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Abstract

The negotiation between power consumption, performance, program-

mability, and portability drives all computing industry designs, in partic-

ular the mobile and embedded systems domains. Two design paradigms

have proven particularly promising in this context: architectural hetero-

geneity and many-core processors. Parallel programming models are key

to effectively harness the computational power of heterogeneous many-

core SoC. This thesis presents a set of techniques and HW/SW extensions

that enable performance improvements and that simplify programma-

bility for heterogeneous many-core platforms. The thesis contributions

cover vertically the entire software stack for many-core platforms, from

hardware abstraction layers running on top of bare-metal, to program-

ming models; from hardware extensions for efficient parallelism support

to middleware that enables optimized resource management within many-

core platforms.

First, we present mechanisms to decrease parallelism overheads on

parallel programming runtimes for many-core platforms, targeting fine-

grain parallelism. Second, we present programming model support that

enables the offload of computational kernels within heterogeneous many-

core systems. Third, we present a novel approach to dynamically sharing

and managing many-core platforms when multiple applications coded

with different programming models execute concurrently.
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All these contributions were validated using STMicroelectronics STHORM,

a real embodiment of a state-of-the-art many-core system. Hardware ex-

tensions and architectural explorations were explored using VirtualSoC,

a SystemC based cycle-accurate simulator of many-core platforms.



Chapter 1

Introduction

1.1 Background

1.1.1 From single-core to many-cores

From devices for IoT (Internet of Things) to large-scale data centers [4],

from our tablet, and mobile phone [5] [6] [7], to high-end servers, com-

puting systems are steadily challenged with an ever-increasing demand

forenergy-efficiency and performance increase. Until early 2000s, energy-

efficiency and peak performance improvements were guaranteed by the

combinations of two CMOS technology “laws”: Moore’s law and Den-

nard’s Scaling.

On one hand, CMOS gate shrinking enabled a constantly increasing

number of transistors integrated on a single die (Moore’s Law [8]). On the

other hand, smaller transistors allowed lower supply voltages (Dennard’s

Scaling [9]). For each CMOS generation, microprocessor architects used

extra transistors to make faster and more powerful architectures while

the constant dynamic power saving made these architectures more and
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more energy-efficient. This “golden age” survived for three decades until

these laws showed their limits.

The increasing number of transistors were mostly used to apply ag-

gressive frequency scaling and to exploit instruction-level parallelism (ILP).

However, to discover and exploit ILP requires significant and sophisti-

cated techniques like out-of-order execution, branch prediction, specula-

tive execution, register renaming, instructions micro-fusion, etc., which

come with costly hardware support. In addition, these approaches do not

scale well, which results in diminishing performance returns for increasing

hardware investments.

The same happened in terms of energy-efficiency: when the gates be-

came smaller than 100nm and sub-threshold leakage currents increased,

static power consumption reached levels that could not be neglected any-

more. At that moment a Intel Pentium 4 (year 2000) provided about

6× more GOps than an i486 (year 1989) but it dissipated 23× more

power [10].

To address the looming problem of power consumption and energy-

efficiency, by 2005 most manufactures abandoned frequency scaling in

favor of complete integration of multiple cores in the same chip.

Borkar et al. explained well this decision with an example that con-

siders the design of a 150M transistor chip at 45 nm [1]. Figure 1.1 il-

lustrates three possible architectural layouts for that chip with the same

power budget: a set of large cores (CASE A), several small cores homoge-

nous (CASE B), and mixed solution of small and large cores (CASE C).

Using Pollack’s rule1 the authors calculated the performance of each so-

lution. Results shows that a small manycores design (CASE B) doubles

1The performance of a microprocessor scales about as the square root of its com-
plexity, in terms of transistors count.
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This design point matches the dual-
core microprocessor on 45nm technol-
ogy (Core2 Duo), integrating two cores 
of 25 million transistors each and 6MB 
of cache in a die area of about 100mm2. 

If this analysis is performed for fu-
ture technologies, assuming (our best 
estimates) modest frequency increase 
15% per generation, 5% reduction in 
supply voltage, and 25% reduction of 

capacitance, then the results will be 
as they appear in Table 1. Note that 
over the next 10 years we expect in-
creased total transistor count, follow-
ing Moore’s Law, but logic transistors 
increase by only 3x and cache transis-
tors increase more than 10x. Apply-
ing Pollack’s Rule, a single processor 
core with 150 million transistors will 
provide only about 2.5x microarchitec-
ture performance improvement over 
today’s 25-million-transistor core, 
well shy of our 30x goal, while 80MB of 
cache is probably more than enough 
for the cores (see Table 3). 

The reality of a finite (essentially 
fixed) energy budget for a microproces-
sor must produce a qualitative shift in 
how chip architects think about archi-
tecture and implementation. First, en-
ergy-efficiency is a key metric for these 
designs. Second, energy-proportional 
computing must be the ultimate goal 
for both hardware architecture and 
software-application design. While 
this ambition is noted in macro-scale 
computing in large-scale data cen-
ters,5 the idea of micro-scale energy-
proportional computing in micropro-
cessors is even more challenging. For 
microprocessors operating within a 
finite energy budget, energy efficiency 
corresponds directly to higher perfor-
mance, so the quest for extreme energy 
efficiency is the ultimate driver for per-
formance. 

In the following sections, we out-
line key challenges and sketch poten-
tial approaches. In many cases, the 
challenges are well known and the 
subject of significant research over 
many years. In all cases, they remain 
critical but daunting for the future of 
microprocessor performance: 

Organizing the logic: Multiple cores 
and customization. The historic mea-
sure of microprocessor capability is 
the single-thread performance of a 
traditional core. Many researchers 
have observed that single-thread per-
formance has already leveled off, with 
only modest increases expected in the 
coming decades. Multiple cores and 
customization will be the major driv-
ers for future microprocessor perfor-
mance (total chip performance). Mul-
tiple cores can increase computational 
throughput (such as a 1x–4x increase 
could result from four cores), and cus-
tomization can reduce execution la-

Figure 9. Three scenarios for integrating 150-million logic transistors into cores. 

(a) (b) (c)
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Figure 10. A system-on-a-chip from Texas Instruments. 
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Figure 1.1: Performance enabled by different architecture topologies
while maintaining the same power envelope and area (150M transis-
tors) [1].

the performance of the large core design.

Many-core architectures allowed system designers to leap over the

“power wall”, but it is not a panacea. The ever-increasing on-chip power

density leads to a scenario in which only a small fraction of a chip can

be “on” at a time (i.e. powered). This phenomenon, that goes under the

name of “utilization wall” [11], opens new challenges to tackle the coming

“Dark Silicon” apocalypse [12].

The heterogeneous architecture design, where a large number of dif-

ferent accelerators can be build on the same chip and can be woken up

only when needed and for the specific task that was design for, is one of

the most adopted solution to address the utilization wall [13]. The most
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common embodiment of this pattern couples a host processor, composed

of a few powerful and large general-purpose cores, with one or more pro-

grammable many-core accelerators (PMCA).

Heterogeneous architectures based on PMCA are employed today

in every product line of major chip manufacturers. From general pur-

pose architectures like Intel i -series and AMD APUs that integrate x86

multi-core with data-parallel graphics many-core in same die [14] [15],

to mobile-centric products like Samsung and Qualcomm with their AR-

M/GPU SoCs [16] [17]. From architectures for signal-processing, au-

tomotive like Texas Instrument Keystone II [18] and Nvidia X1 [19],

PX2 [20], to large manycore accelerators like Kalray’s MPPA 256 [21],

PEZY-SC [22], ST Microelectronics STHORM [23], or Toshiba 32-core

accelerator for multimedia application [24].

1.1.2 Programmability challenges

If parallel architectures per se had revolutionized programming when ho-

mogenous multicores first appeared, heterogeneous architectures based

on distinct programmable computing engines further exacerbated pro-

gram development complexity.

Programming models provide an abstraction of parallel computer ar-

chitectures, and are composed of: a programming language interface (a

new language, or an extension of an exiting one), an execution model

with designed semantics, a runtime system that implements the execution

model semantics, a compiler that lowers high level program constructs to

low-level parallel code, and support tools.

The programming models provide a “generic” interface to the parallel

architectures facilitating code portability, and in some cases performance
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portability.

As the parallel architectures evolved from multi-core to many-cores,

and then to heterogeneous many-cores systems, several parallel program-

ming models were proposed to help software developers.

OpenCL, Open Computing Language, is the de-facto standard for

heterogeneous many-core systems programming. OpenCL programmers

must write and compile separate programs for the host system and for the

accelerator. Data transfers to/from the many-core and synchronization

points must also be manually orchestrated. Due to this, OpenCL offers a

very low-level programming style; existing application must be rewritten

entirely to comply to programming practices that are often tedious and

error-prone, like data movement control logic. Despite the effort spent

in this direction OpenCL is not performance portable.

Directive-based programming models like OpenMP have shown their

effectiveness in filling the gap between programmability and performance.

Using source-to-source code transformations, this kind of programming

models hide repetitive and platform-specific procedures typical in OpenCL.

Directives do no alter exiting code written for homogenous CPUs, which

enables rapid and maintainable code development thanks to an incre-

mental parallelization style coding.

Several initiatives from academia and from industry follow this path

achieving ease of programming at small or no performance loss respect

to optimized code written with low level API and high-level directive-

based languages [25] [26] [27] [28] [29]. OpenMP has recently accepted

the heterogeneous model in its specification 4.0 [30].
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The issues that a modern programming model for heterogeneous many-

core architectures should address are: i) providing an efficient, and scal-

able way to create, control, and distribute parallelism among a massive

number of processing units; ii) providing a flexible and easy-to-use mech-

anism to offload compute-intensive regions of programs from host cores,

to the many-core accelerators.

This thesis addresses these challenges, studying them from both the

internal many-core accelerator level, and the whole system level. At accel-

erator level we focus on all the issues related to how programming models

should evolve to efficiently deploy massive parallelism. These issues in-

volve both parallel programming models semantics and runtimes/support

libraries implementations.

At system level we focus on all the problems related to how com-

putation should be moved from host to accelerator, and how to hide

memory architectures and system heterogeneity from the programmers.

Efficiently addressing these issues also involves programming-execution

model extensions and efficient runtime environment design and imple-

mentation.

1.2 Thesis Contributions

Figure 1.2 shows graphically the contributions of this thesis and their

organization in chapters. The contributions are presented following a

bottom-up approach, starting from accelerator level optimizations and

associated programming model extensions. Then the focus is moved

at the system level aspects, proposing programming model solutions to



1.2 Thesis Contributions 9

Many-core
Programmability issues

Accelerator-Level System-Level

Nested Parallelism
Parallelism

Configuration 
Reuse

Directive-bases
Offload

Many-core
Virtualization

E
m

b
e
d
d
e
d
 M
a
n
y
-c
o
re

A
rc

h
it
e
ct

u
re

s

Chapter
2

Chapter
3

Chapter
4

Chapter
5

Chapter
6

C
o
n
c
lu
s
io
n
s

Chapter
7

In
tr
o
d
u
c
ti
o
n

Chapter
1

Figure 1.2: Thesis overview.

address programmability of manycores from within embedded heteroge-

neous systems. The next two paragraphs illustrate in details the four

major contributions of this thesis.

1.2.1 Accelerator level

From the architectural point of view, with the evolution from tens of

cores to the current integration capabilities in the order of hundreds, the

most promising architectural choice for scalable many-core embedded

system designs is core clustering. In a clustered platform, processing

cores are grouped into small- medium-sized clusters (i.e. few tens), which

are highly optimized for performance and throughput. Clusters are the

basic “building blocks” of the architecture, and scaling to many-core is

obtained via the replication and global interconnection of several clusters

through a scalable medium such as a Network-on-Chip (NoC)

Due to the hierarchical nature of the interconnection system, memory

operations are subject to non-uniform accesses (NUMA), depending of

the physical path that corresponding transactions traverse.

In this scenario Nested (or multi-level) parallelism represents a power-

ful programming abstraction for these architectures, addressing the issues
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of efficient exploitation of i) a large number of processors and ii) a NUMA

memory hierarchy.

This thesis explores how the nested parallelism can be used in state-of-

the-art embedded many-core platform to maximize the usage of massive

parallel architectures.

The first major contribution in this direction includes an effi-

cient and lightweight nested parallelism support runtime layer for many-

core cluster-based architectures. The integration of this runtime into

an OpenMP library enables to identify the most critical operations and

the bottlenecks of fork/join mechanism in massive parallel architecture.

The thesis shows the key design choices made and provides a quantita-

tive analysis of the impact of nested parallelism usage through synthetic

workloads and real benchmark.

The second major contribution of this thesis aims at further re-

ducing the cost for nested parallelism support by circumventioning the

dependence of fork/join overheads on the number of involved threads.

Looking at real embedded applications, it can be observed that par-

allelism usually follows a repetitive pattern. Based on this observa-

tion, a fully software-based cache of parallel team configurations is pro-

posed. This enables faster and constant-time fork/join operations, al-

lowing finer-grain parallelism exploitation.

1.2.2 System level

As parallel architectures evolve to heterogeneous systems based on many-

core accelerators, new programming interfaces are being introduced to

address the complex challenges of programming these platforms. In these
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architectures the programming models allow to offload computation-inten-

sive parallel kernels of applications from the host to the accelerator to

exploit the higher performance/watt targets that these devices offer.

In the embedded domain, such proposals are still lacking, but there

is a clear trend toward designing embedded SoCs in the same way it is

happening in the HPC domain [31], and which will eventually call for the

same programming solutions.

The third contribution of this thesis addresses these issues. It

proposes a complete directive-based programming model ecosystem for

embedded many-core architectures. It consists of: an extended OpenMP

interface, where additional features allows to efficiently offload computa-

tional kernels from host to the many-core accelerator; an highly efficient

runtime environment to manage communication between the two systems

and to create massive parallelism; a multi-ISA compilation toolchain.

Experimental results achieved by the proposed programming model

and compared to the standard OpenCL runtime system on a prototype

board STMicroelectronics STHORM confirm that the directive-based

programming model enables very close performance to hand-optimized

OpenCL codes, at a much lower programming complexity.

As the complexity of the target system grows, so does the complex-

ity of individual applications, their number and composition into mixed

workloads. The situation is best explained if extreme multi-user scenar-

ios such as data centers are considered. Here, multiple applications from

multiple users may concurrently require to use a PMCA. These applica-

tions are not aware of each other’s existence, and thus don’t communicate

nor synchronize for accelerator utilization. Different applications or parts

thereof (e.g., libraries, or other legacy code) are written using different
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parallel programming models. Ultimately, each programming model re-

lies on a dedicated run-time environment (RTE) for accessing hardware

and low-level software (e.g., driver) resources. Since PMCAs typically

lack the services of full-fledged operating systems, efficiently sharing the

PMCA among multiple applications becomes difficult.

The importance of efficient PMCA sharing among multiple applica-

tions is witnessed by the increasing efforts towards accelerator virtualiza-

tion pursued by major GPGPUs vendors [32] [33]. While such support

was originally conceived for multi-user settings such as computing farms,

its relevance is steadily increasing also in high-end embedded systems

typically meant for single-user (yet multi-workload) usage [34].

Many-core virtualization relies on dedicated hardware support for fast

and lightweight context switching between different applications. How-

ever, while such solution allows for transparent and simple PMCA shar-

ing, it implies significant area and power overheads with an increasing

number of fully-independent cores, which makes it unaffordable in the

short to medium term for types of PMCA other than GPGPUs.

In addition, currently all commercial products that support accelera-

tor virtualization assume that a single, proprietary programming model

is used to code all the applications, which cannot cope with multi-user,

multi-workload scenarios.

The fourth contribution of this thesis is a middleware that enables

multiple programming models to live inside the same accelerator. The

proposed runtime environment supports spatial partitioning of cluster-

bases many-core, where clusters can be grouped into several virtual accel-

erator instances. The design is modular and relies on a low level runtime
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component for resource (cluster) scheduling, plus “specialized” compo-

nents which efficiently deploy offload requests into specific programming

model execution semantics.

1.3 Thesis Overview

Figure 1.2 illustrates the organization of this thesis. Chapter 2 dis-

cusses the embedded many-core architecture characteristics targeted in

the research work presented in this thesis. The chapter shows the generic

template of a PMCA, and presents two examples of PMCA, the STMicro-

electronics STHORM and the VirtualSoC simulator, used for hardware

and software extension and explorations.

Chapter 3 focuses on nested parallelism support. It describes the

key design choices and explores in depth the breakdown for parallelism

creation. Hardware-accelerated solutions for critical and time-consuming

phases are proposed. Finally, a NUMA control mechanism is imple-

mented to enable locality -aware thread deployment.

A software cache of thread configurations to minimize the costs as-

sociated to supporting fork/join parallelism is illustrated in Chapter

4. The chapter is composed of an introduction to the key ideas behind

the technique and how the cache is implemented. A set of experimental

results to evaluate the effectiveness of this solution follows.

Chapter 5 presents a directive-based programming model for het-

erogeneous many-core systems. The chapter describes the whole hetero-

geneous programming ecosystem: the extended OpenMP semantics, the

compiler extensions for multi-ISA compilation and the runtime support

to offload kernels from the host to the PMCA. The comparison between
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OpenCL and the proposed programming model on real applications con-

cludes the chapter.

Chapter 6 introduces software-based partitioning mechanism for

multiple programming model support targeting programmable many-core

accelerator. First, it describes a taxonomy of state-of-the-art parallel pro-

gramming models for embedded heterogeneous systems. Then it provides

a detailed description of a multi-programming model runtime that layer

enables multiple offloads concurrently on PMCAs. A set of experimental

results on two different realistic use-cases concludes the chapter.

Finally Chapter 7 summarizes the thesis contributions and findings.



Chapter 2

Embedded cluster-based

many-core architectures

2.1 Generic template

Nowadays multi- and many-core designs are widely used in most com-

puting domains, from high-performance (HPC) to mobile/embedded sys-

tems. Energy efficiency is key driver for platform evolution, be it for

decreasing the energy bills of large data centers or for improving battery

life for high-end embedded devices. Architectural heterogeneity is an

effective design paradigm to achieve these goals. One of the most com-

mon heterogeneous system templates envisions single-chip coupling of a

powerful, general-purpose host processor to one (or more) programmable

many-core accelerator(s) (PMCA) featuring tens-to-hundreds of simple

and energy efficient processing elements (PE). PMCAs deliver much

higher performance/watt, compared to host processors, for a wide range

of computation-intensive parallel workloads.

The multi- many-core paradigm has allowed system-on-chip (SoC)
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Figure 2.1: On-chip shared memory cluster.

designers to successfully tackle many technology walls in the past decade

[35] [36] and has now entered the manycore era, where hundreds of simple

processing units (PUs) are integrated on a single chip.

To overcome the scalability bottlenecks encountered when intercon-

necting such a large amount of PUs, several recent embedded manycore

accelerators leverage tightly-coupled clusters as building blocks. Repre-

sentative examples include NVIDIA X1 [19], Kalray’s MPPA 256 [21],

PEZY-SC [22], ST Microelectronics STHORM [23], or Toshiba 32-core

accelerator for multimedia applications [24]. These products leverage a

hierarchical design, which groups PUs into small-medium sized subsys-

tems (clusters) with shared L1 memory and high-performance local inter-

connection. Scalability to larger system sizes employs cluster replication

and a scalable interconnection medium like a network-on-chip (NoC).

The simplified block diagram of the target cluster is shown in Fig-

ure 2.1. It contains up to sixteen RISC32 processor cores, each fea-

turing a private instruction cache. Processors communicate through
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a multi-banked, multi-ported Tightly-Coupled Data Memory (TCDM).

This shared L1 TCDM is implemented as explicitly managed SRAM

banks (i.e., scratchpad memory), to which processors are interconnected

through a low-latency, high-bandwidth data interconnect. This network

is based on a logarithmic interconnection design which allows 2-cycle L1

accesses (one for request, one for response). This is compatible with

pipeline depth for load/store for most processors, hence it can be exe-

cuted in TCDM without stalls – in absence of conflicts. Note that the

interconnection supports up to 16 concurrent processor-to-memory trans-

actions within a single clock cycle, given that the target addresses belong

to different banks (one port per bank). Multiple concurrent reads at

the same address happen in the same clock cycle (broadcast). A real

conflict takes place only when multiple processors try to access different

addresses within the same bank. In this case the requests are sequential-

ized on the single bank port. To minimize the probability of conflicts i)

the interconnection implements address interleaving at the word-level; ii)

the number of banks is M times the number of cores (M=2 by default).

Processors can synchronize by means of standard read/write opera-

tions to an area of the TCDM which provides test-and-set semantics (a

single atomic operation returns the content of the target memory location

and updates it).

Since the L1 TCDM has a small size (256KB) it is impossible to per-

manently host all data therein or to host large data chunks. The software

must thus explicitly orchestrate data transfers from main memory to L1,

to ensure that the most frequently referenced data at any time are kept

close to the processors. To allow for performance- and energy- efficient

transfers, the cluster is equipped with a DMA engine.



18 2.1 Generic template

SWITCH SWITCH

SWITCHSWITCH MEM 
CTRL

MAIN 
MEMORY

MAIN MEMORY

TCDM 3
TCDM 2
TCDM 1

0x00000
0x40000
0x80000
0xc0000

CLUSTER 
0

NI
TCDM 

0

CLUSTER 
2

NI
TCDM 

2

CLUSTER 
1

NI
TCDM 

1

CLUSTER 
3

NI
TCDM 

3

TCDM 0

0x100000

Figure 2.2: Multi-cluster architecture.

The overall many-core platform is composed of a number of clusters,

interconnected via a NoC as shown in Figure 2.2. The topology we

consider in our experiments is a simple 2×2 mesh, with one cluster at

each node, plus a memory controller to the off-chip main memory.

Overall, the memory system is organized as a partitioned global ad-

dress space. Each processor in the system can explicitly address ev-

ery memory segment: local TCDM, remote TCDMs and main memory.

Clearly, transactions that traverse the boundaries of a cluster are subject

to NUMA effects: higher latency and smaller bandwidth.

This architectural template captures the key traits of existing cluster-

based many-cores such as STMicroelectronics STHORM [23] or Kalray

MPPA [21] in terms of core organization, number of clusters, intercon-

nection system and memory hierarchy.
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2.2 STMicroelectronics STHORM

STHORM, previously known as Platform 2012 [23], is a many-core or-

ganized as a globally asynchronous, locally synchronous (GALS) fabric

of multi-core clusters (see Figure 2.3). A STHORM cluster contains (up

to) 16 STxP70-v4 Processing Elements (PEs), each of which has a 32-bit

RISC load-store architecture, with dual issue and a 7-stage pipeline, plus

private instruction cache (16KB). PEs communicate through a shared

multi-ported, multi-bank tightly-coupled data memory (TCDM, a scratch-

pad memory). The interconnection between the PEs and the TCDM was

explicitly designed to be ultra-low latency. It supports up to 16 con-

current of processor-to-memory transactions within a single clock cycle,

given that the target addresses belong to different banks (one port per

bank). The STHORM fabric is composed of four clusters, plus a fabric

controller (FC), responsible for global coordination of the clusters. The
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FC and the clusters are interconnected via two asynchronous networks-

on-chip (ANoC). The first ANoC is used for accessing a multi-banked,

multi-ported L2 memory. The second ANoC is used for inter-cluster

communication via L1 TCDMs and to access the off-chip main memory

(L3 DRAM). Note that all the memories are mapped into a global ad-

dress space, visible from every PE. L3 accesses requests are transported

off-chip via a synchronous NoC link (SNoC).

The first STHORM-based heterogeneous system is a prototype board

based on the Xilinx Zynq 7000 FPGA device (see Figure 2.4), which

features a dual core ARM Cortex A9 host processor, main DDR3 memory

(L3 memory), plus programmable logic (FPGA). The ARM subsystem

on the ZYNQ is connected to a AMBA AXI matrix, through which it

accesses the DRAM controller. To grant STHORM access to the L3

memory, and the ARM system access into STHORM L1/L2 memories,

a bridge is implemented in the FPGA, which has three main functions.



2.3 Virtual SoC Simulator 21

First, it translates STHORM transactions from the SNoC protocol to the

AXI protocol (and ARM transactions from AXI to SNoC). Second, it

implements address translation logic in the remap address block (RAB).

This is required to translate addresses generated from STHORM into

virtual addresses as seen by the host application and vice versa. Indeed,

the host system features paged virtual memory and MMU support, while

STHORM operates on physical addresses. Thus, the RAB acts as a very

simple IO-MMU. Third, it implements a synchronization control channel

by conveying interrupts in two directions through the FPGA logic and

into dedicated off-chip wires. The FPGA bridge is clocked conservatively

at 40 MHz in this first board. This constitutes currently the main system

bottleneck1.

2.3 Virtual SoC Simulator

As a concrete instance of this template we built a cycle-accurate SystemC

simulator, based on the VirtualSoC virtual platform [37]. VirtualSoC is

a prototyping framework developed at University of Bologna, targeting

the full-system simulation of massively parallel heterogeneous SoCs [38].

It allows to easily instantiate several manycore templates, as the number

of cores and clusters, the interconnect type and the memories are fully

parameterizable. The platform also comes with tools and libraries for

software developments, on top of which we built our runtime system for

lightweight nested parallelism support, plus accurate counters for perfor-

mance measurement and execution traces, which we use to evaluate the

1Similar to any realistic heterogeneous SoC design, STHORM is clearly intended
for same-die integration with the host, with orders-of-magnitude faster bridge and
larger memory bandwidth.



22 2.3 Virtual SoC Simulator

effectiveness of our techniques. The VirtualSoC simulator can also be

easily extended thanks to a fully modular design. In this work, Virtual-

SoC was used for Hardware and Software co-design and optimization of

parallel programming model support.

The VirtualSoC simulator, the HW extensions and the most of the

programming model extensions described in this thesis can be down-

loaded (currently as beta version) by contacting the authors through the

group website (http://www-micrel.deis.unibo.it/virtualsoc/).

http://www-micrel.deis.unibo.it/virtualsoc/


Chapter 3

Efficient Nested Parallelism

support for cluster-based

many-cores

3.1 Introduction

Cluster-based architectures are widely adopted in many-core system de-

sign as we discuss in the previous chapter. In this context a shared

memory model is often assumed, where each cluster can access local or

remote memories (i.e., belonging to another cluster L1 storage, as well

as L2 or L3). However, due to the hierarchical nature of the intercon-

nection system, memory operations are subject to non-uniform accesses

(NUMA), depending of the physical path that corresponding transac-

tions traverse. Nested (or multi-level) parallelism represents a powerful

programming abstraction for these architectures, addressing the issues of

efficient exploitation of i) a large number of processors and ii) a NUMA

memory hierarchy.
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Nested parallelism has been traditionally used to increase the effi-

ciency of parallel applications in large systems. Exploiting a single level

of parallelism means that there is a single thread (master) that pro-

duces work for other threads (slaves). Additional parallelism possibly

encountered within the unique parallel region is ignored by the execution

environment. When the number of processors in the system is very large,

this approach may incur low performance returns, since there may not

be enough coarse-grained parallelism in an application to keep all the

processors busy. Nested parallelism implies the generation of work from

different simultaneously executing threads. Opportunities for parallel

work creation from within a running parallel region result in the gen-

eration of additional work for a set of processors, thus enabling better

resource exploitation.

In addition, nested parallelism offers the ability of clustering threads

hierarchically, which has historically played an important role in the high-

performance computing (HPC) domain for programming traditional cc-

NUMA systems organized as clusters of multi-core computers. Regular

applications parallelized with a flat memory system in mind ultimately

behave as highly irregular workloads in a NUMA system. Indeed reg-

ular workload parallelization assumes that nominally identical shares of

computation and memory will be assigned to threads. If such threads

are mapped to processors which feature a different access time (laten-

cy/bandwidth) to the target memory, such threads will experience very

different execution times.

Table 3.1 shows the execution time (in 100K Cycles) of several appli-

cations running on the VSoC simulator.
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Color Tracking FAST Mahalanobis Strassen NCC SHOT

High-locality 5 49 25 201 47 4
Poor-locality 136 223 102 638 245 16
Variance 22× 5× 4× 3× 5× 4×

Table 3.1: Irregular behavior induced by NUMA in regular workloads
(×100K Cycles).

The first row refers to a high-locality configuration, where the appli-

cations are executed on a single cluster and the data is accessed from

the same cluster’s L1 memory. The second row refers to a poor-locality

configuration, where the applications are executed on a single cluster and

the data is accessed from a remote cluster’s L1 memory. This experiment

tries to highlight the effects of mismatches in data-to-thread affinity on

NUMA SoC architectures. Even if the applications have completely reg-

ular access pattern, NUMA effects lead to up to 22× variance between

team of threads, if data is not distributed in an architecture-aware man-

ner. The barrier semantics implied at the end of a fork/join construct

will force fast clusters to sit idle waiting for the slow clusters to complete.

Well consolidated programming practices have been established in

the HPC domain for the control of NUMA, but such practices need to be

revisited for adoption in the embedded many-core domain, due to some

key differences between the latter and HPC systems. First, large-scale

HPC systems rely on the composition of several SMP nodes, where inter-

node communication leverages orders-of-magnitude slower channels than

the coherent multi-level cache hierarchy within each node (intra-node

memory hierarchies are in fact transparent to the program).

In embedded manycores L1 and L2 memories are typically imple-

mented as scratchpads (SPM), which are explicitly managed by the pro-

gram via DMA transfers. Inter-cluster communication is much costlier
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than local memory access, yet it is way faster compared to inter-node

communication in HPC systems, as it leverages on-chip interconnection.

For these reasons, in HPC systems it is common to use a combination

of message passing (MPI), for inter-node communication, and fork/join

thread parallelism (e.g., OpenMP [30]) within a node. Direct access to

a remote note from within parallel threads is typically disallowed. The

locality of memory operations within a node is managed transparently by

caches. Intra-node NUMA effects in multi-socket systems are mitigated

by pinning threads to specific cores (thread binding). In embedded many-

cores remote cluster access is sometimes allowed (e.g., if data produced

in a remote cluster needs to be accessed only once or has in general poor

reuse), thus while MPI could still be used for intra-cluster communica-

tion [39], there is in general wider consensus towards simpler and unified

programming interfaces such as OpenMP.

Another important difference between HPC and embedded manycore

systems is found at the level of applications and software stacks. Appli-

cations in HPC typically leverage coarse-grained parallel tasks, capable

of tolerating large overheads implied by underlying runtime systems run-

ning on top of legacy operating system (OS), libraries, etc. Applications

in the embedded domain leverage fine-grained parallelism and run on top

of native hardware-abstraction-layers (HAL), while a full-fledged OS is

typically lacking. On the contrary, application targets for parallel em-

bedded systems [40] expose extremely fine-grained parallelism [41].

A number of researchers have proposed lightweight (nested) paral-

lelism support for embedded PMCA [42] [43] [41], proposing runtime

system design solutions aimed at minimizing the cost for recruiting a
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Kind #Cores Fork/Join Normalized
Cost Granularity

for 16 Cores
(KCycles) (KCycles)

Marongiu et al.
[42]

static 16 ≈1 10

Lhuillier et al. [43] static 16 ≈1.5 15
Intel Xeon Phi
[44]

dynamic 240 ≈27 18

IBM Cyclops-64
[45]

dynamic 64 ≈30 75

TI Keystone II
[46]

static 8 ≈15 300

Agathos et al. [47] static 16 ≈37 370

Table 3.2: OpenMP Fork/Join cost for state-of-the-art implementations
and estimated parallel workload granularity for which this cost is amor-
tized (considering 16 threads in all systems).

team of parallel threads. Intuitively the smaller the cost for forking/join-

ing parallel thread teams, the finer the granularity of the parallel tasks

for which the system can still deliver near-ideal speedups.

Table 3.2 summarizes the cost for a fork/join operation on state-of-

the-art runtime systems for various multi- and many-cores. The right-

most column shows the minimum parallel region granularity for which

the fork/join cost is acceptably amortized (10% of the actual parallel

workload). One common characteristic to all these implementations is

that the cost for parallelism creation (fork) linearly increases with the

number of threads being recruited.

Matching the key requirements of embedded applications, the focus is

on two key aspects: i) enabling fine-grained parallelism via streamlined

support of nesting; ii) leveraging the ability of clustering threads hier-

archically, where outer levels of coarse-grained (task) parallelism could
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be distributed among clusters, and data (e.g., loop) parallelism could be

used to distribute work within a cluster.

The chapter is organized as follows: the next section will introduce

the baseline nested parallelism runtime and the key choices to achieve

a streamlined and lightweight support; Section 3.3 introduces hardware

and software optimizations to the most time critical phases of parallelism

creation; Section 3.4 presents the experimental results; finally, Related

Work (Section 3.5) and Conclusions (Section 3.6) conclude this chapter.

3.2 Nested parallelism support

The architectures used as target for this work are: the STHORM (see

Section 2.2) and the VirtualSoC (see Section 2.3) platforms. Similar to

most embedded parallel platforms, the presented runtime system sits on

top of bare metal, as an OS is lacking. More specifically, we build upon

native hardware abstraction layer (HAL) support for basic services such

as core identification, memory allocation and lock (test and set memory)

reservation.

3.2.1 Key Design Choices

A central design choice for our lightweight nested parallelism support

is the adoption of a fixed thread pool (FTP) approach. At boot time

we create as many threads as processors, providing them with a private

stack and a unique ID (matching the hosting processor ID). We call these

threads persistent, because they will never be destroyed, but will rather

be re-assigned to parallel teams as needed. Persistent threads are non-

preemptive. We promote the thread with the lowest ID as the global
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master thread. This thread will be running all the time, and will thus

be in charge of generating the topmost level of parallelism. The rest of

the threads are docked on the global pool, waiting for a master thread

to provide work.

At startup, all the persistent threads other than the global master

(hereafter called the global slaves) execute a micro-kernel code where they

first notify their availability on a private location of a global array (Notify-

Flags, or NFLAGS ), then they wait for work to do on a private flag

of another global array (Release-Flags, or RFLAGS ). To minimize the

probability of banking conflicts on the TCDM when multiple processors

are accessing these data structures, we allocate them in such a way that

consecutive elements of the arrays are mapped on contiguous memory

banks. In this way each processor insists on a different TCDM bank.

The status of global slaves on the thread pool (idle/busy) is annotated

in a third global array, the global pool descriptor. When a master thread

encounters a request for parallelism creation, it fetches threads from the

pool and points them to a work descriptor.

Besides the global data structures described above, each thread team

has an associated team descriptor. This data structure relies on a simple

bitmask to describe the composition of the nested teams. The mask has

as many bits as the number of persistent threads. Bits corresponding to

the IDs of the threads belonging to the team are set to 1. This allows

multiple coexisting teams by masking only the fields of the global data

structures that are of interest for the current team, as shown in Fig. 3.1.

Furthermore, the use of bitmasks allows to quickly inspect the status

of individual threads and update team composition through fast bitwise

logic operations. A more detailed description of the team descriptor and
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Figure 3.1: Thread docking, synchronization and team descriptor.

its data structures is provided in the following.

Forking threads - Nested parallelism allows multiple threads to con-

currently act as masters and create new thread teams. The first infor-

mation required by a master to create a parallel team is the status of

the global slaves in the pool. As explained, this information in stored in

the global pool descriptor array. Since several threads may want to con-

currently create a new team, accesses to this structure must be locked.

Let us consider the example shown in Fig. 3.2. Here we show the task

graph of an application which uses nested parallelism. At instant t0 only

the global master thread is active, as reflected by the pool descriptor in

Figure 3.3. Then parallel TEAM 0 is created, where tasks A, B, C and

D are assigned to threads 0 to 3. The global pool descriptor is updated

accordingly (instant t1 ). After completing execution of tasks C and D,

threads 2 and 3 are assigned tasks E and F, which contain parallel loops.

Thus threads 2 and 3 become masters of TEAM 1 and TEAM 2. Threads
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Figure 3.2: Application with nested parallelism.

are assigned to the new teams as shown in Fig. 3.3 at instant t2. Note

that the number of slaves actually assigned to a team may be less than

what requested by the user, depending on their availability.

Besides fetching threads from the global pool, creating a new parallel

team involves the creation of a team descriptor (Fig. 3.1), which holds

information about the work to be executed by the participating threads.

This descriptor contains two main blocks:

1. Thread Information: A pointer to the code of the parallel function,

and its arguments.

2. Team Information: when participating in a team, each thread is

assigned a team-local ID. The ID space associated to a team as

seen by an application is expressed in the range 0,..,N-1 (N being

the number of threads in the team).

To quickly remap local thread IDs into the original persistent thread

IDs and vice versa, our data structure maintains two arrays. The LCL
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THR IDS array is indexed with persistent thread IDs and holds corre-

sponding local thread IDs. The PST THR IDS is used for services that

involve the whole team (e.g., joining threads, updating the status of the

pool descriptor), and keeps the dual information: it is indexed with lo-

cal thread IDs and returns a persistent thread ID. Moreover, to account

for region nesting each descriptor holds a pointer to the parent region

descriptor. This enables fast context switch at region end.

The memory footprint for this descriptor grows with the number N

of cores with the following formula:

F (N)bytes = ceil[
N

8
] + 2N + 12

For the 64-core system implementation considered in this work a team

descriptor occupies 148 Bytes. Once the team master has filled all its

fields, the descriptor is made visible to team slaves by storing its address

in a global TEAM DESC PTR array (one location per thread). Fig. 3.4

shows a snapshot of the TEAM DESC PTR array and the tree of team
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descriptors at instant t2 from our previous example.

Joining Threads - Joining threads at the end of parallel work involves

global (barrier) synchronization. Supporting nested parallelism implies

the ability of independently synchronizing different thread teams (i.e.,

processor groups). To this aim, we leverage the mechanism described pre-

viously to dock threads, which behaves as a standard Master-Slave (MS)

barrier algorithm, extended to selectively synchronize only the threads

belonging to a particular team. The MS barrier is a two-step algorithm.

In the Gather phase, the master waits for each slave to notify its

arrival on the barrier on a private status flag (on NFLAGS array). After

arrival notification, slaves check for barrier termination on a separate

private location (on RFLAGS array). The termination signal is sent by

the master in these private locations during the Release phase of the

barrier. Fig. 3.1 shows how threads belonging to TEAM 1 (instant t2

of our example) synchronize through these data structures.

An implementation for a single-cluster architecture of this basic sup-

port infrastructure for nested parallelism has been presented in our earlier
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Figure 3.5: Centralized runtime support data structures.

work [42]. For more details interested readers are referred to this paper.

In the following sections we describe how the basic concepts illustrated

here need to be extended when multi-cluster architectures with NUMA

memory hierarchy are concerned.

3.2.2 Nested Parallelism on Multi-Clusters

Early Implementation - The most straightforward solution to ex-

tend the described nested parallelism support to a multi-cluster many-

core is that of enlarging data structures (RFLAGS, NFLAGS, global

pool and team descriptors) (see Figure 3.5) to accommodate information

for a very large number of cores, while maintaining an identical, non-

hierarchical mechanism for thread docking and recruiting. This baseline

implementation leverages centralized data structures and centralized con-

trol, and is referred to as CDCC in the following.
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The plot in the top part of Figure 3.6 shows the breakdown of the

cycle count scaling for the fork and join when single-level parallelism is

considered for this naive extension to multi-cluster.

Regarding the fork operation, while team descriptor creation is al-

ways done with a constant time, fetching threads from the global pool

and releasing them to start parallel execution consist of a sequence of

SW operations repeated for every involved thread, and thus take an in-

crementally longer time.

This time increases linearly, because all descriptors are stored on
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the TCDM where the master thread resides. This implies two observa-

tions. First, if a core from a different cluster tried to create a new team

(e.g.,within a nested parallel region), the cost would be higher, because

all the memory transactions to update global data structures would be

traversing the NoC. Second, if having all the data structures close to the

master thread has a positive effect on team creation cost, it necessarily

has a negative effect on the time it takes for a slave thread to be released,

since its RFLAGS are placed far away and polling happens through the

NoC.

Figure 3.7 pictorially explains this situation. The left most bar shows

master thread actions over time, while the others show the actions of

three slaves, the first placed on the same cluster of the master, the second

and the third placed on clusters which are one and two NoC hops away,

respectively. The master releases threads sequentially, thus their activity
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starts at different times. However, the start time for far away slaves

is significantly delayed by NoC effects (the slaves actively poll remote

notification flags to check for new work). Thus, even if the master is

always the last thread to start its activity in a parallel construct (after

all the slaves have been released), remote threads will start their activities

later. Consequently, at the end of the parallel computation the master

will have to wait for them on the barrier.

This effect is clearly visible in the plots for the join phase with CDCC

in Figure 3.6 . The central plot shows join time measured on the master

thread after all the slaves have completed their parallel computation (the

master thread is forced to be the last to join). This time increases linearly

with the number of slaves, since all the NFLAGS are stored locally to

the master. The rightmost plot shows join time measured on the master

thread immediately after completion of its own parallel computation (no

synchronization with other slaves). As explained in Figure 3.7 , the

delayed start of remote slaves delays also their arrival to the join point,

which lengthens the overall parallel region duration. Distributing the

global data structures reduces the delayed start effect on the slaves, since

they can check the availability of work through local reads. However,

since the control part of the whole fork operation is still centralized on

the master thread, an even worse effect of delay in the fetch threads and

release threads phases is encountered on the master side. This can be

seen in the bottom part of Figure 3.6 , which shows the fork/join time

for this implementation with distributed data structures and centralized

control (DDCC). Overall, DDCC requires ≈7000 cycles to fork a flat

parallel region with 64 threads.
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Optimized implementation - The early implementation leverages

centralized data structures and centralized control, and is subject to two

main sources of inefficiencies. First, many operations which depend on

the number of involved slaves are sequentialized on a single (master)

thread. Second, when we cross the physical boundary of a cluster, NUMA

memory effects impact the cost for team creation and close.

Using nested parallelism provides a natural solution to the first issue.

Here, the global master should be able to create a first (OUTER) team

composed of as many threads as clusters, and to map each of these threads

on the first core of each cluster. These slaves would then become local

masters of a nested (INNER) team on each cluster. This parallelizes

the creation of teams spanning multiple clusters over multiple cluster

controllers (local masters).

To deal with the second issue we need to design a mechanism that cre-

ates local team descriptors for the inner regions, confining the accesses

to the data structures within a cluster and preventing NUMA effects.

The first modification in this direction is the distribution of all the run-

time support structures. To guarantee locality of bookkeeping operations

when inner regions are created, all these structures must be reorganized

per-cluster.

Figure 3.8 shows how this is achieved. RFLAGS for all threads on a

given cluster are allocated in the same TCDM. The way “virtual” (team-

specific) thread IDs are calculated is also made cluster-aware. Given M

(the number of threads on a cluster) - and CLid (the cluster ID), RFLAGS

on a TCDM are indexed in the range [CLid×M ; (CLid+1)×M−1]. The

global thread pool and per-thread team descriptor pointers are distributed

in the same manner.
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Figure 3.8: Distributed runtime support data structures.

NFLAGS must be organized differently, since they are used by team

masters to synchronize with slaves during the join phase. Thus, to en-

sure that polling on these flags is always performed on local memory, we

replicate the whole NFLAGS array (one flag per core in the system) over

every TCDM.

Another key feature that we need to support is fetching threads in a

cluster-aware manner during the fork phase. To this end, we modify the

team fetch algorithm to selectively allow scanning the global thread pool

with a stride M, starting from the current master thread ID.

Fork/Join Profiling - Figure 3.9 shows the breakdown of fork and join

execution time on VirtualSoC simulator as the total number of threads is

increased. The runtime supports an arbitrary level of nesting, bounded

by the number of persistent threads available in the system. But, on

this experiment we focused on the most interesting and natural team of
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threads topology for our target architecture. Here the OUTER thread

team is composed of 4 threads (one per cluster), while the INNER teams

have 1 to 16 threads each. We show in the plot as many bars as the

number of local masters. The total time is broken down in three main

contributions for both outer and inner regions: INIT (memory allocation

and data structure initialization); FETCH (thread recruitment) and RE-

LEASE (thread start). All these contributions increase linearly with the

number of involved threads, and it is where we will focus our optimization

effort in the next section. The Y-axis reports execution cycles, but along

this direction the plot can be read as a timing diagram. It is possible to

notice that the start time of different INNER masters is not aligned, since

creating the OUTER team is done on a single master, which starts new

threads in sequence. This clearly affects the overall duration of the fork

operation and, eventually, of the parallel computation synchronization.

Overall, the time to fork a 64-thread team is ≈2700 cycles. This is

33% faster compared to the naive centralized approach.

For the join operation we measure the contribution for three main

phases: GATHER (verify that all threads have joined), CLOSE (dispose

of allocated memory and data structures) and UPDATE (point global

data structures to current parallel team). In this case GATHER increases

linearly with the number of threads, which is what we try to minimize

in the following. Overall, joining 64 threads has a cost of ≈800 cycles,

which is 20% faster compared to the centralized approach.

To conclude, the the distributed implementation overcomes the cen-

tralized implementation in terms of performances without additional

memory requirements. None of the data structures are duplicated, but

only distributed among clusters.
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3.3 Nested parallelism support optimiza-

tions

3.3.1 Hardware-accelerated nested parallelism

As we discussed in the previous section, creating large thread teams via

nested parallelism has a beneficial side effect of speeding-up thread fork,

since the sequential operations originally repeated by a single master

for all the involved slaves can be parallelized over multiple local masters.

From Figure 3.9 we see that during the concurrent creation of the INNER
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(nested) parallel teams, there are basically three sections of the algorithm

that require linearly increasing time with the number of slaves, and which

deserve more attention. Thread fetch and release for the fork phase, and

thread gather for the join phase, as shown in the leftmost plot in Figure

3.10.

It has to be observed that:

1. during release the team master sequentially writes into RFLAGS

(one write per slave). This could be made a constant-time operation

having the ability to broadcast this information to all the slaves at

the same time.

2. during gather the team master sequentially checks that all slaves

have written into NFLAGS. This could be made a constant-time

operation having the ability to put the team master in sleep and

notify it when all slaves have joined.

3. during fetch the team master i) sequentially selects slaves to recruit
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by inspecting their status, then ii) points them to the team descrip-

tor by writing the address into each slave’s field of the TEAM

DESC PTR array. ii) could also be made a constant-time oper-

ation if the broadcast mechanism mentioned above allowed 32-bit

word broadcast.

To this aim, we enhance our simulation infrastructure with a hardware

synchronizer (HWS) block that implements the discussed features. The

HWS is implemented as a functional SystemC module annotated with

timing information extracted from an hardware implementation based

on [48]. Each cluster in the system integrates a HWS block, which can

be configured via memory-mapped registers to broadcast signals (or one

32-bit word) to a set of processor in a cluster, identified by a bitmask.

Hierarchically interconnected HWS blocks allow inter-cluster synchro-

nization.

The rightmost plot in Figure 3.10 shows the execution time scaling for

the most critical parts of fork and join using the hardware-accelerated

primitives. The HWS allows to make release and gather constant-time

operations, comparable to the cost of SW primitives for 4 threads. The

word-broadcast feature allows to speed up thread fetch by ≈13% on the

fast on-cluster interconnection considered in this work. This value would

significantly increase if a slower interconnection medium was considered

(e.g., a NoC).

We obtain the results shown in Figure 3.11 for the HW-accelerated

nested parallelism support. Comparing to Figure 3.9, the HWS allows

a net reduction of ≈10% and ≈28% of the fork and join time, respec-

tively. Moreover, the HWS allows perfectly aligned start time of the
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nested teams on various clusters, which has a significant impact on over-

all parallel region duration.

Function call overhead (time spent invoking primitives for fork and

join) and inner team init (time spent to allocate memory for the in-

ner team descriptor and populate it) are two important contributors to

overall fork/join cost. In the common case where the goal is to spawn a

parallel region that involves all the cores in the system, we can avoid those

costs. In fact, all the threads/cores need to be pointed to a unique team

descriptor, created within a unique fork_nested_team function, and de-

stroyed within a unique join_nested_team function. These functions
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port.

transparently synchronize threads and clusters in a hierarchical manner,

without the need for explicit calls to outer level and inner level parallelism

creation functions. Figure 3.12 shows the fork/join cost when these func-

tions are used. Overall, a net reduction of ≈37% and ≈36% of the fork

and join time, respectively, is achieved compared to SW.

3.3.2 NUMA-aware nested parallelism in OpenMP

The user can also control the number of threads involved at each level

by using the num_threads clause, but there are no means to control
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thread-to-processor affinity, nor guarantees that the same mapping is

preserved over multiple parallel regions. The standard only provides an

OMP_PROC_BIND environment variable, which specifies whether threads

may be moved between processors. Specific OpenMP implementations

may allow to bind a thread to a processor relying on operating system

primitives such as linux sched_setaffinity.

These approaches have two main limitations. First, controlling thread

affinity via environmental variables is less immediate and easy to use

than using directives. Moreover the lack of full-fledged operating systems

on the targeted embedded many-cores makes the implementation not

straightforward. Second, they provide no or very limited support to

dynamically change the binding after the program has been started.

Due to the relevance of affinity control in the context of ccNUMA

machines, the OpenMP architecture review board has included in the

recent specification v4.0 the definition of a new proc_bind construct, to

be coupled to the parallel directive.

1 proc_bind(master | close | spread)

Listing 3.1: OpenMP proc_bind clause specification.

The master policy assigns every thread in the team to the same place

as the master thread. The close policy assigns the threads to places close

to the place of the parent’s thread. The master thread executes on the

parent’s place and the remaining threads in the team execute on places

from the place list consecutive from the parent’s position in the list, with

wrap around with respect to the place list. The spread policy creates

a sparse distribution for a team of T threads among the P places of the

parent’s place partition. It accomplishes this by first subdividing the
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parent partition into T subpartitions if T is less than or equal to P, or

P subpartitions if T is greater than P. Then it assigns 1 (T≤P) or a set

of threads (T>P) to each subpartition. The subpartitioning is not only

a mechanism for achieving a sparse distribution, it is also a subset of

places for a thread to use when creating a nested parallel region. We

implemented the proposed extension in the GCC compiler, and modified

the runtime library to invoke the primitives for nested fork/join described

previously.

3.4 Experimental results

3.4.1 Synthetic costs analysis of multi-level paral-

lelism

In the previous sections we have discussed the optimization of the sup-

port for two-level nested parallelism, which is the most common case

for deploying computation with high data locality in out target system.

However, our framework is capable of supporting multiple levels of par-

allelism nesting. In this section we use the EPCC benchmarks [49] to

characterize the cost of nesting up to 5 OpenMP parallel regions. The

original methodology has been extended to account for nested parallel re-

gions as described in [50]. This methodology basically computes runtime

overheads by subtracting the execution time of the parallel microbench-

mark from the execution time of its reference sequential implementation.

The parallel benchmark is constructed in such a way that it would have

the same duration of the reference in absence of overheads.



48 3.4 Experimental results

WW WW

get_cycle()

get_cycle()

WW WWWW WW

PAR

WW WW

get_cycle()

SEQ

W = workload

W

get_cycle()

= overhead

A

WW WW

W

get_cycle()

get_cycle()

WW

W

WWWW

W

WW

PAR

WW WW

W
get_cycle()

SEQ

W = workload

W

= overhead

W

B

get_cycle()
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sessment. A) 1 level, B) 2 levels.

In Fig. 3.13 we show the task graph representation of the microbench-

marks used to assess the cost of nested parallelism with depth 1 and 2, as

an example. The computational kernel (indicated as W in the plots) is

composed uniquely of ALU instructions, to prevent memory effects from

altering the measure. We consider a simple pattern where a parallel re-

gion is opened, then the block W is executed. This pattern is nested

up to 5 times. The thick gray lines in our plots represent the sources of

overhead that we intend to measure.

The difference between the parallel and sequential versions of the

micro-benchmark represents the total overhead for opening and closing

as many parallel regions as the nesting depth indicates.

Figure 3.14 shows this overhead for varying granularities of the work
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Figure 3.14: Cost of multi-level nested parallelism.

unit (W). The upper plot refers to VirtualSoC, the bottom plot to STHORM.

There are as many curves as the considered levels of nesting.

The total number of threads created for each experiment is always 64

(all the processors in the system are involved in parallel computation).

For example, the curve marked as 1-lv refers to the experiment where we

create a single parallel region composed of 64 threads. The 2-lv experi-

ment considers two nested parallel regions with 4 spread threads on the

first level and 16 close threads on the second. The 5-lv experiment con-

siders an outermost parallel regions with 4 spread threads and 4 nested

parallel regions composed of 2 thread each.

Using NUMA-aware nested parallelism is always faster than single-

level parallelism in cluster-based architectures. As we already discussed

in Section 3.2.2, this is expected, since single-level parallelism creation

beyond a single cluster involves a significant number of remote NUMA
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memory transactions. When the granularity of the parallel workload is

very small (tens to few hundreds of cycles) the cost for nested paral-

lelism creation has a slightly higher overhead, mostly due to contention

for shared data structures (the accesses to these structures from multiple

masters trying to concurrently create additional parallelism are sequen-

tialized). However, for workload granularities in the order of thousand

cycles and above these overheads are fully amortized.

With respect to VirtualSoC, the prototype STHORM implementation

has slightly higher cost for multi-level nested parallelism support. As al-

ready mentioned previously, this is largely due to the lack of optimization

for on-chip memory allocation primitives. The STHORM SDK provides

centralized memory allocation services (i.e., requests for memory allo-

cation from multiple masters are diverted to a single cluster controller,

which services the requests in a FIFO manner). This implies that most

of the initialization phases in our nested parallelism support library have

bigger fixed (i.e., independent of the size of the parallel region) costs on

STHORM. These costs become relevant when the size of the thread team

being created is small.

3.4.2 Experimental results on real applications

In this section we validate our nested parallelism support runtime for

NUMA embedded many-cores using six benchmarks (summarized in Ta-

ble 3.4.2) from the computer vision, image processing and linear algebra

domain, typically targeted by the many-core accelerators considered in

this work. Such applications employ a regular computation and memory

access structure, but deploying the parallel workload on all the available

cores with no awareness of the clustered platform organization (referred
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Mnemonic Application Name Description

NCC Removal Object Detection Removal Object detection
based on NCC algorithm
[51]

CT Color Tracking Color motion tracking on
24-bit RGB image based
on OpenCV implementa-
tion.

FAST Corner Detection FAST Corner Detec-
tion based on machine-
learning, mainly used for
feature extration [52]

Mahala. Mahalanobis Distance Mahalanobis distance for
image feature clusteriza-
tion based on OpenCV im-
plementation

SHOT 3D descritpor Two main kernels: SHT1)
local reference frame ra-
dius; SHT2) histogram in-
terpolation

Table 3.3: Real applications used as benchmarks for nested parallelism
evaluation.

to as “flat” parallelization) leads to varying execution times for nomi-

nally identical threads. This irregular behavior is consistently observed

for every benchmark, due to the OpenMP memory model and lack of

NUMA-awareness in the flat parallelization scheme.

In the following, we first provide details about the various paralleliza-

tion schemes used in the evaluation, using the Color Tracking application

as an example. Second, we show the speedup achieved by all the bench-

marks when various approaches are adopted to deploy parallelism over

the whole many-core platform.
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#pragma omp parallel
{

for(stripe = 0;
stripe < N_STRIPES;
++stripe){

#pragma omp master
{ dma_in(in[stripe]); }

CSC (in[stripe], tmp1[stripe]);
cvTHR (tmp1[stripe], tmp2[stripe]); 
cvMOM (tmp2[stripe], xy[stripe]);

}
#pragma omp barrier

for(stripe = 0;
stripe < N_STRIPES;
++stripe){

#pragma omp master
{ dma_in(in[stripe]);

dma_in(track[stripe]); }

cvADD (in[stripe], track[stripe], out[stripe]); 

#pragma omp master
{ dma_out(out[stripe]); }

}
}

A

B

Stripe 0 Cl0
Stripe 1 Cl0
Stripe 2 Cl0
Stripe 3 Cl0
Stripe 4 Cl0
Stripe 5 Cl0
Stripe 6 Cl0
Stripe 7 Cl0

void CSC(in, tmp1) {
#pragma omp for
for(i = 0; i < … ; i++){

[ A L G O R I T H M ]
}

}

void cvTHR(tmp1, tmp2) {
#pragma omp for
for(i = 0; i < … ; i++){

[ A L G O R I T H M ]
}

}

void cvMOM(tmp2, xy) {
#pragma omp for
for(i = 0; i < … ; i++){

[ A L G O R I T H M ]
}

}

void cvADD(in1, in2, out) {
#pragma omp for
for(i = 0; i < … ; i++){

[ A L G O R I T H M ]
}

}

R R

R R

PE0

TCDM
LOCAL
DATA

PE15

TCDM

PE31PE16

TCDM

PE47PE32

TCDM

PE64PE48

flat parallel thread team

Figure 3.15: Flat parallelization scheme.

Parallelization Patterns - To parallelize the six target benchmarks

we have used a couple of patterns, enabled by the availability of NUMA-

aware nested parallelism support. As an example, we illustrate in the

following how we have partitioned and parallelized Color Tracking with

the various schemes.

Color-based tracking consists of a cascade of four functional kernels.

Color space conversion (CSC), threshold-based color filter (cvTHR), motion

vector calculation (cvMOM) and motion vector to reference frame addition

(cvADD).

Input and output frames are stored in the main memory, as well as

the temporary output buffers for every kernel. To improve locality of

computation, data must be moved to TCDMs using the DMA engine.
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To achieve efficient data transfers we use standard double buffering tech-

niques. The input image is split in several stripes; while one stripe is

being processed the next one can be pre-loaded to the TCDM. The same

mechanism is used for output data. The size of stripes is an important

parameter to achieve efficiency, and strictly depends of the parallelization

strategy.

Flat Parallelization - In the flat parallelization scheme only one sin-

gle level of parallelism is created, i.e., only one parallel thread team.

Logically, we are abstracting the platform as a flat (i.e., assumed homo-

geneous computing and memory resources) team of 64 threads, headed

by the master thread mapped on PE 0 within cluster 0. As the code snip-

pet in Figure 3.15 shows, the master thread is responsible for bringing in

and out data from the main memory into the local TCDM (DMA primi-

tives are enclosed within a #pragma omp master directive). However,

since the parallel team spans multiple clusters, threads belonging to clus-

ters 1, 2 and 3 will experience longer memory access (the corresponding

transactions are transported through the NoC).

Nested data parallelization - The second recurrent parallelization

pattern in our application kernels distributes single-program, multiple-

data computation all over the available cores in the system. Figure

3.16 shows the pseudo code for the data-parallelization pattern. A first

level of parallelism creates as many threads as clusters. Associating the

proc_bind clause to this parallel region ensures that the four threads

are mapped on different clusters (local masters). Data parallelism is im-

plemented at the stripe level within each cluster by exploiting a second

level of parallelism. To improve the computation to communication ratio



54 3.4 Experimental results

#pragma omp parallel num_threads(4)        \ 

{
#pragma omp for

{

dma_in(in[stripe]);

CSC (in[stripe], tmp1[stripe]);
cvTHR (tmp1[stripe], tmp2[stripe]); 
cvMOM (tmp2[stripe], xy[stripe]);

}

dma_in(in[stripe]); 
dma_in(track[stripe]);

cvADD (in[stripe], track[stripe], out[stripe]); 

dma_out(out[stripe]);
}

}

B
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CL3
NI
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EE
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proc_bind(spread)

for(stripe = 0; 
    stripe < N_STRIPES;
    stripe++)

{

for(stripe = 0; 
    stripe < N_STRIPES;
    stripe++)

#pragma omp for

void <KERNEL> (args)
{
#pragma omp parallel for \

for(i = 0; i < … ; i++)
[ A L G O R I T H M ] }

num_threads(16)  \
proc_bind(close)

{

A

Figure 3.16: Nested data parallel color tracking.

(CCR) we merge the CSC, cvThresh and cvMOM kernels into a single ker-

nel. As already explained, cvADD can not be merged with the previous

kernels because it requires as an input the motion vectors for the whole

image. A barrier is required between the two nested parallel regions,

since the barrier implied at their end would only synchronize threads

within each cluster independently (no inter-cluster synchronization).

Again, if the proc_bind clauses were not used, the composition of the

nested teams would still span multiple clusters and NUMA effects would

still be present.

Comparison between parallelization patterns - In this Section we

evaluate the effectiveness of our nested parallelism support, comparing
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the performance of the various presented policies to spawn parallelism

throughout the whole platform:

1. Flat - A single parallel region of 64 threads is created (no nesting);

2. Nested (non-NUMA) - Two nested parallel regions are created,

but with no use of the proc_bind clause (no NUMA awareness);

3. Nested (NUMA) - Two nested parallel regions are created, using

the proc_bind clause (NUMA-aware nesting);

4. Nested HW (NUMA) - Same as before, with HW-accelerated

nesting support.

Results for this experiment are shown in Figure 3.17. The flat paral-

lelization scheme, as expected, severely limits the maximum achievable

speedup, due to irregular memory behavior among nominally identical

threads. It is interesting to note that NUMA-unaware nesting can exac-

erbate this irregularity and achieve poorer locality that the flat scheme.

Indeed, besides poor data locality, in this case we are systematically en-

forcing costly inter-cluster communication due to thread management

(i.e., implied by fork/join of parallel regions spanning multiple clusters).

This confirms that the ability of creating nested parallelism alone is

not sufficient to achieve good performance, if it is not augmented with

NUMA-awareness. When nesting is made NUMA-aware we can achieve

up to 63× speedup (46× on average). This solution can get up to 28×

faster than flat parallelism (for Color Tracking, 7× on average). HW-

accelerated nesting improves SW-only nesting by ≈20% for very fine-

grained and short-running workloads (FAST, small images).

Some benchmarks leverage very fine-grained parallelization, for which

the overhead introduced by the runtime support for nested parallelism
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Figure 3.17: Comparison of various approaches to nested parallelism sup-
port.

has a higher impact. This is the case of FAST [52]. FAST is a corner

detection algorithm, which operates by comparing the intensity value

of a target image point px with all the surrounding pixels in a circular

area. px is classified as a corner if there exists a set of contiguous pixels

within the circle that are all brighter (minimum) or darker (maximum)

of px (within a tolerance threshold). The parallelization pattern adopted

here is the same already shown in Figure 3.16, but in this case only one

parallel region is required. The granularity of the workload distributed to

parallel threads in FAST depends of two parameters: i) overall duration

of the computation and ii) corner density (number of corners detected).

To allow studying the impact of these factors on the overall speedup we

perform experiments on two types of images. The first is a chess pattern,

which we use as a sort of synthetic use-case, useful to understand the

scalability of the algorithm when increasing the size of the input image.

We consider the following image sizes: 32×32, 64×64, 128×128, 256×256

and 512×512 pixels. For this type of image the corner density is 15%.

The ratio between the number of corners and the total number of pixels

remains constant when scaling the image, but the amount of processed

pixels increases, which has an effect on the granularity of the parallel

work, and – consequently – on the parallelization overhead. The second
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Figure 3.18: FAST performance for Chess pattern images.

type of image is a real urban traffic scene, representative of what could

be captured by a camera on a driver assistance system, showing the

road and cars and buildings on the background. Typically, these real-life

images have much lower corner density. We consider two real images with

corner density 1,5% and 6%, respectively, in two sizes: small (320×240)

and large (640×480).

In Figure 3.18 we show the execution time and speedup for the ex-

periment with the synthetic image pattern when increasing the input

image size. We show normalized execution cycles (bars, left Y-axis) and

speedup (lines, right Y-axis) for HW-accelerated nested parallelism ver-

sus sequential execution. For image sizes around 256×256 the speedup

gets closer to the ideal one (≈60×).

Figure 3.19 shows the results for the two real images. Image A (≈

1.5% corner density) reaches up to 27× and 46× speedups for small and

large images, respectively. Image B (≈ 6% corner density) reaches 35×

and 50× speedups.

Since the computation time varies depending on whether the current
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Figure 3.19: FAST performance for real images.

pixel is a key point or not, and being the key points clustered in specific

regions of the image, some load imbalance between parallel threads is

present. This is shown in the bottom part of Figure 3.19, where we

indicate the variance in execution time among threads.

Overall, the results demonstrate that our nested parallelism support

layer is capable of extracting high degrees of parallelism even for very

fine-grained workloads.

3.5 Related work

There are two main research areas related to this first contribution: sup-

port for scalable thread fork/join in large systems considering multi-level

parallelism, and management of fork/join parallelism in NUMA systems.

We describe related work in the two areas in separate sections.
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3.5.1 Nested Parallelism Support

Nested parallelism can be implemented in different ways [53] [54] [55] [56].

In the literature many techniques exist, which can be categorized into two

main approaches:

Dynamic thread creation (DTC): whenever the application asks

for additional parallelism, it is mapped on a lightweight thread from some

standard package (e.g., pthreads). This approach allows very flexible

creation of parallelism as needed, but it is very expensive [44] [50] [45].

On average this approach has ≈32× higher overheads compared to us

(and up to ≈113×).

Fixed thread pool (FTP): A fixed number of lightweight threads

(typically as many as the number of processors) is created at system

startup and constitute a fixed pool of workers. When a program requests

the creation of parallelism, threads are fetched from the pool [47] [43] [46].

If the number of logical threads created at an outermost parallel construct

is less than the number of threads in the pool, some of them will be left

unutilized and available for nested parallelism. While being much faster

than DTC, state-of-the-art FTP solutions have on average ≈6× higher

overheads compared to us (and up to 14×).

There also are many hybrid approaches, which combine in some ways

DTC and FTP. Some techniques start with a FTP approach, and dynam-

ically create new threads when there are no idle workers on the pool [45].

Other solutions leverage thread creation at the outermost level of paral-

lelism, where the computation is assumed to be coarse enough to amor-

tize the overhead, and a simple work descriptor shared by threads at the

innermost level of parallelism [53].

The work from Tanaka et al. [56] relies on a fixed thread pool, but
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allows multiple logical threads to be mapped on a single physical thread

and maintains a work queue from which threads which become idle can

fetch (or steal) work. The latter approach is based on the widely adopted

abstraction of a work queue [57] [58], and is an orthogonal technique

to nesting. OpenMP itself, since specification v3.0, provides tasks or

dynamic loop scheduling, also based on the notion of a work queue, which

allow to specify work units at a finer granularity than threads. In these

programming models, once a thread team has been defined, to extract

more parallelism it is not necessary to create additional threads: the

more lightweight abstraction of the work queue allows existing threads

to push and fetch work from there. This offers in many situations a more

flexible means to creating parallelism than that offered by nesting alone.

However, while work queues allow very flexible parallelism creation,

they do not support the logical clustering of threads in the multilevel

structure, which is key to achieving data locality and balancing of static

workload partitioning. When considering the cluster-based design of our

target architecture, the capability of confining a thread team within the

boundaries of a cluster is key to achieve locality and balancing. We

thus believe that a lightweight support for the creation of nested thread

teams is fundamental to enabling fine-grained parallelism. In this chapter

we presented our streamlined and optimized implementation of nested

parallelism. Work queue-based parallelism can orthogonally be provided

within our support.
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3.5.2 Thread Affinity Control for NUMA Systems

Thread binding and affinity are major concerns on NUMA architectures,

and in literature different approaches and programming model exten-

sions exist to deal with this issue. OpenMP is a powerful and easy-to-use

programming model for shared memory multiprocessors, but it has no

awareness of the underlying memory system organization. Early solu-

tions to this problem were offered inside specific software development

environments. All these solutions use core identifiers and environment

variables to specify the binding between cores and threads. GNU and

Intel compilers provide environment variables (GOMP_CPU_AFFINITY and

KMP_AFFINITY) to specify a list of CPUs to which to bind threads. These

variables enumerate a set or a range of core IDs where the threads are

allowed to be placed. The Intel compiler also provides two specifiers:

scatter and compact, which define how the threads must be allocated

to cores. This is similar to the OpenMP extension that we consider

in this chapter, but it works well only for a single level of parallelism,

because the thread binding policy cannot be changed at runtime. More-

over, thread to processor binding ultimately relies on costly operating

system primitives such as linux sched_setaffinity, which can not be

used on the many-core systems targeted in this work, for two reasons.

First, the lack of full-fledged operating systems. Second, the necessity of

supporting very fine-grained parallel workloads, which can not tolerate

high-overheads for parallelism creation. The PGI compiler [59] enables

thread binding via the MP_BIND variable. The user specifies on a second

variable (MP_BLIST) the core list where the threads can be allocated.

Extensions to the Intel compiler (the subscatter and subcompact poli-

cies) have been proposed to manage thread binding for nested parallel



62 3.5 Related work

regions [60]. However, the bind mechanism is still based on environment

variables, which makes it difficult to use and to change at runtime.

A more generic approach extends the standard processor GROUP

to represent complex hierarchical memory architectures and allows the

programmer to assign work to these groups [61]. The main limitation of

this solution is that it puts on the programmer the burden of in-depth

hardware knowledge and exploitation.

ForestGOMP [62] introduces a different notion of thread groups, called

bubbles. These bubbles can have a hierarchical structure to describe a

nesting relation. A scheduler (BUBBLESCHED) assigns the threads to

specific cores of the system taking NUMA concerns into account, then

a thread stealing mechanism allows to change the mapping and migrate

threads as necessary. A disadvantage of this approach is that it is hard

for the programmer to understand what the scheduler does, and thus to

optimize the code.

A recent work from Eichenberger et al. [63] tries to put together

previous approaches in a more generic, portable and flexible way. Two

basic concepts are defined: places and affinity. The first describes the

platform topology and memory hierarchy, defining a set of places where

the threads can be allocated; the second allows to implement different

allocation patterns throughout the places: spread maximizes the distance

between places and compact puts all threads in a single place.
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3.6 Conclusions

To scale to the many-core paradigm several recent embedded MPSoCs

have been architected as fabrics of tightly-coupled, shared memory clus-

ters. Key to extract the massive peak parallelism offered by these systems

is the availability of an easy-to-use yet powerful programming model and

associated runtime layer. When considering the computing systems at

hand, two main concerns arise. First, since the target platform is typi-

cally meant to run very fine-grained parallel workloads, it is fundamental

to provide very lightweight primitives to create and manage parallelism

over a very large number of cores. Second, since cluster-based many-

cores feature NUMA memory architectures, the runtime system and the

programming model should be made aware of this hardware peculiarity

to prevent scalability bottlenecks and performance blockers.

Nested parallelism provides an intuitive conceptual framework to ad-

dress the second point, provided that i) an efficient implementation of

the first is available and ii) the capability of binding thread teams to spe-

cific cores and clusters is provided. This chapter presented an efficient

runtime layer for nested parallelism on cluster-based embedded many-

cores, identifying the most critical operations to fork and join nested

parallelism, and proposing SW-only and HW-accelerated solutions for

their implementation. The presented fork/join primitives have been inte-

grated in the OpenMP programming model, and the associated compiler

implements an extension to expose an abstract notion of clusters at the

programming interface level, which makes nested parallelism mapping

NUMA-aware.

This extended OpenMP interface allowed us to explore on a set of

real application use cases how NUMA affects the performance of flat
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parallelism, and how our approach provides control over such effects and

achieves up to 28× speedup versus flat parallelism. In terms of fork/join

cost, this scales better than the original flat approach, as it is a function

of the number of clusters (plus the number of cores in a single cluster)

rather than the total number of cores. In terms of application scalability,

for all the benchmarks considered in this work the impact of fork/join is

always negligible and does not affect at all the scalability of the employed

parallelization scheme.



Chapter 4

Scalability optimization on

parallelism creation for

fine-grain parallelism

4.1 Introduction

Nested parallelism is a powerful HPC programming abstraction to ad-

dress a) large-scale parallelism; b) NUMA effects. As for the first point,

when applications don’t have enough coarse-grain parallelism to exploit

all the available processors, nested parallelism allows to hierarchically

(and dynamically) create additional, finer-grained parallelism whenever

it is available. As for the second point, nested parallelism offers the abil-

ity of clustering threads hierarchically (via thread binding). Outer levels

of coarse-grained parallelism can be distributed among clusters, and in-

ner levels of finer-grained (e.g., loop) parallelism can be assigned to PEs

within a cluster.
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Pattern Scaling
Number of cores

2 4 8 16 32 64

Flat O(Cores) 0.4 0.5 0.9 1.7 3.6 8.5

Nested O(Clusters+ Cores
Clusters

) 1.6 2.3 2.3 2.5 2.9 3.4

Nested HW O(Clusters+ Cores
Clusters

) 1.7 2.3 2.3 2.4 2.6 2.9

Implicit Nested HW O(Clusters+ Cores
Clusters

) 1.1 1.5 1.6 1.7 1.8 2.1

Table 4.1: Fork/Join cost (KCycles) scaling when increasing the number
of cores using different parallel patterns.

Table 4.1 summarizes how the cost for a fork/join operation for differ-

ent approaches scales with the number of cores involved. Flat parallelism

scales linearly with the number of cores in the platform; for 64 cores

fork/join cost reaches 8.5KCycles. Nested fork/join shows better scala-

bility considering that a part of the computational cost to recruit/park

threads is parallelized among different clusters. The cost thus increases

linearly with the number of clusters plus the number of cores per cluster,

rather than with the total number of cores.

In real embedded applications, we observed that in most cases the

way parallelism is created tends to follow repetitive patterns. In the sim-

plest scenario, nested parallelism is not used at all (e.g., the application

has multiple single-level parallel loops in sequence). Here, at every paral-

lel region all the available cores are recruited for computation. For more

complex parallelization patterns, where nesting is used to distribute hier-

archically the workload, a common pattern is to use a first parallel region

recruiting threads among clusters, and then a second level of parallelism

(one parallel region per cluster) recruiting all the local threads. A mech-

anism to “cache” the configuration of parallel teams and threads could

in this case enable quick fork/join operations. When a thread configura-

tion is found in the cache, thread recruitment becomes a constant-time

operation.
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The following sections propose a software cache mechanism to reduce

parallel team creation cost for many-core systems. Every time that a

thread team is created we store the configuration information in a data

structure for fast lookup. Upon team join operations we don’t get rid of

the configurations, but we keep them for later re-use.

4.2 Software Team Descriptor Cache

Under the assumption of 1:1 thread-to-core mapping, this would lead

to a very large number of possible team configurations (size and nest-

ing depth). However, the assumption of persistent threads, and the se-

quential thread recruitment policy, which is guaranteed to execute in a

mutually exclusive manner1, overall reduce by a great extend the total

number of feasible configurations stored in a team descriptor. The first

parallel region is always created by the global master thread. We can

easily deduce that for a given team size there is only one team configu-

ration allowed. For example, if there is a request for four workers only

the first four threads of the pool can be used. If the team is generated at

the second level of nesting or above, the scenario becomes more complex.

In this case there can be more than a single composition of threads, de-

pending on the order in which multiple fork requests at the same nesting

level are satisfied.

Figure 4.1 depicts an example of this situation. Here, four threads

have been already enrolled in a parallel team at the first level, in a 8-

thread system. If a request for forking a nested team arrives at this

point, we can have different “legal” configurations based on the new team

1If two threads are trying to create a new team their operations will be sequen-
tialized by the lock-protected update operations on the global pool.
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Figure 4.1: Team of threads combination increasing the requested num-
ber of slave threads at second level of nested parallelism when: number
of busy threads (B) is 4, and number of threads on whole system (N) is
8.

size. If the new team is composed of two threads, we have overall four

possible configurations (note that the master thread of a nested team is

a component of the former team, so creating a nested team of N threads

implies recruiting only N-1 new threads). If the new team has three

threads only three configurations are allowed, and if it has four only two

configurations are possible. Permutations and “holes” are to be excluded

from the possible configurations, as the recruitment algorithm prevents

them.

Let:

b := number of busy threads

r := number of threads to be forked

N := max. number of threads available

C(b, r) := number of legal thread combinations
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Figure 4.2: Left (a): Space of team of threads combination at second
level of nested parallelism. Right (b): our sparse cache of team descriptor
organization.

The C(b, r) combination of threads can be computed as follow:

C(b, r) = N − b− r + 2. (4.1)

This formula can be graphically represented as shown in Figure 4.2-

a. The volume of this pyramid, which is a function of N, represents all

the allowed team configurations and the memory footprint required to

store (cache) them all. Considering the STHORM cluster that includes

16 physical cores, N will be equal to 16. It leads to over a thousand

configurations and a footprint of ≈100KB. Considering that L1 TCDM

is 256KB, the runtime can be configured to accept a specified maximum

number of entries. Similar to any regular cache, a cut-off and replacement

mechanism is implemented. As soon the cache is full (maximum number

of entries is reached), the oldest cache entry for a given configuration is

replaced by the new one.

The cache is logically structured as sparse triangular matrix. Each
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particular configuration is identified by the pair {b, r} and a linked-list

is used to store the different descriptors for the same configuration. Op-

erations on each linked-list follow a Last-In First-Out (LIFO) policy,

enabling fast re-use of team descriptors. Note that for typical use case

of repeated identical parallel teams this solution enables: i) very small

memory footprint, as only used team descriptors will be stored; ii) the

same set of threads will be re-used, not only reducing the fork overhead,

but also enabling a better instruction cache behavior. Figure 4.2-b pro-

vides a logic view of our proposed team cache.

4.2.1 Cache entry structure

An entry stored into the sparse triangular matrix is composed of three

main elements: IDX, Team-Tag, and payload. The IDX is the team de-

scriptor configuration identifier and it consists of the pair {b, r}: number

of busy threads (b), number of requested threads (r). b == 1 indicates

that only the master threads is active. r is the number of threads to be

forked for the current parallel team. The Team-Tag is composed of the

team bitmask associated to the team descriptor. The Team-Tag is ended

by a boolean flag that indicates if the cached descriptor corresponds to

the least recently used team (LRU ) in the system2 The payload contains

the pointer to the Team Descriptor associated to the cache entry.

On the right side of Figure 4.3 we present am example of nested paral-

lel teams and thread status. On the left we represent how the content of

related cache entries is updated on that example. At t0 a parallel region

that involves all the threads is created. At t1 this region is closed, and a

2While the entry found in the cache represents for sure the LRU descriptor for
that particular {b, r} configuration, a team with a different configuration may have
been used in the meantime.
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Figure 4.3: Example of team descriptor entries generated by nested par-
allel regions.

new region of the same size is created. It is important to note that for the

same IDX configuration, the same Team-Tag was used. This is a typical

use case for real applications. At t2 this region is closed and a new one –

with only four threads – is created. A different IDX configuration is thus

requested. At t3 and t4 two nested parallel regions are created by threads

0 and 1 of the former parallel region B. Considering that the parent team

is composed of 4 threads and each of the nested parallel teams requests

2 threads, the corresponding IDX configurations for these team entries

will be {4,2}. The Team-Tags at t3 and t4 show the bitmasks for the

corresponding C and D parallel regions.

4.2.2 New Parallel Team Fork

In this paragraph we describe the new FORK procedure that relies on

our team cache infrastructure. Similar to the baseline FORK, the new

procedure is composed of four macro operations: FETCH, RECRUIT-

MENT, SETUP and, RELEASE. The flowchart in Figure 4.4 provides a

graphical representation of the new Fork-Join mechanism.
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Figure 4.4: New team FORK procedure.

The new FETCH gets from the cache the LRU team descriptor for the

current IDX configuration {b, r}. If no entry is found for that particular

IDX configuration this means that a MISS has occurred and the FORK

will continue using the standard flow. Otherwise, if the cache contains at

least a team descriptor for that IDX configuration, this is a HIT. Since

the cache employs a direct mapping policy on IDX, retrieving a team

descriptor has constant execution time (O(1)).

Upon HIT it is necessary to check the feasibility of the cached team,

i.e., to double-check that the set of slave threads indicated in the cached

descriptor is indeed available at the moment. This operation is done

checking the following (bitwise) condition for the selected Team-Tag:

b := number of taken threads

T := Team-Tag thread bitmask

G := Global Pool busy thread bitmask

Feasible = (T ∧ ¬G)� b (4.2)
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If the configuration stored in the cached team descriptor is not feasible

some of the threads were in the meantime recruited by some other teams.

At this point our design can choose between two options: i) fetch another

team by the cache or; ii) reset to the standard recruitment. The default

policy is set to option ii), since the cost to fetch and check a new team

descriptor from the cache is similar to that of creating a brand new

descriptor for a team of four threads (which is often the realistic setting

for nested teams). The policy can be changed if specific information

about the application is available that could take benefit of i).

At this point each thread’s TEAM DESC PTR should be pointed to

the feasible descriptor. However, this step could be skipped if the LRU bit

in the Team-Tag is set to 1 (which ensures that all TEAM DESC PTRs

are already pointing to this descriptor). This optimization enables to

achieve O(1) recruitment costs.

Few extensions to the JOIN operation are made, in particular to the

team termination. As soon as the parallel region is concluded the team

descriptor is stored into the head of the IDX linked-list instead of being

freed. If more descriptors than the maximum cache size are held in the

cache, at this stage the oldest are destroyed. This information is retrieved

using another queue for cached descriptor with FIFO semantics. The

depth of this FIFO can be configured to control the memory footprint of

this technique.

4.3 Experimental results

In this section we present a set of experiments to validate and evaluate

our proposed team cache support. We first evaluate our solution by
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Figure 4.5: Fork-Join costs increasing the number of threads under differ-
ent scenarios: Hit+LRU, Hit+!LRU, Miss, and the baseline, which does
not use any caching mechanism for team descriptors. Measures expressed
in CPU cycles.

providing the breakdown of the costs for nested parallelism operations.

This experiment aims to show the effective costs of our team cache on

four different scenarios. Second, we evaluate our nesting support on

real, ultra-fine-grained parallel kernels such as Matrix Multiplication, LU

decomposition, DCT, and Monte-Carlo sampling. Finally, we show the

benefits of our support for real-life computer vision application, such as

corner detection, color tracking, object-removal detection, and features

clusterization.

4.3.1 Nested Parallelism Cost Breakdown

Figure 4.5 shows the measured fork/join costs under three scenarios: i)

Hit and Least Recently Used (HIT+LRU); ii) Hit and not Least Recently

Used (HIT+!LRU); iii) Miss. Three main outcomes can be highlighted:

i) thread team caching support does not affect neither HIT+LRU, nor
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HIT+!LRU, nor Miss JOIN phases; ii) thread team caching support af-

fects only the RECRUITMENT component on the FORK phase; iii)

Hit+LRU case, which is by far the most common case in real appli-

cations, has constant time and does not increase with the number of

threads.

In case of HIT+LRU the cache requires up to ≈600 CPU cycles less

than the baseline, which correspond to a 62% improvement when forking

16 threads. In case of HIT+!LRU, the cache enables up to 40% speedup

(≈450 CPU cycles less than the baseline).

The penalty for a MISS is roughly 100 CPU cycles, thus it is very

contained. Its impact is more relevant for small teams and it is at least

9% more than the baseline. For teams smaller that 4 threads the cache

is costlier than the baseline. However, we should consider that: i) fetch-

ing a single thread only requires a few instructions using the standard

recruitment; ii) the baseline profile is a best case where all the slaves

are available for recruitment. Note that is not the case when nested

parallelism is used.

Performance Scaling on Fine-Grained Kernels. In this section we

analyze the effectiveness of our cache-based nesting support on a set of

ultra-fine-grained, computation-intensive parallel kernels. The focus here

is on very small kernel instances, where i) the overheads for parallelism

management have the highest impact and ii) the finest grain of parallelism

can be achieved. We selected: Matrix Multiplication, LU decomposition,

Monte-Carlo sampling, and 8x8 block DCT calculation.

Despite its simplicity, Matrix Multiplication is found at the core of

several applications, thus we selected it as a representative parallel kernel.
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We consider a standard, three-level loop nest implementation and we test

three different parallel patterns using the OpenMP API: i) coarse-grain

parallelism, parallelizing the outermost loop; ii) fine-grain parallelism,

parallelizing the innermost loop; iii) two-level nested parallelism, paral-

lelizing the first and the second loop nests (using 4 threads at the first

level and 4 threads at the second level). Each configuration is tested with

both the baseline implementation and the cache.

The plot on the left in Figure 4.6 shows the speedup of the cache

compared to the baseline, for the three parallel patterns with an in-

creasing matrix size. Unsurprisingly, the benefits of the cache are more

evident when the overhead has a higher impact (small matrix size, two-

level nesting), where it achieves ≈60% speedup vs. the baseline. Using

coarse-grain parallelism the gain is less relevant, since less parallel re-

gions are spawned and the overhead is less dominant, but we still achieve

up to ≈20% faster execution for small matrix sizes.

The plot on the right of Figure 4.6 shows the speedup achieved by

the cache vs. the sequential kernel version. The figure shows that our

solution enables real fine grain parallelism, with relevant speedup (12×)

for tiny matrix sizes of 8x8 and ideal speedup for 64x64 matrices and

beyond.

Figure 4.7 shows the performance comparison of the cache vs. the

sequential kernel execution (top row) and the baseline (bottom row), for

all the kernels. The benefits of the cache are very evident also for these

real parallel program patterns. In particular, DCT reaches the ideal

speedup for a tiny instance of only 32 blocks (the baseline implementation

needs 128). The peak improvement is achieved for 32 DCT blocks (20%).

LU Decomposition is not an embarrassingly parallel kernel, thus it does
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Figure 4.6: Comparison of Matrix Multiplication performance for the
various parallelism pattern for an increasing matrix size. Left: speedup
of the cache vs. the baseline; Right: speedup of the cache vs. sequential
execution.

not achieve the peak speedup. However, our cache mechanism improves

by more than 50% the achievable speedup for ultra-small instances.

Computer vision applications use-case. Real-life applications typ-

ically operate on large data-sets, which cannot be entirely hosted on

the small L1 scratchpad memories within PMCA clusters. Such applica-

tions rely data tiling plus frequent DMA transfers to move tiles from/to

larger (and slower) L2 and L3 memories. A common approach is to im-

plement double-buffering techniques, which overlap transfer of the cur-

rent tile with computation on the previous. This is typically coded with

a two-level nested loop: the first loop sweeps image tiles and the sec-

ond loop iterates over tile pixels (the actual computation is done at this

level). Incremental parallelization and optimization is a key aspect of
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Figure 4.7: Performance comparison for kernels DCT, LU Decomposi-
tion, and Monte-Carlo. The top row shows the speedup of the cache vs.
the sequential implementation; the bottom row shows the speedup of the
cache vs. the baseline.

directive-based parallel programming models such as OpenMP. A naive

parallelization can be achieved using the PARALLEL FOR directive on the

computational for loop, as shown in Listing 4.1. Note that the DMA is

programmed in the sequential part of the program, before parallel threads

are created. This solution is by far the simplest for not expert users, but

it is not the optimal.

1 /* Easy Kernel Implementation */

2 for(img_stripe: 0... N_STRIPES) {

3 dma_in(img_stripe);

4

5 #pragma omp parallel for

6 for(pixel: 0... N_PIXELS) {

7 COMPUTE

8 }

9

10 dma_out(img_stripe);
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11 }

Listing 4.1: Example of OpenMP naive parallelization.

1 /* Optimized Kernel Implementation */

2 #pragma omp parallel

3 {

4 for(img_stripe: 0... N_STRIPES) {

5 #pragma omp master

6 dma_in(img_stripe);

7

8 #pragma omp barrier

9

10 #pragma omp for

11 for(pixel: 0... N_PIXELS) {

12 COMPUTE

13 }

14

15 #pragma omp master

16 dma_out(img_stripe);

17 }

18 }

Listing 4.2: Example of hand optimized OpenMP code.

More experienced users would avoid creating a large number of parallel

regions by decoupling the PARALLEL directive and the FOR directive and

enforcing DMA programming on a single thread with the MASTER and

BARRIER directives. The pseudo-code for this variant is presented in

Listing 4.2.

Table 4.2 presents the four computer vision applications used for this

experiment. For each application we implemented two versions, optimized

and naive. The table also shows the OpenMP number of lines of code

(LOC) added for each version.

The top plot in Figure 4.8 shows the speedups vs. sequential exe-

cution achieved by i) the optimized version, the naive version ii) with
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Mnemonic Naive OMP LOC Opt. OMP LOC

NCC 1 6
CT 4 14
FAST 3 9
Mahala. 1 6

Table 4.2: Computer Vision Applications Summary
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(w.), and iii) without (w/o) cache. Each application is executed for two

different problem sizes (frame size for NCC, CT, FAST; number of fea-

tures for Mahalanobis). Most of the applications reach ≈15× speedup

compared to the sequential version. On the bottom part of Figure 4.8

it is highlighted that the cache enables up to 12% improvement for the

naive parallelization. What is even more relevant is that on average the

cache allows the naive parallelization to perform only 4% worse than the

optimized implementation. In conclusion, even a non-expert user could

achieve near-optimal performance with our technique.

4.4 Conclusions

This chapter presented a software-managed parallel team configuration

cache aimed at minimizing the overheads for supporting fine-grained

nested parallelism in embedded PMCAs. In particular, the proposed

caching technique allows, in the common case, to achieve constant-time

creation of a parallel team, independent of the number of involved threads,

which is the main limiter to scalability of state-of-the-art techniques.

The experimental results show that: i) using software-managed parallel

team configuration cache reduces the cost of thread FORK by 67%, and

threads are recruited in less that 400 CPU cycles; ii) for parallel kernels

configured for ultra-fine-grained parallelism like DCT, LU Decomposi-

tion, Matrix Multiplication, Monte-Carlo our support enables up to 80%

speedup compared to the baseline; iii) for real-life computer vision ap-

plications our technique allows naive parallelization schemes to achieve

comparable performance to optimized codes from skilled programmers.



Chapter 5

Directive-based programming

model for heterogeneous

many-core architectures

5.1 Introduction

This chapter presents the third main contribution of this thesis: a pro-

gramming model, compiler and runtime system for a heterogeneous em-

bedded platform template featuring a host system plus a many-core accel-

erator. The programming model consists of an extended OpenMP, where

additional directives allow to i) efficiently program the accelerator from

a single host program, rather than writing separate host and accelerator

programs; ii) distribute the workload among clusters in a NUMA-aware

manner, thus improving the performance.

The proposed OpenMP extensions are only partly inline with the lat-

est OpenMP v4.0 specifications. The latter are in our view too tailored to
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the characteristics of today’s GPUs, as they emphasize i) data-level accel-

erator parallelism (modern GPUs being conceived for that) and ii) copy-

based host-to-accelerator communication (modern GPUs being based on

private-memory designs). Our focus is on many-core accelerators which

i) efficiently support more types of parallelism (e.g., tasks) and ii) lever-

age shared memory communication with the host, which is where the

Heterogeneous System Architecture (HSA)1 and all GPU roadmaps are

heading in the longer term.

This chapter we will discuss how to provide efficient communication

with the host on top of shared memory by i) transparently relying on

pointer exchange in case virtual memory paging is natively supported

by the many-core; ii) leveraging software virtual address translation plus

copies into contiguous shared memory (to overcome paging issues) if such

support is lacking. We also comment on how copies can be used to im-

plement offload on top of a private accelerator memory space. To achieve

these goals, we propose minimal extensions to the previous OpenMP v3.1,

emphasizing ease of programming.

We present a multi-ISA compilation toolchain that hides all the pro-

cess of i) outlining an accelerator program from the host application,

ii) compiling it for the STHORM platform, iii) offloading the execution

binary and iv) implementing data sharing between the host and the ac-

celerator. Two separate OpenMP runtime systems are developed, one

for the host and one for the STHORM accelerator.

The experiments thoroughly assess the performance of the proposed

programming framework, considering six representative benchmarks from

the computer vision, image processing and linear algebra domains. The

1http://www.hsafoundation.com
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evaluation is articulated in three parts. First, we relate the achieved

throughput to each benchmark’s operational intensity using the Roofline

methodology [64]. Here we observe near-ideal throughput for most bench-

marks. Second, we compare the performance of our OpenMP to OpenCL,

natively supported by the STHORM platform, achieving very close per-

formance to hand-optimized OpenCL codes, at a significantly lower pro-

gramming complexity. Third, we measure the speedup of our OpenMP

versus sequential execution on the ARM host, which exhibits peaks of

30×.

The rest of the chapter is organized as follows. In Section 5.2 we de-

scribe our programming model, discussing differences with the OpenMP

v4.0 specifications. The STHORM implementation is described in Sec-

tion 5.3. In Section 5.4 we provide experimental evaluation of the pro-

posed OpenMP implementation. Section 5.5 discusses related work. Sec-

tion 5.6 concludes the chapter.

5.2 Programming Model

The work presented in this thesis was conducted within a FP7 EU project

kicked-off in 2011, when OpenMP v3.1 had just been released. During the

course of the project we designed the extensions (presented here) that we

considered key to handle the two most critical aspects for heterogeneous

SoC programming: the management of a shared-memory many-core ac-

celerator and the management of thread affinity over its NUMA clusters.

In July 2013 OpenMP v4.0 has been released, which introduces new di-

rectives to address these very issues. Aligning our own specification for

affinity control to the official OpenMP v4.0 was natural; the same was not
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true for the accelerator management directives. OpenMP v4.0 focuses on

an accelerator model based on existing GPU-like co-processors and asso-

ciated programming models [65]. This, in our view, has made the new

directives for data sharing and parallelism deployment more complicated

to use. Our custom OpenMP extensions, designed with next-generation

many-core devices in mind [31], emphasized simplicity, as we explain in

Section 5.2.3.

5.2.1 OpenMP Extensions

Traditionally, writing code for an heterogeneous SoC (e.g., with OpenCL)

requires to manually write a program into separate files (at least one for

the host, one for the accelerator), and to manually compile it into different

binaries. The host program should also explicitly include instructions to

load the accelerator binaries, to start the computation, to transfer data

and to synchronize. In our proposal, the programmer writes a single

OpenMP host application, where a custom offload directive is used to

abstract away the procedure of i) outlining a program for the accelerator;

ii) compiling it into a separate accelerator executable; iii) offloading code

and data to the accelerator; iv) synchronizing with the accelerator.

1 #pragma omp offload [clause [ ,...]]

2 structured -block

where clause is one of the following:

name (string,integer-var)

private (list)

shared (list)

firstprivate (list)

lastprivate (list)
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nowait

The name clause is used to univocally identify a kernel to be offloaded

to the accelerator. This is achieved through a literal (string) parameter,

plus an integer variable whose declaration is visible from the code block

immediately enclosing an offload directive. The integer variable is used

for synchronization purposes. If an offload request is successful, an integer

value is returned, which specifies the unique ID of the offloaded job. A

negative return value indicates failure, thus the offload block is executed

on the host itself. The same integer variable specified in the name clause

can be used to synchronize at specific program points with the custom

wait directive

1 #pragma omp wait (integer -var)

Note that in case the nowait directive is not specified, the offloaded block

executes synchronously (i.e., the offloading host thread will block until

the accelerator execution is completed).

The private, shared, firstprivate and lastprivate clauses can

be used to specify data sharing between host and accelerator, and work in

the same way as standard OpenMP constructs for parallelism. private

variables are duplicated in the accelerator memory space. The code exe-

cuting on the accelerator only refers to these private copies and does not

access the host memory. firstprivate variables work in the same way,

but they are initialized at the beginning of the offload block to the value

of the original variables from the enclosing host execution context. Simi-

larly, lastprivate variables have local storage in the accelerator memory

space. Their content is determined during the execution of the offload

block and copied back to the original variable in the host memory space
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at the end of the accelerator execution. shared variables identify truly

shared main memory storage. Both the host and the accelerator directly

access these locations.

Within an offload block all regular OpenMP v3.1 constructs can

be used, including tasks2. The target accelerator is designed as a set

of clusters, with NUMA remote communication. As we discuss in the

previous chapter, nested parallelism is a powerful abstraction for these

kind of accelerators.

Figure 5.1 illustrates how proc_bind allows to easily map a nested

parallel region over the target multi-cluster. Using proc_bind(spread)

at the outermost parallel construct recruits threads from different clus-

ters (outer parallel team). Using proc_bind(close) at the innermost

parallel construct recruits threads from within the same clusters (nested

parallel teams).

Concerning locality, it is only effective to use as many nesting levels as

the depth of the system interconnect (2 in the target platform). However,

using additional nesting levels within a cluster can be done to get more

flexibility in creating parallelism, by dynamically creating more threads

only when the workload actually requires so.

As an example, let us consider Strassen matrix multiplication. It is

organized in three main computation stages, to be executed in sequence.

The first stage consists of nine matrix sums, the second of seven matrix

multiplications, the third of four matrix sums. Within each stage, sum

or multiplication blocks are coarse-grained tasks that can be executed

in parallel. Within each of these tasks there is additional fine-grained

data (loop) parallelism. Suppose that we need to perform N distinct

2This is a major difference with OpenMP v4.0, which does not allow tasks to be
offloaded to the accelerator
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#pragma omp offload ...

{

#pragma omp parallel \

num_threads (4) proc_bind (spread)

{ 

#pragma omp parallel           \

num_threads (16) proc_bind (close)

{    

/* Nested Parallel Region */

}

}

}

0

0

0

1

…

15

Cluster 0

16

16

17

…

31

Cluster 1

32

32

33

…

47
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48

48
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63
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Parallel 

Team 1
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Parallel 

Team 1

Nested 

Parallel 

Team 1
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Parallel 

Team 4

Outer 

Parallel Team

Sequen!al

Code Example

Figure 5.1: Nested parallel team deployment among clusters with the
proc_bind clause.

matrix multiplications. We can use a first level of parallelism to distribute

the N matrix multiplication instances among different clusters. Using

proc_bind (spread) ensures that each instance will execute in isolation

within a single cluster. Locally to each cluster, we can use a second level

of parallelism to distribute coarse-grained tasks to cores, and a third level

to distribute inner loop iterations to additional threads only when this is

beneficial (see Figure 5.2). The proc_bind (close) clause ensures that

the threads for the two innermost-nested parallel region are recruited

from the same cluster, thus ensuring high computation locality.

5.2.2 Host Program Transformation

Figure 5.3 shows an example host program which uses our OpenMP

extensions. The offload construct outlines the kernel to be acceler-

ated (lines 8–22). This kernel requires two clusters: the first executes
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Figure 5.2: Nested parallel Strassen matrix multiplication deployment
within a cluster.

TASK A, the second executes TASK B. This is specified with the par-

allel sections directive (lines 13–15). num_threads(2) specifies the

number of clusters, as we use the proc_bind(spread) clause. TASK A

and TASK B contain inner parallelism which is distributed among all the

16 cores in each cluster. This is specified with the parallel for direc-

tive, coupled to the num_threads(16) and proc_bind(close) clauses

(lines 35–37). The host executes the offload asynchronously, sharing ar-

rays a and b with the accelerator. This is specified with clauses nowait

and shared (a,b) (lines 9–11). Figure 5.4 shows how the compiler trans-

forms the code. The offload block is replaced with a marshaling pro-

cedure, to implement data sharing between the host and the accelerator

(lines 12–22) Data marshaling packs information about shared, first-

private and lastprivate variables into three instances of a mdata data

structure, which hold the number of variables of each type, plus an array

of data_desc structures, whose elements contain base address and size

of each variable of that type (lines 11–16).
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 void main(){  
int a[]; 
int b[]; 
int ker_id; 
 
/* some CPU code here */ 
 
#pragma omp offload  \ 

shared (a,b)  \ 
name (“mykernel”, ker_id)  \ 
nowait 

{ 
#pragma omp parallel sections  \ 

num_threads(2)    \ 
proc_bind (spread) 

{ 
#pragma omp section 
TASK_A(); 
#pragma omp section 
TASK_B(); 

} 
} 
 
/* some independent CPU code  
   to run asynchronously here */ 
 
/* sync with the accelerator  */ 
#pragma omp wait (ker_id) 
 
/* more CPU code here */ 

} 
  
TASK_A(){ 

int i; 
#pragma omp  parallel for    \ 

num_threads(16) private(i)  \ 
proc_bind (close) 

 for( i=0;…. ) 
do_smthg(a[i], b[i], …); 

} 

#pragmgg a ompmm offload \
shared (a,b) \
name (“mymm kernel”, ker__id) \
nowait

{
#pragmgg a ompmm parallel sections \

numu _threads(2) \
pproc__bind (spread)

{
#pragmgg a ompmm section
TASK_A();
#pragmgg a ompmm section
TASK_B();

}
}

TASK_A(){
int i;
#pragmgg a ompmm parallel for \

numuu _threads(16) private(i) \
pproc_bind (close)
for( i=0;…. )

do_smthg(a[i], b[i], …);
}

1 ______________________________________________
2 ______________________________________________
3 ______________________________________________
4 ______________________________________________
5 ______________________________________________
6 ______________________________________________
7 ______________________________________________
8 ______________________________________________
9 ______________________________________________
10______________________________________________
11______________________________________________
12______________________________________________
13______________________________________________
14______________________________________________
15______________________________________________
16______________________________________________
17______________________________________________
18______________________________________________
19______________________________________________
20______________________________________________
21______________________________________________
22______________________________________________
23______________________________________________
24______________________________________________
25______________________________________________
26______________________________________________
27______________________________________________
28______________________________________________
29______________________________________________
30______________________________________________
31______________________________________________
32______________________________________________
33______________________________________________
34______________________________________________
35______________________________________________
36______________________________________________
37______________________________________________
38______________________________________________
39______________________________________________
40______________________________________________

Figure 5.3: A program with OpenMP extensions.
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void main(){     int a[]; int b[]; int ker_id;
    /* some CPU code here */ 
     
    /* standard OpenMP data marshaling */ 
    struct omp_data_s mdata; 
    mdata.a = a; 
    mdata.b = b; 
 
    /* OFFLOAD data marshalling */ 
    struct mdata sh_md; 
    sh_md.n_data = 2; 
    sh_md.data[0].ptr = &a[0]; 
    sh_md.data[0].size = <SIZE_OF_A>; 
    sh_md.data[1].ptr = &b[0]; 
    sh_md.data[1].size = <SIZE_OF_B>; 
     
    struct otask ot; 
    strcpy (ot.name, “mykernel”); 
    ot.shared_data = &md1; 
    ot.fprivate_data = NULL; 
    ot.lprivate_data = NULL; 
     
    ker_id = GOMP_offload_task(&ot); 
    if (ker_id < 0) 
      /* OFFLOAD failed. Host version */ 
      main.omp_fn.0 (&mdata);      

 
    /* some independent CPU code  
       to run asynchronously here */ 

 
    /* sync with the accelerator */ 
    GOMP_wait (ker_id) 

 
    /* more CPU code here */  
} 
 
/* Host version of the OFFLOAD block */ 
void main.omp_fn.0 (struct omp_data_s *ds) 
{ ... }     

/* OFFLFF OAD data marshalling *//
struct mdata sh_md;
sh_md.n_data = 2;
sh_md.data[0].ptr = &a[0];
sh_md.data[0].size = <SIZE_OF_A>;
sh_md.data[1].ptr = &b[0];
sh_md.data[1].size = <SIZE_OF_B>;
struct otask ot;
strcpy (ot.name, “mykernel”);
ot.shared_data = &md1;
ot.fprivate_data = NULL;
ot.lprivate_data = NULL;
ker_id = GOMOO P_offload_task(&ot);
if (ker_id < 0)

/* OFFLFF OAD failed. Host version *//
main.omp_fn.0 (&mdata);

 

1 ______________________________________________
2 ______________________________________________
3 ______________________________________________
4 ______________________________________________
5 ______________________________________________
6 ______________________________________________
7 ______________________________________________
8 ______________________________________________
9 ______________________________________________
10______________________________________________
11______________________________________________
12______________________________________________
13______________________________________________
14______________________________________________
15______________________________________________
16______________________________________________
17______________________________________________
18______________________________________________
19______________________________________________
20______________________________________________
21______________________________________________
22______________________________________________
23______________________________________________
24______________________________________________
25______________________________________________
26______________________________________________
27______________________________________________
28______________________________________________
29______________________________________________
30______________________________________________
31______________________________________________
32______________________________________________
33______________________________________________
34______________________________________________
35______________________________________________
36______________________________________________
37______________________________________________
38______________________________________________
39______________________________________________
40______________________________________________

Figure 5.4: Transformed OpenMP program.
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1 struct data_desc {

2 unsigned int * ptr;

3 unsigned int size; }

4

5 struct mdata {

6 unsigned int n_data;

7 struct data_desc data[n_data ]; }

The size field is necessary for IO-MMU-less systems, where data sharing

is implemented with a (transparent) copy from paged virtual memory into

the contiguous memory region. The same mechanism can also be used

to implement data sharing on top of a traditional distributed memory

system via DMA copies. When an IO-MMU is available the size field

is ignored, as the virtual shared data pointer can be safely propagated

to the accelerator. The three mdata instances are finally collected into a

otask structure, along with the kernel name (lines 18–22).

1 struct otask {

2 char *name;

3 struct mdata *shared_data;

4 struct mdata *fprivate_data;

5 struct mdata *lprivate_data; }

6 }

The offload block is outlined into a new function (lines 39–), similar

to the expansion of standard OpenMP parallel blocks. This function

is compiled both for the host and the accelerator. The host tries to

offload a task via a call to a custom GOMP_offload_task runtime function

(line 24). If a negative value is returned, the host version is executed

(lines 25–27). The simplified code for the STHORM implementation

of GOMP_offload_task is shown in Figure 5.5. First, the target kernel

object file name (.so) is resolved (line 9). A native runtime function

(LoadInBanks) is invoked to dynamically link and load the executable
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25_______________________________________________
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int  GOMP_offload_task(struct otask *ot) 
{         
    void * binary;  /* task binary */ 
    void * binaryDesc;  /* binary descriptor */
 
    char * src_name;  /* LLVM IR filename */
    char * bin_name;  /* (.so) filename */
 
    bin_name = strcat (ot->name, ".so"); 
 
      
     

 
 

    
 
    /* Copy binary into accelerator L2 mem */ 
    LoadinBanks (bin_name, .., L2_MEM,  

&binary, &binaryDesc);     
 

 /* handle firstprivate data */
  if (ot->fistprivate_data)

 
  
/* copy to accelerator L2 and 

/* Start computation on the accelerator */ 
 if (!callMain (binaryDesc, .., context))
return -1; 

 
/* handle lastprivate data */ 
if (ot->lastprivate_data) 
  

   
 

 return 0;
}

   annotate L2 address in “context” */

/* copy from accelerator L2 into 
   main memory pointed by “ot” */

Figure 5.5: Runtime function for an offload.

into the accelerator L2 memory (line 12). Then, firstprivate data is

handled. For each data element in the corresponding descriptor, memory

is allocated in the accelerator L2, then a DMA transfer is triggered.

The pointer to the STHORM copy is then inserted into a context data

structure (lines 16–18). For shared data no copy is involved, and only
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pointers to the host main memory are annotated into the context data

structure3. Finally, the CallMain function is invoked to start the main

method on the accelerator (lines 21–22). In the case of a synchronous

offload, lastprivate data is copied back to the host main memory after

the end of the kernel execution (lines 25–27). When the nowait clause is

specified, lastprivate data is dealt with inside the GOMP_wait primitive.

5.2.3 Comparison with OpenMP specifications v4.0

Data Sharing - The way data sharing is specified in OpenMP v4.0

is strongly influenced by GPGPUs style of programming. In this model,

typical of traditional GPGPU-based systems, host and accelerator have a

segregated memory spaces, and data sharing relies on memory transfers

through a shared bus like PCI.

The map clause lists program variables that can be marked with the

attributes to or from. A data item can appear in both lists, or just in

one list, indicating that is is read-only or write-only within the block.

Using separate lists allows to optimize the number of implied transfers.

Supporting this accelerator model requires many new directives, clau-

ses and original execution model semantics. In contrast, our proposal

aims at maintaining the traditional OpenMP clauses for data sharing.

Copies can be specified (e.g., for performance) on read-only and write-

only data using the familiar firstprivate and lastprivate clauses,

respectively. shared variables are implemented with zero-copy, embrac-

ing an accelerator models which – following the HSA roadmap – assumes

physical data sharing. Zero-copy communication simplifies the offload

3Note that adding a DMA copy at this point allows to support our offload mech-
anism on traditional distributed memory systems.
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mechanism to marshaling and exchanging pointers, which has a much

lower cost (see Sec. 5.4.2).

Parallelism Deployment - Within an offload region, OpenMP v4.0

allows specific constructs to leverage the features of GPU-like accelerator

hardware. Such features include SIMD processing in the ALUs, or their

organization in clusters. Specifically, the new notion of leagues represent

an abstraction of accelerator clusters. Similarly, teams abstract parallel

cores within a cluster. A league can be specified with the teams directive,

where the num_teams clause allows to specify how many teams the league

will be composed of (i.e., how many clusters we want to use). A team

and its size can be specified with the parallel directive and the associ-

ated num_threads clause. Distributing workload in a cluster-aware man-

ner can be done using the distribute directive. These new directives

were introduced to bridge a gap with GP-GPU programming abstractions

(e.g., CUDA grids and blocks), but they logically represent yet another

abstraction of nested parallelism, already supported in OpenMP v3.1.

Leagues can be represented with an outer parallel directive, teams can

be specified with an inner parallel directive. Distributing workload in a

cluster-aware manner can be done with the proc_bind directive. The ex-

ample code that we have already presented in Figure 5.3 shows how this

can be easily specified with standard OpenMP v3.1 directives plus the ex-

tensions we proposed. Moreover, our proposal allows to use all OpenMP

constructs within an offload block, as the accelerators we are targeting

do not have the limitations of GPU cores in executing MIMD types of

parallelism. In particular, we foresee the tasking execution model to be a

very valuable abstraction for extracting high degrees of parallelism from
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such accelerators [66].

Asynchronous Offload - Specifying asynchronous offloads can be

done in OpenMP v4.0 by enclosing a target directive within a task

directive. The thread executing the task encounters a task scheduling

point while waiting for the completion of the target region, allowing the

thread to be re-scheduled to other independent tasks. This is evidently

not the most intuitive way to specify asynchronous offload. The nowait

clause, that we propose for this goal, is a construct already present in

OpenMP v3.1, used in association with work-sharing constructs (for,

sections) to specify that thread synchronization at the end of such con-

structs is unnecessary, and to which programmers are familiar. In the

last OpenMP Specifications (4.1 [67], and 4.5 [68]) , the nowait clause

has been accepted to the standard.

Note that this does not prevent the use of the former approach. En-

closing a target directive within a task directive may enable in our

proposal (where tasks can execute on the accelerator) an elegant means

of specifying hierarchical tasking, allowing parts of a task graph gener-

ated on the host program to run on the accelerator.

Work-sharing and other directives - The proposed runtime sup-

ports within an offload region most of all standard OpenMP 4.0 direc-

tives. The runtime supports loop parallelism using for directive. Mul-

tiple schedule clause are available like: static, dynamic, and chunking

specification. Our framework support as well static task parallelism by

sections and single directives. The number of supported outstanding

nowait work-shares is arbitrary.



5.2 Programming Model 97

The Listing 5.1 shows the work-share descriptor that is used to de-

scribe each work-share block. Each threads uses an independent location

on the memory to track work-share descriptor pointers to be executed.

The first part of the descriptor is composed of all the information

needed to identify the space of iterations for the particular work-share

block. The second part contains locks and pointer used to enable atomic

access on the descriptor.

1 typedef struct gomp_work_share_s

2 {

3 int end;

4 int next;

5 int chunk_size;

6 int incr;

7

8 /* These locks are to decouple enter phase (and exit phase)

9 * from the "business" phase. If only one WS is defined ,

10 * they are the same lock (see gomp_new_work_share ()) */

11 omp_lock_t lock;

12 omp_lock_t enter_lock;

13 omp_lock_t exit_lock;

14 unsigned int _lock;

15 unsigned int _enter_lock;

16

17 unsigned int completed;

18

19 struct gomp_work_share_s *next_ws;

20 struct gomp_work_share_s *prev_ws;

21

22 struct gomp_work_share_s *next_free;

23 } gomp_work_share_t;

Listing 5.1: Workshare data descriptor.

The Figure 5.6 shows the overheads, in terms of CPU cycles, of some

work-share directives when the number of threads increase. The profiling

of directives is achieved using standard EPCC benchmark [49]. The plots
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show that our implementation overcomes state-of-the-art OpenMP 4.0

support (Texas Instrument Keystone II [2]) on all the directives tested

and it achieves up to 10× more efficient support in loops and barriers.
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Figure 5.6: OpenMP work-sharing directives profiling of our STHORM
implementation compare to TI Keystone II OpenMP implementation [2].

Pure OpenMP tasking support was later added to our runtime by

Burgio et al. [69] and Cesarini et al. [70].

5.3 STHORM Prototype Implementation

The proposed OpenMP extensions have been implemented in a multi-ISA

toolchain for the STHORM board (see Figure 5.7). All the OpenMP

expansion is based on GCC (v4.8), which provides a mature and full-

fledged implementation of OpenMP v3.1. The STxP70 back-end toolkit
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Figure 5.7: The multi-ISA toolchain.

is based on the Clang+LLVM4 compilation infrastructure.

The GCC compilation pipeline produces the final ARM host exe-

cutable, while offload blocks and function calls therein (including those

implicitly created by the expansion of parallel directives) are translated

into the LLVM IR using a customized version of DragonEgg5, and finally

compiled into xP70 executables. To do so, we derive from the original

program call graph as many LLVM translation units as the offload blocks

as follows. First, all the functions created by GCC expansion of offload

blocks are marked with a name attribute (derived from the name clause

associated to the offload directive). Second, a custom LLVM analysis

4http://www.llvm.org
5http://dragonegg.llvm.org
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pass visits the call-graph and collects the marked functions (plus asso-

ciated global data and type declarations) within distinct sub-call-graphs

and into separate translation units.

To avoid data copies from paged virtual memory into contiguous

memory upon offload, we force the allocation of data marked as shared

in contiguous memory at compile-time. The OpenMP runtime relies on a

custom library for lightweight nested fork/join presented on the previous

sections.

5.4 Experimental Results

We evaluate our programming model using the five benchmarks briefly

described in Table 5.1.

First, we measure the maximum throughput [GOps/sec] achieved for

the various benchmarks. The focus is on capturing the effects on peak

performance of off-chip memory bandwidth, the constraining resource in

the first STHORM board. To this aim we adopt a methodology that

relates processor performance to off-chip memory traffic: the Roofline

model.

Second, we compare the cost for our offload mechanism and the per-

formance (execution time) of our runtime layer to the corresponding sup-

port provided by OpenCL, currently the de facto standard for accelerator

programming. The official STHORM SDK provides optimized support

for the OpenCL v1.1, which we leverage for our characterization.

Finally, we discuss the performance of the acceleration as compared

to sequential execution of the benchmarks on the host processor. Specif-

ically, we show how the speedup (accelerator vs host execution time)
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Mnemonic Application Name Description

NCC Removal Object Detection Removal Object detection
based on NCC algorithm
[51]

CT Color Tracking Color motion tracking on
24-bit RGB image based
on OpenCV implementa-
tion.

FAST Corner Detection FAST Corner Detec-
tion based on machine-
learning, mainly used for
feature extration [52]

Mahala. Mahalanobis Distance Mahalanobis distance for
image feature clusteriza-
tion based on OpenCV im-
plementation

SHOT 3D descriptor Two main kernels: SHT1)
local reference frame ra-
dius; SHT2) histogram in-
terpolation

Table 5.1: Real applications used as benchmarks for nested parallelism
evaluation.

scales as the number of repetitions of the offloaded kernels increases.

5.4.1 Program Throughput and the Roofline Model

The Roofline model [64] defines operational intensity (hereafter OPB:

operations per byte) as an estimate of the DRAM bandwidth needed by

a kernel on a particular computer (Ops/byte). A Roofline plot is a 2D

graph which ties together operational intensity on the x axis, and peak

processor performance (ops/sec) plus memory performance (bytes/sec

== (ops/sec)/(ops/byte)) on the y axis. Peak performance is a horizon-

tal line, whereas memory performance is a line of unit slope. The two

lines intersect at the point of peak computational performance and peak
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NPEs IPC fc (MHz) DMAbw (MB/s)

64 1, 2 430 320 (R), 180 (W)

Table 5.2: Parameters for the STHORM Roofline model.

memory bandwidth (the ridge). The composition of the two lines is a

roof-shaped curve which provides an upper bound on performance for a

kernel depending on its operational intensity. If a kernel’s operational

intensity is below the ridge point, the kernel will be memory-bound on

that platform, otherwise it will be compute bound. The x-coordinate of

the ridge point is the minimum operational intensity required to achieve

maximum performance on that platform.

To characterize the Roofline curves for STHORM we use the following

model:

Perf

[
Gops

sec

]
= min

 NPEs ∗ IPC
[

ops
cycle

]
∗ fc

[
cycle
sec

]
DMAbw

[
byte
sec

]
∗OPB

[
ops
byte

]
The peak processor performance is computed as the product of i)

the maximum number of instructions (ops) that a single processor can

retire per cycle (IPC), ii) the number of processors available (NPEs) and

iii) the processor’s clock frequency (fc). The peak memory bandwidth

is computed as the product of the DMA available bandwidth (DMAbw)

and the operational intensity (OPB). The numerical values for all the

parameters are summarized in Table 5.2.

These values come from hardware specifications, with the exception of

DMAbw, for which we designed a custom micro-benchmark that measures

the cost (in clock cycles) for DMA transfers of increasing sizes. This cost

increases linearly with the size of the transfer, and we can extrapolate

a slope value (Sl
[
cycles
bytes

]
) with linear regression. The available DMA
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FST CT MAH STR NCC SHT1 SHT2

OPB 19.8 0.9 243.9 4.8 99.7 219.3 27.3

Table 5.3: Operations per byte (OPB) for different benchmarks.
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Figure 5.8: Roofline for real benchmarks.

bandwidth is finally computed as follows:

DMAbw =
fc
Sl

[
Mbytes

sec

]

The empirical measurement reports a maximum bandwidth of 320MB/

sec for read operations and 180MB/sec for write operations6. Figure

5.8 shows the roofline for the STHORM platform. Real benchmarks are

displaced along the x-axis based on their (measured) OPB. In most cases

the workload is strictly memory bound (low OPB). MAH and SHT1 do

not achieve peak (roof) performance even if their OPB is past the ridge.

6For reference, the Nvidia Kepler K40 GPU has 288 GB/s, and the Intel Xeon Phi
has 320 GB/s.
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The measured IPC when running the benchmarks sequentially on a sin-

gle core (an upper bound for the parallel benchmarks) is 0.6 for MAH

and 0.7 for SHT1. The reasons for this small IPC are multiple. First,

the compiler is rarely capable of scheduling two instructions at every cy-

cle. Other limiting factors are pipeline stalls, branch mispredictions and

access conflicts on L1 shared memory. Besides the low IPC, the results

achieved on the parallel benchmarks are very close to the upper bound.

5.4.2 Comparison between OpenMP and OpenCL

0% 25% 50% 75% 100%

OMP
OCL

OMP
OCL

OMP
OCL

OMP
OCL

OMP
OCL

OMP
OCL

OMP
OCL

FS
T

CT
M

AH
ST

R
N

CC
SH

T1
SH

T2

offload kernel OMP OCL

Figure 5.9: OpenMP vs OpenCL

Our proposal aims at simplifying accelerator programming through

the simple OpenMP directive-based programming style; a streamlined of-

fload implementation aims at achieving identical performance to OpenCL.
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Figure 5.9 shows execution time for OpenCL and OpenMP, normalized

to OpenCL. We highlight the cost for offload, and the time spent in

kernel execution. Offload is costlier for OpenCL, while kernel execution

time seems longer for OpenMP. This is due to the difference in execu-

tion models. OpenCL completely demands parallelism creation for the

accelerator on the host side (memory allocation for data buffers, thread

creation/startup, etc.). Once the accelerator is started no additional par-

allelism can be created without transferring the control back to the host,

so the kernel execution time only includes benchmark-specific computa-

tion. For our OpenMP an offload sequence only consists of transferring

function and data pointers to the accelerator, but the offloaded function

is a standard OpenMP program: computation starts on a single accelera-

tor processor, and parallelism is created dynamically (similar to memory

allocation). Overall, our extended OpenMP achieves very close perfor-

mance to OpenCL, and up to 10% faster in some cases). In general the

comparison between OpenMP and OpenCL is not straightforward, nor it

is easy to generalize the results to different implementations/platforms.

On one hand, this is due to the fact that OpenMP allows to express much

more types and “flavors” of parallelism than OpenCL, which ultimately

impact the way a program is written. On the other hand, the degree of

optimization of the runtime support for a programming model on the tar-

get platform also impacts the relative results. In this experiment we have

maintained the OpenMP and OpenCL parallelization schemes as simi-

lar as possible to mitigate the first effect. Moreover, the native runtime

services used to implement the two programming models are the same,

so the second effect is also mitigated. In presence of a similar setup our

results can be broadly generalized to other similar platforms.
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5.4.3 Comparison with the ARM host

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Sp
ee

du
p 

VS
 A

RM

FST BRD SIM

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Sp
ee

du
p 

VS
 A

RM

CT BRD SIM

0
5

10
15
20
25
30
35
40

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Sp
ee

du
p 

VS
 A

RM

Kernel repe��ons

MAH BRD SIM

0

5

10

15

20

25

30

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Sp
ee

du
p 

VS
 A

RM

Kernel repe��ons

STR BRD SIM

0

5

10

15

20

25

30

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Sp
ee

du
p 

VS
 A

RM

NCC BRD SIM

0
5

10
15
20
25
30
35
40

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Sp
ee

du
p 

VS
 A

RM

Kernel repe��ons

SHT BRD SIM BRD SIM
(SHT 2)(SHT 1)

Figure 5.10: Comparison between ARM host and STHORM execution
(OpenMP).

Figure 5.10 shows the speedup achieved by accelerating target kernels

versus their sequential execution on the ARM host. On the x-axis we

report the number of times each benchmark is repeated. The higher the

number of repetitions, the lower the impact of the initial offload cost,

as most of the operations (e.g., program binary marshaling) need not

be repeated for successive kernel executions. Clearly the data used in

different repetitions is different, but data marshaling can be overlapped

with the execution of the previous kernel instance, which completely hides

their cost in all the considered benchmarks. To estimate the achievable

speedup in a realistic STHORM-based SoC, we also run the experiments

on the STHORM simulator, Gepop. Gepop allows to model a realistic

bandwidth to DRAM main memory, here set to 10GB/s. Solid lines in

Figure 5.10 refer to results obtained on the board (BRD); dashed lines

refer to Gepop (SIM).
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On average, on the real system (the STHORM board) our offload-

enabled OpenMP achieves ≈ 16× speedup versus ARM sequential exe-

cution, and up to 30×. The experiments on the simulator suggest that a

realistic channel for accelerator-to-DRAM communication increase these

values to ≈ 28× speedup on average, and up to 35×.

5.5 Related Work

Heterogeneous systems have been long since used to improve the energy

efficiency of embedded SoCs. ARM has witnessed this trend in the past

years, with products such as big.LITTLE [71] or the AMBA AXI4 inter-

connect [72]. Nowadays, it is widely accepted that heterogeneous integra-

tion is key to attack technology and utilization walls at nanoscale regimes.

Numerous published results show the advantages of heterogeneous sys-

tems, indicating for instance an average execution time reduction of 41%

in CMPs when compared to homogeneous counterparts, or 2x energy re-

duction when using specialized cores for representative applications [73].

Standardization initiatives such as the Heterogeneous System Architec-

ture foundation (HSA) [31] also demonstrate a general consensus among

industrial and academic players about the advantages of designing SoCs

as heterogeneous systems.

In the context of multi- to many-core parallel processing a plethora

of programming models has seen the light in the past decade [36]. In

particular several researchers have explored OpenMP extensions: for dy-

namic power management [74], tasks with dependencies [75], explicitly-

managed memory hierarchy [76], etc. Focusing on heterogeneous pro-

gramming, OpenCL attempts to standardize application development for
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accelerator-based systems, at the cost of very low-level coding style. To

simplify the programming interface, OpenACC [77] and PGI Accelera-

tor [78] borrowed the directive-based programming style of OpenMP. The

focus is still on GPU-like accelerators and loop-level parallelism.

Mitra et al. [46] describe an implementation of OpenMP v4.0 for

the Texas Instruments Keystone II K2H heterogeneous platform. The

proposed toolchain transforms OpenMP directives into an OpenCL pro-

gram, thus insisting on a GPU-specific accelerator model. Similarly, Liao

et al. [79] propose an OpenMP v4.0 implementation which is in essence a

wrapper to the CUDA programming model, targeted at NVIDIA GPUs

rather than shared memory accelerators. Ozen et al [80] explore the roles

of the programmer, the compiler and the runtime system in OpenMP

v4.0, trying to identify which features should be made transparent to

application developers. However, the angle is simply that of specifying

computational kernels in a more productive way, while the assumed of-

fload model is still heavily biased towards GPU-like accelerators. In all

these cases, the target architecture and the implemented execution model

are thus very different from the ones we discuss in this chapter.

Agathos et al. [81] present the design and the implementation of an

OpenMP 4.0 infrastructure for Adapteva Parallella board. The support

is based on OMPI [82], which is a lightweight OpenMP tool set, composed

of a source-to-source compiler, and a modular OpenMP runtime system.

Cramer et al. analyze the cost of extensions to OpenMP v4.0 for the

XEON-Phi [83], similar to ours. The main differences are in the avail-

able HW and SW stacks, and thus in the OpenMP implementation. The

Xeon-Phi is based on the same ISA of the host system, thus multi-ISA

compilation is not necessary. An OpenMP implementation can leverage
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standard full-fledged operating system services, different from STHORM

and similar many-cores. A direct comparison to the latest OmpSs re-

lease [84] (which supports the target OpenMP v4.0 directive) is also

not feasible, as the platforms they target are an Intel Xeon server (SMP,

with 24 cores) and a machine with two NVIDIA GTX285 GPUs, which

have very different HW and SW architectures than ours. Ayguadé [85]

and White [86] also proposed OpenMP extensions to deal with hetero-

geneous systems. Their work is however mostly focused on syntax spec-

ification (and semantics definition), while implementation aspects and

experiments are absent.

5.6 Conclusions

In this chapter we have presented a programming model, compiler and

runtime system for a heterogeneous embedded system template featur-

ing a general-purpose host processor coupled to a many-core accelerator.

Our programming model is based on an extended version of OpenMP,

where additional directives allow to efficiently offload computation to

the accelerator from within a single OpenMP host program. A multi-

ISA compilation toolchain hides to the programmer the cumbersome de-

tails of outlining an accelerator program, compiling and loading it to

the many-core and implementing data sharing between the host and the

accelerator. As a specific embodiment of the approach we present an im-

plementation for the STMicroelectronics STHORM development board.

Our experimental results show that we achieve i) near-ideal through-

put for most benchmarks; ii) very close performance to hand-optimized

OpenCL codes, at a significantly lower programming complexity; iii) up
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to 30× speedup versus host execution time.



Chapter 6

Runtime support for multiple

offload-based programming

models on many-core

accelerators

6.1 Introduction

While heterogeneous SoCs have the potential to address power/performance

trade-offs, programmability and portability issues are entirely demanded

to the software realm. To effectively harness the computational power

of heterogeneous systems, programmers are required to reason in terms

of an offload -based parallel execution model, where suitable code kernels

must be outlined for massive parallelization and communication between

different computing subsystems must be somehow made explicit.

As the complexity of the target system grows, so does the complex-

ity of individual applications, their number and composition into mixed
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workloads. The situation is best explained if extreme multi-user scenar-

ios such as data centers are considered. Here, multiple applications from

multiple users may concurrently require to use a PMCA. These applica-

tions are not aware of each other’s existence, and thus don’t communicate

nor synchronize for accelerator utilization. Different applications or parts

thereof (e.g., libraries, or other legacy code) are written using different

parallel programming models. Ultimately, each programming model re-

lies on a dedicated run-time environment (RTE) for accessing hardware

and low-level software (e.g., driver) resources. Since PMCAs typically

lack the services of a full-fledged operating system, efficiently sharing the

PMCA among multiple applications becomes difficult.

The importance of efficient PMCA sharing among multiple applica-

tions is witnessed by the increasing efforts towards accelerator virtual-

ization pursued by major GPGPU vendors [32] [33]. While such support

was originally conceived for multi-user settings such as computing farms,

its relevance is steadily increasing also in high-end embedded systems

typically meant for single-user (yet multi-workload) usage [34].

Accelerator virtualization relies on dedicated hardware support for

fast and lightweight context switching between different applications.

However, while such solution allows for transparent and simple PMCA

sharing, it implies significant area and power overheads with an increas-

ing number of fully-independent cores, which makes it unaffordable in

the short to medium term for types of PMCA other than GPGPUs. In

addition, currently all commercial products that support accelerator vir-

tualization assume that a single, proprietary programming model is used

to code all the applications, which cannot cope with multi-user, multi-

workload scenarios. As a consequence, methodologies to enable efficient
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accelerator resources sharing, supporting multiple programming abstrac-

tions and associated execution models will be increasingly important for

future heterogeneous SoCs.

Motivated by these observations, this chapter explores a software-

only solution to efficiently share a PMCA between multiple applications

written with multiple programming models, focusing on non-GPGPU

systems. PMCAs are typically organized as a collection of computation

clusters, featuring a small-medium number of cores tightly coupled to a

local L1 memory. Several clusters can be interconnected to build a many-

core. The key idea behind our proposal is that of leveraging clusters

as an “atomic” schedulable hardware resource. A lightweight software

layer, called the accelerator resource manager (AcRM), allows to create

virtual accelerator instances by logically grouping one or more clusters.

Compared to time-multiplexing (i.e., executing the offloads to completion

one after the other) they allow for better platform exploitation in case

at least one of the offloaded kernels does not have enough parallelism to

keep all the cores busy.

Accelerator sharing at the granularity of a cluster is supported by pro-

gramming models like CUDA and OpenCL for GPGPUs, given that the

applications are all written with the same programming model. When

different host processes running different CUDA/OpenCL programs of-

fload computation to the PMCA, the driver is capable of enqueueing the

requests in a global FIFO, from which a scheduler can extract the work

and dispatch it to available clusters. However, an application written

with a different programming model that tries to offload to the PMCA

will stall until all the previously offloaded kernels written in OpenCL

complete.
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The AcRM is designed to provide streamlined, low-cost primitives for

programming model semantics implementation, as well as a fast mech-

anism to context-switch between different programming models. This

allows to fully exploit the massive HW parallelism provided by many-

core accelerators, without losing efficiency in the multi-layered software

stacks typically required to support sophisticated programming models.

The design of the AcRM is modular and relies on a low level run-

time component for resource scheduling, plus “specialized” components

which efficiently deploy offload requests into programming model-specific

execution.

To validate the proposed approach we specialize the AcRM to support

two widely used and representative programming models for accelerator

exploitation: OpenMP and OpenCL. We present two use-cases, one for

a single-user, multi-workload scenario running on a high-end embedded

heterogeneous SoC (CASE1), and another one for a multi-user, multi-

workload scenario running on a low-power, energy efficient micro-server

(CASE2). For both use cases we consider suitable benchmarks and

target hardware platforms, characterizing both the cost of the proposed

runtime system and the efficiency achieved in exploiting the available

parallelism when multiple applications are concurrently deployed on the

accelerators.

The results demonstrate that for CASE1 the AcRM reaches up to

93% performance efficiency compared to the theoretical optimal solu-

tion. For CASE2 we achieve 47% performance improvement compared

to state-of-the-art parallel runtime support for heterogeneous architec-

tures.

The rest of the chapter is organized as follows. In Section 6.2 we
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describe the main components of our multiprogramming model runtime

system for heterogeneous architectures. In Section 6.3 we provide exper-

imental evaluation. Section 6.4 discusses related work and Section 6.5

concludes the chapter.

6.1.1 Heterogeneous Parallel Programming Models

Taxonomy

With the widespread diffusion of multi-processor and heterogeneous ma-

chines, parallel programming models acquired a key role in simplifying

application development over the last decades. A programming model

(PM) exposes an abstract notion of the available hardware computa-

tional resources, so that the programmer can focus on designing parallel

software, rather than having to deal with architectural details. A PM

typically consists of:

1. a collection of language features (e.g., extensions to well consoli-

dated programming languages from the single-processor domain);

2. a compiler which translates abstract parallel constructs into seman-

tically equivalent, machine-level instruction streams;

3. a Run-Time Environment (RTE), i.e., middleware which imple-

ments the semantics of the PM within a set of functions that are

invoked by the compiled parallel program.

Most parallel programming models were originally designed for homo-

geneous parallel machines, based on a collection of identical processing el-

ements. Programming for heterogeneous systems requires compilation for
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and interaction between computation domains based on distinct instruc-

tion set architectures (ISA) and memory hierarchies. Consequently, PMs

for heterogeneous systems are enriched with constructs to specify how to

offload a computation kernel from a main “host” processor to accelerator

devices. The semantics of an offload operation can be generalized in three

main actions: data marshalling, kernel enqueue, and execution control.

First, the host program is compiled so that upon offload the data used

in the offloaded kernel is communicated to the accelerator. This step

can consist of an actual data transfer between different memories, or of

exchanging pointers to data that resides in a single memory, but is possi-

bly addressed differently on the host and on the accelerator. Second, the

host program enqueues the request for kernel offload to the accelerator.

Third, the kernel is executed in the accelerator. Upon completion the

host and the accelerator synchronize and the data is communicated back

to the host.

The design of a PM for a heterogeneous system relies on a compilation

toolchain and a RTE that spans both the host and the accelerator. The

compiler is required to generate code for different ISAs, and to emit

the required instructions to implement data marshalling and host-to-

accelerator synchronization at the boundaries of an offload construct. In

most cases the host runs a full-fledged Operating System (OS), and the

accelerator is controlled via a device driver through the PM RTE. The

RTE on the host side thus needs to be extended to interact with the

device driver to set up a communication channel on top of which the

offload procedure can be initiated. On the accelerator side, the RTE sits

directly on bare metal (no OS is usually available on accelerators) and

holds a static, global view of the accelerator resources.
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If multiple applications running on the host require simultaneously

the use of the accelerator, the driver should implement some policies to

satisfy all the requests. A simple policy will only allow one process (i.e.,

one application) at a time to access the accelerator. Additional requests

could either be discarded (the application may decide to execute the

kernel on the host instead) or delayed (the accelerator is “locked” and the

application is stalled until the previous offload has completed). We refer

to the RTE systems that implement this behavior as Single Programming

Model, Single Offload (SPM-SO).

Smart implementations of PMs for general-purpose GPUs (GPGPUs)

like CUDA or OpenCL leverage the fact that the accelerator device con-

sists of a collection of computational clusters to implement a more effi-

cient accelerator “time-” and “space-sharing” of computational resource.

The RTE and driver design is capable of enqueueing offload requests from

multiple applications (written using that same PM) and of dispatching

or to time multiplexing their execution to available clusters. We refer to

the RTE systems that implement this behavior as Single Programming

Model, Multiple Offload (SPM-MO).

Since these sophisticated distributed RTEs (host RTE + device driver

+ accelerator RTE) completely control the entire heterogeneous system,

when two applications are written using different PMs it is no longer pos-

sible to continuously and smoothly collect and dispatch offload requests

to available clusters, and we must resort to accelerator “time-sharing”

between different PMRTE executions.

The GPGPUs vendors in state-of-the-art products use SPM-MO
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that is based on fine-grain (at pixel level) time sharing of computa-

tional resources among different processes. This solution, that is gen-

erally called GPU Virtualization is widely adopted in HPC, server con-

solidation, and cloud server domain to allow multiple users utilization of

GPGPUs. It enables multiple host processes, hosted in multiple virtual

machines, to time multiplex the accelerator through hardware support

for fast context switching between kernels. Note that this solution does

not imply a real concurrent execution of multiple computational kernels

on the accelerator. Under-utilization of accelerator resource can occur

in case applications do not expose enough parallelism [33]. Moreover, all

GPGPU vendors do not support multiple programming model nativelly.

SPM-MO is used in state-of-the-art PM implementations for embed-

ded heterogeneous systems like Adapteva Parallella [87], Kalray MPPA

[21], STMicroelectronics STHORM [88], and Texas Instrument Keystone

II [18]. All these systems support multiple PMs, but only one at time

can be used. Running in parallel two applications written with different

PMs on the host implies sequentializing the execution of the offloads on

the accelerator, plus the cost to restart a new PMRTE on the clusters.

Near future scenarios consider the execution on embedded heteroge-

neous systems of complex application pipelines based on legacy libraries.

These scenarios imply a single user usage of heterogeneous systems, but

it triggers the execution of multiple concurrent kernels on the accelera-

tor coming from possibly from different programming model interfaces.

Moreover, considering that in most of the cases, the applications are tai-

lored to the hardware, computational resources, in terms of clusters, are

explicitly requested by the user programmer.

In this work we propose a software-only solution to enable Multiple
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Programming Model, Multiple Offload (MPM-MO) capability. We in-

troduce the concept of Virtual Accelerator, a spatial logical partition

of accelerator computational resources dedicated to run offloaded kernels

in a particular PM. Multiple programming model and multiple offload

execution enables more efficient and flexible usage of heterogeneous re-

sources, in particular, in multi-user environments. Computational kernels

can be offload to the accelerator in a transparent way from multiple host

processes without any constraint about programming models to be used

without using hardware extensions on the accelerator. The proposed

runtime is based on a distributed software RTE, called Accelerator

Resource Manager (AcRM).

6.2 AcRM: the multi-programming model,

multi-offload PMCA manager

RTEs are implemented as software libraries that contain several APIs

to control parallelism (thread management, synchronization, task sched-

ulers, etc.). RTEs for embedded parallel accelerators typically sit on top

of hardware abstraction layers (HAL) [46] [89] [42] that expose low-level

APIs to use bare iron resources (core identification, explicitly managed

memories, test-and-set registers or hardware for synchronization, DMA

programming, etc.). While designing a RTE with such a tight coupling

to hardware resources enables very low overheads, it does not immedi-

ately allow the co-existence of multiple PM RTEs, as hardware resources

are physically identified. SPM-SO and SPM-MO both suffer from this

limitation.

Our proposal enables MPM-MO by interposing between the HAL
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stack overview.

and various PM RTEs an Accelerator Resource Manager (AcRM), which

is a lightweight virtualization layer for the underlying hardware. The

AcRM enables concurrent execution, on different PMCA clusters, of

multiple offloaded kernels from multiple programming models, leverag-

ing spatial partitioning of the PMCA resources. Each partition, called

Virtual Accelerator (vAcc), is a logical accelerator device, that sup-

ports the execution of offloaded kernels from the host program written

using a specific programming model. The AcRM exposes to the upper

levels of the software stack the same functionalities of the native HAL,

but it does so on top of virtual accelerators. As a consequence, existing

RTEs written for the original HAL, will still run unmodified on top of

this virtual HAL (vHAL).

Figure 6.1 shows a simplified overview of the global software stack

organization of our proposed runtime system. The host system is shown

on the left, the accelerator on the right. On top of the stack we show

applications written with different programming models (here indicated

as PM0 and PM1). Each application outlines a kernel to be offloaded to

the accelerator.
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Both on the host and on the accelerator side the execution of the

application relies on the underlying programming model RTE (PM-RTE).

When porting a programming model to a new architecture, it is usu-

ally required to develop a small backend RTE component, that encodes

architecture-specific bindings to the generic RTE part. The bindings be-

tween high level PM-RTE APIs and native functionalities provided by the

vHAL in the AcRM are encapsulated in one programming model interface

component (PM-Interfaces) per PM-RTE. Porting a new programming

model to our AcRM thus only requires to provide specific bindings by de-

veloping a new PM-Interface. In the simplest case a PM-Interface simply

contains stubs that redirect a high-level call into its low-level (HAL) coun-

terpart (e.g., thread creation or memory allocation). However, in some

cases PM-Interfaces implement programming model-specific restrictions

(or exceptions) to the generic HAL primitives. This will be explained in

more detail in the following sections.

6.2.1 AcRM: Accelerator Resource Manager.

The AcRM is a distributed component that is spread among the whole

platform. It consists of:

• a device Driver on the host side;

• a centralized accelerator Global Resource Manager (GRM);

• several, one for each cluster, Local Resource Managers (LRM).

AcRM Driver. The AcRM Driver enables communication from the

host processes to the accelerator. It is part of the host operating system

and it is mainly used to deliver computational kernels from the host to
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the accelerator and to wait for kernel execution termination. For the

driver to be callable with identical operation from different PM-RTEs,

the offload semantics of each programming model are wrapped by the

host-side PM-Interface into a generic Offload Descriptor.

This descriptor contains : i) the PID and VID of the host process

that generated the offload, used by the driver as identifiers to register

callbacks to the host ; ii) the number of cluster requested; iii) the pro-

gramming model identifier (pm ); iv) the binary pointer for the offload.

The remaining part of the Offload Descriptor payload consists of a PM-

specific part (e.g., shared data pointers, buffers shared between host and

accelerator, etc.).

To support multiple offloads from multiple programming models in a

dynamic manner, the driver is designed with non-blocking semantics.

Specifically, the AcRM driver exposes to the PM-Interfaces an asyn-

chronous message passing interface for accessing the GRM. The services

provided by the PM-Interface are thus converted into commands to be

sent to the GRM. To decouple commands enqueuing and command exe-

cution by the GRM a memory mapped FIFO queue of offload is imple-

mented inside the driver.

AcRM Global Resource Manager. The AcRM Global Resource

Manager (GRM) is a centralized component that provides services to

i) enqueueing offload requests from the AcRM Driver; ii) creating and

destroying Virtual Accelerator instances; iii) finalizing the offload exe-

cutable image through dynamic linking; iv) scheduling offload requests

to Virtual Accelerators (vAcc). Figure 6.2 shows the main components

of the GRM.
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Offload Scheduler and Resource Allocator - The GRM uses a

lightweight run-to-completion Scheduler to dispatch offloads. The sched-

uler is in charge of the execution by spawning a Virtual Accelerator for

each offload. It utilizes a Resource Allocator to track and request Virtual

Accelerator instances. Virtual Accelerator mapping on physical accelera-

tor clusters is done by the Allocator through a Resource Descriptor. This

data structure is composed of LPM0, LPM1, ..., LPMn linked-lists, one for

each PM supported, plus one LFree linked-list used to track unlinked (not

initialized to any PM yet) clusters. When the system is started all the

clusters are idle (i.e., registered in the free list). Each entry of a list

points to a PM-RTE Descriptor that in turn is used to register program-

ming model specific callbacks invoked upon startup/shutdown of that

PM on that cluster. The minimum set of callbacks for any PM consists

of rt_start, and rt_stop used to link and unlink a specific cluster to a

Virtual Accelerator.

The current implementation processes the requests sequentially, and

in order, by spawning a Virtual Accelerator for each offload. More com-

plex policies can be implemented at that level, like out-of-order execution,
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or offload execution reordering to target different goals.

The current allocation policy manages Virtual Accelerator creation

under the following assumptions:

• preemption is not supported. Clusters can be re-allocated to differ-

ent Virtual Accelerators only when they are not executing kernels;

• the number of clusters allocated to a Virtual Accelerator can be

less than what requested by the kernel offload construct;

The best-effort allocation is implemented through Algorithm 1.

Let r be the number of resources requested for a kernel associated

to the PM-RTE pm. The algorithm implements a simple best-effort al-

location policy. First, it checks for idle clusters already initialized for

the current pm. A pre-initialized cluster implies zero overhead upon re-

cruitment. Second, if not all the requested clusters could be recruited

from the pre-initialized list, the algorithm tries to recruit new clusters

from the free list. This operation implies the overhead to boot the target

PM-RTE on the new cluster. Third, if more clusters are needed that

could not be found from the previous lists, an attempt to steal idle re-

sources from lists of clusters initialized to another programming model is

done. In this case bigger overhead is implied due to the combined cost

for stopping the previous PM-RTE and for booting the new one. If no

clusters can be recruited from any list, the offload request is enqueued in

a FIFO, where it waits for some clusters to become idle. The algorithm

has complexity O(n∗m), where n is the total number of clusters available

and m is the number of programming models supported. Note that the

algorithm can return less clusters than what required by the offload. This

is a legal operation. The kernel will execute with less parallel resources,
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Data: r := number of resources requested
Data: pm := Programming Model Id
Result: map[] := array of resources ID associated to the Virtual

Accelerator
map[] ← NULL;
/* Get Idle from the same PM List */

forall i resources in Lpm do
if i == idle then

Add i in map[];
r−−;
if r == 0 then

return map[] ;

end
/* Get not yet associated */

forall i resources in Lfree do
Remove i from Lfree;
Call rt_start for pm on resource i;
Add i in map[];
r−−;
if r == 0 then

return map[] ;

end
/* Steal from other PM Lists */

forall p programming models 6= pm do
forall i resources in Lp do

if i == idle then
Call rt_stop for p on resource i;
Remove i from Lp;
Call rt_start for pm on resource i;
Add i in map[];
Insert i from Lpm;
r−−;
if r == 0 then

return map[] ;

end

end
return map[] ;

Algorithm 1: Resource allocation algorithm for a single Virtual Ac-
celerator.
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but its functionality will not be affected.

Dynamic Linking - Offloads consist of binaries that are usually

compiled and created out of the accelerator control. These binaries con-

tain function calls to the associated PM-RTE APIs that can only be

resolved when they are physically moved to the accelerator. The GRM

offers the capability to dynamically link offloaded binaries to their PM-

RTEs; this operation is triggered by the scheduler before starting the

execution of each offloaded kernel.

AcRM Local Resource Managers

The Local Resource Manager (LRM) is a per-cluster unit, in charge of

collecting incoming messages from the GRM and to convert them in a

concrete offload deployment using local hardware resources. Like the

GRM, each LRM is equipped with a memory mapped FIFO queue to

store incoming commands, managed by a single thread (called cluster

controller).

Figure 6.3 shows on the bottom a logical view of the functionalities

and the components exported by the the LRM to the higher levels of

the software stack. These consist of: i) a lightweight, non-preemptive,

thread scheduler used to spawn threads on available processors in the

cluster; ii) local memory allocator, used both by the offloaded application

kernels and the PMRTE; iii) synchronization primitives (locks, barriers);

iv) DMA engine programming.

These functionalities provide to the PM-Interface the hardware ab-

straction layer (HAL) on top of which to implement PM-RTE behavior.

How PM-interfaces provide the binding between the HAL and the PM-

RTE is discussed in the following.
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Local Resource Manager (LRM)

OpenMP PMRTE
GOMP_parallel GOMP_barrier GOMP_critical

ThreadThread
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Fixed Pool
Threads

OpenMP PMInterface

rt_stoprt_stop
rt_startrt_start

Scheduler

BarrierBarrier LocksLocks MEMMEM DMADMA

Command HandlerCommand Handler

Figure 6.3: Local Resource Manager and OpenMP Interface.

6.2.2 PM-Interfaces

PM-interfaces can be considered as the backend (i.e., the hardware-

specific) component of a PM-RTE. While the HAL provides a generic

interface to native hardware functionality, programming models may rely

on specific semantics that require more sophisticated functionality. Thus,

each PM-Interface implements glue logic to bind AcRM vHAL and high

level APIs used by the PM-RTE. Supporting a new PM in our framework

only requires to develop the PM-Interface (i.e., the backend PM-RTE for

our vHAL).

To illustrate how different PMs may require different bindings to the

HAL, we describe an example that considers two of the most widely used

PMs for heterogeneous architectures: OpenMP [30] and OpenCL [90].

When an offload is started, threads are recruited from local cluster pools,

according to the PM execution model. The basic functionalities provided

by PM-Interface to support such execution models are enclosed within

rt_start and rt_stop callbacks, to “boot” and terminate a PM-RTE on

a given cluster, respectively.
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Figure 6.5: Execution trace for an OpenMP kernel offload.

PM-RTE boot Figure 6.4 and 6.5 show the execution traces of an

offload for OpenCL and OpenMP, respectively, when no cluster is allo-

cated to any programming model. The first phase of the execution is

symmetrical for OpenMP and OpenCL. The two PM-Interfaces trigger

the execution of an offload to the GRM, which creates a Virtual Accelera-

tor instance consisting of two clusters, then starts the rt_start callback.

Here the differences in the execution model emerge. The boot phase for
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OpenCL is fully independent on each cluster and does not imply synchro-

nization between the two. For OpenMP the scenario is different. The

boot phase of each cluster first recruits all local threads, then synchro-

nizes designated cluster master threads [30]. Only when all the clusters

are booted the OpenMP kernel execution is triggered on the OpenMP

master thread.

The reason for this difference is to be found in the execution models

of the two PMs. OpenCL has the notion of independent work groups,

that can be mapped on distinct clusters. As OpenCL work-groups exe-

cute asynchronously, no synchronization is needed between two clusters.

Individual work-items are wired by the PM-Interface directly to the per-

sistent cluster threads created via the LRM vHAL, and they are woken

up dynamically by the OpenCL PM-RTE during the OpenCL kernel ex-

ecution phase.

OpenMP supports a more dynamic parallel execution model, where

new threads can be created at any time within the offloaded kernel it-

self, and can be explicitly recruited from different clusters. This clearly

requires more sophisticated PM-Interface implementation, where LRM

vHAL persistent threads from all the involved clusters are recruited ini-

tially and managed internally via higher-level PM-RTE thread pools.

PMRTE termination Figure 6.6 and 6.7 show the kernel execution

termination trace, and the rt_stop callback, for OpenCL and OpenMP,

respectively. Two important aspects must be highlighted: First, the fact

that OpenCL does not imply synchronization between clusters allows

for their faster release, compared to OpenMP. This is shown at the left

in Figure 6.6. Each cluster, (i.e., an OpenCL work-group) notifies its
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Figure 6.7: Execution trace for an OpenMP kernel execution termination
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termination directly to the GRM, and it independently and immediately

enters the pool of free resources. For OpenMP this is not the case; all

clusters associated to a Virtual Accelerator are considered busy – and

then not made available for other kernels – as long as one of them is still

busy.

Second, like in the PM-RTE boot also the termination implies more
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complicated local thread management for OpenMP. The associated PM-

Interface needs to release all the persistent threads allocated during the

boot of the programming model. This is visible in the right trace in Figure

6.7 where each cluster stop triggered by the GRM involves explicit stop of

all workers allocated. The OpenCL termination is more straightforward

and does not involve interaction between LRM vHAL persistent threads

and the PM-RTE threads. This has an impact on the programming

model switch cost, as shown later on.

6.3 Experimental results

Mnemonic Programming Model #Resources Notes

FAST OpenMP 1
ROD OpenMP 4
CT OpenMP 4
FD OpenCL 1 Face detec-

tion based
on Viola-
Jones algo-
rithm [91]

ORB OpenCL 4 ORB object
recogni-
tion [92]

SHT1 OpenCL 4
SHT2 OpenCL 2

Table 6.1: Computer-Vision domain application set

To quantify the importance of efficient PMCA resource sharing in

both high-end embedded system and low power micro-server contexts,

our experiments are organized in two main use cases.

The first use case focuses on single-user, multi-application high-end

embedded SoCs. As a target platform we consider STMicroelectronics
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STHORM, running a set of applications from the image and signal pro-

cessing domain. This is, for example, representative of the workload for

a high-end portable device concurrently running several programs (e.g.,

augmented reality, video, audio).

The second use case focuses on multi-user, multi-workload low-power

microservers, e.g., in the context of energy-efficient data center/cloud

computing. As a target platform for this use case we consider the TI

Keystone II [2], executing a mix of workloads ranging from linear algebra

to data mining.

6.3.1 Single-User, Multi-Application use-case

Target platform - The systems used for this use-case is the STMi-

croelectronic STHORM. A detailed presentation of this architecture was

presented on previous Section 2.2.

Workload - The computational workload for this use case is com-

posed of a mix of benchmarks, listed in Table 6.1, from the computer

vision and image processing domain. The dataset for the FAST, ROD,

CT, FD, ORB is a 640x480 24-bit MJPEG video. Each application it-

erates the offload of a kernel at every frame. For SHOT, which is a 3D

feature extractor, we use a a 3D shape of 32,328 points 67,240 polygons.

SHOT is composed of two kernels executed sequentially. For the mea-

surements we iterate SHOT over the same 3D shape as many times as

the number of frames that compose the video.

Experimental setup and results - The experiment setup is based
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on measurements and mathematical models. We measure each appli-

cation execution time over the same input dataset with three different

setups: Isolation, SPM-MO, and MPM-MO. Isolation consists of the ex-

ecution of all the single applications sequentially on the accelerator. For

this setup we measured the average execution time per-iteration of every

kernel among the input dataset. In SPM-MO we measured the cumu-

lative average execution time per-iteration of all the applications that

use the same programming model. In MPM-MO we used our proposed

runtime and we executed all the applications concurrently over the input

dataset.

Runtime ID Application Per-Frame Time

SPM-SO

T0 FAST 56.42 ms
T1 ROD 37.40 ms
T2 FD 33.14 ms
T3 ORB 91.76 ms
T4 CT 7.34 ms
T5 SHOT1 270.96 ms
T6 SHOT2 169.73 ms

Total 666.75 ms

SPM-MO
S0 FAST+ROD+CT 68.80 ms
S1 FD+ORB+SHOT1-SHOT2 422.86 ms

Total 491.66 ms

MPM-MO
FAST+ROD+CT+
FD+ORB+SHOT1-SHOT2 421.56 ms

Total 421.56 ms

Table 6.2: Per-frame average execution time for computer vision appli-
cation using different runtime supports.

Table 6.2 shows the measurements results for the different setups.

The resource sharing and the concurrent execution allow MPM-MO to

execute the applications in 421.56 ms per-frame. In case the accelerator

runtime does not support multiple application execution (SPM-SO), the
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average execution time per-frame grows up to 666.75 ms, due in particular

to the under-utilization of accelerator resources. SPM-MO, which is

able to manage multiple concurrent kernels from the same programming

model, the average execution time per-frame is 491.66 ms, still bigger

than MPM-MO.

Since switching from one PM-RTE to another without our AcRM

requires a reset, we create a set of mathematical baselines to compare

our MPM-MO to the native PM-RTE support for STHORM We define

three baselines as follow:

• Ideal baseline: the optimal execution time, leading to the max-

imum utilization of the platform without any restrictions on the

number of clusters requested. The baseline is calculated using the

following problem formulation.

Min z =
∑

Ki

xi
such that∑

xi≤ 28, i = 0, 2, ..., 6

xi ≥ 1, i = 0, 2, ..., 6.

Let z be sum of the execution times for all the applications for

a single frame that we want to minimize. Under the hypothesis

of ideal speedup, this is given by the sum of ratios of Ki, the ex-

ecution time of each application using a single resource and xi,

the number of resources allocated to i-th kernel. The sum of the

resource allocatable to is 28, given by the the number of compu-

tational resources in STHORM (four) multiplied by the number of

applications (seven). Instead, the minimum number of resources to

be used must be one, that means that each application is at least

executed by a computational resource.
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• SPM-MO baseline: the execution time per-frame is based on the

sum of the execution times in each each programming model, plus

the overhead (Os) to boot a different programming model runtime.

This overhead depends on the switching rate (switch%) needed by

the particular batch of applications and its order of kernels execu-

tions. Let Si be the measured execution time, per-frame, for all the

kernels associated to a particular i programming model (see Table

6.2), the baseline for that scenario is given by the following formula:

Tspm-mo =
∑

∀Si

Si + overhead (6.1)

overhead = Os × (switch%× nbFrames) (6.2)

• SPM-SO baseline: the average execution time per-frame is equal

to the sum of all the application execution times (Ti, see Table 6.2)

sequentially executed in complete isolation:

Tspm-so =
∑

∀Ti

Ti (6.3)

Figure 6.8 shows the efficiency of the designed use case for all the

baseline scenarios and for our AcRM, with respect to the ideal ILP so-

lution increasing the number of frames. In the figure, the percentage

associated to the SPM-MO baseline represents the switching rate. Our

runtime has an efficiency of 93% with respect to the ideal solution. It

outperforms the efficiency of the best case SPM-MO baseline (static 0%

- where there is a single runtime switch from OpenMP to OpenCL) by

30% and the most basic support (SPM-SO) baseline by 80%.



136 6.3 Experimental results

0%

20%

40%

60%

80%

100%

10 100 1000 10000

Ef
fic

ie
nc

y 
%

 v
s 

Id
ea

l

#Frames
MPM-MO SPM-MO (0%) SPM-MO (25%)
SPM-MO (50%) SPM-MO (100%) SPM-SO

0

1

2

3

4

5

6

Best Fit
Max Req.

Best Fit
Min Req.

Worst Fit
Max Req.

Worst Fit
Min Req.

Sp
ee

du
p 
vs
. S
PM

‐S
O

MPM‐MO SPM‐MO SPM‐SO

Figure 6.8: Computer-Vision use-case efficiency on STMicroelectronics
STHORM platform increasing the number of frames.

6.3.2 Multi-User, Multi-Workload use-case

Target platform - The Texas Instrument Keystone II [2], is a het-

erogeneous SoC featuring a quad-core ARM Cortex-A15 and eight C66x

VLIW DSPs. Each DSP runs at up to 1.2 GHz and together they de-

liver 160 single precision GOps. The SoC consumes upto 14W and it is

designed for special-purpose industrial task, such as networking, automo-

tive, and low-power server applications. The 66AK2H12 SoC is the top

performance Texas Instrument Keystone II device architecture (Figure

6.9). The Cortex-A15 quad cores are fully cache coherent, while the DSP

cores do not maintain cache coherency. External memory bandwidth ex-

ploits separated dual DDR3 controllers. Each DSP is equipped by 32KB
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Figure 6.9: Texas Instrument Keystone II heterogeneous system.

L1D and L1P cache and 1024KB L2 cache size. On the ARM side, there

is 32 KB of L1D and 32 KB of L1P cache per core, and a coherent 4

MB L2 cache. The computational power of such architecture makes it

a low-power solution for microserver class applications. The Keystone

II processor has been used in several cloud-computing / microserver set-

tings [93] [94] [95].

Workload - Table 6.3 shows in detail the applications used. The

applications belong to Rodinia [3], a state-of-the-art benchmark suite for

heterogeneous systems.

Experimental setup and results - The experiments aim at show-

ing the effectiveness of our solution as compared to SPM-MO and SPM-

SO. Due to the extremely unpredictable and dynamic nature of the in-

coming offloads in multi-user, data-center scenario, we use a mix of corner

case analysis and stochastic workloads (permutations) rather than con-

sidering precise job batches like we did in the previous section.
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Name PM Description

HOT OpenMP Hotspot: Thermal simulator that estimate proces-
sors temperature based on architectural floorplan
and power measurements. The simulator is based
on iterations of differential equation calculus.

LUD OpenCL LU Decomposition for linear equations solution.
KME OpenMP K-means: clustering algorithm used in data-

mining applications.
SRAD OpenCL Speckle Reducing Anisotropic Diffusion used in ul-

trasonic images to remove locally correlated noise.

Table 6.3: Application set for cloud level, low-power server computation,
from Rodinia Benchmark Suite 3.0 [3]

Impact of kernel arrival order and requested resources For this

first experiment we use all four applications listed on the Table 6.3. We

launched all of them in a single batch changing two parameters: the order

of execution and the number of resources requested by the kernels.

The order of execution influences directly the amount of overhead to

switch from a programming model to another with SMP-MO. We defined

four corner-cases:

• Best-Fit/Max Request : all kernels from the same programming

model arrive in a row; all kernels request all the resources (clus-

ters) available on the system;

• Best-Fit/Min Request : all kernels from the same programming

model arrive in a row; all kernels request a single resource (cluster);

• Worst-Fit/Max Request : kernels are scheduled to force program-

ming models alternation at every kernel execution; all kernels re-

quest all the resources available on the system;
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Figure 6.10: Low-power server computation corner cases.

• Worst-Fit/Min Request : kernels are scheduled to force program-

ming models alternation at kernel execution; all kernels request

request single resource;

Figure 6.10 shows the measured speedup of the different runtime sup-

port levels compared to SPM-SO.

We note:

• when not all the clusters are requested by an offload, MPM-MO is

able to exploit the idle computational resources better than other

approaches. We measured in this particular case up to 4× speedup

compared to SMP-SO.

• Even in case all the clusters are required by all the offloads (Max

Request) MPM-MO performs better then the other runtime sys-

tems. This is particularly visible in Worst-Fit allocation.

• In the Best-Fit/Max Request corner case the different approaches

perform equivalently. In this case all the kernels arrive in the“right”
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order to minimize programming model switching costs, and the

constant maximum resource request by every kernel do not leave

room for performance improvements.

Concurrent Multiple Runtime execution To provide a realistic

assessment of our proposed runtime in a multi-user environment such as

cloud computing systems, we defined the following workload that we used

as a benchmark for our set of experiments.

Let X(n) be the instance of application X that requests n clusters,

we define four sets of application instances:

A := {HOT(1),HOT(2), ...,HOT(7)}

B := {LUD(1),LUD(2), ...,LUD(7)}

X := {KME(1),KME(2), ...,KME(7)}

∆ := {SRAD(1), SRAD(2), ..., SRAD(7)}

Each set contains seven instances of the same application that re-

quests a different amount of clusters, from one to seven1. Given these

four sets of applications, we define the workload Φ that should be exe-

cuted as:

Φ = A ∪B ∪X ∪∆

To provide a statistically relevant result we generate 500 different

permutations of Φ. These permutations were executed and measured

1The maximum number of cluster resources that can be allocated for a kernel in
the Keystone II platform is 7. The accelerator is equipped by 8 DSPs, but one is used
in this configuration as Global Resource Manager.
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Figure 6.11: Random dataset execution time in different parallel pro-
gramming model support.

for different runtime approaches. The permutation and variability of

requested resources enable to factor in typical sources of indeterminism

of data-center computing, such as QoS/service level, multi-user activity,

randomic service requests, etc.

We present in Figure 6.11 the execution time for each permutation

of Φ with MPM-MO, SPM-MO, and SPM-SO. The Y-axis shows the

speedup compared to SPM-SO, while the X-axis shows the permutation

identifier. The right chart in Figure 6.11 summarizes the average execu-

tion time in seconds of Φ and the variance on Φ for the different runtime

supports.

SPM-SO, as we expected due to poor PMCA sharing, presents a

quasi -constant execution time among permutations. The average exe-

cution time for a single permutation of Φ is ≈40s. Vice versa, SPM-MO

presents the most variable behavior compared to the others, due the fact

that its execution time, as its ability to share resources, is highly affected
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by the arrival sequence of applications. The average execution time mea-

sured is 34s, but in some cases SPM-MO performs even worse. This

seems against the logical idea that SPM-SO is the ideal worst case, but

it is motivated by the fact that SPM-MO (as well as MPM-MO) gener-

ates cache trashing and more conflicts in memory accesses. In general,

SPM-MO allows 1.09× speedup compared to SPM-SO. Our proposed

runtime (MPM-MO) enables an average speedup of 2.2× with respect to

SPM-SO and due to the capability of Virtual Accelerator re-usage it is

able to halve the execution time variability compared to SPM-MO.

6.4 Related work

Resource management of heterogeneous systems is widely studied in lit-

erature. Several works have presented extensions to OpenCL and CUDA

schedulers to target different goals like performance, power and energy-

efficiency [96] [97] [98]. Our work focuses on a more specific problems:

how to support the concurrent execution of offloads initiated from multi-

ple, distinct programming models. The mentioned resource management

approaches could be orthogonally applied and extended on top of what

we propose.

6.4.1 Heterogeneous systems virtualization

The Heterogeneous System Architecture foundation (HSA) [99] is an

industry-driven standardization effort aimed at defining a unified hard-

ware/software platform for next-generation heterogeneous systems. Among

industrial players, AMD was the first to implement the HSA specification

inside its products, enabling multi-application offloads from the host to
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the GPGPU. This is achieved via Heterogeneous Queuing (hQ), a tech-

nology that enables transparent scheduling of parallel program tasks on

every compute device available on the platform [32]. Similar technolo-

gies are being adopted also by Nvidia. Wende et al. [100] investigate

the Hyper-Q feature introduced by Nvidia Kepler GPUs [65]. Through

Hyper-Q the GPU is able to manage up to 32 hardware work queues

for concurrent kernel execution. These works are entirely based on the

sophisticated hardware support provided by last-generation GPU plat-

forms. Moreover, the proposed solutions are based on proprietary and

closed programming models, which assume full HW control. Our tech-

nique relies on a software-only solution, that does not require any type

of hardware support and natively supports the execution of multiple dis-

tinct programming models (and associated RTEs).

Sengupta et al. [101] implement a scheduler for GPU kernels that

enables to share computational resources of a GPU. The scheduler, called

Strings, aims to efficiently use all the GPU hardware resources and ensure

fairness between concurrent kernel executions. The technique allows to

speed up the standard CUDA runtime scheduler by up to 8.7×. Strings

is built as a middleware between the CUDA runtime and the application

layer. Again, the main limitation of the approach is the focus on a single,

proprietary programming model which cannot be extended to support

multi-user, multi-application scenarios.

6.4.2 Multiple programming model support

Concurrent execution of multiple parallel programming models is sup-

ported in general-purpose symmetric multi-processors (SMP), based on

the standard POSIX multithreading environment. Large-scale SMP POSIX
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clusters typically use a combination of message passing (MPI) and OpenMP,

which has also been explored in the context of on-chip parallel clus-

ters [39]. This problem is anyhow focused on supporting a single appli-

cation at a time, and is thus largely different from our notion of multi-

programming model support.

Among heterogeneous architectures based on PMCAs, the Xeon Intel

Phi [102] is capable of supporting POSIX multi-threading, thus also en-

abling different applications written with different programming models

to coexist on the accelerator. Clearly this solution cannot be supported

in other PMCAs, where OS support is typically lacking. In terms of per-

formance overheads, the Xeon Phi software stack is more than one order

of magnitude slower than our multithreading implementation, due the

large overheads implied by the OS and POSIX layers (30 microseconds

to spawn 240 threads at 1GHz) [103].

Looking at more similar PMCAs to what we consider in this work,

one of the most mature supports for acceleration sharing between multi-

ple programming models is the one used by TI on the heterogeneous SoC

Keystone II [18]. The SoC fully support the new OpenMP v4.0 specifica-

tion and the OpenCL programming model [2]. Similar to our approach,

on the accelerator side a bare-metal runtime supports both OpenMP and

OpenCL. However, compared to our solution the current implementation

by TI lacks the capability of concurrent application execution. Multiple

host programs cannot use the accelerator at the same time, even if they

use the same programming model.

Other solutions exist to allow multiple programming models to use a

programmable accelerator. In some cases source to source compilation

is used to transform applications that use different programming model



6.4 Related work 145

APIs to a unique runtime system supported by the architecture. This is

the typical approach used to support OpenMP on GPGPUS. An example

is the support for OpenMP v4.0 on Nvidia GPUs by Liao et al. [79].

The authors use the ROSE source to source compiler [104] to transform

the offload OpenMP API to Nvida CUDA. Another similar approach is

used by Elangovan et al. [105], which provide a full framework based on

OmpSS [84] that can incorporate OpenCL and CUDA kernels to target

GPGPUs devices. Other examples are provided by Seyong Lee et al. [106]

which propose a compiler and an extended OpenMP interface used to

generate CUDA code. Becchi et al. [107] developed a software runtime for

GPU sharing among different processes on distributed machines, allowing

the GPU to access the virtual memory of the system. Ravi et al. [108]

studied a technique to share GPGPUs among different virtual machines

in cloud environments. Other optimizations that improve the dynamic

management of GPU programming interface are presented by Pai et al.

[109] and Sun et al. [110], but they consider only the native programming

model interface, while our approach enable the utilization of multiple

programming models. Moreover, the context is very different, as all these

works target high performance systems, where the size of the considered

parallel workloads is such that very high overheads can be tolerated,

unlike the fine-grained parallelism typically available on the embedded

many-cores targeted in this work.

MERGE is a heterogeneous programming model from Linderman et

al. [111]. The MERGE framework replaces current ad-hoc approaches

to parallel programming on heterogeneous platforms with a rigorous,

library-based methodology that can automatically distribute computa-

tion across heterogeneous cores. Compared to our solution, MERGE
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does not use a standard parallel programming model interface, nor al-

lows the co-existence of multiple runtime systems to improve the resource

utilization of the underlying HW platform.

Lithe [112] is a runtime system for parallel programming models,

working as resource dispatcher. Compared to our solution, Lithe works

on top an Operating System, thus supporting preemption and global dy-

namic scheduling of all the resources among the programming models.

This kind of scheduling requires standard OS support for shared memory

systems, which are typically lacking in embedded many-core accelerators.

Moreover, the composition of several legacy SW layers (OS, middleware,

threading libraries) implies a cost in time and space (i.e., memory foot-

print) that is not affordable in the embedded domain.

6.5 Conclusions

This chapter presents a runtime systems capable of having offloaded

computations from multiple programming models coexist on the same

clustered many-core accelerator. The proposed runtime system is a dis-

tributed and modular software component that relies on the notion of

Virtual Accelerator instances, mapped on a subset of computational re-

sources of the accelerator, to implement spatial partitioning within the

accelerator. This can be effectively exploited for the execution of multiple

runtime systems.

To evaluate our solution we considered two representative use cases:

high-end embedded devices running multiple applications in a single-user

environment, and low-power microservers running multiple applications

in a multi-user environment. Suitable hardware platforms were chosen for
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the validation, namely STMicroelectronics STHORM and Texas Instru-

ment Keystone II, running mixed workloads composed of a selection of

representative benchmarks from the targeted computation domains. The

experiments show that our runtime, and in particular its ability to share

the accelerator among different programming models, allows as efficient

platform exploitation as 93% of the ideal case for high-end embedded

systems and up to 2.2× faster execution than state-of-the-art baselines

for low-power microservers.



Chapter 7

Conclusions

Heterogeneous architectures based on Programmable Many-Core Accel-

erators (PMCA) are widely adopted in the product line of major chip

manufactures. The massive parallelism of these architectures had revo-

lutionized the common practices of programming.

This thesis showed which are the main challenges that modern pro-

gramming models for heterogeneous many-core architectures should ad-

dress: i) providing an efficient, and scalable way to create, control,

and distribute parallelism among a massive number of processing units;

ii) providing a flexible and easy-to-use mechanism to offload compute-

intensive regions of programs from host cores, to the many-core acceler-

ators.

We tackled these challenges providing four contributions, targeting

real PMCAs, at two levels: from the internal many-core accelerator level

and from the whole system level point of view.

First, we demonstrated that as the many-core architectures become

hierarchical and based on “building blocks”, Nested parallelism rep-

resents a powerful programming abstraction to efficiently exploit
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large number of processors. We proposed an efficient runtime layer for

nested parallelism support, identifying the most critical operations to fork

and join nested parallelism, and proposing software-only and hardware-

accelerated solutions for their implementation. The presented fork/join

primitives have been integrated in the OpenMP programming model, tar-

geting state-of-the-art a PMCA platform: STMicroelectronic STHORM.

Experimental results show up to 28× speedup versus not-Nested solu-

tion on real-life application use cases.

Second, we showed how, using a pure software-based mechanism

to cache parallel team configurations, we further minimized paral-

lelization overheads on PMCAs. The proposed technique, in the common

cases, achieves constant-time creation of parallelism, independent of

the number of threads involved. Experimental results show that cost of

FORK has been reduced by 67%, recruiting 16 threads in less that 400

CPU cycles.

Third, we have presented a full-fledged programming model,

compiler and runtime system, for heterogeneous embedded systems

featured by a general-purpose host processors coupled with a PMCA.

The proposed programming model extends the OpenMP 4.0 APIs, al-

lowing efficient computational offloads to the accelerator within a single

OpenMP program. We showed that our multi-ISA compilation toolchain

hide the programming complexity of heterogeneous systems achieving

on experimental results very close performance to hand-optimized

OpenCL codes.

The final contribution of this thesis consists of a runtime system

capable of having multiple programming models coexisting on the

same many-core accelerator. The runtime system relying on the new



150 Conclusions

concept of Virtual Accelerator instances. Using the Virtual Accelerator

instances, the runtime enables the spatial partitioning of the accelerator

resources to multiple concurrent runtime systems. Experimental results

show on near-future use-cases like low-power micro-servers, that

our runtime enables better usage of resources and faster appli-

cations execution compare state-of-the-art runtime systems on real

suitable hardware PMCAs.
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nested openmp programs on hierarchical memory architectures,” in

Beyond Loop Level Parallelism in OpenMP: Accelerators, Tasking

and More. Springer, 2010, pp. 29–42.

[61] G. Zhang, “Extending the openmp standard for thread mapping

and grouping,” in OpenMP Shared Memory Parallel Programming.

Springer, 2008, pp. 435–446.

[62] F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, and

R. Namyst, “ForestGOMP: An Efficient OpenMP Environment for

NUMA Architectures,” International Journal of Parallel Program-

ming, vol. 38, no. 5-6, pp. 418–439, 2010.

[63] A. E. Eichenberger, C. Terboven, M. Wong, and D. an Mey, “The

design of OpenMP thread affinity,” in Proceedings of the 8th in-

ternational conference on OpenMP in a Heterogeneous World, ser.

IWOMP’12. Springer-Verlag, 2012, pp. 15–28.

[64] S. Williams, A. Waterman, and D. Patterson, “Roofline: An

Insightful Visual Performance Model for Multicore Architectures,”

Commun. ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online].

Available: http://doi.acm.org/10.1145/1498765.1498785

https://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://doi.acm.org/10.1145/1498765.1498785


[65] Nvidia Inc. (2012) Nvidia’s Next Generation CUDA

Compute Architecture: Kepler TM GK110. [On-

line]. Available: https://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[66] P. Burgio, G. Tagliavini, F. Conti, A. Marongiu, and L. Benini,

“Tightly-coupled hardware support to dynamic parallelism acceler-

ation in embedded shared memory clusters,” in Design, Automa-

tion and Test in Europe Conference and Exhibition (DATE), 2014,

2014, pp. 1–6.

[67] OpenMP ARB. (2015) OpenMP 4.1 Application Program Interface

Draft. [Online]. Available: http://openmp.org/mp-documents/

OpenMP4.1 Comment Draft.pdf

[68] ——. (2015) OpenMP 4.5 Application Program Interface. [Online].

Available: http://www.openmp.org/mp-documents/openmp-4.5.

pdf

[69] Burgio, Paolo and Tagliavini, Giuseppe and Marongiu, Andrea and

Benini, Luca, “Enabling fine-grained OpenMP tasking on tightly-

coupled shared memory clusters,” in Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2013. IEEE, 2013, pp.

1504–1509.

[70] Cesarini, Daniele and Marongiu, Andrea and Benini, Luca, “An

Optimized Task-Based Runtime System for Resource-Constrained

Parallel Accelerators,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2016. IEEE, 2016.

https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://openmp.org/mp-documents/OpenMP4.1_Comment_Draft.pdf
http://openmp.org/mp-documents/OpenMP4.1_Comment_Draft.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf


[71] P. Greenhalgh, “Big-Little processing with ARM Cortex-A15

& Cortex-A7,” ARM White paper, pp. 1–8, 2011. [Online].

Available: http://www.arm.com/files/downloads/big LITTLE

Final Final.pdf

[72] A. Stevens, “Introduction to AMBA 4 ACE,” ARM whitepaper,

June, 2011. [Online]. Available: http://www.arm.com/files/pdf/

CacheCoherencyWhitepaper 6June2011.pdf

[73] V. Saripalli, G. Sun, A. Mishra, Y. Xie, S. Datta, and

V. Narayanan, “Exploiting Heterogeneity for Energy Efficiency in

Chip Multiprocessors,” Emerging and Selected Topics in Circuits

and Systems, IEEE Journal on, vol. 1, no. 2, pp. 109–119, 2011.

[74] Y.-S. Hwang and K.-S. Chung, “Dynamic power management tech-

nique for multicore based embedded mobile devices,” Industrial In-

formatics, IEEE Transactions on, vol. 9, no. 3, pp. 1601–1612,

2013.

[75] P. Larsen, S. Karlsson, and J. Madsen, “Expressing Coarse-Grain

Dependencies Among Tasks in Shared Memory Programs,” Indus-

trial Informatics, IEEE Transactions on, vol. 7, no. 4, pp. 652–660,

2011.

[76] A. Marongiu and L. Benini, “An OpenMP Compiler for Efficient

Use of Distributed Scratchpad Memory in MPSoCs,” Computers,

IEEE Transactions on, vol. 61, no. 2, pp. 222–236, Feb. 2012.

[77] R. Reyes, I. Lopez, J. Fumero, and F. de Sande, “An early evalua-

tion of the OpenACC standard,” in Proceedings of the 2012 Inter-

national Conference on Computational and Mathematical Methods

http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf
http://www.arm.com/files/pdf/CacheCoherencyWhitepaper_6June2011.pdf
http://www.arm.com/files/pdf/CacheCoherencyWhitepaper_6June2011.pdf


in Science and Engineering (La Manga-Murcia, Spain), 2012, pp.

1024–1035.

[78] M. Wolfe, “Implementing the PGI accelerator model,” in Proceed-

ings of the 3rd Workshop on General-Purpose Computation on

Graphics Processing Units. ACM, 2010, pp. 43–50.

[79] C. Liao, Y. Yan, B. R. de Supinski, D. J. Quinlan, and B. M. Chap-

man, “Early Experiences with the OpenMP Accelerator Model.”

in 9th International Workshop on OpenMP, ser. IWOMP ’13.

Springer, 2013, pp. 84–98.
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[84] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,

X. Martorell, and J. Planas, “Ompss: a proposal for program-

ming heterogeneous multi-core architectures,” Parallel Processing

Letters, vol. 21, no. 02, pp. 173–193, 2011.

[85] E. Ayguade, R. Badia, D. Cabrera, A. Duran, M. Gonzalez,

F. Igual, D. Jimenez, J. Labarta, X. Martorell, R. Mayo, J. Perez,

and E. Quintana-Orta, “A Proposal to Extend the OpenMP Task-

ing Model for Heterogeneous Architectures,” in Evolving OpenMP

in an Age of Extreme Parallelism. Springer Berlin Heidelberg,

2009, pp. 154–167.

[86] L. White, “OpenMP Extensions for Heterogeneous Architectures,”

in OpenMP in the Petascale Era. Springer Berlin Heidelberg, 2011,

pp. 94–107.

[87] University of Ioannina. OMPi for Parallella. [On-

line]. Available: http://paragroup.cs.uoi.gr/wpsite/news-posts/

new-version-b2-of-ompi-for-parallella/

[88] A. Marongiu, A. Capotondi, G. Tagliavini, and L. Benini, “Sim-

plifying Many-Core-Based Heterogeneous SoC Programming With

Offload Directives,” Industrial Informatics, IEEE Transactions on,

vol. 11, no. 4, pp. 957–967, 2015.

[89] A. Papadogiannakis, S. N. Agathos, and V. V. Dimakopoulos,

“OpenMP 4.0 Device Support in the OMPi Compiler,” in OpenMP:

Heterogenous Execution and Data Movements. Springer, 2015, pp.

202–216.

http://paragroup.cs.uoi.gr/wpsite/news-posts/new-version-b2-of-ompi-for-parallella/
http://paragroup.cs.uoi.gr/wpsite/news-posts/new-version-b2-of-ompi-for-parallella/


[90] Khronos Group. (2014) The OpenCL Specification. [Online].

Available: http://www.khronos.org/registry/cl/specs/opencl-2.0.

pdf

[91] P. Viola and M. J. Jones, “Robust real-time face detection,” Inter-

national journal of computer vision, vol. 57, no. 2, pp. 137–154,

2004.

[92] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an

efficient alternative to sift or surf,” in Computer Vision (ICCV),

2011 IEEE International Conference on. IEEE, 2011, pp. 2564–

2571.

[93] A. Verma and T. Flanagan, “A Better Way to Cloud,”

Texas Instruments white paper, 2012. [Online]. Available:

http://www.ti.com/lit/wp/spry219/spry219.pdf

[94] Hewlett-Packard Development Company L.P. HP ProLiant m800

Server Cartridge. [Online]. Available: http://goo.gl/IJE6zu

[95] nCore HPC LLC. BrownDwarf Y-Class Supercomputer. [Online].

Available: http://ncorehpc.com/browndwarf/

[96] Y. Wen, Z. Wang, and M. O’Boyle, “Smart multi-task scheduling

for OpenCL programs on CPU/GPU heterogeneous platforms,” in

Proceedings of the 21st Annual IEEE International Conference on

High Performance Computing, ser. HiPC ’14. IEEE, 2014.

[97] A. M. Aji, A. J. Pena, P. Balaji, and W. Feng, “Automatic Com-

mand Queue Scheduling for Task-Parallel Workloads in OpenCL,”

in International Conference on Cluster Computing, ser. CLUSTER

’15. IEEE, 2015, pp. 42–51.

http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.ti.com/lit/wp/spry219/spry219.pdf
http://goo.gl/IJE6zu
http://ncorehpc.com/browndwarf/


[98] G. Massari, C. Caffarri, P. Bellasi, and W. Fornaciari, “Extending

a Run-time Resource Management framework to support OpenCL

and Heterogeneous Systems,” in Proceedings of Workshop on Par-

allel Programming and Run-Time Management Techniques for

Many-core Architectures and Design Tools and Architectures for

Multicore Embedded Computing Platforms. ACM, 2014, p. 21.

[99] P. Rogers, “Heterogeneous System Architecture Overview,” in Hot

Chips, vol. 25, 2013.

[100] F. Wende, T. Steinke, and F. Cordes, “Multi-threaded Kernel Of-

floading to GPGPU Using Hyper-Q on Kepler Architecture,” ZIB-

Rep. 14-19 June 2014, 2014.

[101] D. Sengupta, A. Goswami, K. Schwan, and K. Pallavi, “Schedul-

ing multi-tenant cloud workloads on accelerator-based systems,” in

Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE Press, 2014,

pp. 513–524.

[102] C. George, “Knights Corner, Intel’s first many integrated core

(MIC) architecture product,” in Hot Chips, 2012.

[103] S. Saini, H. Jin, D. Jespersen, H. Feng, J. Djomehri, W. Arasin,

R. Hood, P. Mehrotra, and R. Biswas,“An Early Performance Eval-

uation of Many Integrated Core Architecture Based SGI Rackable

Computing System,” in Proceedings of the International Confer-

ence on High Performance Computing, Networking, Storage and

Analysis. ACM, 2013.



[104] D. Quinlan, C. Liao, J. Too, R. Matzke, and M. Schordan.

(2013) ROSE compiler infrastructure. [Online]. Available: http:

//rosecompiler.org/

[105] V. K. Elangovan, R. Badia, and E. A. Parra, OmpSs-OpenCL Pro-

gramming Model for Heterogeneous Systems. Springer, 2013, vol.

7760, pp. 96–111.

[106] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP Pro-

gramming and Tuning for GPUs,” in Proceedings of the 2010

ACM/IEEE International Conference for High Performance Com-

puting, Networking, Storage and Analysis, ser. SC ’10. IEEE Com-

puter Society, 2010, pp. 1–11.

[107] M. Becchi, K. Sajjapongse, I. Graves, A. Procter, V. Ravi, and

S. Chakradhar, “A Virtual Memory Based Runtime to Support

Multi-tenancy in Clusters with GPUs,” in Proceedings of the 21st

International Symposium on High-Performance Parallel and Dis-

tributed Computing, ser. HPDC ’12. ACM, 2012, pp. 97–108.

[108] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar, “Support-

ing GPU Sharing in Cloud Environments with a Transparent Run-

time Consolidation Framework,” in Proceedings of the 20th Inter-

national Symposium on High Performance Distributed Computing,

ser. HPDC ’11. ACM, 2011, pp. 217–228.

[109] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving

GPGPU Concurrency with Elastic Kernels,” in Proceedings of the

Eighteenth International Conference on Architectural Support for

http://rosecompiler.org/
http://rosecompiler.org/


Programming Languages and Operating Systems, ser. ASPLOS ’13.

ACM, 2013, pp. 407–418.

[110] E. Sun, D. Schaa, R. Bagley, N. Rubin, and D. Kaeli, “Enabling

Task-level Scheduling on Heterogeneous Platforms,” in Proceedings

of the 5th Annual Workshop on General Purpose Processing with

Graphics Processing Units, ser. GPGPU-5. ACM, 2012, pp. 84–93.

[111] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge:

A Programming Model for Heterogeneous Multi-core Systems,” in

Proceedings of the 13th International Conference on Architectural

Support for Programming Languages and Operating Systems, ser.

SIGOPS ’08. ACM, 2008.

[112] H. Pan, B. Hindman, and K. Asanović, “Composing Parallel Soft-
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