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General introduction 

The environment plays a key role in growth and development of organisms. There is a strong 

suggestion that organisms and communities present adaptive and acclimation mechanisms and 

significant flexibility to respond of environmental change (Buddemeier and Smith 1999). 

Moreover, many organisms have the ability to express different observable phenotypes in 

response to changes of biotic and abiotic environmental parameters. This process is referred as 

phenotypic plasticity, which is the ability of organism to produce a range of relatively fit 

phenotypes by altering morphology, state, movement, life history or behavior in relation to 

variations in environmental parameters (Pigliucci 2001; West-Eberhard 2003; DeWitt and 

Scheiner 2004; Beldade et al. 2011; Gilbert 2012).  

Environmental parameters and climate change 

Coastal marine systems are arguably among the most ecologically and socio-economically 

important on the planet, and calcifying marine organisms, such as corals and mollusks are 

likely to be among the most susceptible organisms to changing environmental parameters, 

including anthropogenic climate change (Laing et al. 1987; Levitan 1991; DeWitt 1998; 

Carballo et al. 2006; Harley et al. 2006).  

Over the past several centuries, burning of fossil fuels, deforestation, industrialization, cement 

production, and other land-use changes  have become an additional, important component to 

the climate system through greenhouse gas (mainly CO2) emissions (Wisshak et al. 2013). The 

increasing atmospheric carbon dioxide (CO2) concentration by human activities is driving 

global climate change, in which the main forces are ocean warming (OW), ocean acidification 

(OA) and the alteration of seawater physicochemical status (Diaz and Rosenberg 2008; 

Kroeker et al. 2010; Byrne 2012). Mean sea surface temperatures increased of 0.7°C since the 

industrial revolution (Feely et al. 2009), and the Intergovernmental Panel of Climate Change 
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(IPCC) projected a further rise of 1.6-4.3°C by the end of this century (Stocker et al. 2013). 

Moreover, about 30% of anthropogenic CO2 is absorbed by oceans (Solomon et al. 2007), 

causing a decrease of 0.1 pH units from the preindustrial time (Caldeira and Wickett 2003; 

Langdon and Atkinson 2005; Feely et al. 2012). If anthropogenic CO2 emission will be not 

mediated, is projected a further drop of 0.06-0.32 units by the end of this century (Stocker et 

al. 2013; Caldeira and Wickett 2003; Feely et al. 2009). The extensive absorption of pCO2 by 

oceans is triggering a series of chemical reactions that alter the seawater carbonate chemistry.  

In the first key reaction is formed the carbonic acid (H2CO3), which dissociates releasing H+ 

ions: 

CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3- 

The second key reaction occurs between free carbonate ions (CO3
2-) and hydrogen ions (H+), 

with the bicarbonate ions formation (HCO3-): 

CO3
2- + H+ ↔ HCO3- 

The combined effect of these two reactions not only causes an increase in acidity, due to rise 

of hydrogen ion concentration (H+), but also reduced availability of carbonate ion (CO3
2-) 

concentration, increasing energetic costs associated with production of calcium carbonate 

(CaCO3) structures by organisms (Caldeira and Wickett 2003). Moreover, dissolution or 

precipitation of CaCO3 is linked to the stability of the crystalline structure and the rate of 

biogenic calcification is, among other factors, determined by the saturation state of seawater 

(Ω) with respect to CaCO3: 

Ω = [Ca2+]*[ CO3
2-]/K 

 where [Ca2+] is the in situ concentration of calcium ions and K is the stoichiometric solubility 

product, that is inversely related to temperature (T), so the carbonate saturation Ω increases 

with increasing T. When Ω > 1 is favored the precipitation of CaCO3, that begins to dissolve 

when Ω drops below 1 (Hofmann and Schellnhuber 2010).  
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Calcifying marine organisms (e.g. corals and mollusks) use CaCO3, in the form of calcite or 

aragonite, as a structural and/or protective material through the biomineralization process 

(Lowenstam and Weiner 1989). This process occurs in a biological confined environment, 

under the control of biological macromolecules (Allemand et al. 2011). The structure of marine 

calcifying organism is a composite of both, inorganic (aragonite or calcyte) and organic 

components (Wilfert and Peters 1969; Young 1971), the intracrystalline skeletal organic matrix 

(OM), which is involved in biomineral synthesis playing a major role in biomineralization 

process (Addadi et al. 1987; Falini et al. 1996, 2009; Puverel et al. 2005). Although several 

studies was performed to understand the empirical aspects of biomineralization, the 

fundamental mechanisms and dynamics of skeletal morphogenesis are still only partially 

understood (Cohen and McConnaughey 2003; Allemand et al. 2011).  

Calcifying marine organisms are likely to be among the most susceptible organisms to 

environmental change (Laing et al. 1987; Levitan 1991; DeWitt 1998; Carballo et al. 2006), 

showing morphological variations of the skeleton/shell related to bottom topography, sediment 

characteristics, hydrodynamic processes (Vogel 1996; Seed and Richardson 1999; Casado-

Amezua et al. 2013), and especially with T (Laing et al 1987; McNeil et al. 2004; Goffredo et 

al. 2007, 2008; Doyle 2010; Rodolfo-Metalpa et al. 2011; Watson et al. 2012) and pH (Kleypas 

et al. 1999, 2006; Ries et al. 2009; Nienhuis et al. 2010; Findlay et al. 2011; Goffredo et al. 

2014; Fantazzini et al. 2015; Thomsen et al. 2015). 

Effects of temperature and ocean warming 

OW alone has already affected the marine species distribution and threatens the survivor of 

marine species and ecosystems, such as coral reefs (Parmesan and Yohe 2003; Thomas et al. 

2004; Perry et al. 2005; Hoegh-Guldberg 2005; Brierley and Kingsford 2009). T is the major 

environmental factor controlling invertebrate population biology and its increased negatively 
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affects physiology, developmental rates (Hoegh-Guldberg and Pearse 1995; Gillooly et al. 

2002; Clarke 2003; Brierley and Kingsford 2009), growth rates, reproductive output (Baird and 

Marshall 2002; Linares et al. 2008; Albright and Mason 2013), and increases mass mortality 

events and disease (Przeslawski et al. 2008; Coma et al. 2009; Garrabou et al. 2009). Moreover, 

many marine organisms has a symbioses with unicellular dinoflagellate algae (zooxanthellae) 

makes these animals, including zooxanthellate corals, the most affected by OW, due to the 

negative effect of high T on photosynthetic machinery of their host zooxanthellae (Lesser 

2011). Symbiodinium species through photosynthesis process produces energy, mainly as 

glucose (Burriesci et al. 2012), and are able to meet up to ~95% of the energy requirement of 

the coral host (Muscatine et al. 1981, 1984). Increasing T may damage the photosynthetic 

machinery of Symbiodinium, reducing their photosynthetic efficiency and eventually leading 

to their expulsion from the coral host and/or the loss of the pigments of the zooxathellae, 

through a process known as bleaching (Brown 1997; Lesser 2011). Coral bleaching cause a 

loss of energy and carbon budget of corals and may result in a decrease of coral calcification 

(Schoepf et al. 2015). Bleached coral can survive to bleaching event recovering new 

zooxanthellae from water column but, if bleaching event persist in time, the coral will die, 

increasing the mass mortality events (Brown 1997; Berkelmans et al. 2004). It was 

experimentally found that T at which corals bleach, slow or block the development of gonads 

within corals and interrupt a number of other key reproductive processes; even if corals recover 

from bleaching events, the number of recruits may be affected (Hoegh-Guldberg 1999). The 

negative effects of increasing T on coral reproduction include a reduction of fecundity, egg 

quality and fertilization success, and recruitment through effects on early life history processes 

after fertilization (e.g. embryonic development, larval development, survival, settlement, 

metamorphosis and post-settlement growth; Albright and Mason 2013; Linares et al. 2008). 

These studies was carried out mainly on zooxanthellate tropical and subtropical corals. The 
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few information about sexual reproduction of non-zooxanthellate corals reveals no effect of on 

reproductive output to increasing T (Airi et al. submitted; Marchini 2016; present thesis). The 

different response to high T among species could be due to their different trophic strategies, 

suggesting that heterotrophic species seem to be less sensitive to T change than zooxanthellate 

ones. 

Effects of pH and ocean acidification 

OA alone has the potential to severely affect physiological and ecological process influencing 

the performance of marine organisms, with implications for population dynamics, community 

structure, and ecosystem function (Fabry et al. 2008; Doney et al. 2009; Gaylord et al. 2015). 

Sexual reproduction represents a crucial process, in the development and persistence of 

populations through the maintaining genetic diversity, and its reduction threaten the resilience 

of the species, leading to shifts in size and abundance of populations (Roth et al. 2010; Fiorillo 

et al. 2013) and allows the populations replenishment after disturbances. Very little information 

is available regarding the effects of ocean acidification on sexual reproduction in corals, and 

no one on temperate species. The effects of decreasing pH on coral reproduction, show negative 

response on sperm motility (Morita et al. 2009; Nakamura and Morita 2012), gametogenesis 

(Fine and Tchernov 2007; Jokiel et al. 2008), fertilization process (Albright and Mason 2013; 

Albright et al. 2010; Chua et al. 2013), embryonic development (Medina-Rosas et al. 2012), 

larval settlement and juvenile growth (Kurihara 2008; Suwa et al. 2010; Albright and Langdon 

2011; Nakamura et al. 2011; Doropoulos et al. 2012; Chua et al. 2013; Doropoulos and Diaz-

Pulido 2013). Moreover, most results show that increasing pCO2 may affected calcifying 

marine organisms through disturbances in acid-base regulation, respiration, metabolism, 

growth rates, reproduction and calcification (Pörtner 2008; Widdicombe and Spicer 2008; 

Navarro et al. 2013; Duarte et al. 2014; Gazeau et al. 2014) and mortality rates may increase 
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(Miles et al. 2007; Kroeker et al. 2010; Appelhans et al. 2012). However, in symbiotic organism 

with algae, such as zooxanthellate corals, increasing CO2 could stimulates photosynthesis 

increasing the overall energy introduced into the system, as found in  different taxa (Borowitzka 

and Larkum 1976; Gao et al. 1993; Riebesell et al. 1993; Zimmerman et al. 1997; Langdon and 

Atkinson 2005) and possibly stimulate the calcification process (Iglesias-Rodriguez et al. 

2008). At the contrary, the non-symbiotic organisms, such as non-zooxanthellate corals, could 

be negatively affected by decreasing pH; in fact, a drop in pH decreases calcification and may 

ultimately result in the inability of corals to form a skeleton (Knowlton and Jackson 2008). 

Actually, the effects of decreasing pH, due to increasing pCO2, on photosynthetic efficiency in 

corals, showed ambiguous and contradictory results, and could be modified by a rise in T 

(Gooding et al. 2009; Findlay et al. 2010), making it difficult to understand how zooxanthellate 

corals will respond to climate change (Harley et al. 2006; Dupont and Thorndyke 2009; 

Kurihara 2008; Pörtner 2008; Przeslawski et al. 2008).  

Temperature/pH interactions and local stressors 

A growing body of evidence confirms that OW and OA are among the most important 

environmental factors controlling the survival, distribution, growth, physiological 

performance, behaviour and physiology of diverse marine organisms  (Pörtner et al. 2005; 

Pörtner and Knust 2007; Pörtner 2008; Widdicombe and Spicer 2008; Doney et al. 2009; 

Dupont and Thorndyke 2013; Dupont and Pörtner 2013). In addition, the diseases and local 

anthropogenic influences could affect coral health, potentially increasing the effects of global 

climate changes. The great intensification of coastal populations leads to increased sewage in 

coastal marine populations, resulting in a great amount of inorganic nutrients, organic 

compounds and sediments, with deleterious effects on corals (Fabricius 2005; Lamb et al. 2015; 

Wear and Thurber 2015). A moderate rise in nutrient concentrations can substantially increase 
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the severity of coral diseases by increasing pathogen fitness and virulence (Bruno et al. 2003; 

Kim and Harvell 2002). Over fishing, destructive fishing, loss of herbivores and high inorganic 

nutrient produce an increase in algal abundance on reefs, negatively affecting coral healthy 

(Hughes and Connell 1999; Hughes et al. 1999; McCook 1999; Knowlton 2001; Aronson et al. 

2003; Bellwood et al. 2004). Moreover, fishing tools may injure corals, making them more 

susceptible to disease (Lamb et al. 2015). These local factors weaken resilience of the 

ecosystem and work in concert with global climate changes, endangering the future of marine 

ecosystems.  

Mediterranean Sea  

Most studies regarding the effect of climate change on biology and ecology on Scleractinian 

corals have been performed in tropical regions, where many species are widely present and can 

be easily sampled during scientific dives (Freiwald et al. 2004). Temperate regions, including 

Mediterranean Sea, have deserved much less attention, probably because of higher difficulty 

in collecting the study material (Freiwald et al. 2004). However, the magnitude of OW and OA 

is differing markedly between regions (Stocker et al. 2013; Brierley and Kingsford 2009) and 

Mediterranean Sea will be one of the regions most affected by the ongoing warming and 

acidifying trend (Field et al. 2012). Mediterranean Sea is a semi-enclosed mid-latitude ocean 

basin well ventilated in most parts (Copin-Montegut 1993; Bethoux et al. 1999), characterized 

by high total alkalinity (~2.6 mmol kg−1) and high carbonate saturation state (Schneider et al. 

2007). These conditions, in addition to high solubility of CO2 at low SST, involve in a great 

chemical potential to sequester atmospheric CO2, resulting in relatively larger decreases in 

seawater pH (Copin-Montegut 1993; Bethoux et al. 1999; Pörtner 2008), making the 

Mediterranean a potential model of more global patterns to occur in the world’s marine biota, 

and a natural focus of interest for research (Lejeusne et al. 2010).  
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My research objectives 

In effort to contribute to better understand how OW and OA affect the biology of calcifying 

marine organisms, the studies of this PhD thesis were performed mostly in Mediterranean Sea 

in natural populations along latitudinal gradient of T and SR and in transplanted and natural 

populations along a pCO2 natural gradient. These studies involved zooxanthellate and non- 

zooxantehllate scleractinian corals to furtherly assess if different trophic strategy produces 

different sensitivity to environmental change. A comparative study between two zooxanthellate 

Red Sea corals with different growth form, regarding the effect of high T, low pH and their 

interaction was performed in aquaria experiment. Moreover, along a latitudinal gradient of T 

and SR, six populations of a common bivalve clam with great commercial value, were 

considered as case study of calcifying marine organisms. 

Specifically, this PhD thesis has been divided into 3 sections to focus the relationship between: 

Section 1. Sexual reproduction and environmental parameters  

Aim: Quantifying the reproductive output (gametes abundance, gonadal index and 

reproductive element size) of:  

o Balanophyllia europaea (solitary, zooxanthellate) along a latitudinal gradient of T and SR. 

Chapter 2, published in Plos ONE; 

o B. europaea living along a natural pCO2 gradient (only oogenesis). Chapter 3, manuscript 

in preparation; 

o Leptopsammia pruvoti (solitary, non-zooxanthellate) transplanted along a natural pCO2 

gradient. Chapter 4, manuscript in preparation; 
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Section 2. Ecophysiology and environmental parameters  

Aim: Quantifying the photosynthetic efficiency, bleached tissue and mortality rate of Fungia 

granulosa (solitary, zooxanthellate) and Pocillopora verrucosa (colonial, zooxanthellate) 

under experimental T and pCO2 conditions (abroad period). Chapter 5, manuscript in 

preparation. 

Section 3. Biomineralization, skeletal phenotype and environmental parameters  

Aims: 

 Investigate the role of intra-skeletal organic matrix (OM) in the biomineralization 

process of B. europaea, L. pruvoti, Astroides calycularis and Cladocora caespitosa. 

Chapter 6, published in Crystal Growth & Design; 

 Quantifying the macrostructural (length, height, width, thickness, mass and volume) 

microstructural (microdensity, bulk density, porosity) and nanostructural shell 

parameters (shell inorganic phase, crystal atomic disorder, OM) of Chamelea gallina 

along a latitudinal gradient of T and SR. Chapter 7, manuscript in preparation; 

 

The present PhD work was conducted in the Marine Science Group at Department of 

Biological, Geological and Environmental Sciences (BiGeA, University of Bologna, Itlay) 

under supervision of Dr. Stefano Goffredo; at Chemistry Department “G. Ciamician” 

(University of Bologna, Italy), in collaboration with Prof. Giuseppe Falini; and at Red Sea 

Research Center (King Abdullah University of Science and Technologies (KAUST), Saudi 

Arabia),  in collaboration with Prof. Christian Voolstra. 

Part of my PhD research concerns the EU FP7-IDEAS ERC project, "Corals and global 

warming: the Mediterranean versus the Red Sea" (CoralWarm; www.coralwarm.eu), which 

aims to study the influence of OA and OW on Mediterranean and Red Sea corals. 
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Abstract

Investments at the organismal level towards reproduction and growth are often used as indicators of health. Understanding
how such energy allocation varies with environmental conditions may, therefore, aid in predicting possible responses to
global climatic change in the near future. For example, variations in seawater temperature may alter the physiological
functioning, behavior, reproductive output and demographic traits (e.g., productivity) of marine organisms, leading to shifts
in the structure, spatial range, and abundance of populations. This study investigated variations in reproductive output
associated with local seawater temperature along a wide latitudinal gradient on the western Italian coast, in the
zooxanthellate Mediterranean coral, Balanophyllia europaea. Reproductive potential varied significantly among sites, where
B. europaea individuals from the warmest site experienced loss of oocytes during gametogenesis. Most of the early oocytes
from warmest sites did not reach maturity, possibly due to inhibition of metabolic processes at high temperatures, causing
B. europaea to reabsorb the oocytes and utilize them as energy for other vital functions. In a progressively warming
Mediterranean, the efficiency of the energy invested in reproduction could be considerably reduced in this species, thereby
affecting vital processes. Given the projected increase in seawater temperature as a consequence of global climate change,
the present study adds evidence to the threats posed by high temperatures to the survival of B. europaea in the next
decades.
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Introduction

Coral reefs, like many other ecosystems, are currently under-

going changes in biodiversity, ecosystem function, and resilience

due to rising seawater temperatures acting in synergy with

additional environmental pressures [1]. A rise in global average

temperature of 0.7uC since the start of the industrial revolution has

caused or contributed to significant losses of global coral cover

over the past few decades, and oceans are expected to experience a

further warming of 1.1–6.4uC within the 21st century [2]. Climatic

models [3] predict that the Mediterranean basin will be one of the

most impacted regions by the ongoing warming trend [4]. The

Mediterranean is already showing rates of seawater warming that

exceed threefold those of the global ocean [2,4], making it a

potential model for global scenarios to occur in the world’s marine

biota, and a natural focus of interest for research [5].

Increasing temperatures are having a strong impact on marine

systems [6]. Indeed, temperature is the major environmental

factor controlling invertebrate development, marine species

distributions and recruitment dynamics [7,8]. Seawater tempera-

ture increases will likely affect the population biology of coral

species by reducing reproductive capacity [9]. The harmful effects

of increasing temperature on coral reproduction include reduced

individual fecundity, egg quality, lowered fertilization success and

reduced recruitment through effects on post-fertilization processes

(e.g., embryonic development, larval development, survival,

settlement, metamorphosis, and early post-settlement growth)

[10,11]. The combined effects of fertilization failure and reduced

embryonic development in some coral species are likely to

exacerbate ecological impacts of climate change by reducing

biodiversity [12]. Several studies assessed the immediate and

delayed impacts of environmental change on Mediterranean

gorgonian colonies [11–14] including sublethal impacts on

reproductive effort [11,15,16,17], but few studies have examined

temperate solitary corals. Research focusing on reproductive

processes in regions with peculiar physical conditions is urgently

needed as a baseline against which to test the effects of climate

change on sexual reproduction (e.g. fecundity) [10,18] and

organismal performance, that are essential to understand popu-

lation dynamics of marine organisms [19].

Organismal performance under both ‘‘normal’’ and ‘‘stressful’’

conditions is mainly determined by the energetic status of the

individual, which can ultimately affect its fitness (i.e. reproductive

output). During prolonged periods of stress, the energy balance of

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e91792

http://creativecommons.org/licenses/by/4.0/


a coral is negative and the organism is drawing on all biochemical

pools, and thus both storage and structural components for energy

could be compromised [20]. Shallow water reef corals strongly rely

on energy derived from photosynthesis by its symbiotic zooxan-

thellae [21]. In particular, key processes like gametogenesis [22],

larval longevity and settlement [23] are dependent on the

availability of stored energy as lipids that are reabsorbed when

resources are limited [24]. If metabolic processes involved in

recovery from stress deplete lipid reservoirs in oocytes, then fewer

resources are available for new egg production [25], significantly

affecting gametogenesis.

This study focused on an endemic zooxanthellate Mediterra-

nean scleractinian, Balanophyllia europaea (Fig. S1), a simultaneous

hermaphrodite and brooding coral [26]. There is growing concern

for the future of this endemic species in light of expected seawater

warming, since increasing temperature negatively affects B.

europaea skeletal density [27] (due to increased porosity [28]),

population abundance [29], population structure stability [30],

growth and calcification [28]. Our specific aim was to quantify the

reproductive output of B. europaea along a latitudinal gradient of

temperature. We expected to find a similar negative response of

reproductive output with increasing temperature.

Materials and Methods

Ethics Statement
This study was carried out following the fundamental ethical

principles. According to the European normative, there is no

active conservation measure for the Mediterranean scleractinian

coral studied here (B. europaea). The species is not protected in Italy,

nor is it subject to any regulations. Thus, no permit was needed to

sample specimens. For this study, sampling was limited strictly to

the number necessary and performed where the species has high

population density to minimize the impact of removing individuals

and preserve both the demographic and genetic structure of the

natural populations.

Specimens of B. europaea came from six sites along a latitudinal

gradient, from 44u209N to 36u459N (Fig. 1). Coral collection began

in June 2010 and ended in November 2012. During this period, 18

samples were taken monthly from five populations (Genova: April

2011-September 2012; Elba: December 2010-May 2012; Pali-

nuro: June 2010-November 2011; Scilla: June 2011-November

2012; Pantelleria: June 2011-November 2012), with a minimum of

15 polyps collected during each excursion. Data from Calafuria

population came from a previous study [26] in which samples were

collected from July 1997 to October 1998.

Biometric analyses were performed by measuring length (L,

maximum axis of the oral disc), width (W, minimum axis of the

oral disc) and height (h, oral–aboral axis) of each sampled polyp.

The volume (V) of the individual polyp was calculated using the

formula [26].

Polyps were post-fixed in Bouin solution. After decalcification in

EDTA and dehydration in a graded alcohol series from 80% to

100%, polyps were embedded in paraffin and serial transverse

sections were cut at 7 mm intervals along the oral-aboral axis, from

the oral to the aboral poles. Tissues were then stained with

Mayer’s haematoxylin and eosin [26].

Cytometric analyses were made with an optical microscope

using the image analyzer NIKON NIS-Elements D 3.2. The

maximum and minimum diameters of oocytes in nucleated

sections and spermaries were measured and the presence of

embryos in the coelenteric cavity was recorded. Spermaries were

classified into five developmental stages in accordance with earlier

studies on gametogenesis in scleractinians [19,31,32].

Reproductive output was defined through three reproductive

parameters: a) fecundity rate and spermary abundance, both defined as

Figure 1. Map of the Italian coastline indicating the sites where
corals were collected. Abbreviations and coordinates of the sites in
decreasing order of latitude: GN Genova, 44u209N, 9u089E; CL Calafuria,
43u279N, 10u219E; LB Elba Isle, 42u459N, 10u249E; PL Palinuro, 40u029N,
15u169E; SC Scilla, 38u019N, 15u389E; PN Pantelleria Isle, 36u459N,
11u579E.
doi:10.1371/journal.pone.0091792.g001

Table 1. Mean annual solar radiation (W/m2) and temperature (DT; uC) values of the sampled populations.

Population Code DT (6C) mean ± SE Solar radiation (W/m2) mean ± SE

Calafuria CL 17.7360.16 174.161.9

Elba LB 18.0760.24 184.962.3

Genova GN 18.1360.43 156.963.2

Scilla SC 18.7360.15 205.561.8

Palinuro PL 19.1460.14 194.662.7

Pantelleria PN 19.6960.05 218.260.5

DT sensors (I-Button DS1921H, Maxim Integrated Products), were placed at the sampling location, at 5–7 m depth in each population. Solar radiation (W/m2) was
collected from MFG satellites. The sites are arranged in order of increasing DT; SE, standard error.
doi:10.1371/journal.pone.0091792.t001
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the number of reproductive elements per body volume unit

(100 mm3); b) ‘‘gonadal’’ index, defined as the percentage of body

volume occupied by germ cells [26]); and c) reproductive element size,

defined as the average of the maximum and minimum diameter of

spermaries and oocytes in nucleated section [26].

Based on the reproductive season [26], gametal development in

B. europaea was divided in two gamete activity periods. The gametes

recruitment period [33,34] was defined as the post-fertilization period,

between June and September, generally characterized by: 1) a

stock of smaller oocytes; 2) the recruitment of new oocytes; and 3)

the beginning of spermary development [26]. The gametes maturity

period [33,34] was defined as the pre-fertilization period taking

place between December and March and generally characterized

by the presence of larger oocytes and advanced stage of

maturation of spermaries [26].

Temperature data (Depth Temperature – DT; uC) came from

temperature sensors (I-Button DS1921H, Maxim Integrated

Products), placed at the sampling location for each population.

Sensors recorded temperatures during the entire experimental

period. Sea Surface Temperature data (SST; uC) for each site were

recorded hourly from the National Mareographic Network of the

Institute for the Environmental Protection and Research (ISPRA,

available to http://www.mareografico.it). These data are mea-

sured by mareographic stations placed close to the sampling sites

using SM3810 manufactured by the Society for the Environmental

and Industrial monitoring (SIAP+MICROS). A linear regression

was produced between DT and SST data to estimate historical at-

depth temperatures. In this study we considered the average DT

temperature of the three years preceding the sampling (n = 36

monthly temperatures).

Solar radiation (W/m2) was collected from the archives of the

Satellite Application Facility on Climate Monitoring (CM-SAF/

EUMETSAT, available to http://www.cmsaf.eu), using real time

data sets based on intersensor calibrated radiances from MFG

satellites. Mean annual solar radiation of each site was obtained for

the 2.5u-latitude-by-longitude square associated with each of the

six sites. As for temperature, also for solar radiation we considered

the average of the three years preceding the sampling (n = 36

monthly solar radiation).

Data were checked for normality using a Kolmogorov-

Smirnov’s test and for variance homoskedasticity using a Levene’s

test. When assumptions for parametric statistics were not fulfilled,

a nonparametric test was used. The Kruskal–Wallis test is a non-

parametric alternative to the analysis of variance (ANOVA) and is

used to compare groups of means; it is useful for data that do not

meet ANOVA’s assumptions. The non-parametric Kruskal–Wallis

test was used to compare reproductive parameters among study

sites. The non-parametric Kolmogorov-Smirnov test was used to

compare the size-frequency distribution of reproductive elements

between populations and between the two periods. Student’s t test

was used to compare the mean oocytes and spermaries size of

populations between periods. Spearman’s rank correlation coeffi-

cient was used to calculate the significance of the correlations

between reproductive and environmental parameters. Spearman’s

rank correlation coefficient is an alternative to Pearson’s correla-

tion coefficient [35]. It is useful for data that are non-normally

distributed and do not meet the assumptions of Pearson’s

correlation coefficient [36]. All analyses were computed using

PASW Statistics 17.0.

Figure 2. Oocyte size/frequency distribution in the recruitment
and maturity periods. Distribution of the oocytes size during gamete
recruitment period (solid line) and gamete maturity period (dashed
line).
doi:10.1371/journal.pone.0091792.g002
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Results

Mean annual solar radiation (W/m2) and mean annual DT (uC)

were significantly different among sites (solar radiation, ANOVA,

p,0.001; DT, Kruskal-Wallis, p,0.05; Table 1; Fig S2).

All populations contained both oocytes and spermaries during

both reproductive periods, while embryos were detected only

between June and September (gametes recruitment period). The

oocyte size/frequency distribution of June-September (gametes

recruitment period) was significantly different from that of

December-March (gametes maturity period), in all populations

(Kolmogorov-Smirnov, p,0.001; Fig. 2). Within June and

September (gametes recruitment period) most oocytes were

smaller than 400 mm, in all populations. In the following season

(December-March, gametes maturity period), two distinct oocyte

stocks appeared in all populations, characterized respectively by

small (immature,400 mm) and large (mature .400 mm) cells

(Fig. 2). The mean oocyte size of June-September (gametes

recruitment period) was significantly lower than that of December-

March (gametes maturity period) in all populations (Student’s t-

test, p,0.001; Table 2; Fig. S3).

The distribution of spermary maturation stages in June-

September (gametes recruitment period) was significantly different

from that in December-March (gametes maturity period), in all

populations (Kolmogorov-Smirnov, p,0.001; Fig. 3). Each

population was characterized, from June to September (gametes

recruitment period), by small spermaries, mainly belonging to the

earliest maturation stages (stages I and II). In the period

December-March (gametes maturity period), all populations were

characterized by more advanced maturation stages (mainly stage

III; Fig. 3). The mean spermary size of June-September (gametes

recruitment period) was significantly lower than that of December-

March (gametes maturity period) in all populations (Student’s t-

test, p,0.001; Table 3; Fig. 3). In all populations, June-September

(gametes recruitment period) was characterized by the presence of

embryos in the coelenteric cavity.

Fecundity, gonadal index and oocyte size were significantly

different among populations, during June-September (gametes

recruitment period) (fecundity, Kruskal–Wallis test, p,0.01;

gonadal index and oocyte size, Kruskal–Wallis test, p,0.001;

Tables 2 and S1). In this period, all oocyte reproductive

parameters showed positive correlations with both environmental

parameters (DT and solar radiation; Table S1; Fig. S4). During

December-March (gametes maturity period), the fecundity and

oocyte size were significantly different among populations

(fecundity, Kruskal–Wallis test, p,0.05; diameter, Kruskal–Wallis

test, p,0.001; Tables 2 and S1). The mean size of oocytes across

all populations was negatively correlated with the DT (Table S1;

Fig. S5). In the warmest population (Pantelleria island,

19.6960.05uC; Table 1), the number of mature oocytes at

fertilization was three times lower than in the recruitment period,

indicating a clear reduction of fecundity during this period

(Table 2). In the coldest population (Calafuria, 17.7360.16uC;

Table 1), fecundity was the same during both periods (Table 2).

In both periods, only the spermary size was significantly

different among populations (Kruskal–Wallis test, p,0.001;

Tables 3 and S2) and in both reproductive periods, spermary size

was negatively correlated with both DT and solar radiation (Table

S2; Fig. S6 and S7).

Discussion

Traditionally, seawater temperature cycles and solar radiation

fluctuations have been related to reproductive timing of gamete

development, fertilization and planulation [16,37] providing a

reliable cue to reset the biological clock and trigger the

physiological changes related to oocyte yolk deposition [38] and

spermary development [26,39,40]. The effects of changing

photoperiod and seawater temperature on gametogenic cycles of

anthozoans have been largely overlooked [15,41,42]. The

reproductive biology of B. europaea, studied at Calafuria, shows a

reproductive seasonality induced by annual variation of seawater

Table 2. Mean fecundity, gonadal index and diameter of oocytes in each population.

Gametes recruitment period (June – September)

Population N Fecundity (#/100 mm3) mean ± SE Gonadal Index (%) mean ± SE N Diameter (mm) mean ± SE

Calafuria 18 161639 0.2260.07 1135 166.363.3

Elba 6 148637 0.6560.17 544 193.763.8

Genova 8 168647 0.2760.12 505 166.063.3

Scilla 9 256658 0.4160.13 729 166.762.8

Palinuro 10 7346194 1.5760.38 1766 178.461.9

Pantelleria 8 6636240 1.4360.51 1312 188.262.6

Gametes maturity period (December – March)

Population N Fecundity (#/100 mm3) mean ± SE Gonadal Index (%) mean ± SE N Diameter (mm) mean ± SE

Calafuria 19 117638 1.0460.30 1040 350.367.5

Elba 8 175632 0.7960.16 435 243.467.7

Genova 4 4116183 1.3760.40 532 222.566.2

Scilla 4 6026257 2.7261.50 902 241.164.5

Palinuro 7 112630 0.3960.15 261 217.767.5

Pantelleria 6 2366106 1.2560.41 445 265.467.1

Mean fecundity, gonadal index and diameter of oocytes in each population for both reproductive periods. The sites are arranged in order of increasing DT; SE, standard
error. N, polyp number for fecundity and gonadal index, oocyte number for diameter.
doi:10.1371/journal.pone.0091792.t002
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temperature and photoperiod [26]. The same pattern seems to

appear in other Mediterranean dendrophylliids like Leptopsammia

pruvoti [39] and Astroides calycularis [40] and in the Mediterranean

endemic oculinid Cladocora caespitosa [43,44]. A similar periodicity

for gamete development and embryonic presence during the

recruitment period, suggest an overlap of reproductive seasonality

in all populations along the latitudinal gradient by B. europaea. In

broadcasting scleractinian corals, where temperature dependence

leads to location-specific synchronous reproductive times [45],

temporal variation in spawning events by corals from different

latitudes, over two or more consecutive months, is uncommon

[18]. In brooding scleractinians, reproductive cycles are protracted

over several months coinciding with environmental seasonality

change [46,47].

Specimens from the warmer and more irradiated populations of

B. europaea generated a significantly greater number of oocytes

during the initial stages of gametogenesis (gametes recruitment

period). Before fertilization (gametes maturity period), however,

individual oocyte number was not related to temperature/

irradiance along the gradient, while oocyte size was smaller with

increasing temperature (Tables 2 and S1). A reduction of

photosynthetic efficiency is documented for several species when

temperatures are above optimal [48,49], thereby limiting energetic

resources for polyp gametogenesis [9,50]. The onset of gameto-

genesis (proliferation of germ cells and their differentiation into

gametes) may require little energy investment and may, therefore,

be less sensitive to selective pressures such as food availability and

more reliant on environmental seasonal cycles [51]. In this

scenario, warmer populations of B. europaea could invest in

energetically inexpensive early stages of oogenesis to generate a

potential energy resource that would guarantee sufficient meta-

bolic efficiency. On the other hand, the ripening of gametes,

especially of oocytes, is an energy consuming process and,

therefore, extremely sensitive to selective pressures [51].

Regarding male gametogenesis, during both reproductive

periods, the size of spermaries decreased with increasing temper-

ature (Tables 3, S2), while their abundance was not significantly

related to environmental parameters. The energetic investment for

gametogenesis between males and females is often assumed to

differ [52]. For many lower invertebrates, and especially sessile

ones, mating effort and parental care are minimal and reproduc-

tive output provides a good approximation of the reproductive

effort, so most of the energy involved in reproduction is stored in

gonads [53]. This ‘‘cost of sex’’ is mainly represented by oogenesis,

while the investment of spermary production minimally influences

the energetic balance of the organism [52].

For all organisms, energy flow provides an important cost for

physiological performance, including maintenance, growth and

reproduction, all of which have implications on survival and

fitness. Reproductive investment and growth are often used as

indicators of health or stress at the organism level (e.g. [54]), and

knowledge of how such allocation varies among species or

morphological types is crucial for the interpretation of physiolog-

ical response to environmental factors [53]. Essentially, organisms

invest their energy in continuous trade-offs between somatic/

skeletal growth and reproduction, which in many species includes

the possibility of asexual reproduction [55]. In a changing

environment, physiological trade-offs vary through time, reflecting

variations in resource availability [56], and the ‘energy allocation’

Figure 3. Spermary frequency distribution in the recruitment
and maturity periods. Distribution of the maturation stages during
gamete recruitment period (gray histogram bars) and gamete maturity
period (black histogram bars).
doi:10.1371/journal.pone.0091792.g003
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explains this partitioning between the various investment options

(e.g. growth, sexual reproduction, defense) [57]. For example, the

coral Montipora digitata under varying light regimes shows an

increase of energy allocated to reproduction versus growth at

intermediate light levels. In this species the skeletal growth is less

susceptible to environmental variations and during periods of

resource shortage, energy is preferentially allocated for skeletal

growth [57]. B. europaea shows a reduction of skeletal density, due

to increasing porosity, and especially of pores with larger size, with

increasing temperature [28,29,58]. Also its growth and calcifica-

tion are negatively related to temperature [27,30]. Warmer

populations are less stable, showing a progressive reduction in

young individuals and reduced population density [29,30]. It has

been hypothesized that the decrease in calcification rate [27] and

skeletal density [29] in B. europaea with increasing temperature

could be due to a reduction of energy input available, maybe due

to photosynthetic inhibition of the symbionts [29,30]. Populations

of B. europaea in warmer sites could potentially resorb earlier

oocytes adjusting their energetic budget by reallocating the

resources destined to oocyte maturity into other vital functions

depleted by the negative effect of temperature. Resorption of

oocytes is not fully understood, but it is thought that by breaking

down the large amount of lipid vesicles in oocytes, energy can be

absorbed back into the coral [59]. In the soft coral Lobophytum

compactum, fecundity is reduced after an induced bleaching event.

In this zooxanthellate coral, early oocytes are resorbed to allow

development of remaining ones. Energy allocated to reproduction

is apparently shifted towards maintaining fewer eggs than normal

to ensure that they reach a mature size [37]. The branching coral

Acropora formosa shows lower survival rate and a resorption of early

vitellogenic oocytes after fragmentation, suggesting that there is a

trade-off of energy between reproduction and survival [60].

In conclusion, B. europaea shows the highest ecological perfor-

mance in the coldest part of its distribution, characterized by a

higher growth coefficient [30], a greater population density

[29,61] and a higher efficiency in partitioning the energy budget

(this work; [27-30]). On the contrary, populations in warmer

regions appear to invest their energy in the initial stages of

gametogenesis in order to ensure a sufficient gamete number ready

for fertilization in the maturity period. Nevertheless, this effort is

not enough to guarantee the same reproductive performance at

higher temperatures, as adult populations in warmer sites are less

abundant, less stable, and contain fewer young individuals [29,30].

This suggests that increasing temperature may negatively influence

post-fertilization life stages, such as larval dispersal, survival and

settlement. Depressed organismal condition exhibited by the

warmer population could be due to their location near the edge of

the species distribution range, where species generally show a

lower ecological performance with reduced adaptability to

variations in climate [62]. Being endemic to the Mediterranean

[63], B. europaea has limited potential to respond to seawater

warming by migrating northward toward lower temperatures,

since the latitudinal range considered covers almost the entire

northern distribution of this species [27]. This scenario would

indicate a possible reduction in the distribution area of this species,

with irrecoverable losses in terms of genetic variability, particularly

considering the fragmented genetic structure that characterizes the

species [64]. The present study, therefore, confirms the concerns

for the future of this endemic species [27–30]. In fact, in a

progressively warming Mediterranean, the energetic efficiency of

this species could be considerably reduced, affecting vital processes

(e.g. growth). Thus, an effective allocation strategy will be crucial

for ensuring adaptability to a changing environment.

Supporting Information

Figure S1 Living specimens of Balanophyllia europaea

photographed at Scilla (South Italy, 386019N, 156389E).

(TIF)

Figure S2 Annual fluctuation of solar radiation and
temperature. Mean monthly solar radiation (W/m2) and

temperature (DT; uC) during three years preceding the sampling.

Table 3. Mean abundance, gonadal index and diameter of spermaries in each population.

Gametes recruitment period (June – September)

Population N Abundance (#/100 mm3) mean ± SE Gonadal Index (%) mean ± SE N Diameter (mm) mean ± SE

Calafuria 17 140652 0.01060.003 425 51.461.2

Elba 2 1696106 0.01060.001 44 54.262.8

Genova 1 1463 0.080 211 46.361.1

Scilla 6 272680 0.01060.004 192 40.760.8

Palinuro 6 3936133 0.02060.006 185 40.061.0

Pantelleria 5 7606368 0.03060.020 343 42.060.7

Gametes maturity period (December – March)

Population N Abundance (#/100 mm3) mean ± SE Gonadal Index (%) mean ± SE N Diameter (mm) mean ± SE

Calafuria 19 18406609 1.1060.40 7257 120.5 60.8

Elba 8 5956235 0.4760.23 830 126.0 61.8

Genova 4 213561122 1.9561.51 1852 124.8 61.3

Scilla 4 9816561 0.1660.09 499 81.7 61.6

Palinuro 6 187561664 0.8560.80 1755 103.2 61.1

Pantelleria 5 266062320 0.9360.25 1831 92.0 61.0

Mean abundance, gonadal index and diameter of spermaries in each population for both reproductive periods. The sites are arranged in order of increasing DT; SE,
standard error. N, polyps number for abundance and gonadal index, spermaries number for diameter.
doi:10.1371/journal.pone.0091792.t003
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Annual fluctuation referred to January 1995 - December 1997 in

the Calafuria population. For the other five populations it referred

to January 2009 - December 2011.

(EPS)

Figure S3 Oocyte diameter during recruitment and
maturity periods. Monthly size increase of the oocyte diameter

during gamete recruitment (gray indicators) and maturity (black

indicators) period.

(EPS)

Figure S4 Oocytes. Correlation analyses. Spearman’s

correlation between reproductive and environmental parameters

during gamete recruitment period; N, polyp number for fecundity

and gonadal index, oocyte number for diameter; rs, Spearman’s

correlation coefficient; p, significance of the correlation test.

(EPS)

Figure S5 Oocytes. Correlation analyses. Spearman’s

correlation between reproductive and environmental parameters

during gamete maturity period; N, polyp number for fecundity

and gonadal index, oocyte number for diameter; rs, Spearman’s

correlation coefficient; p, significance of the correlation test.

(EPS)

Figure S6 Spermaries. Correlation analyses. Spearman’s

correlation between reproductive and environmental parameters

during gamete recruitment period; N, polyps number for

abundance and gonadal index, spermaries number for diameter;

rs, Spearman’s correlation coefficient; p, significance of the

correlation test.

(EPS)

Figure S7 Spermaries. Correlation analyses. Spearman’s

correlation between reproductive and environmental parameters

during gamete maturity period; N, polyps number for abundance

and gonadal index, spermaries number for diameter; rs, Spear-

man’s correlation coefficient; p, significance of the correlation test.

(TIF)

Table S1 Oocytes. Kruskal-Wallis test and correlation analyses

between reproductive and environmental parameters in the

sampled populations, in both periods.

(DOC)

Table S2 Spermaries. Kruskal-Wallis test and correlation

analyses between reproductive and environmental parameters in

the sampled populations, in both periods.

(DOC)
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43. Kružić P, Žuljević A, Nikolić V (2008) Spawning of the colonial coral Cladocora

caespitosa (Anthozoa, Scleractinia) in the Southern Adriatic Sea. Coral Reefs 27:

337–341.
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Reproductive efficiency of a mediterranean endemic zooxanthellate coral is unaffected 

by ocean acidification 

Abstract 

Increasing of anthropogenic CO2 in atmosphere, and consequent rise of dissolved CO2 in 

oceans, are causing a reduction of seawater pH that will continue to decrease of 0.06-0.32 pH 

units for the end of this century. Several studies suggests that ocean acidification (OA) will 

produce negative consequences to many marine organisms. Whereas the effects of OA on 

corals calcification are well documented, the effects on sexual reproduction are poorly known, 

and concern only aquaria experiments on tropical corals. A critical question, due to the 

logistical difficulties of testing the long-term effects, is understand if corals will be able to 

adapt or acclimate to these changes in seawater chemistry. To assess the long-term effect of 

OA on oogenesis of temperate zooxanthellate corals Balanophyllia europaea, it has been 

chosen a population that naturally lives along a pCO2 gradient generated by underwater crater 

near Panarea Island (Mediterranean Sea, Italy). Oogenesis of B. europaea was homogeneous 

along the pCO2 gradient, not showing differences in oocytes development, production and 

morphology. The oogenesis could be maintained unaffected by reallocating additional energy 

due to increasing of photosynthetic efficiency of zooxanthellae under pCO2 conditions. 

Nevertheless, despite the additional energy from zooxanthellae, the population density 

decrease, probably due to negative effect of increased pCO2 on early life history stages, 

suggesting an uncertain future for this species. 
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Introduction 

Rapid uptake of carbon dioxide (CO2) into the ocean's surface waters, is causing a reduced 

seawater pH and carbonate ion concentrations (Caldeira and Wickett 2003; Gattuso et al. 1999), 

producing several important consequences principally on calcifying marine organisms, such as 

corals (Raven et al. 2005; Hoegh-Guldberg et al. 2007; Kroeker et al. 2010). The ocean acidity 

has increased by 25–30% (corresponding to 0.1 pH units) since the industrial revolution and is 

predicted a further increase by 150–200% at the end of the century, equivalent to a drop of 0.3 

pH (Stocker et al. 2013). The absorption of CO2 by water not only produce a drop in pH, but 

also decrease the availability of free carbonate ions (CO3
2-), essential for the formation of 

calcareous structures of marine calcifying organisms, including scleractinian corals (Raven et 

al. 2005; Hofmann et al. 2010). 

Laboratory and mesocosm experiments show the negative effects of ocean acidification on 

calcification, metabolism, survivorship, reproduction, and many other fundamental processes 

on coral reefs (Stocker et al. 2013; Hoegh-Guldberg et al. 2014), and also accelerates 

destructive processes including erosion and dissolution of the reef structure (Langdon et al. 

2000; Fine and Tchernov 2007). These experiments reproduce the responses of short-term 

exposure of pCO2, without reflect natural conditions and the adaptive capability of organism 

and could overestimate the effects of acidification (Hendriks et al. 2010) due to stress responses 

(Wood et al. 2008). 

Shallow water venting areas provide natural laboratories to assess long-term community 

responses to ocean acidification (Hall-Spencer et al. 2008; Vizzini et al. 2010; Fabricius et al. 

2011; Baggini et al. 2014; Goffredo et al. 2014; Fantazzini et al. 2015; Linares et al. 2015), 

with the advantage of natural environmental conditions, such as currents, nutrients, light and 

predators (Meron et al. 2013; Strahl et al. 2015). Several areas characterized by high pCO2 

levels occur worldwide (Tarasov et al. 2005), but many CO2 vents area are characterized also 
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by temperature, salinity, total alkalinity, toxic gases and metals variations, which could 

confound the effects of pCO2 (Vizzini et al. 2013). Few CO2 vents are suitable for ocean 

acidification studies and are localized in Italy (Hall-Spencer et al. 2008; Goffredo et al. 2014; 

Fantazzini et al. 2015), Papua-New Guinea (Fabricius et al. 2011) and Japan (Inoue et al. 2013).  

To date, the conducted studies along this CO2 vent sites display a decrease in population 

abundance (Hall-Spencer et al. 2008; Fabricius et al. 2011; Goffredo et al. 2014), calcification 

rate and an increase of carbonate structure dissolution in marine calcifying invertebrates, 

including corals (Hall-Spencer et al. 2008; Rodolfo-Metalpa et al. 2011; Goffredo et al. 2014). 

Decreasing pH, due to increasing pCO2 deeply affects the physiological processes in marine 

organisms (Harley et al. 2006), causing a reduction in subcellular processes (e.g. protein 

synthesis and ion exchange; Pörtner et al. 2004) and influencing their physiology, morphology, 

behaviour, larval dispersal and recruitment (Harley et al. 2006). Overall, some marine 

organisms could be adapted to a range of ambient CO2 conditions, e.g. to the high CO2 

concentrations found at underwater volcanic vents.  

A population of zooxanthellate scleractinian Balanophyllia europaea lives along a pCO2 

gradient generated by underwater volcanic vent, characterized by continuous and localized CO2 

emission (Capaccioni et al. 2007) and located near Panarea Island (Mediterranean Sea, Italy). 

The low depth and the lack of heated or toxic compounds (Capaccioni et al. 2007; Goffredo et 

al. 2014), make it a perfect site to investigate the influences of ocean acidification on marine 

organisms, including B. europaea. The gradient is represented by an ambient pH zone (control 

Site) with comparable values to current environmental conditions of Mediterranean Sea, a low 

pH zones and a lower pH zones, representing respectively an intermediate and the worse 

scenarios for the end of this century (Caldeira and Wickett 2003; Stocker et al. 2013). 

Population density of B. europaea significantly decrease along this gradient, until completely 

disappear in proximity to the vent crater centre (Goffredo et al. 2014). 
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Sexual reproduction is important for maintaining genetic diversity, influences the community 

structure (such as population density) and allows the populations replenishment after 

disturbances. Studying the effects of ocean acidification on coral reproduction is relatively 

new. Influence of decreasing pH on reproduction of marine invertebrates, such as echinoderms, 

mollusks and crustaceans was deeply studied in aquarium experiments (Kurihara et al. 2004a,b, 

2008; Kurihara and Shirayama 2004a,b; Mayor et al. 2007; Siikavuopio et al. 2007; Havenhand 

et al. 2008; Kurihara 2008; Havenhand and Schlegel 2009; Byrne et al. 2009, 2010, 2013; 

Parker et al. 2009; 2010; Ericson et al. 2012; Caldwell et al. 2011; Foo et al. 2012), showing a 

negative response on fertilization process, especially if sperm concentration is low and limiting 

(Byrne et al. 2010; Ericson et al. 2010; Reuter et al. 2011; Gonzalez-Bernat et al. 2013), on 

embryo (Desrosiers et al. 1996) and larval development (Kurihara and Shirayama 2004a,b). 

Few study investigated the effects of ocean acidification on reproduction of tropical corals, in 

particular about sperm motility (Morita et al. 2009; Nakamura and Morita 2012), 

gametogenesis (Fine and Tchernov 2007; Jokiel et al. 2008), fertilization process (Albright et 

al. 2010; Albright and Mason 2013; Chua et al. 2013), embryonic development (Medina-Rosas 

et al. 2012) larval settlement and juvenile growth (Kurihara 2008; Suwa et al. 2010; Albright 

and Langdon 2011; Nakamura et al. 2011; Doropoulos et al. 2012; Chua et al. 2013; 

Doropoulos and Diaz-Pulido 2013). Most of the research was conducted in tropical corals 

under laboratory conditions and no one on coral population naturally living along a pCO2 

gradient. 

The endemic zooxanthellate Mediterranean scleractinian B. europaea (Fig. 1), is a 

simultaneous hermaphrodite and brooding coral (Goffredo et al. 2002), that lives along a pCO2 

gradient. Previous study on the same B. europaea population, show that increasing pCO2 

negatively affect its net calcification rate, due to increased skeletal porosity but no changes in 

linear extension rate was found (Fantazzini et al. 2015). An increase of photosynthetic 
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efficiency of coral algae with increasing pCO2 was registered (personal observation), which 

could represent a further energy available to coral. The aims of this study was describe for the 

first time the effect of decreasing pH, on oogenesis of a temperate zooxanthellate coral, 

naturally living along a natural gradient of pCO2.  

Materials and Methods 

Study site  

Experimental field is located near Panarea Island (Aeolian Archipelago, Sicily, Italy, 

38°38′16″N 15°06′37″E; Fig. 1), where an underwater crater (20 x 14 m) at 10 m depth, 

generates stable continuous column of bubbles contained 98-99% CO2, 0.2-0.3% N2, 0.01-

0.02% O2, 0.003-0.005% Ar, 0.001-0.002% CH4, 0.3-0.6% H2S by volume, at ambient 

temperature (Capaccioni et al. 2007; Goffredo et al. 2014). CO2 dissolution and the effect of 

acidic dissociation is almost instantaneous and determines a significant lowering of pH and the 

establishment of the pH gradient. 

Carbonate chemistry 

Three sampling Sites were selected along the gradient: a control site (Site 1: mean Total Scale 

pHTS 8.1), located about 34m away from the center of the crater, an intermediate pCO2 sites 

(Site 2 mean pHTS 7.9), and a high pCO2 site (Site 3: mean pHTS 7.7), situated about 9 m from 

the vents.  

pH (NBS scale), temperature (T) and salinity (S) were measured at each Site during several 

surveys between July 2010 and May 2013 with a multi-parametric probe (600R, YSI 

Incorporated, USA) and operated by SCUBA divers. Total alkalinity (TA) was measured on 

water samples collected in each Site using sterile 120 ml syringes (two replicates for each site). 

Syringe samples were immediately transferred in labelled 100 ml amber glass bottles and fixed 

with saturated mercuric chloride (HgCl2) to avoid biological alteration, and stored in darkness 
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at 4°C prior to measurement. TA was measured by Gran titration, using a 702 SM Titrino 

(Metrohm AG). Measured pHNBS was converted in total scale (TS) using CO2SYS software 

(Mehrbach et al. 1973; Dickson 1990; Dickson and Millero 1987). Temperature sensors 

(Thermochron iButton, DS1921G, Maxim Integrated Products, USA) were placed near each 

Site and recorded depth temperature (T; °C) every three hours from June 2011 to May 2013 

and replaced to each field campaign. The pH, T, S and TA were used to calculate other 

carbonate system parameters using the software CO2SYS with referenced dissociation 

constant. The study site has stable hydrothermal–chemical properties and only pCO2 

concentration differed significantly across sites (Capaccioni et al. 2007; Goffredo et al. 2014). 

Sampling  

Ten specimens of B. europaea were randomly collected by SCUBA diving in each of the three 

study Sites along the pH gradient on April 28th 2013. On the basis of previous detailed studies 

on sexual reproduction of this species, in this period the reproductive cycle present the 

maximum gonadal development (before the fertilization process), characterized by two stock 

of oocytes, a small one (< 300 µm) that will be fertilized in the following reproductive year, 

and a large one (> 300 µm; mature oocytes) that will be fertilized in the same reproductive year 

(Goffredo et al. 2002; Airi et al. 2014). 

Only sexually mature individuals (length > 6 mm) was chosen to limit damage on the natural 

population, which significantly diminishes along the acidified gradient (Goffredo et al. 2014).  

Cyto-Histometric Analysis 

Biometric analysis of each polyp was performed by measuring length (L, major axis of the oral 

disk), width (w, minor axis of the oral disk), and height (h, oral–aboral diameter). The body 

volume (V) was calculated using the equation: π*h*(W/2)*(L/2)V   (Goffredo et al. 2002). 

Biometric parameters were used to calculate Reproductive Parameters (see paragraph below). 
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Polyps were post-fixed in Bouin solution. After decalcification in EDTA and dehydration in a 

graded alcohol series from 80 to 100%, polyps were embedded in paraffin, and serial transverse 

sections were cut at 7µm intervals along the oral–aboral axis, from the oral to the aboral poles. 

Tissues were stained with Mayer’s hematoxylin and eosin (Goffredo et al. 2002).  

Cytometric analysis were made with a light microscope NIKON Eclipse 80i using an image 

analysis systems: NIKON NIS-Elements D 3.1. The maximum and minimum diameters of 

oocytes, in nucleated sections, were measured.  

Reproductive parameters 

Reproductive output were defined through three reproductive parameters: 1) oocytes 

abundance defined as the number of reproductive elements per body volume unit (100 mm3); 

2) gonadal index, defined as the percentage of body volume occupied by oocytes; 3) oocytes 

size, defined as the average of the maximum and minimum diameter of oocytes in nucleated 

section. 

Statistical analyses 

A one-way permutation multivariate analysis of variance (PERMANOVA, Anderson 2005) 

based on Euclidean distances was performed to test differences between oocytes distribution 

among Sites using Primer software.  

Levene’s test was used to test homogeneity of variance and Shapiro-Wilk test was used for 

testing normality of distribution, useful when sample size is lower than 2000. 

The non-parametric Kruskal-Wallis equality-of-populations rank test was used to compare 

reproductive parameters among Sites, used when assumptions for parametric statistics were 

not fulfilled. Spearman’s rank correlation coefficient was used to calculate the significance of 

the correlations between oocytes diameters and pH. Spearman’s rank correlation coefficient is 

an alternative to Pearson’s correlation coefficient (Altman 1991). It is useful for data that are 
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non-normally distributed and do not meet the assumptions of Pearson’s correlation coefficient 

(Potvin and Roff 1993). The analyses were computed using PASW Statistics 22.0. 

Results 

All polyps analyzed were hermaphrodite, containing both oocytes and spermaries. 

The size/frequency distribution of oocytes was homogeneous among Sites (Fig. 2) and all Sites 

shown two distinct stocks of oocyte, characterized respectively by small (immature, 300 mm) 

and large (mature, 300 mm) cells (Fig. 2).  

No differences in oocytes morphology of early, intermediate and late stages, was found along 

the pCO2 gradient (Fig.3). 

Oocytes abundance and gonadal index did not show differences among Sites (Tab.2; Fig. 4). 

Only the oocyte diameters was different (Kruskal-Wallis test, p < 0.001) and correlated with 

pH, but without a clear pattern (Tab.2; Fig. 4). 

Discussion 

To date, the studies on effect of increasing pCO2 on gametogenesis of corals are very few and 

the most are on tropical species expose to aquaria experiments. Montipora capitata colonies 

exposed for 6 months under acidified conditions (+365 μatm pCO2) did not show a decrease in 

gamete production (Jokiel et al. 2008). Fine and Tchernov (2007) found a similar trend, 

reporting normal gametogenesis in Oculina patagonica and Madracis pharencis after 12 

months to exposure to acidified conditions. Population of B. europaea born and grew along a 

natural pCO2 gradient displayed the same pattern on oogenesis, not showing differences in 

oocytes timing development, production and morphology among different CO2 conditions. 

Despite the statistical differences found in oocytes diameters, the oocytes size seemed not 

influenced to increasing pCO2, as showed in Figure 4. A parallel study on spermatogenesis of 

the same population of B. europaea revealed no differences in spermary development, 
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production and morphology among Sites (Marchini 2016), suggesting that increasing pCO2 

seemed to not affect the reproductive performance of this species. Sexual reproduction is a 

fundamental process to maintain genetic differences and influences the community structure 

(such as population density) through several mechanisms, including gamete production. 

Despite the unchanged gametes production among Sites, population density of B. europaea 

decreases by thrice with increasing proximity to the vent crater centre, dropping to zero in the 

most acidic zone, where the pH drops to 7.4 (Goffredo et al. 2014). 

Sexual reproduction of brooder corals occurs through the release of sperms into the water, 

followed by internal fertilization inside the oogenetic conspecific coral. Consequently, water 

chemistry can greatly affect fertilization success. Previous studies show that increased pCO2 

reduced sperm flagellar motility in oysters (Parker et al. 2009), sea urchins (Havenhand et al. 

2008; Kurihara 2008) and corals (Morita et al. 2009; Nakamura and Morita 2012), impairs the 

fertilization success mainly with low sperm concentration (Albright et al. 2010; Albright and 

Meson 2013). The same spermaries production found in B. europaea among Sites, could 

suggest that decreasing of population density along pCO2 gradient could be due mainly to 

negative effect on early life history stages, including larval metabolism, development, 

settlement, post-settlement growth and survival. Respiration experiments on larvae of tropical 

coral Porites astreoides show larval metabolic rates significantly depressed with increasing 

pCO2 (Albright and Langdon 2011). If the decreasing respiration rates contribute to decreased 

larval motility, the ability of larvae to change their position in water to look for an ideal 

settlement could be negatively influenced, affecting the population dispersion (Mundy and 

Babcock 1998; Raimondi and Morse 2000). Acidification negatively affects larval settlement 

and metamorphosis in three marine bivalves (Talmage and Gobler 2009) and in the caribbean 

coral, Acropora palmata, displaying a decreasing settlement success, as indirect effect of 

increasing pCO2 (Albright et al. 2010; Albright and Langdon 2011). Acidification also 
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negatively affects post-settlement growth and calcification in a several species of scleractinian 

(Albright et al. 2008, 2010; Kurihara et al. 2008; Cohen et al. 2009; Suwa et al. 2010; Anlauf 

et al. 2011; Albright and Langdon 2011; de Putron et al. 2011), influencing the new recruits 

ability for space competition, with consequent increase of post-settlement mortality.  

Despite the few knowledges about the effect of low pH on corals sexual reproduction reveal 

no signal on gametogenesis, many studies on early life history stages of coral show negative 

effects. Similar negative trend was found on coral calcification. Several evidence indicates that 

corals calcification is  negatively affected to decreasing pH (Gattuso et al. 1998; Leclercq et al. 

2002; Marubini et al. 2003; Schneider and Erez 2006; Fine and Tchernov 2007, Crook et al. 

2013; Iglesias-Prieto et al. 2014; Fantazzini et al. 2015), and is expected a further decreased of 

17–37% by the end of this century, as a result of reduced seawater [CO3
2-] (Kleypas et al. 

2006). Atlantic coral Porites astreoides, growing in an environment of low pH along the 

Caribbean coast of the Yucatan Peninsula shows a 35% reduction in the calcification rates 

respect the corals of the same species living in close proximity under ambient pH condition 

(Crook et al. 2013). Similar results were found in aquaria experiments (Anthony et al. 2008; 

de Putron et al. 2011). The calcification rates of tropical corals Acropora intermedia and 

Porites lobata exposed to high CO2 conditions for 8 weeks, was about 40% lower than control 

conditions (Anthony et al. 2008). Samples of B. europaea transplanted along a CO2 gradient 

off Ischia (Italy) show a decrease of net calcification rate but a gross calcification significantly 

increased with increasing of pCO2, suggesting that the decrease of net calcification rate was 

the result of increased dissolution rates (Rodolfo-Metalpa et al. 2011). With increasing pCO2, 

also the natural population of B. europaea reveals a decrease of net calcification rate 

(Fantazzini et al. 2015), due to decreasing skeletal density, caused by increased porosity, but 

no changes in linear extension rate was observed (Fantazzini et al. 2015). B. europaea could 

keep linear extension rate constant, to face functional reproductive requests (e.g. the ability to 
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reach critical size at sexual maturity), at the expense of mechanical strength of the skeletons 

(Fantazzini et al. 2015).  

Another study on the same species transplanted along the same gradient, show that with 

increasing pCO2, increase the photosynthetic efficiency of coral algae (personal observation), 

representing a further energy available to coral. B. europaea could using this additional energy 

to compensate the effect of pCO2 on reproductive potential and linear extension rate, maintain 

them constant among Sites. 

By collecting all the information about the natural population of B. europaea and other studies, 

is possible to deduce that B. europaea could compensate the dissolution skeleton rate, due to 

increasing pCO2,  with increasing skeletal porosity to maintain linear extension rate and reach 

sexual maturity. The gametogenesis and linear extension rate could be maintained unaffected 

by reallocating additional energy due to increasing of photosynthetic efficiency. Neverless, 

despite the additional energy from zooxanthellae, the population density decrease, probably 

due to negative effect of increased pCO2 on early life history stages, suggesting an uncertain 

future for this species.  
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Tables 

Table 1. Seawater carbonate chemistry for each transplantation Site. The pH, temperature (T), total alkalinity 

(TA) and salinity (S) were used to calculate all the other parameters using CO2SYS software with dissociation 

constants. Mean pH values were calculated after conversion of data to hydrogen ion concentrations. Mean 

values are reported with minimum and maximum values in brackets. 

Measured Parameters   

Site 
pH range          

(total scale) 
T (°C) 

TA                    

(µmol kg-1) 

S                              

(‰) 
  

  

1 

 

8.07  

(7.82-8.45) 

20.5 

 (14.3-26.0) 

2438  

(2368-2600) 

37  

(33-38)   

           

2 
7.87 

 (7.54-8.25) 

20.7 

 (14.4-26.0) 

2429  

(2334-2618) 

37 

 (33-38)   

           

3 
7.74  

(7.05-8.21) 

20.6  

(14.4-26.0) 

2426  

(2343-2610) 

37  

(34-38)   

      

Calculated Parameters 

Site 
*pCO2                     

(µatm) 

*HCO3
-               

(µmol kg-1) 

*CO3
2-                   

(µmol kg-1) 

*DIC                        

(µmol kg-1) 
*Ωarag 

       

1 
391 

(127-780) 

1869 

(1466-2144) 

232 

(120-398) 

2114 

(1867-2291) 

3.6 

(1.8-6.3) 

       

2 
672 

(234-1561) 

2030 

(1664-2264) 

163 

(68-314) 

2214 

(1984-2383) 

2.5 

(1.1-5.0) 

       

3 

907 

(262-5100) 

 

2073 

(1835-2365) 

144 

(25-243) 

2246 

(2089-2552) 

2.2 

(0.4-3.9) 
 

pH (n = 103-110 per Site), T (n = 2580 per Site) was recorded from May to September 2012 and from November 

2012 to April 2013. and S (n = 107-110 per Site) were measured in July 2010, September 2010, November 2010, 

March 2011, June 2011, July-August 2011, November-December 2011, April-May 2012, June 2012 and May 

2013. TA (n = 14 per Site) was measured in September 2010, November 2010, March 2011, June 2011, July-

August 2011, November-December 2011, April-May 2012, June 2012 and May 2013. pCO2 = carbon dioxide 

partial pressure; HCO3- = bicarbonate; CO3
2- = carbonate; DIC = dissolved inorganic carbon; Ωarag = aragonite 

saturation.  
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Table 2. Mean values ± SE of abundance, gonadal index and diameter of oocytes for each Sites.  

Site pHTS Np 
Abundance  

(#/100 mm3)  

Gonadal Index  

(%)  
No 

Diameter  

(μm)  

1 8.07 7 254 ± 70 1.4 ± 0.3 672 260 ± 6.6 

2 7.87 7 177 ± 73 0.9 ± 0.3 426 268 ± 7.8 

3 7.74 6 289 ± 89 2.3 ± 0.7 745 290 ± 6.9 
 

Np = polyp number for abundance and gonadal index, No = oocyte number for diameter. SE=standard error. 

 

Tab. 3. Kruskal-Wallis test and correlation analyses between reproductive and environmental parameters in the 

sampled populations. 

Reproductive parameters K-W rhoS 

Abundance (#/100 mm3) NS - 

Gonadal Index (%) NS - 

Diameter (μm) *** *** 
 

K-W = significance of the Kruskal-Wallis test; rhos = Spearman’s correlation coefficient; *** = p < 0.001; NS = 

not significant. 
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Figures 

 

Figure 1. (A) Map of the experimental field. Located off the southwestern coast of Italy, near Panarea Island, 

there is underwater volcanic vent releasing persistent gaseous emissions (98–99% CO2 without instrumentally 

detectable toxic compounds), resulting in a stable pH gradient. Three sites at various distances from the primary 

vent were initially selected for study. No temperature difference exists among the four study sites throughout the 

year. (B) Living specimens of Balanophyllia europaea, photographed during the day with contracted tentacles. 

Scale bar = 5 mm. 
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Figure 2. Oocyte size/frequency distribution in the three Sites. N = number polyps/number oocytes 

 

 

 

 

 

 



53 
 

 

Figure 3. Oogenesis. E = Early stage. Small oocyte characterized by a high nucleus:cytoplasm ratio. The 

spherical nucleus is located centrally and contains a single nucleolus. I = Intermediate stage. A medium-sized 

oocytes with cytoplasm still quite homogeneous. The spherical-shaped nucleus has started to migrate toward the 

cell’s periphery. L = Late stage. The nucleus is now located in the outer portion of the oocyte. The ooplasm is 

full of small yolk plates. N = nucleus; n = nucleolus; yp = yolk plates. 
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Figure 4. Box plot of oocytes abundance, gonadal index and diameters in the three study sites. Number of 

samples and mean values for each parameter and Site are reported in Table 2. 
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Short-term exposure at CO2 vent affect spermatogenesis in a temperate non-

zooxanthellate coral 

Abstract 

Anthropogenic carbon dioxide (CO2) emissions and the resultant ocean acidification (OA) are 

projected to have extensive consequences for a variety on marine organisms, such as corals. 

Whereas the effects of OA on coral calcification is well documented, the effects on coral sexual 

reproduction have still been poorly studied and there are no information about Mediterranean 

corals. The possible effects of OA on sexual reproduction in the temperate scleractinian 

Leptopsammia pruvoti were studied in samples transplanted along a natural pCO2 gradient 

under volcanic underwater crater at Panarea Island (Tyrrhenian Sea, Italy), providing a unique 

ecosystem naturally exposed to future scenarios of environmental change. Increasing pCO2 

prevent neither the production of germ cells nor the fertilization process, but seems to 

negatively influence the spermaries production and development, causing a delayed in 

fertilization and planulation process. The sensitivity of this species may have severe 

consequences for its reproductive success in a changing world. 
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Introduction 

The absorption of anthropogenic CO2 by ocean is resulting in decreasing of seawater pH and 

in changing of ocean chemistry, reducing the availability of carbonate ions (CO3 
2−) (Gattuso 

et al. 1999; Caldeira and Wickett 2003), essentials for the production of calcareous structures 

of marine organisms, such as corals (Raven et al. 2005; Hoegh-Guldberg et al. 2007; Kroeker 

et al. 2010). Seawater pH has already decreased by 0.1 pH units since the industrial revolution 

(Brewer 2009; Doney et al. 2009; Hoegh-Guldberg and Bruno 2010) and if CO2 emissions are 

not mediated, the “business as usual” scenario project a further drop to 7.8 pH by the end of 

the century (Stocker et al. 2013).  

Numerous laboratory studies have demonstrated that calcifying algae (Anthony et al. 

2008; Kuffner et al. 2008), corals (Schneider and Erez 2006; Anthony et al. 2008) and coral 

reef communities, including some fishes (Langdon et al. 2000; Andersson et al. 2009; Hofmann 

et al. 2010), show reduced calcification in seawater with lower pH due to depleted carbonate 

saturation. Moreover, numerous biological processes and physiological functions independent 

of calcification may be impacted by decreasing pH (Kurihara 2008; Parker et al. 2009; 

Todgham and Hofmann 2009; Byrne 2011). Previous studies on ocean acidification confirmed 

highly variable response and contradictory results that may be partly attributed to different 

experimental designs, to control of carbonate chemistry or to species-specific responses to 

decreasing of pH (Hurd et al. 2009; Inoue et al. 2013). To date, most of the studies on ocean 

acidification have been done under laboratory conditions, losing information on complex 

natural conditions (Meron et al 2013).  

Areas that naturally are enriched with CO2, such as CO2 vents can be used as natural 

laboratories to evaluate the consequences of increase in seawater pCO2 on marine ecosystems 

in situ (Hall-Spencer et al. 2008; Vizzini et al. 2010; Fabricius et al. 2011; Rodolfo-Metalpa et 

al. 2011; Goffredo et al. 2014; Fantazzini et al. 2015). This areas have the advantage to be 
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subjected to natural environmental conditions, such as currents, nutrients, light, etc. (Meron et 

al. 2013), allowing to study the influence of pH in a natural environment that mime the seawater 

pH of the future. A volcanic underwater vent near Panarea Island (Sicily, Italy) provides a 

unique natural environment characterized by continuous and localized CO2 emission that 

generate a stable pH from the centre to its periphery. Thanks to the low depth and the lack of 

heated or toxic compounds (Capaccioni et al. 2007; Goffredo et al. 2014), it represents an ideal 

area to investigate the influences of ocean acidification on marine organisms, including corals. 

The pCO2 gradient is characterized by an ambient pH zone (control Site) with comparable 

values to current conditions in the temperate surface ocean in the Mediterranean, two low pH 

zones correspond the nearfuture (2100) scenarios and an extreme low pH zones represent an 

extreme scenarios of the more distant future (e.g., 2500) (Caldeira and Wickett 2005; Stocker 

et al. 2013).  

Ocean acidification influences the metabolism of marine invertebrates, characterized 

by a low capacity to compensate for disturbances in extracellular ion and acid-base status, 

affecting their performances at the level of reproduction and behaviour (Pörtner 2008). Sexual 

reproduction represents a crucial process in the development and persistence of populations 

and its reduction threaten the resilience of the species, leading to shifts in size and abundance 

of populations (Roth et al. 2010; Fiorillo et al. 2013). The effects of ocean acidification on 

reproduction have been examined by several studies in echinoderm, mollusks and crustaceans 

(Kurihara and Shirayama 2004a, b; Havenhand et al. 2008; Morita et al. 2009; Parker et al. 

2009, 2010; Byrne et al. 2010; Reuter et al. 2011). The few information available regarding the 

effects of ocean acidification on sexual reproduction was conducted in tropical corals under 

laboratory conditions (Fine and Tchernov 2007; Jokiel et al. 2008; Holcomb et al. 2010; Morita 

et al. 2009; Albright 2011, Albright et al. 2010), and no one on natural populations along a CO2 

vents or in temperate species.  
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This study focused on a solitary, non-zooxanthellate Mediterranean dendrophylliid, 

Leptopsammia pruvoti (Fig. 1), a gonochoric and brooding scleractinian (Goffredo et al. 2005). 

Previous studies on L. pruvoti reported that sea surface temperature and solar radiation did not 

significantly influence its skeletal bulk density, porosity, population abundance and structure 

stability, calcification rate and reproduction along an 850-km latitudinal gradient on the west 

coast of Italy (Goffredo et al. 2007; Caroselli et al. 2011, 2012a, b; Airi et al. submitted). This 

is the first study investigating the effects of environmental pCO2 on reproductive output of 

temperate and non-zooxanthellate coral L. pruvoti, transplanted along the natural pH gradient.  

Materials and Methods 

Study site  

Experimental field is located near Panarea Island (Aeolian Archipelago, Sicily, Italy, 

38°38′16″N 15°06′37″E; Fig. 1), where an underwater crater (20 x 14 m) at 10 m depth, 

generates stable continuous column of bubbles (CO2 99%; Capaccioni et al. 2007; Goffredo et 

al. 2014) at ambient temperature, creating a natural pH gradient. Along the gradient, four 

sampling Sites were selected: a control Site (Site 1: mean Total Scale pHTS 8.1), located about 

34m away from the center of the crater, two intermediate pCO2 Sites (Site 2 and 3: mean pHTS 

respectively 7.9 and 7.7), and a high pCO2 Site (Site 4: mean pHTS 7.4), situated in proximity 

of the vents.  

Carbonate chemistry 

pH (NBS scale), temperature (T) and salinity (Sal) were measured at each Site during several 

surveys between July 2010 and May 2013 with a multi-parametric probe (600R, YSI 

Incorporated, USA) and operated by SCUBA divers. Total alkalinity (TA) was measured on 

water samples collected in each Site using sterile 120 ml syringes (two replicates for each site). 

Water samples were immediately fixed with saturated mercuric chloride (HgCl2) inside to 
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labelled 100 ml amber glass bottles to avoid biological alteration, and stored in darkness at 

4°C. TA was measured by Gran titration, using a 702 SM Titrino (Metrohm AG). 

Measured pHNBS was converted in total scale (TS) using CO2SYS software (Mehrbach et al. 

1973; Dickson 1990; Dickson and Millero 1987). Temperature sensors (Thermochron iButton, 

DS1921G, Maxim Integrated Products, USA) were placed near each Site and recorded depth 

temperature (T; °C) every three hours from June 2011 to May 2013 and replaced to each field 

campaign.  The pH, total alkalinity, salinity and temperature were used to calculate other 

carbonate system parameters using the software CO2SYS with referenced dissociation 

constant. The study site has stable hydrothermal–chemical properties and only pCO2 

concentration differed significantly across sites (Capaccioni et al. 2007; Goffredo et al. 2014). 

Sampling and field transplantation  

During several expeditions (November 2010, March 2011, June 2011, August 2011, December 

2011 and June 2012), specimens of L. pruvoti of approximately the same size were sampled at 

~2 km away from the vent area and transplanted into the four Sites. The same number of corals 

(4-6) was randomly assigned to each of the four Sites (n=~20 for each expedition). Polyps were 

glued with a bicomponent epoxy coral glue (Milliput, Wales, UK) onto ceramic tiles and placed 

upside-down under plastic cages to mimic their natural orientation in overhangs and caves. 

Corals were subjected to the experimental conditions for ~3 months in different moment of 

reproductive cycle (Goffredo et al. 2006).  

Cyto-Histometric Analysis 

Biometric analysis of each polyp was performed by measuring length (L, major axis of the oral 

disk), width (w, minor axis of the oral disk), and height (h, oral–aboral diameter). The body 

volume (V) was calculated using the equation: π*h*(W/2)*(L/2)V   (Goffredo et al. 2002). 

Biometric parameters were used to calculate Reproductive Parameters (see paragraph below). 
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Polyps were post-fixed in Bouin solution. After decalcification in EDTA and dehydration in a 

graded alcohol series from 80 to 100%, polyps were embedded in paraffin, and serial transverse 

sections were cut at 7µm intervals along the oral–aboral axis, from the oral to the aboral poles. 

Tissues were stained with Mayer’s hematoxylin and eosin (Goffredo et al. 2006).  

Cytometric analysis were made with a light microscope NIKON Eclipse 80i using an image 

analysis systems: NIKON NIS-Elements D 3.1. The maximum and minimum diameters of 

oocytes, in nucleated sections, and spermaries, classified into developmental stages in 

accordance with earlier studies on gametogenesis in scleractinians (Goffredo et al. 2002, 2005, 

2011, 2012), were measured. The presence of embryos in the gastrovascular cavity were 

recorded (Goffredo et al. 2005) 

Reproductive parameters 

Reproductive output were defined through four reproductive parameters: 1) oocytes and 

spermaries abundance, both defined as the number of reproductive elements per body volume 

unit (100 mm3); 2) gonadal index, defined as the percentage of body volume occupied by germ 

cells; 3) reproductive element size, defined as the average of the maximum and minimum 

diameter of spermaries and oocytes in nucleated section; 4) fertility, defined as the number of 

embryos per body volume unit (100 mm3). 

Based on the reproductive season, the reproductive cycle was characterized by two gamete 

activity periods (Goffredo et al. 2006). Gonadal development period is characterized by a stock 

of small oocytes, the recruitment of new oocytes, and the beginning of spermary development 

(Goffredo et al. 2006). Fertilization period is characterized by two stock of oocytes, a small 

one (< 350 µm) that will be fertilized in the following reproductive year, and a large one (> 

350 µm) that will be fertilized in the same reproductive year. Advanced stage of maturation of 

spermaries and incubated embryos in celenteric cavity of females were expected to be funded 

(Goffredo et al. 2006). 
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Statistical analyses 

Kolmogorov-Smirnov’s test was used for testing the distribution of size class of oocytes and 

maturation stage of spermaries among Sites and between the two periods. Student’s t test was 

used to compare the mean oocytes and spermaries size of populations between same Sites in 

different sampling periods. Levene’s test was used to test homogeneity of variance and 

Kolmogorov-Smirnov’s test was used for testing normality of distribution. When the sample 

size was lower than 2000, the Shapiro-Wilk test was used. 

The non-parametric Kruskal-Wallis equality-of-populations rank test was used to compare 

reproductive parameters among Sites, it is used when assumptions for parametric statistics were 

not fulfilled. A Monte Carlo permutation test (10,000 permutations) was used to estimate the 

significance of the Kruskal–Wallis test when comparing the mean fertility among Sites, solving 

problems in the non-parametric test for small samples. 

Spearman’s rank correlation coefficient was used to calculate the significance of the 

correlations between reproductive elements diameters and pH. Spearman’s rank correlation 

coefficient is an alternative to Pearson’s correlation coefficient (Altman 1991). It is useful for 

data that are non-normally distributed and do not meet the assumptions of Pearson’s correlation 

coefficient (Potvin and Roff 1993). The analyses were computed using PASW Statistics 22.0. 

Results 

All polyps resulted gonochoric in both reproductive periods. Sexually inactive individuals, 

without germ cells, was found in both periods (Tab. 1). 

Size/frequency distribution of oocytes was significantly different between gonadal 

development period and fertilization period, in all Sites (Kolmogorov-Smirnov, p < 0.05; Fig. 

2). Gonadal development period was characterized by a cohort of small oocytes in all Sites, but 

the size/frequency distribution was different among Sites (Kolmogorov-Smirnov, p < 0.05; Fig. 
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2). Fertilization period showed most oocytes smaller than 300 µm in all Sites without 

differences in size/frequency distribution among Sites (Fig. 2). Oocytes abundance and gonadal 

index did not show differences among Sites in both periods (Tab. 2). In the gonadal 

development period, the oocytes diameters were different among Sites and correlated with pH, 

but without a clear signal (Kruskal-Wallis test, p < 0.001; Fig. 4). Diameters were 

homogeneous among Sites in the fertilization period (Tab. 2; Fig. 4). 

Maturation stage/frequency distribution of spermaries was different between gonadal 

development period and fertilization period, in all Sites (n = 4; Kolmogorov-Smirnov, p < 

0.001; Fig. 3). Gonadal development period showed small spermaries in developing stage, with 

mode in stage III in all Sites, but there was differences in distribution among all Sites 

(Kolmogorov-Smirnov, p < 0.05; Fig. 3). Fertilization period was characterized by advanced 

maturation stages in all Sites, only the fourth Site, presenting higher frequencies of stage III 

and IV, resulted different from the others (Kolmogorov-Smirnov, p < 0.01; Fig. 3). Spermaries 

abundance and male gonadal index did not show differences among Sites (Tab. 3), but showed 

a different distribution trend between periods. In gonadal development period, both male 

reproductive parameters were characterized by lowest values in the most acidic Site, while 

during the fertilization period, was the control Site to be characterized by lowest values (Tab. 

3; Fig. 5). In both period the diameter of spermaries was different among Sites and increased 

with decreasing of pH, less clearly during gonadal development period (Kruskal Wallis test, p 

< 0.001; Tab. 3; Fig. 5).  

In fertilization period, female polyps containing embryos in the coelenteric cavity were found 

in all Sites. Fertility was different along the gradient and correlated with pH (Monte Carlo test 

p < 0.05; Tab. 2; Fig. 6). 
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Discussion 

Increasing pCO2 seemed to hinder neither the production of male and female germ cells, 

as suggested by the record of oocytes and spermaries in both, gonadal development and 

fertilization periods, nor the fertilization process, establishing by presence of embryos in 

female corals during fertilization period, in all Sites. 

Spermatogenesis seemed to be more sensitive than oogenesis, showing different 

response among Sites with increasing pCO2. This dissimilarity could be due to the timing 

exposure to experimental condition and to different development and maturation timing of 

oocytes and spermaries in this species. Male germ cells of L. pruvoti, takes approximately 12 

months to mature indeed female germ cells need about 24 months (Goffredo et al. 2006). 

Considering the short-term exposure to experimental condition (3 months), spermatogenesis 

was influenced for a quarter of its length, instead only an eighth of the oogenesis processes was 

been exposed to pCO2. 

Despite the statistical differences found in size/frequency distribution of oocytes and in 

maturation stage/frequency distribution of spermaries among Sites, the development of both, 

oocytes and spermaries seemed not influenced to increasing pCO2 in gonadal development 

period (Fig. 2, 3). During this period, oogenesis did not show a clear signal with increasing 

pCO2. 

Statistical analysis did not found differences in spermaries abundance and gonadal index 

among Sites. However, a drop in spermaries abundance and gonadal index in the most acidic 

Site was observed, suggesting that high pCO2 level could delay spermaries production. 

Specimens from this Site could reallocate the energies from spermatogenesis into other vital 

functions, to face the great stress. Tropical zooxanthellate coral Montipora capitata show a 

normal gametogenesis and gametes production after 6 months under acidified conditions 

(Jokiel et al. 2008); the same result was found in Oculina patagonica after 12 months (Fine and 
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Tchernov 2007). Despite the short-term exposure, the spermatogenesis of transplanted L. 

pruvoti seemed start to show a negative influence to increasing acidity. Possibly, under long-

term exposure or in a natural population living under pCO2 conditions, a clearer and stronger 

influence could be revealed. 

During the fertilization period, the discovery of embryos in all Sites proved that the 

release of sperms in the water column and fertilization process was already started in all Sites. 

In the control Site only few mature spermaries (V maturation stage) was identified, proving 

that the release of sperms into water column was started and almost terminated. With increasing 

pCO2, the amount of spermaries in the other Sites was greater than control Site and their 

maturation delayed, showing mature spermaries (V stage) together with earlier maturation 

stages (III and IV stages). The presence of earlier maturation stages of spermaries in more 

acidic Sites proved that the most of spermaries was still no mature and their release surely was 

not completed. Increasing pCO2 could slow down spermaries development, as found in the 

green sea urchin, Strongylocentrotus droebachiensis. After 60 days under pCO2 condition, S. 

droebachiensis shows a gonads development 67% less than the control treatment, unable to 

maintain high gonad growth facing such conditions (Siikavuopio et al. 2007).  

During the same period, spermaries abundance and gonadal index were not different 

among Sites, but they were fallen from previous period (gonadal development period), 

confirming that the sperms release was started in all Sites (Fig. 5). The differences between 

periods were maximum in the control Site, characterized by lowest amount of spermaries in 

fertilization period, providing again that sperms expulsion was started and almost concluded. 

Increasing pCO2 could to affect the fertilization process due to limited spermaries production 

during gonadal development period and a further delayed spermaries development, postponing 

the sperms release in water column.  



66 
 

Under stress condition event, Mediterranean gorgonian Paramuricea clavata, not alters 

its cycle of gonadal development, but reduce the amount of gonads produced, reallocating the 

energetic resources from gametogenesis into other vital functions (Linares et al. 2008). When 

sperm concentration is limited, fertilization strongly depends on chemical cues to activate 

sperm motility (e.g. Eisenbach 1999, Jantzen et al. 2001). However, increasing pCO2 alter the 

seawater carbonate chemistry and could cause a progressive decline of motile sperm in corals, 

as recently found in Acropora palmata and A. digitifera, displaying a reduction in sperm 

motility and consequently in fertilization process in particular with low sperm concentration 

(Morita et al. 2009; Nakamura and Morita 2012).  

The lowest amount of spermaries (Fig. 5) together with lowest fertility observed in 

control Site (Fig. 6), seemed to prove that not only the sperms release was concluded, but also 

the planulation processes was almost terminated. In the other Sites the fertilization started, but 

the probably delay in spermaries development postponed the release of sperms in the water 

column, delaying the fertilization and consequently postponing the embryos maturation and 

the planulation process. 

Increasing pCO2 negatively affect embryos growth and development in mollusks 

(Kurihara 2008; Kurihara and Shirayama 2004a, b), echinoderms (Gonzalez-Bernat et al. 2013) 

and crustaceans (Arnold et al. 2009) and planulae of coral Acropora digitifera under pH 

condition show smaller size than control (Suwa et al. 2010).  

A previous study on calcification of L. pruvoti transplanted along the same natural pCO2 

gradient in the same short-time exposure do not show a reduction of calcification in both 

periods (gonadal development period and fertilization period). Instead, display a drop in 

calcification in a warmer period, probably due to a synergistic effect between pH and 

temperature (Prada et al. submitted). Is possible assume that in gonadal development period 
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and fertilization period, a reduction of energy intake intended for reproduction, could be due 

to a reallocation of energy in favor of the calcification process.  

A population of zooxanthellate coral Balanophyllia europaea, naturally living along the 

same pCO2 gradient at Panarea, shows an equal reproductive output among Sites; both gonadal 

production and gonadal development seem to be unaffected by increasing acidity (Chapter 3 of 

this thesis; Marchini 2016). With increasing pCO2, the same population revealed no changes in 

linear extension rate, unaltered to the detriment of net calcification rate due to increase in 

skeletal porosity. To keeps linear extension rate constant, could to face functional reproductive 

requests (e.g. the ability to reach critical size at sexual maturity), at the expense of mechanical 

strength of the skeletons (Fantazzini et al. 2015). The same species shows an increase of 

photosynthetic efficiency of coral algae with increasing pCO2 (personal observation), 

representing a further energy available to coral. B. europaea could to reallocate this additional 

resource into reproduction and linear extension rate, highlighting a lower sensitivity in B. 

europaea than L. pruvoti to increasing ocean acidification. The lack of zooxanthellae involve 

a lack in additional resources, making L. pruvoti negatively affected to increasing pCO2. 

Impacts on reproduction and fertilization processes can directly affect size and structure of 

coral populations, doing hypothesize that environmental changing could affect the long-term 

survivability of the species. Further study under long-term exposure of pCO2 are needed to 

better understand how the natural population will behave in the environment of the future sea. 
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Tables 

Table 1. Seawater carbonate chemistry for each transplantation Site. The pH, temperature (T), total alkalinity 

(TA) and salinity (S) were used to calculate all the other parameters using CO2SYS software with dissociation 

constants. Mean pH values were calculated after conversion of data to hydrogen ion concentrations. Mean values 

are reported with minimum and maximum values in brackets. 

Measured Parameters   

Sites 
pH range          

(total scale) 
T (°C) 

TA                    

(µmol kg-1) 

S                             

(‰) 
  

  

1 8.07 

 (7.82-8.45) 

20.5 

 (14.3-26.0) 

2438  

(2368-2600) 

37  

(33-38)   

           

2 
7.87  

(7.54-8.25) 

20.7  

(14.4-26.0) 

2429  

(2334-2618) 

37  

(33-38)   

           

3 
7.74 

(7.05-8.21) 

20.6  

(14.4-26.0) 

2426 

 (2343-2610) 

37  

(34-38)   

           

4 
7.40  

(6.71-8.14) 

20.6  

(14.4-26.0) 

2395  

(2329-2518) 

37 

 (34-38)   

            

Calculated Parameters 

Sites 
*pCO2                     

(µatm) 

*HCO3
-               

(µmol kg-1) 

*CO3
2-                   

(µmol kg-1) 

*DIC                        

(µmol kg-1) 
*Ωarag 

            

1 
391 

 (127-780) 

1869 

 (1466-2144) 

232  

(120-398) 

2114  

(1867-2291) 

3.6 

 (1.8-6.3) 

           

2 
672 

(234-1561) 

2030 

 (1664-2264) 

163  

(68-314) 

2214  

(1984-2383) 

2.5  

(1.1-5.0) 

           

3 
907 

 (262-5100) 

2073 

 (1835-2365) 

144 

 (25-243) 

2246  

(2089-2552) 

2.2 

 (0.4-3.9) 

           

4 
1944  

(306-7231) 

2159 

 (1826-2355) 

96 

 (16-233) 

2317  

(2070-2613) 

1.4 

 (0.2-3.1) 

           
 

pH (n = 103-110 per Site), T (n = 2580 per Site) was recorded from May to September 2012 and from November 

2012 to April 2013. and S (n = 107-110 per Site) were measured in July 2010, September 2010, November 2010, 

March 2011, June 2011, July-August 2011, November-December 2011, April-May 2012, June 2012 and May 

2013. TA (n = 14 per Site) was measured in September 2010, November 2010, March 2011, June 2011, July-

August 2011, November-December 2011, April-May 2012, June 2012 and May 2013. pCO2 = carbon dioxide 

partial pressure; HCO3
- = bicarbonate; CO3

2- = carbonate; DIC = dissolved inorganic carbon; Ωarag = aragonite 

saturation.  
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Table 2. Number of polyps (n) analyzed in four sites in gonadal development and gametes maturity periods. For 

each site has been indicated the reproductive state of analysed polyps.  

Gonadal development period 

Site n Female Male Sexually inactive Embryogenetic 

1 18 7 7 4 0 

2 12 5 6 1 0 

3 13 8 4 1 0 

4 19 4 7 8 0 

            

Fertilization period 

Site n Female Male Sexually inactive Embryogenetic 

1 17 5 3 9 3 

2 18 4 5 9 2 

3 14 1 10 3 1 

4 14 5 6 3 2 

 

Table 3. Mean abundance, gonadal index and diameter ± SE of oocytes in each Site. 

Gonadal development period 

Site np 
Abundance 

(#/mm3)  

Gonadal Index 

(%)     
no 

Diameter  

(µm)        

1 7 457 ± 20 0.45 ± 0.72     793 138 ± 9 

2 5 690 ± 25 0.57 ± 0.58     598 126 ± 9 

3 8 455 ± 20 0.88 ± 1.06     791 157 ± 9 

4 4 233 ± 17 0.56 ± 1.94     197 163 ± 10 

                

Fertilization period 

Site np 
Abundance 

(#/mm3) 

Gonadal Index 

(%)  
nep 

Fertility 

(#/mm3) 
no 

Diameter 

(µm)  

1 5 768 ± 21 0.46 ± 0.62 3 0.6 ± 0.9 410 118 ± 7 

2 4 173 ± 15 0.14 ± 0.42 2 14.0 ± 0.9 263 123 ± 7 

3 1 728 0.46 1 31.2 164 116 ± 6 

4 5 200 ± 15 0.20 ± 0.51 2 26.0 ± 5.0 174 129 ± 8 
 

SE = standard error; np = polyps number; no = oocytes number; nep = embryogenetic polyps number. 
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Table 4. Mean abundance, gonadal index and diameter of spermaries ± SE in each site.  

Gonadal development period 

Site np 
Abundance 

(#/mm3) 

Gonadal Index 

(%) 
ns 

Diameter 

(µm)  

1 7 9646 ± 6525 2.1 ± 1.5 7513 79 ± 0.3 

2 6 18139 ± 6215 6.3 ± 2.3 10625 95 ± 0.3 

3 4 16941 ± 3808 6.5 ± 1.5 7857 96 ± 0.4 

4 7 2233 ± 629 0.5 ± 0.2 2324 78 ± 0.6 

            

Fertilization period 

Site np 
Abundance 

(#/mm3)  

Gonadal Index 

(%)  
ns 

Diameter 

(µm)  

1 3 293 ± 108 0.02 ± 0.01 65 47 ± 3 

2 5 1167 ± 406 0.08 ± 0.04 579 53 ± 1 

3 10 596 ± 190 0.05 ± 0.02 501 55 ± 1 

4 6 1353 ± 468 0.20 ± 0.10 732 70 ± 1 
 

SE = standard error. np = polyps number; ns = spermaries number. 
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Figures 

 

Figure 1. (A) Study site. Map of the study site near Panarea Island (Aeolian Archipelago, Italy). An underwater 

volcanic vent produce continuous emissions of CO2 (98–99%), resulting in a stable pH gradient. Four sites along 

the gradient were selected for the study. No temperature difference exists among the four sites throughout the 

year. (B) Living specimen of L.pruvoti in Pietranave, photographed by Francesco Sesso. 

 

 

 

 



77 
 

 

Figure 2. Oocyte size/frequency distribution in the gonadal development and fertilization periods. 

Distribution of the oocytes size during gonadal development period (dashed line) and fertilization period (solid 

line). n = number of oocytes. 
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Figure 3. Spermary frequency distribution in gonadal development and fertilization periods. Distribution 

of five maturation stages of spermaries during gonadal development period (striped histogram bars) and 

fertilization period (black histogram bars). n = number of spermaries. 
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Figure 4. Oocytes. Reproductive parameters in gonadal development and fertilization periods. Mean values 

± SE. Abundance, gonadal index and diameter of oocytes in the gonadal development period (striped histogram 

bars) and fertilization period (black histogram bars). On top of the bars the number of animals (abundance and 

gonadal index) and number of oocytes (diameter) in each site.  
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Figure 5. Spermaries. Reproductive parameters in gonadal development and gametes maturity periods. 

Mean values ± SE. Abundance, gonadal index and diameter of spermaries in the gonadal development (striped 

histogram bars) and fertilization periods (black histogram bars). On top of the bars the number of animals 

(abundance and gonadal index) and number of spermaries (diameter) in each site.  
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Figure 6. Embryos. Fertility in gonadal development periods. Mean values ± SE. On top of the bars, the 

number of female found in each site. 
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Physiology, bleaching and mortality in two tropical corals exposed to pH and 

temperature levels projected for the end of this century 

Abstract 

Zooxanthellate corals represent intimate symbioses between coral animals and unicellular 

photosynthetic dinoflagellates algae (Symbiodinium sp.) and are the main builders of the 

world’s shallow-water marine coral reefs. Coral reefs are among the most vulnerable 

ecosystems to climate changes. The Intergovernmental Panel on Climate Change (IPCC) 

projected a rise of 1.6-4.3°C and a decrease of 0.06-0.3 pH units for the end of this century. 

The aim of this study was to test the response of two symbiotic tropical corals, characterized 

by different growth rates and life strategies, Fungia granulosa (solitary) and Pocillopora 

verrucosa (colonial), to a four week exposure to: (C) ambient temperature and ambient pH; (T) 

high temperature and ambient pH; (pH) ambient temperature and low pH; (T/pH) high 

temperature and low pH. The high temperature and low pH reflected projected values for the 

end of this century under the “business-as-usual” IPCC scenario. The solitary coral F. 

granulosa was less sensitive than the colonial coral P. verrucosa. However, in all considered 

parameters (photosynthetic efficiency, bleached tissue and mortality) to increased temperature 

and/or decreased pH, both species showed raised negative effects with increased exposition 

time, making them vulnerable to future environmental conditions to the sea, especially if CO2 

emission will be not mitigated. 
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Introduction 

Coral reefs are one of the most productive and biodiverse ecosystems on Earth (Odum and 

Odum 1955; Connell 1978; Hoegh-Guldberg et al. 2007; Dove et al. 2013). Despite they cover 

about 0.1–0.5% of the ocean floor (Spalding and Grenfell 1997; Smith 1978; Copper 1994), 

they provide the habitat for ~25% of the world’s marine species (Spalding et al. 2001). 

Moreover, coral reefs have a great relevance in human society and economy (Hoegh-Guldberg 

et al. 2007), representing a crucial sources of income and resources through their role in 

tourism, fishing, building materials and coastal protection (Carte 1996; Moberg and Folke 

1999). However, coral reefs are among the most susceptible ecosystems to climate changes 

(Hoegh-Guldberg 1999, 2007; Fabry et al. 2008; Hofmann et al. 2010; Anthony et al. 2011), 

and corals are considered to be one of the most vulnerable groups, greatly influenced by the 

biological and physical factors of their environment (Kleypas 1999; Nakamura et al. 2004; Al-

Horani 2005; Orr et al. 2005; Bramanti et al. 2013; Reyes-Nivia et al. 2013). 

The increasing atmospheric carbon dioxide (CO2) concentration by human activities is 

driving global climate change, altering the physicochemical status of the seawater (Diaz and 

Rosenberg 2008; Kroeker et al. 2010; Byrne 2012). Mean sea temperatures increased of 0.7°C 

since the industrial revolution (Feely et al. 2009), and climate models projected a rise of 1.6-

4.3°C by the end of this century (Stocker et al. 2013). Moreover, about 30% of atmospheric 

CO2 is absorbed by the oceans (Solomon et al. 2007), causing decreased of both, seawater pH 

and free carbonate ion (CO3
2-; Raven et al. 2005) essential for corals to produce their calcium 

carbonate (CaCO3) skeletons (Raven et al. 2005; Hofmann et al. 2010). Since the industrial 

revolution has already registered a drop of 0.1 pH units in seawater (Caldeira and Wickett 2003; 

Orr et al. 2005; Raven et al. 2005; Hoegh-Guldberg et al. 2007; Doney et al. 2009; Pelejero et 

al. 2010; Feely et al. 2012) and, if the current rate of anthropogenic CO2 emissions will be not 

mediated, is projected a further decrease of 0.3 units by the end of this century (IPCC 2013).  
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It is becoming increasingly certain that ocean acidification and ocean warming will affect 

marine ecosystems (Reaka-Kudla 1997; Kleypas et al. 1999; Hoegh-Guldberg et al. 2007), 

influencing a variety of physiological and biological processes of several marine organisms 

(Kroeker et al. 2010, 2013; Dupont and Thorndyke 2013; Dupont and Pörtner 2013; McCoy 

and Kamenos 2015), and their population dynamics, community structure and ecosystem 

function (Doney et al. 2009; Gaylord et al. 2015). 

Ocean acidification is a potential threat to marine ecosystems due to its effect on 

physiology and ecology of marine species (Kroeker et al. 2013) and are expected severe 

impacts mainly on calcifying marine organisms due to its negative effects on calcification 

process. Experimental studies show that high pCO2 levels may affect also respiration, acid–

base regulation, metabolism, growth rates, sensory systems, survivorship, reproduction, and 

many other fundamental processes on coral reefs (Fabry et al. 2008; Pörtner 2008; Widdicombe 

and Spicer 2008; Byrne 2011; Navarro et al. 2013; Duarte et al. 2014; Gazeau et al. 2014). 

Moreover, decreasing seawater pH accelerates destructive processes including erosion and 

dissolution of the reef structure, reducing the coastal protection (Carte 1996). 

Temperature is the major environmental factor controlling marine species distributions 

and recruitment dynamics (Gillooly et al. 2002) and its increased directly affects physiological 

functions and developmental rates (Clarke 2003; Brierley and Kingsford 2009), reducing 

growth rates and reproductive output (McClanahan et al. 2009), and increasing mass mortality 

events and disease (Coma et al. 2009; Garrabou et al. 2009; Przeslawski et al. 2008). Moreover, 

the main concern to increasing temperature is the breakdown of the symbiosis between 

scleractinian corals and unicellular dinoflagellate algae of the genus Symbiodinium 

(zooxanthellae), through a process known as bleaching (Brown 1997; Lesser 2011). 

Symbiodinium species are exceptionally efficient utilisers of light energy (Brodersen et al. 

2014), producing photosynthate, principally in the form of glucose (Burriesci et al. 2012), and 
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are able to meet up to ~95% of the energy requirement of the coral host (Muscatine et al. 1981, 

1984). Increasing temperature may damage the photosynthetic machinery in Symbiodinium, 

reducing their photosynthetic efficiency and eventually leading to their expulsion from the 

coral host (Lesser 2011). Loss of zooxanthellae can starve the coral, and if bleaching event 

persist time, it will lead to death of the coral, increasing coral mortality events (Brown 1997; 

Berkelmans et al. 2004).  

Ocean warming and acidification are occurring simultaneously and previous studies 

show that the effects of increased temperature could be exacerbate or mitigate by a rise in pCO2 

(Gooding et al. 2009; Findlay et al. 2010; Harvey et al. 2013). Biological response to rising 

temperature and decreasing pH varies greatly among species, making it difficult to understand 

how zooxanthellate corals will respond to climate change (Harley et al. 2006; Dupont and 

Thorndyke 2009; Kurihara 2008; Pörtner 2008; Przeslawski et al. 2008).  

Laboratory conditions allows to investigate about increasing temperature and 

decreasing pH in dissociate way from other environmental parameters, and permit to test 

singularly or in combination the parameters, control them and register accurately their values.  

Little is known about interactive effects of elevated temperature and low pH on the 

photosynthetic efficiency and bleaching of tropical corals. Here, we report on a 4-week study 

that compared photosynthesis, bleaching, and mortality responses of two zooxanthellate 

tropical coral species in response to increasing temperature and decreasing pH, separately and 

combined.  This study focused on two zooxanthellate tropical corals, Fungia granulosa and 

Pocillopora verrucosa, characterized by the same trophic strategy but different growth form 

(respectively, solitary and colonial). Using 12 tanks experimental system, we manipulated 

temperature and/or pCO2 levels to expose these species under “business as usual” projections 

of IPCC for the end of this century. This work will increase information about how 
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zooxanthellate tropical corals characterized by different growth forms, will respond to the 

future climate change.  

Materials and methods 

Ethics statement 

The reefs sampled in this study do not fall under any legislative protection or special 

designation as a marine/environmental protected area. The Saudi Coastguard Authority issued 

sailing permits to the sites that include coral collection. Both species, Fungia granulosa and 

Pocillopora verrucosa are both listed on the ICUN Red List 

(http://www.iucnredlist.org/details/133197/0; http://www.iucnredlist.org/details/133183/0). 

Corals were sampled in accordance with ethical standards for the care and use of invertebrate 

animals. 

Coral collection  

Thirty-six specimens of Fungia granulosa and nine colonies of Pocillopora verrucosa were 

collected in a range of 10-12 m depth at Al-Fahal reef, about 13 km off the Saudi Arabian coast 

in the Central Red Sea (22° 15.100’ N, 38° 57.386’ E). Collected samples of F. granulosa and 

P. verrucosa were visually healthy polyps of equivalent size classes (<6 cm length and <10 cm 

length, respectively) and F. granulosa were completely unattached to substrate. After 

collection, each colony of P. verrucosa was cut in four micro colonies, and glued with a 

bicomponent epoxy coral glue (Aqua Medic Reef Construct, USA) onto ceramic basis (2 cm 

diameter). Specimens of both taxa were labelled and located in twelve identically equipped 65 

l aquaria, set up at the bottom of the aquaria with the apex in front of the artificial light source 

and recovered for two weeks under controlled conditions. The experimental setup was located 

in the laboratory of Coastal and Marine Resources Core Lab (CMOR) at King Abdullah 

University of Science and Technologies (KAUST).  

http://www.iucnredlist.org/details/133197/0
http://www.iucnredlist.org/details/133183/0
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Experimental setup 

The CO2 tanks were located in a temperature-controlled room (20°C). Two levels of CO2 

concentration (ambient and elevated pCO2, corresponding to increased pH) and 2 levels of 

temperature (ambient and elevated T) were selected as corresponded to IPCC projections for 

the end of this century (Stocker et al. 2013). The experimental setup included a control (3 

aquaria) and 3 treatment (3 replicates aquaria for each): (1) ambient T + ambient pH, (2) high 

T + ambient pH, (3) ambient T + low pH, (4) high T + low pH (see Table 1 for mean values of 

each level of each factor used in the experiments).  

Experimental T were maintained constant using aquarium titanium heaters (300W, 

Schego, Germany) placed in water baths connected to electronic controllers (± 0.5°C accuracy). 

pH was lowered by bubbling independently pure CO2 gas in a 65 l additional tanks for each 

pH treatment (Fig. 1) through CO2 reactor (aqualine, Aqua Medic, Germany) connected with 

little pump. A centralised microprocessor (AT-Control system, Aqua Medic, Germany) 

continuously monitored pH values through a probe located in the support aquaria and adjusted 

pH by opening/closing the electronic shut off valve gas (M-ventil Standard, Aqua Medic, 

Germany) in connection with CO2 tanks (Fig.1). 

Water chemistry parameters of T (°C), pH, Salinity (ppm) and Dissolved oxygen (DO, 

mg/l) were measured in all aquaria of each treatment throughout the experiment once a day 

using a Professional Plus (Pro Plus) Multiparameter Instrument YSI (Tab. 1). Corals received 

a constant irradiance of 180 ± 10 μmol photons m-2 s-1 (photoperiod was 12 h:12h light:dark) 

using six neon aqualine T5 (2 blue, 2 white 10 K and two white 15 K, Aquamedic, Germany) 

and were fed once a week. 

Each aquaria held 3 specimens of F. granulosa (n = 9 for each treatment) and 3 micro 

colonies of P. verrucosa (n = 9 for each treatment). Each micro colony resulting from the same 

colony was placed in each treatment to guarantee the same genetic differences. 
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Photosynthetic efficiency measurements. 

Photosynthetic efficiency (effective quantum yield ∆F/Fm’ and maximum quantum yield Fv/Fm) 

of zooxanthellae host were measured using a DIVING-PAM fluorometer (Walz, Germany) (n 

= 8 for each species and each treatment) respectively, at the end of the 2°,3° and 4° week and 

2° and 4° week under the experimental conditions.  

Ambient light level at the aquarium room was <10 μmol photon m-2 s-1 and did not 

substantially affect the coral ∆F/Fm’, that was measured at 16:00, while Fv/Fm was measured 

after 11 hours of dark adaptation, at 8:00 in the morning. During measurements, the 8 mm 

optical fibre was maintained perpendicular to the coral’s surface using a black-jacket at a fixed 

distance of 5 mm to guarantee correct distance of the optical fiber to the coral. 

Bleaching and mortality measurements 

Bleaching (percentage of bleached tissue) and mortality (number of dead corals/colonies) were 

registered during and at the end of the experiment in both species. To measure coral bleaching, 

a colour reference chart was used and coral mortality was recognize by watching samples. 

Statistical analysis 

Levene’s test was used to test homogeneity of variance and Shapiro-Wilk test was used for 

testing normality of distribution, useful when sample size is lower than 2000, in all parameters 

analyzed. A two samples t-test was used to highlight similarities and differences of sea water 

parameters among treatments. One-way analysis of variance (ANOVA) was used to test the 

significance of the differences inside each treatment among measurement replication over time. 

The non-parametric Kruskal-Wallis equality-of-populations rank test was used to compare 

photosynthetic measurement, % bleaching tissue and mortality among treatment, used when 

assumptions for parametric statistics were not fulfilled. A general linear model (GLM) with 

best model selection was used to verify if the differences between photosynthetic efficiency, 
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tissue bleached and mortality was due to aquaria effect and/or aquaria parameters (temperature 

and pH). The analyses were computed using PASW Statistics 22.0. 

Results 

Mean aquaria parameters (T, pH, Sal and DO) was homogeneous among three aquaria (a, b, c) 

from the same treatment, in all treatments (Tab. 1). Using the average of three aquaria for each 

treatment, T and pH varied significantly among treatment (Kruskal-Wallis test, p < 0.001; Tab. 

2). In particular, T was homogeneous between control (C) and pH treatment (pH) and between 

temperature treatment (T) and temperature/pH treatment (T/pH), but was different between the 

two couples (test t, p < 0.001; Tab. 2). pH was homogeneous between C and T and between 

pH and T/pH, but was different between the two couples (test t, p < 0.001; Tab. 2). Sal and DO 

were homogeneous among treatments (Tab. 2). 

Mean effective quantum yield (∆F/Fm’) and maximum quantum yield (Fv/Fm’) were 

significantly different among treatment in all registered time and in both species (Kruskal-

Wallis test, p < 0.05; Tab. 3, 4; Fig. 2). In F. granulosa, the effective quantum yield and 

maximum quantum yield in C treatment, T treatment and pH treatment were homogeneous in 

time (Tab. 3). Only the interaction treatment (T/pH), showed differences between the first and 

the last measured value in both parameters (Tab. 3; ANOVA, p < 0.01). P. verrucosa showed 

differences in effective quantum yield and in maximum quantum yield in all treatment among 

the measurement in time (Tab. 4; Kruskal-Wallis test or ANOVA, p < 0.05), except for the 

maximum quantum yield in pH treatment, which was homogeneous between the first and last 

measured value (Tab. 4). In both species, the detected differences in photosynthetic efficiency 

was explained by temperature (GLM, p < 0.05), and in F. granulosa only the effective quantum 

yield was explained also by pH.  
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Samples of F. granulosa showed bleached tissue in both temperature treatments (T and T/pH), 

after more than 2 weeks of exposure (first recording - November 15th). Bleaching tissue showed 

a little increase in both treatments at the end of the experiments (Tab. 5; Fig. 3). In this species, 

bleached tissue was homogeneous among treatments in the first three measurement, but was 

different in the last two measurements (Kruskal-Wallis test, p < 0.001; Tab. 5; Fig. 3). P. 

verrucosa exhibited bleached tissue from the first measurement (2 weeks of exposure – 

November 8th) and showed a significant increased during the experiments in all treatments 

(Tab. 5; Fig. 3). Significant differences in tissue bleached were found among treatments during 

all registered data (Kruskal-Wallis test, p < 0.01; Tab. 5; Fig. 3). The differences identified in 

bleached tissue were explained by temperature in both species (GLM, p < 0.05). 

Mortality was registered only in P. verrucosa and increased in differential way among 

treatment during the experiment (Tab. 6; Fig. 4). 

GLM did not show a relationship between the differences found in photosynthetic efficiency, 

tissue bleached and mortality with the aquaria replicates in both species and all treatments.  

Discussion 

Ocean warming and acidification are two of the major threats that tropical coral reefs are facing 

during this century. Previous study revealed that key life functions in corals, such as 

photosynthesis, are affected by increasing temperature (Nakamura et al. 2004; Al-Horani 2005) 

and decreasing pH due to increasing pCO2 (Orr et al. 2005; Kleypas 1999). The aim of this 

study was to test the response of two symbiotic tropical corals to a four week exposure to: (C) 

ambient temperature (29.2 ± 0.1°C) and ambient pH (8.1 ± 0.003); (T) high temperature (32.5 

± 0.1°C) and ambient pH (8.1 ± 0.004); (pH) ambient temperature (29.3 ± 0.1°C) and low pH 

(7.8 ± 0.009); (T/pH) high temperature (32.4 ± 0.2°C) and low pH (7.8 ± 0.03). These 

conditions are similar to actual values and to IPCC projections for the end of this century. 
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Aquaria salinity, dissolved oxygen and light did not differ among treatments, therefore 

differences in temperature and/or pH provided the most likely explanation for the differences 

observed in photosynthetic efficiency, bleaching tissue and mortality. 

F. granulosa showed constant values during the experiment in both, effective and 

maximum quantum yield in C treatment, suggesting that this species was fully adapted to such 

conditions. This species did not show differences in T and pH treatments during the experiment 

in both photosynthetic parameters, suggesting a great resistance to increasing temperature and 

decreasing pH, separately. Instead, F. granulosa seemed to be affected by synergistic 

interaction between high temperature and low pH, showing a reduction of photosynthetic 

efficiency of both parameters in interaction treatment (T/pH) at the end of the experiment.  

P. verrucosa showed differences in both, effective and maximum quantum yield in C 

treatment in the course of the experiment, probably due to higher stress level than F. granulosa, 

during sampling and the fragmentation in micro colonies. Anyway, both photosynthetic 

parameters was significantly different among treatments, showing the effects of temperature 

and/or pH. 

2 weeks after the start of the experiment (first measurement – November 8th) the 

effective quantum yield of F. granulosa was different among treatments, due to higher mean 

values found in pH treatment. Decreasing pH, due to increasing pCO2 increases the 

photosynthesis of microalgae (Riebesell et al. 1993), macroalgae (Borowitzka and Larkum 

1976; Gao et al. 1993) and seaweeds (Zimmerman et al. 1997). Specimens of Porites 

compressa and Montipora verrucosa (capitata) exposed to increasing pCO2 show higher 

photosynthetic efficiency, supporting the hypothesis that elevated pCO2 may stimulates 

photosynthesis also in corals (Langdon and Atkinson 2005). Actually, the effects of decreasing 

pH, due to increasing pCO2, on photosynthetic efficiency in corals, show ambiguous results. 

Host photosynthetic efficiency could increase (Langdon and Atkinson 2005), be not affected 
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(Langdon et al. 2003; Reynaud et al. 2003; Schneider and Erez 2006; Marubini et al. 2008; 

Rodolfo-Metalpa et al. 2010; Takahashi and Kurihara 2013; Enochs et al. 2014) or negative 

affected (Anthony et al. 2008) at the level of pCO2 expected for the end of the century. 

Differential response among corals would be linked to response phylotype-specific of host 

Symbiodinium exposed to elevated pCO2, as showed in Brading et al. (2011).  

In both species, temperature seemed to be the main cause of the found differences in 

effective quantum yield (∆F/Fm’) and maximum quantum yield (Fv/Fm’) among treatments. 

Several study show negative effect of high temperature on photosynthesis. Scleractinian coral 

Montastrea annularis reduce photosynthesis after 6 h of exposure to elevated temperature 

(Porter et al. 1999).  A decrease in the photosynthetic efficiency due to high temperature was 

observed also in Stilophora pistillata, Montastrea cavernosa, Agaricia lamarcki, A. agaricites 

and Siderastrea radians (Fitt and Warner 1995; Warner et al. 1996), and in heat-stressed 

zooxanthellae in culture (Iglesias-Prieto 1995; Iglesias-Prieto et al. 1992). High temperature 

has been considered to adversely affect the zooxanthellae hosts (Lasker et al. 1984; Glynn et 

al. 1985; Gates et al. 1992), damaging their photosynthetic apparatus, which could lead to 

bleaching (Fitt and Warner 1995; Jones et al. 1998; Warner et al. 1996, 1999; Fitt et al. 2001; 

Jones and Hoegh-Guldberg 2001).  

The decline of photosynthetic efficiency found in F. granulosa and in P. verrucosa, 

was accompanied by increase in bleached tissue in both species. Several studies show that 

bleached corals have low values of maximum quantum yield (Fv/Fm; Fitt and Warner 1995; 

Warner et al. 1996, 1999; Jones et al. 2000; Bhagooli and Hidaka 2002) and numerous studies 

from both, the laboratory and field, indicates that coral bleaching is mainly attributed to 

elevated temperature (Hoegh-Guldberg and Smith 1989; Glynn and D’Croz 1990; Jokiel and 

Coles 1990; Glynn 1993; Hoegh-Guldberg and Salvat 1995; Brown 1997; Hoegh-Guldberg 

1999). F. granulosa showed bleached tissue only in two temperature treatments (T and T/pH), 
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reaching 7% and 11% of bleached tissue at the end of the experiment respectively in T 

treatment and interaction treatment (T/pH). P. verrucosa seemed more affected by bleaching, 

showing high percentage in all treatments, with higher values in both temperature treatments 

(T and T/pH), that reached 100% bleached micro colonies in the interaction treatment (T/pH) 

at the end of the experiment. Coral bleaching has been attributed also to other factors, such as 

high irradiance and high CO2 levels (Glynn et al. 1992; Gleason and Wellington 1993; Fournie 

et al. 2012). The effect of light could be excluded in this experiment because all treatments 

received the same constant irradiance of 180 ± 10 μmol photons m-2 s-1. Field studies on coral 

bleaching have reported differences in bleaching susceptibility among coral species. 

Differences sensitivity of species in this experiment found in bleaching tissue rates, could 

explained by different growing rates of two species: F. granulosa is characterized by slow 

growing rates (Chadwick-Furman et al. 2000), respect the fast growing rates of P. verrucosa 

(Brown and Suharsono 1990). In the Indo-Pacific region, faster growing rates in corals (e.g. 

pocilloporid and acroporid) seems to be more severely affected by bleaching than slower 

growing species (e.g. poritid and faviid; Brown and Suharsono 1990).  

Another difference between the two species was in the mortality rates. In contrast to F. 

granulosa, which did never show mortality, micro colonies of P. verrucosa started to die from 

the second week under experimental condition (November 11th) in T, pH and interaction (T/pH) 

treatments. At the end of the experiment, all treatments showed high mortality rate, reaching 

100% of micro colonies died in the interaction treatments (T/pH). During this experiment, F. 

granulosa, by remaining alive, was more able than P. verrucosa to resist to high temperature 

and/or low pH conditions. The differential susceptibility of corals could be linked to their tissue 

thickness (Loya et al. 2001). F. granulosa is a solitary scleractinian coral characterized by large 

biomass and a completely covered skeleton with high tissue thickness, its energy reserves may 

help to compensate the stress to the changing environmental conditions. On the opposite, the 
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colonial coral P. verrucosa displays a lower tissue thickness (Ziegler et al. 2014), making this 

species more exposed and consequently more vulnerable to external environmental conditions. 

The species-specific differences in susceptibility found in this study may have long-

term consequences for the species composition of the community. Despite F. granulosa was 

less affect to increased temperature and/or decreased pH than P. verrucosa, both species 

showed increased negative effects with increasing exposition time, making both species 

vulnerable to environmental change, in particular if the CO2 emissions will be not mitigate. 

Laboratory studies contribute to highlight knowledge about the effect of climate change on 

marine organisms and help to identify the species particularly susceptible to future 

environmental conditions. 
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Tables 

Table 1. Seawater parameters for each aquaria from each treatment. 

 

Mean value ± CI (95%) for temperature (T), pH, Salinity (Sal), Dissolved Oxygen (DO) of each aquaria (a, b, c) 

from each treatment. C = control, T = temperature treatment, pH = pH treatment, T/pH = interactive 

temperature/pH treatment. N = 39 for each aquaria and parameters. NS = not significant, Kruskal-Wallis equality-

of-populations rank test. 

 

Table 2. Mean seawater parameters for each treatment. 

Treatment T (°C)  pH Sal (ppm) DO (mg/l) 

C 29.2 ± 0.1 8.1 ± 0.003 42.9 ± 0.1 5.1 ± 0.02 

T  32.5 ± 0.1 8.1 ± 0.004 42.8 ± 0.1 5.1 ± 0.02 

pH 29.3 ± 0.1 7.8 ± 0.009 42.8 ± 0.1 5.1 ± 0.02 

T/pH 32.4 ± 0.2 7.8 ± 0.03 42.9 ± 0.1 5.1 ± 0.03 

K-W *** *** NS NS 
 

Mean value of three replica aquaria ± CI (95%) for temperature (T), pH, Salinity (Sal), Dissolved Oxygen (DO) 

of each treatment. C = control, T = temperature treatment, pH = pH treatment, T/pH = interactive temperature/pH 

treatment. N = 108 for each treatment and parameters. *** = p < 0.001, NS = not significant, Kruskal-Wallis 

equality-of-populations rank test. 

 

Treatment Aquaria T (°C)          pH       Sal (ppm)    DO (mg l-1)   

C 

a 29.2 ± 0.2 8.1 ± 0.01 42.9 ± 0.2 5.1 ± 0.03 

b 29.2 ± 0.2 8.1 ± 0.01 42.9 ± 0.2 5.1 ± 0.03 

c 29.2 ± 0.2 8.1 ± 0.01 42.9 ± 0.2 5.1 ± 0.03 

K-W NS NS NS NS 

T 

a 32.4 ± 0.3 8.1 ± 0.005 42.8 ± 0.1 5.1 ± 0.02 

b 32.6 ± 0.2 8.1 ± 0.004 42.9 ± 0.2 5.1 ± 0.03 

c 32.5 ± 0.2 8.1 ± 0.010 42.8 ± 0.2 5.1 ± 0.03 

K-W NS NS NS NS 

pH 

a 29.2 ± 0.2 7.8 ± 0.02 42.8 ± 0.1 5.1 ± 0.03 

b 29.4 ± 0.2 7.8 ± 0.02 42.8 ± 0.1 5.1 ± 0.02 

c 29.3 ± 0.1 7.8 ± 0.02 42.8 ± 0.1 5.1 ± 0.03 

K-W NS NS NS NS 

T/pH 

a 32.3 ± 0.3 7.8 ± 0.05 42.8 ± 0.2 5.1 ± 0.04 

b 32.4 ± 0.3 7.8 ± 0.05 42.9 ± 0.2 5.1 ± 0.05 

c 32.5 ± 0.4 7.8 ± 0.05 42.9 ± 0.2 5.1 ± 0.05 

K-W NS NS NS NS 
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Table 3. Effective quantum yield and maximum quantum yield in Fungia granulosa. 

 

 

Fungia granulosa 

Treatment 
Fv/Fm' (180) 

N 11 Nov N 21 Nov ANOVA 

Control 9 0.70 ± 0.01 6 0.69 ± 0.01 0.097 NS 

T  9 0.68 ± 0.02 6 0.64 ± 0.04 0.084 NS 

pH  9 0.72 ± 0.01 6 0.72 ± 0.02 0.527 NS 

T/pH 9 0.69 ± 0.01 6 0.65 ± 0.02 0.001 *** 

K-W  0.001 ***  0.001 ***  
  

Mean value ± CI (95%) of.effective quantum yield (∆F/Fm') and maximum quantum yield (Fv/Fm') in each 

treatment during and at the end of the experiment. C = control, T = temperature treatment, pH = pH treatment, 

T/pH = interactive temperature/pH treatment. N = number of samples for each measurement. On 21st November 

one sample of F. granulosa from each aquaria was withdrawn for another study. * = p < 0.05, ** = p < 0.01, *** 

= p < 0.001, NS = not significant, Kruskal-Wallis equality-of-populations rank test and ANOVA. 

 

 

 

 

 

 

 

 

 

 

 

 

Fungia granulosa 

Treatment 
∆F/Fm'  

N 8 Nov N 15 Nov N 23 Nov K-W/ANOVA 

Control 9 0.67 ± 0.01 9 0.67 ± 0.01 6 0.66 ± 0.01 0.148 NS 

T  9 0.66 ± 0.02 9 0.64 ± 0.02 6 0.60 ± 0.03 0.067 NS 

pH  9 0.69 ± 0.01 9 0.69 ± 0.01 6 0.70 ± 0.01 0.877 NS 

T/pH 9 0.66 ± 0.01 9 0.66 ± 0.01 6 0.60 ± 0.02 0.002 ** 

K-W   0.011 *   0.003 **   0.002 **   
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Table 4. Effective quantum yield and maximum quantum yield in Pocillopora verrucosa. 

Pocillopora verrucosa 

Treatment 
∆F/Fm' 

N 8 Nov N 15 Nov N 23 Nov K-W/ANOVA 

Control 9 0.56 ± 0.02 8 0.49 ± 0.04 7 0.39 ± 0.08 0.002 ** 

T  9 0.49 ± 0.05 8 0.38 ± 0.07 4 0.25 ± 0.07   0.001 *** 

pH  9 0.56 ± 0.05 8 0.46 ± 0.07 7 0.35 ± 0.06   0.001 *** 

T/pH 9 0.50 ± 0.04 8 0.38 ± 0.05 0 -   0.02 ** 

K-W/ANOVA  0.066 NS  0.031 *  0.001 ***  
 

 

 

Mean value ± CI (95%) of.effective quantum yield (∆F/Fm') and maximum quantum yield (Fv/Fm') in each 

treatment during and at the end of the experiment. C = control, T = temperature treatment, pH = pH treatment, 

T/pH = interactive temperature/pH treatment. N = number of samples for each measurement. * = p < 0.05, ** = p 

< 0.01, *** = p < 0.001, NS = not significant, Kruskal-Wallis equality-of-populations rank test and ANOVA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pocillopora verrucosa 

Treatment 
Fv/Fm' (180) 

N 11 Nov N 21 Nov ANOVA 

Control 9 0.52 ± 0.05 8 0.40 ± 0.08 0.020 ** 

T  8 0.46 ± 0.06 7 0.27 ± 0.05   0.001 *** 

pH  8 0.49 ± 0.07 8 0.40 ± 0.06   0.802 NS 

T/pH 8 0.50 ± 0.05 4 0.21 ± 0.04   0.001 *** 

K-W/ANOVA  0.357 NS  0.004 **  
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Table 5. Percentage of bleaching tissue in Fungia granulosa and Pocillopora verrucosa. 

Fungia granulosa 

Treatment 
Bleached tissue (%) 

N 8 Nov N 11 Nov N 15 Nov N 21 Nov N 23 Nov 

C 9 0.0 9 0.0 9 0.0 6 0.0 6 0.0 

T 9 0.0 9 0.0 9 1.1 ± 2.1 6 6.7 ± 6.5 6 6.7 ± 6.5 

pH 9 0.0 9 0.0 9 0.0 6 0.0 6 0.0 

T/pH 9 0.0 9 0.0 9 1.1 ± 2.1 6 10 ± 5.1 6 11.7 ± 3.2 
 

Pocillopora verrucosa 

Treatment 
Bleached tissue (%) 

N 8 Nov N 11 Nov N 15 Nov N 21 Nov N 23 Nov 

C 9 18.8 ± 2.0 9 31.1 ± 4.5 9 40.0 ± 8.0 9 60.0 ± 8.5 9 63.3 ± 9.0 

T 9 30.0 ± 6.2 9 51.1 ± 8.4 9 60.0 ± 7.5 9 87.8 ± 4.0 9 92.2 ± 4.3 

pH 9 20.0 ± 3.3 9 42.2 ± 8.8 9 44.4 ± 8.8 9 65.5 ± 8.4 9 71.1 ± 8.2 

T/pH 9 28.9 ± 3.1 9 46.7 ± 8.5 9 57.8 ± 7.0 9 95.6 ± 1.8 9 100 
 

Mean value ± CI (95%) of percentage tissue bleached in each treatment during and at the end of the experiment. 

C = control, T = temperature treatment, pH = pH treatment, T/pH = interactive temperature/pH treatment. N = 

number of samples for each record. 

 

Table 6. Percentage of polyp mortality in Pocillopora verrucosa. 

Pocillopora verrucosa 

Treatment 
Polyp mortality (%) 

N 8 Nov N 11 Nov N 15 Nov N 21 Nov N 23 Nov 

C 0/9 0 0/9 0 1/9 11 1/9 11 2/9 22 

T 0/9 0 1/9 11 1/9 11 2/9 22 5/9 55 

pH 0/9 0 1/9 11 1/9 11 1/9 11 2/9 22 

T/pH 0/9 0 1/9 11 1/9 11 5/9 55 9/9 100 
 

Percentage values of polyp mortality in each treatment during and at the end of the experiment. C = control, T = 

temperature treatment, pH = pH treatment, T/pH = interactive temperature/pH treatment. N = number of dead 

samples/total sample number for each treatment. 
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Figures 

 

Figure 1. Aquaria setup. Each treatment (C = control, T = temperature treatment, pH = pH treatment and T/pH 

= temperature/pH treatment) had three replicates aquaria (a, b, c) and one support aquarium (s). Heathers were 

represented by yellow bars (ambient temperature, 29°C) and red bars (high temperature, 32°C) in the support 

aquaria. White arrows represented bubbling CO2. Sea water circulation was from support aquaria, where water 

became warm and/or enriched of CO2 in the treatments, to three replicates aquaria, where were the samples of 

both species (n = 3 for each aquaria and species). Support aquaria did not host the samples. 
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Figure 2. Effective quantum yield (∆F/Fm’) and maximum quantum yield (Fv/Fm’). Mean value ± CI (95%) 

collected by Diving PAM during and at the end of the experiment in both species. The experiment started on 26 

October and ended on 23 November (4 weeks). Samples number and mean values for each treatment are listed 

in Table 3 and 4. 

 

 

 

Figure 3. Coral tissue bleaching percentage. Mean value ± CI (95%) of registered bleaching tissue during and 

at the end of the experiment in both species.  Samples number and mean values for each treatment are listed in 

Table 5. 
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Figure 4. Coral mortality in Pocillopora verrucosa. Mean value of registered mortality during and at the end of 

the experiment in Pocillopora verrucosa. Fungia granulosa did never show polyp mortality during and at the end 

of the experiment. Samples number are listed in Table 6. 
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ABSTRACT: The precipitation of calcium carbonate was carried out in the presence of
the intraskeletal organic matrix (OM) extracted from Mediterranean corals. They were
diverse in growth form and trophic strategy, Balanophyllia europaea and Leptopsammia
pruvotisolitary corals, only the first zooxanthellate coraland Cladocora caespitosa and
Astroides calyculariscolonial corals, only the first zooxanthellate coral. The results
showed that, although the OM marked differences among species, the diverse influence
over the calcium carbonate precipitation was evident only for B. europaea. This OM was
the most prone to favor the precipitation of aragonite in the absence of magnesium ions,
according to overgrowth and solution precipitation experiments. In artificial seawater,
where magnesium ions were present, this OM, as well the one from A. calycularis,
precipitated mainly a form of amorphous calcium carbonate different from that obtained
with SOM from L. pruvoti or C. caespitosa. The amorphous calcium carbonate from B.
europaea was the most stable upon heating up to 100 °C and was the one that mainly
converted into aragonite instead of magnesium calcite after heating at 300 °C. All this
indicated a higher control of B. europaea OM over the calcium carbonate polymorphism than the other species. The influence of
SOMs over precipitate morphology turned out to be also species related. In conclusion, this comparative study has shown that
the influence of OM on in vitro precipitation of calcium carbonate was not related to the coral ecology, solitary vs colonial and
zooxanthellate vs nonzooxanthellate, and suggested that the coral control over biomineralization process was species specific and
encoded in coral genes.

■ INTRODUCTION

Scleractinian corals represent the biggest source of biogenic
calcium carbonate1,2 and are among the fastest marine
mineralizing organisms.3 In corals the calcification process
occurs in a biological confined environment, under the control
of biological macromolecules.4 This is confirmed by the
observation that, although coral skeleton morphology can be
affected by habitat conditions,5−7 the change always remains
within the species-specific “vocabulary” controlled by the DNA
of the organism.8−10

The skeleton of corals is a composite structure with both
inorganic (aragonite) and organic components.11,12 The
merging of data from several investigations13,14 has revealed
that the actual growth unit of the skeleton is a few micrometers-
thick mineralizing growth layer synchronically increasing the
“sclerodermites”, forming a given skeletal unit (e.g., a septum).
The mineralizing growth layer simultaneously increases the two

distinct mineralizing areas that have been extensively described
from a structural point of view. At the growth edge of any
structural components (e.g., septal spines) a granular and
porous nanocrystalline phase (randomly oriented) forms the
initial skeletal framework (also the earliest appearing
mineralized elements after larval metamorphosis, according to
Vandermeulen and Watabe15). These early mineralizing zones
(EMZ), usually called “center of calcification”, are laterally
reinforced by deposition of a second structural layer made of
dense, large, acicular crystals: the fibers.16

Organic components, referred to as organic matrix (OM),
are involved in biomineral synthesis and become entrapped in
the skeleton.17−20 The composition of coral OM compounds
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can be determined only after skeleton decalcification processes.
On the basis of the studies performed by Young12 and
Constantz and Weiner21 proteins and glycosaminoglycans but
also sulfated polysaccharides14,22 and lipids23 are consistently
found in the skeletons of many species covering the whole
taxonomic scleractinian diversity (ref 9 and references therein).
These molecules have a different role in the biomineral
synthesis according to diverse biomineralization models. In
physicochemical models, involving a liquid layer with chemical
properties called calcifying fluid,24 the OM acts as a support for
calcium carbonate-oriented crystallization.2 In these models
crystal growth occurs through a primarily inorganic process,
which involves a coral-controlled transcellular ion transport to
the calcifying fluid (ref 9 and references therein). A recent
model of ionic transport shows a direct and rapid seawater
transport to the calcification site.25 In contrast to physicochem-
ical models, Clode and Marshall26 have suggested a molecular
model in which calcification occurs within a gel secreted at the
interface between the calicoblastic cells and the skeleton.
According to this model the glycoproteins form an architectural
framework bearing the sites for development of the mineral
phase.27 In this model, OM interacts with the growing crystal
changing its shape.28−30 More recently, attention was drawn on
the potential role of OM as carriers of the mineral precursors,
which are possibly in an amorphous status. In this view, the
OM became trapped along the boundary grains of the final
crystal during the transition from the amorphous to the
crystalline phase.10,30

Many aspects of the OM role in the dynamics of skeleton
formation of corals are enigmatic.4 It has been recently shown,
by in vitro studies, that the OM from different corals species
influences polymorphism and morphology of calcium carbo-
nate. Goffredo et al.31 showed that the intraskeletal OM from
Mediterranean zooxanthellate solitary coral, Balanophyllia
europaea, can favor the precipitation of aragonite and that a
transient phase of amorphous calcium carbonate (ACC)
stabilized by lipids is involved. The influence of coral
intraskeletal OM molecules in the precipitation of calcium
carbonate was proved also for the tropical species Acropora
digitifera, Lophelia pertusa, and Montipora caliculata.10 More-
over, an important recent study has shown that four highly
acidic proteins, derived from the expression of genes obtained
from the common coral Stylophora pistillata can spontaneously
catalyze the precipitation of calcium carbonate in vitro from
seawater.32

This study deepened the investigations using the OM from
skeletons of Leptopsammia pruvoti (solitary, nonzooxanthel-
late), Balanophyllia europaea (solitary, zooxanthellate), Astroides
calycularis (colonial, nonzooxanthellate), and Cladocora caes-
pitosa (colonial, zooxanthellate). These Mediterranean coral
species were chosen because they represent the combination
among different growth forms and trophic strategies. Solitary
corals are single autonomous individuals (polyps), while
colonial corals are modular organisms constituted by cloned
polyps living in close connection (physical and physiological)
one to each other. Symbiosis determines the synthesis of
molecules essential to the biomineralization process,33 such as
precursors for the OM.9,34−36 The first link between photo-
synthesis and calcification was found by Kawaguti and
Sakumoto;37 they pointed out that calcification rate is higher
in the light than in the dark.9 It was also shown that in the
presence of light the calcification rate is higher in zooxanthellate
corals than in nonzooxanthellate corals.38 However, from a

general point of view, it is clear that coral calcification is not
dependent on the presence of symbionts39,40 and non-
zooxanthellate corals have an efficient calcification as well.
Moreover, tissues that calcify at the highest rates, or which
initiate calcification, do not possess zooxanthellae.9,41,42 It was
also shown that photosynthesis increases calcification rate
because it fixes CO2 and increases the skeleton surface pH.

43−45

The main goals of this study are (a) to evaluate whether the
intraskeletal OM from different coral species shows a different
capability to govern the formation and stability of calcium
carbonate precipitates; (b) to infer possible relationships
between the organism ecology (growth form and trophic
strategy) and its OM capabilities.

■ MATERIALS AND METHODS
Coral Skeletons. The samples of L. pruvoti, B. europaea, C.

caespitosa from Calafuria and A. calycularis from Palinuro (Italian coast,
North-Western Mediterranean Sea) were randomly collected by scuba
diving at 16, 6, and 9 m depth, respectively, between 1 July 2010 and
25 February 2012. Coral skeletons were cleaned, ground, and analyzed
by X-ray powder diffraction using a powder diffractometer
(PanAnalytical X’Pert Pro equipped with X’Celerator detector) with
Cu Kα radiation. Thermogravimetric analysis (TGA) was performed
to estimate the OM content in the coral skeleton using an SDT Q600
instrument (TA Instruments). These analyses were carried out as
previously reported.10

Extraction of the Organic Matrix. The soluble (SOM) and the
insoluble (IOM) OM fractions were extracted through decalcification
using a 0.1 M CH3COOH solution as previously reported.10 The
whole OM (wOM) was obtained using the same procedure without
the separation step between SOM and IOM.

Characterization of the OM. The polyacrylamide gel electro-
phoresis (SDS-PAGE) of SOM was performed on 12.5% poly-
acrylamide gel, according to a reported procedure10 that implies the
use of strong fixative agents. The PAS (Periodic Acid Schiff) stain was
performed to detect glycoprotein.

Amino acid analysis (AAA) was conducted by a chromatographic
technique using an amino acid analyzer, according to a reported
procedure.10 The average protein pI of all the OM fractions was
calculated from the amino acid analyses of all the species, following the
method described in Sillero and Ribeiro.46

Aliquots of OM fractions and wOM were analyzed by Fourier
transform infrared spectroscopy (FTIR) using a FTIR Nicolet 380
Thermo Electron Corporation working in the range of wavenumbers
4000−400 cm−1 at a resolution of 2 cm−1. The statistical analysis of
amino acid data and FTIR spectra was carried out with the Mann−
Whitney test.

Calcium Carbonate Overgrowth Experiments. Transversal
sections of coral skeletons, placed in a microplate for cellular culture
(MICROPLATE 24 well with Lid, IWAKI) or in a Petri dish (d = 3.2
cm), were overlaid with 750 or 3360 μL of 10 mM CaCl2 solution,
respectively, according to previous experiments.10 A 30 × 30 × 50 cm3

crystallization chamber was used. Two 25 mL beakers half-full of
(NH4)2CO3 (Carlo Erba) covered with Parafilm with 10 holes and two
Petri dishes (d = 8 cm) full of anhydrous CaCl2 (Fluka) were put
inside the chamber. The crystallization time was 4 days. At the end of
the precipitation process the transversal sections were lightly rinsed
with milli-Q water (resistivity 18.2 MΩ cm at 25 °C; filtered through a
0.22 μm membrane), dried, and examined by scanning electron
microscopy (SEM).

Calcium Carbonate Crystallization Experiments. The same
crystallization chamber utilized for overgrowth experiments, contain-
ing (NH4)2CO3 and anhydrous CaCl2, was used. Microplates for
cellular culture containing a round glass coverslip in each well were
used. In each well, 750 μL of 10 mM CaCl2 solutions (CaCl2·2H2O,
Merck) or of modified (increased of 10 times the Ca2+ and Mg2+

concentration) artificial seawater (ASW)47, were poured. In the first
sets of experiments, OM fractions, separately or together, were added
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to 750 μL of 10 mM CaCl2 solution. Eight μL (for L. pruvoti and A.
calycularis) or 20 μL (for B. europaea and C. caespitosa) of a solution
obtained dissolving lyophilized SOM in water (17.5 mg/mL) were
added to the solution. This quantity was chosen by keeping in
consideration SOM concentration in the skeleton.10,31 In other wells
0.5 mg of IOM were added to 750 μL of 10 mM CaCl2 solution. SOM
and the IOM (eOM) were added in the last wells. In the second set of
experiments the whole OM (wOM) was added to 750 μL of 10 mM
CaCl2 solution and to ASW. The quantity of wOM added was 0.4 and
0.2 mg, respectively. The experiment proceeded for 4 days. The
obtained crystals were washed three times with milli-Q water and then
analyzed. All the experiments were conducted at room temperature.
The crystallization trials of calcium carbonate in the different
conditions were replicated starting from different batches of OM
fractions.
Characterization of CaCO3 Precipitates. FTIR spectra of

samples in KBr disks were collected at room temperature by using a
FTIR Nicolet 380 Thermo Electron Corporation working in the range
of wavenumbers 4000−400 cm−1 at a resolution of 2 cm−1 according
to a reported procedure.10

Atomic absorption measurements of calcium and magnesium were
carried out with a PerkinElmer AAnalyst 100 flame and graphite
furnace (HGA 800) spectrometer equipped with a Zeeman effect
background corrector, and an automatic data processor. A 20-μL
volume sample solution obtained by precipitated dissolution in 0.1 M
HNO3, was injected by an auto sampler. A multi-element hollow
cathode lamp of analytes was used as a radiation source. Three
measurements were carried out for each sample.

Thermal Treatment of CaCO3 Precipitates. The samples that
showed the presence of ACC in the precipitate from ASW solution
with wOMs were heated at 105° for 18, 36, and 72 h.48 At the end the
same samples were heated at 300 °C for 8 h. FTIR spectra were
collected after each thermal treatment.

Microscopic Observations. A Leica microscope equipped with a
digital camera was used for optical microscope observations of CaCO3

precipitates. SEM observations were conducted using a scanning
electronic microscope Phenom microscope (FEI) or a Hitachi FEG
6400 scanning electron microscope after sample coating with gold.

■ RESULTS

Skeletal Structures of Corals. Scanning electron micro-
scope images of septum cross sections showed the typical
textural pattern of the coral skeleton (Figure 1): the EMZ was
composed of small rounded granules, and fibers are produced
with a patterned growth. EMZs are more sensitive to acidic
etching than the fibers49 and thus appear rich with cavities. Size
and spatial distribution of EMZs and fibers vary upon species.
In L. pruvoti and B. europaea the EMZs were observed as
shallow cavities from which fibers radially extend having in L.
pruvoti a smaller diameter and a less compact structure than in
B. europaea (Figure 1 LPR1−3 and BEU1−3). In A. calycularis
in the EMZs were observed as granular particles that cover the
fiber tips. In A. calycularis and C. caespitosa the cavities are deep
and episodically aligned parallel to the long axis of the septa and

Figure 1. SEM pictures at increasing magnifications (1−3) of sections of coral skeleton of L. pruvoti (LPR), B. europaea (BEU), A. calycularis (ACL)
and C. caespitosa (CCA) after etching. The pictures with suffix 3 show early mineralization zones (EMZ) surrounded by fibers, which are shown in
the insets at higher magnifications.
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the fibers are similar to those of B. europaea (Figure 1 ACL1−3
and CCA1−3).
Studies on the Intraskeletal OM. In L. pruvoti, B.

europaea, A. calycularis, and C. caespitosa the mineral skeleton
hosting the OM was expected to be of pure aragonite (Figure
SI1 in the Supporting Information [SI]); however, in the
insoluble residue obtained after decalcification, few silica
needles were observed, constantly in A. calycularis and rarely
in the other species (Figure SI2 in SI). The presence of this
impurity, which was not possible to remove, was considered not
influencing the calcium carbonate precipitation assays. The
skeleton TGA showed a first weight loss (bounded water) in
the range 150−220 °C followed by a second one (OM
pyrolysis) between 280 and 450 °C (Figure SI3 in SI).50 The
overall weight loss was 3.4 ± 0.1, 3.9 ± 0.1, 3.5 ± 0.1, and 3.4 ±
0.1% (w/w) in L. pruvoti, B. europaea, A. calycularis, and C.
caespitosa, respectively (Table1, OM composition). After
extraction the OM separated in SOM and IOM fractions; the
median amount of IOM was higher than that of SOM in all
species, except in B. europaea (Table 1, OM composition).
The OM fractions were analyzed by FTIR, SDS-PAGE, and

AAA. Table SI1 in SI summarizes the observations from the
FTIR spectra of SOM and IOM (n = 6) and in Figure 2 the
most representative spectra are shown. In SOM and IOM the
same absorption bands were detected with different relative
intensities (according to refs 8, 10, and 31). To estimate the
relative amounts of the main molecular components of the OM
from the FTIR spectra, three zones (1−3) were defined (Figure
2, Table SI3 in SI).10 In the zone 1 (3000−2800 cm−1) the
bands were related to fatty acids or to molecules bearing alkylic
chain regions, in the zone 2 (1750−1500 cm−1) were located
the bands associated to proteins (and some sugars), and in the
zone 3 (1100−950 cm−1) bands linked to polysaccharides.51

The integrated intensities of the bands in zones 1 and 3 were
normalized to that of zone 2 (Table SI3 in SI). Then a Mann−
Whitney test was carried out to check for significant differences
between SOM and IOM. In all the species SOM showed a
lower absorption than IOM in the zone 3, and only in A.

calycularis and C. caespitosa in the zone 1. Comparing OM
fractions among all the species, the absorption of IOM from A.
calycularis is the highest.
SDS-PAGE observations (Figure 3) of SOMs showed many

bands gathered around 45 and 30 kDa in L. pruvoti and bands

clustered in two groups having molecular masses from ∼40 to
34 kDa and from 73 to 60 kDa31 in B. europaea. In A. calycularis
and C. caespitosa many bands distributed from ∼104 to 30 kDa
and from 62 to 28 kDa, respectively, were revealed.
The AAA from SOM and IOM was reported in Table SI2 in

SI. SOM was characterized by a content of aspartic (and
asparagine) higher than that in IOM. The content of
hydrophobic residues was always higher in IOM (33−50 mol

Figure 2. FTIR spectra of intraskeletal soluble (SOM) and insoluble (IOM) organic matrix from aragonitic skeleton of L. pruvoti (LPR), B. europaea
(BEU), A. calycularis (ACL), and C. caespitosa (CCA). The wavenumbers of the main absorption bands are indicated. The three marked zones define
diagnostic regions of functional groups, which could be mainly associated with the presence of lipids (zone 1), protein and polysaccharides (zone 2),
and polysaccharides (zone 3).

Figure 3. SDS-PAGE of intracrystalline soluble organic matrix
extracted from aragonitic skeleton of L. pruvoti (LPR), B. europaea
(BEU), A. calycularis (ACL), and C. caespitosa (CCA). The side
numbers indicate the molecular weight (kDa) of silver stain marked
bands.
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%) than in SOM (24−34 mol %). The calculated average
protein pI46 shows that OMs were acidic, and IOM was less
acidic than the SOM within a species (Figure SI4 in SI).
Overgrowth of CaCO3 onto Coral Skeleton Sections.

The results of the calcium carbonate overgrowth experiments
on skeleton cross sections are illustrated in Figure 4. Surfaces
normal to the oral−aboral axis and close to the growing tips
were used. The overgrowth occurred in a 10 mM calcium
chloride solution under diffusion of ammonium carbonate
vapors. Calcium carbonate crystals were observed on the
skeleton cross section and outside it (on the surface of the
embedding resin). On the resin only calcite crystals appearing
almost as perfect {10.4} faced rhombohedra (see Figure 4
ACL1 on the right) were observed. The crystals with the typical
morphology of aragonite were observed only on the surface of
the skeletons. They appeared as bundles of needle-like crystals
in L. pruvoti and as single hexagonal prisms in B. europaea, the
bundles were about 3 μm in diameter, while the needle-like
crystals and the single prisms had an average diameter smaller
than 1 μm. In A. calycularis and C. caespitosa the hexagonal
prisms observed on B. europaea were coherently fused in big
prisms having a diameter usually above 4 μm. On the coral
skeleton calcite crystals were also observed, and they exhibited
additional {hk0} faces to {10.4} ones, which were wider in
those grown on the skeleton of B. europaea and C. caespitosa

(Figure 4 CCA2 and BEU2) than in those on the A. calycularis
and L. pruvoti skeletons (Figure 4 ACL2 and LPR2).

Precipitation in the Presence of OM Fractions. A first
set of CaCO3 precipitation trials was carried out from 10 mM
CaCl2 solutions containing the OM fractions. Without OM
only the deposition of rhombohedral crystals of calcite was
observed. The presence of OM fractions induced an inhibition
of the precipitation and a reduction of the average particle sizes,
as a monotone function of the additive concentration. On the
basis of a set of preliminary studies and previous similar
experiments10,31 a SOM concentration of 185 μg/mL was used
for L. pruvoti and A. calycularis and 455 μg/mL for B. europaea
and C. caespitosa, while 666 μg/mL of IOM were dispersed in
the calcium chloride solution.
The reported results are the trends observed from six

precipitations trials (see Experimental Section and Table SI4 in
SI). In the presence of SOM, aggregates having the shape of
dumbbell and sphere were always observed (Figure 5 SOM).
These particles (5−69 μm) showed surfaces formed by stacked
multilayers (Figure 5 SOM LPR, inset) in the presence of L.
pruvoti SOM, while with B. europaea and A. calycularis SOMs
they showed (4−20 μm and 4−80 μm, respectively) smooth
surfaces and were copresent with aggregates having various
shapes (Figure 5 SOM BEU and ACL, inset). In the presence of
C. caespitosa SOM the dumbbells and spherical shaped

Figure 4. SEM pictures at increasing magnifications (1−3) of sections of coral skeleton of L. pruvoti (LPR), B. europaea (BEU), A. calycularis (ACL),
and C. caespitosa (CCA) after calcium carbonate overgrowth experiments. A new layer of crystals with aragonite typical morphology grew on the
skeleton surfaces in all the species (magn. 3). On these new layers more or less smoothed calcite crystals were observed (magn. 2) that in some cases
they showed additional {hk0} faces to the rhombohedral {10.4}. Outside the skeletons sections only rhombohedra of calcite precipitated (ACL1,
indicated by the arrow).
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aggregates (7−80 μm) appeared formed by the association of
submicrometer particles (Figure 5 SOM CCA, inset). The
FTIR spectra of these precipitates showed the characteristic
absorption bands of calcite plus those due to the SOM (Figure
SI5 SOM [in SI]). In the presence of dispersed IOM, which
sometime floated at the air/solution interface, the formation of
mineral particles was observed both on the matrix surface and
outside it. On the IOMs framework, from all the species, calcite
crystals grew, showing truncation of rhombohedral corners and
edges (Figure 5 IOM and insets). On A. calycularis IOM only a
few calcium carbonate particles were observed, together with
the needle-like silica contaminants (see Materials and Methods
section). On L. pruvoti, C. caespitosa, and B. europaea IOM, and
outside it, the calcite crystals assembled showing overlapping
edges (Figure 5 IOM LPR, IOM BEU). The FTIR spectra
showed only the presence of the absorption bands of calcite,
with those of IOM (Figure SI5 IOM [ in SI]).

When the eOM was used (Figure 6 eOM and inset) few
aggregates formed by small particles (submicrometer size)

precipitated; this observation effect was prominent for A.
calycularis. In the presence of L. pruvoti, B. europaea, and C.
caespitosa eOM, the surface of the IOM was covered by
aggregates of submicrometer units having a rough surface. In
addition, crystals, like those precipitated in the presence of
SOM, were observed around the IOM, particularly for C.
caespitosa (Figure 6 eOM CCA inset). In the presence of A.
calycularis eOM few aggregates with shape changing from one
experiment to another were observed (the most representative
in Figure 6 eOM ACL). The FTIR spectra of these materials
(Figure SI5 eOM [ in SI]) showed the absorption bands of
calcite, except for B. europaea where the aragonite bands were
observed as well (as reported in ref 31).

Precipitation in the Presence of the Whole OM. A
second set of CaCO3 precipitation trials, in which the wOM
was added into a 10 mM CaCl2 solution or into an ASW47

solution (Figure 6, Table 1 and Table SI4 in SI), was carried

Figure 5. SEM pictures of particles obtained from precipitation
experiments of CaCO3 from 10 mM CaCl2 solutions in the presence
of OM fractions. In the first and second columns are shown particles
obtained in the presence of soluble (SOM) or insoluble (IOM)
organic matrix, respectively. In the rows are shown, from top to
bottom, particles obtained in the presence of L. pruvoti (LPR), B.
europaea (BEU), A. calycularis (ACL), and C. caespitosa (CCA). In the
insets are reported high magnification pictures of the particles. The
calcite crystals on IOMs show truncation of rhombohedral {104}
corners and edges (probably the presence of small {108} and {hk0}
faces). These pictures are the most representative of the populations of
observed particles.

Figure 6. SEM pictures of particles obtained from precipitation
experiments of CaCO3 from 10 mM CaCl2 solutions in the presence
of the entire organic matrix (eOM) or the whole organic matrix
(wOM). The eOM and wOM were extracted from L. pruvoti (LPR), B.
europaea (BEU), A. calycularis (ACL), and C. caespitosa (CCA). In the
picture ACL needle-like silica spicules are present. In the insets are
reported high magnification images of representative features of the
associated particles. These pictures are the most representative of the
populations of observed particles.
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out. The experiments were carried out using 0.25 or 0.5 mg/
mL of wOM, but the latter inhibited the precipitation over 4
days.
From the 10 mM CaCl2 solution containing wOM

precipitated CaCO3 particles (Figure 6 wOM) similar to
those observed in the presence of eOM (Figure 6 eOM) but
showing morphological features closer to those observed in the
presence of the respective IOM (Figure 5 IOM).
From the precipitation in ASW, aggregates having the shapes

of peanut, dumbbell, and spherulite and formed by
submicrometer-sized elongated rhombohedral crystals and
needle-like crystals were observed (Figure 7 ASW). These
aggregates were formed of magnesium calcite and aragonite
(Figure 8a). The addition of the wOM to the ASW produced
the massive precipitation of spherical submicrometer particles
(Figure 7 ASW + wOM) and of few elongated rhombohedral
crystals and needle-like crystals (only BEU). The aggregation of
the submicrometer particles was species specific. They appeared
as forming long chains associated in a two-dimensional network
for L. pruvoti and C. caespitosa, while for B. europaea and A.
calycularis three-dimensional architectures were generated. The
FTIR spectra showed the presence of the typical absorption
bands of ACC.52 The presence of ACC was also verified by X-
ray powder diffraction (Figure SI7 in SI). The diffraction
pattern of the precipitates obtained in the presence of wOM
showed only diffraction peaks due to the presence of halite and
a very weak broad peak at about 29.7°. From ASW, diffraction
peaks owing to aragonite and magnesium calcite were observed.
Despite these observations the presence of traces of hydrated
forms of calcium carbonate could not be excluded. ACC was
further investigated by FTIR experiments upon thermal
treatment of the precipitates (Figure 8 and Table SI5 in SI).
The ν3 and ν2 showed a different position and profile bands
after the thermal treatments. In the ACC obtained from L.
pruvoti and C. caespitosa the ν2 band was at 868 cm−1, and in
the ones from B. europaea and A. calycularis the band was at 871
cm−1. Upon thermal treatment at 105 °C for 18 h for all the
ACC the ν2 band was at 871 cm−1, and after 76 h this band
moved to 875 cm−1 for all the samples, the same value showing
in the precipitate formed from ASW without OM. When the
same samples were thermally treated for 8 h at 300 °C they all
showed the ν2 band at 877 cm−1. Moreover, a second band at
860 cm−1 clearly appeared in the precipitate obtained from B.
europaea, analogous to that obtained from pure ASW, and was
present as a shoulder in A. calycularis precipitate. The profile of
the ν3 band showed three main maxima centered at 1431, 1466,
and 1480 cm−1. By thermal treatment the maximum at 1431
cm−1 strengthened, while the one at 1480 cm−1 weakened. This
change in intensities was more difficult in B. europaea that in
the other species. The analysis of the absorption band at about
3300 cm−1, due to the OH groups stretching, did not reveal any
clear trend. This difficulty can be ascribed to the diverse
contributions (e.g., water solvatation, carbohydrates) to this
band and the presence of moisture. In the precipitates from the
ASW the Mg/Ca molar ratio was measured by the atomic
absorption spectroscopy (n = 6). These were 19.8 ± 0.5, 20.3 ±
0.6, 19.4 ± 0.5, and 19.6 ± 0.5 in L. pruvoti, B. europaea, C.
caespitosa, and A. calycularis, respectively, while in the absence
of OM it was 5.1 ± 0.1 (Table 1).

■ DISCUSSION
The precipitation of aragonite in corals occurs in a confined
environment in a seawater-like fluid that contains biomineraliz-

ing (macro)molecules.25,53 The understanding of the role of
seawater ions (mainly magnesium) and of biomineralizing
macromolecules in the in vivo calcification process lays objective
difficulties, although terrific results were achieved.54 The in vitro
mineral precipitation in the presence of OM components
represents an alternative approach. This assay has the
disadvantage, and limitation, that only intraskeletal macro-
molecules upon an extraction process are considered. However,
the assay was validated by a plethora of studies that have proved
that the intraskeletal macromolecules were effective modifiers

Figure 7. SEM pictures of particles obtained from precipitation
experiments of CaCO3 from artificial seawater (ASW) in the presence
of the whole organic matrix (wOM), after the synthesis (left), and after
the thermal treatment at 300 °C for 12 h (right). The spherical
nanoparticles (2nd−4th row) were made of ACC before the thermal
treatment and of magnesium calcite after the thermal treatment. In the
presence of the wOM from B. europaea, aragonite coformed with
magnesium calcite. The wOM was extracted from L. pruvoti (LPR), B.
europaea (BEU), A. calycularis (ACL), and C. caespitosa (CCA). These
pictures are the most representative of the populations of observed
particles.
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of the nucleation and growth processes of minerals deposited
by organisms.54−56 Until few years ago this assay was almost
ignored in the study of the biomineralization of corals.
Recently, few in vitro studies have shown that the intraskeletal
OM of corals influenced the aragonite precipitation.10,31,32

Scleractinian corals, differently from many other marine
calcifiers, show diverse growth forms (solitary vs colonial)
and trophic strategies (zooxanthellate vs nonzooxanthellate).
The presence of zooxanthellae was reported to have an
influence on the calcification process.9,42 A study on the OM
amino acid composition showed differences between different
species with different trophic strategies in the content of acidic
residues.35 Here, the study of the composition of OMs from the
corals L. pruvoti, B. europaea, A. calycularis, and C. caespitosa
showed the absence of any clear correlation among coral
ecology (growth form or trophic strategy) and OM content,
mass ratio between SOM and IOM, protein features, and
macromolecule distribution (Table 1). An emerging feature was
the high mass ratio SOM/IOM (1.5) in B. europaea (Table 1),
a non-unique behavior since in Acropora digitifera a ratio of
about 5 was observed.10 Overgrowth experiments showed that
aragonite formed on the surface of all coral skeletons. This
effect, which could be due to secondary nucleation events,
brought to the growth of crystals having species specific size
and texture. On the skeleton of the zooxanthellate species, B.
europaea and C. caespitosa, the overgrowth of numerous calcite
crystals having a modified morphology was also observed. This
can be related with the release in solution of molecules able to
interact specifically with the {hk0} faces of calcite.28 The band’s
distribution revealed by SDS-PAGE seemed to exclude that this
effect was related to the presence of a significant amount of

low-molecular weight molecules more easily released from the
skeleton, keeping in consideration that some molecules could
be not stained or fixed by the gel.57 The calcium carbonate
precipitation experiments in the presence of SOM, IOM, and
the eOM gave results in agreement to what is observed for
other coral species.10,31 The SOM molecules were strong
modifiers of the morphology of the calcite particles. These
changes in morphology were due either to the aggregation of
modified single-crystalline units of calcite, as in case of L.
pruvoti, A. calycularis, and C. caespitosa, or to the assembly of
submicrometer particles, as for B. europaea. The presence of
IOM lightly affected the precipitation of calcite, and the crystals
were slightly modified from their rhombohedral morphology,
suggesting the limited release of IOM molecules in solution,
favored by the crystallization conditions (pH and ionic
strength).10,31 According to reported data10,31 the eOM effect
on the precipitation was dominated by the SOM fraction,
except for B. europaea where the copresence of SOM and IOM
allowed the precipitation of aragonite together with calcite in a
Mg-ion-free CaCl2 solution, where usually calcite precipitated.

31

The favored precipitation of aragonite by OM molecules has
been observed also for Stylophora pistillata,32 but these
experiments were carried out in seawater where the presence
of magnesium ions (Mg/Ca molar ratio equal to 5) favors the
precipitation of aragonite. The trials in which the wOM was
used instead of eOM were performed to exclude possible
artifacts associated with the separation process between SOM
and IOM (e.g., reaggregation and reprecipitation). The results
with wOM were in line with those obtained using eOM, but the
morphological effects were more similar to those observed in
the presence of IOM, suggesting that in the wOM a lower
content of SOM was present with respect to the eOM.
More information with respect to what is already known was

obtained from precipitation experiments in ASW using the
wOM. In fact, previously described experiments showed that
wOM behaved similarly to eOM, and it was definitely more
representative of the OM entrapped in the skeleton. These two
OMs differed for the extraction mode. In the eOM experiments
the soluble and insoluble organic matrices were separated
during the extraction process and then used together; with the
wOM extracted in one step. The fact that these two procedures
gave materials having similar functions in the precipitation of
calcium carbonate indicated that (i) the activity of soluble and
insoluble fractions was not affected by the extraction process
and that (ii) the interaction between soluble and insoluble
fractions was a reversible process. The use of ASW was in line
with recent researches showing direct seawater transport to the
calcifying site in corals.25 The presence of magnesium ions in
the extracytoplasmic calcifying fluid, at the nucleation site of
corals, has been also reported.47,58,59 The addition of wOM to
ASW induced the precipitation of almost only ACC instead of
aragonite and Mg-calcite, as revealed by the FTIR and X-ray
diffraction analyses. ACC appeared in two forms having
different FTIR spectra and thermal stabilities. The thermally
less stable form of ACC, which precipitated in the presence of
wOM from L. pruvoti and C. caespitosa, converted in the one
more stable, which precipitated in the presence of wOM from
B. europaea and A. calycularis, upon heating at 105 °C for 18 h.
According to Radha et al.60 a hydrated ACC transformed with
aging or heating into a less hydrated form, crystallizing with
time as calcite or aragonite. Two ACC forms, anhydrous ACC
and hydrated ACC containing about 1 mol of water that
persists for longer time periods, exist in biogenic sources.61

Figure 8. FTIR spectra of calcium carbonate precipitated from
artificial seawater in the presence of the whole organic matrix (wOM),
which was extracted from L. pruvoti (blue), B. europaea (green), A.
calycularis (magenta), and C. caespitosa (black). The spectra from
calcium carbonate precipitated from artificial seawater in the absence
of wOM are also reported (red). Only the diagnostic ranges from 800
to 900 cm−1 and 1300 to 1600 cm−1 are shown (see SI for the entire
FTIR spectra). (a) Spectra collected without any thermal treatment of
the samples. (b−d) Spectra collected after a thermal treatment of the
samples at 105 °C for 18 h (b), 36 h (c), and 72 h (d). (e) Spectra
collected after a thermal treatment of the samples at 300 °C for 12 h.
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Thus, we could infer that in our experiment the ACC thermally
less stable forms (probably the hydrated ACC) converted to
less hydrated, or anhydrous, ones upon heating (the complexity
of the material did not allow accurate thermal analyses). The
less hydrated ACC showed a different behavior when subject to
a further heating process. It converted to poor crystalline Mg
calcite in the presence of wOM from L. pruvoti, A. calycularis,
and C. caespitosa, while the one from B. europaea formed Mg
calcite and aragonite (Table SI5 in SI). This polymorphic
selectivity in the solid-state crystallization of the ACC was
attributed to the wOM, since the same heating profile was used,
excluding effects due to the annealing rate.62 Moreover, an
increase in the crystallinity of Mg-calcite was observed after
annealing.48 The existence of two forms of ACC, which had a
diverse binding strength, was reported as precursors of diverse
crystalline phases.63

The wet transition from ACC to specific crystalline phases
was reported to rely on the Mg/Ca molar ratio and the
presence of additives in the precipitating solution.64−67 In
particular it was observed that in conditions of the Mg/Ca
molar ratio >4 the transition from ACC to aragonite64 occurred
through monohydrocalcite at transition phase67 in times shorter
(<4 days) than those used in this study. This strongly indicated
a stabilization of the ACC by the wOM; indeed in its absence,
the ACC precipitation was not observed.
It has been reported that the formation and stability of

different hydrated ACC forms have been ascribed to the
copresence of Mg ions and OM from diverse mineralized
tissues.52,68 However, our data suggest that wOM plays a
primary role in the ACC formation. Here, the wOM
stabilization of two forms of ACC was not related to the
content of Mg2+ hosted in ACC, being the same in all the
precipitates (Table 1). Moreover, the coprecipitation of ACC
with crystalline phases was observed also in the absence of
magnesium ions.
The stabilization of ACC by wOM suggested that also coral

biomineralization followed a crystallization pathway involving
the formation of a transient form, as reported for foraminifera,
mollusks, and echinoderms.30 This agreed with recent
observations on growing corals that reported the presence of
transient granules that convert to aragonite fibers.16 However,
the presence of ACC was not detected in coral recruits.69

■ CONCLUSIONS
In conclusion, this research added three important observations
to the study on in vitro precipitation of calcium carbonate: (i)
the capability of OM to affect morphology and polymorphism
was not related to the coral growth form or trophic strategy;
(ii) in simulated seawater the OM stabilized the formation of
diverse forms of ACC which converted species specifically in
aragonite or magnesium calcite upon thermal treatment; (iii) B.
europaea showed distinguished in vitro biomineralization
features. Under overgrowth and solution precipitation experi-
ments, its OM was the most prone to favor the precipitation of
aragonite in the absence of magnesium ions; under thermal
treatments, its ACC was unique, with being the most stable,
and was the only one that partially converted to aragonite
instead of magnesium calcite. These features suggested a
stronger control of B. europaea OM over the mineral phases
and a higher independence from crystallization environment
compared to the other species. The reasons for the peculiar
behavior of the OM from B. europaea were unknown. However,
this species is distinguished also for its ecological properties,

being the only one able to tolerate the effects of ocean
acidification.70
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Relationship between phenotype and environment in calcifying organisms: the case study of 

shell morphology in the clam Chamelea gallina from the Adriatic Sea 

Abstract 

Phenotype can express different morphologies in response to biotic or abiotic environmental 

influences. Mollusks are particularly sensitive to different environmental parameters, showing shell 

morphology variation with several environmental factors. Many studies focused on macroscale shell 

morphology variations in response to environmental parameters, but few studies concern shell 

variations at the different scale level along environmental gradients. Here, we investigate shell 

features at the macro, micro and nanoscale, in populations of the commercially important clam 

Chamelea gallina along a latitudinal gradient (~400 km) of temperature and solar radiation in the 

Adriatic Sea (Italian cost). Six populations of shells having the same length was analyzed. Shells 

from the warmest and the most irradiated population were about 30% lighter, due to thinner shell and 

with different aspect ratio. They were also more porous and showed to greater fragility. However, no 

variation was observed in shell polymorphism (100% aragonite) or in shell parameters at the 

nanoscale level, indicating no effects of environmental parameters on the composition and 

crystallography of biomineralized shell. Because of the importance of this species as commercial 

resource in Adriatic Sea, the experimentally quantified and significant variation of weight and 

fragility in C. gallina shells along the latitudinal gradient has economic implication for fishery 

producing different economical yield for fishermen and consumers along Adriatic coastline.  
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Introduction 

Organisms are able to modulate their developmental trajectory and to alter gene-expression patterns 

in response to abiotic environmental cues (such as temperature or photoperiod) or biotic (such as 

those emanating from predators, conspecifics or food; Gilbert 2001, 2012). Environmental 

“alteration” influences the organism, producing a not pathological phenotype, appropriate for that 

environment (Langerhans et al. 2007; Costa et al. 2008; Zieritz and Aldridge 2009; Gilbert 2012). 

An enduring puzzle in evolutionary biology is to understand how individuals and populations adjust 

to changing environments (Lorenzi et al. 2015). Intraspecific phenotypic variation is believed to arise 

from divergent selection pressures between different environments (Schluter 2000 and references 

therein), from environment-independent phenotype generation, as well as from potentially non-

adaptive effects of the environment on phenotype (Schluter 2000; West-Eberhard 2003). Thus, a 

particular environment can elicit different phenotypes from the same genotype (Gilbert 2001). The 

ability of organisms to produce different phenotypes under different environmental parameters in 

natural populations is a critical issue to understand how species might face future changes (Pigliucci 

1996). 

Phenotype plasticity is the ability of an organism to produce a range of relatively fit 

phenotypes, by altering morphology, movement, behavior or rate of biological activity in response 

to fluctuations in environmental parameters (Pigliucci 2001; West-Eberhard 2003; DeWitt and 

Scheiner 2004; Beldade et al. 2011; Gilbert 2012). Considering the existing effects of anthropogenic 

activities on the environment, organisms exhibiting higher phenotypic plasticity might adapt better 

to broad scale disturbances, such as climate change (Pigliucci et al. 2006; Charmantier et al. 2008).  

Calcifying marine organisms (e.g. corals, echinoderms and mollusks) are likely to be among 

the most susceptible organisms to changing environmental parameters (Laing et al. 1987; Levitan 

1991; DeWitt 1998; Carballo et al. 2006) and show morphological variations of the skeleton/shell 

related to bottom topography, sediment characteristics, hydrodynamic processes (Vogel 1996; Seed 
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and Richardson 1999; Casado-Amezua et al. 2013), and especially pH (Kleypas et al. 1999, 2006; 

Ries et al. 2009; Nienhuis et al. 2010; Findlay et al. 2011; Goffredo et al. 2014; Fantazzini et al. 2015; 

Thomsen et al. 2015) and temperature (Laing et al 1987; McNeil et al. 2004; Goffredo et al. 2007, 

2008; Doyle 2010; Rodolfo-Metalpa et al. 2011; Watson et al. 2012). 

Calcifying marine organisms make extensive use of calcium carbonate (CaCO3), one of the 

most abundant minerals in nature, as a structural and/or protective material through the 

biomineralization process (Lowenstam and Weiner 1989). It is well known that the intracrystalline 

skeletal organic matrix (OM) plays a major role in biomineralization and such as in all biominerals, 

mollusk shells also contain OM that rarely exceeds 5% by weight of the total shell (Currey and Taylor 

1974; Currey and Kohn 1976; Carter 1980; Palmer1983; Currey 1990). Mollusks are able to exert an 

exquisite biological control on the biomineralization process by determining which type of calcium 

carbonate polymorph precipitate through the control of intraskeletal macromolecules (Addadi and 

Weiner 1992; Falini et al. 1996). Morphology, mineralogy and chemistry of biologically formed 

calcium carbonate skeletons are largely dependent on both biology and environmental surroundings, 

with structural proteins and enzymes that act as keys to controlling internal conditions and that 

respond to external environmental parameters (Falini et al. 1996; Rahman and Shinko 2011). To 

study the effect of solar radiation (SR) and sea surface temperature (SST), latitudinal gradients are 

useful natural laboratory, allowing to examine long-term effects on populations of the same species, 

adapted to different environmental conditions. 

Latitude is the main factor influencing variation in SR and SST (Kain 1989). Studying 

populations of the same species dislocated along a latitudinal gradient can provide precious 

information on the effects of temperature and solar radiation in a natural environments (Goffredo et 

al. 2007, 2008, 2009, 2015; Jansen et al. 2007; Márquez and Van Der Molen 2011; Caroselli et al. 

2012a, b, 2015, 2016a, b; Airi et al. 2014). Several studies on bivalves were performed along a 

latitudinal gradients, focusing on biodiversity (Crame 2000, 2002; Rex et al. 2000; Roy et al. 2000a), 



128 

 

growth rate, body size and lifespan (MacDonald and Thompson 1988; Hummel et al. 1998; Roy et 

al. 2000b). 

Mollusk shell morphology is particularly sensitive to environmental parameters, varying in 

relation to depth (Claxon et al. 1998), shore level (Franz 1993), tidal level (Dame 1972), current 

(Fuiman et al. 1999), wave exposure (Hinch and Bailey 1988), bottom type, sediment (Newell and 

Hidu 1982; Claxton et al. 1998), pH (Watson et al. 2012) and temperature (Watson et al. 2012). The 

quagga mussel Dreissena bugensis shows plasticity in shell morphology in relation to depth: deep 

ones presents more laterally flattened shell and ovular in shape than those from shallow water habitats 

(Dermott and Munawar 1993; Claxton et al. 1998). The clam Mya arenaria from sandy bottoms 

shows a longer and narrower shape, compared to a rounder shape when grown in gravel (Newell and 

Hindu 1982). Shell shape of limpet Lottia gigantea changes as a function of inter-tidal zonation and 

related environmental factors, such as resistance to desiccation, thermal stress and wave impact, by 

developing high spiraled and heavily ridges shells which may reduce the likelihood of reaching 

elevated body temperatures (Denny and Blanchette 2000; Harley et al. 2009). The growth in length 

and height of the shells of cockle, Cerastoderma edule, ceased in winter when mean water 

temperatures fell to 5 °C (Jones 1979). Bivalve growth is little affected by water temperature 

variations between 10° and 20 °C, but decreases when the temperature is less than 10 °C or more 

than 20 °C (Bayne et al. 1976). The observed phenotypic plasticity in many marine calcifying 

organisms in relation to environmental parameters (Trussell and Etter 2001; Chelazzi and Vannini 

2013), makes them potentially ideal models for studying such plastic responses and associated trade-

offs in the face of global climate change. 

The clam Chamelea gallina (Linnaeus 1758) is a common infaunal bivalve in the 

Mediterranean Sea, where it inhabits well-sorted fine sand biocoenosis at 3-7 m depth (Picard 1965) 

and has a considerable economical relevance for fishery (Froglia 1989; Ramón and Richardson 

1992). In the 1970s the development of clam fishery based on hydraulic dredges led to an over-
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exploitation of the resource with a dramatic decrease in clam population density associated with a 

reduction in the number of clams over 25 mm long, the minimum legal marketable size, although the 

maximum length recorded for this species is about 50 mm (Froglia 1989). In Italy, in the late 1970s 

the fishery yielded 80,000-100,000 metric tons while actually it doesn’t exceed 20,000 metric tons 

(Romanelli et al. 2009). Recently, there is growing concern for the survival of bivalve communities 

because large inter-annual fluctuations in stock abundance, periodic recruitment failure and irregular 

mortality events threaten the biological and economic sustainability of this fishery, especially in the 

Adriatic Sea (Ramón and Richardson 1992; Del Piero and Fornaroli 1998; Del Piero et al. 1998; 

Froglia 2000; Romanelli et al. 2009). Thus, studies on this species are of critical importance for 

developing appropriate management strategies for one of the most important economic sectors of 

southern EU countries. FAO reports a mean annual total catch of about 60,000 tonnes (2004-2013) 

in Atlantic, Mediterranean and Black Sea, with the largest catches in Italy (22,000 t) and Turkey 

(33,000 t).  

Water temperature has a dominant role in shell growth of C. gallina (Ramón and Richardson 

1992; Froglia 2000; Keller et al. 2002; Moschino and Marin 2006). Temperatures below 10 °C 

strongly slow or inhibit shell growth (Froglia 2000), whereas values above 28 °C reduce energy 

absorption and increase energy expenditure via respiration, thus suppressing shell growth (Ramón 

and Richardson 1992; Moschino and Marin 2006). Calcification of C. gallina seems to be related to 

temperature and food conditions, showing widely spaced growth bands during winter-spring, while 

narrow growth increments are deposited in summer-autumn (Ramón and Richardson 1992). 

Several studies have been reported on aspect ratio shell variations in response to 

environmental variables (Newell and Hidu 1982; Beukema and Meehan 1985; Claxton et al. 1998; 

Fuiman et al. 1999; Nagarajan et al. 2006; Krapivka et al. 2007; Doyle et al. 2010; Morley et al. 2010; 

Valladares et al. 2010; Sepúlveda and Ibáñez 2012; Watson et al. 2012; Briones et al. 2014), however 

few studies comparatively analyzed shell features at the micro and nanoscale level along 
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environmental gradients (Prezant et al. 1988; Tan Tiu 1988; Nishida et al. 2012; Fitzer et al. 2014; 

Milano et al. 2015). The present study aimed to investigate the shell morphology phenotypic response 

to the environment of C. gallina at the diverse scales, from the macroscale to the nanoscale in six 

populations along a latitudinal gradient. 

Materials and methods  

Ethics Statement 

This study was carried out following the fundamental ethical principles. According to the European 

normative that regulate minimum fishing size of Chamelea gallina (25 mm, Council Regulation (EC) 

No 1967/2006), for this study only clams of commercial size with minimum length of 25 mm were 

collected. Thus, no permit was needed to sample specimens. Sampling was limited strictly to the 

number necessary and performed where the species has high population density to minimize the 

impact of removing individuals and preserve both the demographic and genetic structure of the 

natural populations. 

Collection and processing of specimens  

Between August 2013 and April 2015, specimens of C. gallina were collected from six sites along a 

latitudinal gradient in the Adriatic Sea from 45°42’N to 41°55’N (Fig.1). Latitude is closely related 

to the variation of the two environmental parameters considered in this study: temperature and solar 

radiation (Kain 1989). Clams were sampled for each site using hydraulic dredges on soft bottoms in 

the subtidal zone at 3-7 m depth.  

For each collected clam, the bivalve flesh was removed with a scalpel and the shell was 

cleaned with a toothbrush and washed with distilled water. The right and left valves were then 

separated, labeled and dried at 37 °C for one night to remove any moisture that may affect 

measurements.  
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Shell biometric parameters  

Clam shell length (maximum distance on the anterior-posterior axis), width (maximum distance on 

the dorsal-ventral axis; Fig. 2) were obtained with ImageJ software after data capture of shell shape 

with a scanner. Height (maximum distance on the lateral axis) and thickness (Fig. 2) of the valve 

were measured with a pair of calipers (± 0.05 mm) and dry shell mass was measured using an 

analytical balance (± 0.0001 g). Volume and shell density parameters were measured by means of 

the buoyant weight techniques (Davies 1989), using a density determination kit Ohaus Explorer Pro 

balance (±0.0001 g; Ohaus Corp., Pine Brook, NJ, USA). Only clams of commercial size (25-30 mm) 

were used in this study. Measurements required for calculating shell parameters were:  

ρ density of the fluid medium (in this case, double distilled water: 0.99823 g 

cm−3 at 20 °C and 1 atm)  

DW dry weight of the shell 

BW buoyant weight of the shell = weight of the shell minus weight of the water 

displaced by it. To obtain this measurement, shells were placed in a desiccator 

connected to a mechanical vacuum pump for about 1 h in order to suck out 

all of the water and air from the pores (Barnes and Devereux 1988). Still 

under vacuum conditions, the dry shells were soaked by gradually pouring 

distilled water inside the desiccator. The shell was then slowly lowered onto 

the underwater weighing pan, ensuring that no air bubbles adhered to its 

surface. The buoyant weight measurements were repeated three times and the 

average was considered for statistical analysis. This simple and 

nondestructive method has been widely used with great success to examine 

various calcifying organisms, such as corals (Davies 1989; Ammar et al. 

2005; Shi et al. 2009; Caroselli et al. 2011), marine mollusks (Nishii 1965; 
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Palmer 1982; Hoegh-Guldberg 1997) and barnacles (Darling and Wilbur 

1993). 

SW saturated weight of the shell = weight of the shell plus weight of the water 

enclosed in its pores. The shell was taken out of the water, quickly blotted 

with a paper towel to remove surface water, and weighed in air three times, 

making sure that no water droplets were left on the weighing platform, which 

would lead to an overestimation.  

VMATRIX = 
 DW−BW

ρ
 matrix volume = volume of the shell, excluding the volume of its pores.  

VPORES = 
SW−DW

ρ
  pore volume = volume of the pores in the shell.  

VTOT = VMATRIX + VPORES  total volume = volume of the shell including its pores.  

 

Additionally, the following skeletal parameters were calculated:  

Micro-density (matrix density) = DW/VMATRIX  

Bulk-density = DW/VTOT 

Porosity = (VPORES/VTOT) × 100  

Shell mechanical properties 

To test for shell resistance to fracture, compression tests were conducted on a universal testing 

machine equipped with a force transducer (Instron: 2519-105) of 1 kN maximum capacity. Thirty 

shell samples were randomly selected from each population and were brought to fracture strength 

using a 3 mm diameter pinhead indenter at a downward speed of 1.5 mm min−1. The Young’s 

modulus and the required force to fracture (Maximum load, kN) were recorded using the software 

Instron (Series IX). 
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Ten samples from each population were randomly selected and used for the following analyses. The 

valves were treated with a sodium hypochlorite solution (commercial) for three days to completely 

remove any trace of external skeletal organic tissue, and with a 1 M sodium hydroxide solution for 

one day to hydrolyze residual proteic materials from the shell surface. Then, samples were rinsed 

with distilled water and dried at room temperature for one day. Subsequently, the left valve was 

sectioned with a dremel (300 series, Dremel System) from the umbo to the ventral margin. One half 

of each shell was finely ground in a mortar to obtain a homogenous powder to be used for chemical 

analyses. A transversal section of about 3 mm in width was cut from the mid remaining shell for 

scanning electron microscope (SEM) observations (Fig. 10a). 

Diffractometric measurements 

To obtain qualitative information about shell mineral composition, X-ray powder diffraction 

(XRD) analyses were performed on five specimens randomly selected for each populations, 

preparing a thin, compact layer of powdered sample in a silica background signal free holder. 

Diffractograms for each sample were collected using an X’Celerator detector fitted on a PANalytical 

X’Pert Pro diffractometer, using Cu-Kα radiation generated at 40 kV and 40 mA. The data were 

collected within the 2θ range from 10° to 60° with a step size (Δ2θ) of 0.02° and a counting time of 

1200 s. Fixed anti-scatter and divergence slits of 1/2° were used with 10 mm beam mask and all scans 

were carried out in ‘continuous’ mode. The XRD patterns were analyzed using the X’Pert HighScore 

Plus software (PANalytical) and the full width at half maximum (FWHM) was measured for one of 

the main peaks (A111) of each diffractogram. 

Fourier transform infrared spectroscopy (FTIR) analyses were performed on the same 

samples used for XRD, to obtain information about the mineral phase. FTIR analyses were carried 

out using a FTIR Nicolet 380 Spectrometer (Thermo Electron Corporation) working in the range of 

wave-numbers 4000–400 cm-1 at a resolution of 2 cm-1. Sample disks were obtained mixing a small 

amount (1 mg) of finely ground sample with 100 mg of KBr and applying a pressure of 670.2 MPa 
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to the mixture using a hydraulic press. In FTIR spectroscopy, calcium carbonate has four active 

vibrational modes: 1, 2, 3 and 4 bands. For each spectrum, characteristic calcium carbonate active 

vibrational modes 2, 3 and 4 bands were identified and their intensities were determined. To 

compare atomic order among the six populations, the intensity of the 2 and 4 bands were normalized 

to the 3 band and then graphed. To understand if there were differences in the atomic order within 

crystals, the plotted curves of C. gallina were compared with grinding curve of other calcifying 

marine organisms (Balanophillia europaea, Protula tubularia, Vermetus triqueter; Sabbioni 2012), 

and geogenic and synthetic aragonite (Suzuki et al. 2011). 

Evaluation of Organic Matrix (OM) Content 

Thermogravimetric analysis (TGA) was performed to estimate the organic matrix (OM) content of 

each shell, using an SDT Q600 instrument (TA Instruments). Powdered samples (5-10 mg) from 5 

to 10 valves for each site were placed in a ceramic crucible. The analyses were performed under a 

nitrogen flow with a first heating ramp from 30 to 120°C at 10°C min-1 heating rate, an isothermal at 

120° for 5 min, and a second heating ramp from 120 to 600°C, at 10°C min-1 heating rate.  

Textural analyses 

Scanning electron microscopy (SEM) observations were carried out on a subset of individuals from 

Chioggia and Capoiale (characterized respectively by lower and higher SST values), to obtain 

representative information on the textural characteristics of C. gallina shell. Skeletal features were 

investigated on the transversal valve sections. Each section was etched with an acetic acid solution 

(1% v/v) for 1 minute to remove debris and artifact from cutting. Samples were coated with a gold 

layer (5 nm) and analyzed with a SEM Hitachi s4000. 

Environmental parameters 

Solar radiation (SR, W m-2) and sea surface temperature (SST, °C) data were obtained for each site 

from the Euro-Mediterranean Center on Climate Change (CMCC http://oceanlab.cmcc.it/afs/) data 
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banks. Mean annual SR and SST were calculated from daily values measured from July 2011 to June 

2015 (number of daily values = 1447 for each site), to enclose almost entirely the lifespan of two-

three years of each sample. 

Statistical analyses 

Levene’s test was used for testing homogeneity of variance and Kolmogorov-Smirnov’s test was 

used for testing normality of variance for both environmental and shell parameters. One-way analysis 

of variance (ANOVA) was used to test the significance of the differences among sites for 

environmental variables and shell parameters. When assumptions for parametric statistics were not 

fulfilled, the non-parametric Kruskal-Wallis equality-of-populations rank test was used instead. 

Student’s t test was used to compare the mean right and left valves shell parameters (length, width, 

height, thickness, mass, volume, micro-density, bulk-density and porosity) in each site. Spearman’s 

rank correlation coefficient was used to calculate the significance of the correlations between shell 

parameters and environmental parameters. Spearman’s rank correlation coefficient is an alternative 

to Pearson’s correlation coefficient (Altman 1991). It is useful for data that are non-normally 

distributed and do not meet the assumptions of Pearson’s correlation coefficient (Potvin and Roff 

1993). All analyses were computed using PASW Statistics 22.0 (Apache Computer Software 

Foundation, Forest Hill, USA). 

Results 

SR and SST both varied among sites (Kruskal–Wallis test, df = 5, and p < 0.001; Tab. 1) and 

correlated negatively with latitude (Fig. 3). The Monfalcone site, located in the Gulf of Trieste, has 

a higher SST than typically expected for this latitude (Stravisi 2003). 

Clam biometric parameters (length, height, width, mass and volume) and shell parameters 

(micro-density, bulk-density and porosity) were homogeneous between left and right valves, thus 

data from both valves were pooled for following analyses. Since only commercial size 25-30 mm 
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was considered in this study, shell length was homogeneous among populations. Shell biometric data 

(except length) were significantly different among sites, thus correlations analyses between SR or 

SST and clam parameters were performed (Tab. 2, 3, 4). Biometric parameters (width, height, mass 

and volume) and shell parameters (micro-density, bulk-density and porosity), were different among 

populations and correlated negatively with SR and SST, except the height, which did not correlate 

with SST (Tab. 4; Fig. 4). Micro-density did not correlate with SR or SST, while bulk-density and 

porosity, correlated negatively and positively, respectively, with both SR and SST (Tab. 4; Fig. 5). 

All parameters were more highly correlated with SR than with SST (Fig. 4, 5).  

Mechanical analyses showed differences among sites for Young’s modulus and maximum 

force to fracture (Tab. 5), and correlated negatively with SR and SST (Fig. 6). 

The analysis of the inorganic phase was obtained from the results of XRD and FTIR data. Both 

techniques showed that clam shells from all populations were composed of pure aragonite and no 

other mineral phase was detected (Fig. 7, 8). Full width at half maximum (FWHM) calculated for the 

main peak of each diffractogram was homogeneous among populations (Tab. 6). In FTIR spectra 

defined peaks at 1482 cm-1 (3) 859 cm-1 (2) and 713 cm-1 (4) typical of aragonite were identified 

in all samples (Tab. 6; Fig. 8). The peak height was calculated and the height ratios 4/3 vs. 2/3 

were plotted and fitted and the results were all observed as points of a curve (Fig. 9). The curve was 

compared with other curves obtained from different marine calcifying organisms (Phyla: Cnidaria, 

Anellida and Mollusca) and from geogenic and synthetic aragonite (Fig. 9; Suzuki et al. 2011). The 

curve formed from C. gallina was displaced between those from geogenic and synthetic aragonite, 

along with the other biogenic aragonite samples (Fig. 9).  

The content of intra-skeletal OM, as weight percentage, was measured by TGA. It was below 

2% in all samples and homogeneous among populations (Tab. 7).  

The SEM observations revealed that the shell cross section (Fig. 10a) showed two distinct 

layers of aragonite crystals. The outer one (Fig. 10c) is composed of lamellar fibers showing 
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preferential spatial organization, aligned along the same elongation direction. They showed an 

average thickness of 0.5 mm. The inner layer (Fig. 6e) presented a spherulitic texture with no 

preferential spatial organization of the crystallites having an average thickness of 0.3 mm. 

Throughout the length of the shell sections the layers showed variations in thikness, but the inner 

layer was always thinner than the outer one. The two layers are separated by a central transition zone 

(Fig. 10d) in which the aragonite fibers lose their textural order, in favor of the granular composition 

that evolves in the spherulitic layer. These layers are distinguishable (Fig 10a, b, c, d, e) at low and 

intermediate magnifications. At higher magnifications, at the nanoscale level, differences between 

the outer and inner layer were no longer observable through SEM, as both the lamellar and spherulitic 

textures showed the same nanoparticle substructure (Fig. 10f, g, h). Mineral grains throughout the 

whole section showed a size range around 200 nm in both layers and within the transition zone.  

Discussion 

The main aim of this study was to investigate the effect of SR and SST on shell features at macro, 

micro and nanoscale levels, in natural population of the common clam C. gallina along a latitudinal 

gradient in the Western Adriatic Sea, as a case study to gain further insight on the relationship 

between phenotype and environment in calcifying marine organisms.  

Shells of the same length of C. gallina showed negative effect with increased SR and SST, 

presenting lighter, more oval shaped, more porous and more fragile valves in warmest and more 

irradiated populations. Several studies show that shells of many mollusks species seems to be affected 

by latitudinal changes due to decreasing SST (Vermeij 1993; Trussell 2000; Trussell and Smith 2000; 

Trussell and Etter 2001; Sepúlveda and Ibáñez 2012; Watson et al. 2012). At low SST, CaCO3 is less 

saturated and more soluble, increasing energetic costs of shell deposition (Clarke 1993). Another 

explanation concerns the effect of low SST on biological processes, directly reducing growth 

(Heilmayer et al. 2004) and development (Peck et al. 2006, 2007). C. gallina is negatively affected 

by high SST and high SR, showing opposite latitudinal trend respect to precedent studies. A possible 
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explanation for different response could due to effect of elevated temperature on its physiology. The 

high temperature seems to reduce energy absorption and increases energy expenditure via respiration 

in C. gallina, negatively affecting energy balance and thus growth, as showed in specimens from the 

northern Adriatic Sea and the eastern coast of Spain (Ramón and Richardson 1992; Moschino and 

Marin 2006). A drop in metabolism was recorded in the snail Littorina saxatilis exposed to elevated 

temperatures, with negative consequences in growth and fitness (Sokolova and Pörtner 2001). 

Moreover, oxygen depletion due to high temperature may produce detrimental effects on 

physiological performance of clams, as observed in the bivalve Ruditapes decussatus (Sobral and 

Widdows 1997a, b). C. gallina seems to be relatively low tolerant to high temperature in comparison 

with other bivalve species, showing a great influence in the overall physiological responses and a 

heavy stress conditions when exposed to high temperatures, demonstrating that temperature could be 

a tolerance limit for this species (Moschino and Marin 2006).  

Despite C. gallina is an infaunal bivalve, all parameters of this species seemed to be stronger 

correlated with SR than SST. SR have no direct effect on the species, but the SR latitudinal gradient 

could be related to other abiotic and/or biotic parameters not investigated in this study. For example, 

the results observed in C. gallina shell variation could be due to local environmental pressures, such 

as nutrients and predators. Phytoplankton distribution in Adriatic Sea is characterized by the relative 

influence of northern Italian rivers and by influence of Mediterranean waters on the southern Italian 

coasts, showing a generally decreasing trend of nutrient concentration from North to South 

(Zavatarelli et al. 1998). The norther Adriatic influenced by Italian rivers, was marked by low 

phytoplankton community diversities but high nutrient concentrations; while, the southern Adriatic 

influenced by Mediterranean waters exhibited high community diversities but low nutrient 

concentrations (Zavatarelli et al. 1998). The lower presence of plankton density in southern Adriatic, 

could cause feeding deficits and consequently a reduction of available energy for clam to invest in 
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shell construction, which could explain the reduction in weight, thickness and the higher porosity and 

fragility of shells.  

Differences found in SST and SR along the gradient could also influence the type and/or 

density of predators. Predation is an important factor associated with morphological plasticity in 

bivalves, which can exhibit induced responses based on the capture techniques of the predators 

(Reimer and Tedengren 1996; Reimer and Harms-Ringdahl 2001; Beadman et al. 2003; Caro and 

Castilla 2004). Bivalves principal defense is their strong calcareous shell (Gutiérrez et al. 2003), and 

among the shell characteristics, thickness is the most influential factor for shell strength, thus the 

increased of shell bivalve thickness can reduce successful of many predators (Reimer and Tedengren 

1996; Leonard et al. 1999; Smith and Jennings 2000; Caro and Castilla 2004; Nagarajan et al. 2006). 

The blue mussel Mytilus edulis exposed to high predation density shows thicker and more robust 

shell than those not exposed to intense predation (Leonard et al. 1999). Similar results, showing an 

increase in shell thickness in response to predators, was found in several gastropods species 

(Appleton and Palmer 1988; Palmer 1990; Trussell 1996, 2000; Leonard et al. 1999; Trussell and 

Nicklin 2002). Experimental works on gastropods show that shell thickening in response to predators 

could be partly due to avoidance behavior, resulting in lower food intake and lower growth rates and 

partly due to direct result of increased shell deposition in the presence of predators (Appleton and 

Palmer 1988; Palmer 1990). Phenotypic changes found in C. gallina could occur by genetic or 

plasticity changes, as found in other mollusk (Trussel and Etter 2001), and could be explained by 

SST variation, nutrient concentration and/or density of predators along the latitudinal gradient. 

Moreover, shell porosity and thickness are closely connected to Young’s modulus 

(Wainwright et al. 1976). Increased porosity with increasing SR and SST, decreased C. gallina shell 

stiffness (Young’s modulus), while reduced thickness lowers shell load to fracture. Resistance to 

breakage generally increases as the square of shell thickness (Vermeij 1993), and the breaking 

resistance doubles with an increase of 41%  in thickness, thus providing a good return in shell strength 



140 

 

for each unit of shell thickening (Watson et al. 2012). Thus, the warmest and more irradiated 

populations of C. gallina showed a reduction in shell stiffness and load to fracture, modifying the 

shell resistance with an increase in fragility and damage susceptibility, affecting the survival of the 

species. Because of the importance of this species as commercial resource in Adriatic Sea, variation 

in C. gallina shells could have economic implication for fishery. More porous and fragile shells, 

found in warmest and more irradiated populations, are less resistance to breakage and could be more 

damages during the catch with hydraulic dredges, with a bigger amount of clams discarded from the trade. 

This could mean a bigger catch effort for fishermen with a loss in economic yield and a gain for consumers, 

with an increase in edible material per kilogram.   

In addition, the less weighty mass due to thin and porous shells in the southern populations, could 

require a major number of clams to obtain the same quantitative in kilogram than Northern populations. 

However, the northern populations could allocate a higher energy fraction to reinforce their shells at the 

expense of lower somatic growth (Valladares et al. 2010). Contrarily, the warmer and more irradiated 

populations could use most of their assimilated energy in somatic growth, compensating negative 

aspect of shell variations with an increase in edible mass per catch and per kilogram, with a potential 

positive economical yield both for consumers and fishermen. Further analysis on edible animals may 

necessary to understand if environmental parameters can affect their size. 

All populations of C. gallina showed the same inorganic phase along the latitudinal gradient 

of SR and SST, displaying entirely aragonitic shells, as seen in other mollusks (Kennedy et al. 2008; 

Foster et al. 2009; Yang et al. 2011; Sabbioni 2012). The production of an aragonitic skeleton is also 

common in other calcifying organisms such as scleractinian corals (Weiner et al. 1983; Higuchi et 

al. 2014) and sclerosponges (Simpson 1984). The majority of bivalve shells usually present different 

layers composed of both calcite and aragonite (the density of calcite being 7% lower than that of 

aragonite; Currey and Taylor 1974; Currey and Kohn 1976; Carter 1980; Palmer 1983; Currey 1990; 

Falini et al. 1996), which tend to form a number of recurrent patterns occurring in discrete shell layers 

(Kennedy et al. 2008; Clarkson 2009).  
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The grinding curve methodology can be used to distinguish the aragonite crystals with 

different extents of atomic disorder (Suzuki et al. 2011). Data from different grindings of C. gallina 

samples plotted in a graph revealed that the atomic order of the aragonite crystals does not vary 

among populations along the SR an SST gradient. Different grindings of C. gallina were compared 

to grinding curves of other calcifying marine organisms (Cnidaria, Balanophillia europaea, Anellida 

Protula tubularia, and Molluska Vermetus triqueter) all showing aragonite as a component of their 

inorganic phase (Sabbioni 2012), and to fitted curves for geogenic and synthetic aragonite (Fig. 5; 

Suzuki et al. 2011). The most ordered crystals are the geogenic aragonite crystals, and the least 

ordered at the atomic level are the synthetic aragonite crystals (Suzuki et al. 2011). Biogenic aragonite 

crystal samples from these three phyla have different degrees of atomic disorder; all the curves are 

located between the synthetic and geogenic aragonite samples indicating in all samples an 

intermediate atomic order. Data from C. gallina resulted to be located between the synthetic and 

geogenic aragonite curves and was positioned closest to the curve obtained from V. triqueter, 

indicating similar aragonite atomic disorder between these two mollusk species, (Suzuki et al. 2011), 

and  no influence on behalf of the environment at the nano-scale level.  

Most mollusk classes (Cephalopoda, Gastropoda, Bivalvia) show characteristically layered 

shell structures (Dauphin and Denis 2000). Aragonite crystals in particular can occur as prismatic, 

foliated, columnar nacre, sheet nacre, crossed lamellar, complex crossed lamellar, as well as 

homogeneous granular structures (Currey and Taylor 1974; Kennedy et al. 2008; Barthelat et al. 

2009). It is common for bivalves to present a layer of sheet nacre (Cartwright et al. 2009), but this is 

absent in C. gallina. Valves of C. gallina were characterized by two different aragonite structures: 

an external lamellar layer and an internal spherulitic layer, separated by a transition zone. While the 

thickness of the two layers varied along the shell section, the outer layer was always thicker than the 

inner one, in all analyzed samples. Nano-particles composing both fibers and granules of the two 

layers, analyzed at high magnifications, were similar in shape and size and showed a spherical form 
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of approximately 200 nm in diameter throughout the whole valve section, indicating no difference 

between the aragonite “building blocks” at the nanoscale level.  

The homogeneous amount of OM among populations was supported by the result found at 

the microscale, where the shell parameters of microdensity (density of the calcium carbonate crystals 

that compose the shell) did not change along the gradient. The amount of OM present in C. gallina 

shells is below 2% in weight, an equivalent result to that obtained from other mollusk V. triqueter, 

in previous studies (Sabbioni 2012). The presence of OM within biomineral skeletons has long been 

recognized (Lowenstam and Weiner 1989; Falini et al. 1996) and investigations have mostly focused 

on the biochemistry of intraskeletal compounds, with respect to their possible role in the 

biomineralization process (Young 1971; Constantz and Weiner 1988; Reggi et al. 2014). Little 

information is known on varying OM content in relation to environmental parameters.  

As indicated by all micro and nanoscale analyses, the mineral distribution remained the same 

in all analyzed samples, as does the quantity of OM, indicating that the “building blocks” produced 

by the biomineralization process are substantially unaffected by the SR and SST variations among 

the different populations along the latitudinal gradient.  Also the organization, morphology and 

packing of the constituent mineral crystals were the same along the gradient. The unaffected 

mineralogy in C. gallina is possibly due to the exquisite control of biological macromolecules in 

mollusk mineralization (Lowenstam and Weiner 1989; Falini et al. 1996). 

Differences found in shell parameters of the clam C. gallina along the latitudinal gradient 

could be the outcome of the phenotypic plasticity or a genetic adaptation of the populations subjected 

to different environmental parameters. Environmental parameters could directly affect shell 

morphology, such as temperature, or indirectly, influencing nutrient concentration and/or predators 

density. Shell morphology of the most irradiated and warmest populations was characterized by 

lighter, thinner, more porous and fragile shells, affecting the survival of the species. At the same time, 

populations of C. gallina did not show significant variations of microstructural parameters at the 
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microscale and nanoscale level. The type of calcium carbonate polymorph, the atomic order of the 

mineral skeletal phase and the percentage of organic matrix content were unaltered along the 

latitudinal gradient, indicating no effects of SR and SST on the biomineralization of the clam shells. 
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Tables 

Table 1. Environmental parameters. Mean annual values ± SE for solar radiation (SR) and sea surface temperature 

(SST) from 2011 to 2014, of the sites. n = number of collected data; SE = standard error. 

Values for each population, in decreasing order of latitude: MO (Monfalcone), CH (Chioggia), GO (Goro), CE 

(Cesenatico), SB (San Benedetto), CA (Capoiale). 

 

 

Table 2. Shell parameters. Macroscale level. Mean ± CI (95%) of biometric parameters at each site. n = number of 

samples. CI = 95% confidence interval 

 

Code n 
Lenght 

(mm) 

Height 

(mm)  

Width 

(mm) 

Thickness 

(mm)  

Mass  

(g)  

Volume 

(cm3)  

MO 40 26.85 (0.40) 22.28 (0.27) 7.41 (0.13) 1.58 (0.07) 2.15 (0.07) 0.77 (0.03) 

CH 40 26.14 (0.41) 21.45 (0.32) 6.39 (0.09) 1.28 (0.06) 1.66 (0.07) 0.59 (0.02) 

GO 40 26.06 (0.47) 21.29 (0.39) 6.69 (0.13) 1.25 (0.07) 1.59 (0.08) 0.57 (0.03) 

CE 40 26.52 (0.49) 21.49 (0.39) 6.47 (0.15) 1.13 (0.06) 1.57 (0.09) 0.56 (0.03) 

SB 40 26.39 (0.45) 21.71 (0.32) 6.44 (0.11) 1.14 (0.06) 1.52 (0.07) 0.54 (0.02) 

CA 40 26.40 (0.51) 21.42 (0.42) 6.13 (0.12) 1.07 (0.04) 1.41 (0.08) 0.51 (0.03) 
 

Populations are arranged in order of decreasing latitude: MO (Monfalcone), CH (Chioggia), GO (Goro), CE (Cesenatico), 

SB (San Benedetto), CA (Capoiale). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code Latitude (°) n 

SR (W m-2)  SST (°C)  

mean  Range mean  Range 

MO 45.7 1447 159.4 (2.5) 154.4 - 164.4 16.96 (0.19) 16.58 - 17.35 

CH 45.2 1447 160.8 (2.5) 155.8 - 165.7 16.47 (0.19) 16.09 - 16.84 

GO 44.8 1447 163.8 (2.6) 158.7 - 168.8 16.54 (0.19) 16.17 - 16.92 

CE 44.2 1447 165.2 (2.5) 160.2 - 170.2 17.05 (0.20) 16.65 - 17.45 

SB 43.1 1447 172.4 (2.5) 167.4 - 177.4 17.90 (0.19) 17.52 - 18.28 

CA 41.9 1447 180.4 (2.6) 175.4 - 185.5 18.60 (0.17) 18.27 - 18.93 
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Table 3. Shell parameters. Microscale level. Mean ± CI (95%) of microdensity, bulk density and apparent porosity 

of the sites in decreasing order of latitude. n = number of samples; CI = 95% confidence interval. 

 

Code n 
Microdensity      

(g cm-3)                      

Bulkdensity            

(g cm-3)                   

Apparent porosity 

(%)                       

MO 40 2.80 (0.010) 2.72 (0.010) 2.86 (0.149) 

CH 40 2.82 (0.010) 2.72 (0.012) 3.30 (0.317) 

GO 40 2.81 (0.012) 2.70 (0.013) 3.87 (0.261) 

CE 40 2.81 (0.003) 2.70 (0.011) 4.04 (0.342) 

SB 40 2.82 (0.006) 2.70 (0.008) 3.98 (0.343) 

CA 40 2.80 (0.004) 2.68 (0.008) 4.20 (0.312) 
 

Populations are arranged in order of decreasing latitude: MO (Monfalcone), CH (Chioggia), GO (Goro), CE 

(Cesenatico), SB (San Benedetto), CA (Capoiale). 

 

 

Table 4. Shell and environmental parameters. Kruskal-Wallis test and correlation analyses between biometric and 

shell parameters and environmental parameters in the sampled populations. 

 

Shell parameter K-W 
SR (W m-2)        

rs 

SST (°C)         

rs 

Lenght (mm) NS - - 

Height (mm)  *** * NS 

Width (mm) *** *** *** 

Thickness (mm) *** *** *** 

Mass (g)  *** *** *** 

Volume (cm3)  *** *** *** 

Microdensity (g/cm3)    *** NS NS 

Bulkdensity (g/cm3)   *** *** *** 

Apparent porosity (%) *** *** *** 
 

K-W = Kruskal-Wallis equality-of-populations rank test, NS = not significant, *** = p < 0.001. rs = Spearman’s 

determination coefficient, NS = not significant, * = p < 0.05, *** = p < 0.001. 
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Table 5. Shell mechanical properties. Mean ± CI (95%) of Young’s modulus and maximum load (kN) mean value for 

each population. n = number of samples; CI = 95% confidence interval. 

 

Code n Young's modulus  Maximum Load (kN)  

MO 14 2.50 (0.54) 0.13 (0.02) 

CH 30 2.80 (0.16) 0.15 (0.01) 

GO 28 2.35 (0.18) 0.11 (0.01) 

CE 21 2.61 (0.13) 0.13 (0.02) 

SB 28 2.30 (0.19) 0.11 (0.02) 

CA 20 2.18 (0.29) 0.09 (0.01) 
 

Values for each population, in decreasing order of latitude: MO (Monfalcone), CH (Chioggia), GO (Goro), CE 

(Cesenatico), SB (San Benedetto), CA (Capoiale). 

 

 

Table 6. Microstructural parameters. Mean ± CI (95%) of XRD, full width at half maximum (FWHM) and FTIR, 

mean peak height values. n = number of samples; CI = 95% confidence interval. ν2, ν3 and ν4 = characteristic calcium 

carbonate active vibrational modes. 

 

Code n FWHM ν2/ν3                             ν4/ν3                             

MO 5 0.170 (0) 0.386 (0.014) 0.095 (0.005) 

CH 5 0.180 (0) 0.345 (0.009) 0.058 (0.012) 

GO 5 0.180 (0.006) 0.401 (0.014) 0.102 (0.015) 

CE 5 0.172 (0.004) 0.388 (0.009) 0.100 (0.008) 

SB 5 0.174 (0.005) 0.352 (0.014) 0.090 (0.007) 

CA 5 0.188 (0.004) 0.369 (0.011) 0.075 (0.005) 
 

Values for each population, in decreasing order of latitude: MO (Monfalcone), CH (Chioggia), GO (Goro), CE 

(Cesenatico), SB (San Benedetto), CA (Capoiale).  

 

 

Table 7. Microstructural parameters. Mean ± CI (95%) of OM percentage weight loss for each population of C. 

gallina. n = number of samples; CI = 95% confidence interval. 

 

 

 

 

 

 

 
 

 

 

 

 

 

Values for each population, in decreasing order of latitude: MO (Monfalcone), CH (Chioggia), GO (Goro), CE 

(Cesenatico), SB (San Benedetto), CA (Capoiale). 

 

 

 

 

Code n OM (%)                    

MO 10 1.95 (0.09) 

CH 10 1.86 (0.11) 

GO 5 1.83 (0.16) 

CE 5 1.93 (0.16) 

SB 5 1.72 (0.13) 

CA 10 1.97 (0.08) 
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Figures 

 

 
 

Figure 1. Map of the Adriatic coastline indicating the sites where the clams were collected. Abbreviations and coordinates 

of the sites in decreasing order of latitude: MO, Monfalcone 4542N, 1314E; CH, Chioggia 4512N, 1219E; GO, 

Goro 4447N, 1225E; CE, Cesenatico 4411N, 1226E; SB, San Benedetto 435N, 1351E; CA, Capoiale 4155N, 

1539E.  
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Figure 2. Shell parameters. a) Frontal orientation; by placing the umbo upwards can be distinguished the valve left 

from the right one; b) Lateral orientation, L = length, H = height; c) cross-sectional orientation, W = width; d) cross-

section, T = thickness.  

 

 

 

 
 

Figure 3. Relationship between environmental parameters (mean annual SR and SST) and the latitude of study sites 

along the coast of Italy. The black dot indicates the site of Monfalcone, which was characterized by higher temperature 

than expected at its latitude. n = number of stations; r = Pearson’s correlation coefficient. 
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Figure 4. Variation in the biometric parameters of C. gallina with environmental variables (SR and SST). rs = 

Spearman’s determination coefficient. 
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Figure 5. Variation in the shell parameters of C. gallina with environmental variables (SR and SST). rs = Spearman’s 

determination coefficient. n = 40 in each population. 
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Figure 6. Variation in mechanical properties of C. gallina with environmental variables (SR and SST). rs = Spearman’s 

determination coefficient. n = 141 in each graph. 
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Figure 7. X-ray powder diffraction patterns (XRD) from ground shells of C. gallina. A representative diffractogram is 

shown for each population, in decreasing order of latitude: MO (Monfalcone), CH (Chioggia), GO (Goro), CE 

(Cesenatico), SB (San Benedetto), CA (Capoiale). For better readability the Miller index is indicated only for the first 

peak, all peaks are representative of aragonite. Diffractograms are offset to increase readability.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. FTIR spectra from ground shells of C. gallina. A representative spectra is shown for each population, in 

decreasing order of latitude: MO (Monfalcone), CH (Chioggia), GO (Goro), CE (Cesenatico), SB (San Benedetto), CA 

(Capoiale). Wavenumbers of the main absorption bands are indicated, all absorption bands are indicative of aragonite. 

Spectra are offset to increase readability.  
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Figure 9. Combined plots of the 4/3 vs. 2/3 peak heights of C. gallina from this study, B. europaea, P. tubularia and 

V. triqueter (Sabbioni 2012) and fitted curves of the 4/3 vs. 2/3 peak heights of geogenic and synthetic aragonite 

(Suzuki 2011).  

 

 

Figure 10. SEM imaging. Skeletal morphology of C. gallina from macroscale to nanoscale. Images are representative of 

all observed valves. (a, b) Low magnification images of the entire valve section. a) Scale bar 5 mm. b) Scale bar 0.5 mm. 

(c, d, e) Outer layer, transition layer and inner layer, respectively. Scale bar 30 μm. (f, g, h) Outer layer, transition layer 

and inner layer, respectively. The arrow indicates the presence of OM. Scale bar 1 μm. Outlined rectangles indicate areas 

of interest subject to higher magnifications in subsequent images. 
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Conclusion 
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Conclusion  

The studies described in this dissertation demonstrate that near future ocean warming (OW) and 

ocean acidification (OA) have the potential to affect sexual reproduction, physiology and growth of 

calcifying marine organisms. The implications of high temperature (T), solar radiation (SR) and 

carbon dioxide partial pressure (pCO2) on each of the biological parameters examined are discussed 

below. 

Section 1. Sexual reproduction and environmental parameters 

The effects of increasing T, SR and pCO2 on sexual reproduction was performed on two 

Mediterranean scleractinian corals, characterized by different trophic strategy, along natural 

gradients. The effects of T and SR on reproductive output of solitary zooxanthellate coral 

Balanophyllia europaea was studied in six populations located along a latitudinal gradient in the 

western coast of Italy (Mediterranean Sea). The warmer and more irradiated populations of B. 

europaea produced a significantly greater number of oocytes during the initial stages of 

gametogenesis (gametes recruitment period) than the colder populations, but before the fertilization 

process (gametes maturity period) the amount of oocytes in these populations declined, and 

gametogenesis was homogeneous along the gradient. The warmer and more irradiated populations 

seemed to spend more energy in the initial stages of gametogenesis in order to guarantee a sufficient 

number of gametes for the fertilization process. During this period (before the fertilization), the 

amount of oocytes was homogeneous among sites, but contrary to expectations, the warmer 

populations are less abundant, less stable, and contain fewer young individuals (Goffredo et al. 2007, 

2008), suggesting that increasing T may negatively influence also the post-fertilization life stages 

such as larval dispersal, survival and settlement. The zooxanthellate species B. europaea seemed 

more sensitive to increasing T and SR than the non-zooxanthellate solitary coral Leptopsammia 

pruvoti, previously studied along the same latitudinal gradient in the Tyrrhenian Sea (Mediterranean 
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Sea, Italy; Airi et al. submitted). The reproductive output of L. pruvoti was homogeneous among 

populations in both periods, confirming the results of previous studies on population density, growth 

and population structure stability, all unaffected by temperature (Goffredo et al. 2007; Caroselli et 

al. 2011, 2012a, b).  

A possible explanation for different responses found between the two species concern their different 

trophic strategy. The zooxanthellate corals have a symbiosis with unicellular algae (Symbiodinium 

sp.) that produce energy through photosynthesis process and are able to meet up to ~95% of the 

energy requirement of the coral host (Muscatine et al. 1981, 1984). Increasing temperature may 

damage the photosynthetic machinery of Symbiodinium, reducing their photosynthetic efficiency 

and consequently the amount of energy to coral host. Most of the early oocytes from warmer sites 

did not reach maturity, possibly due to inhibition of metabolic processes at high T, leading B. 

europaea to reabsorb a greater amount of oocytes in order to reallocate the energy resources into 

other vital functions. L. pruvoti seems less sensitive to increasing T probably due to the absence of 

symbionts, and consequently the lack of an inhibition of host physiological processes (Goffredo et 

al. 2007).  

To better understand the effect of environmental parameters on coral sexual reproduction, further 

studies on oogenesis of B. europaea and on gametogenesis of L. pruvoti were performed along a 

natural pCO2 gradient produced by an underwater crater vents located near Panarea Island 

(Mediterranean Sea, Italy). The studies were performed on a population of B. europaea naturally 

living along the gradient (long-term experiment) and on a population of L. pruvoti transplanted along 

the same gradient (short-term experiment). 

With decreasing pH, due to increasing pCO2, B. europaea showed no differences in oocytes 

reproductive parameters in natural populations grown along the gradient. Same results was find on 

spermatogenesis (Marchini 2016), confirming that gametogenesis of B. europaea seemed unaffected 

by increase in pCO2. At the contrary, despite short-term experiment, increasing pCO2 seemed to 
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affect spermatogenesis and consequently fertilization process of L. pruvoti. During the gonadal 

development period, the amount of spermaries of the most acidic Site showed lowest values, 

suggesting a negative effect of pH on spermaries production. During the fertilization period, a delay 

of spermaries development in the most acidic Site was detected. Contrary to the previous period, the 

control Site exhibited the lowest values of abundance and gonadal index than the other Sites, probably 

due to the low number of residual mature spermaries after the fertilization process. Indeed, the control 

Site showed lower values of fertility than the experimental Sites. These results confirmed a delay in 

the fertilization process in the acidic Sites, in which fertilization started, but was not completed. In 

the control Site, the fertilization process appeared complete and the planulation process was almost 

terminated. With increasing pCO2, B. europaea appeared to be less sensitive than L. pruvoti, probably 

due to increase of photosynthetic efficiency of coral algae under high pCO2 (personal observation), 

representing a further energy available to coral. B. europaea could to reallocate this additional 

resource into reproduction, while in L. pruvoti the lack of zooxanthellae involve in a lack of additional 

resources, making this species more sensitive to increasing pCO2. Further study under long-term 

exposure of pCO2 are needed to better understand how the natural population will behave in the 

environment of the future sea. Further study on interaction between increasing T and pCO2 are needed 

to better understand how zooxanthellate and non-zooxanthellate corals will respond to both, OW and 

OA.  

Section 2. Ecophysiology and environmental parameters 

The effects of increasing T, pCO2 and their interaction on photosynthesis, bleaching tissue and 

mortality, was performed in aquaria experiment on two Red Sea zooxanthellate scleractinians  

characterized by different growth form. The solitary species Fungia granulosa was less sensitive to 

experiment treatments than the colonial Pocillopora verrucosa. F. granulosa did not show negative 

effects in photosynthetic efficiency, suggesting a great resistance to increasing T and decreasing pH, 
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separately. However, it seemed to be affected by synergistic interaction between high T and low pH, 

showing a reduction of photosynthetic efficiency at the end of the experiment. Bleached tissue was 

registered only in T and interaction treatments (T/pH), reaching respectively 7% and 11% of bleached 

tissue at the end of the experiment. During the entire experiment, coral mortality was no recorded in 

this species.  

P. verrucosa was more sensitive to experimental conditions, showing a reduction in photosynthetic 

efficiency, and an increase in bleached tissue and coral mortality in all treatments. Again, the 

interaction treatment (T/pH) registered strongest effect reaching 100% bleached tissue and 100% 

coral mortality at the end of the experiment. The differential susceptibility of corals could be due to 

their tissue thickness (Loya et al. 2001). F. granulosa is a solitary scleractinian coral characterized 

by large biomass and a completely covered skeleton with high tissue thickness, its energy reserves 

may help to compensate the stress to the changing environmental conditions. On the opposite, the 

colonial coral P. verrucosa is characterized by lower tissue thickness (Ziegler et al. 2014), making 

this species more exposed and consequently more vulnerable to external environmental conditions. 

Anyway, both species showed increased negative effects with increasing exposition time, making 

together vulnerable to environmental changes to the future. 

Section 3. Biomineralization, skeletal phenotype and environmental parameters 

Coral calcification is one of the major treats affected by climate changes (Hoegh-Guldberg et al. 

2014). The fundamental mechanisms and dynamics of skeletal morphogenesis are still only partially 

understood (Allemand et al. 2011), in particular the role of organic matrix (OM) is still unclear. To 

investigate the role of intra-skeletal OM in coral biomineralization process, four Mediterranean 

species characterized by different trophic strategy and/or growth form was selected: B. europaea 

(solitary, zooxanthellate), L. pruvoti (solitary, non-zooxanthellate), Cladocora caespitosa (colonial, 

zooxanthellate) and Astroides calycularis (colonial, non-zooxanthellate). The comparative study 
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showed that the ability of OM in in vitro crystallization experiments to influence morphology and 

polymorphism was not related to the coral ecology and suggested that the coral control over the 

biomineralization process was species specific and encoded in coral genes. B. europaea OM was the 

most prone to favor the precipitation of aragonite in the absence of magnesium ions, while only 

calcite precipitated in the other examined species. The calcium carbonate (CaCO3) precipitation 

starting by an artificial seawater solution revealed that the presence of OM inhibits the crystallization, 

favoring the precipitation of amorphous calcium carbonate (ACC). Under thermal treatments, the 

ACC of B. europaea was the most stable and only in this species was partially converted to aragonite 

instead of magnesium calcite. These features suggested a stronger control of B. europaea OM over 

the mineral phases, and a higher independence from the crystallization environment compared to the 

other species. Thanks to greater independence from the chemical environment, B europaea under 

high pCO2, could maintain unchanged the amount of energy used in the biomineralization process, 

and invest the greatest amount of available energy (due to increased photosynthetic efficiency) on 

gametogenesis.  

The relationship between the environmental parameters and growth was also performed in an animal 

model more complex than phylum Cnidaria. The effects of increasing T and SR on shell morphology 

at the macro, micro and nanoscale level was performed in six natural populations of the commercially 

important clam Chamelea gallina, located along a latitudinal gradient in the Adriatic Sea 

(Mediterranean Sea, Italy). The more irradiated and warmer populations was characterized by 

thinner, more porous and more fragile shell than the others populations, affecting the survival of the 

species to high T and SR. A possible explanation regards the effect of high T on C. gallina 

physiology. Elevated T reduce energy absorption and increase energy expenditure via respiration, 

negatively affecting energy balance and thus growth (Ramón and Richardson 1992; Moschino and 

Marin 2006). A further explanation concerns local environmental pressures, such as nutrients and 

predators due to SR gradient. The southern sites are characterized by lower plankton density 
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(Zavatarelli et al. 1998), which could cause feeding deficits and consequently a reduction of available 

energy for clam to invest in shell construction. Moreover, it is not possible to exclude the influence 

of T and SST on type/density of predators that can induce changes in bivalves shell morphology 

(Leonard et al. 1999). However, the shell composition was the same in all populations (100 % 

aragonite), and the amount of OM and shell parameters at micro and nano scale level were 

homogeneous among populations, suggesting no influence of T and SR on the crystallography of 

biomineralized shell building blocks. Because of the importance of this species as commercial 

resource in Adriatic Sea, more porous and fragile shells found in more irradiated and warmer 

populations could have great economic implication for fishery. 

General conclusion 

Global environmental change, led by the current dramatic rise in sea surface T and pCO2, is expected 

to have a great impact on marine ecosystems and mainly on calcifying marine organisms. The 

symbiosis with zoxanthellae seemed to play one of key roles in determining the effect of OW and 

OA. In fact, the photosynthesis of zooxanthellae may be inhibited at high T, but may increase under 

high pCO2, determining different response among species. Symbiont organisms seemed more 

sensitive to increasing T but more resistant to increase pCO2 while the non-symbiont seemed behave 

on the contrary. The future oceans changes will lead increasing of both, T and pCO2, and severely 

will affect most of marine species, zooxanthellate or not. There is a need to further investigate the 

ability of marine calcifying organisms to acclimatize and/or adapt to prolonged exposure of high T 

and pCO2 together, as well as the possibility of taxonomic differences in sensitivity. Focusing efforts 

on the protection and cultivation of more adaptable species may improve the effectiveness of marine 

calcifying organisms preservation and restoration efforts. 
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