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Abstract

The present dissertation was focused on the study and development of a clinical

data mining methodology for hospital case mix iso-resource classification. Sev-

eral recursive partitioning methodologies were applied on Emilia-Romagna Region

hospital discharge database. Here, the need for developing several alternative iso-

resource subgroups was a critical point in the development of case mix classification

systems, due to the presence of clinical coherence requirements.

Two major classes of trees were assessed: constant-fit trees and model-based

trees, with a particular focus on the latter class, which peculiarity is to fit re-

gression models in the nodes of the tree. After an extensive literature review, the

traditional regression tree (constant-fit) and four model-based tree algorithms were

assessed: two modifications of the Model-Based Recursive Partitioning (MOB) al-

gorithm which were given additional flexibility by performing a within-node model

selection step, respectively using count regression and continuous response regres-

sion GLMs; a two-step composite algorithm which fits regression trees and models

in terminal nodes; quantile-model-based regression trees, by means of the Gener-

alized Unbiased Interaction Detection and Estimation (GUIDE) algorithm.

These algorithms were compared under several points of view. Statistical per-

formance, measured via bootstrap out-of-bag performance curves, was in favor

of model-based trees, while, among them, competing performances were found.

Implications for the design of hospital case mix classification systems were also

evaluated, since the two classes of trees can be conceptually linked to different re-

funding schemes. Moreover, application and advantages of two different ensemble

methods were discussed.

All the recursive partitioning methods employed resulted in the definition of

iso-resource clinically similar subgroups of patients. Different interpretations were
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given to these alternative subgroups, due to differences in the rationale of the var-

ious splitting criteria. In particular, model-based trees identified subgroups with

differential effects of patient’s age and clinical severity on resource consumption,

here measured with hospital length of stay.
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Chapter 1

Rationale for the study

Starting in late seventies, development of Patient Classification Systems (PCSs)

received lot of attention in clinical research (Fetter & al., 1976). A PCSs was a

means of relating the type of patients treated in hospitals, which was referred to

as “case mix”, to the level of hospital resource consumption (or, alternatively, to

the level of clinical severity).

Operationally, PCSs are ensembles of rules that identify subgroups of patients,

each related to specific clinical and/or surgical conditions which occurred during

the hospitalization. Precisely, the definition of such case mix classifications is

that they are methodologies for grouping of episodes of care into a manageable

number of mutually exclusive subgroups, which should be similar for their clinical

attributes and for their resource consumption level (Fetter & Freeman, 1986).

The initial motivating goal for developing PCSs was to monitor the utilization of

services in a hospital setting. Subsequently, such systems were also used as the

basis of prospective payment systems, according to which, for each patient treated,

hospitals are refunded an amount of money that depends on the subgroup of the

classification to which the patient is assigned.

Since the first development of a PCS until the most recent ones, data analysis

was used to address the definition of the classification systems, even though each

step of the process was supervised by medical domain experts, in order to warrant

clinical and ethical coherence. With the growing availability of methodologies for

the analysis of hospital data and the related software implementations, such step
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became increasingly relevant. Among many statistical methods that were applied

in this context, the most prominent one (and, surely, the most used one) was re-

cursive partitioning, which was a natural choice since the PCSs assignment rules

were typically structured as decision trees.

Recent advances in recursive partitioning will therefore be considered in the follow-

ing chapters, with a particular look at the structure and properties of model-based

regression trees, a semi-parametric hybrid model which combines decision trees

with regression modeling.

While the application of model-based trees and their particular strengths in other

fields such that of clinical trials were recently pointed out in (Loh & al., 2015) and

(Seibold & al., 2016), their use in the context of hospital case mix classification

was never investigated, even if recursive partitioning modeling was widely applied

in that field. In particular, the present dissertation will focus on assessing the

use of several recursive partitioning methods in order to accomplish the goal of

classifying hospital inpatients.

Three major characteristics of PCS subgroups will be analyzed from a statistical

perspective:

• being in a manageable number

• being clinically similar

• being homogeneous with respect to their hospital resource consumption pro-

file.

Furthermore, the present work aims at assessing the differences between the

traditional regression trees and model-based trees, under many points of view:

• statistical performance

• underlying design of the Patient Classification System

• interpretation for the resulting subgroups

• application of ensemble methods

• which regression models are more suitable for the use in model-based trees

10



At these extents, some real-world hospital activity datasets extracted from the

Emilia-Romagna (ER) Region Scheda di dimissione ospedaliera (SDO) database

were analyzed.

Since the exact amount of expenditure related to each inpatient is not available

in administrative data, but is rather available after conducting complex surveys,

another indicator should be used for representing resource consumption. According

to the specific literature, hospital length of stay (LOS) was proposed in order to

measure hospital resource consumption in large administrative datasets. Although

some criticism regarding the non-linear relation of LOS and costs, the former could

be considered a reasonable proxy of hospital resource consumption. Precisely, in

the present work, LOS is defined as the difference in days between admission and

discharge dates. By this definition, LOS is a non-negative integer number, which,

from a statistical modeling perspective, invokes the use of methods for count data,

as will be later discussed.

The dissertation is structured as follows. In Chapter 2, an overview of the

relevant clinical and statistical literature will be presented. Chapter 3 will be aimed

at describing the SDO database, in Chapter 4 the proposed statistical methodology

will be explained in detail, while results will be presented in Chapter 5. Finally,

Chapter 6 will be dedicated to discussion and concluding remarks.
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Chapter 2

Literature overview

The literature overview is structured in three sections. The first one will be ded-

icated to a brief introduction to Patient Classification Systems, the second one

will provide a review of recursive partitioning methods, starting from the founda-

tions until more recent developments. The last section will be aimed at describing

different regression modeling strategies for LOS.

2.1 Patient classification systems

The most widely known PCS was the Diagnosis-Related Groups (DRG) one (Fet-

ter & al., 1980), initially used in the U.S. Medicare and Medicaid programs and

later adopted by many other developed countries. DRG system is a so-called

“iso-resource” PCS, being its goal to relate subgroups of patients to their hospi-

tal resource consumption level, in contrast with “iso-severity” PCSs which define

severity-homogeneous subgroups (Gonnella & al., 1984).

LOS was used as resource consumption measure, while classification into sub-

groups was based on the informations reported in the electronic patient record,

which compilation and collection in administrative databases were regulated by

national laws. Informations taken into account in the grouping logic were mainly

patient’s age and sex, as well as the indication of the patient’s diagnoses and the

surgical procedures which the patient underwent. Nowadays, nearly all of the ad-

vanced National Healthcare Systems (NHS) are using directly DRGs or DRG-like

13



systems in order to classify inpatients (an epidemiological goal) and to fund hospi-

tals on the basis of their specific case mix (an economical goal). Since 2009, Italian

NHS adopted the 24th revision of the DRG system for purposes of reimbursement

of hospital inpatients and outpatients care, which consist in a total expenditure of

about 29 billions Euro (Ministero della Salute, 2015), about 1.8% of Italian Gross

Domestic Product.

As stated in public health management literature (Averill, 1984), criteria for

design and development of an iso-resource Patient Classification System involve

multi-disciplinary knowledge: clinical, statistical and economical judgments are

required during the process. From a statistical perspective, the use of various

modeling techniques on hospital activity data is a well established solution in

order to highlight patterns of data that are homogeneous with respect to hospital

resource consumption (i.e., LOS). In particular, the use of recursive partitioning

techniques became very popular among researchers who faced this issue (Fetter &

Freeman, 1986).

Early recursive partitioning methods such as the Automated Interaction De-

tection (AID) algorithm (Morgan & Sonquist, 1963), as well as the techniques

described in the Classification and Regression Trees (CART) book (Breiman &

al., 1984) were used in the process of developing patient classification systems

actually in use worldwide. In particular, a modified version of AID, called AU-

TOGRP (Mills & al., 1976), was used to develop the first version of DRGs (Fet-

ter & Freeman, 1986). More recently, classification systems for which the use

of regression trees was explicitely reported in the development process were the

English PCS Healthcare Resource Groups (HRG) (Ridley & al., 1998) (Mason

& al., 2011), the Canadian Case Mix Groups (CMG) (Homan, 2005) and the

Austrian Leistungsorientierte Diagnosefallgruppen (LDF) classification (Rauner

& Schaffhauser-Linzatti, 1999).

Still focusing on recursive partitioning methods, other proposals for the analysis of

these kind of data were also formulated. Robinson (2008) applied regression tree

boosting, one of the so-called ensemble methods, in order to adjust hospital re-

source use predictions. Another technique based on recursive partitioning models

was proposed by Grubinger & al. (2010), that made use of regression trees on boot-

strapped Austrian hospital activity datasets. Moreover, the use of evolutionary
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trees on the same datasets was also studied in (Grubinger & al., 2014).

To the current knowledge of the author, no other tree algorithm, recursive

partitioning technique or ensemble method was assessed in order to pursue the

goal of hospital case mix iso-resource classification.

Before discussing statistical implications, it is also important to highlight that

several PCS designs are used worldwide (Lorenzoni & Pearson, 2011). The most

common design, the one of DRGs, is to partition the cases according to all the

available selected informations (mainly age, diagnoses, procedures, clinical sever-

ity/complexity level), and to provide a fixed reimbursement for all the inpatients

in the same subgroup. An alternative and less frequent design was to use a reduced

set of variables to form the subgroups, and to add a post-attribution weighting

system focused on the remaining variables, mainly in order to reduce the number

of groups. This means that, for each of the subgroups, a relative weight is assigned

to some key patient’s characteristics (e.g., age, clinical severity) or to some other

relevant characteristic (Pink & Bolley, 1994). Therefore, the final reimbursement

is no more a constant value within the same group, but it’s computed according

to resource-intensity adjustments. Such weighting systems were typically devel-

oped by means of regression modeling techniques (Canadian Institute for Health

Information, 2004).

2.2 Recursive partitioning

The review of recursive partitioning literature is structured in four steps. First,

the traditional regression tree model (that of AID and CART) will be described.

Afterwards, recent developments in tree algorithms will be reviewed, with a spe-

cific section dedicated to the Model-Based Recursive Partitioning and Generalized

Unbiased Interaction Detection and Estimation methods. Finally, some extensions

of tree models will also be described.
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2.2.1 Regression trees

A regression tree model consists in a sequence of binary splits which form a par-

tition of the available data

L = {Y, Z}

where Y is a n× 1 vector representing a quantitative response variable observed n

times and Z is a n× P matrix containing observations on P explicative variables

Z1, . . . , ZP (also called candidate partitioning variables). In the present work, L

is called learning (or training) dataset. The nodes of the tree can be of two types:

terminal nodes (or leaves) if the recursive partitioning procedure stopped at that

nodes; internal (or inner) nodes if they are not terminal nodes.

Generically define a regression tree model as M, the set of its terminal nodes as

M̃ and their cardinalities (i.e., the number of nodes) as |M| and |M̃|, respectively.
Therefore, according to this notation, a tree defines a partition into |M̃| subgroups
(i.e., {Lh}, h = 1, . . . , |M̃|)

A regression tree is grown by performing the following steps.

For the generic current node τ find, by means of exhaustive search, the binary split

(associated to one of the Zj variables, j = 1, . . . , P ) which minimizes the following

objective function:

f(s, τ) = SSEτ1 + SSEτ2 , (2.1)

where s is an admittable binary split, τ1 and τ2 form the partition of the observa-

tions in node τ associated to the split s (i.e., they are child nodes of τ and τ is the

father node of τ1 and τ2), SSEτ =
∑

i∈τ (yi− ŷMi )2 is the sum of squared errors for

the set of observations in the generic node τ and yMi is the i-th predicted value

according to the tree model M. Equation (2.1) is equivalent to using a splitting

criterion which maximizes

f(s, τ) = SSEτ − (SSEτ1 + SSEτ2), (2.2)

therefore such a method could also be interpreted as looking for the binary parti-

tion of τ associated to the maximum reduction in SSE.

Admissible splits are those splits which don’t satisfy the so-called stopping criteria.

Stopping criteria are typically based on the tree structure - minimum observations
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per leaf, maximum number of sequences of splits - or are based on the objective

function itself (e.g., minimum reduction in SSE). In the latter case, they were also

referred to as pre-pruning criteria. If there isn’t any admissible split, stop growing

the tree.

This procedure is carried on until, for all the resulting nodes, there is no admissible

split.

According to this approach, the individual predicted values are the within-node

average responses. For the i-th observation predicted to be in the h-th leaf of the

tree (yiĥ), the predicted value is:

ŷiĥ = ȳh =
1

nh

∑
i∈h

yi i = 1, . . . , n, h = 1, . . . , |M̃|. (2.3)

Up to this point, the AID and CART algorithms work the same way.

A critical difference resides in the method for defining the optimal size of a tree

(i.e., defining the number of its terminal nodes). This task, according to the

proposals of (Breiman & al., 1984), was accomplished by growing a large tree, with

relaxed stopping and pre-pruning criteria, and finding the optimal size according

to the fit on external data. Such a procedure was named post-pruning or - simply -

pruning. Unlike AID, which relied on a nearly subjective pruning of the tree - since

the minimum reduction in SSE was to be manually chosen - the cost-complexity

pruning method proposed in the CART book was a first approach towards defining

an impartial criterion, and is still nowadays regarded as the standard one. The

idea was to consider a function of the cost R(M) (namely, an error measure) and

of the complexity |M̃| (the number of terminal nodes) of a given tree M:

Rλ(M) = R(M) + λ · |M̃|, (2.4)

where R(M) is a measure of the tree’s impurity and λ (≥ 0) is a complexity

parameter that controls the trade-off between goodness of fit and complexity. In

particular, R(M) =
∑

τ∈M̃ SSEτ . Therefore, with respect to R(M), Rλ(M) is a

measure of quality of the tree with a term which penalizes bigger trees.

For any fixed value of λ, define Mλ to be the subtree of the full tree M associated

to minimum cost-complexity. For the sake of clarity, a subtree of M is obtained
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by switching some of its inner nodes to terminal nodes, and M∗ ⊂ M means

that the tree M∗ is a subtree of M (i.e., M∗ is nested in M). According to the

assumptions reported in (Breiman & al., 1984), a set of numbers can be identified:

λ0 = 0 < λ1 < · · · < λm, (2.5)

corresponding to a sequence ofm+1 (wherem+1 ≤ |M̃|) nested optimal subtrees:

Mλ0 ⊃ Mλ1 ⊃ · · · ⊃ Mλm , (2.6)

which have increasing cardinalities |M̃λ0 | > |M̃λ1| > · · · > |M̃λm |.
The final pruned tree is chosen among those optimal subtrees.

From the above notation, it follows thath M0 is the full (unpruned) tree and Mλm

is the tree with no splits (also called the root node tree).

Once the sequence of nested subtrees {Mλu}, u = 0, . . . ,m was identified, the

idea was to look for the one among them with minimal error

min
u
R(Mλu).

In order to perform this evaluation, in absence of a specifically dedicated external

sample, the standard technique is to create artificial validation samples in order

to perform pruning. The cross validation (CV) technique consists in randomly

partitioning the training sample L inK equally-sized foldsV1, . . . ,VK and growing

K regression trees. These trees, for each of theK runs, are estimated onK learning

datasets L1, . . . ,LK , where

Lk = LrVk, k = 1, . . . , K. (2.7)

Define the full tree grown on the k-th fold as MLk
and its optimal subtree associ-

ated to λu as MLk

λu
. Furthermore, define

RVk(MLk

λu
) =

∑
i∈Vk

(
yi − ŷ

MLk

λu
i

)2

, u = 0, . . . ,m, k = 1, . . . , K (2.8)
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as the cost of tree MLk
(trained on dataset Lk) computed on the validation

dataset Vk.

The cross validation error measure is then calculated as:

RCV (Mλu) =
1

K

K∑
k=1

RVk(MLk

λu
), u = 0, . . . ,m. (2.9)

Typically, instead of choosing the subtree of M associated to the lowest cross

validation error, the final pruned tree is identified as the smallest subtree which

has cross validation error within the minimum cross validation error plus v times

its standard error:

min [RCV (Mλu)] + v · s.e. (min [RCV (Mλu)]) .

Values of v were tipically equal to 0.5 or 1, corresponding to the so-called

0.5-SE rule (Loh, 2002) and 1-SE rule (Breiman & al., 1984), (Hastie & al., 2008)

2.2.2 Beyond regression trees

Following the early contributions on regression trees methodology, which are mainly

represented by AID and CART algorithms, one of the major developments which

captured the attention in statistical learning and machine learning fields over the

last two decades was to fit linear and non-linear models in the inner and termi-

nal nodes (Loh, 2014). A particular class of tree models is the one for which

individual predicted values are computed from a regression model that is specific

for the terminal node in which the observation is assigned. In the present work

such class of algorithms will be named model-based trees, but other definitions

that were given in the literature were model trees, hybrid trees of functional trees.

Opposed to model-based trees, the algorithms whose predicted values are a con-

stant value (e.g., mean or median response within the predicted leaf) will be named

constant-fit trees. Recalling equation (2.3), the regression tree algorithm described

in Section 2.2.1 is included in the latter category, and so are the great part of the

traditional recursive partitioning methods.

Another important feature of the recursive partitioning literature is the wide
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fragmentation, since there is a really high number of available algorithms (Rusch

& Zeileis, 2014). Some algorithms are proprietary softwares, some are open-source

implementations or “rational reconstructions”, some other are only written on

paper and were never implemented as a software tool.

In the present section, a review of recursive partitioning methods for quantitative

response variables is presented, with a particular look at the class of model-based

trees and their statistical properties. Given the aforementioned fragmentation in

the literature, only those algorithms which represented relevant methodological

contributions are listed.

Before describing all the relevant algorithms, three important features of tree

models should be revised (interpretability, unbiasedness, interaction detection), in

order to better contextualize what follows.

In fact, most of the recent publications on statistical decision trees point out in-

terpretability as one of the major properties of those models (Loh, 2014) (Strobl

& al., 2009), together with predictive power related to non-linear relationships.

Interpretability is due to their simple structure, which can be easily visualized in

form of a decision tree. This is more relevant when models should be analyzed by

non statisticians, since it provides an immediate way to understand the model’s

findings. Moreover, as stated in (Hastie & al., 2008), tree algorithms were par-

ticularly popular in medical sciences, since they “mimic the way that a doctor

thinks”. At the extent of interpretability, as will be detailed later, model-based

trees provide an advantage over constant-fit trees, since they are tipically shorter

(Chaudhuri & at., 1994). This is however balanced by the fact that the splitting

criteria are typically more sophisticated than that of traditional regression trees.

Moreover, it was pointed out that early exhaustive search algorithms (e.g., AID

and CART) were biased towards selecting partitioning variables which have many

possible split points (Breiman & al., 1984), (Shih & Tsai, 2004). Here, an unbiased

algorithm is defined as an algorithm which, in the case that all of the partitioning

variables are independent of the response variable, gives every partitioning variable

the same probability to be selected for splitting (Loh, 2014). Great efforts were

made in order to remove such a bias within the statistical and machine learning

communities, and the key idea was to separate variable selection from split point

selection (Loh & Vanichsetakul, 1988), (Loh & Shih, 1997), (Hothorn & al., 2006).
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Finally, another relevant issue of recursive partitioning methods described in the

literature was the failure in detecting an “interaction effect” in the presence of

no “main effect”. Such an interaction detection issue was faced by some of the

algorithms that were reviewed.

Once these concepts have been fixed, it is possible to review the major contri-

bution to the recursive partitioning techniques.

Early work regarding the regression tree methodology and the use of regression

models within the tree’s nodes is reported in (Ciampi, 1991). It consisted in grow-

ing a constant-fit tree while considering the relation between the response variable

and some confounders through a Generalized Linear Model (GLM) (McCullagh

& Nelder, 1989). Deviance of the model was proposed as objective function and

pruning techniques based on information criteria were also discussed. A limitation

in this proposal is that, for every allowable split in every inner node of the tree, a

model had to be fitted in order to compute deviance.

Within the machine learning community, one of the first algorithms which encom-

passed simple regression models within the terminal nodes was M5 (Quinlan, 1992),

which, as its implementation M5′ (Wang & Witten, 1996), builds a constant-fit

tree and subsequently adds predictors in the terminal nodes by using a stepwise

backward elimination multiple linear model using only the explicative variables

that are selected somewhere in its subtree. Pruning of the tree is accomplished

by comparing the fit of the node linear models to the fit of the node’s subtree;

the tree is pruned at that node if the fit of the linear model was better than that

of the subtree, otherwise the subtree is retained. Such an approach, compared to

other model-based trees which came afterwards, however lacked in reducing the

tree size, as the skeleton of the tree was still that of a constant-fit tree. Similar

to M5, the treed regression approach described in (Alexander & Grimshaw, 1996)

consists in fitting a univariate linear model in each node, for every allowable split.

A relevant step ahead in regression tree literature was represented by Smoothed

and Unsmoothed Piecewise Polynomial Regression Trees (SUPPORT) (Chaudhuri

& al. 1994), which also made use of linear models in the nodes. After estimation

of the model in the current node, observations are classified in two classes, accord-

ing to the sign of their model’s residuals (positive or non-positive). The choice

of the split is divided in two steps: first, the best splitting variable is identified,
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subsequently the best split point is identified. A two-sample test of differences

between means and variances of each partitioning variables across the two residual

sign classes is performed; the splitting variable is the most significant one, and the

split point is the average of the two class means. A relevant distinction from other

algorithms is that in SUPPORT, for each node, only one model is fitted and the

search for the optimal splitting variable is performed on its residuals, resulting in

a concrete computational gain.

Moreover, being the SUPPORT splitting criterion based on model’s residuals very

generic in its nature, the whole framework was easily adapted to other kinds of

regressions beyond the linear model. In particular, model-based trees which fit non-

linear models in the nodes, including the Poisson model, were developed (Chaud-

huri & al. 1995). The SUPPORT approach was however demonstrated to present

a split selection bias (Loh, 2014); moreover, it was never definitely implemented

as a statistical software tool.

A totally different rationale was followed by Li & al. (2000), that developed

a model-based tree algorithm called Principal Hessian Direction Regression Trees

(PHDRT). The splitting criterion relied on finding the best linear combination of

predictors, by means of principal Hessian directions technique. Such a method was

potentially more accurate from a predictive point of view, but the resulting trees

were much harder to interpret (Loh, 2002).

Building on the ideas that generated SUPPORT - in the context of regres-

sion trees, but also many more classification tree algorithms can be cited (Loh &

Vanichsetakul, 1988), (Loh & Shih, 1997), (Kim & Loh, 2003) - a method called

Generalized Unbiased Interaction Detection and Estimation (GUIDE) was devel-

oped (Loh, 2002). It provided advantages over the framework of SUPPORT, while

still maintaining the same structure and a similar growth criterion based on residu-

als. In this framework, explicative variables can be given three different roles: only

splitting variables, only node modeling variables, or both of them (split-and-fit).

The best splitting variable is the one which has minimal p-value from a Chi-Square

independence test between the sign of the node model residuals and the single par-

titioning variables (if categorical as they are, while if continuous they are divided

according to sample quartiles). Once the best splitting variable is identified, the

best split point can be found by exhaustive search. GUIDE claims to have negligi-
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ble split point selection bias by means of a bootstrap calibration of p-values, as an

advantage over SUPPORT. Moreover, it can detect pairwise interactions between

partitioning variables and select the interaction as the splitting variable. Given the

great computational burden that could be associated with testing all interactions,

some conditions which are necessary for testing the single interactions are specified.

Straightforwardly, GUIDE was also extended to fit Poisson regression (Loh, 2006)

and quantile regression (Chaudhuri & Loh, 2002) in the nodes, still making use of

model’s residuals. Regression trees for over-dispersed Poisson response variables

were developed (Choi & al., 2005), by means of the GUIDE methodology applied

to quasi-Poisson models.

Another contribution was given by Maximum Likelihood Regression Trees

(MLRT) (Su & al., 2004), which embedded the constant-fit tree structure into

the framework of maximum likelihood. The proposed splitting criterion was to

find the linear model with a single split point covariate which maximizes likeli-

hood. That work was a first effort towards the use of a unique objective function

(likelihood) for splitting, within-node model fitting and pruning. In particular, the

optimally sized tree is selected as the one having lower information criteria on a

validation sample, among a sequence of nested subtrees.

The fit of linear model-based trees was also studied in (Potts & Sammut, 2005),

who developed splitting criteria and pruning techniques for incremental learning of

such models. They proposed the use of two test statistics for splitting: one based

on the sign of model residuals (as in SUPPORT and GUIDE), one based on the

difference in residuals sum of squares.

Another proposal was represented by Tree Analysis with Randomly Generated

and Evolved Trees (TARGET) (Fan & Gray, 2005). The key idea was to use a

non-greedy search based on genetic algorithms for tree growth and information

criteria for tree pruning, in order to build a constant-fit tree.

Recently, two classes of unbiased algorithms were introduced, respectively Con-

ditional Inference Trees (CTREE) (Hothorn & al., 2006) and Model-Based Recur-

sive Partitioning (MOB) (Zeileis & al., 2008). The former partitions on the basis

of conditional inference tests and belongs to the class of constant-fit trees. It is

unbiased since it relies on the conditional distribution of statistics which measure

association among the response variable and the partitioning variables. The MOB
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algorithm is build following the developments of several algorithms (among them

SUPPORT, GUIDE and MLRT), which means fitting one multiple linear or non-

linear model within each node. As in GUIDE, explicative variables can be used as

candidate partitioning variables, as within-node regressors or both of them. In the

latter case, the algorithm loses unbiasedness. A test of randomness of the resid-

ual process of each inner node model is used in order to find the optimal splitting

variable, giving the procedure a more rigorous statistical background. In fact, bor-

rowing the key idea of MLRT, in MOB the same objective function was used for

within node model fitting and split selection, as will be later detailed. The MOB

methodology allows for the use of several regression models, included GLMs, sur-

vival models and, theoretically, each model estimated by means of M-estimation

procedures. Moreover, being distributed with a flexible open source interface, it

allows user-defined specification of the models (Hothorn & Zeileis, 2015). Recently,

the use of Bradley-Terry model, beta regression and Rasch model within the MOB

algorithm were studied in (Strobl & al., 2011), (Grun & al., 2012) and (Strobl &

al., 2015), respectively.

Both CTREE and MOB use particular pre-pruning techniques - statistically mo-

tivated stopping criteria - which stop the tree growth according to formal tests of

hypotheses. In such a way, the tree is already pruned, but there is still the pos-

sibility to apply other post-pruning techniques, especially when analyzing large

sized datasets. In MOB, post-pruning scenarios could be defined according to

information criteria or to splitting tests p-values.

A resurgent interest in tree models was also recently related to the search for

subgroups that are identified by different treatment effects in clinical studies. Main

examples of algorithms that belong to this group are Interaction Trees (Su & al.,

2009), Simultaneous Threshold Interaction Modeling Algorithm (STIMA) (Dussel-

dorp & al., 2010), Virtual Twins (Foster & al., 2011) and Qualitative Interaction

Trees (QUINT) (Dusseldorp & Van Mechelen, 2014).

Finally, some algorithms were also developed within a bayesian framework:

major contributions in that field were from Chipman & al. (1998 & 2010)
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2.2.3 Model-based recursive partitioning

As already mentioned, in the present work particular attention was pointed at

model-based trees, as their structure offers a flexibility in the definition of the

splitting criteria that constant-fit trees can’t give.

In the present paragraph a particular specification of the MOB algorithm, the

GLM-based one, will be described in detail. The motivation beyond the choice

of GLMs will be detailed in Section 2.3. Moreover, only the case of categorical

partitioning variables will be considered, according to the nature of the variables

that will be defined in Chapter 3.

The tree model is M, the response variable is Yn×1, Xn×k is a matrix of regressor

variables (X1, . . . , Xk are the vectors of the single within-node regressors) and

Z1, . . . , ZP are the candidate partitioning variables. Suppose the data can be

satisfactorily described by a GLM of the form:

M(Y,X, θ) : g(yi) = xTi θ + ϵi, i = 1, . . . , n, (2.10)

f(Y, δ, ϕ) = exp {[Y δ − b(δ)]/ϕ+ c(Y, ϕ)} , (2.11)

where θ = (β0, β1, . . . , βk)
T is a (k+1)-dimensional parameter, xi is a (k+1) vector

of k covariates for the i-th observation, g(·) is the link function of the model, δ is the

canonical parameter, ϕ is a scale parameter (either known or treated as a nuisance)

and b(·) and c(·) are known functions. Equation (2.11) therefore symbolizes the

exponential family form.

The MOB algorithm seeks a partition of the covariates space {Lh}, h =

1, . . . , |M̃| where each subgroup has an associated model Mh(Y,X, θh) and a

segment-specific vector of parameters θh. The resulting model is a segmented

(or piecewise) regression model, of the form:

ML(Y,X, {θh}), h = 1, . . . , |M̃|. (2.12)

For the sake of clarity, all of the |M̃| node models Mh(Y,X, θh), h = 1, . . . , |M̃|
have the same structural form.

The MOB recursive partitioning procedure is made of the following steps:
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1. Fit a regression model to all the observations in the current node τ by esti-

mating θτ via maximization of the likelihood function L(Y,X, θτ ) (also called

objective function):

∑
i∈τ

ψ(yi, xi, θ̂τ ) = 0 ψ(Y,X, θ̂τ ) =
∂l(Y,X, θτ )

∂θτ
,

where

l(Y,X, θτ ) = logL(Y,X, θτ ).

2. Assess whether the parameter estimates θ̂τ are stable with respect to every

possible ordering of the partitioning variables. Instability is detected on the

estimated score functions of the model:

ψ̂i = ψ(yi, xi, θ̂τ ), i ∈ τ, (2.13)

by means of M-fluctuation tests (Zeileis & Hornik, 2007). According to this

approach, the following hypotheses are formulated:H
j
0 : ψ̂i ⊥ zij

Hj
1 : ψ̂i ̸⊥ zij

j = 1, . . . , P, i ∈ τ. (2.14)

Systematic deviations and non-random fluctuation around the mean in the

ψ̂i are expected to be reflected in different values of the regression coefficients

in the child nodes. For the jth candidate partitioning variable (Zj), those

deviations are described by the following k-dimensional fluctuation process:

Wj(t) = J−1/2
τ n−1/2

τ

⌊nτ t⌋∑
i=1

ψ̂σ(zij), 0 ≤ t ≤ 1, j = 1, . . . , P, (2.15)

where Jτ is the covariance matrix of the estimating functions (for node τ),

nτ is the size of the current node and σ(zij) represents the permutation

that gives the antirank of observation zij in the vector Zj = (z1j, . . . , znτ j).

Essentially, Wj(t) is the partial sum of the score functions, ordered by the

values of Zj, indexed by t, scaled by nτ and Jτ . The covariance matrix Jτ is
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calculated with the outer-product of gradients estimator:

Ĵτ =
1

nτ

∑
i∈τ

ψ(yi, xi, θ̂)ψ(yi, xi, θ̂)
T . (2.16)

It is worth to note that the covariance matrix in (2.16) is different from the

classical covariance matrix of the estimated model parameters. The empirical

fluctuation process Wj(t), under the null hypothesis of parameter stability,

converges to a vector of k independent Brownian bridges (Zeileis & Hornik

2007) (Hjort & Koning, 2002), that are standard Brownian motion processes

{Wt : t ∈ [0, 1]} which start atW0 = 0 and end up atW1 = 0. Operationally,

the M-fluctuation test therefore seeks non-random patterns of ψ̂i associated

to any of the partitioning variables.

For a generic categorical variable Zj (with Cj levels), the following test statis-

tic is used (Hjort & Koning, 2002):

λ(Wj) =

Cj∑
c=1

|Ic|−1

nτ

∥∥∥∥∆IcWj

(
i

nτ

)∥∥∥∥2

2

, j = 1, . . . , P, (2.17)

where Ic is the set of indexes associated to observations in category c and

∆IcWj(
i
nτ
) denotes the vector of increments in the fluctuation processes for

the observations in category c. For the sake of clarity, ∆IcWj is the sum

of the scaled scores associated to category c, and the test statistic is the

weighted sum of the squared Euclidean norms of the increments. The test

statistic in (2.17) is invariant to the reordering of the Cj categories and to

reorderings of the observations within the same category; it converges to a

Chi-Square distribution with k(Cj − 1) degrees of freedom:

λ(Wj) → χ2
k(Cj−1), j = 1, . . . , P,

where k is the number of covariates in the within-node regression model.

From the above results, p-values of the parameter instability tests can be

calculated for each Zj.

In order to respect the global significance level of the tests, p-values are
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corrected for multiple testing by means of a simple Bonferroni adjustment

(Hochberg & Tamhane, 1987). Only adjusted p-values that fall below a

pre-specified value γ (called pre-pruning significance level) are admissible for

splitting.

If the above described tests detect some overall instability (i.e., at least one

adjusted p-value < γ), the algorithm selects the variable Zj associated with

the highest parameter instability (i.e., associated to the minimal p-value)

otherwise, if no p-value is under the threshold γ, it stops growing the tree at

the current node.

3. Once the optimal splitting variable Zj is identified, the best split point that

locally optimizes the objective functions in the child nodes of τ (τ1 and τ2)

is chosen. Operationally, the following quantity must be minimized:

−
2∑

b=1

l(yi1τb(i), xi1τb(i), θb). (2.18)

4. Split the data in the current node τ in two child nodes according to the

variable selected in point 2) and the split point selected in point 3), and

repeat the whole MOB procedure in the child nodes τ1 and τ2.

The tree grown by the MOB algorithm can be considered already pruned,

since the splits depend on formal inferential tests on model parameters. However,

for large datasets such as the ones analyzed in the present work, other additional

post-pruning strategies could also be implemented, given that the use of traditional

significance levels can become trivial. The proposed post-pruning techniques will

be described in detail in the Chapter 4.1.

2.2.4 Generalized unbiased interaction detection and esti-

mation

Alternative to the MOB algorithm, another rationale for growing model-based tree

is that of GUIDE (Loh, 2002). It differs from MOB in the logic of the splitting

criterion and in the fact that other within-node models can be considered. In par-

ticular, in the present paragraph the GUIDE implementation which fits quantile
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regression models within the inner and terminal nodes will be described (Chaud-

huri & Loh, 2002). As for MOB, the reason for using quantile regression will be

detailed in Section 2.3 and only the case of categorical partitioning variables will

be covered.

The response variable is Yn×1, Xn×k is a matrix of k regressors and Z1, . . . , ZP

are the candidate partitioning variables. The Quantile-GUIDE algorithm is made

of the following steps.

1. Fit a linear conditional quantile regression model (Koenker & Basset, 1978)

- for the q-th percentile - to all observations in the current node τ , using

X1, . . . , Xk as regressors

Qq(Y |X = x) = xT θqτ , 0 < q < 100 (2.19)

where Qq(Y |X = x) is the q-th conditional percentile of Y given the observed

values of the regressors x, and θqτ = (βq
0 , β

q
1 , . . . , β

q
k)

T is a vector of quantile

coefficients for node τ . Here, without going into further details, parameters

are estimated according to the computational algorithm reported in (Koenker

& D’Orey, 1987).

After estimating θqτ compute the residuals for all the observations in node τ :

ri = yi − ŷi = yi − xTi θ̂
q
τ , i ∈ τ. (2.20)

2. For each partitioning variable, cross-tabulate the signs of the residuals (pos-

itive vs. non-positive) of the observations in node τ against the values of

Zj (here supposed to be a dichotomic variable with levels C1 and C2) then

C1 C2

+ a+1 a+2

- a−1 a−2

perform a Chi-square test and compute the associated p-value. This step is

referred to as the curvature test.

3. Adjust p-values of categorical variables by means of a bootstrap bias correc-

tion procedure, which ensures unbiasedness of the splitting criterion. Further
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details on this procedure are given in (Loh, 2002).

4. Select the partitioning variable Zj associated to the smallest p-value, corre-

sponding to the greatest association between variable values and signs of the

residuals.

5. Look for the optimal split point of the partitioning variable selected in the

previous step. The best split point is the one that separates the two groups of

signed residuals in order to have the maximum achievable binomial variance.

6. Split the data in the current node τ in two child nodes according to the

variable selected in point 4) and the split point selected in point 5), and

repeat the whole GUIDE procedure in the child nodes τ1 and τ2.

The resulting model is still a segmented model as described in (2.21), with

subgroup-specific vectors of quantile coefficients:

ML(Y,X, {θqh}), h = 1, . . . , |M̃|. (2.21)

2.2.5 Other extensions

Some major extensions of recursive partitioning techniques, which were highlighted

by many recent publications, will be listed in the following.

Ensemble methods

While classification and regression trees are generally viewed as good predictors for

non-linear relationships, they have been often found to result in a poor predictive

performance on external datasets, due to excessive instability of the estimated tree

structure. Instability in this case means that, by just changing a few observations

in the learning sample, a completely different tree structure could be identified

as optimal. Methodologies that combine results of several decision trees, namely

ensemble methods, were proven to alleviate this issue and reduce prediction error,

often at the cost of a loss in interpretability. Among the most popular ensemble

methods, Bootstrap Aggregating (Bagging) (Breiman, 1996a) played a major role.

It consists in drawing a high number of bootstrap samples, growing unpruned
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trees on each of them and aggregating the obtained results. The rationale be-

yond this method is that, being individual trees highly dependent of their learning

samples, they are expected to vary substantially across bootstrap samples. At

the same extent, unpruned trees rather than pruned trees were combined, so that

the individual trees can be even more different and can include a great variety

of combinations of predictors. A particular modification of bagging, called Ran-

dom Forests (Breiman, 2001), was specifically introduced for the use with decision

trees. It adds some more diversity to the set of trees identified by bagging, by

using only a randomly selected subset of the candidate partitioning variables in

each node. To stress the concept, the subset of partitioning variables varies across

inner nodes. In such a way, partitioning variables that would have been outplayed

by other more powerful predictors still have a chance to be included in the tree,

potentially revealing interactions which otherwise wouldn’t have been discovered.

Another ensemble method proposed in the literature was called Boosting, of which

one of the major implementations was adaptive boosting (AdaBoost) (Freund &

Schapire, 1997). It consists in sequentially growing a high number of trees, each

time giving more weight to the observations for which the worst predictions were

derived in the previous stage. In such a way, the tree is forced to focus on those

badly-fitting observations, leading to improved overall model accuracy.

Bagging, Random Forests, Boosting and, generically, great part of the ensemble

methods were often found to result in a performance gain, but simultaneously

they cause a loss of interpretability of the model, since their structure is no longer

that of a simple decision tree. Theoretical justifications for the better predictive

performance of bagging, random forests and boosting were given in (Buhlmann &

Yu, 2002), (Biau & al., 2008) and (Buhlmann & Yu, 2003), respectively.

A different rationale is that of Bootstrap Umbrella of Model Parameters (Bump-

ing) method (Tibshirani & Knight, 1999). It consists, like Bagging and Random

Forests, in generating bootstrap samples and estimating an unpruned tree for each

of them. As in Random Forests, only a subset of partitioning variables is used in

every node. It differs from the other ensemble methods in the fact that, for a

given number of terminal nodes, the bootstrapped tree which best fits the original

training dataset is selected as the “Bumped” tree. According to this methodology,

the result is still a single decision tree, therefore it maintains its easy way of being
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understood. Here, the number of terminal nodes of a tree can be chosen with the

typical pruning techniques; once the size is fixed, the alternative tree structures

are seeked.

Clustered observations

All of the aforementioned algorithms treat observations as being i.i.d.. As this is

not always the case, recursive partitioning algorithms for longitudinal and mul-

tivariate responses were originally studied in (Segal, 1992) and (De’ath, 2002).

Recently, a different contribution was given by (Sela & Simonoff, 2012), that

developed an algorithm called Random-Effects Expectation-Maximization Trees

(RE-EM Trees). RE-EM is a constant-fit tree which incorporates random effects

in order to account for the presence of clustered observations. The EM method is

used for estimation of the tree component and the of random terms component.

A similar approach was also studied in (Hajjem & al., 2011).

As an alternative to these approaches, the MOB algorithm also allows the use

of clustered covariance matrix in M-fluctuation tests, using an underlying “work-

ing independence” assumption. There also exists a version of GUIDE specifically

developed for longitudinal and multiresponse data (Loh & Zheng, 2013).

Non-univariate splits

Recent developments in recursive partitioning were, among others, dedicated to

the study of the so-called linear combination (or oblique) splits. In this framework,

the splitting rules are not restricted to consider just one partitioning variables, but

can instead be based on linear combinations of more than one predictors. Among

many others, examples of algorithms which are able to produce oblique splits are

reported in (Breiman & al., 1984) and (Loh & Vanichsetakul, 1988), which use

greedy search and linear discriminant analysis in order to find the best linear

combination, respectively. Gama (2004) proposed an abstract approach, called

functional trees, which considered univariate and multivariate splits, in addition

to node models. Probabilistic splits, under the name of “soft splitting”, were also

studied in (Ciampi & al., 2002).

One drawback associated to those methods is the high computational burden.
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Moreover, the use of complex structures, such as splits different from the usual

univariate ones are, can also lead to a complex interpretation, at least for human

reasoning. As argued in (Ciampi, 2014) this more complex structure could however

be more interpretable in some particular situations, as is the case of tree assessment

by domain experts.

2.3 Models for length of stay

The present section is dedicated to the review of regression models for LOS used

in the literature. Two separate aims can be identified here. The first is to provide

a view of the models for LOS which can be regarded as alternative to recursive

partitioning methods. The second aim was to assess the possible regression models

to be estimated into the inner and terminal nodes of model-based trees.

Starting from the use of ordinary least squares (OLS) models in earlier publica-

tions (Gustafson, 1968), several approaches for hospital length of stay regression

modeling were described in the literature.

Two major characteristics of length of stay distributions are positive skewness and

presence of many outliers, which however tend to vary within subgroups of patients.

As a consequence of those distributional properties, the use of non-linear models

quickly became of standard use. One of the first applications in this direction

was the use of OLS models with logged-LOS as response variable, subsequently

followed by a more rigorous application of techniques such as Generalized Linear

Models (GLM) (McCullagh & Nelder, 1989). Within the GLM context, the spec-

ification of the distribution for LOS played the major role. Considering LOS as

a discrete random variable, the Poisson modeling framework was one of the basic

choices. More recently, as a results of the frailty of the mean-variance equality as-

sumption in the Poisson model when analyzing heavily right-tailed data, Negative

Binomial modeling also became very popular (Abdul-Aziz & al., 2013), (Carter &

Potts, 2014).

Moreover, following the initial idea of OLS or logged-LOS OLS models, which

is to consider LOS as a continuous variable despite of its discrete nature, other

distributions were also considered. In particular, the use of the Inverse Gaus-

sian distribution and its strengths in describing LOS are discussed in (Whitmore,
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1975), while applications are reported in (Eaton & Whitmore, 1977) and, more

recently, in (Moran & Solomon, 2012). Furthermore, the Gamma distribution was

also found to provide a satisfactory fit (Marazzi et &., 1998), (Austin & al., 2002),

(Moran & Solomon, 2012), given its ability in modeling skewed data. Great part

of the GLM specifications for LOS share the fact that they were fitted with a

logarithmic link function, even if some cases the logarithm was not the canonical

link function in the exponential family formulation of the models.

More sophisticated models rather than standard GLMs were also applied.

The most prominent ones were addressed to taking into account the clustering of

patients within health care facilities. At this extent, linear and non-linear mixed

models and generalized estimating equations (GEE) analyses were performed in

(Leung, 1998), (Song, 2006) and (Freitas & al., 2012). The drawback in the use

of such models on administrative health care data was however represented by the

high computational burden.

A different proposal was related to the use of median regression models and quan-

tile regression models (Lee & al., 2003), whose advantage is to skip any assumption

on the distribution of the response variable. Survival or time-to-event models were

also used in this context; in particular, Cox Proportional Hazard regression was

studied in (Austin & al., 2002), while parametric models such as Weibull model

were used in (Marazzi et &., 1998). Here, the censored patients were those who

didn’t reach discharge according to medical advice (because of death, transfer to

other acute care facility, voluntary discharge). A different approach which makes

use of the competing risks framework was also proposed in (Sa & al., 2007) and ,

more recently, in (Taylor & al., 2015), treating standard discharge (i.e., according

to medical advice) as the event of interest and deaths, transfers and voluntary

discharges as competing events.

Mixture models with Poisson (Wang & al., 2002), Gamma (Lee & al., 2007),

(Moran & Solomon, 2012) and Negative Binomial (Singh & Ladusingh, 2010)

components were successfully applied. Zero-inflation models were applied in the

case an excess of zero days LOS was present (Song, 2006). Moreover, by apply-

ing a definition for LOS different from the one used in the present work - that is

considering 0 days LOS as being 1 day LOS - the use of zero-truncated regression

was proposed in (Hilbe, 2011).
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Logistic regression was used to fit dichotomized LOS (Huang & al., 2006), (Kelly

& al., 2012). Phase-type and Skew-t models were applied in (Faddy & al., 2009)

and (Moran & Solomon, 2012), respectively.

With respect to the possible predictors for LOS identified in the literature, they

can be mainly characterized in four types (Lu & al., 2015):

• Patient characteristics

• Hospital characteristics

• Clinical caregiver’s characteristics

• Social environment characteristics

Most studies included only the first class of variables, since these are easily

obtainable from the electronic patient record. Among those informations, de-

mographics (age, sex) and clinical variables were identified as the most effective

predictors for LOS.

Hospital-level variables were also commonly studied, especially within the context

of mixed models or GEE specifications. Informations on caregivers and social envi-

ronment are more difficult to obtain, since there are many potential issues related

to data availability and data linking.
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Chapter 3

Materials

3.1 Hospital discharge data

The selected recursive partitioning methods were applied on a real-world hospi-

tal activity dataset. It is the Scheda di Dimissione Ospedaliera (SDO) database,

which was provided by the Emilia-Romagna (ER) Region Health Information Sys-

tem Service. This dataset includes informations about all acute care inpatients

discharged in ER hospitals from January 1st 2009 until December 31st 2014; it

consists of individual records for which basic demographic, administrative and

clinical characteristics were recorded.

The global SDO dataset can be divided in approximately 300 smaller datasets,

each defined by the primary reason for care. In the case this last is a clinical or

surgical motivation, the case is be referred to as medical or surgical, respectively.

Moreover, those datasets are further partitioned on the basis of patient’s age and

presence of complications or comorbidities, giving birth to a final number of mutu-

ally exclusive subgroups (which form the DRG classification system) equal to 538.

The DRG subgroups can also be aggregated to form 25 mutually exclusive Major

Diagnostic Categories (MDC) groups, which are only defined by the macro-class

of the primary diagnosis reported for the patient.

Only a few of these datasets were analyzed in the present work. The selection of

the case studies was performed according to these criteria:

• Clinical relevance
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• Different mean LOS

• Different size of the datasets

which had led to the selection of these six datasets:

• Coronary Artery Bypass Graft (CABG), corresponding to DRGs 106, 547,

548, 549 and 550 in MDC 05 - Diseases of the Cardiovascular System;

• Skin Graft and Debridement, corresponding to DRGs 263, 264, 265 and 266

in MDC 09 - Diseases of the Skin, Subcutaneous Tissue and Breast;

• Breast Procedures and other skin and subcutaneous tissue procedures, cor-

responding to DRGs 257, 258, 259, 260, 261, 262, 269 and 270 in MDC 09 -

Diseases of the Skin, Subcutaneous Tissue and Breast;

• Burns, corresponding to DRGs 504, 505, 506, 507, 508, 509, 510 and 511 and

to MDC 22 - Burns;

• Craniotomy, corresponding to DRGs 001, 002, 003, 528 and 543 in MDC 01

- Diseases of the Nervous System;

• Delivery, corresponding to DRGs 370, 371, 372, 373, 374 and 375 in MDC

14 - Pregnancy, Childbirth and Puerperium.

Not all the available observations were considered in the analyses. First, only

those patients which have LOS lower or equal to the 99-th percentile of LOS within

the associated DRG groups were considered, therefore removing all the extreme

high LOS outliers. Moreover, only patients discharged according to medical advice

were considered, excluding all the cases where the patient was discharged for death,

transfer to other acute care facility and in the case the patient left voluntarily.

By performing this last selection, only patients that share the outcome of their

hospitalization process were considered. This would be equal, in a survival analysis

perspective, to consider only the uncensored patients.

Apart from LOS, other variables that are available in the datasets and were

used in this work were patient’s age, as well as the specific diagnoses reported and
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Table 3.1: Characteristics of the six selected datasets

Dataset n mean LOS s.d. LOS median LOS
CABG 5166 13.3 5.9 12.0
Skin Graft and Debridement 14225 3.2 4.5 2.0
Burns 2163 10.6 10.7 7.0
Breast Procedures 43497 2.3 2.4 2.0
Craniotomy 11730 11.2 7.4 9.0
Delivery (∗) 50000 3.3 1.5 3.0

Notes: (∗) in the Delivery dataset, only 50000 observations out of a total number of 237232 were selected, by
means of random sampling without replacement stratified for year of discharge.

surgical procedures performed. Within the electronic patient records, informa-

tions about diagnoses and procedures related to the single patients are recorded

making use of the World Health Organization (WHO) International Classification

of Diseases, 9th Revision, Clinical Modification (ICD9-CM) (National Center for

Healthcare Statistics, 2007). Compilation of such variables is regulated by National

laws and is furthermore oriented by specific clinical coding guidelines. ICD9-CM

consists in a set or 12432 extended codes for describing diagnostic conditions and

3733 codes for describing interventions and procedures. Diagnoses reported in the

patient record are divided into two categories: a principal diagnosis (PDX) which

is the disease mainly responsible for resource consumption during hospitalization,

and up to 14 unordered secondary diagnoses (SDXs). A maximum number of 15

interventions and procedures can also be coded, without any inner ordering.

Table 3.2 gives an artificial example of two episodes of care that could have been

reported in the SDO dataset. The first example refers to DRG 548 - “Coronary

Bypass with Cardiac Catheterism without Major Cardiovascular Diagnosis”, the

second to DRG 373 - “Vaginal Delivery without Complicating Diagnoses” and

the third one to DRG 549 - “Coronary Bypass without Cardiac Catheterism with

Major Cardiovascular Diagnosis”.

A limitation in the use of observational administrative hospital activity datasets

must be discussed. Given that a major perceived motivation for coding the diag-

noses and procedures is reimbursement, rather than epidemiological description,

some kind of bias could be introduced. Whether a diagnosis or procedure code is
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Figure 3.1: Distribution of length of stay in six selected datasets

(a) Coronary Artery Bypass Graft

(b) Skin Graft and Debridement

(c) Breast Procedures

(d) Burns

(e) Delivery

(f) Craniotomy

reported in the patient record only for the purpose of obtaining a higher refund,

this was referred to as “upcoding”. When assessing the relationship between re-

source consumption and the presence of a diagnosis (or procedure) code, upcoding
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Table 3.2: Examples of electronic patient record

Variable Patient #1 Patient # 2 Patient # 3
Date of admission 04/10/2013 12/01/2010 04/09/2012
Date of discharge 31/10/2013 16/01/2010 15/09/2012
LOS 27 4 11
Age 70 24 75
d1 41401 650 41401
d2 5856 V270 41011
d3 - - V4582
d4 - - V571
d5 - - -
· · · · · · · · · · · ·
d15 - - -
p1 3615 7359 3612
p2 8856 - 3615
p3 3612 - 3961
p4 3961 - -
p5 3995 - -
p6 9929 - -
p7 3995 - -
p8 8744 - -
p9 8952 - -
p10 - - -
· · · · · · · · · · · ·
p15 - - -

Notes: p1 = Principal diagnosis code; d2, . . . , d15 = Secondary diagnosis codes; p1, . . . , p15 = Proce-
dure/intervention codes ; ICD9-CM diagnosis codes stand for “Coronary atherosclerosis of native coronary artery”
(41401), “End stage renal disease” (5856), “Normal delivery’ ’(650), “Outcome of delivery, single liveborn” (V270),
“Acute myocardial infarction of other anterior wall initial episode of care” (41011), “Percutaneous transluminal
coronary angioplasty status” (V4582) and “Care involving other physical therapy”(V571); ICD9-CM procedure
codes stand for “Single internal mammary-coronary artery bypass” (3615), “Coronary arteriography using two
catheters” (8856), “(Aorto)coronary bypass of two coronary arteries” (3612), “Extracorporeal circulation auxiliary
to open heart surgery” (3961), “Hemodialysis” (3995), “Injection or infusion of other therapeutic or prophylac-
tic substance” (9929), “Routine chest x-ray” (8744), “Electrocardiogram” (8952) and “Other manually assisted
delivery” (7359).

can give origin to a particular kind of bias. For example, consider the case of a sec-

ondary diagnosis which typically corresponds to an increase in LOS. Considering

patients records that present upcoding of that diagnosis, given the fact that they

aren’t reasonably associated to a higher LOS, this phenomenon could therefore
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result in underestimation of the effect of the diagnosis on resource consumption.

3.2 ICD9-CM coding scheme

In order for the ICD9-CM data to be used in statistical modeling, given the vast

amount of codes present in the SDO database and the infeasibility of using them

all as covariates, pre-processing tasks should be performed. According to the

proposed data management procedure, by means of a clinical coding scheme, 567

categorical variables representing significant clinical and surgical conditions were

derived for each record.

The clinical coding scheme used consisted in a list of relevant clinical and sur-

gical conditions, each one associated to a set of ICD9-CM codes. It was developed

relying on existing clinical documentations which reflect state of the art of medical

knowledge. In particular, each list of ICD9-CM codes is made of conditions which

are, at some extent, clinically similar.

Each list of codes is made of several rules, which correspond to the conditions

upon which the indicator variable is valorized. In the rest of this paragraph, these

conditions are explained.

Define the 15 diagnoses reported in the i-th patient electronic record as d1i, . . . , d15i,

of which d1i is the principal diagnosis and d2i, . . . , d15i are the secondary diagnoses.

Similarly, the 15 procedures/interventions are defined as p1i, . . . , p15i.

All of the clinical conditions and the most part of the surgical conditions included

in the clinical coding scheme were linked to a set of diagnosis or procedure codes.

This last set, for the generic w-th condition, is defined as Cw = {c1, . . . , cCw},
where each element represents an ICD9-CM code. There were also a few surgical

conditions which were related to a set of couples of procedure codes, defined as

Cw = {(c1, c2), . . . , (c1Cw , c2Cw)}.
Referring to the generic w-th condition and to the i-th observation (i = 1, . . . , n),

the following variables were included in the ICD9-CM clinical coding scheme.

• 76 indicator variables for clinical conditions, which are defined in the DRG

definitions manual (Centers for Medicare and Medicaid Services, 2007) and

which can take the following values (depending on the kind of rule):
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zwi =

0 d1i /∈ Cw
1 d1i ∈ Cw

; (3.1)

zwi =

0 dki /∈ Cw ∀k = 2, . . . , 15

1 ∃ k : dki ∈ Cw k = 2, . . . , 15
; (3.2)

zwi =

0 dki /∈ Cw ∀k = 1, . . . , 15

1 ∃ k : dki ∈ Cw k = 1, . . . , 15
. (3.3)

For the sake of clarity, Definition (3.1) refers to the case in which the principal

diagnosis d1i is (or is not) among the codes that form the list Cw; Definition
(3.2) refers to the case in which at least one secondary diagnosis is (or none

of them is) among the codes that form the list; Definition (3.3) refers to the

case in which at least one diagnosis (PDX or SDXs) is (or is not) among the

codes that form the list;

• 59 indicator variables for surgical conditions, which are defined in the DRG

definitions manual (Centers for Medicare and Medicaid Services, 2007) and

which can take the following values (depending on the kind of rule):

zwi =

0 pki /∈ Cw ∀k = 1, . . . , 15

1 ∃ k : pki ∈ Cw k = 1, . . . , 15
; (3.4)

zwi =

0 (pk1i, pk2i) /∈ Cw ∀k1, k2 = 1, . . . , 15

1 ∃ (k1, k2) : (pk1i, pk2i) ∈ Cw k1, k2 = 1, . . . , 15
, k1 ̸= k2.

(3.5)

Definition (3.4) refers to the case in which at least one procedure is (or is

not) among the codes that form the list; Definition (3.5) refers to the case in

which at least one couple of procedure codes is (or is not) among the couples

of codes that form the list;
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• 30 comorbidity indicator variables defined by the Elixhauser Comorbidity

Index (Elixhauser & al., 1998). Precisely, the version was the Enhanced

ICD9-CM Elixhauser Index described in (Quan & al., 2005). Such variables

can take the following values:

zwi =

0 dki /∈ Cw ∀k = 2, . . . , 15

1 ∃ k : dki ∈ Cw k = 2, . . . , 15
(3.6)

Definition (3.2) refers to the case in which at least one secondary diagnosis

is (or none of them is) among the codes that form the list.

• 262 diagnostic categorical variables defined by the U.S. Agency for Health-

care Research and Quality Clinical Classification Software (CCS) (Elixhauser

& al., 2015), which can take the following values:

zwi =


0 dki /∈ Cw ∀k = 1, . . . , 15

1 ∃ k : dki ∈ Cw and d1i /∈ Cw k = 2, . . . , 15

2 d1i ∈ Cw

. (3.7)

Definition (3.7) refers to the case where a 3-levels categorical variable is

created. The single modalities refer to the presence of one of the codes

that form the list as a principal diagnosis (value 2), as one of the secondary

diagnoses (value 1), or to the absence of those codes in the patient electronic

record (value 0).

• 140 surgical indicator variables defined by the U.S. Agency for Healthcare

Research and Quality Clinical Classification Software (CCS) (Elixhauser &

al., 2015), which can take the following values:

zwi =

0 pki /∈ Cw ∀k = 1, . . . , 15

1 ∃ pki ∈ Cw k = 1, . . . , 15
. (3.8)

Definition (3.8) refers to the case in which at least one procedure is (or is

not) among the codes that form the list.
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Two examples of clinical variables are illustrated in the following pages. Tables

3.3 and 3.4 report the two lists of ICD9-CM codes (i.e., the Cw = {c1, . . . , cCw}
sets) which are associated to the “Cesarean Section” procedure and to the “Acute

Myocardial Infarction” diagnosis, together with the textual descriptions of the

codes. These lists of codes correspond respectively to procedure category “134”

and to diagnosis category “100” of the Clinical Classification Software (Elixhauser

& al., 2015).

Referring to the three examples of patient electronic records reported in Table 3.2

and to the rule reported in Definition (3.8), it is possible to evaluate the presence

of a Cesarean Section by means of assessing the reported procedure codes. In

particular, none of the three patients has a procedure code which is included in

the Cw list, therefore the value of the clinical variable is zwi = 0 for all the three

patients.

With respect to the Acute Myocardial Infarction clinical variable, Patient # 3 has

a secondary diagnosis code (41011) which is included in the Cw list, therefore its

zwi value is equal to 1, whilst for the other two patients zwi = 0 since they don’t

have any primary or secondary diagnosis code included in the list.

Table 3.3: Example of ICD9-CM clinical variable - Cesarean Section

Code Description

740 Classical cesarean section
741 Low cervical cesarean section
742 Extraperitoneal cesarean section
744 Cesarean section of other specified type
7499 Cesarean section not otherwise specified

Moreover, a 3-levels severity index was used, which aim is to describe the

clinical complexity of the patient by assigning him an ordered score from 0 to 2.

Among dozens severity level indexes developed in the medical and bioinformatics

literature, the one defined in Medicare Severity Diagnosis Related Groups (MS-

DRG) PCS actually in use in the U.S. was used (Centers for Medicaid and Medicare

Services, 2008). This index rationale is to define two sets of secondary diagnoses

(of cardinality 3529 and 1622) which can respectively represent Complications or

Comorbidities (CC) or Major Complications or Comorbidities (MCC) that can
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Table 3.4: Example of ICD9-CM clinical variable - Acute Myocardial Infarction

Code Description

41000 Acute myocardial infarction of anterolateral wall episode of care unspecified
41001 Acute myocardial infarction of anterolateral wall initial episode of care
41002 Acute myocardial infarction of anterolateral wall subsequent episode of care
41010 Acute myocardial infarction of other anterior wall episode of care unspecified
41011 Acute myocardial infarction of other anterior wall initial episode of care
41012 Acute myocardial infarction of other anterior wall subsequent episode of care
41020 Acute myocardial infarction of inferolateral wall episode of care unspecified
41021 Acute myocardial infarction of inferolateral wall initial episode of care
41022 Acute myocardial infarction of inferolateral wall subsequent episode of care
41030 Acute myocardial infarction of inferoposterior wall episode of care unspecified
41031 Acute myocardial infarction of inferoposterior wall initial episode of care
41032 Acute myocardial infarction of inferoposterior wall subsequent episode of care
41040 Acute myocardial infarction of other inferior wall episode of care unspecified
41041 Acute myocardial infarction of other inferior wall initial episode of care
41042 Acute myocardial infarction of other inferior wall subsequent episode of care
41050 Acute myocardial infarction of other lateral wall episode of care unspecified
41051 Acute myocardial infarction of other lateral wall initial episode of care
41052 Acute myocardial infarction of other lateral wall subsequent episode of care
41060 True posterior wall infarction episode of care unspecified
41061 True posterior wall infarction initial episode of care
41062 True posterior wall infarction subsequent episode of care
41070 Subendocardial infarction episode of care unspecified
41071 Subendocardial infarction initial episode of care
41072 Subendocardial infarction subsequent episode of care
41080 Acute myocardial infarction of other specified sites episode of care unspecified
41081 Acute myocardial infarction of other specified sites initial episode of care
41082 Acute myocardial infarction of other specified sites subsequent episode of care
41090 Acute myocardial infarction of unspecified site episode of care unspecified
41091 Acute myocardial infarction of unspecified site initial episode of care
41092 Acute myocardial infarction of unspecified site subsequent episode of care

occur during hospitalization:

CCC = {c11, . . . , c13529} = {c1j}j=1,...,3529,

CMCC = {c21, . . . , c21622} = {c2j}j=1,...,1622.

Each of these approximately 5000 diagnoses was also related to a list of lj primary
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diagnoses, in the presence of which they weren’t considered as CC or MCC:

ECC
j = {e1j1, . . . , e1jlj} = {e1jt}t=1,...,lj , j = 1, . . . , 3529,

EMCC
j = {e2j1, . . . , e2jlj} = {e2jt}t=1,...,lj , j = 1, . . . , 1622.

The clinical criteria for defining these couples of SDXs and PDXs were based on the

clinical likelihood of a standard episode of care reporting the secondary diagnosis,

given that the primary diagnosis is present. If at least one MCC diagnosis is

reported in the patient electronic record, the higher severity level is assigned,

while if at least one CC and no MCC diagnosis is reported, the middle severity

level is assigned. If no CC or MCC diagnosis is reported, the low severity level is

assigned.

For the i-th observation, define 14 variables which describe if the 14 secondary

diagnoses could be defined as CC or MCC:

dSki =



0

[
@ j∗ :

(
dki ∈ {c1j}j=j∗

)
and

(
d1i /∈ ECC

j∗

) ]
and[

@ j∗ :
(
dki ∈ {c2j}j=j∗

)
and

(
d1i /∈ EMCC

j∗

) ]

1

[
∃ j∗ :

(
dki ∈ {c1j}j=j∗

)
and

(
d1i /∈ ECC

j∗

) ]
and[

@ j∗ :
(
dki ∈ {c2j}j=j∗

)
and

(
d1i /∈ EMCC

j∗

) ]
2 ∃ j∗ :

(
dki ∈ {c2j}j=j∗

)
and

(
d1i /∈ EMCC

j∗

)
, k = 2, . . . , 15.

(3.9)

The severity index is then defined as:

xi =


0 dSki = 0, ∀k = 2, . . . , 15

1 ∃ k : dSki = 1 and @ k : dSki = 2, k = 2, . . . , 15

2 ∃ k : dSki = 2, k = 2, . . . , 15

. (3.10)

Referring to Patient # 3, the first secondary diagnosis code (d2i = “41011 -

Acute Myocardial Infarction of other anterior wall initial episode of care”) is in-

cluded in the CMCC = {c21, . . . , c21622} set of Major Complications or Comorbidities,
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Table 3.5: Examples of electronic patient electronic record after applying the
ICD9-CM clinical coding scheme

Variable Patient #1 Patient # 2 Patient # 3
LOS 27 4 11
Age 70 24 75
ACCP 0134 0 1 0
ACCD 0100 0 0 1
CC ms 2 0 2

Notes: ACCP 0134 stands for presence of Cesarean Section procedure, ACCD 0100 stands for presence of Acute
Myocardial Infarction diagnosis, CC ms is the 3-level severity index.

in particular it is the element c2335. The associated set of principal diagnosis exclu-

sions EMCC
335 is equal to the set of Acute Myocardial Infarction codes reported in

Table 3.4, therefore, according to (3.9) and (3.10), dS2i = 2 and xi = 2.

Referring to Patient # 1, his only secondary diagnosis code is “5856” (End stage

renal disease), that is also included in the CMCC set. Given that the principal

diagnosis d1i is not among the codes that form the set ECC
j∗ , dS2i = 2 and xi = 2.

While these two patients were assigned to the higher severity level, Patient # 2

hasn’t any secondary diagnosis included in CCC or CMCC , therefore the low severity

level is assigned.

Table 3.5 shows the patient records of Table 3.2 after the coding scheme related

to these two examples was applied.

Table 3.6: Number of ICD9-CM clinical variables derived in the six selected
datasets

Dataset Elixhauser CCS DRG TOT
Coronary Artery Bypass Graft 30 35 46 111
Skin Graft and Debridement 30 19 17 66
Burns 30 1 56 37
Breast Procedures 30 19 17 66
Craniotomy 30 29 34 93
Delivery 30 24 15 69

In order to avoid the use of clinical and surgical variables in datasets where they

have no clinical coherence (as in the case of assessing the presence of a Cesarean
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Section in Patient # 1 and # 3 that come from the Coronary Bypass dataset),

only a subset of them was used in every analyzed case study. Elixhauser’s comor-

bidity index, being very general in defining its categories, was applied to all of

the datasets. CCS variables were used only if the associated ICD9-CM chapter

was coherent with the case study. DRG variables were natively divided by Major

Diagnostic Category, therefore only those variables that were associated to the

MDCs of the case studies were considered. The count of clinical variables derived

for each of the six selected datasets is reported in Table 3.6.
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Chapter 4

Methods

4.1 Proposed implementations of the algorithms

The two major classes of recursive partitioning algorithms that were described in

Chapter 2 (constant-fit trees and model-based trees) were used in the present work

for assessing their performance and properties when applied to the search for PCS

iso-resource subgroups.

Conceptually, the use of constant-fit trees corresponds to the search of subgroups

for a PCS without a post-weighting system, as all of the relevant patient’s variables

are used in defining the partitions. The model-based trees correspond instead to

the search of iso-resource subgroups to be used in a PCS with fewer subgroups,

which are also post-weighted by means of resource-intensity adjustments based on

age and clinical severity.

4.1.1 Constant-fit trees

Regression trees

Regression trees, the simplest implementation of constant-fit trees, were used in

the present work as the reference algorithm for the definition of a PCS’s subgroups,

given their widespread use in this field. In particular, the regression tree algorithm,

which was at the basis of definitions of several PCSs with the classical design of

DRGs, is described in the following paragraph.
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For what concerns the role of the available variables, given that LOS was

always used as the response variable, a difference between the two kinds of trees

was made.

In constant-fit trees, all the available explicative variables (age, severity, ICD9-

CM-based variables) were used as partitioning variables. This setting will result

in defining subgroups by using clinical, demographic and severity variables. Such

subgroups will differ for their average LOS values.

The following algorithmic specifications were given to the regression tree algorithm:

• splitting criterion: maximum reduction in SSE.

• stopping criteria: maximum tree depth equal to 7 or minimum node size

equal to 30. Here, at least 30 observations were considered enough for the

calculation of a sufficiently robust average value.

The pre-pruning and post-pruning criteria will be detailed in Section 4.2.2.

4.1.2 Model-based trees

A more sophisticated scheme can be created within a model-based tree, using key

transversal predictors for resource consumption such as age and severity level as

regressors in the node models and the clinical variables as partitioning variables.

Such a distinction was mainly motivated by clinical coherence criteria. Indeed,

subgroups of patients will be defined by relevant clinical or surgical conditions,

and they will differ in the relationships between LOS and age and severity level,

which can define different therapeutic paths to be followed during hospital stay.

Moreover, by the use of model-based trees, the relation between the response

variable and the two major patient’s conditions is taken into account, not only for

eventually resource-intensity adjusting cases in the terminal nodes, but also within

the splitting criterion used for building the iso-resource subgroups.

In particular, the following model can be estimated (in the generic node τ):

g(yi) = β0τ + β1τ · x1i + β2 · x21i + β3τ · 1CCi + β4τ · 1MCCi + ϵi, i ∈ τ (4.1)

where X1 is age (centered at the mean) and 1CC and 1MCC are the dummy vari-

ables which correspond to the middle and high severity levels.
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According to such a specification of the model, the coefficients have a straightfor-

ward clinical interpretation. In the case of a log-link model, exp(β3) and exp(β4)

are the multiplicative effects on average LOS (ME-LOS) associated to the pres-

ence of CC and MCC, respectively. β1 and β2 can be combined in order to obtain

multiplicative effects on average LOS as a function of age. exp(β0) is the LOS for

a baseline patient. In this case, a baseline patient is identified by the reference

categories of the explicative variables, which means mean-aged patients without

complication and comorbidities of any degree.

In the model-based tree framework, three algorithms were fitted. The first is a

modifications of the MOB algorithm which uses GLMs. The second is the quan-

tile regression version of GUIDE, which was used in order to compare the trees

obtained at different quantiles. Both of these algorithms look forward defining

subgroups where model parameters differ. The splitting variables are chosen by

minimizing the p-value from the parameter instability test (MOB) or from the

curvature tests (GUIDE), which can be interpreted as defining subgroups with

different coefficients of (4.1) in the child nodes τ1 and τ2. The last one is a compos-

ite algorithm which first fits a regression tree (constant-fit tree) and subsequently

adds regression models in the terminal nodes.

Model-based recursive partitioning

With respect to the original MOB algorithm, a modification was made in order to

allow for greater flexibility of the procedure. In step 1, for each node of the tree,

the algorithm was allowed to fit D > 1 distributions for the response variable and

select the best fitting one among all the D candidates.

In particular, supposing that D competing distributions D1, . . . ,DD could provide

a good fit of the data in the current node τ :

Mτ
1(Y,X, θ

1
τ ) : g(yi) = β1

0τ+β
1
1τ ·x1i+β1

2τ ·x21i+β1
3τ ·1CCi+β

1
4τ ·1MCCi+ϵi, Y ∼ D1

· · ·

Mτ
d(Y,X, θ

d
τ ) : g(yi) = βd

0τ+β
d
1τ ·x1i+βd

2τ ·x21i+βd
3τ ·1CCi+β

d
4τ ·1MCCi+ϵi, Y ∼ Dd

· · ·
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Mτ
D(Y,X, θ

D
τ ) : g(yi) = βD

0τ+β
D
1τ ·x1i+βD

2τ ·x21i+βD
3τ ·1CCi+β

D
4τ ·1MCCi+ϵi, Y ∼ DD,

the best fitting one could be simply chosen by means of information criteria, as

all of the models are estimated on the same set of observations. Among the D

candidate models, the one which has minimal Akaike Information Criterion (AIC)

is selected as the final model to be fitted in node τ :

min
d
AIC(Mτ

d(Y,X, θ
d
τ )), d = 1, . . . , D.

This modification was mainly motivated by one consideration: being separation

of data according to different distributional properties a goal of every recursive

partitioning algorithm, it is reasonable to expect that different distributions could

fit better within different nodes. Given that the estimated score functions of each

within-node model - together with their variances and covariances - play a major

role in selecting the splitting variables, the choice of the best model can also pre-

vent from picking up non-optimal splits.

Define the distributions selected in the nodes h = 1, . . . , |M̃| as d1, . . . , d|M̃|. Ac-

cording to the proposed modification, the resulting model:

ML(Y,X, {θdhh }), h = 1, . . . , |M̃|. (4.2)

is not a segmented model as defined in Section 2.2.3, because of the different

underlying distributions that are used in the nodes. However, provided that the

different models are expressed in terms of parameters θh whose interpretation

would be the same (i.e., using the same link function), the segmented model which

results after the proposed modification fundamentally maintains its structure.

Among those models listed in Section 2.3, two major classes of basic regression

models were considered in the present work:

• Regression models for continuous response variables:

– Gamma distributed Y ∼ Gamma(α, β), g(·) = log(·),

f (y, α, β) =
βα

Γ(α)
yα−1e−βy,

where Γ(·) is the Gamma function, E[Y ] = α
β
and V [Y ] = α

β2 .
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– Inverse Gaussian distributed Y ∼ InvG(µ, λ), g(·) = log(·),

f (y, µ, λ) =

(
λ

2πx3

)1/2

exp

[
−λ(x− µ)2

2µ2x

]
,

where E[Y ] = µ and V [Y ] = µ3

λ
.

In order to estimate the coefficients, when using Gamma and Inverse Gaus-

sian models, a value of LOS equal to 0.5 was manually assigned in the case

the original LOS calculation was equal to 0.

• Regression models for count data:

– Poisson distributed Y ∼ Poisson(µ), g(·) = log(·),

f(y, µ) =
e−µµy

y!
,

where E[Y ] = V [Y ] = µ, i.e. the variance is constrained to be equal

to the mean (also referred to as absence of dispersion). In the case the

variance exceeds the mean, the data is said to be over-dispersed

– Negative Binomial distributed Y ∼ NB(µ, λ), g(·) = log(·),

f(y, µ, λ) =
Γ(y + λ)

Γ(y + 1)Γ(λ)

(
λ

λ+ µ

)λ(
µ

λ+ µ

)y

,

where E[Y ] = µ and V [Y ] = µ + λ−1µ2, which is the so-called NB-2

parametrization (Cameron & Trivedi, 2013) (Hilbe, 2011). The NB-2

model has the desirable property of converging to the Poisson one in

the case the data is not dispersed (θ → ∞), moreover it can be modeled

under the framework of generalized linear models (Hilbe, 2011).

According to the modification of MOB previously described, in each step of

the partitioning procedure (i.e., in any inner or terminal node), the choice between

the candidate distributions was performed within each of the two macro classes of

models. Hereinafter, the MOB implementation which fits Poisson or NB-2 models

will be referred fo as Count-MOB, while the one which chooses between the two
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continuous response regression models will be referred to as Continuous-MOB.

For the former one, the choice between the two models (NB-2 and Poisson) is

essentially related to the presence or absence of over-dispersion.

Operationally, the following algorithmic settings were used for the growth of

these MOB-like trees:

• splitting criterion: minimum parameter instability test p-value

• stopping criteria: maximum tree depth equal to 7 or minimum node size

equal to 60. The latter criterion was identified by means of a rule-of-thumb,

corresponding to at least 15 observations per covariate

Generalized unbiased interaction detection and estimation

The second algorithms used in the present work was the quantile regression version

of GUIDE (Chaudhuri & Loh, 2002). Here, the interest was on assessing the

different tree structures that can be obtained by using quantile regression models

instead of the GLMs used in MOB-like trees. In particular, Quantile-GUIDE trees

were fitted for two distinct values of the value q (the q-th conditional percentile

of LOS): 50 and 90. The first one corresponds to fitting a median regression tree,

while the second one corresponds to fitting a 9-th decile regression tree. The

former therefore looks for iso-resource subgroups with respect to median LOS and

its comparison with MOB-like trees, which predict average LOS, is a matter of

interest, particularly because of the asimmetric distributions of LOS. The 90-th

percentile regression tree is suitable for assessing subgroups which differ for the

effect of age and severity on the high tail of LOS. It is therefore a conceptually

different criterion for seeking iso-resource subgroups with respect to the MOB-

like and Quantile-GUIDE (based on the median) ones, which can possibly reveal

different partitioning structures.

Operationally, the following algorithmic settings were used for the growth of

Quantile-GUIDE trees:

• splitting criterion: minimum curvature test p-value

• stopping criteria: maximum tree depth equal to 7 or minimum node size
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equal to 60. The latter criterion was identified by means of a rule-of-thumb,

corresponding to at least 15 observations per covariate

Regression trees & models

Moreover, as an alternative to MOB-like and GUIDE trees, in order to mimic the

model-based tree structure while still using the original regression tree (constant-fit

tree) methodology, in the present work the use of the regression tree algorithm was

expanded by applying regression models to the resulting terminal nodes. This idea

of a two-steps algorithm can be sometimes found in machine learning and applied

statistics publications. Example of such two-steps algorithms are M5 (Quinlan,

1992), the hybrid CART-logit software (Steinberg & Cardell, 1998), the FT-Leaves

class of trees described in (Gama, 2004). In order to run this algorithm, the

same division between node model’s covariates and partitioning variables of the

model-based trees was used. The regression tree was grown with only a reduced

set of partitioning variables, which included only ICD9-CM variables; pruning was

performed with the typical cost-complexity cross validation techniques, considering

only the constant-fit tree structure.

After the size of the regression tree is fixed, a regression model is fitted in each

of the leaves, considering age and severity level as regressors. Predicted values for

LOS come straightforwardly:

ŷiĥ = xTi θ̂ĥ, i = 1, . . . , n, h = 1, . . . , |M̃|. (4.3)

This particular implementation will be named regression tree & models, and, at

the extent of simplicity, was used only in conjunction with NB-2 and Poisson mod-

els. For the sake of clarity, in each terminal node the model between these two

with lower AIC was used, as in the previously described Count-MOB algorithm.

Operationally, the following algorithmic settings were used for the growth of

regression trees & models:

• splitting criterion: maximum reduction in SSE

• stopping criteria: maximum tree depth equal to 7 or minimum node size
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equal to 60. The latter criterion was identified by means of a rule-of-thumb,

corresponding to at least 15 observations per covariate

Such an algorithm therefore shares all of its tuning parameters with the Count-

MOB algorithm. Indeed, they have the same stopping criteria, the same leaf

models and the same sets of partitioning variables and regressor variables. The

only difference therefore stands in the splitting criterion, being that of Count-

MOB parameter instability-based and that of regression tree & models based only

on reduction in LOS variance, therefore not considering LOS relationships with

age and severity level.

4.2 Performance comparison

A protocol of analysis aimed at comparing the predictive performances of model-

based trees and constant-fit trees algorithms is illustrated in the present paragraph.

Pre-pruning and post-pruning criteria will also be detailed in this paragraph, as

they were different according to the comparison scenarios that were defined.

To sum-up, the following algorithms were compared:

• regression tree with all available variables

• regression tree with reduced set of partitioning variables, with models at-

tached to terminal nodes (regression tree & models)

• Count-MOB

• Continuous-MOB

Quantile-GUIDE was not compared to the other algorithms due to the different

response variables used. It will be however used to compare the partitioning struc-

tures obtained at different quantiles to those obtained by the four aforementioned

algorithms in Section 5.3.

From a statistical perspective, the performance comparison was based on as-

sessing an error measure together with a measure of complexity of the tree.
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Given an algorithm (either a regression tree or a model-based tree) MD esti-

mated on a generic dataset D (learning dataset), the error measure used in the

present work was the squared error of the individual predictions:

εM
D

i =
(
yi − ŷM

D

i

)2

i = 1, . . . , n, (4.4)

where ŷM
D

i are the predicted LOS values according to model MD. Straightfor-

wardly, a performance measure such as the mean squared error (MSE) can be

calculated on a generic dataset V (called validation set):

PV(MD) = E[εM
D
] =

1

nV

∑
i∈V

(
yi − ŷM

D

i

)2

, (4.5)

where nV is the cardinality of dataset V .
Moreover, complexity of a decision tree was traditionally measured with the

number of its terminal nodes

|M̃| (4.6)

or - alternatively - with the number of its splits |M̃| − 1. It must be highlighted

that, compared to constant-fit trees, model trees estimate additional parameters,

such as the regression coefficients of the within-node models. In order to take into

account this additional global model complexity, it was proposed (Zeileis & al.,

2008) to use the sum of splits and estimated regression coefficients:

ζ = (|M̃| − 1 + |M̃| · k) (4.7)

as a complexity measure for the comparison of constant-fit trees and model-based

trees. For the former class, k was set to 0 and for the latter all the coefficients

except the intercept were counted.

While still taking into account such kind of considerations, in the present work

the main metric of complexity was determined as the number of subgroups |M̃|.
This choice was motivated by the literature on PCSs, where the need for parsimony

is more focused on the number of subgroups rather than on the number of resource-

intensity adjustment coefficients to be applied after attribution of the subgroup

(Lorenzoni & Pearson, 2011). With respect to the comparison of model trees and
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the regression tree & models implementation, this issue is no more actual and it

is possible to compare them directly with the number of terminal nodes |M̃|.
Two scenarios were considered, based on different uses of pruning techniques

for the trees:

• Comparison of the performance curves for increasing level of complexity

• Comparison of the complexity of post-pruned trees

The second scenario, referring to the comparison of post-pruned trees, is useful

for assessing what would be a purely statistically-driven decision in the formulation

of PCS iso-resource subgroups.

With the comparison of performance curves in the first scenario, it is possible to

evaluate the whole path of the statistical performance according to the complexity

level of the tree. This last scenario can therefore give a more flexible choice of the

final pruned model, since other considerations rather than the statistical ones can

also contribute.

4.2.1 Bootstrap performance curves

In order to produce the performance curves, all the algorithms were run with a

relaxed pre-pruning criterion, aimed at growing a large tree:

• minimum percent reduction in root node SSE equal to 0.01% in regression

trees

• maximum Bonferroni-adjusted p-value of parameter instability tests equal

to 0.5 in modified MOB algorithms.

In this scenario, no post-pruning technique was adopted.

The specificity in the analysis of hospital patient subgroups suggested to mon-

itor the performance in correspondence with increasing levels of tree complexity.

This was motivated by the fact that, for application in a PCS, the final pruning of

the tree should be performed not only according to statistical criteria, but also ac-

cording to clinical and economical judgment. From a statistical perspective, these

last consist in manual modifications of the structure of the trees. This manual
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adaptation would typically lead to some degeneration in performance (Grubinger

& al., 2010), therefore it would be essential to assess the behaviour of the statistical

performance for each possible number of subgroups.

According to these considerations, it was decided to consider statistical per-

formance as a function of the number of terminal nodes, and monitoring it in

correspondence to an increasing complexity.

In order to do so, a sequence of m+ 1 nested subtrees is needed:

M0 ⊃ M1 ⊃ · · · ⊃ Mm, |M̃0| > |M̃1| > · · · > |M̃m|, m+ 1 ≤ |M̃|, (4.8)

where M0 is the full unpruned tree and Mm is the root node tree.

For regression trees, the sequence was obtained with the cost-complexity criterion

described in Section 2.2.1; in particular, the sequence is the same as in (2.6).

With respect to Count-MOB and Continuous-MOB algorithms, the sequence was

similarly obtained from the unpruned tree, following a bottom-up procedure.

Starting from M0 (the unpruned tree), the parameter instability Bonferroni-

adjusted p-values of the internal nodes were assessed. Among all of the inter-

nal nodes of the tree (i.e., τ /∈ M̃0), the one which is associated to the lowest

parameter instability (corresponding to the highest M-fluctuation test p-value) is

identified and all of its descendant nodes are pruned off. In such a way, the subtree

M1 is identified. This procedure is then repeated on the subtree M1, in order to

find M2. Iterating the procedure until the root node tree Mm is reached leads to

the desired sequence of nested subtrees for MOB-like algorithms.

Recalling that m+1 ≤ |M̃|, it must be highlighted that, for both regression trees

and model-based trees, there is no guarantee of having a subtree in the sequence

for each possible number of terminal nodes η = 1, 2, . . . , |M̃|. Define a generic

M(η) as the subtree in the sequence (4.8) which has η terminal nodes. Therefore

M(1) corresponds to Mm and M(|M̃|) corresponds to M0. The sequence of those

trees, for any η = 1, . . . , |M̃|, is:

{M(η)}, η = 1, . . . , |M̃|, M(η−1) ⊃ M(η). (4.9)
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Some of them could be unknown, since they weren’t included in the original se-

quence of nested subtrees.

Hereinafter, a performance curve which corresponds to the MSE measure as a

function of the complexity of the tree is considered:

PV(MD
(η)) =

1

nV

∑
i∈V

(
yi − ŷ

MD
(η)

i

)2

, η = 1, . . . , |M̃|.

For those values of η in correspondance of which the subtree M(η) is unknown, the

performance curve of the tree presents gaps.

Obviously, the performance curve could be calculated on the complete training

set, by setting D = V = L:

PL(ML
(η)) =

1

n

n∑
i=1

(
yi − ŷ

ML
(η)

i

)2

, η = 1, . . . , |M̃|. (4.10)

This would mean measuring goodness-of-fit on the same data that was used to

estimate the model, which is potentially subject to underestimation of the real

prediction error that would instead result when using external data (Breiman,

1996b). In order to obtain a more realistic measure for the predictive perfor-

mance, the benchmark comparison of experiments protocol defined in (Hothorn

& al., 2005) was considered and revised. In particular, B = 250 bootstrapped

samples L1, . . . ,LB, each of length n, were drawn from the learning sample L, by

means of random sampling with replacement, and an average measure of error was

calculated.

Being sampling with replacement, a part of the observations in each bootstrapped

sample would be replicated. According to the n-out-of-n sampling scheme used, it

is expected that the average number of distinct observations in the bootstrapped

samples is 63.2%, while on average 36.8% of the observations would remain out-

of-bag. The datasets containing the out-of-bag observations, named V1, . . . ,VB,

were used as validation datasets for each of the B boostrapped learning datasets.
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The out-of-bag average error measure was defined as:

P̄OOB(M(η)) = E[PVb
(MLb

(η))] =
1

B∗

∑
b∈B∗

1

nVb

∑
i∈Vb

(
yi − ŷ

MLb
(η)

i

)2

, η = 1, . . . , |M̃|,

(4.11)

where B∗ (≤ B) is the number of bootstrap samples in which the tree MLb

(η) is

not unknown and B∗ is the set of those samples. Here, the very few bootstrapped

datasets where an algorithm had extremely low performances (high errors) were

not considered when computing the average out-of-bag performance curve. In

particular, for every algorithm, those error measures which were higher than 10

times the difference between the 9-th and 1-th deciles of performance plus the 9-

th decile of performance were not considered. Furthermore, median performance

curves (defined as P50
OOB(M(η))) were also calculated for each value of η.

Once all competing algorithms - regression trees, regression trees & models and

MOB-like trees - were run for each bootstrapped sample, each couple of sets of

performance measures was compared. There was a total number of six pairwise

comparisons for each distinct compexity level, each performed according to the

following specifications. Considering two generic trees M and ∗M and their B

error measures {PVb
(MLb

(η))}b=1,...,B and {PVb
(∗MLb

(η))}b=1,...,B, at every complexity

level η = 1, . . . , |M̃|, a Wilcoxon signed-rank test for equality of paired samples

was performed (two-tailed, Bonferroni-corrected for multiple testing).

4.2.2 Post-pruned trees

When comparing post-pruned trees, the focus was put on assessing the differences

in complexity among all the trees obtained according to different pruning criteria.

Trees were grown with standard pre-pruning criteria (minimum p-value in MOB

equal to 0.05 and minimum reduction in overall SSE in regression trees equal to

0.01%) and post-pruning was performed in order to select optimal subtrees.

Regression tree pruning, as well as regression tree & models pruning, was per-

formed by means of the cost-complexity criterion described in Section 2.2.1.

Post-pruning of the Count-MOB and Continuous-MOB trees was performed

according to three alternative criteria, the first being based on the value of the

Bayesian Information Criterion (BIC) (Zeileis & al., 2008), the second was the
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classical method ofK-fold cross validation and the last one was a graphical method

based on the bootstrap performance curves.

Pruning according to the BIC value was performed in the following way. Con-

sider a generic father node τ and its two child nodes τ1 and τ2. The tree is pruned

at node τ if the value of the BIC in the father node is less than the BIC of the

segmented model obtained after splitting (i.e., if BICτ < BICτ1;τ2). Precisely, the

following equation must be satisfied in order to prune away nodes τ1 and τ2:

−2lτ (Y,X, θτ )+ln(nτ )·(k+1) < −2 [lτ1(Y,X, θτ1) + lτ2(Y,X, θτ2)]+ln(nτ )·[2 · (k + 1) + ξ] ,

where lτ is the log-likelihood for node τ , nτ is the number of observations in node

τ , (k+1) is the number of within-node model parameters (including the intercept

term) and ξ are the degrees of freedom for the split selection. As stated in the

original MOB paper (Zeileis & al., 2008), the value ξ can be operationally used as

a tuning parameter in order to allow for greater or lower parsimony in the pruning

procedure. In the present work, the default value of ξ = 1 was initially considered,

which means assigning one d.o.f. for the whole one-step tree growth. Moreover, a

second scenario was considered, similar to that in (Fan & Gray, 2005), in which

an additional penalty to the selection of a split was assigned. One d.o.f. was

assigned to the selection of the variable, one for the selection of the split point (if

not unique) and two for the choice of the regression models in the two child nodes:

ξ = 4. This procedure starts from the final leaves and prunes the tree backward

until the optimal number of nodes is reached. At the extent of simplicity, pruning

with ξ = 1 will be defined as the 1-DF rule and pruning with ξ = 4 as the 4-DF

rule.

Cross validation pruning of Count-MOB and Continuous-MOB trees was per-

formed by randomly partitioning the training sample L in K = 5 equally sized

folds (5-fold CV) V1, . . . ,VK and calculating the following error measure for each

level of complexity of the tree η :

PCV (M(η)) =
1

K

K∑
k=1

1

nVk

∑
i∈Vk

(
yi − ŷ

MLk

(η)

i

)2

, η = 1, . . . , |M̃|, (4.12)
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where L1, . . . ,LK are the learning datasets for each of the 5 runs:

Lk = LrVk, k = 1, . . . , K

The tree with the lowest number of terminal nodes which has error within v-times

the standard error of the lowest error plus the lowest error

min
η

[
PCV (M(η))

]
+ v · s.e.

(
min
η

[
PCV (M(η))

])
is selected as the cross validation v-SE rule pruned tree for the learning sample L.

Here, values of v were equal to 0.5 and 1, corresponding to the 0.5-SE and 1-SE

rules.

A third post-pruning method was also used, based on the bootstrap out-of-bag

performance curves described in the previous section. By graphical assessment of

these curves, a pruned optimal subtree could be identified as the one in correspon-

dence of a sharp bend. This graphical procedure borrows ideas from other fields,

like multivariate analysis, and is also similar to an alternative pruning approach

described in (Zhang & Singer, 2010).

4.3 Ensemble methods

Two particular ensemble methods were also applied, in order to assess their dif-

ferent behaviours when applied to constant-fit and model-based trees structure.

The first is the Random Forests method (Breiman, 2001). A high number B = 250

of bootstrapped samples L1, . . . ,LB were drawn with replacement from the learn-

ing sample, and unpruned trees ML1 , . . . ,MLB were grown of each of them. When

running Random Forests, a subset of the partitioning variables P ′ = 1
3
·P was em-

ployed in every node.

Two aggregation alternatives were considered (Strobl & al., 2009); the first is to

use all of the B predicted values on the learning datasets Lb resulting from the
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bootstrapped trees and taking the average:

ŷRF1
i =

1

B

B∑
b=1

ŷ
MLb

(|M̃Lb |)
i i = 1, . . . , n, (4.13)

where |M̃Lb| is the maximum number of terminal nodes of the b-th bootstrapped

tree (i.e., those defining the unpruned tree).

Alternatively, averaging was performed only with respect to those bootstrapped

samples where the observation was left out-of-bag:

ŷRF2
i =

1∑B
b=1 1Vb

(i)

B∑
b=1

1Vb
(i) · ŷ

MLb

(|M̃Lb |)
i i = 1, . . . , n, (4.14)

where 1Vb
(i) is an indicator function taking values:

1Lb
(i) =

0 i /∈ Vb, i ∈ Lb

1 i ∈ Vb; i /∈ Lb

i = 1, . . . , n, b = 1, . . . , B.

The overall performance of the random forest on the learning sample was calculated

as:

PMRF

L =
1

n

n∑
i=1

(
yi − ŷRF1

i

)2
, (4.15)

or, in the case of out-of-bag averaging, as:

PMRF

OOB =
1

n

n∑
i=1

(
yi − ŷRF2

i

)2
. (4.16)

The second ensemble technique was Bumping (Tibshirani & Knight, 1999).

Like random forests, B = 250 bootstrap samples were generated and an unpruned

tree was estimated for each of them, still considering a subset of P ′ partitioning

variables in each node. Then, for a fixed number of terminal nodes η, the boot-

strapped tree MLb

(η) which best fits the original training dataset L was selected as

the “Bumped” tree:
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minb PL(MLb

(η)) = minb

[
1
n

∑n
i=1

(
yi − ŷ

MLb
(η)

i

)2
]
, η = 1, . . . , |M̃|.(4.17)

4.4 Software implementation

Pre-processing of the ICD9-CM variables was made using specifically designed rou-

tines in SAS/BASE software version 9.3 (SAS Institute, Cary NC).

The recursive partitioning algorithms described in the previous paragraphs were

run on the R software (R Foundation for Statistical Computing, Wien). For regres-

sion tree growth, pruning and predictions the package rpart was used (Therneau

& al., 2014). Model-based Recursive Partitioning was run on a modified version

of the partykit package (Hothorn & Zeileis, 2015). In particular, code modifica-

tions were made in order to allow the within-node model choice and to perform

cross validation pruning. Random Forest and Bumping procedures for MOB were

developed ex-novo, while for rpart the associated randomForest package (Liaw &

Wiener, 2002) was used.

GUIDE (Version 20.3) was run by means of the command-line executable binaries

distributed by the author of the method.
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Chapter 5

Results

In the present chapter, results of the analyses described in the previous chapters

are reported, both in tabular and graphical form.

The first section will be dedicated to a descriptive overview of the samples, includ-

ing results from regression models estimated on the complete learning datasets

(i.e., at the root nodes of trees). In second section, results of the bootstrap per-

formance curves will be presented, while in the third section post-pruning criteria

will be compared. Moreover, some relevant examples of pruned trees will also be

reported. In the last section, results obtained with Random Forests and Bumping

ensemble methods will be shown.

5.1 Models for length of stay

Descriptive statistics of the variables that were used as within-node regressors in

the model-based trees are reported in Table 5.1. Estimated coefficients of NB-2

regression models, as specified in equation (4.1), are reported in Table 5.2. Such

models were estimated on the whole datasets, therefore they correspond to the

root node models of model-based trees. For the sake of simplicity, only coefficients

from a NB-2 model fit were reported.

It could be noted that fairly similar coefficients were estimated in the six

datasets. A common effect was that of clinical severity, which resulted as highly

predictive for LOS in all the case studies, even if with different intensities. Increas-
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Table 5.1: Descriptive statistics of regressor variables

Age No CC CC MCC
Dataset Mean (SD) n (%) n (%) n (%)
CABG 66.9 (9.5) 80.4% 12.4% 7.2%
Skin graft and debridement 62.3 (23.1) 87.9% 10.6% 1.5%
Burns 40.5 (27.1) 59.9% 31.1% 9.0%
Breast Procedures 56.3 (17.4) 82.2% 17.3% 0.4%
Craniotomy 54.7 (18.9) 82.4% 13.4% 4.2%
Delivery 31.8 (5.5) 89.1% 9.0% 1.9%

Table 5.2: Estimated exponentiated coefficients of LOS models

Dataset BaseLOS age - 25 age+25 CC MCC
CABG 12.41 0.92 1.26 1.28 1.31
Skin graft and debridement 4.53 0.64 1.33 2.35 3.64
Burns 6.31 0.90 1.18 2.12 3.73
Breast Procedures 1.95 0.93 1.17 1.74 4.62
Craniotomy 7.96 1.25 0.87 1.52 2.10
Delivery 2.01 (·) 1.59 (·) 0.76 1.32 1.66

Notes: BaseLOS = baseline LOS; age-25 = ME-LOS associated to 25-years decrease in age w.r.t average age;
age+25 = ME-LOS associated to 25-years increase in age w.r.t average age; CC = ME-LOS for presence of
Complications or Comorbidities; MCC = ME-LOS for presence of Major Complications or Comorbidities. Bold
coefficients were significant at 0.01 significance level. Coefficients marked with a (·) refer to 10-years increase /
decrease. ME-LOS = Multiplicative effect on average LOS

ing age was related to a lower LOS for the Craniotomy and Delivery datasets, while

increasing age was associated with higher LOS in the remaining datasets.

With respect to the fit of the four regression models that were considered (Poisson,

NB-2, Inverse Gaussian and Gamma), Table 5.3 shows the values of Akaike Infor-

mation Criterion obtained by fitting these models in the root node. It must be

recalled that comparison between count models and continuous response models

here was not possible, since, due to the presence of zero days LOS, the latter were

estimated on modified learning datasets (i.e., with 0.5 days LOS instead of 0 days

LOS). Between the two models for count data, the NB-2 had lower AIC for all of

the datasets except the Delivery one, while between continuous response models

there was more balancing.
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Table 5.3: Akaike Information Criterion for the four considered regression models

Dataset Poisson NB-2 InvG Gamma
CABG 32794.4 30852.4 29832.6 30432.3
Skin graft and debridement 79753.2 62771.1 54197.9 58887.5
Burns 20055.8 13760.2 14100.5 13644.8
Breast Procedures 169353.4 161345.6 136995.2 146162.3
Craniotomy 87849.2 72906.58 72439.5 72387.4
Delivery 174715.9 174718.5 148271.1 153360.2

5.2 Performance curves

The performance curves of the four implemented algorithms on original datasets

are reported in Figure 5.1, as well as in Appendix I as Tables A1-1 and A1-2.

The regression tree algorithm starts from a higher MSE value than the model-

based trees, since, at η = 1 terminal nodes, all the observations are predicted as

the average LOS, while in the other algorithms a root node model was used. For

the same reason, model-based trees maintain a lower error measure along all the

displayed values of η, for all of the datasets.

Count-MOB and Continuous-MOB implementations always had very similar per-

formances. Moreover, with respect to both MOB-like models, the joint use of

regression trees & models in the leaves seemed to have different performances.

However, as stated in the previous chapter, the main interest was on out-of-bag

performance, rather than on those reported in Figure 5.1.

Summary statistics for the B = 250 bootstrapped trees are reported in Table

5.4. MOB trees were the shorter ones, while rpart grew trees with many more

splits. This is mainly due to two facts: first, the two kinds of algorithms had

different stopping criteria (minimum node size equal to 30 for constant-fit trees

and equal to 60 for model-based trees); second, regression trees use two more

partitioning variables, one of which is continuous (age), so they have more possible

splits among which to choose. This is confirmed by the use of regression trees with

limited set of partitioning variables, which led to trees with slightly higher number

of leaves than the MOB ones, but many less than regression trees with all variables.

Model-based trees in the Burns datasets were very limited in size due to the low

number of patients and the low number of partitioning variables, with respect to
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the other datasets.

Tables 5.5 and 5.6 show the count of the different kinds of models that were

fitted in each node of each of the B bootstrapped trees. Between the two count

regression models, the general prevalence was for the NB-2 model, except for the

Delivery dataset where the Poisson one was chosen more frequently. The extreme

case was the Burns case study, where all models were NB-2. Inverse Gaussian

and Gamma models were more balanced, with the former being more frequent in

4 datasets out of 6. These results are in line with that shown in Table 5.2: for

all the datasets, the model which was preferable in the root node was also chosen

more frequently in the nodes of the bootstrapped trees.

Table 5.4: Size of unpruned trees in B = 250 bootstrap samples

Cou-MOB Con-MOB RT RT & M
Dataset Mean SD Mean SD Mean SD Mean SD
CABG 22.6 2.0 22.8 1.9 49.6 3.6 27.2 1.7
Skin Graft and Debridement 17.6 3.1 17.7 3.1 45.8 4.1 27.3 4.3
Burns 4.5 0.9 4.4 0.9 30.0 2.5 4.7 0.5
Breast Procedures 21.3 4.9 23.6 4.0 76.3 4.4 46.3 3.3
Delivery 33.1 2.4 33.2 2.3 78.1 5.0 60.0 3.9
Craniotomy 21.7 2.8 21.7 2.8 48.0 3.4 26.8 1.8

Notes: Mean = average number of terminal nodes, SD = standard deviation of the number of terminal nodes,
Cou-MOB = Count-MOB, Con-MOB = Continuous-MOB, RT= Regression tree, RT & M = Regression tree &
models

Table 5.5: Selected models in the nodes in B = 250 bootstrap samples - Count-
MOB algorithm

Dataset Poisson NB-2
CABG 1613 14.6% 9435 85.4%
Skin Graft and Debridement 527 6.2% 7997 93.8%
Burns 0 0.0% 1976 100.0%
Breast Procedures 2622 25.2% 7772 74.8%
Delivery 13106 80.3% 3216 19.7%
Craniotomy 251 2.3% 10513 97.7%

The average bootstrap out-of-bag performance curves are reported in Figure

5.2. As detailed in the Methods chapter, assessment of the prediction error on those
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Table 5.6: Selected models in the nodes in B = 250 bootstrap samples -
Continuous-MOB algorithm

Dataset Inv. Gaussian Gamma
CABG 10010 89.7% 1150 10.3%
Skin Graft and Debridement 6088 70.6% 2534 29.4%
Burns 567 28.9% 1395 71.1%
Breast Procedures 8193 71.1% 3331 28.9%
Delivery 15726 93.5% 1092 6.5%
Craniotomy 4502 42.4% 6120 57.6%

external datasets can give a more realistic view of the performance of an algorithm.

As for very few bootstrapped datasets etremely low performance values were found,

averages were also computed excluding the cases where the performance was higher

than:

P90
OOB(M(η)) + 10(P90

OOB(M(η))− P10
OOB(M(η))), (5.1)

where Pq
OOB(M(η)) is the q-th quantile of the performances for bootstraped trees

with η terminal nodes. Additionally, in Figure 5.3, median values of the bootstrap

performance curves are reported. Moreover, to sum-up, Tables A2-1, A2-2, A2-

3, A2-4, A2-5 and A2-6 in Appendix II report average, median and standard

deviations of the performance measures for each of the case studies.

The comparison of these bootstrap performance curves revealed some interest-

ing details. First, all methods which fit models in the nodes had a more pronounced

tendency to overfit after the very first splits, compared to regression trees. These

last are less prone to overfitting, in the sense that they reach their minimum

performance later, but roughly keep this plateau. Such a result was reasonably ex-

pectable, since model-based trees have additional complexity due to within-nodes

models, which means being more exposed to overfitting. For the same motivation,

choosing a low number of terminal nodes, model-based trees (included regression

trees & models) offered higher average (and median) performance than constant-fit

trees. Another reason for constant-fit trees to reach their minimum error values

later is that they handle more explicative variables - two key patient’s character-

istics: age and severity - and require more splits to incorporate them in the tree.

As a consequence of these results, model-based trees seemed natively more appro-
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priate than constant-fit trees in finding a low number of subgroups, which is one

of the key assumptions when studying Patient Classification Systems; this feature

of model-based trees was widely described in the recursive partitioning literature.

In Figure 5.4, p-values (Bonferroni-corrected for multiple testing) of the pair-

wise Wilcoxon signed-rank tests were plotted against the number of terminal nodes.

In the left panel, the comparison between regression trees and the three algorithms

with nodes in the models is reported, while in the right panel the comparisons

among the latter three is reported. It can be seen that, except for the Skin Graft

and Debridement dataset, Count-MOB and Continuous-MOB always reported a

significantly better performance than regression trees, at least for the first eight

terminal nodes. Furthermore, regression trees & models reported different per-

formances with respect to the MOB-like algorithms; in some datasets, the former

provided a better fit (mainly in CABG and Craniotomy datasets), while in some

others the latter did (mainly in Breast Procedures, Skin Graft and Debridement

and Burns datasets). Count-MOB and Continuous-MOB provided significantly

different performances only in very few cases.
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Figure 5.1: Performance curves on learning datasets

(a) Coronary Artery Bypass Graft

(b) Skin Graft and Debridement

(c) Breast Procedures

(d) Burns

(e) Delivery

(f) Craniotomy

Notes: Count-MOB is the red line, Continuous-MOB is the green line, regression tree is the black line and
regression tree & models is the blue line. All performances were rescaled to the lower overall performance at
η = 1 (i.e., variance of LOS in the learning dataset)



Figure 5.2: Average performance curves on out-of-bag datasets

(a) Coronary Artery Bypass Graft

(b) Skin Graft and Debridement

(c) Breast Procedures

(d) Burns

(e) Delivery

(f) Craniotomy

Notes: Count-MOB is the red line, Continuous-MOB is the green line, regression tree is the black line and
regression tree & models is the blue line. Average OOB performances are computed excluding extremely low
performances (see Formula 5.1). All performances were rescaled to the lower overall performance at η = 1 (i.e.,
average variance of LOS in the bootstrapped learning datasets)



Figure 5.3: Median performance curves on out-of-bag datasets

(a) Coronary Artery Bypass Graft

(b) Skin Graft and Debridement

(c) Breast Procedures

(d) Burns

(e) Delivery

(f) Craniotomy

Notes: Count-MOB is the red line, Continuous-MOB is the green line, regression tree is the black line and
regression tree & models is the blue line. All performances were rescaled to the lower overall performance at
η = 1 (i.e., median variance of LOS in the bootstrapped learning datasets)



Figure 5.4: Significance of the pairwise differences between performance curves

(a) Coronary Artery Bypass Graft

(b) Skin Graft and Debridement

(c) Breast Procedures

(d) Burns

(e) Delivery

(f) Craniotomy

Notes: The left panel shows minus log p-values for the comparison between regression trees and Count-MOB

(red line), Continuous-MOB (green line) and regression trees & models (blue line); the right panel shows minus

log p-values for the comparison between Continuous-MOB and Count-MOB (orange line), Continuous-MOB and

regression trees & models (green line) and Count-MOB and regression trees & models (red line); horizontal dotted

lines are in correspondence of 0.05 significance level; all p-values were Bonferroni-corrected.



5.3 Post-pruned trees

Comparison of the optimal complexity of constant-fit trees and model-based trees,

as defined by the various post-pruning criteria that were previously described, is

reported in Table 5.7. Here, both measures of complexity defined in (4.6) and

(4.7) were listed. Putting the focus on MOB-like model-based trees, there was a

great difference in the optimal complexities among pruning criteria. In general,

cross validation pruning and graphical pruning always selected trees with many

less nodes than BIC pruning (even in the scenario with additional penalty - 4-

DF rule). The reason was intuitively related to the fact that the former criteria

are based on a global fit assessment on external data, while the latter only on a

local fit assessment on the learning dataset, which has already been discussed as

being over-optimistic. Furthermore, apart from few exceptions, the BIC-pruned

trees had complexities which correspond to a point of the bootstrap performance

curves where overfitting already started. Cross validation pruning and graphical

assessment nearly always selected the same optimal complexity.

In order to better understand the differences among the considered tree algo-

rithms, in the following pages three examples of iso-resource subgroups will be

reported.

The first example is related to the Coronary Artery Bypass Graft dataset. In

Figure 5.5 the regression tree (with all variables) optimal subtree with 5 terminal

nodes (the number identified by 1-SE CV and graphical pruning techniques) is

reported. Moreover, with the aim of comparing model-based trees with the same

number of terminal nodes, in Figure 5.6 a pruned regression tree with reduced set

of variables is reported, while its terminal nodes models coefficients are reported

in Table 5.8, and the Count-MOB and Continuous-MOB trees together with their

associated node coefficients are reported in Figures 5.7, 5.8 and Tables 5.9, 5.10,

respectively. Furthermore, results of Quantile-GUIDE trees estimated at the me-

dian (q = 50) and at the 9-th decile (q = 90) are reported in Figures 5.9 and 5.10

and Tables 5.11 and 5.12. For all these model-based trees, a number of terminal

nodes equal to four was assessed, which are somehow more than those identified

for MOB-like trees by CV and graphical pruning and less than those identified

by BIC pruning, but still seem to correspond to points of the performance curves
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where overfitting didn’t already began.

As can be seen from the above mentioned figures and tables, regression trees &

models and MOB-like algorithms defined tree structures that were fairly differ-

ent; recalling the results obtained on the performance curves reported in Figures

5.2 and 5.3, these trees have comparable performance and complexity, therefore

the choice among them can be performed according to medical coherence criteria,

without the risk of occurring in manual performance-degenerating modifications.

Trees obtained by Count-MOB and Continuous-MOB algorithms had the same

partitioning structure, and they also resulted in nearly equal node coefficients.

Quantile-GUIDE trees also revealed interesting results. Iso-resource subgroups

obtained in correspondance of 50-th and 90-th percentiles of LOS were based on

alternative clinical variables rather than those selected by MOB-like trees and re-

gression tree & models. Here, again, the advantage of having these alternative

iso-resource subgroups specifications stands in the possibility of integrating medi-

cal knowledge into the process of choosing the final partitioning rules.

The second example is related to the Craniotomy dataset, for which regression

trees & models generically had a better performance than both MOB-like tree

implementations (see Figures 5.2 and 5.3). However, the different structure ob-

tained by means of the latter two can still be a valid alternative, in the case they

would be considered medically preferable. In Figure 5.11 the regression tree with

all variables and seven terminal nodes is reported, which is the structure selected

according to graphical assessment of bootstrap performance curves. In Figure 5.12

a pruned regression tree with 6 terminal nodes estimated using the reduced set

of variables is reported, while its terminal nodes models coefficients are reported

in Table 5.13, and the corresponding (in terms of complexity level) Count-MOB

together with its associated node coefficients are reported in Figure 5.13 and Table

5.14, respectively. Again, six terminal nodes were those suggested by the graphical

pruning technique. Continuous-MOB results weren’t reported, as they were nearly

the same of Count-MOB.

Additionally, Quantile-GUIDE with q = 50 and Quantile-GUIDE with q = 90

trees with six terminal nodes (the same number of the other model-based trees

previously listed) were also reported. Their iso-resource subgroups are in Figures

5.14 and 5.15, while coefficients for the quantile models in the terminal nodes are
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in Tables 5.15 and 5.16, respectively.

Here, the partitioning variables selected by the considered model-based trees were

not so similar. Without going deep into clinical details, it could be however noted

that Count-MOB and Quantile-GUIDE (q = 50) ones shared the very first splits,

while regression tree & models and Quantile-GUIDE (q = 90) defined completely

different alternative structures, as a result of the different rationales of their split-

ting criteria.

The last example is related to the Breast Procedures dataset. In Figure 5.16

the regression tree with all variables and six terminal nodes is reported (pruned

according to graphical assessment of performance curve). In Figure 5.17 a pruned

regression tree (four terminal nodes) with reduced set of variables is reported,

while its terminal nodes models coefficients are reported in Table 5.17, and the

corresponding Count-MOB together with its associated node coefficients are re-

ported in Figure 5.18 and Table 5.18, respectively. Here, four terminal nodes for

MOB-like trees were identified by CV pruning (either with 0.5-SE or 1-SE rules).

Continuous-MOB results weren’t reported, as they were the same of Count-MOB.

With respect to this last example, it’s easy to see, recalling Figures 5.2 and 5.3,

that the MOB-like algorithms provided a better performance than regression trees

& models.

Quantile-GUIDE trees (for 50-th and 90-th percentiles) are reported in Figures

5.19 and 5.20, respectively; their terminal nodes coefficients are reported in Ta-

bles 5.19 and 5.20. Comparing quantile-based and GLM-based model-based trees,

results were very similar, as very similar sets of splits were chosen. In particular,

Quantile-GUIDE (q = 90) and Count-MOB trees resulted in equal definitions of

the iso-resource subgroups.
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Figure 5.6: Pruned regression tree with reduced set of variables & models (4 ter-
minal nodes) - Coronary Artery Bypass Graft

Notes: Sample sizes and LOS boxplots are reported for each terminal node. P 05 003 is presence of Cardiac

Catheterism, D 05 002 is presence of major cardiovascular primary or secondary diagnosis, D 05 004 is presence

of cardiovascular complicating primary or secondary diagnosis

Table 5.8: Node models coefficients from the regression tree with reduced set of
variables & models (4 terminal nodes) - Coronary Artery Bypass Graft

Leaf ID 3 4 6 7

BaseLOS 10.90 11.90 14.91 18.68

Age -25 0.94 0.93 0.91 0.89

Age +25 1.21 1.23 1.20 1.21

CC 1.25 1.17 1.31 1.15

MCC 1.02 1.29 1.69 1.03

Notes: BaseLOS = baseline LOS; age-25 = ME-LOS associated to 25-years decrease in age w.r.t average age;

age+25 = ME-LOS associated to 25-years increase in age w.r.t average age; CC = ME-LOS for presence of

Complications or Comorbidities; MCC = ME-LOS for presence of Major Complications or Comorbidities. Bold

coefficients were significant at 0.01 significance level. ME-LOS = Multiplicative Effect on average LOS
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Figure 5.7: Pruned Count-MOB tree (4 terminal nodes) - Coronary Artery Bypass
Graft

Notes: Sample sizes and LOS boxplots are reported for each terminal node. Parameter instability p-values are
reported for each inner node. P 05 003 is presence of Cardiac Catheterism, ACCD 0100 is presence of acute
myocardial infarction principal or secondary diagnosis.

Table 5.9: Node models coefficients from the pruned Count-MOB tree (4 terminal
nodes) - Coronary Artery Bypass Graft

Leaf ID 3 4 6 7
BaseLOS 10.81 11.92 14.92 18.54
Age -25 0.93 0.93 0.90 0.90
Age +25 1.19 1.29 1.22 1.16

CC 1.25 1.23 1.34 1.17
MCC 1.55 0.98 1.55 1.03

Notes: BaseLOS = baseline LOS; age-25 = ME-LOS associated to 25-years decrease in age w.r.t average age;
age+25 = ME-LOS associated to 25-years increase in age w.r.t average age; CC = ME-LOS for presence of
Complications or Comorbidities; MCC = ME-LOS for presence of Major Complications or Comorbidities. Bold
coefficients were significant at 0.01 significance level. ME-LOS = Multiplicative Effect on average LOS
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Figure 5.8: Pruned Continuous-MOB tree (4 terminal nodes) - Coronary Artery
Bypass Graft

Notes: Sample sizes and LOS boxplots are reported for each terminal node. Parameter instability p-values are
reported for each inner node. P 05 003 is presence of Cardiac Catheterism, ACCD 0100 is presence of acute
myocardial infarction principal or secondary diagnosis.

Table 5.10: Node models coefficients from the pruned Continuous-MOB tree (4
terminal nodes) - Coronary Artery Bypass Graft

Leaf ID 3 4 6 7
BaseLOS 10.79 11.91 14.94 18.44
Age -25 0.95 0.93 0.90 0.92
Age +25 1.21 1.30 1.21 1.19

CC 1.25 1.23 1.34 1.17
MCC 1.55 0.98 1.55 1.03

Notes: BaseLOS = baseline LOS; age-25 = ME-LOS associated to 25-years decrease in age w.r.t average age;
age+25 = ME-LOS associated to 25-years increase in age w.r.t average age; CC = ME-LOS for presence of
Complications or Comorbidities; MCC = ME-LOS for presence of Major Complications or Comorbidities. Bold
coefficients were significant at 0.01 significance level. ME-LOS = Multiplicative Effect on average LOS
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Figure 5.9: Pruned Quantile-GUIDE tree at q = 50 (4 terminal nodes) - Coronary
Artery Bypass Graft
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Notes: At each split, an observation goes to the left branch if and only if the condition is satisfied. Sample sizes

and 50-th percentiles of LOS are printed below nodes. P 05 003 is presence of Cardiac Catheterism, P 05 020

is presence of major cardiovascular principal or secondary diagnosis (modified version), D 05 011 is presence of

Atherosclerosis principal diagnosis.

Table 5.11: Node models coefficients for the pruned Quantile-GUIDE tree at q =
50 (4 terminal nodes) - Coronary Artery Bypass Graft

Leaf ID 4 5 6 7

BaseLOS 16.24 13.24 9.18 10.64

Age -25 -2.57 -1.16 0.24 -0.67

Age +25 3.99 2.04 2.59 1.92

CC 3.77 4.06 2.02 1.66

MCC 0.91 12.06 0.45 1.29

Notes: BaseLOS = baseline 50-th percentile of LOS; age-25 = AE-LOS-50q associated to 25-years decrease in age

w.r.t average age; age+25 = AE-LOS-50q associated to 25-years increase in age w.r.t average age; CC = AE-LOS-

50q for presence of Complications or Comorbidities; MCC = AE-LOS-50q for presence of Major Complications

or Comorbidities. Bold coefficients were significant at 0.01 significance level. AE-LOS-50q = Additive Effect on

50-th percentile of LOS
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Figure 5.10: Pruned Quantile-GUIDE tree at q = 90 (4 terminal nodes) - Coronary
Artery Bypass Graft
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Notes: At each split, an observation goes to the left branch if and only if the condition is satisfied. Sample sizes

and 90-th percentiles of LOS are reported below nodes. P 05 003 is presence of Cardiac Catheterism, ACCD 0101

is presence of Coronary Atherosclerosis and Other Hearth Disease diagnosis.

Table 5.12: Node models coefficients for the pruned Quantile-GUIDE tree at q =
90 (4 terminal nodes) - Coronary Artery Bypass Graft

Leaf ID 4 5 6 7

BaseLOS 26.10 20.72 17.72 14.46

Age -25 2.95 -0.30 -4.70 -0.44

Age +25 15.13 5.71 8.20 2.68

CC 4.95 10.20 9.76 7.00

MCC 8.49 7.47 11.99 9.52

Notes: BaseLOS = baseline 90-th percentile of LOS; age-25 = AE-LOS-90q associated to 25-years decrease in age

w.r.t average age; age+25 = AE-LOS-90q associated to 25-years increase in age w.r.t average age; CC = AE-LOS-

90q for presence of Complications or Comorbidities; MCC = AE-LOS-90q for presence of Major Complications

or Comorbidities. Bold coefficients were significant at 0.01 significance level. AE-LOS-90q = Additive Effect on

90-th percentile of LOS
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Figure 5.12: Pruned regression tree with reduced set of variables & models (6
terminal nodes) - Craniotomy

Notes: Sample sizes and LOS boxplots are reported for each terminal node. D 01 002 is presence of Acute

Complex Central Nervous System primary diagnosis, ACCP 002 is presence of Extracranial Ventricular Shunt

procedures, ACCP 001 is presence of Incision/Excision of the Central Nervous System procedures, D 01 004 is

presence of principal diagnosis of Neoplasm of the Nervous System

Table 5.13: Node models coefficients from the regression tree with reduced set of
variables & models (6 terminal nodes) - Craniotomy

Leaf ID 3 6 7 8 10 11

BaseLOS 7.48 8.87 11.15 18.86 15.07 21.31

Age -25 1.05 1.14 1.02 1.05 0.97 1.01

Age +25 1.19 0.99 1.17 1.16 0.95 1.29

CC 1.49 1.42 1.34 1.35 1.26 1.35

MCC 2.28 2.06 1.90 1.71 1.39 1.37

Notes: BaseLOS = baseline LOS; age-25 = ME-LOS associated to 25-years decrease in age w.r.t average age;

age+25 = ME-LOS associated to 25-years increase in age w.r.t average age; CC = ME-LOS for presence of

Complications or Comorbidities; MCC = ME-LOS for presence of Major Complications or Comorbidities. Bold

coefficients were significant at 0.01 significance level. ME-LOS = Multiplicative Effect on average LOS
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Figure 5.13: Pruned Count-MOB tree (6 terminal nodes) - Craniotomy

Notes: Sample sizes and LOS boxplots are reported for each terminal node. Parameter instability p-values are

reported for each inner node. ACCP 0009 is presence of other or therapeutic central nervous system procedures,

D 01 002 is presence of Acute Complex Central Nervous System primary diagnosis, ACCP 002 is presence of

Extracranial Ventricular Shunt procedures, D 01 004 is presence of principal diagnosis of Neoplasm of the Nervous

System

Table 5.14: Node models coefficients from the pruned Count-MOB tree (6 terminal
nodes) - Craniotomy

Leaf ID 3 6 7 8 10 11

BaseLOS 8.57 11.04 20.17 15.34 7.66 13.47

Age -25 1.11 1.02 1.02 1.04 1.03 0.97

Age +25 1.02 1.17 1.24 0.96 1.11 1.79

CC 1.48 1.34 1.26 1.40 1.50 1.68

MCC 2.10 1.87 1.67 1.44 2.32 1.87

Notes: BaseLOS = baseline LOS; age-25 = ME-LOS associated to 25-years decrease in age w.r.t average age;

age+25 = ME-LOS associated to 25-years increase in age w.r.t average age; CC = ME-LOS for presence of

Complications or Comorbidities; MCC = ME-LOS for presence of Major Complications or Comorbidities. Bold

coefficients were significant at 0.01 significance level. ME-LOS = Multiplicative Effect on average LOS
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Figure 5.14: Pruned Quantile-GUIDE tree at q = 50 (6 terminal nodes) - Cran-
iotomy
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Notes: At each split, an observation goes to the left branch if and only if the condition is satisfied. Sample sizes and

50-th percentiles of LOS are printed below nodes. ACCP 0009 is presence of other or therapeutic central nervous

system procedures, D 01 023 is presence of Other diseases of the Nervous System principal diagnosis, D 01 002 is

presence of Acute Complex Central Nervous System primary diagnosis, D 01 004 is presence of principal diagnosis

of Neoplasm of the Nervous System, ACCP 0059 is presence of Other Operating Room Procedures on Vessel of

Head and Neck.

Table 5.15: Node models coefficients for the pruned Quantile-GUIDE tree at q =
50 (6 terminal nodes) - Craniotomy

Leaf ID 4 5 6 28 29 15

BaseLOS 4.95 7.05 13.98 4.98 8.08 9.78

Age -25 0.93 0.35 0.34 0.43 0.60 0.02

Age +25 0.50 1.14 -1.20 0.52 -0.13 1.34

CC 1.06 3.96 3.89 3.72 3.01 4.00

MCC 6.75 9.97 4.92 8.73 7.05 9.92

Notes: BaseLOS = baseline 50-th percentile of LOS; age-25 = AE-LOS-50q associated to 25-years decrease in age

w.r.t average age; age+25 = AE-LOS-50q associated to 25-years increase in age w.r.t average age; CC = AE-LOS-

50q for presence of Complications or Comorbidities; MCC = AE-LOS-50q for presence of Major Complications

or Comorbidities. Bold coefficients were significant at 0.01 significance level. AE-LOS-50q = Additive Effect on

50-th percentile of LOS
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Figure 5.15: Pruned Quantile-GUIDE tree at q = 90 (6 terminal nodes) - Cran-
iotomy
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Notes: At each split, an observation goes to the left branch if and only if the condition is satisfied. Sample

sizes and 90-th percentiles of LOS are reported below nodes. D 01 002 is presence of Acute Complex Central

Nervous System primary diagnosis, ACCD 0035 is presence of Cancer of Brain and Nervous System diagnosis,

ACCP 0001 is presence of Incision or Excision of Central Nervous System procedure ,D 01 004 is presence of

principal diagnosis of Neoplasm of the Nervous System, ACCP 002 is presence of Extracranial Ventricular Shunt

procedures.

Table 5.16: Node models coefficients for the pruned Quantile-GUIDE tree at q =
90 (6 terminal nodes) - Craniotomy

Leaf ID 2 6 28 29 30 31

BaseLOS 26.44 19.40 9.03 13.15 25.28 16.97

Age -25 1.18 -0.71 0.99 0.78 0.83 1.80

Age +25 0.27 4.22 2.20 3.04 2.99 -0.23

CC 10.10 8.42 9.01 8.88 15.67 7.35

MCC 12.63 24.46 20.52 22.30 15.92 22.31

Notes: BaseLOS = baseline 90-th percentile of LOS; age-25 = AE-LOS-90q associated to 25-years decrease in age

w.r.t average age; age+25 = AE-LOS-90q associated to 25-years increase in age w.r.t average age; CC = AE-LOS-

90q for presence of Complications or Comorbidities; MCC = AE-LOS-90q for presence of Major Complications

or Comorbidities. Bold coefficients were significant at 0.01 significance level. AE-LOS-90q = Additive Effect on

90-th percentile of LOS
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Figure 5.17: Pruned regression tree with reduced set of variables & models (4
terminal nodes) - Breast Procedures

Notes: Sample sizes and LOS boxplots are reported for each terminal node. P 09 005 is presence of Total

Mastectomy procedure, D 09 001 is presence of Skin Ulcer or Cellulitis as primary diagnosis, Elix 18 is presence

of Metastatic Cancer as secondary diagnosis

Table 5.17: Node models coefficients from the pruned regression tree with reduced
set of variables & models (4 terminal nodes) - Breast Procedures

height 4 5 6 7

BaseLOS 1.50 0.90 4.85 3.42

Age -25 0.94 1.03 0.86 0.84

Age +25 1.28 1.22 1.28 0.90

CC 2.11 2.92 2.51 1.23

MCC 4.15 8.87 2.91 1.52

Notes: BaseLOS = baseline LOS; age-25 = ME-LOS associated to 25-years decrease in age w.r.t average age;

age+25 = ME-LOS associated to 25-years increase in age w.r.t average age; CC = ME-LOS for presence of

Complications or Comorbidities; MCC = ME-LOS for presence of Major Complications or Comorbidities. Bold

coefficients were significant at 0.01 significance level. ME-LOS = Multiplicative Effect on average LOS
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Figure 5.18: Pruned Count-MOB tree (4 terminal nodes) - Breast Procedures

Notes: Sample sizes and LOS boxplots are reported for each terminal node. Parameter instability p-values are

reported for each inner node. P 09 005 is presence of Total Mastectomy procedure, D 09 001 is presence of Skin

Ulcer or Cellulitis as primary diagnosis, P 09 004 is presence of Breast procedures

Table 5.18: Node models coefficients from the pruned Count-MOB tree (4 terminal
nodes) - Breast Procedures

Leaf ID 4 5 6 7

BaseLOS 1.81 1.50 4.85 3.42

Age -25 0.90 0.82 0.86 0.84

Age +25 1.43 1.12 1.28 0.90

CC 2.91 1.65 2.51 1.23

MCC 7.13 1.66 2.91 1.52

Notes: BaseLOS = baseline LOS; age-25 = ME-LOS associated to 25-years decrease in age w.r.t average age;

age+25 = ME-LOS associated to 25-years increase in age w.r.t average age; CC = ME-LOS for presence of

Complications or Comorbidities; MCC = ME-LOS for presence of Major Complications or Comorbidities. Bold

coefficients were significant at 0.01 significance level. ME-LOS = Multiplicative Effect on average LOS
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Figure 5.19: Pruned Quantile-GUIDE tree at q = 50 (4 terminal nodes) - Breast
Procedures
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Notes: At each split, an observation goes to the left branch if and only if the condition is satisfied. Sample sizes

and 50-th percentiles of LOS are printed below nodes.. P 09 005 is presence of Total Mastectomy procedure,

P 09 004 is presence of Breast procedures, ACCP 0166 is presence of Lumpectomy or Quadrantectomy of Breast

procedure.

Table 5.19: Node models coefficients for the pruned Quantile-GUIDE tree at q =
50 (4 terminal nodes) - Breast Procedures

Leaf ID 8 9 5 3

BaseLOS 2.00 3.92 2.00 1.00

Age -25 0.00 -0.10 0.00 0.00

Age +25 0.00 -0.93 0.00 0.00

CC 1.00 0.33 1.00 1.00

MCC 1.00 3.01 2.00 7.00

Notes: BaseLOS = baseline 50-th percentile of LOS; age-25 = AE-LOS-50q associated to 25-years decrease in age

w.r.t average age; age+25 = AE-LOS-50q associated to 25-years increase in age w.r.t average age; CC = AE-LOS-

50q for presence of Complications or Comorbidities; MCC = AE-LOS-50q for presence of Major Complications

or Comorbidities. Bold coefficients were significant at 0.01 significance level. AE-LOS-50q = Additive Effect on

50-th percentile of LOS
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Figure 5.20: Pruned Quantile-GUIDE tree at q = 90 (4 terminal nodes) - Breast
Procedures
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Notes: At each split, an observation goes to the left branch if and only if the condition is satisfied. Sample sizes

and 90-th percentiles of LOS are reported below nodes. P 09 005 is presence of Total Mastectomy procedure,

D 09 001 is presence of Skin Ulcer or Cellulitis as primary diagnosis, P 09 004 is presence of Breast procedures.

Table 5.20: Node models coefficients for the pruned Quantile-GUIDE tree at q =
90 (4 terminal nodes) - Breast Procedures

Leaf ID 2 6 14 15

BaseLOS 6.17 12.03 4.05 2.90

Age -25 -0.89 -2.32 -0.65 -0.52

Age +25 -0.27 3.15 1.86 0.11

CC 1.24 13.52 11.15 2.07

MCC 3.85 13.72 26.12 2.98

Notes: BaseLOS = baseline 90-th percentile of LOS; age-25 = AE-LOS-90q associated to 25-years decrease in age

w.r.t average age; age+25 = AE-LOS-90q associated to 25-years increase in age w.r.t average age; CC = AE-LOS-

90q for presence of Complications or Comorbidities; MCC = AE-LOS-90q for presence of Major Complications

or Comorbidities. Bold coefficients were significant at 0.01 significance level. AE-LOS-90q = Additive Effect on

90-th percentile of LOS

98



5.4 Ensemble methods

Performance measures derived from the Random Forest individual predictions on

the original dataset are reported in Table 5.21 and, additionally, in Table A3-1 in

Appendix III. As expected, performance measures computed on the whole learning

datasets were over-optimistic with respect to the ones calculated only in the out-

of-bag datasets, in particular for regression trees. The former ones, compared to

similar goodness of fit measures reported in the literature for models for length

of stay (Lu & al., 2015), were however very promising values. In particular, they

somehow confirmed the fact that, using patient’s characteristics, no more than

half of the variability of LOS in the learning datasets can be explained. However,

when measuring etxernal data performance, this portion of explained variability

was significantly lower. Moreover, all the performances of Count-MOB Random

Forests were better than those of single constant-fit and model-based trees, and

the same was even more significant for regression trees Random Forests. The

minor improvement in performance with respect to single trees is in the Burns

datasets, where unpruned model-based trees were already been discussed as being

very short, therefore the rationale of such ensemble methods - that is to seek very

different trees - was somehow lost.

Table 5.21: Count-MOB and regression tree Random Forests % reduction in MSE

Learning Sample Out-of-bag

Dataset Count-MOB RT Count-MOB RT

CABG 34.0% 49.9% 29.4% 32.0%

Skin graft and debridement 31.1% 50.9% 24.1% 31.5%

Burns 38.7% 53.8% 37.0% 40.0%

Breast Procedures 34.2% 49.8% 32.6% 35.0%

Craniotomy 30.7% 48.2% 24.7% 31.1%

Delivery 25.2% 39.3% 23.5% 23.9%

Notes: RT= Regression Tree, Learnings Sample refers to Formula 4.15, Out-of-bag refers to formula 4.16. Percent

reduction w.r.t. the lowest overall performance at η = 1 (i.e., variance of LOS in the learning dataset) are reported.

Performance curves of the best bootstrapped trees (“Bumped” trees) using the
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Count-MOB and regression tree algorithms, for every level of complexity η, are

reported in Figure 5.21 and, additionally, in Appendix IV as Table A4-1. Here,

different results were obtained for constant-fit trees and model-based trees. For

the former, only in a very few cases it was possible to find a tree better than

the originally fitted one. For Count-MOB trees it was instead possible to find

several alternative trees which had higher performance. Moreover, the gain in

performance for those trees was sometimes present in a non-irrelevant measure.

The more relevant increases in the performance were found in the Burns, Skin

Graft and Debridement and Craniotomy datasets.
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Figure 5.21: Performance curves of best boostrapped trees (“Bumped” trees) on
the learning dataset

(a) Coronary Artery Bypass Graft

(b) Skin Graft and Debridement

(c) Breast Procedures

(d) Burns

(e) Delivery

(f) Craniotomy

Notes: Count-MOB is red line and CART is black. Continuous lines are the trees estimated on the learning
datasets, while dotted lines are the best bootstrapped trees (“Bumped” trees). All performances were rescaled to
the lower overall performance at η = 1 (i.e., variance of LOS in the learning dataset)
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Chapter 6

Discussion

Major contributions of the present work were related to the study of model-based

trees in the context of hospital case mix classification. It is here worth to recall

the three main characteristics of iso-resources PCSs’ subgroups, which are clinical

similarity, hospital resource homogeneity and being in a low number.

In order to achieve clinical similarity, all the ICD9-CM variables were derived ac-

cording to a hospital activity data management methodology, which consisted in a

collection of sets of ICD9-CM codes describing relevant clinical and surgical con-

ditions. By using those variables as candidate partitioning variables, the patients

were put in the same subgroup according to the presence of common clinical or

surgical attributes.

Furthermore, a clinical data mining protocol of analysis was developed, making

use of a modified version of the Model-based Recursive Partitioning algorithm, and

a particular comparison methodology was developed - based on bootstrapped per-

formance curves - in order to evaluate the statistical differences of those methods

with respect to traditional regression trees. Moreover, as an additional analysis,

quantile regression model-based trees were also fitted via the GUIDE algorithm.

Given the possibility of estimating these latter trees at different values of the quan-

tile function, the use of this method can provide an alternative way of looking for

iso-resource partitioning structures.

Given that the analysis of these hospital activity phenomena is having a relevant

and increasing weight in public health strategic decisions, the application of appro-
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priate, up-to-date statistical techniques is essential, from a methodological point

of view. The use of model-based trees, as defined in the previous chapters, gave

the possibility to search for subgroups of patients which differ for some parame-

ters which have a straightforward clinical interpretation; these model specifications

can improve clinical interpretability of the recursive partitioning splitting criterion

and, consequently, of the structure of the model. Moreover, some of these tree

models (among others, MOB and GUIDE) provide formal statistical properties, of

which the main one is unbiasedness, that can prevent from picking up non-optimal

subgroups.

The use of performance curves was motivated by the specific literature on patient

classification systems aimed statistical analysis, according to which the final prun-

ing should be performed not only according to statistical criteria, but economical

and medical considerations can also play a major role. Nevertheless, several purely

statistical pruning methods were assessed, in order to provide a basis for the choice

of the final number of subgroups. Among the assessed pruning methods, the most

prominent ones were an adaptation of the cross validation method and a graphical

assessment method based on bootstrap performance curves. These two techniques

however gave fairly similar results, in contrast with the BIC local pruning method,

which resulted in selecting complex and potentially overfitted tree structures.

Two ensemble methods were assessed: while the Random Forest methodology

confirmed its validity in pure predictive performance - especially when associated

to regression trees - given its ensemble nature, its results were poorly applicable

within the development of PCSs. However, its use still gave a valuable measure

of how much recursive partitioning methods - or, more precisely, averaging them -

have potential for explaining variations in hospital resource use measures.

Bumping, in contrast with Random Forests, was instead confirmed to be a valid

tool for defining alternative tree structures rather than the ones estimated on

complete datasets, which in few cases also led to better statistical performance.

The recursive partitioning algorithms considered were helpful in defining resource-

homogeneous subgroups, which is a critical point since PCS subgroups should en-

sure equitable payments to hospitals; by means of different criteria for defining

homogeneity, ranging from traditional regression trees maximum reduction in de-

viance to model based-trees parameter instability, alternative partitioning struc-
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tures could be identified. According to the performance comparison which was

developed and discussed, it was also possible to assess the relative performance

of two different tree structures in predicting prospective data, therefore resulting

in a comprehensive set of tools for comparing the resulting subgroups. In the se-

lected hospital activity datasets, model-based trees demonstrated to have a better

performance than constant-fit trees, but there was no evident superiority of any

algorithm among model-based trees with respect to the others.

As argued in (Grubinger & al., 2010), in the PCS context, the need for assessing

performance of alternative tree structures was motivated by the practice of man-

ually adjusting trees in order to make them medically reasonable. The present

work represented an effort towards defining those alternative tree structure not

only by resampling the data - as done with Bumping - but also by using a totally

different rationale as that of model-based trees. As described in the previous chap-

ters, these latter algorithms, being very flexible in defining the model of interest

and, consequently, of the associated splitting criterion, can therefore be used in

order to find iso-resource subgroups which are different with respect to key clinical

relationships.

With respect to the third requirement, which is to end up with a manageable

number of subgroups, model-based trees were natively more appropriate in reduc-

ing the total number of terminal nodes, at the cost of adding resource intensity

weights estimated from a regression model to the PCS design.

Willing to gather these considerations, the use of constant-fit trees and model-

based trees, both of which were effective in defining clinically similar and resource-

homogeneous subgroups, had a major difference in the fact that they conceptually

correspond to different PCS designs, with the latter being more oriented to the

creation of subgroups to be used within PCSs with a post-attribution resource-

intensity adjustment system. This would result in a lower number of subgroups

which, provided that node model coefficients are taken into account, have sta-

tistical performance at least comparable, if not better, with respect to that of

traditional regression tree structures.

Furthermore, the present work represented a first effort towards studying the

possibility of using different regression models within the inner and terminal nodes

of a model-based tree algorithm. Although it was found that it was always possible
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to build a segmented model with subgroup-specific vectors of parameters estimated

from different models, its relative effectiveness against model-based trees which

are based on a single distribution was probably not so relevant; this was evident

from the study of the performance curves of Count-MOB and Continuous-MOB

algorithms, which resulted very similar in nearly all of the assessed tree structures.

It is easily possible to explain these results: as stated in (Ciampi, 1991), when

using within-node models, it’s sufficient to assume that these models can provide

a reasonable fit of the data, while it is not necessary that the fitted model is the

“true” model. Given that all of the within-node regression models used in the

present work were suggested from strong evidences in the clinical and statistical

literature, the choice among them didn’t make a great difference, as all of them may

fit well. Another behaviour could however be observed in the case of badly fitting

models, but it has not been considered in the present work, at least voluntarily.

Other models could also have been considered rather than GLMs, in particular

those belonging to the field of survival analysis. As previously described, only

uncensored patients were considered when building the trees, therefore their use

here would not be so essential; nevertheless, their application in the context of iso-

resource-aimed model-based trees could also be a promising way to be followed.

Some limitations of the present study should also be discussed. First, none

of the considered algorithms took into account the dependence of patients within

the same hospital, which was a major feature highlighted in the literature of LOS

modeling. Furthermore, some discharges were also related to the same patient,

which is referred to as presence of repeated discharges. However, in the analyzed

data, the amount of discharges which followed a previous discharge of the same

patient within a 30 days interval was limited to 3.4% in the Burns dataset, and,

if considering a 1 year interval, to 10.4% in the Skin Graft and Debridement

dataset, while for the other datasets such percentages were lower (data not shown).

Moreover, given the size of the analyzed datasets, potential biases which can arise

as a consequence of not considering those dependencies were probably of minor

concern. Nevertheless, the iso-resource subgroups resulting from the proposed

recursive partitioning methods can still be used as covariates in the linear predictor

of regression models which consider those dependences (i.e., mixed models or GEE

models). It would result in a modeling technique for LOS taking into account

106



patients clustering, but using subgroup covariates which were identified only at a

patient level. Although the present work didn’t explore that way, it would be rather

promising to assess the performance of those models compared to non-longitudinal

models (e.g., GLMs), possibly considering a wider range of explicative variables,

in addition to patient characteristics. According to these considerations, the need

for model-based trees algorithms which incorporate some kind of random effect

term arises, either pursuing the way already explored in the context of constant-fit

trees (Sela & Simonoff, 2012), or either developing new ideas.

A second limitation stands in the absence of a measure of error for the individual

predicted values computed from the various tree algorithms, which is a well-known

lack of constant-fit recursive partitioning methods. The same drawback is present

in model-based trees, even if the presence of regression models in the terminal

nodes could help defining those measures of error. However, when performing

such kinds of computations, not only the local (i.e., referred to the single terminal

nodes) errors have to be considered, but also the variability in the process of

selecting the splitting variables should also be taken into account; surely, these

considerations leave some space for possible future developments in the theory of

recursive partitioning.
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Table A1-1: Performance curves of the considered algorithms on learning datasets
(1/2)

((a)) Regression tree

η db1 db2 db3 db4 db5 db6
1 34.28 20.59 5.75 114.59 2.26 54.25
2 28.28 17.51 5.26 89.71 1.97 47.90
3 27.01 16.99 4.80 79.29 1.89 46.33
4 26.30 16.50 4.56 74.40 1.85 -
5 25.73 16.11 4.40 72.65 1.82 43.52
6 25.48 15.82 4.24 71.34 1.81 42.62
7 25.27 15.67 4.19 70.19 - 41.98
8 - 15.54 4.14 69.24 1.79 41.68
9 24.90 15.44 4.11 68.62 1.78 -
10 24.72 15.34 4.08 68.27 1.78 41.24
11 24.57 15.26 4.05 67.96 1.77 41.02
12 24.43 - 4.03 67.74 1.76 40.81
13 24.33 15.10 4.01 67.61 1.76 -
14 24.26 15.03 4.00 67.53 1.75 40.43
15 24.19 14.98 3.98 67.45 1.75 40.25

((b)) Regression tree & models

η db1 db2 db3 db4 db5 db6
1 31.44 18.52 5.16 80.94 2.12 46.62
2 25.77 16.39 4.73 74.84 1.87 44.65
3 25.06 15.92 4.27 71.96 1.82 42.70
4 24.83 15.69 4.26 71.02 1.80 41.74
5 24.45 - 4.22 70.10 1.79 41.00
6 24.27 15.25 4.15 - 1.78 39.93
7 24.05 15.18 4.08 - 1.78 39.61
8 23.93 15.09 4.04 - - 39.41
9 23.79 15.07 4.02 - 1.76 39.17
10 23.63 14.97 3.98 - 1.75 38.85
11 23.56 14.82 3.95 - 1.74 38.60
12 23.38 14.81 3.94 - 1.74 38.44
13 23.31 14.77 3.94 - 1.73 38.39
14 23.23 14.74 3.93 - 1.73 38.33
15 23.14 14.59 3.90 - 1.73 38.08

Notes: η = number of terminal nodes, db1 = CABG, db2 = Skin Graft and Debridement, db3 = Breast Procedures,
db4 = Burns, db5 = Delivery, db6 = Craniotomy
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Table A1-2: Performance curves of the considered algorithms on learning datasets
(2/2)

((a)) Count-MOB

η db1 db2 db3 db4 db5 db6
1 31.44 18.52 5.16 80.94 2.12 46.62
2 25.77 16.39 4.73 72.74 1.87 45.14
3 25.40 16.27 4.27 71.64 1.85 43.62
4 24.78 16.04 4.06 71.09 1.80 42.24
5 24.63 15.98 4.05 67.12 1.79 41.61
6 24.38 15.50 4.04 - 1.78 40.99
7 24.29 15.48 4.02 - 1.77 40.62
8 24.22 15.17 4.00 - 1.76 40.38
9 24.12 15.16 3.99 - 1.75 40.19
10 23.78 15.12 3.96 - 1.74 39.98
11 23.72 14.95 3.93 - 1.74 39.22
12 23.66 14.90 3.90 - 1.73 39.02
13 23.57 14.88 3.89 - 1.73 38.94
14 23.41 14.80 3.88 - 1.73 38.78
15 23.37 14.72 3.87 - 1.73 38.63

((b)) Continuous-MOB

η db1 db2 db3 db4 db5 db6
1 31.45 18.52 5.17 81.34 2.12 46.62
2 25.77 16.40 4.73 72.74 1.87 45.14
3 25.40 16.28 4.27 71.64 1.85 43.62
4 24.78 16.05 4.06 71.10 1.80 42.27
5 24.64 15.99 4.05 67.18 1.79 41.66
6 24.39 15.53 4.04 - 1.78 41.05
7 24.30 15.51 4.02 - 1.77 40.69
8 23.97 15.20 3.98 - 1.76 40.45
9 23.90 15.03 3.95 - 1.75 40.26
10 23.85 15.01 3.94 - 1.75 40.05
11 23.78 15.00 3.93 - 1.74 39.29
12 23.68 14.98 3.90 - 1.73 39.10
13 23.53 14.93 3.90 - 1.73 39.02
14 23.43 14.91 3.89 - 1.73 38.87
15 23.37 14.82 3.88 - 1.73 38.72

Notes: η = number of terminal nodes, db1 = CABG, db2 = Skin Graft and Debridement, db3 = Breast Procedures,
db4 = Burns, db5 = Delivery, db6 = Craniotomy
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Appendix II - Performance on

out-of-bag datasets
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Table A2-1: Performance curves of the considered algorithms on out-of-bag
datasets - Coronary Artery Bypass Graft

((a)) Regression tree

η P̄ σP
(∗)P̄ (∗)σP P50

1 34.19 1.72 34.19 1.72 34.16
2 28.22 1.52 28.22 1.52 28.17
3 27.20 1.44 27.20 1.44 27.10
4 26.63 1.39 26.63 1.39 26.59
5 26.09 1.38 26.09 1.38 26.02
6 26.06 1.37 26.06 1.37 26.04
7 26.02 1.34 26.02 1.34 26.00
8 25.95 1.34 25.95 1.34 25.95
9 25.87 1.35 25.87 1.35 25.87
10 25.76 1.34 25.76 1.34 25.79
11 25.76 1.31 25.76 1.31 25.75
12 25.81 1.40 25.81 1.40 25.81
13 25.73 1.40 25.73 1.40 25.74
14 25.66 1.35 25.66 1.35 25.63
15 25.78 1.36 25.78 1.36 25.76

((b)) Regression tree & models

η P̄ σP
(∗)P̄ (∗)σP P50

1 31.52 1.52 31.52 1.52 31.43
2 25.93 1.34 25.93 1.34 25.84
3 25.52 1.31 25.52 1.31 25.53
4 25.38 1.31 25.38 1.31 25.32
5 25.28 1.34 25.28 1.34 25.25
6 25.23 1.33 25.23 1.33 25.22
7 25.21 1.33 25.21 1.33 25.24
8 25.22 1.32 25.22 1.32 25.23
9 25.19 1.32 25.19 1.32 25.16
10 25.31 1.36 25.31 1.36 25.38
11 25.31 1.31 25.31 1.31 25.36
12 25.31 1.30 25.31 1.30 25.27
13 25.40 1.31 25.40 1.31 25.48
14 25.41 1.29 25.41 1.29 25.48
15 25.49 1.32 25.49 1.32 25.45

((c)) Count-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 31.52 1.52 31.52 1.52 31.43
2 25.93 1.34 25.93 1.34 25.84
3 25.76 1.56 25.76 1.56 25.63
4 25.48 1.60 25.48 1.60 25.40
5 25.47 1.53 25.47 1.53 25.38
6 25.52 1.52 25.52 1.52 25.43
7 25.56 1.52 25.56 1.52 25.48
8 25.61 1.53 25.61 1.53 25.56
9 25.68 1.54 25.68 1.54 25.63
10 25.72 1.54 25.72 1.54 25.69
11 25.76 1.53 25.76 1.53 25.66
12 25.82 1.52 25.82 1.52 25.76
13 25.87 1.52 25.87 1.52 25.81
14 25.92 1.52 25.92 1.52 25.86
15 26.00 1.51 26.00 1.51 25.90

((d)) Continuous-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 31.53 1.52 31.53 1.52 31.43
2 25.93 1.33 25.93 1.33 25.85
3 25.75 1.52 25.75 1.52 25.61
4 25.44 1.55 25.44 1.55 25.32
5 25.49 1.61 25.49 1.61 25.34
6 25.53 1.60 25.53 1.60 25.36
7 25.60 1.62 25.60 1.62 25.43
8 25.65 1.62 25.65 1.62 25.58
9 25.71 1.62 25.71 1.62 25.58
10 26.03 4.47 25.77 1.61 25.65
11 26.09 4.48 25.83 1.61 25.73
12 26.16 4.48 25.89 1.61 25.79
13 26.21 4.50 25.95 1.62 25.90
14 26.27 4.50 26.00 1.61 25.92
15 26.35 4.49 26.09 1.61 26.12

Notes: η = number of terminal nodes, P̄ = average out-of-bag performance, P50 =median out-of-bag performance,
σP = standard deviation of out-of-bag performances. Statistics marked with a (∗) are computed excluding
extremely low performances (see Formula 5.1)
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Table A2-2: Performance curves of the considered algorithms on out-of-bag
datasets - Skin Graft and Debridement

((a)) Regression tree

η P̄ σP
(∗)P̄ (∗)σP P50

1 20.53 1.43 20.53 1.43 20.52
2 17.48 1.23 17.48 1.23 17.46
3 17.08 1.18 17.08 1.18 17.05
4 16.62 1.16 16.62 1.16 16.56
5 16.33 1.19 16.33 1.19 16.28
6 16.09 1.16 16.09 1.16 16.07
7 15.99 1.16 15.99 1.16 15.92
8 15.92 1.16 15.92 1.16 15.83
9 15.86 1.14 15.86 1.14 15.77
10 15.80 1.15 15.80 1.15 15.73
11 15.82 1.10 15.82 1.10 15.73
12 15.80 1.16 15.80 1.16 15.73
13 15.68 1.09 15.68 1.09 15.59
14 15.72 1.11 15.72 1.11 15.64
15 15.69 1.12 15.69 1.12 15.61

((b)) Regression tree & models

η P̄ σP
(∗)P̄ (∗)σP P50

1 18.50 1.25 18.50 1.25 18.43
2 16.45 1.14 16.45 1.14 16.39
3 16.95 2.85 16.95 2.85 16.42
4 17.03 2.96 17.03 2.96 16.48
5 16.96 2.98 16.96 2.98 16.36
6 16.82 2.88 16.82 2.88 16.16
7 16.75 2.83 16.75 2.83 16.16
8 16.81 2.82 16.81 2.82 16.27
9 16.56 2.63 16.56 2.63 16.12
10 16.65 2.99 16.65 2.99 16.12
11 16.55 2.82 16.55 2.82 16.18
12 16.34 2.11 16.34 2.11 16.15
13 16.44 2.85 16.44 2.85 16.05
14 16.52 2.85 16.52 2.85 16.16
15 16.40 2.67 16.40 2.67 16.19

((c)) Count-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 18.50 1.25 18.50 1.25 18.43
2 16.45 1.14 16.45 1.14 16.41
3 16.35 1.13 16.35 1.13 16.29
4 16.35 1.87 16.35 1.87 16.17
5 16.37 2.16 16.37 2.16 16.15
6 16.33 2.24 16.33 2.24 16.06
7 16.41 2.33 16.41 2.33 16.07
8 16.64 2.74 16.64 2.74 16.17
9 16.64 2.76 16.64 2.76 16.18
10 16.90 3.99 16.90 3.99 16.18
11 16.89 4.00 16.89 4.00 16.13
12 17.62 11.52 16.92 4.03 16.17
13 17.55 11.50 16.85 3.78 16.16
14 17.60 11.60 16.88 3.81 16.10
15 17.64 11.91 16.88 3.76 16.09

((d)) Continuous-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 18.50 1.25 18.50 1.25 18.43
2 16.46 1.14 16.46 1.14 16.41
3 16.35 1.14 16.35 1.14 16.29
4 31.15 2E2 16.28 1.16 16.20
5 31.12 2E2 16.25 1.17 16.18
6 31.16 2E2 16.29 1.99 16.14
7 31.42 2E2 16.55 2.49 16.21
8 2E12 2E13 16.75 2.96 16.26
9 2E12 2E13 16.81 3.07 16.27
10 2E12 2E13 16.93 3.39 16.21
11 2E12 2E13 16.94 3.43 16.24
12 2E12 2E13 17.13 4.25 16.25
13 2E12 2E13 17.19 4.27 16.31
14 7E7 1E9 17.31 4.33 16.31
15 1E11 2E12 17.60 5.41 16.51

Notes: η = number of terminal nodes, P̄ = average out-of-bag performance, P50 =median out-of-bag performance,
σP = standard deviation of out-of-bag performances. Statistics marked with a (∗) are computed excluding
extremely low performances (see Formula 5.1)
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Table A2-3: Performance curves of the considered algorithms on out-of-bag
datasets - Breast Procedures

((a)) Regression tree

η P̄ σP
(∗)P̄ (∗)σP P50

1 5.75 0.23 5.75 0.23 5.74
2 5.31 0.22 5.31 0.22 5.32
3 4.80 0.20 4.80 0.20 4.80
4 4.56 0.19 4.56 0.19 4.56
5 4.45 0.18 4.45 0.18 4.45
6 4.25 0.16 4.25 0.16 4.24
7 4.23 0.16 4.23 0.16 4.22
8 4.20 0.15 4.20 0.15 4.20
9 4.18 0.16 4.18 0.16 4.18
10 4.16 0.15 4.16 0.15 4.15
11 4.14 0.15 4.14 0.15 4.14
12 4.13 0.16 4.13 0.16 4.13
13 4.12 0.16 4.12 0.16 4.11
14 4.12 0.16 4.12 0.16 4.12
15 4.11 0.16 4.11 0.16 4.11

((b)) Regression tree & models

η P̄ σP
(∗)P̄ (∗)σP P50

1 5.17 0.20 5.17 0.20 5.16
2 4.78 0.19 4.78 0.19 4.77
3 4.29 0.17 4.29 0.17 4.28
4 4.29 0.17 4.29 0.17 4.27
5 4.27 0.17 4.27 0.17 4.25
6 4.24 0.17 4.24 0.17 4.23
7 4.21 0.17 4.21 0.17 4.20
8 4.17 0.17 4.17 0.17 4.16
9 4.15 0.18 4.15 0.18 4.13
10 4.13 0.17 4.13 0.17 4.12
11 4.14 0.19 4.14 0.19 4.12
12 4.13 0.20 4.13 0.20 4.12
13 4.13 0.21 4.13 0.21 4.11
14 4.16 0.20 4.16 0.20 4.12
15 4.16 0.22 4.16 0.22 4.12

((c)) Count-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 5.17 0.20 5.17 0.20 5.16
2 4.74 0.20 4.74 0.20 4.73
3 4.29 0.17 4.29 0.17 4.28
4 4.22 0.19 4.22 0.19 4.22
5 4.18 0.19 4.18 0.19 4.17
6 4.16 0.19 4.16 0.19 4.16
7 4.14 0.19 4.14 0.19 4.13
8 4.12 0.19 4.12 0.19 4.10
9 4.10 0.19 4.10 0.19 4.07
10 4.08 0.19 4.08 0.19 4.05
11 4.07 0.19 4.07 0.19 4.03
12 4.06 0.21 4.06 0.21 4.02
13 4.06 0.22 4.06 0.22 4.01
14 4.06 0.22 4.06 0.22 4.01
15 4.07 0.22 4.07 0.22 4.03

((d)) Continuous-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 5.17 0.20 5.17 0.20 5.16
2 4.74 0.20 4.74 0.20 4.73
3 4.30 0.17 4.30 0.17 4.29
4 4.14 0.18 4.14 0.18 4.12
5 4.10 0.16 4.10 0.16 4.09
6 4.09 0.16 4.09 0.16 4.08
7 4.43 5.67 4.07 0.16 4.06
8 4.40 5.67 4.05 0.18 4.03
9 4.40 5.67 4.04 0.25 4.01
10 3E7 5E8 4.06 0.34 4.01
11 3E7 5E8 4.07 0.36 4.00
12 3E7 5E8 4.21 0.93 4.02
13 3E7 5E8 4.29 1.28 4.04
14 3E7 5E8 4.60 2.60 4.05
15 3E7 5E8 4.65 2.64 4.09

Notes: η = number of terminal nodes, P̄ = average out-of-bag performance, P50 =median out-of-bag performance,
σP = standard deviation of out-of-bag performances. Statistics marked with a (∗) are computed excluding
extremely low performances (see Formula 5.1)
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Table A2-4: Performance curves of the considered algorithms on out-of-bag
datasets - Burns

((a)) Regression tree

η P̄ σP
(∗)P̄ (∗)σP P50

1 113.2 13.1 113.2 13.1 112.9
2 90.28 10.4 90.28 10.4 89.53
3 78.32 9.46 78.32 9.46 77.43
4 75.29 9.33 75.29 9.33 74.56
5 74.89 9.04 74.89 9.04 74.25
6 74.15 8.91 74.15 8.91 73.55
7 73.52 8.69 73.52 8.69 73.03
8 72.91 9.04 72.91 9.04 72.54
9 72.38 8.72 72.38 8.72 72.10
10 73.10 8.99 73.10 8.99 72.30
11 72.87 9.22 72.87 9.22 72.22
12 73.13 9.18 73.13 9.18 72.16
13 73.20 9.41 73.20 9.41 72.53
14 73.33 9.25 73.33 9.25 72.12
15 73.29 8.58 73.29 8.58 72.27

((b)) Regression tree & models

η P̄ σP
(∗)P̄ (∗)σP P50

1 80.43 9.32 80.43 9.32 79.96
2 76.27 8.64 76.27 8.64 75.52
3 73.96 8.50 73.96 8.50 73.38
4 73.89 8.47 73.89 8.47 73.41
5 74.36 9.36 74.36 9.36 73.10
6 - - - - -
7 - - - - -
8 - - - - -
9 - - - - -
10 - - - - -
11 - - - - -
12 - - - - -
13 - - - - -
14 - - - - -
15 - - - - -

((c)) Count-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 80.43 9.32 80.43 9.32 79.96
2 73.38 9.80 73.38 9.80 73.14
3 72.86 9.59 72.86 9.59 72.57
4 72.62 9.28 72.62 9.28 71.85
5 72.03 8.61 72.03 8.61 71.16
6 70.70 6.94 70.70 6.94 69.18
7 - - - - -
8 - - - - -
9 - - - - -
10 - - - - -
11 - - - - -
12 - - - - -
13 - - - - -
14 - - - - -
15 - - - - -

((d)) Continuous-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 80.86 9.14 80.86 9.14 80.71
2 73.43 9.84 73.43 9.84 73.15
3 72.82 9.57 72.82 9.57 72.50
4 72.52 9.21 72.52 9.21 71.90
5 71.86 8.76 71.86 8.76 71.16
6 71.28 6.49 71.28 6.49 69.23
7 - - - - -
8 - - - - -
9 - - - - -
10 - - - - -
11 - - - - -
12 - - - - -
13 - - - - -
14 - - - - -
15 - - - - -

Notes: η = number of terminal nodes, P̄ = average out-of-bag performance, P50 =median out-of-bag performance,
σP = standard deviation of out-of-bag performances. Statistics marked with a (∗) are computed excluding
extremely low performances (see Formula 5.1)
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Table A2-5: Performance curves of the considered algorithms on out-of-bag
datasets - Delivery

((a)) Regression tree

η P̄ σP
(∗)P̄ (∗)σP P50

1 2.26 0.08 2.26 0.08 2.27
2 1.97 0.07 1.97 0.07 1.97
3 1.90 0.06 1.90 0.06 1.90
4 1.86 0.06 1.86 0.06 1.87
5 1.84 0.06 1.84 0.06 1.84
6 1.83 0.06 1.83 0.06 1.82
7 1.82 0.06 1.82 0.06 1.81
8 1.82 0.06 1.82 0.06 1.81
9 1.81 0.06 1.81 0.06 1.81
10 1.80 0.06 1.80 0.06 1.80
11 1.80 0.06 1.80 0.06 1.80
12 1.79 0.06 1.79 0.06 1.78
13 1.79 0.06 1.79 0.06 1.79
14 1.78 0.06 1.78 0.06 1.78
15 1.78 0.06 1.78 0.06 1.78

((b)) Regression tree & models

η P̄ σP
(∗)P̄ (∗)σP P50

1 2.12 0.07 2.12 0.07 2.12
2 1.87 0.06 1.87 0.06 1.87
3 1.83 0.06 1.83 0.06 1.83
4 1.82 0.06 1.82 0.06 1.82
5 1.81 0.06 1.81 0.06 1.81
6 1.80 0.06 1.80 0.06 1.80
7 1.80 0.06 1.80 0.06 1.80
8 1.80 0.06 1.80 0.06 1.80
9 1.79 0.06 1.79 0.06 1.79
10 1.78 0.06 1.78 0.06 1.78
11 1.78 0.06 1.78 0.06 1.78
12 1.78 0.06 1.78 0.06 1.78
13 1.78 0.06 1.78 0.06 1.78
14 1.78 0.06 1.78 0.06 1.78
15 1.78 0.06 1.78 0.06 1.78

((c)) Count-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 2.12 0.07 2.12 0.07 2.12
2 1.87 0.06 1.87 0.06 1.87
3 1.85 0.06 1.85 0.06 1.85
4 1.83 0.06 1.83 0.06 1.83
5 1.81 0.06 1.81 0.06 1.81
6 1.80 0.06 1.80 0.06 1.79
7 1.79 0.06 1.79 0.06 1.79
8 1.78 0.06 1.78 0.06 1.78
9 1.78 0.06 1.78 0.06 1.78
10 1.77 0.06 1.77 0.06 1.77
11 1.77 0.06 1.77 0.06 1.77
12 1.77 0.06 1.77 0.06 1.77
13 1.77 0.06 1.77 0.06 1.77
14 1.77 0.06 1.77 0.06 1.77
15 1.77 0.06 1.77 0.06 1.77

((d)) Continuous-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 2.12 0.07 2.12 0.07 2.12
2 1.87 0.06 1.87 0.06 1.87
3 1.85 0.06 1.85 0.06 1.85
4 1.83 0.06 1.83 0.06 1.83
5 1.81 0.06 1.81 0.06 1.81
6 1.80 0.06 1.80 0.06 1.80
7 1.79 0.06 1.79 0.06 1.79
8 1.79 0.06 1.79 0.06 1.78
9 1.78 0.06 1.78 0.06 1.78
10 1.78 0.06 1.78 0.06 1.77
11 1.77 0.06 1.77 0.06 1.77
12 1.78 0.07 1.78 0.07 1.77
13 1.78 0.07 1.78 0.07 1.77
14 1.77 0.06 1.77 0.06 1.77
15 1.77 0.07 1.77 0.07 1.77

Notes: η = number of terminal nodes, P̄ = average out-of-bag performance, P50 =median out-of-bag performance,
σP = standard deviation of out-of-bag performances. Statistics marked with a (∗) are computed excluding
extremely low performances (see Formula 5.1)
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Table A2-6: Performance curves of the considered algorithms on out-of-bag
datasets - Craniotomy

((a)) Regression tree

η P̄ σP
(∗)P̄ (∗)σP P50

1 54.25 1.85 54.25 1.85 54.43
2 47.98 1.53 47.98 1.53 48.01
3 46.74 1.51 46.74 1.51 46.71
4 45.63 1.49 45.63 1.49 45.65
5 43.97 1.51 43.97 1.51 43.94
6 43.17 1.49 43.17 1.49 43.20
7 42.50 1.47 42.50 1.47 42.57
8 42.46 1.44 42.46 1.44 42.48
9 42.38 1.45 42.38 1.45 42.41
10 42.28 1.39 42.28 1.39 42.32
11 42.19 1.41 42.19 1.41 42.18
12 42.21 1.43 42.21 1.43 42.26
13 42.04 1.47 42.04 1.47 42.08
14 41.97 1.48 41.97 1.48 42.00
15 41.88 1.41 41.88 1.41 41.94

((b)) Regression tree & models

η P̄ σP
(∗)P̄ (∗)σP P50

1 46.81 1.47 46.81 1.47 46.87
2 45.10 1.42 45.10 1.42 45.24
3 43.25 1.41 43.25 1.41 43.31
4 42.42 1.39 42.42 1.39 42.50
5 41.83 1.39 41.83 1.39 41.85
6 41.09 1.38 41.09 1.38 41.10
7 40.86 1.35 40.86 1.35 40.85
8 40.73 1.34 40.73 1.34 40.75
9 40.62 1.35 40.62 1.35 40.59
10 40.55 1.36 40.55 1.36 40.50
11 40.54 1.49 40.54 1.49 40.46
12 41.09 9.44 40.45 1.49 40.42
13 41.34 10.17 40.64 2.79 40.47
14 41.54 10.90 40.73 2.96 40.45
15 41.62 11.33 40.74 3.01 40.40

((c)) Count-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 46.81 1.47 46.81 1.47 46.87
2 45.51 1.55 45.51 1.55 45.46
3 44.38 1.80 44.38 1.80 44.34
4 43.63 1.92 43.63 1.92 43.51
5 42.92 1.98 42.92 1.98 42.88
6 42.42 1.85 42.42 1.85 42.38
7 42.14 1.72 42.14 1.72 42.10
8 41.93 1.62 41.93 1.62 41.90
9 41.79 1.56 41.79 1.56 41.82
10 41.70 1.53 41.70 1.53 41.70
11 41.63 1.56 41.63 1.56 41.57
12 41.55 1.56 41.55 1.56 41.52
13 41.49 1.54 41.49 1.54 41.54
14 41.47 1.54 41.47 1.54 41.55
15 41.81 5.36 41.49 1.54 41.51

((d)) Continuous-MOB

η P̄ σP
(∗)P̄ (∗)σP P50

1 46.81 1.47 46.81 1.47 46.87
2 45.50 1.55 45.50 1.55 45.46
3 44.37 1.82 44.37 1.82 44.32
4 43.60 1.92 43.60 1.92 43.49
5 42.89 1.97 42.89 1.97 42.84
6 42.41 1.84 42.41 1.84 42.36
7 42.13 1.69 42.13 1.69 42.08
8 41.93 1.61 41.93 1.61 41.89
9 41.79 1.57 41.79 1.57 41.82
10 41.68 1.56 41.68 1.56 41.67
11 41.63 1.56 41.63 1.56 41.64
12 41.56 1.59 41.56 1.59 41.50
13 41.54 1.54 41.54 1.54 41.53
14 41.52 1.56 41.52 1.56 41.52
15 41.62 2.09 41.62 2.09 41.50

Notes: η = number of terminal nodes, P̄ = average out-of-bag performance, P50 =median out-of-bag performance,
σP = standard deviation of out-of-bag performances. Statistics marked with a (∗) are computed excluding
extremely low performances (see Formula 5.1)
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Appendix III - Performance of

Random Forests

Table A3-1: Count-MOB and regression tree Random Forests MSE

Learning Sample Out-of-bag

Dataset Count-MOB RT Count-MOB RT

CABG 22.57 17.12 24.14 23.24

Skin graft and debridement 14.19 10.11 15.62 14.10

Burns 70.30 53.93 72.19 68.76

Breast Procedures 3.78 2.89 3.88 3.74

Craniotomy 37.60 28.12 40.84 37.29

Delivery 1.69 1.37 1.73 1.72

Notes: RT= Regression Tree, Learnings Sample refers to Formula 4.15, Out-of-bag refers to formula 4.16.
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Appendix IV - Performance of

“Bumped” trees
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Table A4-1: Performance curves of the best bootstrapped trees (“Bumped” trees)
on learning datasets

((a)) “Bumped” regression tree

η db1 db2 db3 db4 db5 db6
1 34.27 20.59 5.75 114.54 2.26 54.24
2 28.27 17.51 5.26 89.67 1.97 47.89
3 27.57 17.02 4.80 79.25 1.90 46.50
4 26.30 16.50 4.56 74.40 1.86 44.99
5 25.84 16.32 4.40 72.77 1.85 43.54
6 25.32 15.97 4.34 72.21 1.81 43.22
7 25.07 15.88 4.26 70.95 1.81 42.50
8 24.95 15.75 4.21 68.97 1.80 42.47
9 24.79 15.71 4.22 68.11 1.80 42.20
10 24.65 15.62 4.18 67.91 1.79 41.62
11 24.59 15.55 4.12 64.81 1.79 41.79
12 24.36 15.37 4.08 66.43 1.78 41.35
13 24.38 15.29 4.10 64.39 1.78 41.01
14 24.22 15.33 4.04 64.53 1.78 40.97
15 24.11 15.02 4.08 65.47 1.77 40.86

((b)) “Bumped” Count-MOB

η db1 db2 db3 db4 db5 db6
1 31.44 18.52 5.16 80.73 2.12 46.62
2 25.78 16.40 4.68 72.83 1.87 44.65
3 25.12 15.95 4.27 69.38 1.82 42.72
4 24.76 15.69 4.06 68.54 1.80 41.54
5 24.53 15.46 4.03 68.84 1.79 40.82
6 24.36 15.40 4.00 72.58 1.78 40.14
7 24.24 15.22 3.99 - 1.77 39.88
8 23.99 15.17 3.96 - 1.76 39.76
9 24.07 14.95 3.93 - 1.76 39.58
10 23.95 14.88 3.92 - 1.75 39.23
11 23.92 14.85 3.92 - 1.75 38.97
12 23.90 14.71 3.91 - 1.74 38.90
13 23.80 14.69 3.91 - 1.74 38.74
14 23.71 14.67 3.89 - 1.74 38.63
15 23.56 14.66 3.88 - 1.74 38.64

Notes: η = number of terminal nodes, db1 = CABG, db2 = Skin Graft and Debridement, db3 = Breast Procedures,
db4 = Burns, db5 = Delivery, db6 = Craniotomy
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