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Abstract

The negotiation between power consumption, performance, program-
mability, and portability drives all computing industry designs, in partic-
ular the mobile and embedded systems domains. Two design paradigms
have proven particularly promising in this context: architectural hetero-
geneity and many-core processors. Parallel programming models are key
to effectively harness the computational power of heterogeneous many-
core SoC. This thesis presents a set of techniques and HW /SW extensions
that enable performance improvements and that simplify programma-
bility for heterogeneous many-core platforms. The thesis contributions
cover vertically the entire software stack for many-core platforms, from
hardware abstraction layers running on top of bare-metal, to program-
ming models; from hardware extensions for efficient parallelism support
to middleware that enables optimized resource management within many-
core platforms.

First, we present mechanisms to decrease parallelism overheads on
parallel programming runtimes for many-core platforms, targeting fine-
grain parallelism. Second, we present programming model support that
enables the offload of computational kernels within heterogeneous many-
core systems. Third, we present a novel approach to dynamically sharing
and managing many-core platforms when multiple applications coded

with different programming models execute concurrently.



All these contributions were validated using STMicroelectronics STHORM,
a real embodiment of a state-of-the-art many-core system. Hardware ex-
tensions and architectural explorations were explored using VirtualSoC,

a SystemC based cycle-accurate simulator of many-core platforms.



Chapter 1

Introduction

1.1 Background

1.1.1 From single-core to many-cores

From devices for IoT (Internet of Things) to large-scale data centers [4],
from our tablet, and mobile phone [5] [6] [7], to high-end servers, com-
puting systems are steadily challenged with an ever-increasing demand
forenergy-efficiency and performance increase. Until early 2000s, energy-
efficiency and peak performance improvements were guaranteed by the
combinations of two CMOS technology “laws”™ Moore’s law and Den-

nard’s Scaling.

On one hand, CMOS gate shrinking enabled a constantly increasing
number of transistors integrated on a single die (Moore’s Law [8]). On the
other hand, smaller transistors allowed lower supply voltages (Dennard’s
Scaling [9]). For each CMOS generation, microprocessor architects used
extra transistors to make faster and more powerful architectures while

the constant dynamic power saving made these architectures more and
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more energy-efficient. This “golden age” survived for three decades until
these laws showed their limits.

The increasing number of transistors were mostly used to apply ag-
gressive frequency scaling and to exploit instruction-level parallelism (ILP).
However, to discover and exploit ILP requires significant and sophisti-
cated techniques like out-of-order execution, branch prediction, specula-
tive execution, register renaming, instructions micro-fusion, etc., which
come with costly hardware support. In addition, these approaches do not
scale well, which results in diminishing performance returns for increasing
hardware investments.

The same happened in terms of energy-efficiency: when the gates be-
came smaller than 100nm and sub-threshold leakage currents increased,
static power consumption reached levels that could not be neglected any-
more. At that moment a Intel Pentium 4 (year 2000) provided about
6x more GOps than an 1486 (year 1989) but it dissipated 23x more
power [10].

To address the looming problem of power consumption and energy-
efficiency, by 2005 most manufactures abandoned frequency scaling in
favor of complete integration of multiple cores in the same chip.

Borkar et al. explained well this decision with an example that con-
siders the design of a 150M transistor chip at 45 nm [1]. Figure 1.1 il-
lustrates three possible architectural layouts for that chip with the same
power budget: a set of large cores (CASE A), several small cores homoge-
nous (CASE B), and mixed solution of small and large cores (CASE C).
Using Pollack’s rule! the authors calculated the performance of each so-

lution. Results shows that a small manycores design (CASE B) doubles

IThe performance of a microprocessor scales about as the square root of its com-
plexity, in terms of transistors count.
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Large-Core

Large-Core
25MT

25 MT

Large-Core Homogeneous Small-Core Homogeneous Small-Core Homogeneous
Large-core 1 Large-core Large-core 1
throughput throughput throughput

Small-core Small-core  Pollack’s Rule Small-core  Pollack’s Rule
throughput throughput  (5/25)°5=0.45 throughput  (5/25)°°=0.45
Total 6 Total 13 Total 11
throughput throughput throughput

(a) (b) (c)

Figure 1.1: Performance enabled by different architecture topologies
while maintaining the same power envelope and area (150M transis-
tors) [1].

the performance of the large core design.

Many-core architectures allowed system designers to leap over the
“power wall”, but it is not a panacea. The ever-increasing on-chip power
density leads to a scenario in which only a small fraction of a chip can
be “on” at a time (i.e. powered). This phenomenon, that goes under the
name of “utilization wall” [11], opens new challenges to tackle the coming
“Dark Silicon” apocalypse [12].

The heterogeneous architecture design, where a large number of dif-
ferent accelerators can be build on the same chip and can be woken up
only when needed and for the specific task that was design for, is one of

the most adopted solution to address the utilization wall [13]. The most



6 1.1 Background

common embodiment of this pattern couples a host processor, composed
of a few powerful and large general-purpose cores, with one or more pro-
grammable many-core accelerators (PMCA).

Heterogeneous architectures based on PMCA are employed today
in every product line of major chip manufacturers. From general pur-
pose architectures like Intel i-series and AMD APUs that integrate x86
multi-core with data-parallel graphics many-core in same die [14] [15],
to mobile-centric products like Samsung and Qualcomm with their AR-
M/GPU SoCs [16] [17]. From architectures for signal-processing, au-
tomotive like Texas Instrument Keystone II [18] and Nvidia X1 [19],
PX2 [20], to large manycore accelerators like Kalray’s MPPA 256 [21],
PEZY-SC [22], ST Microelectronics STHORM [23], or Toshiba 32-core

accelerator for multimedia application [24].

1.1.2 Programmability challenges

If parallel architectures per se had revolutionized programming when ho-
mogenous multicores first appeared, heterogeneous architectures based
on distinct programmable computing engines further exacerbated pro-
gram development complexity.

Programming models provide an abstraction of parallel computer ar-
chitectures, and are composed of: a programming language interface (a
new language, or an extension of an exiting one), an execution model
with designed semantics, a runtime system that implements the execution
model semantics, a compiler that lowers high level program constructs to
low-level parallel code, and support tools.

The programming models provide a “generic” interface to the parallel

architectures facilitating code portability, and in some cases performance
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portability.

As the parallel architectures evolved from multi-core to many-cores,
and then to heterogeneous many-cores systems, several parallel program-

ming models were proposed to help software developers.

OpenCL, Open Computing Language, is the de-facto standard for
heterogeneous many-core systems programming. OpenCL programmers
must write and compile separate programs for the host system and for the
accelerator. Data transfers to/from the many-core and synchronization
points must also be manually orchestrated. Due to this, OpenCL offers a
very low-level programming style; existing application must be rewritten
entirely to comply to programming practices that are often tedious and
error-prone, like data movement control logic. Despite the effort spent

in this direction OpenCL is not performance portable.

Directive-based programming models like OpenMP have shown their
effectiveness in filling the gap between programmability and performance.
Using source-to-source code transformations, this kind of programming
models hide repetitive and platform-specific procedures typical in OpenCL.
Directives do no alter exiting code written for homogenous CPUs, which
enables rapid and maintainable code development thanks to an incre-

mental parallelization style coding.

Several initiatives from academia and from industry follow this path
achieving ease of programming at small or no performance loss respect
to optimized code written with low level API and high-level directive-
based languages [25] [26] [27] [28] [29]. OpenMP has recently accepted

the heterogeneous model in its specification 4.0 [30].
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The issues that a modern programming model for heterogeneous many-
core architectures should address are: i) providing an efficient, and scal-
able way to create, control, and distribute parallelism among a massive
number of processing units; ii) providing a flezible and easy-to-use mech-
anism to offload compute-intensive regions of programs from host cores,

to the many-core accelerators.

This thesis addresses these challenges, studying them from both the
internal many-core accelerator level, and the whole system level. At accel-
erator level we focus on all the issues related to how programming models
should evolve to efficiently deploy massive parallelism. These issues in-
volve both parallel programming models semantics and runtimes/support

libraries implementations.

At system level we focus on all the problems related to how com-
putation should be moved from host to accelerator, and how to hide
memory architectures and system heterogeneity from the programmers.
Efficiently addressing these issues also involves programming-execution
model extensions and efficient runtime environment design and imple-

mentation.

1.2 Thesis Contributions

Figure 1.2 shows graphically the contributions of this thesis and their
organization in chapters. The contributions are presented following a
bottom-up approach, starting from accelerator level optimizations and
associated programming model extensions. Then the focus is moved

at the system level aspects, proposing programming model solutions to
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Chapter Chapter Chapter Chapter Chapter Chapter Chapter
1 2 3 4 5 6 7

Figure 1.2: Thesis overview.

address programmability of manycores from within embedded heteroge-
neous systems. The next two paragraphs illustrate in details the four

major contributions of this thesis.

1.2.1 Accelerator level

From the architectural point of view, with the evolution from tens of
cores to the current integration capabilities in the order of hundreds, the
most promising architectural choice for scalable many-core embedded
system designs is core clustering. In a clustered platform, processing
cores are grouped into small- medium-sized clusters (i.e. few tens), which
are highly optimized for performance and throughput. Clusters are the
basic “building blocks” of the architecture, and scaling to many-core is
obtained via the replication and global interconnection of several clusters
through a scalable medium such as a Network-on-Chip (NoC)

Due to the hierarchical nature of the interconnection system, memory
operations are subject to non-uniform accesses (NUMA), depending of
the physical path that corresponding transactions traverse.

In this scenario Nested (or multi-level) parallelism represents a power-

ful programming abstraction for these architectures, addressing the issues
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of efficient exploitation of i) a large number of processors and ii) a NUMA

memory hierarchy.

This thesis explores how the nested parallelism can be used in state-of-
the-art embedded many-core platform to maximize the usage of massive

parallel architectures.

The first major contribution in this direction includes an effi-
cient and lightweight nested parallelism support runtime layer for many-
core cluster-based architectures. The integration of this runtime into
an OpenMP library enables to identify the most critical operations and
the bottlenecks of fork/join mechanism in massive parallel architecture.
The thesis shows the key design choices made and provides a quantita-
tive analysis of the impact of nested parallelism usage through synthetic

workloads and real benchmark.

The second major contribution of this thesis aims at further re-
ducing the cost for nested parallelism support by circumventioning the
dependence of fork/join overheads on the number of involved threads.
Looking at real embedded applications, it can be observed that par-
allelism usually follows a repetitive pattern. Based on this observa-
tion, a fully software-based cache of parallel team configurations is pro-
posed. This enables faster and constant-time fork/join operations, al-

lowing finer-grain parallelism exploitation.

1.2.2 System level

As parallel architectures evolve to heterogeneous systems based on many-
core accelerators, new programming interfaces are being introduced to

address the complex challenges of programming these platforms. In these
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architectures the programming models allow to ofHoad computation-inten-
sive parallel kernels of applications from the host to the accelerator to

exploit the higher performance/watt targets that these devices offer.

In the embedded domain, such proposals are still lacking, but there
is a clear trend toward designing embedded SoCs in the same way it is
happening in the HPC domain [31], and which will eventually call for the

same programming solutions.

The third contribution of this thesis addresses these issues. It
proposes a complete directive-based programming model ecosystem for
embedded many-core architectures. It consists of: an extended OpenMP
interface, where additional features allows to efficiently offload computa-
tional kernels from host to the many-core accelerator; an highly efficient
runtime environment to manage communication between the two systems

and to create massive parallelism; a multi-ISA compilation toolchain.

Experimental results achieved by the proposed programming model
and compared to the standard OpenCL runtime system on a prototype
board STMicroelectronics STHORM confirm that the directive-based
programming model enables very close performance to hand-optimized

OpenCL codes, at a much lower programming complexity.

As the complexity of the target system grows, so does the complex-
ity of individual applications, their number and composition into mixed
workloads. The situation is best explained if extreme multi-user scenar-
ios such as data centers are considered. Here, multiple applications from
multiple users may concurrently require to use a PMCA. These applica-
tions are not aware of each other’s existence, and thus don’t communicate
nor synchronize for accelerator utilization. Different applications or parts

thereof (e.g., libraries, or other legacy code) are written using different
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parallel programming models. Ultimately, each programming model re-
lies on a dedicated run-time environment (RTE) for accessing hardware
and low-level software (e.g., driver) resources. Since PMCAs typically
lack the services of full-fledged operating systems, efficiently sharing the
PMCA among multiple applications becomes difficult.

The importance of efficient PMCA sharing among multiple applica-
tions is witnessed by the increasing efforts towards accelerator virtualiza-
tion pursued by major GPGPUs vendors [32] [33]. While such support
was originally conceived for multi-user settings such as computing farms,
its relevance is steadily increasing also in high-end embedded systems

typically meant for single-user (yet multi-workload) usage [34].

Many-core virtualization relies on dedicated hardware support for fast
and lightweight context switching between different applications. How-
ever, while such solution allows for transparent and simple PMCA shar-
ing, it implies significant area and power overheads with an increasing
number of fully-independent cores, which makes it unaffordable in the

short to medium term for types of PMCA other than GPGPUs.

In addition, currently all commercial products that support accelera-
tor virtualization assume that a single, proprietary programming model
is used to code all the applications, which cannot cope with multi-user,

multi-workload scenarios.

The fourth contribution of this thesis is a middleware that enables
multiple programming models to live inside the same accelerator. The
proposed runtime environment supports spatial partitioning of cluster-
bases many-core, where clusters can be grouped into several virtual accel-

erator instances. The design is modular and relies on a low level runtime
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component for resource (cluster) scheduling, plus “specialized” compo-
nents which efficiently deploy offload requests into specific programming

model execution semantics.

1.3 Thesis Overview

Figure 1.2 illustrates the organization of this thesis. Chapter 2 dis-
cusses the embedded many-core architecture characteristics targeted in
the research work presented in this thesis. The chapter shows the generic
template of a PMCA, and presents two examples of PMCA, the STMicro-
electronics STHORM and the VirtualSoC' simulator, used for hardware
and software extension and explorations.

Chapter 3 focuses on nested parallelism support. It describes the
key design choices and explores in depth the breakdown for parallelism
creation. Hardware-accelerated solutions for critical and time-consuming
phases are proposed. Finally, a NUMA control mechanism is imple-
mented to enable locality -aware thread deployment.

A software cache of thread configurations to minimize the costs as-
sociated to supporting fork/join parallelism is illustrated in Chapter
4. The chapter is composed of an introduction to the key ideas behind
the technique and how the cache is implemented. A set of experimental
results to evaluate the effectiveness of this solution follows.

Chapter 5 presents a directive-based programming model for het-
erogeneous many-core systems. The chapter describes the whole hetero-
geneous programming ecosystem: the extended OpenMP semantics, the
compiler extensions for multi-ISA compilation and the runtime support

to offload kernels from the host to the PMCA. The comparison between
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OpenCL and the proposed programming model on real applications con-
cludes the chapter.

Chapter 6 introduces software-based partitioning mechanism for
multiple programming model support targeting programmable many-core
accelerator. First, it describes a taxonomy of state-of-the-art parallel pro-
gramming models for embedded heterogeneous systems. Then it provides
a detailed description of a multi-programming model runtime that layer
enables multiple offloads concurrently on PMCAs. A set of experimental
results on two different realistic use-cases concludes the chapter.

Finally Chapter 7 summarizes the thesis contributions and findings.



Chapter 2

Embedded cluster-based

many-core architectures

2.1 Generic template

Nowadays multi- and many-core designs are widely used in most com-
puting domains, from high-performance (HPC) to mobile/embedded sys-
tems. Energy efficiency is key driver for platform evolution, be it for
decreasing the energy bills of large data centers or for improving battery
life for high-end embedded devices. Architectural heterogeneity is an
effective design paradigm to achieve these goals. One of the most com-
mon heterogeneous system templates envisions single-chip coupling of a
powerful, general-purpose host processor to one (or more) programmable
many-core accelerator(s) (PMCA) featuring tens-to-hundreds of simple
and energy efficient processing elements (PE). PMCAs deliver much
higher performance/watt, compared to host processors, for a wide range
of computation-intensive parallel workloads.

The multi- many-core paradigm has allowed system-on-chip (SoC)
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Figure 2.1: On-chip shared memory cluster.

designers to successfully tackle many technology walls in the past decade
[35] [36] and has now entered the manycore era, where hundreds of simple

processing units (PUs) are integrated on a single chip.

To overcome the scalability bottlenecks encountered when intercon-
necting such a large amount of PUs, several recent embedded manycore
accelerators leverage tightly-coupled clusters as building blocks. Repre-
sentative examples include NVIDIA X1 [19], Kalray’s MPPA 256 [21],
PEZY-SC [22], ST Microelectronics STHORM [23], or Toshiba 32-core
accelerator for multimedia applications [24]. These products leverage a
hierarchical design, which groups PUs into small-medium sized subsys-
tems (clusters) with shared L1 memory and high-performance local inter-
connection. Scalability to larger system sizes employs cluster replication

and a scalable interconnection medium like a network-on-chip (NoC).

The simplified block diagram of the target cluster is shown in Fig-
ure 2.1. It contains up to sixteen RISC32 processor cores, each fea-

turing a private instruction cache. Processors communicate through
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a multi-banked, multi-ported Tightly-Coupled Data Memory (TCDM).
This shared L1 TCDM is implemented as explicitly managed SRAM
banks (i.e., scratchpad memory), to which processors are interconnected
through a low-latency, high-bandwidth data interconnect. This network
is based on a logarithmic interconnection design which allows 2-cycle L1
accesses (one for request, one for response). This is compatible with
pipeline depth for load/store for most processors, hence it can be exe-
cuted in TCDM without stalls — in absence of conflicts. Note that the
interconnection supports up to 16 concurrent processor-to-memory trans-
actions within a single clock cycle, given that the target addresses belong
to different banks (one port per bank). Multiple concurrent reads at
the same address happen in the same clock cycle (broadcast). A real
conflict takes place only when multiple processors try to access different
addresses within the same bank. In this case the requests are sequential-
ized on the single bank port. To minimize the probability of conflicts 1)
the interconnection implements address interleaving at the word-level; ii)

the number of banks is M times the number of cores (M=2 by default).

Processors can synchronize by means of standard read/write opera-
tions to an area of the TCDM which provides test-and-set semantics (a
single atomic operation returns the content of the target memory location

and updates it).

Since the L1 TCDM has a small size (256KB) it is impossible to per-
manently host all data therein or to host large data chunks. The software
must thus explicitly orchestrate data transfers from main memory to L1,
to ensure that the most frequently referenced data at any time are kept
close to the processors. To allow for performance- and energy- efficient

transfers, the cluster is equipped with a DMA engine.
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Figure 2.2: Multi-cluster architecture.

The overall many-core platform is composed of a number of clusters,
interconnected via a NoC as shown in Figure 2.2. The topology we
consider in our experiments is a simple 2x2 mesh, with one cluster at

each node, plus a memory controller to the off-chip main memory.

Overall, the memory system is organized as a partitioned global ad-
dress space. Each processor in the system can explicitly address ev-
ery memory segment: local TCDM, remote TCDMs and main memory.
Clearly, transactions that traverse the boundaries of a cluster are subject

to NUMA effects: higher latency and smaller bandwidth.

This architectural template captures the key traits of existing cluster-
based many-cores such as STMicroelectronics STHORM [23] or Kalray
MPPA [21] in terms of core organization, number of clusters, intercon-

nection system and memory hierarchy.
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2.2 STMicroelectronics STHORM

STHORM, previously known as Platform 2012 [23], is a many-core or-
ganized as a globally asynchronous, locally synchronous (GALS) fabric
of multi-core clusters (see Figure 2.3). A STHORM cluster contains (up
to) 16 STxP70-v4 Processing Elements (PEs), each of which has a 32-bit
RISC load-store architecture, with dual issue and a 7-stage pipeline, plus
private instruction cache (16KB). PEs communicate through a shared
multi-ported, multi-bank tightly-coupled data memory (TCDM, a scratch-
pad memory). The interconnection between the PEs and the TCDM was
explicitly designed to be ultra-low latency. It supports up to 16 con-
current of processor-to-memory transactions within a single clock cycle,
given that the target addresses belong to different banks (one port per
bank). The STHORM fabric is composed of four clusters, plus a fabric

controller (FC), responsible for global coordination of the clusters. The
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FC and the clusters are interconnected via two asynchronous networks-
on-chip (ANoC). The first ANoC is used for accessing a multi-banked,
multi-ported L2 memory. The second ANoC is used for inter-cluster
communication via L1 TCDMs and to access the off-chip main memory
(L3 DRAM). Note that all the memories are mapped into a global ad-
dress space, visible from every PE. L3 accesses requests are transported

off-chip via a synchronous NoC link (SNoC).

The first STHORM-based heterogeneous system is a prototype board
based on the Xilinx Zynq 7000 FPGA device (see Figure 2.4), which
features a dual core ARM Cortex A9 host processor, main DDR3 memory
(L3 memory), plus programmable logic (FPGA). The ARM subsystem
on the ZYNQ is connected to a AMBA AXI matrix, through which it
accesses the DRAM controller. To grant STHORM access to the L3
memory, and the ARM system access into STHORM L1/L2 memories,

a bridge is implemented in the FPGA, which has three main functions.
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First, it translates STHORM transactions from the SNoC protocol to the
AXI protocol (and ARM transactions from AXI to SNoC). Second, it
implements address translation logic in the remap address block (RAB).
This is required to translate addresses generated from STHORM into
virtual addresses as seen by the host application and vice versa. Indeed,
the host system features paged virtual memory and MMU support, while
STHORM operates on physical addresses. Thus, the RAB acts as a very
simple IO-MMU. Third, it implements a synchronization control channel
by conveying interrupts in two directions through the FPGA logic and
into dedicated off-chip wires. The FPGA bridge is clocked conservatively
at 40 MHz in this first board. This constitutes currently the main system
bottleneck!.

2.3 Virtual SoC Simulator

As a concrete instance of this template we built a cycle-accurate SystemC
simulator, based on the VirtualSoC virtual platform [37]. VirtualSoC is
a prototyping framework developed at University of Bologna, targeting
the full-system simulation of massively parallel heterogeneous SoCs [38].
It allows to easily instantiate several manycore templates, as the number
of cores and clusters, the interconnect type and the memories are fully
parameterizable. The platform also comes with tools and libraries for
software developments, on top of which we built our runtime system for
lightweight nested parallelism support, plus accurate counters for perfor-

mance measurement and execution traces, which we use to evaluate the

1Similar to any realistic heterogeneous SoC design, STHORM is clearly intended
for same-die integration with the host, with orders-of-magnitude faster bridge and
larger memory bandwidth.
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effectiveness of our techniques. The VirtualSoC simulator can also be
easily extended thanks to a fully modular design. In this work, Virtual-
SoC was used for Hardware and Software co-design and optimization of
parallel programming model support.

The VirtualSoC' simulator, the HW extensions and the most of the
programming model extensions described in this thesis can be down-
loaded (currently as beta version) by contacting the authors through the

group website (http://www-micrel.deis.unibo.it/virtualsoc/).


http://www-micrel.deis.unibo.it/virtualsoc/

Chapter 3

Efficient Nested Parallelism
support for cluster-based

many-cores

3.1 Introduction

Cluster-based architectures are widely adopted in many-core system de-
sign as we discuss in the previous chapter. In this context a shared
memory model is often assumed, where each cluster can access local or
remote memories (i.e., belonging to another cluster L1 storage, as well
as L2 or L3). However, due to the hierarchical nature of the intercon-
nection system, memory operations are subject to non-uniform accesses
(NUMA), depending of the physical path that corresponding transac-
tions traverse. Nested (or multi-level) parallelism represents a powerful
programming abstraction for these architectures, addressing the issues of
efficient exploitation of i) a large number of processors and ii) a NUMA

memory hierarchy.
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Nested parallelism has been traditionally used to increase the effi-
ciency of parallel applications in large systems. Exploiting a single level
of parallelism means that there is a single thread (master) that pro-
duces work for other threads (slaves). Additional parallelism possibly
encountered within the unique parallel region is ignored by the execution
environment. When the number of processors in the system is very large,
this approach may incur low performance returns, since there may not
be enough coarse-grained parallelism in an application to keep all the
processors busy. Nested parallelism implies the generation of work from
different simultaneously executing threads. Opportunities for parallel
work creation from within a running parallel region result in the gen-
eration of additional work for a set of processors, thus enabling better

resource exploitation.

In addition, nested parallelism offers the ability of clustering threads
hierarchically, which has historically played an important role in the high-
performance computing (HPC) domain for programming traditional cc-
NUMA systems organized as clusters of multi-core computers. Regular
applications parallelized with a flat memory system in mind ultimately
behave as highly irregular workloads in a NUMA system. Indeed reg-
ular workload parallelization assumes that nominally identical shares of
computation and memory will be assigned to threads. If such threads
are mapped to processors which feature a different access time (laten-
cy/bandwidth) to the target memory, such threads will experience very

different execution times.

Table 3.1 shows the execution time (in 100K Cycles) of several appli-

cations running on the VSoC simulator.
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Color Tracking FAST Mahalanobis Strassen NCC SHOT

High-locality 5 49 25 201 47 4
Poor-locality 136 223 102 638 245 16
Variance 22% 5X 4X 3% 5% 4%

Table 3.1: Irregular behavior induced by NUMA in regular workloads
(x100K Cycles).

The first row refers to a high-locality configuration, where the appli-
cations are executed on a single cluster and the data is accessed from
the same cluster’s L1 memory. The second row refers to a poor-locality
configuration, where the applications are executed on a single cluster and
the data is accessed from a remote cluster’s L1 memory. This experiment
tries to highlight the effects of mismatches in data-to-thread affinity on
NUMA SoC architectures. Even if the applications have completely reg-
ular access pattern, NUMA effects lead to up to 22x variance between
team of threads, if data is not distributed in an architecture-aware man-
ner. The barrier semantics implied at the end of a fork/join construct

will force fast clusters to sit idle waiting for the slow clusters to complete.

Well consolidated programming practices have been established in
the HPC domain for the control of NUMA, but such practices need to be
revisited for adoption in the embedded many-core domain, due to some
key differences between the latter and HPC systems. First, large-scale
HPC systems rely on the composition of several SMP nodes, where inter-
node communication leverages orders-of-magnitude slower channels than
the coherent multi-level cache hierarchy within each node (intra-node

memory hierarchies are in fact transparent to the program).

In embedded manycores L1 and L2 memories are typically imple-
mented as scratchpads (SPM), which are explicitly managed by the pro-

gram via DMA transfers. Inter-cluster communication is much costlier
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than local memory access, yet it is way faster compared to inter-node
communication in HPC systems, as it leverages on-chip interconnection.
For these reasons, in HPC systems it is common to use a combination
of message passing (MPI), for inter-node communication, and fork/join
thread parallelism (e.g., OpenMP [30]) within a node. Direct access to
a remote note from within parallel threads is typically disallowed. The
locality of memory operations within a node is managed transparently by
caches. Intra-node NUMA effects in multi-socket systems are mitigated
by pinning threads to specific cores (thread binding). In embedded many-
cores remote cluster access is sometimes allowed (e.g., if data produced
in a remote cluster needs to be accessed only once or has in general poor
reuse), thus while MPI could still be used for intra-cluster communica-
tion [39], there is in general wider consensus towards simpler and unified

programming interfaces such as OpenMP.

Another important difference between HPC and embedded manycore
systems is found at the level of applications and software stacks. Appli-
cations in HPC typically leverage coarse-grained parallel tasks, capable
of tolerating large overheads implied by underlying runtime systems run-
ning on top of legacy operating system (OS), libraries, etc. Applications
in the embedded domain leverage fine-grained parallelism and run on top
of native hardware-abstraction-layers (HAL), while a full-fledged OS is
typically lacking. On the contrary, application targets for parallel em-
bedded systems [40] expose extremely fine-grained parallelism [41].

A number of researchers have proposed lightweight (nested) paral-
lelism support for embedded PMCA [42] [43] [41], proposing runtime

system design solutions aimed at minimizing the cost for recruiting a
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Kind #Cores Fork/Join Normalized
Cost Granularity
for 16 Cores

(KCycles) (KCycles)

Marongiu et al.  static 16 ~1 10
[42]
Lhuillier et al. [43]  static 16 ~1.5 15
Intel Xeon Phi dynamic 240 27 18
[44]
IBM Cyclops-64 dynamic 64 ~30 75
[45]
TI Keystone II  static 8 ~15 300
[46]
Agathos et al. [47]  static 16 ~37 370

Table 3.2: OpenMP Fork/Join cost for state-of-the-art implementations
and estimated parallel workload granularity for which this cost is amor-
tized (considering 16 threads in all systems).

team of parallel threads. Intuitively the smaller the cost for forking/join-
ing parallel thread teams, the finer the granularity of the parallel tasks

for which the system can still deliver near-ideal speedups.

Table 3.2 summarizes the cost for a fork/join operation on state-of-
the-art runtime systems for various multi- and many-cores. The right-
most column shows the minimum parallel region granularity for which
the fork/join cost is acceptably amortized (10% of the actual parallel
workload). One common characteristic to all these implementations is
that the cost for parallelism creation (fork) linearly increases with the

number of threads being recruited.

Matching the key requirements of embedded applications, the focus is
on two key aspects: i) enabling fine-grained parallelism via streamlined
support of nesting; ii) leveraging the ability of clustering threads hier-

archically, where outer levels of coarse-grained (task) parallelism could
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be distributed among clusters, and data (e.g., loop) parallelism could be
used to distribute work within a cluster.

The chapter is organized as follows: the next section will introduce
the baseline nested parallelism runtime and the key choices to achieve
a streamlined and lightweight support; Section 3.3 introduces hardware
and software optimizations to the most time critical phases of parallelism
creation; Section 3.4 presents the experimental results; finally, Related

Work (Section 3.5) and Conclusions (Section 3.6) conclude this chapter.

3.2 Nested parallelism support

The architectures used as target for this work are: the STHORM (see
Section 2.2) and the VirtualSoC (see Section 2.3) platforms. Similar to
most embedded parallel platforms, the presented runtime system sits on
top of bare metal, as an OS is lacking. More specifically, we build upon
native hardware abstraction layer (HAL) support for basic services such
as core identification, memory allocation and lock (test and set memory)

reservation.

3.2.1 Key Design Choices

A central design choice for our lightweight nested parallelism support
is the adoption of a fized thread pool (FTP) approach. At boot time
we create as many threads as processors, providing them with a private
stack and a unique ID (matching the hosting processor ID). We call these
threads persistent, because they will never be destroyed, but will rather
be re-assigned to parallel teams as needed. Persistent threads are non-

preemptive. We promote the thread with the lowest ID as the global
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master thread. This thread will be running all the time, and will thus
be in charge of generating the topmost level of parallelism. The rest of
the threads are docked on the global pool, waiting for a master thread

to provide work.

At startup, all the persistent threads other than the global master
(hereafter called the global slaves) execute a micro-kernel code where they
first notify their availability on a private location of a global array (Notify-
Flags, or NFLAGS), then they wait for work to do on a private flag
of another global array (Release-Flags, or RFLAGS). To minimize the
probability of banking conflicts on the TCDM when multiple processors
are accessing these data structures, we allocate them in such a way that
consecutive elements of the arrays are mapped on contiguous memory

banks. In this way each processor insists on a different TCDM bank.

The status of global slaves on the thread pool (idle/busy) is annotated
in a third global array, the global pool descriptor. When a master thread
encounters a request for parallelism creation, it fetches threads from the

pool and points them to a work descriptor.

Besides the global data structures described above, each thread team
has an associated team descriptor. This data structure relies on a simple
bitmask to describe the composition of the nested teams. The mask has
as many bits as the number of persistent threads. Bits corresponding to
the IDs of the threads belonging to the team are set to 1. This allows
multiple coexisting teams by masking only the fields of the global data

structures that are of interest for the current team, as shown in Fig. 3.1.

Furthermore, the use of bitmasks allows to quickly inspect the status
of individual threads and update team composition through fast bitwise

logic operations. A more detailed description of the team descriptor and
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Figure 3.1: Thread docking, synchronization and team descriptor.

its data structures is provided in the following.

Forking threads - Nested parallelism allows multiple threads to con-
currently act as masters and create new thread teams. The first infor-
mation required by a master to create a parallel team is the status of
the global slaves in the pool. As explained, this information in stored in
the global pool descriptor array. Since several threads may want to con-

currently create a new team, accesses to this structure must be locked.

Let us consider the example shown in Fig. 3.2. Here we show the task
graph of an application which uses nested parallelism. At instant ¢0 only
the global master thread is active, as reflected by the pool descriptor in
Figure 3.3. Then parallel TEAM 0 is created, where tasks A, B, C and
D are assigned to threads 0 to 3. The global pool descriptor is updated
accordingly (instant ¢1). After completing execution of tasks C and D,
threads 2 and 3 are assigned tasks E and F, which contain parallel loops.

Thus threads 2 and 3 become masters of TEAM 1 and TEAM 2. Threads
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Figure 3.2: Application with nested parallelism.

are assigned to the new teams as shown in Fig. 3.3 at instant t2. Note
that the number of slaves actually assigned to a team may be less than
what requested by the user, depending on their availability.

Besides fetching threads from the global pool, creating a new parallel
team involves the creation of a team descriptor (Fig. 3.1), which holds
information about the work to be executed by the participating threads.

This descriptor contains two main blocks:

1. Thread Information: A pointer to the code of the parallel function,

and its arguments.

2. Team Information: when participating in a team, each thread is
assigned a team-local ID. The ID space associated to a team as
seen by an application is expressed in the range 0,..,N-1 (N being

the number of threads in the team).

To quickly remap local thread IDs into the original persistent thread

IDs and vice versa, our data structure maintains two arrays. The LCL
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Figure 3.3: Global pool descriptor.

_THR_IDS array is indexed with persistent thread IDs and holds corre-
sponding local thread IDs. The PST_THR_IDS is used for services that
involve the whole team (e.g., joining threads, updating the status of the
pool descriptor), and keeps the dual information: it is indexed with lo-
cal thread IDs and returns a persistent thread ID. Moreover, to account
for region nesting each descriptor holds a pointer to the parent region

descriptor. This enables fast context switch at region end.

The memory footprint for this descriptor grows with the number N

of cores with the following formula:

N
F(N)pytes = ceil[g] +2N 412

For the 64-core system implementation considered in this work a team
descriptor occupies 148 Bytes. Once the team master has filled all its
fields, the descriptor is made visible to team slaves by storing its address
in a global TEAM_DESC_PTR array (one location per thread). Fig. 3.4
shows a snapshot of the TEAM_DESC_PTR array and the tree of team
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Figure 3.4: Tree of team descriptors to track nesting

descriptors at instant ¢2 from our previous example.

Joining Threads - Joining threads at the end of parallel work involves
global (barrier) synchronization. Supporting nested parallelism implies
the ability of independently synchronizing different thread teams (i.e.,
processor groups). To this aim, we leverage the mechanism described pre-
viously to dock threads, which behaves as a standard Master-Slave (MS)
barrier algorithm, extended to selectively synchronize only the threads
belonging to a particular team. The MS barrier is a two-step algorithm.

In the Gather phase, the master waits for each slave to notify its
arrival on the barrier on a private status flag (on NFLAGS array). After
arrival notification, slaves check for barrier termination on a separate
private location (on RFLAGS array). The termination signal is sent by
the master in these private locations during the Release phase of the
barrier. Fig. 3.1 shows how threads belonging to TEAM 1 (instant t2
of our example) synchronize through these d