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1. Abstract 

Neisseria meningitidis is a strictly human pathogen and is a major cause of septicemia and 

meningitis worldwide. Factor H binding protein (fHbp) is a surface-exposed lipoprotein that 

binds human factor H, a negative regulator of the complement cascade, allowing the bacterium to 

evade the host innate immunity response. Of note, fHbp is a key antigen in two novel vaccines 

against N. meningitidis serogroup B (Bexsero® and Trumenba®). Although the fHbp gene is 

present in most circulating meningococcal strains, the level of fHbp expression varies among 

isolates and may influence strain susceptibility to anti-fHbp antisera. The aim of the PhD project 

was to understand the sequence determinants that control fHbp expression in globally circulating 

strains. We analyzed the upstream fHbp intergenic region (fIR) of a panel of 105 invasive strains 

representative of the epidemiology of the three fHbp variants and we identified nine fIR sequence 

types which represent 77% of the isolates. By quantitative selected reaction monitoring mass 

spectrometry we obtained an absolute quantification of fHbp in the same panel of strains and 

found a correlation between the fIR sequence type and fHbp expression levels. By the generation 

of a series of isogenic recombinant strains, where fHbp expression was under the control of each 

of the nine fIR types, we were able to confirm that the fIR sequence determines a specific level of 

expression, both at the mRNA and the protein level. Moreover, the molecular bases for variation 

in expression through SNPs within key regulatory regions that affect fHbp expression were 

identified. Furthermore, our data indicate an influence of the variant coding sequence in the 

stability of the protein, hence suggesting a regulation of the antigen at transcriptional and post-

transcriptional levels. In order to investigate the regulatory effect of different stimuli encountered 

by Neisseria meningitidis, we compared transcript levels in the isogenic recombinant strains in 

the presence or absence of either oxygen or iron. Our data showed an increase of fHbp transcripts 

under oxygen-limiting conditions for most of the mutant strains and a general downregulation of 

the gene upon iron-depletion. In addition, the quantity of fHbp on the surface of the bacteria 

correlated directly with the susceptibility to killing mediated by anti-fHbp antibodies in immune 

sera. The influence of fHbp to mediate the evasion from generic complement-mediated killing 

presumably through binding of human fH was assessed and survival in human non-immune 
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serum was less correlated with protein amounts measured from an in vitro growth culture. These 

results suggest a possible regulation of fHbp in the presence of human serum for at least some of 

the fIR types under investigation. Finally, an extensive analysis done on the fHbp intergenic 

region of more than 900 strains representative of the UK circulating isolates identified 11 fIR 

sequence types which represent 89% of meningococcal strains. Moreover, among them only two 

new fIR types were identified. Statistical analyses suggested the evolution of the fHbp intergenic 

region with its corresponding coding sequence, with the peculiar exception of strains harboring 

var2 which have evolved to maintain the same regulatory elements for the tuning of fHbp 

expression. Overall, we demonstrated that the expression level of this important antigen can be 

inferred by the DNA sequence of the fHbp intergenic region. Therefore, our findings can 

contribute to understand and predict vaccine coverage mediated by fHbp. 
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2. Introduction 

 Meningococcal disease 2.1

Neisseria meningitidis is an exclusively human pathogen, which is responsible for meningitis and 

sepsis, two devastating diseases that can kill children and young adults within hours, despite the 

availability of effective antibiotics. The first description of a meningococcal infection of the 

cerebrospinal fluid of a patient was done by Anton Weichselbaum in 1887 [1]. Studies performed 

in Europe have demonstrated that carriage rates are very low in the first few years of life, but rise 

during adolescence, reaching peaks of 10-35% in 20-24 years old people, and decreasing to less 

than 10% in older groups [2, 3]. With the respect of carriage rates, meningococcal disease is rare, 

varying from 0.5 to 10 per 100,000 persons; however, the incidence can rise above 1 per 1,000 

during epidemics [4, 5]. Approximately 5 to 15% of people contracting meningococcal disease 

dies, and the rate increases to 40-55% in case of sepsis [6, 7]. Furthermore, from 11 to 19% of 

individuals surviving the disease often suffer from permanent sequelae, including hearing loss, 

seizures, neurodevelopmental deficits, ataxia, hemiplegia, as well as amputation of limbs [6-10]. 

The factors determining the transition from colonization to disease state are not fully understood. 

However, certain biological, environmental and social factors have been associated with an 

increased risk of disease in otherwise healthy individuals. Infants under one year of age have the 

highest risk of infection due to their immature immune systems (6.33-7.08 cases per 100,000). 

Whereas, the peak observed in adolescents is largely due to increased carriage in this population 

[11]. Several studies have demonstrated that factors both at the pathogen and at the host levels 

influence disease development, such as microbial virulence factors, human genetic 

polymorphisms, impaired immune system, as well as environmental conditions facilitating 

exposure and acquisition, and naso- and oro-pharyngeal irritation caused by smoking and 

respiratory tract infection [6, 12-17].  

The diagnosis of meningococcal disease can be arduous since its symptoms, like headache, fever 

and rash, are unspecific, especially in the onset and early stages of the infection, and may be 

confused with other less life-threatening pathologies. Because of its rapid progression, any delay 
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in antibiotic treatment can lead to death within 24 to 48 hours from the first manifestations [10]. 

Hence, vaccination represents the unique effective public health response. 

 

 Neisseria meningitidis: pathogen and pathogenesis 2.2

Neisseria meningitidis is a Gram-negative β-proteobacterium member of the Neisseriaceae 

family. It is an aerobic, non-motile and non-sporulating diplococcus (Figure 1), usually 

encapsulated and piliated. The envelope of N. meningitidis consists of the cytoplasmic 

membrane, the outer membrane (OM) and the periplasm between them, which contains a layer of 

peptidoglycan. The cytoplasmic membrane is a phospholipid bilayer, whereas the OM is 

composed of a phospholipidic inner leaflet and an outer leaflet of lipooligosaccharide (LOS). 

Some meningococcal strains have a polysaccharide capsule attached to their OM and almost all 

pathogenic strains are encapsulated. Nevertheless, also non-encapsulated isolates have been 

recently associated to invasive disease [18]. 

 

 

Figure 1. Neisseria meningitidis diplococci. Colored scanning electron micrograph of Neisseria meningitidis 

bacteria on human epithelium (modified from www.sciencephoto.com). 

On the basis of the bacterial polysaccharide capsule, it is possible to classify meningococcus into 

13 serogroups, six of which, A, B, C, Y, X and W135, are associated with the majority of the 

disease worldwide [4, 19-21]. Meningococci are further classified into serotype and serosubtype 

according to antigenic differences in their major outer membrane proteins, PorA and PorB. 

However, the classification based on the serological characteristics of N. meningitidis is limited 



5 

  

due to the high frequency of variation of OM-proteins, probably determined by a strong selective 

pressure. Hence, new DNA-based methods for the characterization of meningococcal isolates 

have been developed, and the Multi Locus Sequence Typing (MLST) is now considered the gold 

standard for molecular typing and epidemiologic studies [22]. This typing system relies on 

polymorphisms within seven housekeeping genes; each sequence for a given locus is screened for 

identity with already known sequences for that locus. If the sequence is different, it is considered 

to be a new allele and is assigned an identification number. Therefore, the combination of the 

seven allele numbers determines the allelic profile of the strain, and each different allelic profile 

is assigned as a sequence type (ST). Meningococci sharing at least four of the seven loci with a 

central ancestral genotype are grouped together into clonal complexes (CCs) [23]. Through the 

employment of MLST it has been shown that the majority of strains associated with invasive 

disease belong to specific CCs (ST-1, ST-4, ST-5, ST-8, ST-11, ST-32, ST41/44 and ST-269), 

called hyper-invasive [24, 25]. However, the reasons of this enhanced pathogenic phenotype are 

yet unknown. 

 

 

Figure 2. Stages in the Neisseria meningitidis pathogenesis. Representation of the steps that characterize the 

meningococcal colonization and infection (adapted from [26]). 

The pathogenesis of Neisseria meningitidis is a complex multi-stage process (Figure 2). 

Meningococci might be transmitted via respiratory droplets or saliva and colonize the upper 

respiratory tract of the human host. The first colonization step is conserved by both the carriage 
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state and the invasive disease [27] and consists in the initial contact with nasopharyngeal 

epithelial cells mediated by Type IV pili, which may recognize the host receptor CD46 [28]. 

Then, bacteria proliferate on the surface of human non-ciliated epithelial cells, forming small 

micro-colonies at the site of initial attachment [27]. After this step, the capsule, which masks the 

OM proteins via steric hindrance, is lost or down-regulated due to cell-contact induced repression 

[29] or selection of low or no-capsule expressing bacteria caused by phase variation [30]. The 

absence of the capsule reveals a variety of redundant adhesins, which mediate a close adherence 

of the bacteria to host epithelial cells [27]. The interaction of bacterial opacity proteins, Opa and 

Opc, with CD66/CEACAMs and integrins, respectively, on the surface of epithelial cells triggers 

meningococcal internalization [31]. This causes the appearance of cortical plaques and the 

recruitment of factors leading to the formation and extension of epithelial cell pseudopodia that 

encircle bacteria within intracellular vacuoles [32]. The survival of internalized meningococcal 

cells is dependent on their capability to evade the immune response and to acquire nutrients. 

Indeed, iron acquisition mediated by specialized transport systems, such as the transferring 

binding protein (TbpAB), the lactoferrin binding protein (LbpAB), and the hemoglobin binding 

receptor (HmbR) is partially responsible for meningococcal intracellular replication [33]. In 

healthy individuals, bacteria that cross the mucosal epithelium are eliminated by serum 

bactericidal activity. Nonetheless, on occasion bacteria can cross the mucosal epithelial barrier of 

susceptible individuals, either through transcytosis or through phagocytes, or directly following 

damage to the monolayer integrity [26], and eventually enter the bloodstream. Survival within 

human blood relies upon different mechanisms. The up-regulation of capsule expression prevents 

the deposition of both antibodies and complement factors [34] hence inhibiting phagocytosis. 

Other strategies developed by the bacteria to evade the immune system are the recruitment of 

negative regulators of the complement cascades, such as Factor H (fH), which is bound by the 

Factor H binding protein (fHbp) [35], or by the Neisserial surface protein A (NspA) [36], and by 

the Porin B (PorB) [37], or the recruitment of complement regulators, such as the C4-binding 

protein, which is bound by Porin A (PorA) [38]. Once inside the bloodstream, meningococci can 

multiply slowly and eventually cross the blood-brain barrier, causing the infection of meninges 

and cerebrospinal fluid [39]. Otherwise, in case of rapid multiplication within the blood, the 

bacteria cause septicemia or meningococcemia [6, 40]. 
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From an evolutionary point of view the onset of the meningococcal disease represents a failed or 

dysfunctional relationship between the bacteria and the host, since eventually their fates are 

interconnected. 

 

 Virulence factors 2.3

The virulence of N. meningitidis is influenced by multiple factors that are mainly located in the 

OM (Figure 3). The main virulence factor is the polysaccharide capsule which protects the 

bacterium from desiccation during airborne transmission between hosts [41], and protects it from 

the host innate and adaptive immune system [42, 43]. Its expression is phase variable [30] and the 

switching of the capsule locus between strains confers a selective advantage to the bacterium for 

its evasion to opsonization or neutralization by natural or vaccine-induced anti-capsular 

antibodies [44].  

 

 

Figure 3. Meningococcal cell compartments. Representation of the different bacterial compartments and of the 

main components of the outer membrane, together with their known function [6]. 

The meningococcal LOS is composed of short saccharides and is responsible for the physical 

integrity and proper functioning of the membrane and required for resistance of N. meningitidis to 

complement [45]. Phase and antigenic variations lead to different saccharide chains altering 
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dramatically the antigenic properties of LOS and enabling individual meningococci to display a 

repertoire of multiple LOS structures simultaneously [46]. 

Another group of virulence factors involved in the interface between the meningococcus and the 

host are pili. They are long filamentous structures consisting of protein subunits that extend from 

the bacterial surface beyond the capsule [47, 48]. Pili represent the major contributor to the 

adhesive property of the capsule [49, 50] and in addition they are involved in the uptake of 

foreign DNA from the extracellular environment, hence increasing transformation frequency and 

consequently genetic adaptability [51]. 

Furthermore, the presence of other OM-associated proteins is important in host cell interaction. 

The opacity proteins (Opa and Opc) are integral outer membrane proteins that mediate pathogen-

host interaction, adhering to and invading of epithelial and endothelial cells [48]. A key role in 

the adhesion is carried out by adhesins, which are generally low expressed in vitro, but they 

might be upregulated in vivo. In fact, they may undergo to antigenic variation and/or phase 

variation, hence allowing the meningococcus to evade the immune system and adapt to different 

niches [26]. The Neisserial adhesin A (NadA) is a surface-exposed member of the Oligomeric 

coiled-coil adhesin family of bacterial Trimeric Autotransporter adhesins [52, 53]. NadA 

mediates adhesion to and invasion of human epithelial cells [54], suggesting its pivotal role in the 

adhesion to the naso- and oro-pharyngeal epithelia during meningococcal colonization of the 

human upper respiratory tract. Other adhesins have been reported to play a role in colonization 

and/or invasion. The Meningococcal surface fibril (Msf), previously termed Neisseria hia 

homologue A (NhhA) and H. influenzae surface fibril (Hsf) [55, 56], mediates adhesion to 

epithelial cells and to components of the extracellular matrix, even though at low levels [57]. 

Moreover, it has been shown its involvement in the immune system evasion. Msf binds to the 

activated form of Vitronectin and inhibits the terminal complement pathway [58], and its role in 

inhibiting phagocytosis, inducing macrophages apoptosis and protecting bacteria against 

complement-mediated killing has been suggested [59, 60]. Two homologous autotransporters, the 

Adhesion penetration protein (App) and the Meningococcal serine protease A (MspA) are 

involved in the bacterial interaction to epithelial cells [61, 62] and also in the apoptosis of 

dendritic cells [63]. Glycolipid adhesins such as members of the Multiple adhesin family (Maf) 

may contribute to the bacterial interaction with host cells [64]. Interestingly they are found to be 
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associated with genomic islands present only in pathogenic Neisseria species, both 

meningococcus and gonococcus [65].  

The two porins PorA and PorB, are the most abundant proteins present in the meningococcal 

OM. They are composed of relatively conserved regions, which are predicted to form the β-barrel 

structure that spans through the membrane, alternated with variable regions, which should be 

surface-exposed, hence undergoing to a strong selective pressure. The formation of trimers 

creates the pore structure that allows the passage of small hydrophilic solutes necessary for the 

bacterial metabolism. Porins were shown to be interacting with several human cell types and 

proteins [66]; moreover, PorA elicits a protective immune response in humans [67, 68], while 

PorB might be involved in the immune system evasion by binding the human fH (hfH) [37]. 

 

 

 

Figure 4. Activation of complement. Schematic representation of the three pathways (Lectin, Classical and 

Alternative Pathway) that trigger the activation of the complement system and its following steps leading to the 

killing of the pathogen. 

Furthermore, the genome of N. meningitidis contains a set of membrane-associated factors 

responsible for the host’s immune system evasion and hence for its virulence. As indicated by the 

elevated susceptibility to microbial, including meningococcal, infections exhibited by individuals 

with complement deficiencies [69], the complement system is pivotal in the defense against N. 

meningitidis infection. This essential component of the innate immune response is composed of a 

network of cell surface-associated and circulating proteins that act as modulators, substrates or 

enzymes of a hierarchical and finely-tuned series of extracellular proteolytic cascades. Three 
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pathways lead to the activation of the complement system (Figure 4). The classical pathway (CP) 

is triggered by the binding of the hexameric C1q to antigen-antibody complexes on foreign cell-

surfaces; whereas, the lectin pathway (LP) is stimulated by the recognition of carbohydrate 

ligands present on the microbial surface. On the other hand, the presence of external surface 

structures or the spontaneous hydrolysis of C3 initiate the alternative pathway (AP). All of these 

three pathways converge in the cleavage of the C3 by the C3 convertase, which leads to the 

formation of the active fragments C3a and C3b. The deposition of C3b on the bacterial surface 

induces the phagocytosis of the foreign cell or its lysis through the activation of the C5 

convertase and the cleavage of C5, which in turn leads to the formation of a multiprotein pore 

complex, the membrane attack complex (MAC). Activation and repression of the complement 

system must be strictly regulated in terms of both space and time. Therefore, the presence of 

several regulators, such as factor H, factor H-like protein-1 (FHL-1) and C4-binding protein 

(C4BP), allows complement physiological function. In order to escape from the innate immune 

system, N. meningitidis has evolved a plethora of mechanisms that target the complement 

cascades. As already introduced above, at least three meningococcal proteins are shown to bind 

the fH, fHbp [35], NspA [36] and PorB [37]. fHbp will be discussed below in details. NspA was 

firstly identified in a fHbp deleted background, for its ability to bind hfH. Strains lacking both 

fHbp and NspA were not able to bind fH and indeed were more susceptible to complement-

dependent killing [36, 70]. In addition, the observed binding of heparin from the Neisserial 

Heparin-Binding Antigen (NHBA) may increase bacterial serum resistance due to the potential 

interactions of heparin with fH [71]. 

 

 Factor H binding protein (fHbp) 2.4

Factor H binding protein is a 27 kDa surface-exposed lipoprotein, previously referred as 

GNA1080 [72] or LP2086 [73], and is an important virulence factor of N. meningitidis [74] as it 

binds the human Factor H [35, 75], hence down-regulating the alternative complement pathway 

and allowing the meningococcus to evade the immune system [76, 77]. Moreover, it has been 

shown that fHbp is uniquely able to bind the human fH and not the rat or rabbit fH, hence 

explaining the species specificity for meningococcal infection [75]. The importance of fHbp for 
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the immune system evasion was also demonstrated by incubating fHbp-deletion mutants in 

human blood or serum. Following incubation, mutant strains lacking this gene were killed 

rapidly, whereas wild type and complemented strains survived [70, 78, 79]. Moreover, fHbp was 

found to confer protection against the antimicrobial peptide LL-37 [78]. 

Its three-dimensional structure, determined by both nuclear magnetic resonance (NMR) [80] and 

X-ray crystallography [81], reveals that the protein is composed of two independent β-barrel 

domains connected by a short linker (Figure 5A). fHbp is expressed as a precursor containing the 

lipoprotein signal motif (LXXC), which is necessary for the correct targeting of the protein [72, 

82]. In the periplasmic site of the inner membrane the precursor is cleaved just upstream of the 

cysteine present within the signal motif and the protein is anchored to the membrane through the 

lipidation of the cysteine. The lipoprotein is then translocated to the OM and flipped via an 

unknown mechanism to the outer leaflet of the OM [82]. 

 

 

 

Figure 5. Factor H binding protein. (A) Schematic representation of fHbp anchored on the surface of 

N. meningitidis. The fHbp structure is colored as follows: white, N-terminal flexible stem; green, N-terminal domain; 

blue, C-terminal domain; pink, linker between the β-structures of the two domains. In the inset, is represented the 

structure of a molecule of fHbp binding the human factor H (in orange) (adapted from [83]). (B) Phylogenetic 

distribution of fHbp by SplitsTree analysis of 258 different sub-variants present. The tree shows the clustering of the 

proteins in the three main variants (Var1, Var2 and Var3) and in the two subfamilies (A and B). The 5 most 

representative sub-variants for each variant are indicated. Length of the lines indicates genetic distance. 

The sequence of the fHbp gene in more than 7,000 clinical isolates currently present in public 

databases identified more than 860 different alleles, or peptides, of the protein that have been 

divided into three main variants (var1, var2, and var3) or two subfamilies (A and B, 

corresponding to variants 2/3 and 1, respectively) [72, 73], each of which can be further 
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distinguished in many peptide subvariants or subfamily groups 

(http://pubmlst.org/neisseria/fHbp/) (Figure 5B). In a global population of MenB the variants 1, 2 

and 3 are present in approximately 65, 25 and 10% of the isolates, respectively [84-87]. It has 

been demonstrated that fHbp proteins from different variant groups do not induce cross-

protection; in details, the antibodies raised against one fHbp subvariant are not able to protect 

against strains harboring a subvariant from a different variant group [72, 73]. 

Interestingly, the fHbp gene is also present in other species of the genus Neisseria, both 

commensals, N. cinerea (fHbp var1) and N. polysaccharea (often frame-shifted fHbp var3), and 

pathogenic, N. gonorrhoeae (fHbp var3) [88]. The gonococcal fHbp (Ghbp) is not able to bind 

the hfH and is not surface exposed due to the presence of a frameshift within the N-terminal 

region that impairs the lipoprotein signal motif [88, 89]. 

Although the fHbp gene is present in most circulating meningococcal strains, its levels of 

expression vary significantly between isolates [72, 73, 85, 90]. Moreover, recent studies have 

identified invasive isolates with frame-shift mutations which abrogate fHbp protein expression 

[72, 84, 91]. The fHbp gene was originally annotated as NMB1870 according to its location 

within the genome sequence of the strain MC58 [92]. Upstream and in the same orientation is 

cbbA, annotated as NMB1869, coding for a fructose-bisphosphate aldolase [93] (Figure 6). The 

annotation of fHbp is controversial: the start codon as deposited by The Institute for Genomic 

Research (TIGR) is located 19 bp downstream of the stop codon of the cbbA gene [92] (Figure 6, 

boxed ATG); whereas, the Sanger Centre positioned the start codon 139 bp downstream of it [94] 

(Figure 6, dash boxed ATG). In a later work, Masignani et al. [72] proposed a new annotation for 

the gene, in which the start codon is the GTG triplet 15 bp downstream the Sanger’s ATG (Figure 

6, bold GTG). Moreover, a putative ribosome binding site (AGGAG) maps at 7 nt upstream of 

the GTG triplet (Figure 6, underlined). 

 

http://pubmlst.org/neisseria/fHbp/
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Figure 6. fHbp locus in MC58 strain. Schematic representation of the locus of fHbp with its upstream cbbA gene 

and the transcripts generated from both promoters (upper panel). In the lower panel is reported the nucleotide 

sequence of the region under investigation in this study as it is in [72]. The 3’ region of cbbA is boxed in light grey 

and the 5’ region of fHbp is boxed in dark grey. The three proposed translational start sites of fHbp are indicated 

(boxed, dash boxed and in bold). The ribosome binding site AGGAG is underlined; the -35 and -10 elements of the 

PfHbp are indicated and underlined (dotted line). The transcriptional start site is in bold and underlined. The 

nucleotides pairing in the stem region of the Rho-independent terminator are underlined (dashed lines) as well as the 

binding site of the transcriptional factor FNR (dot-and-dash lines) and the putative Fur-box (thin dashed line). The 

site of insertion for the ATR element is indicated. 

Oriente et al. demonstrated that in the reference strain MC58 the transcripts of cbbA and fHbp are 

originated independently from the PcbbA and PfHbp promoters respectively, and that a bicistronic 

mRNA can originate from PcbbA, hence adding fHbp transcript [90]. The presence of the longer 

mRNA was predicted to be dependent on the strength of the Rho-independent terminator present 

within the cbbA-fHbp intergenic region (Figure 6, dashed line). Indeed, the analysis of the DNA 

sequence of this region in other meningococcal strains highlighted the presence of 

polymorphisms which might impair the correct palindromic stem-loop structure. A weak 



14 

  

terminator, as is it in MC58, would allow the read-through of the RNA polymerase from the 

upstream promoter, hence resulting in a bicistronic transcript [90, 95]. The -35 (TTGATG) and -

10 (TACCAT) elements of the PfHbp promoter were identified (Figure 6, dotted line) and 

interestingly, mutations in the -10 box (TACCGC) were associated with a low fHbp expression in 

the strain NM117 [90]. The analysis of a global panel of meningococcal isolates led to the 

identification of a subset of strains harboring an insertion element of 187 bp rich in A and T 

(ATR) downstream of the mapped fHbp promoter [72, 90, 95] (Figure 6). This sequence may 

affect fHbp expression in these strains either transcriptionally (by containing promoter or 

terminator regulatory sequences) or post-transcriptionally, as it will be transcribed in both fHbp 

transcripts and may affect mRNA stability [90]. 

During infection, N. meningitidis can invade diverse sites within the human host, hence is 

subjected to different environmental conditions and its ability to rapidly adapt its metabolism and 

cellular composition is essential for its survival [96]. 

The availability of iron varies within the human host and the presence of a putative Fur-box motif 

within the intergenic region of fHbp suggests an iron regulation of the gene when the bacteria 

encounter different niches [72] (Figure 6, thin dashed line). Indeed, Sanders et al. demonstrated 

that fHbp transcription is regulated by iron availability; in details, the majority of the strains 

expressed significantly less levels of fHbp when grown under iron depletion, while strains 

belonging to the CC32 were upregulated. Hence, they suggested that iron regulation is dependent 

on the genetic background of the strain, specifically the clonal complex [95]. The presence of the 

ATR-insertion element was associated with higher levels of fHbp transcription following growth 

in iron-replete media [95].  

One of the features of the inflammation process is the increase in temperature. The upregulation 

of factors involved in the immune evasion under these conditions (thermoregulation) would 

provide an advantage when the meningococcus passes from the nasopharynx (32-36°C) to the 

bloodstream (37°C) [97]. Loh et al. showed that the increase in temperature determines an 

increase in the fHbp protein amounts [98]. Secondary structures of the mRNA, thermosensors, 

would account for the thermoregulation, facilitating the access of the ribosome to the RBS at 

higher temperatures. The region proposed to be involved in this mechanism was the 5’UTR plus 

part of the coding sequence of fHbp (27 nt from the GTG start codon) (Figure 6) [98]. 
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N. meningitidis would be exposed to highly different partial pressures of oxygen as the bacteria 

move from the surfaces of the upper respiratory tract (21 kPa) to mucus membranes (0.4 kPa 

buccal fold pressure), blood (4 kPa central venous pressure), and cerebrospinal fluid (5 kPa) [99]. 

Under oxygen limitation meningococcus uses the fumarate and nitrate reductase (FNR) global 

transcription factor to induce sugar fermentation and denitrification pathways, utilizing nitrite and 

nitric oxide as electron acceptors [100, 101]. In the absence of oxygen FNR binds to DNA and 

activates target genes as a dimer containing a [4Fe-4S] cluster. This cluster dissociates in the 

presence of oxygen, destabilizing the dimer, with loss of FNR activity [101, 102]. Among the 

genes regulated by FNR there is fHbp [101]. The cbbA-fHbp intergenic region contains a binding 

site for FNR (TTGAC-N4-CTCAT) (Figure 6, dot-and-dash line) and studies demonstrated the 

FNR-dependent upregulation of fHbp in the absence of oxygen [90]. Notably, the response of the 

PfHbp was FNR-dependent and apparently, the expression of cbbA decreased under oxygen 

limiting conditions, in an FNR-independent manner [90, 95]. Moreover, the FNR-binding site 

sequence was found to be conserved in the panel of strains analyzed, indicating a conserved 

oxygen-response regulation among isolates [90]. These evidences suggest that in 

microenvironments where oxygen is limiting, such as the bloodstream, N. meningitidis ensures 

the expression of fHbp. The findings that fHbp expression is induced during growth in human 

blood [70, 103] and that antibodies against fHbp can be recovered from sera of convalescent 

patients and from carriers [104, 105] provide additional evidences supporting the pivotal role of 

fHbp in invasive meningococcal disease. 

 

 Meningococcal vaccines 2.5

Due its rapid progression and the difficulties to diagnose it [6, 10], the most effective option to 

prevent meningococcal disease is vaccination. No broadly protective vaccine is currently 

available to provide protection against all serogroups of N. meningitidis. Capsular 

polysaccharides have been successfully used as antigens to produce polysaccharide and 

glycoconjugate vaccines against serogroups A, C, W135 and Y, and monovalent, bivalent, and 

quadrivalent vaccines have been developed and licensed [106]. In contrast, the group B capsule 

polysaccharide is not suitable as vaccine antigen because it consists of a homolinear polymer of 
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α(2→8)N-acetyl neuraminic acid, which is structurally similar to the sialic acid found in human 

neural tissue, hence is poorly immunogenic in humans and may elicit auto-antibodies [107, 108]. 

Therefore, efforts to develop a vaccine against meningococcus serogroup B (MenB) focused 

mainly on non-capsular antigens, such as LOS or proteins. In order to control outbreaks caused 

by specific MenB strains vaccines composed of detergent-extracted Outer Membrane Vesicles 

(dOMV) have been successfully employed in Norway [109], Cuba [110], Chile [111] and New 

Zealand [112]. The process of detergent extraction removes the toxic LOS, but also other 

desirable antigens present in the OMVs, such as lipoproteins. Consequently, PorA results to be 

the immuno-dominant antigen [113, 114]. Because of PorA antigenic variability [115], the 

immune response elicited is effective only against strains expressing the same PorA serosubtype. 

Therefore, the breadth of coverage provided by dOMV vaccine is limited. The advent of the 

genomic era and the availability of whole genome sequences have contributed to radically change 

the approach to vaccine development. Indeed, the in silico approach named Reverse Vaccinology 

(RV) aims to identify surface-exposed non-capsular antigens that are (i) antigenically conserved 

among strains and (ii) elicit a bactericidal serum response. RV led to the development of the 

recombinant protein vaccine Bexsero® (former known as 4CMenB) [116, 117]. This vaccine 

contains five antigens formulated together with the dOMV component from the NZ98/254 strain 

[114]. The antigens are NadA [54, 118], and two recombinant fusion proteins of fHbp [72, 119] 

and NHBA [71, 120] fused to the conserved meningococcal gene products NMB2091 and 

NMB1030, respectively. NadA, fHbp and NHBA represent the major antigens that were selected 

through RV, based on their ability to induce broad protection [116]. The other two antigens, 

NMB2091 and NMB1030, are well conserved in N. meningitidis, but less functionally 

characterized than the other antigens [88, 121, 122]. They were included in the vaccine 

formulation since they increase immune responses to the main vaccine antigens when present as 

fusion proteins with the respect of the individual antigens [116]. Bexsero was licensed in Europe 

in 2013 and in the U.S. in 2015, following its progression through clinical trials that have 

demonstrated its safety [123-125] and its efficacy in inducing a protective immune response in 

infants, children, adolescents and adults against the majority of MenB strains [126-132]. 

The other available vaccine against N. meningitidis serogroup B is Trumenba® and it was 

licensed in the U.S. in 2014 for a target population of adolescents and young adults. It is a 
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recombinant protein-based vaccine composed of equal amounts of two variants, subfamily 

A05/var3.45 and subfamily B01/var1.55, of lipidated fHbp [73]. A preclinical study suggested a 

good breadth of coverage [133] and through a phase I clinical trial was assessed its tolerability in 

adults, adolescents and young children [133]. However, it is not suitable for use in infants 

considering that it consists of purified lipoproteins known as TLR-2 agonists [134]. 

 

 Vaccine coverage prediction 2.6

In 1969 Goldschneider showed a correlation between resistance to meningococcal meningitis and 

the presence of bactericidal antibodies in the serum [13]. This presence is determined by using 

the Serum Bactericidal Assay (SBA) in the presence of human complement (hSBA), which is 

widely accepted as a surrogate marker of protection against meningococcal disease [13, 135]. The 

employment of hSBA for evaluating vaccine effectiveness to kill meningococcal circulating 

strains presents some issues, because it requires large amounts of reagents not always of easy 

access, especially in the case of infant serum, for which only small volumes are available. 

Moreover, the output of the analysis is due to the cumulative effect of the entire set of antibodies 

present within a serum sample, hence the individual contribution of each antigen of the vaccine is 

not easily understandable. This is especially the case of the multicomponent vaccine against N. 

meningitidis serogroup B, Bexsero, for which a novel assay, the Meningococcal Antigen Typing 

System (MATS), has been developed [136] (Figure 7). This system allows the simultaneous 

assessment of both the antigenic cross-reactivity and the level of expression of the surface-

exposed antigens of an unknown N. meningitidis isolates with the respect to reference MenB 

strains for a specific antigen. Given the high variability of PorA, the sequencing of the porA locus 

and the determination of its subtype are sufficient for determining whether a strain would be 

killed: only strains carrying the same subtype as the one present in the vaccine, PorA P1.4, are 

efficiently killed by Bexsero-induced immune sera. MATS evaluates the protection induced by 

the other recombinant antigens, fHbp, NHBA and NadA, by means of ELISA. A suspension of 

bacteria prepared from an overnight growth on chocolate agar is treated with detergent to extract 

the capsule and expose the antigens and is tested in a MATS ELISA plate, one for each 

recombinant antigen, which is coated with antibodies raised against the specific antigen. Results 
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of the ELISA are compared to the results obtained for the reference strain and the output of the 

MATS, the Relative Potency (RP), correlates with the hSBA and predicts if the strain tested 

would be killed by the antibodies elicited by immunization with Bexsero. For each one of the 

antigens, RP thresholds values for antibodies-mediated killing of MenB strains were determined 

(Positive Bactericidal Threshold - PBT -). MATS can be employed for the evaluation of large 

panel of strains, allowing the determination of potential strain coverage by Bexsero in a target 

geographic region [137-140]. Coverage prediction by MATS is used to support the licensing of 

Bexsero around the world. According to MATS, it has been estimated that 78% of circulating 

MenB strains in five European countries would have at least one antigen rated above the PBT and 

therefore would be covered by Bexsero. 

 

 

 

Figure 7. Schematic of the MATS ELISA method. (A) MenB bacteria are grown overnight on chocolate agar. (B) 

A suspension of bacteria taken from the plate is prepared to a specified OD600. (C) Detergent is added to the 

suspension to extract the capsule and expose the antigens. (D) Serial dilutions of extract are tested in the MATS 

ELISA. A specific capture antibody (yellow) binds one of the antigens (example: fHbp, blue) from the extract, which 

is then detected with a specific biotin-labeled antibody (yellow and purple) and a streptavidin–enzyme conjugate 

(green and gold). (E) Plates are read at 490 nm in an ELISA reader. (F) Results are calculated by comparing the 

curve of OD490 vs. dilution obtained with the serially diluted unknown strain to a serially diluted reference strain 

tested in the same ELISA plate (from [136]). 
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 Aims of the study 2.7

The aim of this work is to understand the reasons for the diverse fHbp expression levels between 

circulating meningococcus strains and their implications for vaccine coverage. Therefore, this 

work is based on the investigation of four different aspects: 

 

- Use of selected reaction monitoring mass spectrometry to quantify fHbp levels in a panel 

of representative strains in an antibody-independent manner. 

- Identify the sequence determinants which may drive the diverse levels of fHbp expression 

in circulating strains. 

- Investigate the differential regulation of expression of circulating strains with different 

control sequence determinants. 

- Generate a predictive model of fHbp expression based on sequencing of the locus which 

may be important for evaluation of fHbp-based vaccine coverage. 

 

 

  



20 

  

3. Results 

3.1. fHbp levels correlate with bactericidal killing and serum resistance 

Factor H binding protein (fHbp) is an important virulence factor of Neisseria meningitidis and a 

protective antigen able to elicit a robust immune response in preclinical and clinical testing. As 

such fHbp is a component of two vaccines against serogroup B meningococcus (MenB). The 

fHbp gene is present in most circulating meningococcal strains, however the level of protein 

expression varies considerably among isolates [85, 90]. 

To investigate the relationship between fHbp amounts and susceptibility to fHbp antibodies-

mediated killing in immune serum, in the so-called serum bactericidal assay (SBA), we generated 

a recombinant strain with inducible fHbp expression. For this we used an MC58 ΔfHbp strain 

complemented with a fHbp gene expressing var1.1 under the control of an isopropyl β-D-1-

thiogalactopyranoside (IPTG)-inducible promoter. Following induction with increasing IPTG 

concentrations bacteria expressing incremental amounts of fHbp were obtained. The increasing 

amount of total protein was detected by Western blot (WB) and determined by selected reaction 

monitoring mass spectrometry (SRM-MS) (Figure 8A and Table 1, respectively). While with WB 

it was possible to detect two faint bands at the expected molecular weight of fHbp for the strains 

grown either without IPTG or with 0.0075 mM IPTG, the mass-spectrometry analysis did not 

detect any signal above the lower limit of quantification (LLOQ), which was calculated as 108 pg 

fHbp/µg total extract. Whereas, in the case of the wild type strain and the complemented strain 

induced with 0.03 and 0.1 mM IPTG the intensities of the bands corresponded to comparable 

fHbp amounts as measured by SRM-MS. Moreover, the differential fHbp expression on the 

bacterial surface was confirmed by Fluorescence Activate Cell Sorting (FACS) analysis (Figure 

8B). The fluorescent intensities measured increased comparably to the increased level of 

expression measured in the WB, however the maximum surface fluorescence was measured in 

the wildtype strain albeit that the complemented strain induced with 0.1 mM IPTG exhibited 

higher bands of fHbp expression by WB. The reason for this was not investigated further. 

We then measured the ability of anti-fHbp antiserum from mice to mediate complement-

dependent killing of the isogenic bacteria expressing different levels of fHbp on the surface 
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through the SBA. This assay, which measures the dilution of the immune serum which kills 50% 

of the bacteria or the bactericidal titer, was performed in the presence of antibodies against the 

homologous var1.1 and rabbit complement. Bacteria expressing levels below LLOQ were not 

killed (titers < 16), suggesting that the amount of protein was not sufficient to mediate killing of 

the recombinant strains by homologous serum (Table 1). Bacteria induced with 0.03 and 0.1 mM 

IPTG exhibited high bactericidal titers of the anti-fHbp antiserum, 4096 and 16384, respectively. 

These results suggest that there is a certain minimal threshold of expression of fHbp on the 

surface necessary for efficient killing by fHbp-immune serum, and that above this threshold 

higher levels induce more effective killing. 

After showing that specific fHbp Ab-mediated killing of the strains in the presence of serum as 

source of complement was correlated with fHbp amounts exposed on the surface of the bacteria, 

we investigated the influence of the protein to mediate generic evasion from complement-

mediated killing. As stated in the introduction, it has been demonstrated that fHbp binds human 

Factor H (hfH), a key down-regulator of the complement alternative pathway, thus enabling the 

bacterium to evade complement-mediated killing and to survive in human blood [35, 141]. As a 

consequence, meningococci with less hfH bound to their surface are more susceptible to 

complement-mediated bacteriolysis [142]. The same set of strains used with the SBA assay was 

incubated for three hours with 40% human serum in the presence of the corresponding IPTG 

concentrations and samples were plated every 60 min for the CFU count. Figure 8C reports the 

results of a single serum resistance experiment; however, three replicates were performed and the 

trend of the curves was similar (data not shown). As shown, the survival of the strains after three 

hours of incubation reflected the profile of expression on the surface of the bacteria observed by 

FACS. Therefore, fHbp amounts were correlated with the ability of the bacterium to survive 

within human serum from non-immune individuals (individuals which had not received a vaccine 

containing fHbp antigen), while the amounts of fHbp was inversely correlated to the ability of the 

strain to survive fHbp antibody- mediated killing by mice immune serum. 
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Figure 8. Quantification of fHbp in recombinant MC58 strains. (A) Western blot analysis with anti-fHbp var1.1 

polyclonal mouse antisera on MC58 WT wild type, MC58 ΔfHbp, and MC58 ΔfHbp strain complemented with fHbp 

var1.1 induced with increasing concentrations of IPTG (0, 0.0075, 0.03, and 0.1 mM IPTG). (B) FACS analysis 

performed using polyclonal anti-fHbp var1.1 mouse antisera against the same strains in the same conditions analyzed 

by Western blot. (C) The level of fHbp expression influences meningococcal survival in human serum. 10
4
 bacterial 

CFU of the MC58 strains cited above were incubated with 40% human serum, in the presence of increasing 

concentrations of IPTG. Bacterial survival was monitored for 180 min. Red: MC58 wild type; gray: MC58 ΔfHbp; 

blue: MC58 c_fHbp v1.1 (IPTG 0 mM); green: MC58 c_fHbp v1.1 (IPTG 0.0075 mM); orange: MC58 c_fHbp v1.1 

(IPTG 0.03 mM); cyan: MC58 c_fHbp v1.1 (IPTG 0.1 mM). 

 

Table 1. SRM-MS data and SBA titers obtained for MC58 expressing increasing amount of fHbp var1.1 as a 

result of induction with different IPTG concentrations. Baby rabbit serum was used as source of exogenous 

complement. Positive titers are considered as titers >16. *An anti-serogroup B capsular monoclonal antibody (SEAM 

12) was used as control of the experiment. 

 

 

 

 

Strain
IPTG concentration, 

mM

fHbp amount, pg/µg 

total extract

Anti-

var1.1

Anti-

capsule*

MC58 c_fHbp 0 <LLOQ <16 >65536

MC58 c_fHbp 0.0075 <LLOQ <16 >65536

MC58 c_fHbp 0.03 526.10 4096 >65536

MC58 c_fHbp 0.1 856.08 16384 >65536

SBA results
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3.2. Sequence variability within the cbbA-fHbp intergenic region may 

account for the differential level of fHbp expression observed in a 

selected panel of 105 strains 

It has been well documented that natural circulating strains of meningococcus exhibit very 

different levels of fHbp protein production [85, 90]. Given the importance of the surface 

expression of fHbp for the fitness of the bacterium and its susceptibility to fHbp-antibodies, we 

focused our attention on the possible genetic factors leading to this variability in expression 

levels of fHbp in circulating strains. A panel of 105 isolates was selected composed of strains 

expressing each of the variants 1, 2 and 3. Within each variant, 35 strains were selected to reflect 

the relative frequencies of the five most prevalent fHbp subvariants (var1.1, 1.13, 1.14, 1.15 and 

1.4 for variant 1; var2.16, 2.19, 2.21, 2.24 and 2.25 for variant 2; var3.29, 3.30, 3.31, 3.45 and 

3.47 for variant 3), as well as the genetic diversity of serogroup B meningococcal strains. 

Likely most regulatory elements involved in the control of fHbp expression identified to date are 

found within the intergenic region between fHbp and its upstream gene cbbA, and include a 

transcriptional terminator directly downstream of the cbbA gene, a FNR transcriptional factor 

binding site, a dedicated fHbp promoter [90], and a region downstream of the transcriptional start 

site that has been hypothesized as an RNA thermosensor [98] (Figure 9). 

To investigate the sequence variability within the intergenic region upstream of the fHbp gene, 

this region was amplified by PCR and sequenced for the 105 strains under investigation. We 

analyzed a region spanning from the stop codon of cbbA to 27 nt downstream of the putative 

initiation codon mapped by Masignani and collaborators [72] to include the nucleotides of the 

proposed region in the thermoregulation of fHbp [98] (Figure 9). 
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Figure 9. Schematic representation of the region under investigation and regulatory elements previously 

identified. The cbbA and fHbp genes are represented in grey and dark grey, respectively, with the possible 

transcripts of fHbp identified by Oriente and colleagues [90] depicted above the genes. In the lower panel the 

intergenic region is enlarged and the regulatory elements are listed and represented as cartoons. 

Two strains belonging to subvariant 2.19, LNP24622 and M07-0240852, contained an insertion 

sequence (IS30) located 73 nt downstream from the stop codon of cbbA and were not considered 

in the further multiple sequence alignment analysis. A phylogenetic tree was constructed from the 

multiple sequence alignment of the 103 sequences by Unweighted Pair Group Method with 

Arithmetic Mean (UPGMA) method. The tree allowed the identification of 8 major promoter 

clades (Figure 10A). Mapping the fHbp coding sequence variants of each strain onto this tree 

indicated that variant 1 and variant 3 expressing strains have intergenic sequences that segregate 

largely into 4 and 3 diverse promoter clades, respectively, that interestingly do not cluster 

together according to the coding sequence. In fact, var3 sequences present in clades VI and VII 

are similar; whereas, clade VIII is genetically closer to clades IV and I, which are largely 

associated with var1, and conversely clade II is genetically distinct from the other var1-associated 

clades. Whereas, most of variant 2 sequences have intergenic regions grouped into the same 

promoter clade (Figure 10A). Most of the strains of var1 were associated to clades I to IV. As 

shown in Figure 10B, clade I contained mostly var1.1, clade II contained mostly var1.15, clade 

III contained mostly var1.4 and clade IV contained mostly var1.13 and 1.14. Interestingly, most 

of the strains harboring var2, irrespective of their subvariant, were found in clade V (Figure 10B). 
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Finally, clades VI, VII and VIII contained strains expressing fHbp subvariants 3.45, 3.31 and 

3.47, respectively. This suggests that for var1 and var3, each subvariant can generally be 

associated with a single promoter clade, in line with the close linkage of the sequences; however, 

this is not always the case because within the same clade more variants can be found, as seen in 

Figure 10B. 

Selected Reaction Monitoring Mass Spectrometry (SRM-MS) was employed for the targeted 

quantification of fHbp in the panel of 105 strains [143]. Quantification of fHbp was performed on 

lysates of the 105 strains grown overnight on chocolate agar plates and ninety of them provided a 

SRM signal above the lower limit of quantification (LLOQ), which was calculated as 108 pg 

fHbp/µg total extract. Overall these results showed that the level of fHbp expression was indeed 

considerably variable across the 105 strains. When the absolute amount of fHbp measured in each 

strain was plotted against the clades of the intergenic region, we found that the protein expression 

was associated with the promoter clade (Figure 10C). Clades I and II, containing mostly var1.1 

and var1.15, showed the highest median SRM-MS quantities (411.93 and 608.73 pg/µg, 

respectively), while 7 out of 13 strains associated with clade VI and carrying fHbp var3.45 had 

fHbp values below the LLOQ (113.57 pg/µg). The other clades associated with variant 1 fHbp 

(clades III and IV) had medians of 258.8 and 152.21 pg/µg, respectively; whereas clades VII and 

VIII, both associated to var3 had median values of 148.64 and 136.92 pg/µg, respectively. 

Interestingly, isolates containing var2 fHbp from all the 5 subvariants included in this panel of 

strains were within clade V and had very similar and low amounts of the protein (156.17 pg/µg). 
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Figure 10. Association between promoter clades and fHbp variants and subvariants. (A) UPGMA-generated 

phylogenetic tree obtained from the multiple sequence alignment of the cbbA–fHbp intergenic region of the 103 

strains under investigation. Clades I to VIII were numbered progressively to reflect the prevalence of the main 

subvariants included. Association between clades and var1, var2, and var3 fHbp is indicated in red, blue, and green, 

respectively. (B) Histogram showing association of clades I to VIII with specific fHbp subvariants. Subvariants 

associated with each clade are indicated above each bar. (C) Boxplots showing the distribution of SRM-MS values 

of different strains clustered by promoter clades. Thick bars indicate the median SRM-MS value for each group, each 

box delimits the interquartile range, and the whiskers mark the 95% frequency intervals of SRM-MS values. 

 

3.3. Identification of the predominant fIR type elucidates the major genetic 

differences between promoter clades 

Within each promoter clade we identified the most representative unique sequence (here named 

as fHbp Intergenic Region - fIR - type) (Figure 11A). Clade I contained nine out of 14 strains 

with an identical sequence, the fIR7. Polymorphisms in this region were found mostly in the 

region proposed as an RNA thermosensor (Figure 11B). Within clade II, four strains harbored the 

same sequence, fIR type 1, whereas the other three strains contained SNPs in the Rho-

independent terminator region and in the spacer between the -35 and -10 boxes. Interestingly, all 

the strains within clade III had a conserved intergenic region, fIR2. In the case of clade IV two 

different intergenic region types were taken into account, fIR types 3 and 6, since there was no 

clear representative sequence (five and six strains for fIR 3 and 6, respectively). The two 

intergenic regions differed only for two SNPs located in the RNA thermosensor. Surprisingly, 

most of the strains within clade V shared the same sequence, fIR4, with the exception of three out 

of 31 strains that contained SNPs in the -35 box or in the RNA thermosensor sequence. Both 

clades VI and VII contained very diverse sequences and several SNPs were observed within the 

Rho-independent terminator or the RNA thermosensor sequences; the most representative 

sequences were fIR types 20 and 15, respectively. Conversely, all strains within clade VIII 

maintained the same intergenic region, fIR16. The nine fIR types identified represent 77% of the 

strains under investigation; since we are considering only identical sequences, the number of 

strains grouped into the category “Others” is 23%.  

The data on quantification of fHbp by SRM-MS were replotted in relation to the fIR types for 

each strain (Figure 11C). We then evaluated for both boxplots (Figure 10C and Figure 11C) the 

interquartile range (IQR), which is the difference between the third and the first quartile of the 
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boxplot and an indicator of the variability of the data set (Table 2). By comparing the IQR 

obtained when plotting fHbp amounts with the respect of promoter clades or fIR sequence types, 

the implementation of the fIR classification allowed us to restrict the range of variability of fHbp 

expression levels, with the exception of fIR1 and 7. Interestingly, this was the case especially of 

strains belonging to var3 which showed the higher degree of variability within the DNA sequence 

of the fHbp intergenic region. Notably, the two intergenic regions, fIR3 and 6, that cluster within 

the same promoter clade and contained polymorphisms only within the RNA thermosensor 

region showed significantly different levels of expression. Therefore, while fewer strains might 

be included, this analysis would be more accurate and precise. 
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Figure 11. Association between fHbp intergenic region types and fHbp variants. (A) Phylogenetic tree obtained 

from the multiple sequence alignment of the cbbA–fHbp intergenic region of the 103 strains under investigation. 

Promoter clades from the previous analysis are represented as colored sectors inside the tree. Colors of the fIR types 

reflect the association with var1, var2, and var3 fHbp (shades of red, blue, and green, respectively). (B) Multiple 

sequence alignments of each clade. The most representative sequence (the fIR type) is indicated on the right. Green 

areas indicate nucleotides with 100% identity, and variable regions are indicated in yellow. Polymorphisms are 

indicated as Y (pyrimidine, C or T), R (purine, A or G), K (keto, G or T), M (amino, A or C), S (strong, C or G), and 

N (any nucleotide). Gaps are indicated with “-”. Within clade V one sequence contains a nucleotide (T) at position 

+122 of the alignment that is not present in any of the other sequences analyzed. At position +128 of the alignment 

the presence of the ATR insertion element in clade III is indicated. (C) Boxplots showing the distribution of SRM-

MS values of different strains clustered by sequence types. Thick bars indicate the median SRM-MS value for each 

group, each box delimits the interquartile range, and the whiskers mark the 95% frequency intervals of SRM-MS 

values. Expression values of the strains belonging to the clades but not to the fIR types (Others) are plotted as grey 

points and are not considered in the boxplot. 

 

Table 2. Values calculated from the boxplots in Figure 10C and in Figure 11C. Median, first quartile and third 

quartile of fHbp amounts plotted according to either the clades or the fIR sequence types were extracted from the 

boxplots showed above. IQR, interquartile range, is calculated as third - first quartiles and is an indication of the 

variability of the set of data. The larger the IQR, the more variable the data set is. 

In an attempt to elucidate the differences at the DNA level that might be responsible for the 

variability in fHbp amounts produced by bacteria, we aligned the sequences of the nine intergenic 

regions, putting in evidence the regulatory elements therein, and looked for SNPs that could be at 

the basis of the differences in fHbp expression (Figure 12). In details, six fIR types maintained 

Median
First 

quartile

Third 

quartile
IQR

clade I 411,93 340,22 521,16 180,94

fIR7 459,30 326,66 564,97 238,31

clade II 608,73 440,92 726,70 285,78

fIR1 704,31 547,13 940,56 393,44

clade III 258,80 159,28 324,49 165,21

fIR2 258,80 159,28 324,49 165,21

clade IV 237,13 152,21 326,85 174,63

fIR6 324,87 293,01 375,86 82,85

fIR3 166,53 128,41 197,68 69,27

clade V 156,17 135,45 198,16 62,71

fIR4 155,94 135,55 194,55 58,99

clade VI 113,57 108,00 138,58 30,58

fIR20 108,00 108,00 108,00 0,00

clade VII 148,64 120,41 243,84 123,43

fIR16 137,72 108,00 154,63 46,63

clade VIII 136,92 108,00 215,54 107,54

fIR15 136,92 108,00 215,54 107,54
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the same Rho-independent terminator sequence represented by a ‘perfect’ palindromic 20 bp 

sequence followed by 5 Ts [144]; whereas the other three, fIR1, 7 and 16, contained multiple 

SNPs within one of the palindromic sequences. Interestingly, when we estimated the free energy 

predictions of each one of the Rho-independent terminator sequences of all the intergenic regions 

[145], fIR types 1, 7 and 16 had very low or medium free energy (ΔG = -13.0; -14.8 and -24.7, 

respectively) (Figure 13D, C and B, respectively); whereas, the other fIR types contained the 

same strong terminator with ΔG = -27.3 (Figure 13A). Indeed, through a visual analysis of the 

secondary structures of the RNA [146] it was possible to locate the identified SNPs within the 

stem of the terminator; their presence would impair complementarity of base-pairing within the 

palindromic stem and possibly its structure and function, and may result in less efficient 

termination and hence read through of the RNA polymerase from the upstream gene cbbA. The 

sequences of both the FNR binding site and the -35 box were 100% conserved through all fIR 

sequence types; however, the outlier strain M08-0240104, belonging to clade V and differing 

from fIR4 for solely a SNP in the -35 box had the highest absolute fHbp expression (1681.25 pg 

fHbp/µg total extract). Three different SNPs were identified within the spacer between the -35 

and -10 boxes. Differences in spacing between -10 and -35 elements have been associated with 

different promoter strengths. Moreover, two alleles of the -10 box were found, TACCAT or 

TACCGC. Interestingly, two out of three sequences were associated with a weak or medium 

Rho-independent terminator. Furthermore, an insertion element of 187 bp rich in A and T (ATR) 

[72, 90, 95] was identified in the fIR2, 14 nt downstream the mapped RNA transcriptional start 

site [90]. The highest degree of variability was observed within the long region described as 

putative RNA thermosensor [98]. Two polymorphisms at positions 115 (C/T) and 142 (T/C) of 

the multiple sequence alignment segregates with the -10 alleles TACCGC/TACCAT, 

respectively. Notably, a polymorphism (T/C) was found just downstream the putative ribosome 

binding site (AGGAG). Only two polymorphisms segregate fIR types 3 and 6, one in position 

126 (T/C) and one in 151 (T/C). In summary, by identifying the major sequence type within each 

of the clades we have identified the main genetic polymorphisms differentiating one clade from 

the next which may determine the differences in fHbp expression levels seen from strains 

harbouring these intergenic sequences. 
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Figure 12. Multiple sequence alignment of the nine fIR types. The consensus sequence is at the top of the aligned 

sequences. Dots represent conserved positions and mismatches are indicated with nucleotides. The regions of the 

regulatory elements are indicated and boxed in shades of grey. Palindromic sequences of the stem of the terminator 

are dashed. The mapped FNR-binding site is indicated as dotted lines. The insertion sequence rich in A and T (ATR) 

is boxed. The transcriptional start site is indicated at position 112 and the RBS –AGGAG– and translational start site 

GTG at position 143 are underlined. 
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Figure 13. Schematic representation of the secondary structures of the Rho-independent terminators. The 

structures of the terminators with ΔG = -27.3 (A), -24.7 (B), -14.8 (C) and -13.0 (D) are represented. SNPs from the 

strong terminator sequence are highlighted in orange. 
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3.4. fIR sequence type is predictive of in vitro expression levels in an 

isogenic background 

To confirm the hypothesis that the amount of fHbp produced by the different bacterial strains is 

determined by the DNA sequence of the intergenic region of fHbp we generated a panel of 

isogenic recombinant strains where the same fHbp variant was under the control of the nine fIR 

types identified (Figure 14A). The intergenic regions under investigation were amplified and 

cloned upstream of the coding sequence (CDS) of fHbp var1.1 into a vector carrying an antibiotic 

selection marker and flanked with regions for homologous recombination for replacement within 

the wildtype locus. The sequences of each one of the constructs were confirmed by Sanger 

method. Upon transformation of the MC58 ΔfHbp strain, an isolate for each fIR type which 

drives the expression of the var1.1 was selected and employed for further analyses (Figure 14A).  

The panel of mutants was grown in gonococcus (GC) medium till an OD600 = 0.5 and total RNA 

was extracted. The expression levels of fHbp and its upstream gene cbbA in the set of generated 

mutants were tested by qRT-PCR, normalized to the reference gene 16S RNA and compared to 

the strain containing the fIR7 (Figure 14B). Furthermore, the presence of a possible bicistronic 

transcript generated by the read through of the RNA polymerase from cbbA was assessed using 

primers to amplify the inter-transcript region from right upstream of the Rho-independent 

terminator and upstream of the dedicated fHbp promoter transcriptional start. As shown by Figure 

14B, the level of transcripts in fIR1 resulted significantly higher whereas in fIR4, fIR15 and 

fIR20 significantly lower; however, in general the mRNA levels of cbbA were relatively 

comparable in most of other strains. Only in the case of fIR types 1, 7 and 16 was it possible to 

detect any signal from the inter-transcript region (Figure 14B, medium panel). These results 

indicate that read through from cbbA is possible only in strains belonging to fIR types 1, 7 and 

16, suggesting the efficiency of the Rho-independent terminator is low in these strains, in line 

with the reduced complementarity within the stem and reduced free energy calculated for the 

Rho-independent terminator structure. Conversely, mRNA levels of fHbp transcript were more 

variable and the fIR1 and fIR7 strains in which the read through was observed showed the 

highest levels of fHbp transcript, together with fIR6 mutant. fIR3, fIR16 and fIR15 showed 

intermediate levels of transcript which were statistically lower than fIR7. The lowest expression 
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levels of fHbp were detected where transcription was under the control of the fIR types 2, 4 and 

especially 20. Taken together, these results suggest that the different fIR types result in distinct 

differences in transcript levels of fHbp. Given the fact that the genetic background of the 

recombinant strains is equal, the variability of expression is dependent only on the different 

sequences of the region upstream of fHbp. Three fIR types give rise to a read through from the 

upstream cbbA bicistronic transcript as well as a likely fHbp monocistronic from the fHbp 

dedicated promoter. A trend for higher levels of mRNA was seen for cbbA and for the inter-

transcript in fIR1 strain suggesting that the bicistronic transcript is more stable than a 

monocistronic cbbA transcript. The lowest mRNA level was measured for fIR20 which has the 

TACCGC allele for the -10 box, and unlike the other two fIR types (fIR1 and fIR16) this 

intergenic sequence does not result in read-through from the cbbA upstream transcript. 

 

 

 

Figure 14. fIR sequence type is predictive of in vitro expression levels in an isogenic background. (A) 

Schematic representation of the isogenic recombinant mutants generated. The cbbA and fHbp genes are represented 

in grey and dark grey, respectively; whereas, the intergenic regions are in light grey. (B) Results of the qRT-PCRs 
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done on cbbA (upper panel), the intergenic region (medium panel) and fHbp (lower panel). Data are indicated as 

medians and standard deviations of three biological replicates. Values of the single replicates are normalized to the 

reference gene 16S RNA and to the strain fIR7. Statistical significance is calculated with the two-way ANOVA. 

We tested by Western blot (WB) the protein expression levels in the set of mutants generated, 

grown overnight in GC agar plates (Figure 15). The intensities of the bands at the expected 

molecular weight reflected the trend of expression as measured by qRT-PCR. By considering the 

expression levels it was possible to identify four different groups, with mutants containing fIR 

types 1 and 7 expressing the most (group 1) and strains bearing fIR4 and 20 the less (group 4); 

whereas, fIR6 and 16 strains (group 2) produced less protein than group 1, but more than group 3 

(fIR types 2, 3 and 15). Notably, the two polymorphisms that segregate fIR types 3 and 6, one in 

position 126 (T/C) and one in 151 (T/C), appear to result in distinct level of expression although 

the mechanism remains unclear. The intensities of the bands in strains where fHbp was under the 

control of var2 and var3-associated fIR type (fIR4 for var2, fIR16, 15 and 20 for var3) were 

higher than what we would expect from the proteomic analysis on natural strains. Altogether 

these results indicate that the sequence of the fHbp intergenic region is associated with a range of 

protein produced by the bacteria but other factors are involved in the expression. 

 

 

Figure 15. fHbp protein levels of the isogenic recombinant mutants. Western blot analysis on the set of mutants 

generated. fHbp is detected with a polyclonal serum raised against var1.1. The serum used to detect fHbp in the WB 

analysis also recognized unrelated protein with higher molecular weight and this cross-reactivity was used as an 

internal loading control (*). 

 

3.5. Influence of the variant sequence on the expression levels of fHbp 

The observed discrepancies might be caused by the different protein stability of the three fHbp 

variants [147, 148]. To investigate this hypothesis we generated a set of recombinant strain where 
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different subvariants of fHbp under the control of the same IPTG-inducible promoter were 

incorporated in a different locus within the MC58 ΔfHbp background (Figure 16A). An analysis 

on the steady-state levels of the fHbp RNA was performed by qRT-PCR on samples extracted 

from strains grown in GC medium with 1mM IPTG (Figure 16B). Despite a high variability 

between replicates, the transcript expression levels of the different strains were found to be 

stable, with the exception of the mutant expressing var1.1 which was significantly higher, 

indicating similar quantities of RNA generated. Furthermore, we quantified by SRM-MS the 

fHbp amounts produced by these strains grown overnight on chocolate agar plates with 1mM 

IPTG. Strains expressing var1.1 and var1.14 contained more fHbp than strains carrying var2 and 

var3 (Figure 16C). Therefore, from the same levels of transcripts, different amounts of protein 

were generated. Taken together these data suggest a role of the fHbp coding sequence either in 

the stability of the protein or in its translation efficiency. 
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Figure 16. Influence of the variant sequence on the expression levels of fHbp. (A) Schematic representation of 

the isogenic recombinant mutants generated. The IPTG-inducible promoter is colored in grey. fHbp subvariants are 

colored in red, blue or green according to their variant group 1, 2 or 3, respectively. Results on the expression levels 

of fHbp as measured by qRT-PCR (B) and SRM-MS analyses (C) are reported. Values on the RNA levels are 

normalized to the reference gene 16S RNA and to the MC58 wt strain grown till OD600 = 0.5 in GC with 1mM IPTG 

(data not shown). Statistical significance is calculated with the two-way ANOVA. 

 

3.6. SNPs that regulate fHbp expression 

To decipher the influence on the fHbp expression levels of the major genetic determinants 

identified between the fIR types (Figure 12) we mutagenized the intergenic region of fHbp in the 

MC58 background by site-directed mutagenesis and generated a series of isogenic recombinant 

strains (Figure 17A) differentiating uniquely by specific polymorphisms. We modified the 

sequence of the wildtype fIR7 intergenic region and the substitution of a single nucleotide within 



38 

  

the stem region of the terminator was sufficient to restore a correct base pairing in the stem, 

increasing its strength from ΔG = -14.8 to -27.3, for testing of the ‘weak’ and ‘strong’ terminator 

hypothesis. Both alleles of the -10 box (TACCAT or TACCGC) were generated in either the 

weak or the strong terminator background. In addition, all the four different variants of the spacer 

region were generated in the promoter with the strong terminator. Finally, in order to investigate 

whether the -35 SNP identified in the var2/clade V outlier strain M08-0240104 (that produced the 

highest amount of fHbp = 1681.25 pg fHbp/µg total extract observed in the proteomic analysis), 

we generated an isogenic strain with this polymorphism in the strong terminator background. The 

expression levels of the protein in the set of mutants generated were then tested by Western blot 

analysis (Figure 17B). No protein was detected at the expected molecular weight in the fHbp 

knockout strain (ΔfHbp). The in locus-complementation of fHbp with the fIR7 wild type 

(including the weak terminator and TACCAT -10 determinants) upstream region sequence and 

the downstream chloramphenicol resistance cassette restored the protein expression to the wild 

type levels (cfHbp versus wt). Notably, no differences in the band intensities were observed 

between the two alleles of the -10 box in the weak terminator-background (cfHbp [TACCAT] 

versus cfHbp -10 box [TACCGC]). When the wild type terminator (weak) was substituted with 

the mutated terminator with higher free energy predictions within the stem loop structure (strong) 

the amount of protein produced substantially decreased (cfHbp versus cfHbp term). Furthermore, 

this background allowed the detection of differences in the expression levels of the two -10 box-

alleles; the TACCGC mutant (cfHbp term -10 box) which produced less fHbp compared to the 

TACCAT (cfHbp term) derivative. By comparing the different alleles of the spacer region no 

differences were observed (cfHbp term versus cfHbp term spacer1, 2 and 3). Interestingly, a SNP 

within the -35 box identified in only one strain (M08-0240104) was responsible for an extensive 

increase on the expression of the protein (cfHbp term -35 box versus cfHbp term).  

Altogether these data indicate that identified polymorphisms in the terminator, the -10 and the -35 

elements can have a significant effect on the levels of fHbp from recombinant promoters. These 

polymorphisms represent some of the major determinants differentiating fIR types which are 

naturally occurring sequences found in clinical isolates and we confirm that the presence of these 

SNPs within the regulatory elements of the fHbp intergenic region can be responsible for the 

variation in fHbp expression levels. 
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Figure 17. SNPs that regulate fHbp expression. (A) Multiple sequence alignment of the MC58 fHbp intergenic 

region (spanning from the translational stop codon of cbbA and the transcriptional start site of fHbp) and of the 

mutants of the regulatory elements generated by site-directed mutagenesis. The consensus sequence is at the top of 

the aligned sequences. Dots represent conserved positions and mismatches are indicated with nucleotides. The 

regions of the regulatory elements are indicated and boxed in shades of grey. (B) Western blot analysis on the set of 

mutants generated. fHbp is detected with a polyclonal serum raised against var1.1. The loading control is indicated 

with an asterisk. 

 

3.7. Transcriptional responses to environmental conditions of the different 

fIR types 

From previous studies, oxygen and iron availability have been implicated in regulation of fHbp 

expression levels in certain strains [90, 95]. In order to investigate the effect of external stimuli 

encountered by Neisseria meningitidis on fHbp transcription from different fIR sequence types 

we compared expression levels on the isogenic recombinant strain panel in the presence or 

absence of either oxygen or iron. The strains were grown till exponential phase in GC medium 

and then exposed to aerobic conditions or oxygen limitation conditions for 30 min, respectively. 
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The presence of a bicistronic transcript was also assessed for both oxygen and iron stresses (data 

not shown) and results confirmed what was already observed, that only fIR types 1, 7 and 16 

resulted in inter-transcript amplification under all conditions. Expression levels of fHbp and cbbA 

were detected by qRT-PCR and normalized to the reference strain fIR7 (Figure 18).  

The relative differences between transcript levels for each sample under aerobic vs oxygen 

limitation are shown in Figure 18 (B and D fHbp and cbbA, respectively) to highlight the relative 

responses to these conditions in each strain. Standard deviations indicate a high variability among 

replicates. Notably, it was higher in the presence of bicistronic transcript. Due to this variability 

no significant difference was observed between the two conditions, for both genes; however, a 

trend of increase of fHbp transcripts in the absence of oxygen was observed, with the exception 

of fIR1, (Figure 18A and C). 

The effect of iron availability was tested by treating exponential phase cultures with or without 

250 µM 2'2'-dypiridyl for 30 min (Dypiridyl). Data on the expression levels of fHbp and cbbA 

were treated similarly to the oxygen condition (Figure 18E, F, G and H). Interestingly, iron 

depletion did not cause any major changes in the transcript levels of cbbA (Figure 18G and H), 

and excluding fIR1, which exhibited an increase upon iron limitation, fHbp expression decreased 

in all strains (Figure 18D and E). However, in fIR2, 16 and 20 mutants the decrease was not 

statistically significant. Altogether these results indicate a different regulation of the promoters of 

both cbbA and fHbp, which in turn might influence differently the antigen expression levels, 

depending on the presence of the bicistronic transcript. Notably, cbbA higher stability in the fIR1 

mutant dampens the fHbp dedicated promoter regulation. 

A role of temperature in the regulation of fHbp has been proposed [98]. Indeed, the fIR types 

identified exhibit different RNA secondary structures (data not shown) that might be involved in 

thermoregulation of this antigen. However, in our experimental conditions we never observed 

differences in the protein amounts between 30 and 37°C (data not shown). 
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Figure 18. Response to stress of the different fIR types measured by qRT-PCR. Values represent medians and 

standard deviations of three biological replicates. Data of the single replicates are normalized to the reference gene 

16S RNA. During oxygen limitation differences in the expression levels of fHbp (A) and cbbA (C) were quantified 

and they are reported normalized to the + oxygen condition of the fIR7 strain or of each strain. (B and D, 

respectively) Bars are dark grey for + oxygen and light grey for – oxygen. Results on fHbp (E) and cbbA (G) 

expression levels during iron starvation are normalized to the not treated (ethanol was added to the culture as 

dypiridyl is dissolved in it) condition of the fIR7 strain or to the not treated condition of  each strain (F and H, 

respectively). Dashed bars are dark grey for not treated (+ iron) and light grey for dypiridyl (iron depletion). 

Statistical significance is calculated with the two-way ANOVA. 

 

3.8. Influence of the fIR types on the bactericidal killing and serum 

resistance 

Having observed the correlation between fHbp quantity and both anti-fHbp mediated bactericidal 

killing and the ability of the bacteria to survive within serum, we investigated the biological 

significance of different amounts of protein expressed by the natural fIR types identified. The 

strains were grown in Müller-Hinton broth plus 0.25% glucose till OD600 = 0.25 and tested for 

both SBA and human serum survival. Initially, to confirm that fHbp expression levels was 

maintained under different growth conditions a Western blot analysis was performed on total cell 

extracts collected at the end of the growth. As Figure 19A shows, the same grouping determined 

by the expression levels of the isogenic recombinant strains was obtained under these growth 

conditions (fIR1/7 > fIR6/16 > fIR2/3/15 > fIR4/20, groups 1, 2, 3 and 4, respectively) with the 

respect of what already observed from strains grown overnight in GC agar plates (Figure 15). 

To assess the capability of antibodies raised against fHbp var1.1 to mediate killing of these 

strains we performed a serum bactericidal assay (Figure 19B). In these experiments human 

plasma was employed as source of complement to be more physiological. The titers obtained 

from this analysis were generally lower with the respect to that observed previously with Baby 

Rabbit Complement, which is in line with the presence of hfH (Table 1). Interestingly, by 

comparing the SBA titers obtained it was possible to group the strains into the same categories 

identified by WB. Indeed, mutants expressing high amounts of the protein (group 1) were killed 

by lower dilution of serum against fHbp and vice versa, in the case of group 4. Hence, in our 

experimental conditions bactericidal killing correlated with fHbp expression levels determined by 

fIR type natural promoters. We then tested the same set of mutants for the capacity of surviving 



43 

  

in human serum. After the growth the strains were incubated in 60% serum for three hours. The 

percentages of survival of each mutant at the end of the experiment are reported in Figure 19C. 

As negative control a MC58 strain lacking the fHbp gene (ΔfHbp) was employed and the results 

indicate that the strain did not survive after incubation with human serum, as already reported 

[70, 78]. Differently to what observed in the SBA, a diverse grouping was identified. Indeed, the 

fIR1 strain, which expresses a high amount of fHbp, survived better than all the other mutants; 

whereas, fIR3, 4 and 15 were almost killed in three hours. Moreover, no statistically significant 

difference was observed between fIR7, a high expressor similar to fIR1, and fIR2, 16 and 20 

strains. Interestingly, the intergenic region type 20 was associated with very low amount of fHbp 

in vitro. Therefore, fHbp expression levels determined by natural promoters and measured from 

an in vitro growth culture were less correlated with complement-mediated killing. These results 

suggest a possible regulation of fHbp in the presence of human serum for at least some of the fIR 

types under investigation. 
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Figure 19. Influence of the fIR types on the bactericidal killing and serum resistance. (A) Western blot analysis 

on the set of the fIR types mutants grown in MH + 0.25% glucose. fHbp is detected with a polyclonal serum raised 

against var1.1. (B) Results of the SBA analysis done incubating bacteria in human plasma as source of exogenous 

complement and serial dilutions of antibodies against fHbp var1.1. For each strain percentages of survival are plotted 

according to the inverse of the serum dilution. The dashed line indicates the half of the survival from which SBA 

titers are obtained. fIR types are colored as shades of red, blue, and green depending on their association with var1, 

var2 and var3, respectively). (C) Percentages of survival after 3 hours incubation in 60% human serum were 

calculated with the respect of t0. Data represent mean and standard deviation of three biological replicates. Statistical 

significance is calculated with the two-way ANOVA. 
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3.9. Epidemiologic analysis of the intergenic regions of fHbp 

To extend the analysis to a more significant and wider panel of strains we extracted and aligned 

the nucleotide sequence of the fHbp gene and its upstream region from 915 isolates available in 

the public Bacterial Isolate Genome Sequence Database (BIGSdb, 

http://pubmlst.org/software/database/bigsdb/) [149]. These strains largely represent isolates of 

meningococcus collected in the UK between 2010 and 2012. The panel contains strains 

belonging to different serogroups with a majority of serogroup B ( 

Figure 20A), and to several CCs, including those hyper-invasive ( 

Figure 20B). 

 

 

 

Figure 20. Panel of UK strains. (A) Plot of the serogroups represented in the 915 isolates. fHbp variants 1, 2 and 3 

are colored in red, blue and green, respectively. (B) Pie chart of the different clonal complexes represented in the 

panel of strains under investigation. Hyper-invasive CCs are highlighted. 

Given the high number of data we implemented a bioinformatics analysis to screen and 

categorize the intergenic regions. Each unique sequence was assigned a specific fIR type. A total 

of 79 different fHbp intergenic region types were identified; however, 11 of them represented 

88.85% of the strains. Figure 21A shows the phylogenetic tree constructed from the multiple 

sequence alignment of the 915 sequences by Neighbor Joining (NJ) method. The nine fIR types 

identified in the 105 strains were among the 11 most frequently represented and two new fIR 

types were identified, fIR11 and 13. These are found largely in variant 1 expressing strains 

http://pubmlst.org/software/database/bigsdb/
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(Figure 21B) and they both contain a strong Rho-independent terminator and a TACCAT -10 

element. Interestingly, fIR11 is similar to fIR7, with the exception of polymorphisms within the 

terminator region and in positions +90, +113 and +120 of the multiple sequence alignment; 

whereas, fIR13 differs from fIR6 only for a SNP at position +126 of the multiple sequence 

alignment (Table 3). 

 

 

 

Table 3. Polymorphisms that distinguish the 11 fIR types identified. For each of the fIR type the characteristics 

are listed. Definitions of “weak”, “medium” or “strong” depend on the free energy prediction of the Rho-independent 

terminator. The numbers are referred to the position within the multiple sequence alignment. The sequence of the 

ribosome binding site (RBS) is underlined. 

The fIR isogenic mutants in MC58 expressing var1.1 under the control of fIR11 and fIR13 were 

generated and the respective expression levels were tested by Western blot along with the nine 

original mutants (Figure 21C). By comparing band intensities, fIR11 and fIR13 promoters drive 

an expression of fHbp similar to fIR2 and fIR3, respectively. 

 

fIR type

Rho-

independent 

terminator

+85 +86 +87 +90 -10 box +113 +115 +120 +126 ATR +137 RBS +163 +170 +178 +182

fIR1 weak A G T G TACCGC A C A T T AGGAGT C A C C

fIR7 weak G G T G TACCAT A T A T C AGGAGT T G C C

fIR6 strong A G T G TACCAT A T A C C AGGAGC C G C T

fIR2 strong A G T G TACCAT A T A T ATR C AGGAGC C G C C

fIR3 strong A G T G TACCAT A T A T C AGGAGT C G C T

fIR11 strong G G T A TACCAT G T T T C AGGAGT T G C C

fIR13 strong A G T G TACCAT A T A T C AGGAGT C G C T

fIR4 strong A G T G TACCAT A T A T C AGGAGC C G C C

fIR16 medium A A T G TACCGC A C A T T AGGAGT C G C C

fIR15 strong A G T G TACCAT A T A T C AGGAGC C A T C

fIR20 strong A G C G TACCGC A C A T T AGGAGT C G C C
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Figure 21. Association between fHbp intergenic region types and fHbp variants in a panel of 915 strains. (A) 

Phylogenetic tree obtained from the multiple sequence alignment of the cbbA–fHbp intergenic region of the 915 

strains downloaded from the BIGSdb. Promoter clades are represented as colored sectors inside the tree. Colors of 

the fIR types reflect the association with var1, var2, and var3 fHbp (shades of red, blue, and green, respectively). (B) 

Histogram showing association of fIR types with fHbp variants. Strains carrying fHbp variant 1, 2 or 3 are in red, 

blue or green, respectively. (C) Western blot analysis on the fIR types mutants. fHbp is detected with a polyclonal 

serum raised against var1.1. The loading control is indicated with an asterisk. 
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Table 4. Association between the 11 most representative fIR types and fHbp variants, fHbp subvariants and 

clonal complexes. 

Analysis of the correlation between fIR type and fHbp coding sequence based on Pearson 

residuals (Figure 22A and Table 4) revealed that of the 79 fIR types 1, 7, 6, 2, 3 as well as the 

two new sequence types fir 11 and 13 were mostly associated with fHbp variant 1. Var2 fHbp 

were positively correlated uniquely to fIR4 and var3 fHbp was found positively associated with 

fIR types 16, 15, 20 and other less representative sequences. The same analysis carried out on 

fHbp subvariants highlighted that with the exception of fIR11, 4 and 16, the other fIR types were 

mostly associated with a specific peptide of fHbp (Figure 22B and Table 4). It is worth noting 

that fIR6 and fIR13, which share a highly similar intergenic region, are both associated with 

var1.14 and contrarily all var2 subvariants have the conserved fIR4 type. This suggests that most 

subvariants will be driven by a specific intergenic sequence associated with them and therefore 

generally may exhibit distinct and similar levels of expression. For example strains expressing 

var1.1 and var1.15 will generally express high levels of fHbp as they have fIR1 and fIR7, 

fIR type
fHbp 

variant

fHbp 

subvariant
Clonal complex

fIR1 1 1.15 ST-269

fIR7 1 1.1 ST-32

fIR6 1 1.14 ST-41/44

fIR2 1 1.4 ST-41/44

fIR3 1 1.13
ST-1157, ST-60, ST-

269

fIR11 1 variable ST-11/ET-37

fIR13 1 1.14
ST-167, ST-41/44, ST-

865

fIR4 2

2.16, 2.19, 

2.21, 2.23, 

2.24, 2.25, 2.37

ST-103, ST-11/ET-37, 

ST-162, ST-174, ST-

18, ST-22, ST-23

fIR16 3
3.31, 3.59, 

1.648
ST-213

fIR15 3 3.47 ST-461

fIR20 3 3.45 ST-213
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respectively. For var2 the large majority of subvariants have the same regulatory sequences and 

therefore may drive similar fHbp expression levels. 

Furthermore, most of the intergenic regions (fIR1, 7, 6, 2, 11, 16, 15 and 20) were found to be 

associated with a specific clonal complex (CC); whereas, fIR types 3, 13 and 4 were associated 

with different CCs (Figure 23 and Table 4). Surprisingly, despite the correlation between fIR11 

and diverse fHbp peptides, this intergenic region was found mostly in the ST-11/ET-37 complex. 

These evidences point towards a high frequency of recombination at the level of the fHbp CDS 

within this CC. Interestingly, strains belonging to diverse intergenic region types, fIR2 and 6, 

fIR16 and 20, hence expressing different amounts of fHbp were found to be associated to the 

same CCs, ST-41/44 Lineage 3 and ST-213, respectively. This indicates a lower association 

between fHbp amounts and CCs. An additional analysis on the correlation between fHbp peptides 

and CCs in the strains belonging to the 11 most representative fIR types showed that clonal 

complexes were often associated with one or few peptides of the antigen (Figure 24).  

Taken together these data suggest a possible evolution of the fHbp intergenic region with its 

corresponding coding sequence, which often evolved within a specific CC. Conversely, most of 

the peptides of var2 have evolved to maintain the same regulatory elements for the tuning of 

fHbp expression. There are exceptions, such as ST-11 and ST-213 where the same promoter 

(fIR11 for ST-11, and fIR16 and fIR20 for ST-213) drives the expression of multiple subvariants. 
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Figure 22. Statistical analysis with Pearson residuals. (A) Association between fIR types and fHbp variant. Colors 

reflect the significance of the association as the bar on the right indicates. Bar width is proportional to the number of 

intergenic sequences and bar height is proportional to residual of observed versus expected. (B) Association between 

fHbp peptides and fIR types. 
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Figure 23. Statistical analysis of the association between clonal complexes and fIR types. 
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Figure 24. Statistical analysis of the association between fHbp peptides and clonal complexes. 
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3.10. fIR types in other Neisseria species 

Factor H binding protein is also present in other species of the genus Neisseria, such as the 

pathogen N. gonorrhoeae and the non-pathogenic N. cinerea and N. polysaccharea [88]. We 

extracted the DNA sequences of the fHbp intergenic region of these strains from public available 

databases and their alignment allowed the identification of several SNPs (Figure 25). None of the 

sequences were included in the 11 classes identified for meningococcal strains. The intergenic 

region of fHbp of N. polysaccharea ATCC 43768 was similar to fIR16, with the exception of a 

SNP within the -35 box (TTGGTG) and a shorter spacer; moreover, it was the only one sequence 

among the panel containing a noncanonical a -10 element (TACCGC). However, often the CDS 

was frameshifted in different positions (data not shown). Noteworthy, all gonococcal strains 

conserved the same sequence which contained a 1 nt-deletion within the terminator region, 

resulting in a ΔG = -24.8. This is in accord with the high conservation of the locus in gonococcus 

[88]. Rho-independent terminators strength in N. cinerea strains was between ΔG = -25.0 and -

27.3. Furthermore, two strains, CCUG 27178A and CCUG 346T, contained a SNP within the 

FNR box, which might impair the binding of the transcriptional regulator. All these suggest that 

fHbp is expressed at a low/medium level in other Neisseria spp. Altogether these findings suggest 

a different selective pressure on the fHbp intergenic region of non-meningococcal strains. 

 

 

Figure 25. Multiple sequence alignment of the fHbp intergenic region in other Neisseria species. DNA 

sequences of the fHbp intergenic regions of N. cinerea, N. polysaccharea and N. gonorrhoeae were aligned together 

with the sequences of the 11 fIR types identified in N. meningitidis. The consensus sequence is at the top of the 

alignment. Green areas indicate nucleotides with 100% identity, and variable regions are indicated in yellow. Dots 

represent conserved positions, mismatches are indicated with nucleotides and gaps with “-”. 
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4. Discussion 

The meningococcal Factor H binding protein is an important component of two licensed vaccines 

against MenB: Bexsero®, which contains fHbp var1.1 plus two additional recombinant protein 

antigens (NadA and NHBA) and an OMV component; and Trumenba®, which contains two 

fHbp subvariants, each belonging to one of the two subfamilies (var1.55 and var3.45). Expression 

of fHbp is necessary to achieve complement-mediated bactericidal killing of a given strain by 

anti-fHbp antibodies and especially in the case of strains carrying fHbp variants distant in 

sequence from those contained in the vaccine it has been suggested that the level of expression 

my play a pivotal role [72, 143, 150]. It is known that circulating strains exhibit very different 

levels of expression of fHbp [72, 73, 85, 90]. In this study we investigate the reasons for the 

diverse expression levels between circulating meningococcus strains and their implications for 

vaccine coverage. Previous studies have identified the elements within the intergenic region 

between cbbA and fHbp (here referred as fHbp intergenic region) responsible for the regulation of 

expression of this important antigen [90, 95, 98]. 

Here, we identify the genetic determinants that play a role in control of expression levels, through 

analysis of the sequence of the fHbp intergenic region or fIR sequence type, in 2 strain panels. 

The first panel includes 105 isolates and is representative of the most common subvariants of 

fHbp within the three variant groups; we then extend our analysis to a panel of 915 clinical 

isolates that consists of circulating strains collected in the UK from 2010 to 2012. Bioinformatics 

analysis of the panel of 915 UK lead to the identification of 79 different fIR sequence types, 11 of 

which represent roughly 89% of the strains. Nine of these fIR types were also identified in the 

105 strain panel and proteomic analysis demonstrated that strains harboring these fIR sequence 

types gave similar levels of fHbp expression. Therefore, fIR sequence type was found to be 

associated with tight ranges of fHbp expression in natural strains. Furthermore, generation of 

isogenic strains, differing only in fIR sequences showed different and distinct levels of 

expression of fHbp both at the RNA and protein levels and served as proof of concept that the 

level of fHbp was determined by the specific fIR sequence. As a result, our data suggest that we 
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can predict the fHbp expression level of a strain which expresses a fIR sequence type that 

corresponds to one of the 11 analyzed in this study. 

Previous studies have suggested that strains harboring var1 fHbp produce higher amounts of 

fHbp than isolates carrying var2 and var3 [151]. With the use of SRM-MS we were able to 

measure absolute levels of fHbp in an antibody-independent manner, and therefore not dependent 

on cross recognition of the variants. The data obtained by SRM-MS [143] reflect the amount of 

fHbp that is present under standard in vitro culturing of the bacterium. This is the result of a tight 

interplay between gene transcription and mRNA abundance on one hand, and mechanism of post-

translational modifications and protein turn over, on the other hand. The significant degree of 

correlation found between protein amount and sequence of the fHbp intergenic region indicates 

that gene transcription plays a major role in fHbp expression. In this study we demonstrate that 

out of the 105 panel analyzed the var1 carrying strains express more fHbp than var2 and 3. 

Furthermore, we also define that the molecular reasons for this are twofold. Firstly, the var1 

strains generally carry fIR sequence types that lead to higher transcription of the fHbp coding 

sequence downstream, such as fIR1, 7, 6, 2, 3, 11 and 13. In addition, our data show that, in an 

isogenic background, similar transcript levels of different fHbp subvariants corresponded to less 

protein amounts of the var2 and var3 with the respect of var1. This evidence is in agreement with 

Differential Scanning Calorimetry analysis, which indicates significantly lower melting 

temperatures for the N-terminal domains of var2 and var3 compared to the N-terminus of var1 

[147, 148]. Furthermore, while three-dimensional structures of var1 fHbp subvariants could be 

obtained both by Nuclear Magnetic Resonance and by X-ray crystallography [80, 81, 141, 148, 

152], full length structure of var2 has never been determined, and crystallization of full length 

var3 was only achieved in the presence of hfH as stabilizing factor [148]. Therefore, the coding 

sequence of fHbp influences either protein stability or its translation efficiency. In order to 

address this question more experiments would be needed. In summary, var1 strains express more 

fHbp due to a combination of stability of the protein and association with fIR types leading to 

higher transcription. Interestingly, var1-intergenic regions were found to be generally associated 

with hyper-invasive clonal complexes (ST-269, ST-32, ST-11 and ST-41/44). Moreover, by 

comparing fHbp amounts produced from fIR types 2 and 4, the insertion of the ATR-mobile 

element [72, 90, 95] that discriminates the two intergenic regions is responsible for a slightly 
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increase in the expression level of the fIR2 strain. These evidences suggest that alleles of var1 

fHbp together with their corresponding intergenic regions have evolved to generally express 

more protein, hence increasing strains’ fitness within the host. 

In a previous study the fHbp expression has been reported to be linked to CCs [95], however our 

data suggest that rather than correlate with any of the conventional classifications such as 

serotype, clonal complex or sequence type [143], the expression level from strain correlates to 

and is determined by the intergenic region upstream of fHbp and therefore the fIR sequence type. 

We found that there is a strong association between fIR types and fHbp peptides pointing towards 

a coevolution of the two sequences, which is in line with their linkage. There were however two 

exceptions to this general rule. Firstly, it is intriguing that we found the presence of intergenic 

regions associated with specific clonal complexes that express different fHbp subvariants, which 

suggests both a high recombination rate of the downstream coding sequence and a selective 

pressure to maintain the same regulatory elements for fHbp expression. From our analyses this 

occurs in ST-11 where a range of heterologous subvariants (largely from var1 but also including 

variants 2 and 3) of fHbp are all expressed from the fIR11 sequence type, and to some extent in 

ST-213 where subvariants 3.31, 3.59 and 1.648 are expressed from fIR16 sequence type. 

Interestingly these CCs are associated with hyper-invasive strains causing sporadic epidemics of 

invasive disease. The clonal complex ST-11, that is most frequently of serogroup C and W, has 

been provoking outbreaks and epidemics of invasive meningococcal disease worldwide with high 

mortality rate [153-155]. Recombination involving major outer membrane antigen genes 

(“antigenic shift”) has been linked to increased incidence of meningococcal disease [156]. The 

elevated levels of disease caused by ST-11 and the historical significance of these hyper-invasive 

meningococci have made them a priority for whole genome sequencing analyses giving rise to 

high resolution data which facilitate surveillance and the identification of differences in outbreak 

strains [153-155]. The emergence of the “Hajj clone” in 2000, which caused an epidemic during 

the annual Hajj pilgrimage to Mecca in Saudi Arabia [157], was caused by a meningococcal 

strain that was distinct from other circulating serogroup W135 ST-11 strains. The fHbp locus has 

been recently identified as one genomic region within the hyper-invasive lineage that undergoes 

allelic replacement through recombination likely involving donor sequences from meningococci 

outside ST-11 lineage and commensal Neisseria species [153]. Before 2000, most ST-11 strains 
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carried a variant 2 or 3 variant, while the allele associated with the Hajj clone carries a variant 1 

(subvariant 9). The introduction of a novel fHbp antigenic type into an immunologically naïve 

population may have played a part in the emergence of the Hajj clone. Intriguingly, during these 

recombination events, our data indicate that the regulation and expression of fHbp is maintained 

as the fIR11 sequence type is not a target for recombination in this important hyper-invasive 

clonal complex ST-11. 

Secondly, the strong correlation between nearly all subvariants of var2 expressed from diverse 

clonal complexes (ST-103, ST-11/ET-37, ST-162, ST-174, ST-18, ST-22 and ST-23) and the 

same low producing-fIR type 4 is a noteworthy observation from this study and sheds light on 

two aspects. The classification of fHbp variants has been somewhat controversial, and either 3 

variants [72] or two subfamilies [73] are considered. As such whether var2 and var3 could be 

classified as one subfamily is a fundamental molecular epidemiological conundrum. This study 

shows that apart from the genetic distance of the coding sequences there is a fundamental 

difference between var2 and var3 with respect to their associated regulatory regions. While 

almost all variant 2 strains have the fIR4 sequence type, var3 are associated with remarkable 

diversity at the promoter level and this observation stresses their segregation into two groups [72] 

rather than a single subfamily [73]. Furthermore, carriage strains have been associated with lower 

level of expression than invasive strains [158] and var2 expressing strains have been associated 

more with carriage rather than invasive isolate [159]. Here we observe that var2 are generally 

lowly expressed due possibly to a combination of protein turnover and a conserved low 

expressing fIR sequence type (fIR4). This is in line with both the previous observations in which 

relative lower fHbp expression and a higher association of var2 was observed in carriage strains 

with the respect of invasive isolates [158]. In the strain panels analyzed, all isolates were from 

disease cases, therefore, indeed, it would be interesting to analyze the fHbp intergenic region 

sequences within a panel of carriage-associated isolates.  

The key role of fHbp in Neisseria meningitidis [74, 78] in binding fH and therefore in resistance 

of meningococcus to complement is highlighted by the fact that nearly all strains express this 

antigen [84, 85, 90, 91]. The relatively small number of fIR types which control its expression 

might suggest a high selective pressure in the locus in maintaining certain expression levels. fHbp 

in other species of Neisseria is less essential. Indeed, frameshifts in different positions of its 
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coding sequence were identified in isolates of N. cinerea and N. polysaccharea [88] and the 

gonococcal fHbp (Gfhp) is not surface exposed, due to a frameshift in the signal peptide 

sequence [89]. Apart from gonococcus, where the gfhp gene [89, 160] and fIR region are highly 

conserved, the fHbp intergenic region of the other species of the genus Neisseria in which the 

gene is present [88] contains several polymorphisms and do not clearly cluster. Taken together 

these evidences suggest the absence of a significant selective pressure on the fHbp region in these 

species. Even though Gfhp is not surface exposed [89], the presence of a 1-nt deletion within the 

Rho-independent terminator region would have a positive impact on its expression level and the 

protein might have a different role in N. gonorrhoeae. 

The polymorphisms segregating the fIR sequence type are present in previously identified 

regulatory elements including transcriptional elements, such as the Rho-independent terminator 

from the cbbA upstream gene and the FNR-regulated fHbp promoter as well as post-translational 

elements such as an RNA structure within the 5’UTR and 5’ coding sequence hypothesized to be 

involved in thermosensing and control [90, 98]. A deeper molecular analysis of the fHbp 

intergenic regions revealed a major contribution of the Rho-independent terminator and the -10 

box on the antigen expression levels. While the presence of a bicistronic transcript deriving from 

the upstream PcbbA was observed for MC58 [90] and more in general for isolates belonging to ST-

32 [95], here we demonstrate that, irrespective of the CC, the longer transcript is generated 

uniquely when polymorphisms within the stem region of the terminator affect its pairing and 

decrease its strength, hence allowing read-through of the RNA polymerase. Therefore, even if 

expression from cbbA is generally stable [90], the promoter driving expression of cbbA would 

affect fHbp levels only in strains having weak terminators. A canonical -10 element is composed 

of A and T (TATAAT); however, the most frequent -10 hexamer for the fHbp promoter contains 

two Cs (TACCAT). Nonetheless, several strains contain a -10 sequence where only two out of six 

nucleotides are A or T (TACCGC). This high GC content would reduce recognition by the holo 

RNA polymerase and possibly fork opening, hence resulting in lower transcription rates as we 

have demonstrated using the isogenic mutant strains. Interestingly, only three fIR types contained 

the TACCGC allele and two of them were associated with weak or medium terminators that 

would counterbalance its negative effects on fHbp expression. Overall, four groups of expression 

levels were detected (fIR1/7 > fIR6/16 > fIR2/3/15 > fIR4/20, groups 1, 2, 3 and 4, respectively) 
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and the molecular mechanisms leading to these distinct levels were elucidated. Furthermore these 

expression levels directly resulted in four groupings of distinct susceptibility to anti-fHbp 

antibodies bactericidal killing. Notably, with the substitution of a T with a C, from (TTGATG) to 

(TTGACG), identified in only two out of 915 strains, the -35 box of fHbp would better resemble 

a canonical one (TTGACA); this could explain the massive increase of protein amounts produced 

that we observe in our experiments. This polymorphism, although very rare (0.2% frequency), 

occurred linked to var1 in two strains identified in the UK collection and to var2 in M08-0240104 

and the three strains belong to three different CCs (ST-269, ST-41/44 and ST-35, respectively). It 

would be interesting to track when these polymorphisms arose, and whether strains with this SNP 

are isolated outside of the UK. 

During colonization and infection N. meningitidis encounters different environments and is 

exposed to components of the immune system. Previous studies demonstrated the role of fHbp in 

binding the human Factor H allowing the meningococcus to evade complement-mediated killing 

in blood. Furthermore, the presence of complement components on the mucosal surface suggests 

that the advantages conferred to the bacterium by fHbp might be extended to the initial stages of 

colonization and invasion. As N. meningitidis moves from the upper respiratory tract to the blood 

and cerebrospinal fluid, the bacteria would be exposed to highly different oxygen pressures. 

Under oxygen limiting conditions the transcriptional regulator FNR binds the dedicated fHbp 

promoter and increases its expression [90]. In line with this, excluding fIR1, even if at different 

extents, there is a trend for increases in fHbp expression under limited oxygen in all of the 

intergenic region mutants tested. In addition, we show that in MC58 no significance differences 

are observed in cbbA expression levels between the two conditions. As suggested from Oriente et 

al., the cumulative effect of this regulation might not always arise at the protein level in the 

strains where read through is observed. This may be the case for fIR1 where we measured higher 

steady state level of both cbbA and bicistronic transcripts than in the other strains, suggesting that 

the overall regulation of fHbp through the dedicated promoter is overridden by the higher 

quantities of read-through from the cbbA driven transcript. In a different work Sanders and 

collaborators showed a decrease of fHbp transcription levels in iron-depleted conditions, with the 

exception of strains belonging to ST-32, where fHbp levels increased. However, data in this study 

indicated that fHbp levels are not affected or only slightly by iron depletion in the presence of a 
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weak or medium Rho-independent terminator; whereas, the effects are accentuated for the other 

intergenic region types. The differential regulation observed is dependent on the presence of the 

bicistronic transcript and not specifically on the clonal complex as fIR types 1, 7 and 16 are not 

limited to ST-32. It is plausible therefore that the fIR types with read-through (1, 7 and 16) and 

without (all the rest) may be differentially regulated depending whether the cumulative effects of 

the bicistronic transcript steady states out weight regulation of the fHbp dedicated promoter. 

The intriguing possibility that fHbp might be thermoregulated would increase the fitness of the 

bacteria when facing an inflammation status or when entering the bloodstream (37°C) from the 

nasopharynx (30-32°C). However, in our conditions we do not observe any protein level 

differences between 30 and 37°C.  

In agreement with the observation that the MC58 strain is dependent on fHbp to survive within 

human serum [70, 78], we show that the ability of the strain to evade the humoral immune 

response is dependent on surface exposed-fHbp amounts and that the different intergenic region 

types identified respond differently to the stimulus. Indeed, fIR types associated with high 

expression of the protein (fIR1, 7 and 16) determine higher percentage of survival and fIR types 

linked to low expressing strains (fIR3, 4 and 15) are generally killed, with the fascinating 

exception of fIR20, which express low quantity of fHbp in vitro, but survives at levels 

comparable to high-medium expressors. The peculiarity of this fIR type is that it contains the 

alternative -10 element (TACCGC) in the absence of a bicistronic transcript. Since no significant 

regulation under oxygen and iron limitation were observed for fHbp under the control of this 

intergenic region, it is not impossible that this sequence might undergo a specific 

induction/regulation under incubation with human serum which would explain this surprising 

resistant phenotype. However, the model system of isogenic strains employed here for the 

experiments did not take into account the different protein stability of the three fHbp variants and 

their respective affinity with hfH which would affect survival in human serum. In summary, we 

have the first observations that fIR sequence types not only determine distinct expression levels, 

but may infer different regulatory control in response to environmental changes/stimuli. The 

different expression levels determined by both oxygen and iron availability might have 

implications on the outcome of biological assays that evaluate vaccine potency and coverage, 

such as SBA and MATS. In fact, the assays might under or overestimate the protection offered by 
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anti-fHbp antibodies, depending on the in vitro conditions used to grow the meningococcal 

isolates to evaluate. A full understanding of the mechanisms and extent of differential regulation 

between fIR types is important. 

It has previously been shown that the ability of meningococcal strains to survive in human serum 

is the result of a multiplicity of factors. In fact, while the deletion of the fHbp gene in MC58 

results in a strain that is readily killed in human serum [70, 78, 161], the same deletion does not 

affect the capacity of other strains to survive in human serum, indicating the critical role played 

by other factors, like NspA and PorB2/PorB3, in these strains [36, 37, 70, 162-164]. Therefore, 

strains which display low fHbp expression might rely on other mechanisms such as those listed 

for the evasion of the immune system. 

The serum bactericidal assay (SBA) is considered as correlate of protection for meningococcal 

vaccines [135]. It evaluates the capability of antibodies to mediate killing of N. meningitidis 

strains in the presence of a complement source. Here we show that fHbp amounts exposed on the 

surface of recombinant strains were correlated with SBA titers. Also, not included in this study 

we have reported that fHbp levels determined by natural promoters and assessed after an in vitro 

growth are correlated with susceptibility of the bacteria to complement-mediated killing. In 

human serum fH and factor H-related protein 3 (FHR3) compete with antibodies for fHbp 

binding and therefore the number of molecules required for positive SBA in human serum as 

complement source may vary as a result of individual fH and FHR3 levels. Furthermore, as for 

the human serum survival assay, the use of a model system might not take into account different 

affinity of the three fHbp variants to hfH and from a vaccine standpoint, it would be necessary to 

consider the distance of the fHbp variant sequence from those contained in the vaccine. 

Altogether these evidences point towards the use of the nucleotide sequence of the fHbp 

intergenic region as a predictive tool for (i) the amount of antigen produced by any strain, even 

the ones not culturable under lab conditions; (ii) the changes in fHbp expression levels in 

response to exogenous stimuli. Hence, together with the coding sequence, it would be possible to 

evaluate the fHbp-dependent vaccine coverage, as an in silico fHbp-Meningococcal Antigen 

Typing System (MATS). Therefore, an implementation of the fIR type classification within the 

PubMLST would be beneficial and will be implemented. Using this fIR-based analysis in the 

circulating strains in the UK over a three year period, 13.2% (fIR1 and 7, containing largely var1) 
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are predicted to express high levels of fHbp, 35.5% (fIR4 and 20, largely var2 and some var3) 

low levels, 3.5% medium high (fIR6 and 16, containing var1 and var3), and 36.6% (fIR2, 3, 11, 

13 and 15, containing largely var1 and some var3) medium low levels of fHbp. Our data shows 

that bactericidal fHbp-antibody immune responses, which is a correlate of protection of a 

vaccine, directly relates to these diverse levels of expression. Therefore, vaccines containing only 

fHbp may not protect efficiently against strains expressing low amounts of fHbp, which represent 

a large proportion, and this subgroup can be potentially identified by sequencing. Our analysis 

supports the use of a multi-component vaccine with multiple protective antigens.  
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5. Materials and Methods 

5.1 Bacterial strains and culture conditions 

Neisseria meningitidis strains used in this study are reported in Table 5. Strains were routinely 

cultured overnight on Gonococcus (GC) agar medium (Difco) with Kellogg's supplement I [165] 

at 37°C in an atmosphere of 5% CO2. Liquid cultures were grown under the same conditions in 

GC with Kellogg’s supplement I or in Mueller Hinton (MH) broth plus 0.25% glucose. When 

required, erythromycin (5 μg/ml), chloramphenicol (5 μg/ml) or isopropylβ-D-1-

thiogalactopyranoside (IPTG) (1 mM) (Sigma) were added to culture media at the indicated final 

concentrations.  

To test iron starvation N. meningitidis strains were grown till OD600 of 0.5. Cultures were then 

split and treated either with 250 µM 2,2-dipyridyl (Sigma) dissolved in ethanol or with ethanol 

(not treated condition) for 30 min. Oxygen limitation was tested as already described [90]. 

Escherichia coli DH5α [166] and HK100 [167] strains were grown in Luria-Bertani medium, and 

when required, ampicillin or chloramphenicol were added to achieve a final concentration of 100 

μg/ml and 10 μg/ml, respectively. 

5.2 Construction of mutant and complementation strains 

DNA manipulations were carried out routinely as described for standard laboratory methods 

[168]. The kanamycin resistance cassette of the plasmid pBS-c741 wt KanR used in [90] for the 

complementation of the fHbp gene in the MC58 deletion mutant was substituted with a 

chloramphenicol-resistance cassette. A mutation present in the coding sequence of the gene was 

restored by site-directed mutagenesis using primers SNP3PfHbp-F/R (pBS-c741 wt CmR). This 

plasmid was used as a template for the generation of a series of mutants of the regulatory 

elements of the intergenic region of fHbp; site-directed mutagenesis was carried out using 

primers TACCAC_TACCAT-F/R (TACCAT -10 box), TACCAC_TACCGC-F/R (TACCGC -10 

box), GACGACA_GACGGCA-F/R (from weak to strong terminator), CGGTATG_CAGTATG-

F/R (spacer 1 allele), CAGTATG_CAATATG-F/R (spacer 2 allele, using spacer 1 as template), 
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CAGTATG_CAGCATG-F/R (spacer 3 allele, using spacer 1 as template), and 

TTGATG_TTGACG-F/R (TTGACG -35 box) (Table 7). The generation of the mutants where 

the expression of fHbp var1.1 was under the control of the different fIR types identified was 

performed by polymerase incomplete primer extension (PIPE) method [167] using primers 

vPCRpBSc741-F/R for the amplification of the backbone plasmid containing the fHbp var1.1 

gene and primers iPCRprom-F/R for the amplification of the intergenic regions. The 

complementation of the IPTG-inducible fHbp in the region between the converging ORF 

NMB1428 and NMB1429 was carried out using the fHbp gene amplified (using primers 741-

F2/R2 for var1.1, EP1For1.1 and EP5RV1.4 for var1.14, EP2For1.4 and EP6RV2.1 for var2.16 

and var2.25, EP1For1.1 and EP6RV2.1 for var3.28 [161], 2.21 fw/rev for var2.21, 3.45 fw and 

3.45/47 rev for var3.45, and 3.47 fw and 3.45/47 rev for var3.47) and cloned as a NdeI-NsiI 

fragment into the pComPIND plasmid [169]. All the PCR amplifications were performed using the 

KAPA Hi-FI polymerase (KAPA Biosystem) and digesting the DNA template with the DpnI 

enzyme when required. The correct nucleotide sequence of each plasmid was confirmed by DNA 

sequencing (Table 6). The plasmids were linearized and used for the transformation of the MC58 

ΔfHbp strain to create complementation mutants (Table 5) that were selected on GC agar with 

chloramphenicol. All transformants were verified both by Western blot and by PCR analysis for 

the correct insertion by a double homologous recombination event (pairs of primers 

pRTNM_nmb1869U-F/pRTfHbpU.R and CmR-down/complcheck-dsGENOME-R, COM-C-

Fw/CM-UP-C and pRTfHbpU.F/COM-C-Rev were used for the in locus or ex locus 

complementation, respectively). 

5.3 RNA isolation and cDNA preparation 

Bacterial cultures were grown in liquid medium to an OD600 of 0.5-0.6 and then added to 3 ml of 

frozen medium to bring the temperature immediately to 4ºC. Cells were harvested by 

centrifugation at 3400 x g for 10 minutes. Total RNA was isolated using the RNeasy Mini kit 

(Qiagen) following manufacturer’s instructions. RNA samples were incubated with RQ1 RNase-

Free DNase (Promega) for an hour at 37°C and purified with the RNeasy Mini kit. 2 μg of total 

RNA were reverse-transcribed using random hexamer primers and SuperScript® II RT 

(ThermoFisher) following manufacturer’s instructions. 



66 

  

5.4 Quantitative real-time PCR (qRT-PCR) experiments 

Quantitative real time-PCR was performed with triplicate biological samples in a 25 μl reaction 

mixture containing 2.5 ng of cDNA, 2X Platinum® SYBR® Green qPCR SuperMix-UDG with 

Rox (ThermoFisher) and 0.4 μM of gene-specific primers (Table 7). Amplification and detection 

of specific products were performed with a Mx3000P Real-Time PCR system (Stratagene) using 

the following procedure: 95ºC for 10 min, followed by 40 cycles of 95ºC for 30 s, 55ºC for 30 s 

and 72ºC for 30 s then ending with a dissociation curve analysis. The 16S RNA gene was used as 

the endogenous reference control and the relative transcript change was determined using the 2
-

ΔΔCt
 relative quantification method [170]. Two-way ANOVA was used to calculate statistical 

significance (p < 0.05). 

5.5 Serum Bactericidal Activity (SBA) analysis 

Serum bactericidal activity against N. meningitidis strains was evaluated as previously described 

[171] with pooled baby rabbit serum (Cederlane). Bacteria were grown in  Mueller Hinton broth 

(MH), plus 0.25% glucose for approximately 1.5 h at 37°C with shaking until early log phase 

(OD600 of ∼0.25) and then diluted in Dulbecco’s saline phosphate buffer (Sigma) with 0.1% 

(w/v) glucose and 1% (w/v) BSA (Bovine Serum Albumin) to approximately 10
5
 CFU/ml. Serum 

bactericidal titers were defined as the serum dilution resulting in a 50% decrease in the CFU/ml 

after 60 min of incubation of bacteria with the reaction mixture, compared to the control CFU/ml 

at time zero. Typically, bacteria incubated with the negative-control antibody in the presence of 

complement showed a 150 to 200% increase in CFU/ml during the 60-min incubation.  

5.6 Western blot analysis 

Strains grown overnight on agar plates were resuspended in PBS to an OD600 of 0.80. One 

milliliter of the resuspension was centrifuged for 5 min at 15000 x g and the pellet was 

resuspended in 160 µl of SDS loading buffer (50 mM Tris-HCl [pH 6.8], 2.5% SDS, 0.1% 

bromophenol blue, 10% glycerol, 5% β-mercaptoethanol, 50 mM DTT) [90]. In the case of liquid 

cultures, strains were grown till an OD600 of 0.50 and one milliliter of the culture was pelleted 
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and resuspended in 100 µl of SDS loading buffer. Protein extracts were separated by SDS-PAGE 

on NuPAGE® Novex® 4-12% Bis-Tris Protein Gels in MES 1X (Life Technologies) and then 

transferred to nitrocellulose membranes. Membranes were blocked overnight at 4°C with PBS + 

0.05% Tween 20 (Sigma) and 10% powdered milk (Sigma). A mouse anti-fHbp var1.1 serum 

was diluted (1:2000) in PBS + 0.05% Tween 20 and 3% powdered milk and incubated for 1 h 

with the membrane. A horseradish peroxidase-conjugated anti-mouse IgG antibody and the 

Western Lightning ECL (Perkin Elmer) were used according to the manufacturer’s instructions. 

5.7 Fluorescence Activate Cell Sorting (FACS) analysis of fHbp 

expression 

The ability of mouse polyclonal anti-fHbp var1.1 serum to bind to the surface of meningococci 

wild type MC58 strain, MC58 ΔfHbp and MC58 ΔfHbp complemented with fHbp var1.1 under 

the control of an IPTG-inducible promoter was determined using a FACScan flow cytometer 

using a 1:400 dilution of mouse polyclonal antiserum anti-fHbp var1.1. Primary antibody binding 

was detected using an anti-mouse (whole-molecule) FITC-conjugated antibody (Sigma) at a 

1:100 dilution. 

5.8 Survival experiments in human serum 

Strains MC58, MC58 ΔfHbp and MC58 ΔfHbp complemented with fHbp var1.1 under the 

control of an IPTG-inducible promoter were grown in the same conditions as for the SBA assay, 

till an OD600 of 0.25. Bacteria were then diluted to ∼10
4
 CFU/ml in a total volume of 200 μl GC 

liquid medium in a 96-well plate. The assay was started by the addition of 10 μl of the bacterial 

suspension to 190 μl of 40% human serum (Sigma) diluted in HBSS++ (Sigma) in a 96-well 

plate. Increasing concentrations of IPTG were also added in order to maintain the expression of 

the protein over time. Samples were incubated at 37°C and 5% CO2, 180 rpm. At various time 

points (30, 60, 120 and 180 min), an aliquot of each sample was plated in serial dilutions onto 

MH agar to determine the number of viable bacteria and incubated overnight at 37°C and 5% 

CO2. Experiments were performed in duplicate. The diluted 200 μl culture in GC was used as 

growth control in bacterial rich medium. For isogenic recombinant strains were the same fHbp 
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var1.1 was under the control of the different fHbp intergenic region types, bacteria were diluted 

to ∼10
4
 CFU/ml and 10 μl of the bacterial suspension were added to 190 μl of 60% human serum 

(Sigma) in HBSS++ (Sigma). Samples were taken at various time points (60, 120 and 180 min). 

Experiments were performed in triplicate. 

5.9 Amplification and sequencing of the fHbp intergenic region  

Chromosomal DNA used as template for the amplification of the intergenic region between cbbA 

and fHbp was prepared boiling 50 µl of bacterial resuspension in water. AccuPrime Taq DNA 

Polymerase System (Life Technologies) and the primers 1869-2F and fHbp_32 (Table 7) were 

used for the PCR amplifications (35 cycles, 94°C for 30 s, 57°C for 30 s, 68°C for 1 min and 30 

s). PCR products were purified with the Agencourt AMPure XP (Beckman Coulter). Sequences 

were performed using an ABI 377 automatic sequencer (Applied Biosystems) and the primers 

used were 1869-2F, fHbp_A1 and fHbp_32 (when required also IS-seq-fHbp-F1, F2, F3 and R1 

were used). Sequence analysis was performed using the software ContigExpress (Vector NTI).  

5.10 Bioinformatics analyses 

5.10.1. Phylogenetic analysis 

The multiple sequence alignment of the 103 sequenced intergenic loci was performed with 

MUSCLE (v 3.6). The phylogenetic tree was computed using phangorn R package [172], 

applying dist.ml distance modeling function, considering the insertion symbol ‘-’ as valid 

character, and then applying the UPGMA tree reconstruction method. The multiple sequence 

alignment of the 915 sequences downloaded from the BigsDB 

(http://pubmlst.org/software/database/bigsdb/) [149] was performed using the MUSCLE 

algorithm incorporated within the Geneious software (Biomatters) [173]. The matrix of pairwise 

distances was computed using seqinr R package [174], applying dist.alignment distance modeling 

function and considering gaps in the identity measure (gap = 1). The phylogenetic tree was 

reconstructed using the Neighbor joining method. 

 

http://pubmlst.org/software/database/bigsdb/
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5.10.2. Rho-independent terminators analysis 

The strength and secondary structure of the Rho-independent terminators were calculated using 

the online application FindTerm [145] and setting the energy threshold value as -10. The 

schematic representations of the terminators were prepared using the Visualization Applet for 

RNA (VARNA) [146]. 

5.10.3. fIR types identification 

A perl (Practical Extraction and Report Language) script was created to assign an identification 

number, the fHbp intergenic region (fIR) type, to each unique sequence of the multiple sequence 

alignment of the intergenic regions downloaded from the BigsDB. Results of this analysis were 

linked to the metadata of the corresponding strains present in the PubMLST. 

5.10.4. Statistical analyses 

Statistical analyses on the association between fIR types and fHbp subvariants or clonal 

complexes were carried out under the R environment. The Pearson residuals [(observed – 

expected) / sqrt(expected)] were calculated using the chisq.test function, which performs chi-

squared contingency table tests and goodness-of-fit tests. Visual representation of the analysis 

was performed using the function assoc of the vcd R package [175]. 

5.11 Selected Reaction Monitoring-Mass Spectroscopy analysis 

5.11.1. Sample Digestion for SRM-MS.  

Bacteria were collected from agar plates and resuspended in 10 ml of PBS to an OD600 of 0.8. 

Bacterial cells were pelleted by centrifugation at 3,000 × g for 15 min and lysed by boiling for 15 

min in 500 μl of 5% (wt/vol) SDS, 100 mM Tris·HCl, pH 8, 50 mM DTT, and protease inhibitor 

mixture (Sigma). The protein concentration was determined using the 2D QuanKit (GE 

Healthcare) and the samples were stored at -20 °C until their use. Trypsin digestion of lysed 

bacterial samples was performed in duplicate using a filter-aided sample preparation protocol. 
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The efficacy of the digestion was checked by SDS/PAGE and by assessing the number of missed 

cleavages inferior to 10% of identified peptide by LC-MS/MS as described above. 

5.11.2. SRM-MS Analysis.  

SRM analysis was performed on a TQ Xevo triple quadrupole mass spectrometer (Waters) 

equipped with an ESI source (Waters). Chromatographic separations of peptides were performed 

on an Acquity LC system (Waters) equipped with a 1- × 150-mm 1.7 μm CSA C18 column 

(Waters) by a 10-min linear gradient of 5–40% acetonitrile in water, containing 0.1% formic acid, 

with a flow rate of 80 μl/min. Both Q1 and Q3 were set at unit resolution (FWHM 0.7 Da). A 

spray voltage of 1,700 V was used with a heated ion transfer setting of 270 °C for desolvation. 

Data were acquired using MassLynx software (version 2.1.0; Waters). The dwell time was set to 

30 ms and the scan width to 0.02 m/z. The peak area quantification was determined with 

TargetLynx software (version 1.0.0.1; Waters) after confirming the coelution of all transitions for 

each peptide and following the best practices reported in Carr et al. [176].  

5.11.3. PTP dose-range linearity responses and fHbp quantification.  

The dose-range linearity response of the selected PTPs was assessed in a lysed bacterial sample 

prepared from MC58 ΔfHbp strain used as reference background to take into account the matrix 

effect. For fHbp quantification, labeled PTPs (final concentration 20 fmol/μl) and non-labeled 

PTPs (final concentration from 1.9 to 300 fmol/μl) were spiked in 100 μg of total cell lysate prior 

to trypsin digestion, and SRM experiments were performed in triplicate, injecting 20 μg of lysate 

onto the column for LC-SRM analysis. For each PTP, concentrations were plotted as ratio of 

peak area light (variable)/peak area heavy (constant) and the fitted curve was used to deduce the 

concentration of selected PTP. The LLOQ for each PTP was set as the lowest concentration point 

on the fitted curve with an accuracy deviation ≤20%. The fHbp concentrations were reported in 

picograms per microgram of total protein extract, considering for all proteins the molecular mass 

of the fHbp var1.1. 
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Table 5. Strains used in this study.  

 

 

Name Description Antibiotic resistance Reference

MC58 Neisseria meningitidis  laboratory-adapted reference strain Tettelin et al ., Science 2000

MC58 ΔfHbp MC58 derivative, lacking fHbp  gene Erythromycin Masignani et al ., J Exp Med 2003

MC58 c-fHbp  (fIR7)
MC58 derivative, complemented in locus  with the wt fHbp  gene and its 

upstream intergenic region (fIR7)
Chloramphenicol This study

MC58 c-fHbp  fIR1
MC58 derivative, complemented in locus  with the wt fHbp  gene and the 

upstream fIR1 intergenic region type
Chloramphenicol This study

MC58 c-fHbp  fIR2
MC58 derivative, complemented in locus  with the wt fHbp  gene and the 

upstream fIR2 intergenic region type
Chloramphenicol This study

MC58 c-fHbp  fIR3
MC58 derivative, complemented in locus  with the wt fHbp  gene and the 

upstream fIR3 intergenic region type
Chloramphenicol This study

MC58 c-fHbp  fIR4
MC58 derivative, complemented in locus  with the wt fHbp  gene and the 

upstream fIR4 intergenic region type
Chloramphenicol This study

MC58 c-fHbp  fIR6
MC58 derivative, complemented in locus  with the wt fHbp  gene and the 

upstream fIR6 intergenic region type
Chloramphenicol This study

MC58 c-fHbp  fIR11
MC58 derivative, complemented in locus  with the wt fHbp  gene and the 

upstream fIR11 intergenic region type
Chloramphenicol This study

MC58 c-fHbp  fIR13
MC58 derivative, complemented in locus  with the wt fHbp  gene and the 

upstream fIR13 intergenic region type
Chloramphenicol This study

MC58 c-fHbp  fIR15
MC58 derivative, complemented in locus  with the wt fHbp  gene and the 

upstream fIR15 intergenic region type
Chloramphenicol This study

MC58 c-fHbp  fIR16
MC58 derivative, complemented in locus  with the wt fHbp  gene and the 

upstream fIR16 intergenic region type
Chloramphenicol This study

MC58 c-fHbp  fIR20
MC58 derivative, complemented in locus  with the wt fHbp  gene and the 

upstream fIR20 intergenic region type
Chloramphenicol This study

MC58 ΔfHbp  c-fHbp  var1.1

MC58 derivative, lacking fHbp  gene, with a copy of fHbp  var1.1 

reintroduced out of locus under the control of an IPTG-inducible PTAC 

promoter

Chloramphenicol Biagini et al ., PNAS 2016

MC58 ΔfHbp  c-fHbp  var1.14

MC58 derivative, lacking fHbp  gene, with a copy of fHbp  var1.14 

reintroduced out of locus under the control of an IPTG-inducible PTAC 

promoter

Chloramphenicol This study

MC58 ΔfHbp  c-fHbp  var2.16

MC58 derivative, lacking fHbp  gene, with a copy of fHbp  var2.16 

reintroduced out of locus under the control of an IPTG-inducible PTAC 

promoter

Chloramphenicol This study

MC58 ΔfHbp  c-fHbp  var2.21

MC58 derivative, lacking fHbp  gene, with a copy of fHbp  var2.21 

reintroduced out of locus under the control of an IPTG-inducible PTAC 

promoter

Chloramphenicol This study

MC58 ΔfHbp  c-fHbp  var2.25

MC58 derivative, lacking fHbp  gene, with a copy of fHbp  var2.25 

reintroduced out of locus under the control of an IPTG-inducible PTAC 

promoter

Chloramphenicol This study

MC58 ΔfHbp  c-fHbp  var3.28

MC58 derivative, lacking fHbp  gene, with a copy of fHbp  var3.28 

reintroduced out of locus under the control of an IPTG-inducible PTAC 

promoter

Chloramphenicol This study

MC58 ΔfHbp  c-fHbp  var3.45

MC58 derivative, lacking fHbp  gene, with a copy of fHbp  var3.45 

reintroduced out of locus under the control of an IPTG-inducible PTAC 

promoter

Chloramphenicol This study

MC58 ΔfHbp  c-fHbp  var3.47

MC58 derivative, lacking fHbp  gene, with a copy of fHbp  var3.47 

reintroduced out of locus under the control of an IPTG-inducible PTAC 

promoter

Chloramphenicol This study

MC58 c-fHbp  -10 box (TACCGC)
MC58 derivative, complemented in locus  with the wt fHbp  gene and its 

upstream intergenic region (fIR7) mutated in the -10 box: TACCGC
Chloramphenicol This study

MC58 c-fHbp  term -27
MC58 derivative, complemented in locus  with the wt fHbp  gene and its 

upstream intergenic region (fIR7) mutated in the terminator: strong
Chloramphenicol This study

MC58 c-fHbp  term -27, -10 box (TACCGC)

MC58 derivative, complemented in locus  with the wt fHbp  gene and its 

upstream intergenic region (fIR7) mutated in the terminator: strong; and in 

the -10 box: TACCGC

Chloramphenicol This study

MC58 c-fHbp  term -27, spacer1

MC58 derivative, complemented in locus  with the wt fHbp  gene and its 

upstream intergenic region (fIR7) mutated in the terminator: strong; spacer: 

CAGTATGCAAAAAAAGA

Chloramphenicol This study

MC58 c-fHbp  term -27, spacer2

MC58 derivative, complemented in locus  with the wt fHbp  gene and its 

upstream intergenic region (fIR7) mutated in the terminator: strong; spacer: 

CAATATGCAAAAAAAGA

Chloramphenicol This study

MC58 c-fHbp  term -27, spacer3

MC58 derivative, complemented in locus  with the wt fHbp  gene and its 

upstream intergenic region (fIR7) mutated in the terminator: strong; spacer: 

CAGCATGCAAAAAAAGA

Chloramphenicol This study

MC58 c-fHbp  term -27, -35 box (TTGACG)

MC58 derivative, complemented in locus  with the wt fHbp  gene and its 

upstream intergenic region (fIR7) mutated in the terminator: strong; and in 

the -35 box: TTGACG

Chloramphenicol This study
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Table 6. Plasmids used in this study. 

 

 

Name Description Antibiotic resistance Reference

pBluescript (pBS) Cloning vector Ampicillin Novagen

pBS-UD741 pBS containing the flanking region of fHbp  with a SmaI site in the middle Ampicillin Masignani et al ., J Exp Med 2003

pBS-741 EryR
pBS-UD741 derivative in which a Ery resistance cassette was cloned as a 

SmaI fragment between flanking regions
Ampicillin, Erythromycin Masignani et al ., J Exp Med 2003

pBS-c741 wt KanR

Plasmid for the in locus  complementation of the fHbp  gene including its 

upstream promoter region. Downstream of fHbp  is cloned a Kan resistance 

cassette

Ampicillin, Kanamycin Oriente et al ., J Bacteriol 2010

pBS-c741 wt CmR

Plasmid for the in locus  complementation of the fHbp  gene including its 

upstream promoter region (fIR7). Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 fIR1 CmR

Plasmid for the in locus  complementation of the fHbp  gene including the 

upstream fIR1 sequence type. Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 fIR2 CmR

Plasmid for the in locus  complementation of the fHbp  gene including the 

upstream fIR2 sequence type. Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 fIR3 CmR

Plasmid for the in locus  complementation of the fHbp  gene including the 

upstream fIR3 sequence type. Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 fIR4 CmR

Plasmid for the in locus  complementation of the fHbp  gene including the 

upstream fIR4 sequence type. Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 fIR6 CmR

Plasmid for the in locus  complementation of the fHbp  gene including the 

upstream fIR6 sequence type. Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 fIR11 CmR

Plasmid for the in locus  complementation of the fHbp  gene including the 

upstream fIR11 sequence type. Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 fIR13 CmR

Plasmid for the in locus  complementation of the fHbp  gene including the 

upstream fIR13 sequence type. Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 fIR15 CmR

Plasmid for the in locus  complementation of the fHbp  gene including the 

upstream fIR15 sequence type. Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 fIR16 CmR

Plasmid for the in locus  complementation of the fHbp  gene including the 

upstream fIR16 sequence type. Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 fIR20 CmR

Plasmid for the in locus  complementation of the fHbp  gene including the 

upstream fIR20 sequence type. Downstream of fHbp  is cloned a Cm 

resistance cassette

Ampicillin, Chloramphenicol This study

pComPIND CmR

Plasmid for allelic replacement at a chromosomal location between ORFs 

NMB1428 and NMB1429 and inducible expression under the control of the 

PTAC promoter and the lacI  repressor. Upstream of the cloning site is a Cm 

resistance cassette

Ampicillin, Chloramphenicol Ieva et al ., J Bacteriol 2005

pComPIND CmR-fHbp var1.1

Plasmid for the complementation of the fHbp  gene var1.1 in the Com region 

with an IPTG-inducible PTAC. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol Biagini et al ., PNAS 2016

pComPIND CmR-fHbp var1.14

Plasmid for the complementation of the fHbp  gene var1.14 in the Com region 

with an IPTG-inducible PTAC. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol This study

pComPIND CmR-fHbp var2.16

Plasmid for the complementation of the fHbp  gene var2.16 in the Com region 

with an IPTG-inducible PTAC. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol This study

pComPIND CmR-fHbp var2.21

Plasmid for the complementation of the fHbp  gene var2.21 in the Com region 

with an IPTG-inducible PTAC. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol This study

pComPIND CmR-fHbp var2.25

Plasmid for the complementation of the fHbp  gene var2.25 in the Com region 

with an IPTG-inducible PTAC. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol This study

pComPIND CmR-fHbp var3.28

Plasmid for the complementation of the fHbp  gene var3.28 in the Com region 

with an IPTG-inducible PTAC. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol This study

pComPIND CmR-fHbp var3.45

Plasmid for the complementation of the fHbp  gene var3.45 in the Com region 

with an IPTG-inducible PTAC. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol This study

pComPIND CmR-fHbp var3.47

Plasmid for the complementation of the fHbp  gene var3.47 in the Com region 

with an IPTG-inducible PTAC. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol This study
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Table 6. (continued) Plasmids used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name Description Antibiotic resistance Reference

pBS-c741 PfHbp -10 box (TACCGC) CmR

Plasmid for the in locus  complementation of the fHbp  gene including its 

upstream promoter region (fIR7) mutated in the -10 box: TACCGC. 

Downstream of fHbp  is cloned a Cm resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 PfHbp term -27 CmR

Plasmid for the in locus  complementation of the fHbp  gene including its 

upstream promoter region (fIR7) mutated in the terminator: strong. 

Downstream of fHbp  is cloned a Cm resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 PfHbp term -27, -10 box (TACCGC) CmR

Plasmid for the in locus  complementation of the fHbp  gene including its 

upstream promoter region (fIR7) mutated in the terminator: strong; and in the -

10 box: TACCGC. Downstream of fHbp  is cloned a Cm resistance cassette

Ampicillin, Chloramphenicol This study

pBS-c741 PfHbp term -27, spacer1 CmR

Plasmid for the in locus  complementation of the fHbp  gene including its 

upstream promoter region (fIR7) mutated in the terminator: strong; spacer: 

CAGTATGCAAAAAAAGA. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol This study

pBS-c741 PfHbp term -27, spacer2 CmR

Plasmid for the in locus  complementation of the fHbp  gene including its 

upstream promoter region (fIR7) mutated in the terminator: strong; spacer: 

CAATATGCAAAAAAAGA. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol This study

pBS-c741 PfHbp term -27, spacer3 CmR

Plasmid for the in locus  complementation of the fHbp  gene including its 

upstream promoter region (fIR7) mutated in the terminator: strong; spacer: 

CAGCATGCAAAAAAAGA. Downstream of fHbp  is cloned a Cm resistance 

cassette

Ampicillin, Chloramphenicol This study

pBS-c741 PfHbp term -27, -35 box (TTGACG) CmR

Plasmid for the in locus  complementation of the fHbp  gene including its 

upstream promoter region (fIR7) mutated in the terminator: strong; and in the -

35 box: TTGACG. Downstream of fHbp  is cloned a Cm resistance cassette

Ampicillin, Chloramphenicol This study
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Table 7. Oligonucleotides used in this study. 
a
 underscored letters indicate restriction enzyme sites. 

 

 

  

Name Sequence
a Restriction 

site
Application Reference

1869-2F GAAGAAATCGTCGAAGGCATCAAAC
Amplification and sequencing of the intergenic region 

of fHbp (Fw)
Biagini et al ., PNAS 2016

fHbp_32 TGTTCGATTTTGCCGTTTCCCTG
Amplification and sequencing of the intergenic region 

of fHbp (Rev)
Masignani et al ., J Exp Med 2003

fHbp_A1 GACCTGCCTCATTGATG Sequencing of the intergenic region of fHbp (Fw) Masignani et al ., J Exp Med 2003

IS-seq-fHbp-F1 GAACTCTTTGCCGTTATC
Sequencing of the intergenic region of fHbp  when 

IS30 insertion element was present
This study

IS-seq-fHbp-F2 CTTGGCGAAGGTAGCG
Sequencing of the intergenic region of fHbp  when 

IS30 insertion element was present
This study

IS-seq-fHbp-F3 CGTTCGCCTTGGGTC
Sequencing of the intergenic region of fHbp  when 

IS30 insertion element was present
This study

IS-seq-fHbp-R1 GCCGCAAACTCAGTC
Sequencing of the intergenic region of fHbp  when 

IS30 insertion element was present
This study

SNP3PfHbp-F GCATACGCCATATCGGCCTTGCCGCCAAGC remove a SNP in the 3' of the CDS of fHbp (Fw) This study

SNP3PfHbp-R GCTTGGCGGCAAGGCCGATATGGCGTATGC remove a SNP in the 3' of the CDS of fHbp (Rev) This study

TACCAC_TACCAT-F GCGGTATGCAAAAAAAGATACCATAACCAAAATGTTTATATATTATC mutate box -10 TACCAT (Fw) This study

TACCAC_TACCAT-R GATAATATATAAACATTTTGGTTATGGTATCTTTTTTTGCATACCGC mutate box -10 TACCAT (Rev) This study

TACCAC_TACCGC-F GCGGTATGCAAAAAAAGATACCGCAACCAAAATGTTTATATATTATC mutate box -10 TACCGC (Fw) This study

TACCAC_TACCGC-R GATAATATATAAACATTTTGGTTGCGGTATCTTTTTTTGCATACCGC mutate box -10 TACCGC (Rev) This study

GACGACA_GACGGCA-F GAACCGCCGTTCGGACGGCATTTGATTTTTGCTTC mutate terminator from weak to strong (Fw) This study

GACGACA_GACGGCA-R GAAGCAAAAATCAAATGCCGTCCGAACGGCGGTTC mutate terminator from weak to strong (Rev) This study

CGGTATG_CAGTATG-F CCTGCCTCATTGATGCAGTATGCAAAAAAAGATACC mutate spacer into spacer 1 (Fw) This study

CGGTATG_CAGTATG-R GGTATCTTTTTTTGCATACTGCATCAATGAGGCAGG mutate spacer into spacer 1 (Rev) This study

CAGTATG_CAATATG-F CCTGCCTCATTGATGCAATATGCAAAAAAAGATACC mutate spacer into spacer 2 (Fw) This study

CAGTATG_CAATATG-R GGTATCTTTTTTTGCATATTGCATCAATGAGGCAGG mutate spacer into spacer 2 (Rev) This study

CAGTATG_CAGCATG-F CCTGCCTCATTGATGCAGCATGCAAAAAAAGATACC mutate spacer into spacer 3 (Fw) This study

CAGTATG_CAGCATG-R GGTATCTTTTTTTGCATGCTGCATCAATGAGGCAGG mutate spacer into spacer 3 (Rev) This study

TTGATG_TTGACG-F CTTTGACCTGCCTCATTGACGCGGTATGCAAAAAAAG mutate box -35 TTGACG (Fw) This study

TTGATG_TTGACG-R CTTTTTTTGCATACCGCGTCAATGAGGCAGGTCAAAG mutate box -35 TTGACG (Rev) This study

iPCRprom-F caagggcgaattgaaccaaatCGTCAAATAACAGGTTG
iPCR - universal for the 11 most represented 

promoter types (including leader peptide) (Fw)
This study

iPCRprom-R CCCCCTCCGCTGCTGCAGGCGGTCAGAATCAG
iPCR - universal for the 11 most represented 

promoter types (including leader peptide) (Rev)
This study

vPCRpBSc741-F CAGCAGCGGAGGGGGTGGTGTCGCCGCCGAC vPCR - pBS-c741 wt CmR (Fw) This study

vPCRpBSc741-R ATTTGGTTCAATTCGCCCTTGgcataacggcttgcc vPCR - pBS-c741 wt CmR (Rev) This study

741-F2 ggattccatatgGTGAATCGAACTGCCTTC NdeI Amplification fHbp var1.1 (Fw) Seib et al. , Infect Immun 2011

741-R2 ccaatgcatTTATTGCTTGGCGGCAAG NsiI Amplification fHbp var1.1 (Rev) Seib et al. , Infect Immun 2011

EP1For1.1 CGCggatcccatatgGTGAATCGAACTGCCTTC NdeI Amplification fHbp var1.14 and var3.28 (Fw) Seib et al. , Infect Immun 2011

EP5RV1.4 TGCATGCATTTACTGCTTGGCGGCAAG NsiI Amplification fHbp var1.14 (Rev) Seib et al. , Infect Immun 2011

EP2For1.4 CGCggatcccatatgGTGAACCGAACTGCCTTC NdeI Amplification fHbp var2.16 and var2.25 (Fw) Seib et al. , Infect Immun 2011

EP6RV2.1 TGCATGCATCTACTGTTTGCCGGCGAT NsiI
Amplification fHbp var2.16, var2.25 and var3.28 

(Rev)
Seib et al. , Infect Immun 2011

2.21 fw ATTCGcatatgGTGAACCGAACTGCCTTCTGCTGCC NdeI Amplification fHbp var2.21 (Fw) This study

2.21 rev ATTCGatgcatCTACTGTTTGCCGGCGATGCCG NsiI Amplification fHbp var2.21 (Rev) This study

3.45 fw ATTCGcatatgGTGAACCGAACTGCCTTCTGCTG NdeI Amplification fHbp var3.45 (Fw) This study

3.47 fw ATTCGcatatgGTGAACCGAACTACCTTCTGTTG NdeI Amplification fHbp var3.47 (Fw) This study

3.45/47 rev ATTCGatgcatCTACTGTTTGCCGGCGATGC NsiI Amplification fHbp var3.45 and var3.47 (Rev) This study

CmR-down GCACTTCTATACTCTCTGTCG
Complementation check in locus  (Fw), downstream 

recombination
This study

complcheck-dsGENOME-R CTGATAATCGCTCAAACG
Complementation check in locus  (Rev), downstream 

recombination
This study

COM-C-Fw CCTCGAGCCGCTGACCGAAGG
Complementation check in the Com region (Fw), 

upstream recombination
This study

CM-UP-C GGTCGAAATACTCTTTTCGTGTCC
Complementation check in the Com region (Rev), 

upstream recombination
This study

COM-C-Rev ACCGGCATCGGCAACTACAC
Complementation check in the Com region (Rev), 

downstream recombination
This study

pRTNM_nmb1869U-F GTATCGACCGCATCAAAG
qRT-PCR cbbA (Fw) and complementation check in 

locus  (Fw), upstream recombination
This study

pRTNM_nmb1869U-R TGACTTTCAGCCATTCTTG qRT-PCR cbbA (Rev) This study

pRTNM_3P-1869-F CGAATTGAACCAAATCGTC qRT-PCR intergenic region (Fw) This study

pRTNM_IG-R CAATGAGGCAGGTCAAAG qRT-PCR intergenic region (Rev) This study

pRTfHbpU.F GGCTTGCCGATGCACTAAC

qRT-PCR fHbp  (Fw) and complementation check in 

the Com region (Fw), downstream recombination
This study

pRTfHbpU.R GTTTTTTCCGCACCTTGTGC

qRT-PCR fHbp  (Rev) and complementation check 

in locus  (Rev), upstream recombination
This study

pRTNM16sII.F1 GTGGGGAATTTTGGACAATG qRT-PCR 16S RNA  (Fw) This study

pRTNM16sII.R1 CAACAGCCTTTTCTTCCCTG qRT-PCR 16S RNA  (Rev) This study
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