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Abstract

In this Thesis, we study the dynamics of blue straggler stars (BSSs) in globular clus-
ters (GCs) by means of direct N-body simulations. These stars have a present mass
mBSS ' 1.2M� that is higher than the average star mass in a GC. For this reason,
during the evolution of the host cluster, they suffer from dynamical friction (DF),
which is the slowing down of a heavy particle orbiting a sea of lighter particles due
to the cumulative effect of two-body interactions. This dynamical process causes
the sinking of heavy objects toward the cluster centre and their segregation in the
internal regions, leaving the outskirts of the cluster significantly depleted of these
stars. Due to this phenomenon, BSSs are considered to be probe particles of the
internal dynamics of GCs. In particular, three different shapes for the BSS normal-
ized radial distribution (BSS-nRD) have been observed in GCs, and Ferraro et al.
(2012) interpreted this feature as the probe of different dynamical evolution histories
among coeval GCs. The proposed scenario is that, as the cluster evolves dynam-
ically and BSSs migrate toward the cluster internal regions, a central peak in the
radial distribution of these objects forms and grows with time, while at intermediate
radii the depletion of (the migrated) BSSs causes the formation of a minimum in the
distribution. As time passes, the migration toward the centre affects progressively
more external BSSs, causing the growing of the central peak in their distribution
and the simultaneous migration of the minimum toward larger radii. The distance
of the minimum from the cluster centre is then used by Ferraro et al. (2012) as a
clock hand able to provide the dynamical age of GCs, thus defining the dynami-
cal clock scenario. While the proposed scenario seems to properly account for the
observational data, on one side, the minimum measurements suffer from some sta-
tistical inconvenients, on the other side, appropriate N-body simulations are needed
to investigate in full details the physical processes behind the clock and to provide
an absolute calibration of it (in fact, at the moment this tool only allows a relative
ranking of GCs in terms of their dynamical ages).

The purpose of this Thesis is to describe the processes connected to the BSS seg-
regation in GCs, by indentifying all the ingredients that contribute in shaping the
radial distribution of these objects during the dynamical evolution of the clusters.
To this aim, expanding on the analysis by Ciotti (2010), we used the DF theory
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in a joined analytical-numerical approach, providing a method to calculate the DF
timescale in a system of field particles distributed with a mass spectrum. In par-
ticular, we searched for some non-monotonic radial behaviour of this quantity (due
to the combination of the various mass components and their tendency to energy
equipartition) that could account for the observed bimodality in the BSS-nRD. Our
analysis showed that the DF timescales is always a monotonic function of the radius,
being mainly shaped by the mass density profile (which, in turn, is monotonic with
the radial distance).

Afterward, we moved to model GCs through direct N-body simulations, following
the approach of progressively increase the level of realism (and complication) of the
simulations. We first ran a set of simulations with 104 particles and modeled the
mass spectrum with only three mass populations. Then, we followed the evolution
of the BSS-nRD focusing on the position of the minimum and on the formation of
the central peak.

Our models always show the formation of a central peak in the BSS-nRD. More-
over, a longlasting bimodal shape arises for almost all the studied cases, althought
the detection of the minimum appears to be sometime challenging due to statistical
noise and the lowest concentrated case shows no bimodality, with only a central
peak forming and disappearing toward the end of the run. We also ran a simulation
with an increased number of particles (N = 105), which has shown, compared to the
previous cases, a more gradual evolution of the BSS-nRD shape, with a central peak
and a bimodality gradually appearing as the dynamical evolution proceeds, coupled
with a more stable migration of the minimum outward.

This motivated us to run N = 105 simulations with a realistic mass spectrum
following a Kroupa (2001) Initial Mass Function, and admitting the presence of a
population of neutron stars (NSs) and stellar-mass black holes (BHs). We focused
on the influence of the heavy remnants on the BSS segregation. Moreover, we
defined a new parameter (named A+), defined as the area between the cumulative
radial distributions of BSSs and reference stars, as a hand of the dynamical clock
alternative to rmin.

Our results show that a subsystem of stellar-mass BHs (which rapidly collapse
toward the cluster centre and decouple from the rest of the stars) substantially
inhibits the mass segregation process of BSSs (and, more in general, of all the mass
populations in the cluster). The time evolution of the new parameter A+ revealed
that this quantity is a very good tracer of the BSS segregation process and of the
overall cluster evolution, strongly depending on the presence and fraction of BHs. We
also found that A+ assumes comparable values in all the runs when its time evoultion
is expressed in units of the core-collapse (CC) time of the system, suggesting that,
with a proper calibration, it can be used as an indicator of the time-remaining to
cluster CC.
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An observational determination of the new parameter A+ for a set of 25 GCs
has been carried out, confirming what guessed from the previous results. In fact,
the values of A+ have been found to well correlate with the observed position of
the minimum of the BSS-nRDs (with the advantage of being easier to measure) and
even more tightly with the central relaxation time of the observed clusters. This last
result opens the future possibility that A+, after a proper calibration, could provide
a more precise measure of the central relaxation time of GCs.

Undoubtedly, the cluster models built so far still suffer from the lacking of one
fundamental ingredient: a population of primordial binaries. We just started to
work on an improved cluster model made of 105 stars with a mass spectrum, a
population of NSs and BHs and a fraction of primordial binaries (fbin = 3%). In
particular, since mass-transfer BSSs are known to form in binary system, a proper
modeling of a BS as a binary system is desirable in the direction of a more realistic
description of the dynamics of these objects. For this reason, from the primordial
binary population, we searched those systems with orbital parameters comparable
with observed BSSs, with the aim to follow their evolution with time and study the
extent to which their binary nature could affect their segregation. However, we just
started the analysis of the output and the work is still in progress.

The Thesis is organized as follows: in Chapter 1 we introduce some properties of
GCs, briefly describing their dynamical evolution. We also dedicate the final part of
the Chapter to BSSs, listing their most important observational features. In Chapter
2 we present the analysis of the DF timescale in multi-mass systems by means of
a semi-analytical approach, while our first work in the direction of using N-body
simulations to study the BSS segregation process is discussed in Chapter 3. Chapter
4 concerns the N-body simulations admitting NSs and BHs, and the behaviour of
the new parameter A+ in simulated systems, while its observational measurements
on a sample of 25 GCs is the topic of Chapter 5. Chapter 6 summarizes the main
results of our study.
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Introduction

1.1 Globular clusters

1.1.1 Observational properties

Globular clusters (GCs) are gravitationally bound stellar systems consisting of a
few 105 − 106 stars. The Milky Way (MW) contains about 150 GCs, which can be
considered as fossil witnesses of the formation epoch of our Galaxy. Indeed, stars in
GCs are known to be very old, with an estimated age between 10 and 13 Gyr (e.g.,
Gratton et al., 1997; Chaboyer et al., 1998; Marín-Franch et al., 2009). They metal
poor stellar systems ([Fe/H]< −1 for the bulk of Galactic GCs), essentially free of
dust and gas.

For many decades, GCs have been considered Simple Stellar Populations (SSPs),
formed by coeval stars with the same chemical composition, and such a feature makes
these systems perfect laboratories to test stellar evolution models. This paradigm
has recently been challenged by the observational evidence of the presence of mul-
tiple stellar populations (MSPs) in these systems (e.g., Bedin et al., 2004; Gratton,
Sneden & Carretta, 2004; Piotto et al., 2007; Carretta et al., 2009b,a; Milone et al.,
2008). However, their homogeneity in the iron abundance (Carretta et al., 2009b)
is the proof of their inhability to retain supernovae ejecta. Hence, at least as a
first approximation, GCs can still be considered as SSPs and remain the best ob-
servational tools to verify the predictions of stellar evolution models (see Kalirai &
Richer, 2010).

GCs can be divided in two different sub-systems on the basis of their kinematics,
spatial distribution and metallicity (Zinn, 1985). Indeed, the metal-rich clusters
(with [Fe/H]≥ −0.8) are typically distributed in the Galactic plane, throughout the
disk, with a typical rotation velocity of about 150 km s−1. These are therefore called
disk GCs, or G clusters. Instead, the group of metal-poor ([Fe/H]< −0.8) systems
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Figure 1.1: Metallicity distribution of MW GCs. From of VanDalfsen & Harris (2004)

has a spherical distribution within the Galactic halo, with a velocity dispersion
σ ∼ 50 km s−1 (Armandroff, 1989). These are thus called halo GCs, or F clusters.
Figure 1.1 shows the bimodality in the metallicity distribution of MW GCs, that
supports the distinction into halo and disk-GCs; the peak around [Fe/H] ∼ −1.6 is
related to the metal-poor component, while the peak around [Fe/H] ∼ −0.6 to the
metal-rich one.

1.1.2 Internal dynamics

The dynamics of GCs has been matter of interest and investigations during the last
70 years, because they are indeed perfect and unique laboratories for testing our
understanding of the processes occurring in dissipationless self-gravitating systems
(see Meylan & Heggie, 1997, and reference therein).

GCs are multi-particle systems and their internal dynamics is mainly led by
the two-body encounters between their stars. In such interactions, stars exchange
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energy with each other and the cumulative effect is to completely lose trace of their
orbital initial condition in a time-scale that is shorter than the age of the host
system. This diffusive process is called two-body relaxation (Binney & Tremaine,
2008). In a stellar system having a crossing time tcross, two-body relaxation occurs
on a timescale defined as:

t2b = n2b tcross,

where n2b is the number of crossings required for a star to change its velocity by of
order itself and t2b is the so called two-body relaxation time. For a stellar system
made by N stars of identical mass, t2b can be expressed with a simple approximation
(Binney & Tremaine, 2008):

t2b '
0.1N

lnN
tcross.

This expression of the relaxation time, gives the time-scale after which the ve-
locity of a star in a system of N particles can be no longer estimated by considering
the gravitational potential as generated by a smooth distribution of stars. It is
the time-scale over which a star orbiting a system, feels the "granularity” term of
the potential, due to the other single stars, taken one by one (Ciotti, 2000). For
those systems with many particles and much older than their crossing time, en-
counters between stars are unimportant (this is the case of galaxies, with N ≈ 1011

and an age which is few hundreds time higher than their crossing time). For the
case of GCs, however, the number of particles is much smaller than for a galaxy
(N ≈ 105 − 106) and their crossing time is tcross ≈ 1Myr, implying that their age
is thousands of times higher: hence, for a GC, encounters between stars strongly
influence the dynamics of the system, and its structure as well, and they have to
be taken into account for modeling the dynamical evolution of these systems. In
GCs, the constituent particles move under the influence of the gravitational field
generated by a collection of point masses, rather than a smooth mass distribution.
More in general, such systems are called collisional ((while galaxies are collisionless).
As a general statement, collisional (collisionless) systems are much older (younger)
than their relaxation time.

The dynamical evolution of a GC can be divided into three different phases.
The first phase is the early evolution, which occurs on the first few Myr. It is
characterized by the expulsion of the primordial residual gas in which a young cluster
is still embedded in the very early stages of its life, along with mass loss due to the
evolution of the most massive stars in the cluster (for example, the expulsion of
Type II supernova ejecta). Basing his calculation on the virial theorem, Hills (1980)
claimed that clusters in equilibrium lose impulsively more than half of their mass
and, in response to their mass loss, they rapidly expand and dissolve. This result
has been confirmed during the next two decades, when semi-analytic calculations
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(e.g., Applegate, 1986; Chernoff & Shapiro, 1987) and numerical simulations (e.g.,
Chernoff & Weinberg, 1990; Fukushige & Heggie, 1995; Portegies Zwart et al., 1998)
showed that mass loss due to stellar evolution triggers an expansion, which can lead
to a rapid cluster dissolution. In particular, Chernoff & Shapiro (1987) and Chernoff
&Weinberg (1990) showed that mass loss due to stellar evolution can cause the rapid
dissolution of clusters with a low initial concentration and/or a flat stellar initial
mass function (IMF), while Fukushige & Heggie (1995) explored the mechanism
behind the dissolution and showed it to be the result of a loss of equilibrium as
the cluster expands and reaches structural properties for which no virial equilibrium
is possible, rather than of a loss of stability, as previously stated. These results
have been confirmed and somehow also refined by Boily & Kroupa (2003a,b) who
showed, by means of numerical simulations, that a cluster can lose up to 70 % of
its mass without undergoing complete dissolution. However, in most cases a cluster
undergoes significant expansion and needs to be initially much more compact than
observed today to survive this phase (Baumgardt & Kroupa, 2007).

Since mass loss due to stellar evolution comes from the most massive stars in
the cluster, the expanding reaction of the cluster can be stronger (and the disso-
lution time-scale shorter) if the cluster is primordially mass-segregated. Vesperini,
McMillan & Portegies Zwart (2009) showed that the strength of the initial cluster
expansion is higher as the degree of initial mass segregation increases. As a result,
clusters differing only in the degree of initial mass segregation can have very differ-
ent lifetimes. Mackey et al. (2007, 2008) showed that the stronger early expansion
of mass-segregated clusters, along with the subsequent heating from a population of
stellar-mass black holes, can account for the radius–age trend observed for massive
clusters in the Magellanic Clouds. More recently, Haghi et al. (2014) showed that
some of the very extended globular clusters in the outer halo of the Milky Way may
have been born with primordial mass segregation.

Finally, since early cluster dissolution preferentially destroys low-mass clusters,
the initial phase may play an important role in the evolution of the mass function
of globular cluster systems, which, as a result, significantly flattens in the low-mass
end (see Vesperini, 2010, and references therein).

The second phase of dynamical evolution of a GC starts when the expansion
due to the mass loss from stellar evolution ends. This phase is mainly characterized
by the two-body relaxation process, which shapes the structural properties of the
system. For instance, during this phase, the cluster develops two distinct regions,
an inner isothermal sphere (the core) and an outer halo (Spitzer, 1987). The inner
region is characterized by an almost uniform density profile, and contains typically
about half of the cluster mass, while the surrounding halo is populated by stars
preferentially moving in radial orbits. The first important effect of two-body re-
laxation is the mass loss due to escaping stars: in fact, as a star exchanges energy
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with other stars in the cluster due to close and distant encounters, it can reach an
energy higher than the one needed to escape from the cluster. This process plays
a key role in the lifetime of those systems that survive the early mass loss phase
due to stellar evolution, directly modifying the mass function of the cluster (e.g.,
Vesperini & Heggie, 1997); however, for isolated clusters (i.e., those clusters not
suffering an external tidal field), the mass loss due to two-body relaxation is highly
reduced and the dissolution timescale is extremely long (e.g., Giersz & Heggie, 1994;
Heggie, 2001; Baumgardt, Hut & Heggie, 2002; Heggie & Hut, 2003). In particular,
Baumgardt, Hut & Heggie (2002) have shown that it takes about a thousand of
initial half-mass relaxation times for a cluster to lose about half of its initial mass.

If an external tidal field is introduced, on the other hand, a large number of
studies show that the mass-loss rate is significantly enhanced, due to the lowering of
the escape speed and the truncation of the cluster size (e.g., Chernoff & Weinberg,
1990; Vesperini & Heggie, 1997; Aarseth & Heggie, 1998; Takahashi & Portegies
Zwart, 2000). In particular, Fukushige & Heggie (2000) and Baumgardt (2001)
showed that, when the tidal field is properly modelled, a star can escape from the
cluster only through a Lagrangian point. This process requires more time with
respect to the "escape everywhere" case, delaying significantly the dissolution of the
system.

In addition to mass loss due to two-body relaxation, especially for clusters on
eccentric orbits, there is another mass-loss process occurring in this phase: the tidal
shocks due to passages near the bulge and through the disk of the host galaxy.
These passages, indeed, inject energy into the cluster and speed up the process of
mass loss due to two-body relaxation (e.g., Gnedin & Ostriker, 1997; Gnedin, Lee &
Ostriker, 1999). However, this kind of mass-loss mechanism is independent of stellar
mass and, in general, does not influence the slope of the mass function, unless it is
combined with mass segregation (e.g., Vesperini & Heggie, 1997).

While two-body relaxation proceeds and stars exchange energy among each oth-
ers, the various mass components manifest the tendency to energy equipartition, so
that, low-mass stars enhance their velocities, preferentially occupying the outer re-
gions of the cluster, while high-mass stars slow down and sink toward the centre due
to dynamical friction (DF; see Chapter 2 for a detailed treatment of this process),
occupying the cluster core. This process leads to a stratification of the various mass
populations, from high-mass to low-mass stars as the radial distance from the centre
increases. As a consequence, low-mass stars spend more time than high-mass ones
in the external escaping region of the cluster, dominating the population of escaping
stars and causing a flattening of the cluster mass function (e.g., Vesperini & Heggie,
1997; Baumgardt & Makino, 2003; Trenti, Vesperini & Pasquato, 2010).

This second phase of GC dynamical evolution ends with the most violent and
important process in their lifetime: the core-collapse (CC). First studied by Hénon
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(1961) this process, also known as "gravothermal catastrophe", has subsequently
been explored in a large number of investigations (Hénon, 1961; Lynden-Bell &
Wood, 1968; Larson, 1970a,b; Lynden-Bell & Eggleton, 1980, see also Heggie & Hut,
2003 for a review and references). In particular, Lynden-Bell & Wood (1968), using
thermodynamical concepts, gave the theoretical explanation of this phenomenon:
the core of the system is "hotter" than the halo (i.e., core stars have larger velocity
dispersion than halo-stars) so that there is an outward flux of heat; the core loses
energy, contracts, and becomes hotter as a consequence of the virial theorem. With-
out intervention by an energy source balancing the loss of energy from the core, this
process accelerates, leading to a smaller and smaller core and a diverging central
density in a finite time.

The supporting energy source are known to be binary stars, either primordial or
dynamically formed during close encounters between single stars: they can provide
the energy needed to halt CC and support the core afterward in time (see, e.g.,
Heggie & Hut, 2003, and references therein). The first works invoking binary stars
as additional sources of energy are those by von Hoerner (1960) and Hénon (1961). A
detailed physical explanation, however, came more than a decade later, with Heggie
(1975) showing that binary stars with binding energy higher than the "temperature"
of the system, will, on average, increase their binding energy and release the energy
lost to the star cluster. Finally, we highlight that during the phase that leads to the
cluster CC, both the central (especially) and the half-mass relaxation time (much
less) decrease with time.

The third and last phase in the cluster dynamical evolution is the one starting
right after CC, thus called the post core collapse (PCC) phase. It is characterized
by a "freezing" of all the physical quantities of the cluster (central and half-mass
relaxation times, Lagrangian radii, etc.), which do not change significantly, in a
continuos slowly fluctuating dynamical state (Spitzer, 1987). In particular, in this
phase the cluster experiences the so called gravothermal oscillations first predicted by
Bettwieser & Sugimoto (1984): after CC, the central density undergoes nonlinear
oscillations, in a steady-behaviour. Investigations about the stability conditions
of this process have been carried out few years later by Goodman (1987), who
provided quantitative criteria for the core and the whole system to be stable during
this process, further confirmed by Cohn, Hut & Wise (1989) and Makino (1996).
However, the theoretical understanding of the onset of gravothermal oscillations is
still a matter of debate (Breen & Heggie, 2012b,a).

Observational studies have shown that about 20% of Galactic GCs have cuspy
surface-brightness profiles and identified these objects as clusters in the PCC phase
(Djorgovski & King, 1986; Chernoff & Djorgovski, 1989; Djorgovski & Meylan,
1994). As predicted by Chernoff & Shapiro (1987), PCC clusters are preferentially
located near the Galactic centre (Chernoff & Djorgovski, 1989, where the tidal field
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is stronger: this implies that GCs have smaller sizes and, thus, shorter relaxation
times that more rapidly drive them towards CC.). However, we finally emphasize
that a reliable classification of clusters as PCC based on their structural properties
is still hazardous. Trenti, Vesperini & Pasquato (2010), for instance, showed how a
system in its gravothermal oscillation phase can look like a non-PCC cluster from
the point of view of its concentration.

1.1.3 King models

Until the late 80s, the surface-brightness profiles of GCs were fitted successfully
with equilibrium models based on lowered Maxwellians and commonly known as
King models (King, 1966); these dynamical models take into account the three most
important elements of globular cluster structure: dynamical equilibrium, two-body
relaxation and tidal truncation. Mathematically speaking, King models are based
on the following distribution function:

f(E) =

{
ρ0(2πσ

2)−3/2(eE/σ
2 − 1) if E > 0

0 if E ≤ 0

where ρ0 is the central density, σ is the one-dimensional velocity dispersion and E
the relative energy per unit mass in the relative potential Ψ(r), so that (Binney &
Tremaine, 2008):

E = Ψ(r)− v2

2
.

This distribution function resembles the isothermal sphere at small radii, where
the majority of stars have large values of the relative energy E, but is less dense than
the isothermal sphere at large radii, so that its total mass is finite. The physical
basis for this distribution function is the presence of a galactic tidal field, which
"delete” from the system those stars crossing the tidal cut-off radius (rt), truncating
the cluster.

The tidal radius rt is the radius at which the potential is determined by the total
mass of the cluster:

Φ(rt) = −GM(rt)

rt
,

where G is the gravitational constant and M(rt) is the mass of the cluster within
the tidal radius (i.e. the total mass of the system). The central potential is then
Φ(0) = Φ(rt) − Ψ(0). The bigger the value of Ψ(0), the greater the tidal radius,
the total mass and |Φ(0)|. This model has a characteristic scale length, called King
radius:

rK =

√
9σ2

4πGρ0
,
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.

Figure 1.2: Logarithm of the projected density (normalized to its central value) for King
models. Different curves are obtained for different values of W0 (the labels on each curve
mark the corresponding values of the concentration parameter c). The radius is normalized
to the King radius, indicated here as r0. From King (1966)

which is the radius at which the projected density reaches roughly half of its central
value.

This is a family of one-parameter dynamical models. In particular, for different
values of Ψ(0), or, as it is commonly used, W0 ≡ Ψ(0)/σ2, different King models
(i.e., different density profiles) are obtained. In Figure 1.2 the projected density
profiles of King models with different values of W0 are shown. The profiles in the
figure clearly show the core-halo structure mentioned in Sect. 1.1.2, with a flat core
surrounded by an extended halo of decreasing density at larger radii. In particular,
by increasing the value of W0, the density profile more rapidly drops at large radii,
which corresponds to a decrease of the concentration parameter c, defined as the
logarithm of the ratio between the halo size and the core size: c = log(rt/rc).

King models are widely used to reproduce the observed surface brightness pro-
file of GCs, even though recent results have shown that the Wilson (1975) models
provide improved fits in the outer parts of some observed clusters (Di Cecco et al.,
2013). However, King models are currently used for fitting procedures, still showing
equivalent results as the Wilson model in many cases (e.g., Miocchi et al., 2013;
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Wang & Ma, 2013).

1.1.4 N-body modeling

GCs are made of N individual stars (with N = 105 − 106). This implies that the
study of the motion of the stars in such systems is the so called N-body problem. In
other words, studying the dynamics of the stars in a GC corresponds to determine
the motion of N points with masses mi, position vectors ri and velocity vectors
vi, withi = 1, ...N . The force acting on the i − th particle due to the gravitational
attraction of all the other N − 1 particles is:

mir̈i =
N∑

j=1, j 6=i

Gmimj

r2ij

rjri
rij

.

where ri is the position vector of the i− th particle. The problem is then of the 6N

order (three coordinates for the position and three for the velocity of each one of
the N particles).

It is well known that for N ≥ 2, the N-body problem is generally not analytically
solvable, i.e., it cannot be reduced to 6N − 1 independent integrations. However,
once a set of initial conditions is specified (for instance the initial positions and
velocities of all particles) it exists a unique solution, which for N larger than 2
requires numerical integration to be determined.

Nowadays computer simulations are the most powerful tool for the study of the
dynamics of systems with a large number of particles. They can be divided into two
big families, depending on the nature of the system they reproduce: on one side, the
direct N-body simulations, for collisional systems; on the other side, the collisionless
ones. Both kinds of simulations have their specific integration methods developed
during the years.

The first kind of simulations use the most accurate method for solving the N-
body problem: the direct summation. This method consists in computing the force
acting on each particle by summing all the contributions from any other particle
(Aarseth, 1999; Spurzem, 1999), with no simplifying assumptions. Both close and
distant interactions are explicitly taken into account. These codes are used to study
the dynamics of collisional systems, since the motion of a single particle is strongly
influenced by each single encounter with the other stars (see Sect. 1.1.2). Among
these codes, we mention the NBODY code series developed by Sverre Aarseth during
the years (see Aarseth, 1999, for a review) and now arrived at its Graphic Processing
Unit (GPU) version (Nitadori & Aarseth, 2012), which has been extensively used in
this Thesis.

For collisionless systems, on the other hand, the encounters between stars are
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unimportant, so that the numerical codes treating these kinds of systems approxi-
mate the particles surrounding any given object in groups according to their spatial
distribution, and compute the force exerted by the whole group (instead of consider-
ing the contribution of each particle within the group). Among these methods, there
are two main ones: the tree codes (Barnes & Hut, 1986; Springel, Yoshida & White,
2001) and the Fast Multipole Method (FMM) (Greengard & Rokhlin, 1987, 1997).
The former arranges particles in cells and computes the force contributions from
these cells using truncated multipole expansions, and is usually adopted for large
gravitational system simulations; the latter, uses multipole expansions to calculate
the potential field, and becomes particularly suitable for systems with an homoge-
neous density distribution. In this class, we mention also the particle-mesh method
(Hockney, 1965; Hockney & Eastwood, 1988; Fellhauer et al., 2000), in which the
field is computed on a regular grid rather than with a multipole expansion by solving
a field equation for the potential.

A different class of approximated methods includes Monte Carlo (MC) and
Fokker-Planck (FP) methods. MC methods (Hénon, 1975; Giersz, 1998; Joshi, Ra-
sio & Portegies Zwart, 2000) treat the N-body system as a continuous system in
which particles are replaced by spherical shells of matter. Assuming equilibrium
in a smooth spherical potential, the global evolution of the system is followed. FP
methods (Cohn, 1980; Murphy, Cohn & Durisen, 1991) use a similar approach, but
follow the evolution of the system by direct integration of the Fokker-Planck equa-
tion, using distribution functions instead of particles.

In direct N-body methods, the number of force computations per particle is
N(N −1)/2 so that the scaling is O(N2) with the number of particles, per timestep.
The scaling rises to O(N3) by considering that a realistic simulation lasts for at least
a relaxation time, which is proportional to the particle number. The computational
costs for direct N-body simulations are therefore extremely high. The algorithms can
be parallelized, but in practice load imbalances may saturate the gain in efficiency,
so some of the most CPU-demanding simulations have been carried out on special
purpose hardware, such as the GRAPE (Makino & Taiji, 1998), where the chip ar-
chitecture has been optimized to compute gravitational interactions, thus delivering
Teraflops performance. On the other hand, approximate methods as the tree code,
usually scale as O(N logN), but the approximations introduce some errors which,
in the worst cases, can lead to paradoxes (as the "exploding galaxy"; Salmon &
Warren, 1994). Moreover, force errors from the tree code may lead to violation
of momentum conservation. Typical implementations of the tree code solve this
problem with multipole expansion of the potential. However, systems with several
hundred thousands of collisionless particles can be easily simulated on a GigaFlops
workstation for a Hubble time using this method. For a comparison between direct
and approximate methods see, e.g., Aarseth (2003) and Trenti & Hut (2008).
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A further challenging point of the N-body simulations consists in the huge range
of length and timescales characterizing common astrophysical problems. In the case
of GCs, for instance, length scales span the range from kilometres to parsecs (a
factor of more than 1013) and time-scales span the range from milliseconds to the
lifetime of the Universe (a factor of more than 1020). As a result, special integration
methods have been developed for the purpose.

We remark finally that computer N-body simulations are developing as a funda-
mental aspect of the Astrophysical research, often used as an extention of previous
theoretical calculations. They can be applied to reproduce observed phenomena,
as well as to investigate unobservable circumstances and make possible predictions.
Joined with the continuos hardware and software advances, they are one of the
most useful tools to our understanding of more and more complex phenomena in
astrophysics.

1.2 Blue Straggler stars

1.2.1 Definition

Blue straggler stars (BSSs) are commonly defined as those objects that, in an optical
color magnitude diagram (CMD), are located along an extrapolation of the main
sequence (MS), in a region brighter and bluer (hotter) than the turnoff (TO) point.
They were first discovered by Sandage (1953) in the outskirts of the Galactic GC
M3 (see Figure 1.3) and then detected in the external region of other dense GCs,
or in relatively loose clusters (thus generating the idea that low-density environ-
ments were their natural habitats). The picture dramatically changed in the early
90s, when high spatial resolution observations clearly showed that this was just an
observational bias (see the case of NGC6397; Auriere, Lauzeral & Ortolani, 1990).
In particular, the advent of the Hubble Space Telescope (HST), providing both high
resolution and ultraviolet (UV) facilities, allowed to properly image and systemati-
cally discover BSSs also in the highly-crowded central regions of dense GCs (note,
in fact, that BSSs are hot stars, of ∼ 7000 K, best detectable at UV wavelengths,
where giant stars fade substantially). The largest compilations of BSSs to date
have been collected for nearly 60 Galactic GCs surveyed with the HST/WFPC2
(see Piotto et al., 2004; Leigh, Sills & Knigge, 2007; Moretti, de Angeli & Piotto,
2008), and about 40 clusters (Leigh, Sills & Knigge, 2011; Simunovic & Puzia, 2016)
observed with the HST/ACS and the HST/WFC3 (Sarajedini et al., 2007; Piotto,
2015). These compilations, together with deep investigations in open clusters (e.g.,
Geller & Mathieu, 2011; Gosnell et al., 2014, 2015) and in dwarf spheroidals (Mapelli
et al., 2009; Monelli et al., 2012), have significantly contributed to form the nowa-
days largely accepted idea that BSSs are a stellar population common to any stellar
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system and that they preferentially populate the highest density cluster regions.

BSS

Figure 1.3: Optical CMD of the globular cluster M3, with the location of BSSs indicated by
the arrow. The theoretical track corresponding to 0.8M� well reproduces the main evolutionary
sequences of the cluster, while BSSs populate a region of the CMD where core hydrogen-burning
stars of ∼ 1.7M� are expected. From Buonanno et al. (1994).

1.2.2 BSS formation mechanisms

Not only their location in the CMD, but also direct mass measuremets (Shara,
Saffer & Livio, 1997; Gilliland et al., 1998; Fiorentino et al., 2014) suggest that they
are more massive (MBSS ∼ 1.2M�) than the current cluster population (m0.8M�).
However, since GCs are completely devoid of gas and any recent star formation
event can be realistically ruled out, the formation of BSSs can be explained only by
assuming that some mechanisms able to increase the initial mass of single stars is at
work. While these processes are not completely understood yet, the main leading
scenarios, at present, are mass transfer (MT) in binary systems (McCrea, 1964; Zinn
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& Searle, 1976), possibly up to the complete coalescence of the two companions, and
the merger of stars induced by direct collisions (COL; Hills & Day, 1976).

With the aim of understanding how BSSs form and if their formation mecha-
nisms depend on some cluster physical properties, the most recent catalogs have
been used to search for correlations between the number or the fraction of observed
BSSs, and several parameters tracing the cluster structure (as luminosity, mass,
central density, etc.), as well as for correlations with the collision rate and binary
fraction. Though not conclusive, this approach has provided a number of interesting
results. For instance, no correlation has been found with the collisional parameter
(e.g. Piotto et al., 2004; Davies, Piotto & de Angeli, 2004; Leigh, Sills & Knigge,
2007; Leigh et al., 2013), while a strong correlation has been revealed between the
number of BSSs in cluster cores and the core mass (Knigge, Leigh & Sills, 2009;
Leigh et al., 2013). These facts have been interpreted as the evidence of a binary
(instead of a collisional) origin of BSSs, even in the densest environments, like the
centre of post-core collapsed (PCC) clusters (Knigge, Leigh & Sills, 2009). However,
by studying a sample of 24 GCs, Milone et al. (2012) found a nice correlation be-
tween the BSS specific frequency and the binary fraction in cluster cores. This has
been confirmed also by Leigh et al. (2013), who, however, obtain a much stronger
correlation between the number of core BSSs and the cluster core mass. Interest-
ingly, in the Milone et al. (2012) plot, PCC clusters lie well outside the relation.
This likely reflects the role that internal dynamics plays on the binary and BSS con-
tent of GCs. In fact, binary systems are subject to frequent dynamical interactions
with other binaries, single stars and even multiple systems. These interactions can
either bring to stellar collisions, or significantly alter the physical properties of bi-
naries, even promoting mass transfer activity. Hence, binaries and interactions play
a crucial role in both the MT and the COL scenarios and it is probably impossible
to separate the two effects just on the basis of the observed binary fraction. An
exception could be represented by low density environments, where the efficiency
of dynamical interactions is expected to be negligible. Very interestingly, indeed,
a clear correlation between the binary and the BSS frequency has been found in a
sample of 13 low density GCs (log ν0 < 3 in units of L�/pc3; Sollima et al., 2008,
see Figure 1.4). This is the cleanest evidence that the unperturbed evolution of pri-
mordial binaries is the dominant BSS formation process in low-density environments
(also consistently with the results obtained in open clusters; e.g. Mathieu & Geller,
2009).

Signatures of the two different formation processes have been searched also by
means of spectroscopic studies (aimed at revealing chemical and/or rotational dif-
ferences between the two classes; see Ferraro et al., 2006a; Lovisi et al., 2010, 2012;
Mucciarelli et al., 2014; Simunovic & Puzia, 2014, and through theoretical and nu-
merical investigations (e.g., Davies, Piotto & de Angeli, 2004; Leigh et al., 2013;
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Figure 1.4: BSS specific frequency as a function of the core binary fraction measured in a sample
of low-density GCs. The best-fit linear correlation is also plotted (solid line). From Sollima et al.
(2008).

Chatterjee et al., 2013a; Sills et al., 2013; Xin et al., 2015), but no efficient way to
disentangle MT-BSSs from COL-BSSs is known so far and this is still an open issue.

1.3 BSSs as dynamical probes

Independently of their formation mechanism, being more massive than the average
cluster stars, BSSs suffer from the effect of DF, that makes them sink towards
the cluster centre (e.g., Mapelli et al., 2004; Ferraro et al., 2012). In turn, the
frequent stellar interactions occurring in the ultra-dense cores of Galactic GCs can
promote both the formation and the hardening of binary systems, thus contributing
to generate MT-BSSs. All these considerations clearly show that BSSs are powerful
probes of GC internal dynamics and of its impact on standard stellar evolution
(Bailyn, 1995; Ferraro et al., 2012, and reference therein). The main results obtained
by exploting BSSs as dynamical probes are summarized in the following sections.

1.3.1 Double BSS sequences and core collapse

By using an exceptional set of 44 high-resolution images obtained with the HST-
WFPC2, Ferraro et al. (2009) obtained a very high-precision CMD of the central
region of the Galactic GC M30. The CMD revealed the existence of two well-
separated and almost parallel sequences of BSSs (Figure 1.5). The two sequences
are similarly populated, consisting of 21 and 24 stars, respectively. This is the very
first time that such a feature has been detected in any stellar system, and it could be
the signature of the cluster core collapse imprinted onto the BSS population.

The comparison with evolutionary models of BSS formed by direct collisions of
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two MS stars (Sills, Karakas & Lattanzio, 2009) shows that the blue-BSS sequence
is well fit by collisional isochrones with ages of 1 − 2 Gyr (black solid lines in Fig.
1.6). Instead, the red-BSS population is far too red to be properly reproduced by
collisional isochrones of any age, and its origin should therefore be different. Binary
evolution models (Tian et al., 2006) have shown that during the mass-transfer phase
(which can last several Gyr, i.e., a significant fraction of the binary evolution time-
scale), the binary population defines a sort of "low-luminosity boundary" located
∼ 0.75 mag above the zero-age MS in the BSS region. This is just where the red-
BSS sequence is observed (red dashed line in Fig. 1.6). Hence, the BSS along the
red-sequence could be binary systems still experiencing an active phase of mass-
exchange.

Due to the normal stellar evolution, all BSSs will evolve toward the red giant
branch (RGB) phase. In particular, the evolved blue-BSSs will populate the region
between the two observed sequences and fill the gap. Hence, the fact that two well-
separated chains of stars are observed supports the hypothesis that both the blue-
and the red-BSS populations have been generated by a recent and short-lived event,
instead of a continuous formation process. Quite interestingly, M30 is classified
as a PCC cluster in the original compilation of Djorgovski & King (1986), and
Ferraro et al. (2009) confirmed this finding by carefully re-determining the cluster
density profile from deep HST images and detecting a steep power-law cusp in the
innermost 5 arcsec − 6 arcsec (∼ 0.2 pc). During the CC phase the central stellar
density rapidly increases, bringing to a concomitant enhancement of gravitational
interactions (in fact, the collisional parameter scales as Γ ∝ ρ1.50 r2c , where rc is
the core radius). In turn, these can trigger the formation of new BSSs, both via
direct stellar collisions and via mass transfer activity in dynamically shrunk binary
systems. All together these considerations support a scenario where the the BSSs
along the blue sequence have been generated by the same dynamical event (the CC):
the blue-BSSs arose from the enhanced stellar collision activity, while the red-BSSs
are the result of the evolution of binary systems which first sank into the cluster
center because of the DF (or they were already present into the cluster core), and
then have been driven into the mass-transfer regime by hardening processes induced
by gravitational interactions during the CC phase. According to this scenario, the
double BSS sequence detected in M30 dates the occurrence of the core collapse event
back to 1-2 Gyr ago. If the proposed scenario is correct, this discovery opens the
possibility of defining a powerful "clock" to date the occurrence of this dramatic
event in a star cluster history (see also Section 1.3.2).

Interestingly, analogous double BSS sequences have been observed also in two
additional GCs experiencing core collapse or post-CC phases, namely NGC 362
(Dalessandro et al., 2013b) and NGC 1261 (Simunovic, Puzia & Sills, 2014).
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Figure 1.5: Optical CMD of M30 zoomed in the BSS region. The two distinct sequences of
BSSs are highlighted as blue and red symbols. The inset shows the distribution of the geometrical
distances of BSSs from the straight line that best fits the blue BSS sequence. Two well-defined
peaks are clearly visible, confirming that the two sequences are nearly parallel to each other. From
Ferraro et al. (2009).

1.3.2 The BSS radial distribution and the “dynamical clock”

By combining UV HST observations and wide-field optical observations from the
ground, Ferraro et al. (1997) studied the radial distribution of the BSS population
in the GC M3, finding a completely unexpected results: BSSs appeared to be more
centrally concentrated than RGB stars in the cluster central regions, and less con-
centrated in the outskirts. This is shown in Figure 1.7, where RBSS is the “double
normalized ratio” (Ferraro et al., 1993), defined as:

RBSS =
NBSS(r)/N tot

BSS

Lsampled(r)/Lsampled
tot

. (1.1)

NBSS(r) is the number of BSSs counted in a given radial bin, N tot
BSS is the total number

of BSSs observed, and Lsampled(r)/Lsampled
tot is the fraction of light sampled in the same

annulus, with respect to the total measured luminosity. This ratio is expected to
be equal to unity for any population with a radial distribution following that of the
cluster luminosity, as RGB or horizontal branch (HB) stars (Renzini & Fusi Pecci,
1988). Figure 1.7 clearly shows that this is indeed the case for the HB population
in M3 (grey segments), while BSSs are characterized by a completely different (a
bimodal) radial distribution, that reaches a maximum in the center of the cluster,
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Figure 1.6: Magnified portion of the CMD of M30. The solid black lines correspond to the col-
lisional isochrones of 1 and 2 Gyr, respectively, which accurately reproduce the blue BSS sequence.
The solid red lines correspond to the single-star isochrones of 13 Gyr (well fitting the main cluster
evolutionary sequences) and 0.5 Gyr (representing the reference cluster zero-age main sequence,
ZAMS). The two crosses mark the respective positions of a 0.8M� star and a 1.6M� star along
the ZAMS. The dashed red line corresponds to the ZAMS shifted by 0.75 mag, marking the lower
boundary of the locus occupied by mass-transfer binary systems. This line well reproduces the red
BSS sequence. From Ferraro et al. (2009).

shows a clear-cut dip in the intermediate region (at 100 arcsec < r < 200 arcsec),
and rises again in the outer region.

Sigurdsson, Davies & Bolte (1994) suggested that the bimodal BSS distribution
observed in M3 could be explained by assuming that all BSSs formed in the core by
direct collisions (thus originating the central peak of the distribution) and some of
them were kicked out from the centre by the recoil of the interactions. Those BSSs
ejected to a few core radii rapidly drifted back to the center of the cluster due to
mass segregation (thus contributing to the central BSS concentration and generating
the paucity of BSSs at intermediate distances of a few core radii). BSSs affected
by more energetic recoils would have been kicked out to larger distances and, since
they require much more time to drift back toward the core, they may account for
the overabundance of BSSs observed in the cluster outskirts. However, Monte-Carlo
dynamical simulations (Mapelli et al., 2004, 2006) demonstrated that BSSs kicked
out from the core either are lost from the cluster, or sink back to the centre in 1-2
Gyr only. Hence the observed BSS bimodal distributions cannot be explained with a
purely collisional population, and to accurately reproduce the external upturn of the
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Figure 1.7: Bimodal radial distribution of BSSs in M3. The blue dots mark the value of the BSS
double normalized ratio as defined in eq. (1.1), computed at various distances from the cluster
centre, the gray segments mark the double normalized ratio of HB stars. From Ferraro et al.
(1997).

distribution it is necessary to assume a sizable fraction (∼ 20− 40%) of MT-BSSs,
generated in the peripheral regions where primordial binaries can evolve in isolation
and experience mass transfer processes without suffering significant interactions with
other cluster stars.

While the bimodality detected in M3 was considered for years to be peculiar, more
recent results demonstrated that this is not the case. In fact, the same observational
strategy adopted by Ferraro et al. (1997) in M3 has been applied to a number of
other clusters, and bimodal distributions have been detected in the majority of cases
(∼ 25) studied so far (see below). Only a few exceptions are known: M30, M75, M79,
and M80, which do not present any external upturn (Lanzoni et al., 2007b; Contreras
Ramos et al., 2012; Ferraro et al., 2012), and four clusters (ωCentauri, NGC2419,
NGC6101 and Palomar 14) showing a completely flat BSS radial distribution, totally
consistent with that of the reference population (Ferraro et al., 2006b; Dalessandro
et al., 2008; Beccari et al., 2011; Dalessandro et al., 2015, respectively). The last four
cases deserve a specific comment. The flat behaviour discovered in these clusters
suggests that the BSS radial distribution is not yet significantly altered by stellar
interactions and by the dynamical evolution of the cluster. Indeed, this is the cleanest
evidence of the fact that these systems are not fully relaxed yet, even in the central
regions. Very nicely, this in the cases of ωCentauri and NGC6101 this is confirmed
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also by the radial distribution of MS stars and binary stars, which show a level
of mass segregation lower than what expected from equipartition (Anderson, 2002;
Dalessandro et al., 2015).
The “stellar system dynamical clock”
The entire database of available BSS radial distributions has been analysed by Fer-
raro et al. (2012). It consists of 21 GCs with very different structural properties
(hence possibly at different stages of their dynamical evolution), but with nearly
the same chronological age (12-13 Gry; Marín-Franch et al., 2009), with the only
exception of Palomar 14 which formed ∼ 10.5 Gyr ago (Dotter, Sarajedini & Yang,
2008). While significant cluster-to-cluster variations were already known, Ferraro
et al. (2012) discovered that once the radial distance from the centre is expressed
in units of the core radius (thus to allow a meaningful comparison among the clus-
ters), GCs can be efficiently grouped on the basis of the shape of their BSS radial
distribution, and at least three families can be defined:

• Family I – the radial distribution of the BSS double normalized ratio (RBSS)
is fully consistent with that of the reference population (Rpop) over the entire
cluster extension (see Figure 1.8);

• Family II – the distribution of RBSS is incompatible with that of Rpop, showing
a significant bimodality, with a central peak and an external upturn. At
intermediate radii a minimum is evident and its position (rmin) can be clearly
defined for each sub-group (see Figure 1.9);

• Family III – the radial distribution of RBSS is still incompatible with that of
the reference population, showing a well defined central peak with no external
upturn (see Figure 1.10).

The physical interpretation of these different shapes come singles out the long-term
effect of dynamical friction acting on the cluster binary population (and its progeny)
since the early stages of cluster evolution. In fact, what we call MT-BSS today is
the by-product of the evolution of a ∼ 1.2M� binary that has been orbiting the
cluster and suffering the effects of dynamical friction for a significant fraction of the
cluster lifetime. The efficiency of dynamical friction decreases for increasing radial
distance from the centre, as a function of the local velocity dispersion and mass
density. Hence, dynamical friction first segregates (heavy) objects orbiting close to
the centre and produces a central peak in their radial distribution. As the time goes
on, the effect extends to larger and larger distances, thus yielding to a region devoid
of these stars (i.e., a dip in their radial distribution) that progressively propagates
outward. Simple analytical estimate of the radial position of this dip turned out to be
in excellent agreement with the position of the minimum in the observed BSS radial
distributions (rmin), despite a number of crude approximation (see, e.g., Mapelli
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et al., 2006). Moreover, a progressive outward drift of rmin as a function of time is
confirmed by the results of direct N-body simulations that follow the evolution of
∼ 1.2M� objects within a reference cluster over a significant fraction of its lifetime.

In light of these considerations, the three families defined in Figs. 1.8–1.10
correspond to GCs of increasing dynamical ages. Hence, the shape of the BSS
radial distribution turns out to be a powerful dynamical-age indicator. A flat BSS
radial distribution (consistent with that of the reference population; see Family I in
Fig. 1.8) indicates that dynamical friction has not played a major role yet even in
the innermost regions, and the cluster is still dynamically young. This interpretation
is confirmed by the absence of statistically significant dips in the BSS distributions
observed in dwarf spheroidal galaxies (Mapelli et al., 2009; Monelli et al., 2012):
these are, in fact, collisionless systems where dynamical friction is expected to be
highly inefficient. In more evolved clusters (Family II), dynamical friction starts to
be effective and to segregate BSSs that are orbiting at distances still relatively close
to the centre: as a consequence, a peak in the centre and a minimum at small radii
appear in the distribution, while the most remote BSSs are not yet affected by the
action of dynamical friction (this generates the rising branch of the observed bimodal
BSS distributions; see upper panel in Fig. 1.9). Since the action of dynamical friction
progressively extends to larger and larger distances from the centre, the dip of the
distribution progressively moves outward (as seen in the different groups of Family II
clusters; Fig. 1.9, panels from top to bottom). In highly evolved systems dynamical
friction already affected even the most remote BSSs, which started to gradually
drift toward the centre: as a consequence, the external rising branch of the radial
distribution disappears (as observed for Family III clusters in Fig. 1.10). All GCs
with a single-peak BSS distribution can therefore be classified as “dynamically old”.

Interestingly, this latter class includes M30 (see Section 1.3.1), a system that
already suffered core collapse which is considered as a typical symptom of extreme
dynamical evolution (e.g., Meylan & Heggie, 1997). The proposed classification is
also able to shed light on a number of controversial cases debated into the literature.
In fact, M4 turns out to have an intermediate dynamical age, at odds with previous
studies suggesting that it might be in a PCC state (Heggie & Giersz, 2008). On
the other hand, NGC 6752 turns out to be in a quite advanced state of dynam-
ical evolution, in agreement with its observed double King profile indicating that
the cluster core is detaching from the rest of the cluster structure (Ferraro et al.,
2003a). Finally this approach might provide the key to discriminate between a cen-
tral density cusp due to core collapse (as for M30) and that due to the presence
of an exceptional concentration of dark massive objects (neutron stars and/or the
still elusive intermediate-mass black holes; see the case of NGC 6388, Lanzoni et al.,
2007a, 2013, and references therein).

The quantization in distinct age-families is of course an over-simplification, while
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Figure 1.8: BSS radial distribution observed in ωCentauri, Palomar 14 and NGC2419, with
the blue circles marking the values of RBSS, defined in eq. (1.1). The distribution of the double
normalized ratio measured for RGB or HB stars is also shown for comparison (grey strips). The
BSS radial distribution is flat and totally consistent with that of the reference population, thus
indicating a low degree of dynamical evolution for these three GCs (Family I ). From Ferraro et al.
(2012).

the position of rmin is found to vary with continuity as a sort of clock time-hand. This
allowed Ferraro et al. (2012) to define the first empirical clock able to measure the
dynamical age of a stellar system from pure observational quantities (the "dynamical
clock"): as the engine of a chronometer advances the clock hand to measure the
time flow, in a similar way the progressive sedimentation of BSSs towards the cluster
centre moves rmin outward, thus marking its dynamical age. This is indeed confirmed
by the tight correlations found between the clock-hand (rmin) and the central and
half-mass relaxation times (trc and trh, respectively), which are commonly used to
measure the cluster dynamical evolution time-scales. The trend with trc found by
Ferraro et al. (2012) is shown in Figure 1.11 and the best-fit relations is:

log(trc/tH) = −1.11× log(rmin)− 0.78 (1.2)

where tH is the Hubble time. Note that, while trc and trh provide an indication of the
relaxation timescales at specific radial distances from the cluster centre (rc and rh,
respectively), the dynamical clock here defined provides a measure of the global dy-
namical evolution of the systems, because the BSS radial distribution simultaneously
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Figure 1.9: BSS radial distribution observed in clusters of intermediate dynamical age (Family
II ). The distribution is clearly bimodal and the radial position of the minimum (marked with the
arrow and labelled as rmin) clearly moves outward from top to bottom, suggesting that the bottom
clusters are more dynamically evolved than the upper ones. For the sake of clarity, the grey bands
schematically mark the distribution of the reference populations. From Ferraro et al. (2012).

probes all distances from the cluster centre.
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Figure 1.10: BSS radial distribution for dynamically old clusters (Family III ): only a central
peak is visible, while the external upturn is no more present because, within the proposed scenario,
the dynamical friction has been efficient out to the cluster outskirts. From Ferraro et al. (2012).

Figure 1.11: Core relaxation time (normalized to the Hubble time tH) as a function of the
time hand of the proposed dynamical clock (rmin, in units of the core radius). Dynamically young
systems (Family I ) show no minimum and are plotted as lower-limit arrows at rmin/rc = 0.1.
For dynamically old clusters (Family III, triangles), the distance of the farthest radial bin where
no BSSs are observed has been adopted as rmin. As expected for a meaningful clock, a tight
anticorrelation is found: clusters with relaxation times of the order of the age of the Universe show
no signs of BSS segregation (hence their BSS radial distribution is flat and rmin is not definable;
see Fig. 1.8), whereas for decreasing relaxation times the radial position of the minimum increases
progressively. The solid line correspond to the best-fit relations, given in eq. (1.2). From Ferraro
et al. (2012).
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2Chapter

Dynamical Friction time scale in multi-component
evolved GCs

2.1 Introduction

GCs are multi-mass systems, in the sense that they contain stars with different
masses. MS stars have masses in the range [0.1,mTO], where mTO is the TO mass,
representing the mass of the most massive stars still experiencing the hydrogen-
burning phase; for today GCs, mTO ' 0.8 − 0.9M�. Moreover, they contain the
dark product of the stellar evolution, with all the stars that had an initial mass larger
than mTO: white dwarfs (WDs), neutron stars (NSs) and stellar mass black holes
(BHs), with masses in the range ≈ [0.2, 1.0]M�, ≈ [1.3, 2.5]M� and ≈ [2.5, 20]M�,
respectively. So, GCs contain stars covering a quite large mass interval ([0.1 −
20]M�).

Concerning the DF process, it has been extensively investigated by Chandrasekhar
(1943) in the case of a test particle moving in an infinite and homogeneous back-
ground field. Then, by taking into account that multi-mass systems behave, dynam-
ically, quite differently with respect to systems composed by particles with the same
mass, both in terms of processes involved and of time-scales on which they occur,
many authors have extended the Chandrasekhar’s framework to other more realistic
physical cases, with different assumptions or different and more sophisticated meth-
ods (Chandrasekhar & von Neumann, 1942, 1943; White, 1949; Thorne, 1968; Lee,
1969; Binney, 1977; Tremaine & Weinberg, 1984; Ostriker, 1999; Ciotti & Binney,
2004; Nipoti et al., 2008). From the astrophysical point of view, it is clear that DF
plays an important role on different scales, from galaxy clusters and their cD galaxies
(e.g., Ostriker & Tremaine, 1975; White, 1976; Binney, 1977; Dressler, 1979; Kashlin-
sky, 1987; Nipoti et al., 2004; Kim, El-Zant & Kamionkowski, 2005; El-Zant, 2008),
to galaxies and their GC systems (e.g., Tremaine, Ostriker & Spitzer, 1975; Bontekoe
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& van Albada, 1987; Bertin, Liseikina & Pegoraro, 2003, 2004; Capuzzo-Dolcetta &
Vicari, 2005; Arena et al., 2006; Mastrobuono-Battisti & Capuzzo-Dolcetta, 2012;
Arca-Sedda & Capuzzo-Dolcetta, 2014), to binary BHs at the center of early-type
galaxies (e.g., Fukushige, Ebisuzaki & Makino, 1992; Vecchio, Colpi & Polnarev,
1994; Milosavljević & Merritt, 2001).

It is clear that in the above mentioned cases the following assumptions are fully
justified:

(i) the mass of the test particle is much larger than the mass of the field ones
(mt � m). This is a realistic situation, for example, when studying the
sinking of GCs in galaxies (mGC ' 105M� � m∗ ' 1M�, where mGC and m∗
are, respectively, the typical mass of GCs and that of a star in a galaxy).

(ii) the field particles all have the same mass. This assumption becomes realistic if
the previous condition is verified: when the test particle is much more massive
than the field ones, the background can be safely approximated by stars with
mass equal to their average value.

Instead the case of BSSs in GCs is a significant exception to points (i) and
(ii), being the mass of the test particle only slightly (2-3 times) larger than that
of the field stars, so that taking into account a mass spectrum for the background
can make significant differences. Moreover, real GCs are composed of stars in a
relatively large range of masses (0.1− 20 M�; see above), then also assumption (ii)
is not strictly valid. Finally, it should be noticed that in general (e.g., Bertin, 2000),
the ratio between the DF and the two-body relaxation times is given by: tDF/t2b ∝
2m/(mt + m). Hence, while in the case of massive objects DF effects manifest
on time-scales shorter than the two-body relaxation time of the system (t2b), for
comparable masses these effects occur on quite long times, with the tendency to mix
with two-body relaxation time effects. All these considerations make the problem
of modeling the DF action on BSSs in a GC more complex.

For the reasons above, it is not surprising that the case in which the field particles
have a mass spectrum has not been extensively investigated in the literature. A
notable exception is the work by Ciotti (2010), who showed that the DF time-scale
in a system with a mass spectrum can be shorter (i.e., DF stronger) up to a factor
of 2 or 3, with respect to the case of a single-mass system with the same average
density and the same total mass. Hence, the considerations presented in Ciotti
(2010) for a homogeneous and infinite density background with a mass spectrum,
coupled with the well known dynamical evolution of a multi-mass GC (e.g., Spitzer
1987), prompted us to investigate in more detail the problem. In fact, the dynamical
evolution of the parent GC leads to a radially dependent stratification of masses for
the background stars (due to mass segregation), so that, in practice, each radius
is characterized by a different mass function, leading to a radially dependent DF
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strength. Moreover, it should be noted that, if a sort of equipartition is established in
the background particles, then some additional non trivial effect due to their velocity
distributions may take place (Ciotti, 2010). For example, in the case of a bottom-
heavy mass spectrum, on one side the low-mass population can have a higher density
than that of high-mass stars (thus providing a proportionally larger contribution to
the total DF), but, from the other side, the velocity of the light particles is also
higher, so that their contribution to DF is reduced, in a compensating effect. Since
DF depends on the “local” conditions of the system, in terms of both density and
velocity distribution, it is not trivial to predict the final effect on the test particle due
to the interplay between the various mass-components in the cluster. Furthermore,
the dynamical evolution of a GC produces significant changes on these distributions
in time (e.g., during and after the core-collapse stage), which, in turn, depend on
the component stellar mass, too. Hence the problem of modeling the DF on (the
slightly heavier than average) BSSs in a dynamically evolving (multi-mass) GCs is a
quite complex task. Therefore, what really happens to the BSS population in a GC
can be analyzed only by considering the combined effects, at each radius, of both
a radially and a time dependent mass spectrum obtained (for example) by N-body
simulations, in a self-consistent way.

Within this context, we investigate here the multifaceted nature of DF on test
particles slightly heavier than average field particles in a dynamically evolving sys-
tem with a mass spectrum, combining the approach described in Ciotti (2010) with
a set of numerical N -body simulations. In particular the main aim is answering the
following question: could the DF time-scale develop a non-monotonic radial behavior
at some time during the cluster evolution? In fact, if tDF develops a minimum at a
given radius rmin, the BSSs orbiting at that distance from the center would suffer
from an enhanced drag force with respect to the other BSSs orbiting at different
radii, and a minimum in the BSS radial distribution would therefore appear at rmin

(i.e., at a place and time different from what expected in the "dynamical clock"
framework, therefore affecting the possibility to use the distribution of BSSs as a
simple clock). The answer to this question could provide an additional explanation
to the observed variety of BSS radial distributions.

In Section 2.2 we introduce the analytic approach to the problem of DF. In
Section 2.3, we outline the mono-mass and multi-mass N -body simulations used to
describe the background field component. The results are discussed in Section 2.4.

2.2 Analytical background
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2.2.1 Mono-mass case

In order to introduce the case of a mass spectrum, we begin by recalling the relevant
aspects of DF in the standard case of a background made by identical scattering
masses m; this case is a useful benchmark which allows to better identify the mass-
spectrum effects on DF. The deceleration of a test particle of mass mt, moving with
velocity vt and modulus vt in a homogeneous background of particles of equal mass
m, constant number density n, and isotropic velocity distribution f(v), under the
effect of DF can be written as

dvt
dt

= −4πG2 ln Λ n m(m+mt) Ξ(vt)
vt
vt3
, (2.1)

where G is the gravitational constant, Ξ(vt) is the fraction of particles slower than
vt and ln Λ is the velocity weighted Coulomb logarithm (Chandrasekhar, 1943, 1960;
Binney & Tremaine, 2008; Bertin, 2000). By definition, Ξ(0) = 0 and Ξ(∞) = 1:
we recall that the sharp truncation of the function Ξ for velocities larger than vt is
an approximation (not affecting our discussion) due to the assumption of velocity
isotropy of the background and to the use of the lowest order term in the impulsive
approximation adopted to compute the two-body interactions. It is well known that
several problems affect the direct application of eq. (2.1) to spherical systems, as a
local description of DF (Bontekoe & van Albada, 1987; Bertin, Liseikina & Pegoraro,
2003, 2004; Arena et al., 2006). Nonetheless several studies have been based on the
applications of eq. (2.1) to spherical systems.

Here we follow the same approach, for the case of interest (i.e., that of the evo-
lution of the BSS population in a GC), and take into account the radial dependence
of the number density by replacing n with n(r). In addition, in all our discussion
we assume the test particle to be on circular orbit in the GC potential well, so that
also vt depends on r:

vt(r) =

√
G
M(r)

r
, (2.2)

where M(r) is the total mass of the system enclosed within a sphere of radius r.
From these assumptions, it follows that also the function Ξ depends only on the
radial distance from the center through vt(r) and the local velocity distribution of
the field particles. As usual, from eq. (2.1) we can define the characteristic DF
times-scale as

tDF ≡
vt

|dvt/dt|
, (2.3)

so that in our case

tDF(r) =
v3t (r)

4πG2ρ(r)(m+mt)Ξ(r) ln Λ
(2.4)
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where ρ(r) = n(r)m is the mass density of the background. This expression explicitly
shows that the radial dependence of the DF time-scale is shaped by three functions:
the velocity of the test particle, vt(r), the mass density of the field stars, ρ(r), and the
relative number of stars moving slower than vt at any radius, Ξ(r). For simplicity, we
neglect the possible dependence of Λ on radius: at the present level of approximation
this seems a reasonable assumption, due to the logarithmic nature of the associated
term. Note that the function Ξ(r) is sometimes evaluated analytically by assuming
a local Maxwellian velocity distribution for the background particles, determined
by the value of the local velocity dispersion (e.g., Binney & Tremaine 2008). Here
however we avoid this additional assumption, as we compute the function Ξ(r)

directly by counting the number of particles moving slower than vt in the N-body
simulation outputs (see Section 2.3).

2.2.2 Multi-mass case

As described in the Introduction, this study is focused on the case of a system
made by the superposition of different mass components, such as a GC with stars
distributed according to a prescribed mass spectrum. Ciotti (2010) showed that
in such circumstances the DF experienced by a test particle can be significantly
different from that experienced in a single-mass background. Therefore, the natural
question arises of what happens in a GC, where the mass spectrum is associated
to the initial mass function (IMF), and the dynamical evolution of the GC leads to
a redistribution (through the tendency to equipartition, e.g. Spitzer 1987) of the
density and velocity profiles of the different mass components. It is easy to realize
that all these trends, weighted by the ratio between the mass of a BSS and the
mass of the field stars in each subcomponent of the cluster, could lead to a quite
complicate radial trend of the total DF.

In the presence of field particles with a mass spectrum, the total DF deceleration
can be split in the individual contributions due to each single population. The ith

population causes a deceleration of the test particle which is again expressed by eq.
(2.1);

dvt
i

dt
(r) = −4πG2 ln Λi ρi(r)(mi +mt) Ξi(vt)

vt
vt3
, (2.5)

where now ρi(r) = ni(r)mi is the local density of the background component with
stellar massmi. Due to the additive nature of scattering effects in the Chandrasekhar
treatment of DF, the total deceleration is obtained from the sum of all the contri-
butions. In particular, from eqs. (2.3) and (2.5) it follows that:

1

tDF(r)
=

Npop∑
i=1

1

tiDF (r)
, (2.6)
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where
tiDF (r) =

v3t (r)

4πG2ρi(r)(mi +mt)Ξi(r) ln Λi

. (2.7)

In eq. (2.6) we assumed that the mass spectrum of the background stars is repre-
sented by the sum of a finite number of components (Npop). However eq. (2.6) can
be easily written as an integral in the case of a continuous mass spectrum (Ciotti,
2010). As a general comment, note that eq. (2.6) indicates that the local value of
the DF time is roughly determined by the smallest among the various tiDF (r).

So far, the description in this Section just reflects the "standard" approach to our
problem: namely, one could construct an equilibrium model for a GC (for example by
solving numerically the Poisson equation for one- and multi-component King (1966)
or Wilson (1975) models), take the radial profile of ni(r) and the local velocity
distribution and compute eq. (2.7). Here, we follow a more realistic approach,
namely we make use of (collisional) N-body simulations of a set of mono- and multi-
mass GC models, capable to provide us with the self-consistent radial behaviors of
all the various quantities needed to evaluate eq. (2.7). This approach, at variance
with the solution of the Poisson problem, allows us to take into account also the
time evolution of the tDF radial profile.

2.3 N-body simulations

Here we describe the set-up of the N-body simulations performed in order to deter-
mine the time evolution of the GC models hosting the BSS population. Since GCs
are collisional systems, very accurate and specifically designed numerical methods
are required to properly describe their time evolution. In practice, we use direct N-
body simulations to obtain a self-consistent description of the phase-space density
distribution of the different components of the GC, and then we apply the equations
presented in Section 2.2 to estimate the radial trend of tDF. We also perform some
simulation where the background stars are all characterized by the same mass, so
that the effects of a mass spectrum can be better appreciated through comparison.
For our simulations we used the direct N -body code NBODY6 (Aarseth, 2003). In
all cases, the simulations are not meant to describe the evolution of a GC from its
formation to the present days. They just provide a simplified “picture” of a current
GC, which could be in a pre- or in a post-core collapse phase.

2.3.1 Mono-mass simulations

The mono-mass system is composed of N = 104 particles with mass m. The initial
conditions (particle positions and velocities) have been generated from a King (1966)
model with central dimensionless potential W0 = 4. We followed the dynamical
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evolution of the cluster up to a final time tf = 1000 in N-body time units (i.e. in
units in which the total mass of the cluster is M = 1, G = 1 and the total energy
is E = −1/4, also known as ’Hénon’ Units; see Aarseth, 2003, Sect. 7.4 and Heggie
& Mathieu, 1986). A characteristic time scale for two-body relaxation is given by
trh(0), the half-mass relaxation time of the initial conditions (e.g., Spitzer, 1987):

trh(0) = 0.138N

√
rh(0)3

GM

1

ln(0.4N)
= 2.2

N

ln(0.4N)

(
rh(0)

1pc

)3/2(
1M�
M

)1/2

[Myr],

(2.8)
where rh(0) is the half mass radius (i.e., the radius containing half the total mass
of the system) at the initial time t = 0. In N-body units trh(0) ' 210 so that in
practice we follow the GC evolution up to tf ' 4.8trh(0). To improve the statistics,
20 different sets of initial conditions have been generated by changing only the
random seed from which the positions and velocities of the particles are extracted
starting from the distribution function. All the realizations have then been combined
at each time-step, shifting the center of mass of each system to a common origin.
This procedure generated “supersnapshots” containing Nsuper = 2 × 105 particles.
The simulations have been run on a dedicated workstation, and each simulation in
the mono-mass case took approximately 3 hours (thanks to the use of a GPU card).

2.3.2 Multi-mass simulations

As described in Section 2.2, in order to determine the time evolution of the radial
trend of tDF for the population of BSSs in a multi-mass GC, we need the distribution
function of each stellar component of the cluster, i.e., the associated density profile
and its velocity distribution. Of course, some educated guess could be used to
describe the radial profile of the velocity distribution (e.g., to solve the associated
Jeans equations and use the resulting velocity dispersion in the local Maxwellian
approximation), but here we prefer to use direct N-body simulations that allow
to compute in a self-consistent way the evolution of the structural and dynamical
properties of the different components.

The modelization of a mass-spectrum with a necessarily limited number of parti-
cles imposes some constrain in the choice of the number of mass bins. Of course, the
larger is the number of bins, the finer is the spectrum. However, to avoid too little
numbers of particles in each bin as a consequence of an excessive partition among the
field particles, as well as to understand more clearly the contribution of the various
mass ranges (at the various radii) to the resulting DF, we represent the mass spec-
trum as the superposition of three different populations with a total number of stars
N1, N2, and N3. The masses of the individual stars in each population are m1, m2,
and m3 respectively, with m1 being the smallest value, m2 = 2m1 and m3 = 3m1.
Therefore, N = N1 + N2 + N3 and m1 = M/(N1 + 2N2 + 3N3), where M is the
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total mass of the cluster. The three populations are aimed at grossly representing
the main populations of field stars in a present-day GC, namely low-MS stars (with
mass m1 ' 0.3M�), intermediate-MS objects (m2 ' 0.6M�), and TO and giant
stars (m3 ' 0.9M�). As in the mono-mass simulations, the total initial number of
stars is N = 104, with the three components counting N1 = 8500, N2 = 1200 and
N3 = 300 particles, respectively. This choice is a reasonable compromise between
the description of a realistic case, and the need of a large statistical sampling for
the less numerous population (m3) in order to avoid noise-dominated results.

The initial positions and velocities of all particles in each of the three groups
are randomly extracted from the same King (1966) distribution function, i.e., no
initial mass segregation is assumed. This choice is made both to avoid an additional
degree of freedom (an unconstrained amount of mass segregation) and because it is
justified by the flat BSS distribution observed in ω Cen, Palomar 14, NGC 2419 and
NGC6101 (see Ferraro et al., 2012; Dalessandro et al., 2015, and Chapter 1). The
system is also fully isolated, with no primordial populations of binaries or multiple
systems.

In order to improve the statistics, as in the mono-mass case, we generated 20

sets of initial conditions by varying only the random seed and we combined all the
runs together at every extracted snapshot, thus generating supersnapshots made
of Nsuper ' 2 × 105 stars (this number varies slightly during the evolution due to
the loss of unbound particles). All the simulations have been stopped at the time
tf ' 10trh(0), with trh(0) = 190 in N -body units. In these multi-mass cases, the
half-mass relaxation time is again computed by using eq. (2.8). We extracted a
snapshot every 5× 10−3trh(0), thus we have guaranteed a good accuracy in tracking
the cluster evolution. Three different values of the King dimensionless potential
(W0 = 4, 6, 8) have been considered for the multi-mass simulations, so in total we
ran 60 simulations in the multi-mass case.

2.4 Results

2.4.1 Mono-mass case

In the mono-mass case, the DF time-scale of a test particle of mass mt = 4m (m
being the mass of the background stars) has been evaluated by using eq. (2.4).
In order to extract from the simulations the radial profiles of vt(r), n(r) and Ξ(r)

entering eq. (2.4), we considered equally populated radial bins (i.e., 100 concentric
spherical shells, each enclosing 2000 particles of a given supersnapshot). This choice
has the useful property of maintaining constant the error bars of the number density
over the whole radial range, thus reducing the effects of random fluctuations. This
choice also implies a finer sampling of the innermost regions as the time passes,
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because the density progressively increases in the core of the GC. The number density
profile of the field component, n(r), is then given by the number of particles in each
radial bin divided by the volume of the shell. The circular velocity of the test
particle, vt(r), is trivially computed by using eq. (2.2). Finally, the local estimate
of Ξ(r) in each radial bin is obtained by normalizing the number of background
particles in the given radial bin that are slower than vt(r), to the total number of
background particle in the same bin.

The resulting radial trend of tDF at four representative times is shown in fig.
2.1, where the radial distance is expressed in units of the half-mass radius at that
time rh(t), and the time is normalized to the instantaneous half-mass relaxation
time, trh(t). Fig. 2.1 clearly shows that tDF maintains a monotonic radial trend
at increasing time, in agreement with simple expectations. We see also that, as
the dynamical evolution of the system proceeds, tDF decreases (i.e., DF becomes
more efficient) in the central and external regions, while the effect is opposite at
intermediate radii. This behavior is mainly due to the time evolution of the mass
density (see fig. 2.3), which progressively increases with time in the innermost
and outermost regions, (the former being due to the core-contraction, the latter
due to the related cluster halo expansion), while it tends to decrease on the radial
interval −0.3 . log(r/rh) . 0.3 (consistently with an evolution towards a higher
cluster concentration, resulting in a decrease of rh). Indeed the density profile is the
primary driver of the shape of tDF(r) at all times, while the other terms entering eq.
(2.4) provide a negligible contribution. This is due to a more significant evolution
of ρ(r) = mn(r) with respect to those of Ξ(r) and v3t (r), as is clearly apparent in
fig. 2.2. Therefore, the mono-mass simulations show that a radial non-monotonicity
of tDF cannot explain the observed BSS-nRDs and confirm the scenario adopted by
Ferraro et al. (2012) where the cause is, instead, a monotonic increase of the radius
at which the cluster age coincides with tDF(r).

2.4.2 Multi-mass case

In the multi-mass case, the DF time-scale has been computed by evaluating each
term in eq. (2.6) associated to each one of the three stellar components considered in
the simulations described in Sect. 2.3.2, and by setting the BSS mass at mt = 4m1.
To avoid large fluctuations due to the low number statistics of the most massive
component (which counts only 3% of the total number of particles), the radial
binning has been chosen by imposing that at least ' 200 stars of mass m3 are
included in each shell and that the total number of bins is always Nbin ≥ 19. Thus,
at odds with the mono-mass case, the total number of particles in each shell is
not constant. The number density profile of each mass component, ni(r), has been
computed as in the mono-mass case (see Sect. 2.4.1), while the circular velocity of
the test particle, is again trivially computed from eq. (2.2). The velocity factors
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Figure 2.1: Time evolution of the radial profile of the DF time-scale, tDF, for the mono-mass
system with central dimensionless potential W0 = 4. The four curves correspond to four different
times of the simulation (see labels), from t = 0 to the final time tf = 4.8 trh(0). As explained
in the text, the DF time-scale is normalized to the instantaneous half-mass relaxation time, while
the radius is in units of the instantaneous half-mass radius rh. The increase of the probed radial
range at large radii with time is due to the decrease of rh, while in the central regions the different
extension is due to the fixed number of stars assumed to define the radial bins (see the text).

Ξi(r) in each radial bin have been computed by normalizing the number of stars in
the ith mass group that move slower than vt(r), to the total number of particles of
the same mass group in that radial bin.

The results obtained for the three considered values of the dimensionless potential
(W0 = 4, 6, 8) and four different times are plotted in fig. 2.4. In particular, we show
tDF(r) at the initial time of the simulation (t = 0) and for three snapshots around
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Figure 2.2: Mono-mass case. Radial trend of the DF time-scale (thick solid line, eq. 2.4) at
the four representative times in Figures 2.1 and 2.3. In the plots we also show the three radially
dependent terms contributing to the final value of tDF (v3t : dotted line, 1/ρ: dashed line, 1/Ξ: thin
solid line). All quantities are given here in code units, and from eq. (2.4) it follows that log(tDF)
is just given (modulo an additive constant) by the sum of the three quantities.

the “core-collapse time” tcc, defined as the time at which the Lagrangian radius
r10 (i.e., the radius containing 10% of the total mass) reaches its minimum value.
For reference, we notice that tcc ' 3.6 trh(0), 2.5 trh(0), 0.6 trh(0) for W0 = 4, 6, 8,
respectively. The radial behavior of the DF time-scale is plotted both for each
mass-component separately (color lines), and combining the effects of the three
background mass components according to eq. (2.6) (thick black lines).

Since the initial conditions for all mass-groups were built from the same King
model properly scaled only for the adopted number of stars, at t = 0 the radial
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Figure 2.3: Time evolution of the background mass density profile ρ(r) of the cluster from the
initial time t = 0 to the final time tf = 4.8 trh(0), in the mono-mass case derived from the initial
conditions with W0 = 4.

profile of tDF has the same qualitative behavior for any group and its value at any
radial distance decreases for decreasing particle mass, because lighter stars are by
far the most numerous and thus dominate the local mass density.

At all evolutionary times, as for the mono-mass simulations, also in this case
the mass density is the main driver in shaping tDF(r): the local value of tDF(r) is
essentially determined by that of the dominant contributor to ρ(r). In fact, due to
energy equipartition, the most massive particles progressively migrate toward the
center, while the lightest component expands outward. As a consequence the total
mass density is mainly contributed by the heaviest mass-group at small radii, while
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.

Figure 2.4: Radial profile of tDF in the multi-mass simulations, plotted for each mass-component
separately (red: m1, blue: m2, green: m3) and from the combined effects of the three background
mass components according to eq. (2.6) (black lines). The different panels are snapshots taken at
t = 0, 0.5, 1, and 2.5 tcc, where tcc is the fiducial core-collapse time of the system (see Section 2.4.2).
Panels from left to right show, models with: W0 = 4, 6, 8. The radial distance from the center
and tDF are normalized, respectively, to the instantaneous half-mass radius and the instantaneous
half-mass relaxation time computed for the system as a whole.

it is dominated by the m1 particles in the outskirts, and the radial profile of tDF is
thus driven by 1/ρ3(r) and 1/ρ1(r) in the two respective radial regions. In addition,
from t = 0 to t = tcc, DF becomes increasingly more efficient in the center (i.e.,
the value of tDF at fixed small radii becomes smaller) because also the central mass
density increases, due to the segregation first of m3 particles and then also of m2
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stars1. The increase of tDF(r) at t = 2.5 tcc, is due to a late re-expansion of the
system (corresponding to a decrease of the mass density).

Fig. 2.4 also shows that the radial profile of tDF is qualitatively the same for
all values of W0 (i.e., independently of the cluster concentration) and it always
monotonically increases with radius, as in the mono-mass case. Our simple analysis
then shows that the presence of a mass spectrum does not induce non-monotonic
behaviors in the DF time-scale.

2.4.3 Equivalent Classical System

The previous analysis showed that a mass spectrum in a GC does not lead to a
non-monotonic behavior of tDF(r), so that the results are in qualitative agreement
with the mono-mass case. But what about the absolute value of tDF? In fact,
Ciotti (2010) showed that a significant overestimate of the DF time-scale can arise if
approximating a multi-mass system with a single component only. In our case this
check can be done by introducing the definition of the Equivalent Classical System
(ECS):

• the number density in the ECS is equal to the total number density of the
multi-mass case:

nECS(r) =

Npop∑
i=1

ni(r); (2.9)

• the mass of the field particles in the ECS (mECS) is equal to the average field
mass of the multi-component case:

mECS =
1

N

Npop∑
i=1

miNi (2.10)

where N is the total number of stars in the multi-mass system;

• the velocity dispersion of the ECS is equal to the equipartition velocity of the
multi-component case.

The last property is non relevant in our case, since we compute the function Ξ(r)

directly from the simulation outputs, as the fraction of all the stars slower than
the test particle. In order to compare the DF time-scale obtained in the ECS
approximation with the exact determination for the multi-mass case discussed in
the previous section, we used eq. (2.4) by assuming n(r) = nECS(r), mt = 4 m1 and

1The progressive increase of the central density, combined with an expansion of the outer layers
are also responsible for the enlarged radial sampling (both toward the center and in the outskirts)
for increasing evolutionary times, as a consequence of by the adopted binning procedure.
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m = mECS ' 1.2 m1. To computeM(r) entering the definition of vt, we counted the
number of particles within the radius r and multiplied it by mECS. The comparison
between the DF time-scale in the multi-mass and in the ECS cases for W0 = 8

is shown in fig. 2.5 (solid lines). As expected, no differences are found at t = 0,
when mass-segregation has not played any role yet. This is due to the fact that
the mass density is nearly the same in the two cases, because the three components
have equal radial distributions and mECS well corresponds to the true mean mass at
all radii. When mass-segregation takes place, a systematic underestimate of DF in
the ECS case becomes apparent in the central regions, where tDF can be almost a
factor of 3 larger than in the true multi-mass system. This discrepancy is due to the
systematic underestimate of the ECS local mass density with respect to the multi-
mass one. In fact, as a consequence of mass segregation, the number density at small
radii is mainly contributed by the heaviest stars, and since m3 is significantly larger
than mECS, the ECS mass density in these regions is considerably smaller than the
multi-mass one. A smaller density implies a lower efficiency of DF, thus bringing
to larger values of tDF in the ECS with respect to the multi-mass case. Beyond
the half-mass radius, the ratio between the values of tDF in the two cases becomes
nearly flat around 1. This is because beyond the half mass radius no appreciable
mass-segregation has taken place during the simulated time, and so the local average
mass is nearly equal to mECS in that region, as in the initial conditions.

As a final test we modified the definition of ECS in requiring that the mass den-
sity in this approximation is equal to the true mass density of the multi-component
system at any radius:

ρECS(r) = ρ(r) =

Npop∑
i=1

ρi(r). (2.11)

As expected the difference between the two representations is considerably reduced
and the underestimate of tDF is about half that previously found (see the dashed
lines in fig. 2.5). Therefore, we conclude that special attention should be paid to
arguments based on specific requests about the value of tDF, as estimate based on
the average properties of the GC can be off by a factor of 2 or 3, factors that are
quite important for phenomena happening on time scales of the order of the Hubble
time.
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Figure 2.5: Ratio between the DF time-scale computed in the ECS approximation and for
the multi-mass system, as a function of radius (in units of the total half-mass radius), for three
evolutionary times (see labels) and for the model with initial conditions W0 = 8. The thick solid
lines show the results obtained under the assumption that the number density of the ECS system
equals that of the multi-mass case: nECS(r) = n(r). The dashed lines refer to the approximation in
which the mass density of the ECS system is equal to that of the multi-mass case: ρECS(r) = ρ(r).
The results are essentially the same W0 = 4 and W0 = 6. Notice how the number average estimate
can be off by a factor up to 3 in the central regions, while a much better estimate is obtained by
using the mass density average.



3Chapter

Semi-analytical models and preliminary N-
body simulations

3.1 Introduction

In chapter 2, we studied the evolution of the DF time scale in a dynamically evolving
multi-mass GC, and we excluded the possibility that the bimodal shape of the BSS-
nRD in Family-II GCs is due to a non-monotonic radial behaviour of this quantity.
Now, the idea is to model all the ingredients contributing to BSS segregation, step
by step; the aim is to isolate all the important effects, one by one, avoiding sudden
complications to the model that could lead to an incomprensible superposition of
all the various effects that take part in this process (tidal field, primordial binaries,
binary evolution, large number of particles, impact of a BH subsystem, ect.). Hence,
to properly address the problem, as a first step we need semi-analytical models
coupled with preliminary N-body simulations. For this reason we started with a
semi-analytical approach with some basic assumptions.

In Sect. 3.2 we present the assumptions of our the semi-analytical model, while
the results of this approach are presented in Sect. 3.2.1. Preliminary N-body are
presented in Sect. 3.3, followed by their results in Sections 3.3.1 and 3.3.2. Section
3.4 concerns our first simulation with a larger number of particles, the results of
which are presented in Sect. 3.5.

3.2 The semi-analytical model

We consider an isolated cluster. The mass spectrum is modeled as sect. 2.3.2 of the
previous chapter, considering only three species meant to represent low-MS stars,
reference population stars (REF) and BSSs. The first component is the lightest
one and primarily contirbutes to both the overall gravitational potential and DF.
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The REF population represents intermediate-mass objects, corresponding to TO,
RGB and or HB stars in real GCs. BSSs are the most massive component and their
number counts are normalized to those of the REF stars, as it is routinely done in
obsevational studies.

The system is subject to a static gravitational field (g), due to MS stars only,
which play the role of the field stars. These objects have the same mass mf and
are assumed to have a spherically symmetric spatial distribution and an isotropic
velocity dispersion distribution. Their distribution function f(r, v) is defined such
that f(r, v)drdv is the number of these stars in the phase-space volume element drdv
(with r = |r| and v = |v|). Under these assumptions, g is constant with time. With
this field, the DF deceleration on a test star with mass mt moving in a background
of field stars with masses mf is determined by the Chandrasekhar (1943) formula

aDF = −4π ln ΛG2mf (mf +mt)ψ(r, v)v−3v,

where
ψ(r, v) = 4π

∫ v

0

f(r, u)u2du,

is the number density at radius r of field stars moving slower than the test star. We
neglected the self-gravity acting on all of the mass components and any interaction
between test stars. We assumed that the distribution function of test stars is de-
scribed by a Plummer (1911) model. With this assumption, the gravitational field
is

g(r) = − GM

(r2 + r02)3/2
r,

whereM is the total mass of the field stars and r0 is the characterstic length scale of
the Plummer model. The DF deceleration acting on BSSs and REFs is completely
determined once the values for mf ,mt and r0 are chosen. We recall from chapter 2,
sect. 2.3.2, that we assigned to BSSs a mass of 3mf and to the REF stars a mass
of 2mf .

After this assumptions, we generated a set of initial conditions (positions and
velocities) the two evolving components (BSSs and REFs) assuming the same total
number of stars of each species as in Sect. 2.3.2: NBSS = 300 and NREF = 1200.
They follow the same Plummer distribution function as the field stars; this choice
is in agreement with the observations, considering that, for dynamically unevolved
clusters (Family-I GCs), all the populations are observed to follow the same radial
distribution.

Starting from these initial conditions, we time-integrated the orbit of each test
star, under the total acceleration a = g + aDF, using a second order leapfrog algo-
rithm (e.g., Hockney & Eastwood, 1988) with a constant time step. At given times,
a snapshot of the system was extracted and the projected number distribution of
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the two heavier stellar species was derived in a series of concentric annuli around
the cluster center, to build the radial distributions of the two populations.

3.2.1 Results of the semi-analytical model

We computed the double normalized ratio of BSSs with respect to the fraction of
REF stars i.e.: RBSS(r) ≡ (nBSS(r)/NBSS)/(nREF(r)/NREF). Since the REF popu-
lation is distributed as the cluster luminosity, this is consistent with the defintion
provided in Chapter 1 and first introduced by Ferraro et al. (1993), where the frac-
tion of BSSs is normalized to the fraction of sampled light. In Fig. 3.1 we plot RBSS

for four evolutionary times. The radius is normalized to the Plummer length scale
r0, while times are expressed in units of the half-mass relaxation time trh, i.e., the
relaxation time computed at the half-mass radius (Binney & Tremaine, 2008) of the
field stars. The initial flat distribution (upper panel in Fig. 3.1) is a consequence
of our initial conditions, for which all the populations share the same distribution
function, by construction. In less than one trh, however, the BSS radial distribution
becomes rapidly bimodal (second panel from the top in Fig. 3.1); moreover, its
minimum progressively moves outward with time (see the drift of the arrow from
the second to the bottom panel of Fig. 3.1). At the end of the simulation, however,
the shape of the BSS radial distribution becomes almost flat again, with the central
peak disappearing.

Part of these results are in accordance, at least qualitatively, with the scenario
depicted by Ferraro et al. (2012): they show that DF by itself can give rise to
a bimodal BSS distribution. However, the central peak which forms very rapidly
at the early stages of the evolution, does not last over time, in contrast with the
observations. The reason of this dumping, is that DF acts on both REFs and BSSs
indefinitely, causing almost all the test stars to fall in the innermost radial bin,
giving a double-normalized ratio which is nearly 1 (namely, the innermost five bins
in the bottom panel of Figure 3.1 contain ∼ 95% of the total test stars).

To quantify the level of bimodality of the distribution, we defined the parameter
b as the best-fit slope for RBSS in the region of the rising branch, from the radius of
the minimum rmin up to rmin + 4∆r (with ∆r being the minimum threshold to the
width of each radial bin). Empirically, with a visual inspection of the snapshots, it
turns out that bimodality in the double normalized-ratio can be well appreciated
when b & 0.01.

For those snapshots satisfying the "bimodality" condition (b & 0.01), we plot-
ted the time evolution of the minimum, which is shown in Fig. 3.2. Althought
the fluctuations are quite large, the outward migration of the minimum is evident
from the figure, in accordance with what a visual inspection of Fig. 3.1 suggested,
supporting, at least qualitatively, the dynamical-clock scenario.
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Figure 3.1: Double-normalized ratio (RBSS) between the projected number of BSSs and that of
REFs, in various radial bins around the cluster center and at four different evolutionary times (see
labels), from the semianalytical model. Time is normalized to the half-mass relaxation time trh.
The solid curve in each panel is the running average of the RBSS radial behavior. Also labeled is
the slope (b) of the rising branch beyond the dip (see text). The number of radial bins is variable
due to the employed adaptive binning method. From Miocchi et al. (2015).

3.3 Preliminary N-body simulations

As a step forward to adopt a more realistic approach, we investigated the problem
by means of collisional N-body simulations. Hence, we studied the behaviour of
RBSS and the evolution of rmin in the same set of simulations already introduced in
chapter 2. We will directly present the results of this part of the work, since the set-
up of the simulations is already known by the reader. The only difference is in the
association between GC stars and the simulated particles: the N1 = 8500 particles of
mass m1 represent MS stars with average mass of ∼ 0.4M�, the N2 = 1200 particles
with mass m2 = 2m1 are assumed to be the REF population (hence, MS turnoff,
RGB, or HB stars), while the remaining N3 = 300 particles with mass m3 = 3m1

are now intended to be BSSs.
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Figure 3.2: Time evolution of the position of the absolute minimum, rmin (dots), normalized to
the Plummer characteristic scale radius, for all the snapshots in which RBSS(r) has an appreciable
bimodality (b ≥ 0.01; see the text). The solid line is a fitting ∼ t2 law.From Miocchi et al. (2015)

3.3.1 Results

We first start showing the overall evolution of the system. In Figures 3.3–3.5, the
evolution of three representative Lagrangian radii is shown for the three mass com-
ponents and for each of the initial W0 values. We note that the heavier components
(BSSs and REFs) in the internal regions contract (see R10 in the figures), follow-
ing the core contraction; this process injects kinetic energy to the halo (because of
energy exchanges during close encounters between halo stars and core stars) which
reacts with a monotonic expansion (see the behaviour of R99 in the figures). This is
also the cause for the lack of contraction of the 10% Lagrangian radius of the MS
stars. Overall, the dynamical time-scales are shorter for the heavier components.
All these results well agree with what expected from the well known collisional relax-
ation processes in systems with a mass spectrum (e.g., Heggie & Hut, 2003; Gürkan,
Freitag & Rasio, 2004; Khalisi, Amaro-Seoane & Spurzem, 2007). With dotted line,
we also show the time evolution of the core radius of the reference population, de-
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fined as the radius at which the surface density profile (rising from the King model
that better fits the central regions) reaches the half of its central value. This choice
is made to be as close as possible to the core radius adopted in observational works
(e.g., Ferraro et al., 2012), and it allows to meaningfully compare our results with
the observations. Incidentally, we report that, at least within the CC time, the REF
core radius is well described by the 10% Lagrangian radius of the same population.
The time at which rc (as well R10) changes the slope from negative to positve is the
time that we get as representative of the CC time (which occurs at t ' 3.7, 2.5 and
0.7 trh0 for W0 = 4, 6 and 8 simulations, respectively).

Figure 3.3: Time evolution of the Lagrangian radii of the three mass components in simulations
with W0 = 4. From top to bottom: R99, R90, R10, wich are the radii containing the 99, 90 and
10% of particles, respectively. Blue line: BSSs; red-dashed line: REFs; black-dashed line: MSs;
black-dotted line: core radius rc(t) of REF stars. From Miocchi et al. (2015).

3.3.2 Bimodality in RBSS

Now we focus on the behaviour of the BSS double-normalized ratio in our simu-
lations. In Figure 3.6, RBSS is shown at four different evolutionary times for the
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Figure 3.4: The same as Fig. 3.3 for the simulations with W0 = 6. From Miocchi et al. (2015).

simulations with W0 = 6. Obviously, the initial radial profile of RBSS is flat around
1, by construction (upper pannel of the figure); then, a bimodal shape develops,
with the central peak growing as the evolution proceeds and the BSSs segregate
toward the cluster centre; at odds with the semi-analytical model, this feature is
stable and long lasting. Meanwhile, a dip forms in the intermediate regions, with
its width increasing with time. Moreover, the radius of the minimum (rmin) drifts
outward with the dynamical evolution of the system, reaching very external regions
at the late stages of the simulation and leading to a monotonic distribution at the
end of the run (see the bottom panel of Fig. 3.6), in agreement with what observed
in Family III-GCs (Ferraro et al., 2012).

Similar general comments also apply to the case of the simulations starting with
W0 = 8, for which the behaviour of the double-normalized ratio is shown in Figure
3.7. In this case, the bimodality is even more apparent, as well as the increasing
depth of the minimum.

All these features are in good qualitative agreement with the observations (e.g.,
Ferraro et al., 2003b, 2012). However, the progressive decrease of BSSs in the
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Figure 3.5: The same as Fig. 3.3 for the simulations with W0 = 8. From Miocchi et al. (2015).

external regions makes the detection of the minimum (i.e., of the bimodality) quite
difficult in some snapshots.

In the simulations withW0 = 4 no significant bimodality develops at any time:RBSS

is always a monotonic decreasing function of the radius showing just a central peak.
This behaviour (as well as the fact that bimodality is better apreciated in theW0 = 8

than in the W0 = 6 case) can be well understood by considering that the DF time-
scale profile mainly depends on the density profile (see chapter 2 and Alessandrini
et al., 2014). Thus, since low-concentrated systems have more extended cores (where
the density profile is essentially flat) also the region in which the DF time-scale is
constant is larger than in high concentration clusters (which, instead, have small
cores). This causes DF to act more rapidly and less gradually (in terms of both
time-scales and size of the interested region) in clusters with low-concentration: as
a consequence, DF tracers (as the RBSS bimodality and the outward migration of
rmin) are more difficult to be detected in low-concentration systems. However, RBSS

is observed to be bimodal also in low-W0 GCs, making the lacking of bimodality in
the W0 = 4 simulations worth to be investigated.
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Figure 3.6: Profile of the double-normalized ratio (dots) for the W0 = 8 simulations, at four
different evolutionary times (see labels). Dashed line: initial value of RBSS (' 1, which means
no mass segregation); solid curve: running average of RBSS. The arrow marks the radius of the
absolute minimum, rmin. The level of bimodality (b) is also reported (see labels). From Miocchi
et al. (2015).

3.4 The first N = 105 simulation

As a further test, we built a simulation by increasing the number of particles from
N = 104 to N = 105. This choice allows us to better describe the collisionality
of the system, which depends on the number of particles. In this case, due to the
high computational costs, we ran only one simulation, with W0 = 8. This choice
arises from the verification that DF effects are more gradual and visible for high
concentration cases (see the discussion in Sect. 3.3.2).

Also for this simulation, the mass spectrum is modeled with three different mass
bins that contain low-MS stars, REFs and BSSs, with numbers NMS = 96700,
NREF = 3000 and NBSS = 300.
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Figure 3.7: Same as Fig. 3.6 for the simulations with W0 = 8. From Miocchi et al. (2015).

3.5 Results of the 105 model

As in Figures 3.3–3.5, in Figure 3.8 we show the time evolution of three Lagrangian
radii for the three mass components, in the case with N = 105 stars. All the
consideration made in Section 3.3.1 for the overall evolution of N = 104 simulations,
still apply to the case N = 105. A notable feature is that in this simulation the CC
time increases by a factor of 2.3, occurring at t ' 1.6trh (the CC time is t ' 0.7 trh
in the 104 particle case with the same W0). This comparison clearly shows that
the 104 particle simulations do not provide reliable characteristic timescales of the
various dynamical processes. However, they are useful for qualitative conclusions.

The evolution of the BSS double-normalized ratio is shown in Figure 3.9: with
respect to the N = 104 simulations, the outward migration of rmin, as well as the
formation and growing of the central peak are more evident in this more realistic
case, prompting us to further improve the realism of the simulations in order to
properly model the BSS segregation process in GCs, and meaningfully compare
numerical results with observational data.
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Figure 3.8: Same as Fig. 3.3 for the case with N = 105 particles (and W0 = 8). From Miocchi
et al. (2015).

Figure 3.9: Same as Fig. 3.6 for the case with 105 particles. From Miocchi et al. (2015).
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4Chapter

More realistic simulations: the impact of
dark remnants

4.1 Introduction

In chapter 3 we made a first attempt to model the evolution of the BSS radial distri-
bution under the action of DF. In Miocchi et al. (2015), we performed simulations
with 104 particles, obtaining qualitative good agreement with the observations. How-
ever, the results are affected by some noisy behaviour and, in particular, we faced
the problem of accurately determining the value of rmin, which suffers from low
number statistics, partially due to the lacking of realism of the initial assumptions.
We can resume some of the weak points affecting the simulations used in chapter 3
as follows:

• Small number of particles (N = 104);

• Unrealistic mass spectrum (only three discrete mass bins);

• Predominant dynamical role of BSSs (they are the most massive objects in the
system, driving the CC and the overall evolution of the cluster).

However, GCs are million-body systems containing stars with different masses dis-
tributed with a mass function, which represents a continuous distribution of mass
instead of a discrete one. Moreover, from the stellar evolution theory, we know that
all stars more massive than the current MS turnoff mass in a GC already exhausted
their thermonuclear burning processes and became either black holes (BHs), or neu-
tron stars (NSs), or white dwarfs (WDs), depending on the initial mass of their
progenitors. Observationally, the presence of WDs and NSs is largely confirmed
(see, e.g., Cackett et al., 2006; Kirsten et al., 2014; Maccarone et al., 2016), and
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very recent results showed that also some stellar-mass BHs is still orbiting the po-
tential well of a few GCs (e.g., Strader et al., 2012; Chomiuk et al., 2013; Miller-Jones
et al., 2015; Peuten et al., 2016). However, at least a fraction of these objects is
predicted to be ejected from the system either at birth (due to supernova explosion
kicks) or later on, through dynamical interactions. Indeed, the exact number of these
objects, especially of NSs and BHs (that we will refer to as dark remnants, DRs), in
present-day GCs is poorly constrained and, during the last 30 years, many authors
have addressed the problem of how many NSs (e.g. Hut, Murphy & Verbunt, 1991;
Drukier, 1996; Davies & Hansen, 1998; Pfahl, Rappaport & Podsiadlowski, 2002;
Podsiadlowski, Pfahl & Rappaport, 2005) and BHs (e.g., Sigurdsson & Hernquist,
1993; O’Leary et al., 2006; Moody & Sigurdsson, 2009; Repetto, Davies & Sigurds-
son, 2012; Morscher et al., 2013; Sippel & Hurley, 2013) are retained during the
evolution of the cluster, in what is called the DR retention problem. In spite of
the uncertainties on their number, DRs are known to play a fundamental role in
the dynamical evolution of GCs; their influence is due to their high-masses, which
cause their rapid segregation toward the cluster centre and the formation of a heavy
subsystem that dynamically interacts with the other "normal" stars, acting as a
source of dynamical-heating from the core to the halo stars (e.g., Breen & Heggie,
2013a,b; Morscher et al., 2015). Hence, a model that aims at properly describing
the dynamical evolution of GCs requires the presence of a population of DRs among
its ingredients.

For all these reasons, as a further step toward more realistic models, we decided to
run a set of simulations that, with respect to those in Miocchi et al. (2015), include
(i) a significantly larger number (N ' 105) of particles, (ii) a much finer mass-
spectrum obtained from the evolution of a Kroupa (2001) Initial Mass Function
(IMF), and (iii) a population of DRs. Since the initial conditions are subject to
the above mentioned retention problem, we performed simulations with different
fractions of NSs and BHs. Moreover, instead of following the evolution of the shape
of the BSS distribution, and try to locate the position of the minimum, here we
define a new parameter able to quantify the level of sedimentation of BSSs toward
the cluster center with no need of binning the data.

In Section 4.2 we present our set of N-body models, describing the initial con-
ditions of the simulations; in Sections 4.3.1–4.3.2 we discuss the time evolution of
the Lagrangian radii and the cumulative radial distributions of BSSs and reference
stars. In Sections 4.3.3 we define a new mass segregation indicator and discuss its
time dependence.
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4.2 N-body models

The simulations exploit the Graphic Processing Unit (GPU) version of the direct
N -body code NBODY6 (Nitadori & Aarseth, 2012) on the BIGRED2 supercomputer
at Indiana University, Bloomington. We performed ten different runs in order to
explore both the effect of various percentages of DRs, and the effect of different
cluster concentrations, on GC dynamical evolution.

The initial conditions have been built as follows. Starting from 99700 stars
belonging to a Kroupa (2001) IMF, in the mass interval m = [0.1, 100]M� and
assuming a metallicity Z = 0.001, we evolved the system for 12 Gyr, by means of the
stellar evolution recipes implemented in the SSE version of the software McLuster
(Hurley, Pols & Tout, 2000; Hurley, Tout & Pols, 2002; Küpper et al., 2011). This
procedure generated a population of WDs and DRs descending from the evolution
of stars with initial masses m > 0.8M�. In particular, NSs have masses peaked
at 1.4M�, with a tail up to 2.5M�, while BH masses range between 2.5M� and
∼ 25M�. To all the runs we also added 300 BSSs, modeled as single particles with
a mass of 1.2M�. The number of BSSs in our runs, although being overabundant
with respect to what observed in real GCs, guarantees enough statistics to limit
stochastic noise in the results. We assume the particles follow a King (1966) model
distribution with no primordial mass segregation. In order to explore the effect of
different concentrations, we have chosen two different values of the King central
dimensionless potential: W0 = 5 and W0 = 8.

With the aim of exploring how cluster dynamics depends on the presence and
content of heavy objects, and to isolate the effect of BHs from that of NSs, for each of
the adopted W0 values we ran five simulations by varying, in the initial conditions,
the percentage of DRs retained within the system: (i) in simulations SW0

0 (with
W0 = 5, 8) no DRs have been retained (hence, BSSs are the most massive objects in
the cluster); (ii) in runs SW0

10 and SW0
30 we assumed that 10% and 30%, respectively,

of NSs have been retained, while all BHs have been ejected; (iii) in simulations SW0
10•

and SW0
30• we assumed that 10% and 30%, respectively, of NSs and BHs have been

retained. The number of NSs, BHs, and BSSs in the initial conditions of each run
are summarized in Table 4.1.

4.3 Results

4.3.1 Evolution of the Lagrangian Radii

We start the presentation of our results with a brief description of the evolution of
the structural properties of our simulated clusters, and the effects of the presence
of DRs. Figures 4.2 and 4.3 show the evolution of the 5%, 10% and 50% number
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Run W0 fDR NNS0 NBH0 NBSS0 NTOT trh0
%

S5
0 5 0 0 0 300 105 1330.5
S5
10 5 10 72 0 300 99161 1325.4
S5
30 5 30 206 0 300 99295 1326.9
S5
10• 5 10 72 19 300 99180 1325.6
S5
30• 5 30 206 67 300 99362 1328.8
S8
0 8 0 0 0 300 105 1471.7
S8
10 8 10 71 0 300 99183 1465.3
S8
30 8 30 200 0 300 99313 1466.9
S8
10• 8 10 71 17 300 99202 1470.6
S8
30• 8 30 200 65 300 99379 1467.8

Table 4.1: Initial conditions of the N-body simulations. For each run, the table lists the adopted
name (column 1), the intial value of the King dimensionless potential W0 (column 2), the initial
retention fraction of DRs (column 3), the total number of NSs, BHs, BSSs and particles of any mass
at t = 0 (columns 4–7), the initial half-mass relaxation time expressed in N-body units (column
8). From Alessandrini et al. (2016).

Lagrangian radii of particles belonging to different populations in the simulations
with no DRs and in those also including BHs, for W0 = 5 and W0 = 8, respectively.
In particular, we compare the evolution of the Lagrangian radii of BSSs (i.e., all the
particles with mass m = 1.2 M�; blue lines), of what we call reference population
(REF), corresponding to all the particles with masses between 0.75 and 0.84 M�
(red lines), and of the overall system, including all particles irrespective of their
masses (grey lines). Moreover, for the runs with BHs, we also show in black the
evolution of the DR population (m > 1.4 M�). The figures clearly show that the
cluster dynamical evolution is highly affected by the presence and amount of DRs,
and also depends on the initial concentration of the system. Quite interestingly, this
is true not only in the innermost cluster regions (as sampled by the 5% and 10%

Lagrangian radii), but the effects also extend much outward, with large differences
even at radial distances including 50% of the populations.

The analysis of the results obtained for W0 = 5 (Fig. 4.2) shows that if no DRs
are present (left-hand column) BSSs drive the cluster toward CC. This is indeed
expected (see also Miocchi et al., 2015), since in that case, BSSs are the most massive
objects within the system. The time evolution of the Lagrangian radii in the cases
where only NSs are retained (namely, simulations S5

10 and S5
30) is very similar to that

with no DRs (thus, we provide no explicit figures for these runs), since the large
majority of NSs has masses comparable to that of BSSs. Hence, the main effect of
including a DR population made of NSs only is that the collapse is driven by these
objects and BSSs segregate just at a slightly slower rate than in the case with no
DRs at all. In the S5

10• and even more in the S5
30• simulations, instead, DRs undergo
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a rapid decoupling from the other populations, forming a subsystem that quickly
sinks toward the centre (see the black curves in the central and the right columns
of Fig. 4.2). Clearly this behaviour is due to the subsystem of BHs, which have
masses significantly larger than BSSs and NSs. Analogous results have been found
and discussed also by Sigurdsson & Hernquist (1993) and Kulkarni, Hut & McMillan
(1993), and again very recently by Banerjee, Baumgardt & Kroupa (2010) and Breen
& Heggie (2013b). Interestingly, the effect of BHs on the time evolution of the BSS
and REF Lagrangian radii is negligible if a retention fraction of only 10% is assumed.
In fact, their value in the S5

10• run is almost the same, at any fixed value of time t/trh0,
as in the S5

0 (and the S5
10) case. In the S5

10• simulation, after the initial phase of rapid
DR decoupling, the inner Lagrangian radii of these heavy objects stay approximately
constant up to ∼ 2.5 trh0, then decrease steadily in time, closely followed by the
Lagrangian radii of BSSs, which therefore start to participate in driving the overall
cluster evolution, similarly to what happens in the S5

0 run. Instead, for fDR = 30%

the effect played by BHs is much stronger. After the initial decoupling from the rest
of the system, DRs evolve at almost constant Lagrangian radii for approximately
6 initial relaxation times, while the other stellar components migrate much more
gently inward: the Lagrangian radii of all populations are systematically larger, at
the same evolutionary time, with respect to what observed in the S5

10• case, and
the difference between the Lagrangian radii of the BSS and the REF populations is
smaller. The Lagrangian radii of BSSs start to approach those of DRs at ∼ 6 trh0,
while the same happens much earlier in the S5

10• run. The overall system reacts with
a continuos expansion of r50 (grey line in the bottom right panel). The presence
and the amount of BHs in the system has a strong impact on the rate at which
the dynamical evolution of BSSs and REFs proceeds: in particular, the evolution
of the level of mass segregation of the BSS population is increasingly inhibited and
delayed as the adopted DR retention fraction increases. In fact, while the time of
CC of the visible component is ∼ 4.4 trh0 if no DRs or only NSs are present, in
the simulations including also BHs, it increases to ∼ 5.2 for a 10% DR retention
fraction, and further to ∼ 7.5 for fDR = 30%. These behaviours can be explained
as an effect of dynamical heating due to the population of BHs, which inhibits mass
segregation. It is interesting to note that the inibhition of the mass segregation,
due to the heating from a BH subsystem, resembles what Baumgardt, Makino &
Ebisuzaki (2004), Trenti et al. (2007) and Gill et al. (2008) have found in the presence
of an intermediate-mass black hole (IMBH). A recent study by Peuten et al. (2016)
has also shown that the lack of segregation observed in NGC 6101 might be due to
a population of BHs, a result consistent with our findings.

Similar general comments as above also apply to the case of a much more con-
centrated system (W0 = 8, in place ofW0 = 5), where the impact of DRs including a
population of BHs is even more apparent (see Fig. 4.3). Overall the time evolution
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is much faster than in the W0 = 5 case, indicating that increasing the cluster con-
centration accelerates the dynamical evolution of the system. If DRs are absent, the
inner Lagrangian radii (r5 and r10) of both BSSs and REF stars rapidly decrease in
time until the CC (the rapid fluctuation in r5 and r10 are simply a consequence of the
ejection of BSS binaries), while r50 of the REF population remains almost constant
during the entire evolution. If NSs and BHs are included (central and right-hand
columns) all populations segregate much more slowly and the difference between
the BSS and the REF Lagrangian radii is smaller at any fixed evolutionary times.
In the S8

30• run, DRs rapidly decouple from the rest of the system, then their inner
Lagrangian radii expand significantly and start to re-contract only after ∼ 4 trh0,
closely followed by BSSs.

Hence, according to what expected, massive objects (especially stellar-mass BHs)
are found to play a fundamental role in the cluster dynamics, driving the CC of
visible stars and determining its timescale.

4.3.2 Cumulative radial distributions

The time evolution of the Lagrangian radii discussed in the previous section provides
precious information about the processes of segregation and expansion of various
stellar populations. Although our simulations are still idealized and not meant to
be directly compared to observational data, it is important to identify and follow
the evolution of mass segregation indicators that can be more easily adopted in ob-
servational studies of the segregation of BSS and REF populations. Many previous
studies have shown that different GCs are characterized by different cumulative ra-
dial distributions, corresponding to different levels of BSS segregation in the central
regions (e.g., Ferraro et al., 2004). Here we therefore study how the cumulative
radial distributions of BSSs and REFs depend on the simulated cluster properties.
In order to highlight the inner distance scale, where the effect of DF is the most
evident, we choose to express the radial distance from the cluster centre in loga-
rithmic units. Since in all simulations we assume no initial mass segregation (see
Sect. 4.2), at t = 0 all populations are perfectly mixed and the BSS and the REF
distributions are superimposed. However, as time increases, BSSs migrate toward
the cluster centre more rapidly than the REF population (see Figs. 4.2 and 4.3) and
the two corresponding cumulative radial distributions start to separate from each
other.

For illustrative purposes, Figure 4.4 shows the cumulative radial distributions of
BSSs and REFs (blue and red lines, respectively) for the S8

30• run, at four different
evolutionary times (normalized to the initial half-mass relaxation time of the run;
see labels in the figure). For the sake of comparison, the radial distance is expressed
in units of the half-mass radius of the REF population at the considered time. A
notable feature in the figure is that the separation between the blue and the red
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Figure 4.2: Evolution of the Lagrangian radii containing 5%, 10% and 50% (top, central and
bottom panels, respectively) of the relative number of DRs (black), BSSs (blue), REF stars (red),
and particles of any mass (grey), for the three runs with W0 = 5 that include BHs. Time is nor-
malized to the initial half-mass relaxation time trh0 of each run (see Table4.1). From Alessandrini
et al. (2016).

lines increases with time, with the BSS population always being more centrally
segregated (i.e., with a steeper cumulative distribution) than the REF stars. This
is due to DF that preferentially affects the heavier component (BSSs, with respect
to REFs), making these objects more rapidly migrate toward the cluster centre.

Figure 4.5 compares the cumulative radial distributions obtained for the four
models including BHs (S5

10•, S5
30•, S8

10• and S8
30•) at a fixed evolutionary time, t =

2.9 trh0 (when the S8
10• simulation stops). In line with what discussed in the previous

sections, we find that BSSs are more centrally segregated for the lowest DR retention
fraction (at fixed value of W0) and for the largest cluster concentration (at fixed DR
retention fraction). In particular, the accelerating effect on mass segregation due to
a larger cluster concentration is clearly dominant in the case of a small population
of DRs (10% retention fraction), while it is almost cancelled or even overcome if
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Figure 4.3: Same as Figure 4.2 for the runs with W0 = 8 that include BHs. From Alessandrini
et al. (2016).

DRs become sufficiently numerous. In fact, for a fixed 30% retention fraction the
cumulative radial distributions in the W0 = 5 and W0 = 8 cases are quite alike,
with the latter becoming different from zero at only slightly lower radii than in the
W0 = 5 case (compare panels labeled with S5

30• and S8
30• in Fig. 4.5). Such an effect

is even more apparent from the comparison of the S5
10• and S8

30• radial distributions:
in spite of a smaller concentration (and thanks to a lower fraction of DRs) both
stellar populations are more concentrated and the two cumulative distributions are
more separated in the former case (S5

10•).

4.3.3 A new indicator of BSS segregation: A+

The results discussed above suggest that the separation between the cumulative
radial distributions can be used to measure the level of BSS central segregation
with respect to a lighter cluster population taken as reference. We quantitatively
define this new indicator as the area between the BSS and the REF cumulative
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Figure 4.4: From top to bottom, time evolution of the cumulative radial distributions of BSSs
(blue lines) and REF stars (red lines), for the S8

30• simulation. The radial scale is logarithmic,
with the radius normalized to the half-mass radius of the REF population measured at any con-
sidered evolutionary time (see labels). At t = 0 the two populations are perfectly mixed and their
cumulative radial distributions superimposed. For increasing time, the two distributions become
more and more separated due to the effect of mass segregation that preferentially segregates the
heavier objects (BSSs) toward the clustre centre. The same qualitative trend is observed in all
simulations. From Alessandrini et al. (2016).

radial distributions in the φ(r) − log(r/rhREF) plane, and we name it A+ with the
following definition:

A+(x) ≡
∫ x

xmin

φBSS(ξ)− φREF(ξ)dξ. (4.1)

In order to allow meaningful comparisons with the observational data, the radial
distance is normalized to the half-mass radius of the REF stars. For perfectly mixed
populations (as it is the case at t = 0 in our models), such a parameter must be
equal to zero. Then, A+ is expected to become positive because the effect of DF is
stronger on BSSs (heavier) than on the (lighter) REF stars, and the cumulative radial
distributions of the two populations therefore start to separate from each other.
According to the scenario presented by Ferraro et al. (2012), as time passes, the
value of A+ is expected to increase progressively, since BSSs orbiting at increasingly



66 Chapter 4. More realistic simulations: the impact of dark remnants

Figure 4.5: Comparison among the cumulative radial distribution of BSSs (blue lines) and REF
stars (red lines) at the same evolutionary time (t = 2.9 trh0) in the four runs including BHs (see
labels). The highest central concentration of BSSs (testified by both the lowest inner radius and
the largest separation between the two distributions) is found for the S8

10• run (which shows the
fastest evolution: cfr with Figs. 4.2). The smallest central segregation of BSSs is observed in
the S5

30• cluster (which, in fact, shows the slowest dynamical evolution). From Alessandrini et al.
(2016).

larger distances from the cluster centre sink to the bottom of the potential well and
the increase of A+ with time corresponds to the formation and the growth of the
central peak of the normalized BSS distribution.

Fig. 4.6 shows that A+ always increases with time and confirms that this pa-
rameter is indeed a sensitive indicator of the BSS sedimentation process. The figure
confirms that NSs alone have a negligible impact on the rate of central BSS segre-
gation: in fact, for a given value of W0, there is no significant difference between the
models with different percentages of such objects (see, for instance, the red and the
cyan dashed lines: S5

10 and S5
30 runs, respectively), nor between these models and

those with the same W0 but no DRs (compare the lines above with the grey one,
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S5
0 , in the figure). Instead, BHs clearly appear to play a crucial role, significanlty

slowing down the evolution of the system (see colored solid lines in the figure). In
particular, we note that for a given concentration (W0) and time (t/trh0), the values
of A+ are larger for models with a smaller BH retention. On the other hand, for
a given time and a given retention fraction, A+ is larger for models with a larger
initial concentration. At any given value of t/trh0, the largest values of A+ are found
for models with the largest concentration and the smallest BH retention fraction
(S8

10•), while the smaller values of A+ are found with lower concentration models
with larger BH retention fraction (S5

30•). In addition, the parameter is larger in
the S5

10• case than in the S8
30• run (at fixed time), demonstrating that the (slowing)

effect of a larger percentage of BHs is stronger than the (accelerating) effect of a
larger cluster concentration. In our W0 = 8 simulations all BHs are ejected from
the system at the end of the run, while three and one BHs are still present at the
end of the S5

10• and S5
30• simulations, respectively (see also Heggie, 2014; Hurley

et al., 2016 for examples of models in which instead all or a large fraction of BHs are
lost during the cluster evolution). The gradual loss of the initial population of BHs
allows the BSS to segregate and A+ to grow and reach values above 0.4-0.5 with a
rate that is slower for increasing fractions of BHs. The simulations presented here
serve the purpose of illustrating the general effect of a population of black holes on
the process of segregation of BSS and the extent to which this effect depends on the
fraction of BHs retained. The time evolution of A+ might differ for clusters with
different fractions of BHs. In particular, should the initial fraction of BHs be larger
and/or the cluster structural properties allow to retain a larger fraction BHs than
those adopted here (see e.g., Morscher et al., 2015; Chatterjee, Rodriguez & Rasio,
2016; Peuten et al., 2016), the rate of BSS segregation (and therefore the growth of
A+) could be slowed down and delayed more than what shown in the few illustrative
cases we have explored.

All these properties are consistent with the conclusions of our discussion about
the segregation process in terms of evolution of the Lagrangian radii (see Sect. 4.3.1)
and show that the new parameter A+ is a reliable indicator of the cluster dynamical
evolution as traced by the BSS population.

Fig. 4.6 also shows that the time dependence of A+ is characterized by two
main regimes: an initial, slower phase, followed by a steeper trend toward the end
of the simulations, at times approaching the CC time. This effect is more evident
if BHs are included: the evolutionary times when the curves change regime are
t ≈ 4.2, 5.5, 2 and 6.2 trh0 in the S5

10•, S5
30•, S8

10• and S8
30• runs, respectively. These

epochs also correspond to the moment when the time dependence of the inner BSS
Lagrangian radii also change slope, while those of the REF population evolve in a
slower, smoother way (see Figs. 4.2 and 4.3). The fact that A+ shows a regime
of faster time dependence when the cluster is approaching the CC phase further
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demonstrates that it is an indicator of the level of BSS segregation and dynamical
evolution of the system.

Figure 4.7 shows the evolution of A+ as a function of time normalized to the CC
time of the BSS and REF populations (tCC). Interestingly, all the models fall on a
relatively narrow band in this plane, irrespective of the amount and the mass of DRs
they contain. This suggests that A+ might be used as an approximate indicator of
how far a cluster is from CC of the visible component.

Figure 4.6: Evolution of A+ as a function of the time normalized to trh0 in the all our mod-
els: simulations with no DRs are plotted in grey and black for the W0 = 5 and W0 = 8 cases,
respectively; the dashed lines refer to models with only NSs, while the solid lines correspond to the
simulations including both NSs and BHs (see the labels for the color code). A+ increases with time
as expected for a reliable mass segregation and dynamical evolution indicator (see Sect. 4.3.3).
From Alessandrini et al. (2016).

Finally, in order to illustrate how the strength of the mass segregation depends
on the populations chosen, in Fig. 4.8 we compare the time evolution of the A+
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Figure 4.7: Same as Fig. 4.6, but with the time normalized to the CC time of BSSs and REF
stars in every model (tCC). From Alessandrini et al. (2016).

parameter calculated for BSSs and REF stars (black curves, the same as those
plotted in colors in Fig. 4.6) and the time evolution of the A+ parameter calculated
using REF andm = 0.4M� particles (grey curves). In the former case the mass ratio
between the two populations is 1.5, while it is larger (equal to 2) in the latter. While
in both cases A+ increases with time, the effect is much stronger in the former. This
is because, in spite of a smaller mass ratio between the former populations (BSSs and
REFs), the relative effect of mass segregation on these components is stronger than
that on REF and 0.4M� stars. This behaviour suggests that BSSs are more powerful
observational tracers of dynamical evolution than, for instance, main sequence stars.
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Figure 4.8: Same as Fig. 4.6, but with the time normalized to the CC time of BSSs and REF
stars in every model (tCC). From Alessandrini et al. (2016).



5Chapter

The A+ parameter: observational results

5.1 Introduction

As described in Chapter 4, in Alessandrini et al. (2016) we used N-body simulations
with 105 particle and different fractions of heavy dark remnants to investigate the
effect of dynamical friction on BSSs in GCs, and we proposed a new parameter (A+,
Chapter 4, Eq. 4.1) to measure the level of BSS segregation. We also demonstrated
that A+ is a powerful indicator of the dynamical evolution of the host cluster and
can therefore be used as an alternative hand of the dynamical clock (alternative to
rmin, i.e., the minimum of the BSS-nRD).. Given this theoretical results obtained
from N-body simulations, it is now crucial to study this parameter also from the
observational point of view. To this aim, we empirically determined the value of A+

in a sample of 25 Galactic GCs and we checked for correlations with other dynamical
evolution indicators.

In Sect. 5.2 the data-set is presented. Sect. 5.3 describes the method used for
the determination of A+ from the observations. Finally, the results are showed in
Sections 5.4.1 and 5.4.2.

5.2 Sample selection and description of the data-set

The sample selected for the empirical estimate of A+ consists of the same 21 GCs
previously used to define the dynamical clock (Ferraro et al., 2012), plus four ad-
ditional clusters discussed in subsequent papers (Dalessandro et al., 2013b; Beccari
et al., 2013; Sanna et al., 2014; Dalessandro et al., 2015).

The central regions of each cluster have been typically observed in the ultravio-
let band with the Wide Field Planetary Camera 2 (WFPC2) on board the Hubble
Space Telescope (HST), and, where possible, with complementary optical observa-
tions secured with the HST Advanced Camera for Surveys (ACS). The outskirts
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of the clusters have been sampled by means of optical, ground-based observations
performed with wide-field imagers, as the WFI@ESO and MegaCam@CFHT. Since
BSSs are most reliably distinguishable from other cluster populations in the UV
color-magnitude diagram (see Ferraro et al. 2015), we generally used this plane to
define the BSS selection box. The latter is then transformed into the optical planes
by using sub-samples of BSSs observed in both the UV and the optical bands. As
reference populations we generally considered RGB, sub-giant branch (SGB), and/or
HB stars, depending on the cluster properties and the available photometric data. In
order to allow unbiased comparisons, their selection was performed using the same
photometric catalogues adopted for the BSSs. However, depending on the surface
temperature of each stellar population, we used the UV color-magnitude diagrams
to select (hot) HB stars, and the optical planes for the (cool) RGB/SGB reference
samples, so to avoid any completeness bias. In the case of more than one refer-
ence population, we have verified that the corresponding radial distributions are in
mutual agreement. This guarantees that any adopted reference population can be
equivalently used for the determination of A+.

5.3 Observational determination of A+

By definition (see Chapter 4 Sect. 4.3.3), A+ depends on the considered cluster-
centric distance. Hence a meaningful cluster-to-cluster comparison requires that
the parameter is measured over equivalent radial portions in every system and that
the adopted region is large enough to be sensitive to the phenomenon that A+ is
describing (the effect of dynamical friction on BSSs). By using the set of N-body
simulations discussed in Alessandrini et al. (2016), we verified that the value of
the parameter computed at one half-mass radius (rh) is always representative of
the cluster global value (i.e., the value attained if the entire radial extension is
considered), corresponding to ∼ 70− 80% of it in all our runs. We also note that in
the analysis of Ferraro et al. (2012), the level of BSS sedimentation is parametrized
by the value of RBSS: a central peak in the BSS-nRD corresponds to RBSS > 1,
indicating that the observed number of BSSs is in excess with respect to what
expected from the sampled luminosity. Interestingly, values of RBSS > 1 are observed
at r < rh in all clusters belonging to Family II and Family III. This confirms that
the region included within one half-mass radius is the most sensitive to the BSS
sedimentation process. Thus, for a meaningful cluster-to-cluster comparison, in each
system we determined the value of A+ within one half-mass radius from the center1

1The available HST data are sufficient to cover such a region in almost all the selected clusters.
Exceptions are M3, M4 and M55, for which also complementary wide-field catalogues are needed,
and the clusters NGC 5466 and Palomar 14, which, in virtue of their low density, have been entirely
sampled with ground-based observations (with LBC@LBT and MegaCam@CFHT, respectively; see
Beccari et al., 2013, 2011). In the case of 47 Tucanae only the WFPC2 data discussed in Ferraro
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(hereafter A+
rh). As expected, in the cases where two reference populations (HB

and RGB/SGB) are available, the two resulting values of A+
rh are very similar. We

therefore adopted their mean value as the best estimate, and the standard deviation
as their error. Since these latter range between 0.01 and 0.03, we attributed an
error of 0.02 to all the cases where only one reference population is available. The
values thus obtained are listed in Table 5.1, together with a few key parameters of
the program clusters.

5.4 Results and Discussion

5.4.1 Correlation between A+ and rmin

In Figure 5.2 (left-hand panels) the cumulative radial distributions of BSSs and REF
stars for four GCs in our sample is shown. The labelled values of A+

rh (see also Table
5.1) correspond to the size of the shaded areas: formally zero for ω Cen, which has a
non-segregated BSS population (Family I cluster in the dynamical clock formalism),
and up to 0.52 for M30, which is one of the dynamically oldest system (Family III) in
the sample, with BSSs much more centrally concentrated than the REF population.
As listed in Table 5.1, the parameter is smaller than 0.05 also for the other three
GCs with non-segregated BSS populations known so far, namely Palomar 14, NGC
2419 and NGC 6101. In all the other cases, it assumes larger values, depending
on the separation between the BSS and the reference star cumulative distributions.
Qualitatively, this is exactly the behavior expected from a reliable indicator of BSS
segregation. In the right-hand panels of the figure we plot the radial distributions
of the BSS double normalized ratio RBSS for the same four clusters, with the black
arrows indicating the position of the minimum, epressed in units of the cluster
core radius (rc). The figure clearly shows that the increase of A+

rh seen from top
to bottom in the left panels is accompanied by a systematic increase of rmin/rc in
the corresponding right-hand panels, thus indicating that these two parameters are
mutually linked, as expected if they describe the same phenomenon.

For a closer comparison with results of Ferraro et al. (2012), we investigate the
relation between A+

rh and the parameter log(rmin/rc) for the entire sample of 25
GCs. We point out that, although both these quantities describe the progressive
central segregation of BSSs, their definitions are completely independent and, in
principle, they could be completely uncorrelated. Figure 5.3 shows, instead, that
the two parameters are linked through a quite tight and direct correlation. Indeed,
the Spearman rank correlation coefficient between A+

rh and rmin/rc is ρ = 0.77,
corresponding to a probability P > 99.99% that the two parameters are correlated.
The significance remains very high (P > 99.7%) even if one (arbitrarily) excludes

et al. (2004) have been used.
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Name rc rh log(trc) rmin A+
rh ε

ω Centauri 153.0 443.7 9.86 0.0 -0.010 0.010
Palomar 14 41.0 69.7 9.68 0.0 -0.010 0.010
NGC 6101 61.3 128.2 9.38 0.0 0.030 0.018
NGC 2419 20.0 54.0 10.08 0.0 0.035 0.007
NGC 5466 72.0 213.8 9.42 180.0 0.100 0.020
M55 99.0 215.8 9.00 405.0 0.100 0.020
M4 70.0 308.0 8.00 350.0 0.120 0.014
NGC 288 88.0 167.2 9.19 250.0 0.130 0.014
M53 26.0 98.8 9.08 55.0 0.150 0.014
M5 27.0 124.2 8.43 255.0 0.150 0.020
M10 41.0 139.8 8.26 425.0 0.160 0.000
M13 49.5 148.5 9.03 185.0 0.165 0.007
M2 17.0 57.8 8.48 150.0 0.170 0.028
NGC 6388 7.2 45.4 8.08 32.5 0.190 0.020
NGC 362 13.0 73.8 8.08 515.0 0.200 0.020
M79 9.7 47.5 7.98 325.0 0.250 0.020
M92 14.0 84.0 8.05 250.0 0.255 0.007
M3 30.0 186.0 8.75 125.0 0.260 0.020
NGC 5824 4.4 29.0 8.28 20.0 0.280 0.028
47 Tucanae 21.0 201.6 7.96 200.0 0.290 0.020
NGC 6229 9.5 30.4 8.72 25.0 0.290 0.000
M80 7.0 40.6 7.57 375.0 0.290 0.014
NGC 6752 13.7 194.5 7.37 325.0 0.325 0.021
M75 5.4 29.2 8.00 225.0 0.380 0.020
M30 4.3 109.2 6.79 385.0 0.520 0.000

Table 5.1: Structural/dynamical parameters and values of A+
rh for the program clusters: core

radius and half-mass radii in arcseconds (columns 2 and 3), logarithm of the central relaxation time
in Gyr (column 4), value of rmin in arcseconds (column 5), value of A+

rh and its error (columns
6 and 7). The values of the structural/dynamical parameters come from Ferraro et al. (2012),
Dalessandro et al. (2013a,b), Beccari et al. (2013), Sanna et al. (2014), and Dalessandro et al.
(2015). For NGC 6101 the value of log(trc) has been recomputed by following equation (10) in
Djorgovski (1993) for homogeneity with the other clusters. From Lanzoni et al. (2016).

from the sample the most extreme points (namely, M30 and the four Family I GCs),
or if limiting the analysis to the 13 clusters with the smallest errors on A+

rh (ε < 0.02).
This confirms that A+

rh and rmin/rc are actually different ways of measuring the same
physical mechanism: as discussed in Ferraro et al. (2012), the underlying process is
dynamical friction, which, as clusters get dynamically older, progressively removes
BSSs at increasingly larger distances from the center (thus generating a minimum at
increasingly larger values of rmin/rc) and accumulates them toward the cluster center
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Figure 5.2: Left panels: Cumulative radial distributions of BSSs (blue line) and REF stars (red
line) observed within one half-mass radius (rh) in four GCs of the considered sample (from top, to
bottom: ω Centauri, M53, M92 and M30). The distance from the center (r) is in arcsecond units.
The size of the area between the two curves (shaded in grey) corresponds to the labelled value of
A+

rh (see also Table 5.1). Right panels: BSS normalized radial distribution (RBSS, blue circles) for
the same clusters shown in the left panels. The black arrows mark the position of the BSS-nRD
minimum (rmin/rc). The grey strips schematically show the distribution measured for the REF
population. From Lanzoni et al. (2016).

(thus increasing A+
rh). As discussed in Alessandrini et al. (2016), the process of BSS

segregation can be delayed by the presence of dark remnants and in particular by a
population of stellar mass black holes. This adds another important element to the
information contained in the BSS segregation level and the parameter introduced to
measure it.

5.4.2 Correlation between A+ and the central relaxation time trc

The results obtained suggest that A+
rh could be used as an alternative indicator of

the level of dynamical evolution experienced by star clusters since their formation,
and we should expect that is related to other parameters measuring the dynamical
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Figure 5.3: Parameter A+
rh as a function of the observed position of the BSS-nRD minimum

(rmin/rc) expressed in logarithmic units. For Family I clusters, with an everywhere flat BSS-nRD,
a value rmin/rc = 0.1 has been arbitrarily assumed as an upper limit (see arrows). From Lanzoni
et al. (2016).

evolution time-scale. Indeed, Ferraro et al. (2012) found a nice correlation between
the cluster-centric distance of the minimum of the BSS-nRD (rmin/rc) and the cen-
tral relaxation time of the cluster (trc). Figure 5.4 shows that the latter is tightly
related also to A+

rh, in the sense that the proposed new parameter systematically
decreases for increasing values of the relaxation time. The Spearman rank correla-
tion coefficient between A+

rh and trc/tH (with tH = 13.7 Gyr being the Hubble time)
is ρ = −0.81, corresponding to P > 99.99%, and it decreases only to ρ = −0.63

(P = 99.7%) if Family I clusters and M30 are (arbitrarily) excluded from the sam-
ple. Also the Pearson correlation coefficient is very high (r = −0.85), indicating a
strong linear correlation between A+

rh and log(trc/tH). As apparent from the figure,
the relation between these two variables shows some scatter. This may indicate that
further refinements should be used to measure A+

rh, or, more likely, that the values of
trc empirically estimated by following Djorgovski (1993) are rough approximations
of the true relaxation times of Galactic GCs (as discussed, e.g., by Chatterjee et al.,
2013b from dedicated Monte Carlo simulations). Beside the scatter, however, our
analysis fully confirms that A+

rh is a powerful indicator of cluster dynamical evolu-
tion and, once properly calibrated, it promises to be usable as an alternative, and
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Figure 5.4: Relation between the new parameter A+
rh and the logarithm of the cluster central

relaxation time (trc) normalized to the Hubble time (tH = 13.7 Gyr). From Lanzoni et al. (2016).

hopefully more precise, measure of the central relaxation time of GCs.
In the framework of the dynamical clock originally defined by Ferraro et al.

(2012) in terms of the position of the minimum in the BSS-nRD (rmin/rc), the new
parameter A+ corresponds to a new clock-hand, while the engine of the clock remains
the same (the dynamical friction process). From the observational point of view,
the advantage of this new clock-hand is that it is easier to measure and somehow
less “fragile” than the position of the BSS-nRD minimum. In fact, for determining
rmin it is necessary to sample the entire cluster radial extension (typically by means
of a combination of HST and wide-field, ground-based observations), while only the
central regions (r < rh), possibly probed just by HST, are sufficient to measure
A+
rh. Moreover, it does not require any (somehow arbitrary) assumption on the

radial binning (which is instead needed to build the BSS-nRD). Finally, from its
own definition, rmin is located in a region of “low signal”, where DF is removing
heavy stars and the number of BSSs reaches its minimum (the so called “zone of
avoidance”; Mapelli et al., 2004, 2006); instead A+

rh is measured in a “high signal”
region, where dynamical friction is accumulating heavy stars and the number of
BSSs reaches its maximum. Thus, the proposed change of clock hand makes the
reading of the dynamical clock easier and less prone to low statistics uncertainties.
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6Chapter

Conclusions

In the work described in this Thesis, we investigated the problem of modeling blue
straggler star (BSS) dynamics in globular clusters (GCs) to obtain a deeper physical
understanding of why and how these objects can be used as probes the dynamical
evolution of the host system. Being these stars more massive than the average
stars in GCs, they are indeed subject to dynamical friction (DF), which causes their
sinking and segregation toward the cluster centre. In particular, the shape of the
BSS normalized radial distribution (BSS-nRD) has been observed to be of three
different types in GCs: a flat distribution (i.e., with BSSs distributed as the average
stars), a bimodal one, with a central peak and minimun in the intermediate regions
followed by an outer rising branch, and unimodal distribution, which just shows a
central peak and a monotonically decreasing trend outward. This result has been
interpreted by Ferraro et al. (2012) as the proof of different dynamical stages reached
by the investigated clusters, with the progressive migration of the minimum toward
larger distances from the centre being used as a clock hand able to measure the
dynamical age of GCs, thus defining the so called "dynamical clock" scenario.

This Thesis had the goal of searching for these observed features in different sets
of N-body simulations, trying to identify and discern all the physical processes that
contribute in shaping the BSS-nRD during the dynamical evolution of GCs. To this
aim, we constructed models of GCs with progressively increasing levels of realism
(and complexity), step by step adding to the simulations several ingredients that
can significantly affect the dynamical evolution of the system.

First of all, we provided an analytical method to calculate the DF timescale in a
system of particles distributed with a mass spectrum (as a GC is) expanding on the
original work by Ciotti (2010). 2010). While this latter study was focussed on the
specific case of a homogenous background, we evolved the system by means of direct
and collisional N-body simulations. To our knowledge, this is the first numerical
study of DF in the presence of a self-consistently evolving field of particles with
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unequal masses and for a test star with a mass comparable to that of the field. We
explored both the mono-mass case (where all particles have unit mass and the test
star decelerated by DF is four times more massive), and the multi-mass case (with
three field components of masses m1, m2 = 2m1, m3 = 3m1 and total numbers N1,
N2, N3, and with the test particle having mt = 4m1). Each simulation was run with
a total of N = 104 particles initially distributed as a spherical and isotropic King
model with dimensionless potential W0 = 4 in the mono-mass case, and W0 = 4, 6, 8

in the multi-mass one.
We found that the radial behavior of tDF is always monotonic (tDF increasing

with r), both in the mono-mass case and in the presence of a mass spectrum, inde-
pendently of the evolutionary time and the initial concentration of the system. In
all cases, the largely dominant factor in determining the shape of tDF(r) is the total
mass density profile. Moreover, we also found that approximating a multi-mass sys-
tem as single-mass cluster (made of stars with masses equal to the average particle
mass) can lead to a systematic overestimate of tDF within the half-mass radius, up
to a factor of 3 in the innermost regions. This implies that care must be used when
adopting the average properties of background populations to obtain quantitative
estimates of tDF if the system is composed of stars of different masses.

The N−body simulations and the overall approach presented in this work are
certainly a rough simplification of the much more complex problem of DF in real
GCs. First of all, the total number of simulated particles is much smaller than
the number of stars in a cluster. However, while this affects the overall cluster
evolution time-scale, it is not expected to impact the conclusions about the radial
monotonicity of tDF. The same considerations apply to the assumptions adopted for
the mass spectrum (only three discrete bins): a larger number of finer mass groups is
not expected to induce a non-monotonic behavior on tDF(r), since the density profile
ρ(r) would still be a monotonic decreasing function of radius, but it can modify the
overall cluster evolution. Hence, the monotonic behaviour found in all cases for
tDF(r) appears to be a quite solid result, further supporting the scenario proposed
by Ferraro et al. (2012), where tDF(r) is implicitly assumed to be monotonic at all
times and the bimodal behaviour of the observed BSS-nRD is due to the fact that
DF progressively affects larger clustercentric distances as a function of time.

We then studied the problem of the BSS radial distribution in GCs with the same
simulations used in the previous work but from another point of view. In particular,
we used the heaviest component (with mass m3) to represent the BSS population in
a cluster made of N1 field stars with mass m1 and N2 reference stars (RGB or HB
objects) with mass m2. We followed the evolution of BSSs and REF stars in the
evolving background, to explore the role of DF in shaping the BSS-nRD in these
simulated systems. Our goal has been to verify whether some dynamical process can
drive the BSS radial distribution from being flat to be unimodal, passing through
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the bimodal shape, as predicted in the dynamical clock scenario.
Our simple N-body models clearly showed the formation of a central peak in

the BSS-nRD in all the cases considered. Also the bimodal shape of the BSS-
nRD is present for long periods in almost all the simulated systems. The lowest
concentrated cluster, however, shows only the formation of the central peak without
any bimodality, at odds with the observations. We finally verified that increasing
the number of particles by one order of magnitude (from 104 to 105) leads to a more
accurate description of the dynamics occurring in real GCs, as well as to a more
gradual evolution of the BSS radial distibution.

Prompted by this last result, we decided to increase the number of particles in our
simulations. Moreover, in order to improve the realism of our model, we admitted
the presence of a population of dark remnants (DRs), consisting of neutron stars
(NSs) and stellar-mass black holes (BHs) which are both heavier than BSSs and can
therefore significantly affect the overall cluster evolution and the process of mass
segregation. Thus, we performed a set of direct N-body simulations of GCs with
N ∼ 105 particles, with different initial concentrations (W0 = 5 and W0 = 8),
including a population of BSSs (modelled as single particles of 1.2M�) and different
fractions of NSs and BHs (we also modelled the case of systems with no heavy DRs
at all, for the sake of comparison).

We have shown that the segregation of BSSs and of the most massive main
sequence stars is significantly slowed down by the presence of BHs. This is due to
the dynamical heating effect of these heavy objects that rapidly decouple from the
other components, form a centrally concentrated sub-system and inhibit the radial
segregation of the less massive components. The effect of BHs has been revealed
to be stronger than that of concentration: in fact, while in the absence of BHs,
the central segregation of BSSs and REF stars is much faster for W0 = 8, than
for W0 = 5, the opposite occurs (i.e., the evolution becomes slower in the highest
concentration cluster) if the W0 = 8 system host a larger fraction of BHs.

Furthermore, in this work we have introduced a new parameter (A+) as a new
tool to measure the sedimentation level of BSSs and probe the host cluster dynam-
ical evolution. The parameter is defined as the area between the cumulative radial
distribution of BSSs and that of REF stars. We found that A+ shows a clear increas-
ing trend with time that well reflects the evolution of the Lagrangian radii observed
in the simulations, with analogous dependences on the cluster concentration and the
DR retention fraction. As the system evolves and loses part of the initial popula-
tion of BHs, the level of BSS segregation grows at an increasing rate and diverges
from that of the REF stars. As a consequence, the time dependence of A+ shows a
change in the slope. This demonstrates that A+ is indeed a very good tracer of BSS
segregation, and can reveal both how advanced BSS segregation is and the extent
to which the presence of a DR population has inhibited it. In all the considered
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simulations, the parameter assumes comparable values at any fixed fraction of the
CC time. Hence, it seems to be a good indicator of the time remaining to the CC of
the visible component, reasonably irrespective of the initial concentration and DR
content of the system.

On the observational side, we provided the first empirical determination of A+

in a sample 25 of Galactic GCs, for which the BSS and REF radial distributions
have been determined all over the cluster extention, from the central to the external
regions, by using ultraviolet observations with the Wide Field Planetary Camera 2
(WFPC2) on board the Hubble Space Telescope (HST) and optical data from wide-
field imagers. Where possible, for the internal regions we also used complementary
optical observations secured with the HST Advanced Camera for Surveys (ACS).

Clearly, the parameter A+ defined in Alessandrini et al. (2016) depends (by def-
inition) on the sampled radial distance, and the target GCs have different physical
sizes. Hence, for a meaningful cluster-to-cluster comparison, A+ has been deter-
mined from the cumulative distributions of BSSs and REFs computed within the
half-mass radius in all the targets (and we therefore refer to it as A+

rh). This choice
does not invalidate our results, since A+ mainly describes the growing of the central
peak of the BSS-nDR, which interests the most central regions of the cluster.

We found a good correlation between A+
rh and the minimum of the BSS-nRD

(normalized with the core-radius of each cluster) previously used by Ferraro et al.
(2012) to define the dynamical clock hand, thus indicating that these two parameters
are mutually linked, and both trace the same phenomenon. In particular, A+

rh has
been observed to be ∼ 0 for ω Cen and very small (A+

rh < 0.05) for the other
sampled clusters which have a non-segregated BSS population (Palomar 14, NGC
2419 and NGC 6101), while it assumes larger values for the other GCs in the sample,
up to the case of M30 which has A+

rh = 0.52, in accordance with its definition of
dynamically-old system. Qualitatively, this is exactly the behavior expected from a
reliable indicator of BSS segregation, suggesting that this new parameter could be
used as an alternative indicator of the level of dynamical evolution experienced by
star clusters since their formation.

We have also found a correlation between A+
rh and the central relaxation time

of the clusters (trc) empirically estimated by following Djorgovski (1993), further
confirming that A+

rh is a powerful indicator of cluster dynamical evolution and, once
properly calibrated, it promises to be usable as an alternative, and hopefully more
precise, measure of the central relaxation time of GCs.

From the observational point of view, this new clock hand is easier to measure and
less “fragile” than the position of the BSS-nRD minimum. In fact, for determining
rmin it is necessary to sample the entire cluster radial extension, while only the
central regions within the half-mass radius are sufficient to measure A+

rh. Moreover,
it does not require any (somehow arbitrary) assumption on the radial binning (at
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odds with BSS-nRD which needs it). Finally, from its own definition, rmin is located
in a region of “low signal”, where DF causes a depletion of BSSs (and heavy stars in
general), which, in turn, reach their minimum; A+

rh is instead measured in a “high
signal” region, where DF accumulates heavy stars and the BSS number reaches
its maximum. Thus, the proposed change of clock hand makes the reading of the
dynamical clock easier and less subject to low statistics uncertainties.

More realistic N-body simulations are now required to provide a calibration of
A+ as a function of the cluster dynamical age expressed in Gyr. We emphasize that,
while this seems to be within the range of performances of the current generation
of N-body simulations, such an aim requires simulations including virtually all the
known ingredients (as dark remnants, primordial binaries, external tidal field, etc.).

These are indeed the future perspectives of this Thesis project, and we already
started to work in this direction. In fact, we generated the initial conditions for a new
set of simulations similar to the previous ones (containing 105 particles and different
fractions of heavy DRs, as in Alessandrini et al., 2016), but with an additional level
of complexity and realism: a primordial population of binary systems, to which
also BSSs belong (instead of being modeled point-mass particles). In particular, we
adopted a primordial binary fraction fbin = 3% and we labeled as BSSs all binaries
having a hardness ratio1 ∼ 700 − 800. The work is still in progress, with a few
run already ended, some simulations still running and the analysis of the outputs
ongoing.

1The hardness ratio is the ratio between the binary binding energy and the cluster mean kinetic
energy
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