [3, 5, 14, 16]; other important

aspects of such systems, such as their electromagnetic compatibility or generated magnetic near

field, have not been considered in depth. Papers concerning the electromagnetic compatibility

[36, 37], human exposure [38, 39] or shielding of the magnetic near field generated [40, 41] refer

to traditional two-coil IPT systems. Usually these studies use the IEEE [42] or ICNIRP [43]

Standards as a reference for the limits of magnetic near field exposure. One of the reasons for

which the magnetic field generated by resonator arrays has not been considered so far, is that

usually the systems presented have a low transmitted power (from mW to a few Watts [3, 44]).

However, if we take into account resonator arrays that are capable to deliver higher amounts of

power, possibly to be used in applications as powering electronic devices or charging electrical

vehicles, we definitely have to consider the magnetic field generated by a resonator array in order

to analyse other aspects as the IPT system electromagnetic compatibility and limitation of human

exposure [45].

For these reasons, in this chapter the magnetic near field generated by an IPT system which

uses an array of coupled resonators as represented in Fig. 3.2 is assessed. First, using the Finite-

Element software FEMM, an analysis on the magnetic field generated by a 6-resonator array is

performed examining its spatial distribution and peak values, for a voltage source of fixed RMS

value, or for a constant power delivered to RT , for different values of RT . Afterwards, considering

the 4-multilayer resonator array described in Chapter 5, the difference between the field generated

near and at a distance from the resonator array is examined along with its variation with different

values of RT . A circular magnetic near-field probe was used in order to measure the value of

the average magnetic flux density normal component incident on the probe area. Finally, the

measurements made with the circular probe are compared with the simulations carried out using a

finite-element software.

4.2 Magnetic near �eld simulations

In this section, we assess the magnetic near field generated from an array of resonators arranged in

a plane along a line and connected to a termination resistance RT , as represented in Fig. 3.2, using

the Finite-Element Software FEMM. As an example, we consider the stranded-wire 6-resonator

array described in Chapter 5. Then, in order to study the spatial distribution of the magnetic flux

103



4. Magnetic near field generated from an array of resonators

Figure 4.1: Scheme of the 6-resonator array cut by a transversal plane, used in FEMM for magnetic
near field simulations.

density mangnitude, we considered a transversal plane that cuts the array in half, as represented in

Fig. 4.1.

Eventually, we can perform the simulations calculating the value of the current in each resonator

with the expression (3.43) developed in Chapter 3, using the values for the stranded-wire resonator

array (L = 12.6µH, C = 93.1nF, R = 0.11Ω, M = −1.55µH and f0 = 147kHz) and for different

values of RT (0.4Ω, Req,∞ and 10Ω).

Then, for the study of the spatial distribution of the magnetic flux density magnitude |B|, we

considered two situations: one in which the power delivered to the load RT , calculated with (3.48),

is constant and equal to PRT = 10W (which implies a variable RMS value of the voltage source

Vs), and the other where we considering a given voltage source, with its RMS value Vs constant

and equal to 5V. For these two situations, the spatial distribution of |B| along the x and z axes, is

represented in Figs. 4.2 and 4.4; the distribution of |B| along a line parallel to the x axis at different

heights from the array (h = 1cm and h = 5cm, as shown in Fig. 4.1) is shown in Figs. 4.3 and 4.5.

By analysing Fig. 4.3, it is possible to observe that the oscillation in the magnitude of the cur-

rents in consecutive resonators for values of RT different than Req,∞ (as seen in Fig. 3.5 in the

previous Chapter 3 ), is also reflected in the magnetic flux density magnitude |B|. This means that

when the array is terminated with RT = Req,∞, there are less variations in the magnetic flux density

magnitude along a line parallel to x axis, as it can be clearly observed in Fig. 4.3. Moreover,

by observing Figs. 4.2 and 4.3 (a) at a close distance from the array of resonators (for example

h=1cm), higher values of the magnetic flux density near the edges of the resonators can be no-

ticed. Finally, in the case where PRT is assumed constant, the magnetic flux density magnitude |B|
considered at points over a line parallel to the x axis (Fig. 4.3) has higher values when the value

of RT is different than Req,∞ = 1.38Ω (RT = 0.4Ω and RT = 10Ω), while the lowest peak values of

|B| are obtained for RT = Req,∞; in particular, the highest values of |B| are achieved for RT = 10Ω.
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(a)

(b)

(c)

Figure 4.2: Spatial distribution of the magnetic flux density magnitude |B| generated by a 6-
resonator array along the x and z axes, for a constant power PRT = 10W and for different
values of RT : (a) RT =0.4Ω, (b) RT = Req,∞ and (c) RT =10Ω .
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(a)

(b)

Figure 4.3: Magnetic flux density |B| along a line parallel to the x axis at height h from the array
(a) h = 1cm, (b) h = 5cm.

(a)

(b)

Figure 4.5: Magnetic flux density |B| along a line parallel to the x axis at height h from the array
(a) h = 1cm, (b) h = 5cm.

Afterwards, considering a voltage source with a constant RMS value Vs = 5V , we can note in

Figs. 4.4 and 4.5 a smoother variation of the magnetic flux density magnitude over the resonator
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(a)

(b)

(c)

Figure 4.4: Spatial distribution of the magnetic flux density magnitude |B| generated by a 6-
resonator array along the x and z axes, for a voltage source with a constant RMS value
Vs = 5V and for different values of R′T : (a) R′T =0.4Ω, (b) R′T = Req,∞ and (c) R′T =10Ω.

array, as seen in the previous case for RT =Req,∞, as the currents in adjacent resonators have similar

magnitudes. However, in this case, even though the highest peak values for |B| are still found for

RT = 10Ω, the lowest peak values occur for RT = 0.4Ω. Still, we need to take into consideration

that the power absorbed by the load, PRT , and the power delivered by the voltage source to the

array, Pin, are different for each case: PRT has the values of 4.0W, 10.6W and 17.3W, Pin has values

of 8.2W, 16.8W and 48.2W for RT = 0.4Ω, Req,∞ and 10Ω, respectively. In conclusion, for a

voltage source with a constant RMS value, although for RT = 0.4Ω the lowest peak values of |B|
are noted, both the power delivered to RT , PRT , and the efficiency, PRT /Pin, are smaller than those

obtained when RT = Req,∞.

4.3 Magnetic near �eld measurement

In order to measure the magnetic near field generated by an array of resonators and verify the

results regarding its variation with different values of RT , a self-constructed circular magnetic

near-field probe of a 4cm diameter (built from a coaxial cable, as shown in Fig. 4.6, was used.

This probe was then connected to an Agilent 4396B Spectrum Analyzer (2 Hz-1.8 GHz). The

electromotive force (e.m.f.) ε at the terminals of the probe produced by the time-varying mag-
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Figure 4.6: Magnetic near field circular probe used for the e.m.f. measurements.

netic field generated by the resonator array was then measured. According to Faraday’s law and

supposing that B is uniform over the area A, it is given by:

ε =−N
d
dt
(BAcosθ) (4.1)

where N is the number of turns of the inductor and θ is the angle between the vector of the

magnetic flux density and the normal vector to the area considered. From (4.1), considering that

the magnetic flux density B is a sinusoidal quantity with frequency f = ω/2π, and that the probe

has one single turn (N = 1), it is possible to determine the average value Bp of the RMS value of

the magnetic flux density normal component (θ = 0º) incident on the probe area, at the resonant

frequency ω0, as

Bp =
Vp

Apω0
(4.2)

where Vp is the RMS value of the voltage measured at the probe terminals and Ap is the area of

the probe.

Eventually, using the 4-resonator array with planar multilayer coils, whose equivalent circuit is

depicted in Fig. 3.2 (as described in Chapter 5), Vp was measured at points at different distances

from the resonators. Measurements were made along a semicircular line of 1.82 m of diameter

(along the edge of a circular wooden table, as shown in Fig. 4.7) centred on the array structure.

Another set of measurements were performed along the horizontal symmetry axis of the array

structure at a height of 2.5 cm above it. In order to avoid the possible influence of the inverter

on the measurements, these are performed with the inverter outside the circular table, as seen in

Fig. 4.7. Two different capacities (20nF and 47nF) are connected to the coils in order to make

the system resonant at 294kHz and 192kHz, respectively. For the resonance frequency of 294kHz

the magnetic near field is assessed using the values for RT 0.47Ω, 3.3Ω and 10Ω, while for the

resonance frequency of 192kHz the termination impedances of 0.47Ω, 2.67Ω and 10Ω are used.

In both cases, the power delivered to the load is kept constant and equal to 5W.

The magnetic flux density is found from Vp with (4.2), i.e., as the average normal component

of the magnetic flux density incident on the probe area. By aligning the probe axis with each
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Figure 4.7: Resonator array on the circular table and magnetic near field probe used in the mea-
surement.

Figure 4.8: Resonator array representation with transversal cross-section used in the finite element
simulations.

coordinate axis (as represented in Fig. 4.8), we can then obtain the corresponding average RMS

normal components Bp,x, Bp.y, Bp,z of the magnetic flux density, which lead to:

Bmeas =
√

B2
p,x+B2

p,y +B2
p,z. (4.3)

Then, an analysis was made of the variation of the RMS values of the magnetic flux density

magnitude at points both near and at a distance from the resonator array. Using the value of the

current measured in each resonator, simulations were performed with a Finite Element software

and the simulated values were then compared with the ones obtained through measurements using

(4.2) and (4.3). This was done for both 294 kHz (Figs. 4.9 and 4.10) and 192 kHz (Figs. 4.11 and

4.12) resonant frequencies.

By analysing Figs. 4.9-4.12 we can observe that, as seen in the previous section with the simu-

lations made on the 6-resonator array, when RT is close to Req,∞ (which is equal to 3.2Ω and 2.0Ω
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(a) (b)

Figure 4.9: Comparison between the magnetic flux density magnitude (RMS value) obtained with
(a) measurements and (b) simulations along a line above the resonators at 294kHz and
for different values of RT .

(a) (b)

Figure 4.10: Comparison between the magnetic flux density magnitude (RMS value) obtained with
(a) measurements and (b) simulations along a semicircular line around the resonators
at 294kHz and for different values of RT .

(a) (b)

Figure 4.11: Comparison between themagnetic flux density magnitude (RMS value) obtained with
(a) measurements and (b) simulations along a line above the resonators at 192kHz and
for different values of RT .
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(a) (b)

Figure 4.12: Comparison between the magnetic flux density magnitude (RMS value) obtained with
(a) measurements and (b) simulations along a semicircular line around the resonators
at 192kHz and for different values of RT .

for the 294kHz and 192kHz cases, respectively), the peak values of the magnetic flux density are

never the highest ones and their values vary less along the lines considered. Moreover, the peak

values of the magnetic flux density magnitude at a distance from the array are much smaller than

the ones at points close to the resonator array (from hundred of nT to hundred of µT). However,

this means that not all the magnetic flux density is confined into the array of resonators and that

the field at a distance from the system has to be considered.

4.4 Conclusion

In this chapter the magnetic near field generated by an IPT system composed of an array of res-

onators is examined.

To start with, using the software FEMM, the spatial distribution of the magnetic flux density

is analysed considering a 6-resonator array with stranded-wire resonators as an example. Two

cases are considered: one in which the power delivered to RT , PRT , is considered constant and

equal to 10W and another where the voltage source that supplies the resonator array has a constant

RMS value Vs = 5V. For different values of RT it is possible to observe that the oscillation in the

magnitude of the current in each resonator (already noticed in Chapter 3 for RT different than

Req,∞) is also reflected on the values of the magnitude of the magnetic flux density. This means

that, if we consider a line parallel to the symmetry axis of the array at a given height, the values

of the magnetic flux density magnitude vary less along that line when RT = Req,∞. Moreover, in

the case with a constant delivered power PRT and RT = Req,∞, the peak values of the magnetic flux

density magnitude are never the highest ones along the lines considered, while in the case for a

voltage source with fixed RMS value this happens for RT = 0.4Ω; in both cases, the highest peak

values are observed for RT = 10Ω. Additionally, at a small distance from the resonator array, the

magnetic flux density magnitude is higher near the edges of the resonators.

Regarding the measurements made on the multilayer 4-resonator array using a circular mag-

netic near-field probe, it is found that, as expected from the precedent section, when the value of

RT is closer to Req,∞ the peak values of the magnetic flux density are never the highest ones, at

points both near the array and at a distance from the array. This is observed when the system is
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operating both at 294kHz and at 192kHz resonant frequencies. Moreover, although the magnetic

flux density measured at a distance from the resonator array is much lower than the one measured

close to the array, not all the magnetic flux density is confined into the array of resonators. This

implies that this magnetic flux density detected at a distance from the array of resonators should

to be considered specially with systems capable of delivering higher power. In the same way, the

magnetic near field measured at points a close to the array should also be limited according to the

limits defined by IEEE and ICNIRP Standards for human exposure. Finally, the good agreement

between the values obtained with experiments and simulations indicates that the circular magnetic

near-field probe can be used to measure the magnetic near flux density with a good accuracy.
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5 Experimental Setup

5.1 Introduction

In inductive wireless power transfer systems and prototypes presented in literature, the type of coils

and power source used usually depends on the operating frequency and power delivered by these

systems. When operating at high frequencies (usually up to a few tens of MHz) and low power

(up to a few Watts) usually the coils are single or multilayered flat resonators, printed on PCB

boards, [8, 11, 14, 16]. Concerning the power and efficiency analyses of the IPT systems, signal

generators driving RF power amplifiers [8, 13, 44, 46] or vector network analysers (VNA) [14, 16]

are mainly used.

On the other hand, in order to be able to transmit larger power with IPT systems, power convert-

ers are used to supply the inductors. By using AC-DC-AC converters as in [2, 4] or just a DC-AC

converter, as in [47, 48], it is possible to feed the coils with a high frequency voltage (for higher

power applications, around a few tens of kHz). Although the high frequency voltage generated by

the DC-AC stage is a square wave, the current circulating in the coils is sinusoidal, as the reso-

nant circuit behaves as a filter (considering that the coils have a high quality factor Q, as referred

in [32]). Regarding the type of switches used in the converters, many high power prototypes pre-

sented in literature use inverters with IGBT switches [4, 47] as they have higher rated voltages.

However, these converters with IGBTs usually operate up to a few tens of kHz. Converters with

higher switching frequencies, as in [48, 49], use MOSFET switches.

When we work at kHz frequencies, the quality factor of the coils (Q = ωL/R) is much lower in

comparison to that at frequencies of the MHz level because, despite the fact that the resistance de-

creases approximately with the square-root of frequency (
√

f ) due to the skin-effect, ωL decreases

with the frequency. As the value of the inductance L depends mainly on the geometry of the wire

and coils, a way to increase the quality factor of the coils and reduce the losses in the resonators is

the utilization of Litz wire, as in [4, 13, 31].

In this chapter we describe the experimental setup used in this thesis for the experimental veri-

fication of the theoretical results obtained. The experimental setup uses an inverter with MOSFET

switches as the power source and two types of resonator arrays: one with rectangular planar mul-

tilayer coils and the other with square stranded-wire coils.

5.2 Power source - resonant inverter

As referred in the introduction of this chapter, many high power vehicle charging applications, as

in [2,4], use a two-stage AC-DC-AC converter to power IPT systems in which the former AC-DC

stage rectifies the AC current from the grid and the latter DC-AC stage produces the AC current at

the desired high frequency, as in Fig. 5.1.
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Figure 5.1: Example of an AC-DC-AC converter for a inductive power transfer system for electric
vehicle charging [4].

Figure 5.2: Example of the circuit of a full-bridge inverter fed by a DC voltage source Vdc con-
nected to an array of 4 resonators.

In the experimental setup used in this thesis we use just the final DC-AC stage, using a resonant

inverter powered by a DC voltage source. As in this thesis we operate at frequencies from 150kHz

to 300kHz, a Class D voltage-switching inverter with MOSFETs, as in [32], is used. The layout of

the circuit of the inverter feeding an array of 4-resonators is represented in Fig. 5.2. The inverter

was built using a Fairchild FSB44104A Motion SPM® 45 LV Series module that has integrated

a three-phase MOSFET inverter and the MOSFET drive circuit (HVIC and LVIC), as represented

in Fig. 5.3.

The circuit shown in Fig. 5.3 was then implemented by using an Elind 3232 DC voltage source

to power the MOSFET drive circuit to 15V and an Arduino Due microprocessor board to set the

switching frequency of the MOSFETs. The Arduino Due board was connected to ports “Gating

WH” to “Gating UL” (represented by MCU (MicroController Unit) in Fig. 5.3). Furthermore,

in order to build the circuit shown in Fig. 5.3 all the other components (capacitors, resistors and

diodes) were connected to each other using a PCB board, as shown in Fig. 5.4. The values used

for the resistors, capacitors and diodes, as recommended by the manufacturer, were the following:

• Rs = 100Ω; RBS = 56Ω;

• CPS = 1nF ; CBS = 100µF ; CBSF = 1µF ; CSP15F = 100µF ; CDCS = 200µF

• Diode DBS was a Schottky 60V /1A diode, while the Diodes connected between pins 22 and

21, 20 and 21 and 18 and 17 were 24V, 3W Zener Diodes.

Finally, the inverter DC bus was connected to an AIM-TTI Instruments QPX1200SP 1200W DC
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Figure 5.3: Typical application circuit and internal equivalent circuit of the FSB44104A Motion
SPM® 45 LV Series. .

Power Supply.

It is important to note that, although the FSB44104A module has a three-phase inverter inte-

grated, in order to obtain an equivalent circuit as in Fig. 5.2, we only need two phases of the

inverter. In our case, only the phases U and V were used. Eventually, as referred before, the

frequency of the square wave voltage generated by the inverter is determined by the Arduino Due

microcontroller. Then, by setting the Arduino Due to switch the MOSFETS in phase U and V

alternatively, we can obtain a full-square wave between the phases U and V at a determined fre-

quency, as shown in Fig. 5.5.

5.3 Array with multilayer planar coils

In this section we describe the design and manufacturing of the array composed of four rectangular

multilayer flat spiral resonators, as shown in Fig. 5.6, with the dimensions reported in Tab. 5.1.

Concerning the calculation of the resonators electrical parameters, the self-inductance L of each

resonator is found through the partial inductance method [50,51]. This method consists in the cal-

culation of the self-inductance of the resonator by adding the partial self- and mutual inductances

of the smaller elements in which the resonators can be subdivided. The partial self-inductances

are determined with the finite element simulation programme FEMM [52] while the partial mutual
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Figure 5.4: PCB board with the FSB44104A module and Arduino Due microprocessor, built for
implementing the inverter circuit used in this thesis.

Table 5.1: Dimensions of the designed resonators represented in Fig. 5.6.
Dimensions [mm]

l 250
lm 100

Thickness of the resonator track (t) 0.1
Width of the resonator track (w) 5

Space between turns (st) 0.1
Space between layers (sl) 0.25

inductances are found with the calculation method proposed in [53]. Regarding the AC resistance

of the resonators, it is calculated using the value of the resistance per unit length obtained with

FEMM, so that the skin effect, proximity effects and crowding current density effects on the AC

resistance are taken into consideration. The stray capacitance associated to the parasitic capaci-

tances between turns and layers is neglected in this thesis. This because as we operate at a resonant

frequency much lower than the self-resonant frequency of the coils, the stray capacitance is much

smaller than the additional capacitance used to tune the resonators to a particular resonant fre-

quency.

Considering that we want to reduce the losses in each resonator, from [14,16] we know that the

attenuation in each cell decreases with the increase of the product |kQ|, which is referred in this

thesis as the inverse of factor r = R/2ω0|M| (3.58). In order to analyse the variation of |kQ| with

the number of turns and layers, in Fig. 5.7 the quality factor Q, the coupling coefficient magnitude
|k| and the |kQ| product are plotted versus the number of turns and for different layer numbers n,

considering two resonators placed side-by-side at a distance of 5 mm and an operating frequency

of f = 300 kHz [5]. As it can be observed in Fig. 5.7 (a), the quality factor has a maximum for

n = 1 for about 7 turns (Q∼= 55) and for n = 2 for about 5 turns (Q∼= 69). Conversely, Fig. 5.7 (b)

shows that the coupling coefficient magnitude |k| decreases with the number of turns, with similar
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(a) (b)

(c)

Figure 5.5: Voltage between phases U and V, as in Fig. 5.3 for an operating frequency of (a)
f = 100kHz, (b) f = 200kHz and (c) f = 300kHz. Horizontal scale 2µs/div; vertical
scale 5V /div.

values for n = 1 and n = 2. However as we want to maximize the product |kQ| it is important to

notice that, as seen in Fig. 5.7 (c), |kQ| reaches a maximum for n = 1 for 4 turns (|kQ| = 7) and

for n = 2 for 3 turns (|kQ|= 9).

As a result of the conclusions drawn from Fig. 5.7, the multilayer resonators were built with

2 layers and 3 turns, according to the scheme of Fig. 5.6 and with the dimensions of Table 5.1.

The resonators were fabricated in laboratory by cutting a copper sheet and two identical layers

were manufactured and welded together, using electrical tape as insulator between the layers and

cardboard as resonator substrate (Fig. 5.8). In the calculations presented in Fig. 5.7 the coils

were designed to resonate at 300 kHz. However, for this resonator array, by using two different

commercially available capacitors of 20nF and 47nF, the experimental system was set to resonate

at 294kHz and 192kHz, respectively

Figure 5.6: Representation of a multilayer flat spiral resonator and its dimensions.
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Figure 5.7: Values of Q (a), |k| (b) and |kQ| (c) versus the number of turns for one and two layers
[5].
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Table 5.2: Measured and calculated values of the resonator parameters.
Parameters Measured Calculated

Frequency (kHz) 100 192 294
L(µH) 14.8 14.8 14.8
R(Ω) 0.42 0.58 0.72

Q 22 31 38

Using the methods described previously, the resonators were designed to have a value of self-

inductance of 14.8µH. The self-inductance was then measured using an Agilent 4263B LCR Meter

at 100kHz. The mutual inductance M between any pair of adjacent resonators was empirically

calculated using the following:

V2 = ωMI1 (5.1)

where V2 is the RMS value of the measured voltage at the terminals of the second resonator of the

pair, I1 is the RMS value of the sinusoidal current injected in the first resonator. From (5.1), the

mutual inductance M obtained through measurements is 1.9µH.

The measured and calculated self-inductance, resistance, and relevant quality factor of a cell are

reported in Table 5.2. The value of the self-inductance of the resonators was measured with an

Agilent 4263B LCR Meter at 100 kHz. As the value of the resistance was measured at 100kHz, for

other frequencies the value is estimated to increase with the square-root of the frequency
√

f , due

to the skin-effect while the inductance is estimated to remain approximately the same value. The

equivalent series resistance (ESR) of the capacitor was measured and was found to be negligible

compared to the coil resistance. The quality factor and the resistance are calculated for f = 294

kHz and f = 192 kHz. Note that the value obtained for the quality factor at 294 kHz, Q = 38, is

smaller that the one predicted in Fig. 5.7(a), probably because of a higher value of the resistance

of the coils due to the soldering of the two layers. The value of the coupling coefficient magnitude,
|k| = 0.26, is higher that the one predicted in Fig 5.7(b), due to the smaller side-by-side distance

set between the resonators in the experimental setup with respect to the one used for calculations in

Fig. 5.7 (5mm). This was done in order to increase the performance of the system and compensate

the lower value of Q experimentally obtained, thus making the product |kQ| equal to 9.9, similar

to the value predicted in Fig. 5.7(c).

The experimental setup of the array of four multilayer planar resonators connected to the inverter

and a termination impedance ZT as represented in Fig. 5.2 is shown in Fig. 5.8.

5.4 Stranded wire coils

The second array presented in this thesis uses square coils made with stranded wire, as a cheap

alternative to Litz wire. The wire used was a Alpha Wire PPE Hook Up Wire, 3.31 mm², 600 V

12 AWG. The stranded wire was composed of 65 tinned copper strands of 0.25 diameter each,

making a conductor area of 3.31mm2. Each wire was insulated with PPE (Polyphenylene Ether)

and had a total diameter of 2.97mm. For the fabrication of the coils a wood block of 153x153x29

mm with a channel 1.5mm deep and 18mm wide was used , as shown in Fig. 5.9(a). Then, the
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Figure 5.8: Array of four multilayer planar coils connected to the inverter.

(a) (b)

Figure 5.9: Wooden core used for the fabrication of the coils (a) and complete manufactured coil
(b).

wire was wrapped around the channel with 6 turns, and kept tight around the wood block with

electrical tape, as shown in Fig. 5.9 (b).

Then, as seen in 5.9 (b), two capacitors of 47nF were connected to each resonator, making a

total capacity of 94nF. The resonators were then placed side-by-side as close as possible, with just

0.6 mm of separation between the wires due to the insulation of the wires (0.3mm thickness). An

example of the experimental setup used in this thesis for an array of 6 resonators is represented

in Fig. 5.10, with the first resonator connected to the inverter described in section 5.2 and the last

one to a resistance.

The inductance of the resonators was predicted using the formula for a rectangular solenoid as

in [54] and a value of L = 12.6µH was obtained. The experimental values of the self-inductance,

intrinsic AC resistance, added capacitance and resonant frequency of each resonator were deter-

mined through measurements using a Vector Network Analyser (VNA). The mutual inductance M

between any pair of adjacent resonators was also determined with the VNA from (5.2):
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(a)

(b)

Figure 5.10: Equivalent circuit of the experimental setup using 6 coils (a) and complete experi-
mental setup used in laboratory (b).

Table 5.3: Average measured circuit parametervalues of the resonator array.
Parameter L(µH) C(nF) R(Ω) M(µH) f0 = 1/

(
2π
√

LC
)
(kHz)

Measured values 12.6±0.1 93.1±0.2 0.11±0.01 -1.55±0.05 147.0±0.5

Ẑin = R+
(ω0M)2

R
(5.2)

After performing measurements in all the inductors, the average values between the maximum and

minimum measured values for each parameter are given in Table 5.3.

Note that for these coils, although we are operating at a lower frequency, due to the larger section

of the conductor, we obtained a larger value of Q, equal to 108. Moreover, having a similar value of
|k|= 0.25, we have a product |kQ|= 27, much higher than the value of 9.9 obtained for the planar

multilayer coils. This leads to a lower attenuation, which is clearly observed in the efficiency

measurements made in Chapter 3, where for an array of 4 resonators larger values are obtained for

the array with stranded wire.

For the cases presented in Chapters 2 and 3, where we considered a receiver over the array, we

used a resistance to represent the receiver (Fig. 5.11 (b)) or a real receiver (Fig. 5.11(c)), using one

of the resonators of the array. Regarding the real receiver, as seen in Fig. 5.11(c), the resonator is

placed directly over the array, meaning that the distance between the faced resonators is 1 cm due

to the wooden substrate. For this distance, the mutual inductance measured between the receiver

and the resonator below it was measured using the VNA with (5.2) and a value of Mr,l =4.8µH was

obtained. Moreover, the receiver was distanced 4cm and 9cm from the cells of the array, which

gives a measured mutual inductance between the receiver and the cell beneath it of Mr,l = 2.7µH
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(a)

(b)

(c)

Figure 5.11: (a) Equivalent circuit of the experimental setup using 6 coils with a receiver over
the 3rd resonator and (b) complete experimental setup used in laboratory, using a
resistance to represent the receiver or (c) with a real receiver (resonator).

and Mr,l =1.2µH, respectively.

The resistors used in the experiments were Thick Film resistors, with a rated maximum dissi-

pated power of 100W.

An example of the waveforms of the input voltage and current vin(t), iin(t) and the voltage at the

terminals of the termination resistance vT (t) (using the setup shown in Fig. 5.10) is shown in Fig.

5.12. The voltage vT (t) leads the input voltage vin(t) by 90º. This happens because the current in

the 6th resonator leads the first resonator current by 90º, as seen in Chapter 3.

Another example with the voltage vd(t) at the terminals of the resistance that represents the

receiver, when it is in the 3rd position (l = 3) (Fig. 5.11(b)), is shown on Fig. 5.13. In this case the

voltage vd(t) is in phase opposition with respect to the input voltage vin(t) because the resistance

Rd is connected to the 3rd receiver of the array whose current is in phase opposition with respect

to the first resonator current, as seen in Chapter 3.
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Figure 5.12: Example of the waveforms of the input voltage and current vin(t), iin(t) and of the
voltage vT (t) at the terminals of RT = 1.5Ω, vT (t) obtained with the oscilloscope.
Horizontal scale: 2µs/div. Vertical scale 10V/div. and 5A/div.

Figure 5.13: Example of the waveforms of the input voltage vin(t), of the voltage at the terminals of
the resistance Rd = 5Ω that represents the receiver over the 3rd resonator of the array
(l = 3) vd(t) of obtained with the oscilloscope. Horizontal scale: 2µs/div. Vertical
scale 10V/div.

5.5 Conclusion

In this chapter we describe the manufacturing of the experimental setup used in this thesis. First,

the power source of the resonator arrays was build using the inverter integrated in the Fairchild

FSB44104A module composed of a full-bridge inverter. The FSB44104A was integrated in a

PCB board together with the circuit that powered the MOSFET drive, which was controlled by the

microprocessor Arduino Due. Regarding the type of resonator arrays, two types of resonator arrays

were used. The first one used four rectangular planar coils with two layers and three turns per

layer fabricated with a 0.1mm thickness coil sheet in a substrate of cardboard and it was operated

at resonant frequencies of 192kHz and 294kHz. Then, in order to build an array with a higher

quality factor, seven resonators with 6 turns were fabricated in laboratory using a stranded wire

with a cross section of 3.31mm2, wound around a square wooden substrate of 153x153x29mm.

This new array was then operated at a resonant frequency of 147kHz. Finally, regarding the array

with stranded-wire resonators, in order to represent a receiver over a given resonator, an additional

resistance was added to a given resonator of the array or, alternatively, one of the resonators was

placed over the array and used as a receiver.
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6.1 Discussion of the results

In this thesis a mathematical approach is used in order to obtain an accurate solution of the circuit

model of a resonator array used for inductive power transfer.

Assuming that the equivalent impedance of a resonator array is represented by a continued frac-

tion, it is possible, by using the theory of linear homogeneous equations, to obtain the general term

of the recursive sequence that represents that same fraction in a closed-form expression, which al-

lows one to quickly determine the value of the equivalent impedance for different characteristics of

the system (different electrical parameters, number of resonator arrays and of receivers) and pre-

dict its behaviour with the variation of its parameters. Moreover, using the analytical expression

obtained, one can study the convergence and the monotonicity of the continued fraction. With this

study it is found that the recursive sequence converges to a determinate value, which represents

the equivalent impedance of a resonator array with an infinite number of resonators, Ẑeq,∞. By ter-

minating the array with an impedance of this value, the value of the equivalent impedance remains

constant for any number of resonators. Furthermore, regarding the monotonicity of the recursive

sequence, it is shown that the sequence has an oscillating behaviour depending on whether the

array is terminated with an impedance whose value is larger or smaller than Ẑeq,∞. Furthermore,

the closed-form expressions for the equivalent impedance developed can be used as a tool for the

design of the array, but more specifically for the design of the power source that feeds the array:

for a given voltage source, by knowing the equivalent impedance and its possible variations, the

power delivered from the source to the array can be calculated and predicted.

Afterwards, a mathematical analysis is made on the inversion of the impedance matrix of the

circuit model of the resonator array in order to determine the current in each resonator. By as-

suming the impedance matrix as a tridiagonal matrix, two cases are considered: the former where

all the elements in the main diagonal are equal except for the last one, and the latter where all

the elements of the main diagonal are equal except for two elements (the last one and another in

any position). In this way, by analytically performing the inversion of a tridiagonal matrix, it is

possible to develop the expressions needed to calculate the current in each resonator for several

cases: the array terminated in a load, the array with one or two receivers and an IPT system with

a source with an internal impedance. Eventually, using the expressions for the currents one can

determine the power delivered from the source to the array and the power delivered to a load, or to

one or two receivers placed over the array and, consequently, the efficiency of the system. Then,

after developing the expressions for the currents, the input power and the power delivered to a load

or to a receiver, in order to illustrate the results obtained a few numerical examples are made for

the different types of resonator arrays presented. It is found out that, if the array is not terminated

with Ẑeq,∞, the absolute values of the currents in two adjacent resonators oscillate, whereas if it
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is terminated with Ẑeq,∞, the current absolute value decreases gradually from the first to the last

resonator. Additionally, it is observed that the load or the impedance of the receiver at the end

of the array that guarantees the maximum power transfer or maximum efficiency changes with

the number of resonators of the array tending eventually to a constant value. Likewise, the value

of the equivalent impedance of the receiver, Ẑd , that guarantees the maximum power transfer or

maximum efficiency in an array terminated with Ẑeq,∞ changes with the position of the receiver

but eventually tends to a constant value. Moreover, it is noticed that the power delivered to a load

or a receiver for different values of the load or receiver equivalent impedance follows a pattern

depending on the parity of the difference between the value of the total number of resonators and

the position of the receiver, N− l: the curves of the power with odd or even values of N− l have

similar shapes. Then, it is demonstrated that the value of the source impedance does not influence

the efficiency of the system but, for a voltage source with a constant RMS value, it influences the

power delivered to a load or receiver at the end of the array. Besides, by matching the source to the

loaded array, the value of the impedance that guarantees the maximum power transfer becomes

constant. These theoretical results can help one to achieve a better understanding of how the power

transfer occurs in a resonator array, but also can be a powerful tool for the design of a resonator

array with given characteristics.

After the mathematical analysis made on the circuit model of a resonator array, an assessment of

the magnetic near field generated by an array is carried out, along with its variation with the value

of the termination impedance. By performing simulations and measurements, it is observed that

the oscillation of the currents in adjacent resonators when the termination impedance is different

than Ẑeq,∞ is also reflected on the magnetic field generated. Furthermore, for a constant power

delivered to the termination impedance, the peak values of the magnetic flux density determined

are larger when the termination impedance is well different than Ẑeq,∞. This means that, by using

Ẑeq,∞ as the termination impedance, not only we have smoother variations of the spatial distribution

of the magnetic flux density, but also lower peak values of the magnetic flux density.

Finally, it is important to note that the theoretical results obtained with the mathematical ap-

proach are verified not only with circuit simulations but also with the experimental setup described

in the forth chapter of this thesis. The good match between the theoretical results, simulations and

measurements validates the expressions developed and shows a practical applicability of the re-

sults on the design of resonator arrays. Also, in the experimental verifications it is shown that the

arrays of resonators can transfer higher amounts of power and operate at hundred kHz frequency

levels.

6.2 Original contribution

The analytical approach for the solution of the circuit model of a resonator array presented in this

thesis is an original contribution to the ongoing research about the utilization of resonator arrays

for inductive power transfer, compared to other methods presented in literature (as magnetoinduc-

tive wave (MIW) theory or numerical circuit analysis). The results presented in this thesis are in

agreement with those obtained with the magnetoinductive wave theory for one receiver over the

array. Moreover, this approach allows a broader analysis of these systems, as several different
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types of arrays and configurations of array/receiver can be considered (e.g., arrays with even two

receivers), electrical parameters or operating conditions. Then, the developed closed-form expres-

sions can be used by designers as calculation tools, as they allow one to save time in comparison

with numerical methods or simulations. The expressions can give guidelines to those who want to

obtain maximum efficiency or maximum power transfer to a load, or to one or two receivers, for

arrays with known electrical parameters. Finally, as the expressions concern the solution of the

circuit model and refer to electrical parameters, they can be used for arrays with different types of

power source, and different components of the circuit (resonators, capacitors or loads) regarding

the materials used for the construction of the resonators.

Furthermore, the analysis presented on the magnetic field generated by a resonator array is

an original work, as the studies available in literature about the magnetic field generated by IPT

systems refer to two-coil systems.

Ultimately, the experimental setup presented in this work, composed of a power inverter oper-

ating at hundred kHz level which supplies a resonator array capable to deliver a power to a load

or a receiver up to about 90W, differs from most of the arrays seen in literature, which operate at a

few MHz and deliver only a few Watts of power. This shows new possible future applications for

IPT systems with arrays of resonators for powering small electronic or domestic devices.

6.3 Future work

There is further work that can be done considering the results presented in this thesis.

Regarding the mathematical analysis of the inversion of the impedance matrix, the cases where

the voltage source is not connected to the first resonator, but to any other resonator of the array can

also be taken into consideration. Moreover, the pattern of the values of the currents and equivalent

impedances observed for odd and even values of the resonator number (or position of the receiver)

can be further studied by considering each case individually and analysing the formulas and results

for each case.

In addition, the magnetic field generated by a resonator array can be further investigated in

the case where there is a real receiver over the array in different positions or in the case that the

resonators are placed in a domino configuration.

Then, concerning future experimental work, it has to be remembered that the stranded-wire was

chosen as an economic alternative to the Litz wire, which is usually recommended for resonator

operating at this low frequency level. Indeed, the utilization of Litz wire would decrease the losses

of the system and increase its efficiency and maximum power transferred, also making it possible

to use more resonators, keeping the efficiency at the same level as that with stranded wire coils.

Finally, using power converters of new technology, capable of operating at higher frequencies

(MHz level) can further increase the efficiency, along with the use of ferrite cores for the coils.

Moreover, connecting a rectifier to the receiver instead of a resistor, it is possible to study the

possible application of a resonator array for battery charging.
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