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Abstract 

 

Minimally processed fruit (MPF) are products that have to maintain their quality similar to those of 

fresh ones. Being metabolic active tissues, they show physical and physiological response to 

minimal processing (wounding), that negatively influence their shelf-life. In the last decades, novel 

non-thermal processing methods have attracted the interest of food scientists, industries and 

consumers as technologies useful for shelf-life extension or increasing product functionality, with a 

minimal impact on the nutritional and sensory properties of foods. The main aim of this PhD thesis 

was to investigate qualitative, metabolic and nutritional aspects of different MPF, submitted to 

traditional and innovative non-thermal processes. This issue was addressed considering the product 

as a dynamic system, both in terms of endogenous physiological activity and porous matrix 

interacting with the surrounding ambient (during processing and storage), through the application of 

multi-analytical approach. The most consistent results related to the applied non-thermal techniques 

confirmed their different potentiality in the optic of processing and product innovation, but the need 

of their modulation in relation to the different raw material susceptibility to degradation and final 

product target. Cold plasma treatment effects on fresh-cut fruit, characterized by different kind of 

stability criticisms, resulted mainly bound to the inactivation of degradative enzymes and microbial 

cells, without evidencing functional modifications in the final products. The study of osmotic 

dehydration and vacuum impregnation highlighted as these techniques can be successfully applied 

for cold formulation/enrichment of MPF, but also the necessity to carefully account for the 

metabolic and structural modifications induced by the processing on the vegetable tissues. An 

induction of metabolic stress response was also evidenced as a consequence of pulsed electric fields 

treatment related to electric field strength. Below the threshold limit of irreversible damages to cell 

membranes, the treatment promoted only slight and reversible modifications of the metabolic 

profiles. 
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1. Introduction and objectives 

 

Minimally processed fruit (MPF) are products that have to maintain their quality (appearance, 

texture, flavour and nutritive value) similar to those of fresh products (Alzamora et al., 2000). 

The key to understand MPF physiology is that they are metabolic active tissues, and as a 

consequence, show physical and physiological response to minimal processing procedures 

(wounding) (Toivonen & DeEll, 2002) that negatively influence their shelf-life. Quality loss of 

MPF is principally due to physiological ageing, caused by the loss of cellular compartmentation, 

due to peeling and cutting, that causes the mixing of enzymes and substrates and an overall increase 

in metabolic metabolism (Rolle & Chism, 1987). 

One of the main aims of the fruit industry is to develop new preservation technologies to efficiently 

respond to the exigent quality and safety consumer’s perception, defining their choices and food 

economics. Consumers demand high quality and convenient fruit and vegetable products, with 

natural flavour and taste, and appreciate the freshness of minimally processed food. 

In the last decades, novel non-thermal processing methods have attracted the interest of food 

scientists, industries and consumers as technologies useful for shelf-life extension or increasing 

product functionality with a minimal impact on the nutritional and sensory properties of foods. 

Although some aspects about these technologies have been widely investigated, there are still some 

aspects that are scarcely known. 

 

Hence, after a preliminary evaluation of the effect of ripening degree on qualitative, metabolic and 

nutritional aspects of different MPF (Paper I and II), the main aim of this PhD thesis was to 

investigate qualitative, metabolic and nutritional aspects of different minimally processed fruit 

submitted to traditional and innovative non-thermal processes. 

This issue was addressed considering the product as a dynamic system, both in terms of endogenous 

physiological activity and porous matrix interacting with the surrounding ambient (during 

processing and storage), through the application of multi-analytical approach based on the 

combination of different techniques. 

 

In particular the research was focused on the following aspects: 

2  Study of the effect of plasma treatment on microbial, qualitative, metabolic and nutritional 

aspects of different MPF (Paper III, IV, V and VI); 

3  Study of the effect of vacuum impregnation (VI) as a treatment for technological and 

nutritional functionality of MPF (Paper VII and VIII); 
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4  Study of the effect of osmotic dehydration on mass transfer, water state and metabolic 

response of MPF (Paper IX and X); 

5  Study of the effect of pulsed electric fields (PEF) on the metabolic response of minimally 

processed apples (Paper XI). 
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2. Minimal processing of fresh fruit  

 

The increasing popularity of minimally processed fruit (MPF) and vegetables has been attributed to 

the health benefits associated with fresh produce, combined with the ongoing consumer trend 

toward eating out and consuming ready-to-eat foods with a higher convenience value, but also 

driven by the trend towards healthier eating. The increasing demand of these products represents a 

challenge for researchers and processors to make them more stable and safe.  

MPF are products that undergo mild processing operations that allow them to maintain their quality 

attributes similar to those of the fresh ones. The MPF definition has evolved, as the minimal 

processing concepts have been better understood (Alzamora et al., 2000). According to Bolin & 

Huxsoll (1989), the definition can include foods in which tissues are not alive but whose freshness 

should be kept as an important objective of preservation. 

The expansion of minimal processing concepts has been reflected in anew, renewed and improved 

products and processes formulated and designed to produce a greater diversity of MPF. There is 

also a great interest in the application of new or emerging technologies to obtain MPF using non 

thermal processes in the framework of the “hurdle” concept (Alzamora et al., 2000). 

Key requirements in minimal processing of fresh products are raw material of high quality, strict 

hygiene and good manufacturing practices, low temperatures during processing, cleaning and/or 

washing before and after peeling, gentle peeling and cutting, pre-treatment, correct packaging 

materials and methods and correct temperature and humidity during distribution and retail 

(Varoquaux & Mazollier, 2002). 

 

2.1 Raw material handling and ripening degree  

The quality of the raw material is definitely an essential factors determining the quality of the final 

product (Varoquaux & Mazollier, 2002).  

Vegetables or fruits intended for pre-peeling and cutting must be easily washable and peelable, and 

must be of top quality (Ahvenainen, 2000). For hygienic reasons, no manure or fertilizer of animal 

origin should be used (Varoquaux & Mazollier, 2002).  

Incoming vegetables or fruits, which are covered with soil, mud and sand, should be carefully 

cleaned before processing (Ahvenainen, 2000). This first step is really important in order to avoid 

cross contamination due principally to peeling and cutting operations. 

The extent of the physiological response to minimal processing is affected by several factors, both 

internal and external. Internal factors include species and variety, but also both maturity at harvest 

and ripeness stage at cutting. 
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The selection of raw material, and in particular, the correct choice of cultivar is a critical step to 

obtain final products with long shelf life and high quality attributes and has to take into account 

various criteria (Varoquaux & Mazollier, 2002) such as: low sensitivity to physiological disorders 

and microbial diseases; low susceptibility to browning and softening  (Hodges & Toivonen, 2008); 

mechanical resistance of the tissue; resistance to elevated CO2 concentration (Varoquaux et al., 

1996) and/or low O2; high sugar contents because sugar depletion may be responsible for energy 

stress (Forney & Austin, 1988); low respiration rate (Varoquaux et al., 1996). 

Degree of ripening at harvesting and at processing is an important factor that can influence the 

intensity of the wounding response (Hodges & Toivonen, 2008). Generally, processing fruits that 

are unripe or slightly unripe, lead to a better preservation of quality during storage but it could be 

detrimental for the organoleptic and flavour profile (Beaulieu et al., 2004). 

Conversely, it seems that fruit at an advanced stage of ripeness tend to be more susceptible to 

wounds, hence to minimal processing (Soliva-Fortuny & Martín-Belloso, 2003; Gorny et al., 2000). 

Minimally processed apples and pears showed to better preserve their visual and textural 

characteristics during storage if processed while still unripe (Soliva-Fortuny et al., 2002). 

Furthermore, the fresh-industry prefers to process firmer and less mature fruits because of 

technological suitability, and a consequent longer shelf-life of the final product (Hodges & 

Toivonen, 2008). On the other hand, during ripening fruit develop their characteristic organoleptic 

quality and flavour profile (Gorny et al., 2000; Beaulieu & Lea, 2003; Aguayo et al., 2004b; 

Beaulieu, 2006)  

According to various authors  (Beirão-da-Costa et al., 2006; Panarese et al., 2012), maturity stage 

has an impact also on the effectiveness of pre-treatment such as mild heat treatments and osmotic 

dehydration (OD) for the production of fresh cut fruits.  

Paper I and II reported the effect of ripening degree on the evolution of various quality indexes 

characteristics of fresh-cut fruit; in particular while in Paper I the attention is focused on kiwifruit, 

in Paper II a comparison among apples, kiwifruit and melon at different ripening degree during 

storage after minimal processing was carried out. 

Generally, quality characteristics were found to be highly affected by ripening degree in kiwifruit 

and melon, but only slightly in apple. In particular, kiwifruit and melon processed at low stage of 

ripeness showed a better ability to retain initial characteristics, both in terms of colour and texture. 

As an example, lightness and hue angle of fruit samples during storage are reported in Table 1. 

Tissue lightness (L*) was found to decrease during ripening and during storage, causing surface 

darkening that was attributed to variation in the internal structure of the tissue and the induction of a 

translucent water-soaked tissue, while enzymatic browning in these fruits was scarcely influenced 
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(Agar et al., 1999). In fresh cut melon variations were observed also in hue angle, indicating a 

variation of hue probably due to changes in the β-carotene concentration (Simandjuntak et al., 

1996).  

 

Table 1. Colour of apple, kiwifruit and melon at the two ripening stages selected during accelerated storage in 
controlled conditions. Different letters indicate significant differences (p-level < 0.05) between ripe and unripe fruit for 
the same storage time (Table 3 in Paper II). 
 

 Fruit Ripening 
Stage 

Storage time (days) 

 0 0.5 1 2 4 

 Apple U 81.45 a ± 2.05 69.33 a ± 2.45 65.57 a ± 1.38 - - 
 R 82.33 a ± 3.05 71.55 a ± 2.56 67.67 ± 2.05 - - 

L* Kiwifruit U 48.45 a ± 2.11 - 47.98 a ± 3.07 47.21a ± 3.16 44.08a ± 3.77 
 R 38.11b ± 2.45 - 31.93 b ± 3.61 31.88 b ± 3.78 31.75b ± 1.81 

 Melon U 57.24 a ± 2.90 - 45.25 a ± 1.72 45.26 a ± 2.12 40.43a ± 4.97 
 
 

R 57.85 a ± 4.50 
 

- 
 

42.92a ± 4.04 
 

44.11a ± 2.48 
 

42.38a ± 4.97 
 

 Apple U 97.57a ± 4.55 93.25a ± 2.56 88.15a ± 2.07 - - 
 R 98.67a ± 3.18 90.03a ± 3.56 84.66 ± 2.28 - - 

h° Kiwifruit U 103.93a ± 2.11 - 103.72a ± 0.76 102.19a ± 2.16 101.17 a ± 3.11 
 R 103.83a ± 2.70 - 104.70a ± 2.80 104.44a ± 2.05 106.32b ± 4.39 

 Melon U 61.81a ± 0.98 - 60.89 a ± 1.05 59.83 a ± 1.76 60.08 a ± 1.03 
 R 64.57b ± 0.89 - 62.91b ± 1.16 62.85b ± 1.37 62.11b ± 1.75 

 

On the contrary, surface colour of apple, that is mainly affected by polyphenloxidase activity was 

apparently not influenced by maturity degree, as no differences were observed in the entity of 

browning or enzymatic activity in relation to ripening index (Paper II). 

Similar results were found for textural parameters. Ripening degree influences initial hardness 

values and texture evolution during storage in kiwifruit and melon. In particular, unripe fruits 

showed a better ability to retain initial hardness, while riper ones presented very low values of this 

parameters indicating an advanced stage of internal structures breakdown. The obtained results 

suggest that with the progressive ripening of the fruit, the internal structure undergoes a breakdown 

that causes a substantial loss of initial firmness. On the contrary, in fresh-cut apples hardness 

increased upon ripening in apple samples, both between ripening stages and during 24 h storage. 

Moreover, metabolic profiles obtained by isothermal calorimetry have been integrated in order to 

calculate the total metabolic heat produced by fruit tissues during 24 h. Results are reported in 

Figure 1. 
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Figure 1. Total metabolic heat production of apple, kiwifruit and melon at the two ripening stages selected during 24 h 
at 10°C. Different letters indicate significant differences (p-level < 0.05) between ripe and unripe fruit (Fig, 4 in Paper 
II) 
 

These results suggest that fruits at an advanced stage of ripening have a lower metabolism reaction 

after wounding, probably due to the loss of the ability to repair the damage caused by mechanical 

stress. While differences were statistically significant for all fruit considered, the highest difference 

was observed for kiwifruit that showed, at the advanced stage of ripening, a 50% decrease in the 

metabolic heat production compared to the unripe fruit. 

Generally, results described in Paper I and II highlight how the determination of the optimal 

ripening degree for fresh-cut production has to be carried out specifically for each type of fruit. 

 

2.2 Peeling, cutting and wounding response  

Operations as peeling, cutting and/or slicing play an important role in the product shelf-life. The 

removal of external barriers, such as the peel, and the tissue disruption due to cutting that cut 

through cells and leave intact cells of previously internal tissues exposed, cause a complex chain of 

physiological reaction aimed at repairing the damage caused to the tissue, known as wounding 

response (Alzamora et al., 2000). 

Hence, the key to understand fresh-cut fruit physiology is that they are essentially wounded tissues 

and present an immediate response to minimal processing, including mechanical stress, removal of 

epidermal layer and exposure of the internal tissues to air and contaminants (Brecht et al., 2004). 

Physiological and biochemical responses induced by wounding regard tissues both adjacent and 

distant to the wound and are generally deleterious to the quality of the product. Changes can occur 

immediately after wounding or in the next days. 

One of the first response is an increase in ethylene production and in respiration rate that may be 

related to the induction of phenolic metabolism and the wound healing response of the tissue. 
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Ethylene in turn can stimulate other processes leading to membrane deterioration, loss of bioactive 

compounds and development of off-flavours and can make plant tissue more susceptible to 

microbial spoilage (Brecht et al., 2004). Figure 2 reports the interrelationship among the many 

effects of wounding on physiological processes in fresh-cut vegetables and fruits. 

 

 
Figure 2. Schematic representation of the main physiological effects of wounding response (adapted from (Saltveit, 
2010). 
 

The main physiological responses induced by wounding in minimally processed fruits will be 

further described in chapter 3. 

The intensity of the wounding response can be affected by many factors, both internal and external. 

Internal factors include mainly species, cultivar and ripening degree as described in paragraph 2.1. 

Among external or processing factors, the main are peeling and cutting methods, pre-treatments 

applied, packaging parameters and processing and storage temperature. 

Few studies have been conducted on the effect of cutting methods on the quality of fresh-cut fruit 

products. In order to be as gentle as possible and minimize injuries, hand peeling with a sharp knife 

would be the ideal method (Bolin & Huxsoll, 1989; Bolin & Huxsoll, 1991). Nevertheless, for 

practical reasons, on industrial scale mechanical peeling is generally adopted and, according to 
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Varoquaux & Mazollier (2002) blades are made of soft stainless steel and generally are extensively 

used and not sharpened enough. 

The use of dull knives and blades leads to more extensive bruising and damage, hence it can 

significantly and negatively affect product storage life (Garcia & Barrett, 2002). 

An example of the effect of blades sharpness is reported by Portela & Cantwell (2001) that found 

that the use of blunt cutting blades for fresh-cut melon production lead to variation in the respiration 

rate of the tissue with consequences such as higher ethanol production, off-odour scores and 

electrolyte leakage.  

According to Abe et al. (1998), also the cutting direction seems to play a significant role in the 

extent of the physiological response. In particular, among various cutting modes, 1 cm-thick 

transverse section banana slices showed the lowest respiration rate and ethylene production during 

storage. 

Cutting shape also seems to be critical for final product quality. Cut cylinders of melon showed to 

maintain a higher firmness during storage compared to slices trapezoidal cuts, but at the same time 

showed a higher degree of translucency (Aguayo et al., 2004a). 

Finally, considering the extent of wounding, metabolic activity tends to increase by increasing the 

number of cuts hence the surface/area ratio. Wadsö et al. (2004) found that the increase of 

endogenous metabolic heat produced by different cut vegetables, measured by a calorimeter, was 

proportional to the surface to volume ratio of the wounded tissue.  

 

2.3 Traditional pre-treatments 

There are various chemical and physical preservation strategies that can be applied to maintain 

fresh-cut quality; they generally focus on reducing microbial growth (Artés et al., 2009), browning 

(Garcia & Barrett, 2002) and tissue softening after cutting (Gorny et al., 2002). Several methods 

have been investigated; some of them have a physical approach like lowering or increasing the 

temperature, while others are based on a chemical approach (Garcia & Barrett, 2002). 

Dipping treatment after peeling and/or cutting is the most common chemical approach used in order 

to delay or control quality degradation in fresh-cut fruit (Oms-Oliu et al., 2010). 

Dipping in aqueous solutions of preservatives and/or fortifying agents is very important for the 

achievement of both high quality products with prolonged shelf-life. The first beneficial effect 

achieved is due to the rinsing of enzymes and substrates released from damaged cells during peeling 

and cutting. Furthermore, these treatments allow a partial dehydration of the product and/or the 

introduction of substances with stabilizing effects (e.g. antifermentative, antioxidant, antimicrobial 

agents), but also the introduction of substances that have got structuring and functional properties. 
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Generally, dipping times range between 1 and 5 min. Luna-Guzmán et al. (1999) observed that 

increasing dipping time from 1 to 5 min of fresh-cut melon in CaCl2 solution did not have effect on 

fresh-cut melon metabolism and quality. Evaluating the effect of calcium lactate on minimally 

processed melon, in Paper VII, we found that the application of vacuum resulted in an increase of 

hardness and crispness compared to the product dipped at atmospheric conditions. Nevertheless, the 

traditional dipping allowed a better maintenance of colour and microbial stability during shelf-life.    

Treatment temperature seems to impact on the effectiveness of the treatment applied, but results are 

not always in agreement. For example, while Luna-Guzmán et al. (1999) found that increasing 

temperature improved the firming effect of calcium dips in fresh-cut melon, according to Lamikanra 

& Watson (2004) low temperatures calcium dips had a positive effect on fresh-cut melon shelf-life. 

Traditionally, for sanitizing purposes, chlorinated water is used during industrial processing with 

dipping in solution containing between 50 and 200 ppm of NaOCl. Recently though, concerns about 

health issue related to the formation of toxic by-products have been put forwards and alternative 

sanitizers have been studied (Silveira et al., 2008). Artés et al. (2009) reviewed the main 

antimicrobial compounds investigated including peroxyacetic acid, oxygen peroxide, ozonated and 

electrolyzed water, organic acids and biological compounds such as essential oils and natural 

competitive microbiota. 

Most dipping treatments aimed at avoiding browning contain acidulants, usually citric acid, in order 

to lower the product pH and inhibit PPO activity (Brecht et al., 2004). Acidulants are often used in 

combination with other types of antibrowning agents. One of the most used is surely ascorbic acid, 

including its various neutral salts, because being a reducing compound, it is able to reduce the o-

benzoquinones back to o-diphenols preventing enzymatic browning (Dorantes-Alvarez & Chiralt, 

2000). Other compounds investigated for browning control or prevention are other reducing agents, 

for example thiol-containg compounds such as cysteine, chelating agents such as EDTA able to 

complex the copper present in the active site of the enzyme, complexing agents such as 

cyclodextrins that are able to entrap or from complexes with the enzyme substrates (Garcia & 

Barrett, 2002). 

Moreover, the postharvest application of aqueous solutions of calcium salts as dips or sprays has 

long been used to maintain tissue firmness of fresh fruits and vegetables. Calcium is able to form 

cross-links or bridges between free carboxylic group of the pectin chains, resulting in strengthening 

of the cell wall and at the same time, preserving the structural and functional integrity of 

membranes. Application of calcium salts were found to improve texture retention in pears (Gorny et 

al., 2002), kiwifruit (Agar et al., 1999), nectarines and peaches (Gorny et al., 1999) and melons 

(Luna-Guzmán et al., 1999). 
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Although calcium chloride is the most widely used salt, it seems to affect negatively product 

sensorial quality imparting a bitter taste, so that other calcium salts, in particular lactate, should be 

preferred (Silveira et al., 2011). 

The application of moderate heat treatment in combination with calcium dips have shown positive 

results for firmness preservation of fresh-cut melon (Luna-Guzmán et al., 1999) and kiwifruit slices 

(Beirão-da-Costa et al., 2014). The effectiveness of the combined treatments is due to the fact that 

moderate temperatures promote the activation of PME that brings about the deesterification of 

pectin, thus increasing the number of calcium binding sites. 

In terms of technological and economical aspects, these techniques present some disadvantages 

related to the necessity of dipping the product in aqueous solution (e.g. plant and consumables 

costs, disposal of exhausted solutions, labelling of chemical agents, further drying). 

 

2.4 Modified atmosphere packaging 

Packaging operations play a crucial role in minimally processed products shelf-life. Surely, the 

most studied packaging method is the Modified Atmosphere Packaging (MAP), which is based on 

the alteration of the atmosphere composition within the package. This alteration can be achieved 

both actively, replacing the internal atmosphere with the desired mixture of gas and passively, 

exploiting the product respiratory metabolism and the gas diffusion characteristics of the plastic 

film. In the latter case, the choice of the packing material based on its permeability to gases and 

water vapour is obviously crucial. The aim of both methods is to reach an optimal atmosphere 

inside the package in order to delay degradative reaction rates and prolong shelf-life. 

Rocculi et al. (2006) observed that active MAP reduced the rate of oxygen consumption of fresh-cut 

apples compared with passive MAP, in particular at the beginning of storage. 

Bai et al. (2001) compared the application of both methods, flushing the packages with a 4 kPa O2 

plus 10 kPa CO2 gas mixture or developing the same composition naturally during storage of fresh-

cut cantaloupes. The active modification of the atmosphere allowed a better colour retention and 

reduced translucency, respiration rate, and microbial growth compared to the ones obtained with 

passive MAP. The authors thought, questioned whether the improved quality of fresh-cut melon 

was actually worth the additional cost of flushing the package atmosphere. 

Traditionally, the main gases used for MAP are O2, CO2 and N2, in various combinations. It is 

important to recognize though, that while atmosphere modification can improve the storability of 

some fruits and vegetables, it also has the potential to induce undesirable effects. 

Generally, a reduction of O2 and an increase of CO2 levels are recommended in order to prolong the 

fresh-state of fresh product (Sandhya, 2010), but specific levels have to be determined for each 
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product, particularly because exposition to concentrations outside of the tolerance limits could 

trigger anaerobic respiration and the production of undesirable compounds (Soliva-Fortuny & 

Martín-Belloso, 2003).  

Shelf-life of apple slices was significantly extended with a 2.5% O2 and 7 % CO2 atmosphere 

because of inhibition of ethylene production (Rojas‐Graü et al., 2007). Low O2 and high CO2 levels 

showed a synergistic effect in reducing ethylene production and respiration rates in pears (Gorny et 

al., 2002) and peaches (Gorny et al., 1999) and in maintaining the initial antioxidant activity of 

fresh-cut strawberries (Odriozola-Serrano et al., 2010). 

Furthermore, although MAP can significantly delay spoilage by most aerobic microorganisms, if 

anaerobic conditions are reached, the growth of some anaerobic psychotrophic pathogens might be 

possible or even enhanced (Soliva-Fortuny & Martín-Belloso, 2003).  

Anaerobic metabolism can be brought about both by a too low concentration of oxygen (Solomos, 

1997) or by a too high concentration of CO2 that is able to inhibit various enzymes of the Kreb’s 

cycle besides various physiological disorders (Gorny et al., 2002; Oms-Oliu et al., 2008) 

High oxygen atmosphere (>70 kPa) has been found to be effective in quality maintenance of MPF, 

in particular in relation to bacterial spoilage, both aerobic and anaerobic (Kader & Ben-Yehoshua, 

2000; Jacxsens et al., 2001) although the effect can vary in different commodities. Moreover, 

elevated oxygen concentrations have shown to impact respiration rate, metabolism, enzymatic 

activity and sensory quality but, again, the effect was highly variables among commodities and 

depends on other aspects, such as temperature, storage time and other gases levels (Kader & Ben-

Yehoshua, 2000).  

In particular, few works evaluated the effect of high O2 levels on enzymatic browning. Day et al. 

(1998) hypothesized that exposition to high concentration of this gas caused the substrate inhibition 

of polyphenol oxidase (PPO) or alternatively, the formation of colourless quinones that in turn 

cause feedback inhibition of the enzyme. A slower browning rate during storage of apple slices, 

exposed to 100 kPa O2 for 12 days before cutting, in comparison with those kept in air, was 

observed (Lu & Toivonen, 2000).  

Recently, in addition to various mixture of N2, CO2 and O2, novel gases have drawn attention for 

potential benefits in MAP application. Ar, N2O and He have been admitted  for food application in 

the EU as miscellaneous additives and few studies have been carried out on their influence in MPF 

shelf-life. 

Although noble gases are chemically inert, argon (Ar) is reported to have some biochemical 

activity, probably due to its high solubility in water compared to nitrogen and it seems to interfere 

with enzymatic oxygen receptor sites (Spencer, 1995). Some studies have reported an effect on the 
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growth of certain micro-organisms on the activity of quality-related enzymes and on degradative 

chemical reactions in selected perishable food products, such as MP fruit (Powrie et al., 1990; 

Spencer, 1995; Day, 1996; Kader & Ben-Yehoshua, 2000; Jamie & Saltveit, 2002; Mostardini & 

Piergiovanni, 2002). Rocculi et al. (2005) observed a positive effect in the stability of fresh-cut 

kiwifruit packed in MA with 90% Ar, 5% O2 and 5% CO2, limited to firmness and respiration rate 

and not on colour preservation. Generally, contrasting results have been reported on Ar effect. 

The effect of N2O on fruit metabolism is still not completely clear but seems to be related to the fact 

that it is characterized by biophysical properties, such as relative stability, high solubility and 

isoteric linear structure, similar to CO2. It seems to be able to inhibit respiration (Sowa & Towill, 

1991; Sowa et al., 1993) and ethylene action and synthesis in higher plants, delaying ripening 

(Gouble et al., 1995) and to reduce the incidence of rots in onion bulbs during storage (Benkeblia & 

Varoquaux, 2003). 

Furthermore, an inhibition of postharvest decay and an extension of storage shelf-life was reported 

upon exposure to N2O of various fruits such as apples, strawberry, mandarins, tomato persimmon 

and guava by Qadir & Hashinaga (2001) and banana by Palomer et al. (2005). 

To this date though, only few researches have been carried out on the use of nitrous oxide in MAP  

(Rocculi et al., 2004; Rocculi et al., 2005; Rocculi et al., 2006; Cortellino et al., 2015). Results 

obtained seems to generally indicate that MAP with N2O alone or in combination with other pre-

treatments improves quality maintenance of fresh-cut fruit, delaying softening, reducing respiration 

rate and ethylene production, inhibiting PPO with positive effect on colour maintenance and 

delaying microbial spoilage. 
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3 Physiology and quality deterioration of minimally processes fruit 

 

Minimally processed products deteriorate faster than the correspondent intact product. Being 

metabolically active tissues, they show physical and physiological reactions to mechanical stress 

suffered from peeling, slicing, dicing, shredding or chopping known as wounding response. The 

tissue disruption caused by minimal processing leads to the loss of cellular compartmentalisation 

and promotes the contact between enzymes and substrates and an overall increase of metabolic 

activity (Alzamora et al., 2000; Hodges & Toivonen, 2008). Moreover, further processing, 

packaging and storage conditions may have ulterior consequences on the tissue physiology, product 

quality and stability.  

As shown by Figure 3, investigating metabolic, functional and nutritional properties implications of 

each processing step and of their interactions, it is possible to obtain useful information that can 

lead to an optimization of the process in order to obtain final products characterized by high 

qualitative and nutritional parameters and a prolonged shelf-life. 

The main factors affected by wounding response are reviewed in the next paragraphs. 

 

 
Figure 3. Flow-chart of minimal processing of fruit production and principal consequences on tissue physiology and 
quality. 
 



14 
 

3.1 Respiration 

The energy required by living organism to carry out the necessary metabolic reactions to maintain 

cellular organisation, to transport metabolites around the tissue and to maintain membrane 

permeability is generally supplied by aerobic respiration which involves the oxidative breakdown of 

organic reserves, generally glucose, to simpler molecules, including CO2 and water, with release of 

energy. The process consumes O2 in a series of enzymatic reactions. Glycolysis, the tricarboxilic 

acid cycle, and the electron transport system are the metabolic pathways of aerobic respiration. The 

complete oxidation of glucose through the aerobic pathway produces an equal amount of CO2 as the 

O2 consumed, so that the respiratory quotient (RQ = CO2 produced (mL) / O2 consumed (mL)) is 1. 

Variations in the RQ may depend on a different substrate used for respiration, such as malate or 

long chain fatty acids, although generally, an increase in RQ indicates a switch to fermentation 

reactions (Wills et al., 1999). However, according to Makino (2013), RQ in the range of 0.7 to 1.3 

could be considered indicator of aerobic respiration.  

In fermentative metabolism, ethanol production involves decarboxylation of pyruvate to 

CO2 without O2 uptake (Fonseca et al., 2002). Anaerobic metabolism can be prompted by either 

low oxygen or high carbon dioxide concentration in the environment, respectively lower than 2-5 % 

and higher than 4-5 % (Iversen et al., 1989; Cortellino et al., 2015). However, the O2 concentration 

at which anaerobic respiration is triggered, known as the extinction or anaerobic compensation 

point, varies between tissues and depends on several factors, such as species, cultivar, maturity and 

temperature (Yearsley et al., 1996). 

An increase in the respiration rate of fruits and vegetables is often found as a result of wounding 

although it seems to depend on the commodity under consideration, since it occurs in kiwifruit but 

not in banana (Watada et al., 1990). Moreover, the increase in respiration due to wounding appears 

delayed compared to that found for wound-induced ethylene (Brecht, 1995). 

Asahi (1978) observed after wounding variations in mitochondrial structure, number and function 

and as a consequence, a general enhanced aerobic mitochondrial respiration rate. But the 

enhancement in aerobic respiration alone seems not to fully explain the increase in the respiration 

rate due to wounding. Other metabolic pathways, such as α-oxidation of long-chain fatty acids that 

increased O2 consumption, were observed by different authors in fresh-cut potatoes (Laties, 1964; 

Laties et al., 1972).  

Because high rates of respiration have been negatively correlated with shelf life potential (Makino, 

2013; Kader, 1987), the increases brought about by cutting are expected to result in a shorter shelf 

life (Rolle & Chism, 1987).  

The increase of respiration rate is often proportional to storage temperatures (Watada et al., 1996). 
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Increases in respiration in response to cutting may be quite substantial in some cases. Slicing of 

mature green tomatoes results in increased respiration by up to 40% when stored at 8°C, as 

compared to intact product (Mencarelli et al., 1988). 

The increase in respiration rate may also lead to the development of anaerobic conditions inside a 

package if permeability of the films is not carefully selected, particularly when product is placed in 

MAP, hence already exposed to high CO2 and/or low O2. 

 

3.2 Ethylene production 

Ethylene is a vegetable hormone that controls many aspects of growth and development of plants; 

the rate of its endogenous production can drastically increase following various stress conditions 

such as mechanical wounding (bruising and cutting), temperature variations, chemicals and 

pathogenic infection to plant tissues (Hong & Gross, 2000). 

On the strength of the role of ethylene in the ripening process, fruit can be divided into two groups 

(Lelièvre et al., 1997): 

1) fruit that could produce large amount of ethylene, which promotes their ripening, defined 

“climacteric”, such as tomato, peach, apple, banana and kiwifruit; 

2) fruit that produce only low basal amount of ethylene during ripening and are insensitive to 

exogenous ethylene, defined “non-climacteric”, such as grape, strawberry, watermelon, pineapple 

and citrus. 

Peeling and cutting operations stimulate ethylene production in fresh-cut fruit. This phenomenon 

can start as soon as few minutes to an hour after wounding, and reach its maximum rate between 6 

and 12 hours (Abeles et al., 1992). 

The effect can be more evident in climacteric fruit, for which wound-induced ethylene promotes 

ripening and softening. In climacteric fruit, wound-induced as well as exogenous ethylene may 

promote the same effect on tissue, leading to an increase in the rate of ripening and softening 

(Toivonen & Brummell, 2008). Moreover, the entity of the response strongly depends on the type of 

product considered, the ripening degree and storage temperature (Rocculi et al., 2004).  

Generally, the effects of ethylene are negative for fruit quality; therefore, its concentration or 

activity should be minimized in order to increase product shelf life. Moreover, ethylene can 

accumulate inside packages and lead to detrimental effects. Abe & Watada (1991) observed that an 

ethylene concentration of 2 μl l -1 accelerated softening in banana and kiwifruit stored at 20°C and 

that the loss of firmness was delayed when ethylene absorbents were placed inside the packages. 

MAP has been reported to reduce ethylene production and respiration rates for the synergic effect of 

low oxygen and high carbon dioxide levels (Soliva-Fortuny & Martı́n-Belloso, 2003). Conversely, 
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elevated levels of O2 showed to enhance the ethylene production in fruit and vegetables during 

storage (Kader & Ben-Yehoshua, 2000). 

 

3.3 Quality deterioration 

Quality of MPF can be defined as a combination of attributes, properties or characteristic that 

determine their value to the consumer. Main qualitative parameters include appearance, texture, 

flavour and nutritional value.  

 

3.3.1 Colour and visual quality degradation 

The appearance of a minimally processed product is the characteristic most immediately perceived 

and appreciated by the consumer, and it is fundamental in the decision to buy. It can be affected by 

various unrelated factors, from wound-related effects to drying to microbial colonization. 

Colour is one of the main aspects related to visual acceptance. In MPF colour is manly related to the 

content of some pigments, such as carotenoids chlorophylls, antocians and phenolics, that during 

ripening, processing and storage can be subjected to degradation (Alzamora et al., 2000).  

Enzymatic browning is one of the main factor limiting MPF shelf-life. Browning reactions have 

generally been considered as the consequence of the reaction of a group of enzymes called 

polyphenoloxidase (PPO) with polyphenols, made possible by the breakdown of membranes that 

normally keeps them separated. The loss of the cell compartmentalization can be brought about by 

various deteriorative processes, such as senescence and wounding response. Cut-edge browning is 

due to two PPO catalyzed reactions, the hydroxylation of monophenols to diphenols and the 

oxidation of diphenols to quinones, which in turn involve melanin accumulation, although a partial 

role not yet fully clarified has been attributed also to the reaction of peroxidase (POD) on 

polyphenols (Toivonen & Brummell, 2008). 

 

 
 
Figure 4. Mechanism for polyphenol-oxidase action on mono and di-phenols. (Adapted from Toivonen & Brummel, 
2008) 



17 
 

 

Figure 4 shows the mechanism for browning that involves the interaction of polyhenolic substrates 

with PPO in the presence of oxygen. Vmax values indicate that the hydroxylation process occurs 

more slowly compared to the oxidation process.  

Furthermore, variations from green to yellow or olive/brown colour can be a consequence of 

chlorophyll degradation. Two main mechanisms have been proposed for its breakdown. The first 

(Type I) involve the action of enzymes such as Chlorophyllase and Manesium dechelatase that 

convert chlorophyll into the brown pheophorbide, while the second (Type II) is mediated by oxygen 

radicals and it is far less controlled (Brown, 1991). 

Short exposure to high concentration of CO2 was observed to have a positive effect on retaining 

chlorophyll and delaying yellowing in green fruit and vegetables, attributed to the inhibition of 

ethylene production (Simpson, 1985). 

Carotenoids are pigments responsible for colour of many fruits, they are fairly stable but can be 

oxidised by enzymes such as lypoxygenase in the presence of oxygen. Their oxidation can be 

accelerated by metal ions, chemical oxidants and by low moisture levels reached during product 

processing (Dorantes-Alvarez & Chiralt, 2000). 

Anthocyanins are a group of water-soluble compounds belonging to the flavonoid family and 

responsible for bright colours as orange, red and blue. Their stability is highly dependent on pH and 

oxygen concentration. Also, PPO was shown to play a role in their degradation since they can be 

involved in oxidation reaction with quinones deriving by the enzyme activity (Dorantes-Alvarez & 

Chiralt, 2000) 

To control and reduce colour modifications in MPF, most successful methods involve combination 

of factors or the application of hurdles technology. 

But appearance of MPF does not depend exclusively on colour, but also on morphological aspects 

such as size, shape, gloss and absence of defects and decay. Choice of cultivar and correct pre and 

post-harvest practices and handling are necessary to preserve visual quality of MPF. 

 

3.3.2 Texture loss 

Main textural attributes of fruits such as firmness, crispness, juiciness and toughness are important 

quality factors both for consumers and for shipping ability. Tissue softening and juice leakage can 

be the main causes of poor quality and un-marketability and are frequently the major problem 

limiting the shelf-life of MPF.  

During ripening, cell wall polysaccharides undergo modifications induced by enzymes such as 

pectinmethylesterase (PME) and polygalacturonase (PG) released from the symplast into the cell 
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wall space. Specifically, softening is due to the hydrolysis of protopectins to water soluble pectins, 

the decrease in cellulose crystallinity, thinning of cell walls, diffusion of sugar to the intercellular 

spaces and ion movement from the cell wall (Toivonen & Brummel, 2008).  

Figure 5 depicts the modifications of major cell wall components that take place during softening 

of a melting flesh peach variety. It has to be taken into account that the chronological order and 

extent of most of these events varies between fruit types, with some processes being reduced or 

absent in other species.  

 

 
 
Figure 5. Schematic representation of softening and changes to cell wall components occurring during maturation and 
ripening of melting-flesh peach (adapted from Toivonen & Brummel, 2008). 
 
Wounding causes the acceleration of the deteriorative phenomena that take place during ripening, 

so that the rate of softening of cut-fruit is often notably faster if compared to the intact fruit 

(Toivonen & Brummell, 2008), although there is not always a clear relationship (Aguayo et al., 

2004b). 

Water loss is another important factor for textural variation in MPF, being strictly related to cell 

turgor (Toivonen & DeEll, 2002). In whole fruits, water in the intercellular spaces is not in direct 

contact with the atmosphere. Peeling and cutting operations result in the removal of outer periderm 

and cuticle and the exposure of internal tissues that together with the increase in surface area to 

volume ratio, accelerates the rate of water loss leading to turgor and crispness loss. However, proper 

packaging conditions may reduce water loss by maintaining high level of relative humidity within 

the package. 

Furthermore, membrane deterioration caused by the activity of lypoxygenase and phospholipase 

and the loss of integrity in damaged cells, can promote leaking of water from the vacuoles diffusing 

through the tissue, resulting in water movement and turgor loss.   
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3.3.3 Microbial spoilage 

Microbial decay is a very important source of spoilage of fresh-cut product (Artés et al., 2007), 

since washing and chlorinated water dips only partially remove the microorganisms intrinsic to 

produce. The presence of damaged cells and the loss of cellular components during processing 

operations provide optimum conditions for the development of microorganisms. 

The microbial type and loads depends on the type of fruit, the cultivation practices and the hygienic 

conditions during handling and processing, being storage temperature the essential factor. Product 

pH strongly influences the survival and growth of pathogens. While most vegetables have a pH ≥ 

5.0, and consequently support the growth of most foodborne bacteria, the majority of fruits have 

acidic pH; hence yeasts and moulds represent their main spoilage microorganisms.  

Nevertheless, a number of soft fruits/melons have pH values ≥ 5.0 and will support growth of many 

pathogens. They are therefore considered highly perishable and potentially hazardous foods. The 

growth of spoilage microflora and various pathogens, including Salmonella spp., Escherichia coli, 

Listeria monocytogenes, have been observed in melons (Lamikanra et al., 2000; Harris et al., 2003) 

and have caused various foodborne disease outbreaks over the years (CDC, 2012). 

Due to the lack of heat treatments, an efficient temperature control during processing, distribution 

and retailing is required for maintaining the microbiological quality and the safety of these 

products. However, potential pre-treatment and temperature control are not able to either eliminate 

or significantly delay the microbial spoilage of these products entirely, and to ensure the product 

safety (Soliva-Fortuny & Martı́n-Belloso, 2003). 

Chlorinated water was traditionally used for disinfection, but due to the toxic by-products that can 

generate in the tissues, the general concern related to health issues has pushed towards the 

investigation about alternative sanitizers (Silveira et al., 2008). 

 

3.3.4 Flavour changes 

Consumer acceptance is often driven by flavour quality of MPF that is mainly related to the 

perception of sweetness, sourness, astringency, bitterness, aroma and off-flavours. 

Nevertheless, establishing shelf-life limits related to flavour quality is difficult because it is affected 

by various aspects linked to product variability, post-cutting treatments and packaging. As a 

consequence, uniform flavour quality and consumer acceptance based on flavour remains a 

challenge for the industry. 

Ripening degree at harvest and at processing significantly affects the flavour profile of fresh-cut 

melons (Beaulieu & Lea, 2007), pears (Dong et al., 2000), nectarines and peaches (Gorny et al., 
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1999) and mangoes (Beaulieu & Lea, 2003), showing that, generally, increasing maturity lead to 

improved sensory attributes. 

Maturity degree was linearly correlated to total volatile compounds, in particular total esters, non-

acetate esters, aromatic (benzyl) compounds, and sulfur compounds, and decreasing levels of 

acetates and aldehydes in melons (Beaulieu, 2006).  

Nevertheless, since an early stage of ripening is desired for better shipping, handling and storage 

hence for an acceptable visual shelf-life, fruit are generally processed when firmer and immature 

with a detrimental trade-off between textural and visual quality and acceptable flavour/aroma 

attributes. 

Moreover, unacceptability related to flavour can be due also to the formation of undesired 

compounds or off-flavours associated with the development of anaerobic conditions (Hodges & 

Toivonen, 2008) or microbial spoilage (Artés et al., 2007). 

 

3.3.5 Nutritional loss 

Fruits are good source of vitamins, minerals, dietary fibres and various compounds that have 

positive effects on health and on the prevention of various diseases (Martin et al., 2001; Liu et al., 

2000). 

During post-harvest storage, substantial nutritional losses can occur, particularly in the content of 

vitamin C, and can be enhanced by physical damages, storage and temperature abuses (Lamikanra, 

2002). Furthermore, minimal processing operations can affect the content of those bioactive 

compounds that are susceptible to degradation when exposed to oxygen or light. Degradation can be 

promoted also by the activity of oxidatives enzymes such as ascorbate oxidase, polyphenoloxidase, 

cytochrome oxidase and peroxidase.  

Gil et al. (2006) studied the antioxidants content of various fresh-cut fruits (kiwifruit, strawberry, 

melon, papaya, watermelon) during storage compared to the whole product. Vitamin C losses in 

fresh-cut products, after 6 days of storage at 5°C, ranged from 5% in mango to 25% in cantaloupe 

pieces, compared to whole fruits, while exposure to light promoted vitamin C degradation in kiwi-

fruit slices. Nevertheless, contrary to expectations, minimal processing had little effect on the main 

antioxidant constituents, while visual quality was the main limit to product shelf-life. 

Studies on fresh-cut apples detected a decrease of total phenolic content related to the extent of 

browning (Rocha & Morais, 2002). The degradation of phenolic compounds was successfully 

prevented by pre-treatment with ascorbic acid thanks to its reducing activity (Cocci et al., 2006). 

On the other hand, it is well known that wounding stress can alter the physiology of fresh produce 

and, among other consequences, promote the accumulation of phenolic compounds or other 
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secondary metabolites (Saltveit, 1996). The activation of phenylalanine ammonia lyase (PAL) leads 

to synthesis of phenolic compounds with the aim of protecting the plant from water loss and 

pathogen attacks. This may lead to an increase of the antioxidant activity, as it has been observed in 

carrots (Heredia & Cisneros-Zevallos, 2002) and lettuce (Kang & Saltveit, 2002). 

Reyes et al. (2007) studied various types of fresh-produce and concluded that the amount and 

profile of wound-induced soluble phenolics are dependent on the type of tissue, initial levels of 

reduced ascorbic acid and soluble phenolic compounds. 
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4 Innovative pre-treatment for MPF production 

 

The term ‘non-thermal processing’ is referred to processing technologies that are effective at 

ambient or sub-lethal temperatures. In the last decades, the interest of food scientists, industries and 

consumers has been attracted by the investigation of novel non-thermal processing methods aimed 

at extending shelf life or increasing product functionality with a minimal impact on the nutritional 

and sensory properties of foods.  Moreover, they may help industries in obtaining added-values 

products, new market opportunities and added safety margins (Morris et al., 2007). 

Although some aspects about these novel technologies have been widely investigated, there are still 

some aspects that are scarcely known.  

In the previous chapters, the implications of the wounding response to the mechanical stress caused 

by processing operations on the physiology and metabolism of tissues, that in turn affect product 

quality and shelf-life, have been discussed 

Pre-treatments can be considered as further processing steps to the ones normally used for MPF 

production and the impact on the wounding response of the tissues cannot be ignored. 

In this chapter, the influence of innovative non-thermal processing operations such as plasma, 

vacuum impregnation (VI), osmotic dehydration (OD) and pulsed electric fields (PEF) on some 

qualitative, metabolic and functional aspects of MPF will be dealt with. 

 

4.1 Cold gas-plasma  

 

Cold plasma is an ionised gas characterized by active particles such as electrons, ions, free radicals 

and atoms which are both in ground and excited states; the excited species emit a photon (including 

UV photons) when they get to the ground state (Moreau et al., 2008). It is produced by applying 

energy to a gas or a gas mixture and it is considered the fourth state of matter.  

Non thermal plasma can be generated by microwaves, radio frequency, direct or alternating current; 

by various set-ups such as dielectric barrier discharge (DBD), atmospheric pressure plasma jet 

(APPJ) and corona discharges (CD) (Laroussi, 2002; Ragni et al., 2010; Ehlbeck et al., 2011) and 

by different gas mixtures, including atmospheric gas (oxygen, nitrogen and carbon dioxide) as well 

as noble gases (e.g. helium and argon). The final composition greatly depends on the kind of gases 

in the mixture, the selected generator set-up, the operating conditions (flow, gas pressure, power of 

plasma excitation) and the exposure mode (direct or remote) (Misra et al., 2011), and it includes 

reactive species such as oxygen and nitrogen species (ROS and RNS), atoms, free radicals and UV 

radiations. 
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Because temperature is very close to ambient, the treatment seems promising for heat sensitive food 

products, but although its effect on microbial inactivation has been quite extensively reviewed 

(Ehlbeck et al., 2011; Misra et al., 2011; Niemira, 2012), the effect on qualitative, nutritional and 

metabolic aspects of fresh-products exposed to plasma are still quite scarce. 

 

4.1.1 Effect on microbial inactivation 

Cold plasma treatment have been applied to food products mainly for microbial inactivation. For 

this aim, the most important role seems to be played by reactive species, such as OH and NO 

radicals, atomic oxygen (O), ozone (O3) and NO2, that can cause lipid peroxidation, proteins and 

DNA oxidation (Laroussi, 2002; Li et al., 2011; Takai et al., 2012). 

Once generated, they can be adsorbed onto the microbial cell surface, causing oxidative damages to 

the microbial membranes, essentially characterized by lipid bi-layers and protein molecules, leading 

to loss of functionality and exposure of the genetic material.  

Various authors have assessed the microbial decontamination of cold plasma on foodstuffs, such as 

the outer surface of various fruit and vegetables (Baier et al., 2014; Niemira & Sites, 2008; Critzer 

et al., 2007) and on apple juice (Surowsky et al., 2014;  Montenegro et al., 2002).  

Generally, results showed that the effect is highly related to several operative parameters chosen to 

drive the discharge (gas mixture and gas flow, energy level applied and treatment time), 

characteristics of the microorganism itself (type, load and physiological state), and type of matrix. 

Paper V reports the effect of DBD plasma treatment on the microbial quality of minimally 

processed melon. Samples were exposed to 15+15 min and 30+30 min plasma treatments and 

different microbial indexes were evaluated during 4 days of controlled storage. 

As reported in Figure 6, upon plasma exposure, an immediate reductions in cell viability of the 

indigenous bacteria proportional to the treatment time was observed although inactivation levels 

were dependent on the type of microorganism considered. During storage, it was observed that 

microbial shelf-life, calculated through the Gompertz equation as the time necessary to reach the 

value of 6.0 Log CFU g-1, was improved in the 15+15 min treatment but not in the longer treatment. 

This result was unexpected, considering that, according to current literature on cold plasma 

treatments on several raw fruit and vegetables, the inactivation level is generally time-dependent 

although non-linear inactivation curves are reported (Lee et al., 2015; Baier et al., 2014). 

Nevertheless, most studies are limited to the immediate effect after the treatment and ignore the 

effect during further storage. 
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Figure 6. Cell numbers of yeasts (A), lactobacilli (B) and lactococci (C) during storage at 10°C of melon samples (Fig. 
5 of Paper V) 
 
Results obtained in this study could be attributed to tissue damages (e.g. cell wall weakening) 

caused by the longer treatment resulting in the higher water loss recorded for the 30 + 30 min 

treated melons, which probably made fruit more susceptible to microbial spoilage. 

These results highlight the necessity of modulating treatment time not only according to its 

immediate effects, but also on the further shelf-life evaluation. 

 

4.1.2 Effect on quality parameters 

As opposed to microbial inactivation power, the scientific literature is quite poor in terms of effects 

on the product quality that cannot however be overlooked. 

Alterations of the surface colour were found only slightly in whole Granny Smith apples subjected 

to a microwave driven plasma torch (Baier et al., 2015), and during storage in fresh pears treated 

with a dielectric barrier discharge device (Berardinelli et al., 2012). 

A negative impact of plasma exposure was observed on surface morphology of lamb’s lettuce 

leaves by scanning electron microscopy (SEM) (Grzegorzewski et al., 2010). Oxidative species 

generated by the plasma discharge appeared to have promoted some erosion phenomena of the 

upper epidermis. 

Studying the effect of a DBD plasma exposure in MPF, we obtained different results depending on 

the fruit considered. In particular, superficial browning was reduced in fresh cut apples with a 

15+15 min exposure, due to an inhibition of enzymatic activity (Paper III), and visual quality of 
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kiwifruit slices was better preserved during storage, as shown by Figure 7 (Paper IV). Conversely, 

in fresh-cut melon visual quality was negatively affected, and at the end of the storage slices 

appeared darker and more translucent (Paper V). 

 

 
 
Figure 7. Example of digitalized images of kiwifruit slices subjected to 20 + 20 min DBD gas plasma treatment and 
control ones acquired after 4 days of storage in controlled conditions (Fig. 3 in Paper IV) 
 

Textural parameters seem to be only slightly affected by plasma exposure. In Paper III, a slight 

decrease in the crunchiness of fresh-cut apples subjected to DBD plasma treatment was observed 

and was attributed to the destruction of the superficial layer of cells, while other authors (Schnabel 

et al., 2014) did not detect significant differences in textural characteristics of apple flesh.  

 

4.1.3 Effect on enzymatic activity 

Recently, the potential effect of cold plasmas on enzymatic activity has been studied and first 

results showed its potential as innovative treatment for enzymes inactivation and quality 

preservation in food products. 

Various studies on model systems indicted a change in the secondary protein structure and the 

modification of some amino acids side chains of the enzyme (Deng et al., 2007; Takai et al., 2012); 

in particular Surowsky et al. (2013) found a variation in the relative amounts of alfa- helix 

structures and β-sheet content upon plasma exposure, that was strongly correlated to the loss of 

enzymatic activity. 

Studying a model system surely allows to obtain an homogeneous effect and a reproducibility in the 

results in that is often lacking in real food systems, hence to gain a better understanding of the 

inactivation mechanisms. On the other hand, to reach industrial application, it is necessary to verify 

the efficacy and the limitations of the treatments. To this date, very few experimental researches 
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have been conducted to evaluate the effect of cold plasma treatments on the enzymatic activity in 

real system and in particular in fruit tissues.   

Using a DBD generator prototype, in Paper III, fresh-cut Pink Lady apples were exposed to cold 

plasma for different treating times, up to 15+15 min per side. A time-dependent reduction was 

observed after treatment, up to 45% after 30 min as shown in Figure 8. 

 

 
Figure 8. PPO activity (ΔA/min) of apple samples treated with plasma gas compared to the controls. Different letters  
indicate significant differences between control (C) and treated (T) sample at a p-level<0.05 (Fig. 4 in Paper III). 
 

The observed reduction of PPO activity in the treated apple samples was attributed to a 

modification of the enzyme structure due to OH, NO and other reactive radical species present in 

the plasma discharge (Ragni et al., 2010). 

In Paper V, the effect of cold plasma on peroxidase (POD) and pectinmethylesterase (PME) 

activity was evaluated in fresh-cut melon treated for 15+15 and 30+30 min. As shown in Figure 9, 

POD activity was reduced proportionally to the treatment time, as the residual activity was found 

91% (15+15) and 82% (30+30) compared to the control sample. PME activity was not affected by 

the shorter treatment, but the residual activity was found to be 94% after the longer one. 

Comparing results obtained in Paper III and V, it seems that the effect of plasma is related to the 

enzyme typology. The different resistance to denaturation by plasma agents could be caused by the 

different structure and by the presence of isoenzymes. Furthermore, the kind of fruit tissue, the 

specific microstructure and porosity (e.g. 13.3 ± 0.6 % for melon and 27.3 ± 1.1 % for apple, as 

found by Muujica-Paz et al. (2003)) can be assumed to affect the different treatment response. 
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Figure 9. Peroxidase (POD) and (b) Pectinmethylesterase (PME) residual activity of melon samples treated with 
plasma for 15+15 and 30+30 min. * indicates samples that were significantly different from control sample at a p-
level<0.05 (Fig. 2 in Paper V). 
 

 

4.1.4 Effect on tissue metabolism 

The impact of plasma exposure on tissue metabolism is, at date, still largely unknown.  

Respiration rate during storage of strawberries and cherry tomatoes was found not significantly 

affected by in-package plasma treatment by Misra et al. (2014) and Misra et al. (2014). 

Papers III and V evaluated the production of the tissue metabolic heat assessed by isothermal 

calorimetry upon plasma exposure on apple and melon samples respectively. For apples, plasma 

treated samples showed an irregular and higher heat production, but only in the first six hours after 

treatment. These results may indicate a physiological reaction to the stress induced by the reactive 

species. In the second part of the analysis, in treated samples a lower heat profile compared to the 

control sample was observed. 

For melons, heat production after plasma treatment was lower compared to the controls for all the 

duration of the analysis. Differences were more pronounced as the analysis proceeded, as shown by 

the total metabolic heat produced obtained integrating metabolic heat profiles during the first 12 h 

and during 24 h at 10°C, as reported by Figure 10. 

Simultaneously, in both apple and melon tissues, an alteration of the cellular respiration pathway 

was observed after cold plasma exposure. In particular, plasma exposure seemed to have caused a 

decrease of O2 consumption in relation to the CO2 production. To explain these results, a partial 
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conversion of the tissue respiratory metabolism from aerobic to anaerobic has been hypothesized as 

a consequence of a chemical stress of the fruit tissue promoted by the treatment (Paper III and V). 

Nevertheless, the mechanisms appeared complex and the relation with treatment time was not clear 

highlighting the need for further clarifications on the response mechanisms. 

 

 

 
 
Figure 10. Normalized heat produced by melon samples during 12 and 24 h of analysis at 10°C. Different letters 
indicates samples that were significantly different at p-level<0.05 (Fig. 4 in Paper V). 
 

4.1.5 Effect on nutritional value 

Although few researches have been carried out to this date about the impact of plasma treatment on 

the nutritional value, it is important to take into account the fact that plasma reactive species could 

promote the oxidation of bioactive compounds such as vitamins C and E, or of polyphenols which 

are naturally occurring antioxidants in fruit and vegetable products. Moreover, considering that 

oxidation of components occurs mostly at the product surface, the penetration power of plasma 

reactive species into the food matrix is not known and it probably depends on the food porosity and 

microstructure. 

Wang et al. (2012) observed that loss of vitamin C content in different vegetables exposed to 

plasma was only slight and probably mostly affected by UV. 

Grzegorzewski et al. (2011) and Grzegorzewski et al. (2010) studied how plasma treatment on 

lamb’s lettuce (Valerianella locusta) affected polyphenolic compounds content, comparing the 

effect on pure substances and within the product matrix. Degradation of compounds was 

proportional to treatment time and reduced by the effect of the matrix.  

Berardinelli et al. (2012) and Gozzi et al. (2013), using the same plasma generator we used, studied 

the effect of plasma treatment on whole “Abate Fetel” pear and “Fuji” apples on the antioxidant 
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activity of both pulp and peel, finding a reduction as a consequence of the longer treatment, but the 

results were affected by the type of fruit considered. 

Generally, the literature review showed that the shielding effect of the matrix greatly influences the 

effect of plasma reactive species on bioactive compounds, hence the nutritional evaluation should 

be carried out for each specific product. 

Paper IV reports an approach to test the effect of double barrier discharge (DBD) cold plasma 

treatment on the potential effect on health properties of minimally processed kiwifruit. Content of 

antioxidant compounds such as chlorophyll, carotenoids, ascorbic acid and polyphenols was 

evaluated after plasma exposure but also during storage. Furthermore, the in vitro antioxidant 

activity was quantified by different in vitro assays: the 2,2'-azino-bis(3-ethylbenzothiazoline-6-

sulphonic acid) (ABTS) radical scavenging assay, the 2,2-diphenyl-1-picrilhydrazyl (DPPH·) 

radical scavenging assay, and the ferric reducing antioxidant power (FRAP). 

According to the obtained results, no significant changes in antioxidants (ascorbic acid and 

polyphenols) content and antioxidant activity were observed among treated samples and control 

ones. 

In Paper VI a plasma treatment, that was already proved to be beneficial in terms of enzymatic 

browning reduction in fresh-cut apples, was tested in order to evaluate the effects on antioxidants 

content and antioxidant activity of the product. The phenolic composition of treated and control 

samples, analysed by HPLC-MS (high-performance liquid chromatography-mass spectrometry) 

showed a different effect on different classes of compounds according to treatment time. In 

particular, as a consequence of catechin polymerisation products and of the increase of 

hydroxycynnamic acids and chalcones, phenolic profile of fresh-cut apples was significantly 

affected by 10 min treatment, both in quantitative (about 20% of increase) and qualitative terms. 

After 30 min of treatment, when plasma effect on enzymatic browning inhibition was significant, 

flavan-3-oils content was lower compared to not treated apples, while dihydrochalcones and 

flavonols evidenced a slight increase.  

As expected, considering its strict connection between polyphenols amount, antioxidant activity 

evaluated by different in-vitro methods followed a similar trend, increasing after 10 min of 

processing. The DPPH• showed a lower sensibility compared with TEAC assays, while FRAP 

showed similar values to TPI assay, as reported in Table 2. 

Moreover, for the longest treatment time investigated (30 min), that was found to have a significant 

positive effect on browning inhibition, some ex-vivo antioxidant test were carried out, in particular 

the ability of polyphenolic extracts from treated and untreated apples to protect Caco2 cells, which 

show biochemical characteristic of normal adult enterocytes, against oxidative stress. 
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Table 2. Total phenolic content (TPI) and antioxidant activity (µmol kg-1
f.w.) of Pink Lady apples as affected by plasma 

treatment time (Table 3 in Paper VI) 

 

 

To our knowledge, no previous researches have assessed the effect of chemical species generated 

during gas plasma treatment on human cell line. Results obtained (Paper VI) demonstrated that the 

polyphenolic extract from plasma treated apple does not induce significant changes in cell 

proliferation in comparison with untreated apple. Furthermore, Caco 2 cells exposed to moderate 

oxidative stress induced by the polyphenols extracts administration are able to protect themselves 

through the expression of phase II detoxifying enzymes. 

According to the results obtained in this first study, the DBD plasma treatment seems to be a 

promising tool to preserve the qualitative properties and the phytochemical profile of fresh-cut Pink 

Lady apples. Further, apple exposure to gas plasma does not seem to generate chemical species 

harmful to human cells although other studies in cellular models are needed to confirm this 

preliminary data. 
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4.2 Vacuum Impregnation  

 

Vacuum Impregnation (VI) is an innovative technology that allows the introduction of desirable 

ingredients into a porous food structure, exploiting a mass transfer known as hydrodynamic 

mechanism (Fito et al., 2001). The process involves a two-step pressure change. In the first 

(vacuum step) the pressure in a solid-liquid system is reduced causing the expansion of the gas in 

the product pores and its partial outflow until mechanical equilibrium is achieved. In the second 

step (atmospheric step), the atmospheric pressure is restored, the residual gas in the pores 

compresses and the external liquid flows into the pores (Tylewicz et al., 2012). Compared to the 

classical diffusion processes, such as candying, salting, soaking, osmotic dehydration, which are 

carried out by simple dipping or prolonged immersion of the product in the solution for several 

hours or days, VI has the advantage of a fast penetration – only few minutes – of the active 

substances directly into the internal structure of the product (Saurel, 2002). 

VI has been recognized as a potential technology for the enrichment of food with nutritional 

substances, nutraceutical and/or functional compounds, antimicrobial and antioxidant substances, 

organic acids, structuring substances, etc. (Betoret et al., 2003). 

 

4.2.1 VI for technological functionality 

VI treatment can be considered a gentle process with short treatment times at low temperatures that 

minimize heat damage to plant tissues thus allowing to preserve colour, aroma and heat sensitive 

components. It has been used as a pre-treatment prior to drying, freezing and frying (Bolin & 

Huxsoll, 1993). Moreover, according to Alzamora et al. (2000), VI can exert a positive effect 

inhibiting oxidative and enzymatic browning by oxygen removal from the pores. 

With the aim of improving product quality and stability, VI has been used in combination with 

different compounds in order to inhibit browning phenomena (Perez-Cabrera et al., 2011), reduce 

pH (Derossi et al., 2013, 2010), improve freezing tollerance (Velickova et al., 2013; Phoon et al., 

2008) and for aroma enrichment (Comandini et al., 2010). 

Few works have been carried out on the impregnation with calcium to improve texture of minimally 

processed products. Occhino et al. (2011) investigated the effect of calcium and other structuring 

compounds in zucchini slices, while Degraeve et al. (2003) and Guillemin et al. (2006) combined 

calcium and pectinesterase for strawberry and apples impregnation finding a remarkable synergistic 

effect in increasing firmness. Nevertheless, generally published studies are limited to the immediate 

effect of the treatment and do not take into consideration the evolution of the product quality during 

storage in real conditions. 
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In Paper VII, the effect of VI with calcium lactate (CaLac) was investigated on qualitative 

parameters of minimally processed melon during storage.  

In the first part of the research, an optimisation of the process parameters, such as vacuum pressure 

and CaLac concentration was carried out using a 23 factorial design and modelling data with second 

order polynomials that allowed to evaluate the effects of linear, quadratic, and interactive terms of 

the independent variables. Moreover, in order to better understand the interactive effects of the 

independent variables, surface plots based on these models were drawn. 

An example of the graphical representation of the effect of the selected variables on product 

firmness is reported in Figure 11. 

 

 
Figure 11. Three-dimensional contour plots showing the effects of the interactions [P] × [C] on weight gain (WG, %) 
(Fig. 1 in Paper VII). 
 

Both pressure and CaLac concentration were found to influence significantly the impregnation level 

and the qualitative parameters assessed. On the basis of the overall results obtained in this first part 

of the study, sample impregnated at 600 mbar and 5% CaLac concentration, although it showed the 

lower impregnation level, was chosen for the further storage study. 

In the second part of the study the effect of the selected vacuum treatment (VI), compared to a 

dipping at atmospheric pressure in the same CaLac solution (D) for the same duration and to the 

control ones (C) on some quality aspects of fresh-cut melon samples during storage were analysed.  

Despite of the high variability of the raw material, results showed that VI allowed a better 

maintenance of texture during storage (Figure 12A). Nevertheless, other quality traits were 

negatively affected by the application of vacuum. Impregnated products were characterised by a 

darker and more translucent appearance on the account of the alteration of the structural properties 

(Figure 12B). Moreover microbial shelf-life, calculated as the time necessary to reach a threshold 
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microbial load of 6 Log CFU g-1, was reduced to four days compared to the seven obtained for 

control and dipped samples.  

 

 
Figure 12. Textural parameters (hardness and linear distance) and colour coordinates (L* and h°) of melon samples 
during storage. Different letters indicate statistically significant values among samples at the same storage time (p<0.5). 
(Adapted from Fig. 3 and 4 in Paper VII) 

 

4.2.2 VI for nutritional functionality 

Main studied carried out on the nutritional enrichment of fruit and vegetable products by VI with 

different bioactive compounds have been reviewed by Alzamora et al. (2005) and include mainly 

fortifications with probiotic microorganisms or minerals such as calcium, iron and zinc in order to 

increase the daily intake and reach nutritional recommendations. More recently, fruit juices with a 

high content in bioactive compounds (Castagnini et al., 2015; Diamante et al., 2014; Betoret et al., 

2012) or other health-promoting substances such as Aloe vera (Sanzana et al., 2011) or honey 

(Rößle et al., 2011) have been used for product enrichment. 

The enrichment of fruit and vegetable matrices with functional compounds can be interesting from 

different perspectives, it opens the opportunity of developing novel products for the industry 

combining the health properties of both components, but can also increase the bioavailability of the 

active components. Indeed, various authors agree on the increased health benefits of bioactive 

compounds within a food matrix compared to the consumption of the single compounds (Betoret et 

al., 2012). 
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Moreover, VI process itself seems to exert a positive effect on the stability of some compounds 

such as anthocyanins in strawberries, helping to preserve antioxidant activity during processing 

(Watanabe et al., 2011). 

Surely, in order to develop a functional product it is necessary not only to successfully impregnate 

the matrix with the bioactive compounds but also to evaluate their stability during storage and their 

bioavailability. 

In Paper VIII, VI of apple cylinders has been carried out with an isotonic sucrose solution 

containing a green tea extract (GTE) with the addition of ascorbic acid and the stability of some 

qualitative and nutritional characteristics of the obtained product has been evaluated during storage. 

Green tea is a high source of catechins, known to have strong antioxidant properties, widely studied 

both in in-vitro and in-vivo studies, and its consumption is related to the decrease of various 

diseases. The amount of GTE was chosen in order to obtain after impregnation a concentration of 

catechins in the final product equal to the quantity found in a cup of tea (50-110 mg), according to 

Lavelli et al. (2011), considering a 50 g apple portion.  

The addition of GTE to the impregnating solution promoted various effects. Firstly, a reduction of 

the respiration rate, evaluated measuring the gas composition of packages, was observed. Lack of 

previous reports on the impact of catechins on fruit tissue metabolism makes these results difficult 

to interpret, and highlights the need for further investigation. 

 

 
 
Figure 13. Colorimteric parameters, L* and h°, of of fresh apple (F) and vacuum impregnated samples with sucrose (S), 
sucrose and GTE (SG), sucrose and AA (SA) and sucrose, AA and GTE (SAG)as affected by VI treatment. Different 
letters show significant differences among samples (P-level < 0.05). (Fig.1 in Paper VIII) 



35 
 

Main variations though were observed on product colour and antioxidant properties during storage. 

In particular, the addition of catechins leads to an immediate increase of the yellow/orange colour 

components of impregnated samples as shown by Figure 13, and to a higher degree of browning 

development. Due to oxidation phenomena, a marked surface browning was observed during 

storage in samples impregnated with GTE, as shown by Figure 14, along with a decrease of total 

phenolic content (TPC). 

 

 
Figure 14. Visual examples of fresh, untreated sample (F) and samples impregnated with sucrose and GTE (SG) and 
sucrose, ascorbic acid and GTE (SAG) solutions at the end of the storage. (Fig. 3 in Paper VIII). 
 

On the other side, antioxidant activity, measured with the in-vitro DPPH method, although it 

showed a good correlation with the TPC, did not always reflected the decrease in antioxidant 

compounds. To better understand this discrepancy, a further investigation on the quality of the 

phenolic compounds during storage should be carried out. 

The addition of 1% of ascorbic acid allowed to better preserve colour and antioxidant properties 

during storage, limiting oxidative phenomena. It is known that ascorbic acid is able to inhibit 

browning reactions, mainly because of its ability to scavenge oxygen and to be oxidised reducing 

quinones to phenols, before they can participate in further reactions that lead to coloured pigments. 

Results obtained in this preliminary study showed that enrichment of apples with GT catechins and 

ascorbic acid seems to be promising in order to obtain a nutritionally fortified fruit product, 

nevertheless represented only a first step in this direction. Future researches on the qualitative 

characterization of the phenolic compounds during storage and their relationship with the 

antioxidant activity, together with further in-vitro and in-vivo experiments for the evaluation of the 

antioxidant properties need to be carried out. Moreover, aspects related to the tissue metabolism and 

respiration of the fresh apple tissue need further investigations. 

In terms of sensorial acceptability, the impact of apple VI with green tea has to be carefully 

examined, considering its astringency and bitter taste, taking into consideration the possibility to 

change in quantitative/qualitative terms the formulation of the impregnating solution.  
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4.3 Osmotic Dehydration  

 

Osmotic dehydration (OD) consists in the partial dewatering of a cellular tissue process by 

immersion in a hypertonic solution. The concentration gradient between the solution and the 

intracellular fluid is the driving force of the process that involves dehydration or water removal 

from tissues and the simultaneous impregnation of the solute (or solutes) present in the solution in 

contact with the food (Kowalska & Lenart, 2001). 

OD has a wide range of applications in the development of minimally processed plant foods or as 

pre-treatment for other preservation methods such as freezing or drying (Loredo et al., 2013). 

The type of solute used in the osmotic solution greatly affects the dehydration kinetics, but also the 

organoleptic and nutritional properties of the final product and the process cost.  

Calcium in OD solution has been used with the aim to increase firmness of plant tissue and enhance 

the process efficiency, restricting the sugar gain and increasing the water loss (Pereira et al., 2006; 

Ferrari et al., 2010; Mavroudis et al., 2012), but also as a method for obtaining nutritionally 

fortified products (Silva et al., 2014b). 

The addition of ascorbic acid to the osmotic solution has been used for reducing enzymatic 

browning by Lenart (1996) and for compensate the loss of ascorbic acid in the fruits during the 

dehydration process by Ramallo & Mascheroni (2010). 

 

4.3.1 Mass transfer kinetics 

OD involves two main mass transfer phenomena: water flowing out of the tissue and the 

simultaneous counter flow of solutes into the tissue, but there can also be some leaching of native 

soluble solutes such as organic acids, sugars, minerals and flavours. Kinetics of mass transfer 

depends on many variables, some in relation to process parameters, such as temperature, treatment 

time, concentration of the osmotic solution and type of solutes, some in relation to structural 

parameters of the biological tissue, such as cell maturity and porosity.  

The kinetics of mass transfer is usually described through the terms: water loss, solids or solutes 

gain, and weight reduction. These parameters can be modelled to obtain constant able to describe 

the dehydration kinetics. The equation proposed by Peleg (1988) and redefined by Palou et al. 

(1994) that has already been successfully applied to describe osmotic dehydration kinetics 

(Tylewicz et al., 2011; Santagapita et al., 2013), was used in Paper X. 

Moreover, the efficiency of water removal in relation to sugar impregnation of tissues, can be 

expressed by the following equation (Paper IX): 
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where WL indicate water loss and ΔSuc indicates the gain in sucrose. 

Paper IX and X investigated the effect of the addition of calcium lactate (CaLac) and ascorbic acid 

(AA) to sucrose (Suc) osmotic solutions on mass transfer in apple tissue. 

The presence of calcium in solution promoted a higher water loss and a lower sucrose gain, 

compared to the Suc solution enhancing process efficiency, as already observed in various fruit 

tissue subjected to osmotic dehydration in the presence of calcium salts (Pereira et al., 2006; 

Mavroudis et al., 2012; Silva et al., 2014a; Silva et al., 2014b). The effect of restriction of solute 

transport has been attributed to the reduction in cell wall porosity and to the formation of calcium 

pectate due to the interaction of the ion with pectic carboxylic groups.  

With the combination of both solutes, water content was further reduced probably because the 

higher osmotic potential due to the lower water activity of the ternary solution, while sucrose gain 

was favoured. 

To better understand the influence of the solutes on the mass transfer kinetics, the effective 

diffusion coefficients for water, sucrose, calcium and ascorbic acid were calculated based on 

Diffusion Equation (Paper X, Materials and Methods section), considering an infinite cylinder; 

results are reported in Table 3. 

 

Table 3. Effective diffusion coefficients of water, sucrose, ascorbic acid and calcium (Table 3 in Paper X) 

 

When the selective permeability of the membranes is preserved, the transport of larger molecules 

such as sucrose through the cell tissue is reduced compared to the diffusion of smaller molecules 

such as water, as indicated by the higher D coefficient for water in Suc samples. 

Moreover, for pure sucrose-water solutions, diffusion coefficients decrease as concentration 

increases. However, diffusivities in multi-component solutions present particular behaviour because 

of the interference between the fluxes and the presence of other solutes that may affect diffusivities 

in a different way (Silva et al., 2014b). 

Suc

WL
Efficiency

∆
=
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In particular, water and sucrose diffusivities were higher and similar after the addition of 2% 

ascorbic acid, indicating losses of the tissue integrity, making available all cellular spaces for water 

and solutes diffusion.  

Conversely, when CaLac and AA were both present in the solution the diffusion coefficients, for 

sucrose but also for Ca and AA, were lower as it is expected when the concentration gradient was 

higher.  

 

4.3.2 Effect on water state and cellular compartments 

Water in cells is compartmentalised into several major divisions, i.e. extracellular spaces, cytoplasm 

and vacuoles. NMR relaxometry is an analytical method that has been successfully applied for the 

determination of the water content and its mobility in the different cell compartments (Hills & 

Duce, 1990). By acquiring transverse relaxation time (T2) weighted curves, it can give quantitative 

information in relation to water content and water properties in different proton pools within the 

tissue (Tylewicz et al., 2011; Panarese et al., 2012). LF-NMR allowed to study a number of 

different physiological conditions in several fruits and vegetables, including changes caused by 

ripening, bruising, microbial infection, drying, freezing and high pressure processing (Hills & 

Remigereau, 1997; Hills & Clark, 2003; Marigheto et al., 2004). 

Furthermore, this technique has been used in OD of plants to evaluate water mobility and 

distribution within the cellular tissue (Tylewicz et al., 2011; Panarese et al., 2012; Santagapita et 

al., 2013). 

Paper IX reports LF-NMR analysis to evaluate the changes on water mobility occurring at cellular 

level on apple tissues during OD with sucrose (Suc), calcium lactate (Ca) and ascorbic acid (AA). 

By fitting the T2-weighted curves to a continuous distribution of exponential curves, three proton 

pools were observed and ascribed to cell compartments, i.e. vacuole, cytoplasm plus extracellular 

space and cell wall (Cornillon, 2000). The relative intensity of the three populations observed 

during OD treatment is reported in Figure 15. 

Upon OD, water was dislocated from vacuoles to cytoplasm+free space. This expected effect was 

influenced by the presence of other solutes. In particular, the Suc-CaLac-AA solution promoted a 

higher water released from vacuoles, probably because of a higher osmotic potential. 

The presence of calcium in the osmotic solution seemed to have had an impact on the water 

population related to the cell wall, reducing its intensity compared to other treatments.  

 



 

 
Figure 15. Peak intensity of the proton pools in different cellular compartments as a function
dehydration time, in different osmotic solutions. All the intensities were
samples (t=0) equals 100. (a). Vacuole and cytoplasm plus free space; 
column in the auxiliary tables means no significant differenc
 

4.3.3 Effect on cell viability and tissue metabolism

Various authors have studied the effect of OD on cell viability and tissue metabolism. 

al. (2012) observed a progressive reduction in the metabolic heat production during 

slices and suggested that the decrease was due to a reduction of cell viability induced by osmotic 

stress. Mavroudis et al. (2004) found that 

upon an osmotic treatment of apple tissu

shrinkage occur in the rest of the tissue. 

sucrose solution can cause vesciculation and rupture of cell membranes in apple tissue. 

Moreover, a reduction in the respiration rate of osmotically dehydrated mangoes

2008), strawberries (Castelló et al.

In paper IX and X, we attempted to eval

viability and tissue metabolism in apple cylinders.
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Peak intensity of the proton pools in different cellular compartments as a function
dehydration time, in different osmotic solutions. All the intensities were scaled so that the total signal from fresh 

Vacuole and cytoplasm plus free space; (b). Cell wall. The same letter on the same 
column in the auxiliary tables means no significant difference by the Duncan test (p < 0.05) (Fig.

4.3.3 Effect on cell viability and tissue metabolism 

Various authors have studied the effect of OD on cell viability and tissue metabolism. 

progressive reduction in the metabolic heat production during 

slices and suggested that the decrease was due to a reduction of cell viability induced by osmotic 

found that only few layers of cells on the surface are expected to die 

upon an osmotic treatment of apple tissue in a 50% sucrose solution, while plasmolysis and 

shrinkage occur in the rest of the tissue. Salvatori & Alzamora (2000) found that a 25% w/w 

se vesciculation and rupture of cell membranes in apple tissue. 

the respiration rate of osmotically dehydrated mangoes

et al., 2010) and grapefruit (Moraga et al., 2009)

, we attempted to evaluate the effect of OD with calcium and 

viability and tissue metabolism in apple cylinders. 

 

Peak intensity of the proton pools in different cellular compartments as a function of the osmotic 
scaled so that the total signal from fresh 

Cell wall. The same letter on the same 
Fig. 3 in Paper IX). 

Various authors have studied the effect of OD on cell viability and tissue metabolism. Panarese et 

progressive reduction in the metabolic heat production during OD in kiwifruit 

slices and suggested that the decrease was due to a reduction of cell viability induced by osmotic 

only few layers of cells on the surface are expected to die 

in a 50% sucrose solution, while plasmolysis and 

found that a 25% w/w 

se vesciculation and rupture of cell membranes in apple tissue.  

the respiration rate of osmotically dehydrated mangoes (Torres et al., 

) has been observed.  

uate the effect of OD with calcium and ascorbic acid on cell 
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Figure 16. Slides of parenchyma apple tissue stained with FDA after immersion in osmotic solutions for 120 min: (a). 
Control; (b-d). Osmotically dehydrated in osmotic solutions; (b.1). 20%Suc; (b.2). 30%Suc; (b.3). 40%Suc; 
(c.1). 20%Suc+2%CaLac; (c.2). 30%Suc+3%CaLac; (c.3): 40%Suc+4%CaLac; (d.1). 20%Suc+1%AA; (d.2). 
30%Suc+1.5%AA; (d.3). 40%Suc+2%AA; (e.1). 20%Suc+2%CaLac+1%AA; (e.2). 30%Suc+3%CaLac+1.5%AA; 
(e.3). 40%Suc+4%CaLac+2%AA (Fig. 2 in Paper IX) 
 

 Figures 16 and 17 show apple tissues stained with fluorescein diacetate (FDA) and neutral red 

(NR) after OD. As it can be observed, while the 40% w/w sucrose treatment generally preserved the 

viability of apple cells, the presence of other solutes had different effects. In particular, high 

concentration of calcium (4%) reduced fluorescence intensity and although vacuoles were still 

visible, the red colour was less spread out highlighting the possibility of some membrane damage. 

On the other hand, the presence of AA in the solution, lead to a strong loss of cell viability and no 

stained vacuoles suggesting that high AA concentrations and/or very low pH affect the membrane 

integrity and permeability. 

Unexpected results were found for treatments in Suc-CaLac-AA solutions that strongly affected the 

tissue functionality. Although it is possible to visualize vacuoles in Figure 17e.1 to 17e.3, the 

vitality was completely lost in cells that underwent this treatment (Figure 16e.1 to 16e.3). This 

effect may be due to a different pH of the solutions, higher after CaLac addition, that allowed a 

better preservation of the tonoplast semi permeability although plasmalemma was probably 

damaged due to the low pH and/or high AA concentration, because no vitality was detected. 
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Figure 17.  Slides of apple tissue stained with neutral-red before immersion in osmotic solutions for 120 min: (a). 
Control; (b-d). Osmotically dehydrated in osmotic solutions; (b.1). 20%Suc; (b.2). 30%Suc; (b.3). 40%Suc; 
(c.1). 20%Suc+2%CaLac; (c.2). 30%Suc+3%CaLac; (c.3): 40%Suc+4%CaLac; (d.1). 20%Suc+1%AA; (d.2). 
30%Suc+1.5%AA; (d.3). 40%Suc+2%AA; (e.1). 20%Suc+2%CaLac+1%AA; (e.2). 30%Suc+3%CaLac+1.5%AA; 
(e.3). 40%Suc+4%CaLac+2%AA (Fig. 3 in Paper IX). 
 

In order to better understand the effect of the treatments, in Paper X, metabolic heat production and 

respiration rate of samples dehydrated in the four different solution for 30, 60 and 120 min, were 

evaluated up to 24 h after the treatment.  

Although fluorescence results indicated that viability was preserved (Paper IX), a slight reduction 

in metabolic heat production proportional to treatment time and a lower respiration rate compared to 

the fresh samples, both in terms of CO2 produced and O2 consumed (Figure 18) were observed 

after Suc treatment.  

The presence of calcium in the osmotic solution caused a further decrease of metabolic heat 

production and respiration rate. In previous studies (Castelló et al., 2010; Luna-Guzmán et al., 

1999), the ability of calcium to slow down tissue metabolic activity and thus to enhance its stability 

has already been observed.  

On the other hand, the presence of AA in the osmotic solution promoted a drastic increase of 

metabolic heat production as treatment time increased, up until 50% compared to the fresh sample. 
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Paper IX already showed that the presence of AA can cause serious injury to cellular structure, 

probably due to low pH of the solutions (Limbo & Piergiovanni, 2007; Rocculi et al., 2005). 

Furthermore, a change in the respiratory pathway was observed in sample dehydrated with the Suc-

AA solutions (Paper X), showing a sharp increase in oxygen consumption compared to other 

samples that in turn promoted a respiratory quotient inferior to one. 

 

 

 

Figure 18: Respiration rates expressed as oxygen consumed (RRO2) and carbon dioxide produced (RRCO2), for 
treatment time of 30 min (smaller size symbol), 60 min, 120 min and 240 min (higher size symbol) (Fig. 3  in Paper 
X). 
 

When combined with Ca, heat production decreased sharply to a level lower than untreated 

samples, except for those treated for 240 min (higher solid gain), which showed the highest heat 

production values. These results confirm previous findings, suggesting that AA solution can 

promote a stress response on specific fresh-cut vegetable tissues, and an increase of their 

endogenous metabolic activity, confirmed by a higher O2 consumption observed by head space gas 

determination.  
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4.4 Pulsed Electric Field (PEF) treatment 

 

PEF technology is an innovative non-thermal process that involves the application of short duration 

pulses of high voltage electric fields to a sample between two electrodes. It has been studied 

primarily as a tool aimed at microbial inactivation  (Timmermans et al., 2014; González-Arenzana 

et al., 2015), but recently several studied have focused on its application for mass transfer 

enhancement (Taiwo et al., 2002; Donsì et al., 2010; Puértolas et al., 2012). The partial cell 

membranes electroporation induced by PEF treatment that is exploited for the acceleration of mass 

transfer processes, can cause permanent damage on cell membranes and even induce cell death. 

The extent of the process, also known as electroporation, strongly depends on the applied process 

parameters such as electric field strength, number and shape of pulses, their width and frequency. 

Indeed, different goals and industrial applications can be achieved by adjusting the treatment 

conditions (Barba et al., 2015). 

Application for MPF, aimed at aiding mass exchange between the tissue and an outer solution, 

could be limited since PEF, by acting at the level of membranes, can also deeply affect the cell 

activities. As a consequence, metabolic stress responses of cells can be induced and lead to 

undesired effects on the quality of the final products. 

In Paper XI, the evaluation of the metabolic response of apple tissue subjected to PEF treatment 

was attempted. Treatments were carried out using near-rectangular shaped pulses with fixed 100 µs 

pulse width and 10 ms repetition time at three different specific voltage (100, 250 and 400 V cm-1) 

and fixed pulse number series (n=60). 

Isothermal calorimetry was used to measure metabolic heat production during 24 h after the PEF 

treatment. Simultaneously O2 consumption and CO2 production were monitored through a static 

method and compared to a fresh untreated sample. Results showed that the lowest voltage (100 V 

cm-1) applied did not induce a significant modification in the metabolic heat production but 

promoted a slight acceleration of the respiration rate, that was attributed to a response to the stress 

caused by the treatment. Conversely, samples subjected to medium and high voltages (250 and 400 

V cm-1) showed a heavy reduction of the metabolic heat and of the respiration rate suggesting 

irreversible electroporation of apple cells. Hence, it can be affirmed that the metabolic stress 

response induced by pulsed electric fields was strongly related to the electric field strength.  

Moreover, in order to better understand the impact of PEF treatment on tissue metabolism, high 

resolution 1H nuclear magnetic resonance (HR-NMR) was employed for the analysis of the 

metabolic profiling. Among the 38 metabolites identifies, statistical multivariate analysis allowed to 

select 8 compounds that discriminated the samples. The quantification of these 8 metabolites, 



 

represented in Figure 19, allowed to put forward some hypothesis about the different PEF

metabolic pathways. 

Variations of ethanol, acetaldehyde and iso

place and that loss of cell viability occurred at the highest treatment field strengths.

Moreover, the generation of reactive oxygen species (ROS) induced imme

formation of pores (Teissie et al.

highlighted by the changes in tartaric acid and epicatechin, while an alteration of the Kreb’s cycle 

was hypothesized on the basis of the var

Galindo et al. (2009) on PEF treated potato tissue.

 

 
Figure 19. Concentrations of the important metabolites as arisen from metabolomic
standard deviations (n=36) and differences between
Paper XI) 
 

Since irreversible damages to membranes are not desirable in 

process parameters is fundamental for the feasible application of PEF to this kind of products. On 

the other side, the application of electric field strength below the threshold of irreversibility, 

promoted only slight modifications of the metabolic profiles,

treatment at those conditions. 
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allowed to put forward some hypothesis about the different PEF

Variations of ethanol, acetaldehyde and iso-propanol confirmed that anaerobic respiration took 

place and that loss of cell viability occurred at the highest treatment field strengths.

Moreover, the generation of reactive oxygen species (ROS) induced imme

et al., 1999) seems to have caused an oxidative stress to the tissue 

rtaric acid and epicatechin, while an alteration of the Kreb’s cycle 

was hypothesized on the basis of the variation of γ-Aminobutyric acid, as already observed by 

(2009) on PEF treated potato tissue. 

Concentrations of the important metabolites as arisen from metabolomic analysis. Values are means ± 
standard deviations (n=36) and differences between means with the same letter are not significant at p<0.05 (F

Since irreversible damages to membranes are not desirable in MPF, an accurate control of the 

ental for the feasible application of PEF to this kind of products. On 

the other side, the application of electric field strength below the threshold of irreversibility, 

promoted only slight modifications of the metabolic profiles, indicating the feasibility of the

allowed to put forward some hypothesis about the different PEF-induced 

propanol confirmed that anaerobic respiration took 

place and that loss of cell viability occurred at the highest treatment field strengths. 

Moreover, the generation of reactive oxygen species (ROS) induced immediately after the 

seems to have caused an oxidative stress to the tissue 

rtaric acid and epicatechin, while an alteration of the Kreb’s cycle 

Aminobutyric acid, as already observed by 

 

analysis. Values are means ± 
are not significant at p<0.05 (Fig. 4 in 

, an accurate control of the 

ental for the feasible application of PEF to this kind of products. On 

the other side, the application of electric field strength below the threshold of irreversibility, 

ting the feasibility of the 
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5 Conclusions 

The research findings of this PhD activity increases the understanding of the main phenomena 

involved on quality aspects of fruit minimal processing. The most consistent results related to the 

applied non-thermal techniques confirmed their different potentiality in the optic of processing and 

product innovation, but also the need of their modulation in relation to the different raw material 

susceptibility to degradation and final product target. 

 

Cold plasma treatment effects on fresh-cut fruit characterized by different kind of stability 

criticisms, resulted mainly bound to the inactivation of degradative enzymes and microbial cells, 

without evidencing functional modifications in the final products.  

The study of osmotic dehydration and vacuum impregnation highlighted the potentiality of these 

techniques to be successfully applied for cold formulation/enrichment of minimally processed fruit, 

but also the necessity of carefully accounting for the metabolic and structural modifications 

promoted by the processing on the vegetable tissues. An induction of metabolic stress response was 

also evidenced as a consequence of pulsed electric fields treatment, related to electric field strength. 

Below the threshold limit of irreversible damages to cell membranes, the treatment promoted only 

slight and reversible modifications of the metabolic profiles, evaluated through calorimetry and 

metabolomic analysis on fresh-cut apples.  

 

The applied methodologies, approaching the product as a dynamic system both in terms of 

endogenous physiological activity and porous matrix interacting with the surrounding ambient 

(during processing and storage), resulted very promising for the development of innovative 

vegetable products increasing related knowledge. This can only be carried out through the 

application of a multianalytical approach based on the combination of different techniques, such as 

calorimetry, fluorescence/light microscopy, TD-NMR and NMR-based metabolomics, coupled with 

other physico-chemical and enzymatic assessments. 
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ABSTRACT 

The aim of this work was to evaluate the influence of the ripening stage on fresh-cut kiwifruit tissues in terms of quality and tissue 
metabolism, during accelerated storage (AS) in controlled conditions. For this purpose three different ripening stages were selected, 
corresponding to about 11, 13 and 15 °Brix. For each ripening stage the fruits were peeled and cut into 1 cm thick slices and stored 
in climatic chambers at 10 °C, 90% RH, for 3 days. During storage, quality indices as soluble solid contents, titrable acidity, colour 
and texture were monitored. Metabolic assessment was carried out evaluating the endogenous metabolic heat using isothermal calo-
rimetry, and monitoring O2 consumption and CO2 production simultaneously. Differences were found in the evolution of the quality 
indexes during storage; in particular kiwifruit at the lowest ripening stage showed the slowest quality degradation, both in terms of 
softening and visual quality modifications. Metabolic heat production results were different at the different ripening levels investi-
gated, evidencing a strict connection between the physiological state of the tissue and the entity of its wounding response. 

Key words: kiwifruit, accelerated storage, quality. 

REZIME 

Cilj ovog rada je bio da se proceni uticaj stadijuma zrelosti sveže sečenog tkiva kivija u pogledu kvaliteta i metabolizma tkiva, to-
kom ubrzanog skladištenja (AS) u kontrolisanim uslovima. Za ovu svrhu izabrana su tri različita stadijuma zrelosti, što odgovara sa-
držaju suve materije od 11 , 13 i 15°Brix. Za svaki stadijum zrelosti plodovi su oljušteni i isečeni na 1 cm debljine i čuvani u klima 
komorama na 10°C, relativnoj vlažnosti od 90%, tokom 3 dana. Tokom skladištenja, praćeni su kvalitativni pokazatelji: rastvorljivih 
čvrstog sadržaja, titraciona kiselost, boja i tekstura. Metabolička procena sprovedena je ocenjivanjem endogene metaboličke toplote 
koristeći izotermni kalorimetar i praćenjem potrošnje O2 i proizvodnje CO2 istovremeno. U oceni kvaliteta tokom skladištenja 
pronađene su razlike; posebno je kivi na najnižem stadijumu zrenja imao najsporiju degradaciju kvaliteta, kako u pogledu 
omekšavanja tako i vizuelnih promena kvaliteta. Rezultati metabolički proizvedene toplote bili su različiti pri različitim nivoima zre-
losti, pokazujući strogu vezu između fiziološkog stanja tkiva i odgovora subjekta na oštećenje. 

Ključne reči: kivi, ubrzano skladištenje, kvalitet.  
 

INTRODUCTION 

Minimally processed fruits are products that have to maintain 
their quality attributes similar to those of the fresh ones. How-
ever, being metabolically active tissues, they show physiological 
reactions to mechanical stress suffered from peeling, slicing, dic-
ing, shredding or chopping. These minimal processing opera-
tions result in a major tissue disruption, consequently the loss of 
cellular compartmentalisation promotes the contact between en-
zymes and substrates and an overall increase of metabolic activ-
ity (Alzamora et al.,2000; Hodges e Toivonen, 2008).  

Severity of the wounding response could be affected by sev-
eral factors, both internal and external. Internal factors include 
species and variety, but also both maturity at harvest and ripe-
ness stage at cutting. Many studies have shown that the more 
advanced is the stage of ripeness, the more susceptible the fruit 
is to wounds, hence to minimal processing (Brecht, 1995; Gorny 
et al., 2000; Soliva-Fortuny and Martın-Belloso, 2003) thus em-
phasizing the fact that maturity influences stress tolerance 
(Hodges and Tovoinen, 2008). Mature green apple slices exhi-
bited a better preservation of their initial firmness and color dur-

ing storage compared to partially ripe and full ripe slices (Soliva-
Fortuny et al., 2002). Slices of slightly under ripe ‘Conference’ 
pears underwent minor browning and softening processes com-
pared to slices of riper fruits (Soliva-Fortuny et al., 2004), prov-
ing the first to be more suitable to minimal processing proce-
dures. Generally the fresh-industry prefers to process firmer and 
less mature fruits because of technological suitability, and a con-
sequent longer shelf-life of the final product (Hodges and Toivo-
nen, 2008), although at this ripening stage the fruit organoleptic 
quality and flavour profile are lower (Gorny et al., 2000; Beau-
lieu and Lea, 2003; Aguayo et al., 2004; Beaulieu 2006a). Even, 
generally the flavour is indicated by consumers as the most im-
portant quality attribute for fruits and vegetables, textural flaws 
are more often cause of non-acceptability of a fresh product 
(Harker et al., 2003). Furthermore consumers are often found to 
be more sensitive to small changes in texture than flavour (Beau-
lieu et al., 2004). 

Furthermore several researches have been focused on the in-
fluence of maturity stage on the effectiveness of pretreatment for 
the production of fresh cut fruits. Beirão-da-Costa et al. (2006) 
evaluated the application of mild heat treatments to delay quality 
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loss in fresh cut kiwifruit, and found that the treatment was ef-
fective only if the fruit was at an early maturity stage. Panarese 
et al. (2012) studied the use of osmotic dehydration (OD) on ki-
wifruit at different ripening stages, finding a higher sensibility of 
fully ripened fruits to osmotic stress. The higher reduction of 
metabolic heat production in the ripe fruit was attributed to the 
loss of membrane integrity and the consequent increase of mem-
brane permeability during ripening. 

Kiwifruit is commercially important as fresh-cut fruit (An-
tunes et al., 2010) and it has been the subject of several studies 
addressed to the increase of its shelf-life through the application 
of different pre-treatments (Mao et al., 2007; Villas-Boas and 
Kader., 2007; Beirão-da-Costa et al., 2006, 2008, Dalla Rosa et 
al., 2011) and modified atmosphere packaging (Antunes et al., 
2010). In kiwifruit, minimal processing operations are known to 
lead to excessive tissue softening (O’Connor-Shaw et al., 1994; 
Varoquaux, et al, 1990), to increased CO2 and ethylene produc-
tion, to larger mass loss (Agar, et al, 1999) and to decreased fla-
vour intensity (O’Connor-Shaw et al., 1994), although loss of 
firmness has been indicated as the most noticeable change in ki-
wifruit even at low temperatures storage (Varoquaux et al., 
1990; Gil et al., 2006). As a consequence, raw kiwifruits used in 
the fresh-cut industry require high firmness and low soluble con-
tent (Beaulieu, 2010) in order to perform the mechanical opera-
tions, resulting though with an inadequate level of ripening for 
consumption. 

Although several researches have been carried out regarding 
fresh-cut fruit quality, some basic aspects are still unknown, 
mainly because only a few studies have been performed about 
fresh-cut fruit metabolic response to processing stress. The aim 
of this work was to evaluate the influence of ripening stage on 
fresh-cut kiwifruit tissues in terms of quality and tissue metabo-
lism, during accelerated storage (AS) in controlled conditions. 

MATERIAL AND METHOD 

Raw materials 

Kiwifruits (Actinidia deliciosa var deliciosa cv Hayward) 
were brought on the local market. They were partially ripened at 
4 ± 1 °C and 90-95% of relative humidity in air. Along the rip-
ening time, three different stages were selected, corresponding to 
refractometric index values of 11.6 ± 0.9 (LB-Low Brix); 13.5 ± 
0.8 (MB-Medium Brix) and 14.9 ± 0.6 (HB-High Brix). For each 
ripening stage the fruits were hand peeled and cut into 10 mm 
thick slices with a sharp knife and stored in climatic chambers at 
10 °C, 90% RH, for 3 to 4 days. 

Qualitative determinations 

Moisture content of kiwifruit samples was determined gra-
vimetrically by difference in weight before and after drying in 
vacuum oven (pressure≤100 mm Hg) at 70 °C. Drying was per-
formed until a constant weight was achieved (AOAC Interna-
tional, 2002). Triplicate measurements were conducted for each 
sample. Soluble solids content (SSC) was determined at 20 °C 
by measuring the refractive index with a digital refractometer 
(PR1, Atago, Japan) calibrated with distilled water. Titrable 
acidity (TA) was determined by titration with NaOH 0.1 N until 
pH 8.1 (AOAC Official Method 942.15) and expressed as mg of 
citric acid/100 g FW. For each sample, SSC and TA were deter-
mined in triplicate on the juice obtained from 10 kiwifruit slices, 
after filtering through Whatman #1 filter paper. The ratio be-

tween SSC and TA has been used as a ripening index (Sweeney 
et al., 1970). 

Firmness (N) was evaluated by performing a penetration test 
on kiwifruit slices outer pericarp tissue using a TA-HDi500 tex-
ture analyzer (Stable Micro Systems, Surrey, UK) with a 5 kg 
load cell. Experiment was run with a metal probe of 6 mm di-
ameter, and a rate and depth of penetration of 1 mm s−1 and 6 
mm, respectively (Beirão-da-Costa et al., 2006). Firmness (N) 
was evaluated as the first peak force value according to other 
authors. The mean of two replicates of each kiwifruit slice was 
averaged (n=30). 

Surface colour was measured using a colour-
spectrophotometer mod. Colorflex  (Hunterlab, USA). Colour 
was measured using the CIELab scale and Illuminant D65. The 
instrument was calibrated with a white tile (L*93.47, a* 0.83, b* 
1.33) before the measurements. Results were expressed as L* 
(luminosity), a* (red index) and b* (yellow index).  

Metabolic determinations 

Six cylinders were sampled using a core borer from the outer 
pericarp tissue of each kiwifruit slice and placed in sealed 20 ml 
glass ampoule. Four replicates for each sample were performed. 
The rate of heat production was continuously measured in a 
TAM air isothermal calorimeter (Thermometric AB, Järfälla, 
Sweden), with a sensitivity (precision) of ±10 μW (Wadsö and 
Gόmez-Galindo, 2009). This instrument contains eight twin 
calorimeters. Each calorimeter had its own reference and the 
measured signal is the difference between the sample signal and 
the reference signal. The reference is a sample with thermal 
properties similar to the sample, except that it does not produce 
any heat; water was chosen as the reference material. By assum-
ing that the heat capacity of kiwifruit dry matter (CST) is 1 J g−1 
K−1, the quantity of water in each reference ampoule (Mw) was 
determined as: 

 

  (1) 
 

where MST is the dry matter content and MW is the water con-
tent of the kiwifruit sample; CW is the water heat capacity. The 
measurements were performed at 10 °C for 24 h. Immediately 
after the ampoules discharging from the calorimeters, the CO2 
percentage was measured in the ampoule headspaces by a gas 
analyzer (MFA III S/L gas analyzer, Witt-Gasetechnik, Witten, 
Germany). 

Respiration rate was evaluated using a static method. Six cyl-
inders were sampled from the outer pericarp tissue of the slice 
and sealed in 20 ml glass ampoule. CO2 percentage of triplicate 
specimens was measured in the ampoule headspace by a gas ana-
lyzer mod. MFA III S/L (Witt-Gasetechnik, Germany) after se-
lected intervals during 24 h at 10 °C from the sampling. 

The respiration rate (RRCO2) was calculated as: 
 

 (2) 
 

where mmCO2 is the oxygen molar mass (g/mol), Vhead is the 
ampoule headspace volume (L), %CO2, head is the carbon diox-
ide percentage in the ampoule headspace at time t (h); m is the 
sample mass (kg); R is the gas constant (L kPa K−1 mol−1). 
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Statistical analysis 

Significance of the effects of ripening stage was evaluated by 
means of t-Test and one-way analysis of variance (ANOVA, 
95% significance level) using the software STATISTICA 6.0 
(Statsoft Inc., Tulsa, UK). 

RESULTS AND DISCUSSION 

Physico-chemical parameters 

Means values of the soluble solids content (SSC), titrable 
acidity (TA) maturity index (°Brix/TA) and water content are 
shown in Table 1. 
 

Table 1. Physico-chemical parameters of kiwifruit samples 
during storage at 10 °C 90 % RH. 

 

Samples 
Days of 
storage 

SSC 
(°Brix) 

TA (mg citric 
acid/100 g) 

Maturity index 
(°Brix/TA) 

Water con-
tent (%) 

LB 
0 11.56a 1.45a 7.95a 84.1a

1 12.07a 1.50a 8.06a 83.9a

3 14.58b 1.47a 9.93b 82.6b

MB 
0 13.46a 1.47a 8.92a 85.1a

1 14.64b 1.57a 9.35a 81.3b

4 16.27c 1.59a 10.26b 79.6b

HB 
0 14.88a 1.42a 10.04a 83.7a

1 16.55b 1.48b 11.26b 82.4b

3 17.53b 1.56c 11.26b 80.6c

*Values followed by different letters for the same ripening 
group differ significantly at p < 0.05 levels. 

 

Soluble solid content increased of about 3°Brix compare to 
the initial value in all samples during storage, showing a pro-
gressive conversion of starch into soluble sugars as a response 
induced by minimal processing. TA did not show significant 
modifications in LB and MB kiwi samples but underwent a 
slight, but significant increase in High Brix (HB) sample. In 
general, in all samples an increase of maturity index, calculated 
as ratio between SSC and TA, was observed. 

Initial moisture content was similar for the three different 
ripening stages groups and decreased in all samples during stor-
age as reported in table 1. Disruption of cell membranes due to 
wounding can lead to water loss from tissues (Rolle et al.,1987). 
The intermediate ripeness (MB) sample showed a higher water 
loss, going from 85.1 to 81.3% of water content in the first day 
and to 79.6 % at the end of the storage. The sample at the lower 
ripeness degree shows a better retention of water during storage 
with a loss of less than 2%. 

Degree of ripening affected lightness of the flesh, as reported 
in fig 1a. LB fruit were significantly lighter compared to HB 
fruits, showing a difference in the L* value of ten units; similar 
results has been found by Beirão-da-Costa et al. (2006). During 
storage the a* chromatic component of colour reported a pro-
gressive decrease in all samples. As far as a* and b* values are 
concerned, during storage all samples showed modifications that 
led to the increase of the first and decrease of the second one. 

Kiwi fruit samples at LB and MB ripening stages, did not 
show significant differences, whereas the riper fruit appeared 
always less green and yellow. The colour of kiwifruit flesh is 
mainly due to the presence of some pigments, as chlorophyll and 
carotenoids. Variations from green to yellow are due to the dis-
appearance of chlorophyll that unmask the carotenoids and to the 
changes in the chemical composition and cell wall structure 
(Brady, 1987). According to Montefiori et al. (2009) cultivars of 
Actinidia deliciosa Hayward retain better their green colour dur-
ing maturation and ripening compared to other cultivars, as a 

consequence of a low enzymes activity responsible for chloro-
phyll catabolism and a retention of the chloroplasts structure. 
The changes of colour observed in this experiment could be 
caused by a variation in the internal structure of kiwifruit tissue 
due to ripening. According to Agar et al. (1999) surface darken-
ing in kiwifruit slices can be attributed to translucent water soak-
ing of the tissues, while low polyphenoloxidase activity and high 
ascorbate content inhibit enzymatic colour degradation. 
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Fig. 1. Changes in colour parameters L*, a* and b* of kiwifruit 
samples (Low  Medium and ▲ High Brix) during storage at 

10°C and 90% RH. 
 

As expected LB fruit showed a higher initial flesh firmness 
(11.28 N ± 5.22) compared to medium ripe MB (9.33 N ± 3.74) 
and riper fruits HB (1.66N ± 0.32) indicating a progressive 
breakdown of internal structure during fruit maturation that it is 
a consequence of the solubilisation of the protopectin fraction of 
the cell wall components (Varoquaux et al., 1990). Furthermore 
Beirão-da-Costa (2006) found that calcium content was higher 
in partially mature fruits compared to fully ripe one, resulting in 
a greater formation of calcium pectates. 

 
Differences in the ability to maintain initial firmness during 

storage were also found. As reported in fig 2, at a lowest stage of 
ripening, kiwifruit slices exhibited a good retention of their tex-
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ture after one day of storage at 10°C. Only at the third day, a 
substantial firmness loss, more than 50% of the initial value,  
was observed. In MB kiwifruit slices, a 50% loss was observed 
right after the first day, whether riper fruit slices maintained very 
low and similar values during the three days of storage. 

Texture loss in kiwifruit slices can be considered the most 
noticeable change during storage (Soda et al., 1986; Varoquaux 
et al., 1990; Gil et al., 2006) and it is related to structural 
changes (Muntada et al., 1998). According to Varoquaux et al. 
(1990) texture breakdown in kiwifruit slices is due to the enzy-
matic hydrolysis of cell wall components. These enzymes, acti-
vated by operations as peeling and cutting, diffuse through the 
inner tissue and catalyze the demethoxylation and depolymerisa-
tion of pectic compounds. These authors also affirmed that en-
zymatic activity due to cutting promote the degradation of uronic 
acid polymers, demethylation of the water soluble fraction and 
rupture of calcium bridges. 

The results of the present study suggest that with the pro-
gressive ripening of the fruit, the internal structure undergoes a 
breakdown that causes a substantial loss of initial firmness. 
Moreover, mature fruits are more sensible to peeling and cutting, 
and undergo a faster softening process compared to partially ripe 
fruits. These results are in agreement with previous findings by 
Soliva-Fortuny et al. (2002; 2004) and Dobrzanski and 
Rybczynsky (2000). 
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Fig. 2. Evolution of firmness of fresh-cut kiwifruit slices at three 
ripening stages ( Low,  Medium and ▲ High Brix) during 

storage. 

Metabolic response 

Figure 3 depicts an example of heat production profiles of 
Low, Medium and High Brix kiwifruit samples during 12 hours 
at 10°C. The initial disturbance due to ampoule loading into the 
calorimeter lasted about 1 h and was not taken into considera-
tion. The thermograms evidenced a progressive decrease of the 
specific thermal power P (mW per gram of sample) by increas-
ing the ripeness level.  

Generally, when the wounded tissue ‘send the signals’, the 
plant starts a number of protective processes that lead to an in-
crease of the produced metabolic heat (Wadsö et al, 2004). As 
reported by Gomez et al. (2004), after wounding, the energy re-
leased by the cell is due to the sum of the ‘‘normal’’ metabolic 
activity and that originating from wounding stress produced by 
the cells near the cut surface. Part of the processes that occur af-
ter wounding are design to membrane restoration and strengthen-
ing of cell walls by cells close to the site of injury (Rolle et al, 
1987 and Satoh et al., 1992). These results suggest that fruits at 
an advance stage of ripening have a lower metabolism reaction 
after wounding, probably due to the loss of the ability to repair 
the damage caused by mechanical stress. 
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Fig. 3. Specific thermal power profiles of pericarp tissue cylin-

ders or kiwifruit at three ripening stages  during 24 h of analysis 
at 10°C. Each thermogram is an average of four replicates. 

 

Mean values of the respiration rate during storage of 24 h in 
controlled conditions are reported in Table 2. LB sample showed 
consistently higher values of CO2 produced and O2 consumed 
compared to the riper samples. 

 

Table 2. Rate of respiration (RCO2) of pericarp tissue cylin-
ders or kiwifruit at three ripening stages  during 24 h of analysis 
at 10°C. 

 

Time of 
storage (h)

Sample 

LB MB HB 

2 61.61 ± 3.90 36.39 ± 4.27 40.82 ± 0.59 

4 37.9 ± 5.60 29.40 ± 3.50 32.77 ± 2.03 

6 33.90 ± 9.45 24.23 ± 4.41 33.82 ± 3.50 

8   25.68 ± 0.64 26.63 ± 2.93 

24 33.52 ± 2.48 24.51 ± 0.44 21.86 ± 2.65 

CONCLUSION 

The present work showed that the ripening stage has an im-
portant influence on the entity of the wounding response of kiwi-
fruit tissue. All samples showed an increase of maturity index, 
while the sample at the lower ripening degree showed a better 
retention of water during storage. Differences in the ability to 
maintain initial firmness during storage were also found. At a 
lower stage of ripening, kiwifruit slices exhibited a good reten-
tion of their texture during the first two days of storage at 10°C, 
while more mature fruits were more sensible to peeling and cut-
ting, showing a faster softening process compared to partially 
ripe fruits. 

Metabolic heat production results were different at the dif-
ferent ripening levels investigated, evidencing a strict connection 
between the physiological state of the tissue and the entity of its 
wounding response in terms of heat production 

The approach purposed in this research can be very useful to 
standardize the raw kiwifruit selection from fresh-cut industry, 
permitting the understanding of kiwifruit metabolic response 
mechanisms to minimal processing operations. 
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ABSTRACT 
The aim of this work was to evaluate the influence of the ripening stage on three fresh-cut fruit (apple, kiwifruit and melon) in 

terms of quality and tissue metabolism, during accelerated storage (AS) in controlled conditions. For this purpose, two different 
ripening stages were selected for each fruit. At each ripening stage the fruits were peeled and cut into 10 mm thick slices and stored 
at 10 °C, RH 90 %, for 24 hour for apples and 4 days for kiwifruit and melon. During storage, samples were monitored for the main 
quality indexes and the activity of the main degradative enzymes (polyphenoloxidase, peroxidase and pectinesterase). Production of 
the endogenous metabolic heat was also monitored using isothermal calorimetry. 

Results showed that, whether for melon and kiwifruit marked differences were found in the evolution of the parameters considered 
during storage and in relation to their ripening degree, apple quality and metabolic characteristics proved to be less affected by the 
ripening degree during storage. 

Key words: fresh-cut fruit, wounding response, ripening degree, enzymatic activity, tissue metabolism. 

REZIME 
Cilj ovoga rada je ocena uticaja stepena zrelosti tri sveže rezane voćne vrste (jabuke, kivija i dinje) u odnosu na kvalitet i 

metabolizam tkiva, tokom postupka ubrzanog skladištenja u kontrolisanim uslovima. U tu svrhu, dva različita stadijuma zrelosti su 
odabrana za svaku voćnu vrstu. Svaki uzorak različitih stepena zrelosti je oljušten i izrezan na kolutove debljine 10 mm i potom 
skladišten na 10°C pri relativnoj vlažnosti vazduha 90%, u trajanju od 24 sata za jabuku i četiri dana za kivi i dinju. Tokom 
skladištenja, praćeni su glavni indeksi kvaliteta uzoraka i aktivnosti glavnih degradativnim enzima (poliphenolokidaze, peroksidaze i 
pektinasterase). Proizvodnja endogene metaboličke toplote je takođe praćena korišćenjem metode izotermne kalorimetrije.  

Rezultati su pokazali uočljive razlike u ocenjivanju parametara tokom skladištenja kada je reč o dinji i kiviju i njihovom stepenu 
zrenja, ispostavilo se da na kvalitet jabuke i metaboličke karakteristike, stepen zrenja ima manji uticaj tokom procesa skladištenja.  

Ključne reči: sveže rezano voće, uticaj sečenja, stepen zrenja, enzimaska aktivnost, metabolizam tkiva. 
 

INTRODUCTION 
Fresh-cut fruit are products that undergo minimal processing 

operation such as peeling, cutting, dicing, shredding etc. and 
maintain their quality characteristics similar to those of fresh 
products. However, their quality degrade faster compared to that 
of the intact product due to the physiological response to the 
mechanical stress called ‘wounding response’ (Brecht, 1995).  

The loss of cellular compartmentalisation, promoted by 
processing operations, leads to the contact between enzymes and 
their substrates and a general increase of enzymatic and 
metabolic activity that accelerate the quality degradation. 

Appearance and texture changes are the main factor 
determining consumer acceptability of fresh-cut fruit and, being 
strictly related to tissue deterioration, are often used as measures 
of product freshness and quality. 

The selection of raw material is a fundamental factor for 
product quality and its shelf-life. Degree of ripening at 
harvesting and at processing is an important factor that can 
influence the intensity of the wounding response (Hodges and 
Toivonen, 2008). Generally, processing fruits that are unripe or 
slightly unripe, lead to a better preservation of quality during 
storage but it could be detrimental for the organoleptic and 
flavour profile (Beaulieu et al., 2004). 

However, few studies have been performed about the 
influence of ripening degree on the metabolic response to 
processing stress in fresh-cut fruit. Therefore, the aim of this 
work was to evaluate the influence of the ripening stage on 
fresh-cut apple, kiwifruit and melon in terms of quality and 
tissue metabolism, during accelerated storage (AS) in controlled 
conditions. 

MATERIAL AND METHOD 

Raw materials 
Kiwifruits (Actinidia deliciosa var deliciosa cv Hayward) 

and apples (Malus domestica var. Pink Lady) were brought on 
the local market. They were partially ripened at 4 ± 1 °C and 90-
95 % of relative humidity in air for about a month, selecting two 
different ripening stages defined as Unripe (U) and Ripe (R). 
Melon (Cucumis melo var. Reticulatus) was harvested at 
different degrees of development of the abscission layer, also 
called ‘slip’, in particular at ½ slip as unripe (U) and full slip as 
ripe (R). For each ripening stage the fruits were hand peeled and 
cut into 10 mm thick slices with a sharp knife and stored in 
climatic chambers at 10 °C, 90 % RH, for different time period 
depending on the kinetics of quality degradation that were 
defined in preliminary tests as 24 hours for apples and 4 days for 
kiwifruit and melon. 
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Dry matter content, soluble solid content and titrable acidity 
were determined to characterize the raw material. Dry matter 
was determined gravimetrically after drying in vacuum oven 
(AOAC International, 2002). Soluble solids content (SSC) was 
determined at 20 °C by measuring the refractive index with a 
digital refractometer (PR1, Atago, Japan) calibrated with 
distilled water. Titrable acidity (TA) was determined by titration 
with NaOH 0.1 N until pH 8.1 (AOAC Official Method 942.15) 
and expressed as mg of citric acid/100 g FW. Triplicate 
measurements were conducted for each sample. The ratio 
between SSC and TA has been used as a ripening index. Results 
are presented in table 1. 
 

Table 1. Physico-chemical parameters of apple, kiwifruit and 
melon at the two ripening stages selected 

Fruit Ripening 
Stage 

SSC 
(°Brix) 

TA (mg citric 
acid/100 g) 

Maturity 
index 

(°Brix/TA) 

Dry matter 
(g/100g) 

Apple U 13.0 ± 0.2 0.36 ± 0.02 35.9 ± 0.4 13.4 ± 0.2 
R 13.4 ± 0.2 0.27 ± 0.01 50.6 ± 1.1 14.5 ± 0.7 

Kiwifruit U 11.6 ± 0.9 1.45 ± 0.02 7.9 ± 0.2 15.9 ± 0.5 

R 14.9 ± 0.6 1.42 ± 0.01 10.0 ± 0.4 16.3 ± 0.5 

Melon U 11.8 ± 0.1 0.7 ± 0.1 16.8 ± 0.3 13.1 ± 0.9 
R 14.3 ± 0.1 0.8 ± 0.1 17.9 ± 0.3 16.2 ± 0.5 

Qualitative determinations 
Firmness (N) was evaluated by performing a 

penetration test on fruit pulp using a TA-HDi500 
texture analyzer (Stable Micro Systems, Surrey, 
UK) with a 5 kg load cell. Experiment was run 
with a metal probe of 6 mm diameter, and a rate 
and depth of penetration of 1 mm s−1 and 6 mm, 
respectively (Beirão-da-Costa et al., 2006). 
Firmness (N) was evaluated as the first peak 
force value.  

Surface colour was measured with a colour-
spectrophotometer mod. Colorflex (Hunterlab, 
USA) using the CIELab scale and Illuminant 
D65. A white tile (L* 93.47, a* 0.83, b* 1.33) 
was used for calibration. Results were expressed 
as L* (luminosity) and h° (hue angle).  

Enzymatic activity 
The activity of the enzyme mainly responsible for quality 

degradation for each fruit was evaluated. 
Polyphenoloxidase (PPO) activity was assayed 

spectrophotometrically according to the methods proposed by 
Baritaux et al. (1991) on fresh-cut apples and after 2, 4, 12 and 
24 h of storage for both ripening degrees. 

Pectinmethylesterase (PME) was extracted and assayed 
spectrophotometrically according to the methods proposed by 
Hagerman and Austin (1986) on fresh-cut kiwifruit after 0, 1, 2 
and 4 days of storage for both ripening degrees. 

Peroxidase (POD) was extracted and assayed 
spectrophotometrically according to the methods proposed by 
Morales Blancas et al. (2002) on fresh-cut melon after 0, 1, 2 
and 4 days of storage for both ripening degrees. 

Metabolic determinations  
A TAM air isothermal calorimeter (Thermometric AB, 

Järfälla, Sweden), described in details by Wadsö and Gόmez-
Galindo (2009), was used to assess metabolic heat production. 

Six cylinders were sampled using a core borer from the fruit 
tissue and placed in sealed 20 ml glass ampoule. Four replicates 
for each sample were performed. The rate of heat production 
was continuously measured at 10 °C for 24 h. Immediately after 
the end of the analysis, the O2 and CO2 percentages were 
measured in the headspaces by a gas analyzer (MFA III S/L gas 
analyzer, Witt-Gasetechnik, Witten, Germany). 

RESULTS AND DISCUSSION 

Qualitative determinations 
The values of hardness measured in the fruit samples at 

different ripening stages during storage are reported in table 2. 
As it can be observed, hardness increased upon ripening in apple 
samples, both between ripening stages and during 24 h storage. 
On the contrary, melon and kiwifruit slices showed a notable 
loss of hardness between the two ripening degrees selected, 
almost tenfold for kiwifruit. After 4 d of storage, it can be 
observed a loss of hardness up to 23 and 60 % compared to the 
initial values for respectively unripe melon and unripe kiwifruit, 
while ripe fruit showed always low and similar values. 
Textural characteristics are related to ripening degree and 
variations of such properties are often due to enzymatic 
hydrolysis of cell wall components. Melon and kiwifruit are 
particularly subjected to softening during storage (Silveira et al., 
2011; Gil et al., 2006) and, in agreement with results found by 

Beaulieu et al. (2004), texture was significantly affected by the 
maturity stage but the effect of storage time decreased as 
maturity increased. 

As it can be observed in table 3, in the first 12 h of storage 
apple slices underwent a relevant variation of colour parameters 
in terms of luminosity and hue angle decrease, that indicates a 
general surface browning that can be attributed to PPO activity. 
In the second part of the storage, both parameters further 
decreased but no significant differences were found between 
ripening stages. 

Colour changes in fresh-cut melon and kiwifruit are mainly 
due to variation in the internal structure of the tissue and the 
induction of a translucent water-soaked tissue while enzymatic 
browning is scarcely influent.  

Whether in both fruits and in both ripening stages a surface 
darkening was observed during 4 d of storage, degree of ripening 
significantly affected lightness in kiwifruit but not in melon. 
Conversely, hue angle although decreasing during storage, was 
consistently higher in riper melon slices indicating a variation 
from yellow to red tonality possibly due to a higher 
concentration in β-carotene upon ripening (Simandjuntak et al., 
1996). 

 

 

Table 2. Hardness (N) of apple, kiwifruit and melon at the two ripening 
stages selected during accelerated storage in controlled conditions. Different 
letters indicate significant differences (p-level < 0.05) between ripe and unripe 
fruit for the same storage time 

Fruit Ripe. 
Stage 

Storage time (days) 
0 0.5 1 2 4 

Apple U 15.22a ± 3.41 20.12a ± 3.71 19.99a ± 2.84 - - 
R 19.79b ± 7.80 22.67b ± 4.37 25.35b ± 4.00 - - 

Melon U 18.42a ± 3.77 - 16.63a ± 3.31 16.08a ± 3.91 14.14a ± 4.12 
R 9.43b ± 4.61 - 10.81b ± 4.40 10.16b ± 4.78 8.98b ± 2.87 

Kiwi. U 11.28a ± 5.22 - 12.21a ± 3.49 17.23a ± 5.26 4.43a ± 0.79 
R 1.66b ± 0.32 - 1.48b ± 0.37 1.26b ± 0.31 1.03b ± 0.18 
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Enzymatic activity 
Figure 1 reports PPO activity measured in fresh 

cut apples during 24 h of storage. Straight after 
cutting, riper fruit showed a higher activity 
compared to unripe one but differences were not 
statistically significant. After 2 h, it increased 
sharply until doubling its values, but then decreased 
again. PPO is rapidly activated by peeling and 
cutting operations that lead to the contact with its 
substrate. After 12 and 24 h the activity was very 
low and did not show any significant differences 
between samples.  

Texture loss is one of the main factor limiting 
fresh-cut kiwifruit shelf-life (Gil et al., 2006) 
Softening and textural changes are brought about by 
the actions of a multitude of cell-wall-localized 
enzymes acting on specific, potentially highly 
localized substrates. According to Varoquaux et al. 
(1990) texture breakdown in kiwifruit slices is 
mainly due to the enzymatic breakdown of pectic 
compounds, due to demethoxylation and 
depolymerization by pectinolytic enzymes such as 
PME and polygalacturonase (PG). In particular, 
PME causes the removal of methylester groups from 
pectins in the cell wall that are further 
depolymerised by PG. 

Figure 2 shows Pectinmethylesterase (PME) 
activity in fresh-cut kiwifruit slices during 4 d of 
storage. Unripe fruits showed an activity tenfold 
compared to ripe fruit. PME activity is generally 
higher early in ripening (Toivonen and Brummel, 
2008) increasing accessibility of PG to its substrate. 

Peroxidase (POD) is an ubiquitous enzyme 
found in most vegetable tissues and comprises many 
isozymes (Lamikanra and Watson, 2000). Its 
activity causes the oxidation of mono and di-
phenols when even small quantities of hydrogen 
peroxide act as oxidising agent. It is involved in 
many degradative reactions that affect colour, 
aroma, texture and nutritional characteristics of fruit 
and vegetables. According to Lamikanra et al. 
(2005), a high POD activity is related to the 

Table 3. Colour of apple, kiwifruit and melon at the two ripening stages selected during accelerated storage in controlled 
conditions. Different letters indicate significant differences (p-level < 0.05) between ripe and unripe fruit for the same storage 
time 

 Fruit Ripening 
Stage 

Storage time (days) 
 0 0.5 1 2 4 
 Apple U 81.45 a ± 2.05 69.33 a ± 2.45 65.57 a ± 1.38 - - 
 R 82.33 a ± 3.05 71.55 a ± 2.56 67.67 ± 2.05 - - 

L* Kiwifruit U 48.45 a ± 2.11 - 47.98 a ± 3.07 47.21a ± 3.16 44.08a ± 3.77 
 R 38.11b ± 2.45 - 31.93 b ± 3.61 31.88 b ± 3.78 31.75b ± 1.81 
 Melon U 57.24 a ± 2.90 - 45.25 a ± 1.72 45.26 a ± 2.12 40.43a ± 4.97 
 R 57.85 a ± 4.50 - 42.92a ± 4.04 44.11a ± 2.48 42.38a ± 4.97 
 Apple U 97.57a ± 4.55 93.25a ± 2.56 88.15a ± 2.07 - - 
 R 98.67a ± 3.18 90.03a ± 3.56 84.66 ± 2.28 - - 

h° Kiwifruit U 103.93a ± 2.11 - 103.72a ± 0.76 102.19a ± 2.16 101.17 a ± 3.11 
 R 103.83a ± 2.70 - 104.70a ± 2.80 104.44a ± 2.05 106.32b ± 4.39 
 Melon U 61.81a ± 0.98 - 60.89 a ± 1.05 59.83 a ± 1.76 60.08 a ± 1.03 
 R 64.57b ± 0.89 - 62.91b ± 1.16 62.85b ± 1.37 62.11b ± 1.75 
 

 
 

Fig. 1. Polyphenoloxidase (PPO) activity (U/ml) of apple at different 
ripening degrees during 24 h of storage in controlled conditions. Different 

letters indicate significant differences (p-level < 0.05) between ripe and 
unripe fruit for the same storage time 
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Fig. 2. Pectinmethylesterase (PME) activity (U/ml) of kiwifruit at different 
ripening degrees during 4 d of storage in controlled conditions. Different 
letters indicate significant differences (p-level < 0.05) between ripe and 

unripe fruit for the same storage time 
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development of off-odour and off-colours in food and 
Lamikanra et al. (2000) suggested that could substantially 
reduce shelf-life of melons. 

As it can be observed in figure 3, POD activity was double in 
unripe melons compared to ripe ones. In both samples it 
increased until the second day of storage, probably as a 
consequence of the physiological response to wounding stress, 
and then decreased again. 

Metabolic heat production 
Metabolic profiles obtained by isothermal calorimetry have been 
integrated in order to calculate the total metabolic heat produced 
by fruit tissues during 24 h. Results are reported in figure 4. 
Operations such as peeling and cutting cause a mechanical stress 
to tissues that react by starting different metabolic processes 
aimed at repairing the damages. Therefore , as reported by 
Gomez et al. (2004) and by Tappi et al. (2013), the heat 
measured after wounding is the sum of the normal metabolic 
activity and the one due to wounding. 

As it can be observed, for all fruits, riper fruits showed a lower 
metabolic heat production. This may indicate a loss of the ability 
to repair the damage caused by mechanical stress. While all 
differences were statistically significant, the highest difference 
was observed for kiwifruit that showed at the advanced stage of 
ripening a 50 % decrease in the metabolic heat production 
compared to the unripe fruit. 

CONCLUSION 
The results obtained in this research showed how the 
main qualitative and metabolic characteristics of the 
three different fruit were affected by ripening degree 
during storage. 
Degree of ripening influenced significantly flesh colour, 
hardness and enzymatic activity in fresh-cut kiwifruit 
and melon, but it showed little effect on fresh-cut apple 
characteristics during the storage time considered. 
Metabolic heat decreased upon ripening in all three 
fruits, showing a strict connection between the 
physiological state of the tissue and the entity of its 
wounding response. 
Results highlight how the determination of the optimal 
ripening degree for fresh-cut production has to be 
carried out specifically for each type of fruit. 
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In this studywepioneered the use of gas plasma for the treatment of fresh-cut apples and its potential application
in the agri-food precesses. Treatments were conducted on fresh-cut Pink Lady® apples using a Dielectric Barrier
Discharge (DBD) generator and considering three different times: 10, 20 and 30min. Main quality (soluble solid
content, titrable acidy, colour by computer vision systemand texture) andmetabolic parameters (polyphenol ox-
idase PPO activity, respiration and heat production)were assessed immediately after the treatment and during a
storage of 24h (10°C, 90% RH). In terms of browned areas, a significant decreasewas observed in treated samples
compared to the control ones (up to about 65% for 30min and after 4h of storage). PPO residual activity decreased
linearly by increasing the treatment time (up to about 42%). In general the treatment appeared to slow down the
metabolic activity of the tissue. Other qualitative parameters were only slightly affected by the treatment.
Industrial relevance: The potential application on in-packed cold plasma technology and its known effect on mi-
crobiological decontamination of foods makes this technique very encouraging for fresh-cut fruit stabilization.
However very important aspects have to been clarified in order to deeply understand gas plasma effect on
fresh-cut apple quality and on the metabolic response of the tissue.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Factors controlling the quality maintenance of fresh-cut fruits are a
result of a complex process, concerning a number of physico-chemical
and biochemical modifications, that mainly affect flavour, colour and
texture (Mencarelli & Massantini, 1994). The disruption of the cellular
structure due to peeling and cutting puts enzymes and their substrates
in direct contact. Several reactions can be promoted, and a sudden in-
crease in the respiration rate and in the metabolism, leading to a faster
tissue deterioration, can be observed. These reactions involve negative
changes in fundamental characters highly appreciated by consumers,
as the visual quality (mainly changes in colour) and the texture (tissue
softening) (Toivonen & Brummell, 2008).

For fresh-cut apples the most important phenomenon responsible of
its quality degradation is the enzymatic browning (Rocha & Morais,
2003). It is worth noting that apple tissue cutting allows the interaction
between the polyphenol oxidase (PPO) with the polyphenolic substrate,
in the presence of oxygen (Martinez & Withaker, 1995). Cut-edge brow-
ning is due to two PPO catalyzed reactions, the hydroxylation of
monophenols to diphenols and the oxidation of diphenols to quinones,
which in turn involve melanin accumulation (Toivonen & Brummell,
2008).
39 0547382348.
rdinelli).
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At date different chemical and physical techniques were explored to
control enzymatic browning of fresh-cut apples. Chemical techniques
that act to inactivate the enzyme are based on dipping procedures and
on the use of organic acids in combinationwith calcium salts, carboxylic
acids, thiol containing compounds and phenolic acids (Oms-Oliu et al.,
2010). Edible coatings, as carriers of the anti-browning chemical agents,
were also extensively studied (Baldwin, Níspero-Carriedo, Chen, &
Hagenmaier, 1996) and several researches were focused on the con-
tribution of modified atmosphere packaging (MAP) on browning in-
hibition (Aguayo, Requejo-Jackman, Stanley, & Woolf, 2010; Rocculi,
Romani, & Dalla Rosa, 2004).

Recently different innovative treatmentswere tested to inhibit brow-
ning reactions. For fresh-cut apples, UV-C light (200–280nm) exposure
(Manzocco et al., 2011) and short term exposure to nitric oxide (NO)
gas (Pristijono, Willis, & Golding, 2006) showed high potentialities.

Among advanced techniques, gas plasma is currently used for bio-
treatments; it is an ionized gas characterized by active particles such as
electrons, ions, free radicals, and atomswhich are both in ground and ex-
cited states; the excited species emit a photon (including UV photons)
when they get to the ground state (Moreau, Orange, & Feuilloley,
2008). The ionization occurs by applying energy to a gas mixture and
particularly to electrons which in turn transmit the energy to the heavy
species by collisions. Non-thermal or non-equilibrium plasmas are pro-
duced at low pressure (e.g. atmospheric), and the behaviour of electrons
and ions is in turn influenced by the excitation frequency. When atmo-
spheric air is used as working gas to generate non-equilibrium plasma

http://dx.doi.org/10.1016/j.ifset.2013.09.012
mailto:annachi.berardinelli@unibo.it
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Fig. 1. Layout of the DBD gas plasma generator.

115S. Tappi et al. / Innovative Food Science and Emerging Technologies 21 (2014) 114–122
discharges, reactive oxygen species (ROS) and reactive nitrogen species
(RNS) are formed. Ozone (O3), atomic oxygen (O) and hydroxyl radical
(OH), are the main generated ROS active components. OH radicals are
produced from the direct dissociation of the water molecules by elec-
tronic impact (Moreau et al., 2007). Excited molecules of N2 and nitric
oxide radical (NO) are the main RNS species characterizing a non-
equilibriumplasma and having a role in the decontamination. The oxida-
tive species produced during the discharge can cause lipid peroxidation,
and protein and DNA oxidation (Montie, Kelly-Wintenberg, & Roth,
2000). Main biological applications of non-thermal plasmas are un-
doubtedly medicals (Fridman et al., 2008) and regard the microbial
decontamination of complex and expensive heat-sensitive medical
devices (Weltmann et al., 2008), the sterilization of living tissues and
wound healing (Kong et al., 2009). In the medical field, protein destruc-
tion (bovine serum albumin) was also observed by treating medical
surgical instruments with atmospheric gas plasma (Deng, Shi, Chen, &
Kong, 2007; Deng, Shi, & Kong, 2007).

Recently, non-thermal plasma was used for the decontamination of
agricultural products and its inactivation power was studied with
respect to several microbial species (Shama & Kong, 2012). In terms of
microbiological lethal power, main results showed that this technique
can be a valuable alternative to the washing procedures with chemicals
such as those used for fresh fruits and vegetables such as apples,
cantaloupe, lettuce (Critzer, Kelly-Winterberg, South, & Golden,
2007), mango, melons (Perni, Liu, Shama, & Kong, 2008), and pears
(Berardinelli, Vannini, Ragni, & Guerzoni, 2012). Other studies re-
garding the food sector were conducted on the decontamination of
shell eggs (Ragni et al., 2010), chilled poultry wash water (Rowan
et al., 2007), food packaging materials such as polyethylene tere-
phthalate bottles (Koulik, Begounov, & Goloviatinskii, 1999) and
sealed packages (Keener et al., 2012).

Fundamentals of cold plasma technology and its applications to
the decontamination of foods have been reviewed by Misra, Tiwari,
Raghavarao, and Cullen (2011) and Niemira (2012). Unlike research
for food-borne pathogen inactivation, few studies have been conducted
to this end to evaluate the effect of cold gas plasmaon fresh-cut fruit and
vegetable quality aspects.

Grzegorzewski, Rohn, Kroh, Geyer, and Schlüter (2010) and
Grzegorzewski, Ehlbeck, Schluter, Kroh and Rohn (2011) studied the
effect of non-thermal plasma on lamb's lettuce morphology and chemi-
cal composition, particularly onphenolic compounds content. According
to their findings, leaf surfaces were significantly affected by the treat-
ment, showing a degradation of epicuticularwaxes and an increase in hy-
drophilicity proportional to plasma exposure time. They also found that
generally the treatment caused a reduction of the leaf phenolic content,
although the plantmatrix acted as a protection against oxidation of bioac-
tive compounds by reactive species generated by plasma.

Baier et al. (2013) tested the antimicrobial efficacy and the physio-
logical effect of non-thermal plasma treatment applied with different
power intensities on lamb's lettuce. Results showed that the treatment
can cause an inhibition of photosynthetic activity that became more
severe and permanentwith increased power settings. The impact on tis-
sue physiology was attributed both to the thermal damage, particularly
at the higher power, and to the stress brought by charged particles and/
or reactive species generated by plasma treatment.

More recently, the effect of cold plasma on tomato peroxidase
(Pankaj, Misra, & Cullen, 2013), on polyphenol oxidase and peroxidase
in a model food system (Surowsky, Fischer, Schlueter, & Knorr, 2013),
was evaluated. Although the results obtained in these studies underline
the potential of cold plasma treatments for enzyme inactivation, further
researches are needed to assess the effect on more complex systems
such as fresh-cut fruit and vegetable.

Since the product temperature during the treatment is very close to
the ambient one, this technique could be suitable for fresh-cut product
processing, where temperature and pressure must be controlled in
order to preserve the product quality.
Given that the application of cold gas plasma treatment on fresh-cut
fruit and vegetable is in its infancy, in the present work we have
pioneered the study of its effect on fresh-cut Pink Lady® apple quality
and endogenous metabolic activity during controlled storage. Particular
attention has been given to colour modification and PPO inhibition, con-
sidering that enzymatic browning is the most important phenomena
limiting the product shelf-life.

2. Materials and methods

2.1. Raw material, handling and storage

Apples (Malus domestica cv. ‘Pink Lady®’) grown in the Emilia–
Romagna region of Italy were harvested in November 2012. Fruits
were stored at 2± 0.5 °C and approximately 100% RH in air, in plastic
bins for 2 months. 20 kg of fruits free from defects was selected and
transported to our laboratory and placed in a closed refrigerated cham-
ber at 4 °C and saturated atmosphere in darkness for one week. When
the experiments were performed, apples had a dry matter content of
15.73 g (±0.29) 100 g fw−1, a soluble solid content of 14.27 (±0.35)
°Brix and a titrable acidity of 0.39mg (±0.03) of malic acid g fw−1.

2.2. The gas plasma generator

A Dielectric Barrier Discharge (DBD) generator was used for the
treatment of Pink Lady® apple slices (Fig. 1). Within the low frequency
plasma sources, the DBD configuration is one of the most investigated
and industrialized non-equilibrium plasma generator. It presents nu-
merous advantages in terms of flexibility of geometrical configurations
(planar or cylindrical), operating parameters (medium, frequency and
voltage), costs and characteristics of the power supply (Kogelschatz,
2003; Morgan, 2009).
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The used generator was characterized by three parallel pairs of elec-
trodes made of brass (supplied by a DC power supply) and a glass
(5mm thick) was used as dielectric material. These electrodes, placed
at the top of an hermetic chamber (70dm3 of maximum available vol-
ume),were powered byhigh voltage transformers and power switching
transistors. A polystyrene parallelepipedwas used to reduce the volume
chamber (about 29dm3). The gas, generated using the atmospheric gas,
was directed to the apple slice surface (15 slices for treatment, placed at
about 9 cm from the electrodes), by means of three fans mounted over
the electrodes. The measured air speed was about 1.5m/s at the elec-
trodes and 0.8m/s at the apple surface. The total consumed power for
the three electrodes is about 150W.

The devicewas electrically and chemically characterized in previous
studies (Ragni et al., 2010). According to these studies, a potential differ-
ence of 15kV (peak-to-peak) can bemeasured at the electrodeswith an
input voltage of 19V (fundamental frequency of oscillation: 12.7 kHz).
The emission spectroscopy of the atmospheric plasma generated by
the device showed the presence of OH andNO radicals and ionspromot-
ing plasma chemical reactions.

2.3. Gas plasma treatments and storage

Samples of 30 pieces (40×10×10mm) of Pink Lady® apple tissue
were prepared starting from about 8 apples. Each samplewas randomly
divided in two sub-samples of 15 pieces each, one for the treatment and
the other for its control.

After preliminary tests aimed at finding treatment conditions that
avoid evident damages of the fruit surface, treatments of 10 min
(5min for side), 20min (10min for side) and 30min (15min for side)
were considered.

It was observed in previous studies that the emission of OH radi-
cals can be increased by increasing the humidity of the air (Ragni
et al., 2010). Gas plasma treatments were conducted at RH of about
60% (22 °C). This condition was selected on the basis of preliminary
experiments, because an excess of water vapour (N80%) can de-
crease the gas plasma effectiveness (Muranyi, Wunderlich, & Heise,
2008). During treatments, each control sample was stored for the
same time and at the same temperature (22 °C) and RH (60%) of
the tested treatment.

2.4. Qualitative assessment of fresh-cut apples

2.4.1. Chemical parameters
Soluble solid content (SSC) was determined at 20 °C by measuring

the refractive index with a digital refractometer mod. PR1 (Atago Co.
Ltd, Tokyo, Japan) calibrated with distilled water.

Drymatter content of apple samples was determined gravimetrically
by difference in weight before and after drying at 70 °C, until a constant
weight was achieved (AOAC International, 2002).

Titratable acidity (TA) was determined by titration with NaOH 0.1N
until pH 8.1 was reached (AOAC Official Method 942.15, 2000), and
expressed as mg of malic acid/100g fw−1.

For each sample, SSC and TA were determined in triplicate on the
juice obtained from 10 apple slices, after filtering through Whatman
#1 filter paper. SSC, dry matter and TA were determined immediately
after treatment and after 24 h of storage in controlled conditions
(10 °C, 90% RH).

2.4.2. Texture
Penetration tests were conducted by means of a Texture Analyser

mod. TA-HDi500 (Stable Micro Systems, Surrey, UK) equipped with a
50N load cell and a 6mmdiameter stainless steel cylinder. Compression
test speed of 0.5 mm s−1 and a maximum deformation of 90% were
respectively used.

For each treatment time 30 apple slices (15 controls and 15 treated)
were respectively analysed after 0, 6 and 24 h of storage in controlled
conditions (10 °C, 90% RH). From the analysis of the acquired curves,
the following parameters were evaluated: Firmness F (N) as the first
peak force value representing the limit of the flesh elasticity, the work
required to rupture the flesh AF (Ns) (from 0 to F), the gradient G
between 0 and F, and the linear distance (LD) between F and the first
20 s (time required to attain a flesh deformation of about 85%) (Fig. 2).
This last parameter was calculated according to the following equation:

LD ¼
Xx¼n

x¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f xþ 1ð Þ− f xð Þ½ �2 þ d xþ 1ð Þ−ds xð Þ½ �2

q

where f is the force (N) and d is the distance (mm).
The software (Stable Micro Systems, v. 2.61) automatically calculat-

ed LD by summing the length of the straight segments connecting each
acquired point between selected times. Since for a crunchy product a
great fluctuation of the force with a corresponding high value of LD
can be observed, this parameter can be considered a useful indicator
of the product crunchiness (Gregson & Lee, 2003).
2.4.3. Browning extent using computer vision system (CVS)
Digitalized images of apple pieces were acquired by positioning the

samples inside a black box under controlled lighting condition. A digital
camera mod. D7000 (Nikon, Shinjuku, Japan) equipped with a 60mm
lens mod. AF-S micro, Nikkor (Nikon, Shinjuku, Japan) was used to
acquire the images.

For each treatment time, acquisitions (exposition time 1/2 s; F-stop
f/16) were conducted on samples of 20 apple slices each (10 for the
treatment and 10 for the control) immediately after the treatment and
after 1, 2 and 4h of storage in controlled conditions (10 °C, 90% RH), in
order to understand the treatment effect on the browning kinetic.
Time intervals were chosen as the most representative of the browning
kinetics of Pink Lady® apple slices, identified by preliminary tests.

Digitalized images were evaluated with an advanced Image Analysis
Software (Image Pro-Plus v. 6.2, Media Cybernetics, USA) using RGB
scale. Total and browned areas were selected and a colour model was
set up according to Rocculi et al. (2004). Two different pixel ranges
were identified on the basis of different chromatic characteristics,
considered as ‘not browned’ and ‘browned’ area. The model was then
applied to each digitalized image, and by evaluating all pixels, the per-
centage of each chromatic area was calculated by the software.



Table 1
Mean values of the measured chemical parameters.

Time of
treatment

Time of
storage

Sample

Chemical parameters

SSC (°Brix) DM (%)
TA

(mg malic acid/100g)

x SD x SD x SD

5+5min

0 h c 14.3a 0.11 15.9a 0.29 0.37a 0.00
t 14.3a 0.15 16.1a 0.14 0.39a 0.01

24h c 14.8a 0.19 18.1a 0.29 0.32a 0.00
t 15.2b 0.10 17.0b 0.05 0.35b 0.00

10+10min

0h c 14.6a 0.18 15.4a 0.64 0.42a 0.01
t 15.4b 0.05 15.9a 0.43 0.42a 0.02

24h c 14.7a 0.12 17.6a 0.78 0.31a 0.00
t 15.4b 0.29 17.5a 0.65 0.33a 0.00

15+15min

0 h c 13.9a 0.12 15.9a 0.53 0.39a 0.00
t 14.5b 0.29 16.0a 0.4 0.41b 0.00

24h c 15.5a 0.26 17.2a 0.62 0.31a 0.01
t 16.0b 0.15 16.8a 0.19 0.28a 0.01

SSC: soluble solid content (SSC). DM: drymatter. TA: titratable acidity. SD: standard deviations. c: control; t: treated. Differences betweenmeanswith the same letter for the same storage
time are not significant at a p-level b 0.05.
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2.5. Metabolic determinations

2.5.1. Polyphenol oxidase activity (PPO)

2.5.1.1. Enzyme extraction. Enzyme extraction was carried out according
to Baritaux, Amiot, Richard, and Nicolas (1991) with slight modifica-
tions. 50 g of sample was homogenised in 100 ml of cold McIlvaine's
buffer solution at pH 7.5 containing 0.5% Triton X100, 25mM ascorbic
acid and 0.5% PVPP, using an Ultra-Turrax blender for 30s. The homog-
enate was kept under agitation and in the dark at 0 °C for 15min and
then centrifuged for 30min at 4 °C and 25,000 g. The supernatant was
filtered and used as extract.

2.5.1.2. Enzyme assay. 4-Methylcatechol 50mM prepared in McIlvaine's
buffer solution at pH 7.5 was used as substrate. PPO activity, measured
just after gas-plasma treatment, was determined reading the adsorbance
Table 2
Mean values of the mechanical parameters calculated from penetration tests.

Time of treatment Time of storage Sample F (N)

x SD

5+5min

0 h c 18.9a 4.0
t 21.8b 5.6

6 h c 21.5a 2.4
t 22.2a 5.3

24h c 23.3a 4.6
t 23.9a 5.6

10+10min

0 h c 19.6a 3.7
t 22.4b 3.6

6 h c 25.7a 4.1
t 27.6a 7.6

24h c 24.3a 4.8
t 25.1a 4.4

15+15min

0 h c 19.3a 3.6
t 21.3a 6.1

6 h c 26.0a 4.4
t 24.5a 3.3

24h c 26.4a 7.9
t 25.1a 5.3

F (N), AF (Ns), G, and LD, see Fig. 2. SD: standard deviations. c: control; t: treated. Differences b
at 420nm and 25°C and calculated on the basis of the slope of the linear
portion of the curve (ΔA/min).

2.5.2. Respiration rate
Respiration rate was assessed on control and treated apple

slices, using a static method. Six cylinders (6 × 10 mm) were sam-
pled from the outer pericarp tissue of each apple piece and sub-
jected to plasma treatments. Controls were obtained by placing
cylinders at the same temperature and relative humidity charac-
terising the treatment chamber. Control and treated cylinders
were then placed in 20ml glass ampoules and sealed with a Teflon
coated rubber seals and an aluminium crimp cap. O2 and CO2 per-
centage of triplicate specimens was measured in the ampoule head-
space by a gas analyzer “check point O2/CO2”mod. MFA III S/L (Witt-
Gasetechnik, Witten, Germany) after 1, 2, 4, 6 and 24h at 10 °C from
preparation. Respiration rate was calculated as mg of consumed
AF (Ns) G (N/s) LD

x SD x SD x SD

22.0a 7.8 7.6a 1.8 66.1a 15.1
32.2b 10.9 7.0 1.8 61.1a 13.2

27.6a 6.5 7.7a 1.4 57.9a 8.1
28.9a 14.7 8.1a 1.5 60.4a 8.2

38.6a 13.0 6.5a 1.3 48.9a 7.9
45.3a 15.0 5.5b 1.2 44.1b 7.8

25.4a 7.4 7.2a 1.7 62.8a 11.2
36.5b 11.2 6.3b 1.1 56.0a 14.2

38.4a 12.6 8.1a 1.9 52.6a 8.8
48.5b 19.9 7.3a 1.8 51.4a 8.1

43.4a 14.9 6.3a 1.0 49.1a 11.4
46.3a 11.0 6.2a 1.4 44.7a 9.3

25.0a 11.6 7.3a 1.8 64.9a 10.3
30.3a 10.7 6.7a 1.7 57.9a 9.7

42.0a 18.5 7.6a 1.2 57.5a 7.0
41.3a 9.5 6.4b 1.0 54.0b 6.2

49.4a 20.5 6.5a 2.3 49.1a 10.1
47.2a 15.4 5.9a 1.3 45.8a 7.9

etween means with the same letter are not significant at p-level b 0.05.
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O2 (RRO2) or produced CO2 (RRCO2) h−1 kg fw−1 according to the
following equations:

RRO2 ¼
mmO2

� Vhead �
20:8−%O2;head

� �

100
� 101:325

t �m � R � 283

RRCO2 ¼
mmCO2

� Vhead �
%CO2;head

100
� 101:325

t �m � R � 283

where mmO2 and mmCO2 refer to gas molar mass (g/mol), Vhead

represents the ampoule headspace volume (dm3), % O2,head and %
CO2,head refer to gas percentages in the ampoule headspace at time
t (h); m is the sample mass (kg); and R is the gas constant
(8.314472 dm3 kPa K−1mol−1).

2.5.3. Metabolic heat by isothermal calorimetry
Rocculi et al. (2012) studied the use of isothermal calorimetry

to monitor metabolic responses of different fresh-cut fruit tissues
subjected to different processing and storage conditions. The measure-
ments allowed the heat production determination of endogenous (tissue
metabolism) biological process. In order to measure the effect of gas
plasma treatment on metabolic heat production of apple tissue, the
same technique was applied on apple sample cylinders.

From each apple slice, six cylinders were sampled using a core borer
and subjected to the different plasma treatments. Controls were obtain-
ed by placing cylinders at the same temperature and relative humidity
characterising the treatment chamber. Control and treated cylinders
were then placed in 20 ml glass ampoule (six cylinders for ampoule,
about 2.5g) and sealedwith a teflon coated rubber seals and an alumin-
ium crimp cap. For each control/treatment condition, four replicates
were analysed. A TAM-Air isothermal calorimeter (Thermometric AB,
Järfälla, Sweden) was used to measure the rate of metabolic heat
production. This instrument is characterised by a sensitivity (precision)
of ±10 μW (Wadsö & Gόmez-Galindo, 2009) and contains eight twin
calorimeters in which eight sample ampoules can be inserted, each
onewith its own reference. The instrument measures the difference be-
tween the sample and the reference signal. Reference has to be chosen
as a material not producing heat, but with heat capacity similar to the
sample analysed. In this case water was chosen as reference material
and the amount to be placed in each ampoule (Mw)was determined as:

MW ¼ CST �MST þ CW �MW

CW

where CST is the specific heat of dry matter assumed to be 1 J g−1 K−1,
MST is the dry matter content and MW is the water content of the
apple sample; CW is the water specific heat (~4.186 g−1 K−1). Isother-
mal measurements were performed at 10 °C for 24 h. Before and after
the measurements, baseline was recorded for 30min.

2.6. Data analysis

Significant differences (Pb0.05) between control and treated mean
valueswere found by using Student's t-test and the Analysis of Variance
(ANOVA) according to Tukey's HSD. Mann–Whitney test was used in
the case of significance of the Levene test (SPSS 13.0 for Windows,
IBM SPSS Statistics).

3. Results and discussion

3.1. Qualitative assessment of fresh-cut apples

3.1.1. Chemical parameters
Mean values of the soluble solid content (SSC), dry matter content

(DM), and titratable acidity (TA) are shown in Table 1.



Table 3
Mean values of the respiration rate during storage for 24 h in controlled conditions (10 °C; 90% RH).

Time of treatment Time of storage Sample Respiration rate (mg/h kg of sample)

RRO2(consumed) RRCO2(produced)

x SD x SD

5+5min 1 h c 44.37a 1.95 43.92a 1.59
t 37.10b 1.25 36.03b 2.69

2 h c 22.13a 2.71 22.69a 1.20
t 23.82a 1.21 17.15b 0.56

4 h c 16.41a 1.33 13.62a 0.32
t 18.76a 1.30 12.26a 1.29

6 h c 16.52a 2.07 12.42a 0.67
t 18.70a 0.73 12.80a 0.78

24h c 13.70a 0.16 12.78a 0.62
t 15.75b 0.28 11.38b 0.33

10+10min 1 h c 43.92a 1.59 36.24a 1.31
t 36.03b 2.69 53.4a 4.44

2 h c 22.69a 1.20 31.2a 1.66
t 17.15b 0.56 35.37b 1.15

4 h c 13.62a 0.32 28.09a 0.66
t 12.26a 1.29 28.75a 1.85

6 h c 12.42a 0.67 23.24a 0.87
t 12.80a 0.78 24.38a 0.60

24h c 12.78a 0.62 18.61a 0.41
t 11.38b 0.33 16.95a 0.98

15+15min 1 h c 50.89a 4.69 40.96a 4.43
t 44a 1.05 48.39b 1.16

2 h c 23.92a 1.59 35.01a 3.24
t 23.19a 2.06 33.85a 2.24

4 h c 14.24a 1.43 30.65a 1.77
t 11.62a 1.23 27.98a 1.88

6 h c 12.94a 1.55 24.89a 0.68
t 11.22a 0.87 23.22a 3.74

24h c 13.47a 0.63 19.21a 1.25
t 11.05b 0.42 16.30b 0.65

RRO2: mg of consumed O2 h−1 kg fw−1. RRCO2: mg of produced CO2 h−1 kg fw−1. SD: standard deviations. c: control; t: treated. Differences between means with the same letter are not
significant at p-level b 0.05.
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Slight significant differences emerged between control and treated
sample means for all the parameters, but not for all the treatments
and storage times. In terms of SSC, limited increments in the treated
sample values (from 0.4 to 0.8 °Brix) were observed with respect to
the control ones, except that immediately after the 5 + 5 treatment.
For DM, a slight significant difference was found between control and
sample means only after 24h of storage for 5+5min sample, while in
terms of TA the only significant differences were found after 24 h for
5+5min and immediately after 15+15min.

Generally, obtained results evidenced that the response of apple
tissue in terms of modification of the measured chemical parameters
(often used to describe the ripening evolution of fruit)was very limited,
and mainly represented by a slight increase of SSC. In this direction, the
physiological stress promoted by the tested plasma treatment could
have slightly increased the conversion rate of starch to glucose in the
apple tissue, influencing significantly neither the water content nor
the titrable acidity value.

3.1.2. Texture
Table 2 summarizes the results of the uniaxial compression tests

conducted on apple pieces during 24 h of storage in controlled condi-
tions (20 °C, 90% RH).

In terms of firmness (F) and work required to the flesh rupture (AF),
significant differences emerged betweenmean values of the control and
treated samples for the treatment time 5 + 5 min and 10 + 10 min.
Treated sample values were higher than the control ones immediately
after the treatment (for F and AF parameters) and after 6 h of storage
(only for AF). Generally the plasma treatment seemed to trendily in-
crease the sample firmness. On the contrary one of the problems of
the traditional anti-browning dipping treatment usually adopted for
fresh-cut apple production (based on ascorbic and citric acid or their
salts) is the consequent softening of the tissue (Gil, Gorny, & Kader,
1998; Rocculi et al., 2004) and the addition of anti-softening agents
such as calcium salts is often unavoidable (Garcia & Barrett, 2002;
Rocculi et al., 2004).

Gradient (G) and linear distance (LD) results showed sparse signifi-
cant lower values for treated samples, compared with the control. Par-
ticularly this happened after 24 h of storage following a treatment of
5+5min (for both G and LD), immediately after 10+10min of treat-
ment (only for G) and immediately after 15 + 15 min of treatment
(only for LD) and after further 6h of storage (for both G and LD). Trend-
ily it seems that the gas plasma treatment has reduced the ‘crunchiness’
of the apple slices (LD and G reduction). From a visual examination, the
treated samples seemed covered by a sort of bio-film, probably generat-
ed by the destruction of superficial cells promoted by gas-plasma oxi-
dant radicals; this micro-structural alteration could be the cause of the
detected LD and G modifications.

3.1.3. Browning extent using computer vision system (CVS)
The results of the image analysis conducted on apple slices are re-

ported in Fig. 3. Mean values of the percentages of not browned and
browned areas are shown according to the storage duration for both
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Fig. 5. Specific thermal power profiles of apple tissue cylinders during 24 h of analysis at
10 °C (isothermal calorimetry). Black line: control sample. Grey line: treated sample.
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control and treated sample. Significant differences were observed be-
tween means for all three times of treatments. In terms of browned
area, highest values were measured for the control samples. For the
plasma treatment 15 + 15 min and after 4 h of controlled storage
(10 °C; 90% RH), control samples showed, with respect to the treated
ones, a significant increase in the browned area of about the 65%,
while the treated sample seemed to maintain the initial level until the
end of the experiment. It is important to underline that Pink Lady® is
one the most used apple by industry for fresh-cut production, because
of its low susceptibility to browning afterminimal processing. However,
the gas-plasma treatment seemed to affect apple colour degradation
through the inhibition of enzymatic browning, also if the phenomenon
was not as intense as for other varieties (Rößle, Gormley, Brunton, &
Butler, 2011).

3.2. Metabolic evaluation

3.2.1. PPO activity
The inactivation of fruit and vegetable endogenous enzymes is one

of the most important aims of food preservation operations. Recently,
for the first time, Pankaj et al. (2013), demonstrated the applicability
of in-package cold plasma for the inactivation of vegetable enzymes,
particularly of tomato peroxidase that was taken as a model enzyme.
In thatwork, the enzyme activitywas found to decreasewith both treat-
ment time and voltage, the former variable exhibiting a more pro-
nounced effect. Furthermore, Surowsky et al. (2013) found that
treatment time greatly affected inactivation of polyphenol oxidase and
peroxidase enzymes in a model food system and observed a two-stage
reduction of activity that lead to an irreversible although incomplete
inactivation.

Fig. 4 shows the results of the PPO activities (ΔA/min) of treated
apple samples, each one compared to its control.

By increasing the treatment time, a significant and roughly linear
decrease in sample PPO activities was measured. Taking as 100% the
PPO activity of each specific control sample (fresh tissue), treated sam-
ple residual activities were about 88, 68 and 42%, respectively for 5+5,
10+10 and 15+15min treatment times. Takai, Kitano, Kuwabara, and
Shiraki (2012) used low frequency helium plasma jet system for the
treatment of eggwhite lysozyme attributing the decrease in the enzyme
activity to a change in the secondary protein structure andmodification
of some amino acid side chains of the enzyme. The study of the effect of
atmospheric pressure glow discharge plasma on bovine serum albumin
performed by Deng, Shi, Chen, and Kong (2007) confirmed the degrada-
tion of protein integrity upon plasma treatment. Surowsky et al. (2013)
investigated the relative amounts of secondary structure fractions in
PPO and PODenzymes, before and after plasma treatments, through cir-
cular dichroism spectroscopy and found a significant decrease in the
amount of alpha-helix structures that was strongly correlated to the
loss of enzymatic activity. Protein structural modifications were further
confirmed by changes in tryptophan emission fluorescence measure-
ments that were affected by plasma exposure times.

Takai et al. (2012) suggested amechanism of reaction between plas-
ma generated reactive species and proteins to explain the inhibitory
effect of cold plasma on tomato peroxidase that was further reported
by Pankaj et al. (2013) and in accordance with Surowsky et al. (2013).
In particular they hypothesised that OH, O2

−, HOO and NO radicals in-
duced chemical modifications of chemically reactive side-chain of the
amino acids, such as cysteine, aromatic rings of phenylalanine,
tyrosine, and tryptophan, that consequently lead to a loss of enzyme
activity. A similar mechanism for decomposition of C\H, C\N and
N\H bonds of protein was also described by Hayashi, Kawaguchi, and
Liu (2009). In this direction the characterization of the atmospheric
plasma generated by the device used in this study by using emission
spectroscopy revealed the presence of OH, NO and other reactive radical
species (Ragni et al., 2010). As just mentioned, the observed decrease of
PPO activity in the treated apple sampleswas probably due to the action
on enzyme amino acid structure.

3.2.2. Respiration rate
The oxygen level within the ampoules after 24h at 10 °C was in the

range of 16.7 and 17.6% in the control and in the range of 16.6 and 18.2%
in the treated samples.

Mean values of the respiration rate during a storage of 24 h in con-
trolled conditions are reported in Table 3. In general andwhen significant,
lower values in terms of mg of consumed O2 (RRO2) were obtained for
the treated sample respect to the control one. These differences were
generally observed for all the three treatments, particularly after 24h of
storage. The inhibition of respiration in terms of consumed O2 did not al-
ways correspond to a significant decrease of CO2 production (RRCO2).

Actually, while 5 + 5 min sample showed lower values than the
control, CO2 production of samples 10+10min and 15+15min was
higher respectively after 1 and 2 h from experiments. This contrasting
behaviour could be caused by an instantaneous response of the vegeta-
ble tissue to the chemical stress promoted by the treatment, thatmacro-
scopically promoted an increase of CO2 production. The results obtained
in this study suggest that the plasma treatment can cause an alteration
of the cellular respiratory pathway; it seems therefore to be a more
complex response if compared to traditional anti-browning thermal
treatments, such as blanching, that promote a complete inactivation of
cell metabolic activity.

3.2.3. Metabolic heat by isothermal calorimetry
Specific thermal power profiles of apple tissue cylinders during 24h

of analysis at 10 °C are reported in Fig. 5.
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All the thermograms of treated samples showed during the first 6h
of analysis an irregular and intense heat production profile compared
with the control, as there was a physiological response of the tissue to
the chemical stress promoted by the gas plasma treatment. After this
period, the heat production of the treated samples was lower than the
controls for all the 24 h of analysis, proportionally to the treatment
time. The decrease of the heat production from vegetable tissue can be
attributed to a lower extent of cell vitality promoted by processing op-
erations; this finding has been previously showed as a consequence of
blanching for fresh carrot (Gómez, Toledo, Wadsö, Gekas, & Sjöholm,
2004) and of osmo-dehydration for kiwifruit pericarp tissue (Panarese
et al., 2012).

4. Concluding remarks and future perspectives

In this study we have pioneered the use of gas plasma for the treat-
ment of fresh-cut apples.

Promising results have been obtained regarding enzymatic browning
inhibition and a specific effect on the reduction of polyphenol oxidase
activity on the apple slices has been found.

The potential application on in-packed cold plasma technology
showed by Pankaj et al. (2013), together with its known effect onmi-
crobiological decontamination of foods (Misra et al., 2011; Niemira,
2012) makes this technique very encouraging for fresh-cut apple
stabilization.

However several very important aspects have to be clarified in order
to deeply understand gas plasma effect on fresh-cut apple quality and
on the metabolic response of the tissue.

First of all, considering the high oxidative action of gas plasma treat-
ment, its effect on the bioactive compounds of the fruit tissue has to be
deeply studied in order to highlight the nature of gas plasma effect on
biochemical tissue response. In addition the sensorial impact of the
treatment has to be assessed. Both aspects have to be investigated in
terms of direct effect (immediately after the treatments) and further
stress response in real storage conditions (e.g. modified atmosphere
packaging, refrigeration).

Moreover themetabolic response to the treatment of the fresh apple
tissue evaluated by calo-respirometric measurements has to be clari-
fied, eventually with the aid of ultra- and micro-structural techniques
to assess the cellular compartment modifications of the apple tissue,
verifying whether apple cell wall undergoes degradation during the
treatment (Panarese et al., 2012); this could give interesting indications
also about the treatment effect on macroscopic textural aspects.
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A B S T R A C T

The efficacy of atmospheric plasma treatment on microbial decontamination of different kinds of food
products is already known. Recently, new applications of this innovative technology have been proposed,
in order to test the improvement of quality maintenance of minimally processed fruit and vegetables.
Nevertheless, the knowledge on the modifications of functional and nutritional properties of minimally
processed fruit is still scarce.
The objective of this study was to evaluate the effect of atmospheric double barrier discharge (DBD)

plasma treatment on the quality maintenance of fresh-cut kiwifruit. Treatments of 10 and 20 min per side
were performed and their consequences were evaluated during four days of storage in controlled
conditions by monitoring parameters related to visual quality, texture, chlorophyll, carotenoids and
polyphenols. The in vitro antioxidant activity was evaluated through a multimodal approach, combining
different assays for the analysis of antiradical activity and reducing activity of antioxidants. According to
the obtained results, plasma treatments positively influenced the quality maintenance of the product, by
improving colour retention and reducing the darkened area formation during storage, not inducing any
textural change compared with the control. Plasma treatments caused an immediate slight loss of
pigments, but a better retention during storage. No significant changes in antioxidants content and
antioxidant activity were observed among treated samples and control ones.

ã 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Among the known pre-treatments for extending storage life of
minimally processed kiwifruit, some of the most used (in order of
increasing intensity degree) include: dipping in calcium salt
solutions, osmotic-dehydration, edible coating, tissue vacuum
impregnation with glucose and hot water dipping (Muntada et al.,
1998; Agar et al., 1999; Dalla Rosa et al., 2011; Tylewicz et al., 2011;
Benítez et al., 2013). In terms of technological and economical
aspects, these techniques present some disadvantages related to
the necessity of dipping the product in aqueous solution (e.g. plant
and consumables costs, disposal of exhausted solutions, labelling
of chemical agents, further drying). In addition, these processing
techniques are principally aimed at maintaining colour and texture
* Corresponding author. Tel.: +39 0547 338120; fax: +39 0547 382348.
E-mail address: silvia.tappi2@unibo.it (S. Tappi).

http://dx.doi.org/10.1016/j.postharvbio.2015.04.008
0925-5214/ã 2015 Elsevier B.V. All rights reserved.
(Agar et al., 1999) and slowing down deteriorative phenomena
induced by tissue wounding response, but not at sanitising the
product.

Cold plasma is an ionised gas characterised by active particles
such as electrons, ions, free radicals and atoms that is produced by
applying energy to a gas or a gas mixture. Operative and
configuration conditions of the atmospheric plasma generators
and the assessment of the efficacy of the ionised gas on microbial
inactivation were extensively reviewed (Moreau et al., 2008). The
oxidative species produced during the discharge (reactive oxygen
and nitrogen species) can cause peroxidation of lipids and
oxidation of proteins and DNA (Montie et al., 2000).

Since the decontamination can be carried out in atmospheric
conditions, the treatment was tested in terms of the efficacy of
surface decontamination on different kinds of foods such as fruits
(Berardinelli et al., 2012; Baier et al., 2014), vegetables (Keener
et al., 2012; Baier et al., 2014), almonds (Deng et al., 2005), nuts
(Basaran et al., 2008), grains and legumes (Selcuk et al., 2008), shell

http://crossmark.crossref.org/dialog/?doi=10.1016/j.postharvbio.2015.04.008&domain=pdf
mailto:silvia.tappi2@unibo.it
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eggs (Ragni et al., 2010), hatching eggs (Pasquali et al., 2010) and
meat (Noriega et al., 2011).

Recently, new applications of cold plasma have been proposed
in the food processing sector. The oxidative power of plasma was
tested in order to preserve the qualitative characteristics of fresh-
cut fruit and vegetables. These applications were mainly addressed
to the reduction of the activity of oxidative enzymes such as
polyphenol oxidase in fresh-cut apples (Tappi et al., 2014; Bußler
et al., 2013), peroxidase in tomatoes (Pankaj et al., 2013) and
polyphenol oxidase and peroxidase in a model food system
(Surowsky et al., 2013).

All the cited works evidenced a significant effect on the activity
of degradative enzymes, in some cases with a consequent
improvement of the product visual quality, as documented for
fresh-cut Pink Lady apples (Tappi et al., 2014).

Other interesting works regard the effect of cold plasma on the
total phenolic content of lamb’s lettuce (Grzegorzewski et al., 2010,
2011) and on the physiological behaviour of green plant tissue
(Baier et al., 2013, 2014). According to the aforementioned authors,
plasma exposure leads to a detrimental effect on tissue photosyn-
thetic efficiency, erosion phenomena of the leaves upper epidermis
and a time and structure-dependent degradation of phenolic
compounds, although the plant matrix seems to protect them from
the oxidation caused by interaction with plasma-induced reactive
species. In theory, the intense oxidative power of plasma
treatment, due to the presence of OH�, NO� and other reactive
radical species (Ragni et al., 2010), could also promote the
oxidation of the bioactive compounds contained in fruit tissue,
such as vitamin C and polyphenols, with a consequent decrease of
the antioxidant properties of fresh fruit. Wang et al. (2012) found a
slight decrease in the vitamin C content of different sliced
vegetables subjected to microjet plasma treatment, probably
due to oxidation, but within a range considered acceptable. The
knowledge of the modifications on the functional and nutritional
properties of minimally processed fruit is still scarce, and while
there are some reports on the effect of plasma on the antioxidant
content and activity of whole fruit (Berardinelli et al., 2012), the
effect on fresh-cut fruit is largely unknown.
Fig. 1. Emission spectra of the discharge acquired during 10 min of 
Among minimally processed fruit, kiwifruit is a very interesting
product from a nutritional point of view because it contains high
levels of vitamin C, vitamin E, flavonoids, minerals (Du et al., 2009)
and significant amounts of pigments, including chlorophyll and
carotenoids (Tavarini et al., 2008). Vitamin C is considered the
major antioxidant compound in kiwifruit, contributing to about
40% of the total antioxidant activity (Tavarini et al., 2008), but also
phenolic compounds have been reported to have a role in the
antioxidant properties (Du et al., 2009). The consumption of
kiwifruit has been recognised to have a preventative effect against
different cancers due to its cytotoxic and antioxidant activities
(Collins et al., 2001; Rush et al., 2002).

This study represents an early attempt to test the effect of
double barrier discharge (DBD) cold plasma treatment on the
quality of minimally processed kiwifruit and on its potential effect
on health properties. In particular we monitored physical
parameters related to visual quality (colour and darkened area),
texture and standard chemical parameters. The chlorophyll,
carotenoids, ascorbic acid and polyphenols content was also
measured. The in vitro antioxidant activity was quantified by
different in vitro assays: the 2,20-azino-bis(3-ethylbenzothiazo-
line-6-sulphonic acid) (ABTS) radical scavenging assay, the 2,2-
diphenyl-1-picrilhydrazyl (DPPH�) radical scavenging assay, and
the ferric reducing antioxidant power (FRAP). The same param-
eters were tested during storage in controlled conditions.

2. Materials and methods

2.1. Raw material, handling and storage

Kiwifruits (Actinidia deliciosa cv. Hayward) were harvested at
the beginning of November 2012 (Emilia Romagna region, Italy)
and stored in a bin in a refrigerated room for one month (from
�1 �C to 1 �C, R.H. 98%). After this period, defect-free fruits of
uniform size were selected and transported to the laboratory,
where they were stored for a further 15 d at 4 �C and R.H. 98%
before being treated. At the time of sample preparation, the raw
material had a soluble solid content of 13.5 � 0.77%, titrable acidity
treatment (15 kV peak-to-peak, at about 22 �C and 60% of R.H.).
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of 1.47 � 0.07 g of citric acid kg�1 and a dry matter content of
149 g � 5.8 kg�1 on a fresh weight basis.

Analytical grade chemicals were purchased from Sigma–
Aldrich (Steinheim, Germany). Hydrochloric acid and methanol
were purchased from Romil (Feltham, UK).

2.2. DBD gas plasma generator

DBD cold plasma treatments were run at atmospheric
conditions inside a cabinet described in previous studies (Ragni
et al., 2010; Berardinelli et al., 2012). The ionised gas was produced
using atmospheric gas (according to a DBD configuration) between
three couples of parallel plate electrodes, made of brass (one
electrode of each couple was covered by a 5 mm thick glass sheet as
dielectric material). The electrodes were powered by a DC power
supply whose voltage can be varied from 2 to 19 V. As described in
the cited studies, a potential difference of 15 kV (peak-to-peak) was
measured at the electrodes with an input voltage of 19 V (the level
chosen for the treatment). The emission in the 200–450 nm
wavelength range (at approximately 22 �C and 60% of R.H.) was
chemically characterised by an optic fibre probe (Avantes, FC-
UV400-2) placed at 20 mm from the discharge and connected to a
spectrometer (Avantes, AvaSpec-2048). Preliminary assessments
showed that the presence of the fruit does not affect the emission
during the duration of the treatments considered in this study.

The emission spectra acquired after 1, 5 and 10 min of treatment
are shown in Fig. 1. Probably due to a thermal stabilisation of the
system (electrical components, electrodes, etc.), the measured
irradiance increases by increasing the min of treatment. After
about 10 min, a stabilization of the irradiance values can be
observed.

In terms of emission peaks, those related to the neutral nitrogen
molecules N2 (290–440 nm) and to the positive ion N2

+ (391.4 nm)
were dominant, as can be commonly detected for atmospheric air
discharge. The emission peaks of OH (305–309 nm) and NO (226–
248 nm) radicals were also observed.

2.3. Sample treatment and storage

Kiwifruit slices were placed under the electrodes (at a distance
of 70 mm) and the discharge was directed on the surface of the fruit
by three fans mounted over the electrodes (fan speed: 1.5 m/s at
the base of the electrodes) as shown in Fig. 2.

After preliminary tests aimed at avoiding evident surface
damage, two treatment times were chosen: 20 min (10 + 10 min for
each side) and 40 min (20 + 20 min for each side). Atmospheric
conditions (approximately 22 �C and 60% R.H.) were defined
according to previous experiences which showed that OH radicals
increase by increasing the air humidity level (Ragni et al., 2010).

Each treatment (10 + 10 and 20 + 20) was repeated in triplicate
and for each replication 30 slices from 10 different kiwifruit were
used. To minimise differences due to natural variability, kiwifruit
slices were randomly divided into two sub-samples of 15 treated
Fig. 2. Top view of the electrodes and of the k
and 15 control samples. Control samples were stored at the same
temperature and R.H. conditions for the duration of the treatment.

Kiwifruit slices were stored for four days in controlled and
constant conditions; in particular, temperature and relative
humidity were respectively 10 �C and 95% in order to simulate
an accelerated storage. The storage temperature was chosen in
order to simulate an accelerated storage that requires the use of a
temperature higher than the optimal one, but, at the same time, in
order to avoid the change of the typology of degradative reactions,
a temperature close to the real storage condition in the
supermarket was chosen.

Furthermore, to avoid interaction with packaging variables such
as passive modified atmosphere, samples were placed on trays and
stored unpacked. Colour, visual quality by image analysis and
texture were assessed for each treatment immediately after the
plasma exposition and after one and four days of storage.

To analyse chlorophyll and carotenoids content, samples were
freeze-dried after treatment and after four days of storage. They
were subsequently ground under liquid nitrogen and stored at
�18 �C for two weeks.

Antioxidants content and antioxidant activity were determined
only on samples subjected to the longest treatment and their
relative controls after freeze-drying.

2.4. Qualitative assessment

2.4.1. Visual quality

2.4.1.1. Colour. Surface colour was measured on the kiwifruit
pericarp with a Chroma Meter CR-400 reflectance colorimeter
(Minolta Italia, Milano, Italy) using the D65 illuminant and the 10�

standard observer. For each slice, an average value of three
measurements performed in three different points was calculated.
The L*,a* and b* parameters of the CIELAB system were measured, a*

and b* parameters were further used to calculate Hue angle
(Eq. (1)) and chroma (Eq. (2)) values (C.I.E., 1987).

h� ¼ arctan½b�=a��
2p

� �
� 360 (1)

Chroma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2 þ b�2

q
(2)

2.4.1.2. Darkened area by computer vision system (CVS). A digital
camera mod. D7000 (Nikon, Shinjuku, Japan) equipped with a
60 mm lens AF-S micro, Nikkor (Nikon, Shinjuku, Japan) was used
to acquire digitalised images of kiwifruit slices (exposition time
0.5 s; F-stop f/16) placed inside a black box under controlled
lighting condition.

Images (RGB scale) were processed with Photoshop (Adobe
Photoshop, 8.0) in order to separate the pericarp area from the core
tissue. These two portions were separately analysed with an
iwifruit slices placed under the discharge.
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advanced Image Analysis Software (Image Pro-Plus v. 6.2, Media
Cybernetics, USA), according to a chromatic model set up by
Rocculi et al. (2005). After conversion in grey scale (8 BPP), on the
basis of the chromatic characteristics, two different pixel ranges
were defined corresponding to “darkened” (0-177 BPP for pericarp
and 0-215 BPP for the core) and “not darkened” (178-253 BPP 216-
153 BPP for the core) areas. All pixels were then evaluated by the
model in terms of percentage of darkened area on the total.

2.4.2. Texture
Penetration tests were run using a Texture Analyser TA-HDi500

(Stable Micro Systems, Surrey, UK) equipped with a 50 N load cell
and a 6 mm diameter stainless steel cylinder by setting the test
speed at 0.5 mm s�1 and the maximum deformation at 90%.

For each slice, penetration tests were carried out in two
different points of the pericarp. The acquired curves (Force, N,
versus time, s) were analysed and the following mechanical
parameters were extracted: firmness, the first peak force (N) value
representing the limit of the flesh elasticity (F), work (mJ) required
to rupture the flesh from 0 s to F (AF), and gradient (N mm�1)
between 0 s and F (G).

2.4.3. Chemical parameters
Soluble solids content (SSC) was determined at 20 �C by

measuring the refractive index with a digital refractometer mod.
PR1 (Atago Co., Ltd., Tokyo, Japan) calibrated with distilled water.

Dry matter content was determined gravimetrically by differ-
ence in weight before and after drying at 70 �C, until a constant
weight was achieved (AOAC International, 2002).

Titratable acidity (TA) was determined by titration with NaOH
0.1 N until pH 8.1 was reached (AOAC International, 2000), and
expressed as mg of citric acid kg�1 on a fresh weight basis.

For each sample, SSC and TA were determined in triplicate on
the juice obtained by crushing 10 kiwifruit slices with a food
processor, after filtering through Whatman #1 filter paper. SSC, dry
matter and TA were determined immediately after treatment and
after 24 h of storage in controlled conditions (10 �C, 90% R.H.).

Electrolyte leakage (EL) was measured as described by Rolny
et al. (2011) with small modifications. Briefly, one slice of kiwifruit
(approx 10 g) was floated on 100 mL of deionised water. The
electrolyte content in the solution was measured immediately (C0)
and after 3 h (C3) of incubation under continuous shaking at room
temperature using a conductometer (Crison Instrument, Barce-
lona, Spain). The flasks were then put in an oven at 100 �C for 1 h.
After cooling to room temperature, total conductivity (TC) was
then measured again. Results were expressed as percentage of
electrolyte leakage according to Eq. (3):

%EL ¼ 100 � C3 � C0ð Þ
TC

(3)

Electrolyte leakage was measured in order to assess a possible
cell membrane damage, as an increased value of this parameter
indicates disruption of the plasma membrane.

2.4.4. Chlorophyll and carotenoids content
0.5 g of freeze-dried sample were extracted for 2 min with 5 mL

of 80% acetone and centrifuged (3273 � g for 10 min at 10 �C). The
supernatant was directly assayed spectrophotometrically at three
different wavelengths (662, 645 and 470 nm). Quantifications were
obtained according to Lichtenthaler and Wellburn (1983) using the
Eqs. (4)–(6):

Ca ¼ 11:75 � A662 � 2:350 � A645 (4)
Cb ¼ 18:61 � A645 � 3:960 � A662 (5)

Cs ¼ 1000 � A470 � 2:270Ca � 81:4Cb

227
(6)

where Ca, Cb and Cs are respectively chlorophyll a and b and
carotenoids concentrations (mg L�1), and A is the absorbance
values at the different wavelengths. Results were expressed as
mg kg�1 of dry weight.

2.4.5. Antioxidants and antioxidant activity

2.4.5.1. Sample preparation and solid phase extraction for antioxidants
determination. Hydrophilic fraction extraction: 0.5 g of freeze-
dried sample were added to 10 mL of 0.1 N sulphuric acid in a 50 mL
polypropylene tube, wrapped in an aluminium sheet. The mixture
was vortexed for 2 min, then was centrifuged for 10 min at 1500 � g
in an AllegraTM X-22 R centrifuge (Beckman Coulter, Inc., Brea, CA)
set at 4 �C. The supernatant was filtered through a Whatman
541 filter paper (GE Healthcare, Buckinghamshire, UK). The solid
residue was stored at 4 �C and then used for the extraction of
amphiphilic fraction. 4 mL of the sample was loaded onto a Strata
C18-U cartridge connected to a vacuum manifolds system
(Phenomenex Inc., Torrance, CA, USA) and previously
conditioned with 10 mL of methanol 100% followed by 25 mL of
water. After the complete absorption of the sample, the hydrophilic
compounds were eluted with 2 � 4 mL of 0.1 N sulphuric acid,
collected in a 15 mL polypropylene tube (final volume 12 mL) and
used for antioxidants and antioxidant activity determinations.

Amphiphilic fraction extraction: 1 mL of methanol 100% was
added to the solid residue obtained after hydrophilic compounds
extraction and it was dried under a gentle nitrogen stream. Sample
was then added to 10 mL of methanol 60% and vigorously shaken
for 10 min at room temperature. The mixture was centrifuged for
10 min at 1500 � g in an AllegraTM X-22 R centrifuge (Beckman
Coulter, Inc., Brea, CA) set at 4 �C. 4 mL of the supernatant were
loaded onto the same C-18 cartridge previously used for the
separation of the hydrophilic fraction. After the complete
absorption of the sample, the amphiphilic compounds were eluted
with 2 � 4 mL of methanol 60%, collected in a 15 mL polypropylene
tube (final volume 12 mL) and used for antioxidants and
antioxidant activity determinations.

2.4.5.2. Ascorbic acid determination. Ascorbic acid was determined
on the hydrophilic extract by HPLC analysis carried out according
to Odriozola-Serrano et al. (2007). The HPLC system LC-1500
(Jasco, Carpi, MO, Italy) was equipped with a diode array UV/vis
detector. A reverse-phase C18 Kinetex (Phenomenex Inc., Torrance,
CA, USA) stainless steel column (4.6 mm � 150 mm) was used as
stationary phase. Samples were introduced in the column through
an autosampler (Jasco AS-2055 Plus). The mobile phase was a
0.01% solution of sulphuric acid adjusted to pH 2.6. Flow rate was
fixed at 1.0 mL/min at room temperature. Data were processed by
the software ChromNAV (ver. 1.16.02) from Jasco. Ascorbic acid
content was quantified at 245 nm through a standard calibration
curve that was linear in the range 0–284 mM ascorbic acid.

2.4.5.3. Total phenolic content (TPC) determination. The content of
total polyphenols was quantified by the Folin–Ciocalteu phenol
reagent method,according to SingletonandRossi (1965), modifiedto
fit a 96-wells plate. The TPC depends on the specific phenolic profile,
inparticular the type of phenolics present and their relative amounts
or proportions (Naczk and Shahidi, 2004). The analysis was carried
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out after solid phase extraction on C-18 cartridges, which has been
reported as a suitable technique of separation for phenolic
compounds (Antolovich et al., 2000; Nackzk and Shaidi, 2004).

The fresh working solution was prepared daily by diluting Folin–
Ciocalteu phenol reagent to a final concentration of 0.6 N in water.

250 mL of Folin–Ciocalteu phenol reagent were aliquoted in a
96-well microplate and the reaction was started by adding 60 mL of
hydrophilic or amphiphilic extracts. Six different dilutions for each
extract were analysed. After 6 min in the darkness the reaction was
neutralised by the addition of 22 mL of sodium carbonate
0.3 g mL�1. After an incubation of 30 min at room temperature in
the darkness, the absorbance was measured at 765 nm using the
EnSpireTM Multimode Plate Reader (PerkinElmer, Waltham, MA).
60 mL of 0.1 N sulphuric acid or methanol 60% were used for the
blank sample, for hydrophilic or amphiphilic extracts respectively.

Gallic acid was used as standard for the calculation of total
phenolic content of hydrophilic and amphiphilic extracts. Gallic
acid was dissolved in water for hydrophilic extract and in methanol
60% for the amphiphilic extract. 60 mL of water or methanol 60%
were used for the blank sample, for hydrophilic or amphiphilic
extracts respectively. The standard curve was linear in the range 0–
39 mM gallic acid.

2.4.5.4. Radical scavenging capacity by ABTS�+. The ABTS free
radical scavenging activity was determined according to the
method described by Re et al. (1999) and modified to fit a 96-wells
plate. Briefly, ABTS was dissolved in deionised water to a final
concentration of 7 mM and ABTS�+ was produced by reacting ABTS
solution with potassium persulphate 2.45 mM and allowing the
mixture to stand in the dark at room temperature for 12–16 h.
ABTS�+ was then aliquoted into small vials for storage at �80 �C
until used. For the study, the ABTS�+ solution was diluted in
deionised water to an absorbance of 1.829 � 0.028 at 734 nm. Fresh
diluted ABTS�+ solution was prepared daily.

250 mL of ABTS�+ were aliquoted in a 96-wells microplate and
the reaction was started by adding 30 mL or 60 mL of hydrophilic or
amphiphilic extracts, respectively. Six different dilutions for each
extract were analysed. After 5 min of incubation at room
temperature in the darkness, ABTS� blanching was measured at
734 nm using the EnSpireTMMultimode Plate Reader (PerkinElmer,
Table 1
Pericarp colour and factorial ANOVA results of control (C) and treated (T) for 10 + 10 and 2
of storage.

Sample Treatment time (min) Storage time (d) Lightn

Mean 

C 10 + 10 0 49.3a

T 10 + 10 0 47.6ab

C 20 + 20 0 47.5ab

T 20 + 20 0 46.4abc

C 10 + 10 1 44.7abc

T 10 + 10 1 46.2abc

C 20 + 20 1 43.0cde

T 20 + 20 1 48.1a

C 10 + 10 4 39.9df

T 10 + 10 4 43.2bcd

C 20 + 20 4 37.3f

T 20 + 20 4 41.1def

F Sample 10.1
F S.t. 57.1
F Sample � S.t. 8.00
F T.t. 4.57
F T.t. � S.t. 1.48 

C: control; T: treated; F: F value; S.t.: storage time; T.t.: treatment time, s.d.: standard 

Data marked with the same letter within each column are not significantly different a
*p < 0.05.

** p < 0.01.
*** p < 0.001.
Waltham, MA). 30 mL or 60 mL of 0.1 N sulphuric acid or methanol
60% were used for the blank solution, for hydrophilic or
amphiphilic extracts respectively.

Trolox was used as standard for the calculation of the radical
scavenging activity (RSA) of hydrophilic or amphiphilic extracts.
Trolox was dissolved in PBS buffer (pH 7.3) for hydrophilic extract
and in methanol 60% for the amphiphilic extract. 30 mL of PBS or
60 mL of methanol 60% were used for the blank sample for
hydrophilic or amphiphilic extracts, respectively. The standard
curve was linear in the range 0–58 mM Trolox.

2.4.5.5. Radical scavenging capacity by DPPH�. The DPPH free
radical scavenging activity was determined according to the
method described by Brand-Williams et al. (1995) modified to fit a
96-wells plate. The DPPH� stock solution 0.913 mM was prepared
in methanol 100% and was stored at �20 �C until used. The working
solution was obtained diluting DPPH� stock solution in methanol
60% to a final concentration of 0.290 mM. Fresh diluted solution
was prepared daily. 250 mL of DPPH� were aliquoted in a 96-wells
microplate and the reaction was started by adding 60 mL of
amphiphilic extract. Six different dilutions of amphiphilic extract
were analysed. DPPH� reduction was measured at 515 nm using the
EnSpireTM Multimode Plate Reader (PerkinElmer, Waltham, MA) at
25 �C, after 10 min of reaction at room temperature in the darkness.
60 mL of methanol 60% were used for the blank sample. Trolox was
used as standard for the calculation of the RSA of amphiphilic
extract. Trolox was dissolved in methanol 60% and the standard
curve was linear in the range 0–58 mM Trolox. 60 mL of methanol
60% were used for the blank solution.

2.4.5.6. FRAP determination. The FRAP assay was carried out
according to the method described by Benzie and Strain (1996),
modified to fit a 96-wells plate. The FRAP reagent (1.67 mM ferric
chloride and 0.83 mM 2,4,6-tripyridyl-s-triazine (TPTZ) in 250 mM
acetate buffer, pH 3.6) was prepared daily.

250 mL of FRAP reagent was aliquoted in a 96-wells microplate
and the reaction was started by adding 60 mL of amphiphilic
extract. Six different dilutions of amphiphilic extract were
analysed. After 6 min of reaction at room temperature in the
darkness, the absorbance was measured at 593 nm using the
0 + 20 min fresh-cut kiwifruit immediately after the treatment and after 1 and 4 days

ess Chroma Hue angle (�)

s.d Mean s.d. Mean s.d.

5.5 30.1a 6.8 120.4a 2.3
6.2 27.1ab 8.1 120.2a 2.4
5.7 29.0ab 7.0 119.9a 2.6
4.8 26.2b 6.3 120.7a 3.5

e 8.4 20.1cd 4.5 111.5b 7.1
7.4 18.6cd 3.8 111.6b 3.7
6.9 19.0cd 4.6 112.5b 3.3
9.3 19.7c 5.1 111.4b 2.9
6.4 18.4ab 4.4 112.5b 5.5

e 6.4 21.1c 4.6 112.1b 6.3
5.4 16.7d 3.5 112.4b 4.3
6.5 17.7ab 4.7 111.1b 3.3
** 1.11 n.s. 0.01 n.s.
*** 171 *** 237 ***

*** 8.32 *** 0.75 n.s.
** 6.83 *** 0.99 n.s
n.s. 2.44 n.s. 0.55 n.s.

deviation; n.s.: not significant.
t a p < 0.05 level.



Table 2
Pericarp and core darkened area and factorial ANOVA results of control (C) and
treated (T) for 10 + 10 and 20 + 20 min fresh-cut kiwifruit immediately after the
treatment and after 1 and 4 days of storage.

Sample Treatment time (min) Storage time (d) Darkened area

Pericarp (%) Core (%)

Mean s.d Mean s.d.

C 10 + 10 0 5.73c 4.60 8.70c 9.09
T 10 + 10 0 13.2c 18.5 13.5c 9.36
C 20 + 20 0 13.4c 11.6 15.4c 16.3
T 20 + 20 0 19.7c 13.0 21.4c 25.8
C 10 + 10 1 16.9c 7.97 28.0c 17.0
T 10 + 10 1 8.00c 6.34 23.2c 15.3
C 20 + 20 1 55.8b 19.4 61.5b 19.3
T 20 + 20 1 21.7c 8.84 25.0c 15.5
C 10 + 10 4 95.8a 4.93 70.7ab 27.8
T 10 + 10 4 82.3a 24.0 63.3ab 22.5
C 20 + 20 4 94.0a 10.1 87.5a 23.8
T 20 + 20 4 79.2a 23.7 60.8ab 27.6
F Sample 18.61 *** 12.39 ***

F S.t. 435.7 *** 108.7 ***

F Sample � S.t. 14.41 *** 7.40 ***

F T.t. 21.60 *** 12.23 ***

F T.t. � S.t. 14.91 *** 1.35 n.s.

C: control; T: treated; F: F value; S.t.: storage time; T.t.: treatment time, s.d.:
standard deviation; n.s.: not significant.
Data marked with the same letter within each column are not significantly different
at a p < 0.05 level.
*p < 0.05.
**p < 0.01.

*** p < 0.001

Fig. 3. Example of digitalised images of kiwifruit slices subjected to 20 + 20 min
DBD gas plasma treatment and control ones acquired after 4 days of storage in
controlled conditions.
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EnSpireTM Multimode Plate Reader (PerkinElmer, Hamburg,
Germany). 60 mL of methanol 60% were used for the blank sample.

FeSO4 dissolved in water was used as standard for the
calculation of the reduction capacity of amphiphilic extract. The
standard curve was linear in the range 0–174 mM FeSO4. 60 mL of
water were used for the blank sample.

Results of TPC, ABTS�+, DPPH� and FRAP are expressed in mmol
of standard kg�1 on a dry weight basis of freeze-dried sample and
were calculated by the ratio of the correlation coefficient of the
dose–response curve of sample, and the correlation coefficient of
the dose–response curve of the standard.

2.5. Statistical analysis

All the analyses were carried out at least in triplicate on
3 independent samples and results were reported as mean and
standard deviation.

Factorial analysis of variance (ANOVA) was carried out to test
the significance of the effects of treatment (sample), storage time
(S.t.), and their interaction (sample � S.t.); the effect of treatment
time (T.t.) and its interaction with storage time (T.t. � S.t.) was
further studied within treated samples.

Significant differences (p < 0.05) between mean values were
tested by the Tukey’s HSD test. In the case of significance of the
Levene test, non parametric Mann–Whitney test was used.

Correlations among the results of different antioxidant activity
assays were calculated by Pearson’s correlation analysis. Statistical
analyses were carried out using the software STATISTICA for
Windows 7 (StatsoftTM, Tulsa, OK).

3. Results and discussion

3.1. Visual quality

3.1.1. Colour
Mean values and standard deviations of the colorimetric

parameters obtained from the measurements conducted on the
pericarp of the kiwifruit slices are shown in Table 1.

Samples lightness significantly decreased during storage but,
although no significant differences among control and treated
samples were observed immediately after the treatment, plasma
showed a positive effect on colour lightness maintenance during
storage, finally resulting in a less darkened product.

According to Agar et al. (1999), surface darkening of kiwifruit
slices can be attributed to translucent water soaking from the
tissue, since low polyphenol oxidase activity and high ascorbate
content limit enzymatic browning.

Plasma treatments did not affect colour Hue angle and
saturation (chroma), whilst the latter was affected by treatment
time. Storage time after treatment significantly decreased both
parameters.

3.1.2. Darkened area by CVS
In Table 2, mean values and standard deviations of the darkened

area (%) calculated for the pericarp and the core areas of the
kiwifruit slices are reported.

Storage time significantly increased the extent of darkened
areas, and, even though no significant differences were observed
immediately after the treatment, plasma treated samples showed a
more limited darkening during storage compared to control
samples due to the interactive effect between sample and storage
time.

Furthermore, a significant interactive effect between treatment
time and storage time on the extension of darkened areas of the
pericarp was observed, with sample treated for long time
presenting a faster darkening than those treated for the shortest
time, but resulting in similar final values of darkened area at the
end of the storage. Visual examples of control samples and treated
samples (20 + 20 min) after 4 d of storage are given in Fig. 3.

3.2. Texture

Results of the penetration test are reported in Table 3. DBD cold
plasma treatment did not affect the texture of kiwifruit slices in
terms of hardness, work necessary to rupture the flesh and
gradient. Storage time determined a dramatic decrease of all the
texture parameters after 4 days of storage which were neither
influenced by the treatment nor by the treatment time.

According to Varoquaux et al. (1990) and Rocculi et al. (2005),
texture breakdown in kiwifruit slices is due to physiological events
that include enzymatic mediated degradation of hemicellulose,



Table 3
Pericarp mechanical parameters and ANOVA results of control (C) and treated (T) for 10 + 10 and 20 + 20 min fresh-cut kiwifruit immediately after the treatment and after
1 and 4 days of storage.

Sample Treatment time (min) Storage time (d) Hardness (N) Energy to rupture (mJ) Gradient (N mm�1)

Mean s.d Mean s.d Mean s.d

C 10 + 10 0 6.3ab 2.3 4.60a 1.86 9.38ab 2.37
T 10 + 10 0 6.8a 1.8 4.81a 1.63 9.62ab 3.26
C 20 + 20 0 6.0ab 2.1 4.57a 2.09 9.16ab 3.65
T 20 + 20 0 5.3b 2.3 4.20a 2.29 8.12b 3.24
C 10 + 10 1 5.2b 1.8 4.81a 1.77 8.85ab 2.84
T 10 + 10 1 6.3a 1.9 4.47a 1.53 10.93a 3.05
C 20 + 20 1 5.0b 1.8 4.27a 1.42 9.37ab 3.54
T 20 + 20 1 5.4ab 1.9 4.69a 1.82 9.15ab 2.94
C 10 + 10 4 2.0c 0.5 1.84a 1.17 3.67c 2.34
T 10 + 10 4 2.0c 0.6 1.68a 0.79 3.35c 1.58
C 20 + 20 4 1.8c 0.8 1.54a 0.89 3.08c 1.78
T 20 + 20 4 1.7c 0.7 1.47a 0.89 2.94c 1.78
F Sample 1.01 n.s. 0.63 n.s. 0.26 n.s.
F S.t. 202 *** 350 *** 1364 ***

F Sample � S.t. 2.11 n.s. 1.79 n.s. 2.38 n.s.
F T.t. 8.09 ** 5.13 * 4.07 *

F T.t. � S.t. 0.93 n.s. 0.37 n.s. 0.17 n.s.

C: control; T: treated; F: F value; S.t.: Storage time; T.t.: treatment time, s.d.: standard deviation; n.s.: not significant.
Data marked with the same letter within each column are not significantly different at a p < 0.05 level.

* p < 0.05.
** p < 0.01.
*** p < 0.001.
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solubilization of polyuronide and release of galactose from pectic
polymers, cell wall swelling and a decrease in water and osmotic
potential. Although in previous studies it has been reported that
plasma treatment can promote enzyme inactivation (Pankaj et al.,
2013; Surowsky et al., 2013; Tappi et al., 2014), in this research, the
activity of enzymes responsible for structure breakdown, generally
activated by operations such as peeling and cutting, do not seem to
be influenced by the applied treatments. To our knowledge, no
researches have yet been carried out on the effect of plasma
reactive species nor on this type of enzymes nor in this matrix
(kiwifruit), hence, at the moment, to hypothesise a mechanism to
explain the different results would be too speculative.
Table 4
Chemical parameters and ANOVA results of control (C) and treated (T) for 10 + 10 and 20 +
storage.

Sample Treatment time (min) Storage time (d) SSC (%) 

Mean s.d 

C 10 + 10 0 15.3b 0.6 

T 10 + 10 0 15.4 b 1.1 

C 20 + 20 0 14.1bc 0.4 

T 20 + 20 0 14.9bc 0.5 

C 10 + 10 1 16.2d 0.3 

T 10 + 10 1 16.9d 0.3 

C 20 + 20 1 18.2d 1.5 

T 20 + 20 1 17.2d 0.7 

C 10 + 10 4 19.0a 0.8 

T 10 + 10 4 17.7d 0.2 

C 20 + 20 4 17.6d 0.2 

T 20 + 20 4 19.4a 0.3 

F Sample 0.64 n.s. 

F S.t. 79.13 ***

F Sample � S.t. 0.52 n.s. 

F T.t. 0.43 n.s. 

F T.t. � S.t. 6.80 **

C: control; T: treated; F: F value; S.t.: storage time; T.t.: treatment time, s.d.: standard
electrolyte leakage, DM: dry matter.
Data marked with the same letter within each column are not significantly different a
*p < 0.05.

** p < 0.01.
*** p < 0.001.
3.3. Chemical parameters

Mean values and standard deviations of soluble solid content
(SSC), titrable acidity (TA), electrolyte leakage (EL) and dry matter
(DM) are reported in Table 4.

SSC increased with storage time probably due to starch
conversion into sugars but was not affected by the treatment.
Nevertheless, a significant interactive effect was observed between
treatment time and storage time as samples treated for longer time
showed a more pronounced increased of SSC.

TA was significantly affected by storage time, treatment time
and their interactions, although considering treated and control
 20 min fresh-cut kiwifruit immediately after the treatment and after 1 and 4 days of

TA (mg citric acid kg�1) EL (%) DM (%)

Mean s.d Mean s.d Mean s.d

13.1a 1.0 67.3a 2.6 10.9d 0.6
13.6a 0.7 61.6a 6.7 11.7cd 0.3
11.2a 1.0 59.9a 0.3 12.2d 0.7
11.7a 0.5 61.9a 0.5 13.0c 0.3
14.2b 0.7 55.6a 4.6 11.9cd 0.7
16.7b 3.1 63.1a 7.7 13.2c 0.2
15.4b 0.9 60.9a 3.0 13.1c 0.2
16.7b 0.5 55.2a 3.0 14.3e 0.2
17.3c 0.4 73.7a 5.7 22.3e 1.0
14.0a 0.7 66.7a 4.8 20.1b 0.1
13.7a 1.0 66.4a 2.2 21.8a 1.0
13.6a 0.7 66.7a 1.8 22.4e 1.2
0.65 n.s. 0.26 n.s. 3.42 n.s.
47.94 *** 7.25 ** 793.56 ***

13.21 *** 1.42 n.s. 8.01 **

14.76 *** 0.52 n.s. 26.64 ***

8.71 ** 0.25 n.s. 0.33 n.s.

 deviation; n.s.: not significant. SSC: soluble solid content, TA: titrable acidity, EL:

t a p < 0.05 level.
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samples at each storage day, the only significant differences
observed by Tukey’s HSD mean comparison test was after 4 d of
storage for the 10 + 10 sample.

EL is a measurement of membrane integrity and it is often used
to assess the effect of stress or senescence on plant tissue (Rolny
et al., 2011). As it can be observe in Table 4, this parameter was
affected only by storage time, although no significant differences
were found according to the Tukey’s HSD mean comparison test.
Hence, it can be assumed that the treatment did not affect cell
membrane integrity.

Dry matter content underwent an increase of about 7%
compared to the control immediately after the treatment for both
samples, probably due to the effect of the fan, similarly to the result
found by Wang et al. (2012). During storage, a progressive increase
was observed in all samples but, as the interaction between sample
and storage time shows, plasma treatment seems to have induced a
faster dehydration of the tissue exposed to the air. After the longer
treatment, differences in dry matter compared to controls were
more pronounced as it can be observed in Table 4.

Generally, the obtained results showed that the response of
kiwifruit tissue to plasma treatment in terms of physico-chemical
parameters was limited and mainly represented by an increased of
dry matter content.

3.4. Chlorophyll and carotenoids analysis

Mean values and standard deviations of the concentration of
the chlorophyll a and b and of the carotenoids are reported in
Table 5.

A significant decrease in chlorophyll a (about 15%) was
observed soon after treatment, even though no significant
differences among control and treated samples were observed
after 4 d of storage. Storage time significantly decreased the
chlorophyll and carotenoids content, but plasma treated samples
showed a more limited pigments loss than control samples.

The chlorophyll degradation upon plasma treatment could be
associated to the Type II breakdown mechanism (Brown et al.,
1991), which is mediated by the presence of oxygen radicals
produced during reactions related to tissue metabolism or, as in
this case, by plasma. Their presence is favoured by membrane
breakdown as it normally occurs in minimally processed fruit and
vegetable products. Hence, it can be hypothesised that the free
radicals produced during the treatments caused the first pigments
Table 5
Chlorophyll and carotenoids content and factorial ANOVA results of control (C) and treate
and after 4 days of storage. Data are expressed on dry weight basis.

Sample Treatment time (min) Storage time (d) Chlorophyll a (mg kg

Mean s.d

C 10 + 10 0 100.5a 8.0
T 10 + 10 0 87.15b 2.0
C 20 + 20 0 100.0a 3.4
T 20 + 20 0 86.44b 3.1
C 10 + 10 4 88.16b 3.2
T 10 + 10 4 90.53b 4.1
C 20 + 20 4 88.16b 4.2
T 20 + 20 4 89.59b 4.6
F Sample 26.79 ***

F S.t. 15.61 ***

F Sample � S.t. 47.28 ***

F T.t. 0.24 n.s
F T.t. � S.t. 0.00 n.s

C: control; T: treated; F: F value; S.t.: storage time; T.t.: treatment time, s.d.: standard 

Data marked with the same letter within each column are not significantly different a
* p < 0.05.
** p < 0.01.
*** p < 0.001.
oxidation. At the same time, plasma is known to produce a partial
protein denaturation (Pankaj et al., 2013; Surowsky et al., 2013;
Tappi et al., 2014), which may have caused a slowdown in
chlorophyll catabolism operated by enzymes such as chlorophyl-
lase and magnesium dechelatase (Type I breakdown) during
storage.

3.5. Ascorbic acid and total phenolic content

Ascorbic acid and TPC of treated and control kiwifruit samples
were evaluated and the results are summarised in Table 6.

The minimally processed kiwifruit samples showed an average
ascorbic acid content of 33 mmol kg�1 on a dry weight basis, higher
than values reported by other authors (Agar et al., 1999; Gil et al.,
2006; Tavarini et al., 2008) ranging between 20 and 25 mmol kg�1

on a dry weight basis. However, Tavarini et al. (2008) showed that
the ascorbic acid content of kiwifruit could vary more than two-
fold due to harvest time and post-harvest storage.

The DBD plasma treatment did not affect the ascorbic acid
content (Table 6) immediately after the treatment, but a significant
reduction of ascorbic acid of about 7% after 4 d of storage was
highlighted by ANOVA, even though the Tukey’s HSD mean
comparison test did not evidence significant difference among the
samples.

Agar et al. (1999) found a 20% reduction of ascorbic acid in
kiwifruit slices after 6 d of storage at 10 �C due to oxidation, while
Gil et al. (2006) found a 10% reduction of ascorbic acid after 4 d of
storage at 5 �C and a 13% reduction after 6 d.

The TPC of the hydrophilic extracts resulted higher than that of
the amphiphilic extracts, even though C-18 cartridges retain most
of the phenolic compounds. This happens because the ascorbic
acid in the hydrophilic extract, whose recovery was 95% as
determined by the standard addition method, could react with the
Folin–Ciocalteu reagent (Antolovich et al., 2000; Vinson et al.,
2001). This fact is often overwhelmed when discussing total
polyphenols data. The analysis of TPC without separation of the
hydrophilic fraction (i.e. by SPE) could determine a dramatic
overestimation of kiwifruit TPC. For example Tavarini et al. (2008)
detected about 16 mmol kg�1 on a dry weight basis of total
phenolics in kiwifruit using the colorimetric assay with the Folin–
Ciocalteu reagent without SPE separation, whilst other authors (Gil
et al., 2006; Dawes and Keene, 1999) detected about 1.6 mmol kg�1

of total phenolics by HPLC analysis. In this study, a total phenolic
d (T) for 10 + 10 and 20 + 20 min fresh-cut kiwifruit immediately after the treatment

�1) Chlorophyll b (mg kg�1) Total carotenoids (mg kg�1)

 Mean s.d. Mean s.d.

4 43.97ab 4.41 42.02ab 3.31
8 38.83abc 3.38 40.69abc 0.50
5 44.19a 4.00 43.35a 3.49
2 41.73abc 2.93 40.21abc 2.31
9 37.32c 3.29 37.52cd 0.21
9 42.65abc 2.75 38.34bcd 3.44
9 37.32c 3.29 37.52cd 0.21
5 37.78bc 4.24 35.20d 4.55

0.21 n.s. 4.84 *

11.34 ** 42.44 ***

10.89 ** 1.19 n.s.
. 0.18 n.s. 0.19 n.s.
. 3.89 n.s. 2.16 n.s.

deviation; n.s.: not significant.
t a p < 0.05 level.



Table 6
Ascorbic acid and total phenolic content and factorial ANOVA results of control (C) and treated (T) for 20+20 min fresh-cut kiwifruit immediately after the treatment and after
4 d of storage. Data are expressed on dry weight basis.

Sample Storage time (d) Ascorbic acid content (mmol kg�1) Total phenolic content (mmol kg�1)

Hydrophilic extract Hydrophilic extract Amphiphilic extract

Mean s.d. Mean s.d. Mean s.d.

C 0 34.86a 1.65 7.54a 0.38 4.48a 0.62
T 0 36.69a 0.81 7.91a 0.57 4.21ab 0.62
C 4 31.52a 2.41 7.25a 0.33 3.21bc 0.10
T 4 35.15a 1.83 7.56a 0.36 2.88c 0.35
F Sample 0.59 n.s. 1.51 n.s. 0.14 n.s.
F S.t. 5.67 * 1.40 n.s. 23.2 **

F Sample � S.t. 0.02 n.s. 0.01 n.s. 0.06 n.s.

C: control; T: treated; F: F value; S.t.: storage time; T.t.: treatment time, s.d.: standard deviation; n.s.: not significant.
Data marked with the same letter within each column are not significantly different at a p < 0.05 level.

* p < 0.05.
** p < 0.001.
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content of about 4 mmol kg�1 was measured in the amphiphilic
fraction after SPE separation; this amount can be considered
comparable with previously reported results, since the TPC of
kiwifruit can show up to three-fold variations due to harvest time
and post-harvest storage (Tavarini et al., 2008).

The DBD plasma treatment did not affect the response to the
Folin–Ciocalteu reagent in both the hydrophilic and the amphi-
philic extract (Table 6). A significant reduction of TPC in the
amphiphilic extract of about 30% after 4 d of storage was
highlighted by ANOVA analysis.

In fresh-cut fruit tissues, phenols could undergo chemical or
enzymatic oxidation mediated by polyphenol oxidase (PPO) or
peroxidase (POD); however, as a consequence to wounding, new
phenolic compounds can also be synthesised through an increase
of the activity of the enzyme phenylalanine ammonia lyase (PAL) as
a defence mechanism (Heredia and Cisneros-Zevallos, 2009). In
this study, the TPC of the kiwifruit amphiphilic extract, accounting
for polyphenols, decreased after 4 d of storage whilst Gil et al.
(2006) did not find any TPC variation during storage of fresh-cut
kiwifruits at 5 �C for 9 d; these differences could be due to the
different storage conditions adopted.

3.6. Antioxidant activity (AOA) determination

In the present study, the antioxidant activity of kiwifruit
samples was investigated with a variety of methods aimed to
measure their RSA and reducing power (Table 7).
Table 7
Antioxidant activity and factorial ANOVA results of control (C) and treated (T) for 20 + 20
Data are expressed on dry matter basis.

Sample Storage time (d) RSAABTS (mmol TE kg�1) 

Hydrophilic extract Amphiphilic ext

Mean s.d. Mean 

C 0 22.46a 0.19 4.89a

T 0 23.35a 0.55 4.75ab

C 4 20.77b 0.45 4.22b

T 4 21.37b 0.79 4.23ab

F Sample 6.97 * 0.09 

F S.t. 56.8 ** 7.16
F Sample � S.t. 0.72 n.s. 0.15 

C: control; T: treated; F: F value; S.t.: storage time; T.t.: treatment time, s.d.: standard
equivalents; TE: Trolox equivalents; FeSO4 equivalents.
Data marked with the same letter within each column are not significantly different a

* p < 0.05.
** p < 0.001.
The ABTS�+ assay was conducted on both the hydrophilic and
amphiphilic extracts; the former showed a radical scavenging
activity much higher (about 5-fold) than the latter probably
because kiwifruit is very rich in ascorbic acid and less in
polyphenols. Since the amount of ascorbic acid in kiwifruits was
measured and the relative radical scavenging activity of this
molecule is known (Re et al., 1999) it is possible to assume that all
the antioxidant activity of the hydrophilic extract is due to ascorbic
acid.

Even though the TPC in kiwifruit is about 4 mmol kg�1 on a dry
weight basis (taking into account only the amphiphilic fraction)
and ascorbic acid is about 33 mmol kg�1, the former accounts for
about the 40% of total TEAC (Trolox equivalent antioxidant
capacity) and the latter for the remaining 60%. This data are in
complete accordance with those found by Tavarini et al., (2008)
using different analytical assays.

DBD plasma treatment did not affect the TEAC of both the
hydrophilic and the amphiphilic extract; similar results were
also found using the other antioxidant activity assays (DPPH
and FRAP), which were carried out on the amphiphilic extracts.
The DBD plasma treatment adopted in this study did not
affected the antioxidant activity and antioxidants content of
kiwifruit. Even though the DBD plasma-induced reactive species
could have caused the oxidation of single phenolic compounds
responsible for the antioxidant activity of minimally processed
kiwifruit, this effect was counteracted by tissue response
mechanisms.
 min fresh-cut kiwifruit immediately after the treatment and after 4 days of storage.

RSADPPH (mmol TE kg�1) FRAP (mmol Fe2+ kg�1)

ract Amphiphilic extract Amphiphilic extract

s.d. Mean s.d. Mean s.d.

0.19 8.89a 0.42 9.49a 0.42
0.44 8.66a 0.66 8.56ab 0.66
0.45 8.74a 0.64 8.13b 0.64
0.57 9.28a 0.59 8.18b 0.59
n.s. 0.02 n.s. 1.64 n.s.
* 0.54 n.s. 6.30 *

n.s. 0.02 n.s. 2.01 n.s.

 deviation; n.s.: not significant; RSA: radical scavenging activity; GAE: gallic acid

t a p < 0.05 level.



Table 8
Pearson correlation coefficients between the different assays used to evaluate the total phenolic content and antioxidant capacity of control and plasma treated fresh-cut
kiwifruit.

Total phenolic content, TPC
(mmol GAE kg�1)

RSAABTS (mmol TE kg�1) RSADPPH (mmol TE kg�1) FRAP (mmol Fe2+ kg�1)

Hydrophilic extract Amphiphilic extract Hydrophilic extract Amphiphilic extract Amphiphilic
extract

Amphiphilic extract

TPC hydrophylic extract 1.000 0.412 0.365 0.543 0.291 0.279
TPC amphiphilic extract 0.412 1.000 0.682 0.782** �0.082 0.804**

RSAABTS hydrophilic extract 0.365 0.682 1.000 0.511 0.156 0.370
RSAABTS amphiphilic extract 0.543 0.782** 0.511 1.000 0.034 0.843**

RSADPPH amphiphilic extract 0.291 �0.082 0.156 0.034 1.000 �0.215
FRAP amphiphilic extract 0.279 0.804** 0.370 0.843** �0.215 1.000

RSA: radical scavenging activity; GAE: gallic acid equivalents; TE: Trolox equivalents; Fe2+:FeSO4 equivalents.
*p < 0.05; ***p < 0.001.

** p < 0.01.
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The antioxidant activity of both the hydrophilic and amphi-
philic extracts decreased with storage time (Table 7), except for the
DPPH� assay which did not evidence any difference in AOA after
storage, thus showing a lower sensibility than the other assays.
Antioxidant constituents of vegetable tissues are susceptible to
degradation when exposed to oxygen or light, or upon interaction
with enzymes, such as ascorbate oxidase, polyphenol oxidase,
cytochrome oxidase and peroxidase as a consequence of wounding
(Gil et al., 2006). Several studies have been performed regarding
the effect of wounding response on antioxidant activity (Kang and
Saltveit, 2002; Reyes and Cisneros-Zevallos, 2003; Reyes et al.,
2007; Heredia and Cisneros-Zevallos, 2009). Results generally
indicate that changes in the antioxidant activity as a consequence
of wounding depend on the type of tissue, the initial content of
ascorbic acid and phenolic compounds, and the specific phenolic
profile.

The Pearson correlation analysis was performed to correlate
results obtained with different methods (Table 8). A significant
correlation between the ABTS�+ and the FRAP applied to the
amphiphilic fraction was found despite the different reaction
mechanisms implied in the two assays. Noteworthy, both these
assays were strongly correlated with the TPC when they were
carried out on the amphiphilic fraction of kiwifruit extract, which
contains only polyphenols. The TPC is based on the capacity of
phenolic compounds to react with the Folin–Ciocalteu reagent
under basic conditions and thus has been extensively used as a
method for the estimation of total phenolics; nonetheless, taking
into account that polyphenols show different reactivity with the
Folin–Ciocalteu reagent (Nazck and Shahidi, 2004) and that the
mechanism is based on a oxidation/reduction reaction, TPC can be
also considered an antioxidant method (Prior et al., 2005). The
results of the DPPH� assay a less sensible method than the others in
evidencing changes in the AOA of the amphiphilic fraction, carried
out in methanolic medium, were neither correlated with those of
other antioxidant methods nor with the TPC.

4. Conclusions

According to the obtained results, the DBD cold plasma
treatments promoted an immediate loss of pigment and visual
quality on minimally processed kiwifruit but positively influenced
the quality maintenance of the product, by improving colour
retention and reducing the darkened area formation over storage
time in controlled conditions. In addition, although DBD cold
plasma treatment had an effect in increasing dry matter content
over storage, it did not induced any textural changes compared
with the control.

In general, no significant changes in antioxidants (ascorbic acid
and polyphenols) content and antioxidant activity were observed
among treated samples and control ones.
In this direction the purposed DBD plasma treatment is a very
promising tool to preserve the quality of minimally processed
kiwifruit.

Further studies will be necessary to confirm the sanitising effect
of DBD plasma already showed for different commodities on
minimally processed kiwifruit and the eventual sensorial proper-
ties modification induced by the treatment.
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The aim of this study was to evaluate the effect of gas plasma treatment on fresh-cut melon stability during con-
trolled storage. Plasma treatments of 15 + 15 and 30 + 30 min were conducted on fresh cut melon using a di-
electric barrier discharge (DBD) generator. Samples were packed and stored for 4 days at 10 °C and evaluated
for qualitative,metabolic andmicrobiological indexes. Qualitative parameters of fresh-cutmelon (titratable acid-
ity, soluble solid content, drymatter, colour, texture)were onlyweakly affected by plasma treatment. Peroxidase
(POD) and pectin methylesterase (PME) activities were slightly inhibited by the treatment up to respectively
about 17 and 7%. Tissue metabolic heat production decreased proportionally to the treatment duration, while a
partial conversion to anaerobic metabolism was observed. Microbial results showed that a significant increase
in microbial shelf-life was achieved following the 15 + 15 min plasma treatment due to a delayed growth of
spoilage mesophilic and psychrotrophic microflora.
Industrial relevance: The demand for fresh-cut products characterized by high qualitative and nutritional values
and an acceptable shelf-life has promoted the research for non-thermal treatments.
Fresh-cut melon is considered to be highly perishable and potentially hazardous food because it can support the
growth of spoilage microflora and several pathogens.
Cold plasma has shown its potentiality as an antimicrobial treatment and has been tested on different food prod-
ucts, but the impact on product quality and metabolism is still scarcely known.
The results obtained in this study contributed to deepen the knowledge on the effect of plasma treatment onmi-
crobial, qualitative and metabolic aspects of fresh-cut melon.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Fresh-cut fruit and vegetables are products subjected to minimal
processing operations, maintaining the fresh-like quality, with a high
convenience value (Ragaert, Devlieghere, & Debevere, 2007). Minimal
processing operations such as slicing, peeling and/or other mechanical
injuries cause physical damages to the product, resulting in a number
of physiological disorders called ‘wounding response’ (e.g. increased
rate of respiration and ethylene production, enzymatic activity, quality
degradation and dehydration), which favour also the growth of the
spoilage microflora leading to a very limited shelf-life (Soliva-Fortuny
& Martín-Belloso, 2003).

Furthermore, fresh-cut products such asmelon, characterised by quite
high pH (5.2–6.7) andwater activity (0.97–0.99) values, are considered to
be highly perishable and potentially hazardous foods because they can
support the growth of spoilage microflora and several pathogens, includ-
ing Salmonella spp., Escherichia coli, and Listeriamonocytogenes, particular-
ly if they are not subjected to adequate preservative treatments and to
39 0547 382348.
cold storage (Harris et al., 2003; Lamikanra, Chen, Banks, & Hunter,
2000), or if their surface has been damaged prior to consumption (EFSA,
2014).Melon surface, characterized by a complexnetting skin (peel), pro-
vides an environment on which bacteria can strongly attach (Ukuku,
Olanya, Geveke, & Sommers, 2012; Vadlamudi, Taylor, Blankenburg, &
Castillo, 2012) and from which they can be easily transferred onto
melon flesh during cutting operations.

The US Centres for Disease and Control and Prevention (CDC) iden-
tified 34 foodborne disease outbreaks related to the consumption of
melons in the US between 1973 and 2011 (CDC, 2011). Moreover,
among the 16 outbreaks reported in 2012 due to contaminated fruits,
which caused a total of 858 illnesses, four were associated to melons
(Centers for Disease Control and Prevention, CDC, 2011). The majority
of these outbreaks were caused by Salmonella. Nevertheless, one of the
most widespread outbreaks of L. monocytogenes food poisoning in the
US,which caused146 illnesses in 28 states and led to 32deaths, resulted
from contaminated cantaloupes (Centers for Disease Control and
Prevention, CDC, 2011).

Studies on innovative physico-chemical processes to improve the
shelf-life of whole and fresh-cut melons mainly refer to the use of irra-
diation (Palekar, Taylor, Maxim, & Castillo, 2015), X-ray (Mahmoud,
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2012), UV-C light (Manzocco, Rumignani, & Lagazio, 2013), gaseous
ozone (Selma, Ibáñez, Cantwell, & Suslow, 2008), edible coatings
(Martiñon, Moreira, Castell-Perez, & Gomes, 2014) or modified atmo-
sphere packaging (MAP) (Zhang, Samapundo, Pothakos, Sürengil, &
Devlieghere, 2013). On the other hand, most of the literature data are
focused on sanitizers alternative to chlorine washing (Silveira, Conesa,
Aguayo, & Artés, 2008; Ukuku, Huang, & Sommers, 2015), which is the
procedure currently used at industrial level despite the widely diffused
concerns of potential formation of harmful by-products.

The growing demand for fresh-cut products has pushed the re-
searchers to develop new non-thermal treatments able to keep a desir-
able shelf-life, preserving the original fresh-like attributes of the raw
material.

Recently, cold plasma, which in the past has beenmainly used in the
medical field, particularly formicrobial decontamination of surfaces and
living tissues (Emmert et al., 2013; Juwarkar, 2013; Weltmann et al.,
2012), has drawn considerable attention as a novel non-thermal treat-
ment for food product decontamination (Niemira, 2012). Plasma is con-
sidered the “fourth state of matter” and it is generated by applying
energy to a gasmixture, causing the ionisation of the gas and the forma-
tion of active components, such as radicals, charged particles and UV
radiations.

Nonthermal plasma can be generated bymicrowaves, radio frequen-
cy, direct or alternating current; various set-ups such as dielectric barri-
er discharge (DBD), atmospheric pressure plasma jet (APPJ) and corona
discharges (CD) (Ehlbeck et al., 2011; Laroussi, 2002; Ragni et al., 2010);
and different gasmixtures, including atmospheric gas (oxygen, nitrogen
and carbon dioxide) as well as noble gases (e.g. helium and argon) can
be used. The plasma composition greatly depends on the kind of gases
in the mixture, the selected generator set-up, the operating conditions
(flow, gas pressure, power of plasma excitation) and the exposure
mode (direct or remote) (Misra, Tiwari, Raghavarao, & Cullen, 2011),
and it includes reactive species such as oxygen and nitrogen species
(ROS and RNS), atoms, free radicals and UV radiations.

Among all thedifferent plasma constituents, themost important role
in microbial inactivation and protein denaturation seems to be played
by reactive species, such as free radicals (Laroussi, 2002; Li et al.,
2011; Takai, Kitano, Kuwabara, & Shiraki, 2012).

The oxidative damage to the microbial cell surface can lead to the
loss of functionality of the cellmembrane and the exposure of the genet-
ic material. Various authors have assessed the microbial decontamina-
tion of cold plasma on foodstuffs, such as the outer surface of various
fruit and vegetables (Baier et al., 2014; Critzer, Kelly-Wintenberg,
South, & Golden, 2007; Misra et al., 2011; Niemira & Sites, 2008) and
on apple juice (Montenegro, Ruan, Ma, & Chen, 2002; Surowsky,
Fröhling, Gottschalk, Schlüter, & Knorr, 2014). The effect was found to
be highly dependent on the operative conditions (type of plasma gener-
ator, flow rate, treatment time, gasmixture), type ofmicroorganismand
matrix exposed to gas plasma.

Moreover, cold plasma treatments have recently drawn attention
as possible treatments for fresh-cut vegetable products with the aim
of inactivate endogenous enzymatic activity. In a previous study,
Tappi et al. (2014) observed a significant reduction of PPO activity
in fresh cut Pink Lady apples (up to 45% compared to the control)
and of browning reaction during storage. The observed reduction
was probably due to reactions between the enzymes and the radicals
produced during treatment. Protein structural modifications upon
plasma treatment were observed in different studies, in which mod-
ifications in the amino acid side chain and the decrease in the
amount of α-helix structures in various enzymes were detected by
means of techniques, such as circular dichroism spectroscopy and
tryptophan emission fluorescence, and related to the loss of enzy-
matic activity (Pankaj, Misra, & Cullen, 2013; Surowsky, Fischer,
Schlueter, & Knorr, 2013; Takai et al., 2012).

Furthermore, few researches have evaluated the effect of plasma
on bioactive compounds and antioxidant activity in lamb's lettuce
(Grzegorzewski, Ehlbeck, Schlüter, Kroh, & Rohn, 2011) and fresh-cut
kiwifruit (Ramazzina et al., 2015).

However, the differences among the types of plasma and the operat-
ing conditions used in these studiesmakedifficult the comparison of the
obtained results.

In this contest, the aim of this research was to evaluate the effects of
cold plasma, generated by a DBD device, on fresh-cut melon quality and
safety. In particular, the effect of different treatment times has been
evaluated on qualitative, metabolic and microbiological aspects of
fresh-cut melon during controlled storage.

2. Materials and methods

2.1. Raw material, handling and storage

Melons (Cucumis melo L. var. Reticolatus cv. ‘Raptor’) grown in the
Emilia-Romagna region of Italy were harvested in July 2013. The fruits
were stored in plastic bins at 2 ± 0.5 °C and approximately 100% RH
in air for 2 weeks. After this period, 20 kg of fruits free from defects
were selected, transported to our laboratory, placed in a dark refrigerat-
ed chamber at 4 °C and saturated atmosphere for one week. At the be-
ginning of experiments melons had a dry matter content of 15.73 g
(±0.29) 100 g fw−1, a soluble solid content of 14.27 (±0.35) % and a
titratable acidity of 0.39 mg (±0.03) of malic acid g fw−1 measured as
an average of 10 fruits.

Before cutting operations, wholemelonswerewashed and scrubbed
with a sponge to eliminate dirt from the surface and then immersed for
2 min in a 200 ppm sodium hypochlorite solution, in order to sanitize
the peel and avoid cross contamination during processing.Work surface
and cutting toolswere also sanitizedwith the same solution prior to use.

Melons were then halved and blossom and stem ends were elimi-
nated. Skin and seeds were also removed. From the central part of
each half, 10 mm slices were cut using a sharp knife and each slice
was divided in 4 trapezoidal pieces (about 10 g each).

2.2. Gas plasma generator

A dielectric barrier discharge (DBD) generator composed by three
parallel pair electrodes made of brass and a 5 mm thick glass covering
one electrode of each couple, was used for the treatment as described
in previous works (Berardinelli, Vannini, Ragni, & Guerzoni, 2012;
Ragni et al., 2010; Ramazzina et al., 2015). The electrodeswere confined
in a cabinet (about 3 × 10−2m3 of air volume) andwere DCpowered by
three independent power supplies at 19 V and about 3 A. The high volt-
age (about 15 kV peak to peak and a dominant frequency of 12.5 kHz)
was generated by switching transistors and transformers.

Air gas was used to generate the discharge (at 22 °C and 60% of RH)
and, according to previous studies (Ragni et al., 2010), it led to the for-
mation of OH and N radicals and ions. Samplesmade of 15melon pieces
were placed at about 70 mm from the electrodes (Fig. 1). The plasma
species were directed to the sample surface by three fans mounted
over the electrodes (flow rate of about 7 × 10−3 m3 s−1).

2.3. Gas plasma treatments and sample storage

Preliminary tests were run in order to select treatment time and to
avoid visible damages on the melon fresh-cut surface. On the basis of
the obtained results, treatment durations of 30 min (15 min for each
side) and 60 min (30 min for each side) were selected. Each treatment
was repeated in triplicate. For each replication, samples of 30 pieces,
obtained from 5 different melons, were randomly divided in two sub-
samples of 15 pieces each, one used for plasma treatment and one
used as control in order to minimize differences due to natural
variability.

Control samples were stored at the same temperature and RH
conditions for the duration of each treatment. Gas plasma treated



Fig. 1. Schematic representation of the electrode configuration.
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samples and control ones were packed in propylene trays, sealed
with a micro perforated polypropylene film in order to maintain at-
mospheric air composition avoiding dehydration, and stored for
4 days at 10 °C and 90% RH. During storage, three packages for each
sample were selected after 0, 1, 2 and 4 days for analytical determi-
nations. Microbiological analyses were performed after 0, 1, 2, 3
and 4 days of storage.

2.4. Qualitative determinations

2.4.1. Chemical parameters
Drymatter content was determined gravimetrically by difference in

weight before and after drying at 70 °C, until a constant weight was
achieved (AOAC International, 2002).

Soluble solid content (SSC) was determined at 20 °C by measuring
the refractive index of melon juice with a digital refractometer mod.
PR1 (Atago Co. Ltd, Tokyo, Japan), calibrated with distilled water.

Titratable acidity (TA) was determined by titration with NaOH 0.1 N
until pH 8.1 was reached (AOAC Official Method 942.15, 2000).

For each sample, SSC and TA were determined in triplicate on the
juice obtained by crushing 10 melon pieces, after filtering through
Whatman #1 filter paper.

2.4.2. Texture
Penetration testswere performed using a Texture Analysermod. TA-

HDi500 (Stable Micro Systems, Surrey, UK) equipped with a 50 N load
cell and a 6 mm diameter stainless steel cylinder. Compression test
speed was 0.5 mm s−1, the test ended when a maximum deformation
of 90% was reached. Tests were performed on 10 melon pieces for
each sample.

Firmness F (N), as the first peak force value representing the limit of
theflesh elasticity, and the gradientG between0 and Fwere considered.

2.4.3. Colour
A spectrophotocolorimeter (Colorflex, Hunterlab) was used to mea-

sure surface colour of melon pieces (D65 illuminant and 10° standard
observer). For each piece, measurements were performed on each
side. The L*, a* and b* parameters of the CIELAB scale were measured,

hue angle (h° = arctan[b�
�
a�]) and chroma (chroma =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2 þ b�2p

)
values were also calculated (C.I.E, 1987). Results were expressed as av-
erage of 10 measurements for sample.

2.5. Metabolic determinations

2.5.1. Peroxidase (POD) and pectin methylesterase (PME) activities
POD activity was assayed using slight modifications of the spectro-

photometric method of Morales-Blancas, Chandia, and Cisneros-
Zevallos (2002). 25 g of sample was homogenized with a hand blender
with 50mL of cold (0–2 °C) potassium phosphate buffer 0.1 M (pH 6.5)
for 2 min. The homogenized solution was filtered through filter paper
and centrifuged for 30min at 4 °C and 10,000 ×g. The supernatant (en-
zymatic extract) was collected.

POD substrate solution was prepared by mixing 0.1 mL of 99.5%
guaiacol, 0.1 mL of 30% hydrogen peroxide, and 99.8 mL of 0.1 M po-
tassium phosphate buffer (pH 6.5). POD activity was tested by
adding 150 μL of enzyme extract to 3.35 mL of substrate solution in
10-mm pathlength glass cuvettes. The solution was mixed with a
vortex for 3 s and by overturning the cuvette 3 times. POD activity
was measured at 25 °C by monitoring the increase in absorbance at
470 nm.

PME activity was assayed using slight modifications of the spectro-
photometric method described by Hagerman and Austin (1986). 50 g
of sample was homogenised with a hand blender with 50 mL of cold
(0–2 °C) NaCl 8.8% (w/v) for 2 min. The homogenized solution was
stirred for 15 min, filtered through filter paper, and centrifuged for
30min at 4 °C and 10,000 ×g. The pH of each enzymatic extract was ad-
justed to pH 7.5 by adding a few drops of 0.1 NaOH.

PME substrate was prepared by mixing 0.5 g of pectin from citrus
peel in 100 mL of distilled water. The pH of the substrate was adjusted
up to pH 7.5 with NaOH.

PME activity was assayed by adding 2000 μL of substrate, 100 μL of
bromothymol blue solution, 740 μL of 3-mMpotassiumphosphate buff-
er (pH 7.5), and 160 μL of enzyme extract, directly in 10-mmpathlength
glass cuvettes. The solution was mixed with a vortex for 3 s and by
overturning the cuvette 3 times.

PME activity wasmeasured at 25 °C by monitoring for 5 min the de-
crease in absorbance at 620 nm. Reaction rateswere calculated from the
slope (ΔAmin−1) of the linear portion of the plot absorbance compared
with time. Blank was prepared with water.

Residual enzymatic activity (%) was expressed as ratio of treated
sample versus its control, according to Pizzocaro, Torreggiani, and
Gilardi (1993), and measured just after gas-plasma treatment on three
independent extracts.

2.5.2. Respiration rate
Respiration rate was evaluated using a static method as previously

described (Tappi et al., 2014). Four cylinders (4×10mm)were sampled
from each melon piece, half were subjected to plasma treatments and
half were used as control. Samples were then placed in sealed 20 mL
glass ampoules and stored at 10 °C for 24 h. O2 and CO2 percentage
was measured in the ampoule headspace by a gas analyzer “check
point O2/CO2” mod. MFA III S/L (Witt-Gasetechnik, Witten, Germany)
after 1, 3, 5, 22 and 24 h. Respiration rate was calculated as mg of
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consumed O2 (RRO2) or produced CO2 (RRCO2) h−1 kg fw−1 according
to the following equations:

RRO2 ¼
mmO2 � Vhead �

20:8−%O2;head
� �

100
� 101:325

t �m � R � 283

RRCO2 ¼
mmCO2 � Vhead �

%CO2;head

100
� 101:325

t �m � R � 283

where mmO2
and mmCO2

refer to gas molar masses (g mol−1), Vhead

represents the ampoule headspace volume (dm3), % O2,head and %
CO2,head refer to gases percentages in the ampoule headspace at
time t (h); m is the sample mass (kg); and R is the gas constant
(8.314472 dm3 kPa K−1 mol−1). For each sample, the average of
three replicates was considered.

2.5.3. Metabolic heat by isothermal calorimetry
Isothermal calorimetry allows the evaluation of the metabolic re-

sponse to stress in fresh cut tissue through the determination of meta-
bolic heat production as reported by Rocculi et al. (2012) and Tappi
et al. (2014).

Four cylinders were sampled from each melon piece using a core
borer and subjected to the different plasma treatments, and then placed
in 20mL glass ampoule (about 2.5 g). A TAM-Air isothermal calorimeter
(TA Instrument, New Castle, USA) previously described by Wadsö and
Gómez Galindo (2009) was used to measure the rate of metabolic
heat production.

Isothermal measurements were performed at 10 °C for 24 h. For
each sample, the average of four replicates was considered. Before and
after the measurements, baseline was recorded for 30 min.

2.6. Microbiological analyses

Samples of untreated and plasma-treated melon (10 g) were
suspended into sterile 0.1% (w/v) buffered peptone-water solution
and homogenized with a Stomacher Lab Blender (Seward, PBI Interna-
tional, Whitstable, Kent, UK) for 2 min at room temperature.

Mesophilic lactobacilli and lactococci were determined onMRS agar
(Oxoid Ltd, Basingstoke, Hampshire, UK) containing 0.1% of cyclohexi-
mide (Sigma Chemical Co.) and M17 agar (Oxoid Ltd), respectively at
30 °C for 48–72 h under anaerobic conditions. Yeasts were enumerated
on Yeast Extract Peptone–Dextrose agar (YPD, Oxoid Ltd), added of
150 ppm chloramphenicol, at 30 °C for 72 h. Viable counts of total aero-
bic mesophilic and psychrotrophic bacteria were determined on Plate
Count Agar (Oxoid Ltd) at 30 °C for 48 h and 4 °C for 10 days,
respectively.

Microbial analyses were carried out for melon samples exposed to
three independent plasma treatments for each process time, which
were analysed in duplicate (i.e. total six analyses for each process time).

2.7. Data analysis

Significant differences in qualitative and metabolic parameters and
in microbial loads, at the same sampling time, were assessed using the
t-test, and significance of differences was defined at p ≤ 0.05. Moreover,
microbiological data of mesophilic and psychrotrophic bacteria collect-
ed over storage were modelled using the Gompertz equation as modi-
fied by Zwietering, Jongenburger, Rombouts, and Van't Riet (1990) in
order to obtain the microbial growth parameters, i.e. maximum growth
rate (μmax), lag phase length (λ) and maximum cell increase attained
at the stationary phase (A). The growth parameters derived by the
Gompertz equation in relation to plasma treatment times were then
used to estimate the product shelf-life, which was calculated as the
time necessary to attain a threshold level of 6 Log CFU g−1 as a critical
cell load for the spoilage-associated microflora.
3. Results and discussion

3.1. Qualitative assessment of fresh-cut melon

As a consequence of minimal processing operations, wounding re-
sponse promotes an increase in the vegetable product maturation pro-
cesses due to higher respiration and conversion rate of starch (Beirão-
da-Costa, Steiner, Correia, Empis, & Moldão-Martins, 2006).

As reported in Table 1, soluble solid content (SSC), titratable acidity
(TA) and dry matter (DM) showed few significant differences among
control andplasma treatedmelon samples. After 2 and 4 days of storage,
30+30 plasma treated samples showed higher DMand lower SSC con-
tents than control ones. When significantly different, TA was lower in
treated samples (after 0 and 2 days for 15 + 15 treatment and after
2 days for 30 + 30 treatment).

Generally, results seem to point out a higher water loss during stor-
age, which was more evident when the longest plasma treatment was
used. Similar results were obtained in previous experiments on fresh-
cut kiwifruit (Ramazzina et al., 2015) and various fresh-cut fruit and
vegetable (Wang et al., 2012); this behaviour was attributed to the
moderate effect of the fan during the treatment.

Various authors (Aguayo, Escalona, & Artés, 2004; Fundo et al., 2014)
have reported softening during storage of fresh-cut melon as a conse-
quence of the degradation of the internal structures due to tissue ripen-
ing, and the solubilisation of the protopectinic fraction of the cell wall
components and to the loss of cell adhesion (Varoquaux, Lecendre,
Varoquaux, & Souty, 1990).

In this case, treated samples did not exhibit significantly different
textural parameter values (Table 2) compared to control ones, with
the exception of samples treated for 15 + 15 min that showed lower
values for both firmness and gradient just after the treatment, and sam-
ples treated for 30+ 30min that were characterised by lower values of
gradient compared to the control ones after 2 and 4 days of storage.

Tappi et al. (2014) found a slight decrease in the crunchiness of
fresh-cut apples subjected to plasma generated by the sameDBD gener-
ator that was attributed to the destruction of the superficial layer of
cells, but no significant differences in textural characteristics of kiwifruit
slices were observed (Ramazzina et al., 2015). Other authors (Schnabel,
Niquet, Schlüter, Gniffke, & Ehlbeck, 2014) did not detect any difference
in apple flesh using a different device for plasma generation.

The colour changes occurring during storage in fresh cut melon can
be attributed to the variation of pigment concentration and to induction
of a translucentwater-soaked tissue (glossy) caused by the loss of cellu-
lar compartmentation and water redistribution within the tissues
(often tissue softening) since melon is not affected by enzymatic brow-
ning (Agar, Massantini, Hess-Pierce, & Kader, 1999). The development
of translucency has been found to be the principal visual change of de-
terioration in fresh-cut melon stored under MAP (Aguayo et al., 2004;
Bai, Saftner, Watada, & Lee, 2001; Oms-Oliu, Raybaudi-Massilia Martí-
nez, Soliva-Fortuny, & Martín-Belloso, 2008).

Table 3 shows mean values and standard deviations of colorimetric
parameters obtained for plasma treated samples and related controls.
During storage, although significant differences were found only after
2 and 4 days between the 15 + 15 min treated and control samples, it
can be trendily observed a reduction of all the colour parameters in
the plasma treated samples. At the end of storage, treated melon sam-
ples appeared darker and more translucent compared to control ones.

The increased translucency may be due to a variation on the struc-
ture of the tissue that however did not affect textural parameters.

3.2. Metabolic evaluation

POD is a ubiquitous enzyme in vegetable cells and it can promote
several reactions that adversely influence product quality, such as lipid
and phenolic oxidations with consequent deterioration of flavour,
colour and nutritional quality (Morales-Blancas et al., 2002). It is



Table 1
Changes of soluble solid content (SSC), titratable acidity (TA) and dry matter (DM) in control (C) and plasma treated (T) melon samples during storage.

Treatment Storage (days) SSC (%) TA (mg malic acid 100 g fw−1) DM (%)

C T C T C T

15 + 15 min 0 1.41 ± 0.01a 1.41 ± 0.03a 0.0081 ± 0.0002a 0.0062 ± 0.0004b 9.8 ± 0.1a 8.9 ± 0.3a

1 1.44 ± 0.05a 1.45 ± 0.18a 0.0058 ± 0.0007a 0.0058 ± 0.0002a 9.8 ± 0.4a 9.1 ± 0.2a

2 1.51 ± 0.02a 1.48 ± 0.04a 0.0075 ± 0.0007a 0.0050 ± 0.0003b 8.8 ± 0.2a 9.3 ± 0.3b

4 1.45 ± 0.07a 1.40 ± 0.06a 0.0102 ± 0.0002a 0.0093 ± 0.0003a 9.0 ± 0.5a 8.9 ± 0.3a

30 + 30 min 0 1.50 ± 0.07a 1.64 ± 0.08a 0.0080 ± 0.0003a 0.0081 ± 0.0003a 9.1 ± 0.6a 8.9 ± 0.6a

1 1.41 ± 0.06a 1.47 ± 0.07a 0.0059 ± 0.0002a 0.0055 ± 0.0003a 9.2 ± 0.4a 9.1 ± 0.3a

2 1.54 ± 0.03a 1.35 ± 0.02b 0.0099 ± 0.0004a 0.0065 ± 0.0002b 8.4 ± 0.2a 10.2 ± 0.3b

4 1.46 ± 0.03a 1.36 ± 0.02b 0.0109 ± 0.0001a 0.0110 ± 0.0002a 8.5 ± 0.3a 9.2 ± 0.2b

Different letters indicate significant differences between control (C) and plasma treated sample (T) for each storage time (p ≤ 0.05).
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characterized by a high stability to thermal (Anthon, Sekine, Watanabe,
& Barrett, 2002; Lemmens et al., 2009) and pressure treatments, and by
a substantial number of different isoenzymes.

As shown in Fig. 2a, POD activity underwent a significant reduction
in plasma treated melon samples proportional to the treatment time,
as the residual activity was found 91% (15 + 15) and 82% (30 + 30)
compared to the control sample.

PME is a cell wall bound enzymewhich is able to de-esterify pectins
producing methanol and pectins with a lower degree of esterification
(Alandes, Pérez-Munuera, Llorca, Quiles, & Hernando, 2009), that are
further degraded by other pectolitic enzymes, causing tissue softening.

PME activity (Fig. 2b)was not affected by the 15+15min treatment
but after the 30 + 30 min the residual activity was found to be 94%.

The obtained reduction in the enzymatic activity is lower compared
to the results obtained in our previous study on polyphenoloxidase
(PPO) in Pink Lady apples (up to 54% after 15 + 15 min of treatment)
(Tappi et al., 2014). It can hence be assumed that different enzymes
present a different resistance to denaturation by plasma agents, possibly
due to their different structure and to the presence of isoenzymes. The
type of fruit tissue, the specific microstructure, and porosity (e.g.
13.3 ± 0.6 % for melon and 27.3 ± 1.1 % for apple, as found by
Muujica-Paz, Valdez-Fragoso, Loopez-Malo, Palou, and Welti-Chanes
(2003)) can also play a role in the different treatment response.

Furthermore, the reduction observed in the enzymatic activity did
not seem to have any relationship with colour and textural results.

In Table 4 data on respiration rate of fresh-cut plasma treated and
control melon samples measured during 24 h at 10 °C are reported. In
terms of percentages, at the end of the experiment, the oxygen level
within the ampoules was in the range of 14.8 and 17.3% in the control
and in the range of 16.1 and 17.8% in the treated samples. Moreover,
for either control or treated samples, CO2 level never exceeded 5%
that, according to Iversen, Wilhelmsen, and Criddle (1989) is the
threshold for triggering anaerobic metabolism in vegetable tissues.
Hence, it is possible to assume that the ratio between product and head-
space amount was appropriate to maintain aerobic metabolism during
the 24 h considered. However, the treatment effect has changed the
normal respiration pathway of the product in aerobic conditions.
Table 2
Textural parameters of control (C) and plasma treated (T) melon samples during storage.

Treatment Storage
(days)

Firmness (N) Gradient (N s−1)

C T C T

15 + 15 min 0 13.70 ± 4.47a 9.28 ± 1.63b 3.88 ± 0.82a 3.16 ± 0.87b

1 9.84 ± 2.31a 8.30 ± 2.33a 2.17 ± 0.64a 1.86 ± 0.43a

2 9.64 ± 2.01a 9.91 ± 1.25a 2.32 ± 0.40a 2.53 ± 0.49a

4 9.31 ± 2.80a 8.23 ± 2.49a 2.34 ± 0.72a 2.08 ± 0.51a

30 + 30 min 0 8.42 ± 1.84a 9.68 ± 2.61a 2.51 ± 0.54a 2.60 ± 0.53a

1 9.31 ± 1.47a 9.44 ± 3.27a 2.05 ± 0.32a 2.00 ± 0.59a

2 10.18 ± 2.34a 9.33 ± 2.94a 2.63 ± 0.51a 2.15 ± 0.42b

4 9.96 ± 3.10a 9.62 ± 2.95a 2.30 ± 0.64a 1.82 ± 0.50b

Different letters indicate significant differences between control (C) and plasma treated
sample (T) for each storage time (p ≤ 0.05).
Actually, plasma treatment seemed to promote an increase in CO2

production if compared to control sample, that was statistically signifi-
cant after 22 h in the 15 + 15 sample and after 1, 3, 5 and 24 h in the
30 + 30 one. O2 consumption, when significantly different (after 3 h
in the 15+ 15 treated sample and after 5 h in the 30+ 30 treated sam-
ple), was lower in the treated samples than in the control ones. Gener-
ally, it seems that the plasma treatment has caused a higher CO2

production and a lower O2 consumption, as can happen as a conse-
quence of a partial conversion of the tissue respiratory metabolism
from aerobic to anaerobic. These results confirmed what we found in
a previous study on apple tissue subjected to the samekind of treatment
(Tappi et al., 2014), hence contributing to highlight the complexity of
the tissue response to plasma treatments.

Specific thermal power profiles ofmelon tissue cylinders during 24 h
of analysis at 10 °C are reported in Fig. 3.

For limitations of the instrument sample holders (22 mL vials), it
was not possible to evaluate metabolic heat production on samples of
the same size and surface–volume ratio as the one used for qualitative
evaluation. Hence, considering that plasma treatment is considered to
bemainly a surface treatment, the response of the tissue in larger pieces
could be different. Nevertheless, the results can give useful information
about the comparison of the effect of different treatment times on the
melon tissue metabolism, particularly in terms of metabolic activity of
regular cylindrical samples.

The heat production of the treated samples was lower compared to
the controls for all the 24 h of analysis, proportionally to the treatment
time. Metabolic profiles obtained by isothermal calorimetry have been
integrated in order to calculate the total metabolic heat produced by
fruit tissues during the first 12 h and during 24 h at 10 °C. Differences
among samples were more pronounced after 24 h of analysis than
after 12 h, as it can be observed in Fig. 4. The variation in the respiratory
pathway observed by the respiration rate results could be the cause of
the decrease of the heat production detected. Plasma treatment could
also affect cell vitality by decreasing it, as it has been observed for
different minimal processing operations such as blanching for fresh
carrot (Gómez, Toledo, Wadsö, Gekas, & Sjöholm, 2004) and osmo-
dehydration for kiwifruit (Panarese, Tylewicz, Santagapita, Rocculi, &
Dalla Rosa, 2012).

3.3. Microbiological evaluation

In order to evaluate the effects of gas plasma treatments on the mi-
crobial traits of melon samples, cell viability immediately after treat-
ments and over refrigerated storage was measured for the spoilage-
related microflora, i.e. total mesophilic and psychrotrophic bacteria,
lactococci, lactobacilli and yeasts (Table 5 and Fig. 5).

Initial populations of total aerobic mesophilic and psychrotrophic
microorganisms were about 3.4 and 2.5 Log CFU g−1 respectively,
while lactic acid bacteria ranged between 2 and 3 Log CFU g−1. On the
other hand yeasts were roughly above the detection limit. Such values
are in agreement with results reported by other authors for fresh-cut
“Piel de Sapo” (Fernández, Picouet, & Lloret, 2010) and cantaloupe



Table 3
Colorimetric parameters of control (C) and plasma treated (T) melon samples during storage.

Treatment Storage (days) L* a* b* Hue angle Chroma

C T C T C T C T C T

15 + 15 min 0 58.7 ± 3.3a 57.4 ± 2.4a 18.0 ± 1.8a 17.0 ± 1.0a 37.3 ± 2.8a 36.9 ± 2.0a 244.3 ± 1.3a 245.2 ± 0.9b 41.4 ± 3.2a 40.6 ± 2.2a

1 57.4 ± 5.6a 57.0 ± 5.0a 17.4 ± 2.2a 16.7 ± 2.3a 36.1 ± 3.4a 34.2 ± 2.7a 244.2 ± 1.4a 244.0 ± 1.8a 40.1 ± 3.9a 38.1 ± 3.3a

2 58.6 ± 4.1a 58.2 ± 5.5a 18.1 ± 2.5a 16.1 ± 1.5b 38.5 ± 3.5a 36.1 ± 3.1a 244.8 ± 1.3a 245.9 ± 0.7b 42.5 ± 4.2a 39.5 ± 3.4b

4 57.9 ± 4.7a 54.4 ± 3.5b 20.8 ± 1.7a 17.5 ± 2.7b 46.6 ± 3.1a 34.0 ± 3.7b 245.9 ± 1.1a 242.7 ± 0.8b 51.0 ± 3.4a 38.2 ± 4.5b

30 + 30 min 0 59.4 ± 2.6a 59.5 ± 2.9a 17.2 ± 1.1a 18.0 ± 1.8a 37.2 ± 1.8a 37.7 ± 2.7a 245.1 ± 0.9a 244.4 ± 1.0a 41.0 ± 2.1a 41.8 ± 3.1a

1 56.6 ± 3.4a 57.3 ± 3.9a 17.6 ± 1.8a 17.0 ± 2.1a 37.6 ± 3.2a 35.8 ± 3.3a 244.9 ± 0.7a 244.6 ± 1.1a 41.5 ± 3.7a 39.6 ± 3.8a

2 57.7 ± 4.6a 55.6 ± 3.1a 17.5 ± 1.2a 17.0 ± 2.3a 38.2 ± 2.4a 36.6 ± 3.7a 245.3 ± 0.6a 245.2 ± 1.1a 42.0 ± 2.6a 40.4 ± 4.3a

4 55.6 ± 6.6a 52.8 ± 8.0a 18.6 ± 2.9a 17.2 ± 3.3a 35.8 ± 5.0a 33.6 ± 5.3a 242.6 ± 1.0a 242.9 ± 1.1a 40.4 ± 5.7a 37.8 ± 6.2a

Different letters indicate significant differences between control (C) and plasma treated sample (T) for each storage time (p ≤ 0.05).
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(Fang, Liu, & Huang, 2013) melons, except for yeasts that were found at
lower levels than literature data.

Overall, gas plasma treatments resulted in marked immediate re-
ductions in cell viability of the indigenous bacteria by increasing the
treatment time. The highest inactivation levels were observed for the
mesophilic and lactic acid bacteria whose cell loads were under the de-
tection limit in the 30 + 30 min treated samples which correspond to
3.4 and 2 log reductions, respectively. On the other hand cell load reduc-
tions not exceeding 1 Log CFU g−1were recorded for the psychrotrophs.

The microbial inactivation observed after plasma exposure has been
attributed to the effect of the various reactive species generated during
the discharge. As reported in previous studies (Ragni et al., 2010;
Ramazzina et al., 2015), the discharge generated by the DBD device
showed the presence of nitrogen (N2+, NO•) and oxygen (OH•) reac-
tive species. The inactivation mechanism has been related to plasma
membrane damage due to oxidation of membrane lipids, and leakage
of the intracellular components. Also, the oxidation of amino acids and
nucleic acids can contribute to cell injury or death (Critzer et al., 2007).
Fig. 2. (a) Peroxidase (POD) and (b) pectin methylesterase (PME) residual activity of
melon samples treated with plasma for 15 + 15 and 30 + 30 min. * indicates samples
that were significantly different from the control sample at a p-level b 0.05.
The fate of the surviving cells over the refrigerated storage was quite
different among the various microbial groups also in relation to plasma
processing time. Yeasts showed the worst growth ability as the maxi-
mum cell loads attained in the gas plasma treated samples did not
exceed 3.5 Log CFU g−1 regardless of the treatment time, which was
significantly (p b 0.05) lower compared to the control fruit
(7.5 Log CFU g−1; Fig. 5a). Lactobacilli remained under the detection
limit up to 2 days in the plasma treated samples, while they displayed
a cell growth over 6 log units in untreated samples after 3 days of stor-
age (Fig. 5b). Nevertheless final counts of 5.4 and 7 Log CFU g−1 were
attained in 15+ 15min and 30+ 30min treated samples, respectively.
Similar final cell loads were achieved also by lactococci although they
showed slower growth dynamics compared to lactobacilli (Fig. 5c).
Total mesophilic and psychrotrophic bacteria presented the highest
growth ability reaching levels of 7–7.8, 5.4–5.9 and 7.3–7.6 Log CFU g−1

in the control, and in the 15 + 15 min and 30 + 30 min samples, re-
spectively. To better evaluate their recovery dynamics over storage
and the effect on the products shelf-life, their cell count data were
modelled with the Gompertz equation as modified by Zwietering et al.
(1990). Table 5 reports the Gompertz parameters for mesophilic and
psycotrophic bacteria in relation to gas plasma treatments as well as
the time necessary to reach the value of 6.0 Log CFU g−1, which was
chosen as a spoilage threshold according to literature data (Patrignani,
Vannini, Kamdem, Lanciotti, & Guerzoni, 2010). As expected, K values,
corresponding to the initial levels of bacteria surviving the gas plasma
processes, decreased by increasing the plasma exposure time. Also λ
valueswere negatively affected by plasma treatments being significant-
ly higher than in the control samples in the case of psychrotrophic bac-
teria. These data clearly indicate that plasma treatments resulted in an
inactivation and/or severe damages which however were repaired by
microbial cells during storage. On the contrary, an opposite effect was
detected for μmax values. In fact, significantly higher growth rates
were found for treated melon samples compared to the control ones,
and particularly for those corresponding to the longest process time.
Table 4
Respiration rate expressed as oxygen consumed and carbon dioxide produced during 24 h
of storage at 10 °C.

Treatment Storage
time

RRCO2 (mg h−1 kg fw−1) RRO2 (mg h−1 kg fw−1)

C T C T

15 + 15 min 1 59.5 ± 11.19a 49.1 ± 6.91a 59.7 ± 0.21a 48.5 ± 7.44a

3 38.2 ± 12.99a 38.3 ± 1.23a 34.5 ± 2.22a 23.6 ± 1.59b

5 35.4 ± 3.659a 39.2 ± 4.58a 32.0 ± 0.54a 27.4 ± 4.44a

22 25.5 ± 0.85a 31.9 ± 2.10b 22.1 ± 0.69a 18.6 ± 0.24b

24 25.3 ± 4.37a 29.4 ± 0.19a 21.2 ± 1.82a 19.2 ± 1.42a

30 + 30 min 1 41.0 ± 15.51a 66.8 ± 6.43b 27.8 ± 4.93a 35.5 ± 2.03a

3 29.5 ± 3.54a 57.2 ± 2.12b 25.9 ± 1.75a 26.4 ± 1.16a

5 30.6 ± 2.68a 44.1 ± 4.72b 24.7 ± 1.77a 21.2 ± 0.29b

22 19.5 ± 3.26a 32.5 ± 10.59a 16.9 ± 2.44a 18.4 ± 0.29a

24 20.8 ± 2.20a 36.9 ± 5.52b 17.5 ± 1.61a 17.1 ± 0.29a

Different letters indicate significant differences between control (C) and plasma treated
sample (T) for each storage time (p ≤ 0.05).

Image of Fig. 2


Fig. 3. Specific thermal power profiles of melon tissue cylinders in relation to gas plasma
treatments during 24 h of analysis at 10 °C.

Table 5
Gompertz parameters of mesophilic and psychrophilic bacterium recovery dynamics in
melon samples during storage at 10 °C in relation to the gas plasma treatment.

Microbial
group

Gas plasma
treatment
time (min)

K A μmax λ R Shelf-life
(days)⁎⁎

Mesophilic bacteria Control 3.36 4.44 1.24 0.14 0.973 2.3
15 + 15 min 1.48 3.92 1.55 0.20 0.998 N4§

30 + 30 min n.d. ⁎ 7.61 2.39 0.03 0.991 2.9
Psycotrophic bacteria Control 2.48 4.34 1.45 0.07 0.987 2.9

15 + 15 min 2.08 3.82 2.59 1.83 0.985 N4§

30 + 30 min 1.48 5.77 3.69 1.25 0.999 2.6

Data are the mean of three different samples. The variability coefficients ranged between
5% and 7%.
K = initial cell level (Log CFU g−1) after gas plasma treatments.
A=maximum cell increase attained at the stationary phase with respect to the initial cell
load (Log CFU g−1).
μmax = maximum growth rate (Δ Log [CFU g−1] per day).
λ = lag phase length (days).
R = correlation coefficient.
⁎ n.d. Under the detection limit.
⁎⁎ Time necessary to attain a cell count of 6 Log CFU g−1, calculated using the predicted
Gompertz parameters.

§ Since the threshold level of 6 Log CFU g−1 was not attained within 4 days, shelf-life
could not be predicted by using mathematical models.
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Compared to the rinsing with traditional or emerging sanitizers
(Silveira, Aguayo, & Artés, 2010), both the plasma treatments provided
higher reductions of the initial contaminating microflora. In addition,
the processing conditions used in this study negatively affected the
fate of lactic acid bacteria and yeasts which are usually reported to be
the main spoilage species for fruits including fresh-cut melon (Zhang
et al., 2013). Likewise the growth of the mesophilic and psychrotrophic
bacteria was markedly limited following the 15 + 15 min treatment
thus leading to a significant increase in the melon samples shelf-life.
However, unexpectedly the increase in processing time, although it
allowed an immediate higher microbial inactivation, did not offer any
additional advantage in terms of microbial shelf-life, despite no appre-
ciable differences were observed for the qualitative indices. The current
literature on cold plasma treatments on several raw fruit and vegetables
reports that the inactivation level is generally time-dependent although
non-linear inactivation curves are reported (Baier et al., 2014; Lee, Kim,
Chung, & Min, 2015), but the evaluation is often limited to the immedi-
ate effect after the exposition and ignores the behaviour of the surviving
microbial cells during further storage.

The overall effect observed in this study after the longest plasma
treatment on microbial shelf-life was negligible if compared to that of
untreated samples and comparable shelf-life values were obtained.
Conversely, the 15 + 15 min exposure to gas plasma gave rise to a sig-
nificant extension of themicrobial shelf-life. In fact, the critical spoilage
threshold was reached beyond four days in the treated samples, while
the untreated melons were spoiled after 2.5–3 days.

This phenomenon could be related to tissue damages (e.g. cell wall
weakening) caused by prolonged treatments resulting in the higher
Fig. 4. Normalized heat produced by melon samples during 12 and 24 h of analysis at
10 °C. Different letters indicate samples that were significantly different at p-level b 0.05.

Fig. 5. Cell numbers of yeasts (A), lactobacilli (B) and lactococci (C) during storage at 10 °C
of melon samples.

Image of Fig. 3
Image of Fig. 4
Image of Fig. 5
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water loss recorded for the 30+30min treatedmelonswhich probably
made fruit more susceptible to microbial spoilage.

These results highlight the necessity of modulating treatment time
not only by its immediate effects but also on the further shelf-life
evaluation.

4. Concluding remarks and future perspectives

Among the fresh-cut products, melon is considered as highly perish-
able and potentially hazardous food, as demonstrated by the number of
foodborne disease outbreaks registered in the recent years in developed
countries.

The overall results obtained in this study indicate that the tested cold
plasma treatment is very promising in order to stabilize fresh-cut
melon, allowing efficient decontamination. Moreover, by modulating
the treatment time a significant enhancement of microbial shelf-life
was achieved due to a delayed growth over storage of the surviving
spoilage microflora.

As far as quality characteristics are concerned, the treatment effect
was very limited andmainly related to a slight increase of both drymat-
ter content and translucent appearance during storage.

In addition, a slight reduction of enzymatic activitywas observed but
this effect was dependent on the type of enzyme considered, and did
not seem to have any positive reflection on related qualitative parame-
ters. A reduction of metabolic heat was obtained along with an alter-
ation of the respiratory pathway, indicating a stress response of the
tissue to the treatment that should be further clarified.

The potential application on in-packed cold plasma technology
showed by Pankaj et al. (2014) makes this technique very encouraging
for fresh-cut commodity stabilization, aiming to replace traditional
chemical sanitizers such as chlorine and hydrogen peroxide.
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Abstract 

The atmospheric double barrier discharge (DBD) plasma technology is a promising tool in food 

industry as an alternative to traditional food preservation methods. However, the effect of the 

reactive chemical species generated during the treatment on the quali-quantitative content of 

bioactive compounds in food is still little studied. In addition, to the best of our knowledge there are 

no studies concerning the effect of treatment-generated chemical species on physiological cell 

functions. 

The aim of this study is to investigate the effect of plasma technology on antioxidants content and 

antioxidant activity of minimally processed Pink Lady apples. Moreover, we assessed the role 

exerted by polyphenolic extracts from treated apples on cell viability and cell response to oxidative 

stress. According to the obtained results, the plasma treatment causes only a slight reduction of 

antioxidant content and antioxidant capacity. Noteworthy, the plasma treated polyphenolic extracts 

do not impair the cellular response triggered by redox homeostasis imbalance. 

 

 

Keywords: fresh-cut apples, cold gas plasma, polyphenols content, in-vivo, ex-vivo, antioxidant 

activity 

 

1.Introduction 

The major issue for the food science is to maintain important food quality attributes, to increase the 

level of food safety and to enhance the products shelf-life. In the last decade, non-thermal 

technologies for food stabilization have been developed in response to the worldwide interest for 

more fresh-like and natural food products, minimizing the typical thermal alterations such as 

sensorial changes, formation of off-flavours and losses of nutritional components (Pereira, & 

Vicente, 2010; Surowsky, Schlüter, & Knorr,, 2014).  

Among non-thermal treatments, cold gas plasma presents several advantages. Gas plasma is an 

ionised gas characterized by active particles such as electrons, ions, free radicals and atoms which 

are both in fundamental and excited states; the ionization occurs by applying energy to a gas or to a 

gas mixture (Moreau, Orange, & Feuilloley, 2008). Actually, when atmospheric air is used as 

working gas, reactive oxygen species (ROS) and reactive nitrogen species (NOS) are formed. These 

oxidative species can cause lipids peroxidation and proteins and DNA oxidation (Montie, Kelly-

Wintenberg, & Roth, 2000) and may potentially interact with bioactive compounds altering their 

content/effect in food products. 
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Operative and configuration conditions of the atmospheric plasma generators and the assessment of 

the efficacy of the ionized gas on model systems or real food products, in terms of microorganism 

decontamination, were extensively reviewed (Moreau Orange, & Feuilloley, 2008; Scholtz, 

Pazlarova, Souskova, Khun, & Julak, 2015; Surowsky, Schlüter, & Knorr, 2014). In addition, a lot 

of studies have been published concerning the impact of plasma on the quality of both solid and 

liquid foods (Surowsky, Schlüter, & Knorr, 2014). These applications were mainly addressed to the 

stabilization of model system or food products, through the reduction of the activity of oxidative 

enzymes, such as polyphenol oxidase in fresh-cut apples (Bußler, Schnabel, Ehlbeck, & Schlüter 

2013; Tappi et al., 2014), peroxidase in tomatoes (Pankaj, Misra, & Cullen, 2013) and polyphenol 

oxidase and peroxidase in a polysaccharide gel model food system (Surowsky, Fischer, Schlüter, & 

Knorr, 2013b).  

Nevertheless the effect of gas plasma treatment on the bioactive compounds and nutritional 

properties of food products has to be deeply studied, particularly for its application to fresh-like 

commodities.  

Among them, minimally processed fruit and vegetables are one of the major growing segments in 

food retail establishments, playing an important role on the antioxidant intake of an increasing 

number of consumers (Kanlayanarat et al. Acta Hort. 746, ISHS 2007). For this products, that 

present an endogenous metabolic activity during the shelf-life period, it is crucial to understand not 

only the direct effect of plasma treatment on the level and the antioxidant properties of their 

bioactive components, but also their modification during storage as consequence of the tissue 

response to the processing stress. 

In this context, interesting works regard the influence of cold plasma reactive species on the 

stability of pure phenolic compounds and on the total phenolic content of lamb’s lettuce 

(Grzegorzewski, Ehlbeck, Schlüter, Kroh, & Rohn, 2011; Grzegorzewski et al., 2009). The authors 

demonstrated by high-performance liquid chromatography a time- and structure-dependent 

degradation of phenolic compounds, although the plant matrix seemed to protect them from 

oxidation caused by plasma-induced reactive species. Double barrier discharge (DBD) cold plasma 

treatments of minimally processed kiwifruit, in addition to no induction of textural changes and to 

the improvement of the product visual quality, did not promote significant changes in antioxidants 

(ascorbic acid and polyphenols) content and antioxidant activity of the product (Ramazzina et al., 

2015). Plasma treatment applied to freshly squeezed orange juice had almost no effect on vitamin C 

content. This study showed how the effect of plasma on ascorbic acid was strongly dependent on 

the type of food matrix (Surowsky, Schlüter, & Knorr, 2014).  
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In this regard, the possible preservation of food polyphenols and vitamins after plasma treatment on 

minimally processed fruit and vegetable is of particular interest due to their potential effect on 

health properties. Oxidative stress is involved in many diseases, such as atherosclerosis, diabetes, 

neurodegenerative diseases, aging and cancer (Francini & Sebastiani, 2013; Lall, Syed, Adhami, 

Khan, & Mukhtar, 2015; Rahman, Hosen, Islam, & Shekhar, 2012). A growing number of studies 

point out ROS as key compounds of resilience and human pathologies (de Roos & Duthie, 2014).  

Dietary polyphenols, in particular flavonoids, may protect against oxidative stress by scavenging 

ROS, chelating trace elements involved in free radical generation and inducing cellular antioxidant 

defence by modulation of redox-sensitive gene expression (Kumar & Pandey, 2013; Rahman 

Hosen, Islam, & Shekhar,2012). However, pro-oxidant activities of polyphenols have also been 

reported (de Roos & Duthie, 2014). 

According to Niemira (2012), the U.S. Food and Drug Administration has not yet allowed the use 

of cold plasma for food processing because of the lack of knowledge on the primary modes of 

action and on the effects on sensory and nutritional properties of the products. In particular, 

researches about the impact on antioxidant properties and bioactive compounds, on the potential 

chemical residue effects and on the formation of toxicants are therefore needed in order to provide 

sufficient information to assess the health-related implication of the process. 

Previously, we provided evidence that gas plasma treatment on fresh-cut Pink Lady apples causes 

an inhibition of polyphenol oxidase activity with a consequent improvement of the product visual 

quality (Tappi et al., 2014). Nevertheless, the consequence of treatment on bioactive compounds 

content has not yet been investigated. The purpose of this study was to determine DBD cold plasma 

effects on antioxidants content and antioxidant activity of fresh-cut Pink Lady apples. The phenolic 

composition of treated and control samples were analysed by HPLC-MS (high-performance liquid 

chromatography-mass spectrometry) in order to better understand the plasma effect on the single 

polyphenols level. Additionally, the in vitro antioxidant activity was evaluated through a 

multimodal approach, combining different assays for the analysis of antiradical activity and 

reducing activity of antioxidants. Moreover, for the longest treatment time investigated (30 min) we 

assessed the ability of polyphenolic extracts from treated and untreated apples to protect Caco2 

cells, which show biochemical characteristic of normal adult enterocytes, against oxidative stress. 

 

2. Materials and methods 

2.1 Chemicals 

Chemicals of analytical grade were purchased from Sigma-Aldrich (Steinheim, Germany) except 

for hydrochloric acid and methanol, which were purchased from Romil (Feltham, UK). 
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Theaphenon E®, a standardized green tea extract preparation ((-)-epigallocatechin-3-gallate 

(EGCG), 68.58%; (-)-epigallocatechin (EGC), 10.56%; (-)-epicatechin (EC), 4.31%; (-)-

epicatechin-3-gallate (ECG), 5.95%; (-)-gallocatechin-3-gallate (GC) and other trace catechin 

derivatives) was a kind gift from Doctor Hara (Tea Solutions, Hara Office Inc). Fresh 1 mg/mL 

Polyphenon E® stock solution was prepared in de-ionized sterile water and diluted immediately in 

complete medium at the final concentration required for each experiment. 

 

2.2 Raw material, handling and storage 

Apples (Malus domestica cv. ‘Pink Lady®’) harvested two weeks before, were provided by the 

local market. Fruits free from defects were transported to our laboratory and stored in a refrigerated 

chamber at 5±1°C and saturated atmosphere in darkness for one week. Apples were characterized 

by a dry matter content of 15.73 (± 0.29) g 100 g-1 fw, a soluble solid content of 14.27 (± 0.35) 

°Brix and a titrable acidity of 0.39 (± 0.03) mg malic acid g-1 fw. 

 

2.3 DBD gas plasma generator and treatments 

Cold plasma was generated by a Dielectric Barrier Discharge (DBD) device that was already 

described and characterized by Ragni et al. (2010). It consists of an hermetic chamber containing 

three parallel pair of electrodes (brass) supplied by a DC power supply and powered by high 

voltage transformers and power switching transistors. A 5 mm thick glass was used as dielectric 

material. As feed gas, atmospheric gas driven at 1.5 slm was chosen. Frequency of oscillation was 

12.7 kHz and the supply power was in the range of 150 W.  

The discharge was characterized by emission spectroscopy in previous studies (Ragni et al., 2010) 

that showed the presence of oxygen and nitrogen radicals and ions as commonly detected when 

atmospheric air is used to generate plasma. 

 

2.4 Sample preparation and plasma treatments 

Apple slices (40×10×10 mm) were manually obtained from apple flesh using a sharp blade. For 

each treatment time, 15 slices were used. Samples were exposed to cold plasma at a distance of 70 

mm from the electrodes for a total of 10 (5+5 on each side), 20 (10+10 on each side) and 30 (15+15 

on each side) min. 

In the treatment chamber, temperature was 22°C and RH 60%. Control sample were stored at the 

same temperature and humidity conditions for the duration of the treatment. 

Treatment time was stressed to 120 (60 + 60) min of processing only for polyphenols and in-vitro-

antioxidant activity determinations. 
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2.5 Physico-chemical parameters 

Water content was obtained gravimetrically on about 5 g of finely chopped apples exactly weighted,  

after drying at 70°C until constant weight (AOAC International 2002). Soluble solid content was 

measured on the juice obtained from apple slices, after filtering through Whatman #1 filter paper, 

with a digital refractometer (Atago Co. Ltd, Tokyo, Japan). Titratable acidity was determined 

according to AOAC (International Method 942.15, 2000) Maturity index was expressed as the ratio 

between SSC and TA (Sweeney, Chapman, & Hepner, 1970) and apple juice pH was measured 

with a Crison pH-meter. 

For each sample, soluble solids, titratable acidity and pH were carried in quintuple for each sample 

on the juice obtained by nine apple slices, taken from the three replicated treatments.  

Surface colour was measured in control and treated samples using a Chroma Meter CR-400 

reflectance colorimeter (Minolta Italia, Milano, Italy) with a D65 illuminant and the 10° standard 

observer. In order to verify the effect on enzymatic browning, colour was monitored just after 

treatment and every hour up to the following 4 h on six slices for sample. 

The remained 30 apple slices (in total 45; 15 x treatment x three repetitions) for each treatment 

condition have been immediately freeze dried and used for the phenolic and antioxidant analysis. 

 

2.6 Polyphenolic content by HPLC 

Polyphenolic extract preparation 

Freeze-dried apple powder (250 mg) was weighed into an eppendorf tube. A total of 1.5 mL of 60% 

of aqueous methanol with 1 % (v/v) of formic acid was added, and the suspension was vortexed 

vigorously for 2 min. Tubes were left 60 min in a sonic bath. The extract was centrifuged for 20 

min (20.878 g), and supernatant was collected at 4°C and transferred to a vial before the injection 

into the HPLC system. 

 

High-performance liquid chromatography and mass spectrometry analysis 

Before analysis 20 µl of each internal standard were added to the samples (genistein: 580 µg/ml; 

genistin: 380 µg/ml). 

HPLC separations were carried out by means of a SUNSHELL C18 (2.1 i.d. × 100 mm) column, 

2.6 μm particle size with mobile phase, pumped at a flow-rate of 0.3 mL/min, consisting of a 

mixture of acidified acetonitrile (0.1% formic acid) (solvent A) and 0.1% aqueous formic acid 

(solvent B). Following 0−2 min, 2% B; 2−13 min, 2% to 30% B; 13−20 min, 30% to 80% B; 20−22 

min, 80% to 2% B; 22−30 min, 2% isocratic; this step was followed by the washing and 

reconditioning of the column. 
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The identity of the phenolic compounds was confirmed using a triple quadrupole mass spectrometer 

(Thermo Scientific, TSQ Vantage) with a heated electrospray ionization (H-ESI II) operating in the 

negative ionization mode. The capillary temperature was 270 °C; the sheath gas and auxiliary gas 

were 40 and 5 arbitrary units, respectively; and the source voltage was 3kV, Vaporizer Temperature 

200°C argon was used for MS MS experiments with a Collision Pressure of 1.0. 

For the identification a full scan analyses was performed scanning from m/z 100 to 950, while a 

product ion scan experiment was applied for ions not fully identified in the previous method. 

Identification was performed by comparing the mass spectra with literature data, and whenever 

possible, the identification was confirmed by using pure standards of the components. 

Quantification was achieved in Selected Ion Monitoring mode according to the concentrations of a 

corresponding internal standard, respectively, genistin for glucoside and genistein for aglicone. 

 

2.7 In vitro-Antioxidant activity and total phenolics index 

Antioxidant activity and total phenolics index of apple samples was assessed by different in vitro 

microplate assays, using the methods previously reported (Ramazzina et al., 2015). The antioxidant 

activity was performed by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)), DPPH 

(2,2-diphenyl-1-picrilhydrazyl) and FRAP (ferric reducing antioxidant power) methods. The total 

polyphenols content was quantified on both amphiphilic and hydrophilic extract by the Folin-

Ciocalteu phenol reagent. 

 

2.8 Ex vivo-antioxidant activity 

Preparation of extracts 

For ex-vivo analysis, 3 g of freeze-dried apple samples were added with methanol 60% (v/v)  and 

vortexed for 2 min. mixtures were vigorously shaken  for 10 min and then centrifuged for 10 min at 

room temperature (10000g). the supernatant was collected and the pellet was subjected to a second 

extraction. The total supernatant was dried in a rotary evaporator . 

 

Cell line and culture 

Caco2 cells were a kind gift from Professor Bussolati (University of Parma, Parma, Italy). Cells 

were routinely grown in 1:1 mixture of Ham's F12:DMEM medium. Culture media was 

supplemented with 10% fetal bovine serum (Lonza, Basel, Switzerland), 2 mM L-glutamine, 100 

U/mL penicillin and 100 μg/mL streptomycin. Cells were incubated at 37°C under a 5% CO2 

atmosphere. Cell harvesting was performed by Trypsin/EDTA (Sigma-Aldrich, Steinheim, 

Germany) treatment. 
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For the reactive oxygen species determination and luciferase assay the Caco2 cells were grown in 

1:1 mixture of Ham's F12:DMEM medium without red phenol (Sigma-Aldrich, Steinheim, 

Germany). 

 

WST-1 assay 

Inhibition of cell proliferation by polyphenols extracts was measured by WST-1 assay (Roche, 

Lewes, United Kingdom). The assay is based on the reduction of tetrazolium salt WST-1 to soluble 

formazan by electron transport across the plasma membrane of actively dividing cells. Formazan 

formation was detected at 450 nm spectrophotometrically. Caco2 cells were plated in triplicate in 

96-well microplates at a density of 4x104 cells/well and allowed to adhere overnight. Cells were 

treated with increasing concentrations of Theaphenon E® or polyphenolic apple extracts. After 5 h 

of incubation the WST-1 assay was performed.  

 

Reactive oxygen species determination  

The production of intracellular ROS was detected using the 2,7-dichlorofluorescein diacetate 

(DCFH-DA) assay. Briefly, Caco2 cells were seeded in black 96-well plates (4x104 cells/well) and 

allowed to attach overnight. After 5 hours of treatment with increasing concentrations of 

Theaphenon E® or polyphenolic apple extracts, cells were washed twice with PBS and loaded with 

20 mM DCFH-DA in PBS for 15 minutes at 37°C. After incubation, cells were washed with PBS 

and ROS generation was measured by the fluorescence intensity of dichlorofluorescein (DCF, exc. 

475 nm, em. 535 nm) using an Enspire Multimode Plate Reader (Perkin Elmer, Waltham, 

Massachusetts). Inside the cells, DCFH-DA is cleaved by nonspecific esterases forming non-

fluorescent DCFH, which is oxidized to the fluorescent compound DCF by ROS. In the same wells 

the total protein content was quantified using the Bio-Rad DC Protein assay (Bio-Rad, Berkeley, 

California). 

 

Plasmid construction and luciferase assay 

To generate the recombinant plasmid pGL4-NQO1, genomic DNA was extracted from human liver  

using the QIAamp DNA mini Kit (Qiagen, Venlo, the Netherlands) according to manufacturer’s 

protocol. The upstream promoter region of the Nqo1 gene (635 pb) was PCR amplified using the 

following primers: fw 5’-ACCTGCCTTGAGGAGCAGGGGTGGTGCAG-3’, rv 5’-

GGCTCTGGTGCAGTCCGGGGCGCTGATTGG-3’ (Dhakshinamoorthy & Porter, 2004). The 

PCR product was subcloned in the pCR®2-TOPO vector (Invitrogen, Carlsbad, California). The 
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KpnI/XhoI restriction fragment obtained from digestion of TOPO-NQO1 was then ligated into the 

pGL4.10 vector (Promega, Madison, Wisconsin) and the resulting plasmid was sequenced. 

Caco2 cells were seeded in a 96-well white microplate at a density of 2x104 cells/well and 

transfected using Viafect (Promega, Madison, Wisconsin), using 0,2 μg of pGL4-NQO1 and 

pGL4.10 empty vectors. Transfection efficiency was monitored by pEGFP-N1 transfection 

(Clontech Laboratories, Mountain View, California). 

The luciferase activity was measured after 5 hours incubation with increasing concentrations of 

Theaphenon E® or polyphenolic apple extracts using the Britelite™ plus reactive (PerkinEmler, 

Waltham, Massachusetts) and the EnSpire® Multimode Plate Readers (PerkinEmler, Waltham, 

Massachusetts). The luciferase activities were normalized to the total protein content after checking 

for equal transfection efficiency in each well. The results are representative of three independent 

experiments run in quadruplicate. 

 

Determination of cellular reduced glutathione (GSH) content 

Caco2 cells were seeded in a 96-well white microplate at a density of 2x104 cells/well; the cellular 

GSH and GSSG were quantified under basal condition or after 5 hours incubation with increasing 

concentrations of Theaphenon E® or polyphenolic apple extracts using GSH/GSSG-Glo Assay 

(Promega, Madison, WI), according to manufacturer’s protocol. GSH and GSSG levels were 

normalized to protein concentrations and the GSH/GSSG ratio was calculated. 

 

RNA extraction, reverse transcription and quantitative real-time PCR 

Caco2 cells were seeded in a 35 mm dishes at a density of 6x105 and allowed to attach overnight. 

After 5 hours of treatment with two different concentrations of treated or untreated polyphenolic 

apple extracts, total RNA was extracted with the Trizol Reagent (Fisher Molecular Biology, Rome, 

Italy) and cleaned-up with the NucleoSpin RNA isolation kit (Macherey-Nagel, Düren, Germany) 

according to the manufacturer’s instruction. For reverse transcription reaction, 100 ng of total RNA 

from each experimental condition was combined with 1 μL of random primers (0.2 μg/μL) and 

heated up to 65°C for 5 min. Following a brief chill on ice, the Reverse Transcription mix (Thermo 

Scientific, Boston, MA) was incubated at 25°C for 5 min, 45°C for 60 min and 70°C for 10 min. 

The first strand synthesis reaction was diluted 1:2 than 2 μL of each cDNA preparation were used 

for quantitative real-time PCR with the set of primers described below. The thermal cycling 

comprised an initial denaturation step at 95°C for 30 s, followed by 40 cycles of denaturation at 

95°C for 5 s, annealing and extension at 60°C for 30 s. Analysis of results was performed by DNA 

Engine Opticon 4 (MJ Research, Walthman, MA) using the 2X SYBR Premix Ex Taq (Takara Bio 
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Inc, Japan). Relative quantification was calculated by the 2−ΔΔCT method (Livak & Schmittgen, 

2001) using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as housekeeper gene for data 

normalization. The results are expressed as mean ± SD of two independent determinations each 

performed in duplicate. 

 

Primers sequences used for GST members were the following (Scharmach, Hessel, Niemann, & 

Lampen, 2009): 

GSTT2-fw 5’-CTTTCCTGGGTGCTGAGCTA-3’   GSTT2-rv 5’-

GGTGTTGGGAGGGTTTTCTT-3’  

GSTP1-fw 5’-GGAGACCTCACCCTGTACCA-3’  GSTP1-rv 5’-

CTGCTGGTCCTTCCCATAGA-3’  

GSTA4-fw 5’-TCCGTGAGATGGGTTTTAGC-3’   GSTA4-rv 5’-

GGTGGTTACCATCCTGCAAC-3’  

 

Primers sequences used for UGT members were the following (Ohno & Nakajin, 2009): 

UGT1A1-fw 5’-AATAAAAAAGGACTCTGCTATGCT-3’ UGT1A1-rv 5’-

ACATCAAAGCTGCTTTCTGC-3’  

UGT1A4-fw 5’-GAACAATGTATCTTTGGCCC-3’ UGT1A4-rv 5’-

ACCACATCAAAGGAAGTAGCA-3’ 

UGT2B7-fw 5’-GGAGAATTTCATCATGCAACAGA-3’ UGT2B7-rv 5’-

CAGAACTTTCTAGTTATGTCACCAAATATTG-3’ 

 

2.9 Statistical analysis 

Data are expressed as mean values ± SD for the indicated number of independent determinations.  

One way (ANOVA) for the in vitro analysis was carried out to test the significance of the effects of 

treatment time. Significant differences (p<0.05) between mean values were tested by the LSD test.  

ANOVA for the ex vivo analysis was carried out to test the significance of the effects of treatments 

versus control. Significant differences (p<0.001) between mean values were tested by Holm-Sidak 

method. Statistical analyses were carried out using the software STATISTICA for Windows 

(StatsoftTM, Tulsa, Oklahoma). 

 

3. Results and discussion 

3.1 Chemical parameters 
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Chemical parameters of apple samples are reported in Table 1. Water content and maturity index 

(SSC/TA) were not affected by the treatment and did not show any significant difference compared 

to control sample at all treatment times. 

 

Table 1. Physico-chemical parameters of Pink Lady apples as affected by plasma treatment time. 

  time (min) 
  0 10 20 30 

Water content (%) 83.73± 0,29a 83.53 ± 0,14a 84.84 ± 0,43a 83.63 ± 0,40a 

MI (SSC/TA) 34.88 ± 0.5a 33.08 ± 0.64a 37.68 ± 1.62a 34.54 ± 0.40a 

pH 3.73 ± 0.03a 3.64 ± 0.05b 3.56 ± 0.04b 3.65 ± 0.05b 

L* 77.89 ± 1.05a 76.93 ± 1.52a 76.87 ± 0.88a 79.48 ± 1.51b 

a* 0.59 ± 0.84a  0.08 ± 0.70a -0.56 ± 1.00a -2.49 ± 0.89b 

b* 26.75 ± 2.71a 27.03 ± 2.02a 27.16 ±1.49a 24.54 ± 2.20b 
Values followed by different letters within the same row are significantly different at a p<0.05 level. 
 

A slight acidification was observed upon plasma exposure independently by treatment time. While 

some other quality parameters, such as colour and texture have been studied in a wide range of food 

products, the impact of plasma on product pH has not been investigated often. No differences were 

observed by Gurol, Ekinci, Aslan, & Korachi (2012) in milk or other model liquid systems treated 

with argon plasma. However, Satoh, MacGregor, Anderson, Woolsey, & Fouracre (2007) found a 

strong decrease of PBS buffer pH from 7.3 to 3 to 4 and an increase of conductivity as a 

consequence of pulsed plasma exposure. A slight acidification was observed also in pork loins 

treated with a DBD device with helium and oxygen as working gas (Kim, Yong, Park, Choe, & Jo., 

2013). The authors suggested that those changes were due to the dissolution of acidogenic moleculs 

such as nitrogen oxides, generally generated in plasma discharges, in the food system. 

Colour was measured four hours after treatment in order to evaluate a possible effect on fresh cut 

apples browning. No differences were observed up to 20 min of treatment; however samples 

exposed for 30 min were characterized by higher L* values and lower a* and b* values compared to 

untreated sample. 

These results confirm those obtained in a previous study of plasma effects on browning inhibition 

(Tappi et al., 2014), where at the same experimental condition, a reduction in browning was 

observed after 30 min treatment by image analysis. In the same study, an inhibition of 

polyphenoloxidase (PPO) activity proportional to treatment time up to 57% for 30 min was 

reported.  

Reduction of enzymatic activity upon plasma exposure has been observed in various studies 

(Pankaj, Misra, & Cullen, 2013 Surowsky, Fischer, Schlueter, & Knorr, 2013) and it has been 
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attributed to the oxidation of reactive side-chain of the amino acids by plasma radicals, in particular 

OH, O2
-; HOO and NO, that promote a change in the secondary protein structure and the 

modification of some amino acids side chains of the enzyme (Deng, Shi, Chen, & Kong,. 2007; 

Takai, Kitano, Kuwabara, & Shiraki, 2012). In particular, Surowsky, Fischer, Schlueter, & Knorr, 

(2013) found a variation in the relative amounts of alfa- helix structures and β-sheet content upon 

plasma exposure, that was strongly correlated to the loss of enzymatic activity. Generally the 

inhibitory effect is dependent on the type of enzyme considered and on the matrix effect (Tappi et 

al., 2015). 

 

3.2 Phenolic content 

The phenolic content of apples was measured by HPLC-MS/MS analysis and the content of each 

detected phenolic is reported in Table 2. The phenolic content of Pink Lady apples was of 2.14 

mmol kg-1
f.w. (144 mg kg-1f.w.) which is higher than literature data (90 mg kg-1

f.w.) reported in a 

previous study (Veberic et al., 2005). However these values are lower than those of the most widely 

studied variety, Golden Delicious, whose values range between 233 and 417 mg kg-1
f.w. depending 

on agricultural practices and harvesting years (Lee, Kim, Kim, Lee, & Lee, 2003; Tsao, Yang, 

Young, & Zhu, 2003; Chinnici, Gaiani, Natali, Riponi, & Galassi, 2004; Ceymann, Arrigoni, 

Schärer, Nising, & Hurrell , 2012). 

In order to verify if the DBD plasma treatment, carried out in the experimental conditions of this 

study, could have determined a significant decrease of polyphenols, the product was over treated for 

120 (60 + 60) min of processing and a significant decrease (20% ca.) of total phenolic was 

observed. 

At the investigated treatment time, suitable for fresh-cut apple stabilization (Tappi et al., 2015), the 

treatment significantly affected the total phenolic content of apples with a significant increase (21% 

ca.) after 10 (5 + 5) min of processing, slightly reduced in the 20 (10+10) min treated sample, to 

reach values after 30 (15 + 15) min non significantly different from those of raw apples (Table 2).  

Specifically, the initial phenolic increase after 10 min of processing was mainly due to a significant 

increase of procyanidin B trimer, flavonols, hydoxycinnamic acids and phloretin xylosyl glucoside. 

The increase of procyanidin B trimer is the most outstanding in relative terms and corresponds, in 

molar terms, to a reduction of catechin, epicatechin and dimers B1 and B2, suggesting the 

occurrence of polymerization reaction. When calculated in percentage on total procyanidins, the 

content of trimeric procyanidins increased while those of dimeric and monomeric procyanidins 

decreased. According to Nicoli, Calligaris, & Manzocco (1999), the formation of procyanidins upon 

catechins polymerization occurs in apples due to both enzymatic and chemical oxidation reactions; 
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the latter could easily take place during plasma treatment, thanks to the production of radical 

species and the availability of oxygen in the atmosphere.  

 

Table 2. Content of phenolics (µmol kg-1
f.w.) of Pink Lady apples as affected by plasma treatment time. 

    time 

(min) 

  

 Compound 0 10 20 30 120 

Flavan-3-ols Catechin 46.6ab 40.5bc 48.8a 36.9c 26.8d 

 Epicatechin 365a 353ab 398a 303b 229c 

 Procyanidin dimer B1 40.1a 37.8a 39.0a 31.2b 17.8c 

 Procyanidin dimer B2 138a 135ab 141a 113b 70.9c 

 Procyanidin dimer B4 9.61a 9.86a 9.40ab 7.63b 4.63c 

 Procyanidin B trimer 8.62a 8.14a 7.81a 6.57b 3.53c 

 Procyanidin B trimer 2 15.3a 14.8a 14.4a 11.4b 7.01c 

 Procyanidin B trimer 3 49.6a 49.0a 46.3a 37.0b 20.3c 

 Procyanidin B trimer 4 7.00a 7.30a 6.50ab 5.40b 2.68c 

 Procyanidin B trimer 5 0.39b 15.05a 13.52b 0.14b 0.05b 

Hydroxycinnamic 

acids 

Caffeic acid 0.96a 0.55b 1.13a 0.98a 1.02a 

 Caffeoylquinic acid 

isomer 1 

292b 384a 291b 263bc 238c 

 Caffeoylquinic acid 

isomer 2 

613bc 832a 685b 620bc 591c 

 4-Coumaroyl quinic acid 91.9a 99.2a 97.7a 77.9b 80.8b 

 Coumaroyl quinic acid  247b 302a 268ab 257a 283ab 

Dihydrochalcones Phloretin-2'-O-(2"-O-

xylosyl)glucoside 

145b 196a 187a 197a 139b 

 Phloridzin 35.7c 49.9bc 54.5b 81.2a 25.8c 

Flavonols Myricetin rhamnoside 2.89bc 4.95a 3.64b 2.94bc 2.30c 

 Quercetin 2.77bc 4.22a 3.49ab 3.55a 2.33c 

 Quercetin-O-glucoside 2.90b 6.22a 3.70b 2.97b 2.28b 

 Quercetin-O-rhamnoside 27.0b 37.2a 32.8ab 33.2a 24.2b 

 Rutin 0.13a 0.06ab 0.14a 0.05b 0.00c 

Total phenolics hydrophilic + amphiphilic 2142b 2588a 2352ab 2092b 1774c 

Values followed by different letters within the same row are significantly different at a p<0.05 level. 
 



14 
 

High molecular weight procyanidins (from tetramers to decamers) where not found in this study, 

but the extraction of polyphenols from freeze dried samples for the HPLC-MS/MS analysis was 

carried out in methanol:water, while these compounds are generally extracted using acetone:water 

mixtures (Foo & Lu, 1999; Lazarus, Adamson, Hammerstone, & Schmitz, 1999). 

The increase of trimer concentration could also have other explanation since the extraction of 

procyanidins in apple could be favoured by the activity of some carbohydrate-hydrolyzing enzymes, 

such as pectinase, cellulase, hemicellulase, and glucanase, which help the release of polyphenols 

complexed with cell walls (Landbo & Meyer, 2001; Sørensen, Pedersen, Anders, & Meyer, 2005, 

Pinelo, Zornoza, & Meyer, 2008), which are mainly catechin and procyanidins. Polysaccharides-

polyphenols complexes exist as a consequence of the non-covalent binding of polyphenols, which 

are mainly located in vacuoles, to extracellular cell walls upon decompartmentation (Jiménez-

Escrig, 2014). 

Since 10 min of cold plasma processing in the same experimental conditions of this study, were 

proven to slightly affect (12% ca. reduction) the enzymatic activity of apples (Tappi et al., 2014), it 

is not clear if other naturally occurring apple enzymes (e.g. pectinases) are likely to exert their 

hydrolytic activity in this lapse of time. In this study, no catechin and dimeric procyanidin increase 

was observed after 10 min of treatment; this fact does not suggest the occurrence of any enzyme-

mediated release of procyanidins, because the content of B2 dimeric procyanidin has to increase as 

a consequence of enzymatic hydrolysis (Pinelo, Zornoza, & Meyer, 2008; Zheng Hwang, & Chung 

2009). 

However, since cell walls polysaccharides form a higher number of complexes with high molecular 

weight procyanidins than low molecular weight ones (Poncet-Legrand et al., 2010), the increase of 

trimeric procyanidins (17%), which could be caused by a polymerization reaction upon oxidation, 

could also have been influenced by the enzymatic-mediated release from cell walls-polyphenols 

complexes during 10 min of processing. 

Chlorogenic acid and phloridzin showed a 30 and 40% increase of their initial concentration after 

10 min of cold plasma treatment. The increase of hydroxycinnamic acids and chalcones in plant 

tissues is associated to wounding response, that induces an increase of the content of phenolic 

compounds, likely due to their biosynthesis through the phenyl-propanoid pathway, as a plant 

defence mechanism (Uritani & Asahi, 1990; Heredia & Cisneros-Zevallos, 2009). Selected 

antifungal polyphenols such as chlorogenic acid, isochlorogenic acid and chalcones, among which 

phloridzin, could be synthesized after an elicited increased activity of the key enzymes 

(phenylalanine ammonia lyase and chalcone synthase) of the phenyl-propanoid biosynthetic 

pathway (Uritani & Asahi, 1980; Lattanzio Lattanzio, & Cardinali, 2006). In this study the increase 



15 
 

in chlorogenic acids seems solely dependent on biosynthesis consequent to the wounding response 

to minimal processing (peeling and cutting), and not to the effect of hydrolases activity. In fact, 

contrarily of what we observed (Table 2), a dramatic increase of caffeic acid (as a consequence of 

chlorogenic acid hydrolysis) and no increase of chlorogenic acid (hydroxycinnamic acids are, 

generally, retained not able to bind with cell walls) was previously found, as a consequence of 

carbohydrate hydrolases-assisted polyphenol extraction in apples (Pinelo, Zornoza, & Meyer,, 

2008; Zheng Hwang, & Chung ,2009). On the other hand, Pinelo and co-workers (2008) attributed 

the increase of phloridzin and rutin that we found until 30 min of treatment (Table 2) to enzymatic 

assisted hydrolysis. 

Moreover, also the quercetin and quercetin glucoside increase observed as a consequence of 10 min 

of plasma treatment could be a consequence of the hydrolysis of the cell wall (Zheng et al., 2009). 

In general a 40% to 110% increase of polyphenols conjugated to the monomeric constituents of the 

cell walls, among which rhamnosides and xylosides in particular, was observed (Table 2), but these 

types of polyphenols are not considered as constituents of the cell walls (Pinelo et al., 2006). 

With some exception, at treatment time longer than 10 min, all the polyphenols showed a 

progressive reduction. 

When calculated in percentage on total procyanidins, trimer reduction was higher than that of 

monomers and dimers. In addition to oxidation and polymerization, as previously discussed, 

catechin and procyanidins could also undergo binding to the cell walls, and oxidized procyanidins 

and high molecular weight procyanidins could bind better than the reduced and monomeric 

compounds respectively (Poncet-Legrand et al., 2010).  

The total phenolic index (TPI) (Table 3) of apple products has been estimated by measuring their 

ability to reduce the Folin-Ciocalteu reagent, an extensively used method for the estimation of total 

phenolics, after solid phase extraction on C-18 cartridges, considered suitable technique for the 

separation of phenolic compounds (Antolovich et al., 2000; Nackzk and Shaidi, 2004). 

In this study, a total TPI of about 12.6 μmol g-1
d.w. (2.2 mg GAE g-1d.w.) was measured in the 

amphiphilic fraction, after SPE separation; also in this case, this value is lower than that of Golden 

Delicious apples but comparable with literature results (Tsao Yang, Young, & Zhu, 2003; Sacchetti 

Cocci, Pinnavaia, Mastrocola, & Dalla Rosa, 2008; Ceymann Arrigoni, Schärer, Nising, & Hurrell., 

2013). 

The DBD plasma treatment significantly affected the TPI of apples with a significant increase 

(+8.5% ca.) after 10 min of processing, followed by a progressive decrease with the increasing of 

processing time to reach significantly lower values (about -9%) than those of raw apples after 30 

min and of about -35% in the sample over treated for 120 min (Table 3).  
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The spectrophotometric determination of total polyphenols underestimated the initial polyphenols 

increase after 10 min of processing, but overestimated the final polyphenol decrease after 120 min 

of processing, when compared to HPLC-MS/MS analysis. This happened probably because the TPI 

assay is based on the capacity of phenolic compounds to reduce the Folin-Ciocalteu reagent under 

basic conditions, being the mechanism of the TPI assay based on an oxidation/reduction reaction. 

This result roughly indicates that the polyphenols which increase during the first 10 min of 

processing show a generally low reducing power, whilst those which undergo oxidation with 

increasing processing time show an high reducing power. 

 

3.3 Antioxidant activity 

In the present study, the antioxidant activity of apple samples was investigated with a variety of 

methods aimed to measure their RSA (ABTS and DPPH assay) and reducing power (FRAP and 

TPI). Results are presented in table 3. As mentioned, the total phenolic index is a method measuring 

the reducing power of the phenolic extract; for this reason it can be used to investigate the reducing 

power of a polyphenol mixture, being considered an antioxidant method (Prior et al., 2005).  

 

Table 3. Total phenolic content (TPI) and antioxidant activity (µmol kg-1
f.w.) of Pink Lady apples as affected by plasma 

treatment time. 

    time 

(min) 

  

 Extract 0 10 20 30 120 

TPIa amphiphilic  12633b 13702a 12460b 11383c 8207d 

TPIa hydrophilic  855b 917ab 981ab 1050a 623c 

TPIa hydrophilic + amphiphilic 13484b 14622a 13357b 12242c 8790d 

ABTSb amphiphilic  14265b 15076a 14734ab 13526b 10098c 

ABTSb hydrophilic  855a 644b 840ab 686b 803ab 

ABTSb hydrophilic + amphiphilic 15120ab 15720a 15574a 14212b 10900c 

DPPHb hydrophilic + amphiphilic 22543a 23008a 21311a 21868a 16608b 

FRAPc hydrophilic + amphiphilic 26900b 30123a 27781b 25913b 17024c 

Values followed by different letters within the same row are significantly different at a p<0.05 level. 
a(µmol GAE kg-1

f.w.), 
b(µmol TE kg-1

f.w.,), 
c(µmol Fe2+ kg-1

f.w.) 
 

The ABTS and TPI assays were conducted on both the amphiphilic and hydrophilic extracts; the 

former showed a radical scavenging activity much higher than the latter, which accounts for about 

the 6% of total TEAC (sum of TEAC values of the amphiphilic and hydrophilic extracts). Similarly, 

the reducing power of hydrophilic extract, as measured by the TPI, accounted for about the 6% of 
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total TPI. This result is due to the fact that apple is very poor of water soluble polyphenols and 

ascorbic acid, which could filtrate through the cartridge set upon washing with the acidulated water 

extract prior to the elution of amphiphilic compounds. 

The DBD plasma treatment significantly affected the TEAC of amphiphilic compounds of apples 

with a significant increase (6% ca.) after 10 min of processing, followed by a progressive decrease 

with the increasing of processing time, to reach values lower than those of raw apples (-30%) when 

over treated (120 min) (Table 2). The total TEAC showed an initial increase of 5% ca. and a final 

decrease of 28%, since no initial increase of the TEAC of hydrophilic compounds of the raw apple 

and a lower final decrease of the latter index were observed during plasma processing. 

The DPPH• assay did not evidence any difference in antioxidant activity after 10 min of processing 

whilst it evidenced an antioxidant activity decrease after 120 min of processing (Table 2), showing 

a lower sensibility of this method than the TEAC assays. 

The DBD plasma treatment significantly affected the TPI of amphiphilic compounds of apples as 

well a total TPI, which showed both a significant increase (8.5% ca.) after 10 min of processing, 

followed by a progressive decrease with the increasing of processing time, to reach values lower 

than those of raw apples (-30%) when over treated (Table 2). 

Differently from the ABTS assay, the TPI assay evidenced an initial increase of the reducing power 

of hydrophilic compounds of the raw apple and a final decrease of this index during plasma 

processing. These two assays differs for the mechanisms of action which are radical scavenging for 

ABTS and single electron transfer for TPI, and both the polyphenols formed and consumed during 

plasma treatment showed lower radical scavenging activity than reducing power. The FRAP assay 

showed values similar to those of the TPI assay, but was more sensitive since it evidenced an initial 

reducing power increase of 11% after 10 min and a 37% reduction after 120 min of processing. 

The initial increase of antioxidant activity after 10 min of treatment could be ascribed to the 

increase of selected polyphenols as a response to wounding. Several studies have been performed 

regarding the effect of wounding response on antioxidant activity (Kang & Saltveit, 2002; Reyes & 

Cisneros-Zevallos, 2003; Reyes Villareal, & Cisneros-Zevallos, 2007; Heredia & Cisneros-

Zevallos, 2009) and the results observed in this study are similar to those reported by Heredia & 

Cisneros-Zevallos (2009). On the other hand, the initial increase of antioxidant activity after 10 min 

of treatment could be also due to catechins oxidation which causes the formation of procyanidins 

(e.g. trimers) having and higher antioxidant activity than the former compounds (Nicoli Calligaris, 

& Manzocco, 1999; Di Mattia et al., 2013). An initial increase of antioxidant activity followed by 

its reduction was also observed during the oxidation of processed apple products by Sacchetti 
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Cocci, Pinnavaia, Mastrocola, & Dalla Rosa (2008), who observed that this increase depends on 

both the activity of oxidases and the concentration of polyphenols. 

 

3.4 Effect of treated and untreated apple polyphenolic extracts on Caco2 cells viability 

In order to investigate the effect of plasma technology on cell viability we performed the WST-1 

colorimetric assay. Caco2 cells were seeded in a 96-well microplate and incubated for 5 h in the 

presence of different concentrations of treated or untreated apple polyphenolic extracts. As shown 

in Fig. 1A, no reduction on cell proliferation was observed for both plasma treated and untreated 

samples, even at the highest concentration tested. As shown in Fig. 1B, the polyphenolic extracts 

obtained from plasma treated samples do not induce significant changes in cell proliferation in 

comparison with extracts obtained from untreated apple slides.  

The Caco2 cells viability was also evaluated in the presence of different concentrations of 

Theaphenon E®. The concentration range examined in our study comprises the concentration 

achievable in human plasma (Chow, Hakim, Vining, Crowell, Ranger-Moore, Chew, et al., 2005). 

The results indicated that the concentration range (28 mg/mL and 75 mg/mL) chosen for the further 

experiments did not significantly contribute to alter cell proliferation in human cultured cells.  

The concentrations tested are also comparable with the polyphenol content of the apple extracts 

prepared by us. As shown in Fig. 1C, the extract did not cause cytotoxicity. In vitro studies have 

demonstrated a cell-specific and dose-dependent cytotoxic response to EGCG treatment (Kim, 

Quon, & Kim, 2014). In particular, Salucci and co-workers have reported that in Caco2 cells EGCG 

is not toxic at the concentrations ranging between 100-250 μM, whereas a 60% cytotoxicity occurrs 

at 500 μM (Salucci, Stivala, Maiani, Bugianesi, & Vannini, 2002).  
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Fig 1. Effects of polyphenolic extracts from untreated (A) and treated for 30 min (B) apple and Theaphenon E® (C) on 
Caco2 cells viability. Caco2 cells were treated with different concentrations of polyphenols for 5 h. Cell viability was 
determined by WST-1 assay. Data are presented as means ± SD from four replicate wells of three different experiments 
as percentage of control sample. Statistical significance versus control was calculated by two-sided Student’s t-test. *, 
p<0.05. 
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3.5 Effect of treated and untreated apple polyphenolic extracts on ROS production 

Intracellular ROS levels affect cell viability and high ROS concentrations can cause cellular 

damage. Using the DCFH-DA assay, we evaluated the modulation of intracellular ROS in Caco2 

cells after 5 h incubation with treated and untreated apple polyphenolic extracts. As shown in Fig. 2, 

the production of oxidizing species is dependent on extracts concentration. The treated apple extract 

caused a statistically significant decrease in ROS production as compared to untreated apple extract. 

The plasma treated sample pointed out a decrease in ROS level of about 1.8-fold with respect to the 

untreated sample at the concentration of 75 mg/mL. However, it is important to underline that these 

concentrations exerted no effects on cell viability. 

 
Fig. 2 Effects of polyphenolic extracts from treated (30 min) and untreated apple on Caco2 cells ROS production. 
Caco2 cells were treated with different concentrations of polyphenols for 5 h. ROS production was determined by 
DCFH-DA assay. Data are presented as means ± SD from eight replicate wells of three different experiments. Statistical 
significance versus untreated samples was calculated by two-sided Student’s t-test. **, p<0.001. 
 

Noteworthy, the pro-oxidative and antioxidative properties of plant-derived polyphenols are well 

documented (Babich, Schuck, Weisburg, & Zuckerbraun, 2011; Elbling, Herbacek, Weiss, Gerner, 

Heffeter, Jantschitsch, et al., 2011; Rizzi, Naponelli, Silva, Modernelli, Ramazzina, Bonacini, et al., 

2014). The imbalance of the redox homeostasis, which occurs after the administration of EGCG 

(the major constituent in green tea) in different cell lines, showed a dose-dependent trend (Babich, 

Schuck, Weisburg, & Zuckerbraun, 2011; Elbling, et al., 2011; Rizzi, et al., 2014). Accordingly, 

incubation of Caco2 cells for 5 h with concentrations of Theaphenon E® higher than 5 μg/mL 

produced a significant increase in ROS production without reducing cell viability (data not shown). 

The same biological effect has been reported on Caco2 cells after incubation with high 

concentrations of apple extracts (Bellion, Digles, Will, Dietrich, Baum, Eisenbrand, et al., 2010).  
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3.6 Effect of treated and untreated apple polyphenolic extracts on phase II defence enzymes 

To further determine whether plasma treatment could generate reactive species able to modulate the 

response of phase II defense enzymes, we performed both gene-reporter assay and qPCR.  

Phase II enzymes perform conjugation reactions with the aim of transforming toxic endogenous 

compounds and xenobiotics in hydrophilic compounds that can be more easily excreted. They play 

also an important role in the metabolic inactivation of pharmacologically active substances. The 

Nrf2/EpRE pathway is one of the main cell signaling system involved in the safeguard against 

oxidative stress. It regulates the expression of key protective enzymes such as glutathione 

peroxidase (GPX), glutathione S-transferase (GST), NADPH quinine oxidoreductase 1 (NQO-1) 

and UDP-glucuronosyltransferase (UGT) (de Roos & Duthie, 2014; Zhang, An, Gao, Leak, Chen, 

& Zhang, 2013).  

A DNA fragment containing the EpRE sequence was subcloned upstream a firefly luciferase into a 

suitable promoterless reporter plasmid (pGL4 vector). After transient transfection with the 

expression plasmid, different concentrations of untreated and plasma treated polyphenolic extracts 

were added to the cell culture and incubated for 5 h. As shown in Fig. 3A, there is no statistically 

significant difference in the induction of luciferase activity between untreated and plasma treated 

extract. Although the plasma technology generates ROS and NOS (Montie, Kelly-Wintenberg, & 

Roth, 2000), their concentrations does not seem to modify the Nrf2/ARE pathway response with 

respect to untreated apple extract. However, the recombinant plasmid used for the gene reporter 

assay contains just one copy of the EpRE motif and previous data showed a good correlation 

between the number of EpRE repeats in the reporter plasmid and the level of luciferase activity 

(Wang, Hayes, & Wolf, 2006). Noteworthy, incubation of Caco2 cells for 5 h with different 

concentrations of Theaphenon E® determines a statistically significant increase in luciferase activity 

(Fig. 3B). The different response obtained with the gene reporter assay is probably due to the 

presence of contaminants in the apple extracts able to quench the luciferase signal. 

In order to confirm the harmless effect of plasma technology, we quantified by qPCR the mRNA 

levels of genes belonging to GST and UGT family enzymes, which are targets of the Nrf2/EpRE 

pathway. GST family members are able to catalyze the conjugation of the sulfhydryl moiety of 

glutathione (GSH) with a broad range of endogenous and exogenous electrophilic substrates (Tew 

& Townsend, 2012). UGT family members are endoplasmic reticulum-bounded enzymes that 

catalyze glucuronidation of endogenous and exogenous substrates, like bilirubin, bile acids, steroids 

and xenobiotics (Shuji Ohno and Shizuo Nakajin 2009).  
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Fig. 3. Effects polyphenolic extracts from treated (30 min) and untreated apple (A) and Theaphenon E® (B) on Caco2 
cells ARE luciferase activity. Caco2 cells were treated with different concentrations of polyphenols for 5 h. The 
luciferase activity was normalized for the total protein content. Data are presented as means ± SD from four replicate 
wells of three different experiments. Statistical significance versus untreated sample was calculated by two-sided 
Student’s t-test. *, p<0.05. 
 

Previous data have shown that in different colon tumor cell lines apple polyphenols (Veeriah, 

Miene, Habermann, Hofmann, Klenow, Sauer, et al., 2008) and digitoflavone (Yang, Cai, Yang, 

Sun, Hu, Yan, et al., 2014) are able to induce gene expression of detoxification enzymes. As shown 

by comparison of plasma treated and untreated apple extracts (Fig. 4A and B), the polyphenolic 

extracts are able to induce a different response in Nrf2/ARE in a dose dependent manner. At the 

lowest concentration tested (28 mg/mL) of plasma treated apple extract, the mRNA levels of both 

GST and UGT family members are less induced with respect to untreated apple extract. The low 

concentration of ROS revealed by DCFH-DA assay is not enough to induce a specific cell response 

to oxidative stress. In contrast, when used at a concentration up to 75 mg/mL, the treated apple 

extract induces a phase II enzyme response, in accordance with the increase of ROS level. 

Concerning the GST family members, while the GSTT2 mRNA level is comparable in Caco 2 cells 

exposed to both treated and untreated samples, the GSTP1 mRNA level increases and the GSTA4 

mRNA level remains less induced (Fig. 4A) in cells incubated with plasma treated apple extract. 

Within the UGT family, our results evidenced an increase of the UGT1A4 mRNA level after 

incubation with plasma treated apple extract, whereas the UGT1A1 and UGT2B7 mRNAs levels 

are comparable in both treatment groups (Fig. 4B). These data point out that after administration of 

apple polyphenols extracts derived from the plasma treatment, Caco 2 cells are able to maintain the 

physiological response to moderate oxidative stress by increasing the transcription of phase II 

detoxifying enzymes. 
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Figure 4. Relative expression of mRNA levels of Nrf2-activated phase II enzymes in  Caco2 cells loaded for 5 h with 
different concentrations of polyphenols extracted from plasma treated (30 min) apples. The relative expression of gene 
transcripts was calculated by the 2−ΔΔCT method using untreated apples extract as reference sample. Data are presented 
as means ± SD from three different experiments. Statistical significance versus untreated sample was calculated by two-
sided Student’s t-test. *, p<0.05. 
 

4. Conclusions 

The effect of plasma treatment on physico-chemical parameters was mainly observed on a slight 

acidification of the tissue, and in a reduction of browning after the longer exposure time (30 min), 

probably due to enzymatic activity inhibition showed in previous study (Tappi et al., 2014). 

As a consequence of catechin polymerisation products and of the increase of hydroxycynnamic 

acids and chalcones, phenolic profile of fresh-cut apples was significantly affected by 10 min 

treatment, both in quantitative (about 20% of increase) and qualitative terms. 

After 30 min of treatment, when plasma effect on enzymatic browning inhibition was significant, 

flavan-3-oils content was lower compared to not treated apples, while dihydrochalcones and 

flavonols evidenced a slight increase.  

As expected, considering its strict connection between polyphenols amount, antioxidant activity 

evaluated by different in-vitro methods followed a similar trend, increasing after 10 min of 

processing. The DPPH• showed a lower sensibility compared with TEAC assays, while FRAP 

showed similar values to TPI assay. 

Moreover, this research represents the first approach in assessing the effect of chemical species 

generated during the gas plasma treatment on human cell line. We demonstrated that the 

polyphenolic extract obtained from plasma treated apple does not induce significant changes in cell 

proliferation in comparison with untreated apple. Furthermore, Caco 2 cells exposed to moderate 

oxidative stress induced by the polyphenols extracts administration are able to protect themselves 

through the expression of phase II detoxifying enzymes. 
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In conclusion, the DBD plasma treatment is a very promising tool to preserve the qualitative 

properties and the phytochemical profile of fresh-cut Pink Lady apples. Further, apple exposure to 

gas plasma does not seem to generate chemical species harmful to human cells. Other studies in 

cellular models are needed to confirm this preliminary data. 

Further studies of the product microstructure and metabolomics features are needed. Firstly to 

understand the chemical or enzymatic nature of polyphenols modification phenomena, secondly to 

clarify the induced metabolic response promoted by the treatment to the fresh apple tissue. This has 

to be focused on the product packed in real packaging (passive modified atmosphere packaging) 

and storage conditions (during 10-15 days of refrigerated storage). 
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Abstract 

Vacuum impregnation (VI) is a process that allows the impregnation of fruit and vegetable porous 

tissues with a fast and more homogeneous penetration of active compounds compared to the 

classical diffusion processes. The objective of this study was to investigate the effect on VI 

treatment with calcium lactate on qualitative parameters of minimally processed melon during 

storage. For this aim, the present work was divided in two parts. Initially, the optimization of 

process parameters was carried out in order to choose the optimal VI conditions for improving 

texture characteristics of minimally processed melon that were then used to impregnate melons for a 

shelf-life study in real storage conditions. On the basis of a 23 factorial design, the effect of Calcium 

lactate (CaLac) concentration between 0 and 5 % and of minimum pressure (P) between 200 and 

600 mbar were evaluated on colour and texture. Processing parameters corresponding to 5% CaLac 

concentration and 600 mbar of minimum pressure were chosen for the storage study, during which 

the modifications of main qualitative parameters were evaluated. Despite of the high variability of 

the raw material, results showed that VI allowed a better maintenance of texture during storage. 

Nevertheless, other quality traits were negatively affected by the application of vacuum. 

Impregnated products showed a darker and more translucent appearance on the account of the 

alteration of the structural properties. Moreover microbial shelf-life was reduced to four days 

compared to the seven obtained for control and dipped samples.  

 

Practical application: Minimally processed fruit represent a growing sector for the fresh produce 

industry, on the account of their health properties combined with a high convenience value, but they 

are characterized by a shorter shelf-life compared to the intact product. Therefore, preservation 

processes able to increase the product shelf-life are of great interest to fruit processing industries. 

Vacuum impregnation with calcium has been studied to improve product texture properties of 

various fruit and vegetable. Nevertheless researches were often limited to the immediate effect of 

the treatment not taking in consideration the evolution of the product quality during storage in real 

conditions. 

 

Keywords: vacuum impregnation, minimally processed melon, calcium, shelf-life. 

 

1. Introduction 

Vacuum impregnation (VI) is a process that allows the impregnation of fruit and vegetable porous 

tissues, exploiting a mass transfer known as hydrodynamic mechanism (HDM) (Fito et al., 1996). A 
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two-step pressure change is implicated in this mechanism. At first, vacuum pressure is applied to a 

solid-liquid system (vacuum step), causing the expansion of the gas inside the product pores and its 

partial outflow until mechanical equilibrium is achieved. In the second step (atmospheric step), 

atmospheric pressure is restored and the compression of the residual gas in the pores leads to the 

penetration of the external liquid into the pores (Tylewicz et al., 2012). Compared to the classical 

diffusion processes, carried out by simple dipping or prolonged immersion of the product in the 

solution at atmospheric pressure, VI presents the advantage of a fast and more homogeneous 

penetration of the active compounds directly into the internal structure of the product (Saurel, 

2004). 

Various substances can be introduced inside the food matrix such as nutritional, nutraceutical and/or 

functional compounds, antimicrobial and antioxidant substances, organic acids, structuring 

substances, etc. (Betoret et al., 2003). Depending on the type of component chosen for the 

impregnation, the final product will be characterized by modified/improved sensorial or nutritional 

quality or an extended shelf-life. 

One of the most critical issue for quality maintenance of minimally processed melon during 

refrigerated storage is its susceptibility to tissue softening. The application of calcium dips has been 

widely investigated in pears (James et al., 2002), kiwifruit (Agar et al., 1999), nectarines and 

peaches (Gorny et al., 1999) and melons (Luna-Guzmán et al., 1999; Silveira et al., 2011). The 

structuring effect of calcium is due to its ability to form cross-links or bridges between free 

carboxylic group of the pectin chains, resulting in strengthening of the cell wall and at the same 

time, preserving the structural and functional integrity of membranes. 

The use of VI with calcium salts has been considered for fortification of various fruit and vegetables 

(Fito et al., 2001; Gras et al., 2003; Tapia et al., 1999), in order to obtain food with higher calcium 

content suitable for consumers with specific health needs.  

Few works have been carried out on the impregnation with calcium to improve texture of minimally 

processed products. Occhino et al. (2011) investigated the effect of calcium and other structuring 

compounds in zucchini slices, while Degraeve et al. (2003) combined calcium and pectinesterase 

for strawberry impregnation finding a remarkable synergistic effect in increasing firmness. 

Nevertheless, generally published studies are limited to the immediate effect of the treatment and do 

not take in consideration the evolution of the product quality during storage in real conditions. 

The objective of this study was to investigate the effect on VI treatment with calcium lactate on 

qualitative parameters of minimally processed melon during storage. For this aim, the present work 

was divided in two parts. Initially the optimization of process parameters was carried out in order to 

choose the optimal VI conditions for improving texture characteristics of fresh melon. In the second 
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part of the research, the optimal processing conditions were used to impregnate melons, and 

evaluate modifications of main qualitative parameters during storage, compared to fresh cut 

samples and to samples dipped in the same calcium solution at atmospheric pressure. 

 

2. Materials and Methods 

 

Sample preparation 

Two different batches of about 50 melons (Cucumis melo var Reticulatus) were harvested at 

commercial maturity during August 2013 and 2014 in Emilia-Romagna region (Italy); care was 

taken to select fruits with similar ripening degree, on the basis of their soluble solid content and 

titratable acidity. The first batch was used for the optimization study, the second for the storage 

study. The fruits were brought to our laboratory where they were held at 4°C for 48 h before 

processing. 

Prior to processing, selected whole fruits were washed with water, scrubbed with a sponge to 

eliminate dirt on the external surface and then dipped for 1 min in a 200 ppm chlorine solution. 

Fresh samples were characterized by soluble solid content, colour, textural parameters and porosity 

by means of methodology reported below. 

After water removal with tissue paper, each fruit was halved longitudinally, stem ends were 

eliminated and the central part was cut in 2 cm thick slices. From each slice cylindrical samples 

(ø=2 cm, h=2 cm) were obtained from melon flesh using a manual sharp cork borer. 

VI system and experimental plan 

The impregnation process was performed using automatic vacuum controller system (AVCS, S.I.A., 

Bologna, Italy), a programmable device designed to control the pressure acting on the impregnating 

solution during the impregnation process. The AVCS is connected to the impregnation chamber by 

a Teflon tube and to a vacuum pump. 

The experiment was divided into two parts as follows: 

a. Optimization of VI process parameters for improving qualitative characteristics of fresh-cut 

melon  

Among calcium salts, lactate (CaLac) was selected on the account of literature, as it is able to 

improve/preserve the texture attributes of fresh-cut melon during storage, having lower impact on 

the organoleptic properties compared to other salts (chloride, carbonate and propionate) (Aguayo et 

al., 2008; Lamikanra & Watson, 2004; Luna-Guzmán et al., 1999).  

The impregnation (at minimum pressure) and the relaxation (after atmospheric pressure restoration) 

times were 5 min each. The time was selected as the minimum time able to obtain a level of 
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impregnation corresponding to the product real porosity, as too long exposure to high vacuum level 

can cause tissue deformation (Mújica-Paz et al. 2003).  

A 23 full experimental plan was applied in order to evaluate the singular, quadratic and interactive 

effects of the selected variables on some qualitative parameters. Each factor had 3 levels ranging 

from 0 to 5% for CaLac and from 200 to 600 mbar for minimum pressure, as shown in table 1. The 

highest salt concentration has been selected after preliminary tests, aimed at evaluating the 

maximum level not detected by sensorial analysis. The impregnation medium was isotonic 

regarding native soluble solids content of melon to avoid water transfer phenomenon. 

The minimum absolute pressure reached during the treatment was obtained applying a stepwise 

protocol chosen on the basis of preliminary experiments that involved the application of vacuum 

pressure in different steps of 200 mbar each. During intermediate steps, samples were held at the 

relevant pressure value for 30 seconds. Each treatment was repeated in three independent replicates, 

each with 50 g of products and a ratio product:solution of 1:4. 

 

Table 1. Coded and real values of the independent variables in the experimental plan 

Coded value   -1 0 1 

CaLac concentration (%) 0 2.5 5 

Minimum absolute pressure (mbar) 200 400 600 

 

Impregnated melon samples were tested for porosity, weight gain (WG), colour and textural 

parameters. On the basis of the obtained results on quality parameters, the combination of the 

process parameters was chosen for the shelf-life tests. 

 

b. Study of the modification of qualitative characteristics of vacuum impregnated fresh cut 

melon during storage 

Vacuum impregnated melons were obtained according to the protocol chosen during the first part of 

the experiment (600 mbar and 5% CaLac). Fresh cut melon was used as control (C). In order to 

evaluate the effect of the vacuum treatment, VI samples were also compared to fresh-cut melon 

dipped at atmospheric pressure in the same CaLac solution (D) for the same duration. About 45 g 

for package of each type of melon sample (VI, D and C) were packed in trays sealed with a micro-

perforated film of polyethylenetereftalate (PET)  75 µm thick, and subjected to storage for 10 days 

at 10°C. This temperature was chosen in order to simulate the temperature abuse commonly 

occurring at retail stores and to accentuate any beneficial or negative effects of the postharvest 

treatments (Saftner et al., 2003). In each package, headspace was about 900 mL. 
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During storage, at 0, 2, 4, 7 and 10 days the samples were analysed for gas composition in the 

headspace, soluble solid content, titrable acidity, dry matter, colour, texture and the microbial cell 

loads. At each sampling time, three packages were evaluated  for each sample (C, D and VI). 

 

Analytical determinations 

Chemical parameters 

- Sample porosity was determined using pycnometric method measuring real and apparent density 

according to Gras et al., (2003). Total or real porosity (εr) constitutes a measure of the empty spaces 

in the fruit tissue, and represents the maximum space that could be impregnated with an isotonic 

solution. It was determined on five different melon cylinders. 

- The impregnation parameter weight gain (WG) was calculated according to (Tylewicz et al., 

2012) with the following equation: 

WG = 100 x (m – m0)/m0 

where m is the mass of the impregnated sample (g) and m0 is the initial mass (g). 

- Soluble solids content (SSC) was determined at 20 °C by measuring the refractive index with a 

digital refractometer mod. PR1 (Atago Co. Ltd, Tokyo, Japan) calibrated with distilled water. 

- Titratable acidity (TA) was determined by titration with NaOH 0.1 N until pH 8.1 was reached 

(AOAC Official Method 942.15, 2000). Results were expressed as ml of malic acid/100 g. 

For each sample, SSC and TA were determined in triplicate on the juice obtained from 10 melon 

slices, after filtering through Whatman #1 filter paper  

- Dry matter content was determined gravimetrically by difference in weight before and after drying 

at 70 °C, until a constant weight was achieved (AOAC International, 2002) on three different melon 

cylinders. 

 

Gas composition  

O2 and CO2 percentage was measured in the packages headspace by a gas analyzer “check point 

O2/CO2” mod. MFA III S/L (Witt-Gasetechnik, Witten, Germany). At each sampling time, it was 

measured in three packages for each sample. 

 

Colour 

Surface colour was measured with a spectrophotocolorimeter (HUNTERLAB ColorFlexTM, A60-

1010-615, Reston, Virginia) using the D65 illuminant and the 10° standard observer. For each 

treatment the average of 15 measurements was calculated. The L*, a* and b* parameters of the 
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CIELAB system were measured, a* and b* parameters were further used to calculate Hue angle 

(ℎ� = ������� 	
∗

�∗
 /2�� � 360  

 

Texture 

Mechanical parameters were measured with a penetration test using a Texture Analyser TA-HDi500 

(Stable Micro Systems, Surrey, UK) equipped with a 50 N load cell and a 6 mm diameter stainless 

steel cylinder until a maximum deformation of 90% of sample thickness. For each treatment the 

average of 15 measurement was calculated. 

The acquired curves (Force, N, versus time, s) were analysed and the following mechanical 

parameters were extracted: firmness - the first peak force (N) value and the linear distance (LD) as 

an index of crispness. LD was determined, using the “linear distance” function (1) within Texture 

Expert Exceed software (version 2.61, Stable Micro Systems) on a plot Force (F) in Newton versus 

distance (D) in millimetres (Gregson & Lee, 2003).  

 

 (1) 

This function automatically calculates the line length by summing the lengths computed between 

consecutive data points using the Pythagoras equation. The software calculate Ld by summing the 

length of the straight segments connecting each point acquired (500 points/s) between selected 

times or distances. Although a length is calculated, distance units cannot be used because one axis 

has force units. Generally, an increase of Ld corresponds to an increase of crispness. 

Microbiological analysis 

Melon samples (10 g) were suspended into sterile 0.1% (w/v) peptone-water solution and 

homogenized with a Stomacher Lab Blender (Seward, PBI International, Whitstable, Kent, UK) for 

2 min at room temperature. 

Mesophilic lactobacilli and lactococci were determined on MRS agar (Oxoid Ltd, Basingstoke, 

Hampshire, UK) containing 0.1% of cycloheximide (Sigma Cemical Co.) and M17 agar (Oxoid 

Ltd), respectively, at 30 °C for 48-72 h under anaerobic conditions. Yeasts were enumerated on 

Yeast Extract Peptone-Dextrose agar (YPD, Oxoid Ltd), added of 150 ppm chloramphenicol, at 30 

°C for 72 h. Viable counts of total aerobic mesophilic and psychrotrophic bacteria were determined 

on Plate Count Agar (Oxoid Ltd) at 30 °C for 48 h and 4°C for 10 days, respectively. 

[ ] [ ]∑
=

=
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Microbiological counts were carried out in triplicate for all the samples at each storage time. 

 

Statistical analysis 

For the optimization of parameters, a 23 full experimental plan was applied. The experimental 

design allows to establish a second order polynomial by : 

� = �� + ���� + ���� + ������� + �����
� + �����

� 

The statistical analysis was performed using the software Statistica 8.0 (Statsoft Inc., Tulsa, UK) to 

obtain the coefficients of the polynomial, F-values, standard errors (SE) and the explained 

variability percentage (R2), in order to evaluate the global fitting of the model to the obtained 

experimental values. 

During storage, significant differences among samples in qualitative parameters and in microbial 

loads, at the same sampling time, were assessed using the analysis of variance (ANOVA), and 

significance of differences was defined according to the LSD post-hoc test at p≤ 0.05. 

 

3. Results and discussion 

Results of the chemico-physical parameters of the raw materials of the two different batches are 

reported in Table 1. Even if in terms of SSC and TA the two batches were very similar; regarding 

colour, fruits of the first batch presented a lighter and less orange colour.  

Table 2. Colorimetric and textural parameters of the 2 batches of fresh melon samples.  

 1st batch 2nd batch 

  x̅ SD x̅ SD 

SSC 12.5 0.2 12.3 0.1 

TA 0.11 0.01 0.10 0.01 

L* 68.41 3.75 61.22 4.01 

h° 73.22 0.97 69.86 2.02 

Firmness 7.28 2.5 5.8 0.9 

LD 17.27 2.1 30.5 3.5 

porosity 9.78 1.75 5.74 1.15 
 

These melons were characterized by higher firmness, and their averaged porosity (9.78 %) was 

almost the double of the one of the second batch fruits (5.74 %). In any cases, these values are in 

agreement with previous literature studies, that reported porosity of melon in the range of 4-13% 
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(Fito et al., 2001; Mújica-Paz et al., 2003), also considering the variability of this parameter as a 

function of cultivar, agricultural practices and harvesting year. 

 

a. Optimization of VI process parameters for improving qualitative characteristics of fresh-cut 

melon  

Table 3 reports weight gain (WG), textural and colorimetric parameters of samples impregnated 

according to the experimental plan. The second order polynomials for the response parameters, 

determined by data analysis, are shown in table 4. These models allowed evaluating the effects of 

linear, quadratic, and interactive terms of the independent variables (pressure level - P and CaLac 

concentration - C) on the chosen dependent variables. Apart from LD, all other models showed high 

R2 values (from 0.795 to 0.999). 

To better understand the interactive effects of the independent variables, surface plots based on 

these models were drawn. As examples, the representation of WG and Firmness as a function of P 

and C are shown in Figures 1 and 2. 

 

Table 3. Experimental plan factor values; mean values and standard deviations of weight gain (WG), textural and 
colorimetric parameters of each fresh cut melon samples. 

Sample Pressure 
CaLac 

concentration 
 

WG 
(%) 

Firmness 
(N) 

Linear 
Distance 

(LD) 
L* 

h° 
 

 mbar % x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ  
1 200 0 10.66 1.29 10.06 3.85 22.94 5.33 45.89 3.04 74.18 0.60 

2 200 2.5 5.48 1.14 11.18 2.96 25.46 4.14 49.86 2.03 74.47 0.87 

3 200 5 3.82 0.52 14.27 5.18 31.86 8.95 50.21 2.20 74.86 1.02 

4 400 0 6.89 0.59 11.13 4.91 21.85 7.05 54.58 4.96 73.64 0.60 

5 400 2.5 3.53 0.35 15.03 9.32 25.91 11.19 57.95 3.41 73.63 0.43 

6 400 5 1.84 0.53 11.64 6.91 28.18 10.51 57.98 1.84 73.62 0.71 

7 600 0 5.42 1.37 13.09 6.40 27.06 10.57 60.48 2.16 73.56 0.75 

8 600 2.5 1.55 0.56 18.16 9.57 30.42 10.41 62.99 1.87 72.75 0.65 

9 600 5 1.08 0.61 19.32 7.16 33.19 8.43 61.87 2.66 73.02 0.54 

 

WG was in the range of 1.08-10.66 %. According to the VI theory (Fito et al., 1996), the extent of 

pores filling, hence weight gain, depends on the fruit’s real porosity and mechanical properties, as 

well as the vacuum intensity, and application time. Moreover, pressure changes can promote 

deformations of the tissue because of the viscoelastic properties of the solid matrix. Thus, volume 

fraction of the product impregnated by the external liquid would be affected not only by the initial 
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effective porosity, but also by the volume changes at the end of the vacuum and atmospheric steps 

(Anino et al., 2006). 

 
Table 4. Best-fit equations relative to the effects of pressure level [P], CaLac concentration [C] on weight gain (WG), 
firmness, linear distance (LD), L* and h° values 

Parameter Model R2 F-value SE 

WG 14.8130-0.02469[P]-2.72536[C]+0.22878[C2]+0.00125[P][C] 0.984 98.499 0.3872 
Firmness 6.615799+0.012566[P]+1.093556[C] 0.912 ? 0.9931 
LD 16.6111+0.01889[P]+1.8485[C] 0.661 8.7680 3.4918 

L* 
33.65+0.06839[P]+2.6046[C]-0.00004[P2]-0.28246[C2]-
0.00146[P][C] 

0.999 1585.0 0.1899 

h° 75.141111-0.00348[P] 0.795 32.067 0.3014 
Only terms with P < 0.05 were included. 

 

In our study, real porosity of melon samples was found 9.78 ± 1.75, as reported in table 2, in 

agreement with previous literature studies that reported porosity of melon in the range of 4-13% 

(Fito et al., 2001; Mújica-Paz et al., 2003). Considering real porosity an indication of the maximum 

impregnation level, impregnation with only sucrose isotonic solution at 200 mbar (sample 1) 

allowed a good impregnation level in this sample. 

 

 

Fig. 1. Three-dimensional contour plots showing the effects of the interactions [P] × [C] on weight gain (WG, %) 
 

However, as it can be observed, the weight variation is influenced negatively by both minimum 

pressure and CaLac concentration. In particular, it increases by increasing vacuum pressure and it 

decrease by increasing the impregnating medium concentration. The effect of the vacuum level 
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applied confirms results obtained by Tylewicz et al. (2012) and Mújica-Paz et al. (2003) on apples 

and melons respectively. 

 

 

Fig. 2. Three-dimensional contour plots showing the effects of the interactions [P] × [C] on Firmness (N). 
 

By the Beta coefficients, that indicate the relative weight of the independent variables on the 

dependent one, it can be appreciated that the CaLac concentration is the most influential (1.95 for C 

and 0.34 for P). This result may be due to the viscosity of the medium that increases by increasing 

its concentration. Gras et al. (2003) did not find that impregnation levels in eggplant, carrot and 

oyster were affected by the presence of calcium in solution, but the concentration of calcium used 

was limited to 20 g/L, while in our experiment reached 50 g/L.  

Viscosity has been reported to make penetration of solutes into fruit structures more difficult by 

different authors (Guillemin et al., 2008; Mújica-Paz et al., 2003; Saurel, 2004). Guillemin et al. 

(2008) found that solute distribution was heterogeneous and confined to the surface when a 2% 

sodium alginate solution was used. Compared to less viscous solutions a longer holding time after 

vacuum release was necessary to obtain a higher impregnation level and a homogeneous penetration 

of the solutes.  

However, the solution tested by the authors were highly viscous, ranging from 9 to 116 mPa s. With 

highly viscous solutions, liquid intake may be restricted because of the equilibrium between the 

relaxation force of the matrix and the friction force results in sample deformation instead of 

impregnation (Barat et al., 2001). In our experiments, the solution viscosity varied from 1.02 to 

1.21 mPa s. Nevertheless, at these low values, the increase of the calcium lactate concentration 

promoted a slight increase of solution viscosity, restricting the impregnation of the tissue. 
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All impregnated samples showed higher firmness and LD values compared to the fresh tissue. 

Martínez‐Monzó et al. (1998) observed, by CryoSEM, that the impregnation of apple tissue with 

isotonic sucrose solution did not cause alteration to turgor, size, shape and intracellular volume of 

cells, but the intercellular spaces were flooded by the external solution. Nevertheless, it can be 

expected that the gas-liquid exchange may induce variations in the mechanical and structural 

properties of products. 

Igual et al. (2008) studied the effect of VI on mechanical characteristics of cut persimmons obtained 

by two different cultivars and found that while it had a softening effect on one cultivar, the second 

one was hardened by the treatment. The deformation and relaxation mechanisms caused by the 

application of the vacuum can affect the solid matrix in a different way, depending on the 

viscoelasticity of the product (Fito et al., 1996).  

As it can be observed in table 3, the effect of VI on firmness and LD was less pronounced when the 

vacuum applied was higher, probably because the increase of vacuum lead to some irreversible 

deformation of the solid matrix. On the other hand, calcium had a visible effect on texture, 

proportional to its concentration, as demonstrated by the coefficient relative to both parameters. 

Hence, although it decreased the impregnation level, a high concentration of calcium in the solution 

was able to increase hardness and crispness of the tissue.  

Previous studies on the effect of VI with calcium salts reported contrasting results. (Anino et al., 

2006) found that the impregnation process decreased the resistance to compression in apple tissue, 

when isotonic solution was used, and the presence of calcium salt made tissue damage even more 

pronounced, probably for the occurrence of rupture of membranes and plasmolysis observed by 

microscopic analysis. On the contrary, Gras et al. (2003) found that after VI with isotonic solution 

containing calcium, samples of eggplant and carrot were characterized by a higher stiffness and 

fragility and hypothesized the formation of bonds in middle lamellae and cell walls. The effect was 

not observed in oyster tissue, probably because, not containing pectin, the structure was minimally 

affected by the presence of calcium. (Occhino et al., 2011) studied VI treatment with different 

combination of calcium with maltodextrins in order to improve texture of zucchini. While the 

reduction of shear and energy force were decreased by the application of vacuum, the presence of 

CaCl2 in the solution limited the hardness loss when in combination with the other solutes, even 

having an hardening effect when alone. 

Studying the distribution of calcium, Anino et al. (2006) found that impregnation occurs mainly in 

the large intercellular spaces of the tissue, and only to a lesser measure inside the cells of eggplant. 

However, calcium concentration in the impregnating solution seems to have an effect on the way 
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calcium is transferred and located in the tissue, and probably on the effect on the final textural 

characteristics of the product. 

All samples after the treatment showed significant differences in the colour parameters compared 

with the control (C). In particular, samples underwent to a general darkening (decrease of L* value), 

probably due to the alteration of the structural properties of the tissue as a consequence of vacuum 

application and/or of the gas-liquid exchange that can cause a change in the refraction index 

(Muntada et al., 1998; Tapia et al., 1999). This decrease was dependent only on the level of vacuum 

pressure applied, both in its individual and quadratic effect. Increasing the vacuum lead to a higher 

impregnation with a higher gas-liquid exchange promoting the change in the colour coordinates. 

Also the increase of calcium concentration had a positive effect on sample lightness, probably 

related to the lower extent of impregnation obtained. 

Hue angle values were affected only by pressure but variations were minimal. As reported by Fito 

& Chiralt (2000), although variations in a* and b* coordinates can be observed after VI, generally 

the hue is only slightly modified. The authors also reported that the variations induced by VI 

treatments did not have a detrimental effect on consumer perception. 

On the basis of the overall results obtained in this first part of the study, the treatment conditions of 

sample 9 (600 mbar and 5% CaLac concentration) were chosen for the further storage study. 

 

b. Study of the modification of qualitative characteristics of vacuum impregnated fresh cut melon 

during storage 

 

In the second part of the study the effect of the best selected vacuum treatment (VI) conditions, 

compared to a conventional dipping at atmospheric pressure in the same CaLac solution (D) for the 

same duration and to the control ones (C) on some quality aspects of fresh-cut melon samples 

during storage were analysed.  

Due to the respiratory metabolism, fresh vegetable products consume O2 and produce CO2, 

promoting changes in the gas composition within the package. At the same time, packaging 

materials were usually semi-permeable and allow the exchange with the external atmosphere. 

Headspace composition depends on the sum of these two phenomena. As it can be observed by 

table 5, at the end of the 10 days of storage oxygen concentration was in the range of 19.5-19.8% 

while CO2 was in the range of 2.3-3.1%, avoiding the anaerobic conditions until the end of the 

storage period. Generally significant differences observed among samples were minimal and did not 

indicate a clear trend.  
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Table 5. O2 and CO2 concentration in the headspace of control (C), dipped (D) and vacuum impregnated (VI) minimally 

processed melons during storage at 10°C 

 Days of storage 
 2 4 7 10 

Sample x̅ σ x̅ σ x̅ σ x̅ σ 

 O2 (%) 
C  20.1a 0.2 19.7 b 0.1 18.2 ab 0.7 19.7 a 0.6 
D  20.2 a 0.1 20.4 a 0.1 17.8 b 0.8 19.2 b 0.7 
VI  20.1 a 0.1 19.8 b 0.1 18.5 a 0.6 19.5 ab 0.7 

 CO2 (%) 
C  2.4 a 0.3 3.0 a 0.0 6.2 a 1.0 3.1 a 0.6 
D  2.4 a 0.1 2.3 b 0.1 5.8 a 0.6 2.8 a 0.3 
VI  2.5 a 0.1 2.9 a 0.0 4.7 a 0.5 2.7 a 0.6 

Different letters indicate statistically significant values among samples at the same storage time (p<0.5). 

 

Table 6 reports some physico-chemical parameters of melon samples during storage. Generally, 

samples underwent at the end of storage to an increase of dry matter, a decrease of titratable acidity 

and little variation of soluble solid content. 

Water loss in minimally processed product is enhanced by the disruption of the tissues due to 

peeling and cutting operation (Rolle & Chism, 1987). In the present study, no differences were 

found initially and dry matter of samples increased up to about 3-5 % in all samples. 

Table 6. Physico-chemical parameters of control (C), dipped (D) and vacuum impregnated (VI) minimally processed  

melon samples during storage at 10°C 

 Days of storage 

 0 2 4 7 10 

Sample x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ 

 Dry matter (g/100 g) 
C  11.66 a ± 2.54 9.18 b ± 0.84 13.98 a ± 1.47 9.71b ± 0.30 15.40a ± 0.92 
D  12.33 a ± 2.48 11.59 ab ± 2.11 12.54 a ± 0.65 15.43a ± 2.95 13.67b ± 0.06 
VI  11.99 a ± 0.14 14.19 a ± 0.97 13.54 a ± 2.37 17.59a ± 2.83 14.12ab ± 0.95 

 Titratable acidity (ml malic acid/100 g) 
C  0.11a ± 0.01 0.028a ± 0.001 0.014b ± 0.001 0.049c ± 0.007 0.082a ± 0.004 
D  0.09a ± 0.07 0.028a ± 0.014 0.019ab ± 0.008 0.084b ± 0.014 0.070a ± 0.014 
VI  0.12a ± 0.01 0.037a ± 0.008 0.028a ± 0.002 0.131a ± 0.016 0.051b ± 0.008 

 Soluble Solid content (%) 
C  12.3a ± 0.1 11.3a ± 0.1 11.8a ± 0.1 10.1b ± 0.2 11.1a ± 0.1 
D  12.2a ± 0.4 12.2a ± 0.1 11.7a ± 0.1 11.5a ± 0.1 10.9a  ± 0.1 
VI  12.5a ± 0.1 11.7a ± 0.1 11.5a ± 0.1 10.8ab ± 0.2 11.6a ± 0.1 

Different letters indicate statistically significant values among samples at the same storage time (p<0.5). 

 

Titratable acidity and soluble solid content are parameters related to the ripening stage of the fruit 

and the rate of their variation is also increased by minimal processing operations, although 
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microbial spoilage may play a part in their evolution during storage. The changes observed during 

storage and among samples in the present study, are only slight and do not seem to present a pattern 

attributable to the treatments. 

Colour coordinates of lightness and hue angle of samples during storage are shown in Figure 3.  

 

 

Fig 3. Colour coordinates (L* and h°) of melon samples during storage. C: control, D: dipped; VI: vacuum impregnated 
sample. Different letters indicate statistically significant values among samples at the same storage time (p<0.5). 
 

Immediately after treatment, L* values of samples subjected to VI were lower compared to C and D 

samples while h° was unchanged. These results are in agreement with the ones found in the first 

part of this study that reported a product darkening as a result of vacuum application. During 

storage, lightness decreased in all samples. The development of translucent appearance is found to 

be one of the main changes in minimally processed melon during storage, connected to both visual 

quality and texture loss. Since melon is not generally affected by enzymatic activity, the variation of 

L* values can be ascribed to the variation of pigments concentration and to the induction of a 
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translucent water-soaked tissue (glossy) caused by the loss of cellular compartmentation and water 

redistribution within the tissues (Aguayo et al., 2004). 

During storage, while almost no significant differences were found between C and D samples, 

sample VI was characterized by constantly lower values. No differences were observed in hue angle 

values, confirming that this chromatic characteristic was not strongly influenced by vacuum 

impregnation. 

Figure 4 reports the evolution of textural parameters of melon samples during storage. Just after 

treatment, firmness values were 5.8 ± 0.9 N for sample C, 6.5 ± 0.5 N for D and 7.5 ± 0.4 N for VI, 

while linear distance values were 30.53 ± 3.5 for sample C, 37.5 ± 1.5 for D and 36.4 ± 2.5 for VI. 

Increase of hardness in cut melon after dipping in calcium solution has been widely documented 

(Lamikanra & Watson, 2004; Lamikanra & Watson, 2007; Luna-Guzmán et al., 1999). The increase 

of both parameters observed after VI is higher compared to D samples probably for a higher 

impregnation favoured by the application of vacuum, but was noticeably lower compared to the one 

obtained in the first part of the study. The discrepancy is probably due to the lower porosity of the 

second batch of melons that allowed for a lower impregnation of samples (1.08% vs. 0.58% WG at 

the selected process parameters). Nevertheless the obtained values were significantly higher than 

the ones obtained both for control and dipped samples. 

Softening of minimally processed melon during storage can be considered a consequence of the 

degradation of the internal structures due to tissue ripening, and the solubilisation of the 

protopectinic fraction of the cell wall components and to the loss of cell adhesion (Aguayo et al., 

2004; Fundo et al., 2014). A substantial firmness loss was mainly observed in the first four days in 

all samples, while values remained quite constant for the rest of the storage, although VI and D 

samples were always significantly higher than control samples. 

Linear distance underwent a slow decrease in control samples indicating a decrease in sample 

crunchiness. A similar trend was observed in dipped samples although values were constantly 

higher. VI samples, on the other hand, showed an increase of linear distance during storage. 

Firming and resistance to softening have been observed to be a consequence of various calcium 

treatments. The effect was attributed to the stabilization of membrane systems and to the formation 

of Ca-pectates, which increase rigidity of the middle lamella and cell wall to increased resistance to 

polygalacturonase attack, on the pectic substances of the middle lamella and cell wall and to 

improved turgor pressure (Luna-Guzmán et al., 1999).  
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Fig. 4 textural parameters (hardness and linear distance) of melon samples during storage. C: control, D: dipped; VI: 
vacuum impregnated sample Different letters indicate statistically significant values among samples at the same storage 
time (p<0.5).  
 

Results obtained during storage showed that the application of vacuum combined with calcium 

allowed to obtain a firming effect on minimally processing melon and in particular, a higher 

crunchiness during storage compared to control and dipped samples. 

In order to evaluate the effects of the treatments on the melon naturally occurring microflora, the 

cell viability of the principal spoilage agents (total mesophilic and psychrotrophic bacteria, lactic 

acid bacteria and yeasts), was measured over refrigerated storage (Table 7) . 

Total aerobic mesophilic and psychrotrophic microorganisms were about 2 and 2.2 Log CFU g-1, 

respectively, while lactic acid bacteria ranged between 0.8 and 1.9 Log CFU g-1 and yeasts were 

found at  1 Log CFU g-1. Similar results were found by other authors for fresh-cut “Piel de Sapo” 

(Fernández et al., 2010) and cantaloupe (Fang et al., 2013; Tappi et al., 2016) melons.  
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Table 7. Microbial loads of of control (C), dipped (D) and vacuum impregnated (VI) minimally processed melons 
during storage at 10°C. 

 Days of storage 

 0 2 4 7 10 

Sample x̅ σ x̅ σ x̅ σ x̅ σ x̅ σ 

 Mesophilic Bacteria (Log CFU g-1) 
C  1.83 a ± 0.25 3.32 a ± 0.56 4.52 b ± 0.34 8.13a ± 0.64 8.71a ± 0.54 
D  2.14 a ± 0.37 3.20 a ± 0.41 4.43 b ± 0.21 7.51a ± 0.58 7.26a ± 0.71 
VI  1.95 a ± 0.6 3.31 a ± 0.36 6.68 a ± 0.74 8.02a ± 0.61 7.70a ± 0.69 

 Psycotrophic Bacteria (Log CFU g-1) 
C  2.10a ± 0.14 2.37a ± 0.42 4.20b ± 0.20 7.95a ± 0.58 8.19a ± 0.45 
D  2.19a ± 0.12 3.39a ± 0.35 4.18b ± 0.25 7.88a ± 0.61 7.87a ± 0.47 
VI  2.45a ± 0.28 3.10a ± 0.44 5.98a ± 0.30 7.37a ± 0.51 8.41a ± 0.57 

 Yeasts (Log CFU g-1) 
C  1.00a ± 0.20 1.00a ± 0.20 2.40a ± 0.63 4.89b ± 0.60 4.64b ± 0.48 
D  1.00a ± 0.20 1.00a ± 0.20 1.00a ± 0.34 4.92b ± 0.71 4.32b  ± 0.61 
VI  1.00a ± 0.20 1.00a ± 0.20 2.30a ± 0.36 6.79a ± 0.54 6.79a ± 0.59 

 Lactic Acid Bacteria (Log CFU g-1) 
C  0.85a ± 0.21 1.85b ± 0.20 3.70b ± 0.56 7.99a ± 0.60 8.06a ± 0.45 
D  1.39a ± 0.55 2.69ab ± 0.20 3.99b ± 0.62 7.68a ± 0.71 6.54b  ± 0.47 
VI  1.86a ± 0.19 3.16a ± 0.20 6.77a ± 0.45 7.61a ± 0.54 7.48ab ± 0.57 

Different letters indicate statistically significant values among samples at the same storage time (p<0.5). 

 

No difference was observed among DIP and VI treatments compared to the control sample for any 

of the microbial groups immediately after the treatment and after 2 days of storage. During the rest 

of the storage, it can be observed that the growth of all microbial groups was favoured in the VI 

sample. At the fourth day, VI sample showed higher values compared to other samples for 

mesophilic, psycotrophic and lactic acid bacteria, that were respectively 6.68, 5.98 and 6.77 Log 

CFU g-1, while higher yeasts loads were observed after seven days. Finally, at the end of the 

storage, sample VI showed higher values for yeasts loads of 6.79 compared to 4.64 and 4.32 Log 

CFU g-1 of C and D samples respectively, while no difference was observed for the other microbial 

groups. 

According to literature (Patrignani et al., 2010), the value of 6.0 Log CFU g-1 can be considered as a 

spoilage threshold for minimally processed fruit and vegetables. In C and D samples, this value was 

reached after 7 days for mesophilic, psycotrophic and lactic acid bacteria and was not exceeded for 

yeasts until the end of the storage. On the other hand, VI samples reached the spoilage threshold 

after four days for mesophilic, psycotrophic and lactic acid bacteria and after seven days for yeasts. 

Therefore, it seems that microbial shelf-life of minimally processed melons was slightly reduced in 

samples subjected to VI treatments. To our knowledge, the influence of the VI treatment on 

microbial growth has not been studied directly. We can hypothesize that  the deformation-relaxation 
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phenomena that can cause irreversible alteration to the visco-elastic properties of the fruit tissues 

upon the application of a vacuum pressure, may enhance nutrients availability for microbial growth. 

Nevertheless, the presence of calcium should promote the formation of bond in the middle-lamellae 

and cell walls, leading to a stiffer and more fragile cellular network (Gras et al. 2003). In the 

present experiment, according to the results obtained in the optimization plan, the lowest level of 

vacuum was applied combined with the highest CaLac concentration. Although, this combination 

seemed to have had a structuring effect on melon, it seems to negatively affect microbial shelf-life. 

Considering this finding, further studies are needed in order to clarify these results, particularly 

considering that minimally processed melon is  considered a highly perishable and potentially 

hazardous product on the account of its high pH (5.2-6.7) and water activity (0.97-0.99) values. 

 

4. Conclusions 

The results obtained in this study allowed to evaluate the influence of calcium concentration and 

vacuum pressure on colour and textural parameters of minimally processed melons. The high 

variability of the raw material appeared to be highly influencing the impregnation process, in terms 

of impregnation levels and of impact on the textural properties. 

Nevertheless VI with calcium confirmed to improve textural maintenance during shelf-life, 

compared to both untreated and dipped samples. However, other quality traits were negatively 

affected by the application of vacuum. Impregnated products were characterised by a darker and 

more translucent appearance on the account of the alteration of the structural properties. Moreover 

microbial shelf-life was reduced to four days compared to the seven obtained for control and dipped 

samples.  

Further studies are in due course in our lab in order to prolong the shelf life of minimally processed 

melon subjected to vacuum impregnation, by the combination of natural antimicrobial with calcium 

lactate in the impregnating solution. 
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Abstract 

Vacuum impregnation (VI) is a technology that allows the replacement of the gas into the porous 

food structure with an aqueous solution, allowing the direct formulation of porous foods promoting 

compositional changes in short treatment times; thus it can be exploited for functional products 

development. 

Green tea (GT) is a high source of flavanoids, known to have strong antioxidant properties which 

has been widely studied both in in-vitro and in-vivo trials. In the present study, a GT extract (GTE) 

was used to enrich minimally processed apples by VI in order to obtain a nutritionally fortified 

product.  

Apples were impregnated at 200 mbar for 5 min, with isotonic sucrose solutions with the addition 

of 1% GTE and/or 1% of ascorbic acid (AA). The impact of GTE enrichment on quality 

characteristics of the product and the stability of the antioxidant compounds and their in-vitro 

activity during refrigerated storage were assessed. 

Results showed that a good impregnation of minimally processed apples was achieved and resulted 

in a strong increase of the antioxidant compound content and activity. While other qualitative 

parameters were only slightly affected, colour of samples was influenced just after the VI treatment 

with an increase of the yellow/orange colour components but also during storage with a higher 

degree of browning development. However, the addition of 1% of AA allowed to better preserve 

colour and antioxidant properties during storage limiting oxidative phenomena. Enrichment of 

apples with GT catechins and AA seemed to be promising in order to obtain a nutritionally fortified 

fruit product, even if the results obtained in this study are only a first step in this direction.  

 

Key words: minimally processed apples, vacuum impregnation, green tea catechins, quality, 

antioxidant activity 

 

1. Introduction  

 

Vacuum impregnation (VI) is a technology that allows the replacement of the gas into the porous 

food structure with an aqueous solution. This occurs through the application of vacuum pressure 

exploiting a mass transfer, known as hydrodynamic mechanism (HDM) as described and modelled 

by Fito, Andrés, Chiralt, & Pardo (1996). 

VI has been recognised as an effective non-thermal technology that allows the direct formulation of 

porous foods promoting compositional changes in short treatment times; thus it can be exploited for 

functional products development. The main studies carried out on the enrichment of fruit and 



3 

 

vegetable products by vacuum impregnation with various bioactive compounds have been reviewed 

by Alzamora et al. (2005) and include mainly fortifications with probiotics or minerals. More 

recently, fruit juices with a high content in bioactive compounds have been used for fruit 

enrichment (Betoret et al., 2012; Castagnini, Betoret, Betoret, & Fito, 2015; Diamante, Hironaka, 

Yamaguchi, & Nademude, 2014). 

Green tea (GT) is a high source of flavanoids, in particular catechins that include mainly 

epicatechin (EC), epigallocatechin (EGC), epicatechin-gallate (ECG) and epigalloctechin gallate 

(EGCG). These compounds are known to have strong antioxidant properties which has been widely 

studied both in in-vitro and in-vivo trials. A large number of studies have demonstrated the link 

between green tea catechins consumption and the prevention of different kinds of cancer such as 

skin, lung, liver, pancreatic, gastrointestinal, breast, and prostate cancers (Khan & Mukhtar, 2007; 

Wheeler & Wheeler, 2004) and the prevention of cardiovascular diseases (CVD), microbial 

diseases, diabetes, and obesity (Zaveri, 2006). Moreover, other properties of GT catechins such as 

antihypertensive and hypolipidemic were observed (Henry & Stephens-Larson, 1984).  

However, the amount of GT that needs to be consumed daily in order to obtain the mentioned health 

benefits is rather large and difficult to reach (Vuong, Stathopoulos, Nguyen, Golding, & Roach, 

2011). In this direction, the fortification of food products with GT could help to reach the right 

amounts of catechins able to exert beneficial effects on human health. 

Nevertheless, researches about its potential use for food fortification are still quite limited. Some 

studied investigated the addition of GTE as a natural antioxidant compound in order to improve the 

shelf-life of products susceptible to fat oxidation such as sausages (Bozkurt, 2006; Martínez, Cilla, 

Beltrán, & Roncalés, 2006; Siripatrawan & Noipha, 2012) and surimi (Pérez‐Mateos, Lanier, & 

Boyd, 2006). 

On the other hand, nutritional fortification with GT extracts has been studied in bakery products 

such as bread (Bajerska, Mildner-Szkudlarz, Jeszka, & Szwengiel, 2010; Wang & Zhou, 2004; 

Wang, Zhou, & Isabelle, 2007; Wang, Zhou, Yu, & Chow, 2006), biscuits (Sharma & Zhou, 2011), 

noodles (Li et al., 2012), in an apple product at intermediate moisture (Lavelli, Corey, Kerr, & 

Vantaggi, 2011; Lavelli, Vantaggi, Corey, & Kerr, 2010) and in probiotic yogurt (Muniandya, 

Shorib, & Babaa, 2016) monitoring the evolution of the catechins and of the antioxidant activity 

during processing and storage. Tea catechins are in fact very reactive compounds and can undergo 

degradations, enzymatic or chemical, leading to a variation of the antioxidant activity. Thus, it is 

fundamental to assess the stability of the compounds used for fortification within the matrix in 

which they are included during product shelf-life. Moreover, the addition of GT to a product’s 

formulation may lead to variations of quality parameters such as colour and texture and impact on 
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the product sensorial profile. While Li et al. (2012) found that overall acceptability of fresh noodles 

was not affected by the addition of three different quantity of GTE in the dough, Bajerska et al. 

(2010) identified a good compromise to combine technological properties and sensory 

characteristics of GT enriched rye breads. 

Minimally processed fruit are one of the major growing segments in food retail establishments, 

playing an important role on the antioxidant intake of an increasing number of consumers. The 

production of minimally processed apple enriched with GT catechins could allow to combine the 

health properties of both components, in order to obtain an innovative foodstuff. Nevertheless 

various aspects have to be taken in consideration. For this products, that present an endogenous 

metabolic activity during the shelf-life period, it is crucial to understand not only the direct effect of 

VI enrichment on the level and the antioxidant properties of their bioactive components, but also 

their modification during storage, as consequence of the tissue response to the processing stress and 

to the passive atmosphere modification of the package headspace. 

In the present study, a GT extract was used to enrich minimally processed apples by vacuum 

impregnation in order to obtain a nutritionally fortified product. The impact of GTE enrichment on 

quality characteristics of the product and the stability of the antioxidant compounds and their in-

vitro activity during refrigerated storage were assessed. 

 

2. Materials and methods 

 

2.1 Raw materials 

Apples (Malus domestica Borkh) of the Cripps Pink variety harvested one week before were 

purchased at the local market and stored at 5±1°C for two weeks, during which the experimental 

research was carried out. Apples were characterized by a soluble solids content of 13.7±0.3 g/100g, 

dry matter of 12.5±0.5 g/100g and porosity of 25.34± 1.36%. Cylindrical samples (20-mm 

diameter, 20-mm length) were cut with a manual cork borer and a manual cutter designed for the 

purpose.  

 

2.2 Solutions for impregnation 

Impregnating solutions were prepared at isotonic concentration compared to apples with sucrose, 

ascorbic acid and green tea extract (GTE) (Polyphenon 60-Sigma Aldrich) in different combinations 

as reported in Table 1. The amount of GTE was chosen in order to obtain after impregnation a 

concentration of catechins in the final product equal to the quantity found in a cup of tea (50-110 

mg), according to (Lavelli et al., 2011), considering a 50 g apple portion. The addition of 1% (w/v) 
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of ascorbic acid (AA) to the sucrose solution was chosen on the basis of previous literary reports in 

which it was observed a preservation of phenolic compounds, thank to this antioxidant power when 

applied by dipping (Cocci, Rocculi, Romani, & Dalla Rosa, 2006) or by VI (Blanda et al., 2008) in 

apples. Solutions were characterized for pH, viscosity and colour parameters. 

 

Table 1. Composition of the solutions used for VI of apples 

Coded 
name Composition 
S Sucrose 
SG Sucrose + 1% GTE 
SA Sucrose + 1% AA 

SAG 
Sucrose + 1% AA + 1% 
GTE 

 

2.3 Vacuum impregnation treatment 

An automatic vacuum controller system (AVCS, S.I.A., Bologna, Italy) connected to a closed 

chamber and a vacuum pump was used for the impregnation process. Impregnation was carried out 

at the pressure of 200 mbar for 5 min, before restoring atmospheric pressure. A relaxation time of 5 

min was applied. Pressure value and processing times were chosen after preliminary tests as the 

minimum values that allowed to obtain a level of impregnation corresponding to the product real 

porosity, as too long exposure to high vacuum levels can cause tissue deformation (Mújica-Paz, 

Valdez-Fragoso, López-Malo, Palou, & Welti-Chanes, 2003).  

Samples were immersed in the solutions in a ratio of 1:4 (w/v). At the end of the relaxation time, 

samples were removed from the solution, blotted with absorbing paper, and weighed. At least three 

independent impregnation cycles were carried out for each sample. Obtained cylinders were than 

randomly divided into packages for storage. 

 

2.4 Packaging and storage 

VI samples and a fresh untreated one (F) were packed in polypropylene (PP) trays and hermetically 

sealed with a high permeability PP micro-perforated film. The content of each package (about 50 g) 

was weighed before sealing. Packages were stored in thermostatic chambers at 10°C. The 10°C 

temperature was chosen in order to simulate the abuse of temperature that commonly occurs at 

retail stores and to accentuate any beneficial or negative effects of the applied postharvest 

treatments (Saftner, Bai, Abbott, & Lee, 2003). 

For each samples, three packages were removed after two, five and seven days in order to carry out 

the analytical determinations. 
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2.5 Analytical determinations 

 

2.5.1 Physico-chemical parameters 

pH of the solution was measured with a pH-meter (Crison, Barcelona, Spain), while viscosity was 

determined through a vibrational viscometer (mod. Viscolite VL7, Hydramotion Ltd, York, 

England) 

After impregnation the product weight gain (WG) was calculated using the following equation 

according to (Tylewicz et al., 2012): 

WG = 100 x (m – m0)/m0 

where m is the mass of the impregnated sample and m0 is the initial mass. 

At every selected storage time, the contents of three packages were weighed and weight loss was 

evaluated compared to the initial value (%).  

Soluble solids content was determined at 20°C with a digital refractometer (PR1, Atago, Japan) by 

measuring the refractive index of the apple samples’ juice, obtained by squeezing 10 cylinders after 

filtration through Whatman #1 filter paper. 

 

2.5.2 Gas composition in the packages headspace 

The composition in O2 and CO2 (%) of  the packages headspace was determined by a gas analyzer 

“check point O2/CO2” mod. MFA III S/L (Witt-Gasetechnik, Witten, Germany). At each sampling 

time, it was measured in three packages for each sample. 

 

2.5.3 Texture 

Mechanical properties were measured with a penetration test using a Texture Analyser TA-HDi500 

(Stable Micro Systems, Surrey, UK) equipped with a 50 N load cell and a 6 mm diameter stainless 

steel cylinder until a maximum deformation of 90%. For each treatment and sampling time, the 

average of 10 measurements was calculated. 

The acquired curves (Force (N) vs. time (s)) were analysed and the following mechanical 

parameters were extracted: hardness, the first peak force (N) value and the linear distance (LD), as 

an index of crispness (Tappi et al., 2014).  

 

2.5.4 Colour 

Surface colour was measured with a spectrophotocolorimeter (HUNTERLAB ColorFlexTM, A60-

1010-615, Reston, Virginia) using the D65 illuminant and the 10° standard observer. For each 

solution measurements were replicated in triplicate, while for apple samples, for each sample and 
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storage time, the average of 10 measurements was calculated. The L*, a* and b* parameters of the 

CIELAB system were measured, a* and b* values were further used to calculate the hue as follows:  

 

Hue angle (ℎ� = ������	 
�∗


∗� /2�� � 360  

 

2.5.5 Total phenolic content 

Total phenolic content (TPC) was measured according to the Folin-Ciocolteau method proposed by 

(Singleton & Rossi, 1965). 

Phenols were extracted from previously freeze dried samples. Briefly, 0.1 g of freeze-dried samples 

were added to 2 ml of methanol 60% (v/v), vortexed for 2 min and shaken at room temperature for 

10 min. The mixture was centrifuged for 10 min at 14000g. The supernatant, opportunely diluted, 

has been used for the analysis. 

100 μl of each extract were added to 500 μl of Folin-Ciocoltau reagent. Afterwards, the samples 

were kept 5 min in the dark, 2 ml of CaCO3 15% (w/v) and 7.4 ml of distilled water were added. 

After an incubation of 120 min at room temperature in the darkness, the absorbance was measured 

at 700 nm with a spectrophotometer (UV-1601, Shimadzu). Methanol 60% and gallic acid were 

respectively used as the blank sample and as standard. The standard curve was linear in the range 0 

– 800 mg/L gallic acid. Results were expressed as mg of gallic acid equivalents (GAE)/100 g of 

fresh weight. 

 

2.5.6 Antioxidant activity (AOA) determination 

AOA was evaluated according to the method proposed by Brand-Williams, Cuvelier, & Berset 

(1995) with some modifications as follows. The measurement consisted of a solution absorbance 

decrease as a result of scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by the 

antioxidants present in apple samples. The concentration of extract, required to reduce a half of free 

radicals defined as efficient concentration (EC50), was estimated as the amount of antioxidant 

necessary to decrease the initial DPPH concentration by 50%.  

For this determination, five extract concentrations in the range of 0.02– 2.00 mg of dry matter/ml 

for samples impregnated with GT and of 1.00 – 10.00 mg of dry matter/ml for other samples were 

prepared. Subsequently, 200 μl of each concentration were added to 3 mL of 6∙10(-5) M of DPPH 

solution and inserted into each test tube and the content was briefly stirred. Samples were kept in 

darkness for 30 min then the absorbance was read at 515 nm against 60% methanol used as a blank 

sample. 

 



8 

 

2.6 Statistical analysis 

The significance of the variations observed among samples and during storage was tested according 

to one-way variance analysis (ANOVA) and the post-hoc Fisher’s LSD test (p<0.05) using the 

software STATISTICA 8.0 (Statsoft Inc., Tulsa, UK). 

 

3. Results 

 

3.1 Qualitative parameters 

Physico-chemical parameters of the solutions used for impregnation are reported in Table 2 

together with the WG obtained in the sample. pH was noticeably affected by the addition of GTE 

but above all, as expected, by the addition of ascorbic acid. Viscosity of the solutions was in the 

range of 1.456 and 1.473 cP; it was reduced by the addition of ascorbic acid while it was slightly 

increased by the addition of GTE. Nevertheless the weight gain obtained in samples after VI was 

not influenced by the solution  composition, being in the range of 24 - 26 %. Considering that the 

apple porosity was about 25%, it can be affirmed that all solutions lead to good impregnation of the 

apple cylinders. 

 

Table 2. Physico-chemical parameters of the solutions of sucrose (S), sucrose and GTE (SG), sucrose 
and AA (SA) and sucrose, AA and GTE (SAG) used for apple VI treatment. 

Solution pH Viscosity (cP) WG L* h° 

S  6.5a ± 0.2 1.470a ± 0.004 24a ± 1 81.4b ± 0.3 152.7a ± 0.8 

SG 5.8b ± 0.1 1.473a ± 0.002 25a ± 2 68.5d ± 0.1 82.7d ± 0.1 

SA 2.7c ± 0.1 1.456b ± 0.005 25a ± 2 82.85a ± 0.03 129.6b ± 0.1 

SAG 2.7c ± 0.1 

1.462ab ± 

0.009 

25a ± 2 

73.56c ± 0.09 84.6c ± 0.3 

Different letters show significant differences among samples at the same storage time, while different uppercase letters 
show significant differences during the storage within the same sample (P-level < 0.05). 

 

Compared to the simple sucrose solution, the addition of ascorbic acid promoted an increase of that 

parameter but a neat variation toward yellow tonality as indicated by the decrease of hue angle. The 

addition of GTE promoted a decrease of about 15 unit of L* and of about 60-70 units of hue angle 

of the solutions, that appeared characterized by the typical yellow/orange colour of green tea 

catechins.  
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Table 3. O2 and CO2 (%) content within the packages head space and soluble solid (°Bx) and 
weight loss (%) of of fresh apple (F) and vacuum impregnated samples with sucrose (S), sucrose and GTE 
(SG), sucrose and AA (SA) and sucrose, AA and GTE (SAG) during storage time. 

 

Different lowercase letters show significant differences among samples at the same storage time, while different 
uppercase letters show significant differences during the storage within the same sample (P-level < 0.05). 
 

During storage, gas composition within the packages head space has been evaluated and the content 

(%) of O2 and CO2 are reported in Table 3. At the beginning of the storage, it appeared that fresh 

sample had a lower respiration rate compared to the impregnated samples, but during storage this 

trend was inverted and after seven days, it showed a lower content of O2 and the highest of CO2. 

As expected, due to the respiration metabolism of the living apples tissues, O2 content decreased 

during storage while CO2 increased, reaching at the end of the seven days considered, values 

respectively between 13.6 and 17.6% and between 3.1 and 7.9%. 

Samples impregnated with GTE showed consistently a lower oxygen decrease and CO2 

accumulation within the packages headspace compared to the correspondent sample impregnated 

without the extract. 

Weight loss of apple samples (Table 3) was limited (up to 1.09% compared to the initial weight) 

during storage and showed only few differences among samples; similarly differences found in 

soluble solid content were slight (spanned between 13.2 and 14.5%), not indicating a trend but more 

probably due to the natural variability of the raw material. 

Textural parameters of apples during storage are reported in Table 4. Hardness of fresh sample 

decreased during storage from 11.6 ± 0.5 to 6.9 ± 0.6, while crispness, indicated by the Linear 

Distance parameter slightly increased. Generally, all impregnated samples followed a similar trend, 

and at the end of the storage they showed few significant differences only for LD. 
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Table 4. Textural parameters of of fresh apple (F) and vacuum impregnated samples with sucrose (S), 

sucrose and GTE (SG), sucrose and AA (SA) and sucrose, AA and GTE (SAG)during storage 

  Storage time (days) 

  0 2 5 7 

Sample Hardness (N) 

F 11.6abA ± 0.5 9.0bB ± 2 7.0cC ± 1 6.9aD ± 0.6 

S 11.6aA ± 0.4 11.0aAB ± 2 10.0abAB ± 2 10.0aB ± 2 

SG 10.8aA ± 0.3 10.0abAB ± 2 9.0bB ± 2 9.0aB ± 2 

SA 10.0bAB ± 2 10.0aA ± 2 11.0aA ± 2 9.0aB ± 2 

SAG 9.0bA ± 1 11.0abA ± 2 10.0abA ± 3 9.0aA ± 2 

 Crispness - Linear distance 

F 36aAB ± 2 34aAB ± 9 32aB ± 14 42aA ± 6 

S 33abAB ± 2 32aC ± 4 37aAB ± 7 39abA ± 7 

SG 32bC ± 1 33aBC ± 5 37aAB ± 4 40abA ± 6 

SA 31bA ± 3 33bA ± 4 30aA ± 3 33bA ± 2 

SAG 36aA ± 3 32aA ± 3 37aA ± 5 36bA ± 7 

Different lowercase letters show significant differences among samples at the same storage time, while different 
uppercase letters show significant differences during the storage within the same sample (P-level < 0.05). 

 

Lightness (L*) and hue angle (h°) measured in apple samples just after VI treatment are reported in 

Figure 1. After impregnation all samples underwent a decrease of L* values of about 20 units 

compared to the fresh one, with very little differences among samples. Hue values of S, T and SA 

samples were the most similar to the untreated sample even if significant differences were observed. 

Conversely, the addition of GTE to the impregnating solution promoted a decrease of about 10° of 

hue angle in these samples. 

Figure 2 shows the variations of L* and h° of samples during seven days of storage. Impregnated 

samples did not show differences until the 5th day of storage, while at the last day samples S and SG 

showed a significant decrease of L* values compared to other samples. At the end of the storage, 

SA and SAG were characterized by the highest L* values, showing a very limited change during the 

considered period. 

Hue angle in fresh sample underwent a decrease in the first two days and then was quite similar for 

the rest of storage. S and T samples were characterized by similar colour parameters trends, while 

SA did not change during the 7 days. 
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Figure 1. Colorimteric parameters, L* and h°, of of fresh apple (F) and vacuum impregnated samples with sucrose (S), 
sucrose and GTE (SG), sucrose and AA (SA) and sucrose, AA and GTE (SAG)as affected by VI treatment. Different 
letters show significant differences among samples (P-level < 0.05). 

 

 

Figure 2. Variations of colorimetric parameters, L* and h°, of samples during 7 days of storage. Different lowercase 
letters show significant differences among samples at the same storage time, while different uppercase letters show 
significant differences during the storage within the same sample (P-level < 0.05). 
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Between samples impregnated with GT, SG showed a sharp decrease of h° during storage until 

values between 66 and 70°, conversely, in SAG sample h° was characterized by a slight increase 

during storage and at the end was higher than in the fresh sample. 

The colour variations observed in samples impregnated with solutions containing AA were lower, 

after treatment and during storage, in terms of both L* and h°. Visual examples of F, SG and SAG 

apple samples at the end of the storage are shown in Fig. 3. 

 

 

Figure 3. Visual examples of F, SG and SAG apple samples at the end of the storage. 

 

3.2 Total phenolic content (TPC) and antioxidant activity (AOA) 

As it can be observed in Table 5, the impregnation process, both with sucrose and trehalose, caused 

a reduction of the TPC, probably for a dilution effect. Samples impregnated with GTE showed an 

increase of TPC with values of 360 and 370 mg of GAE/100 g in respectively sample SG and SAG 

sample. In SA sample, the TPC increase is reasonably due to the presence of ascorbic acid, that is 

able to react with the Folin-Ciocolteau reagent, determining an overestimation of the phenolic 

content. 

In the fresh sample, TPC decreased of the 11% at the end of the storage. Conversely, in S sample, 

although the initial value was lower, it remained quite constant until the 7th day of storage. In SG 

sample, the initial value underwent a decrease of 20, on the contrary, SAG samples  maintained at 

the end of the storage, TPC content similar to the initial one. 

AOA, expressed as EC50 values, of apple samples during storage are reported in table 5. Samples 

impregnated with GTE showed values ten to twenty fold lower to the correspondent sample 

impregnated without GTE. EC50 values were constantly lower in SA than in S sample, showing a 

higher antioxidant activity due to the presence of ascorbic acid. 

During storage, it was not possible to observe a clear trend of EC50 values. Moreover, no 

significant differences were observed among samples impregnated with GTE in any of the storage 

days considered. 
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Table 5. Total phenolic content (TPC) and Antioxidant activity (EC50) of fresh apple (F) and vacuum 
impregnated samples with sucrose (S), sucrose and GTE (SG), sucrose and AA (SA) and sucrose, AA and 
GTE (SAG) during storage. 

Storage time (days) 

Samples 0 2 5 7 

Total Phenolic Content (mg GAE/100 g fw)  

F 74dA±  11 56dB± 3 62dB ± 2 61dB ± 1 

S 39eB ± 3 41dA ± 4 40eB ± 3 40eB ± 3 

SG 360bC ± 10 353bB ± 13 351bA ± 4 286bD ± 9 

SA 117.5cB ± 0.5 123.3cA ± 0.4 105.7cD ± 0.6 115cC ± 1 

SAG 373aB ± 3 400aA ± 4 375aB ± 3 379aB ± 3 

Antioxidant activity (EC50) 

F 17.1aA ± 2 15.5aA ± 0.5 16.2aA ± 0.3 16.52aA ± 0.06 

S 17.2aA ± 0.7 16aA ± 2 19aA ± 2 15abA ± 1 

SG 0.32cB ± 0.01 0.54cA ± 0.01 0.58cA ± 0.03 0.60cA ± 0.03 

SA 11.9bA ± 0.2 7.67bC ± 0.01 9.08bB ± 0.00 8.9bB ± 0.3 

SAG 0.45cAB ± 0.09 0.41cAB ± 0.01 0.36cB ± 0.00 0.57cA ± 0.07 

Different lowercase letters show significant differences among samples at the same storage time, 
while different uppercase letters show significant differences during the storage within the same 
sample (P-level < 0.05). 
 

4. Discussion 

The development and consumption of functional foods, that not only satisfy basic nutrition needs 

but also allow to obtain health benefits, are increasing (Alzamora et al., 2005). VI has been 

indicated as an effective non-thermal technology for new products design by exploiting fruit and 

vegetable porous tissues as new matrices into which functional compounds can be included (Betoret 

et al., 2003), providing novel functional product categories and new commercial opportunities. 

Various literature studies report impregnation of fruit or vegetables with both isotonic or hypertonic 

solutions or juices containing one or more bioactive substances with the aim of increasing the daily 

intake to meet nutritional recommendation or health benefits (Betoret et al., 2003; Castagnini et al., 

2015; Gras, Vidal, Betoret, Chiralt, & Fito, 2003; Xie & Zhao, 2003). In the present work, we 

evaluated the fortification of minimally processed apples with green tea catechins and the impact on 

the stability of some physico-chemical parameters and on antioxidant properties during storage; in 

our intention, this was a first step for the development of a new functional product. 

Physico-chemical parameters of apple samples such as soluble solid content and weight loss during 

storage did not seem to be affected by VI treatment itself, nor by the different composition of the 
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solutions. Differences were observed in the evolution of the gas composition in the packages 

headspaces. After VI samples seemed to have a reduced respiration metabolism during storage 

compared to the fresh untreated sample. The initial increase of respiration rate may be related to 

stress due to processing. On the other hand the subsequent decrease may indicate a reduction of the 

respiratory metabolism. In previous studies (Castelló, Fito, & Chiralt, 2006; Igual, Castelló, Ortolá, 

& Andrés, 2008) an increase of the respiratory quotient was observed after impregnation of 

persimmons and strawberries indicating the onset of a endogenous fermentative metabolism, 

probably due to the inhibition of the oxygen diffusion in the intercellular spaces occupied by the 

impregnating solution. On the other hand, Sanzana, Gras, & Vidal-Brotóns (2011) observed an 

increase of respiration rate, both in terms of O2 consumed and CO2 produced, in various vegetables 

after VI treatment, while the respiratory quotient still indicated aerobic metabolism. The authors 

suggested that the increase in the respiration rate was attributed to a mechanical stress promoted by 

the application of vacuum to the tissue. The evaluation of respiration rate is important because it is 

negatively correlated to product shelf-life (Kader, 1987), while the development of anaerobic 

metabolism is negative for product quality since it may lead to off-odours and off-flavours. In the 

present study a medium barrier PP film was used, therefore the permeability to both gases played a 

role in the evolution of the headspace composition, hence it is not possible on the basis of the 

obtained results to make an accurate evaluation of the respiration rate and of the possible 

conversion to anaerobic respiration. Nevertheless, it is possible to observe that while VI process 

slowed down the variation of gas composition inside the packages, the addition of GTE to the VI 

solutions, consistently decreased the CO2 accumulation and the O2 consumption within the 

headspaces. 

These results may indicate an inhibition of the respiratory metabolism of the tissue. Sanzana et al. 

(2011) also observed a reduction of respiration rate in sample vacuum-impregnated with Aloe vera 

solutions compared to samples impregnated only with sucrose, hypothesising an ability of the 

bioactive compounds to compensate the stress due to the VI treatment. To our knowledge, previous 

reports on the impact of the enrichment with polyphenols on the metabolism of fresh fruit tissues 

are not present in the literature, thus it is difficult to make hypothesis while further studied should 

be conducted in order to clarify the mechanisms involved. 

Textural parameters variations during storage are probably depended on the degradation of cellular 

structure due to senescence phenomena that in minimally processed fruit are accelerated as a 

consequence of the mechanical damage caused by processing operations (Toivonen & Brummell, 

2008). Nevertheless, the differences found among samples were rather small and did not indicate a 

clear trend but may have been caused more probably by the high variability of data, typical for this 
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kind of parameters evaluated on solid heterogeneous product. Hence, it can be assumed that nor the 

VI process nor the addition of GTE or AA had a significant impact on these qualitative parameters. 

Nevertheless, the main variations observed in the samples after treatment and during storage were 

relative to product colour and antioxidant content, that appeared to be both related to the oxidation 

of polyphenols. 

Colour and visual quality are among the main factors that influences consumers acceptability of 

minimally fresh fruit products. In these commodities, colour is manly related to the content of some 

pigments, that during ripening, processing and storage can be subjected to degradation and/or to 

neo-genesis (Alzamora, Lopez-Malo, & Tapla, 2000) but it is also related to the structural 

properties of the tissue that can be altered by processing. In the present study, we found that the VI 

process generally promoted a darkening of the tissue. These results are in agreement with Muntada, 

Gerschenson, Alazamoea, & Castro (1998) and Tapia, Schulz, Gómez, López-Malo, & Welti-

Chanes (2003) that affirmed that the application of vacuum pressure to a tissue promotes alterations 

of its structural properties and the gas-liquid exchange contributes to a change of the refractive 

index. On the other hand, the addition of GT extract lead to a variation of hue angle due to the 

colour of the solutions that were characterised by a yellow/orange hue. The addition of ascorbic 

acid reduced the variation of colour due to the added tea catechins.  

The shelf-life of minimally processed apples is generally limited by enzymatic browning and, as 

expected, in the fresh product, superficial browning, represented by a decrease of L* value and an 

increase of hue angle, was observed during storage, mainly due to oxidative phenomena of native 

phenolic compounds. The enzyme mainly responsible of this phenomenon are polyphenoloxidases 

(PPO), even if also peroxidase (POD) can play a role (Toivonen & Brummell, 2008). The presence 

of GT phenolic compounds, of which the main representative is epigallocatechin-gallate (Sang, Lee, 

Hou, Ho, & Yang, 2005) and of AA, influenced the kinetics of colour variation during storage. 

The addition of GTE promoted, in sample SG, an increase of tissue browning that lead to a sharp 

decrease of luminosity and hue angle at the end of the storage. 

Li, Taylor, Ferruzzi, & Mauer (2013) found a colour variation of GT solutions during storage that 

corresponded to a decrease of L* values and an increase of a* and b* values with a perceived 

colour, tending to yellow/orange shade, that was attributed to the higher molecular weight of the 

oxidation products of catechins (Sang et al., 2005). 

Lavelli et al. (2011) used GT to enrich an apple product at intermediate moisture and studied the 

stability of the antioxidant compounds and activity during storage. The authors found a general 

darkening of the product and an increase of the red parameter due to the addition of the extract, 

similar to what we found in the present study. Furthermore, the authors observed that during 
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storage, the enriched product showed different kinetics of colour variation compared to the 

unfortified one, but, since the products underwent a blanching step during processing and no 

residual PPO activity was found, these variations were ascribed solely to non enzymatic browning. 

Although we did not measure directly PPO activity, since apple samples were not subjected to any 

thermal treatment, we can assume that enzymatic activity was present and played a role in the 

colour development of samples during storage, although chemical oxidation may have also 

occurred. GT catechins are in fact very reactive species, characterised by a high instability being 

easily oxidised when in aqueous solution. They can undergo both enzymatic and chemical oxidative 

reactions, following different pathways that generate different degradation compounds.  

Enzymatic degradation of tea catechins leads to the formations of various compounds, generally 

belonging to teaflavins and thearubigins. These groups of compounds can be generated by PPO 

activity on green tea shoots to produce black tea, and are characterized by a reddish colour (Li et al., 

2013; Robertson & Bendall, 1983). On the other side, chemical degradation of EGCG in water 

solutions may occur during storage forming brown-coloured products and it is mainly caused by 

two reaction patterns: the epimerisation that occurs at the C2 position generating GCG and the auto-

oxidation that involves the B ring that generates EGCG dimers. Which patterns prevails depends on 

surrounding conditions such as oxygen levels, pH, metal and antioxidants presence (Sang et al., 

2005). 

The GTE used in this experiment consist of 60% of EGCG that is the most abundant polyphenol 

compound present in green tea. In the present study we evaluated the TPC of the samples, through 

the Folin-Ciocolteau method. In order to clarify which oxidative pattern took place and which 

degradation compounds were present at the end of the storage, a further study on the phenolic 

characterisation would be necessary. 

With regard to TPC, it decreased in fresh sample during the first 2 days of storage, probably 

because of the enzymatic oxidation carried out by PPO that also determined a browning effect. In 

impregnated samples instead, although the initial value was lower, it remained quite constant until 

the end of storage. It could be hypothesised that the impregnation process, limiting the presence of 

oxygen inside the tissues, also limited the oxidation of phenols, as previously observed by (Xie & 

Zhao, 2003) on vacuum impregnated apples. In SG enriched product, after an initial increase, TPC 

content was lower at the end of the storage, probably because of the oxidation of catechins. These 

results confirmed the ones obtained by colorimetric measurements, as in these samples, the highest 

degree of browning was observed (Fig. 2 and Fig. 3)  

It is known that ascorbic acid is able to inhibit browning reactions, mainly because of its ability to 

scavenge oxygen and to be oxidised reducing quinones to phenols, before they can participate in 
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further reactions that lead to coloured pigments. Blanda et al. (2008) observed a reduction in 

phenolic degradation in apples impregnated with a solution containing 1% of AA during frozen 

storage. Moreover, Chen, Zhu, Wong, Zhang, & Chung (1998) evaluated the stabilizing effect of 

AA on GT catechins under various conditions. The results showed that, although these compounds 

are known to be more stable at acidic pH, the protective effect of AA was not due to the 

acidification as the addition of citric acid, although it decreases the pH of the solution, did not have 

any stabilizing effect. Considering that the GT catechins are easily turned into their corresponding 

semiquinone free radicals, the author hypothesized that AA acted as a reductant restoring their 

original form, but also that it reduced the oxygen concentration in the solution helping to hinder 

oxidative reactions. The positive effect on stability was found on all four epicatechin derivatives, 

but in particular on EGC and EGCG. Hence, we can assume that the ascorbic acid added to the 

impregnating solutions preserved the phenolic compounds against oxidation, both the native ones, 

as it can be observed in SA samples, and the added ones, as it can be observed in SAG sample. 

Although TPC was found positively correlated to EC50 values (R2=0.901), the decrease in 

antioxidant compounds was not always reflected in a decrease of AOA. This discrepancy was also 

observed by Lavelli et al. (2011) on an apple product fortified with GT catechins. The decrease of 

AOA during storage was slower and only moderate if compared with the degradation of antioxidant 

compounds. The authors suggested that the degradation of catechins leads to products with 

antioxidant properties similar to the original ones. Chemical oxidation was found to increase the 

chain-breaking activity measured by DPPH method also by Manzocco, Anese, & Nicoli (1998), 

thanks to the progressive polymerisation of phenolic compounds and the formation of brown 

macromolecular products. On the other hand, enzymatic oxidation of catechins leads to the opposite 

effects, diminishing the radical scavenging properties. As already mentioned, the degradation 

products of enzymatic oxidation of GT catechins are mainly teaflavins and thearubigins, groups of 

compounds whose AOA is scarcely known (Graham, 1992). Hence, the characterisation of the 

phenolic fraction in the different samples during storage would help in clarifying also the 

relationship between antioxidant content and activity. 

On the other hand, according to Ramazzina et al. (2015), that compared different in-vitro methods 

for the evaluation of AOA in minimally processed kiwifruit, DPPH method was the less sensitive 

one. Hence, the results found in the present studies should be integrated with the evaluation of other 

in-vitro or ex-vivo antioxidant methods. 
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5. Conclusions  

Aqueous solution containing GTE allowed a good impregnation of minimally processed apples that 

resulted in a strong increase of the antioxidant compound content and activity. While other 

qualitative parameters were only slightly affected, colour of samples was influenced just after the 

VI treatment but also during storage. The addition of catechins, leads to an increase of the 

yellow/orange colour components of impregnated samples and to a higher degree of browning 

development. However, the addition of 1% of ascorbic acid allowed to better preserve colour and 

antioxidant properties during storage limiting oxidative phenomena. 

Enrichment of apples with GT catechins and ascorbic acid seems to be promising in order to obtain 

a nutritionally fortified fruit product, even if the results obtained in this study are only a first step in 

this direction. The qualitative characterization of the phenolic compounds during storage and their 

relationship with the antioxidant activity, together with further in-vitro and in-vivo experiments for 

the evaluation of the antioxidant properties will need to be carried out. Moreover, aspects related to 

the tissue metabolism and respiration of the fresh apple tissue need further investigations. 

In terms of sensorial acceptability, the impact of apple vacuum impregnation with green tea has to 

be carefully examined, considering its astringency and bitter taste, taking in consideration the 

possibility to change in quantitative/qualitative terms the formulation of the impregnating solution.  
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The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell
viability and microstructure of apple tissue were studied. In addition, water distribution and mobility
modification of the different cellular compartments were observed. Fluorescence microscopy, light
microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate
cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose–
calcium lactate–ascorbic acid solution did not show viability. Calcium lactate had some effects on cell
walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced
the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton
intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The
presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability
changes of the cellular wall and membranes.
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1. Introduction Mavroudis, Gidley, & Sjöholm, 2012; Silva, Fernandes, & Mauro,
The concentration of plant foods by immersing solid food pieces
in a hypertonic solution consisting of salt, sugar, glycerol, or other
humectants is known as osmotic dehydration (OD) (Sereno,
Moreira, & Martinez, 2001). This technique reduces the aw of the
product without a phase change because the flow of water from
the product into the concentrated solution is compensated by the
solutes migration from the solution into the product (Nieto,
Vicente, Hodara, Castro, & Alzamora, 2013). This process permits
the formulation of products with intermediate moisture content
through dewatering and impregnation of desired solutes (Barrera,
Betoret, & Fito, 2004). Because of its versatility, OD has a wide
range of applications in the development of minimally processed
plant foods or as pretreatment for other preservation methods
such as freezing or drying (Alzamora, Cerrutti, Guerrero, & López-
Malo, 1995; Garcia Loredo, Guerrero, Gomez, & Alzamora, 2013).

The addition of calcium in osmotic solutions has been widely
used in plant foods as fortifier and to enhance firmness (Anino,
Salvatori, & Alzamora, 2006; Barrera, Betoret, Corell, & Fito, 2009;
2014a). Fortification using combinations of substances such as cal-
cium and iron (Barrera et al., 2004) or Ca and vitamin C (Silva,
Fernandes, & Mauro, 2014b) has also been investigated.

OD causes physical modifications of cell membranes and cell
walls, which affects the rheological properties and state of water
(Nieto et al., 2013; Vicente, Nieto, Hodara, Castro, & Alzamora,
2012). Knowledge about the microstructure and mass transport
in OD of plant tissues is fundamental for controlling production
of foods fortified with vitamins and mineral salts. Mass transfer
in cellular tissue is influenced by the osmotic pressure and struc-
ture properties such as permeability of the plasma membrane
and vacuole membrane, cell wall porosity, or even intercellular
porosity. The osmotic pressure, in turn, depends on the solute con-
centration and the salt and acid dissociation because each sub-
stance presents specific transport properties through plasma and
vacuole membranes or cell wall pores. When the cellular structure
is changed, the tissue selectivity is also modified, so that water
mobility and distribution are affected.

Osmotic dehydration of plant foods is largely controlled by the
cellular membranes, which have different permeabilities to different
substances. Biological membranes are composed of phospholipid
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bilayers with intrinsic proteins. Studies have shown that water can
cross plant membranes through proteinaceous channels formed by
members of the aquaporin superfamily, also called water channels
(Weig, Deswarte, & Chrispeels, 1997). Aquaporins are hydrophobic
proteins that enhance the biological membrane’s permeability to
water. They belong to a group of membrane proteins, the major
intrinsic proteins (MIP) family of channels, with a molar mass in
the range of 26 and 30 kDa (Tyerman, Niemietz, & Bramley, 2002;
Weig et al., 1997). These channels increase the permeability of bio-
logical membranes to water compared to the lipid bilayers; they
are detected by the low activation energy needed to transport water
across water channels (Tyerman et al., 2002).

Calcium ions that occupy spaces outside the plasma membrane
(apoplast) have a structural role in the cell wall because they inter-
act with pectic acid polymers to form cross-bridges that reinforce
the cell adhesion, thereby reducing cell separation, which is one
of the major causes of plant tissue softening (Roy et al., 1994).
Moreover, calcium can affect water channel activity; however,
the significance of the inhibition of plant aquaporins by calcium
is complex and has still not been clarified (Maurel, 2007).
Conversely, calcium can also cross membranes through cation
channels. A vacuolar non-selective Ca2+ channel (Peiter et al.,
2005) has been identified as a plasma membrane non-selective
cation channel (Tapken et al., 2013) in plant cells.

Ascorbic acid (AA) influences the cell physiology; however, little
is known about its role in plant tissue. Exposure of Arabidopsis thali-
ana seedlings to ascorbic acid demonstrated that exogenous AA
caused grow inhibition and damage in the cellular structure by
increasing the ROS (reactive oxygen species) content (Qian et al.,
2014). In addition, a very low pH (2–3) can increase the cell wall
porosity (Zemke-White, Clements, & Harris, 2000), which increases
diffusion of great molecules in the free spaces of the cellular tissue.

The complexity of osmotic dehydration of plant tissues rises
when using a multicomponent solution because all the solutes
and their respective concentrations affect the membrane perme-
ability and cell wall. Consequently, monitoring the water distribu-
tion can be useful to clarify the behavior of the cellular
microstructures as osmotic dehydration proceeds. Time domain
nuclear magnetic resonance (TD-NMR) is an analytical method that
allows the determination of the water content and its mobility in
different cell compartments by proton relaxation times of water
in foods (Hills & Duce, 1990). It is a non-invasive method suitable
for large tissue samples that relates water content and water prop-
erties in different proton pools within the tissue with different
transverse relaxation times (T2) of water (Hills & Remigereau,
1997; Panarese et al., 2012; Tylewicz et al., 2011). In fruit samples,
the higher the mobility of a proton bearing molecule, the higher the
spin–spin (T2) relaxation time is expected to be. The intensities of
proton pools with different transverse relaxation times are a
relative measure of the amount of water corresponding to a
specific T2. This technique has been used in OD of plants to evaluate
water mobility and distribution within the cellular tissue (Cornillon,
2000; Panarese et al., 2012; Tylewicz et al., 2011). Microscopic tech-
niques can also be important tools to clarify cell viability by using
vital dyes. Protoplasts stained with fluorescein diacetate (FDA)
allow the estimation of two types of plasma membrane injuries:
lysis and the loss of semipermeability (Halperin & Koster, 2006;
Koster, Reisdorph, & Ramsay, 2003). Vacuole membrane alterations
can be evaluated by the capacity of intact tonoplasts to retain neu-
tral red and provide contrast to vacuoles (Carpita, Sabularse,
Montezinos, & Delmer, 1979; Thebud & Santarius, 1982).

A multianalytical approach that combines several techniques
such as micro and ultrastructural microscopy, calorimetry and
NMR have been successfully employed in investigations of plant
foods subjected to mild processing conditions (Panarese et al.,
2012; Rocculi et al., 2012; Tylewicz et al., 2011).
The main objective of this work was to investigate the effects of
the addition of calcium lactate (CaLac) and ascorbic acid (AA) to
sucrose (Suc) osmotic solutions on mass transfer, cell viability
and structure of apple tissue, as well as the consequential water
distribution and mobility modification among the different cellular
compartments.
2. Materials and methods

2.1. Raw materials

Apples (Malus domestica Borkh) of the Cripps Pink variety, pop-
ularly known by the brand name Pink Lady (Castro, Barrett, Jobling
& Mitcham, 2008), were provided by the local market and stored at
5 ± 1 �C for no longer than 2 weeks, during which osmotic dehydra-
tion experiments were performed. The average weight of the
apples was 233.5 ± 17.7 g, and the soluble solids content was
13.4 ± 0.3 g � 100 g�1. Apples were cut in cylinders (8-mm diame-
ter) with a manual cork borer and cut to a length of 40 mm using
a manual cutter designed for this purpose. Commercial sucrose
(refined sugar, Eridania, Italy), L-ascorbic acid (Shandong Luwei
Pharmaceutical Co., China) and calcium lactate (calcium-L-lactate
5-hydrate powder, PURACAL� PP Food, Corbion PURAC,
Netherlands) were used in the experiments.

2.2. Osmotic dehydration

Apple cylinders were weighed (approximately 0.1 kg) in a mesh
basket and immersed in the osmotic solution. Each basket
corresponded to a single OD time: 0.5, 1, 2 and 4 h. The OD system
consisted of a cylindrical glass vessel containing 4.5 kg of aqueous
solution. The cylindrical baskets, coupled with an impeller of a
mechanical stirrer, were continuously rotated. Two baskets were
prepared for each process time. The syrup-to-fruit ratio was
approximately 15:1 (w/w).

The OD was performed with four different aqueous solutions:
40% sucrose (Suc), 40% sucrose + 4% calcium lactate (Suc–CaLac),
40% sucrose + 2% ascorbic acid (Suc–AA) and 40% sucrose + 4%
calcium lactate + 2% ascorbic acid (Suc–CaLac–AA). After the
pre-established contact period, the samples were removed from
the solution, rinsed with distilled water, blotted with absorbing
paper, and weighed.

Immediately after the process, analyses of the total solids and
soluble solids contents were performed for fresh and osmotically
treated samples in triplicate. The proton transverse relaxation time
(T2) was also immediately measured for six replicates. Samples for
calcium and ascorbic acid analyses were freeze-dried.

2.3. Analytical methods

The moisture content for 2 g of fresh and treated samples was
determined gravimetrically, in triplicate, by drying at 70 �C until
a constant weight was achieved. The soluble solids content was
determined at 20 �C by measuring the refractive index with a
digital refractometer (PR1, Atago, Japan). Water activity was
measured in a water activity meter (AquaLab Series mod. CX-2,
Decagon, USA).

2.3.1. Ascorbic acid
For ascorbic acid determination, an extraction was performed

with 0.5 g of a freeze-dried sample added to 10 ml of meta
phosphoric acid (62.5 mM) and sulfuric acid (5 mM) solution. The
mixture was vortexed for 2 min and centrifuged at 10,000�g for
10 min at 4 �C. The supernatant was opportunely diluted and fil-
tered through a 0.45 lm nylon filter. Ascorbic acid was determined
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according to Odriozola-Serrano, Hernàndez-Jover, and Martìn-
Belloso method (2007). The HPLC system (Jasco LC-1500, Carpi,
MO, Italy) was equipped with a diode array UV/Vis detector. A
reverse-phase C18 Kinetex (Phenomenex Inc., Torrance, CA, USA)
stainless steel column (4.6 � 150 mm) was used as the stationary
phase. Samples were introduced in the column through an
autosampler (Jasco AS-2055 Plus). The mobile phase was a 0.01%
solution of sulfuric acid adjusted to a pH of 2.6. The flow rate
was fixed at 1.0 mL/min at room temperature. Data were processed
by the software ChromNAV (ver. 1.16.02) from Jasco. The ascorbic
acid content was quantified at 245 nm through a standard calibra-
tion curve.

2.3.2. Calcium
The calcium concentration was determined using a flame

atomic absorption spectrophotometer (Model A Analyst 400,
Perkin Elmer, Santa Clara, California, USA), using a lumina hollow
cathode lamp (Perkin Elmer) based on the adapted methodology
of AOAC – Association of Official Analytical Chemists. (1995).
Approximately 6 g of fresh samples (without treatment) and 2 g
of treated samples, i.e., freeze dried and previously ground, were
weighed in a 50 ml glazed, porcelain crucible placed in a muffle
furnace and heated up to 550 �C until complete ignition. Then,
the porcelain crucibles were cooled in desiccators, where 20 ml
of chloride acid (0.1 M) was added to the capsules with fresh sam-
ples and 30 ml was added to the treated samples. The ash was dis-
solved, and then, an aliquot of this solution was quantitatively
taken and diluted 8 times (fresh samples) or 100 times (treated
samples) with 0.1 M chloride acid. Standard calcium solutions
between 2 and 20 ppm were used to determine a calibration curve
of absorbance versus ppm of calcium.

2.4. Mass transfer of osmotic dehydration

Mass transfer during osmotic dehydration was evaluated on the
basis of mass balances. The total mass variation in relation to the
initial mass during osmotic dehydration was calculated from
experimental data according to Eq. (1):

DM ¼ ðm�m0Þ
m0

� 100 ð1Þ

where m = mass and 0 = initial time (t = 0).
Water loss (WL), calcium lactate gain (DCaLac), ascorbic acid

gain (DAA) and sucrose gain (DSuc), all calculated in relation to ini-
tial mass, are shown in the following equations:

WL ¼ ðww �mÞ � ðww0 �m0Þ
m0

� 100 ð2Þ

DCaLac ¼ wCaLac �m�wCaLac0 �m0

m0
� 100 ð3Þ

DAA ¼ wAA �m�wAA0 �m0

m0
� 100 ð4Þ

DSuc ¼ ðDM� DW� DCaLac� DAAÞ � 100 ð5Þ

where m = mass; w = mass fraction (w/w); w = water;
CaLac = calcium lactate; AA = ascorbic acid; and 0 = initial time
(t = 0).

In addition, the calcium gain (DCa) can be calculated by:

DCa ¼ wCa �m�wCa0 �m0

m0
ð6Þ

To evaluate the influence of the OD parameters on the efficiency
of the water removal in relation to sugar impregnation of the
apples, the efficiency was defined by the following equation:
Efficiency ¼ WL
DSuc

����
���� ð7Þ
2.5. Microscopic analysis

Histological techniques with vital stains, which do not cause a
short-term effect on the cell physiology, were used to evaluate
the influence of the osmotic dehydration on cell viability using flu-
orescence intensity and neutral red accumulation for vacuole
integrity in preserved vacuoles. Microscopic analysis was per-
formed on osmotic solutions in the following concentrations: Suc
(20%), Suc (30%), Suc (40%), Suc–CaLac (20–2%), Suc–CaLac (30–
3%), Suc–CaLac (40–4%), Suc–AA (20–1%), Suc–AA (30–1.5%), Suc–
AA (40–2%), Suc–CaLac–AA (20%, 2%, 1%), Suc–CaLac–AA (30%, 3%,
1.5%) and Suc–CaLac–AA (40%, 4%, 2%).

2.5.1. Fluorescein diacetate (FDA) staining
1 mm-thick apple slices were obtained using a sharp scalpel

and then treated in the osmotic solutions mentioned above for
2 h. The cell viability test was performed using fluorescein diac-
etate (FDA, Sigma–Aldrich, USA, kex = 495 nm, kem = 518 nm), as
described by Tylewicz, Romani, Widell, and Gómez Galindo
(2013) with some modifications. Apple slices were incubated for
30 min in a 10�4 M FDA in an isotonic sucrose solution (13%, w/
w) in the darkness at room temperature. Fluorescein diacetate is
known for its ability to passively penetrate protoplast and to be
hydrolyzed by cytoplasmic esterases that produce the polar pro-
duct fluorescein. This charged form is accumulated intracellularly
in viable cells because it is unable to cross cellular membranes that
remain intact (Saruyama et al., 2013). Viable cells could be easily
identified by a bright fluorescence. Observations were performed
under a fluorescent light in a Nikon upright microscope (Eclipse
Ti-U, Nikon Co., Japan) equipped with a Nikon digital video camera
(digital sight DS-Qi1Mc, Nikon Co., Japan) at a magnification of
20�.

2.5.2. Neutral red staining
Apple tissues were stained using a neutral red dye. Neutral red

is a vital stain with a relatively low molecular weight and no elec-
tric charge that penetrates the vacuole of the intact protoplast of
plant cells. In vacuoles, the neutral red is transformed to an ionic
state because of the low pH inside the vacuoles; in this form, neu-
tral red is incapable of penetrating the tonoplast, so the neutral red
accumulates in the vacuole. Neutral red stain has been prepared in
a concentration of 0.05% (Mauro, Tavares, & Menegalli, 2003;
Panarese et al., 2012) in an isotonic sucrose solution at 13% (w/
w). Slices (�0.5 mm) cut manually with a sharp scalpel were
stained with neutral red for 20 min. Each stained slice was
immersed in an osmotic solution for a minimum of 120 min.
Slices were placed on a microscopic slide accompanied by a drop
of solution and covered with the slide cover. The control slices
were solely washed in the isotonic solution. Slides were immedi-
ately observed under a light microscope (Optech – Optical
Technology, Germany) and recorded at a magnification of
10�. RGB images were acquired using a digital camera (Camedia
C-4040-ZOOM, Tokyo, Japan) and stored in JPEG format.

Additionally, slides were recorded at a higher resolution in
black and white using a Nikon upright microscope (Eclipse Ti-U,
Nikon Co., Japan) without a fluorescent light at a magnification of
20�.

2.6. Time domain nuclear magnetic resonance (TD-NMR)

The proton transverse relaxation time (T2) of the samples was
measured for six replicas in a Bruker The Minispec spectrometer
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(Bruker Corporation, Germany), operating at 20 MHz and 24 �C,
using the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence.
Fresh or osmotic dehydrated apple cylinders with an 8 mm initial
diameter were cut (approximately 10-mm height, 250 mg) to not
exceed the active region of the radio frequency coil and placed
inside the 10-mm outer diameter NMR tubes. Each measurement
comprised 16,000 echoes with a 90–180 interpulse spacing of
100 ls, with 32 scans and a recycle delay of 5 s. The specified
instrumental parameters avoided heating the samples and allowed
the measurement of the protons with a T2 between 1 and 2000 ms.

The acquired CPMG curves were normalized by the sample
weights and analyzed with the UPEN (uniform penalty inversion
of multiexponential decay data) algorithm (Borgia, Brown, &
Fantazzini, 1998) to give quasi-continuous distributions of relax-
ation time. The UPEN default fitting parameters were adjusted to
obtain better resolved and more detailed peaks. The number of
output relaxation times sampled logarithmically in the 1–2000-
ms interval T2 was set to 200, and the smoothing coefficient beta
was increased to 2. However, the resulting T2 distributions showed
partially overlapped peaks. Three proton populations were found
in each sample and were ascribed to cell compartment proton
pools according to their T2 and intensity values (Panarese et al.,
2012): vacuole, cytoplasm-free space and cell wall. Free spaces
are the spaces where the osmotic solution could interpenetrate,
i.e., outside the protoplast boundaries.

To obtain quantitative information from the CMPG decay
curves, sample signals were fitted using a discrete multi-exponen-
tial curve in Eq. (8):

SðsÞ ¼
XN

i¼1

In exp
�t
T2;n

� �
þ EðsÞ ð8Þ

where N is the number of the found protons populations (based on
UPEN results, it was set to 3); and I and T2 are the intensity value
and average relaxation time, respectively, of the n proton pool.

The fitting was performed using the ‘‘Nonlinear Least Squared’’
function based on the Gauss–Newton algorithm and implemented
in the ‘‘R’’ software (R Foundation for Statistical Computing,
Austria), while the I and T2 starting values were chosen based on
the UPEN results.

2.7. Statistical analysis

The significance of the effects of the different osmotic solutions
on water loss, sucrose gain, efficiency, transverse relaxation
times (T2) and intensity was evaluated by analysis of variance
(ANOVA) and comparison of means using the Duncan test at a 5%
probability level. The data were expressed as the mean ± standard
deviation.

3. Results and discussion

3.1. Mass transfer: water loss and solid gain

Water loss (Eq. (2)) and sucrose gain (Eq. (5)) during osmotic
dehydration of apples treated in different osmotic solutions are
shown in Table 1. Samples treated in the sucrose solution show
the smallest water loss and high sucrose uptake compared to the
other treatments. When AA is added to the sucrose solution, the
water loss increases but the sucrose gain also increases, especially
during the first 30 min. A consequence of this relationship between
the water loss and sugar gain is both the Suc and Suc–AA treat-
ments have a lower process efficiency (Table 1) compared to the
Suc–CaLac and Suc–CaLac–AA treatments.

As for the water chemical potential of these solutions, the water
activity measured was 0.962 in the sucrose solution (40%), 0.953 in
the Suc–CaLac (40–4%), 0.954 in the Suc–AA (40–2%) and 0.944 in
the Suc–CaLac–AA (40–4–2%). Consequently, the highest water loss
is expected from the Suc–CaLac–AA solution followed by the Suc–
CaLac and Suc–AA solutions. Indeed, both the Suc–CaLac and Suc–
CaLac–AA solutions promoted greater water loss and did not have
significant differences between them. However, when comparing
the sucrose gain values between these two treatments, differences
were found at 30 and 240 min of the process, as seen in Table 1,
which were reflected in the efficiency of these processes. CaLac
in solution enhances the efficiency because it is able to promote
high water loss and restricts sucrose impregnation, which has been
verified by other authors (Mavroudis et al., 2012; Silva et al.,
2014a). However, the inhibition in sugar gain is sometimes accom-
panied by water loss reduction and, hence, a good efficiency is not
reached, as verified by Silva et al. (2014a) who exposed pineapple
tissue to high concentrations (sucrose 50% solution with 4% CaLac)
for 2 h. Barrera et al. (2009) observed that for apples, osmotic
dehydration assisted by vacuum impregnation favors solid gain
but also reduces water removal. Restriction of solute transport
has been attributed to calcium pectate formation, which decreases
the cell wall porosity and limits the transport of larger molecules.
However, a decrease in the water loss could also be explained by
changes in the cellular membranes because calcium can affect
the water channel activity (Maurel, 2007). Nevertheless, the signif-
icance of the inhibition of plant aquaporins by calcium is complex
and has not been clarified, as noted by Maurel (2007), who com-
pared the water permeability of the Arabidopsis plasma membrane
(Gerbeau et al., 2002) and Beta vulgaris roots (Alleva et al., 2006). A
low sensitivity to Ca2+ was detected in the Arabidopsis plasma
membrane, but a higher sensitivity was detected in the B. vulgaris
roots. In the present work, inhibition of Ca2+ on water loss was not
evident.

In contrast, effect of the addition of AA seems to increase the
impregnation of solutes, which is the opposite effect of those pro-
moted by calcium. This was verified by Silva et al. (2014b) and
attributed to wall porosity increasing because of acidification
(Zemke-White et al., 2000).

During the first 60 min of the Suc–CaLac–AA treatment, the effi-
ciency was high probably because the calcium affected the restric-
tion of the sucrose gain in a similar way to the behavior observed
for the Suc–CaLac treatment (Table 1). Then, the efficiency
decreased, which suggests that after 1 h of the process, the AA
exerted an opposite influence on the sucrose transport. Silva
et al. (2014b) also observed that AA positively influenced sucrose
and calcium gain in pineapples treated in solutions composed of
sucrose, calcium lactate and ascorbic acid. These results suggest
that synergetic effects should not be ignored. Genevois, Flores,
and De Escalada Pla (2014) fortified pumpkin with vitamin C and
iron through a dry infusion process by sprinkling powdered
sucrose on the vegetable to form a solution with the lost water
from the food. The authors concluded that the addition of Fe or
AA to the liquid solution increases the incorporation of sucrose into
the pumpkin tissue, but the presence of both additives simultane-
ously produces an antagonistic effect that diminishes the solid
gain.

Good impregnation of Ca and AA contents were observed during
the treatments in the Suc–CaLac, Suc–AA and Suc–CaLac–AA solu-
tions. The last solution slightly enhanced the AA and Ca impregna-
tion; the AA content increased after 2 h of process while the Ca
content increased after 4 h (Table 2). AA was not detected in the
fresh samples. Indeed, very low ascorbic acid content has been pre-
viously found in the Pink Lady apples (2.3–3.0 mg/100 g, Castro
et al., 2008).

In conclusion, according to mass transport evaluation, the OD
efficiency was improved by CaLac, while AA presence exerted an
opposite effect; when both additives were present simultaneously,



Table 1
Mean and standard deviation of water loss, sucrose gain and efficiency.

Osmotic solution 30 min 60 min 120 min 240 min

Water loss
Suc �9.36a ± 0.50 �13.00* �15.94a ± 0.85 �24.66a ± 0.13
Suc–CaLac �12.49b ± 0.86 �14.96a ± 1.00 �22.30b ± 0.68 �28.96b ± 0.63
Suc–AA �10.45a ± 0.04 �13.61a ± 0.86 �18.99ab ± 0.19 �26.18a ± 1.25
Suc–CaLac–AA �12.87b ± 0.52 �16.04a ± 1.48 �20.58b ± 2.21 �28.42b ± 0.02

Sucrose gain
Suc 2.28ab ± 0.12 4.11* 5.51a ± 0.26 6.70a ± 0.05
Suc–CaLac 2.19a ± 0.20 3.39a ± 0.27 4.86a ± 0.22 5.69b ± 0.23
Suc–AA 3.18c ± 0.01 4.11a ± 0.23 4.93a ± 0.06 6.75a ± 0.45
Suc–CaLac–AA 2.61b ± 0.12 3.20a ± 0.41 4.76a ± 0.69 7.41a ± 0.01

Efficiency
Suc 4.11ab ± 0.43 3.90* 2.90a ± 0.29 3.68a ± 0.05
Suc–CaLac 5.75c ± 0.93 4.44a ± 0.65 4.60a ± 0.35 5.10b ± 0.32
Suc–AA 3.29a ± 0.02 3.32a ± 0.39 3.85a ± 0.09 3.89a ± 0.44
Suc–CaLac–AA 4.94bc ± 0.43 5.08a ± 1.11 4.41a ± 1.10 3.98a ± 0.01

The same letter on the same column means no significant difference by the Duncan test (p < 0.05).
* Replica not determined.

Table 2
Mean and standard deviation of calcium and ascorbic acid contents at different osmotic dehydration times and corresponding fresh apple (mg/100 g).

Osmotic solution 0 min (fresh) 30 min 60 min 120 min 240 min

Calcium content
Suc–CaLac 2.78a ± 0.03 79.80b ± 0.55 110.70c ± 1.88 142.44d ± 0.21 163.45e ± 5.35
Suc–CaLac–AA 2.78a ± 0.03 81.05b ± 4.00 108.57c ± 2.18 140.01d ± 12.75 195.20f ± 8.30

Ascorbic acid content
Suc–AA Nd 429.02a ± 13.82 608.88b ± 13.47 733.32c ± 54.61 1012.45e ± 2.87
Suc–CaLac–AA Nd 393.09a ± 10.13 576.85b ± 8.20 779.50d ± 15.87 1076.53f ± 33.50

The same letter on the same column for each component means no significant difference by the Duncan test (p < 0.05);
Nd: not detectable.
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AA counterbalanced an initial increase of efficiency caused by cal-
cium, as the OD proceeded. High levels of Ca and AA contents were
reached in all treatments and the impregnation of both compo-
nents was slightly enhanced when they were together in the
solution.

3.2. Microscopic analysis

3.2.1. Microphotographs of tissues stained with fluorescein diacetate
Fig. 1 presents slides of apple tissue before and after 2 h of

osmotic dehydration in different solutions followed by staining
with FDA. For the 20%, 30% and 40% Suc solutions (Fig. 1b.1–b.3),
all slides show cell viability with an intensity that was comparable
to the fresh tissues (Fig. 1a). Tissues treated in the CaLac–Suc solu-
tion presented a higher intensity for the 20% Suc–2% CaLac
(Fig. 1c.1) solution. However, as the concentrations of both compo-
nents increased, the viability decreased, which suggests that the
solution with 40% Suc + 4% CaLac (Fig. 1c.3) affected the viability
of the cells. A low fluorescence intensity was detected in tissues
treated with the Suc–AA treatments in the Suc 20%, AA 1% concen-
trations (Fig. 1d.1) and no viability at higher concentrations was
found (Fig. 1d.2 and d.3). For treatments in the Suc–CaLac–AA solu-
tions, the apple cells did not show any viability (Fig. 1e.1–e.3). If
the protoplasts did not retain the FDA, this means disruption of
the plasma membrane (cell lysis) or loss of membrane semiperme-
ability (Halperin & Koster, 2006; Koster et al., 2003). The type of
membrane injury could be verified by the number of intact
protoplasts without ability to retain FDA. However, apples have a
poor cytosol content, which makes it difficult to distinguish the
protoplasts and vacuoles using light microscopy.

Cellular injury can be caused by low water activity, but all solu-
tions used in these experiments had a relatively high aw (in a range
of 0.944–0.986). Another cause for cellular damage could be the
low pH of the osmotic solutions with AA (Zemke-White et al.,
2000). For instance, Suc–AA solutions have a pH close to 2.4 and
Suc–CaLac–AA solutions near 4.0. Furthermore, it has been demon-
strated that AA can cause severe damage in the cellular structure
(Qian et al., 2014). Hence, the AA presence in high concentrations
certainly affects the cellular membrane structure of plant tissues,
but the mechanisms are still not clearly delineated.

3.2.2. Microphotographs of tissues stained with neutral red
Fig. 2 presents slides of apple tissue stained with neutral red,

followed by 2 h of osmotic dehydration in different solutions.
Fig. 2a shows the control with no osmotic treatment that appeared
completely stained. Fig. 2b.1–b.3 represent tissues treated in Suc
solutions and show a broad presence of preserved vacuoles and
red-stained tissue, probably because neutral red can also provide
some contrast to cytoplasm (Carpita et al., 1979). Plasmolysis can
be identified by the arrows.

These results agree with cell viability verified by FDA experi-
ments with Suc solution, since, if plasma membranes remain pre-
served, intact vacuoles must be found.

In Fig. 2c.1–c.3, with tissues treated in Suc–CaLac solutions, vac-
uoles are well defined. However, the color is not spread out like it
was in cells exposed to Suc solutions alone, which suggests that the
cytoplasm did not retain the color despite some protoplast viability
remaining even in the 30% Suc + 3% CaLac solution (Fig. 1c.2). The
possibility that some plasma membranes or tonoplasts have been
disrupted is based on the high calcium concentration, which can
damage membranes (Wang, Xie, & Long, 2014).

Interestingly, during osmotic dehydration of thin slices previ-
ously stained with neutral red, sucrose solutions remained without
color but Suc–CaLac solutions changed to red with similar tonality
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Fig. 1. Slides of parenchyma apple tissue stained with FDA after immersion in osmotic solutions for 120 min: (a) control; (b–e) osmotically dehydrated in osmotic solutions;
(b.1) 20% Suc; (b.2) 30% Suc; (b.3) 40% Suc; (c.1) 20% Suc + 2% CaLac; (c.2) 30% Suc + 3% CaLac; (c.3) 40% Suc + 4% CaLac; (d.1) 20% Suc + 1% AA; (d.2) 30% Suc + 1.5% AA; (d.3)
40% Suc + 2% AA; (e.1) 20% Suc + 2% CaLac + 1% AA; (e.2) 30% Suc + 3% CaLac + 1.5% AA; (e.3) 40% Suc + 4% CaLac + 2% AA.
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of the neutral red aqueous solution, Suc–AA solutions changed to
pink and Suc–CaLac–AA solution changed to intense pink (registers
are not shown). This confirms the loss of plasma and/or vacuole
membrane permeability, thereby permitting neutral red to leave
the tissue.

Effects of the pH of the Suc–CaLac solutions did not seem plau-
sible because the pH of the solutions is nearly neutral. Conversely,
tissues treated in the Suc–AA solutions had a complete absence of
color, as shown in Fig. 2d.1–d.3. Very low protoplast viability and
no stained vacuoles suggest that high AA concentrations and/or
very low pH affect the membrane integrity and permeability.
Nevertheless, it was a surprise to be able to distinguish some vac-
uoles without dye (see arrows in Fig. 2d.2 and d.3), which were
more visible in images captured at high resolution (Appendix A).
Whether the vacuoles contours are still visible, the membranes
exist, but impermeability to a charged form of neutral red must
have been lost and the stain left the vacuoles because red contrast
was not observed. Moreover, it is known that the loss of plasma
membrane semipermeability does not necessary mean cell lyses
even though it concerns plasma membranes (Halperin & Koster,
2006), but suggests that tonoplast selectivity must have been mod-
ified without complete disruption of the vacuoles.

Finally, treatments in Suc–CaLac–AA solutions showed unex-
pected results. Although it is possible to visualize vacuoles in
Fig. 2e.1–e.3, the cell viability was completely lost in cells that
underwent this treatment (Fig. 1e.1–e.3). Because the CaLac addi-
tion elevated the pH in comparison to the AA solutions, from 2.4
(Suc–AA) to 4 (Suc–CaLac–AA), it is possible that the tonoplast
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Fig. 2. Slides of apple tissue stained with neutral-red before immersion in osmotic solutions for 120 min: (a) control; (b–e) osmotically dehydrated in osmotic solutions; (b.1)
20% Suc; (b.2) 30% Suc; (b.3) 40% Suc; (c.1) 20% Suc + 2% CaLac; (c.2) 30% Suc + 3% CaLac; (c.3) 40% Suc + 4% CaLac; (d.1) 20% Suc + 1% AA; (d.2) 30% Suc + 1.5% AA; (d.3) 40%
Suc + 2% AA; (e.1) 20% Suc + 2% CaLac + 1% AA; (e.2) 30% Suc + 3% CaLac + 1.5% AA; (e.3) 40% Suc + 4% CaLac + 2% AA.
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semi permeability was better preserved, so the neutral red
remained in some vacuoles. Conversely, plasmalemma was proba-
bly damaged due to the low pH and high CaLac and AA concentra-
tions because no viability was detected.

These results show that plasmalemma was more sensitive to
Suc–CaLac–AA solutions than tonoplast. AA caused red color
absence in the vacuoles but they were visualized in images cap-
tured at high resolution, which led to the conclusion that tono-
plasts maintained the vacuole content but its permeability was
changed. The same inference could not be made for plasmalemma
because the low cytoplasm content does not permit one to distin-
guish this phase.

3.3. Time domain nuclear magnetic resonance (TD-NMR): water
mobility

Osmotic dehydration promotes important changes in cellular
structure that can affect tissue selectivity and modify water mobil-
ity and its distribution through different parts of the cellular tissue.
Water mobility is related to the availability of water and, in this
osmo-cellular system, could be modified by concentration of solids
or by changes related to sites for hydrogen bonds because of
macromolecule structure alteration.

T2 and relative intensity results are shown in Table 3 and Fig. 3,
respectively. Three protons populations were found in each sample
at approximately 10, 200 and 1200 ms and were ascribed to cell
compartment proton pools based on their T2 and intensity values:
cell wall, cytoplasm-free space and vacuole (Panarese et al., 2012).
The free space comprises the plasmolysis space, which forms
between the cell wall and plasmalemma, intra- and inter-cellular
spaces and interstices in the cell walls (Mauro et al., 2003).

The total signal of raw apples was considered as a reference and
set at 100. The intensities of cell wall, cytoplasm-free space and
vacuole signals thus corresponded to 2.8 ± 0.4, 20.5 ± 2.3 and
76.7 ± 2.5, respectively. Results related to the water distribution
showed a release of water from vacuoles to the cytoplasm-free
spaces (Cyt/FS), so that the vacuoles shrank while the Cyt/FS water
pools swelled. A more pronounced effect was observed for the



Table 3
Mean and standard deviation of the transverse relaxation time (T2).

T2 (ms)

30 min 60 min 120 min 240 min

Vacuole
Raw (fresh) 1215.29a ± 39.78 1215.29a ± 39.78 1215.29a ± 39.78 1215.29a ± 39.78
Suc 1134.43b ± 43.64 1115.06b ± 61.10 1091.32b ± 19.86 995.99b ± 15.66
Suc–CaLac 1203.05a ± 27.62 1206.24a ± 59.40 1124.74b ± 28.35 1075.15c ± 43.15
Suc–AA 1147.25bc ± 24.42 1098.85b ± 24.42 1086.37b ± 19.14 1052.85c ± 44.34
Suc–CaLac–AA 1183.82ac ± 52.40 1138.28b ± 59.85 1090.47b ± 38.97 1003.12b ± 84.20

Cytoplasm/free space
Raw (fresh) 209.19a ± 23.13 209.19ab ± 23.13 209.19ab ± 23.13 209.19a ± 23.13
Suc 211.71a ± 13.89 196.42a ± 19.73 188.18a ± 15.90 193.85a ± 11.72
Suc–CaLac 206.43a ± 15.90 231.98b ± 21.08 229.91b ± 13.60 212.12a ± 17.92
Suc–AA 211.86a ± 16.19 210.36ab ± 22.63 209.23ab ± 6.96 197.26a ± 12.32
Suc–CaLac–AA 210.26a ± 12.16 212.01ab ± 15.43 208.54ab ± 17.32 203.61a ± 15.69

Cell wall
Raw (fresh) 9.81a ± 2.42 9.81a ± 2.42 9.81a ± 2.42 9.81a ± 2.42
Suc 8.93a ± 2.41 12.91b ± 4.10 10.47a ± 1.53 12.98abc ± 3.44
Suc–CaLac 9.68a ± 5.00 10.90ab ± 3.09 9.81a ± 6.40 15.22c ± 6.50
Suc–AA 8.90a ± 0.98 8.95a ± 0.85 11.05a ± 2.22 10.76abc ± 3.08
Suc–CaLac–AA 11.57a ± 2.41 11.15ab ± 1.69 15.12b ± 1.81 13.52bc ± 3.22

The same letter on the same column means no significant difference by the Duncan test (p < 0.05).
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osmotic treatment with the lowest aw solution, Sac–CaLac–AA
(0.944), than by the Suc–AA (0.954) and Suc–CaLac (0.953) treat-
ments both with similar aw solution and, finally, by the Suc treat-
ment with the highest aw solution (0.962) (Fig. 3).

Regarding T2, while focusing on specific time points, most differ-
ences between treatments were insignificant. On the other hand,
when T2 was observed during the redistribution of water proton
compartments, trends similar to those observed for signal intensi-
ties were registered. In this respect, some aspects should be empha-
sized. In the treated tissues, the transverse relaxation times T2

assigned to cytoplasm and free spaces were, in general, very similar
to those of raw apples (Table 3). During the first two hours of pro-
cess in the Suc–CaLac solution, T2 assigned to vacuoles was greater
than those measured in other treatments and close to the raw value.
If the water losses are the greatest for this condition (Fig. 1), it is not
clear why vacuoles have the highest water mobility once concen-
tration of the vacuole solute content would be expected. A likely
explanation is that channels selectivity of the plasma and vacuole
membranes for several original cell substances would be different
for each osmotic treatment (Maurel, 2007; Peiter et al., 2005;
Tapken et al., 2013). In addition, osmotic solutions as well as con-
tact time can affect membrane integrity. Thus, the vacuoles and
cytoplasm solute composition and consequent water interactions
in these compartments could be different between treatments.

The fact that calcium can traverse both tonoplast and plas-
malemma membranes is not ignored. According to Peiter et al.
(2005), several classes of Ca2+ recently have been identified in
plant cells even though not all of the ion channels that underlie
these currents have been identified. These authors showed that
the TPC1 (‘two-pore channel 1’) protein, a non-selective channel
for Ca2+, encodes a class of Ca2+-dependent Ca2+-release channel
known as the slow vacuolar (SV) channel, and they demonstrated
that the TPC1 protein is relatively abundant in plant vacuoles. In
turn, the plasma membrane cation channels in plant cells have
been related to AtGLRs (A. thaliana glutamate receptors), proteins
that are members of an amino acid receptors family (Tapken
et al., 2013). The authors showed that they function as ligand-
gated and non-selective cation channels permeable to Ca2+.
Consequently, compositional changes involving calcium could
influence but not explain the higher water mobility because
molecules with low molecular weight have a high capacity to drop
water activity.

Still for Suc–CaLac treatments, T2 assigned to cytoplasm and
free spaces increased in relation to the raw material, though not
significantly (Table 3). This could mean once again slower compo-
sitional changes and modifications of water interactions because
calcium limits sucrose entry into the Cyt/FS, as observed by the
efficiency obtained from the Suc–CaLac treatment (Table 1).
Then, it would be expected that this compartment would have a
greater proportion of solutes from the original cell than sucrose
arising from the osmotic solution compared to other treatments
and, consequently, weaker water interactions than with sucrose
during early osmosis. Of course, as osmotic dehydration proceeds,
the water chemical potential in each compartment tends to equal
those of the osmotic solution.

For cell walls, water mobility practically did not change.
However, regarding intensity, the Suc–CaLac treatment promoted
a significant reduction in the water amount associated with the
wall biopolymers. Roy et al. (1994), investigating changes in the
distribution of the anionic binding sites in the cell walls of apples,
concluded that calcium could reduce fruit softening by strengthen-
ing the cell wall and limiting cell separation through a greater
degree of cross-links with pectic acid polymers. An important
observation of these authors is that these calcium bindings can
restrict access of hydrolytic enzymes or the resulting increase in
pH due to Ca could inhibit activity of the wall loosening enzymes
that possess acidic pH optima. Nevertheless, T2 times for the cell
wall did not present a pattern, so it would be necessary for more
registers because there were great variations between cells
(Table 3).

In conclusion, according to TD-NMR results, the Suc treatment
seemed to have a lower influence on the cellular compartmenta-
tion and functionality, so that a higher vacuole water population
and lower cytoplasm-extracellular spaces were observed in com-
parison with the other treatments. The Suc–CaLac and Suc–AA
treatments resulted in similar water populations of vacuoles
and cytoplasm. This highlights the presence of the vacuole com-
partmentation in tissues treated with Suc–AA (Appendix A),
although it was not visualized by neutral red staining
(Fig. 2d.1–d.3).
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Fig. 3. Peak intensity of the proton pools in different cellular compartments as a function of the osmotic dehydration time, in different osmotic solutions. All the intensities
were scaled so that the total signal from fresh samples (t = 0) equals 100. (a) Vacuole and cytoplasm plus free space; (b) cell wall. The same letter on the same column in the
auxiliary tables means no significant difference by the Duncan test (p < 0.05).
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4. Conclusions

Sucrose treatments preserved the viability and slightly affected
the apple cell structure during OD, as shown by a fluorescence
intensity which was comparable to fresh tissue, by a broad pres-
ence of red-stained vacuoles and by moderate changes in the water
distribution within the cells, according to TD-NMR.

CaLac in the sucrose solution contributed to extended cell via-
bility, and TD-NMR allowed detection of its influence on the cell
wall as the proton intensity reduced during the first two hours of
the process. In contrast, proton pools related to cell walls expanded
in all other treatments. CaLac also enhanced the OD efficiency,
which is associated with cell wall pore reduction due to calcium
pectate formation.

Only adding AA into the sucrose solution visibly affected the
cell membrane permeability by revealing the loss of viability of
protoplasts and capacity of retaining vital stain in vacuoles and,
simultaneously, the presence of vacuole compartmentation, which
was detected by TD-NMR and also by images captured in a high
resolution.

AA together with calcium strongly affect the tissue functional-
ity, showing no viability but still some stain retention by vacuoles,
and a remarkable water redistribution by vacuole shrinkage and
Cyt/FS swelling verified by TD-NMR. Plasmalemma was more sen-
sitive to Suc–CaLac–AA solutions than tonoplast. The presence of
AA reduced the process efficiency and enhanced Ca impregnation
in the four process hours, which were related to increase the cell
wall porosity and change the membrane permeability.
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Abstract 

The influence of the addition of calcium lactate (CaLac) and ascorbic acid (AA) to sucrose (Suc) 

osmotic solutions on osmotic dehydration kinetics and endogenous metabolic heat production of 

apple tissue was evaluated. The research activity was aimed at increase the understanding of mass 

transfer and endogenous metabolic phenomena of the tissue, in order to obtain minimally processed 

apples. The presence of calcium and ascorbic acid in solution affected the effective diffusivities 

attributed to the changes in cellular spaces, increasing spaces viable to solute transport. Metabolic 

heat production in samples treated in sucrose (Suc) solutions was slightly lower than in untreated 

samples and it was further reduced with calcium lactate (CaLac) addition. However, samples 

impregnated with ascorbic acid (AA) showed a higher heat production, as there was a metabolic 

response of the apple tissue to AA treatment. When combined with Ca, heat production decreased 

sharply to a level lower than untreated samples, except for those treated for 120 and 240 min 

(higher impregnation), achieving  the highest heat production values. These results confirm 

previous findings, suggesting that AA solution can promote a stress response on specific fresh-cut 

vegetable tissues, and an increase of their endogenous metabolic activity, confirmed by a higher O2 

consumption observed by head space gas determination.  

 

Keywords: Minimally processed apples, sucrose, ascorbic acid, calcium lactate, diffusion 

coefficients, endogenous metabolic activity 

 

1. Introduction 

Osmotic dehydration (OD) can be used as further processing for many purposes aiming to improve 

quality and stability of fruit previously subjected to peeling and cutting or for the production of 

semi-finished food destined to drying, freezing etc. Despite these applications, OD can present 

several advantages also for the production of minimally processed fruit. 

The dehydration or water removal from fresh tissue is usually flanked by its gain in solute (or 

solutes) that are present in the osmotic medium. This process can lead to a system of efficient water 

removal and at the same time to a modification of the soluble components of the food itself 

modifying/improving its sensorial characteristics. 

The type of solute used in the osmotic solution is a fundamental issue because it affects not only the 

dehydration kinetics and the process cost, but also the organoleptic and nutritional properties of the 

final product. Sucrose is considered by many authors as the optimal osmotic agent as it is associated 

with higher efficiency if compared to glucose (Saputra 2001), reducing enzymatic browning and 

loss of aroma (Cortellino et l. 2011; Lenart 1996; Qi et al.1998). 
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OD with calcium in solution has been used in an attempt to increase firmness of plant tissue and 

enhance the process efficiency, restricting the sugar gain and increasing the water loss (Ferrari et al. 

2010; Nikolaos et al. 2012; Pereira et al. 2006). Calcium has the ability of reinforcing cell walls by 

the cross linking of pectic polymers and hence, is able to reduce damages due to dehydration 

(Pereira et al. 2006). At the same time, when the concentration increases or as the treatment 

proceeds, a damage to cell membranes may occur, as reported by (Aninoet al. 2006). Moreover, 

calcium has been used in the osmotic solution as a method for obtaining nutritionally fortified 

products to increase consumer intake (Barrera et al. 2004; Silva et al. 2014b). 

The addition of ascorbic acid to the osmotic solution has been used for reducing enzymatic 

browning (Lenart et al. 1997) and for compensate the loss of ascorbic acid in the fruits during the 

dehydration process (Ramallo and Mascheroni 2010). 

When adding solutes to the osmotic medium, with the aim to obtain a minimally processed product 

to be stored at refrigeration temperature, it is important to consider that they may not affects only 

the compositional and nutritional profile, but also the tissue metabolism with consequences on the 

final product stability and shelf-life. 

Various authors have observed a reduction in the respiration rate of osmotically dehydrated 

mangoes, strawberries, pineapples and kiwifruit (Castelló et al. 2010; Moraga et al. 2009; Torres et 

al. 2008). Nevertheless, after few days of storage, the respiratory quotient was generally observed to 

increase, as a consequence of the development of fermentative routes, as an optional metabolic 

pathway trigger by osmotic stress. 

Salvatori and Alzamora (2000) found that a 25% w/w sucrose solution can cause vesciculation and 

rupture of cell membranes in apple tissue. According to (Mavroudis et al. 2004) only few layers of 

cells on the surface are expected to die upon an osmotic treatment while plasmolysis and shrinkage 

occur in the rest of the tissue. In a previous research,  the authors found that a 40% w/w sucrose 

treatment generally preserved the viability of apple cells, affecting only slightly the cell structure 

observed by fluorescence microscopy and the water distribution within the cells, as  observed by 

time domain nuclear magnetic resonance (TD-NMR) (Mauro et al. 2016).  

For different kind of fruit species, calcium has shown the ability to decrease the tissue metabolic 

activity and respiration rate (Castelló et al. 2010; Lester 1996; Luna-Guzmán et al. 1999), 

potentially enhancing the product stability during storage considering that a lower respiration rate 

may lead to a longer shelf life. In addition, Ca can affect membrane and cell wall structure and 

functioning. 

On the other hand, the presence of AA can cause serious injury to cellular structure, as it has been 

previously reported by Mauro et al. (2016) that observed a loss of the capacity to retain FDA 
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colorant due to damage to cell membranes, after exposition to OD in a sucrose-ascorbic acid 

solution. As the AA concentration increased a loss of vitality was detected. 

Rocculi et al. (2005) found a higher metabolic activity in potato tissue upon dipping treatments with 

citric and ascorbic acid, suggesting that AA solution can promote a stress response on specific 

fresh-cut vegetable tissues, and an acceleration of their endogenous metabolic activity, confirmed 

by a higher O2 consumption which was observed by head space gas determination. Limbo and 

Piergiovanni (2007) detected an increase in the respiration rate of sliced potatoes subjected to 

dipping treatment with 2.5% of AA. Actually, when AA concentration increased, respiration rate 

decreased.  

Isothermal calorimetry has been recognized as a useful tool to assess metabolic responses of various 

plant tissues to wounding stress (Wadsö et al. 2004), dipping treatment (Rocculi et al. 2005), 

thermal treatments (Gómez et al. 2004) and OD (Panarese et al. 2012). 

Generally, when a tissue is wounded, it ‘sends a signal’ and the plant starts a number of protective 

processes that lead to an increase of the produced metabolic heat (Wadsö et al. 2004). As reported 

by Gómez et al. (2004), after wounding, the energy released by the cell is due to the sum of the 

‘basic’ metabolic activity and that originating from wounding stress produced by the cells near the 

cut surface. Part of the processes that occur after wounding are design to membrane restoration and 

strengthening of cell walls by cells close to the site of injury (Rolle and Chism 1987). A progressive 

reduction in the metabolic heat production during OD in kiwifruit slices was observed by Panarese 

et al. (2012) using isothermal calorimetry. The authors suggested that the decrease was due to a 

reduction of cell viability induced by osmotic stress. Finally the metabolic response of fruit tissues 

to OD was found to depend on the botanical origin, on the osmotic pressure exerted (Ferrando and 

Spiess 2001; Mavroudis et al. 2004) and also on its physiological state, as a loss of membrane 

integrity upon ripening leading to a higher permeability made the tissue more sensitive to osmotic 

stress. 

This work evaluated the effects of the addition of calcium lactate (CaLac) and ascorbic acid (AA) to 

sucrose (Suc) osmotic solutions, on Ca and AA diffusivities and on raw endogenous metabolic 

response (respiration and heat production) of the tissue. Particularly obtained information can be 

very useful in order to investigate the potential stability of minimally processed apples. 

 

2. Materials and methods 

2.1. Raw materials 

30 kg of apples (Malus domestica Borkh) of the Cripps Pink variety, popularly known by the brand 

name Pink Lady (de Castro et al. 2008), were bought at the local market and stored at 5±1°C for 2 
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weeks, during which the experimental research was carried out. Apples were characterized by an 

average weight of 233.5±17.7 g and soluble solids content of 13.4±0.3 g/100g. From the central part 

of the fruits, cylindrical samples (8-mm diameter, 40-mm length) were cut with a manual cork borer 

and a manual cutter designed for the purpose. For osmotic treatments, commercial sucrose (refined 

sugar, Eridania, Italy), L-ascorbic acid (Shandong Luwei Pharmaceutical Co., China) and calcium 

lactate (calcium-L-lactate 5-hydrate powder, PURACAL® PP Food, Corbion PURAC, 

Netherlands) were used.  

2.2. Osmotic dehydration 

OD was carried out at 25°C using four different osmotic solutions (w/w): 40% sucrose (Suc), 40% 

sucrose + 4% calcium lactate (Suc-CaLac), 40% sucrose + 2% ascorbic acid (Suc-AA) and 40% 

sucrose + 4% calcium lactate + 2% ascorbic acid  (Suc-CaLac-AA). 

Approximately 100 g of apple cylinders were weighed for each treatment time (0.5, 1, 2 and 4 h) 

and placed in mesh baskets that were immersed in 4.5 kg of aqueous osmotic solution with a syrup-

to-fruit ratio of about 15:1 (w/w), to avoid changes in the concentration of the solution during the 

treatment. Through an impeller of a mechanical stirrer, the cylindrical baskets were continuously 

rotated. The rotational speed was experimentally determined to assure negligible external resistance 

to mass transfer. Two baskets were prepared for each process time. 

After each treatment time, samples were removed from the solution, rinsed with distilled water, 

blotted with absorbing paper, and weighed. 

Total and soluble solids contents were determined in triplicate immediately after treatment. Samples 

for calcium and ascorbic acid analyses were freeze-dried. 

After OD, cylinders were placed in glass sealed ampoules for the measurement of endogenous 

metabolic heat production with isothermal calorimetry during 16 hours, followed by the 

determination of O2 and CO2 on ampoule headspaces. 

2.3. Analytical methods 

Moisture content of fresh and osmotically dehydrated samples was determined gravimetrically, in 

triplicate, by drying cylindrical apple samples at 70°C until a constant weight was reached.  

Soluble solids content was determined at 20°C by measuring the refractive index with a digital 

refractometer (PR1, Atago, Japan).  

2.3.1 Ascorbic acid 

Ascorbic acid was determined by HPLC analysis according to the method described by (Odriozola-

Serrano et al. 2007). Briefly, approximately 0.5 g of freeze-dried sample were added to 10 ml of 

meta-phosphoric acid (62.5 mM) and sulfuric acid (5 mM) solution, vortexed for 2 minutes and 

centrifuged at 10000g for 10 minutes at 4°C. The supernatant was opportunely diluted and filtered 
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through a 0.45 μm nylon filter. The HPLC system LC-1500 (Jasco, Carpi, MO, Italy) was equipped 

with a diode array UV/Vis detector. A reverse-phase C18 Kinetex (Phenomenex Inc., Torrance, CA, 

USA) stainless steel column (4.6 mm x 150 mm) was used as the stationary phase. A Jasco AS-

2055 Plus autosampler was used to introduce samples in the column. The mobile phase was a 

0.01% solution of sulfuric acid adjusted to a pH of 2.6. The flow rate was fixed at 1.0 mL/min at 

room temperature. Data were processed by the software ChromNAV (ver. 1.16.02) from Jasco. The 

ascorbic acid content was quantified at 245 nm through a standard calibration curve, set up using 

ascorbic acid solution between 0.5 to 30 ppm. The determination was carried out in triplicate. 

2.3.2. Calcium 

The calcium concentration was determined using a flame atomic absorption spectrophotometer 

(Model A Analyst 400, Perkin Elmer, Santa Clara, California, USA), using a lumina hollow cathode 

lamp (Perkin Elmer) based on the adapted methodology of AOAC (1995). Briefly, approximately 6 

g of freeze-dried untreated samples and 2 g of freeze-dried treated samples, were weighed in a 50 

ml glazed, porcelain crucible, placed in a muffle furnace and heated up to 550 °C until complete 

ignition. After cooling in desiccators, the ash were dissolved in 20 ml for  fresh samples or 30 ml 

for treated samples of HCl (0.1 M). The ash was dissolved, and then the solution was opportunely 

diluted with 0.1 M HCl. A calibration curve of absorbance versus ppm of calcium was set up using 

standard calcium solutions between 2 to 20 ppm. The determination was carried out in triplicate  

2.3.3. Metabolic heat production 

Two fresh cylindrical samples (8-mm diameter, 40-mm length) and three osmotically dehydrated 

samples were placed in 20 ml glass ampoule and sealed with a teflon coated rubber seals and an 

aluminum crimp cap. Three replicates for each sample were performed. The rate of heat production 

was continuously measured in a TAM air isothermal calorimeter (Thermometric AB, Järfälla, 

Sweden), with a sensitivity (precision) of ±10 μW (Wadsö et al. 2009). This instrument contains 

eight twin calorimeters in which each sample is inserted with its own reference, being that the 

measured signal is the difference between the sample signal and the reference signal. The reference 

has to be a material that does not produce any heat but is characterized by thermal properties similar 

to the sample. For this, water was chosen as the reference material and its quantity in each reference 

ampoule ( o
wm ) was previously determined based on the average composition of the samples and on 

the heat capacities (J⋅g−1⋅K−1) of the water ( wC ) and the total solids (TSC ), as the following 

equation: 

w

wwTSTSo
w C

mCmC
m

⋅+⋅=    (1) 
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where TSm  is the dry matter content (g), wm is the water content of the fruit sample (g) and the 

average heat capacity of the total solids of the apple samples was assumed to be 1 J g−1 K−1. The 

analysis was carried out at 10 °C for 16 h. 

2.3.4. Respiration rate 

Immediately after the ampoules discharging from the calorimeters, the O2 and CO2 percentages 

were measured in the ampoule headspaces by a check point gas analyzer O2/CO2 mod. MFA III S/L 

(Witt-Gasetechnik, Witten, Germany). The apparatus has a paramagnetic sensor for O2 and a mini-

IR spectrophotometer for CO2 detection. The instrument was calibrated with O2 and CO2 air 

percentages. 

Respiration rate was calculated as mg of consumed O2 (
2ORR ) or produced CO2 ( 2CORR ) h-1 kg fw-

1 according to the following equations: 

( )

TRmt

PVM
RR

head
head

⋅⋅⋅

⋅
−

⋅⋅
= 100

O%8.20 ,2
O

O
2

2
    (2) 

TRmt

PVM
RR

head
head

⋅⋅⋅

⋅⋅⋅
= 100

CO% ,2
CO

CO
2

2
   (3) 

where 
2OM and 

2COM refer to gases molar mass (g⋅mol-1), headV  represents the ampoule headspace 

volume (dm3), head,2O% and head,2CO% refer to molar gases percentages in the ampoule headspace 

at time t (h); m is the sample mass (g); R is the gas constant (8.314472 dm3 kPa K−1 mol−1), P is the 

pressure (101.325 kPa) and T is the absolute temperature (283.15K). 

 

2.4. Osmotic dehydration kinetics 

Mass transfer of water, sucrose, calcium and ascorbic acid during the osmotic process were 

modeled according to the empirical model proposed by Peleg (1988) and redefined by Palou et al. 

(1994), as follows: 

tkk

t
www ktkk

21
0,, +

−=−=∆    (4) 

where kw  is the mass fraction (g⋅g-1 total mass) of the k species: water, sucrose, calcium or ascorbic 

acid. The constants of the Peleg’s model are 1k  [s⋅(g⋅g-1 total mass)-1] and 2k  [1⋅(g⋅g-1 total mass)-

1]. This kinetic model permits, through the inverse of the two constants, to define the initial (t=0) 

rate of mass transfer ( )11 k  and the concentration value at equilibrium (t → ∞) conditions 

( )20 1 kxweq ±=  (Sacchetti et al. 2001). 
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Diffusivities of water, sucrose, calcium and ascorbic acid were also calculated based on the second 

Fick’s Law, considering diffusion coefficients and global densities approximately constants. For an 

infinite cylinder with radial componentr , the mass transfer is described by: 












∂
∂

+
∂

∂
=

∂
∂

r

w

rr

w
D

t

w kk
km

k 1
2

2

  (5) 

where kmD  is the effective diffusion coefficient (m2⋅s-1) of species k diffusing through the tissue 

medium, being the diffusivity of each component treated as the binary form of Fick’s Law (Cussler 

1984). The correspondent analytical solution, integrated along the cylinder ratio (a = 4×10-3 m) 

assumed as constant throughout the process is (Crank, 1975): 
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(6) 

where kw  is the average mass fraction of species k, 0,kw  is the mass fraction at initial time (t=0) 

and eqkw , represents the equilibrium concentration (on the surface) of each k component. 

 

2.5 Statistical Analysis and Fitting  

  The results were statistically evaluated using the analysis of variance (ANOVA) for each 

treatment and for each process time, with the sources of variation being the sample type and number 

of samples, and the Tukey post-hoc test being applied at the 5 % level of significance. 

The Peleg’s model and the analytical solution of the Fick’s Law were fitted to the experimental data 

by using the Levenberg-Marquardt algorithm (Marquardt 1963) for the least-square estimation of 

the non-linear parameters. This is a search method to minimize the sum of the squares of the 

difference between predicted and measured values. The algorithm calculates the set of parameters 

with the lowest residual sum of squares (RSS) and their 95% confidence interval. 

The fitting efficiency was evaluated by the determination coefficient (R2) and the relative root mean 

square error (RRMSE), which was calculated as equation (7): 
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3. Results and discussion 

3.1 Osmotic dehydration kinetics 
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The Peleg kinetic model (1988) was used as an empirical model to fit mass transfer parameter data 

of sucrose gain and water loss, over processing time. Constants of equation (1k and 2k ), their 

inverse and equilibrium concentrations obtained through Eq. 4 are reported in Table 1. 

 

Table 1. Kinetic model of water, sucrose, calcium and ascorbic acid transfer in each osmotic 
solution according to Peleg’s model  (eq. 4) and equilibrium content (g⋅g-1 total mass). 

Solution 1k  

(s) 
11 k × 103 

(s-1) 
2k  

(g⋅g-1) 
21 k × 103 

(g⋅g-1)-1 
2R  

RRMSE 
(%) 

eqkw ,  

(g⋅g-1) 

Water 

Suc 11.18 89.45 6.10 163.90 0.997 3.8 0.6802 

Suc-CaLac 9.12 109.70 5.68 176.09 0.997 3.1 0.6708 

Suc-AA 8.93 112.00 5.98 167.26 0.998 3.1 0.6832 

Suc-CaLac-AA 9.10 109.92 4.83 206.88 0.992 5.3 0.6428 

Sucrose 

Suc 14.51 68.92 6.92 144.54 0.998 3.8 0.1967 

Suc-CaLac 14.59 68.53 8.08 123.79 0.998 3.2 0.1759 

Suc-AA 11.49 87.05 8.13 123.03 0.980 8.60 0.1752 

Suc-CaLac-AA 17.36 57.62 6.25 160.02 0.979 12.0 0.2122 

Calcium 

Suc-CaLac 392.99 2.54 523.45 1.91 1.000 0.7 0.0019 

Suc-AA-CaLac 524.34 1.91 408.00 2.45 0.986 7.0 0.0025 

Ascorbic acid 

Suc-AA 85.44 11.70 81.48 12.27 0.986 5.9 0.0123 

Suc-AA-CaLac 104.72 9.55 68.83 15.53 0.994 4.8 0.0145 

 

The predictive capability of the model can be observed in Fig. 1, where eq. 7 was used to model 

mass transfer parameters for water (a), sucrose (b), calcium (c) and ascorbic acid (d). In all samples, 

water removal and solute uptakes followed the typical behaviour of osmotic processes characterized 

by a higher initial rate followed by a slower one (Sacchetti et al. 2001). 

In general, the model showed a good fit to experimental data, as high R2 values and low RRMSE 

were found (Table 1), confirming its suitability for describing mass transfer phenomena as already 

reported by Peleg (1988) and on other studies successively (Palou et al. 1994; Sacchetti et al. 2001). 

The initial rate of dehydration was increased by the presence of solutes in the solution compared to 

the only sucrose (higher 1/k1 values), but the equilibrium values showed contrasting behaviour, as 

the water equilibrium concentrations for Suc and Suc-AA osmotic solutions were very similar. As 

reported in Fig. 1a and 1b, the presence of calcium in both CaLac-Suc and CaLac-AA-Suc solutions 

promoted a higher water reduction compared to the Suc or Suc-AA solutions. With the combination 

of both solutes, water content was further reduced to 0.6428 g⋅g-1, that is related to a higher osmotic 
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potential due to the lower water activity of the ternary solution, as reported by Mauro et al. (2016). 

Actually, the aw of the OD solutions were 0.962 for Suc, 0.953 for Suc-CaLac, 0.954 for Suc-AA 

and 0.944 for Suc-CaLac-AA solutions. 

Conversely, although the AA solution showed a higher initial rate of water removal, the water 

concentration tends to be similar to those in Suc treatment. As OD proceeds and, the water 

equilibrium concentration of both treatments resulted very similar. 

Regarding sucrose content, the highest value of 1/k1 corresponds to the Suc-AA treatment, while 

1/k2 was maximised by the Suc-CaLac-AA solution, with the highest equilibrium value of 0.2122 

g⋅g-1. These trends can be observed in Fig 1 b, where only the Suc-CaLac treatment seems to inhibit 

the sucrose mass transfer during OD. In a previous work, calcium proved to enhance the efficiency 

of this process, increasing water loss and limiting sugar gain (Mauro et al., 2016). Calcium effect 

has been already observed in various fruit tissue subjected to OD in the presence of calcium salts, 

and it has been attributed to the reduction in cell wall porosity and to the formation of calcium 

pectate due to the interaction of the ion with pectic carboxylic groups (Mavroudis et al. 2012; 

Pereira et al. 2006; Silva et al. 2014a, b). 

Even though the sucrose impregnation has been the lowest in the Suc-CaLac treatment, the 

equilibrium content was similar to Suc-AA treatment, as reported in Fig 1 b, where the tendency of 

the two curves is to join in. 

Good impregnation of both Ca and AA were obtained, as shown by Fig. 1 c and d. When both 

solutes were present in the solution, the initial rates (1/k1) of CaLac and AA impregnation were 

lower but after two hours of process, the impregnation tended to rise. It can also be observed in 

Table 1, where the equilibrium concentration calculated on the basis of the parameter k2 were 

higher, showing how the quaternary solution enhanced the impregnation of those solutes. 

The addition of ascorbic acid may enhance the impregnation of other solutes by acidifying the 

solution and hence increasing the porosity of cell wall, as observed by Zemke-White et al. (2000). 

In addition in a previous work, Mauro et al. (2016), ascorbic acid added to sucrose osmotic solution 

caused severe damage on cellular membranes of apple cells, that lost its selectivity. Regarding 

Table 1, the worst fittings were always found when the osmotic solution contained AA, probably 

because the damages on the structure of cell walls and membranes promoted changes on the 

transport phenomena during the process. 
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Fig 1: Comparison between observed (obs) and calculated (calc) mass fraction of water (a), sucrose (b), calcium (c) and 
ascorbic acid (d) according to the Peleg’s model (eq. 4), in g⋅g-1 total mass, for the different treatments. 
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To better understand the influence of the solutes on the mass transfer kinetics, effective diffusion 

coefficients were calculated and are reported in Table 2. 

 

Table 2: Effective diffusion coefficients for water, sucrose (Suc), ascorbic acid (AA) and calcium (CaLac) 
calculated for the four osmotic solutions. 

 

mwD ,

×1010 

[m2⋅s-1] 

2R  
RRMSE 

(%) 

mSucD ,

×1010 

[m2⋅s-1] 

2R  
RRMSE 

(%) 

mCaD ,

×1010 

[m2⋅s-1] 

2R  
RRMSE 

(%) 

mAAD ,

×1010 

[m2⋅s-1] 

2R  
RRMSE 

(%) 

Suc 1.4 0.976 5.8 1.2 0.961 6.8 - -  - -  

Suc-CaLac 1.6 0.972 6.3 1.4 0.971 5.7 3.4 0.985 12.8 - -  

Suc-AA 1.8 0.980 4.9 1.9 0.979 8.1 - -  2.5 0.984 6.6 

Suc-CaLac-AA 1.4 0.973 6.9 0.9 0.951 7.5 2.0 0.984 6.5 1.7 0.982 5.4 

 

In the treatment with only sucrose, the effective water diffusion coefficients were slightly higher 

than the sucrose ones. This behaviour can be expected in a plant tissue in which the selective 

permeability of the membranes is preserved, because they reduce the transport of larger molecules 

such as sucrose through the cell tissue. Consecutively not all the space is available to sucrose 

transport, while water can diffuses throughout membranes and occupy all liquid phases of the plant 

cell (Mauro and Menegalli 2003). 

The addition of CaLac and AA had a variable and unexpected influence on diffusion coefficients. 

The osmotic solution containing 4% of CaLac promoted a slight increase of both water and sucrose 

diffusivity in comparison to Suc solution.  The water diffusion coefficient resulted still slightly 

higher than those found for sucrose, following the expected behaviour for preserved plant tissue. 

However, when Ca is present, the sucrose diffusion is limited and, thus, lower sucrose contents is 

observed during the process (Fig 1 b). However, this result is in disagreement with Silva et al. 

(2014a) that found a reduction of the diffusion coefficient for both water and sucrose due to the 

presence of 2% CaLac in the osmotic solution used for pineapple treatment. On the other side, 

increasing the concentration of CaLac in the solution from 2 to 4% promoted an increase of water 

and sucrose diffusivities, but still slightly lower than those found in treatment with the only sucrose 

solution. Also the sucrose diffusion coefficients were lower than water coefficients. Authors 

suggested a partial damage to the pineapple tissue structure because of the calcium effect on cellular 

membranes, that probably has occurred even in the present experiment. Moreover, the diffusion 

coefficients in pineapple dehydration were higher than those found in apples, probably because 

pineapple is characterized by a larger porous structure and a softer tissue compared to apple. It is 

important to point out that each tissue presents a specific OD response (Fernandez et al. 2004) 

reported a method based on the water and solute fluxes, for classifying mass transport as a function 
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of the tissue and observed different behaviours between the studied fruit tissues as a function of 

their individual internal texture and cellular organization. 

In addition, the differences between tissues also appear comparing the calcium diffusivities for 

apple treatment with those obtained by Silva et al. (2014a) for pineapples, which coefficients were 

lower than the formers. Observed variations were mainly related to the equilibrium concentration 

values obtained by the referred authors, which have used a different methodology that consists in 

analysing the sample composition after its exposure to the osmotic solution for a long equilibrium 

time. During these experimental essays the authors observed non-equilibrium behaviour of the 

calcium, evidencing the instability of these systems, attributing it to the activity of the pectin-methyl 

esterase, that is an important enzyme in pineapple. In the present work, the equilibrium data were 

obtained based on the four hours of processing. Hence they were not affected by any successive 

change, even though influence of the enzymes on this system is expected. As OD proceeds, 

damages on the tissue promoted by the solution components and/or by the dehydration should cause 

depolymerisation and solubilisation of pectins together with de-methylation by action of enzymes. 

If calcium ion is present, de-esterified pectin can bind calcium and produce calcium pectates. 

Consequently, Ca is immobilized by an irreversible reaction and thus equilibrium is not reached. 

Studies about ripening of apples affirm that the pectin-degrading enzymes such as pectin-

methylesterase, endo poly galacturonase and pectate lyase are very low in this fruit (Bonnin and 

Lahaye 2013). However, although other polysaccharide-degrading enzymes are likely involved in 

pectinolytic activities, these effects should be less intense in apples. 

When calcium is added to the osmotic solution, three phenomena are expected to affect the 

transport. First, the higher solute concentration increases the water chemical potential difference, 

increasing the water loss from the tissue to the osmotic solution, but diffusion coefficients should 

decrease because a more concentrated system is a limiting factor. 

The other response is related to the effect on membranes and cell wall of calcium, that can limit the 

solute transfer, as mentioned above, because it restricts the diffusion to spaces out of the cellular 

membranes. However, a third effect is related to calcium in excess, which can cause damages on the 

tissue, affecting firmness and membrane selectivity, as mentioned above in reference to Silva et al. 

(2014), that reported an increasing of diffusivities due to an increase of calcium concentration. 

Consequently, the balance between all these effects will result in concentrations and diffusivities 

sometimes unexpected because the solution composition and the kind of tissue can exert different 

effects on the OD efficiency. In addition, structure changes during the process in several ways: 

shrinkage diminishes the pore size and calcium pectate formation also influences the cell wall 

porosity. Because of these transformations, it is possible that the driving forces, represented by the 
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equilibrium concentrations on the solid surfaces, undergo modifications from the initial steps until 

the final OD. 

While Ca seemed to restrict in part the sucrose impregnation, the inverse was observed with AA. 

The addition of 2% ascorbic acid promoted a more intensive increase of the diffusion coefficients 

compared to the sucrose solution. However, water and sucrose diffusivities were similar, with the 

sucrose slightly above the water value. This indicates severe disruption and integrity losses by the 

tissue, making available all cellular spaces for water and solutes diffusion. Ascorbic acid presented 

higher diffusion coefficient than water and sucrose. Even though its molecular weight is lower than 

the sucrose one, the high value can also be related to assumptions. For instance, being this a 

multicomponent system, interferences between the mass fluxes, including other original solutes 

from apple, as well as shrinkage because of the water loss, were neglected. 

Conversely, diffusion coefficients for Ca and AA, in apple treated in AA-Suc and CaLac-Suc 

solutions, are higher than in CaLac-AA-Suc as it is expected when the osmotic solution 

concentration is higher. During the first part of the dehydration, Suc-CaLac-AA treatments shows a 

behaviour of water and sucrose contents that, after 2 hours, seems to change, with their contents 

tending to an equilibrium concentration more distant (Fig 1). This fact led to smaller diffusion 

coefficients than if they were calculated considering only 2 hours of process. A hypothesis is that 

damages on cell walls, after a long treatment time, have caused excessive impregnation. This 

behaviour was also observed for sucrose contents in tissue treated by Suc-AA, reinforcing the AA 

role on damages and consequent solute impregnation. 

 

3.2 Metabolic profiles 

Results of the total metabolic heat produced during 16 h at 10 °C, measured through isothermal 

calorimetry after osmotic treatments carried out for 0, 30, 60, 120 and 240 min, are represented in 

Fig. 2. Since the concentration of O2 and CO2 can also give useful information about tissue 

metabolism, after calorimetric analysis, the composition of the headspace of the vials was 

evaluated. The measured respiration rate (RRO2 and RRCO2) are presented in Fig 3. 

As a consequence of Suc treatment, a slight reduction in metabolic heat production (Fig. 2) 

proportional to treatment time until two hours of process, and a lower respiration rate compared to 

the fresh samples both in terms of CO2 produced and O2 consumed (Fig 3) were observed. A partial 

loss of cell viability could be expected after OD treatment, even if the osmotic solution 

concentration is very low (Panarese et al. 2012). In a previous experiment (Mauro et al. 2016), we 

found that cell viability was preserved in apple tissue subjected to OD treatment with 40% sucrose 

solution as observed by FDA staining technique that allows to determine plasma membranes 
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integrity. On the other hand, neutral red staining revealed the incidence of plasmolysis that could 

give a possible explanation to the decrease of the metabolic heat produced by the tissue. Salvatori 

and Alzamora (2000) found that a 25% w/w sucrose solution can cause vesciculation and rupture of 

cell membranes in apple tissue. According to Mavroudis et al. (2004) only few layers of cells on the 

surface are expected to die upon an osmotic treatment while plasmolysis and shrinkage occur in the 

rest of the tissue. 

 

 
Fig. 2: Total heat production (J/g) of fresh and osmotically dehydrated samples during 16 h at 10°C. 

 

The presence of calcium in the osmotic solution caused a further decrease of metabolic heat 

production. This result is in accordance with previous literature reports (Castelló et al. 2010; Luna-

Guzmán et al. 1999), and confirms the ability of calcium to slow down tissue metabolic activity and 

thus to enhance the stability of minimally processed fruit. Confirming calorimetric measurement, 

samples dehydrated Suc-CaLac solutions, showed slightly lower values of respiration rate (mainly 

in terms of 
2ORR ), indicating that the reduction of heat produced could be related to the reduction 

of the respiratory activity, but also to other kind of biochemical phenomena. 

Actually the effect of calcium on respiration has not been fully clarified yet but it has indeed been 

observed in various fruits, both whole and cut, together with a reduction of ethylene production and 

a general slowing down of ripening and senescence (Lester 1996; Saftner et al. 1999). In particular, 

different explanations have been put forward for the reduction of the respiration rate, a protective 
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osmotic effect due to the high salt concentration (Ferguson 1984), the indirect effect on substrate 

transport due to the alteration of membrane permeability (Bangerth et al. 1972), the formation of a 

transient barrier between fruit and atmosphere that hinders the gas exchange (Saftner et al. 1999), 

the inhibition of plant aquaporins, that regulate membrane permeability, causing an increase in the 

cytoplasmic ATP concentration that in turn remains available for other biochemical routes 

(Kinoshita et al. 1995) or the delay of senescence-related changes (Lester 1996). At the same time, 

an excess of calcium has been related to a hastening of senescence because of damages to the 

plasma membrane structure and functionality. 

 

 
Fig. 3: Respiration rates expressed as oxygen consumed (RRO2) and carbon dioxide produced (RRCO2), for 

treatment time of 30 min (smaller size symbol), 60 min, 120 min and 240 min (higher size symbol).  
 

Conversely, the presence of AA in the osmotic solution promoted a drastic increase of metabolic 

heat production as treatment time increased, up until 50% compared to the fresh sample. This 

increase can be probably attributed to the physiological stress caused to the tissue, as already 

observed for sliced potatoes (Limbo and Piergiovanni 2007; Rocculi et al. 2005). The damage to 

cellular structures promoted by osmotic AA solution can be mainly caused by its lower pH. 

Actually, at low pH, plasma membrane ATPases in the tissue increase the active H+ pumping to 

deal with excess of H+ uptake leading to an increase of the demand for respiratory energy. An 

ulterior pH decreases can cause also a decline in the respiration rates. 
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AA combined with Ca initially promoted a decrease of the heat production to a level lower than 

untreated samples but after 2 h, the metabolism rose sharply. This behavior suggests that during the 

first part of the treatment calcium acted as stabilizer and reduced the metabolic activity of the tissue 

but, as the treatment proceeded, a progressive damage to cellular structures occurred, probably 

related to the intake of AA. 

Conversely, for sample dehydrated in the presence of AA, both alone or in combination with 

CaLac, there was a noticeable change in the respiratory pathway, particularly in terms of increase of 

oxygen consumption in comparison with Suc and Suc-Ca samples. 

CO2 production was quite constant for all treatment times in AA samples, with a reduction of about 

25% compared to the fresh tissue, but higher compared to Suc and Suc-CaLac samples. On the 

other hand, noticeable RRCO2 decrease was verified in Suc-CaLac-AA condition, proportionally to 

treatment time. 

Respiratory quotient is an indicator of the respiration pathway adopted by tissues. The complete 

oxidation of glucose through the aerobic pathway produces an equal amount of CO2 as the O2 

consumed, so that the respiratory quotient is 1. Variations in the RQ may depend on a different 

substrate used for respiration, such as malate or long chain fatty acids, although generally, an 

increase in RQ indicates the onset of fermentative routes (Taiz and Zeiger 1998). However, 

according to (Makino 2013), RQ in the range of 0.7 to 1.3 could be considered indicator of aerobic 

respiration. Roughly, following this indication, in Figure 3 it was possible to identify which samples 

were characterized by aerobic metabolism. In our experiment, fresh sample had an RQ value of 1.5, 

while in Suc and Suc-CaLac, RQ values were lower and closer to 1, showing negligible anaerobic 

metabolism.  

Anaerobic metabolism can be prompted by either low oxygen or high carbon dioxide concentration 

in the environment, respectively lower than 2-5 % and higher than 4-5 % (Cortellino et al. 2015; 

Iversen et al. 1989). Although this values was never exceeded, in some samples, and in particular in 

the fresh one, after 20 h CO2 content was very close to this limit, and may have caused the 

development of some fermentative pathways leading to an imbalance between CO2 production and 

O2 consumption in the tissue that caused an increase of RQ. 

Thus, not considering the Fresh sample and sample Suc-CaLac that is very similar to Suc, only the 

sample treated with Suc-CaLac-AA seemed to have a non-aerobic response to the treatment, but 

only if applied for more than 30 min. 

As a consequence of OD, an increase of RQ was observed by Torres et al. (2008) and by Castelló et 

al. (2010) on mango and strawberry tissues. Anaerobic metabolism is often found in plant tissue as 

a physiological response to stress conditions, such as dehydration, as an optional metabolic pathway 
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Torres et al. (2008). While oxygen diffusion through the tissue decreases because of structural 

alteration of the cells as the treatment proceeds, generally an increase of CO2 production has been 

observed by these authors. The oxygen consumed was attributed to the effort of some enzymatic 

systems to react to the stress caused by the osmotic treatment (Lewicki et al. 2001). Conversely, 

Moraga et al. (2009) did not find changes due to calcium lactate presence in the RQ of osmo-

dehydrated grapefruit although the respiration rate generally decreased. 

In samples dehydrated in the presence of AA, a lower RQ was calculated and was found to decrease 

slightly by increasing treatment time between 0.72 and 0.64 (data not shown). The combination of 

sucrose and ascorbic acid showed to cause cellular damage to the tissue, the effect on plasmalemma 

and tonoplast was different and not clear but a strong influence on tissue functionality was 

definitely observed (Mauro et al. 2016). When both AA and CaLac were used, the RQ decreased 

sharply as the dehydration proceeded, from 0.59 to 0.09. This decrease is mainly due to the higher 

oxygen consumption observed compared to CO2 production. 

It is important to underline that the variation of the gas composition in the sample headspace could 

be due not only to the respiratory metabolism of the tissue but also to the presence of other 

enzymatic reactions. According to Igual et al. (2008) this consumption of O2 can be considered as 

‘‘apparent” respiration rate. Because in plant tissue, molecular oxygen can be used as substrate by 

many enzymes, it can contribute to the ‘‘apparent” respiration rate if measured in terms of oxygen 

consumption, but not in terms of production of CO2 (Taiz and Zeiger 1998). In this direction, the 

effect of sugar, calcium and ascorbic acid on the complexity of fresh tissue enzymatic activity has 

to be taken into account. 

 

4. Conclusions 

The investigated osmotic dehydration treatments showed different effects on the product, both in 

terms of mass transfer phenomena during processing and metabolic activity of the apple tissue. The 

presence of calcium and ascorbic acid affected the effective diffusivities attributed to the changes in 

cellular spaces, increasing spaces viable to solute transport. Metabolic heat production in samples 

treated in sucrose solutions was slightly lower than in untreated samples and it was further reduced 

with calcium lactate (CaLac) addition. However, samples impregnated with ascorbic acid (AA) 

showed a higher heat production, as there was a metabolic response of the apple tissue to AA 

treatment. When combined with Ca, heat production decreased sharply to a level lower than 

untreated samples, except for those treated for 240 min (higher solid gain), which showed the 

highest heat production values. These results confirm previous findings, suggesting that AA 

solution can promote a stress response on specific fresh-cut vegetable tissues, and an increase of 
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their endogenous metabolic activity, confirmed by a higher O2 consumption observed by head space 

gas determination.  

In order to clarify the effect on enzymatic activity in apples osmotically dehydrated in sucrose, 

calcium and ascorbic acid osmotic solutions and the real influence of these phenomena on 

respiration pathways, further studies are needed, coupling the calo-respirometric approach with 

metabolomic analytical techniques. 
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Abstract 

Pulsed electric field (PEF) treatments can induce metabolic stress responses in plant tissue as 

function of the applied conditions. This study highlighted the metabolic effects of reversible and 

irreversible electroporation in fresh-cut apple tissue by adjusting the electric field strength to 100, 

250 and 400 V/cm. Metabolic heat, O2 and CO2 gas analysis along with metabolomics were 

employed to jointly evaluate the gross and specific PEF-induced effects after 24 h at 10 °C. 

Each tested electric field strength influenced the metabolic response, however, marked changes 

were registered when the threshold of electroporation was exceeded at 250 and 400 V/cm. A drop 

of metabolic heat and respiration rate was observed as a probable consequence of the loss of the cell 

viability, anaerobic respiration pathways were noticeably lowered while GABA metabolism was 

activated. Conversely, minimal modifications of the metabolism heat and metabolites 

concentrations were noticed when 100 V/cm were applied. 

 

Industrial relevance 

Metabolic response of fresh-cut fruit and vegetables as function of the manufacturing process is a 

fundamental aspect directly related to the shelf life of the final products. Pulsed electric fields 

(PEF), as well as other innovative technologies, can induce undesired effects on tissue metabolism 

that might limit the industrial application. Furthermore, the analytical methods used in the present 

work provide useful tools for the optimization of the PEF treatment conditions for fresh-cut 

manufacturers. 

 

Key words: PEF; Apple tissue; Isothermal calorimetry; Respiration rate; HR-NMR; Metabolomics 

 

1. Introduction 

Pulsed electric field (PEF) technology is a non-thermal process which has recently demonstrated an 

increasing interest in the food field. The application of high electric fields between two electrodes 

can be exploited for different goals, for instance to enhance mass transfer phenomena (Donsì, 

Ferrari, & Pataro, 2010; Puértolas, Luengo, Álvarez, & Raso, 2012; Taiwo, Angersbach, & Knorr, 

2002) or to inactivate microorganisms (González-Arenzana, et al., 2015; Timmermans, Groot, 

Nederhoff, van Boekel, Matser, & Mastwijk, 2014). The mechanism of action includes the creation 

of pores due to the application of electric fields high enough to induce a potential difference of 

approximately 0.2 V across the cell membrane (Teissie, Eynard, Gabriel, & Rols, 1999). In a 

second step, pores can expanse and aggregate and, once the external electric field is removed, they 

can reseal (Vorobiev & Lebovka, 2009). The extent of the process, also known as electroporation, 
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strongly depends on the applied process parameters such as electric field strength, number and 

shape of pulses, their width and frequency. Indeed, different goals and industrial applications can be 

achieved by adjusting the treatment conditions (Barba, et al., 2015).  

The effect of PEF in plant tissues has been studied by several techniques according to the desired 

objective: example are the release of valuable compounds (Carbonell-Capella, Buniowska, Esteve, 

& Frígola, 2015; Luengo, Álvarez, & Raso, 2013), extraction yield (Bazhal, Lebovka, & Vorobiev, 

2001), changes in colour and texture (Lebovka, Praporscic, & Vorobiev, 2004; Wiktor, Schulz, 

Voigt, Witrowa-Rajchert, & Knorr, 2015). Moreover, methods have been developed to indirectly 

evaluate the extent of electroporation based on electrical impedance (Angersbach, Heinz, & Knorr, 

2002; Ivorra, 2010; Lebovka, Bazhal, & Vorobiev, 2002), microscopy (Fincan & Dejmek, 2002) 

and nuclear magnetic resonance (Dellarosa, et al., 2016).  

Pulsed electric fields, by acting at the level of membranes, can also deeply affect the cell activities. 

As a consequence, metabolic stress responses of cells can be induced and lead to undesired effects 

on the quality of the final products. This might limit the application of PEF in fresh-cut products. 

Generally, fresh cut fruit and vegetables undergo to minimal processing, such as peeling, cutting or 

pre-treatment with different solutions (Mauro, et al., 2016; Santagapita, et al., 2013) which, 

nevertheless, provokes metabolic responses (Rocculi, et al., 2012). In this contest, the application of 

PEF can, from one side, ease the mass exchange between the outer solution and the tissue, anyway, 

from the other side, lead to trigger further stress responses. To the best of our knowledge, few 

works have been focused on the metabolic aspects induced by PEF in postharvest fruit and 

vegetable products (Galindo, et al., 2009; Galindo, Wadsö, Vicente, & Dejmek, 2008).  

Fresh-cut products are metabolic active tissues, hence, they produce heat as a function of both the 

normal cell activities and technological processes applied. Thermal power and heat can be 

continuously monitored by isothermal calorimetry and this gives rise to gross values of the cell 

metabolisms (Galindo, Rocculi, Wadsö, & Sjöholm, 2005; Wadsö & Galindo, 2009). Interestingly, 

whether the sample conditions are standardized, a direct evaluation of the effects of the 

technologies can be carried out (Panarese, et al., 2012; Tappi, et al., 2014). Moreover, the 

measurement of the heat is often coupled with the analysis of the consumed O2 and produced CO2 

which allow clarifying whether other non-aerobic metabolisms are activated (Cortellino, Gobbi, 

Bianchi, & Rizzolo, 2015).  

Beside analytical methods that estimate the overall stress response, the metabolic profiling by 

means of high-throughput techniques is a comprehensive analysis of the soluble metabolites, i.e. the 

metabolome (Wishart, 2008). This approach has been successfully applied for food quality control, 

health and nutritional purposes, fingerprinting, including traceability and authenticity, and, recently, 
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to assess and backwardly adjust technological processes (Trimigno, Marincola, Dellarosa, Picone, 

& Laghi, 2015). To the purpose, specific multivariate analytical tools need to be developed and 

tailored to discriminate the effects of the applied technologies on precursors, intermediates and 

products of different metabolic pathways (Laghi, Picone, & Capozzi, 2014).  

The objective of the present work was to assess the metabolic response of fresh-cut apples upon 

pulsed electric field treatments. Three different levels of electric field strength, 100, 250 and 400 

V/cm were studied because they are known to produce both reversible and irreversible 

electroporation effects on cell membranes in apple tissue (Dellarosa, et al., 2016). A comprehensive 

evaluation by means of a multianalytical approach based on calorimetry, gas analysis and 

metabolomics was chosen to complementary describe gross alteration on metabolic activities and 

specific fine changes in metabolites 

composition. High resolution 1H nuclear magnetic resonance (HR-NMR) was employed for the 

analysis of the metabolic profiling together with a novel non-targeted statistical tool based on sparse 

Partial Least Square Discriminant Analysis (sPLSDA) and Linear Discriminant Analysis (LDA). 

 

2. Material and methods 

2.1 Raw material 

Apples (Malus domestica, cv Cripps Pink) were purchased at a local market and stored at 2 ± 1 °C 

for three weeks, during which all the experiments were conducted. Before experiments, apples were 

kept at room temperature for 2 h. Raw material had an average moisture content of 83.5 ± 0.5 g and 

soluble solid content of 13.5 ± 0.5 g per 100 g of fresh product. Cylindrical samples (8 mm 

diameter and 10 mm length of an average weight of 1 g) were obtained from apple parenchyma by 

cutting with a manual cork borer and a scalpel. Eight cylinders from each fruits have been used for 

the experiments. 

 

2.2 Pulsed electric field (PEF) treatments 

PEF were applied to apple samples using an in-house developed pulse generator equipment based 

on capacitors as energy tank and controlled by MOSFET. Briefly, 60 monopolar pulses of near-

rectangular shape, fixed pulse width of 100 ± 2 µs and repetition time of 10.0 ± 0.1 ms were chosen, 

according to the experimental conditions used by Dellarosa et al. (2016). PEF treatments were 

conducted at 20 °C in a 30 × 20 × 20 mm (length × width × height) chamber equipped with two 

stainless steel electrodes with an active contact surface of 20 × 20 mm2. For each trial, 12 apple 

cylinders were arranged within the two circle sides parallel to the electrodes and the chamber was 

filled up with tap water (conductivity at 25°C of 328 ± 1 µS cm-1) with a final product-to-water 



5 

 

ratio around 1:1 (v/v). Applied current and voltage values were measured by a digital oscilloscope 

(PicoScope 2204a, Pico Technology, UK), connected to the equipment and a personal computer. 

Four samples groups, including control, were obtained by treating apple cylinders with a voltage of 

300, 750 and 1200 V to the electrodes. These conditions led to the average electric field strengths of 

100, 250 and 400 V/cm in the chamber. However, the real voltage values, calculated by equivalent 

circuits on the circle sides of the apple cylinders parallel to the electrodes, were dissimilar due to the 

simultaneous presence of tap water and apple cylinders between the electrodes. Consequentially, 

treatments at the average field strengths of 100, 250 and 400 V/cm gave rise to real values of 115, 

245 and 275 V/cm, respectively. As commonly accepted throughout the literature, in the present 

work the treatments and the sample names were referred to the average electric field strengths. 

 

2.3 Metabolic heat 

Three fresh cylindrical samples (about 3 g) were placed in 20 mL glass ampoule and sealed with a 

teflon coated rubber seals and an aluminium crimp cap. For each sample, two replicates for three 

independent treatments were analysed. A TAM air isothermal calorimeter (TA Instruments, New 

Castel, USA) with a sensitivity (precision) of ±10 μW was used to measure the heat production. 

This instrument contains eight twin calorimeters in which each sample is coupled with its own 

reference (Wadso & Gomez Galindo, 2009). Water was chosen as reference material, the quantity 

was calculated according to Panarese et al. 2012 The analysis was carried out at 10 °C for 24 h, 

baseline were recorded before and after each measurement. Specific thermal powers (mW g-1) were 

calculated according to Galindo, Wadsö, Vicente & Dejmek (2008).  

 

2.4 Respiration rate 

The concentration of O2 and CO2 (%) were measured in the ampoule headspaces by a gas analyzer 

(MFA III S/L gas analyzer, Witt-Gasetechnik, Witten, Germany) at the end of the calorimetric 

measurements, and on other “twin” ampoules with samples treated at the same conditions, stored in 

the dark for the same period of time (24 h) at the same temperature (10°C), for a total of 18 

repetitions for sample. Respiration rate was calculated as mg of consumed O2 (RRO2) and produced 

CO2 (RRCO2) kg-1 h-1, according to the following equations: 

 

 
RRO 2 =

mm O2
⋅ Vhead ⋅ (20.8− %O2,head )

100
⋅101 .325

t ⋅ m ⋅ R ⋅ 283
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where mmO2 and mmCO2 refer to gases molar mass (g mol-1), Vhead represents the ampoule 

headspace volume (dm3), % O2,head and % CO2,head refer to gases percentages in the ampoule 

headspace at time t (h); m is the sample mass (kg); R is the gas constant (8.314472 dm3 kPa K−1 

mol−1), P is the pressure (101.325 kPa) and T is the absolute temperature (283 K). 

 

2.5 Metabolomics 

2.5.1 High resolution 1H nuclear magnetic resonance (HR-NMR) 

Apple cylinders were collected after 24 h at the same experimental conditions applied for metabolic 

heat and respiration rate analysis (stored in the dark at 10°C). For each sample, three of them (about 

3 g) were squeezed until an aliquot of 1 mL was obtained for each sample, for a total of 36 

repetition per sample. Afterwards, samples were centrifuged at 21380 ×g and 4°C for 20 min in an 

Eppendorf tube, 700 µL of the supernatant was collected and added to 70 µL of 10 mM TSP (3-

TrimethylSilyl-Propanoic-2,2,3,3-d4 acid sodium salt) in deuterium oxide with the addition of 

sodium azide at the final concentration of 0.04 % to prevent microbial activities. Samples were 

frozen at -20 °C until analysis when they were thawed and successively centrifuged at 21380 ×g 

and 4°C for 20 min to further remove impurities. Finally, the supernatant was placed in a 5-mm 

internal diameter NMR tube for metabolomic analysis. 
1H spectra were recorded at 298 K with an Avance III spectrometer (Bruker, Italy) operating at a 

frequency of 600.13 MHz. Residual water signal was suppressed using the NOESY sequence. Each 

acquisition included 32 K data points over 7796 Hz spectral width and 128 scans while the 90° 

pulse time was calculated for each acquisition. Spectra were pre-treated using TOP SPIN 3.0 

software (Bruker, Italy), by alignment towards TSP signal and the line broadening of 0.3. The 

principle of reciprocity (Hoult, 2011) was used to normalize each spectrum, so that quantitative 

results could be obtained. Using citric acid as external standard high linearity (R2=0.9997) was 

found in the range of 0.01 - 800 mM. A total of 144 NMR spectra, homogeneously distributed 

among the four sample groups, were acquired and exported for further data analysis. 

 

2.5.2 Data pre-treatment and analysis 

HR-NMR spectra were subjected to a drift and baseline corrections, carried out in R statistical 

software (R Foundation for Statistical Computing, Vienna, Austria), as reported by De Filippis et al. 

(2015). Signals of the spectra were manually integrated resulting in 43 protons peaks belonging to 

alcohols, amino acids, organic acids, sugars and other secondary metabolites. The obtained 144 

RRCO 2 =
mm CO 2

⋅ Vhead ⋅ %CO 2,head

100
⋅101 .325

t ⋅ m ⋅ R ⋅ 283
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(samples) × 43 (metabolites) matrix was scaled and centred before undergoing to multivariate 

statistical analysis. 

To gain insight into metabolic changes which occurred upon PEF treatments, two chemometric 

analysis, the Principal Component Analysis (PCA) and sparse Partial Least Square Discriminant 

Analysis (sPLSDA) followed by Linear Discriminant Analysis (LDA) were employed. The R 

packages ‘mixOmics’ and ‘MASS’ were used to the purpose (Lê Cao et al., 2011). The approach 

based on sPLSDA-LDA was chosen because it is an embedded chemometric method which allows 

to both find correlation between predictors and response classes, while simultaneously sort and 

selection of the relevant variables (Mehmood et al., 2012). This powerful tool was used to evaluate 

the changes in the metabolic profiles as a consequence of the different technological treatments and, 

at the same time, to focus the discussion on the few metabolites significantly affected by PEF. 

The analytical process included the splitting of the 144 samples spectra into training and test sets, 

accounting for 70% and 30 % respectively. The training set was used to build the sPLSDA model, 

validated through the M-fold validation step (M = 10), which also optimized the selection of latent 

variables and metabolites, as a function of the error rate. Afterwards, the test set was employed as 

independent dataset to verify the performance of the built model. A thousand models were 

iteratively trained and tested by randomly dividing training and test sets to enhance the robustness 

of the analysis. Finally, the class prediction errors over the repetitions were expresses, scaled to the 

unit, as incorrect assignments in the confusion matrix. In parallel, the metabolites arisen from the 

multivariate analysis were considered as important whether their mean VIP (Variable Importance in 

Projection) value was higher than one and their frequency in the model was higher than 70 % 

(Chong and Jun, 2005). 

 

2.6 Statistical analysis 

Significant differences between control and PEF-treated samples were evaluated by the analysis of 

variance (ANOVA) and Tukey’s multiple comparisons at the significance level of 95 % (p<0.05) 

implemented in R statistical software (R Foundation for Statistical Computing, Vienna, Austria). 

All the experiments were repeated at least six times and results were expressed as mean ± standard 

deviation of replications. 

 

 

 

 

 



 

3. Results and discussion 

3.1 Changes in electrical resistivity

 

Fig. 1. Resistivity of the apple samples calculated using equivalent circuits on the first (left bar) and the last
pulse of the 60 pulses train series for each electric field strength. Values are means ± standard
differences between means with the same letter are not significant at p<0.05

 

The effect of electroporation on apple tissue was primarily observed by means of the 

changes of the material during the treatments

by equivalent circuits, was a function of both the average electric field strengths applied between 

the electrodes and the treatment time

beginning and at the end of the PEF treatment, respectively

taking into account the first (left bar) and the last pulse (right bar) of the trains.

tissue linearly decreased from about 4900 

field strength was increased from 100 V/cm to

application of the first pulse. Nevertheless

highlighted a significant decrease of the resistivity 

one. This changes suggested that the two highest electric field strengths irreversibly altered the 

structure of the tissue while at 100 V/cm the electroporation

the cells during the treatment. This confirm

the same treatment conditions, were studied by time domain nuclear magnetic resonance (Dellarosa 

et al., 2016). The loss of plasma membrane selectivity at average electric field strength higher than 

150 V/cm caused the leakage of the cellular solutions toward the extracellular spaces which 
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lectrical resistivity: measurement of electroporation reversibility

 
Resistivity of the apple samples calculated using equivalent circuits on the first (left bar) and the last

pulse of the 60 pulses train series for each electric field strength. Values are means ± standard
een means with the same letter are not significant at p<0.05. 

effect of electroporation on apple tissue was primarily observed by means of the 

during the treatments. The electrical resistivity of apple tissue, determined 

equivalent circuits, was a function of both the average electric field strengths applied between 

treatment time, i.e. the considered pulse. Fig 1 shows the 

at the end of the PEF treatment, respectively, calculated, for each field strength

taking into account the first (left bar) and the last pulse (right bar) of the trains.

from about 4900 Ω cm to around 2900 and 1300 Ω

field strength was increased from 100 V/cm to 250 and 400 V/cm, respectively,

Nevertheless, solely the samples treated at 250 and 400 V/c

hted a significant decrease of the resistivity when the first pulse was compared to

suggested that the two highest electric field strengths irreversibly altered the 

100 V/cm the electroporation effects were reversibly

This confirms a previous work where the structural change

were studied by time domain nuclear magnetic resonance (Dellarosa 

of plasma membrane selectivity at average electric field strength higher than 

150 V/cm caused the leakage of the cellular solutions toward the extracellular spaces which 

: measurement of electroporation reversibility 

Resistivity of the apple samples calculated using equivalent circuits on the first (left bar) and the last (right bar) 
pulse of the 60 pulses train series for each electric field strength. Values are means ± standard deviations (n=16) and 

effect of electroporation on apple tissue was primarily observed by means of the resistance 

resistivity of apple tissue, determined 

equivalent circuits, was a function of both the average electric field strengths applied between 

shows the resistivity at the 

for each field strength, 

taking into account the first (left bar) and the last pulse (right bar) of the trains. The resistivity of the 

 cm to around 2900 and 1300 Ω cm when the electric 

, respectively, upon the 
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suggested that the two highest electric field strengths irreversibly altered the 

ere reversibly recovered by 

a previous work where the structural change of cells, at 

were studied by time domain nuclear magnetic resonance (Dellarosa 

of plasma membrane selectivity at average electric field strength higher than 

150 V/cm caused the leakage of the cellular solutions toward the extracellular spaces which 



 

probably contributed to the decrease of the resistivity during the pulsation

Knorr, 2000; Vorobiev & Lebovka, 2009

that, although different field strengths

irreversibly damaged showed a change in 

 

3.2 Heat production and respiration rate

 

Fig. 2. Specific thermal power of apple samples during 24 h of analysis at 10 °C (A), each thermogram is an
six replicates. CO2 production (RRCO2) 
 

Fresh apple is a metabolic active tissue, which produces heat and CO

consequence of the respiration activities. In the absence of microbial growth on the sample, the 

metabolic heat production of fresh

activity and wounding response (Rocculi, et al., 2012; W

9 

probably contributed to the decrease of the resistivity during the pulsation (An

Knorr, 2000; Vorobiev & Lebovka, 2009). Similarly, in potato tissue Galindo et al. (2009) 

different field strengths led to the electroporation of the cells

irreversibly damaged showed a change in resistivity. 

Heat production and respiration rate: gross metabolic response of the tissue

 
. Specific thermal power of apple samples during 24 h of analysis at 10 °C (A), each thermogram is an

six replicates. CO2 production (RRCO2) vs. O2 consumption (RRO2) during 24 h at 10 °C (B).

Fresh apple is a metabolic active tissue, which produces heat and CO2 while consuming O

consequence of the respiration activities. In the absence of microbial growth on the sample, the 

metabolic heat production of fresh-cut fruit is mainly due to the sum of the normal respiration 

activity and wounding response (Rocculi, et al., 2012; Wadsö, et al., 2009; Wadsö, Gomez, 

Angersbach, Heinz, & 

Galindo et al. (2009) found 

led to the electroporation of the cells, only samples 

: gross metabolic response of the tissue 

. Specific thermal power of apple samples during 24 h of analysis at 10 °C (A), each thermogram is an average of 
vs. O2 consumption (RRO2) during 24 h at 10 °C (B). 

while consuming O2, as a 

consequence of the respiration activities. In the absence of microbial growth on the sample, the 

cut fruit is mainly due to the sum of the normal respiration 

adsö, et al., 2009; Wadsö, Gomez, 
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Sjöholm, & Rocculi, 2004) upon cutting and further treatments, for instance PEF (Galindo et al., 

2009).  

The average thermograms acquired by means of isothermal calorimetry of PEF-treated samples at 

different field strengths are shown in Fig. 2a. A clear difference between samples treated at 250 and 

400 V/cm was noticed when compared to both 100 V/cm and control samples. The lowest field 

strength seemed to induce a stress response in the tissue possibly ascribable to both the recovery 

activity due to the reversible alteration of plasma membrane (Vorobiev & Lebovka, 2008) and the 

subcellular changes, in particular, the water migration from vacuole to cytoplasm (Dellarosa et al., 

2016). 

The average metabolic heat production was calculated by integrating the metabolic heat profiles. 

The first 4 h of analysis were excluded in order to prevent the influence of the initial disturbance 

due to sample loading and conditioning, hence values reported in Table 1 refer to 20 h at 10°C.  

 

Table 1. Means values of the metabolic heat and respiration rates during 24 h at 10 °C. 

 
Metabolic heat 

(J kg-1 h-1) 
RRO2 

(mg kg-1 h-1) 
RRCO2 

(mg kg-1 h-1) 
Control 82.79 ± 14.69 a 7.39 ± 0.39 a 16.93 ± 3.60 a 
100 V/cm 94.46 ± 22.35 a 8.15 ± 0.88 a 18.83 ± 1.65 a 
250 V/cm 30.22 ± 6.73 b 3.17 ± 0.70 b 5.77 ± 2.25 b 
400 V/cm 23.78 ± 5.21 b 2.76 ± 0.45 b 3.27 ± 1.59 c 
RRO2: O2 respiration rate (O2 production). RRCO2: CO2 respiration rate (CO2 consumption). Values are means ± 
standard deviations (n=6 for metabolic heat, n=18 for O2 and CO2 respiration rates) and differences between means with 
the same letter are not significant at p=0.05. 
 

It is worth observing that significant differences were only found when irreversible electroporation 

took place. At 250 and 400 V/cm the metabolic heat dropped 2.5-3.5 times in comparison to the 

control as a consequence of the likely loss of the cell viability due to the irreversible membrane 

poration. In this direction, PEF led to a similar effect on heat production to that previously observed 

as a consequence of different stabilizing treatment on fresh vegetable tissue. Indeed, Tappi et al. 

(2014) found a significant decrease of metabolic heat when fresh-cut apple were treated by cold gas 

plasma and a direct correlation of the effect with the treatment intensity. Nevertheless, in contrast to 

atmospheric gas plasma, PEF is known to produce more homogeneously distributed effects through 

the material (Parniakov, Lebovka, Bals, & Vorobiev, 2015), not only limited to the surface, 

explaining the higher inhibition of heat production. Similarly, other studies regarding different 

fresh-cut vegetable subjected to more traditional treatments such as blanching (Gómez, Toledo, 

Wadsö, Gekas, & Sjöholm, 2004) and osmotic dehydration (Panarese et al., 2012) showed a partial 
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reduction of metabolic activity proportionally to the treatment parameters. Conversely to other 

treatments, the main effect of PEF on cell processes, at the present treatment conditions, is only 

ascribable to the alteration of the membrane permeability and functionality, while the direct enzyme 

inactivation is negligible. Indeed, according to several authors finding, a significant decrease of 

enzymes activities only occurred when electric field strength higher than 5 kV/cm was applied 

(Giner, Gimeno, Barbosa-Cánovas, & Martín, 2001; Zhong, et al., 2007). 

Besides, the respiration rate was measured using a static method after 24 h at the same experimental 

conditions applied for the isothermal calorimetry measurements. Fig 2b and Table 1 show the 

results, including the statistical analysis. Accordingly, a marked decrease of both O2 consumption 

and CO2 production was observed upon PEF treatments at 250 and 400 V/cm. This confirmed the 

severe loss of viability of apple tissue caused by the irreversible electroporation. A significant 

difference was also noticed in the RRCO2 between the two highest field strengths, leading to the 

conclusion that the metabolic response was affected by the field strength even over the threshold of 

the irreversible electroporation. 

The aerobic cell respiration of fresh fruit produces 455 kJ per mol of O2 consumed, hence results 

obtained by calo-respirometric analysis could be compared (Wadsö et al. ,2009). However, because 

for metabolic heat production the first 4 h of analysis were excluded, in order to obtain comparable 

data, the O2 consumed during that interval was measured in a parallel experiment and RRO2 data 

adjusted consequentially. Results showed that the first 4 h accounted for the 27.0 ±0.8 % of the total 

O2 confirming the non-linear consumption throughout 24 h highlighted in previous works (Tappi, 

et al., 2014; Tappi, et al., 2016; Torrieri, Cavella, & Masi, 2009). Metabolic heat and RRO2 were 

found linearly correlated (R2 = 0.9994), nevertheless, O2 consumption calculated from metabolic 

heat was found to be lower, in all the samples, with a bias spanning from 0.50 to 0.75 mg kg-1 h-1. 

The achieved difference was attributed to the wounding response as consequence of both cutting 

(Wadsö, et al., 2004) and PEF treatments (Galindo, et al., 2008). 

Taking into account the respiration quotient, i.e. the ratio between RRCO2 and RRO2, all the 

samples showed values higher than 1. In particular, those observed for control and treated samples 

at 100 V/cm were the highest, with similar scores around 2.3. Several authors pointed out that the 

anaerobic processes were prompted by either low oxygen or high carbon dioxide conditions, 

respectively lower than 2-5 % and higher than 4-5 % (Cortellino, et al., 2015; Iversen, Wilhelmsen, 

& Criddle, 1989; Yearsley et al., 1996). Even though the recorded O2 values around 18 % and the 

highest CO2 level around 4 % stood below the  anaerobic threshold reported in literature, the high 

respiration quotients suggested that metabolic pathways different from the aerobic respiration were 
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triggered. In order to clarify the metabolic response of fresh-cut apples upon PEF treatments, 

samples were collected and analysed by means of NMR-based metabolomic approach. 

  

3.3 Metabolic profiling by HD-NMR: specific metabolic response of the tissue 

The metabolic profiles of the 4 sample groups, acquired by HR-NMR analysis, gave rise to 43 

quantified signals which are displayed in Table 2. Using Chemomx software, available literature 

(Belton et al., 1997; Tomita et al., 2015; Vandendriessche et al., 2013; Capitani et al., 2012; 

Monakhova et al.; 2014) along with HMDB (Wishart et al., 2012) and Madison (Cui et al., 2008) 

public databases, 38 metabolites were identified. 

A multivariate non-targeted approach was chosen to investigate the differences in the metabolic 

profiles upon the application of PEF at different electric field strengths. Initially, an unsupervised 

statistical method, the principal component analysis, was applied to highlights the main sources of 

variation among the spectra. 

 

Table 2. Metabolites in NMR profiles underwent to statistical analysis 

Alcohols Amino acids Organic acids Sugars Other 
Butanol Alanine Acetic acid Fructose Acetaldehyde 
Ethanol Asparagine Chlorogenic acid Maltose Acetoin 
Isopropanol Asparagine Citramalic acid Sucrose Epicatechin 
Methanol Aspartic acid Formic acid Trehalose myo-Inositol 
Propanol Glutamic acid Lactic acid Xylose Trigonelline 

Leucine Malic acid α-Galactose Unknown at 3,34 ppm 
Phenylalanine Pyruvic acid β-Galactose Unknown at 4,32 ppm 
Valine Quinic acid α-Glucose Unknown at 4,51 ppm 

Succinic acid β-Glucose Unknown at 4,98 ppm 
Tartaric acid  Unknown at 5,49 ppm 
γ-Aminobutyric acid   

 

The first and second principal component, displayed in Fig 3a, explained only the 25.65 and 15.47 

% of the variance, respectively. A reasonable separation of two main clusters was achieved, so that 

samples treated above and below the threshold of irreversible electroporation were separately 

observed. However, to boost the discrimination between the 4 classes a supervised chemometric 

tool based on sPLSDA-LDA was used.  

 



 

Fig. 3. PCA scores of the first two components (A), sPLSDA
variables; GA = Glutamic acid, GABA = 
section. 
 

The two steps data process was tailored to both enhance the separation of the different treatments 

and, simultaneously, reduce the complexity of the model by selecting and sorting the metabolites by 

importance. Firstly, the iterative sPLSDA step analysis r

important metabolites which showed average V.I.P. values higher than 1 in more than 70 % out of 

one thousand repetitions. Secondly, a LDA model was built, based on the selected metabolites, so 

that an improved discrimination of the four classes was achieved. 

loading plots while Table 3 shows the confusion matrix arisen from the chemometric analysis. LD1 

accounted for the 93.37 % of the variance and led to clearly discriminate samples perm

electroporated from the others which, in agreement with PCA results, gave rise to highest 

differences in the metabolic profiles. LD2 and LD3 aided the fine tuning of the modifications of the 

profiles between 250-400 V/cm and Control

matrix (Table 3) describes the correct assignment of the 95 % of the cases. Interestingly, the 

remaining 5 % of the samples were incorrectly assigned by the model only between Control

V/cm and 250-400 V/cm. 

 

Table 3. Confusion matrix of 4-class LDA

Control 100 V/cm

Control 0.231 0.006 

100 V/cm 0.019 0.244 

250 V/cm 0.000 0.000 

400 V/cm 0.000 0.000 

 

Being intrinsically quantitative and high reproducible HR

estimation of the concentrations of the 8 metabolites which are illustrated in 
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Fig. 3. PCA scores of the first two components (A), sPLSDA-LDA scores (B) and loadings (C) of the first two
variables; GA = Glutamic acid, GABA = γ-Aminobutyric acid .Further details are reported in Material

The two steps data process was tailored to both enhance the separation of the different treatments 

and, simultaneously, reduce the complexity of the model by selecting and sorting the metabolites by 

importance. Firstly, the iterative sPLSDA step analysis resulted in parsimonious selection of 8 

important metabolites which showed average V.I.P. values higher than 1 in more than 70 % out of 

one thousand repetitions. Secondly, a LDA model was built, based on the selected metabolites, so 

ination of the four classes was achieved. Fig. 3b-

shows the confusion matrix arisen from the chemometric analysis. LD1 

accounted for the 93.37 % of the variance and led to clearly discriminate samples perm

electroporated from the others which, in agreement with PCA results, gave rise to highest 

differences in the metabolic profiles. LD2 and LD3 aided the fine tuning of the modifications of the 

400 V/cm and Control-100 V/cm, respectively. In addition, the confusion 

matrix (Table 3) describes the correct assignment of the 95 % of the cases. Interestingly, the 

remaining 5 % of the samples were incorrectly assigned by the model only between Control

class LDA 

100 V/cm 250 V/cm 400 V/cm 

0.000 0.000 

0.000 0.000 

0.231 0.006 

0.019 0.244 

Being intrinsically quantitative and high reproducible HR-NMR analysis allowed the accurate 

estimation of the concentrations of the 8 metabolites which are illustrated in 
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matrix (Table 3) describes the correct assignment of the 95 % of the cases. Interestingly, the 

remaining 5 % of the samples were incorrectly assigned by the model only between Control-100 

NMR analysis allowed the accurate 

estimation of the concentrations of the 8 metabolites which are illustrated in Fig. 4. Interestingly, 



 

the concentrations of ethanol, acetaldehyde

application of the different electric fields

place (Cortellino et al., 2015).  

 

Fig. 4. Concentrations of the important metabolites as arisen from metabolomic
deviations (n=36) and differences between means with the same letter are not significant at
 

Both ethanol and isopropanol contents were lowered by the PEF treatments especially when the 

threshold of the irreversible electroporation was exceeded. The high alcohol levels detected could 

be a consequence of microbial metabolism (Barth et al., 2009), but the reduction observed at the 

highest PEF treatment adopted confirm their endogenous generation, as a consequence

tissue metabolism. Actually, according to Heinz et al (2001), threshold value for the onset of 

microbial inactivation is about 5 kV/cm, extremely higher than the one applied in this study. In this 

direction, according to the calorimetric and resp

most probable cause. 

Moreover, the different concentrations of acetaldehyde was able to discriminate samples treated at 

250 V/cm from those subjected to 400 V/cm. however, it is worth noting that acet

reported to be produced in small amount, in particular, during the first day of storage after fresh 

tissue cutting and remains constant afterwards (Soliva

2005). Due to the high volatility of this m

(Cortellino et al., 2015) and this can explained the high variability of the data collected, in the 

present work, by the analysis of the metabolome.

Beside anaerobic respiration, epicatechin

alcohols. In fact, PEF treatment above the irreversibility threshold lowered the amount of 
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, acetaldehyde and isopropanol were significantly affected by the 

application of the different electric fields confirming that anaerobic fermentative

Concentrations of the important metabolites as arisen from metabolomic analysis. Values are means
deviations (n=36) and differences between means with the same letter are not significant at p<0.05

Both ethanol and isopropanol contents were lowered by the PEF treatments especially when the 

rsible electroporation was exceeded. The high alcohol levels detected could 

be a consequence of microbial metabolism (Barth et al., 2009), but the reduction observed at the 

highest PEF treatment adopted confirm their endogenous generation, as a consequence

tissue metabolism. Actually, according to Heinz et al (2001), threshold value for the onset of 

microbial inactivation is about 5 kV/cm, extremely higher than the one applied in this study. In this 

direction, according to the calorimetric and respiration results, the loss of the cell viability was the 

Moreover, the different concentrations of acetaldehyde was able to discriminate samples treated at 

250 V/cm from those subjected to 400 V/cm. however, it is worth noting that acet

reported to be produced in small amount, in particular, during the first day of storage after fresh 

tissue cutting and remains constant afterwards (Soliva-Fortuny, Ricart-Coll, & Martín

2005). Due to the high volatility of this metabolite it was usually found in the package headspace 

(Cortellino et al., 2015) and this can explained the high variability of the data collected, in the 

present work, by the analysis of the metabolome. 

Beside anaerobic respiration, epicatechin showed a similar trend to the one evidenced for the two 

alcohols. In fact, PEF treatment above the irreversibility threshold lowered the amount of 

were significantly affected by the 

fermentative metabolisms took 

 
analysis. Values are means ± standard 

p<0.05. 

Both ethanol and isopropanol contents were lowered by the PEF treatments especially when the 

rsible electroporation was exceeded. The high alcohol levels detected could 

be a consequence of microbial metabolism (Barth et al., 2009), but the reduction observed at the 

highest PEF treatment adopted confirm their endogenous generation, as a consequence of apple 

tissue metabolism. Actually, according to Heinz et al (2001), threshold value for the onset of 

microbial inactivation is about 5 kV/cm, extremely higher than the one applied in this study. In this 

iration results, the loss of the cell viability was the 

Moreover, the different concentrations of acetaldehyde was able to discriminate samples treated at 

250 V/cm from those subjected to 400 V/cm. however, it is worth noting that acetaldehyde has been 

reported to be produced in small amount, in particular, during the first day of storage after fresh 

Coll, & Martín-Belloso, 

etabolite it was usually found in the package headspace 

(Cortellino et al., 2015) and this can explained the high variability of the data collected, in the 

showed a similar trend to the one evidenced for the two 

alcohols. In fact, PEF treatment above the irreversibility threshold lowered the amount of 
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epicatechin without a linear correlation with the applied electric field. In addition, tartaric acid was 

diminished by the application of PEF at every field strength. Both the metabolites could be affected 

by the oxidative stress induced immediately after the formation of pores (Teissie et al., 1999). 

Indeed, epicatechin, as well as other phenolic compounds of plant tissues, is a source of active 

antioxidants which are easily oxidized by the technological processes (Berregi, Santos, del Campo, 

& Miranda, 2003). On the other hand, the pathway that leads to the biosynthesis of tartaric acid 

involves the degradation of ascorbic acid to threonic acid and, subsequently, to tartaric acid (Saito, 

Morita, Kasai , 1984). Similarly to the present work, this pathway was also subjected to PEF-

specific response in potato tissue as observed by Galindo et al. (2009). 

Another metabolic pathway previously described in potato tissue is the one which involves the 

alteration of the Krebs cycle. Galindo et al (2009) stated that glutamic acid was affected by the 

application of PEF, within few hours after treatment, in a similar way to the wounding response. In 

the present work, two metabolites, i.e. glutamic acid and γ-Aminobutyric acid (GABA), showed an 

accordant behaviour. Shelp et al (2012) demonstrated that the production of γ-Aminobutyric acid in 

plant tissue, including apples, was the results of the abiotic stress. In addition, the alteration of the 

Krebs cycle might also accounted for the lower heat and CO2 productions. 

To the best of our knowledge, hitherto the PEF-induced stress of vegetable tissues has been mainly 

described as short-term response. Indeed, previous works demonstrated that the generation of 

reactive oxygen species (ROS) occurs within seconds after the application of electric fields (Teissie 

et al., 1999; Ye, Huang, Chen, & Zhong, 2004). However, the effect of electroporation on plant 

tissue can last for hours or days due to the recovery processes, for instance the resealing of pores 

(Teissié, Escoffre, Rols, & Golzio, 2008; Vorobiev & Lebovka, 2009). In the present work, both 

short and long term effects were observable, nevertheless, in agreement with Galindo et al. (2009), 

the latter predominantly affected the metabolic profiles of fresh-cut vegetable products. The 

combination of data acquired by a multi-analytical approach allowed to clarify the PEF-induced 

stress responses and hypothesize which metabolic pathways were triggered in accordance with the 

applied electric field. 

 

4. Conclusions 

The metabolic stress response induced by pulsed electric fields was strongly related to the electric 

field strength. Therefore, the accurate control of the process parameters is fundamental for the 

feasible  application of PEF in fresh-cut products since irreversible damages of the membranes led 

to a severe loss of  the cell viability with likely undesirable effects on the shelf life. Conversely, by 

applying electric field strength below the threshold of irreversibility, merely slight effects on 
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metabolic profiles of fresh-cut apple tissue were noticed, promoting the employment of PEF at 

those conditions.  

The multianalytical approach based on calorimetry, gas analysis and NMR-based metabolomics led 

to clarify important metabolic aspects of apples. Indeed, different PEF-induced metabolic pathways 

were revealed by analysing tens of metabolites simultaneously through a non-targeted approach. 

The measurement of heat production adequately described both reversible and irreversible 

treatments, encouraging the use of this method for the assessment of PEF treatments in the fresh-cut 

sector. 

Nonetheless, only the combination of complementary techniques based on different physical 

principles resulted in a clear and comprehensive picture of the effects of pulsed electric fields on the 

metabolic response. 
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