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Preface 

During the 3 years of my PhD, I had the opportunity to enlarge my 

professional and personal knowledge and experience, and to deeply 

investigate the concepts of workload and cognitive training, focusing on the 

operational environments of Pilots and Air-Traffic-Controllers (ATCOs). 

The experimental activities have been ran in several Labs across Europe and 

Asia. In particular, I spent 3 months at the Cognitive Engineering Lab of the 

Institute for Neurotechnology (SINAPSE) in Singapore (National 

University of Singapore – NUS), where several experiments for the mental 

workload and training assessments have been designed and performed. I 

have been involved in the European project “NINA: Neurometrics 

INdicators for ATM” (www.nina-wpe.eu), in which professional ATCOs 

have been recruited from the École Nationale de l’Aviatione Civile (ENAC) 

of Toulouse (France), and from the Ente Nazionale di Assistenza al Volo 

(ENAV) of Rome (Italy) to take part in realistic experiments. Also, 

experiments regarding the mental workload evaluation have been done at 

the Research Centre of AgustaWestland (Yeovil, UK) involving 

professional Pilots.  

The results of the PhD have brought to idea of realizing a device, based on 

the metrics and methodologies developed during these 3 years of research, 

able to objectively measure the mental workload, during the execution of 

operative tasks, and to quantitatively estimate the learning progress, across 

the training sessions, both in order to better manage the training courses, 

and to support the Instructors in the organization, training personalization 

and selection phases.  

In this regard, a H2020-SMEINST project has been submitted, and different 

Companies (ENAC (France); Thales (Italy); Alenia Aermacchi (Italy); 

NATS (UK); CIRA (IT) and Flight Schools (School of Aeronautics and 

Astronautic, Zeijang University, Hangzhou (China); Civil Aviation 

University, Tijanin (China); Pilot school Guanchan, Sichuan (China)) have 

already stated, by means of letters of interest, their interest in testing the 

device or developing further research collaborations. The phase 1 has been 
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founded and already developed. The phase 2 is under evaluation by the 

H2020 Commission. 

The PhD results have been presented in many International and National 

conferences (2 prizes for the best research studies in the aeronautical 

medicine field - AIMAS 2014 and 2015), International and National 

Summer School (first IEEE EMBS International Summer School on Neural 

Engineering (ISSNE), Shanghai, China; IV Convegno Nazionale di 

Bioingegneria, GNB, Pavia) and published on 16 conferences, and 7 journal 

papers (until December 2015). Furthermore, currently there are two patents 

pending on the algorithms and methodologies developed during the PhD 

and described in details in the Thesis.  
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Abstract 

Several studies have demonstrated that the main cause of accidents are due 

to Human Factor (HF) failures. Humans are the least and last controllable 

factor in the activity workflows, and the availability of tools able to provide 

objective information about the user’s cognitive state should be very helpful 

in maintain proper levels of safety. To overcome these issues, the objectives 

of the PhD covered three topics. The first phase was focused on the study 

of machine-learning techniques to evaluate the user’s mental workload 

during the execution of a task. In particular, the methodology was developed 

to address two important limitations: i) over-time reliability (no 

recalibration of the algorithm); ii) automatic brain features selection to 

avoid both the underfitting and overfitting problems. The second phase was 

dedicated to the study of the training assessment. In fact, the standard 

training evaluation methods do not provide any objective information about 

the amount of brain activation\resources required by the user, neither during 

the execution of the task, nor across the training sessions. Therefore, the aim 

of this phase was to define a neurophysiological methodology able to 

address such limitation. The third phase of the PhD consisted in overcoming 

the lack of neurophysiological studies regarding the evaluation of the 

cognitive control behaviour under which the user performs a task. The 

model introduced by Rasmussen was selected to seek neurometrics to 

characterize the skill, rule and knowledge behaviours by means of the user’s 

brain activity.  

The experiments were initially ran in controlled environments, whilst the 

final tests were carried out in realistic environments. The results 

demonstrated the validity of the developed algorithm and methodologies (2 

patents pending) in solving the issues quoted initially. In addition, such 

results brought to the submission of a H2020-SMEINST project, for the 

realization of a device based on such results. 

 

Keywords: Mental Workload, Training, Brain Activity, Cognitive 

Control Behaviour, Human Factor, Pilot, Air Traffic Controller, 

Learning, SWLDA, Machine Learning, EEG, ECG, EOG, Cortical 

Maps, Self Assessment, Cognitive Spare Capacity.  
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1. Introduction 

In the operational environments, the safety of the people rely on the work 

and efficiency of one or few operators. In such contexts, a human error could 

have serious and dramatic consequences. For example, in the transports 

domain the safety of the passengers depends on the performance of the 

Pilot(s), of the (e.g. Air, Train, Vessel) Traffic-Controller(s) or of the 

Driver(s). In general, Human Factors (HFs) have consistently been 

identified as one of the main factors in a high proportion of all workplaces 

accidents. In particular, it has been estimated that up to 90% of accidents 

exhibits HF as principal cause (Feyer and Williamson, 2011). For example, 

in the health care domain, the US Institute of Medicine estimates that there 

is a high people mortality per year (between 44.000 and 88.000) as a result 

of medical errors (Helmreich, 2000), and it has also been estimated that 

inappropriate human actions are implicated in as much as 95 % of road 

traffic crashes (Aberg and Rimmö, 1998). Additionally, over the past four 

decades, HF has been involved in high number of casualty catastrophes 

(Salmon et al., 2005). Consequently, the HF construct has received more 

attention, and it has been investigated across a wide range of domains, 

including military and civil aviation (Shappel and Wiegmann, 2000; Stanton 

et al., 2006), aviation maintenance (Rankin et al., 2000), air traffic 

management (Shorrock and Kirwan, 2002), rail (Lawton and Ward, 2005), 

road transport (Reason, 2000; Rumar, 1990), nuclear power and 

petrochemical reprocessing (Kirwan, 1992, 1998), military, medicine 

(Helmreich, 2000; Sexton et al., 2000), and even the space travel domain 

(Nelson et al., 1998). Human error is an extremely common phenomenon, 

since people, regardless of abilities, skill level and expertise, makes errors 

every day. The typical consequence of error-occurrence is the failure to 

achieve a desired outcome or the production of an undesirable outcome. 

When it happens in particular working environments, such error can 

potentially lead to accidents involving injury and fatalities. According to the 

scientific literature, there have been numerous attempts at defining and 

classifying the human error. However, a universally accepted definition 

does not exist yet. Rasmussen (1982) pointed out the difficulty in providing 

a satisfactory definition of human error. In 1987, he suggested that human 
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error represents a mismatch between the demands of an operational system 

and what the operator does. The main causes of human errors have to be 

sought within the internal or psychological factors of the operator (Reason, 

2000). In fact, errors could arise from aberrant mental processes, such as 

inattention, poor motivation, loss of vigilance, mental overload and fatigue 

that negatively affect the user’s performance. For example, cognitive 

psychology literature demonstrated that the mental workload has an 

‘‘inverted U-shape’’ relationship with performance. In other words, some 

levels of mental workload may help the user to reach high performance level 

(Calabrese, 2008; Warm et al., 2008), since it stimulates positively the user 

and it keeps him/her awake with high attention level. On the contrary, a 

period of mental inactivity and “under-stimulation” can cause a monotonous 

and boring state (underload), a low level of vigilance and attention, with 

low cognitive resources demand. Additionally, an operative condition 

characterized by high demanding multitasks can lead the user to an overload 

condition and to a likely occurrence of errors (Kirsh, 2000).  

Both the cases bring to a variation in neurophysiological factors and often 

to a decrement of performance. Such performance reduction is highly 

undesired, especially in critical domains, as discussed above. In this regard, 

the augmented cognition research field aims at developing systems to avoid 

performance degradation by adapting the user’s interface and reducing the 

task demand/complexity, or by intervening directly on the system (Fuchs et 

al., 2007). Over the past two decades, researchers in the field of augmented 

cognition developed novel technologies to both monitor and enhance human 

cognition and performance. Most of those works were based on evidences 

coming from cognitive science and cognitive neuroscience (Decades, 2008). 

On the basis of such findings and technological improvements in measuring 

human biosignals, it has been possible to evaluate operators’ mental states 

unobtrusively and in realistic contexts. The neurophysiological indexes 

have then been used as inputs for the interface the operator was interacting 

with. Such kind of application is called passive Brain-Computer Interface 

(p-BCI). In its classical assumption, a Brain-Computer Interface (BCI) is a 

communication system in which messages or commands that an individual 

sends to the external world do not pass through the brain’s normal output 

pathways of peripheral nerves and muscles (Wolpaw et al., 2002). More 

recently, Wolpaw and Wolpaw (2012) defined a BCI as “a system that 
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measures Central Nervous System (CNS) activity and converts it into 

artificial output that replaces, restores, enhances, supplements, or improves 

natural CNS output and thereby changes the ongoing interactions between 

the CNS and its external or internal environment”. In the BCI community, 

the possibility of using the BCI systems in different contexts for 

communication and system control (Aloise et al., 2013), developing 

applications in realistic and operational environments, is not just a theory 

but something very closed to real applications (Blankertz et al., 2010; 

Müller et al., 2008; Zander et al., 2009). In fact, in the classic BCI 

applications the user modulates voluntarily its brain activity to interact with 

the system (Borghini et al., 2015c). In the new BCI concept, the system 

itself recognizes the spontaneous brain activity of the user related to the 

considered mental state (e.g. emotional state, workload, attention levels), 

and uses such information to improve and modulate the interaction between 

the operator and the system (i.e. p-BCI). Systems based on passive BCI 

technology can provide objective information about covert aspects of the 

user’s cognitive state, since conventional methods, such as behavioral 

measures, could only detect such mental states with weak reliability (Zander 

and Jatzev, 2012). The information extracted by the p-BCIs are then 

employed to improve Human - Machine Interactions (HMI) and to achieve 

potentially novel types of skills. Anyhow, the quantification of mental states 

by using BCI technology is far from trivial. In fact, it requires combination 

of knowledge in different fields (Brouwer et al., 2015), such as 

neurophysiology (to acquire and manage biosignals), experimental 

psychology (to find out the right way to assess mental states), machine 

learning (to develop innovative classification techniques), and human factor 

(to develop real applications). Mental states monitoring is of particular 

interest in safety-critical applications where the human factor is often the 

least controllable factor. In this regard, there are many examples in which 

p-BCIs could be very useful. For example, p-BCI technology can reveal 

valuable information about the user’s mental state in safety-critical 

applications, such as driving (Borghini et al., 2012a, b; Welke et al., 2009), 

industrial environments (Venthur et al., 2010) or security surveillance 

(Marcel and Millan, 2007). With respect to driving assistance applications, 

recent studies demonstrated the utility of p-BCI systems during driving 

simulation for assessing driving performance and inattentiveness (Schubert 
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and Tangermann, 2008), as well as for robustly detecting emergency brakes 

before braking onset (Welke et al., 2009). In addition, p-BCI systems can 

potentially be used for real-time cognitive monitoring of the operator’s 

mental workload (Aricò et al., 2014a, 2014b; Kohlmorgen et al., 2007). 

These and other forms of automation have yielded several benefits in terms 

of improved capacity, efficiency and safety. There is evidence that, 

“although unconstrained handover of automated tasks to operators would 

increase workload and defeat the purpose of automation, there are 

situations during which temporary allocation to human control is 

desirable” (Parasuraman et al., 1996). They highlighted the superiority of 

adaptive task allocation (i.e. automation) over static automation, at least for 

the monitoring aspect of performance, during a multitasking flight 

simulation. (Parasuraman and Rizzo, 2008) reported a list of new adaptive 

solutions able to improve the human performance in various environments, 

thanks to the improvement of the technology in the biosensors domain. 

Neuroimaging methods and cognitive neuroscience have steadily improved 

their technical sophistication and breadth of application over the past 

decade, and there has been growing interest in their use to examine the 

neural circuits supporting complex tasks representative of perception, 

cognition, and action as they occur in operational settings. At the same time, 

many fields in the biological sciences, including neuroscience, are being 

challenged to demonstrate their relevance to practical real-world problems 

(Parasuraman, 2003). Researchers in HF and ergonomics sectors studied 

human capabilities and limitations, both cognitive and physical, and used 

such knowledge to design technologies and work environments to be safer 

and more usable, efficient, and enjoyable for people to interact with 

(Norman and Berkrot, 2011; Wickens et al., 2012). In today’s technology-

driven environment, where human capabilities are struggling to keep up 

with technology offerings, techniques for augmenting human performance 

are becoming the critical gap to preclude realizing the full benefits that these 

technology advances offer. The concept of human performance 

augmentation is not so recent. The idea was developed during the past 

decade (Blankertz et al., 2010; Zander et al., 2009), and, at the same time, 

the concept of Augmented Cognition (AugCog) was borne out of the 

Defense Advanced Research Projects Agency’s (DARPA) pushing for 

technologies that enhanced the Warfighter’s communication skills and those 
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technologies that involved biosensors for medical applications (Schmorrow, 

2002). In this context, the most studied mental states, due to their strong 

relationship with the increasing or the degrading of user’s performance, 

have been the mental workload and cognitive training level. The techniques 

for the mental workload and training assessment must be sensitive to 

fluctuations in task demands without intruding on primary task performance 

(O’Donnell and Eggemeier, 1986). This level of sensitivity is not obtainable 

with behavioral (task performance) and subjective measures (e.g. workload 

perception) alone. In fact, subjective measures concurrently the execution 

of the considered activity require additional tasks (self-assessment itself). 

Additionally, it has been widely demonstrated that neurophysiological 

measurements transcend both behavioral and subjective measures in 

discriminating cognitive demand fluctuations (Di Flumeri et al., 2015; Mühl 

et al. 2013; Wierwille and Eggemeier, 1993). Therefore, the 

neurophysiological measurements become very important, not only as 

monitoring techniques, but mainly as support tools to the user during his/her 

operative activities. In fact, as the changes in cognitive activity can be 

measured in real-time, it should also be possible to manipulate the task 

demand (adaptive automations) in order to help the user to keep optimal 

levels of mental workload under which operating. In other words, the 

neurophysiological measures could be used to realize p-BCI applications in 

real operational environments. Many neurophysiological measures have 

been used for the mental workload and training assessment, including 

Electroencephalography (EEG), functional Near-InfraRed (fNIR) imaging, 

functional Magnetic Resonance Imaging (fMRI), 

Magnetoencephalography (MEG), and other types of biosignals such as 

Electrocardiography (ECG), Electrooculography (EOG) and Galvanic Skin 

Response (GSR) (Borghini et al., 2012a; Ramnani and Owen, 2004; Wood 

and Grafman, 2003). The size, weight, and power constraints outlined above 

limit the types of neurofeedbacks that can be used to realize p-BCI 

applications. For example, fMRI (Cabeza and Nyberg, 2000) and MEG 

techniques require room-size equipment that are not portable. EOG, ECG 

and GSR activity measurements highlighted a correlation with some mental 

states (Stress, Mental Fatigue, Drowsiness), but they were demonstrated to 

be useful only in combination with other neuroimaging techniques directly 

linked to the Central Nervous System (CNS), i.e. the brain (Borghini et al., 
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2012 a, b; Ryu and Myung, 2005). Since the presence of hair may impact 

on both photon absorption (Murkin and Arango, 2009) and the coupling of 

the probes with the underlying scalp, the fNIRs technique is very reliable 

only on those un-hairy brain areas, like the frontal brain areas. In addition, 

because of the key role of other brain areas, Derosière et al. (2013) pointed 

out how some fNIRs-measured hemodynamic variables were relatively 

insensitive to certain changes in the workload and attentional states. 

Consequently, the EEG potentially appears to be the best solution for the 

user’s workload and training estimation in operational environments, since 

it also has high temporal resolution, proper usability and it can be 

straightforwardly employed to realize passive-BCI applications.  

To overcome the issues and limitations described above, I focused my PhD 

on the definition and validation of metrics and methodologies able to 

address such problems and to provide objective and quantitative 

information about the user’s mental workload and cognitive training level 

in operational environments. For such purposes, specific experimental 

protocols have been designed. The first phase of the research has been 

developed and tested in controlled settings (Laboratory), while the 

consecutive phases have been carried out in realistic environments (e.g. air 

traffic control room) involving professional personnel. During the execution 

of the experimental tasks, the neurophysiological signals (EEG, ECG and 

EOG) of the users have been recorded continuously, and both the behavioral 

(task performance) and subjective (workload perception) data have been 

gathered as well, with the aim to analyze the considered cognitive 

phenomena from the three different points of view (Triangulation 

methodology, Bekhet and Zauszniewski, 2012). From the biosignals, 

specific metrics have been defined to investigate the considered cognitive 

phenomenon. Both standard spectrum EEG analysis and techniques coming 

from the BCI field (i.e. machine - learning approach) have been used to 

analyze the physiological data. In particular, the StepWise Linear 

Discriminant Analysis (SWLDA) has been chosen since it has been 

demonstrated to be one of the best outperforming linear classifiers for the 

mental workload evaluation (Craven et al., 2006; Krusienski et al., 2006; 

Berka et al., 2007; Rabbi et al., 2009). Before its application, the use of the 

machine-learning approach for the training assessment and workload 

evaluation in operational environments has been studied carefully and 
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deeply, and, as a result, a modified version of the SWLDA (automatic stop 

SWLDA, asSWLDA) has been developed during the PhD and then patented 

(Patent I and Patent II, 2015). The asSWLDA has been able to solve 

important key issues in using neurophysiologicalmeasurements in 

operational environments: i) over - time reliability of the measure (no 

recalibration of the algorithm is necessary within a month), ii) automatic 

features selection to avoid both the underfitting and overfitting problems (no 

empiric and manual selection of the analysis parameters), and iii) it provided 

higher accuracy (resolution) in comparison with the standard (i.e. 

subjective) workload measures. 

Training not only could result in the acquisition of new skills (Satterfield 

and Hughes, 2007; Hill and Lent, 2006), but also in improved declarative 

knowledge, enhance strategic knowledge, defined as knowing when to 

apply a specific procedure or skill, in particular during unexpected events 

(Kozlowski et al., 2001). Despite the time goes on, there might be the need 

to assess if the operator is still able to work ensuring high performance 

levels, hence, a proper level of safety. For such a reason, another issue is the 

necessity of objectively monitoring and assessing operators’ performance 

(Leape and Fromson, 2006), in terms of cognitive control behaviours. In 

fact, different operators could achieve the same performance results, but 

involving a different amount of cognitive resources, thus different expertise. 

Nowadays, there are no tools able to provide such objective and quantitative 

information to better manage the training program and personnel selection. 

As a reference to such purpose, the Skill – Rule – Knowledge (S-R-K) 

framework (still used in aeronautic field) introduced by Rasmussen (1983) 

has been considered. The aim of the framework is to explain human 

behavior and describe the wide range of mental capabilities used in 

everyday situations (e.g. working environments). Rasmussen’s model is 

characterized by three dynamic and parallel cognitive levels of expertise: 

skill-based behavior (the sensory-motor activity, based on the repetition of 

automated and integrated behavioral routines that takes place without 

conscious attention, control or cognitive effort. The response is rapid, 

flexible and resistant to changes), rule-based behavior (the procedural 

behavior, characterized by the use of rules and procedures to select a course 

of actions in a familiar situation. “Control at rule-based level requires a 

conscious preparation of the sequence beforehand and the conscious mind 
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operates infrequently in synchrony with the environment.”), and the 

knowledge-based behavior (usually occurs in situations where no rules are 

available from previous experiences. It involves problem solving based on 

the “knowledge” considered as a complex process of collection and 

integration of different information that, once interpreted, result in the 

comprehension of the current situation, and in the planning and execution 

of a new appropriate plan of actions. This level is mentally demanding and 

requires high attention. The response is slow and prone to error).The three 

levels are concerned as a dynamic system that generally works in parallel 

and are integrated, where the control of behavior continuously shifts from a 

level to another one. Such a structure allows to react quickly to 

environmental changes, to deal with ambiguous situations, to solve familiar 

or unfamiliar problems and to set new problems in an efficient and flexible 

way. When expertise evolves, cognitive control shifts, for example when a 

subject is learning to drive, his/her attention and cognitive resources are 

located to the set of actions of “driving a car”. These rule-based behavior, 

with practice, requires less attention and control, until it becomes 

automated, shifting to the skill-based level.  
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2. Preliminary Concepts 

2.1. Nervous System 

Gross Anatomy of the Brain 

The nervous system essentially exhibits a bilateral symmetry with those 

structural features and pathways located on one side of the midline (Noback 

et al., 2005). It is subdivided anatomically into the Central Nervous System 

(CNS) and the Peripheral Nervous System (PNS), and functionally into the 

Somatic Nervous System (SNS) and the Autonomic (visceral) Nervous 

System (ANS). The CNS comprises the brain and spinal cord. The brain is 

encapsulated within the skull and the spinal cord is at the centre of the 

vertebral column (Figure 1).  

 

Figure 1. Geometry of the brain. Vertical axis is parallel to the long axis of the brainstem 

and spinal cord. Horizontal axis is parallel to the cerebrum from frontal pole to occipital 

pole. 

The PNS consists of the nerves emerging from the brain (called cranial 

nerves) and from the spinal cord (called spinal nerves). The peripheral 

nerves convey neural messages from (1) the sense organs and sensory 

receptors in the organism inward to the CNS, and from (2) the CNS outward 

to the muscles and glands of the body. The SNS consists of those neural 

structures of the CNS and PNS responsible for (1) conveying and processing 



CHAPTER 2                                                                Preliminary Concepts 

 

16 

 

conscious and unconscious sensory (afferent) information, vision, pain, 

touch, unconscious muscle sense from the head, body wall, and extremities 

to the CNS and (2) motor (efferent) control of the voluntary (striated) 

muscles. The ANS is composed of the neural structures responsible for (1) 

conveying and processing sensory input from the visceral organs (e.g., 

digestive system and cardiovascular system) and (2) motor control of the 

involuntary (smooth) and cardiac musculature, and of glands of the viscera. 

Sensory signals originating in sensory receptors are transmitted through the 

nervous system along sensory pathways, e.g., pain and temperature 

pathways and visual pathways. These signals may reach consciousness or 

may be utilized at unconscious levels. Neural messages for motor activity 

are conveyed through the nervous system to the muscles and glands along 

motor pathways. Both the sensory (ascending) and motor (descending) 

pathways include processing centres (e.g., ganglia, nuclei, laminae, 

cortices) for each pathway located at different anatomic levels of the spinal 

cord and brain. The processing centres are the computers of the complex 

high-speed systems within the brain. Differences in the basic sequence are 

present in some ascending systems. In a general way, the motor systems are 

organized to receive stimuli from the sensory systems, at all levels of the 

spinal cord and brain, and to convey messages via motor pathways to 

neuromuscular and neuro-glandular, endings at muscle and gland cells in 

the head, body, and extremities. The motor pathways comprise sequences 

of processing centres and their fibres conveying neural influences to other 

processing centres within the CNS, and the final linkages extending from 

the CNS via motor nerves of the PNS to muscles and glands. The CNS 

comprises gray matter and white matter (Figure 2). Gray matter consists of 

neuronal cell bodies, dendrites, axon terminals, synapses, and glial cells, 

and is highly vascular. White matter consists of bundles of axons, many of 

which are myelinated, and oligodendrocytes; the white colour is imparted 

by the myelin. It lacks neuronal cell bodies and is less vascular than gray 

matter. Groupings of neuronal cell bodies within the gray matter are 

variously known as a nucleus, ganglion, lamina, body, cortex, centre, 

formation, or horn. A cortex is a layer of gray matter on the surface of the 

brain. Two major cortices are recognized: cerebral and cerebellar cortices. 

The superior and inferior colliculi of the midbrain and the hippocampal 

formation also form cortex-like structures. 
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Figure 2. Sagittal brain section in which some of the main structures of the brains are 

labelled. In particular, the gray and white matters, the cerebellum, the midbrain, the 

medulla oblongata, the pons, the middle cerebellar peduncle and the internal capsule. 

The cerebrum includes the paired cerebral hemispheres, a small median 

segment (derived from the telencephalon) and the diencephalon. The 

cerebral hemispheres consist of the cerebral cortex (gray matter), 

underlying white matter, corpus striatum, corpus callosum, anterior 

commissure, hippocampal formation and the amygdala (Figure 3). The 

brain hemispheres are marked on the surface by slit-like incisures called 

sulci. The raised ridge between two sulci is a gyrus. The cortex lining a 

sulcus is considered part of the adjacent gyrus. The hemispheres are 

separated from one another in the midline by the longitudinal fissure 

(particularly deep and constant sulcus). Each hemisphere is conventionally 

divided into six lobes: frontal, parietal, occipital, temporal, central (insula), 

and limbic (Figure 4). The portion of the frontal, parietal and temporal lobes 

that overlie the insula is called the operculum. The lobes are delineated from 

each other by several major sulci, including the lateral sulcus of Sylvius, 

central sulcus of Rolando, cingulate sulcus, and parieto-occipital sulcus. 

The lateral sulcus is a deep furrow that extends posteriorly from the basal 

surface of the brain along the lateral surface of the hemisphere, to terminate 
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usually as an upward curve within the inferior part of the parietal lobe. The 

central sulcus of Rolando extends obliquely from the region of the lateral 

sulcus across the dorsolateral cerebral surface and, for a short distance, onto 

the medial surface. The cingulate sulcus is a curved cleft on the medial 

surface extending parallel to the curvature of the corpus callosum. The 

parieto-occipital sulcus is a deep cleft on the medial surface located 

between the central sulcus and the occipital pole. 

 

Figure 3. Lateral surface of the brain. Numbers refer to Brodmann’s areas. 

The boundaries of the lobes on the lateral cerebral surface are as follows: 

(1) the frontal lobe is located anterior to the central sulcus and above the 

lateral sulcus; (2) the occipital lobe is posterior to an imaginary line parallel 

to the parietooccipital sulcus, which is on the medial surface; (3) the parietal 

lobe is located posterior to the central sulcus, anterior to the imaginary 

parieto-occipital line, and above the lateral sulcus and a projection toward 

the occipital pole before it takes an upward curve; (4) the temporal lobe is 

located below the lateral sulcus and anterior to the imaginary 

parietooccipital line; and (5) the central lobe is located at the bottom (medial 

surface) of the lateral sulcus of Sylvius, which is actually a deep fossa 

(depression). It can be seen only when the temporal and frontal lobes are 

reflected away from the lateral sulcus (Figure 4). Furthermore, the 

boundaries of the lobes on the medial cerebral surface are as follows: (1) the 

frontal lobe is located rostral to a line formed by the central sulcus; (2) the 
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parietal lobe is between the central sulcus and the parieto-occipital sulcus; 

(3) the temporal lobe is located lateral to the para-hippocampal gyrus; (4) 

the occipital lobe is posterior to the parieto-occipital sulcus; and (5) the 

limbic lobe is a synthetic one formed by parts of the frontal, parietal, and 

temporal lobes. It is located central to the curved line formed by the 

cingulate sulcus and the collateral sulcus (the latter is located lateral to the 

para-hippocampal gyrus). The limbic lobe is the ring (limbus) of gyri 

bordered by this line; it includes the subcallosal area, cingulate gyrus, para-

hippocampal gyrus, hippocampus, dentate gyrus, and uncus. 

 

Figure 4. Medial surface of the cerebral hemisphere. The limbic lobe consists of the 

cingulate gyrus, isthmus, and para-hippocampal gyrus. White lines represent the 

amygdala and the hippocampal formation. The amygdala is located within the uncus. 

The hippocampal formation (hippocampus and dentate gyrus) is located in the floor of 

the temporal horn of the lateral ventricle. 

Basic Unit of the Nervous System: Neurons 

Some 100–200 billion ([1–2] × 1011) neurons, as well as many more glial 

cells, are integrated into the structural and functional structures of the brain 

(Noback et al., 2005). They exhibit a wide diversity of shapes and sizes. The 

neuron is the basic unit of the nervous system and is composed of four 

structurally defined regions: a cell body (soma) that emits a single nerve 
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process called an axon, which ends at presynaptic terminals, and a variable 

number of branching processes called dendrites (Figure 5). Each axon, 

including its collateral branches, usually terminates as an arbor of fine 

fibres; each fibre ends as an enlargement called a bouton, which is part of a 

synaptic junction. At the other end of the neuron, there is a three-

dimensional dendritic field, formed by the branching of the dendrites. The 

cell body is the genomic and metabolic centre of the neuron. Dendrites are 

the main recipients of neural signals for communication between neurons 

and contain critical processing complexes. The axon is the conduit for 

conducting messages (action potentials) to the presynaptic terminals where 

each neuron is in synaptic contact with other neurons and, thus, is part of 

the network that constitutes the nervous system. A neuron is designed to 

react to stimuli, to transmit the resulting excitation rapidly to other portions 

of the nerve cell, and to influence other neurons, muscle cells, and glandular 

cells. Neurons are so specialized that most are incapable of reproducing 

themselves and they lose viability if denied an oxygen supply for more than 

a few minutes. Dendrites contain the same cytoplasmic organelles (e.g., 

Nissl bodies and mitochondria) as the cell body of which they are true 

extensions. The axon is specialized for transmission of coded information 

as all-or-none action potentials. The axon arises from the axon hillock of the 

cell body at a site called the initial segment and extends for a distance of 

less than 1 (mm) to as much as 1 (m) before arborizing into terminal 

branches (Figure 5). The axon hillock, initial segment, and the axon lack 

Nissl bodies. The branches of an axon could have two types of bouton. Each 

branch ends as a terminal bouton that forms a synapse with the dendrite, 

cell body, or axon of another neuron. In addition, along some branches, 

there are thickenings called boutons en passage, which form synapses with 

another neuron or smooth muscle fibre. The dendrites of many neurons are 

studded with tiny protuberances called spines (e.g., pyramidal neurons of 

the cerebral cortex). These dendritic spines increase the surface area of the 

membrane of the receptive segment of the neuron. Located on them are over 

90% of all the excitatory synapses in the central nervous system (CNS). 

Because of their widespread occurrence on neurons of the cortical areas of 

the cerebrum, they are thought to be involved in learning and memory (see 

Paragraph 4).  
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Figure 5. Diagram of (A) a 

neuron located wholly within 

the central nervous system and 

(B) a lower moto-neuron 

located in both the central and 

peripheral nervous systems. 

The latter synapses with a 

voluntary muscle cell to form 

a motor end plate. Note the 

similarities, as reconstructed 

from electron micrographs, 

between (C) a synapse 

between two neurons and (D) 

a motor end plate. The X 

represents the border between 

the central nervous system 

(above the X) and the 

peripheral nervous system 

(below the X). The myelin 

sheath of neuron (A) is entirely 

the product of a glial cell, and 

that of neuron (B) is produced 

by a glial cell inside the central 

nervous system and by a 

Schwann (neurolemma) cell in 

the peripheral nervous system. 

The synapse is the site of contact of one neuron with another. A 

submicroscopic space, the synaptic cleft, which is about 200 (Å), exists 

between the bouton of one neuron and the cell body of another neuron 

(axosomatic synapse), between a bouton and a dendrite (axodendritic 

synapse), and between a bouton and an axon (axoaxonic synapse). In 

addition, dendrodendritic synapses (between two dendrites) have been 

noted (e.g., in the olfactory bulb and retina). The axon of one neuron might 

terminate in only a few synapses or up to many thousands of synapses. The 

dendrite–cell body complex might receive synaptic contacts from many 

different neurons (up to over 15,000 synapses). The termination of a nerve 

fibre in a muscle cell (neuromuscular junction) or a glandular cell 

(neuroglandular junction) is basically similar to the synapse between two 

neurons. The synapse of each axon terminal of a motoneuron on a voluntary 

muscle cell is called a motor end plate (Figure 5). The cell membrane of the 

axon at the synapse is the presynaptic membrane, and the cell membrane of 

dendrite-cell body complex, muscle, or glandular cell is the postsynaptic 
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membrane. The subsynaptic membrane is that region of the postsynaptic 

membrane that is juxtaposed against the presynaptic membrane at the 

synapse. A concentration of mitochondria and presynaptic vesicles is 

present in the cytoplasm of the bouton; none is present in the cytoplasm 

adjacent to the subsynaptic membrane. Most neurons contain at least two 

distinct types of vesicle: small vesicles 50 (nm) in diameter and large 

vesicles from 70 to 200 (nm) in diameter. 

2.1.1. Basic Neurophysiology 

Every neuron is said to possess “in miniature, the integrative capacity of the 

entire nervous system.” Neurons can transform information and transmit it 

to other neurons. In most, the dendrite - cell body unit is specialized as a 

receptor and integrator of synaptic input from other neurons, and the axon 

is specialized to convey coded information from the dendrite - cell body unit 

to the synaptic junctions, where transformation functions take place with 

other neurons or effectors (muscles and glands). To serve these tasks, the 

neuron is thus organized into a receptive segment (dendrites and cell body), 

a conductile segment (axon), and an effector segment (synapse) (Figure 6). 

Neurons are specialized to generate electrical signals, which are used to 

encode and convey information. These signals are expressed by alterations 

in the resting membrane potential. Voltage changes that are restricted to at 

or near the sites where neurons are stimulated are called graded potentials. 

These can lead to the production of action potentials (nerve impulses or 

spikes), which transmit information for substantial distances along an axon. 

Two forms of graded potential are generator (receptor potentials) and 

synaptic potentials. Generator potentials are evoked by sensory stimuli from 

the environment (both inside and outside the body). Information that passes 

from one neuron to another at synapses produces synaptic potentials in the 

postsynaptic neuron. The activity of either generator or synaptic potentials 

can elicit action potentials, which, in turn, produce synaptic potentials in the 

next neuron. Synaptic potentials elicited in effectors (skeletal muscle and 

glands) at synapses can result in the contraction of the muscle or emission 

of secretory product from a gland. 
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Figure 6. On the surface of the dendrites and cell body are excitatory and inhibitory 

synapses, which, when stimulated, produce local, graded, non-propagating potentials. 

These are exhibited as an excitatory or depolarizing postsynaptic potential (EPSP) and 

as an inhibitory or hyperpolarizing postsynaptic potential (IPSP). These local potentials 

are summated at the axon hillock and, if adequate, could trigger an integrated potential 

at the initial segment and an “all-or-none” action potential, which is conducted along the 

axon to the motor end plate. 

Resting Potential of the Neuron 
The resting neuron is a charged cell that is not conducting a nerve impulse. 

The plasma membrane, which acts as a thin boundary between the 

extracellular (interstitial) fluid outside the neuron and the intracellular fluid 

(neuroplasm) inside the neuron (Figure 7), is critical for maintaining this 

charged state or resting potential. The electric charge across the plasma 

membrane results form a thin film of positive and negative ions, unequally 

distributed across the membrane. These are sodium (Na+) and chloride (Cl–

) ions, which are in higher concentration in the interstitial fluid, and 

potassium (K+) and protein (organic) ions that are in higher concentration 

in the neuroplasm. A tendency exists for the Na+, K+, and Cl– ions to 

diffuse across the membrane from regions of high to low concentration 

(along concentration gradients), through Na+, K+, and Cl– channels, 

respectively. 
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Figure 7. Resting potential. The intracellular neuroplasm potential of the normal nerve 

fibre “at rest” is negative to the extracellular potential. Sodium (Na+) and chloride (Cl–

) ions are in high concentration in the extracellular fluid, and potassium (K+) ions and 

protein (An–) are in high concentrations in the neuroplasm. The potential across the 

plasma membrane is –70 to –80 (mV). 

The passage of ions across the membrane is known as conductance. Thus, 

the semipermeable plasma membrane is selectively permeable through non-

gated open channels to Na+, K+, and Cl– ions and impermeable to large 

protein ions. These channels, which are always open, are important in 

determining the resting potential. The ionic concentrations on either side of 

the membrane are produced and maintained by a system of membrane 

pumps called the sodium–potassium pump requiring metabolic energy 

released by adenosine triphosphate (ATP). The sodium–potassium 

exchange pump is an integral membrane protein that utilizes ATP as an 

energy source for its role in active transport. This transport is an energy-

dependent process in which the movement of Na+ and K+ ions is “uphill” 

against a concentration gradient. The activity of the pump results in the 

passage of three Na+ ions out of and two K+ ions into the neuron. This 

causes the restoration of a concentration of K+ 30 or more times higher 

within the neuroplasm than in the interstitial fluid and in a concentration of 

Na+ that is 10 times and Cl– that is 14 times higher in the interstitial fluid 

than in the neuroplasm. Most neurons do not have a Cl– pump; hence, Cl– 

ions diffuse passively across the membrane. These are the ionic 

concentrations responsible for establishing an electric potential across the 

membrane. The transmembrane potential, known as the resting potential, is 

about –70 to –80 (mV) (millivolts) inside the neuron (Figure 7).The resting 

potential is in a steady state (dynamic equilibrium) requiring metabolic 
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energy to maintain the ionic gradients across the membrane. When the 

neuron is “at rest,” its membrane potential is the result of a balance 

(involving Na+ and K+ ions) between the active fluxes (movements) of ions 

metabolically driven by pumps and the passive fluxes caused by diffusion. 

The active fluxes result from the pump extruding three Na+ ions for every 

two K+ ions it brings into the neuron. The passive fluxes of ions take place 

through non-gated channels. The outward flux of positive charges by the 

pump tends to hyperpolarize the membrane. The greater the 

hyperpolarization, the greater the inward electrochemical force driving Na+ 

into the neuron and the smaller the force driving K+ out. The steady state 

for the neuron is attained when the resting potential is reached at the point 

when the net passive inward current (movement of electrical charge) 

through the ion channels exactly counterbalances the active outward current 

driven by the pump. The steady state is not basically the result of passive 

diffusion, which is the diffusion of a solute down a concentration gradient 

without the expenditure of energy. 

 

Excitability of the Neuron 

Excitability is a property that enables a neuron to respond to a stimulus and 

to transmit information in the form of electrical signals. The flow of 

information within a neuron and between neurons is conveyed by both 

electrical and chemical signals. The electrical signals, called graded 

potentials and action potentials, are all produced by temporary changes in 

the current flow into and out of the neuron. These changes are deviations 

away from the normal value of the resting membrane potential. Ion channels 

within the plasma membrane control the inward and outward current flow. 

The channels possess three features. They (1) conduct ions across the 

plasma membrane at rapid rates up to 100,000,000 ions per second, (2) can 

recognize specific ions and be selective as to which can pass through, and 

(3) selectively open and close in response to specific electrical, chemical, 

and mechanical stimuli. Each neuron is presumed to have over 20 different 

types of channel with thousands of copies of each channel. The flux 

(movement of ions) through the ion channels is passive, requiring no 

expenditure of metabolic energy. The direction of the flux is determined by 

the electrochemical driving force across the plasma membrane. The primary 

role of ion channels in neurons is to mediate rapid signalling. These 
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channels, called gated channels, have a molecular “cap” or gate, which 

opens briefly to permit anion species to pass (Figure 8). Gated channels 

open when a neurotransmitter binds to them; voltage-gated channels open 

and close in response to changes in membrane potential; modality-gated 

channels are activated by specific modalities (e.g., touch, pressure, or 

stretch). Gating is the process by which a channel is opened or closed during 

activity. Each channel consists of several plasma membrane-spanning 

polypeptide subunits (proteins) arranged around a central pore. 

 

 

Figure 8. Excitatory synapses (A) and inhibitory synapses (B). A-1 and B-1: Synapses 

prior to release of neurotransmitter. A-2: Excitatory postsynaptic response (EPSP) 

following release of neurotransmitter with Na+ ion inrush through Na+ gate and K+ ion 

outrush through K+ gate. B-2: Inhibitory postsynaptic response (IPSP) following release 

of neurotransmitter with Cl– ion in rush through Cl– gate and K+ ion outrush through 

K+ gate. 

Each of these classes of channel belongs to a different gene family. Each 

member of a family shares common structural and biochemical features, 

which presumably have evolved from a common ancestral gene of that 

family. The channels of the voltage-gated gene family are selective for Na+, 

K+, and Ca2+ ions. The channels for the transmitter-gated channels respond 

to acetylcholine, gamma amino butyric acid (GABA), and glycine. Most 
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gated-channels are closed with the membrane at rest. They open when 

activated following the binding of a ligand (ligand gating), a change in the 

membrane potential (voltage gating), or the stretch of the membrane 

(modality gating). In the transmitter-gated channel, the transmitter binds to 

a specific site on the external face of a channel that activates it to open 

briefly. The energy to open the channels is derived (1) from the binding of 

the transmitter to the receptor protein in the ligand-gated channels, (2) from 

the changes in the membrane voltage in the voltage-gated channels, and (3) 

presumably from the mechanical forces resulting from cytoskeletal 

interaction at the modality-gated channels. There are two types of 

membrane response; it could (1) hyperpolarize or (2) depolarize. During 

hyperpolarization, the membrane becomes more negative on the inside with 

respect to its outside (i.e., could go from –70 (mV) to –80 (mV)). During 

depolarization, the membrane becomes less negative inside with respect to 

its outside and even might reverse polarity with its inside becoming positive 

with respect to the outside. This is still called depolarization because the 

membrane potential becomes less negative than the resting potential (e.g., 

from –70 (mV) to 0 to +40 (mV)). 

2.1.2. EEG Generation 

The Electroencephalogram (EEG) comes from the summation of 

synchronously postsynaptic potentials. The contribution to the electric field 

of neurons acting synchronously is approximately proportional to their 

number, and, for those firing non-synchronously, as a square root of their 

number (Blinowska and Durka, 2006). The problem of the origins of EEG 

rhythmical activity has been approached by electrophysiological studies on 

brain nerve cells and by the modeling of electrical activity of the neural 

populations (Lopez da Silva, 1996; Freeman, 1991). The question emerges 

whether the rhythms are caused by single cells with pacemaker properties 

or by the oscillating neural networks. It has been shown that some thalamic 

neurons display oscillatory behaviour, even in the absence of synaptic input 

(Jahnsen and Linas, 1984). Evidence exists that the intrinsic oscillatory 

properties of some neurons contribute to the shaping of the rhythmic 

behaviour of networks to which they belong. However, these properties may 

not be sufficient to account for the network rhythmic behaviour. It is 
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generally accepted that cooperative properties of networks consisting of 

excitatory and inhibitory neurons connected by feedback loops play the 

crucial role in establishing EEG rhythms. The frequency of oscillation 

depends on the intrinsic membrane properties, on the membrane potential 

of the individual neurons, and on the strength of the synaptic interactions. 

Bursts of oscillatory activity may constitute a mechanism by which the brain 

can regulate changes of state in selected neuronal networks and change the 

route of information (Lopez da Silva, 1996). EEG is usually registered by 

means of electrodes placed on the brain scalp. They can be secured by an 

adhesive (like collodion) or embedded in a special snug cap. The resistance 

of the connection should be less than 10 (kΩ), so the recording site is first 

cleaned with diluted alcohol, and conductive electrode paste applied to the 

electrode cup. Knowledge of exact positions of electrodes is very important 

for both interpretation of a single recording as well as comparison of results, 

hence the need for standardization. The traditional 10–20 electrode system 

(Jasper, 1958) states positions of 19 EEG electrodes (and two electrodes 

placed on earlobes A1/A2) related to specific anatomic landmarks, such that 

10 – 20% of the distance between them is used as the electrode interval. The 

first part of derivation’s name indexes the array’s row—from the front of 

head: Fp, F, C, P, and O. The second part is formed from numbers even on 

the left and odd on the right side, in the centre ‘‘z’’ or ‘‘0’’. Progress in 

topographic representation of EEG recordings brought demand for a larger 

amount of derivations. Electrode sites halfway between those defined by the 

standard 10 – 20 system were introduced in the extended 10 – 20 system 

(Pivik et al., 1993). EEG is a measure of potential difference; in the 

referential (or unipolar) setup, it is measured relative to the same electrode 

for all derivations. This reference electrode is usually placed on the earlobe, 

nose, mastoid, chin, neck, or scalp centre. No universal consent exists 

regarding the best position of the reference electrode, because currents 

coming from bioelectric activity of muscles, heart, or brain propagate all 

over the human body. In the bipolar setup (montage), each channel registers 

the potential difference between two particular scalp electrodes. Data 

recorded in a referential setup can be transformed into any bipolar montage. 

The common ‘‘average reference’’ montage can be obtained by subtracting 

from each channel the average activity from all the remaining derivations. 

The Hjorth transform references each electrode to the four closest 
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neighbours, which is an approximation of the Laplace transform (LT). LT 

is calculated as a second spatial derivative of a signal, offering information 

about vertical current density. For best performance, it needs an adequate 

spatial sampling-inter electrode distance around 20 (mm) (e.g., 128 

electrodes on the scalp). The estimates obtained by means of LT for the 

electrodes lying at the scalp periphery are biased and have to be excluded. 

Contrary to the open question of the reference, the necessity of artifact 

rejections is universally acknowledged. Artifacts are recorded signals that 

are non-cerebral in origin. They may be divided into one of two categories 

depending on their origin: physiological artifacts or non-physiological 

artifacts. Physiological artifacts can stem from muscle or heart activity 

(EMG, ECG), eye movement (EOG), external electromagnetic field, poor 

electrode contact, subject’s movement. Corresponding signals (EMG, EOG, 

ECG, and body movements) registered simultaneously with EEG could be 

helpful in the visual rejection of artifact-contaminated epochs. Non-

physiological artifacts arise from two main sources: external electrical 

interference (power lines or electrical equipment), and internal electrical 

malfunctioning of the recording system (electrodes, cables, amplifier).  

Furthermore, artifacts may reduce the performance of machine-learning 

techniques. Several ways of handling physiological artifacts can be found 

in the literature. Artifacts may be avoided, rejected or removed from the 

EEG dataset. Artifacts avoidance involves asking users to avoid blinking or 

moving their body during the experiments (Vigário, 1997). This approach 

is very simple, because it does not require any computation, as brain signals 

are assumed to have no artifacts. However, this assumption is not feasible 

in operational environments, since some artifacts, eye and body movements, 

are not easily avoidable. Artifact rejection approaches suggest discarding 

the epochs contaminated by the artifacts. Manual artifact rejection is an 

option to remove artifacts in brain signals, and experts could identify and 

eliminate all artifact-contaminated EEG epochs. The main disadvantage in 

using manual rejection is that it requires intensive human labor, so this 

approach is not suitable for real-time evaluations. In the EEG, the following 

frequency rhythms are considered charachteristic for its analysis (Figure 9): 

delta (0.5 – 4 (Hz)), theta (4 – 8 (Hz)), alpha (8 – 12 (Hz)), beta (12 – 30 

(Hz)), and gamma (above 30 (Hz)).  
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Figure 9. Characteristic EEG rhythms, from the top: δ (0.5 – 4 (Hz)), θ (4 – 8 (Hz)), α 

(8 – 12 (Hz)), β (12 –30 (Hz)). The gamma band could reach 100 (Hz). 

 

Delta activity is characterized by high amplitude and low frequency. It is 

usually associated with the slow-wave in psychophysiology of sleep. It is 

suggested that it represents the onset of deep sleep phases in healthy adults 

(Rechtschaffen and Kales, 1968). Theta rhythm is generally linked to the 

hippocampus activity (Buzsáki 2002) as well as neocortex (Cantero et al., 

2003). It is thought to be linked to deep relaxation or meditation (Kubota at 

al., 2001), and it has been observed during the transition between wake and 

sleep (Hagemann, 2008). However, theta rhythms are suggested to be 

important for learning and memory functions (Sammer et al., 2007), 

encoding and retrieval (Ward, 2003), which involve high concentration 

(Hagemann, 2008). It has also been suggested that theta oscillations are 

associated with the attentional control mechanism in the anterior cingulated 

cortex (Kubota at al., 2001; Smith et al., 2001), and it is often shown to 

increase with a higher cognitive task demand (Gundel and Wilson, 1992). 

Alpha activity has found in the visual cortex (occipital lobe) during periods 

of relaxation or idling (eyes closed but awake). In the continuous EEG, 

alpha band is characterized by high amplitude and regular oscillations, in 

particular over parietal and occipital areas. High alpha power has been 

assumed to reflect a state of relaxation or cortical idling; however, when the 
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operator assigns more effort to the task, different regions of the cortex may 

be recruited in the transient function network leading to passive oscillation 

of the local alpha generators, in synchrony with a reduction in alpha power 

(Smith et al., 2001). Recent results have suggested that alpha is involved in 

auditory attention processes and the inhibition of task irrelevant areas to 

enhance signal-to-noise ratio (Gevins et al., 1998; Klimesch et al., 2007). 

Additionally, alpha activity may be further divided into sub-bands by means 

of the frequency corresponding to the alpha peak of the user (Klimesch et 

al., 1999), called Individual Alpha Frequency (IAF). For instance, alpha 3 

(IAF÷IAF+2 (Hz)) reflects semantic memory performance, while alpha 1 

and alpha 2 (respectively, IAF-4÷IAF-2 and IAF-2÷IAF (Hz)) reflect 

general task demands and attentional processes. Beta activity is 

predominant in wakefulness state, especially in frontal and central areas of 

the brain. High power in beta band is associated with the increased mental 

arousal and activity. Dooley (2009) pointed out that beta wave represents 

cognitive consciousness and active, busy, or anxious thinking. Furthermore, 

it has been revealed to reflect visual concentration and the orienting of 

attention (Birbaumer and Schmidt, 1996). This band can be further divided 

into low beta wave (12.5-15 (Hz)), middle beta wave (15-18 (Hz)), high beta 

wave (> 18 Hz). Low waves seems to be associated with inhibition of phasic 

movements during sleep, and high waves with dopaminergic system 

(Hagemann, 2008). Finally, Gamma is the fastest activity in EEG and it is 

thought to be infrequent during waking states of consciousness (Dooley, 

2009). Recent studies reveal that it is linked with many cognitive functions, 

such as attention, learning, and memory (Jensen et al., 2007). Gamma 

components are difficult to record by scalp electrodes, because of their low 

amplitude, but with Electrocorticography (ECoG) components upto 100 

(Hz), or even higher, may be registered. 

The contribution of different rhythms to the EEG depends on the age, psyco-

cognitive state of the subject, and level of alertness. Considerable inter - 

subject differences in EEG characteristics also exist, since EEG pattern is 

influenced by neuropathological conditions, metabolic disorders, and drug 

action (Niedermayer and Lopes da Silva, 1993). 
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2.2. Cognitive Processes 

The use of neuroimaging techniques allows the analysis of cognitive 

processes underlying cognition and human behavior. A precise 

identification of neural responses across specific brain regions can provide 

information by which defining metric for the objective evaluation of the 

considered cognitive phenomena. Among the main cognitive processes, the 

working memory, attention and decision making can be considered as 

elementary parts for the study of the learning and mental workload (Harris, 

2013), and they are discussed in details in the following sections. 

2.2.1. Working Memory 

Working memory (WM) is considered to be one of the building blocks for 

higher cognitive processes (Den Bosch et al., 2014), such as decision 

making (Toth and Lewis, 1997), reasoning (Ruff et al., 2003), and 

recognition (Bledowski et al., 2012), since it is in charge of holding and 

simultaneously manipulating a small amount of information stored in the 

mind for a limited period of time for further processing (Protopapa et al., 

2014). It also provides an essential interface between perception, attention, 

memory and action (Baddeley, 1996, 2003). WM involves three primary 

processes: encoding information, actively maintaining this information on-

line in memory (storage), and finally, using the information to guide 

behaviour (retrieval). During encoding, individuals actively attend and 

construct an internal representation of the information in memory. This 

mental representation of the information is maintained during a delay 

period, during which the information is actively prevented from decaying 

due to interfering or competing stimuli. Finally, the information is retrieved 

from the memory buffer and conveyed through a motor response (e.g. 

verbal, oculomotor or manual response). It is known from behavioural 

studies that WM performance continues to improve from childhood, 

through adolescence and into early adulthood (Huizinga et al., 2006; 

Luciana and Nelson, 2000; Luna et al., 2004). The functional 

neurophysiological structure subserving the WM remains still controversial, 

but substantial progress has been made in the last years towards 

characterizing the neural basis of human WM (Yoon et al., 2006; Gevins, 
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1997). The anatomical substrate of working memory does not appear to 

depend on the corticolimbic circuitry that is necessary for retrieval of 

information when a delay of more than a few seconds is interposed between 

study and test trials of a memory task (Wickelgren, 1968; Cave and Squire, 

1992). Rather, lesion studies have indicated that the frontal lobes often play 

a critical role in this function (Petrides and Milner, 1982; Frisk and Milner, 

1990; Owen et al., 1990). Similarly, recent neuroimaging studies have found 

metabolic increases in regions of the frontal lobes as well as in other areas 

of association cortex during working memory tasks (McCarthy et al., 1994; 

Courtney et al., 1996; Smith et al., 1996). Electrophysiological methods 

have also been used to measure activity related to working memory. 

Recordings of neuronal activity in primates have indicated that the neural 

representation of information over short delays is associated with transient 

activation of widespread populations of association cortex neurons 

(Chelazzi et al., 1993; Wilson et al., 1993; Miller and Desimone, 1994). In 

humans, EEG studies have focused on Evoked Potential (EP) measures in 

an effort to track the subsecond time course and distribution of working 

memory processes (Lang et al., 1992; Ruchkin et al., 1995; Gevins et al., 

1996). Gevins and colleagues (1996) identified phasic, sub-second changes 

in brain electrical signals over frontal and parietal cortex, that, in agreement 

with the studies of neuronal activity in primates, provided a dynamic picture 

of momentary changes in the spatial distribution of WM effects over the 

course of individual trials, as well as evidence for differences in the activity 

elicited between trials that have different decision requirements. Two 

prominent EEG features are highly sensitive to variations in WM. Several 

studies reported that the power of the frontal theta increased during active 

maintenance of working memory information until the information is 

retrieved (Jensen and Tesche, 2002b; Raghavachari et al., 2001; Klimesch 

et al., 2005). Fewer studies showed that the parietal and occipital theta are 

associated with the working memory task (Kawasaki and Yamaguchi, 2012; 

Raghavachari et al., 2006). Several studies also reported that posterior alpha 

suppression is associated with working memory tasks (Klimesch et al., 

2007; Meltzer et al., 2008). Sauseng et al. (2005) and Huang et al. (2013) 

reported an increase in frontal alpha during working memory tasks. The 

posterior regions also underwent theta augmentation during a working 
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memory task, though this was followed by an alpha decrease (Lai et al., 

2012). 

2.2.2. Attention 

The ability to suitably allocate processing resources is fundamental for the 

efficient processing of incoming sensory signals and for the generation of 

appropriate behaviour in complex environments. The brain continuously 

receives a large amount of sensory signals that cannot be fully processed. 

Attention selection allows preferential processing of some signals and 

filtering out of other inputs. Traditionally, attention research has 

distinguished between two types of mechanisms that contribute to the 

selection process: endogenous top-down factors, that primarily relate to the 

subject’s “internal” goals and intentions, and exogenous bottom-up factors, 

that primarily relate to the characteristics “external” stimulus-driven control 

and they are thought to take place automatically (Macaluso and Doricchi, 

2013). The distinction between these two types of control can be rather 

intuitive: when searching for a friend in a crowd, we will voluntary shift 

attention from one face to another until the external input (i.e., what we see) 

matches our internal knowledge about the physical appearance of our friend. 

By contrast, in a crowd of people all dressed with dark cloths, we will 

quickly notice a person dressed in bright red, who will catch attention 

automatically. Many functional neuroimaging studies have investigated the 

neural basis of endogenous and exogenous visuo-spatial attention control. 

These highlighted the central role of the frontal and parietal lobes, with a 

notable distinction between the response patterns in dorsal and ventral 

regions. A variety of tasks requiring endogenous control of spatial attention 

highlighted the activation of those brain regions (Corbetta et al., 1993; 

Gitelman et al., 1999; Yantis et al., 2002). The activation pattern typically 

includes the Intraparietal Sulcus (IPS) and/or the Posterior Parietal Cortex 

(PPC) plus the Frontal Eye-Field (FEF) in the premotor cortex. These areas 

are found in serial search tasks (Gitelman et al., 2002; Himmelbach et al., 

2006; Fairhall et al., 2009), and many other non-spatial attention tasks also 

requiring the voluntary allocation of processing resources (Wojciulik and 

Kanwisher, 1999). Furthermore, specific experimental designs allowed 

segregating brain activity associated with the different phases of attention 
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tasks, which often comprise multiple control processes (Hahn et al., 2006; 

Doricchi et al., 2010; Simpson et al., 2011). Sensory aspects of the incoming 

signals may also play an important role, particularly so in posterior parietal 

regions. Indeed, while showing increased activation even in the absence of 

any sensory input (Kastner et al., 1999; Hopfinger et al., 2000), the parietal 

cortex shows some residual spatially-specific responses also to unattended 

stimuli (Saygin and Sereno, 2008). The co-occurrence of sensory-driven 

responses and top-down internally - controlled activity, also associated with 

motor planning, has triggered an intense debate about the format of the 

spatial representations in parietal cortex (Andersen et al., 1993; Colby and 

Goldberg, 1999). Previous studies considered the role of the dorsal-fronto-

parietal cortex for the processing of bottom-up signals within two main 

frameworks. On one hand, it has been proposed that activation of the dorsal 

system “follows” the detection of relevant stimuli by the ventral attention 

system (Geng and Mangun, 2011; Vossel et al., 2012). Accordingly to this 

view the dorsal system generates top-down signals that modulate processing 

in visual cortex, which require re-setting when a relevant/infrequent 

“bottom-up” stimulus is presented outside the current focus of attention 

(Corbetta and Shulman, 2002; Shulman et al., 2009). A different prospective 

entails a more “direct” activation of the dorsal system due to forward input 

from the visual cortex. In this context, differences between the involvement 

of the posterior IPS and the anterior FEF nodes of the dorsal fronto-parietal 

system have been proposed. For example, using concurrent Transcranial 

Magnetic Stimulation (TMS) - fMRI over either IPS or FEF, Ruff et al. 

(2008) showed that the inter-regional influence of FEF over visual cortex 

does not depend on the visual input, while the influence of IPS can change 

according to the current visual context. These findings demonstrated that in 

complex and naturalistic experimental situations that involve high levels of 

sensory competition, the dorsal fronto-parietal system responds to bottom-

up salient signals. In addition, despite the common assumption that 

mechanisms of attentional reorienting are predominantly - if not exclusively 

- homed in the right hemisphere (Shulman et al., 2010), a number of studies 

have reported bilateral rather than right unilateral activation of the Temporo-

Parietal Junction (TPJ) in response to unexpected and invalid targets 

(Bartolomeo et al., 2007; He et al., 2007; Asplund et al., 2010; Doricchi et 

al., 2010; Verdon et al., 2010). Proper level of attention is crucial in complex 
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and operational environments. It has been demonstrated that under high 

workload conditions, attention appears to channel or tunnel, reducing focus 

on peripheral information and tasks and centralizing focus on main tasks 

(Staal, 2004). This tunnelling of attention can result in either enhanced 

performance or reduced performance, depending on the nature of the task 

and the situation. For instance, when peripheral cues are irrelevant to task 

completion the ability to tune them out is likely to improve performance. 

On the other hand, when these peripheral cues are related to the task and 

their incorporation would otherwise facilitate success on the task, 

performance suffers when they are unattended. Furthermore, high workload 

might cause a reduction in environmental sampling (visual scanning) and 

that this results in distortions in the perception of space and time (Hancock 

and Weaver., 2002). Several groups have studied the effects of time pressure 

on attentional processes. Entin and Serfaty (1990) examined the decision-

making of military personnel under the stress of time pressure in a combat 

simulation study. Their results suggested a reduction in the frequency and/or 

amount of information sought by decision makers as well as a reduction in 

the accurate detection of friend or foe submarines under high time pressure 

conditions. Ozel (2001) examined how people process environmental 

information for exiting (fire fighting scenarios) under time pressure and 

threat of fire. Based on the existing research literature, Ozel theorized that 

when slightly stressed, one’s ability to determine the best time to exit was 

likely to be enhanced, while under high workload demand there would 

probably be a restriction in the range of cues attended to and a distortion of 

information processing. He asserted that the result was likely to be a 

decrement in performance. In addition, several studies support the idea that 

attentional tunnelling can be reproduced and reversed pharmacologically. 

Caldwell and his colleagues (2001; Caldwell and Gilreath, 2002) have 

examined this line of research extensively on U.S. Army aviation personnel. 

For example, performance on several flight measures was enhanced after 

the introduction of dextroamphetamine (Dexedrine R): airspeed, heading, 

roll, and turning control. Furthermore, self ratings of mood and physiologic 

measures of alertness and attention (predominantly arousal measured by 

EEG) also improved with pharmacological intervention. Similar findings 

have been obtained by the use of modafinil (Provigil R). This is certainly 

not a new assertion and many researchers have reported such findings in 
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military aviation. For example, dextroamphetamine has been used in 

sustained and continuous flying operations in the military with significant 

success in the past (Cornum, 1992; Enmonson and Vanderbeek, 1995). High 

workload-induced cognitive tunnelling or narrowing of attention has also 

been causally linked to airline accidents and crash sequences (Kornovich, 

1992). Due to the high workload and inherent stressors associated with 

flying, the design of aviation systems has been a priority of various human 

factors engineers and cognitive scientists. Several authors have explored the 

relationship between HUD (Head Up Display) symbology used in aircraft 

operations and attentive processes (Dowell et al., 2002; Foyle et al., 2001). 

The results of these investigations suggest that such symbology is so 

compelling that it fosters cognitive tunnelling under the workload of flying. 

The result is a decrease in overall situational awareness and a greater 

vulnerability to error (Wickens et al., 1998). These authors have also 

suggested that various design modifications and compensatory strategies 

appeared to be available to reduce this risk. For instance, in a similar 

investigation, Wilson et al. (2002) found that situation-guided symbology 

in HUDs led to increased situational awareness, increased taxi speeds, and 

less workload. They surmised that this was at least in part due to a reduction 

in cognitive tunnelling. Beilock et al. (2002) explored the effect of attention 

on sensorimotor skills. They found that well-learned skills do not require 

deliberate, conscious control of attention and as a result dual-task 

performance is easier. Given that well-learned skills tend to require fewer 

mental resources for their performance, more resources are available to 

devote to additional tasks accordingly. When prompted to focus attention to 

a particular component of the well-learned task, performance was degraded. 

It appears that the step-by-step attention to tasks is beneficial during initial 

learning stages but that this tends to be detrimental once skills are well-

learned.  
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2.2.3. Decision Making 

Decision -making (DM) can be defined as a problem-solving activity 

resulting in the selection of a belief or action among alternative possibilities 

based on the values and preferences of the decision-maker. It is therefore a 

process which can be more or less rational or irrational, and can be based 

on explicit knowledge or tacit knowledge (Staal, 2004). When facing with 

a decision, individuals are wired to employ the most adaptive heuristic 

available (Gigerenzer and Selten, 2001). One of the most famous heuristic 

is the Take-the-Best (TTB). This model proposes that decision makers 

search their memories for criterion-linked probability information. 

Gigerenzer et al. (1991) and Broder (2003) suggested that this search is 

bounded by cognitive economy. In other words, the search for information 

is quick, streamlined, and tends to rely on the most valid probabilistic cue 

separating alternatives. In other words, the authors challenged the notion 

that individuals reasoned from “multiple conditional probabilities,” instead 

opting for a single discriminatory cue. When individuals are engaged in a 

high working memory loaded task, their capacity for other information 

processing operations is likely to be compromised. Broder (2003) 

conjectured that, if this is so, then individuals engaged in a decision making 

task would be more likely to rely on a simple heuristic than a complex one. 

They would be content with limiting their scan of alternatives in the name 

of resource management. On the contrary, Dougherty and Hunter (2003) 

suggested that individuals tend to make probability judgments by 

comparing a focal hypothesis with relevant alternatives retrieved from long-

term memory. They also concluded that individuals with a large working 

memory span tend to include more alternatives in their comparison process, 

and that time constraints probably truncate the alternative generation 

process so that fewer alternatives are recalled from long-term memory for 

comparison. In general, decision making is degraded under stressful 

conditions. For example, Kastner et al. (1989) employed a naval combat 

simulation task in their examination of the effects of task difficulty on 

decision making processes. These authors designated subjects as anti-

submarine warfare commanders charging them with the task of friend or foe 

determinations. Decision makers were provided access (at a cost) to either 

a human consultant or a probe sensor. The results indicated that subjects 

https://en.wikipedia.org/wiki/Rationality
https://en.wikipedia.org/wiki/Irrationality
https://en.wikipedia.org/wiki/Explicit_knowledge
https://en.wikipedia.org/wiki/Tacit_knowledge
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tended to seek more information than was optimal and that such information 

tended to be preferentially sought from consultants who had already 

processed the data themselves. In an extension of this work, Entin and 

Serfaty (1990) explored a very similar paradigm. In their experiment, 

subjects were under the dual “stress” of time pressure and a secondary task 

that intruded on their primary decisions. The Authors found that decision 

makers tended to seek out more information in difficult versus easy 

discrimination tasks, and they typically followed a rational cost-benefit rule 

in their decisions. This was particularly the case as time pressure and 

workload increased. Speier et al. (1999) investigated the effects of 

interruptions on individual decision making noting that interruptions make 

information overload worse by reducing the amount of time one has to 

spend working on the problem, which in turn leads to feeling time pressured. 

This creates both capacity, too much information to process, and structural, 

inputs that are occupying the same physiological channel, interference (i.e., 

monitoring two visual displays at once). Moreover, interruptions also place 

greater demand on the cognitive processing system. For example, 

information that is forgotten due to overload requires further resources to 

re-process or simply never gets encoded. Smith (1979) and Wickens et al. 

(1991) investigated the effects of increased workload on pilots. The results 

indicated that periods of increased workload, even those considered to be 

part of normal flight operations, 1) increased the frequency and volume of 

errors, 2) reduced the cue sampling; 3) reduced the resource-limited 

capacity of working memory, and 4) when time was reduced, a speed-

accuracy trade-off in performance outcome was adopted. Stokes (1995), 

Wiggins et al. (1995) and Li et al. (2001) further examined pilot 

performance on an aeronautical decision making task. They found that 

novice pilots made poorer decisions than expert pilots and their decision 

making was further degraded under stress while expert pilots decision 

making was not. Additionally, experienced pilots tended to visually search 

fewer screens of information, return to previously scanned information 

screens less often, and spent less time examining these screens than novice 

pilots. Thus, expertise in and of itself helps, but it may be that task-specific 

experience is most relevant to time-critical decision making. This finding 

highlights the potential importance of realistic emergency and abnormal 

situation training, for in no other way can novice operators (regardless of 
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the industry they represent) safely garner emergency decision making 

expertise. Sperandio (1971) explored this strategy in his examination of Air 

Traffic Controllers (ATCOs). He found that controllers tend to exercise a 

regulating effect on their workload through strategy shifting. Observing 

ATC operations, Sperandio found that controllers under increasing 

workload conditions  tended to shift from a direct approach strategy (data 

needed to verify and possibly achieve separation between aircraft) to a 

standard approach strategy (data concerning aircraft performance not 

needed for separation of aircraft). Sperandio concluded that controllers 

economized their workload with a shift in strategy or method, reducing any 

redundant information or non-essential information from being processed. 

These findings are consistent with previously reported research on expert 

versus novice decision making (Stokes, 1995; Lansdown, 2001).  

From the neuro – physiological perspective, several brain regions situated 

in the frontal lobes have been demonstrated to be related to decision making 

processes. Specifically, there are evidences of both the Ventromedial 

Prefrontal Cortex (VMPFC) and the Orbitofrontal Cortex (OFC) being 

involved in the processing of different alternatives and potential outcomes 

through the assessment of their (perceived) value (Tremblay and Schultz, 

1999; Daw et al., 2006). In particular, the OFC is associated with the 

evaluation of trade-off and the expected capacity of outcomes to satisfy the 

user’s needs (Wallis, 2007). It also plays a central role in making choices 

about appropriate behaviors, especially when one is faced with 

unpredictable situations (Elliott et al., 2000). Finally, the Dorsolateral 

Prefrontal Cortex (DLPFC) also plays a critical role in decision-making as 

it is known for being involved in cognitive control over emotions (Rilling 

et al., 2008). In particular, it is involved in the control of impulses for 

complying with social norms while the Ventrolateral Prefrontal Cortex 

(VLPFC) could play a role in motivating this social norm compliance by 

representing the threat of punishment from others (Rilling and Sanfey, 

2011). Interestingly, the cognitive effort in the PFC appears to be lower 

when a sure gain is expected compared with risky decisions (Gonzalez et 

al., 2005).  
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2.3. Machine-Learning 

Machine learning is a discipline focused on two interrelated questions: How 

can one construct computer systems that automatically improve through 

experience? and What are the fundamental statistical computational-

information-theoretic laws that govern learning systems? The study of 

machine learning is important both for addressing these fundamental 

scientific and engineering questions and for the highly practical computer 

software it has produced and fielded across many applications (Jordan and 

Mitchell, 2015). Machine learning has progressed dramatically over the past 

two decades, from laboratory curiosity to a practical technology in 

widespread commercial use. Within artificial intelligence (AI), machine 

learning has emerged as the method of choice for developing practical 

software for computer vision, speech recognition, natural language 

processing, robot control, and other applications. Many developers of AI 

systems now recognize that, for many applications, it can be far easier to 

calibrate a system by showing it examples of desired input - output 

behaviour than to program it manually by anticipating the desired response 

for all possible inputs. The effect of machine learning has also been felt 

broadly across computer science and across a range of industries concerned 

with data - intensive issues, such as consumer services, the diagnosis of 

faults in complex systems, and the control of logistics chains. There has 

been a similarly broad range of effects across empirical sciences, from 

biology to cosmology to social science, as machine-learning methods have 

been developed to analyze high throughput experimental data in novel 

ways. In particular, under the recognition of the user’s mental states (e.g. 

mental workload), such techniques should be able to extract from the big 

amount of physiological data the most significant characteristics closely 

related to the examined mental state, and then it can be used to assess the 

examined user’s mental state on different working – days. 

A diverse array of machine-learning algorithms has been developed to cover 

the wide variety of data and problem types exhibited across different 

machine-learning problems (Murphy, 2012; Hastie et al., 2011). 

Conceptually, machine-learning algorithms can be viewed as searching 

through a large space of candidate programs, guided by training experience, 

to find a program that optimizes the performance metric. Machine-learning 
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algorithms vary greatly, in part by the way in which they represent candidate 

programs (e.g., decision trees, mathematical functions, and general 

programming languages) and in part by the way in which they search 

through this space of programs (e.g., optimization algorithms with well-

understood convergence guarantees and evolutionary search methods that 

evaluate successive generations of randomly mutated programs).  

Many algorithms focus on function approximation problems, where the task 

is embodied in a function (e.g., given an input transaction, output a “fraud” 

or “not fraud” label), and the learning problem is to improve the accuracy 

of that function, with experience consisting of a sample of known input-

output pairs of the function. In some cases, the function is represented 

explicitly as a parameterized functional form; in other cases, the function is 

implicit and obtained via a search process, a factorization, an optimization 

procedure, or a simulation-based procedure. Even when implicit, the 

function generally depends on parameters or other tunable degrees of 

freedom, and training corresponds to finding values for these parameters 

that optimize the performance metric. Whatever the learning algorithm, a 

key scientific and practical goal is to theoretically characterize the 

capabilities of specific learning algorithms and the inherent difficulty of any 

given learning problem: How accurately can the algorithm learn from a 

particular type and volume of training data? How robust is the algorithm 

to errors in its modeling assumptions or to errors in the training data? 

Given a learning problem with a given volume of training data, is it possible 

to design a successful algorithm or is this learning problem fundamentally 

intractable? Such theoretical characterizations of machine-learning 

algorithms and problems typically make use of the familiar frameworks of 

statistical decision theory and computational complexity theory. In fact, 

attempts to characterize machine-learning algorithms theoretically have led 

to blends of statistical and computational theory in which the goal is to 

simultaneously characterize the sample complexity (how much data are 

required to learn accurately) and the computational complexity (how much 

computation is required) and to specify how these depend on features of the 

learning algorithm such as the representation it uses for what it learns 

(Chandrasekaram and Jordan, 2013; Shalev-Shwartz et al., 2012; Decatur, 

2000). As a field of study, machine learning sits at the crossroads of 

computer science, statistics and a variety of other disciplines concerned with 
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automatic improvement over time, and inference and decision-making 

under uncertainty. Related disciplines include the psychological study of 

human learning, the study of evolution, adaptive control theory, the study 

of educational practices, neuroscience, organizational behavior, and 

economics. Although the past decade has seen increased crosstalk with 

these other fields, we are just beginning to tap the potential synergies and 

the diversity of formalisms and experimental methods used across these 

multiple fields for studying systems that improve with experience. 

 

Supervised Learning Systems 

The most widely used machine-learning methods are supervised learning 

methods. Supervised learning systems, including spam classifiers of e-mail, 

face recognizers over images, and medical diagnosis systems for patients, 

all exemplify the function approximation problem where the training data 

take the form of a collection of (x, y) pairs and the goal is to produce a 

prediction y* in response to a query x*. The inputs x may be classical vectors 

or they may be more complex objects such as documents, images, DNA 

sequences, or graphs. Similarly, many different kinds of output y have been 

studied. Much progress has been made by focusing on the simple binary 

classification problem in which y takes on one of two values (for example, 

“spam” or “not spam”), but there has also been abundant research on 

problems such as multiclass classification, where y takes on one of K labels. 

Supervised learning systems generally form their predictions via a learned 

mapping f(x), which produces an output y for each input x (or a probability 

distribution over y given x). Many different forms of mapping f exist, 

including decision trees, decision forests, linear regression (LDA), support 

vector machines (SVM), neural networks (NN), kernel machines, and 

Bayesian classifiers.  

 

Unsupervised Learning Systems 

While much of the practical success in deep learning has come from 

supervised learning methods, efforts have also been made to develop deep 

learning algorithms that discover useful representations of the input without 

the need for labelled training data (Hinton and Salakhutdinov, 2006). The 

general problem is referred to as unsupervised learning, a second paradigm 

in machine-learning research (Murphy, 2012). Broadly, unsupervised 
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learning generally involves the analysis of unlabelled data under 

assumptions about structural properties of the data (e.g., algebraic, 

combinatorial, or probabilistic). For example, one can assume that data lie 

on a low- dimensional manifold and aim to identify that manifold explicitly 

from data. Dimension reduction methods, including principal components 

analysis, manifold learning, factor analysis, random projections, and auto-

encoders (Murphy, 2012; Hastie et al., 2011) make different specific 

assumptions regarding the underlying manifold (e.g., that it is a linear 

subspace, a smooth nonlinear manifold, or a collection of submanifolds).  

 

Reinforcement Learning System 

A third major machine-learning paradigm is reinforcement learning (Mnhi 

et al. 2015; Sutton and Barto, 1998). Here, the information available in the 

training data is intermediate between supervised and unsupervised learning. 

Instead of training examples that indicate the correct output for a given 

input, the training data in reinforcement learning are assumed to provide 

only an indication as to whether an action is correct or not; if an action is 

incorrect, there remains the problem of finding the correct action. More 

generally, in the setting of sequences of inputs, it is assumed that reward 

signals refer to the entire sequence; the assignment of credit or blame to 

individual actions in the sequence is not directly provided. 

 

Although these three learning paradigms help to organize ideas, much 

current research involves blends across these categories. For example, semi 

- supervised learning makes use of unlabelled data to augment labelled data 

in a supervised learning context, and discriminative training blends 

architectures developed for unsupervised learning with optimization 

formulations that make use of labels.  
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2.3.1. Machine - Learning Models 

Machine learning model selection does not mean only to choose the model 

that better fits the calibrating data, but also to select from a family of models. 

Many issues influence the design of learning algorithms across all of the 

previous paradigms, including whether data are available in batches or 

arrive sequentially over time, how data have been sampled, requirements 

that learned models be interpretable by users, and robustness issues that 

arise when data do not fit prior modelling assumptions. Additionally, from 

a neuro – physiological perspective, different cognitive processes and 

mental states may result in different patterns of brain activations. Machine 

– learning algorithms are seen as pattern recognition techniques that classify 

each pattern into a class according to its features. The features are measured 

or derived from the properties of the signals which contain the 

discriminative information needed to distinguish their different types. The 

design of a suitable set of features is a challenging issue. The information 

of interest in brain signals is hidden in a highly noisy environment, and brain 

signals comprise a large number of simultaneous sources. A signal that may 

be of interest could be overlapped by multiple signals depending on 

different brain processes or artifacts. Therefore, one of the critical point of 

machine – learning techniques is the selection of the relevant features within 

the available ones. High dimensional feature vectors are not desirable due 

to the “curse of dimensionality” in calibrating the algorithms. In other 

words, the feature selection may be attempted examining all possible 

subsets of the features, thus it might take a long time and computational 

demand. However, the number of possibilities grows exponentially, making 

an exhaustive search impractical for even a moderate number of features.  

The aim of BCI applications is the recognition n of a user’s intentions on 

the basis of a feature vector that characterizes the brain activity provided by 

the feature dataset. Either regression or classification algorithms can be used 

to achieve this goal (Lotte et al., 2007). Regression algorithms employ the 

features extracted from EEG signals as independent variables to predict user 

intentions. In contrast, classification algorithms use the features extracted 

as independent variables to define boundaries between the different classes 

in feature space. McFarland and Wolpaw (2005) illustrated the differences 

between the two alternatives. For a two-data classes case, both the 
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regression and the classification approach require the parameters of a single 

function to be determined. In a four-data classes case, assuming that the 

targets are distributed linearly, the regression approach still requires only a 

single function. In contrast, the classification approach requires the 

determination of three functions, one for each of the three boundaries 

between the four classes. Therefore, the classification approach might be 

more useful for two-target applications and the regression approach may be 

preferable for greater numbers of targets, when these targets can be ordered 

along one or more dimensions. Classification algorithms can be developed 

via either offline, online or both of conditions (Nicolas – Alonso and Gomez 

– Gil, 2012). The offline session involves the examination of dataset. The 

statistics of the data may be estimated from observations across entire 

sessions and long-term computations may be performed. The results can be 

reviewed by the analyst with the aim of fine-tuning the algorithms. In 

contrast, online sessions provide a means of evaluation in a real-world 

environment. The data are processed in a causal manner and the algorithms 

are tested in an environment in which the users change over the time as a 

result. Although some researchers test new algorithms with only offline 

data, both offline simulation and online (or simulated online) experiments 

are necessary for effective algorithm design in closed-loop systems. In other 

words, offline simulation and cross-validation can be valuable methods to 

develop and test new algorithms, but only online (or simulated online) 

analysis can yield solid evidence of machine - learning system performance 

(Townsend et al., 2010; Daly and Wolfgang, 2008; McFarland et al., 2006). 

Traditional classification algorithms have been calibrated through labelled 

dataset. It is assumed that the classifier is able to detect the patterns of the 

brain signal recorded in online sessions with feedback. The design of the 

classification step involves the choice of one or several classification 

algorithms from many alternatives. Linear and nonlinear classification 

algorithms have been proposed in the literature, such as k-nearest neighbour 

classifiers, linear classifiers, support vector machines, and neural networks, 

among others (Table 1). Linear methods assume a linear separabilty of the 

data classes. The separability of the classess is measured by two quantities: 

how far are the projected class means apart (should be large), and how big 

is the variance of the data in this direction (should be small). This can be 

achieved by maximizing the so-called Rayleigh coefficient of between and 
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within class variance (Fisher, 1936; Fukunaga, 1990). On the contrary, 

when the classes are not separable linearly, or the source of the data to be 

classified is not well understood, methods for finding good nonlinear 

transformations are required. For example, the classification in input space 

requires some complicated nonlinear (multiparameter) ellipsoid classifier, 

and appropriate feature space representation.  

Finally, certain inherent dangers of classification algorithm usage should be 

pointed out. Although classification algorithms have clearly helped to 

characterize task relevant brain states, several pitfalls may occur when these 

algorithms are used. Bias and variance of the estimated error of the 

algorithms, and their overfitting are the main source of problems (Lemm et 

al., 2011). If a classifier is overfitted, then it will only be able to classify 

classes in calibration or similar data. Classification error is estimated by 

means of cross - validation. Once a classification algorithm is calibrated, the 

algorithm is validated on a testing dataset, which should be independent on 

the calibration dataset. This procedure is usually repeated several times, 

using different partitions of the calibration data. The resulting validation 

errors are averaged across multiple rounds (cross – validations). This 

approach presents some inherent dangers that must be prevented, because 

some elements of the partition may not be independent of each other (auto-

validation) or may not be identically distributed, among other reasons 

(Lemm et al., 2011). 

 

Linear Discriminant Analysis (LDA)  

Linear Discriminant Analysis (LDA) is usually applied to classify patterns 

into two classes, although it is possible to extend the method to multiples 

classes (Garrett et al., 2003). For a two-class problem, LDA assumes that 

the two classes are linearly separable. According to this assumption, LDA 

defines a linear discrimination function y(x) which represents a hyperplane 

in the feature space in order to distinguish the classes. The class to which 

the feature vector belongs will depend on the side of the plane where the 

vector is found. In the case of an N-class problem (N > 2), several 

hyperplanes are used.  

  



CHAPTER 2                                                                Preliminary Concepts 

 

48 

 

Table 1: Summary of the most popular machine learning techniques. 

Generative model Approach Properties 

 

 

 

 

 

 

 

 

 

 

Linear 

 

 

Bayesian analysis 

− Assigns the observed feature vector to 

the labeled class to which it has the   

highest probability of belonging.  

− Produces nonlinear decision 

boundaries. 

− Not very popular in the BCI systems. 

 

 

 

 

LDA 

− Simple classifier with acceptable 

accuracy. 

− Low computation requirements. 

− Fails in the presence of outliers or 

strong noise. Regularization required. 

− Usually two class. Extended multiclass 

version exits. 

− Improved LDA versions: BLDA, 

FLDA. 

 

 

 

SWLDA 

− Extention of the LDA that performs 

feature space reduction by selecting 

suitable features to be included in the 

discriminant analysis. 

− Combination of forward and backward 

LDA. 

− Multi – classes analysis. 

 

 

 

 

 

 

 

 

 

 

NonLinear 

 

 

 

 

SVM 

− Linear and non-linear (Gaussian) 

modalities. 

− Binary or multiclass method. 

− Maximizes the distance between the 

nearest training samples and the 

hyperplanes. 

− Fails in the presence of outliers or 

strong noise.  

− Regularization required. 

− Speedy classifier. 

 

 

 

k - NNC 

− Uses metric distances between the test 

feature and their neighbors. 

− Multiclass. 

− Efficient with low dimensional feature 

vectors.  

− Very sensitive to the dimensionality of 

the feature vectors. 

 

 

ANN 

− Very flexible classifier. 

− Multiclass. 

− Multiple architectures (PNN, Fuzzy 

ARTMAP ANN, FIRNN, PeGNC) 
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The decision plane can be represented mathematically as:  

 

𝑦(𝒙) = 𝑤𝑇𝒙 +  𝑤0       (2.1) 

 

where, w is known as the weight vector, x is the input feature vector and w0 

is a bias. The input feature vector is assigned to one class or the other on the 

basis of the sign of y(x). 

There are many methods to compute w. For example, w may be calculated 

as (Fisher, 1936): 

 

𝑤 =  ∑𝑐
−1 (µ2 −  µ1)        (2.2) 

 

where, μi is the estimated mean of the class i, and ∑𝑐  =  
1

2
 (∑1 +  ∑2) is the 

estimated common covariance matrix. The estimators of the covariance 

matrix and of the mean are calculated as: 

 

∑𝑐 =  
1

𝑛−1
 ∑ (𝑥𝑖 − 𝜇)(𝑥𝑖 − 𝜇)𝑇𝑛

𝑖=1        (2.3) 

 

𝜇 =  
1

𝑛
 ∑ 𝑥𝑖

𝑛
𝑖=1         (2.4) 

 

where, x is a matrix containing n feature vectors x1, x2, …, xn ϵ ℝd. The 

estimation of the covariance defined in Equation (2.3) is unbiased and has 

good properties under usual conditions. Nevertheless, it may become 

imprecise in some cases where the dimensionality of the features is too high 

compared to the number of available trials. The estimated covariance matrix 

is different from the true covariance matrix, because the large eigenvalues 

of the original covariance matrix are over estimated and the small 

eigenvalues are under estimated. It leads to a systematic error which 

degrades LDA performance (Blankertz et al., 2011). For this reason, a new 

procedure has been proposed to estimate the covariance, improving the 

standard estimator defined in the Equation (2.3).   
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The new standard estimator of the covariance matrix is given by:  

 

∑𝑐(𝛾) = (1 −  𝛾)∑𝑐 + 𝛾𝜈𝐼       (2.5) 

 

The γ value is referred to as a shrinkage parameter and is tunable between 0 

and 1. ν is defined as trace(∑𝑐)/d with d being the dimensionality of the 

features space. The selection of a shrinkage parameter implies a trade-off 

and is estimated on the basis of the input data (Vidaurre et al., 2009). Some 

improved algorithms have been introduced based on LDA (Hoffmann et al., 

2008), such as Fisher LDA (FLDA) and Bayesian LDA (BLDA). In the first 

example, performance was improved by projecting the data to a lower 

dimensional space, in order to achieve larger intervals between the projected 

classes and, simultaneously, to reduce the variability of the data in each 

class. However, FLDA does not work well when the number of features 

becomes too large in relation to the number of calibrating examples. This is 

known as the small sample size problem (Hoffmann et al., 2008). The 

second modification can be seen as an extension of the FLDA. BLDA solves 

the small sample size problem by introducing a statistical method known as 

regularization. The regularization is estimated through Bayesian analysis of 

calibrating data and is used to prevent overfitting of high dimensional and 

possibly noisy datasets In comparison to FLDA, the BLDA algorithm 

provides higher classification accuracy and bit-rates, especially in those 

cases where the number of features is large (Hoffmann et al., 2008). 

Additionally, BLDA requires only slightly more computation time, which 

is a crucial requirement in real BCI systems. 

 

Stepwise Linear Discriminant Analysis (SWLDA)  

The SWLDA is an extension of the FLDA which performs a reduction of 

the features’ space by selecting the most significant ones. Particularly, the 

SWLDA consists of combination of forward selection and backward 

elimination analyses, where the input features are weighted using ordinary 

least-squares regression to predict the target class label. The method starts 

by creating an initial model of the discriminant function with the most 

statistically significant feature for predicting the target labels (e.g. p-value 

< 0.5). Then at each new step a new term is added to the model and a 

backward stepwise analysis is performed to remove the least statistically 
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significant feature (e.g. p-value > 0.1). This process goes on until the 

predefined number of significant features is reached or until there are no 

features satisfying the entry/removal condition (Draper and Smith, 2014).  

Regarding the mental workload evaluation, it has been demonstrated that 

linear classifiers outperformed the nonlinear ones (Craven et al., 2006; 

Krusienski et al., 2006). In particular, the SWLDA has been chosen since it 

was shown to be one of the best classifiers for the real-time mental workload 

evaluation (Rabbi et al., 2009; Berka et al., 2007). Generally, several 

cognitive processes interact each other during the execution of a task. Since 

the aim of my PhD is to track the variation of only a specific phenomenon 

(i.e. mental workload or training), the SWLDA has been selected due to the 

possibility to set its parameters, hence statistic criteria, for the features 

selection (see paragraph 3.1 for more details). In fact, the SWLDA is able 

to weight the contribution of the features to the classification model, and to 

find out if each feature has to be inserted into or removed from the model. 

As consequence, by properly acting on the SWLDA’s features selection 

parameters (see paragraph 3.1), if the considered phenomenon is 

sufficiently emphasized by the task, it will be possible to hook and track the 

variation of such phenomenon ongoing the task execution. In fact, the 

SWLDA will consider (into the model) only those brain features able to 

describe univuquely the examined cognitive phenomenon, and which will 

be always turned up by the execution of the proposed task, therefore stable 

over time. 
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2.4. Experimental Tasks 

2.4.1. NASA - Multi Attribute Task Battery (MATB) 

The NASA - Multi Attribute Task Battery (MATB) is a computer-based task 

designed by the NASA to evaluate pilots and operator performance and 

workload (Comstock and Arnegard, 1992). It could be freely download 

from the NASA Website at the following address: 

http://matb.larc.nasa.gov/. It is a standard platform for the evaluation of the 

cognitive operational capability, since it could provide different tasks that 

have to be attended by the subject in parallel, as well as each task could be 

modulated greatly in difficulty (Figure 10).  

 

Figure 10. NASA - Multi Attribute Task Battery (MATB) interface. On the top left 

corner (green circle), there is the emergency lights sub-task; on the top, in the center 

(yellow circle), there is the cursor tracking task; on the left bottom corner (blue circle), 

there is the radio communication task and, finally, in the center on the bottom (red 

circle), there is the fuel managing task. 

In particular, the experimental software requires the simultaneous 

performance of tasks that are generalizations of piloting tasks: tracking 

(TRCK), auditory monitoring (COMM), resource management (RMAN), 
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and response to event onsets (SYSM).The demand of the system monitoring 

task is monitoring the gauges and the warning lights by responding to the 

absence of the Green light, the presence of the Red light, and monitors the 

four moving pointer dials for deviation from midpoint. The demands of 

manual control are simulated by the tracking task. The subject keeps the 

target at the centre of the window by moving the joystick. This task can be 

automated to simulate the reduced manual demands of autopilot. Subjects 

are also required to respond to a communication task. This task presents pre-

recorded auditory messages to the operator at selected intervals during the 

simulation. However, not all of the messages are relevant to the operator. 

The goal of the COMM task is to determine which messages are relevant 

and to respond by selecting the appropriate radio and frequency on the 

communications task window. The demands of fuel management are 

simulated by the resource management task. The goal is to maintain the 

main tanks at 2500 (lbs). This is done by turning On or Off any of the eight 

pumps. Pump failures occur when they are red colored. Four performance 

indexes (one for each subtask) have been defined by means of the log files 

provided by the MATB at the end of the task execution. An example of log 

file is reported in Figure 11. The index for the TRCK task has been defined 

by considering the complement of the ratio between the cursor’s distance 

got by the subject and the maximum of this distance (fixed) from the center 

of the screen. The indexes of the COMM and SYSM tasks have been 

defined as a linear combination of accuracies in terms of correct answers 

(e.g., correct radio or frequency selected) and the complement of the ratio 

between the subject’s reaction time and the maximum time for answering; 

then, the results have been multiplied for “100” in order to obtain a 

percentage. Finally, the index for the RMAN task has been defined as the 

mean value of the fuel’s levels in the tank A and B, multiplied by “100”. In 

order to get a global performance index, the average of the previous indexes 

has been calculated, as the single index was a percentage.  



CHAPTER 2                                                                Preliminary Concepts 

 

54 

 

 

Figure 11. Example of log file provided by the MATB at the end of the task execution. 

The performance indexes have been defined as combination of Reaction Time (RT) and 

correctness of the subject’s responses. 

2.4.2. ATM Environment 

Air traffic management (ATM) is a term largely used to encompass all 

systems that assist aircraft to depart from an aerodrome, transit airspace, and 

land at a destination aerodrome. It includes different areas such as Air 

Traffic Control (ATC), Air Traffic Flow Management (ATFM) and 

Aeronautical Information Services (AIS). Rather than discussing all these 

aspects of the Air Traffic Management Systems, the following studies will 

focus on the area of ATC, in which an Air Traffic Controller (ATCO) 

monitors the movement of a number of aircraft in his area of responsibility, 

typically via flight progress strips and a radar screen and provides control 

instructions to the pilots if need be, e.g. in case of risk of violation of the 

legal safety separations between aircraft. Compared to other safety critical 

and high-hazard domains, such as nuclear power, air traffic control is 

characterized by the key role played by human actors. Despite advances in 

technology, the ATM system is still human-centred. As a matter of fact, 

safety relevant decisions are made mostly by humans, whereas computer 

systems are supporting tools, assisting the controller in monitoring and 

communication tasks. In the review about the levels of automation, 

Parasuraman et al. (2000) argued that safety critical systems, such as air 

traffic control system, are typically less automated. Automation might be 

https://en.wikipedia.org/wiki/Air_Traffic_Flow_Management
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higher in information acquisition and information analysis tasks (provided 

the automation is reliable) and lower for decision selection and moderately 

high for action implementation. Indeed, in ATM system the controller’s 

work is very cognitively demanding. Activities for managing traffic, such 

as solving conflicts, maintain separations between aircraft and coordinating 

traffic involve cognitive processes such as visual scanning, managing 

situation awareness, decision making and attention control. Controllers have 

a key-role in facing system complexity, because their main objective is to 

anticipate and manage unpredictable situations affected by multiple 

elements. Complexity does not regard only the environment. Radio 

communications, phone communications, radar displays and computers are 

all system elements, adding to its complexity. A peculiar characteristic of 

the ATM work is that ATCOs usually perform few recurring tasks – apart 

perhaps from routine tasks such as welcoming aircraft on the frequency and 

handing them off to adjacent sectors. Anyway, even if these tasks are well-

known, their order remains largely unpredictable because of the dynamic 

nature of weather, traffic demands, operational conditions, and so on. ATC 

research could benefit greatly from psyco-physiological approaches, i.e. the 

ability to measure certain physiological indicators known to be linked to 

underlying mental and physiological processes (since the work of air traffic 

controllers involves little physical activity mental processes will be the main 

concern, but physiological artifacts are of some concern, e.g. eye blink 

artefacts on certain EEG signals). Amongst these psychophysiological 

approaches, neurometrics, i.e. measuring the brains electrical activity and 

inferring from these on the activity of the brain is certainly very promising. 

In this regard, specific experiments and ad-hoc ATM scenarios have been 

designed by expert Controllers from the Training Centre of the École 

Nationale de l’Aviatione Civile (ENAC) of Toulouse (France). In addition, 

professional and students en-route Controllers have been recruited and 

involved in the experiments at ENAC. The creation of the ATM tasks has 

started from a scenario already used for training and it has been modified 

according to the objectives and needs of the experiments. The adjustments 

mostly impacted the routes and air-traffic within the air-space sector (adding 

or changing them), while the borders of the sectors have not been changed. 

The air-traffic adjustments has consisted in flights rescheduling and flight 
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levels (FLs) changing. Three ATM scenarios have been defined according 

to the Number of aircraft, Traffic geometry, and Number of conflicts. 

The scenarios have been created with different air-traffic geometries but 

similar difficulty levels, and each of them has been defined as combinations 

of three air-traffic level, Easy (E), Medium (M) and Hard (H), with the aim 

to simulate realistic ATC conditions. The total duration of the scenario is 45 

minutes, while the easy, medium and hard level lasts 15 minutes. During 

the execution of the ATM task, the controller may assume an aircraft before 

it enters the sector and could hand over an aircraft before it actually leaves 

the sector. In other words, the ATCO could anticipate the heavy traffic load 

when they are still in the easy period and, consequently, change the duration 

of the next condition. The estimated level of difficulty, traffic evolution and 

the potential conflicts are reported in the following for each of the 

considered ATM scenario. The reported time of conflict is the time of the 

closest point of approach of two (or three) aircrafts. It means that the de-

conflicting activity of the controller is ahead of such time. The real time can 

not be provided as it might be different for each controller, but the presented 

values still represent the difficulty of the scenario with a shift in time that 

can not be evaluated. 

Scenario #1: The scenario starts with an easy air-traffic condition of 15 

minutes and then it passes through a medium air-traffic (5 minutes) before 

reaching the hard condition (15 minutes). Then, the last 10 minutes presents 

a medium air-traffic load (Figure 12). 

 

Figure 12. Time schedule of the ATM Scenario #1. The air-traffic load transition is easy 

(15 minutes), medium (5 minutes), hard (15 minutes) and, finally, 10 minutes of medium 

air-traffic. 

Figure 13 reports the number of airplanes across the Scenario #1. In the first 

15 minutes, easy conditions, there are only 2 - 4 airplanes, while in the 

medium and hard conditions there are, on average, 8 and 15 aircrafts. As 

quoted previously, since the ATM simulation had to be as much realistic as 

possible, the air-traffic transitions have not been abrupt but, on the contrary, 
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gradual. Table 2 presents the potential flight conflicts during the Scenario 

#1. Most part of the conflicts have been inserted within the hard phase (8:10 

– 8:25) in order to further increase the difficulty of the condition with 

respect to the other ones. 

 

Figure 13. Number of airplanes across the Scenario #1. In the first 15 minutes, easy 

conditions, there are only 2 - 4 airplanes, while in the medium and hard conditions there 

are, on average, 8 and 15 aircrafts. 

Table 2: Potential flight conflicts within the Scenario #1. 

Time Id1 Id2 Id3 Flight 

Level 

Comment 

08:06 AIB003     

08:07 DLH891 RYR1219  FL370  

08:10 KLM1222 AFR1732 FL340  

08:15 RAE569 EZY835 BMM716 FL360  

08:15 TAP537 RYR1219  FL370  

08:17 RYR517 (JKK657 could be conflictual) Speed is 

challenging 

08:22 NJE017 FGHDX  FL370  

08:22 SWR199    

08:26 AMC614 IBE724  FL360  

08:29 COA071 RAM2654  FL380  

08:32 AMB522 BER716 AZA418 FL380 Not real 

conflict but it 

will request 

surveillance 
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Scenario #2: The scenario starts with 15 minutes of medium air-traffic load. 

Then, the air-traffic condition becomes easy (15 minutes) and it ends with a 

hard condition in the last 15 minutes (Figure 14). 

 

Figure 14. Time schedule of the ATM Scenario #2. The air-traffic load transition is 

medium (15 minutes), easy (15 minutes) and hard (15 minutes). 

Figure 15 shows the number of aircrafts within the Scenario #2. In the first 

15 minutes, medium conditions, there are about 12 airplanes, in the easy 

conditions there are on average 6 airplanes and, in the hard condition, the 

number of airplanes reaches upto 25 units (20 airplanes on average). 

 

Figure 15. Number of airplanes across the Scenario #2. In the first 15 minutes, medium 

conditions, there are about 12 airplanes, in the easy conditions there are on average 6 

airplanes and, in the hard condition, the number of airplanes reaches upto 25 units (20 

airplanes on average). 

Table 3 presents the potential flight conflicts during the Scenario #2. Most 

part of the conflicts (14 potential conflicts) has been inserted within the hard 

phase (10:30 – 10:45). In fact, only 3 potential conflicts have been inserted 

in the medium condition (10:00 – 10:15) and 2 in the easy condition (10:15 

– 10:30).  
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Table 3: Potential flight conflicts within the Scenario #2. 

Time Id1 Id2 Id3 Flight Level Comment 

10:08 THY472 DAN562  FL380  

10:08 THY472 FVID  FL340 Gaining on it 

10:09 DLH586 AF4873  FL390  

10:13 VRG715 IBE354 AER284 FL360  

10:18 CSA912 AF4873  FL390  

10:20 AZA589 JKK5432  FL360  

10:35 KLM4321 VAL829  FL390  

10:37 CYP437 TAP264  FL390  

10:37 BAW525 ACA443 AIC532 FL390  

10:37 SWR29G AFR065X  FL350  

10:38 KLM729 SAA324  FL380  

10:38 AFR527    Make it descending 

10:39 LOT313 DLH663  FL360  

10:41 CTM1317 FDVID IBE692 FL340  

10:41 BAW846    Make it climbing 

10:42 CSA219 MSR521  FL360  

10:42 AUA205 NJE370  FL410  

10:45 IBE467 ACA443  FL390  

10:47 AIC532 MAH618  FL390  

Scenario #3: Since the scenario starts with 15 minutes of hard air-traffic 

load, before starting the experiments, 5 minutes have been given to the 

ATCOs to analyse the air-traffic situation and get ready to take position. In 

fact, in real ATC turn-over, the outcoming ATCO has to cooperate with the 

incoming ATCO before leaving the ATC position in order to give enough 

time to the latter to check the ongoing air-traffic situation and to understand 

the conditions of the different assumed aircrafts. After the hard condition, 

the air-traffic load becomes medium (15 minutes) and finally easy for the 

last 15 minutes (Figure 16). 

 

Figure 16. Time schedule of the ATM Scenario #3. The air-traffic load transition is hard 

(15 minutes), medium (15 minutes) and easy (15 minutes). 
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The number of aircrafts within the Scenario #3 is, on average, 21 at the 

beginning (hard condition) and then it starts to decrease to 15 in the medium 

condition and to 10 in the last (easy) condition (Figure 17). 

 

Figure 17. The number of aircrafts within the Scenario #3 is, on average, 21 at the 

beginning (hard condition) and then it starts to decrease to 15 in the medium condition 

and to 10 in the last (easy) condition. 

In Table 4, the potential flight conflicts during the Scenario #3 are reported. 

Most part of the conflicts (10 potential conflicts) has been inserted within 

the hard phase (8:10 – 8:25), while the remaining have been inserted within 

the medium condition (3 potential conflicts) and easy condition (1 potential 

conflicts).   
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Table 4: Potential flight conflicts within the Scenario #3. 

Time Id1 Id2 Id3 Flight Level Comment 

08:13 AUA    Make it climbing 

08:15 SAS618 AFR825  FL360 Not real conflict 

but it will request 

surveillance 

08:15 DAL241 KLM587  FL370  

08:17 CSA148 BAW363  FL390  

08:18 FIN467 AZA339  FL350  

08:20 IBE346 LOT219 FL380  

08:24 ADR258 DAL241  FL370  

08:24 TAP674 RCHDQ1  FL390  

08:25 CCA711 BER330 CTM228 FL340 Speed is 

challinging 

08:25 MAH1128    Make it 

descending 

08:30 DAH248 AFR028 FL360  

08:38 ICE873 FIN557  FL390  

08:39 IBE692 IBE612  FL340  

08:42 AEE734 TAP369  FL380  

The considered air-space has been featured by an en-route sector where the 

air-traffic has been handled and transferred according to the standard 

protocols currently used in the Area Control Center (ACC) of Toulouse. 

Figure 18 shows the sector features. The RU (dark gray) is the considered 

air-sector with routes and beacons (light gray). The radio frequency is FM 

125,305 and the controlled altitude range starts from FL335 to above. The 

RS sector is under RU sector, and air-traffic between those sectors has to 

respect specific procedures, in terms of altitude levels, when flying through 

the RS sector depending on departure or arrival flights. Specifically, 

departing flights through the RS sector have to climb to FL330 before 

crossing RU, while arrival flight through the RS sectors have to descent to 

FL340 before entering the RU air-space. Also, feeder sectors have been 

simulated with the aim to handover traffics within the considered sectors, 

and they are labelled in Figure 18 as OS, OM, N3, G2, M2, I3, I2, S3 and 

S2. The red and green arrows show the traffic flow direction, respectively, 

incoming and outcoming traffic.  
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Figure 18. The RU (dark gray) is the considered air-sector with routes and beacons 

(light gray). The controlled altitude range starts from FL335 to above. The RS sector is 

under RU sector and air-traffic between those sectors is described in the box in the top 

left corner. The feeder sectors are OS, OM, N3, G2, M2, I3, I2, S3 and S2. The red and 

green arrows show the traffic flow direction, respectively, incoming and outcoming 

traffic. 

The operational ATC position (left side in Figure 19) consisted in two 

screens. One of 30" to display radar image, and a second of 21" (WACOM) 

to interact with the radar image (zoom, move, clearances and information). 

The simulated ATC position was very similar to the French Control 

Working Position (CWP) in real ATM environments, except for the 

interface. The WACOM interface was a prototype where the ATCO could 

interact with the RADAR by means of a touch-screen and capacitive-pen. 

Before the experiments, the ATCOs have been trained to use it correctly in 

order to avoid learning effects during the recordings of brain activity. 
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Figure 19. Operational position of the en-route ATCOs. It consisted in two screens. One 

of 30" (RADAR Image) to display radar image, and a second of 21" (WACOM 

Interface) to interact with the radar image (zoom, move, clearances and information). 

Screenshots of the radar screen and of the prototyping interface are reported 

in Figure 20 and Figure 21. In the radar picture are reported the air-sector 

(light gray), routes, waypoints and flights displayed according to their status 

(the white airplanes are the flights assumed by the ATCO). Information of 

neighbour flights are listed under the relative sector. 

To interact with the airplanes, the ATCO has to click on the indirection 

pointing area (gray area on the right side) of the WACOM interface and 

then a pie menu will pop up (Figure 20). From such menu, the controller is 

able to give commands and to look for specific airplane information. 
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Figure 20. The picture reports the air-sector (light gray), routes, waypoints and flights 

displayed according to their status (the white airplanes are the flights assumed by the 

ATCO). Information of neighbour flights are listed under the relative sector. 

 

Figure 21. To interact with the airplanes, the ATCO used the prototypal WACOM 

interface. By cliccling on the indirection pointing area (gray area on the right side), a 

pie menu will pop up. From such menu, the Controller is able to give commands and 

to look for specific airplane information. 
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To make the ATC simulation realistic, two Pseudo Pilots have been 

involved in the experiments with the aim to have real communications with 

the ATCOs. Headsets (headphone and microphone) have been used by the 

ATCOs and Pseudo Pilots. The interface of the pilots is reported in Figure 

22 and it provided information about all the airplanes on the RADAR and 

those assumed by the ATCOs. In particular, the main view shows the 

selected aircraft navigation display. On the left side, the managed aircraft 

are listed, while the second list shows the flights that will be managed next, 

with the currently selected aircraft highlighted. On the bottom of the screen, 

there is the schedule of requested actions for the different flights. 

Furthermore, the Pseudo Pilots could modify the airplane upset depending 

on the ATCOs instructions or intentionally to produce particular events (e.g. 

conflicts). 

 

Figure 22. The interface of the Pseudo Pilots provided information about all the 

airplanes on the RADAR and those assumed by the ATCOs. Furthermore, the Pseudo 

Pilots could modify the airplane upset depending on the ATCOs instructions or 

intentionally to produce particular events (e.g. conflicts). 
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During the ATM simulation, the system recorded different parameters in 

order to define an index of the ATCO performance. In particular, the ATM 

simulator provided information on the reaction times and number of 

airplanes the ATCO assumed in each specific task condition (Easy, Medium 

and Hard). The parameters considered as performance metric are the 

following: 

 Time Shoot: the interaction time needed for delivering an aircraft to 

the next sector; 

 Time Assume: the interaction time for accepting an aircraft in the 

sector; 

 Time Route: the interaction time to display the graphic route of an 

aircraft; 

 Time Cancel: the interaction time between triggering write 

recognition box and pressing of the cancel button; 

 Time Annul: the interaction time between the opening of a pie menu 

or write recognition box and clicking on the radar image 

background; 

 Time Heading: the interaction time between triggering the menu and 

the validation of the inserted value in the write recognition box; 

 Time Turn: the interaction time between triggering the menu and the 

validation of the write recognition box; 

 Time Flight Level: the interaction time between triggering the menu 

and the validation of the write recognition box; 

 Time Direct: the interaction time between triggering the menu and 

selecting the waypoint in the flight plan list. 

Since each ATCO might adopt different strategies to manage the air-traffic, 

their Reaction Times (RT) have been weighted by taking into account the 

number of airplanes (nb) assumed in the different phases of the simulation. 

The performance index, Weighted Mean Reaction Time (WMRT), has then 

been defined as the average of the weighted RTs described previously. An 

example of log file provided by the ATM simulator is reported in Figure 23. 
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Figure 23. Example of log file provided by the ATM simulator. For each session and 

task difficulty, the reaction times and number of assumed airplanes have been collected 

in order to define an index by which quantifying the ATCO performance. 

2.5. Subjective Questionnaires 

2.5.1. NASA - Task Load Index (NASA – TLX) 

The NASA- Task Load Index (NASA-TLX) is a widely-used (Colligan et 

al., 2015), subjective, multidimensional assessment tool that rates perceived 

workload in order to assess a task, system, or team's effectiveness or other 

aspects of performance. It was developed in the 80’ by the Human 

Performance Group at NASA's Ames Research Centre over a three-year 

development cycle that included more than 40 laboratory simulations (Hart 

and Staveland, 1988). It has been used in a variety of domains, including 

aviation, healthcare and other complex socio-technical domains. 

 The total workload score is calculated by the combination of six factors: 

https://en.wikipedia.org/wiki/Ames_Research_Center
https://en.wikipedia.org/wiki/Aviation
https://en.wikipedia.org/wiki/Healthcare
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 Mental Demand: How much mental and perceptual activity was 

required (e.g. thinking, deciding, calculating, remembering, looking, 

searching, etc.)? Was the task easy or demanding, simple or 

complex, exacting or forgiving? 

 Physical Demand: How much physical activity was required (e.g. 

pushing, pulling, turning, controlling, activating, etc.)? Was the task 

easy or demanding, slow or brisk, slack or strenuous, restful or 

laborious? 

 Temporal Demand: How much time pressure did you feel due to the 

rate or pace at which the tasks or task elements occurred? Was the 

pace slow and leisurely or rapid and frantic? 

 Performance: How successful do you think you were in 

accomplishing the goals of the task set by the experimenter (or 

yourself)? How satisfied were you with your performance in 

accomplishing these goals? 

 Effort: How hard did you have to work (mentally and physically) to 

accomplish your level of performance? 

 Frustration: How insecure, discouraged, irritated, stressed and 

annoyed versus secure, gratified, content, relaxed and complacent 

did you feel during the task? 

At the end of the task or during the execution of the task, the NASA-TLX 

is presented and the subjects have to rate each factor (from 0 to 100).  

Later, the factors are compared in pairs to each others, and the number of 

times each factor is chosen is the weight by which the previous rates will be 

multiplied. The linear combination of the weighted rates is then divided by 

15 (number of total comparisons) and the NASA-TLX total score (value 

from 0 to 100) will be provided. The NASA-TLX can be administered using 

paper sheets or digital interfaces (NASA, 2013). An example of interface is 

reported in Figure 24. While there are multiple ways to administer the 

NASA-TLX, some may change the results of the test. One study showed 

that the paper sheets version led to less cognitive workload than the digital 

one (Noyes and Bruneau, 2007). To overcome the delay in administrating 

the test, the digital version can be used to submit the test immediately after 

the task is completed in order to capture accurate workload perception. 
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Figure 24. Example of NASA - TLX interface. The total workload index is a weighted 

combination of six factors: mental demand, physical demand, temporal demand, 

performance, effort and frustration. 

2.5.2. Instantaneous Self Assessment (ISA) 

Instantaneous Self Assessment (ISA) is a technique that has been developed 

as a measure of workload to provide immediate subjective ratings of work 

demands during the performance of primary work tasks (Brennen, 1992; 

Jordan, 1992). The ISA was originally developed by the National Air Traffic 

Service (NATS) in UK for use in the assessment of air traffic controller’s 

mental workload during the design of future ATM systems (Kirwan et al 

1997). It has then been used by other UK organisations, including  the Air 

Traffic Control Evaluation Unit (ATCEU) at Bournemouth airport, the 

Defence Evaluation and Research Agency (DERA) in Portsdown and the 

Royal Navy’s research organisation (now part of QinetiQ), and also 

European organizations, the Eurocontrol Experimental Centre (EEC), the 

Centre d’études de la navigation aérienne (CENA) and by the 

Rijksluchtvaartdienst (RLD) of Netherland (now Civil Aviation Authority – 
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CAA). ISA involves participants self-rating their workload during a task 

(normally every two minutes) on a scale of 1 (low) to 5 (high). Kirwan et al 

(1997) used the following (Figure 25) ISA definitions to assess air traffic 

controllers (ATC) workload. 

 
Figure 25. Example of ISA scale. When the ISA scale is presented to the user, he\she 

has to select a value from 1 (very low) to 5 (very high) in order to score the perception 

of the workload on that moment. 

Typically, the ISA scale is presented to the participants in the form of a 

colour-coded keypad. The keypad flashes and sounds when the workload 

rating is required, and the participant simply pushes the button that 

corresponds to their perception of workload (Figure 26). Alternatively, the 

workload ratings can be requested and acquired verbally. The appeal of the 

ISA technique lies in its low resource usage and its low intrusiveness. In 

fact, the output of the ISA (values from 1 to 5) allows a workload profile for 

the task under analysis to be constructed and it is very quick in its 

application as data collection occurs during the trial. Whilst the technique 

might be a bit obtrusive to the primary task, it is probably the least intrusive 

of the on-line workload assessment techniques.  
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Figure 26. The ISA test is typically presented to the participants in the form of a colour-

coded keypad. The keypad flashes and sounds when the workload rating is required, and 

the participant simply pushes the button that corresponds to their perception of 

workload. 
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3. The Workload 

The Workload is a complex construct that is assumed to be reflective of an 

individual’s level of attentional engagement and mental effort (Wickens, 

1984). Measurement of mental workload essentially represents the 

quantification of mental activity resulting from performing a task or set of 

tasks. Several empirical investigations have indicated that performance 

declines at either extremes of the workload demand continuum , that is when 

the event rate is excessively high as well as when the event rate is extremely 

low (Borghini et al., 2012a). Consequently, it is important to preserve a 

good level of the user’s mental workload, avoiding mental under- or over-

load state, with the aim to maintain an optimal level of performance and 

reducing the probability of errors commission (Borghini et al., 2014; 

Parasuraman and Hancock, 2001). For these reasons, the mental workload 

is an important and central construct in ergonomics and human factor 

researches.  

Various mental workload definitions have been given during the last 

decades: 

 “Mental workload refers to the portion of operator information 

processing capacity or resources that is actually required to meet 

system demands” (Eggemeier et al., 1991); 

 “Workload is not an inherent property, but rather it emerges from 

the interaction between the requirements of a task, the 

circumstances under which it is performed, and the skills, behaviors,  

and perceptions of the operator” (Hart and Staveland, 1988);  

 “Mental workload is a hypothetical construct that describes the 

extent to which the cognitive resources required to perform a task 

have been actively engaged by the operator” (Gopher and Donchin, 

1986); 

 “The reason to specify and evaluating the mental workload is to 

quantify the mental cost involved during task performance “in order 

to predict operator and system performance” (Cain, 2007). 
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Such definitions show that the mental workload may not be a unitary 

concept because it is the result of different interacting aspects. In fact, 

several mental processes, such as alertness, vigilance, mental effort, 

attention, mental fatigue, drowsiness, and so on, can be involved in the 

meanwhile of a task execution and they could be affected by specific tasks 

demand in each moment. In general, mental workload theory assumes that: 

(i) people have a limited cognitive and attentional capacity, (ii) different 

tasks will require different amounts (and perhaps different types) of 

processing resources, and (iii) two individuals might be able to perform a 

given task equally well, but differently in terms of brain activation 

(Baldwin, 2003; Wickens, 1984).  

In the last 20 years, it has been widely documented that the 70% of civil 

aviation accidents were linked with human factors (Bellenkes, 2007). 

Recently, the Aviation Safety Network reported 37 accidents with 564 

casualties, and 8 accidents with 295 casualties, respectively, during the 2013 

and the first months of the 2014. Moreover, the air traffic is growing 

exponentially and it has been predicted to double in the 2020 (Flight Safety 

Foundation). This factor would increase the work difficulty of Pilots and 

Air Traffic Controllers (ATCOs). In particular, the latter ones have to 

perform a variety of tasks, including monitoring air traffic, anticipating loss 

of separation between aircrafts, and intervening to resolve conflicts and 

minimize disruption to air traffic flow (for an extensive compilation of the 

tasks and goals of en-route control, see Rodgers and Drechsler, 1993). In 

this domain, the Pilots and ATCOs’ behaviour could already be measured 

through several human factor tools, such as the explicit measurement of 

errors committed during the execution of the task, or by using 

questionnaires related to the subjective workload perception, such as the 

Instantaneous Self Assessment (ISA, Kirwan et al., 2001), NASA – Task 

Load IndeX (NASA-TLX, Hart and Staveland, 1988) or the Subjective 

Workload Assessment Technique (SWAT, Reid and Nygren, 1988) 

questionnaires. Because of their inherently subjective nature, none of such 

questionnaires allows to have an objective and reliable measure of the actual 

cognitive demand in a real environment. All the described questionnaires 

have pros and cons, but there is not a generally accepted standard (Rubio et 

al., 2004). Therefore, the need of an objective measure became fundamental 

for reliable workload evaluations. 
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Many neurophysiological measures have been used for the mental workload 

evaluation, including Electroencephalography (EEG), functional Near-

InfraRed (fNIR) imaging, functional Magnetic Resonance Imaging (fMRI), 

Magnetoencephalography (MEG), and other types of biosignals such as 

Electrocardiography (ECG), Electrooculography (EOG) and Galvanic Skin 

Response (GSR) (Borghini et al., 2012a, b; Ramnani and Owen, 2004; 

Wood and Grafman, 2003). The size, weight, and power constraints, 

outlined in the Introduction, limit the use of some techniques in real 

operational environments. In fact, fMRI (Cabeza and Nyberg, 2000) and 

MEG techniques require room-size equipment that are not portable, as 

appropriate structures, electro-magnetic interference-shields. EOG, ECG 

and GSR activity measurements highlighted correlations with some mental 

states, but they have been demonstrated to be useful only in combination 

with measures directly linked to the brain activity (Borghini et al., 2012a; 

Ryu and Myung, 2005). Consequently, the EEG and fNIR are the most 

likely candidates that can be straightforwardly employed in operational 

environments.  

According to the idea that the higher the mental workload level is, the 

greater the brain blood oxygenation will be, the functional Near Infrared 

spectroscopy (fNIRs) has also been demonstrated to be another reliable 

mental workload measurement technique (Derosière et al, 2013; Cui et al., 

2011). fNIR spectroscopy is safe, highly portable, user-friendly and 

relatively inexpensive, with rapid application times and near-zero run-time 

costs, so it could be a potential portable system for measuring mental 

workload under realistic settings. The most common fNIR system uses 

infra-red light introduced in the scalp to measure changes in blood 

oxygenation. Oxy-hemoglobin (HbO2) converts to deoxy-hemoglobin 

(HbR) during neural activity, that is the cerebral hemodynamic response. 

This phenomenon is called Blood-oxygen-level dependent (BOLD) signal. 

fNIRs has been shown to compare favorably with other functional imaging 

methods (Huppert et al., 2006) and demonstrates solid test - retest reliability 

for task-specific brain activation (Herff et al., 2013; Plichta et al., 2006). 

Thus, the primary hypothesis was that blood oxygenation in the prefrontal 

cortex, as assessed by fNIR, would rise with increasing task load and would 

demonstrate a positive correlation with the mental workload. In fact, 

Izzetoglu et al. (2004) indicated clearly that the rate of changes in blood 
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oxygenation was significantly sensitive to task load variations. Regarding 

the EEG measurements, most part of the studies shown that the brain 

electrical activities mainly considered for the mental workload evaluation 

are the theta and alpha EEG rhythms, in particular on the Pre-Frontal 

Cortex (PFC) and the Posterior Parietal Cortex (PPC) regions. The theta (4 

– 8 Hz) rhythm, especially over the PFC, presents a positive correlation, i.e. 

increases when the mental workload increases (Gevins and Smith, 2003; 

Smit et al., 2005), while the alpha (8 – 12 Hz) rhythm, especially over the 

PPC, presents an inverse correlation, i.e. decreases, (Brookings et al., 1996; 

Gevins et al., 1997; Jaušovec and Jaušovec, 2012; Klimesch et al., 1997; 

Venables and Fairclough, 2009). Only few studies have reported results 

about other EEG bands, i.e. the delta, beta and gamma EEG rhythms. Onton 

et al. (2005) reported that the frontal midline theta rhythm increases with 

memory load, confirming previous results about the correlation between the 

frontal theta EEG activity and mental effort (Gevins et al., 1997; Smit et al., 

2005). Mental workload is also known to suppress EEG alpha rhythm and 

to increase theta rhythm during activity of encoding and retrieval of 

information (Klimesch et al., 1997; Klimesch, 1999). Several researches in 

the ATM domain treated the neurophysiological measurements of ATCOs’ 

mental workload in realistic settings with the aim of developing HMI 

systems. These studies were based on both EEG and fNIRs techniques. It 

has been discussed how each technique is able to provide a reliable 

estimation of mental workload. The propensity in using EEG or fNIRs 

techniques in such kind of applications has not been clarified yet. In fact, 

there are several factors to take into account about real operational 

scenarios. For example, both EEG and Fast Optical Signal (FOS)-based 

fNIR have similar bandwidth and sample rate requirements, as the FOS 

appears to directly reflect aggregated neural spike activity in real-time and 

can be used as a high-bandwidth signal akin to EEG (Medvedev et al., 

2008). However, EEG and fNIRs systems have different physical interfaces, 

sizes, weights and power budgets, thus different wearability and usability in 

real operational contexts. Specifically, the physical interface merits 

scrutiny, as it is non-trivial to maintain a good contact between the sensors 

(i.e. electrodes or optodes) and the brain scalp in freely-moving tasks. The 

use of fNIRs eliminates motion artifacts and the need of both scalp abrasion 

and conductive gel. In addition, there is not the necessity to wear a cap but 
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only a headband. Furthermore, unlike EEG, fNIRs recordings are not 

affected by electroculographic or facial electromyographic activity and 

environmental electrical noise, which are undoubtedly ubiquitous in human-

computer interactions. Thus, this technology could appear more suitable in 

realistic environments (Goldberg et al., 2011). In two recent studies (Ayaz 

et al. 2012, 2013), the use of fNIRs technique to assess the mental workload 

has been investigated in the ATM environment. Based on the hypothesis 

(Durantin et al., 2014; Izzetoglu et al., 2004; Owen et al., 2005) that the 

hemodynamic response over the dorsolateral and ventrolateral prefrontal 

cortex was positively responsive to mental workload, Ayaz et al. (2012) 

demonstrated how the BOLD signal was a reliable workload indicator. In 

fact, by using this index, it was possible to discriminate significantly the 

different workload requested by two different communication types (Data 

and Voice) on 24 professional ATCOs. Furthermore, Ayaz et al. (2012, 

2013) and Bunce et al. (2011) showed that fNIR could be successfully used 

in realistic environments to assess: i) mental workload levels of ATCOs 

performing standardized n-back task and operative ATM tasks, and ii) 

expertise development when learning a complex cognitive and visuo-motor 

tasks on Unmanned Aerial Vehicles (UAV) Pilots. However, in a recent 

study, Harrison et al. (2014), reported how the BOLD signal showed a lower 

resolution than the subjective measures (ISA, Kirwan et al., 2001) to 

evaluate the mental workload of ATCOs involved in the experiment. In 

particular, while the task was becoming more difficult, the subjective 

measure was still increasing, and the BOLD signal (neurophysiological 

index) reached its maximum, lingering on this value. Furthermore, the 

BOLD signal, used as workload index, was shown to be not reliable over 

time since the workload measurements performed in different days were 

significantly different and in discordance with the subjective measures. 

Indeed, also this technique has its weaknesses. Since the presence of hair 

may impact on both photon absorption (Murkin and Arango, 2009) and the 

coupling of the probes with the underlying scalp, the fNIRs technique is 

very reliable only on those un-hairy brain areas, like the PFC. As quoted 

above, also the parietal brain sites play a key role in the mental workload 

evaluation, and Derosière et al. (2013) pointed out how some fNIRs-

measured hemodynamic variables were relatively insensitive to certain 

changes in mental workload and attentional states. Due to its higher 
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temporal resolution and usability, in comparison with the fNIRs technique, 

the EEG technique overcomes such kind of issues. 

In addition, there are several studies in ATM domain that highlighted the 

high reliability of EEG-based mental workload indexes (Brookings et al., 

1996). The results showed that the effects of the task demand were evident 

on the EEG rhythms variations. EEG power spectra increased in the theta 

band, while significantly decreased in the alpha band as the task difficulty 

increased, over central, parietal, frontal and temporal brain sites. In a recent 

study, Shou et al. (2012) evaluated the mental workload during an ATC 

experiment using a new time-frequency Independent Component Analysis 

(tfICA) method for the analysis of the EEG signal. They found that “the 

frontal theta EEG activity was a sensitive and reliable metric to assess 

workload and time-on-task effect during an ATC task at the resolution of 

minute(s)”. In other recent studies involving professional and trainees 

ATCOs (Aricò et al., 2015a,b, 2014c; Di Flumeri et al., 2015; Borghini et 

al., 2014), it has been demonstrated how it was possible to compute, by 

machine-learning techniques and specific brain features, an EEG-based 

Workload Index able to significantly discriminate the workload demands of 

the ATM task. In those studies, the ATM task was developed with a 

continuously varying difficulty levels in order to ensure realistic ATC 

conditions, i.e. starting form an easy level, then increasing up to a hard one 

and finishing with an easy one again. The EEG-based mental workload 

index showed to be directly and significantly correlated with the actual 

mental demand experienced by the ATCOs during the entire task. The same 

EEG-based Workload Index was also used to evaluate and compare the 

impact of different avionic technologies on the mental workload of 

professional helicopter pilots (Borghini et al., 2015a) and to. Furthermore, 

the machine-learning techniques have been successfully used in other real 

environments for the evaluation of mental states (Müller et al., 2008) and 

mental workload (Berka et al., 2004, 2007). Even if the main limitation of 

the EEG is its wearability, technology improvements (Liao et al., 2012) 

have being developed and tested in terms of dry electrodes (no gel and 

problems of lowering the impedances), comfort, ergonomic and wireless 

communications (no cables between the EEG cap and the recording system. 

In conclusion, the EEG technique seems to be the appropriate solution to 

evaluate the mental workload in realistic and operational settings, and to be 
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integrated in passive BCI systems. Such systems will support the operator 

during his/her working activity in order to improve the works wellness and, 

most of all, the safety standards of the whole environment. 

Workload and Autonomic Signals: Heart and Eyes Activities 

Heart Rate (HR) has been demonstrated to be considered a reliable measure 

of mental workload by many studies. Generally, there is a direct correlation 

between workload and heart rate, so when the first increases the second 

increases as well (Hankins and Wilson, 1998; Wilson et al., 1999; Costa, 

1993; Jorna, 1992; Roscoe, 1993; Veltman and Gaillard, 1996; Wilson et 

al., 1994). Nevertheless, some authors are critical respect the use of HR for 

evaluating workload, because of the various psychological, environmental 

and emotional factors that can influence the response (Jorna, 1992; Roscoe, 

1993; Lee and Park, 1990). For example, uncertainty and anxiety can 

significantly raise heart rate (Jorna, 1993). Gravitational forces may also 

affect this technique (Wilson, 1993). Furthermore, heart rate does not 

measure absolute levels of workload, but relative levels (Roscoe, 1992; 

Roscoe, 1993). This may be a benefit in real-world rather than simulated 

situations because there is less control over variables (Roscoe, 1993). In a 

study on multitasking performance, (Fairclough, 2005) explored the 

interaction between learning and task demand on psychophysiological 

reactivity. These authors used EEG activity, cardiac activity, respiration rate 

and to evaluate the impact of task demand and learning and found that the 

sustained response to task demand was characterized by a reduction of 

parasympathetic inhibition (reduced vagal tone and increased heart rate), 

reduced eye blink duration. This sustained response may represent the state 

of focused concentration that was necessary to perform a multitasking 

activity. 

In a flight experimental scenario, (Wilson, 1993) evaluated ten pilots who 

were required to fly a 90-minute to test the reliability of 

psychophysiological measures of workload. Cardiac, electrodermal and 

electrical brain activity measures were highly correlated and exhibited 

changes in response to the demands of the flights.  

Using the eye activity measurement, he found that blink rates decreased 

during the more highly visually demanding segments of the flights. 
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Another important technique to assess the mental workload is the analysis 

of the Eye Blinks Rate (EBR). In effect, eye blinks and blink duration 

decrease when visual workload intensifies (Hankins and Wilson, 1998; 

Brookings et al., 1996; De Waard, 1996; East, 2000; Van Orden, 1999). It 

has been shown that, although ocular measures are sensitive to mental 

demands, they are affected by other factors, such as fatigue, body or head 

moves and environmental changes. A change in light or air quality may 

influence eye blinks rate (De Waard, 1996). Some studies (Sirevaag et al., 

1993) presented contradictory results caused by different methods used for 

the experiments. Furthermore, as reported by (Cain, 2007), blinks measures 

can be context dependent. Blinks rate decrease with increased workload 

with the processing of visual stimuli, while increases with the augment of 

workload in memory tasks (Wilson, 1993). Effectiveness, according to 

Castor (Castor, 2003), the connection between blinks rate and workload 

seems tenuous. Blink closure duration decreases with increasing of visual 

stimuli workload or acquisition of data from a wide field of view, while 

blink latency increases with memory and response demands (Castor, 2003). 

Stern and Skelly (1984) found that blinking is “inhibited during the 

acquisition of information, whether such information is presented visually 

or auditory. Once a decision is made whether it requires action or requires 

the inhibition of action, a blink is likely to occur. The non-inhibition of 

blinking during that time periods is associated with a higher probability of 

occurrence of missed signals and erroneous responses”. In the field of flight 

and driving research, some authors tried to discriminate between visual and 

mental workload to make the eye blinks (Van Orden, 1999) and eye blinks 

duration (Sirevaag, 1993) as a good index of estimation in some aspects of 

mental workload (Miller, 2001). Some authors found eye blinks as a good 

measure for visual workload (East, 2000; Brookings et al., 1996; Hankins 

and Wilson, 1998). Brookings et al. (1996) in a study of Air Traffic Control 

simulation (description below in Air Traffic Control section), found that 

blinks rate decreased significantly when the task became more difficult.
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3.1. Automatic Stop StepWise Linear Discriminant 

Analysis (asSWLDA) 

Nowadays, the effects of day-to-day fluctuations in the operator's 

physiology have not been thoroughly assessed while operators are engaged 

in complex tasks. Different studies showed that the performance of 

classifiers in evaluating the different mental workload levels of the user 

dramatically decrease over days (Burgess and Gruzelier, 1993; Christensen 

et al., 2012; McEvoy et al., 2000; Pollock et al., 1991; Salinsky et al., 1991). 

Recent attempts have been made to test the stability of different classifiers 

for assessing the mental workload of the user across different days. It has 

been found that the performance of three different classifiers were 

significantly negatively impacted by the features time-stability (Christensen 

et al., 2012). In this regards, authors considered all the frequency bands (0.1 

– 100Hz) in the calibration stage of the classifier, and probably the 

classifiers could not be able to select the features strictly related to the 

mental workload because of the big amount of information. Reliability of 

the system is of great importance for a practical usability of such approach 

in real working contexts. In fact, the necessity to re-calibrate the system 

every day make such kind of approach unusable in operational 

environments. In this study, I propose a new classification approach able to 

automatically optimize the features selection process, in order to make the 

classification performances of the considered mental state (e.g. mental 

workload) stable over time. In particular, I propose a new implementation 

of the Stepwise Linear Discriminant Analysis (SWLDA), the automatic-

stop SWLDA (asSWLDA). The SWLDA is an extension of the Linear 

Discriminant Analysis (LDA, Fisher, 1936) and it is one of the best 

outperforming linear classifiers (Rabbi et al., 2009; Berka et al., 2007; 

Craven et al., 2006; Krusienski et al., 2006) which performs a reduction of 

the features’ space by selecting the most significant ones. In fact, with 

respect to other linear methods, it has the advantage of having automatic 

features extraction in order to statistically remove the insignificant terms 

from the model. Particularly, the SWLDA regression consists in the 

combination of forward and backward stepwise analyses, where the input 
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features are weighted by using ordinary least-squares regression to predict 

the target class label. The method starts by creating an initial model of the 

discriminant function in which the most statistically significant feature is 

added to the model for predicting the target labels (pvalij < αENTER), where 

pvalij represents the p-value of the i-th feature at the j-th iteration (in this 

case the first iteration). Then, at each new iteration, a new term is added to 

the model (if pvalij < αENTER). If there are not more features that satisfy this 

condition, a backward elimination analysis is performed to remove the least 

statistically significant feature (if pvalij > αREMOVE). The standard 

implementation of the SWLDA algorithm uses αENTER = 0.05 and αREMOVE = 

0.1, and no constrains on the IteractionMAX (predefined number of iterations) 

parameter are imposed, that is, the feature selection keeps going unless there 

are no more features satisfying the entry (αENTER) and the removal (αREMOVE) 

conditions (Draper and Smith, 1998). Normally, it is possible to optimize a 

SWLDA regression by tuning all or some of the three parameters available 

in the algorithm (αENTER, αREMOVE and IteractionMAX). There are not standard 

procedures to choose these parameters, and they could be manually gauge. 

Despite the strength of the method, it is easy to realize how it would be 

difficult to set properly the parameters in order to optimize the algorithm.  

In fact, since the probability associated to each feature is strictly related to 

the actual iteration and to the other features, this probability changes 

iteration by iteration, and it would result very difficult to impose a condition 

by manually trimming αENTER and αREMOVE. In addition, even if no constrains 

on the αENTER and the αREMOVE parameters are imposed, the features are 

included in the model in order of significance (i.e. the first feature is the 

most significant one, and so on). As consequence, the value of the 

IterationMAX parameter will affect the reliability of the classifier over time 

(optimum classifier, underfitting or overfitting). The expected result is that 

the more general the classification calibration would be, the higher the 

reliability of the algorithm over time will be (Vapnik, 2000). For example, 

if the value of the parameters are too selective, that is αENTER and/or αREMOVE, 

and/or IterationMAX values very low, the features added to the model will 

not be sufficient for predicting the target labels (underfitting, von Luxburg 

and Schoelkopf, 2008). On the contrary, if αENTER and/or αREMOVE, and/or 

IterationMAX values are too high, most of the features added to the final 

model will be related to spurious differences between the classes of the 



CHAPTER 3                                                                                  Workload 

 

82 

 

training dataset, that are obviously not generalizable, so that, the reliability 

of the algorithm will decrease over time (overfitting, Vapnik, 2000). The 

optimum solution to these problems would be to find out a criteria able to 

automatically stop the algorithm when the best number of features, 

#FeaturesOPTIMUM, are added to the model. The idea to fix such issues, for 

the proposed applications, was to define a criteria such that the number of 

the SWLDA interations (IterationMAX) is: #FeaturesUNDERFITTING < 

#FeaturesOPTIMUM < #FeaturesOVERFITTING. In other words, I wanted to make 

the SWLDA algorithm able to automatically select the right number of 

features (#FeaturesOPTIMUM) to avoid both the underfitting and overfitting 

issues. In order to achieve such goal, I analyzed the p-convergence function 

of the SWLDA classification model (Conv(#iter)). Since more the number 

of iterations increases (more features are added to the model), more the p-

value of the model (pModel) decreases (tending to zero) with a decreasing 

exponential shape (convergence of the model), the idea of the best trade-off 

between the lowest number of features and the convergence of the model 

was to automatically-stop the SWLDA (asSWLDA) algorithm in 

correspondence of the minimum distance from the (0,0)-point, that is, when 

the Conv(#iter) function assumed the lowest distance from the origin. In 

Figure 27a is reported the trend of the Conv(#iter) function for a 

representative subject. 

The pModel values were returned by the MATLAB function of the 

SWLDA, and they have been collected for all the SWLDA iterations 

(pModel(#iter)). Then, the log10 of the pModel vector 

(log10(pModel(#iter)) has been applied to gather information about the 

pModel order. Figure 27b shows how the order of the model decreases with 

the number of interactions. The pModel parameter is available in the output 

of the standard SWLDA implementation and it provides information about 

the global significance of the model at the j-th iteration.  

To estimate the p-convergence function (Conv(#iter)) and the information 

about the size of pModel order, the log10 of the first-order differences 

between adjacent pModel elements has been calculated by the formula (3.1). 

𝐶𝑜𝑛𝑣(#iter) = 𝑙𝑜𝑔10(𝑝𝑀𝑜𝑑𝑒𝑙(#iter + 1)) − 𝑙𝑜𝑔10(𝑝𝑀𝑜𝑑𝑒𝑙(#iter))     (3.1) 
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Figure 27. Representation of the a) pModel vector, the b) log10 of the pModel vector 

and the c) Conv function for each iteration, for a representative subject. In particular, in 

the figure (c) there are also showed i) the Conv(#iterBEST), in other words the lower 

distance of the Conv(#iter) function from the point (0,0) and ii) the correspondent 

IterationMAX, that is #iterBEST. 

Finally, the best IterationMAX value has been identified as the number of 

iterations at which the Conv(#iter) assumed the lowest distance from the 

origin (IterationBEST), plus one because of the first-order differences: 

‖𝐶𝑜𝑛𝑣(#𝑖𝑡𝑒𝑟𝐵𝐸𝑆𝑇)‖ = 𝑚𝑖𝑛‖𝐶𝑜𝑛𝑣(#𝑖𝑡𝑒𝑟)‖        (3.2) 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝐴𝑋 =  #𝑖𝑡𝑒𝑟𝐵𝐸𝑆𝑇 + 1         (3.3) 

In fact, the best condition for the aim of the considered studies (training 

assessment and workload evaluation over time) is to have a low numbers of 

features and, at the same time, the convergence of the model:  

𝑙𝑜𝑔10(𝑝𝑀𝑜𝑑𝑒𝑙(#iter + 1)) − 𝑙𝑜𝑔10(𝑝𝑀𝑜𝑑𝑒𝑙(#iter)) = 0      (3.4) 

Figure 27c shows the graphical meaning of the IterationBEST selection.  

In order to assess the feasibility and reliability over-time of the asSWLDA 

algorithm in discriminating the workload and the differences with respect 

to the standard-SWLDA, a proper EEG dataset has been selected and the 

entire study is described in the following section. 
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3.2. Over Time Reliability and Workload Evaluation: 

SWLDA vs asSWLDA 

In this study, the performances of the asSWLDA and of the standard 

SWLDA have been compared to assess the reliability of the two algorithms 

over time (one week) in terms of different workload levels discrimination. 

The methods have been tested on users while performing the MATB (see 

paragraph 2.3.1) under three different difficulty levels (Easy, Medium and 

Hard). The MATB has been chosen due to its flexibility in modulating 

workload demand in a very controlled and standardized way. Finally, the 

algorithms have been tested in a simulated operational environment. 

3.2.1. Experimental Protocol 

Subjects 

Ten healthy volunteers (students of the National University of Singapore - 

NUS) have given their informed consent for taking part in the experiments. 

Each of them has been paid SG$200 for the entire experimental period. The 

study protocol has been approved by the local Ethics Committee. The 

selection of the subjects has been done accurately in order to ensure the 

same mental and physical status (homogeneity of the experimental sample). 

The subjects (25±3 years old) have been instructed to maintain a specific 

kind of lifestyle. In particular, they have been asked to avoid alcohol, 

caffeine and heavy meals before the experiments, and to avoid extreme 

physical activity over the entire experimental protocol (homogeneity of the 

“internal conditions” of the subjects). The Lab environment has been kept 

under control (lights intensity, room temperature, seat position) across the 

different days of the experiments (homogeneity of the “external conditions” 

during the experiment). In addition, in order to have low sources of 

variances, the experimental group has been composed only by males.  

Experimental Design 

The experimental protocol (Figure 28) consisted in six recording sessions, 

two sessions per day, one in the morning and one in the afternoon. The first 

four sessions have been performed in two consecutive days, named 
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hereafter as Day 1 and Day 2. The last two sessions have been performed 

after a week from the last one (Day 9). In each session, the subjects 

performed the three MATB (see paragraph 2.3.1) conditions (Easy, Medium 

and Hard) twice in a randomized sequence, in order to avoid any habituation 

and expectation effects. Each condition lasted 2.5 minutes. In summary, the 

whole dataset has been composed of twelve triplets of conditions (four 

triplets of Easy, Medium and Hard conditions for each of the three 

experimental days, two in the morning and two in the afternoon). At the end 

of each task condition, subjects have been asked to fill the NASA-TLX (see 

paragraph 2.4.1) with the aim to gather information about the perceived 

workload during the different difficulty conditions and experimental 

sessions. 

 

Figure 28. Experimental protocol scheme: each subject performed 6 recording sessions 

in three days, two sessions per day. The first four sessions were performed within two 

consecutive days (Day 1 and Day 2), and the others after a week from the last one (Day 

9). In each session, the subjects performed the three MATB difficulty levels (Easy, 

Medium and Hard) twice, randomly proposed. The time duration of each run was 2.5 

minutes. 

EEG Analyses for Mental Workload Evaluation 

Scalp EEG has been recorded by the Waveguard amplifier (ANT-neuro, 

Netherlands) with a sampling frequency of 256 (Hz) by 13 EEG electrodes 

(FPz, F3, Fz, F4, AF3, AF4, P3, Pz, P4, POz, O1, Oz and O2) referenced to 

both the earlobes and grounded to the AFz electrode. Simultaneously, the 

vertical EOG signal has been acquired by bipolar electrodes over the left 

eye, in order to collect the eyes blink of the subjects during the execution of 

the task. Figure 29 shows the steps of the EEG analysis to evaluate the 

mental workload. Firstly, the EEG signal has been band-pass filtered 

between 1 and 30 (Hz) with a fourth-order Butterworth filter. Then, the 

EOG signal has been used to remove eyes-blink contributions from each 
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epoch of the EEG signal, by using the Gratton and Coles (Gratton et al., 

1983). Other specific algorithms, for different sources of artifacts, have 

been applied by using the EEGLAB toolbox (Delorme and Makeig, 2004). 

The segmentation of the EEG has been done in according with Elul (1969), 

that is, with the aim to have a stationary EEG signal within the considered 

epoch, on which it is then possible to apply the methods for the analysis. In 

particular, the EEG signal has then been segmented into epochs of 2 

seconds, shifted of 0.125 seconds. These parameters have been chosen also 

in according with the task duration (2.5 minutes), since, in the classification 

methods is really important to have a high number of observations to 

calibrate the algorithm. In particular, one of the working hypothesis was that 

the number of observations should be greater than the number of variables. 

The Power Spectral Density (PSD) has been calculated for each EEG epoch 

using a Hanning window of 2 seconds length (that means 0.5 (Hz) of 

frequency resolution). Then, the EEG frequency bands have been defined 

for each subject by the estimation of the Individual Alpha Frequency (IAF) 

value (Klimesch, 1999). In order to have a better estimation of the alpha 

peak and, hence of the IAF, the subjects have been asked to keep the eyes 

closed for a minute. Then, this condition has been used for the IAF 

estimation. In this way, a spectral features matrix (EEG channels x 

Frequency bins) has been obtained in the frequency bands directly 

correlated to the mental workload. In particular, only the theta band, over 

the frontal brain sites, and the alpha band, over the parietal brain, sites have 

been considered for the analyses.   
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Figure 29. EEG based workload index (WEEG). The figure explains the algorithm for 

the EEG-based workload index evaluation. The band-pass filtered (0.1-30 Hz) EEG 

signal was segmented into epochs of 2 seconds, shifted of 0.125 seconds. The EOG 

signal was used to remove the eyes-artifact contribution from the EEG signal. Other 

sources of artifacts have been deleted by using specific algorithms. Then, the power 

spectral density (PSD) was evaluated for each EEG channel, taking only the frequency 

bands involved in the mental workload estimation (frontal theta and parietal alpha 

bands). After the asSWLDA (standard SWLDA) was used to select the most relevant 

spectral features for the discrimination of the mental workload levels. A moving average 

of 8 seconds (8MA) was applied to the linear discriminant function (y) in order to reduce 

the variability of the index. 

Mental Workload Index Based on EEG Activity 

A three-classes SWLDA regression has been used to select within the 

training dataset the most relevant EEG spectral features to discriminate the 

three workload conditions (Easy, Medium and Hard). The linear 

discriminant function (ytest(t)) for each window has been computed, by using 

the coefficients (weights: witrain and bias: btrain) returned by the SWLDA 

function (equation 3.5, where fitest(t) represents the PSD matrix of the testing 

dataset at the time sample t, and of the i-th feature). Finally, a moving 

average of 8 seconds (8MA) has been applied to the ytest(t) function in order 

to smooth it out by reducing the variance of the measure, and the EEG-based 

workload index (WEEG , equation 3.6) has been defined. The formula of the 

SWLDA discriminant function (3.5) and the EEG-based workload index 

(3.6) equations are reported in the following: 
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𝑦𝑡𝑒𝑠𝑡(𝑡) = ∑ 𝑤𝑖 𝑡𝑟𝑎𝑖𝑛 · 𝑓𝑖 𝑡𝑒𝑠𝑡(𝑡) + 𝑏𝑡𝑟𝑎𝑖𝑛𝑖          (3.5) 

𝑊𝐸𝐸𝐺 = 8𝑀𝐴 (𝑦𝑡𝑒𝑠𝑡(𝑡))           (3.6) 

Cross-Validations Across the Days 

For each subject, different cross-validations have been performed by 

calibrating the classifier with a triplet of Easy, Medium and Hard 

conditions, and then by testing it over the remainng triplets. In particular, to 

investigate the stability of the measure across the different days, I 

considered three types of cross-validations. The Intra cross-validation type, 

where the training and testing triplets belonged to the same day; the Short 

term cross-validation type, where the training triplets belonged to Day 1 

(Day 2), whilts the testing triplets to Day 2 (Day 1); and finally, the Medium 

term cross-validation type, where the training triplets belonged to Day 1 or 

Day 2 (Day 9), and the testing triplets to Day 9 (Day 1 or Day 2). 

Subjective, Behavioral and Neurophysiological Data Analyses 

Different analyses have been performed: i) NASA-TLX analyses have been 

used to assess if the neurophysiological measures were consistent with the 

perception of the workload; ii) task performance, have been analyzed to 

assess if the subjects reached the saturation of the Learning Curve (Ritter 

and Schooler, 2001), that is, they could maintain the same performance level 

across the sessions; iii) regression performance analyses have been used to 

assess the stability of the neurophysiological workload measure over time; 

iv) neurophysiological workload distributions (WEEG) analyses have been 

used to assess if the three MATB conditions could be discriminated 

correctly by the algorithms; v) the features selected within the same session 

and in the medium term (after a week) have been considered to assess the 

existence of brain features stable over time. Specifically: 

i) NASA-TLX: Subjective workload perception has been obtained by 

asking the subjects to fill the NASA-TLX questionnaire (see paragraph 

2.4.1) at the end of the execution of each task condition. An one-way 

ANOVA (CI = 0.95) has been performed on the NASA-TLX total scores 

(independent variable) and within factor DIFFICULTY LEVEL (3 levels: 

Easy, Medium, Hard). Duncan post-hoc test has been performed to find out 

the differences between the three levels of difficulty. 
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ii) MATB performance: The MATB performance have been collected and 

evaluated for each task condition. A two-way repeated-measures ANOVA 

analysis (CI = 0.95) has been performed on the MATB performance 

(independent variable) with the SESSION NUMBER and the 

DIFFICULTY LEVELS (Medium and Hard) as within factors. 

iii) Regression performance: I have performed analysis by using the two 

classifiers (asSWLDA and standard SWLDA). For each testing triplet, I 

calculated the WEEG indexes. The Area Under Curve (AUC) values of the 

Receiver Operating Characteristic (ROC, Bamber, 1975) have been 

calculated by considering couple of WEEG distributions (Easy vs Hard, 

Medium vs Hard and Easy vs Hard). The area under a ROC curve (which 

can assume values comprised from 0.5 to 1) quantifies the overall ability of 

a binary classifier to discriminate the two classes. If the two classes are not 

discriminable, the AUC will assume the value of 0.5. If the two classes are 

perfectly discriminable, the AUC will assume the value of 1. For the AUC 

analysis, I have averaged the AUC values related to the three couples of 

WEEG distributions (Easy vs Medium, Easy vs Hard, Medium vs Hard) 

considering as between factor the “Classifiers” (asSWLDA or standard 

SWLDA), and as within factor the “Cross-validation types” (Intra, Short 

term, Medium term). In particular, I performed five one-way ANOVAs 

(CI=.95). In the first three ones, I compared the AUC values of the two 

classifiers, for each cross-validation type. After, I performed other two one-

way ANOVA in which I compared the AUC values of the three cross-

validation types, for each classifier. Duncan post-hoc tests have been 

performed to assess significant differences between all pairs of levels of the 

considered factors. 

iv) Neurophysiological workload distribution (WEEG): The WEEG 

distributions have been calculated over the testing conditions by considering 

only the best classifier derived by the previous analysis (iii). In particular, I 

performed three one-way ANOVAs (CI=.95) by which the WEEG 

distributions related to the three difficulty levels (Easy, Medium, Hard) have 

been compared for each cross-validation type (Intra, Short term, Medium 

term). In addition, Duncan post-hoc tests have been performed to highlight 

differences between couples of levels of the considered factors. Before 

every statistical analysis, I used the z-score correction (Zhang et al., 1999) 

on the data to normalize the different behaviors of the subjects.  
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v) For each subject, the selected brain features in the different experimental 

sessions, by the asSWLDA and SWLDA, have been analyzed. In particular, 

two analyses have been performed. The aim of the first analysis was to 

assess the existence of brain features stable over time, selected both at the 

beginning and at the end of the experimental protocol. In other words, I 

investigated if the algorithms were able to select the brain features directly 

linked to the considered cognitive process (i.e. mental workload). In 

particular, it has been counted how many times the single feature was 

selected, during the algorithm calibration phase, in the different EEG 

channels, for each subject and considered session (T6 and T12). To this 

purpose, a zeros-matrix of n rows per m columns (n = EEG channels, m = 

subjects number) has been initialized. When a feature was selected from an 

EEG channel, “1” was summed in the corresponding position of the matrix. 

At the end, the percentages of selection of the EEG channels, across the 

experimental sessions, have been calculated for each subject. The choice of 

considering EEG channels, rather than frequency bins (features), has been 

taken because differences could appear only due to the selection of adjacent 

bins in the same EEG channel.  

The second analysis has been performed to evaluate the capability of the 

brain features, selected by the asSWLDA and SWLDA, to discriminate the 

testing classes. In this regards, the signed r–squares between the Hard and 

Easy conditions have been calculated in the first (T6) and last (T12) testing 

dataset (RSTest). The Coefficient of Determination (r2), or r-square’s value 

is a statistical measure computed over a pair of sample distributions, giving 

a measure of how strongly the means of the two distributions differ in 

relation to variance (Steel and Torrie, 1960). For two datasets x and y, the 

r-square is calculated by the following formula: 

)var()var(

),cov( 2
2

yx

yx
r              (3.7) 

where cov(x,y) is the covariance between the two datasets, and var(•) is the 

variance of the single dataset. As 0 < r2  < 1, by definition, a signed r-square 

has been derived by multiplying the coefficient of determination by the sign 

of the slope of the corresponding linear model of the regression analysis. In 

this way, it has been possible to obtain information not only about if the two 
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datasets were different, but also about the direction of such difference. The 

RSTests values, related to the features selected by the asSWLDA\SWLDA 

algorithm during the calibration phase, have been multiplied by the 

corresponding weights assigned in the T6 (T12) session. Then, the Weighted 

Mean r-square (Wrq) has been estimated for the different testing conditions 

(T6 and T12) and algorithms (asSWLDA and standard SWLDA). In 

particular, two conditions have been defined. The INTRA condition refers 

to the Wrq estimated in correspondence to the features selected within the 

same session, while the INTER condition means that the Wrq has been 

calculated by taking into account the r-square calculated in correspondence 

to the features selected in the other session.  

Paired t-test (α = 0.05) has been performed on the Wrqs estimated by the 

asSWLDA (SWLDA) in the two testing sessions (T6 and T12). The 

hypothesis is that the features selected by the asSWLDA algorithm do not 

differ significantly over time. In other words, there is not significant 

difference between the Wrq in T6 and T12. On the contrary, features 

selected by the standard SWLDA algorithm will differ over time, and this 

will induce a significant reduction in the discriminability of the classes (i.e 

AUC) when the features selected in T6 are used in the testing phase of T12. 
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3.2.2. Results 

NASA-Task Load Index (NASA-TLX) 

Figure 30 shows changes in the perceived workload estimated by the 

analysis of the NASA-TLX scores for the different conditions (Easy, 

Medium and Hard). The workload perception increased as the difficulty of 

the task increased. The ANOVA revealed a main effect of the difficulty 

levels (F(2, 27) = 6.84; p = 0.004). The post-hoc test highlighted that the 

hard condition was perceived significantly higher than the other two (all p 

< 10-2). Although the perceived workload for the Medium task level was 

higher than the Easy one, there was no significant difference between them 

(p = 0.32). 

 

Figure 30. ANOVA results about the perceived workload estimated by the NASA-

TLX questionnaire over the different task conditions (Easy, Medium and Hard). 

MATB Performances 

The ANOVA revealed no significant differences between the MATB 

performance levels (Mean values: 92.7 ± 2.4) achieved by the subjects 

within the different experimental sessions (F(1, 9) = 0.51; p = 0.49). In other 

words, the subjects maintained their skills after the first week of training, 

and they did not show any variations across the considered experimental 

sessions. 



CHAPTER 3                                                                                  Workload 

 

93 

 

Stability Across the Days 

Figure 31 represents the mean AUC values (z-score correction) of the two 

classifiers (standard SWLDA, blue line, and asSWLDA, red line) and the 

three cross-validation types (Intra, Short term and Medium term). The 

ANOVAs related to the comparison of the two classifiers along the three 

cross-validations type, highlighted no significant differences in the Intra 

condition ([asSWLDA vs standard SWLDA]: F(1, 18) = 0.32; p = 0.57). On 

the contrary, significant differences in the Short term and the Medium term 

conditions have been found (Short term [asSWLDA vs standard SWLDA]: 

F(1, 18) = 4.22; p = 0.05; Medium term [asSWLDA vs standard SWLDA]: 

F(1,18) = 6.7; p = 0.02). The ANOVAs on the AUC values of the three 

cross-validation types for each classifier reported the following results. No 

significant differences between the cross-validation types have been 

highlighted for the asSWLDA classifier (asSWLDA [Intra, Short term, 

Medium term]: F(2, 27) = 0.62; p = 0.54). On the contrary, for the standard 

SWLDA a significant effect between the cross-validation types has been 

highlighted (standard SWLDA [Intra, Short term, Medium term]: F(2, 27) 

= 3.57; p = 0.04). In particular, the post-hoc test highlighted a significant 

decrement of the AUC values between the Intra and the Short term and the 

Medium term cross-validations (all p < 0.05). These results demonstrated 

that the asSWLDA classifier allowed to maintain the performance of the 

measure stable across days (no significant difference between the cross-

validation types). On the contrary, the standard SWLDA classifier suffered 

of a significant decrement of the performances across days. In fact, since 

the second day (short term) the performance of the asSWLDA (red line) 

outperformed the standard SWLDA (blue line).   
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Figure 31. Error bars (CI = .95) related to the AUC values (z-score corrected) of the 

classifier by using the two classifiers (asSWLDA – red line, standard SWLDA – blue 

line) and the three cross-validation types (Intra, Short term, Medium term). 

Mental Workload Discrimination 

As consequence of the results described above, I have chosen to evaluate 

how well the asSWLDA was able to discriminate the three MATB 

conditions (Easy, Medium and Hard) across the different days. Figure 32 

shows the time representation of the WEEG index for a representative subject. 

Figure 33 reports the WEEG values measured for each difficulty level (Easy, 

Medium and Hard) for the different cross-validation types (Intra, Short term 

and Medium term). 
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Figure 32. Time representation (time resolution of 8 (sec)) of the WEEG index 

evaluated for the three task conditions. From left to right: Easy, Medium and Hard 

condition for a representative subject. 

ANOVA analyses showed that the WEEG values related to the three 

difficulty levels (Easy, Medium and Hard) were significantly different for 

each cross-validation type (Intra: F(2, 27) = 417.65; p = 10-6; Short term: 

F(2, 27) = 360.9; p = 10-6; Medium term: F(2, 27) = 459.78; p = 10-6). The 

post-hoc test confirmed that the WEEG distributions related to the three 

difficulty levels have been significantly different each other at each cross-

validation type (all p<10-4). The Figure 34 shows the average WEEG values 

distributions for each subject across the cross-validation types. 
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Figure 33. Error bars (CI = .95) related to the WEEG values measured for each 

difficulty level (Easy, Medium and Hard) for the different cross-validation types 

(Intra – blue line, Short term – red line, and Medium term – green line). 

 

Figure 34. Averages of WEEG values distribution in the different task condition (Easy – 

blue bar, Medium – orange bar, and Hard – gray bar) for each subject. 
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Brain Features Stability Over Time 

Figure 35 reports the percentages related to the EEG channels most 

commonly selected by the asSWLDA (on the left) and by the SWLDA (on 

the right). In the asSWLDA case, for each subject there are at least 2 EEG 

channels who have been selected both at the beginning (T6) and at the end 

(T12) of the experimental protocol. Specifically, for 7 subjects out of 10, 

frontal and parietal channels have been always selected, respectively, in the 

theta and alpha EEG frequency bands. 

 

Figure 35. Percentages related to the EEG channels most commonly selected by the 

asSWLDA (on the left) and by the SWLDA (on the right). White color means that brain 

features have been selected in all the considered sessions. On the contrary, the EEG 

channel is black colored if no features have been selected from it. Gray color means that 

the considered EEG channel has been selected only once. 

In the SWLDA case, all the EEG channels have been selected in all the EEG 

bands and considered sessions. The paired t-test on the Wrq corresponding 

to the features selected by the asSWLDA, within a week (T6 and T12), did 

not show any significant (p = 0.1) difference between the INTRA and 

INTER conditions (Figure 36). On the contrary, the standard SWLDA 

reported a significant reduction (p = 0.01) in terms of Wrq, between the 

INTRA and INTER condition.  
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Figure 36. Wrqs corresponding to the brain features selected by the asSWLDA and the 

standard SWLDA in the INTRA (blu bars) and INTER (red bars) condition. The 

asSWLDA did not show any significant difference (p = 0.1) between the INTRA and 

INTER conditions. On the contrary, the standard SWLDA reported a significant 

reduction (p = 0.01) of the Wrqs calculated in the two conditions. 

3.2.3. Discussions 

A new implementation of the SWLDA to optimize the features selection 

and make the workload measure stable across different days (a week) has 

been proposed. In particular, the hypothesis was that, as long as the subject 

is trained in performing correctly a task, the requested cognitive processes 

will be almost the same over time (Borghini et al., 2015b). Moreover, there 

are literature evidences that demonstrated a linear correlation between the 

mental workload and specific EEG rhythms (theta and alpha bands). Based 

on these assumptions, it could be possible to identify the EEG features 

directly related to the mental workload, who remain stable across the days. 

The proposed algorithm (asSWLDA) was able to identify those features and 

to maintain higher workload evaluation performance than the standard 

SWLDA, across the different days (Figure 35). In addition, although the 

asSWLDA generally selected less features than the SWLDA, the Wrqs did 

not differ between the INTRA and INTER condition (Figure 36). In other 

words, the asSWLDA was able to recognize the brain features 
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corresponding to cognitive processes stable over time (T6 and T12), and 

there were no differences in calculating the Wrq with the features selected 

in T6 or T12, that is within a week. On the contrary, significant reduction 

was found on the Wrqs estimated in the INTER condition, with respect to 

the INTRA, with the brain features selected by the standard SWLDA. The 

regression performance analyses (AUC) and the workload distributions 

(WEEG) analyses showed that if the asSWLDA is trained with the features 

related to the mental workload (frontal theta and parietal alpha EEG 

rhythms), it will be possible to make the workload measure stable across the 

days (no significant decrement across Intra, Short term and Medium term 

cross-validations), so, even after a week, it will not be necessary to 

recalibrate the algorithm with new EEG data of the user. On the contrary, 

the standard implementation of the SWLDA was not capable to keep such 

stability over time, since the classification was too specific to the calibration 

dataset of the considered day. This aspects are highly important for the 

practical usability of the system, especially in operational environments. In 

fact, it should be enough to calibrate the algorithm with the specific operator 

EEG parameters only once and then use it without further adjustments, 

maintaining high reliability and stability over a week. In addition, the 

algorithm was able to differentiate significantly (p < 0.05) the mental 

workload levels over the three experimental conditions (Easy, Medium and 

Hard). The results also highlighted the higher resolution of the 

neurophysiological measure than the subjective ones, since the Easy and the 

Medium tasks were not discriminable from the NASA-TLX scores. 

3.2.4. 3.2.4. Conclusions 

A new classification algorithm (asSWLDA) for the evaluation of the mental 

workload of the user has been proposed and validated. I have demonstrated 

that 1) the asSWLDA significantly outperformed the standard 

implementation of the SWLDA; 2) the performance of the asSWLDA 

algorithm remained high across different days (a week) without any 

recalibrations, so it is reliable over time; 3) the algorithm was able to 

significantly differentiate three mental workload levels. The innovation of 

the study, with respect to the actual literature, is that the proposed algorithm 

has been showed to be reliable over a week without the necessity of 
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recalibrate it. Further experiments will be performed to test and extend the 

period of stability (“Long-term”). Also, the present study, carried out in a 

laboratory environment, will be replicated on a larger sample size (more 

than ten subjects) and in a more realistic scenario, involving professional 

operators. Finally, the reliability of the asSWLDA classifier will be tested 

also in other fields (e.g. active BCI), where the decreasing of the system 

performances across days represents also a big issue, and it is not always 

possible to calibrate the system.
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3.3. asSWLDA Testing in Realistic ATM Environment: 

Stability Over a Month 

The objective of the study was to provide a methodology for the evaluation 

of Air-Traffic Controllers’ mental workload in operational environment, 

and to overcome the issues described previously (see paragraph 1). For such 

purposes, the brain activity has been recorded on twelve professional Air 

Traffic Controllers (ATCOs) while performing high realistic Air Traffic 

Management (ATM) scenarios (see paragraph 2.3.2). From the EEG 

signals, a workload index has been computed by means of a machine - 

learning approach (Patent II, 2015). In particular, the asSWLDA (Patent I, 

2015) has been used to compute such EEG-based Mental Workload Index 

(WEEG). The study has been designed to investigate two important key 

issues: the over-time reliability of the neurophysiological workload 

measure, and the accuracy of the methodology in comparison with the 

standard (i.e. subjective) workload measures: 

 Reliability over time of the neurophysiological workload evaluation. 

The first phase of the study had the aim to test the reliability over 

time (a month) of the neurophysiological workload measure, by 

using two different models (see Paragraph 3.1). Five out of the 

twelve ATCOs gave their availability to take part in both the 

experimental sessions (Day 1 and Day 30), while the remaining 

controllers attended only the last experimental session (Day 30). 

 Comparison between neurophysiological and subjective workload 

measurements. The second phase of the study aimed to test the 

effectiveness of the neurophysiological workload measure in 

comparison with the subjective assessment (ISA and SME workload 

scores). For this purpose, only the last session (Day 30) has been 

considered, where all the ATOCs participated to the experiment 

(twelve professional ATCOs in total).  
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3.3.1. Experimental Protocol 

Subjects 

Twelve professional (40.41 ± 5.54 years old) ATCOs from the École 

Nationale de l’Aviation Civile (ENAC) of Toulouse (France) have been 

involved in this study. They have been selected in order to have a 

homogeneous experimental group in terms of age and expertise. ENAC 

represents one of the most important training schools for Pilots and ATCOs 

in the World. The experimental procedures were approved by the 

Institutional Review Board. 

Experimental Setup 

The ATCOs have been asked to perform Air Traffic Management (ATM) 

scenarios (see paragraph 2.3.2) in a high realistic setting, that is, a functional 

simulated ATM environment developed and hosted at ENAC (Figure 37a). 

The ATM simulator consisted in two screens, a 30" screen (RADAR screen) 

to display radar image, and a 21" screen (ATM interface) to interact with 

the radar image (zoom, move, clearances and information). The experiments 

have also been attended by two Pseudo-Pilots (Figure 37b) who have 

interacted with the ATCOs with the aim to reproduce real communications.  

 

Figure 37. a) The ENAC simulator platform, composed of two screens, a 30" (RADAR) 

screen to display radar image and a 21" screen to interact with the radar image (ATM 

interface). On the little screen on the left bottom, the ISA test was proposed every 3 

minutes. b) Pseudo-Pilots have interacted with the ATCOs with the aim to simulate real-

flight communications. 

The complexity of the task could be modulated according to how many 

aircrafts the ATCO had to control, the number and type of clearances 

required over the time, and the number/trajectory of other interfering flights. 
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The experiments have taken place in two different sessions, a month on, 

named hereafter as Day1 and Day30. For each session, ATCOs have been 

asked to perform a 45-minute ATM scenario enclosing three different levels 

of complexity (15 minutes for each complexity condition) associated to 

three different mental workload demands (EASY, MEDIUM, HARD). For 

each scenario, the presentation of the difficulty conditions has been 

randomized. In addition, although the two ATM scenarios were different, in 

order to avoid any habituation or expectation effect, they have been 

designed identically in terms of complexity within the same difficulty levels 

(i.e. for instance EASY Day1 vs. EASY Day30), to make them comparable 

between sessions, and to avoid any bias in the results. Such scenarios have 

been validated and tested by a Subject-Matter Expert (SME) from ENAC 

before the experiments. It has to be stressed that air traffic shape was not 

constant, and the transitions between the different difficulty levels was 

smoothly organized in order to have ATM scenarios as much realistic as 

possible. Figure 38 shows a representative scenario’s complexity profile. 

Collected Data for the Mental Workload Evaluation  

Neurophysiological Data.  

The scalp EEG signals have been recorded by the digital monitoring 

BEmicro system (EBNeuro system) with a sampling frequency of 256 (Hz) 

by 8 Ag/AgCl passive wet electrodes (Fz, F3, F4, AF3, AF4, Pz, P3, P4) 

referenced to both the earlobes, and grounded to the Cz electrode, according 

to the 10-20 International System (Jurcak et al., 2007). In addition, the 

vertical EOG signal has been recorded concurrently with the EEG, and with 

the same sampling frequency, by a bipolar electrode placed over the left eye, 

in order to collect the eyes blink of the subjects during the execution of the 

task. 
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Figure 38. Representative ATM scenario’s complexity profile. The complexity of the 

task has been modulated gradually in order to obtain realistic ATM scenarios. 

Subjective workload Assessment (Self-assessment).  

The ATCOs have been asked to fill the ISA (see paragraph 2.4.2) with the 

aim to define a profile of the operator’s workload perception during the 

execution of the ATM task. The ISA scale has been presented to the ATCOs 

every 3 minutes in the form of a color-coded keypad on a screen placed on 

the left of the main monitor (Figure 37a). The keypad flashed and sounded 

when the workload rating was required, and the participants simply pressed 

the button related to their workload perception. ATC Experts (SMEs), 

seated behind the ATCO, have been asked to provide independent rates of 

the workload experienced by the ATCO by filling the paper version of the 

ISA. ISA scores provided by experimental subjects and by the SMEs are 

named, hereafter, respectively, SELF-ISA and SME-ISA. 

Subjective Workload Assessment (SME assessment).  

ATC Experts (SMEs) provided independent rates, from 1 to 5 accordingly 

to the ISA scale, of the workload experienced by the ATCO. In particular, 

SMEs have been asked to express their continuous judgment depending on 

the ongoing overall performance of the examined ATCO. Such judgment 

took into account the quality and time of the indications/information 

provided to the pilots, separation planning strategy, responsiveness, and 

general management of the air-traffic situation. 
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Neurophysiological Data Analysis 

For each session (Day 1, Day 30) and difficulty level (EASY, MEDIUM, 

HARD), the biosignal dataset (EEG, EOG signals) has been segmented in 

five consecutive parts (named hereafter as “runs”) of 3 minutes each, in 

order to define 5 EASY runs (E1, E2, E3, E4, E5), 5 MEDIUM runs (M1, 

M2, M3, M4, M5), 5 HARD runs (H1, H2, H3, H4, H5), and to have the 

same time resolution of the ISA scores (SELF-ISA, SME-ISA), and 

therefore allowing a more direct comparison between all the collected 

measures. The recorded EEG signal has been firstly band-pass filtered with 

a fifth-order Butterworth filter (low-pass filter cut-off frequency: 30 (Hz), 

high-pass filter cut-off frequency: 1 (Hz), whilst the EOG signal has been 

band-pass filtered with a low-pass filter (cut-off frequency: 7 (Hz)), and 

high-pass filter (cut-off frequency: 1 (Hz)), has then been used to remove 

eyes-blink contributions from each EEG epoch, by using the Gratton and 

Coles (1983) algorithm, available on the EEGLab toolbox (Delorme and 

Makeig, 2004). For other sources of artifacts (i.e. ATC-operators normally 

talk and perform several body movements during ATM activities), specific 

procedures of the EEGLAB toolbox have been used (Delorme and Makeig, 

2004). Firstly, the EEG signal has been segmented into epochs of 2 seconds 

(Epoch length), shifted of 0.125 seconds (Shift). This windowing have been 

chosen with the compromise to have both a high number of observations 

(see equation 3.7), in comparison with the number of variables (see equation 

3.8), and to respect the condition of stationarity of the EEG signal (Elul, 

1969). In fact, this hypothesis is necessary to proceed with the spectral 

analysis of the signal. The EEG epochs where the signal amplitude exceed 

±100 (μV) have been marked as “artifact” (Threshold criteria). Then, each 

EEG epoch has been interpolated in order to check the slope of the trend 

within the considered epoch (Trend estimation). If such slope was higher 

than 3, the considered epoch was marked as “artifact”. The third check was 

based on the EEG Sample-to-sample difference. If such difference, in terms 

of amplitude, was higher than 25 (μV), it meant that an abrupt variation 

(non-physiological) happened, and the EEG epoch was marked as “artifact”. 

All the previous values have been chosen following the guidelines reported 

in Delorme and Makeig, (2004). At the end, the EEG epochs marked as 

“artifact” have been removed with the aim to have a clean EEG dataset from 

which estimating the brain parameters for the analyses. The percentage 
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(with respect to the total number of epochs averaged on all the subjects) of 

EEG epochs containing artifacts and removed from the EEG dataset was 

20% (± 13%). From the clean EEG dataset, the Power Spectral Density 

(PSD) has been calculated for each EEG epoch using a of 2-second Hanning 

window (that means 0.5 (Hz) of frequency resolution). The application of a 

Hanning window helped to smooth the signal at the edges of the epochs, 

improving the accuracy of the PSD estimation (Harris, 1978). Then, the 

EEG frequency bands have been defined for each ATCO by the estimation 

of the Individual Alpha Frequency (IAF) value (Klimesch, 1999). In order 

to have a precise estimation of the alpha peak and, hence of the IAF, the 

subjects have been asked to keep the eyes closed for a minute before starting 

with the experiments. Finally, a spectral features matrix (EEG channels x 

Frequency bins) has been obtained in the frequency bands directly 

correlated to the mental workload. In particular, only the theta rhythm (IAF-

6 ÷ IAF-2), over the EEG frontal channels (Fz, F3, F4, AF3, AF4), and the 

alpha rhythm (IAF-2 ÷ IAF+2), over the EEG parietal channels (Pz, P3, P4), 

have been considered as parameters for the mental workload evaluation. 

In the considered case, the number of observations (#Observations) and 

number of variables (#Variables) were:  

#𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑅𝑢𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛−𝐸𝑝𝑜𝑐ℎ 𝑙𝑒𝑛𝑔𝑡ℎ

𝑆ℎ𝑖𝑓𝑡
= 1424      (3.7) 

where RunDuration = 180 seconds (Ek, Mk, Hk), k = [1, 2,…,5], 

EpochLength = 2 seconds, Shift = 0.125 seconds. 

#Variables=(#Frontal sites*#Theta frequency bins)+(#Parietal 

sites*#Alpha frequency bins)= 72         (3.8) 

where #FrontalSites = 5 (Fz, F3, F4, AF3, AF4), #ParietalSites = 3 (Pz, 

P3, P4), #ThetaFrequency bins = (IAF-6 ÷IAF-2)·0.5 = 9, 

#AlphaFrequency bins = (IAF-2 ÷ IAF+2)·0.5 = 9. 

EEG-Based Mental Workload Index (WEEG)  

Figure 39 shows the algorithm steps used in this study for the evaluation of 

the user’s EEG-based mental workload. The effectiveness of two linear 

classifiers (standard SWLDA and asSWLDA), in terms of reliability over a 
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month, has been investigated. Both the classifiers have been used to select 

the most discriminating features of the different experimental conditions 

(i.e. Easy and Hard). Once identified, each classifier assigned to each 

relevant feature specific weights (wi train), plus a bias (btrain). On the contrary, 

weights related to not relevant features for the classification model have 

been set to 0. This step represented the calibration phase of the algorithm. 

The parameters estimated during the calibration phase have been then used 

to calculate the Linear Discriminant Function (ytest(t)) over the testing EEG 

dataset (testing phase, equation 3.9), defined as the linear combination of 

the testing spectral features (fi test) and the classifier weights (wi train), plus 

the bias (btrain). Finally, a moving average of k seconds (kMA) has been 

applied to the ytest(t) function in order to smooth it out by reducing the 

variance of the measures, and the result has been named EEG-based 

Workload Index (WEEG, equation 3.10). The higher is the k value, the less 

will be the variance of the measure. Accordingly with the SMEs, for a 

proper evaluation of the mental workload during the execution of the ATM 

task, the k value has been set to 30 seconds.  

𝑦𝑡𝑒𝑠𝑡(𝑡) =  ∑ 𝑤𝑖𝑡𝑟𝑎𝑖𝑛 𝑖 ∗  𝑓𝑖𝑡𝑒𝑠𝑡 (𝑡) + 𝑏𝑡𝑟𝑎𝑖𝑛          (3.9) 

𝑊𝐸𝐸𝐺 = 𝑘𝑀𝐴(𝑦𝑡𝑒𝑠𝑡(𝑡)),     𝑘 = 30 (𝑠𝑒𝑐)       (3.10) 

The third couple of runs (E3, H3) of each session has been chosen to 

calibrate the classifiers. In fact, since the ATM scenarios profile have been 

designed without any constant traffic samples or sudden transitions, the easy 

(E3) and hard (H3) conditions in the middle of each difficulty level have 

been considered the best choice to calibrate the classifier, that is the best 

compromise in terms of stable difficulty level to represent the lowest and 

the highest air-traffic complexity condition. To evaluate the reliability of 

each classifier in discriminating the workload levels along the different 

cross-validation types, Area Under Curve (AUC) values of the Receiver 

Operating Characteristic (ROC, Bamber, 1975) have been calculated by 

considering couple of WEEG distributions (E vs H). 
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Figure 39. EEG-based workload index estimation. The filtered (1-30 (Hz)) EEG has 

been segmented into epochs of 2 (sec), shifted of 0.125 (sec), and the filtered (1-7 (Hz)) 

EOG signal has been used to remove the eyes-artifact contribution. Other sources of 

artifacts have been deleted by using specific algorithms. Then, the PSD has been 

evaluated for each epoch (EpochPSD) taking into account only the EEG frequency bands 

and channels correlated with the mental workload (frontal theta and parietal alpha 

bands). The SWLDA (asSWLDA) has then been used to select the most relevant brain 

spectral features for the discrimination of the mental workload levels. The linear 

discriminant function has been calculated on the EEG testing dataset, and the WEEG has 

been defined as the moving average of 30 seconds (30MA) applied to the linear 

discriminant function (ytest(t)). 

Statistical Analyses 

Subjective Workload Assessment 

The two EEG recording sessions (Day 1, Day 30) have been compared in 

terms of subjective workload perception (SELF-ISA and SME-ISA scores) 

by the ATCOs and SMEs. Three two–tailed paired t-tests (α = 0.05) have 

been performed, one for each difficulty level (Easy, Medium, Hard), on the 

SELF-ISA and the SME-ISA scores in order to find out the difference 

between the two experimental sessions. Furthermore, Duncan post-hoc tests 

have been performed to assess the differences between all pairs of levels of 

the considered factor. 

EEG-Based Workload Assessment 

The reliability of the neurophysiological workload measures (WEEG) has 

been investigated over a month, by using the two classifiers, the SWLDA 

and the asSWLDA. In particular, two different kinds of cross-validations 
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have been defined: i) the Intra cross-validation type, where the training and 

testing data belonged to the same day, and ii) the Inter cross-validations 

type, where the training data belonged to Day 1 (Day 30) and the testing 

data to Day 30 (Day 1). A two-way repeated measures ANOVA (CI = 0.95) 

has been performed on the AUC values, by considering as within factors the 

CLASSIFIERS (asSWLDA, SWLDA), and the CROSS-VALIDATION 

TYPES (Intra, Inter). Furthermore, Duncan post-hoc tests have been 

performed to assess significant differences between all pairs of levels of the 

considered factors. 

Brain Features Selection and Stability Analyses 

Two–tailed paired t-tests (α = 0.05) have been performed, i) the first to 

compare the number of total features among the considered algorithms, and 

ii) the second one to compare the related number of EEG channels selected 

by the two models (standard SWLDA and asSWLDA). For the analyses, 

both the number of features and the EEG channels used in the two sessions 

have been averaged for each model. 

Furthermore, for each controller, the existence of stable brain features and 

importance of the selected ones, separately by the asSWLDA and SWLDA, 

have been assessed as described in detail in the paragraph 3.2.1. In 

particular, two conditions have been defined. The INTRA condition refers 

to the Wrq estimated in correspondence to the features selected within the 

same day, while the INTER condition means that the Wrq has been 

calculated by taking into account the r-square calculated in correspondence 

to the features selected in the other day. Paired t-test (α = 0.05) has been 

performed on the Wrqs estimated by the asSWLDA (SWLDA) in the two 

days (Day1 and Day30). The hypothesis is that the features selected by the 

asSWLDA algorithm do not differ significantly over time. In other words, 

there is not significant difference between the Wrq in Day1 and Day30. On 

the contrary, features selected by the standard SWLDA algorithm will differ 

over time, and this will induce a significant reduction in the discriminability 

of the classes (i.e AUC) when the features selected in Day1 are used in the 

testing phase of Day30. 
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Comparison Between Neurophysiological and Subjective Measures 

Self - Workload Assessment 

The three difficulty conditions (Easy, Medium, Hard) have been compared 

in terms of perceived workload, by using both SELF-ISA and SME-ISA 

scores, to assess if the three difficulty conditions had been perceived 

differently by the ATCOs. In addition, the two subjective scores have been 

compared for each difficulty condition. In particular, a two-way ANOVA 

(CI = 0.95) has been conducted on the SELF-ISA and SME-ISA score, by 

considering as within factors the DIFFICULTY CONDITIONS (Easy, 

Medium, Hard), and the SUBJECTIVE WORKLOAD SCORES (SELF-

ISA, SME-ISA), and by averaging the scores across each difficulty level. 

Furthermore, Duncan post-hoc tests have been performed to assess 

differences between all pairs of levels of the considered factors. 

EEG-Based Workload Assessment 

An one-way ANOVA (CI = 0.95) has been performed on the WEEG index, 

by considering as within factor the DIFFICULTY CONDITIONS (Easy, 

Medium, Hard), by averaging for each ATCO all the WEEG indexes for each 

difficulty level. Finally, Duncan post-hoc tests have been performed to 

assess differences between all pairs of levels of the considered factor. 

 

Accuracy of Neurophysiological Measurement with respect to Standard 

Workload Assessment 

In order to assess the accuracy of the methodology for the mental workload 

assessment, in comparison with standard subjective workload measures 

(e.g. ISA), a Pearson’s correlation analysis has been done between the 

WEEG index and both the subjective scores (SELF-ISA and SME-ISA). Thus, 

the Fisher’s R-to-Z transformation (Fisher, 1921) has been performed in 

order to assess possible differences between the correlation coefficients 

(WEEG vs SELF-ISA, WEEG vs SME-ISA). 

Before every statistical analysis, the z-score transformation (Zhang et al., 

1999) has been used to normalize the data.
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3.3.2. Results 

Self-Workload Assessment 

The three two–tailed paired t-tests (α = 0.05) did not highlight any 

difference between the two sessions (Day1 and Day30), both in terms of 

SELF-ISA (Easy: p = 0.19; Medium: p = 0.63; Hard: p = 0.62) and SME-

ISA (Easy: p = 0.78; Medium: p = 0.22; Hard: p = 0.11) scores (Figure 40). 

In fact, as described in paragraph 3.3.1, the different ATM scenarios have 

been desingned with the aim to maintain comparable levels of complexity, 

and they were tested by Expert ATCOs before starting the experiments.  

 

Figure 40. ANOVAs related to the SELF-ISA and the SME-ISA scores for each session 

(Day1 – blue line, Day30 – red line) and difficulty condition (Easy, Medium, Hard). 

Both the SELF-ISA (panel a) and the SME-ISA (panel b) scores did not show any 

significant differences between each difficulty condition. 

EEG-Based Workload Assessment 

The two-way repeated measures ANOVA (CI = 0.95) highlighted a 

significant (F(1, 4) = 10.6; p = 0.03). main effect between the two factors 

(CLASSIFIERS and CROSS-VALIDATIONS). The post-hoc test 

highlighted a significant decrement (p = 0.005) of the AUC values related 

to the SWLDA classifier between the Intra and the Inter cross-validation 

types (Figure 41). On the contrary, no significant differences (p = 0.33) were 

highlighted for the asSWLDA between the Intra and the Inter cross-

validations. In addition, a significant decrement (p = 0.04) of the AUC 

b) a) 



CHAPTER 3                                                                                  Workload 

 

112 

 

values related to the Inter-cross-validation type was highlighted between the 

SWLDA and the asSWLDA classifiers. Instead, no significant differences 

(p = 0.2) between the two classifiers were highlighted regarding the Intra 

cross-validation type (Figure 41). 

 

Figure 41. ANOVA related to the AUC values of the SWLDA (blue line) and 

asSWLDA (red line) calculated on the “Easy vs Hard” conditions over the two cross-

validation types (Intra and Inter). In particular, a significant AUC decrement (p = 0.005) 

between the Intra and Inter cross-validation types was found for the standard SWLDA. 

On the contrary, there was not significant difference (p = 0.33) between the two cross-

validation types, concerning the asSWLDA. Focusing on the Inter cross-validation type, 

the SWLDA performance was significantly (p = 0.04) lower that the asSWLDA. 

Brain Features Selection Analysis 

The two–tailed paired t-tests (α = 0.05) highlighted that both the number of 

features (p = 0.0007) and the related EEG channels (p = 0.0003) used by the 

asSWLDA model were significantly lower than those used by the standard 

SWLDA model (Figure 42). In Figure 42, both the numbers of features and 

EEG channels are reported in terms of percentage with respect to the total 

number of features, and EEG channels. In particular, the asSWLDA 

selected the 5.2% of the available features by using the data from the 37% 

of EEG channels. In other words, the asSWLDA algorithm selected for each 
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ATCO about 4 features on 3 EEG channels. On the contrary, the standard 

SWLDA used the 44% of the available features by using the 100% of EEG 

channels, that is, the standard SWLDA used for each ATCO 32 features on 

all the 8 EEG channels. Generally, the asSWLDA algorithm used roughly 

the 10% of the information employed by the standard SWLDA, achieving 

higher performance.  

 

Figure 42. ANOVAs related to the number of features (panel a) and related number of 

EEG channels (panel b) selected by the two classification models (SWLDA and 

asSWLDA). As expected, both the number of features and related number of EEG 

channels used by the asSWLDA were significantly lower than those used by the standard 

SWLDA algorithm, respectively, p = 0.0007 and p = 0.0003. 

Brain Features Stability Over Time 

In Figure 43 are reported the percentages related to the EEG channels most 

commonly selected by the asSWLDA (on the left) and by the SWLDA (on 

the right). In the asSWLDA case, at least one EEG channel has been 

selected, for all the subject, both at the beginning (Day 1) and at the end 

(Day 30) of the experimental protocol.  

a) b) 
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Figure 43. Percentages related to the EEG channels most commonly selected by the 

asSWLDA (on the left) and by the SWLDA (on the right). White color means that brain 

features have been selected in all the considered sessions. On the contrary, the EEG 

channel is black colored if no features have been selected from it. Gray color means that 

the considered EEG channel has been selected only once. 

 

Figure 44. Weighted mean r–squares (Wrqs) estimated in correspondence of the brain 

features selected by the asSWLDA and the standard SWLDA in the INTRA (blu color) 

and INTER (red color) condition. The asSWLDA did not show any significant 

difference (p = 0.17) of Wrq between the INTRA and INTER conditions. On the 

contrary, the standard SWLDA reported a significant reduction (p = 0.04) of the Wrqs 

calculated in the two conditions. 
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The paired t-test on the Wrq corresponding to the features selected by the 

asSWLDA, within a month (Day1 and Day30) and T12), did not show any 

significant (p = 0.17) difference between the INTRA and INTER conditions 

(Figure 44). On the contrary, the standard SWLDA reported a significant 

reduction (p = 0.04) in terms of Wrq, between the INTRA and INTER 

condition. 

Comparison Between Neurophysiological and Subjective Measures 

Subjective Assessment 

The two-way repeated measures ANOVAs (CI = 0.95) highlighted a 

significant effect (F(2, 22) = 10.88; p = 0.005) between the two factors, 

DIFFICULTY CONDITIONS (Easy, Medium, Hard) and SUBJECTIVE 

WORKLOAD SCORES (SELF-ISA and SME-ISA). The post-hoc test 

highlighted significant differences (all p < 0.001) between the difficulty 

conditions (i.e. Easy vs Medium, Medium vs Hard, Easy vs Hard) for both 

the SELF-ISA and the SME-ISA scores. In addition, the SME-ISA scores over 

the Medium (p = 0.0007) and Hard (p = 0.00007) conditions were 

significantly higher than those related to the SELF-ISA scores (Figure 45).  

EEG-Based Workload Assessment 

The one-way ANOVA (Figure 46) on the neurophysiological workload 

measures (WEEG data) highlighted a significant effect (F(2, 22) = 27,4; p = 

0.000001) between the three levels (Easy, Medium, Hard). In particular, the 

post-hoc test highlighted significant differences (all p < 0.001) between the 

WEEG score related to the difficulty conditions (i.e. Easy vs Medium, 

Medium vs Hard, Easy vs Hard).  
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Figure 45. ANOVA related to the SELF-ISA (blue line) and the SME-ISA (red line) 

scores along the three difficulty conditions. Results showed significant differences (p < 

0.003) between all the difficulty conditions for both the SELF-ISA and SME-ISA scores.  

 

Figure 46. ANOVA related to the WEEG scores along the three difficulty conditions. 

Results showed significant differences between all the difficulty conditions (all p < 

0.001). 
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Accuracy of Neurophysiological measurement with respect to Standard 

Workload Assessment 

The correlation analysis (Table 5), by means of the Pearson’s correlation 

coefficient, highlighted a high and positive correlation between the EEG-

based workload index (WEEG) and the ISA indexes. In particular, the 

correlation analyses reported R = 0.856 and p = 0.0002 for the SELF-ISA 

data, and R = 0.797 and p = 0.0011 for the SME-ISA data. In other words, 

the shape of the three indexes was very similar, and they followed the 

variation of the mental workload demanded by the ATM scenarios and 

experienced by the ATCOs during the execution of the task (Figure 47).  

 

Figure 47. Shape of the three workload indexes: the neurophysiological (WEEG – dark 

blue line) and the subjective ones (SELF-ISA – solid light blue line, and SME-ISA – 

dashed light blue line). The three measures were able to follow the workload profile 

during the execution of the ATM scenarios. 

Finally, the Fisher’s R-to-Z analysis (Table 5) on the two correlation 

indexes showed no differences between them (p = 0.676).  

The scatterplot in the Figure 48 highlighted a high and positive correlation 

between the neurophysiological and the subjective workload indexes. 
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Table 5: Pearson’s Correlation Coefficient (R) and significance (p) level between the 

neurophysiological (WEEG) workload index and both the subjective measures (ISA and 

SME scores). The Fisher’s R-to-Z transformation showed no significant difference 

between the two correlation values. 

Statistical analysis of the correlation 

Pearson’s correlation index 

R p 

WEEG vs SELF-ISA 0.856 0.0002 

WEEG vs SME-ISA 0.797 0.0011 

 Fisher’s transformation 

 Z p 

R1 = 0.856, R2 = 0.797, n = 13, 2 tails 0.418 0.676 
 

 

Figure 48. Scatterplot of the subjective workload measures (SELF-ISA – blue dots and 

SME-ISA – red dots ) with respect to the neurophysiological workload measure. On the 

x-axis the normalized WEEG index, on the y-axis the normalized SELF- and SME-ISA 

indexes. The results of the correlation analyses showed high and significant correlation 

among all the workload measures (Table 4). 

  



CHAPTER 3                                                                                  Workload 

 

119 

 

3.3.3. Discussions 

The purpose of the proposed study was to investigate the effectiveness of a 

methodology for the mental workload evaluation in an operational Air 

Traffic Management (ATM) environment, by using neurophysiological 

measures. The brain activity (EEG) and subjective measures (SELF-ISA and 

SME-ISA scores) of 12 professional ATCOs from ENAC (France, 

Toulouse) were gathered while performing high-realistic ATC tasks and 

analyzed by a machine-learning approach. The asSWLDA (see paragraph 

3.1) was used to compute a mental workload index based on the EEG 

activity of the user (WEEG). The proposed study was designed with the aim 

to investigate two important key issues of the use of 

neurophysiologicalmeasurements in operational environments: 1) the 

reliability of the workload evaluation over time (a month), and 2) the 

accuracy in comparison with the standard (i.e. subjective) workload 

measures. Concerning the first issue, the results demonstrated that the 

proposed algorithm was able to maintain a high reliability across a month 

(Figures 40 and 41). It had been already demonstrated the reliability of the 

model over a week (see paragraph 3.2). In other words, it is possible to 

calibrate the asSWLDA model and then using it for the mental workload 

evaluation, with neither any recalibration nor any accuracy reductions over 

a month. In addition, the asSWLDA model was able to select a lower 

number of brain features (Figure 42) and EEG channels (37% of the 

channels, that means 3 EEG channels in this specific study) in comparison 

with the standard SWLDA (100%, of the available channels that means 8 

EEG channels), to be used for the workload assessment. In the standard 

SWLDA algorithm, it could be possible to force the model to select less 

features (that means less EEG channels, Aricò et al., 2015a), but it could 

become tricky to empirically (and manually) find out the proper number of 

features to be used, so that it might change from subject to subject. On the 

contrary, the asSWLDA is able to automatically select the right number of 

brain features to optimize the final model. In fact, the asSWLDA showed 

the existence of specific brain features stable over a month, since they were 

selected both in the Day1 and Day30 (Figure 43), and the corresponding 

Wrqs did not differ between the INTRA and INTER condition. On the 

contrary, significant differences were found between the INTRA and 
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INTER condition on the Wrqs calculated in the correspodence to the brain 

features selected by the standard SWLDA (Figure 44). More important, the 

results suggested that the selected features for the asSWLDA could be 

almost an order of magnitude less than those selected by using the standard 

SWLDA. As direct consequence, a lower number of EEG channels will be 

necessary with the asSWLDA than with the standard SWLDA. Since one of 

the most important limitations in using p-BCI systems in operational 

environments is represented by wearing the EEG cap, if the number of EEG 

channels used to define the classification model is low, the intrusiveness of 

the recording system will be low too. In this regard, just moving to a 

plausible operational showcase, the proposed algorithm will be calibrated 

once with many electrodes (e.g. 64 channels) to select the specific subjective 

features, and then used online with the bunch of EEG channels selected by 

the asSWLDA (e.g. 2 or 3 electrodes). 

Concerning the second issue, the EEG-based workload measure was 

compared with two subjective workload measures, one provided by the 

ATCOs (SELF-ISA scores), and the second provided by two ATC Experts 

(SMEs), who were asked to fill the ISA questionnaire at the same time of 

the ATCOs (SME-ISA scores). Results highlighted high and significant 

correlations between the neurophysiological and both the subjective 

workload measurements (Figures 47 and 48). Such result is very important, 

since it showed how the WEEG and both the subjective indexes (SELF-ISA 

and SME-ISA) were able to follow the actual fluctuations of the mental 

workload experienced by the ATCOs during the experimental task. In 

addition, the SELF-ISA scores showed a higher workload perception during 

the MEDIUM and the HARD conditions in comparison with the SME-ISA 

ones. This result highlighted the main limitation of the subjective measures: 

they are highly operator-dependent and cannot be used to quantify 

objectively the operators’ mental states (i.e. mental workload). On the 

contrary, the neurophysiological measures can provide, with high 

resolution, objective evaluations of the operator’s mental state (Figure 46). 

Finally, it has to be underlined that the proposed algorithms do not require 

a-priori information about consecutive data, that is, the calibration of the 

classifier can be performed on a different day than the testing. As a 

consequence, the proposed methodologies can also be used for online 
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applications, for example to improve the Human-Machine Interactions 

(HMI) by using information derived by the operator’s mental workload 

states.  

To summarize, it was possible to calibrate the proposed algorithm by using 

EEG training data and then to evaluate the ATCO’s mental workload during 

work-shift across different days (up to a month). The results reported in the 

present study do not exclude the possibility to achieve similar or even better 

results by using other machine learning techniques, but they have 

demonstrated the possibility to use p-BCI systems in operational 

environments to measure the operators’ mental workload during the 

execution of a realistic ATM task.  

3.3.4. Conclusions 

In this study, a passive BCI technique for the assessment of ATCOs mental 

workload has been proposed and tested in a high-realistic operational 

environment. Results showed that i) the proposed algorithm maintained a 

high reliability over time (up to a month), ii) high and significant 

correlations between the EEG-based and the subjective (SELF-ISA and 

SME-ISA scores) workload measures, and iii) in comparison with other 

machine-learning techniques, the proposed algorithm (asSWLDA) was able 

to reduce the number of brain features and EEG channels, in other words, 

to reduce the intrusiveness of the p-BCI system. One of the practical issues, 

partially addressed in this study, is related to the necessity to calibrate the 

system every time before using it. In fact, I demonstrated that by using the 

asSWLDA the measure of the workload will be reliable over a month. 

However, it might not be always possible to find the right conditions (e.g. 

EASY and HARD) to calibrate the system in operational environments. 

Taking into account these limitations, there is the need to perform further 

experiments to test the possibility to select brain features during the 

execution of short standard and controlled tasks (that enhance the 

considered mental state), and then to use such brain features to calibrate the 

classification algorithm that will be used later in the operative situation.
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3.4. Professional ATCOs’ Workload Evaluation in 

Realistic Settings 

The aim of this study was to test if the asSWLDA algorithm, the 

neurometric (frontal theta and parietal alpha EEG rhythms), and the 

methodology developed in the previous studies for the workload evaluation 

were able 1) to evaluate the workload levels in real ATM settings, and 2) to 

highlight the differences between groups of ATC Students and ATC 

Experts, in terms of workload. In this regard, two groups of professional 

ATCOs have been recruited to execute the same ATM scenario, and their 

brain activity has been recorded during the simulation. In order to compare 

the groups, a workload index has been defined as the ratio between the 

frontal theta and the parietal alpha PSDs (ThetaF/AlphaP Index). 

Furthermore, the asSWLDA algorithm has been used to compute an EEG-

based Mental Workload Index (WEEG) able to track the workload during the 

execution of the ATC task. In addition, both the subjective (ISA) and 

behavior data (task performance) have been collected to define a more 

complete profiles of the two groups, thus to better compare them 

(Triangulation methodology, Bekhet and Zauszniewski, 2012). 

3.4.1. Experimental Protocol 

Subjects 

Thirty - seven professional ATCOs from the École Nationale de l’Aviation 

Civile (ENAC) of Toulouse (France) have been involved in this study. They 

have been selected in order to have homogeneous experimental groups in 

terms of age and expertise. In particular, two groups of controllers have been 

defined, a group of ATC Experts (40.41 ± 5.54), and a group of ATC 

Students (23 ± 1.95). ATCOs have been asked to take part in a simulated 

ATC simulation in which the same ATM scenario (Scenario #3, see 

paragraph 2.3.2) has been proposed.  
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Neurophysiological Signals Recording and Processing 

During the task execution, the neurophysiological signals have been 

recorded by the digital monitoring BEmicro system (EBNeuro system). 

Fifteen electroencephalographic (EEG) channels (Fpz, F3, Fz, F4, AF3, 

AF4, P3, Pz, P4, P5, P6, POz, O1, Oz, O2), and one electrocardiographic 

(ECG) channel have been collected simultaneously with a sampling 

frequency of 256 (Hz). In particular, the ECG electrode has been placed on 

the Erb’s point. In addition, in order to make the system less invasive, 

differently from the previous experimental sessions, the EOG channel has 

not been used, but an algorithm able to remove eyes-blink artifacts from the 

EEG data by means of the Fpz EEG channel has been developed. This 

algorithm is going to be published soon. All the electrodes (EEG and ECG) 

have been referenced to both earlobes, and the impedances of the EEG 

electrodes have been kept below 10 (kΩ). The EEG signals have been 

digitally band-pass filtered by a 5th order Butterworth filter (low-pass filter 

cut-off frequency: 30 (Hz), high-pass filter cut-off frequency: 1 (Hz)). The 

EEG signal has then been segmented in periods of 2 seconds, 0.125 seconds 

– shifted. These values have been chosen in order to have both a high 

number of observations (see equation 3.7) in comparison with the number 

of variables (see equation 3.8), and to respect the condition of stationarity 

of the EEG signal (Elul, 1969). In fact, the latter one is a necessary 

hypothesis in order to proceed with the spectral analysis of the signal. After, 

for each segment the Power Spectral Density (PSD) has been estimated by 

using the Fast Fourier Transform (FFT) in the EEG frequency bands 

involved in the mental workload estimation (theta and alpha bands), defined 

for each subject by the estimation of the Individual Alpha Frequency (IAF) 

value (Klimesch, 1999). The asSWLDA model has been used to select the 

most relevant features from the acquired biosignals, to discriminate the 

mental workload of the ATCOs within the different experimental conditions 

(e.g. Easy, Medium and Hard). Furthermore, a classification threshold has 

been estimated by the state classifier, by using the Receiving Operating 

Characteristic (ROC) theory (Bamber, 1975). This threshold have been 

used during the online assessment of the ATCO’s workload. In particular, 

if the workload index was higher than the threshold, the workload would be 

classified as “High”. On the contrary, the workload would be classified as 

“Low”. The output of this classifier model represents the 
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neurophysiological measure of the mental workload (WEEG). The 

asSWLDA has been extensively described in the paragraph 3.1. Regarding 

the ECG signal, it has not been considered in the analyses because the 

ATCOs assumed particular body postures and produced high muscular 

contraction on the chest, thus several artifacts during the execution of task. 

The main artifacts source has been the ocular activity, that is, the eye-blinks. 

This kind of artifact has been easily recognized and corrected by using one 

of the several methods proposed in literature, for example, algorithms based 

on the regression of an EOG channel (Gratton and Coles, 1983), as done in 

the previous studies. In this phase of the study, I have defined a new 

algorithm based on the regression of the Fpz EEG channel. Naturally, the 

Fpz channel contains EEG information (the frontal brain sites are very 

important in the analysis), thus applying regression techniques, important 

EEG information could be lost. Nevertheless, to prevent the loss of EEG 

information and, at the same time, to reject the ocular blinks, I have digitally 

band-pass filtered a copy of the Fpz channel (indicated in the following as 

Fpz-EOG channel) by a 5th order Butterworth filter (low-pass filter cut-off 

frequency: 5 (Hz), high-pass filter cut-off frequency: 1 (Hz)), in order to 

emphasize the eye-blink signal component, with respect to the signal 

components related to the brain activity. Then, by means of a threshold 

criteria, the time windows in which an eye-blink occured have been 

detected. Only in such windows, the regression of the filtered Fpz-EOG 

channel has been applied to all the EEG channels, by means of the Gratton 

algorithm (Gratton and Coles, 1983). Despite a possible, but very little loss 

of EEG information (just in correspondence of the eye-blink), this approach 

produced a great improvement in terms of system invasiveness and 

feasibility for real-time applications. For the other artifacts, specific 

procedures of the EEGLAB toolbox have been used (Delorme and Makeig, 

2004). In particular, three methods have been selected, that is Threshold 

criteria, Trend estimation, and Sample-to-sample difference. In the 

threshold criteria the EEG epoch are marked as “artifact” if the EEG 

amplitude is higher than ±100 (μV). In the trend estimation, the EEG epoch 

is interpolated in order to check the slope of the trend within the considered 

epoch. If such slope is higher than 3, the considered epoch will be marked 

as “artifact”. The last check calculates the difference between consecutive 

EEG samples. If such difference, in terms of amplitude, is higher than 25 
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(μV), it means that an abrupt variation (non - physiological) happened, thus 

it will be marked as “artifact”. At the end, the EEG epochs marked as 

“artifact” have been removed from the EEG dataset with the aim to have an 

EEG artifacts-free dataset from which estimate the brain parameters for the 

different analyses. 

Task Performance 

During the execution of the simulated ATM scenarios, the system recorded 

the ATCO’s reaction times and number of airplanes assumed in each 

specific task condition (Easy, Medium and Hard). Since the ATCOs might 

adopt different strategies to manage the air-traffic, their reaction times (RT) 

have been weighted by taking into account the number of airplanes (nb) 

assumed, a global performance index, Weighted Mean Reaction Time 

(WMRT), has then been defined as described in the paragraph 2.4.2. 

Power Spectrum Density (PSD) analysis 

In order to compare the level of mental workload between the two groups, 

a proper workload index has been defined as the ratio between the frontal 

theta (4 – 8 (Hz)) and the parietal alpha (8 – 12 (Hz)) brain activity 

(ThetaF/AlphaP Index). Such EEG rhythms have been demonstrated to be 

correlated to vary cognitive processes involved in the concept of mental 

workload. Many experiments have found correlations with mental 

workload, particularly concerning the enhancement of the frontal theta 

(Gevins et al., 1998; Klimesch, 1999; Wilson et al., 1999; Yamada, 1998) 

and suppression of parietal alpha brain rhythms (Pfurtscheller and 

Klimesch, 1991; Sterman et al., 1994). Different studies have demonstrated 

that the increment of task difficulty (increased working memory load) is 

associated with an increase of frontal theta activity and a suppression of 

parietal alpha activity. In particular, Klimesch (1999) and Klimesch et al. 

(2005) found that, in an alert brain, EEG oscillations in the alpha and theta 

band are linked to cognitive and memory performance. Synchronization in 

the theta band is possibly related to working memory function, lower alpha 

desynchronization may be reflect attentional processes, while upper alpha 

may be related to long-term memory function (Klimesch, 1999). According 

to this author, good performance is characterised by two phenomena: “a 

tonic increase in alpha but a decrease in theta power, or a large phasic 
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decrease in alpha but increase in theta, depending on the type of memory 

demands”. “After sustained wakefulness and during the transition from 

waking to sleeping, upper alpha power decreases, whereas theta increases. 

Event-related changes indicate that the extent of upper alpha 

desynchronization is positively correlated with (semantic) long-term 

memory performance, whereas theta synchronization is positively 

correlated with the ability to encode new information. The encoding of new 

information is reflected by theta oscillations in hippocampo-cortical 

feedback loops, whereas search and retrieval processes in (semantic) long-

term memory are reflected by upper alpha oscillations in thalamo-cortical 

feedback loops.” In a research developed to clarify the interaction between 

learning and task demand, Fairclough et al. (2005) found that the sustained 

response to a demanding task produceed alpha suppression (state of 

electrocortical activation) and theta increasing in a multitasking 

performance activity. Recently, Jaušovec and Jaušovec (2012) investigated 

the influence of working memory (WM) training on intelligence and brain 

activity. They found that the influence of WM training on patterns of 

neuroelectric brain activity was most pronounced in the theta and alpha 

bands. Theta and lower-1 alpha band synchronization was accompanied by 

increased lower-2 and upper alpha desynchronization and concluded that 

WM training increased individuals performance on tests of intelligence. In 

a recent review, Borghini et al. (2012a) have exposed that there is an 

increase of EEG power in theta band and a decrease in alpha band with high 

mental workload. 

Workload Index (WEEG) 

The algorithm for the workload (WEEG) estimation has been extensively 

explained in the paragraph 3.1. In particular, the asSWLDA has been used 

to select the most relevant spectral features to discriminate the mental 

workload of the subjects within the different experimental conditions (Easy, 

Medium and Hard). As quoted in the paragraph 3.3.1, the dataset has been 

segmented in five parts for each difficulty level in order to have 5 Easy runs 

(E1, E2, E3, E4, E5), 5 Medium runs (M1, M2, M3, M4, M5) and Hard runs 

(H1, H2, H3, H4, H5). This segmentation has then been used to compare 

the measures of the workload index provided by the neurophysiological 

(WEEG) and the subjective (ISA) measurements. In fact, for each difficulty 
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level five ISA scores have been provided by the trainee ATCOs. The third 

triplet (E3, H3) has been chosen to train the classifier, and to test it over the 

remaining triplets of Easy, Medium and Hard conditions. 

Instantaneous Self-Assessment of Workload (ISA) 

As explained previously (paragraph 2.4.2), the ISA assessment has been 

included in the experimental protocol in order to have information about the 

ATCOs’ mental workload perception, and to compare it with the 

neurophysiological (WEEG) workload measure. The ISA score has been 

filled by the ATCOs every 3 minutes. The last ISA value has been excluded 

from the analysis because it has not been always presented exactly at the 

end of the simulation. For each group and for each run, the ISA scores have 

been averaged across the subjects. In order to make comparable the scores 

of each subject, I previously normalized them along the subjects, by using 

the z-score definition (Zhang et al., 1999).
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3.4.2. Results 

Task Performance 

Two one-way repeated measures ANOVAs have been performed with the 

aim to assess the level of performance of the two groups, ATC Experts and 

ATC Students, across the task conditions (within factor: DIFFICULTY 

LEVEL; 3 levels: Easy, Medium and Hard), and between the groups 

(between factor RANK; 2 levels: Experts and Students). The independent 

variable was the WMRT in all such statistical analyses. In Figure 49 are 

reported the results of the analyses for the two different groups. In 

particular, the blue line shows the WMRT of the Experts, while the red line 

shows the WMRT of the Students in the three levels of the ATM scenario. 

The Experts did not report any significant differences (p > 0.05) among the 

difficulty conditions. On the contrary, the Students showed a significant (p 

< 0.05) decrement of performance (increased WMRT) between the Hard 

condition and the others (Easy and Medium). 

 

Figure 49. Weighted Mean Reaction Time (WMRT) of the ATCOs across the three 

difficulty levels of the simulated ATM scenario. The ATC Experts (blue line) did not 

report any significant differences (p>0.05) among the difficulty conditions. On the 

contrary, the ATC Students (red line) showed a significant (p<0.05) decrement of 

performance between the Hard condition and the others (Easy and Medium). 
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The statistical analysis between the groups (Figure 50) showed a significant 

difference between the two groups (F(1, 31) = 4.7621; p = 0.03679). In other 

words, the ATC Experts reacted and provided information to the pilots 

faster than the ATC Students.  

 

Figure 50. Differences between the ATC Experts and ATC Students in terms of 

Weighted Mean Reaction Time (WMRT). The ANOVA analysis showed a significant 

difference (p=0.037) between the two groups. 

Power Spectrum Density (PSD) analysis 

The one-way ANOVA (between factor RANK; 2 levels: Experts and 

Students) has been performed on the workload index (ThetaF/AlphaP) to 

assess the existence of difference between the group of ATC Experts and 

ATC Students. The results showed that the mental workload of the Students 

during the whole ATM scenario was significantly higher (F(1, 35) = 8.8145; 

p = 0.00536) than the workload of the Experts (Figure 51).  



CHAPTER 3                                                                                  Workload 

 

130 

 

 

Figure 51. The ANOVA on the ThetaF/AlphaP Index reported a significant difference 

between the group of ATC Experts and Students. In fact, the ThetaF/AlphaP Index of 

the ATC Students was significantly (p = 0.005) higher than the ThetaF/AlphaP Index of 

the Experts. 

EEG-based Mental Workload Index (WEEG) 

The WEEG index has been evaluated for each difficulty level (Easy, Medium, 

and Hard) and group (ATC Students and ATC Experts). In Figures 52 and 

53, the WEEG of the ATC Experts (on the top) and of the ATC Students (on 

the bottom) calculated along the experimental session are reported. In 

particular, the solid blue lines represent the WEEG index for each run (i.e. ~3 

minutes average), and the colored rectangles represent the WEEG index 

averaged over each difficulty level (Easy, Medium and Hard, respectively 

in green, yellow and red). The figures show that for each group, the WEEG 

index followed the profile of the ATM scenario.  



CHAPTER 3                                                                                  Workload 

 

131 

 

 

Figure 52. Representation of the WEEG index across the different difficulty condition 

(E1÷E5 – green bar, M1÷M5 – yellow bar, and H1÷H5 – red bar) and its mean value for 

the ATC Experts. 

 

Figure 53. Representation of the WEEG index across the different difficulty condition 

(E1÷E5 – green bar, M1÷M5 – yellow bar, and H1÷H5 – red bar) and its mean value for 

the ATC Students. 

Furthermore, for each group three two-tailed paired t-tests (α = 0.05) 

between the WEEG index distributions related to couple of conditions (Easy 

vs Medium, Easy vs Hard, Medium vs Hard) have been performed, in order 

to test the discriminability between different conditions. The Table 6 reports 

the p-values of the t-tests on the WEEG distributions related to the different 

difficulty levels. The asSWLDA was able to discriminate significantly the 

three levels of ATCOs’ mental workload. 
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Table 6: p-values of the two-tailed paired t-tests (α = 0.05) between the WEEG index 

distributions related to couple of conditions (E vs M; M vs H and E vs H). 

 Easy vs Medium Medium vs Hard Easy vs Hard 

ATC Experts 0.02 0.01 0.003 

ATC Students 0.04 0.04 0.003 
 

Instantaneous Self-Assessment of Workload (ISA) 

Figures 54 and 55 show, respectively for the ATC Experts and ATC 

Students, how the ISA scores (z-score normalized) followed the profile of 

the ATM scenario, except that in the first hard run (H1). 

 

Figure 54. Representation of the ISA score across the different difficulty condition runs 

(E1÷E5 – green bar, M1÷M5 – yellow bar, and H1÷H5 – red bar) and its mean value for 

the ATC Experts. 
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Figure 55. Representation of the ISA score across the different difficulty condition runs 

and its mean value for the ATC Students. 

In order to test the discriminability between the different ATM conditions, 

for each group, three two-tailed paired t-tests (α = 0.05) between the ISA 

score distributions related to couple of conditions (Easy vs Medium, Easy 

vs Hard and Medium vs Hard) have been performed. The Table 7 shows 

that the ISA scores could differentiate significantly only the couples Hard 

vs. Easy and Medium vs. Easy (p < 0.05). On the contrary, for both the 

groups the Hard and Medium conditions were not significantly different. 

Table 7: p-values of the two tailed paired t-tests (α = 0.05) between the ISA scores 

distributions related to couple of conditions (E vs M; M vs H and E vs H). 

 Easy vs Medium Medium vs Hard Easy vs Hard 

ATC Experts 5.2*10-9 0.854 8.9*10-5 

ATC Students 2.6*10-5 0.593 7.5*10-5 
 

Correlation Between Workload and ISA Indexes 

The correlation between the subjective (ISA scores) and the 

neurophysiological (WEEG) workload measures (reported above) has been 

quantified. Firstly, the WEEG index has been normalized in order to make it 

comparable with the ISA score. Therefore, the WEEG has been z-score 

normalized along each subject, and then averaged across each run. Table 8 
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shows the results, in terms of Pearson’s correlation index and significance, 

between the two measures for each group (ATC Experts and Students) and 

for the whole sample. The results show how, for all the comparisons, the 

correlation is positive and significant.  

Table 8: Pearson’s Correlation Coefficient (R) and significance (p-value) level between 

the neurophysiological (WEEG) and the subjective (ISA) workload measures for the two 

groups of ATCOs. 

 R p 

ATC Experts 0.844 0.001 

ATC Students 0.640 0.0339 

All ATCOs 0.822 0.0019 
 

Furthermore, the scatterplot in Figure 56 highlights the positive and 

significant correlation between the two measures for both the ATC groups 

(ATC Experts in blue circles, and ATC Students in okra triangles), in 

particular, for the whole sample as underlined by the dashed red tendency 

line. 

 

Figure 56. Representation of the correlation between the neurophysiological (WEEG) and 

subjective (ISA) workload measures for the ATC Experts (blue circles) and ATC 

Students (okra triangles). The dashed red line is the tendency line of the whole 

distribution (ATC Experts and Trainees together). 
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3.4.3. Discussions 

The analysis of the task performance, in terms of reaction time, related to 

the execution of the ATM scenario provided important indications of the 

two groups. The ATC Experts did not show any difference among the three 

difficulty levels (Easy, Medium and Hard), whilst the ATC Students 

reported a significant performance reduction during the Hard scenario 

(Figure 49). In addition, significant difference has been found between the 

two groups (Figure 50), as the Experts needed shorter time to react and 

provide information to the pilots than the ATC Students (F(1, 31) = 4.7621; 

p = 0.03679). In terms of mental workload, a synthetic index has been 

defined with the aim to check the difference between the two groups. The 

results (Figure 49) showed a significant difference, in terms of mental 

workload, between the ATC Experts and ATC Students (F(1, 35) = 8.8145; 

p = 0.005). Concerning the machine-learning analysis, the asSWLDA was 

able to track the workload index of the ATCOs (both ATC Experts and 

Students) along the experimental session (Figures 52 and 53), and to 

differentiate significantly the three difficulty levels proposed in the ATM 

scenario (Table 5). It should be underlined that in a realistic environment, 

different sources of artifacts could affect the recorded neurophysiological 

signals, and this could produce wrong estimations and misclassifications of 

the physiological workload measures. ATCOs normally communicate 

verbally and perform several movements during their operational activity. 

Despite this, the “speaking” and the other artifacts were not an issue, 

because the analyses have been performed 1) by frequency filtering the 

neurophysiological signals, 2) by considering only the EEG channels 

strictly correlated to the examined cognitive phenomenon, and 3) by using 

a methodology (the machine-learning approach) able to reject automatically 

those features that are not important for and related to the observed 

cognitive phenomenon (i.e. workload). The analyses of the ISA scores 

confirmed that the three workload levels were perceived differently by the 

ATCOs. In particular, the Hard and Medium levels were significantly more 

difficult that the Easy one (Figures 54 and 55), but the ISA values could not 

discriminate the Medium and Hard conditions, as, on the contrary, the WEEG 

did for all the workload levels (Table 6). In other words, the resolution of 

the WEEG index was higher than the ISA measure. A strong correlation (all 
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p < 0.05) between the subjective (ISA) and the neurophysiological (WEEG) 

workload measures was highlighted (Figure 56). In addition, the results 

showed that the correlation was significant for both the experimental 

groups, but it was higher for the ATCO Experts than for the ATC Students 

(Table 7). The greater expertise and experience of the ATC Experts could 

explain why such self-report was more reliable than those of the ATC 

Students. This result could be seen as a further demonstration of the poor 

suitability of subjective workload measures. 

3.4.4. Conclusions 

The results, in terms of workload evaluation and correlation between 

neurophysiological (WEEG) and subjective workload perception (ISA), 

highlighted the efficiency and reliability of the proposed algorithm and 

methodology. Both the neurophysiological indexes, ThetaF/AlphaP and 

WEEG, were able to provide useful information regarding the workload 

levels required by the ATC tasks and about the difference between the 

groups of ATCO. In addition, the results underlined the higher resolution, 

thus the higher reliability of the neurophysiological measures than of the 

subjective questionnaire.  
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4. Cognitive Training 

Inappropriate training might have high social costs, especially for personnel 

that operates in complex operational environments, such as air-traffic 

controllers or pilots. One of the current limitations of the standard training 

assessment procedures is the leak of objective information about the 

cognitive resources requested by the user for the correct execution of the 

proposed task across the different training sessions. The training level and 

related performance are generally evaluated by the supervision of experts 

and it is easy to understand how this approach is highly operator–dependent. 

In fact, even if a task is accomplished perfectly, by means of the standard 

assessment methods will not be possible to estimate information about the 

user’s cognitive capacity and expertise. Therefore, it becomes difficult to 

quantify the cognitive resources available to the user for accomplish 

unexpected events or an emergency conditions. Thus, unappropriated 

training evaluation could bring to high probability to commit mistakes and 

the consequences might have important social and economic impacts. In the 

1928, Spearman (1928) stated that psychological writings “crammed” a lot 

of allusions to Human Factor (HF) in an “incidental manner”, but “they 

hardly arrived at considering such concept systematically and profoundly”. 

The last decades have seen an increasing interest in studying the HF in 

working environments, especially its causes and possible prevention 

approaches. For example, in the aviation field, aircraft accident 

investigations had revealed that 80% of accidents were based on human 

error, and further investigation indicated that a significant portion of human 

error was attributable to HF failures primarily associated with inadequate 

communication and coordination within the crew (Taggart, 1994). Several 

researches have continued to seek solutions to improve safety, and many of 

them have identified the personnel training as a significant strategy in 

achieving such a goal (Barach and Small, 2000; Barach and Weingart, 2004; 

Hamman, 2004; Leonard et al., 2004; Leonard and Tarrant, 2001). Training 

refers to a systematic approach to learning and development to improve 

individual, team, and organizational effectiveness (Goldstein and Ford, 

2002). The importance and the interest in the concept of training in 

operational environments (e.g. aviation, hospital and public transport) is 
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reflected by the regular publication of scientific reviews in the Annual 

Review of Psychology since 1971 (Campbell, 1971; Goldstein, 1980; 

Wexley, 1984; Tannenbaum and Yukl, 1992; Salas et al., 2001; Aguinis and 

Kraiger, 2009). An objective quantification of cognitive resources required 

by the operator during the execution of a task is very important, since the 

human brain resources are limited. The difference between the available 

cognitive resources and the amount of those involved for the task execution 

is called Cognitive Spare Capacity (Rudner and Lunner, 2014). The higher 

the cognitive spare capacity during a normal working activity is (i.e. the 

operator is involving a low amount of cognitive resources), the greater the 

operator ability to perform secondary tasks or to react to unexpected - 

emergency events will be. It is a common experience that at the first time 

subjects face a task, they attempt to understand its requests in a trial and 

error fashion; eventually, the subjects gain experience up to the full 

comprehension of the task that it is quickly followed by an increase of their 

task-related performance. For example, when we drive a car for the first 

time, we pay high attention to many details, but after a while, we are able to 

drive the car much better than at the beginning, and being also able to 

perform other tasks in parallel with the driving itself. It was showed that the 

learning is due to the acquisition and to the memorization of solutions to 

specific situations (Logan, 1988) while individual information of general 

meaning can be grouped together for creating more specific and larger 

knowledge by a practice (Newell and Rosenbloom, 1993). In addition, it 

was sustained that the automation progress is due to two consecutive 

phenomena: at the beginning, the memorization of the procedures allows to 

substitute a general knowledge with a specific (procedural) knowledge; 

later, a decrease of the involvement of the cerebral attention system is 

observed (Anderson, 1993) since performed procedures will become 

automatically performed. Such learning process is well described by the 

Learning Curve (Ritter and Schooler, 2001), where the performance 

enhances and the time necessary for the task execution decreases by 

increasing the training sessions. A focused and progressive training program 

makes the people able to gain experience and knowledge for facing and 

reaching appropriate standard of performance (Parasuraman and McKinley, 

2014; Erickson et al., 2007; Gopher 1993; Kramer et al., 1999). In addition, 

training programs in which performance on a task is methodically improved 



CHAPTER 4                                                                    Cognitive Training 

139 

 

through adaptive performance feedback (instructional strategies and 

individualized program) over multiple sessions have been shown to reliably 

reduce costs associated with performing multiple concurrent tasks (Kramer 

et. al, 1995; Kramer, et al., 1999; Schumacher et al., 1999; Glass et al., 2000; 

Bherer et al., 2006). 

In this context, the possibility to objectively assess the training level of the 

operator, both in terms of task performance and requirement of cognitive 

activation, appears very useful. Such concern is based on the hypothesis 

that, during a training period the execution of the task become more 

automatic and less cognitive resources are required, thus higher amount of 

cognitive resources will be available. In fact, after having being sufficiently 

practiced, the long-term memory will contain huge amount of domain-

specific knowledge structures that can be described as hierarchically 

organized schemas that allow us to categorize different problems states and 

decide the most appropriate solution moves. These schemas can operate 

under automatic rather than controlled processing (Kotovsky et al., 1985; 

Schneider and Shiffrin, 1977; Shiffrin and Schneider, 1977). Automatic 

processing of schemas requires minimal working memory resources and 

allows problem solving to proceed with minimal effort. In the Cognitive 

Load Theory (CLT), it has been highlighted how the proper allocation of 

available cognitive resources is essential to learning (Sweller, 1999; Sweller 

et al., 1998). The effects of practice at a cognitive level must be carefully 

considered in the interpretation of any study, as the changes in cognitive 

processes underlying task performance can be a key to understanding the 

changes in functional activations observed. Many researches have revealed 

that both developmental change and changes in response to experience can 

occur at multiple levels of the Central Nervous System (CNS), from changes 

at the molecular or synaptic level, to changes in cortical maps and large-

scale neural networks (Kelly and 2005). Across studies, three main patterns 

of practice-related activation change can be distinguished. Practice may 

result in an increase or a decrease in activation in the brain areas involved 

in task performance, or it may produce a functional reorganization of brain 

activity, which is a combined pattern of activation increases and decreases 

across a number of brain areas (Petersen et al., 1998; Poldrack, 2000; 

Raichle et al., 1994; Poldrack and Gabrieli, 2001). Increased neural 

efficiency may correspond to a sharpening of the response in a particular 
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neural network so that only a minority of neurons now fire strongly in 

response to a particular task or stimulus (Poldrack, 2000). Practice-related 

activation decreases are therefore the result of more efficient use of specific 

‘neuronal circuits’ (Petersen et al., 1998). In topographically organized 

cortex, this will be seen as a reduction in the spatial extent of activation, or, 

in areas with distributed representations, as a reduction in activation 

(Poldrack, 2000). The term increases in activation refers to both practice-

related expansions in cortical representations and increases in the strength 

of activations. Expanded representations may be reflected in increased 

strength of activations (Poldrack, 2000). On a neural level, increases in 

activation are suggested to reflect recruitment of additional cortical units 

with practice, seen in topographically organized cortex as an increase in the 

spatial extent of activation, or a strengthening of response within a region, 

observed as an increase in the level of activity within that region (Poldrack, 

2000). Practice-related reorganization of the functional anatomy of task 

performance may also be distinguished into two types, one constituting a 

redistribution, the other a ‘true’ reorganization. The first might be 

considered as a pseudo-reorganization, or redistribution of functional 

activations. It constitutes a combination of increases and decreases in 

activation such that the task activation map generally contains the same 

areas at the end as at the beginning of practice, but the levels of activation 

within those areas have changed. The functional anatomy of the task 

therefore remains basically the same but the contribution of specific areas 

to task performance changes as a result of practice. It has been discussed 

previously by Petersen et al. (1998) in terms of a ‘scaffolding storage’ 

framework. According to this framework, a ‘scaffolding’ set of regions is 

used to cope with novel demands during unskilled, effortful performance. 

After practice, processes or associations are more efficiently stored and 

accessed and the scaffolding network falls away, evinced by decreased 

activation in those ‘scaffolding’ attentional and control areas. Activations 

seen earlier in practice therefore involve generic attentional and control 

areas — prefrontal cortex (PFC), anterior cingulate cortex (ACC) and 

posterior parietal cortex (PPC) are the main areas considered to perform the 

‘scaffolding’ role, consistent with theories of Shadmehr and Holcomb 

(1997). The PFC, which has been previously implicated in goal-based and 

planning processes (e.g., (Shallice, 1982), is most readily associated with 
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‘‘goal processor’’, whose primary function is to guide novice behavior by 

instantiating the task context (e.g., the instructions) and then structuring the 

sequential execution of task-relevant operations (Chein et al., 2005). 

Correspondingly, Cohen and colleagues (O’Reilly et al., 1999; Cohen et al., 

1996; Braver and Cohen, 2001) have argued that the prefrontal cortex, in 

particular the dorsolateral part, serves to maintain goal-related information 

that biases subsequent processing according to task demands. By this 

account, practice-related decreases observed in the Dorsolateral Prefrontal 

Cortex (DLPFC) may occur as practice strengthens the stimulus–response 

associations between paired items, correct responses are potentiated, and the 

need for monitoring and biasing from task context (and thus the prefrontal 

cortex) is reduced. From a working memory perspective, the activity in 

these regions during encoding may reflect material non-specific rehearsal 

processes to maintain information on-line, while it is being more 

permanently embedded into long-term memory (Buckner, 1996).  

The empirically observed domain-general network also included an 

extensive PPC where activity decreased with practice. This region, which is 

widely viewed as an attentional center of the brain (Vandenberghe and 

Gillebert, 2013; Vandenberghe et al., 2012; Corbetta et al., 1995; Desimone, 

1992; Posner and Petersen, 1990), subserves a control process that allocates 

attention to task-specific information processing regions. Such attentional 

modulation is imposed by an ‘‘attention controller’’ that guides information 

flow by regulating the output of distributed information processing modules 

during novice performance. 

Practice also led to decreased activation of the ACC for both verbal and 

nonverbal paired associates. The function of this region corresponds to an 

‘‘activity monitor’’ in control system. The Activity Monitor acts to track 

and record recent activity levels in task- relevant areas and to establish a 

decision threshold for identifying strongly activated areas to the goal 

processor. Indeed, much of the recent literature on ACC function has 

emphasized its role in communicating a need for greater cognitive control 

to other executive brain regions (Carter at al., 1999). Accordingly, this 

region’s decrease in activation with practice may correspond with the 

decreased sampling time needed to select a decision threshold as familiarity 

with the correct pairings increases.  
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The second type of functional reorganization is considered to reflect a ‘true’ 

reorganization of activations. It is observed as a change in the location of 

activations and is associated with a shift in the cognitive processes 

underlying task performance. This shift (‘process switching’: see Poldrack 

2000; Dayan and Cohen, 2011) means that neuro-biologically and 

cognitively, different tasks are being performed at the beginning and end of 

practice, resulting in a coordinated increase and decrease of activation in 

separate brain regions, and is consistent with studies demonstrating a 

reorganization of activation as a result of explicit shifts or differences in 

task strategy (e.g. Sakai et al. 1998; Ashby et al., 2010; Doyon and Benali, 

2005 Bernstein et al., 2002; Glabus et al., 2003; Hikosaka et al., 2002). The 

results of these studies are also consistent with those of Seidler et al. (2002) 

who saw learning related activations in premotor, motor, prefrontal, 

cingulate and parietal cortices, and in the thalamus, during practice on a 

serial reaction time (SRT) task. Activation in these areas was observed to 

dissipate with practice even though a distractor task prevented the 

behavioral expression of learning. On the other hand, cerebellar activation 

increased during the expression of performance improvements, once the 

distractor had been removed. Hikosaka et al. (2002) have also demonstrated 

that automatic execution of a motor adaptation task produces long-term 

plastic changes in the Cortico Cerebellar (CC) instead of the Cortico 

Striatal (CS) system. In this study, subjects were scanned on the first day of 

practice (early learning) and after they reached automatic performance (i.e. 

after 21 days of practice on average) on a joystick, target reaching task. 

Automatic execution was assessed by verifying that subjects had reached 

complete asymptotic performance and by testing their performance in a 

dual-task condition. Although activations in the putamen and other motor 

areas were observed in the early learning phase, increased activity in the 

cerebellum and parietal cortex were seen after training, suggesting that the 

cerebellum and associated cortical regions are sufficient to mediate 

automatic adapted movements. Both these studies demonstrated the 

‘scaffolding’ role of frontal and parietal areas, activation which is subject to 

‘pruning’ as performance improves and becomes increasingly reliant on 

task-specific, performance-related areas located posteriorly in the brain. 

Furthermore, they demonstrated how learning-related changes in activation 
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may occur in the absence of performance change, emphasizing the 

complexity of the brain’s response to repeated task experience. 

As quoted above, the literature dealing with the effect of practice on the 

functional anatomy of task performance is extensive and complex, 

comprising a wide range of papers from disparate research perspectives. An 

interesting question is then if it is possible to follow such changes of the 

cerebral activity during the training, using neuroimaging methodologies. 

This capability would provide additional and objective evidences related to 

the acquisition of an ability during the training phase, beside the overt 

behavioural measurements. The neuroimaging methodologies would be 

able to track reallocation of such cognitive resources during the training 

phase, providing an independent metric on the quality of the performed task. 

Neuroimaging methods such as Positron Emission Tomography (PET) and 

functional Magnetic Resonance Imaging (fMRI) are excellent tools in this 

endeavor, enabling the examination of how the brain adapts itself in 

response to practice or repeated exposure to particular tasks. However, their 

limitations in terms of cost, space and invasiveness make them not suitable 

for real working environment settings, where a less invasive approach 

would be preferable and the costs for its implementation and usage has to 

be limited. In fact, PET and fMRI techniques require expensive devices, big 

customized rooms and high maintenance costs. In order to deal with these 

requirements and limitations, it has been investigated the possibility to track 

the training progress of the operator, by recording its brain activity by using 

the Electroencephalography (EEG) technology, both in controlled 

environments (Labs) and in realistic operational settings.  
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4.1. Training Assessment in Lab Settings 

The aim of this study was to derive robust neurophysiological signature 

related to the learning progress of a motor-cognitive task, by using 

biosignals such as Electroencephalogram (EEG), Electrooculogram (EOG) 

and the Electrocardiogram (ECG).  

All these variables have been reported (see paragraph 1) to be correlated 

with the levels of mental effort generated during the execution of a task 

(Elliot et al., 2011; Fukuda, 2001; Palomba et al., 1997; Shultz et al., 2011). 

In particular, it has been suggested that an increased Heart Rate (HR) could 

be related with an increased mental effort, while Eye Blinks Rate (ERB) are 

inversely correlated with the increase of the mental effort (Lal and Craig, 

2002). Finally, it has also been shown that one of the most prominent 

neurophysiological event linked to the increase of the cognitive effort and 

decision making, in a strategy selection process during a complex task, is 

the increase of the EEG Power Spectral Density (PSD) in the theta 

frequency band (Berka et al., 2007; Berka, 2011; Galán and Beal, 2012; 

Jaušovec and Jaušovec, 2012; Luu and Tucker, 2001; Mackie et al., 2013; 

“Fielder, 2011”; Ridderinkhof et al., 2004), and the corresponding decrease 

of the EEG PSD in the alpha frequency band (Borghini et al., 2012a, b; 

Doppelmayr et al., 2008; Luu and Tucker, 2001, Kelly et al, 2003; 

Klimesch, 2012, 1999; Klimesch et al., 1998; Rihs et al., 2007; Sadaghiani 

et al., 2010). Such variations typically occur over the prefrontal and frontal 

areas, for the theta rhythm, and over the parietal areas, for the alpha rhythm.  

The hypothesis of the study was that at the first time subjects face the task 

(first training session), they attempt to understand its requests in a trial and 

error fashion, and the neurophysiological parameters would show certain 

changes. Eventually, the subjects gain experience up to the full 

comprehension of the task that it is followed by a significant increase of 

their task-related performance, thus significant variations of the 

neurophysiological parameters (e.g. frontal theta and parietal alpha PSDs, 

HR and EBR). Once trained, the subjects will not show further performance 

improvement (saturation of the learning curve) and, from a cognitive 

perspective, they will report less mental effort in coping with the proposed 

task and reaching high performance levels.  
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Such trends could be taken as indexes of the correct acquisition of skills 

across the training sessions. Such hypotheses have been tested on a group 

of 10 healthy students while they have been daily learned to perform a 

motor-cognitive task that they had never practiced before, along a training 

period of a week (5 consecutive days). 

4.1.1. 4.1.1 Experimental Setup 

Subjects 

Ten healthy volunteers (students of the National University of Singapore - 

NUS) have given their informed consent for taking part at the experiment 

and each of them has been paid SG$200 for the entire experimental period. 

The study protocol has been approved by the local Ethics Committee. The 

selection of the subjects has been done accurately in order to ensure the 

same mental and physical state (homogeneity of the experimental sample). 

The subjects (25±3 years old) have been instructed to maintain a specific 

kind of lifestyle. In particular, they have been asked to avoid alcohol, 

caffeine, heavy meals right before the experiments, and to avoid extreme 

physical activity over the entire experimental protocol (homogeneity of the 

“internal conditions” of the subjects during the experiments). The Lab 

environment has been kept under control (lights intensity, room 

temperature, seat position) across the different days of the experiments 

(homogeneity of the “external conditions” during the experiment). In 

addition, in order to have low sources of variances, the experimental group 

has been composed only by males. 

Experimental Protocol 

The subjects performed the NASA Multi Attribute Task Battery (MATB, 

see paragraph 2.3.1 for more details) for five consecutive days (SESSIONS 

T1÷T5), for a total training period of 30 minutes per day. In order to 

investigate possible trends and changes of the neurophysiological 

parameters across the experimental sessions, the EEG, the ECG and the 

EOG have been recorded in the first (T1), in the third (T3), and in the fifth 

(T5) training session, while the behavioural and subjective (NASA-TLX) 

data have been collected after each training condition. Instructions have 

been provided to each subject on the first day of training (T1), since the 
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subjects had never performed the proposed task before. To be efficient, the 

instructional design has been tailored to the level of the subject, in order to 

avoid that the effectiveness of the training was likely random (Kalyuga et 

al., 2003). At the end of each experimental condition of any training session, 

the subjects filled the NASA-TLX questionnaire. Yet, I considered the 

factors “Frustration” of the NASA-TLX as indicator of the Emotive 

Engagement. In fact, this factor is defined as how much the subject felt 

insecure, discouraged, stressed and annoyed versus secure, gratified, 

confident and relaxed with the task (Hart S. G. and L. E. Staveland, 1988). 

Neurophysiologicaldata Analysis 

Electroencephalogram (EEG) and physiological signals, vertical 

electrooculogram (EOG) and electrocardiogram (ECG) have been recorded 

by a digital monitoring system (ANT Waveguard system). The 64 EEG 

channels, the ECG and the EOG channels have been collected 

simultaneously during the experiment with a sampling frequency of 256 

(Hz). All the EEG electrodes have been referenced to both earlobes, 

grounded to the AFz channel and their impedances were kept below 10 

(kΩ). The bipolar electrodes for the heart activity have been placed on the 

left pectoral muscle, while the bipolar electrodes for the EOG have been 

positioned vertically over the left eye. The acquired EEG signals have been 

digitally band-pass filtered by a 4th order Butterworth filter (low-pass filter 

cut-off frequency: 30 (Hz), high-pass filter cut-off frequency: 1 (Hz)) and 

the Independent Component Analysis (ICA) (Hyvärinen and Oja, 2000) has 

been run in order to remove eye-blinks and eyes-gaze artifacts from the EEG 

data. For other source artifacts, a specific procedure for artifact removal, 

based on the approach involving the Riemman geometry theory has then 

been applied (Barachant et al., 2013a,b). The EEG Power Spectral Density 

(PSD) has then been estimated by using the periodogram with Hanning 

window (2 second-length, overlapped of 1 second). These values have been 

chosen in order to have both a high number of observations (see equation 

3.7) for a proper statistical analysis, and to respect the condition of 

stationarity of the EEG signal (Elul, 1969). In fact, the latter one is necessary 

to proceed with the spectral analysis of the signal. The EEG frequency bands 

have been defined for each subject by the estimation of the Individual Alpha 

Frequency (IAF) value (Klimesch, 1999). In order to have a better 
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estimation of the alpha peak and, hence of the IAF, the subjects have been 

asked to keep the eyes closed for a minute. Then, this condition (OC 

condition) has been used for the IAF estimation and then for the EEG bands 

definition. The Heart Rate (HR) and the Eyes Blink Rate (EBR) have been 

estimated by calculating the distance between consecutive peaks occurring 

in the ECG and in the EOG signals. In particular, the R-peaks and the Blink-

peaks have been used for the HR and EBR estimation, respectively. All the 

analyses of the neurophysiological parameters, the EEG PSDs estimated in 

the different frequency bands, the HR and the EBR have been done by 

estimating the signed r-square (see paragraph 3.2.1) between the considered 

experimental condition and the reference one. Such reference conditions 

consisted in looking at a black screen for 2 minutes before starting with the 

execution of the different task difficulties. The results proposed in the 

following sections will then be represent as r-square values, thus if the r-

square value (y-axis) is zero, it will mean that there were no differences 

between the considered experimental condition with respect to the reference 

one. 

Estimation of Cortical Source Current Density 

Cortical activity has been estimated from EEG scalp recordings by 

employing the high-resolution EEG technologies (Astolfi et al., 2007, 2006) 

with the use of the average head model from McGill University (Ding et al., 

2005). Electrode positions over the scalp have been obtained individually 

for each subject by using the Photomodeler software (Eos System Inc). The 

cortical model consisted of about 8,000 dipoles uniformly disposed on the 

cortical surface. The estimation of the current density strength for each 

dipole has been obtained by solving the electromagnetic linear inverse 

problem (He et al., 2006; Nunez, 1995). In particular, the solution of the 

linear system,  

Ax = b + n             (4.2) 

at a particular time instant t provides an estimation of the dipole source 

configuration x at time t that generates the measured EEG potential 

distribution b in the same instant. The system also includes the measurement 

noise n, assumed to be normally distributed. A is the lead field matrix, 
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where each j-th column describes the potential distribution generated on the 

scalp electrodes by the j-th unitary dipole. The current density solution 

vector of Equation (4.1) has been obtained as: 

 222
minarg

NM
A xbx

x

            (4.3) 

where M, N are the matrices associated to the metrics of the data and of the 

source space, respectively, λ is the regularization parameter and || x ||N 

represents the N norm of the vector x (Babiloni et al., 2005; Grave de Peralta 

Menendez and Andino, 1999). The solution of Equation (4.2) is given by 

the inverse operator G: 

   tt Gbξ  , where   1111   MAANANG         (4.4) 

The optimal determination of the regularization term λ of this linear system 

has been obtained by the L-curve approach (Hansen, 1992; He et al., 2006). 

As a metric in the data space, the identity matrix has been used, while as a 

norm in the source space, the following metric was adopted: 

  21 



  iii AN                                                                        (4.5) 

where (N-1)ii is the i-th element of the inverse of the diagonal matrix N and 

all the other matrix elements Nij are set to 0. The L2 norm of the i-th column 

of the lead field matrix A is denoted by ||Ai||. Using the relations described 

above, an estimation of the signed magnitude of the dipolar moment for 

each cortical dipoles has been obtained for each time point t. As the 

orientation of the dipole has been defined to be perpendicular to the local 

cortical surface in the head model, the estimation process returned a scalar 

rather than a vector field. The spatial average of the signed magnitude, of 

all the dipoles belonging to a particular ROI at each time sample, was used 

to estimate the waveforms of cortical ROI activity in that ROI, indicated as 

ρ(t) to highlight their time-dependence. Spatial averaging can be expressed 

in terms of matrix multiplication by a matrix T. This matrix is sparse and 

has as many rows as ROIs, and as many columns as the number of dipole 

sources.  
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ROI cortical current density waveforms can then be expressed as: 

ρ(t) = Tx(t) = TGb(t) = GROIb(t) , where GROI = TG       (4.5) 

where b(t) is the array of the waveforms recorded from the scalp electrodes 

and x(t) is the array of the cortical current density waveforms estimated at 

the cortical surface. The GROI matrix only depends on geometrical factors, 

and can thus be computed and stored off-line. The matrix multiplication can 

be interpreted as a spatial filtering of the scalp potential b(t), using the 

elements of GROI as weights. In this way, we could obtain time-varying 

waveforms at the level of different cortical areas. In the next paragraph, such 

cortical areas will be described as coincident with particular Brodmann 

areas for all the subjects involved in the present study. 

Generation of the Regions of Interest (ROIs)  

Cortical regions of interest (ROIs) have been drawn on the computer-based 

reconstruction of the average cortical model. The ROIs were segmented 

automatically on the basis of the Brodmann areas (BA) classification 

(Brodmann, 2006). Particular ROIs considered in this study were those 

suggested by the previous literature relative to the mechanism of the 

“decision-making” processes, then involving dorsolateral prefrontal 

cortical (DLPFC) and parietal regions, as well as the cingulate cortices 

(Anterior Cingulate Cortex; ACC and the Cingulate Motor Area; CMA). 

The DLPFC regions including the BAs 8, 9/46 and 10 have been then 

selected, together with the ACC defined by comprising the BAs 24, 25 and 

33. In particular, in the following it will be presented in detail the variation 

of the PSD estimated over the frontal cortical areas (composed by the BA6, 

BA8, BA9 and BA46), in the theta frequency bands, and of the PSD for the 

parietal cortical areas (composed by the BA5, BA7, BA19 and BA40), in 

the alpha frequency band, by solving the linear inverse problem. Such focus 

of interest is justified by the involvement of these cortical regions in the 

insurgence mental effort (reviewed in Borghini et al., 2012a). In order to 

generate a cortical distribution of the statistically significant increase or 

decrease of EEG PSD across the training sessions (T1, T3 and T5), series 

of univariate t-tests, for each considered voxel of the adopted cortical model, 

have been performed at a nominal level of significance of α = 0.05. 
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However, since the execution of multiple univariate tests could raise the 

Type I errors (the so called alpha-inflaction; Zar, 1999), the False Discovery 

Rate (FDR) methodology was adopted to correct for the multiple 

comparisons (Strimmer, 2008). 

Statistical Analysis 

Repeated measures ANOVAs (Confidence Interval, CI = 0.95) have been 

used for the statistical validation of the results, derived by the different 

analyses, by using the STATISTICA software (Statsoft). In particular, seven 

one-way repeated measures ANOVAs have been performed separately for 

frontal theta PSD, parietal alpha PSD, Heart Rate, Eyeblinks Rate, 

Performance, NASA-TLX total score and “Frustration” score, as 

independent variables, with the within factor SESSION at 3 levels (T1, T3 

and T5 -  the 3 recording-training sessions). In addition, three two-way 

repeated-measures ANOVAs, with the within factors SESSION (3 levels) 

and SUBJECTS (10 levels) have been performed for the single-subjects 

analyses where the frontal theta PSD, parietal alpha PSD and Performance 

were the independent variables. Yet, a two-way repeated measures 

ANOVA, with the factors SESSION (3 levels) and CONDITIONS (4 

levels) has been performed on the NASA-TLX total score (independent 

variable) throughout the training sessions and task conditions. Duncan post-

hoc tests have been performed to highlight the effects between all the 

employed factors and levels. 
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4.1.2. Results 

Tasks Performance 

Throughout the training sessions, the performance of the subjects increased 

continuously in terms of mean performance level and accuracy. Figure 57 

shows the simultaneous increase of the performances level and the slight 

decrease of the amplitude of the standard deviations across the training 

sessions. Since the second day of training, all the subjects reached a good 

level of performance (above the 90% of correct responses). The repeated 

measure ANOVA performed on the Global MATB Performance index 

showed a statistical significant difference among the sessions (F(4, 40) = 

8.1356; p = 7•10-5). The post-hoc Duncan test showed that the first session 

was statistically different from all the others (p < 10-3). On the contrary, no 

difference was found between T4 and T5. Overall, the average final 

performance of the experimental group was significantly improved (92%) 

with respect to the beginning of the training (88%). 

 

Figure 57. MATB performance index across the five different training sessions (T1÷T5) 

of the experimental population. A significant increase was obtained since the third day 

(T3) of training when compared to the first (T1) and second (T2) day. At the end of the 

training period (T5), the learning curve reached the saturation point, as there was no 

statistical difference among the third (T3) and fifth (T5) training session, in terms of 

performance level. 
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Perceived Workload: NASA-TLX Scores  

In Figure 58, the total scores of the subjective workload evaluation (NASA-

TLX) across the different sessions (different coloured style lines) as well as 

across the different difficulty levels (x-axis) are presented. Each single task 

condition (hyper-easy, easy, medium and hard) has been perceived easier 

after any training session, with respect to the previous one (coloured lines), 

until the last one (black line), in which all the conditions were perceived as 

the easiest ones. The repeated measure ANOVA showed significant results 

among the training sessions (F(4, 56) = 19.1; p < 10-5). The post-hoc test 

showed that the average of the NASA-TLX scores at T1 was statistically 

different from all the others and the average NASA-TLX score at T5 was 

statistically lower than all the first three sessions (T1, T2 and T3); NASA-

TLX scores at T4 and T5 were not significantly different from each other.  

 

Figure 58. NASA–TLX total scores obtained at the end of each training condition, x-

axis, (hyper-easy, easy, medium and hard) in the five training sessions (different colour 

and shape lines). The single task condition was perceived easier after each training 

session up to the last one (T5). In fact, the NASA-TLX scores of the first session (T1) 

were the highest (blue colour – solid line), while those of the last training session (T5) 

were the lowest (black colour – chain line). 
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Frontal Theta PSD 

Figure 59 reports the averaged r-square values of the EEG theta PSD 

estimated over the frontal channels (EEG channels: AF7, AF3, AF8, AF4, 

F7, F5, F3, F1, Fz, F2, F4, F6 and F8). The results from the repeated 

measure ANOVA showed a statistical significant modulation of the signed 

r-square of EEG PSD in theta band (Figure 53) over the frontal areas across 

the different training sessions (F(2, 18) = 16.21; p < 10-5).  

Parietal Alpha PSD 

In the Figure 60, the trends of the signed r-square of the parietal EEG PSD 

in alpha frequency band estimated during the experimental sessions is 

showed. In particular, the figure shows the trend of the parietal EEG PSD 

in alpha band over the parietal scalp EEG channels (CP1, CP3, CP5, P1, P3, 

P5, P7, CP2, CP4, CP6, P2, P4 and P6). The repeated measure ANOVA 

showed significant (F(2, 18) = 10.39, p < 10-3) differences across the 

training sessions.  

 

Figure 59. Frontal EEG PSD (r-square) in theta band over all the frontal EEG channels. 

The repeated measures ANOVA returned a significant value of the factor SESSION (p 

< 10-5). The frontal theta PSD peaks at the T3, and then drops down at T5, with a value 

lower than T1. 
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Figure 60. Parietal EEG PSD (r-square) in alpha frequency band during the training 

period. The Parietal Alpha PSD has a V-trend, similar to those reported for the theta 

band, but with an opposite sign. In fact, in the last training session (T5) it decreased, but 

less than in the central session (T3) and with a mean value close to that in the first session 

(T1). 

Single-Subject PSD and Performance Analysis 

The analysis of the learning curve at the single subject level reveal a similar 

behaviour of the whole group (Figure 57). Two of the 10 subjects (circled 

in orange in Figure 61) showed a lower starting point, in terms of mean 

performance value, when compared to the others. Subject GUOZHA (green 

line) and WANJAS (purple line) gained more than the 4% after the T2, and 

about the 10% in T3, reaching the group since the central training session. 

These subjects started the training period with a mean performances of 77% 

and 83% and reached a level of 88% and 92%, respectively, on the third day 

(T3). 
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Figure 61. Single-subject MATB mean performance. All the experimental group 

completed correctly the training period as there were no statistical differences among 

the last training sessions. By this analysis is possible to assert that a couple of subjects 

(GUOZHA and VISPAR) started their training period with a mean performance level 

lower than the rest of the group (about 77% and 83%, respectively) but they increased 

their performance quite quickly and reached the group since the third day of training 

(T3). 

The mean value of the frontal theta PSD showed a clear trend across the 

training sessions. Figure 62a reports the frontal EEG PSD in theta band for 

each subject in the first (T1), the central (T3) and final (T5) training session. 

Almost all the subjects showed the trend described by the average in Figure 

57. In agreement with the different learning trends described in Figure 57, 

the two subjects who previously had the lowest performance starting points 

(GUOZHA and WANJAS) showed the highest frontal theta PSD values 

(light green and dark blue), of the considered experimental group, in 

particular for the central session (T3) of training (circled in orange in Figure 

60a).   
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Figure 62. On the panel a) are presented the mean frontal theta PSD values, while in the 

panle b) are presented the mean parietal alpha PSD values estimated for each subject in 

the three recording-training sessions (T1, T3 and T5). In the orange circles, the two 

subjects who showed a slow performance improvement have been highlighted. 

Figure 62b presents the individual trends of the variations of the parietal 

EEG PSD in the alpha band for each subject of the considered experimental 

group. The majority of the subjects showed the trend suggested at the 

beginning of the study, that is the parietal alpha PSD reached the lowest 

value in the central training session (T3). Three subjects out of 10 showed 

a continuous decrease of the parietal alpha PSD across the training sessions. 

These trends could be due to the fact that these subjects had to keep more 

attention during the execution of the task respect to the others, which 

probably had automatized many processes for the correct execution of the 

task. Two subjects (GUOZHA and WANJAS), considered previously, were 

the only ones for which the parietal alpha PSDs did not decrease with 

respect to the reference condition (circled in orange in Figure 62b). 

Cortical Maps 

Figure 63 shows how the cortical PSD, estimated for the entire population, 

varied across the different training sessions: the first row is relative to the 

cortical PSD in the theta band, while the second row is relative to the alpha 

band. No statistical differences between the training session (T1, T3 or T5) 

with respect to the reference condition are represented by gray voxels. On 

the contrary, a red colour is used to represent voxels which presented 
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significant increase (p < 0.05) of EEG PSDs, when compared to the 

reference condition, and in blue colour for the significant decrement (p < 

0.05). Circles on the first row of the Figure 63 highlight the frontal areas 

with the statistical increase of EEG PSD in the theta band (represented as a 

red color). The cerebral activity within the frontal areas reached the 

maximum at T3 and then decrease slightly at T5 when compared to the T1 

condition. The yellow circles in the second row of Figure 61 highlight the 

parietal areas in which significant decreases (represented as blue color) of 

the alpha PSD were found across the sessions. The highest 

desynchronization happened on the central session of the training (T3), in 

correspondence of the highest increment of the frontal theta PSD. 

 

Figure 63. Cortical maps (frontal view) of the EEG PSD for theta band (top) and of the 

EEG PSD in alpha band (bottom). Only the FDR corrected significant t-values are 

plotted in colour. It is possible to note a trend of the EEG PSD changes throughout the 

successive training sessions analyzed (T1, T3, and T5). The red colour means that the 

EEG PSD estimated on the cortical surface during the task performed at a particular 

training day was higher than the EEG PSD estimated during the reference 

conditions(vice versa for blue colour). 

The quantitative analysis of the increase or decrease of the frontal theta and 

parietal alpha EEG PSDs have been investigated also by focusing on the 

analysis over particular ROIs identified by the Brodmann areas (BAs). The 
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frontal channels have been modelled with the cortical voxels that belong to 

the BA6, BA8, BA9 and BA46, whereas the parietal channels have been 

modelled with those belong to the BA5, BA7, BA19 and BA40. In these 

areas, the number of cortical dipoles showing statistically significant 

difference during the different training sessions with respect to the reference 

condition has been estimated. The results reported in Figures 64 and 65 

confirmed the analysis of the scalp EEG and are helpful for the 

interpretation of the previous results. In particular, over the frontal BA 

areas, the theta PSD (Figure 64) had the highest peak in the number of 

cortical activated voxels in the third training session (T3), while such 

number decreased in the last session (T5). Over the parietal areas, the 

desynchronization of the alpha rhythm (Figure 65) reached the maximum 

number of the statistically significant activated voxels in T3 session, while 

such number was lower than T3 in the T5 training session.  

 

Figure 64. Frontal Brodmann ROIs quantitative analysis related to the numbers of 

statistically significant cortical voxels elicited by the tasks, when compared to the 

reference condition, across the training sessions (T1, T3 and T5) for the theta frequency 

band. 
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The repeated measure ANOVAs performed on the number of activated 

voxels in the frontal and parietal areas, and the Duncan’s post-hoc tests 

showed how in correspondence of T3 the number of dipoles was the highest 

across all the training period, both in the theta (F(2, 18) = 9.97; p = 0.001) 

and in the alpha bands (F(2, 18) = 4.48; p = 0.02). These results confirmed 

also the trends, found by the EEG scalp data analyses, in Figures 59 and 60. 

 

Figure 65. Parietal Brodmann ROIs quantitative analysis related to the numbers of 

statistically significant cortical voxels elicited by the tasks, when compared to the 

reference condition, across the trainig session (T1, T3 and T5) for the alpha frequency 

band. 

Autonomic Signals 

Figure 66 shows the results of the HR, presented as averaged r-square values 

over all the subjects. The HR showed that the experimental group was 

emotively engaged in correspondence of the first training session (T1), and 

then the HR continuously decreased across the other training sessions (T3, 

T5). The difference between T1 and T3 was not significant (F(2, 18)= 32.23; 

p = 10-4), but the Duncan’s post-hoc test, showed that T5 was statistically 

lower than the others (p < 0.03).   
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Figure 66. Heart Rate (r-square) values across the recording training sessions (T1, T3 

and T5). The trend showed how the subjects felt more confident session after session, 

as the HR decreased continuously from the first (T1) to the final (T5) training session. 

Figure 67 presents the changes of the EBR index across the different 

training sessions. The statistical analysis showed no significant results 

across the sessions (F(2, 18) = 1.09, p = 0.36), but the results suggest that in 

the first session (T1) the value of the EBR was lower than in the other two 

tasks (T3 and T5). A possible interpretation of this result could be that the 

subjects paid more attention to the task at the beginning (T1), as the EBR 

decreased respect to the reference task, than in the central and last ones (T3 

and T5). This interpretation derives from the fact that in literature high EBR 

is associated with low attentional states (reviewed in Borghini et al., 2012a). 

Frustration Analysis 

The one-way repeated measures ANOVA performed on the “Frustration” 

factor of the NASA-TLX questionnaire showed a significant decrement 

across the training sessions (Figure 68). This factor is defined as how much 

stressed or comfortable the subjects felt in the various sessions. The Duncan 

post-hoc test confirmed how the subjects were significantly (p<.05) more 

confident with the task at the end of the training session (T5) than at the 

beginning (T1).  
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Figure 67. Eyesblink Rate (r-square) values across the recording training sessions (T1, 

T3 and T5). The differences among the sessions are not statistically significant, but we 

can hypothize that the subjects probably paid more attention in T1 than in the others, as 

the mean EBR in T1 is lower than in T3 and T5. 

 

Figure 68. Emotive engagement of the subjects across the training sessions (T1÷T5). 

The results show how the subjects felt significantly (p<.05) more confident with the 

task, session after session. 
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4.1.3. Discussions 

The aim of this work was to find out if it was possible to obtain quantitative 

information about the degree of the learning process throughout a training 

period by analyzing the variations of the EEG, ECG and EOG signals. The 

results suggested that the neurophysiological signals changed consistently 

across the training sessions, and they correlated with the overt behaviour of 

the subjects. Such overt behavioural scores and the experienced workload, 

reported by NASA-TLX, describe a story in which the subjects quickly 

found their own strategies and got confident with the execution of the 

proposed tasks (Figures 57, 58 and 68). In fact, the performance 

improvement was characterized by an asymptotic increasing where more 

than 90% of the final score was reached within the third training session 

(Figure 57), reaching a plateau until the last training sessions.  

The gathered EEG, EOG and ECG data suggested a chain of slightly 

different cerebral events throughout the training period. Figure 59 shows a 

clear increase of the frontal EEG PSD in theta band from the first (T1) to 

the third day (T3) of training, and a high decrease from the third (T3) to the 

fifth day (T5). The same trend, but with opposite sign, was observed for the 

parietal alpha PSD (Figure 59). These results were also confirmed by the 

cortical maps (Figure 61). The increase of the frontal cerebral activity in 

theta band, and the decrease of the parietal alpha band in the third day (T3) 

were quantified by the evidence that the number of activated voxels in the 

frontal and parietal areas (Figures 64 and 65) decreased significantly in the 

first (T1) and fifth day (T5), when compared to the third one (T3). As the 

modulation of EEG PSD over the frontal areas, in theta band, and over the 

parietal areas, in the alpha band, were associated with the concept of 

“mental workload” (Borghini et al., 2012a, b; Klimesch, 1999), it might be 

concluded that the subjects had a peak of mental efforts in accomplishing 

the MATB task on the central session (T3), by returning to a moderate effort 

at the end of the training period (T5), due to the memorization and 

automatization of many cognitive processes for the correct execution of the 

task.  

This overview is also supported by the trend of the HR and of the factor 

“Frustration” across the training period. Both the parameters continuously 

decreased from T1 to T5, and it showed how the subjects felt more confident 
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with the task on the last day (T5), as showed in Figures 66 and 67. From a 

single-subject point of view, it was possible to assess which subjects had a 

fast learning, a slow learning or who still needed to train. In fact, by 

comparing the trends of the brain activities of each subjects, it was possible 

to assess these differences and, then, to plan the training for each subject. In 

fact, by Figure 61, it was possible to find two subjects which started the 

training period with lower mean performance values than the rest of the 

group, but they reached the same performance of the other subjects since 

the third training session (T3) then. This fast-learning has been assessed by 

the trends of the single-subject performance and reflected by the highest 

values of the frontal theta PSD in the same session (T3) for these two 

subjects. What has then changed from T1 to T5 at the cerebral level? The 

EEG data suggested that the subjects during the training period generated a 

lot of mental effort up to the T3, with an accompanying increase of the overt 

performance. This mental effort decreased after T3, but the high level of 

performance was sustained until the end of the training period, where they 

did not significantly changed the mean performance level (saturation of the 

learning curve). The fewer cognitive resources needed by the subjects and 

the higher performance level on the last day of training (T5) confirmed how 

the automatic schemas, gained after being practiced for 5 consecutive days, 

made the subjects requiring minimal working memory resources and 

allowed problem solving to proceed automatically and with minimal effort.  

4.1.4. Conclusions 

The present study showed that the integration of information derived by the 

brain activity, through the EEG, and the physiological signals of ECG and 

of EOG, with the supervision of experts, could be used as possible 

innovative neurometric for evaluating the degree of the learning process and 

the training progress of trainees, e.g. pilots and air traffic controllers, 

throughout their periods of professional formation. Also, this method could 

be applied when the comparison between subjects is required. In fact, after 

a fixed period of training it could be possible 1) to quantify how well the 

subjects can complete a task, in terms of cognitive resources necessary to 

the correct execution, and 2) to compare subject’s cognitive performances 

by estimating the neurophysiological EEG, HR and EBR parameters 
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presented in this study. Although the MATB is a benchmark for many 

studies in the human factor domain (Prinzel et al., 2003; Smith et al., 2001; 

Trejo and Shensa, 1999; Wilson and Russell, 2003), the observed 

modulation effects of the cerebral activity are not examined for other kinds 

of motor cognitive tasks. This limitation has been addressed in the next 

studies employing different motor-cognitive tasks, more subjects and 

different setup. In fact, the next study consisted in taking into account the 

entire experimental paradigm, in which the 10 students accomplished the 

MATB for a period of 3 weeks (SESSIONS T1 ÷ T12) with the aim to assess 

if the students were trained for real, or if some learning processes were still 

happening. 

4.2. Machine Learning Approach for Training Assessment 

As described previously, practice-related reorganization of the functional 

anatomy of task performance may be distinguished into a redistribution and 

a ‘true’ reorganization (Kelly and Garavan, 2005). The first case constitutes 

a combination of increases and decreases in activation such that the brain 

activation map generally contains the same areas at the end as at the 

beginning of practice, but the levels of activation within those areas have 

changed. The second type of functional reorganization is considered to 

reflect a change in the location of activations and it is associated with a shift 

in the cognitive processes underlying task performance (Poldrack, 2000; 

Glabus and Horwitz, 2003). According to this framework, a ‘scaffolding’ 

set of regions is used to cope with novel demands during unskilled, effortful 

performance. After practice, processes or associations are more efficiently 

stored and accessed and the scaffolding network falls away, evinced by 

decreased activation in those ‘scaffolding’ attentional and control areas. 

Activations seen earlier in practice therefore involve generic attentional and 

control areas - prefrontal cortex (PFC), anterior cingulate cortex (ACC) and 

posterior parietal cortex (PPC) are the main areas considered to perform the 

‘scaffolding’ role, consistent with theories of PFC function and the 

involvement of these areas in the distributed working memory system 

(Seidler et al., 2002). In order to deal with these phenomena across a training 

period of 3 weeks, the asSWLDA (see paragraph 3.1) has been used to select 
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the most important brain features able to provide the proper resolution to 

track and quantify the evolution of the brain processes throughout the 

different sessions. The hypothesis was that, even if the EEG is not a 

stationary process, there could be some brain features closely related to the 

observed physiological phenomenon (i.e. learning process) enough stable 

over the time that can be used for a reliable classification of such 

phenomenon. In other words, if the subject is not trained his/her brain 

features and activations will change across consecutive training sessions, 

and this will be reflected on a decreasing of the asSWLDA performance 

between consecutive sessions. On the contrary, if the subject is well trained 

his/her brain features and activations will be stable over time, and, as 

consequence, the performance of the classifier will not change over 

consecutive training sessions. Such hypotheses have been tested on a group 

of 10 students who have been asked to learn the execution of a task that they 

had never practiced before (MATB, see paragraph 2.3.1). The results of the 

proposed methodology (machine-learning analysis of EEG data) have also 

been validated and supported by the results of the behavioural data (task 

performance) and subjective data (workload perception) analyses. 

4.2.1. Experimental Setup 

Subjects 

Ten healthy volunteers (students of the National University of Singapore - 

NUS) have given their informed consent for taking part at the experiment 

and each of them has been paid SG$200 for the entire experimental period. 

The study protocol has been approved by the local Ethics Committee. The 

selection of the subjects has been done accurately in order to ensure the 

same mental and physical state (homogeneity of the experimental sample). 

The subjects (25±3 years old) have been instructed to maintain a specific 

kind of lifestyle. In particular, they have been asked to avoid alcohol, 

caffeine, heavy meals right before the experiments, and to avoid extreme 

physical activity over the entire experimental protocol (homogeneity of the 

“internal conditions” of the subjects during the experiments). The Lab 

environment has been kept under control (lights intensity, room 

temperature, seat position) across the different days of the experiments 

(homogeneity of the “external conditions” during the experiment). In 
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addition, in order to have low sources of variances, the experimental group 

has been composed only by males. 

Experimental Protocol  

The subjects have been asked to practice and to learn to execute correctly 

the MATB (see paragraph 2.3.1) for three consecutive weeks (WEEK_1, 

WEEK_2 and WEEK_3). In total, they have taken part in 12 training 

sessions (T1 ÷ T12). with a duration of 30 minutes each (Figure 69). Each 

training session consisted in the execution of the MATB under different 

difficulty conditions (EASY and HARD) proposed twice in a random 

sequence in order to avoid any expectation and habituation effects. To 

investigate the trends and changes of the EEG parameters throughout the 

training period (3 weeks), as signs of learning progress, the behavioral, 

subjective and physiological data have been analyzed in specific training 

sessions (Kelly and Garavan, 2005), that is, the first day of WEEK_1 (T1), 

the last day of WEEK_1 (T5), the first repetition of the last day of WEEK_2 

(T8), the first repetition of the WEEK_3 (T11) and the last repetition of the 

WEEK_3 (T12).  

 

Figure 69. Extended training protocol. The subjects were asked to take part in a training 

period of 12 sessions (T1 ÷ T12) in which the different task conditions have been 

presented twice in random sequence in order to avoid habituation and expectation 

effects. In the red sessions, the EEG, ECG and EOG signals have been recorded, while 

in the gray ones, only the behavioural and subjective data have been collected. 

As the subjects had never done the MATB, instructions about the execution 

of the task have been provided on the first day of training (T1) before 

starting with the experiments. To be efficient, the instructional design has 

to be tailored to the level of the subject, in order to avoid that the 

effectiveness of the training was likely random (Kalyuga et al., 2003). At 
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the end of each experimental condition of each training session, the subjects 

have filled the NASA-TLX questionnaire (Hart and Staveland, 1988) to 

gather the subjective workload perception of the proposed task. 

Brain Activity Recording  

Electroencephalogram (EEG) and vertical electrooculogram (EOG) have 

been recorded by a digital monitoring system (ANT Waveguard system). 

The 64 EEG channels and the EOG channels have been collected with a 

sampling frequency of 256 (Hz). All the EEG electrodes referred to both 

earlobes, grounded to the AFz channel and their impedances were kept 

below 10 (kΩ). The bipolar electrodes for the EOG have been positioned 

vertically over the left eye. The EOG signal has then been used to remove 

eyes-blink contributions from each epoch of the EEG signal, by using the 

Gratton and Coles (1983) algorithm, whilst for other sources of artifacts, 

specific procedures of the EEGLAB toolbox have been used (Delorme and 

Makeig, 2004). The EEG signal has been firstly band-pass filtered with a 

fourth-order Butterworth filter (low-pass filter cut-off frequency: 30 (Hz), 

high-pass filter cut-off frequency: 1 (Hz), and then it has been segmented 

into epochs of 2 seconds (Epoch length), shifted of 0.125 seconds (Shift). 

The epochs where the EEG signal amplitude exceed ±100 (μV) (Threshold 

criteria) have been marked as artifact. Then, each EEG epoch has been 

interpolated in order to check the slope of the trend within the considered 

epoch (Trend criteria). If such slope was higher than 3, the considered 

epoch was marked as artifact. The last check has been based on the EEG 

Sample-to-sample difference (Sample-difference criteria). If such 

difference, in terms of amplitude, was higher than 25 (μV), it meant that an 

abrupt variation (non-physiological) happened and the EEG epoch has been 

marked as artifact. At the end, all the EEG epochs marked as artifact have 

been removed with the aim to have a clean EEG dataset from which estimate 

the brain parameters for the different analyses. All the previous mentioned 

values have been chosen following the guidelines reported in Delorme and 

Makeig (2004). From the clean EEG dataset, the Power Spectral Density 

(PSD) has been calculated for each EEG epoch using a Hanning window of 

the same length of the considered epoch (2 seconds length (that means 0.5 

(Hz) of frequency resolution). The application of a Hanning window helped 

to smooth the contribution of the signal close to the end of the segment 
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(Epoch), improving the accuracy of the PSD estimation (Harris, 1978). The 

segmentation of the EEG signal has been done in order to have both a high 

number of observations (see equation 3.7) in comparison with the number 

of variables (see equation 3.8), and to respect the condition of stationarity 

of the EEG signal (Elul, 1969). In fact, the latter one is necessary to proceed 

with the spectral analysis of the signal. Then, the EEG frequency bands have 

been defined accordingly with the Individual Alpha Frequency (IAF) value 

estimated for each subject (Klimesch, 1999). Since the alpha peak is mainly 

prominent during rest conditions, the subjects have been asked to keep the 

eyes closed for a minute, and then, such condition the IAF has been 

estimated. Finally, a spectral features matrix (EEG channels x Frequency 

bins) has been obtained in the frequency bands directly correlated to 

learning processes. In particular, only in the theta band (IAF-6 ÷ IAF-2), 

over the EEG frontal channels (Fz, F3, F4, AF3 and AF4), and in the alpha 

band (IAF-2 ÷ IAF+2), over the EEG parietal channels (Pz, Pz and P4), 

have been considered as variables for the mental workload evaluation. 

Machine Learning Approach 

A two-classes asSWLDA regression has been used to select within the 

training EEG dataset the most relevant EEG spectral features to discriminate 

the different task conditions. For each subject, 10 fold-cross validations, 5 

considered training sessions (T1, T5, T8, T11, T12) per 2 task condition 

repetitions (TX-1 and TX-2, where X = 1, 5, 8, 11, 12), have been 

performed, by calibrating the classifier with the “EASY – HARD” 

conditions couple of a session repetition, and then by testing it over the 

following repetitions. For each couple of conditions, the Linear 

Discriminant Function has been calculated and the Area Under Curve 

(AUC) values of the Receiver Operating Characteristic (ROC, (Bamber, 

1975)) have been estimated. In particular, five cross – validations groups 

have been defined (T1’, T5’, T8’, T11’ and T12’), as reported in Table 9. 

Within each group, an AUC value has been calculated as average of the 

cross-validations considering the training session of that group (e.g. T1 for 

T1’ group) and testing it over the consecutive ones, and vice versa. 

Specifically, for the first four cross-validations groups (i.e. T1’, T5’, T8’, 

T11’), the asSWLDA has been calibrated with the EEG dataset of each 

repetition of the considered session (i.e. group TX’, thus TX-1 or TX-2, 
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where X = 1, 5, 8, 11), and then tested on the following repetitions (i.e. TY-

1 and TY-2, where Y = 5, 8, 11, 12, with Y > X). For each combination, the 

roles of training and testing dataset have been successively inverted (e.g. 

considering group TX’, the AUC values were computed training the 

classifier with TX-1/2 and testing it on TY-1/2 and vice versa). In the case 

of the last cross-validations group, i.e. T12’, since there were not following 

sessions, the asSWLDA has been trained with one repetition and tested on 

the remaining one. In total, the number of cross – validations (#Cross-

validations) for each one of the considered sessions has been 32 for T1’, 24 

for T5’, 16 for T8’, 8 for T11’ and 2 for the last cross-validations group 

(T12’).  

Table 9: Cross-validations scheme. 

Cross-

validation 
Calibration dataset Testing dataset 

#Cross-

validations 

T1’ 

T1-1, T1-2 

T5-1, T5-2, T8-1, T8-2, 

T11-1, T11-2, T12-1, T12-

2 
32 

T5-1, T5-2, T8-1, T8-2, 

T11-1, T11-2, T12-1, 

T12-2 

T1-1, T1-2 

T5’ 

T5-1, T5-2 
T8-1, T8-2, T11-1, T11-2, 

T12-1, T12-2 
24 

T8-1, T8-2, T11-1, 

T11-2, T12-1, T12-2 
T5-1, T5-2 

T8’ 

T8-1, T8-2 
T11-1, T11-2, T12-1, T12-

2 
16 

T11-1, T11-2, T12-1, 

T12-2 
T8-1, T8-2  

T11’ 
T11-1, T11-2 T12-1, T12-2 

8 
T12-1, T12-2 T11-1, T11-2 

T12’ 
T12-1 T12-2 

2 
T12-2 T12-1 

The expected results have been based on the following hypotheses: i) if the 

subject is well trained, the AUC of such cross-validation (i.e. T1’, T5’, T8’, 

T11’), and the consecutive ones, will show comparable value to the gold 

standard condition (no significant difference, p > 0.05), that in the 

considered study is the last cross-validation (T12’); ii) on the contrary, if 
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the subject is not well trained, the AUC of the considered cross-validation 

will show a significant lower AUC value than the gold standard condition; 

iii) since the subject is trained, the brain features might remain almost stable 

within the same session, especially after 3 weeks of training, therefore the 

T12’ cross-validation should show the highest AUC value. 

Statistical Analyses 

Repeated measures ANOVAs (Confidence Interval, CI = 0.95) have been 

used for the statistical validation of the results derived by the different 

analyses, by using the STATISTICA software (Statsoft). In particular, two 

one-way repeated-measures ANOVAs have been performed on the task 

performance data and NASA-TLX total score (independent variables) with 

the within factors SESSION (five levels: T1, T5, T8, T11 and T12). The 

same ANOVA has been performed by considering as within factor the 

CROSS-VALIDATION (five levels: T1’, T5’, T8’, T11’ and T12’) on the 

AUC values (independent variable). Duncan post-hoc tests have been 

performed to assess significant differences between all pairs of levels of the 

considered factors. 
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4.2.2. Results 

Task Performance 

The ANOVA highlighted significant differences (F(4,36)=9.92; p= 

0.00002) between the task performance values (Figure 70) across the 

different training sessions. In particular, it showed that at the end of the 

WEEK_1 (T5), the subjects improved significantly the level of their task 

performance (p < 0.05), and then they kept such a high level of performance 

stable (no significant differences, p > 0.05) for the rest of the training period, 

that is, until the last session (T12). In fact, the Duncan post–hoc test did not 

find any differences, in terms of task performance, between the last day of 

WEEK_1 (T5) and the remaining training sessions (T8, T11 and T12). 

 

Figure 70. Task performance values over 3 weeks of training. The ANOVA showed a 

significant (p < 0.05) improvement of performance from T1 to T5 and then no 

differences were found between the consecutive training sessions (T5÷T12). Such 

results indicated that since T5 the subjects reached the saturation area in terms of task 

performance. 

Workload Perception: NASA-TLX 

In Figure 71, the total scores of the subjects’ workload perceptions across 

the considered training sessions are reported. The ANOVA analysis showed 

a significant effect on the factor SESSION (F(4,36)=4.14; p=.00731). The 

Duncan post–hoc test showed significant differences (p < 0.03) in the 
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perception of the task’s workload between WEEK_1 (T1 and T5) and 

WEEK_3 (T11 and T12). In the WEEK_2 (T8), the perception of the 

workload was slight lower than in the WEEK_3, but not significantly 

different from the last session of WEEK_1 (T5). 

 

Figure 71. The figure reports the ANOVA on the NASA–TLX total scores across the 

considered training sessions. The results showed that the perception of the workload 

decreased significantly session after session. In other words, the subjects were feeling 

more confident and familiar with the task after each training session. 

Machine Learning Results 

The ANOVA (Figure 72) highlighted significant differences (F(4,36) = 

4.77; p = 0.003) between the cross-validations (T1’÷T12’). In particular, the 

Duncan post-hoc test showed that the AUC value related to the first cross-

validation (T1’) was significantly lower (all p < 0.02) than those related to 

the others (T5’, T8’, T11’, T12’). On the contrary, from the second cross-

validation (T5’), no significant differences on the AUC values have been 

highlighted among the remained cross-validations (T8’, T11’ and T12’). 
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Figure 72. The ANOVA on the AUCs highlighted significant differences across the 

training sessions. In particular, the AUCs related to the first cross-validation (T1’) was 

significantly lower (all p < 0.02) than those related to the others (T5’, T8’, T11’, T12’). 

On the contrary, from the second cross-validation (T5’), no significant differences have 

been highlighted among the remained cross-validations (T8’, T11’ and T12’). 

In Figure 73, the single cross-validation has been plotted with the aim to 

better illustrate the differences along the training sessions. In particular, the 

AUCs of the cross-validations by calibrating the asSWLDA on T1 (red 

bars), on T5 (yellow bars), on T8 (blue bars), on T11 (green bars) and on 

T12 (black bar) have been reported. The dash black line indicates the trend 

of the averaged AUCs from T1 to the last training session (T12). As 

illustrated above, there was a significant increment of the AUCs from T1 to 

T5, and then no further differences were found among the remaining 

sessions.  



CHAPTER 4                                                                    Cognitive Training 

174 

 

 

Figure 73. In the figure, the single cross-validations has been plotted with the aim to 

better illustrate the differences among the training sessions. In particular, the AUCs of 

the cross-validations by calibrating the asSWLDA on T1 (red bars), on T5 (yellow bars), 

on T8 (blue bars), on T11 (green bars) and on T12 (black bar) have been reported. The 

dash black line indicates the trend of the averaged AUCs and it highlights the stability 

(no significant differences) of the selected brain features from T5 to the last training 

session (T12). 

4.2.3. Discussions 

The analysis of the task performance (Figure 70) highlighted the existence 

of a training effect, as since the last day of WEEK_1 (T5) the subjects kept 

their performance level significantly higher (p < 10-4) than the beginning of 

the training (T1), and no differences were found among the rest of the 

sessions (T5 ÷ T12). In terms of workload perception, in the last week of 

training (WEEK_3) the subjects perceived a significant lower (p = 0.007) 

workload demand than in the previous weeks (WEEK_1 and WEEK_2), but 

no differences have been found between WEEK_2 and WEEK_3 (Figure 

68). In terms of AUC (Figures 72 and Figure 73), the asSWLDA showed a 

significant increment (p = 0.03) from T1 to T5 and then no differences 

among the rest of training sessions (T5 ÷ T12). Such results suggested that 

from T1 to T5 the subjects improved their training level with the aim to 

accomplish correctly the MATB and to reach high performance. As 

consequence, the most important brain features selected by the classifier in 

the T1 session could be hypnotized significantly different from those 

selected in T5. Successively, since in T5 no significant changes were found, 

in terms of classifier performance (Figures 72 and 73), up to the end of the 
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training period (T12), it could be reasonable to retain that the brain features 

remained stable over all the remaining training sessions (T5 ÷ T12). In other 

words, the subjects became trained at the end of the first week (T5) and then 

no significant cognitive changes happened in the next two weeks (WEEK_2 

and WEEK_3). Two main limitations of the study have to be considered at 

the moment. The first limitation is that the experimental group is just 

sufficient to highlight some significant statistical patterns, but it needs to be 

increased to explore if other stable neuroelectrical pattern could emerge 

from the analysis of the EEG signals during the training. A second limitation 

is the proposed task (MATB) provided by the NASA. While this is good for 

the analysis of the brain reaction while handling with multiple tasks, it could 

be reasonable to retain that brain activities occurring during specific training 

inside an airplane cockpit, or air-traffic room could be different from that 

elicited by MATB tasks. Therefore, the results presented in this study have 

to be considered as a promising step for further studies. 

4.2.4. Conclusions 

In this study, I demonstrated that a machine-learning approach could be 

used to objectively assess if and when the subjects are well trained, 

especially in terms of cognitive resources. In fact, there were no differences 

in calibrating the classifier with the brain features extracted from one 

training session rather than the others, once the subjects became trained. The 

results stressed the importance of the proposed approach because different 

subjects could achieve the same performance level and, by the only task 

performance analysis, it would not be possible to obtain information in 

terms of cognitive activations and to assert possible differences between 

them. In other words, by the standard analysis (task performance or self-

reports), it would not be possible to find out the subjects who require fewer 

cognitive resources than the others, hence who show higher cognitive spare 

capacity to handle with unexpected or emergency events. The results 

highlighted the wide applicability and general validity of the proposed 

method for the training assessment in operational environments. In fact, the 

proposed approach could be used in flight schools to select the most skilled 

pilots for a certain kind of activity or in hospitals for the training assessment 

of operators during (simulated) surgery interventions. 
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5. Cognitive Control Behaviour: Skill, Rule and 

Knowledge 

Training not only could result in the acquisition of new skills (Satterfield 

and Hughes, 2007; Hill and Lent, 2006)) but also in improved declarative 

knowledge, enhance strategic knowledge, defined as knowing when to 

apply a specific procedure or skill, in particular during unexpected events 

(Kozlowski et al., 2001). Furthermore, despite the time passed from the last 

training session, there might be the need to assess if the operator is still able 

to work ensuring a high performance level, hence, a proper level of safety. 

For such a reason, another issue is the necessity of objectively monitoring 

and assessing operators’ performance (Leape and Fromson, 2006), in terms 

of cognitive control behaviours. Nevertheless, although the results in terms 

of performance should be the same, the cognitive demand for the same 

operator could not. In other words, after a certain time period the operator 

is still able to execute the same task by achieving the same performance 

level, but it might require different amount of cognitive resources. 

Therefore, different operators could achieve the same performance results, 

but involving a different amount of cognitive resources, thus different 

expertise, and nowadays there are no tools able to provide such objective 

and quantitative information in order to better manage the training program 

and personnel selection. As a reference to my study, I consider the S-R-K 

framework introduced by Rasmussen (1983), still used in the aeronautic 

field. The aim of the framework is to explain human behavior and describe 

the wide range of mental capabilities used in everyday situations (e.g. 

working environments). 

During recent decades, attempts have been made to extend these models to 

higher level human decision making to conform with the increasing levels 

of automation in operational environments (e.g. aviation, hospitals, public 

transport), and to transfer such models for process control applications. In 

this effort, it has to be considered that humans are not simply deterministic 

input-output devices but goal-oriented creatures who actively select their 

goals and seek the relevant information (Rosenbluth et al., 1943; Polanyi, 

1958). At a higher level of conscious planning, most human activity 
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depends upon a rather complex sequence of activities, and feedback 

correction during the course of behaviour from mismatch between goal and 

final outcome will therefore be too inefficient, since in many cases it would 

lead to a strategy of blind search (Rasmussen, 1986, 1989). Human activity 

in a familiar environment will not be goal-controlled; rather, it will be 

oriented towards the goal and controlled by a set of rules which has proven 

successful previously. In unfamiliar situations when proven rules are not 

available, behaviour may be goal-controlled in the sense that different 

attempts are made to reach the goal, and a successful sequence is then 

selected. The efficiency of humans in coping with complexity is largely due 

to the availability of a large repertoire of different mental representations 

of the environment from which rules to control behaviour can be generated 

ad-hoc. When we distinguish categories of human behaviour according to 

basically different ways of representing the constraints in the behaviour of 

a deterministic environment or system, three typical levels of performance 

emerge: skill-, rule-, and knowledge-based performance (Rasmussen, 1983). 

These levels and a simplified illustration of their interrelation are shown in 

Figure 74. The skill-based behaviour represents sensory-motor performance 

during acts or activities which, following a statement of an intention, take 

place without conscious control as smooth, automated, and highly 

integrated patterns of behaviour. In most skilled sensory-motor tasks, the 

body acts as a multivariable continuous control system-synchronizing 

movements with the behaviour of the environment. Performance is based 

on feedforward control and depends upon a very flexible and efficient 

dynamic internal world model. Characteristically, skilled performance rolls 

along without conscious attention or control. The total performance is 

smooth and integrated, and sense input is not selected or observed: the 

senses are only directed towards the aspects of the environment needed 

subconsciously to update and orient the internal map. In general, human 

activities can be considered as a sequence of such skilled acts or activities 

composed for the actual occasion. The flexibility of skilled performance is 

due to the ability to compose, from a large repertoire of automated 

subroutines, the sets suited for specific purposes.  



CHAPTER 5                                                    Cognitive Control Behaviour 

178 

 

 

Figure 74. Simplified illustration of three levels of the human performance model 

proposed by Rasmussen (1983). Note that skill, rule and knowledge levels are not 

alternatives, but interact in a way only rudimentarily represented in the diagram. 

At the next level of rule-based behaviour, the composition of such a 

sequence of subroutines in a familiar work situation is typically controlled 

by a stored rule or procedure, which may have been derived empirically 

during previous occasions or it may be prepared on occasion by conscious 

problem solving and planning. In this case, the performance is goal oriented 

but structured by "feedforward control" through a stored rule. Very often, 

the goal is not even explicitly formulated, but it is found implicitly in the 

situation releasing the stored rules, that is, selected from previous successful 

experiences. Feedback correction during performance will require 

functional understanding and analysis of the current response of the 

environment, which may be considered an independent concurrent activity 

at the next higher level (knowledge-based). The boundary between skill-

based and rule-based performance is not quite distinct, and much depends 

on the level of training and on the attention of the person. In general, the 

skill-based performance rolls along without the person's conscious 

attention, and he/she will be unable to describe how he/she controls and on 

what information he/she bases the performance. The higher level, rule-

based coordination, is generally based on explicit know-how, and the rules 
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used can be reported by the person. During unfamiliar situations, faced with 

an environment for which no know-how or rules for control are available 

from previous encounters, the control of performance must move to a higher 

conceptual level, in which performance is goal-controlled and knowledge-

based. In this situation, the goal is explicitly formulated, based on an 

analysis of the environment and the overall aims of the person. Then a useful 

plan is developed -by selection - such that different plans are considered, 

and their effect tested against the goal, physically by trial and error, or 

conceptually by means of understanding the functional properties of the 

environment and prediction of the effects of the plan considered. At this 

level of functional reasoning, the internal structure of the system is 

explicitly represented by a "mental model" which may take several different 

forms. An example is learning to use the T9-keyboard system on the mobile 

phone. The first time is knowledge-based to diagnose the way for using T9-

keyboard system and produce a rule. When the procedure to select letters 

and words is known, the control shifts to the rule-based behavior for 

applying the rules learned. Finally, after practice, the procedure may turn 

automated, therefore skill-based. Similar distinctions between different 

categories of cognitive control behaviour have been proposed elsewhere. 

For example, Fitts and Posner (1962) distinguishes between three phases of 

learning a skill: the early or cognitive phase, the intermediate or associative 

phase, and the final or autonomous phase. If we consider that in real life a 

person will have a varying degree of training when performing a task 

depending on variations and disturbances, the correspondence with the three 

levels in the present context is clear. One aspect of the categorization of 

human performance in skill/rule/knowledge-based behaviour is the role of 

the information observed from the environment, which is basically different 

in the different categories. This is the case even though major problems 

during unfamiliar situations may be caused by the fact that the same 

indication may be perceived in various different roles and that it is a well-

known psychological phenomenon that shift between different modes of 

perception is difficult (Rasmussen, 1986).  
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Towards a Possible Integration Between SRK and Neurophysiological 

Variables  

Several interesting issues about the neuroanatomical and functional models 

may be related to the level of attentional control of SRK framework, for a 

possible integration between SRK and neurophysiological variables. One of 

the first models of attentional control was proposed by Posner and Petersen 

(1990) and consists of two separate systems, but closely interrelated: an 

anterior attentional system (linked to environmental monitoring and 

detection of target stimuli) and a posterior attentional system (linked to the 

orientation of attention). More recent versions of this model describe three 

systems (Posner and Rothbart, 2007; Raz and Buhle, 2006; Kochanska et 

al., 2000): 

 Alert/vigilance system, connected to frontal and parietal regions, in 

particular of right hemisphere and its function consists in 

maintaining a state of activation;  

 Orienting system (posterior attentional system, PAS), consists of 

posterior parietal and frontal cortex, temporo-parietal junction 

(TPJ), thalamic nuclei such as pulvinar and reticular nuclei, and 

superior colliculus. Its functions include anchoring, disanchoring 

and shift of attention, selection of specific information from multiple 

sensory stimuli; 

 Executive system (anterior attentional system, AAS), consists of 

prefrontal medial cortex, anterior cingulate cortex and 

supplementary motor area included. Its function include voluntary 

control of behavior, conscious elaboration of experience, handling 

novel situations, monitoring, and resolution of conflicts. These 

conflicts may include planning or decision-making, error detection 

execution of new responses, inhibitory control, self-regulation, 

involvement in stressful conditions. It is proposed that anterior 

cingulate cortex (ACC) has a crucial role in monitoring the 

environment, detection of target stimuli appearance and resolution 

of conflicts between stimuli. 
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Furthermore, Corbetta and Shulman (2002), by incorporating several recent 

studies, have proposed that cortical control of attention is divided into two 

functionally divided but interacting systems: 

 Dorsal frontoparietal network (top-down, endogenous attention), is 

guided by cognition and is involved in control of goal-driven 

attention, preparation and application of relevant stimuli selection. 

In dorsal frontal regions, this system includes frontal eye fields 

(FEF) and medial and lateral frontal cortex while, in dorsal parietal 

regions, includes the intraparietal sulcus (IPS) and superior parietal 

lobule (SPL). 

 Ventral frontoparietal network (bottom-up, exogenous attention), is 

guided by perception and is a stimulus-driven attentional system and 

is involved in disengagement and re-orienting of attention towards 

salient or unexpected stimuli. The attentional shifts are automated. 

The areas involved are temporoparietal junction (TPJ), inferior 

parietal lobule (IPL), superior temporal gyrus (STG) and ventral 

frontal cortex (VFC) in particular inferior and middle frontal gyrus 

(IFG, MFG). 

The S-R-K framework can be connected to the models mentioned above 

that provide an anatomical and functional base to do a step towards the 

investigation of neurophysiological correlates of Rasmussen’s taxonomy. In 

fact, among the cognitive neuropsychologists, in terms of limited capacity, 

it has been hypothesized a mechanism with the function of programming 

and control cognitive processes in relation to priorities, goals and external 

conditions. This mechanism called central executive provides a higher-level 

processing in a hierarchical organization. Since the central executive has a 

limited capacity, many routine operations should be delegated to 

mechanisms that operate automatically, regardless of the voluntary attention 

costly in terms of effort. An automatic process (Shiffrin and Schneider, 

1977) consists in the activation, on the base of appropriate inputs, of a 

learned sequence of elements, which proceeds without intentional attention 

that is, without the active control by the subject. A controlled process is, 

instead, limited capacity: requires continuous effort and monitoring by the 

subject. It works in serial mode, drawing on the stock of short-term memory. 
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The automation (or proceduralisation) is facilitated by practice, which 

makes the process faster, parallel, with less demand for mental load. An 

example is driving a car, in which processes before “controlled”, 

subsequently become largely automated, because various operations are 

performed without the use of conscious attention. Anyway, in special cases 

(use of a new car, writing a text in a foreign language) the return to control 

of different operations, that in usual conditions are automated, is needed. 

However, it should be remembered that attention does not always coincide 

with controlled process: the automatic process also focuses attention on 

certain stimuli, selecting among other not-relevant stimuli for the task, and 

keeps on focusing them for the necessary time. Neuman (1984) pointed out 

that the automatic process is not completely uncontrolled, but rather control 

is below the threshold of consciousness. Norman and Shallice (1986) 

distinguished between processes totally automatic and others partially 

automated, based on selection (in the absence of conscious or voluntary 

control) between the established schemes, competing (defined contention 

scheduling); the selection is based on immediate priorities dictated by 

learning or by context. Thus, it seems appropriate to distinguish between 

non-intentional attentional processes, involving minimal effort and self-

perception of the subject, and intentional attention, conscious and limited 

capacity. The relationship between awareness and attention is therefore 

extremely complex. Several empirical studies (Kellogg and Ronald, 1980; 

Marcel, 1980; Davidson et al., 1986) demonstrate how information 

receiving not consciously attention are processed in relation to their 

meaning, and how the latter can also be analyzed in absence of intentional 

control and therefore of consciousness. Starting from the point of view that 

attentional mechanisms control the access to awareness (Laberge, 1995; 

Baars, 1997), different models tend to identify the function of attentional 

control with conscience (as central operative system of activation and self-

monitoring). According to Allport (1988) and Schmidt (1990, 2001), the 

intentionality, attention, control and awareness are the constitutive 

dimensions of consciousness. Other authors distinguish between 

consciousness of external reality and self-awareness or awareness of their 

own cognitive processes (meta-cognition), their emotions and their choices 

(Figure 75).  
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Figure 75. Several studies pointed out that the automatic process is not completely 

uncontrolled, but rather control is below the threshold of consciousness. Automatic 

process can be distinguished between processes totally automatic and others partially 

automated. Thus, it seems appropriate to distinguish between non-intentional attentional 

processes, involving minimal effort, and self-perception of the subject, and intentional 

attention, conscious and limited capacity. 
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5.1. Expertise Estimation of Professional ATCOs 

According to the Skill-Rule-Knowledge (S-R-K) framework proposed by 

Rasmussen (1983, 1986, 1989), the human behavior can be controlled at 

different levels of conscious control, depending on the degree of familiarity 

with the task and the environment. SRK behaviors represent three dynamic 

and parallel cognitive levels of expertise, where the control of behavior 

continuously shifts from a level to another one. The S-R-K framework is 

still lacking a quantitative, reliable and validated way to be measured. 

Assessing the level of cognitive control of real professionals working in 

their environments would enable a better comprehension of the cognitive 

process actually activated in real work activities. The objective of this study 

was to assess if it was possible to differentiate the three degrees of cognitive 

controls proposed by the S-R-K model by the analysis of the Air Traffic 

Controllers’ brain activity and to define an objective method to overcome 

the actual limitation in measuring and quantifying the S-R-K cognitive 

behaviors mentioned previously. In particular, the goal is to find out the 

brain features able to define a metric able to discriminate the S-R-K level 

independently by those used for the mental workload (see paragraph 3) 

evaluation and to compare ATC Experts and ATC Students in terms of SRK 

behaviours from a neurophysiological point of view. Firstly, a literature 

review has been done specifically to find out brain features mainly 

correlated to cognitive processes involved in the different S-R-K cognitive 

behaviours. Among all the possible brain features, four have been initially 

selected and tested if they were able to discriminate the S-R-K levels. 

Because their correlation with working memory, information processing, 

decision making, two of those features were the frontal theta and parietal 

alpha EEG rhythms (see paragraph 3). The other two brain features were the 

parietal theta and frontal alpha EEG rhythms. The former is correlated to 

the procedural memory and the latter is correlated to the attention level (see 

following sections). Then, the asSWLDA (see paragraph 3.1) has been 

calibrated with the selected brain features to characterize and then 

discriminate the different cognitive control levels during the execution of 

realistic ATC activities by professional Controllers. 
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Parietal Theta EEG Rhythm and Procedural Memory. 

The potential role of theta rhythms engaged in the hippocampal/PFC 

(prefrontal cortex) interplay in consolidation of memory and report 

empirical results on the effect of enhanced theta oscillations on memory 

consolidation. It is widely accepted that memory consolidation process 

happen off-line, after the initial hippocampus encoding event. Consolidation 

relies on the re-activation of neuronal circuits that were implicated in the 

initial encoding (Albouy et al., 1995). Experimental evidence suggests that 

motor memory formation occurs in two subsequent phases (Albouy et al., 

1995; Dudai, 2004; Karni et al., 1994; Luft & Buitrago, 2005). The first is 

initial encoding of experience during training that occurs within the first 

minutes-to-hours after training, and is characterized by rapid improvement 

in performance. The second phase is memory consolidation, and involves a 

series of systematic changes at the molecular level, that occur after training. 

This second phase requires longer time. During consolidation, memories are 

reorganized and hippocampus-dependent initial memories may become 

hippocampal independent (Albouy et al., 1995; Maquet, 2008). Processes 

of reactivation of memories lead to renewed consolidation each time 

reactivations occur, enhancing the first consolidated memory 

representation, and converting it into a long-lasting stable memory trace 

(Dudai, 2004). Delayed additional gains occur after the second phase, even 

without additional practice (Karni et al.,1994). Neural oscillations, in 

general, have been assumed to play a central role in cognitive processes and 

specific states of phase synchronization are considered a mechanism of 

increased communication between regions (Fell & Axmacher, 2011; Varela, 

Lachaux, Rodriguez, & Martinerie, 2001; Womelsdorf et al., 2007). Several 

lines of evidence suggest that theta oscillations play an important role in 

formation of memory: theta oscillations are typical of hippocampal activity, 

upon memory encoding, generating oscillations which can propagate to 

other brain structures (even relatively distant), supporting memory 

consolidation and are thought to play a critical role in the induction of long-

term plasticity, associated with memory consolidation (Chauvette,2013; 

Kropotov, 2008). Theta rhythms are correlated with episodic and semantic 

memory (Buzsáki, 2005; Guderian & Duzel, 2005; Kahana, 2003) and are 

involved in learning and memory within the mPFC (medial prefrontal 

cortex) and hippocampal system (Anderson, Rajagovindan, Ghacibeh, 
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Meador, & Ding, 2010, Benchenane et al., 2010; Steinvorth, Wang, Ulbert, 

Schomer, & Halgren, 2010). Several studies point to theta synchronization 

as a mechanism underlying communication between the hippocampus, the 

ventromedial prefrontal cortex and remote memory areas, during 

consolidation. The underlying mechanism is still not clear. One attempt to 

explain the mechanism of memory consolidation is known as the “system-

level memory consolidation theory” (Nieuwenhuis & Takashima, 2011). 

This model suggests that the hippocampus is strongly activated in the first 

stages of memory related neocortical formations, but gradually new forms 

of memory become independent of hippocampal activations, and 

consolidation correlates with increased activation in the human subgenual 

ventromedial prefrontal cortex (vmPFC). The vmPFC, similar to the 

anterior cingulate cortex, seems to link the neocortical representational 

areas in remote memory (Maquet, 2008; Nieuwenhuis & Takashima, 2011). 

The system-level memory consolidation view implies exchange of 

information in a network of brain areas. The center is the hippocampus and 

the communicating areas include the neocortex and structures such as the 

amygdala and the striatum (Battaglia et al., 2011; Maquet, 2008). The 

interaction between the hippocampus and striatum resembles the interaction 

between the hippocampus and neocortex (Battaglia et al., 2011). This 

exchange is theorized to be linked to theta oscillations: hippocampal cells 

fire preferentially at a specific theta phase (Mizuseki et al., 2009; 

Klausberger et al., 2003), and so do areas in the medial temporal, parietal 

lobes and other areas that exchange information with the hippocampus. 

Thus theta is assumed to regulate information exchange between the 

hippocampus and striatum (for a review see Battaglia et al., 2011). This 

exchange of information extends to relatively distant sensory and 

associative areas of parietal cortex, which are also entrained by theta 

oscillations (Sirota et al., 2008). Exchange of information is based on a 

dynamical evolving schema, in which synchronized discharge of cell 

assemblies across brain structures are orchestrated by theta to encode 

information. Recent results further support the central role of the 

hippocampus–striatum exchange in motor memory consolidation, and 

suggest that the interplay between the striatum and the hippocampus during 

motor training conditions subsequent motor sequence memory 

consolidation, which is further supported by reorganization of cerebral 
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activity in hippocampo-neocortical networks after sleep (Albouy et al., 

2013). The ventral striatum is involved in learning beyond memory 

consolidation and was found to be related to individual variations in 

learning performance (Vink, Pas, Bijleveld, Custers, & Gladwin, 2013). We 

hypothesize that enhanced theta supports exchange of information between 

the hippocampus and neocortical areas during consolidation of memory, 

hence will be reflected in indicators of memory consolidation. (Gruzelier, 

2009; Gruzelier et al., 2006). Gruzieler (2009) associated increased parietal 

theta (recorded from the Pz channel) with increased activity in the 

hippocampus. Parietal theta synchronization was also found to be correlated 

with retrieval (Jacobs, Hwang, Curran, & Kahana, 2006; Sauseng, 

Klimesch, Schabus, & Doppelmayr, 2005). In addition, the system level 

theory predicts that synchronized elevated theta power leads to 

consolidation of memory. To test the role of theta in memory consolidation, 

Reiner et al, (2014) asked whether enhanced theta during awake-hours, 

affects consolidation of memory. Indeed, results show that enhanced theta 

is correlated with behavioural changes indicating consolidation of memory. 

Frontal Alpha EEG Rhythm and the Attention. 

Concerning the alpha EEG rhythm, many evidences demonstrated how the 

structures of the thalamus are involved in exerting attentional bias (e.g., 

Crick 1984; Laberge 2001). A measure of support for this notion comes 

from imaging studies reporting attentional modulations in the pulvinar 

nucleus (Laberge and Buchsbaum 1990; Petersen et al. 1987) and in the 

lateral geniculate nucleus (O’Connor et al. 2002; Vanduffel et al. 2000). 

However, far less is known regarding the dynamical character of the control 

mechanisms exerted by such a network. A phenomenon that has repeatedly 

been linked with thalamo-cortical interplay is the human alpha rhythm, an 

oscillation within the 8 to 12 (Hz) frequency band observable in the scalp 

EEG (Lopes da Silva 1991). It was hypothesized that oscillations in this 

range embody the mechanism by which gating might occur in the thalamus 

(Lopes da Silva 1991). Perhaps not surprisingly given these findings, effects 

of alpha power have been observed during selective attention tasks that 

require the gating of distracting information (Foxe et al. 1998; Fu et al. 

2001). As outlined in Neuper and Pfurtscheller (2001), the event-related 

desynchronization (ERD) of EEG activity in the alpha band presumably 
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reflects an increased excitability level of neurons in the involved cortical 

areas, which could be related to an enhanced information transfer in 

thalamocortical circuits (see also Pfurtscheller & Lopes da Silva, 2005). In 

contrast, event-related synchronization (ERS) of alpha activity (i.e., 

increases in alpha activity from the pre-stimulus reference to the task 

performance interval) is thought to reflect a reduced state of active 

information processing in the underlying neuronal networks (Pfurtscheller 

& Lopes da Silva, 2005) or ‘cortical idling’ (Pfurtscheller, 1999; 

Pfurtscheller, Stancak, & Neuper, 1996). However, recent evidence in this 

field of research also suggests that synchronization of alpha activity can be 

viewed as a functional correlate of active cognitive task performance 

presumably involving cognitive inhibition processes (for a review see 

Klimesch et al., 2007). Contrary to the usual finding that alpha power 

decreases when individuals become engaged in the performance of 

cognitively demanding tasks, Klimesch et al. (1999) reported a 

‘paradoxical’ synchronization of alpha activity during the retention period 

in a short term memory task. Moreover, the amount of alpha activity has 

been shown to increase with memory load (Jensen et al., 2002a) and during 

manipulation of memory content as compared to simple retention of 

information (Sauseng et al., 2005). Cooper et al. (2003) showed that alpha 

synchronization is also related to internally versus externally directed 

attention. They presented sequences of stimuli in the visual, acoustic and 

haptic domain and then trained participants to imagine these stimulus 

sequences. They found that alpha activity was consistently higher during the 

imagination of stimulus sequences (i.e., internally directed attention) than 

during their presentation (i.e., externally directed attention). In these studies 

the observed synchronization of alpha activity has been interpreted to reflect 

selective inhibition of task irrelevant brain areas or inhibition of interfering 

external input (Klimesch et al., 2000, 2007; Rihs et al., 2007), and to reflect 

internal information processing involving top-down control on internally 

represented information (Sauseng et al., 2005; Von Stein & Sarnthein, 

2000). EEG alpha activity has also been found to be sensitive to creative 

cognition in a series of studies employing a variety of methodological 

approaches (Arden et al., 2010; Dietrich & Kanso, 2010). These studies 

include the investigation of ERD/S in divergent thinking tasks (i.e., task 

commonly employed in the assessment of creativity), which require 
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participants to generate many original ideas to open problems (e.g., a typical 

example is the alternate uses task, which asks to think of many unusual uses 

of everyday objects such as a brick). Taken together, there is evidence that 

alpha synchronization, especially in frontal and posterior parietal brain 

regions, is related to creative task demands (Fink et al., 2007, Jausovec, 

2000, Jausovec & Jausovec, 2000, Martindale & Hasenfus, 1978, 

Razumnikova, 2000) and the subjective experience of insight (Jung-

Beeman et al., 2004, Sandkühler & Bhattacharya, 2008, Bowden et al., 

2005). These alpha effects associated with creativity were sometimes 

interpreted in terms of low cortical arousal reflecting states of defocused 

attention and highly associative thinking (Martindale, 1999). Another line 

of interpretation stresses that alpha synchronization during creative task 

performance probably indicates high internal processing demands 

(knowledge and unusual events) and states of heightened internal attention 

facilitating the re-combination of distantly related semantic information 

(Fink et al., 2007, 2009a, b). The available evidence on alpha 

synchronization during active cognitive task performance can thus suggest 

that alpha synchronization generally reflects high internal processing 

demands; or, in considering the extensive evidence on alpha 

synchronization and creativity, it could also be assumed that alpha 

synchronization indicates cognitive or neural processes specifically related 

to creative cognition.  

5.1.1. Experimental Protocols 

Subjects 

Thirty-seven professional ATCOs from the École Nationale de l’Aviation 

Civile (ENAC) of Toulouse (France) have been involved in this study. They 

have been selected in order to have homogeneous experimental groups in 

terms of age and expertise. In particular, two groups of subjects have been 

defined, a group of ATC Experts (40.41 ± 5.54) and a group of ATC 

Students (23 ± 1.95). 

ATM Scenario 

The ATCOs have been asked to perform an ATM simulation using a 

research simulator hosted at ENAC (Figure 76). The experiments have also 
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been attended by two Pseudo-Pilots (Figure 77) who have interacted with 

the ATCOs with the aim to simulate and reproduce real communications 

and to modulate the S-R-K events. The ATM scenario enclosed different 

levels of difficulty (see paragraph 2.3.2). The traffic complexity has been 

modulated in terms of number of aircrafts in the controlled sector, number 

of conflicts and geometry complexity. 

 

Figure 76. Experimental setup: ATCO working positions developed and hosted at 

ENAC (Toulouse, France). The ATCO’s brain activity has been recorded continuously 

during the execution of the ATM scenario, and the S-R-K events have been marked in 

order to recognize them within the EEG recording. 
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Figure 77. Two professional Pilots have been recruited as Pseudo-Pilots with the aim 

to simulate real flights communications and to reproduce specific S-R-K events within 

the ATM scenario. 

The entire simulation lasted 45 minutes and two triplets of S-R-K events 

(S1, R1, K1, S2, R2 and K2) have been inserted into the ATM scenario 

within coherent difficulty conditions (Figure 78).  

 

Figure 78. ATM simulation time-line as a function of traffic complexity showing S-

R-K events. The simulation lasted 45 minutes and the triplets of S-R-K events have 

been inserted within coherent difficulty conditions (red, blue and black squares). 
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S-R-K Events 

A Subject Matter Expert (SME) from the Ente Nazionale di Assistenza al 

Volo (ENAV, Rome, Italy) has been involved in order to create realistic and 

not disruptive S-R-K events during the simulation (to be limited in time and 

not changing the realism of the scenario). The events designed in the air-

traffic sample scenario represented an attempt to induce ATCO behaviors 

associated with S-R-K levels during usual air-traffic conditions. Figure 79 

reports the integration of the S-R-K events within the ATM scenario. 

 

Figure 79. Example of SRK events distribution along the considered ATM scenario. 

The triplets of S-R-K events have been inserted within coherent difficulty conditions. 

No events have been inserted in the Hard condition in order to maintain the realism of 

the simulation. 

In particular, six S-R-K events have been generated, two for each level of 

cognitive control behaviour. The events have not been inserted in the Hard 

part of the ATM scenarios, since the introduction of external events could 

increase the difficulty to unacceptable level, generating too much disruption 

on the controlling activity and possibly invalidating part of the recording 

and of the realism of the task. On the contrary, in the Easy and Medium 

parts of the scenarios, three S-R-K events have been inserted, and each of 

them lasted approximately 30 seconds. The design of the S-R-K events has 

been the following.  

The Skill events are basically interactions with the interface, during the task 

execution. Controllers have been asked to visualize the distance between 

two aircraft (Distance event) or to display the Flight Plan Level (FPL) 

trajectory of each aircraft present in the controlled sector (Display FPs).  

The Rule events are mainly control-tasks and conflicts-resolutions, during 

which controllers are also performing skill-events (interaction with the 

interface). In the “conflict event”, Controllers had to detect and solve a 
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conflict by using the menu of the interface and assigning new altitudes and 

headings. The hypothesis was that conflict detection task represents a 

familiar situation for ATCOs. Therefore, Controllers should recognize the 

correct procedures and familiar solutions and then to apply them to solve 

the conflict.  

The Knowledge events integrated in the scenario represent unfamiliar and 

unusual situations. This uncertainty led the Controllers to require time to 

analyze the situation and to find out the proper procedure to cope with the 

unexpected event. In other words, the ATCOs initially had to analyze the 

unusual air-traffic (Knowledge level) and then came back to Rule level for 

adopting the proper procedures. In the first Knowledge-event, “deviation 

event”, Controllers have been supposed to detect and understand that an 

aircraft was not following the route filled in the flight plan (FPL). In 

particular, an alarm has been displayed on the Human-Machine-Interface 

(HMI) Radar with the aim to make the ATCO focusing on the aircraft (a/c), 

to check its maneuvers and to detect if something was wrong. In the second 

Knowledge-event (Unidentified Flying Object - UFO), the Pseudo-Pilot 

should report an unknown-traffic detected by the Traffic Collision 

Avoidance System (TCAS) and a TCAS resolution advisory to avoid a mid-

air collision. This unknown aircraft has not been displayed on the 

Controller’s radar image, who had been supposed to understand the 

situation and to ask additional information to the pilot of the considered 

aircraft. After the avoidance manoeuvre (descent), the Pseudo-Pilot had to 

ask for his previous flight-level, which never changed on Controller’s HMI. 

The Controller could not observe neither the aircraft responsible of the 

TCAS advisory nor the implementation of the avoidance manoeuvre. A 

summary of the S-R-K events is reported in Table 10.  
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Table 10: Short description of the S-R-K events. 

Name of the 

event 
Type of event 

 Skill based 

Distance 

 

Controllers are asked to measure the distance between two 

aircraft using the validate tool. 

Display FPs 

 

The SME expert triggered the event giving to the 

controller a paper with the instruction to visualized the 

Flight Plan (FPL) trajectory of each aircraft assumed. 

Controller have to use the pie menu and select the route 

option for each aircraft. 

 
Rule based 

Conflict 

 

Controllers have to detect and solve a conflict, using the 

pie menu to assign new altitudes and headings. 

 
Knowledge based 

Deviation 

 

Controllers are asked to face with unexpected situation, in 

which an aircraft changes its route respect to the cleared 

FP. Controllers have to detect this manoeuvre and check 

the a/c flight plan on the HMI, to evaluate if it is correct 

or if something is going wrong. . 

UFO Controllers are asked to verify an unknown traffic 

detected by the Traffic Collision Avoidance System 

(TCAS), to avoid a mid air collision. After the avoidance 

manoeuvre pilots report a different FL respect to what 

provided by the HMI  

Physiological Signals Recording and Pre-Processing 

The neurophysiological signals have been recorded by the digital 

monitoring BEmicro system (EBNeuro system). The thirteen EEG channels 

(FPz, F3, Fz, F4, AF3, AF4, P3, Pz, P4, POz, O1, Oz, O2) and the EOG 

channel have been collected with a sampling frequency of 256 (Hz). All the 

EEG electrodes have been referenced to both the earlobes, grounded to the 

mastoids, and the impedances of the electrodes were kept below 10 (kΩ). 

The bipolar electrodes for the EOG have been positioned vertically over the 

left eye. The acquired EEG signals have been digitally band-pass filtered by 

a 5th order Butterworth filter (low-pass filter cut-off frequency: 30 (Hz), 

high-pass filter cut-off frequency: 1 (Hz)) and the EOG signal has been used 

to remove eyes-blink artifacts from the EEG by using the Gratton (1983) 
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method. For other sources of artifacts, specific procedures of the EEGLAB 

toolbox, based on threshold methods have been used (Delorme and Makeig, 

2004). In particular, three methods have been used: the threshold criteria, 

the trend estimation and the sample-to-sample difference. In the threshold 

criteria the EEG epoch has been marked as “artifact” if the EEG amplitude 

was higher than ±100 (μV). In the trend estimation, the EEG epoch has been 

interpolated in order to check the slope of the trend within the considered 

epoch. If such slope was higher than 3 (non-physiological variation), the 

considered epoch has been marked as “artifact”. The last check calculated 

the difference between consecutive EEG samples. If such difference, in 

terms of amplitude, was higher than 25 (μV), it meant that an abrupt 

variation (non-physiological) happened, thus it was marked as “artifact”. At 

the end, the EEG epoch marked as “artifact” have been removed with the 

aim to have a clean EEG dataset from which estimating the brain parameters 

for the different analyses. The EEG signal has been then segments in 2 

second-epochs, shifted of 0.125 seconds, with the aim to have both a high 

number of observations (see equation 3.7) in comparison with the number 

of variables (see equation 3.8), and to respect the condition of stationarity 

of the EEG signal (Elul, 1969). In fact, the latter one is necessary in order 

to proceed with the spectral analysis of the signal. The Power Spectral 

Density (PSD) has then been estimated by using the Fast Fourier Transform 

(FFT) in the EEG frequency bands defined for each subject by the 

estimation of the Individual Alpha Frequency (IAF) value (Klimesch, 

1999). Furthermore, the Baselines (brain activity during rest conditions, that 

is, closed and opened eyes) and the Reference (ATCOs looked at the radar 

screen without reacting, where two non-colliding airplanes have been 

presented) conditions have been recorded before starting with the ATM 

simulations. 

Power Spectrum Density Analysis 

The review of the literature provided useful cues for the definition of a 

metric to be used for the S-R-K discrimination. The PSD has been estimated 

for the different brain features (frontal theta, parietal theta, frontal alpha and 

parietal alpha EEG rhythms), and the analysis of their spectral information 

has been performed in order to assess which brain features can be used to 

achieve the proposed goal. The one-way repeated measures ANOVAs have 
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been performed for each brain rhythm with the within factor S-R-K, (3 

levels: Skill, Rule and Knowledge), and with the PSD as independent 

variable. Two different kind of analysis have been ran. The first one-way 

ANOVAs have been done with the aim to assess the difference between the 

two groups (between factor RANK; 2 levels: Experts and Students). The 

aims of the two-way ANOVAs were to find out the differences between the 

corresponding S, R and K levels of the two groups (within factor 

RANK*SRK; 6 levels: Skill, Rule and Knowledge * Experts and Students).  

S-R-K Discrimination: Machine Learning Analysis 

The classification algorithm asSWLDA (see paragraph 3.1) has been used 

to select the most relevant brain spectral features to discriminate the three 

S-R-K cognitive levels. In particular, the algorithm has been calibrated by 

using the brain areas and rhythms found in the scientific literature described 

previously (see paragraph 5). In this way, the algorithm has been calibrated 

with brain features extracted from one triplet of S-R-K events (S1, R1, K1) 

and then tested on the remaining triplet (S2, R2, K2) and vice-versa. For 

each testing triplet, the Area Under Curve (AUC) values have been 

calculated of the Receiver Operating Characteristic (ROC, Bamber, 1975) 

by considering couples between S-R-K distributions. The AUC values 

related to the discrimination accuracy between the three couples of 

conditions (S vs R, S vs K, R vs K) have been calculated and analyzed for 

each ATCO. In order to test the effectiveness of the algorithm, for each 

couple of conditions (S vs R, R vs K, S vs K), I have compared the AUC 

distributions obtained from the experimental data of all the ATCOs 

(Measured AUC), with the same distributions centered in 0.5 (Random 

AUC), situation corresponding to the chance level. An AUC of 0.5 means 

that the algorithm is not able to discriminate the considered conditions. (S 

vs R, S vs K, R vs K). On the contrary, if the AUC is higher than 0.5 and 

lower than 0.7, the classification is good, while if it is higher than 0.7, the 

classification is optimum, that is, the conditions can be discriminated well. 

The Random AUC distributions have been compared with the Measured 

AUC, by using three two tailed student t-tests (α = 0.05), in order to 

demonstrate the reliability of the algorithm. For the ATC Students, I was 

unable to perform a three classes analysis, because most of them missed the 

first Knowledge event (Deviation). In this regard, I have analysed only the 
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Rule and Skill conditions. In particular, the asSWLDA has been calibrated 

by using one couple (S1, R1) and the discrimination accuracy (AUC values) 

has been tested on the remaining couple (S2, R2), and vice-versa. As 

consequence, the AUC distributions (Measured AUC and Random AUC) 

have been calculated for the Skill vs Rule comparison. 

Comparison Between ATC Experts and Students 

Unpaired t-tests (α = 0.05) have been performed to compare the 

discrimination accuracy between the Skill and the Rule conditions (the 

knowledge event was missed as quoted above) between the two groups 

(ATC Experts and ATC Students). The hypothesis was that the ATC 

Students were not skilled as the ATC Experts, so that the Skill events (that 

should be characterised by completely automated activities) could require a 

brain activation and attention as for the Rule events. The state classifier has 

been trained by using one couple (S1, R1) of conditions, and the 

discrimination accuracy (AUC values) has been tested on the remaining 

couple (S2, R2) and vice-versa, both for the ATC Experts and Students.  
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5.1.2. Results 

Power Spectral Densities (PSDs) 

The results of the ANOVA on the frontal theta PSDs (Figure 80) showed 

that this brain features changed significantly (p < 10-5) among the S, R and 

K events, thus it could be used for the S-R-K discrimination. In particular, 

the post-hoc test reported the high discriminability of the Skill (p < 0.00006) 

and Knowledge (p < 0.0002) events, while the Rule event was similar (p = 

0.3) to the Knowledge one. 

 

Figure 80. The figure reports the results of the ANOVA analysis on the frontal theta 

PSD with the factor “SRK” of 3 levels (Skill, Rule and Knowledge) The results showed 

that such brain feature could be used as S-R-K discriminant brain feature, as its PSD 

values were significantly different (p = 0.000001) between the S, R and K levels. 
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Figure 81. The figure reports the results of the ANOVA analysis on the parietal theta 

PSD with the factor “SRK” of 3 levels (Skill, Rule and Knowledge) The results showed 

that such brain feature could be used as S-R-K discriminant brain feature, as its PSD 

values were significantly different (p = 0.02092) between the S, R and K levels. 

The ANOVA performed on the parietal theta PSD (Figure 81), 

demonstrated that it was able to discriminate the S-R-K levels (F(2, 64) = 

4.1104; p = 0.02092). The post-hoc confirmed that the parietal theta PSD 

could be used to discriminate accurately the Skill level from the Knowledge 

level (p < 0.002). The ANOVA on the frontal alpha PSD reported a 

significant effect in the S-R-K discrimination (F(2, 64) = 11.475; p = 

0.00006). The post-hoc test demonstrated that the frontal alpha rhythm 

could be used to differentiate the K and R events from the S one (p < 

0.0002). On the contrary, the parietal alpha (Figure 83) feature did not show 

any significant differences between the S, R and K conditions (F(2, 64) = 

2.4478; p = 0.9454), therefore it was not considered in the definition of the 

S-R-K discrimination metric. 
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Figure 82. The figure reports the results of the ANOVA analysis on the frontal alpha 

PSD with the factor “SRK” of 3 levels (Skill, Rule and Knowledge). The results showed 

that such brain feature could be used as S-R-K discriminant brain feature, as its PSD 

values were significantly different (p = 0.00006) between the S, R and K levels. 

 

Figure 83. The figure reports the results of the ANOVA analysis on the parietal alpha 

PSD with the factor “SRK” of 3 levels (Skill, Rule and Knowledge). The results showed 

that such brain feature could not be used for the S-R-K discriminant, as no significant 

differences were found (p = 0.9454). 
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Comparison Between ATC Experts and ATC Students 

The ANOVAs showed significant differences between the group of ATC 

Experts and ATC Students for the parietal theta and frontal alpha brain 

features, both in terms of general activation of the brain rhythms (Figures 

84 and 85), and of brain activation during the execution of the same S-R-K 

events (Figures 86 and 87).  

 

Figure 84. The figure reports the results of the ANOVA analysis on the parietal theta 

PSD with the factor “RANK” of 2 levels (Experts and Students). The results showed 

that the two groups were statistically different (p = 0.0023) in terms of activation of the 

parietal theta rhythm when facing the same S, R and K events. 

  



CHAPTER 5                                                    Cognitive Control Behaviour 

202 

 

 

Figure 85. The figure reports the results of the ANOVA analysis on the frontal alpha 

PSD with the factor “RANK” of 2 levels (Experts and Students). The results showed 

that the two groups were statistically different (p = 0.02389) in terms of activation of 

the frontal alpha rhythm when facing the same S, R and K events. 

In particular, the examined brain features could be used to distinguish the 

level of expertise (Expert vs Student) with significant reliability (all p < 

0.03). In fact, the ATC Students showed higher (F(1, 32) = 10.971; p = 

0.0023) parietal theta synchronization and a lower (F(1, 32) = 5.6248; p = 

0.02389) frontal alpha desynchronization than the ATC Experts.  
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Figure 86. The figure reports the results of the ANOVA analysis on the parietal theta 

PSD with the factor “RANK*SRK” of 6 levels (Skill, Rule and Knowledge * Experts 

and Students). The results showed that the same S-R-K events were statistically different 

(p < 0.05), in terms of activation of the parietal theta rhythm, between the group of ATC 

Experts and ATC Students. 

The two-way ANOVAs furnished important information about the different 

spectral features activations in the different S-R-K events between the ATC 

Experts (blue line) and ATC Students (red line) in the Figures 86 and 87. In 

particular, the post-hoc tests showed that the synchronization of the ATC 

Experts’ parietal theta rhythm achieved the lowest value in the Skill event 

and the highest in the Knowledge event (Figure 86). On the contrary, no 

differences were found among the S, R and K events for the ATC Students 

in terms of parietal theta activation (Figure 87). The comparison of the 

groups highlighted that the rule events did not differ (p > 0.3), but all the 

other comparisons were significantly different (p <0.05), and they 

demonstrated how the ATC Experts required lower activation of the 

procedural memory than for the ATC Students for all the cognitive control 

behaviours. To be noted that, since the ATC Students were taught to solve 

the designed knowledge event (TCAS event) by a specific procedure, the 

difference with respect to the K-Experts was evident, and it achieved a Rule-

like activation level. In Figure 87 are reported the results of the two-way 
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ANOVA performed on the frontal alpha PSDs both of the ATC Experts 

(blue line) and for the Students (red line). The post–hoc tests highlighted 

the same trends and differences found for the parietal theta PSDs, that is, 

significant desynchronization of the ATC Experts’ frontal alpha rhythm 

across the S, R and K events with the highest desynchronization in the S 

event and the lowest in the K event. The frontal alpha activation between 

the two groups was not different in the S events (p > 0.17), but there were 

significant differences (p < 0.05), in terms of frontal alpha 

desynchronization, in the R and K events. 

 

Figure 87. The figure reports the results of the ANOVA analysis on the frontal alpha 

PSD with the factor “RANK*SRK” of 6 levels (Skill, Rule and Knowledge * Experts 

and Students). The results showed that the same S-R-K events were statistically different 

(p < 0.05), in terms of activation of the parietal theta rhythm, between the group of ATC 

Experts and ATC Students. 

As quoted above, the ATC Students adopted a procedural resolution for the 

Knowledge event, therefore the desynchronization of the frontal alpha 

rhythm was similar to the activation during the Rule event.  

No significant differences were found between the two groups for the frontal 

theta PSD (p = 019147).  
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Machine - learning analysis 

As mentioned above, the asSWLDA was trained by using one triplet (S1, 

R1, K1) and the discrimination accuracy (AUC) values were calculated by 

testing it on the remain triplet (S2, R2, K2) and vice-versa. Referring on the 

results reported in the previous sections, the parietal theta and frontal alpha 

EEG rhythms were defined the frequency domain in which the classification 

model had to select the most significant features. 

ATC Experts 

The t-tests (α = 0.05) showed that all the measured AUC distributions were 

significantly higher (Figure 88) with respect to the random AUC 

distributions (all p < 10-5). 

ATC Students 

The tests showed that, as reported for the ATC Experts, also for the ATC 

Students all the measured AUC distributions were significantly higher 

(Figure 89) with respect to the random AUC distributions (all p < 10-3). 

 

Figure 88. Error bars (CI=.95) related to the Measured AUC distributions and the 

Random AUC distributions, achieved by the ATC Experts, referred to the discrimination 

accuracy between the three couples of conditions (S vs R, S vs K, R vs K). 
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Figure 89. Error bars (CI=.95) related to the Measured AUC distributions and the 

Random AUC distributions, achieved by the ATC Students, referred to the 

discrimination accuracy between the Skill and Rule conditions. 

Comparison Between ATC Experts and Students 

In Figure 90 are reported the AUC values of the considered ATCO groups. 

The ATC Experts (blue bar) exhibited a higher discrimination accuracy 

(AUC = 0.8) with respect to the ATC Students (red bar, AUC = 0.72), but 

not significant (p=0.1). The trend may indicate how the three cognitive 

control behaviorus were better discriminable for the Experts than for the 

Students. For example, the Skill behaviour of the Students could not be very 

different from the Rule one.  
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Figure 90. Error bars (CI=.95) related to the discrimination accuracy of the Skill vs Rule 

condition achieved by the ATC Experts (blue bar) and ATC Students (red bar), referred 

to the discrimination accuracy between the Skill and Rule conditions. 

5.1.3. Discussions 

Several studies tried to model the different information processing 

procedures based on a Skill, Rule or Knowledge control cognitive levels 

from a human factor point of view. Despite such studies, there are not 

evidences in which these control cognitive levels have been taken into 

account from a neurophysiological point of view. For example, by 

considering the EEG variations between the different S–R-K levels. An 

extensive literature review has been done in order to identify all the 

cognitive processes related to the S, R and K processes, and the related EEG 

variations. The selected brain features for the definition of the metric for the 

S-R-K discrimination were the parietal theta and frontal alpha EEG 

rhythms. The former is correlated to the procedural memory, and more is 

the memory consolidation, more its synchronization is over the parietal 

brain areas, while the latter is correlated to the attention level, and it has 

been demonstrated that more is the attention, higher is the 

desynchronization of the alpha activity over the frontal brain areas. The 

strength of such the metric is that it could be applied to assess 

simultaneously the S-R-K levels and the mental workload, since they use 
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different brain features (see paragraph 3 and 5). In fact, the hypothesis was 

that, if the classifier is calibrated by using brain features different from those 

used for the workload assessment (frontal theta, parietal alpha), and the SRK 

conditions classification remains high, it would be possible to classify 

different workload levels and SRK conditions at the same time during the 

execution of specific tasks. The analysis of the parietal theta and frontal 

alpha PSDs across the S-R-K levels confirmed that these brain features were 

able to discriminate significantly both the S-R-K levels (Figures 80 and 81) 

and the differences between the group of ATC Experts and ATC Students, 

in terms of expertise (Figures 83 and 84). Those brain features were also 

used to calibrate the asSWLDA classification algorithm, and to test it about 

the possibility to differentiate in real-time the three cognitive control levels 

during the execution of a realistic ATM scenario executed by professional 

ATCOs. The asSWLDA was able to discriminate significantly the S-R-K 

conditions for the ATC Experts (p < 10-5), and the S-R conditions for the 

ATC Students (p<10-3), and all the measured AUC distributions were 

significantly higher (Figure 87 and 88) than the random AUC distributions 

(all p < 10-3). 

5.1.4. Conclusions 

In this study, it has been demonstrated that it was possible to assess, with a 

high reliability, the ATCO’s cognitive control level (S-R-K) by using a 

specific metric estimated from the brain activity. The proposed method has 

been proven to be reliable in realistic ATM settings. The results showed 

that: 1) the proposed metric (parietal theta and frontal alpha) should be a 

valid solution to investigate and objectively analyze the different cognitive 

control behaviours under which the user is performing a task; and 2) the 

asSWLDA was able to discriminate significantly the S-R-K conditions for 

both the groups of ATCOs. Due to the need of inserting S-R-K events into 

realistic ATM tasks, it was not possible to create "pure" S-R-K behaviours. 

The aim of future S-R-K studies is to design experimental protocols by 

using controlled tasks in order to better simulate and induce pure skill, rule 

and knowledge reaction to the subjects.
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6. General Conclusions 

The main objectives of the PhD project were the definition and validation 

of neurometrics and methodologies for the workload and training 

assessment in operational environments. In fact, objective investigations 

and deeper comprehension and evaluation of human factors, such as 

workload, training and cognitive control behavior, in working operational 

environments can avoid and limit the occurrence of errors and improve the 

level of safety. 

Several experimental protocols have been designed in order to achieve such 

results, both in controlled setting (Lab) and in realistic environment (ATC 

control room) with professional personnel (Air Traffic Controllers). 

A modified version of the SWLDA algorithm was defined and validated in 

realistic environment: the asSWLDA (Patent I, 2105). This algorithm has 

the capability to include in the classification model only those features 

strictly related to the considered cognitive phenomenon, thus avoiding the 

overfitting. In addition, it does not suffer of any decreasing in discrimination 

accuracy without recalibratingthe algorithm within a month. Another 

important advantage, with respect to the standard SWLDA implementation, 

is that the asSWLDA uses a significant lower number of EEG channels 

(among the available ones) to select the most significant features necessary 

to track and quantify the considered cognitive phenomenon. Consequently, 

the advantages of the asSWLDA are very practical, since both the number 

of sensors (EEG channels), thus the invasiveness of the recording system, 

and the time needed to run the experiments are significantly reduced (no 

calibration upto a month). In this way, the proposed method could be easily 

employed in working operational environments.  

Furhthermore, such characteristics make the proposed algorithm and 

methodologies very useful to assess the learning progress of the user across 

a specific training period (i.e. 3 weeks), and the cognitive control behaviour 

under which the user is executing the considered tasks. In particular, as 

described in the introduction of chapter 4, the main limitations in the 

training assessment are the lack of objective information regarding the 
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cognitive activations within and between consecutive training sessions. The 

results demonstrated that the proposed methodologies could overcome such 

limitations and provide important information to better evaluate the user’s 

learning progress, and efficiently tailoring the training programms. 

Concerning the evaluation of cognitive control behaviour (chapter 5), no 

neurophysiological metrics have been proposed in the scientific literature. 

During the selection of personnel, it might be important to know how the 

users can perform the proposed task. If they can achieve high performance 

(100%), it will not mean they can do it automatically or by involving few 

brain resources. By the standard evaluation methods, it is not possible to 

have this kind of information. The results of my study, demonstrated that 

the proposed neurophysiological metric can be used to discriminated the 

cognitive control behaviour under which the user is accomplishing the task. 

Therefore, the users evaluation can be done more accurately. 

To sum up, the work arose from the PhD returned metrics and 

methodologies which overcame most of the limitations affecting the use of 

neurophysiological measures and analysis of the workload and training in 

real operational environments. In particular, the results showed that:  

I. The asSWLDA significantly outperformed the standard 

implementation of the SWLDA, in fact:  

i. the asSWLDA reduced significantly the EEG channels 

required for a proper analysis of the considered 

cognitive phenomenon; 

ii. No manual triggering and settings of the parameters of 

the algorithm to obtain the correct behaviour and 

functionality of it;  

iii. the performance of the asSWLDA algorithm remained 

stable and reliable upto a month without any 

recalibration of the algorithm. 

II. The asSWLDA was able to significantly differentiate three 

mental workload levels, both in controlled environment 

(Lab) and in operational settings (ATC room). 
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III. The proposed methodology could supply quantitative and 

objective information regarding the training level of the 

subjects in order to support the Instructor for a better 

management of the training schedule and program.  

IV. The neurometric defined for the characterization of the 

cognitive control behaviours (skill, rule and knowledge) was 

a valid solution to objectively investigate and analyze the 

expertise of the subjects, and it could be employed for 

innovative personnel selections or customization of training 

program. 

These evidences represent a promising step forward in the analysis of 

human behaviours and they demonstrate the possibility of developing a 

device able to evaluate, also in real-time, the cognitive engagement of the 

operators during the working activities in real operational environments. 

This tool could be used to improve complex systems design and to enhance 

the capability to anticipate errors. For example, Realistic Interface Design 

(EID, Vicente and Rasmussen, 1992; Pawlak and Vicente, 1996; Vicente, 

2002) uses the SRK framework as an analytical tool for the design of 

interfaces in complex sociotechnical, real-time, and dynamic systems. 

Another possible use might be an online tool for triggering Adaptive 

Automations (AA, Byme and Parasuraman, 1996; Parasuraman, 1996; 

Uebbing-Rumke et al., 2012; Wilson et al., 2000), in which the systems 

behaves depending on the Operator's current level of cognitive control.  

In this regard, an H2020 - SMEINST project has been submitted with the 

aim to realize and to commercialize a device with the characteristics 

developed during my PhD and described above.  
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