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1 Introduction

Biological systems such as nucleic acid and proteins have been widely studied
in the past 50 years and will most likely continue to be a topic of interest in
the forefronts of natural science for many years to come. For such purpose,
computational modelling can provide useful information and help us un-
derstand biochemical mechanisms at molecular, atomic and even electronic
levels. The interaction between light and matter is one of the most inter-
esting phenomena in nature; such interaction can be considered responsible
of life on earth. Besides, light absorption, several photophysical or photo-
chemical deactivation mechanisms can compete depending on their relative
efficiencies [1]. The aim of this introduction is to provide an overview about
the photochemical concepts, theoretical methods and molecular systems that
have been studied.

1.1 The photochemical process

The purpose of this thesis is to investigate, through high-level computations,
some of the interesting photo-biochemical processes involved in biological
systems -such as retinal or DNA- in solvent. The investigated processes dis-
play an ultrafast decay from their excited states back to the ground state.
Novel computational techniques have been exploited in order to study the
mentioned systems. Such techniques allows determining the Franck-Condon
point following the steepest descent paths departing from it or from the real
crossing point. The techniques are based on the study of the system de-
cay from an excited-state to the ground-state through the so-called Conical
Intersection (CI) [2], which is a locus where ground-state and excited-state
potential layers cross. The idea that a conical intersection could play a key
role in the decay mechanisms for excited state reactions was first proposed
by Teller [3] more than 30 years ago. Before the decay mechanism through
the CI was recognized, radiationless decay was deemed to occur in the ex-
cited state at a minimum, where the ground state and excited state potential
surfaces are close to each other but do not cross. However, suchprocess could
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not account for the fast femtosecond decay experimentally ob- served. The
CI provides a fast decay path from an excited state to the ground one and
accounts for the femtosecond decay that characterizes such processes; in fact,
ultrafast radiationless decay is the main indicator of a mechanism involving
CI [4]. Existence of the CI has been experimentally verified and confirmed
by means of sophisticated instrumentation; moreover such decays have been
thoroughly characterized in terms of decay times, excited state lifetimes and
reaction triggering energies. Besides, quantum yield measurements provide
information concerning the possible ground state paths accessible from the
CI. Such experimental data can be rationalized according to suitable com-
putational models in order to provide a deeper insight in the mechanisms
underlying the photochemistry of diverse systems and to provide a better
understanding of the photochemical properties of such systems.

1.2 Hybrid QM /MM methods

Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations
are a viable method to investigate chemical reactions taking place in con-
densed phase [5]. According to such methods, the region where the in-
vestigated process occurs is studied at a suitable quantum mechanical (QM)
level while the environment surrounding that region is modelled as a molec-
ular mechanics (MM) force field. The boundary between the QM and MM
subsystems has to be treated carefully in order for the simulation to provide
sensible results. This approach is suitable for the study of broad systems
such as proteins, DNA and, more in general, solvated molecules. QM /MM
techniques will be discussed in greater detail later on in this thesis, moreover
QM /MM practical applications for simulating photobiological systems will
be also presented. In fact, we have performed QM/MM calculations for the
chemical systems described below in the solvent. Moreover, in the research
activity carried out in the Ph.D. activity underlying this thesis, algorithms
and software scripts have been developed and used to carry out QM/MM
computations.

1.3 The COBRAMM suite

COBRAMM (Computational Bridge between Ab-initio and Molecular me-
chanic) is a hybrid QM/MM calculations software acting as an interface
between different tools which execute the various simulation steps. One of
the aims of the experimental activity carried out was to locate the conical
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intersection (CI) of complex systems. To do that, the gradient projection
method has been used, which includes the effect of the MM atoms on the
structure and energy of the CI both implicitly via the one electron Hamil-
tonian (electrostatic embedding) and explicitly through the force on the
movable MM atoms. It has been implemented also a routine aimed at exe-
cuting the Intrinsic Reaction Coordinate (IRC) on QM/MM systems within
the COBRAMM package. Such scripts have been verified and validated on
the GMP system in solvent. A program for simulating transient spectra has
been implemented. The script describes the time-evolution of the oscillator
strengths for different state transitions as a superposition of Gaussian func-
tions. A first script fits the time-evolution of the oscillator strengths to a
time-sequence of Gaussian curves, for each possible state transition. Then,
another one provides a graphical representation of the produced spectra.
The program allows using several states for the simulation of the spectra.

1.4 Retinal

Many biological systems can and do interact with light. The study of pho-
toinduced reactions is valuable for the understanding of the biochemical
mechanisms that characterize such systems. Usually the interaction with
light occurs by means of proteins, whose reactivity is mainly due to the
non-proteic moiety of the cromophores that are responsible for light absorp-
tion and for the execution of the photochemical processes which characterize
the protein function. Processes such as photoisomerization of the retinal cro-
mophores, which induce the conformational changes that are at the basis of
the activity of rhodopsin proteins, involve conjugated m-systems. The pro-
cess of vision, which involves the transduction of the light impinging the eye
into neural signals that carry visual information to the brain where they are
processed is one of such processes, and in particular one that everybody is
familiar with. Light is first collected by the eye front lens (the crystalline
lens), which focusses the photon beam on the retina. The retina consists of
a large number of photoreceptors, which are cells that are capable of trans-
ducing relative light intensities into neurochemical signals. In particular,
the photoreceptor outer segments absorb light thanks to chromophores that
are covalently bound to an opsin, which is a single peptide transmembrane
protein. Rhodopsin is a photoreceptor protein which is extremely sensitive
to light, and it is the pigment that is involved in the scotopic vision. It is
located in the rod outer segment and is characterized by a peak absorption
wavelength at about 500nm. Since it is easily prepared, rhodopsin has been
widely studied. The chromophore of rhodopsin is the 11-cis-retinal, which
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forms rhodopsin when bonded to opsin, which alone would not absorb light
in the visible spectrum. When the cis-retinal absorbs a photon in the visible
spectrum, it can isomerize to all-trans-retinal. As a consequence the shape
of the molecule changes.

Disk
Membrane

Cone QOuter Segmem/
~gae. =5

-,

Opsin Molecule

Figure 1.1: Scheme summarizing the phototransduction process. The central part of the
figure depicts how a photopigment is embedded within a disk membrane of a photoreceptor
outer segment. The filled yellow circle is a lysine which it is attached to the retinal cro-
mophore. The absorption of a photon may cause the chromophore to change from the
11-cis form to the all trans form as shown by the chemical reaction. This conformational
change in the chromophore causes a change in the shape of the opsin molecule. The
opsin change in shape changes it from an inactive to an activated enzyme, and thus light
absorption is transduced into a biochemical signal within a photoreceptor.

Bacteriorhodopsin (bR) is an integral membrane protein usually found
in two-dimensional crystalline patches known as purple membrane, which
can occupy up to nearly 50% of the surface area of the archaeal cell. It is
the retinal molecule inside bR that changes its conformation when absorbing
a photon, resulting in a conformational change of the surrounding protein
and the proton pumping action.

Understanding the fundamental intrinsic photophysical and photochem-
ical properties of retinal chromophores and environmental effects of the sur-
roundings (proteins, solvent, organic and inorganic supports,etc.) is crucial
for the design of tailored photosensitive devices. The discrepancy between
solution and protein behavior has been largely attributed to the complex-
ity of the protein pocket with its three-dimensional arrangement of amino
acids resulting in a unique steric and dielectric environment [6, 7]. The
tunability of the absorption spectra, isomerization yield, and reaction speed
make RPSB an bR the ideal candidate for investigations aimed at disclos-
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H* (cytoplasm)

Asp 96 - COOH

Lys 216 hv

—

pumping H* - Lys 216

e,
all-trans-refinal 13-cis-reftinal H

Asp BS - COOH

H (extracellular side)

Figure 1.2: The absorption of a photon may cause the chromophore to change from the
all-trans-retinal to the 13-cis-retinal. The retinal is covalently linked to Lys216 in the chro-
mophore by Schiff base action. After photoisomerization of the retinal molecule, Asp85
becomes a proton acceptor of the donor proton from the retinal molecule. This releases a
proton from a "holding site” into the extracellular side (EC) of the membrane. Reprotonation
of the retinal molecule by Asp96 restores its original isomerized form.

ing the molecular and structural origins of efficient photochemistry [6, 7,
8,9, 10, 11, 12, 13, 14, 15]. As a consequence, RPSB and bR has become
a paradigm for understanding the origins of activation and suppression of
ultrafast relaxation processes, which is essential for the rational engineering
of photoreactivity.

1.5 DNA

Deoxyribonucleic acid (DNA), the hereditary basis of the genetic identity
of life, has always been a major topic of discussions since its structure was
discovered in 1953. The genomic material and the mechanisms that pro-
cess the disposal of the excess energy attained upon UV-light irradiation
are of paramount importance from both biomedical and biotechnological
standpoints. The initially populated excited states and their fate along the
distinct deactivation routes present in the DNA/RNA double helix chains
relate simultaneously to the intrinsic photostability of the genomic material
[16, 17], as well as to the damaging photo-reactions that ultimately yield
mutations and single and double-strand breaks that have been associated to
increasingly occurring diseases like skin cancer [18, 19, 20]. Besides the bi-
ological relevance, the intricate photophysical properties of nucleobases can
be also exploited to design optical photoresponsive nanodevices (among a
long list of prospective applications [21]), yet it is their biological relevance
that drags our attention. From a biophysical and chemical point of view,
knowledge of the fundamental properties of the deactivation processes, in-
cluding the associated underlying molecular motions, is essential to rational-
ize the intrinsic photostability of the genomic material and to characterize
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the aforementioned routes leading to detrimental photochemical reactions
[18]. A proper characterization of monomeric chromophores is therefore es-
sential to understand the photoinduced events occurring in DNA/RNA from
a bottom-up approach that can yield definitive answers regarding their role
in photostability and photodamage [22]. In this thesis we focus on water-

Figure 1.3: Schematic representation of the DNA structure

solvated guanine monophosphate (GMP) an on Cytdine (Cyt), two of the
canonical DNA /RNA nucleobases. GMP has also been recently proposed as
an interesting compound for nanotechnological applications due to its out-
standing self-assembly capabilities [23], especially in its quadruplex form,
which has even been located in DNA/RNA chains [24]. Whereas guanine
in vacuum has been extensively studied at a high-level multireference ab
initio level [25, 26], in the present work a theoretical assessment of the deac-
tivation routes embodying the main photophysical and photochemical fea-
tures of GMP by employing high-level ab initio multireference perturbation
theory methods coupled with a quantum-mechanical/molecular mechanics
(QM/MM) approach is proposed, in order to ascertain the role of the envi-
ronmental perturbations in these type of systems as they remain relatively
unknown [26, 27]. For what concern cytidine, formed by a cytosine at-
tached to a ribose ring and component of RNA, is here presented only an
initial study. Further knowledge on the environmental effects affecting the
photoprocesses occur- ring in the DNA/RNA chromophores upon UV-light
irradiation will provide essential information that can be properly referred
to water-solvated DNA /RNA systems such as those found in cells.



2 QM, MM and hybrid QM /MM
methods: essential concepts and
techniques

2.1 Introduction

This chapter briefly overviews the basic concepts that are the basis of the
quantum mechanics. Unlike classical mechanics where quantities can vary
continuously, in systems obeying quantum mechanics quantities can have
only some well-defined discrete values: they are quantized. The development
of quantum mechanical theories was promoted by the apparent inconsistency
of the experimental results obtained when studying microscopic systems and
those predicted using the classical mechanics models that had been devel-
oped to account for macroscopic systems behaviour. Quantum mechanics is
based on the postulate of the existence of a wave function ¥ for any system
and of operators that, applied to ¥, yield the observable properties of such
system [28]. Let ¥ be an operator and e a scalar value of a system property,
then the concept can be expressed as:

IV = eV (2.1)

where in general ¥ is a (1xn) column vector, ¥ is a (nzn) matrix, and the
following constraint must be met: |U*W¥| must have unit probability density.
According to matrix algebra, ¢ is an Eigenfunction and e is an Eigenvalue
of the equation. Very roughly speaking, according to this approach W is
much like a system status database from which individual property values
can be obtained by applying the appropriate operator. For example if the
Hamiltonian operator H is used for 1, then the system energy F is returned,
and the resulting equation is the Schroedinger equation 2.2.

HVU = EV (2.2)

The Hamiltonian operator takes into account a number of contributions to
the total energy depending on the structure of the system itself (e.g. an

13
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atom, a molecule, etc...) and the interactions with the surroundings it is
subjected to. In the case of molecules, the Hamiltonian operator accounts
for no less than five different contributions that include the kinetic compo-
nents, the attraction between the nuclei and electrons, and energies related
to interactions among atoms. Other terms may add in the case the observed
system is subjected to external electric and/or magnetic fields . In general
for a given molecular system the wave function is not easily expressed due to
the interaction between the movements of the particles which influence each
other. The analysis of such systems can be greatly simplified by taking into
account the fact that the nuclei move much slower than the electrons. So it is
practical to consider the nuclei at a fixed position when computing electronic
energies. This approximation is known as the Born-Oppenheimer approxi-
mation, and it simplifies expressing the Hamiltonian in that the internuclear
potential energy term becomes a constant for the geometry and the correla-
tion terms in the electrons-to-nucleus potential energies are eliminated: the
Schroedinger equation becomes an electronic Schroedinger equation, whose
FEigenvalue is the electronic energy. Such approximation holds true in most
applications, and the relevant equation is equation n 2.3.

(Helectronic + VN) \Ijelectrom’c - electronz’c\l’electronic (23)

In such equation the term Vi is the inter-nuclear potential energy term,
which is a geometry-dependent constant. Due to the invariance of the wave
function to constant values, equation 2.3 can be solved neglecting Vi, thus
obtaining the so-called pure electronic energy and then adding the neglected
term to obtain the electronic energy. Moreover, equation 2.2 may have
many Eigenfunctions ¥;, each returning an energy Eigenvalue F;. Such ¥;
constitute a set of wave functions. One assumption that can be made is that
such functions ¥, are orthonormal, i.e. equation 2.4 holds true:

where d;; is equal to one if and only if ¢ = j else it is equal to zero. So
considering equation 2.2 for the wave function W¥; , by multiplying both its
right- and left-hand sides times ¥, and integrating them in dr, applying
equation 2.4 we obtain equation 2.5.

that provides a method for computing molecular energy given a wave func-
tion. Given an orthonormal set of wave functions V;, a generic wave function
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can be expressed as a linear combination of these, as expressed in equation
2.6.

As a consequence of applying the condition expressed by equation 2.5 to a
wave function @ in the form of equation 2.6, the energy associated to the

wave function ® is a linear combination of the energies E; associated to the
single orthonormal set of wave functions ¥; according to equation 2.7.

Eg = / PH®dr =) _¢;°E; (2.7)

The quantum mechanical assumption that quantities can assume only dis-
crete values implies that among the energies F; of the orthonormal set of
wave functions ¥; there will exist one (or more than one) that is minimal.
That value, labeled Fj, is the energy associated to the ”ground state” of the
system, i.e. the state of the system at its lowest energy state which is a con-
dition towards which systems tend at rest. Thus, assuming an orthonormal
set of wave functions, equation 2.8 holds:

Eg = / SHdr > E, (2.8)

If the basis set is not orthonormal, an analogous principle holds thus a lowest
energy bound still corresponding to the ground state can again be found.
In this case however the non orthonormality of the basis set must be taken
into account, therefore the expression of the energy Eg in equation 2.8 must
take into account the fact that the basis set is no longer orthonormal. This
leads to the energy form of equation 2.9:

_ [®H®dr

Ea = f<I)2dr

(2.9)
It can be easily observed how equation 2.9 is obtained simply by reorganizing
the first two members of equation 2.5 and that the energy term in equation
2.8 is obtained from equation 2.9 when the denominator of the latter is equal
to 1 (which is the orthonormality condition). So, for the purpose of choosing
(or iteratively adjusting) a basis set suitable to constructing a wave function
as in equation 2.6, the figure of merit of the currently chosen basis set is the
magnitude of its associated FE; values, and accordingly also of Ey. Such en-
ergy magnitudes should be minimized. According to the Born-Oppenheimer
approximation, nuclei can be considered to be occupying fixed positions if
compared to electrons, so that electronic wave functions can be considered
instead of atomic and molecular system wave functions. For such systems
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the Schroedinger equation simplifies to that shown as equation 2.3. Further
simplification can be attained considering electronic wave functions for sys-
tems where there is only one nucleus and one electron: in such case each
wave function describes an atomic orbital, and the associated pure electron
energy is the magnitude of the energy of the electron when it is in that
atomic orbital. Due to the possibility of neglecting the electron-to-electron
interaction in the Hamiltonian associated to the single electron Schoedinger
function, it is useful to use as basis set for equation 2.6 a set of single electron
atomic orbitals to build more complex molecular orbitals. This principle is
the Linear-combination of atomic orbitals, (LCAQO) technique. Considering
the ¥; wave function in equation 2.6 as atomic orbitals, then the construc-
tion of any wave function ® = ) ¢;¥; (whose quality is described by the
aforementioned figure of merit) requires determining the ¢; coefficients that
minimize the energies of any linear combination of the chosen atomic or-
bitals. This involves computing the partial derivatives of the energy (in the
form of equation 2.9) with respect to ¢; Vi € [1, N] and equating them to
zero. By substituting equation 2.6 into equation 2.9 two integral terms can
be identified in the resulting expression. One is called the resonance integral
expressed in equation 2.10

and the other is called overlap integral, which quantitatively describes the
spatial overlap of given couples of basis functions. Its expression is as in
equation 2.11.

S’ij :/\I’l\lfde (211)

With this formalism, the equation that must be solved to find the ¢; set that
minimize energy is equation 2.12.

N
i=1
To ensure that the set of the aforementioned derivatives has nontrivial
solution, its characteristic (also known as secular) equation must be satisfied.
Such condition is displayed in equation 2.13.

Hy — ES11 Hia—FES12 -+ Hin—ESiN
Hyy — ES21 Hyy — ESy -+ Hon — ESon

0 (2.13)

Hyi1—ESn1 Hnyo — ESn2 -+ Hyn — ESnN
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The solution of equation 2.13 returns N eigenvalues E, which - used in the
energy minimization equation 2.12 - allows obtaining the basis set coeffi-
cients ¢; that characterize the considered molecular orbital. The discussion
carried on so far concerning a one-electron system can be extended to a
multi-electron system by assuming that the energy associated to the latter
is equal to the sum of the energies of the occupied one-electron molecular
orbitals, each being characterized by its Hamiltonian h; expressed as per
equation 2.14, where M is the number of the nuclei of the system and where
the interelectronic repulsion term has been neglected.

M

h 7
hiy = — 2 _ § e 2.14
2mevz k:1e Tik ( )

The multi-electron Hamiltonian may then be expressed as per equation 2.15
i.e. as the sum of the one-electron Hamiltonians outlined so far.

N
H=> h (2.15)
=1

Each h;, applied to a one-electron wave function ; will return the energy e;
associated to that wave function, i.e. the one-electron Schroedinger equation
2.16 holds.

hiv; = € (2.16)

Note that the one-electron v); are not known. It can be demonstrated that
the multi-electron wave function can be constructed as the product of the
one-electron wave functions (Hartree-product) and that the respective overall
energy is the sum of the one-electron energies, as shown in equation 2.17

_ N
Vip = Hiﬁl Vi (2.17)
Eup =73 €

The construction of the Hartree-product wave function requires knowledge
of the individual v; one-electron wave functions, which are actually not
known. One possibility is to undertake an iterative process based on an
initial-guess 1; set, which is used to compute the h; operators to use in the
one-electron Schroedinger equation. The solution to such equation provides
a new set of ;. The process outlined so far is iterated until the difference
between two subsequent sets of h; is below an acceptance threshold. Such
process is called self-consistent field (or SCF) method[29]. A wave function
as expressed by 2.17 does not satisfy the Pauli exclusion principle according
to which any molecular orbital can be populated with two electron having
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opposite spin number. Let a be the spin quantum number, a multi-electron
wave function that satisfies the Pauli exclusion principle can be expressed
as a Slater determinant[30] (equation 2.18).

vir(Da(l)  P2(a(l) - Py(1)a(l)
Tep — \/‘1]\7' (O (2): a(2) o (2): o (2) YN (.2.).04 (2) (2.18)
Y1 (N)a(N) o (N)a(N) - ¢n(N)a(N)

2.2 The Hartree-Fock SCF method

The Hartree-Fock SCF method is an iterative method for finding molecular
orbitals according to the multi-electron wave function theory outlined so far.
Therefore Hartree-Fock molecular orbitals can be found as Eigenfunctions
of a set of one-electron operators, but in this case in the electronic repulsion
effects are taken into account. The one-electron Fock operator can be defined
for the i — th electron as expressed in equation 2.19:

fi==5Vi= 2o V) (2.19)

where the first term is related to the one-electron kinetic energy, the second
term is the nuclear attraction contribution and finally VZH Fis the Hartree-
Fock potential. In order to determine the molecular orbitals, the method
requires the availability of IV basis functions and solving the secular equation
2.20 for E, the values of Fj; and S;; being computed explicitly [31, 32].

Fi1.—ESn1  Fia—ES;2 -+ Fiyn—ESiN
Fy1 —ESy1 Fog —ESy» -+ Fyy —ESyy

. . , —0 (2.20)
Fny1—ESn1 Fy2 —ESn2 -+ Fnn — ESnN

The S;; elements are overlap integrals, analogous to those previously ex-
pressed by equation 2.11. The F elements depend on both the chosen basis
set and the molecular orbitals. Given the couple of basis functions x4 and v,
F,,, is computed as in equation 2.21.

A

1
F;W = <M‘_2v2

u>+ZPM [w/ua) o)
. (2.21)
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where the first and second term of equation 2.21 consist in one-electron
integrals as expressed by 2.22:

(nlglv) = /dm (9w)dr (2.22)

and the third term involves the exchange integrals in the form expressed by
equation 2.23:

(uv|Ao) = //qﬁu(l)gby (1) Tlgb;\ (2) ¢o (2)dr (1) dr (2) (2.23)

where ¢,,, ¢, ¢ and ¢, are electron probability densities. The term P\, in
equation 2.21 accounts for the contributions of base functions to a molecular
orbitals.

2.3 Configuration interaction

In order to account for interaction between electrons in a multi-electron
system the Configuration Interaction (CI) and the Moeller-Plesset (MP) [33]
methods have been developed. Both methods rely on the Hartree-Fock wave
reference function and add a correction term which is computed according
to the variational principle in the case CI method and on the perturbation
theory in the case of the Moeller-Plesset [33] method. In the case of the
Configuration Interaction, a basis set consisting of Slater determinants is
linearly combined to obtain multi electron wave functions. Coeflicients for
such linear combination are the Hartree-Fock coefficients. The ground state
wave function can be expressed on the basis of the determinants of the
ground state and all the possible electronic excitations as:

U=> crép. (2.24)
L

The relevant Schroedinger equation is:

Y cLi(oxlHlr) = EY crr{orlor)- (2.25)
L L

The Slater determinants constitute an orthonormal basis set and the overlap
matrix between the various Slater determinants is (¢r,|¢r) = dxr. Rewrit-
ing Eq. 2.25 in a more compact fashion we obtain the usual Schroedinger
equation:

HC, = ECq, (2.26)

where the Cj coefficients weigh the contribution of each Slater determi-
nants. Among them ,the C11 coefficient is associated to the aforementioned
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Hartree-Fock reference wave function and the remaining are associated to
the excited state determinants and are the correction terms that character-
ize the technique. The procedure outlined would return the value of the
exact non relativistic energy associated to a system that satisfies the Born-
Oppenheimer approximation, but it is impractical in that it requires an in-
finite basis set. To overcome this issue, one possibility would be to exploit
a non-complete basis set 