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Abstract

Computer-aided diagnosis (CAD) is the use of a computer software to
help physicians having a better interpretation of medical images. CAD
systems can be viewed as pattern recognition algorithms that identify
suspicious signs on a medical image and complement physicians’ judg-
ments, by reducing inter-/intra-observer variability and subjectivity.

The proposed CAD systems in this thesis have been designed based
on the statistical approach to pattern recognition as the most suc-
cessfully used technique in practice. The main focus of this thesis
has been on designing (new) feature extraction and classification algo-
rithms for ultrasound-based CAD purposes. Ultrasound imaging has a
broad range of usage in medical applications because it is a safe device
which does not use harmful ionizing radiations, it provides clinicians
with real-time images, it is portable and relatively cheap.

The thesis was concerned with developing new ultrasound-based
systems for the diagnosis of prostate cancer (PCa) and myocardial in-
farction (MI) where these issues have been addressed in two separate
parts. In the first part, 1) a new CAD system was designed for prostate
cancer biopsy by focusing on handling uncertainties in labels of the
ground truth data, 2) the appropriateness of the independent compo-
nent analysis (ICA) method for learning features from radiofrequency
(RF) signals, backscattered from prostate tissues, was examined and,
3) a new ensemble scheme for learning ICA dictionaries from RF sig-
nals, backscattered from a tissue mimicking phantom, was proposed.
In the second part, 1) principal component analysis (PCA) was used
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for the statistical modeling of the temporal deformation patterns of
the left ventricle (LV) to detect abnormalities in its regional function,
2) a spatio-temporal representation of LV function based on PCA pa-
rameters was proposed to detect MI and, 3) a local-to-global statistical
shape model based on PCA was presented to detect MI.
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MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .magnetic resonance imaging
PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .principal component
PCa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .prostate cancer
PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . principal component analysis
PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probability distribution function
PDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . point distribution model
PSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .prostate specific antigen
PZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . peripheral zone
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . radial
RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . right atrium
RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . radiofrequency
ROI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . region of interest
RSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . random subspace method
rtCAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . real-time computer-aided biopsy
RV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . right ventricle
SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sensitivity
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signal to noise ratio
SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .specificity
S-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . spatio-temporal
STI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . speckle tracking imaging
SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . support vector machines



8

TDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tissue Doppler imaging
TN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . true negative
TP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .true positive
TRUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . trans-rectal ultrasound
TZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transition zone
ULA-OP . . . . . . . . . . . . . . . . . . . . . . . . ultrasound advanced open platform
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1.1 Computer Aided Diagnosis

The use of a computer software to help physicians having a better inter-
pretation of medical images is called computer-aided diagnosis (CAD).
More specifically, CAD algorithms analyze medical images to give an
estimate of the likelihood that an image represents a specific disease
process [14, 33]. These CAD algorithms, however, should be considered
as tools that complement physicians’ judgments, by reducing inter-
/intra-observer variability and subjectivity, and not as substitutions of
specialists’ experience.

CAD systems can be viewed as pattern recognition algorithms that
identify suspicious signs on a medical image and bring them to the
attention of the physician with the aim of reducing the false negative
readings [14]. In this thesis, the proposed CAD systems have been
designed based on the statistical approach to pattern recognition as
the most intensively studied and successfully used technique in practice
[56].

1.2 Statistical Pattern Recognition

In the statistical methodology, data samples are represented in terms
of d measurements and form a d-dimensional space called feature space
[56]. The d-dimensional feature vectors are then used to build a classi-
fication system. The basic phases in the operation of a pattern recog-
nition system are illustrated in Figure 1.1

The pattern recognition algorithm works in two main stages, named
training and testing. In the training stage, some preprocessings are
initially applied to the training samples. In the context of CAD, this
preprocessing stage can include noise reduction, contrast enhancement,
image registration and segmentation of the region of interest in the ac-
quired image. The next stage is to extract/select some features from
the images which properly highlight dissimilarities between the differ-
ent classes (e.g. benign versus malignant). These features are then
used in the next stage for constructing/training a classifier in order
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Figure 1.1: General framework for implementing a statistical pattern recog-
nition system.

to assign each input pattern to one of the classes in the classification
problem. The feedback path from the learning phase to the prepro-
cessing and feature extraction modules enable a designer to modify the
computed attributes.

The proposed CAD systems in this thesis concern supervised learn-
ing where a set {(x1, ω1), . . . , (xD, ωD)} is used for building a classifi-
cation system. In this set, xi is the feature vector of the ith pattern
and ωi is its class label taken from the group Ω = {ω1, . . . , ωC} for a
C-class problem.

In the testing stage, the same preprocessing and feature measure-
ment operations are applied to a given unlabeled pattern and the clas-
sifier assigns it to one of the C classes.

The main focus of this thesis is on designing (new) feature extrac-
tion and classification algorithms for CAD purposes. In the following
sections, the basic feature measurement and classification methods that
are used throughout the thesis are reviewed.

1.3 Statistical Feature Extraction

Principal Component Analysis (PCA) [61] and Independent Compo-
nent Analysis (ICA) [52] are two statistical methods that are used for
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data modeling and feature extraction in this thesis. The reasons for
adopting theses methods are bi-fold:

1. The effectiveness of PCA and ICA for feature extraction has been
widely proven in different pattern recognition applications,

2. They belong to the family of the feature learning techniques and
as data-driven methods can,

• make learning algorithms less dependent on human prior
knowledge and,

• facilitate the procedure of extracting useful information when
building classifiers [5].

1.3.1 Principal Component Analysis

PCA is a popular statistical approach for feature extraction, dimen-
sionality reduction and data visualization [61]. Given a data set of
random vectors X = {x1, . . . , xD} where xn ∈ RN , the PCA algorithm
gives a representation of the data in RM (M < N) such that the new
variables are less redundant compared to the original ones. PCA can
be defined based on projection error minimization. In this formulation,
each data vector can be exactly represented by a linear combination of
a complete orthonormal set of basis vectors Φ = {φ1, . . . , φN} as,

xn =

N∑
i=1

aniφi (1.1)

where the coefficient set {an1, . . . , anN} is unique for the data vector
xn. Each coefficient ani can be computed based on the orthonormality
property and by projecting xn onto the subspace spanned by the ith
basis vector,

ani = xTnφi. (1.2)

The set of basis vectors, which are called principal components
(PCs), can be obtained by computing the eigenvectors of the data
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covariance matrix [61]. To represent a data vector xn in a lower-
dimensional subspace, one can retain the M < N eigenvectors with
the largest eigenvalues and approximate it by

xn ≈
M∑
i=1

aniφi. (1.3)

The first step in building the PCA model is centering the data that
can be done by first computing the mean vector of X and then sub-
tracting every data vector from it. In the second step, the covariance
matrix of the centralized data set is computed. The final step is to
find the eigenvector matrix Φ and diagonal eigenvalue matrix Λ of the
covariance matrix.

1.3.2 Independent Component Analysis

In the classic ICA model [52], it is assumed that an observed random
vector y ∈ RN is generated by linearly combining the elements of a
constant matrix B ∈ RN×N , named the mixing matrix, with a vector
of random variables s ∈ RN :

y = Bs. (1.4)

Since the rows of the mixing matrix B (also known as basis vectors)
are fixed, elements of the vector s should change for any new data to
generate it using (1.4). The aim of the ICA model is to estimate both B
and s using a large enough set of observed random vectors. The linear
model presented in (1.4) is based on three main assumptions [52]. The
first one is that the components of s are statistically independent and
they are called independent components (ICs). The second assumption
is that the ICs have nongaussian distributions. Finally, it is assumed
that the mixing matrix is invertible.

Data Preprocessing

Adopting a 2-step preprocessing strategy including centering and whiten-
ing allows an easy implementation of the ICA model. The first step is
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done by removing the mean vector of y from it, which also implies that
s is zero-mean. The aim of performing the second step is to linearly
transform a zero-mean observed vector y into a vector x by a whitening
matrix V such that the elements of x are uncorrelated and have unit
variance. In this way, the effect of the second-order statistics would be
eliminated. Then, the whitening transform is given by

x = V y = V Bs = As (1.5)

where A is the new mixing matrix. An advantage of using a whiten-
ing algorithm is that it makes the mixing matrix orthogonal and less
parameters for its estimation are required [52].

There are several whitening transformations in which PCA is one
of the most popular choices. The whitening matrix is then given by

V = Λ−1/2ΦT . (1.6)

where Φ and Λ are eigenvector and eigenvalue matrices, respectively.
By using PCA, one can also retain only the most important eigen-
vectors of data and by discarding the rest, considerably reduce the
computational complexity of the ICA algorithm.

ICA by Maximization of Nongaussianity

The ICs can be obtained by finding the inverse of the mixing matrix
which is called the unmixing matrix W . Estimating the jth IC is
then equivalent to finding proper approximation of the jth row of W ,
denoted by wT

j , and linearly combining the elements of x by it:

uj = wT
j x =

∑
i

wjixi. (1.7)

An intuitive methodology for estimating the ICA model is to max-
imize the nongaussianity of the ICs. This approach is based on the
relationship between nongaussianity and independence (see chapter 8
of [52]) and can be interpreted by a cornerstone theorem in proba-
bility theory known as the Central Limit Theorem (CLT). The CLT
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says that, subject to certain conditions, the sum of infinite number
of independent and identically distributed random variables, which is
itself a random variable, tends to have a Gaussian distribution. As
a consequence, the sum of multiple independent random variables is
more likely to be Gaussian distributed than each of the variables alone.
Thus, the CLT motivates to find a linear combination of ICs that are
maximally nongaussian.

Negentropy as a Measure of Nongaussianity

Comon [22] proposed to use negentropy J for measuring the distance
to gaussianity of a random vector u. The negentropy approach is based
on the concept of the differential entropy. For a random vector u ∈
RN with probability distribution function (PDF) p(u), the differential
entropy is given by

H(u) = −
∫
p(u) log p(u)du. (1.8)

A well-known proposition of information theory says that a Gaussian
variable has the largest entropy between all random variables of equal
variance. By taking advantage of this property, negentropy is defined
as

J(u) = H(ugauss)−H(u) (1.9)

where ugauss stands for a Gaussian random vector with the same co-
variance matrix as u.

Negentropy is always nonnegative and is equal to zero if and only if
the PDF of u is Gaussian. Therefore, departure of a random variable
from gaussianity can be determined by the quantity of its negentropy.
For the random variable in (1.7), maximizing J(uj) leads to estimation
of one of the ICs. This maximization could be done by utilizing an
accurate approximation of the negentropy [51]:

J(uj) ≈ c{E[G(uj)]− E[G(vj)]}2 (1.10)

where c is a constant, G is a non-quadratic function and vj is a Gaus-
sian variable of zero mean and unit variance.
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1.4 Feature Selection

Since the ultimate goal of constructing a pattern recognition algorithm
is to accurately distinguish samples of different classes, a key issue in
designing a classification system is that the employed features provide
significant discriminatory information. The idea behind some of the
feature extraction methods, however, is to model the whole set of data
regardless of their class labels. Many of efficient feature extraction
approaches (e.g. PCA and ICA) fall into this category and are called
unsupervised methods because they do not consider patterns’ labels
in their algorithms. Moreover, some of the extracted features may be
redundant measures of the patterns, which do not add new informa-
tion to the classification problem, and their existence in the feature
vector could degrade the performance of a classification system due to
overfitting.

Therefore, incorporation of a feature selection approach that takes
the discriminatory information provided by each feature into account
could enhance the performance of a pattern classification system. In
the pattern recognition literature, one can recognize two main groups
of the feature selection methodologies namely filter and wrapper [46].
In the filter methods features are selected independent of the choice of
the classifier and appropriateness of each feature for the classification
task is evaluated by some simple statistics. Wrapper methods, on the
other hand, make use of a classifier to determine the predictive powers
of the features.

In this thesis the P -metric method [55], which is a filter algorithm,
was used to select relevant features:

P (Featurei) =
|µi1 − µi2|
σi1 + σi2

(1.11)

where µi1 and µi2 are respectively the means of the samples belong to
the first and second classes in the subspace of the ith computed feature
and σi1 and σi2 are their corresponding standard deviations. A high
P -metric value for a feature implies that it provides a good separation
between the samples of the two classes.
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1.5 Classification

The classification systems that are used in this thesis can be catego-
rized into two broad groups, namely single and ensemble classifiers.
While the major concern in designing a single classifier is to tune its
parameters for having the best performance, an ensemble classification
methodology employs a group of relatively sub-optimal classifiers and
by fusing their decisions can yield optimal decision [64, 122].

1.5.1 Single Classification Systems

Classic K-Nearest Neighbor

In the classic K-Nearest Neighbor (KNN) method [24], a given test
pattern with unknown label is assigned to the class with largest num-
ber of patterns in a neighborhood of K closest training patterns to this
test sample (Figure 1.2). Several distance metrics can be used to mea-
sure similarity between a test and training patterns in which Euclidean
distance is the most common one.

 

K = 3 

𝑥1 

𝑥2 

K = 7 

Class 1 

Class 2 

Figure 1.2: Example of classifying a test sample (yellow star) with unknown
label in 2-D features space using KNN.
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Distance-Weighted KNN

The Distance-Weighted K-Nearest Neighbor (DWKNN) method [34] is
an extension to the classic KNN approach and is based on the rationale
that a training pattern close to a test sample should have higher weight
compared to another training observation which is at a greater distance
from the test pattern (Figure 1.3). For a given test sample x, the set
of Euclidean distances (d1, . . . , dK) that corresponds to the K-nearest
training samples (x1, . . . , xK) is used to assign a weight wi to the ith
nearest neighbor xi as follow:

wi =

{
dK−di

dK−d1
if dK 6= d1

1 if dK = d1

. (1.12)

In a C-class problem, the weight of class Cj is the sum of all weights
assigned to its samples in the KNN set:

w′Cj
=

∑
xi∈Cj

wi. (1.13)

After normalizing the class weights as,

wCj =
w′Cj∑C
i=1 w

′
Ci

(1.14)

the test sample x is assigned to the class with the greatest weight value.
Note that, DWKNN is equivalent to KNN when K = 1.

Local Mean-Based

The Local Mean-Based (LMB) classification method [82] uses the KNN
training samples of each class for decision making. Let {xi1, . . . , xiD} be
the set of training samples belonging to class ωi and let {xi1, . . . , xiK} be
the subset of K-nearest samples from this class to a given test pattern
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K = 3 

𝑥1 

𝑥2 
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Class 2 

W1 

W2 

W3 

Figure 1.3: Example of classifying a test sample (yellow star) with unknown
label in 2-D features space using DWKNN. A weight value is assigned to each
of the train patterns in the KNN set which is proportional to the inverse of
its distance to the test sample. In this example, w1 > w2 > w3.

x. The local mean vector of class ωi is computed by using the KNN
set:

vi =
1

K

K∑
j=1

xij . (1.15)

In the LMB method, a test sample is assigned to the class with the
closest mean vector (Figure 1.4). It has been shown that the LMB clas-
sification method is robust to outliers and has favorable performance
in classification problems with high dimensionality and small training
sample size [82].

Support Vector Machines

Support Vector Machines (SVM) works based on the idea of the max-
imum margin solution and finds a hyper-plane that has the greatest
distance to the training samples at the boundaries of a binary classifi-
cation problem [12, 117].

Let in a binary classification problem with D training patterns
{x1, . . . , xD}, labels being taken from the set {−1, 1} where ωi = 1
and ωi = −1 show that xi belongs to class 1 or class 2, respectively.
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K = 3 

𝑥1 

𝑥2 

Class 1 

Class 2 

d1 

d2 

Figure 1.4: Example of classifying a test sample (yellow star) with unknown
label in 2-D features space using LMB. Based on the distances between the
test sample and local means of the classes with K = 3, the test sample is
assigned to class 1 (d1 < d2).

Suppose there is a hyperplane that separates samples of the two classes
(Figure 1.5). A set of patterns x that lie on the hyperplane satisfies:

w.x + b = 0 (1.16)

where w is normal to the hyperplane, ‖w‖ is the Euclidean norm of w
and |b|/‖w‖ is the perpendicular distance from the hyperplane to the
origin [12].

When the classes are linearly separable, the SVM algorithm looks
for two hyperplanes with largest distance (margin) between them.
These hyperplanes can be formulated as,

xi.w + b ≥ +1 for ωi = +1 (1.17)

xi.w + b ≤ −1 for ωi = −1 (1.18)

which can be combined and rewritten as,

ωi(xi.w + b)− 1 ≥ 0 ∀i. (1.19)
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Figure 1.5: Separating hyperplanes in a linear classification problem com-
puted by SVM. The support vectors are circled.

The SVM optimization problem can then be presented as,


arg min

(w,b)
‖w‖

subject to

ωi(xi.w + b)− 1 ≥ 0 ∀i

(1.20)

which gives the maximum perpendicular distance between the decision
hyperplane and the closest point from the training set. The term ‖w‖
in (1.20), which involves a square root and is difficult to solve, can be
substituted by 1

2‖w‖
2 to form a quadratic programming optimization

problem. The above optimization problem can be solved by making
use of Lagrange multipliers αi, one multiplier for every constraint in
(1.20), by the following Lagrangian function:

L =
1

2
‖w‖2 −

D∑
i=1

αi{ωi(xi.w + b)− 1}. (1.21)

Note that the SVM algorithm can also be used for solving non-
linear classification problems by taking advantage of the kernel trick
[117].
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1.5.2 Ensemble Classification Systems

When a classification problem is too difficult for a single classification
system to solve, which could be due to considerable overlap of the
different classes’ samples, complex decision boundaries or too little
data to train the classifier, combining the outputs of some sub-optimal
classifiers that complement their decision boundaries has been proven
to be an efficient approach to get high classification result [64, 93, 122].

Diversity of the single classifiers that are used for building an en-
semble system is the keystone to the success of the combined algorithm
[65, 93]. It means that the single classifiers make different errors on
different patterns and each of them is expert in classifying patterns
belong to a sub-region of the feature space.

There are three main strategies for building an ensemble classifi-
cation system with diverse single classifiers [93]. The first strategy
uses different subsets of the training patterns for building the single
classifiers. An example of such ensemble system is bagging [11] where
the subsets of the training patterns are obtained in a ‘random sampling
with replacement’ procedure. The second strategy to have diverse clas-
sifiers is to use different classification methodologies (e.g. KNN, SVM,
neural network) or the same type of classifiers with different sets of
training parameters. Finally, the third strategy to encourage diversity
in a combined classification system is to use feature sets of different
natures or different subsets of a given feature space for building the
single classifiers.

The last mentioned strategy is the basis for constructing ensemble
classification systems in this thesis. To shed light on the process of di-
versifying the single classifiers using this strategy, an example is shown
in Figure 1.6. The figure can be interpreted in two ways according to
the approaches used for building the ensemble system.

In the first scenario, Figures 1.6 (a), (b) and (c) can be seen as the
results of three different feature extraction methods in a 4-class pattern
recognition problem where each color represents the area occupied by
one of the classes in the feature space. In each of Figures (a) and (b),
a pair of classes are well-separated from each other which means that a
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Figure 1.6: A 4-class pattern recognition problem where each color represents
one of the classes [89]. Figures (a)-(c) can be seen as the results of different
feature extraction approaches or sub-spaces taken from Figure (d).

classifier that is trained on this feature space can easily learn a decision
boundary for categorizing samples belong to these two classes. How-
ever, the overlap between the samples of the other pair of the classes in
each feature space is considerable and the classifier cannot yield high
classification accuracy. Combining the outputs of these two classifiers
may not improve the performance of each of them because when the
first classifier makes a correct decision for the samples of one the class
pairs, the second classifier can generate an uncertain or even wrong
decision for the samples of the same pair of classes. In this situation,
adding another classifier that is trained on a feature space like Figure
1.6 (c) to the ensemble system can complement the single classifiers’
performances. Although the third classifier has a lower performance in
categorizing the two pairs of classes compared to the first and second
classifiers, it has a decent performance in categorizing samples of all
classes. Therefore, one can expect that the outcome of combining these
three classifiers would be satisfactory.

In the second scenario and from a different point of view, the fea-
ture spaces in Figures 1.6 (a), (b) and (c) can be considered as the
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sub-spaces created from a higher-dimensional feature space shown in
Figure 1.6 (d). In this case, the high overlap between the classes in the
original feature space, which can be due to noisy data or some other
measurements that can be irrelevant to the classification task, could be
decreased by generating sub-spaces of lower dimension. In addition to
improve class separability, this sub-space generation method has the
important advantage of reducing the risk of overfitting which could
happen when a feature space has a very high dimension and there is
not a large set of data to properly train a classifier [9].

Diversity Measures

A group of measures have been defined to quantify diversity of a set
of single classifiers in an ensemble system. These measures can be
divided into two main groups namely pairwise and non-pairwise based
on the number of classifiers that are employed in the measurement
phase [65]. While a pairwise measure is designed for two classifiers, a
non-pairwise approach takes the diversity of the whole ensemble system
into account. In this thesis, a non-pairwise diversity measure called
interrater agreement κ is used.

Let P = {P1, ..., PQ} be a system ofQ classifiers and let {x1, . . . , xD}
be a set of data containing D labeled patterns. Let Oi = [Oi1, ..., OiQ]
be the joint output of the ensemble system for the ith input sample
where Oij denotes the output of the j th single classifier and it is de-
fined to be 1 if Pj categorizes xi correctly and 0, otherwise. Let q(xi)
denotes the number of classifiers from P that correctly categorize the
input sample xi expressed by

q(xi) =

Q∑
j=1

Oij . (1.22)

Denote by

rj =
1

D

D∑
i=1

Oij (1.23)
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the classification rate of the j th classifier, the average classification
accuracy of the ensemble system is defined by

r =
1

Q

Q∑
j=1

rj . (1.24)

Using the notation presented above, the κ measure of diversity is given
by

κ = 1−
∑D

i=1 q(xi)(Q− q(xi))
DQ(Q− 1)r(1− r)

(1.25)

where κ = 0 indicates that the single classifiers are independent. Small
values of κ leads to better diversity and a negative κ shows negative
dependency (high diversity) among the classifiers [65].

Classifier Combination

After training a set of diverse classifiers, a strategy should be adopted
to combine their outputs to have the final decision of the ensemble sys-
tem. One possible categorization of the existing combining approaches
is: class label combination vs. combining the continuous outputs [93].
In the first combination approach, a combination rule is applied to
the class labels generated by the individual classifiers for a given test
pattern. A widely used technique of this family of combination rules,
which is employed in this thesis, is majority voting. In this technique,
the number of votes (i.e. output labels) in favor of each class is counted
and the test pattern is then simply assigned to the class that could
achieve the highest vote.

In the second combination methodology, the output of an individual
classifier for a given class is interpreted as the degree of support or
an approximation of the posterior probability provided for that class.
Algebraic rules are popular members of this family of combination
techniques where a linear function ξ(.) is used to merge the individual
classifiers’ outputs. Let for an ensemble system with Q classifiers,

ϑj(xi) = ξ({o1j(xi), . . . , oQj(xi)}) (1.26)
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denote the result of applying the combination function to the jth out-
put of the single classifiers corresponding to class ωj for a given test
pattern xi. The common algebraic rules that work as the linear com-
bination functions are sum, product, minimum, maximum and median
rules [64, 93]. In this thesis the sum and product rules are used for
classifier combination which can be presented respectively as,

ϑj(xi) =
1

Q

Q∑
i=1

oij(xi), (1.27)

ϑj(xi) =
1

Q

Q∏
i=1

oij(xi). (1.28)

In Chapter 3, another type of combination rule that is applied to
continuous outputs is used. It is called Dempster’s rule of combina-
tion [27] and is appropriate for dealing with problems which include
uncertain information. Details of this combination rule along with the
motivation for using it in a CAD problem is described in Chapter 3.

1.6 Performance Evaluation

It is common that the performance of a CAD system, which is employed
to solve a binary classification problem, is evaluated through some
statistical measures. These measures are accuracy (ACC), sensitivity
(SE) and specificity (SP) and are defined as


ACC = TP+TN

TP+TN+FP+FN

SE = TP
TP+FN

SP = TN
TN+FP

(1.29)

where
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• True positive (TP): number of pathological patterns correctly
classified as abnormal.

• True negative (TN ): number of healthy patterns correctly clas-
sified as normal.

• False positive (FP): number of healthy patterns incorrectly clas-
sified as abnormal.

• False negative (FN ): number of pathological patterns incorrectly
classified as normal.

1.7 Ultrasound-Based CAD

The CAD algorithms presented in this thesis are based on ultrasound
imaging [107]. This imaging modality has a broad range of usage in
medical applications because it is a safe device which does not use
harmful ionizing radiations, it provides clinicians with real-time im-
ages, it is portable and relatively cheap. However, the main disadvan-
tage of the ultrasound images is their limited resolution and low signal
to noise ratio (SNR) which can limit the usage of some image pro-
cessing algorithms for quality enhancement. Another drawback of the
ultrasound images is that their quality or relevance is dependent on the
operator’s skill. Table 1.1 summarizes the specifications of ultrasound
as well three other widely-used image modalities.

1.8 Outline of the Thesis

The thesis is divided into two main parts. Part I is concerned with:

1. Designing a new CAD system for prostate cancer biopsy by fo-
cusing on handling uncertainties in labels of the ground truth
data.

2. Using ICA for learning features from radiofrequency (RF) signals
backscattered from prostate tissues.
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Table 1.1: Comparison of the specifications of the different imaging modali-
ties [107].

Modality Ultrasound X-ray CT MRI

What is imaged Mechanical properties Mean tissue absorption Tissue absorption Biochemistry (T1 and T2)
Access Small windows adequate 2 sides needed Circumferential around body Circumferential around body
Spatial Resolution Frequency and axially dependent 0.3− 3mm ≈ 1mm ≈ 1mm
Penetration Frequency dependent 3− 25cm Excellent Excellent Excellent
Safety Very Good Ionizing radiation Ionizing radiation Very Good
Speed 100 frames/sec Minutes 0.5 minute to minutes 10 frames/sec
Cost Low Low High Very High
Portability Excellent Good Poor Poor

3. Proposing a new ensemble scheme for learning ICA dictionaries
from RF signals backscattered from a tissue mimicking phantom.

In Chapter 2, prostate anatomy is briefly described and the proce-
dures of prostate cancer diagnosis and computer-aided prostate biopsy
based on ultrasound are reviewed.

The proposed method for dealing with uncertainties pertaining la-
bels of the data in computer-aided biopsy of the prostate is presented
in Chapter 3. The label uncertainties are tackled in the framework of
the theory of evidence and the size of the training data is increased
by assigning soft labels to the group of biopsy samples with uncertain
labels and including them in the training phase of the classifier.

The idea of using ICA for learning features from medical RF signals
is presented in Chapter 4. It is demonstrated that ICA features can
provide better classification results on the prostate biopsy samples than
the traditional methods devised for extracting features from the RF
signals. Furthermore, an ensemble scheme for learning ICA dictionaries
from the RF signals is also proposed in this chapter.

In Part II of this thesis, the issue of detecting myocardial infarction
(MI) is addressed as outlined below:

1. Statistical modeling of the temporal deformation patterns of the
left ventricle (LV) to detect abnormalities in its regional function.



Chapter 1. Introduction 29

2. Statistical modeling of the spatio-temporal patterns of LV func-
tion for detecting MI.

3. Statistical modeling of the LV shapes for detecting MI.

In Chapter 5, heart anatomy and the cardiac cycle are briefly de-
scribed; principles of myocardial deformation estimation are concisely
reviewed and the main myocardial deformation imaging techniques are
introduced.

Chapter 6 introduces an automatic method for detecting abnormal-
ities in regional myocardial deformation. The CAD system uses PCA
to model the whole temporal profile of the strain (rate) curves. The
obtained classification results show that the PCA-derived features can
provide better description of the deformation traces compared to the
common traditional techno-markers.

In Chapter 7, the method presented in Chapter 6 is moved one step
further and PCA is used to provide a spatio-temporal representation
of the LV deformation. It is demonstrated that the proposed represen-
tation is more efficient than the widely-used traditional features and it
is able to provide better results than an expert cardiologist.

A PCA-based statistical shape model for the LV is presented in
Chapter 8. The LV shapes are divided into non-overlapping segments
and independent PCA models are built on them. From each model, a
small subset of PCs that provides relevant discriminatory information
is selected in a feature selection phase. The selected features are then
connected together to form a global representation of the LV shape.
Experimental results show that the proposed local-to-global shape vec-
tor can better differentiate normal LV shapes from the infarcted ones as
compared to a shape vector derived by modeling the global LV shapes
with PCA. It is also demonstrated that there are direct links between
some of the first selected modes of variation of the global PCA model
and patho-physiology of MI.

Finally, Chapter 9 summarizes the thesis, draws a general conclu-
sion and outlines some perspectives for future research.
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Figure 2.1: Prostate anatomy. [26].

2.1 Prostate Anatomy

The prostate is a chestnut shaped gland located between the pelvic
bones, below the bladder and in front of the rectum. This relatively
small organ, which has the average weight of 11 grams for healthy
adults, is part of the male reproductive system.

The prostate gland is divided into base, mid an apex where apex
refers to the upper part of the prostate close to the bladder. Based
on the work of McNeal [80], it can also be partitioned into three zones
namely the transition zone (TZ), the central zone (CZ) and the periph-
eral zone (PZ) (Figure 2.1). Two ejaculatory ducts and the urethra,
which respectively come from the seminal vesicles and the bladder,
pass through the prostate gland.

The TZ zone encompasses the proximal urethra, contains around
5% of the prostate tissue and approximately 10-20% of the cancers
originate in this zone [81]. The CZ surrounds the ejaculatory ducts at
the base of the prostate, comprises about 25% of the prostate tissue
but only 2.5% of the prostatic cancers originate in this portion of the
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gland [81]. Finally, the PZ surrounds up to 70 % of the prostate gland,
comprises the posterior and lateral sides of the prostate and accounts
for roughly 70-80% of prostate cancers [81].

2.2 Prostate Cancer Diagnostic Procedure

Prostate Cancer (PCa) is the most common cancer type among men
and remains the second leading cause of death in men due to cancer.
PCa can be diagnosed in its early stages with the use of a screening
process. Figure 2.2 represents the current diagnostic procedure for
PCa.

A blood test called prostate specific antigen (PSA) is usually the
first step in the PCa screening procedure. PSA is a glycoprotein en-
zyme which is secreted by the epithelial cells of the prostate gland. The
PSA test, measures the concentration of this enzyme in the blood. The
PSA level in men with healthy prostates is low but is often increased
due to PCa or other prostate abnormalities [15]. When the PSA level is
increased to 3-4 nanograms per milliliter (ng/mL), patients are referred
for further examination.

Another common diagnostic procedure to detect PCa is digital rec-
tal examination (DRE). To do DRE, the physician inserts a lubricated,
gloved finger into the rectum to inspect the prostate surface. Since a
healthy prostate consists of soft and smooth tissue, a firm or stony
feeling of the tissue is a sign of malignant prostate.

If the results of the PSA and/or DRE examinations provide some
evidence of malignancy, usually a trans-rectal ultrasound (TRUS) guided
biopsy is performed where ultrasound imaging is used to guide and
monitor the biopsy needle in the different zones of the prostate gland.
TRUS biopsy protocols are normally based on systematic sampling of
those prostate zones that are more suspected of being cancerous.

As shown in Figure 2.2, the last stage of the diagnostic procedure
is histopathologic analysis of the prostate tissue samples. In this stage,
a pathologist evaluates the specimens and in the case of observing
cancerous cells based on their microscopic appearance, a Gleason score
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Figure 2.2: Prostate cancer diagnosis procedure. TRUS biopsy is normally
performed if the results of the PSA and/or DRE examinations provide some
evidence of malignancy.

[45] ranging from one to five is assigned to a sample where higher scores
are associated to more aggressive cancers.

2.3 TRUS-Based Computer-Aided Biopsy

Performing a TRUS guided biopsy is traditionally based on a sampling
protocol. The sextant protocol [50] is the first proposed sampling tech-
nique which involves six biopsies taken from the base, mid and apex
of the prostate. A drawback of this technique, however, is that it
under-samples the PZ and can miss some tumors there. Therefore,
some modified sextant protocols were proposed to enhance diagnostic
accuracy [94].

Prostate biopsy, however, is a an invasive process which can result
in side-effects like bleeding, discomfort, urinary retention and infection
[21] and in case of repeated or systematic sampling protocols involving
many cores, complications could be more common.

As an alternative to the traditional biopsy protocols, a computer-
aided biopsy (CAB) technique can be used to enhance the accuracy
of the tissue sampling procedure. The idea is to provide physicians
with a risk map superimposed to the B-mode image (Figure 2.3) in
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Figure 2.3: Implementation of a CAB of prostate using TRUS technique.
RF or B-mode images are processed to detect risky regions in the prostate
gland. The suspicious regions are then highlighted in the B-mode image to
guide physician towards insertion of biopsy needle.

order to guide the biopsy needle into the suspicious regions. In this
way, a lesion directed biopsy can be performed and the number of
unnecessary biopsy cores can be decreased. To create the risk map, a
machine learning algorithm could be trained with a set of labeled RF
or B-mode images. Labels of the images are assigned to them by an
expert physician as part of the histopathologic analysis of the prostate
tissue samples.

In order to improve the accuracy of the biopsy procedure, ultra-
sound images can also be merged with the MR images to create the
risk map [76]. In this way, the biopsy protocol takes advantage of both
the detailed MR images and real-time ultrasound guidance.



Chapter 3

Soft-label Reinforced
real-time CAB for
Guided Prostate Tissue
Sampling

This chapter is based on a paper published in IEEE Int. Ultrason. Symp. 2013, M.

Tabassian, F. Galluzzo, L. De Marchi, N. Speciale, G. Masetti, and N. Testoni,

“Soft-label reinforced rtCAB for guided prostate tissue sampling”, pp. 880–883.



38 Abstract

3.1 Abstract

In this study a real-time computer-aided biopsy (rtCAB) system is
presented to support prostate cancer diagnosis. Different types of fea-
tures are extracted from trans-rectal ultrasound data and an ensemble
learning algorithm is used in the classification phase. A new label
assignment method is also employed to provide soft or crisp class la-
bels for unlabeled data. The proposed model can be implemented in a
parallel fashion in order to provide real-time support to physicians dur-
ing biopsy. Experiments on ground truth images from biopsy findings
demonstrate that the proposed approach can properly deal with unla-
beled data and is able to provide better results than some examined
supervised and semi-supervised classifiers.

3.2 Introduction

PCa is the second most frequent neoplasy in men, with almost one mil-
lion new cases/year worldwide. Since PCa is not clearly detectable with
standard, non-invasive diagnostic methods, TRUS guided prostate biopsy
is mandatory. The procedure consists in a systematic tissue sampling
by means of a surgical needle [94]. As patient discomfort and adverse
event probability grow with each extracted sample, it is desirable to
employ a CAB system to reduce the number of biopsy samples without
negative impinging on diagnostic accuracy.

Satisfactory performance of such a system is highly dependent on
proper features extracted from the data. Like other medical applica-
tions, the success of a CAB system depends on correct labels assigned
to the data by domain experts. These systems may suffer from the
uncertainty in the labels of the ground truth data due to the unknown
tumor distribution in each bioptic sample. It is also important to select
a suitable algorithm for learning characteristics of the data.

The mentioned above issues are considered in the current work
to enhance the performance of a real-time computer-aided biopsy (rt-
CAB) system proposed in [112]. This system has been designed to
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Figure 3.1: Architecture of the proposed ensemble classification system.

guide tissue sampling to areas with the highest probability of PCa
and to provide real-time assistance to the physician during biopsy by
implementation with the CUDA parallel processing platform. Since
the effectiveness of using different types of features extracted from the
TRUS data has been shown in several studies [74, 98], in this research
features of different natures are employed in the structure of an ensem-
ble classification model and partial labels assigned to some of the data
are reconsidered by a label assignment phase. The label assignment
method provides soft or crisp class labels for patterns with uncertain
labels and in this way the size of the training set can be enlarged.

3.3 The Proposed Method

In this study, an ensemble algorithm is proposed to classify the TRUS
data. For a large percentage of the data, the knowledge about the
tumor volume of each tissue sample (core) provided by the physician
is not enough to assign with certainty a given region of interest (ROI)
of the core to a healthy or an unhealthy class. Therefore, a label
assignment phase is employed to provide crisp or soft labels for the
ROIs belonging to these cores. Steps of implementing the proposed
method are shown in Figure 3.1 and each phase is described below.
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3.3.1 Generating a Feature Space Pool

Inspired by the Random Subspace Method (RSM) [63], a pool of feature
spaces is built to construct an ensemble network. Given a data set of
random vectors X = {x1, . . . , xD} where xn ∈ RN , different subsets
of features of size M < N are randomly sampled from the original
feature space with replacement and multiple classifiers are constructed
in the low-dimensional feature spaces. Note that this strategy falls into
the third category mentioned in section 1.5.2 for creating an ensemble
system.

3.3.2 Classifier/Feature Space Selection

By training a classifier on each of the feature spaces generated by
random sampling, a pool of classifiers will be obtained. One of the
necessary conditions for the success of the proposed method, as well as
other ensemble networks, is the appropriate choice of the base classi-
fiers. In order to choose an optimal subset of the base classifiers from
the classifier pool, the forward search [46] algorithm, known as the
most intuitive greedy approach, is used to explore the classifier pool
and the majority voting error [96] is incorporated to assess the quality
of the selected classifiers. The forward search algorithm starts with
the most accurate classifier. In a sequential manner and by examining
the performance of the ensemble networks made by the first classifier
and any of the remaining classifiers, a classifier that leads to the best
value based on the majority voting error criterion is selected as the
second classifier. This process is repeated and finally a subset of the
best classifiers is chosen.

3.3.3 Label Assignment

In order to assign labels to the uncertain data in each of the se-
lected feature spaces the approach proposed in [109] is employed. Let
Ω = {ω1, . . . , ωC} be a set of C classes and xi be an unlabeled pattern
described by N features. Let P be a C ×N matrix containing proto-
type vectors of the main classes and let DTi = {di1, . . . , diC} be the
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set of distances between an unlabeled sample xi and the C prototypes
according to some distance measure. Label assignment for xi is per-
formed in a 3-step procedure:

Step 1 : The minimum distance between xi and the class prototypes is
taken from the vector DTi,

dmin = min(dil) l = 1, . . . , C. (3.1)

Step 2 : A value 0 < µ < 1 is calculated for each of the C classes using
the following function:

µl(xi) =
dmin + β

dil + β
, l = 1, . . . , C (3.2)

where 0 < β < 1 is a small constant value that ensures the utilized
function allocates a value greater than zero to each of the C classes
even if dmin = 0.

Step 3 : A value 0 < τ < 1 is defined and based on the level of ambi-
guity regarding the class membership of the unlabeled sample xi, this
sample could be assigned to a set of classes (soft labeling) or just one
main class (crisp labeling).

In this method, close distances between a given pattern and the
class prototypes is considered as an indication of ambiguity in the
patterns label and in such cases a soft label is assigned to it. This way
of assigning labels to the uncertain data has the following advantages
over the classic semi-supervised methods:

• the procedure of label assignment is very fast and is performed
in one step,

• when there is a huge amount of uncertainty concerning the class
membership of an unlabeled sample, instead of removing it from
the set of added samples or accepting it with a high level of label
uncertainty, this sample is included in the set of training data
with a soft label.
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3.3.4 Choice of the Classifier

It is highly probable that after adding the unlabeled data to the train-
ing set, the classes do not have equal number of training patterns. The
LMB method [82], is used as base classifier in the structure of the pro-
posed ensemble scheme to face this problem. In this method, for a
given test sample xi the mean vector of class ωj is computed using the
K nearest training samples of this class to xi. The test sample is then
assigned to the class with the closest mean vector. By using the LMB
method an equal number of samples from the classes are employed for
computing the mean vectors and in this way the classification algo-
rithm can deal with the unbalanced data more appropriately.

Because in the proposed ensemble system continuous (probabilistic)
outputs of the classifiers are required, distances between a given sample
xi and the mean vectors of the classes are transferred to probability
values as follows:

Prj =
1/dij

C∑
j=1

1/dij

(3.3)

where Prj is proportional to the inverse distance between the pattern
and ωj and the term in the denominator is used to normalize the
probability values.

The LMB approach is also used in the label assignment phase of the
proposed method for computing the prototype vectors of the classes.
An example of label assignment using the LMB method is illustrated
in Figure 3.2.

3.3.5 Label Set Selection

In the label assignment phase, K×τ different sets of labels are assigned
to the unlabeled data in each of the selected feature spaces where K is
the number of nearest samples taken from each of the main classes for
computing its prototype. In a 2-step filtering phase, a subset of these
label sets are selected.
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Figure 3.2: An example of the label assignment procedure using the LMB
method with K = 2 [109]. (a) Training samples before label assignment, (b)
computed class prototypes for samples x1 and x2, (c) training samples after
label assignment. Since x1 is closer to samples of ω2 than those of ω1 it is
assigned to the second class. On the other hand, x2 is close the borders of the
classes and as a consequence, a soft label comprising both classes is assigned
to this pattern.

In the first step, a threshold value TH is used to select only those
label sets with the percentage of soft labels less than or equal to TH.
Using this technique, the label sets that have a large number of soft
labels and could not provide enough discriminatory information are dis-
carded. In the second step, a label set selection algorithm is adopted to
choose only one set of the labels for each selected feature space. Here,
the forward search is used to explore among the classifiers. The perfor-
mances of the classifiers are then considered as the label set selection
criterion.

3.3.6 Classifier Fusion

Since soft (i.e. uncertain) class labels are assigned to some of the
unlabeled data, the Dempster-Shafer (D-S) theory of evidence [27],
which is a well-suited framework for reasoning with partial information,
is used for classifier fusion and decision-making. The basic concepts of
the D-S framework are reviewed below.

Let Ω = {ω1, . . . , ωC} be a finite set of mutually exclusive and
exhaustive hypotheses called the frame of discernment. A basic belief
assignment (BBA) or mass function is a function m : (2Ω) → [0, 1]
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which satisfies the following conditions:

m(∅) = 0 (3.4)

∑
A⊆Ω

m(A) = 1 (3.5)

where ∅ is the empty set and a BBA that satisfies the condition (3.4)
is called normal. The subsets A of Ω with non-zero masses are called
the focal elements of m and m(A) indicates the degree of belief that is
assigned to the exact set of A and not to any of its subsets.

There are also two other definitions in the theory of evidence. They
are belief and plausibility functions associated with a BBA and are
defined respectively, as follow:

Bel(A) =
∑
B⊆A

m(B) (3.6)

Pl(A) =
∑

A∩B 6=∅

m(B). (3.7)

Bel(A) represents the total amount of probability that is allocated to
A, while Pl(A) can be interpreted as the maximum amount of support
that could be given to A.

Let m1 and m2 be two BBAs induced by two independent items of
evidence. These pieces of evidence can be combined using Dempster’s
rule of combination which is defined as:

m(H) =

∑
A∩B=H

m1(A)×m2(B)

1−
∑

A∩B=∅
m1(A)×m2(B)

· (3.8)

After combining all pieces of evidence, a decision has to be made us-
ing the final belief structure. In this study, the pignistic transformation
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[103] is used to drive probability functions from the belief functions.
By uniformly distributing the mass of belief m(A) among its elements
for all A ⊆ Ω, a pignistic probability distribution is defined as:

BetP (ω) =
∑

{A⊆Ω,ω∈A}

1

|A|
· m(A)

1−m(∅)
, ∀ω ∈ Ω (3.9)

where |A| is the cardinality of subset A.

3.4 Experiments and Results

3.4.1 Ground Truth Data

We used a data set of TRUS video-sequences [112] collected in col-
laboration with the Department of Urology of S. Orsola Hospital in
Bologna, Italy. The data set consisted of 2042 video sequences of 124
healthy and 84 unhealthy patients. RF echo signals were recorded us-
ing a TECHNOS (Esaote s.p.a.) ultrasonographer equipped with a
trans-rectal probe EC123 employed with the maximum frequency of
7.5MHz and combined with a hardware and software platform for ul-
trasound signal acquisition [97]. Interested readers are referred to [40]
for more details about signal acquisition and data preparation.

Tumor percentages of the cores, provided by an expert physician as
part of the histopathological analysis, were used for categorizing them
into labeled and unlabeled. We considered cores with tumor percent-
ages greater than 90% as unhealthy class, benign cores as healthy class
and ROIs belonging to cores with tumor percentages less than 90% as
unlabeled data. The number of ROIs for the healthy class was 420
and an equal number of ROIs was selected for the unhealthy class. We
used 2000 ROIs as unlabeled data in our experiments. The testing set
was composed of 40% of the labeled data and the experiments were
carried out using a 10-fold cross validation technique.
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3.4.2 Experimental Settings

The original feature space was composed of 12 features including nine
Unser features [116], one feature from the Nakagami distribution [102]
and two features derived from the Von Mises distribution [75]. Sub-
spaces of size five to nine were generated from the original feature
space and based on the performances of the selected classifiers on the
validation data, 7-dimensional subspaces were used in the proposed
method. Size of the feature space pool was fixed at 50 and 11 feature
spaces were selected to be used in the proposed ensemble model. In the
label assignment phase, 10 values of K and 14 different τ were respec-
tively examined from the sets (1, 2, . . . , 10) and (0.3, 0.35, . . . , 0.95).
The value of TH in the label set selection phase was fixed to 55%.

3.4.3 Performance Comparison

Performance of the proposed method was compared to four single clas-
sifiers trained on the original 12-D feature space:

• A classifier based on the generalized discriminant analysis (GDA)
[4] and Fisher linear discriminant [9] (FLD) which was also used
in [112],

• SVM with RBF kernel,

• Multilayer perceptron (MLP) neural network and,

• The LMB method.

The MLP neural network was trained 10 times with random initializa-
tions by the Levenberg-Marquardt algorithm. It used default parame-
ters, 15 epochs of training and had one hidden layer.

We also compared our method with two ensemble models. The first
one was a supervised scheme that employed the same classifiers as those
used in our system. It only trained on the labeled data and used the
majority voting method for combining the outputs of its classifiers. The
second one was a semi-supervised ensemble method named RASCO
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Table 3.1: Average Classification Results (%) of the employed single and
ensemble classification systems for different percentages of the training data.

Percentage of the Training Data
10 20 30 40 50

Single Classifiers
GDA+FLD 56.93 59.79 59.05 59.79 59.46
SVM 56.43 57.53 58.63 59.52 59.82
MLP 54.81 55.78 56.35 57 58.11
LMB 56.13 56.34 57.26 58 58.06
Ensemble Classifiers
RSM with the Selected Classifiers 57.44 58.15 59 59.76 60.21
RASCO (11 Classifiers) 58.15 58.21 58.18 58.30 58.33
RASCO (12 Classifiers) 57.53 58.36 58.27 58.27 58.27
The Proposed Method 58.27 58.45 60.18 60.03 60.89

[60] which used also the unlabeled data in its training phase. This
method is based on the RSM and employs the well-known Co-training
algorithm [10].

3.4.4 Results and Discussion

Average classification results of the employed classification methods for
different sizes of the training data are listed in Table 3.1. The range
of examined KNNs for the classifiers based on LMB was {1, 2, . . . , 20}
and the best test results of the classifiers are shown.

Clearly the overall performance of the proposed method is better
than other listed classifiers and it is able to provide higher classification
results than GDA+FLD which was used in the initial structure of the
rtCAB system [112].

It can be seen that the first ensemble system in Table 3.1 (RSM with
the selected classifiers) could enhance the performances of the single
classifiers in most cases. It means that the employed subspaces and
their corresponding classifiers complement each other. Incorporation
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of these subspaces and also taking the uncertainty of the patterns’
labels into account, enabled the proposed method to deal with the
classification problem efficiently.

By comparing the performance of the proposed method with that
of RASCO as a semi-supervised approach, it can be concluded that
utilizing the proposed label assignment method and decision-making
in the D-S framework is a proper way for handling uncertainties of the
data labels.

3.5 Conclusion

In this study, a method for enhancing the performance of the rtCAB
system presented in [112] is proposed by considering uncertainties in
the labels of the ground truth data. Labels of the data were assigned
by an expert physician, providing tissue description and illness per-
centage for each core but these partial labels could not be employed
for learning a supervised classifier system. By making use of a label
assignment phase, soft or crisp class labels were assigned to the unla-
beled patterns. In this way, size of the training data was increased and
collected data wasting avoided. Features of different nature were ex-
tracted from the TRUS data and an ensemble classification system was
constructed by exploiting diverse subsets of them. The D-S theory of
evidence was used to manipulate the accepted uncertainties in the data
and to aggregate decisions of the base classifiers. The proposed method
could be implemented using the CUDA parallel processing platform to
provide an on-line support for physician during biopsy.
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4.1 Abstract

This study proposes to learn features from medical radiofrequency
(RF) ultrasonic signals by ICA. The reason for adopting ICA as a dic-
tionary learning method is that such a data-driven technique is able to
bring the important advantage of high generalization power over the
conventional methods tailored for extracting features from the medi-
cal RF signals. While the conventional feature extractors suffer from
their limiting assumptions about the complex interaction between ul-
trasound wave and tissue, ICA can learn higher-order statistical struc-
tures of a set of RF signals from the data set itself.

A new ensemble scheme based on the ICA dictionaries is also pro-
posed for the classification of the RF signals. The main idea is to
learn several dictionaries of features from the RF signals by ICA and
employ a subset of them, that provides complementary descriptions of
the data, in the structure of an ensemble classification system.

Experiments on clinical and a tissue mimicking phantom data demon-
strate the superiority of ICA as compared to the conventional tech-
niques designed for extracting features from RF echo signals. It is
also demonstrated that the proposed ensemble ICA scheme is able to
enhance the performance of the classic ICA model and a recently pro-
posed ensemble ICA model.

4.2 Introduction

Medical ultrasound has a broad utility in examining tissue structures.
This is because of the advantages of ultrasonic over other imaging
modalities including patient safety, real-time performance, portability
and economic cost of equipment. The success of the ultrasound-based
clinical tools in characterizing tissue properties is heavily dependent on
suitable features extracted from echo signals. The conventional meth-
ods tailored for extracting features from the backscattered echos are
based on some presumptions about the interaction between ultrasonic
waves and tissue. However, this interaction is very complex and there
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are also other sources of complication introduced by instrument set-
tings and signal acquisition conditions. Therefore, the conventional
methods may fail to capture essential parameters of the backscattered
signals.

An alternative approach for computing features from the ultra-
sound echos is to use feature learning strategies [1, 49, 52] which have
attracted the interests of many researchers recently. The idea behind
these methods is that for extracting appropriate features from a set of
data, the data set itself can be incorporated into a learning scheme.
This new family of feature extractors includes techniques that make
few general assumptions about the data and exploit their higher-order
statistical structures with unsupervised learning strategies. The goal
of the learning phase is to find an efficient representation of the data
by making use of a dictionary of basis functions and a weight vector.

In the literature of medical ultrasound, there are a few works that
employed feature learning algorithms for tissue characterization. In
[32], Independent Component Analysis (ICA) was used for extract-
ing features from B-mode images and it was shown that this learn-
ing approach can outperform traditional feature extraction methods
in characterizing numerical simulated tissues. The application of the
texton-based feature learning technique [118] for the evaluation of can-
cer treatment effects was presented in [41]. A quantitative ultrasound
spectral parametric map was built using the signals acquired from an-
imal tumors and it was shown that the learned features from this map
enable the classifier to provide very good discrimination between pre-
and post-treatment states.

In this study, the ICA-derived features are used for the classifica-
tion of medical radiofrequency (RF) ultrasonic signals. A new ensem-
ble scheme based on ICA dictionaries is also proposed to improve the
performance of the classic ICA method. Although advantages of the
features learned by ICA have been proven in different research areas
including medical and brain imaging [13, 32], computer vision [3] and
speech recognition [66], finding a set of efficient ICA parameters is
known to be a challenging task. The proposed ensemble system seeks
to collect such an efficient set of parameters that can properly model
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the data. It is also designed to provide favorable classification results
using the learned ICA parameters where it has been demonstrated
that by using ensemble classification frameworks, considerable perfor-
mance improvements on the single classifier models can be achieved
[64, 67]. One of the favorable properties of an ensemble scheme is that
it allows to use multiple feature spaces in its structure. This advan-
tage motivated us to incorporate a set of ICA dictionaries that provide
complementary descriptions of the RF signals into an ensemble clas-
sification framework. Experimental results verified that the proposed
ensemble model is able to outperform a single classifier that uses only
one ICA dictionary to categorize the RF signals. Note that, the rea-
son for learning features from the RF echos rather than from B-mode
images is the richer information content of these signals.

4.3 Conventional Feature Extractors

The conventional methods proposed for extracting features from med-
ical RF echos can be divided into four main categories:

4.3.1 Spectral

These methods are based on the idea that frequency-dependent prop-
erties of tissue-scatterers can be estimated by studying the spectrum
of the backscattered RF echos. The extracted parameters from the
spectrum convey valuable information regarding changes in tissue mi-
crostructure and can be used by a classifier to categorize normal and
diseased tissues.

Lizzi et al. [70–72] proposed a well-established method for analyz-
ing the relation between spectral parameters and attributes of tissue
microstructure. First, an average power spectrum of the RF backscat-
tered signals inside a ROI is computed. This spectrum is then cali-
brated to eliminate undesirable system effects. The authors realized
that the obtained spectra usually exhibit quasi-linear shapes and sug-
gested to fit a regression line to each of them. Three spectral param-
eters that have relation to physical scatterers properties of tissue are
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then computed using the regression line. They are spectral intercept,
spectral slope and midband fit.

Several studies have also demonstrated the usefulness of the frequency-
domain parameters. It has been shown in [119] that variations of
a spectral parameter, called integrated backscatter (IB), can be em-
ployed to differentiate between normal and myopathic myocardium.
In an in vitro study of kidney [54], normalized power spectral density
of echos has been used to estimate backscatter coefficients, scatter-
ers’ sizes and scattering strength. In [68], the spectral features pro-
posed in [70] have been employed in a tissue characterization tech-
nique to discriminate between coronary plaques from asymptomatic
and symptomatic patients. An in vivo plaque characterization method
based on spectral analysis of backscattered intravascular ultrasound
(IVUS) data has been presented in [88] to classify four types of coro-
nary plaques.

4.3.2 Statistical

The rationale behind this family of feature extractors is that the sta-
tistical features of the backscattered echos provide useful tissue dis-
crimination information. Since backscattered signals from tissue have
a stochastic nature, one can select a PDF to capture statistical prop-
erties of the echos.

Early studies suggested to model the statistics of the envelope of
backscattered echos from tissue by the Rayleigh distribution [115, 120].
It has been shown that the Rayleigh distribution can properly describe
the statistics of the so-called fully-developed scattering process where
the number of scatterers in the resolution cell is very large. How-
ever, this distribution fails to model more complicated structures of
tissues where the scatterers are not necessarily fully-developed or con-
tain structural components. This was the motivation for utilizing the K
distribution, as a more general statistical technique than the Rayleigh
model, for characterizing the statistics of the backscattered envelope
[35, 86, 101]. In [6] the authors have shown that the K distribution is
also a suitable method for modeling the raw RF signals and employed
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this distribution to describe the statistics of the RF signals backscat-
tered from the myocardium.

Although the K distribution is a well-suited framework for mod-
eling different types of tissues, its application is limited because of
the intensive computations required for approximating its parameters.
Two main properties of the Nakagami distribution, namely generality
and light computational load, have captured the interests of the re-
searchers to employ it in the medical ultrasonic field with the aim of
modeling statistics of the backscattered envelope [85, 102]. Another
inclusive, yet computationally feasible technique for modeling statis-
tics of the RF echo signals is the Generalized Gaussian Distribution
(GGD) that has been proposed by Bernard et al. [7]. The authors
showed that this distribution can describe statistics of a wide range of
scattering conditions in medical ultrasound thanks to its ability to rep-
resent different distributions. It has been demonstrated that the GGD
can model fully-developed speckle of the blood regions and partially-
developed speckle of the myocardial regions with the Gaussian and
heavy tail Laplacian-like distributions, respectively.

4.3.3 Time-Frequency

This class of feature extraction methods considers the interaction of
the ultrasound wave with the scatterers in time and the effects of this
interaction on the spectrum of the backscattered echo.

Flexibility and suitable localization in both temporal and spectral
domains, make the wavelet transform as the most appealing method
for performing time-frequency characterization of medical ultrasonic
signals [18, 43, 44, 77, 78]. In [43], the continuous wavelet transform
has been used to decompose an RF echo into its coherent and diffuse
components which are associated to the large resolvable and small un-
resolvable tissue-scatterers, respectively. The proposed decomposition
technique is based on the idea that the wavelet power has a large am-
plitude in the time location of a coherent component and by adopting a
proper threshold value, the coherent components can be distinguished
from the diffuse ones. It has been shown in [44] that the features ex-
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tracted by this wavelet-based decomposition approach are useful for
breast tissue characterization. A wavelet packet filtering method was
proposed in [18] to decompose backscattered RF signals. A RGB false-
colored image was generated from the set of sub-band images and it was
discussed that this colored image is diagnostically helpful. Masotti et
al. [77, 78] introduced a method based on the Discrete Wavelet Packet
Transform (DWPT) for differentiating pathological regions. They per-
formed a 3-level decomposition of the echos and analysed the results
by a polynomial of degree four. The polynomial coefficients were then
used to create a local histogram and the lower-order statistical proper-
ties of this histogram were considered as features and used for breast
and prostate tissue characterization.

Moradi et al. [87] have shown that by continuously transmitting
RF signals to a specific position in tissue, one can gain information
related to tissue microstructure by analyzing the time series generated
from the backscattered echos. In this approach, a set of six features is
extracted from the spectrum of the RF time series inside a ROI. The
first four features are obtained by computing the average values of the
normalized spectrum in four quarters of the frequency range. The last
two features are the intercept and slope of a regression line fitted to
the computed spectrum. The authors have also examined the fractal
dimension of the time series and discussed that these features convey
tissue typing information.

4.3.4 Hybrid

The feature extraction techniques proposed in the literature take into
account different properties of the ultrasound echo signals and each
of them alone cannot provide a general enough description of tissue
characteristics. This fact has motivated researchers to investigate the
efficacy of hybrid feature vectors obtained by combining features of
different nature. Fusion of diverse features extracted from Bmode or
RF images as well as merging attributes extracted from different ul-
trasound image types have been shown to be promising methods for
tissue characterization [84]. In the following we review the main inves-
tigations that have employed RF signals for creating a hybrid feature
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vector.

In [99], 16 acoustical and textural parameters were extracted from
signals backscattered from the prostate tissue. A stepwise parameter
selection algorithm was then adopted and a subset of 10 most favorable
features was used in the classification stage. Scheipers et al. [98] intro-
duced a multi-feature algorithm for prostate diagnosis based on spec-
tral, texture, first-order and morphological parameters. They utilized
the computed features as input of two parallel neuro-fuzzy inference
systems (FIS) and by combining the outputs of the FISs, made a ma-
lignancy map for highlighting cancerous regions. The incorporation of
patients’ clinical information into spectral feature vector was proposed
in [37] for targeting and treatment monitoring of the prostate cancer.
Maggio et al. [74] introduced a computer-aided detection scheme for
prostate cancer diagnosis which took advantage of a combined feature
vector created from spectral, statistical and textural attributes. In or-
der to reduce the dimension of the combined feature vector and retain
the most diagnostically relevant parameters, a hybrid feature selection
algorithm was employed in their proposed algorithm. Recently, an en-
semble learning framework has been proposed for guided prostate tissue
sampling [108]. Diverse subsets of a hybrid feature vector were selected
for training individual classifiers and the uncertainties concerning the
labels of the data were treated by making use of a re-labeling proce-
dure and combining the evidences raised from the individual classifiers
by the evidence theory.

4.3.5 ICA Features for Medical RF Signals

After learning an ICA model (as discussed in section 1.3.2) from the
set of RF signals, for computing a feature vector f ∈ RN corresponding
to a given ROI, a function φ(·) should map vectors s within the ROI
as,

f = φ(S) (4.1)

where S ∈ RM×N is a matrix containing M feature vectors correspond-
ing to M RF signals inside the ROI. In this study, sum of the absolute
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values of each element of s is considered as the mapping function,

fj =

M∑
i=1

|sij | (4.2)

where fj represents the role of the jth IC in modeling signals inside
the ROI. In our experiments we also examined sum of the sij values
as the mapping function which did not result in favorable outcome.
The inappropriateness of this mapping function can be explained by
considering the possible values for the elements of s which can be both
positive and negative. In this case, some of sij values can be eliminated
or suppressed by the other sij quantities with opposite sign and as a
consequence, the elements of the obtained vector f do not provide a
proper representation of signals inside a ROI.

An important advantage of using ICA comes from the fact that it is
a data-driven method. While the conventional feature extractors only
use the RF echo signals inside a ROI for computing its corresponding
feature vector, ICA takes advantage of the signals belong to all ROIs
for the approximation of its unmixing matrix and then uses this matrix
for feature computation. This characteristic of ICA provides further
insight into the high generalization power of its features as compared
to those of the conventional feature extractors.

4.4 Ensemble of ICA Dictionaries

4.4.1 Related Works

The idea of building an ensemble classification system using the fea-
tures learned by the ICA model is relatively new. In [17], the authors
addressed the small sample size problem by sampling from the original
feature space. In this method several low-dimensional feature spaces
are generated using the random subspace method and an ICA model
is trained on each subspace. Finally, by combining the outputs of clas-
sifiers constructed on the ICA feature spaces, decisions on test samples
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are made. Liu et. al [69] introduced an ensemble IC selection ap-
proach which employed multiple IC sets obtained by performing the
ICA model with random initialization. They used a multi-objective
genetic algorithm to select significant subsets from the large set of ICs
and after training individual classifiers on the selected IC subspaces,
aggregated their decisions to reach the final classification result. For
dealing with the nongaussian process monitoring problem, it was pro-
posed in [42] to run several ICA models using different subsets of the
training data that were selected by the bagging method. Then, the ICs
in each model were ranked based on their importance in monitoring
and the most important ones were kept for training the individual clas-
sifiers. In a recent ICA-based process monitoring study [113], different
criteria were used to select dominant ICs and the monitoring models
were then built on the subspaces of the selected ICs. Outcomes of the
monitoring models were then merged to achieve the final decision.

4.4.2 The Proposed Scheme

The methods reviewed in the previous section create an ensemble model
by sub-sampling either from the training data or from the original or
learned feature spaces. Here, we introduce a new ensemble scheme
based on ICA dictionaries which takes advantage of all training data
and the whole set of the learned ICs to encourage generality and pre-
serve major information that describe the data.

Figure 4.1 represents the architecture of the proposed ensemble
scheme. The main idea is to learn several distinct ICA dictionaries
and construct an individual classifier using each of them. The obtained
pool of classifiers is then explored to select a subset of diverse individual
classifiers that complement each other and lead to an ensemble network
with satisfactory performance. We used the FastICA software package
for MATLAB [51] to build the ICA model. The FastICA method
employs negentropy as objective function for estimating ICs and takes
advantage of the fixed-point iteration algorithms for computing local
extrema of J(u) presented in (1.10).

In the proposed ensemble scheme, diversity among the individual
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Figure 4.1: Architecture of the proposed ensemble scheme. In the train phase,
3E different ICA dictionaries are generated by using random initial values
and three different non-quadratic functions G1, G2 and G3. A classifier
is built with each dictionary and a subset of F < 3E classifiers is then
selected in the validation phase by adopting the forward search method and
a diversity-based selection criterion. In the test phase, the RF data are
projected onto the spaces spanned by the dictionaries corresponding to the
selected classifiers and the decisions of the classifiers are aggregated by the
product rule for making the final decision.

classifiers is encouraged in two ways. First, by randomly initializing
the parameters of the ICA model. Note that in addition to promoting
diversity, adopting these dictionaries in an ensemble framework can sig-
nificantly decrease the instability in the ICA results due to the random
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initialization. The second approach is to use different non-quadratic
functions G to approximate negentropy. Three non-quadratic func-
tions have been introduced in [51] and the benefits of utilizing each of
them have been reviewed. All three non-quadratic functions are used
in our proposed ensemble scheme to enable it to deal with data with
different characteristics. They are:

G1(uj) =
1

a1
log cosh(a1uj), (4.3)

G2(uj) = − 1

a2
exp(−a2u

2
j/2), (4.4)

G3(uj) =
1

4
u2
j (4.5)

where 1 ≤ a1 ≤ 2 and a2 ≈ 1 are constants. It has been discussed
in [51] that G1 is a good general-purpose function, G2 is appropri-
ate for modeling supergaussian ICs and G3 is proper for dealing with
subgaussian ICs.

In order to choose an optimal subset of the individual classifiers
from the classifier pool, a classifier selection methodology should be
adopted which necessitates the incorporation of a search algorithm
and a selection criterion. In this study, the forward search algorithm
[46], which is known as the most intuitive greedy approach for clas-
sifier selection, is used to explore among the pool of classifiers. The
advantages of using this search method has been shown in [96] based
on extensive experiments and it has been demonstrated that this tech-
nique can outperform the exhaustive search algorithm which suffers
from overfitting. The forward search algorithm starts with the most
accurate classifier and other classifiers are added to the initial one in
a sequential manner. By examining the performances of the ensemble
networks made from the first classifier and any of the remaining classi-
fiers, a classifier that leads to the best value of an evaluation criterion
is selected as the second classifier. This process is repeated and finally
a set of best classifiers is chosen. To assess the appropriateness of the
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selected classifiers, the interrater agreement κ [65], presented in section
1.5.2, is used in this study.

After selecting a subset of the individual classifiers using the val-
idation data, the test data are mapped onto the spaces spanned by
the ICA dictionaries corresponding to the selected classifiers. Finally,
decisions of the classifiers are aggregated using the sum and product
rules presented in (1.27) and (1.28), respectively.

4.5 Experiments and Results

We conducted a set of experiments with clinical data as well data
acquired with a tissue mimicking phantom with the following goals:

• comparing discriminatory information of the ICA features with
those of the conventional feature extractors and,

• evaluating the performance of the proposed ICA-based ensemble
scheme.

4.5.1 Experimental Settings

Clinical Data

The data set which has been described in section 3.4.1 was employed in
our experiments. Since the pathological information is confined within
the bioptic tissue sample (core), only the image portion around the
biopsy needle was used to reliably associate the RF signals and the
histological outcomes. Each core was then divided into 20 overlapping
ROIs of size 100× 11. Tumor percentages of the cores, provided by an
expert physician as part of the histopathological analysis, were used for
assigning class labels to them. Benign cores with tumor percentages
equal to zero were considered as the healthy class and samples of the
unhealthy class were selected from the cores with tumor percentages
greater than 90%. For each class and in a random sampling process, 20
cores were used as training data, four cores as validation and five cores
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for testing. Each of 11 RF echo signals inside a ROI was considered as
a data vector. So, a set of 8800 data vectors was used for estimating
ICA parameters.

The database contains several cores with tumor percentages in the
interval (0,90]. This part of the data cannot be used by the classic
supervised learning algorithms due to the uncertainty concerning their
class labels. However, ICA can appropriately incorporate this subset of
the data for computing its parameters. ICA is an unsupervised method
and does not care about labels of the data. Therefore, increasing the
number of data vectors helps this data-driven method to provide better
estimation of the basis vectors and it brings important advantage of
high generalization power to the tisseu characterization system.

The above discussion was the motivation for considering the per-
formance of ICA with the enlarged data in our experiments where 35
uncertain cores were added to the set of training data. In this case,
both groups of data with certain and uncertain class labels have been
used in the procedure of estimating W . In the feature computing step,
however, only samples with certain class labels were projected onto the
space spanned by W .

Phantom Data

The Precision Small Parts Grey Scale Tissue Mimicking Phantom GAM-
MEX 404GS LE (Gammex Inc., Middleton, WI) was used. Figure 4.2
shows three grey scale targets and one anechoic target (C4) of this
phantom that were used in our experiments. They had equal sizes
with a diameter of 7 mm and were located at the same depth in the
phantom. The grey scale targets C1, C2 and C3 had contrast val-
ues of +12, +6 and -6 dB relative to the background, respectively in
which the largest value corresponded to the highest scatterer density.
The anechoic target has the lowest concentration of scatterers. In our
experiments, each of the four targets was considered a separate class.

The Ultrasound Advanced Open Platform (ULA-OP) [114] has
been used for acquiring and recording RF signals from the targets. The
central frequency of the ULA-OP system was set to 8.5 MHz and a 180-
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Figure 4.2: Envelope image of the phantom classes sorted based on their
relative grey scales compared to the background. C1 has the highest scatteres
density while C4 represents an anechoic target with a very low concentration
of scatterers.

element linear array was used for scanning the surface of the phantom
and creating 2-D RF images. A set of 70 RF images were employed in
our experiments. From this set, 40, 20 and 10 images were randomly
selected for training, testing and validation, respectively. This random
selection was repeated five times and all results presented in the sub-
sequent sections are the average outcomes obtained on the five sets of
randomly selected data.

We investigated the performance of ICA and the conventional fea-
ture extractors by making use of three different ROI sizes. First, a
rectangular window with 300 elements in the axial direction and 20
elements in the lateral direction was selected from each target. This
window, which almost covered the whole target area, was then divided
into non-overlapping ROIs of sizes 150×20 (large), 100×10 (medium)
and 50×5 (small). In our experiments, each single ROI was considered
an independent sample in the classification phase and the classifiers
were trained and tested with the feature vectors computed from the
utilized ROIs.

Conventional Feature Extractors

The main conventional techniques designed for extracting features from
the RF echo signals were adopted in our experiments. From the family
of the spectral features, the 3-dimensional vector made of Intercept,
Slope and Midband fit (ISM) of the regression line fitted to the spec-
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trum of the echos [72] was used. The Nakagami and GGD methods,
each with two parameters related to shape and scale of the PDF, were
employed from the set of the statistical features. We also used a vector
composed of mean, variance and skewness of each ROI to assess the
ability of lower-order statistical features and have a better understand-
ing of the effectiveness of using ICA in exploring higher-order statistics
of the RF echoes. The DWPT-based decomposition approach was se-
lected from the group of time-frequency features. As proposed in [77],
Daubechies 16 was used as mother wavelet for a 3-level decomposi-
tion of the RF signals. Then a local histogram was computed for each
ROI by employing the coefficients of a 4th order polynomial fitted to
the results of the wavelet decomposition. Finally the standard devi-
ations and skewnesses of the histograms were computed as features.
To evaluate the performance of the multifeature approaches, another
experiment was performed by concatenating all the employed conven-
tional features into a 12-dimensional hybrid feature vector.

ICA Implementation

PCA algorithm was used in the preprocessing stage of the FastICA
algorithm for computing the whitening matrix and also reducing the
dimension of the data. The optimal dimension of the ICA features was
determined by considering the classification results on the validation
data. Based on the obtained results; the number of ICs was set to 40
for the clinical data and 46, 36 and 26 ICs were respectively selected
for the large, medium and small ROIs of the phantom data.

Classifier

The DWKNN method, presented in section 1.5.1, was used as classifier
in our experiments. The reason for adopting a KNN-based classifier
in our experiments is that such an approach, unlike some well-known
classifiers such as non-linear SVM and MLP neural network, does not
map the feature vectors onto a new space for discrimination. Since
the outputs of DWKNN are directly correlated with the input fea-
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tures, the discriminatory information of the conventional features can
be compared with the ICA features.

Ensemble ICA Model for Comparison

The ensemble model proposed by Tong et. al [113] was implemented
and its performance was compared with that of the proposed scheme.
This method uses four different criteria for selecting subsets of dom-
inant ICs. First, a value is computed for each IC based on a given
criterion and the ICs are listed in descending order according to their
corresponding values. Then, l first ICs are selected for the data pro-
jection and constructing an individual classifier. The four criteria are:

• L2 norms of the rows of W ,

• L2 norms of the columns of A,

• L∞ norms of the learned ICs,

• nongaussianity levels of the learned ICs.

After selecting the four subsets of the ICs, the residual components are
utilized to build the fifth individual classifier.

We constructed DWKNN classifiers on the subsets of ICs and com-
bined the output weights using the sum and product rules. For adopt-
ing the best l for building the ensemble model, performance on the
validation data was considered. Table 4.1 lists the examined and se-
lected l values for the three ROI sizes.

The Proposed Ensemble Scheme

Size of the pool of ICA dictionaries was set to 30. The pool was com-
posed of dictionaries generated by random initialization and each of
the non-quadratic functions G1, G2 and G3 has been used to estimate
the parameters of 10 dictionaries. A pool of classifiers was then ob-
tained by constructing DWKNNs on the generated dictionaries. In
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Table 4.1: The sets of examined and selected numbers of the ICs (l) for
building the individual classifiers in the Tong et. al method for the three
ROI sizes

Examined ls Selected ls

Large ROI [4, 6, 8, 10] 8
Medium ROI [4, 6, 8] 8
Small ROI [4, 6] 6

order to make a fair comparison between the proposed scheme and the
Tong et. al ’s ensemble approach, five classifiers were selected in the
classifier selection phase to build the ensemble model. Note, however,
that size of the ensemble can be considered as a hyperparameter of
the proposed scheme and depending on the problem at hand, can be
tuned using the validation data. We also utilized the 30 dictionaries
incorporated in the proposed scheme to assess the performance of the
classic ICA and the Tong et. al ’s ensemble model. In this way, all the
ICA-based methods were implemented with similar dictionaries.

4.5.2 Results and Discussions

Clinical Data

Figure 4.3 shows the basis vectors learned by ICA from the prostate
data. Most of them are localized in time and frequency and have
wavelet-like shapes. The fact that the set of basis vectors comprises
diverse elements in the time and frequency axes sheds light on the
capability of ICA in data modeling.

In order to have an intuitive insight into the way of modeling an
echo signal with the learned basis vectors, an example is given in Fig-
ure 4.4. In this example only those basis vectors are shown that have
the largest absolute weight and important contributions in the recon-
struction of the RF signal. It can be seen that the basis vectors span
the time axis and capture the dominant structures of the echo signal.
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Figure 4.3: Set of the basis vectors learned by ICA from the clinical data.
Most of the learned basis vectors are localized in time and frequency and have
wavelet-like shapes.

Average classification results obtained with DWKNN using the dif-
ferent feature extraction approaches are shown in Figure 4.5. It can
be seen that the augmentation of the training data by the uncertain
cores leads to better performance of the ICA algorithm. It is also evi-
dent that the hybrid feature vector gives better results than the other
conventional features. The performance of the hybrid vector is also
comparable with that of the ICA features learned from data with cer-
tain labels but the set of ICA features obtained from the augmented
data is superior to all methods.

Table 4.2 lists the best average accuracy results (%) of the stud-
ied feature extraction methods and their corresponding specificity and
sensitivity values. The standard deviations of these measures are also
shown. Two key issues are highlighted in this table. The first one is
that by training ICA with the augmented data, the achieved results
have smaller standard deviations. It again indicates that if the ICA
parameters are learned by a large enough set of data examples, the
resulting features yield promising classification accuracies. The second
issue can be recognized by comparing the result of the hybrid feature
vector with that of ICA trained on the enlarged data. Although the
hybrid method gives better sensitivity than ICA, it fails to provide ac-
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Figure 4.5: Average classification results of DWKNN on the testing prostate
data using the employed feature extraction methods.

Table 4.2: Best average classification results (%) and their corresponding
sensitivity and specificity values gained by the employed feature extraction
techniques. Highest rates are shown in bold.

ACC SP SE

ISM 52.40± 1.71 50.20± 4.82 54.60± 2.41
Nakagami 55.80± 3.49 53.80± 2.28 57.80± 7.79
GGD 55.30± 1.72 57.60± 2.61 53± 4.12
Lower-Order Statistics 54.40± 1.64 50.20± 3.77 58.60± 4.04
DWPT 54.70± 0.97 54.60± 4.62 54.80± 4.5
Hybrid 60.80± 2.28 47.40± 4.16 74.20± 2.17
ICA (Certain Data) 61.70± 2.27 59.80± 10.64 63.60± 8.09
ICA (Certain & Uncertain Data) 66.10± 2.13 65.20± 3.22 67± 7.31

ceptable specificity. The ICA outcomes, however, show a satisfactory
balance between specificity and sensitivity.



70 Experiments and Results

Phantom Data

Average classification results of DWKNN on the testing data for the
three ROI sizes are plotted in Figure 4.6. Since, in general, the prod-
uct rule yielded better outcomes, the results of classifier combination
using this rule are presented. It is clear that by reducing the ROI size,
the obtained classification results decreased. This can be explained by
considering the fact that the small ROIs provide representations from
the studied areas that are not as statistically significant as those of
the large ROIs. Figure 4.6 shows that the results gained by the ICA
features are far superior to those of the conventional feature extrac-
tors. It also highlights the advantage of ICA over the conventional
feature extraction methods as far as robustness to variability in spatial
resolution (ROI size) is concerned.

The results obtained by the ensemble model proposed by Tong et.
al are compareable with those of ICA. It can be due to the fact that
a small subset of the features learned by ICA is used for building the
individual classifiers in this ensemble model. As mentioned before,
utilizing a small portion of the features would be useful for dealing
with the small sample size problem or when a few ICs can provide
high discrimination power. Otherwise, reduction in the feature space
size results in weak individual classifiers which do not access to enough
discrimination information.

Fig. 4.6 shows that the proposed ensemble approach improved the
classification performances obtained by the classic ICA features and
the Tong et. al ’s method. As mentioned earlier, all three ICA-based
methods use the same set of dictionaries. However, selecting a subset
of these dictionaries that provide complementary descriptions of the
data and combining decisions of classifiers built with the selected dic-
tionaries enables the proposed method to enhance the performances of
the other ICA-based approaches.

For a more detailed discussion about the classification results gained
by the different methods, their confusion matrices are illustrated in Ta-
ble 4.3. In each matrix, the diagonal entries represent correct classifica-
tion probabilities and the off-diagonal elements (i 6= j) are probabilities
of incorrectly classifying samples of class j as class i. Note that the
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matrices represent the best average classification rates of each method.
The confusion matrices show that categorizing samples belonging to C1

and C2 is difficult for all methods and these classes caused the highest
misclassification rates. This result is not surprising because these two
classes have close scatterers densities and the features extracted from
them form a highly overlapping area in the feature space. Table 4.3
shows that classifying samples of C3 is not as difficult as the first two
classes. It can be described by the reduction in the scatterers concen-
tration in C3 which makes it more distinct from C1 and C2. As can
be seen from Figure 4.2, the contrast of C4 is much more smaller than
the rest of the classes and it has the lowest scatterers density. So, the
overlap of the C4’s features with those of the other classes is negligible
and they can be easily categorized by the classifiers. By considering
the classification results gained by the conventional features for the
first two classes, it can be noticed that the classifiers could not provide
balanced rates which is due to significant overlap of the features. Al-
though it is not the case for ISM, it failed to yield high classification
accuracies. By using the ICA features, however, a good compromise
between balance and accuracy of the classification rates was achieved
that indicates the learned features provide considerable discriminatory
information and a good separation between the two classes.

There is a direct correlation between the success of the proposed
scheme and the optimality of the features provided by the selected ICA
dictionaries. To study the advantage of utilizing the dictionary/classifier
selection strategy in the proposed ensemble model, the effect of adding
each of the five selected dictionaries to the ensemble model is illus-
trated in Figure 4.7. In this figure, the curves of Classifier 1 belong
to the first selected dictionaries and the rest of the curves show the
trend in the classification results obtained by increasing the ensemble
models’ sizes. It can be seen that for all the three ROI sizes, the inclu-
sion of every new selected dictionary in the ensemble model enhances
the classification results gained in the previous stage. This means that
the ICA dictionaries complement each other and implies that the se-
lection procedure, composed of the forward search algorithm and the
diversity-based criterion, worked well.
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4.6 Conclusion

The issue of classifying medical RF ultrasonic signals was addressed
in this study. It was proposed that the learning strategies are viable
alternatives to the conventional methods designed for extracting fea-
ture from the medical RF signals and the ICA model was employed
for learning features from the RF echoes. Several different ICA dic-
tionaries were then trained with the RF data and a subset of them
that provided complementary descriptions of the backscattered sig-
nals were incorporated into the structure of an ensemble classification
model. The classic ICA method and the proposed ensemble model were
respectively evaluated with a clinical and a tissue mimicking phantom
data. It has been shown that the features learned by ICA can yield
better classification results that their conventional counterparts and
a combination of ICA dictionaries that complement each other would
provide more satisfactory outcomes than a single ICA dictionary.
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Figure 5.1: Heart cross section.

5.1 Cardiac Anatomy

The human heart (Figure 5.1) weights around 300 grams and it typi-
cally has the size of a closed fist. It is surrounded by a double-layered
sac called the pericardium. The heart wall is divided into three layers.
The outermost layer is called epicardium which protects the heart. The
middle layer is composed of cardiac muscle cells and it is called my-
ocardium. This layer is responsible for pumping the blood throughout
the body. The endocardium is the innermost layer of the heart which
directly contacts the blood and covers the heart valves.

As shown in the cross section representation of the heart in Fig-
ure 5.1, it is composed of four chambers including two upper chambers
called the right atrium (RA) and left atrium (LA) and two lower cham-
bers called the right ventricle (RV) and left ventricle (LV). The left and
right sides of the heart are separated by a wall known as septum.

The right side of the heart collects the deoxygenated blood from
the body and pumps it to the lungs through the pulmonary artery
(Figure 5.1) and then the left heart pumps the oxygenated blood into
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IVC Ejec IVR E D A 

Figure 5.2: Schematic Wiggers diagram showing the cardiac cycle together
with its six mechanical phases and the ECG [92]. Timings of opening and
closing of aortic and mitral valves along with aortic, atrial and ventricular
pressures and ventricular volume are also depicted

the aorta.

5.2 The Cardiac Cycle

The cardiac cycle can be divided into two major time phases namely
systole and diastole. Diastole, which usually takes more than 50% of
the cardiac cycle (Figure 5.2), includes all the events associated with
filling of the ventricles while systole includes all the events associated
with ejecting blood from the ventricles.

The period between the onset of the QRS complex on the elec-
trocardiography (ECG) and mitral valve closure is referred to as the
electromechanical coupling (EMC) phase. Following this phase, both
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left ventricular valves are closed and the corresponding time period is
known as isovolumetric contraction (IVC). The next phase is ejection
(Ejec) when the aortic valve is open and blood rapidly ejects from the
ventricle into the arteries. This phase ends by aortic valve closure. The
diastolic period then begins with the isovolumetric relaxation (IVR)
phase during which ventricular pressure drops below the LA pressure
resulting the mitral valve opening. After this phase, blood rapidly flows
into the ventricle which is referred to as early filling (E) or rapid inflow.
In the next phase of diastole, filling of the ventricle occurs more slowly
which is known as diastasis (D). In the last phase of diastole which is
called atrial/late filling (A), slow filling of the ventricle happens due
to atrial contraction. Note that, the onset of atrial contraction can be
defined by the onset of the P-wave on the ECG.

5.3 Myocardial Deformation Estimation

Ultrasonic deformation estimation is a noninvasive technique for the
assessment of regional myocardial function [29, 106]. This (relatively)
new technique, is based on strain and strain rate measurements as con-
cepts derived from mechanical engineering. Strain is a dimensionless
parameter which is defined as the deformation of an object normalized
to its original shape. In the case of a one-dimensional object, in which
the only possible deformation of the object is lengthening or shortening
(Figure 5.3 ), strain can be written as,

ε =
L2 − L1

L1
=

(y2 − x2)− (y1 − x1)

y1 − x1
(5.1)

where ε is the strain symbol and (x1, y1) and (x2, y2) represent the
position of a specific point in the object before and after deformation,
respectively.

Strain rate can be defined as the speed in which the deformation
(i.e strain) occurs and is computed by dividing both sides of equation
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Figure 5.3: Schematic illustration of the way in which strain and strain rate
measures are computed. An object with the original length of L1 is deformed
from time t1 to t2 to have length L2. Strain and strain rate are defined by
considering the change in the length of the object and the time duration that
this lengthening/shortening is happened.

(5.1) by ∆t = t2 − t1 as the time duration of the deformation,

SR ≈ ε

∆t
=

(y2−y1)
∆t − (x2−x1)

∆t

y1 − x1
=

D2

∆t −
D1

∆t

y1 − x1
≈ v2 − v1

L1
. (5.2)

To describe deformation patterns of the heart as a 3-dimensional
object, a local heart coordinate system has been introduced. Figure
5.4 represents this coordinate system which includes three mutually
perpendicular axes known as the radial (R), longitudinal (L) and cir-
cumferential (C). These three axes make the bases of normal strain
(rate) measurements.

5.4 Myocardial Deformation Imaging

Echocardiographic strain (rate) traces are measured in clinical equip-
ment by using tissue Doppler imaging (TDI) [30, 47] or speckle tracking
imaging (STI) [90] techniques.

In the TDI technique, regional instantaneous myocardial velocities
can be measured by colour Doppler. Hereto, by integrating the regional



Chapter 5. Echocardiographic Deformation Imaging 83

Figure 5.4: Representation of the local heart coordinate system consisting of
radial, longitudinal and circumferential axes.

velocity profiles, their corresponding strain rate curves can be achieved.
The main advantage of TDI is its high frame rate (> 180 Hz) which
allows to assess short-lived events during the cardiac cycle. It also
provides a fast qualitative analysis as deformation traces can be easily
derived by moving the mouse pointer over the myocardium and as a
result, no postprocessing is required [73]. This technique, however, can
only measure myocardial deformation in the direction of the ultrasound
image line. As a consequence, the obtained deformation traces are
dependent on the angle between the ultrasound wave and the target
segment [30, 59]. Since the strain estimation in this technique depends
on the ultrasound line’s direction, and since there are limited number
of views for visualizing the heart, only L strain component can be
measured in all LV segments.

The STI technique, which is a more recent approach to the defor-
mation analysis, is based on tracking a unique speckle patterns (i.e.
a ROI) on the myocardial wall from one B-mode image frame to the
next one (Figure 5.5). Having the ROI’s position information in two
successive frames at hand, its relative displacement per unit distance
is computed. This is equivalent to instantaneous strain of a tissue
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Figure 5.5: An example illustrating the principle of speckle tracking. A ROI
on the cardiac wall is tracked from frame i to frame i+ 1.
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Figure 5.6: Examples of L strain and strain rate curves measured in the LV
along with the timing of cardiac mechanical events.
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segment. To have the strain curve corresponding to the whole car-
diac cycle, the instantaneous strain measures should be accumulated.
A strain rate curve can then be obtained by computing the temporal
derivative of this strain curve. Tracking speckle in the B-mode image
brings the advantage of angle independency to the strain (rate) esti-
mation system. As a result, all strain components (i.e. R, L and C)
can be measured with this technique. The major disadvantage of STI,
however, is its need to images with high spatial resolution (i.e high
line density) for efficient speckle tracking. This requirement limits the
frame rates to 50-70 Hz and therefore results in relatively low temporal
resolution.

Figure 5.6 illustrates examples of measured L strain and strain rate
curves along with timing of the cardiac mechanical events.
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6.1 Abstract

Clinical value of the quantitative assessment of regional myocardial
function through segmental strain and strain rate has already been
demonstrated. Traditional methods for diagnosing heart diseases are
based on values extracted at specific time points during the cardiac
cycle, known as ‘techno-markers’, and as a consequence they may fail to
provide an appropriate description of the strain (rate) characteristics.
This study concerns the statistical analysis of the whole cardiac cycle
by the PCA method and modeling the major patterns of the strain
(rate) curves. Experimental outcomes show that the PCA features
can outperform their traditional counterparts in categorizing healthy
and infarcted myocardial segments and are able to drive considerable
benefit to a classification system by properly modeling the complex
structure of the strain rate traces.

6.2 Introduction

Echocardiography is the modality of choice in clinical diagnostics and
for the noninvasive assessment of heart function. In daily clinical prac-
tice, visual evaluation is widely used to determine regional abnormal-
ities in myocardial wall motion. Although this qualitative assessment
can be done easily, it suffers from significant inter-observer variability
which reduces its clinical value.

Tissue Doppler imaging and speckle tracking are two promising
echocardiographic techniques that have been developed for the nonin-
vasive study of myocardial function. Based on these techniques, strain
(rate) imaging has been introduced to provide an effective approach
for the assessment of changes in the regional myocardial wall motion
and deformation [29]. End-systolic strain and peak-systolic strain rate
are two traditional techno-markers that have been extensively used by
clinicians to describe the strain (rate) profiles and to classify different
heart diseases [48]. These traditional features, however, ignore the di-
astolic period of the cardiac cycle. They also represent the value of



88 Introduction

the strain (rate) profile at only one time point and as a result, cannot
capture the temporal information available in the deformation curves.

Despite several studies for the classification of regional myocardial
function based on the traditional features of the strain (rate) curves
[48, 57], only a few investigations have been carried out for the detec-
tion of heart abnormalities by taking into account the whole temporal
behavior of the strain (rate) curves. The idea of analyzing the sys-
tolic phase of strain curves, derived from tagged magnetic resonance
imaging, by PCA was initially proposed in [19]. The authors showed
that the statistical reference model achieved by employing PCA and
normal strain curves can properly detect abnormal strain patterns. In-
spired by [19], PCA has been used in [2] to model ultrasonic strain and
strain rate traces of the healthy subjects and it has been discussed
that the PCA attributes can provide more information about strain
(rate) curves than the traditional features. In [79], an artificial neural
network (ANN) was used to classify strain profiles obtained at base-
line and during experimentally induced acute ischemia using animal
data. In a pre-processing step, each strain curve was represented by
70 equidistant samples and normalized in amplitude. The obtained
profiles were then given to an ANN for categorization.

Following the results presented in [2], this paper addresses the sub-
sequent issues: 1) building two PCA models by making use of the
normal and acute infarcted strain and strain rate curves, 2) incorpo-
rating the PCA and traditional features in a classification system and
examining their capabilities for the categorization of normal and acute
infarcted strain and strain rate traces and, 3) comparing the PCA
features extracted from the strain and strain rate traces in terms of
the amount of the discriminatory information that they provide for a
classification system.
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6.3 Materials and Methods

6.3.1 Data Acquisition and Preprocessing

A group of 27 normal subjects and 54 subjects with acute myocardial
infarction was used in this study. For the patients, myocardial segments
were categorized into infarct, border and remote based on MRI-delayed
enhancement and the perfusion territory of the infarct-related vessel
[48]. Data acquisition was performed at high frame rate (>180 Hz) with
a GE VingMed Vivid7 equipped with a 2.5 MHz transducer. For each
subject, data were acquired in the apical 2-, 3- and 4-chamber views
with optimization of the pulse repetition frequency in order to avoid
aliasing. An event-driven graphical user interface called SPEQLE [20]
was used for the post-processing of the data to extract longitudinal
strain (rate) traces in an 18-segment model of the left ventricle [16].
Since the number of samples of the extracted curves could be different
due to the differences in the heart rates of the subjects, a linear inter-
polation procedure was adopted to have the same number of samples in
all traces. To avoid unwanted changes of the curves due to the interpo-
lation procedure, each of the six cardiac phases (i.e. electromechanical
coupling, isovolumetric contraction, ejection, isovolumetric relaxation,
early filling and late filling [29]) was interpolated separately and then
merged to have the whole heart cycle. The interpolated curves were
then used in the PCA implementation and classification phases.

Table 6.1 lists the number of subjects that were selected randomly
from the healthy and pathological groups for building training, valida-
tion and test sets. This random selection was repeated 10 times and
the results presented in section 6.4 are the average of running the clas-
sifier on these 10 different sets of data. Since for a pathological subject
only the subset of acutely infarcted segments was used for the clas-
sification task, the number of utilized pathological subjects in Table
6.1 was more than the healthy ones so that both groups had roughly
the same number of curves in the training, validation and test sets.
Note that, the segmental strain and strain rate curves were sorted in
two different groups of training, validation and test data to study their
clinical relevance for discriminating normal and infarcted traces.
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Table 6.1: Number of subjects taken from the healthy and pathological groups
for the training, validation and test sets.

#Training #Validation #Test

Healthy Subjects 12 5 10
Pathological Subjects 25 9 20

6.3.2 Classifier

Performance of a classification system depends on both the features
extracted from the data and the classification technique. In order to
differentiate between the effects of the employed features and the clas-
sification strategy on the final classification outcomes, two different
classifiers namely LMB [82] and SVM [25, 117] are used in our experi-
ments.

6.4 Classification Results

Average classification results on the test data for LMB and SVM are
shown in Figure 6.1 and Table 6.3, respectively. Table 6.2 gives the
best average classification results and their corresponding sensitivity
and specificity values obtained by the LMB and KNNs from [1 100]
interval. The number of PCs was set to 10 based on the favorable
results gained with the validation data.

6.5 Discussion

Tables 6.2 and 6.3 show that regardless of the classification methodol-
ogy, the PCA features yielded more satisfactory accuracy rates for both
the strain and strain rate traces compared to the traditional features.
This means that by exploring the whole cardiac cycle instead of only
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Figure 6.1: Average classification results (%) on the test strain and strain
rate curves with the LMB method using (a) the traditional features and, (b)
the PCA features.

Table 6.2: Best average classification results (%) and their corresponding
sensitivity and specificity values of the LMB method with the traditional and
PCA features on the test strain and strain rate curves.

ACC SE SP

Traditional Features
Strain 68.22 67.51 68.86
Strain Rate 69.63 73.35 66.35
PCA Features
Strain 71.86 64.98 78.90
Strain Rate 76.26 69.93 83.44
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Table 6.3: Average classification results (%) and their corresponding sensi-
tivity and specificity values of the SVM method with the traditional and PCA
features on the test strain and strain rate curves.

ACC SE SP

Traditional Features
Strain 69.61 55.14 83.39
Strain Rate 71.17 67.23 75.56
PCA Features
Strain 70.06 73.41 67.07
Strain Rate 74.32 77.03 72.28

the systolic period, considerably more information about the character-
istics of the strain and strain rate curves can be obtained. Another key
point that is highlighted in Tables 6.2 and 6.3 is the difference between
the classification accuracies obtained with features extracted from the
strain and strain rate traces. While by using the PCA features, the
classification accuracies on the strain rate curves are remarkably better
than those of the strain traces, there is not much benefit to be gained
by employing the traditional features and the accuracies obtained for
the strain rate traces are slightly better than the strain curves. This
observation suggests that the strain rate traces provide more discrimi-
natory information than the strain curves and these extra information
could be captured by an efficient statistical model like PCA.

Tables 6.2 and 6.3 also show that for both the PCA and traditional
features, the sensitivity and specificity rates achieved by LMB and
SVM varied considerably. It means that the classification strategy has
a direct effect on the final outcomes and suggests that different clas-
sification methodologies should be examined to find a suitable setup.
These results also imply that by combining several classifiers that ad-
dress the classification problem from different points of view, a good
compromise between the sensitivity and specificity values could be ob-
tained that is a topic for the future research.
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6.6 Conclusion

In this study, it was hypothesized that the temporal behavior of the
segmental strain (rate) curves contains valuable diagnostic information
which can be captured by a rigorous statistical approach. The PCA
method was then employed to statistically analyze the strain (rate)
traces. In order to evaluate the usefulness of the PCA features, they
were compared with the end-systolic strain and peak-systolic strain
rate values as the traditional features. Experiments with a data set of
strain (rate) curves of healthy and pathological subjects demonstrated
that the PCs can provide more discriminatory information for the clas-
sification system than the traditional features. Our experiments also
showed that analyzing the strain rate traces with PCA would lead to
better results than the strain curves. However, more thorough analysis
with a larger set of data is needed to improve the classification per-
formance and to determine the role of different parameters that affect
the obtained outcomes.
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7.1 Abstract

Interpretation of ultrasonic deformation traces for making a diagnosis
on local myocardial function has been known to be a challenging task
in daily clinical practice. A traditional approach is to use values ex-
tracted at specific time points during the cardiac cycle which has the
main drawback of not taking the temporal information of the defor-
mation traces into account. This study presents a framework for the
automatic detection of ischemic myocardium by statistical analysis of
the entire segmental strain and strain rate curves using PCA. Hav-
ing the PCA-derived parameters of the regional temporal profiles at
hand, a spatio-temporal representation of the global left ventricle (LV)
function is established to train a classification system. Experimental
outcomes show that the proposed deformation representation of the
LV can outperform its traditional counterpart in categorizing healthy
from ischemic myocardium.

7.2 Introduction

Echocardiographic strain and strain rate imaging has been known to
be a well-suited noninvasive method to the diagnosis of heart diseases
that result in regional dysfunction of the ventricle. Interpretation of
strain (rate) curves, however, is a major challenge in the diagnostic pro-
cedure and its clinical value depends on the cardiologist’s experience.
With the aim of describing the strain (rate) profiles and classifying
different heart diseases, some traditional techno-markers (e.g. endsys-
tolic strain, peak-systolic strain (rate)) have been used extensively [48].
These traditional techno-markers, however, ignore the diastolic period
of the cardiac cycle and represent the value of the strain (rate) profile
at only one time point. As a result, they cannot capture the temporal
information available in the deformation curves.

In this context, Clarysse et al. [19] proposed to model the systolic
phase of strain curves, extracted from tagged magnetic resonance data,
by a statistical approach instead of utilizing the traditional techno-
markers. Inspired by their work, the whole temporal profiles of the
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echocardiographic strain (rate) measurements of the left ventricle (LV)
were modeled by PCA [2]. The idea was to build a statistical model
of the normal deformation patterns from healthy subjects and use the
parameters of this model to detect abnormalities in patients’ defor-
mation curves. Abnormality detection was performed by projecting a
given curve onto the subspace spanned by the PCA parameters and
then building a map (i.e. Bull’s eye) that reveals distances between
the parameters of the segments and the normal model. This distance
map was then presented to a cardiologist in order to be classified as
normal or pathologic. Although this work takes advantage of the en-
tire deformation profiles for modeling their temporal patterns, it lacks
an objective and automatic scheme for disease classification. This was
the motivation for developing a framework in [110] for the automatic
detection of abnormalities in the segmental deformation traces. After
building a PCA model with the deformation profiles of healthy and
pathological subjects, a classifier was trained with the extracted tem-
poral parameters. The obtained results confirmed the utility of the
PCA-based classification system and showed that it could yield better
results than the same classifier trained with the traditional techno-
markers.

The current study moves the framework presented in [110] one step
further by proposing a global representation of the LV function. This
is done by concatenating the PCA-derived temporal parameters of the
LV segments to model their mechanical interactions.

7.3 Materials and Methods

7.3.1 Data Acquisition and Preprocessing

A set of 60 normal subjects from the DOPPLER-CIP multicenter
clinical study (http://www.dopplercip.be) and 60 patients with
acute infarction from the stem cell [58] and salvage [28] studies, which
have been conducted in the University Hospital Leuven, was used in
this study. Data acquisition and preprocessing is the same as described
in section 6.3.1.

http://www.dopplercip.be
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Figure 7.1: Schematic illustration of the first approach proposed in this study
for modeling global LV function. (a) Two independent PCA models are con-
structed with the strain and strain rate curves of the LV segments to capture
their major temporal patterns. For each segment, its strain and strain rate
curves are then projected onto the subspaces spanned by their corresponding
set of PCs to have a vector of features that represents the function of that
segment. (b) Feature vectors of the LV segments are concatenated into a
single spatio-temporal feature vector for building a classification system.

7.3.2 Spatio-Temporal Deformation Representation

In this study, two different PCA-based methodologies for modeling
spatio-temporal (S-T) parameters of the LV function are proposed.

Methodology I

Regional deformation profiles of both normal and ischemic groups were
used to build two separate PCA models for the strain and strain rate
traces. A subset of the M first PCs with the largest eigenvalues were
retained from each model to ensure that most of the temporal varia-
tions of the data were captured. Then, every strain (rate) curve xn was
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projected onto the subspace spanned by its corresponding set of PCs
to have the coefficient set An = {an1, . . . , anM} (Figure 7.1(a)). Since
the obtained vectors of coefficients are different for different traces,
they can be used as the feature vectors that represent the temporal
behavior of the deformation traces.

For each subject, temporal feature vectors of its LV segments, ac-
cording to 18-segment model [16], were concatenated into a single fea-
ture set {A1, . . . , A18} (Figure 7.1(b)) where An is the set of temporal
coefficients belong to the nth segment. This new feature set accounts
for the mechanical interactions between the LV segments thereby pro-
viding a spatio-temporal representation of the global LV deformation.

Methodology II

In the second approach, 18 curves of each subject were first concate-
nated to form a single vector CRV = {curve1, . . . , curve18}. A PCA
model was then built using the CRV vectors obtained from all subjects
(Figure 7.2). Since the CRV vectors contain implicitly the temporal as
well as spatial information of the deformation traces, the PCA model
can give a S-T representation of LV function. Note that, like the first
methodology, two independent PCA models were built for the strain
and strain rate curves.

7.3.3 Feature Selection

The P -metric method [55], presented in section 1.4, was used to select
relevant PCs of each approach that provide significant discrimination
information.

As mentioned in section 6.3.1, LV segments of the patients were
categorized into infarct, border and remote based on MRI-delayed en-
hancement information. In methodology I, only the strain (rate) curves
corresponding to the infarcted LV segments were taken from the pa-
tient class to perform feature selection. The reason for doing so was
to have a proper representation of the abnormal class and to select
those PCs that can provide significant discriminatory information. In
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Figure 7.2: Schematic illustration of the second proposed approach for mod-
eling global LV function. For each subject, its 18 strain (rate) curves are
concatenated to form a new vector that consist temporal as well as spatial
information of the deformation profiles. Two independent PCA models are
then constructed with the new vectors built from the connected strain and
strain rate curves.

methodology II, however, the CRV vectors include traces of the in-
farcted segments so the labels of the subjects can be used in the feature
selection procedure.

7.3.4 Parameter Settings with Cross-Validation

The cross-validation (CV) technique was adopted to set the optimal
number of first or selected PCs that should be retained and to ensure
that the classification results are not biased towards a subset of the
subjects. Experiments were carried out with 10-fold CV. Hereto, sub-
jects were randomly divided into 10 equal-size folds. Nine folds were
used for training and the last one was used for testing the classifier.

7.3.5 Traditional Features

To assess the benefit of the spatio-temporal features derived from the
PCA method as compared to the traditional markers, two different sets
of features were generated by concatenating:

1. End-systolic strain and,
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2. Peak-systolic strain rate values

of the segments belong to each LV.

7.3.6 Classification

The KNN method with the cosine distance metric was used to cat-
egorize the S-T and traditional features of the normal and ischemic
subjects.

7.3.7 Cardiologist Reading

Visual assessment of wall motion and wall thickening based on grayscale
ultrasound images is currently the most common clinical routine for the
evaluation of myocardial function [29, 106]. Another common method
for the assessment of the regional heart function is to use a bull’s eye
representation of end-systolic strain values [48].

To contrast the performance of our proposed automatic approach
with the outcome of a typical visual assessment procedure, we asked
a cardiologist to make a decision on the LV function (i.e. normal or
infarcted) of a given subject based on:

• Six grayscale wall motion videos acquired from: anterior and
inferior apical 2-chamber, anteroseptal and inferolateral apical
3-chamber and anterolateral and inferoseptal apical 4-chamber
views (Figure 7.3)

• A bull’s eye plot of the end-systolic strain values (Figure 7.4)

• The acquired strain and strain rate curves of 18 segments of the
LV (Figure 7.5)

A subset of 20 normal subjects and 20 subject with myocardial
infarction (MI) was randomly selected from the original set of data
for the cardiologist reading. The items listed above were presented to
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Figure 7.3: Six garyscale wall motion videos acquired from anterior and
inferior apical 2-chamber, anteroseptal and inferolateral apical 3-chamber
and anterolateral and inferoseptal apical 4-chamber views. The videos were
presented to the cardiologist for decision making.

Figure 7.4: Example of a bull’s eye plot generated by the end-systolic strain
values of the LV segments for cardiologist reading.
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Figure 7.5: Samples of the strain and strain rate curves of one of the subjects
prepared for cardiologist reading.

the cardiologist in two separate phases. In the first phase, only the
wall motion videos were demonstrated to the cardiologist for making a
decision while in the second phase, the cardiologist could use all listed
items for decision making.

7.4 Results and Discussion

7.4.1 PCA Results

The first three modes of variation of the strain and strain rate PCs of
the first PCA model are illustrated in Figure 7.6. In order to investigate
the PCs’ structures in terms of timing of the six mechanical phases of
the cardiac cycle, the timing of the onset of each phase is shown with
a red vertical line.

For the strain curves (Figure 7.6(a)), the first PC explains the am-
plitude variations among the subjects. The second PC describes varia-
tions in timing of shortening and lengthening of the segments. It shows
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PC1 (74.80%) 

Figure 7.6: The first three modes of variation of the (a) strain and (b) strain
rate PCs derived from the first PCA model. Mean curves plus (++red) and
minus (- -green) 3σ for the strain PCs and 7σ for the strain rate PCs are
presented. The percentage of data variation captured by each PC is also
shown. Vertical dashed lines are the timing of the onset of the six mechanical
phases of the cardiac cycle.
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that some segments shorten less fast and their subsequent relaxation
is less fast as well. The third PC captures early- and post-systolic
variations among the curves. It shows that early-systolic lengthen-
ing is associated with post-systolic shortening which is known to be a
hallmark of ischemia.

For the strain rate traces (Figure 7.6(b)), the first PC explains
variations in overall strain rate amplitude and shows that high sys-
tolic strain rate is associated with high (early and late) diastolic strain
rate and vice versa. The second PC models variations in timing and
amplitude in the relaxation phase. It can be seen that a delayed and
reduced curve in the early relaxation is associated with increased late
diastolic strain rate. The third PC also explains variations in the early
relaxation phase.

In Figure 7.6 the percentage of data variation explained by each
PC is also shown. Two key observations can be made by comparing
the percentages of the strain and strain rate’s PCs:

1. the first three PCs of the strain curves account for 92.43% of the
whole data variation while for the strain rate traces, 40.18% of
the data variation is captured by the PCs,

2. the first PC in Figure 7.6(a) accounts for most of the strain curves
variations while the PCs in Figure 7.6(b) have comparable con-
tributions in describing variations of the strain rate curves.

These observations can be justified by the simpler temporal structure
of the strain curves compared to those of the strain rate traces and
imply that for modeling the strain curves, a smaller number of PCs is
required.

The next PCs capture more complex temporal patterns of the defor-
mation traces and making a proper patho-physiological interpretation
of their variations is difficult. This is also the case for the PCs of
the second PCA model (Figure 7.7) given the fact that this model is
designed to describe temporal behavior of the deformation traces as
well as spatial interactions between the LV segments simultaneously.
Therefore, no interpretation of the second methodology’s PCs is given
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Table 7.1: Number of the first and selected PCs from the two proposed
methodologies that yielded to the best average classification performances.

#First PCs #Selected PCs
Methodology I
Strain 10 3
Strain Rate 15 28
Methodology II
Strain 21 13
Strain Rate 68 84

here but the usefulness of this model will be studied in the next sec-
tion by considering the performances of the classification systems built
based on its parameters.

7.4.2 Classification Results

For the PCA-derived features, different number of PCs were examined
to have the optimal S-T representation of the LV function. From the
first PCA model, the examined PCs per segment were taken from the
set {5, 10, 15, 20, 25, 30}. The reason for limiting the maximum number
of the tested PCs to 30 was the way of building the S-T representation
in the first proposed methodology where the S-T feature vector’s di-
mension was equal to the number of employed PCs multiplied by the
number of the LV segments. Regarding the small number of subjects
used in this study (i.e. 120), using large number of PCs increases the
chance of overfitting. For the second PCA model, however, a wider
range of the PCs could be examined because in the second method-
ology the computed PCs directly give the S-T representation of the
LV function. Therefore, a subset of the PCs that captured percent-
ages of data variation equal to {70%, 80%, 85%, 90%, 95%, 99%} was
examined.

Table 7.1 lists the number of first and selected PCs from each
methodology that yielded to the best average classification perfor-
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Figure 7.8: Average classification results on the (a) strain and (b) strain rate
curves using the proposed S-T feature vectors in methodology I.
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Figure 7.9: Average classification results on the (a) strain and (b) strain rate
curves using the proposed S-T feature vectors in methodology II.

10 20 30 40 50 60 70 80 90 100

50

55

60

65

70

75

80

85

90

# KNNs

A
ve

ra
g

e
 C

la
ss

ifi
ca

tio
n

 A
cc

u
ra

cy
 (

%
)

 

 

Strain

Strain Rate

Figure 7.10: Average classification results on the strain and strain rate curves
using the traditional features.



108 Results and Discussion

Table 7.2: Best average classification results (%) and their corresponding
sensitivity and specificity values obtained by the S-T and traditional feature
vectors.

ACC SE SP
Methodology I
First PCs
Strain 70.83 78.33 63.33
Strain Rate 85.83 86.67 85
Selected PCs
Strain 69.17 73.33 65
Strain Rate 85 85 85
Methodology II
First PCs
Strain 73.33 73.33 73.33
Strain Rate 85 86.67 83.33
Selected PCs
Strain 75.83 73.33 78.33
Strain Rate 87.50 90 85
Traditional Features
Strain 64.17 40 88.33
Strain Rate 67.50 80 55

mances. The average classification results corresponding to the PCs
listed in Table 7.1 are demonstrated in Figure 7.8 and Figure 7.9 for
the first and second methodology, respectively. The average classifica-
tion outcomes obtained by the traditional features is shown in Figure
7.10. The best average classification outcomes and their correspond-
ing sensitivity and specificity values obtained by the different feature
vectors are listed in Table 7.2.

It can be seen from Figure 7.8, Figure 7.9 and Table 7.2 that the S-
T features of methodology II could provide better results than those of
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methodology I. The results also show that while by using the feature se-
lection approach better classification performances were achieved than
only using the first PCs for methodology II, methodology I could not
take advantage of this technique. By considering the number of PCs
that resulted in the best outcomes in Table 7.1, it can be realized that
methodology II needs less number of PCs to give better results than
methodology I. Note that, the number of PCs of methodology I, listed
in Table 7.1, should be multiplied by the number of LV segments to
account for the S-T feature vector’s dimension.

Another key point that is highlighted by the results is that the
strain rate traces convey significantly higher amount of information
about the heart function than the strain curves where in both method-
ologies the S-T features extracted from the strain rate traces led to
higher classification results than those of the strain curves. As shown
in Table 7.1, the S-T feature vectors of the strain rate curves were gen-
erated by using significantly larger number of PCs compared to those
of the strain curves. This observation confirms our expectation about
the required number of PCs for modeling the behavior of the strain
and strain rate traces regarding the complexity of their structure.

The obtained results show that both of the proposed S-T repre-
sentations could outperform the traditional techno-markers for both
strain and strain rate curves. This means that by exploring the whole
cardiac cycle instead of considering one time point, considerably more
information regarding the characteristics of the deformation traces can
be achieved.

7.4.3 Cardiologist Decisions

Table 7.3 lists the cardiologist readings which were made based on the
wall motion videos and all information mentioned in section 7.3.7. It
shows that the cardiologist could make better decisions by using all
available information sources than only using wall motion videos.

The cardiologist readings can be compared with the automatic clas-
sification results listed in Table 7.2 by recalling the difference between
the number of subjects that were used in these two procedures. While
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Table 7.3: Outcome of cardiologist readings (%) based on wall motion
grayscale videos and having all three sources of information (i.e. wall motion
videos, bull’s eye plots and strain (rate) curves).

ACC SE SP
Wall Motion 67.50 65.22 70.59
All Information 70 66.67 75

the cardiologist’s readings are more accurate than the classification
outcomes based on the traditional features, it could not provide better
results than those of methodology II. Although the results of the visual
assessment are comparable with the classification results achieved by
the strain S-T features in methodology I, the strain rate S-T repre-
sentation in methodology I yielded to significantly better performance
than the cardiologist.

7.5 Conclusion

This study addressed the problem of modeling echocardiographic de-
formation curves for the automatic detection of MI. Two methodolo-
gies were proposed to model the S-T deformation patterns of the LV
based on PCA. The PCA-derived S-T parameters were then used to
build a classification system for the categorization of normal and in-
farcted hearts. Usefulness of the proposed S-T representations was
confirmed through experimental evaluation where they could provide
significantly better classification results than the traditional techno-
markers (i.e. end-systolic strain and peak-systolic strain rate values)
and visual assessments of an expert cardiologist. Classification results
also demonstrated that the strain rate traces convey considerably more
information about LV function than the strain curves and PCA is able
to properly model this extra amount of discriminatory information
content.
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Statistical Shape
Modeling of the LV

This chapter is based on a paper presented in Statistical Atlases and Computational
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“Automatic detection of myocardial infarction through a global shape feature based on

local statistical modeling”
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8.1 Abstract

This study presents a local-to-global statistical approach for model-
ing the major components of left ventricular (LV) shape using its 3-D
landmark representation. The rationale for dividing the LV into local
areas is bi-fold: 1) to better identify abnormalities that lead to local
shape remodeling and, 2) to decrease the number of shape variables
by using a limited set of landmark points for an efficient statistical
parametrization. Principal Component Analysis (PCA) is used for the
statistical modeling of the local regions and subsets of the learned pa-
rameters that provide significant discriminatory information are taken
from each local model in a feature selection stage. The selected local
parameters are then concatenated to form a global representation of
the LV and to train a classifier for differentiating between normal and
infarcted LV shapes.

8.2 Introduction

Statistical shape analysis is a promising approach to model cardiac
anatomy and to characterize myocardial abnormalities. The success
of the point distribution model (PDM) [23] in describing anatomical
structures of medical images makes it the basis of the majority of car-
diac shape parametrization algorithms. These algorithms have been
established using both linear methods (such as Principal Component
Analysis (PCA) [39, 91, 104, 124] and Independent Component Anal-
ysis (ICA) [105]) and nonlinear techniques (such as kernel PCA [36]).
One drawback of these techniques, however, is that they treat the
shape globally. In addition to being computationally expensive due to
the requirement of modeling a large number of variables, a global ap-
proach may fail to characterize abnormalities that affect small regions
of the myocardium. An alternative approach is to learn local statistical
shape components and then merge their results to describe the global
shape as a poly-local model. A recent and well-established example
of such framework is presented in [123]. It is based on utilizing lo-
cal shape descriptors, but not landmark points as suggested in PDM,
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and employing a manifold learning technique called ISOMAP [111] for
dimension reduction.

Inspired by [123], a local statistical shape modeling approach based
on PDM and PCA [61] is presented in this study to characterize ma-
jor components of LV shapes. The rationale of utilizing PCA in our
framework is as follows: 1) PCA implementation involves simple steps
and its parameters can be efficiently computed and, 2) it allows to
visualize major modes of data variation. The latter property could be
of particular interest to study the relation between the parameters of
the statistical model and the patho-physiology of the heart.

The main contribution of this study compared to the framework
presented in [123] is the way that the local statistical information are
incorporated in the classification phase. In [123], an independent clas-
sifier was built with the parameters of each local model and the clas-
sifiers decisions were fused using majority voting. Independent treat-
ment of the local models parameters could degrade the capability of
the combined classification model in dealing with abnormalities that
affect small regions of the heart. Here, we propose to create an alter-
native local-to-global representation of the LV shape components by
concatenating the parameters of the local models and then building a
classifier with the obtained feature vector. Having the advantage of en-
coding global shape parameters of the LV, the spatial relation between
the local zones is taken into consideration using this technique. Ex-
plicit usage of the local statistical parameters can also create distinct
areas in the global feature space. This property enables a classification
system to better characterize abnormalities that mostly affect small
regions of the myocardium.

8.3 Materials and Method

Figure 8.1 represents global and local architectures that were imple-
mented in this study for the statistical modeling and classification of
LV shapes. In the local architecture (Figure 8.1(b)), the LV was di-
vided into non-overlapping regions of interest (ROI) and an indepen-
dent PCA model was built with the local shapes belonging to each
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ROI. By taking a subset of the learned statistical parameters, two dif-
ferent classification schemes were examined. In addition, a global PCA
model (Figure 8.1(a)) was also built to benchmark the performances
of the local PCA models.
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Figure 8.1: Architectures of the implemented statistical frameworks. (a) A
PCA model is constructed with whole LV shapes. Then, a subset of the
first PCs (solid line) or selected PCs (dashed line) is used for training a
classifier. (b) Independent PCA models are built with the segments of LV
shapes and subsets of the selected PCs are used in the classification phase.
In the classifier voting scheme, independent classifiers are trained with the
selected PCs of the local models and the final decision is made by the majority
voting rule. In the proposed scheme, one classifier is trained with a feature
vector that is obtained by concatenating the local models parameters.

8.3.1 Data and Preprocessing

A data set of 100 healthy volunteers and 100 patients with myocardial
infarction (MI) from the MESA [8] and DETERMINE studies [62] re-
spectively, was used in our experiments. These data sets are part of
the Cardiac Atlas Project (CAP, www.cardiacatlas.org) [38] and con-
tain cardiovascular magnetic resonance (CMR) images. Endocardial
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and epicardial shapes at end-diastole (ED) and end-systole (ES) are
represented with their corresponding Cartesian sets of landmark points
in magnet coordinates. It has been demonstrated in [124] that a PCA
model built with shape vectors at ED and ES could provide better
outcomes than its counterparts that were constructed with only ED or
ES shapes. Therefore, the shapes of both ED and ES cardiac phases
were used for the implementation of the global and local PCA models
in the current study.

All shapes were aligned by making use of the generalized Procrustes
superimposition method [95]. As suggested in [124], for building the
global PCA model the alignment phase has been performed by elimi-
nating position and orientation differences but preserving scale varia-
tions as ventricular size has a predictive value for diagnosing MI. For
constructing the local PCA models, however, scale variations were also
removed in the alignment procedure.

8.3.2 Statistical Modeling

Both global and local PCA models were learned using the data of the
healthy volunteers to capture major modes of normal shape variations.
For building the local PCA models, small, medium and large ROI sizes
were examined which respectively encompassed 4, 8 and 16 faces of
the 3-D meshes in both the circumferential and longitudinal directions
where the full LV mesh was composed of 32× 32 faces. Note that the
landmark points in each ROI were consistent across the subjects.

8.3.3 Feature Selection

The ultimate goal of the presented framework is the accurate catego-
rization of the normal and infarcted LV shapes. This requires that
the statistical parameters taken for training a classification system
provide significant discriminatory information. Traditionally, data are
projected onto the subspace spanned by the first principal components
(PCs) to retain most of the variation in the original variables. How-
ever, it is possible that some of the PCs with low contribution in the
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data variation contain relevant discriminatory information. As such,
the P-metric method [55], presented in section 1.4, was used in our
framework to select relevant PCs. The computed PCs were sorted
based on their P -metric values in descending order and a subset of the
first selected PCs were used in the classification stage.

8.3.4 Classification

Figure 8.1(b) illustrates two classification schemes that were trained
with the parameters of the local PCA models. The first scheme uses
the strategy proposed in [123] while the second one works based on
the idea of concatenating the local PCA models parameters. Both
methodologies were implemented by making use of a subset of PCs
that had been chosen in the feature selection stage. Note that, since
the local PCA models were trained independently, the selected PCs
for each model can be different from the others. SVM [25, 117] with
a linear kernel was used as classifier in both global and local models.
Classification outcomes were obtained using 10-fold cross-validation.
Hereto, data vectors were randomly divided into 10 equal-size folds
such that each fold had the same number of patterns from each class.
Classifiers were trained with the first nine folds and tested with the
last one. This procedure was repeated 10 times so that all folds were
used for training and testing the classifiers.

8.4 Results

Average classification resuls obtained with the global PCA model are
shown in Figure 8.2. While the best result of the classifier trained with
the first PCs (Figure 8.2(a)) was achieved by preserving 99% of the data
variation (the first 60 PCs), training the classifier with the selected
PCs (Figure 2(b)) yielded better performance with considerably less
number of features (6 PCs).

Figure 8.3 illustrates the average classification accuracies achieved
by the local PCA models. It can be seen that all local models could
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Figure 8.2: Average classification outcomes (%) with the global PCA model.
(a) Training the classifier with a subset of the first PCs or (b) with a subset
of the selected PCs.

provide significantly higher classification results than the global ones.
The best classification results of the global and local PCA models along
with their corresponding sensitivity and specificity values are listed in
Tables 8.1 and 8.2, respectively.

In order to give insight into the characteristics of the selected PCs
that enable a classifier to discriminate between the normal and in-
farcted LV shapes, the first five selected modes of variation of the global
PCA model, which were observed constantly across the 10 folds, are
visualized in Figure 8.4. Note that the reason for visualizing the global
PCs is that they are easier to interpret than the local PCs.

8.5 Discussion

8.5.1 Global versus Local Statistical Modeling

It has been demonstrated that by using a limited number of the land-
mark points, a local framework is able to provide better statistical
description of LV shapes than its global counterpart. The performance
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Figure 8.3: Average classification accuracies (%) obtained with the selected
PCs of the local PCA models and utilizing (a) the classifier voting scheme
and (b) the proposed classification framework.

of the local structures, however, depends on the ROI size and tuning
this parameter needs a proper compromise between the statistical sig-
nificance and number of landmark points. Although the performance
of the local classification schemes in detecting MI is comparable, di-
rect usage of the local models parameters and considering the spatial
relation between the LV segments would enable the proposed scheme
to properly deal with different abnormalities that affect small regions
of the myocardium.

As shown in Figure 8.3, the favorable results of the classifier vot-
ing and the proposed scheme were obtained by using a few number of
selected PCs per local PCA model which can be explained by the fol-
lowing reasons: 1) local regions have less modes of variation than the
whole LV and their statistical modeling needs less number of compo-
nents as well, 2) as shown in Figure 8.2 (b), selected PCs could provide
considerable discriminatory information for the local classification sys-
tems.
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Table 8.1: Best average classification accuracy results (%) and their cor-
responding sensitivity and specificity values obtained with the global PCA
model (typed in bold). The (min,max) ranges of the obtained outcomes are
also presented.

ACC SE SP

First PCs
92.5 (80,100) 92 (80,100) 93 (80,100)

Selected PCs
95 (80,100) 93 (80,100) 97 (80,100)

Table 8.2: Best average classification accuracy results (%) and their corre-
sponding sensitivity and specificity values obtained with the local PCA models
(typed in bold). The (min,max) ranges of the obtained outcomes are also pre-
sented.

ACC SE SP

Classification Voting Scheme
Small ROI 99 (95,100) 98 (90,100) 100 (100,100)
Medium ROI 99.5 (95,100) 99 (90,100) 100 (100,100)
Large ROI 98 (90,100) 98 (90,100) 98 (90,100)
The proposed Scheme
Small ROI 99 (95,100) 98 (90,100) 100 (100,100)
Medium ROI 99.5 (95,100) 99 (90,100) 100 (100,100)
Large ROI 98.5 (95,100) 97 (90,100) 100 (100,100)

8.5.2 Feature Selection Utility

The obtained results confirm the suitability of the feature selection
strategy where training a classifier with a small group of the selected
PCs could significantly enhance the performance of the same classi-
fier that was trained with a much larger subset of the first PCs. To
shed further light on the utility of the feature selection method and
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Figure 8.4: Variations of the first five selected PCs of the global PCA model
at end-diastole and end-systole. From top, PCs 18, 1, 20, 42 and 15 are the
selected modes of variation.

statistical shape modeling with PCA, some patho-physiological inter-
pretations of the selected PCs belong to the global PCA model (shown
in Figure 8.4) are given in the following.
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The left- and righ-hand sides of each LV mode in Figure 8.4 cor-
respond to the anteroseptal and inferolateral walls, respectively. The
first selected mode (PC 18) describes variations in the curvature of the
anterior wall. This PC might have been selected also due to possible
difference in contouring convention of the left ventricular outflow tract
(LVOT) in the MESA and DETERMINE trials. The second selected
mode (PC 1) explains variations in the LV size. Blunting of the apex
and variation of the inferior wall curvature is described by the third
selected mode (PC 20). The forth selected mode (PC 42) is associated
with the end-systolic variations in the curvatures of the inferior region
and the anterior wall. Finally, the fifth selected mode (PC 15) captures
the rightward shifting of the apex and variations in the inferior region.

The above-mentioned patho-physiological interpretations are mostly
based on the evidences presented in [31, 83] and are associated with
the process of the LV remodeling due to anterior MI. Although the
DETERMINE study involves patients with different types of the MI,
it is well-known that coronary artery disease occurs most commonly in
the left anterior descending (LAD) coronary artery. Therefore, inter-
pretation of the selected PCs based on the findings of [31, 83] might
be valid for the majority of the subjects in this study.

8.6 Conclusion

A statistical framework has been established based on local PCA mod-
els to characterize major modes of LV shape variation. Although lo-
cal statistical modeling could bring favorable advantages over global
parametrization, the adopted strategy for associating the local mod-
els parameters plays a key role in obtaining an efficient local-to-global
shape characterization. We hypothesized that the concatenation of the
local models parameters would lead to such efficient characterization.
Parameters of each local model were selected based on their significance
in discriminating normal and infarcted shapes. Classification results
confirmed the superiority of the proposed statistical framework over
the global model. They also approved the suitability of the feature
selection strategy where utilizing a few number of selected PCs could
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yield high classification results.



Chapter 9

Conclusions and Future
Perspectives
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9.1 Summary and General Conclusions

This thesis was concerned with developing new computerized ultrasound-
based systems for the diagnosis of PCa and MI. The advantages of
ultrasound imaging, like safety, portability, being real-time and cheap,
allow the proposed CAD systems to be widely used in the clinical prac-
tice. In the following, the major contributions made in this thesis are
reviewed.

In Chapter 3, a label assignment approach was introduced to deal
with prostate biopsy samples with uncertain labels. The accepted label
uncertainties were then managed in the framework of the D-S theory of
evidence. By using this approach, the size of the training data can be
increased, which is of great advantage for building a solid classification
system, and data wasting is also avoided.

The ICA method was used in Chapter 4 to learn features from the
RF backscattered signals to diagnose PCa. By using ICA for learning
features from the RF signals, less restrictive assumptions about the in-
teraction between ultrasound waves and tissue are made compared to
the traditional feature extraction. This property can bring high gener-
alization power to a CAD system. In this chapter, an ensemble system
for learning ICA dictionaries and classifying four different classes of
backscatterers was also proposed. It has been shown that by using an
ensemble-based methodology for dictionary learning, (near-) optimal
parameters of the ICA model can be found and favorable classifica-
tion results could be achieved by merging the classification outputs
constructed with the employed ICA dictionaries.

In Chapter 6, PCA was used to model major temporal patterns of
segmental strain (rate) traces acquired from the LV. A classification
system was then trained to categorize normal and infarcted segments.
The proposed method could yield better results than a classifier trained
with some common traditional techno-markers like end-systolic strain
and peak-systolic strain rate values. Moreover, the diagnostic pro-
cedure was automatic and could provide objective evaluation of the
segmental LV function.

PCA was also used in Chapter 7 with the aim of modeling the S-T
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characteristics of the LV deformation function. Two different PCA-
based methods were proposed to differentiate normal volunteers from
the patients with acute MI. The proposed models were contrasted with
S-T representations built from the traditional techno-markers and also
with the readings of an expert cardiologist. The obtained results con-
firmed the superiority of the proposed PCA-based methods over the
other employed approaches.

Finally, a local-to-global statistical approach based on PCA was in-
troduced in Chapter 8 to model shape parameters of the LV to detect
MI. Statistical modeling was performed locally by building indepen-
dent PCA models on non-overlapping ROIs from the LV shapes. The
CAD system took advantage of a feature selection approach to sort PCs
of each PCA model based on their discrimination information. Small
subsets of the sorted PCs were then taken from the local models and
by connecting them together, a global representation of the LV shapes
was achieved. The proposed scheme could yield to higher classification
results than a global shape model learned also by PCA. The usefulness
of the utilized feature selection approach and also PCA, as the statisti-
cal modeling approach, were demonstrated by visualizing some of the
first selected PCs of the global PCA model and illuminating their links
with patho-physiology.

9.2 Future Perspectives

9.2.1 Using Nonlinear statistical techniques

In this thesis, PCA and ICA have been used for data modeling. Both
of these methods, however, explore linear relationships between data
variables and do not take into account their nonlinear dependencies. As
an alternative to these methods, performances of some nonlinear sta-
tistical methods like kernel PCA [100], nonlinear ICA [53] or ISOMAP
manifold learning [111] can be investigated.
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9.2.2 Applying the Proposed ICA Dictionary Learn-
ing Method to IQ or B-mode images

The proposed ensemble dictionary learning approach presented in Chap-
ter 4 has been developed to extract feature from RF signals. In some
applications, however, RF data is not easily available or the diagnostic
procedure is mainly based on the other types of ultrasound images. The
generality of the proposed dictionary learning method allows it to also
be applied to the other widely-used ultrasound images like B-mode.

9.2.3 Combining Tissue, Function and Shape At-
tributes

Some of the cardiovascular diseases (e.g. MI) change tissue [121], func-
tion and shape characteristics of the heart. Therefore, an optimal
approach to characterize myocardial abnormalities is to combine the
tissue, function and shape attributes of the heart. In Chapters 4, 7
and 8 of this thesis, three schemes were presented for modeling tissue
structure, LV function and LV shape patterns, respectively. Having
the parameters derived by these schemes at hand, the next step could
be to merge them for a better assessment of the heart abnormalities.

9.2.4 Using Other Feature Selection Methods

In Chapters 7 and 8, the P -metric method was used for selecting dis-
criminating features. This approach, which falls into the category of fil-
ter feature selection methods, considers means and standard deviations
of the classes in the subspace of each feature to determine its relevance.
Other members of the filter feature selection family, which use differ-
ent types of criteria for sorting the relevant features, can be employed
as well. Furthermore, the wrapper feature selection techniques [46],
which evaluate the usefulness of the features using a learning machine,
can be used in the structure of the proposed CAD systems.
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9.2.5 Using Characteristics of the Patients

Physical and clinical characteristics of the patients can also be incorpo-
rated into the proposed CAD systems to enhance their performances.
In addition to general characteristics like sex, age, height and weight,
some other information that has stronger correlation with pathology
can be used as well. This can be the results of PSA and DRE tests for
diagnosing PCa. For the CAD systems designed for detecting abnor-
malities of the heart, utilizing some clinical indexes like systolic and
diastolic blood pressures, ejection fraction and presence or absence of
diabetes can be advantageous to the diagnostic scheme. Some of the
behavioral characteristics related to the cardiac diseases like smoking
and alcohol usage can be taken into account as well.

9.2.6 Applying the Proposed Methods to Other Patholo-
gies

The proposed CAD systems can be applied to other pathologies as well.
As an example, the methods proposed to detect MI can also be used to
characterize hypertension as this abnormality affects both motion and
shape patterns of the LV. Given the fact that the proposed ICA-based
methods have been designed to address feature extraction in medical
ultrasound, they can be applied to a wide range of pathologies as long
as enough data for training the ICA model are available. The approach
presented in Chapter 3 can be used to deal with those group of CAD
problems that contain data with uncertain or inaccurate labels. This
issue can be seen in clinical practice where the labels associated to the
data are not reliable/accurate due to the measurement noise or the
difficulty of assigning crisp class labels to the acquired measurements.
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