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Preface

A test is an assessment intended to measure an examinee’s knowledge (Kolen and Brennan, 2014).
Equating is a statistical process that is used to adjust scores on test forms so that scores on the
forms can be used interchangeably (Kolen and Brennan, 2014). Beginning in the early 1980s there
was an increasing attention to equating mainly attributable to the increase in the number and
variety of testing programs that use multiple forms of tests. In fact, scores on tests often are used
as one piece of information in making important decisions: for example, an agency or institution
might need to decide what test score is required to certify individuals for a profession or to admit
students into a college, university, or the military. Making decisions in these contexts requires that
test are administered on multiple occasions. For example, college admissions tests are administered
on particular days, referred to as test dates, so examinees can have some flexibility in choosing
when to be tested. Tests also are given over many years to track educational trends over time. If
the same test questions are administered on each test date, then examinees might inform others
about the test questions. Or, an examinee who tested twice might be administered the same test
questions on the two test dates (Kolen and Brennan, 2014).
This work mainly deals with equating using Item Response Theory (IRT) (Lord, 1980). Equating
using IRT (or IRT equating) typically is a three-step process. First, item parameters are estimated
with a computer software. Second, parameter estimates are scaled to a base IRT scale using a
linear transformation. Third, if number-correct scoring is used, number-correct scores on the new
form are converted to the number-correct scale on an old form and then to scale scores (Kolen
and Brennan, 2014). The main purpose of this work is to introduce covariates in IRT equating to
reduce the standard error of equating (SEE). In general, equating with covariates is motivated by
an interest in the possibility of using information about the examinees’ background to increase the
precision of the estimators. Bränberg and Wiberg (2011) and Wiberg and Bränberg (2015) have
described methods for performing, respectively, observed score linear equating and kernel equating
using covariates, while IRT equating with covariates has not been developed yet.
The idea to use covariates in IRT equating is to insert them in the calculation of the probabil-
ity P (yji), where yji denote the response of examinee j to item i, using the IRT with Covariates
(IRT-C) model (Tay et al., 2015), which is a single-class/restricted Mixed-Measurement IRT with
Covariates (MM-IRT-C) approach (Tay et al., 2011). In particular, it is explained how to conduct
IRT true-score equating (Lord, 1980) and IRT observed-score equating (Lord, 1980) using the IRT-
C model.
IRT true-score equating is based on the concept of test characteristic curve of a test, which is
defined as the sum of the probabilities P (yji) on the items of the test and which is considered to be
the true score on the test. The method, substantially, consists in finding the equivalent true scores
on the equated forms (Lord, 1980). Kolen and Brennan (2014) developed this method using the
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three parameter logistic (3PL) IRT model; here this method is described using the IRT-C model.
IRT observed score equating uses the IRT model to produce an estimated distribution of observed
number-correct scores on each form, which are then equated using equipercentile methods (Lord,
1980). Kolen and Brennan (2014) developed this method using the recursion formula (Lord and
Wingersky, 1984) to obtain the observed score distribution for examinees of a given ability; here
this method is described modifying the recursion formula so it is obtained the observed score dis-
tribution for examinees of a given ability and covariate.
Summarizing, the main contributions of this work are the development of the IRT true-score equat-
ing with covariates and the IRT observed-score equating with covariates. Both the methods will be
discussed together with simulations and a real application.

Structure of the thesis The first chapter will provide a general overview of equating. The first
section will define the basic concepts of equating while the second one will describe the practical
issues.
The second chapter will illustrate traditional equating methods, using different designs. Then it will
describe IRT equating methods and the kernel method of test equating. Then it will explain how to
average equating functions and how to conduct equating with small samples. Subsequently it will
focus on standard errors of equating. Finally, it will describe some recent ideas in test equating.
The third chapter will focus on equating with covariates. In particular, it will be explained how to
use covariates in observed score linear equating, kernel equating and in a Bayesian context.
The fourth chapter will start describing the MM-IRT-C model and its precursor models. Sub-
sequently it will describe how to conduct IRT equating using the MM-IRT-C model. Then a
simulation study is used to examine the properties of the proposed equating methods. Finally, a
real data example is given to show how the methods can be used in practice.
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Chapter 1

Basic Concepts and Practical
Issues

1.1 Basic Concepts

This section provides a general overview of equating. It briefly describes the concept of equating,
the process of scaling, the list of steps for implementing equating, the properties of equating, the
data collection designed used in equating and the equating error.

1.1.1 Definition of Equating

Test specifications provide guidelines for developing the test (some of the material in this chapter
is based on Kolen and Brennan (2014) and von Davier (2011)). In some situations it can be useful
to administer a different collection of test items, referred to as a test form, to examinees who are
tested on different test dates. A test form is a set of test items that is built according to content
and statistical test specifications: the test developers ensure that these test forms are as similar as
possible to one another in content and statistical characteristics. A link between scores on two tests
is a transformation from a score on one test to a score on another test. Equating is the strongest
form of linking between the scores on two tests. Equating is a statistical process that is used to
adjust scores on test forms so that scores on the forms can be used interchangeably.

1.1.2 The Context of Equating

There are at least three reasons to have multiple forms of a test (and consequently equating). The
first is security. Many testing programs administer high-stakes examinations in which performance
has an important impact upon the examinee and the public: conferring a license or certificate to
practice a profession, permitting admittance to a college or other training program, or granting
credit for an educational experience. For a test score to have validity in any of these circumstances,
it is crucial that it reflects the uncontaminated knowledge and ability of the examinees. Therefore,
security is a concern and it is often desirable to give different forms to examinees seated beside
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2 CHAPTER 1. BASIC CONCEPTS AND PRACTICAL ISSUES

each other, those who take the examination on different days, or those who take the examination
on more than one occasion (Linn, 1989).
A second and related reason for different test forms is the current movement to open testing. Many
programs find it necessary or desirable to release test items to the public (Holland and Rubin,
1982a). When this occurs, it is not possible to use the released items on future forms of a test
without providing examinees an unfair advantage. For example, the Italian National Evaluation
Institute for the School System (Invalsi) must release test items to the public because it is required
by Italian law.
A third reason for different forms is that test content, and therefore test questions, by necessity
change gradually over time. Knowledge in virtually all occupations and professions evolves and it
is crucial for the test to reflect the current state of practice. For example, it is obvious that to-
day’s medical licensure and certification examinations should include questions on HIV and AIDS,
whereas these topics were not relevant in the past. Even when the knowledge does not so obvi-
ously change, the context within which test items are presented is at risk of becoming dated. One
could imagine a clinical scenario in medicine where descriptions of a patient’s condition should be
rewritten to include current drugs; in law one might want to include references to timely cases and
rulings, especially if they lead to different interpretations of the law; in an educational context,
Invalsi might want to include items about contemporary Italian authors in the Italian test.
Summing up, equating can be applied in all of the contexts when it is necessary to use multi-
ple test forms. Nowadays, international surveys such as the Programme for International Student
Assessment (PISA) use equating to compare multiple test forms over time (Gebhardt and Adams,
2007). PISA is a worldwide study by the Organisation for Economic Co-operation and Development
(OECD) in member and non-member nations of 15-year-old school pupils’ scholastic performance
on mathematics, science, and reading. It was first performed in 2000 and then repeated every
three years. Finally, even if equating was born in an educational context, we can find publications
about it in several contexts: see, for example, Kyoung Yim and Sun (2006) and Camilli et al. (1995).

1.1.3 Within-Grade (Horizontal) Equating and Across-Grade (Vertical)
Equating in an educational context

Two primary situations exist for equating multiple test forms: the horizontal equating and the
vertical equating situations (Lissitz and Huynh, 2003). Horizontal equating is designed to test
different groups of students that are assumed to be at approximately the same level. It occurs
within grade, where multiple forms are used to test the same general content. An example of the
horizontal equating situation is the case in which a school system has a test for graduation and
students are allowed to retake the test if they fail. The retakes are on different forms of the test
that are all equated to provide comparable scores. The cut-off for failing is set at the same score
level no matter how often a student retakes the test, thus ensuring a constancy of the standard for
passing from administration to administration. The table of specifications for each test is also the
same, thus ensuring that content is comparable and that the dimensions of knowledge that underlie
the test are the same in each case. The difficulty level will be approximately the same for each form
of the test, as well.
Vertical equating may be used when testing students who are at different levels of education. It
entails across-grade testing of the same general content. A classic example of the vertical equat-
ing situation is that of a mathematics test that is used to track expertise across middle school.
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In this scenario, the tests at different grade levels are of differing content, but still focus on the
same general concept, say, mathematics ability. The students are expected to show performance
improvements at each year, and these improvements should be reflected in a steady increase in their
ability to do mathematics. The tests for two subsequent grades should be linked so that scores are
directly comparable along a common continuum or dimension. The content must have some sense
of commonality across grades in order to be meaningfully equated across grade levels. These scales
are often considered developmental, in the sense that they encourage the examination of changes
in a students score across grades that indicate the improvement in that students competency level.
Sometimes the equating is only for adjacent grades and sometimes equating is across the whole
school experience.

1.1.4 Equating and Score Scales

The numbers that are associated with examinee performance on educational or psychological tests
are defined through the process of scaling. This process produces a score scale, and the scores
that are reported to examinees are referred to as scale scores. A key component in the process of
developing a score scale is the raw score for an examinee on a test, which we indicate with X.
The summed score, X, is defined as

X =

n∑
i=1

V ∗i , (1.1)

where n is the number of items on the test and V ∗i is a random variable indicating score on item i.
Equation 1.1 is often used as a raw score when all of the items on a test are of the same format.
The weighted summed score, Xw,

Xw =

n∑
i=1

wiV
∗
i , (1.2)

uses weights, 0 ≤ wi ≤ 1, to weight the item score for each item. Various procedures for choosing
weights include choosing weights so that each item contributes a desired amount to the raw score.
With alternate test forms, the raw scores typically do not have a consistent meaning across forms.
For this reason, scores other than raw scores are used as primary score scales. The raw score is
transformed to a scale score. For summed scores, the scale score, MX , is a function of the summed
score, X, such that MX = MX(X). This transformation often is provided in tabular form. For
weighted summed scores, the scale score, MXw, is a function of the weighted summed score, Xw,
such that MXw = MXw(Xw). Linear or nonlinear transformations of raw scores are used to pro-
duce scale scores that can be meaningfully interpreted. Normative, score precision, and content
information can be incorporated (Kolen and Brennan, 2014, pp.394-420).

Incorporating Normative Information
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Thorndike (1971) defined norms as descriptive statistics that are compiled to permit the com-
parison of a particular score with the scores earned by the members (or groups of members) of some
defined population.
Incorporating normative information begins with the administration of the test to a norm group.
After we calculate the mean and standard deviation of the raw scores for the norm group we can
specify the mean and standard deviation of the scale scores to use this transformation:

sc(y) =
σ(sc)

σ(Y )
y +

[
µ(sc)− σ(sc)

σ(Y )
µ(Y )

]
, (1.3)

where µ(Y ) and σ(Y ) are the mean and standard deviations of raw scores in the norm group on
form Y and µ(sc) and σ(sc) are the desired mean and standard deviation of the scale scores.

Incorporating Score Precision Information

Scale score units should be of the most appropriate order of magnitude to express their accuracy
of measurement. The use of too few score points fails to preserve all of the information contained
in raw scores; however, the use of too many scale score points might lead test users to attach sig-
nificance to scale score differences that are predominantly due to measurement error. By making
suitable assumptions, the approximate range of scale scores that produces the desired score scale
property is

6
h∗

zγ
√

1− ρXX′
, (1.4)

where h∗ is the width of the desired confidence interval, zγ is the unit-normal score associated with
the confidence coefficient γ and ρXX′ is test reliability (Kolen and Brennan, 2014, pp.402-403).

Incorporating Content Information

In item mapping we define the response probability (RP) level as the probability of a correct
response that is associated with mastery for all items on a test, expressed as a percentage. The
mastery level for a specific item is defined as the scale score for which the probability times 100
of correctly answering the item equals the RP level. Given the overall RP level, the mastery level
for each item in a set of items can be found. Each item is mapped to a particular point on the
score scale that represents the item’s mastery level. The mastery level for items can be found by
regressing probability of correct response on scale score, using procedures such as logistic regression,
or by using an Item Response Theory (IRT) model. Items are usually reported in item maps only
if they discriminate well between examinees who score above and below the score. The outcome
of the item mapping procedure is the specification of test items that represent various scale score
points.
Another way to incorporate content information is to use scale anchoring. The first step in scale
anchoring is to develop an item map. Then, a set of scale score points is chosen, such as a selected
set of percentiles. Subject-matter experts review the items that map near each of the selected points
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and develop general statements that represent the skills of the examinees scoring at each point.
Standard setting procedures are used to find the scale score points that differentiate between adja-
cent levels (von Davier, 2011, pp.47-48).

A multistep process is used to put scores from a new test onto an existing score-reporting scale
(which is built using one of the previous methods). Before the new test form is administered, there
exists a conversion, s(y), for an old test form that takes raw scores, y, on the old test form Y onto
the score-reporting scale. This old-form scaling function, s(y), is independent of the new form.
Once data are collected on the new form, data from the new form and the old form are used to
compute a raw-to-raw equating function, eq(x), that links raw scores x on a new test X to those of
an old test form Y . The final step in the process is to produce a function that converts the equated
X raw scores to the score-reporting scale by composing the equating function, y = eq(x) with s(y).
This puts the raw scores of X onto the reporting scale, s(eq(x)).

1.1.5 Equating in practice

According to (Kolen and Brennan, 2014, p.7), the steps for implementing equating are:

1. Decide on the purpose for equating.

2. Construct alternate forms.

3. Choose a design for data collection. Equating requires that data are collected for providing
information on how the test forms differ statistically.

4. Implement the data collection design. The test is administered and the data are collected as
specified by the design.

5. Choose one or more operational definitions of equating. Equating requires that a choice is
made about what types of relationships between forms are to be estimated.

6. Choose one or more statistical estimation methods.

7. Evaluate the results of equating.

1.1.6 Properties of Equating

Defining desiderable equating properties is an essential step, because these properties have been
used as the principal basis for developing equating procedures. Some properties focus on individu-
als’ scores, others on distributions of scores. At the individual level, ideally, an examinee taking one
form would earn the same reported score regardless of the form taken. At the distribution level,
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for a group of examinees, the same proportion would earn a reported score at or below, say, x on
Form X as they would on Form Y.

Symmetry Property

The symmetry property (Lord, 1980) requires that the equating must be the same regardless of
which test is labeled X and which is labeled Y .

Same Specifications Property

Test forms must be built to the same content and statistical specifications if they are to be
equated (Kolen and Brennan, 2014, p.9).

Equity Properties

True score is the score that an examinee would has earned had there been no measurement
error (Kolen and Brennan, 2014, p.8). Lord’s equity property requires that for every true score T ,
the conditional frequency distribution of the equating function eq(x) given T must be the same as
the conditional frequency distribution of y (Lord, 1980, p.195). To make the description of this
property more precise, define Form X as the new form, X as the random variable score on Form X,
and x as a particular score on Form X; Form Y as the old form, Y as the random variable score on
Form Y, and y as a particular score on Form Y; G as the cumulative distribution of scores on Form
Y for the population of examinees; eq(x) as an equating function that is used to convert scores
on Form X to the scale of Form Y; and G∗ as the cumulative distribution of eq(x) for the same
population of examinees. Formally:

G∗[eq(x) | T ] = G(y | T ), ∀T, (1.5)

Lord’s equity property specified in equation 1.5 is possible only if Form X and Form Y are
essentially identical. However, identical forms typically cannot be constructed in practice.
A less restrictive version of Lord’s equity property is the first-order equity property or weak equity
property, under which examinees with a given true score have the same mean converted score on
Form X as they have on Form Y (Holland and Rubin, 1982b). Define E as the expectation operator,
an equating achieves the first-order equity property if

E[eq(X) | T ] = E(Y | T ), ∀T. (1.6)

Finally, we have the second-order equity property which is said to hold to the extent that the
conditional standard errors of measurement, after equating, are similar for the alternate forms
(Kolen and Brennan, 2014, p.320).
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Observed Score Equating Properties

For the equipercentile equating property (Thorndike, 1971), the converted scores on Form X have
the same distribution as scores on Form Y. Formally:

G∗[eq(x)] = G(y). (1.7)

Under the mean equating property, converted scores on the two forms have the same mean.
Under the linear equating property, converted scores on the two forms have the same mean and
standard deviation. When the equipercentile equating property holds, the linear and the mean
equating must also hold. When the linear equating property holds, the mean equating property
also must hold.

Invariance across groups

Under the invariance across groups property (Lord, 1980), eqY must be the same regardless of
the population from which it is determined.

1.1.7 Data Collection Designs Used in Test Score Equating

There are a number of data collection designs which can be used.

Single Group Design

The single-group design is the simplest data collection design. In the singlegroup design, all
examinees in a single sample of examinees from population P take both tests. The single-group
design can provide accurate equating results with relatively small sample sizes, but in most equating
situations, it is impossible to arrange for enough testing time for every examinee to take more than
one test. The weaknesses of this design are the order effects: what if Form X was administered first
to all examinees followed by Form Y? If fatigue was a factor in examinee performance, then Form
Y could appear more difficult than Form X because examinees would be tired when administered
Form Y; on the other hand, if familiarity with the test increased performance, then Form Y could
appear to be easier than Form X.

Counterbalancing Design

The counterbalancing design is a single group design where one-half of the test booklets are
printed with Form X following Form Y, and the other half are printed with Form Y following Form
X. In packaging, test booklets having Form X first are alternated with test booklets having Form
Y first. When the test booklets are handed out, the first examinee takes Form X first, the second
examinee takes Form Y first, the third examinee takes Form X first, and so on. This spiraling pro-
cess helps to ensure that the examinee group receiving Form Y first is comparable to the examinee
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group receiving Form X first. If the effect of taking Form X after taking Form Y is the same as
the effect of taking Form Y after taking Form X, then the equating relationship will be the same
between the forms taken first as it is between the forms taken second. Otherwise, a differental order
effect is said to have occurred, and the equating relationship would differ. In this case, the data
for the form that is taken second might need to be disregarded, which could lead to instability in
the equating. Other practical problem is that because two forms must be administered to the same
examinees, testing time needs to be doubled, which often is not practically feasible. The primary
benefit in using this design is that it typically has small sample size requirements.

Equivalent (or Random) Groups Design

In this design, examinees are randomly assigned the form to be administered. A spiraling pro-
cess is one procedure that can be used to randomly assign forms using this design. In one method
for spiraling, Form X and Form Y are alternated when the test booklets are packaged. When the
test booklets are handed out, the first examinee takes Form X, the second examinee takes Form
Y, the third examinee takes Form X, and so on. This spiraling process typically leads to randomly
equivalent groups taking Form X and Form Y. When using this design, the difference between
group-level performance on the two forms is taken as a direct indication of the difference in diffi-
culty between the forms. One practical feature of this design is that each examinee takes only one
form of the test, thus minimizing testing time relative to a design in which examinees take more
than one form. In addition, more than one new form can be equated at the same time by including
the additional new forms in the spiraling process. Finally, this design can also be used over time if
we assume randomness. The weaknesses of this design are: it requires that all the forms be available
and administered at the same time; large sample sizes are typically needed; practical issues should
be considered (for example, if examinees were systematically seated boy-girl, boy-girl, then it is
possible that boys get administered Form X and the girls Form Y).

Common-Item Nonequivalent Groups Design (or Nonequivalent Groups with Anchor
Test (NEAT) Design)

In this design, Form X and Form Y have a set of items in common, and different groups of
examinees are administered the two forms. The set of items in common is called ”anchor test”.
This design has two variations. When the score on the set of common items contributes to the ex-
aminee’s score on the test, the set of common items is referred to as internal. The internal common
items are chosen to represent the content and statistical characteristics of the old form. For this
reason, internal common items typically are interspersed among the other items in the test form.
Because the items in an internal anchor test count towards the score, examinees are unlikely to skip
them. On the other hand, once anchor test items have been used in the test administration of the
old form, the items may become susceptible to security breaches and become known by examinees
taking the new form to be equated. The primary problems with internal anchor tests are context
effects, which can occur when common items are administered in different locations (e.g., common
Item 10 in one form is Item 20 in the other form) or under different testing conditions (i.e., paper
and pencil versus computer delivered), or when they are adjacent to different kinds of items in the
two tests.
When the score on the set of common items does not contribute to the examinee’s score on the test,



1.1. BASIC CONCEPTS 9

the set of common items is referred to as external. For best practices, it is important to disguise the
external anchor test so that it appears to be just another section of the test. One reason for this
is that some examinees may identify the anchor test and, knowing that it does not count towards
their final score, skip it or use the time to work on sections that count towards their score. It is
best practice to exclude from the equating analysis any examinees whose anchor test performance
is inconsistent with their total test performance.
The set of common items should be a mini version of the total test form (Kolen and Brennan, 2014,
p.18). Each common item should occupy a similar location (item number) in the two forms and it
should be exactly the same (no wording changes) in the old and new forms.
This design requires that only one test form be administered per test date; in contrast, the equiva-
lent groups design typically requires different test form to be administered to equivalent subgroups
of examinees, and the single group design requires that more than one form be administered to
each examinee. The flexibility of this design has a cost: the larger the differences between examinee
groups, the more difficult it becomes for the statistical methods to separate the group and form
differences.

Nonequivalent Groups with Covariates (NEC) Design

In the NEC design (Wiberg and Bränberg, 2015) a sample of examinees from population P are
administered test form X, and another sample of examinees from population Q are administered
test form Y. For both samples we also have observations on background variables correlated with
the test scores (i.e., covariates). In the last step, a synthetic population is defined and an equating
is performed on this population (Andersson et al., 2013).

1.1.8 Error in Estimating Equating Relationships and Evaluation of the
Results

Estimated equating relationships typically contain estimation error. A major goal in designing
and conducting equating is to minimize such equating error. Random equating error is present
whenever samples from populations of examinees are used to estimate parameters that are involved
in estimating an equating relationship. Random error is typically indexed by the standard error
of equating, which is the standard deviation of score equivalents over replications of the equating
procedure. As the sample size becomes larger, the standard error of equating becomes smaller.
Random error can be controlled by using large samples of examinees, by choosing an equating
design that reduces such error, or both.
Systematic equating error results from violations of the assumptions and conditions of equating and
it is difficult to quantify. Over time, after a large number of test forms are involved in the scaling
and equating process, both random and systematic errors tend to accumulate.
After the equating is conducted, the results should be evaluated. Such evaluation requires that
criteria for equating be identified. Estimating random error using standard error of equating can
be used to develop criteria. Criteria for evaluating equating can also be based on consistency of
results with previous results. The properties of equating can also be used to develop evaluative
criteria.
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1.2 Practical Issues

In this section the practical issues that are involved in conducting equating are described. The
test development process, the data collection and the quality control procedures are discussed in
all their facets.

1.2.1 Test Specifications

The content specifications are developed by considering the purpose of testing, and they provide
an operational definition of the content that the test is intended to measure (Kolen and Brennan,
2014, pp.285–286). The content specifications typically include the content areas to be measured
and the item types to be used, with the number of items per content area and item types to be
used, with the numbers of items per content area and item types specified precisely. A test form
must be sufficiently long to be able to achieve the purpose of the test, and it must provide a large
enough sample of the domain for the alternate forms to be similar: in general, the lenght of a test
depends on the purposes of testing, the heterogeneity of the content measured, and the nature of
the test specifications.
Statistical specifications often are based on classical statistics such as the mean, standard deviation,
and distribution of item difficulties and discriminations for a particular group of examinees.

1.2.2 Characteristics of Common-Item Sets

In constructing common-item sections, the sections should be long enough to represent test content
adequately (Kolen and Brennan, 2014, pp.287–289). The number of common items to use should
consider both content and statistical grounds. For example, because educational tests tend to be
heterogeneous, larger numbers of common items are likely required for equating to be adequate in
practice. Experience suggests the rule of thumb that a common item set should be at least 20% of
the length of a total test containing 40 or more items, unless the test is very long, in which case 30
common items might suffice.

1.2.3 Changes in Test Specifications

Test specifications often evolve over time. For example, a particular content area might become ob-
solete and be replaced by a new area. With small changes, however, testing programs often continue
to attempt to equate, often with only minimal problems. When the test specifications are modified
significantly, scores obtained before the test was modified cannot be considered interchangeable
with scores obtained after the test was modified, even if an equating process is attempted (Kolen
and Brennan, 2014, pp.286–287).

1.2.4 Choosing Among Data Collection Equating Designs

As can be seen in Table 1.1, the choice of a data collection design requires making a series of trade-
offs. The equivalent groups design typically results in the fewest test development complications,
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Table 1.1: Comparison of Data Collection Designs.
Design Test

Administration
Complications

Test Development
Complications

Statistical
Assumptions
Required

Equivalent Groups Moderate-more
than one form
needs to be
spiraled

None Minimal-that
random assignment
to forms is effective

Single Group with
Counterbalancing

Major-each
examinee must
take two forms and
order must be
counterbalanced

None Moderate-that
order effects cancel
out and random
assigment is
effective

Common-Item
Nonequivalent
Groups

Make sure anchor
test is not obvious
for examinees

Representative
common-item sets
need to be
constructed

Stringent-that
common items
measure the same
construct in both
groups, the
examinee groups
are similar, and
required statistical
assumptions hold

Nonequivalent
Groups with
Covariates

None Relevant
Covariates need to
be collected

Covariates capture
the difference
between the groups
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because there is no need to develop common-item sets that are representative of the content of the
total test. If not enough examinees are available for using the equivalent groups design, then the
single group design might be preferable. When only a single form can be administered on a test
date and equating is to be conducted, the choice of equating design is restricted to a design that
uses common items. It can happen that you may not have access to common items, thus you need
to use the NEC design.

1.2.5 Developing Equating Linkage Plans

When conducting equating, a choice is made about which old form or forms are to be used for
equating a new form or forms (Kolen and Brennan, 2014, pp. 292–300). The choice of the old
form or forms has a significant effect on how random and systematic equating error affects score
comparisons across forms. Constructing equating plans can be very complicated. A particular form
might need to be ruled out as an old form because of security concerns or because many of the
examinees to be included in the equating were administered the old form on a previous occasion.
Also, an old form might be found to have bad items (e.g., items that are ambiguous or negatively
discriminating), which could rule out its use in equating.
One procedure that is often used to help solve the problems associated with developing linkage
plans is to use two old forms to equate new forms. This process is referred to as double linking.
In applying double linking, the new forms are equated separately to each of the old forms. The
resulting equating relationships could then be averaged. The process of double linking has several
strengths:

• it provides a built-in stability check on the equating process;

• it suggests problems with statistical assumptions, quality control, administration or security;

• it provides a great equating stability;

• it can reduce random error equating.

To construct equating linkage plans for the common-item non equivalent groups design with
internal common items, the following four rules can be used:

1. Minimize the number of links that affect the comparison of scores on forms given at successive
times;

2. Use links to the same time of the year as often as possible;

3. Minimize the number of links connecting each form back to the initial form;

4. Avoid linking back to the same form too often.

Obviously, all of these rules cannot be followed simultaneously when constructing a plan that
uses single links. Choosing a plan involves a series of compromises that must be made in the context
of the testing program under consideration.
Single Link Plan in Figure 1.1 might be a reasonable compromise: in this plan, rule 1 is followed
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reasonably closely; rule 2 is followed for nearly 1/2 of the forms; rules 3 and 4 are followed reason-
ably closely.
Double linking is useful in common-item nonequivalent groups design because it provides a built-in
check on the equating process leading to greater equating stability; in contrast, when using the
common-item nonequivalent groups design, double linking requires that two sets of common items
which are content representative be used in the development of new forms, which sometimes can
be difficult.

1.2.6 Examinee Groups Used in Equating

Equating relationships typically are group dependent: for this reason, more adequate equating is
expected when the examinees used in the equating study are as similar as possible to the entire
group that is tested (Harris, 1993). In the common-item nonequivalent groups design large differ-
ences between the old and the new groups can cause significant problems in estimating equating
relationships, both for traditional and IRT equating methods. Large groups differences can lead to
failure of the statistical assumptions for any equating method to hold.
A consideration when conducting equating is wheter or not to eliminate examinees who have taken
the test previously. One argument for removing examinees who are repeating the test is that they
might have seen the old form or common items, which could bias the equating. In contrast, exclud-
ing repeating examinees reduces sample size, which might lead to inadequate equating precision.
Other considerations are whether to delete examinees whose scores are very low or who omitted
many items and wheter to eliminate test centers or testing sessions that had administration prob-
lems.

1.2.7 Sample Size Requirements

The smaller the sample size, the more restricted is the class of stable equating methods. The best
practices solution to the small sample size problem may be to report raw scores and state that they
cannot be compared across test forms. Another option may be to make strong assumptions about
the equating function (Kolen and Brennan, 2014, p.303).
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Figure 1.1: An hypothetical single link plan.
Source: (Kolen and Brennan, 2014, p.297).

1.2.8 Test Administration and Standardization Conditions

The conditions under which a test is administered should be standardized in order for tests admin-
istered at different locations and at different times to be comparable to one another (Kolen and
Brennan, 2014, pp.331–333). Some issues related to standardization that could have significant
effects on equating include the following:

1. Changes in the number of items on the test.

2. Changes in timing of the test.

3. Changes in motivation conditions.

4. Security breaches. Examinees are found to have had prior exposure to test forms or items that
appear in the forms involved in the equating, which suggests that a security breach occurred.

5. Scrambling of test items for security purposes. Sometimes, test items within forms are scram-
bled to discourage examinee copying;

6. Changes in the font used in printing the test or in the pagination used.
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7. Use of calculators. If calculators are allowed in some administrations and not in others, then
scores from administrations that allow calculators are not directly comparable to scores from
administrations that do not allow calculators.

1.2.9 Quality Control

Quality control checks are vital to adequate equating (Kolen and Brennan, 2014, p.333). Some of
the quality control checks that can be made are the following:

1. Check that the test administration conditions are followed properly.

2. The answer keys are correctly specified.

3. The equating procedures that are specified are followed correctly.

4. The score distributions and score statistics are consistent with those observed in the past.
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Chapter 2

Equating Models and Evaluation
of the results

At the beginning of this chapter we illustrate traditional equating methods, using the equivalent
groups and the NEAT designs. Then we describe item response theory equating methods and
the kernel method of test equating. Then we expain how to average equating functions and how
to conduct equating with small samples. Subsequently we focus on standard errors of equating.
Finally, we describe some recent ideas in test equating.

2.1 Equivalent groups

The focus of this section is on the methods that are designed to achieve the observed score equating
properties and these methods are developed in the context of the equivalent groups design (the
single group design is not recommended, because order typically has a negative effect on scores).

2.1.1 Traditional Equating Methods

Traditional methods include mean equating, linear equating and equipercentile equating.

Mean Equating

Define Form X as the new form, let X represent the random variable score on form X, and let
x represent a particular score on Form X; and define Form Y as the old form, let Y represent the
random variable score on Form Y, and let y represent a particular score on Form Y. Also, define
µ(X) as the mean on Form X and µ(Y ) as the mean on Form Y for a population of examinees. In
this method, scores on the two forms that are an equal distance away from their respective means
are set equal:

x− µ(X) = y − µ(Y ), (2.1)

from which we obtain:
mY (x) = y = x− µ(X) + µ(Y ), (2.2)

17
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in which mY (x) refers to a score x on Form X transformed to the scale of Form Y using mean
equating.

Linear Equating

Define σ(X) and σ(Y ) as the standard deviations of Form X and Form Y scores, respectively.
In linear equating, standardized deviation scores on the two forms are set equal:

x− µ(X)

σ(X)
=
y − µ(Y )

σ(Y )
, (2.3)

from which we obtain:

lY (x) = y =
σ(Y )

σ(X)
x+ [µ(Y )− σ(Y )

σ(X)
µ(X)]. (2.4)

It’s simple to verify that:

E[mY (x)] = µ(Y ), (2.5)

E[lY (x)] = µ(Y ), (2.6)

σ[lY (x)] = σ(Y ). (2.7)

Therefore, the mean and standard deviation of the Form X scores equated to the Form Y scale
are equal to the mean and standard deviation, respectively, of the Form Y scores.

Equipercentile Equating

The function eY is defined to be the equipercentile equating function in the population if

G∗ = G, (2.8)

where G is the cumulative distribution function of Y in the population and G∗ is the cumulative
distribution function of eY in the same population.
When X and Y are continuous random variables, the equipercentile equating function is: (Holland
and Rubin, 1982a)

eY (x) = G−1[F (x)], (2.9)

where F is the cumulative distribution function of X in the population and G−1 is the inverse of
the cumulative distribution function G.
To be an equating function, eY must be symmetric. By this symmetry property we obtain:

eX(y) = F−1[G(y)], (2.10)
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where F−1 is the inverse of the cumulative distribution function F . In equation 2.10 we find the
equipercentile equating function for converting Form Y scores to the Form X scale.
To conduct equipercentile equating in practice, let nX represent the number of items on Form X
of a test. Define X as a random variable representing test scores on form X that can take on
the integer values 0, 1, ..., nX . Define f(x) as the discrete density function and F (x) as the dis-
crete cumulative distribution function. Consider a possible noninteger value of x. Define x∗ as the
integer that is closest to x such that x∗−.5 ≤ x < x∗+.5. The percentile rank function for Form X is

P (x) = 100{F (x∗ − 1) + [x− (x∗ − .5)][F (x∗)− F (x∗ − 1)]},
− .5 ≤ x < nX + .5,

= 0, x < .5,

= 100, x ≥ nX + .5.

(2.11)

To find the inverse of the percentile rank function, which is referred to as the percentile function,
solve equation 2.11 for x. For a given percentile rank P ∗, the percentile is

xU (P ∗) = P−1[P ∗] =
P ∗/100− F (x∗U − 1)

F (x∗U )− F (x∗U − 1)
+ (x∗U − .5), 0 ≤ P ∗ < 100,

= nX + .5, P ∗ = 100.

(2.12)

In equation 2.12, for 0 ≤ P ∗ < 100, x∗U is the smallest integer score with a cumulative percent
100[F (x)] that is greater than P ∗. An alternative expression for the percentile is

xL(P ∗) = P−1[P ∗] =
P ∗/100− F (x∗L)

F (x∗L + 1)− F (x∗L)
+ (x∗L + .5), 0 < P ∗ ≤ 100,

= −.5, P ∗ = 0.

(2.13)

In equation 2.13, for 0 < P ∗ ≤ 100, x∗L is the largest integer score with a cumulative percent
100[F (x)] that is less than P ∗. In equipercentile equating, the interest is in finding a score on Form
Y that has the same percentile rank as a score on Form X. Referring to y as a score on Form Y, let
nY refer to the number of items on Form Y, let g(y) refer to the discrete density of y, let G(y) refer
to the discrete cumulative distribution of y, let Q(y) refer to the percentile rank of y, and let Q−1

refer to the inverse of the percentile rank function for Form Y. Then the Form Y equipercentile
equivalent of score x on Form X is

eY (x) = y = Q−1[P (x)], −.5 ≤ x ≤ nX + .5. (2.14)
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To find eY (x) given by equation 2.14 use

eY (x) =
P (x)/100−G(y∗U − 1)

G(y∗U )−G(y∗U − 1)
+ (y∗U − .5), 0 ≤ P (x) < 100,

= nY + .5, P (x) = 100.

(2.15)

In equation 2.15, for 0 ≤ P (x) < 100, y∗U is the smallest integer score with a cumulative percent
100[G(y)] that is greater than P (x).

Conducting equipercentile equating using equation 2.15 always results in equated scores in the
range −.5 ≤ eY (x) < nY + .5. In equipercentile equating the equated scores on Form X would have
the same distribution as the scores on Form Y: however, when test scores are discrete, it isn’t true.

Estimating Observed Score Equating Relationships

The methods have been described using population parameters, but in practice sample statistics
are substituted for the parameters. One estimation problem is how to calculate the function P−1

when the frequency at some score points is zero. A procedure is to add a small relative frequency
to each score, and then adjust the relative frequency so they sum to one:

ĝadj(y) = ĝ(y)+adj
1+(nY +1)adj ,

where ĝ(y) is the relative frequency that was observed and adj is our small quantity (Kolen and
Brennan, 2014, p.46).

2.1.2 Smoothing in Equipercentile Equating

When sample percentiles and percentile ranks are used to estimate equipercentile relationships,
equating is not sufficiently precise because of sampling error. Smoothing methods have been devel-
oped that produce estimates of the equipercentile relationships more precise than the unsmoothed
relationships.
Define xi as a particular score on Form X and eY (xi) as the population equipercentile equivalent
at that score, and define êY (xi) as the sample estimate. Also assume that E[êY (xi)] = eY (xi).
Define t̂Y (xi) as an alternative estimator of eY (xi) that results from using a smoothing method
and assume that E[t̂Y (xi)] = tY (xi).
Total error can be partitioned into random error (t̂Y (xi)− tY (xi)) and systematic error (tY (xi)−
eY (xi)) components as follows:

t̂Y (xi)− eY (xi) = [t̂Y (xi)− tY (xi)] + [tY (xi)− eY (xi)]. (2.16)
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In terms of squared quantities we have:

mse[t̂Y (xi)] = E[t̂Y (xi)− eY (xi)]
2 = E[t̂Y (xi)− tY (xi)]

2 + [tY (xi)− eY (xi)]
2

= var[t̂Y (xi)] + {bias[tY (xi)]}2.
(2.17)

Smoothing methods are designed to produce smooth functions which contain less random er-
ror than that for unsmoothed equipercentile equating, but they can introduce systematic error:
smoothing at score point xi is useful if mse[t̂Y (xi)] is less than var[êY (xi)].
A smoothing method should improve estimation and it should be flexible enough to handle many
distributions and equipercentile relationships. Finally, there should be a statistical framework for
studying fit.

Presmoothing Methods

Presmoothing methods are used to smooth the score distributions. One important property is
moment preservation: it means that the smoothed distribution has at least some of the same central
moments as the observed distribution.

Polynomial Log-Linear Method fits polynomial functions to the log of the sample density: (Dar-
roch and Ratcliff, 1972)

log[NXf(x)] = ω0 + ω1x+ ω2x
2 + ...+ ωC∗x

C∗ . (2.18)

The ω parameters in this model can be estimated by the method of maximum likelihood. The
resulting fitted distribution has the moment preservation property that the first C∗ moments of the
fitted distribution are identical to those of the sample distribution. For assessing the fit of these
models, likelihood ratio chi-square goodness-of-fit statistics are calculated for each C∗ that is fit
and are tested for significance. In addition, because the models are hierarchical, likelihood ratio
difference chi-squares can be tested for significance. In model selection, the simplest model that
adequately fits the distribution might be preferred.

Strong True Score Methods require the use of a parametric model for true scores. The beta4
method is one of these methods and it results in a smooth distribution of observed scores (Lord,
1965). In the development of the beta4 procedure, the true score distribution, ψ(τ), is assumed to
be four-parameter beta and the conditional distribution of observed score given true score, f(x | τ),
is assumed to be either binomial or compound binomial. The observed score distribution that re-
sults from the use of the following equation:
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f(x) =

∫ 1

0

f(x | τ)ψ(τ) dτ, (2.19)

is referred as the beta4 distribution. For estimating this distribution and the associated true score
distribution we can use the method of the moments. One important property of these method is
that the first four central moments of the fitted distribution agree with those of the sample dis-
tribution. The fit of the model can be evaluated by using statistical methods, such as a standard
chi-square goodness-of-fit. The degrees of freedom are the number of score points (K+1, to account
for a score of 0), minus 1, minus the number of parameters fit.

Postsmoothing Methods

In postsmoothing methods, the equipercentile equivalents, êY (x), are smoothed directly. The
method to be described makes use of cubic smoothing splines (Kolen, 1984). For each integer score,
xi, the spline function is

d̂Y (x) = v∗0i + v∗1i(x− xi) + v∗2i(x− xi)2 + v∗3i(x− xi)3, xi ≤ x < xi + 1. (2.20)

The weights v∗0i, v
∗
1i, v

∗
2i, v

∗
3i change from one score point to the next, so that there is a different

cubic equation defined between each integer score. At each score point,xi, the cubic spline is con-
tinuous. The spline is fit over the range of scores xlow to xhigh, 0 ≤ xlow ≤ x ≤ xhigh ≤ nX , where
xlow is the lower integer score in the range and xhigh is the upper integer score in the range.
Defined O as a parameter which controls the degree of smoothing, the function, over score points,
satisfies the following constraint:

∑high
i=low

[
d̂Y (xi)−êY (xi)
ŝe[êY (xi)]

]2

xhigh − xlow + 1
≤ O. (2.21)

In this equation, the term ŝe[êY (xi)] is the estimeted standard error of equipercentile equating.
The use of the standard error results in the smoothed and unsmoothed relationships being closer
when the standard error is small, and allows them to be farther apart when the standard error
is large. The parameter O ≥ 0 is set by the investigator and its values between 0 and 1 produce
adequate results in practice.

2.2 NEAT design

In this section the methods that are designed to achieve the observed score equating properties are
developed in the context of the NEAT design.
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2.2.1 Linear Methods with the NEAT design

Denote the common-item set and the random variable score on the common-item set as V . V can
be an internal or an external set of common items. Assume that X and V are taken by a group of
examinees from Population 1, and Y and V are taken by a group of examinees from Population 2.
An equating function is viewed as being defined for a single population. For this reason, Populations
1 and 2 must be combined to obtain a single population for defining an equating relationship. In the
synthetic population Populations 1 and 2 are weighted by w1 and w2, respectively, where w1+w2 = 1
and w1, w2 ≥ 0.
For the NEAT design, the linear equation for equating observed scores on X to the scale of observed
scores on Y is:

lY s(x) =
σs(Y )

σs(X)
[x− µs(X)] + µs(Y ), (2.22)

where s indicates the synthetic population. The four synthetic population parameters in equation
2.22 can be expressed in terms of parameters for Populations 1 and 2 as follows:

µs(X) = w1µ1(X) + w2µ2(X), (2.23)

µs(Y ) = w1µ1(Y ) + w2µ2(Y ), (2.24)

σ2
s(X) = w1σ

2
1(X) + w2σ

2
2(X) + w1w2[µ1(X)− µ2(X)]2, (2.25)

σ2
s(Y ) = w1σ

2
1(Y ) + w2σ

2
2(Y ) + w1w2[µ1(Y )− µ2(Y )]2, (2.26)

where the subscripts 1 and 2 refer to Populations 1 and 2, respectively. For the common-item
nonequivalent groups design, X is not administered to examinees in Population 2, and Y is not ad-
ministered to examinees in Population 1. Therefore, µ2(X), σ2

2(X), µ1(Y ), and σ2
1(Y ) in equations

2.23 - 2.26 cannot be estimated directly. The methods considered next make different statistical
assumptions in order to express these four parameters as functions of directly estimable parameters.

Tucker Method

The Tucker method makes two types of assumptions in order to estimate the parameters in
equations 2.23 - 2.26 that cannot be estimated directly (Gulliksen, 1950).
The first type of assumption concerns the regressions of total scores on common-item scores. First,
the regression of X on V is assumed to be the same linear function for both Populations 1 and 2.
A similar assumption is made for Y on V . For X and V the regression assumptions are:

α2(X | V ) = α1(X | V ), (2.27)
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and

β2(X | V ) = β1(X | V ), (2.28)

where α1(X | V ) = σ1(X,V )
σ2
1(V )

and β1(X | V ) = µ1(X) − α1(X | V )µ1(V ) are the slope and the

intercept, respectively, for the regression of X on V in Population 1 and they are directly observed;

α2(X | V ) = σ2(X,V )
σ2
2(V )

and β2(X | V ) = µ2(X) − α2(X | V )µ2(V ) are the slope and the intercept,

respectively, for the regression of X on V in Population 2 and they are not directly observed.
For Y and V the regression assumptions are:

α1(Y | V ) = α2(Y | V ), (2.29)

and

β1(Y | V ) = β2(Y | V ). (2.30)

The second type of assumption concern the conditional variances of total scores given common-
item scores: the conditional variance of X given V is assumed to be the same for Populations 1
and 2; a similar statement holds for Y given V . These assumptions are:

σ2
2(X)[1− ρ2

2(X,V )] = σ2
1(X)[1− ρ2

1(X,V )], (2.31)

and

σ2
1(Y )[1− ρ2

1(Y, V )] = σ2
2(Y )[1− ρ2

2(Y, V )], (2.32)

where ρ is a correlation and the quantities that are not directly observable are to the left of the
equalities.

The synthetic population means and variances in equations 2.23 - 2.26 can be show to be: (Kolen
and Brennan, 2014, pp.107-108)

µs(X) = µ1(X)− w2γ1[µ1(V )− µ2(V )], (2.33)
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µs(Y ) = µ2(Y ) + w1γ2[µ1(V )− µ2(V )], (2.34)

σ2
s(X) = σ2

1(X)− w2γ
2
1 [σ2

1(V )− σ2
2(V )] + w1w2γ

2
1 [µ1(V )− µ2(V )]2, (2.35)

σ2
s(Y ) = σ2

2(Y )− w1γ
2
2 [σ2

1(V )− σ2
2(V )] + w1w2γ

2
2 [µ1(V )− µ2(V )]2, (2.36)

where the γ − terms are the regression slopes

γ1 = α1(X | V ) =
σ1(X,V )

σ2
1(V )

, (2.37)

γ2 = α2(X | V ) =
σ2(X,V )

σ2
2(V )

. (2.38)

The Tucker linear equating function is obtained by using the results from equations 2.33-2.38
in equation 2.22.

Levine Observed Score Method

This method uses equation 2.22 to related observed scores on X to the scale of observed scores
on Y (Levine, 1955). However, the assumptions for this method pertain to true scores TX , TY and
TV :

X = TX + EX , (2.39)

Y = TY + EY , (2.40)

V = TV + EV , (2.41)

where EX , EY , and EV are errors that have zero expectations and are uncorrelated with true scores.
The Levine method assumes that X, Y , and V are all measuring the same thing:

ρ1(TX , TV ) = ρ2(TX , TV ) = 1, (2.42)
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and

ρ1(TY , TV ) = ρ2(TY , TV ) = 1. (2.43)

The regression of TX on TV is assumed to be the same linear function for both Populations 1
and 2, and a similar assumption is made for the regression of TY on TV . The slope of TX on TV
is α1(TX | TV ) = ρ1(TX ,TV )σ1(TX)

σ1(TV ) , but, using the equation 2.42, we have α1(TX | TV ) = σ1(TX)
σ1(TV ) .

Similarly, α2(TX | TV ) = σ2(TX)
σ2(TV ) . Using these results, the assumption of equal true score regression

slopes for TX on TV in Populations 1 and 2 is:

σ2(TX)

σ2(TV )
=
σ1(TX)

σ1(TV )
. (2.44)

In the same manner, for the slopes of TY on TV :

σ1(TY )

σ1(TV )
=
σ2(TY )

σ2(TV )
. (2.45)

The assumption of equal true score regression intercepts for TX on TV in Populations 1 and 2
is:

µ2(X)− σ2(TX)

σ2(TV )
µ2(V ) = µ1(X)− σ1(TX)

σ1(TV )
µ1(V ). (2.46)

Similarly, for the intercepts of TY on TV :

µ1(Y )− σ1(TY )

σ1(TV )
µ1(V ) = µ2(Y )− σ2(TY )

σ2(TV )
µ2(V ). (2.47)

The Levine method also assumes that the measurement error variance for X is the same for
Populations 1 and 2. A similar assumption is made for Y and V . The error variance assumptions are:

σ2
2(X)− σ2

2(TX) = σ2
1(X)− σ2

1(TX), (2.48)

σ2
1(Y )− σ2

1(TY ) = σ2
2(Y )− σ2

2(TY ), (2.49)
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and

σ2
1(V )− σ2

1(TV ) = σ2
2(V )− σ2

2(TV ). (2.50)

It can be shown that the synthetic population means and variances in equations 2.23-2.26 are
given by equations 2.33-2.34 with (Kolen and Brennan, 2014, p.112)

γ1 =
σ1(TX)

σ1(TV )
, (2.51)

and

γ2 =
σ2(TY )

σ2(TV )
. (2.52)

The γ-terms in equations 2.51-2.52 can be estimated using the reliability of X, Y , and V as
follows:

γ1 =
σ1(X)

√
ρ1(X,X ′)

σ1(V )
√
ρ1(V, V ′)

, (2.53)

and

γ2 =
σ2(Y )

√
ρ2(Y, Y ′)

σ2(V )
√
ρ2(V, V ′)

. (2.54)

Levine True Score Method

The following equation is used to equate true scores on X to the scales of true scores on Y :

lY s(tX) =
σs(TY )

σs(TX)
[tX − µs(X)] + µs(Y ). (2.55)

Equations 2.33 and 2.34 are still valid for this method, with the γ-terms given by equations
2.51 and 2.52. Using the same assumptions about true scores discussed previously, we obtain the
variances of TX and TY :
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σ2
s(TX) = γ2

1σ
2
s(TV ), (2.56)

and

σ2
s(TY ) = γ2

2σ
2
s(TV ), (2.57)

where

σ2
s(TV ) = w1σ

2
1(TV ) + w2σ

2
2(TV ) + w1w2[µ1(V )− µ2(V )]2. (2.58)

As with the Levine observed score method, σ1(X)
√
ρ1(X,X ′) can be used for σ1(TX), and

corresponding expressions can be used for the other true score standard deviations. Then, given
estimates of the required reliabilities, lY s(tX) in equation 2.55 can be determined.
From the equations 2.56 and 2.57, the slope of the equating relationship lY s(tX) in equation 2.55 is:

σs(TY )

σs(TX)
=
γ2

γ1
. (2.59)

From equations 2.55, 2.59, 2.33 and 2.34, the intercept is:

µs(Y )− (
γ2

γ1
)µs(X) = µ2(Y )− (

γ2

γ1
)µ1(X) + γ2[µ1(V )− µ2(V )]. (2.60)

From equations 2.59 and 2.60 the linear equating relationship for Levine’s true score method
can be expressed as

lY (tX) = (
γ2

γ1
)[tX − µ1(X)] + µ2(Y ) + γ2[µ1(V )− µ2(V )], (2.61)

which gives the same Form Y equivalents as equation 2.55. From equation 2.61 we can note that
Levine’s true score method does not require the conceptual framework of a synthetic population (s
does not appear as a subscript of l) and is invariant with respect to the weights w1 and w2.

In equations 2.55 and 2.61 observed scores are used in place of true scores. Levine’s true score
method applied to observed scores has a property called First-Order Equity : for the population of
persons with a particular score on Y , the expected value of the linearly transformed scores on X
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equals the expected value of the scores on Y , and these statement holds for all true scores on Y .In
formal terms:

E[lY (X) | ψ∗(TX) = τ ] = E[Y | TY = τ ] ∀τ, (2.62)

where ψ∗ is a function that relates true scores on X to true scores on Y .

Braun-Holland Linear Method

This method uses the mean and standard deviation which arise from using the frequency esti-
mation assumptions to conduct linear equating (Holland and Rubin, 1982a). Under the assumption
2.69 we have:

µs(X) =
∑
x

xfs(x), (2.63)

and

σ2
s(X) =

∑
x

[x− µs(X)]2fs(x), (2.64)

where fs(x) is taken from equation 2.77. The expressions in equation 2.63 and 2.64 can be substi-
tuted into equation 2.22: the resulting equation is the Braun-Holland linear method.

2.2.2 Equipercentile Methods with NEAT design

Define f(x, v) as the joint distribution of total score and common-item score, f(x) as the marginal
distribution of scores on Form X, h(v) as the marginal distribution of scores on the common items
and f(x | v) as the conditional distribution of scores on Form X for examinees earning a particular
score on the common items. It can be shown that:

f(x | v) =
f(x, v)

h(v)
. (2.65)

From equation 2.65, it follows that

f(x, v) = f(x | v)h(v). (2.66)



30 CHAPTER 2. EQUATING MODELS AND EVALUATION OF THE RESULTS

Frequency Estimation Method

The distribution for the synthetic population are a weighted combination of the distributions
for each population: (Thorndike, 1971)

fs(x) = w1f1(x) + w2f2(x), (2.67)

and

gs(y) = w1g1(y) + w2g2(y), (2.68)

where the subscript s refers to the synthetic population, the subscript 1 refers to the population
administered Form X, and subscript 2 refers to the population administered Form Y. f and g refer
to the distributions for Form X and Form Y, respectively, and w1 and w2 (w1 + w2 = 1) are used
to weight Populations 1 and 2 to form the synthetic population.
Direct estimates of f2(x) and g1(y) are unavailable: for this reason, statistical assumptions need to
be invoked to obtain expressions for these functions. The assumptions made are:

f1(x | v) = f2(x | v) (2.69)

and

g1(y | v) = g2(y | v), (2.70)

which are true ∀v. From equation 2.66, the following equalities hold:

f2(x, v) = f2(x | v)h2(v), (2.71)

and

g1(y, v) = g1(y | v)h1(v). (2.72)
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Combining the equalities in equations 2.71 and 2.72 with the assumptions in equation 2.69 and
2.70 we obtain:

f2(x, v) = f1(x | v)h2(v) (2.73)

and

g1(y, v) = g2(y | v)h1(v). (2.74)

The associated marginal distributions can be found as follows:

f2(x) =
∑
v

f2(x, v) =
∑
v

f1(x | v)h2(v), (2.75)

and

g1(y) =
∑
v

g1(y, v) =
∑
v

g2(y | v)h1(v). (2.76)

The expressions in equation 2.75 and 2.76 can be substituted into equation 2.67 and 2.68 to
provide expressions for the synthetic populations as follows:

fs(x) = w1f1(x) + w2

∑
v

f1(x | v)h2(v), (2.77)

gs(y) = w1

∑
v

g2(y | v)h1(v) + w2g2(y). (2.78)

Define Fs(x) and Gs(y) as the cumulative distributions, respectively, of fs(x) and gs(y); Ps and
Qs as the percentile rank function, respectively, for Form X and Form Y; and P−1

s and Q−1
s as the

percentile function, respectively, for Form X and Form Y.
The equipercentile function for the synthetic population is

eY s(x) = Q−1
s [Ps(x)]. (2.79)
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Chained Equipercentile Equating

The Chained Equipercentile Equating involves the following steps: (Thorndike, 1971)

1. Find the equipercentile equating relationship (eV 1(x)) for converting scores on Form X to the
common items based on examinees from Population 1.

2. Find the equipercentile equating relationship (eY 2(v)) for converting scores on the common
items to scores on Form Y based on examinees from Population 2.

3. To find the Form Y equipercentile equivalent of a Form X score, take

eY (chain) = eY 2[eV 1(x)]. (2.80)

The chained equipercentile equating has at least two theoretical shortcomings. First, this
method involves equating a long test to a short test. Second, this method does not directly incorpo-
rate a synthetic population, so it is not clear for what population the relationship holds. However,
the method might be useful in situations where the two groups differ, because it does not explicitly
require that the two populations be very similar.

2.3 Equating with IRT

Equating using IRT is a three-step process: in the first step, item parameters are estimated; in the
second step, parameter estimates are scaled to a base IRT scale using a linear transformation; in the
third step, if number-correct scoring is used, number-correct scores on the new form are converted
to the number-correct scale on an old form and then to scale scores.

2.3.1 Transformations of IRT Scales

In the equivalent groups design, the IRT parameters for Form X can be estimated separately from
the parameters for Form Y: if the same scaling convention for ability is used in the separate estima-
tions, then the parameter estimates for the two forms are assumed to be on the same scale without
further transformation.
In the counterbalancing design, the parameters for all examinees on both forms can be estimate
together: for this reason, the parameter estimates are assumed to be on the same scale.
When conducting equating with the NEAT design, the parameter estimates that result from IRT
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parameter estimation procedures are often on different IRT scales (this is true because the exami-
nees who took Form X are not considered to be equivalent to the examinees who took Form Y).
When the IRT model holds, a linear equation can be used to convert IRT parameter estimates to
the same scale. Define Scale I and scale J as three-parameter logistic IRT scales that differ by a
linear transformation. Then the θ-values for the two scales are related as follows:

θJj = A∗θIj +B∗, (2.81)

where A∗ and B∗ are constants in the linear equation and θJj and θIj are values of θ for individual
j on Scale J and Scale I. The item parameters on the two scales are related as follows:

aJi =
aIi
A∗

, (2.82)

bJi = A∗bIi +B∗, (2.83)

cJi = cIi, (2.84)

where aJi, bJi, and cJi are the item parameters for the item i on Scale J and aIi, bIi, and cIi are
the item parameters for the item i on Scale I. We have:

A∗ =
σ(bJ)

σ(bI)
, (2.85a)

=
µ(aI)

µ(aJ)
, (2.85b)

=
σ(θ(bJ))

σ(θ(bI))
, (2.85c)

B∗ = µ(bJ)−A∗µ(bI), (2.86a)

= µ(bJ)−A∗µ(bI). (2.86b)

The means µ(bJ), µ(bI), µ(aI), and µ(aJ) in these equations are defined over one or more items
with parameters that are expressed on both Scale I and Scale J . The standard deviations σ(bJ)
and σ(bI) are defined over two or more items with parameters that are expressed on both Scale I
and Scale J . The standard deviations σ(θ(bJ)) and σ(θ(bI)) are defined over two or more examinees
with parameters that are expressed on both Scale I and Scale J .
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The mean/sigma method uses the means and standard deviations of the b-parameter estimates from
the common items in place of the parameters in equations 2.85a and 2.86a (Marco, 1977).
The mean/mean method uses the mean of the a-parameter estimates for the common items in place
of the parameters in equations 2.85b to estimate the A∗-constant and the mean of the b-parameter
estimates for the common items in place of the parameters in equations 2.86a to estimate the B∗-
constant (Loyd and Hoover, 1980). The values of A∗ and B∗ then can be substituted into equations
2.81-2.84 to obtained the rescaled parameter estimates (which are often referred to as being cali-
brated).
One potential problem with the methods considered so far arises when various combination of a−,
b− and c−parameter estimates produce almost identical item characteristic curves over the range
of ability at which most examinees score. This problem arises because the scale conversion methods
described so far do not consider all of the item parameter estimates simultaneously. As a response
to this problem there are the so called characteristic curve methods (Haebara (1980) and Stocking
and Lord (1983)). Note that, for ability Scales I and J ,

pji(θJj ; aJi, bJi, cJi) = pji

(
A∗θIj +B∗;

aIi
A∗

, A∗bIi +B∗, cIi

)
, (2.87)

for examinee j and item i. Equation 2.87 states that the probability that the examinees of a given
ability will answer a particular item correctly is the same regardless of the scale that is used to
report the scores. If estimates are used in place of the parameters in equation 2.87, then there is
no guarantee that the equality will hold over all items and examinees for any A∗ and B∗. This lack
of equality is exploited by the characteristic curve methods.

Haebara Approach

The function used by Haebara (1980) to express the difference between the item characteristic
curves is the sum of the squared difference between the item characteristic curves for each item for
examinees of a particular ability. For a given θj we have:

Hdiff(θj) =
∑
i:V

[
pji(θJj ; âJi, b̂Ji, ĉJi)− pji

(
θJj ;

âIi
A∗

, A∗b̂Ii +B∗, ĉIi

)]2

. (2.88)

The estimation process proceeds by finding A∗ and B∗ that minimize the following criterion:

Hcrit =
∑
j

Hdiff(θj). (2.89)

Stocking and Lord Approach

Stocking and Lord (1983) used the sum, over items, of the squared difference,
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SLdiff(θj) =

[∑
i:V

pji(θJj ; âJi, b̂Ji, ĉJi)−
∑
i:V

pji

(
θJj ;

âIi
A∗

, A∗b̂Ii +B∗, ĉIi

)]2

. (2.90)

The estimation process proceeds by finding A∗ and B∗ that minimize the following criterion:

SLcrit =
∑
j

SLdiff(θj). (2.91)

The approach to solving for A∗ and B∗ in equations 2.89 and 2.91 is a computationally intensive
iterative approach.

2.3.2 Comparisons Among Scale Transformation Methods

Research comparing the characteristic curve methods to the mean/sigma and mean/mean meth-
ods has generally found that the characteristic curve methods produce more stable results than
the mean/sigma and mean/mean methods (Hanson and Béguin (2002)). In addition, Ogasawara
(2000) found that the mean/mean method was more stable than the mean/sigma method.

2.3.3 Equating

Using estimated IRT abilities results in several practical problems: the whole 0/1 response string,
rather than the number-correct score, is used to estimate θ, and this could involve that examinees
with the same number-correct score receive different estimated abilities; estimates of θ are difficult
to compute and costly to obtain; the estimated θ-values with the three-parameter logistic model
are subject to greater amounts of measurement error for high and low ability examinees than for
middle ability examinees. For these reasons, tests are often scored number-correct.

2.3.4 IRT true score equating

Four requirements are important for equating two unidimensional test x and y that measure the
same ability (Lord, 1980): equity, invariance across groups, symmetry and same specifications (see
subsection 1.1.6). An equating of true scores can satisfy the listed requirements. Lord (1980) de-
scribed true-score equating as follows. If test X and test Y are both measures of the same ability
θ, then their number-right true scores are related to θ by their test characteristic functions:

τX(θ) =
∑
i:X

pi(θ), τY (θ) =
∑
i:Y

pi(θ), (2.92)
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where pi(θ) are the item response curves. Equations 2.92 are parametric equations for the relation
between τX(θ) and τY (θ). A single equation for the relationship is found (in principle) by eliminat-
ing θ from the two parametric equations. In practice, this relationship can be estimated by using
estimated item parameters to approximate the pi(θ) and then substituting a series of arbitrary
values of θ into 2.92 and computing τX(θ) and τY (θ) for each θ. The resulting paired values define
τX(θ) as a function of τY (θ) (or vice versa) and constitute an equating of these true scores. Since
τX(θ) and τY (θ) are each monotonic increasing functions of θ, it follows that τX(θ) is a monotonic
increasing function of τY (θ).

Kolen and Brennan (2014) described true-score equating using the three parameter logistic IRT
model. The number-correct true score on Form X that is equivalent to θj is defined as

τX(θj) =
∑
i:X

pji(θj ; ai, bi, ci), (2.93)

The number-correct true score on Form Y that is equivalent to θj is defined as

τY (θj) =
∑
i:Y

pji(θj ; ai, bi, ci), (2.94)

Equations 2.93 and 2.94 are referred to as test characteristic curves for Form X and Form Y. True
scores on Form X and Y are associated with a value of θ only over the following ranges:

∑
i:X

ci < τX < nX ,
∑
i:Y

ci < τY < nY , (2.95)

because, when using the three-parameter logistic IRT model, as θ approaches −∞, pji approaches
ci and not 0.
For a given θj , true scores τX(θj) and τY (θj) are considered to be equivalent. The Form Y true
score equivalent of a given true score on Form X is

irtY (τX) = τY (τ−1
X ),

∑
i:X

ci < τX < nX , (2.96)

where τ−1
X is defined as the θj corresponding to true score τX . Equation 2.96 implies that true score

equating is a three-step process:

1. Specify a true score τX on Form X.

2. Find the θj that corresponds to that true score (τ−1
X ).

3. Find the true score on Form Y, τY , that corresponds to that θj .

Whereas Step 1 and Step 3 are straightforward, Step 2 requires the use of the Newton-Raphson
method. To apply the Newton-Raphson method, an initial value is chosen for θ, which is referred
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to as θ−. Given func(θ) and func′(θ), which are, respectively, a function of the parameter θ and
its first derivative, a new value for θ is calculated as

θ+ = θ− − func(θ)

func′(θ)
. (2.97)

Typically, θ+ will be closer to the root of the equation than θ−. The new value then is redefined
as θ−, and the process is repetead until θ+ and θ− are equal at a specified level of precision.
To apply this method to IRT true-score equating, let τX be the true score whose equivalent is to
be found. From equation 2.93 it follows that θj is to be found such that the expression

func(θj) = τX −
∑
i:X

pji(θj ; ai, bi, ci), (2.98)

equals 0. The Newton-Raphson method can be employed to find this θj using the first derivative
of func(θj) with respect to θj , which is

func′(θj) = −
∑
i:X

p′ji(θj ; ai, bi, ci), (2.99)

where p′ji(θj ; ai, bi, ci) is the first derivative of pji(θj ; ai, bi, ci) with respect to θj and it is defined as:

p′ji(θj ; ai, bi, ci) =
1.7ai(1− pji)(pji − ci)

(1− ci)
, (2.100)

where pji = pji(θj ; ai, bi, ci). The resulting expressions for func(θj) and func′(θj) are substituted
into equation 2.98.

In practice, the true score equating relationship is used to convert number-correct observed scores
on Form X to number-correct observed scores on Form Y, because the true scores of examinees are
never known. Remembering that the range of possible true score on Form X is

∑
i:X ci < τX < nX ,

a procedure is needed for converting Form X scores outside this range when using true score equat-
ing with observed scores. Lord (1980) and Kolen (1981) presented ad hoc procedures to handle this
problem.
We first describe the Lord (1980) ad hoc procedure. Consider applying the IRT observed-score
equating (see below) just to a hypothetical group of examinees all at ability level θ = −∞. The
observed scores for such a group of examinees have a mean of

∑
i ci and a variance of

∑
i ci(1− ci)

(Lord, 1980, p.45). For x scores below
∑
i:X ci, let us take the equating function y(x) to be a linear

function of x chosen so that both y and y(x) have the same mean and also the same variance in our
hypothetical subgroup of examinees. This means we shall use a conventional ”mean and sigma”
linear equation based on this subgroup of examinees. This equating requires that
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y(x)−
∑
i:Y ci√∑

i:Y ci(1− ci)
=

x−
∑
i:X ci√∑

i:X ci(1− ci)
, (2.101)

From equation 2.101 we obtain

y(x) =

√∑
i:Y ci(1− ci)√∑
i:X ci(1− ci)

(x−
∑
i:X

ci) +
∑
i:Y

ci. (2.102)

We use 2.102 for test x scores below
∑
i:X ci; we use true-score equating 2.92 above

∑
i:X ci.

From equation 2.102 we note that when x =
∑
i:X ci, we find that y(x) =

∑
i:Y ci. The 2.102 is a

good practical solution to an awkward problem.
We now describe the Kolen (1981) ad hoc procedure. It is as follows:

1. Set a score of 0 on Form X equal to a score of 0 on Form Y .

2. Set a score of the sum of the ci-parameters on Form X equal to the sum of the ci-parameters
on Form Y .

3. Use linear interpolation to find equivalents between these points.

4. Set a score of nX on Form X equal to a score of nY on Form Y .

To formalize this procedure, define τ∗X as a score outside the range of possible true scores, but
within the range of possible observed scores. Equivalent are defined by the following equation:

irtY (τ∗X) =

∑
i:Y ci∑
i:X ci

τ∗X , 0 ≤ τ∗X ≤
∑
i:X

ci,

= nY , τ∗X = nX .

(2.103)

2.3.5 IRT observed score equating

IRT observed score equating uses the IRT model to produce an estimated distribution of observed
number-correct scores on each form, which then are equated using equipercentile methods. This
method requires explicit specification of the distribution of ability in the population of examinees.

Lord (1980) described the IRT observed score equating as follows. We start with an estimate

ψ̂(θ) of the distribution ψ(θ) of θ in some specific group. The actual distribution of θ̂o in the group
is an approximation to ψ(θ). The distribution of observed score x for the specific group can be
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estimated by

φ̂x(x) =
1

N

O∑
o=1

φ̂x(x | θ̂o), (2.104)

where o = 1, ..., O indexes the examinees in the specified group. If ψ̂(θ) is continuous the estimated
φ(x) is obtained by

φ̂x(x) =

∫ +∞

−∞
φ̂x(x | θ)ψ̂(θ) dθ. (2.105)

The function φ̂x(x | θ̂o) is given in (Lord, 1980, p.45). Similar equation apply for test y. Furthe-
more, since x and y are independently distributed when θ is fixed, the joint distribution of scores
x and y for the specified group is estimated by

φ̂(x, y) =
1

O

O∑
o=1

φ̂x(x | θ̂o)φ̂y(y | θ̂o), (2.106)

or by

φ̂(x, y) =

∫ +∞

−∞
φ̂x(x | θ)φ̂y(y | θ)ψ̂(θ) dθ. (2.107)

The integrand of 2.107 is the trivariate distribution of θ, x and y. Since θ determines the true
scores τX(θ) and τY (θ), this distribution also represents the joint distributions of the four variables
τX(θ), τY (θ), x and y. The joint distribution contains all possible information about the relation
of x to y. A plausibile procedure is to determine the equipercentile relationship between x and y
from 2.106 or 2.107 and to treat this as an approximate equating.

Kolen and Brennan (2014) described the IRT observed score equating as follows. Define
fr(x | θj) as the distribution of number-correct scores over the first r items for examinees of ability
θj . Define f1(x = 0 | θj) = (1 − pj1) as the probability of earning a score of 0 on the first item
and f1(x = 1 | θj) = pj1 as the probability of earning a score of 1 on the first item. For r > 1, the
recursion formula is: (Lord and Wingersky, 1984)

fr(x | θj) = fr−1(x | θj)(1− pjr), x = 0,

= fr−1(x | θj)(1− pjr) + fr−1(x− 1 | θj)pjr, 0 < x < r,

= fr−1(x− 1 | θj)pjr, x = r.

(2.108)
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The recursion formula gives the observed score distribution for examinees of a given ability.
To find the observed score distribution for examinees at each ability is found and then these are
accumulated. When the ability distribution is continuous, then

f(x) =

∫
θ

f(x | θ)ψ(θ) dθ, (2.109)

where ψ(θ) is the distribution of θ. To implement this procedure in practice, some method is needed
to perform the integration in equation 2.109. We can approximate the integral in equation 2.109
as follows:

f(x) =

N∑
j=1

f(x | θj)ψ(θj). (2.110)

When the ability distribution is discrete, then

f(x) =
1

N

N∑
j=1

f(x | θj). (2.111)

To conduct observed score equating, observed score distributions are found for Form X and for
Form Y . For example, assume that the characterization of the ability distribution associated with
equation 2.110 is used. The following distributions could be specified using this equation:

1. f1(x) =
∑
j f(x | θj)ψ1(θj) is the Form X distribution for Population 1.

2. f2(x) =
∑
j f(x | θj)ψ2(θj) is the Form X distribution for Population 2.

3. g1(y) =
∑
j g(y | θj)ψ1(θj) is the Form Y distribution for Population 1.

4. g2(y) =
∑
j g(y | θj)ψ2(θj) is the Form Y distribution for Population 2.

These quantities then are weighted using synthetic weights described in Subsections 2.2.1 and
2.2.2 to obtain the distributions ofX and Y in the synthetic population. Conventional equipercentile
methods then are used to find score equivalents. Alternatives to the Lord-Wingersky algorithm can
be found in González et al. (2016).
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2.3.6 IRT True Score Versus IRT Observed Score Equating

Compared to IRT observed score equating, IRT true score equating has the advantages of (a) easier
computation and (b) a conversion that does not depend on the distribution of ability (Kolen and
Brennan, 2014, p.201). However, IRT true score equating has the disadvantage that it equates
true scores, which are not available in practice. No justification exists for applying the true score
relationship to observed scores.
IRT observed score equating has the advantage that it defines the equating relationship for ob-
served scores. Also, assuming reasonable model fit, the distribution of Form X scores converted
to the Form Y scale is approximately equal to the distribution of Form Y scores for the synthetic
population of examinees. There is no theoretical reason to expect this property to hold for IRT
true score equating.
Larger differences between IRT true and IRT observed score equating might be expected to occur
near a number-correct score of all correct and near number-correct scores below the sum of the c-
parameter estimates, because these are the regions where IRT true score equating does not produce
equivalents. In practice, both methods should be applied with special attention paid to equating
results near these regions.

Practical Caveat

Kolen and Brennan (2014) recommend the following when using IRT to conduct equating in
practice:

1. Use both the Haebara and Stocking and Lord methods for scale transformation as well as the
mean/sigma and mean/mean methods.

2. When equating number-correct scores, use both IRT true score equating and IRT observed
score equating.

3. Whenever possible, conduct traditional equipercentile or linear methods on the forms that
are being equated as a check.

Often all of the methods applied provide similar equating results and conversion to scale scores,
which is reassuring. However, when the results for the different methods diverge, then a choice
must be made about which results to believe. The assumptions required and the effects of poor
parameter estimates need to be considered in these cases.

2.4 The Kernel Method of Test Equating

The kernel method of equating is a general procedure to equate one test form to another. This
method of equating can be described in five steps (von Davier et al., 2004):
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1. Pre-smoothing. In this step, estimates of the univariate and/or bivariate score probabilities
are obtained by fitting statistical models to the raw data obtained by the data collection
design.

2. Estimation of the score probabilities. In this step, a crucial role is played by the Design Func-
tion: it is a linear or nonlinear transformation of the estimated score distributions from Step
1 into the estimated score probabilities, r̂ and ŝ, for test X and Y on the target population,
T .

3. Continuization. In this step, we determine continuous approximations, F̂hX
(x) and ĜhY

(y),
to the estimated discrete cdf’s, F̂ (x) and Ĝ(y). Here we need to choose the bandwidth param-
eters, hX and hY .

4. Equating. In this phase, the estimated equating function is formed from the two continuized
cdf’s, F̂hX

(x) and ĜhY
(y), using:

êhXhY
(x) = ĜhY

(F̂hX
(x)). (2.112)

5. Calculating the standard error of equating.

In the following subsections we review the first four steps, and we wait to introduce the standard
error of equating to a later point.

2.4.1 Pre-smoothing Using Log-Linear Models

To estimate a univariate score distribution using log-linear models, we will assume that the data
come from an equivalent groups design (Holland and Thayer, 2000).
We denote Nj as the number of examinees in the sample with X = xj ; Mk as the number of
examinees in the sample with Y = yk; N∗ =

∑
j Nj and M∗ =

∑
kMk as the two sample sizes. We

can make the following assumption:
The vectors N = (N1, ..., Nj)

t and M = (M1, ...,Mk)t are independent and they each have multi-
nomial distributions:

Prob(N) =
N∗!

N1!...Nj !

∏
r
Nj

j ,

P rob(M) =
M∗!

M1!...Mk!

∏
sMk

k ,

(2.113)
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where rj = Prob{X = xj | T} and sk = Prob{Y = yk | T}.
The log-likelihood function for r is:

Lr =
∑
j

Nj log(rj), (2.114)

and for s is:

Ls =
∑
k

Mklog(sk). (2.115)

To estimate the population parameters, we make this assumption:

The vector r satisfies a log-linear model

log(rj) = α+ uj + b∗j
tβ, (2.116)

where β is a Tr-vector of free parameters, uj is a known constant, α is the normalizing constant
selected to make the sum of rj equal to one and b∗j is a Tr-vector of known constant. Maximum
likelihood estimation proceeds maximizing the log-likelihood function given in 2.114. When a log-
linear model of the form 2.116 is substituted for logrj in 2.114, Lr becomes a function of β, Lr(β),

and can be maximized by solving dLr

dβ for β. The solution, β̂, is the maximum likelihood estimate

of β. The maximum likelihood estimate of rj is r̂j = rj(β̂) (von Davier et al., 2004, pp.109-202).

2.4.2 Estimation of the Score Probabilities

The Design Function (DF) maps the population score probabilities for X and Y on the target pop-
ulation T . We describe the DF only for two designs (because we mainly talk about these designs
in this text): equivalent groups and NEAT design (von Davier et al., 2004, pp.53-54).

Equivalent Groups Design. In this design, the DF is given by

(
r
s

)
= DF (r, s) =

(
IJ 0
0 IK

)(
r
s

)
, (2.117)

where IJ is a JxJ identity matrix, IK is a KxK identity matrix, r is the vector given by (r1, .., rJ)t

and s is the vector given by (s1, ..., sK)t.

NEAT Design-Chain Equating. There are two levels of Design Functions that arise when
the equating is carried out through Chain Equating in a NEAT Design. At the first level, there are
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two Design Functions that are from the two SG Designs inside the NEAT Design, denoted DFP
and DFQ. DFP is defined by (

rP
tP

)
= DFP (P ) =

(
MP

NP

)
v(P ), (2.118)

where P is the JxL matrix whose (j, l)-entry is pjl = Prob{X = xj , V = vl | P}, j = 1, ..., J, l =

1, ..., L; v(P ) =

p1

...
pL

 where pl denotes the lth column of P ; MP =

Ltimes︷ ︸︸ ︷(
IJ , ..., IJ

)
; NP =

Ltimes︷ ︸︸ ︷1tJ 0tJ ... 0tJ
...

0tJ ... 0tJ 1tJ

, where 1J is a (column) J-vector of 1′s and 0J is a (column) J-vector

of 0′s; rP = MP v(P ) and tP = NP v(P ).

DFQ is defined by: (
tQ
sQ

)
= DFQ(Q) =

(
NQ

MQ

)
v(Q), (2.119)

where Q is the KxL matrix whose (k, l)-entry is qkl = Prob{Y = yk, V = vl | Q}, k = 1, ...,K, l =

1, ..., L; v(Q) =

q1

...
qL

 where ql denotes the lth column of Q and NQ, a (LxKL) matrix, and MQ,

a (KxKL) matrix, are defined analogously to MP and NP and sQ = MQv(Q) and tQ = NQv(Q).
At the second level, these two Design Functions are combined into a single function


rP
tP
tQ
sQ

 = DF (P ,Q) =

(
DFP (P )
DFQ(Q)

)
=


(
MP

NP

)
0

0

(
NQ

MQ

)
(v(P )

v(Q)

)
. (2.120)

NEAT Design- Poststratification Method. The Design Function for this design is given by

(
r
s

)
= DF (P ,Q, w) =

(
r(P ,Q, w)
s(P ,Q, w)

)
, (2.121)

where 0 ≤ w ≤ 1 is a weight, r(P ,Q, w) =
∑
l

[
w+

(1−w)tQl

tPl

]
pl, s(P ,Q, w) =

∑
l

[
(1−w)+w(tPl)

tQl

]
ql

and tPl and tQl are column sums of P and Q, respectively.
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2.4.3 Continuization

The cdf’s of the score distributions for X and Y are defined as:

F (x) =
∑
j,xj≤x

rj , (2.122)

G(y) =
∑

k,yk≤y

sk, (2.123)

where x, y ∈ R, These discrete cdf’s have jumps at each score value, xj or yk. The Kernel smoothing
continuizes a discrete random variable X by adding to it a continuous and independent random
variable V ∗∗ with a positive constant hX controlling the degree of smoothness. Let X(hX) denote
the continuous approximation of X. Then

X(hX) = X + hXV
∗∗. (2.124)

The hX is the bandwidth and is free to select to achieve certain practical purpose. Kernel
function refers to the density function of V ∗∗. Usually V ∗∗ is assumed to be a standard normal
variable. Let Φ(z) denote the cdf of the Standard Normal and let hX be a positive number. µX
and σ2

X denote, respectively, the mean and the variance of X over T . Define aX by

a2
X =

σ2
X

σ2
X + h2

X

, (2.125)

then the Gaussian kernel smoothing of the distribution of X has a cdf given by

FhX
(x) =

∑
j

rjΦ(RjX(x)), (2.126)

where

RjX(x) =
x− aXxj − (1− aX)µX

aXhX
. (2.127)

In a similar manner, G may be continuized using GhY
defined as

GhY
(y) =

∑
k

skΦ(RkY (y)), (2.128)
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where

RkY (y) =
y − aY yk − (1− aY )µY

aY hY
. (2.129)

There are also some alternative kernels (von Davier, 2011, pp.159-174).
With reference to the selection of the ”bandwidth” hX (hY ), there is a variety of ways to do it: the
easiest is to always use a spefic fixed value (von Davier et al., 2004, pp.61-64).
Andersson and von Davier (2014) proposed to use

hadj = .9σXN
−1/5
X , (2.130)

as the choice for the bandwidth using a standard Gaussian kernel, where σX is the standard devi-
ation of X and NX is the sample size (Scott, 1992).
Liang and von Davier (2014) proposed a cross-validation method which uses one subsample to
compute a set of Gaussian kernel densities (in this way there will be a density value at each score
point for each given h) and the other subsample to compute the frequency k at each point: the
density value from the first subsample and the frequency from the second subsample are plugged
in a Poisson probability function as λ and k, respectively (in this way, for each h at each score
point, there is a Poisson probability value) then the likelihood function is formed by multiplying
the probability values at all score points and, finally, the h that corresponds to the largest likelihood
is the optimal one.
Häggström and Wiberg (2014) proposed the use of a Double Smoothing (DS) procedure. First, start

with a very smooth first estimate of the density function (f̂gX (x)); second, improve on this first

estimate by estimating fhX
using f̂gX (in this way, we obtain f̂∗hX

(x)); finally, select the bandwidth

value of hX that minimizes the sum of the squared difference between the lth DS estimate f̂∗hX
(x∗l )

and r̂∗l :

DS(hX) =

2J−1∑
l=1

(r̂∗l − f̂∗hX
(x∗l ))

2, (2.131)

where r̂∗l = r̂ l+1
2

if l is odd, and r̂∗l = f̂∗hX
(x∗l ) if l is even.

2.4.4 Equating

The KE function for equating X to Y on T is given by

êY (x) = Ĝ−1
hY

(F̂hX
(x)). (2.132)
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Analogously, the KE function for equating Y to X on T is given by

êX(y) = F̂−1
hX

(ĜhY
(y)). (2.133)

2.5 Further Details

In this section two practical problems are discussed: how to average results from more than one
equating and how to conduct equating when the samples are too small to reliably conduct any
classical equating procedures.

2.5.1 How to Average Equating Functions

There are many situations in which we can have multiple estimates of the same equating function
for which averaging the different estimates may be appropriate. For example, in the NEAT design,
several possible linear and nonlinear equating methods are available, thus it might be useful to
average the results of some of the options for a final compromise method. We denote by eq1(x)
and eq2(x) two different equating functions for linking scores on test X to scores on test Y . We
will assume that eq1(x) and eq2(x) are strictly increasing continuous functions of x over the entire
real line. Suppose it is desired to average eq1(x) and eq2(x) in some way, putting weight w on
eq1(x) and 1 − w on eq2(x). Let ⊕ denote an operator that forms a weighted average of two such
functions, eq1 and eq2, and puts weight w on eq1 and 1 − w on eq2. Our notation for any such
weighted average of eq1 and eq2 is

weq1 ⊕ (1− w)eq2, (2.134)

to denote the resulting equating function. We denote its value at some X-score, x, by

weq1(x)⊕ (1− w)eq2(x). (2.135)

If there are three such functions, eq1, eq2, eq3, then their weighted average function is denoted
as

w1eq1 ⊕ w2eq2 ⊕ w3eq3, (2.136)

where the weights, wi, sum to 1.



48 CHAPTER 2. EQUATING MODELS AND EVALUATION OF THE RESULTS

The operator ⊕ should possess various properties (von Davier, 2011, pp.90–92). There are dif-
ferent types of weighted average:

1. The Point-Wise Weighted Average of eq1 and eq2 is:

m(x) = weq1(x) + (1− w)eq2(x), (2.137)

where w is a fixed value (von Davier, 2011, pp.92–93);

2. The Angle Bisector Method (Thorndike, 1971) says that if eq1(x) and eq2(x) are two linear
equating functions that intersect at a point, then the linear function that bisects the angle
between them is the point-wise weighted average

eqAB = Weq1 + (1−W )eq2, (2.138)

where

W =
(1 + b21)−1/2

(1 + b21)−1/2 + (1 + b22)−1/2
, (2.139)

where b1 and b2 are the slopes of the linear equating functions eq1(x) and eq2(x), respectively
(von Davier, 2011, pp.94–98);

3. The symmetric w-average or swave of two linear or nonlinear equating functions eq1(x) and
eq2(x) (Holland and Strawderman, 1989) is:

eqw(x) = weq1(x− (1− w)t(x)) + (1− w)eq2(x+ wt(x)), (2.140)

where t(x) is given by the equation

t(x) = eq1(x− (1− w)t)− eq2(x+ wt), (2.141)

which has a unique solution for t for any choice of x and w and for any strictly increasing
continuous equating functions eq1 and eq2 (von Davier, 2011, pp.98–104).

2.5.2 Equating With Small Samples

Equating test scores is a statistical procedure, and its results, like those of most other statistical
procedures, are subject to sampling variability. The smaller the samples of examinees from which
the equating is computed, the more the equating results are likely to deviate from what they would
be in a different pair of samples-or in the population that the samples represent.
One way to improve the accuracy of equipercentile equating in small samples of examinees is to
presmooth the score distributions. However, if the samples of examinees are quite small, this tech-
nique may not reduce the sampling variability in the equating to an acceptable level. Another
procedure that has been recommended is to establish a minimum sample size for equating.
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A third approach is to estimate a relationship in a population on the basis of small-sample data is
to use a strong model. Strong models require only a small number of parameters to be estimated
from the data, in effect substituting assumptions for data. In test score equating, the strong model
most commonly used is the linear equating model. However, when test forms differ in difficulty,
the equating relationship between them typically is not linear and, if the difficulty difference is
substantial, the relationship is not even approximately linear.

The Circle-Arc Method

Circle-arc equating is a strong model that does not assume the equating relationship to be
linear (Divgi, 1987). The Circle-Arc Method constrains the equating curve to pass through two
prespecified end points and an empirically determined middle point. In circle-arc equating, the
lower end point corresponds to the lowest meaningful score on each form. On a multiple-choice test
scored by counting the number of correct answers, the lowest meaningful score would typically be
the expected score for an examinee who responds at random (e.g., without reading the items). The
upper end point corresponds to the maximum possible score on each form. The middle point is
determined by equating at a single point in the middle of the score distribution. If the middle point
happens to lie on the line connecting the end points, that line is the estimated equating curve. If
not, the next step is to use the end points and the middle point to determine the equating curve.
There are two versions of circle-arc equating, and they differ in the way they fit a curve to these
three points. We call one version symmetric circle-arc equating (Livingston and Kim, 2010) and
the other simplified circle-arc equating (Livingston and Kim, 2009). Both methods are applications
of the geometrical fact that if three points do not lie on a straight line, they uniquely determine a
circle. Symmetric circle-arc equating fits a circle arc directly to the three data points. Simplified
circle-arc equating transforms the three data points by decomposing the equating function into a
linear component and a curvilinear component. The linear component is the line connecting the two
end points. The curvilinear component is estimated by fitting a circle arc to the three transformed
data points.
Figure 2.1 illustrates the simplified circle-arc procedure. The horizontal axis represents the score on
the new form, that is, the test form to be equated. The vertical axis represents the corresponding
score on the reference form. The two prespecified end points and the empirically determined middle
point are indicated by the three small circles. The line connecting the two end points is the linear
component of the estimated equating curve. The three data points are transformed by subtracting
the y-value of that line, which we call L(x). The three transformed points are indicated by the
squares at the bottom of Figure 2.1. The middle point is transformed to a point above or below
the horizontal axisabove it if the new form is harder than the reference form, and below it if the
new form is easier than the reference form. In the example illustrated by Figure 2.1, the new form
is harder than the reference form. The arc connecting the three transformed data points is shown
at the bottom of Figure 2.1. This arc serves as an estimate of the curvilinear component of the
equating function. For each possible raw score on the new form, there is a corresponding point on
the arc. The next step is to add the linear component back in, by adding the height of the line L(x)
to the height of the arc. The three original data points are retransformed back to their original
positions, and the full arc is transformed into an estimate of the equipercentile equating function,
shown in the upper portion of the figure. The last step is to extend the equating transformation
below the lower end point, by connecting that point linearly to the point corresponding to the
minimum possible score on each form.
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Figure 2.1: Illustration of the simplified circle-arc equating method.
Source: (von Davier, 2011, p.113).

Nominal Weights Mean Equating

Babcock et al. (2012) proposed a new method called Nominal Weights Mean Equating as an
alternative for dealing with very small samples. This method is a simplified version of Tucker linear
equating (see subsection 2.2.1). We use the term nominal weights to distinguish from effective
weights, which are typically based on the ratios of variances and/or covariances (Kolen and Bren-
nan, 2014, pp.114-116). Nominal weights mean equating replaces covariance and variance terms
with a simple ratio of number of items on the total test to the anchor test, making the weighting
of the adjustment nominal instead of effective. We indicate the new test with X (Examinee Group
2 takes this form), the old test with Y (Examinee Group 1 takes this form), the anchor test with
V (both groups take this form), the number of items in a given item set with n, the sample size
of a given item set with N , the mean total test scores for each group with µ2(X) and µ1(Y ) and
the mean score on the common items for each group with µ2(VX) and µ1(VY ). The final score
adjustment for nominal weights mean equating is
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lY (x) = x− µ2(X) + µ1(Y ) +

[
NXnY +NY nX
[NY +NX ]nV

]
[µ2(VX)− µ1(VY )]. (2.142)

There are two things to notice about Equation 2.142. First, the score adjustment is essentially
a scaling up of the difference between the two groups performance on the equator items V . This
makes a good set of equator items extremely important. Second, there are no variance or covari-
ance terms in the equation. Depending on the context, this feature could be an advantage or a
disadvantage compared with other methods. If the variances and covariances are well estimated,
approximating the terms ignores valuable information that could be useful in making a score adjust-
ment. If the variances and covariances are not well estimated, however, excluding them from the
adjustment makes the adjustment less susceptible to equating error. This is exactly the case that
methodologists deal with when in small-sample situations, making nominal weights mean equating
a practical alternative.

A General Linear Method for Equating With Small Samples

Albano (2015) introduced a new approach to observed-score equating with small samples.
Observed-score equating functions make different assumptions regarding the difficulty difference
between forms and how this difference does or does not change across the X and Y scales. Based
on these assumptions, form difficulty is then estimated using empirical score distributions for indi-
viduals taking X and Y . For simplicity, most of the discussion below is based on a situation where
individuals taking X and Y are sampled from the same population. As a result, scores are presumed
to come from an equivalent-groups or single-group equating design, where estimated differences in
the X and Y score distributions reflect a combination of (a) actual differences in form difficulty, (b)
random error caused by the sampling process, and (c) systematic error or bias caused by violations
of the assumptions of a given function. The assumptions of a given function can be expressed in the
form of a line within the coordinate space defined by X and Y . The ordered possible scores on X
and their corresponding equated scores on Y make up the coordinates (x, linkY (x)) for this equating
line, where x is an observed score on X and linkY (x) a function linking or equating x to the Y scale.

A General Linear Function

Albano (2015) proposed a more flexible form of the identity function to take scale differences
into account and after he observed that this identity line can also be shifted upward or downward so
as to pass through any coordinate pair (βX , βY ). This results in the general linear equating function:

linY (x) = y =
αY
αX

x+ βY −
αY
αX

βX , (2.143)

where αY is an estimate of the variability in Y and αX is an estimate of the variability in X.

Empirical Bayes Estimation

One way to improve an estimation process, especially when the data come from a small sam-
ple, is to incorporate collateral information (Efron and Morris, 1977). Collateral information for
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equating test scores is often available from equatings of other forms of the test we want to equate
and of other tests. The idea of using collateral information suggests an empirical Bayes approach
(Livingston and Lewis, 2009). The basic premise is that the current, small-sample equating can
be regarded as a single observation randomly sampled from a large domain of possible equatings,
each with its own new form, reference form, and samples of examinees. For a given pair of test
forms, there is a true equating function: the function that would result from averaging over all
the equatings of that particular pair of test forms with different samples of examinees. For a given
raw score x on the new form, the empirical Bayes estimate of the corresponding equated score y
on the reference form is a weighted average of a current estimate and a prior estimate, which we
will call ycurrent and yprior. The current estimate is the equated score implied by the small-sample
equating. The prior estimate is the average of the equating results in all the equatings used as
collateral information, with the addition of the current equating. Formally:

ÿEB =
[var(yprior)]ycurrent + [var(ycurrent)]yprior

var(yprior) + var(ycurrent)
. (2.144)

This approach has three main problems:

1. Test forms differ in length: one solution to this problem could be to convert the scores on all
the forms to percentages;

2. The Equation 2.144 requires an estimate of the sampling variance of the current equating,
but it could be inaccurate because it is computed from a small-sample data;

3. It’s difficult to decide what equatings to include as collateral information.

There is another simpler approach to using collateral information. For a given raw score x, if
yobs(x) represents the equated score observed in the small-sample equating, the adjustment is simply

yadj(x) = w[yobs(x)] + (1− w)x, (2.145)

where w is a weight between 0 and 1. The practical question for implementing this procedure is
how to choose a value for w: ideally, the value of w should vary with the size of the samples; the
larger the samples, the greater the weight for the observed equating (Kim et al., 2008).

Introducing the New Form by Stages

Another, very different approach to the small-sample equating problem is to change the way
in which new forms of the test are introduced (Puhan et al., 2009). This technique requires that
the test be structured in testlets, small-scale tests that each represent the full test in content and
format. It also requires that the test form given at each administration include one testlet that is
not included in computing the examinees scores. With each new form, one of the scored testlets in
the previous form is replaced. It is replaced in the printed new form by a new testlet, which is not
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scored. It is replaced in the scoring of the new form by the testlet that was new (and therefore was
not scored) in the previous form. Each new test form is equated to the previous form in the group
of examinees who took the previous form.

2.6 Evaluation of the results

The focus of the present section is on estimating random error, which is always present when the
scores of examinees who are considered to be samples from a population or populations of examinees
are used to estimate equating relationships. See Wiberg and González (2016) for a discussion about
assessing equating transformations.

2.6.1 Standard Errors of Equating

Equating error at score xi for a given equating is (Kolen and Brennan, 2014, pp.248-249)

êqY (xi)− E[êqY (xi)], (2.146)

where êqY (xi) is an estimate of the Form Y equivalent of a Form X score in the sample and
E[êqY (xi)] is the expected equivalent, where E is the expectation over random samples from the
population(s).
The equating error variance at score point xi is

var[êqY (xi)] = E{êqY (xi)− E[êqY (xi)]}2, (2.147)

where the variance is taken over replications. The standard error of equating is

se[êqY (xi)] =
√
E{êqY (xi)− E[êqY (xi)]}2. (2.148)

To estimate standard error of equating, we can use the Bootstrap or the Delta method (Kolen
and Brennan, 2014, pp.250-276).

2.6.2 The Bootstrap

The bootstrap method (Efron and Tibshirani, 1993) is a method for estimating standard errors of a
wide variety of statistics that is computationally intensive. The steps in estimating standard errors
of a statistic using the bootstrap from a single sample are as follows:

1. Begin with a sample of size N.
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2. Draw a random sample, with replacement, of size N from this sample data. Refer to this
sample as a bootstrap sample.

3. Calculate the statistic of interest for the bootstrap sample.

4. Repeat steps 2 and 3 R times.

5. Calculate the standard deviation of the statistic of interest over the R bootstrap samples.
This standard deviation is the estimated bootstrap standard error of the statistic.

2.6.3 The Delta Method

The delta method is based on a Taylor series expansion (Kendall and Stuart, 1977). Define for
the population eqY (xi; Θ1,Θ2, ...,Θt) as an equating function of test score xi and parameters
Θ1,Θ2, ...,Θt. By the delta method, an approximate expression for the sampling variance is

var[êqY (xi)] ∼=
∑
j

eq′2Yj
var(Θ̂j) +

∑∑
eq′Yj

eq′Yk
cov(Θ̂j , Θ̂k). (2.149)

In this equation, Θ̂j is a sample estimate of Θj and eq′Yj
is the partial derivative of eqYj with

respect to Θj and evaluated at xi,Θ1,Θ2, ...,Θt.

In matrix form, if a vector of parameter estimates θ̂ is asymptotically normally distributed with
variance matrix Î, a vector-valued continuously differentiable function f of θ̂ is asymptotically nor-
mally distributed as well, and its variance is obtained by pre- and postmultiplying Î with the
Jacobian matrix Jf of the function evaluated at the parameter estimates,

COV (f(θ̂)) = Jf (θ̂)Σ(Jf (θ̂))t. (2.150)

Equating error variance expressions obtained using the delta method for a few methods and
designs are given below as examples (Kolen and Brennan, 2014, pp.261-263).

Linear equating

Holland and Rubin (1982a) presented the partial derivatives and standard errors and covariances
between the moments to apply the delta method for linear equating with the equivalent groups de-
sign. They showed that

var[l̂Y (xi)] ∼= σ2(Y )

{
1

NX
+

1

NY
+

[
sk(X)

NX
+
sk(Y )

NY

][
xi − µ(X)

σ(X)

]
+

[
ku(X)− 1

4NX
+
ku(Y )− 1

4NY

][
xi − µ(X)

σ(X)

]2}
,

(2.151)
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where sk(X), sk(Y ), ku(X) and ku(Y ) are the skewness and kurtosis of X and Y .

Thorndike (1971) applied the delta method for linear equating with the NEAT design. He
showed that

var[l̂Y (xi)] ∼=
σ2(Y )[1− ρ2(X,V )]

Ntot

{
2 + [1 + ρ2(X,V )]

[
xi − µ(X)

σ(X)

]2}
. (2.152)

In this equation, ρ(X,V ) is the correlation between common items and total score, and Ntot is
the total number of examinees taking the forms.

Equipercentile equating

Lord (1982) used the delta method to develop the following expression for the standard error of
equipercentile equating under the equivalent groups design:

var[êY (xi)] ∼=
1

[G(y∗U )−G(y∗U − 1)]2

{
[P (xi)/100][1− P (xi)/100](NX +NY )

NXNY

− [G(y∗U )− P (xi)/100][P (xi)/100−G(y∗U − 1)]

NY [G(y∗U )−G(y∗U − 1)]

}
.

(2.153)

To estimate the error variances, sample values can be substituted in place of the parameters in
equation 2.153. The error variance depends on the proportion of examinees at scores on Form Y,
as symbolized by G(y∗U ) − G(y∗U − 1). If this quantity were 0, then the error variance would be
undefined because of a 0 term in the denominator.

2.6.4 Standard Errors for Scale Scores

A variation of the delta method can be used to estimate the scale score standard errors. To develop
this variation, consider a situation in which a parameter Θ is being estimated, where the estimate
is symbolized by Θ̂. Also assume that the error variance in estimating the parameter is known,
which is symbolized by var(Θ̂). Finally, assume that the estimate is to be transformed using the
function f . Approximately, we have: (Kendall and Stuart, 1977)

var[f(Θ̂)] ∼= f ′2(Θ)var(Θ̂), (2.154)

where f ′ is the first derivative of f .
This formulation can be applied to equating by substituting eqY (xi) for the parameter Θ, êqY (xi)
for Θ̂, and Form Y raw-to-scale score transformation s for the function f . To apply this equation
directly, the first derivative of the Form Y raw-to-scale transformation is needed at eqY (xi).
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2.6.5 Estimating sample size

In addition to comparing equating error associated with different designs and methods, standard
errors of equating also can be useful in specifying the sample size of the examinees required to
achieve a given level of equating precision for a particular equating design and method. We give
below as examples sample sizes for a few methods and designs.

Equivalent Groups Linear Equating

Suppose that linear equating with the equivalent groups design is to be used. Let u refer to the
maximum proportion of standard deviation units that is judged to be appropriate for the standard
error of equating. The value of Ntot is found that gives a specified value for uσ(Y ) for the standard
error of equating. We have

Ntot ∼=
2

u2

{
2 +

[
xi − µ(X)

σ(X)

]2}
, (2.155)

which represents the total sample size required for the standard error of equating to be equal to u
standard deviation units on the old form.

Equivalent Groups Equipercentile Equating

In equipercentile equating with the equivalent groups design Ntot is given by

Ntot ∼=
4[P (xi)/100][1− P (xi)/100]

u2φ2
. (2.156)

Recall that this equation assumes that the scores on Form X are normally distributed.

2.6.6 The Standard Error for Kernel Equating

Applying the delta method (see subsection 2.6.1) to the kernel method of equating (von Davier,
2011, pp.67-85), θ̂ in equation 2.150 contains the parameters of the statistical model for the score
distributions, and the equation function eq plays the role of function f . Hence,

COV (eq(θ̂)) = Jeq(θ̂)Σ(Jeq(θ̂))t. (2.157)

Since eq is a composition of functions, its Jacobian may be computed as the product of their
Jacobians:
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Jeq =
deq(θ)

dθ

=
deX(r)

dr

dDF (p)

dp

dg(θ)

dθ

= JeJDFJg.

(2.158)

2.6.7 Assess the Difference Between Equating Functions

We know that often more than one equating method is applied to the data stemming from a partic-
ular test administration. If differences in estimated equating functions are observed, the question
arises as to whether these differences reflect real differences in the underlying true equating func-
tions or merely reflect sampling error.
von Davier et al. (2004) presented expressions for the standard error of the difference between two
equating functions evaluated in the same score of Y . The equating difference function mapping each
score of Y into the difference of equated scores is a vector-valued function with as the jth component

∆j
eq = (ej1X − e

j
2X) ◦DF ◦ g, (2.159)

The asymptotic variance matrix is obtained as

COV (∆eq(θ̂)) = J∆eq (θ̂)Σ(J∆eq (θ̂))t, (2.160)

where

J∆eq =
d∆eq(θ)

dθ

=
d(e1X − e2X)(r)

dr

dDF (R)

dR

dg(θ)

dθ
= (Je1 − Je2)JDFJg.

(2.161)

von Davier (2011) present a generalization of the Wald test (Wald, 1943) which tests the null
hypothesis that there is no difference between the two equating functions. In its general form, the
Wald statistic to test a set of linear hypotheses Lβ = 0,where each row of L represents a linear
hypothesis on β, has the following form:

w = (Lβ̂)′(LCOV (β̂)L′)−1(Lβ̂). (2.162)
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If β̂ is asymptotically normally distributed, w is asymptotically chi-squared distributed with as
degrees of freedom the number of rows of L. In the context of testing for a difference between two
equating methods, ∆eq(θ̂) fulfills the role of β̂, and its covariance matrix is given in Equations
2.160 and 2.161. Hence,

w∆eq = (L∆eq(θ̂))′(LCOV (∆eq(θ̂))L′)−1(L∆eq(θ̂)). (2.163)

2.7 Some recent ideas in test equating

In this section we shortly describe the idea of local equating and a few local equating methods, a
local equating method of cognitively diagnostic modeled observed score, the continuized log-linear
method (which is a variant of the kernel method) and a Bayesian nonparametric model for test
equating.

2.7.1 Local Observed-Score Equating

The main theorem of local equating follows directly from the equity citerion (see subsection 1.1.6).
The equity criterion could be expressed as an equality of the conditional distribution functions
Fϕ(Y )|θ for the equated scores on test Y and FX|θ for the observed score on test X, that is (von
Davier, 2011, pp.201-223):

FX|θ(x) = Fϕ(Y )|θ(ϕ(y)), θ ∈ R. (2.164)

Solving for x by taking the inverse of FX|θ,

x = ϕ∗(y; θ) = F−1
X|θFϕ(Y )|θ(ϕ(y)), θ ∈ R. (2.165)

However, because ϕ(·) is monotone, Fϕ(Y )|θ(ϕ(y)) = FY |θ(y). Substitution results in

ϕ∗(y; θ) = F−1
X|θ(FY |θ(y)), θ ∈ R, (2.166)

as the family of true equating transformations. Equation 2.166 involves the same type of transfor-
mation as for the equipercentile equating in ϕ(y) = F−1(G(y)), but is now applied to each of the
conditional distributions of X | θ and Y | θ instead of only once to the marginal distribution of
X and Y for a population of examinees. The fact that the derivation leads to an entire family of
transformations reveals a restrictive implicit assumption of our traditional thinking about equat-
ing: namely, that equating should be based on a single transformation for the entire population of
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choice.
The name local equating is derived from the attempt to get as close as possible to the true equating
transformations in equation 2.166 to perform the equating. We now describe the basic ideas of a
few local equating methods.

Anchor Score as a Proxy of Ability

For a NEAT design it seems natural to use the extra information provided by the anchor test
to approximate the true family of equating transformations in Equation 2.166 (Wiberg and van der
Linden, 2011). For simplicity, we assume an anchor test A with score A that is not part of Y
(”external anchor”). For an anchor test to be usable, A has to be a measure of the same θ as X
and Y . Formally, this means a classical true score τA that is a monotonic increasing function of
the same ability θ as the true scores for X and Y . It should thus hold that τA = g(θ) where g is
an (unknown) monotonically increasing function and θ is the same ability for X and Y . For the
distribution of X given θ it holds that

f(x | θ) = f(x | g−1(τA) = f(x | τA), (2.167)

Similarly, f(y | θ) = f(y | τA). This fact suggests that instead of using an estimate of θ for each
examinee, we could use an estimate of τA and get the same equating. An obvious estimate of τA
is the observed score A. The result is an approximation of the family of true transformations in
equation 2.166 by

ϕ(y; a) = F−1
X|a(FY |a(y)), a = 0, . . . ,m, (2.168)

where m is the length of the anchor test and FX|a(x) and FY |a(y) are the distribution functions of
X and Y given A = a.

Y = y as a Proxy of Ability

The argument for the use of anchor score A as a proxy for θ in the previous method holds
equally well for the realized observed score Y = y (Wiberg and van der Linden, 2011). The score
can be assumed to have a true score η that is a function of the same ability θ as the true scores on
form X. For this reason, we can focus on the distributions of X and Y given η instead of θ. As
Y = y is an obvious estimate of η, we have:

ϕ(y) = F−1
X|y(FY |y(y)), y = 0, . . . , n. (2.169)

In an equating study with a single-group design, the distributions of Y given y are only observ-
able for replicated administrations of form Y to the same examinees. One case for which replications
are unnecessary is linear equating conditional on Y = y. For this case, we have:
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x = ϕ(y) = µX|y +
σX|y

σY |y
(y − µY |y), y = 0, . . . , n, (2.170)

As classical test theory implies µY |y = y, we obtain:

x = ϕ(y) = µX|y, y = 0, . . . , n. (2.171)

For all examinees with score Y = y, this local method thus equates the observed scores on Y to
their conditional means on X.

2.7.2 Local Equating of Cognitively Diagnostic Modeled Observed Scores

Xin and Jiahui (2015) proposed a local equating method of cognitively diagnostic modeled observed
score to address the problem of equating without anchor test as well as the satisfaction of equating
criteria.

Cognitive Diagnostic Models (CDMs)

CDMs refer to latent class models that employ item response functions (IRFs) to assess ex-
aminees mastery or non-mastery on a set of skills called attributes with an explicit Q∗∗-matrix
presenting attribute assignment to each item. The Q∗∗-matrices of the two test forms are denoted
as Q∗∗X and Q∗∗Y , respectively, the I rows of which represent the I items and the P columns of which
correspond to the P attributes. In this study, elements in the Q∗∗-matrix are binary: qip = 1 if
getting a correct response to item i without guessing requires the mastery of attribute p, and qip = 0
otherwise. Accordingly, the mastery or non-mastery of each attribute represents examinees latent
ability levels in the form of binary attribute vectors, denoted as attribute mastery pattern (AMP)
here. Let α∗ refer to an AMP and Ω as the set of all AMPs. Following DiBello et al. (2007), for
the jth examinee we have:

α∗j = (α∗1j , α
∗
2j , ..., α

∗
Pj), (2.172)

where α∗jp = 1 if examinee j has mastered skill p, and α∗jp = 0 otherwise.
Following the notations of Leighton et al. (2004), two matrices of order (P, P ) (where P is the num-
ber of attributes) to describe the relationships among attributes are used: the adjacency matrix
(D) and the reachability matrix (R). The D-matrix indicates the direct relationships among at-
tributes: An element of the value of 1 in the position (p′, p′′) means that attribute p′ is prerequisite
to attribute p′′ and an element of the value of 0 indicates otherwise. The R-matrix represents both
the direct and indirect relationships between pairwise attributes. The R matrix can be calculated
using R = (D+ I)n∗∗, where 1 ≤ n∗∗ ≤ P , D is the adjacency matrix and I is the identity matrix.
The p′th row of the R-matrix specifies all the attributes, including the p′th attribute, for which
the p′th attribute is a direct or indirect prerequisite (Leighton et al., 2004). The D-matrix and the
R-matrix of the two forms are denoted as DX , DY , RX , and RY , respectively.
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Two CDMs used in this study are introduced as follows. The probability an examinee correctly
responds to an item is determined as follows: P (Xji = 1 | α∗j ) = 1 if α∗j contains 1s for all skills
required for item i, and P (Xji = 1 | α∗j ) = 0 otherwise. Thus, a computationally simpler form
would be:

ηji = P (Xji = 1 | α∗j ) =

P∏
p=1

α
qip
jp , (2.173)

in which P is the number of attributes, qip is the element of the Q∗∗-matrix at (i, p), and αjp is
the pth element of the vector αj . The latent response ηji has two values: ηji = 1 indicates that
examinee j masters all the attributes required for item i, and ηji = 0 indicates that examinee j
lacks at least one of the attributes required for item i. The probability of a correct response is also
affected by slipping or guessing, characterized by two-item parameters: g∗i = P (Xji = 1|ηji = 0)
and s∗i = P (Xji = 0|ηji = 1). The IRF of the model can be written as:

P (Xji | α∗j ) = (1− s∗i )ηjig∗i (1−ηji). (2.174)

The relationship between the attributes and higher order proficiency can be expressed using the
latent logistic regression model:

P (α∗j | θj) =

P∏
p=1

{
exp[1.7λ1(θj − λ0p)]

1 + exp[1.7λ1(θj − λ0p)]

}
, (2.175)

where λ1 and λ0p are the latent discrimination and difficulty parameters, respectively. Attributes
with higher λ0p are deemed more difficult to master.

The Criteria of Equating connected to Cognitive Diagnostic Models

The same construct criterion. It is common sense that tests measuring different constructs
should never be equated (Kolen and Brennan, 2014). Xin and Jiahui (2015) substained that the
necessary and sufficient condition of the same construct criterion for this kind of models would be
that the two test forms have (a) the same Q∗∗-matrix or (b) sufficient Q∗∗-matrices (Q∗∗-matrices
are sufficient when they include the R-matrix as their submatrix) that are similar to each other.
Equity criterion (see subsection 2.7.1). The observed-score distribution for Form Y of a certain
examinee whose AMP is α∗ is denoted as FY |α∗(y), and his or her distribution of the equated
observed scores from Form X to the scale of Form Y is denoted as Fϕ(X)|α∗(ϕ(x)). Therefore, the
equity criterion for the full distributions of observed scores on X and Y given AMP can be written as

FY |α∗(y) = Fϕ(X)|α∗(ϕ(x)), α∗ ∈ Ω. (2.176)
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The equity criterion can also be expressed as the requirement of zero equating error for all
AMPs:

e(x;α∗) = FY |α∗(y)− Fϕ(X)|α∗(ϕ(x)), α∗ ∈ Ω. (2.177)

The Family of True Transformations for Cognitive Diagnostic Models

When the error for each attribute pattern in Equation 2.175 is required to be 0, y can be solved
by taking the inverse of FY |α∗ :

y = ϕα∗(x) = F−1
Y |α∗Fϕ(X)|α∗(ϕ(x)), α∗ ∈ Ω. (2.178)

Because the function ϕ(·) should be monotone, Fϕ(X)|α∗(ϕ(x)) = FX|α∗(x). Then, the following
equation is obtained

ϕα∗(x) = F−1
Y |α∗FX|α∗(x), α∗ ∈ Ω, (2.179)

as the family of true equating transformation.

A CDM-Based Local Equating Method

Before equating, a CDM is applied to examinee responses to obtain estimates for item parame-
ters and AMPs. The item parameter estimates are used to calculate the conditional distributions of
observed scores given AMP using an adaptation of the recursive algorithm of Lord and Wingersky
(1984). The probabilities and distributions are conditional on discrete α∗ instead of continuous θ,
then the family of transformations in Equation 2.179 can be obtained. Examinees taking either
test form have their AMP estimates, so the equating transformation for a given examinee is chosen
from the family of estimated equating transformations according to the estimated AMP denoted
as α̂∗. Upon substitution of α̂∗ into Equation 2.179, the following estimated true transformation
is obtained:

ϕα̂∗(x) = F−1
Y |α̂∗FX|α̂∗(x), α̂∗ ∈ Ω. (2.180)
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2.7.3 The Continuized Log-Linear Method

We remember that the Kernel Method has five step:(a) presmoothing, (b) estimating score prob-
abilities, (c) continuization, (d) equating, and (e) calculating the standard error of equating. The
continuized log-linear (CLL) method directly takes the log-linear function in the presmoothing step
and transforms it into a continuous distribution (Wang, 2008). As example, we shortly describe
this method for equivalent groups designs.

The CLL method for the Equivalent Groups Design

For the equivalent groups design, the CLL distribution utilizes the polynomial log-linear func-
tion obtained in the log-linear smoothing step. The probability density function (PDF) is expressed
as (von Davier, 2011, pp.142-143):

f(x) =
1

D∗∗
exp(bTβ), (2.181)

where bT = (1, x, x2, ..., xM ) is a vector of polynomial terms of test X score x, β = (β0, β1, β2, ..., βM )T

is the vector of the parameters, and M is the degree of the polynomial. D∗∗ is a normalizing costant
that ensures that f(x) is a PDF.
With the CLL continuization method, the design function must be applied after the continuization
step, but, for the equivalent groups design, the design function is an identity function, which means
that no such procedure is needed.

2.7.4 A Bayesian Nonparametric Model for Test Equating

A Bayesian nonparametric model is a model on an infinite-dimensional parameter space (von Davier,
2011, pp.175-184). The parameter space is typically chosen as the set of all possible solutions for a
given learning problem. For example, in a regression problem the parameter space can be the set
of continuous functions, and in a density estimation problem the space can consist of all densities
(Orbanz and Teh, 2010).

For modeling continuous test score distributions (FX , FY ), it is possible to construct a bivariate
random Bernstein polynomial prior distribution on (FX , FY ) via the random distributions: (Kara-
batsos and Walker, 2009)

FX(·;GX , pX) =

pX∑
k=1

[
GX

(
k

pX

)
−GX

(
k − 1

pX

)]
Beta(· | k, pX − k + 1), (2.182)

FY (·;GY , pY ) =

pY∑
k=1

[
GY

(
k

pY

)
−GY

(
k − 1

pY

)]
Beta(· | k, pY − k + 1), (2.183)
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with (GX , GY ) coming from the bivariate Dirichlet Process model (Walker and Muliere, 2003), and
with independent prior distributions π(pX) and π(pY ) for pX and pY . Given samples of observed
scores on the two tests xn(X) = {x1, ..., xn(X)} and yn(Y ) = {y1, ..., yn(Y )}, the random bivariate
Bernstein polynomial prior combines with these data to define a joint posterior distribution, which
we denote by FX , FY | xn(X), yn(Y ). The Gibbs sampling algorithm can be used to infer the poste-
rior distribution FX , FY | xn(X), yn(Y ). At each iteration of this Gibbs algorithm, a current set of
pX , GX for test X and pY , GY for test Y is available, from which it is possible to construct random
distribution functions (FX , FY ) and the random equating function eY (x) = F−1

Y (FX(x)) = y.



Chapter 3

Equating with covariates

In this chapter, after a short introduction, equating methods when covariates are used will be dis-
cussed.

3.1 Introduction

Equating with covariates is motivated by an interest in the possibility of using information about
the examinees’ background to increase the precision of the estimators. Kolen (1990) made some
comments on matching in equating. He explained that, because equating tends to work well when
the examinee groups are similar to one other, it is necessary to identify similar subgroups to obtain
more accurate equating and, operationally, matching on the anchor test scores is the easiest way
to form similar groups. Livingston et al. (1990) underlined that, ideally, the right variable to use
as a basis for matched sampling would be a measure of whatever is causing the old-form and new-
form populations to differ systematically in ability. In practice, because we cannot measure this
variable, we can select on a ”propensity score” (Rosenbaum and Rubin, 1983): it is defined as the
linear combination of all the variables we can measure that best discriminates between the old-form
and the new-form populations. Cook et al. (1990) discussed the equating of reasonably parallel
forms of College Board Achievement Tests in Biology, Chemistry, Mathematics Level II, American
History and Social Studies, and French. They explored these questions: what would be the effect
on reported scores of changing the currently used sampling plan? And,given that a serious effect
was observed, could this effect be ameliorated by matching new- and old-form samples on ability
level using distributions of scores on a set of common items or on some other covariate, such as
responses to a background questionnaire given at the time of testing or when an examinee first
registers to take a test? Their results showed that the equating models were seriously affected by
differences in group ability and attempts to ameliorate the effect of group differences by matching
on a covariate such as the common-item set itself were quite good. Wright and Dorans (1993)
defined the ”selection variable” as the variable or set of variables along which subpopulations differ
and they discussed whether we can improve equating results if we use the selection variable as
either an anchor in an anchor test design or as a variable on which to match equating samples.
Results showed that matching on the selection variable improved accuracy over matching on the
equating test for all methods examined (Tucker and Levine linear models, chained equipercentile

65



66 CHAPTER 3. EQUATING WITH COVARIATES

and frequency estimation equipercentile models). Results with the selection variable as an anchor
were good for both the Tucker and frequency estimation methods. Liou et al. (2001) examined the
possibility of using surrogate variables (e.g., school grades, other test scores, examinee background
information) as replacements for common items when common items are unavailable or contam-
inated by nonrandom errors. Let Test X and Test Y be target tests between which comparable
scores must be determined, the authors underlined that the surrogate variable should correlate mod-
erately well with X and Y . Their empirical example showed that the surrogate variable worked
as well as the common-item score. Holland et al. (2007) underlined that anchor test scores should
be highly correlated with scores on the tests being equated: the importance of this property of the
anchor test raises the question of whether it makes sense to use supplemental information about
the examinees in both groups to increase the correlation.

3.2 Observed Score Linear Equating with Covariates

Bränberg and Wiberg (2011) suggest a new method for inclusion of background information in
equating to improve the precision. Suppose that we have two test forms and one population of po-
tential examinees (in the random groups design) or two populations of potential examinees (in the
nonequivalent groups designs). Let Y be the score an examinee would get if tested with test form
Y and X the score an examinee would get if tested with test form X. Assume that the following lin-
ear model is appropriate in the population (or in both populations, when we have two populations):

Y = zTβY + εY , (3.1)

X = zTβX + εX , (3.2)

where z is a kx1 vector of covariates (including a constant for the intercept), βY and βX are kx1
vectors of coefficients, zTβY and zTβX are the mean test scores in the subpopulation defined by
the values on the covariates, and εY and εx reflect the difference between each examinees score and
the mean and they have null expected values and variances given by σ2

Y and σ2
X , respectively. The

vector of covariates may consist of variables such as gender, age, education, etc. To equate the two
test forms, we need an equating function that maps the scores on one test form into equivalent
scores on the other test form. The authors assume the existence of a linear equating function

Y ∗ = eqY = b0 + b1X, (3.3)

where b0 = µY − µX(σY σ
−1
X ), b1 = σY σ

−1
X and µX , µY , σX and σY are the observed score pop-

ulation means and population standard deviations of X and Y (Kolen and Brennan, 2014). This
linear equating function is assumed to equate the two test forms in every subpopulation defined by
the values on the covariates. Note that the equating function is symmetrical. If the two test forms
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are equated by eqY , they also are equated by

X∗ = eqX = −b0
b1

+
1

b1
Y. (3.4)

Now, suppose that we have two random samples of examinees and that we give one of the
test forms to one sample and the other test form to the other sample. Let NY and NX (with
NY + NX = N) be the number of examinees who take test forms Y and X, respectively. Further,
let Yj and Xj (j = 1, ..., NY , NY+1, ..., N) be the j th examinees (potential) scores on test form Y
and test form X, respectively. With random sampling from large populations, the observed test
scores can be seen as observations on N (approximately) independent random variables with con-
ditional expectations and variances given by

E(Yj | zj) = zTj βY = E(Y ∗j | zj) = b0 + b1E(Xj | zj), (3.5)

E(Xj | zj) = zTj βX = E(X∗j | zj) = −b0
b1

+
1

b1
E(Yj | zj), (3.6)

V (Yj | zj) = σ2
Y = V (Y ∗j | zj) = b21V (Xj | zj), (3.7)

V (Xj | zj) = σ2
X = V (X∗j | zj) =

1

b21
V (Yj | zj). (3.8)

The authors obtained the results 3.5-3.8 using equations 3.3 and 3.4 and the definition of equat-
ing.

To derive maximum likelihood estimators of the equating parameters, we extend the model
with a distributional assumption. Following Potthoff (1966), the authors assume that the condi-
tional distribution of Yj , given zj is normal. This assumption implies the following density functions

f(yj | zj) =
1√
σ2
Y 2

exp

(
− 1

2σ2
Y

(yj − zTj βY )2

)
, (3.9)

f(xj | zj) =
b1√
σ2
Y 2

exp

(
− 1

2σ2
Y

(b0 + b1xj − zTj βY )2

)
. (3.10)
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Calculating the log-likelihood function, equating the partial derivatives of the log-likelihood
function to zero and finally solving equations for b̂0, b̂1, σ2

Y and β̂Y we obtain:

b̂0 =
1

NX

N∑
j=NY +1

zTj β̂Y − b̂1x̄, (3.11)

where

x̄ =
1

NX

N∑
i=NY +1

xj , (3.12)

is the sample mean test score on test form X;

b̂1 =

∑N
j=NY +1 xjz

T
j β̂Y − x̄

∑N
j=NY +1 z

T
j β̂Y

2(NX − 1)s2
X

+

√(∑N
j=NY +1 xjz

T
j β̂Y − x̄

∑N
j=NY +1 z

T
j β̂Y

2(NX − 1)s2
X

)
+

NX σ̂2
Y

(NX − 1)s2
X

, (3.13)

where

s2
X =

1

NX − 1

N∑
j=NY +1

(xj − x̄)2, (3.14)

is the sample variance for scores on test form X;

σ2
Y =

1

N

(NY∑
j=1

(yj − zTj β̂Y )2 + (b̂0 + b̂1xj − zTj β̂Y )2

)
; (3.15)

β̂Y =

(
(

N∑
j=1

zjz
T
j )−1(

NY∑
j=1

zjyj + b̂1

N∑
j=NY +1

zjxj + b̂0

N∑
j=NY +1

zj)

)
. (3.16)

The maximum likelihood equations can be solved iteratively using the following procedure:

1. Set k∗ = 0 and select starting values b̂
(k∗)
0 and b̂

(k∗)
1 for b̂0 and b̂1, respectively (in most ap-

plications the starting values b̂
(0)
0 = 0 and b̂

(0)
1 = 1 will be adequate).



3.3. KERNEL EQUATING UNDER THE NON-EQUIVALENTGROUPSWITH COVARIATES DESIGN69

2. Use b̂
(k∗)
0 and b̂

(k∗)
1 in equation 3.16 to get β̂

(k∗+1)
Y as an estimate of βY .

3. Use b̂
(k∗)
0 , b̂

(k∗)
1 and β̂

(k∗+1)
Y in equation 3.15 to get

ˆ
σ

2(k∗+1)
Y as an estimate of σ2

Y .

4. Use β̂
(k∗+1)
Y and

ˆ
σ

2(k∗+1)
Y in equation 3.13 to get b̂

(k∗+1)
1 .

5. Use β̂
(k∗+1)
Y and b̂

(k∗+1)
1 in equation 3.11 to get b̂

(k∗+1)
0 .

6. Increase k∗ by one and repeat steps 2-5 until convergence.

The authors use a simulation study to examine the effect on the estimators of using the model
with covariates and they also give a numerical illustration of the use of the model with real data.
The simulation study indicates that, with a random groups design, the accuracy of the estimators
can be improved by using covariates and it also indicated that, with a nonequivalent groups design,
the most efficient way to estimate the equating parameters is to use a good anchor test. The
accuracy of the estimators can be improved by supplementing anchor test scores with observations
on covariates, but the improvement is small. In the absence of an anchor test, the equating can be
improved if covariates are used to correct for differences between the groups, provided that we can
find covariates that can explain these differences. The numerical illustration indicates that, using
a nonequivalent groups design with no anchor test, but with covariates, results are obtained which
are close to the results from the equating actually performed.

3.3 Kernel Equating Under the Non-Equivalent Groups With
Covariates Design

Wiberg and Bränberg (2015) describe a method for performing kernel equating with the NEC
(non-equivalent groups with covariates) design. The authors assume that they have a sample of
examinees from each of two populations P and Q and that for each examinee, they also have obser-
vations for other variables correlated with the test scores X and Y . The idea is to use information
from these covariates as a substitute for an anchor test to control for differences in ability between
the two groups. V = (V1,V2, ...,VD)t is denoted as the column vector of D discrete covariates.
Observations on V are denoted vl, l = 1, ..., L where L is the number of all possible combinations
of values for the covariates V1,V2, ...,VD. They implemented these ideas in the five steps of kernel
equating as described next.

Presmoothing

In presmoothing, a statistical model is fitted to the empirical distribution obtained from the
sampled data. The authors use a log-linear model because such a method is commonly used in
the kernel method of test equating (von Davier et al., 2004). Let NPjl and NQkl be the number
of examinees in the sample from populations P and Q, respectively, and observation on X and Y
be denoted by xj , j = 1, ..., J and yk, k = 1, ...,K, respectively. Thus, they have X = xj , Y = yk,
and V = vl. The vectors NP = (NP11, ..., NPJL)t and NQ = (NQ11, ..., NQKL)t are assumed to
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be independent and they each have a multinomial distribution. pjl = P (X = xj ,V = vl | P )
and qkl = P (Y = yk,V = vl | Q) are the joint probabilities, and following log-linear models are
assumed for pjl in population P and qkl in population Q:

logpjl = αP + utPjlβP , logqkl = αQ + utQklβQ, (3.17)

where αP and αQ are normalizing constants to ensure that the probabilities sum to 1, uPjl and
uQkl are vectors of known constants, and βP and βQ are vectors of unknown parameters.

Estimation of the Score Probabilities

The target population T is defined as T = wP + (1−w)Q, 0 ≤ w ≤ 1. Let rj be the probability
of a randomly selected individual in population T scoring xj on Test X and sk be the probability
on Test Y. The score distribution of X and Y over T can be obtained from

rj = P (X = xj | T ) = wrPj + (1− w)rQj , (3.18)

sk = P (Y = yk | T ) = wsPk + (1− w)sQk, (3.19)

where rPj = P (X = xj | P ), rQj = P (X = xj | Q), sPk = P (Y = yk | P ) and sQk = P (Y = yk |
Q) are the score probabilities of X and Y in the two populations P and Q. The distribution of X
in P and of Y in Q can be estimated through the estimators

r̂Pj =
∑
l

p̂jl, ŝQk =
∑
l

q̂kl. (3.20)

The problem is that there are no data to directly estimate rQj and sPk. It is assumed that the
conditional distribution of X given V and the conditional distribution of Y given V are the same
in both populations. With these two assumptions, the distribution of X in population Q and the
distribution of Y in population P can be estimated by the following:

r̂Qj =
∑
l

(
p̂jl∑
j p̂jl

∑
k

q̂kl

)
, ŝPk =

∑
l

(
q̂kl∑
k q̂kl

∑
j

p̂jl

)
. (3.21)

Continuization
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Because test scores are typically discrete, a Gaussian kernel is used in kernel equating to con-
tinuize the two estimated discrete cumulative distribution functions (von Davier et al., 2004). This
means that instead of the discrete variable X, a continuous variable is used:

X(hX) = aX(X + hXZ) + (1− aX)µX , where aX =

√
σ2
X

(σ2
X + h2

X)
, (3.22)

and where the bandwidth hX > 0 is a constant, Z is a standard normal variable independent of
X, and µX =

∑
j xjrj is the mean of X in population T . The term aX is a constant where σ2

X is
the variance of X in population T . The variable X(hX) has the same mean and the same variance
as X. The Gaussian kernel smoothing of the distribution of X is given by

FhX
(x) = P (X(hX) ≤ x) =

∑
j

rjΦ

(
x− aXxj − (1− aX)µX

aXhX

)
, (3.23)

where Φ(·) is the standard normal distribution function. The Gaussian kernel smoothing of the
distribution of Y is given by

GhY
(y) = P (Y (hY ) ≤ y) =

∑
k

skΦ

(
y − aY yk − (1− aY )µY

aY hY

)
. (3.24)

The bandwidths in the kernel equating framework are usually selected by minimizing a penalty
function (von Davier, 2013), altough other methods exist (Häggström and Wiberg, 2014). To find
hX , one must minimize the penalty function

PEN(hX) =
∑
j

(r̂j − f̂hX
(xj))

2 + κ
∑
j

Aj , (3.25)

where f̂hX
is the estimated density function of X(hX) and κ is a constant typically equal to 0 or 1

depending on whether the second penalty term is used. Aj = 1 if either of the following conditions

is satisfied: (a) f̂ ′hX
(xj − v) > 0 and f̂ ′hX

(xj + v) < 0 or (b) f̂ ′hX
(xj − v) < 0 and f̂ ′hX

(xj + v) > 0,

where f̂ ′hX
(xj) is the derivative of f̂hX

(xj) and v is a constant typically chosen to be 0.25 (von
Davier, 2013). Otherwise, Aj = 0.

Equating

The estimator of the equipercentile kernel equating function for equating X to Y in population
T is obtained from equations 3.23 and 3.24

êY (x) = Ĝ−1
hY

(F̂hX
(x)). (3.26)
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Standard Error of Equating
The estimated equated score êY (x) is based on a sample; thus there is a random error associated

with this point estimator. The standard error of equating (SEE) is an estimate of each estimator’s
standard deviation and, in the kernel equating framework, it is defined as (von Davier et al., 2004)

SEEY (x) =‖ Ĵey ĴDFC ‖, (3.27)

where ‖ ‖ denotes the Euclidean norm of the vectors and C is a matrix that is based on the covari-
ances between the estimators of the probabilities in P and Q. Ĵey is the Jacobian of the equated

score, and ĴDF is the Jacobian of the Design Function, that is, a function that maps probabilities
in P and Q into r and s where r = (r1, ..., rj)

t and s = (s1, ..., sK)t. The authors explain how to
obtain the parts needed to calculate the SEE.
P is the JxL matrix of probabilities pjl in population P , and Q is the KxL matrix of probabilities
qkl in population Q. Let v(P ) = (p11, ...,pJL)t and v(Q) = (q11, ..., qKL)t be vectorized versions
of P and Q. These probabilities are estimated in the presmoothing step. Let tPm

and tQm
be the

sum of the mth column in matrices P and Q, respectively. The j th element of the vector r is then

rj = wrj + (1− w)rQj =

L∑
m=1

[
w +

(1− w)tQm

tPm

]
pjm, (3.28)

and sk is obtained similarly. Thus, the DF for the NEC design is defined as

(
r
s

)
= DF (P ,Q;w) =


∑
m

[
w +

(1−w)tQm

tPm

]
pm∑

m

[
(1− w) +

wtPm

tQm

]
qm

 , (3.29)

where pm and qm are the mth column of P and Q, respectively, and the summation is over all
possible combinations of values of the covariates. The Jacobian of the DF is obtained by using
v(P ) and v(Q)

JDF =

(
dr

dv(P )
dr

dv(Q)
ds

dv(P )
ds

dv(Q)

)
. (3.30)

Next, for F and G the Jacobian Ĵey is defined as

Ĵey =

(
deY
dr

,
deY
ds

)
=

1

G′

(
dF

dr
,−dG

ds

)
, (3.31)
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where G′ is the density of G evaluated at eY (x). The estimate of the Jacobian is obtained by
substituting F̂hX

and ĜhY
for F and G. Finally, to obtain the C matrix the authors assume that

P and Q are estimated independently using log-linear models and maximum likelihood. This leads
to

cov

(
v(P̂ )

v(Q̂)

)
=

(
Cv(P̂ )C

t
v(P̂ )

0

0 Cv(Q̂)C
t
v(Q̂)

)

=

(
Cv(P̂ ) 0

0 Cv(Q̂)

)(
Ct
v(P̂ )

0

0 Ct
v(Q̂)

)
= CCt,

(3.32)

where C is obtained from factorization of the covariance matrix. The size of the covariance be-
tween r and s is assumed to be small to simplify the calculation of SEE. Note that if it assumed

that

(
v(P̂ )

v(Q̂)

)
is normally distributed with mean

(
v(P )
v(Q)

)
and variance CCt, then for each x, the

estimator of the equated score, êY (x), given by equation 3.26 is also normally distributed.

The authors illustrate the NEC design with real data. As a comparison, the results are displayed
if a random groups design is used; the results if a regular NEAT design is used either with chain
equating or PSE; and the results if a NEC design is used with the covariates and an anchor test
(NEATNEC design). The comparison of SEE between the NEC, NEAT Chain, NEAT PSE, and
the NEATNEC design exhibits similar (large) SEE values at the lower end of the scale and also
at the upper end end of the scale. Moreover the NEC design has a smaller SEE than the random
groups design and a larger SEE than the NEAT designs, but, using both covariates and the anchor
test (NEATNEC design), they obtain the smallest SEE over a large range of test scores.

3.4 A Dependent Bayesian Nonparametric Model for Test
Equating

In this section we shortly describe a Bayesian model for test equating which allows the use of co-
variates.

Dependent prior probability models

González et al. (2015) proposed a flexible Bayesian nonparametric model for test equating which
allows the use of covariates in the estimation of the score distribution functions that lead to the
equating transformation.
Let x1, ..., xn be observed data defined on a sample space X , and distributed according to a prob-
ability distribution Fθ, belonging to a known family F = {Fθ : θ ∈ Θ} (in the context of equating
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θ will be the examinee’s ability, here it is a generic parameter). This setup is referred to as a para-
metric model whenever Θ is assumed to be a subset of a finite dimensional space. In the parametric
Bayesian framework, a prior p(θ) is defined on Θ. Parametric Bayesian inference is then based on
the posterior distribution p(θ | x), which is proportional to the product of the prior p(θ) and the
likelihood p(x | θ). If X is an infinite set then F is infinite-dimensional, and the corresponding
prior model p(F ) on F is termed nonparametric.
In many applications, it is desirable to allow for dependence of the data on covariates. Under a
Bayesian Nonparametric (BNP) approach it is desired to define a probability model that features a
set of covariate-dependent continuous distributions F = {Fz : z ∈ Z }, where now the entire shape
of F changes with z, and not just the mean or some other particular functional of the distribution.

The nonparametric model is then changed to x1, ..., xn | Fz
iid∼ Fz with a corresponding prior p(F )

on F = {Fz : z ∈ Z }. Such models are known as dependent nonparametric models.

Dependent Dirichlet processes

We remember that the Dirichlet processes (DP) can be constructed as

F (·) =

∞∑
i=1

ωiδθi(·), (3.33)

where δθi(·) denotes a point mass at θi, θi
iid∼ F ∗, ωi = Ui

∏
j<i(1 − Uj), and Ui

iid∼ Beta(1,M).
MacEachern (2000) proposed the following dependent Dirichlet process (DDP):

Fz(·) =

∞∑
i=1

ωi(z)δθi(z)(·), (3.34)

where ωi(z) = Ui(z)
∏
j<i(1−Uj(z)) and both θi(z) and Ui(z) are independent stochastic processes

with Ui
iid∼ Beta(1,M).

Dependent Bernstein polynomial priors

We remember that the q-th order Bernstein polynomial of H is defined by

B(t; q,H) =

q∑
e=0

H

(
e

q

)(
q

e

)
te(1− t)q−e, (3.35)

with derivative

b(t; q,H) =

q∑
e=1

weqβ(t | e, q − e+ 1), (3.36)
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where weq = H(e/q)−H((e− 1)/q), and β(· | a, b) denotes the beta density with parameters a and
b.
We can also define a dependent Bernstein polynomial process (DBPP). González et al. (2015) used
a simplified version of the general DBPP model which is called single weights DBPP and it is
denoted by wDBPP (Barrientos et al., 2012). Consider then q ∼ p(q | λ), where p(q | λ) is the
Poisson(λ) distribution, truncated to {1, 2, ...}. The model then becomes

s(z)(·) =

∞∑
e=1

weβ(· | dqθe(z)e, q − dqθe(z)e+ 1), (3.37)

where d·e denotes the ceiling function, θe(z) = hz(re(z)), and

we = ve
∏
i<e

[1− vi], (3.38)

and where r1, r2, ... are iid real-valued stochastic processes with probability measure indexed by the
parameter Ψ, hz is a function defined on a set H = {hz : z ∈ Z } of known bijective continuous
functions, and v1, v2, ... are independent random variables with common distribution indexed by a
parameter α. We denote 3.38 by S = {Sz = S(z) : z ∈ Z } ∼ wDBPP (α, λ,Ψ,H ).

Dependent BNP model for equating

Let T be the random variable denoting the scores with S(t) the associated probability distribu-
tion function. For a vector of covariates z, we are interested in modeling the covariate-dependent
score distributions, which will be used to obtain the equating transformation ϕ(t; z). We will denote
this as Sz(t) = S(t | Z = z). We need to specify a prior probability model for the set {Sz : z ∈ Z }.
We use a DBPP so that,

S = {Sz : z ∈ Z } ∼ wDBPP (α, λ,Ψ,H ). (3.39)

As an example, assume that a new test form X is to be equated to an old form Y . In this
case the covariate values denote the test form administered, that is, Z ∈ {X,Y }. The c.d.f. of
interest would be S(t | Z = z). Thus having score data and assuming S = {Sz = S(z) : z ∈ Z } ∼
wDBPP (α, λ,Ψ,H ) we can express the equating function as

ϕ(t; z) = S−1(S(t | Z = X | Z = Y )), (3.40)

where in this case ϕ(t; z) corresponds to the transformation function which puts scores on version
X in the scale of version Y .
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Chapter 4

IRT Equating with Covariates: a
proposal

A possible way to use covariates in IRT equating might be to include them in the calculation of
probability P (yji), where yji denote the response of examinee j to item i, and subsequently using
this probability to conduct IRT equating. The questions thus become: how to include covariates
in the calculation of the probability? How to use the probability estimated using covariates to
conduct IRT equating? Regarding the first question, Tay et al. (2011) proposed the MM-IRT-C
(Mixed-Measurement Item Response Theory With Covariates) model, which at the same time mod-
els covariates and latent classes of respondents. The graphical conceptualization of this model is
shown in Figure 4.1.
Regarding the second question, we propose two new methods that complement the MM-IRT-C
model within the IRT equating.
The structure of this chapter is as follows. First, we describe the MM-IRT-C model and its pre-
cursor models. Second, we describe the two new methods that let us to conduct IRT equating
using the MM-IRT-C model. Third, a simulation study is used to examine the properties of the
new methods. Fourth, a real data example is given to show how the new methods can be used in
practice.

4.1 Mixed-Measurement Item Response Theory With Co-
variates (MM-IRT-C) model and its Precursor Models

To use the IRT-C Model is a possible approach to overcome the limitations of traditional IRT-
Differential item functioning (DIF) procedures, because we can assess DIF across multiple variables
simultaneously.

Traditional IRT-DIF procedures. DIF occurs when people from different groups (commonly
gender or ethnicity) with the same latent trait (ability/skill) have a different probability of giving
a certain response on a questionnaire or test (Embretson and Reise, 2000). Uniform DIF is the
simplest type of DIF where item characteristic curves (ICC) are equally discriminating, but they

77
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exhibit differences in the difficulty parameters. Nonuniform DIF implies that an item can simul-
taneously vary in discrimination for the different groups while also varying in difficulty. The most
famous traditional IRT-DIF procedures were proposed by Lord (1980), Raju (1988) and Swami-
nathan and Rogers (1990) and are described here.

Lord’s Wald test (Lord, 1980) for DIF detection compares vectors of IRT item parameters be-
tween groups. For a given item, if the vectors of its parameters differ significantly between groups,
then the trace lines differ across groups, and thus the item is functioning differentially for the groups
studied.

Raju’s Area Measures estimate the area between two item response functions (IRFs) to pro-
vide useful information regarding the presence of DIF. Under IRT, if this area is nonzero, the item
is functioning differentially in the two groups. Raju (1988) offers formulas for computing the exact
area between two ICCs for the one-, two-, and three-parameter logistic IRT models (1PLM, 2PLM
and 3PLM, respectively).

The logistic regression model can be used to model differential item functioning by specifying
separate equations for the two groups of interest (Swaminathan and Rogers, 1990):

P (ujj∗ | θjj∗) =
e(β0j∗+β1j∗θ1j∗ )

1 + e(β0j∗+β1j∗θ1j∗ )
, j = 1, ..., Nj∗ , j

∗ = 1, 2. (4.1)

Here ujj∗ is the response of examinee j in group j∗ to the item, β0j∗ is the intercept parameter
for group j∗, β1j∗ is the slope parameter for group j∗, and θjj∗ is the ability of examinee j in group
j∗. An alternative but equivalent formulation of model 4.1 is

P (u = 1) =
ez

[1 + ez]
, (4.2)

where z = τ0 + τ1θ+ τ2g+ τ3(θg). In this latter formulation, the variable g represents group mem-
bership, where g = 1 if examinee belongs to Group 1 and g = 0 if examinee belongs to Group 2.
The term θg is the product of the two independent variables, g and θ; τ0 is the intercept parameter,
τ1 corresponds to the ability difference in performance on the item, τ2 corresponds to the group
difference in performance on the item, and τ3 corresponds to the interaction between group and
ability. An item shows uniform DIF if τ2 6= 0 and τ3 = 0 and nonuniform DIF if τ3 6= 0 (whether
or not τ2 = 0). The hypotheses of interest are therefore that τ2 = 0 and τ3 = 0. Swaminathan
and Rogers (1990) showed that the statistic for testing this hypothesis has an asymptotic χ2(2)
distribution.

The IRT-C Model

The traditional IRT-DIF procedures of Lord (1980) and Raju (1988) presented above are limited
because (a) multiple observed characteristics cannot be tested for DIF simultaneously, (b) contin-
uous observed characteristics cannot be directly used, and (c) testing of DIF in multiple groups
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(> 2) is often engaged in a ”piece-meal” fashion.
The IRT-C Model was proposed by Tay et al. (2011) in contrast to traditional DIF detection strate-
gies. This is a single-class/restricted MM-IRT-C approach, and it is a procedure akin to the logistic
regression (LR) method for testing observed DIF (Swaminathan and Rogers, 1990) but uses the
latent trait score θj (as shown in Equation 4.3) rather than the observed total score Yj . This
model is graphically depicted in panel 1A in Figure 4.1, where differences in item discrimination
and item location can be tested via Paths 2 and 3, respectively; thus, we can determine whether
there are significant differences in the item discriminations (corresponding to nonuniform DIF) and
item locations (corresponding to uniform DIF) among observed groups. Furthermore, because a
vector of observed characteristics zj (either continuous or nominal) can be used, it overcomes the
three specific limitations of traditional IRT-DIF procedures described above.
2PLM is utilized to describe the relationship between the probability of item endorsement and the
latent trait level θj . Let yji denote the response of examinee j(j = 1, ..., J), on item i(i = 1, ..., I).
The probability of item endorsement is then

P (yji | θj) =
1

1 + exp(−[aiθj + bi])
, (4.3)

where ai and bi represent the item discrimination and item location, respectively. DIF occurs when
the expected score given the same latent trait θj is different by virtue of observed characteristic
(zj) (Hulin et al., 1983). DIF can be represented as

P (yji | θj , zj) =
1

1 + exp(−[aiθj + bi + cizj + dizjθj ])
, (4.4)

where the probability of item responding depends not only on θj but also on zj . The additional
terms in equation 4.4, cizj and dizjθj , represent the direct and interaction effects for modeling
uniform and non-uniform DIF, respectively.

The MM-IRT model

The MM-IRT model (see panel 1B in Figure 4.1) may be viewed as an extension of the IRT
model, where latent classes (k) of examinees underlie the set of observed responses. Thus, the
conditional probabilities of responding to each item become P (yji | k, θj); which depends not only
on the latent trait standing (θj) but also on the latent class (k),

P (yji | k, θj) =
1

1 + exp(−[aikθj + bik])
. (4.5)

Let yj˜ be the vector containing all I item responses (i = 1, ..., I) for candidate j; the MM-IRT

model is then
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P (yj˜ ) =

K∑
k=1

πk

∫ I∏
i=1

P (yji | k, θj)f(θj)dθj , (4.6)

where the unconditional class membership probabilities πk serve as weights and sum to 1,
∑K
k=1 πk =

1; f(θj) is taken as the standard normal density and dθj represents the latent trait over which the
integration is performed. Similar to Figure 1A, item parameters may have distinct item discrim-
inations or locations across the unobserved groups (or latent classes), indicating unobserved DIF.
Unobserved DIF can be tested across LCs in the MM-IRT framework via Paths 5 and 6 in Figure 4.1
panel 1B; significant effects indicate significantly different item discriminations and item locations,
respectively.

The MM-IRT-C model

Instead of using a two-step procedure where MM-IRT LCs are first obtained and then associated
with other external variables (Eid and Rauber, 2000), we can model the associations of LCs with
external observed characteristics within a single, integrated model. Figure 4.1 panel 1C presents
the graphical depiction of the MM-IRT with a covariate, or observed characteristic, z. From the
model, we see that the association between inferred latent classes and an external covariate (z) is
modeled by Path 7; that is, observed group membership may predict latent class membership. For
multiple covariates (p = 1, ..., P ), the MM-IRT-C model may be written as

P (yj˜ | zj˜) =

K∑
k=1

πk|zj˜
∫ I∏

i=1

P (yji | k, θj)f(θj | zj˜)dθj , (4.7)

where zj˜ is the covariate vector (nominal or continuous) for the jth examinee. As can be seen, the

class membership probabilities are assumed to be affected by the covariates, which are typically
modeled by specifying a logistic regression model for πk|zj˜ . That is,

πk|zj˜ =
exp(αk +

∑P
p=1 βpkzjp)∑K

k′=1 exp(αk′ +
∑P
p=1 βpk′zjp)

, (4.8)

where αk and βpk are the intercept and slope coefficients, respectively, for LC k. Based on the
coefficients βpk, the statistical significance of the covariate zjp predicting the LC proportions can
be examined. The MM-IRT-C model can be used to examine overall DIF, both observed and
unobserved. Unlike IRT and MM-IRT approaches, which independently investigate observed and
unobserved DIF, respectively, the MM-IRT-C model can be used to analyze both types of DIF
simultaneously. There are several important reasons for doing so. First, we can test whether the
occurrence of observed DIF may be attributable to more nuanced, unobserved DIF. As an example,
one may obtain observed DIF on gender, but these DIF effects may be accounted for by some LCs
with unobserved DIF on the item of interest. A second reason for using MM-IRT-C is that DIF
on multiple observed characteristics may be accounted for by unobserved measurement groups.
Third, because not all observed DIF can be accounted for by unobserved measurement groups,
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it is necessary to examine residual observed DIF beyond that of unobserved DIF. Conceptually,
unobserved differences (i.e., latent class differences) may not fully demarcate how examinees differ-
entially use a scale; such differences may be attributable to observed group membership (see Figure
1C, Paths 2 and 3). In this case, the conditional probability P (yji | k, θj) in equation 4.5 becomes
P (yji | k, θj , zj˜).

Figure 4.1: Graphical conceptualization of the MM-IRT-C model.

Source: Tay et al. (2011).

4.2 Equating using the IRT-C model

In this section we are going to explain how to conduct IRT true-score equating and IRT observed-
score equating using the IRT-C model described in the previous section. We are going to use the
3PLM because it is the most general model.

4.2.1 IRT true-score equating with IRT-C

If we consider the pseudo-guessing parameter c∗i , the IRT-C model presented in Equation 4.4 be-
comes (Tay et al., 2015):
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P (yji | θj , zj) = c∗i +
1− c∗i

1 + exp(−[aiθj + bi + cizj + dizjθj ])
. (4.9)

For this model, the number-correct true score on Form X which was described in subsection 2.3
is defined as:

τX =
∑
i:X

pji(θj , zj ; ai, bi, c
∗
i , ci, di). (4.10)

Likewise, the number-correct true score on Form Y is defined as

τY =
∑
i:Y

pji(θj , zj ; ai, bi, c
∗
i , ci, di). (4.11)

The Form Y true score equivalent of a given true score on Form X is then defined as

irtY (τX) = τY (τ−1
X ). (4.12)

4.2.2 IRT observed-score equating with IRT-C

Define ft(x | θj , zj) as the distribution of number-correct scores over the first t items for examinees
of ability θj and covariate zj (it was defined previously, but without covariates, in section 2.3).
Define f1(x = 0 | θj , zj) = (1− pj1) as the probability of earning a score of 0 on the first item and
f1(x = 1 | θj , zj) = pj1 as the probability of earning a score of 1 on the first item. For t > 1, the
recursion formula 2.108 for the IRT-C model 4.9 becomes:

ft(x | θj , zj) = ft−1(x | θj , zj)(1− pjt), x = 0,

= ft−1(x | θj , zj)(1− pjt) + ft−1(x− 1 | θj , zj)pjt, 0 < x < t,

= ft−1(x− 1 | θj , zj)pjt, x = t.

(4.13)

The recursion formula gives the observed score distribution for examinees of a given ability and
covariate. To find the observed score distribution for examinees of various abilities and with differ-
ent values of covariate, the observed score distribution for examinees at each ability and value of
covariate is found and then these are accumulated. When the ability distribution is continuous, then
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f(x) =
∑
zj

∫
f(x | θ, zj)ψ(θ) dθp(zj), (4.14)

where ψ(θ) is the distribution of θ and p(zj) is the distribution of zj . To conduct observed score
equating, observed score distributions are found for Form X and for Form Y . Conventional equiper-
centile methods are then used to find score equivalents.

4.3 A Simulation Study

The objective of the simulation is to show that the proposed methods for IRT equating with co-
variates can increase the accuracy of an equating by reducing the standard error of the estimators.
In this section we present the set up of the simulations together with the obtained results which
we obtained using the proposed method. It is important to underline that we used the bootstrap
method because it is a very common approach in equating (Kolen and Brennan, 2014).

4.3.1 Simulation Set Up

To conduct the simulation, parametric bootstrap (Efron and Tibshirani, 1993) was used, especially
the following steps:

1. It is assumed that, for the form X, probabilities pji are generated from the IRT-C model with
fixed values of the parameters;

2. It is assumed that, for the form Y , probabilities pji are generated from the IRT-C model with
fixed values of the parameters;

3. Randomly select NX x nX probabilities from the model from step 1 (where NX is the number
of the examinees and nX the number of items on Form X);

4. Randomly select NY x nY probabilities from the model from step 2 (where NY is the number
of the examinees and nY the number of items on Form Y );

5. Conduct IRT true score equating and IRT observed score equating using the parametric
bootstrap samples drawn in steps 3 and 4;

6. Repeat steps 3 through 5 a large number of times R. The estimated standard error for the
IRT true score equating is:

ŝeboot[ ˆIRTY (τX)] =

√∑
r[

ˆIRTY r(τX)− ˆIRTY .(τX)]2

R− 1
, (4.15)

where ˆIRTY r(τX) indicates the r bootstrap estimate and
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ˆIRTY .(τX) =
∑
r

ˆIRTY r(τX)

R
. (4.16)

The estimated standard error for the IRT observed score equating is:

ŝeboot[êY (xi)] =

√∑
r[êY r(xi)− êY .(xi)]2

R− 1
, (4.17)

where êY r(xi) indicates the r bootstrap estimate and

êY .(xi) =
∑
r

êY r(xi)

R
. (4.18)

The idea is to compare standard errors obtained with this procedure with those obtained by the
same procedure in which, however, at the first step the parameters are estimated using the classical
IRT models (for example the 3PLM). If the standard errors obtained using the procedure presented
above are lower than the standard errors obtained using the 3PLM, then we can conclude that the
use of covariates actually increases the accuracy of the IRT equating.

4.3.2 Covariates

In order to simulate the relationships between the external covariates and the latent trait that
have high fidelity to test data, we use the National Evaluation Institute for the School System
(Invalsi) theta scores as simulated ability estimates. In particular, we use theta scores from the
population of 593,407 examinees taking the 2013 Invalsi eight grade mathematics test. In this study,
we used Invalsi theta scores as a proxy for the IRT latent trait scores because IRT scores have high
correlations with the observed scores (Bartolucci et al., 2015).

Invalsi conducts annual surveys at different school grades. Invalsi develops tests to assess exam-
inees’ Italian language and mathematics competencies, and administers them to the whole popula-
tion of primary school examinees (second and fifth grade), lower secondary school examinees (sixth
and eighth grade), and upper secondary school examinees (tenth grade). We consider data from the
administration of the Invalsi test at eighth grade. The choice of this grade assessment data is moti-
vated by the fact that examinees receive a test score based on their performance, which contributes
to the definition of the final examinee score at the end of lower secondary school within a state
certification exam with legal validity. The choice of the mathematics test is motivated by the fact
that Italian examinees have often shown serious gaps in this subject, even in international surveys
(OECD, 2012). The 2013 Invalsi eigth grade math test consists of 45 dichotomous items divided
into four areas: Numbers, Space and Figures, Data and Forecasts and Relations and Functions.

The covariates used were the gender and the nationality of the examinees. The choice of these
covariates is motivated by the fact that girls and foreign citizens appear to be disadvantaged in
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Table 4.1: Test Score Means for the Different Subpopulations in the Data from the 2013 Invalsi
Eight Grade Math Test.

Gender

MALE FEMALE
Nationality

ITA 24.74 23.20
FEFG 23.58 18.32
FESG 22.56 20.67

the mathematics test (see, for example, Tonello (2011)). An example of the relationship between
the two covariates gender and nationality and the total score (between 0 and 50) is shown in Table
4.1, where ITA represents Italian examinees and FEFG and FESG represent, respectively, foreign
examinees of first generation (examinees born abroad whose parents were both born abroad) and
second generation (examinees born in Italy whose parents were both born abroad). The mean test
score was higher for males than for females and also higher for Italian examinees than for foreign
examinees with significant differences (INVALSI, 2013).
To predict the Invalsi theta scores (θ), an additive regression model was fit to the data with predictor
variables of gender and nationality (where nationality was dummy coded):

θ = 0.224− 0.182(FEMALE)− 0.579(FEFG)

− 0.274(FESG) + e,
(4.19)

where e represents an error term. All the coefficients were significantly different from zero.

4.3.2.1 Design and Ability distributions

In this study we use the NEC design as the single group design is rarely used in practice because of
order effects (Kolen and Brennan, 2014, p.14). We cannot use the NEAT design because there is no
anchor test in the Invalsi test and there are not examinees with scores from two test administrations
that we can use to create an hypothetic anchor. Finally, we do not use the EG design because it is
reasonable to think that the examinees that sustained different test forms are not equivalent. For
the NEC design, we need two samples: one sample with scores on test form X and one sample
with scores on test form Y . For both forms, to simulate an ability distribution that conforms to
the estimated additive model, random normal distribution were simulated for each of the six cells
(gender x nationality) shown in Table 4.2 following the set up of Tay et al. (2015). All the variances
of the normal distributions were set to 1, but the mean of the random normal distributions was
dependent on the beta coefficients, as follows
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Table 4.2: Percentages of examinees by gender and nationality.
% ITA FEFG FESG TOTAL
MALE 45.3 3.0 2.1 50.4
FEMALE 44.7 2.8 2.1 49.6
TOTAL 90.0 5.8 4.2 100.0

θ∗mean = 0.224− 0.182(FEMALE)− 0.579(FEFG)

− 0.274(FESG).
(4.20)

The number of simulated examinees in each cell was based on the proportions in Table 4.2
multiplied by the total number of simulated examinees. We use the same model to simulate the
ability distributions for the forms X and Y with the exception that the parameters of the IRT-C
models will be different for the two forms.

4.3.2.2 Item parameters

In this study our objective is to show that the use of covariates can increase the accuracy of an
equating. For this reason, in the simulation we use the IRT-C model, ignoring the latent classes,
which are not our priority. Following Tay et al. (2015), for a traditional 3PLM, item discriminations
ai were sampled from a truncated normal distribution (mean=1.2, sd=0.3) with lowest and highest
possible values set to 0.5 and 1.7 respectively; bi were sampled from a uniform (−2, 2) distribution
and c∗i were sampled from a logit-normal (−1.1, 0.5) distribution.

4.3.2.3 DIF across multiple covariates

To simplify our simulation, we seek to only examine the presence of uniform DIF (Tay et al., 2015).
We simulate DIF on the first fifteen (this number is not random: we explain this choice later) items.
For moderate DIF, as it can be seen through the design matrix 4.21, we specified uniform DIF of the
magnitude 0.40 on items 1, 2, 3, 4, 5 and 12 and 14, 15 biased against females. Items 6, 7, 8, 9, 10, 11
and 14, 15 are biased in favor of foreigns of first generation and, finally, items 11 and 13, 14, 15
are biased against foreigns of second generation (in this last case, we specified uniform DIF of the
magnitude 0.20). For large DIF, as it can be seen through the design matrix 4.22, we specified
uniform DIF of the magnitude 0.60 in place of 0.40, and 0.30 in place of 0.20 (in specifying the
magnitudes of 0.40 and 0.20 for moderate DIF and of 0.60 and 0.30 for large DIF we followed Tay
et al. (2015)). Finally for low DIF, as it can be seen through the design matrix 4.23, we specified
uniform DIF of the magnitude 0.10 in place of 0.40, and 0.05 in place of 0.20.
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

−0.40 0 0
−0.40 0 0
−0.40 0 0
−0.40 0 0
−0.40 0 0

0 0.40 0
0 0.40 0
0 0.40 0
0 0.40 0
0 0.40 0
0 0.40 −0.20

−0.40 0 0
0 0 −0.20

−0.40 0.40 −0.20
−0.40 0.40 −0.20



FEMALE
FEFG
FESG

 . (4.21)



−0.60 0 0
−0.60 0 0
−0.60 0 0
−0.60 0 0
−0.60 0 0

0 0.60 0
0 0.60 0
0 0.60 0
0 0.60 0
0 0.60 0
0 0.60 −0.30

−0.60 0 0
0 0 −0.30

−0.60 0.60 −0.30
−0.60 0.60 −0.30



FEMALE
FEFG
FESG

 . (4.22)
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

−0.10 0 0
−0.10 0 0
−0.10 0 0
−0.10 0 0
−0.10 0 0

0 0.10 0
0 0.10 0
0 0.10 0
0 0.10 0
0 0.10 0
0 0.10 −0.05

−0.10 0 0
0 0 −0.05

−0.10 0.10 −0.05
−0.10 0.10 −0.05



FEMALE
FEFG
FESG

 . (4.23)

We underline that these matrixes are used for the purposes of simulation and do not reflect how
or if the test is biased against different groups of examinees. The matrixes are the same for the two
forms in this simulation only for simplicity, but we could have different matrixes or have no DIF
on all of the items.

4.3.2.4 Test length and Sample Size

Test length should be at least 30 − 40 items when equating educational tests with tables of spec-
ifications that reflect multiple areas of content (Kolen and Brennan, 2014, p.285). Following this
rule, we simulated test lengths of 30 and 45 items where the first 15 items have DIF of the form
specified in the DIF matrix but the remaining items do not have DIF. As such, our simulations
focus on the boundary conditions with tests that have a large proportion of DIF items (50 percent)
and a moderately large proportion (about 33 percent) of DIF items, respectively (Tay et al., 2015).
The boundary conditions were introduced by Tay et al. (2015) to show that the IRT-C procedure
for detecting DIF across multiple covariates is powerful because it works well even with a large pro-
portion of DIF items; in this context it is useful to focus on these conditions to assess the impact of
a different proportion of DIF items on equating. The need to focus on these boundary conditions
respecting the rules for choosing an appropriate test length explains the choice to simulate exactly
fifteen DIF items. Regarding the sample size, for the 3PLM 1, 500 examinees per form are usually
required (Kolen and Brennan, 2014, p.304), so, presuming that we need a sample size of 500 to
estimate each parameter, in our case a reasonable sample size could be 2,000 per form (in effect we
have to estimate the three parameters of the 3PL IRT model and the DIF coefficient ci). To evalu-
ate how the method works with small samples, we also use the sample sizes of 200 and 600 per form.
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4.3.3 Results

4.3.3.1 IRT observed-score equating

Using a moderate magnitude for the DIF, the IRT observed-score equating with IRT-C method
already shows excellent results with small samples (N1 = N2 = 200), as can be seen in Figures A.1
and A.3. When we use a moderately large proportion of DIF items (33%) and the number of items
is n1 = n2 = 45, we can observe in Figure A.1 that all the models with covariates have a lower SEE
than the model without covariates over a large range of test scores. The SEE of the models with
covariates is quite similar to the SEE of the model without covariates at the lower and at the upper
end of the scale (Figure A.2), where, in general, a larger SEE is expected considering the fact that
there are few examinees with the lowest results and few with the highest results. The model with
only the covariate gender shows the worst performance among the models with covariates; however,
it has a lower SEE than the model without covariates over a quite large range of test scores. When
we use a large proportion of DIF items (50%) and the number of items is n1 = n2 = 30, we can
observe in Figure A.3 that the models with covariates (except for the model with only the covariate
gender) have a lower SEE than the model without covariates over a large range of test scores, even
at the upper end of the scale. We can observe in Figure A.4 that the SEE of the models with
covariates is quite similar to the SEE of the model without covariates at the lower end of the scale.
The model with only the covariate gender shows a worse performance compared to the previous
case. Figures A.5 and A.7 show the results obtained with medium samples (N1 = N2 = 600).
When the number of items is n1 = n2 = 45, we can observe in Figure A.5 that all the models with
covariates have a lower SEE than the model without covariates over a large range of test scores.
As can be seen in Figure A.6, the model with only the covariate gender has an higher SEE than
the model without covariates at the lower end of the scale, but however it has a lower SEE than
the model without covariates over a quite large range of test scores. When the number of items is
n1 = n2 = 30, we can observe in Figure A.7 that the models with covariates (except for the model
with only the covariate gender) have a lower SEE than the model without covariates over the whole
range of test scores, even at the lower and at the upper end of the scale (Figure A.8). Figures A.9
and A.11 show the results which we obtained with large samples (N1 = N2 = 2000). When the
number of items is n1 = n2 = 45, we can observe in Figure A.9 that all the models with covariates
have a lower SEE than the model without covariates over the whole range of test score, even at the
lower and at the upper end of the scale (Figure A.10). When the number of items is n1 = n2 = 30,
we can observe in Figure A.11 that the models with covariates (except for the model with only the
covariate gender) have a lower SEE than the model without covariates over the whole range of test
scores, even at the lower and at the upper end of the scale. The model with only the covariate
gender shows a worse performance compared to the previous case and it has an higher SEE than
the model without covariates at the lower and at the upper end of the scale (Figure A.12).

Using a large magnitude for the DIF, we obtain results which are very similar to the ones shown
in Figures A.1, A.3, A.5, A.7, A.9 and A.11, as we can see in Figures A.13-A.18.

Using a low magnitude for the DIF and small samples (N1 = N2 = 200), we obtained results
which are very similar to the ones shown in Figures A.1 and A.3, as we can see in Figures A.21 and
A.22. When the number of items is n1 = n2 = 45, we can observe in Figure A.21 that the models
with covariates (except for the three models with only one covariate) have a lower SEE than the
model without covariates over the whole range of test scores, even at the lower and at the upper
end of the scale (Figure A.22). When the number of items is n1 = n2 = 30, we can observe in
Figure A.23 that the models with covariates (except for the two models with only the covariates
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GEN and FEFG, respectively) have a lower SEE than the model without covariates over the whole
range of test scores, even at the lower and at the upper end of the scale (Figure A.24). When the
number of items is n1 = n2 = 45, we can observe in Figure A.25 that the models with covariates
(except for the three models with only one covariate) have a lower SEE than the model without
covariates over the whole range of test scores, even at the lower and at the upper end of the scale
(Figure A.26). When the number of items is n1 = n2 = 30, we can observe in Figure A.27 that
the models with covariates (except for the two models with only the covariates GEN and FEFG,
respectively) have a lower SEE than the model without covariates over a quite large range of test
scores. At the lower end of the scale several models with covariates have an higher SEE than the
model without covariates (Figure A.28).
Summing up, IRT observed-score equating showed excellent results: in fact, in general, all the
models with covariates had a lower SEE than the model without covariates. The method already
worked well with small samples (N1 = N2 = 200) and the moderate or large entity of the DIF
did not have a relevant impact on the results. A low entity of the DIF shows instead a worse
performances of the models with only one covariate. When the number of items is n1 = n2 = 30,
we observed a better performance of the models with covariates than the model without covariates
even at the lower and at the upper end of the scale.

4.3.3.2 IRT true-score equating

The IRT true-score equating with IRT-C method did not show good results. Figures 4.2 shows the
results obtained with small samples (N1 = N2 = 200), when the number of items is n1 = n2 = 30.
Using a large DIF and a number of items of n1 = n2 = 45, we obtained results which are very
similar to the ones shown in Figure 4.2, for this reason we omitted that graph. Increasing the
sample size, we cannot improve our results. For instance, Figures 4.3 shows the results which we
obtained for the models without covariates (red line) and with only the covariate FESG (blue line)
using big samples (N1 = N2 = 2000), when the number of items is n1 = n2 = 45.
Summing up, we cannot recommend to use IRT true-score equating with covariates, because the
models with covariates did not have a lower SEE than the model without covariates. Increasing
the sample size, the entity of the DIF or the number of the items, we cannot improve our results.
A possible reason of these negative results could be that true scores are not avalaible in practice
and no justification exists for applying the true score relationship to observed scores.
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Figure 4.2: SSE using IRT true-score equating when n1 = n2 = 30, N1 = N2 = 200 and DIF is
moderate.

4.4 An Empirical Study

4.4.1 Introduction

To illustrate the use of the techniques presented earlier with real data, we equated two adminis-
trations, 2012 and 2013, of the Invalsi eighth grade math test. We have already described the test
administrated in 2013 (see section 4.3). The 2012 Invalsi eighth grade mathematics test consists
of 46 dichotomous items divided into four areas: Numbers, Space and Figures, Data and Forecasts
and Relations and Functions. The Invalsi test is given once a year, with a new test form every
time: because for the government and for the schools is essential to understand if and how the
knowledge of the subject (mathematics in our example) changes for a specific grade (the eighth
grade in our example), there is therefore a need to equate test scores from different test forms. So,
in this context we are in an horizontal equating situation (see subsection 1.1.3). Even if we do not
focus on a vertical equating situation here, we want to underline that for the institutions is also
essential to understand if and how the knowledge of the subject changes across grades, so in the
future Invalsi will have to face this issue).
In this testing situation, none of the requirements for standard equating are fulfilled. There is no
anchor test (all items are released after the administration of the test), and there may be differences
in ability between the examinee groups, which makes the assumption of random samples from the
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Figure 4.3: SSE of the models without covariates (red line) and with only the covariate FESG (blue
line) using IRT true-score equating when n1 = n2 = 45, N1 = N2 = 2000 and DIF is moderate.

same population implausible. To adjust for these differences, we can use covariates thus we will
compare the results of the EG design with the results of the NEC design. The covariates used were
gender (GEN) (which was coded 0 for males and 1 for females), foreign examinee of first generation
(FEFG) and foreign examinee of second generation (FESG). The number of examinees taking the
2012 administration was N = 587, 412, and the number of examinees taking the 2013 adminis-
tration was N = 593, 407. Due to these large sample sizes, we choose to use Trento’s data (with
sample sizes N = 5, 029 in 2012 and N = 4, 998 in 2013). The choice of Trento is motivated by
the fact that this Italian province showed significantly different Invalsi math scores between males
and females and between Italian examinees and foreign examinees in 2013 (INVALSI, 2013). It is
very important to underline that Trento does not show atypical distributions of the covariates. The
distributions are similar to the distributions of the covariates of the other Italian regions, as we can
see in Tables 4.3 and 4.4.
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4.4.2 Results

To estimate item parameters, DIF and examinees’ ability parameters, we used the R packages difR
(Magis et al., 2015) and ltm (Rizopoulos, 2006). We can see the estimates of the item parameters
and of the DIF for the 2012 and 2013 Trento’s data in Tables 4.5 - 4.8. For the 2012 Trento’s data
we can see in Table 4.7 that there is no DIF on the following items: 7,10,12 and 32 for the covariate
GEN; 1,4,24 and 26 for the covariate FEFG and 16,24,43 and 45 for the covariate FESG. We also
see in Table 4.7 that there is a very large DIF (> 0.60) on the following items: 3,5 and 46 (bi-
ased in favor of females) and 15,16,25,26,36 and 37 (biased against females) for the covariate GEN;
2,6,8,12,14,17,19,25 and 37 (biased in favor of foreigns of first generation) and 9,10,16,29,36,38,39,41
and 45 (biased against foreigns of first generation) for the covariate FEFG; 3,12 and 14 (biased in
favor of foreigns of second generation) and 8,21,28 and 33 (biased against foreigns of second gener-
ation) for the covariate FESG. Excluding the items without DIF and with a very large DIF, all the
other items have the following mean DIF (calculated on the absolute values): 0.40, 0.30 and 0.30
for the covariates GEN, FEFG and FESG, respectively. Compared to the thresholds used in the
simulation study, we can say that the mean DIF across the three covariates (calculated excluding
the extreme values) has medium-high magnitude. For the 2013 Trento’s data we can see in Table
4.8 that there is no DIF on the following items: 4,5,8,21 and 43 for the covariate GEN and 1,20 and
31 for the covariate FEFG (there is DIF on all of the items for the covariate FESG). We also see
in Table 4.8 that there is a very large DIF (> 0.60) on the following items: 15,16,25,27,28 and 36
(biased in favor of females) and 7,13,23,29 and 30 (biased against females) for the covariate GEN;
15,16,24,27,28,33,44 and 45 (biased in favor of foreigns of first generation) and 4,5,18,21,22,35,36
and 40 (biased against foreigns of first generation) for the covariate FEFG; 24,27,28,33 and 45 (bi-
ased in favor of foreigns of second generation) and 6,11,26,36,37,40 and 41 (biased against foreigns
of second generation) for the covariate FESG. Excluding the items without DIF and with a very
large DIF, all the other items have a mean DIF (calculated on the absolute values)of 0.30 for the
three covariates. So also in this case, compared to the thresholds used in the simulation study, we
can say that the mean DIF across the three covariates (calculated excluding the extreme values) has
medium-high magnitude. For the sake of brevity, we omit the estimates of the examinees’ ability
parameters: we only say that the ability parameters’ means for the 2012 and 2013 Trento’s data
are, respectively, 3e− 05 and 0.000665. We can see the results which we obtained applying the IRT
observed-score equating with covariates on the Trento’s data in Figures 4.4. Substantially, all the
models with covariates have a lower SEE than the model without covariates over the whole range
of test scores, even at the upper end of the scale. We can observe in Figure 4.5 that the models
with covariates have quite similar SEE than the model without covariates at the lower end of the
scale. In Figure 4.6 we can see that the difference between the equated scores and the X scores are
larger using the EG design.
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Table 4.3: Distribution of the gender in the Invalsi data for the different Italian regions for the year
2013, percentages.

Male Female Missing
Valle d’Aosta 49.2 50.7 0.1
Piemonte 50.1 49.6 0.3
Liguria 50.6 49.1 0.3
Lombardia 50.1 49.8 0.1
Veneto 50.0 50.0 0.0
Friuli-VG 50.2 49.8 0.0
Emilia Romagna 50.0 49.7 0.3
Toscana 50.5 49.0 0.5
Umbria 51.6 48.4 0.0
Marche 50.7 49.1 0.2
Lazio 49.9 49.6 0.5
Abruzzo 50.1 49.9 0.0
Molise 49.2 50.7 0.1
Campania 50.6 49.1 0.3
Basilicata 50.6 49.1 0.3
Calabria 50.5 49.3 0.2
Sicilia 49.6 50.2 0.2
Sardegna 49.4 49.1 1.5
Bolzano italiana 52.5 47.3 0.2
Bolzano ladina 49.8 50.2 0.0
TRENTO 49.5 50.4 0.1
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Table 4.4: Distribution of the foreign examinees of first generation (FEFG) and of second generation
(FESG) in the Invalsi data for the different Italian regions for the year 2013, percentages.

Other FEFG FESG Missing
Valle d’Aosta 88.9 6.3 4.6 0.2
Piemonte 85.9 8.5 5.0 0.6
Liguria 86.7 8.7 4.0 0.6
Lombardia 84.6 8.8 6.3 0.3
Veneto 86.3 8.3 5.2 0.2
Friuli-VG 86.1 8.1 5.6 0.2
Emilia Romagna 83.7 9.4 6.3 0.6
Toscana 80.0 8.4 11 0.6
Umbria 84.2 10.1 5.6 0.1
Marche 86.9 7.35 5.5 0.25
Lazio 88.6 6.6 4.1 0.7
Abruzzo 90.8 5.1 3.8 0.3
Molise 94.3 3.5 2.1 0.1
Campania 97.0 1.4 1.0 0.6
Basilicata 96.6 1.5 1.4 0.5
Calabria 95.5 2.7 1.2 0.6
Sicilia 96.1 1.7 1.6 0.6
Sardegna 95.6 1.4 1.2 1.8
Bolzano italiana 74.5 16.8 8.1 0.6
Bolzano ladina 97.7 1.9 0.4 0.0
TRENTO 86.5 8.2 5.2 0.1
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Table 4.5: Estimates of the item parameters for the 2012 Trento’s data.
a b c

item 1 0.739 -5.603 4.209e-02
item 2 0.531 -0.318 3.490e-01
item 3 0.544 -3.245 4.367e-01
item 4 1.309 0.339 1.818e-01
item 5 0.486 -2.894 1.626e-01
item 6 1.958 1.535 2.631e-01
item 7 0.969 -0.052 3.862e-01
item 8 1.434 1.124 3.883e-01
item 9 0.719 -1.614 3.749e-04
item 10 0.649 -2.393 1.731e-03
item 11 1.450 0.625 2.747e-01
item 12 1.914 2.331 1.717e-01
item 13 2.446 0.465 2.574e-01
item 14 1.561 1.847 2.990e-01
item 15 1.224 0.917 3.561e-02
item 16 1.557 1.059 1.158e-01
item 17 2.001 1.771 3.611e-01
item 18 1.127 0.422 1.922e-01
item 19 0.969 2.837 1.972e-01
item 20 1.548 1.702 6.048e-02
item 21 0.892 -0.295 4.205e-05
item 22 0.920 0.368 6.151e-05
item 23 1.163 1.603 1.586e-01
item 24 1.515 1.643 3.349e-02
item 25 2.527 1.525 2.166e-01
item 26 2.103 0.683 1.665e-01
item 27 1.857 0.510 2.238e-01
item 28 1.805 0.714 7.063e-02
item 29 1.689 0.126 1.914e-01
item 30 1.555 0.135 2.289e-01
item 31 1.925 0.595 2.507e-01
item 32 1.039 1.307 1.033e-01
item 33 0.902 -1.020 3.831e-01
item 34 1.664 1.216 3.363e-01
item 35 0.986 -0.577 3.017e-01
item 36 1.050 0.392 9.194e-05
item 37 1.178 0.864 2.092e-01
item 38 2.461 -1.076 2.889e-05
item 39 1.638 -0.606 5.979e-07
item 40 1.254 -0.241 1.102e-05
item 41 1.855 -0.770 2.249e-07
item 42 0.931 0.1432 3.884e-01
item 43 0.941 -0.201 5.113e-02
item 44 1.090 -0.478 2.814e-01
item 45 1.321 0.026 2.839e-02
item 46 0.759 -1.397 6.170e-03
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Table 4.6: Estimates of the item parameters for the 2013 Trento’s data.
a b c

item 1 0.784 -1.277 6.959e-02
item 2 0.958 -0.517 1.157e-01
item 3 1.833 0.277 2.866e-01
item 4 2.224 0.333 8.539e-02
item 5 2.204 0.332 7.56e-03
item 6 0.860 -1.067 1.046e-01
item 7 0.865 0.284 1.532e-04
item 8 0.591 -0.151 9.799e-06
item 9 0.670 -0.454 1.322e-02
item 10 1.528 0.192 1.336e-01
item 11 1.269 -0.146 1.611e-01
item 12 1.014 0.707 5.129e-04
item 13 1.305 0.947 1.389e-01
item 14 1.001 -2.086 2.273e-05
item 15 0.950 1.618 3.162e-01
item 16 0.245 -5.092 6.806e-03
item 17 1.409 0.156 1.621e-01
item 18 1.452 0.187 4.057e-04
item 19 1.529 -0.037 2.681e-01
item 20 1.128 0.553 3.017e-04
item 21 2.020 -0.285 1.716e-01
item 22 1.776 0.179 2.315e-06
item 23 1.390 1.888 1.198e-04
item 24 1.196 1.146 1.165e-01
item 25 0.891 -0.603 3.669e-09
item 26 1.265 0.0466 5.681e-01
item 27 -1.800 -2.478 3.780e-01
item 28 -0.051 -0.651 1.341e-02
item 29 1.161 -0.091 2.738e-03
item 30 1.486 0.392 4.509e-02
item 31 0.800 0.472 1.454e-03
item 32 1.293 0.140 1.359e-01
item 33 0.293 -2.782 2.195e-04
item 34 0.949 0.619 2.260e-04
item 35 1.380 -0.183 1.431e-01
item 36 0.826 0.006 2.350e-04
item 37 1.971 0.246 1.962e-01
item 38 1.467 0.3761 4.360e-02
item 39 0.747 -0.191 1.924e-04
item 40 1.482 0.211 7.677e-07
item 41 1.321 0.532 1.820e-01
item 42 1.269 0.373 4.968e-02
item 43 1.940 0.6998 6.467e-01
item 44 1.431 1.203 4.698e-01
item 45 1.798 1.576 3.083e-01
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Table 4.7: Estimates of the DIF of the covariates GEN, FEFG and FESG for the 2012 Trento’s
data.

GEN FEFG FESG
item 1 0.2044 0.0362 0.4127
item 2 0.2261 0.7666 -0.1208
item 3 1.0843 0.5417 0.6681
item 4 -0.5748 -0.0209 -0.5692
item 5 1.1191 0.3128 0.1473
item 6 0.1006 0.7734 -0.0985
item 7 0.0174 -0.3722 -0.3830
item 8 -0.3053 0.7640 -0.7370
item 9 0.2825 -1.1155 -0.1476
item 10 -0.0287 -1.0180 0.3793
item 11 -0.1227 0.3553 0.1410
item 12 -0.0432 1.4500 0.8124
item 13 -0.5121 -0.1998 0.2080
item 14 0.2383 1.1336 0.7877
item 15 -0.7388 -0.1650 0.3010
item 16 -1.0664 -0.7454 -0.0207
item 17 -0.0501 0.8751 0.4625
item 18 -0.0606 -0.2284 0.1687
item 19 0.4481 1.3649 0.4712
item 20 -0.5772 0.4063 -0.3784
item 21 0.5327 -0.4672 -0.6947
item 22 0.6296 -0.2240 -0.5887
item 23 0.5746 -0.0966 0.0639
item 24 -0.3746 -0.0367 0.0371
item 25 -0.8728 0.9978 0.6077
item 26 -0.9623 -0.0322 -0.0754
item 27 -0.6138 -0.3283 -0.4510
item 28 -0.4813 -0.2113 -0.8869
item 29 -0.1929 -0.6904 -0.3196
item 30 -0.0693 0.1076 -0.1765
item 31 0.0517 0.1645 0.2707
item 32 -0.0031 0.1687 0.3039
item 33 0.3116 -0.2460 -0.7078
item 34 0.4065 0.5626 0.3833
item 35 0.4065 -0.1422 0.1532
item 36 -0.6665 -0.7842 0.2547
item 37 -0.9539 1.0878 0.3741
item 38 0.4453 -1.4140 -0.1422
item 39 0.4488 -0.9078 -0.3894
item 40 0.4705 -0.4094 -0.0733
item 41 0.5584 -0.8472 -0.1260
item 42 0.2171 0.1542 -0.2477
item 43 0.4026 -0.3163 0.0306
item 44 0.1974 0.1020 0.4808
item 45 -0.4197 -0.8749 0.0122
item 46 0.6806 -0.2317 -0.5988
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Table 4.8: Estimates of the DIF of the covariates GEN, FEFG and FESG for the 2013 Trento’s
data.

GEN FEFG FESG
item 1 -0.4818 0.0143 0.2047
item 2 -0.5351 -0.3445 -0.0823
item 3 -0.0921 -0.0808 -0.2590
item 4 -0.0078 -0.9525 -0.2049
item 5 0.0049 -1.4455 -0.4138
item 6 0.0736 -0.2794 -0.6547
item 7 -0.7271 -0.2221 -0.4308
item 8 -0.0303 -0.2883 0.5729
item 9 0.1457 0.1955 0.6058
item 10 0.1325 -0.5196 -0.5997
item 11 0.2726 -0.5006 -0.7734
item 12 0.1549 -0.1079 0.3692
item 13 -0.6951 0.6004 0.3718
item 14 0.3471 -0.5222 -0.2522
item 15 0.9275 1.2716 0.3652
item 16 0.7833 0.7457 0.4481
item 17 0.0959 -0.2042 0.1053
item 18 0.0994 -0.8481 -0.3457
item 19 -0.4214 -0.2037 0.0855
item 20 -0.3267 -0.0106 -0.6110
item 21 -0.0362 -0.8986 0.0529
item 22 -0.5313 -0.7104 -0.1224
item 23 -0.9553 -0.4709 0.3838
item 24 0.1692 0.8138 0.7828
item 25 0.9048 -0.2933 -0.0877
item 26 -0.3593 -0.1774 -0.7280
item 27 0.7607 2.0798 1.5660
item 28 0.9602 1.7916 1.2906
item 29 -1.1703 0.2230 -0.2700
item 30 -1.9813 0.3071 -0.1732
item 31 -0.1488 -0.0070 0.5882
item 32 0.1685 -0.2721 -0.5974
item 33 0.1058 0.7917 0.6968
item 34 -0.0801 0.4491 0.2409
item 35 0.6455 -0.7863 0.5038
item 36 0.9945 -0.7781 -0.7412
item 37 -0.5626 -0.2841 -0.8429
item 38 0.4872 -0.4926 -0.6239
item 39 0.4261 -0.6178 -0.1445
item 40 0.3835 -1.3348 -0.9240
item 41 0.4150 0.4305 -0.7330
item 42 -0.3553 0.0940 -0.2999
item 43 0.0425 0.8956 0.3046
item 44 0.3325 1.2441 0.4254
item 45 -0.3353 1.7061 0.9513
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Figure 4.4: SSE using IRT observed-score equating for the Trento’s data.
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Figure 4.5: SSE at the lower end of the scale using IRT observed-score equating for the Trento’s
data.
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Figure 4.6: Difference between the equated scores and the X scores for the EG and the NEC design.



Chapter 5

Conclusions

This work has dealt with equating and, in particular, with equating using IRT.
In the first chapter a general overview of equating has been provided. Equating has been defined
as the statistical process that is used to adjust scores on test forms so that scores on the forms
can be used interchangeably (Kolen and Brennan, 2014). Subsequently equating properties and
designs have been considered in detail, because these concepts have been used as the principal basis
for developing equating procedures. Then the standard error of equating has been defined as the
standard deviation of score equivalents over replications of the equating procedure. Finally, the
practical issues that are involved in conducting equating have been described.
In the second chapter the traditional equating methods using the equivalent groups and the NEAT
designs have been described. Subsequently IRT equating and the kernel method of test equating
have been illustrated in detail. Then two practical problems have been discussed: how to average
results from more than one equating and how to conduct equating with small samples. Finally, it
is explained how to evaluate the results of equating and some recent ideas in test equating have
been described.
The third chapter has dealt with equating with covariates. It has been underlined that equating with
covariates is motivated by an interest in the possibility of using information about the examinees’
background to increase the precision of the estimators. Then it has been explained how to use
covariates in observed score linear equating, kernel equating and in a Bayesian context.
The fourth chapter has proposed a new IRT true-score equating method and a new IRT observed-
score equating method that can be used with the NEC design. The idea was to improve the accuracy
of the equating by lowering the SE in the absence of an anchor test.
The proposed IRT true-score equating method, substantially, consists in finding the equivalent
true scores on the equated forms using the IRT-C model (Tay et al., 2015). The proposed IRT
observed-score equating method let us to obtain the observed score distribution for examinees of a
given ability and covariate using an updated version of the recursion formula (Lord and Wingersky,
1984). Both the methods have been discussed together with simulations, while a real application
has been done only for the IRT observed-score equating method.
Both the simulated data and the real test empirical data studies have been done using Invalsi
data and the same covariates: the gender and the nationality of the examinees. To conduct the
simulation, the following choices have been done:

• According to Kolen and Brennan (2014) the parametric bootstrap (Efron and Tibshirani,
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1993) has been used;

• The Invalsi theta scores have been used as simulated ability estimates;

• The NEC and the EG designs have been used, because there is no anchor test in the Invalsi
test, so it is impossible to use a NEAT design;

• Following Tay et al. (2015), item discriminations were sampled from a truncated normal dis-
tribution, item difficulties were sampled from a uniform distribution and the pseudo-guessing
parameters were sampled from a logit-normal distribution;

• To simplify our simulation, only the presence of uniform DIF has been examined and DIF has
been simulated only on the first fifteen items;

• Test lengths of 30 and 45 items have been simulated (Kolen and Brennan, 2014, p.285).

The results from the simulation study support the IRT observed-score equating method. The
SEs obtained with the proposed method in a NEC design are lower in all examined conditions
compared to using the traditional method in an EG design. These results are in line with those
obtained by Wiberg and Bränberg (2015), although they examined the possible use of a NEC design
within the kernel equating framework.
The results from the simulation study show that the IRT true-score equating method doesn’t work:
the models with covariates don’t have a lower SE than the models without covariates and increasing
the sample size, the entity of the DIF or the number of the items, we cannot improve our results.
Due to these results, we cannot recommend to use IRT true-score equating with covariates.
To illustrate the use of the IRT observed-score equating method with real data, two administrations,
2012 and 2013, of the Invalsi eighth grade math test heve been equated. In particular, Trento’s
data (with sample sizes N = 5, 029 in 2012 and N = 4, 998 in 2013) has been used. The choice
of Trento is motivated by the fact that this Italian province showed significantly different Invalsi
math scores between males and females and between Italian examinees and foreign examinees in
2013 (INVALSI, 2013).
The real test data study strengthens the results from the simulation study and also shows that
the proposed method can be used in practice. It was evident that the SEs were lower with the
proposed method using a NEC design than using the traditional IRT observed-score equating with
an EG design with the Invalsi data. We compared the results with the EG design because this is
typically what we have access to if we do not have an anchor test, and this was also noted in Wiberg
and Bränberg (2015). Due to these excellent results, we can recommend to use IRT observed-score
equating with covariates.
A limitation of this study is our focus on SE: future studies should also examine bias. Of course,
in such a case one runs into the problem of how to define a true equating function (Wiberg and
González, 2016). Also, the choice of covariates in this study was guided by availability, and in the
future one could examine other covariates. Finally, we only used dichotomous items and we pre-
sumed the existence of only one latent dimension underlying the data, and it could be interesting
to extend the used model to the case of polytomous items as well as to presume the existence of
more latent dimensions.
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Figure A.1: SSE using IRT observed-score equating when n1 = n2 = 45, N1 = N2 = 200 and DIF
is moderate.
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Figure A.2: SSE at the lower end of the scale using IRT observed-score equating when n1 = n2 = 45,
N1 = N2 = 200 and DIF is moderate.
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Figure A.3: SSE using IRT observed-score equating when n1 = n2 = 30, N1 = N2 = 200 and DIF
is moderate.
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Figure A.4: SSE at the lower end of the scale using IRT observed-score equating when n1 = n2 = 30,
N1 = N2 = 200 and DIF is moderate.
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Figure A.5: SSE using IRT observed-score equating when n1 = n2 = 45, N1 = N2 = 600 and DIF
is moderate.
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Figure A.6: SSE at the lower end of the scale using IRT observed-score equating when n1 = n2 = 45,
N1 = N2 = 600 and DIF is moderate.
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Figure A.7: SSE using IRT observed-score equating when n1 = n2 = 30, N1 = N2 = 600 and DIF
is moderate.



121

Figure A.8: SSE at the lower end of the scale using IRT observed-score equating when n1 = n2 = 30,
N1 = N2 = 600 and DIF is moderate.



122 APPENDIX A. SSE USING IRT OBSERVED-SCORE EQUATING

Figure A.9: SSE using IRT observed-score equating when n1 = n2 = 45, N1 = N2 = 2000 and
DIF is moderate.
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Figure A.10: SSE at the lower end of the scale using IRT observed-score equating when n1 = n2 =
45, N1 = N2 = 2000 and DIF is moderate.
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Figure A.11: SSE using IRT observed-score equating when n1 = n2 = 30, N1 = N2 = 2000 and
DIF is moderate.
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Figure A.12: SSE at the lower end of the scale using IRT observed-score equating when n1 = n2 =
30, N1 = N2 = 2000 and DIF is moderate.
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Figure A.13: SSE using IRT observed-score equating when n1 = n2 = 45, N1 = N2 = 200 and
DIF is high.
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Figure A.14: SSE using IRT observed-score equating when n1 = n2 = 30, N1 = N2 = 200 and
DIF is high.
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Figure A.15: SSE using IRT observed-score equating when n1 = n2 = 45, N1 = N2 = 600 and
DIF is high.
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Figure A.16: SSE using IRT observed-score equating when n1 = n2 = 30, N1 = N2 = 600 and
DIF is high.
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Figure A.17: SSE using IRT observed-score equating when n1 = n2 = 45, N1 = N2 = 2000 and
DIF is high.
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Figure A.18: SSE using IRT observed-score equating when n1 = n2 = 30, N1 = N2 = 2000 and
DIF is high.
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Figure A.19: SSE using IRT observed-score equating when n1 = n2 = 45, N1 = N2 = 200 and
DIF is low.
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Figure A.20: SSE using IRT observed-score equating when n1 = n2 = 30, N1 = N2 = 200 and
DIF is low.
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Figure A.21: SSE using IRT observed-score equating when n1 = n2 = 45, N1 = N2 = 600 and
DIF is low.
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Figure A.22: SSE at the lower end of the scale using IRT observed-score equating when n1 = n2 =
45, N1 = N2 = 600 and DIF is low.
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Figure A.23: SSE using IRT observed-score equating when n1 = n2 = 30, N1 = N2 = 600 and
DIF is low.
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Figure A.24: SSE at the lower end of the scale using IRT observed-score equating when n1 = n2 =
30, N1 = N2 = 600 and DIF is low.
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Figure A.25: SSE using IRT observed-score equating when n1 = n2 = 45, N1 = N2 = 2000 and
DIF is low.
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Figure A.26: SSE at the lower end of the scale using IRT observed-score equating when n1 = n2 =
45, N1 = N2 = 2000 and DIF is low.
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Figure A.27: SSE using IRT observed-score equating when n1 = n2 = 30, N1 = N2 = 2000 and
DIF is low.
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Figure A.28: SSE at the lower end of the scale using IRT observed-score equating when n1 = n2 =
30, N1 = N2 = 2000 and DIF is low.


