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ABSTRACT 

 

Aim: We present a newly designed, localiser-free, head-mounted system featuring augmented 

reality (AR) as an aid to maxillofacial bone surgery, and assess the potential utility of the device by 

conducting a feasibility study and validation. Also, we implement a novel and ergonomic strategy 

designed to present AR information to the operating surgeon (hPnP). 

Methods: The head-mounted wearable system was developed as a stand- alone, video-based, see-

through device in which the visual features were adapted to facilitate maxillofacial bone surgery. 

The system is designed to exhibit virtual planning overlaying the details of a real patient. We 

implemented a method allowing performance of waferless, AR-assisted maxillary repositioning. In 

vitro testing was conducted on a physical replica of a human skull. Surgical accuracy was measured. 

The outcomes were compared with those expected to be achievable in a three-dimensional 

environment. Data were derived using three levels of surgical planning, of increasing complexity, 

and for nine different operators with varying levels of surgical skill.  

Results: The mean linear error was 1.70±0.51mm. The axial errors were 0.89±0.54mm on the sagittal 

axis, 0.60±0.20mm on the frontal axis, and 1.06±0.40mm on the craniocaudal axis. Mean angular 

errors were also computed. Pitch: 3.13°±1.89°; Roll: 1.99°±0.95°; Yaw: 3.25°±2.26°. No significant 

difference in terms of error was noticed among operators, despite variations in surgical experience. 

Feedback from surgeons was acceptable; all tests were completed within 15 min and the tool was 

considered to be both comfortable and usable in practice.  

Conclusion: Our device appears to be accurate when used to assist in waferless maxillary 

repositioning. Our results suggest that the method can potentially be extended for use with many 

surgical procedures on the facial skeleton. Further, it would be appropriate to proceed to in vivo 

testing to assess surgical accuracy under real clinical conditions. 
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ABSTRACT (ITA) 

 

Obiettivo: Presentare un nuovo sistema indossabile, privo di sistema di tracciamento esterno, che 

utilizzi la realtà aumentata come ausilio alla chirurgia ossea maxillo-facciale. Abbiamo validato il 

dispositivo. Inoltre, abbiamo implementato un nuovo metodo per presentare le informazioni 

aumentate al chirurgo (hPnP). 

Metodi: Le caratteristiche di visualizzazione del sistema, basato sul paradigma video see-through, 

sono state sviluppate specificamente per la chirurgia ossea maxillo-facciale. Il dispositivo è 

progettato per mostrare la pianificazione virtuale della chirurgia sovrapponendola all’anatomia del 

paziente. Abbiamo implementato un metodo che consente una tecnica senza splint, basata sulla 

realtà aumentata, per il riposizionamento del mascellare superiore. Il test in vitro è stato condotto 

su una replica di un cranio umano. La precisione chirurgica è stata misurata confrontando i risultati 

reali con quelli attesi. Il test è stato condotto utilizzando tre pianificazioni chirurgiche di crescente 

complessità, per nove operatori con diversi livelli di abilità chirurgica. 

Risultati: L'errore lineare medio è stato di 1,70±0,51mm. Gli errori assiali erano: 0,89±0,54mm 

sull'asse sagittale, 0,60±0,20mm sull'asse frontale, e 1,06±0,40mm sull'asse craniocaudale. Anche 

gli errori angolari medi sono stati calcolati. Beccheggio: 3.13°±1,89°; Rollio: 1,99°±0,95°; Imbardata: 

3.25°±2,26°. Nessuna differenza significativa in termini di errore è stata rilevata tra gli operatori. Il 

feedback dei chirurghi è stato soddisfacente; tutti i test sono stati completati entro 15 minuti e lo 

strumento è stato considerato comodo e utilizzabile nella pratica. 

Conclusione: Il nostro dispositivo sembra essersi dimostrato preciso se utilizzato per eseguire il 

riposizionamento del mascellare superiore senza splint. I nostri risultati suggeriscono che il metodo 

può potenzialmente essere esteso ad altre procedure chirurgiche sullo scheletro facciale. Inoltre, 

appare utile procedere ai test in vivo per valutare la precisione chirurgica in condizioni cliniche reali. 
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1 CHAPTER 1: INTRODUCTION 

 

1.1 WHAT IS AUGMENTED REALITY? (DEFINITION AND TAXONOMY) 
 

We could define Augmented Reality (AR) as a real-time direct or indirect view of a physical real-

world environment that has been enhanced/augmented by adding virtual computer-generated 

information to it [1].  

Augmented Reality targets at simplifying the user’s life by bringing virtual information not only to 

his immediate surroundings, but also to any indirect view of the real-world environment (Fig. 1.1). 

     
A       B 

       

C       D 

Fig. 1.1 Various examples of Augmented Reality taken from the internet: A, AR for customer orienteering on mobile 
devices; B, AR for geo-localization of travel services on mobile devices; C, AR for real-environment gaming on mobile 
devices; D, AR for productivity on wearable glasses (Microsoft Hololens). All these examples are mock-ups, but truly 
representative of the eventual result. 

 

Milgram’s Reality-Virtuality Continuum, defined by Paul Milgram and Fumio Kishino as a continuum 

that extents between the real environment and the virtual environment, comprises Augmented 
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Reality and Augmented Virtuality (AV) in between, grouping them as Mixed Reality (MR), as seen in 

Fig. 1.2 [2]. 

 

Fig. 1.2 - Milgram’s reality-virtuality continuum. 

 

Augmented Reality enhances the user’s perception of and interaction with the real world. While 

Virtual Reality (VR) technology or Virtual Environment (as Milgram defines it) completely engages 

users in a synthetic world excluding the real world, AR technology augments the sense of reality by 

superimposing virtual objects and cues upon the real world in real time [1]. 

Milgram’s Mixed Reality continuum is a one-dimensional grouping from the Real Environment to 

the Virtual Environment. In 1994, Mann introduced the second dimension and defined the concept 

of Mediated Reality as filtering or modifying the view of the real world, rather than just adding to it. 

Mann’s concept of Mediated Reality extends the earlier definitions of AR, VR and MR as shown in 

Figure 1.3A [3]. Mann suggested also that a Mediality Continuum can be constructed to compliment 

Milgram’s Mixed Reality (or Virtuality Continuum), see Figure 1.3B [4]. The vertical axis represents 

the amount of mediation or filtering that is being performed in the user view of the real or virtual 

environment. 

A     B  

Fig. 1.3 - Mann’s Mediated Reality (A) and Mann’s Mediality/Virtuality Continuum (B). 
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The Metaverse Roadmap introduces another way of classifying the AR experience [5]. According to 

Neal Stephenson’s concept, the Metaverse is the convergence of a virtually enhanced physical 

reality and a physically persistent virtual space [6]. The Metaverse Roadmap is based on two key 

continua (i) the spectrum of technologies and applications ranging from augmentation to 

simulation; and (ii) the spectrum ranging from intimate (identity-focused) to external (world-

focused) [7]. These are defined as follows: 

• Augmentation: Technologies that add new capabilities to existing real systems; 

• Simulation: Technologies that model reality; 

• Intimate: Technologies focused inwardly, on the identity and actions of the individual; 

• External: Technologies are focused outwardly, towards the world at large.  

The technologies of Augmented Reality, Virtual Worlds, Life Logging, and MirrorWorlds can be 

arranged within these continua (Fig. 1.4). 

 

Fig. 1.4 - The Metaverse Roadmap way of classifying the AR experience, based on two-dimensional merging of the two 

Augmentation-Simulation and Intimate-External Continua [7]. 
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1.2 AUGMENTED REALITY: A BRIEF HISTORY AND GENERAL CONCEPTS 
 

The first advent of AR dates back to the 1950s when Morton Heilig, a cinematographer, thought of 

cinema as an activity that would have the ability to draw the viewer into the onscreen action by 

taking in all the senses in an effective manner. In 1962, Heilig built a prototype of his vision, which 

he described in 1955 in “The Cinema of the Future,” named Sensorama, which predated digital 

computing [1]. Later, Ivan Sutherland invented the head mounted display in 1966. In 1968, 

Sutherland was the first one to create an augmented reality system using an optical see-through 

head-mounted display (HMD). These are the words of Ivan E. Sutherland accompanying his visionary 

effort to design “The Ultimate Display” Fig. 1.5 [8]:  

“...A display connected to a digital computer gives us a chance to gain 

familiarity with concepts not realizable in the physical world. It is a looking 

glass into a mathematical wonderland....” 

      

Fig. 1.5 - Ivan Sutherland’s Head Mounted Display. 

 

However, it was only in the 80s that this revolutionary and pioneering idea could be enforced in 

practice thanks to the technological advances in computer technology. The term “augmented 

reality” was ultimately invented in 1992 [9] to describe an experimental system for aircraft 

manufacturing. Later, it took few more years within the scientific community and among early 

adopters to establish a general background and a common language to deal with AR. Initially, most 
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of the research work was targeted to find the possible interactions between AR and other fields of 

application, to elaborate a common syntax and to determine the basic technological components 

of AR systems [10]. 

On the contrary, two studies by Azuma [11], [12] were directed at providing an insight view into 

augmented reality technology from an applicative standpoint. Azuma defined the three key 

properties of an augmented reality system: 

1) It combines real and virtual content. 

2) It is interactive in real time. 

3) It is registered in 3D. 

The two surveys by Azuma also included comprehensive overviews of all the features and limitations 

of most of the augmented reality systems until then. Azuma does not consider AR to be restricted 

to a particular type of display technologies such as HMD, nor does he consider it to be limited to the 

sense of sight. Azuma also included AR applications that require removing real objects from the 

environment, which are more commonly called mediated or diminished reality. 

Recently in 2015, Billinghurst et al. [7] provided a detailed survey of 50 years of research and 

development in the field of augmented reality. Billinghurst states that the three key properties by 

Azuma also define the technical requirements of an AR system, namely that it has to have a display 

that can combine real and virtual images, a computer system that can generate interactive graphics 

the responds to user input in real time, and a tracking system that can find the position of the user’s 

viewpoint and enable the virtual image to appear fixed in the real world (Fig. 1.6). 

 

 

Fig. 1.6 - Virtual Reality and Augmented Reality technology requirements as described by Billinghurst [7]. 
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1.3 GENERAL DESIGN OF AN AUGMENTED REALITY SYSTEM 
 

According to Azuma and Billinghurst, we can broadly summarize the key components of any AR 

system, solely from a hardware standpoint:  

• Display unit (two-dimensional or three-dimensional, wearable, hand-held or spatial)  

• Computational unit (with or without dedicated graphics card)  

• Tracker (embedded in the system or external to it). 

Augmented Reality displays can be grouped according on where the display is located with respect 

to the object and the observer (Fig. 1.7) [13].  

 

 

Fig. 1.7 - Different embodiments of AR displays in relation to their distance from the real object and the observer. 

Courtesy from Bimber, 2006 [13]. 

 

In spatial displays, the display technology is separated from the user and it is rather cohesive into 

the real environment. In hand-held displays, the AR mechanism is based on the video see-through 

paradigm: the actual view of the world is acquired by a camera and presented on the display after 
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being coherently merged with the virtual content. Thus, in these systems, the augmented view is 

presented sharing the camera viewpoint. 

Projector-based AR systems embody a valid and fascinating alternative to standard display-based 

devices. Projector-based tools provide a high degree of immersion and can cover large surfaces, 

hence providing wider field of view respect to standard display-based AR systems [14]. 

The ideal AR system, particularly if designed for complex applications highly demanding of dexterity, 

should not show any perceivable difference between the user’s natural view of the reality and their 

augmented view. For this goal, the conditions to be satisfied are: 1) accurate registration and 2) 

ergonomic interaction. According to Azuma et al. [12], «The basic goal of an AR system is to enhance 

the user’s perception of and interaction with the real world through supplementing the real world 

with 3D virtual objects that appear to coexist in the same space as the real world». 

Thus, wearable AR solutions, head-attached according to Bimber [14], but commonly referred to as 

head-mounted displays (HMDs) should be considered the most ergonomic subclass of AR systems 

as long as they are capable to deliver a natural and self-centred viewpoint and allow the user to 

work hands free. Augmented Reality HMDs are now gradually entering a broad range of disciplines. 

 

1.4 AUGMENTED REALITY AS AN EMERGING TECHNOLOGY 
 

In 1995, the Information Technology research and advisory firm Gartner® introduced the Hype Cycle 

curve (Fig. 1.8), giving a graphic description of the level of expectations towards an emerging 

technology [15]. The curve defines the early stages of an emerging technology from conception to 

maturity and widespread adoption. This model is essentially related to the market, but offers an 

immediate and concrete measure of the overall visibility of a new technology, although fairly 

imperfect from a methodological point of view [16]. By monitoring year by year where the AR 

technology is located, we can gather an interesting inside view of the degree of maturity of AR 

applications in the market.  

As Figure 1.8 describes, the Hype Cycle is divided into stages, from technology trigger, crossing peak 

of inflated expectations – trough of disillusionment – slope of enlightment to the final plateau of 

productivity. 



 
13 

 

 

Fig. 1.8 - Gartner® Hype Cycle for emerging technologies. 

 

Gartner® describes these stages as follows: 

Technology Trigger: A potential technology breakthrough kicks things off. Early proof-of-concept 

stories and media interest trigger significant publicity. Often no usable products exist and 

commercial viability is unproven. 

Peak of Inflated Expectations: Early publicity produces a number of success stories — often 

accompanied by scores of failures. Some companies take action; many do not. 

Trough of Disillusionment: Interest wanes as experiments and implementations fail to deliver. 

Producers of the technology shake out or fail. Investments continue only if the surviving providers 

improve their products to the satisfaction of early adopters.  

Slope of Enlightenment: More instances of how the technology can benefit the enterprise start to 

crystallize and become more widely understood. Second- and third-generation products appear 

from technology providers. More enterprises fund pilots; conservative companies remain cautious. 
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Plateau of Productivity: Mainstream adoption starts to take off. Criteria for assessing provider 

viability are more clearly defined. The technology's broad market applicability and relevance are 

clearly paying off. 

In 2010, only six years back from now, AR was climbing almost at the top of the bell-shaped part of 

the curve, the peak of inflated expectations (Fig. 1.9 left), being one of the new-big-next-things 

about forthcoming technologies. According to the most recent updates, published by Gartner® in 

2015, AR has fell into the trough of disillusionment (Fig. 1.9 right), meaning that the excessively 

enthusiastic stance of the initial stages, which has boosted the early investments of the industrial 

pioneers and innovators, has resulted in commercial products failing to meet the goals.  

 

     

Fig. 1.9 – Comparison between 2010 and 2015 ranking on the Gartner® Hype Cycle 

 

This raises a question: is AR a bubble destined to burst? An answer is reported in the PhD thesis 

written by Eng. Fabrizio Cutolo (EndoCAS Lab, University of Pisa) [17], which is a member of the 

engineering team involved in this study and co-author of all the work presented in these pages. 

Indeed, an answer could be suggested by Moore’s adaptation [18] of Rogers’ bell curve [19], a model 

about the lifecycle and market penetration of a new technology. Moore’s curve considers the 

presence of a gap (chasm) between early adopters and early majority of customers (Figg. 1.10 - 

1.11).  
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Fig. 1.10 – Rogers’ technology adoption life cycle modified by Moore. 

 

 

Fig. 1.11 – Moore’s curve depicted as a funny cartoon. 
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It should be stated that an emerging technology may also never cross the chasm and reach 

widespread diffusion. Therefore, the Hype cycle plots the expectations towards an emerging 

technology, whereas the Moore’s curve plots the adoption rate among consumers. Accordingly, we 

can hypothesize that most of the Hype cycle is concluded before the Moore’s chasm. The possibility 

that a novel technology manages to survive the trough of disillusionment and enters the plateu of 

productivity matches with its widespread diffusion, namely with its capacity of crossing the chasm 

[17]. Merging the two graphical models (Hype Cycle and Technology Adoption Life Cycle) we can 

obtain a broad idea on the issues that AR, as emerging technology, has encountered while entering 

the market (Fig. 1.12). 

 

 

Fig. 1.12 – The combination of the two models: Hype Cycle and Technology Adoption Life Cycle, as presented in Cutolo, 

2015 [17], showing the two different paths an emerging technology could take crossing the chasm. 

 

Thus, if we go back to the question (is AR a bubble destined to burst?) the answer is: we still do not 

know, but it largely depends on the field of application. Indeed, AR social networking applications 

as well as location-based apps or games, especially for smartphones or tablets (hand-held displays, 

according to Bimber), are already used by a wide mass of early adopters and not anymore by a small 

amount of technology visionaries. Likewise, AR applications in multimedia and entertainment have 
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found a consistent application, for example in sports broadcasting (spatial displays, according to 

Bimber).  

Yet, the first applications of AR were in the medical and in the military field [20]. Nevertheless, most 

of the applications were not properly established, and early adopters and researchers in these fields 

are still struggling to prove their efficacy and reliability (i.e. we are still far from crossing the chasm) 

[17]. 
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2 CHAPTER 2: AUGMENTED REALITY IN MEDICINE AND SURGERY 

 

In 2006, Charles B. Wilson (Department of Neurological Surgery, University of California, San 

Francisco, CA) published on the British Medical Journal a fine analysis about «Adoption of new 

surgical technology» [21]. The insightful subheading sounded like a warning: «Surgeons and patients 

seeking improved treatment often forget that a new technique is not necessarily a better one». 

Wilson claims that a new surgical technology offering the promise of improved patient care is 

certainly attractive. «Intrigued, and with an intuitive certainty, surgeons — cheered on by their 

patients — may adopt new technologies, despite little evidence of either their efficacy or their 

superiority over existing procedures». Wilson describes that factors responsible of the adoption and 

diffusion of a new technology fall into two categories: characteristics of the technology itself and 

contextual factors that promote it (Fig. 2.1). 

           

Fig. 2.1 – Factors affecting adoption and diffusion of a new technology in surgery according to Wilson [21]. 

Wilson also cites Roger’s curve (in a slightly different version) [19], suggesting that in the 

medical/surgical field the introduction of a new technology encounters the same stages of any other 

field of application. This concept could be intuitive, but it is actually not foregone, because in the 

medical/surgical field the final user and the final beneficiary of a new technology are not the same 

person: the first is the surgeon, the second is the patient. Moreover, the medical/surgical field is 

usually supposed to deal with a high level of evidence before adopting new procedures and the 

decision about the supremacy of a new technology should not be entrusted to the market. 

Augmented Reality does not elude these models, but does not come as a completely new thing. 

Indeed, AR can be considered an improvement in the field of Image-Guided Surgery, which has 
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received a broad amount of attention and evoked a significant mass of research in the last twenty 

years. 

 

2.1 AUGMENTED REALITY AS A TOOL FOR IMAGE-GUIDED SURGERY 

 

Surgeons and physicians have always simulated real anatomy on patients’ surface as an aid to their 

diagnostic, therapeutic or surgical acts (Fig. 2.2).  

    

 

Fig. 2.2 – Surgeons’ historical way to depict internal anatomy on patients’ surface as an aid to surgery, representing 

real (dismorphic) anatomy (upper-left), tumor location (upper-right) or surgical planning (bottom). 

 

Physicians have always imagined the ability to see into a living human system and to transfer the 

three-dimensional complexity of the human body into a comprehensive visual representation (Fig. 

2.3).  
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Fig. 2.3 – How surgeons imagine to see anatomy through superficial tissues of the patient. 

 

Nowadays, many new medical imaging modalities are available. This, together with the need to 

reduce the invasiveness of the surgical procedures, have encouraged the research for new 3D 

visualization modalities of patient-specific virtual reconstructions of the anatomy, both acting as 

surgical guidance or as tools for surgical planning or alternatively for diagnosis [22], [23].  

The terms image-guided surgery (IGS) and computer-aided surgery (CAS) refers to this well-known 

concept that includes several technologies, each with a peculiar and significant use in surgery. 

Three-dimensional virtual surgery and navigation are the two main areas of interest in IGS. These 

technologies has undoubtedly increased accuracy of treatment planning and performing [24]–[31] 

and has undergone a remarkable diffusion, thanks to the production of many experimental and 

commercial software platforms and navigation systems [25], [32]–[35]. 

In this context, the idea of integrating in situ the surgeon’s perceptive efficiency with the aid of new 

AR visualization modalities has become a dominant topic of academic and industrial research in the 

medical domain since the 90’s. AR visualization is indeed considered capable to provide the surgeon 

with the ability to access the radiological images and surgical planning contextually to the real 

patient anatomy. 

For surgeons, AR could represent a way to get back to the right perspective, where the surgeon can 

merge all the digital information into the surgical field, instead of looking at a monitor placed far 

from the action (Fig. 2.4). 
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Fig. 2.4 – The return to the right surgical perspective (pictures modified from the internet). 

 

However, there are still some reasons why such systems are not yet routinely used in the medical 

workflow, despite those ambitious targets [36]. Most of the systems were (and still are) developed 

as proof-of-concept prototypes, mostly conceived for research purposes more than for their 

immediate translation into real and reliable clinical conditions. Most experimental systems did not 

consider the operational restrictions imposed by the surgical context and subsequently did not 

satisfy the surgeons’ practical needs. This is because most of these systems have lacked of a 

systematic evaluation within a clinical context. Moreover, the added benefit is for less experienced 

surgeons or surgical residents. For these reasons, it is still rare to see the integration of mixed reality 

systems and technologies integrated into real clinical environments and workflows [37]. In fact, the 

basic condition for a good reception of a new technology in the operating room is related to its 

capacity of being smoothly integrated into the workflow of the intervention, without affecting and 

disturbing the user during the rest of the procedure [38]. 

In the last two decades, the attempts to introduce AR in the OR, even if with severe experimental 

restrictions, have been numerous in several different surgical specialties. A review of the literature, 

according to specialty, is following. The presented literature is roughly limited to the last five years, 

in order to include only the most recent advances in the field.  

However, AR display modalities that have been tested or applied in surgery do not differ from 

Bimber’s paradigm: spatial display (external monitor), hand-held (tablets or projectors), retinal 

displays (head mounted displays), as described by Fig. 2.5 [39]. 
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Fig. 2.5 – Different display modalities for AR described by literature according to Nicolau [39]. 

 

2.2 AUGMENTED REALITY IN GENERAL SURGERY 
 

In the field of general surgery, Augmented Reality has been tested mostly in the context of 

laparoscopic surgery. The developing of accurate preoperative planning platforms for soft tissue 

organs has played an central role in this technical progression (Fig. 2.6) [40]. In this background, the 

hepatic-duodenal-pancreatic area is preeminent. 

 

Fig. 2.6 – Computed tomography (CT) slice with superimposed segmentation. From Ferrari et al. [40]. 
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Nicolau et al. (2011) presented a fine review about AR in laparoscopic surgery [39]. Nicolau’s 

hypothesis to support AR introduction is founded on the limitations given by the laparoscopic 

minimally invasive technique. The first main difficulty is the loss of the direct sense of touch, 

replaced by force feedback through a minimally invasive instrument: surgeons can hardly distinguish 

hard tissues from soft ones and they cannot feel the blood pulse. The second main difficulty is the 

loss of depth perception because most endoscopic cameras are monocular. The third main difficulty 

is related to the limited field of view of the endoscopic camera (usually 70% vs. 160% for the human 

eye) which does not consent controlling all organs and instrument movements at the same time. 

Furthermore, the paper highlights that AR can also be used to show to novice surgeons the 

movement that should be done, by superimposing virtual instruments sketching a specific task on 

the endoscopic view. 

After that work, many surveys demonstrated the efforts in developing more precise methods based 

on AR. It should be remarked that for abdominal surgery, the main limitation of AR is given by the 

variability and deformability of soft tissue anatomy. Literature on this topic is mainly addressed to 

overcome this issue and to demonstrate improvements in accuracy.  

Nguyen et al. (2013) described a marker-less camera tracking method for registering 3D model on 

top of endoscopic image in Endoscopic Retrograde Cholangiopancreatography (ERCP) [41]. They 

also introduced an adaptive pose estimation which handles the lack of textures of endoscopic 

images of duodenum. The preliminary result showed a promising real-time tracking performance 

with fusion image. Even when there is some occlusion as some water was sprayed into duodenum 

or the catheter is inserted, the visual tracking method still showed a robust and accurate result (Fig. 

2.7).  

         

Fig. 2.7 - Overview of camera tracking procedure (left) and an example of pose extimation (right) [41]. 
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Marzano et al. (2013) presented AR navigation as a tool to improve safety of the surgical dissection 

in a case of artery-first pancreatico-duodenectomy (PD) (Fig. 2.8) [42].  

   

Fig. 2.8 - Overview of camera tracking procedure (left) and an example of pose extimation (right) [42]. 

 

Katić et al. (2013) presented a new system providing context-aware AR for laparoscopic surgery [43]. 

Context-aware systems provide visualizations of preeminent data just in time without handicapping 

the surgeon with a too much crowded images (Fig. 2.9). Indeed, abundant visualizations pose a risk 

as long as they distract surgeons from the surgical field, especially since visualizations are commonly 

overlaid on top of areas of interest. Context-aware systems have a certain understanding of the 

situation, enabling them to automatically derive the current information needs of the surgeon. The 

basic idea is to monitor the progress of the surgery with sensors, e.g. intraoperative data from 

medical devices in the operating room (OR), positional information from tracking systems or 

analysed endoscope images. 

    

Fig. 2.9 – Context-aware Augmented Reality according to Katić [43]. 

 

Another interesting system proposed in this field is the one by Lopez-Mir et al. (2013) [44], who also 

depicted a concrete point of view about advantages and disadvantages of different visualization 

modalities (Figg. 2.10 - 2.11). 
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Fig. 2.10 – Advantages and disadvantages of different visualization devices [44]. 

 

 

Fig. 2.11 – Display visualisation according to Lopez-Mir [44]. 

 

Onda et al. (2014) brought an AR in the OR, presenting a clinical survey (a series of 7 patients) where 

AR was used as an aid for identification of inferior pancreaticoduodenal artery during pancreatico-

duodenectomy [45]. Results were promising (Fig. 2.12). 

 

    

Fig. 2.12 – AR for identification of inferior pancreaticoduodenal artery during pancreatico-duodenectomy according to 
Onda et al.: (left) overlaid images of the pancreas, arteries, veins, and tumor; (right) (AR)-based navigation image 

during pancreaticoduodenectomy [45]. 
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Pessaux et al. (2014) tested an AR-based system in conjunction with a robotic platform (DaVinci™, 

Intuitive Surgical, Inc., Sunnyvale, CA) in a small series of patients (Fig. 2.13) [46], [47].  

    

Fig. 2.13 – AR in conjuction with a robotic tool, according to Pessaux [47]. 

 

In 2015 and 2016, other interesting publications in this field have been produced by Okamoto et al. 
[48], [49], Edgcumbe et al. [50], Hallet et al. [51], Haouchine et al. [52], Koreeda et al. [53], Wild et 
al. [54]. Among these, it is interesting to mention the work by Haouchine et al. [52], which is 
addressed to presents a method for real-time augmented reality of internal liver structures during 
minimally invasive hepatic surgery, based on non-rigid registration of hepatic soft-tissues (Fig. 2.14). 
This is possible by capturing the 3D tissue deformation of an organ from intraabdominal images and 
updating the registration during surgical acts thanks to a specific biomechanical model and a derived 
computed algorithm (Fig. 2.15). The aim is to overcome the deformability of soft tissue and the 
subsequent difficulty to accurately register their position in real-time AR. 

 

Fig. 2.14 – The computational flow of the method: The biomechanical model guided by the 3D image-points recovered 
from the intra-abdominal image pair permits to propagate partial tissue deformations to vessels and tumors [52]. 
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Fig. 2.15 – 3D heterogeneous biomechanical model of the liver: (a) The volumetric mesh composed of tetrahedra. (b) 
The beams generated along the vessels described in Section 4. (c) The heterogeneous liver model including the vascular 

network shown in wire-frame [52]. 

 

2.3 AUGMENTED REALITY IN ORTHOPAEDIC SURGERY 
 

In Orthopaedic Surgery navigation technology is broadly used and studied. This is because 

orthopaedic surgery usually deals with rigid structures like bone, which is easily trackable. It is 

simple to understand that AR has effortlessly won the interest of the researchers in this field. Some 

recent examples are following.  

In 2013, Abe et al. developed a novel AR guidance technique to visualize the needle insertion point 

on the patient’s skin and the 3D trajectory path for percutaneous vertebroplasty, using a head 

mounted display (Fig. 2.16) [55]. Also Wu et al. (2014) worked on AR for spinal surgery [56]. 

 

Fig. 2.16 – Simulative models and AR-assisted needle insertion using the spine phantom according to Abe [55] 
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It is clear that percutaneous screw positioning is a promising area for the application of AR. Wang 

et al. (2015) presented novel augmented reality-based navigation system for accurate insertion of 

percutaneous sacroiliac screws [57]. The study was a pilot one, but results were encouraging. 

Moreover, AR system presented included a head mounted display (Fig. 2.17). Other recent surveys 

about orthopaedic surgery are Londei et al. [58], Fischer et al. , Lee et al. [59]. 

    

Fig. 2.17 – The system developed by Wang et al. [57]. 

 

2.4 AUGMENTED REALITY IN NEUROSURGERY 
 

Neurosurgery is the first field where navigation was applied [24]. During the last decade, 

neuronavigation has become an essential neurosurgical tool for pursuing minimal invasiveness and 

maximal safety [60]. Unfortunately, ergonomics of such devices are still not optimal. Thus, AR found 

a fertile soil as a potential aid to overcome these limitations. 

A very accurate review about AR in neurosurgery was published in 2016 by Meola et al. [61]. A total 

of 18 studies were included in their review. Six of the 18 studies reported neuro-oncological 

applications only, six reported neurovascular applications only, five reported both neuro-

oncological and neurovascular applications, and one reported a neuro-oncological, neurovascular, 

non-neuro-oncological non-neurovascular application, the use of AR for external ventricular 

drainage placement. Authors suggest that current literature confirms that AR in neurosurgery is a 

reliable, versatile, and promising tool, although prospective randomized studies have not yet been 

published. However, this issue is certainly shared with many surveys on this topic among all medical 

specialties. According to this review, a practical ten-point multiparametric assessment for AR 

systems in neurosurgery is provided (Fig. 2.18). 
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Fig. 2.18 – A practical ten-point multiparametric assessment for AR systems in neurosurgery [61]. 

 

A very prolific group about AR in neurosurgery is the one headed by Cabrilo, from the Neurosurgery 

Division of the Geneva University Medical Centre, (Switzerland), who successfully tested AR mainly 

for intracranial vascular anomalies in a large case series (Fig. 2.19) [62]–[64].  

 

 

Fig. 2.19 – An example of the display modality presented in the work by Cabrilo et al. [63] 
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2.5 AUGMENTED REALITY IN OTHER SURGICAL SUB-SPECIALTIES 
 

Augmented reality has been successfully tested in many other subspecialty (some examples are 

displayed in Fig. 22.20) like urologic surgery [65]–[70], vascular surgery [71]–[74], paediatric surgery 

[75], [76], eye surgery [77], microsurgery [78],  anaesthesiology [79] and, of course, head and neck 

and cranio-maxillofacial surgery which are the topic of the next paragraphs. 

        

Fig. 2.20 – Examples of AR application in other surgical subspecialties: (left) partial nephrectomy in urologic surgery 

[65], (right) retinal treatments in eye surgery [77]. 

 

2.6 AUGMENTED REALITY IN ENT AND HEAD & NECK SURGERY 
 

Head & Neck surgery is a broad field where new technologies have always had a preeminent role. 

AR is starting to provide some interesting future-oriented results, especially for robotic trans-oral 

surgery [80], [81], cervical surgery (like lymph node biopsy) [82], [83] and for endoscopic skull base 

surgery [84], [85]. This last topic is of preeminent interest, as long as endoscopic skull base anatomy 

is severely complex but grossly rigid, because every vascular, nervous, mucosal structure is firmly 

bonded to the surrounding bone. This features make skull base a perfect area where navigation in 

general and (even more) augmented reality could help in an effective way. The greatest issue is how 

to track the rigid but possibly bending endoscope. Great efforts have been put on this topic [84] 

with promising results (Fig. 20.21) 
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Fig. 2.21 – Examples of an AR-based system providing augmented endoscopic view of the skull base anatomy [82]. 

  

2.7 AUGMENTED REALITY IN CRANIO-MAXILLOFACIAL SURGERY AND DENTAL SURGERY 
 

Finally, Cranio-maxillofacial (CMF) surgery is discussed, which is the area of research of this thesis. 

According to the geographical site, CMF surgery can share some or most topics and pathologies with 

Head & Neck surgery. Nevertheless, here CMF surgery is discoursed restricting his field to surgery 

of cranio-maxillofacial malformations and dysmorphosis (orthognathic surgery) (Fig. 2.22).  

 

Fig. 2.22 – Examples of facial dysmorphosis in the context of CMF surgery. 
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Preoperative planning and navigation have been successfully applied to this topic. In particular, the 

group from the University of Bologna has published interesting results in the context of surgical 

simulation [25], [32] and navigation [33]–[35]. 

The software platforms that we helped to develop and tested have showed to be very useful in 

planning complex surgical bone movements and predicting the potential outcome (Fig. 2.23) 

 

Fig. 2.23 – Surgical planning with a dedicated software. 

Besides, the application of navigation to this surgery has been validated with significant results if 

compared to the standard procedure where computer-assisted surgery was not used (Fig. 2.24). 

     

Fig. 2.24 – A standard navigation system as an aid in orthognathic surgery. 
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Thus, it is clear that, in the context of image-guided surgery, improvements based on AR may 

represent the next significant technological development in CMF surgery, because such approaches 

complement and integrate the current concepts of surgical navigation based on virtual reality.  

In this field, the first attempt to introduce an AR-based navigation system is due to Mischkowski and 

Zinser [86], [87]. Both works, with an interval of six years, present a device based on AR for jaw bone 

repositioning in real clinical conditions. The device is a hand-held tablet in conjunction with a 

navigation system (Fig. 2.25). 

 

Fig. 2.25 – AR-based navigation tool according to Mischkowski and Zinser [86]. 

 

They present promising results in real clinical surgical conditions. Nevertheless, a great limitation of 

this system is represented by the need to hold the device while operating, which is not a problem 

for HMD tools. 

A significant step forward, even if not tested in real clinical framework, has been made by Suenaga 

et al. [88], [89]. This group developed and evaluated, in vitro, an experimental AR system 

incorporating integral videography for imaging oral and maxillofacial regions. The three-dimensional 

augmented reality system (integral videography display, computed tomography, a position tracker 

and a computer) was used to generate a three-dimensional overlay that was projected on the 

surgical site via a half-silvered mirror (Fig. 22.26) [88]. This technology has the great benefit to leave 

surgeon’s hands free even if the augmented content is not presented with a HMD. In a second 

survey [89], they improved the system and the algorithm, including a function for automatic 

registration based on teeth (Fig. 2.27). 
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Fig. 2.26 – The system built by Suenaga et al.; integral videography is a sort of holographic imaging [88]. 

 

   

Fig. 2.27 – (left) The improved system by Suenaga et al.; (right) the algorithm for automatic teeth detection [89]. 
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In more recent times, two interesting studies from Asia presented the use of different AR-systems 

for specific CMF procedures in real clinical surgical conditions.  

Qu et al. presented their experience about the use of an augmented reality navigation system 

providing a surgical guide for the transfer of the osteotomy line in mandibular DO for patients with 

hemifacial macrosomia (Fig. 2.28) [90]. The survey is relevant and the presented tool is promising, 

even if it is not completely clear how the augmented content is displayed to the surgeon. 

 

Fig. 2.28 – A view of how the system by Qu et al. provides AR navigation [90]. 

 

In the same year, Zhu et al. presented an analogue system for the treatment of orbital hypertelorism 

[91]. The AR-based device (Fig. 22.29) is similar to the one by Qu et al. and shows interesting results 

in a relatively large case series for this rare pathology (12 patients). 

 

Fig. 2.29 – A view of how the system by Zhu et al. delivers the AR information [91]. 
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Lastly, in 2016, Lin et al. presented another system for mandibular angle split osteotomy [92]. The 

system seems to be feasible, but it is tested just in vitro (Fig. 2.30). 

   

Fig. 2.30 – The system by Lin et al. as an aid for mandibular angle split osteotomy [92]. 

 

In the context of maxillofacial surgery, oral and dental surgery have not been forgotten by 

researchers aiming to AR-based tools. Katić et al. [93], Lin et al. [94] and Wang et al. [95] are some 

good examples on the topic. The main goal of these surveys is to develop a system as an aid for 

dental implant surgery. Yet, all studies available so far are restricted to experimental in vitro 

environment (Fig. 2.31). 

 

Fig. 2.31 – An example of AR-based system for dental implant surgery according to Lin et al. [94]. 
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3 CHAPTER 3: DEVELOPING AN AUGMENTED REALITY DEVICE 

 

As mentioned before in Chapter 1, this survey has been conducted on the basis of a close 

cooperation with the EndoCAS Center, headed by Prof. Mauro Ferrari, a preeminent clinical 

bioengineering laboratory of the University of Pisa, located in Pisa (Italy) in the context of the 

Cisanello University Hospital (Fig. 3.1). During the last decade, this research laboratory has been 

working on Augmented Reality applied to surgery, especially general surgery, spine surgery, 

neurosurgery and CMF surgery [17], [40], [61], [96]–[98]. This study results from the efforts of our 

two groups (EndoCAS Center and the Maxillofacial Surgery Department of the University of Bologna) 

towards an AR-based device for CMF surgery. The researchers who have mainly been working (and 

still are) on the presented study are Vincenzo Ferrari (head-engineer of the EndoCAS Center), 

Fabrizio Cutolo (as PhD student and main researcher involved in the technical aspects and 

improvements of the device) and Cinzia Freschi (as experienced engineer on this topic). 

 

Fig. 3.1 – Courtesy of EndoCAS Lab, University of Pisa (Italy). 

 

In particular, most of the technical content that follows, is borrowed from Fabrizio Cutolo’s PhD 

thesis, as long as it pairs – like a “twin” study - with the clinical maxillofacial survey [17]. 

The aim of the technical job done by EndoCAS engineers was to develop a wearable AR-based 

device as an aid to open surgery. Despite the fact of being involved mainly in the clinical developing 

and testing of the device, we have had the opportunity to contribute also on the technical 

construction of the tool, as the following chapters will better clarify. 
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3.1 THE VIEW: HOW TO DISPLAY AR TO THE SURGEON 
 

In 2012 Kersten-Oertel et al. [36] proposed a taxonomy focused on the mixed reality visualization 

systems in IGS and defined the required three major components. Subsequently, the authors 

demonstrated the efficacy of the proposed taxonomy by classifying 17 state-of-the-art research 

papers in the field of AR-based Image-Guided Surgery (IGS) systems [99]. The acronym for the 

taxonomy (DVV) derives from its three key components: Data type, Visualization Processing and 

View (Fig. 3.2). Having this taxonomy in mind, while classifying and assessing the value of a new AR 

system for IGS, the researcher must focus their attention on the specific surgical scenario in which 

the visualization system aims to be integrated. The surgical scenario affects each of the three DVV 

factors, i.e. the type of Data that should be displayed at a specific surgical step, the Visualization 

Processing technique implemented to provide the best pictorial representation of the augmented 

scene and how and where the output of the Visualization Processing should be presented to the 

end-user (namely, the View). Kersten-Oertel also tabulated all the subclasses, the main attributes, 

and the common instances of the DVV components of an AR-based IGS system (Fig. 3.3). 

 

 

 

Fig. 3.2 – Kersten-Oertel’s taxonomy in AR visualization: the scheme outlinesnthe relations among the DVV factors (i.e. 

Data, Visualization Pro- cessing and View) and their classes and subclasses [36]. 
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Fig. 3.3 – Kersten-Oertel’s common instances of the DVV visualization taxonomy [36]. 

 

In Chapter 2, we grossly experienced how AR has been implemented in surgery in the last years. 

Historically, the first AR-based systems in surgical navigation have been implemented starting from 

commonly used devices [20]. Augmented operating microscopes were proposed in neurosurgery 

[63], [100]–[102]. In these systems, AR was displayed by inserting the virtual content directly into 

the optical trail of the real image, hence by inserting a beam splitter into the microscope optics. 

Other solutions featured the use of spatial monitors and video-based tracking modalities and were 

used in neurosurgery [103], maxillofacial surgery [86], [87], [104], laparoscopic general surgery [46], 

[48], [49], [105]. Another category of AR systems is based on the use of half-transparent screens in 

conjunction with display technologies providing monoscopic, stereoscopic or autostereoscopic 

parallax. Blackwell et al [106] introduced a prototype of AR window, providing a stereoscopic vision 

of the virtual content by means of a pair of shutter glasses. Stetten et al. [107] have proposed a 

simple and interesting optical see-through hand-held half-silvered mirror that overlays ultrasound 

scans aligned with the scanned area. 

The major limitations of the optical see-through paradigm implemented in standard AR windows 

are due to the intrinsic mismatch between the 3D representation of the real world and the nature 

of the virtual content, rendered as a 2D image. To cope with these issues, alternative and promising 
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approaches, based on the integral imaging technology, were proposed [108]. Integral imaging 

displays use a set of 2D elemental images from different perspectives to generate a full parallax 3D 

visualization. Therefore, with integral imaging-based displays, a proper 3D overlay between virtual 

content and real scene can be obtained. The integral imaging paradigm thus is able to provide the 

user with an self-centred viewpoint and a full parallax augmented view in a limited viewing zone 

(imposed by the integral imaging display). 

In laparoscopy, and generally in endoscopic surgery, the part of the setting where the attention of 

the surgeon is focused during the surgical task is a monitor. Thus, in such procedures, the surgeon 

operates watching endoscopic video images reproduced on the spatial display unit. Therefore, the 

virtual information is usually merged with the real-time video frames grabbed by the endoscope 

and presented on a monitor. These systems were also tested in robotic surgery [46], [47], [109], 

[110].  

Otherwise, wearable AR systems particularly offer the most ergonomic solution in those medical 

tasks manually performed under user's direct vision (open surgery, introduction of biopsy needle, 

palpation, etc.). Wearable AR systems based on HMDs essentially provide the user with an self-

centred viewpoint and they do not limit their freedom of movement around the patient. Standard 

HMDs provide both binocular parallax and motion parallax and smoothly augment the user’s 

perception of the surgical scene throughout the specific surgical procedure. In these HMDs, the see-

through capability is accomplished either through the above-mentioned video see-through 

paradigm or through the optical see-through paradigm. 

 

3.2 OPTICAL SEE-THROUGH VS VIDEO SEE-THROUGH HEAD MOUNTED DISPLAYS 
 

Generally, Head-Mounted Displays for Augmented Reality fall into two classes according to the see-

through paradigm they implement: video see- through or optical see-through. In optical see-through 

systems, the user’s direct view of the real world is augmented with the projection of virtual 

information on a bean combiner and then into the user’s line of sight [111] (Figg. 3.4 – 3.5). 

Differently, in video see-through systems the virtual content is merged with camera images 

captured by two external cameras rigidly fixed on the visor (Figg. 3.6 – 3.7).  
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Fig. 3.4 – Optical see-through paradigm: a virtual 2D image (heart) is rendered on the semi-transparent surface of 
projection (SSP). The user perceives the light rays coming from the real world merged with the 2D virtual image. 

Accurate geometric registration is difficult to achieve. Frequent calibrations are required to estimate eye’s pose in 
relation to the display ( DRSTERS). Moreover, the eye’s projective model should be known (courtesy of EndoCAS). 

 

 

Fig. 3.5 – The design of an AR-based Optical see-through system for CMF surgery. 
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Fig. 3.6 – Video see-through paradigm: the virtual 2D image (heart) is mixed on an image frame of the real world 
grabbed by the external camera. Accurate geometric registration solely relies on accurately determining SRSTDRS 

(tracking) (courtesy of EndoCAS). 

 

 

Fig. 3.7 – The design of an AR-based Video see-through system for CMF surgery. 
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Thus, optical-see through systems could seem to deliver a better experience of augmented vision, 

as long as they provide the user with a natural view of the real world with full resolution. On the 

other hand, the camera-mediated view typical of the video see-through paradigm could be 

considered drastically affecting the quality of the visual perception and experience of the real world. 

The fundamental optical see-through paradigm of HMDs is being implemented in many consumer-

oriented devices available on the market or forthcoming (Google Glass, Microsoft HoloLens, Epson 

Moverio, Lumus optical, Meta 2). A straightforward implementation of the optical see-through 

paradigm includes the employment of a half-silvered mirror or beam combiner to merge real view 

and virtual content. The user’s own view is augmented by rendering the virtual content on a two-

dimensional (2D) micro display and by sending it to the beam combiner. Lenses can be placed 

between the beam combiner and the display to focus the virtual 2D image so that it appears at a 

comfortable viewing distance on a semi-transparent surface of projection (SSP) [112]. As an 

alternative, the use of high-precision waveguide technologies allows the removal of the bulky 

optical engine placed in front of the eyes [113]. The optical see-through paradigm is particularly 

suitable for augmenting the reality by means of simple virtual elements (models, icons or text labels) 

but shortcomings remain both from a technical and a perceptual standpoint, especially in case of 

virtual contents of greater complexity. Yet, the degree of adoption and diffusion of optical see-

through systems has slowed down over the years due to technological and perceptual limitations. 

For example, the presence of a small augmentable field of view, the perceptual conflicts between 

the 3D real world and the 2D virtual image on the SSP, and the need for frequent recalibrations of 

the HMD for yielding accurate spatial registration.  

Indeed, the optical see-through HMDs force the user to accommodate their eye for focusing all the 

virtual objects on the SSP placed at a fixed distance. On the other hand, the focus distance of each 

physical object in the 3D world depends on its relative distance from the observer and may 

dynamically vary over time. Even if an accurate geometric registration of virtual objects to the real 

scene is attained on the 2D SSP plane, the user may not be able to view both the virtual and real 

content in focus at the same time. This aspect is particularly relevant in applications devoted to 

surgical navigation, because it reduces the user’s capacity to interact with the real surgical field 

while maintaining the virtual aid in focus. 

The second major shortcoming of the standard optical see-through HMDs is related with the 

geometric registration required to obtain a geometrically consistent augmentation of the reality, 
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which is an essential prerequisite for being considered as reliable surgical guidance system [114]–

[117].  

Differently, the video mixing technology that underpins the video see-through paradigm, once 

integrated with monocular or binocular HMDs, can offer high geometric coherence between virtual 

and real content. In these systems, a user-specific calibration routine is not necessary, and this is 

the major advantage of the video versus the optical see-through approach. In video see-through 

systems, real scene and virtual information can be synchronized, whereas in optical see-through 

devices there is an intrinsic lag between the immediate perception of the real scene and the 

inclusion of the virtual elements. Further, from a perceptual viewpoint, in video see-through 

systems the visual experience of both the real and virtual content is unambiguously controllable by 

computer graphics, with everything on focus at the same apparent distance from the user. 

 Additionally, video see-through systems are much more suited than optical see-through systems, 

to rendering occlusions between real and virtual elements or to implementing complex Visualization 

Processing modalities that are able to perceptually compensate for the loss of the unobstructed 

real-world view. This aspect is of particular importance in IGS applications, wherever our goal is of 

trying to mimic the perceptive efficiency of the human visual system to allow a smoother interaction 

with the augmented visual information [118]. 

Therefore, at the current technological level, the use of video see-through systems is more 

straightforward, at least for those IGS applications in which we can tolerate slight delays between 

the capture of the real scene by the cameras and the presentation of the captured frames on the 

displays of the visor [17]. 

 

3.3 DEVELOPED STEREOSCOPIC VIDEO SEE-THROUGH HMDS 
 

The two custom-made stereoscopic video see-through HMDs built by EndoCAS (Pisa, Italy) and 

employed in this work comprise the following two major components: a commercial 3D visor and a 

pair of external USB cameras. 

1. The first model of AR visor (Fig. 3.8A) was based on a commercial 3D visor by eMagin (eMagin 

Z800) provided with dual OLED panels and featuring a diagonal field of view (FoV) of 40°. The two 

external cameras were two USB cameras by IDS (uEye UI-1646LE) equipped with a 1.3 Megapixel 
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Aptina CMOS sensor (pixel pitch of 3.6 µm) that achieve a frame rate of 25 fps in freerun mode at 

full resolution (i.e. 1280x1024). A plastic frame (ABS) was built through rapid prototyping and fixed 

to the 3D visor as support for the two external USB cameras. In such a way, the two cameras could 

be aligned with the user’s eyes as to provide a quasi-orthoscopic view of the augmented scene 

mediated by the visor (in a video see-through fashion). 

2. The second model of AR visor (Fig. 3.8B) was based on a commercial 3D visor by Sony (Sony HMZ-

T2) provided with dual 720p OLED panels and a horizontal FoV of 45°. The two external cameras 

were 2 USB cameras by IDS (uEye XS) equipped with a 5 Megapixel Aptina CMOS sensor (pixel size 

of 1.4 µm) that achieve a frame rate of 15 fps at 1280x720 resolution. Also here, the two external 

cameras were mounted on the visor with an anthropometric interaxial distance (≈7cm) and aligned 

with the user’s eyes as to provide a quasi-orthoscopic view of the scene. 

 

 

Fig. 3.8 – A) First embodiment of the video see-through HMDs from a 3D visor by eMagin and B) second embodiment 

assembled on a 3D visor by Sony. 
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An ad-hoc application able to run with both the systems was developed. The software framework is 

able to load and display every AR scene. The system performs Video See-Through AR with 

commercial equipment ranging in a wide and constantly up-to-date list of devices. 

The application is easily and highly manageable through configuration file. This allows the user to 

adapt the software framework for several different applicative scenarios and purposes, in terms of 

tracking methods, Visualization Processing modalities, and View/Display technology. Software 

architecture is easily extensible. 

 

3.4 VIDEO MARKER-BASED REGISTRATION FOR STEREOSCOPIC AR 

 

In AR-based IGS systems the goal of tracking is to determining the position and orientation (pose) 

of surgical tools and of patient’s anatomical structures in relation to the reference display, so to 

obtain an optimally registered augmented scene [38]. In AR HMDs, the real-time accurate alignment 

between the real scene and the virtual content is usually performed by means of optical or 

electromagnetic external trackers [86]. Nevertheless, surgical navigation systems based on external 

infrared trackers have the main disadvantages of introducing unwanted line-of-sight restrictions 

into the OR and of adding technical difficulty to the surgical workflow. Other tracking modalities are 

based on more complex surface-based tracking algorithms [119]. As an alternative to optical 

tracking, electromagnetic tracking systems are particularly appropriate for tracking hidden 

structures [98] but their accuracy and reliability are heavily affected by the presence of 

ferromagnetic and/or conductive materials [120]. Finally, standard video-based tracking methods, 

featuring the use of large template-based markers [90], [91], [121] whose pose can be determined 

through machine vision routines, are hardly suited for use in a surgical setting because they limit 

surgeon's line-of-sight, given their planar structure, and/or they may obstruct the visibility of the 

operating field. 

In 2009, Ferrari et al. already presented an early version of the HMD for AR applications. The 

distinctive feature of that AR HMD was that the pair of external cameras served both to capture the 

real scene and to act as stereo tracker [96]. Indeed, the lack of an external tracker is a key 

characteristic for allowing the smooth and profitable integration of AR systems into the surgical 

workflow.  
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Moreover, small spherical markers placed onto the surgical framework do not heavily affect the 

line-of-sight and they can be conveniently placed on the patient’s anatomy with a reduced spatial 

impact on the surgical workflow. Still with the objective of increasing system usability, the minimum 

set of markers ensuring a finite number of solutions to the camera pose estimation problem was 

chosen, i.e. three.  

One of the tasks conducted in EndoCAS Center by Fabrizio Cutolo was to develop an algorithm to 

correctly register patient’s anatomy on the basis of small spherical markers and external cameras 

stereoscopic video-grabbing serving as tracker [17].  

Figure 3.9 shows schematically how the stereoscopic video see-through mechanism is implemented 

for visualisation and registration, while Figure 3.10 shows the algorithm sequence. 

 

Fig. 3.9 – Scheme representing the stereoscopic video see-through mechanism (courtesy of EndoCAS). 
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Fig. 3.10 – Localisation and Registration Algorithm (courtesy of EndoCAS). 

 

This AR mechanism was implemented in software libraries built in C++ on the top of the 

multipurpose EndoCAS Navigator Platform modules [122]. The management of the virtual 3D scene 

was carried out through the open-source software framework OpenSG 1.8 (www.opensg.org), while 

regarding the machine vision routines, needed for implementing the video-based tracking method, 

Halcon 7.1 software library by MVTec® was adopted. The whole application was implemented to be 

compatible with several 3D displays (working either with side-by-side or alternate frames) and with 

all the cameras whose DirectShow drivers by Microsoft® are available. 

In a video see-through system, to achieve an accurate and robust fusion between reality and 

virtuality we must render the virtual scene so that the following three conditions are satisfied: 

1. The virtual cameras projection models ≈ to the real ones 

2. The relative pose between the two virtual cameras of the stereo rig ≈ to the real one 

3. The pose of the virtual anatomies/surgical tools ≈ to the real ones 
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To first condition implies that the virtual cameras viewing frustums must be modelled on the real 

ones in terms of image size, focus length and centre of projection (intrinsic calibration). At the same 

time, the second condition entails that the relative pose between the two virtual cameras of the 

stereo rig must be set equal to the pose between the two real cameras (extrinsic calibration). 

Lastly, the pose of the virtual elements in the virtual scene must be set equal to the real poses 

between real anatomies/tools and the physical camera. This latest condition is satisfied by applying 

the video marker-based registration method. 

The poses of the two cameras relative to the anatomy and vice-versa are determined by tracking 

passive coloured markers constrained to the surgical scene in predefined positions. The proposed 

video-based tracking solution relies on the stereo localization of three monochromatic red markers 

and it is robust to inconsistent lighting conditions. 3D coordinates of the markers in the left camera 

reference system (CRS) are retrieved by applying stereo 3D Localization routines on pairs of 

conjugate projections of the markers' centroids onto the image planes of the two cameras. Image 

coordinates of the centroids of the markers are determined by a feature extraction task, performed 

through Colour Segmentation and Circular Shape Recognition. 

Schematically, the algorithm could be summarized as follows, as a Machine Vision methods applied 

on the grabbed images (Fig. 3.11 – 3.12): 

A. Colour Segmentation  HS thresholding (Select the red-coloured regions) 

B. Shape-based Recognition  Select the Circles  

C. Markers labelling  Sequence of stereoscopic triangulations and geometrically-based 

comparisons    

D. Point Based Registration  Least Squares Fitting through SVD 

E. Single Camera pose refinement   Minimization back-projection error 

On the basis of the testing conducted by Fabrizio Cutolo, this algorithm was found to be robust and 

accurate [17]. Thus, the clinical implementation of the presented method was considered possible 

and potentially promising. The following sections will clarify the efforts of the research team in 

developing an ergonomic and feasible device for CMF surgery (with potential benefits for any 

surgical application). 
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Fig. 3.11 – A, Colour Segmentation; B, Circular Shape Recognition; C, Markers Labelling (courtesy of EndoCAS). 

 

 

Fig. 3.12 –3D-3D Correspondence Definition (D  E) and Point-Based Registration (courtesy of EndoCAS). 
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4 CHAPTER 4: HUMAN-PNP - ERGONOMIC AR INTERACTION PARADIGM FOR 

MANUAL PLACEMENT OF RIGID BODIES 

 

4.1 SPECIFIC CONTRIBUTION OF THIS SECTION 
 

In the understanding of how humans perceive depth, the mechanisms behind the mutual 

interaction between physiological and psychological cues are still disputed. This question is of great 

importance in designing 3D Visors and it is even more important if the aim is to mimic the perceptive 

efficiency of the human visual system within augmented reality based surgical navigation systems. 

On this issue, unreliable modalities of AR Visualization can bring cognitive overload and perceptual 

conflicts causing misinterpretation and hindering clinical decision-making [123]. In this Chapter, a 

way to facilitate the profitable introduction of AR-based navigation systems into the surgical 

workflow is presented. The solution is based on the definition of an ergonomic interaction paradigm 

designed for aiding the manual placement of rigid bodies in space. The key idea behind this AR 

Visualization modality is that the minimization of the reprojection residuals, on the image plane, 

between a set of corresponding real and virtual feature points can direct the accurate placement, 

by successive manual adjustments, of a non-tracked rigid body relative to a tracked reference one. 

This AR interaction paradigm drew its inspiration from the general problem of estimating camera 

pose from a set of n-correspondences, known in computer vision community as the perspective-n-

point problem. This work was presented at the 10th International Workshop, AE-CAI (Augmented 

Environments for Computer-Assisted Interventions) 2015, held in conjunction with MICCAI 2015 

[124]. 

 

4.2 VISUALIZATION PROCESSING MODALITIES IN IGS 

 
In the context of AR-based surgical navigation systems, several Visualization Processing techniques 

have been adopted to allow a more immersive viewing experience for the surgeon and a more 

precise definition of the spatial relationships between real scene and Visually Processed Data along 

the three dimensions. The human visual system exploits several physiological and psychological cues 

to deal with the ill-posed inverse problem of understanding a 3D scene from one retinal image. 

However, even when interacting with the real world, monocular and binocular cues are not always 
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sufficient to infer, with extreme accuracy, the spatial relationships between virtual and real objects. 

Therefore, a full comprehension of the mechanisms that underpin depth perception are still 

debated and therefore it becomes even more difficult trying to reproduce its working within an 

augmented scene [125]. 

In their general survey on AR, Azuma et al. [12] rightly claimed that «The basic goal of an AR system 

is to enhance the user’s perception of and interaction with the real world through supplementing 

the real world with 3D virtual objects that appear to coexist in the same space as the real world». 

In the context of AR-based surgical navigation systems, researchers thus have tried to improve the 

perceptive efficiency of the human visual system in several ways. Some have modelled and 

contextually rendered the virtual content in a photo-realistic manner. Other researchers have 

adopted pixel-wise transparency maps and "virtual windows" [126] to recreate occlusions and 

motion parallax cues. Some of the proposed techniques for enhancing depth perception have 

included high-fidelity texturing [127] or colour coding methods [128], whereas others comprised 

lighting and shading cues and/or were based on the adoption of an interactive “virtual mirror” [129], 

[130]. Alternatively, depth perception can be improved by relying on standard stereopsis and two-

view displays or on more complex full parallax multi-view displays. In any case, to the best of our 

knowledge, previously there have been no AR Visualization Processing techniques that have 

provided the surgeon with useful information able to significantly improve the postoperative 

outcome of specific surgical tasks. 

Many surgical procedures in the field of orthopaedic surgery or maxillofacial surgery, generally 

involve the task of reducing displacements or correcting abnormalities between rigid anatomical 

structures, i.e. bones, based on pre-operative planning. The direct tracking of all the rigid anatomies 

involved in the procedure certainly would provide a measure of the six-degrees-of-freedom 

displacements between each couple of them and it would aid the correct performance of the 

surgical task, yet it is not always feasible for technical and logistic reasons. In case of single object 

tracking, the pointer of a standard surgical navigator can be employed by the surgeon to compare 

the final positions of clearly detectable reference points, over the repositioned anatomy with those 

of their counterparts from the surgical planning. Nevertheless, this approach does not allow the 

assessment of all of the six-degrees-of-freedom at the same time, and so the surgeon has to 

iteratively move the body and check the position of at least three points through the pointer of the 

navigator. This cycle can be tedious, since the verification is performed after any adjustment of the 
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pose of the object. Further, despite it is trivial to check the position of one point, same cannot be 

said if our goal is to align more points (i.e. at least three). 

AR seems the optimal solution to aid this kind of surgical tasks because potentially it can show all 

the required information in a consistent and immediate fashion. Yet, the traditional AR interaction 

technique, featuring the superimposition of a semi-transparent virtual replica of the rigid anatomy 

in a position and orientation (pose) defined during planning, did not prove to be very effective in 

aiding the correct performance of those procedures as we demonstrated in the experiments that 

will be outlined in Chapter 5. To this end, it appears undoubtedly more beneficial and intuitive for 

the surgeon to deal with task-oriented Visualization techniques, more than with complex 

reproductions of the virtual anatomies through photorealistic rendering, transparencies and/or 

virtual windows. 

 

4.3 METHODS 
 

4.3.1 Perspective-n-Point Problem.  
 

The task of estimating the pose of a camera with respect to a scene object given its intrinsic 

parameters and a set of n world-to-image point correspondences is known as the Perspective-n-

Point (PnP) problem in computer vision and exterior orientation or space resection problem in 

photogrammetry.  

This inverse problem concerns many fields of applications (structure from motion, robotics, 

augmented reality, etc.) and it was first formally introduced in the computer vision community by 

Fishler and Bolles in 1981 [131], albeit already used in the photogrammetry community before then.  

According to Fishler and Bolles the PnP problem can be defined as follows (distance-based 

definition):  

«Given the relative spatial locations of n control points 𝑃𝑖, 𝑖 = 1, … 𝑛, and given the 

angle to every pair of these points from an additional point called the centre of 

perspective C, find the lengths 𝐷𝑖 = |𝐶𝑃𝑖| of the line segments joining 𝐶 to each of the 

control points». 
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The constraint equations are:  

𝐷𝑖
2 + 𝐷𝑗

2 − 2𝐷𝑖𝐷𝑗  cos 𝜃𝑖𝑗 =  𝑑𝑖𝑗
2 , 𝑖 ≠ 𝑗 

Where 𝐷𝑖 = |𝐶𝑃𝑖|, 𝐷𝑗 = |𝐶𝑃𝑗|  are the unknown variables, 𝜃𝑖𝑗 = 𝑃𝑖𝐶𝑃�̂�  and 𝑑𝑖𝑗 = |𝑃𝑖𝑃𝑗|  are the 

known entries (Fig. 4.1). In computer vision 𝜃𝑖𝑗  are determined finding the correspondences 

between world-to-image points and knowing the intrinsic camera parameters, while 𝑑𝑖𝑗  are 

established by the control points.  

Following this definition, once each distance 𝐷𝑖  is computed, the position of the points 𝑃𝑖can be 

expressed in the CRS. Therefore, being the position of each 𝑃𝑖 in the SRS known, the problem of 

estimating camera pose with respect to the SRS is reduced to a standard absolute orientation 

problem whose solution can be found in closed-form fashion through quaternions [132] or singular 

value decomposition (SVD) [133].  

The same problem is also known under the transformation-based definition [134] which can be 

formalized as: 

𝜆𝑖�̂�𝑖 = [𝐾|0] [
𝑅 𝑇
0 1

] �̂�𝑖 , 𝑖 = 1, … 𝑛 

 

Fig. 4.1 – Geometry of the PnP problem. 
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Where the scene and image points �̂�𝑖and �̂�𝑖 are represented in homogeneous coordinates and the 

equation is up to a scale factor 𝜆𝑖. Hence, according to this definition, the PnP problem aims at 

determining the pose (in terms of a rotation matrix 𝑅 and a translation vector 𝑇) given a set of n 

world-to-image correspondences and known the intrinsic camera parameters encapsulated by the 

matrix 𝐾. 

The PnP problem has been extensively studied by several groups, which have proposed different 

iterative, closed-form for solving it. Closed-form methods [135]–[141], directly provide an 

estimation of the camera pose but they are usually less accurate and more susceptible to noise than 

iterative methods. Iterative non-linear optimization methods solve the PnP problem by iteratively 

minimizing a cost function generally related to the geometric (reprojection residuals) or algebraic 

error but they need a good initial guess and yield only one solution at a time [142]–[144]. A useful 

overview of the state-of-the-art methods can be found in [140]. 

In terms of geometric reprojection residual, the non-linear cost function can be formulated as the 

sum of the squared measurement errors (𝑑𝑖): 

R̅|T̅ = arg 𝑚𝑖𝑛 ∑ 𝑑(𝑝𝑖 �̂�𝑖)
2 =  arg 𝑚𝑖𝑛 ∑ ∥ 𝑝𝑖 −  �̂�𝑖(𝐾, �̂�,  �̂�, 𝑃𝑖 ) ∥2

𝑛

𝑖=1

𝑛

𝑖=1

 

Where 𝑝𝑖 are the measured image points, and �̂�𝑖  are the calculated projections of the 

corresponding control points as a function of 𝐾, �̂�, �̂�. 

The other important research direction on the PnP problem is the study of the multi-solution 

phenomenon of the PnP problem [145], principally when n=3 (P3P) [146], being 3 the smallest 

subset of control points that yields a finite number of solutions. P3P problem yields at most four 

solutions which can be disambiguated using a fourth point, and it is the most studied case since it 

can be used as first step to reduce the complexity of the computation of a PnP problem, e.g. in a 

RANSAC scheme by removing the outliers. 

 

4.3.2 AR Video-Based Camera Registration 
 

Regardless of the method adopted for solving the PnP problem, an immediate application of the 

PnP problem is to locate the pose of a calibrated camera with respect to an object, given the 3D 
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position of a set of n control points rigidly constrained to the object and the 2D position of their 

correspondent projections onto the image plane.  

For a correct registration of computer-generated elements to the real scene in AR-based surgical 

navigation systems, the image formation process of the virtual camera must perfectly mimic the 

real camera one. In mostly all the AR applications the estimation of the intrinsic camera parameters 

is the result of an off-line calibration process whereas the extrinsic camera parameters are 

determined online, e.g. solving a PnP problem in real-time. This video-based camera registration 

method suggested us the implementation of an ergonomic AR interaction paradigm for positioning 

and orienting a non-tracked rigid object in space. 

 

4.3.3 Human-PnP.  
 

Many surgical procedures in the field of orthopaedic surgery or maxillofacial surgery, involve the 

task of manually placing rigid anatomies on the basis of preoperative planning. In that case, let us 

assume that we can rely on a robust and accurate registration of the surgical planning onto the real 

scene, by means of the tracking of at least one rigid body (e.g. the head). The six-degrees-of-freedom 

pose of an additional and non-tracked rigid anatomy in relation to the SRS, can be retrieved by 

physically placing it as to minimize the geometric distance, on the image plane, between a set of 

real and virtual feature points. For brevity, from now on, we shall refer to these structures as 

“tracked anatomy” for the former and “non-tracked anatomy” for the latter, while the proposed 

method will be referred to as the human-perspective-n-point problem (hPnP). 

From a theoretical standpoint, our method draws its inspiration and physically mimics the paradigm 

on which the PnP problem is formulated. As mentioned in the previous section, the main goal of the 

PnP problem is to infer useful information on the real 3D scene, based on 2D observations of it. In 

an AR application, this spatial information is used to geometrically register the virtual elements onto 

the real scene. Thus, as a general rule and regardless of the method adopted for solving the PnP 

problem, a robust and accurate registration should minimize in the image plane the geometric 

reprojection residuals between measured and estimated projections. Similarly, the goal of our hPnP 

interaction paradigm is to achieve the desired placement of a non-tracked anatomy by manually 

minimizing the reprojection residuals between correct/planned projections �̅�𝑖 of virtual landmarks, 

and observed projections �̂̅�𝑖 of real landmarks. The correct/planned projections �̅�𝑖 are rendered on 
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the image plane according to the real-time estimation of the camera pose [R̅, T̅] relative to the 

tracked anatomy reference system (SRS) and assuming the intrinsic camera parameters, 

encapsulated by matrix K, are determined offline, e.g. through the Zhang’s method [147]. The 

position of each virtual landmark 𝑃𝑖  in the SRS is established during surgical planning. 

The real projections �̂̅�𝑖  are associated with the pose, encapsulated by [�̂̅�, �̂̅�] , between viewing 

camera and non-tracked anatomy reference frame (ARS): this resulting pose varies according to the 

manual placement of the rigid body relative to the camera: 

R̃|T̃ = arg 𝑚𝑖𝑛 ∑ 𝑑(𝑝𝑖 �̂̅�𝑖)
2 =  arg 𝑚𝑖𝑛 ∑ ∥ �̅�𝑖(𝐾, �̅�,  �̅�, 𝑃𝑖  )  −  �̂̅�𝑖(𝐾, �̂̅�,  �̂̅�, 𝑃𝑖  ) ∥2

𝑛

𝑖=1

𝑛

𝑖=1

 

In this way, we wish to obtain  [R̃|T̃] ≈  [R̅|T̅] (Fig. 4.2), namely we seek to positioning and orienting 

the ARS as coincident with the planned and registered SRS (non-tracked anatomy reference frame 

≈ planning reference frame). 

 

 

Fig. 4.2 – Geometry of the hPnP: minimizing the reprojection residual between registered projections �̅�𝑖  and real 

projections  �̂̅�𝑖  is sufficient to aid the accurate placement of a rigid body (the maxilla in the image) in space. 

 



 
58 

To implement this strategy, we add simple virtual elements (e.g. virtual asterisks, crosses, etc.) to 

the virtual scene during the surgical planning: one element for each of the clearly detectable 

physical landmarks on the rigid body. The landmarks may consist of a series of distinguishable 

feature points over the surface of the anatomy or rigidly constrained to it. Under such AR guidance, 

the user moves the non-tracked rigid body up to obtain a perfect overlapping between real and 

virtual landmarks, hence manually minimizing the reprojection residuals on the image plane: �̅�𝑖 ≈

 �̂̅�𝑖∀𝑖 (Fig. 4.3). The theoretical assumptions underpinning the PnP problem ensure that if �̅�𝑖 ≈  �̂̅�𝑖∀𝑖, 

the non-tracked anatomy is placed in the correct pose as planned in SRS. 

 

Fig. 4.3 – Detail of the image plane with the minimization of the reprojection residuals. Here the virtual information 

consists of a cyan-colored asterisk for each physical landmark clearly detectable over the maxilla, e.g. coloured 

landmarks fixed on the brackets of the orthodontic appliance (Color figure online). 

 

4.4 DISCUSSION 
 

A novel and ergonomic AR interaction paradigm has been introduced, that aims at obtaining the 

accurate placement of a rigid body in space without the need for multiple objects tracking. From a 

theoretical standpoint, our method draws its inspiration and physically mimics the paradigm on 

which the PnP problem in computer vision is formulated. This approach, termed hPnP, could be of 

help in those tasks, also not specifically surgical, where the AR guide aims at aiding the placement 

of a rigid body in space. 

The key-principle behind this interaction paradigm can be exploited in many different AR-based 

navigation systems: it can be integrated with different end-products of the Visualization process in 
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terms of display technology and Perception Location and/or it could be realized in conjunction with 

various tracking modalities. 

To improve robustness and applicability of the proposed AR interaction paradigm in a real clinical 

scenario, redundancy in choosing the set of landmarks must be granted. Further, the presence of 

line-of-sight occlusions caused by soft-tissues, surgeon’s hands or surgical instrumentation may be 

restricted by conveniently selecting the position of the landmarks in relation to the surgical field. 

Lastly, it is important to note that the chosen AR interaction paradigm was not bound to the 

particular video-based tracking technique, neither to the use of a specific wearable stereoscopic 

system. The user can enhance the accuracy in object placement by checking consistency of real and 

virtual landmarks from different viewpoints. In this regard, the ergonomics of the proposed method 

may benefit from the adoption of a wearable AR system. Moreover, the choice of such instance of 

Visualization data was, in that work, empirically inspired by the authors’ endeavour of defining a 

modality that were ergonomic for the surgeon and that provided the smallest perceived parallax 

error. 
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5 CHAPTER 5: AR-BASED VIDEO SEE-THROUGH HMD AS AN AID FOR 

SURGICAL MAXILLARY REPOSITIONING 

 

In recent years, the discipline of Cranio-Maxillofacial (CMF) Surgery has experienced an 

extraordinary rate of technological innovation. This is because the complex 3D anatomy of the face, 

together with the need for surgical precision and the increasing number of requests for 

morphological surgery, have resulted in surgeons demanding advanced technological assistance. 

Thus, surgical planning software platforms and navigation systems are today widely used by 

maxillofacial surgeons [25], [26], [34], [35], [148]–[150]. 

However, the complexity of such surgery and the extended operative times required, have 

compromised the widespread implementation of such devices. Moreover, the necessary equipment 

is expensive [151]. For these reasons, the technology demands both methodological and economic 

rationalisation. 

Bearing these facts in mind, in this study the first version of HMD was used to elaborate a useful 

strategy for delivery of AR information to the CMF surgeon. As previously stated for the survey 

presented in Chapter 4, this study is the result of a collaboration between our Department, the 

Maxillofacial Surgery Unit of the S. Orsola-Malpighi University Hospital of Bologna, and EndoCAS 

Laboratory of the University of Pisa. The aim of the present study was to validate the accuracy of 

the video see-through HMD when used as an aid during surgery on facial bones, specifically 

repositioning of the maxilla after LeFort 1 osteotomy, a standard procedure in orthognathic surgery. 

The potential for the wider application of the HMD in maxillofacial surgery was also explored [152]. 

 

5.1 THE SELECTED SURGICAL PROCEDURE: LEFORT1 OSTEOTOMY  
 

Orthognathic Surgery is that field of CMF Surgery aiming to treat dentofacial deformities, thus to 

normalize facial disharmony and/or asymmetry with a specific focus on dental occlusion (Fig. 5.1). 

The term dentofacial deformity refers to significant deviations from normal proportions of the 

maxillo-mandibular complex that negatively affect facial harmony and the relationship of the teeth 

within each arch and the relationship of the arches with one another (occlusion) [153]. 
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Fig. 5.1 – An example of treatment of a dentofacial deformity [35] 

 

It is not the purpose of the present thesis to give and extended description of this area of CMF 

surgery. Thus, this subsection will be limited to the essential information needed to understand 

what kind of surgical procedure has been selected as a test and why.  

To achieve the above described aim of orthognathic surgery, the surgeon can perform selective 

osteotomies of the facial bones, namely the maxilla, the mandible and its border (gonial angles, 

lower borders and the chin). The standard osteotomy to mobilize and reposition the maxilla is called 

LeFort1 osteotomy, according to the surgeon who first described this osteotomy line for trauma 

cases. It represents a complete detachment of the upper maxilla just above the palate (i.e., the nasal 

floor), potentially including also the lower part of the zygomatic buttresses for better volume 

enhancement of the malar regions (Fig. 5.2). This surgical manoeuvre is usually performed with the 

aid of a surgical occlusal wafer that reproduce the planned maxillary position in relation to the 

original mandibular dental arch. Then, maxilla is fixed in its planned position using titanium mini-

plates and screws (Fig. 5.2).  
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Fig. 5.2 – LeFort1 osteotomy line (left) and surgical occlusal wafer(right) (Modified from AO Foundation online library). 

 

Nowadays, this procedure is planned with the aid of surgical simulation software, that allow the 

surgeon to three-dimensionally measure facial skeletal dimensions and bony parts mutual 

relationships (cephalometry) and to simulate the surgical procedure in a 3D environment (Fig. 5.3) 

[25], [26]. That is particularly useful for asymmetric faces. 

 

A  B  C   

Fig. 5.3 – A: 3D cephalometry; B,C: 3D rendered image of a LeFort1 osteotomy, lateral and frontal aspects (obtained by 

a computed surgical simulation software, Simplant O&O, Dentsply Sirona, York, USA). 
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LeFort 1 osteotomy was chosen as a test procedure because it is a standard technique, very well-

known and repeatable [153]. Moreover, it is a one-piece bone segment repositioning in the context 

of CMF surgery, properly exemplifying any other bone segment repositioning procedure for the 

cranio-maxillofacial area. 

 

5.2 MATERIALS AND METHODS 
 

5.2.1 Implementation of the Video-Based Tracking Method 

 

Here is a brief description of the specific implementation of the video-based tracking method 

extensively described in the previous chapters. The online estimation of the pose of the stereo 

camera pair (Camera reference system, abbreviated to CRS) relative to the reference system of the 

surgical planning (SRS), is the result of a marker-based video registration method. Such method 

relies on the localization of three physical markers (red spheres) rigidly constrained to the head 

phantom and whose position in the virtual scene (SRS) is recorded during planning. The key 

characteristic of the implemented method for registering the preoperative planning to the live views 

of the surgical scene (i.e. the patient phantom) is that it is not based on the adoption of a 

cumbersome external localizer. Standard surgical navigation systems, featuring the use of external 

infrared trackers, may in fact introduce unwanted line-of-sight constraints into the operating room 

as well as add error-prone technical complexity to the surgical workflow. The proposed video- based 

algorithm proved to be an ergonomic and functional implementation of the video see-through 

paradigm (Fig. 5.4 – 5.5). 

 

5.2.2 In vitro Set-Up 

 

The tests were conducted on a replica of a cadaveric human skull. The real skull underwent CT 

scanning and the DICOM files were segmented using a semi-automatic segmentation tool integrated 

into the ITK-Snap open-source platform [122]. 
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Fig. 5.4 – The first implementation set-up. 

 

Fig. 5.5 – The latter implementation set-up. 
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Manual segmentation refinement was performed to obtain detailed information on small 

anatomical structures (e.g. the foramen rotundum, foramen spinosum, lamina cribriformis, and 

hypoglossal canal). The 3D virtual model distinguished pneumatised bones very well. In particular, 

the nasal cavities and the paranasal sinuses were computer-generated in minute detail. 

The virtual model of the skull was cut along the LeFort 1 osteotomy line. The two resulting virtual 

objects (the upper skull and maxilla) were exported as STL files and replicated in ABS using a 3D 

printer (Stratasys Elite; Edina, MN). As already stated, LeFort 1 osteotomy and repositioning of the 

upper maxilla were chosen as test procedures featuring the principal features of maxillofacial 

surgery. Thus, the technique involves surgery on facial bones; the approach is a form of semi-buried 

surgery performed under real clinical conditions; the technique involves complex 3D movements of 

a rigid object in space; and the technique is often performed in clinical practice worldwide. It was 

chosen to perform and represent this manoeuvre without the aid of surgical occlusal wafers, namely 

wafer-less, to better understand the value of the AR device as a sole tool aiding the procedure. 

Before printing, three 6-mm-diameter spheres were inserted into the virtual model as reference 

markers for the video-based tracking method described in the previous chapters. Further, three 

reference holes were drilled into the vestibular cortical bone, over the teeth (anterior in the pre-

maxillary region; posterior left and posterior right in the respective molar regions). These holes were 

used as references to evaluate the position of the maxilla. Thus, each hole was designed to receive 

the tip of the tester probe used for validation (Fig. 5.6), to guarantee unique selection of each 

reference point. 

The upper skull was fixed on a wooden holder. The maxillary piece was connected to the upper skull 

with plasticine (this material is highly malleable but rigid when shaped). This construction served as 

a fixing device for the maxilla once the planned position was attained, yet allowed the maxilla to be 

manually adjusted in space. 

To evaluate the accuracy of our system, a traditional navigation platform (the eNlite Navigation 

System running iNtellect Cranial Navigation Software version 1.0; Stryker, Freiburg, Germany) 

featuring an active infrared localiser was used. The entire setup is shown in Figure 5.6, which 

identifies the tracking and pointing instruments of the commercial navigation system. 
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Fig. 5.6 – The Experimental setup: A physical replica of the human skull is fixed onto a wooden holder, and the three 

coloured spheres on the model (the black dashed arrows) are used as reference markers for the video-based tracking 

method employed. The coloured brackets on the teeth (the black asterisks) are the reference markers for the hPnP-like 

AR interaction paradigm; three holes on the maxilla (the red arrows) were used to evaluate accuracy with the aid of an 

external navigation system. The tracker of the navigation system is fixed onto the model in (a). In (b), the pointer of the 

navigation system, used to assess the position of reference holes, is shown beside the model. 

 

5.2.3 AR Visualization: hPnP Approach 

 

A preliminary assessment was conducted to evaluate the ergonomics of the device, actual usability 

in a surgical environment, and (in particular) the best method of displaying the virtual content. One 

surgeon and three engineers collaborated in this work. Tests were conducted using different 

Visualization Processing modalities in an attempt to define a modality that was optimally 

comfortable and that offered the smallest perceived parallax error. The traditional AR interaction 

technique, featuring the superimposition of a semi-transparent virtual replica of the maxilla, as 
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dictated by the surgical planning, did not prove to be very effective in aiding the surgeon in manually 

repositioning the upper maxilla. This was mostly due to the surgeon’s limited perception of the 

relative distances of objects within the AR scene owing to the presence of unnatural occlusions 

between the real and the virtual maxilla. Conversely, a more ergonomic form of visualization 

consisted in the use of an interaction paradigm which did actualize the previously described hPnP 

approach (Chapter 4). In this approach, physical landmarks onto the maxilla were designated as 

reference markers for the AR Visualization modality. The physical landmarks correspond to coloured 

landmarks fixed on the brackets of the orthodontic appliance usually applied prior to this kind of 

interventions. The repositioning of the maxilla is therefore assisted by visually aligning small virtual 

asterisks, drawn in positions defined during planning (i.e. in the scene reference system SRS), with 

the corresponding real landmarks (Fig. 5.7). 

 

Fig. 5.7 – Different Visualization Processing modalities: (a) Real video frame; (b, c) Traditional approach, presenting the 

virtual model on real camera frames. Using the approaches of (b) and (c), it was not possible to completely perceive 

the spatial relation- ships between the real and virtual world. (d) A more ergonomic form of Visualization, that 

actualizes the hPnP interaction paradigm. The virtual information consists of a green asterisk for each coloured 

landmark on the maxilla. 
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5.2.4 Accuracy Evaluation Testing 

 

Virtual Surgical Planning. Using Maya (Autodesk; Toronto, Canada), the virtual maxilla was moved 

in space as dictated by three surgical planning of increasing complexity. 

• Maxilla 6 mm forward;  

• Maxilla 5 mm forward and 1 mm downward;  

• Maxilla 6 mm forward, 1 mm downward, and with 15° roll and 10° pitch. 

Each planning was stored as an STL file to be loaded by the software that manages the AR (Fig. 5.8). 

 

 

Fig. 5.8  – The virtual maxilla (a) was moved in space as dictated by three surgical planning of increasing complexity: 

(b) 6 mm forward; (c) 5 mm forward and 1 mm downward; (d) 6 mm forward, 1 mm downward, with 15° roll and 10° 

pitch. 

 

Tests. Three maxillofacial surgeons, three trainees in maxillofacial surgery, and three engineers 

were involved in the testing; we evaluated interobserver variability. Hence, the three groups 

included appropriate representatives of users with different levels of surgical skill (from unskilled 

engineers to highly skilled surgeons). After only one warm-up session, during which each subject 

familiarized with the HMD and with the interaction paradigm, the subject was asked to manually 

reposition the maxillary segment, using the AR guide. Each subject for each of the three virtual plans 

repeated the procedure; the maximum test duration was 15 min. After completion of each test, the 

position of the maxillary segment was confirmed using the navigation system described below. 
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Accuracy Measurement. The CT scan of the skull was imported into the navigation system as a 

DICOM file and the three plans, defined in the CT reference system (SRS), were loaded into the 

navigation system as STL files (Fig. 5.9). The tracker of the navigation system was fixed on the model 

of the skull and the registration process featured a point-based procedure (using defined anatomical 

points) with subsequent surface refinement; the target registration error was 0.3 mm. After each 

trial session, the navigation system probe was inserted into each of the three reference holes on 

the maxilla and the probe tip positions were saved (Fig. 5.10). For each subject, the linear distances 

between the real positions of the reference holes (measured using the navigation system) and the 

expected positions (defined during surgical planning). 

 

Fig. 5.9 – A screenshot of the navigator. The blue planning scenario is loaded together with the original CT scan 
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Fig. 5.10 – The accuracy evaluation process is shown in detail. On the left, the pointer slides into a reference hole of the 
maxilla (the hole termed “anterior one”); on the right, the navigation system shows where the tip of the pointer is 

actually located (compared with the planned location). The coordinates of the real position are recorded and used to 
estimate errors in linear measurements. 

 

5.3 RESULTS 

 

The linear results are shown in Table 5.1. The mean error was 1.70 ±0.51 mm. The axial errors were 

0.89 ± 0.54 mm on the sagittal axis, 0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the 

cranio-caudal axis. The simplest planning was associated with a slightly lower mean error (1.58 ± 

0.37 mm) than the more complex plans (medium:1.82 ± 0.71 mm; difficult:1.70 ±0.45 mm). The 

mean error for the anterior reference point was lower (1.33 ± 0.58 mm) than those for the posterior 

right (1.72 ± 0.24 mm) and posterior left (2.05 ± 0.47 mm) points.  

 

 

Table 5.1  



 
71 

Angular errors were also computed, according to Fig. 5.11 model. Mean pitch was 3.13°±1.89°, 

mean roll was 1.99°±0.95° and mean yaw was 3.25°±2.26°. Angular errors were computer also 

according to the plan, i.e. the complexity of the simulated procedure: these results are summarized 

in Table 5.2. 

 

Fig. 5.11 – Angular errors were computer according to the angular discrepancies between the plane built on the three 

planned points and the plane built on the three achieved points 

 Plan 1 Plan 2 Plan 3 

PITCH 3.12°±2.68° 2.89°±0.80° 3.40°±1.89° 

ROLL 2.27°±1.22° 1.46°±0.57° 2.24°±0.81° 

YAW 3.25°±3.29° 3.02°±0.82° 3.48°±2.24° 

Table 5.2  

Moreover, no significant difference was noted among operators, despite variation in surgical 

experience (Fig. 5.12). Feedback from surgeons was acceptable; all procedures were completed 

within 15 min and the tool was found to be both comfortable and usable. 

 

Fig. 5.12  – Mean errors in mm (over three trials and three reference holes) for each of the nine participants. No 
difference between engineers and physicians is evident. 
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5.4 DISCUSSION 
 

This represents the first study testing an AR-based HMD device for CMF surgery. The efficacy of the 

wearable AR system as surgical navigator was validated in combination with the ergonomic AR 

interaction paradigm presented in Chapter 4. The system proved to be an effective surgical aid when 

used to assist in wafer-less maxillary repositioning. 

The positive results were obtained without the tracking of the maxilla but just relying on the chosen 

AR interaction paradigm: the overlapping on the image plane between virtual feature points and 

real landmarks, visible over the non-tracked anatomy, proved to be sufficient to assist the accurate 

repositioning of the maxilla. Further, the video-based tracking solution obviates any need for an 

external localiser, because the stereo camera pair acts as frame-grabber and as localiser. 

The obtained results suggested that the AR HMD can be both comfortable and functional, permitting 

a surgeon to maintain their natural operative posture during surgery performed at different angles, 

without losing the 3D relationship between the real scene and that afforded by virtual planning. 

This is of particular importance. During this typology of surgery, surgeons in fact are frequently 

asked to change their line of view to control the 3D position of the maxilla from all angles. In the 

same manner, with the proposed AR interaction paradigm, the user can enhance the accuracy in 

object placement by checking consistency of real and virtual landmarks from different viewpoints. 

In this regard, the ergonomics of the proposed method may benefit from the adoption of a wearable 

AR system even if it is important to note that the chosen Visualization modality was not bound to 

the particular video-based tracking solution adopted in the study, neither to the use of a specific 

wearable stereoscopic system. 

From the clinical point of view, the device was certainly promising. Results suggest that the device 

would be accurate when used to assist in wafer-less maxillary repositioning during the LeFort 1 

orthognathic procedure. Linear and angular errors were considered clinically acceptable according 

to current good surgical practice, especially for a wafer-less procedure.  

Further, data suggest that the method can be extended to aid the performance of many surgical 

procedures on the facial skeleton, but more tests are needed to improve user’s experience in terms 

of quality of information displayed.  Also, in vivo testing should be performed to assess system 

accuracy under real clinical conditions. 
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Abstract. The human perception of the three-dimensional world is influenced
by the mutual integration of physiological and psychological depth cues, whose
complexity is still an unresolved issue per se. Even more so if we wish to mimic
the perceptive efficiency of the human visual system within augmented reality
(AR) based surgical navigation systems. In this work we present a novel and
ergonomic AR interaction paradigm that aids the manual placement of a
non-tracked rigid body in space by manually minimizing the reprojection
residuals between a set of corresponding virtual and real feature points. Our
paradigm draws its inspiration from the general problem of estimating camera
pose from a set of n-correspondences, i.e. perspective-n-point problem. In a
recent work, positive results were achieved in terms of geometric error by
applying the proposed strategy on the validation of a wearable AR system to aid
manual maxillary repositioning.

Keywords: Augmented reality and visualization � Computer assisted inter-
vention � Interventional imaging

1 Introduction

In the context of image-guided surgery (IGS), augmented reality (AR) technology
represents a promising integration between navigational surgery and virtual planning.

In 2012 Kersten-Oertel et al. [1] proposed a taxonomy of mixed reality visuali-
zation systems in IGS and defined the three major components based on which they
then presented a systematic overview of the trends and solutions adopted in the field
[2]. The acronym for the taxonomy (DVV) derives from its three key components: Data
type, Visualization Processing and View. According to the taxonomy, for classifying
and assessing the efficacy of a new AR system for IGS, we must focus our attention on
the particular surgical scenario in which the visualization system aim to be integrated.
The surgical scenario affects each of the three DVV factors, namely the type of data
that should be displayed at a specific surgical step, the visualization processing tech-
nique implemented to provide the best pictorial representation of the augmented scene
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and how and where the output of the visualization processing should be presented to
the end-user.

Several visualization processing techniques have been adopted to allow a more
immersive viewing experience for the surgeon and a more precise definition of the
spatial relationships between real scene and visually processed data along the three
dimensions. The human visual system exploits several physiological and psychological
cues to deal with the ill-posed inverse problem of understanding a three-dimensional
scene from one retinal image. However, monocular and binocular cues are not always
sufficient to infer the spatial relationships between objects in the three-dimensional
scene. Therefore, a full comprehension of the mechanisms underpinning depth per-
ception is not a completely resolved issue per se in a real scene and it results even more
complex within an augmented scene [3]. In this regard, among the suggested visuali-
zation processing techniques, researchers have tried to improve the perceptive effi-
ciency by modeling and contextually rendering the virtual content in a photo-realistic
manner, and/or by using pixel-wise transparency maps and “virtual windows” [4] to
recreate occlusions and motion parallax cues. Some of the proposed techniques for
enhancing depth perception comprise high-fidelity texturing [5] or colour coding
methods, whereas others consist in lighting and shading cues and/or on the adoption of
an interactive “virtual mirror” [6, 7]. Alternatively, depth perception can be improved
by relying on standard stereopsis and two-view displays or on more complex full
parallax multi-view displays. In any case, to the best of our knowledge, hitherto there
are no visualization processing techniques that provide the user with useful information
able to improve the postoperative outcome for those specific surgical tasks that involve
the accurate manual placement of rigid anatomies in space.

Many surgical procedures in the field of orthopedic surgery or maxillofacial sur-
gery, involve the task of reducing displacements or correcting abnormalities between
rigid anatomical structures, i.e. bones, on the basis of a pre-operative planning. The
direct tracking of all the rigid anatomies involved in the procedure would yield a
measure of the six-degrees-of-freedom displacements between them and it would aid
the correct performance of the surgical task, yet it is not always feasible for technical
and logistic reasons. In case of single object tracking, the pointer of a standard surgical
navigator can be employed by the surgeon to compare the final positions of clearly
detectable reference points, over the repositioned anatomy, with those of their coun-
terparts from the surgical planning. Nevertheless, this approach does not allow the
assessment of all of the six-degrees-of-freedom at the same time.

AR seems the optimal solution to aid this kind of surgical tasks. Yet, the traditional
AR interaction technique featuring the superimposition of a semi-transparent virtual
replica of the rigid anatomy in a position and orientation (pose) defined during planning,
is not very effective in aiding the surgeon in the correct performance of those procedure.
In this regard, it is more beneficial and intuitive for the surgeon to deal with task-oriented
visualization techniques, more than with complex reproductions of the virtual anatomies
through photorealistic rendering, transparencies and/or virtual windows.

The goal of this work is to present a novel and ergonomic AR interaction paradigm
based on a simple visualization processing technique that aims at aiding the accurate
manual placement of a non-tracked rigid object in space. Our strategy relies on the
tracking of a single object in the scene (e.g. the patient’s head), namely on the real-time
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estimation of the geometric relation between a scene reference system (SRS) and the
camera reference system (CRS), e.g. performed by means of a video based registration
approach. In this scenario, the AR guide aids the surgeon in placing other non-tracked
rigid bodies (e.g. bones fragments) at a planned pose relative to the CRS. Our paradigm
draws its inspiration from the general problem of estimating camera pose from a set of
n-correspondences, i.e. perspective-n-point problem. The key idea is that manually
minimizing the distance, in the image plane, between a set of corresponding real and
virtual feature points is sufficient to aid the accurate placement of a non-tracked rigid
body in space.

2 Methods

Perspective-n-Point Problem. The task of estimating the pose of a camera with
respect to a scene object given its intrinsic parameters and a set of n world-to-image
point correspondences is known as the Perspective-n-Point (PnP) problem in computer
vision and exterior orientation or space resection problem in photogrammetry.

This inverse problem concerns many fields of applications (structure from motion,
robotics, augmented reality, etc.) and it was first formally introduced in the computer
vision community by Fishler and Bolles in 1981 [8], albeit already used in the pho-
togrammetry community before then. According to Fishler and Bolles the PnP problem
can be defined as follows (distance-based definition):

Given the relative spatial locations of n control points Pi; i ¼ 1; . . .n, and given the angle to
every pair of these points from an additional point called the center of perspective C, find the
lengths Di ¼ CPij j of the line segments joining C to each of the control points.

The constraint equations are:

D2
i þ D2

j � 2DiDj cos hij ¼ d2ij; i 6¼ j ð1Þ

Where Di ¼ CPij j, Dj ¼ CPj
�� �� are the unknown variables, hij ¼ dPiCPj and dij ¼

PiPj
�� �� are the known entries (Fig. 1). In computer vision hij are determined finding the
correspondences between world-to-image points and knowing the intrinsic camera
parameters, while dij are established by the control points.

Following this definition, once each distance Di is computed, the position of the
points Pi can be expressed in the CRS. Therefore, being the position of each Pi in the
SRS known, the problem of estimating camera pose with respect to the SRS is reduced
to a standard absolute orientation problem whose solution can be found in closed-form
fashion through quaternions [9] or singular value decomposition (SVD) [10].

The same problem is also known under the transformation-based definition [11]
which can be formalized as:

kibpi ¼ Kj0½ � R T
0 1

� �
bPi; i ¼ 1; . . .n ð2Þ
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Where the scene and image points P̂i and p̂i are represented in homogeneous
coordinates and the equation is up to a scale factor ki. Hence, according to this defi-
nition, the PnP problem aims at determining the pose (in terms of a rotation matrix R
and a translation vector T) given a set of n world-to-image correspondences and known
the intrinsic camera parameters encapsulated by the matrix K.

The PnP problem has been extensively studied by several groups, which have
proposed different iterative, closed-form for solving it.

Closed-form methods [12–18], directly provide an estimation of the camera pose but
they are usually less accurate and more susceptible to noise than iterative methods. Iter-
ative non-linear optimization methods solve the PnP problem by iteratively minimizing a
cost function generally related to the geometric (reprojection residuals) or algebraic error
but they need a good initial guess and yield only one solution at a time [19–21]. A useful
overview of the state-of-the-art methods can be found in [17] and in [22].

In terms of geometric reprojection residual, the non-linear cost function can be
formulated as the sum of the squared measurement errors (di):

�Rj�T ¼ arg min
Xn

i¼1

dðpi; p̂iÞ2

¼ arg min
Xn

i¼1

pi � p̂iðK; R̂; T̂;PiÞ
�� ��2

ð3Þ

Fig. 1. Geometry of the PnP problem.
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Where pi are the measured image points, and p̂i are the calculated projections of the
corresponding control points as a function of K; R̂; T̂.

The other important research direction on the PnP problem is the study of the
multi-solution phenomenon of the PnP problem [23], principally when n ¼ 3 (P3P)
[24, 25], being three the smallest subset of control points that yields a finite number of
solutions. P3P problem yields at most four solutions which can be disambiguated using
a fourth point, and it is the most studied case since it can be used as first step to reduce
the complexity of the computation of a PnP problem, e.g. in a RANSAC scheme by
removing the outliers.

AR Video-Based Camera Registration. Regardless of the method adopted for solving
the PnP problem, an immediate application of the PnP problem is to locate the pose of a
calibrated camera with respect to an object, given the 3D position of a set of n control
points rigidly constrained to the object and the 2D position of their correspondent
projections onto the image plane.

For a correct registration of computer-generated elements to the real scene in
AR-based surgical navigation systems, the image formation process of the virtual
camera must perfectly mimic the real camera one. In mostly all the AR applications the
estimation of the intrinsic camera parameters is the result of an off-line calibration
process whereas the extrinsic camera parameters are determined online, e.g. solving a
PnP problem in real-time. This video-based camera registration method suggested us
the implementation of an ergonomic AR interaction paradigm for positioning and
orienting a non-tracked rigid object in space.

Human-PnP. As written in the introduction, many surgical procedures in the field of
orthopedic surgery or maxillofacial surgery, involve the task of manually placing rigid
anatomies on the basis of preoperative planning. In that case, let us assume that we can
rely on a robust and accurate registration of the surgical planning onto the real scene,
by means of the tracking of at least one rigid body (e.g. the head). The
six-degrees-of-freedom pose of an additional and non-tracked rigid anatomy in relation
to the SRS, can be retrieved by physically placing it as to minimize the geometric
distance, on the image plane, between a set of real and virtual feature points. For
brevity, from now on, we shall refer to these structures as “tracked anatomy” for the
former and “non-tracked anatomy” for the latter, while the proposed method will be
referred to as the human-perspective-n-point problem (hPnP).

From a theoretical standpoint, our method draws its inspiration and physically
mimics the paradigm on which the PnP problem is formulated. As mentioned in the
previous section, the main goal of the PnP problem is to infer useful information on the
real 3D scene, based on 2D observations of it. In an AR application, this spatial
information is used to geometrically register the virtual elements onto the real scene.
Thus, as a general rule and regardless of the method adopted for solving the PnP
problem, a robust and accurate registration should minimize in the image plane the
geometric reprojection residuals between measured and estimated projections (see
Eq. 3). Similarly, the goal of our hPnP interaction paradigm is to achieve the desired
placement of a non-tracked anatomy by manually minimizing the reprojection residuals
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between correct/planned projections �pi of virtual landmarks, and observed projections
�̂pi of real landmarks.

The correct/planned projections �pi are rendered on the image plane according to the
real-time estimation of the camera pose ½�R; �T� relative to the tracked anatomy reference
system (SRS) and assuming the intrinsic camera parameters, encapsulated by matrix K,
are determined offline, e.g. through the Zhang’s method [26]. The position of each
virtual landmark Pi in the SRS is established during surgical planning.

The real projections �̂pi are associated with the pose, encapsulated by ½b�R; b�T�, between
viewing camera and non-tracked anatomy reference frame (ARS): this resulting pose
varies according to the manual placement of the rigid body relative to the camera:

~Rj~T ¼ arg min
Xn

i¼1

d �pi; b�pi
� �2

¼ arg min
Xn

i¼1

�pi K; �R; �T;Pið Þ � b�piðK; b�R; b�T;PiÞ
���

���
2

ð4Þ

In this way, we wish to obtain ~Rj~T� 	 � �Rj�T½ � (see Fig. 2), namely we seek to
positioning and orienting the ARS as coincident with the planned and registered SRS
(non-tracked anatomy reference frame ≈ planning reference frame).

To implement this strategy, we add simple virtual elements (e.g. virtual asterisks,
crosses, etc.) to the virtual scene during the surgical planning: one element for each of
the clearly detectable physical landmarks on the rigid body. The landmarks may consist
of a series of distinguishable feature points over the surface of the anatomy or rigidly

Fig. 2. Geometry of the hPnP: minimizing the reprojection residual between registered
projections �pi and real projections b�p is sufficient to aid the accurate placement of a rigid body (the
maxilla in the image) in space.
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constrained to it. Under such AR guidance, the user moves the non-tracked rigid body
up to obtain a perfect overlapping between real and virtual landmarks, hence manually
minimizing the reprojection residuals on the image plane: �pi � �̂pi8i (Fig. 3). The
theoretical assumptions underpinning the PnP problem ensure that if �pi � �̂pi8i, the
non-tracked anatomy is placed in the correct pose as planned in SRS.

3 Results

In a recent work [27], the described strategy was applied in the validation of a wearable
AR system to aid maxillary repositioning. AR system consisted of a stereoscopic video
see-through head mounted display equipped with two external USB cameras placed in
a quasi-orthoscopic position [28, 29]. The video see-through paradigm of the system is
implemented as follows (Fig. 4): real-world views are grabbed by a pair of calibrated
external cameras; the captured frames, after compensation of the radial distortion, are
screened as backgrounds of the virtual scene onto the corresponding display; the virtual
elements, defined during planning, are added to the real scene and observed by a pair of
virtual cameras whose processes of image formation mimic those of the real cameras in
terms of intrinsic and extrinsic camera parameters. Zhang’s method is used to calibrate
the two cameras. The estimation of the extrinsic parameters, allowing the real-time
registration of the virtual elements to real scene, is achieved through a marker-based
video-registration method [29].

In the study, manual repositioning of the upper maxilla following LeFort 1 osteotomy
was chosen as test procedure. The test was conducted on a CT-scanned/3D-printed
replica of a cadaveric human skull. The planned pose of the maxilla, as defined during
preoperative planning, acts as a guide for the surgeon during the intervention performed
in-vitro. The traditional AR interaction technique, featuring the superimposition of a
semi-transparent virtual replica of the maxilla, as dictated by the surgical planning, did

Fig. 3. Detail of the image plane with the minimization of the reprojection residuals. Here the
virtual information consists of a cyan-colored asterisk for each physical landmark clearly
detectable over the maxilla, e.g. coloured landmarks fixed on the brackets of the orthodontic
appliance (Color figure online).
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not prove to be very effective in aiding the surgeon in manually repositioning the upper
maxilla. This was mostly due to the surgeon’s limited perception of the relative distances
of objects within the AR scene owing to the presence of unnatural occlusions between the
real and the virtual maxilla. Conversely, a more ergonomic form of visualization con-
sisted in the use of an interaction paradigm which actualizes the above described hPnP
approach: physical landmarks onto the maxilla and corresponding to coloured landmarks
fixed on the brackets of the orthodontic appliance usually applied prior to this kind of
interventions, were designated as reference markers for the AR view modality. The
repositioning of the maxilla is assisted by visually aligning small virtual asterisks, drawn
in positions defined during planning (relative to the SRS), with the corresponding real
landmarks.

The upper surface of the maxilla (corresponding to the post-osteotomy surface) was
covered with highly malleable plasticine so to be fixed to the upper skull once the
surgeon performed the repositioning. The surgical accuracy was validated with the aid
of an optical navigation system that recorded the coordinates of three reference points
on the non-tracked maxilla after repositioning. Six surgeons and three unskilled
engineers were involved in the testing, each of whom was asked to manually reposition
the maxilla as dictated by three surgical plannings of variable complexity. Results in
terms of linear distances between the real positions of the reference holes and the
expected positions (defined during planning) were very promising: mean error was
1.70 ± 0.51 mm. The axial errors were 0.89 ± 0.54 mm on the sagittal axis,
0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the cranio-caudal axis.
Such results were obtained without the tracking of the maxilla but just relying on the
ergonomics of the chosen AR interaction paradigm: the overlapping on the image plane
between virtual feature points and real landmarks, visible over the non-tracked anat-
omy, proved to be sufficient to aid the accurate repositioning of the maxilla.

Fig. 4. Video see-through paradigm of the stereoscopic head mounted display used to aid
maxillary repositioning.
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4 Discussion

It is important to note that the chosen AR interaction paradigm was not bound to the
particular video-based tracking modality exploited in the cited study, neither to the use
of a specific wearable stereoscopic system. Howbeit, the user can enhance the accuracy
in object placement by checking consistency of real and virtual landmarks from dif-
ferent viewpoints. In this regard, the ergonomics of the proposed method may benefit
from the adoption of a wearable AR system. Moreover, the choice of such instance of
visualization data was, in that work, empirically inspired by the authors’ endeavor of
defining a modality that were ergonomic for the surgeon and that provided the smallest
perceived parallax error: no further discussion was held on the theoretical hypotheses
behind such interaction paradigm which are here discussed for the first time.

5 Conclusion

In this work, we proposed a novel and ergonomic AR interaction paradigm that aims at
obtaining the accurate placement of a rigid body in space without the need for multiple
objects tracking and/or complex visual representations of the virtual guide. From a
theoretical standpoint, our method draws its inspiration and physically mimics the
paradigm on which the PnP problem in computer vision is formulated. This approach,
represented by the acronym hPnP, could be of help in those tasks, also not specifically
surgical, where the AR guide aims at aiding the placement of a rigid body in space. The
key-principle behind this interaction paradigm can be exploited in many different
AR-based navigation systems: it can be integrated with different end-products of the
visualization process in terms of display technology and perception location and/or it
could be realized in conjunction with various tracking modalities.

To increase robustness and applicability of the proposed AR interaction paradigm
in a real clinical scenario, redundancy in choosing the set of landmarks must be
granted. Further, the presence of line-of-sight occlusions caused by soft-tissues, sur-
geon’s hands or surgical instrumentation may be restricted by conveniently selecting
the position of the landmarks in relation to the surgical field.
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Aim: We present a newly designed, localiser-free, head-mounted system featuring augmented reality as
an aid to maxillofacial bone surgery, and assess the potential utility of the device by conducting a
feasibility study and validation.
Methods: Our head-mounted wearable system facilitating augmented surgery was developed as a stand-
alone, video-based, see-through device in which the visual features were adapted to facilitate maxillo-
facial bone surgery. We implement a strategy designed to present augmented reality information to the
operating surgeon. LeFort1 osteotomy was chosen as the test procedure. The system is designed to
exhibit virtual planning overlaying the details of a real patient. We implemented a method allowing
performance of waferless, augmented-reality assisted bone repositioning. In vitro testing was conducted
on a physical replica of a human skull, and the augmented reality system was used to perform LeFort1
maxillary repositioning. Surgical accuracy was measured with the aid of an optical navigation system
that recorded the coordinates of three reference points (located in anterior, posterior right, and posterior
left positions) on the repositioned maxilla. The outcomes were compared with those expected to be
achievable in a three-dimensional environment. Data were derived using three levels of surgical plan-
ning, of increasing complexity, and for nine different operators with varying levels of surgical skill.
Results: The mean error was 1.70 ± 0.51 mm. The axial errors were 0.89 ± 0.54 mm on the sagittal axis,
0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the craniocaudal axis. The simplest plan was
associated with a slightly lower mean error (1.58 ± 0.37 mm) compared with the more complex plans
(medium: 1.82 ± 0.71 mm; difficult: 1.70 ± 0.45 mm). The mean error for the anterior reference point
was lower (1.33 ± 0.58 mm) than those for both the posterior right (1.72 ± 0.24 mm) and posterior left
points (2.05 ± 0.47 mm). No significant difference in terms of error was noticed among operators, despite
variations in surgical experience. Feedback from surgeons was acceptable; all tests were completed
within 15 min and the tool was considered to be both comfortable and usable in practice.
Conclusion: We used a new localiser-free, head-mounted, wearable, stereoscopic, video see-through
display to develop a useful strategy affording surgeons access to augmented reality information. Our
device appears to be accurate when used to assist in waferless maxillary repositioning. Our results
suggest that the method can potentially be extended for use with many surgical procedures on the facial
skeleton. Further, our positive results suggest that it would be appropriate to proceed to in vivo testing to
assess surgical accuracy under real clinical conditions.

© 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights
reserved.
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1. Introduction

Augmented reality (AR) is an innovative technology allowing
merger of data from the real environment with virtual information.
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The virtual data may be simply informative (such as textual or
numerical values relevant to what is under observation) or may
consist of three-dimensional virtual objects insertedwithin the real
environment in spatially defined positions.

In the context of image-guided surgery, improvements based on
AR may represent the next significant technological development
in the field, because such approaches complement and integrate
the concepts of surgical navigation based on virtual reality. AR
provides a surgeon with a direct perception of how virtual content,
generally obtained via medical imaging, is located within an actual
scene (Ferrari et al., 2009; Freschi et al., 2009). This is particularly
valuable in the context of head-and-neck surgery, in which the
extreme anatomical complexity has encouraged the development
of several innovative devices. However, the sophistication of such
surgery and the longer operative times required have compromised
the widespread implementation of such devices. Moreover, the
necessary equipment is expensive (Hupp, 2013; Turchetti et al.,
2010). For these reasons, the technology demands both methodo-
logical and economic rationalisation.

In recent years, tools (or defined applications) employing AR
have been designed and tested in the context of several surgical and
medical disciplines, including maxillofacial surgery (Marmulla
et al., 2005b, 2005a; Mischkowski et al., 2006; Zinser et al.,
2013b), dentistry (Bruellmann et al., 2013), ENT surgery
(Caversaccio et al., 2008; Nakamoto et al., 2012), neurosurgery
(Inoue et al., 2013; Mahvash and Besharati Tabrizi, 2013) and gen-
eral surgery (Kowalczuk et al., 2012; Azagury et al., 2012; Marzano
et al., 2013). The user experiences an AR view presented with the
aid of various technical modalities, such as a traditional display, a
tablet display, or a wearable display (Freschi et al., 2009;
Mischkowski et al., 2006; Mezzana et al., 2011; Shenai et al.,
2011; Gavaghan et al., 2012; Deng et al., 2013; Suenaga et al.,
2013). Nevertheless, as is true of many emerging technologies, no
standard method by which AR technology could/should be trans-
ferred to clinical practice has yet been developed (Dixon et al.,
2013).

Bearing these facts in mind, we used a new localiser-free, head-
mounted, stereoscopic, video see-through display to develop a
useful strategy for delivery of AR information to the surgeon. Our
study is the result of collaboration between the EndoCAS Labora-
tory of the University of Pisa (Italy) and the Maxillofacial Surgery
Unit of the S. Orsola-Malpighi University Hospital of Bologna (Italy).

For brevity, the systemwill be termed the “wearable augmented
reality for medicine” (WARM) device. The aim of the present study
Fig. 1. The WARM system features the mounting of two
was to describe our new tool and to validate the accuracy thereof
when used as an aid during surgery on facial bones.We also explore
the potential for its wider application in maxillofacial surgery in
general.

2. Materials and methods

2.1. The WARM device

The device (Fig. 1) is based on a lightweight, stereoscopic head-
mounted display (HMD) that is widely available; this is the Z800
instrument of eMagin (Bellevue, WA, USA). A support placed in
front of the HMD holds two USB SXGA cameras (uEye UI-1646LE;
IDS, Obersulm, Germany) and a 1/3’’ image sensor placed pre-
cisely in front of the user's eyes. Two optics (mounted on either
camera) ensure an anthropometric field of view. Augmented reality
is provided by software that runs on conventional personal com-
puters (Ferrari et al., 2009). Alignment between the real and virtual
world is achieved in the absence of an external tracking system, via
processing of video frames grabbed by the cameras. In particular, a
machine vision algorithm is used to superimpose the virtual con-
tent onto real data provided by the cameras, with subpixel accu-
racy, using small coloured spheres that do not compromise the
surgeon's view of the real scenario (Fig. 2).

2.2. In vitro setup

The test was conducted on a replica of a cadaveric human skull.
The real skull underwent CT scanning and the DICOM files were
segmented using a semi-automatic segmentation tool integrated
into the ITK-Snap open-source platform (Ferrari et al., 2012).
Manual segmentation refinement (using a touch screen) was per-
formed to obtain detailed information on small anatomical struc-
tures (e.g. the foramen rotundum, foramen spinosum, lamina
cribriformis, and hypoglossal canal). The 3D virtual model distin-
guished pneumatised bones very well. In particular, the nasal
cavities and the paranasal sinuses were computer-generated in
minute detail.

The virtual model of the skull was cut along the LeFort 1
osteotomy line. The two resulting virtual objects (the upper skull
and maxilla) were exported as STL files and replicated in ABS using
a 3D printer (Stratasys Elite; Eden Prairie, MN, USA). LeFort 1
osteotomy and repositioning of the upper maxilla were chosen as
test procedures featuring the principal features of maxillofacial
external cameras on top of a commercial 3D visor.



Fig. 2. The WARM system. The two external cameras acquire real video frames. Our software application merges the virtual 3D model derived during surgical planning with real
data from the camera frames and sends the result to the two internal monitors. Alignment between real and virtual information is obtained by calculating the positions of coloured
markers relative to camera data, with respect to their known positions (recorded during planning), using detailed pre-operative CT images.

Fig. 3. Our setup: A physical replica of the human skull is fixed onto a wooden holder,
and the three coloured spheres on the model (the black dashed arrows) ensure
alignment between the real and virtual world in the absence of any external tracking
system. We used a machine-based vision algorithm. The coloured brackets on the teeth
(the black asterisks) are the reference markers for the AR display modality; three of the
six holes on the maxilla (the red arrows) were used to evaluate accuracy with the aid of
an external navigation system. The tracker of the navigation system is fixed onto the
model in (a). In (b), the pointer of the navigation system, used to assess the position of
reference holes, is shown beside the model.
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surgery. Thus, the technique involves surgery on facial bones; the
approach is a form of “semi-buried” surgery when performed
under real clinical conditions; the technique involves complex
three-dimensional movements of a rigid object in space; and the
technique is often performed in clinical practice worldwide.

Before printing, three 6 mm-diameter balls were inserted into
the virtual model as marker references for the WARM device.
Further, three reference holes were drilled into the vestibular
cortical bone, over the teeth (anterior in the premaxillary region;
posterior left and posterior right in the respective molar regions).
The holes were used as references to evaluate the position of the
maxilla. Thus, each holewas designed to receive the tip of the tester
probe used for validation (see below), to guarantee unique selec-
tion of each reference point.

The upper skull was fixed on a wooden holder. The maxillary
piece was connected to the upper skull with plasticine (this ma-
terial is highly malleable but rigid when shaped). This construction
served as a fixing device for the maxilla once the planned position
was attained, yet allowed the maxilla to be manually adjusted in
space.

To evaluate the accuracy of our system, we used a traditional
navigation platform (the eNlite Navigation System running iNtel-
lect Cranial Navigation Software version 1.0; Stryker, Freiburg,
Germany) featuring an active infrared localiser. Our setup is shown
in Fig. 3, which identifies the tracking and pointing instruments of
the navigation system.

2.3. AR visualisation: ergonomic evaluation

A preliminary assessment was conducted to evaluate the ergo-
nomics of the device, actual usability in a surgical environment, and
(in particular) the best method of displaying the virtual content.
One surgeon (GB) and three engineers (VF, FC, and CF) collaborated
in this work. Tests were conducted using different display modal-
ities in an attempt to define a modality that was optimally
comfortable and that had the smallest perceived parallax error. We
commenced with the display modality most frequently adopted in
similar work (Mischkowski et al., 2006; Suenaga et al., 2013); thus,
a rendered virtual reality was superimposed on the real camera
frames. We found that this display modality, although allowing us
to change the transparency settings, did not satisfactorily establish
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the relative positions of the real and the virtual (planned) maxilla,
particularly in terms of depth, and was thus unable to aid in correct
performance of the surgical task.

The display modality that we finally selected is shown in Fig. 4.
The virtual information consists of green asterisks drawn in posi-
tions defined during planning. For each virtual asterisk, a coloured
landmark was fixed on the maxilla. Use of this display modality
allowed us to study how to move the maxilla to replicate planning,
and also if a planned position had been attained with high preci-
sion. Coloured landmarks can be fixed (for example) on the
brackets of an orthodontic appliance, as shown, or on a CAD/CAM
splint or guide.
2.4. Accuracy evaluation testing

2.4.1. Virtual surgical planning
Using Maya (Autodesk; Toronto, Canada), the virtual maxilla

wasmoved in space as dictated by three surgical plans of increasing
complexity (Fig. 5).

1) Maxilla 6 mm forward.
2) Maxilla 5 mm forward and 1 mm downward.
3) Maxilla 6 mm forward, 1 mm downward, and with 15� roll and

10� pitch.

Each plan was saved as an STL file.
Fig. 4. Different approaches to presentation of AR information: (a) A real video frame; (b, c)
approaches of (b) and (c), it was not possible to completely perceive the relationship betw
selected by us to permit the subject to determine if the real maxilla was positioned correctly
maxilla.
2.4.2. Test
Three maxillofacial surgeons (AB, GB, and LP); three trainees in

maxillofacial surgery (SA, EB, and FR); and three engineers (VF, FC,
and CF) were involved in the testing; we evaluated interobserver
variability. Hence, the three groups included appropriate repre-
sentatives of users with different levels of surgical skill (from un-
skilled engineers to highly skilled surgeons). After only one warm-
up session, duringwhich each subject was trained to use theWARM
device, the subject was asked to manually reposition the maxillary
segment, using guidance afforded by the device. The procedure was
repeated by each subject for each of the three virtual plans; the
maximum test duration was 15 min. After completion of each test,
the position of the maxillary segment was confirmed using the
navigation system described in the following paragraph.

2.4.3. Accuracy measurement
The CT scan of the skull was imported into the navigation system

as a DICOM file and the three plans, defined in the CT reference
system, were loaded into the navigation system as STL files (Fig. 6).
The tracker of the navigation systemwas fixed on the model of the
skull and the registration process featured a point-based procedure
(using defined anatomical points) with subsequent surface refine-
ment; the target registration error was 0.3 mm. After each trial
session, the navigation system probe was inserted into each of the
three reference holes on the maxilla and the probe tip positions
were saved (Fig. 7). We next determined, for each subject, the linear
distances between the real positions of the reference holes
A traditional approach, presenting the virtual model on real camera frames. Using the
een the real and virtual world. (d) A more ergonomic form of visualisation, ultimately
. The virtual information consists of a green asterisk for each coloured landmark on the



Fig. 5. The virtual maxilla (a) was moved in space as dictated by three surgical plans of increasing complexity: (b) 6 mm forward; (c) 5 mm forward and 1 mm downward; (d) 6 mm
forward, 1 mm downward, with 15� roll and 10� pitch.
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(measured using the navigation system) and the expected positions
(defined during planning).

2.5. Statistical analysis

The linear distances between the expected and real positions
were computed with the aid of MatLab (Mathworks Inc.; Natick,
MA, USA) to obtain descriptive statistics.

3. Results

The results are shown in Table 1. The mean error was
1.70± 0.51mm. The axial errorswere 0.89± 0.54mmon the sagittal
axis, 0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the
craniocaudal axis. The simplest plan was associated with a slightly
Fig. 6. A screenshot of the navigator. The blue planning s
lower mean error (1.58 ± 0.37 mm) than the more complex plans
(medium: 1.82 ± 0.71 mm; difficult: 1.70 ± 0.45 mm). The mean
error for the anterior reference point was lower (1.33 ± 0.58 mm)
than those for the posterior right (1.72± 0.24mm) and posterior left
(2.05± 0.47mm) points. No significant differencewas noted among
operators, despite variation in surgical experience (Fig. 8). Feedback
from surgeons was acceptable; all procedures were completed
within 15 min and the tool was found to be both comfortable and
usable.

4. Discussion

In recent years, the discipline of maxillofacial surgery has un-
dergone a remarkable rate of technological innovation. This is
because the complex three-dimensional anatomy of the face,
cenario is loaded together with the original CT scan.



Fig. 7. The accuracy evaluation process is shown in detail. On the left, the pointer slides into a reference hole of the maxilla (the hole termed “anterior one”); on the right, the
navigation system shows where the tip of the pointer is actually located (compared with the planned location). The coordinates of the real position are recorded and used to
estimate errors in linear measurements.
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together with the need for surgical precision and the increasing
number of requests for morphological surgery, have resulted in
surgeons demanding advanced technological assistance. Thus, vir-
tual planning software and navigation systems are today widely
used by maxillofacial surgeons (Mazzoni et al., 2010; Zinser et al.,
2013a). However, substantial room for improvement remains. The
accuracy afforded by the technology must increase, as must the
usability of devices in real clinical practice.

AR represents an important step toward the practical integra-
tion of several ground-breaking technologies. AR fuses navigational
surgery and virtual planning with the real surgical field. AR can be
displayed on a traditional monitor, or directly in front of the eyes of
a surgeon who uses a wearable system such as WARM.

Our results suggest that wearable AR is both comfortable and
functional, permitting a surgeon tomaintain their natural operative
posture during surgery performed at different angles, without
losing the three-dimensional relationship between the real scene
and that afforded by virtual planning. This is of particular impor-
tance. We found that surgeons frequently change their line of view
during an operation to control the three-dimensional position of
the maxilla from all angles. Further, the use of a stereoscopic device
obviates any need for an external localiser, because the device can
serve as both a frame-grabber and a localiser.

Our system has other significant features; these are the regis-
tration and tracking modalities. Indeed, WARM does not require an
external infrared camera or an electromagnetic field generator
(unlike standard navigation systems), but uses visible light. The
head-mounted cameras grab the scene and use frames both to track
the patient's skull and to realise the AR environment. In our
Table 1
Errors for each target and plan for all operators, and the relative means (overall
mean in bold).

Plan 1 Plan 2 Plan 3 Mean

Target 1 1.71 mm 1.80 mm 1.63 mm 1.72 mm
(±0.24) (±0.18) (±0.34) (±0.24)

Target 2 1.07 mm 1.47 mm 1.45 mm 1.33 mm
(±0.17) (±0.12) (±0.45) (±0.58)

Target 3 1.96 mm 2.18 mm 2.02 mm 2.05 mm
(±0.32) (±0.69) (±0.49) (±0.47)

Mean 1.58 mm 1.82 mm 1.70 mm 1.70 mm
(±0.37) (±0.71) (±0.45) (±0.51)
laboratory setup, three coloured (red) spheres were placed on the
skull surface to simplify the experimental conditions, but, in the
clinic, a skull-mounted tracker with coloured spheres could be
used. This would obviously require that a patient-specific regis-
tration process be conducted.

In terms of validation, our results suggest that the device affords
an average accuracy of 1.70 ± 0.51mm, which is good in the context
of maxillofacial surgery. This result is evenmore significant because
waferless surgery was planned. Considering the axial error com-
ponents, the lowest error (0.60± 0.20mm)wasmeasured along the
frontal axis, the next-largest error (0.89 ± 0.54 mm) along the
sagittal axis, and the greatest error (1.06 ± 0.40 mm) along the
vertical axis. Thus, use of the device is associated with very small
errors (below 1 mm) in terms of frontal and sagittal malposition of
the maxilla; this is very good compared with orthognathic surgical
standards. Further, even the error on the vertical plane (around
1 mm) is excellent, because the vertical dimension remains the
most complex in terms of intraoperative control (Song and Baek,
2009). Such errors are not discernible when a patient is evaluated
Fig. 8. Mean errors in mm (over three trials and three reference holes) for each of the
nine participants. No difference between engineers and physicians is evident.



G. Badiali et al. / Journal of Cranio-Maxillo-Facial Surgery 42 (2014) 1970e19761976
after intervention, and surgery can thus be considered as having
been performed optimally.

No significant difference in errors was evident when the three
planning modes were compared. The simplest plan was associated
with error values slightly lower, on average, than the others; this is
quite understandable. This suggests that our method could be
extended toaid in theperformanceof anyorthognathicprocedureon
themaxilla, regardlessof the complexityof the requiredmovements.

Average errors measured to the anterior reference hole were
lower than those to the posterior hole. This is probably because the
position of the anterior reference hole is the only one that can be
controlled from every viewpoint.

Another interesting result is the non-dependency of accuracy on
userexperience; all of theexperienced surgeons, trainees, and (even)
engineers obtained comparable results. All test procedures were
completed within 15 min after a single 15 minwarm-up session.

The use of small virtual asterisks, corresponding to coloured
landmarks fixed on the brackets of the orthodontic appliance or
onto splints, turns out to be an efficient way to present AR guidance
to the surgeon. Our device is simple and easy to use, and shows
promise for assisting in maxillofacial orthognathic procedures.

5. Conclusion

We used a new, localiser-free, head-mounted, stereoscopic,
video see-through display to develop a useful strategy affording the
surgeon access to AR information. Our results suggest that the
WARM device would be accurate when used to assist in waferless
maxillary repositioning during the LeFort 1 orthognathic proce-
dure. Further, our data suggest that the method can be extended to
aid the performance of many surgical procedures on the facial
skeleton. Also, in vivo testing should be performed to assess system
accuracy under real clinical conditions.
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