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Abstract

This thesis aims at the study of systemic risk measurement, which became crucial after
the 2007− 2009 financial crisis. The objective of the thesis is twofold: (i) we address the
issue of assessing the accuracy of systemic risk measures, (ii) we investigate the role of the
long-range dependence in systemic risk forecasting, under both methodological and em-
pirical perspectives. From the methodological point of view, we propose two appropriate
loss functions, the Tail Tick Loss function and the Tail Mean Square Error, specifically
designed to evaluate the CoVaR and MES accuracy, respectively. Moreover, we introduce
a comprehensive model called Asymmetric-Component-GARCH (ACGARCH), which is
able to capture both the leverage effect and long-range dependence. An empirical analysis
of different bivariate volatility models to the daily returns of 91 US financial institutions
in the period 2000 − 2012 confirms the need of employing appropriate loss functions to
evaluate systemic risk accuracy and to discriminate among different competing models.
Moreover, empirical results encourage the usage of the ACGARCH model in the systemic
risk framework.
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Chapter 1

Introduction

This chapter explains systemic risk, whose a single definition is not shared in the litera-
ture, motivating the importance of its measurement for the society. How to define and
measure it is the object of interest over the last years, however it is still an open issue.
After providing an overview over the existing definitions and different approaches’ points
of view, the motivation and the structure of the thesis work are presented.

1.1 Systemic risk: definition and measurement

The 2007 − 2009 financial crisis developed the need of measuring systemic risk for the
whole economy with the purpose to evaluate the vulnerability of the financial system and
the risk of different financial institutions on the whole market, since a single institution’s
risk measure does not necessarily reflect systemic risk (e.g. Value-at-Risk). The failure
of big financial institutions infected the entire financial system and even brought severe
consequences to the real economy on a global scale, such as the bankruptcy of Lehman
Brothers, which demonstrated the fragility of the whole financial system. Furthermore,
through the spillovers from the financial system to the real economy, which drops into a
deep recession, and through the bailouts of big companies with taxpayers’ money, finan-
cial crises impose high costs for the society, leading to consider managing systemic risk
as a desirable goal.
In the light of the global financial crisis and due to the acknowledgement of the impor-
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2 CHAPTER 1. INTRODUCTION

tance of systemic risk, several organisms were created in order to control and supervise
the stability of the financial system. Among the others, the U.S. Congress, in 2010,
created the Office of Financial Research (OFR), and European Systemic Risk Board
(ESRB) was born in April 2009 in order to ensure financial stability. Finally, regulators
have been given a mandate to measure and monitor systemic risk.

The precise definition of systemic risk is still ambiguous and many proposals are
present in the literature. Billio et al., in 2012, specify systemic risk as “any set of
circumstances that threatens the stability of or public confidence in the financial system”,
whereas the European Central Bank (ECB), in 2010, defines it as a risk of financial
instability “so widespread that it impairs the functioning of a financial system to the
point where economic growth and welfare suffer materially”. Daniel Tarullo, the Federal
Reserve Governor, in 2009, states that “Financial institutions are systemically important
if the failure of the firm to meet its obligations to creditors and customers would have
significant adverse consequences for the financial system and the broader economy”.
Finally, Acharya et al., in 2010, claim that systemic risk is the risk of a crisis in the
financial sector and its spillover to the economy at large.

Systemic risk may easily be confused with systematic risk, also known as market risk
or undiversifiable risk. Systematic risk is the risk explained by factors that influence
the economy as a whole, and, in a portfolio, can’t be diversified. Systemic risk is,
instead, more complex and, according to Staum (2012), is composed by different risks:
the systematic risk and those risks deriving from several financial market phenomena,
such as contagion, spillover, transmission of losses and distress from one institution to
another one. Contagion can take several forms, and, in asset pricing, it is defined as
when an institution’s sale of assets into an illiquid market can cause a decline in asset
prices and, thus, losses to others.

During the last decade, after that the global financial crisis highlighted the impor-
tance, and boosted the development, of detailed study of systemic risk, several measures
have been developed and proposed in the literature from regulators, researchers and
practitioners points of view and different models have been used to estimate them ac-
cording to their structure. Bisias et al., in 2012, survey not exhaustively systemic risk
measures and the conceptual frameworks, describing that “when leverage is used to boost
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returns, losses are also magnified, and when too much leverage is applied, a small loss
can easily turn into a broader liquidity crunch via the negative feedback loop of forced
liquidations of illiquid positions cascading through the network of linkages within the
financial system”. In measuring systemic risk, the authors state that it is fundamental
to develop a conceptual framework in a coherent fashion, and to collect and access the
correct types of input-data required by the specific adopted measure.

On the contrary, Brunnermeier and Oehmke, in 2013, survey the literature on bub-
bles, financial crisis and systemic risk, explaining that systemic risk builds up in the
background during the run-up phase of imbalances or bubbles and it materializes only
when the crisis explodes (crisis phase). As a consequence, spillover and amplification ef-
fects determine the overall damage to the economy. The crisis phase starts when a trigger
event occurs, whose negative effect on the financial system and real economy is ampli-
fied through several channels. Research conducted on quantitative methods relating to
financial stability are generally classified into three categories:

• Early Warning Indicators (EWIs), which estimate the probability of the trigger
event, like bubbles;

• systemic risk measures, which evaluate the vulnerability of the financial system;

• macro stress tests, which evaluate the effects of predetermined stress scenarios on
the financial system.

Stress tests are standard devices used to determine the capital that an institution will
need to raise if there is a financial crisis. Regulators have to conduct stress tests every
year in the United States.

Systemic risk measures attempt to capture the total and marginal risk contributions
of different financial institutions on the whole market. Therefore, they are related to
firm-level risk measures, which become important given the implementation of Basel
II bank regulations. The purpose of these firm-level risk measures is to reduce a vast
amount of data to a meaningful single statistic that summarizes risk. Risk measures for
individual financial institutions, however, are typically not good systemic risk measures,
since their sum does not capture the systemic risk. The sum of all risk contributions, in
fact, should be equal to the total systemic risk and each one should incentivize financial
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institutions to (marginally) take on the appropriate amount of systemic risk. Therefore,
it becomes crucial to develop a systemic risk measure for the whole economy and a way to
allocate this systemic risk across the financial institutions. Furthermore, Systematically
Important Financial Institutions (SIFIs) should be individually identified by systemic
risk measure, since they could cause negative risk spillover effects on others due to their
interconnectedness (Brunnermeier and Oehmke, 2013).

Ellis et al., in 2014, claim that “the diversity within the financial system also supports
the fact that a single measure of systemic risk is unlikely to be universally applicable,
nor is a single instrument of financial stability policy”. Again, according to Hattori et
al. (2014), using only systemic risk measures is not sufficient to assess financial stability
as a whole, because systemic risk measures are silent on the loss caused by other trigger
events or the probability of such black swan events. Hattori et al. (2014) suggest to use
a combination of several quantitative tools to monitor and evaluate the financial system
completely and comprehensively, such as EWIs, systemic risk measures and macro stress
tests.

Furthermore, the difficulty of measuring systemic risk concerns another aspect. Cerutti
et al., in 2012, face the problem of scarcity of data that capture the international di-
mensions of systemic risk and claim that market price-based indicators are not always
reliable risk measures. The global crisis has shown the important role played by financial
linkages and channels of propagation, which require many not (yet) available data to be
identified. The authors also report some examples which demonstrate that many aspects
of global systemic risk simply cannot be captured using existing data, adding that the
institutional infrastructure for global systemic risk management is inadequate or simply
non-existent.

As a conclusion, measuring systemic risk is still an open issue, not yet solved.

1.2 Motivation and overview

The purpose of this work is to study how systemic risk can be measured, modeled,
evaluated and compared. Our contribute to the existing literature is twofold.

First, we investigate how to evaluate the accuracy of systemic risk forecasts, which
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is a key step towards the definition of a precise systemic risk measure. We focus on
two of the most widespread systemic risk measures, namely ∆Conditional-Value-at-Risk
(∆CoVaR) (Adrian and Brunnermeier, 2011) and SRISK (Brownlees and Engle, 2015).
Given the lack of statistical tools to compare them because of their economic nature, we
analyze their straightforward main components, called Conditional-Value-at-Risk (here-
after CoVaR) and Marginal Expected Shortfall (hereafter MES). Therefore, we propose
two new loss functions, one appropriate for each measure, with the purpose to test and
compare the CoVaR and MES forecasting performances. We are also able to detect the
most reliable models to predict CoVaR and MES measures, respectively.

Second, we investigate the stylized facts of financial data not captured by the standard
models widely used in the literature, in particular we notice that financial data present
long-range dependence. Given the lack of application of long-range dependence models
in systemic risk framework, we propose a novel econometric model, in order to improve
systemic risk estimation and forecasting. Thus, we contribute to the existing literature
by defining, studying and applying a new model which combines in capturing leverage
effect and long-range volatility dependence.

The thesis work is organized as follows. We start, in Chapter 2, with a review of
the main systemic risk measures present in the literature and we continue revising the
main widely used econometric models to compute them. In particular, we focus on the
methodology composed by Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) approach for time-varying volatility (Bollerslev, 1986) and Dynamic Condi-
tional Correlation (DCC) approach for time-varying correlation (Engle, 2002), called
DCC-GARCH-type model.

The urgent need of measuring systemic risk, after the global financial crisis, leads
to a huge availability of measures and models without providing comparisons or tools
in order to discriminate them. Statistical tools designed to test and compare systemic
risk forecasts, in fact, have not been properly developed, and a deep analysis on their
accuracy has largely unexplored. As a consequence, a regulator or a practitioner, who
has to compute systemic risk for its financial institution, for example, is in difficulty
in identifying and choosing the measure and the related model to use to estimate and
forecast systemic risk. Under this basic idea, considered as our first contribution to the
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existing literature, we review, in Chapter 3, the main backtests, used to evaluate the
adequacy of systemic risk measures, and the existing loss functions, used to evaluate the
accuracy of risk measures, with the purpose to identify those adaptable to be used in
systemic risk framework. Focusing on the accuracy, we modify and adapt these selected
loss functions according to the specific systemic risk measure considered. Therefore, we
develop, in Section 3.3, two new loss functions specifically designed for the CoVaR and
MES frameworks, namely Tail Tick Loss and Tail Mean Square Error loss functions,
respectively.

We then conduct, in Chapter 4, an empirical study of the 2007 − 2009 US financial
crisis based on the application of DCC-GARCH-type models. We consider daily equity
data of 91 top US financial institutions, used by Brownlees and Engle (2015), which are
all large capitalization Blue Chip companies as of end of June 2007. The dataset covers
the period from January 3rd 2000 to December 31th 2012. We divide the sample period
into two sub-samples in order to estimate systemic risk measures in the first sub-sample
period and to forecast them in the second one. For comparative purposes, we consider
the widely used quantile regression and linear regression models as benchmarks. Hence,
applying the new loss functions developed in the previous Chapter, we compare the
forecasting performances obtained by the benchmark and DCC-GARCH-type models,
which take into account also the leverage effect present in financial data.

However, the topic is challenging and the difficulty to develop a systemic risk measure
able to capture the entire nature of systemic risk with the purpose to avoid that financial
institutions’ failures boost consequent failures of other financial institutions by contagion
is high. Empirical results, shown in Chapter 4, go in this direction and indicate criticizes
in capturing systemic events during 2000−2012 years. These findings lead us to explore,
and then include within the methodology, other stylized facts of financial data, in par-
ticular the long-range dependence in volatility, considered as our second main contribute
to the existing literature, that is not yet applied in systemic risk framework. In Chap-
ter 5, we then illustrate the existing econometric models that capture the long-range
dependence in volatility and we propose a novel model, called Asymmetric-Component-
GARCH (ACGARCH), able to capture both the leverage effect and long-range depen-
dence in financial data. We apply the ACGARCH and existing models to the same
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dataset used in Chapter 4, and the empirical results confirm our intuition of including
long-range dependence. Moreover, using the new loss functions outlined in Section 3.3,
we are able to detect the more suitable specification for the volatility that systemic risk
framework requires.

Finally, Chapter 6 concludes the thesis work summing up the issues, our contributions
and our findings.

The structure of all chapters is the same. They begin with an introduction part
to the considered problem and they end with a concluding remarks section. Moreover,
Chapters 3 and 5 provide our proposals connected to the considered issue.
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Chapter 2

Systemic Risk review

An overview of the existing financial and econometric literature of measuring systemic
risk is now presented. During the last decade, several systemic risk measures has been
proposed in the literature from different point of views, such as probability-distribution
measures, network measures, deriving both from the principal component analysis and
from the graph theory. A special focus is on CoVaR-based and MES-based measures,
given their widespread usage and application by banks and financial institutions. Finally,
the related econometric models to estimate them are presented, with a particular focus
on DCC-GARCH-type methodology, which is very popular and allows to consider time-
varying correlations and volatilities.

2.1 Systemic Risk measures

The Financial Stability Board (2011) states that systemic risk score should reflect size,
leverage, liquidity, interconnectedness, complexity, and substitutability. A good risk
measure for systemic risk, in practice, should capture many different facets that describe
the importance of a given financial institution in the financial system.

According to Bisias et al. (2012), systemic risk measures could be categorized into
five groups organized by the four “L’s” of financial crisis (liquidity, leverage, losses, and
linkages) that they capture, and by the techniques used. In particular, these groups are:

• probabilities of loss,

9
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• default likelihood,

• illiquidity,

• network effects, and

• macroeconomic conditions.

The probability-distribution measures are based on the joint distribution of asset returns
and assume that risk is driven by a stable and exogenous data-generating process (risk-
management approach). The joint distribution of negative outcomes of a collection of
SIFIs provides informative estimates of correlated losses. These measures are quantile-
based risk measures that focus on extreme losses (the tail of the distribution). They
possess some useful properties, like left continuous and non-decreasing functions of alpha
and equivariant to monotone transformations. The advantage of these measures is that
they require little information (they rely on public market data, such as stock returns)
and make use of statistical methods with minimal assumptions to obtain an estimate of
a financial institution’s contribution on the system.

The measures of default likelihood can be constructed for each institution and link each
other through their joint distribution. The contingent-claims analysis can value the
implied default probabilities, such as the distressed insurance premium (Huang et al.,
2009), and can measure the implicit cost of guarantees.

Illiquidity is a systemic risk measure and the serial correlation in observed returns can
be a proxy for it (Getmansky et al., 2004).

The network analysis measures, instead, are measures of connectedness and provide
direct indications of linkages between firms. They are easily aggregated to produce
overall measures of “tight coupling” and are based on two main approaches; the first uses
the principal component analysis, whereas the second is derived from the graph theory,
such as Granger-causality measure (Billio et al., 2012).

Finally, the macroeconomic measures are as much as the macro models of business and
credit cycles, unemployment, inflation and growth.
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2.1.1 CoVaR-based Systemic Risk measures

The most common and popular risk measure, used by financial institutions, is the Value-
at-Risk (VaR). VaR at time t is defined as the α quantile:

Prt−1
[
rit ≤ VaRi

α,t

]
= α

where rit is the returns series of institution i and α is the confidence level. It focuses
on the risk of an individual institution i in isolation and it is the maximum loss of the
institution within the α%-confidence level (see, e.g. Jorion, 2007). The α-VaR is the
maximum dollar loss within the α-confidence interval (Kupiec, 2002; Jorion, 2007). It
can be interpreted as the minimal capital cushion that has to be added to the firm profit,
X, to keep the probability of a default below α. Otherwise, this measure is not a coherent
risk measure, it is not convex in X (failing to detect concentration of risks) and it does
not distinguish between different outcomes within α-tails. In addition, it fails to consider
the institution as part of a system, which might itself experience instability and spread
new sources of systemic risk. VaR could be time-varying in relation to the model used
for its computation or static, when the time t is fixed. In the light of the 2007 − 2009

financial crisis, VaR fails to capture the nature of systemic risk (the risk that stability of
the financial system as a whole is threatened), because it ignores tail comovement and
spillover effect.

All CoVaR-based measures and VaR measure are typically negative.

CoVaR measure by Adrian and Brunnermeier

Adrian and Brunnermeier, in 2011, propose the Conditional-Value-at-Risk (CoVaR),
which measures direct and indirect spillover effects to capture externalities that an in-
dividual institution imposes on the system, predicting the future systemic risk using
current institutional characteristics. CoVaR is defined as the VaR of the system returns
s conditional on some event C(rit) of institution i, i.e. is defined as the α-quantile of the
conditional probability distribution:

Prt−1
[
rst ≤ CoVaRs|i

α,t

∣∣∣C(rit)
]

= α
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The authors define the CoVaR conditioning event as C(rit) = {rit = VaRi
α,t}, hence the

CoVaR measure corresponds to the VaR of the system conditional on institution being
in financial distress, i.e. exactly at its VaR.

Adrian and Brunnermeier (2011) model the joint dynamics of the equity returns of
individual financial institutions and of the financial system, with the purpose to capture
the empirical relationship between VaRs in the tails of the joint distribution. The contri-
bution of the individual institution (including size, leverage and maturity mismatches in
the bank’s assets and liabilities) to systemic risk is computed as the difference between
the VaR of system conditional on the institution being in distress and the VaR of system
when the institution is in a normal state, i.e. the median state. This difference is called
∆-Conditional Value-at-Risk (∆CoVaR) and defined as:

∆CoVaRs|i
α,t = CoVaRs|rit=VaRiα,t

α,t − CoVaRs|rit=Med(rit)
α,t

where Med indicates Median state. The authors find a very strong relation between the
institutions’ VaR and their ∆CoVaR in the time-series, while they have only a weak
relation in the cross section. While two institutions may be similar in terms of VaR,
their contribution to systemic risk could differ substantially. Hence, ∆CoVaR allows to
evaluate the systemic spillover of an individual institution to the system. CoVaR, in fact,
is able to identify the risk on the system by individually SIFIs and allows characterizing
contagion under balance sheet deleveraging.

Furthermore, Adrian and Brunnermeier, in 2011, introduce a second measure called
Exposure CoVaR, which reverses the conditioning and quantifies the exposure of a single
institution to systemic financial distress. CoVaR measure is also not explicitly sensitive
to size or leverage.

Castro and Ferrari, in 2014, analyze ∆CoVaR as a tool for ranking financial insti-
tutions and gauging the interconnectedness in the financial system. ∆CoVaR measure
has been used to identify and rank SIFIs by developing a significance test that allows
determining whether or not a financial institution can be classified as being systemi-
cally important on the basis of the estimated systemic risk contribution, as well as a
test of dominance which aims to determine whether or not, according to ∆CoVaR, one
financial institution is more systemically important than another, that a financial firm
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contributes more to systemic risk than another. They conclude that a larger ∆CoVaR
makes a statistically significant contribution to systemic risk more likely but does not
necessarily imply that an institution’s contribution is significant and that the results of
pairwise tests of dominance should also be considered.

CoVaR measure by Girardi and Ergun

CoVaR conditioning set does not consider severe losses which are further in the tail and,
moreover, CoVaR is not backtestable. As a consequence, Girardi and Ergun, in 2013,
propose a generalization of this measure. They generalize the definition of CoVaR by
assuming that the conditioning financial distress event refers to the institution i being
at most at its VaR, that is C(rit) = {rit ≤ VaRi

α,t}. They define CoVaR as the α-quantile
of the conditional distribution:

Prt−1
[
rst ≤ CoVaRs|i

α,t

∣∣∣rit ≤ VaRi
α,t

]
= α (2.1)

Conditioning on this set, in fact, allows to consider more severe losses considering those
beyond VaR farther in the tail, then it is a more general case of financial distress of
institution i.

Furthermore, the authors define the systemic risk contribution of an institution as
the change from its CoVaR in its benchmark state to its CoVaR under financial distress
and investigate the link between institutions’ contributions to systemic risk and their
characteristics. They propose the percentage difference ∆CoVaR(%) as:

∆CoVaRs|i
α,t(%) = 100

[
CoVaRs|rit=VaRiα,t

α,t − CoVaRs|rit=Med(rit)
α,t

CoVaR
s|rit=Med

(
rit

)
α,t

]
= 100

∆CoVaRs|i
α,t

CoVaRs|rit=Med(rit)
α,t

According to Girardi and Ergun, the financial distress is the institution’s returns se-
ries being at most at its VaR as opposed to being exactly at its VaR, as proposed by
Adrian and Brunnermeier (2011). This change allows backtesting CoVaR measure using
standard tests used to backtest VaR. Due to time-varying correlations, the CoVaR of
an institution here has a time-varying exposure to its VaR. This feature enables us to
detect and incorporate in the systemic risk measurement possible changes over time in
the linkage between the institution and the financial system.
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Reboredo and Ugolini, in 2015, apply this CoVaR to measure systemic risk in Euro-
pean sovereign debt markets before and after the onset of the Greek debt crisis.

Asymmetric CoVaR

Studying the identification of the main factors behind systemic risk, Lòpez-Espinosa et
al. (2012) find that CoVaR measure underestimates the bank’s contribution to systemic
risk. Hence, they propose Asymmetric CoVaR that accounts for asymmetries in the
initial specification. The asymmetries based on the sign of bank returns, in fact, play
an important role in capturing the sensitivity of system-wide risk to individual bank
returns and, ignoring them, balance sheets on the financial system can result in an
underestimation of systemic risk when markets are declining.

Mutu (2014) apply the Asymmetric CoVaR for estimating the systemic risk on a
large sample of European banks during 2005− 2011.

Multivariate CoVaR measure

Cousin and Di Bernardino, in 2013, propose two alternative extensions of the univariate
CoVaR, namely Multivariate Lower-Orthant CoVaR and Multivariate Upper-Orthant
CoVaR, in a multivariate setting. These measures are based on multivariate general-
ization of quantiles, but are able to quantify risks in a much more parsimonious and
synthetic way. The two proposed multivariate VaR are vector-valued measures with the
same dimension as the underlying risk portfolio. The lower-orthant VaR is constructed
from level sets of multivariate distribution functions, whereas the upper-orthant VaR is
constructed from level sets of multivariate survival functions. Both these measures sat-
isfy the positive homogeneity, the translation invariance and the elicitability property,
which provides a natural methodology to perform backtesting, since defined CoVaR are
the minimizers of suitable expected losses. Besides, analyzing how these measures are
impacted by a change in marginal distributions, both in dependence structure and in risk
level, it results that an increase of marginal risks yields an increase of the multivariate
VaR.

Subsequently, Di Bernardino et al. (2015) investigate more in depth the proper-
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ties and the behavior of multivariate CoVaR, in addition to the estimation, comparing
them with existent risk measures. In particular, both multivariate CoVaRs verify the
additivity property under some conditions and, since they are based on the correspond-
ing quantile functions, they are more robust to extreme values than any other central
tendency measures.

Multiple-CoVaR measure

CoVaR measure not only captures the overall risk embedded in each institution, but also
reflects individual contributions to the systemic risk, capturing extreme tail co–movements.
However, recent financial crisis are characterized by the contemporaneous distress of sev-
eral institutions emphasizing the difficulty to accurately measure marginal contributions
to overall risk of an institution taken in isolation. The spillover effect of a financial
downturn may propagate through other institutions being in distress at the same time.
Thus, it is necessary overall risk measures that account for contemporaneous multiple
distresses as conditioning events.

Bernardi et al., in 2013, propose Multiple–CoVaR as systemic risk measure, to cap-
ture interconnections among multiple connecting market participants, that is particu-
larly relevant during period of crisis when several institutions may contemporaneously
experience distress instances. They aim to measure the dynamic evolution of tail risk
interdependence accounting for the well known characteristics of financial time series.
The institutions’ marginal risk contribution, called Multiple–∆CoVaR, is measured as
the difference between the Multiple–CoVaR of each institution conditional on a given
set of different institutions being under distress and the Multiple–CoVaR of institution
evaluated when the same set of institutions are at their normal state, identified as the
median state.

Applying the Shapley value methodology the authors are able to overcome the CoVaR
deficiency of subadditivity, for which the sum of individual contributions does not equal
the total risk measure, providing misleading information for policy purposes. The Multi-
CoVaR measure and the Shapley value methodology have already been used by Cao
(2013) to calculate the total systemic risk and to efficiently allocate total systemic risk
to each financial institution, satisfying the addivity property.
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2.1.2 MES-based Systemic Risk measures

Another measure similar to VaR is the Expected Shortfall (ES), defined as the expected
loss of the system conditional on the loss being greater than the VaR calculated at a
given level of confidence 1 − α. In particular, ES is the risk measure calculated on the
returns series of the system s as:

ESsα,t(C) = Et
[
rst
∣∣rst ≤ C

]
where C is a threshold value to represent the systemic event. ES measure has better
formal properties than VaR, but it is difficult to estimate the tail, so it is necessary to
make parametric assumptions on the tail distribution.

Starting from ES measure, Acharya et al., in 2010, introduce the concept of Marginal
Expected Shortfall (MES), which defines the systemic risk contribution as the expected
equity returns of an individual institution conditional on the system being distressed.
Hence, the marginal contribution of an institution i to systemic risk is:

MESi|sα,t(C) = Et
[
rit
∣∣rst ≤ C

]
(2.2)

Usually the threshold value is equal to C = VaRs
α,t

1. All MES-based measures and ES
measure are typically negative, whereas SES measure is typically positive.

According to Weiss et al. (2014), MES can be viewed as a measure of moderate
systemic risk that regulators can use to predict a crash of the banking sector.

Popescu and Turcu, in 2014, transpose the concept of systemic risk from the financial
stock market to the sovereign debt crisis, in order to determine which Eurozone coun-
tries are the most systemically important evaluating their contribution to systemic risk.
The authors compute MES measure using Eurozone members’ bond yields and debts.
MES can accurately rank countries according to their riskiness, and spot those that con-
tribute the most to the overall risk, giving information about which countries need more
monitoring.

1It is important to notice that these distributions are continuous. Consequently, inserting < or ≤ in
the definition of both the ES and MES measures is insignificant.
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SES measure

Acharya et al., in 2010, propose Systemic Expected Shortfall (SES), which measures
the conditional capital shortfall of a financial firm and captures the downside risk of a
financial institution conditional on the whole system (its contribution). SES evaluates
the banks’ exposure to systemic tail events, which nevertheless can easily be reverted to
capture risk contribution, and is defined as:

SESit = E
[
zai − wi

∣∣W < zA
]

where wi indicates bank’s equity, z a fraction of assets ai, W indicates the aggregate
banking capital and A the aggregate assets.

The empirical measure is derived from a linear combination of MES measure and
leverage, leading indicators that predict an institution’s SES, justified using a theoretical
model that incorporates systemic risk externalities:

SESit = β0 + β1LVGi + β2MESiα

where LVGi is the excess ex-ante leverage.

SES is defined as an individual bank’s (contribution) propensity to be undercapi-
talized when the financial system as a whole is undercapitalized, which increases in its
leverage, volatility, correlation, and tail-dependence. Hence, institutions with highest
MES contribute most to market decreases. The authors estimate the ex-ante MES and
leverage using daily equity returns from the year prior to the global financial crisis,
which they then use to explain the cross-sectional variations in equity returns perfor-
mances during the crisis. They empirically demonstrate the ability of SES components
to predict emerging systemic risk during the financial crisis of 2007 − 2009. One of the
useful properties of the SES, such as MES, is its additivity, under which the sum of
individual institutions’ risks is identical to the overall systemic risk.

SRISK measure

SES measure is static and unable to measure systemic risk ex-ante as it requires data
from actual financial crises. An alternative dynamic reduced form estimation of capital



18 CHAPTER 2. SYSTEMIC RISK REVIEW

shortages is provided by Brownlees and Engle (2015). They, in fact, resume MES measure
and propose SRISK to measure the systemic risk contribution of a financial firm.

The authors define SRISK systemic risk measure of firm i on day t as the prediction
of a financial entity in case of a systemic event, that is when system declines below a
threshold C over a time period h:

SRISKi
t = Et

[
CSit+h

∣∣rst+1:t+h < C
]

= Wi
t (kLVGi

t − (1− k)LRMESit − 1)

where

• CSit+h is the capital shortfall of firm i over a time horizon h, defined as:

CSit = kAi
t −Wi

t = k(Di
t + Wi

t)−Wi
t

where Wi
t is the market value of equity, Di

t is the book value of debt, Ai
t is the

value of quasi assets and k is the prudential capital fraction;

• LVGi
t denotes the quasi-leverage ratio (Di

t + Wi
t)/W

i
t;

• LRMESit is Long Run MES, defined as the expectation of the firm equity multi-
period return conditional on the systemic event:

LRMESit = Et
[
rit+1:t+h

∣∣rst+1:t+h < C
]

where rt+1:t+h is the multi-period equity return between period t+ 1 and t+ h, of
firm and system, respectively.

In addition to MES, the authors take into account the size and the leverage of the
institution, i.e. during a crisis in the whole financial system, which together determine
the expected capital shortage a financial institution would suffer if a systemic event
occurred. Hence, institutions with higher SRISK values are more risky and contribute
more to the financial sector undercapitalization in a crisis. The authors associate the
systemic risk of a financial institution with its contribution to the deterioration of the
system capitalization that would be experienced in a crisis. They analyze the systemic
risk of top U.S. financial firms between 2005 and 2010. Their empirical results show that
SRISK has significantly higher predictive power than SES and provides useful ranking
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of systemically risky firms at various stages of the financial crisis. They conclude that
volatile and undiversified institutions with respect to the market exhibit high MES.

Brownlees and Engle (2015) construct a system wide measure of financial distress
using the SRISK across all firms i = 1, . . . , N . Hence, the total amount of systemic risk,
called aggregate SRISK, is:

SRISKt =
N∑
i=1

(SRISKi
t)+

where (SRISKi
t)+ indicates max(SRISKi

t, 0) The aggregate SRISK of the financial system
provides early warning signals of distress in the real economy. Finally, the percentage
SRISK measure is:

SRISK%i
t =

SRISKi
t

SRISKt

if SRISKi
t > 0

CES measure

Banulescu and Dumitrescu, in 2015, propose a systemic risk measure, called Component
Expected Shortfall (CES), which measures the financial institution’s ’absolute’ contribu-
tion to the ES of financial system. In fact, the sum of CES of all financial institutions
in the system is equal to ES of financial system. Thus, the risk of the aggregate finan-
cial system according to the institutions therein is easily decomposable. Hence, CES of
institution i at time t is defined as:

CESit = wit MESit

where wit denotes the weight or size of institution i in financial system, that is its relative
market capitalization. More precisely, CES is a non-linear combination of four elements:
volatility, correlation, tails expectations and the weight of the firm.

Furthermore, CES can be easily used to identify the SIFIs: the larger CES, the greater
the contribution and the more systemically risky the institution. This ranking is obtained
according to the financial institutions’ riskiness and captures those institutions that
effectively suffered major transformations during the crisis and constituted a significant
part of the total risk of the financial system. It is also very similar to the ranking obtained
using SRISK for the same periods.
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Aggregate MES measure

Yun and Moon, in 2014, propose an overall systemic risk indicator called Aggregate MES
for the banking system as a whole. It is interpreted as the MES of the returns of a
portfolio consisting of individual banks’ equities when the market returns fall below a
certain threshold level, similar to the overall SRISK index. MES puts the distress of the
market and CoVaR puts the distress of an individual financial institution. The authors
estimate the daily MES and ∆CoVaR measures in the Korean banking sector. Although
MES and CoVaR differ in defining systemic risk contributions, both are qualitatively very
similar in explaining the cross-sectional differences in systemic risk contributions across
banks. The systemic risk contributions are closely related to some bank characteristic
variables. However, there are differences between the cross-sectional and the time series
dimensions in the effects of these variables.

2.1.3 Alternative probability-distribution measures

In this subsection we review alternative systemic risk measures that are categorized into
the probability-distribution group.

CoRisk measure

International Monetary Fund (IMF), in 2009, propose Co-Risk measure in order to cap-
ture non-linearities and take into account direct and indirect financial linkages between
institutions. Hence, CoRisk examines the co-dependence between the Credit Default
Swap (CDS) of various financial institutions, thus the CDS of firm i conditional on the
CDS spread of the other j at α quantile is:

CoRiski|jα = 100

(
βα,0 +

∑K
k=1 βα,kRiskk + βα,jCDSjα

CDSiα
− 1

)
where

• CDSiα and CDSjα are the CDS spreads of institutions i and j, respectively, corre-
sponding to the α percentile of their empirical sample;
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• Riskk indicates k = 1, . . . , K common risk factors;

• the coefficients βα,0, βα,m and βα,j are the parameters estimated by the quantile
regression:

CDSiα = βα,0 +
K∑
k=1

βα,kRk + βα,jCDSjα

Usually α is very high, such as 95%, since the interest is on CoRisk in distress periods.
A high CoRisk indicates an increased sensitivity of the default risk of institution i to the
default risk of the institution j.

CoRisk is more informative than unconditional systemic risk measures because it
provides a market assessment of the proportional increase in a firm’s credit risk induced,
directly and indirectly, from its links to another firm.

DIP measure

Huang et al., in 2009, propose Distress Insurance Premium (DIP), which represents an
hypothetical insurance premium against catastrophic losses in a portfolio of financial
institutions. This indicator is given by the risk-neutral expectation of losses conditional
on exceeding a minimum loss threshold. According to Huang et al. (2009), DIP of bank
i at time t is defined as “a theoretical premium to a risk-based deposit insurance scheme
that guarantees against most severe losses for the banking system”:

PDi
t =

ats
i
t

atLGDi
t + btsit

where sit is the observed CDS spread, LGDi
t is the loss given default, at =

∫ t+T
t

e−rτdτ ,
bt =

∫ t+T
t

τe−rτdτ , and r is the risk-free rate.
The systemic importance of each bank (or bank group) can be properly defined as

its marginal contribution, which is a function of its size, probability of default and asset
correlation, to the hypothetical DIP of the whole banking system, that is to systemic
risk. This systemic risk measure is based on overall sector losses conditional on the
default of a particular financial institution. The two key default risk factors, that are the
probability of default of individual banks and the asset return correlations among banks,
are estimated from CDS spreads and equity price co-movements, respectively. A higher
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DIP may be driven by both an increased probability of default of individual banks and
a greater exposure to common risk factors. An advantage of this approach is that the
marginal contribution of each bank adds up to the aggregate systemic risk.

Subsequently, Huang et al. (2012) apply DIP measure to firms with CDS and equity
contracts, which are publicly tradable and do not rely on accounting or balance sheet
information. They find that a bank’s contribution to systemic risk is roughly linear in
its default probability, but highly nonlinear with respect to institution size and asset
correlation.

JPoD measure

Segoviano and Goodhart, in 2009, propose a set of joint distress indicators that are built
upon the concept of Banking System Multivariate Density (BSMD) and are based on
chain defaults of financial institutions. They exploit the information embedded in large
international banks’ credit spreads to construct a banking stability index and estimate
cross-border interbank dependence for tail events using credit default swap data. Among
the others, they propose:

• Joint Probability of Distress (JPoD), which represents the probability of all banks
in the system (portfolio) in distress at the same time, i.e. the tail risk of the system,
and captures changes in the distress dependence among the banks, which increases
in times of financial distress;

• Banking Stability Index (BSI), which is based on the conditional expectation of
default probability measure developed by Huang (1992) and reflects the expected
number of banks in distress given that at least one bank has become distressed. A
higher number signifies increased instability. This measure can also be interpreted
as a relative measure of banking linkage.

According to Segoviano and Goodhart (2009), these indicators are able to “capture both
linear and non-linear distress dependencies among the banks in the system, and its
changes at different times of the economic cycle”.
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ΛVaR measure

In order to fix the gaps of VaR measure, in particular the lack of sensitivity or, in other
terms, the slow adjustment of confidence levels during changes in the economic cycle,
Frittelli et al., in 2014, propose Lambda Value-at-Risk (ΛVaR) measure, obtained by
defining a new class of law invariant risk measures based on an appropriate family of
acceptance sets. This VaR generalization takes into account not only the probability of
the losses, but the balance between such probability and the amount of the loss. Given
a monotone and right continuous function Λ : R → [λm, λM ] with 0 < λm ≤ λM < 1,
ΛVaR of return X is a generalized quantile represented by the map ΛVaR : P → R and
is defined as:

ΛVaR = − sup{m ∈ R|P (X ≤ x) ≤ Λ(x), ∀x ≤ m}

Here, the confidence level may not be constant and depends on the profit and loss
of the risk factor, implying the idea that risk managers would need to reserve more
capital in the case of expected greater losses and less capital in the case of expected
smaller losses. In addition, the risk measure solves several VaR problems, including
the lack of subadditivity and the inability to capture “tail risk”, and satisfies important
theoretical properties that formalize two fundamental principles: the monotonicity of
the risk preferences and the fact that “diversification cannot increase the risk”. Hitaj
and Peri, in 2015, present the first empirical application of ΛVaR to equity markets
and demonstrate the elicitability property under general conditions, guaranteeing proper
backtesting and a statistically meaningful comparison with the VaR.

Correlation-based Measures

Patro et al. (2013) analyze the relevance and effectiveness of stock return correlations
among financial institutions as an indicator of systemic risk, finding that daily stock
return correlation is a simple, robust, forward-looking, and timely systemic risk indicator.
They use this indicator with the purpose of monitoring systemic risk, analyzing the trends
and fluctuations of daily stock return correlations and default correlations among 22 U.S.
bank holding companies and investment banks. This indicator captures the trend as well
as the fluctuations in the levels of systemic risk in the U.S. economy and it is not subject
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to the model specification errors and data limitations that other potential systemic risk
measures may face.

In the literature, balance sheet based low-frequency indicators as well as market-based
(market prices and rates) high-frequency indicators have been suggested. Rodríguez-
Moreno and Peña (2013) focus on the later type of indicators, comparing two potential
systemic risk’s group detectors: aggregate market (macro) and individual institution
(micro). They conclude that CDS based measures achieve better results than measures
based on interbank rates or stock prices and are therefore the best indicators indicating
an approaching crisis.

Tail Dependence-based Measures

Other researches focus on extreme dependence measures, believing that they are very
valuable tools in systemic risk measurement. Understanding loss dependence in the joint
extremes of the loss distributions, in fact, is crucial in understanding systemic risk be-
cause the prevalence of dependence in the extreme tails of loss distributions is indicative
of high contagion potential between financial institutions. Among these authors, Jobst
(2013) examined the multivariate tail dependence of the implied volatility of equity op-
tions as an early warning indicator of systemic risk within the financial sector, using
non-parametric methods of estimating changes in the dependence structure.

Furthermore, Balla et al. (2014) propose two complementary systemic risk indicators
derived from multivariate extreme value theory (EVT), which can capture the tail de-
pendencies between stock returns of large U.S. depository institutions. They investigate
these extreme loss tail dependencies and derive extreme dependence-based systemic risk
indicators. The first indicator is the proportion of asymptotically dependent depository
institution pairs to the total number of depository institution pairs in our sample, thus
measuring the prevalence of asymptotic dependence between large US depository institu-
tions. The second one is the average strength of asymptotic dependence across all pairs
of depository institutions. These measures of tail co-movement can help to understand
the vulnerability and the contagion potential of a financial institution during a financial
crisis.
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CISS indicator

Hollò et al., in 2012, propose the Composite Indicator of Systemic Stress (CISS), a finan-
cial stress index (FSI) with the aim of measuring the current state of instability in the
financial system as a whole or, equivalently, the level of systemic stress. It is interpreted
as that amount of systemic risk, which has already materialized and is summarized in
a single (usually continuous) statistic. Thus, it has to capture the level of stress in its
economically most important, i.e. systemically most risky elements. CISS is built on
the aggregation of five subindices, i.e. the equity market, the bond market, the money
market, the foreign exchange market, and the financial intermediaries’ sector. It is a
defined as:

CISSt = (wt ◦ st)Ct(wt ◦ st)

where st is the vector of subindices, wt is the vector of weights for subindices, Ct is the
time-varying cross-correlation matrix, and ◦ denotes the Hadamard-product (i.e. element
by element multiplication).

While it would be unrealistic to expect that such a highly condensed composite index
can sufficiently characterize something as complex as systemic risk (Billio et al., 2012),
a comprehensive FSI permits the real time monitoring and assessment of the stress level
in the whole financial system and helps to better delineate and describe historical crisis
episodes. CISS is focus on the systemic dimension of financial stress, since its specific
statistical design, which is shaped according to standard definitions of systemic risk,
whereas it applies the basic portfolio theory to the aggregation of individual financial
stress indicators into the composite indicator, taking into account the time-varying cross-
correlations between the subindices. Hence, CISS monitors in real time the overall level
of frictions and tensions in the financial system.

Hollò et al. (2012) apply CISS index to Eurozone data, whereas Louzis et al. (2012)
adopt it for Greece. Also Milwood (2013) computes CISS to assess systemic risk for the
financial markets in Jamaica, using the foreign exchange market, equity market, money
market and bond market from January 2002 to June 2012. As well, Cabrera et al. (2014)
apply the CISS for Colombian data during the period 2000− 2014, taking into account
several dimensions related to financial markets.
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2.1.4 Network Analysis measures

Some aforementioned risk measures estimate the magnitude of losses, that is what an
institution would experience during a market crisis, and only capture systemic exposures
to the degree historical data represent well systemic losses. However, during periods
of rapid financial innovation, extreme losses in one financial sector need not coincide
with simultaneous losses in another financial sector even though their connectedness
implies higher systemic risk (Billio et al., 2012). Hence, as an alternative to systemic
risk measures based on the marginal risk contributions of individual institutions, network
analysis is concerned with the joint distribution of losses of all market participants.
Network analysis is a useful approach to:

• quantifying the potential capital losses of a contagious event;

• identify financial interlinkages among institutions, in particular the most systemic
institutions, which trigger the stronger domino effects in case of default, and the
most vulnerable institutions, which are most harshly affected by the default of
another institution.

Billio et al., in 2012, base their approach on graph theory measuring network connected-
ness grounds, and propose two econometric measures of systemic risk, namely Principal
Component Analysis and Granger-Causality Network, which capture the interconnect-
edness among financial institutions, such as hedge funds, banks, broker-dealers, and
insurance companies. In addition, these measures of connectedness complement SES
and DIP measures by estimating directly the statistical connectedness between the asset
returns of a financial institution’s network.
The authors find that the correlation between two financial sectors rises during and after
systemic shocks, whereas its role is minor during non-crisis periods. In particular, the
banking and insurance sectors are more important sources of connectedness and sys-
temic risk than other sectors. An increase in dynamic causality index (computed as the
number of causal relationships in window divided by the total possible number of causal
relationships) indicates a higher level of system interconnectedness. Their philosophy
is that statistical relationships between returns can yield valuable indirect information
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about the build-up of systemic risk.
Bianchi et al., in 2015, identify contagion as an increase in the strength of network con-
nectedness and consider it as a central part for systemic risk measurement, since those
dramatic shocks to a single institution can quickly affect others with different size and
structure.

Principal Component Analysis

The first measure proposed by Billio et al. (2012) is based on Principal Component
Analysis (PCA) measure, which gauges the degree of commonality among a vector of
asset returns. The purpose is to identify common components among different sectors
of financial markets. When the asset returns of a collection of entities are jointly driven
by a small number of highly significant factors, fewer principal components are needed
to explain the variation in the vector of returns. Hence, sharp increase in the proportion
of variability, explained by the first n principal components, is a natural indication of
systemic risk. The authors use PCA to decompose the covariance matrix of the four index
returns and find that the first and second principal components capture the majority of
return variation during the whole sample.

Granger-Causality Network

The second measure proposed by Billio et al. (2012) is Granger-Causality Network
measure, an explicit measure of financial networks derived from graph theory. The
purpose is to detect the direction of causality between pairs of financial sectors.
The authors use Granger-causality test statistics for asset returns to define the edges
(relationships) of a network of financial institutions, i.e. to measure the correlation
between sectors directly and unconditionally on extreme losses. Moreover, they show
that Granger-causality networks are highly dynamic and become densely interconnected
prior to systemic shocks.
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2.2 Econometric models for Systemic Risk

The mostly used method to estimate these systemic risk measures is the DCC-GARCH-
type model, a data-driven approach with the advantage in capturing the time-varying
systemic risk exposure of an institution or the system (advantage not shared by the
quantile regression method). When for example CoVaR is estimated using a GARCH
model, in fact, the time-series relation between an institution’s CoVaR and its VaR be-
comes time-varying due to the time-varying correlation (see Girardi and Ergun, 2013;
Benoit et al., 2013). This feature is a precondition for the accurate depiction of systemic
event (Louzis et al., 2012) and permits to capture and incorporate in the systemic risk
measurement possible changes over time in the linkage between the institution and the
system (Girardi and Ergun, 2013). The estimation of this methodology is performed in
two steps. First the conditional volatilities are estimated by an univariate GARCH-type
model (described in the next paragraphs 2.4 and 2.2.2). Then, the conditional correla-
tions are estimated by a bivariate DCC model (described in paragraph 2.5). The basic
idea behind this model is that the covariance matrix can be decomposed into conditional
standard deviations and a correlation matrix. Both these matrices are designed to be
time-varying.

We implement the DCC model because the DCC-GARCH-type methodology is the
mostly used method to estimate these systemic risk measures in the existing litera-
ture. However, several choices are available from the wide literature about multivariate
GARCH models to model multivariate conditional covariances. Among the others, other
relevant contributions are the Constant Conditional Correlations (CCC) model (Boller-
slev, 1990), the Vech model (Bollerslev et al., 1988), the Factor GARCH (Engle and Ng,
1993), the BEKK model (Engle and Kroner, 1995), the Generalized Orthogonal Factor
GARCH (Lanne and Saikkonen, 2007), based on principal components have been sug-
gested to solve the problem of estimation in presence of a great number of time series and
to achieve computational feasibility. More recently, the Flexible Dynamic Conditional
Correlations have been suggested by Billio et al. (2006) as an efficient generalization of
the DCC model. This parsimonious model specification allows to use a large number of
series without implying that the number of parameters becomes explosive and maintains
the same GARCH dynamics of the DCC correlation structure, relaxing the constraint for
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which all the correlations have to follow the same pattern. A fairly comprehensive survey
of the literature is provided in Bauwens et al. (2006). The DCC-GARCH model has
clear computational advantages, among which the number of parameters to be estimated
in the correlation process is independent of the number of the analyzed series. Thus,
potentially very large correlation matrices can be estimated. However, compared for
example to the CCC model, the advantage of simple estimation is lost, as the correlation
matrix has to be inverted for each time, t, during every iteration.

Several empirical studies have been conducted on systemic risk using DCC in con-
junction with different univariate GARCH-type models. Some examples which use the
DCC-GARCH model are Girardi and Ergun (2013), Cabrera et al. (2014); while other
examples which use the DCC-GJR model are Cao (2013), Popescu and Turcu (2014),
Yun and Moon (2014), Brownlees and Engle, (2015) and Engle et al. (2015).

2.2.1 GARCH model

GARCH models (Bollerslev, 1986) are very popular in the literature for the analysis
of the volatility of the financial returns and their application to study these financial
phenomena is almost consolidate. They model in a parsimonious way the conditional
heteroskedasticity. These models consider that volatility changes over time and include
lagged values of the variance in its conditional equation, in order to allow a longer memory
and more parsimony. Moreover, they are also consistent with the volatility clustering
phenomenon.

Model specification

Given the univariate model for the returns at t = 1, . . . , T with zero mean:

rt = εt, εt = σtzt (2.3)

where εt is the error term defined as a sequence of independent and identically distributed
(i.i.d.) random variables with zero mean and σ2

t variance, i.e. εt ∼ iid(0, σ2
t ), and zt is the

standardized innovation zt ∼ iid(0, 1), the GARCH(p, q) specification for the conditional



30 CHAPTER 2. SYSTEMIC RISK REVIEW

variance is:

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j (2.4)

The most popular model in the empirical literature is the GARCH(1, 1):

σ2
t = ω + αε2t−1 + βσ2

t−1

The unconditional variance is:

σ2 =
ω

1− α− β

The conditions to ensure that the non-negativity of the GARCH(1, 1) variance are:

ω > 0, α ≥ 0, β ≥ 0

and the additional condition to ensure that the conditional variance is strictly stationary
is:

α + β < 1

These models are estimated using the Quasi-Maximum Likelihood (QML) estimation
procedure.

Forecasting

The k-step-ahead forecast of the conditional volatility, with k > 2, for the GARCH(1, 1)
model is:

σ2
t+k|t = σ2 +

(
α + β

)k−1(
σ2
t+1|t − σ2

)
where the one-step-ahead forecast is:

σ2
t+1|t = ω + αε2t + βσ2

t

The notation σ2
t+k|t indicates Et

(
σ2
t+k

)
≡ E

(
σ2
t+k|Ft

)
, where Ft is the information set

available until time t.
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2.2.2 GJR model

GARCH models have been plenty extended to capture even more stylized facts that they
cannot capture. Financial time series, in fact, exhibit different effects, such as volatility
clustering, leverage effect, weekend and seasonality effects, and so on.

Glosten et al., in 1993, develop the GJR-GARCH (GJR) model to capture exactly
the leverage effect present in the financial data. The model, in fact, considers the effect
of negative and positive shocks allowing the conditional variance to respond differently
to the past negative and positive innovations. Given the same basic idea, the GJR model
is closely related to the Threshold-GARCH (TGARCH) and the Asymmetric-GARCH
(AGARCH).

Model specification

Considering the univariate model specified in the previous paragraph (2.4) by equation
2.3, the GJR(p, q) specification for the conditional variance is:

σ2
t = ω +

p∑
i=1

(
αiε

2
t−i + γiε

2
t−iI(εt−i<0)

)
+

q∑
j=1

βjσ
2
t−j

where γi captures the leverage effect, that means the different impact of negative shocks
on volatility than positive shocks, and I(εt−i<0) denotes the indicator function:

I(εt−i<0) =

{
1 if εt−i < 0

0 otherwise

Then, the GJR(1, 1) model is expressed as:

σ2
t = ω + αε2t−1 + γε2t−1I(εt−1<0) + βσ2

t−1

The unconditional variance is:

σ2 =
ω

1− α− 1
2
γ − β

The conditions to ensure that the non-negativity of the GJR(1, 1) variance are:

ω > 0, α ≥ 0, β ≥ 0, γ ≥ 0
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and the additional condition to ensure that the conditional variance is strictly stationary
is:

α + β +
1

2
γ < 1

where the 1/2 multiplying γ comes from the assumption of symmetric conditional dis-
tribution for the returns zt.

The GJR model, as GARCH, is estimated by Quasi-Maximum Likelihood (QML).

Forecasting

The k-step-ahead forecast of the conditional volatility, with k > 2, for the GJR(1, 1)
model is:

σ2
t+k|t = ω +

k−1∑
i=0

(
α +

γ

2
+ β

)i
+

(
α +

γ

2
+ β

)k−1
σ2
t+1|t

where the one-step-ahead forecast is:

σ2
t+1|t = ω + αε2t + γε2t I(εt<0) + βσ2

t

2.2.3 DCC model

One specification of Multivariate GARCH (MGARCH) models is the Dynamic Con-
ditional Correlation (DCC) model, proposed by Engle (2002), which uses a nonlinear
combination of univariate GARCH models with time-varying cross-equation weights to
model the conditional covariance matrix. DCC model has the advantage to capture the
time-varying systemic risk exposure of a financial institution in the market (see Girardi
and Ergun, 2013; Benoit et al., 2013) and permits to incorporate in the systemic risk
measurement possible changes over time in the linkage between the financial institution
and the financial system (Girardi and Ergun, 2013). Moreover, modeling the change
in time of co-movements between the financial institution and the system allows the
systemic risk measure to gauge the contagion between the financial institution and the
financial system (Cabrera et al., 2014).



2.2 Econometric models for Systemic Risk 33

Model specification

Let rrrsi,t = (rst , r
i
t)
′ be the vector denoting the system-institution return pair at time

t = 1, . . . , T . The vector is composed by rst , the return series of the system s, and rit, the
return series of the institution i, for i = 1, . . . , N :

rst = εs,t, εs,t = σs,tzs,t

rit = εi,t, εi,t = σi,tzi,t

where εs,t ∼ iid(0, σ2
s,t) and εi,t ∼ iid(0, σ2

i,t). Their joint dynamics are given by:

rrrsi,t = εεεsi,t, εεεsi,t = ΣΣΣ
1/2
si,tzzzsi,t

where εεεsi,t = (εs,t, εi,t)
′ ∼ iid(000,ΣΣΣsi,t) and zzzsi,t = (zs,t, zi,t)

′ ∼ iid(000, III2), III2 is the two-by-
two identity matrix. The time-varying covariance matrix is:

ΣΣΣsi,t =

[
σ2
s,t σs,tσi,tρsi,t

σs,tσi,tρsi,t σ2
i,t

]
Let CCCsi,t be the conditional correlation matrix, whose elements are ρsi,t, defined as:

ΣΣΣsi,t = DDD
1/2
si,tCCCsi,tDDD

1/2
si,t =

[
σs,t 0

0 σi,t

][
1 ρsi,t

ρsi,t 1

][
σs,t 0

0 σi,t

]
where DDD1/2

si,t is the (2× 2) diagonal matrix of conditional standard deviations. The con-
ditional volatilities are estimated by a GARCH-type model (such as the GARCH model
and GJR model outlined in the previous paragraphs 2.4, 2.2.2), then the conditional
correlations are estimated by the following DCC model (Engle, 2002):

CCCsi,t = QQQ∗−1si,t QQQsi,t QQQ
∗−1
si,t

where QQQ∗si,t = diag(QQQsi,t)
1/2 and QQQsi,t is the pseudo correlation matrix:

QQQsi,t =

[
qss,t qsi,t

qsi,t qii,t

]
which follows a process of:

QQQsi,t =
(
1− a− b

)
Q̄QQsi + a

(
ηηηsi,t−1 ηηη

′
si,t−1

)
+ b QQQsi,t−1
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where Q̄QQsi is the unconditional correlation matrix of the standardized residuals:

Q̄QQsi = Et−1
(
ηηηsi,t−1 ηηη

′
si,t−1

)
which can be estimated as:

Q̄QQsi =
1

T

T∑
t=1

ηηηsi,t−1 ηηη
′
si,t−1

where the standardized residuals are ηηηsi,t = DDD
−1/2
si,t εεεsi,t and, in this case, they are equal

to the volatility adjusted returns ηs,t = rst/σs,t and ηi,t = rit/σi,t. This formulation is the
DCC(1, 1), but generally the DCC(M,N) is defined as:

QQQsi,t =
(

1−
M∑
m=1

am −
N∑
n=1

bn

)
Q̄QQsi +

M∑
m=1

am
(
ηηηsi,t−m ηηη

′
si,t−m

)
+

N∑
n=1

bn QQQsi,t−n (2.5)

The matrix ΣΣΣsi,t is a covariance matrix, as a consequence has to be positive definite.
The diagonal matrixDDD1/2

si,t is positive definite since all the diagonal elements are positive,
henceΣΣΣsi,t is positive definite if the conditional correlation matrixCCCsi,t is positive definite.
Then, the pseudo correlation matrix QQQsi,t has to be positive definite to ensure that CCCsi,t

is positive definite. In particular, the conditions to guarantee this requirement are:

a ≥ 0, b ≥ 0, a+ b < 1

Moreover, all the elements in the CCCsi,t have to be equal to or less than one by definition.
For this purpose, QQQ∗si,t rescales the elements in QQQsi,t to ensure that:

|ρsi,t| =
∣∣∣∣ qsi,t√
qii,tqss,t

∣∣∣∣ ≤ 1

Hence, Engle and Sheppard (2001) describe a set of sufficient, not necessary, conditions
for ΣΣΣsi,t to be uniformly positive definite in the following proposition.
Proposition (Positive Definiteness of DCC) If the following univariate GARCH
parameter restrictions (Equation 2.4) are satisfied for both system and institution com-
posing the return pair w ∈ {s, i}:

a. ωw > 0
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b. αwi ∀i ∈ [1, ..., pw] and βwj ∀j ∈ [1, ..., qw] are such that σ2
wt will be positive

with probability one

c. σ2
w0 > 0

d. the roots of

(
1−

pw∑
i=1

αwiZ
i +

qw∑
j=1

βwjZ
q

)
lie outside the unit circle

and the DCC parameters satisfy (Equation 2.5):

e. am ≥ 0 ∀m ∈ [1, ...,M ]

f. bn ≥ 0 ∀n ∈ [1, ..., N ]

g.
M∑
m=i

am +
N∑
n=1

bn < 1

h. the minimum eigenvalue of Q̄QQsi > 0

then ΣΣΣsi,t will be positive definite for all t.

The model is typically estimated by a two step Quasi-Maximum Likelihood (QML)
estimation procedure. A common estimation problem is that when the number of pa-
rameters to estimate is large, the likelihood function becomes flat and more probably a
local optimum is reached. Hence, the choice of start values is important and it is possible
to make a grid of the possible values the parameters may take, and choose the starting
values to be the combination of values that yields the highest likelihood.

For empirical simplicity, we consider the following Cholesky decomposition:

ΣΣΣ
1/2
si,t =

 σs,t 0

σi,tρsi,t σi,t
√

1− ρ2si,t


so the returns can be expressed as:

rst = σs,tzs,t

rit = σi,tρsi,tzs,t + σi,t

√
1− ρ2si,t zi,t

(2.6)

where zs,t and zi,t are assumed to be independent.
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Forecasting

The k-step-ahead prediction of the conditional covariance matrix:

ΣΣΣsi,t+k|t = DDD
1/2
si,t+k|tCCCsi,t+k|tDDD

1/2
si,t+k|t

may be solved by forecasting DDD1/2
si,t+k|t and CCCsi,t+k|t separately.

The predictions of the univariate variances, contained in DDD1/2
si,t+k|t, can be calculated

individually, for the system s and the financial institution i, using the appropriate fore-
casting formula related to the GARCH-type model used. The k-step-ahead forecast,
with k > 0, is:

DDD
1/2
si,t+k|t = diag

(
σs,t+k|t, σi,t+k|t

)
The prediction of the conditional correlation matrix CCCsi,t+k|t is obtained by the pre-

diction of the pseudo correlation matrix QQQsi,t+k|t. The k-step-ahead forecast, with k > 1,
for the DCC(1, 1) model is:

QQQsi,t+k|t =
(
1− a− b

)
Q̄QQsi + a Et

[
ηηηsi,t+k−1 ηηη

′
si,t+k−1

]
+ b QQQt+k−1|t

where:

Et
[
ηηηsi,t+k−1 ηηη

′
si,t+k−1

]
= RRRt+k−1|t = Et

[
QQQ∗−1si,t+k−1 QQQsi,t+k−1 QQQ

∗−1
si,t+k−1

]
The one-step-ahead forecast is:

QQQsi,t+1|t =
(
1− a− b

)
Q̄QQsi + a ηηηsi,t ηηη

′
si,t + b QQQt

Since the expectation Et
[
QQQ∗−1si,t+k−1 QQQsi,t+k−1 QQQ

∗−1
si,t+k−1

]
is unknown, it is necessary to

approximate it to obtain the k-step ahead forecast. There exists two methods:

1. assumes that Et
[
ηηηsi,t+i ηηη

′
si,t+i

]
≈ QQQsi,t+i|t for i = 1, . . . , k

2. assumes that C̄CC ≈ Q̄QQsi and CCCt+i|t ≈ QQQt+i|t for i = 1, . . . , k

Finally, the prediction of the conditional correlation matrix CCCsi,t+k|t, for k > 0, is:

CCCsi,t+k|t = QQQ∗−1si,t+k|t QQQsi,t+k|t QQQ
∗−1
si,t+k|t

An empirical study by Engle and Sheppard (2001) shows that the second method has
better bias properties for almost all correlation matrices.
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2.3 Concluding remarks

We have reviewed the main systemic risk measures developed in the literature. They are
divided into 4 different groups according to their structure, and we focused on probability-
distribution measures group. Among them, we have deeply analyzed two of the most
widespread systemic risk measures, namely ∆CoVaR and SRISK, and their main com-
ponents, namely CoVaR measure and MES measure, given their easy applicability and
their large diffusion in the literature, continuously inspiring extensions and other de-
velopments. Then, we have introduced the widespread econometric modeling particu-
larly employed to estimate these systemic risk measures, focusing on DCC-GARCH-type
methodology for preparatory purposes. Our approach, to estimate systemic risk using
CoVaR and MES measures, is in fact based on this methodology and is applied to top
US financial institutions in Chapter 4.
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Chapter 3

Systemic Risk evaluation

This chapter faces the problem to evaluate systemic risk accuracy. Several systemic risk
measures, in fact, have been developed in the literature, without a deep analysis on their
accuracy. Thus, we briefly explain the aspect of validating systemic risk measures, then
we review, in Section 3.1, the existing backtests used to evaluate measures adequacy, and
finally we revise, in Section 3.2, loss functions used to evaluate measures accuracy, with
the purpose to detect those tools more suitable for CoVaR and MES framework, which
are conditional quantile and conditional tail expectation, respectively. Then, we propose,
in Section 3.3, appropriate loss functions to particularly evaluate these measures.

Validation of Systemic Risk measures

An important and necessary requirement when a new systemic risk measure is presented
in the literature is its validation, as its reliability and accuracy that depend on its ability
to predict and cover future unexpected losses. The main attempts to contrast existing
measures follow two approaches: an ex ante comparison of risk measures based on their
mathematical properties, and an ex post approach based on their empirical performance.

According to the former approach, only few papers analyze the desirable properties
that a sound systemic risk measure should comply with. Following the coherent risk
approach of Artzner et al. (1999), Chen et al., in 2013, define an axiomatic framework
for systemic risk measures. Their analysis is based on the joint distribution of outcomes
across all financial firms and all states of nature. In this framework, a systemic risk

39
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measure is a function from the space of firms and outcomes to R and must satisfy
the main conditions that define any coherent risk measure, namely the monotonicity,
positive homogeneity, and outcome convexity axioms. In addition, it should verify the
additional preference consistency axiom that states that the risk measure has to reflect
the preference of the regulator on the cross-sectional profile of losses across firms and the
distribution of the aggregate outcomes across states. Brunnermeier et al., in 2013, state
that these measures also have to satisfy the clone property and should allow regulators to
impose a firm-specific capital surcharge in an economically consistent way. Gouriéroux
and Monfort, in 2013, propose a set of axioms (decentralization, additivity, and risk
ordering) for dividing an aggregate systemic risk measure into individual contributions.
These different approaches assume that the risk measure is correctly estimated. Given the
variety of risk measures that have been proposed and data limitations, any single systemic
risk measure will necessarily be fraught with uncertainty. Hansen (2013) discusses the
challenge of measuring this uncertainty and designing regulatory approaches that are
robust to this problem.

According to the latter approach, instead, empirical validation is a key requirement
for any systemic risk measure to become an industry standard. There is no consensus
at the moment on which is the best way to check it, and several approaches have been
followed in the academic literature, among the others backtesting. According to the Basel
Committee on Banking Supervision (1996), backtesting, that is the statistical procedure
of comparing realized profits and losses with forecast risk measures, is essential in the
validation process of risk management internal models (see Jorion, 2007). According to
Jorion (2007), in fact, backtesting is the main way to assess the accuracy of forecasts,
hence systemic risk measures should be backtested with appropriate methods.

3.1 Related literature on backtest

The accuracy and efficiency tests have been primarily developed in the literature to
evaluate VaR models (see Louzis et al., 2014; Hitaj and Peri, 2015). The assessment of
the performance of the VaR forecasts, in fact, is carried out with a two-step procedure
(Brownlees and Gallo, 2008). The first step assesses the adequacy of the VaR forecasting
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methods using these tests; the second step assesses the accuracy of those forecasting
methods found not rejected by the VaR specification tests using a VaR loss function, the
tick loss function (see the next Section 3.2) measuring the closeness of the VaR to their
nominal coverage. The most common accuracy tests are Kupiec’s unconditional coverage
test and Christoffersen’s conditional coverage test, where the null hypothesis is rejected
if the VaR model considered generates too many or too few or too clustered exceptions.

CoVaR is a VaR-based measure, hence it is possible to adapt these tests used for VaR
framework, to CoVaR framework using particular arrangements and changes. Therefore,
we provide explanations of these tests in CoVaR framework.

Let I it+1 be the hit sequence at time t+ 1 based on VaR violations of institution i for
t ∈ T, where T is the time set T = 1, . . . , T :

I it+1 =

{
1 if rit+1 ≤ VaRi

α,t+1

0 otherwise

A second hit sequence I
s|i
t+1, based on CoVaR violations of system s, is constructed

considering only the time periods when the VaR violations of institution i occur (i.e.
when the previous hit sequence I it+1 gives 1 as result), that means considering only the
observations when the institution i is in financial distress. In particular, we denote with
TVaR this particular time set, that TVaR ⊂ T, and with NVaR = #

(
TVaR

)
its sample size.

So, the second hit sequence for t ∈ TVaR is defined as:

I
s|i
t+1 =

 1 if rst+1 ≤ CoVaRs|i
α,t+1

0 otherwise
(3.1)

According to Christoffersen (1998), the problem of determining the adequacy of CoVaR
can be reduced to the problem of determining whether the resulting second hit sequence
satisfies two properties using the two following tests:

• the unconditional coverage test, which examines whether the number of exceptions
over a specific number of observations in the backtesting window is consistent with
the confidence level. It is based on the balance of two types of errors: type I error
to reject a correct model and type II error to accept an incorrect model;
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• the independence test, which examines whether the probability of an exception on
any day depends on the outcome of the previous day.

Only a hit sequence that satisfies both these properties can be described as evidence of an
adequate CoVaR model. These two properties can be combined into a single statement:

I
s|i
t+1 ∼ iid B(α)

where this hit sequence is identically and independent distributed as a Bernoulli random
variable with probability α. Furthermore, Christoffersen, in 1998, proposes the correct
conditional coverage test to jointly examine these two properties, i.e. whether the reason
for not passing the test is caused by inaccurate coverage, clustered exceptions, or even
both.

3.1.1 Unconditional coverage test

The Unconditional Coverage (UC) test examines whether or not the CoVaR measure
is violated more or less that α × 100% of the time. The CoVaR measure satisfies the
unconditional coverage property if Pr

[
I
s|i
t+1 = 1

]
= α for t ∈ TVaR. The hypotheses to

test for this property is:
H0 : E

[
I
s|i
t+1

]
= α

Kupiec, in 1995, proposes the proportion of failures test using the likelihood ratio
statistic:

LRuc = −2 log

[(
1− α
1− α̂

)NVaR−I(α)(
α

α̂

)I(α)]
∼ χ2

1

where NVaR is the time set sample size, α̂ =
1

NVaR
I(α) and I(α) =

NVaR∑
t=1

I
s|i
t+1.

An alternative test can be employed to assess this property using the sample average
of the number of CoVaR violations over a time period, α̂. Then, a scaled version of α̂:

z =

√
NVaR

(
α̂− α

)√
α
(
1− α

)
has an approximate standard normal distribution. This statistic is the Wald variant of
the Kupiec’s statistic and its exact finite distribution is known. Moreover, the Wald test
is well-defined in the case that no the CoVaR violations occur.
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3.1.2 Independence test

The Markov test, proposed by Christoffersen (1998), examines whether or not the likeli-
hood of a CoVaR violation depends on whether or not a CoVaR violation occurred on
the previous day. It is carried out by creating a 2× 2 contingency table that records the
CoVaR violations of system on adjacent days for t ∈ TVaR:

I
s|i
t+1 = 0 I

s|i
t+1 = 1

I
s|i
t = 0 N00 N01 N00 +N01 = N0

I
s|i
t = 1 N10 N11 N10 +N11 = N1

N00 +N10 N01 +N11 NVaR

where Nuv is the number of observations with value u on day t followed by v on day t+1.
If the CoVaR measure is adequate, then the proportion of violations on the next period,
after a violation on today Is|it = 1, should be the same as the proportion of violations
on the next period after a non-violation on today Is|it = 0. Hence, assuming that the hit
sequence Is|it+1 follows a first-order Markov sequence, the transition probability matrix is:

P =

[
1− α01 α01

1− α11 α11

]

where α01 = Pr
[
It+1 = 1

∣∣It = 0
]

=
N01

N0

and α11 = Pr
[
It+1 = 1

∣∣It = 1
]

=
N11

N1

are
the transition probabilities. The CoVaR measure satisfies the independence property
if Pr

[
I
s|i
t+1 = 1

]
= α holds. If the hit sequence Is|it+1 satisfies the conditional coverage

property, the probability of a violation next period does not depend on the last period
being a violation or not. The hypothesis to test for this property is:

H0 : E
[
I
s|i
t+1

]
= α01 = α11

Christoffersen, in 1998, proposes the test using the likelihood ratio statistic:

LRind = −2 log

[(
1− α̂

1− α̂01

)N0−N01
(

1− α̂
1− α̂11

)N1−N11
(
α̂

α̂01

)N01
(
α̂

α̂11

)N11
]
∼ χ2

1

where α̂ =
1

NVaR
I(α) and I(α) =

NVaR∑
t=1

I
s|i
t+1.
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Christoffersen and Pelletier, in 2004, suggest an alternative test to investigate the
independence property, called duration test, showing that it has more power than the
Markov test to detect a VaR measure that violates the independence property. The
Markov first-order sequence, in fact, may have limited power against general form of
clustered violations, a signal of risk model misspecification. If VaR violations are com-
pletely independent from each other, then the amount of time that elapses between VaR
violations should be independent of the amount of time that has elapsed since the last
violation. Carrying out the test requires estimating a statistical model for the duration
of time between VaR violations by the method of maximum likelihood which must be
done using numerical methods.

3.1.3 Correct conditional coverage test

Christoffersen, 1998, proposes also the correct conditional coverage test, the combination
of the unconditional coverage test and the independence test, for the null hypothesis
α01 = α11 = α:

LRcc = LRuc+LRind = −2 log

[(
1− α

1− α̂01

)N00
(

1− α
α̂01

)N01
(

α

1− α̂11

)N10
(
α

α̂11

)N11
]
∼ χ2

2

This test examines whether there is any difference in the likelihood of a CoVaR violation
following a previous CoVaR violation or non-violation and simultaneously determines
whether each of these proportions is significantly different from α.

3.2 Related literature on test and loss function

The information contained in the CoVaR hit sequence, presented for backtesting in Sec-
tion 3.1, refers only to whether or not an exceedance occurred, and does not provide
the magnitude of the exceedance. Moreover, these tests have low power, as pointed out
by Kupiec (1995); Berkowitz (2001); Escanciano and Pei (2012). As a consequence, loss
functions may be extremely useful for determining whether a model provides a better
risk assessment than another competing model, and may be more suited to discrimi-
nating among different competing models and judging the accuracy of a single model.
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In this situation, loss functions could be tailored to address specific concerns about the
evaluation of accuracy of systemic risk forecasts. As explained at the beginning of the
previous section, in fact, the assessment of the VaR forecasting methods adequacy is
not sufficient to assess the VaR forecasts performance. Statistical adequacy is, in fact, a
necessary requirement that VaR forecasts must satisfy, but it does not provide informa-
tion as to the accuracy of such predictions and it does not always help to discriminate
among different VaR forecasting methods. Hence, it is necessary to assess the accuracy
of the forecasting methods using a VaR loss function (Brownlees and Gallo, 2008). Since
CoVaR is a VaR-based measure, the VaR loss functions used in the literature can be
adapted to CoVaR framework.

3.2.1 Conditional volatility evaluation

The DCC-GARCH-type methodology requires as first step the estimation of conditional
volatilities by univariate GARCH-type models. For this reason, it is important to eval-
uate the volatility estimates and forecasts. Although several loss functions have been
proposed in the literature, Patton in 2011 derives a class of loss functions, for the ranking
of competing volatility estimates or forecasts, to be robust to the presence of noise in
the volatility proxy and finds some useful special cases within this class. The use of a
conditionally unbiased, but imperfect, volatility proxy can lead, in fact, to undesirable
outcomes in standard methods for comparing conditional variance estimates or forecasts.
In particular, they derive the following loss functions, which are robust. This class con-
tains two of the loss functions traditionally used in the related literature, which are the
following:

• the Mean Squared Error (MSE) loss function:

Loss(σ̃2
t , σ̂

2
t ) = (σ̃2

t − σ̂2
t )

2

• the QLIKE (QL) loss function:

Loss(σ̃2
t , σ̂

2
t ) = log(σ̂2

t ) +
σ̃2
t

σ̂2
t
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where σ̃2
t is an unbiased proxy of the conditional variance and σ̂2

t is the estimated volatil-
ity. Finally, the ability of different competing model is evaluated by computing the
average sample loss:

L =
1

T

T∑
t=1

Loss(σ̃2
t , σ̂

2
t )

where T is the sample size. The best performance corresponds to the model which
provides the lower average sample loss among the competing models.

This class of robust loss functions ensures that as the sample size is large, the ranking

provided by L =
1

T

T∑
t=1

Loss(σ̃2
t , σ̂

2
t ) and L =

1

T

T∑
t=1

Loss(σ2
t , σ

2
t ) coincides. Among these

loss functions, Patton and Sheppard (2009) recommend using QL because it yields the
greatest power. In addition, QL is a function of the multiplicative errors, while MSE is
a function of the additive ones.

3.2.2 Tick loss function

Komunjer, in 2005, develops an approach to conditional quantile estimation based on a
quasi-maximum likelihood. In particular, given rt the returns at time t ∈ T, the author
proposes the following Tick Loss (TL) function at level α, also known in literature as
the asymmetrical slope or check function:

TLα =
(
α− I(rt≤ηt)

)(
rt − ηt

)
(3.2)

where ηt ∈Mt, Mt ⊂ R and I(rt≤ηt) is the indicator functions sequence:

I(rt≤ηt) =

{
1 if rt ≤ ηt

0 otherwise

This loss function, with ηt = VaRα,t, is widely used in literature to evaluate the
accuracy of the VaR forecasting methods (among the others Brownlees and Gallo, 2008;
Escanciano and Pei, 2012; Huang and Lee, 2013; Fuertes and Olmo, 2016). In fact,
VaRα,t is the optimal predictor of the tick loss function since it minimizes the expected
value of this function:

VaRα,t = argmin
ηt∈Mt−1

Et−1
[(
α− I(rt≤ηt)

)(
rt − ηt

)∣∣∣Ft−1]
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where Mt−1 ⊂ R, Ft−1 is the information set available until time t− 1.
Comparing the different average sample tick losses obtained by several models for

the same risk measure, the best and most accurate model corresponds to the smallest
average sample tick loss reached.

3.2.3 Dynamic quantile test

Engle and Manganelli, in 2004, propose a different approach to quantile estimation,
modeling directly the quantile, called conditional autoregressive value at risk (CAViaR)
model, whose parameters are estimated by quantile regression (Koenker and Bassett,
1978).

Let
{
rt
}T
t=1

be a vector of observable portfolio returns, xxxt a vector of time t observable
variables, and let ft(βββ) ≡ ft(xxxt−1,βββα) be α-quantile at time t of the distribution of returns
rt formed at time t−1, where βββα is the p-dimensional vector of the unknown parameters
and α is the confidence level. It should be ft(βββ) = VaRα,t. Hence, the proposed CAViaR
model has the following specification:

ft(βββ) = β0 +
k∑
i=1

βi ft−i(βββ) +
r∑
j=1

βj l(xxxt−j)

where p = 1 + k+ r is the dimension of βββ and l is a function of a finite number of lagged
values of observables.

Denoting βββ0 as the vector of the true unknown parameters, the indicator functions
sequence

{
I(rt<ft(βββ0))

}T
t=1

is the following:

I(rt≤ft(βββ0)) =

{
1 if rt ≤ ft(βββ

0)

0 otherwise

To test the validity of the forecasting model, it is straightforward to check whether the
above sequence,

{
I(rt<ft(βββ0))

}T
t=1

, is iid (see Christoffersen, 1998). If VaR forecasts are
adequate, in fact, the indicators functions sequence should behave as an iid sequence
of Bernoulli random variables with probability α. As a solution, Engle and Manganelli
(2004) propose the Dynamic Quantile (DQ) test, defining:

Hitt(βββ
0) ≡ I(rt≤ft(βββ0)) − α
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The expected value ofHitt(βββ0
α) is 0 and its conditional expectation, given any information

known at t − 1, must also be 0. The authors aim to check whether the Least Square
estimator of the regression HitHitHit(β̂ββ) on XXX ′(β̂ββ), i.e. the following test statistic:

β̂ββLS = T−1/2XXX ′(β̂ββ)HitHitHit(β̂ββ)

is significantly different from 0, where

• β̂ββ is the vector of the estimated unknown parameters by minimizing the tick loss
function outlined in the previous paragraph in formula 3.2, also known as the
quantile regression loss function:

min
βββ

1

T

T∑
t=1

(
α− I(rt≤ft(βββ))

)(
rt − ft(βββ)

)
• XXX(β̂ββ) contains m < k lagged Hitt−i(β̂ββ), i = 1, . . . ,m

• HitHitHit(β̂ββ) ≡ [Hit1(β̂ββ), . . . , HitT (β̂ββ)]′

Under the null hypothesis H0 : βββ = 0, the DQ test statistic is:

DQ =
β̂ββ
′
LSXXX

′XXXβ̂ββLS
α(1− α)

∼ χ2
k

IfHitHitHit(β̂ββ) is an iid process, it should not be possible to predict future failure based on
past information, thus we are looking for accepting the null hypothesis H0. This test is
based on VaR measure, hence we can use it in CoVaR framework, since is a VaR-based
measure, in particular with the second hit sequence defined in formula 3.1.

3.2.4 Magnitude loss function

The information contained in the hit sequence, presented in Section 3.1, refers only to
whether or not an exceedance occurred and doesn’t provide the magnitude of the ex-
ceedance. Loss function based backtests may be extremely useful for determining whether
one VaR model provides a better risk assessment than another competing VaR model
and may be more suited to discriminating among competing VaR models rather than
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judging the accuracy of a single model. Therefore, Lopez, in 1999, proposes a backtest
based on magnitude loss function, which measures the difference between the observed
loss and the VaR in cases where the loss exceeds the VaR. The accuracy of VaR estimates
is gauged by how well they minimize the loss function.

The magnitude loss function assigns a quadratic numerical score when a VaR estimate
is exceeded by the observed loss and is defined as:

L(VaRα, rt+1) =

{
1 + (rt+1 − VaRα)2 if rt+1 ≤ −VaRα

0 otherwise

This loss function measures how well VaR model predicts losses when they occur and
assigns to VaR estimates a numerical score that reflects the magnitude of the exceptions.
The corresponding backtest is based on the sample average loss:

L̂ =
1

T

T∑
t=1

L(VaRα, rt+1)

To determine the range of values for average loss that are consistent with an accurate
VaR model, a suitable model of the distribution of returns is determined to generate a
history of returns and corresponding VaR and to construct a value for the average loss L̂.
Then, this process is repeated for a very large number of trials and the resulting average
losses, i.e. the quantiles of the empirical distribution of the simulated average losses, are
used as estimate of the distribution of the average loss.

3.3 A new approach to evaluate tail forecasts

After revising the existing main backtests and loss functions, we identify the loss functions
more suitable for assessing CoVaR and MES accuracy and we modify and adapt them
to their frameworks to ensure their usage.

3.3.1 New loss functions in CoVaR framework

We consider CoVaR measure, introduced by Girardi and Ergun (2013) and explained in
Subsection 2.1.1, because of its advantage of being backtestable. As pointed out, the
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adoption of a more fine-grained loss function is fundamental to help in assessing the
CoVaR accuracy and selecting the proper model, since backtests do not discriminate
among different competing models.

The CoVaR measure is defined as a conditional quantile, hence a straightforward
loss function suitable to this framework is the tick loss function, defined by Komunjer
(2005), widely used in assessing VaR accuracy. However, it is necessary to adapt it to
this framework to make it usable. Therefore, we propose the following Tail Tick Loss
(TTL) function for institution i, defined as:

TTLs|iα =
1

Ni

∑
t∈Ti

(
α− I(rst≤ηt)

)(
rst − ηt

)
, (3.3)

where

• ηt = CoVaRs|i
α,t is the optimal predictor of TTL function;

• Ti is the time set when the conditioning event of CoVaR occurs, in particular
when C(rit) =

{
rit ≤ VaRi

α,t

}
holds (see formula 2.1). The letter i indicates the

dependence of the time set by the VaR of institution i;

• Ni = #
(
Ti
)
is the time set sample size, that means the number of observations

when the financial institution is in financial distress;

• I(rst≤ηt) ≡ I
s|i
t is the CoVaR failures sequence outlined at the beginning of Section

3.1 in formula 3.1 (Is|it = 1 when rst ≤ CoVaRs|i
α,t and 0 otherwise). It is important

to underline that this sequence is constructed on the VaR failures sequence, as
highlighted by s|i. Consequently, it is defined only on the time set Ti, i.e. when
the VaR failures of institution i occur.

Hence, in order to correctly evaluate CoVaR forecast accuracy, we apply to the TL
function (Komunjer, 2005) the same conditioning set of the CoVaR measure. More
precisely, we condition the TL function on the Ti time periods set, where the conditioning
event occurs

{
rit ≤ VaRi

α,t

}
, instead of the overall time period T as in the standard TL

function.
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The proposed Tail Tick Loss function is the most appropriate loss function to evaluate
the CoVaR accuracy because the CoVaR measure is the optimal predictor of this TTL
loss function since it minimizes the expected value of the loss function:

CoVaRs|i
α,t = argmin

ηt∈Mt−1

Et−1
[(
α− I(rst≤ηt)

)(
rst − ηt

)∣∣∣C(rit),Ft−1

]
where Mt−1 ⊂ R, C(rit) =

{
rit ≤ VaRi

α,t

}
and Ft−1 is the information set available

until time t − 1. The focus is particularly on the extreme events, because the financial
institution failure can occur more probably on these days.

Comparing the values of the average sample TTL function for the same institution
i among all competing models used to compute the CoVaR measure, we are able to
identify which is the model that predicts more accurately the CoVaR measure.

3.3.2 New loss functions in MES framework

We consider also MES measure (Acharya et al., 2010; Brownlees and Engle, 2015),
explained in Subsection 2.1.2, which is a widespread used alternative to CoVaR in mea-
suring systemic risk. To the best of our knowledge, statistical tools with the purpose to
test and compare MES forecasts have not been properly developed in the literature and
a deep analysis on their accuracy is largely unexplored. The Mean Square Error loss
function is widely used in the literature to assess the forecasting accuracy and it defined
as:

MSEα =
1

T

∑
t∈T

[
rt − ηt

]2
where T = {1, 2, . . . , T} is the time set and ηt ∈Mt, Mt ⊂ R.

MES is a conditional tail expectation, therefore in order to evaluate MES accuracy
and its forecasting ability, we propose the Tail Mean Square Error (TMSE):

TMSEi|sα =
1

Ns

∑
t∈Ts

[
rit − ηt
σst

]2

where

• ηt = MESi|sα,t is the optimal predictor of TMSE function;
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• Ts is the time set when the conditioning event of MES occurs, in particular when{
rst ≤ VaRs

α,t

}
holds (see formula 2.2). The letter s indicates the dependence of

the time set by the VaR of system s;

• Ns = #
(
Ts
)
is the time set sample size, that means the number of observations

when the system is in financial distress;

• σst is the standard deviation of the financial system estimated by the GARCH
model for all competing models.

As done for CoVaR framework, we have to condition TMSE on the same conditioning set
of MES, i.e.

{
rst ≤ VaRs

α,t

}
. More precisely, in order to guarantee a correct evaluation

of MES accuracy, we condition TMSE on the Ns realizations of the observed financial
system VaR, instead of the overall time period T as in the standard TMSE. Further-
more, we standardize TMSE values by σst , with the purpose of avoiding volatile periods
influences on the entire value.

The proposed Tail Mean Square Error is the most appropriate loss function to evalu-
ate the MES accuracy because the MES measure is the optimal predictor of this TMSE
loss function since it minimizes the expected value of the loss function:

MESi|sα,t = argmin
ηt∈Mt−1

Et−1

[(
rit − ηt
σst

)2
∣∣∣∣∣C(rst ),Ft−1

]

where Mt−1 ⊂ R, C(rst ) =
{
rst ≤ VaRs

α,t

}
and Ft−1 is the information set available

until time t − 1. The focus is particularly on the extreme events, because the financial
institution failure can occur more probably on these days.

Comparing the TMSE values for the same institution i among all models, we are able
to detect the model that forecasts more precisely MES.

3.4 Concluding remarks

We face the problem of validating systemic risk measures. Focusing on CoVaR and MES
measures, presented in Sections 2.1.1 and 2.1.2, we aim to provide appropriate loss func-
tions to validate them. With this purpose, we reviewed the main existing backtests useful
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to evaluate CoVaR adequacy. We pointed out that these backtests do not discriminate
among different competing models used to compute CoVaR, since they generally pro-
vide the same results across all models. As a consequence, we revised the main existing
loss functions in order to identify the more suitable ones to adapt to CoVaR and MES
frameworks, respectively.

We finally proposed two new loss functions, which are suitable to these frameworks
and helpful in discriminating among different competing models in order to determine
the models that forecasts more precisely the CoVaR and MES measures, respectively. In
this way, we are able to evaluate the forecasting performances of CoVaR and MES.
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Chapter 4

Empirical study of 2007−2009 crisis

We now provide an empirical analysis of 2007 − 2009 financial crisis according to the
different systemic risk approaches presented in Section 2.1. In particular we analyze the
accuracy of the standard DCC-GARCH-type models that are present in the literature
(see Section 2.2) in measuring systemic risk using the novel loss functions proposed in
Section 3.3. We also investigate how the results should be interpreted in order to detect
the best prediction models. These research questions are addressed in this chapter: in
particular, Section 4.1 describes the financial data used in the empirical analysis, Section
4.2 reports the in-sample results and Section 4.3 discusses the out-of-sample predictions,
comparing the DCC-GARCH-type models forecasting performances with the benchmarks
ones.

4.1 US financial data

We apply the econometric models presented in Section 2.2 and the new approach outlined
in the Section 3.3 to the panel used by Brownlees and Engle (2015). The sample is
composed by the daily returns of 91 US financial institutions, with a market capitalization
greater than 5 bln USD as of end of June 20071. The daily CRSP market value weighted

1We exclude 4 institutions from systemic risk analysis due to the limited length of their in-sample
return series used for the models estimation: Mastercard (MA), NYMEX (NMX), NYSE Euronext
(NYX), Western Union (WU). At least 100 observations are required to estimate a GARCH-type model.

55
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index is used as a proxy for the system. We obtained data from CRSP. The panel spans
from January 3, 2000 to December 31, 2012 for a total of T = 3269 observations. The
sample is unbalanced since not all companies have been trading continuously during the
sample period.

The 91 financial institutions are grouped by financial industry group based on their
SIC codes2. The 4 subindustry groups are:

• Depositories Institutions (Dep.), that contains banks and counts 28 institutions;

• Insurance (Ins.), that contains insurance companies and counts 34 institutions;

• Securities Dealers and Commodity Brokers (Bro.), that contains, for example, Bear
Stearns and Lehman Brothers, and counts 9 institutions;

• Others (Oth.), that contains non-depository institutions and real estate, and counts
20 institutions.

Table B.1 in Appendix B summarizes the main information and the summary statistics
of the sample used in the empirical analysis.

The daily returns of the financial institutions are calculated by taking the percentage
log difference of prices on two consecutive trading days:

rt = ln

(
Pt
Pt−1

)
100.

The sample is divided into two different sub-samples in order to allow the out-of-
sample forecasting validation and to evaluate the risk measures performances during the
forecasting period. In particular:

• the in-sample consists of 1611 daily observations from January 3, 2000 to May
31, 2006;

• the out-of-sample consists of 1658 daily observations from June 1, 2006 to Decem-
ber 31, 2012.

2The only exception is Goldman Sachs (GS) which is included in Broker-Dealers, instead of Others.
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The out-of-sample which includes the 2007 − 2009 financial crisis is used to forecast
and validate systemic risk measures. It is interesting to analyze the results obtained in
different out-of-sample sub-periods, comparing for example the period before the financial
crisis with that during the crisis and with the period immediately afterwards. During
the forecasting period the models are separately re-estimated every week (i.e. every 5
observations) using all data available until as of that date and the forecasts are computed
one-step-ahead. We exclude the year before the 2007− 2009 financial crisis from the in-
sample period to permit to the models to fit the data without any preliminary information
about the crisis. Moreover, the re-estimation done every-week allows the models to fit
the data considering the new information set, which implies that the parameters are not
fixed to the last estimation at the end of in-sample. Hence, starting a year or a month
before the 2007− 2009 financial crisis, the results do not change.

From the descriptive statistics reported in table B.1 in Appendix B, it is shown that
the means of observed percentage return time series are very close to 0 and some institu-
tions have null median. From table B.1, it is possible to notice the main stylized facts,
already known in the existing literature, which characterize the financial time series. In
particular, there are the following stylized facts of return distribution: all financial insti-
tutions time series present skewness, in particular most of all are negative skewed, that
is the left tail is longer than the right one. This means that the extreme negative re-
turns are more likely to occur than extreme positive returns. In addition, all firms show
a leptokurtic distribution. As expected, most financial series are characterized by fat
tails. Hence, there is a departure from the Gaussian distribution, since the skewness is
different from 0 and there is positive excess kurtosis. Finally, as illustrated in figure B.1
in Appendix B, the daily returns exhibit volatility clustering (Mandelbrot, 1963), that
is when the variance of returns is high for extended periods and then low for extended
periods. We report only few financial institution returns as they are representative of the
financial industry group they belong to. In particular, we chose Bank of America (BAC)
from Depositories group, Cincinnati Financial (CINF) among Insurance, T. Rowe Price
(TROW) from Broker-Dealers and American Express (AXP) among Others. They, in
fact, have a similar behavior of the remaining financial institutions within the related
group.
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4.2 In-sample estimation

We compute daily CoVaR and MES measures3 for all the financial institutions in the
panel. This computation requires us to estimate the DCC-GARCH-type models dis-
cussed in section 2.2, in particular the DCC-GARCH and DCC-GJR models, over the
in-sample (from 03/01/2000 to 31/05/2006). First we estimate the volatilities for each
firm by the univariate GARCH and GJR models, then we estimate the conditional cor-
relations of each system-institution pair by the bivariate DCC model.

Table 4.1 shows selected quantiles, in particular 10%, 50% and 90% quantiles, of the
parameters estimates of the DCC-GARCH and DCC-GJR models for each sub-industry
group over the in-sample. We observe that the dynamics of the financial institutions in
the panel do not have a strong degree of heterogeneity. GARCH and GJR parameters
are close to the typical set of estimates, which consists of all positive estimates, α values
smaller than β ones, sum of α and β near 1. These results, in fact, present slightly higher
α and γ together with lower β implying a higher level of unconditional kurtosis. The
β estimates are on average higher for Broker-Dealers, showing higher persistence. The
range of the leverage effect parameter reaches larger values for Insurance, highlighting
that a negative shock increases more volatility. Over all, the parameters estimates do
not fluctuate much, with the exception of the intercept. Focusing on DCC, parameters
are in line with the typical set of estimates and are similar across groups.

Table B.2 reported in Appendix B shows the parameters estimates of DCC-GARCH
model for each financial institution, with the related significativity, grouped by financial
industry groups. We notice that most of the parameters estimates are statistically signif-
icant. All β estimates of GARCH model and b estimates of DCC model are statistically
significant at 1% significance level, apart very few exceptions, remarking a good fitting
of the model over the data. Similarly, table B.3 in the Appendix reports similar results
about the DCC-GJR model. Also in this case the β estimates of GARCH model and
b estimates of DCC model are almost always statistically significant at the 1% level of
significance. The leverage effect parameter estimates, instead, are always statistically

3The CoVaR and MES systemic risk measures are computed at α = 95% confidence level assum-
ing Gaussian distribution. More details about the CoVaR and MES computation and their empirical
procedures are reported in Appendix A.
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Table 4.1: Selected quantiles (10%, 50% and 90%) of the parameter estimates of the DCC-

GARCH and DCC-GJR models.

GARCH DCC

ω α β γ const a b

q0.1 0.007 0.033 0.814 0.412 0.008 0.912
Dep. q0.5 0.037 0.083 0.908 0.615 0.019 0.975

q0.9 0.169 0.144 0.962 0.667 0.054 0.987

q0.1 0.007 0.010 0.346 0.312 0.005 0.592
Ins. q0.5 0.080 0.080 0.880 0.453 0.017 0.975

q0.9 1.040 0.193 0.987 0.587 0.082 0.993

q0.1 0.004 0.022 0.916 0.577 0.011 0.947
Bro. q0.5 0.012 0.032 0.967 0.687 0.016 0.979

q0.9 0.057 0.074 0.977 0.730 0.042 0.984

q0.1 0.015 0.000 0.580 0.295 0.000 0.037
Oth. q0.5 0.094 0.052 0.909 0.484 0.015 0.930

q0.9 3.790 0.164 0.966 0.673 0.055 0.989

GJR DCC

q0.1 0.010 0.009 0.843 0.029 0.414 0.011 0.873
Dep. q0.5 0.036 0.039 0.910 0.079 0.608 0.021 0.970

q0.9 0.141 0.092 0.965 0.132 0.660 0.069 0.983

q0.1 0.011 0.000 0.353 -0.001 0.302 0.006 0.627
Ins. q0.5 0.060 0.021 0.903 0.073 0.444 0.019 0.959

q0.9 1.101 0.114 0.979 0.175 0.582 0.087 0.992

q0.1 0.008 0.000 0.932 0.046 0.574 0.012 0.923
Bro. q0.5 0.024 0.011 0.958 0.065 0.680 0.021 0.972

q0.9 0.041 0.018 0.975 0.097 0.724 0.059 0.983

q0.1 0.016 0.000 0.603 -0.065 0.292 0.000 0.018
Oth. q0.5 0.091 0.019 0.923 0.057 0.479 0.014 0.930

q0.9 2.420 0.131 0.977 0.127 0.664 0.048 0.989

Notes: More details about the statistical significance of the parameter
estimates are reported in tables B.2 and B.3 in Appendix B
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significant for Broker-Dealers, most of the times statistically significant for both De-
positories and Insurance, but only in the half of cases are statistically significant for
Others. This evidence highlights the importance of capturing the leverage effect, that is
the different impact of negative shocks most of all in Broker-Dealers.

We evaluate the volatility estimates obtained by different models using the loss func-
tions pointed out in Section 3.2.1. According to Patton (2011), in fact, these loss func-
tions are the only robust ones among those widely used in the literature. In particular,
we prefer QL according to Patton and Sheppard (2009). Table 4.2 displays the compar-
ison between the in-sample performances of the GARCH and GJR models in estimating
volatility obtained by these robust loss functions. Each model runs separately for each
financial institution and its squared returns are the volatility proxy. To relieve the read-
ing of the results, we show in table 4.2 the average performances of these models divided
by sub-industry group.

Table 4.2: In-sample average performances of the GARCH and GJR models in estimating

volatility.

MSE QL

GARCH GJR GARCH GJR

Overall 403.70 416.41 2.151 2.138

Dep. 141.94 146.21 1.846 1.836

Ins. 538.58 560.22 2.103 2.090

Bro. 360.07 353.53 2.569 2.552

Oth. 560.52 578.53 2.471 2.459

The lowest value of each loss function (bold in table 4.2) corresponds to the best model
in estimating volatility. Considering the MSE loss function, the best model is GARCH,
while QL identifies GJR as the most accurate model in estimating volatility. Since QL
is the recommended loss function, the results suggest that there are leverage effects in
the data that is captured and modeled by the GJR model.

We compute the CoVaR measure as explained in details in Appendix A.1, following
step by step the algorithm procedure in Section A.4. We focus on the CoVaR by Girardi
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and Ergun (2011) (see Section A.2) because it is backtestable and this feature is very
important for systemic risk measures. Then, we backtest the CoVaR for verifying the
unconditional coverage property (see Section 3.1.1). These results are reported in the
columns 2 and 3 of table B.4 in Appendix B. The null hypothesis is whether the average
of the violations (rst+1 ≤ CoVaRs|i

α,t+1) is equal to the coverage level α. We find that
the null hypothesis is rejected at 5% level of significance for 88 financial institutions
(over 91) by DCC-GARCH model and for 87 financial institutions by DCC-GJR model,
that is they satisfy the unconditional coverage property, while the null hypothesis is
rejected at 1% level of significance for the entire sample. Hence, DCC-GARCH and
DCC-GJR models provide adequate CoVaR measures. However, we also find that 34

financial institutions over 91 have the same test statistic value for both DCC-GARCH
and DCC-GJR model. This equality is explained by the fact that DCC-GARCH-type
models capture the same number of VaR and CoVaR violations. This evidence confirms
our idea that backtests do not help in discriminating among different competing models.
In particular, this test provides similar results from two different models.

In addition, we conduct the DQ test (see Section 3.2.3), whose results are reported
in the columns 2 and 3 of table B.5 in Appendix B. The null hypothesis is H0 : βββ = 0,
where βββ is the least square estimator of the regression of the hit sequence HitHitHit(β̂ββ) on
its past values. In other words, we want to check if the hit sequence is an iid process,
that means that it is not possible to predict future failures based on past information,
otherwise the model is misspecified. Some financial institutions do not have enough past
information to carry out the DQ test, therefore 10 institutions are excluded. Over the
remaining 81 financial institutions, the null hypothesis is rejected for 78 firms by DCC-
GARCH model and for 72 by DCC-GJR (at 5% level of significance). Moreover, 19 firms
present the same number of VaR and CoVaR failures, and consequently the same test
statistic values, hence also the DQ test do not discriminate among different competing
models in this context.

Subsequently, we empirically compute the MES measure (see Section A.3) following
step by step the algorithm procedure in Section A.4. To allow a fair comparison of
the in-sample performances between DCC-GARCH and DCC-GJR models, we apply
the novel loss functions proposed in Section 3.3. In particular, we employ the TTL
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loss function to evaluate the model accuracy in computing CoVaR measure and the
TMSE loss function for MES measure, obtaining one loss function value for each financial
institution. Comparing the loss function values for the same institution among all models,
we are able to identify the model that predicts more accurately the systemic risk measure
considered.

Table 4.3 displays the average performances for the overall sample and each financial
industry group. The lowest loss function value (bold in the table) corresponds to the
best model.

Table 4.3: In-sample average performances of the DCC-GARCH and DCC-GJR models in

estimating CoVaR and MES measures respectively.

TTL

DCC-GARCH DCC-GJR

Overall 0.172 0.164

Dep. 0.183 0.175

Ins. 0.168 0.162

Bro. 0.187 0.174

Oth. 0.158 0.149

(a) Related to CoVaR measure

TMSE

DCC-GARCH DCC-GJR

Overall 4.648 4.695
Dep. 2.406 2.516
Ins. 3.499 3.593
Bro. 4.333 4.479
Oth. 9.882 9.718

(b) Related to MES measure

Regarding to the CoVaR measure, the lowest value is reached by the DCC-GJR model
both in the overall sample and in each financial industry group, highlighting the im-
portance of considering a leverage effect parameter to capture the different impact of
a negative shock rather than a positive one. On the contrary, regarding to the MES
measure, the lowest TMSE value is always achieved by DCC-GARCH model, except for
Others. This leads to conclude that there is not a unique model that predicts more ac-
curately systemic risk. On the basis of these results, we think that maybe some stylized
facts not are properly captured by these models, hence they should be jointly investi-
gated.
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4.3 Out-of-sample forecast

The forecast analysis is computed over the out-of-sample period, that consists of 1658

observations from June 2006 to the end of the sample (31/12/2012).

We carry out the comparisons among the volatility predictions obtained by different
forecasting methods. In particular, we compare the performances of the standard econo-
metric models (the GARCH and GJR models) with those of benchmark models. We
consider the following benchmark models on the base of their widespread usage in the
related literature:

• the rolling volatility (RollVol.), computed for each financial institution as the stan-
dard deviation of its return time series moving a window of 500 observations forward
one by one, as benchmark for the volatility;

• the rolling quantile regression model, indicated as QR, as benchmark for the CoVaR
measure with a rolling window of 500 observations;

• the rolling linear regression (LR) model as benchmark for the MES measure with
the same rolling window of QR.

Hence, we evaluate the volatility forecasts with the aim to identify the best prediction
model for volatility, then we compute the models accuracy in forecasting the systemic
risk measures, CoVaR and MES.

Table 4.4: Out-of-sample performances of GARCH and GJR models in forecasting volatility.

MSE QL

RollVol. GARCH GJR RollVol. GARCH GJR

Overall 246205.5 243285.1 246146.8 3.631 2.748 2.722

Dep. 260726.5 257645.7 260143.8 3.817 2.762 2.742

Ins. 12709.55 11827.72 11904.98 3.274 2.586 2.566

Bro. 1550521.9 1533769.2 1551973.4 4.705 3.028 2.948

Oth. 35876.8 35939.882 37140.02 3.493 2.878 2.859
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Table 4.4 reports the average performances of GARCH and GJR models with the
purpose to compare them with the RollVol benchmark model. Evaluating volatility
forecasts is an important topic in measuring systemic risk since conditional variances
are a fundamental ingredient of systemic risk measures. Hence, it is useful to identify
the model which predicts more accurately volatility. According to the MSE results, the
GARCH model appears as the best prediction model, while the GJR model is the best
one according to the QL loss function which is the recommended by Patton and Sheppard
(2009).

We forecast CoVaR measure (see Appendix A.2) and we assess the CoVaR accuracy
through the TTL loss function. The TTL averages by sub-industry group are reported in
table 4.5, where the lowest values that indicate the best prediction models are highlighted
in bold.

Table 4.5: Out-of-sample average performances of the DCC-GARCH and DCC-GJR models

in forecasting CoVaR measure evaluated by the TTL loss function.

QR DCC-GARCH DCC-GJR

Overall 1.046 0.228 0.212

Dep. 0.912 0.214 0.203

Ins. 1.156 0.238 0.220

Bro. 1.205 0.244 0.228

Oth. 0.976 0.220 0.204

Loss functions provide the ranking of different forecasting models, however it is useful
to introduce techniques that evaluate the significance of the differences among different
methods. For this reason, we run the Diebold-Mariano test to check the significance
between the best model and the benchmark predictions4, but we do not report these
information in table to avoid confusion. Testing whether each evaluation is significantly

4We run the Diebold-Mariano test only once for the entire sample (composed by 91 financial insti-
tutions) to avoid multiple testing problems. The multiple testing problem results from the increase in
type I error that occurs when statistical tests are used repeatedly. This issue is usually faced using
Bonferroni correction, which is one of the most commonly used approaches for multiple comparisons.
This method is not applied in this thesis work, but surely we consider it as a future development.
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different from others, we find that the DCC-GARCH-type models are significantly dif-
ferent at 1% significance level from benchmark. The results in table 4.5 indicate that the
DCC-GJR model provides the most precise CoVaR forecasts and is always statistically
significant over the quantile regression model.

Similarly, we forecast MES measure (see Appendix A.3) and we assess the MES
accuracy through the TMSE loss function. In table 4.6 the TMSE averages by sub-
industry group are reported and the lowest values that correspond to the best prediction
models are indicated in bold. We run the Diebold-Mariano test to check the significance
between the best model and the benchmark model predictions (not reported in table
4.6).

Table 4.6: Out-of-sample average performances of the DCC-GARCH and DCC-GJR models

in forecasting MES measure evaluated by the TMSE loss function.

LR DCC-GARCH DCC-GJR

Overall 26.324 21.65 21.899
Dep. 15.732 12.74 13.026
Ins. 9.053 6.581 6.675
Bro. 157.39 134.02 133.40

Oth. 11.535 9.184 10.026

DCC-GARCH-type models outperform the linear regression model and are always sig-
nificantly at 1% of significance level different from it. In particular, DCC-GARCH is
the overall most accurate model in predicting MES measure and is always statistically
significant.

The out-of-sample results are in line with those found over the in-sample period,
showing a mismatch between the best CoVaR prediction model and the best one for the
MES measure. This may be due to a lack in capturing the stylized facts of financial time
series.

Observing the figures B.2 in Appendix B, we notice that Broker-Dealers are des-
ignated as systemically most important group, most of all for the MES measure. The
figures show the industry groups averages of the CoVaR (first column) and MES (sec-
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ond column) measure obtained by the DCC-GARCH (first row) and DCC-GJR (second
row) models. The ranking of the risk among the financial industry groups, in fact, is
leaded by Broker-Dealers, followed by Depositories, Others, and finally Insurance. This
ranking is very clear for the MES measure during the entire sample period both in case
of estimation and forecast by the DCC-GARCH model and in case of DCC-GJR, while
it is not for CoVaR. Observing figures B.2a and B.2c, in fact, Broker-Dealers are the
most risky group for most of the sample period, but during the peaks of the crisis all the
sub-industry groups tend to overlap indicating a similar risk among them. These results
are in line with the finding of Girardi and Ergun (2011). Finally, in figure B.2e there are
the overall averages of the CoVaR measure computed by the quantile regression (black
line), DCC-GARCH (blue line) and DCC-GJR (green line) models. The black vertical
line indicates the end of the in-sample estimation and the beginning of the out-of-sample
forecast. It is possible to notice that in all peaks the DCC-GARCH model is the model
that provides the bigger CoVaR values, indicating that it could be underestimating sys-
temic risk. On the contrary, DCC-GJR provides the lowest values. During the periods
of growth and economic recovery, instead, the lowest CoVaR values are obtained by the
DCC-GARCH model. The same conclusions could be taken for the MES measure by
observing the figure B.2f .

4.3.1 Sub-samples comparison

The out-of-sample period is divided into three different sub-samples in order to compare
the systemic risk measures obtained in different historical periods:

• the pre-crisis sample with 251 daily observations from June 01, 2006 to May
31, 2007;

• the crisis sample with 462 daily observations from June 01, 2007 to March 31, 2009;

• the post-crisis sample with 945 daily observations from April 01, 2009 to December
31, 2012.

We carry out the comparison among the forecasting performances of the DCC-
GARCH-type models in each sub-sample period and the results are in line with those
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found in the previous section. In particular, the DCC-GJR model is the model that pro-
vides the most accurate volatility and CoVaR forecasts, while the DCC-GARCH model
is the best MES prediction model in all the sub-samples.

4.4 Concluding remarks

In this chapter, we have presented an empirical analysis of the 2007 − 2009 financial
crisis. Our study is based on the computation and prediction of the CoVaR and MES
systemic risk measures by DCC-GARCH-type models using the daily return series of
91 US financial institutions in the period from January 2000 to December 2012. The
objective of our analysis is to evaluate the accuracy of the DCC-GARCH and DCC-GJR
models in forecasting CoVaR and MES in order to identify the best model which provides
more accurately systemic risk forecasts. In particular, we have compared the forecasting
performances of the DCC-GARCH and DCC-GJR models with the benchmarks, that are
the quantile regression and the linear regression models, using the novel loss functions,
namely TTL and TMSE. We have found that the CoVaR backtesting results are very
similar among different competing models, confirming our idea that appropriate loss
functions are required. In addition, the out-of-sample results indicate that the DCC-
GARCH-type models outperform significantly the benchmarks, in particular the DCC-
GJRmodel is the best model in forecasting conditional volatility and the CoVaR measure.
On the contrary, the DCC-GARCH model is the overall best prediction model for the
MES measure, but it is not clear among the different sub-industry groups. Therefore, we
think that there are stylized facts, which are not captured by these models, that should
be investigated.
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Chapter 5

Econometric modeling of long-range

dependence in Systemic Risk

measurement

In this chapter, we investigate the role of the long-range dependence in the systemic risk
framework, with the intention to solve the issue found in the empirical results of last
Chapter 4. In particular, capturing other relevant stylized facts of financial data may
improve the forecasting performances of the considered models. Therefore, in addition
to the leverage effect, which has already been considered in systemic risk framework
(e.g. Girardi and Ergun, 2013; Brownlees and Engle, 2015), we investigate the impact
of the long-range dependence. This feature of financial data has not yet been consid-
ered in systemic risk framework (to the best of our knowledge), but many authors have
shown its importance in other fields (e.g. Christoffersen et al., 2008; Guoa and Neely,
2008; Li et al., 2012). Hence, we investigate how to capture the long-range depen-
dence in financial data and whether this stylized fact jointly with the others can improve
systemic risk forecasts. In particular, in Section 5.1 we review the existing literature
on this feature and we explain the existing models that capture and model the long-
range dependence in volatility. Then, in Section 5.2 we propose a novel model, called
Asymmetric-Component-GARCH (ACGARCH), which combines jointly the leverage ef-
fect, properly of GJR-GARCH, and the long-range dependence in volatility, by extending

69
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the Component-GARCH (Engle and Lee, 1999). Finally, in Section 5.3 we carry out an
empirical analysis of the 2007−2009 financial crisis comparing the in-sample and out-of-
sample performances of these models, showing the importance of using the new model
in measuring and forecasting systemic risk.

5.1 Related literature

The presence of long-range dependence in volatility and in asset returns has been study-
ing by researchers for a long time. One of the first to consider the existence of long
memory behavior in asset returns was Mandelbrot (1971). Moreover, the presence of
long-range dependence in the asset returns is considered as a stylized fact. Several stud-
ies have been conducted and different GARCH-type models have been proposed with
the purpose of capturing this feature. Many authors have analyzed the long and short
memory forecasting models applying ideas of persistence and causality to variance pro-
cesses. Among the others, Ding and Granger (1996), and Ding et al. (1993) have shown
that volatilities are highly persistent possibly requiring a long memory or fractionally
integrated process. Consequently, Baillie et al. (1996) propose the FIGARCH model,
or Fractionally Integrated GARCH model, where the conditional variance of the process
implies a slow hyperbolic rate of decay for the influence of lagged squared innovations.
On the contrary, Engle and Lee, in 1999, introduce the Component-GARCH (CGARCH)
model, where the long memory behavior of the volatility process is modeled as the sum
of two conventional components where one has nearly a unit root, and the other has a
much more rapid time decay. The former component describes the short-run dynam-
ics of conditional volatility associated with transitory effects of volatility innovations,
while the latter characterizes slower variations in the volatility process associated with
more permanent effects. Finally, Engle and Rangel (2008) model equity volatilities and
propose a new time-series model for high- and low-frequency volatility called Spline-
GARCH, which relaxes the assumption that volatility is mean reverting to a constant
level. High-frequency return volatility is specified to be the product of a slow-moving
component, represented by an exponential spline, and a unit GARCH. This slow-moving
component is the low-frequency volatility, which in this model coincides with the un-
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conditional volatility. These models outperform often GARCH, for example Cheong et
al. (2007) find that the long-memory GARCH models provide good description of the
long-memory behavior in the Malaysian stock market volatility compare to the standard
GARCH model.

5.1.1 Component-GARCH model

The Component-GARCH (CGARCH) model, proposed by Engle and Lee (1999), relaxes
the assumption of a constant unconditional variance. It has the ability to capture the
long-range dependence in volatility, and decomposes additively the conditional volatil-
ity into two components. The conditional variance, in fact, has been decomposed in
a statistical unobserved component model to describe the long-run and the short-run
movements.

Model specification

Given the univariate model for the returns at t = 1, . . . , T with zero mean:

rt = εt, εt = σtzt, εt ∼ iid
(
0, σ2

t

)
(5.1)

the CGARCH(1, 1) specification for the conditional variance is:

σ2
t = qt + st

qt = ω + ρqt−1 + ϕ
(
ε2t−1 − σ2

t−1
)

st = α
(
ε2t−1 − qt−1

)
+ β

(
σ2
t−1 − qt−1

) (5.2)

where qt is the long-run component, interpreted as volatility trend, and st is the short-
run component, i.e. the distance between the conditional variance and its trend. The
long-run (permanent) component, that determines the unconditional variance, captures
the long-run impact of an innovation (movements), whereas the short-run (transitory)
component accounts for the noisier short-run movements or the transitory effect from
a variance innovation. The short-run component can be positive or negative as the
conditional variance fluctuates around the long-run component. An additive decomposi-
tion is motivated by replacing the unconditional volatility with a stochastic component
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describing the long memory features of the volatility process. For identification, the
long-memory component is assumed to have a much slower mean-reverting rate than the
short-run component. In this regard, the CGARCH model relaxes parameter restric-
tions for the unconditional volatility and the speed of mean reversion in the standard
GARCH(1, 1) model; however, the slow-moving trend is mean reverting to a fixed value,
and the conclusion that the volatility process reverts eventually to a constant level re-
mains unchanged.

As pointed out by Engle and Lee (1999), the reduced form of the conditional variance
dynamics can be shown to be:

σ2
t = ω

(
1− α− β

)
+
(
α + ϕ

)
ε2t−1 +

[
− ϕ

(
α + β

)
− αρ

]
ε2t−2+

+
(
ρ+ β − ϕ

)
σ2
t−1 +

[
ϕ
(
α + β

)
− βρ

]
σ2
t−2

(5.3)

which follows a constrained version of GARCH(2, 2) process, since the CGARCH model
is not fully equivalent as not all GARCH(2, 2) processes have the component structure.
Hence, the constraints of the parameters to be positive and real in the component model
parameterization ensure positive variances and not complex roots.

The conditions for the non-negativity of the CGARCH(1, 1) conditional variance are:

0 <
(
α + β

)
< ρ < 1, 0 < ϕ < β

ω > 0, α > 0

In addition, Engle and Lee (1999) point out, as expected, that the immediate impact of
volatility shocks on the long-run component would be smaller than that on the short-
run component (α ≥ ϕ). The empirical results show a common pattern, in which the
persistence of transitory shocks is much less than permanent shocks (ρ > α + β), and
the impact of transitory shocks is much greater than permanent shocks (α > ϕ).

The estimation of the CGARCH model is based on the Quasi-Maximum Likelihood
(QML) estimation procedure, which at least gives consistent results asymptotically.
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Forecasting

The k-step-ahead forecast of the conditional volatility, with k > 2, is:

σ2
t+k|t = qt+k|t + st+k|t

qt+k|t =
ω

1− ρ
+ ρk

(
qt −

ω

1− ρ

)
st+k|t =

(
α + β

)k(
σ2
t − qt

) (5.4)

while the one-step-ahead forecast is:

σ2
t+1|t = qt+1|t + st+1|t

qt+1|t = ω + ρqt + ϕ
(
ε2t − σ2

t

)
st+1|t = α

(
ε2t − qt

)
+ β

(
σ2
t − qt

) (5.5)

These models were designed to better account for long-run volatility dependencies
and are considered better than GARCH in capturing persistence, with a superior per-
formance in out-of-sample forecasting. In particular, several empirical studies provide
statistical evidence that the CGARCH(1, 1) model outperforms GARCH(1, 1) when mod-
eling conditional variance describing volatility dynamics:

• for exchange rates (Pramor and Tamirisa, 2006; Wei, 2009; Li et al., 2012);

• for stock market returns (Guoa and Neely, 2008);

• for European options (Christoffersen et al., 2008);

• for daily equity returns (Engle and Lee, 1999; Maheu, 2005);

• for oil futures (Agnolucci, 2009);

• for sovereign bond yields (Sosvilla-Rivero and Morales-Zumaquero, 2012).

The long-run component is characterized by a time-varying but highly persistent
trend and exhibits long memory, while the short-run component is strongly mean-
reverting to this trend, more volatile than the long-run trend level of volatility and driven
by market sentiment. According to Li et al. (2012), “separating permanent and transi-
tory risk is important in assessing whether this uncertainty is driven by macroeconomic
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fundamentals or by market sentiments, which could affect the investment strategies”. In
addition, the long-run component is mainly driven by shocks to economic fundamentals,
whereas the short-run component is driven by transitory shifts in financial market sen-
timent or short-term position-taking (Pramor and Tamirisa, 2006; Christoffersen et al.,
2008; Sosvilla-Rivero and Morales-Zumaquero, 2012; Li et al., 2012).

5.1.2 Spline-GARCH model

The Spline-GARCH model, proposed by Engle and Rangel (2008), is another version of
GARCH with the purpose to decompose the conditional volatility. CGARCH models
decompose it in an additive way, while Spline-GARCH models decompose it in a mul-
tiplicative way. The idea of adding a trend component is to capture lower frequency
variations on the volatility, like seasonalities and trends.

Model specification

Considering the univariate model (5.1), the Spline-GARCH(1, 1) specification for the
conditional variance is:

σ2
t = τtgt

where:

gt = (1− α− β) + α

[
ε2t−1
τt−1

]
+ βgt−1

τt = c exp
[
ω0t+

k∑
i=1

ωi((t− ti−1)+)2
] (5.6)

(t− ti−1)+ =

t− ti−1, if t > ti−1

0, otherwise
(5.7)

and {t0 = 0, t1, t2, . . . , tk = T} denotes a partition of the time horizon T in k equally
spaced intervals. The component gt is basically a standard GARCH(1, 1) model, while
the lower frequency volatility component, τt, is the exponential of a quadratic spline with
k knots, which generates a smooth curve describing this low-frequency volatility com-
ponent based exclusively on data evidence. The exponential functional form guarantees
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that the low-frequency component of volatility is always positive. The quadratic form is
motivated by the requirement to obtain smoothness through continuity of at least one
derivative at a minimum cost in terms of degrees of freedom. The unobserved trend,
approximated nonparametrically, describes the low-frequency component of the volatil-
ity process associated with slowly varying deterministic conditions in the economy, or
random variables that are highly persistent and move slowly. The number of knots, k,
is unspecified, thus an information criterion, usually the Bayesian Information Criterion
(BIC), determines an “optimal” choice for it. The number of knots governs the cyclical
pattern in the low-frequency trend of volatility, so large values of k imply more frequent
cycles. The “sharpness” of each cycle is governed by the coefficients, ωi, i = 0, 1, . . . , k.

The specific model just described can be generalized to account for more lags in the
conditional variance. A Spline-GARCH(p, q) model assumes that:

gt =
(
1− α− β

)
+

p∑
i=1

αi

[
ε2t−i
τt−i

]
+

q∑
j=1

βjgt−j

The conditions to ensure the positivity of the variance are almost the same of GARCH(1, 1),
since the component gt looks like a GARCH(1, 1) process. In particular, these conditions
are: (

1− α− β
)
> 0, α ≥ 0, β ≥ 0, c > 0

The Spline-GARCH model is estimated using both the Quasi-Maximum Likelihood
(QML) estimator and the Penalized Maximum Likelihood (PML) estimation procedure
(see Brownlees and Gallo, 2010).

Forecasting

The low frequency volatility forecasts are constructed under the assumption that:

τt+k|t = τt, for k > 0

hence it is constant and equal to the last estimated value. The high frequency volatility
forecasts, instead, are the usual GARCH(1, 1) volatility forecasts outlined in paragraph
(2.4). Therefore, the one-step-ahead forecast is:

σ2
t+1|t = τt gt+1|t
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where:
gt+1|t =

(
1− α− β

)
+ αε2t + βgt

5.1.3 FIGARCH model

Baillie et al., in 1996, propose the Fractionally Integrated GARCH (FIGARCH) model
that better captures the long-run dynamic dependencies in the conditional variance. The
short-run dynamics, in fact, are modeled by GARCH parameters, while shocks to the
conditional variance will die out at a slow hyperbolic rate of decay determined by a
fractional differencing parameter.

Model specification

Considering the univariate model (5.1), the FIGARCH(p, d, q) specification for the con-
ditional variance is:

σ2
t =

ω

1− β(L)
+

(
1− φ(L)(1− L)d

1− β(L)

)
ε2t

≡ ω

1− β(L)
+ λ(L)ε2t

(5.8)

where L denotes the lag or backshift operator, λ(L) ≡ λ1L+λ2L
2+. . ., d is the fractional

differencing parameter with 0 < d < 1 and all the roots of φ(L) and [1−β(L)] lie outside
the unit circle. For d = 0, the FIGARCH(p, d, q) model reduces to a GARCH(p, q) model
with an exponential decay of the shocks, for d = 1, it is a IGARCH(p, q) model with
an infinite persistence, while for 0 < d < 1, the effect of an impact to the forecast of
σ2 dissipates at a slow hyperbolic rate of decay for the influence of the lagged squared
innovations. Baillie et al. (1996) prove that the FIGARCH(p, d, q) class of processes
is strictly stationary and ergodic for 0 ≤ d ≤ 1 as a direct extension of the proofs for
the IGARCH(p, q) case (Nelson, 1990; Bougerol and Picard, 1992). The specification of
FIGARCH(1, d, 1) is obtained by replacing β(L) = βL and φ(L) = 1− φL.

To ensure the positivity almost surely of the conditional variance for all t and the
well-definition of the FIGARCH(p, d, q) process, all the coefficients must be nonnegative:

ω

1− β(L)
> 0, λi ≥ 0, ∀i = 1, 2, . . .
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Two different sets of sufficient conditions are available:

• Baillie et al. (1996) derive a group of two sets of inequalities, in particular:

β − d ≤ φ
2− d

3
, d

(
φ− 1− d

2

)
≤ β

(
d− β + φ

)
• Chung (2001) summarizes the restrictions with a unique set:

0 ≤ φ ≤ β ≤ d ≤ 1

The FIGARCH model is estimated by Quasi-Maximum Likelihood (QML).

Forecasting

The k-step-ahead forecast of the FIGARCH(1, d, 1) conditional volatility, with k > 2, is:

σ2
t+k|t+k−1 =

ω

1− β
+

(
1− (1− φL)(1− L)d

1− βL

)
σ2
t+k−1|t+k−2 =

=
ω

1− β
+ λ(L)σ2

t+k−1|t+k−2

(5.9)

where σ2
t+k|t+k−1 ≡ ε2t for k < 0 and the parameters are obtained recursively from:

λi = βλi−1 + δi − φ δi−1, i = 2, 3, . . . λ1 = φ− β + d

δi =
i− 1− d

i
δi−1, i = 2, 3, . . . δ1 = d, δ0 = 1

Hence, the one-step-ahead forecast of the conditional volatility is given by:

σ2
t+1|t =

ω

1− β
+

(
1− (1− φL)(1− L)d

1− βL

)
ε2t

5.2 A new Asymmetric-Component-GARCH model

The empirical results obtained in the previous chapter highlights the importance to
consider the leverage effect during the estimation and forecast of systemic risk. Hence,
in addition to consider other stylized facts of financial data like long-range dependence, it
is important to capture the leverage effect. In this way, Engle and Lee, in 1999, propose
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a version of the CGARCH model with asymmetric structure to shocks to capture the
asymmetric volatility pattern, namely leverage effect. Stock market volatility responds
to stock price movements asymmetrically: bad news (negative shocks) tends to increase
investors’ expectation about future market volatility more than good news (positive
shocks). The authors use the GJR treatment to allow shocks to affect both the volatility
components asymmetrically. Otherwise, they find that leverage term is statistically
significant for the transitory component, but not in the trend component. For this
reason and supported by the empirical findings obtained in the previous chapter, we
decide to allow shocks to affect only the volatility transitory component asymmetrically
and we propose the new model called Asymmetric-Component-GARCH (ACGARCH).

5.2.1 Model Specification

The ACGARCH(1, 1) specification for the conditional variance is:

σ2
t = qt + st

where:

qt = ω + ρqt−1 + ϕ
(
ε2t−1 − σ2

t−1
)

st = α
(
ε2t−1 − qt−1

)
+ β

(
σ2
t−1 − qt−1

)
+ γ
(
ε2t−1 − qt−1

)
I(εt−1<0)

(5.10)

Similarly to the CGARCH model outlined in Section 5.1.1, qt is the long-run (perma-
nent) component and st is the short-run (transitory) component, that can be positive or
negative. The adding parameter γ captures the short-run leverage effect.

As in CGARCH, the reduced form of the ACGARCH model follows a constrained
version of a GARCH(2, 2) process:

σ2
t = ω +

(
ρ− α− β − γ

)
qt−1 +

(
α + ϕ+ γ

)
ε2t−1 +

(
β − ϕ

)
σ2
t−1

The conditions for the non-negativity of the ACGARCH(1, 1) conditional variance
are:

ω > 0, 0 ≤ ρ < 1, 0 ≤ α < ρ,

0 ≤ β <
(
ρ− α

)
, 0 ≤ γ <

(
ρ− α− β

)
, 0 ≤ ϕ < β
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The ACGARCH model is estimated using the Quasi-Maximum Likelihood (QML)
estimation procedure.

The choice to add the leverage term only to the short-run component is driven by
the fact that Gallant et al., in 1993, find that the leverage effect is heavily damped over
time. Also the empirical results obtained by Engle and Lee (1999) show that the leverage
effect is mainly temporary since the term is significant only in the transitory component,
but not for the trend component. Negative shocks, in fact, dominate the effects on
the transitory component and the effects of positive shocks almost vanish. Hence, the
conditional variance specification of the ACGARCH model is the most appropriate to
capture important stylized facts of financial data, in particular the leverage effect and
the long-range dependence.

5.2.2 Forecasting

The one-step-ahead forecast of the conditional volatility is:

σ2
t+1|t = qt+1|t + st+1|t

qt+1|t = ω + ρqt + ϕ
(
ε2t − σ2

t

)
st+1|t = α

(
ε2t − qt

)
+ β

(
σ2
t − qt

)
+ γ
(
ε2t − qt

)
I(εt<0)

(5.11)

5.3 Empirical analysis

We carry out the empirical analysis on the same sample described in Section 4.1, using
the models presented in the previous section. The sample runs from January 2000

to December 2012 at daily frequency which leads to 3269 observations of which 1611

are used for the in-sample estimation and the remaining observations for the out-of-
sample forecasting. We compare the empirical results obtained by these models with
those obtained by the standard econometric models (i.e. the GARCH and GJR) already
presented in Chapter 4. These results are reported in columns 2 and 3 of the following
tables that show the comparisons among the different models.
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5.3.1 In-sample estimation

We compute the daily CoVaR and MES measures1 for all the financial institutions in
the panel employing the GARCH-type models illustrated in Sections 5.1 and 5.2 within
the DCC-GARCH-type methodology (see Section 2.2), over the in-sample period (from
03/01/2000 to 31/05/2006). In particular, we first estimate the volatilities for each firm
by using the univariate CGARCH, Spline-GARCH, FIGARCH and ACGARCH models,
then we estimate the correlations of each institution-system pair by using bivariate DCC
model. The parameters estimates of different models are reported in tables B.6, B.7,
B.8 and B.9 located in Appendix B, while in this chapter we report the 10%, 50% and
90% quantiles values of the obtained estimates to have an idea about the distribution of
the parameters across the financial groups under investigation.

Table 5.1 shows selected quantiles of the parameters estimates of the DCC-Spline-
GARCH model for each sub-industry group over the in-sample. We use BIC to select the
optimal number of knots associated with the Spline-GARCH low-frequency component.
Columns 3, 4 and 5 of table 5.1 are dedicated to the parameters estimates of the high-
frequency component of Spline-GARCH, while the following six columns displays the
parameters estimates of the low-frequency component. These latter parameters do not
have any restrictions, hence their estimates are very extreme and different among them
(compared with those obtained by Engle and Rangel (2008)), while the former parameters
estimates are in line with typical set of GARCH model, that is α is very smaller than β
and their sum is close to the unit value. In particular, comparing the α and β estimates of
the Spline-GARCH and the standard GARCH (see table 4.1) models, we notice that the
Spline-GARCH β estimates are smaller than the GARCH ones, while the Spline-GARCH
α estimates are bigger than the GARCH ones, consistent with the results of Engle and
Rangel (2008). The β estimates are on average higher for Broker-Dealers, highlighting
higher persistence. Moreover, table 5.1 shows similar dynamics of the financial industry
groups in the panel. As discussed in Section 5.1.2, the low-frequency coefficients govern
the “sharpness” of each cycle, whose frequency is determined by the number of knots. In
particular, the second and fourth knots, w2 and w4 in table 5.1, identify two high peaks

1The CoVaR and MES measures are computed at α = 95% confidence level assuming Gaussian
distribution.
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Table 5.1: Selected quantiles (10%, 50% and 90%) of the parameter estimates of the DCC-

Spline-GARCH model.

Spline-GARCH DCC

c α β w0 w1 w2 w3 w4 w5 const a b

q0.1 3.690 0.073 0.329 -16.53 -48.35 -49.27 -83.48 -9.533 -81.39 0.426 0.007 0.902
Dep. q0.5 10.06 0.096 0.777 -3.704 3.802 13.38 -46.94 46.22 -23.95 0.623 0.015 0.981

q0.9 19.94 0.226 0.856 9.924 58.29 84.90 11.78 85.73 30.60 0.677 0.050 0.988

q0.1 1.466 0.057 0.175 -7.958 -82.87 -32.36 -96.98 -44.51 -113.8 0.323 0.004 0.613
Ins. q0.5 8.481 0.101 0.756 1.354 -25.15 38.60 -39.26 24.99 -23.60 0.467 0.013 0.973

q0.9 16.15 0.184 0.870 19.05 20.56 139.87 29.24 83.18 72.17 0.597 0.069 0.992

q0.1 1.499 0.000 0.744 -4.475 -117.7 6.136 -60.98 14.40 -42.80 0.580 0.010 0.965
Bro. q0.5 5.450 0.048 0.834 8.632 -40.66 55.74 -35.13 36.94 -2.057 0.698 0.013 0.982

q0.9 20.60 0.088 0.999 39.73 -7.704 134.96 -7.350 50.94 26.57 0.739 0.029 0.986

q0.1 1.013 0.000 0.000 -18.30 -78.92 -48.00 -86.56 -53.98 -91.84 0.285 0.000 0.013
Oth. q0.5 8.484 0.084 0.748 0.619 -12.46 31.50 -33.60 25.60 -4.002 0.486 0.013 0.964

q0.9 19.81 0.195 0.932 25.56 43.88 117.20 38.39 101.55 87.79 0.682 0.058 0.987

Notes: More details about the statistical significance of the parameter
estimates are reported in table B.7 in Appendix B

in the cyclical pattern. Focusing on the DCC model, reported in the last three columns
in table 5.1, parameters estimates are in line with the typical set of DCC estimates, that
is a is very smaller than b and their sum is close to the unit value, and are similar across
groups. Table B.7 reported in Appendix B shows the parameters estimates of the DCC-
Spline-GARCH model for each financial institution grouped by financial industry groups.
We notice that most of the parameters estimates of the low-frequency component of the
Spline-GARCH are statistically significant, as for DCC parameters.

Similarly to table 5.1, table 5.2 shows the quantiles of the parameters estimates of the
DCC-FIGARCH model divided by sub-industry groups over the in-sample, which spans
from January 2000 to May 2006. From table 5.2, we notice that there is a statistically
significant average effect of past volatility, β, and past squared innovations, φ, on current
volatility in all four groups. The FIGARCH model also provides evidence for the presence
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Table 5.2: Selected quantiles (10%, 50% and 90%) of the parameter estimates of the DCC-

FIGARCH model.

FIGARCH DCC

ω β φ d const a b

q0.1 0.018 0.084 0.000 0.149 0.416 0.007 0.888
Dep. q0.5 0.154 0.503 0.221 0.331 0.617 0.015 0.979

q0.9 0.524 0.678 0.414 0.591 0.672 0.060 0.989

q0.1 0.112 0.021 0.000 0.047 0.315 0.005 0.591
Ins. q0.5 0.428 0.498 0.286 0.284 0.455 0.016 0.976

q0.9 1.832 0.687 0.418 0.744 0.589 0.073 0.993

q0.1 0.000 0.213 0.001 0.275 0.575 0.009 0.956
Bro. q0.5 0.113 0.477 0.207 0.344 0.686 0.013 0.983

q0.9 0.407 0.604 0.327 0.357 0.727 0.036 0.988

q0.1 0.124 0.008 0.000 0.015 0.306 0.000 0.600
Oth. q0.5 0.638 0.428 0.145 0.234 0.484 0.011 0.948

q0.9 3.992 0.716 0.419 0.669 0.669 0.052 0.991

Notes: More details about the statistical significance of the parameter
estimates are reported in table B.8 in Appendix B

of long memory as given by the 50% quantile estimate of the differencing parameter
d. Table B.8, reported in Appendix B, shows the parameters estimates of the DCC-
FIGARCH model for each financial institution grouped by financial industry groups.
DCC estimates are highly statistically significant as well as the differencing parameter
of the FIGARCH and most of the β estimates.

Finally, table 5.3 gives a summary for the DCC-CGARCH and DCC-ACGARCH
models results for each sub-industry group over the in-sample. We notice that the dy-
namics of the financial institutions in the panel do not have a strong degree of hetero-
geneity and the parameters estimates are very similar across groups. Columns 3, 4 and
5 in table 5.3 are dedicated to the parameters estimates of the short-run component of
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the CGARCH and ACGARCH models, while columns 6, 7 and 8 display the parameters
estimates of the long-run component. On the contrary, the last three columns show the
parameters estimates of the DCC model. The CGARCH parameters estimates are in
line with those that can be found in the related literature. The short-run coefficients
estimates, in fact, are similar to the typical set of the GARCH model (i.e. α is very
smaller than β and their sum is close to the unit value) and we find similar results to
Engle and Lee (1999). In particular, as expected, the transitory shocks are much less
persistent than the permanent shocks (1 > ρ > α + β), and the impact of transitory
shocks is much greater than permanent shocks (α > ϕ). As found in the GARCH and
GJR results (see table 4.1), the β estimates are on average higher for Broker-Dealers,
showing higher persistence, for both the CGARCH and ACGARCH model. Overall, the
parameters estimates do not fluctuate much. Focusing on DCC, parameters are in line
with the typical set (i.e. a is very smaller than b and their sum is close to the unit
value) of estimates and are similar across groups. Table B.6 in Appendix B reports the
statistical significance of the CGARCH parameters. We observe that the ρ parameter
of the long-run component is always statistically significant at the 1% level, as well as b
parameter of DCC. For 68 out of 91 of the financial institutions, β and ϕ coefficients are
statistically significant.

Similar conclusions could be taken from the ACGARCH parameters estimates pre-
sented in table 5.3 and from their statistical significance reported in table B.9 in Ap-
pendix B. In addition, it is important to underline that the financial institutions with
the statistically significant leverage effect parameter are almost the same firms indicated
by the GJR model; in particular, the leverage effect parameter estimates are always
statistically significant for Broker-Dealers. This evidence highlights the importance of
capturing the leverage effect, that is the different impact of negative shocks, most of
all for Broker-Dealers. As for the GJR model (see table 4.1), the range of the leverage
effect parameter reaches larger values for Insurance, highlighting that a negative shock
increases volatility.

Our analysis continues with the estimation of the volatilities. We estimate the volatil-
ities individually for each financial institution employing the long-range dependence mod-
els presented in Sections 5.1 and 5.2. Each model runs separately for each firm. Then,
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Table 5.3: Selected quantiles (10%, 50% and 90%) of the parameter estimates of the DCC-

CGARCH and DCC-ACGARCH models.

CGARCH DCC

ω α β ρ ϕ γ const a b

q0.1 0.001 0.060 0.509 0.997 0.014 0.418 0.007 0.898
Dep. q0.5 0.004 0.101 0.801 1.000 0.031 0.618 0.020 0.976

q0.9 0.023 0.214 0.880 1.000 0.056 0.675 0.063 0.986

q0.1 0.001 0.055 0.152 0.992 0.003 0.313 0.005 0.532
Ins. q0.5 0.004 0.111 0.775 1.000 0.014 0.445 0.019 0.963

q0.9 0.037 0.229 0.869 1.000 0.045 0.590 0.102 0.992

q0.1 0.001 0.033 0.109 1.000 0.016 0.579 0.011 0.961
Bro. q0.5 0.003 0.056 0.846 1.000 0.023 0.690 0.017 0.978

q0.9 0.010 0.092 0.898 1.000 0.029 0.731 0.035 0.987

q0.1 0.003 0.004 0.219 0.993 0.000 0.314 0.000 0.556
Oth. q0.5 0.014 0.099 0.720 0.999 0.025 0.484 0.012 0.957

q0.9 0.079 0.262 0.880 1.000 0.043 0.674 0.070 0.992

ACGARCH DCC

q0.1 0.001 0.000 0.563 0.995 0.000 0.000 0.412 0.006 0.960
Dep. q0.5 0.004 0.052 0.830 0.999 0.024 0.055 0.611 0.014 0.982

q0.9 0.013 0.143 0.888 1.000 0.051 0.145 0.666 0.033 0.988

q0.1 0.000 0.002 0.261 0.996 0.000 0.000 0.306 0.005 0.601
Ins. q0.5 0.002 0.073 0.798 0.999 0.008 0.034 0.455 0.014 0.981

q0.9 0.017 0.169 0.907 1.000 0.041 0.153 0.587 0.083 0.993

q0.1 0.002 0.000 0.695 0.997 0.014 0.034 0.573 0.010 0.960
Bro. q0.5 0.006 0.000 0.903 0.997 0.017 0.058 0.681 0.014 0.982

q0.9 0.014 0.028 0.943 1.000 0.038 0.115 0.725 0.032 0.986

q0.1 0.000 0.000 0.046 0.996 0.000 0.000 0.289 0.000 0.471
Oth. q0.5 0.008 0.033 0.847 1.000 0.010 0.066 0.476 0.010 0.957

q0.9 0.040 0.233 0.932 1.000 0.035 0.123 0.665 0.040 0.989

Notes: More details about the statistical significance of the parameter
estimates are reported in tables B.6 and B.9 in Appendix B
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we evaluate the volatility estimates obtained by different models using the robust loss
functions pointed out in Section 3.2.1 and considering the financial institution squared
returns as the proxy volatility. Hence, one model by one, we obtain a loss function value
for each firm by averaging the loss function time series with the purpose of comparing
the models performances. Here, we report the average of loss functions values grouped
by the entire sample and the sub-industry groups.

The models performances in estimating volatility measured by MSE are reported in
table 5.4, while those measured by QL are presented in table 5.5.

Table 5.4: In-sample performances of GARCH-type models in estimating volatility measured

by MSE loss function.

GARCH GJR CGARCH SPLINE FIGARCH ACGARCH

Overall 403.70 416.41 411.22 431.02 408.53 404.76
Dep. 141.94 146.21 142.37 140.73 140.54 142.13
Ins. 538.58 560.22 550.50 627.56 544.98 533.93

Bro. 360.07 353.53 358.39 356.25 359.15 355.80
Oth. 560.52 578.53 574.62 536.97 573.99 574.88

Table 5.5: In-sample performances of GARCH-type models in estimating volatility measured

by QL loss function.

GARCH GJR CGARCH SPLINE FIGARCH ACGARCH

Overall 2.151 2.138 2.151 2.115 2.144 2.145
Dep. 1.846 1.836 1.835 1.817 1.833 1.838
Ins. 2.103 2.090 2.117 2.064 2.099 2.099
Bro. 2.569 2.552 2.563 2.549 2.566 2.560
Oth. 2.471 2.459 2.465 2.423 2.465 2.467

In columns 2 and 3, there are the results obtained by the GARCH and GJR models
that we have discussed in Chapter 4. Comparing the loss functions values obtained
by the different competing models, the MSE loss function does not indicate a unique
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preferred model for all the financial industry groups (see table 5.4). The lowest value,
indicated in bold, is overall reached by the GARCH model, but each sub-industry group
indicate a different model. According to QL, on the contrary, the model that estimates
more accurately the volatility is the Spline-GARCH (see table 5.5). In addition, QL is
preferable to MSE (Patton and Sheppard, 2009) hence we refer to this.

The CoVaR measure by Girardi and Ergun (2013) is empirically computed (see Sec-
tion A.2) over the in-sample period (from 03/01/2000 to 31/05/2006) by the long-range
dependence models, following the algorithm procedure A.4 described in Appendix A. As
in Girardi and Ergun (2013), we backtest CoVaR for verifying the unconditional coverage
property employing the UC test by Kupiec (1995) and Christoffersen (1998) (see Section
3.1.1). The null hypothesis is whether the average of the violations (rst+1 ≤ CoVaRs|i

α,t+1)
is equal to the coverage level α. Table B.4 in Appendix B reports the UC test results.
The results for these models are displayed from the fourth column to the end of the
table. We notice that the null hypothesis is rejected at 5% significance level for:

• 90 financial institutions (over 91) by the DCC-CGARCH model,

• 89 financial institutions by the DCC-Spline-GARCH model,

• 90 financial institutions by the DCC-FIGARCH model,

• 81 financial institutions by the DCC-ACGARCH model.

Therefore, the long-range dependence models satisfy the unconditional coverage property,
in particular the CoVaR measure they estimate is adequate. Furthermore, the null
hypothesis is rejected at 1% significance level for the entire sample. However, as it
happened for the DCC-GARCH and DCC-GJR models, many test statistic values are
similar because the models tend to capture the same number of VaR and CoVaR failures.
Hence, this backtest does not help in discriminating among different models, since it
provides similar results. It could be interesting to employ appropriate loss functions in
addition to backtests in order to detect the best model.

Studying this aspect more in depth, we conduct the DQ test by Engle and Man-
ganelli (2014) (see Section 3.2.3), whose results are reported in table B.5 in Appendix
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B. We aim to verify whether the model is misspecified, since it is not possible to pre-
dict future failures based on past information if the hit sequence is an iid process. The
null hypothesis is H0 : βββ = 0, where βββ is the least square estimator of the regression
of the hit sequence HitHitHit(β̂ββ) on its past values. In addition to the financial institutions
excluded given their lack of past information to carry out the DQ test, we exclude 3

firms more, hence 13 institutions are excluded over 91. The null hypothesis is rejected
at 5% significance level for:

• 73 financial institutions (over 78) by the DCC-GARCH model,

• 70 financial institutions by the DCC-GJR model,

• 74 financial institutions by the DCC-CGARCH model,

• 76 financial institutions by the DCC-Spline-GARCH model,

• 71 financial institutions by the DCC-FIGARCH model,

• 64 financial institutions by the DCC-ACGARCH model.

Therefore, the standard and long-range dependence models are not misspecified. Unfor-
tunately, we obtain similar test statistic values for many firms, as well as for the UC test,
hence it is not possible to determine the best model comparing the DQ results and it is
necessary to employ appropriate and more fine-grained loss functions to achieve this goal.

Table 5.6: In-sample performances of DCC-GARCH-type models in computing CoVaR mea-

sured by TTL loss function.

DCC DCC DCC DCC DCC DCC
GARCH GJR CGARCH SPLINE FIGARCH ACGARCH

Overall 0.172 0.164 0.167 0.158 0.170 0.167
Dep. 0.183 0.175 0.176 0.167 0.183 0.178
Ins. 0.168 0.162 0.163 0.155 0.163 0.164
Bro. 0.187 0.174 0.180 0.172 0.181 0.178
Oth. 0.158 0.149 0.154 0.143 0.158 0.153
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We evaluate the CoVaR accuracy using the TTL loss function proposed in Section
3.3.1 for each financial institution. In particular, we assess the performances of the long-
range dependence models in computing the CoVaR measure and we compare them, in
addition to the DCC-GARCH and DCC-GJR performances described in Section 4.1.
Table 5.6 displays the average performances for the overall sample and each financial in-
dustry group over the in-sample period. The lowest value (bold in the table) corresponds
to the best model. The TTL results, contained in table 5.6, indicate the DCC-Spline-
GARCH as the best model in computing the CoVaR measure, whereas in Section 4.1

DCC-GJR was suggested as the best model. This evidence highlights the changes of
the empirical conclusions obtained by taking into account different models that capture
other stylized facts of financial data compared with those obtained by the econometric
standard models analyzed in the previous chapter.

Finally, we empirically compute the MES measure (see Section A.3) following step
by step the algorithm procedure explained in Section A.4. Then, we evaluate the MES
accuracy employing the novel loss function, namely TMSE, proposed in Section 3.3.2,
for each financial institution. In table 5.7, we report the average TMSE values divided
by financial industry groups. Comparing the loss function values for the same group
among all models, we are able to identify the model that provides more accurately the
MES measure.

Table 5.7: In-sample performances of DCC-GARCH-type models in computing MES measured

by TMSE loss function.

DCC DCC DCC DCC DCC DCC
GARCH GJR CGARCH SPLINE FIGARCH ACGARCH

Overall 4.648 4.695 4.603 4.593 4.600 4.596
Dep. 2.406 2.516 2.412 2.360 2.397 2.419
Ins. 3.499 3.593 3.545 3.469 3.566 3.579
Bro. 4.333 4.479 4.382 4.276 4.475 4.410
Oth. 9.881 9.718 9.567 9.772 9.495 9.459

The TMSE results, reported in table 5.7, suggest that the DCC-Spline-GARCH computes
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more accurately the MES measure, except for Others, while comparing only the DCC-
GARCH and DCC-GJR models we found DCC-GJR as the best model.

This empirical evidence from both TTL and TMSE results confirm the limitation
of DCC-GARCH and DCC-GJR in capturing other stylized facts that are important in
systemic risk framework and the need to investigate other stylized facts.

5.3.2 Out-of-sample forecast

The out-of-sample period spans from June 2006 to December 2012, including the 2007−
2009 financial crisis for a total of 1658 observations and is used to forecast and validate
the systemic risk measures. During this period the models are separately re-estimated
every week (i.e. every 5 observations) using all data available until as of that date and
the forecasting horizon is one-step-ahead. The forecast analysis consists of evaluating the
volatility, CoVaR and MES predictions and comparing the different models performances
with the purpose to identify the model that provides the best performance in terms of
accuracy. The comparison of models performances is carried out evaluating the accuracy
of the volatility, CoVaR and MES measures using loss functions, in particular the MSE
and QL for volatility, the TTL for CoVaR and the TMSE loss function for the MES
measure. The models involved in this analysis are the standard econometric models
widespread in the literature (GARCH and GJR models), the long-range dependence
models described in this chapter and the benchmark models (i.e. the rolling volatility,
the quantile regression and linear regression models, for further details see Section 4.3).

The Spline-GARCH model is excluded in this forecasting analysis because it does
not work very well. This is due to the fact that, forecasting the GARCH component
and keeping the trend component constant at the last value estimated, we obtain a
very high trend value that multiplied by the GARCH prediction provide worse forecasts
than those obtained by the other models. Despite employing the Penalized Maximum
Likelihood (PML) estimation procedure (Brownlees and Gallo, 2010) to estimate the
Spline-GARCH model, the results do not improve.

The average performances of RollVol and GARCH-type models in forecasting volatil-
ity evaluated by the MSE loss function are presented in table 5.8. It is interesting to
observe that the best models indicated in this analysis are different from those indicated
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Table 5.8: Out-of-sample performances of GARCH-type models in forecasting volatility mea-

sured by MSE loss function.

RollVol. GARCH GJR CGARCH FIGARCH ACGARCH

Overall 246205.47 243285.08 246146.76 244109.42 243799.86 247149.17
Dep. 260726.45 257645.66 260143.75 257549.68 258110.20 259475.72
Ins. 12709.553 11827.722 11904.983 11766.219 11927.486 11890.111
Bro. 1550521.9 1533769.2 1551973.4 1544622.2 1537624.6 1567911.6
Oth. 35876.763 35939.882 37140.017 35045.735 35727.277 35489.325

in the in-sample estimation. From table 5.8, overall the best prediction model is the
GARCH, however it is more important to analyze the different sub-industry groups to
understand the different dynamics within each group. The CGARCH model, in fact, is
the best model for forecasting volatility in all sub-industry groups, except for Broker-
Dealers (see table 5.8). This finding confirms the importance of capturing the long-range
dependence in forecasting the one-step-ahead systemic risk.

Table 5.9 reports the average performances of RollVol and GARCH-type models in
forecasting volatility evaluated by the QL loss function.

Table 5.9: Out-of-sample performances of GARCH-type models in forecasting volatility mea-

sured by QL loss function.

RollVol. GARCH GJR CGARCH FIGARCH ACGARCH

Overall 3.631 2.748 2.722 2.737 2.769 2.750
Dep. 3.817 2.762 2.742 2.755 2.761 2.775
Ins. 3.274 2.586 2.566 2.578 2.631 2.594
Bro. 4.705 3.028 2.948 3.001 3.040 2.984
Oth. 3.493 2.878 2.859 2.864 2.894 2.878

Conversely to the previous conclusion, the results for the QL loss function presented in
table 5.9 suggest the GJR model as the best prediction model for volatility for both the
entire sample and the sub-industry groups, confirming the forecasting analysis results
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conducted in Chapter 4.

For predicting the CoVaR measure, we evaluate the accuracy of these forecasts em-
ploying the TTL loss function, whose results are presented in table 5.10. The TTL
averages, divided by financial industry group, summarize the models performances in
forecasting CoVaR and the values represented in bold in table 5.10 indicate the best
prediction models.

Table 5.10: Out-of-sample performances of DCC-GARCH-type models in forecasting CoVaR

measured by TTL loss function.

QR
DCC DCC DCC DCC DCC

GARCH GJR CGARCH FIGARCH ACGARCH

Overall 1.046 0.228 0.212 0.227 0.204 0.240
Dep. 0.912 0.214 0.203 0.213 0.194 0.223
Ins. 1.156 0.238 0.220 0.239 0.211 0.251
Bro. 1.205 0.244 0.228 0.242 0.223 0.269
Oth. 0.976 0.220 0.204 0.219 0.197 0.232

The TTL results identify the DCC-FIGARCH model as the model that predicts the
most accurate CoVaR measure (see table 5.10). This finding emphasizes the need to
investigate the usage of models that capture an important stylized fact as the long-range
dependence. In addition to loss functions, it is important to introduce techniques that are
able to discriminate among different competing models in terms of significance. We there-
fore consider the Diebold-Mariano test to check the statistical significance between the
best model and the benchmark one. This means that we compare each DCC-GARCH-
type model with the rolling quantile regression for each financial institution individually
comparing the whole TTL series. We observe that all the DCC-GARCH-type models
are statistically different at 1% significance level from the quantile regression approach
for the entire sample. Furthermore, we run the Diebold-Mariano test between the new
proposed model, DCC-ACGARCH, and the best model for each financial institution in-
dividually, finding that the difference between the TTL value of the best model and the
TTL of DCC-ACGARCH is statistically significant at 10% level for 65 firms over 91.
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Table 5.11: Out-of-sample performances of DCC-GARCH-type models in forecasting MES

measured by TMSE loss function.

LR
DCC DCC DCC DCC DCC

GARCH GJR CGARCH FIGARCH ACGARCH

Overall 26.324 21.654 21.899 21.719 21.970 22.004
Dep. 15.732 12.744 13.026 12.778 12.996 12.843
Ins. 9.053 6.581 6.675 6.538 6.966 6.528

Bro. 157.39 134.02 133.40 134.30 134.61 136.62
Oth. 11.535 9.184 10.026 9.387 9.351 9.565

Similarly, the MES predictions accuracy is evaluated using the TMSE loss function
and table 5.11 shows the related results grouped by financial sectors, where bold high-
lights the lowest values that correspond to the best prediction models. From table 5.11,
the TMSE results do not indicate a unique best prediction model for all the sub-industry
groups. Overall, the DCC-GARCH-type models outperform the rolling linear regression
and the best prediction model for MES is, on average, the DCC-GARCH. The Diebold-
Mariano test between the TMSE values of the best model and LR (see table 5.11) shows
that the linear regression model is statistically worse than the best one at 10% signifi-
cance level for 40 financial institutions over 91. On the contrary, 29 firms show that the
TMSE values are statistically significant at the 10% level for the new proposed model
over the best prediction model. It is important to notice that the novel model proposed
in Section 5.2, the ACGARCH, is an extension of the GARCH, GJR and CGARCH
models and all these models are the best ones in some sub-industry sector (see table
5.11). Therefore, it is necessary to estimate and forecast MES by the DCC-ACGARCH
model and then to check the significance of the parameters in order to reach the most
appropriate nested model.

Since the TMSE does not identify a unique best prediction model for MES, we in-
vestigate other versions of TMSE. As explained in Section 3.2.3, the proposed TMSE
is divided by the standard deviation of the financial system estimated by GARCH for
all competing models used in the empirical analysis in order to avoid the influences of
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volatile periods. Using the standard deviation estimated by the other GARCH-type
models as standardization, we obtain similar results to those reported in table 5.11; in
particular overall the DCC-GARCH model provides the most accurate MES forecasts for
all the cases. However, if we standardize the TMSE by the standard deviation estimated
by the model2, we change the standardization according to the considered model and we
obtain different results, as shown in table 5.12. In this way, we are able to avoid that
volatile periods captured by that particular model influence the related loss function,
instead of avoiding that volatile periods captured by a particular model (in our case
GARCH) influence all the loss functions.

Table 5.12: Out-of-sample performances of DCC-GARCH-type models in forecasting MES

measured by another version of TMSE loss function.

LR
DCC DCC DCC DCC DCC

GARCH GJR CGARCH FIGARCH ACGARCH

Overall 74.032 21.654 19.388 21.285 17.847 21.799
Dep. 66.269 12.744 12.073 12.802 10.901 13.390
Ins. 31.536 6.581 6.247 6.431 5.908 6.622
Bro. 358.26 134.02 112.76 130.88 106.39 131.19
Oth. 29.242 9.184 9.948 9.094 8.024 10.145

Results reported in table 5.12 identify the DCC-FIGARCH as the best forecasting model
for the MES measure for the entire sample and each sub-industry group. This finding
is in line with the TTL results, reported in table 5.10, which indicate that the DCC-
FIGARCH is the best prediction model for systemic risk and confirm the importance of
capturing the long-range dependence.

The figures B.3 in Appendix B show the industry groups averages of the CoVaR
(first column) and MES (second column) measures obtained by the long-range depen-

2Standardizing the TMSE loss function by the standard deviation estimated by the particular con-
sidered model means that the TMSE obtained by DCC-CGARCH is divided by the system standard
deviation estimated by the CGARCH, the TMSE obtained by DCC-FIGARCH is divided by the system
standard deviation estimated by the FIGARCH, and so on.
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dence DCC-GARCH-type models, in particular the DCC-CGARCH (first row), the DCC-
FIGARCH (second row) and the DCC-ACGARCH (third row) models. The black verti-
cal line represents the end of the estimation period and the beginning of the forecasting
period. From figures B.3 we notice that Broker-Dealers are detected as the systemically
most important group, since the green line is below all the other lines. For the CoVaR
measure this is evident most of all in 2004−2008 period and during the phases of growth
after peaks. Moreover, this is even clearer for the MES measure, since the groups lines are
separated and easily identifiable. These conclusions about the behavior of the systemic
risk measures obtained by the long-range dependence DCC-GARCH-type models are
very similar to those obtained by the econometric standard models presented in figures
B.2a, B.2b, B.2c and B.2d in the previous chapter.

In order to check more precisely the ranking of groups’ riskiness, we compute the
average of each measure. Table 5.13 contains the ranking of the CoVaR averages over
the out-of-sample.

Table 5.13: Ranking of the CoVaR averages over the out-of-sample.

DCC DCC DCC DCC DCC
GARCH GJR CGARCH FIGARCH ACGARCH

Overall -3.174 -3.203 -3.125 -3.393 -3.169

1st: Bro. -3.420 -3.449 -3.353 -3.600 -3.392
2nd: Oth. -3.193 -3.219 -3.139 -3.453 -3.204
3rd: Ins. -3.150 -3.184 -3.105 -3.461 -3.159
4th: Dep. -3.121 -3.145 -3.075 -3.343 -3.093

From table 5.13, we notice that Broker is always the most risky group, followed by
Others, Insurance and Depositories groups. This groups’ riskiness ranking is identified
by all the considered models and is different from that obtained over the in-sample period
where Broker-Dealers are followed by Depositories, Others and Insurance, respectively;
as found in Girardi and Ergun (2013). Moreover, the model that provides the lowest
average of the CoVaR measure is the DCC-FIGARCH that corresponds to the best
prediction model for this measure (see table 5.13).
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Table 5.14: Ranking of the MES averages over the out-of-sample.

DCC DCC DCC DCC DCC
GARCH GJR CGARCH FIGARCH ACGARCH

Overall -3.091 -3.081 -3.155 -3.060 -3.131

1st: Bro. -4.104 -4.082 -4.221 -4.124 -4.166
2nd: Dep. -3.349 -3.349 -3.406 -3.200 -3.413
3rd: Oth. -3.173 -3.187 -3.251 -3.093 -3.209
4th: Ins. -2.645 -2.615 -2.696 -2.712 -2.663

Table 5.14 contains the ranking of the MES averages over the out-of-sample. The
ranking obtained for the MES measure reported in table 5.14 is different from that
obtained for CoVaR (see table 5.13). All the models identify the same ranking composed
by Broker-Dealers, Depositories, Others, and Insurance respectively (see table 5.14).
Over the in-sample period, we find a different ranking where Broker-Dealers is still the
most risky group, but it is followed by Depositories, Others, and Insurance respectively.
Finally, the model that provides the overall lowest average of the MES measure in table
5.14 is the DCC-CGARCH.

5.3.3 Sub-samples comparison

The out-of-sample period is divided into three different sub-samples in order to compare
the systemic risk measures obtained in different historical periods (see Section 4.3.1): the
pre-crisis sample (251 daily observations) from June 2006 to May 2007, the crisis sample
(462 daily observations) from June 2007 to March 2009, and the post-crisis sample (945

daily observations) from April 2009 to December 2012.
We carry out the comparison among the forecasting performances of the DCC-

GARCH-type models in each sub-sample period and we obtain different best prediction
models for each measure. Regarding the volatility forecast, we find that the GARCH
model provides lower MSE during the pre-crisis and the crisis samples, while the CGARCH
outperforms it over the post-crisis period. According to the QL loss function, the AC-
GARCH model outperforms the others in the pre-crisis sample, while the GJR is the
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best prediction model during the crisis. Finally, the CGARCH forecasts more accurately
volatility over the post-crisis sample than the other models. These results indicate the
importance of investigating different models since it is difficult to know exactly which
historical period is except after it happens. Moreover, since the suggested models are
nested into the ACGARCH, the latter is a fundamental starting point in order to find
the best possible model specification. For the CoVaR measure, the TTL values suggest
the DCC-FIGARCH model as the best prediction model over the pre-crisis and the cri-
sis samples, while the DCC-GJR provides the most accurate CoVaR forecasts after the
crisis to the end of the sample among the considered competing models. Finally, for the
MES forecasts, the DCC-GARCH outperforms the other models during the pre-crisis
and crisis periods, while the DCC-FIGARCH is the best MES prediction model over the

Table 5.15: Comparison of CoVaR averages over different sub-samples.

DCC DCC DCC DCC DCC
Pre-crisis GARCH GJR CGARCH FIGARCH ACGARCH

Dep. -2.175 -2.171 -2.109 -2.147 -2.095
Ins. -1.907 -1.930 -1.862 -1.872 -1.859
Bro. -2.224 -2.189 -2.136 -2.188 -2.128
Oth. -1.881 -1.878 -1.834 -1.896 -1.823

Crisis

Dep. -4.166 -4.157 -4.259 -4.250 -4.008
Ins. -4.163 -4.165 -4.262 -4.269 -4.070
Bro. -4.333 -4.345 -4.443 -4.408 -4.157
Oth. -4.156 -4.151 -4.243 -4.308 -4.054

Post-crisis

Dep. -2.861 -2.910 -2.753 -3.217 -2.910
Ins. -2.985 -3.037 -2.869 -3.488 -3.059
Bro. -3.291 -3.345 -3.143 -3.581 -3.353
Oth. -3.071 -3.119 -2.945 -3.448 -3.155
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post-crisis sample. It is interesting to observe that for the first two sub-samples the best
prediction model is the same, whereas after the crisis it is necessary a different model.
This could be due to the fact that before and during the crisis the volatilities and the
systemic risk are much higher than during the post-crisis period, hence two different
model specifications are necessary.

Table 5.15 reports the averages of the CoVaR measure over three different sub-samples
obtained by the different models. From table 5.15 it is interesting to observe that the
most risky group over all periods is Broker-Dealers. During the pre-crisis sample Broker-
Dealers are followed by Depositories, Insurance and Others respectively, and this ranking
is uniformly identified by all the models (see table 5.15). As well as during the post-crisis
period where Broker-Dealers are followed by Others, Insurance and Depositories by all

Table 5.16: Comparison of MES averages over different sub-samples.

DCC DCC DCC DCC DCC
Pre-crisis GARCH GJR CGARCH FIGARCH ACGARCH

Dep. -2.209 -2.155 -2.251 -2.250 -2.249
Ins. -2.023 -1.942 -2.051 -2.227 -2.013
Bro. -4.048 -4.084 -4.157 -4.156 -4.132
Oth. -2.628 -2.599 -2.675 -2.698 -2.599

Crisis

Dep. -3.800 -3.740 -3.736 -3.665 -3.878
Ins. -2.586 -2.530 -2.586 -2.563 -2.619
Bro. -4.701 -4.655 -4.747 -4.586 -4.925
Oth. -3.423 -3.363 -3.404 -3.257 -3.533

Post-crisis

Dep. -3.432 -3.476 -3.505 -3.225 -3.495
Ins. -2.838 -2.836 -2.922 -2.914 -2.857
Bro. -3.827 -3.801 -3.981 -3.890 -3.803
Oth. -3.196 -3.257 -3.328 -3.117 -3.213
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the models respectively. On the contrary, during the crisis sample in table 5.15, each
model determines a different ranking. This fact can be explained by the fact that during
the financial crisis the contagion among financial institutions is very high, hence it is not
possible to achieve a well-defined ranking, as all the CoVaR values are very close each
other.

Table 5.16 presents the comparison of the MES averages over the different sub-samples
obtained by all the competing models. From table 5.16 the most risky group is Broker-
Dealers over all the considered periods, while Insurance is the group with the lowest risk.
During the pre-crisis sample Broker-Dealers are followed by Others, and Depositories,
while over the crisis and the post-crisis periods Depositories and Others are reversed.
All the models identify the same ranking based on the groups’ riskiness (see table 5.16).

5.3.4 Case-study: Bank of America

Bank of America (BAC) is a financial institution chosen as representative of the sample
given its worldwide importance. Figure B.4 in Appendix B shows the volatility of
BAC and its correlation with the system estimated by the DCC-ACGARCH model. As
expected, the volatility reaches the highest peak during the 2007 − 2009 financial crisis
as shown in figure B.4a. Observing the CoVaR measure displayed in figure B.4c, all the
DCC-GARCH-type models seem very similar and show similar dynamics. Therefore, it
is very difficult to discriminate among them. However, focusing on the pre-crisis sample
presented in figure B.4e, it is evident that the point estimates and forecasts are very
different among the competing models. A similar behavior can be seen for the MES
measure (see figures B.4d and B.4f). This finding confirms the need for statistical tools
able to evaluate the point estimates and forecasts.

5.4 Concluding remarks

We have introduced the concept of long-range dependence in volatility, applying it in
systemic risk context. In the previous chapter we have found a lack in the empirical
results, hence we have investigated this additional stylized fact of financial data. At
first, we have reviewed the main long-memory models existing in the literature, analyzing
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the different approaches and proposals. Then, we have developed a new model called
the Asymmetric-Component-GARCH (ACGARCH) with the aim of capturing the long-
range dependence jointly with the leverage effect, which has an important impact on
forecasting systemic risk as shown by empirical results in Chapter 4. Finally, we have
conducted the empirical analysis of the 2007−2009 financial crisis as done in the previous
chapter with the purpose of comparing the results of long-memory models with those
obtained by the standard ones. For comparative purposes, we have also considered the
quantile regression and the linear regression models as benchmarks.

All the DCC-GARCH-type models fit the data satisfactorily with a high statisti-
cal significance of the parameters and outperform significantly the benchmark models,
highlighting the presence of long-range dependence. In particular, the leverage effect
parameter is always statistical significant for the entire Broker-Dealers group. In addi-
tion, Broker-Dealers show the highest persistence among groups. The in-sample results
indicate the Spline-GARCH model as the best one in estimating volatility, the CoVaR
and MES measures and confirm the importance of considering long-range dependence
with the aim for improving systemic risk estimates. These results are in contrast with
those obtained by the standard econometric models used in the literature, highlighting
the need of considering other stylized facts of financial data. Furthermore, CoVaR back-
tests have provided quite similar results across all the models, since the CoVaR failures
tend to occur on the same days. This finding confirms the need to employ appropriate
loss functions, in particular the novel TTL, in addition to the backtests, with the aim to
discriminate among the competing models for achieving more accurate forecasts.

The out-of-sample results identify the GJR model as the best forecasting model for
volatility through using the QL loss function. On the contrary, the TTL loss function,
which is employed to evaluate the models performances in forecasting CoVaR, indicates
that the DCC-FIGARCH model predicts more accurately the CoVaR and the long-
memory models are preferable to the standard ones according to the Diebold-Mariano
statistical test. For the MES measure, we have applied the novel TMSE loss function to
assess the models performances in forecasting MES without finding a unique preferred
best model. The DCC-GARCH is, in fact, the overall best prediction model for MES,
but not for all the sub-industry groups. It is important to notice that all the models
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indicated for each group are special cases of the proposed ACGARCH model. Therefore,
it is useful to consider its general specification in order to reach the most parsimonious
and appropriate model. Investigating other versions of the TMSE, it is interesting to
observe that dividing the TMSE by the standard deviation estimated by each considered
model, the DCC-FIGARCH is found as the best MES predicting model as well as for
the CoVaR.

Considering different historical periods, we have found that the best model identified
for the pre-crisis period and the crisis period is different from the model for the post-crisis
period. This is due to the fact that before and during the financial crisis the volatility
and the systemic risk are higher than after the crisis and it is reasonable to employ the
same model to forecast them, while during the post-crisis the situation is different and
employing other models is necessary.

The riskiness and the ranking of the sub-industry groups found in the empirical anal-
ysis are consistent with those presented in the existing literature by authors, for example
Adrian and Brunnermeier (2011), Girardi and Ergun (2013). The in-sample ranking
obtained for CoVaR is the same as MES. Moreover, Broker-Dealers remain always the
most risky sector, while Insurance are the less risky one. Finally, it is interesting to
notice that the best forecasting model for the most risky group, i.e. Broker-Dealers, is
the DCC-GJR that capture only the leverage effect, while those for less risky group is
the DCC-ACGARCH which captures leverage effect jointly with long-range dependence.



Chapter 6

Conclusions

We have developed this thesis work with the twofold objective of evaluating the accuracy
of the main systemic risk measures proposed in the literature, namely CoVaR and MES,
and investigating the role of long-range dependence in forecasting systemic risk, propos-
ing two appropriate loss functions for the CoVaR and MES frameworks, respectively,
and a comprehensive model able to capture the leverage effect jointly with long-range
dependence.

We have started from the review of the main systemic risk measures developed in
the literature, which are divided into 4 different groups according to their structure,
and we have focused on probability-distribution measures group. Among them, we have
deeply analyzed two of the most widespread systemic risk measures, namely ∆CoVaR
and SRISK, and their main components, namely CoVaR and MES, given their easy
applicability and their large diffusion in the literature, continuously inspiring exten-
sions and other developments. Then, we have introduced the widespread econometric
modeling particularly employed to estimate these systemic risk measures, focusing on
DCC-GARCH-type methodology for preparatory purposes.

The availability of different systemic risk measures and approaches highlights the
need to identify which measure and model predict systemic risk more accurately, how-
ever statistical tools to test and compare systemic risk forecasts have not been properly
developed and a deep analysis on their accuracy is largely unexplored. This lack in
the existing literature leads us to face the problem of validating systemic risk measures,
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which is a key step towards the definition of a precise systemic risk measure. Hence, fo-
cusing on CoVaR and MES measures, we have revised the main existing backtests useful
to evaluate CoVaR adequacy and the main existing loss functions in order to identify the
more suitable ones to adapt to CoVaR and MES frameworks, respectively. As expected,
we have pointed out that CoVaR backtests, obtained by extending those used for back-
testing VaR (Kupiec, 1995; Christoffersen, 1998), do not discriminate among different
competing models used to compute CoVaR, since they generally provide the same re-
sults across all models and have low power (Berkowitz, 2001; Escanciano and Pei, 2012).
Therefore, employing appropriate loss functions specifically designed to assess the accu-
racy of the systemic risk forecasts and the forecasting ability of the considered models
is necessary. The need of developing loss functions to assess the systemic risk accuracy
leads us to our first methodological contribution to the existing literature. We indeed
propose two appropriate loss functions, called the Tail Tick Loss (TTL) and the Tail
Mean Square Error (TMSE) loss functions, developed in Chapter 3, which are suitable
to CoVaR and MES frameworks respectively. These loss functions are also helpful in
discriminating among different competing models in order to determine the models that
forecasts more precisely CoVaR and MES measures, respectively. In this way, we are
able to evaluate the forecasting performances of CoVaR and MES.

An empirical analysis of the 2007−2009 financial crisis carried out on 91 US financial
institutions daily return series confirms the need of a more fine-grained loss function with
the aim of evaluating the forecasts accuracy. We have applied the econometric standard
models on the time interval which spans from January 2000 to December 2012. Our
empirical study, presented in Chapter 4, is based on the computation and prediction
of the CoVaR and MES systemic risk measures by the DCC-GARCH and DCC-GJR
models. The objective of our analysis is to evaluate the accuracy and performances of
these models in forecasting CoVaR and MES in order to identify the best model which
provides more accurately systemic risk forecasts. For comparative purposes, we have
also considered the quantile regression and the linear regression models as benchmarks.
We have found that the CoVaR backtesting results are very similar among different
competing models, confirming our idea that appropriate loss functions are required. In
addition, the out-of-sample results indicate that the DCC-GARCH-type models outper-
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form significantly the benchmarks, in particular the DCC-GJR model is the best model
in forecasting the conditional volatility and CoVaR measure. On the contrary, the DCC-
GARCH model is the overall best prediction model for the MES measure, but it is not
clear among the different sub-industry groups. Therefore, we think that other stylized
facts, which are not captured by these models, should be investigated.

The consideration of taking into account others stylized facts leads us to the idea of
investigating the role of the long-range dependence in the systemic risk framework. Cap-
turing relevant stylized facts of financial data is, in fact, very important. In particular,
we have focused on the leverage effect, which has already been considered in systemic
risk framework (e.g. Girardi and Ergun, 2013; Brownlees and Engle, 2015), and the
long-range dependence, which has not yet been considered in systemic risk framework
(to the best of our knowledge), but many authors have shown its importance in other
fields (e.g. Christoffersen et al., 2008; Guoa and Neely, 2008; Li et al., 2012). Hence, in
Chapter 5, we have introduced the concept of long-range dependence in volatility and
we have reviewed the main long-memory models existing in the literature, analyzing the
different approaches and proposals. Consequently, as our second methodological contri-
bution to the existing literature, we have developed a comprehensive model, called the
Asymmetric-Component-GARCH (ACGARCH), that can be used in systemic risk mea-
surement. This model is able to capture jointly important stylized facts of financial data
such as the long-range dependence as well as the leverage effect, which has an important
impact on forecasting systemic risk as seen in the previous empirical analysis. To the
best of our knowledge, this is the first work that investigates the long-range dependence
in systemic risk framework.

Finally, our third contribution to the existing literature is the comprehensive and
exhaustive comparison of different bivariate volatility models for forecasting systemic
risk, which extends the empirical analysis of the 2007− 2009 financial crisis done in the
previous chapter with the purpose of comparing the results of long-memory models with
those obtained by the standard ones. The computational estimation of this 6 bivariate
models, without considering the benchmark models, required a considerable amount of
time, as explained in Appendix A.4, jointly with some convergence problems. In particu-
lar, we have found that all the DCC-GARCH-type models fit the data satisfactorily with
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a high statistical significance of the parameters and outperform significantly the bench-
mark models, highlighting the presence of long-range dependence. The in-sample results
indicate the Spline-GARCH model as the best one in estimating the volatility, CoVaR
and MES measures and confirm the importance of considering long-range dependence
with the aim for improving systemic risk estimates. There is, in fact, empirical evidence
that both leverage effect and long-range dependence should be considered in measuring
and forecasting systemic risk. These results are in contrast with those obtained by the
standard econometric models used in the literature, highlighting the need of considering
other stylized facts of financial data. Furthermore, CoVaR backtests have provided quite
similar results across all the models, since the CoVaR failures tend to occur on the same
days. This finding confirms the need to employ appropriate loss functions, in particular
the proposed TTL, in addition to the backtests, with the aim to discriminate among the
competing models for achieving more accurate forecasts. In the out-of-sample analysis,
the Spline-GARCH model is excluded because it does not work very well, as explained
in Section 5.3.2. Surely, understanding why the forecasting performance is poor is an
interesting future development. The out-of-sample results identify the GJR model as the
best forecasting model for volatility through using the QL loss function. On the con-
trary, the TTL loss function, which is employed to evaluate the models performances in
forecasting CoVaR, indicates that the DCC-FIGARCH model predicts more accurately
the CoVaR and the long-memory models are preferable to the standard ones according
to the Diebold-Mariano statistical test. For the MES measure, we have applied the pro-
posed TMSE loss function to assess the models performances in forecasting MES without
finding a unique preferred best model. The DCC-GARCH is, in fact, the overall best
prediction model for MES, but not for all the sub-industry groups. It is important to
notice that all the models indicated for each group are special cases of the proposed
ACGARCH model. Therefore, estimating ACGARCH is fundamental to identify the
most appropriate nested model. The proposed ACGARCH model provides good in-
and out-of-sample forecasts of systemic risk and outperforms significantly benchmarks
(i.e. quantile regression and linear regression models) according to the Diebold-Mariano
statistical test in estimating and forecasting the CoVaR and MES measures. In partic-
ular, ACGARCH improves systemic risk forecasts and its results are comparable with
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those obtained by other existing models. Investigating other versions of the TMSE, it
is interesting to observe that dividing the TMSE by the standard deviation estimated
by each considered model, the DCC-FIGARCH is found as the best MES predicting
model as well as for the CoVaR. Moreover, our empirical analysis results are consistent
with those presented in the existing literature by some authors, for example Adrian and
Brunnermeier (2011), Girardi and Ergun (2013).

One of the purposes of this work is to obtain a precise systemic risk measurement,
achieved by assessing the accuracy of systemic risk measures, which is an under-evaluated
aspect in the existing literature. In particular, our solution to this issue, which consists
of the adoption of two appropriate loss functions and a comprehensive model, implies
relevant financial implications since systemic risk is nowadays important, mostly after
the 2007− 2009 financial crisis, which developed the need of measuring systemic risk for
the whole economy.

As possible further developments, considering other statistical distributions, such as
the Skewed Student-t, the Generalized Error Distribution (GED) or the Normal-Inverse
Gaussian (NIG) distribution, may provide a better fit. Further improvements may be
obtained by adopting alternative multivariate models to estimate the conditional co-
variances, such as the Flexible DCC (Billio et al., 2006). Another aspect which should
be further analyzed is the adoption of other statistical tools in order to test the differ-
ence among different competing models predictions, for example the Reality Check test
(White, 2000) and the Superior Predictive Ability test (Hansen, 2001).
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Appendix A

The empirical measures

In Sections 2.1.1 and 2.1.2 we have presented the CoVaR and MES measures, respectively,
from the theoretical point of view. However, it is different when the empirical measure
is computed. In this chapter, we provide the details and the algorithm procedure to
compute empirically the CoVaR and MES measures in the framework outlined in section
2.2. In this work, we consider static VaR and static ES, where the conditional volatility
is approximated by the standard deviation of the entire return time series considered.
Similarly, it is possible to compute dynamic or time-varying CoVaR and MES, using
as conditional volatility the estimation obtained by GARCH-type model (Girardi and
Ergun, 2013). In particular, Section A.1 presents the empirical CoVaR by Adrian and
Brunnermeier (2011), while Section A.2 explains how to obtain the empirical CoVaR
proposed by Girardi and Ergun (2013). Then, Section A.3 reports the MES measure,
and finally Section A.4 shows step by step the algorithm procedure to follow with the
purpose to compute the empirical measures.

A.1 Empirical CoVaR measure by Adrian and Brun-

nermeier

The CoVaR measure, proposed by Adrian and Brunnermeier (2011) and presented in
paragraph 2.1.1, can be computed empirically as it follows (see Bisias et al., 2012; Benoit
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et al. 2013; Girardi and Ergun, 2013):

ĈoVaR
s|i
α,t =

(
ρ̂si,t +

√
1− ρ̂2si,t

)
V̂aR

s

α,t =

=

(
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√
1− ρ̂2si,t

)
σ̂s,t
σ̂i,t

V̂aR
i

α,t =

=

(
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√
1− ρ̂2si,t

)
σ̂s,t
σ̂i,t

σ̂i,t Φ−1(α) =

=

(
ρ̂si,t +

√
1− ρ̂2si,t

)
σ̂s,t Φ−1(α)

(A.1)

where ρ̂si,t indicates the estimated correlation between the institution i and the system
s, σ̂s,t denotes the squared root of the estimated conditional variance of the system, and
Φ−1(·) is the inverse of the cumulative distribution function of zi,t. As a consequence,
the ∆CoVaR measure is:

̂∆CoVaR
s|i
α,t = ĈoVaR

s|rit=VaRiα,t
α,t − ĈoVaR

s|rit=Med(rit)
α,t =
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s
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s

α,t = ρ̂si,t σ̂s,t Φ−1(α)

(A.2)

where rit = Med(rit) indicates the conditioning event when the financial institution i is
not in distress, i.e. it is in its median state.

A.2 Empirical CoVaR measure by Girardi and Ergun

The generalization of the CoVaR measure, proposed by Girardi and Ergun (2013), on
the contrary, does not have a closed form and becomes:

Pr
[
rst ≤ CoVaRs|i

α,t

∣∣rit ≤ VaRi
α,t

]
= α =⇒

Pr
[
rst ≤ CoVaRs|i

α,t, r
i
t ≤ VaRi

α,t

]
Pr
[
rit ≤ VaRi

α,t

] = α

By definition of VaRi
α,t, it holds:

Pr
[
rst ≤ CoVaRs|i

α,t, r
i
t ≤ VaRi

α,t

]
= α2
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Hence, ĈoVaR
s|i
α,t is obtained by solving numerically the following double integral:∫ CoVaRs|iα,t

−∞

∫ VaRiα,t

−∞
pdft(r

s
t , r

i
t)dr

s
tdr

i
t = α2 (A.3)

where pdft(rst , rit) is the bivariate density for the institution-system return pair.
The same procedure is adopted for calculating the CoVaR measure conditional on the

benchmark state of institution i, indicated by CoVaRs|bi
α,t . It is defined as one standard

deviation about the mean event µi,t − σi,t ≤ rit ≤ µi,t + σi,t where µi,t and σi,t are,
respectively, the conditional mean and the conditional standard deviation of the financial
institution i. The joint probability is then:

Pr
[
rst ≤ CoVaRs|bi

α,t , µi,t − σi,t ≤ rit ≤ µi,t + σi,t
]

= pi,t α

where pi,t = Pr
[
µi,t − σi,t ≤ rit ≤ µi,t + σi,t

]
is the marginal probability of institution i.

Finally, the double integral to be solved numerically for CoVaRs|bi
α,t is:∫ CoVaRs|biα,t

−∞

∫ VaRs|iα,t

−∞
pdft(r

s
t , r

i
t)dr

s
tdr

i
t = α2 (A.4)

Then, the ∆CoVaR (%) measure, that is the contribution of the institution to systemic
risk, is obtained by the following equation:

̂∆CoVaR
s|i
α,t(%) = 100

̂∆CoVaR
s|i
α,t

ĈoVaR
s|bi
α,t

= 100
ĈoVaR

s|i
α,t − ĈoVaR

s|bi
α,t

ĈoVaR
s|bi
α,t

The double integrals in equations A.3 and A.4 are solved simulating two different
draws, one for the system and the other for the financial institution, from truncated
bivariate normal variables and taking the α-quantile of the first one. The need for
simulation of truncated multivariate normal variables is due to the fact that an extreme
of the integral is fixed, in particular the firm returns have to be under their VaR (rit <
VaRi

α,t). Hence, we simulate the bivariate time series1, the former related to the system
and the latter related to the financial institution, constraint to the firm returns under
their VaR and we obtain two draws. Then, we consider only the first draw related the
system and we compute the its α-quantile, usually equals to α = 5%. Therefore, this
α-quantile of the system draw is the CoVaR measure, that we are looking for.

1We simulate truncated multivariate normal variables using the R package tmvtnorm (see Wilhelm
and Manjunath, 2010).
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A.3 Empirical MES measure

The theoretical MES measure, proposed by Acharya et al. (2010) and presented in
paragraph 2.1.2, can be written as it follows (see Bisias et al., 2012; Benoit et al. 2013;
Brownlees and Engle, 2015):

MESi|sα,t = Et
[
rit
∣∣rst ≤ C

]
=

= σi,tρsi,t Et
[
zs,t

∣∣∣∣zs,t ≤ C

σs,t

]
+ σi,t

√
1− ρ2si,t Et

[
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∣∣∣∣zs,t ≤ C

σs,t

]
where C indicates a threshold value to represent the systemic event.
When C = VaRs

α,t, then it holds Et
[
rs,t
∣∣rs,t ≤ VaRs

α,t

]
= ESsα,t, where ES denotes the

system expected shortfall. Assuming also that zs,t and zi,t are independent, then:

MESi|sα,t = σi,tρsi,t Et
[
zs,t
∣∣zs,t ≤ VaRs

α,t

]
=
ρsi,tσi,t
σs,t

ESsα,t

Hence, the MES measure can be empirically computed as (see Bisias et al., 2012; Benoit
et al. 2013; Brownlees and Engle, 2015):

M̂ES
i|s
α,t =

ρ̂si,tσ̂i,t
σ̂s,t

ÊS
s

α,t = −ρ̂si,tσ̂i,t
φ(Φ−1(α))

α

where ρ̂si,t are the estimated correlations, σ̂2
i,t and σ̂2

s,t are the estimated conditional
variances of, respectively, the financial institution and the financial system, φ(·) is the
pdf of the true distribution of zi,t and Φ−1(·) is the inverse of the cumulative distribution
function of zi,t.

A.4 Algorithm procedure for empirical measures

For each financial institution i and the financial system s, the procedure to compute
systemic risk measures at each time t is the following, please note that regarding the
MES measure the procedure stops at the fourth step:

1. estimation of the conditional variances σ̂2
s,t and σ̂2

i,t obtained by GARCH-type model
for the financial institutions i and the financial system s, respectively;
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2. computation of:

• static Value-at-Risk of the financial system s: V̂aR
s

α = σ̂s Φ−1(α)

• static Value-at-Risk of the financial institution i: V̂aR
i

α = σ̂i Φ−1(α)

• static Expected Shortfall of the financial system: ÊS
s

α = −σ̂s
φ(Φ−1(α))

α

where σ̂s and σ̂i are the standard deviations of the time series returns of the finan-
cial system and the financial institution, respectively, Φ−1(·) is the inverse of the
cumulative distribution function of zi,t and φ(·) is the pdf of the true distribution
of zi,t;

3. estimation of the conditional correlations ρ̂si,t obtained by the DCC-GARCH-type
model;

4. computation of, using the conditional correlations obtained at the previous step:

• CoVaR measure (Adrian and Brunnermeier, 2011) when the financial institu-
tion is in a crisis period, using the static VaR of the financial system obtained
at the 1st step:

ĈoVaR
s|rit=VaRiα
α,t =

(
ρ̂si,t +

√
1− ρ̂2si,t

)
V̂aR

s

α

• CoVaR measure (Girardi and Ergun, 2013) when the financial institution is
in a crisis period, using the static VaR of financial institution obtained at the
1st step and solving the double integral in equation A.3;

• MES measure, using the static ES of the financial system obtained at the 1st
step:

M̂ES
i|s
α,t =

ρ̂si,t
√
σ̂2
i,t√

σ̂2
s,t

ÊS
s

α

5. computation of, using the conditional correlations obtained at the 3rd step:

• CoVaR measure (Adrian and Brunnermeier, 2011) at the median state, i.e.
when the financial institution is in a stable period:
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ĈoVaR
s|rit=Med(rit)
α,t = ĈoVaR

s|rit=VaRi0.50
α,t =

√
1− ρ̂2si,tV̂aR

s

α

• CoVaR measure (Girardi and Ergun, 2013) when the financial institution is
in the median state, solving the double integral in equation A.4;

6. computation of the difference between the two CoVaR measures obtained at 4th
and 5th steps, in particular:

• ∆CoVaR measure (Adrian and Brunnermeier, 2011):

̂∆CoVaR
s|i
α,t = ĈoVaR

s|rit=VaRiα
α,t − ĈoVaR

s|rit=Med(rit)
α,t = ρ̂si,tV̂aR

s

α

• ∆CoVaR (%) measure (Girardi and Ergun, 2013):

̂∆CoVaR
s|i
α,t(%) = 100

̂∆CoVaR
s|i
α,t

ĈoVaR
s|bi
α,t

The computational time required by the empirical analysis described in Chapters 4

and 5 is very high and is different according to the considered model to compute the
CoVaR and MES measures. As explained in Section 4.1, during the forecasting period
each model is separately re-estimated every week (i.e. every 5 observations) using all data
available until as of that date, for a total of 332 times, and the forecasts are computed one-
step-ahead, for a total of 1658 forecasts. This re-estimation increases the computational
time. To give an idea about the total amount of time necessary to carry out the entire
empirical analysis, we report a list of the estimation and forecasting computational time
that is required by each considered models on MATLAB software. This list regards the
computational time necessary for only a system-institution pair, hence the overall time is
obtained by multiplying each time for 91 financial institutions. The list is the following:

• the DCC-GARCH model runs in 82 minutes;

• the DCC-GJR model runs in 93 minutes;

• the DCC-CGARCH model runs in 108 minutes;

• the DCC-Spline-GARCH model runs in 158 minutes;



A.4 Algorithm procedure for empirical measures 125

• the DCC-FIGARCH model runs in 128 minutes;

• the DCC-ACGARCH model runs in 114 minutes.

Hence, the total time for estimating and forecasting the conditional variances and corre-
lations of a system-institution return pair is approximately equal to 11 hours. Moreover,
the computation of the CoVaR measure in equation A.3 is obtained by using the simu-
lations from a truncated multivariate normal distribution and runs in 16 minutes on R
software. In order to obtain the CoVaR and MES series for a financial institution, at
least 12 hours are necessary, without any convergence problem.
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Appendix B

Tables

This chapter reports the tables and the figures used in this work, in particular in Chapters
4 and 5.
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(a) From Depositories group. (b) From Insurance group.

(c) From Broker-Dealers group. (d) From Others group.

(e) Market index returns.

Figure B.1: Plot of the return series of financial institutions, one from each financial industry

group.
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Table B.2: Parameter estimates of the DCC-GARCH model.

GARCH DCC

Depositories ω α β const a b

BAC 0.001 0.006 0.991*** 0.633*** 0.039** 0.942***
BBT 0.054*** 0.118*** 0.856*** 0.662*** 0.064 0.896***
BK 0.010 0.030 0.967*** 0.617*** 0.036** 0.941***
C 0.014 0.065** 0.932*** 0.726*** 0.035 0.950***
CBH 0.773* 0.171** 0.614*** 0.494*** 0.011* 0.981***
CMA 0.080** 0.126*** 0.855*** 0.594*** 0.007 0.988***
HBAN 0.028 0.084** 0.908*** 0.599*** 0.028*** 0.970***
HCBK 0.385 0.221* 0.560* 0.357*** 0.023*** 0.973***
JPM 0.007 0.058** 0.942*** 0.714*** 0.013 0.984***
KEY 0.012 0.035** 0.957*** 0.602*** 0.011*** 0.987***
MI 0.026** 0.072*** 0.914*** 0.614*** 0.015*** 0.984***
MTB 0.027 0.051* 0.936*** 0.583*** 0.034*** 0.962***
NCC 0.024 0.047* 0.940*** 0.628*** 0.017*** 0.980***
NTRS 0.057 0.061 0.923** 0.655*** 0.012 0.986***
NYB 0.143 0.130* 0.836*** 0.374*** 0.054 0.914***
PBCT 0.066 0.104*** 0.878*** 0.417*** 0.021*** 0.973***
PNC 0.031** 0.083** 0.908*** 0.631*** 0.006 0.990***
RF 0.057*** 0.118*** 0.855*** 0.617*** 0.039 0.954***
SNV 0.082* 0.112*** 0.863*** 0.618*** 0.058** 0.890***
SOV 0.031* 0.087*** 0.909*** 0.498*** 0.016*** 0.973***
STI 0.040 0.069* 0.911*** 0.652*** 0.011** 0.985***
STT 0.145** 0.109*** 0.862*** 0.625*** 0.009 0.981***
UB 0.037* 0.141*** 0.859*** 0.499*** 0.016** 0.976***
USB 0.017 0.091*** 0.908*** 0.599*** 0.013* 0.984***
WAMUQ 0.036 0.077* 0.915*** 0.433*** 0.024*** 0.972***
WB 0.045*** 0.109*** 0.878*** 0.643*** 0.021*** 0.977***
WFC 0.005 0.033 0.961*** 0.627*** 0.017 0.981***
ZION 0.044* 0.082** 0.903*** 0.545*** 0.045 0.933***
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GARCH DCC

Insurance ω α β const a b

ABKFQ 0.078** 0.145*** 0.848*** 0.494*** 0.004 0.993***
AET 0.456** 0.067 0.834*** 0.357*** 0.063*** 0.889***
AFL 0.007 0.012 0.984*** 0.433*** 0.086*** 0.766***
AIG 0.086** 0.105*** 0.873*** 0.579*** 0.046 0.944***
AIZ 1.552*** 0.038 0.000 0.309*** 0.078 0.486***
ALL 0.002 0.007 0.990*** 0.467*** 0.005* 0.993***
AON 0.770** 0.212** 0.691*** 0.390*** 0.121 0.000
BRK.B 0.030 0.120 0.873*** 0.233*** 0.037** 0.776***
CB 0.073* 0.114*** 0.868*** 0.513*** 0.084*** 0.476**
CFC 0.043 0.024 0.967*** 0.442*** 0.010*** 0.985***
CI 0.323 0.214*** 0.786*** 0.324*** 0.079** 0.698***
CINF 0.020** 0.076*** 0.915*** 0.583*** 0.015*** 0.984***
CNA 0.117 0.077*** 0.888*** 0.417*** 0.064 0.807***
CVH 0.183 0.075** 0.906*** 0.334*** 0.011 0.954***
FNF 2.269*** 0.356*** 0.000*** 0.190* 0.030 0.910***
GNW 1.311*** 0.174*** 0.000*** 0.340*** 0.000 0.994***
HIG 0.083*** 0.122*** 0.862*** 0.581*** 0.018 0.978***
HNT 0.128 0.056 0.920*** 0.315*** 0.017** 0.962***
HUM 0.011*** 0.000 0.997*** 0.338*** 0.010 0.983***
L 0.027 0.057 0.934*** 0.463*** 0.049 0.925***
LNC 0.029 0.051** 0.941*** 0.619*** 0.014*** 0.984***
MBI 0.120* 0.121*** 0.850*** 0.549*** 0.008*** 0.991***
MET 0.046* 0.069*** 0.918*** 0.522*** 0.007** 0.990***
MMC 0.558 0.093*** 0.780*** 0.530*** 0.011*** 0.986***
PFG 0.105** 0.122*** 0.832*** 0.555*** 0.021** 0.972***
PGR 0.008 0.025** 0.972*** 0.499*** 0.013** 0.982***
PRU 0.057** 0.064*** 0.911*** 0.599*** 0.013** 0.979***
SAF 0.040** 0.084*** 0.904*** 0.479*** 0.018*** 0.979***
TMK 0.029* 0.093*** 0.894*** 0.590*** 0.014** 0.983***
TRV 0.196* 0.098*** 0.844*** 0.506*** 0.020 0.977***
UNH 0.148*** 0.091*** 0.865*** 0.338*** 0.028** 0.938***
UNM 0.049 0.028 0.967*** 0.349*** 0.016 0.967***
WLP 0.225** 0.089*** 0.849*** 0.37*** 0.025 0.957***
WRB 0.005*** 0.000 0.997*** 0.347*** 0.005*** 0.993***
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GARCH DCC

Brokers ω α β const a b

AGE 0.057 0.072** 0.916*** 0.671*** 0.042** 0.947***
BSC 0.009 0.024 0.972*** 0.673*** 0.022*** 0.972***
ETFC 0.019 0.032** 0.967*** 0.577*** 0.014** 0.979***
GS 0.007 0.024 0.973*** 0.704*** 0.014* 0.981***
LEH 0.016 0.051*** 0.947*** 0.699*** 0.013*** 0.983***
MER 0.004 0.023** 0.975*** 0.73*** 0.021*** 0.976***
MS 0.012 0.050*** 0.949*** 0.719*** 0.016*** 0.980***
SCHW 0.006 0.022** 0.977*** 0.656*** 0.011*** 0.984***
TROW 0.031* 0.074*** 0.921*** 0.687*** 0.023*** 0.974***

Others

ACAS 0.024* 0.051*** 0.944*** 0.374*** 0.003 0.872
AMP 0.489 0.000** 0.831*** 0.488*** 0.000 0.916**
AMTD 0.088 0.045** 0.950*** 0.536*** 0.033 0.924***
AXP 0.020 0.083*** 0.915*** 0.694*** 0.013*** 0.985***
BEN 0.057** 0.070*** 0.914*** 0.680*** 0.027*** 0.971***
BLK 0.231 0.127* 0.826*** 0.293*** 0.004* 0.995***
BOT 1.004*** 0.000*** 0.886*** 0.183** 0.000 0.000
CBG 1.309** 0.151** 0.566*** 0.368*** 0.000 0.989***
CBSS 0.015 0.053 0.941*** 0.583*** 0.057** 0.926***
CIT 0.019 0.025 0.966*** 0.480*** 0.017 0.000
CME 4.066*** 0.172*** 0.000** 0.356*** 0.000 0.611
COF 0.099 0.126*** 0.874*** 0.533*** 0.064* 0.366***
FITB 0.170** 0.166*** 0.780*** 0.554*** 0.035 0.854***
FNM 0.063 0.039 0.940*** 0.408*** 0.015*** 0.981***
FRE 0.014 0.018 0.976*** 0.427*** 0.036*** 0.933***
ICE 5.139** 0.000*** 0.712*** 0.312*** 0.001 0.832***
JNS 0.285* 0.096*** 0.868*** 0.583*** 0.015 0.973***
LM 0.122 0.043 0.931*** 0.609*** 0.015*** 0.983***
SEIC 0.086* 0.086*** 0.903*** 0.591*** 0.028* 0.962***
SLM 0.020 0.027 0.963*** 0.363*** 0.010* 0.977***

Notes: Stars indicate the statistical significance: *** means a statistically
significance at 1% level, ** at 5% level and * at 10% level of significance.
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Table B.3: Parameter estimates of the DCC-GJR model.

GJR DCC

Depositories ω α β γ const a b

BAC 0.001 0.007 0.994*** -0.007 0.631*** 0.044 0.896***
BBT 0.045** 0.048** 0.869*** 0.131*** 0.655*** 0.069* 0.875***
BK 0.013 0.012 0.967*** 0.033 0.609*** 0.033 0.942***
C 0.017* 0.023 0.930*** 0.087** 0.719*** 0.049 0.912***
CBH 0.733 0.123 0.635** 0.084 0.49*** 0.011 0.98***
CMA 0.071** 0.075** 0.861*** 0.104* 0.587*** 0.008 0.986***
HBAN 0.031 0.049*** 0.900*** 0.090* 0.591*** 0.027*** 0.968***
HCBK 0.232 0.077 0.722* 0.158 0.353*** 0.023** 0.971***
JPM 0.010 0.029* 0.944*** 0.052* 0.709*** 0.014 0.980***
KEY 0.012* 0.010 0.964*** 0.039** 0.599*** 0.013** 0.984***
MI 0.018* 0.015 0.937*** 0.083*** 0.612*** 0.016** 0.980***
MTB 0.017 0.019 0.949*** 0.053** 0.581*** 0.034*** 0.961***
NCC 0.017 0.015 0.955*** 0.045** 0.621*** 0.017*** 0.977***
NTRS 0.045 0.009 0.937*** 0.085 0.643*** 0.014*** 0.981***
NYB 0.131* 0.067* 0.857*** 0.094** 0.376*** 0.051 0.903***
PBCT 0.064 0.115*** 0.880*** -0.029 0.418*** 0.020*** 0.972***
PNC 0.029 0.031 0.920*** 0.079 0.617*** 0.106*** 0.677***
RF 0.043** 0.045 0.885*** 0.107*** 0.615*** 0.037 0.953***
SNV 0.082* 0.073* 0.868*** 0.071* 0.607*** 0.070** 0.851***
SOV 0.028 0.063** 0.910*** 0.053* 0.488*** 0.016*** 0.970***
STI 0.040 0.032* 0.910*** 0.078* 0.646*** 0.015** 0.980***
STT 0.120* 0.062 0.882*** 0.064 0.613*** 0.010 0.973***
UB 0.043** 0.059** 0.868*** 0.146*** 0.489*** 0.019** 0.966***
USB 0.013 0.023 0.933*** 0.082*** 0.590*** 0.023 0.967***
WAMUQ 0.032 0.056* 0.918*** 0.042 0.433*** 0.023*** 0.970***
WB 0.046*** 0.09*** 0.877*** 0.042 0.639*** 0.020*** 0.977***
WFC 0.008 0.009 0.958*** 0.055** 0.627*** 0.014 0.982***
ZION 0.055** 0.034** 0.896*** 0.107*** 0.547*** 0.039 0.936***
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GJR DCC

Insurance ω α β γ const a b

ABKFQ 0.074** 0.083*** 0.847*** 0.139* 0.492*** 0.011 0.974***
AET 0.510** 0.000 0.805*** 0.195* 0.348*** 0.065*** 0.889***
AFL 0.019 0.001 0.963*** 0.069 0.427*** 0.092*** 0.764***
AIG 0.059** 0.030 0.903*** 0.103*** 0.582*** 0.050 0.932***
AIZ 1.560*** 0.000 0.000 0.085 0.296*** 0.083 0.544***
ALL 0.005 0.000 0.981*** 0.033 0.467*** 0.003 0.994***
AON 0.898** 0.000* 0.654*** 0.491** 0.389*** 0.113 0.000
BRK.B 0.027 0.020 0.885*** 0.189*** 0.218*** 0.047*** 0.735***
CB 0.049* 0.036* 0.896*** 0.127*** 0.505*** 0.096*** 0.313*
CFC 0.049 0.019** 0.96*** 0.022 0.434*** 0.01** 0.983***
CI 0.323 0.145 0.79*** 0.130 0.318*** 0.079** 0.722***
CINF 0.017** 0.023 0.934*** 0.073*** 0.582*** 0.015*** 0.982***
CNA 0.046 0.000 0.946*** 0.084* 0.412*** 0.083** 0.709***
CVH 0.158 0.079* 0.914*** -0.023 0.331*** 0.012 0.946***
FNF 2.105* 0.275 0.052 0.161 0.191** 0.033 0.907***
GNW 1.303*** 0.241*** 0.000 -0.133 0.344*** 0.000 0.993
HIG 0.074** 0.077** 0.872*** 0.076** 0.574*** 0.048 0.926***
HNT 0.206 0.046** 0.879*** 0.084 0.309*** 0.016** 0.958***
HUM 0.011*** 0.000 0.997*** 0.000*** 0.335*** 0.011 0.974***
L 0.020 0.018 0.951*** 0.054** 0.454*** 0.059 0.904***
LNC 0.026 0.013 0.949*** 0.065** 0.609*** 0.017** 0.979***
MBI 0.098* 0.066* 0.874*** 0.073* 0.544*** 0.008** 0.990***
MET 0.039** 0.011 0.930*** 0.105*** 0.510*** 0.007* 0.990***
MMC 0.551 0.060* 0.783*** 0.062 0.522*** 0.082*** 0.862***
PFG 0.107*** 0.045* 0.843*** 0.146*** 0.552*** 0.079 0.879***
PGR 0.013 0.012 0.966*** 0.042 0.492*** 0.012* 0.980***
PRU 0.06** 0.014 0.917*** 0.094** 0.590*** 0.013** 0.977***
SAF 0.041** 0.066*** 0.903*** 0.040 0.478*** 0.017*** 0.977***
TMK 0.025* 0.046 0.908*** 0.071** 0.582*** 0.013** 0.983***
TRV 0.011 0.000 0.977*** 0.039* 0.499*** 0.022*** 0.973***
UNH 0.162*** 0.055*** 0.858*** 0.086** 0.331*** 0.024** 0.939***
UNM 0.065* 0.000 0.966*** 0.044 0.340*** 0.016* 0.967***
WLP 0.225** 0.065** 0.850*** 0.050 0.364*** 0.025 0.960***
WRB 0.005** 0.002 0.996*** -0.002 0.349*** 0.005*** 0.994***
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GJR DCC

Brokers ω α β γ const a b

AGE 0.041 0.016 0.932*** 0.092** 0.655*** 0.058*** 0.923***
BSC 0.018 0.012 0.96*** 0.047* 0.667*** 0.028** 0.96***
ETFC 0.041 0.009 0.958*** 0.065** 0.574*** 0.014* 0.978***
GS 0.018* 0.000 0.964*** 0.064** 0.698*** 0.036 0.939***
LEH 0.025* 0.017 0.944*** 0.074*** 0.693*** 0.012*** 0.983***
MER 0.008** 0.000 0.975*** 0.047*** 0.724*** 0.021** 0.972***
MS 0.024** 0.018 0.943*** 0.070*** 0.711*** 0.016*** 0.977***
SCHW 0.021 0.009 0.968*** 0.045** 0.646*** 0.013** 0.981***
TROW 0.028* 0.011 0.939*** 0.097*** 0.680*** 0.026*** 0.968***

Others

ACAS 0.025* 0.041** 0.944*** 0.020 0.369*** 0.019 0.173
AMP 0.489 0.000 0.831*** 0.000 0.480*** 0.000 0.917*
AMTD 0.082 0.000 0.968*** 0.058*** 0.520*** 0.043** 0.925***
AXP 0.019** 0.003 0.933*** 0.128*** 0.691*** 0.014** 0.981***
BEN 0.047* 0.027* 0.932*** 0.061*** 0.671*** 0.029*** 0.967***
BLK 0.21 0.097* 0.833*** 0.067 0.292*** 0.004 0.995***
BOT 1.134* 0.072 0.842 -0.072 0.167** 0.008 0.000
CBG 1.256 0.124 0.583*** 0.054 0.367*** 0.000 0.988***
CBSS 0.016 0.010 0.949*** 0.076*** 0.577*** 0.064*** 0.909***
CIT 0.017 0.000 0.98*** 0.025 0.479*** 0.005 0.000
CME 4.123*** 0.204** 0.000 -0.121 0.356*** 0.000 0.621
COF 0.100 0.049* 0.88*** 0.142* 0.531*** 0.049** 0.405***
FITB 0.165* 0.131 0.788*** 0.055 0.549*** 0.005 0.989***
FNM 0.022 0.000 0.971*** 0.042** 0.415*** 0.013*** 0.981***
FRE 0.011 0.009 0.978*** 0.017 0.429*** 0.035*** 0.93***
ICE 2.549*** 0.000 0.806*** 0.125 0.295*** 0.006 0.835***
JNS 0.197** 0.003 0.913*** 0.118*** 0.571*** 0.036 0.930***
LM 0.110 0.009 0.935*** 0.076** 0.601*** 0.024 0.972***
SEIC 0.075* 0.028 0.914*** 0.102*** 0.588*** 0.026** 0.962***
SLM 0.020 0.028 0.964*** -0.002 0.359*** 0.010* 0.973***

Notes: Stars indicate the statistical significance: *** means a statistically
significance at 1% level, ** at 5% level and * at 10% level of significance.
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Table B.4: In-sample results of the Unconditional Coverage test.

DCC DCC DCC DCC DCC DCC
Depositories GARCH GJR CGARCH SPLINE FIGARCH ACGARCH

BAC 1.563 0.601 0.079 0.079 0.072 1.563
BBT 2.892* 4.539** 0.601 0.601 2.892* 2.892*
BK 1.892 3.351* 1.892 1.892 1.892 3.351*
C 1.563 4.539** 0.601 0.072 1.563 1.563
CBH 1.252 2.589 1.252 1.252 2.589 2.589
CMA 2.074 0.917 0.917 0.196 3.601* 2.074
HBAN 0.196 0.196 0.544 0.013 0.013 0.917
HCBK 0.013 0.196 0.544 0.544 0.013 0.013
JPM 0.601 1.563 0.601 0.072 2.892* 1.563
KEY 0.253 0.253 0.253 0.003 0.467 0.253
MI 0.003 0.253 0.003 0.467 0.003 0.253
MTB 0.917 0.917 0.196 0.013 0.917 2.074
NCC 1.892 0.802 0.147 0.147 1.892 5.130**
NTRS 0.648 0.088 0.088 0.065 0.088 1.641
NYB 0.052 0.708 0.052 0.106 0.106 0.106
PBCT 0.015 1.601 0.266 1.601 0.015 0.481
PNC 0.858 1.982 1.982 0.858 1.982 0.858
RF 6.643** 0.648 3.001* 0.648 3.001* 6.643**
SNV 0.272 2.036 0.001 0.272 3.414* 2.036
SOV 0.125 0.665 0.040 0.040 0.665 0.748
STI 0.630 1.760 0.630 0.630 1.760 3.334*
STT 1.345 1.345 0.034 0.129 1.345 1.345
UB 0.074 0.074 1.092 1.092 0.074 0.074
USB 0.003 0.253 0.003 0.003 0.253 1.042
WAMUQ 0.106 0.106 0.052 0.106 0.106 0.106
WB 1.212 2.389 1.212 0.399 1.212 2.389
WFC 1.892 0.802 0.802 0.802 1.892 1.892
ZION 1.328 0.004 0.004 0.395 0.395 2.702
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DCC DCC DCC DCC DCC DCC
Insurance GARCH GJR CGARCH SPLINE FIGARCH ACGARCH

ABKFQ 0.686 0.686 0.686 0.686 0.686 1.858
AET 0.005 0.005 0.746 0.005 0.746 0.005
AFL 0.030 0.027 0.030 0.624 0.030 0.030
AIG 2.389 2.389 0.399 0.399 3.882** 1.212
AIZ 0.003 0.003 0.003 1.949 0.003 0.940
ALL 1.408 0.008 0.436 1.408 1.408 2.820*
AON 0.058 4.822** 0.058 1.032 1.032 1.032
BRK.B 0.874 0.874 0.122 0.874 2.176 0.874
CB 2.479 1.179 1.179 0.000 2.479 4.150**
CFC 0.047 0.183 0.047 0.630 0.630 0.630
CI 3.489* 3.488* 3.488* 3.488* 3.488* 3.488*
CINF 1.077 1.077 3.037* 3.037* 0.191 0.364
CNA 0.481 0.481 0.266 0.015 0.0147 0.481
CVH 0.013 0.544 0.544 0.544 0.544 0.544
FNF 0.865 4.120** 0.865 0.865 0.865 0.865
GNW 2.214 2.214 2.214 2.214 4.661** 2.214
HIG 0.079 0.072 0.795 0.079 0.079 0.601
HNT 0.058 0.058 0.556 1.488 0.556 0.556
HUM 2.820* 1.408 0.436 0.008 0.436 1.408
L 0.578 0.034 0.034 0.034 1.667 1.667
LNC 0.072 0.079 0.079 0.079 0.079 0.601
MBI 0.034 0.474 0.129 0.129 0.034 0.034
MET 1.109 2.372 2.372 4.006** 4.006** 5.964**
MMC 1.760 0.630 1.760 0.183 0.630 0.630
PFG 0.175 1.017 0.175 0.058 1.017 1.017
PGR 0.239 0.030 0.030 0.239 0.239 0.239
PRU 4.309** 0.746 0.746 0.746 0.746 0.005
SAF 1.094 0.043 0.043 0.043 0.043 0.043
TMK 0.079 0.079 0.079 0.795 0.079 0.601
TRV 0.015 0.015 0.481 0.266 0.015 0.481
UNH 0.978 0.008 0.978 2.170 3.732* 3.732*
UNM 0.006 0.006 0.006 0.006 0.006 0.006
WLP 0.134 1.277 0.134 0.134 0.079 0.745
WRB 1.547 1.547 1.547 1.547 3.245* 5.402**



140 APPENDIX B. TABLES

DCC DCC DCC DCC DCC DCC
Broker GARCH GJR CGARCH SPLINE FIGARCH ACGARCH

AGE 1.982 1.982 0.858 0.170 0.858 1.982
BSC 3.114* 1.722 0.697 0.052 1.722 4.826**
ETFC 0.170 0.170 0.021 0.170 0.021 0.170
GS 2.074 2.074 0.196 0.013 2.074 3.601*
LEH 1.982 0.858 0.170 0.170 0.858 3.474*
MER 3.001* 3.001* 1.641 0.648 1.641 4.681**
MS 1.415 0.514 0.514 0.045 1.415 1.415
SCHW 0.697 0.697 0.106 0.697 0.106 1.722
TROW 0.583 0.021 0.583 0.583 0.583 0.170

Others

ACAS 0.106 0.052 0.106 0.052 0.106 0.106
AMP 0.533 0.923 0.533 0.923 0.533 0.533
AMTD 2.170 0.978 0.008 0.223 2.170 0.978
AXP 1.088 1.088 0.332 0.332 2.207 2.207
BEN 1.892 3.351* 1.892 0.802 1.892 3.351*
BLK 0.395 0.395 0.004 0.328 1.328 1.328
BOT 0.513 0.513 0.513 0.513 0.513 0.513
CBG 0.120 0.120 0.120 0.120 0.120 0.120
CBSS 2.682 0.514 0.514 0.514 2.682 2.682
CIT 0.490 0.013 3.796* 0.490 3.796* 0.013
CME 0.312 0.073 0.312 0.312 0.073 0.946
COF 2.702 2.702 1.328 1.328 2.702 4.450**
FITB 1.277 0.435 0.435 0.435 2.484 4.006**
FNM 0.034 0.933 0.933 0.129 0.933 0.034
FRE 0.021 0.021 0.021 0.170 0.170 0.858
ICE 4.120** 4.120** 4.120** 4.120** 4.120** 4.120**
JNS 0.052 0.106 0.106 0.708 0.106 0.106
LM 1.109 2.372 1.109 1.109 1.109 2.372
SEIC 0.013 0.013 0.544 0.544 0.013 0.196
SLM 3.601* 5.450** 0.917 2.074 3.601* 5.450**

Notes: Stars indicate the statistical significance: *** means a statistically
significance at 1% level, ** at 5% level and * at 10% level of significance.
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Table B.5: In-sample results of the Dynamic Quantile test.

DCC DCC DCC DCC DCC DCC
Depositories GARCH GJR CGARCH SPLINE FIGARCH ACGARCH

BAC 3.246 2.891 0.477 0.477 0.594 3.246
BBT 6.053 7.349* 1.120 1.120 6.053 6.053
BK 5.460 7.296* 5.460 5.460 5.460 8.910**
C 3.526 7.587* 3.122 1.230 3.526 3.526
CBH 5.772 6.708* 5.772 4.970 6.917* 6.708*
CMA 4.646 1.956 4.126 0.684 9.064** 4.646
HBAN 0.684 0.684 0.531 0.589 0.589 1.956
HCBK 0.560 0.610 0.531 0.531 0.560 0.560
JPM 3.122 6.362* 3.122 1.230 11.215** 6.36*
KEY 1.851 1.851 1.851 0.579 0.484 1.851
MI 0.579 1.851 0.579 0.484 0.579 3.979
MTB 1.807 1.807 1.664 0.539 1.807 4.380
NCC 4.231 1.769 1.500 0.644 4.231 10.158**
NTRS 1.530 0.603 1.290 0.715 0.603 3.689
NYB 0.662 1.661 0.489 0.550 0.550 0.550
PBCT 6.054 1.105 1.114 1.105 6.054 3.695
PNC 3.935 5.878 7.857** 3.935 7.857** 3.935
RF 13.07*** 1.290 5.316 1.290 5.316 10.23**
SNV 1.012 3.774 0.842 2.102 8.727** 3.774
SOV 3.746 0.610 0.498 0.498 0.610 3.701
STI 3.075 5.956 3.075 2.426 5.956 11.65***
STT 3.089 3.089 1.071 0.475 3.088 3.088
UB 0.790 0.790 0.764 0.764 0.790 0.790
USB 0.579 1.851 0.579 0.579 1.851 4.166
WAMUQ 0.550 0.550 0.489 0.550 0.550 0.550
WB 5.193 8.516** 5.193 2.497 5.193 9.280**
WFC 4.231 1.373 3.754 1.769 4.231 4.231
ZION 3.306 0.476 5.427 3.756 3.756 4.742
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DCC DCC DCC DCC DCC DCC
Insurance GARCH GJR CGARCH SPLINE FIGARCH ACGARCH

ABKFQ 3.262 2.795 3.262 3.262 3.262 6.673*
AET 0.549 0.549 NaN 0.549 NaN 0.549
AFL 6.729* 0.509 0.509 0.583 5.535 0.509
AIG 4.287 3.903 3.383 3.383 5.795 2.896
ALL 2.637 0.423 2.441 2.637 2.637 2.699
BRK.B 1.3684 1.3684 1.2262 1.3684 4.2073 1.368
CB 4.404 2.413 5.005 0.632 4.404 7.601*
CFC 0.937 0.335 0.937 3.075 3.075 3.075
CINF 0.889 0.889 2.038 2.038 0.487 3.334
CNA 0.985 0.985 0.371 0.780 0.450 0.985
CVH 0.539 0.531 0.531 0.531 0.531 0.531
HIG 0.477 4.339 0.696 0.477 0.477 3.122
HNT 1.173 1.173 2.983 4.928 2.983 2.983
HUM 7.897** 5.811 2.441 0.737 4.696 5.252
L 1.227 0.479 0.479 0.479 3.620 3.620
LNC 4.339 0.477 0.477 0.477 0.477 3.919
MBI 0.526 1.173 0.475 0.475 0.526 0.526
MET 3.053 4.055 14.63*** 12.21*** 12.21*** 9.519**
MMC 3.314 1.053 7.143* 0.335 1.053 1.053
PFG 11.81*** 11.73*** 11.814*** 0.321 7.805* 7.805*
PGR 0.477 0.674 0.339 0.477 0.477 0.477
SAF 5.217 0.329 0.329 0.329 0.329 0.329
TMK 0.477 0.477 0.477 0.696 0.477 3.122
TRV 6.570* 0.780 4.749 0.371 6.570* 4.749
UNH 3.830 0.417 3.830 7.751* 9.012** 9.012**
UNM 0.535 0.535 0.535 0.535 0.535 0.535
WRB 9.439** 9.439** 9.439** 9.439** 6.955* 14.81***
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DCC DCC DCC DCC DCC DCC
Broker GARCH GJR CGARCH SPLINE FIGARCH ACGARCH

AGE 5.654 7.857** 3.935 1.579 3.935 5.654
BSC 4.532 3.182 3.4211 0.489 3.421 6.552*
ETFC 4.415 1.198 0.522 1.580 0.522 1.579
GS 4.703 17.32*** 4.439 0.539 4.703 14.81***
LEH 4.433 1.860 1.579 0.663 1.860 8.677**
MER 11.71*** 13.09*** 4.938 3.267 4.938 13.93***
MS 3.227 1.335 2.852 1.120 3.227 3.227
SCHW 3.421 3.215 1.356 3.421 1.356 5.497
TROW 0.556 0.392 0.556 0.556 0.556 1.579

Others

ACAS 1.356 0.489 1.356 0.489 1.356 1.356
AMTD 6.343* 4.328 0.557 4.465 6.343* 4.328
AXP 2.602 2.140 2.289 2.289 5.298 5.298
BEN 7.526* 13.14*** 7.526* 3.754 7.526* 13.14***
BLK 0.790 0.790 0.698 0.403 3.196 3.196
CBSS 7.692* 2.852 2.852 2.852 10.386** 10.386**
CIT 0.363 8.857** NaN 0.363 NaN 8.857**
CME 0.253 0.487 0.253 0.253 0.487 3.158
COF 4.857 4.857 4.663 4.663 4.857 7.721*
FITB 2.444 0.930 2.131 0.930 5.140 9.227**
FNM 3.793 0.790 0.790 0.475 0.790 1.071
FRE 0.522 0.522 0.522 1.579 1.579 3.935
ICE 38.11*** 38.11*** 38.11*** NaN 38.11*** 38.11***
JNS 5.627 3.838 3.838 0.638 3.838 3.838
LM 2.994 3.926 2.994 2.994 2.994 3.926
SEIC 0.560 0.560 0.531 0.531 0.560 0.610
SLM 6.423* 11.050** 4.217 3.849 5.038 7.605*

Notes: Stars indicate the statistical significance: *** means a statistically
significance at 1% level, ** at 5% level and * at 10% level of significance.
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(a) CoVaR obtained by DCC-GARCH model. (b) MES obtained by DCC-GARCH model.

(c) CoVaR obtained by DCC-GJR model. (d) MES obtained by DCC-GJR model.

(e) Comparison of overall CoVaR averages. (f) Comparison of overall MES averages.

Figure B.2: Comparison of the CoVaR (first column) and MES (second column) measures

by sub-industry group obtained by the DCC-GARCH (first row) and DCC-GJR

(second row) models. The black vertical line indicates the end of the in-sample

and the beginning of the out-of-sample period.
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Table B.6: Parameter estimates of the DCC-CGARCH model.

CGARCH DCC

Deposit. ω α β ϕ ρ const a b

BAC 0.000*** 0.099 0.754* 0.014* 1.000*** 0.633*** 0.057 0.936***

BBT 0.006** 0.109*** 0.800*** 0.042*** 1.000*** 0.671*** 0.064 0.901***

BK 0.004* 0.093** 0.742*** 0.027*** 1.000*** 0.618*** 0.058 0.898***

C 0.005** 0.079 0.734*** 0.042*** 0.999*** 0.726*** 0.021* 0.976***

CBH 0.093*** 0.156*** 0.462*** 0.026*** 0.975*** 0.493*** 0.014** 0.981***

CMA 0.003** 0.138*** 0.802*** 0.019*** 1.000*** 0.597*** 0.006 0.989***

HBAN 0.003** 0.087*** 0.825*** 0.027*** 1.000*** 0.601*** 0.029*** 0.970***

HCBK 0.004*** 0.227* 0.546* 0.000 0.998*** 0.359*** 0.022*** 0.976***

JPM 0.004*** 0.053* 0.803*** 0.040*** 1.000*** 0.715*** 0.013* 0.986***

KEY 0.003*** 0.034 0.889*** 0.030*** 1.000*** 0.600*** 0.013*** 0.985***

MI 0.003* 0.066*** 0.878*** 0.037*** 1.000*** 0.618*** 0.017*** 0.982***

MTB 0.000 0.074 0.867 0.014 1.000*** 0.590*** 0.038*** 0.957***

NCC 0.005*** 0.061** 0.813*** 0.036*** 1.000*** 0.627*** 0.018*** 0.980***

NTRS 0.017** 0.105*** 0.769*** 0.041*** 0.999*** 0.66*** 0.014*** 0.984***

NYB 0.072 0.135** 0.514 0.081 0.985*** 0.381*** 0.044 0.939**

PBCT 0.006 0.136** 0.789*** 0.031* 1.000*** 0.422*** 0.021*** 0.973***

PNC 0.006** 0.064*** 0.883*** 0.034*** 0.999*** 0.629*** 0.007 0.989***

RF 0.010** 0.104*** 0.834*** 0.051*** 0.999*** 0.619*** 0.039* 0.958***

SNV 0.004*** 0.105*** 0.814*** 0.022*** 0.999*** 0.622*** 0.063 0.885***

SOV 0.011* 0.110*** 0.779*** 0.056*** 1.000*** 0.500*** 0.016** 0.973***

STI 0.002*** 0.104* 0.796*** 0.019*** 1.000*** 0.655*** 0.012*** 0.984***

STT 0.005** 0.312*** 0.280 0.020*** 1.000*** 0.626*** 0.006 0.986***

UB 0.003* 0.151*** 0.768*** 0.031*** 1.000*** 0.504*** 0.018* 0.971***

USB 0.001** 0.091*** 0.855*** 0.024** 1.000*** 0.596*** 0.015** 0.983***

WAMUQ 0.002*** 0.212*** 0.624*** 0.017*** 1.000*** 0.436*** 0.025*** 0.971***

WB 0.010*** 0.080*** 0.880*** 0.044*** 0.999*** 0.646*** 0.021*** 0.978***

WFC 0.001*** 0.072 0.816 0.028 1.000*** 0.631*** 0.019 0.979***

ZION 0.014 0.069 0.852*** 0.057* 1.000*** 0.556*** 0.071* 0.894***
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CGARCH DCC

Insurance ω α β ϕ ρ const a b

ABKFQ 0.000 0.145*** 0.833*** 0.013 1.000*** 0.496*** 0.003 0.993***

AET 0.020*** 0.077 0.826*** 0.000 0.996*** 0.353*** 0.064*** 0.891***

AFL 0.002*** 0.153 0.585** 0.013*** 1.000*** 0.432*** 0.114*** 0.746***

AIG 0.000 0.108 0.868 0.006 1.000*** 0.580*** 0.044 0.947***

AIZ 0.013*** 0.038 0.000 0.000 0.992*** 0.310*** 0.076 0.485***

ALL 0.000*** 0.132** 0.642*** 0.015* 1.000*** 0.477*** 0.004 0.992***

AON 0.039* 0.212** 0.687*** 0.000 0.995*** 0.388*** 0.130 0.000

BRK.B 0.009 0.253*** 0.363 0.061 0.999*** 0.231*** 0.046*** 0.754***

CB 0.000 0.125 0.807*** 0.014 1.000*** 0.520*** 0.090*** 0.443**

CFC 0.001*** 0.174** 0.383 0.014** 1.000*** 0.450*** 0.010*** 0.984***

CI 0.001 0.190*** 0.792*** 0.009 1.000*** 0.328*** 0.077** 0.693***

CINF 0.004* 0.066*** 0.866*** 0.036*** 1.000*** 0.586*** 0.017*** 0.983***

CNA 0.000 0.246 0.279 0.010 1.000*** 0.424*** 0.054 0.851***

CVH 0.007*** 0.116*** 0.777*** 0.013*** 1.000*** 0.338*** 0.009 0.955***

FNF 0.107*** 0.323** 0.025 0.025 0.972*** 0.188* 0.036 0.903***

GNW 0.008*** 0.175*** 0.006 0.006** 0.995*** 0.342*** 0.000 0.994***

HIG 0.011* 0.110*** 0.832*** 0.04*** 0.999*** 0.585*** 0.015* 0.983***

HNT 0.001*** 0.085* 0.805*** 0.009** 1.000*** 0.317*** 0.017*** 0.966***

HUM 0.004*** 0.061 0.594** 0.013*** 1.000*** 0.342*** 0.015 0.960***

L 0.000*** 0.111*** 0.763*** 0.019** 1.000*** 0.475*** 0.077** 0.861***

LNC 0.004** 0.056** 0.869*** 0.027*** 1.000*** 0.621*** 0.015*** 0.984***

MBI 0.035*** 0.113*** 0.746*** 0.040*** 0.991*** 0.549*** 0.009*** 0.990***

MET 0.009 0.052*** 0.906*** 0.036* 0.999*** 0.524*** 0.009 0.988***

MMC 0.000 0.068*** 0.857*** 0.031*** 0.993*** 0.441*** 0.205** 0.580***

PFG 0.003*** 0.116*** 0.774*** 0.016*** 0.999*** 0.554*** 0.023** 0.972***

PGR 0.003 0.100 0.656*** 0.024 1.000*** 0.496*** 0.014** 0.982***

PRU 0.013*** 0.053*** 0.906*** 0.013*** 0.994*** 0.600*** 0.014** 0.98***

SAF 0.016*** 0.065*** 0.857*** 0.046*** 0.997*** 0.483*** 0.016*** 0.981***

TMK 0.006* 0.120*** 0.747*** 0.044*** 1.000*** 0.594*** 0.014*** 0.984***

TRV 0.001** 0.097* 0.794*** 0.013 1.000*** 0.513*** 0.021** 0.977***

UNH 0.008** 0.094*** 0.841*** 0.020*** 0.999*** 0.342*** 0.031** 0.932***

UNM 0.066 0.061 0.565 0.064** 1.000*** 0.368*** 0.020 0.952***

WLP 0.000 0.108 0.811 0.007 1.000*** 0.372*** 0.026* 0.958***

WRB 0.003*** 0.187** 0.373 0.013*** 1.000*** 0.355*** 0.005 0.992***
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CGARCH DCC

Brokers ω α β ϕ ρ const a b

AGE 0.002** 0.084 0.837*** 0.016*** 1.000*** 0.673*** 0.035 0.961***

BSC 0.003*** 0.044** 0.846*** 0.022*** 1.000*** 0.674*** 0.024*** 0.973***

ETFC 0.010*** 0.092** 0.539*** 0.028*** 1.000*** 0.579*** 0.016** 0.978***

GS 0.003*** 0.033 0.885* 0.024*** 1.000*** 0.703*** 0.017** 0.981***

LEH 0.003* 0.051* 0.895*** 0.026*** 1.000*** 0.697*** 0.014*** 0.985***

MER 0.001** 0.056* 0.767 0.023 1.000*** 0.731*** 0.022*** 0.977***

MS 0.000 0.053 0.898 0.021 1.000*** 0.718*** 0.015*** 0.982***

SCHW 0.001 0.087 0.109 0.018 1.000*** 0.660*** 0.011*** 0.986***

TROW 0.004** 0.068** 0.883*** 0.029*** 1.000*** 0.690*** 0.021*** 0.977***

Others

ACAS 0.000 0.173 0.714 0.014 1.000*** 0.375*** 0.000 0.943***

AMP 0.005*** 0.000 0.215 0.000 0.998*** 0.483*** 0.000 0.941***

AMTD 0.045*** 0.192*** 0.371*** 0.036*** 0.998*** 0.540*** 0.045** 0.895***

AXP 0.004 0.080* 0.839*** 0.032*** 1.000*** 0.690*** 0.013*** 0.986***

BEN 0.004** 0.063** 0.888*** 0.022*** 1.000*** 0.681*** 0.026*** 0.974***

BLK 0.010** 0.338** 0.021 0.021*** 0.999*** 0.312*** 0.002 0.996***

BOT 0.081*** 0.266*** 0.727*** 0.000 0.999*** 0.186*** 0.000 0.813

CBG 0.000 0.104 0.481 0.023 1.000 0.350*** 0.001 0.992***

CBSS 0.004* 0.138*** 0.777*** 0.033*** 1.000*** 0.590*** 0.073** 0.900***

CIT 0.004** 0.154 0.638*** 0.028 1.000*** 0.484*** 0.020 0.899***

CME 0.014*** 0.159 0.257 0.000 0.997*** 0.352*** 0.000 0.527

COF 0.026*** 0.081*** 0.880*** 0.044*** 0.999*** 0.528*** 0.073** 0.371***

FITB 0.013** 0.225*** 0.498*** 0.043*** 0.999*** 0.562*** 0.007 0.988***

FNM 0.026*** 0.052** 0.825*** 0.022** 0.992*** 0.411*** 0.015*** 0.983***

FRE 0.003*** 0.038* 0.856*** 0.019*** 1.000*** 0.434*** 0.043*** 0.921***

ICE 0.064*** 0.000 0.522 0.000 0.996*** 0.330*** 0.001 0.833***

JNS 0.042*** 0.094*** 0.830*** 0.012 0.995*** 0.579*** 0.011** 0.983***

LM 0.086*** 0.055* 0.660*** 0.034*** 0.984*** 0.608*** 0.015*** 0.984***

SEIC 0.015** 0.106*** 0.802*** 0.028*** 0.999*** 0.591*** 0.024* 0.970***

SLM 0.005** 0.039** 0.872*** 0.030*** 0.999*** 0.366*** 0.008* 0.983***

Notes: Stars indicate the statistical significance: *** means a statistically

significance at 1% level, ** at 5% level and * at 10% level of significance.
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Table B.8: Parameter estimates of the DCC-FIGARCH model.

FIGARCH DCC

Depositories ω β φ d const a b

BAC 0.142 0.507 0.407 0.187*** 0.634*** 0.050 0.939***
BBT 0.118* 0.581*** 0.151* 0.556*** 0.667*** 0.065* 0.895***
BK 0.123 0.532* 0.368 0.265*** 0.618*** 0.054** 0.891***
C 0.000 0.550 0.313 0.362** 0.726*** 0.015** 0.983***
CBH 1.112 0.383 0.441 0.119 0.495*** 0.011** 0.983***
CMA 0.182* 0.496 0.337 0.327 0.595*** 0.004 0.993***
HBAN 0.140 0.492 0.366 0.267 0.598*** 0.022*** 0.977***
HCBK 0.627 0.302 0.457 0.087 0.364*** 0.023*** 0.973***
JPM 0.000 0.676*** 0.235*** 0.530*** 0.713*** 0.010** 0.989***
KEY 0.155 0.522 0.396 0.208** 0.601*** 0.011*** 0.987***
MI 0.056 0.714*** 0.204*** 0.584*** 0.616*** 0.015*** 0.983***
MTB 0.163** 0.536*** 0.304*** 0.295*** 0.586*** 0.034*** 0.962***
NCC 0.214* 0.135** 0.000*** 0.203*** 0.626*** 0.015*** 0.982***
NTRS 0.303 0.187*** 0.000 0.224*** 0.659*** 0.012*** 0.987***
NYB 0.342** 0.139* 0.000 0.336*** 0.381*** 0.050 0.919***
PBCT 0.245 0.499 0.322 0.355* 0.420*** 0.019*** 0.975***
PNC 0.061 0.556* 0.168** 0.432 0.631*** 0.007 0.989***
RF 0.156 0.634*** 0.207* 0.587** 0.618*** 0.036 0.959***
SNV 0.120 0.309** 0.003 0.337*** 0.622*** 0.059 0.862***
SOV 0.077 0.485*** 0.174* 0.427*** 0.495*** 0.016** 0.973***
STI 0.289 0.000 0.012 0.153* 0.656*** 0.011** 0.985***
STT 0.512*** 0.000 0.049*** 0.220*** 0.626*** 0.007 0.984***
UB 0.071 0.541 0.286 0.427 0.503*** 0.014* 0.979***
USB 0.020 0.531 0.252 0.370 0.593*** 0.013** 0.986***
WAMUQ 0.205** 0.093 0.000* 0.252*** 0.440*** 0.023*** 0.972***
WB 0.154* 0.694*** 0.165* 0.629*** 0.646*** 0.019*** 0.979***
WFC 0.103 0.460 0.411 0.178*** 0.630*** 0.015* 0.984***
ZION 0.226 0.657*** 0.045 0.646*** 0.551*** 0.094 0.826
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FIGARCH DCC

Insurance ω β φ d const a b

ABKFQ 0.330** 0.639*** 0.000 0.705*** 0.494*** 0.004 0.993***
AET 2.495** 0.401 0.477 0.046 0.362*** 0.068*** 0.881***
AFL 0.468 0.470 0.410 0.179 0.433*** 0.094*** 0.759***
AIG 0.387 0.752*** 0.027 0.784 0.577*** 0.039 0.954***
AIZ 1.552*** 0.000 0.037 0.000 0.310*** 0.073 0.475***
ALL 0.188 0.505 0.375 0.250 0.470*** 0.005* 0.994***
AON 2.104*** 0.642*** 0.000*** 0.972*** 0.387*** 0.100 0.000
BRK.B 0.085* 0.041 0.000 0.288*** 0.228*** 0.047*** 0.749***
CB 0.156 0.485*** 0.226** 0.342*** 0.518*** 0.060** 0.474*
CFC 0.998*** 0.468** 0.402* 0.197*** 0.444*** 0.009** 0.986***
CI 1.485*** 0.771*** 0.000 0.972*** 0.325*** 0.073** 0.708***
CINF 0.071 0.611*** 0.290*** 0.419*** 0.583*** 0.015*** 0.985***
CNA 0.492** 0.482 0.384 0.233*** 0.421*** 0.059 0.813***
CVH 0.922* 0.502*** 0.358*** 0.241*** 0.339*** 0.009 0.951***
FNF 1.559 0.000* 0.297* 0.054 0.162* 0.030 0.927***
GNW 1.310*** 0.000*** 0.175*** 0.000 0.340*** 0.000 0.993***
HIG 0.194 0.518 0.313 0.375 0.585*** 0.012** 0.986***
HNT 1.084** 0.489** 0.420** 0.151*** 0.319*** 0.016*** 0.965***
HUM 1.518** 0.529 0.411 0.179*** 0.338*** 0.009 0.986***
L 0.200* 0.577** 0.310** 0.381*** 0.466*** 0.020 0.973***
LNC 0.165 0.524** 0.267 0.320*** 0.617*** 0.013*** 0.986***
MBI 0.303* 0.542*** 0.282* 0.422* 0.547*** 0.009*** 0.990***
MET 0.150 0.567*** 0.116 0.454* 0.525*** 0.008 0.988***
MMC 2.417 0.407* 0.476*** 0.048 0.531*** 0.010*** 0.988***
PFG 0.138 0.237 0.049 0.254*** 0.557*** 0.020** 0.974***
PGR 0.222 0.570*** 0.336** 0.327*** 0.491*** 0.014** 0.982***
PRU 0.206 0.471** 0.160 0.326*** 0.594*** 0.016*** 0.979***
SAF 0.183* 0.682*** 0.224** 0.553*** 0.483*** 0.015*** 0.982***
TMK 0.086 0.494 0.324 0.353 0.593*** 0.012*** 0.986***
TRV 0.374* 0.565*** 0.360*** 0.281*** 0.507*** 0.018 0.981***
UNH 0.559* 0.096 0.000 0.189*** 0.344*** 0.030*** 0.930***
UNM 1.173 0.692** 0.274** 0.453 0.338*** 0.019 0.963***
WLP 0.600** 0.342** 0.154 0.255*** 0.369*** 0.028** 0.954***
WRB 0.654*** 0.461 0.417 0.166*** 0.343*** 0.005* 0.993***
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FIGARCH DCC

Brokers ω β φ d const a b

AGE 0.379*** 0.214*** 0.002*** 0.282*** 0.673*** 0.036 0.956***
BSC 0.249* 0.405** 0.149 0.275*** 0.671*** 0.020*** 0.977***
ETFC 0.360 0.571 0.326 0.349* 0.575*** 0.013*** 0.983***
GS 0.112 0.599*** 0.274*** 0.345*** 0.702*** 0.013** 0.985***
LEH 0.100 0.433* 0.125 0.344*** 0.696*** 0.011*** 0.988***
MER 0.101 0.361* 0.094 0.313*** 0.727*** 0.017** 0.981***
MS 0.000 0.604*** 0.322*** 0.357*** 0.719*** 0.013*** 0.984***
SCHW 0.407 0.586* 0.327 0.346*** 0.658*** 0.009*** 0.986***
TROW 0.113 0.477* 0.207 0.341*** 0.686*** 0.017*** 0.980***

Others

ACAS 0.263* 0.207** 0.000** 0.315*** 0.375*** 0.000 0.906***
AMP 2.839*** 0.436 0.436 0.000 0.485*** 0.000 0.919
AMTD 1.476* 0.435* 0.362 0.275*** 0.536*** 0.039** 0.908***
AXP 0.049 0.602*** 0.183** 0.489*** 0.689*** 0.011*** 0.988***
BEN 0.250** 0.459*** 0.118 0.359*** 0.676*** 0.022*** 0.977***
BLK 0.765*** 0.000** 0.109 0.219*** 0.305*** 0.003 0.995***
BOT 3.327 0.732 0.000 1.000 0.175** 0.000 0.787
CBG 1.497** 0.078 0.000*** 0.208 0.362*** 0.000 0.991***
CBSS 0.142* 0.421 0.379 0.242*** 0.589*** 0.059 0.920***
CIT 0.122 0.122* 0.000 0.233*** 0.482*** 0.017 0.914***
CME 4.066*** 0.000** 0.172** 0.000 0.351*** 0.000 0.579
COF 0.511 0.728*** 0.109 0.689*** 0.533*** 0.053* 0.409***
FITB 0.365*** 0.371 0.399 0.201*** 0.559*** 0.005 0.991***
FNM 0.765* 0.493*** 0.421*** 0.157*** 0.414*** 0.013*** 0.983***
FRE 0.353 0.580*** 0.383*** 0.234*** 0.432*** 0.038** 0.923***
ICE 6.260 0.193 0.025 0.168 0.311*** 0.007 0.838***
JNS 1.000** 0.167** 0.000 0.255*** 0.573*** 0.012** 0.983***
LM 1.298** 0.091 0.000 0.150*** 0.604*** 0.014*** 0.985***
SEIC 0.361 0.490* 0.317 0.318*** 0.593*** 0.022* 0.973***
SLM 0.306 0.564*** 0.390*** 0.220* 0.365*** 0.007 0.981***

Notes: Stars indicate the statistical significance: *** means a statistically
significance at 1% level, ** at 5% level and * at 10% level of significance.
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Table B.9: Parameter estimates of the DCC-ACGARCH model.

ACGARCH DCC

Deposit. ω α β ϕ ρ γ const a b

BAC 0.002 0.055 0.578*** 0.011** 0.998*** 0.140 0.633*** 0.040 0.951***
BBT 0.010** 0.055 0.812*** 0.027** 0.993*** 0.076* 0.661*** 0.013 0.981***
BK 0.004 0.042 0.737*** 0.029 1.000*** 0.091 0.613*** 0.025 0.961***
C 0.006 0.010 0.781*** 0.036*** 0.996*** 0.078** 0.722*** 0.014** 0.982***
CBH 0.000*** 0.160*** 0.602*** 0.000*** 1.000*** 0.000*** 0.493*** 0.009** 0.984***
CMA 0.004*** 0.115*** 0.820*** 0.012 0.998*** 0.000 0.591*** 0.004 0.993***
HBAN 0.004 0.077*** 0.829*** 0.033 1.000*** 0.000 0.594*** 0.024*** 0.975***
HCBK 0.000 0.136** 0.428** 0.000 1.000*** 0.172 0.364*** 0.021*** 0.973***
JPM 0.003 0.000 0.892*** 0.039** 1.000*** 0.090*** 0.708*** 0.011** 0.987***
KEY 0.007 0.010 0.906*** 0.023** 0.995*** 0.043** 0.592*** 0.011*** 0.987***
MI 0.007 0.058*** 0.884*** 0.027* 0.996*** 0.000 0.608*** 0.013*** 0.986***
MTB 0.004 0.039 0.862*** 0.011 0.997*** 0.041 0.583*** 0.032*** 0.963***
NCC 0.006 0.049** 0.833*** 0.040 1.000*** 0.000 0.620*** 0.015*** 0.983***
NTRS 0.021 0.000 0.788*** 0.054 1.000*** 0.179*** 0.652*** 0.014*** 0.983***
NYB 0.000 0.040 0.875*** 0.002 1.000*** 0.080** 0.380*** 0.024 0.967***
PBCT 0.012 0.090 0.820*** 0.051 1.000*** 0.030 0.415*** 0.019*** 0.974***
PNC 0.004 0.055 0.880*** 0.035 1.000*** 0.015 0.623*** 0.006 0.990***
RF 0.001 0.084 0.861*** 0.000 0.999*** 0.029 0.613*** 0.029 0.965***
SNV 0.004 0.058 0.830*** 0.012 0.997*** 0.055 0.618*** 0.052 0.890***
SOV 0.013 0.082** 0.791*** 0.061* 1.000*** 0.000 0.491*** 0.014** 0.974***
STI 0.005 0.046* 0.793*** 0.014 0.996*** 0.077 0.650*** 0.010*** 0.985***
STT 0.007 0.241 0.239 0.024 1.000*** 0.127 0.624*** 0.006 0.987***
UB 0.003 0.004 0.852*** 0.020 0.998*** 0.142*** 0.502*** 0.011* 0.983***
USB 0.002 0.017 0.870*** 0.023 0.998*** 0.082** 0.587*** 0.013** 0.985***
WAMUQ 0.003 0.141 0.674*** 0.016 0.999*** 0.048 0.434*** 0.023*** 0.972***
WB 0.017 0.042 0.878*** 0.046 0.994*** 0.049 0.641*** 0.017*** 0.982***
WFC 0.003 0.034 0.864*** 0.016* 0.997*** 0.055 0.624*** 0.012** 0.987***
ZION 0.009 0.000 0.887*** 0.048 1.000*** 0.113*** 0.548*** 0.017 0.979***
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ACGARCH DCC

Insurance ω α β ϕ ρ γ const a b

ABKFQ 0.030 0.005 0.908*** 0.072 0.997*** 0.083* 0.497*** 0.004 0.993***
AET 0.001 0.000 0.188 0.000 1.000*** 0.398** 0.357*** 0.051*** 0.894***
AFL 0.004 0.129* 0.555* 0.010** 0.998*** 0.000 0.428*** 0.094*** 0.749***
AIG 0.000 0.040 0.876*** 0.003 0.999*** 0.082 0.587*** 0.032 0.958***
AIZ 0.001 0.000 0.435** 0.000 1.000*** 0.178 0.297*** 0.090 0.528***
ALL 0.002 0.104** 0.616*** 0.013** 0.998*** 0.008 0.472*** 0.004 0.994***
AON 0.004 0.186*** 0.729*** 0.000 1.000*** 0.000 0.389*** 0.115 0.000
BRK.B 0.007 0.192 0.408 0.062 1.000*** 0.089 0.231*** 0.040** 0.756***
CB 0.000 0.065 0.850*** 0.006 0.999*** 0.042 0.516*** 0.077*** 0.376**
CFC 0.003 0.062 0.334 0.019 1.000*** 0.180 0.445*** 0.008** 0.987***
CI 0.002 0.134*** 0.815*** 0.000 1.000*** 0.000 0.321*** 0.065** 0.675***
CINF 0.000 0.046** 0.910*** 0.001 0.999*** 0.044* 0.581*** 0.014*** 0.985***
CNA 0.000 0.022 0.880*** 0.005 0.999*** 0.068* 0.425*** 0.053* 0.780***
CVH 0.011 0.082*** 0.798*** 0.008 0.998*** 0.000 0.339*** 0.010 0.948***
FNF 0.002 0.386*** 0.000 0.000 1.000*** 0.000 0.207** 0.050 0.865***
GNW 0.000 0.153*** 0.003 0.0033 1.000*** 0.000 0.342*** 0.000 0.994***
HIG 0.017 0.100*** 0.831*** 0.027* 0.995*** 0.000* 0.579*** 0.012** 0.987***
HNT 0.012 0.039 0.764 0.009 0.997*** 0.071 0.316*** 0.013* 0.970***
HUM 0.017 0.060** 0.596*** 0.012** 0.997*** 0.000 0.335*** 0.006 0.991***
L 0.002 0.075** 0.804*** 0.016 0.998*** 0.010 0.466*** 0.014 0.981***
LNC 0.010 0.029 0.889*** 0.020** 0.996*** 0.032 0.615*** 0.013*** 0.985***
MBI 0.000*** 0.109*** 0.844*** 0.000 1.000*** 0.000 0.546*** 0.008*** 0.991***
MET 0.000 0.038** 0.902*** 0.000*** 1.000*** 0.060** 0.509*** 0.007* 0.990***
MMC 0.000 0.081*** 0.749*** 0.000 1.000*** 0.000*** 0.530*** 0.010*** 0.987***
PFG 0.002 0.075* 0.780*** 0.008 0.998*** 0.049 0.554*** 0.019** 0.975***
PGR 0.004 0.094** 0.650*** 0.027** 1.000*** 0.000 0.495*** 0.012** 0.982***
PRU 0.000 0.036* 0.907*** 0.000 1.000*** 0.038 0.597*** 0.011** 0.982***
SAF 0.008 0.030 0.853*** 0.043 1.000*** 0.078** 0.486*** 0.014*** 0.983***
TMK 0.0103** 0.092 0.722*** 0.038** 0.994*** 0.036 0.588*** 0.010*** 0.988***
TRV 0.005 0.041 0.799*** 0.009** 0.997*** 0.064 0.511*** 0.015** 0.984***
UNH 0.017 0.071 0.828*** 0.011 0.994*** 0.028 0.339*** 0.028** 0.931***
UNM 0.050 0.000 0.989*** 0.033 1.000*** 0.011 0.331*** 0.016 0.968***
WLP 0.000*** 0.077*** 0.837*** 0.000 1.000*** 0.000 0.371*** 0.021 0.960***
WRB 0.003 0.113 0.407 0.015 1.000*** 0.127 0.350*** 0.005* 0.993***
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ACGARCH DCC

Brokers ω α β ϕ ρ γ const a b

AGE 0.006** 0.000 0.883*** 0.014** 0.997*** 0.115*** 0.666*** 0.032 0.960***
BSC 0.007 0.013 0.910*** 0.017 0.997*** 0.043** 0.669*** 0.021*** 0.974***
ETFC 0.014 0.000 0.909*** 0.021*** 0.997*** 0.058* 0.573*** 0.012*** 0.982***
GS 0.007 0.000 0.943*** 0.017** 0.997*** 0.054*** 0.697*** 0.014* 0.983***
LEH 0.005 0.000 0.876*** 0.038 1.000*** 0.086** 0.691*** 0.012*** 0.985***
MER 0.003 0.000 0.898*** 0.019*** 0.998*** 0.050*** 0.725*** 0.016*** 0.982***
MS 0.002 0.028 0.903*** 0.016* 0.998*** 0.034 0.714*** 0.014*** 0.982***
SCHW 0.007 0.016 0.695 0.017** 0.998*** 0.083 0.654*** 0.010*** 0.986***
TROW 0.006 0.022 0.910*** 0.014 0.997*** 0.065*** 0.681*** 0.016*** 0.980***

Others

ACAS 0.000 0.126** 0.732*** 0.014 1.000*** 0.000 0.376*** 0.000 0.829
AMP 0.000 0.000 0.000 0.000 1.000 0.000 0.482*** 0.000 0.865
AMTD 0.000 0.016 0.933*** 0.003*** 0.999*** 0.050** 0.529*** 0.034** 0.918***
AXP 0.006 0.000 0.873*** 0.026*** 0.996*** 0.101*** 0.689*** 0.011*** 0.988***
BEN 0.009 0.022 0.890*** 0.013 0.996*** 0.068*** 0.672*** 0.021*** 0.978***
BLK 0.011 0.305** 0.029 0.029 1.000*** 0.016 0.310*** 0.003 0.995***
BOT 0.101 0.236** 0.639*** 0.000 1.000*** 0.125 0.125* 0.000 0.720***
CBG 0.010 0.093 0.739*** 0.000 1.000*** 0.168 0.367*** 0.000 0.989***
CBSS 0.000 0.030 0.923*** 0.000 0.999*** 0.047 0.583*** 0.041 0.945***
CIT 0.003 0.060 0.766*** 0.007 0.997*** 0.069 0.469*** 0.020 0.900***
CME 0.001 0.146 0.242 0.000 1.000*** 0.063 0.355*** 0.000 0.443
COF 0.015 0.037 0.878*** 0.036 1.000*** 0.064 0.528*** 0.056** 0.364***
FITB 0.013 0.212** 0.526*** 0.049 1.000*** 0.000 0.558*** 0.006 0.989***
FNM 0.027 0.000 0.849*** 0.018*** 0.991*** 0.084** 0.412*** 0.012*** 0.984***
FRE 0.003 0.039** 0.878*** 0.019** 1.000*** 0.000 0.429*** 0.038** 0.923***
ICE 0.042 0.000 0.836*** 0.000 1.000*** 0.096 0.286*** 0.008 0.829***
JNS 0.003 0.013 0.896*** 0.000 0.999*** 0.091*** 0.580*** 0.009* 0.982***
LM 0.014 0.000 0.875*** 0.030 1.000*** 0.074*** 0.603*** 0.015*** 0.984***
SEIC 0.012 0.026 0.845*** 0.012 0.996*** 0.097** 0.588*** 0.022** 0.969***
SLM 0.000 0.040 0.944*** 0.000 1.000*** 0.003 0.365*** 0.008** 0.977***

Notes: Stars indicate the statistical significance: *** means a statistically

significance at 1% level, ** at 5% level and * at 10% level of significance.
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(a) CoVaR obtained by DCC-CGARCH. (b) MES obtained by DCC-CGARCH.

(c) CoVaR obtained by DCC-FIGARCH. (d) MES obtained by DCC-FIGARCH.

(e) CoVaR obtained by DCC-ACGARCH. (f) MES obtained by DCC-ACGARCH.

Figure B.3: Comparison of the CoVaR (first column) and MES (second column) measures by

sub-industry group obtained by the DCC-CGARCH (first row) DCC-FIGARCH

(second row) and DCC-GJR (third row) models. The black vertical line indicates

the end of the in-sample and the beginning of the out-of-sample period.



158 APPENDIX B. TABLES

(a) Volatility of BAC obtained by DCC-

ACGARCH.

(b) Correlation of BAC obtained by DCC-

ACGARCH.

(c) CoVaR over the entire sample. (d) MES over the entire sample.

(e) CoVaR over the pre-crisis sample. (f) MES over the pre-crisis sample.

Figure B.4: Case-study of BAC. The black vertical line indicates the end of the in-sample and

the beginning of the out-of-sample period.


