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Abstract

The present work explores the theoretical basis of sound propagation through

periodic media and provides experimental evidences of stop-band properties

of sonic crystals, periodic arrays of scatterers immersed in air. In order to in-

vestigate the sound field generated by sonic crystals, three theoretical models

are used. The band structures are analysed with the Plane Wave Expansion

method, while the Multiple Scattering Theory is used to calculate the ma-

gnitude of the scattered sound field. The Finite Element analysis is used for

both purposes and to provide a stronger bond between the calculations of the

theoretical models and the experimental results. Experimental measurement

campaigns are performed at the Open University, Milton Keynes (UK) and

at the University of Bologna. The two laboratories offer different testing fa-

cilities, respectively an anechoic chamber and a large industrial hall. Three

square unit cells are analysed, varying the lattice constant and/or the filling

fraction in order to provide a correlation between the two experimental se-

tups. Measurements are performed to assess the characteristics of the sound

field transmitted and reflected from the arrays, posing a special attention to

the contribution of side and top edge diffraction. The evanescent behaviour

of modes inside the lattice has been investigated by carrying out Impulse Re-

sponse measurements inside the crystal and testing, with an intensity probe,

the components of the sound field that exit the crystal in the two main di-

rections. Finally, standardised indices are calculated that allow to compare

the screening performance of sonic crystals to those of common noise barriers.

All measurements setups report coherent results among them and with re-

spect to the theoretical calculations, representing a solid platform for further

developments.





Sommario

Il presente lavoro esplora le basi teoriche della propagazione sonora all’interno

di mezzi periodici e presenta prove sperimentali delle proprietà di isolamento

selettivo in frequenza dei cristalli sonici, reticoli di elementi immersi in aria.

Per studiare il campo sonoro generato dai cristalli sonici sono usati tre mo-

delli teorici. Le strutture a banda dei reticoli sono analizzate con il metodo

Plane Wave Expansion, mentre la Multiple Scattering Theory è utilizzata per

valutare l’attenuazione generata puntualmente. L’analisi agli Elementi Finiti

ha asservito entrambi gli scopi, permettendo di rafforzare il confronto fra i

diversi modelli teorici e la rispondenza fra gli stessi modelli teorici e le misure

sperimentali. Le campagne di misure sperimentali sono state condotte presso

la Open University, Milton Keynes (UK) e l’Università di Bologna. I due labo-

ratori forniscono strutture di prova profondamente differenti, rispettivamente

una camera anecoica ed un grande edificio industriale. Sono state studiate

tre celle unitarie, variando la costante di reticolo e/o il rapporto pieni/vuoi,

al fine di permettere una correlazione fra le condizioni di prova. Le misu-

re hanno permesso di definire le caratteristiche del campo sonoro trasmesso

e riflesso dal reticolo, ponendo una una particolare attenzione all’analisi del

contributo della diffrazione superiore e laterale. Il comportamento evanescen-

te dei modi dentro ai cristalli sonici è valutato attraverso l’analisi di misure di

risposta all’impulso effettuate all’interno del reticolo ed attraverso misure in-

tensimetriche che hanno identificato le componenti del campo sonoro in uscita

dal reticolo. Infine sono stati calcolati indici standardizzati di isolamento e

riflessione che permettono di confrontare le prestazioni acustiche dei cristalli

sonici con quelle delle comuni barriere al rumore. Tutte le configurazioni e le

tipologie di misura riportano risultati coerenti fra di loro e consistenti rispet-

to ai calcoli dei modelli teorici, rappresentando una solida base per ulteriori

sviluppi della ricerca.
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Introduction

Wave propagation through periodic media is a research field that, starting from the solid

state physics, drew the attention of the research in many areas; only in the last fifteen

years also acoustics belongs to these sectors. The modern approach to sound propagation

through periodic media derives from the merge of three fields, namely the study of band

structures, the development of metamaterials and multiple scattering formulations. In

order to point out the contact point between these three fields, a brief introduction to the

development of each field is presented.

Band structures were firstly studied for electronic waves in solids1. From the late 80’s

it became clear that also classical waves supported the phenomenon of band structures

and pioneering works investigated the propagation of electromagnetic waves in media

with periodically-modulated refractive indices2, opening the research field of photonic

crystals 3. In the last 20 years, an increase in attention on elastic band gap materials

produced a wide literature on the so-called phononic crystals, i.e. inhomogeneous elastic

media composed of n-dimensional periodic arrays of inclusions embedded in a matrix4.

Band structures analysis for elastic media have been investigated theoretically and nu-

merically and in particular many works have been devoted to the extraction of acoustic

band structures using methods spanning from the multiple scattering formulations to the

plane wave expansion methods5–7.

The first theoretical reference to metamaterials dates back to 1968, when Veselago8

investigated theoretically the properties of materials where the real part of the electric

permittivity and magnetic permeability are simultaneously negative, resulting thus in a

negative refractive index. He anyway could not demonstrate experimentally the conse-

quences he predicted as he could not get any material to assume a negative permeability.

More than 30 years after, composite media displaying simultaneously negative permeabil-

ity and permittivity brought the first experimental evidence of Veselago’s intutions9;10.

In recent years these materials are referred to as metamaterials or left-handed materials

and many works investigated metamaterials for acoustic applications, the milestone being

the work by Liu et al 11. The strong periodic modulation of density and/or sound velocity

forbids wave propagation at certain frequencies in the long-wavelength limit, i.e., in the

spectral regions corresponding to wavelengths much larger than the size of the inhomo-

geneities. Below the homogenisation limit, the medium can be considered as homogeneous

and theories related to composite medium hold, i.e. properties such as density and bulk
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modulus are correlated to the emerging properties of the composite material. This is the

reason why negative densities and bulk modulus occur, which would not be conceivable

for non-composite materials. One of the most interesting properties of such metamate-

rials is that they proved to be effective at low frequency as they break the mass density

law and provide significant acoustic attenuation even in reduced thicknesses. The litera-

ture produced significant experimental proofs related to acoustic metamaterials displaying

negative density, negative bulk modulus, or a combination of the two12–18. The study

of engineered composite materials also gave rise to a research field related to cloaking.

The original idea is that since Maxwell equations are invariant for a coordinate change,

it is possible to use singular transformations to achieve cloaking of the electromagnetic

waves19;20. In recent years Milton21 transposed this concept to the equations of motion

for a general elastic medium but found out that, in general, they are not invariant to

coordinate transformation. Cummer et al.22 showed that in two dimensions, where the

equivalence between electromagnetics and elastodynamics holds, the coordinate transfor-

mation holds also for anisotropic media, opening a way to acoustic cloaking23.

The third contribution comes from multiple scattering formulations and is closely re-

lated to sonic crystals, i.e. arrangement of solid inclusions in air which provide attenuation

for wavelengths related to the lattice constant of the medium. When a wave impinges on

a periodic structure, it will be scattered by each scatterer. The scattered wave will be in

turn scattered by other scatterers. This process, called multiple scattering, leads to the

formation of band structures: waves propagate according to certain dispersion relations in

some frequency ranges and are inhibited in other frequency regions24. The conditions that

prelude to the formation of band gaps concern mainly the density and velocity contrast

of the components of the composite, the filling fraction of one of the two components,

the lattice structure and the topology. Within this definition of sonic crystal, a major

interest has been focused on the study of the scattered field generated by cylinders. The

first formulation of multiple scattering specifically tailored for cylinders arranged in air

dates back to 1950, with the publication of the milestone work by Twersky25 and has

been followed by a huge amount of literature which will be described in the following.

This work locates at the crossroad among these three topics. It presents a theoretical,

numerical and experimental investigation on sound propagation through sonic crystals,

i.e. periodic arrangements of cylinders immersed in air. The phenomenon investigated

thus deals with stop-band properties which occurs for waves impinging on a sonic crystal

with a wavelength comparable to the lattice constant. The potential applications for these

periodic arrangements are many and exploit the peculiarities of the phenomenon. The

selectivity in frequency is often used to prevent the spread of highly tonal components,

typical for instance of the machineries in industrial plants. The addition of resonators, of

sound absorbing material or of lattice defects allows to extend the band gap in frequency

and elect sonic crystals to candidates for the construction of urban barriers. Among

the advantages, it is worth recalling the limited weight of the structures, which allows

to reduce the foundation costs; the free air flow, which also reduces the loads acting on
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the foundations by reducing the tilting moment; the continuity of the visibility and of the

lightning; finally and not least, a certain aesthetic appeal. In the development of the work,

both the construction of band structures and the implementation of multiple scattering

algorithms followed the state of art in the literature, while an extensive measurement

campaign provided interesting results related to the sound field inside the sonic crystal,

on the pattern of the scattered field and on the use of standardised criteria to qualify sonic

crystals, all of the measurements being supported by analytical and numerical predictions.

The research has been developed at the University of Bologna and at the Open Univer-

sity headquarters in Milton Keynes (UK), where I was hosted to carry out measurements

on sonic crystals in an anechoic chamber and develop analytical tools to predict the per-

formance of sonic crystals. This collaboration allowed to complement the theoretical basis

and to compare measurement procedures and results and has been an essential feature of

this research.

The text is organised as follows. Chapter 1 reports a brief review of the literature

in order to focus on the state of art of the research in this field and to point out open

issues and possible developments. The fundamentals of periodic systems are explained in

detail, from the original concepts developed in the field of the solid state physics, to the

transposition of the same principles to sonic crystals. Chapter 2 introduces two of the most

important theoretical models for the computation of the sound field transmitted through

sonic crystals: the Plane Wave Expansion method, which allows to compute the band

structures of the periodic arrangements under analysis, the Multiple Scattering Theory,

through which the scattered field can be computed point by point, and the Finite Element

method, which was used to extract the band structures and to evaluate the magnitude of

the sound attenuation through the crystal. Chapter 3 describes in detail the experimental

campaign conducted at the Open University, Milton Keynes (UK) and at the University of

Bologna. The two test facilities are described in detail and the results of the experimental

campaigns are discussed. First, the sound pressure field transmitted and reflected by the

sonic crystal is analysed point by point. Then the distribution of the sound pressure

field inside the sonic crystal is investigated through a further set of measurements which

included sound intensity measurements. The final section of this chapter is dedicated

to the analysis of standardised sound insulation and reflection indices, which have been

firstly measured in this work in order to test the effectiveness of sonic crystals versus

other standard noise barriers. The concluding remarks discuss the main results achieved

throughout this work with reference to the existing literature, highlight the innovative

contributions that this work brought to the research field and suggests future steps for an

evolution of the research on the topic.





Chapter 1

An introduction to sonic crystals

This first chapter is meant to provide an overview on sonic crystals (SCs), spanning from

the analysis of the literature to the formulation of the principles of solid state physics from

which Bragg scattering was first analysed about 100 years ago. The first section traces the

evolution of the research field through a selection of papers which have been considered

representative of the whole literature. A great importance is given to works which not

only present theoretical formulations but which also provide experimental evidences, as

the milestone works for theoretical derivations are exposed in detail in Chapter 2. The

second section provides the fundamental tools for an insight into the origin of stop-band

phenomena.

1.1 From the origins to the state of art

In the last two decades, many works have been devoted to the investigation of sound

waves propagating through sonic crystals. The first experimental evidences of band gaps

in sonic crystal dates back to 1995, when Martinez et al.26 measured sound attenuation

across a sculpture by Eusebio Sempere, exhibited outside the Juan March Foundation

in Madrid. The sculpture basically consists of an arrangement of steel cylinders in air

mounted on a circular platform. Measurements at different incidence angles provided the

first evidences of the formation of acoustic band gaps in periodic elastic media5. After

this pioneering work, several studies reported measurements and theoretical approaches

to characterise sonic crystals. Tests involved the variation of the spatial arrangement of

the cylinders and of the filling fraction, showing that simple lightweight sonic crystals are

capable to reduce sound transmission up to 25 dB27;28;24;29. Closely related to the sound

attenuation provided by sonic crystals are the reflectance properties of such periodic ar-

rangements. Sanchis et al.30 investigated the sound pressure field reflected from the sonic

crystal by means of multiple scattering formulations which were verified by measurements.

They found out that the standing wave ratio is enhanced in the same frequency range in

which stop-band phenomena occur. The reflectance properties were further investigated

and related to the band structures of the sonic crystal31 . Though the early theoreti-
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cal formulations of multiple scattering phenomena refer to rigid circular cylinders, other

kind of scatterers have been analysed in the literature. In particular, square scatterers

rotated along the vertical plane have been investigated leading to a modelling of negative

refraction32 and to the optimisation of tunable acoustic waveguides33.

The most limiting property of sonic crystal is that stop-bands are constrained to a

narrow band; thus an extensive literature focused on widening the frequency range of

attenuation by associating separate attenuation mechanisms to Bragg scattering. The

infinite possibilities of combination of these phenomena gave rise to several design opti-

mised to provide a broadband attenuation. For instance, Romero et al.34 designed an

array of scatterers characterised by multiple resonances of different nature and material

with different mechanical properties and geometries which provide attenuation effects in

the long wavelength limit. Similarly, Elford et al.35 proposed matryoshka resonant sonic

crystals, i.e. concentric configurations of slotted cylinders that provide sound attenuation

below Bragg frequency. Krynkin et al. proved that the periodic concentric arrangement

of cylinders with slits and inner elastic shells provided attenuation below the first Bragg

band gap36. Another solution to render sonic crystals effective broadband is the applica-

tion of sound absorbing materials to the scatterers. Umnova et al.37 provided theoretical

and experimental evidences about the benefits achievable by the adding porous materi-

als to the cylinders. Sànchez-Dehesa et al.38 tested sonic crystals consisting in cylinders

arranged in three layers and filled with rubber crumb. Sound attenuation was tested

in an anechoic chamber and compared to the attenuation provided by plain rigid cylin-

ders. Garc̀ıa-Chocano et al.39 performed measurement on the same two configurations

measured in transmission chambers, i.e. in a diffuse field.

The application of sonic crystals as noise barrier was further developed by studying

the effect of the ground where the scatterers are fixed and its interfering behaviour with

respect to the formation of band gaps. Kryinkin et al.40 combined the effects of a two-

dimensional (semi-infinite) periodic array of cylinders and a impedance ground where

cylinders would be installed. The theoretical and experimental analysis showed that,

while a rigid ground would mine the positive IL related to Bragg band gap, an impedance

ground shifts the ground effect minima to lower frequencies, not interfering with the Bragg

band gap. With a specific attention towards sustainable application as noise barriers,

works have been devoted to quantify the attenuation produced by trees arranged in a

periodic lattice41 and by bamboo rods42, plain and drilled in order to couple resonance

phenomena.

The inclusion of defects into sonic crystals has also been investigated, where these

anomalies were for instance due to vacancies or modification the dimensions of some scat-

terers43;44. Evolutionary algorithms have been developed within the multiple scattering

theory to allow a controlled manipulation of waves inside the sonic crystal by introducing

vacancies in the lattice45. The evanescent behaviour of modes in the band gap has been

theoretically and experimentally demonstrated in the presence of lattice defects as well46.

Some comprehensive works included many of the features exposed above, both in
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terms of design of the scatterers and measurement setup. One amongst all, Castineira-

Ibànez et al.47 characterised acoustic barriers based on fractal geometries to maximise the

Bragg scattering and multi-phenomena scatterers with several noise control mechanisms,

as resonances or absorption, by acoustic standardisation tests according to EN 1793-248,

i.e. under diffuse field conditions.

1.2 Fundamentals of periodic systems

The present section deals with the fundamentals of periodic structures and the properties

of wave propagation inside such media. First, from the concepts of direct and reciprocal

lattice, Bragg’s law and Laue diffraction conditions are derived. Second, the Bloch-

Floquet theorem is presented, that emerges as the most significant property of wave

propagation in periodic media. The formation of band structures is then analysed together

with the analysis of band structures. Finally, the theory of wave propagation in periodic

media is applied to the acoustic waves, pointing out the analogies and differences between

the two physical systems. The 2D periodicity is analysed in greater detail, the 1st Brillouin

zone is derived for the square array and the existence of band gaps is derived also for

acoustic waves. The notation used in the following recalls Refs.1;49.

1.2.1 Direct lattice and reciprocal lattice

A direct lattice, or Bravais lattice, ~R is an infinite set of points generated by the trans-

lation of a set of vectors ~ai, called primitive vectors, which are linearly independent. Its

most important property is that the atomic structure remains invariant under translation

through any vector which is the sum of integral multiples of these vectors. The general

definition in n dimensions is:

~R =

{
n∑
i=1

νi~ai

}
(1.1)

where νi ∈ Z and ~ai are the primitive vectors lying in different directions. Each point

reached by the translations is a lattice site. The physical arrangement of the whole crystal

can be defined by specifying the contents of a single unit cell, whose repetition following

the ~ai vectors generates the crystal structure. The unit cell is said to be primitive if it

is determined by the primitive vectors. Considering a 3D lattice, ~R can be expressed

as a linear combination of three primitive vectors {a1, a2, a3} in the direct space that

constitute a base:

~R = ν1 ~a1 + ν2 ~a2 + ν3 ~a3 (1.2)

where νi ∈ Z.

The reciprocal lattice is defined together with the direct lattice. Consider a direct

lattice ~R and a plane wave ei
~G~r impinging on it; for some G values, this wave has the

same periodicity of the direct lattice. The reciprocal lattice of a given direct lattice is

defined as the set of vectors ~G that give plane waves with the same periodicity of the
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direct lattice. In mathematical terms one has:

ei
~G(~R+~r) = ei

~G~r ⇔ ei
~G~R = 1 (1.3)

This implies that
~G · ~R = 2πn (1.4)

where n ∈ Z. Given N the number of cells that build the crystal, N is also the number of

vectors of the direct lattice ~R and the number of vectors ~G of the reciprocal lattice. The

reciprocal lattice is still a Bravais lattice. So, similarly to the direct lattice, vectors ~G

can be expressed as a linear combination of three fundamental vectors {b1, b2, b3} of the

reciprocal space:
~G = µ1

~b1 + µ2
~b2 + µ3

~b3 (1.5)

where µi ∈ Z. The condition in Eq. 1.4 is satisfied if and only if

~ai · ~bj = 2πδij (1.6)

In three dimensions it hence becomes:

~b1 · ~a1 = 2π, ~b2 · ~a1 = 0, ~b3 · ~a1 = 0

~b1 · ~a2 = 0, ~b2 · ~a2 = 2π, ~b3 · ~a2 = 0

~b1 · ~a3 = 0, ~b2 · ~a3 = 0, ~b3 · ~a3 = 2π.

(1.7)

The fundamental vectors of the reciprocal lattice {b1, b2, b3} are thus given by:

~b1 = 2π
~a2 × ~a3

~a1 · ~a2 × ~a3
, ~b2 = 2π

~a3 × ~a1

~a1 · ~a2 × ~a3
, ~b3 = 2π

~a1 × ~a2

~a1 · ~a2 × ~a3
. (1.8)

A brief but incisive distinction among the two lattices is provided by Kittel1.

When we rotate a crystal, we rotate both the direct lattice and the reciprocal lattice.

Vectors in the crystal lattice have the dimensions of [length]; vectors in the reciprocal lat-

tice have the dimensions of [length]-1. The crystal lattice is a lattice in real and ordinary

space; the reciprocal lattice is a lattice in the Fourier space.

The statement that the reciprocal lattice belongs to the Fourier space is justified as

follows, considering a mono-dimensional periodic function:

f(x+ l) = f(x) (1.9)

In order to represent functions with the periodicity of a given lattice, it is possible to

express this function as a Fourier series,

f(x) =
∑
n

Ane
2πinx/a

where n is an integer. This can also be written in the form

f(x) =
∑
n

Ane
igx
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(a) Square lattice: |a| = |b|, α = 90o (b) Hexagonal lattice |a| = |b|, α = 120o

(c) Rectangular lattice |a| 6= |b|, α = 90o (d) Centred rectangular lattice: primitive

cell on the left and rectangular unit cell on

the right, for which |a| 6= |b|, α = 90o

Figure 1.1: The five 2D Bravais lattices: square, hexagonal, rectangular, oblique and centred

rectangular.

where g belongs to the set of reciprocal lattice lengths49,

gn = n
2π

a
(1.10)

The coefficients in the Fourier series are determined by

Ag =
1

a

∫
cell

f(x)e−igxdx (1.11)

where the integration spans only one cell of the lattice. The proof that the Fourier series

implies the periodicity of function f(x) is given by the condition that, for any g,

eigl = 1 (1.12)

The group theory defines the number of Bravais lattices that it is possible to have

in each space dimension. In particular there exist one kind of 1-D lattice, 5 kinds of

2D lattices and 14 kinds of 3D lattices. In particular, there are five direct 2D lattices:

oblique, square, hexagonal, primitive rectangular and centred rectangular (see Fig. 1.1).

Since the focus of this work is on two-dimensional square arrays, in the following the

characteristic features of this kind of lattices are specified. Using the same notation of
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(a) (b) (c)

Figure 1.2: Construction steps of the 1st Brillouin zone for a square lattice.

section 1.2, the reciprocal lattice vectors for a square lattice are defined by:

~G · ~R = 2πn ⇔ ~ai · ~bj = 2πδij (1.13)

From (1.13) we have:

~a1 · ~b1 = 2π and ~a1 · ~b2 = 0 (1.14)

This implies
~b2⊥ ~a1 ‖ x⇒ ~b2 ‖ y (1.15)

Reiterating the same operations for y, we have:

~b1 =
2π

a1
x̂ and ~b2 =

2π

a2
ŷ (1.16)

Thus, the reciprocal lattice of a square lattice with lattice constant a is a square lattice

with lattice constant 2π/a. The Brillouin zones are defined as the Wigner-Seitz cells of the

reciprocal lattice, i.e. the region of space built around a node of the reciprocal lattice and

made of the points which are closer to that point than to any other. Thus it is possible

to spot the 1st Brillouin zone by joining the points which are equidistant from adjacent

sites of the reciprocal lattice, as shown in Fig. 1.2. Three high symmetry directions are

spanned in the band analysis: ΓX, XM and ΓM , where the Γ = [0, 0], X = [π/a, 0],

M = [π/a, π/a].

The most significant parameters for the description on an array are the lattice constant

a and the filling fraction ff . The lattice constant a of a square lattice corresponds to one

of the vectors of the base, i.e. the distance between two adjacent lattice sites. The filling

fraction ff is defined as the ratio of the area occupied by the scatterers to the total area

of the unit cell. For cylindrical scatterers in a square lattice, it is:

ffcyl,sq =
πr2

a2
(1.17)

The maximum filling fraction for a square lattice is achieved when a = 2r, i.e. adjacent

cylinders have a contact point. This occurs at a ffmax = 0.785.
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Figure 1.3: Bragg scattering.

1.2.2 Bragg scattering and Laue diffraction

The crystalline structure of solids has been historically investigated through the diffraction

of photons, neutrons or electrons. In 1913, W. L. Bragg gave an effective explanation to

the observed angles of diffracted beams from a crystal. In particular, he observed that

for certain incidence angles and wavelengths, the intensity of the reflected radiation was

strengthened. He explained that considering the structure of the crystal as a set of parallel

lattice planes spaced apart of a distance d. Whenever the path difference for rays reflected

from adjacent planes is an integer number of the incident wavelength λ, the reflections

from all parallel planes add up in phase giving a strong reflected beam (see Fig. 1.3).

The condition for Bragg scattering is then:

2dsinθ = nλ (1.18)

M. T. F. Von Laue determined the amplitude of the scattered wave. The detailed

derivation is reported in Kittel1 and is based on the hypothesis of elastic scattering,

i.e. the wavelength of the particle (phonon or neutron) is not changed on reflection.

Consider a plane wave incident on a crystal with primitive axes a1, a2, a3. The origin of

the coordinate system O is chosen anywhere inside the crystal. Assuming time-harmonic

dependence, the amplitude of the wave in free-field at point ~x is given by:

F (~x) = F0e
i~k~x

Assuming that the plane wave propagation is not affected by the presence of the lattice,

at some point ~R inside the crystal the amplitude of the incident wave is:

F (~R) = F0e
i~k ~R
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At some point ~ρ = ~R + ~r outside the crystal, the contribution of the atom at ~R to the

scattered field involves a phase factor of the incident radiation and a phase factor of the

scattered radiation as observed at ~ρ. The total phase factor is:

ei
~k ~Rei

~k~r = ei
~k ~R+i~k~r

If ~ρ is larger than the dimension of the crystal, r ' ρ − Rcos(~R, ~ρ) and the total phase

factor can be expressed as

ei
~k ~R+i~k~ρ−i~k ~Rcos(~R,~ρ)

Considering that the amplitude of the wave scattered at ~ρ is likely to be proportional to

the density of atoms n(~R) in the crystal, it is also proportional to the integral∫
dV n(~R)ei

~k ~R−i~k ~Rcos(~R,~ρ) (1.19)

where eikρ is omitted as constant over the volume and the difference between 1/r and 1/ρ

is neglected. The argument of the exponential can be expressed as

i~k ~R− i~k ~Rcos(~R, ~ρ) ≡ i ~R(~k − ~k′) = −i ~R ~∆k

where ~k′ is the wave vector in the scattering direction ~ρ and ~∆k = ~k′−~k is the difference

between the scattered wave vector and the initial wave vector. Considering the finite

nature of the lattice, the integral in Eq. 1.19 reduces to a finite sum over the lattice points
~R (Eq. 1.2). The total scattered radiation amplitude seen at ~ρ is then proportional to

A ≡
∑
~R

e−i
~R· ~∆k

Some algebra1 leads to the conclusion that the maxima of the diffracted wave occur

whenever the following equations, known as Laue equations, are satisfied simultaneously.

~a1 · ~∆k = 2πq ~a2 · ~∆k = 2πs ~a3 · ~∆k = 2πt (1.20)

where q, s, t are integers. These equations are proved to be equivalent to Bragg’s law1.

The solution is particularly simple if the primitive vectors are mutually orthogonal, for

then

~∆k = 2π

(
q

a1
â1 +

s

a2
â2 +

t

a3
â3

)
(1.21)

If the axes are not mutually orthogonal, considering the expression

~∆k = q ~A+ s ~B + t ~C

it is possible to verify by direct substitution that Eq. 1.2.2 satisfies the Laue equations if

and only if ~∆k is equal to any reciprocal lattice vector ~G. The diffraction condition hence

becomes

~∆k = ~G (1.22)
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This equation can be further manipulated to return another formulation of the diffrac-

tion law. In fact, it is possible to write

~k + ~G = ~k′

By squaring this equation, one has (~k + ~G)2 = k′2, but ~k = ~k′ in elastic scattering, thus

the diffraction law may be written as

2~k · ~G+G2 = 0 (1.23)

It is possible to notice that the above mentioned problem can be accounted to as

a single-scattering problem, i.e. the contribution to the scattered field given by each

scatterer is computed as if each scatterer was isolated from the others. This approximation

holds until the atoms are spaced apart by a considerable distance compared to their

diameter, as often is the case in crystal lattices.

1.2.3 The Bloch-Floquet theorem

The Bloch theorem in the Solid State Physics states that49

For any wave-function/state function that satisfies the Schrödinger equation (or its

classical or quantal equivalent) there exist a vector ~k such that translation by a lattice

vector ~l is equivalent to multiplying by the phase factor ei
~k~l.

In mechanics, this theorem is known as Floquet theorem, thus in the following it will

be referred to as Bloch-Floquet theorem. That statement can be formulated as follows:

ψ~k(~r +~l) = ei
~k~lψ~k(~r) (1.24)

where ψ~k is a Bloch wave function (or Bloch state) with a given wave vector ~k. In other

words, the wave function of a particle placed in a periodic potential, i.e. a Bloch wave,

consists of the product of a plane wave and a periodic function which has the same

periodicity as the potential. In the free field, the wave equation would satisfy

ψ~k(~r) = ei
~k~r (1.25)

Then, to use a notation which recalls more directly the free field propagation, Bloch-

Floquet theorem can be expressed as:

ψ~k(~r) = ei
~k~ru~k(~r) (1.26)

where u is a periodic function, i.e.

u~k(~r +~l) = u~k(~r) (1.27)
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Figure 1.4: Reduced zone scheme in a one-dimensional reciprocal lattice. All the points k are

equivalent.

The term ei
~k~l shows many similarities to the term ei~g

~l that appeared in subsection

1.2.1, suggesting that both ~k and ~g belong to the reciprocal space. In fact, if a Bloch

function has wave vector ~g, since ei~g
~l = 1, it would be a periodic function:

ψ~g(~r +~l) = ei~g
~lψ~g(~r) = ψ~g(~r) (1.28)

for all ~l.

Consider a Bloch function has wave vector ~k such that

~k = ~g + ~k′ (1.29)

where ~g is some vector of the reciprocal lattice and ~k′ is another vector. Then

ψ~k(~r +~l) = ei(~g+
~k′)~lψ~k(~r) = ei~g

~lei
~k′~lψ~k(~r) = ei

~k′~lψ~k(~r) (1.30)

i.e. the Bloch function ψ~k satisfies the Bloch-Floquet theorem as if it had the wave vector
~k′. It is to notice that ~k can assume multiple values for a given ~k′ because it depends also

on the vectors ~g of the reciprocal lattice. Thus it is necessary to define uniquely the wave

vector of a given Bloch function. Considering a one-dimensional lattice, a state may be

assigned any wave number in the set

k = n
2π

a
+ k′ (1.31)

The standard choice is to consider k′ as representative for all k values, being |k′| as small

as possible. In particular, it has to lie closer to the origin than to any other point of the

reciprocal lattice - i.e. in the first Brillouin zone. The wavenumber is then chosen in the

range

−π
a
< k ≤ π

a
(1.32)

It is clear that any point ~k in the reciprocal space can be reduced to a point in the

Brillouin zone and any Bloch wave can be characterised by its reduced wave vector. Since
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(a) (b)

Figure 1.5: Energy vs wave vector for a free electron (a) and for an electron in a mono-dimensional

linear lattice of lattice constant a (b).

many states have the same reduced wave vector and different energies, the reduced zone

scheme allows to represent them all by folding the energy bands inside the 1st Brillouin

Zone.

As wave functions are periodic in the direct lattice, the solutions in the Fourier space

are periodic in the reciprocal lattice, i.e. as well as the calculations in the direct lattice

are constrained to the unit cell, in the reciprocal lattice the calculations are constrained

to the 1st Brillouin zone.

1.2.4 Energy bands formation

Electron in crystals are arranged in energy bands, separated by regions in which no

energy states are allowed. These regions where propagation is inhibited are called band

gaps, while the allowed states are generally referred to as pass bands. The formation of

energy band gaps derives directly from Laue diffraction conditions and are derived in the

following with reference to the nearly free electron model, i.e. assuming that the band

electrons are perturbed only weakly by the periodic potential of the ion cores.

Fig. 1.5 plots the energy versus the wave vector for a free election (left) and for an

electron in a linear lattice with constant a (right) showing an energy gap. The Bragg

condition (~k + ~G)2 = k2 in one dimension becomes:

k = ±1

2
G = ±nπ

a
(1.33)

where G = ±2nπ/a is a vector of the reciprocal lattice and n is an integer.

When Bragg condition is satisfied a wave traveling in one direction is soon Bragg-

reflected and then travels in the opposite direction. Each subsequent Bragg reflection

reverses the direction of travel again. The only time-independent situation is formed by

standing waves 1. From the free-electron model, we have two traveling waves eiπx/a and
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Figure 1.6: Periodic potential and probability density for the standing waves ψ+ (continuous line)

and ψ− (dashed line).

e−iπx/a which can in turn form two standing waves:

ψ+ ∝ (eiπx/a + e−iπx/a) = 2cos(πx/a)

ψ− ∝ (eiπx/a − e−iπx/a) = 2isin(πx/a)
(1.34)

Fig. 1.6 sketches the distribution of probability density ρ = |ψ2| for the standing waves ψ+

and ψ−.. While a traveling wave would distribute electrons uniformly in x, the standing

wave ψ+ distributes the electrons preferably on the ion cores, where the potential energy

is lower, and ψ− distributes electrons between the ion cores. Thus the average potential

energy of ψ+ will be lower than that of a traveling wave, whereas the average potential

energy of ψ− will assume higher values. The difference between ψ− and ψ+ is the width

of the energy gap at k = π/a, i.e. when the wave vector k lies on the boundary of the 1st

Brillouin zone.

1.2.5 Band gaps in sonic crystals

When trying to translate the concept of electron energy bands into acoustics, several

hypotheses fall. Considering an array of scatterers immersed in a fluid. First of all,

the scatterers are not immersed in a periodic potential. Infinite periodicity is clearly an

abstract concept, which can be considered a valid assumption for instance in crystalline

structures where the dimension of the crystal is sensitively smaller than the wavelength

used to investigate it. Dealing with sonic crystals, the dimensions of the scatterers cannot

be neglected anymore.
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(a) Extended zone scheme

(b) Reduced zone scheme

Figure 1.7: Extended (a) and reduced (b) zone schemes.

Assuming a harmonic temporal dependence, the wave equation in free field

(∇2 + k2)p = 0 (1.35)

has a solution of the type eikx, where k is the wave vector. In a periodic medium, we will

have to solve

(∇2 + k2)pk = 0 (1.36)

with the periodic condition

pk(r +R) = pke
ikR (1.37)

where k represent the wave vector inside the periodic medium and its values lie within the

first Brillouin zone. Since in a 2D periodic medium the eigenvalue problem is restricted to

a single unit cell, the eigenvalues ω(k) form a set of discrete frequencies which represent

the frequencies supported by the lattice3. Thus, for each value of wavenumber k there

is an infinite set of modes with discretely spaced frequencies, which can be labelled by a

band index n. Since k enters as a continuous parameter, we expect that the frequency

of each band, for each n, varies continuously as k varies. The band structures thus are

a set of continuous functions ωn(k) indexed in order of increasing frequency by the band

number3.

The relation between ω and k is usually referred to as dispersion relation, and in the

free field the proportional constant is the speed of sound, c = ω/k. The flattening of the

dispersion curves can be thought as of a decrease of the speed of sound inside the crystal.
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Figure 1.8: Dispersion curves extracted using the PWE method for three different arrays; the

lattice constant Lc is 0.1 m and the filling fraction is ff = 0.01 (a), ff = 0.2 (b), ff = 0.6 (c).

Since the periodicity of the medium in general depends on the direction of propagation,

the dispersion curves are usually represented in direction-dependent diagrams. For a 2D

square lattice, the frequency at which Bragg scattering occurs are determined for normal

incidence (ΓX direction) and or an incidence angle of 45o (ΓM direction) from:

vΓX =
csound
2 · Lc

, vΓM =
csound

2
√

2 · Lc
(1.38)

where Lc will hold from now on as the lattice constant of a sonic crystal. When dealing

with acoustic wave and propagation in a medium, the formation of the band gap cannot be

found obviously in the existence of a periodic potential, but some conclusions still hold. At

Bragg frequency, i.e. at the boundary of the 1st Brillouin zone, a standing wave is formed

inside the crystal due to the interaction of the incident and the back-scattered wave.

Since standing waves have null group velocity, vg = δω/δk = 0, the dispersion curves will

assume a horizontal tangent moving towards the boundaries of 1st Brillouin zone, leading

to the opening of a band gap. The envelope of the standing wave which is formed at

Bragg frequency displays a maximum in between the cylinders, i.e. where the material

with higher sound propagation velocity lies. Thus, for the same wavenumber, two different

frequencies are possible due to the different sound propagation velocities inside the two

media. The width of the band depends on the difference in velocity. Band structures

are thus the solutions of the eigenvalue problem plotted in direction-dependent diagrams.

The eigenvalue problem can be formulated by different means; the most common is the

Plane Wave Expansion method5 and the Multiple Scattering Theory7;50.

For this phenomenon to be appreciable, the crystal must show a certain filling fraction.

Fig. 1.8 depicts three band structures calculated for a lattice constant Lc = 0.10 m, where

the first Bragg band gaps are expected at 1,720 Hz for normal incidence (ΓX direction)

and at 1,210 Hz for an incidence angle of 45o (ΓM direction). Three filling fractions are

considered, 0.01, 0.2, 0.6 which implies, leaving the lattice constant unchanged, the radii

of the cylinders to be 0.0056, 0.0252 and 0.0437 m respectively. The x-axis reports the

reduced wave vector k, while y-axis reports the frequency. If the filling fraction is small,
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Table 1.1: Wavelengths of the standing waves inside the sonic crystal reported as multiples or

submultiples of the lattice constant a.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

1st harmonic 2Lc 4Lc 6Lc 8Lc 10Lc 12Lc 14Lc

2nd harmonic Lc 2Lc 3Lc 4Lc 5Lc 6Lc 7Lc

3rd harmonic ... ... 2Lc ... ... ... ...

4th harmonic ... ... ... 2Lc ... ... ...

5th harmonic ... ... ... ... 2Lc ... ...

6th harmonic ... ... ... ... ... 2Lc ...

7th harmonic ... ... ... ... ... ... 2Lc

as in Fig. 1.8 (a), the wave propagation inside the crystal is not affected by the presence

of the scatterers and the dispersion relation assumes linear values, according to the law

k = ω/c. Increasing the filling fraction to 0.2, Fig. 1.8 (b), a band gap opens in the ΓX

direction (dark grey shade), centred around the Bragg frequency calculated above. With

a filling fraction of 0.6, Fig. 1.8 (c), the band gap in the ΓX direction increases in width

and band gaps open also for the ΓM and XM directions (light grey shade), leading to

the formation of a complete band gap.

The formation of standing waves inside the sonic crystal at Bragg frequency can be

derived theoretically from subsection 1.2. In fact, the opening of the band gaps occur at

the boundaries of the 1st Brillouin zone, i.e. when the conditions for Bragg diffraction

are met (cfr. Eq. 1.22). A very simple way to relate Bragg band gap to the multiple

interaction of the sound wave inside the crystal is to consider the contribution that single

lattice plane bring in terms of standing waves. Considering the sonic crystal in plan as a

set of open-ended pipes, the behaviour of the sample can be analysed in terms of Fabry-

Perot resonances. In particular, for both directions the first harmonics are reported in

Table 1.1. From the diagonal values of the table, it is clear that the standing wave which

is enhanced by the addition of rows of cylinders is the one corresponding to a wavelength

of twice the lattice constant.





Chapter 2

Theoretical models

Three theoretical models have been used in this work to support the experimental evi-

dences: the Plane Wave Expansion (PWE), the Multiple Scattering Theory (MST) and

the Finite Element (FE) method.

The Plane Wave Expansion method is based on the solution of the wave equation by

applying Bloch-Floquet theorem and expanding the properties of the media in Fourier

series. In its basic formulation, it allows to calculate the band structure of the medium.

The PWE medium can be applied to arrays of any kind of scatterers but only infinite

arrays can be modelled. The Multiple Scattering Theory is a formulation that computes

the pressure field as a sum of the multiple scattering process. It generates when a wave

impinging on a scatterer produces a scattered wave which in turn is scattered by the

other scatterers and so on. The implementation of this methods allows to compute the

sound field generated by any array and no constrain on the periodicity or regularity of

the array is required. Multiple scattering formulations have also been used to compute

the band structures of periodic acoustic composites7. The Finite Element method is a

numerical method to solve partial differential equations. The domain is discretised into

small regions in which the differential equations are approximately solved. This meshing

procedure allows to describe also complex geometries. This method is not widely used in

acoustic scattering problems due to the computational costs and to its inborn inability to

cope with unbounded domains. It is though a robust method to calculate sound pressure

fields also through sonic crystals and can be used in together with other softwares, to

calculate band structure.

In this work, the PWE method is used for the calculation of band structures, the MST

is used for the determination of the pressure field for finite samples and the FE method

is used for both purposes. Section 2.1 describes the theoretical background of the PWE

method and the results of the calculation of band structures. Section 2.2 presents the

self-consistent formulation of the MST and a study on the convergence of the method

related to some lattice parameters. Section 2.3 reports the acoustic formulation of the

FE method. The results from the three methods are finally compared in section 2.4.
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2.1 Plane Wave Expansion method

As I have always pointed out, the first thing to do in any case where certain wave-lengths

are absent as a result of an unknown process (...) is to find out where the absent wave-

lengths have gone.

R.W. Wood, Phys. Rev. B 48, 1935.

The Plane Wave Expansion is a powerful method to predict energy bands in periodic

media which is based on the direct resolution of the wave equations51. With specific refer-

ence to acoustic applications, this method is powerful when the density contrast between

the inclusions and air is very large, i.e. the waves that propagate inside the inclusions do

not contribute significantly to the scattering of the acoustic wave in the air background.

This method allows to model only infinite arrays arranged in a regular pattern, thus no

finite or random media can de analysed. Moreover, it shows convergence problems due

to the large numbers of plane waves required to calculate the band structures52. The

following will mainly refer to the work by Kushwaha et al.5.

2.1.1 The PWE method for two-dimensional periodicity

The wave equation is given by:

ρ
δ2u

δt2
= ∇ ·

(
ρc2
l∇u

)
(2.1)

where u is the sound pressure, ρ is density of the medium and cl is the sound velocity

inside the medium. Consider a 2D periodic array of identical, infinite cylinders with

arbitrary cross section immersed in air. Since the medium is periodic, its properties (ρ,

cl) can be expanded in Fourier series:

ρ(r) =
∑
G

ρ(G)eiGr

ρ(r)c2
l (r) =

∑
G

Λ(G)eiGr
(2.2)

where G are vectors of the reciprocal lattice. The sound pressure must satisfy the Bloch-

Floquet theorem:

u(r, t) = ei(Kr−ωt)
∑
G

uK(G)eiGr (2.3)

where K is the Bloch wave vector. Substitution of Eqs. 2.3 and 2.2 into 2.1 leads to∑
G′

[
Λ(G−G′)uK(G′) · (K +G′)(K +G)− ω2ρ(G−G′)uK(G′)

]
= 0 (2.4)
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If G takes all the points of the reciprocal lattice, Eq. 2.4 is a linear set of equations for

the eigenvectors uK(G). For a given value of K, this set of equations has solution for

some eigenvalues ωn(K), where n = 1, 2.. are the so-called bands.

If each unit cell is composed only of two materials a and b, then the Fourier coefficients

in Eq. 2.2 assume a simpler form. The occupancy ratios for the two materials are defined

as ff = πr2
0/Ac, Ac being the area of the unit cell and r0 the radius of the cylinders,

and are respectively ff and (1− ff). Introducing the so called structure function F , for

circular scatterers:

F (G) = A−1
c

r0∫
0

rdr

2π∫
0

e−iGrcosθdθ = 2ffJ1(Gr0)/(Gr0) (2.5)

where J1 is the Bessel function of the first kind of order 1. Then the Fourier coefficients

are:

ρ(G) =

ρaff + ρb(1− ff) ≡ ρ̄, G = 0

(ρa − ρb)F (G) ≡ (∆ρ)F (G), G 6= 0
(2.6)

Λ(G) =

ρac2
laff + ρbc

2
lb(1− ff) ≡ ¯ρc2

l ≡ Λ̄, G = 0

(ρac
2
la − ρbc2

lb)F (G) ≡ ∆(ρc2
l )F (G) ≡ (∆Λ)F (G), G 6= 0

(2.7)

The square lattice configuration has a reciprocal lattice vector defined in the PWE method

as

G =

(
2π

a

)
(nxx+ nyy) (2.8)

Further developments of the method are represented by the Extended Plane Wave

Expansion, which allow to compute the complex band structures53 and the supercell

approximation, which allows to calculate band structures of sonic crystals with point

defects.

2.1.2 Band structures of sonic crystals

The band structures that follow, as well as those reported in Chapter 1, have been calcu-

lated by solving the eigenvalue problem exposed above and implemented in Matlab c© 54. In

these calculations, the integers nx and ny in Eq. 2.8 were allowed to take values between

-10 and +10, providing 441 plane waves. One parameter has been changed at time in

order to spot the emergence of band gaps in relation to the features of the PWE method.

First, unit cells are analysed in which the lattice constant has been doubled, keeping the

filling fraction unchanged by increasing the radius of the cylinder accordingly (Fig. 2.1).

The general trend of the dispersion curves is the same in the two configurations, but the

magnitude of the band gap opening is reduced and shifted down in frequency.

Then, the lattice constant has been kept unchanged at Lc = 0.069 m and the filling

fraction has been varied from 0.3 to 0.7 by increasing the radius of the cylinder (Fig.

2.2). Band gaps occur in different frequency regions in the different directions of the first

Brillouin zone. In particular, with a filling fraction of 0.3 four partial band gaps occur in
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(a) Lc = 0.069 m
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Figure 2.1: Dispersion curves calculated with the PWE method for two different arrays with filling

fraction ff = 0.5 and lattice constant Lc = 0.069 m (a), Lc = 0.138 m (b).
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(c) ff = 0.6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

F
re

q
u
e
n
c
y
 (

H
z
)

M Γ X M

Reduced Wave Vector k*

(d) ff = 0.7

Figure 2.2: Dispersion curves calculated with the PWE method for three different arrays with

lattice constant Lc = 0.069 m and filling fraction ff = 0.3 (a), ff = 0.5 (b), ff = 0.6 (c), ff =

0.7 (d). The configuration with ff=0.5 has been omitted as equal to Fig. 2.1 (a).
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Table 2.1: Central frequencies of Bragg band gaps.

ff 0.3 0.4 0.5 0.6 0.7

ΓX 2,330 Hz 2,320 Hz 2,330 Hz 2,370 Hz 2,470 Hz

X −M - 2,890 Hz 2,810 Hz 2,780 Hz 2,780 Hz
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(a) Air-PVC
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Figure 2.3: Dispersion curves calculated with the PWE method for three different arrays with

different density constast. PVC cylinders (a) and steel cylinders (b) in air background.

the ΓX direction, the first one being located in the range 1730-2940 Hz. When the filling

fraction is increased to 0.4, the four partial band gaps are shifted in frequency, the first

BG spanning 1610-3040 Hz. A total band gap opens in the range 2730-3050 Hz while

at higher frequencies only partial band gaps occur. Following the same trend, increasing

the ff to 0.5, 0.6 and 0.7 the dispersion curves flatten, increasing the width of the band

gap and and shifting upwards in frequency the occurrence of partial band gaps in the ΓX

direction (see Tab. 2.1). Though the dispersion relations are modified in the vicinity of

the band gap, the centre frequency of the BG can be approximately assumed to fulfill Eq.

1.38. For this lattice thus, Bragg scattering is expected to occur around 2490 Hz in the

ΓX direction.

Finally, the density contrast between the materials has been changed by computing

band structures of PVC cylinders and steel cylinders immersed in air (Fig. 2.3). The

density contrast has been anyway kept high in order to maintain the hypothesis of rigid

scattering and to continue considering negligible the scattering contribution due to waves

propagating inside the cylinders. The band structures were computed for a square array

of cylinders with Lc = 0.069 m and ff = 0.5. The mechanical properties of the materials

are: ρair = 1.2 kg/m3, ρPV C = 1,400 kg/m3, ρsteel = 7800 kg/m3, vair = 342 m/s, vPV C =

2395 m/s, vsteel = 5740 m/s. From Fig. 2.3 it is clear that the density contrast variation

was not sufficient to generate any appreciable variation in the band structures.
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2.2 Multiple Scattering Theory

Multiple scattering is the interaction of fields with two or more obstacles55. The scatter-

ing by N cylinders has been approached with a variety of methods. The following refers

to the direct method devised by Zaviska in 1913 and to the successive formulations56;55;37

for incident plane and cylindrical waves. First, a brief introduction will give an insight

on the self-consistent approach and the difference with the n-th order of scattering ap-

proaches25;30, and will mainly refer to the work by Martin55. Next, the multiple scattering

theory is formulated for plane and cylindrical incident waves after the works of Linton

and Evans56 and Umnova et al.37. For the mathematical formulations, the reference is

Gradshteyn and Ryzhik57. Finally, the convergence of the MST codes based on Refs.56;37

and implemented in Matlab c© is discussed.

2.2.1 The self-consistent method

The first approach developed to the multiple scattering is the single-scattering approxi-

mation, in which the total scattered field is the sum of the fields scattered by the single

obstacles, computed as if each obstacle was isolated from the others. This method can

be made recursive by extending it to other orders of scattering. This procedure is clearly

formalised by Twersky25:

...consider the s’th cylinder as excited only by the incident plane wave, in response to

which it scatters its “first order of scattering” (...single scattering approximation). Next,

in response to all waves of the first order of scattering from the remaining cylinders, the

s’th cylinder scatters a wave of the “second order of scattering”... We proceed in this

fashion to the m’th order of scattering, and letting m approach infinity, sum the various

order of scattering to obtain (...) the total wave scattered by the s’th cylinder.

V. Twersky, J. Acoust. Soc. Am. 24 (1), 1950.

Recent literature agrees that this method provides a good match with experimental

data even cutting the expansion procedure after the double-scattering term30. The main

drawback of this recursive procedure is that it becomes critical to handle as the number

of bodies increases56. Once the field scattered by each obstacle in isolation is known,

the multi-obstacle problem can be solved by the self-consistent method, where the field

acting on a scatterer includes the effects of all orders of scattering. In particular, the

field associated to each cylinder is described as a general cylindrical wave radiating away

from the cylinder by mean of an expansion in terms of Bessel functions. The multiple

scattering problem is then solved using the Foldy-Lax self-consistent method55, resumed

in the following.

Consider an incident plane wave and a set of rigid cylinders in 2D. The total field is
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given by:

p = pinc +
N∑
j=1

pjsc (2.9)

where pinc is the given incident field and pjsc is the field scattered by the j-th cylinder.

The field incident on the n-th cylinder in the presence of the other N-1 is given by:

pn = pinc +

N∑
j=1
j 6=n

pjsc (2.10)

Since the problem is linear, it is possible to write:

pjsc = Tjpj (2.11)

being Tj an operator that relates the incident field on the j-th scatterer, pj , to the field

scattered by the j-th element, pjsc. We have:

pn = pinc +
N∑
j=1
j 6=n

Tjpj (2.12)

Solving for pn we have:

p = pinc +
N∑
j=1

Tjpj (2.13)

The first application of the self-consistent method was introduced by Lord Rayleigh

and successfully adapted to problems in Solid State Physics by Korringa, Kohn and

Rostoker; this is why it is often referred to as KKR method58.

2.2.2 Incidence of a plane wave

The self-consisted multiple scattering problem as reported in the following takes as a

reference the milestone paper by Linton and Evans56 which deals with rigid cylinders im-

mersed in air. The objective is to solve the Foldy-Lax problem with a radiation condition

at infinity and some boundary conditions (BCs) at the cylinder-air interface.

Consider N vertical cylinders with radii aj and infinite in length. N+1 coordinate

systems are used: (r, θ) are polar coordinates in the (x, y) plane centred at the origin

while (rj , θj), j+1,...N are polar coordinates centred at the centre of the j-th cylinder. An

incident plane wave with incident angle β with respect to the x axis can be expressed as:

φI = eik(xcosβ+ysinβ) ≡ eikrcos(θ−β) = Ije
ikrjcos(θj−β) (2.14)

where Ij = eik(xjcosβ+yjsinβ) is a phase factor associated with the j-th cylinder. From

a Jacobi expansion it is possible to express a plane wave in terms of a sum of Bessel

functions (see Gradshteyn57, p. 923, MO27):

φI = Ij

∞∑
m=−∞

Jm(krj)e
im(π/2−θj+β) (2.15)
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Figure 2.4: Cartesian and polar coordinates of the cylinders in the (x,y) plane.

In plane polar coordinates, the Helmholtz equation has separated solutions of the form

Jn(kr)e±inθ and Yn(kr)e±inθ. To satisfy Sommerfeld’s radiation conditions, the Hankel

function of the first kind is considered: H
(1)
n (kr)e±inθ ≡ [Jn(kr) + iYn(kr)]e±inθ, which

represent an outwards propagating wave. The superscript (1) for Hankel functions of the

first kind is omitted in the following for sake of simplicity.

The field scattered by the j-th cylinder can be expressed as a general outgoing cylin-

drical wave, represented as an expansion of Hankel functions of the first kind centred at

the origin of the coordinate system associated with cylinder j.

φjs =
∞∑

n=−∞
AjnZ

j
nHn(krj)e

inθj (2.16)

where the unknown coefficients Ajn are determined applying boundary condition on each

cylinder. Coefficients Z are here introduced for later convenience and, for rigid cylinders,

assume the values

Zjn =
J ′n(kaj)

H ′n(kaj)
(2.17)

In order to set the boundary conditions on the j-th cylinder (rj = a), each term of the

scattered field must be expressed in the coordinate system of the j-th cylinder, i.e. as a

function of (rj , θj).

This is possible by mean of the Graf’s addition theorem for Bessel functions, that

transform one expansion with respect to one point in a similar expansion with respect

to another point. A formulation of Graf’s addition theorem is found in Gradshteyn57, p.

930, WA394(6), reported in the following with a slight change of notation coherent with
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the symbols used before:

eim(π+αjp−θp)Hm(krj) =

∞∑
n=−∞

Jn(krp)Hn+m(kRjp)e
in(π+αjp−θp) (2.18)

This formulation of Graf’s addition theorem holds only for rp < Rjk and rp < Sp, i.e.

only if the evaluation point is closer to the centre of the cylinder rather than to the centre

of any other cylinder or the source itself. This is certainly true on the surface of each

cylinder, thus the equation above can be suitably used to describe boundary conditions

on each cylinder. To solve the problem we need boundary conditions, which are usually

expressed in terms of the total field:

φ = φI +
N∑
j=1

φjs (2.19)

Using the addition theorem and replacing m by −m in the double summation, the total

field in the vicinity of cylinder p can be expressed as:

φ(rp, θp) =
∞∑

m=−∞
IpJm(krp)e

im(π/2−θp+β) +
∞∑

n=−∞
ApnZ

p
nHn(krp)e

inθp+

N∑
j=1
j 6=k

∞∑
n=−∞

AjnZ
j
n

∞∑
m=−∞

Jm(krp)Hn−m(kRjp)e
imθpei(n−m)αjp

(2.20)

The first summation contains the incident field and second one represents the field scat-

tered by the p-th cylinder. The third summation is the contribution of the scattered field

of the j-th cylinders expressed in terms of the origin of the p-th cylinder.

Considering the mismatch between the elastic properties of the media, in particular

ρcyl >> ρair, we can assume rigid scatterers, i.e. Neumann boundary conditions.

∂u

∂n
= 0 i.e.

∂usc
∂n

= −∂uinc
∂n

on r = a (2.21)

Differentiating with respect to rp, posing rp = ap and considering the orthogonality of

eimθ we get:

Apm +
N∑
j=1
j 6=k

∞∑
n=−∞

AjnZ
j
ne
i(n−m)αjpHn−m(kRjp) = −Ipeim(π/2−β)

(2.22)

which is an infinite set of equation that can be solved by truncation. In particular, con-

sidering m,n ∈ [−M ;M ] and N cylinders, it becomes a system of N(2M + 1) equations.

Linton56 pointed out that M=6 is sufficient to have accurate results in terms of conver-

gence.

2.2.3 Incidence of a cylindrical wave

Consider a cylindrical source positioned at the origin of the coordinate system. The total

field is given by the sum of the incident field, represented by a Hankel function of the first
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kind, and the scattered field, expressed as for the plane wave, for some set of unknown

coefficients.

φ = H0(kr) +
N∑
j=1

∞∑
n=−∞

AjnZ
j
nHn(krj)e

inθj

where the Z factors are defined as in the plane wave case. The expansion of the incident

wave in terms of Bessel functions and the application of Graf’s addition theorem yield:

φ(rp, θp) =

∞∑
m=−∞

Jm(krp)Hm(kSp)e
imθpe−im(π−σp)+

∞∑
n=−∞

ApnZ
p
nHn(krp)e

inθp+

N∑
j=1
j 6=k

∞∑
n=−∞

AjnZ
j
n

∞∑
m=−∞

Jm(krp)Hn−m(kRjp)e
imθpei(n−m)αjp

(2.23)

Again, the application of the Graf’s addition theorem is restricted by rp < Rjp and

rp < Sp. These conditions are verified at the surface of the cylinders, thus Eq. (2.23) can

be used to apply boundary conditions on each cylinder. In particular, the application of

Neumann BC lead to an infinite set of equations that can be solved by truncation:

Apm +
N∑
j=1
j 6=k

∞∑
n=−∞

AjnZ
j
ne
i(n−m)αjpHn−m(kRjp) = −Hm(kSp)e

im(π+σp)
(2.24)

for p = 1, ...., N and m = 0,±1,±2...

2.2.4 Implementation of a MST-based algorithm

A MST-based code has been implemented in Matlab c© adapting a code based on Ref.37

to implement Neumann boundary conditions on the cylinders and adding a plane wave

source. The convergence of the algorithm is tested by changing some inputs of the system.

In particular, three characteristic features of sonic crystals are considered: the filling

fraction (ff), the distance of the receiving microphone from the sample (d) and the lattice

constant (Lc). MST predictions are calculated on a 7 x 3 square lattice of cylinders.

One of the three inputs discussed above was changed at a time, leaving the other two

unchanged. Fig. 2.5 reports the frequency at which, for each case, the relative error

between predictions performed with the truncation orders M=5 and M=6 is greater than

0.2 dB. The choice of M=5 and M=6 is arbitrary as well as the threshold, with the only

aim of pointing out the behaviour of the algorithm. For sake of simplicity, the data are

reported in relation to a “base” lattice constant a = 0.069 m. The black squares represent

the predictions in which ff = 0.5, Lc = a and d={0.33Lc; Lc; 3Lc}. The white triangles

represent the predictions in which d = Lc, Lc = a and ff={0.4; 0.5; 0.6}. The grey

circles represent the predictions in which ff=0.5, d = Lc and Lc={a; 2a; 4a}.
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Figure 2.5: Convergence of the relative error.

Fig. 2.5 shows that the frequency up to which the truncation order provides reliable

results is not strongly related to the distance of the microphone relative to the cylinders.

It is instead strongly dependent either on the lattice constant and on the filling fraction.

Great lattice constants require higher truncation orders, while smaller lattice constants

require lower truncation orders. Since the frequency range in which reliable results are

requested varies significantly with the filling fraction and with the lattice constant, for

each of the arrays under study it is necessary to perform a convergence test to define

the minimum truncation order to use in MST prediction considering the frequency range

400-6,000 Hz.

To define the minimum truncation order required to get reliable results, two arrays

used for the measurements have been analysed. Array I has d=0.135 m and ff=0.13;

array II has d=0.069 m and ff=0.50. In particular, for the two cases, MST predictions are

computed at a point is chosen that had the same position relative to the sonic crystal, the

truncation order varying from M=4 to M=7. The absolute values of the relative errors

occurring between two consecutive truncation orders is shown in Fig. 2.6, where the

dotted line represent a threshold of 0.5 dB. With that threshold, the minimum truncation

order required is M=5 for both arrays. Considering a threshold of 0.1 dB (dashed line in

Fig. 2.6), the truncation orders would be M=5 and M=6 for arrays I and II respectively,

confirming thus the trend highlighted in Fig. 2.5.
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(a) Array I. Lc = 0.135 m, ff = 0.13
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(b) Array II. Lc = 0.069 m, ff = 0.50

Figure 2.6: Absolute values of the relative errors between MST predictions computed with two

successive truncation orders, varying from M=4 to M=7. Predictions were performed for two

square 7x3 arrays: array I (a) and array II (b).
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2.3 The Finite Element Method

The Finite Element method is a numerical method to solve partial differential equations.

The main steps comprising the method are five: the definition of a strong formulation

of the problem; the establishment of a weak formulation; an elementwise approximation

of the unknown function over the entire body; the choice of a test function; the solution

of the linear problem. The finite element method takes his name from the procedure of

dividing the domain into smaller parts, the so called finite elements and to establish on

them the approximation of the unknown, to finally extend the results on the entire region

of interest. This is achieved by choosing the best suited element to mesh the domain

and its basis functions, i.e. functions which are used to describe how the unknown varies

within the element once the values that it assumes at the nodes are known.

Consider a differential equation in its strong formulation,

Lu+ g = 0 (2.25)

where L is a differential operator u(x) is the unknown function, g(x) is a known function

and a ≤ x ≤ b is the domain. Boundary conditions are given at x = a and x = b. To

derive the weak formulation, Eq. 2.25 must be multiplied by an arbitrary test function

ν(x) and integrated over the domain:∫ b

a
ν(Lu+ g) dx = 0 (2.26)

Note that Eq. 2.26 is still a strong formulation, as to get the weak form an integration

by parts should be introduced. An approximate solution to the unknown function u(x)

can be assumed in the form:

uapp = ~χ · ~a (2.27)

i.e. as a linear combination of the basis functions χ and and coefficients a, which are the

values that the unknown function assumes at the nodes. With this formulation it is pos-

sible to separate the information relative to the geometry of the mesh, through the basis

functions which are defined once the geometry of the element is known, from the physical

problem, i.e. the unknown coefficients at the nodes. The basis functions only depend

on the geometry of the finite element and in general polynomials are used which include

at least an arbitrary linear polynomial (completeness requirement) and which allow to

achieve the continuity across the element boundaries (compatibility requirement). The

choice of the approximated solution must satisfy the convergence criterion: the smallest

the finite elements, the closer approximation will be to the solution. By substituting uapp

to u, it will result

Luapp + g = e (2.28)

where e is the residual error, and by substituting into Eq. 2.26 we get the expression of the

orthogonality of the functions ν(x) and e(x), which serves to determine the a coefficients.∫ b

a
νe dx = 0 (2.29)
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The arbitrary test function ν can be written as

ν = ~V · ~c (2.30)

where V are known functions and c are arbitrary coefficients which do not depend on x.

Since ν is a number, and its transpose is equal to itself, and given that c are arbitrary

and V are known, it is possible to write∫ b

a

~V T e dx = 0 (2.31)

Recalling Eqs. 2.27 and 2.28, Eq. 2.31 can be reformulated as:(∫ b

a

~V TL(χ) dx

)
a = −

∫ b

a

~V T g dx (2.32)

and again, using a more compact notation,

K~a = ~f (2.33)

whereK is the coefficient matrix with dimensions n x n, being n the number of nodes. This

is a linear system to be solved with the unknown a in order to determine the approximate

solution uapp. The Galerkin method, which belongs to the category of the weighted

residual methods, consists in choosing the components Vi equal to the trial functions χi.

2.3.1 The acoustic formulation

The governing equations for the 2D propagation of a time-harmonic wave are:

∇2u+ k2u = 0, in Ω (2.34)

∂u

∂n
+ βu = g, on Γ (2.35)

where k, β are constants, ∂u/∂n denotes the outward normal derivative and Ω is a bounded

domain with boundary Γ. To establish the weak form, Eq. 2.34 is multiplied by an

arbitrary function - the so called weight function or test function ν - and integrated over

the domain. ∫
Ω
ν∇2u dx+

∫
Ω
k2uν dx = 0 (2.36)

Applying the divergence theorem to the fist term in Eq. 2.36 and recalling the boundary

conditions (Eq. 2.35), the weak formulation translates into finding u such that∫
Ω

(∇u∇ν − k2uν) dx+ β

∫
Γ
uν ds =

∫
Γ
νg ds (2.37)

holds for all ν. In this notation, dx is an element of area and ds is the element of arc length

on Γ. The weak formulation is the basis for the application of the FE method and has some

interesting mathematical advantages. First, the order or differentiation of the unknown

function is decreased at the expense of the weight function being differentiated. This
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implies that, when the Galerkin method is used in combination with a weak formulation,

a symmetric coefficient matrix arises. Moreover, the weak formulation remains unchanged

even in the presence of discontinuities, whereas the strong formulation would require

further constraints. To solve Eq. 2.37, the finite element mesh must be defined together

with the mesh size. The rule of thumb indicates that at least 10 elements per wavelength

are required59. Following the notation above, the approximate solution to u can be built

as

U(x) =
N∑
j=1

ujχj(x) (2.38)

where uj are the unknown coefficients and χj(x) are the basis functions. Substituting Eq.

2.38 into Eq. 2.37 yields:

N∑
j=1

[∫
Ω

(∇χj∇ν − k2χjν) dx+ β

∫
Γ
χjν ds

]
uj =

∫
Γ
νg ds (2.39)

Since this equation holds for all ν, according to the Galerkin method the test function is

chosen equal to the basis function, i.e. ν = χm, with m = 1, ..., N . Thus the resulting

linear system is:

N∑
j=1

[∫
Ω

(∇χj∇χm − k2χjχm) dx+ β

∫
Γ
χjχm ds

]
uj =

∫
Γ
χmg ds (2.40)

for m = 1, ..., N , which can be solved using numerical techniques.

The elementary solution of the Helmholtz equation eikr is periodic, with wavelength

λ = 2π/k. The mesh resolution nres is defined as

nres =
λ

h
≈ constant (2.41)

where h is the mesh size and λ is the wavelength considered. When dealing with Galerkin

FE analysis, the asymptotic error estimate can often be expressed as:

‖ u ‖ − ‖ U ‖
‖ u ‖

≤ Ch2 (2.42)

which holds for h sufficiently small. C depends on f , on the approximate solution u

and on the the wavenumber k. k represents the oscillatory nature of the exact solution,

which becomes critical at high frequencies. This is solved by imposing a fixed number

of elements per wavelength. As pointed out before, a rule of thumb requires nres =10

when interpolating an oscillatory function, and the computational costs increase accord-

ingly. For large values of k pollution errors arise, due to the wave not being modelled

properly and the error propagating through the numerical solution. Many solutions have

been proposed to solve this issue and a more detailed discussion is reported in Ihlenburg59.
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The use of finite element methods in acoustics is troublesome in acoustic scattering

applications with unbounded domain. To ensure the uniqueness of the solution, in this

case Sommerfeld radiation conditions must be imposed that demand:

u(x) = O
(
r−(d−1)/2

)
, (2.43a)

∂u

∂r
(x)− iku(x) = o

(
r−(d−1)/2

)
(2.43b)

as r → ∞, where r s the radial direction and d the dimension of the problem. The

Sommerfeld radiation conditions cannot be included into the variational formulation due

to a mismatch on the order of the test functions59, thus different solutions have been

searched to allow the computation of unbounded domains with the FE method.

One solution is to truncate the infinite domain by introducing an artificial boundary

B that determines two regions: a bounded domain of interest Ω and a residual infinite

domain D. A non-reflecting boundary condition (NRBC) is derived on B in order to avoid

spurious reflections. Then, this NRBC is used to solve the problem in Ω by using the FE

method60, incorporating thus the far-field behaviour into the Finite Element model.

A most recent solution is the introduction of Perfectly Matched Layers (PML). PMLs

were first introduced in 1994 by Berenger61 applied to electromagnetic computations.

The idea is to introduce an exterior layer at the artificial boundary in order to inhibit

reflection for an arbitrary angle of incidence, and to make the transmitted wave vanish

at infinity. Due to the exponential decay within this layer, though the computation

is truncated at a finite distance within the layer, the resulting artificial reflections are

small. In mathematical terms, PML consists of the linearised Euler equations which are

reformulated by adding a damping factor (σ in59) and expressed through a coordinate

transformation that scales to complex coordinates so that any wave impinging on this

layer decays in the direction perpendicular to the interface between the PML and the

physical domain62.

2.3.2 Extraction of dispersion curves using the FE analysis

Dispersion curves can be calculated using FE method. In this work, thanks to a collabo-

ration with Eng. M. Miniaci and Eng. A. Marzani, band structures have been calculated

by looping the commercial softwares Matlab c© and Comsol Multiphysics c©.

Here are reported the results of band structure calculation considering cylinders im-

mersed in air and arranged in a square lattice. A lattice constant of 0.20 m is chosen,

expecting the first Bragg BG at around 860 Hz. Two inclusions have been considered:

a PVC bar of radius r = 0.08 m and a hollow PVC cylinder with outer radius r = 0.08

m, thickness t = 3.2 mm. Unit cells are presented in Fig. 2.7 along with proper periodic

boundary conditions in terms of pressure distribution, while the properties of the materi-

als used in the calculations are presented in Tab. 2.2. For both the considered cases, band

structures are computed along the three high symmetry directions of the first irreducible

Brillouin zone ΓX, XM and MΓ using the FE method and exploiting the Bloch-Floquet
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Table 2.2: Properties of the materials used in the FE analyses.

Material Density Longitudinal wave speed Shear wave speed

ρ [kgm−3] cL [ms−1] cS [ms−1]

Air 1.25 343 -

PVC 1400 2142 874

(a) (b) (c)

Figure 2.7: The unit cells together with the boundary conditions: (a) Air-PVC bar unit cell; (b)

air-PVC hollow cylinder unit cell and (c) the first Brillouin zone.

theorem with the aid of the commercial software Comsol Multiphysics c©. The unit cell

domains are modelled under 2D plane strain assumption exploiting the “Acoustic-Solid

interaction” module and meshed by means of 3-node triangular elements of maximum size

0.01 m to provide accurate eigensolutions up to 2,500 Hz. In particular, the modelling

of the hollow cylinder required a mesh refinement up to 3.2 · 10−3 m in correspondence

of the inclusion. The analyses of the resulting eigenvalue problems are solved using the

PARDISO algorithm for the ΓX, XM and MΓ paths. A detailed description of the

procedure to extract the band structures can be found in Refs.63;64.

The band structures are presented in Fig. 2.8 in terms of the reduced wave vector

k∗ = [kxa/π; kya/π], where kx and ky are the wave vectors in the x and y directions,

respectively. At least one complete band gap (BG, dark grey rectangle) as well as partial

band gaps (light grey rectangles) exist in the range 0 - 2,500 Hz frequency range for each

unit cell. In particular, a complete band gap extends from 860 Hz to 1,110 Hz for case (a)

and from 870 Hz to 1,120 Hz for case (b). In the latter case, an additional lower complete

band gap between 150 and 200 Hz is nucleated. Fig. 2.8 suggests that, due to the high

acoustic mismatch between air and PVC, the complete band gap centred at around 1,000

Hz mainly depends on the outer shape of the inclusion rather than on the geometrical

differences of the considered inclusions65. Thus, in the following while barriers of hollow

cylindrical pipes will be tested experimentally, numerical FE harmonic simulations will

consider filled pipes to alleviate the computational needs.

Some bands in Fig. 2.8 exhibit nearly flat portions in the ΓX (a) and ΓX, MΓ (b)

paths. Modes associated to such flat band portions are supposed to have a nearly zero
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Figure 2.8: Band structures for (a) air-PVC bar unit cell and (b) air-PVC hollow cylinder unit

cell in the first irreducible Brillouin zone.

group velocity, thus to be characterised by a strong spatial localisation35. Finally, it is

worth noting that some waves coalesce at the high symmetry point M outside the band

gap boundaries, as it occurs between second and third curves for the filled cylinder or

between third and fourth curves for the hollow cylinder.

2.3.3 FE modelling of sonic crystals

The band structure analysis shows that filtering properties exist in an infinite sonic crystal

barrier made of cylinders with a proper spatial arrangement. However, in order to quantify

the magnitude of such attenuation, the finite length of the sonic crystal must be taken

into account. To this end, FE time-harmonic analyses are performed on a finite-size sonic

crystal.

Fig. 2.9 shows the computational domain used for the case of a barrier made of 3

rows of cylinders for plane wave and spherical wave propagation. Since the windowing

procedure allows to cut off the ground reflection and the edge diffraction effects, the

cylinders are modelled as a bi-dimensional domain constrained on the sides in order to

compute the transmitted sound component only. Moreover, due to the similarity in the

band structures in Fig. 2.8, in these simulations the hollow PVC cylinders are modelled as

filled to ease the generation of the FE mesh. Neumann boundary conditions (acoustically

hard surfaces) are applied to their perimeters. The two domains corresponding to different

wave spreadings are modelled differently. For plane wave calculations, one side of the

rectangular domain is the sound source, and the opposite side is modelled with a PML in

order to simulate Sommerfeld’s radiation conditions. The other two sides are modelled as

reflecting surfaces, due to the well-known problems encountered with absorbing boundary

condition for a wave propagating parallel to the boundary interface. The choice of a

reflecting wall leaves the propagation of the incoming plane wave unchanged but provides

lateral reflection which can be thought as generated by mirror sources located beyond the

boundary. In this way the sample is characterised as infinite in the direction normal to
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(a) (b)

Figure 2.9: Computational domains and boundary conditions used for the FE modelling with an

incident plane wave (a) and with a point source (b).

the wave vector of the incoming plane wave. Predictions with a point source allowed the

use of a finite array of cylinders, thus PMLs are applied to all the boundaries. In both

cases, the thickness of the PML was chosen of 1 m to be effective in the lower frequency

range of interest. In order to provide accurate results up to 2,500 Hz, a mesh made of

constant strain triangular elements of maximum edge size of 0.01 m is set. The source

radiation characteristics are reproduced using a point source excitation that provides a

pressure level of 94 dB at a distance of Ls = 1 m from the first row of pipes or, for

the plane wave propagation, with a pressure amplitude of 1 Pa, corresponding to 94 dB.

Sound attenuation, evaluated as the difference between the spectra with and without the

sonic crystals, is extracted at the same in the two test configurations.

Sound insulation values calculated with the FE method for incidence of plane and

spherical waves are shown in Fig. 2.10. The dashed line represents the FE predictions

with point source while the and dotted line represents the plane wave source. The first

Bragg band gap is well identified by both kinds of sound source, while the second band

gap is characteristic only of the plane wave propagation, consistently with the results

provided by band structures calculations. The plane wave simulation predicts a very

smooth insulation profile in frequency. An exception is given at around twice Bragg

frequency, where a tangential component of the sound field determines the failure of the

PML. Figure 2.11 shows the pressure maps of the sound field near the cylinders at different

frequencies. At Bragg frequency (860 Hz) no sound propagates through the sonic crystal.

At 1,000 Hz the sound transmission increases slightly with respect to the configuration

before, while sound reflection is strongly increased. At 1,720 Hz sound transmission is

prevented again, but an anomaly emerges due to some numerical artefact related to the

selectivity of PMLs, who work properly only when excited by waves propagating normally

to the domain-PML interface.

The calculation of the sound field using both plane and spherical waves allows on one

side to refer to the results predicted by the band structure calculations (PWE), to the
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Figure 2.10: Sound insulation (dB) calculated with the FE method for spherical and plane wave

propagation on an array of 15x3 cylinders.

(a) 860 Hz (b) 1,000 Hz (c) 1,720 Hz

Figure 2.11: Sound pressure field computed with Comsol Multiphysics c© for a 3-rows sonic crystal

for plane wave propagation.

results of the MST (plane wave) and on the other side to connect FE analysis to the results

of the measurements, performed with a point source. Indeed, in Chapter 3 the comparison

between numerical predictions and experimental measurements is made consistent by a

combination of assumptions adopted in the FE models and in the experimental acquisition

procedure. In particular: (i) the single point sound insulation is computed at a point that

lies at the same height of the sound source; (ii) the frequency steps in the time-harmonic

analyses are set in accordance to the maximum frequency resolution achievable due to

the windowing procedure of the impulse responses (IRs); (iii) the application of a time

window is mimicked in the numerical model introducing PMLs (which allow to neglect

the reflections from the boundaries), limiting the domain in width (thus preventing edge

diffraction effects) and assuming a two-dimensional plane strain domain (to avoid ground

and top barrier edge reflections).
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Figure 2.12: Band structures calculated with the FE method (a) and the PWE method (b) for a

15x3 square array of cylinders with radius 0.08 m and Lc = 0.200 m.

2.4 A comparison between the methods

The availability of a number of analytical tools allows to perform comparisons between

the numerical calculations.

Band structures have been calculated with the PWE method and the FE method

looped with Matlab c©, the unit cell consisting of a cylinder immersed in air with lattice

constant Lc = 0.200 m and radius r = 0.08 m. The results show very good agreement.

The first band gap is predicted in the range 850-1,100 Hz by the PWE method and in

the range 860-1,110 for the FE method. The first partial band gaps match equally well:

510-1100 Hz for PWE calculations and 518-1110 Hz for FE calculations.

MST calculations have been performed implementing plane and cylindrical sources;

FE calculations implemented plane and spherical waves. Thus a comparison between

MST and FE calculations is provided by the characterisation of sonic crystals using plane

wave sources. The same array analysed for the FE/PWE comparison is considered here.

The sound pressure field transmitted and reflected by the sonic crystal has been calculated

using the two methods and results for a receiver are reported in Fig. 2.13. The spectra of

the reflected sound field shows an evident frequency shift between the FE and the MST

calculations which increases with frequency, though convergence has been tested for both

methods. The attenuation peaks at around 900 Hz display a difference of about 40 Hz

between the two methods while the peaks at 2,200 Hz show a difference of about 80 Hz.

This shift does not occur for the transmitted sound field. With specific reference to the FE

calculations, these results are presented with a greater frequency resolution with respect

to last section, thus the numerical artefact arising at twice Bragg frequency discussed in

section 2.3 is clearly evident.

Finally, the FE method was also used to compute the scattered field with a point

source. This provides a benchmark to test the experimental measurements which will be

discussed in the next chapter.
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Figure 2.13: Attenuation spectra computed with the MST and the FE method for plane wave

propagation. Insulation (a) and reflection (b) results for a 15x3 square array of cylinders with

radius 0.08 m and Lc = 0.200 m.



Chapter 3

Experimental results

This chapter reports the results of the experimental measurements performed on sonic

crystals in the Acoustic Laboratory of the Department of Engineering and Innovation at

the Open University (UK) and in the Acoustic Laboratory of the Department of Indus-

trial Engineering at the University of Bologna. The two facilities are described in detail

together with the procedures used to process the gathered data. Then the results of the

measurements are presented divided into four categories. First, the sound field transmit-

ted and reflected by the sonic crystal has been evaluated in discrete points. Then, the

sound pressure field inside the arrays has been investigated by moving the microphone

along the two symmetry axes of the arrays and evaluating the sound pressure pattern and

the evanescent behaviour of modes inside the crystal. At the University of Bologna, a

further set of measurements was conducted using an intensity probe. Moreover, the stan-

dardised indices for sound insulation and reflection were calculated in order to compare

sonic crystals to other screening techniques.

3.1 The measurement facilities

Experimental measurements have been conducted on sonic crystals in two laboratories:

the Acoustic Laboratory of the Open University in Milton Keynes (UK) and the Acoustic

Laboratory of the Department of Industrial Engineering at the University of Bologna. The

two measurement facilities provided different test conditions: in the UK measurements

were conducted in an anechoic chamber while at the University of Bologna measurements

were done in a large industrial hall. Three square arrays were tested, the unit cell con-

sisting of hollow PVC cylinders immersed in air. The lattice constant and/or the filling

fraction of the sonic crystal varied between the samples in order to set up a comparison

on a reduced number of variables.

3.1.1 The anechoic chamber at the Open University (UK)

The anechoic chamber at the Open University hosted the first measurement campaign.

The dimensions of the anechoic chamber are approximately 3 x 3 x 3 m . In one wall of
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Table 3.1: Temperature and relative humidity measured inside the anechoic chamber at the Open

University during the measurements.

Day Lc Measurement T (oC) RH (%) vsound (m/s)

16/12/14 135 Ins/Ref 1, SW 17.9÷18.3 50 342.3

19/01/15 135 Ins/Ref A, 14.8÷15.4 47 340.5

19/01/15 69 Ins/Ref 1, Ins/Ref A 15.9÷16.2 48 341.0

19/01/15 69 SWT 16.2÷16.4 48 341.2

20/01/15 69 SWL 13.6÷14.0 42 339.7

the chamber there is a small hole - properly sealed during the measurements - that allows

cables to pass and thus to perform measurement remotely from outside the chamber. The

measurement chain consists of:

- Brüel & Kjær 4191 1/2” free-field microphone with type 2669-B preamplifier;

- Brüel & Kjær 4187 1/4” pressure microphone with type 2670 preamplifier;

- Brüel & Kjær dual channel microphone power supply type 5935;

- Cambridge Audio stereo A1 amplifier;

- Tannoy driver with a brass pipe 1 m long fixed to the end (inner diam. 1.8 cm);

- Computer running MLSSA.

During the measurements, the temperature and the relative humidity were monitored

and are reported in Table 3.1 together with the relative speed of sound derived from

ν ≈ 331.4 + 0.6 · Tc (m/s).

A square array of 7 x 3 hollow PVC cylinders was arranged in the anechoic chamber

(Fig. 3.1). The pipes are 2 m high, have an outer diameter of 0.055 m and a thickness

of 1.9 mm. The cylinders were fixed by means of two MDF boards in which 0.055 m

diameter holes are drilled. One board was secured to the lower part of the sample and the

second one to the top of the sample to assure static stability. Two lattice constants were

analysed, Lc1 = 0.135 m (array I) and Lc2 = 0.069 m (array II), resulting respectively

in filling fractions ff1 = 0.13 and ff2 = 0.50. The source and the microphone were set

at an height of 0.90 m from the ground, the microphones lying on the vertical axis. The

source was set at a distance of 1 m from the closest cylinder, pointing at the centre of the

array, while the position of the receivers are discussed in the next sections..

An anti-aliasing Chebyshev filter with a bandwidth of 25 kHz was applied to the input

signals. IR measurements were performed using Maximum Length Sequence (MLS) test

signals with a length of 64k samples, the sampling rate set at 75.5 kHz. To improve the

Signal to Noise Ratio, 32 time averages were carried out for each measurement.

As pointed out above, the source consisted of a driver with a brass pipe 1 m long fixed

to the end, so that its extremity can be considered a point source. The resonance inside

the pipe generated a secondary pulse which is delayed with respect to the first pulse by
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(a) Free field (b) Sonic Crystal

Figure 3.1: Panoramic view of the anechoic chamber of the Open University for the free field

measurement (a) and the measurement with the sample interposed (b).

approximately 6 ms, i.e. twice the time needed to span twice the length of the pipe. This

rendered necessary the use of a time window that isolates the primary pulse. Since 6 ms

correspond to about 2 m of multiple reflections, the windowing procedure is not expected

to affect the data significantly.

For free field measurements, the time instant at which the window is applied is deter-

mined upon the maximum of the IR, corresponding to the direct field, and shifted back

by 0.2 ms. For the insulation measurements, the standard EN 1793-667 determines the

time instant of application of the window by geometrical consideration, due to the fact

that no direct component is detected as the pressure field is governed by diffraction. For

sonic crystals, the direct component is clearly detectable on the IR and correspond to its

maximum, thus the time instant of application of the window is determined also in this

case from the maximum of the IR.

Figure 3.2 displays three different time windows applied to the same IR and the

Insertion Loss (IL) values derived using them. In particular, a rectangular, a asymmetric

Blackman-Harris and a modified Adrienne windows were used. The total length of the

windows is 6.5 ms and was chosen with reference to the Adrienne window. In fact,

according to the EN 1793-6 standard67, the flat portion of the Adrienne window must

begin 0.2 ms before the arrival of the direct sound and an additional left-half Blackman-

Harris of 0.5 ms is applied before the flat portion. Thus all windows are applied 0.7 ms

before the arrival of the direct component. The asymmetric Blackman-Harris window is

made of: (i) a leading edge having a left-half Blackman-Harris shape and a total length of

0.7 ms; (ii) a trailing edge having a right-half Blackman-Harris shape and a total length

of 5.8 ms. These two edges meet at the maximum of the IR measured in the free field.

The modified Adrienne window is made of: (i) a leading edge having a left-half Blackman-

Harris shape and a total length of 0.5 ms; (ii) a flat portion having a total length of 4.26

ms; (iii) a trailing edge having a right-half Blackman-Harris shape and a total length of
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Figure 3.2: The different time windows applied to a IR: rectangular, asymmetric Blackman-Harris

and modified Adrienne window. Visualisation of the time windows over the measured IR (a) and

Insertion Loss computed in the three cases (b).
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Figure 3.3: Influence of the floor grille on the calculation of the Insertion Loss. This figure plots

the IL measured at point SWT5 and windowed with a 6 ms right-half Blackman-Harris window.

Peaks are found with a regular spacing of 300 Hz and are related to the floor grille in the relative

free field measurement.

1.74 ms. The dimensions of the window were adapted to the arrival time of the secondary

pulse, respecting the 7/3 ratio between the flat portion and the trailing edge required by

Ref.67. The comparison between these three windows shows that the rectangular and the

modified Adrienne time window provide similar results, with a significant oscillation in

frequency. Some artefacts arise due to the window and are evident with regards to the

magnification of some IL values at certain frequencies.

After 3 ms from the arrival of the direct sound, a reflection was found that could

be attributed to the floor grille. Though the Blackman-Harris time window has the ad-

vantage of minimising the effects of the ground reflections, having a steep slope, the

effects of the pavement grill are still concerning in the spectra of the free field IRs. In

particular, this was noticed from the IR measured inside the sonic crystal in position

SWT5, the IL of which is reported in Fig. 3.3. The analysis on the relative free field

measurement showed that floor grille was responsible for the peaks found with a regular

spacing of 300 Hz. Thus a further analysis was conducted on a free field measurement

and the corresponding measurement with the sonic crystal interposed. Two different time

windows with two different lengths were used to analyse the free field measurement: a

rectangular window and a right-half Blackman-Harris window with a length of 3 ms and

6 ms respectively, as shown in Fig. 3.4. Fig. 3.4 (c) reports the spectra of the rectan-

gular and Blackman-Harris 6 ms time windows and Fig. 3.4 (d) reports the spectra of

the Blackman-Harris time windows of 3 and 6 ms respectively. The rectangular window

shows its typical artefacts but some oscillations are found also with the 6 ms Blackman-

Harris time window. The different windowing procedure on the free field measurement

affects significantly the results. Fig. 3.5 plots the attenuation measured at the position

corresponding to the free field IR analysed above. The need to cancel the ground re-

flection implies the waste of useful signal, and adds a certain degree of uncertainties to
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(a) 3 ms time window
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(b) 6 ms time window
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(c) Spectra of the free field IR windowed with

a 6 ms BH (green) and a 6 ms REC (blue)
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(d) Spectra of the free field IR windowed with

a 6 ms BH (green) and a 3 ms BH (cyan)

Figure 3.4: Comparison between time windows of different lengths and shapes. (a) and (b) report

respectively the 3 ms and 6 ms rectangular and Blackman-Harris time windows plotted over the

absolute value of the free field IR. (c) reports the spectra of the rectangular and Blackman-Harris

6 ms time windows and (d) reports the spectra of the Blackman-Harris time windows of 3 and 6

ms respectively.
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Figure 3.5: IL measured behind the sonic crystal using a 6 ms (green) and a 3 ms (cyan) right-side

Blackman-Harris window.
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(a) (b)

Figure 3.6: Measurement setup at the Acoustic Laboratory of the University of Bologna. Position

of the source and the microphone array for the sound reflection and the sound insulation indices

(a) and picture of the setup from above (b).

the results of the measurements. This is particularly critical for reflection measurements.

Luckily, the lower frequency of interest is not affected by that windowing limit as the first

Bragg band gap occurs approximately at 1,270 Hz for array I and at 2,490 Hz for array II.

After the windowing procedure, a 4096 points FFT is calculated and the attenuation

provided is given by the dB-ratio of the power spectra of the IRs measured in free field

and with the sample. In particular, the results are returned in terms of Insertion Loss

(IL), namely

IL = −20log10
pw
pw/o

(dB) (3.1)

i.e. the logarithmic difference between the pressure field with and without the barrier.

Though the definition of Insertion Loss does not include the minus68, the definition pro-

posed here is the most commonly found in the literature.

3.1.2 The Acoustic Laboratory of the University of Bologna

The Acoustic Laboratory of the University of Bologna is a large industrial hall with a

volume of about 5,000 m3 currently used to test noise barriers according to the standards

EN 1793-566 and EN 1793-667. Measurements were performed over a 3 x 3 m sample

consisting of PVC pipes 3 m long, with an outer diameter of 0.16 m and a thickness of

3.2 mm. The cylinders were arranged in a 15 x n square lattice, where n varied from 2 to

5. The lattice constant was Lc3 = 0.200 m and the filling fraction was ff = 0.50 (array
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Table 3.2: Temperature and relative humidity measured inside the Acoustic Laboratory at the

University of Bologna during the measurements.

Day Lc Measurement T (oC) RH (%) vsound (m/s)

18/2/15 200 Ins/Ref A, SW 21.8÷22.5 34 344.7

26/2/15 200 Sound Intensity 25.3÷20.9 25 345.3

III).

This lattice has been chosen to test a configuration which could be effective for traffic

noise. The sonic crystal was designed to exhibit a complete band gap in the one-third

octave bands from 800 Hz to 1,250 Hz, i.e. the frequency range in which tyre/road noise

spectrum shows a prominent peak69. The lattice constant was thus set in accordance

to the Bragg scattering theory; looking for a band gap in the one-third octave band

with centre frequency at approximately 1,000 Hz, the resulting lattice constant is 0.17

m, given cair = 343 m/s the speed of sound in air at 20oC. To comply to the ease of

fabrication, a lattice constant of 0.20 m was chosen, expecting the first Bragg frequency

at around 860 Hz. Using a tailored time window, the dimensions of the sample allow to

compute the transmitted field only, neglecting the contributions of ground reflection and

edge diffraction.

The cylinders were fixed by means of a stratified board (plywood, plasterboard and

polyester) on the ground and by some aluminium profiles on the top. This fastening

system does not provide top edge reflections and allowed to perform measurements which

take into account top diffraction. The source and the microphone were set at an height

of 1.5 m from the ground, the microphones lying on the vertical axis. The source was set

at a distance of 1 m from the closest cylinder, pointing at the centre of the array. The

measurement equipment consisted of:

- PCB 130E20 1/4” microphone

- PCB Piezotronics signal conditioner;

- Crown XLS 1000 amplifier;

- Fireface 800 sound card;

- MCIRMS (internally developed) software;

- Zircon loudspeaker.

During the measurements, the temperature and the relative humidity were monitored

and are reported in Table 3.2 together with the relative speed of sound. Figure 3.6

(a) displays the measurement positions considered for the sound insulation and sound

reflection measurements.

The measurements positions were chosen according to Fig. 3.6. The points at a fixed

distance of 0.050 m which were analysed at the Open University were considered too

influenced by the reactive part of the sound field and thus were not taken into account.
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Figure 3.7: Time window used to cancel the ground reflection at the University of Bologna: a 5

ms Blackman-Harris centred on the arrival of the direct sound; a 5 ms rectangular time window

and a modified Adrienne time window. The IR is a free field measurement: the ground reflection

is clearly visible.

Only points Ins A, B, C and Ref A, B, C were considered, lying at a distance of 1 Lc

from the sample. Inside the crystal, measurements were performed with a resolution of

1/4 of the lattice constant. Since measurements were performed in a laboratory and no

impulsive background noises were present, IR measurements were performed using 128k

Exponential Sine Swept (ESS) test signals sampled at 44.1 kHz, which were proved to be

better suited in these conditions72.

The analysis of these data followed closely the procedure used to process the IR

measured at the OU, the IL being calculated according to Eq. 3.1. Where not specified,

the IRs are windowed with a 5 ms right-half Blackman-Harris time window. In this way,

only the transmitted component is taken into account as ground reflection and top and

edge diffractions are windowed out (see Fig. 3.7). To compute the sound insulation

and reflection with an increasing number of rows of cylinders, a modified Adrienne time

window is used, made of (i) a leading edge having a left-half Blackman-Harris shape and

a total length of 0.5 ms; (ii) a flat portion having a total length of 3.5 ms; (iii) a trailing

edge having a right-half Blackman-Harris shape and a total length of 1.5 ms. The same

time window is used to compute the standardised sound insulation and sound reflection

indices, as discussed in detail in section 3.5.

3.2 Sound transmission and sound insulation measurements

This section reports the result of the transmission and reflection measurements performed

on the three array, whose properties are reported briefly in Tab. 3.3.

The measurement position chosen to evaluate the sound field transmitted and reflected
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Table 3.3: Specifications of the three arrays investigated.

Name Lc (m) ff 1st BG in ΓX (Hz) Location

Array I 0.135 0.13 1,270 OU

Array II 0.069 0.50 2,485 UniBO

Array III 0.200 0.50 858 UniBO

Figure 3.8: Insulation and reflection measurement positions. Points labeled A, B, C lie at a

distance of 1 lattice constant from the edge of the external unit cells; points labeled 1, 2, 3 lie at

a fixed distance of 0.05 m from the external cylinders.

by the sonic crystal is sketched in Fig. 3.8 together with the nomenclature. In both setups,

the source was set at a distance of 1 m from the closest cylinder, pointing at the centre of

the array. Two different sets of measurement positions were chosen lying respectively at

a fixed distance of 0.05 m from the cylinders (positions labelled 1, 2, 3) and at 1 Lc from

the array (labelled A, B, C). Within the same set of measurement points, the microphone

was shifted along the sample covering three measurement positions, spaced apart by 1/4

of the lattice constant (Fig. 3.8). The first position has the microphone facing the central

cylinder; the third sees the microphone between two adjacent cylinders and the third is

in an intermediate position between the two. This choice is due to the fact that there are

great differences between the arrays considered and since the source-receiver position has

always been kept at 1 m, the characteristics of the sound field scattered by the cylinders

will diverge completely in the thee different cases.

Arrays I and II are made by 7 x 3 unit cells while array III is a 15 x n unit cells.

When not specified, is it assumed that array III is also comprised of 3 rows of cylinders,

in order to leave a greater amount of variables unchanged between the configurations.

Measurements on arrays I and II are processed using the same time window, which is

tailored to cancel the secondary pulse and, more restrictively, the grille reflection. Thus,

since the lattice constant is doubled, the IL values relative to the array with smaller lattice
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Figure 3.9: Dispersion curves for a square array with Lc = 0.135 m and r = 0.0275 m evaluated

using the PWE method.

constant will take into account a greater quantity of the sound field diffracted from the

edges. This does not occur for array III, where the length and height of the sample are

the same. In this case, the time window which allow to cancel ground reflection cancels

also top and side diffraction.

3.2.1 Array I

The first array under test has Lc = 0.135 m and ff = 0.13. The first Bragg band gap for

normal incidence is expected at fBragg,ΓX = 1,270 Hz. The band structures calculated

with the PWE method (Fig. 3.9) spot a partial band gap in the ΓX direction in the range

1,040-1,400 Hz.

The IL values calculated in the aforementioned points is presented in Fig. 3.10. The

analysis of insulation at points 1, 2, 3 (Fig. 3.10 a) shows that the first attenuation

peaks occurs at Bragg frequency, and that up to this frequency the difference between

measurements at positions 1, 2, 3 is negligible. The highest attenuation is achieved at

frequencies higher than the Bragg frequency, confirming that with such low filling fraction

the stop-band properties typical of sonic crystals have not totally emerged yet.

With reference to the transmitted and reflected sound field measured at point 1 (Fig.

3.10 e), it is interesting to notice that at Bragg frequency reflection is close to zero, while

negative values of IL would be expected due to the constructive interference generated

by Bragg scattering. Moreover just below 2,000 Hz both insulation and reflection mea-

surements have a negative value, implying constructive interference on both sides of the

sample. Opposite values are found instead between 2,000 and 3,500 Hz at measurement

point 3 (Fig. 3.10 f).
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(a) Insulation at points 123
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(b) Insulation at points ABC
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(c) Reflection at points 123
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(d) Reflection at points ABC
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(e) Insulation vs reflection at point 1
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(f) Insulation vs reflection at point 3

Figure 3.10: Array I. Insertion Loss at positions 1, 2, 3 and A, B, C for insulation and reflection

measurements.
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Figure 3.11: Dispersion curves for a square array with Lc = 0.069 m and r = 0.0275 m evaluated

using the PWE method.

As mentioned above, measurements positions 1, 2, 3 were chosen at a fixed distance

of 0.05 m from the cylinders; for the lattice constant Lc = 0.135 m, that means that

the measurement point lies almost on the edge of the unit cell. Thus results might be

strongly influenced by the sound field generated inside the crystal and not return a global

characterisation of the sound field generated by the sonic crystal.

Measurements in points A, B, C were chosen to overcome this limit, as their distance

from the cylinders is related to the lattice constant. Insulation measurements at these

points match insulation measurements at points 1, 2, 3 (Fig. 3.10 b) whilst reflection

measurements do not show any appreciable agreement (Fig. 3.10 b), excluding the fact

that points A, B, C return overlapping values up to 1,480 Hz. Thus, the measurements

related to this second set of points are considered not significant to the analysis.

3.2.2 Array II

The second array under test has Lc = 0.069 m and ff=0.50. The first Bragg band gaps

are expected at fBragg,ΓX = 2,485 Hz for normal incidence and at fBragg,ΓM = 1,757 Hz

for an incidence angle of 45o. The band structures calculated with the PWE method (Fig.

3.11) spot a complete band gap in the range 2,480-3,170 Hz. In the ΓX direction, the

width of the band gap is greater and extends down to 1,510 Hz. A second band gap is

clearly visible on ΓX spanning the range 3,980-6,050 Hz. The measured values of IL in

the control points referred to above are reported in Fig. 3.12.

The trend of the IL of the transmission measurements sound field displays two main

crests, centred at multiples of the Bragg frequency for normal incidence (Fig. 3.12 a).

Below Bragg frequency, some components show up at 1,000 Hz, showing attenuation
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(a) Insulation at points 123
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(b) Insulation at points ABC
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(c) Reflection at points 123
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(d) Reflection at points ABC
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(e) Insulation vs reflection at point 1
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(f) Insulation vs reflection at point 3

Figure 3.12: Array II. Insertion Loss at positions 1, 2, 3 and A, B, C for insulation and reflection

measurements.
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Figure 3.13: Dispersion curves for a square array with Lc = 0.200 m and r = 0.080 m evaluated

using the PWE method.

ranging from 7 to 10 dB. At Bragg frequency, differences still emerge between the results

of the measurements performed at positions 1, 2, 3. In reflection measurements, IL values

computed for points 1 and 2 match significantly well up to 4,200 Hz (Fig. 3.12 c). For

measurement positions 1, 2, 3 (Fig. 3.12 a, c), the behaviour in reflection is well-matched

to that in insulation, as at Bragg frequency a positive IL value in insulation corresponds

to a negative value in reflection as expected. Below Bragg frequency, there is a region in

which the IL measured in position 1 shows positive values both in insulation and reflection,

indicating an attenuation on both sides of the sample (Fig. 3.12 e).

Moving the measurement points away from the sample, i.e. for measurement position

A, B, C (Fig. 3.12 b, d), no constructive interference is found at Bragg frequency in

reflection as the dip of negative values is shifted backwards in frequency. For this set of

points the behaviour in reflection seems more homogeneous among the points A, B, C

(Fig. 3.12 d). In insulation, the same trend spot by measurements in 1, 2, 3 is found.

3.2.3 Array III

The third array under test has Lc = 0.200 m and ff = 0.50 and the relative dispersion

curves are reported in Fig. 3.13. The first Bragg band gaps are expected at fBragg,ΓX =

858 Hz for normal incidence and at fBragg,ΓM = 606 Hz for an incidence angle of 45o.

The band structures calculated with the PWE method spot a complete band gap in the

range 850-1,100 Hz. In the ΓX direction, the width of the band gap is greater and goes

down to 520 Hz. A second band gap is clearly visible on ΓX in the range 1,370-2,090 Hz.

The measured values of IL are presented in Fig. 3.14. As anticipated above, the

measurements performed at a distance of 0.05 m from the cylinders were not analysed thus
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(a) Insulation at points ABC
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(b) Reflection at points ABC
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(c) Insulation vs reflection at point A
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(d) Insulation vs reflection at point C

Figure 3.14: Insertion Loss measurements at positions A, B, C for insulation and reflection mea-

surements. The IRs were processed using a Blackman-Harris time window.

only results relative to the measurement positions labelled A, B, C are presented. Insertion

Loss in transmission displays values up to 25 dB at Bragg frequency (Fig 3.14 a). At

higher frequencies, the behaviour of the sample depends significantly on the microphone

position. Reflection measurements (Fig 3.14 b) do not provide relevant insight, just as the

ones provided by the other two arrays at a distance of 1 lattice constant from the sample.

As clearly visible in Fig. 3.14 (c, d), positive IL values in transmission correspond to

(slightly) negative IL values in reflection.

Since array III has the same filling fraction of array II, it is possible to analyse dif-

ferences and similarities between the measurements performed at a distance of 1 lattice

constant and relate them to the results of array I, which has a different lattice geometry.

At Bragg frequency, the magnitude of the attenuation for array III is about 25 dB and is

almost constant between measurement positions A, B and C. This also occurred for array

I where the attenuation was about 8 dB, while it does not happen for array II. Here,

the sound insulation values vary between 10 and 25 dB at positions A, B and C without

displaying any regular trend. For all arrays anyway the differences between the three

measurement positions increase dramatically after the dip which separates the two crests
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(a) Sound Insulation - Point A*
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Figure 3.15: Sound insulation (dB) measured for array III with an increasing number of rows of

cylinders at points A* (a) and C* (b). The IRs were processed with a modified Adrienne time

window.

corresponding to the Bragg frequencies. At twice Bragg frequency in fact the impinging

wavelength corresponds to the lattice constant. The IL measured in reflection follows a

similar behaviour: attenuation found for arrays I and III ranges between +3 and -3 dB

around Bragg frequency, while array II displays values ranging between +7 and -7 dB.

In order to investigate the effect of the addition of multiple layers of cylinders, sound

insulation and reflection properties have been measured by varying the depth of the sample

from 2 to 5 rows of cylinders. The IRs were windowed using an Adrienne time window,

as reported in subsection 3.1.2. In each configuration, the relative distance between the

sound source, the sample and the microphone was kept the same, and so was the time

window applied to the IRs, whose length is determined upon the cancellation of ground

reflection and diffraction. The IL measured in insulation is reported in Fig. 3.15 while

the reflection IL is reported in Fig. 3.16. The points analysed are two per side, namely
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(a) Sound Reflection - Point A*
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(b) Sound reflection - Point C*

Figure 3.16: Sound reflection measured for array III with an increasing number of rows of cylinders

at points A* (a) and C* (b). The IRs were processed with a modified Adrienne time window.

positions A and C, A facing the central cylinder and C facing an interstice between two

adjacent cylinders. The points are labelled with an asterisk for being shifted with respect

to their original positions.

The insulation properties of the sample are not strongly affected by the position

of the microphone relative to the cylinders around the Bragg frequency, while at higher

frequency distinctions arise between measurement positions A* and C*. In particular, the

region of null or slightly negative IL values is wider in position A* and is shifted forward in

frequency with respect to point C*. It is worth noting that the barrier with only two rows

of cylinders already generates an appreciable mechanism of wave interference responsible

for the band gaps nucleation. The reflection IL oscillates in frequency and shows not to

be dependent on the position of the microphone. It reaches a local maximum at around

450 Hz, significantly below Bragg frequency, and nearly zero values at Bragg frequency.
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3.2.4 Measurements vs FE and MST calculations

The experimental results for the three arrays are reported in Fig. 3.17 together with the

IL values calculated with the MST of the FE method. Points Ins A and Ref A are chosen

for this comparison, which have been measured for all arrays.

For array I (Fig. 3.17 a and b), MST predictions match well the experimental data,

exceeding slightly in the estimation of the Insertion Loss but predicting properly the peaks

and dips.

The match between measurements and MST predictions for array II (Fig. 3.17 c

and d) is still good in reflection, where the peaks are properly individuated, while it is

not satisfactory in insulation. Apart from the region of the first band gap, there are

important shifts in frequency and magnitude. The match between MST predictions and

measured insulation values is not brilliant. It should be noticed that MST takes into

account edge diffraction, while in the experimental results this contribution is partially

or totally windowed out. This effect is particularly clear for array II, which displays the

smallest lattice constant and thus the biggest contribution of diffraction.

For array III, Fig. 3.17 (e and f) reports also the IL values calculated using the

FE method using a point source, the domain being modelled with the constraints and

boundaries reported in section 2.3.3 with a maximum mesh size of 0.006 m to get reliable

results up to the frequency of interest. For sound insulation, the match between MST

and FE calculation is almost total. Experimental measurements follow the trend in a

satisfactory way except in the range 1,200 - 1,800 Hz, where the discrepancies between

measurements and simulations are quite significant. In reflection, both methods fail to

describe the sound pressure field. The FE method in particular shows a trend which is

overturned with respect to the measured values.

3.3 The sound field inside sonic crystals

In order to verify the scattering process occurring inside sonic crystals, a set of measure-

ments has been conducted by placing the microphone inside the sonic crystal and moving

it along the transverse (SWT) and longitudinal (SWL) directions with a spacing of 1/4

of the lattice constant. A sketch of the measurement positions considered for array I

is displayed in Fig. 3.18. In the longitudinal direction, the measurement points extend

beyond the sonic crystal in order to characterise the pressure field in this critical region.

The stand that held the microphone was mounted on a sliding carriage which allowed to

determine accurately the microphone positions.

3.3.1 Interpolation maps of the sound field

The results of the measurements inside the sonic crystals are reported on a 3D graph,

having position and frequency on the x- and y-axis respectively and Insertion Loss on the

z-axis. A cubic interpolation was made over the x-axis (position) in order to smooth the
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(b) Array I, REFA
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(c) Array II, INSA
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(d) Array II, REFA
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(e) Array III, INSA
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Figure 3.17: IL measurements vs FE and MST calculations at the points INSA and REFA in

array I (a, b), array II (c, d) and array III (e, f).
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(a) SWT (b) SWL

Figure 3.18: Measurement points inside the sonic crystal along the transverse (a) and longitudinal

(b) directions. The distance between the points is 1/4 of the lattice constant.

surface and render the data easy to read.

The IL measured inside array I is reported in Fig. 3.19, while Fig. 3.20 reports the

IL calculated according to the Multiple Scattering Theory. For the sake of clarity, the

measured data are reported in 2D in Fig. 3.21. In the transverse direction (Fig. 3.21 a),

at Bragg frequency there is a general increase in IL which is particularly marked for the

measurement positions located farther away from the closest cylinders. IL becomes more

homogeneous with the distance moving away from the source, behaviour which is related

to the exponential decay of the evanescent mode inside the band gap46. After Bragg

frequency, a region occurs in which the field is determined by constructive interference

that repeats according to the Bloch-Floquet theorem with the periodicity of the crystal.

In the longitudinal direction (Fig. 3.21 b) a similar pattern occurs. A first region with

positive IL is found at 1,500 Hz, above the first Bragg frequency. Then the periodic pattern

repeats up to 2,500 Hz, where a second particular region occurs. Outside the sonic crystal,

the IL holds positive for a narrow region of space. The match between measurements and

MST predictions is very good for measurements performed in the transverse direction,

while in the longitudinal direction MST seems not to predict correctly the behaviour of

the pressure field.

The measurements inside the sonic crystal performed on array II show a peculiar

behaviour. Diagrams plotting the IL measured inside the crystal are reported in Fig. 3.22

in two-dimensions. For the transverse direction (Fig. 3.22 a), the 2D flattening shows
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Figure 3.19: Array I. Insertion Loss inside the sonic crystal: measurements in the transverse (a)

and longitudinal (b) directions.
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Figure 3.20: Array I. Insertion Loss inside the sonic crystal: MST predictions in the transverse

(a) and longitudinal (b) directions.
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(a) IL (dB) in the transverse (SWT) direction. The source is located in the SW corner of the plot area.
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(b) IL (dB) in the longitudinal (SWL) direction. The source is located in the NW corner of the plot area.

Figure 3.21: Array I. Insertion Loss inside the sonic crystal in the transverse (a) and longitudinal

(b) directions. Frequency on the x-axis, displacement inside the crystal on the y-axis.
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(a) IL (dB) in the transverse (SWT) direction. The source is located in the SW corner of the plot area.
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(b) IL (dB) in the longitudinal (SWL) direction. The source is located in the NW corner of the plot area.

Figure 3.22: Array II. Insertion Loss inside the sonic crystal in the transverse (a) and longitudinal

(b) directions. Frequency on the x-axis, displacement inside the crystal on the y-axis.
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(a) IL (dB) in the transverse (SWT) direction. The source is located in the NW corner of the plot area.
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(b) IL (dB) in the longitudinal (SWL) direction. The source is located in the NW corner of the plot area.

Figure 3.23: Array III. Insertion Loss inside the sonic crystal in the transverse (a) and longitudinal

(b) directions. Frequency on the x-axis, displacement inside the crystal on the y-axis.
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two marked region corresponding to the first two Bragg band gaps in the ΓX direction,

interrupted by a region in which a strong constructive interference occurs following the

Bloch-Floquet theorem. Also in this case, the attenuation gradually increases moving

farther away from the source. The longitudinal direction (Fig. 3.22 b) displays a similar

pattern, showing a peculiar shift in frequency moving away from the source. In particular,

the region of higher attenuation corresponds quite well to the range spot in the analysis

over the transverse direction. In contrast, the dispersion curves calculated in section 3.2

(Fig. 3.11) indicate a band gap in the XM direction which extended over a smaller

frequency range and that shared the same upper limit with the band gap in the ΓX

direction.

Finally, Fig. 3.23 displays the 3D graphs of the measured IL inside the sonic crystal

for array III. In the transverse direction (Fig. 3.23 a), the Bragg band gap in the ΓX

direction is clearly detected around 800 Hz and at twice that frequency. As emerged from

the results of array II, both the maxima and the minima of the IL increase moving away

from the source. In the longitudinal direction (Fig. 3.23 b) the regions with positive IL

shift to lower frequency as expected.

3.3.2 The evanescent modes

The IL measured inside the sonic crystals have been displayed above in a space-frequency-

magnitude representation. The analysis of the 3D interpolation maps showed that an

evanescent mode is clearly detectable in the transverse direction at Bragg frequency for

arrays II and III, with a filling fraction of 0.50. In the longitudinal direction, an evanes-

cent behaviour is also detected but shifted in frequency. Here, for these two arrays, the

evanescent behaviour of modes inside the sonic crystals has been investigated.

The exponential decay inside the sonic crystal can be evaluated by means of an expo-

nential fitting of the pressure rms values46. Since to evaluate the exponential fitting it is

necessary to perform a linear fitting of the pressure values, all inputs should be positive.

Thus the exponential decay is calculated on rms values relative to measured IRs without

subtracting the direct field. Considering the maxima of these trends, the exponential

decay can be expressed as

y = AeBx

where A = eβ, being β the intercept of the linear regression calculated over the quantity

ln(prms) and B = α, being α the angular coefficient of that linear regression. In particular,

B indicates the imaginary part of the wave vector. The A and B coefficients of the two

arrays are reported in Tab. 3.4.

The exponential decays are then superimposed to the measured rms pressure values

in Fig. 3.24. While the exponential decay is clearly detectable in the SWT direction

(parallel to the incident wave vector), in the SWL direction (normal to the incident wave

vector) it is less marked. In the measurements performed at the University of Bologna,

the sample consisted of a greater number of cylinders, thus the shape of the decay is more
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Table 3.4: Exponential functions fitting the rms pressure values measured inside two sonic crystals

in the transverse (SWT) and longitudinal (SWL) directions.

Array Lc (m) ff Direction Exponential fitting function

Array II 0.135 0.50 Transverse (SWT) y = e−5.47 · e−7.02x

Array II 0.135 0.50 Longitudinal (SWL) y = e−5.95 · e−2.20x

Array III 0.200 0.50 Transverse (SWT) y = e0.34 · e−3.11x

Array III 0.200 0.50 Longitudinal (SWL) y = e−0.17 · e−1.63x
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Figure 3.24: Exponential fitting over the rms pressure values measured inside the arrays II (a, b)

and III (c, d) in the transverse (a, c) and longitudinal (b, d) directions. Both arrays have a filling

fraction ff = 0.50; array II has Lc = 0.069 m while array III has Lc = 0.200 m.
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(a) Side measurement positions.

The source is placed beyond the ab-

sorptive material.

(b) Back measurement positions. The source lies on the

dashed line beyond the sample.

Figure 3.25: Measurement positions for sound intensity measurements at the University of

Bologna. Side (a) and back (b) of the sample.

evident.

3.4 Sound intensity measurements

It is a topic long debated where there is any part of the sound field which travels in the

longitudinal direction of sonic crystals. In order to evaluate the entity of sound emission

from the sides of the sample, sound intensity measurements were conducted to investigate

lateral an frontal transmission.

Measurements were conducted at the University of Bologna on a 15 x 3 square array

of cylinders with Lc = 0.200 m and ff = 0.50 (array III). The measurement points are

displayed in Fig. 3.25. The sound source was placed at a distance of 1 m from the sonic

crystal and the intensity probe at a distance of 0.5 m. Two measurement positions were

chosen per lattice constant, i.e. two consecutive measurement points are spaced apart by

0.10 m, and the probe was placed at three different heights: 1.4 m, 1.5 m and 1.6 m. In

the following, only the measurements performed at a height of 1.5 m are presented. Fig.

3.26 shows the measurement setup. In order to minimise the effects of lateral diffraction

and of the direct component, absorbing material was placed on the sides of the barrier.

The measurement chain consisted of the elements previously accounted for IR mea-

surements plus:

- G.R.A.S. 50 AI-B Lemo 1/2” Intensity Probe;

- 01dB sound card;

- Ocenaudio software generating the pink noise.
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(a) Side measurements (b) Back measurements

Figure 3.26: Pictures of the sound intensity measurement setup - side (a) and back (b).

The results are reported as contour maps, where sound intensity and sound pressure

levels are interpolated along the “back” and “side” displacement axes in one-third of

octave bands ranging from 200 to 3,150 Hz (Fig. 3.28 and Fig. 3.27).

The sound intensity levels plotted in Fig. 3.27 (a) show areas with negative values

around the first Bragg band gap. The appearance of negative values suggests that the

field detected by the intensity probe is severely affected by the out-of-phase noise coming

from the surrounding environment, being the front component negligible compared to

that. Moving along the side of the sample, these darker regions are concentrated around

800 Hz, with no significant shift in frequency. The sound pressure level (Fig. 3.27 b)

is homogeneous with the distance and shows a region of incremented values in the one-

third of octave band of 1,250 Hz, region which also correspond to high sound intensity

levels. This matches perfectly the pattern of the sound field inside the array displayed in

Fig. 3.23 (b), providing an additional evidence of sound propagation in the longitudinal

direction.

Measurements in the rear of the sample were made by shifting the intensity probe

parallel to the sample. In this configuration, some regions are detected between the 315

and the 1,600 one-third octave bands which displays higher sound pressure levels compared

to the surrounding areas (Fig. 3.28 b). A band of slightly lower sound intensity level is

found between 800 and 1,000 Hz, at Bragg frequency. At twice Bragg frequency there is a

sudden increase in sound pressure and intensity level at the measurement position closer

to the sound source.
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Figure 3.27: Sound intensity and sound pressure levels measured behind on one side of sample.

The source is to the left of the plot areas.
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Figure 3.28: Sound intensity and sound pressure levels measured behind the sample. The source

is to the right of the plot areas.
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3.5 Standardised SI and RI measurements

The measurements conducted so far were aimed at pointing out the multiple scattering

process and to enter the detail of the sound field distribution inside the sonic crystal. As

pointed out in the literature review, after the first measurements conducted over the sculp-

ture by Eusebio Sempere in Madrid26, a flourishing literature has followed immediately,

analysing the phenomenon with different lattice structures. Most of the measurements

are carried out in anechoic chambers28;37;42 and on samples constrained in width; the

resulting attenuation values thus comprise transmission and edge diffraction effects. In

order to render negligible the contribution of the field diffracted from the edges, in many

cases the microphone was placed very close to the sample42. Two significant exceptions

to this measurement method are Refs.27;29 In Ref.27 the IRs are windowed in order to

minimise the reverberation effects, which were evident for the free-field measurements. A

time window of 6 ms was used, but since the rods were 1 m long, diffraction effects were

included. In Ref.29 measurements were conducted on a 1.1 x 7.2 m sample. The width

of the sample was kept large in order to minimise the edge diffraction and measurements

were performed in open air.

The intrinsic acoustic characterisation of a noise barrier in itself as a product re-

quires to assess the transmitted and reflected sound properties70. In more recent years,

Castineira-Ibànez et al.47 characterised ‘advanced’ sonic crystal barriers by acoustic stan-

dardisation tests performed according to EN 1793-248, i.e. under diffuse field conditions.

In order to measure the effective sound insulation and reflection properties of the bar-

rier for normal incidence, diffraction effects and all unwanted reflections should be cut

off from the measurements. This is possible, even in a non-anechoic environment, using

transient sound signals and a suitable windowing technique, which is currently standard-

ised in EN 1793-667 and EN 1793-566. The main strength of using standardised indices

is that they allow to do comparisons between different samples, and in particular to test

the performance of sonic crystal noise barriers versus common noise barriers.

At the University of Bologna the Sound Insulation Index (SI) and the Reflection

Index (RI) have been thus measured according to the EN 1793-566 and EN 1793-667

standards, which describe a method which allows to perform laboratory measurements

returning results which do not differ significantly from in situ measurements71. The width

and height of the sample determined the characteristics of a time window that was used

to cancel ground reflection and edge diffraction, thus computing the transmitted sound

component only.

The same cylinder arrangement used for the single point measurements (array III) has

been used to test the acoustic properties of sonic crystal as noise barrier. The arrangement

of the cylinder, repeated here for the sake of convenience, consisted in a 15 x n square

lattice of hollow PVC cylinders vertically standing, with a height of 3 m, Lc = 0.200 m

and ff = 0.50. The depth of the barrier was varied by mounting 2 to 5 rows of cylinders.

The sound source is placed in front of the barrier at a height of 1.5 m, 1 m away from
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(a) (b)

Figure 3.29: Measurement setup at the Acoustic Laboratory of the University of Bologna. Position

of the source and the microphone array for the sound reflection and the sound insulation indices

(a) and picture of the source and microphone array for reflection measurements (b).

the closest cylinders for sound insulation measurements and 1.5 m away for reflection

measurements66;67. The microphones are arranged in a 3x3 square array (M1-M9), spaced

apart 0.40 m both in the horizontal and vertical directions. This array is positioned

parallel to the sonic crystal at a distance of 0.25 m either on the side of the loudspeaker

(reflection measurements) or on the opposite side (sound insulation measurements). The

loudspeaker always faces the central microphone of the array, M5 (Fig. 3.29 a). Since

the spacing between the microphones is a multiple of the lattice constant and given

the periodicity of the sample, measurements were performed in two configurations; in

configuration a the central microphone of the array faces the central cylinder, while in

configuration b it faces the interstice between two adjacent cylinders.

The experimental apparatus consisted of:

- 16 channels Analog to Digital converter RME M-16 AD;

- RME Hammerfall HDSPe MADI for the A/D and D/A section;

- 9 Brüel & Kjær 4935 microphones;

- 16 channels Brüel & Kjær 2694 preamplifier;

- Samson Servo 201A power amplifier;

- ZIRCON loudspeaker.

IR measurements were performed using ESS test signals as previously discussed. Adri-
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enne time windows functions are applied to the impulse responses; this permits to cancel

unwanted reflections (ground reflection amongst all) as well as diffraction from the bar-

rier top and side edges. The lengths of the different parts of the Adrienne time window

have been set according to EN 1793-667, adapted to the dimensions of the sample and

respecting the 7/3 ratio between the flat portion and the trailing edge. According to Fig.

13 reported in EN 1793-667, the lowest reliable frequency for a 3 m high barrier is about

260 Hz, hence the frequency range analysed is 400-5,000 Hz in 1/3 octave bands.

3.5.1 Sound Insulation Index

The sound insulation properties of the sample under test are evaluated according to EN

1793-667. The sound components transmitted through the barrier and the corresponding

free-field reference measurement are post-processed to compute the SI index:

SIj = −10 log


1

n

n∑
k=1

∫
∆fj

|F [ht,k(t)wt,k(t)]|2df∫
∆fj

|F [hi,k(t)wi,k(t)]|2df

 (dB) (3.2)

where hi,k(t) is the free-field impulse response at the k-th microphone position, ht,k(t) is

the impulse response at the k-th microphone position with the barrier in between, wi,k(t)

and wt,k(t) are the time windows (Adrienne temporal windows)67 for the free-field and

the transmitted components respectively at the k-th microphone position, F denotes the

Fourier transform, j is the index of the j-th one-third octave frequency band, ∆fi is the

width of the j-th one-third octave frequency band and n = 9 is the number of microphone

positions.

Figure 3.30 reports the SI values measured in configurations a and b. A strong atten-

uation can be observed in the frequency range 500-1,100 Hz in both configurations a and

b, i.e. with microphones facing the centre of the cylinders or the voids between cylinders.

The highest SI is measured in configuration b. At twice Bragg frequency, the SI assumes

values close to zero (setting b) or slightly negative (setting a). This implies the presence

of a constructive interference mechanism which, given the fact that SI is averaged over

9 microphone positions, cannot be due to a single-point localised anomaly. Further data

relative sound insulation measurements sonic crystals for different measurement positions

are available in73. The sound insulation increases with the number of rows of the sample,

even though with 4 and 5 rows of cylinders the measure saturates. This may be due to

the limited size of the time window; if on one hand it allows to cancel unwanted sound

components, on the other hand when the depth of the sample increases, the useful signal

is widened in time as n-th order reflections are shifted in time. Indeed, for this kind

of measurements the width of the time window depends on the dimensions (width and

height) of the sample. Up to 3 rows of cylinders, all the significant reflections up to the

n-th order are included in the time window for all rows of cylinders; for deeper samples,

the n-th order reflections coming from the farther cylinders are windowed out from the
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Figure 3.30: Sound Insulation index measured in settings a (the array faces the centre of the

cylinders) and b (the array faces the space between the cylinders).

impulse response and thus do not contribute to its spectral content. As a result, the SI

value saturates returning misleading results.

The windowing procedure adopted according to the cited standards cancels the top

diffraction effects, while many other most of the literature includes this contribution in the

time window. A question arises: for this kind of periodic structures, can top diffraction

be considered negligible? A further set of measurements was conducted on a sonic crystal

by shifting the source and the receiver upwards and leaving the time window unchanged.

This allowed to exclude ground reflections and side diffraction and to compute the effects

of sound transmission and top diffraction combined. The Insertion Loss is presented in

Fig. 3.31 in configurations a and b. A huge difference is found for top diffraction between

the two configurations. When the microphone faces the cylinder (config. a), the shift of

the microphone causes a drop in SI in the Bragg frequency and a peak around 2,000 Hz.

A component emerges at 1,600 Hz, the region in which the SI displays negative values.

Higher frequency SI values are less affected by the shift, except for the heights at which
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Figure 3.31: Insertion Loss measured at different heights from the barrier. The insertion loss

measured at a height of 3 m, i.e. the height of the barrier, is represented as a thicker dashed line.

the source and the microphone are sensitively higher than the barrier. In configuration

b the drop around Bragg frequency occurs as well, and the dip at 1,250 Hz is identified

univocally by all measurements, irrespective of the diffraction effect. The behaviour at

higher frequency is also more homogeneous than in case a, except again for the last

configurations.

3.5.2 Comparison with other noise barriers

The main strength of using standardised indices is that they allow comparisons between

different samples. In particular, it is possible to test the performance of a sonic crystal

noise barrier vs common noise barriers. Fig. 3.32 reports the SI values for lightweight

and heavyweight noise barriers existing in the market together with the values calculated

for sonic crystals. The barriers used for the comparison are taken from Ref.74: a metallic

non-flat barrier (MET sample no. 7), a timber barrier (TIM sample no. 9) and a concrete
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Figure 3.32: Comparison between the Sound Insulation index measured for a 4-rows sonic crystal

(SC) and standard noise barriers, after74: metallic non-flat barrier (MET), timber barrier (TIM),

concrete barrier measuring across the acoustic elements (CON e) and across the posts (CON p).

The dashed line (IL) is the insertion loss due to the top edge diffraction over a noise barrier

calculated according to75.

barrier (CON sample no. 13), measured across the acoustic element and across the posts.

The timber barrier displays sound insulation values which are of the same order of mag-

nitude of the maximum SI measured for a sonic crystal, while the metal and the concrete

barriers show higher sound insulation values. For the concrete barrier, the SI values are

measured both across the elements (solid line) and the posts (dashed line). For the latter

case the SI value drops dramatically, suggesting that the actual sound insulation behind a

real road barrier may be severely limited by the sound leakage at the panel-post junction.

Fig. 3.32 also reports the theoretical Insertion Loss achievable for a given geometry of the

barrier due to the top diffraction according to Ref.75 Following the analytic expression

proposed in this work, the Insertion Loss has been calculated considering a point source

placed at a height of 1.5 m and at a distance of 3 m from the barrier, while the receiver

is a point located at a height of 1.5 m (approximately a window at the ground floor) and

at a distance of 10 m from the barrier. This theoretical value of Insertion Loss shows to

be interesting for pointing out the effectiveness of sonic crystal noise barriers. The overall

effect of any noise barrier is dominated by the sound diffracted over the top edge and

the results show that in fact, all other kinds of barrier are oversized with respect to their

insulation properties.

3.5.3 Sound Reflection Index

The Reflection Index (RI) is computed according to EN 1793-566 as follows:

RIj =
1

nj

nj∑
k=1


∫

∆fj

|F [hr,k(t) · wr,k(t)]|2df∫
∆fj

|F [hi,k(t) · wi,k(t)]|2df
· Cgeo,k · Cdir,k(∆fj) · Cgain,k(∆fg)

 (3.3)
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Figure 3.33: Reflection index measured in settings a (the array faces the centre of the cylinders)

and b (the array faces the space between the cylinders).

where hi,k(t) is the free-field impulse response at the k-th measurement point, hr,k(t) is

the reflected component of the impulse response at the k-th measurement point, wi,k(t)

and wr,k(t) are the time windows (Adrienne temporal windows) for the free-field and the

reflected components respectively, F is the symbol of the Fourier transform, j is the index

of the j-th one-third octave frequency band (between 100 and 5,000 Hz), ∆fi is the width

of the j-th one-third octave frequency band, n is the number of microphone positions on

which to average. With reference to the k-th measurement point, Cgeo,k is the correction

factor for the geometrical divergence, Cdir,k(∆fj) is the correction factor for sound source

directivity, Cgain,k(∆fg) is the correction factor relative to the loudspeaker amplification

and the microphones sensitivity and ∆fg is the frequency range encompassing the one-

third octave frequency bands between 500 and 2,000 Hz.

Figure 3.33 shows the RI measured in configurations a and b. There is a remarkable

difference between these two configurations, especially concerning the general trend of

RI in frequency. Configuration a displays a local maximum in the one-third of octave
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band centred at 800 Hz, low values at 1,250 Hz and increases at higher frequencies. In

configuration b the RI displays a regular trend in the Bragg frequency range, settling to

1.

While SI values do not change dramatically shifting between configurations a and

b, RI measurements are strongly affected by the position of the microphone relative to

the sample. While the impulse response in insulation is representative of a multiple

scattering process, the impulse response measured in reflection is strongly affected by the

first reflections. The energy related to the very first reflections determines significantly the

spectral content of the signal, while subsequent reflections have smaller relative weight.

This might explain both the dependence on the position and the independence from

the number of rows. The spacing between the microphones is a multiple of the lattice

constant, i.e. when the central microphone of the array faces the centre of a cylinder, all

microphones face the centre of the cylinders, under different incidence angles: that might

have amplified this effect.

The Reflection Index seems not to be closely dependent on the number of rows of

the sonic crystal. Also this issue might be related to the windowing procedure. For the

Reflection Index, the application of the time window is even more critical than in the

calculation of SI; here the time window is centred on the arrival of the direct sound,

thus multiple scattering components coming from the farthest cylinders might be easily

windowed out.



Chapter 4

Concluding remarks

The work presented in this PhD thesis is concerned with the sound propagation through

sonic crystals. Starting from the application of the Bloch-Floquet theorem to the wave

equation, theoretical models have been implemented and analysed to investigate the char-

acteristics of the sound field generated by sonic crystals. The Plane Wave Expansion

method was used to calculate the band structures; the Multiple Scattering Theory was

used to compute the scattered sound field at any arbitrary point and Finite Element

analysis was used for both purposes, to derive band structures and to evaluate the pres-

sure field inside the domain. The comparison of analytical and numerical tools showed

that there is a good convergence between the methods and between band structures and

attenuated sound field computed under different excitations. In particular, band struc-

tures extracted with the PWE and the FE methods showed a very good agreement. FE

evaluations of the sound field for plane wave propagation and semi-infinite samples pre-

dicted stop bands at multiples of Bragg frequency, so as band structures did. At twice

Bragg frequency, the FE calculations spotted an anomaly that is also displayed in the

band structures, where a strong localised mode emerged displaying a nearly zero group

velocity. For spherical wave propagation Bragg band gap is well identified, while at twice

Bragg frequency no insulation properties were found, showing up only for normal inci-

dence of plane waves. MST and FE predictions for plane wave propagation showed a

good convergence in insulation, except for some oscillations of the MST values at Bragg

frequency, while in reflection there seems to be a phase shift between the theoretical and

numerical results.

An extensive set of experimental measurements has been carried out in order to in-

vestigate the mechanisms responsible for the generation of band gaps in sonic crystals.

The experimental campaigns were hosted at the Acoustic Laboratory of the University

of Bologna and in the anechoic chamber at the Open University headquarters in Milton

Keynes (UK). Three unit cells were tested, consisting of hollow PVC cylinders immersed

in air and arranged in a square lattice. The different setups, the different kinds of mea-

surements and the different quantities searched provided coherent results for the three

arrays and with the behaviour predicted by analytical and numerical tools. The results
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showed that the sound field transmitted through the sample is attenuated at Bragg fre-

quency by an amount related to the filling fraction of the array and to the number of

rows of cylinders. After Bragg frequency, a region occurs where negative Insertion Loss

is measured and predicted, probably because an interference phenomenon is triggered.

The control of this phenomenon is central for the effective use of sonic crystals and will

need further investigation. Sound intensity measurements outside the array proved to be

coherent with the interpolation maps of the sound field inside the sonic crystal, showing

that sound propagation is allowed in the longitudinal direction of the array in the fre-

quency range where constructive interference occurs. The main achievements are briefly

summarised in the following.

Sound insulation and reflection measurements have been carried out by placing the

microphone at a fixed distance of one lattice constant from the sample and the relative IL

was calculated. The measurements showed that at Bragg frequency the sound insulation

is enhanced due to the stop-band properties of the sonic crystals, the attenuation covering

a larger frequency spectrum for array II. Negative IL values were expected to occur in

reflection as a consequence of Bragg scattering but did not, as around Bragg frequency

the IL values tend to zero. The results confirmed that the arrays with higher filling

fraction provid highest attenuation. The IL for arrays II and IIII, with a filling fraction of

0.50, reaches values up to 25 dB at Bragg frequency, vs the 8 dB of attenuation provided

by array I, with filling fraction 0.13. While for arrays I and III the sound insulation is

uniform amongst points close to each other, for array II the variability is high. This has

been related to the contribution of side diffraction component included within the different

time windows. At the University of Bologna, the width and height of the sample were the

same, thus the cancellation of the ground reflection came together with the cancellation of

side and top diffraction. At the Open University, the width of the sample for array II was

sensitively smaller than the height. Since the length of the time window depends upon

the cancellation of ground reflection, arrays with a smaller lattice constant include the

diffracted sound field to a greater extent. This has been clearly pointed out comparing

numerical predictions to measurements; in fact MST failed to describe accurately the

behaviour of array II, though the truncation order was customised to provide reliable

results. For all the three arrays, a region emerged after Bragg frequency which displayed

null or slightly negative IL.

Further measurements were conducted on sonic crystals at the University of Bologna

increasing the number of rows of cylinders. The results revealed the increase of IL in

insulation and the occurrence of negative IL values (i.e. a constructive interference)

behind the sample at twice Bragg frequency. This region of negative IL values displayed

an important shift in frequency between the measurement position that faces the centre

of a cylinder and the one that faces the interstice between two adjacent cylinders. IL

measured in reflection did not display significant variation due to the increase in the

number of cylinders.

The sound field inside the sonic crystals was analysed by moving the microphone inside
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the array with a spacing of 1/4 of the lattice constant along the two main symmetry

directions of the lattice. The interpolation maps of the IL showed that the sound field

distributes with the same periodicity of the array, according to the Bloch-Floquet theorem.

In the direction parallel to the incident wave vector there is an increase in IL moving away

from the source and after Bragg frequency, a region occurs where the field is dominated

by constructive interference. The interpolation maps plotted in the direction normal to

the incident wave vector also showed a region with diffusely increased IL values which

are shifted upwards in frequency with respect to Bragg frequency. In arrays I and II

these regions occupy a well-defined frequency range; for array III, as we move away from

the source, the differences spot by the periodicity of the lattice are smoothed and the

positive IL region shifts towards lower frequencies. This complies with the fact that the

periodicity in the oblique direction is decreased and thus sound insulation occurs at lower

frequencies. This might have been spot only for array III due to the greater number of

cylinders of which it is made of. Again, this frequency region characterised by high IL

values is followed in frequency by regions in which constructive interference rules. The

sound pressure field inside the sonic crystal was proved to have an exponential decay

within the lattice. Evanescent modes have been analysed by computing an exponential

fitting of the rms pressure values inside the crystal and evaluating the imaginary part of

the wave number which is responsible for the attenuation.

Measurements with an intensity probe were done to verify the existence of sound

components travelling in the longitudinal direction of sonic crystals. In the transverse

direction, sound intensity levels showed a band of slightly lower values centred at Bragg

frequency, region corresponding also to low values of the sound pressure level. For points

close to the source, i.e. for frontal transmission, at twice Bragg frequency there is a sudden

increase in sound pressure and intensity level which reflects the constructive interference

phenomenon which was spot from single-point measurements. Measurements on the sides

of the sample showed more interesting results. At Bragg frequency, the formation of band

gaps clearly emerged from the sound intensity measurements as after the second row of

cylinders a negative value of sound intensity level is found. The appearance of negative

values of sound intensity levels suggests that the field detected by the intensity probe

is severely affected by the out-of-phase noise coming from the surrounding environment,

being the front component negligible compared to that; in this case, no sound propagates

in the longitudinal direction. There is a zone at around 1,250 Hz which displays high

sound pressure levels and high intensity levels; this matches perfectly the pattern of the

sound field inside the array displayed in the interpolation maps, providing an additional

evidence of sound propagation in the longitudinal direction.

Finally, standardised Sound Insulation and Reflection Index measurements have been

performed at the University of Bologna in order to characterise sonic crystals for normal

incidence excluding any reflection or diffraction component. The SI values identified

Bragg scattering clearly, locating accurately the stop-band as predicted from the band

structure. The application of the time window on one side allows to neglect ground



106 Concluding remarks

reflection and edge diffraction; on the other hand it limits the possibility to investigate

these structures when the number of rows increases. With the lattice constant of 0.2

m, this significance threshold was identified in 3 rows of cylinders; after this number,

an increase in depth did not correspond to an increase in insulation. At twice Bragg

frequency a null or negative SI settles that is related to a constructive interference which

emerges from the measured data even if averaged over the 9 microphone positions. The

Reflection Index showed to have a strong dependence on the position of the microphone

relative to the sample; in fact its oscillating behaviour settles to regular trends only when

averaged over several measurement positions. The reflection coefficients were found to be

also quite independent from the number of rows of the crystal. This might be explained

considering that in reflection measurements the direct sound is a key component in the

spectral content of the impulse response, as well as the early reflections, and subsequent

n-th order reflections play a minor role. The application of the time window for reflection

impulse responses is also more critical, being the direct sound involved, as all useful

multiple scattering components are shifted forward in time.

The standardised indices were used to compare the performance of sonic crystal to

that of common noise barriers. Sonic crystals proved to reach a peak SI value comparable

to lightweight timber barriers, even though only at Bragg frequency. Standard heavy

barriers provide higher SI values with almost flat frequency response, although significant

drops occur at the panel-post junction due to sound leakage. Anyway these high values

are scarcely representative of the attenuation that is actually achievable as the overall

effect of any noise barrier is dominated by the sound diffracted over the top edge. The

results in fact showed that all other kinds of barrier are oversized with respect to their

insulation properties. With a proper enhancement of the sound insulation properties

of such crystals, these might turn out to be an interesting substitute for common noise

barriers.

This work has explored the theoretical and experimental basis of the generation mech-

anisms of stop-bands in sonic crystals and provides a useful starting point for future de-

velopments on the topic. In the next future, measurements will be conducted on sonic

crystals under diffuse field conditions. Moreover, the transmission properties of a small-

scale sample will be tested in a modified impedance tube built according to ASTM E261176

in order to measure the reflected and transmitted sound field for normal incidence. This

will start a new measurement campaign on small scale arrays to investigate stop-band

properties emerging below the homogenisation limit, paving the way to the enlargement

of the research to acoustic metamaterials.
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