
Alma Mater Studiorum – Università di Bologna 
in cotutela con Università di Groningen 

DOTTORATO DI RICERCA IN 

Scienze Statistiche 

Ciclo XXVIII 

Settore Concorsuale di afferenza: 13/D1 

Settore Scientifico disciplinare: SECS-S/01 

STATISTICAL MODELLING OF SPATIO-TEMPORAL DEPENDENCIES IN 
NGS DATA 

Presentata da: Saverio Ranciati 

Coordinatore Dottorato     Relatore 

         Alessandra Luati      Cinzia Viroli 

        
         Relatore 

    Ernst Wit 

Esame finale anno 2016 





Contents

Contents ii

Chapter 1: Introduction 2
1.1 Statistics in biological systems . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Chapter 2: Mixtures and graphs . . . . . . . . . . . . . . . . . . . . 4
1.4 Chapter 3: Spatial dependency and beyond . . . . . . . . . . . . . . 5
1.5 Chapter 4: Time dynamics and complex systems . . . . . . . . . . . 6

Chapter 2: Spatio-temporal model for multiple ChIP-Seq experiments 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Model and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Genome-wide assessment of differential roles for p300 and CBP in

transcription regulation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . 19
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3: Mixture model with multiple allocations for clustering spa-
tially correlated observations in the analysis of ChIP-Seq data 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Model-based clustering with mixture model . . . . . . . . . 25
3.2.2 Multiple Allocation Mixture model . . . . . . . . . . . . . . 26
3.2.3 Multiple Allocation Mixture model for ChIP-Seq Data . . . 28
3.2.4 Modelling spatial correlation with a CAR structure . . . . . 30
3.2.5 Conditional Auto-RegressiveMultiple AllocationMixture (CAR-

MAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Simulation study —Multiple Allocation Mixture (MAM) model 31
3.3.2 Simulation study — MAM with Conditional Autoregressive

model (CAR-MAM) . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 p300 protein binding ChIP-Seq experiment . . . . . . . . . . 33

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



Contents iii

Chapter 4: Bayesian Smooth-and-Match estimation of ODEs’ parameters
with quantifiable solution uncertainty 38
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Tools and notation . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Prior, likelihood and posterior distributions . . . . . . . . . 42
4.2.3 Mimicking the data: relationship with other methods . . . . 44
4.2.4 Bayesian Smooth-and-Match . . . . . . . . . . . . . . . . . 45

4.3 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Logistic population growth . . . . . . . . . . . . . . . . . . 47
4.3.2 Lotka-Volterra . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.3 HIV viral fitness . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.4 FitzHugh-Nagumo system for neuron electrical activity . . 57

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Appendix Appendix A: Appendix 63







From where we stand the rain seems
random.
If we could stand somewhere else,
we would see the order in it.

TONY HILLERMAN



Chapter 1

Introduction

1.1 Statistics in biological systems
In the last decades we have witnessed an exponential growth of two big forces

driving our knowledge enrichment: computational efficiency and big data. While the
former encompasses a broader range of particulars - raw speed improvement, par-
allel computing, GPU processing - when compared to the latter, the sole term big
data has rapidly capitalized all the attention of statistical community (among oth-
ers), even if being able to precisely tell how big is ‘big’ - in some situations - has been
proven to be quite difficult. It is worth noticing that neither of them, however, when
purely approached without careful reasoning, can guarantee a clearer insight about
complex systems that naturally describe interesting phenomena, such as those aris-
ing in biological contexts. Sure enough, when faced with a complex task, the first -
and strongest - instinct has dangerously shifted towards throwing more and more
data to the model, backed-up by both the vast amount of information available and
the improved computational capacity of handling it. The first issue is that under
the dome of big data most of the traditional - in the broadest meaning of the word
- statistical techniques and methodologies lose their feasibility, both for practical
and theoretical reasons. A perilous behavior threatening statisticians nowadays is
to rely on complicated models to answer (simple, albeit not easy) questions about
complex systems, calling on ‘bigger’ dataset for support on their assumptions and
beliefs. In an attempt to balance out complexity, interpretability of the results and
feasibility of a statistical analysis, a reasonable and careful step would be instead
to start approaching the problem by modelling the structures underlying the data
at our disposal. Effectively, knowledge may very well not be strictly equal to per-
fect description of a phenomenon but, instead, conceived as the understanding of
the relationships between its fundamental components (be them genes, proteins, or
generic statistical units per se). As an example, we may think about the complexity
of some biological processes: gene-gene or gene-protein interactions, cellular signal-
ing, circadian clock cycles, molecules dynamics and so forth. Especially in this fas-
cinating contexts, along with - for example - social networks, we have been flooded
with information: faster and cheaper technologies to biochemically analyze genetic
data, labelled under the term next-generation sequencing (NGS), are introduced with
increasing pace. The number of observations (i.e. the number of statistical units) and



1.2 Thesis outline 3

‘features’ observable in a single experiment are skyrocketing. What kind of depen-
dencies should we incorporate in our model, it being a simplified version of such
a complex reality? A preliminary answer to this question, when thinking about the
description of a process governed by stochasticity, is the spatio-temporal dimension.
As natural as it may seem, however, without a solid a priori idea of the underlying
process we might be forced to forego this ‘quick and safe’ structure given by time
and space: that is, the strongest focus needed at the beginning is about the ever
present trade-off between the idea of exploring data and looking for confirmatory
results. If we want to better understand the spatial dynamics of interactions between
genetic markers, for example, it might be sensible to encode a rich and flexible de-
pendency structure in the model while keeping a simple level of description of the
actual measurements comprising the dataset. On the other hand, if we are trying
to analyze specific aspects of a process - again, for example, gene interactions - it
is a powerful approach to encode in the model as much prior knowledge we have
about the underlying dependency structure governing the units’ relationships, while
aiming for a richer description of the observable level of the model. The main fla-
vor about this idea is to build a model in a hierarchical fashion, with a distinction
between unobservable (latent) quantities and observable information, and to fit our
idea of the spatio-temporal dimensionwhere it truly belongs with respect to this two
layers; the modularity of the aforementioned scheme gives also rise to another en-
couraging aspect: to seek extensions of the model proposed, updating step-by-step
the levels of the hierarchy. Out of the possible paradigms to follow, we will embrace
the Bayesian one, mostly for two reasons: the built-in quantification of uncertainty
of the parameters in the model and the more straightforward possibility to tackle a
complexmodel.Wewill also switch from the epitome of big data to high-dimensional
data, which bears a more focused phrasing on what could be the associated char-
acteristics of this kind of data (curse of dimensionality, sparsity, number of features
higher than available samples and so forth).

1.2 Thesis outline
We will outline a path to follow while exploring the aforementioned challenges,

with a focus on two main tasks: clustering genes and retrieving information about
unobservable quantities. While introducing the spatio-temporal structure, we will
move from considering both time and space dependencies, but in a simple fashion,
to model them separately yet in a richer way.

The PhD project is structured in three parts. In the next chapter we will present
a paper that employs a Markov Random Field (that is, a graphical model) as a la-
tent structure to describe the spatial relationships between locations of the genome
and the temporal dependency of experimental replicates of the very same strand of
DNA; faced with the task to understand if a location is configured as enriched or
not by a protein, we will use a mixture of two discrete distribution to describe the
observed counts of a particular genetic measurement, while simultaneously dealing
with specific issues intrinsic to the NGS context.

In the third chapter, a non-conventional model-based clustering scheme will be
presented, that allows for a unit (a gene, in our case) to belong to more than one
cluster at a time. In allocating these units, however, we will take into account the
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natural neighboring spatial dependency between them and we will model it so that
it plays a role into the in the way we cluster our observations through the weights
of the chosen mixture of discrete distributions.

In the forth chapter, we will propose a Bayesian hierarchical model for Ordinary
Differential Equations (ODE) describing the temporal dynamics of a continuous pro-
cess: while searching for a flexible description of the data through the use of penal-
ized spline regression, we will indirectly solve the ODE and quantify the uncertainty
about the solution obtained with respect to the noisy observations we have at our
disposal.

1.3 Chapter 2: Mixtures and graphs
In the second chapter of this thesis, we first introduce and model data com-

ing from chromatin immunoprecipitation and sequencing (ChIP-Seq) experiments.
Whereas years ago microarrays were considered ‘gold standards’ for genetic related
analysis, Next-Generation Sequencing has now become the prominent broad class
of biological techniques employed to study the complex relationships between the
DNA, RNA, proteins and cell functionality. In this context, with ChIP-Seq experi-
ments, we are interested in discovering if a protein of interest is binding or not to
the RNA and to which portion of it. More specifically, if a region has an associated
‘high’ count in the data it is more likely the protein has enriched (i.e., bound to) that
region. If we know the aforementioned protein to be associated with a particular
disease and we find out which portions of the DNA of a cell, from an affected tissue,
the protein is enriching we may infer that those regions - and, more in depth, the in-
dividual genes - are associated with the disease itself. From a statistical point of view,
a not to be overlooked feature that sets ChIP-Seq (and in general NGS experiments)
apart from microarray data is that they yield discrete observations instead of con-
tinuous measurements. Other peculiarities are: overdispersion, that is an amount of
variability greater than expected when a basic model (like the Poisson distribution)
for the counts is assumed; even though usually raw data are pre-processed, the units
studied relate to region of the DNA that are contiguous to each other and thus a need
for a spatial pattern to be included in themodel arises; zero-inflation, that is an abun-
dance of zeros as observed values. Also, as efficiency progresses and costs decrease,
more biological or technical replicates are made available to the researchers from
the laboratory, demanding for statistical methodologies able to consider jointly all
the information at their disposal. Last but not least, the measurements are collected
at different time points throughout the whole experiment, giving the opportunity to
look for a temporal dependency in the data. To face these challenges, we propose a
hierarchical mixture model that fuses together two distinct layers: a latent structure,
devoted to infer the unobserved protein binding process we are interested in, built
by considering both the spatial and temporal dependencies that connect the regions
of the DNA analyzed in the experiment; and secondly, a measurement model, char-
acterized by means of a mixture of discrete distributions that can accommodate for
overdispersion and jointly model all the technical or biological replicates. For the
hidden layer, we choose a Markov Random Field, to reflect the assumption of first
order spatio-temporal dependency: that is, each region (unit) depends only on its
left and right contiguous neighbors - in a spatial sense - and previous or following
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neighboring time point - in a temporal sense. The latent structure can be represented
through a graphical model and thus all the related theory can be used to translate
it into probabilities. As for the mixture model, we consider Negative Binomial dis-
tributions for their flexibility and innate description of overdispersion. Following a
Bayesian approach and all the standard derivations needed to implement an MCMC
procedure, we first assess the performance of our proposed method in a simulation
environment and thenwemove to the analysis of differential roles in gene regulation
of two transcription factors, p300 and CBP by means of ChIP-Seq data.

1.4 Chapter 3: Spatial dependency and beyond
In the third chapter of the thesis, we look at the same experimental framework,

ChIP-Seq data, but from a different perspective. We are now interested in classify-
ing the units (genes, regions of the chromosome, etc.), based on the observed counts,
into groups (clusters) that have ameaningful biological interpretation.What we have
in mind about "meaningful biological interpretation" is mostly related to a simple
paradigm: cell functionalities (for example mitosis, self-destruction, stress response)
are regulated with complex patterns of signaling by genes, proteins and other im-
portant biological ‘actors’. It is not unlikely that a gene, a protein, a biological ‘actor’,
participate in more than one cell functionality. If we now translate "gene, protein, ac-
tor" and "cell functionality" into a more statistical language as "units, observations"
and "clusters" we can then interpret the original problem from a more methodolog-
ical point of view. Model-based clustering is a widely used technique that has found
application in a broad class of problems in many different contexts. However, in his
simplest description, the framework assumes the groups are mutually exclusive and
this is a restriction that does not fit the motivating research question. In the litera-
ture, some authors proposed extension to overcome this limitation; having in mind
the same challenges and peculiarity of the data that we already described in Sec-
tion 1.3, we propose a model that can accommodate at best all of them: allocation of
units into - potentially - more than one group; discrete measurements; overdisper-
sion; clusters that are interpretable as "meaningfully" linked to each other (where,
again, meaningful is a term recalling the cell functionality paradigm). We pursue
(as before) the solution of the task by employing a hierarchical structure. We use a
mixture of Negative Binomials to flexibly model the observations and a latent allo-
cation structure that classifies each unit into groups. What we define as groups can
either be: ‘primary clusters’, which represent the principal functionalities or proto-
typical functions that we have in mind in our research question (for example, cluster
of enriched regions and cluster of non-enriched regions); ‘multiple allocation clus-
ters‘, that are collection of units that belong simultaneously to more than one of the
primary clusters. The main idea is to move from the original representation of a mix-
ture model for clustering with, let’s say, k = 3 groups to a mixture that has 2k = 8
groups, where 2k = 8 is the number of all possible configurations of allocation
we could have for one unit. In doing so, we create multiple allocation components
(clusters) having parameters that are completely specified from the primary clusters
originating them. In this case, thus, we are actually not introducing in themodel new
parameters that have to be estimated. As a by-product of this approach, we obtain
an ‘outward’ cluster: a group in which outliers could be allocated or, as we do, ob-
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servations that would otherwise be account for with a zero-inflation adjustment of
the model. A further step that we take is introducing the spatial dependency among
the units we are studying. We do so by allowing the weights of the mixture, which
reflect the prior probability to be allocated to a cluster, to vary according to a spatial
pattern that we assume to be a conditional autoregressive model. More specifically,
this pattern takes into account the position and the relative distances between the
units and encodes them as an additional latent layer into our hierarchical structure.
To study the performance of the proposed model we test it in a simulation envi-
ronment and then we proceed to inspect the same dataset as in Chapter 2 from this
alternative point of view.

1.5 Chapter 4: Timedynamics and complex systems
In the fourth chapter, we focus on the dynamics of biological systems that evolve

through time. In many fields of application, such as engineering and the study of
dynamical systems in biology, chemistry and physics, researchers often describe
the behavior of complex systems with a set of equations called ordinary differen-
tial equations (ODE’s). These mathematical objects are equations that attempt to
model the changes of the state of the system with respect to time by considering a
set of parameters, unknown quantities governing the law of the process itself. There
is a dual aspect to be considered when looking at the system of ODE’s: the known
relationships are expressed at the derivative level of the components of the process
but what we actually observe are the states at fixed time points, not the evolution
in time. Even if the functionals in the equations are known, expressing the depen-
dency among the components, we still need to estimate the parameters in order to
fully describe the dynamics. If an analytical solution of the system is available, those
parameters can be directly recovered from the observed data; if such a solution is
not readily available in closed form, as it is often the case, numerical integration is
needed. Inmany contexts it is also likely that the datawe collect are affected by noise,
perturbing the real underlying dynamic. Another way to look at the task at hand, a
perspective more deeply connected with the statistical methodology, has been fol-
lowed in the literature in the last decade: it is possible to avoid direct integration of
the equations by smoothing the data and many methods have been proposed, either
within a frequentist and Bayesian framework. We follow this aforementioned idea
by proposing a two-step Bayesian Smooth-and-Match strategy: at a first stage, we
smooth the observed data in order to reconstruct a noiseless sequence of the states
of the system for all its components; at a second stage, we use this states as inputs
for the known functionals that appear in the ODE’s and we ‘match’ this temporary
description of the dynamic with the data we have. We thus move the focus from
solving the system to directly infer the parameters that describe the process, ob-
taining the solution as a by-product of all the procedure. Delving briefly into some
technicalities: we adopt penalized Bayesian smoothing with cubic splines as our first
step of the procedure; as for the second step, we obtain the parameters of the sys-
tem through a penalized (ridge) regression approach. The two compartments of the
strategy are finally connected by assuming a common noise term that acts as a built-
in quantification of the uncertainty associated to the solution of the system that we
have (again, indirectly) reconstructed within the MCMC sampling scheme. In order
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to assess the performance of the proposed method we set up three different sim-
ulation studies and we then proceed to compare the results we obtain on another
dataset previously analyzed by other authors.
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Abstract
The increasing availability of ChIP-Seq data demands for advanced statistical

tools to analyze the results of such experiments. The inherent features of high-
throughput sequencing output call for a modelling framework that can account for
the spatial dependency between neighboring regions of the genome and the tempo-
ral dimension that arises from observing the protein binding process at progressing
time points; also, multiple biological/technical replicates of the experiment are usu-
ally produced and methods to jointly account for them are needed. Furthermore, the
antibodies used in the experiment lead to potentially different immunoprecipitation
efficiencies, which can affect the capability of distinguishing between the true signal
in the data and the background noise. The statistical procedure proposed consist of
a discrete mixture model with an underlying latent Markov Random Field: the nov-
elty of the model is to allow both spatial and temporal dependency to play a role
in determining the latent state of genomic regions involved in the protein binding
process, while combining all the information of the replicates available instead of
treating them separately. It is also possible to take into account the different an-
tibodies used, in order to obtain better insights of the process and exploit all the
biological information available.
Keywords:ChIP-seq,mixture distributions,Markov RandomFieldmodel,MCMC.
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2.1 Introduction
In the context of genetic analysis, data from a biological technique known as

Chromatin ImmunoPrecipitation-sequencing (ChIP-Seq) are becoming increasingly
more frequent. These experiments arise from the combined process of Chromatin
ImmunoPrecipitation (ChIP) and massive parallel DNA sequencing (Seq), providing
as a final result the number of tags (reads) or fragments of DNA aligned to each
region of the strand of genome inspected ([6]). This technique is employed to pro-
vide insight about DNA methylation, chromatin and histone modifications and the
interactions between proteins and DNA: in particular, certain proteins are known to
be participating in various biological processes and thus being able to detect which
regions are ’activated’ by the former can explain better the role of the latter into
the process itself. The aim of the statistical analysis is thus to distinguish between
enriched regions (bound by the protein) from those who are not. There are inher-
ent features of the problem outlined that have to be taken into consideration. The
chromatin modifiers and transcription factors involved in the experiment interact
with broad regions of the DNA: this highlights the spatial dependency component
that characterizes the phenomenon and also means that the usual peak-detection
algorithms will not be able to retrieve correctly the enriched state of the locations.
The ChIP phase of the experiment is performed with specific antibodies that carry
different efficiencies, where the concept of efficiency is defined as the capability of
interacting only with the protein analyzed and providing the bits of DNA effectively
bound by the transcription factor or chromatin modifier. Thus, the amount of back-
ground noise and quality of the signal in the data are affected by the ImmunoPre-
cipitation (IP) efficiencies of these antibodies. The spatial dependency component
in the observations is further enhanced due to a pre-processing of the data: the raw
results of the ChIP-seq are summarized in fixed-width windows and the original
counts for the tags at a higher resolution are summed over into smaller regions
that may contain more than one gene. In this experimental setting, it is possible
to have observations from two or more different time points (e.g. immediately af-
ter the protein-DNA interaction and after 30 minutes): this naturally introduces a
temporal dependency structure that needs to be modeled in order to correctly per-
form statistical inference about the enrichment behavior of the process analyzed.
Multiple technological or biological replicates are also available, demanding for a
tool that can take into account jointly all the information available instead of re-
lying on separate analysis for each instance. Given the features of the problem, it
is a common approach to model the data using a mixture of discrete distributions.
There are already a number of methods that adopted this procedure, using different
parametric densities for the mixture components: [8], [11]. They employ General-
ized Poisson or Negative Binomial densities ([4])to model the data, without though
including spatial and temporal dependency. A few exceptions to this common ap-
proach are proposed by [1] and [12]: in this works, the spatial structure feature has
been considered, as it has been already done for other ChIP experiments in the lit-
erature, by using a Hidden Markov Model framework ([1], [10], [11]). Most of them
however do not take into account the joint information of multiple biological or
technical replicates: instead, they just analyze each experiment and retain only the
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common regions found to be enriched: they exploit a control sample in order to
compare the separate results obtained from the replicates available and they asses
a differential enriching behavior between them (see [2]). There is, thus, a lack of
a statistical approach to jointly use the information from all the replicates with the
aim to obtain a more robust inference procedure. The model proposed by [1] is able
to tackle all the aforementioned issues, except for the temporal aspect of the prob-
lem: this model allows to take into account both the spatial dependency and the
different IP efficiencies belonging to each individual replicate and/or antibody used
in the experiment. One missing aspect remains the temporal dependency structure
arising when the experiment is performed at multiple time points. In this work we
propose a more general version of the model showed in [1], in which the novelty is
the introduction of the temporal dependency directly into the latent structure that
characterizes the underlying biological process of ChIP-seq experiments. In order to
do so, we employ a Markov Random Field ([7]) to describe the enrichment behavior
and a flexible mixture model as a measurement model to account for the specific
features and IP efficiencies of the antibodies used while jointly considering all the
technical and biological replicates available. In Section 2, the model is described and
the statistical aspects are discussed while describing the main quantities used in the
implementation; in Section 3, results from a simulation study are showed to asses
the performances of our model with respect to other existing algorithms; in Section
4, we summarize the output after applying our model to a real dataset; in Section 5,
we discuss the features of the method proposed and the further developments.

2.2 Model and Methods
We propose a more general version of the model used in [1] by extending the

latent variables structure, allowing it to take into account also a temporal depen-
dency between the same region at different time points. Let Ymtr be the number of
reads (tags) for the m-th bin (m = 1, . . . ,M), at time point t (t = 1, . . . , T ) for
the replicate r (r = 1, . . . , Rt). The subscript r includes also the specification of
the antibody or the conditions/treatments that share the same latent structure (e.g.
R1 = 2, for two replicates with the same antibody at the first time point;R2 = 6, for
two replicates for each of three different antibodies used at the second time point).
We consider a joint mixture distribution as follows:

Ymtr ∼ ptf
S(y|θStr) + (1− pt)f

B(y|θBtr) (2.1)

where pt = P (Xmt = 1) is the probability of region m to be enriched at time
point t, with respect to a latent binary variable Xmt that represent the underlying
biological process of protein binding. The vectors θBtr and θStr contain the mean and
dispersion parameters corresponding to the specific background or signal compo-
nent of the mixture. We use two discrete densities fB and fS respectively to model
the background and the signal components of the mixture in (Eq.2.1): for the back-
ground component fB we consider a Zero-Inflated Poisson (ZIP) or a Zero-Inflated
Negative Binomial (ZINB), in order to account for both the presence of overdisper-
sion in the data and abundance of zeros, features that are quite common in this
context; as for the signal component fS , we employ a Poisson (P) or Negative Bi-
nomial (NB) distribution. A further latent variable Z is introduced to represent the
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zero-inflated density fB as a mixture itself of a zero-mass distribution and a dis-
crete density as the ones previously described. In the case of a ZINB, we have the
following representation:

fB(ymtr|πtr, µtr, ϕtr) =





(1− πtr) + πtr

(
ϕtr

ϕtr+µtr

)ϕtr

if ymtr = 0

πtr
Γ(ymtr+ϕtr)

Γ(ϕtr)Γ(ymtr+1)

(
µtr

ϕtr+µtr

)ymtr
(

ϕtr

ϕtr+µtr

)ϕtr

if ymtr > 0

with µB
tr being the mean parameters and ϕB

tr the dispersion parameters of the
Negative Binomial distribution. The parameters πtr = P (Xmt = 0, Zmtr = 1) and
(1 − πtr) = P (Xmt = 0, Zmtr = 0) are the weights of the mixture representing
the zero-inflated distribution: the latter is the proportion of the background which
is due to an abundance of zeros, while the former is related to the raw noise in the
data. The conditional distribution ofY, given both the latent binary variablesX and
Z, is then the following:

Ymtr|Xmt = 0, Zmtr = 0 ∼ 1(y = 0)

Ymtr|Xmt = 0, Zmtr = 1 ∼ Poisson(λBtr) or NB(µB
tr, ϕ

B
tr)

Ymt|Xmt = 1 ∼ Poisson(λStr) or NB(µS
tr, ϕ

S
tr)

The latent structure {Xmt}, with Xmt = 1 for enriched region m at time point
t and Xmt = 0 otherwise, can be represented as an undirected graph with nodes
corresponding to each bin at a specific time point or also as a lattice with a generic
site (m, t) (Fig.2.1). The edges of the graph connect each Xmt only to adjacent re-
gions in the genome and one-step backward/forward time points and they also are
the cliques used to factorize the whole graph ([5]). Each node represent a separator
of these cliques, connecting two or more conditional relationships between neigh-
boring variables.

These assumptions can be jointly expressed as a first-order markovian property
as follows:

P (Xmt = s|X(−m),(−t)) = P (Xmt = s|N (Xmt)) (2.2)

with s = {0, 1} and N (Xmt) = {Xm−1,t, Xm+1,t, Xm,t−1, Xm,t+1} being the
neighborhood of the generic site (or node) (m, t), whereX(−m),(−t) is the set of nodes
except for the (m, t) one. This kind of latent structure is also called aMarkov Random
Field. The joint probability of the latent structure, given the assumption in (Eq. 2.2),
can be factorized into:
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Figure 2.1: The undirected graph representing the latent structureX of the model.

P (X) = P (X11, X21, . . . , XMT ) = P (XMT )
M∏

m=2

T∏

t=2

1

P (Xmt)
×

×
M−1∏

m=1

T−1∏

t=1

P (Xm+1,t|Xmt)P (Xm+1,t+1|Xm+1,t)

×
M−1∏

m=1

P (XmT |Xm+1,T )
T−1∏

t=1

P (X1t|X1,t+1) (2.3)

We introduce some notation to rewrite the conditional dependencies in (Eq. 2.3):

δj,k = P (Xmt = j,Xm+1,t = k) τl,h = P (Xmt = l, Xm,t+1 = h)

nj,k = # {Xmt = j,Xm+1,t = k} ul,h = # {Xmt = l, Xm,t+1 = h}

qj,k =
δj,k
δj

wj,k =
τl,h
τl

q0 = q0,1 q1 = q1,1 w0 = w0,1 w1 = w1,1

and j, k, l, h ϵ {0, 1}.
We assume that:
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P (Xmt = 1) =
q0

1− q1 + q0
=

w0

1− w1 + w0

P (Xmt = 0) =
1− q1

1− q1 + q0
=

1− w1

1− w1 + w0

and:

q0,1 = q1,0 w0,1 = w1,0

q0 = 1− q1 w0 = 1− w1

We do so in order to parametrize the factorization of the latent structure {Xmt}
in (Eq. 2.3) without employing too many parameters; we assume that the spatio-
temporal first-order markov dependency is the same for all the time points and re-
gions considered: this means that the parameters q1 andw1 do not have any subscript
and they are the same across the whole graph. More precisely, we want to capture
the spatial dependency with the parameter q1 while, conversely, retain the temporal
information in the data through w1. These two quantities represent the probability
of a region remaining in the same state (bound or not by the protein) while moving
respectively along the genome or from a time point to next/previous one. Their one’s
complements 1− q1 and 1−w1 measure the probability of the latent state to switch
from 0 (not enriched) to 1 (enriched) and viceversa when moving from a node in
the graph to its neighbors. In the following, we will only show the derivations for
the Negative Binomial distribution used in modelling both the background and the
signal component. The joint complete likelihood for this model, considering a ZINB
for background and NB for signal, is given by:

P (X,Z,Y|Θ) = P (X|Θ)P (Z|X = 0,Θ)P (Y|X,Z,Θ) (2.4)

∝ q
n1,1+n0,0

1 (1− q1)
n1,0+n0,1 w

u1,1+u0,0

1 (1− w1)
u1,0+u0,1

×
T∏

t=1

R∏

r=1

π
∑M

m=1 1(Xmt=0, Zmtr=1)
tr (1− πtr)

∑M
m=1 1(Xmt=0, Zmtr=0)

×
T,R,M∏

t,r,m

[
Γ(ymtr + ϕBtr)

Γ(ϕBtr)Γ(ymtr + 1)

(
µBtr

ϕBtr + µBtr

)ymtr ( ϕBtr
ϕBtr + µBtr

)ϕB
tr
]1(Xmt=0, Zmtr=1)

×
T,R,M∏

t,r,m

[
Γ(ymtr + ϕStr)

Γ(ϕStr)Γ(ymtr + 1)

(
µStr

ϕStr + µStr

)ymtr ( ϕStr
ϕStr + µStr

)ϕS
tr
]1(Xmt=1)

where the first term P (X|Θ), representing the latent structure, is shared among the
different replicates that are jointly considered in the model proposed. The features
of each experiment are captured in the measurement model, which comprise of as
many mean and dispersion parameters as antibodies used and it is characterized by
P (Z|X = 0,Θ) and P (Y|X,Z,Θ). Inference is performed in a Bayesian frame-
work: after choosing priors, the posterior distributions for all the parameters are
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derived along with the sampling schemes for the latent variables X and Z. When
the full conditional of the parameter is a non-conjugate distribution, a Metropolis-
Hastings sampling procedure is used; otherwise, conjugate prior distributions and
Gibbs samplings are involved. First, the latent variable Xmt is sampled from its full
conditional distribution, according to the position of the node on the graph, the
probability of the corresponding generic node (m, t) having state s being:

P (Xmt = s| . . . ) ∝ qXm−1,t,s qs,Xm+1,t wXm,t−1,s wXm,t+1,s ×

×
Rt∏

r=1

P (Ymtr|Xmt = s)

Similar derivations are obtained for nodes that lie on the borders and corners of
the undirected graph (see Appendix). Given the value of latent state Xmt = 0, the
latent variable Zmtr is then sampled with a Gibbs method from its full conditional
distribution:

P (Zmtr = s|Xmt = 0, . . . ) ∝ P (ymtr|Xmt = 0, Zmtr = s,Θ)×
× P (Zmtr = s|Xmt = 0)

The inflation parameter πtr is sampled from its posterior Beta distribution

πtr ∼ Beta (A,B)

A = Aπtr +
M∑

m=1

1(Xmt = 0, Zmtr = 1)

B = Bπtr +
M∑

m=1

1(Xmt = 0, Zmtr = 0)

and it represents the proportion of the background density component, fB , which
do not consist of the zero mass (inflation) distribution. The posterior densities for
the transition probabilities are:

q1 ∼ Beta(Aq1 + n1,1 + n0,0, Bq1 + n1,0 + n0,1)

w1 ∼ Beta(Aw1 + u1,1 + u0,0, Bw1 + u1,0 + u0,1)

We select flat prior distributions by setting all the hyperparameters of the Beta
distributions equal to unity. The mean and overdispersion parameters of the back-
ground and signal distributions are estimated through a Metropolis-Hastings proce-
dure. A Truncated Normal Distribution is used as a proposal to generate new values:
this choice ensures that candidate values are always positive. The ratio of the nor-
malizing constants has to be considered into the formula for the acceptance ratios
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(see Appendix for further derivations).

2.3 Simulation study
We assess the performance of the model proposed (stMRF ) and compare it to

other existing methods (iSeq [2] R package: iSeq, MRF [1] R package: enRich).
The scenarios used arise from the combination of many characteristics in the sim-
ulated data, such as the proportion of zero-inflation in the background component
(π), the propensity to binding (low or high values of the transition probabilities),
the difference in the mean level of the background and signal (low, high). We simu-
lated four and two time points (T = 4) and two thousand regions (M = 2000) and
three replicates for each temporal instance (R = 3); 5000 MCMC iterations are per-
formed, with a 2500 burn-in window. All the details are available in the Appendix.
Given that MRF and iSeq do not allow for more than one time point to be used, the
two models are evaluated for each of the four simulated instances. The latter (iSeq),
also, does not account for replicates and only the best result is showed for it (chosen
between the three replicates available). The mean and overdispersion parameters
of the Negative Binomial (µ, ϕ), along with the proportion of inflation (π), are well
estimated by MRF and stMRF, without any pattern associated to the propensity of
binding or degree of distance between background and signal components used in
the scenarios. iSeq only allows for a Poisson distribution as background and signal
and is unable to retrieve the true value of the mean parameters without introducing
some bias. Between MRF and stMRF, the latter shows the lowest posterior standard
deviations in all the scenarios. The transition probabilities are comparable only be-
tween MRF and stMRF, because iSeq do not account for the spatial dependency in
the same way as the other two and employs a different parametrization. Both MRF
and stMRF show a posterior mean distributions for q1 close to the true values used
in the simulation process and our model is also able to retrieve the parameter w1

with a very low posterior standard deviation. The advantage of taking into account
the temporal dependency in the model stMRF is clear when comparing the observed
False Non Discovery Rate (FNDR) , which is the fraction of regions that were enriched
but classified as not enriched, at a fixed estimated False Discovery Rate (FDR)([3])(see
Table 2.1). In order to determine if a regionm is enriched or not we put a cut-off value
on the posterior probability P̂ (Xmt = 1) while controlling for the FDR to be 5%. If
it is not possible to find such a cut-off point, we use a naive approach setting 0.5 as
the threshold.

The stMRF model outperforms, in term of observed FNDR, the other two in every
scenario simulated (three of which are presented in Table 2.1). iSeq cannot take into
account all the replicates simultaneously, nor the temporal dependency, and thus
has poor performances; MRF is able to perform as good as stMRF only at some in-
stances of specific scenarios: this is due to the capability of the former to jointly use
the replicates available. However, given that for MRF all the time points are treated
as separate conditions/experiments with their own transition probabilities and it
cannot model the temporal structure of the simulated data, it has generally higher
values of observed FNDR.
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Table 2.1: Observed FNDR (in percentage) at a fixed 5% estimated FDR for the three
models at different scenarios, for all the time points.

Scenario t iSeq MRF stMRF
(12b) 1 35.71 3.87 1.68
π = 0.9 2 35.80 6.56 2.87
Binding Propensity: High 3 39.24 19.62 3.80
Ratio Signal/Background: Low 4 33.03 1.73 1.12
(5b) 1 26.00 0.10 0.00
π = 0.5 2 27.57 0.30 0.10
Binding Propensity: Low 3 28.72 0.81 0.40
Ratio Signal/Background: High 4 23.28 0.00 0.00
(8b) 1 29.80 0.08 0.00
π = 0.5 2 40.50 0.00 0.00
Binding Propensity: High 3 44.75 3.83 0.00
Ratio Signal/Background: High 4 42.71 0.00 0.00

2.4 Genome-wide assessment of differential roles for
p300 and CBP in transcription regulation

Transcription coactivators p300 and CBP are known to partecipate in the regu-
lation of genes responsible for many roles, especially in embryogenesis. Most of the
genes related to the process regulated by these two TFs are bound by both, but [9]
showed that some of them may be preferentially bound to one or the other, follow-
ing a different binding pattern. In particular, CBP has been found to regulate more
genes that are involved in the negative transcription. Mostly, p300 and CBP have
been showed to take a prominent role in important biological process of the cell
such as proliferation, differentiation, and DNA repair mechanism. Also, some stud-
ies suggested that p300 and CBP may be involved in the development of cancer or
other diseases ([9]). The binding sites for the two transcription coactivators appear
to be altered when the cell is stimulated or not, even if they retain an overlapping
number of regions bound by both, and thus they are analyzed at different condi-
tions and time points. We use our model to analyze the example dataset available
in the package enRich ([1]) which contains data for p300 and CBP ChIP-seq ex-
periments. We select data only for the protein p300 at time "zero" as our first time
point and the two replicates obtained after 30 minutes as our second time point. The
bins are already summarized from the processed data using a 1000bp window. The
dataset contains 33916 observations, each one corresponding to a region on the same
chromosome 21. We run the MCMC algorithm with 10000 iterations and a burn-in
window of 5000, using a Negative Binomial distribution for both the background
and signal component.

The posterior mean of π is close to one in both the time points analyzed: this
means that a Negative Binomial distribution for the background could be potentially
enough to capture the overdispersion in the data, without relying on a zero-inflated
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Table 2.2: Number of enriched regions and estimated False Discovery Rate for MRF
and stMRF (*: cut-off on the posterior probability of X = 1 equal to 0.5; ⋆ : cut-off
on the posterior probability of X = 1 equal to 0.24).

Model N. of Enriched Regions ˆFDR
MRF 3089 5 %
(*) stMRF 3160 5 %
(⋆) stMRF 3024 2.4 %

version of the model. The posterior standard deviations for the parameters of the
measurement model (µ, ϕ) and the transition probabilities (q1, w1) are small. The
posterior means for q1 andw1 are 0.96 and 0.99, the latter meaning that if a bin is en-
riched at t = 1 it will very likely be enriched also at the next time point. There seems
to be a strong dependency, thus, in both dimensions of the binding process (spatially
and temporally). To decide if a bin m is enriched, we set a 0.5 cut-off to the poste-
rior probabilities obtaining an estimated FDR and the number of enriched regions
found by the algorithm. For both time points, the estimated FDR of stMRF is equal
to 0.024 and the number of regions detected as bound by the protein is 3024 out of
the total 33196 observations. The number of regions bound by the protein identified
by MRF is 3098, controlling for a fixed estimated FDR of 5%: if the same criteria is
used for stMRF, the number of regions found as enriched is 3160 in both time points,
which is slightly higher than the previous result (see Table 2.2). We show some of the
bins analyzed (see Figure 2.2): the black dots are the observed counts of the dataset,
while the red lines and squared dots represent the latent state of the corresponding
bin estimated by the algorithm (model stMRF ). To regions found to be enriched by
our model correspond red dots aligned at the middle of the plot while, conversely,
bins which are not bound by the protein (according to the algorithm) have red dots
lying on the X axis. As in Figure 2.2, a genomic location could be labelled as not en-
riched by the algorithm even when presenting a count of tags as high as (spatially)
neighboring regions: this is related to a correction effect that the temporal depen-
dency structure can induce on each time point, allowing the detection of enriched
locations while avoiding spurious binding that may occur due to the antibody used
or other noise in the process. This can help understanding, through a validation pro-
cess, the dynamics of regulation and activation of genes known to be related to this
transcription factor ([9]), while also pointing out new locations that could need a
more detailed and specific re-sequencing after the experiments are performed and
analyzed.
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Figure 2.2: Plot of observed counts for the first time point along the Chromosome
21. Estimated latent states of the bins are overplotted.

2.5 Conclusion and discussion
We have proposed a model that extended the one introduced by [1], incorpo-

rating in a parsimonious way a new dependency structure that spans through the
time dimension, enabling it to account for the temporal aspect of the binding pro-
cess. This has been done in order to exploit the information available at a specific
time point to strengthen the inference on the other ones, while keeping a sepa-
rate measurement model to better capture the inherent features of each experiment
performed. We allowed the model to account for many characteristics that arise in
the context analyzed, such as the inflation of zeros, the overdispersion in both the
background (noise) and the signal of the data, the presence of different antibodies
used and many replicates available for each experimental condition. We showed in
a simulated environment the performances of our algorithm in comparison to other
existing methods, assessing that it has a better degree of classifying the latent states
of the regions as bound or not by the protein, scoring lower values of misclassifi-
cation error in terms of observed False Non Discovery Rate. We applied then the
model to real data and compared the results to the ones obtained with [1], showing
a greater capability of detecting enriched bins and providing lower misclassification
error in the process. Exploiting the temporal information can help with the detection
of the regions that are enriched because bound by the protein and not due to a bias
effect induced by a prolonged activity of the antibody used for the experiment. Also,
replicates with low efficiency and ratio between signal and background can still be
used to strengthen the inference about the parameters of the model, without having
a negative huge impact on the recovering of the latent state of the genomic loca-
tion, enabling the use of all the information available. Further developments include
the multivariate modelling of the multiple antibodies, through the use of multivari-
ate discrete distributions or other approach that allows for the specification of a
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dependency structure (similarity) between antibodies and/or transcription factors.
Extending the mixture distribution to incorporate more components to better char-
acterize the signal in the data can also be done. A more flexible parametrization of
the spatio-temporal dependency could be introduced, using more than two transi-
tion probabilities in order to relax some of the initial assumptions of our model. The
pre-processing of the data, such as the choice of the width of the bins used to sum-
marize the counts, could be incorporated at a modelling level. The MCMC algorithm
can also be improved in terms of computational speed.
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Abstract
In the context of Next-Generation Sequencing (NGS) experiments, the signal ob-

served in the data might be produced by two (or more) different biological processes
operating together and a gene could participate in both (or several) of them. Model-
based clustering is a technique widely used to group a collection of units into mutu-
ally exclusive groups: there are, however, situations as the aforementioned NGS ex-
periments where an observation could in principle belong to more than one cluster.
We propose a novel approach to cluster NGS discrete data, coming from a ChIP-Seq
experiment, with a mixture model, allowing each unit to belong potentially to more
than one group: these multiple allocation clusters can be flexibly defined via a func-
tion combining the features of the original groups without introducing new parame-
ters. The formulation naturally gives rise to a ‘zero-inflation group’ in which values
close to zero can be allocated, acting as a correction for the abundance of zeros that
manifest in this type of data. We take into account the spatial dependency between
observations, which is described through a latent Conditional Auto-Regressive pro-
cess that can reflect different dependency patterns. We assess the performance of
our model within a simulation environment and then we apply it to a ChIP-Seq
experiment to evaluate the genome wide role of the p300 protein in transcription
regulation.
Keywords: ChIP-Seq; Heterogeneity; Model-based clustering; Multiple alloca-
tions; Spatial dependency.
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3.1 Introduction
In the last 15 years, the development of parallel massively sequencing platforms

for mapping the genome has completely revolutionized the way of studying gene
expression patterns. These recent technologies called Next Generation Sequencing
(NGS) allow to simultaneously investigate thousands of features within a single reli-
able and cost-effective experiment, thus representing a valid alternative to microar-
ray experiments in enhancing our understanding of how genetic differences affect
health and disease [15]. Indeed, these innovative platforms have been quickly ap-
plied to many genomic contexts giving rise to a large amount of available data in
complex form. Data coming from such experiments are highly structured and their
analysis has raised an imperative need for specific methodologies: technical or bi-
ological replicates can be observed in several experimental conditions [3], and the
single observational units, such as genes or exons, are very likely characterized by
spatial dependencies and relationships [14]. Moreover, the abundance of a particular
transcript is measured as a count and so the single data point is a discrete measure-
ment.

We consider in this paper the Chromatin ImmunoPrecipitation and sequencing
(ChIP-Seq) data on proteins p300 and CBP analysed by [17]. In this experiment, two
technical replicates are observed after 30 minutes from the initial interaction of the
proteins with the human genome, with the aim of discovering the binding profile
of these transcription factors. Figure 3.1 displays summarized counts for 1000 base
pairs contiguous windows along chromosome 21. The plot shows segments with
high read counts and segments where there is a uniformly low level of signal, thus
suggesting a potential spatial effect.

In ChIP-Seq data like the one investigated (see [12] for a review), researchers
usually associate the counts to two specific components: a background level, which
accounts for the noise in the process and the inactivity of the regions with respect
to protein binding; a signal level, that is described by a higher counts of sequenced
DNA fragments, indicating that the protein is actually interacting with those spe-
cific genomic regions. From a statistical point of view, the problem of the detection
of such biological processes can be addressed by introducing a mixture model with
the aim of identifying groups of genomic regions that exhibit similar expression
patterns. Typically, conventional model-based clustering methods perform classifi-
cation of units into mutually exclusive partitions. However, looking at Figure 3.1, it
could be interesting to uncover components that may arise from the multiple over-
lapping action of the main aforementioned group processes. Multiple partitions can
be obtained in (at least) two ways: (a) by fuzzy or ‘soft’ clustering that is the assign-
ment of a unit to the groupwith some posterior probabilities [see, for instance, 5, 11]
or (b) by accounting for multiple allocations directly within a generative model. Our
proposal employs this second perspective that explicitly assumes that genomic units
are fully co-actors of multiple processes in a model based framework. The idea stems
from earlier contributions aimed at discovering multiple clusters. [4] introduced a
probabilistic-based method to discover overlapping cellular processes and the as-
sociated gene regulation scheme. Given the complexity of a cellular system, they
propose a decomposition of the observed continuous data matrix into layers repre-
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Figure 3.1: Summarized counts for 4000 bins from the chromosome 21. Regions on x-
axis are 1000bpwindows; averaged counts of the two replicates T01 and T02 reported
on y-axis.
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senting biological processes and groups of co-regulated genes, allowing every unit
to express itself in more than one activity layer and belong to multiple clusters. In [1]
and [8], the problem of multiple allocation is solved within a model based clustering
strategy, where the distribution of the groups is extended generalizing the Gaussian
probability distribution used in [4] to the case of exponential family distributions.
The main idea of such approach known as ‘Model-Based Overlapping Clustering’
is to re-parameterize the density of the overlapped clusters as the product of some
primary densities that, being members of the exponential family, still result in the
same parametric family. [10] extended these models by employing a nonparamet-
ric Bayesian technique to infer the number of groups in their overlapping clusters
model, while maintaining the characterization of the mixture densities as members
of the exponential family. More recently, [19] proposed the ‘epistatic model based
clustering’ for the analysis of microarray data. In this approach, a more explicit de-
scription of the mixed component densities in terms of Gaussians is given; different
interactions between the parameters of the primary groups are investigated but the
order of the interactions between these original clusters and the overlapped coun-
terparts is practically limited to the second order.

The aim of this work is to define a general Multiple Allocation Mixture (MAM)
model for analyzing the ChIP-Seq data. The peculiar features of these experimental
data demand for specific treatment. First, their discrete nature and a marked overdis-
persion require a flexible count distribution such as the Negative Binomial, that how-
ever does not generally belong to the exponential family, unless its dispersion pa-
rameter is known and fixed. To this aim we generalize the model-based overlapping
clustering to arbitrary parametric probabilistic functions. In addition, as shown in
Figure 3.1, ChIP-Seq data are characterized by the inflation of non-structural zeros.
These aspects are naturally taken into account by the proposed model, where each
component of the multiple mixture corresponds to a primary or to an overlapping
cluster distributed as Negative Binomials with parameters that are function of the
primary parameters only. A further important aspect that emerges from Figure 3.1
is that the protein interactions with DNA are spatially correlated. We will show that
the model can be easily extended in order to account for the spatial linkage among
the genes, via a Conditional Auto-Regressive (CAR) process.

In what follows, we will present our proposal in three gradual steps in order to
sequentially address these issues. First, in Section 2, the general MAMmodel will be
presented and then we will adapt the model to the NGS data. We will illustrate how
to extend this approach in order to model spatial dependent observations. In Section
3, a simulation study aimed at investigating the flexibility and effectiveness of the
proposal is presented. Furthermore, we use the newly developed model to study the
genome wide binding of the protein p300 in order to investigate its transcriptional
regulatory function. In Section 4, conclusions are discussed.

3.2 Methods
3.2.1 Model-based clustering with mixture model

Finite mixture models have been receiving a wide interest in the statistical lit-
erature as a tool for performing model based clustering and density estimation [see
2, 7, 13].
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Let yj (j = 1, . . . , p) be an observed vector of values that we want to classify in
some unknown groups. The conventional model based clustering model assumes

f(yj|Θ) =
k∑

i=1

πif(yj|θi), (3.1)

where f(yj|θi) are the component densities with parameters θi and πi are the prior
probabilities to belong to each component, satisfying πi > 0 and

∑k
i=1 πi = 1.

According to this model, a sample of p observations arises from some underlying
populations of unknown proportions and the purpose is to decompose the sample
into its mixture components, where each component corresponds to a cluster. In
doing so, the data are partitioned into mutually exclusive k groups. This is achieved
by introducing a latent variable, say zji, which allocate each observation j to the
component i. More precisely, zj is a vector of length k that takes the value 1 in
correspondence of the cluster assignment, and 0 elsewhere, so that

∑k
i=1 zji = 1.

According to the maximum a posteriori probability (MAP) rule, the partition is then
obtained by assigning subjects to their most likely class according to the posterior
probabilities of z given the data:

f(zji|yj; Θ) =
πif(yj|zji;θi)∑k

i′=1 πi′f(yj|zji′ ;θi′)
.

In this sense the classification produced by a mixture model is ‘hard’ (because a unit
is allocated to themixture component with themaximumposterior probability of be-
longing to) but in principles it could be ‘soft’ by assigning each cluster a weight that
equals its posterior probability as in the partial membership model [11]. However,
a soft assignment perspective does not mitigate the limitation of the model based
classification, that results when data points may simultaneously belong to multiple
clusters. In such situations, a change in the generative model is required, by explic-
itly assuming that the allocation vector zj may contain several - and not just a single
- ones.
3.2.2 Multiple Allocation Mixture model

In order to construct a new generative model for multiple components, we define
k in Eq. (3.1) as the number of primary groups which are not mutually exclusive. For
such a reason, we assume the prior probabilities of each primary group satisfying
the constraint πi > 0 but not necessarily summing up to one,

∑k
i=1 πi ̸= 1.

The total number of possible single and multiple allocation clusters is k∗ = 2k

and
∑k

i=1 zji = nj is the multiplicity of the cluster membership for the unit jth.
When nj = 1 we have a single group allocation, otherwise we have multiple group
allocations. More precisely, if nj = 2 the unit jth belongs to two groups simultane-
ously. These two groups altogether may be thought of as a new secondary group. If
nj = 3 the unit belongs to three groups that jointly define a tertiary group and so
forth. When nj = 0, the unit is assigned to what we call a ‘outward cluster’: this
group collects observations that ideally do not belong to any clusters, and for this
reason their distribution might be described by peculiar parameters depending on
the empirical context. For instance, in many applications it could represent a group
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of outliers or noisy observations, characterized by high variance. The definition and
existence of the ‘outward cluster’ is particularly relevant for the analysis of ChIP-
Seq data, where the clusters are interpretable as biological processes. A gene that
does not take part to any biological processes will have extremely low values (close
to zero or zero). Thus, the outward cluster has the purpose to describe the group of
‘inactive genes’ and, in so doing, it acts as a zero-inflation adjustment for the model.

For k fixed, let U be a connection matrix of dimension 2k × k, with elements
uhi ∈ {0, 1}, containing all the possible assignment configurations. For instance, for
k = 3:

U =




0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1
1 1 1




. (3.2)

In this case we define the prior probability to belong to a general (single or multiple
allocation) group

π∗
h =

k∏

i=1

πuhi
i (1− πi)

1−uhi (3.3)

with h = 1, . . . , k∗. Notice that these weights are constructed so that
∑k∗

h=1 π
∗
h = 1,

and the definition comes naturally from the representation of clusters as sets in a
sample space. The Multiple Allocation Mixture model (MAM) can be defined as a
reparameterization of Eq. 3.1 in the new formulation

f(yj|Θ) =
k∗∑

h=1

π∗
hf(yj|ψ(uh,θ), ϕh) (3.4)

where ψ(uh,θ) is a location parameter and ϕh is a nuisance parameter. More specif-
ically, ψ(uh,θ) is a function that depends on uh, which is the h-th row of U , and
transforms the primary parameters θi into the parameters of the multiple allocation
components according to several possible schemes:

• additive model: the parameters of the mixed groups could be the sum of the
original parameters, that is

ψ(uh,θ) =
k∑

i=1

uhiθi + θb1[
∑k∗

i=1 uhi=0],

where in the second term the indicator function is introduced to account for
the parameters of the outward mixture component;
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• co-dominance of order 1:

ψ(uh,θ) =

∑k
i=1 uhiθi∑k
i=1 uhi

+ θb1[
∑k∗

i=1 uhi=0];

• co-dominance of order 0:

ψ(uh,θ) =

(
k∏

i=1

θuhi
i

)1/
∑k

i=1 uhi

+ θb1[
∑k∗

i=1 uhi=0].

Wewill focus on the additive scheme through the rest of the manuscript. Finally, the
nuisance parameters ϕh are taken h-specific because we aim to add more flexibility
to the mixture model.
3.2.3 Multiple Allocation Mixture model for ChIP-Seq Data

Suppose we observe the ChIP-Seq counts of p genes inD biological conditions or
replicates.We denote Yjd the random variable that expresses the read counts, say yjd,
mapped to gene j (j=1, ..., p), in sample d with d = 1, . . . , D. Let Y j be the random
vector of lengthD denoting the expression profile of a gene. Let yj be the observed
value. We assume that Yjd is distributed according to the Negative Binomial (NB)
distribution, given both the discrete nature of the observations and the flexibility
of having a specific parameter used to model the overdispersion, which makes this
distribution preferable over the Poisson. We further assume that, conditional on the
group, the replicates are independent draws so that the mixture model in Eq. 3.4
becomes:

f(yj|Θ) =
k∗∑

h=1

π∗
h

D∏

d=1

NB (yjd|ψ(uh,µd), ϕdh) , (3.5)

where ϕdh are specific dispersion parameters of the negative binomials and µ∗
dh =

ψ(uh,µd) are the means defined in the extended space of multiple components.
We allow dispersion parameters ϕhd to vary for each of the k∗ possible assign-

ment and replicates because it is not directly clear a priori what is the most rea-
sonable variance structure to define through a function for the multiple allocation
clusters. This allows, nevertheless, for a certain degree of flexibility in describing the
context-specific variability in the data.

With reference to the means µ∗
dh they are modelled as function of primary k

means through the combination scheme ψ. More specifically, with reference to the
connection matrix U in Eq. 3.2, µ∗

d1 is the mean parameter in condition d of the
outward distribution; µ∗

d2 is the mean parameter of the units that belong to the first
primary group only and not tomixed groups, and so on, tillµ∗

d8 that is themean of the
units that belong simultaneously to the three components under condition d. Given
the nature of the data we consider the ‘outward’ group as the component devoted to
describe the inactive genes and for this reason we fix its mean to a very low value,
such as µ∗

d1 = 0.01. The other mean parameters are obtained as combination scheme
through ψ of k primary values that represent the means of the units that belong to
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the primary groups or related multiple groups. In order to construct an hierarchical
form of the model, we define with z∗ the allocation matrix in the augmented space
given by k∗ as a p×k∗ ‘multinomial’ matrix. While each row of z can have multiple
ones according to the assignment of the unit to multiple clusters, the rows of z∗

only have a single one and the matrix U allows for a connection between original
parametrization allocation and the re-parametrized version. Given the whole set of
parameters, say Θ, the joint complete likelihood of our model is the following:

P (y, z∗|Θ) = P (y|z∗,Θ) · P (z∗|Θ). (3.6)

Inference is carried out within a Bayesian framework. The posterior distribution of
the parameters and the latent variables is:

P (z∗,Θ, ξ|y) ∝ P (y|z∗,Θ) · P (z∗|Θ) · P (Θ|ξ) (3.7)

with P (Θ|ξ) specifying priors for the mixture parameters and ξ as the vector con-
taining the hyper-parameters. The posterior in Eq. 3.7 can then be rewritten as:

P (z∗,π,µ,ϕ, ξ|y) ∝ P (y|z∗,µ,ϕ)P (z∗|π)P (π|ξ)P (µ|ξ)P (ϕ|ξ) =

=

p,D,k∗∏

j,d,h

{
Γ(ϕhd + yjd)

Γ(ϕhd)Γ(yjd + 1)

[
ϕhd

ϕhd + ψ(uh,µd)

]ϕhd
[

ψ(uh,µd)

ϕhd + ψ(uh,µd)

]yjd}z∗jh

×
p,k∗∏

j,h

(
k∏

i=1

πuhi
i (1− πi)

1−uhi

)z∗jh

P (π|ξ)P (µ|ξ)P (ϕ|ξ),

(3.8)

where P (π|ξ), P (µ|ξ) and P (ϕ|ξ) are prior distributions for these quantities. As
prior distribution for the weights we assume a Beta distribution so that we get the
following hierarchical structure:

πi ∼ Beta (1, 1)
P (z∗

jh = 1|π∗) = π∗
h (3.9)

yjd|z∗
jh;Θ ∼ NB(ψ(uh,µd);ϕ).

For the other two parameters we select conjugate and flat priors. More precisely,
µid ∼ Gamma(aµ, bµ) andϕhd ∼ Unif(aϕ, bϕ), for every i, d andh, where (aµ, bµ, aϕ, bϕ)
are elements of the vector ξ of hyperparameters. Given these chosen priors, full con-
ditionals can be derived and a Gibbs sampling MCMC algorithm applied to estimate
the parameters. At the implementation step of the algorithmwe exploit the Gamma-
Poisson mixture representation of a Negative Binomial distribution. We introduce a
further latent variabile s, specific to each unit j in each replicate/condition d, that
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has a Gamma density with shape and rate parameters equal to ϕhd. It follows that:

f(sjd) = Gamma(ϕhd, ϕhd)

p(yjd|sjd) = Pois(ψ(uh,µd)sjd)

p(yjd) =
∫
p(yjd|sjd)f(sjd)ds = NB(ψ(uh;µd), ϕhd)

which allows us to use a Gibbs sampler for the mean parameters µid.
3.2.4 Modelling spatial correlation with a CAR structure

The units/observations (in our case, genes or genomic locations) are not inde-
pendent but spatially correlated. We introduce the spatial correlation by allowing
the primary weights πi to be j-varying and we denote them as πij . The spatial re-
lationship is taken into account by allowing the weights of the mixture in Eq. 3.4
to vary from one gene to another. The way we formulate it is inspired by the work
proposed by [6]. They first introduced k independent p-dimensional latent variables
with aMarkov random-field distribution. The weights are then a non-linear function
of these latent variables and spatial relationships are expressed in terms of neigh-
borhood relationships. This could be restrictive because the correlation between two
genes should decrease as their distance increases. We extend the approach by con-
sidering a Gaussian conditional auto-regressive model [16], where the distances are
directly used to model correlations instead of dummies denoting the neighborhood
condition. In a Bayesian framework, this is accomplished by introducing additional
layers to the hierarchy formulation shown in Eq. 3.9, with their own set of hyper-
parameters. With reference to π, we introduce the spatial latent vectors, denoted by
x1, . . . ,xi, . . . ,xk, with i = 1, . . . , k: each xi is a Gaussian conditional autoregres-
sive model given by

f(xi) = N (0, Q−1) (3.10)

whereQ is a precision matrix of order p and γjj′ is some non-linear function of δjj′ ,
which are the distances between all the units. More specifically,

Q = Ip +∆− Γ =

{
1 +

∑p
j′=1 γjj′ if j-th diagonal element

−γjj′ elsewhere

and

∆=




. . . 0 . . . 0
0

∑p
j′=1 γjj′ . . . 0

0 0
. . . 0

0 0 . . . 0


 Γ=




0 γ1,2 . . . γ1,p

γ2,1 0 . . . ...
... ... . . . ...

γp,1 . . . . . . 0


 .

After some algebraic steps it is possible to show that Eq. 3.10 is equivalent to

f(xi) = c · exp
{
−1

2

[
p∑

j=1

p∑

j′=1

γjj′(xij − xij′)
2 +

p∑

j=1

x2ij

]}

(3.11)
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with c the normalization constant

c = (2π)−p/2

p∏

j=1

(1 + vj)
1/2.

In the previous expression, vj’s denote the eigenvalues of the spatial matrix ∆− Γ.
Given x1, . . . ,xk, the weights for location j can be obtained via logistic formulation

πij =
exp(xij/η)

1 + exp(xij/η)

where η is a ‘shrink-or-stretch’ tuning parameter to be estimated that provides a
way to exaggerate the differences in units allocation among the clusters.
3.2.5 Conditional Auto-Regressive Multiple Allocation Mix-

ture (CAR-MAM)
In order to account for spatial correlation between the units/observations (in

our case, genes or genetic locations), we introduce another layer in the hierarchical
structure of the model. Starting from Eq. 3.6, the updated joint complete likelihood
is:

P (y, z∗,x|µ,ϕ, η, ξ) = P (y|z∗,µ,ϕ)P (z∗|x, η)P (x|ξ) (3.12)

leading to the following posterior distribution

P (z∗,x,µ,ϕ, η|y, ξ) ∝ P (y|z∗,µ,ϕ)P (z∗|η,x)×
P (x|ξ)P (µ|ξ)P (ϕ|ξ) (3.13)

where the vector ξ now also contains the hyper-parameters for the new latent layer
andP (y|z∗,µ,ϕ) is defined as in Eq. (3.8). More precisely, the complete latent struc-
ture in Eq. 3.13 is equal to:

P (z∗,x|η) =
k∏

i=1

c exp

{
−1

2

[
p∑

j=1

p∑

j′=1

γjj′(xij − xij′)
2 +

p∑

j=1

x2ij

]}

×
p∏

j=1

k∗∏

h=1

[
k∏

i=1

(
exp(xij/η)

1 + exp(xij/η)

)uhi
(
1− exp(xij/η)

1 + exp(xij/η)

)1−uhi

]z∗jh

where c is the constant defined in Eq. 3.11. As proposed in [6], we integrate out
the latent allocation variable z when implementing the Metropolis sampler for x in
order to employ the information carried by the data y and bring the two layers of
the hierarchical structure of the model closer together.

3.3 Results
3.3.1 Simulation study — Multiple Allocation Mixture (MAM)

model
We assess the performance of our model (MAM) under different scenarios and

we compare it with a classical non-overlapping components mixture (NegBinMix).
Data are generated from two independent Negative Binomial distributions (D = 2)
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Table 3.1: Misclassification error rate (in percentage) for NegBinMix and MAM for
the three scenarios of activation.
Number of clusters Model Degree of activation

πi = 0.25 πi = 0.50 πi = 0.75
k = 2 MAM 1.05 2.70 2.65

(i.e. k∗ = 4) NegBinMix 1.20 2.65 2.55
k = 3 MAM 0.95 3.05 5.10

(i.e. k∗ = 8) NegBinMix 11.00 25.05 9.15

and p = 2000 units, allowing for overlapping clusters with a number of groups
k = {2, 3}: in the augmented k∗ space this equals to represent a situation, as in
a classical model-based clustering framework, where the actual number of groups
ranges from k∗ = 4 to k∗ = 8. We explore three degrees of clustering between
primary and outward/non-primary groups by selecting three scenarios which we
call low, medium and high activation: this is achieved by setting all the π equal to -
respectively - 0.25, 0.50 and 0.75. We run both algorithms (MAM and NegBinMix)
for 10000 MCMC iterations and a 5000 burn-in window is selected. For every µid,
we choose hyperparameters of the Gamma prior distributions equal to aµ = 1 and
bµ = 0.001; for every dispersion parameter ϕhd, we select the ranges of the prior
uniform distributions to be [aϕ = 100, bϕ = 2000]. Convergence is checked for ev-
ery chain and we assign to the clusters according to the maximum a posteriori rule:
we compute the posterior probabilities of the allocation vectors z∗

j given the data
and, for every unit, we allocate to the component with the highest probability value
(see also Section 3.2.1). We choose as an overall performance indicator the misclas-
sification error rate (see Table 3.1), that is, the average number of units not correctly
allocated when compared to the known true membership. The posterior means for
the parameters in the selected models (both the overlapping and non-overlapping
mixtures) are consistent with the true values and do not show any substantial bias.

We report the misclassification error rates for the estimated models in Table 3.1:
the percentage of misclassified units is always lower in the low activation scenario
becausemost of the observations are allocated in the outward component, which has
small variance and near zero (fixed) mean, thus simplifying the clustering task. As
we can see in Table 3.1, our model has comparable (sometimes better) classification
rates, with respect to the conventional mixture of Negative Binomial, in simpler sim-
ulated dataset (k = 2). When k = 3,MAM model always outperforms the compared
mixture with noticeable improvements on the misclassification error rate.
3.3.2 Simulation study — MAM with Conditional Autoregres-

sive model (CAR-MAM)
We simulate data from a mixture of Negative Binomials with multiple allocation

and spatial information; we choose k = 2, 3, 4 (k∗ = 4, 8, 16) and for every number
of groups we adopt two different spatial structures. In the former, the latent variable
x is drawn from a CAR model using a reciprocal function γjj′ [see 16], which is
an inverse function of the distances between uniformly drawn positions (posj , j =
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Table 3.2: Average misclassification error rate (in percentage) over 100 simulated
datasets with standard errors in brackets; CAR structure with reciprocal function.
Number of clusters CAR-MAM MAM NegBinMix
k = 2 (k∗ = 4) 26.58 (0.001) 26.87 (0.001) 30.40 (0.001)
k = 3 (k∗ = 8) 23.60 (0.001) 28.65 (0.009) 41.00 (0.002)
k = 4 (k∗ = 16) 36.32 (0.009) 49.84 (0.013) 60.39 (0.002)

Table 3.3: Average misclassification error rate (in percentage) over 100 simulated
datasets with standard errors in brackets; CAR structure with sine function.
Number of clusters CAR-MAM MAM NegBinMix
k = 2 (k∗ = 4) 27.71 (0.002) 29.13 (0.001) 35.42 (0.001)
k = 3 (k∗ = 8) 31.31 (0.006) 35.06 (0.011) 40.11 (0.002)
k = 4 (k∗ = 16) 44.93 (0.005) 56.12 (0.007 ) 57.18 (0.003)

1, . . . , p). In the latter, a sine function is employed in the data generating process,
in order to have stronger spatial relationships. More precisely, we assume that the
spatial latent vectors, x1, . . . ,xk are:

xij = sin

(
iπ

posj
max {posj}j=1,...,p

)
.

For each scenario we run three algorithms assuming k is known: NegBinMix, which
is a mixture of Negative Binomials without any further specification, and our two
proposedmodelsMAM andCAR-MAM assuming that the conditional autoregressive
structure is computed through a reciprocal function γjj′ . We average the misclassi-
fication error rates across 100 independent datasets simulated for each scenario and
we compare the results to assess the performance. Again, we cluster the units ac-
cording to the maximum a posteriori rule and we measure the performance through
the misclassification error, computed for each model. In Table 3.2 and Table 3.3 we
summarize the results of 100 runs of both scenarios, where data were generated -
respectively - with a reciprocal function for the CAR part of the model or a sine
function.

As clear from the tables, we achieve improved accuracy in the clustering task
with CAR-MAM model over the simplerMAM model and both of them perform bet-
ter with respect to NegBinMix (Table 3.2) even when the estimated conditional au-
toregressive structure is not the same as the one used in the data generating process
(Table 3.3).
3.3.3 p300 protein binding ChIP-Seq experiment

We apply our model to the data already discussed in the introduction and pre-
viously analysed by [17]. p300 is a transcription coactivator associated with many
genes that are involved in multiple processes (i.e., differentiation, apoptosis, prolif-
eration); also, the protein serves as a bridge for other transcription factors and it is
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involved in the transcription machinery of cells related to the development of cancer
and other diseases. The data from p300 ChIP-Seq experiments consist of results from
multiple interactions of the transcription coactivator with the chromatin in quies-
cent and stimulated cells, at different time points. We select two technical replicates
(T01, T02) collected 30 minutes after the initial interaction between the chromatin
and the protein p300 on a sequence of 1000 base-pairs windows describing the pre-
processed raw counts across 4000 regions of the chromosome 21 (see Figure 3.1).
We analyze both replicates jointly and we summarize the data of this subsample by
computing the average of the counts for the two different replicates T01 and T02.
As we can see in the plot, the majority of the observations lie in a ‘band’ of counts
lower than 5, aggregated into segments that are spanned by smaller batch of re-
gions exhibiting a higher count level, thus suggesting a spatial effect with respect
to the protein binding process. Since in ChIP-Seq data researchers usually associate
the counts to a background group and a signal group, we run the algorithm with
k = 2 (k∗ = 4) in order to capture the two aforementioned expected clusters and
potentially a better characterization of them through our multiple allocation clus-
ter, while simultaneously taking into account the spatial dependency between the
genomic regions. We choose the geometric mean as our combination scheme ψ(·)
to lessen the effect (on the multiple allocation cluster mean values) produced by the
highest counts. Out of the 4000 genomic regions, 159 are allocated in the outward
cluster, which accounts for the zero-inflation in the data, represented by the obser-
vations around positions 17200 and 18000 (see Figure 3.2). This group has fixedmean
values equal to 0.01 for both replicates T01 and T02, while the dispersion parame-
ters are estimated by the algorithm. The first primary cluster i = 1, whose units are
indicated by green dots in Figure 3.2, has posterior means equal toµ1 = (1.61, 1.07)
and represents the background process of the protein binding: 3478 possibly inac-
tive genomic regions, with very low counts, are allocated in this group. The second
primary cluster, i = 2, is representative of a signaling group of 48 genomic regions
having a higher mean count level of µ2 = (19.27, 34.23) depicted with red dots in
Figure 3.2. The multiple allocation cluster in our analysis is interpretable as a group
of 315 units involved in both the background and signal clusters: in this case, given
that we are observing these counts after 30 minutes from the initial interaction of
the protein with the strand of chromosome 21, the genomic regions allocated in this
cluster could be thought as either being locations that were active immediately at the
beginning and now not signaling anymore or locations only starting to interact with
the p300 protein after 30 minutes. The mean values for this multiple allocation clus-
ter are equal to 5.57 and 6.06 in the two replicates T01 and T02: the units belonging
to it are shown as blue dots in Figure 3.2. Finally, the posterior probability for each
unit to be allocated in the signaling group is shown in Figure 3.2 as a magenta solid
line. We can see from the plot that this probability is higher in those segments where
genomic regions with higher counts are observed; moreover, the allocation weight
of the signal component follows a spatial pattern, increasing and decreasing across
the analyzed strand and thus accounting for the spatial effect occurring among the
observations. For comparison, we also run the algorithm for a conventional four
components Negative Binomial mixture model, fixing the location parameter of the
first component to 0.01 as we do in our model.The result shows that only a total of
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Figure 3.2: Clustering result for the analyzed segment. Counts are reported as aver-
age of the two technical replicates T01 and T02; solid line is the posterior probability
to be allocated to the signal group.
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three clusters are estimated, with one of them capturing the same background mean
level shared by the fixed component, thus producing a blurred classification with
respect to one of the two main processes of interest.

3.4 Conclusions
Motivated by the analysis of data coming from ChIP-Seq experiments, we pro-

posed an extension of the conventional mixture model that allows for units to simul-
taneously belong tomore than one group. As a by product of themodel specification,
an outward cluster has been introduced that can be used to describe specific features
of the data such as zero-inflation, outliers and so forth. A spatial dependency layer
among the units is encoded in the formulation by the means of a conditional autore-
gressive model, allowing for spatial information to aid the clustering task. We have
compared our proposed model with a mixture of Negative Binomials to investigate
its advantages with respect to the conventional approach: results on the simulated
data show an increase in performance in terms of misclassification error rates. We
applied ourmodel to data previously analyzed by [17]: a promising richer description
of the signal in the observations is found, calling for a potentially deeper biological
investigation of those genomic regions associated with it. A delicate issue that de-
serves future investigation is the choice of k, which is a fundamental aspect because
it identifies the number of primary clusters. Some well-known methods such as re-
versible jump [9] and birth-death process [18] do not allow an extensive exploration
of the range of values for k without incurring in a dramatic increase in computa-
tional cost. However, in some applications, this choice could be suggested by the
empirical context such as in our case, where a number of primary clusters equal to
two was reasonable because they represented background and signal groups.
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Abstract
In many fields of application, dynamic processes that evolve through time are

well described by systems of ordinary differential equations (ODEs). The parame-
ters governing the equations cannot be immediately extrapolated out of the data
when the analytical solution of the ODEs is not available. Different methods have
been proposed to infer these quantities, from numerical optimization to more gen-
eral models that employs regularization as a way to overcome the issue of trying
to directly solve the system. We focus on the class of techniques that use smooth-
ing to avoid direct integration and, in particular, on a Bayesian Smooth-and-Match
strategy that allows to obtain the ODEs solution while performing inference on the
parameters, with a built-in quantification of the related uncertainty. We assess the
performance of the proposed approach in three different simulation studies and we
compare the results on a dataset on neuron electrical activity.
Keywords: ordinary differential equations; smoothing; penalized cubic splines;
MCMC; ridge regression.
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4.1 Introduction
Many processes that evolve through time are described by systems of ordinary

differential equations (ODEs). Imagine we have a simple case of one ODE where the
change, dx(t), of the concentration level of a specific molecule in the cell follows a
law that is described by some function gβ[x(t)], with a set of parameter β governing
this law. We could think of this change as depending on the quantity of molecules at
time t, that is x(t), a rate β1 at which new ones are produced by the cell as time passes
by and thenmaybe some ‘limit’ β2 on the capacity to contain them.Whatwe observe,
in practice, are not the actual changes dx(t) (the derivative of the process) but in-
stead the concentration levels x(t) at sampling time points. This means that, in order
to relate the data at our disposal with the parameters of interest, we need a solution
for the system of differential equations. Solving the problem analytically however
is not always possible and in that case no closed forms are available for the esti-
mation of the parameters. Moreover, our observations may very well be affected by
noise that perturbs the true temporal dynamic of the process. There are several tech-
niques in the literature on this topic (see Robinson [25] for an introduction): most of
them involve numerical integration, a straightforward approach to the problem that,
however, does not take into account in any way the uncertainty about the solution
of the system. Moreover, methods relying on this type of solvers require an explicit
computation of the solution at every step of the algorithm, severely hindering the
procedure in practice. A way to avoid direct numerical integration (or differentia-
tion) is smoothing the data. This idea falls under the class of collocation methods,
in which some of them are called two-steps [9, 15]. As in Brunel et al. [4], Madár
et al. [20], Varah [27], a first step consist of recovering a temporary solution of the
system by smoothing or interpolating the data (i.e. with cubic splines, least squares,
nonparametric filters, local polynomial regression and so forth) and then applying
nonlinear least squares to infer the parameters of the ODEs. The properties of these
methods, such as consistency and asymptotic normality, are discussed in Xue et al.
[30]. Other methods following a similar strategy of smoothing and matching are dis-
cussed in Campbell and Steele [6], González et al. [13], Liang and Wu [18]. Another
approach is to use regularization [14, 24, 28], in order to do inference on the parame-
ters while minimizing - with a frequentist flavor - somemeasure of distance between
the theoretical solution and the estimated one. An initial guess of the parameters of
interest is provided to the algorithm, as it is used together with a linear combina-
tion of basis functions to solve a penalized optimization problem. From a Bayesian
point of view, as in Chkrebtii et al. [7], Gaussian Processes (GP) are prominent tools
employed to solve the task. They encode naturally a source of randomness in the
solution and simultaneously provide a class of flexible priors for the functions used
to smooth the data coming from the ODEs’ system. A recent approach using GP is
provided by Calderhead et al. [5], with some drawbacks that were later addressed
in Dondelinger et al. [10] through the use of adaptive gradient matching. Another
advantage of these Bayesian methods is the complete probabilistic phrasing of the
problem, allowing for a statistical quantification of the uncertainty about the solu-
tion obtained: the core of these procedures are - in fact - probabilistic solvers that can
be sampled to explore the parameter space while obtaining indirectly a solution of
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the system [8]. For some other (implicit and explicit) probabilistic solvers see Barber
[1]; some applications of these methods on real life dataset are presented in Honkela
et al. [16] and Titsias et al. [26].

In this work, we propose a two-step Bayesian strategy (Bayesian Smooth-and-
Match) that borrows the idea of smoothing to overcome direct integration and, si-
multaneously, to filter some of the noise in the data. The first step of the method
relies on penalized splines to smooth the data and reconstruct the variables of the
ODEs; the second step focuses on inferring the parameters of the system through
ridge regression, with covariates being known functions of the process that is being
studied.

The rest of the manuscript is organized as follows: in Section 4.2, the notation
used to build the strategy is introduced and we discuss the distributional assump-
tions on the data, together with the prior and posterior distributions; in Section 4.3,
numerical and visual results on three different simulation studies are reported; in
Section 4.3.4, an application to a previously analyzed dataset is presented; finally, in
Section 4.4, we provide a summary of the work and we outline some future devel-
opments.

4.2 Model formulation
4.2.1 Tools and notation

Suppose we observe a p-dimensional vector yi containing noisy observations of
a dynamic process x(ti), where ti is a generic element from the set of ordered time
points {ti} ∈ [0, 1], and i = 1, . . . , n indexing the independent observed vectors.
For the sake of simplicity, we will drop the “(t)” argument in the notation for x(t)
and its components when not ambiguous, otherwise it will be explicit. We assume
that:

yik ∼ N
(
xik, σ

2
k

)
(4.1)

with k = 1, . . . , p, xik = xk(ti) and σ2
k a parameter describing the noise level in

the data for the component k of the whole process x. For every observation ti, each
component x·k can be approximated by a cubic spline [29, p. 122] of t in the time
domain

xik =

qk+2∑

h=1

θhkψhk(ti) (4.2)

where the sum is over qk + 2 known basis functions ψhk(·) that depend on the qk
number of arbitrary knots used to construct them. For an arbitrary fixed t, we assume
that the dynamic process x(t) is well described by an ordinary differential equations
(ODEs) model defined as:

{
x′(t) = dx(t)

dt
= g(x(t))

x(0) = ξ
(4.3)

wherex′(t) is the first derivativew.r.t. time of a continuous processx(t) = (x·1(t), . . . ,x·k(t), . . . ,x·p(t)),
ξ = (ξ1, . . . , ξk, . . . , ξp) is a vector of initial conditions for the system and g : Rp →
Rp a (possibly) non-linear function of x(t). We focus on ODEs models that are linear
in the parameters. The generic functional form of the derivative for the first variable
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x·1 is
dx·1(t)

dt
= g1(x(t)) =

b∑

j=1

βjhj(x(t)) (4.4)

which involves the first element g1 : Rp → R of the function g.We think of it as a lin-
ear combination of b parameters of interest and some functions hj , with j = 1, . . . , b,
that describe the dynamic evolution of the component x·1. Instead of working with
the derivative ofxwe switch to the integral representation of the system in Equation
4.3:

xi1 =

∫ ti

t1

dx·1(t)

dt
=

∫ ti

t1

g1(x(s))ds = (4.5)

= ξ1 +

∫ ti

t1

b∑

j=1

βjhj(x(s))ds

for i = 2, . . . , n, because we set our first observation t1 as the starting time point
(t1 could be either zero or not), and ξ1 = x11. The initial condition ξ1 can be either
estimated or assumed known. The solution for the first ODE, given by Equation 4.5,
is thus:

xi1 = ξ1 +
b∑

j=1

(
βj

∫ ti

t1

hj(x(s))ds

)
= ξ1 +

b∑

j=1

βjHj(x(ti)) (4.6)

whereHj is the integral of the corresponding function hj evaluated at time point ti.
4.2.2 Prior, likelihood and posterior distributions

With reference to a sample of n observations, Equation (4.1) may be rewritten
as:

y·k = (y1k, . . . , ynk)
T ∼ Nn

(
x·k, σ

2
kIn
)

with σ2
k the noise level for component k and In the identity matrix of order n. From

Equation 4.2,x·k = Ψkθk whereΨ is the n×(qk+2)matrix of spline basis evaluated
at every time point ti. Thus, assuming that every component is independent from
the other given the column vectors θk, the likelihood function of the model is

P (y|Θ,σ2) =
n∏

i=1

p∏

k=1

P (yik|θk, σ
2
k)

where y = (y·1, . . . ,y·p), Θ = {θ1, . . . ,θp} and σ2 = (σ2
1, . . . , σ

2
p). We choose to

tackle the inferential procedure with a Bayesian approach: this allows us to repre-
sent the whole process with a fully probabilistic generative model that we can also
describe as a graphical model. Furthermore, within the Bayesian framework, we can
take into account the variability and the uncertainty at every level of the problem,
from the smoothing of the data to the parameters governing the system. We thus
assign prior probabilities to the parameters of the splines: we assume, for each θk, a
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Gaussian prior distribution of the form

θk|λθk ∼ Nqk+2

(
0, [λθkSθk ]

−1) .

Choosing this prior is equivalent to performing a penalized spline regression on the
data: the form of the hyperparameter precision matrix Sθk defines the way we want
the basis to be penalized. We follow this approach to ensure that non-linearity in
the components is captured without, however, producing curves that would overfit
the noisy data. The parameter λθk penalizes the non-smoothness of the functions
ψhk: the ‘wiggliness’ of the curve resulting from the spline smoothing is encoded in
the precision matrix Sθk (see Wood [29] for details, p. 126). These penalization terms
have prior distributions

λθk |αθk , γθk ∼ Gam(αθk , γθk)

for some vectors of shape and rate hyperparameters (αθ,γθ). These two-dimensional
vectors are chosen to represent weakly informative priors on λθk : more specifically,
we select values of the hyperparameters that encourage undersmoothing of the data
[15], with enough variance for the Gamma distribution to be able to shift to a more
penalized curve if needed. A reference improper prior density P (σ2

k) = 1/σ2
k is em-

ployed for each σ2
k. The first vector of observations y·1 has another representation,

stemming directly from the ODEs’ system solution for x·1 that depends on the inte-
gral solution from Equation 4.6, that is

y⋆
·1| ξ1,β,Θ, σ2

1 ∼ Nn

(
ξ11n +Hβ, σ2

1In
)

where 1n is a n-dimensional unitary column vector, β the column vector of parame-
ters we want to estimate andH a n×bmatrix collecting the integrated functionsHj

evaluated for each observation ti. As in our case, when the starting inverse-problem
may be ‘ill-posed’, sure enough the ordinary least squares estimation leads to overde-
termined or underdetermined systems of equations as solution to the regression it-
self. Regularization is the usual approach to overcome this issue and Tikhonov reg-
ularization, in particular, is one of the most commonly used: from a Bayesian point
of view, it is equivalent to assume, for β, the following prior distribution

β|λβ ∼ Nb

(
0, [λβIb]−1

)
.

The choice of this prior, effectively, induces the Bayesian ‘ridge regression’ with λβ
acting as a penalizing term for which we assume a prior distribution

λβ|αβ, γβ ∼ Gam(αβ, γβ).

As for the other penalization terms, we follow the same approach of using a weakly
informative prior. We also estimate ξ1 instead of rescaling the data and we select
a flat prior for it. Dropping hyperparameters from the notation, the joint posterior
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distribution of the parameters in our model is:

P (Θ, ξ1,β,λθ, λβ,σ
2|y,y⋆

·1) ∝ P
(
y⋆
·1| ξ1,β,Θ, σ2

1

)
×

×
p∏

k=1

[
P
(
y·k|θk, σ

2
k

)
P (θk|λθk)P (λθk)P (σ2

k)
]
×

× P (β|λβ)P (λβ)P (ξ1) (4.7)

which is represented in the graphical model in Figure 4.1.
4.2.3 Mimicking the data: relationship with other methods

One feature of this representation is that the vector of observations y·1 appears
twice: as a term of the likelihood component, when k = 1 in the first product, and
then as the noisy solution of the ODEs’ system, that is y⋆

·1. In Barber and Wang [2],
also their GPODE model focuses on a probabilistic generative model for the data
and the graph representation contains two nodes for the same quantity (namely, the
process itself). The authors model the system x(t) as coming from a Gaussian pro-
cess (GP) and exploit the fact that differentiating the GP produces derivatives x′(t)
that are still modeled as a Gaussian process with available analytical description
of its kernel (see the original manuscript for more details). Then, they marginal-
ize over the components x(t) with a standard convolution integral and model the
data y with a Gaussian distribution; after that, they reintroduce x(t) and couple
it with the obtained derivatives to measure the distance between the determinis-
tic ODEs of the system and the ones estimated by the data. This approach faces
some issues. As pointed out in Macdonald et al. [19], where the authors inspect the
graph representation in Barber and Wang [2], having two nodes assigned to the
same quantity is methodologically inconsistent. To solve the issue, they first intro-
duce a dummy variable that mimics x(t), thus removing the inconsistency. How-
ever, the two nodes are still conceptually describing the very same quantity and a
natural definition of this dependency would be an undirected edge between them:
this addition, unfortunately, changes the graph from a directed acyclic graph to a
chain graph which is not a probabilistic generative model anymore. To preserve its
nature, they keep the two nodes separate form one another but highlight the con-
sequences of this choice: when some of the noisy vectors y·k are not available (that
is the case of partially observed systems), the model itself might be unidentifiable
because of the likelihood not depending anymore on the parameters of the ODEs
after marginalizing over the unobserved quantities. As we face the same issue with
our proposed strategy, we are thus limited to situations where all the components
of the process x(t) are observed (with noise). Given that a probabilistic definition
of what could be the directed edge between y·1 and y⋆

·1 (or viceversa) is not obvi-
ous, we couple the two quantities only by assuming they share the same variance
σ2
1 (as described in Figure 4.1). This shared nuisance parameter, however, suffers

from the independence assumption on y·1 and y⋆
·1. Suppose the simplest case where

y⋆
·1 = y·1 ∼ N (0, σ2

1In): having no edge between the two nodes is equivalent to
P (y⋆

·1,y·1|σ2
1) = P (y⋆

·1|σ2
1)P (y·1|σ2

1) which is roughly equal to a Normal distri-
bution with variance parameter σ2

1

2
. Obviously, this would not happen if a directed

edge were to be added to the graph, as the joint distribution of the vector and its copy
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would be instead P (y⋆
·1,y·1|σ2

1) = P (y⋆
·1|y·1, σ

2
1)P (y·1|σ2

1) = 1 · P (y·1|σ2
1), but we

already discussed there is no clear way to describe a directed edge between the two
nodes. This inconvenience is mostly present in a simulation environment. We start
with a deterministic solution of an ODEs’ system, x·1, and we perturb it with some
noise σ̃2 thus obtaining an observed vector y·1: recovering the noise level in the data
is not equivalent anymore to estimating σ̃2, as in our model we are bringing together
in σ2

1 two sources of noise - albeit coming from the very same vector of observations.
In fact, σ2

1 bears both the uncertainty about how good the solution of the set of ODEs
and also how good is the smoothing of the first vector of data that we used as a re-
gressor in solving indirectly the system. Such an undesired ‘mismatch’ effect should
not present itself as a problem when dealing with real world observations.

y·k

θk y⋆
·1

ξ1

σ2
1

β

σ2
k

λβ

λθk

y·1

θ1 λθ1

k=2,...,p

Figure 4.1: Graphical representation of the ODEs and solution model

4.2.4 Bayesian Smooth-and-Match
Following the standard derivations for the full conditionals from Equation 4.7,

the samplers for θk should consider the quantities

P (θk|σ2
k, λθk ,y·k) ∝ P

(
y·k|θk, σ

2
k

)
P (θk|λθk)×

× P
(
y⋆
·1| ξ1,β,Θ, σ2

1

)
(4.8)

which demands for a Metropolis-within-MCMC. After some mathematical steps, it
is possible to show that, in the previous posterior distribution, the full conditionals
of the parameters in Θ are not in closed form. Our primary focus, however, is on
the estimation of the β vector that contains the parameters truly describing the
dynamic evolution of the ODEs’ system. The spline smoothing step (Equation 4.2)
is, instead, just a convenient approach to build the regression matrix H̃ in Equation
4.6. Moreover, an undesirable loop-feedback effect from β toΘ (and viceversa) may
arise if we aim for the ‘true’ full conditional obtained from Equation 4.8. So, in order
to have a more stable and faster MCMC scheme, we adopt a Bayesian Smooth-and-
Match strategy. The procedure consists of two steps:

• first (smooth step), we do Bayesian penalized spline smoothing to recover the
x·k’s through a Gibbs sampler that we obtain for θk by temporarily not con-
sidering the integral solution term;

• second (match step), we plug-in the x·k’s, computed with the sampled values
for θk from the previous step, into the sampler for β through the matrix H̃ .
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In practice, when sampling eachθk, this allows us to drop the termP (y⋆
·1| ξ1,β,Θ, σ2

1).
A more sophisticated smoothing could be performed (see Morrissey et al. [22] for a
state-of-art Bayesian spline regression) but we consider a simpler approach because
we are only interested, at the first step, in recovering the components of the process
to be used as regressors later at the second step of the procedure. Notice that, from
a frequentist point of view, a consistent estimator of the ODEs’ parameters can be
obtained under mild conditions (namely, on the penalizing terms) when following
this plug-in approach [15]. The two steps of the strategy are not completely stand-
alone compartments: as previously said, the quantity σ2

1 connects both parts and
acts as a measure for the uncertainty (from the smoothing and the regression) of the
solution indirectly obtained by doing inference on β. The other parameters of the
model are all updated with Gibbs samplers that follow from standard derivations for
conjugated priors and likelihood terms.

4.3 Simulation studies
In this Section, we validate our proposed strategy by testing it with three differ-

ent ODEs’ systems, starting from a simple one componentmodel (logistic growth) up
to a three components epidemic model (HIV viral fitness). We simulate nine scenar-
ios for each ODEs model, exploring three different level of noise and three sample
sizes (n = 25, n = 100, n = 500). The level of contamination of the data (low,
medium or high), with Gaussian noise, is quantified through signal-to-noise ratio
(SNR), that is the ratio between the standard deviation of the deterministic simu-
lated solution (signal) and the standard deviation of the error term (noise) we use
to perturb it. An increase in the strength of noise is equivalent to a decrease of the
associated SNR, as the standard deviation of the signal at the numerator is fixed for a
given sample size. For comparative purposes, we also inspect our Bayesian Smooth-
and-Match strategy (SnM) together with the collocation method implemented in the
R package CollocInfer [24]. For each scenario, we run both algorithms on 100 inde-
pendently simulated datasets and we summarize the results as the average across
these replicates. We quantify the uncertainty about the estimated parameters in the
same way for both algorithms by computing the associated mean square error (MSE)
of these one hundred values. The tuning parameters for the collocationmethod, such
as the number of knots, order of the basis for the splines and the penalization term,
are selected with the functions provided in the package. The collocation method also
needs initial guesses for the regression coefficients and we provide starting points
drawn randomly from uniform distributions over ranges [β−4β;β+4β]; when the
lower bound of the range is negative for parameters that only exist as positive we
set it to a small value, close to zero. Given the sensibility of CollocInfer to the pro-
vided starting points, we control if convergence is achieved by the algorithm and
we discard datasets that result in degenerate estimates for the parameters by check-
ing the associated likelihood in the output. Those datasets are not considered when
computing the averages and a measure of the number of actual datasets (NAD) used
is provided. As for the visual representation of the results, Figures 4.2 to 4.4 show
the plot mosaics with the results for one randomly drawn dataset of the simulated
one hundred.
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4.3.1 Logistic population growth
We first focus on a simple ODEs’ system. We simulate data coming from the

logistic growth model [21], frequently employed in ecology and biology to describe
the growth dynamics of a certain population. The system is defined as:

dx·1
dt

= ax·1
(
1− x·1

K

)
,

where a is the growth rate andK the carrying capacity of the population involved.
We consider another representation of previous equation, that is, in our notation,

dx·1
dt

= β1x·1 + β2x
2
·1,

linear in the parameters (β1 = a, β2 = −a/K) we want to estimate, together with
x11 = ξ1. We simulate a noise-free solution of the system and thenwe perturb it with
Gaussian errors at different level of noise (low, medium, high); the three levels are
obtained by setting the standard deviation of the errors as increasing proportions
of the mean value of x·1. The number of knots for the smoothing step, q1 = 2, is
manually selected, aiming for some undersmoothing of y·1 [15]. The functions used
to build the regression matrix are h1(x) = x·1 and h2(x) = x2

·1; the true values
for ξ1, β1 and β2 used in the simulations are reported in Table 4.1. As expected, we
can see from Table 4.1 that to increasing levels of contamination of the data with
noise correspond higher (on average) mean square errors for both methods. The av-
erage posterior mean of ξ1 is stable throughout all the scenarios, showing some bias
only when the SNR is at the highest level; CollocInfer does not provide an estimate
for the initial condition ξ1. With SnM we can recover the first parameter β1 in al-
most any scenario with appreciable quality, also showing better results in compar-
ison with CollocInfer ; when the noise contamination is at its maximum, however,
the MSE computed on the one hundred posterior means is noticeably higher. The
algorithm CollocInfer seems to be more stable when retrieving the second parame-
ter β2, providing optimal estimates when the sample size is n = 100 and the noise
contamination up to a medium level (SNR = 13 and SNR = 6.5). The solution
uncertainty quantified by SnM, σ2

1 , appears to be less sensible to changes in sample
size and more to the signal-to-noise ratio. In every scenario, the number of actual
datasets (NAD) used to compute the results for CollocInfer is less than 100, meaning
that degenerate solutions were discarded in the process. A visual description of the
results is presented in Figure 4.2: in most of the plots, the line describing the true
curve (solid line), the smoothed version of y·1 (dotted line) and the ODE regression
solution (long-dashed) are undistinguishable from each other. They start to become
appreciably different in the right part of the plots mosaic, showing the scenarios
with the highest level of noise. We compute the average MSE between each curve
(dotted line, MSEx1 , and long-dashed line, MSEg1) and the true one representing the
unperturbed data. For n = 500 and SNR = 1.3, the two mean square errors are
MSEx1 = 0.022, for the smoothed reconstruction, and MSEx1 = 0.007 for the ODEs’
system solution; with the same sample size but less noise, SNR=13, the difference
between the two curves and the true one is almost negligible (MSEx1 = 0.00015 and
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MSEg1 = 0.00016).
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Table 4.1: Average posterior means (withMSE in brackets) for the parameters of the logistic population growth model; three sample sizes
and increasing noise level

Sample size Parameters
Noise level

low (SNR = 13) medium (SNR = 6.5) high (SNR = 1.3)
SnM CollocInfer SnM CollocInfer SnM CollocInfer

n = 25
ξ1 = 0.1 0.098 (0.001) - 0.096 (0.002) - 0.078 (0.043) -
β1 = 2.5 2.531 (0.105) 3.819 (6.845) 2.560 (0.412) 5.054 (14.530) 2.317 (4.687 ) 4.727 (12.370)
β2 = −0.125 -0.180 (0.271) -0.244 (0.091) -0.216 (1.035) -0.420 (0.228) -0.359 (9.864) -0.385 (0.215)
⋄σ2

1 0.064 - 0.244 - 7.054 -
NAD 100 98 100 96 100 93

n = 100
ξ1 = 0.1 0.098 (0.001) - 0.096 (0.002) - 0.078 (0.046) -
β1 = 2.5 2.540 (0.092) 5.080 (15.480) 2.571 (0.364) 5.060 (15.267 ) 2.904 (9.403) 5.017 (14.886)
β2 = −0.125 -0.193 (0.213) -0.124 (0.009) -0.238 (0.836) -0.124 (0.009) -0.740 (20.655) -0.130 (0.011)
⋄σ2

1 0.065 - 0.245 - 6.364 -
NAD 100 92 100 92 100 94

n = 500
ξ1 = 0.1 0.098 (0.001) - 0.095 (0.002) - 0.077 (0.048) -
β1 = 2.5 2.542 (0.086) 2.633 (1.840) 2.573 (0.342) 4.336 (6.462) 2.852 (8.649) 5.441 (14.641)
β2 = −0.125 -0.197 (0.188) -0.091 (0.046) -0.242 (0.742) -0.103 (0.003) -0.662 (18.647 ) -0.095 (0.008)
⋄σ2

1 0.066 - 0.248 - 6.126 -
NAD 100 83 100 80 100 89

⋄ results reported as multiplied by 102
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Figure 4.2: Observed noisy data (dots), smoothing spline (dotted line), true solution of the ODEs’ system (solid line) and reconstructed
solution (long-dashed line) for the first variable x·1. Different sample sizes (n = 25, 100, 500) from the top to the bottom and noise levels
(low, medium and high) from left to right.
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4.3.2 Lotka-Volterra
In the second batch of simulations we consider the Lotka-Volterra system [11].

This system of ODEs is used to model the dynamics, with respect to time, of two
competing groups categorizable as preys and predators; setting some of the param-
eters of the ODEs to zero or imposing constraints, however, produces systems that
are also used to characterize epidemic processes. The model is described by the fol-
lowing set of equations:





x′
·1 = β1x·1 + β2x·1x·2

x′
·2 = β3x·2 + β4x·1x·2

x11 = ξ1

x12 = ξ2.

(4.9)

We focus the inference procedure on the first ordinary differential equation of the
system and thus on the subset of parameters (ξ1, β1, β2). We explore nine scenarios
as in the logistic growth case. We use the same approach to identify the three levels
of noise but we select the sample sizes differently: the first one (n = 25) reproduces
a situation where we have 25 evenly-spaced time points starting from t1 = 0 up
to t25 = 24; for n = 100, t ranges from t1 = 0 to t100 = 99 with unitary step
size; the last one (n = 500) has the same time range as n = 100, with t1 = 0 and
t500 = 99, but a denser sampling grid given by 0.2 as the step size. Going from n =
100 to n = 500 encompass a situation where the time range is fixed (the maximum
observational time point) but the amount of data increases (more observations in
the same timeframe). We use as regressing functions the quantities h1(x) = x·1
and h2(x) = x·1x·2; we choose the same number of knots, q1 = q2 = 5, for both
splines. In Table 4.2, averages of the posteriormeans and correspondingmean square
errors are reported for all the scenarios. We see that both algorithms perform well
when the sample size is n = 25, regardless of the three noise level (SNR=50,5,2.5).
The number of actual datasets used to compute averages for CollocInfer also shows
that convergence was achieved for all the first three scenarios. When evaluating
the performance of the two methods, for n = 100, we notice that SnM performs
slightly better in terms of bias of the estimated parameters β1 and β2; also,CollocInfer
shows slightly higher MSEs for the second estimated parameter with respect to SnM.
This difference is more prominent when n = 500. As expected, the quantification
of the uncertainty about the solution provided by SnM, through σ2

1 , decreases as
the sample size grows. A visual appreciation of the results is given in Figure 4.3.
The most different performance between the smoothing and the regression curves
is evident in the case of n = 25 and SNR = 2.5 (upper row of the mosaic, rightmost
plot): in this case, the mean square errors of the dotted line and the long-dashed line
are respectively MSEx1 = 0.690 and MSEg1 = 0.252. Such a discrepancy in the
(average) accuracy of the reconstructed curves fades as the sample size grows. For
n = 500 and SNR = 50 (the lowest noise level), the two errors are MSEx1 = 0.094
and MSEg1 = 0.084.
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Table 4.2: Average posterior means (withMSE in brackets) for the parameters of the Lotka-Volterra ODEs’ system; three sample sizes and
increasing noise level

Sample size Parameters
Noise level

low (SNR = 50) medium (SNR = 5) high (SNR = 2.5)
SnM CollocInfer SnM CollocInfer SnM CollocInfer

n = 25
ξ1 = 2.0 1.996 (0.001) - 1.965 (0.112) - 1.929 (0.448) -
β1 = 0.1 0.101 (0.001) 0.095 (0.001) 0.101 (0.001) 0.093 (0.001) 0.091 (0.001) 0.863 (0.001)
β2 = −0.2 -0.201 (0.001) -0.197 (0.001) -0.197 (0.001) -0.192 (0.002) -0.170 (0.002) -0.183 (0.008)
⋄σ2

1 0.040 - 2.295 - 12.234 -
NAD 100 100 100 100 100 100

n = 100
ξ1 = 2.0 1.996 (0.001) - 1.965 (0.112) - 1.930 (0.449) -
β1 = 0.1 0.089 (0.001) 0.063 (0.001) 0.088 (0.001) 0.060 (0.002) 0.086 (0.001) 0.061 (0.002)
β2 = −0.2 -0.168 (0.001) -0.140 (0.004) -0.167 (0.001) -0.139 (0.004) -0.162 (0.002) -0.138 (0.004)
⋄σ2

1 3.650 - 5.392 - 10.507 -
NAD 100 100 100 100 100 98

n = 500
ξ1 = 2.0 1.996 (0.001) - 1.965 (0.112) - 1.930 (0.447 ) -
β1 = 0.1 0.095 (0.001) 0.080 (0.001) 0.095 (0.001) 0.080 (0.001) 0.094 (0.002) 0.077 (0.001)
β2 = −0.2 -0.182 (0.001) -0.138 (0.004) -0.182 (0.001) -0.138 (0.004) -0.180 (0.002) -0.138 (0.004)
⋄σ2

1 1.405 - 2.89 - 7.407 -
NAD 100 100 100 100 100 99

⋄ results reported as multiplied by 101
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Figure 4.3: Observed noisy data (dots), smoothing spline (dotted line), true solution of the ODEs’ system (solid line) and reconstructed
solution (long-dashed line) for the first variable x·1. Different sample sizes (n = 25, 100, 500) from the top to the bottom and noise levels
(low, medium and high) from left to right.
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4.3.3 HIV viral fitness
Our last batch of data is simulated from a set of ODEs modelling the dynamics

of HIV virus [3]. The system is defined as:




x′
·1 = β1 + β2x·1 + β3x·1x·3

x′
·2 = β3x·1x·3 − 0.5x·2

x′
·3 = 0.5 · β4x·2 + β5x·3

x11 = ξ1

x12 = ξ2

x13 = ξ3.

(4.10)

where we focus on the first ODE and on the subset of parameters (ξ1, β1, β2, β3).
The simulation setting is the same as in Section 4.3.2: three levels of noise and three
sample sizes where only the last has an effective increase in the number of observa-
tions. True parameters’ values are tuned according to the ones used in Vujačić et al.
[28]. Number of knots selected is the same for all splines q1 = q2 = q3 = 20. We
use the following regressing functions: h1(x) = 1, h2(x) = x·1 and h3(x) = x·1x·3.
We report the results in Table 4.3 and Figure 4.4. The parameter β2 proved to be
difficult to estimate with CollocInfer so we decided to fix it to the true value for this
algorithm while estimating it in the case of SnM. When n = 25 we notice that our
method breaks down at the highest level of noise contamination (SNR=1.3): set aside
the recovered initial condition, which shows good average posterior mean, the es-
timates for the other parameters are noticeably biased and have large mean square
errors (especially in the case of β1). Even if the NAD for CollocInfer is around 85 for
the first three scenarios, the algorithm seems to be more robust in this setting. When
considering β1 and β3,CollocInfer achieves lowermean square errors in almost every
scenario with the exception of the setting with n = 500 and SNR=15, where the MSE
for β1 obtained with SnM is slightly lower than the one computed for CollocInfer.
The number of discarded datasets gets lower as the sample size grows, as expected.
For n = 100 and n = 500 we do not observe the same degrading effect on our algo-
rithm SnM even at the highest level of noise, meaning that the information from the
bigger sample size is enough to overcome the contamination in the data. As we can
see from the mosaic plot in Figure 4.4, for n = 100 and n = 500 there is an apprecia-
ble difference between the two curves with respect to the true one, especially on the
right-half portion of each plot. The average mean square errors for the setting with
n = 100 and SNR=1.3 are MSEg1 = 16.179 and MSEx1 = 11.743, meaning that the
smoothing step provides a reconstructed curve slightly closer to the true one (dotted
line versus solid line). The opposite happens when the sample size gets to 500, as in
the setting with SNR=2.5, the twoMSEs are and MSEg1 = 1.397 and MSEx1 = 5.859.
As for the setting in which the model breaks down (n = 25, SNR=1.3), the average
mean square errors are MSEg1 = 80.467 and MSEx1 = 104.969, values much higher
than the ones computed on the other eight scenarios (not reported here for brevity).
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Table 4.3: Average posterior means (with MSE in brackets) for the parameters of the HIV viral fitness ODEs’ system; three sample sizes
and increasing noise level

Sample size Parameters
Noise level

low (SNR = 15) medium (SNR = 2.5) high (SNR = 1.3)
SnM CollocInfer SnM CollocInfer SnM CollocInfer

n = 25
ξ1 = 60 59.879 (1.35) - 59.519 (21.55) - 59.031 (86.12) -
β1 = 20 20.808 (2.79) 20.933 (1.001) 20.294 (21.89) 21.142 (7.130) 14.609 (175.49) 20.849 (8.869)
β2 = −0.108 -0.113 (0.001) - -0.103 (0.005) - -0.030 (0.032) -
†β3 = −0.095 -0.106 (0.001) -0.106 (0.003) -0.109 (0.001) -0.109 (0.001) -0.159 (0.001) -0.106 (0.001)
⋄σ2

1 0.169 - 2.346 - 20.398 -
NAD 100 84 100 85 100 85

n = 100
ξ1 = 60 59.882 (1.18) - 59.539 (18.82) - 59.079 (75.26) -
β1 = 20 21.714 (3.13) 19.700 (1.936) 21.457 (4.98) 19.634 (2.188) 20.281 (9.94) 19.772 (3.728)
β2 = −0.108 -0.117 (0.001) - -0.115 (0.001) - -0.106 (0.001) -
†β3 = −0.095 -0.103 (0.001) -0.090 (0.001) -0.103 (0.001) -0.089 (0.010) -0.100 (0.001) -0.090 (0.009)
⋄σ2

1 0.640 - 2.748 - 9.473 -
NAD 100 98 100 98 100 97

n = 500
ξ1 = 60 59.882 (1.18) - 59.538 (18.84) - 59.078 (75.35) -
β1 = 20 21.012 (1.16) 19.612 (1.791) 21.040 (3.17 ) 19.648 (1.412) 20.936 (8.99) 19.499 (2.437 )
β2 = −0.108 -0.114 (0.001) - -0.113 (0.001) - -0.112 (0.001) -
†β3 = −0.095 -0.100 (0.001) -0.088 (0.001) -0.100 (0.001) -0.089 (0.001) -0.101 (0.001) -0.087 (0.001)
⋄σ2

1 0.437 - 2.312 - 8.326 -
NAD 100 99 100 99 100 100

† results reported as multiplied by 102

⋄ results reported as multiplied by 10(−1)
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Figure 4.4: Observed noisy data (dots), smoothing spline (dotted line), true solution of the ODEs’ system (solid line) and reconstructed
solution (long-dashed line) for the first variable x·1. Different sample sizes (n = 25, 100, 500) from the top to the bottom and noise levels
(low, medium and high) from left to right.
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4.3.4 FitzHugh-Nagumo system for neuron electrical activity
We analyze a toy-data example available from the package CollocInfer [17]. The

data (FhNdata) consist of 41 evenly-spaced observations in the timeframe [0, 20] from
the following ODEs model





x′
·1 = c(x·1 − x3

·1/3 + x·2)

x′
·2 = −1

c
(x·1 − a+ bx·2)

x11 = ξ1

x12 = ξ2

(4.11)

known as the FitzHugh-Nagumo system [12, 23]. The set of equations describe the
pulse transmission for neuronal activity. The parameters’ values used to generate the
data are a = 0.2, d = 0.2, c = 3, ξ1 = 0.5; the simulated values are then perturbed
with variances equal to 0.25 for both the variables x·1 and x·2. As it is written in
Equation 4.11, the system is not linear in the parameters. We thus consider another
representation 




x′
·1 = β4(x·1 − x3

·1/3 + x·2)

x′
·2 = β1x·1 + β2 + β3x·2

x11 = ξ1

x12 = ξ2

(4.12)

andwe focus on the second differential equation and the subset of parameters (ξ2, β1 =
−1/c, β2 = a/c, β3 = −d/c). The ODE solution regression uses the following func-
tions: h1(x) = x·1, h2(x) = 1 and h3(x) = x·2. We compare our results with
the point estimates obtained by Vujačić et al. [28], remarking the fact that we only
do inference on one of the two differential equations whereas they simultaneously
estimate all the parameters of the model using information from both variables.
In Figure 4.5, reconstructed curves from both steps of the procedure (smooth and
match) are plotted: we can see, in the right plot, the penalized spline (dotted line)
captures a biased initial condition in comparison to the ODE solution regression
(long-dashed line), even if the associated mean square errors for the two curves, re-
spectively MSEg1 = 0.042 and MSEx1 = 0.033, are actually close. The degree of
smoothing for the two curves is also practically the same. The smoothing for the
first variable (left plot of Figure 4.5) is satisfactory. As for the other parameters, we
report their posterior means in Table 4.4: the algorithm recovers the true value for
β1 with appreciable accuracy; for β2 and especially β3, the algorithm returns slightly
biased posterior means. Although, as stated before, there is no theoretical true cor-
respondence between the estimated shared nuisance parameter and the variance of
the noise added to the data, the posterior mean for σ2

2 is lower than the one used
to perturb the data, meaning that - potentially - the additional information from the
ODE solution helps shrinking down the overall measure of uncertainty regarding
the second variable x·2 that we are trying to model.
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Table 4.4: Results for the FhNdata: posterior means (posterior standard deviations
within brackets) from SnM in the second column and point estimates from Vujačić
et al. [28] in the third column

Parameters Post. Mean (post. sd) Vujačić et al. [28]
ξ2 = 0.5 0.696 (0.244) 0.569
β1 = −0.33 -0.322 (0.041) -0.333
β2 = 0.067 0.091 (0.025) 0.106
β3 = −0.067 -0.028 (0.066) -0.047
σ2
2 0.060 (0.019)

Runtime: 10,000 MCMC iterations in 29.17 seconds.
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Figure 4.5: Observed noisy data (dots), smoothing spline (dotted line) and recon-
structed solution (long-dashed line, only right plot) for the first variable (left plot)
and the second variable x·2 (right plot)

4.4 Conclusions
We have proposed a Bayesian approach to indirectly solve an equation of an

ODEs’ system while doing inference on its parameters. The employed strategy is
compartmentalized into two main stages: a first smoothing step, that serves as a
reconstruction of the components of the process through penalized spline smooth-
ing of the noisy observed data; a second match step, where the smoothed curves
are numerically integrated and used as inputs for ridge regression. The two phases
of the procedure are jointly governed by σ2

k, a noise parameter - common to both
steps - that measures the solution uncertainty of the k-th equation of the system
we are indirectly solving. We evaluated the performance and reliability of the strat-
egy through different ODEs’ systems, starting from a simple one (with only one
variable) and then moving to processes that had two or three variables and more
complex time dynamics. We also tested the approach on a dataset previously ana-
lyzed by [28], to compare the results. The procedure we propose has the advantages
of being fast, with a built-in quantification of uncertainty about the ODE solution
obtained as a by-product of the inference. The ‘tuning’ parameters are minimal: the
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number of knots and their placement have no substantial impact on the reliability of
the smoothing step as long as the choice is reasonable with respect to the problem
we are dealing with; different splines (i.e, B-spline, thin plates, etc.), that do not actu-
ally require such a choice, can be employed in the first step to address the issue. As
far as the integration is concerned, we rely on an easy to implement - albeit ‘rough’
- trapezoidal rule that uses the observed time points as the grid to evaluate the inte-
gral: a better approximation can be achieved by employing a finer grid, at the cost
of increased computational times. Other types of penalization, instead of the ridge,
could be explored for the regression step of the strategy.

For future developments, we aim to be able to estimate all the parameters of the
system while indirectly solving together and simultaneously the ordinary differen-
tial equations, instead of focusing on one of them. As trivial as it may seems to ex-
tend the approach, careful consideration is needed before moving toward this direc-
tion. For example, a first idea would be to independently run the procedure for each
equation but, in that case, we would not be truly using the information at our dis-
posal about the relationships between the variables. Another issue would be, when
considering all the equations together, which of the two reconstructed curves (the
smoothed spline and the regression solution) to use at each iteration of the MCMC
procedure given that themeasure of uncertainty considers them both. An interesting
extension of the model could consider the regressing functions hj(x) as not known
in advance and to be estimated along with the other parameters of the model. We
already briefly explored this aspect using a Bayesian smoothed spline regression at
the match step of the procedure: we obtained a satisfactory reconstruction of the
curve but at the expense of losing interpretability of the parameter vector β, mean-
ing that further investigation on this topic is needed. Finally, as seen in Section 4.2.3,
an interesting aspect would be to investigate deeper (and potentially quantify, the-
oretically) the consequences of the shared nuisance parameter σ2

1 . In this direction,
an option could be to express the two levels of noise from the two sources of in-
formation (y·1 and y⋆

1) as a proportion of the total shared nuisance parameter and
to decide which curve to use, the smoothed one or the system’s solution, based on
these fractions.
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Appendix



“SPATIO-TEMPORAL MODEL FOR MULTIPLE
CHIP-SEQ EXPERIMENTS”: supplementary material.

1 Posterior distributions and full conditionals

The full conditional of Xmt depends on the position of the node (m, t) w.r.t. to the
graph. The probabilities for the sampling scheme are:

P (X11 = s|X−(mt),Y,Θ) ∝ qs,X12 ws,X21

Rt∏

r=1

P (Ymtr|Xmt = s)

P (X1T = s|X−(mt),Y,Θ) ∝ wX1,T−1,s qs,X2T

Rt∏

r=1

P (Ymtr|Xmt = s)

P (X1t = s|X−(mt),Y,Θ) ∝ wX1,t−1,s ws,X1,t+1 qs,X2,t

Rt∏

r=1

P (Ymtr|Xmt = s)

P (XM1 = s|X−(mt),Y,Θ) ∝ qXM−1,1,s ws,XM2

Rt∏

r=1

P (Ymtr|Xmt = s)

P (XMT = s|X−(mt),Y,Θ) ∝ qXM−1,T ,s wXM,T−1,s

Rt∏

r=1

P (Ymtr|Xmt = s)

P (XMt = s|X−(mt),Y,Θ) ∝ qXM−1,t,s wXM,t−1,s ws,XM,t+1

Rt∏

r=1

P (Ymtr|Xmt = s)
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P (Xm1 = s|X−(mt),Y,Θ) ∝ qXm−1,1,s qs,Xm+1,1 ws,Xm2

Rt∏

r=1

P (Ymtr|Xmt = s)

P (XmT = s|X−(mt),Y,Θ) ∝ qXm−1,T ,s qs,Xm+1,T
wXm,T−1,s

Rt∏

r=1

P (Ymtr|Xmt = s)

P (Xmt = s|X−(mt),Y,Θ) ∝ qXm−1,t,s qs,Xm+1,t wXm,t−1,s wXm,t+1,s

Rt∏

r=1

P (Ymtr|Xmt = s)

with s ε {0, 1}, m = 2, . . . ,M − 1, t = 2, . . . , T − 1 and P (Ymtr|Xmt = s) is the
likelihood of the mixture model.

The inflation parameters πtr and the Poisson distribution parameters µtr are
updated through a Gibbs sampler, using Beta and Gamma conjugate priors:

πtr ∼ Beta(Aπtr , Bπtr)

λBtr ∼ Gamma(AλBtr , BλBtr
)

λStr ∼ Gamma(AλStr , BλStr
)

with Aπtr , Bπtr , AλBtr , BλBtr
, AλStr , BλStr

all being hyperparameters chosen to rep-
resent flat prior distributions. These priors distributions lead to the following poste-
riors:

πtr ∼ Beta

(
Aπtr +

M∑

m=1

1(Xmt = 0, Zmtr = 1), Bπtr +
M∑

m=1

1(Xmt = 0, Zmtr = 0)

)

λBtr ∼ Gamma

(
AλBtr +

M∑

m=1

ymtr1(Xmt = 0, Zmtr = 1), BλBtr
+

M∑

m=1

1(Xmt = 0, Zmtr = 1)

)

λStr ∼ Gamma

(
AλStr +

M∑

m=1

ymtr1(Xmt = 1), BλStr
+

M∑

m=1

1(Xmt = 1)

)

To estimate the transition probabilities and background/signal parameters for
the Negative Binomial distribution, we use a Metropolis-Hastings procedure.

For the mean and dispersion parameters, the priors involved are:

µBtr ∼ Gamma
(
AµBtr , BµBtr

)
, µStr ∼ Gamma

(
AµStr , BµStr

)

φBtr ∼ Gamma
(
AφBtr , BφBtr

)
, φStr ∼ Gamma

(
AφStr , BφStr

)
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with AµBtr , BµBtr
, AµStr , BµStr

, AφBtr , BφBtr
, AφStr , BφStr

all being hyperparameters chosen
to represent flat prior distributions. We obtain the following posterior distributions:

µBtr ∼ f(µBtr|φBtr,Y,X,Z)

=

(
µBtr

µBtr + φBtr

)∑M
m=1 ymtr1(Xmt=0,Zmtr=1)(

φBtr
µBtr + φBtr

)φBtr∑M
m=1 1(Xmt=0,Zmtr=1)

×
(
µBtr
)A

µBtr
−1
exp

(
−BµBtr

µBtr

)

µStr ∼ f(µStr|φStr,Y,X,Z)

=

(
µStr

µStr + φStr

)∑M
m=1 ymtr1(Xmt=1)(

φStr
µStr + φBtr

)φStr∑M
m=1 1(Xmt=1)

×
(
µStr
)A

µStr
−1
exp

(
−BµStr

µStr

)

φBtr ∼ f(φBtr|µBtr,Y,X,Z)

=
M∏

m=1

[
Γ(ymtr + φBtr)

Γ(φBtr)Γ(ymtr + 1)

(
µBtr

φBtr + µBtr

)ymtr ( φBtr
φBtr + µBtr

)φBtr]1(Xmt=0,Zmtr=1)

×
(
φBtr
)A

φBtr
−1
exp

(
−BφBtr

φBtr

)

φStr ∼ f(φStr|µStr,Y,X,Z)

=
M∏

m=1

[
Γ(ymtr + φStr)

Γ(φStr)Γ(ymtr + 1)

(
µStr

φStr + µStr

)ymtr ( φStr
φStr + µStr

)φStr]1(Xmt=1)

×
(
φStr
)A

φStr
−1
exp

(
−BφStr

φStr

)

The Metropolis-Hastings procedure uses a Truncated Normal Distribution as a
proposal to generate new values:
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?µBtr ∼ N
(
kµBtr, σ

2
µBtr

)

?µStr ∼ N
(
kµStr, σ

2
µStr

)

?φBtr ∼ N
(
kφBtr, σ

2
φBtr

)

?φStr ∼ N
(
kφStr, σ

2
φStr

)

where kµBtr,
kµStr,

kφBtr,
kφStr are the current value at k-th iteration and the vari-

ances are tuning parameters. This choice of a proposal ensures that candidate values
are always positive; the ratio of the normalizing constants has to be considered into
the formula for the acceptance ratios.

The new values ?µBtr,
?µStr are accepted with probabilities min

{
1, DµBtr

}
and

min
{

1, DµStr

}
, while the new values ?φBtr,

?φStr are accepted with probabilitiesmin
{

1, DφBtr

}

and min
{

1, DφStr

}
, where

DµBtr
=
p(?µBtr|φBtr)q(kµBtr|?µBtr)
p(kµBtr|φBtr)q(?µBtr|kµBtr)

=

(
?µBtr

?µBtr + φBtr
/

kµBtr
kµBtr + φBtr

)∑M
m=1 ymtr1(Xmt=0,Zmtr=1)(kµBtr + φBtr

?µBtr + φBtr

)φBtr∑M
m=1 1(Xmt=0,Zmtr=1)

×
(
?µBtr
kµBtr

)A
µBtr

−1

exp
(
−BµBtr

(?µBtr −k µBtr)
)
EµBtr

DµStr
=
p(?µStr|φStr)q(kµStr|?µStr)
p(kµStr|φStr)q(?µStr|kµStr)

=

(
?µStr

?µStr + φStr
/

kµStr
kµStr + φStr

)∑M
m=1 ymtr1(Xmt=1)(kµStr + φStr

?µStr + φStr

)φStr∑M
m=1 1(Xmt=1)

×
(
?µStr
kµStr

)A
µStr

−1

exp
(
−BµStr

(?µStr −k µStr)
)
EµStr
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DφBtr
=
p(?φBtr|µBtr)q(kφBtr|?φBtr)
p(kφBtr|µBtr)q(?φBtr|kφBtr)

=
M∏

m=1

[
Γ(ymtr +? φBtr)Γ(kφBtr)

Γ(ymtr +k φBtr)Γ(?φBtr)

(
µBtr +k φBtr
µBtr +? φBtr

)ymtr ( ?φBtr
?φBtr + µBtr

)?φBtr
]∑M

m=1 1(Xmt=0,Zmtr=1)

×
[(

kφBtr
kφBtr + µBtr

)−kφBtr
]∑M

m=1 1(Xmt=0,Zmtr=1)(
?φBtr
kφBtr

)A
φBtr

−1

exp
(
−BφBtr

(?φBtr −k φBtr)
)
EφBtr

DφStr
=
p(?φStr|µStr)q(kφStr|?φStr)
p(kφStr|µStr)q(?φStr|kφStr)

=
M∏

m=1

[
Γ(ymtr +? φStr)Γ(kφStr)

Γ(ymtr +k φStr)Γ(?φStr)

(
µStr +k φStr
µStr +? φStr

)ymtr ( ?φStr
?φStr + µStr

)?φStr
(

kφStr
kφStr + µStr

)−kφStr
]∑M

m=1 1(Xmt=1)

×
(
?φStr
kφStr

)A
φStr

−1

exp
(
−BφStr

(?φStr −k φStr)
)
EφStr

and

EµBtr =
Φ(kµBtr/σµBtr)

Φ(?µBtr/σµBtr)

EµStr =
Φ(kµStr/σµStr)

Φ(?µStr/σµStr)

EφBtr =
Φ(kφBtr/σφBtr)

Φ(?φBtr/σφBtr)

EφStr =
Φ(kφStr/σφStr)

Φ(?φStr/σφStr)

with Φ(·) the distribution function of a standard normal distribution.
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2 Simulation settings

We assess the performance of our model stMRF and compare it to other two existing
methods, iSeq and MRF, in a simulated environment with the characteristics showed
in Table 2. For all the scenarios with fix the number of replicates R = 3 and
the number of regions M = 2000. We use a Zero-Inflated Negative Binomial to
model the background component and a Negative Binomial for the signal of the
mixture. The parameters φB, φS and µB have been kept constant for all the scenarios
aforementioned and equal to the quantities in Table 3.

Table 1: Summary of true values used in the simulated environment (T=2).

Time-points Zero-Inflation NB means signal (S)
Binding propensity

Scenario
q1 w1

T = 2

π1r = (0.5, 0.5, 0.6)
µ1r = (10, 10, 11)

0.3 0.6 (1a)
0.3 0.8 (2a)

µ2r = (10, 11, 10)
0.7 0.4 (3a)
0.7 0.8 (4a)

π2r = (0.4, 0.5, 0.5)
µ1r = (20, 19, 21)

0.3 0.6 (5a)
0.3 0.8 (6a)

µ2r = (20, 20, 21)
0.7 0.4 (7a)
0.7 0.8 (8a)

π1r = (0.8, 0.9, 0.8)
µ1r = (10, 10, 11)

0.3 0.6 (9a)
0.3 0.8 (10a)

µ2r = (10, 11, 10)
0.7 0.4 (11a)
0.7 0.8 (12a)

π2r = (0.8, 0.9, 0.9)
µ1r = (20, 19, 21)

0.3 0.6 (13a)
0.3 0.8 (14a)

µ2r = (20, 20, 21)
0.7 0.4 (15a)
0.7 0.8 (16a)
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Table 2: Summary of true values used in the simulated environment (T=4).

Time-points Zero-Inflation NB means signal (S)
Binding propensity

Scenario
q1 w1

T = 4

π1r = (0.5, 0.5, 0.6)
µ1r = (10, 10, 11) 0.3 0.6 (1b)
µ2r = (10, 11, 10) 0.3 0.8 (2b)

π2r = (0.4, 0.5, 0.5)
µ3r = (10, 11, 10) 0.7 0.4 (3b)
µ4r = (10, 11, 10) 0.7 0.8 (4b)

π3r = (0.6, 0.5, 0.5)
µ1r = (20, 19, 21) 0.3 0.6 (5b)
µ2r = (20, 20, 21) 0.3 0.8 (6b)

π4r = (0.5, 0.4, 0.5)
µ3r = (19, 19, 21) 0.7 0.4 (7b)
µ4r = (20, 19, 20) 0.7 0.8 (8b)

π1r = (0.9, 0.8, 0.9)
µ1r = (10, 10, 11) 0.3 0.6 (9b)
µ2r = (10, 11, 10) 0.3 0.8 (10b)

π2r = (0.8, 0.9, 0.9)
µ3r = (10, 11, 10) 0.7 0.4 (11b)
µ4r = (10, 11, 10) 0.7 0.8 (12b)

π3r = (0.9, 0.8, 0.9)
µ1r = (20, 19, 21) 0.3 0.6 (13b)
µ2r = (20, 20, 21) 0.3 0.8 (14b)

π4r = (0.8, 0.9, 0.8)
µ3r = (19, 19, 21) 0.7 0.4 (15b)
µ4r = (20, 19, 20) 0.7 0.8 (16b)

Table 3: Fixed true values for the parameters of the background and signal densities
for all scenarios.

Time-points NB means background (B)
NB dispersion parameters

Background (B) Signal (S)

T = 2
µ1r = (2, 1, 1) φ1r = (1.5, 1.5, 1.5) φ1r = (1.5, 1.5, 1.5)
µ2r = (1, 2, 2) φ2r = (1.5, 1.5, 1.5) φ2r = (1.5, 1.5, 1.5)

T = 4

µ1r = (2, 1, 1) φ1r = (1.5, 1.5, 1.5) φ1r = (1.5, 1.5, 1.5)
µ2r = (1, 2, 2) φ2r = (1.5, 1.5, 1.5) φ2r = (1.5, 1.5, 1.5)
µ3r = (3, 2, 3) φ3r = (1.5, 1.5, 1.5) φ3r = (1.5, 1.5, 1.5)
µ4r = (1, 1, 1) φ4r = (1.5, 1.5, 1.5) φ4r = (1.5, 1.5, 1.5)
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3 Tables & Figures

Table 4: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(1a)

t=1
r=1 0.72 (0.15 ) 0.82 (0.18 ) 10.14 (0.39 ) 1.16 (0.23 ) 1.54 (0.12 )
r=2 0.43 (0.11 ) 1.07 (0.21 ) 11.25 (0.41 ) 1.35 (0.26 ) 1.50 (0.12 )
r=3 0.37 (0.03 ) 1.10 (0.12 ) 10.99 (0.41 ) 4.18 (0.66 ) 1.55 (0.13 )

t=2
r=1 0.62 (0.13 ) 0.84 (0.16 ) 10.32 (0.40 ) 1.21 (0.24 ) 1.50 (0.13 )
r=2 0.57 (0.05 ) 1.91 (0.17 ) 10.10 (0.41 ) 1.47 (0.20 ) 1.37 (0.12 )
r=3 0.52 (0.05 ) 2.05 (0.21 ) 10.03 (0.39 ) 1.44 (0.20 ) 1.41 (0.13 )

(2a)

t=1
r=1 0.47 (0.06 ) 1.13 (0.14 ) 10.18 (0.40 ) 2.18 (0.40 ) 1.42 (0.12 )
r=2 0.44 (0.06 ) 0.87 (0.13 ) 10.82 (0.39 ) 1.91 (0.37 ) 1.51 (0.13 )
r=3 0.68 (0.12 ) 0.81 (0.13 ) 11.19 (0.42 ) 0.61 (0.15 ) 1.52 (0.12 )

t=2
r=1 0.68 (0.14 ) 0.86 (0.18 ) 10.82 (0.40 ) 0.58 (0.14 ) 1.52 (0.12 )
r=2 0.57 (0.04 ) 1.97 (0.14 ) 9.61 (0.38 ) 1.47 (0.20 ) 1.55 (0.13 )
r=3 0.53 (0.05 ) 2.00 (0.18 ) 9.89 (0.39 ) 1.44 (0.20 ) 1.41 (0.12 )

(3a)

t=1
r=1 0.59 (0.14 ) 1.04 (0.23 ) 9.91 (0.37 ) 1.17 (0.21 ) 1.48 (0.08 )
r=2 0.40 (0.06 ) 1.03 (0.14 ) 11.52 (0.43 ) 1.94 (0.34 ) 1.44 (0.08 )
r=3 0.59 (0.10 ) 0.93 (0.15 ) 11.28 (0.39 ) 1.19 (0.26 ) 1.69 (0.09 )

t=2
r=1 0.58 (0.16 ) 0.83 (0.20 ) 10.12 (0.39 ) 1.07 (0.22 ) 1.42 (0.07 )
r=2 0.53 (0.04 ) 2.14 (0.18 ) 10.30 (0.41 ) 1.58 (0.21 ) 1.45 (0.08 )
r=3 0.57 (0.06 ) 1.82 (0.19 ) 9.81 (0.38 ) 1.18 (0.16 ) 1.48 (0.08 )

(4a)

t=1
r=1 0.43 (0.05 ) 1.09 (0.13 ) 10.34 (0.27 ) 2.69 (1.17 ) 1.57 (0.09 )
r=2 0.41 (0.07 ) 0.95 (0.16 ) 11.34 (0.31 ) 1.62 (0.81 ) 1.62 (0.08 )
r=3 0.62 (0.07 ) 0.93 (0.12 ) 10.78 (0.30 ) 1.00 (0.30 ) 1.43 (0.07 )

t=2
r=1 0.45 (0.06 ) 1.20 (0.17 ) 10.18 (0.28 ) 2.63 (1.27 ) 1.46 (0.07 )
r=2 0.57 (0.04 ) 2.06 (0.15 ) 9.82 (0.28 ) 1.47 (0.45 ) 1.44 (0.08 )
r=3 0.52 (0.06 ) 2.11 (0.21 ) 10.39 (0.30 ) 1.44 (0.50 ) 1.57 (0.08 )
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Table 5: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(5a)

t=1
r=1 0.55 (0.04 ) 1.82 (0.16 ) 19.72 (0.52 ) 1.29 (0.31 ) 1.54 (0.07 )
r=2 0.40 (0.08 ) 0.96 (0.18 ) 20.45 (0.54 ) 1.71 (1.07 ) 1.49 (0.07 )
r=3 0.67 (0.16 ) 0.75 (0.17 ) 19.14 (0.51 ) 0.75 (0.41 ) 1.43 (0.06 )

t=2
r=1 0.45 (0.03 ) 2.32 (0.14 ) 19.96 (0.56 ) 2.20 (0.51 ) 1.37 (0.06 )
r=2 0.51 (0.05 ) 1.18 (0.12 ) 21.37 (0.56 ) 3.40 (1.31 ) 1.51 (0.07 )
r=3 0.51 (0.04 ) 2.07 (0.17 ) 21.11 (0.54 ) 1.37 (0.34 ) 1.48 (0.08 )

(6a)

t=1
r=1 0.55 (0.06 ) 1.96 (0.20 ) 20.54 (0.57 ) 0.97 (0.24 ) 1.56 (0.08 )
r=2 0.59 (0.13 ) 0.76 (0.17 ) 19.53 (0.50 ) 0.78 (0.47 ) 1.47 (0.07 )
r=3 0.52 (0.06 ) 0.97 (0.11 ) 20.19 (0.55 ) 1.43 (0.49 ) 1.49 (0.07 )

t=2
r=1 0.54 (0.07 ) 1.87 (0.22 ) 19.92 (0.54 ) 1.09 (0.37 ) 1.53 (0.07 )
r=2 0.82 (0.13 ) 0.74 (0.14 ) 20.09 (0.51 ) 1.47 (0.46 ) 1.52 (0.07 )
r=3 0.50 (0.04 ) 2.08 (0.18 ) 21.46 (0.59 ) 1.44 (0.51 ) 1.38 (0.06 )

(7a)

t=1
r=1 0.48 (0.03 ) 2.03 (0.14 ) 19.69 (0.51 ) 2.64 (0.80 ) 1.50 (0.07 )
r=2 0.45 (0.10 ) 0.96 (0.18 ) 20.31 (0.55 ) 1.35 (0.66 ) 1.49 (0.08 )
r=3 0.51 (0.07 ) 1.03 (0.14 ) 18.81 (0.48 ) 1.93 (0.89 ) 1.49 (0.07 )

t=2
r=1 0.42 (0.03 ) 2.35 (0.15 ) 18.96 (0.52 ) 2.34 (0.66 ) 1.45 (0.07 )
r=2 0.58 (0.08 ) 0.95 (0.12 ) 20.58 (0.51 ) 2.39 (1.14 ) 1.55 (0.07 )
r=3 0.53 (0.05 ) 1.94 (0.19 ) 20.54 (0.56 ) 1.13 (0.28 ) 1.48 (0.07 )

(8a)

t=1
r=1 0.49 (0.03 ) 2.06 (0.13 ) 20.82 (0.54 ) 2.20 (0.57 ) 1.54 (0.07 )
r=2 0.41 (0.07 ) 0.95 (0.17 ) 19.84 (0.55 ) 1.70 (1.15 ) 1.53 (0.07 )
r=3 0.57 (0.12 ) 0.92 (0.17 ) 18.07 (0.48 ) 1.31 (0.72 ) 1.52 (0.07 )

t=2
r=1 0.49 (0.04 ) 2.15 (0.20 ) 21.08 (0.57 ) 1.49 (0.42 ) 1.38 (0.07 )
r=2 0.62 (0.09 ) 0.91 (0.12 ) 21.35 (0.56 ) 1.86 (0.86 ) 1.50 (0.07 )
r=3 0.51 (0.05 ) 1.78 (0.15 ) 21.09 (0.52 ) 1.88 (0.61 ) 1.51 (0.07 )
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Table 6: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(9a)

t=1
r=1 0.82 (0.07 ) 1.10 (0.10 ) 10.24 (0.28 ) 2.22 (0.98 ) 1.54 (0.08 )
r=2 0.83 (0.08 ) 1.01 (0.10 ) 10.88 (0.31 ) 1.38 (0.46 ) 1.57 (0.08 )
r=3 0.79 (0.09 ) 1.00 (0.12 ) 11.33 (0.33 ) 1.56 (0.69 ) 1.55 (0.09 )

t=2
r=1 0.84 (0.06 ) 1.11 (0.09 ) 10.20 (0.29 ) 2.26 (0.89 ) 1.41 (0.08 )
r=2 0.94 (0.04 ) 1.84 (0.10 ) 9.82 (0.29 ) 1.44 (0.25 ) 1.36 (0.07 )
r=3 0.89 (0.05 ) 1.98 (0.12 ) 10.59 (0.30 ) 1.56 (0.34 ) 1.48 (0.08 )

(10a)

t=1
r=1 0.83 (0.07 ) 1.12 (0.10 ) 9.57 (0.26 ) 2.53 (0.99 ) 1.55 (0.08 )
r=2 0.85 (0.07 ) 1.00 (0.09 ) 11.08 (0.32 ) 1.52 (0.51 ) 1.49 (0.07 )
r=3 0.82 (0.09 ) 1.01 (0.12 ) 11.03 (0.29 ) 1.35 (0.51 ) 1.45 (0.07 )

t=2
r=1 0.89 (0.07 ) 1.06 (0.10 ) 10.09 (0.28 ) 1.31 (0.41 ) 1.47 (0.08 )
r=2 0.93 (0.04 ) 1.97 (0.11 ) 9.98 (0.29 ) 1.41 (0.24 ) 1.46 (0.08 )
r=3 0.92 (0.05 ) 2.06 (0.13 ) 10.41 (0.29 ) 1.44 (0.33 ) 1.53 (0.08 )

(11a)

t=1
r=1 0.91 (0.06 ) 0.93 (0.08 ) 10.68 (0.30 ) 2.72 (1.16 ) 1.65 (0.09 )
r=2 0.78 (0.12 ) 0.99 (0.15 ) 11.55 (0.33 ) 1.76 (1.16 ) 1.58 (0.09 )
r=3 0.73 (0.10 ) 1.06 (0.14 ) 10.61 (0.31 ) 2.08 (1.02 ) 1.47 (0.08 )

t=2
r=1 0.85 (0.07 ) 1.02 (0.09 ) 10.26 (0.28 ) 1.94 (0.68 ) 1.57 (0.09 )
r=2 0.92 (0.04 ) 1.87 (0.10 ) 9.60 (0.29 ) 1.37 (0.23 ) 1.40 (0.07 )
r=3 0.90 (0.04 ) 2.13 (0.13 ) 10.27 (0.30 ) 1.68 (0.34 ) 1.43 (0.08 )

(12a)

t=1
r=1 0.85 (0.07 ) 1.11 (0.11 ) 10.53 (0.30 ) 1.87 (0.62 ) 1.46 (0.08 )
r=2 0.80 (0.09 ) 1.00 (0.11 ) 11.35 (0.31 ) 1.46 (0.54 ) 1.58 (0.09 )
r=3 0.74 (0.09 ) 1.02 (0.12 ) 11.19 (0.33 ) 1.99 (0.91 ) 1.41 (0.08 )

t=2
r=1 0.87 (0.06 ) 1.17 (0.10 ) 10.60 (0.30 ) 1.90 (0.59 ) 1.47 (0.08 )
r=2 0.94 (0.04 ) 1.88 (0.12 ) 9.80 (0.25 ) 1.45 (0.28 ) 1.58 (0.08 )
r=3 0.89 (0.04 ) 1.96 (0.11 ) 10.29 (0.27 ) 1.78 (0.35 ) 1.55 (0.08 )

10



Table 7: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(13a)

t=1
r=1 0.83 (0.05 ) 2.13 (0.14 ) 20.37 (0.58 ) 1.52 (0.33 ) 1.53 (0.08 )
r=2 0.85 (0.09 ) 0.91 (0.09 ) 20.18 (0.59 ) 1.33 (0.44 ) 1.48 (0.07 )
r=3 0.81 (0.09 ) 0.94 (0.11 ) 18.99 (0.51 ) 1.69 (0.73 ) 1.54 (0.07 )

t=2
r=1 0.94 (0.04 ) 1.88 (0.10 ) 19.90 (0.56 ) 1.22 (0.20 ) 1.46 (0.07 )
r=2 0.91 (0.06 ) 0.98 (0.08 ) 21.28 (0.53 ) 1.51 (0.37 ) 1.55 (0.07 )
r=3 0.90 (0.04 ) 2.22 (0.12 ) 21.62 (0.61 ) 1.35 (0.20 ) 1.36 (0.07 )

(14a)

t=1
r=1 0.86 (0.04 ) 2.15 (0.12 ) 19.80 (0.53 ) 1.84 (0.34 ) 1.49 (0.07 )
r=2 0.79 (0.08 ) 1.02 (0.12 ) 19.68 (0.52 ) 1.58 (0.65 ) 1.60 (0.07 )
r=3 0.88 (0.06 ) 0.86 (0.07 ) 19.16 (0.53 ) 1.35 (0.33 ) 1.45 (0.06 )

t=2
r=1 0.92 (0.05 ) 2.13 (0.13 ) 20.13 (0.53 ) 1.21 (0.23 ) 1.43 (0.07 )
r=2 0.92 (0.05 ) 0.97 (0.07 ) 20.57 (0.58 ) 1.66 (0.42 ) 1.43 (0.07 )
r=3 0.94 (0.03 ) 1.93 (0.09 ) 20.79 (0.54 ) 1.45 (0.22 ) 1.61 (0.08 )

(15a)

t=1
r=1 0.87 (0.05 ) 2.03 (0.13 ) 20.37 (0.54 ) 1.68 (0.36 ) 1.56 (0.08 )
r=2 0.67 (0.05 ) 1.18 (0.09 ) 20.55 (0.60 ) 3.22 (1.36 ) 1.38 (0.06 )
r=3 0.89 (0.08 ) 0.86 (0.10 ) 19.31 (0.51 ) 1.46 (0.63 ) 1.49 (0.07 )

t=2
r=1 0.93 (0.03 ) 1.84 (0.09 ) 20.66 (0.54 ) 1.33 (0.21 ) 1.51 (0.08 )
r=2 0.83 (0.06 ) 1.11 (0.09 ) 20.48 (0.58 ) 2.23 (0.80 ) 1.42 (0.06 )
r=3 0.90 (0.04 ) 1.96 (0.11 ) 21.78 (0.63 ) 1.71 (0.35 ) 1.47 (0.07 )

(16a)

t=1
r=1 0.86 (0.04 ) 2.07 (0.12 ) 19.58 (0.51 ) 1.59 (0.30 ) 1.45 (0.07 )
r=2 0.82 (0.08 ) 1.05 (0.11 ) 19.75 (0.54 ) 1.55 (0.51 ) 1.53 (0.08 )
r=3 0.73 (0.06 ) 1.03 (0.09 ) 18.93 (0.50 ) 3.32 (1.20 ) 1.48 (0.07 )

t=2
r=1 0.91 (0.04 ) 2.07 (0.13 ) 19.74 (0.51 ) 1.56 (0.28 ) 1.44 (0.07 )
r=2 0.87 (0.06 ) 0.98 (0.09 ) 20.71 (0.53 ) 2.21 (0.78 ) 1.52 (0.07 )
r=3 0.88 (0.04 ) 1.97 (0.11 ) 21.06 (0.60 ) 1.73 (0.36 ) 1.42 (0.07 )
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Table 8: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(1b)

t=1
r=1 0.46 (0.03 ) 2.24 (0.17 ) 10.33 (0.30 ) 2.28 (0.68 ) 1.56 (0.08 )
r=2 0.59 (0.10 ) 0.81 (0.15 ) 9.93 (0.29 ) 1.17 (0.52 ) 1.55 (0.08 )
r=3 0.62 (0.11 ) 0.97 (0.16 ) 11.33 (0.31 ) 1.85 (1.32 ) 1.55 (0.09 )

t=2
r=1 0.55 (0.15 ) 0.68 (0.19 ) 9.90 (0.27 ) 1.07 (0.80 ) 1.56 (0.08 )
r=2 0.47 (0.03 ) 2.08 (0.15 ) 10.52 (0.29 ) 2.05 (0.70 ) 1.48 (0.08 )
r=3 0.49 (0.04 ) 2.02 (0.17 ) 9.83 (0.30 ) 1.67 (0.50 ) 1.34 (0.08 )

t=3
r=1 0.57 (0.03 ) 3.12 (0.18 ) 9.44 (0.27 ) 1.62 (0.31 ) 1.43 (0.08 )
r=2 0.58 (0.11 ) 1.69(0.26 ) 11.23 (0.33 ) 1.08 (0.39 ) 1.41 (0.08 )
r=3 0.58 (0.05 ) 2.32 (0.23 ) 9.35 (0.26 ) 1.02 (0.29 ) 1.58 (0.09 )

t=4
r=1 0.58 (0.14 ) 0.90 (0.21 ) 9.72 (0.26 ) 1.39 (0.93 ) 1.50 (0.08 )
r=2 0.40 (0.06 ) 1.06 (0.16 ) 10.62 (0.30 ) 2.21 (1.23 ) 1.59 (0.08 )
r=3 0.53 (0.07 ) 0.95 (0.12 ) 10.09 (0.30 ) 1.73 (0.73 ) 1.40 (0.07 )

(2b)

t=1
r=1 0.51 (0.04 ) 2.00 (0.17 ) 10.06 (0.29 ) 1.70 (0.53 ) 1.52 (0.08 )
r=2 0.57 (0.09 ) 0.84 (0.14 ) 10.03 (0.30 ) 1.03 (0.50 ) 1.56 (0.09 )
r=3 0.71 (0.10 ) 0.92 (0.13 ) 10.84 (0.30 ) 1.29 (0.53 ) 1.45 (0.08 )

t=2
r=1 0.53 (0.11 ) 0.82 (0.17 ) 9.80 (0.26 ) 0.81 (0.38 ) 1.52 (0.09 )
r=2 0.49 (0.05 ) 2.02 (0.18 ) 10.99 (0.30 ) 1.65 (0.55 ) 1.48 (0.08 )
r=3 0.47 (0.04 ) 2.02 (0.18 ) 10.25 (0.28 ) 1.95 (0.58 ) 1.50 (0.07 )

t=3
r=1 0.59 (0.03 ) 3.04 (0.17 ) 9.93 (0.30 ) 1.84 (0.35 ) 1.48 (0.07 )
r=2 0.53 (0.04 ) 1.94 (0.16 ) 11.14 (0.32 ) 1.75 (0.53 ) 1.46 (0.07 )
r=3 0.47 (0.02 ) 3.27 (0.18 ) 9.87 (0.25 ) 1.91 (0.37 ) 1.47 (0.08 )

t=4
r=1 0.47 (0.06 ) 0.86 (0.10 ) 10.35 (0.28 ) 2.04 (0.95 ) 1.65 (0.09 )
r=2 0.66 (0.15 ) 0.73 (0.17 ) 10.77 (0.31 ) 0.66 (0.35 ) 1.43 (0.07 )
r=3 0.60 (0.08 ) 0.92 (0.13 ) 10.44 (0.28 ) 1.38 (0.55 ) 1.50 (0.08 )
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Table 9: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(3b)

t=1
r=1 0.47 (0.03 ) 2.01 (0.11 ) 10.32 (0.30 ) 2.28 (0.61 ) 1.59 (0.08 )
r=2 0.59 (0.11 ) 0.70 (0.13 ) 9.50 (0.20 ) 1.72 (0.32 ) 1.51 (0.08 )
r=3 0.60 (0.12 ) 1.02 (0.12 ) 11.10 (0.33 ) 1.90 (1.42 ) 1.55 (0.10 )

t=2
r=1 0.45 (0.15 ) 0.60 (0.19 ) 9.23 (0.30 ) 1.04 (0.80 ) 1.51 (0.02 )
r=2 0.49 (0.05 ) 2.01 (0.13 ) 9.30 (0.30 ) 2.55 (0.75 ) 1.80 (0.02 )
r=3 0.48 (0.05 ) 2.09 (0.13 ) 9.91 (0.30 ) 1.57 (0.70 ) 1.20 (0.03 )

t=3
r=1 0.57 (0.05 ) 2.10 (0.18 ) 10.44 (0.27 ) 1.52 (0.31 ) 1.52 (0.04 )
r=2 0.58 (0.12 ) 1.31(0.16 ) 10.11 (0.33 ) 1.38 (0.25 ) 1.51 (0.01 )
r=3 0.51 (0.09 ) 2.34 (0.23 ) 11.38 (0.26 ) 1.22 (0.25 ) 1.28 (0.03 )

t=4
r=1 0.51 (0.11 ) 1.04 (0.21 ) 9.97 (0.26 ) 1.21 (0.87 ) 1.50 (0.07 )
r=2 0.43 (0.03 ) 1.16 (0.13 ) 10.62 (0.58 ) 2.21 (1.13 ) 1.59 (0.07 )
r=3 0.54 (0.03 ) 1.05 (0.09 ) 10.09 (0.41 ) 1.73 (0.44 ) 1.40 (0.07 )

(4b)

t=1
r=1 0.48 (0.03 ) 2.15 (0.15 ) 9.49 (0.27 ) 2.08 (0.57 ) 1.67 (0.09 )
r=2 0.61 (0.14 ) 0.77 (0.17 ) 10.30 (0.29 ) 1.41 (0.93 ) 1.51 (0.08 )
r=3 0.58 (0.07 ) 1.11 (0.13 ) 10.68 (0.30 ) 2.27 (1.02 ) 1.64 (0.09 )

t=2
r=1 0.41 (0.05 ) 1.04 (0.13 ) 9.78 (0.29 ) 2.56 (1.33 ) 1.51 (0.08 )
r=2 0.47 (0.04 ) 2.07 (0.18 ) 10.73 (0.30 ) 1.87 (0.55 ) 1.49 (0.08 )
r=3 0.55 (0.06 ) 1.86 (0.20 ) 9.97 (0.29 ) 1.33 (0.46 ) 1.49 (0.08 )

t=3
r=1 0.59 (0.03 ) 3.11 (0.17 ) 9.70 (0.28 ) 1.69 (0.29 ) 1.47 (0.09 )
r=2 0.50 (0.04 ) 2.36 (0.18 ) 11.03 (0.34 ) 1.63 (0.44 ) 1.45 (0.07 )
r=3 0.48 (0.03 ) 2.97 (0.22 ) 10.30 (0.29 ) 1.41 (0.28 ) 1.57 (0.08 )

t=4
r=1 0.51 (0.08 ) 0.98 (0.14 ) 9.95 (0.29 ) 1.57 (0.72 ) 1.43 (0.08 )
r=2 0.60 (0.13 ) 0.65 (0.14 ) 11.26 (0.31 ) 0.66 (0.32 ) 1.62 (0.09 )
r=3 0.68 (0.14 ) 0.73 (0.17 ) 10.40 (0.29 ) 0.77 (0.52 ) 1.38 (0.07 )
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Table 10: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(5b)

t=1
r=1 0.48 (0.03 ) 2.15 (0.15 ) 9.49 (0.27 ) 2.08 (0.57 ) 1.67 (0.09 )
r=2 0.61 (0.14 ) 0.77 (0.17 ) 10.30 (0.29 ) 1.41 (0.93 ) 1.51 (0.08 )
r=3 0.58 (0.07 ) 1.11 (0.13 ) 10.68 (0.30 ) 2.27 (1.02 ) 1.64 (0.09 )

t=2
r=1 0.41 (0.05 ) 1.04 (0.13 ) 9.78 (0.29 ) 2.56 (1.33 ) 1.51 (0.08 )
r=2 0.47 (0.04 ) 2.07 (0.18 ) 10.73 (0.30 ) 1.87 (0.55 ) 1.49 (0.08 )
r=3 0.55 (0.06 ) 1.86 (0.20 ) 9.97 (0.29 ) 1.33 (0.46 ) 1.49 (0.08 )

t=3
r=1 0.59 (0.03 ) 3.11 (0.17 ) 9.70 (0.28 ) 1.69 (0.29 ) 1.57 (0.09 )
r=2 0.50 (0.04 ) 2.36 (0.18 ) 11.03 (0.34 ) 1.63 (0.44 ) 1.45 (0.07 )
r=3 0.48 (0.03 ) 2.97 (0.22 ) 10.30 (0.29 ) 1.41 (0.28 ) 1.57 (0.08 )

t=4
r=1 0.51 (0.08 ) 0.98 (0.14 ) 9.95 (0.29 ) 1.57 (0.72 ) 1.43 (0.08 )
r=2 0.60 (0.13 ) 0.65 (0.14 ) 11.26 (0.31 ) 0.66 (0.32 ) 1.62 (0.09 )
r=3 0.68 (0.14 ) 0.73 (0.17 ) 10.40 (0.29 ) 0.77 (0.52 ) 1.38 (0.07 )

(6b)

t=1
r=1 0.51 (0.05 ) 1.90 (0.19 ) 19.42 (0.53 ) 1.14 (0.30 ) 1.46 (0.09 )
r=2 0.58 (0.08 ) 0.88 (0.13 ) 20.08 (0.55 ) 1.20 (0.48 ) 1.35 (0.08 )
r=3 0.79 (0.11 ) 0.80 (0.12 ) 20.51 (0.50 ) 1.01 (0.43 ) 1.58 (0.09 )

t=2
r=1 0.37 (0.06 ) 1.12 (0.16 ) 20.13 (0.54 ) 3.24 (1.83 ) 1.51 (0.08 )
r=2 0.51 (0.05 ) 1.88 (0.20 ) 19.93 (0.52 ) 1.65 (0.56 ) 1.55 (0.08 )
r=3 0.50 (0.05 ) 1.89 (0.19 ) 21.00 (0.56 ) 1.32 (0.40 ) 1.54 (0.08 )

t=3
r=1 0.61 (0.03 ) 2.89 (0.16 ) 19.65 (0.54 ) 1.71 (0.30 ) 1.52 (0.09 )
r=2 0.55 (0.05 ) 1.88 (0.18 ) 18.81 (0.52 ) 1.34 (0.35 ) 1.52 (0.07 )
r=3 0.50 (0.03 ) 2.86 (0.21 ) 20.36 (0.57 ) 1.34 (0.26 ) 1.42 (0.08 )

t=4
r=1 0.52 (0.07 ) 1.01 (0.13 ) 19.81 (0.53 ) 1.90 (0.90 ) 1.54 (0.08 )
r=2 0.27 (0.15 ) 1.04 (0.26 ) 19.27 (0.51 ) 1.74 (1.03 ) 1.48 (0.09 )
r=3 0.56 (0.06 ) 1.01 (0.12 ) 19.51 (0.54 ) 1.52 (0.59 ) 1.39 (0.07 )
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Table 11: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(7b)

t=1
r=1 0.48 (0.03 ) 2.08 (0.16 ) 19.99 (0.58 ) 1.59 (0.38 ) 1.44 (0.07 )
r=2 0.45 (0.05 ) 1.07 (0.11 ) 18.54 (0.55 ) 2.07 (0.97 ) 1.46 (0.08 )
r=3 0.59 (0.07 ) 1.04 (0.13 ) 20.63 (0.58 ) 2.34 (1.33 ) 1.61 (0.09 )

t=2
r=1 0.42 (0.05 ) 1.01 (0.13 ) 19.78 (0.53 ) 1.74 (0.72 ) 1.55 (0.08 )
r=2 0.63 (0.11 ) 1.62 (0.28 ) 20.50 (0.52 ) 0.80 (0.29 ) 1.54 (0.06 )
r=3 0.61 (0.08 ) 1.60 (0.22 ) 20.64 (0.54 ) 0.90 (0.28 ) 1.49 (0.07 )

t=3
r=1 0.57 (0.03 ) 3.32 (0.17 ) 18.56 (0.53 ) 1.80 (0.30 ) 1.37 (0.06 )
r=2 0.54 (0.04 ) 1.86 (0.15 ) 18.90 (0.53 ) 1.49 (0.42 ) 1.47 (0.08 )
r=3 0.53 (0.03 ) 2.77 (0.18 ) 21.47 (0.57 ) 1.62 (0.35 ) 1.47 (0.08 )

t=4
r=1 0.50 (0.08 ) 0.95 (0.15 ) 20.41 (0.56 ) 1.79 (1.14 ) 1.47 (0.07 )
r=2 0.43 (0.07 ) 0.98 (0.16 ) 18.66 (0.52 ) 1.47 (0.76 ) 1.48 (0.08 )
r=3 0.50 (0.07 ) 0.99 (0.14 ) 18.94 (0.53 ) 1.87 (0.91 ) 1.50 (0.07 )

(8b)

t=1
r=1 0.54 (0.05 ) 1.81 (0.17 ) 19.56 (0.49 ) 1.15 (0.28 ) 1.68 (0.08 )
r=2 0.61 (0.12 ) 0.83 (0.15 ) 18.54 (0.54 ) 1.24 (0.58 ) 1.41 (0.07 )
r=3 0.67 (0.10 ) 0.83 (0.13 ) 20.97 (0.58 ) 1.30 (0.55 ) 1.44 (0.07 )

t=2
r=1 0.74 (0.18 ) 0.59 (0.19 ) 20.21 (0.59 ) 0.53 (0.38 ) 1.34 (0.06 )
r=2 0.49 (0.03 ) 2.09 (0.15 ) 19.41 (0.54 ) 1.93 (0.49 ) 1.47 (0.07 )
r=3 0.59 (0.06 ) 1.71 (0.19 ) 21.22 (0.57 ) 1.00 (0.27 ) 1.60 (0.08 )

t=3
r=1 0.65 (0.04 ) 2.76 (0.19 ) 18.46 (0.51 ) 1.24 (0.21 ) 1.51 (0.07 )
r=2 0.60 (0.08 ) 1.62 (0.19 ) 19.43 (0.52 ) 1.22 (0.37 ) 1.45 (0.07 )
r=3 0.47 (0.03 ) 2.86 (0.19 ) 20.50 (0.55 ) 1.49 (0.32 ) 1.50 (0.06 )

t=4
r=1 0.51 (0.06 ) 1.01 (0.13 ) 19.24 (0.51 ) 2.63 (1.42 ) 1.52 (0.07 )
r=2 0.46 (0.09 ) 0.91 (0.16 ) 18.70 (0.51 ) 1.60 (0.91 ) 1.57 (0.07 )
r=3 0.64 (0.13 ) 0.83 (0.17 ) 20.39 (0.59 ) 1.03 (0.59 ) 1.36 (0.06 )
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Table 12: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(9b)

t=1
r=1 0.95 (0.03 ) 1.89 (0.09 ) 9.59 (0.26 ) 1.54 (0.24 ) 1.42 (0.08 )
r=2 0.79 (0.09 ) 1.03 (0.12 ) 9.73 (0.28 ) 2.22 (1.09 ) 1.56 (0.08 )
r=3 0.94 (0.04 ) 0.87 (0.06 ) 11.14 (0.33 ) 1.66 (0.40 ) 1.39 (0.07 )

t=2
r=1 0.76 (0.07 ) 1.10 (0.11 ) 10.03 (0.30 ) 1.93 (0.78 ) 1.40 (0.08 )
r=2 0.87 (0.04 ) 2.17 (0.12 ) 11.32 (0.33 ) 1.61 (0.34 ) 1.53 (0.08 )
r=3 0.90 (0.04 ) 2.07 (0.11 ) 9.71 (0.29 ) 1.54 (0.29 ) 1.51 (0.08 )

t=3
r=1 0.92 (0.04 ) 2.82 (0.16 ) 9.97 (0.27 ) 1.37 (0.21 ) 1.53 (0.08 )
r=2 0.85 (0.06 ) 1.88 (0.13 ) 10.93 (0.30 ) 1.39 (0.36 ) 1.56 (0.09 )
r=3 0.89 (0.05 ) 2.60 (0.17 ) 9.65 (0.29 ) 1.12 (0.20 ) 1.52 (0.08 )

t=4
r=1 0.75 (0.07 ) 1.00 (0.11 ) 10.37 (0.29 ) 2.11 (1.76 ) 1.61 (0.08 )
r=2 0.90 (0.07 ) 1.03 (0.08 ) 10.50 (0.27 ) 1.72 (0.58 ) 1.66 (0.09 )
r=3 0.85 (0.08 ) 0.99 (0.10 ) 10.07 (0.28 ) 1.26 (0.37 ) 1.56 (0.08 )

(10b)

t=1
r=1 0.94 (0.04 ) 2.01 (0.11 ) 9.67 (0.28 ) 1.39 (0.25 ) 1.53 (0.08 )
r=2 0.82 (0.09 ) 0.95 (0.12 ) 9.88 (0.27 ) 1.30 (0.51 ) 1.53 (0.08 )
r=3 0.83 (0.07 ) 1.15 (0.10 ) 10.93 (0.31 ) 1.68 (0.50 ) 1.36 (0.07 )

t=2
r=1 0.77 (0.09 ) 1.00 (0.11 ) 9.59 (0.26 ) 1.47 (0.67 ) 1.62 (0.09 )
r=2 0.88 (0.04 ) 2.05 (0.12 ) 11.60 (0.32 ) 1.67 (0.35 ) 1.44 (0.07 )
r=3 0.87 (0.04 ) 2.19 (0.11 ) 9.80 (0.24 ) 1.73 (0.33 ) 1.62 (0.09 )

t=3
r=1 0.85 (0.03 ) 3.13 (0.13 ) 9.97 (0.28 ) 1.99 (0.28 ) 1.50 (0.09 )
r=2 0.87 (0.05 ) 1.89 (0.13 ) 11.31 (0.32 ) 1.18 (0.22 ) 1.51 (0.09 )
r=3 0.77 (0.03 ) 2.96 (0.14 ) 10.25 (0.30 ) 1.60 (0.25 ) 1.46 (0.08 )

t=4
r=1 0.78 (0.06 ) 1.04 (0.10 ) 9.46 (0.26 ) 2.28 (1.80 ) 1.60 (0.09 )
r=2 0.83 (0.08 ) 1.07 (0.10 ) 11.13 (0.40 ) 3.11 (1.53 ) 1.56 (0.09 )
r=3 0.74 (0.07 ) 1.06 (0.10 ) 10.02 (0.28 ) 2.66 (1.16 ) 1.42 (0.08 )
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Table 13: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(11b)

t=1
r=1 0.91 (0.04 ) 1.90 (0.11 ) 9.90 (0.26 ) 1.40 (0.24 ) 1.55 (0.09 )
r=2 0.82 (0.08 ) 0.89 (0.10 ) 10.13 (0.28 ) 1.71 (0.57 ) 1.48 (0.09 )
r=3 0.93 (0.06 ) 0.98 (0.09 ) 11.11 (0.33 ) 1.55 (0.48 ) 1.50 (0.09 )

t=2
r=1 0.72 (0.06 ) 1.12 (0.09 ) 10.09 (0.30 ) 2.01 (0.78 ) 1.44 (0.09 )
r=2 0.92 (0.04 ) 1.78 (0.10 ) 10.98 (0.33 ) 1.43 (0.27 ) 1.56 (0.08 )
r=3 0.89 (0.05 ) 1.95 (0.12 ) 9.69 (0.29 ) 1.51 (0.34 ) 1.57 (0.09 )

t=3
r=1 0.91 (0.03 ) 3.19 (0.14 ) 9.38 (0.27 ) 1.52 (0.24 ) 1.56 (0.08 )
r=2 0.74 (0.04 ) 2.28 (0.14 ) 11.28 (0.30 ) 1.91 (0.46 ) 1.50 (0.09 )
r=3 0.76 (0.03 ) 3.16 (0.15 ) 9.88 (0.29 ) 1.94 (0.32 ) 1.49 (0.09 )

t=4
r=1 0.84 (0.10 ) 0.88 (0.12 ) 9.67 (0.29 ) 1.68 (0.96 ) 1.38 (0.07 )
r=2 0.83 (0.09 ) 1.07 (0.12 ) 10.87 (0.27 ) 2.34 (1.18 ) 1.48 (0.08 )
r=3 0.80 (0.07 ) 0.91 (0.09 ) 9.38 (0.28 ) 2.01 (0.73 ) 1.64 (0.09 )

(12b)

t=1
r=1 0.88 (0.04 ) 2.02 (0.11 ) 9.88 (0.29 ) 1.59 (0.32 ) 1.32 (0.07 )
r=2 0.75 (0.07 ) 1.08 (0.10 ) 9.72 (0.30 ) 2.30 (0.84 ) 1.45 (0.08 )
r=3 0.86 (0.06 ) 1.03 (0.08 ) 11.07 (0.33 ) 2.24 (0.72 ) 1.42 (0.09 )

t=2
r=1 0.93 (0.05 ) 0.94 (0.07 ) 9.96 (0.29 ) 0.93 (0.16 ) 1.48 (0.09 )
r=2 0.85 (0.04 ) 2.14 (0.13 ) 10.75 (0.30 ) 1.85 (0.37 ) 1.56 (0.08 )
r=3 0.93 (0.04 ) 1.89 (0.12 ) 9.83 (0.29 ) 1.23 (0.19 ) 1.54 (0.09 )

t=3
r=1 0.90 (0.04 ) 2.96 (0.15 ) 9.92 (0.27 ) 1.50 (0.25 ) 1.52 (0.09 )
r=2 0.89 (0.06 ) 1.83 (0.14 ) 11.23 (0.33 ) 1.08 (0.25 ) 1.42 (0.08 )
r=3 0.82 (0.04 ) 2.97 (0.17 ) 9.65 (0.28 ) 1.32 (0.21 ) 1.54 (0.09 )

t=4
r=1 0.88 (0.07 ) 0.89 (0.09 ) 9.70 (0.26 ) 1.09 (0.30 ) 1.50 (0.08 )
r=2 0.82 (0.06 ) 1.18 (0.09 ) 11.03 (0.32 ) 2.39 (0.80 ) 1.43 (0.07 )
r=3 0.85 (0.10 ) 0.88 (0.12 ) 9.58 (0.29 ) 1.28 (0.52 ) 1.40 (0.08 )
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Table 14: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(13b)

t=1
r=1 0.95 (0.10 ) 1.89 (0.11 ) 20.99 (0.55 ) 1.44 (0.24 ) 1.53 (0.07 )
r=2 0.86 (0.08 ) 0.98 (0.10 ) 18.77 (0.52 ) 1.70 (0.62 ) 1.53 (0.07 )
r=3 0.92 (0.06 ) 0.96 (0.08 ) 21.02 (0.55 ) 1.75 (0.56 ) 1.57 (0.08 )

t=2
r=1 0.76 (0.08 ) 1.05 (0.12 ) 19.65 (0.54 ) 2.53 (1.15 ) 1.58 (0.08 )
r=2 0.89 (0.04 ) 2.19 (0.11 ) 20.18 (0.54 ) 1.63 (0.28 ) 1.50 (0.07 )
r=3 0.93 (0.04 ) 1.95 (0.11 ) 20.90 (0.59 ) 1.42 (0.25 ) 1.48 (0.07 )

t=3
r=1 0.92 (0.04 ) 2.84 (0.15 ) 18.93 (0.54 ) 1.28 (0.20 ) 1.46 (0.07 )
r=2 0.79 (0.05 ) 1.87 (0.13 ) 18.92 (0.52 ) 1.47 (0.33 ) 1.47 (0.07 )
r=3 0.84 (0.05 ) 2.75 (0.18 ) 21.86 (0.64 ) 1.36 (0.28 ) 1.47 (0.07 )

t=4
r=1 0.80 (0.09 ) 1.00 (0.12 ) 19.36 (0.51 ) 1.32 (0.44 ) 1.60 (0.07 )
r=2 0.91 (0.06 ) 0.93 (0.07 ) 19.12 (0.50 ) 1.77 (0.60 ) 1.50 (0.07 )
r=3 0.87 (0.08 ) 0.94 (0.11 ) 19.37 (0.53 ) 1.29 (0.46 ) 1.56 (0.07 )

(14b)

t=1
r=1 0.89 (0.04 ) 2.08 (0.11 ) 20.06 (0.55 ) 1.98 (0.42 ) 1.53 (0.08 )
r=2 0.85 (0.08 ) 0.90 (0.10 ) 19.10 (0.53 ) 1.49 (0.49 ) 1.42 (0.07 )
r=3 0.93 (0.06 ) 1.05 (0.09 ) 20.65 (0.57 ) 1.53 (0.42 ) 1.50 (0.08 )

t=2
r=1 0.77 (0.08 ) 1.13 (0.12 ) 19.85 (0.53 ) 2.05 (0.72 ) 1.43 (0.07 )
r=2 0.92 (0.04 ) 1.90 (0.11 ) 19.37 (0.50 ) 1.35 (0.21 ) 1.58 (0.07 )
r=3 0.94 (0.04 ) 1.90 (0.12 ) 21.09 (0.56 ) 1.37 (0.24 ) 1.56 (0.07 )

t=3
r=1 0.91 (0.03 ) 2.86 (0.14 ) 18.48 (0.51 ) 1.37 (0.20 ) 1.46 (0.07 )
r=2 0.85 (0.07 ) 1.77 (0.15 ) 19.29 (0.49 ) 1.10 (0.28 ) 1.62 (0.08 )
r=3 0.75 (0.03 ) 2.88 (0.14 ) 21.21 (0.58 ) 1.73 (0.29 ) 1.38 (0.06 )

t=4
r=1 0.92 (0.07 ) 0.84 (0.08 ) 20.07 (0.56 ) 1.28 (0.38 ) 1.42 (0.06 )
r=2 0.88 (0.07 ) 0.98 (0.08 ) 19.33 (0.51 ) 1.66 (0.51 ) 1.56 (0.07 )
r=3 0.74 (0.07 ) 1.06 (0.10 ) 20.71 (0.54 ) 1.88 (0.66 ) 1.44 (0.06 )
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Table 15: Posterior means of the measurement model parameters (µ, φ) and inflation
proportion (π). Posterior standard deviations are provided between brackets.

Scenario π̂ µ̂B µ̂S φ̂B φ̂S

(15b)

t=1
r=1 0.88 (0.04 ) 2.14 (0.10 ) 20.92 (0.57 ) 1.86 (0.33 ) 1.44 (0.06 )
r=2 0.81 (0.08 ) 0.98 (0.11 ) 18.03 (0.51 ) 1.28 (0.39 ) 1.48 (0.08 )
r=3 0.84 (0.07 ) 1.05 (0.10 ) 20.79 (0.58 ) 1.56 (0.47 ) 1.51 (0.08 )

t=2
r=1 0.77 (0.09 ) 1.05 (0.11 ) 19.20 (0.52 ) 2.90 (1.39 ) 1.44 (0.07 )
r=2 0.85 (0.04 ) 2.10 (0.12 ) 20.02 (0.52 ) 2.00 (0.39 ) 1.54 (0.07 )
r=3 0.92 (0.04 ) 2.02 (0.11 ) 20.40 (0.54 ) 1.36 (0.23 ) 1.59 (0.08 )

t=3
r=1 0.89 (0.03 ) 3.12 (0.15 ) 18.45 (0.48 ) 1.49 (0.22 ) 1.58 (0.07 )
r=2 0.87 (0.05 ) 1.83 (0.12 ) 19.38 (0.59 ) 1.23 (0.22 ) 1.37 (0.07 )
r=3 0.82 (0.03 ) 2.93 (0.15 ) 21.37 (0.60 ) 1.45 (0.24 ) 1.44 (0.07 )

t=4
r=1 0.77 (0.08 ) 1.04 (0.11 ) 19.92 (0.56 ) 2.32 (0.93 ) 1.58 (0.08 )
r=2 0.89 (0.06 ) 1.08 (0.09 ) 19.15 (0.54 ) 1.73 (0.47 ) 1.53 (0.07 )
r=3 0.91 (0.07 ) 0.84 (0.08 ) 19.57 (0.53 ) 1.50 (0.49 ) 1.41 (0.07 )

(16b)

t=1
r=1 0.91 (0.04 ) 1.85 (0.10 ) 20.27 (0.53 ) 1.61 (0.29 ) 1.53 (0.07 )
r=2 0.68 (0.06 ) 1.11 (0.09 ) 19.11 (0.50 ) 3.50 (1.47 ) 1.66 (0.08 )
r=3 0.88 (0.08 ) 1.09 (0.10 ) 20.30 (0.53 ) 1.32 (0.35 ) 1.47 (0.08 )

t=2
r=1 0.87 (0.08 ) 0.99 (0.11 ) 19.36 (0.53 ) 1.23 (0.37 ) 1.44 (0.07 )
r=2 0.95 (0.03 ) 1.89 (0.09 ) 19.41 (0.50 ) 1.29 (0.19 ) 1.69 (0.09 )
r=3 0.91 (0.04 ) 1.90 (0.12 ) 21.14 (0.62 ) 1.38 (0.24 ) 1.35 (0.07 )

t=3
r=1 0.89 (0.03 ) 3.10 (0.15 ) 18.37 (0.51 ) 1.45 (0.21 ) 1.51 (0.07 )
r=2 0.80 (0.05 ) 2.17 (0.14 ) 18.36(0.53 ) 1.71 (0.39 ) 1.43 (0.08 )
r=3 0.77 (0.03 ) 3.01 (0.15 ) 20.97 (0.56 ) 1.67 (0.27 ) 1.47 (0.07 )

t=4
r=1 0.85 (0.08 ) 0.97 (0.10 ) 19.98 (0.55 ) 1.55 (0.51 ) 1.55 (0.08 )
r=2 0.87 (0.06 ) 1.03 (0.08 ) 19.40 (0.55 ) 1.68 (0.47 ) 1.40 (0.06 )
r=3 0.87 (0.09 ) 0.89 (0.10 ) 19.40 (0.55 ) 1.30 (0.51 ) 1.48 (0.07 )
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Table 16: Posterior means and posterior standard deviations (between brackets) of
the spatial and temporal transition probabilities.

Scenario q̂1 ŵ1 Scenario q̂1 ŵ1

(1a) 0.31 (0.01 ) 0.40 (0.01 ) (1b) 0.28 (0.01 ) 0.62 (0.01 )
(2a) 0.33 (0.01 ) 0.80 (0.01 ) (2b) 0.27 (0.01 ) 0.82 (0.01 )
(3a) 0.68 (0.01 ) 0.41 (0.01 ) (3b) 0.69 (0.01 ) 0.39 (0.01 )
(4a) 0.68 (0.01 ) 0.79 (0.01 ) (4b) 0.73 (0.01 ) 0.81 (0.01 )
(5a) 0.30 (0.01 ) 0.41 (0.01 ) (5b) 0.28 (0.01 ) 0.61 (0.01 )
(6a) 0.33 (0.01 ) 0.80 (0.01 ) (6b) 0.27 (0.01 ) 0.82 (0.01 )
(7a) 0.68 (0.01 ) 0.41 (0.01 ) (7b) 0.70 (0.01 ) 0.37 (0.01 )
(8a) 0.68 (0.01 ) 0.79 (0.01 ) (8b) 0.72 (0.01 ) 0.81 (0.01 )
(9a) 0.31 (0.01 ) 0.41 (0.01 ) (9b) 0.28 (0.01 ) 0.62 (0.01 )
(10a) 0.33 (0.01 ) 0.81 (0.01 ) (10b) 0.26 (0.01 ) 0.82 (0.01 )
(11a) 0.67 (0.01 ) 0.41 (0.01 ) (11b) 0.70 (0.01 ) 0.36 (0.01 )
(12a) 0.69 (0.01 ) 0.79 (0.01 ) (12b) 0.73 (0.01 ) 0.82 (0.01 )
(13a) 0.30 (0.01 ) 0.40 (0.01 ) (13b) 0.28 (0.01 ) 0.62 (0.01 )
(14a) 0.33 (0.01 ) 0.81 (0.01 ) (14b) 0.27 (0.01 ) 0.81 (0.01 )
(15a) 0.68 (0.01 ) 0.41 (0.01 ) (15b) 0.70 (0.01 ) 0.37 (0.01 )
(16a) 0.68 (0.01 ) 0.79 (0.01 ) (16b) 0.72 (0.01 ) 0.81 (0.01 )
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Table 17: Summary of the False Non Discovery Rate (in percentage %) evaluated
for the three models at a fixed 5% False Discovery Rate.

Scenario FNDRiSeq FNDRMRF FNDRstMRF

(1a)
t = 1 30.0 2.3 0.2
t = 2 28.9 3.7 0.7

(2a)
t = 1 31.0 3.4 0.5
t = 2 28.9 3.1 0.5

(3a)
t = 1 25.7 3.2 0.4
t = 2 31.3 2.6 0.8

(4a)
t = 1 33.0 2.8 0.6
t = 2 32.4 4.2 0.5

(5a)
t = 1 26.8 0.0 0.0
t = 2 33.6 0.2 0.1

(6a)
t = 1 23.5 0.0 0.0
t = 2 29.5 0.0 0.1

(7a)
t = 1 27.8 0.1 0.1
t = 2 34.4 0.0 0.0

(8a)
t = 1 31.0 0.0 0.0
t = 2 26.5 0.0 0.0

(9a)
t = 1 36.8 2.8 0.0
t = 2 33.6 3.2 0.0

(10a)
t = 1 35.0 3.3 1.8
t = 2 29.5 3.5 1.6

(11a)
t = 1 48.1 2.4 1.5
t = 2 43.9 3.7 2.2

(12a)
t = 1 45.2 3.8 1.9
t = 2 41.1 2.3 0.9

(13a)
t = 1 28.6 0.4 0.2
t = 2 36.4 0.7 0.5

(14a)
t = 1 29.2 0.1 0.1
t = 2 37.9 0.1 0.2

(15a)
t = 1 28.5 0.5 0.3
t = 2 33.4 0.5 0.4

(16a)
t = 1 31.6 0.6 0.2
t = 2 39.1 0.4 0.2
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Table 18: Summary of the False Non Discovery Rate (in percentage %) evaluated
for the three models at a fixed 5% False Discovery Rate.

Scenario FNDRiSeq FNDRMRF FNDRstMRF

(1b)

t = 1 34.2 1.9 0.5
t = 2 28.9 4.7 1.2
t = 3 33.9 30.5 3.8
t = 4 31.6 0.6 0.1

(2b)

t = 1 37.0 1.7 0.5
t = 2 31.8 3.5 0.5
t = 3 38.5 36.4 0.5
t = 4 28.9 0.6 0.3

(3b)

t = 1 35.1 1.7 0.4
t = 2 30.1 2.8 0.3
t = 3 36.3 29.1 0.3
t = 4 28.9 0.9 0.2

(4b)

t = 1 33.2 2.9 0.8
t = 2 29.7 6.6 0.3
t = 3 32.6 6.7 1.1
t = 4 33.0 0.1 0.1

(5b)

t = 1 26.0 0.1 0.0
t = 2 27.6 0.3 0.1
t = 3 28.7 0.8 0.4
t = 4 23.3 0.0 0.0

(6b)

t = 1 28.6 0.0 0.0
t = 2 22.9 0.0 0.0
t = 3 30.2 1.3 0.0
t = 4 29.6 0.0 0.0

(7b)

t = 1 28.2 0.1 0.0
t = 2 25.5 0.1 0.0
t = 3 38.3 1.1 0.0
t = 4 27.4 0.1 0.0

(8b)

t = 1 29.8 0.1 0.0
t = 2 40.5 0.0 0.0
t = 3 44.8 3.8 0.0
t = 4 42.7 0.0 0.0
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Table 19: Summary of the False Non Discovery Rate (in percentage %) evaluated
for the three models at a fixed 5% False Discovery Rate.

Scenario FNDRiSeq FNDRMRF FNDRstMRF

(9b)

t = 1 44.8 2.6 0.3
t = 2 39.0 5.0 0.5
t = 3 41.6 16 0.6
t = 4 34.8 1.4 0.1

(10b)

t = 1 36.6 3.5 1.1
t = 2 31.5 4.1 1.6
t = 3 43.7 18.1 3.0
t = 4 31.1 1.6 0.8

(11b)

t = 1 42.1 2.8 1.8
t = 2 35.2 4.3 2.3
t = 3 43.5 32.6 13.4
t = 4 38.2 0.6 0.4

(12b)

t = 1 35.71 3.9 1.7
t = 2 35.8 6.6 2.9
t = 3 39.2 19.6 3.8
t = 4 33.0 1.7 1.1

(13b)

t = 1 36.4 0.3 0.3
t = 2 28.3 0.4 0.4
t = 3 40.7 1.2 0.9
t = 4 26.4 0.0 0.0

(14b)

t = 1 34.6 0.3 0.1
t = 2 31.8 0.3 0.1
t = 3 41.2 0.9 0.4
t = 4 32.2 0.1 0.1

(15b)

t = 1 35.9 0.5 0.3
t = 2 42.2 0.7 0.6
t = 3 42.1 1.7 1.0
t = 4 25.2 0.0 0.0

(16b)

t = 1 33.4 0.3 0.3
t = 2 30.7 0.4 0.1
t = 3 40.6 1.8 0.2
t = 4 27.5 0.1 0.0
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For the sake of brevity, we show only the plots of the chains of all the param-
eters for one scenario (16a). The other plots are similar and they share the same
convergence behavior to the stationary distributions.

Figure 1: Plots of the chains of π for the scenario (16a).
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Figure 2: Plots of the chains of µB for the scenario (16a).
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Figure 3: Plots of the chains of µS for the scenario (16a).
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Figure 4: Plot of the chains of φB for the scenario (16a).
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Figure 5: Plot of the chains of φS for the scenario (16a).
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Figure 6: Plot of the chains of the transition probabilities q1 and w1 for the scenario
(16a).
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