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1 Introduction

Biological systems such as nucleic acid and proteins have been widely studied

in the past 50 years and will most likely continue to be a topic of interest in

the forefronts of natural science for many years to come. For such purpose,

computational modelling can provide useful information and help us un-

derstand biochemical mechanisms at molecular, atomic and even electronic

levels. The interaction between light and matter is one of the most inter-

esting phenomena in nature; such interaction can be considered responsible

of life on earth. Besides, light absorption, several photophysical or photo-

chemical deactivation mechanisms can compete depending on their relative

efficiencies [1]. The aim of this introduction is to provide an overview about

the photochemical concepts, theoretical methods and molecular systems that

have been studied.

1.1 The photochemical process

The purpose of this thesis is to investigate, through high-level computations,

some of the interesting photo-biochemical processes involved in biological

systems -such as retinal or DNA- in solvent. The investigated processes dis-

play an ultrafast decay from their excited states back to the ground state.

Novel computational techniques have been exploited in order to study the

mentioned systems. Such techniques allows determining the Franck-Condon

point following the steepest descent paths departing from it or from the real

crossing point. The techniques are based on the study of the system de-

cay from an excited-state to the ground-state through the so-called Conical

Intersection (CI) [2], which is a locus where ground-state and excited-state

potential layers cross. The idea that a conical intersection could play a key

role in the decay mechanisms for excited state reactions was first proposed

by Teller [3] more than 30 years ago. Before the decay mechanism through

the CI was recognized, radiationless decay was deemed to occur in the ex-

cited state at a minimum, where the ground state and excited state potential

surfaces are close to each other but do not cross. However, suchprocess could

7



8 Chapter 1

not account for the fast femtosecond decay experimentally ob- served. The

CI provides a fast decay path from an excited state to the ground one and

accounts for the femtosecond decay that characterizes such processes; in fact,

ultrafast radiationless decay is the main indicator of a mechanism involving

CI [4]. Existence of the CI has been experimentally verified and confirmed

by means of sophisticated instrumentation; moreover such decays have been

thoroughly characterized in terms of decay times, excited state lifetimes and

reaction triggering energies. Besides, quantum yield measurements provide

information concerning the possible ground state paths accessible from the

CI. Such experimental data can be rationalized according to suitable com-

putational models in order to provide a deeper insight in the mechanisms

underlying the photochemistry of diverse systems and to provide a better

understanding of the photochemical properties of such systems.

1.2 Hybrid QM/MM methods

Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations

are a viable method to investigate chemical reactions taking place in con-

densed phase [5]. According to such methods, the region where the in-

vestigated process occurs is studied at a suitable quantum mechanical (QM)

level while the environment surrounding that region is modelled as a molec-

ular mechanics (MM) force field. The boundary between the QM and MM

subsystems has to be treated carefully in order for the simulation to provide

sensible results. This approach is suitable for the study of broad systems

such as proteins, DNA and, more in general, solvated molecules. QM/MM

techniques will be discussed in greater detail later on in this thesis, moreover

QM/MM practical applications for simulating photobiological systems will

be also presented. In fact, we have performed QM/MM calculations for the

chemical systems described below in the solvent. Moreover, in the research

activity carried out in the Ph.D. activity underlying this thesis, algorithms

and software scripts have been developed and used to carry out QM/MM

computations.

1.3 The COBRAMM suite

COBRAMM (Computational Bridge between Ab-initio and Molecular me-

chanic) is a hybrid QM/MM calculations software acting as an interface

between different tools which execute the various simulation steps. One of

the aims of the experimental activity carried out was to locate the conical
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intersection (CI) of complex systems. To do that, the gradient projection

method has been used, which includes the effect of the MM atoms on the

structure and energy of the CI both implicitly via the one electron Hamil-

tonian (electrostatic embedding) and explicitly through the force on the

movable MM atoms. It has been implemented also a routine aimed at exe-

cuting the Intrinsic Reaction Coordinate (IRC) on QM/MM systems within

the COBRAMM package. Such scripts have been verified and validated on

the GMP system in solvent. A program for simulating transient spectra has

been implemented. The script describes the time-evolution of the oscillator

strengths for different state transitions as a superposition of Gaussian func-

tions. A first script fits the time-evolution of the oscillator strengths to a

time-sequence of Gaussian curves, for each possible state transition. Then,

another one provides a graphical representation of the produced spectra.

The program allows using several states for the simulation of the spectra.

1.4 Retinal

Many biological systems can and do interact with light. The study of pho-

toinduced reactions is valuable for the understanding of the biochemical

mechanisms that characterize such systems. Usually the interaction with

light occurs by means of proteins, whose reactivity is mainly due to the

non-proteic moiety of the cromophores that are responsible for light absorp-

tion and for the execution of the photochemical processes which characterize

the protein function. Processes such as photoisomerization of the retinal cro-

mophores, which induce the conformational changes that are at the basis of

the activity of rhodopsin proteins, involve conjugated π-systems. The pro-

cess of vision, which involves the transduction of the light impinging the eye

into neural signals that carry visual information to the brain where they are

processed is one of such processes, and in particular one that everybody is

familiar with. Light is first collected by the eye front lens (the crystalline

lens), which focusses the photon beam on the retina. The retina consists of

a large number of photoreceptors, which are cells that are capable of trans-

ducing relative light intensities into neurochemical signals. In particular,

the photoreceptor outer segments absorb light thanks to chromophores that

are covalently bound to an opsin, which is a single peptide transmembrane

protein. Rhodopsin is a photoreceptor protein which is extremely sensitive

to light, and it is the pigment that is involved in the scotopic vision. It is

located in the rod outer segment and is characterized by a peak absorption

wavelength at about 500nm. Since it is easily prepared, rhodopsin has been

widely studied. The chromophore of rhodopsin is the 11-cis-retinal, which
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forms rhodopsin when bonded to opsin, which alone would not absorb light

in the visible spectrum. When the cis-retinal absorbs a photon in the visible

spectrum, it can isomerize to all-trans-retinal. As a consequence the shape

of the molecule changes.

Figure 1.1: Scheme summarizing the phototransduction process. The central part of the
figure depicts how a photopigment is embedded within a disk membrane of a photoreceptor
outer segment. The filled yellow circle is a lysine which it is attached to the retinal cro-
mophore. The absorption of a photon may cause the chromophore to change from the
11-cis form to the all trans form as shown by the chemical reaction. This conformational
change in the chromophore causes a change in the shape of the opsin molecule. The
opsin change in shape changes it from an inactive to an activated enzyme, and thus light
absorption is transduced into a biochemical signal within a photoreceptor.

Bacteriorhodopsin (bR) is an integral membrane protein usually found

in two-dimensional crystalline patches known as purple membrane, which

can occupy up to nearly 50% of the surface area of the archaeal cell. It is

the retinal molecule inside bR that changes its conformation when absorbing

a photon, resulting in a conformational change of the surrounding protein

and the proton pumping action.

Understanding the fundamental intrinsic photophysical and photochem-

ical properties of retinal chromophores and environmental effects of the sur-

roundings (proteins, solvent, organic and inorganic supports,etc.) is crucial

for the design of tailored photosensitive devices. The discrepancy between

solution and protein behavior has been largely attributed to the complex-

ity of the protein pocket with its three-dimensional arrangement of amino

acids resulting in a unique steric and dielectric environment [6, 7]. The

tunability of the absorption spectra, isomerization yield, and reaction speed

make RPSB an bR the ideal candidate for investigations aimed at disclos-
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Figure 1.2: The absorption of a photon may cause the chromophore to change from the
all-trans-retinal to the 13-cis-retinal. The retinal is covalently linked to Lys216 in the chro-
mophore by Schiff base action. After photoisomerization of the retinal molecule, Asp85
becomes a proton acceptor of the donor proton from the retinal molecule. This releases a
proton from a ”holding site” into the extracellular side (EC) of the membrane. Reprotonation
of the retinal molecule by Asp96 restores its original isomerized form.

ing the molecular and structural origins of efficient photochemistry [6, 7,

8, 9, 10, 11, 12, 13, 14, 15]. As a consequence, RPSB and bR has become

a paradigm for understanding the origins of activation and suppression of

ultrafast relaxation processes, which is essential for the rational engineering

of photoreactivity.

1.5 DNA

Deoxyribonucleic acid (DNA), the hereditary basis of the genetic identity

of life, has always been a major topic of discussions since its structure was

discovered in 1953. The genomic material and the mechanisms that pro-

cess the disposal of the excess energy attained upon UV-light irradiation

are of paramount importance from both biomedical and biotechnological

standpoints. The initially populated excited states and their fate along the

distinct deactivation routes present in the DNA/RNA double helix chains

relate simultaneously to the intrinsic photostability of the genomic material

[16, 17], as well as to the damaging photo-reactions that ultimately yield

mutations and single and double-strand breaks that have been associated to

increasingly occurring diseases like skin cancer [18, 19, 20]. Besides the bi-

ological relevance, the intricate photophysical properties of nucleobases can

be also exploited to design optical photoresponsive nanodevices (among a

long list of prospective applications [21]), yet it is their biological relevance

that drags our attention. From a biophysical and chemical point of view,

knowledge of the fundamental properties of the deactivation processes, in-

cluding the associated underlying molecular motions, is essential to rational-

ize the intrinsic photostability of the genomic material and to characterize
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the aforementioned routes leading to detrimental photochemical reactions

[18]. A proper characterization of monomeric chromophores is therefore es-

sential to understand the photoinduced events occurring in DNA/RNA from

a bottom-up approach that can yield definitive answers regarding their role

in photostability and photodamage [22]. In this thesis we focus on water-

Figure 1.3: Schematic representation of the DNA structure

solvated guanine monophosphate (GMP) an on Cytdine (Cyt), two of the

canonical DNA/RNA nucleobases. GMP has also been recently proposed as

an interesting compound for nanotechnological applications due to its out-

standing self-assembly capabilities [23], especially in its quadruplex form,

which has even been located in DNA/RNA chains [24]. Whereas guanine

in vacuum has been extensively studied at a high-level multireference ab

initio level [25, 26], in the present work a theoretical assessment of the deac-

tivation routes embodying the main photophysical and photochemical fea-

tures of GMP by employing high-level ab initio multireference perturbation

theory methods coupled with a quantum-mechanical/molecular mechanics

(QM/MM) approach is proposed, in order to ascertain the role of the envi-

ronmental perturbations in these type of systems as they remain relatively

unknown [26, 27]. For what concern cytidine, formed by a cytosine at-

tached to a ribose ring and component of RNA, is here presented only an

initial study. Further knowledge on the environmental effects affecting the

photoprocesses occur- ring in the DNA/RNA chromophores upon UV-light

irradiation will provide essential information that can be properly referred

to water-solvated DNA/RNA systems such as those found in cells.



2 QM, MM and hybrid QM/MM
methods: essential concepts and
techniques

2.1 Introduction

This chapter briefly overviews the basic concepts that are the basis of the

quantum mechanics. Unlike classical mechanics where quantities can vary

continuously, in systems obeying quantum mechanics quantities can have

only some well-defined discrete values: they are quantized. The development

of quantum mechanical theories was promoted by the apparent inconsistency

of the experimental results obtained when studying microscopic systems and

those predicted using the classical mechanics models that had been devel-

oped to account for macroscopic systems behaviour. Quantum mechanics is

based on the postulate of the existence of a wave function Ψ for any system

and of operators that, applied to Ψ, yield the observable properties of such

system [28]. Let ϑ be an operator and e a scalar value of a system property,

then the concept can be expressed as:

ϑΨ = eΨ (2.1)

where in general Ψ is a (1xn) column vector, ϑ is a (nxn) matrix, and the

following constraint must be met: |Ψ∗Ψ| must have unit probability density.

According to matrix algebra, ϑ is an Eigenfunction and e is an Eigenvalue

of the equation. Very roughly speaking, according to this approach Ψ is

much like a system status database from which individual property values

can be obtained by applying the appropriate operator. For example if the

Hamiltonian operator H is used for ϑ, then the system energy E is returned,

and the resulting equation is the Schroedinger equation 2.2.

HΨ = EΨ (2.2)

The Hamiltonian operator takes into account a number of contributions to

the total energy depending on the structure of the system itself (e.g. an

13
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atom, a molecule, etc...) and the interactions with the surroundings it is

subjected to. In the case of molecules, the Hamiltonian operator accounts

for no less than five different contributions that include the kinetic compo-

nents, the attraction between the nuclei and electrons, and energies related

to interactions among atoms. Other terms may add in the case the observed

system is subjected to external electric and/or magnetic fields . In general

for a given molecular system the wave function is not easily expressed due to

the interaction between the movements of the particles which influence each

other. The analysis of such systems can be greatly simplified by taking into

account the fact that the nuclei move much slower than the electrons. So it is

practical to consider the nuclei at a fixed position when computing electronic

energies. This approximation is known as the Born-Oppenheimer approxi-

mation, and it simplifies expressing the Hamiltonian in that the internuclear

potential energy term becomes a constant for the geometry and the correla-

tion terms in the electrons-to-nucleus potential energies are eliminated: the

Schroedinger equation becomes an electronic Schroedinger equation, whose

Eigenvalue is the electronic energy. Such approximation holds true in most

applications, and the relevant equation is equation n 2.3.

(Helectronic + VN ) Ψelectronic = EelectronicΨelectronic (2.3)

In such equation the term VN is the inter-nuclear potential energy term,

which is a geometry-dependent constant. Due to the invariance of the wave

function to constant values, equation 2.3 can be solved neglecting VN , thus

obtaining the so-called pure electronic energy and then adding the neglected

term to obtain the electronic energy. Moreover, equation 2.2 may have

many Eigenfunctions Ψi, each returning an energy Eigenvalue Ei. Such Ψi

constitute a set of wave functions. One assumption that can be made is that

such functions Ψi are orthonormal, i.e. equation 2.4 holds true:∫
ΨiΨjdr = δij (2.4)

where δij is equal to one if and only if i = j else it is equal to zero. So

considering equation 2.2 for the wave function Ψi , by multiplying both its

right- and left-hand sides times Ψi and integrating them in dr, applying

equation 2.4 we obtain equation 2.5.∫
ΨiHΨidr = Ei

∫
ΨiΨidr = Eiδii = Ei (2.5)

that provides a method for computing molecular energy given a wave func-

tion. Given an orthonormal set of wave functions Ψi, a generic wave function
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can be expressed as a linear combination of these, as expressed in equation

2.6.

Φ =
∑

ciΨi (2.6)

As a consequence of applying the condition expressed by equation 2.5 to a

wave function Φ in the form of equation 2.6, the energy associated to the

wave function Φ is a linear combination of the energies Ei associated to the

single orthonormal set of wave functions Ψi according to equation 2.7.

EΦ =

∫
ΦHΦdr =

∑
i

ci
2Ei (2.7)

The quantum mechanical assumption that quantities can assume only dis-

crete values implies that among the energies Ei of the orthonormal set of

wave functions Ψi there will exist one (or more than one) that is minimal.

That value, labeled E0, is the energy associated to the ”ground state” of the

system, i.e. the state of the system at its lowest energy state which is a con-

dition towards which systems tend at rest. Thus, assuming an orthonormal

set of wave functions, equation 2.8 holds:

EΦ =

∫
ΦHΦdr ≥ E0 (2.8)

If the basis set is not orthonormal, an analogous principle holds thus a lowest

energy bound still corresponding to the ground state can again be found.

In this case however the non orthonormality of the basis set must be taken

into account, therefore the expression of the energy EΦ in equation 2.8 must

take into account the fact that the basis set is no longer orthonormal. This

leads to the energy form of equation 2.9:

EΦ =

∫
ΦHΦdr∫

Φ2dr
. (2.9)

It can be easily observed how equation 2.9 is obtained simply by reorganizing

the first two members of equation 2.5 and that the energy term in equation

2.8 is obtained from equation 2.9 when the denominator of the latter is equal

to 1 (which is the orthonormality condition). So, for the purpose of choosing

(or iteratively adjusting) a basis set suitable to constructing a wave function

as in equation 2.6, the figure of merit of the currently chosen basis set is the

magnitude of its associated Ei values, and accordingly also of E0. Such en-

ergy magnitudes should be minimized. According to the Born-Oppenheimer

approximation, nuclei can be considered to be occupying fixed positions if

compared to electrons, so that electronic wave functions can be considered

instead of atomic and molecular system wave functions. For such systems
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the Schroedinger equation simplifies to that shown as equation 2.3. Further

simplification can be attained considering electronic wave functions for sys-

tems where there is only one nucleus and one electron: in such case each

wave function describes an atomic orbital, and the associated pure electron

energy is the magnitude of the energy of the electron when it is in that

atomic orbital. Due to the possibility of neglecting the electron-to-electron

interaction in the Hamiltonian associated to the single electron Schoedinger

function, it is useful to use as basis set for equation 2.6 a set of single electron

atomic orbitals to build more complex molecular orbitals. This principle is

the Linear-combination of atomic orbitals, (LCAO) technique. Considering

the Ψi wave function in equation 2.6 as atomic orbitals, then the construc-

tion of any wave function Φ =
∑
ciΨi (whose quality is described by the

aforementioned figure of merit) requires determining the ci coefficients that

minimize the energies of any linear combination of the chosen atomic or-

bitals. This involves computing the partial derivatives of the energy (in the

form of equation 2.9) with respect to ci ∀i ∈ [1, N ] and equating them to

zero. By substituting equation 2.6 into equation 2.9 two integral terms can

be identified in the resulting expression. One is called the resonance integral

expressed in equation 2.10

Hij =

∫
ΨiHΨjdr (2.10)

and the other is called overlap integral, which quantitatively describes the

spatial overlap of given couples of basis functions. Its expression is as in

equation 2.11.

Sij =

∫
ΨiΨjdr (2.11)

With this formalism, the equation that must be solved to find the ci set that

minimize energy is equation 2.12.

N∑
i=1

ci (Hji − ESji ) = 0 (2.12)

To ensure that the set of the aforementioned derivatives has nontrivial

solution, its characteristic (also known as secular) equation must be satisfied.

Such condition is displayed in equation 2.13.∣∣∣∣∣∣∣∣∣∣
H11 − ES11 H12 − ES12 · · · H1N − ES1N

H21 − ES21 H22 − ES22 · · · H2N − ES2N
...

...
. . . · · ·

HN1 − ESN1 HN2 − ESN2 · · · HNN − ESNN

∣∣∣∣∣∣∣∣∣∣
= 0 (2.13)
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The solution of equation 2.13 returns N eigenvalues E, which - used in the

energy minimization equation 2.12 - allows obtaining the basis set coeffi-

cients ci that characterize the considered molecular orbital. The discussion

carried on so far concerning a one-electron system can be extended to a

multi-electron system by assuming that the energy associated to the latter

is equal to the sum of the energies of the occupied one-electron molecular

orbitals, each being characterized by its Hamiltonian hi expressed as per

equation 2.14, where M is the number of the nuclei of the system and where

the interelectronic repulsion term has been neglected.

hi = − ~
2me
∇2
i −

M∑
k=1

e2Zk
rik

(2.14)

The multi-electron Hamiltonian may then be expressed as per equation 2.15

i.e. as the sum of the one-electron Hamiltonians outlined so far.

H =

N∑
i=1

hi (2.15)

Each hi, applied to a one-electron wave function ψi will return the energy εi
associated to that wave function, i.e. the one-electron Schroedinger equation

2.16 holds.

hiψi = εiψi (2.16)

Note that the one-electron ψi are not known. It can be demonstrated that

the multi-electron wave function can be constructed as the product of the

one-electron wave functions (Hartree-product) and that the respective overall

energy is the sum of the one-electron energies, as shown in equation 2.17{
ΨHP =

∏N
i=1 ψi

EHP =
∑N

i=1 εi
(2.17)

The construction of the Hartree-product wave function requires knowledge

of the individual ψi one-electron wave functions, which are actually not

known. One possibility is to undertake an iterative process based on an

initial-guess ψi set, which is used to compute the hi operators to use in the

one-electron Schroedinger equation. The solution to such equation provides

a new set of ψi. The process outlined so far is iterated until the difference

between two subsequent sets of hi is below an acceptance threshold. Such

process is called self-consistent field (or SCF ) method[29]. A wave function

as expressed by 2.17 does not satisfy the Pauli exclusion principle according

to which any molecular orbital can be populated with two electron having
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opposite spin number. Let α be the spin quantum number, a multi-electron

wave function that satisfies the Pauli exclusion principle can be expressed

as a Slater determinant [30] (equation 2.18).

ΨSD =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1 (1)α (1) ψ2 (1)α (1) · · · ψN (1)α (1)

ψ1 (2)α (2) ψ2 (2)α (2) · · · ψN (2)α (2)
...

...
. . . · · ·

ψ1 (N)α (N) ψ2 (N)α (N) · · · ψN (N)α (N)

∣∣∣∣∣∣∣∣∣∣
(2.18)

2.2 The Hartree-Fock SCF method

The Hartree-Fock SCF method is an iterative method for finding molecular

orbitals according to the multi-electron wave function theory outlined so far.

Therefore Hartree-Fock molecular orbitals can be found as Eigenfunctions

of a set of one-electron operators, but in this case in the electronic repulsion

effects are taken into account. The one-electron Fock operator can be defined

for the i− th electron as expressed in equation 2.19:

fi = −1

2
∇2
i −

nuclei∑
k

Zk
rik

+ V HF
i {j} (2.19)

where the first term is related to the one-electron kinetic energy, the second

term is the nuclear attraction contribution and finally V HF
i is the Hartree-

Fock potential. In order to determine the molecular orbitals, the method

requires the availability of N basis functions and solving the secular equation

2.20 for E, the values of Fij and Sij being computed explicitly [31, 32].∣∣∣∣∣∣∣∣∣∣
F11 − ES11 F12 − ES12 · · · F1N − ES1N

F21 − ES21 F22 − ES22 · · · F2N − ES2N
...

...
. . . · · ·

FN1 − ESN1 FN2 − ESN2 · · · FNN − ESNN

∣∣∣∣∣∣∣∣∣∣
= 0 (2.20)

The Sij elements are overlap integrals, analogous to those previously ex-

pressed by equation 2.11. The F elements depend on both the chosen basis

set and the molecular orbitals. Given the couple of basis functions µ and ν,

Fµν is computed as in equation 2.21.

Fµν =

〈
µ

∣∣∣∣−1

2
∇2

∣∣∣∣ ν〉−∑
k

Zk

〈
µ

∣∣∣∣ 1

rk

∣∣∣∣ ν〉+
∑
λσ

Pλσ

[
(µν|λσ)− 1

2
(µλ|νσ)

]
,

(2.21)
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where the first and second term of equation 2.21 consist in one-electron

integrals as expressed by 2.22:

〈µ |g| ν〉 =

∫
φµ (gφν)dr (2.22)

and the third term involves the exchange integrals in the form expressed by

equation 2.23:

(µν|λσ) =

∫ ∫
φµ (1)φν (1)

1

r12
φλ (2)φσ (2)dr (1) dr (2) (2.23)

where φµ, φν , φλ and φσ are electron probability densities. The term Pλσ in

equation 2.21 accounts for the contributions of base functions to a molecular

orbitals.

2.3 Configuration interaction

In order to account for interaction between electrons in a multi-electron

system the Configuration Interaction (CI) and the Moeller-Plesset (MP) [33]

methods have been developed. Both methods rely on the Hartree-Fock wave

reference function and add a correction term which is computed according

to the variational principle in the case CI method and on the perturbation

theory in the case of the Moeller-Plesset [33] method. In the case of the

Configuration Interaction, a basis set consisting of Slater determinants is

linearly combined to obtain multi electron wave functions. Coefficients for

such linear combination are the Hartree-Fock coefficients. The ground state

wave function can be expressed on the basis of the determinants of the

ground state and all the possible electronic excitations as:

Ψ =
∑
L

cLφL. (2.24)

The relevant Schroedinger equation is:∑
L

cLI〈φK |Ĥ|φL〉 = E
∑
L

cLI〈φL|φL〉. (2.25)

The Slater determinants constitute an orthonormal basis set and the overlap

matrix between the various Slater determinants is 〈φL|φL〉 = δKL. Rewrit-

ing Eq. 2.25 in a more compact fashion we obtain the usual Schroedinger

equation:

HC1 = EC1, (2.26)

where the C1 coefficients weigh the contribution of each Slater determi-

nants. Among them ,the C11 coefficient is associated to the aforementioned
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Hartree-Fock reference wave function and the remaining are associated to

the excited state determinants and are the correction terms that character-

ize the technique. The procedure outlined would return the value of the

exact non relativistic energy associated to a system that satisfies the Born-

Oppenheimer approximation, but it is impractical in that it requires an in-

finite basis set. To overcome this issue, one possibility would be to exploit

a non-complete basis set consisiting of a finite set of spinorbitals and then

diagonalize the obtained Hamiltonian. Such technique is the Full CI and

returns the exact solution, but still requires an impractically large basis set.

In practice the basis set used is truncated and limited in size, and purposely

restricted only to the wave functions pertaining to a given excitation type,

such as the single excitation (CIS), or double excitation (CID) or both sin-

gle and double excitation terms (CISD). From a performance standpoint the

CIS method is fast but characterized by poor accuracy, while CISD is better

but much more demanding in terms of CPU performance. Equation 2.26

can be solved for any of the Eigenvalues each one representing the energy of

an excited state.

2.4 Multiconfigurational self consistent field

The methods outlined in section 2.3 are based on a linear combination of

Hartree-Fock wavefunctions, with the drawback of requiring a large num-

ber of terms to obtain satisfactory results. This in turn implies a heavy

CPU usage and long convergence time. The multiconfigurational self con-

sistent field (MCSCF) [34] method overcomes such limitations that render

such methods impractical by optimizing both the CI coefficients and the

orbitals coefficients. This allows using a limited number of wave functions

as linear combination terms thus limiting the CPU usage and convergence

time. Several techniques can be exploited to carry out the MCSCF method.

The most straightforward one optimizes the CI coefficients and the orbitals

coefficients separately. The CI coefficients can be optimized as per equation

2.26 using the procedure outline in section 2.3. The molecular orbitals coef-

ficients optimization is done through a unitary transformation of the orbitals

coefficients. Let Φ be an orthonormal basis set of orbitals and U the unitary

transformation matrix that, applied to the basis set gives the transformed

orbitals.

Φ′ = UΦ (2.27)
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where U can be constructed as:

U = eA =

 eA11 · · · eA1n

...
. . .

...

eAn1 · · · eAnn

 . (2.28)

that is based on a matrix (A) that is a skew-symmetric (AT = −A) in

order to ensure that U is unitary. Therefore A can be expressed as a linear

combination of Eij matrices the elements of which are equal to 1 only at

the i− th row and j− th column, whereas the other elements are zero. This

allows rewriting equation 2.28 as:

U = e
∑
ij AijEij (2.29)

For what concerns the wave functions, an analogous transformation is ap-

plied:.

|Ψ′〉 = eA|Ψ〉 (2.30)

having energy E′ as per equation 2.31.

E′ = 〈Ψ′|H|Ψ〉 = 〈eAΨ|H|eAΨ〉. (2.31)

Such equation can be rewritten in the form of a Taylor expansion truncated

to the second-order derivative term as shown in equation 2.32.

E′ = E0 +
∑
ij

Aij

(
∂E

∂Aij

)
0

+
1

2

∑
ijkl

AijAkl

(
∂2E

∂Aij∂Akl

)
(2.32)

The same equation can in turn be expressed in matrix form, assuming that

A is a column vector containing the parameters and defining F as a row

vector containing the first- order derivatives of the energies with respect to

the skew-symmetric matrix elements, and defining G as the energy second-

order derivatives. According to such assumptions, equation 2.32 can be

expressed as:

E′ = E0 + FA+
1

2
ATGA (2.33)

The E′ energy can be minimized if ∂Eâ
∂A = 0 that is true if F + GA = 0.

That is:

A = −G−1F (2.34)

Since, according to equation 2.27, U = eA we can obtain U again as a Taylor

expansion of the matrix exponential truncated to the second order term:

U = 1 +A+
1

2
A2 (2.35)
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the results of such sum of matrices, in the case A is skew-symmetric as this

case, has the same form a rotation matrix has. This means that the orbitals

optimization process is carried out by means of rotations which are iterated

until convergence. Simulation softwares often implement the Complete Ac-

tive Space Self Consistent Field, CASSCF or the Restricted Active Space Self

Consistent Field, RASSCF, both of them considering excitation as taking

place only between a defined number of orbitals. According to such methods

the orbitals are subdivided into three groups: the core orbitals group, which

is treated as a set of Hartree-Fock wave functions, the group of the occupied

and empty active orbitals, where excitations are considered explicitly and

eventually the virtual orbitals, treated as empty Hartree-Fock wave func-

tions. These two methods display significant differences in the excitations

that are introduced. In particular in the CASSCF case all the possible ex-

citations are taken into account. On the contrary, in the RASSCF case the

excitations can be selected and the active space is further subdivided into

three sections Section RAS1 contains occupied orbitals where only a defined

number of electron can be excited. This is similar to a truncated CI. Section

RAS2 contains both occupied and empty orbitals processed with CASSCF

technique. Section RAS3 are orbitals that are empty and can be occupied

only by a defined number of electrons. The choice of the orbitals basis set for

simulation has to be done taking into account the fact that the CPU usage

dramatically increases with the number of the active orbitals introduced, so

the use of the optimum basis set is not always viable. Therefore experience

and intuition are an asset in the choice of a suitable limited set of active

orbitals.

2.5 The CASPT2 method

The CASPT2 method is a post MCSCF method which allows computing

the correlation energy of the rest of the system after the active part of the

system has been treated with MCSCF. CASPT2 method [34] is based on

correcting the wave functions applying the perturbation theory. Given a

CASSCF wave function, the 2nd order perturbation can be written on the

basis of the i−th perturbation Hamiltonians Ĥi and the perturbation weight

λ:

Ĥ = Ĥ0 + λĤ1. (2.36)
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The energies can be expressed in a similar fashion:

E0 = 〈Ψ0|Ĥ0|Ψ0〉
E1 = 〈Ψ0|Ĥ1|Ψ0〉
E2 = 〈Ψ0|Ĥ1|Ψ1〉

(2.37)

In equation 2.37 the orthogonality is implied between the 0− th order wave

function and the perturbation. The Ĥ0 term is the F̂ Fock operator and

since the CASSCF wave function is invariant with respect to rotations in

the core, active and virtual orbitals, the Fock operator can be expressed as

a superposition of diagonal subsetes fi:

Ĥ0 = F̂ = fcc + faa + fvv + fac + fvc + fva (2.38)

in which the subscript c refers to core, a refers to active and v refers to

virtual orbital spaces.The Hamiltonian of the perturbation is the difference

between the whole Hamiltonian and Ĥ0 so that the wave function must

be corrected by a term Ψ1 that is the linear combination of the remaining

configurations φµ in the CI space, i.e. except those of the active space. From

a mathematical point of view:

Ψ1 =
∑
µ

Cµφµ (2.39)

where the Cµ are the linear combination coefficients:

Cµ = −〈φµ|Ĥ1|Ψ0〉
Eµ − E0

. (2.40)

From the CPU burden standpoint the CASPT2 is very demanding.

2.6 Molecular mechanics basics

Molecular mechanics is a method for the modeling of molecular systems

(either small or large) using classical mechanics. Unlike quantum chem-

ical models (where no reference is made to chemical bonding), molecular

mechanics describes molecules in terms of bonded atoms, which have been

distorted from some idealized geometry due to nonbonded van der Waals and

Coulombic interactions [35, 36]. This concept is reflected in the molecular

mechanics molecule energy which is a strain energy represented as a sum of

terms which are contributions caused by deviations from ideal conditions in

terms of bond distances, bond angles, torsion angles, along with contribu-

tions due to non-bonded (van der Waals and Coulombic) interactions. Force
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fields, sets consisting of a functional form and a group of parameters, are

used to compute the potential energy of the systems. Such force fields can be

obtained either from experiments or by quantum-mechanical simulations or

can even be guessed; their quality and derivation can be suitable for energy

but not for geometry, for example, or vice versa. Anyway, the system has

to be defined in terms of the atom types and their hybridization, and bond

location and types have to be guessed. The molecular mechanics molecule

energy can be expressed as in the following equation 2.41 :

Estrain =
∑
bonds

1

2
Kb (b− beq)2 +

∑
angles

1

2
Kϑ (ϑ− ϑeq)2 +

+
∑

dihedrals

Kφ[1 + cos (nφ− δ)] +

+
∑

non−bonded

[
Aij
R12
ij

− Bij
R6
ij

+
qiqj
εRij

]
+

+
∑

H−bonded

[
Cij
R12
ij

− Dij

R10
ij

]
(2.41)

where the first term accounts for the bond lengths, with force constants

Kb that are specific to the atom-type pair considered; the second term ac-

counts for the bond-angle bending and is characterized by the force constant

Kϑ . The first two terms display a quadratic dependency to distances and

angles, respectively. The third term describe the torsion potential with the

dihedral angle φ; its functional form reflects its inherent periodicity. The

fourth one is related to non-bonded interactions (van der Waals contribution

plus dispersion energy and the electrostatic term); eventually, the fifth term

accounts for bonded interactions such as hydrogen bondings, π−conjugation

or anomeric effects, etc.. Generally speaking, the first three terms tend to

zero for unstrained and unhindered molecules. The fourth term can attain

negative values especially if the molecule is a globular one characterized by

a large amount of non-bonded attractive terms. The outlined technique has

both advantages and drawbacks. Among the pros are certainly the fact that

it can tackle large molecules and simple energy functions are quickly solved,

and often returns reliable results for what concerns the van der Waals in-

teractions at non-bonded distances for larger molecules, and for computing

vibrational properties. Among the cons are the non-uniqueness of the func-

tional forms, often proprietary to the make of the simulation tool and that it

cannot tackle unusual or unpredicted bondings or interactions since bonding

information has to be passed as a known information.
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2.7 QM/MM hybrid methods

The understanding of the role of biomolecules (polypeptides, enzymes, nu-

cleic acids) usually requires the knowledge of their electronic structure, of

their geometry, and often of their reactivity. This knowledge can only be

reached by means of quantum chemical computations. The main challenge,

from a quantum chemistâs point of view, is their size: often thousands of

atoms and their treatments by means of standard quantum chemical codes

are still unrealistic. The knowledge of the electronic properties of the whole

molecule is not always required to understand the chemical behavior of a

large molecular system. The chemically interesting part can be a solute in a

solution, a local defect, the active site of an enzyme, or a local chromophore.

The rest of the system cannot be discarded, as it interacts with the center of

interest by means of mechanical constraints, electrostatic, and induction in-

teractions. The simplest idea is to perform an embedding of the interesting

chemical part into its surroundings treated by means of a less demanding

method, that is, molecular mechanics. This gives rise to a family of treat-

ments known under the generic name of Quantum Mechanical/Molecular

Mechanical (QM/MM) methods. MM (Molecular Mechanics) methods are

computational techniques aimed at the study of large molecular systems.

Such techniques are based on the assumption that atoms are as rigid as

charged spheres, bonded to each other. Bonds, angle bendings and torsions

are described in terms of harmonic potentials , unbonded interactions are

described as charge dipoles. Such methods are computationally fast but can-

not model chemical reactions since the latter imply a change in the structure

of the system. On the contrary, QM (Quantum Mechanics) are based on the

calculation of electronic wave functions, therefore they are able to handle

and describe system changes as those occurring in chemical reactions. QM

techniques are however computationally demanding, moreover they are not

suitable to study very large systems. Hybrid QM/MM methods [37, 38, 39,

40, 41]have been developed recently to overcome the drawbacks of the previ-

ously mentioned methods. It is based on the subdivision of the whole system

into two smaller subsystems: the part containing the atoms involved in the

reaction, and the remaining atoms which constitute the larger environment

surrounding the reaction. The former is treated by means of QM methods,

while the latter is treated at MM level. The boundary region between the

two is very critical in obtaining sensible results under a physical point of

view [40, 38, 42].

COBRAMM (Computational Bridge between Ab-initio and Molecular

mechanic) is a software that has been developed at the Department of Chem-
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Figure 2.1: Schematic representation of the hybrid QM/MM approach.

istry at the University of Bologna to perform hybrid QM/MM calculations.

Such program is a modular system that acts as an interface between different

programs that execute single phases of the whole calcula- tion and exchange

data by means of the interface itself. The used programs can be chosen to

tailor the computational steps to the requirements of the specific computa-

tional process required. This way the most efficient software tools can be

chosen and run together to return the results. QM and MM calculations

are performed separately and the respective results are processed together

to return the QM/MM energies and the complete force sets. Such data are

then used to generate a new geometry. In doing this, the system is subdi-

vided into two independent regions: one is the external one (Opt1 ) which is

handled by a fast but rough algorithm; the other is smaller and it is called

Opt2/MD and includes the QM region, which is treated using sophisticated

algorithms such as BFGS [43]. In the case the QM and Opt2/MD regions

coincide, then the system is partitioned in the high and low layer, the first

one being treated at QM level using accurate algorithms and the second one

being treated at MM level with fast optimization algorithms. On the con-

trary, if the QM region does not coincide with the Opt2/MD region, then

an intermediate layer, called medium layer is included and consists of MM

atoms that undergo accurate geometry optimizations or MD along with QM

atoms. This layer is treated at QM level, and it improves the simulation of

the electrostatic interaction between the QM and MM regions. The Electro-

static Embedding approach [38, 44, 39, 41] is used to model the electrostatic

influence of the MM region to the QM layer. Several type of calculations are

currently supported and allow tailoring the calculation to the requirements

dictated by the investigated system. COBRAMM uses one to three of the

mentioned layers according to the selected calculation type. For example the

HML calculation uses the low, medium and high layers, the HM uses the

high and the medium, and so on. The boundary region is handled by means

of the atom-link approach. This is useful in the cases where at least one
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covalent bond crosses the QM/MM boundary. Such crossing implies that

the valence orbitals of the QM atom whose bond is cut remains unfilled: the

obtained QM structure is called model. The atom-link approach fills such

vacancy by adding an hydrogen atom as link-atom in the QM region as a

bridge between the latter and the MM region. The structure thus obtained

is called model-H and allows performing the QM calculation. Such approach

is widely adopted and gives good results even though artifacts might be ob-

tained, since the H atoms actually alter the structure of the system and the

MM point charge distribution at the boundary has to be altered accord-

ingly. In order to avoid that, the position of the hydrogen atom-links are

moved each step in a position which is related to the position of the QM and

MM atoms whose bond crossed the boundary but keeping fixed the distance

of the H atom with respect to the position of the mentioned QM frontier

atoms. As far as the non-bonding cross terms are concerned, the Van der

Waals terms are treated at MM level whereas the electrostatic interactions

across the regions are treated at QM level using an Electrostatic Embed-

ding scheme according to which the QM computations are carried out on

the model-H surrounded by atomic point charges of the MM layers (the emb

charges). Instead, Pod point charges are the unmodified point charges from

the MM force field. Differences between the emb and pod sets are limited

to the boundary region.Charge distribution in the emb scheme is arranged

so that the charge associated to the MM atoms bonded to the atom-link

hydrogens are zero since such charge is assumed to be redistributed towards

the inner atoms so to preserve the total charge of the system. The total

energy of the QM/MM system can be expressed basically as the sum of the

QM and MM contributions according to a subtractive scheme [39].

Etot = Emodel−HQM +ErealMM +E
elmodel−H/emb
QM −Eelmodel/podMM −Emodel−HMM (2.42)

In equation 2.42 the first and third term are computed at QM level, the

first one being the QM energy of the model-H in vacuum, and the third

term describes the electrostatic interaction between the model-H and the

emb subsystem. This ensures the wave function will be perturbed by the

MM charges so that the QM subsystem is polarized by the MM environment.

The remaining terms of equation 2.42 are MM energies. Their contribution

can be rewritten as:

EMM = EpodMM + E
V dWmodel/pod

MM + E
bond,bending,torsionmodel/pod
MM (2.43)

where the first term are the real MM atoms, while the latter two are the

contributions both from the MM and QM atoms that are treated at MM
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level. The assumptions behind the overall QM/MM energy scheme reported

is that the atom-link is an hydrogen atom and that charge redistribution has

been taken into account as previously described. In order to perform the

computation outlined so far COBRAMM can interface to commercial pack-

ages for QM and MM calculations including MOLCAS55, Gaussian03 [45],

and others for the QM part; Amber [46] and Tinker [47] for the MM part.

COBRAMM not only interfaces to the third-party QM and MM packages ac-

cording to the required calculation configuration but also gathers data from

the the results to return the total energy and gradient for the current step

and eventually call an external application for geometry optimization or for

molecular dynamics to produce the geometry for the subsequent step until

the convergence criterion has been met. Figure 2.2 displays a COBRAMM

computation flow chart [48].

The computation of the second-derivative allows evaluating the curva-

ture of the Potential-Energy Surface or the zero-point energy or other quan-

tities. The Hessian matrix is computed by means of numerical techniques

based on the energy evaluation and first derivative calculation around the

point of interest in the PES, keeping unattached the QM wave function when

only MM atoms are moving in order to decrease the CPU burden.
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Figure 2.2: COBRAMM workflow



30 Chapter 2



3 Potential energy surfaces and op-
timization techniques: station-
ary points, reaction paths and
conical intersections

The potential energy surface (PES) is a central concept in computational

chemistry. A PES is the relationship (mathematical or graphical) between

the energy of a molecule (or a collection of molecules) and its geometry. The

Born-Oppenheimer approximation says that in a molecule the nuclei are

essentially stationary compared to the electrons. This is one of the corner-

stones of computational chemistry because it makes the concept of molecular

shape (geometry) meaningful, makes possible the concept of a PES, and sim-

plifies the application of the Schroedinger equation to molecules by allowing

us to focus on the electronic energy and add in the nuclear repulsion energy

later. Potential energy surfaces are important because they aid us in vi-

sualizing and understanding the relationship between potential energy and

molecular geometry (and in understanding how computational chemistry

programs locate and characterize structures). The identification of station-

ary points on the potential energy surface (PES), which have a chemical

meaning, remain a troublesome issue [49, 50]. Two are the most important

reasons of this difficulty: first is due to the big number of internal coordinates

of molecules (6N−6 where N is the number of atoms), second the algorithms

often fail locating minima and most often fail locating transition states (TS).

If we are interested to study excited electronic states we have also to consider

the possibility of a crossings between states, such region are called conical

intersection, in the second part of the chapter summarize their the most

important properties.

3.1 Stationary points

For a thermally activated reaction, the energy of the TS and the shape of the

potential energy surface around the TS can be used to estimate the reaction

rate (see other reviews in this series). The steepest descent reaction path

31



32 Chapter 3

(SDP) from the TS down to the reactants and to the products is termed

the minimum energy path (MEP) or the intrinsic reaction coordinate (IRC;

the MEP in mass-weighted coordinates). The reaction path from reactants

through intermediates (if any) to products describes the reaction mechanism

[51]. A more detailed description of a reaction can be obtained by classi-

cal trajectory calculations [52, 53, 54] that simulate molecular dynamics by

integrating the classical equations of motion for a molecule moving on a

potential energy surface. Photochemistry involves motion on multiple po-

tential energy surfaces and transitions between them. The first and second

derivatives of the energy with respect to the geomet- rical parameters can

be used to construct a local quadratic approximation to the potential energy

surface:

E (x) = E (x0) + gT0 ∆x+
1

2
∆xTH0∆x (3.1)

where g0 is the gradient (dEdx ) at x0, H0 is the Hessian (d
2E
dx2

) at x0 and

∆x = x − x0. The gradient and the Hessian can be used to confirm the

character of minima and TSs. The negative of the gradient is the vector of

forces on the atoms in the molecule. Because the forces are zero for minima,

TSs, and higher- order saddle points, these structures are also termed sta-

tionary points. The Hessian or matrix of second derivatives of the energy

is also known as the force constant matrix. The eigenvectors of the mass-

weighted Hessian in Cartesian coordinates correspond to the normal modes

of vibration (plus five or six modes for translation and rotation) [55]. For a

structure to be characterized as a minimum, the gradient must be zero and

all of the eigenvalues of the Hessian corresponding to molecular vibrations

must be positive; equivalently, the vibrational frequencies must be real (the

vibrational frequencies are proportional to the square root of the eigenvalues

of the mass-weighted Hessian). For a TS, the potential energy surface is a

maximum in one direction (along the reaction path) and a minimum in all

other perpendicular directions. Therefore, a TS is characterized by a zero

gradient and a Hessian that has one (and only one) negative eigenvalue; cor-

respondingly, a TS has one and only one imaginary vibrational frequency.

An n − th order saddle point (also called a stationary point of index n)

has a zero gradient and is a maximum in n orthogonal directions and hence

has n imaginary frequencies. For a TS, the vibrational mode corresponding

to the imaginary frequency is also known as the transition vector. At the

TS, the transition vector is tangent to the reaction path in mass-weighted

coordinates.
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3.2 Coordinates

In principle, any complete set of coordinates can be used to represent a

molecule and its potential energy surface. However, choosing a good coor-

dinate system can significantly improve the performance of geometry op-

timizations. Inspection of the Hessian used in the local quadratic approx-

imation to the potential energy surface, in equation 3.1, can reveal some

favourable aspects of a good coordinate system. For example, an optimiza-

tion will be less efficient if there are some very stiff coordinates and some

very flexible coordinates. This corresponds to a mixture of very large and

very small eigenvalues of the Hessian, (i.e., the Hessian is an ill-conditioned

matrix). Strong coupling between coordi- nates can also slow down an opti-

mization. This corresponds to off-diagonal Hessian matrix elements that are

comparable in magnitude to the diagonal elements. Strong anharmonicity

can seriously degrade the performance of an optimization. If the Hessian

changes rapidly when the geometry of the molecule is changed, or if the

valley around a minimum is strongly curved, then the quadratic expression

in equation 3.1 is a poor approximation to the potential energy surface and

the optimization will be slow to converge. The nature of the Hessian and

the anharmonicity of the potential energy surface will be directly affected

by the choice of the coordinate system. There are a number of coordi-

nate systems that are typically used for geometry optimization. Cartesian

coordinates are perhaps the most universal and the least ambiguous. An

advantage is that most energy and derivative calculations are carried out

in Cartesian coordinates. However, they are not well suited for geometry

optimization because they do not reflect the “hemical structure” and bond-

ing of a molecule. The x, y, and z coordinates of an atom are strongly

coupled to each other and to the coordinates of neighboring atoms. Internal

coordinates such as bond lengths and valence angles are more descriptive

of the molecular structure and are more useful for geometry optimization.

Bond stretching requires more energy than angle bending or torsion about

single bonds. More importantly, the coupling be- tween stretches, bends,

and torsions are usually much smaller than between Cartesian coordinates.

In addition, internal coordinates are much better than Cartesians for rep-

resenting curvilinear motions such as valence angle bending and rotation

about single bonds. For an acyclic molecule with N atoms, it is easy to

select set of 3N − 6 internal coordinates to represent the molecule (3N − 5

coordinates for a linear molecule). Z-matrix coordinates are an example of

such a coordinate system [56]. It is straightforward to convert geometries

and derivatives between Cartesian and Z-matrix internal coordinates [57].
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For acyclic molecules, the set of all bonds, angles, and torsions represents

the intrinsic connectivity and flexibility of the molecule. However, for a

cyclic molecule, this introduces more than the 3N − 6 coordinates required

to define the geometry of the molecule. Such a coordinate system has a

certain amount of redundancy in the geometric parameters [57, 58, 59, 60,

61, 62]. Because only 3N − 6 of these redundant internal coordinates can

be transformed back to Cartesian coordinates in three dimensions, certain

combinations of the redundant internals must be constrained during the

optimization.

3.3 Newton and quasi-Newton methods

As described in standard texts on optimization [63, 64, 65, 66] most nonlin-

ear optimization algorithms are based on a local quadratic approximation

of the potential energy surface; equation 3.1. Differentiation with respect to

the coordinates yields an approximation for the gradient, given by:

g (x) = g0 +H0∆x (3.2)

At a stationary point, the gradient is zero, g(x) = 0; thus, in the local

quadratic approximation to the potential energy surface, the displacement

to the minimum is given by:

∆x = −H−1
0 g0 (3.3)

This is known as the Newton or Newton-Raphson step. Newton or quasi-

Newton steps are required to reach a stationary point. For minimization,

the Hessian must have all positive eigenvalues (i.e., positive definite). If

one or more eigenvalues are negative, the step will be toward a first or

higher-order saddle point. Thus, without some means of controlling the

step size and direction, simple Newton steps are not robust. Similarly, if

the aim is to optimize to a TS, the Hessian must have one and only one

negative eigenvalue, and the corresponding eigenvector (i.e., the transition

vector) must be roughly parallel to the reaction path. At each step, Newton

methods require the explicit calculation of the Hessian, which can be rather

costly. Quasi-Newton methods start with an inexpensive approximation to

the Hessian. The difference between the calculated change in the gradient

and the change predicted with the approximate Hessian is used to improve

the Hessian at each step in the optimization [63, 64, 65, 66].

Hnew = Hold + ∆H (3.4)
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For a quadratic surface, the updated Hessian must fulfil the Newton condi-

tion:

∆g = Hnew∆x, (3.5)

where ∆g = g (xnew) − g
(
xold

)
and ∆x =

(
xnew − xold

)
. However, there

are an infinite number of ways to update the Hessian and fulfill the Newton

condition. For TS optimization, it is important that the Hessian has one and

only one negative eigenvalue. This should be checked at every step of the

optimization. If the Hessian does not have the correct number of negative

eigenvalues, the eigenvalues need to be shifted or one of the methods for

step size control Newton and quasi-Newton methods are the most efficient

and widely used procedures for optimizing equilibrium geometries and can

also be used effectively to find TSs. For each step in the Newton method,

the Hessian in Eq. 3.3 is calculated at the current point. For quasi-Newton

methods, Eq. 3.3 is used with an approximate Hessian that is updated at

each step of the optimization (see below). Because actual potential energy

surfaces are rarely quadratic, several needs to be used (see Step Size Con-

trol). The initial estimate of the Hessian for TS optimizations must have one

negative eigenvalue and the associated eigenvector should be approximately

parallel to the reaction path. The Hessian update should not be forced

to be positive definite. The Powell-symmetric-Broyden (PSB) update [66]

fulfils this role: this may be a bottleneck. The updating methods can be

reformulated to update the inverse of the Hessian. For example, the BFGS

formula for the update of the inverse Hessian is:

∆BBFGS =
∆x∆xT

∆xT∆g
− Bold∆g∆gTBold

∆gTBold∆g
, (3.6)

where B = H−1, and the updated inverse Hessian obeys ∆x = B∆g. Lim-

ited memory quasi-Newton methods such as L-BFGS avoid the storage of

the full Hessian or its inverse which would require O(n2) memory for n vari-

ables. Instead, they start with a diagonal inverse Hessian, and store only the

∆x and ∆g vectors from a limited number of previous steps; thus, the storage

is only O(n). The inverse Hessian is written as a diagonal Hessian plus the

updates using the stored vectors. For the Newton step, xnew = xold−Bgold,
the product of the updated inverse Hessian and the gradient involves only

O(n) work because it can be expressed in terms of dot products between

vectors.
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3.4 Step size control

The quadratic approximation to the potential energy surface is satisfactory

only for a small local region, usually specified by a trust radius, τ . Steps

outside this region are risky and optimizations are more robust if the step

size does not exceed τ . An initial estimate of τ can be updated during the

course of an optimization based on how well the potential energy surface

can be fit by a quadratic expression. A typical updating recipe is as follows

[63]:

ρ =
∆E

gT∆x+ 1
2∆xTH0∆x

(3.7)

if ρ > 0.75 and 5
4 |∆x| > τ old, then τnew = 2τ old. If ρ < 0.25 then τnew =

1
4 |∆x|; otherwise τnew = τ old [65]. The simplest approach to step size

control is to scale the Newton step back if τ is exceeded. A better approach

is to minimize the energy under the constraint that the step is not larger than

τ . In the trust radius method (TRM), this is done by using a Lagrangian

multiplier, λ, and corresponds to minimizing E(x) − 1
2λ(∆x2 − τ2). With

the usual quadratic approximation for E (x), this yields:

g0 +H0∆x− λ∆x = 0

or

∆x = − (H0 − λI)−1 g0 (3.8)

where I is the identity matrix. For minimizations, λ must be chosen so that

all the eigenvalues of the shifted Hessian, H − λI, are positive, i.e., λ must

be smaller (more negative) than the lowest eigenvalue of H.

3.5 Constrained optimizations

Under a variety of circumstances, it may be necessary to apply constraints

while optimizing the geometry (e.g., scanning potential energy surfaces, co-

ordinate driving, reaction path following, etc.). For nonredundant coordi-

nate systems and simple constraints, the coordinates being held constant can

be easily removed from the space of variables being optimized. For more gen-

eral constraints and/or redundant internal coordinate systems, constraints

can be applied by penalty functions, projection methods, or Lagrangian

multipliers. In the penalty function method, the constraints Ci (x) = 0 are

imposed by adding an extra term, 1
2

∑
αiCi (x)2, to the energy in Eq. 3.1

and the energy is minimized as usual. Because the αi need to have suitably
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large values so that the constraints are approximately satisfied at the min-

imum, the optimization may converge much slower than the corresponding

unconstrained optimization. The preferred method for including constraints

in an optimization is by using Lagrangian multipliers.

Pg0 + PH0P∆x+ α (I − P ) = 0

P = I −
∑

i cic
T
i / |ci|

2 ,
(3.9)

where the ci are a set of orthogonal constraint vectors and α > 0. For

redundant internal coordinates, the projector needs to remove the coordinate

redundancies as well as the constraint directions [67].

3.6 Constrained optimizations: the IRC

The concept of the reaction pathway has become important in the study

of potential energy surfaces for chemical reactions. In general, the reaction

path can be defined as the curve on the potential energy surface connecting

the reactants and products through the transition state. This curve can

be found by following the steepest descent path or minimum energy path

(MEP) from the transition state toward reactants and products. When

mass-weighted Cartesian coordinates are used, the path becomes the intrin-

sic reaction coordinate (IRC) discussed by Fukui [68]. The steepest-descent

path from the saddle point to the minima can be defined easily, but depends

on the particular choice of coordinate system. Cartesian coordinates would

yield a different path than internal coordinates. Furthermore, internal co-

ordinates are not unique, since a number of different sets of bond lengths,

angles and torsions can represent the same structure. An intrinsic reaction

path can be defined independently of the coordinate system by appealing to

classical mechanics. For a given energy surface, the movement of a classical

particle must be the same regardless of whether Cartesian coordinates or

any of a number of different sets of internal coordinates are used.

The IRC is defined by the following differential equation:

dx

ds
=

g

|g|
= v (3.10)

where x is the (mass-weighted) coordinates, s is the path length and v is the

(negative) normalized gradient. To solve this the starting geometry needs

to be slightly displaced from the TS structure, this can be done by using

the normal mode of the imaginary frequency to displace the structure along

the coordinate that leads to the associated minima. Once this is done then

an optimization technique is used to follow the path of highest negative
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gradient to a minimum. Several algorithms have been proposed for the

calculation of the IRC. One of the most widely used is the one proposed by

Schlegel which is useful for following also curved reaction paths (as in many

reactions) [69]. Firstly the gradient is calculated at a point xk , an expansion

point is generated from here by taking a step of ∆s/2 along the direction of

the gradient, where s is a step of predefined size. The point xk+1 is chosen

so that the reaction path between xk and xk+1 is an arc of a circle and

so that the gradients gk and gk+1 are tangent to this path. This algorithm

requires an n−1-dimensional optimization on a hypersphere about the point

x (k + 1) = x (k) − 1
2sgk/|gk| where s is the stepsize. In this method quite

large step sizes (20− 40) bohr amu can be used and also IRC with large

curvature are followed quite closely. The energy is then minimized on a

hypersphere with radius 1
2∆s, located at the expansion point [69].

Figure 3.1: Starting from point P1 on the path (shown in blue) construct auxiliary point P ′

located a distance of n/2 away from P1 along tangent a (shown in green). The construction
of P ′ does not involve any energy or gradient calculations. On a (hyper)sphere of radius
n/2 centered at P ′ search for the point of lowest energy P2. This latter point is the new
point on the IRC path. This sequence is repeated until the geometry convergence criteria
are fulfilled in direction along the pathway.

3.7 Conical intersection and non-crossing rule

In the case of diatomic molecules, the potential energy surfaces of two states,

such as the ground state and the lowest- energy among the excited states

will intersect only if the states are characterized by a different spatial or

spin simmetry. On the contrary, in the case of polyatomic systems [3] two

PES of a polyatomic molecule can in principle intersect even if they belong

to states of the same symmetry and spin multiplicity. In order to determine

the crossing conditions for polyatomic molecules [70] we can assume that

the solutions of the Schroedinger equation for the electronic wave function
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have been found except two, φ1 and φ2. The latter, in conjunction with

the already found solutions constitute a complete orthonormal set. We also

hypothesize that φ1 and φ2 correspond to the two states (whose energy is

E1 and E2) whose crossings we are studying. Then it must be possible to

express each of the two remaining electronic Eigenfunctions (which describe

the states we want to examine) in the form:

Ψ = c1φ1 + c2φ2 (3.11)

The determination of the energies associated to the two states requires com-

puting the characteristic equation:[
H11 − E H12

H21 H22 − E

][
c1

c2

]
= 0 (3.12)

knowing that Hij =< φi|H|φj > and H12 = H21. Solving 3.12 returns the

following energy values

E1,2 =
H11 +H22 ±

√
(H11 −H22)2 + 4H2

12

2
(3.13)

The energy of the two states match if the two energy solutions do coincide,

i.e. the following equalities hold:

H11 = H22

H12 = H21 = 0.
(3.14)

For this condition to be met, there must exist at least two nuclear coordi-

nates which vary independently. In the case of a diatomic molecule the only

variable nuclear coordinate is the interatomic distance; the two states can

intersect only if their spatial or spin symmetries are different. In the case of

a molecule consisting of three or more atoms, the crossing is possible due to

the abundance of degrees of freedom. By choosing two independent variable

values that satisfy Eq. 3.14, the remaining degrees of freedom can be varied

in the crossing region. Let x1 and x2 be the two independent coordinates

and let their origin satisfy Eq. 3.14: the characteristic equations may be

rewritten as: [
W + h1x1 − E lx2

lx2 W + h2x1 − E

][
c1

c2

]
= 0 (3.15)

or[
W + (m+ k)x1 − E lx2

lx2 W + (m− k)x1 − E

][
c1

c2

]
= 0 (3.16)
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where the following substitution has been made:

m = 1
2 (h1 + h2)

k = 1
4 (h1 − h2)

(3.17)

The characteristic equations return the energy values E as:

E12 = W +mx1 ±
√
k2 + x2

1l
2x2

2 (3.18)

which is the equation a double cone with the same vertex, at the x1 and x2

origin. If φ1 and φ2 are the diabatic components of an adiabatic electronic

configuration, then the crossing takes place if the two diabatic components

do cross and for this to happen H11 must be equal to H22, which means that

the energies for the two diabatic functions must be the same. Indeed, at the

point where H11 = H22, then E1 = H11 −H12, and E2 = H11 + H12, that

means that an energy difference exists between the two states.

∆E = E2 − E1 = 2H12 (3.19)

This establishes a condition to determine whether crossing would happen

or not, that is if the exchange term H12 is zero the two state energies are

the same therefore the crossing takes place. In general, this condition holds

when the two electronic states have different symmetry, be it spatial or

spin. On the contrary, if H12 6= 0 then the energies are different therefore

no crossing takes place. This happens generally when the electronic states

have the same symmetry. The exchange H12 value provides information

concerning also the depth of the minimum where the avoided crossing (the

higher the value the shallower the minimum and vice-versa). In the case

of polyatomic system real crossing happens due to the higher number of

degrees of freedom irrespective of the symmetry relation between the two

states: suitable values of two independent coordinates ensure crossing, then

the remaining n− 2 can span so that a n− 2 dimensional hyperline is found

along which the two states intersect.

3.8 The “physical chemistry” of conical intersec-

tions

Conical intersections are key part of the mechanisms underlying the pho-

tochemical reactivity processes. Indeed, a CI point is like a funnel that

connects a ground state potential surface to an excited state one; when a

reactant in its excited state decays to its ground state, two or more products
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Figure 3.2: Schematization of the conical intersection concept between the ground state
(blue) and the excited state (red) .

Figure 3.3: Two-dimension conical intersection .
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can be obtained according to the relaxation path followed. From a mathe-

matical standpoint the double cone shape is observable plotting the energies

as a function of the gradient difference vector x1 and the gradient of the

interstate coupling vector x2:

x1 = ∂(E1−E2)
∂q

x2 = 〈C1
∂Ĥ
∂q C2〉

(3.20)

C1 and C2 being the configuration interaction eigenvectors (the latter being

parallel to the non-adiabatic coupling vector) and Ĥ is the CI Hamiltonian.

x2 is parallel to the non-adiabatic coupling vector g (q). By spanning along

these geometric coordinates, the branching space is identified, which is the

plane on which the system energetic degeneracy is lifted. The remaining

n − 2 dimensions identify the intersection space (or seam), where there is

an infinite number of conical intersections: by moving along the seam space

the molecule is taken from a point of conical intersection to another one,

still of conical intersection.

Figure 3.4: â Representative behavior of a thermal reaction.

The probability of a surface hop to occur is:

P = e−
π
4
ζ (3.21)

where the value of ζ is:

ζ =
∆E (q)

~|q̇|g (q)
(3.22)

that means that the lower the energy gap the more likely is the transition,

and also that the latter is favoured by a large value of the non-adiabatic

coupling g. ∆E < 2kcal/mol is required for the hop probability not to be

negligible.
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Figure 3.5: Representative behavior of a photochemical reaction.

Often the conical intersection point of chemical interest is located along a

valley on the excited state potential energy surface, with the system moving

downwards from the Franck-Condon region and reaching the excited state

minimum M∗, which is connected to the conical intersection point trough a

transition state. In the case no transition state exists to connect the excited

state to the conical intersection point, the lowest-lying intersection point

must be found within the intersection space.

3.9 Conical intersection optimization

In the case no intermediate or transition point is between the excited state

and the conical intersection point, constrained geometry optimization tech-

niques have to be implemented in order to find out the position of the low-

energy stationary points having the same energy on two potential energy

surfaces. Optimization is to be carried out along directions that are orthog-

onal to the hyperline spun by the x1 and x2 vectors, i.e. . the intersection

space. In this case, the excited state potential energy surface gradient will

not be zero at the optimized conical intersection point since that wouldnât

be the vertex of a double cone. Instead, the projection of the excited state

potential energy surface projection on the intersection space goes to zero at

the optimized conical intersection. Let x3 . . .xn the vectors that identifty

the intersection space , then the two conditions that have to be met at a

optimized conical intersection point are:

E2 − E1 = 0
∂E
∂x3

= . . . = ∂E
∂xn

= 0.
(3.23)
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Another viable method has been implemented in Gaussian03 and is based

on the fact that in the intersection space the following expression holds:

∂ (E2 − E1)2

∂q
= 2 (E2 − E1) x1 (3.24)

Since the size of the step should depend only on the energy difference and

not on the x1 magnitude, the gradient along the step to the minimum of the

energy difference E2 − E1 should be:

f =
(E1 − E2) x1√

x1x1
(3.25)

which will be zero when the two energies have the same value, irrespective

of the x1 magnitude. By defining P as the projection of the gradient of E2

on the intersection space we obtain a gradient value:

g = P
E1

∂q
(3.26)

then we obtain the next-step gradient value as

g = g + f (3.27)

so that starting from an initial point the technique finds out the position

of the closest intersection point then it moves down the intersection space.

The set of all bonds, valence angles, and torsions (if necessary, augmented

by out-of-plane bends and linear bends) constitutes a primitive redundant

coordinate system [71, 72] In some cases, it may be advantageous to form

linear combinations of the primitive redundant internals to form natural

or delocalized redundant internal coordinates [73, 74, 75, 76] or symmetry-

adapted redundant internal coordinates. For periodic systems such as solids

or surfaces, unit cell parameters need to be added [77, 78, 79] (either explic-

itly or implicitly via coordinates that cross the boundaries of the unit cell).

For molecules in nonisotropic media, additional coordinates are needed to

specify the orientation of the molecule. For systems containing more than

one fragment, additional coordinates are required to specify the positions of

the fragments relative to each other. The union of the redundant internal co-

ordinates for the reactants and products is usually a good coordinate system

for TS optimization [72]. The transformation of Cartesian coordinates and

derivatives to redundant internals is straightforward, but the back transfor-

mation of a finite displacement of redundant internals to Cartesian usually

is solved iteratively [71, 73, 74, 75, 76, 72, 46, 47, 80, 81, 82, 83, 84, 77, 78,

79]. Most methods for efficient geometry optimization rely on first deriva-



Chapter 3 45

tives of the energy; some also require second derivatives. For most levels of

theory used routinely for geometry optimization, the first derivatives can be

calculated analytically at a cost comparable to that for the energy. Analytic

second derivatives are also available for several levels of theory, but the cost

is usually considerably higher than for first derivatives. With the possible

exception of optimization of diatomic molecules, derivative-based geometry

optimization methods are significantly more efficient than energy-only algo-

rithms. If analytic first derivatives are not available, it is possible to use

simplex and pattern search methods,[85, 86, 87] but these become less ef-

ficient as the number of degree of freedom increases [88]- Thus, it may be

more efficient to compute gradients numerically and to use a gradient-based

optimization algorithm than to use an energy-only algorithm. The first and

second derivatives of the energy with respect to the geometrical parameters

can be used to construct a local quadratic approximation to the potential

energy surface:

E (x) = E (x0) + gT0x+
1

2
xTH0x (3.28)

where g0 is the gradient (dE/dx) at x0, H0 is the Hessian
(
d2E/dx2) at x0,

and x = x− x0. The gradient and Hessian can be used to confirm the char-

acter of minima and TSs. The negative of the gradient is the vector of forces

on the atoms in the molecule. Because the forces are zero for minima, TSs,

and higher order saddle points, these structures are also termed stationary

points. The Hessian or matrix of second derivatives of the energy is also

known as the force constant matrix. For a function of several variables, the

first derivatives with respect to each of the variables form a vector termed

the gradient [48]. At a critical point, the first derivative of the potential en-

ergy function with respect to all coordinates will be zero (i.e. ∂E/∂Ri = 0

, ∀i). This is true for all the critical points, so to distinguish them different

criteria have to be defined. These criteria arise from a requisition relative

to the second derivatives of potential energy surface, defining the Hessian

matrix, for a function of several variables. If a second derivate of PES is

a negative value it is called imaginary frequency. In classical mechanics,

the first derivative of the potential energy for a particle is the opposite of

the force on the particle, and the second derivative (for a quadratic po-

tential) is the force constant. Minima occur if the second derivatives (the

force constants) with respect to all coordinates are positive, and correspond

to the stable products, reactants, or intermediate structures. Graphically

they correspond to points localized at the bottom of the valley (fig. 3.1. If

there is one or more negative eigenvalues (imaginary frequencies), the point

is a n − th saddle point (also called a local maximum), depending on the
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number of imaginary frequencies. The first order saddle point (having only

one imaginary frequency) corresponds to a transition state, corresponding

to a maximum with respect to only one coordinate and a minimum to all

the rest of coordinates; higher order saddle points on PES have no chemical

interest[3]. At the end conical intersections are critical points characterized

from the degenerate value of two electronic state. Actually, there should be

defined other two coordinates to guarantee the condition of degeneracy, as

it will be widely discussed next.



4 Adiabatic and non-adiabatic molec-
ular dynamics

4.1 Classical molecular dynamics

Molecular Dynamics (MD) is a computational chemistry technique which

allows the determination of the behaviors of atomic or molecular systems at

a macroscopic level, starting from interactions at the microscopic level. A

molecular dynamics simulation is basically characterized by the sampling al-

gorithm in the phase space, and the choice of the interaction potential, V(r),

between the particles of the system. The way in which the phase space in

sampled distinguishes the various simulative techniques. Classical molecu-

lar dynamics extracts trajectories of the atoms (i.e., a set of configurations)

integrating the Newtonâs motion equations. Other methods utilize different

algorithms to generate the set of configurations, and can be divided into two

groups, one that collects the systematic search techniques, while the other

includes the random search methods. At the beginning of the informatic

era, Alder and Wrainwright carried out the first molecular dynamics simu-

lations [89], studying simple fluids using models which represent atoms as

hard spheres. As the potential functions used for the calculations got more

complex, thus allowing to obtain simulated data directly comparable with

experimental results, it became immediately evident that MD could be used

as a powerful and reliable tool for the investigation of the dynamic properties

of real system. Over the years, the development of more powerful computers

and the appearance of high-level programming languages made possible to

simulate always more complex system, from water to small protein. At the

end of the 70s, the first simulations of complex biomolecule were performed.

The expansion of MD in studies of biochemistry is due to the successful

use of it in the reproduction of experimental data of proteins and macro-

molecules[90, 91, 92, 93, 94]. Nowadays, MD simulations allow to study a

broad spectrum of chemical and biological processes, such as structural and

functional changes as a result of mutation in proteins, thermodynamic and

kinetic properties of various systems[95, 96], investigations and development

47
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of new drugs, etc. The exponential growth of the computers power, in con-

junction with the development of parallel machines, allowed in a few years

to increase the simulation time, the size of the simulated systems and the

improvement of the obtained results.

4.1.1 Equation of motion

Classical MD merely describe a system of particles through the motion of

their nuclei. In fact, the Born-Oppenheimer approximation allows the sepa-

ration of the motion of the nuclei from the motion of the electrons, therefore

treating them implicitly. Thus, the motion of the molecular system appears

to be described as a system of punctual masses that move thanks to an ef-

fective potential field produced by the electrons. It is reasonable to not use

a quantum treatment: if you exclude the H and He atoms, the motion of the

nuclei at room temperature can be described with reasonable accuracy by

classical mechanics. In classical MD, the trajectory of a molecular system

(i.e., its configurations as a function of time) is generated by the simulta-

neous integration of the Newton’s equations of motion, for all the atoms of

the system:

d2ri
dt2

= m−1
i Fi (4.1)

Fi = −∂V (r1, . . . , rN )

∂ri
(4.2)

The force acting on the i-th atom is Fi, the mass is mi, and t is time,

while V (r1, . . . , rN ) is the potential energy function, the so-called force field,

which represents the forces with which nuclei interact. This function is an

effective interaction, since the effect of the (omitted) electronic degrees of

freedom is mediated and embedded in the effect of the atomic degrees of

freedom expressed in the model.

4.1.2 Molecular dynamics with MM force fields

In MD it is possible to use different force field, mostly depending on the sys-

tem under investigation. A typical effective potential for systems consisting

of N atoms with molecular mass Mi (i=1,2, . . . , N) and positive cartesian

vectors ri, has the following form:



Chapter 4 49

V (r1, r2, . . . , rN ) =
∑
bonds

1

2
Kb(b− beq)2 +

∑
angles

1

2
Kθ(θ − θeq)2

+
∑

dihedrals

Kφ[1 + cos(nφ− δ)] +
∑

improperd.a.

1

2
Kξ(ξ − ξeq)2

+
∑
V dW

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
∑
Coul

qiqj
4πε0rij

(4.3)

The first term is the vibration energy of the covalent bond between

two atoms linked by a totally harmonic potential, where beqis the minimum

bond energy, and Kb is the force constant which depends on the bond type;

both are derived from experimental data and/or quantum calculations. The

second term (three bodies interaction) represents the energy due to the de-

formation of the valence angle, θ, expressed as a harmonic potential; θeq is

the reference valence angle and Kθ id the force constant. The third and

fourth terms represent the four bodies interactions: the third is a sine term

that refers to the dihedral angles φ; the fourth, ξ, is of harmonic type, and

it is used to describe the improper dihedral angles. The last two terms in

the force field equation are the effective non-bonding interactions, expressed

as van der Waals and Coulomb interactions between the i-th and the j-th

atom at distance rij . The van der Waals term is expressed in different ways,

depending on the force field. In the example it is expressed as classical

Lennard-Jones function (constant εij and σij . The force field parameters

can be determined in several ways, the most elegant method is to calibrate

these parameters with the results of ab initio quantum calculations on small

molecular aggregates. However, in this way the results are often not satisfac-

tory, because of the many approximations which must be taken into account

with this type of procedure. Alternatively, or in order to optimize a set of

parameters obtained from ab initio calculations, experimental data can be

used (crystal structures, lattice energies and dynamics, spectroscopic data,

density, vaporization enthalpy, solvation free energy, NMR data, etc.)[97, 98,

99, 100]. The obtained parameters are valid only in the physical-chemical

conditions in which they were determined and this implies that the force

fields used in MD programs are specifically optimized for certain physical

systems (organic molecules, inorganic molecules, biomolecules, etc.).
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4.1.3 Long range interactions

In a MD simulation, most of the computation time is occupied by the calcu-

lation of non-bonding interactions. Therefore, it is appropriate to look for a

method which allows to increase the computational efficiency of the simula-

tion of the simulation acting on the van der Waals and Coulomb components.

Various techniques have been developed to reduce the computational cost.

The most commonly used are the cut-off radius and the Ewald summation.

The first method severs the non-bonding interactions when the distance be-

tween the interacting particles is larger than a specific value, the so called

cut-off radius, rc. Therefore, the i.th particle of the system can interact

only with the ones which are contained in a sphere of rc radius, centered

in ri. Obviously, this method introduces approximations, especially in the

electrostatic calculations, which can remarkably affect dynamic and struc-

tural properties of the system. To overcome this problem, in addition to

increasing the cut-off radius, a switch function can be introduced, which en-

sures the continuity of dynamic and structural properties beyond the cut-off

distance. Despite this method suffers from the aforementioned limitations,

it remains among the most common for the calculation of intermolecular

forces. The more recent second method proposes the use of a periodic lat-

tice, in which all the interactions between the central box and its infinite

replicas are considered. The Coulomb energy in a periodic system formed

by N particles is obtained by summing over all the pairs of atoms. One is

in the central box, and the other one is in a replica:

E =
1

8πε0

∞∑
|n|=0

( N∑
i=1

N∑
j=1

qiqj
|rij + n|

)
(4.4)

where n are the particles and i, j are the periodic imagines. It can

be shown that this summation over n, for potentials varying with r−1, can

not be completely convergent. Namely, its limit can vary or diverge if the

order of the terms is changed. Therefore, this expression can not be used

in the calculation of the electrostatic energy. To solve this problem, each

charge can be considered as surrounded by a Gaussian charge distribution

ρG of equal intensity and opposite sign[101]. This Gaussian distribution will

have the effect of shielding the interactions between neighbor charge, and we

could consider the interaction energy of short range type. The total charge

distribution is:

ρi(r) = ρqi (r) + ρGi (r) (4.5)
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where ρqi (r) is the charge distribution of the i-th particle and ρGi (r) is

the corresponding Gaussian distribution:

ρi(r) = qiδ(r− ri) (4.6)

After the calculation of the interaction energy in real space, to return

to he original distribution function ρi(r), a function equal to ρGi (r) must be

subtracted in reciprocal space, using the Fourier transformation. The final

expression of the total interaction energy will be:

E =
1

8πε0

N∑
i=1

N∑
j=1

( ∞∑
|n|=0

qiqjerfc(α|rij + n|)
|rij + n|

+
1

πL3

∑
k 6=0

4π2qiqj
k2

exp(−k2/4α2) cos(k · rij)
)

− α

4π3/2ε0

N∑
i=1

q2
i +

|
∑N

i=1 qiri|2

2ε0L3(2ε′ + 1)
(4.7)

where erfc(x) is the complementary error function, which tends to zero

for x → ∞. With regard to the first term, for α large enough, the sum is

reduced to a single term with n = 0; the second term is a sum over the

reciprocal vectors k = 2πn/L. The last two terms are, respectively, the

correction function due to the presence of a self-interaction term in ρGi (r),

and the contribution of the depolarizing field to the energy, which is affect

by the outer dielectric effect.

4.1.4 Boundary conditions

An important feature of the MD simulations is the way in which the bound-

ary conditions are treated. In general, because of the computational limits,

a simulated molecular system consists of 104-105 atoms, significantly less

than the corresponding real system. Because of this, the molecules of a

simulated system will be more frequently subject to the so-called surface

effects. For example, if they are contained in a cubic box, those which are

close to the surface will suffer the effects of very different forces with respect

those ones present in the bulk. The study of a simulated system of limited

an finite size, can lead to the creation of artifacts compared to the actual

behavior, especially in the case of homogeneous liquids or solutions. Usu-

ally, the periodic boundary conditions (PBC)[101] are introduced to reduce

the surface effects. In this way the central box is surrounded by identical
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replicas that create a condition of infinite periodicity. During a simulation,

when a molecule comes out from the original box, its periodic image enters

the box from the opposite side, maintaining the same velocity and direction,

and allowing the reproduction of periodic systems, such as crystals or fluids.

Interactions within the PBC are treated with the convention of minimum

image (MI), where an atom can interact only with the first neighbors. To

avoid the anisotropy due to the cubic form of MI and artifacts arising from

the interaction of an atom i of the box with an atom j and its periodic image

j′ simultaneously, a spherical cut-off with radius rc is used, such that the

shorter side of the box is greater than twice the value of cut-off (L ≥ 2rc,

with L is the box side). This condition is necessary, but not enough, to

prevent artifacts. For example, when you want to simulate a solute in a

solvent, it is also necessary that a solute atom does not interact with solute

atoms belonging to periodic images. To avoid this, it is necessary that the

distance of each atom of the solute from each face of the box is greater than

the half of cut-off radius (d ≥ 0.5rc, with d the distance between solute and

box face).

4.1.5 Constraints in MD

In MD simulations different types of constraints can be applied. The most

common are those that block the positions of certain atoms, the so-called

Position Constraints. The use of constraints in MD is necessary to eliminate

the high frequency vibrations of bonds, which require short integration steps.

In the case of biological macromolecules in solution, the vibrations involving

hydrogen atoms determine the higher frequency vibrations. For the O-H

bond, the stretching frequency is in the order of 1014 Hz, so an average

period is of the order of 10 fs[102]. This limits the integration step (time

step) that can be used in a simulation to about 0.5 fs, considering that to

properly reproduce the trend of a periodic function is necessary to sample at

least 20 times per period. With the introduction of a method which binds

these bonds, or, in practice, all the covalent bonds, one can arrive at an

integration step of 2 fs, that is the commonly used value, also in this work.

As the binding vibrations are virtually decoupled from the other system

vibrations, this constraints does not alter the rest of the dynamics, while

this does not occur for the vibrations of valence angles. The most commonly

used method is the so-called SHAKE[103], which was introduced in 1977.

The SHAKE method consists in an iterative procedure, for which after each

integration step the initial positions of the atoms r′i(t+ ∆t) vary until the

constraints conditions are not fulfilled in new positions ri(t+ ∆t). The use
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of SHAKE, despite some disadvantages, allow to increase the integration

step of 2-4 times.

4.1.6 Initial conditions

Once the force field, the boundary conditions and the constraints are defined,

the initial coordinates and velocities of the system must be set. If the

observation time were sufficiently long, the results should be independent

from the initial conditions, but since most physical systems reach equilibrium

in a very longer time than those simulated, it is appropriate to perform

simulations starting from a configuration which is as close as possible to the

equilibrium one. The initial velocities can be achieved with a simple Maxwell

distribution, which depends on the initial temperature of the simulation:

ρxi =

√
mi

2πkBT
exp

(
−

1
2miv

2
xi

kBT

)
(4.8)

where ρxi is the probability density of the component vxi .

4.1.7 Integration of the equation of motion

Given the complexity of the force field expression (4.3), the integration of

the equations of motion (in order to obtain the trajectory of the N atoms

of the system) does not have an analytical solution. For this reason, several

approximate methods have been developed. They numerically extract the

trajectories from an MD simulation. The characteristics of a good integra-

tion algorithm can be summarized as follows:

• it must allow the use of a long time step: it is evident that the higher

the integration step, the smaller the number of integrations required

in a simulation. Also, if the ∆t is too large, the risk is to fail to follow

certain components of the motion of the system, such as the vibra-

tions, thus leading to misleading results. Therefore, it is appropriate

to adjust the integration step on the higher frequency motions;

• it must be reversible in time and preserve constant the quantities in

the system. Newton’s equations are reversible in time and therefore it

is desirable that the algorithm used faithfully reproduce this data;

The algorithms differ in the accuracy of calculation, the memory occu-

pation and the type of representation. The nature of the algorithms derives
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from the expansion of the Taylor series of the quantities ri(t + ∆t) and

vi(t+∆t). In MD, algorithms that reach up to the third order of the Taylor

expansion are generally used, as algorithms of lower order are inaccurate,

while those of higher order are too expensive from a computational point of

view. Tipically, the Verlet algorithm [104, 105] is used. The algorithm is

fast, requires little memory and has a good conservation of energy for short

times. It is obtained by additions and subtractions of Taylor’s expansions

of the coordinates ri(t+ ∆t) and ri(t−∆t) of particles with mass mi:

ri(t+ ∆t) = −ri(t−∆t) + 2ri(t) +
(∆t2)

mi
Fi(t) (4.9)

where Fi(t) is the force exerted on the particle i at time t and where

terms higher than third order ones have been neglected. This pattern of

integration is therefore correct to fourth order in ∆t. The velocities are

given by:

vi(t) = ṙi(t) =
1

2∆t
[ri(t+ ∆t)− ri(t−∆t)] (4.10)

The error on velocity is on the (∆t)3 order.

4.1.8 Temperature and pressure control methods

Different types of statistical ensembles can be used in MD, and they are

characterized according to thermodynamic changes, restricted or let free to

equilibrate with the external environment:

• micro canonical ensemble (NVE), characterized by constant numbers

of particles (N), volume (V) and total energy (E), i.e. an isolated

system;

• canonical ensemble (NVT), in which the internal energy of the system

can vary, while the temperature is held constant by heat exchange with

an external thermal bath, thus an isothermal and isochore system ;

• NPT ensemble, in which the volume can vary in order to maintain

constant pressure, equal to the outside pressure, thus an isothermal

and isobaric system.

In order to compare the results of an MD simulation with experimental

data, the simulated system must be put in the same conditions in which these

data were obtained, and this often forces to run the simulation at constant
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pressure and temperature. Over the years, various algorithms have been

developed.

4.1.9 Structural analysis: RMSD

One of the first analysis that generally are carried out is the calculation of the

Root Mean Square Deviation (RMSD) compared to a reference structure in

function of time. The purpose of this analysis is to obtain a first qualitative

information on the stability of the simulation and the achievement of the

equilibrium. It can be expressed through the following relation:

RMSD(t) =

[
1

N

N∑
i=1

(ri(t)− rrefi )2

] 1
2

(4.11)

where ri(t) represents the position of the i-th atom at time t, rrefi rep-

resents its position in the reference structure and N represents the total

number of the generated structures.

4.2 Excited state non-adiabatic molecular dynam-

ics

Molecular dynamic simulations have become an established technique for

the understanding of fundamental processes that occur on the ultrafast,

femtosecond time scale, where simulations are required to help interpret the

data. The approach based on molecular dynamics (MD) QM/MM simula-

tions is especially suitable for complex systems, and it allows accounting for

finite temperature effects. When the forces are computed from a QM poten-

tial, the procedure is known as ab initio molecular dynamics (AIMD). As-

suming the BornâOppenheimer approximation valid, the forces may be com-

puted after optimizing the wave function at each step during the dynamics.

In the field of molecular modelling of complex systems, MD QM/MM sim-

ulations are aimed at describing biochemical processes with realistic model

systems and at following their time-evolution at finite temperature. The

QM/MM approach allows the system of interest to be investigated by tak-

ing fully into account environmental effects. Unfortunately, the time-scale

which can be explored by QM/MM MD simulations is limited by the costly

evaluation of forces from electronic structure calculations (the QM part of

the QM/MM potential). Many popular quantum chemical programs now

include the possibility of performing QM/MM calculations [42, 106, 107,
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108]. Because of the need to iterate the equations of motion several thou-

sand times, highly optimized coding is required to tackle QM/MM-based

MD simulations in an efficient way. The COBRAMM program package is

designed to conduct simulations of large systems in the photochemical field.

4.2.1 Excited-state dynamics

Excited-state dynamics is the branch of the theoretical and physical chem-

istry devoted to simulating molecular processes triggered by UV-visible light

absorption. This involves the implementation of nuclear dynamics meth-

ods to determine the time evolution of the molecular geometry used, along

with electronic structure methods capable of computing electronic excited-

state potential energy surfaces. Applications to such techniques include

photochemistry and electronic spectroscopy. The goal of a computational

approach to the simulation of photo-induced processes is the complete de-

scription of the mechanisms at the molecular level from the promotion to

the excited electronic state to the formation of products or regeneration

of reactants back in the electronic ground state. Following light absorp-

tion, several photophysical or photochemical deactivation mechanisms can

compete depending on their relative efficiencies. They are summarized in

figure 4.1, which depicts a typical Jablonski diagram. The excess energy

can be released through light emission (i.e. fluorescence from a singlet or

phosphorescence from a triplet) or through radiationless decay processes

(i.e. an internal conversion take place between singlets or intersystem cross-

ing between a singlet and a triplet) that convert it into vibrational en-

ergy in S0. The spectral position, shape, and width of the absorption or

emission spectra are influenced by the competing events that dominate the

short-timescale dynamics of the molecule (changes in the molecular geom-

etry through nuclear motion coupled to changes in the electronic density

through transfer of electronic population). Moreover, a photochemical re-

action (photo-isomerization or photodissociation) may occur during the de-

activation time, which leads to the formation of photoproducts. However,

the Jablonski diagram does not provide any description of the course of a

photochemical reaction at the microscopic level [109, 110, 111]. From a com-

putational chemistry standpoint, the concept of intrinsic reaction coordinate

(IRC) [112, 51] gives a stationary/average description of the most significant

molecular geometries encountered along the reaction path from reactants to

products. In practice, an IRC is derived as a classical trajectory for the mo-

tion of the nuclei whereby the kinetic energy is removed at each step. This

requires knowledge of the local force field that drives the motion of the nu-
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Figure 4.1: Jablonski diagram (A: absorption; F: fluorescence; P: phosphorescence; IVR:
intramolecular vibrational redistribution; IC: internal conversion; ISC: intersystem crossing).
The numbers from 0 to 10 indicate the quantum number of the photoactive vibrational mode
in each of the three electronic states involved.

clei, that is the negative gradient of the potential energy field. According to

the Born-Oppenheimer approximation, the electronic and nuclear motions

are separated and the nuclear potential energy is given as the electronic adia-

batic mean field calculated at each relative arrangement of the nuclei. Such

energy is the electronic energy obtained by solving the time-independent

electronic Schroedinger equation with quantum chemistry (electronic struc-

ture) methods. Two kinds of photochemical reactions must be identified:

adiabatic ones and non-adiabatic ones. An adiabatic reaction corresponds

to a reaction path on the same electronic excited state. Subsequent excited

photoproducts eventually return to their electronic ground state after light

emission. On the contrary, a non-adiabatic reaction returns hot products in

the electronic ground state directly, with a reaction path that jumps from

the excited state to the ground state without emitting light. Figure 4.2 illus-

trates adiabatic and non-adiabatic reaction paths on two potential energy

surfaces. Describing a thermal chemical reaction with an IRC that connects

reactants and products through a transition state is a well-established com-
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putational chemistry technique. Following the bottom of a potential energy

valley is significant because the system has time to regain equilibrium and

redistribute the nuclear kinetic energy or transfer it to the surrounding en-

vironment. On the contrary, most photochemical reactions are ultrafast,

they start from a highly excited initial condition and involve effects for the

description of which it is essential to take into account explicitly the nuclear

kinetic energy. Indeed, the aim of molecular dynamics simulations is to

work out the time evolution of the molecular geometry following the system

excitation. Ground-state dynamic simulations describe the nuclear motion

Figure 4.2: One-dimensional representation of nonadiabatic and adiabatic reaction paths
involving two potential energy surfaces (R: reactant; TS: transition state; P: product; CoIn:
conical intersection).

on the potential energy surface that corresponds to the adiabatic electronic

ground state [113, 114, 115]. From an operational point of view, excited-

state dynamics and ground-state dynamics differ only when several coupled

electronic states must be considered simultaneously and can transfer popu-

lation, that is when the BornâOppenheimer approximation does not hold.

Thus, simulations of adiabatic photochemical reactions, or computations of

absorption/emission spectra corresponding to electronic transitions between

a pair of noninteracting adiabatic electronic states, use similar techniques

to ground-state dynamics. In contrast, simulating radiationless decay pro-

cesses requires a non-Born-Oppenheimer description according to which the

nuclear motion on several potential energy surfaces accounts for the transfer
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of electronic population through vibronic interactions called non-adiabatic

couplings. Non-adiabatic couplings were studied by Zener and Teller. The

latter, when extending the 1932 Zener paper found that non-adiabatic cou-

plings around molecular geometries where two electronic states are degener-

ate are characterized by a strong magnitude. Moreover, Teller demonstrated

the possible existence of real crossings (to be later known as conical inter-

sections) between potential energy surfaces in polyatomic molecules. Zim-

merman [116] and Michl [117] were the first to suggest, independently, that

internal conversion occurring at a conical intersection was crucial for the

understanding of certain photochemical mechanisms in organic molecules.

In order to account for the effect of non-adiabatic couplings, a quantum me-

chanical treatment of the time evolution of the molecular geometry (relative

nuclear positions) and of the electronic populations (occupancies of the elec-

tronic states) are mandatory [118, 119, 120, 121, 122, 123, 124, 125, 126].

This is achieved by solving the time-dependent Schroedinger equation for

the molecular Hamiltonian in order to propagate the molecular wavepacket.

Starting from a given initial condition this process returns the probabil-

ity of being in a given molecular geometry in a given electronic state at a

particular time (see Figure 4.3). This is the domain of quantum dynamics

(QD). Quantum dynamics methods are established techniques. Their main

computational burden is working out accurate potential energy surfaces and

their mutual couplings in non-adiabatic systems. More rough treatments

such as semiclassical dynamics are aimed at more or less the same but are

based on the solution of Newton classical equations of motion to drive a

statistically meaningful set of trajectories (see Figure 4.3) while accounting

for possible electronic population transfers through various approximations.

Simulation techniques can be subdivided into two groups: grid-based meth-

ods (for QD) and trajectory-based methods (for semiclassical dynamics). In

traditional methods, a global representation of the potential functions and

non-adiabatic couplings must first be computed, often by means of data

fitting to mathematical models. Trajectory-based methods also produce di-

rect dynamics, characterized by quantum chemistry calculations which are

executed along trajectories in order to return a moving local representa-

tion of the surfaces. The two main drawbacks for the techniques of the

two groups are the high computational complexity which is exponentially

increasing with the size of the system in the case of grid-based methods

and the poor accuracy of the trajectory-based methods. In the present PhD

work, the second approach based on semiclassical QM/MM trajectories has

been employed and will be documented in details below.
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Figure 4.3: Adiabatic (solid) and diabatic (dashed) potential energy curves for the ground
and first excited states along the reaction coordinate of a hypothetical molecule, with an
avoided crossing on the middle way. (a) Wave packet propagation. (b) Trajectory surface
hopping trajectories.

4.2.2 Non-adiabatic dynamics with trajectory surface hop-

ping methods

The trajectory surface hopping (TSH) method is a general methodology for

dynamics propagation of nonadiabatic systems. It is based on the hypoth-

esis that the time evolution of a wave packet through a potential-energy

branching region can be approximated by a set of independent semiclassical

trajectories stochastically distributed among the branched surfaces. As it

was proposed about 40 years ago, the TSH methodology has become one

of the main techniques for non-adiabatic dynamics propagation in molecu-

lar physics and chemistry. One reason for this success lies on its intuitive

conceptual background together with its high computational efficiency when

compared to full quantum mechanical propagation.

General concepts

In the TSH method, the molecular evolution is approached by a mixed

quantum-classical treatment, which separates the adiabatic and the non-

adiabatic processes. The adiabatic dynamics of the nuclei is propagated in
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a classical fashion on a single Born-Oppenheimer surface at any given time,

whereas the branching of the population due to non-adiabatic effects is in-

troduced by a stochastic algorithm allowing the exchange of electronic state

during the dynamics propagation. This partition gives rise to a semiclassi-

cal trajectory always propagated on a single surface, but with the possibil-

ity of exchanging the surface. The statistical character of the wave packet

propagation is recovered by preparing an ensemble of such semiclassical tra-

jectories. So formulated, the TSH approach owes much of its success to its

intuitive conceptual background, practicability, and low computational costs

as compared to full quantum wave packet propagation. The advantages of

the method can be summarized as follows:

• Simple propagation of Newton equations for the nuclei, usually effected

in Cartesian coordinates.

• The local character of the method does not require building multidi-

mensional potential energy surfaces.

• The local character allows straightforward on the fly implementations,

where energies, energy gradients, and nonadiabatic couplings are com-

puted along and simultaneously to the trajectory only for the classical

positions.

• The evolution of the dynamics can include all the nuclear degrees of

freedom.

• The connection to different quantum chemical methods, including QM/MM

partitioning, is straightforward, provided these methods can provide

excited-state energies, energy gradients (preferentially by analytical

methods), and nonadiabatic couplings.

• The independent trajectory character allows for straightforward par-

allelization of the computational work.

The formulation of the TSH, as proposed by Tully and Preston [127]

is carried out according to the semiclassical approach of Nikitin. First, it

is assumed that the nuclei evolve along a general trajectory Rc(t). Such

trajectory will be identified as a classical trajectory. Then, the time de-

pendent wave function for the electrons is written in an electronic basis

({Φk}|〈Φk|Φl〉r = δkl) as:

ϕ(r,Rc, t) =
∑
j

cj(t)Φj(r; Rc(t)), (4.12)
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where r identifies the electronic coordinates. By substituting such as-

sumption in the time-dependent electronic Schroedinger equation

(i~
∂

∂t
−He)ϕ(r,R, t) = 0 (4.13)

it is possible to work out the following set of differential equations for the

coefficients c (t):

i~
dck
dt

+
∑
j

(−Hc
kj + i~Fc

kj · vc)cj = 0 (4.14)

whereHc
kj are the matrix elements 〈Φk|He|Φj〉r, and Fc

kj is the non-adiabatic

coupling vector between the two states k and j. Given an atom m, Fc
kj can

be expressed as:

Fc,m
kj ≡ 〈Φk|∇Rm |Φj〉r. (4.15)

For the derivation of Eq. 4.14 , which is referred to as semiclassical time-

dependent Schroedinger equation (SC−TDSE), the following relation holds:

〈Φk|
∂

∂t
|Φj〉r = Fc

kj · vc (4.16)

where vc is the nuclear velocity vector, the superscript c indicating that

the quantity is evaluated at a fixed nuclei position. If either an adiabatic

representation (Φa
k|Hkj = Vkδki) or a diabatic representation (Φd

k|Hkj =

Wkj ,Fkj = 0) is adopted then Eq. 4.14 can be further simplified. In TSH,

the nuclear motion is described by Newton equations propagated in a single

electronic state. Given the coordinates of nucleus m with mass Mm , such

equations can be expressed as:

d2Rc
m

dt2
− f cm
Mm

= 0, (4.17)

where the force is proportional to the gradient of the potential energy:

f cm = −∇RmH
c
ll (4.18)

Moreover, when integrating the classical equations, the transition proba-

bilities between the current state l and any of other state j are evaluated.

Then, a probabilistic algorithm is exploited to determine the state where

the dynamics is going to proceed. The propagation of the SC − TDSE

is usually done in adiabatic representation, which provides better results if

compared to those attained with a diabatic representation [128] and requires

a reasonable computational effort. However, local diabatization methods in
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the intermediary steps of the propagation of the SC − TDSE yield very

stable results as well. The way the transition probability is computed is the

leading distinguishing feature among the various TSH models. The simplest

hopping algorithms just assume that the probability is one if the energy

gap between two states is smaller than some predefined energy threshold

[129]. More refined algorithms take into account variations of wave function

coefficients as a measurement of the non-adiabatic coupling [130]. Most of

the early applications of the TSH approach were based on Landau-Zener

or related transition probability formulae [131, 132, 133]. There are several

techniques that allow computing the transition probabilities for the TSH

approach. The most popular one is the fewest-switches method proposed

by Tully, which minimizes the number of hopping events per ∆t time step.

According to this condition, the probability of hopping between the states l

and k is:

Pl→k =
Population increment in k due to flux from l during δt

Population of l
(4.19)

The population of each electronic state k is expressed based on the coeffi-

cients ck(t) by the diagonal elements of the density matrix defined as:

ρlk(t) = clc
∗
k (4.20)

On the basis of equation 4.14 the hopping probability can be expressed as:

Pl→k = max

[
0,

2∆t

ρll
(~−1Im(ρkl)H

c
lk −Re(ρkl)Fc

kl· vc)
]

(4.21)

A significant difference does exist between the fewest-switches approach

and the Landau-Zener one, in that while the latter returns the total non-

adiabatic event probability and as such it must be applied only once every

time the crossing region is approached, the former returns an instantaneous

probability value for the non-adiabatic event, therefore it should be ap-

plied at every step of the simulation along the trajectory. In the case of

a hopping event, the conditions that have to be simultaneously met for a

transition from surface l to surface k to take place at time t are that a uni-

formly selected random number rt in the [0,1] interval satisfies the following

condition:
k−1∑
n=1

Pl→n(t) < rt ≤
k∑

n=1

Pl→n(t); (4.22)

and that the energy gap between the two states is:

Vk(R
c(t))− VlRc(t)) ≤

(
∑Nat

m vcm·F
c,m
kl )2

2
∑Nat

m M−1
m (Fc,m

kc )2
(4.23)
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The meaning of the latter condition is that after a hop energy must have

not increased. Such relation has been obtained assuming that total energy

has conserved, and that a correction term has been added to ensure such

purpose. Such correction term is a linear momentum in the direction of

F c,mkl . In the cases where F is not explicitly computed, the correction can

be applied along the direction of vc, thus obtaining the following condition:

Vk(R
c(t))− Vl(Rc(t)) ≤ Ekin(vc). (4.24)

Instead, in the case where only the first condition is met, the hopping is said

to be frustrated. Decoherence issues that may jeopardize self-consistency

in TSH can occur because the SC − TDSE is propagated along a single

trajectory Rc which is determined by the gradients for a specific electronic

state l. Such issues are due to the effect of the amplitudes of the remaining

states which are artificially restricted to propagating in the same direction

as the SC-TDSE. A correction can be effected by means of the nonlinear

decay of mixing model [134]. Such correction is applied at each time step

by expressing the solutions of equation 4.14 in the form [135]:

c′k = ckexp(−∆t
τkl

) ∀k 6= l

c′l = cl

[
1−

∑
k 6=l |c′k|
|cl|2

] 1
2

τkl = ~
|Vkk−Vll|

(
1 + α

Ekin

) (4.25)

where l is the current state, Ekin is the nuclear kinetic energy, ∆t is the

integration interval, α is an empirical parameter whose recommended value

is 0.1 Hartree. Ideally, the TSH method should be self-consistent, i.e. for

statistically converged ensembles the occupation and the average population

should coincide. Actually, self-consistency is jeopardized by the missing de-

coherence, and it can be restored with the mentioned correction. Recent

studies have demonstrated that occupation computed by means of the TSH

technique implementing the fewest switches algorithm in an adiabatic rep-

resentation approximately satisfies the detailed balance condition, which

means that the trajectories are distributed among the quantum states ac-

cording to the Boltzmann quantum populations.

Application in molecular photochemistry and photophysics

The largest field of applications of TSH method so far has been investiga-

tions of photoinduced physical and chemical processes in molecules. The

basic concept is illustrated in Figure 4.4. The molecule is initially consid-

ered in its ground state when it is photoexcited. After the photo-absorption,
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the molecule relaxes through the excited states (only one in the figure) and

can return to the initial conformation in the ground state (trajectory T1)

or form a new chemical product (trajectory T2). The scheme in Figure 4.2

fails to capture the intrinsically multidimensional character of this process.

Far from following a single reaction coordinate, the non-adiabatic dynamics

of molecules, as revealed by TSH simulations, deeply depends on collective

motions of all nuclear degrees of freedom. A main class of such investigations

involves photoinduced cis-trans isomerization of molecules [136, 137]. These

investigations have also revealed details of the photophysical processes, in-

cluding the possibility of activation of many different reaction pathways [138,

139]. Due to their importance in biology, the non-adiabatic dynamics of nu-

cleic acid fragments [140, 141] and of retinal [142, 143], the chromophore of

the visual protein Rhodopsin, have been widely studied in this PhD work.

Figure 4.4: Adiabatic (solid) and diabatic (dashed) potential energy curves for the ground
and first excited states along the isomerization reaction coordinate of a hypothetical
molecule A. Two trajectories (T1 and T2) hopping near the crossing are illustrated. Tra-
jectory T1 is a photophysical process ending in A. Trajectory T2 leads to isomerization into
the photochemical product B.
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5 Solvated nucleobasis: the gua-
nine monophosphate case

In this chapter the photophysics and photochemistry of water-solvated gua-

nine monophosphate (GMP) is characterized in order to elucidate the main

photo-processes occurring upon UV-light irradiation. The effect of the sol-

vent and of the phosphate group on the energetic and structural features

of this system are evaluated for the first time employing high-level ab initio

methods and they are here thoroughly compared to those in vacuo pre-

viously reported in literature and to the experimental evidence to assess

the extent to which they influence the photoinduced mechanisms. Solvated

electronic excitation energies of solvated GMP at the Franck-Condon (FC)

region show a red shift for the ππ∗La and Lb states, whereas the energy of

the oxygen lone-pair nπ∗ state is blue-shifted. The main photoinduced decay

route is promoted through a ring-puckering motion along the bright lowest-

lying La state toward a conical intersection (CI) with the ground state,

involving a very shallow stationary point along the minimum energy path-

way in contrast to the barrierless profile found in gas-phase, the point being

placed at the end of the minimum energy path (MEP) thus endorsing its

ultrafast deactivation in accordance with time-resolved transient and photo-

electron spectroscopy experiments. The role of the nπ∗ state in the solvated

system is severely diminished as the crossings with the initially populated La
state and also with the Lb state are placed too high energetically to partake

prominently in the deactivation photo-process. The proposed mechanism

present in solvated and in vacuo DNA/RNA chromophores validates the

intrinsic photostability mechanism through CI-mediated non-radiative pro-

cesses accompanying the bright excited-state population toward the ground

state and subsequent relaxation back to the FC region.

5.1 Introduction

A proper characterization of the monomeric chromophores is essential to un-

derstand the photoinduced events occurring in DNA/RNA from a bottom-up

67
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approach that can yield definitive answers regarding their role in photosta-

bility and photodamage [22]. This line of research embodies the main efforts

carried out by the research community over the last two decades , and even

though plenty of advances have been made there is still no definitive con-

sensus regarding the main deactivation routes present in the nucleobases .

Several decay paths have been identified both in vacuo and in solution and

assigned to a number of processes, ranging from a barrierless deactivation

through a ring-puckering motion of the bright ππ∗ state to a long-lived sig-

nal arising due to a possible crossing with a dark nπÏ
∗

state [144], as well as

an even longer- lived pathway widely attributed to the role of triplet states,

specially prominent in non-canonical nucleobases with heavy-atom substi-

tutions [145, 146, 147, 148]. In this study we focus our attention to water-

solvated guanine monophosphate (GMP), one of the canonical DNA/RNA

nucleobases. GMP has also been recently proposed to be an interesting

compound for nanotechnological applications due to its outstanding self-

assembly capability [23], especially in its quadruplex form, which has even

been located in DNA/RNA chains [24, 149]. Whereas, guanine in vacuo

has been extensively studied at a high-level multireference ab initio level

[25, 140, 26] as well as experimentally [150, 151], a lesser degree of scrutiny,

mainly at a density functional theory level [152, 153, 154, 155, 156], has been

considered on the effect of the phosphate group and the solvent on the pho-

toinduced processes occurring in this compound [157]. In the present work

we propose a theoretical assessment of the deactivation routes embody- ing

the main photophysical and photochemical features of GMP by employing

high-level ab initio multireference perturbation theory methods coupled with

a quantum-mechanical/molecular mechanics (QM/MM) approach, in order

to ascertain the role of the environmental perturbations in these type of sys-

tems as they remain relatively unknown [158, 159, 160]. Further knowledge

on the environmental effects affecting the photo-processes occurring in the

DNA/RNA chromophores upon UV-light irradiation will provide essential

information that can be properly translated to water-solvated DNA/RNA

systems such as those found in cells.

5.2 Computational details

5.2.1 MM dynamics and sampling

MM simulations were performed for GMP in water to obtain a represen-

tative starting geometry to be employed for all subsequent computations

and analyses. The MM dynamics calculations were carried out using the
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Amber-11 suite of programs exploiting the Parm99 force field [46, 161]. Ini-

tially, a cubic solvent box comprising 700 water molecules of explicit TIP3P

[97] with one Na+ counterion were considered. The entire system was then

heated from 0 to 300 K for 1 ns at constant volume and constant pressure

(1 atm), and then finally a simulation run for 100 ns recording the values

time-evolution (hereafter named snapshots) every 200 fs was performed. In

order to select the initial geometry we performed a cluster analysis based

on a Root Mean Square (RMS) coordinate deviation analysis on the gua-

nine moiety over all snapshots recorded along the MM dynamics run within

a 2.0Å difference using the MMTSB toolbox. We obtained three different

clusters, denoted a, b, and c in 5.1, with populations relating to the 93, 6,

and 1% of the total number of structures obtained along the dynamics run,

respectively. The selected initial structure was therefore chosen as the snap-

shot with the closest geometrical parameters to the centroid of the average

structures obtained in cluster A, being the most representative.

5.2.2 QM/MM calculations

QM/MM calculations were performed using the COBRAMM interface de-

veloped in our group [48, 162]. The boundary between the QM and MM

regions has been set so that all the guanine atoms are included in the QM

region, placing the link atom between the N9 of guanine and the carbon

of the sugar ring directly attached to the nucleobase (see 5.2). Such choice

of the boundary between the QM and MM regions is justified in terms of

charge redistribution on the nucleobase and its π-system in order to better

reflect the covalent link between guanine and the monophosphate group. A

three-layer approach (high, medium, and low) was used throughout ([48]):

guanine was included in the QM region (high layer, ball, and stick represen-

tation in figure 5.2), whereas the medium layer comprises the movable MM

atoms within a 10 Å radius surrounding the GMP moiety, the remainder of

the MM system being kept frozen during all optimization procedures in the

low layer. Equilibrium geometries and photoreaction paths [163] were deter-

mined by using fully unconstrained optimizations and minimum energy path

(MEP) computations on the relevant potential energy hypersurfaces by em-

ploying the intrinsic reaction coordinate (IRC) and optimization algorithms

as implemented in the Gaussian 09 program package [164] interfaced with

COBRAMM. CI optimizations were performed with the gradient projection

algorithm of Bearpark et al. (1994) [165] as implemented in COBRAMM at

the QM/MM level. Further details can be found in [166]. Energies and gra-

dients in the QM region were computed making use of the complete active
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space self-consistent field (CASSCF) and complete active space second-order

perturbation theory (CASPT2) methods [167, 168], as implemented in the

MOLPRO- 2010 [169, 170] and MOLCAS-7 [171, 172] suite of programs, re-

spectively. All gradient and non-adiabatic coupling calculations have been

performed with the CASSCF implementation of the MOLPRO-2010 code.

Subsequent CASPT2 calculations on the key structures obtained along the

optimizations and MEPs have been carried out as implemented in the MOL-

CAS package in order to correct the energy values due to the lack of dynamic

correlation present in the CASSCF method. This procedure is referred to as

the CASSCF/CASPT2 protocol, and has been successfully employed over

the years to tackle a variety of photoinduced phenomena from a theoretical

standpoint [163, 173, 174, 175]. The active space selected comprised the full

π space with the exception of the lowest occupied π orbital plus the three

lone-pair orbitals to provide a proper description of the nπ∗ states, thus

making 18 electrons in 13 orbitals. The removal of the lowest occupied π

orbital is carried out due to its occupation number being very close to two

and given that its removal does not affect the energy values obtained while

speeding up the computations. An imaginary level shift of 0.2 a.u. was em-

ployed in the perturbation step to avoid intruder states. Two different basis

sets were employed throughout: 6− 31G∗ was used in order to map the hy-

persurfaces at the CASSCF level whereas atomic natural orbital (ANO) type

[176] basis set with the large (ANO- L) primitive set C,N,O(14s9p4d3f) /

H(8s4p3d) contracted to O[3s2p1d]/C[3s2p1d]/N[3s2p1d]/H[2s1p] (ANO-L

321/21 hereafter) was employed in order to refine the single-point CASPT2

energies.

5.3 Results and discussion

The results are subdivided into three different sections: first, the main ge-

ometrical parameters of the ground-state Franck-Condon minimum of 9H-

guanine both in vacuo and in solvated GMP are presented, together with its

corresponding vertical spectra, drawing some conclusions on the influence

the solvent and phosphate group have on the relative position of the excited

states.

Next, the different minima and conical intersections describing the photo-

process are presented. Finally, a rationale of the photoinduced mechanisms

in GMP is drawn in conjunction with prev ous results and experimental data

acquired from literature, yielding concluding notes on the photophysical and

photochemical decay channels featuring in GMP and leading to its intrinsic

photostability.
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Figure 5.1: GMP and its different main conformations along the MM dynamics run obtained
through a RMS deviation cluster analysis. (AâC) depict the most important conformations
extracted from the molecular dynamics simulation (see text).

5.3.1 UV absorption at the Franck-Condon region

The optimized FC structure of GMP in solution (5.3) shows a strong resem-

blance with the in vacuo 9H-Guanine CASSCF/6- 31G∗ structure previously

reported in literature [25]. The table reported in figure 5.4 presents the main

geometrical parameters of both structures. As can be seen, bond lengths

and dihedral angles are analogous in giving rise to a planar structure. Small

solvation effects are noticed in the GS structure mainly due to its relatively

small dipole moment, providing slight shortenings in the C6-N1 bond dis-

tance in the presence of the solvent. A very shallow stationary point (La)sp,

which is not present in the gas phase, has been located at the end of the La
MEP featuring a pronounced elongation of the C2-N3 and a shortening of

the N3-C4 distances, similar to those featured by the conical intersections
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Figure 5.2: GMP and the three different QM/MM partitions defined in the present study. The
high layer treating the guanine moiety at the QM level (ball and stick representation), the
medium layer encompassing the movable MM water molecules and the phosphate group
enclosed within a 10 Åradius distance from GMP, and the low layer containing the remainder
of the MM region that is kept frozen throughout the calculations (see text).

between the La and GS states both in vacuo and in solution. The two CIs

located between the La and GS states do show pronounced differences due

to the solvent, yielding large elongations in the C2-N3 bond compared to

its in vacuo counterparts. This is mainly due to the large dipole moment

featured by the La state, which makes it a more influenced state upon sol-

vation. A similar behavior can be seen in the CIs between the La and Lb
states, inducing large deviations in the C4-C5, C5-C6 and especially pro-

nounced in the C6-O distance, where water-solvated GMP experiences an

elongation of 0.15 Å. The nOπ
∗ state minimum does not show significant

differences highlighting the scarce influence of the polar solvation on these

types of states. The CIs between nOπ
∗ and the polar ππ∗ La and Lb states

are profoundly influenced by the solvent comparing them to their in vacuo

counterparts, featuring large differences in the C4-C5 bond distance. These

differences are mainly attributed to the polar character of the ππ∗ La/Lb
states than to the effects on the nOπ

∗ state. Overall, it can be concluded

that solvation has an important effect on the polar ππ∗ La /Lb states, while

being negligible for the nOπ∗ state. These states feature excitations that

are prominently placed on the six-member ring of guanine featuring notice-

able changes in the structure upon solvation, whereas the five-member ring

remains relatively unchanged. A possible cause for this effect could lie on

the presence of the phosphate group, which is tied to the five-ring member
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Figure 5.3: Geometries and main geometrical parameters of the Franck-Condon structure
and excited-state stationary points characterized in GMP for its lowest-lying excited states
computed at the CASSCF/6-31G∗ level of theory.

and could be shielding that molecular moiety from the surrounding water

molecules thus mitigating its exposure as compared to the six-member ring

and justifying why the latter experiences such pronounced changes upon

solvation. The table reported in figure 5.5 contains the vertical excitation

energies at the CASPT2 level computed in the present study, together with

several other computations and experimental values reported in literature.

We have used Plattâs nomenclature [177], where La represents the ππ∗ ex-

cited state characterized by the largest contribution of the configuration

HOMO (H) → LUMO (L) to the CASSCF wave function, whereas Lb iden-

tifies the ππ∗ excited state with a predominance of H → L+1 and H-1 → L

configurations. By inspection of the table in figure 5.5, it can be readily seen
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that there is a qualitative difference in the relative order of the lowest-lying

excited states in vacuo and in solution: both cases feature the ππ∗ La state

as the energetically lowest-lying excited state, at 4.93 and 4.77 eV respec-

tively, but while in vacuo S2 has nOπ
∗ nature (5.54 eV, involving the oxygen

lone pair of the purinic base), in solution S2 is the ππ∗ Lb state, placed at

5.44 eV. This effect has been widely reported in the literature being related

to a bathochromic effect [178], with the nOπ
∗ featuring a dipole moment of

5.69 D (3.51 D in vacuo) being less stabilized than the ππ∗ Lb state (7.96

D, 4.92 D in vacuo) as it can be also noticed by looking at their change in

dipole moment.

Figure 5.4: Bond distances (in Å) characterizing the key structures involved in the photoin-
duced events of GMP upon UV-light irradiation.

The solvent therefore affects the absorption spectra prominently at the

FC region by blue-shifting the nOπ
∗ state by 0.23 and red-shifting the ππ∗

Lb by 0.33 eV with respect to the gas-phase, a change comparable to those

previously reported in other QM/MM studies in solution [153, 178]. It is

worth noting that the oscillator strengths associated to the transitions to

the La and Lb states are also affected by the effect of the solvent. Whereas

La features as the brightest lowest-lying excited state in the gas phase and

the Lb state presents a slightly smaller oscillator strength (0.158 and 0.145

respectively), in solvent La and Lb display a reverse order in the values

for the oscillator strength associated to their transitions (0.09 and 0.17 re-

spectively), this being in agreement with the experimental data reported

by femtosecond broad-band transient spectroscopy [152]. The effect of the

basis set on the excitation energies has also been studied by employing both
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6-31G∗ and ANO-L 321/21 basis sets. The 6-31G∗ CASPT2 computations

report values of 4.77, 5.44, and 5.77 eV for the La , Lb , and nOπ
∗ tran-

sitions respectively, whereas the ANO-L yields absorption energy values of

4.50, 5.10, and 5.71 eV for the La , Lb , and nOπ
∗ states respectively, con-

sistent with those reported experimentally [152], which place the absorption

maximum of La at 4.50 eV. The table in fig. 5.5 also reports several theoret-

ical approaches found in literature employing different methods to simulate

solvated GMP. As can be seen, more sophisticated DFT/MRCI methods

agree qualitatively with the values here reported at the CASPT2 level of

theory, yielding values within 0.33 and 0.02 for the La and Lb states re-

spectively with respect to the CASPT2/ANO-L values here obtained, and a

slight energetic deviation is also found when comparing to the values com-

puted at a TDDFT level. This small difference present in TDDFT that

results employing a polarization continuum model (PCM) (see Table 5.5)

could also be due to the fact that [152] used a methylated guanine to model

the effect of the phosphate group whereas here the phosphate group is ex-

plicitly included even if just at the MM level. On overall we can conclude

that the absorption values reported here at the CASPT2/ANO-L level are

consistent with the experimental data and with the highest-level theoretical

estimates present in the literature, thus highlighting the capabilities of the

CASSCF/CASPT2 protocol to treat excited states in a balanced manner

[179] and its usefulness for mapping photochemical reaction paths [163].

5.3.2 Excited-state evolution

The excited-state evolution is here tracked by means of static approaches

through excited-state optimizations and the characterization of the conical

intersections representing the crossings among the energetically lowest-lying

excited states, that are the ultimate accountables for the deactivation photo-

process. Additionally, the MEPs connecting the initially accessed states and

subsequent photoinduced events have been mapped making use of the IRC

technique. The lowest-lying excited state is the ππ∗ La state, which is ex-

pected to be the main spectroscopic state due to its lowest- lying position and

relatively large oscillator strength. This state is generally assumed to present

an easily accessible CI along its relaxation pathway toward the ground-state

characterized by a ring-puckering motion (see 5.6) widely featured in the

DNA/RNA nucleobases [180] in vacuo. This profile is slightly altered in

the presence of polar environments as it has been previously reported for

other purine nucleobases [158], where a shallow stationary point (La)sparises

along the MEP close to the CI with the ground state being placed at 1.15 eV
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vertically and adiabatically at 3.30 eV from the ground state (see 5.7). Two

different CIs have been characterized in the vicinity of this stationary point,

one optimized directly in solvent corresponding to the minimum energy con-

ical intersection (MECI) also reported by Serrano-Andres et al. (2008) [25],

and another relating to the CI found in the same study along the MEP in

vacuo, which we have tentatively named (La/GS)CI−1 and (La/GS)CI−2 in

the present study, respectively.

Both CIs as well as the (La)sp are characterized by ring-puckering struc-

tures in the A6 cycle yielding slight bond-length alterations (C2-N3, N1-C2,

N3-C4, and C4-C5) as compared to the FC structure and featuring promi-

nent N1-N-C2-N3 dihedral angle distortions at 133◦ , 132◦ , and 140◦ for the

(La/GS)CI−1 , (La/GS)CI−2 , and (La)sp structures, respectively. These

distortions are quantitatively different to those reported in vacuo, stress-

ing out the importance of the solvent where the (La/GS)CI−1 presents a

143◦ dihedral angle as compared to its 133◦ solvated counterpart, together

with slightly pronounced bond-length differences as can be seen in the Table

reported in figure 5.4.

Both CIs here characterized display very similar structures (see figure

5.6) and charge distributions very close to those found in the gas phase, pre-

senting an inversion in their energetic order in solution being (La/GS)CI−1

the energetically lowest-lying adiabatically at 3.31 eV, (La/GS)CI−2 being

placed 0.3 eV higher in energy and 3.60 eV adiabatically from the FC region.

Two different CIs connecting the ππ∗ La and ππ∗ Lb states have also been lo-

cated. Direct CI optimization leads to (Lb/La)CI−2, its geometry presenting

a deformation near the N9- C8-N7 angle with respect to the ground state.

The bond lengths suffer from large distortions, observing a shortening of the

N1-C6, C5- N7, C4-N3, N3-C2, C6-O, and C2-N bonds, and an increase in

the length of the remaining bonds with respect to the FC region (see figure

5.6). This CI is placed at 7.62 eV vertically from the FC region, which is

higher in energy than both ππ∗ La and ππ∗ Lb vertical excitation energies,

placed at 4.77 and 5.44 respectively, thus hinting toward a sloped CI pro-

file preventing their non- adiabatic interaction. A second CI, (Lb/La)CI−1 ,

obtained along the Lb MEP computed within a 4-in-4 active space to avoid

excessive wave function mixing, has been located being placed 5 eV adia-

batically from the FC region. This CI presents geometrical similarities with

its in vacuo counterpart and provide an accessible channel to funnel the

initially populated Lb state down to La . Further attempts to optimize the

Lb state towards a possible minimum have been fruitless due to the large

wave function mixing and root flipping problems experienced along the op-

timization procedure, preventing us to obtain further information on this
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Figure 5.5: Vertical absorption energies (∆E, in eV), oscillator strengths (f) and dipole
moments (µ, in Debye) computed at the FC region, together with previous theoretical and
experimental data.

specific state. As previously stated, nOπ
∗ represents the third energetically

excited state for the GMP in solvent. The optimized nOπ
∗ minimum found

in solvent is prominently characterized by an elongation of the C6-O bond

distance with respect to the ground state. The table in figure 5.4 shows

the main differences in bond lengths, where the C6-O bond is elongated in

this minimum from 1.22 Åat the FC region to 1.41 Å. The minimum of this
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Figure 5.6: GMP geometries and main geometrical parameters of the characterized conical
intersections between the lowest-lying excited states computed at the CASSCF/6-31G∗

level of theory.

excited state in solvent is very similar to the one reported in vacuo [25],

as would be expected given the small effects provided by the solvent on n∗π
excited states. Energetically it is placed 3.97 eV adiabatically and 2.67 eV

vertically with respect to the ground state (see figure 5.8), which constitutes

a stabilization of 1.8 eV from its initial value at the FC region. We have

also located the CI between the states nOπ
∗ and ππ∗ La, (nO/La)CI , its

geometry presenting a planar structure like the ground state, but showing

an elongation of the C6-O bond and a shortening of the C6-C5 bond. We

observe similarities between this geometry and that of the CI optimized in

vacuo, as they both present the same kind of geometrical distortions given

the small solvent effects in the nOπ
∗ state, yielding a relative energy of 4.90

eV with respect to the FC region. The CI connecting the nOπ
∗ and ππ∗

Lb states, (nO/Lb)CI , has also been located, featuring a planar structure

and differences in the bond lengths in the six-member ring, in particular in

the differences in the N1-C2, N1-C6 bonds. The differences observed in the

geometries of the excited state minima and of the different CIs characterized
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both in vacuo and in solvent highlight the importance of the solvent that

is considered explicit in our calculations, together with the explicit pres-

ence of the ribose and phosphate groups on GMP, providing more accurate

estimates to relate to the photoinduced events in the cellular system.

5.3.3 Photophysics and photochemistry of GMP: elucidating

its intrinsic photostability

Figure 5.9 features a scheme with the tentative photo-processes occurring

upon UV irradiation in GMP based on our present computations and the

theoretical and experimental data available in literature. Experimentally,

time-resolved transient absorption in solution by Karunakaran et al. (2009)

[152]suggest either bi- or triexponential decay depending on the spectral

region measured, providing τ1 =0.25ps, τ2 = 1.0ps,and τ3 = 2.5ps for the

270â400 nm region in the non-protonated GMP at neutral pH. [152] justify

these ultrafast signals in terms of TDDFT calculations due to ring-puckering

CIs between the ππ∗ La and GS states, in accordance to what was previ-

ously proposed in vacuo by Serrano-Andres et al. (2008) [25] on the basis

of CASSCF/CASPT2 computations. Molecular dynamics simulations by

Serrano-Andres et al. (2008) [25] proposed that the ultra- fast decay from

the ππ∗ La state could occur already within the first 100 fs, an assump-

tion that has been challenged by Barbatti et al. (2011) [26], pushing the

timescale towards the 500 fs mark. (Lan et al., 2009) [141], on the other

hand, support a biexponential decay based on their MD simulations where

they obtain a faster 190 fs and a slower 400 fs decays through two different

CIs between the ππ∗ La and GS states, thus highlighting the complex pro-

cess under study and the difficulty to simulate it coherently [181]. The most

recent experimental data to our knowledge is based on the photoelectron

spectroscopy of GMP both in vacuo and in solution [151], yielding a biex-

ponential decay of τ1 = 50fs and τ2 = 600fs in vacuo and τ1 = 120fs and τ2

= 680 fs in solution, which reveals a striking similarity among the two differ-

ent set of values as they are within experimental error and therefore provide

evidence of the negligible role played by the solvent in the photoinduced

decay paths present in this system. This biexponential decay is obtained

through a 4.66 eV pump, which also suggests the possibility of only probing

those kinetic processes undergone after direct ππ∗ La population, whereas

the time-resolved transient data by Karunakaran et al. (2009) yields a third

exponent related to a slower timescale possibly arisen through an initial pop-

ulation of the ππ∗Lb state. Our present results point toward an ultrafast

deactivation along the La MEP characterized by a ring-puckering motion
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centered in the C2 atom, which brings the excited-state population to inter-

act non-adiabatically with the ground state, funneling down the population

that is further relaxed to the FC region.

Figure 5.7: CASPT2 energies of the ground (GS) and lowest-lying singlet excited states
(ππ∗ La, ππ∗ Lb, and nOπ∗) of the GMP from the FC geometry and along the ππ∗ La

CASSCF MEP.

Figure 5.8: CASPT2 energies of the ground (GS) and lowest-lying singlet excited states
(ππ∗ La, ππ∗ Lb and nOπ

∗) of the GMP from the FC geometry and along the nOπ
∗

CASSCF MEP.

This kind of process has been widely attributed to the DNA/RNA nu-

cleobases and it is permanently linked with their intrinsic photostability[22]

and therefore extends to the photostability of the genomic material. Our

calculations in the presence of the solvent and the sugar and phosphate
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groups reveal a very shallow stationary point at the end of the MEP right

before reaching the intersection seam (see figure 5.7), which has also been

previously documented in other nucleobases at a TDDFT level of theory to

be related to a transition state with an imaginary reaction coordinate that

drives the system towards the ring-puckering CI [182]. This stationary point

is explained in terms of the planarity of the ππ∗ potential energy hypersur-

faces of all nucleobases [180, 156], and it is expected to be overcome in order

to reach the CIs with the ground state in an ultrafast manner. In contrast,

we have shown recently ([158, 166]) that the corresponding internal conver-

sion path in adenine is controlled by a larger barrier, which may explain its

longer lifetimes. Two different CIs have been located between the ππ∗ La
and GS states, namely (La/GS)CI−1 and (La/GS)CI−2.

These two CIs are analogous to those found in vacuo by [25] but they

are characterized by an energetic inversion due to the embedding effect of

the solvent. Both are expected to belong to the same intersection seam

given their similar structures, and both are considered to be accessible from

the La stationary point previously characterized. (La/GS)CI−1 , being the

lowest-lying energy is expected to embody the fastest decay route, relating

to the τ1 = 0.25 ps recorded through time- resolved transient and τ1 = 120 fs

in time-resolved photoelectron spectroscopy experiments. This assignment

is analogous to that previously reported for 9H-Guanine in vacuo, and sup-

ports recent experiments reporting analogous excited-state decays for GMP

in gas-phase and in solution [151]. The second conical intersection with the

ground state, (La/GS)CI−2 , might be responsible for the second exponen-

tial measured at τ2 = 1.0 ps and τ2 = 680 fs in time-resolved transient and

photoelectron spectroscopy, respectively, given its higher-lying energetic po-

sition and a relatively small barrier of 0.3 eV to be overcome in order to

access it once reaching the intersection seam. Nevertheless, the existence of

another CI between the La and GS states not characterized in the present

contribution could better explain that second lifetime, which will be related

to the La surface as it has been recently reported experimentally [151]. These

assignments agree with the MD studies by [141], reporting two different de-

cay routes with their associated timescales to two distinct CIs between the

ππ∗ La and the ground state, and are in line with other theoretical CASPT2

and TDDFT studies that point toward the La state as the responsible for

both ultrafast decay timescales. The ππ∗ Lb state is predicted to be involved

in the photoinduced events being related possibly only to the longest-lived

τ3. This is explained in terms of an initial population of the Lb state, which

presents a sizable oscillator strength, and subsequent funneling of the pop-

ulation toward the La state mediated by the (Lb/La)CI−1, placed at 5
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Figure 5.9: Scheme of the photoinduced processes occurring in solvated GMP upon UV-
light irradiation. The energetic values (in eV) and the different crossing points and minima
depicted refer to the CASPT2 computations carried out in the present study. The associated
time constants marked in yellow have been taken tentatively from the ultrafast pump-probe
transient absorption experiments reported by Karunakaran et al. (2009)[152]. Three dif-
ferent decay channels have been assigned to the experimental evidence: τ1 refers to the
ultrafast decay path from an initially accessed ππ∗ La excitation to the ring-puckering CI
with the GS, τ2 to the initial population of the ππ∗ Lb state and subsequent non-adiabatic
population transfer to the La state finalizing in the CI between La and GS, and τ3 that
is tentatively assigned mainly to deactivation processes along the Lb state (See text for
details).

eV along the Lb relaxation pathway. The second CI characterized between

Lb and La states, (Lb/La)CI−2, is expected to be irrelevant to the photo-

process due to its high- lying energetic position preventing its accessibility.

The lone-pair excited state, nOπ
∗, is blue-shifted in solution as has been

already mentioned above. Its elevated vertical absorption energy prevents

it to be one of the main spectroscopic states, yet its close-lying position

to the absorbing ππ∗ Lb state facilitates a possible population of this state

and subsequent relaxation toward its minimum, (nOπ
∗)min. This minimum

is placed at 3.97 eV adiabatically and 2.67 eV vertically from the GS, and
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could be partly responsible of the longest-lived signal reported experimen-

tally at τ3 = 2.5ps or at τ3 = 167ps at low pH,given that such nπ∗-mediated

processes have been already characterized experimentally to be close to the

100 ps timescale on pyrimidines both in vacuo and in solution [144]. The

present study elucidates the photoinduced events in GMP in terms of an

ultrafast decay along the main spectroscopic and initially accessed ππ∗ La
state characterized by a ring-puckering motion, which would cover the ex-

perimental timescales τ1 and τ2 through different CIs with the ground state,

whereas the longest-lived component would be attributed to the decay routes

mediated through the ππ∗ Lb and, to a minor extent, to the nOπ
∗ state.

5.4 Conclusions

The present study encompasses a photophysical and photochemical ap-

praisal of water-solvated GMP by means of theoretical multireference per-

turbation theory QM/MM techniques. An initial MD simulation has been

carried out in order to characterize the geometrical parameters of the FC

region. The vertical excitation energies have been computed and compared

to recent data found in literature and to the results obtained in vacuo, high-

lighting the importance of the environment yielding qualitative differences

for the ππ∗ La and ππ∗ Lb states being red-shifted and for the nOπ
∗ state

being blue-shifted as compared to their gas-phase counterpart. The ππ∗ La
state is predicted to be the main spectroscopic state driving the ultrafast

deactivation processes occurring in GMP upon UV-light irradiation based

on a ring-puckering motion that enhances its non-adiabatic interaction with

the ground state in a radiation- less manner. A shallow stationary point

toward the end of the ππ∗ La MEP has been characterized, together with

two different CIs with the ground state that help rationalize the two fastest

decay times measured experimentally. Upon initial Lb absorption, two CIs

between the ππ∗ Lb and La states have also been located, one of them along

the Lb decay path pointing towards a population funneling down to the La
state and another being too high in energy to contribute prominently in

the photo-process. The CIs connecting the nOπ
∗ state and the ππ∗ Lb and

La states have also been characterized along its relaxation route, yielding a

minimum in the nOπ
∗ state expected to emit vertically at 2.7 eV. Both ππ∗

Lb and nOπ
∗ are suggested to contribute to the longest-lived experimental

timescale, the latter providing a lesser contribution given the relatively fast

kinetic timescale and the long-lived timescales expected in nπ∗ fluorescent

states. Upcoming QM/MM dynamics simulations are expected to shed some

more light on the photoinduced events occurring in water-solvated GMP and
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its specific decay timescales in order to provide a more specific molecular

counterpart to the experiment and better explain the photochemical and

photophysical processes resulting in the intrinsic stability of the genomic

material.



6 Photoactivity of retinal protonated
Schiff bases in solvent

Retinal protonated Schiff bases (RPSBs) are polyene chromophores respon-

sible for light reception in opsins, the G protein-coupled receptors (GPCR) of

the retinylidene protein family. The radiationless ultrafast (sub-ps timescale)

photoisomerization of the retinal chromophore in Rh is the primary event in

the process of vision and a paradigm for fundamental studies of the molec-

ular basis of vision in vertebrates. Actually, the understanding of the in-

trinsic photophysical and photochemical properties of retinal chromophores

and of the environmental effects of the surroundings (proteins, solvent, or-

ganicâinorganic supports,etc.) is crucial for the design of tailored and high-

performance photo-sensitive devices. The discrepancy between solution and

protein behavior has been largely attributed to the complexity of the protein

pocket with its three-dimensional arrangement of amino acids resulting in a

unique steric and dielectric environment [6, 7]. The tunability of absorption

spectra, isomerization yield, and reaction speed makes retinal the ideal can-

didate for investigations aiming at disclosing the molecular and structural

origins of efficient photochemistry [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. As

a consequence, retinal has become a paradigm for understanding the ori-

gins of activation and suppression of ultrafast relaxation processes, which is

essential for the rational engineering of photoreactivity.

6.1 Introduction

The drastically different photo-reactivity of the retinal chromophore in so-

lution compared to the protein is nowadays poorly understood. It has been

recently demonstrated that the addition of a methyl group to the C = C

backbone of an all-trans retinal protonated Schiff base may accelerate the

electronic decay in solution. In particular, methylation at position C10

of the polyene chain can speed up by an order of magnitude the excited

state radiationless decay of the solvated all-trans retinal protonated Schiff-

base (RPSB), the chromophore of the proton pump bacteriorhodopsin (bR)

85



86 Chapter 6

that converts light into chemical energy. While in the protein environment

the photoexcited ânativeâ chromophore undergoes internal conversion via

a trans-to-cis isomerization along the C13-C14 double bond in the subpi-

cosecond time scale (approx. 0.5 ps) and with 0.64 quantum yield [142],

in solution the photoisomerization produces the 11-cis isomer and it is sig-

nificantly slower (ca. 4 ps) and less efficient (0.16 quantum yield) than in

bR. However, solvated RPSB with a methyl group at position C10 (10Me-

RPSB) shows recovering of the protein-embedded excited state with sub-ps

dynamics and production of the 11-cis isomer with low quantum yield (0.09).

It is apparent that the addition of a methyl group to the retinal backbone

(to the C10 position) results in protein-like photophysics and dynamics for

the all-trans RPSB in solution. At the same time, this modification has the

advantage of leaving the absorption spectrum unchanged, thus leading to

an overall minimal perturbation of the native system.

Figure 6.1: Native and 10-Me-RPSB molecular structures

The work below provides a rational for the experimental results and the

effects of C10-methylation that are behind the observed protein-like speed

up in the retinal photoisomerization and non-radiative decay. Moreover, the

modelling of such systems in solvent, due to the great number of molecules

and the complex architecture created by the solvent around the chromophore

are extremely challenging. The following study is also aimed at formulating

a general protocol and computational setup suitable for the study of complex

systems in solvent by using hybrid QM/MM methods.
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6.2 Computational details

6.2.1 MM dynamics and sampling

MM simulations were performed both for the native retinal and the 10-

methylated retinal in methanol (the same solvent used in the experiments)

to obtain a representative starting geometry to be employed for all sub-

sequent computations and analyses. The MM dynamics calculations were

carried out using the Amber-11 suite of programs making use of the Parm99

force field [46, 161]. Initially, a cubic solvent box consisting of molecules

of explicit methanol was designed. A molecule of the two forms of retinal

had previously been optimized in vacuum at a CASSCF level with an active

space of 12 electrons in 12 orbitals (the full p orbitals of the retinal were

involved in the a.s.). After the optimization of S0, also S1 was optimized in

vacuum and the geometry of S1 (kept frozen) was used for the MM dynam-

ics. The chromophore charges exploited for the MM dynamics are those

computed at QM level for excited state S1. The entire system was then

heated from 0 to 300 K for 1 ns at constant volume and constant pressure

(1 atm), and then finally a 50-ns simulation run was performed recording

the snapshots every 200 fs. After an energy analysis, the snapshot charac-

terized by the lowest potential energies was selected as the initial structure

for the following calculations. The MM dynamics were conducted using the

geometry of the S1 state, instead of the ground state, to stabilize the ABL

geometry (see the discussion below) of the retinal.

6.2.2 QM/MM calculations

QM/MM calculations were performed using the COBRAMM suite [48]. A

three-layer approach (high, medium, and low) was used throughout [48]:

almost all the RPSB was included in the high QM layer (figure 6.2), whereas

the medium layer included the movable MM atoms that comprise all atoms

within a 10 Åradius surrounding the retinal (resulting in 8 molecules of

MeOH overall). The remainder of the MM system was kept frozen in the

low layer during all optimizations, The boundary between the QM and MM

regions has been set in order to include all the retinal atoms of the polyenic

chain in the QM region, while the alkyl moiety of the B-ionon ring is placed

in the MM medium layer: the link atoms employed for that are displayed

Equilibrium geometries and photoreaction paths [163] were determined

by using fully unconstrained and constrained optimizations. CI optimiza-

tions were performed with the gradient projection algorithm by [165] as

implemented in COBRAMM at the QM/MM level as described in the next
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Figure 6.2: Retinal-containing box with the QM/MM partition scheme

chapter. The QM gradients employed in geometry optimizations and dy-

namics (including the non-adiabatic coupling terms) were computed mak-

ing use of the complete active space self-consistent field (CASSCF) ap-

proach as implemented in the MOLPRO- 2010 [169, 170], while energies

on top of the optimized geometries and MEP points were refined to ac-

count for dynamic correlation by single point complete active space second-

order perturbation theory (CASPT2) calculations [167, 168] employing the

MOLCAS-7 [171, 172] suite of programs. The ground and excited-state en-

ergies of the considered molecular systems were computed by using mul-

ticonfigurational second-order perturbation theory through the CASPT2

method.23 The 6-31G∗ basis set was employed throughout the work. The

active space comprises the full π systems, which represents a total of 12 π

electrons distributed among 12 π orbitals. The geometry optimizations for

the ground and the excited states were performed at the CASSCF(12,12)

level.26 Both single-root(for S0) and state-average three-roots (weights 1-1-

1 for S1) CASSCF(12,12) calculations were used. Excitation energies were

computed at the CASPT2//CASSCF/6-31G∗ level using state-average of

three roots wave functions. To minimize the influence of weakly interacting

intruder states in the state-average PT2 calculations, the so-called imaginary

level-shift (of 0.2 a.u. )technique was employed.

Non-adiabatic dynamics on S1 have been carried out using the CO-

BRAMM package with a 1− fs time step. An active space consisting of 12

electrons in 12 orbitals has still been used, with the same QM/MM setup

used for previous calculations. The dynamics have been propagated dis-
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abling surface hopping. More details on the dynamics will be discussed

later. A velocity Verlet algorithm has been implemented in order to propa-

gate trajectories on S1, at constant energy, by equally weighing the first two

roots in a state average CAS(12/12) procedure.

6.2.3 The choice of the medium layer

The choice of the number of the molecules of solvent to be included into

the medium layer has been non-trivial since suttle changes in the hydrogen

bonding network around the chromophore may induce an energy disconti-

nuity in the MM contribution, thus preventing direct comparison between

adjacent optimized points along a MEP. Indeed, if a large number of MM

solvent molecules move around the retinal, they influence the total energy of

the system that can thus display significantly different values even for simi-

lar structures. To select the minimum number of movable solvent molecules

that should be eventually considered in the medium layer, a preliminary

MEP mapping have been carried out around the C10-C11-C12-C13 dihe-

dral angle employing a very large movable layer of methanols around the

chromophore. Molecules of solvent around the retinal in the various points

of the MEP have been analyzed and compared in order to spot those which

move the most. Figure 6.3 shows the solvent and the chromophore geome-

tries of two superimposed points of the MEP; only some solvent molecules

(those stressed in yellow) are those which move the most. Such analysis

has been carried out both for the native retinal and for the methylated one

and has demonstrated that only 7-8 molecules of solvent are those which

undergo the most significant spatial variations: such molecules have been

selected and included in the Medium Layer for the subsequent calculations.

6.3 RPSB and 10-Me RPSB: ground and excited

state optimizations and MEP calculations

The main geometrical parameters for the optimized ground state minimum

of the RPSB and 10Me-RPSB systems in methanol are reported in Table 6.1.

The ground-state equilibrium structure (S0-Min) of the RPSB and 10Me-

RPSB show the same basic features: bond alternation is the one expected for

a ground-state polyene and the main chain includes five conjugated double

bonds. Note that these structures are characterized by geometrical param-

eter value very similar to that observed and computed in vacuum at the

CASSCF (12,12) level [183, 184]: the effect of the solvent does not affect
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Figure 6.3: Solvent and chromophore geometries of two superimposed points of the MEP.
The molecule stressed in yellow are those which move the most

Table 6.1: Bond lengths for retinal in vacuum and in solvent (MeOH)

C6-C7 C7-C8 C8-C9 C9-C10 C10-C11 C11-C12 C12-C13 C13-C14 C14-C15 C15-N16

Vacuum 1.49 1.35 1.47 1.36 1.45 1.36 1.46 1.37 1.43 1.29

RPSB

in MeOH
1.50 1.35 1.48 1.36 1.47 1.36 1.47 1.36 1.45 1.28

10-Me-RPSB

in MeOH
1.50 1.35 1.48 1.37 1.48 1.36 1.47 1.36 1.44 1.28

the ground state structures. Moreover, the substitution of a âCH3 in stand

of an hydrogen does not influence the alkylic chain structure.

The reported experimental values of lambda max absorption in methanol

for RPSB and 10Me-RPSB are 2,78 eV and 2,69 eV respectively. The theo-

retical values calculated, after CASPT2 correction, are 2,65 eV and 2,58 eV,

with a difference between the measured value and the calculated one equal

to 0,13 eV for the native retinal and to 0,11eV for the methylated one. It

is apparent that the QM/MM models and level of theory used could well

reproduce the corresponding vertical excitation energy [185].

Upon photoexcitation, the all-trans retinal polyene chain with alternate

single/double bonds in the ground state undergoes bond inversion, allow-

ing twisting along C-C single bonds (i.e. the ground-state double bonds)
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and thus facilitating the trans-cis isomerization. Therefore, the bond-length

alternation (BLA) associated with the excited state minimum would affect

the retinal photoisomerization rate and efficiency. The retinal BLA is nu-

merically defined as the difference between the average distances of single,

approx. 1.45 Å, and the double, approx. 1.35 Å, bonds in the chain, with

values close to zero indicating the presence of bond delocalization and values

close to 0.1 corresponding to fully alternated bonds.

This outcome (see figures 6.4 ) suggests that the photoinduced bond

relaxation in the solvated 10Me-RPSB reaches an excited state minimum

with alternate bond-lengths (ABL), from which bond-twisting can easily

lead to a twisted CI. In contrast, BLA fluctuations of RPSB suggest that

the native chromophore, after the rapid increase of the ground-state BLA

and the initial bond-stretching fluctuations, remains trapped in an excited

state minimum with even bond-lengths (EBL). The clear difference between

the bond-length alternations in 10Me-RPSB and RPSB explains why only

the 10-methylated chromophore can very rapidly (¡1ps) reach the CI seam.

The S1 minimum along the CASPT2//CASSCF potential energy surface

(PES) of both native and 10-methylated all-trans retinals have been char-

acterized. Geometry optimizations starting from the FC region confirmed

the sizeable effect of the 10-methylation on the S1 PES: an ABL minimum

is obtained for the 10Me-RPSB, in analogy with native RPSBs in proteins

[13] and in gas-phase, while an EBL structure is found for the native RPSB.

The resulting two different minima arise from distinctive linear interpola-

tion between the bond-alternated FC geometry, EBL and the bond-inverted

ABL structure.

Figure 6.4: a) MEP calculated along the BLA, b) Mulliken charges distribution on RPSB and
10-Me RPSB on the FC geometries.
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Figure 6.4 shows the CASPT2 corrected C-C bond relaxation MEP of

both RPSB and 10Me-RPSB, calculated along the BLA coordinate con-

necting the FC and the ABL geometry on the S1 surface. In contrast with

the RPSB energy profile, showing the presence of an activation barrier (of

ca. 7 kcal/mol) connecting the EBL and the ABL minima, with the for-

mer being more stable than the latter by 3.2 kcal/mol, the 10Me-RPSB

MEP is completely flat in this region. Thus, mapping the MEP of the C-C

bond relaxation already provides a rationale for the different sub-ps excited

state dynamics observed for the solvated retinals: the native RPSB stretch-

ing coordinate is characterized by a local minimum with even bond lengths

(EBL, Figure 6.4a), from which the complete bond-inversion requires over-

coming of a significant activation barrier, whereas the excited state potential

energy surface of 10Me-RPSB involves a flat pathway for bond-inversion, di-

rectly leading to the photoactive bond-inverted ABL structure. The ABL

minimum has a larger charge-transfer (ionic) character with respect to the

EBL structure, since the C-C bond inversion favors the transfer of the pos-

itive charge from the protonated nitrogen atom towards the β-ionone ring.

The partial (Mulliken) charge changes induced by the 10-methylation are

reported in Figure 6.4b, indicating how the presence of the methyl group

increases significantly (from 22 to 48%) the intramolecular charge trans-

fer (ICT) that moves the positive charge from the SB side (C12âN) to the

β-ionone ring (C5âC11) in the excited state. Thus, the presence of the

electron-donating methyl group in position C10, i.e. in the molecule seg-

ment where the positive charge is transferred upon photoexcitation (from

C5 to C11), is the source of the ABL structure stabilization along the 10Me-

RPSB MEP. The occurrence of two possible excited state minima along the

S1 surface has been previously detected for Rhodopsin mimics [186] and

it is corroborated by the observation of two stimulated emissions (SE) in

time-resolved experiments of RPSB and 10-Me-RPSB. As showed in Figure

6.4a, the QM/MM calculations provide theoretical SE values in good agree-

ment with experimental data, with differences between only 1-4 kcal/mol.

The overall appearance of the double emissions in the experimental time-

resolved pump-probe maps is partially affected by the concurrent (and op-

posite sign) signals associated with S1-SX excited state absorptions [185].

Likewise, QM/MM calculations indicate the presence of excited state ab-

sorptions in both the native and the 10-methylated retinals from either the

ABL or the EBL S1 minima, with highest oscillator strengths around 0.5-

0.8, less than half of those of the S1-S0 emissions (around 2.0). In an effort

to explore the consequences of the methylation at C10 on the retinal pho-

toisomerization, other than a pure inductive electronic effect that stabilize
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the ABL excited state minimum, the MEP of the all-trans to 11-cis photoi-

somerization, described by the clockwise rotation along the torsional angle

θ1 have been computed. The photoisomerization MEP of solvated RPSB

and 10Me-RPSB is showed in Figure 6.5. The calculated energy profiles

clearly indicate that, once the ABL minimum is reached (second point of

the path), the clockwise twisting along the torsional angle θ1 is barrierless

for both RPSBs, and a CI region is reached after a rotation of ≈ 70◦. How-

ever, the photoisomerization pathways exhibit a significant difference in the

topography of the CI region: the 10Me-RPSB MEP shows a steep downhill

energy profile while approaching the peaked CI seam, which is typical of

fast and effective photoisomerization processes, whereas the MEP of native

RPSB is associated with a sloped CI [187, 188], indicating an inefficient

S1âS0 population transfer and thus a slower excited state decay.

Figure 6.5: MEP at CASPT2 level around the C9-C10-C11-C12 dihedral angle for the 10-Me
RPSB (left) and native RPSB (right).

In fig. 6.6 we can observe the variation of the dihedrals of the alkyl chain

of the retinal along the MEP previously discussed. For the methylated, the

mechanisms that lead from the FC to CI entail that the rotation of the

C10- C11- C12- C13 dihedral be combined with the rotation of the C8- C9-

C10- C11 dihedral. Instead, for the native the mechanisms entail that the

rotation of the C10- C11- C12- C13 dihedral imply also the rotation of the C9-

C10- C11- C12 - C13 and C12- C13- C14- C15 dihedrals. The mechanism here

observed will be discussed and compared below with the results obtained

from QM/MM dynamics.

MEPs around the C8- C9- C10- C11 and C12- C13- C14- C15 dihedrals,

both for the native and the methylated have also been done. It can be

observed that they are essentially flat in the case of methylated, and so is

the path to the conical intersection. On the contrary, for the native the
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Figure 6.6: Variations in the dihedral along the MEPs shown in Figure 6.5

conical intersection is sloped in this case also.

Figure 6.7: MEP at CASPT2 level around the C8-C9-C10-C11 and C12-C13-C14-C15 di-
hedrals for 10Me-RPSB (left), and for RPSB (right).

6.4 QM/MM dynamics

Non-adiabatic dynamics have been carried out at 0K both on the native

and methylated retinal by using the COBRAMM packages on S1 with a

time step of 1 fs. In such dynamics, unlike the MEP, the movable medium-

layer solvent molecules have been assumed to be those located within a 10-

Angstrom radius around the retinal. Such choice has been made to ensure

that all the retinal atoms remain surrounded by the solvent during all the

simulation despite the rotation of the alkyl-chain dihedral occurring during

the simulation.

Observing the two trajectories there are differences between the pho-

toisomerization process of PSB and 10Me-PSB in methanol solution. The
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Figure 6.8: QM/MM MD for 10-Me PSB and PSB

evolution of the S1 energy relative to the ground state (S0) clearly indicates

that a CI is reached within 0.6 ps for the 10Me-PSB. Instead, for the all-

trans PSB, the S1/S0 energy gap keeps significantly large (≈ 50 kcal/mol)

for more than 1.8 ps. These results are fully consistent with experimen-

tal observations showing an S1 lifetime of 0.7 and 4 ps for 10Me-PSB and

PSB, respectively. As showed in Figure 6.9, the geometrical changes of the

10Me-PSB during the S1 evolution are associated with typical torsions along

C-C single bonds (see mechanistic details below) yielding to a twisted CI

geometry.

Figure 6.9 shows the fluctuations of the BLA observed during the QM/MM

MD simulations of both the RPSB and the 10Me-RPSB solvated retinal
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Figure 6.9: Analysis of BLA value during the dynamics for 10Me-RPSB and RPSB

chromophores. In the case of the 10Me-RPSB the initial BLA associated

with the ground-state (approx. -0.1) rapidly increases upon photoexcitation

and then oscillates significantly until converging to an approximate value of

0.07 within 0.23-0.25 ps. This BLA value is maintained almost constant all

through the rest of the MD simulation until reaching the CI region. The

10Me-RPSB in solvent quickly arrives to an excited state ABL minimum;

on the contrary BLA fluctuations of RPSB suggest that the native chro-

mophore, after the steep increase of the ground-state BLA and the initial

bond-stretching fluctuations, remains caught in an excited state EBL min-

imum with a BLA of approximately 0.03. The marked difference between

the alternations in the bond lengths in the cases of 10Me-RPSB and RPSB

accounts for the reason why only the 10-methylated chromophore is capable

of quickly (¡1ps) reaching the CI seam.

Figure 6.10 shows the time-dependent evolution of the torsional an-

gles during the photoisomerization process of 10Me-RPSB, as found in the

QM/MM MD trajectory. The simulation indicates that, after an initial C-C

bond relaxation, the 10-methylated retinal remains almost planar for the

first 0.05-0.07 ps, with all three torsional angles close to 180◦. The θ2 angle

time-evolution indicates that the torsion around the C9-C10 bond is un-

dergoing an irreversible variation, with a counterclockwise rotation of 40◦.

While the torsion around the C13-C14 bond (θ3) is also a counterclockwise
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Figure 6.10: Evolution during the dynamics for θ1 (torsional angle around the C11-C12
bond), θ2 ( torsional angle around the C9-C10 bond) and θ3 (torsional angle around the
C13-C14 bond).

rotation, the angle values oscillate more than those of (θ2 and reach a 40◦

rotation only after 0.6 ps. The central θ1 torsional angle shows, instead, a

clockwise motion, with a minor 10◦ rotation in the 0.07-0.1 ps time range,

a significant oscillation of 30◦ between 0.25 and 0.35 ps coupled with a sim-

ilar, but reverse, oscillation of θ3 and finally the main rotation that leads

to a ≈ 70◦ twisted configuration along the C11-C12 bond. Thus, the asyn-

chronous and opposite rotations of the C9-C10 and C11-C12 bonds, remi-

niscent of the asynchronous bicycle-pedal mechanism of Rh [189], are here

accompanied by the rotation along the C13-C14 bond in the same direction

of the C9-C10 one. The twisting along the central bond associated with a

less-pronounced reverse-twisting of both adjacent double bonds defines an

asynchronous double bicycle-pedal motion [13]. Notably, this mechanism

here observed for the 10Me-RPSB in solution has been previously proposed

for the photoisomerization of the all-trans RPSB retinal chromophore in the

bR protein [13]. The QM/MM MD simulations indicate that the RPSB

dynamics is trapped in the EBL minimum in the sub-ps regime, while the

10Me-RPSB excited state dynamics involve an ABL minimum, from which

a CI region is reached within 0.6 ps following a double bicycle-pedal mech-

anism.
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Such result agrees with that obtained from the MEP as previously de-

scribed where, besides having done constrained optimizations, there was

also a smaller number of movable solvent molecules (just 7 as compared

to the movable 10-Angstrom radius layer around retinal employed in the

dynamics). Investigations on the methylated have suggested to attempt

to analyze, although in a qualitative manner, the quantum yield of the

photoreaction: starting from a set of points characterized by a small en-

ergy difference between the ground-state and S1, where an efficient S1 →
S0 hopping is assumed to occur, dynamics on the ground state have been

started. However, out of ten dynamics carried out starting from ten hopping

geometries, no one led to the photoproduct: all of them reverted back to the

reagent. Such results is in good agreement with what observed, that is in the

methylated retinal the modification caused a 50% decrease in the isomer-

ization yield, thus suggesting an inverse correlation between reaction speed

and yield [160]. Removal of backbone substituents increases the total iso-

merization yield, while on the contrary the addition of substituents reduces

the yield. Dynamics starting from CT geometries where one of the dihedrals

was already partially rotated in order to ease the photoisomerization around

another dihedron have been effected. Such activity was aimed at studying

the reaction mechanism in the case dihedrals other than C10-C11-C12-C13

rotated. As a results the dynamics reverted to the geometry characterizing

the planar CT and it would subsequently photoisomerize around C11-C12.

This is is line with very recent observations [185] showing that only the

11-cis photoproduct is formed in the case of the 10-methylated system.

For what the retinal in its native form is concerned, as already stated,

the photoisomerization process is difficult since the solvent stabilizes the

EBL form, that is the non-photoactive one: indeed the dynamics shows

that the EBL form remains stable for 2000fs and the process does not goes

on. However, since it is interesting to study the mechanism that eventually

allows the native system to reach the CI (please note that such a mechanism

has never been observed and studied for the retinal in solvent before), we

switched off all the charges of the solvent molecules around in order to

stabilize the ABL form (as it happens in gas phase, where no electrostatic

effects exist) and therefore drive the dynamics to the conical intersection.

The dynamics carried out by zeroing the charges that are associated to the

solvent atoms let the cromophore be affected by steric interactions alone

(mechanical embedding). It is apparent that these biased dynamics cannot

provide information concerning the life-times of the excited states as well

as the photoisomerization quantum yields. Still, they do provide reliable

information concerning the photoreaction mechanism. Figure 6.11 shows
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the difference between the ground state energy and that of the S1 state

as a function of time and demonstrates that, with charges turned off, the

CI is eventually reached in 800fs. While this timing cannot be compared

with experiments, still the analysis of the variation of the dihedral angles

allows to describe the photoreaction mechanism. Figure 6.11 shows that

the C10-C11-C12-C13 dihedral angle twists along with the C8-C9-C10-C11

and C12-C13-C14-C15 dihedral (although in opposite direction). This is

exactly the very same mechanism previously observed for the methylated

retinal and is a further confirmation supporting the double bycicle-pedal

path illustrated above.

6.5 Conclusions

In conclusion, it has been shown why 10-methylation in all-trans RPSB reti-

nal triggers a dramatic change in the excited state subpicosecond dynamics.

The methyl group in 10-position stabilizes an excited state minimum with

a large charge-transfer character and with alternated C-C bonds, favoring

an efficient photoisomerization. Remarkably, the photoisomerization space-

saving double bycicle-pedal mechanism matches the one also observed in

space constrained environments such as retinal proteins (e.g., Rh and bR).

The proposed QM/MM models are fully consistent with time-resolved spec-

troscopy experiments, showing a broad double-peaked stimulated emission

band matching the two excited state (EBL and ABL) minima. An detailed

analysis of the photoisomerization mechanism of all-trans retinals in solu-

tion is provided, showing that production of the 11-cis isomer is achieved

by a double bicycle-pedal mechanism, although with a very small quantum

yield.
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Figure 6.11: Difference between the ground state energy and that of the S1 state for the
system RPSB in solvent without charges. The analysis of the variation of the dihedrals
is depicted at the bottom: the C10-C11-C12-C13 dihedral rotation occurs along with the
C8-C9-C10-C11 and C12-C13-C14-C15 dihedrals rotation.



7 Implementation of the developed
tools for QM/MM calculations

As previously stated, COBRAMM (Computational Bridge between Ab-

initio and Molecular mechanic) is a modular software aimed at perform-

ing hybrid QM/MM calculations. Modularity and flexibility are two of its

leading characteristics. The program has been devised to be an interface

between different programs that execute single phases of the whole calcula-

tion and exchange data by means of the interface itself and providing their

seamless integration. This way the user can choose the most suitable pro-

grams to tailor the calculation steps to the requirements of the specific com-

putational process required and chemical problem to study. COBRAMM

currently supports recognized tools such as Amber and Molcas among the

others, but support for other tools to come can be ensured by adding the

supporting Python scripts to the COBRAMM system. The following section

details the implementation for QM/MM conical-intersection optimizations

in COBRAMM.

7.1 Conical intersection optimization in COBRAMM

The gradient projection method is a robust and fast method for locating

minimum energy CI. It was originally proposed by Bearpark and co-workers

[165] and is implemented in a number of quantum-chemical packages. The

geometry optimization procedure follows an effective gradient g composed

of two terms:

g = 2(EI − EJ)gIJ/|gIJ |+ PIS(∇RE2) (7.1)

In the first term gIJ is the difference vector of the gradients of states I

and J. The multiplication of the normalized gradient difference vector times

the energy difference EI − EJ assures that the first term vanishes when

both states become degenerate. The second term represents the projection

of the excited state gradient onto the orthogonal complement to the plane

spanned by the gradient difference gIJ and the scaled derivative coupling
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vector hIJ = (EI − EJ)〈ΨJ |∇R|ΨI〉 .Both vectors define to first order ap-

proximation the branching plane in which a geometry deformation lifts the

degeneracy between states I and J. Following the projection of the gradient

onto the subspace orthogonal to the branching space ensures that the opti-

mized structure is the lowest degenerate point. Technically the projection

is performed via the projection matrix PIS = 1−A(ATA)−1AT , where A

is a 3Nx2 matrix with columns gIJ and hIJ . Implementing the procedure

at QM/MM level is straightforward. Thereby, the gradient difference vector

gIJ is constructed out of the gradients of the QM and movable MM sub-

systems gQMIJ and gMM
IJ (gIJ =

[
gQMIJ ,gMM

IJ

]
). The construction of the

projection matrix P requires also the knowledge of hIJ over the QM and

MM sub-systems. As computing hIJ requires a wavefunction description of

the system, hQMIJ is set to zero (hIJ =
[
jQMIJ ,0MM

]
). No weighting factors

are used. [190]. The implemented algorithm includes the effect of the MM

atoms on the structure and energy of the CI both implicitly via the one elec-

tron Hamiltonian (electrostatic embedding) and explicitly through the force

on the movable MM atoms gMM
IJ . The only approximation is the neglect

of structural deformations in the movable MM sub-system, which couple

states I and J for the contruction of hIJ and, thus, for the construction of

the projection matrix PIS . The tool for the CI optimization uses the pro-

gram Molpro for the calculation of all the QM gradients and a subroutine

was implemented in Cobramm for the calculation of the of the QM/MM

gradients and of g such as described in (1). In detail the steps are at first

calculation of the QM gradients by Molpro, after that, the new script in Co-

bramm, using the QM gradients, calculates (1) for the QM/MM system and

at the last the g (1) is passed to Gaussian for the geometrical parameters

optimization.

7.1.1 Evaluation of the performance of the script

A test to verify the correct results and correct operating principle of the

total script was done. To this aim, the CI of a very well-known system was

calculated with Cobramm. The CI of 2,3-di-tert-butylbuta-1,3-diene was

found both at a QM level, with Molcas and Gaussian09, and a QM/MM

level with Cobramm using a 6-31g∗ basis set and a 4-electron, 4-orbital

active space (the butadiene moiety included in the QM layer, while the two

tert-butyl substituents described at the MM level in the medium layer).

The aim was to compare the results, in term of geometrical parameters,

obtained at a full QM level with the one obtained using a QM/MM setup

with Cobramm. The results shown in the table shown in figure 7.1 evidence
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Figure 7.1: The table shows the geometrical parameters obtained at different levels of cal-
culations with different QM programs. The geometrical parameters taken into account are
bond length, angle and dihedral angle. The number 1, 2, 3 and 4 are referred to the C atom
in the principle chain of the molecule, as shown in fig. 7.2

that the there is good agreement between the results obtained with the tools

utilized.

Figure 7.2: Reference molecule for QM/MM calculation performance evaluation
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7.2 IRC in COBRAMM

In order to verify the nature of a transition state that has been optimized

with one of the local methods described before, the Hessian needs to display

the required number of negative eigenvalues. Aside from this local criterion,

it is also necessary to identify the minima connected through the transition

state. This latter part is usually performed through calculation of some kind

of reaction coordinate. Intrinsic Reaction Coordinate (IRC) is defined as the

minimum energy reaction pathway (MERP) in mass-weighted Cartesian co-

ordinates between the transition state of a reaction and its reactants and

products. It can be thought of as the path that the molecule takes mov-

ing down the product and reactant valleys with zero kinetic energy. The

Gonzalez-Schlegel method for following the IRC is used in Gaussian using

the irc keyword. A routine aimed at executing the IRC on QM/MM sys-

tems has been implemented within the COBRAMM package. In particular,

the CBF.py script has been modified. Such script carries the information

that are used to create the input files for the programs that are launched

by COBRAMM to perform the requested calculations. According to a spe-

cific keyword in the COBRAMM input file (cobram.command), the CBF.py

script creates an ad-hoc input file for Gaussian, which is the application

which actually effects the IRC on the QM/MM system by means of a sys-

tem QM/MM gradient computed at step 0 by COBRAMM. The generated

input file contains both the required and the optional keywords to run the

applications (that can be modified by the cobram.command script) and also

the properly-formatted QM/MM gradient, so that it can be correctly in-

terpreted by Gaussian to carry out the IRC. A supplementary option has

been added during step 0 in order to have the IRC follow a specified vector,

assigned as a gradient. Such gradient is written on the gradient.dat file, and

it can be computed by means of a script based on the .xyz files which con-

tain the description both of the desired starting and target geometries. The

IRC thus implemented, in the two mentioned options, have been verified

and validated on the GMP system in solvent and subsequently used by the

staff of the theoretical photochemistry and photophysics research group.

7.3 Simulated transient spectra

The developed program is capable of building transient spectra, using the

energies and the oscillator strengths for different state transitions at differ-

ent times, as a superposition of Gaussian functions. Basically, a multidi-

mensional Gaussian spectrum is a plot representing a function in the form



Chapter 7 105

Z = f(x, y). In this case, x represents time; y is the state transition as

will be described later in greater detail. Z is the result of the calculation.

Its value is color-coded according to a color bar put besides the plot. An

example of such Gaussian spectrum is depicted in figure 7.3. In order to

Figure 7.3: A typical spectrum obtained

ease visually spotting the higher- and lower-value areas, a contour plot has

been used instead of a simpler scatter plot. The system developed consists

of two Python scripts:

• Spectramaker.py, which reads the dynamics files, computes the multi-

dimensional gaussians and eventually writes them to a file;

• Spectraplot.py, which reads the multidimensional gaussians file and

displays the spectrum. For this purpose Spyder has been used. Spyder

is part of Anaconda, a multi-platform Python interpreter that includes

graphical output support. The MS Windows version has been used;

The workflow is depicted in figure 7.4.

7.3.1 Spectramaker.py

Spectramaker.py is the script which produces the multidimensional Gaussian

spectrum output file based on the input data characterizing the dynamics.

The script expects data to be organized as follows:
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Figure 7.4: Workflow of the multidimensional Gaussian spectrum computation

• A base directory, thereon marked as {basedir}, exists where the script

itself is located.

• The overall dynamics is composed of several dynamics (from different

starting geometries), whose description is found in the {basedir}/geom nnn/dinamica/out

subdirectories.

• Several subdirectories of the {basedir}/geom nnn/dinamica/out sub-

directory exist, one for each sampling time of the dynamics, i.e. one for

each time where state transition energies and oscillator strengths have

been determined for the dynamics; each of these time subdirectories is

named after the point in time (expressed in femtoseconds) when that

particular sampling has occurred. Each subdir name is caspt2 nnn.n,

where nnn.n is the sampling time expressed in femtoseconds. More-

over each time subdirectory shall contain the respective caspt2.out file

as produced by MOLCAS.

A file named spectra config.dat can be edited to override the default config-

uration parameters of spectramaker. The parameters that are customizable

in the spectra config.dat file are:

• ROOT: the base state number

• STOPTIME: the final sampling time (in femtoseconds) at which os-

cillator strength and state energy are available

• TIMEDELTA: the sampling step size, i.e. the time interval between

two consecutive sampling times

• FWHM: the full-width half-maximum value of the LASER

• T INIT: the simulation starting time for the computation of the mul-

tidimensional gaussians

• T FINAL: the simulation end time
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• T STEP: the simulation step size.

Given a base state (the ROOT parameter in spectra config.dat file) , the

script computes the oscillator strengths and energy differences during transi-

tions from the base state to the others: such computations are done for each

geometry for each sampling time. Let fnosc(τi, xbj) be the oscillator strength

of the n− th geometry at sampling time τi for the state transition from base

state b to state j. Moreover let ∆En(τi, xbj) be the energy transition for the

n-th geometry at sampling time τi for the state transition from base state

b to state j. Based on each couple {fosc,∆E} as previously defined and

given a simulation time interval (tinitial, tfinal), multidimensional Gaussian

functions are computed in the form:

gMD(t, xbj) =
∑

n

(∑
i f

n
osc(τi, xbj)exp

[
− (∆En(τi,xbj))

2+(t−τi)2
2FWHM2

LASER

])
,

t ∈ |tinitial, tfinal|
(7.2)

7.3.2 Spectraplot.py

The Spectraplot script reads the multidimensional gaussians file (mdgaus-

sum t.out) constructed by Spectramaker.py and plots it. The script is based

on PyPlot, which is part of MatPlotLib, a Matlab-like set of libraries for

Python. Such libraries are freely available from the internet. Since a graphic

output is required, a Python distribution that includes a graphic host has

been used. A MS Windows-based distribution has been used for conve-

nience sake. Such distribution is called Anaconda, and can be downloaded

free of charge from https://www.continuum.io/downloads. Anaconda in-

cludes the Spyder development environment, which is the one that has been

employed. Basically, Spyder is a Python environment including a script

editor, a Python interpreter and an output console that can display both

text and graphical outputs. A typical Spyder window is depicted in Figure

7.5: The Spectraplot script reads the mdgaussum t.out file (produced by the

Spectramaker script) and first puts the file data into a matrix. In order to

correctly display the spectrum, the correct columns of the mdgaussum t.out

file have to be read. It must be made sure that the column describing the

transition from the base state to itself is not read. This affects the meaning

of the energy transition numbering in the output spectrum. In the example

plot shown in Figure 7.3, the base state was state 2 and the spectrum is cal-

culated using 8 roots. In detail the spectra is referred to GMP solvated. 35

non-adiabatic dynamics were realized with a PT2 correction of the energies

each 2.5 fs . The program allow to work with several number of roots and

using any base state.
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Figure 7.5: Spyder environment screenshot



8 Conclusions

Processes involved in solvated biological systems such as retinal PSB chro-

mophores and nucleotides. Eventually, the purpose has been to provide

the rationale behind their ultrafast decay and dynamics, highlighting the

principles of the regulation, tuning and control of their photoactivity. This

project has faced a two-fold challenge: on the one hand, a big effort has been

devoted to overcome the difficulties connected to the size of such systems

and to the related computational burden; on the other hand, the design of a

QM/MM setup capable to properly (and realistically) model the experimen-

tal systems and reproduce the observed data has been developed, applied

and generalized. Indeed, attempts have been made to account for experi-

ments by developing ad-hoc tools and building âknow-howâ about the tar-

geted topics. In particular, to our best knowledge, the photochemistry and

photophysics of the real retinal chromophore in explicit solvent molecules

has never been studied before at such a high computational level, nor the

retinal photoisomerization mechanism in solvent has been yet disclosed. The

lack of studies are mainly due to the extreme difficulties connected with the

high number and mobility of solvent molecules. The computational proto-

col designed here for studying the native and 10-methylated PSB retinal

chromophores, as well as GMP, in explicit solvent can be extended to other

solvated chromophores (such as other retinals substituted in different po-

sitions and with different substituents) in order to predict their properties

and draw guidelines for the design of molecular photoactive materials with

tailored photochemical/photophysical properties for technological applica-

tions. Moreover, using the techniques, protocols and modelling tools devel-

oped here it becomes possible to simulate the transient spectra highlighting

the photoinduced dynamics of those chromophores, thus assisting interpre-

tation, understanding and rationalization of experimental data and spectra

from transient spectroscopies. A tool to generate an experimental-like tran-

sient spectral map has been developed here. This tool is general and will

be systematically applied to other studies involving spectral modeling and

experimental comparison/interpretation. The study of nucleobases in sol-

vent is extremely interesting and, also, necessary for the full understanding
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of the photoinduced processes occurring in DNA; indeed, the environment

in which DNA operates is water, and the intrinsic behavior of nucleotides in

water is the cornerstone for any comparative multi-scale bottom-up study

of genomic molecular materials. The study of other nucleobases, by means

of the setup and the procedures that have been developed and tested for

the GMP, could well be an attractive topic for future developments in order

to analyze and compare the behavior of the different mononucleotides. A

further future development is the study, in the same way and with QM/MM

MD, of dinucleotides and DNA fragments, gradually broadening the size of

the studied system in order to attain a better understanding of the under-

lying phenomena.

COBRAMM has been used for such simulations, and scripts have been

developed ad-hoc in order to extend its capabilities for the QM/MM study

of complex systems. In detail, COBRAMM scripts have been modified in or-

der to allow QM/MM IRC (Intrinsic Reaction Coordinate) calculations and

conical intersection optimizations. Such tools, which have been validated

on top of the systems investigated here, have been and are nowadays used

by other COBRAMM users for the study of several and diverse systems. In

conclusion, it has been disclosed why the 10-methylation in all-trans RPSB

retinal triggers a dramatic change in the excited state subpicosecond dynam-

ics. The methyl group in 10-position stabilizes an excited state minimum

characterized by a large charge-transfer and with alternated C-C bonds thus

favoring an efficient photoisomerization. Noticeably, the photoisomerization

space-saving double bicycle-pedal mechanism matches the one also observed

in space constrained environments such as retinal proteins such as Rh and

bR. The proposed QM/MM models are consistent with experimental results

carried out by means of time-resolved spectroscopy techniques, showing a

broad double-peaked stimulated emission band that matches the two excited

state (EBL and ABL) minima. An detailed analysis of the photoisomeriza-

tion mechanism of all-trans retinals in solution has been provided, showing

that the production of the 11-cis isomer is achieved by a double bicycle-

pedal mechanism, even though with a very small quantum yield. As to the

GMP system, the discussed study gets ahead of the previous ones available

from literature providing a photophysical and photochemical evaluation of

water-solvated GMP using theoretical multireference perturbation theory

QM/MM techniques. The study highlights the importance of the environ-

ment, displaying qualitative differences for the ππ∗ La and ππ∗ Lb states

which are red-shifted and for the nOπ
∗ state that is blue-shifted as com-

pared to their gas-phase counterparts. The ππ∗ La state is predicted to be

the main spectroscopic state drives the ultra-fast deactivation processes to
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which GMP undergoes upon UV-light irradiation based on a ring-puckering

motion that enhances its non-adiabatic interaction with the ground state in

a radiationless fashion. Moreover, a shallow stationary point towards the

end of the ππ∗ La MEP has been characterized, along with two different

CIs with the ground state that provide a rational basis for the two fastest

decay times experimentally measured. Upon initial Lb absorption, two CIs

between the ππ∗ Lb and La states have also been located. The CIs between

the nOπ
∗ state and the ππ∗ Lb and La states have also been characterized

along its relaxation route, providing a minimum in the nOπ
∗ state expected

to vertically emit at ≈ 2.7 eV. Both ππ∗ Lb and nOπ
∗ are suggested to

contribute to the longest-lived experimental timescale, the latter providing

a lesser contribution given the relatively fast kinetic timescale and the long-

lived timescales expected in nπ∗ fluorescent states. The study provides a

more specific molecular counterpart to the experiment and better explains

the photochemical and photophysical processes promoting the intrinsic sta-

bility of the genomic material.
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9 Appendix - Modifications to COBRAMM-
5.2 for IRC calculations

Adding the IRC calculation involved modifications to several files of the CO-

BRAMM suite. The modified files are CBF.py, cobram.py, gaussian.py, mol-

pro.py and optxg.py.In the cobram.py file only comments have been added

to ease code understanding during the preliminary code analysis. The same

holds for gaussian.py where only debug writes to the standard output have

been added for the understanding of the existing procedures. Notice: Line

numbers in this file refer to COBRAM-beta 5.2 CI suite. A hashtag symbol

in the python code snippet marks the beginning of a comment. Comments

end implicitly at the end-of-line. In the mentioned files several changes have

been effected in order to accomplish the conical intersection and the IRC cal-

culations. Here they are reported and briefly discussed. Code line numbers

where they are located are written in bracketed (boldface) characters.

9.1 Modifications to CBF.py

Modifications to CBF.py have been implemented so to add conical inter-

section and IRC computational capabilities to COBRAMM. A command

option to instruct COBRAMM to perform CI has been added to calcula-

tion type command[1] array entry (789) and IRC step size option added to

command[65] array entry (237).

command[65]=str(10)

Then energies for the two intersecting states have been computed and ap-

pended to the cobram.out file (796-806).

if (command[1] == ’ci’):

tmp=’%12f %12f\n’ % (Ene_QM[0]-Uele_emb_emb,Ene_QM[1]-Uele_emb_emb)

else:

tmp=’%12f \n’ % (Ene_QM-Uele_emb_emb)
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if (command[1] == ’ci’):

tmp=’%12f %12f\n’ % (E_tot[0],E_tot[1])#modified by Sal 03/11/2013

else:

tmp = ’%12f \n’ %(E_tot)

if (command[1] == ’ci’):

tmp=’%12f %12f \n’ % (Ene_QM[0],Ene_QM[1])

else:

tmp=’%12f \n’ % (Ene_QM)

The total energy has been computed and written to gradient.dat (2449-

2479). The gradients have been computed according to the type of cal-

culation required: in the case of ML the CI is not implemented; else the

gradient components for the QM and MM and the atomlinks are computed.

Conical intersection gradient computation is also carried out based on the

mentioned gradients and on the derivative coupling. This part of compu-

tation relies heavily on matrix mathematics therefore the numpy python

package has been used (2554-2823) for such purpose, which allows a more

straightforward treatment of matrix equations as if the matrix terms were

scalar.

if lists[6][1]==’ci’:

DEn = totalenergy[0] - totalenergy[1]#Sal commented for debug

#DEn = totalenergy[0] #Sal added for debug

DE = float(DEn)

##open the file to be written

f=open("gradient_ci.dat","w")

#open the gradient source file

S0 = open("gradient1.dat","r")

#S1 = open("S1","r")

S1 = open("gradient2.dat","r")

#open dercoup

dc = open("dercoup.dat","r")

N = S0.readlines()

Nl = len(N)

#print "Nl"

print Nl

Nd=int(Nl)

print ’Nd’

print Nd
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#chiudi tutti i file

#S0.close()

#S1.close()

#dc.close()

#f.close()

#now read the three matrices,notice that the first row is skipped

s0=np.loadtxt(’gradient1.dat’)

#s0=np.array(grad1)

#print ’grad1’

#print grad1

#s0 = np.fromfile(grad1,dtype=float,count=-1)#Sal

print ’grad1’

print s0

#s0=np.reshape(grad1,3*Nd)

#f.write("s0")

s2=np.loadtxt(’gradient2.dat’)

print ’grad1’

print s2

#s2=np.array(grad2)

#s2=np.fromfile(grad2,dtype=float,count=-1)#Sal

derco=np.loadtxt(’dercoup.dat’)

#computation of matrix difference

x1 = s0-s2

print ’scrivo x1:\n’#Sal debug

print x1#Sal debug

#scaling of the derco(x2 matrix)

x2 = DE * derco

#reopen the gradient file in append mode

#f=open("gradient_ci.dat","a")

#write matrices to such file

#f.write("x1\n")

#savetxt(f,x1,fmt=’%12.10f’)

#f.write("\n")

#f.write("x2\n")

#savetxt(f,x2,fmt=’%12.10f’)

#f.write("\n")

#compute the norm of the x1 vector

x1v=np.reshape(x1,3*Nl)
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x1n = np.linalg.norm(x1v)

#savetxt(f,x1n,fmt=’%12.10f’)

#f.write("\n")

#let g = g1+g2

#compute g1

g1=2*DE*(x1v/x1n)

#f.write("\n")

#f.write("g1\n")

#savetxt(f,g1,fmt=’%24.16f’)

#f.write("\n")

#compute g2

#compute P1sx2, the A matrix = x1v, P1s=I-A(A_T*A)^(-1)*A_T

#step 1 - build the unity matrix

I = np.eye(3*Nd)

#step 2 - compute (A_T)

x1v_T = np.transpose(x1v)

#step 3 - compute (A_T * A)^(-1)

TempVal = np.dot(x1v_T,x1v)

TempVal = 1/TempVal

#f.write("%24.16f"%TempVal)

#f.write("\n")

#f.write("\n")

#step 4 - build up overall calculation

x1TempMatrix = np.dot(x1v,TempVal)

#savetxt(f,x1TempMatrix,fmt=’%24.16f’)

#f.write("\n")

P1 = I - np.dot(x1TempMatrix,x1v_T)

#print’P1 is’,P1

x2v=np.reshape(x2,3*Nd)

P1x2v=np.dot(P1,x2v)

#f.write("Px2vector\n")

#savetxt(f,P1x2v,fmt=’%24.16f’)

#f.write("\n")

#compute P(grad2)

#step 1: compute P

A=np.column_stack((x1v,P1x2v))

#f.write("matrix A(x1,x2)\n")

#savetxt(f,A,fmt=’%24.16f’)

#f.write("\n")

A_T= np.transpose(A)
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ATA=np.dot(A_T,A)

ATAinv=np.linalg.inv(ATA)

AATAinv=np.dot(A,ATAinv)

P= I - np.dot(AATAinv,A_T)

#savetxt(f,P,fmt=’%24.16f’)

#f.write("\n")

# P * grad2

s2vec=np.reshape(s2,3*Nd)

g2=np.dot(P,s2vec)

#f.write("g2")

#savetxt(f,g2,fmt=’%24.16f’)

#f.write("\n")

#G final

G=g1+g2

#f.write("final G\n")

#savetxt(f,G,fmt=’%24.16f’)

#f.write("\n")

#write the matrix G

G_reshaped=np.reshape(G,(-1,3))

for i in range(len(lists[7])):

x.append(G_reshaped[i][0])

y.append(G_reshaped[i][1])

z.append(G_reshaped[i][2])

np.savetxt(f,G_reshaped,fmt=’%24.16f’)

f.write("\n")

f.close()

The model-H gradient has also been calculated taking into account the two

states (2842-2966). The new CI optimizer has been included among the

iteration step options (3576-3578).

elif lists[6][1] in [’optxg’,’freqxg’,’fullfreqxg’,’bomdxg’, \\

’fullbomdxg’,’irc’,’ci’] :

print ’step ’+str(step)+’ completed\n’

optxg.checkconvergency(start,step,3)

Moreover, the charge computation for the CI case has been added, thus

taking into account the two state energies (3676-3684).
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9.2 Modifications to molpro.py

Modifications to molpro.py include the different definition of the gradch

array for accommodating the gradients for two states (286-298).

#Different gradch management according to number of gradients

if lists[6][1] == ’ci’:

gradch = [[[],[],[]],[[],[],[]]]

current_linescount=0

current_state_found=1

else:

gradch=[[],[],[]]

Derivative coupling data retrieving and parsing has been added (417-

445), of the charges to make gradient (467-482):

if lists[6][1]==’ci’:

current_linescount=current_linescount+1

print "current_linescount", current_linescount

print "charge", chMED[a]

if current_linescount == (len(chMED)/2)+1 :

current_state_found=2

print "current_state_found", current_state_found

gradch[current_state_found-1][0].append(float(tmp2[2])*(-chMED[a]))

gradch[current_state_found-1][1].append(float(tmp2[3])*(-chMED[a]))

gradch[current_state_found-1][2].append(float(tmp2[4])*(-chMED[a]))

else:

gradch[0].append(float(tmp2[2])*(-chMED[a]))

gradch[1].append(float(tmp2[3])*(-chMED[a]))

gradch[2].append(float(tmp2[4])*(-chMED[a]))

a=a+1

and of energy in the case of CI management (1500-1663) . Correct molpro

command generation modified (1732).

system(’molpros9 -d$PWD/SINGLEPOINT -I$PWD/SINGLEPOINT \\

-W$PWD/SINGLEPOINT < SINGLEPOINT/molpro.input > SINGLEPOINT/molpro.log 2>&1’)

9.3 Modifications to optxg.py

Modifications to optxg.py have been carried out to include IRC calculations.

First, irc command recognition has been added to the command[1] calcu-
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lation option data register. This also creates the following input key for

Gaussian (280-283):

elif command[1] in [’irc’] and len(inputkey)==0:

inputkey=[’#p IRC=(FCCards,Readvector,MaxPoints=’+maxoptstep+ \\

’,StepSize=’+command[65]+’) Use=L115’]

thus using the specified step size previously mentioned. Further Irc calcula-

tion data preparation is reported at lines (327-440).

if command[1]==’irc’:

#geom.write(’sono dentro\n’)

#script altra volta(cobram.irc)

##open the file to be written

#f=open("gaussian.com","w")

#open the gradient source file

grad = open("gradient.dat","r")

#write the header of gaussian.com

#geom.write("First line of the header\n")

#geom.write("Second line of the header\n")

#read the gradient source file

#the first line of the file is ENERGY

#read it

Energy = grad.readline()

#the second line is the number of atoms

NAT = grad.readline()

NATd=int(NAT)

#now write them to the matrix.dat file in the correct format

float_var=float(Energy)

geom.write("%24.16f\n"%float_var)

#now read the gradient values

k=1

while 1:

line_read=grad.readline()

if not line_read:

break;
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else:

split_line=line_read.split()

i=0

#geom.write("Length of line %d"%len(split_line))

while i<len(split_line):

float_var=float(split_line[i])

geom.write("%12.8f"%float_var)

if k==6:

geom.write("\n")

k=1

else:

k=k+1

i=i+1

if NATd*3%6 != 0:

geom.write("\n")

#insert a blank row as a spacing

#geom.write("\n")

#NATd=2 per prova

##create the matrix

#geom.write(’inizio a creare matrice\n’)

m=[ [ 0 for h in range(3*NATd+1) ] for l in range(3*NATd+1) ]

#print m

i=0

while i<=3*NATd:

j=0

while j<=i:

if j==i:

m[i][j]=1

else:

m[i][j]=0

j=j+1

i=i+1

#print m

##write the matrix in the correct format

k=0

i=1

while i<=3*NATd:

j=1

while j<=i:

geom.write ("%12.8f"%(m[i][j]))
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k=k+1

if k==6:

geom.write("\n")

k=0

j=j+1

i=i+1

if (((NATd*3)*(NATd*3+1))/2)%6 != 0:

geom.write("\n")

#insert a blank row as a spacing

grad.close()

#reopen the file

grad=open("gradient.dat","r")

i=0

while i<2:

line_read=grad.readline()

i=i+1

#now we read the gradient

#Energy=grad.readline()

#NAT=grad.readline()

#print "riprendo il gradiente"

geom.write("\n")

k=0

while 1:

line_read=grad.readline()

if not line_read:

break

else:

split_line=line_read.split()

i=0

while i<len(split_line):

float_var=float(split_line[i])

geom.write("%10.6f"%float_var)

k=k+1

if k==8:

geom.write("\n")

k=0

i=i+1

grad.close()
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