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ABSTRACT 

The enteric nervous system (ENS) modulates a number of digestive functions including well known ones, i.e. 

motility, secretion, absorption and blood flow, along with other critically relevant processes, i.e. immune responses of 

the gastrointestinal (GI) tract, gut microbiota and epithelial barrier . ENS is critical to preserve body homeostasis as 

reflect by its derangement occurring in pathological conditions that can be lethal or seriously disabling to humans and 

animals. 

The knowledge of the ENS organization can contribute to better understanding its evolution and morphological and 

functional features. Furthermore, the characterization of the anatomical aspects of the ENS in large mammals and the 

identification of differences and similarities existing between species may represent a fundamental basis to decipher 

several digestive GI diseases in humans and animals. In this perspective, severe GI disorders due to ENS malfunction 

are referred to as “enteric neuropathies” and can be classified into primary or secondary forms. The term ‘primary’ is 

used for enteric neuropathies when the ENS is considered to be the main target of the disease, while ‘secondary’ enteric 

neuropathy is used for several systemic conditions that can damage several organs / systems including the ENS. 

The aim of the present thesis is to highlight the ENS anatomical basis and pathological aspects in different 

mammalian species, such as horses, dogs and humans. 

Firstly, I designed two anatomical studies in horses: 

 “Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter”. 

 “Localization of 5-hydroxytryptamine 4 receptor (5-HT4R) in the equine enteric nervous system”. 

Then I focused on the enteric dysfunctions, including: 

 A primary enteric aganglionosis in horses (the equine version of the human Hirschsprung’s disease): “Extrinsic 

innervation of the ileum and pelvic flexure of foals with ileocolonic aganglionosis”. 

 A diabetic enteric neuropathy in dogs: “Quantification of nitrergic neurons in the myenteric plexus of gastric 

antrum and ileum of healthy and diabetic dogs”. 

 An enteric neuropathy in human neurological patients: “Functional and neurochemical abnormalities in patients 

with Parkinson's disease and chronic constipation”. 
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Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter 

The lower esophageal sphincter (LES) is a specialized, thickened muscle region with a high resting tone mediated by 

myogenic and neurogenic mechanisms. During swallowing or belching the LES undergoes strong inhibitory innervation. 

In the horse, the LES seems to be organized as a “one way” structure, enabling only the oral-anal progression of food. 

We characterized the esophageal and gastric pericardial inhibitory and excitatory intramural neurons immunoreactive 

(IR) for the enzymes neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT). The high percentage 

of nitrergic inhibitory motoneurons observed in the caudal esophagus reinforces the role of the enteric nervous system in 

the horse LES relaxation. Those findings might allow an evaluation of whether selective groups of enteric neurons are 

involved in horse neurological disorders such as megaesophagus, equine dysautonomia, and white lethal foal syndrome. 

 

Localization of 5-hydroxytryptamine receptor 4 (5-HT4R) in the equine enteric nervous system 

The 5-hydroxytryptamine (5-HT) controls the visceral sensitivity, gastrointestinal motility, and fluid secretion acting 

on specific 5-HT receptor. The interest in 5-HT4R agonists in the field of equine motility disorders is considerably 

growing. Despite several functional studies indicate a prokinetic effect of 5-HT4R agonists, the presence of the 5-HT4R 

in the equine gastrointestinal innervation remain to be determined. Furthermore, no data are available in the horse on the 

presence of 5-HT4R in extrinsic visceral innervation.The aim of the present study was to identify the 5-HT4R in the 

enteric neurons and spinal ganglia of healthy horses and in visceral extrinsic sensory fibers of lethal white foal syndrome 

(LWFS) foals. Immunohistochemistry was used to characterize the expression of 5-HT4R in enteric neurons and spinal 

ganglia of healthy horses, and in extrinsic nervous fibers of LWFS foals. 5-HT4R -IR myenteric and submucosal plexus 

neurons were quantified as a relative percentage (mean ± St. Dev), in consideration of the total number of HuC/HuD 

neurons. Furthermore, 5-HT4R-IR nervous fibers were quantified in the mucosa and tunica muscularis as percentage of 

5-HT4R-IR area (mean ± SEM). 5-HT4R was localized to large percentages of enteric neurons ranging from 28±9 % 
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(descending colon) to 63±19% (ileum) in the myenteric plexus, and from 54±6 % (ileum) to 68±14 % (duodenum) in the 

submucosal plexus. 5-HT4R–IR was co-expressed by Substance P (SP) -IR spinal ganglion neurons and by SP-IR 

extrinsic sensory fibers of LWFS foals. 5-HT4R is localized to large percentages of enteric neurons and extrinsic sensory 

nervous fibers. These findings represent a morphological support as a reinforcement for the functional investigations 

carried out on the horse intestine. Furthermore, the expression of 5-HT4-R-IR in extrinsic sensory fibers and extrinsic 

sensory neurons opens a new window on the pharmacological treatment of equine visceral nociception. 

 

Extrinsic innervation of the ileum and pelvic flexure of foals with ileocolonic aganglionosis 

Equine ileocolonic aganglionosis - or lethal white foal syndrome - is a congenital severe condition characterized by 

neural crest progenitors’ unsuccessful colonization of the caudal part of the small intestine and of the entire large 

intestine. LWFS, due to a mutation in the endothelin receptor B gene, is the horse equivalent of Hirschsprung’s disease 

in humans. Affected foals suffer from aganglionosis or hypoganglionosis of the enteric ganglia resulting in intestinal 

akinesia and colic. In other species with aganglionosis, fibers of extrinsic origin show an abnormal distribution pattern 

within the gut wall, while we have no information to date regarding this happening in horses. The aim of the present 

research was to investigate the distribution of extrinsic sympathetic and sensory neural fibers in the LWFS, focusing on 

ileum and the pelvic flexure of the colon of two LWFS foals compared to a control subject. The sympathetic fibers were 

immunohistochemically identified with the markers tyrosine hydroxylase and dopamine beta-hydroxylase. The extrinsic 

sensory fibers were identified with the markers SP and calcitonin gene-related peptide (CGRP). Since SP and CGRP are 

also synthetized by subclasses of horse intramural neurons, LWFS represents a good model for the selective study of 

extrinsic fibers distribution. Affected foals showed large bundles of extrinsic fibers, compared to the control, as 

observed in Hirschsprung’s disease. Furthermore, altered adrenergic pathways were observed, prominently in the pelvic 

flexure. Since the ENS contains peptidergic neurons, in LWFS tissues the SP- and CGRP-immunoreactivities were 

dramatically reduced in both ileum and pelvic flexure; the remaining sensory extrinsic fibers resulted largely distributed 

around submucosal blood vessels and were in part dedicated to the innervation of the mucosa and serosa. These findings 
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highlight that the extrinsic innervation, contributing to modulate the enteric functions, might also be affected during 

LWFS. 

 

Quantification of nitrergic neurons in the myenteric plexus of gastric antrum and ileum of healthy and 

diabetic dogs. 

Diabetes mellitus (DM) in humans and mammals determines a wide array of severe clinical complications including 

gastrointestinal motility disorders. While the effects of experimentally induced DM on the enteric nervous system of 

rodents are widely investigated, the information is limited in domestic animals. The present study investigates the effects 

of spontaneous DM on the nitrergic neurons of the myenteric plexus of the canine gastric antrum and ileum, which, in 

other species, seem to be susceptible to the development of diabetic neuropathy. Specimens of gastric antrum and ileum 

from eight control dogs and five insulin-dependent DM dogs were collected. Myenteric plexus neurons were 

immunohistochemically identified with the anti-HuC/HuD antibody as a pan-neuronal marker, while nitrergic neurons 

were identified with the antibody anti- nNOS. Nitrergic neurons were quantified as a relative percentage, in 

consideration of the total number of HuC/HuD neurons. In the stomachs of the control dogs, the percentage of nitrergic 

neurons was 30±6%, while in the DM dogs, it was 25±2% (P=0.112). In the ileum of the control dogs, the percentage of 

nitrergic neurons was 29±5%, while in the DM dogs, it was significantly reduced 19±5% (P=0.006). Notably, the ileal 

ganglia of DM dogs showed a thickening of the periganglionic connective tissue and an altered HuC/HuD labeling. 

These findings indicate that DM in dogs alters intestinal nitrergic innervation more rather than the gastric one. 

 

Functional and neurochemical abnormalities in patients with Parkinson's disease and chronic constipation 

Chronic constipation (CC) represents one of the most common gastrointestinal complaints in Parkinson’s disease 

(PD). The pathogenetic mechanisms underlying CC in PD remain poorly understood. The present study has been 

designed to shed light on clinical, manometric and neurochemical/molecular findings in constipated PD patients. 
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Twenty-nine PD/CC and 10 CC Rome III defined patients were enrolled and assessed via colonic transit time and 

conventional anorectal manometry. Twenty asymptomatic (screening colonoscopy) age-sex matched subjects served as 

controls. Whole-mounts of colonic submucosa from PD/CC, CC and control subjects were processed for 

immunohistochemistry and vasoactive intestinal polypeptide (VIP) and related receptor mRNA expression. Four groups 

of PD/CC patients were characterized: 1) delayed transit and altered manometry (65%); 2) delayed transit (13%); 3) 

altered manometric pattern (13%); 4) no functional impairment (9%). There were no differences in the number of 

HuC/HuD neurons/ganglion between PD/CC vs. CC vs. controls. However, a reduced number of HuC/HuD/VIP 

submucosal neurons was found in PD/CC (72.3±14.6%) vs. controls (87.2±9.2%) (P= 0.007). VIP mRNA expression 

was also reduced in PD/CC vs. CC (P= 0.036) and controls (P< 0.0001). Both VIPR1 and VIPR2 were lower in PD/CC 

vs. CC (P= 0.001) and controls (P<0 .0001). Most PD/CC patients showed an impairment of colonic motor and rectal 

sensory functions. The decrease of VIP expressing secretomotor neurons suggests that both neurally-mediated secretory 

mechanisms along with sensory-motor abnormalities represent a prominent peculiar mechanisms underlying PD/CC 

patients. 

The present collection of studies was focused on three different species (horses, dogs and humans). The physiology of 

the GI tract is characterized by a high complexity and it is mainly dependent on the control of the intrinsic nervous 

system, in all the species considered. There are great differences between the ENS features across similar species, 

therefore it is very difficult to extrapolate and speculate among animals of different size and alimentary tract 

morphology and physiology. As consequence, the vast majority of the information that we have about the ENS are not 

adequate to understand completely the physiology and the pathophysiology in a given species. Any damage able to alter 

the morpho-functional integrity of the ENS may have a severe impact on the GI balance, resulting in many different 

pathological conditions both in humans and domestic animals. Therefore, the knowledge of the anatomy and the 

pathology of the ENS represents a new important and fascinating topic, which deserves more attention in the veterinary 

medicine field. 
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INTRODUCTION 

 

The enteric nervous system (ENS) is large, complex, and exquisitely able to control gastrointestinal (GI) behavior 

independently of the central nervous system (CNS). An intact ENS is essential for life and ENS dysfunction is often 

associated to digestive disorders. Nevertheless, the mechanisms underlying ENS changes and the resultant GI 

dysfunction are starting to be only recently understood. The gut is a complicated organ since a number of processes / 

events are necessary for digestion and absorption to occurr. Muscular sphincters compartmentalize the bowel, dividing it 

into functionally distinct regions with radically different luminal environments. A constant detection of luminal contents 

allows for ingested material to be transported anally at a physiological rate, i.e. allowing each segment of the gut to 

accomplish their respective function. 

Smooth and skeletal (in the esophagus and anus) muscle contractions are thus coordinated into activity patterns, such 

as segmentation (small intestine) or haustration (colon) that grind, mix, and propel aborally the ingested food. Secretory 

mechanisms maintain a regionally appropriate pH, as well as tightly regulated concentrations of electrolytes, enzymes, 

and mucous. A thin semipermeable epithelial barrier, which is continuously regenerated from stem cells, separates the 

lumen from the body’s internal milieu. This barrier facilitates absorption, but also prevents the leakage of essential 

molecules into the intestinal lumen as well as the translocation of digestive enzymes, toxins, and microbiota into the 

body from the lumen. A scaffold of loose connective tissue, which contains the body’s largest array of immune effector 

cells, provides mechanical and defensive support for the barrier. All of these functions, i.e. secretion, motility, mucosal 

maintenance, and immunological defense, require an exquisite degree of regulation and coordination, provided by the 

ENS. 

The ENS dysplays integrative neuronal activity and the ability to control GI behavior independently of input from 

brain or spinal cord. More than any other part of the peripheral nervous system (PNS), the ENS has at least as many 

neurons as the spinal cord organized in microcircuits, with interneurons and intrinsic primary afferent neurons (IPANs), 

which are able to initiate reflexes. Enteric neuronal phenotypic diversity is extensive and virtually every class of 

neurotransmitter found in the CNS has also been detected in the ENS. Although the ENS can function without input 
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from the CNS, the latter influences enteric behavior and the gut responde by sending information to the brain. Some of 

the signals that the brain receives initiate vago-vagal reflexes in which motor neurons within the CNS respond to intra-

enteric stimuli to regulate motility patterns in the esophagus or stomach. From this picture it emerges clearly that the 

ENS contributes significantly for body homeostasis and therefore there is no surprise that when any noxae interfere with 

ENS maintenance and integrity, disease state can occur and their severity may be such to be imcompatible with life. 

The physiology of the GI tract is quite complex. A wide spectrum of cellular types such as muscle and epithelial 

cells, vasculature, blood cells and nerves are involved. All these elements co-exist and should be in balance likewise 

musicians in a big orchestra, which need the accurate and devoted supervision of the music director for the execution of 

wonderful symphonies. In the GI tract, we can identify, as master conductor, the enteric nervous system. 

The history of the ENS started in the 19
th

 century, when Meissner (Meissner 1857) and Auerbach (Auerbach 1864) 

identified an intrinsic nervous system in the human GI wall (Timmermans et al. 1997). Subsequently, Ramón y Cajal 

described the existence of non - neuronal cell type between the muscle cells of the intestine (Cajal 1893). Some years 

later, the Russian scientist Dogiel classified the enteric neurons according to their morphologic features (Dogiel 1899). 

A the same time Bayliss and Starling observed that an isolated segment of small bowel / colon from the dog was able to 

respond to mechanical stimulation in the absence of the extrinsic innervation ( Bayliss and Starling 1899; Bayliss and 

Starling 1900). In particular, they identified a polarized movement consisting in a contraction (cranially) coupled with a 

relaxation (caudally), hence providing the description of what they called ‘the law of the intestine’, later on referred to as 

‘peristalsis’ (from the ancient greek “περιστέλλω” meaning “to squeeze” or “push all around”) by Trendelenburg 

(Trendelenburg 1917). Finally, in the 1905, Langley and Magnus demonstrated that the peristalsis was persistent after 

the degeneration of extrinsic neuronal input, thus implying the autonomy of the ENS from the CNS (Langley and 

Magnus 1905). It is thought that this discovery marked the beginning of enteric neuroscience as an independent 

discipline subsequently redefined as neurogastroenterology, a term coined by Wingate in 1988 (Wingate 2008). 

The innervation of the digestive tract is fundamental to many different functions: determining the patterns of GI 

motility, controlling gastric acid secretion, regulating movement of fluid between the gut lumen and body fluid 
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compartments, changing local blood flow, releasingof gut hormones, modifying nutrient handling and interacting with 

the gut immune system. 

The ENS represents one of the main players in the neural control of GI physiology, especially of the small and large 

intestines. The ENS activity is integrated by the two other sections of the autonomic nervous system (ANS), i.e. the 

sympathetic and the parasympathetic divisions through which is connected to the CNS. In fact, intrinsic (enteric) 

reflexes, as well as those that pass through sympathetic or vagal / sacral ganglia, or intestinofugal reflexes (going back to 

the CNS) interact each other and provide an integrated physiology of gut function referred to as “brain-gut axis” or, 

more appropriately the “gut-brain axis”. 

The present thesis is a collection of five experimental studies investigating the ENS in species of veterinary interest 

(such as dog and horse) and also in humans. In particular, the aim of the present research is to highlight the ENS 

anatomical basis and related pathological aspects. 

Firstly, we developed two anatomical studies in horses: 

1) “Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter”. 

2) “Localization of 5-hydroxytryptamine 4 receptor (5-HT4R) in the equine enteric nervous system”. 

Then we focused on the enteric dysfunctions, including: 

3) A primary enteric aganglionosis in horses (the equine version of the human Hirschsprung’s disease): “Extrinsic 

innervation of the ileum and pelvic flexure of foals with ileocolonic aganglionosis”. 

4) A secondary enteric neuropathy in diabetic dogs: “Quantification of nitrergic neurons in the myenteric plexus of 

gastric antrum and ileum of healthy and diabetic dogs”. 

5) A secondary enteric neuropathy in human neurological patients: “Functional and neurochemical abnormalities in 

patients with Parkinson's disease and chronic constipation”. 

 

The knowledge of the ENS organization can contribute to better understanding its evolution and morphological and 

functional features. Furthermore, the knowledge of morphological and functional ENS organization is pivotal to 

comprehend numerous human and animal digestive diseases. The ENS of different species, such as rodents, guinea-pig 

and other easy-handling small mammals, have been widely studied as experimental animal to decipher the complexity of 
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the ENS. However, numerous papers dealing with small and large mammals have also been published over the last ten 

years. There are great differences between the ENS features across similar species, therefore it is very difficult to 

extrapolate and speculate among animals of different size and alimentary tract morphology and physiology. As 

consequence, the vast majority of the information that we have about the ENS are not adequate to understand completely 

the physiology and the pathophysiology in a given species. 

Undoubtly, the characterization of the anatomical aspects of the ENS in large mammals and the identification of 

differences and similarities existing between species may represent a fundamental basis to decipher several digestive GI 

diseases in humans and animals. 
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CHAPTER 1 

The Enteric Nervous System 

The ENS is a complex neuronal network embedded in the gut wall, which extends from the esophagus to the internal 

anal sphincter. It is composed of ganglia, i.e. aggregates of neuronal cell bodies and glial cells, along with neural 

bundles connecting enteric ganglia, and individual nerve fibers projecting to the effectors, including smooth muscle 

cells, epithelial cells, blood vessels, endocrine cells (Furness 2012). 

1.1 Stucture of the Enteric Nervous System 

The ENS is composed of about 400-600 millions neurons (in humans) and even more supporting cells (enteric glia) 

outnumbering from 3 to 5 times enteric neurons (Furness 2006). In the ENS, neuronal cell bodies and glial cells are 

grouped in ganglia, interconnected by nerve fiber bundles, forming two major plexuses, the myenteric (MP or 

Auerbach’s) and submucosal (SMP or Meissner’s) plexus (Costa and Brookes 2008). The MP is located between the 

outer (longitudinal, LML) and inner (circular, CML) muscle layers of the whole GI tract (Furness 2006). The SMP is 

located between the muscularis mucosae and the CML. Although MP and SMP are single entities, they are connected by 

vertical fibers running perpendicular to the CML (Furness et al. 1990; Brehmer et al. 1998) (Fig. 1.1). 
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Fig. 1.1 The organization of the ENS of human and medium–large mammals.  

The ENS has ganglionated plexuses, the myenteric plexus between the longitudinal and circular layers of the external 

musculature and the SMP that has outer and inner components. Nerve fiber bundles connect the ganglia and also form 

plexuses that innervate the longitudinal muscle, circular muscle, muscularis mucosae, intrinsic arteries and the mucosa. 

Modified from Furness 2012. 

 

In addition to ganglionated plexuses, the ENS also contains aganglionated plexuses formed by nerve fibers. These 

plexuses are constituted by axons of neurons located in the MP and SMP, as well as by extrinsic fibers (Furness 2006). 

The intrinsic innervation of the extrahepatic biliary tract and pancreas are considered part of the ENS because of their 

embryological origin emanating from diverticula of the small intestine (Furness 2006). 

Submucosal plexus (SMP) 

The SMP is well developed in both small and large intestine, while only a few submucous ganglia can be found in 

esophagus and stomach (Lefebvre et al. 1995; van Ginneken et al. 1996; Teixeira et al. 2001; Izumi et al. 2002; Furness 

2006). In general, the interconnecting strands of the SMP are quite fine and SMP ganglia are small. The SMP is 

organized in a single layer in small mammals (Timmermans et al. 2001; Furness 2006), while it is a multilayered, double 

or triple layered in the large mammals (Brehmer et al. 2010). In large mammals two different ganglionated plexuses are 

usually identified: the internal submucous plexus (ISMP) and the external submucous plexus (ESMP) (Schabadasch 
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1930) (Gunn 1968) (Messenger and Furness 1990; Timmermans et al. 1992a; Timmermans et al. 1992b; Pearson 1994; 

Timmermans et al. 1997). The ganglia of the ESMP and ISMP, are separated by a thin connective tissue layer (Gunn 

1968; Christensen and Rick 1987; Hoyle and Burnstock 1989; Balemba et al. 1998) and by submucosal vascular arcades 

(Balemba et al. 1998). ESMP and ISMP appears different in relation to the species and the GI tract investigated. 

Generally, they can be distinguished on the basis of their location, architecture, meshwork density, size and form of the 

ganglia, vascularization, and light microscopic appearance (Stach 1977b; Stach 1977c; Stach 1977a; Stach 1978; 

Scheuermann and Stach 1984). The ESMP shows the most irregularly organized nerve meshwork, while the ISMP 

meshwork is smaller and more regular compared to the ESMP (Gunn 1968; Scheuermann et al. 1987; Hoyle and 

Burnstock 1989; Timmermans et al. 1990; Balemba et al. 1999). 

Additionally, the two compartments of SMP neurons also show differences in their neurochemical code, being the 

phenotypes of ESMP neurons more similar to that of myenteric neurons (Scheuermann W.D. 1998; Hens et al. 2000). In 

fact, some neurons of the ESMP, beyond the mucosa, also supply innervations to the CML and LML (Sanders and 

Smith 1986; Furness et al. 1990; Timmermans et al. 1994b; Timmermans et al. 1997; Porter et al. 1999; Timmermans et 

al. 2001). The ISMP neurons, in large part, supply the mucosa, and only a small number have projections to the muscle 

layers (Porter et al. 1999; Timmermans et al. 2001). 

ESMP and ISMP neurons overlap in terms of functional control of fluid movements, local blood flow and sensory 

functions; in addition, however, the ESMP also exerts a role on motility (Timmermans et al. 1990). 

Myenteric plexus 

The myenteric plexus forms a continuous network, around the circumference of the gut and extending from the upper 

esophagus to the internal anal sphincter. It lies between the LML and CML and is composed / constituted by a network 

of cells grouped in ganglia and nerve strands (Furness 2006). 

The MP shows numerous differences in its morphological organization, among different gastrointestinal tracts and 

different species. In the horse ileum, in addition to the classical MP, two other ganglionated MP divisions have been 

described, located within the inner portion of the LML and in subserosal location (Vittoria et al. 2000; Domeneghini et 

al. 2004; Chiocchetti et al. 2009b). A subserosal ganglionated plexus was also detected in the cattle abomasum (Vittoria 

et al. 2000) and in the human sigmoid colon (Crowe and Burnstock 1990). However, in all other human colonic levels 
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examined (ascending, transverse and descending colon) the subserosal plexus showed no ganglia but only nerve fibers 

(Ibba-Manneschi et al. 1995). 

Generally, in the MP, ganglia are bigger than the SMP  in terms of number of neurons, and are linked by 

interconnecting strands (or primary strands) which constitute the MP primary plexus (Furness 2006). The myenteric 

ganglia are aligned parallel to the CML, although it can vary between species (Irwin 1931); primary interconnecting 

strands show longitudinal course, an organization that seems to be a distinctive feature of the MP in the major part of 

small and large mammals (Scheuermann et al. 1986; Gabella 1987; Santer and Baker 1988; Pearson 1994; Furness 2006; 

Freytag et al. 2008; Bodi et al. 2009). However, the orientation can vary from one part of the intestine to another 

(Furness 2006) and between species, including large and small mammals (Balemba et al. 1999; Chiocchetti et al. 2004; 

Furness 2006; Bodi et al. 2009). The other two components of MP are the secondary and tertiary plexuses (Furness 

2006). The secondary plexus is constituted by fine bundles of nerve fibers, mainly oriented parallel to the CML and 

primary plexus (Balemba et al. 1999; Furness 2006). The tertiary plexus is constituted by the smallest sized 

interconnecting strands supplying the LML (Scheuermann et al. 1986; Balemba et al. 1999; Furness 2006). 

Extrahepatic biliary tree and pancreatic divisions of ENS 

The structural and architectural organization of the innervations of the biliary tract have been most extensively 

studied in the guinea-pig and Australian brush-tailed possum and appear very similar even in large mammals, such as 

human, rhesus monkey, pig, dog and cat (Alexander 1940; Burnett et al. 1964; Sutherland 1967; Kyosola 1978; Talmage 

et al. 1996; Mawe 2000; Balemba et al. 2004). 

The extension of the biliary ENS is limited to the extrahepatic biliary tree, which includes the gallbladder, the 

sphincter of Oddi (SO), and the bile ducts. All these portions show a three layered wall (serosa, muscularis, and 

mucosa); ganglionated nerve plexuses are located in subserosal, muscular and subepithelial (lamina propria) layers. 

Gallbladder. The subserosal plexus is constituted by ganglia which have an appearance similar to submucosal ganglia 

of the intestine. Due to the topographical distribution of nerves and ganglia on different levels, the subserosal plexus has 

been subdivided into the secondary and tertiary plexuses (Burnett et al. 1964; Sutherland 1966; Mawe and Gershon 

1989; Mawe 2000). The muscular plexus is situated deeply, near or within the muscular layer, whereas, the subepithelial 

plexus is located just underneath the epithelium (De Giorgio et al. 1995; Balemba et al. 2004). The prominent presence 



15 
 

of ganglionated plexuses in the lamina propria is a data consistent in all large species studied such as opossum, 

Australian brushtailed possum, monkey, and human  (Sutherland 1967; Talmage et al. 1996; Balemba et al. 2004). The 

subepithelial plexus is exclusively composed of neurons projecting to the mucosa; it is similar to the intestinal ISMP, 

which is thought to innervate primarily the epithelium (Burnett et al. 1964). The ganglionated subserosal and muscular 

plexuses are functionally similar to the intestinal MP, which innervates the smooth muscle layers (Padbury et al. 1993; 

Meedeniya et al. 2001; Meedeniya et al. 2003). 

Bile ducts. The walls of the cystic duct, hepatic ducts and common bile duct have an intrinsic innervation similar to 

that of the gallbladder, but since they also have a thinner and more irregular muscle coat than gallbladder, a comparable 

reduction of intramural plexuses can be observed (Burnett et al. 1964). Furthermore, ganglia are less numerous than in 

the gallbladder and are usually located in the outer aspect of the wall (Padbury et al. 1993). It has been shown that 

intrahepatic bile ducts and peribiliary glands are innervated mainly by extrinsic nerves (Balemba et al. 2004). 

Sphincter of Oddi. The intrinsic nerve components of the SO show a noticeable increase in their complexity. The 

nerve plexuses are more developed and the ganglia are larger and numerous. In the SO of the Australian brush-tailed 

possum Padbury et al. (1993) have identified various neural plexuses, namely the external sphincteric plexus, the 

intersphinteric plexus, the internal sphincteric plexus, ganglia situated in the fibromuscular septum between common 

bile duct and pancreatic duct, and ganglia located in the lamina propria. The external sphincteric plexus was located 

between the longitudinal and circular muscle layers and was continuous with the duodenal MP. The inter- and internal 

sphincteric plexuses could be continuous with the duodenal SMP. 

Pancreatic division. The pancreatic division of the ENS shows a different morphological organization from the other 

divisions previously described. In fact, the pancreas is not a hollow organ but a solid organ, with a typical anatomical 

organization that include both a parenchymal and a stromal divisions. It is in the latter division that the nervous 

component is located, adapting to the available spaces. The ganglia and interganglionic nerve strands constitute an 

extensive interconnecting network in the interlobular and intralobular connective tissue (Coupland 1958). Nerve fibers 

and multipolar neurons were observed in association with blood vessels, acinar tissue, and with the islets of Langerhans 

(Gentes 1902; Pensa 1905; DeCastro 1923). The size of ganglia and the number of their neurons decrease from  lobus 

dexter  to lobus sinister of the pancreas (Richins 1945; Honjin 1956; Coupland 1958; Sha et al. 1996; Love and Szebeni 
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1999). Furthermore, in a typical pancreatic ganglion there are fewer neurons compared to the number present in small 

intestine MP ganglia (Sha et al. 1996). 

Until recently, pancreatic ganglia were considered postganglionic parasympathetic elements which function as relay 

centers for incoming signals from the preganglionic parasympathetic neurons and postganglionic sympathetic ones (Liu 

and Kirchgessner 1997). However, it is now known that pancreatic ganglia share some neurochemical and functional 

characteristics of ENS ganglia (De Giorgio et al. 1992). These similarities include the organization of pancreatic ganglia 

into a network anatomically and functionally interconnected (King et al. 1989; Kirchgessner and Pintar 1991; Liu and 

Kirchgessner 1997) and the content of many substances known to be present in enteric neurons (De Giorgio et al. 1992; 

Kirchgessner 1999). Furthermore, pancreatic ganglia have been shown to be directly connected with gastric and 

duodenal MP (Kirchgessner and Gershon 1990). The reciprocal connection between pancreatic and myenteric neurons 

may be at the basis of local reflexes coordinating pancreatic secretion and gastrointestinal function and originate in 

either the gut or the pancreas. 

1.2 Enteric neurons  

Neurochemical code 

Enteric neurons are able to synthesize and release several (about 30) substances that may act as messengers, i.e. 

neurotransmitters, neuromodulators and neuropeptides. Each functional class of enteric neurons can be characterized 

based on the combination of messengers that it contains. This property is known as neurochemical code (Costa et al. 

1996). 

Enteric neurotrasmitters are classified as primary and secondary neurotrasmitters. Primary neurotrasmitters are 

conserved across mammals and they exert the same role in different species and along the GI tracts; these substances 

include acetylcholine (ACh) and tachykinins in enteric excitatory motor neurons, and nitric oxide (NO) and vasoactive 

intestinal polypeptide (VIP) in inhibitory motor neurons. Inhibitory motor neurons may be immunohistochemically 

identified by the presence of the neuronal nitric oxide synthase (nNOS), the neuronal form of the enzyme synthesizing 

the nitric oxide, the primary neurotransmitter utilized by ENS neurons , while excitatory motor neurons may be 
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immunohistochemically identified by the presence of the synthesizing enzyme choline acetyltransferase 

(ChAT).Secondary neurotransmitters or modulators include substances which may vary among different groups of 

neurons depending on the GI tract and the species considered (Furness 2006) (Table 1.1).  

 

Table 1.1 Multiple transmitters of neurons that control digestive function. 

Abbreviations: 5-HT, 5-hydroxytryptamine; ACh, acetylcholine; CCK, cholecystokinin; ChAT, choline 

acetyltransferase; CGRP, calcitonin gene-related peptide; GRP, gastrin releasing peptide; ND, not determined; NPY, 

neuropeptide Y; NOS, nitric oxide synthase; PACAP, pituitary adenylyl-cyclase activating peptide; VIP vasoactive 

intestinal peptide. (Furness 2012) 
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During years of studies on the ENS, enteric neurons have been classified on the basis of various criteria: shape, 

histochemical and immunohistochemical staining, projections, electrophysiological and functional properties. 

Morphological aspects.  

Enteric neurons were subdivided based on their shape by Dogiel in (Dogiel 1899), using a methylene blue staining 

technique. MP and SMP neurons were morphologically classified in three types, referred as Dogiel types I, II and III. 

After Dogiel, many other authors proposed additional classifications based on individual neuronal morphology revealed 

by silver impregnation techniques, neuronal immunoreactivity for neurofilaments and / or other markers (Stach 1989; 

Brehmer et al. 1999; Stach 2000; Brehmer et al. 2002; Brehmer et al. 2004b). Taken together, these studies confirmed 

and extended the Dogiel classification into type I, II and III up to IV, V, VI and VII as well as ‘mini-neurons’. Often the 

importance of the morphological classifications of enteric neurons is underestimated (Brehmer 2006). However, the 

ability to correlate the morphological appearance of a neuron to its neurochemical code, as well as to its potential 

functional features has also reassessed the importance of studying the morphology of the enteric nerve cells. 

Functional aspect 

Functionally, the enteric neurons can be divided in motor neurons, interneurons, IPANs (Furness 2000), and 

intestinofugal neurons IFANs (Furness 2003) (Fig. 1.2). 
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Fig. 1.2 Neuron types in the ENS. The types of neurons in the small intestine.  

Neuron Types: Ascending interneurons (1); Myenteric intrinsic primary afferent neurons (IPANs) (2); Intestinofugal 

neurons (3); Excitatory longitudinal muscle motor neurons (4); Inhibitory longitudinal muscle motor neurons (5); 

Excitatory circular muscle motor neurons (6); Inhibitory circular muscle motor neurons (7); Descending interneurons 

(local reflex) (8); Descending interneurons (secretomotor and motility reflex) (9); Descending interneurons (migrating 

myoelectric complex) (10); Submucosal IPANs (11); Non-cholinergic secretomotor/ vasodilator neurons (12); 

Cholinergic secretomotor/vasodilator neuron (13); Cholinergic secretomotor (non-vasodilator) neurons (14); Uni-axonal 

neurons projecting to the myenteric plexus (15); motor neuron to the muscularis mucosa (16); innervation of Peyer’s 

patches (17). Abbreviations: LM longitudinal muscle, MP myenteric plexus, CM circular muscle, SM submucosal 

plexus, Muc mucosa. Modified from Furness 2012. 

 

Motor neurons. The category of motor neurons includes excitatory and inhibitory neurons directed to gut 

musculature; secretomotor/vasodilator neurons are able to regulate mucosal secreting cells and vasodilation / 

vasoconstriction of intestinal vasculature. Furthermore another subset is represented by secretomotor neurons and 

neurons innervating entero-endocrine cells (Furness et al. 2000). 
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The motor neurons innervating the smooth muscle of digestive tract are located within the MP of rodents (Wilson et 

al. 1987; Song et al. 1998) and within myenteric and external and internal submucous plexuses of large mammals 

[MP>ESMP>ISMP] and humans [MP>ESMP > ISMP] (Sanders and Smith 1986; Timmermans et al. 1990; 

Timmermans et al. 1994b; Porter et al. 1999; Hens et al. 2001). These neurons could be distinguished in circular muscle 

motor neurons, longitudinal muscle motor neurons, and motor neurons innervating the muscularis mucosae (mm). 

According to the description of the peristaltic reflex, the excitatory motor neurons are especially localized aborally to the 

innervated circular and longitudinal muscle (Brookes et al. 1991) (Michel et al. 2000), and the inhibitory motor neurons 

are generally localized orally to the innervated circular and longitudinal muscle (Brookes et al. 1992; Brookes et al. 

1996; Brookes et al. 1997; Pfannkuche et al. 1998; Yuan and Brookes 1999; Michel et al. 2000). However, the polarized 

projection patterns of enteric neurons apparently are species- and region-dependent. 

Motor neurons can be also distinguished, on the basis of the distance from their target, in long and short (excitatory 

and inhibitory) motor neurons (Brookes et al. 1991; Brookes 2001). Other well preserved features of enteric motor 

neurons can be found in their neurochemical code. In fact, it is well established that the primary transmitter of excitatory 

muscle motor neurons is Ach, although tachykinins (especially substance P, SP) are co-localized with ACh in these 

neurons (Vassileva et al. 1978; Veenendaal et al. 1982; Wong and McLeay 1988; Bornstein et al. 2004). The NO is 

considered the main transmitter of inhibitory muscle motor neurons; however it is clear that different transmitters are 

implicated in the inhibitory neurotransmission (Furness 2000) including ATP (Yamanaka et al. 1985; Bian et al. 2000), 

VIP (Fahrenkrug and Emson 1982; Costa et al. 1992) (Furness et al. 1992; Aimi et al. 1993; Grider 1993; Barbiers et al. 

1994; Timmermans et al. 1994a; Timmermans et al. 1994b; Keranen et al. 1995; Lefebvre et al. 1995; Porter et al. 1999; 

Lomax and Furness 2000; Munnich et al. 2008), pituitary adenylate cyclase-activating polypeptide (PACAP) (Grider et 

al. 1994; Ny et al. 1995) and carbon monoxide (De Backer and Lefebvre 2007) being all these substances often co-

localized in the same cells. 

Many similarities exist in the organization of small and large mammals ENS. Muscle motor neurons with analogous 

functions can employ the same neurotransmitters in different species, however important differences in the distribution 

of these cells can be observed by comparing the same gastrointestinal region in different mammals. The polarized 
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organization of enteric motor neurons is important to allow the peristaltic reflex, as originally implied by Bayliss and 

Starling (1899). 

The organizational principles just described could constitute a general rule applicable to the ENS of all studied 

species. Concerning large mammals, also in the bowel of pig, horse and human, can be found similar adaptations. In 

fact, in the swine and horse ileum as well as in human descendant and sigmoid colon, segments with high tone and 

propulsive functions showed an higher proportion of MP cholinergic than proportion of nitrergic ones (Hasler et al. 

1990; Takahashi and Owyang 1998; Brehmer et al. 2004b; Freytag et al. 2008; Wattchow et al. 2008; Chiocchetti et al. 

2009a). On the contrary, in the human ascendant colon, a tract with a low tone and functions of accommodation and 

mixing (Hasler et al. 1990; Takahashi and Owyang 1998), the MP contains a number of nitrergic neurons greater than 

cholinergic ones (Wattchow et al. 2008). 

Among motor neurons, two important subgroups are secretomotor and vasomotor neurons. Hens et al. (2000) showed 

that in all the ganglionated plexuses of the pig small intestine there are mucosal projecting neurons [ISMP (78%) > 

ESMP (10%) ≈ MP (12%)]. Dogiel type II neurons exhibiting calcitonin gene-related peptide (CGRP) immunoreactivity 

(-IR) (MP>ESMP>ISMP) are probably afferent in function; however other mucosal projecting neurons, showing 

different morphology and phenotype, are present in MP and in both divisions of SMP. The majority of ISMP neurons 

projecting to mucosa are ChAT/SP- or VIP/Galanin-IR minineurons (Hens et al. 2000); (Timmermans et al. 2001; 

Brown and Timmermans 2004), whereas in both ESMP and MP most of neurons projecting to mucosa are multidendritic 

in morphology and ChAT/Somatostatin (SOM)-IR (Hens et al. 2000). Hens et al. (2001) showed that in human jejunum 

the greater proportion of mucosal projecting neurons are located in the ESMP [ESMP (54%) > MP (23%) > ISMP 

(13%) > interSMP (10%)]. However, in both species most of these neurons are located in the SMP, while in rodents, 

mucosal projecting neurons are more equally distributed between the SMP and MP [61% SMP and 39% MP in mouse 

50% SMP and 50% MP in guinea-pig  (Song et al. 1991). 

Considering the dense network of SP-IR nerve fibers found in the mm, as well as pharmacologic data showing an 

involvement of SP as mediator in excitatory response of the mm (Angel et al. 1984; Steele and Costa 1990; Messenger 

1993; Holzer and Holzer-Petsche 1997), it has been suggested that SP-IR small neurons could mainly be involved in the 

mm innervation, rather than of the epithelium (Hens et al. 2000). However SP is also widely distributed in the nerve 
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fibers in relationship to the cores of the villi, intestinal glands, and muscular sheath of blood vessels (Costa et al. 1981; 

Brodin et al. 1983; Domeneghini et al. 2004; Chiocchetti et al. 2009a; Mitsui 2010). 

The anatomical distribution of a dense network of VIP-IR nerve fibers in the intestinal villi, together with the 

evidence of its secretory actions in porcine intestine (Brown 1991; Wood 2006), suggests that VIP minineurons are 

secretomotor neurons. SOM-IR nerve fibers in the lamina propria have been described in both human (Keast et al. 1984) 

and pig (Timmermans et al. 1990) small intestine. Pharmacological and physiological evidence suggests an antisecretory 

role for SOM-IR neurons (Dharmsathaphorn et al. 1980; Sandle et al. 1999). Furthermore, the presence of specific SOM 

binding sites on the basolateral membranes of enterocytes indicates a direct action of SOM onto the epithelium 

(Dharmsathaphorn et al. 1985; Cooke 1986; Weber et al. 1986). 

Although mucosal projecting neurons show different topographical organization between small and large mammals, 

these cells seem to show a certain degree of consistency in their neurochemical code. In fact, in all studied species, small 

neurons expressing VIP-IR are mucosal projecting neurons that are likely to be involved in secretion processes (Hens et 

al. 2001; Beyer et al. 2013). 

The distribution of SP- and VIP-IR has been widely studied in some other large mammals, while SOM-IR has been 

less studied than the other two substances. In the horse and cattle intestine, both SP- and VIP-IR neurons have been 

especially detected in the SMP; furthermore a rich network of SP- and VIP-IR nerve fibers has been also detected in the 

mucosa in relationship to the mm, the lamina propria of the villi and the intestinal glands (Cummings et al. 1985; Burns 

and Cummings 1993; Pearson 1994; Balemba et al. 1999; Vittoria et al. 2000; Domeneghini et al. 2004; Chiocchetti et 

al. 2009a). These data reflect a possible secretagogin role for these neurons. 

Interneurons. Interneurons seem to be the ENS neurons with the longest projections. These cells, which have been 

identified with certainly only in the guinea-pig (Costa and Brookes 2008), mouse, rat, and human  are mainly localized 

in the MP. Interneurons form long functional chains of ascending and descending elements through which information 

may travel for short or long distance (Pompolo and Furness 1993). Interneuron projections extend up to 14 mm anally 

and up to 136 mm orally in guinea pig small intestine (Song et al. 1997). It is worth noting that interneurons may also 

function also as mechanoceptors (Stebbing and Bornstein 1996; Spencer et al. 2006; Dickson et al. 2007; Smith et al. 

2007). At least four types of interneurons have been identified in the guinea-pig small bowel ENS, one type of ascending 
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and three types of descending interneurons. The ascending interneurons are MP Dogiel type I cholinergic neurons 

(Furness 2000; Brookes 2001) and may contain also calretinin, SP, neurofilament triplet protein (NFP), and enkephaline 

(Brookes et al. 1997). Descending MP interneurons (5% of all ENS cells in guinea-pig) are phenotypically cholinergic 

neurons differentiable in three types, on the basis of their immunoreactivity also for NOS/VIP, SOM and 5-

hydroxytryptamine (5HT) (Portbury et al. 1995; Song et al. 1997; Brookes 2001). nNOS/VIP/ChAT/immunoreactive 

Dogiel type I interneurons can contain also neuropeptide Y (NPY) (Uemura et al. 1995), gastrin releasing peptide 

(GRP), bombesin (BN) (Brookes, 2001) and the enzyme alkaline phosphatase (Song et al. 1994). SOM/ChAT 

immunoreactive Dogiel type III MP neurons (Portbury et al. 1995; Song et al. 1997) project to other MP ganglia and 

also to SMP ganglia (Brookes 2001). Also 5HT/ChAT immunoreactive Dogiel type I MP neurons send their projections 

to MP and SMP and seem to have significant roles in excitatory pathways regulating both motility and secretion (Neal 

and Bornstein 2007).  

Data on human interneurons is scanty but it seems that MP interneurons project up to 36 mm anally and up to 70 mm 

orally. In the human colon, 90% of orally projecting interneurons contain ChAT alone, whereas the other neurons are 

ChAT- and nNOS-negative; three main types of anally projecting interneurons have been identified: neurons co-

expressing ChAT- and NOS-IR, neurons immunoreactive for NOS-IR alone, and neurons immunoreactive for ChAT-IR 

alone (Porter et al. 2002). Descending nNOS-IR interneurons of human ENS may co-express VIP-IR (Brehmer et al. 

2002). Descending neurons with an impressive long projection (up to 80 cm) have been identified in the horse ileum 

(Russo et al. 2010); these cells co-expressed ChAT- and nNOS-IR, or contained ChAT- or nNOS-IR alone (Chiocchetti 

et al. 2009b). Also in the sheep ileum, descending (up to 18 cm) and ascending (up to 12–14 cm) long projecting 

neurons have been observed (Mazzuoli et al. 2007). In the same species, the presence of long projecting descending 

abomasal (up to 14 cm) and ascending duodenal (up to 8 cm) neurons has been reported (Mazzuoli et al. 2008). The 

phenotype of sheep putative long projecting interneurons (or motoneurons) is peculiar, since markers such as ChAT, 

nNOS, and SP are widely co-expressed in both categories of orally and anally projecting neurons. 

Intrinsic primary afferent neurons (IPANs). The IPANs are the first neurons of the reflex pathways in the intestine 

(Furness et al. 2004a). They are involved in the control of physiological functions as motility, blood flow and secretion, 
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being responding to several stimuli, such as distention, luminal chemistry and mechanical stimulation of the mucosa 

(Furness 2006). 

IPANs have typical electrophysiological properties. In fact, they have broad action potentials that are carried by both 

sodium and calcium currents and are followed by early and late (slow) after hyperpolarizing potentials (AHPs) (Furness 

et al. 2004a). Their targets are represented by mucosa and other MP and SMP neurons (Bornstein et al. 1989; 

Kirchgessner et al. 1992; Song et al. 1992; Evans et al. 1994). 

Cell bodies of multi-axonal IPANs are 10-30% of neurons in SMP and MP ganglia of the small and large intestine; no 

IPANs are detected in the esophagus and they are rare in the stomach, where motility is primary controlled by vagal 

efferents (Furness et al. 2014). 

All the IPANs of guinea-pig small intestine show Dogiel type II morphology (non-dendritic multi-axonal type II 

neurons) (Kirchgessner et al. 1992; Kunze et al. 1995; Bertrand et al. 1997; Kunze et al. 1998; Kunze et al. 1999), and 

analogous have been found in other species and regions. A large percentage (about 82-84%) of myenteric IPANs of the 

guinea-pig ileum expresses immunoreactivity for the calcium-binding protein calbindin (CALB) (Furness et al. 1988; 

Iyer et al. 1988; Costa et al. 1996), and almost all (MP and SMP IPANs) express cytoplasmic NeuN-IR (Chiocchetti et 

al. 2003; Van Nassauw et al. 2005). Furthermore, all of them seem to be immunoreactive for ChAT (Steele et al. 1991; 

Li and Furness 1998). To note that only 30% of submucosal IPANs of the guinea-pig ileum appear to be immunoreactive 

for CALB (Iyer et al. 1988; Song et al. 1991; Quinson et al. 2001), and that CALB is not confined to the IPANs since it 

is also localized in 50% of submucosal calretinin-IR secretomotor / vasodilator neurons (Quinson et al. 2001). Many 

researchers studied CALB-IR also in other species, with the aim to establish whether CALB could be considered an 

IPANs marker. In the pig small intestine, CALB cannot be considered markers of IPANs, being mainly localized in 

interneurones and intestinofugal neurons (Brehmer et al. 2004a; Brown and Timmermans 2004). Dénes and Gábriel 

(Denes and Gabriel 2004) described CALB-IR myenteric neurons in rabbit small intestine. These cells showed 

essentially Dogiel type I morphology, ChAT-IR, and were identified as interneurons. Also in the mouse colon, CALB 

cannot be considered a good marker of IPANs, while the anti-CGRP antibody is considered the most specific marker of 

these cells (Furness et al. 2004b). Non-dendritic multiaxonal type II neurons involved in mucosal innervations have been 

demonstrated also in porcine (Hens et al. 2000) and human (Hens et al. 2001) small intestine. Unlikely from guinea-pig, 
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porcine and human (and mouse) IPANs express CGRP, which has been considered a specific marker of type II neurons 

in these species(Scheuermann et al. 1986) (Scheuermann et al. 1991; Timmermans et al. 1992a; Balemba et al. 1998; 

Hens et al. 2000; Wolf et al. 2007). However, Brehmer et al. (Brehmer et al. 2004a)showed that in human small intestine 

only a minority of type II neurons displayed distinct reactivity for CGRP, while most of them were immunoreactive for 

SOM, calretinin, and SP. Notably, in the human small intestine this neurochemical code is common also to type V 

neurons; thus, the morphological distinction has an important role to recognize IPANs. The importance to couple 

morphology and chemical code to identify ENS neurons has been confirmed also in the pig intestine; in fact, Jungbauer 

et al. (Jungbauer et al. 2006) showed that at least three typology of neurons were CGRP-IR: type I like morphology 

neurons, type V neurons, and type II ones. Thus, CGRP cannot be considered a sufficient marker to specifically identify 

type II neurons. 

Also in sheep (Chiocchetti et al. 2004; Chiocchetti et al. 2005)  and horse (Chiocchetti et al. 2009a) ileum, CGRP is 

considered a marker of Dogiel type II neurons; however, in these species there are not tracer studies confirming the 

involvement of these cells in mucosal innervations. In fact, the CGRP-IR neurons of sheep and horse ileum have been 

hypothesized to be IPANs on the basis of their morphology and on the basis of distribution of CGRP-IR fibers. In pig 

small intestine, Krammer  et al. (Krammer and Kuhnel 1992) and Balemba et al. (1998) showed that also anti- 

Neurofilament 200 KDa (NF200) antibody identify only type II neurons. In the cattle small intestine, Balemba et al. 

(1999) showed that the pooled antibodies anti-all the three forms of neurofilament proteins revealed type II neurons in 

the myenteric, external and internal SMP, differently from the pig in which the same antibodies has been reported to 

show also types IV and VI neurons (Balemba et al. 1998). 

A difference between small and large mammals is in the localization of neurons with mucosal projections; in guinea-

pig and mouse intestine these neurons are localized approximately in equal part in SMP and MP. In the pig intestine are 

especially localized in ISMP (about 80%) with a lesser quantity of neurons also in the ESMP and MP, about 10% each 

(Hens et al. 2000), whereas in the human intestine greater part of these neurons are localized in ESMP (Hens et al. 

2001). It is difficult to speculate on the situation of other species for scantiness of studies. In the horse ileum the 

neuropeptide CGRP, a putative marker of large mammal IPANs, has been largely found in the submucosal ganglia 
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(Chiocchetti et al. 2009a) while in the MP these neurons are only scantly represented. This result is consistent with the 

observation made in pig and human intestine. 

Concluding, another important difference between small and large mammals is in the proportion of IPANs and 

secretomotor neurons. In fact, almost all neurons with mucosal projections in the MP of the guinea-pig small intestine 

exhibit type II morphology, and are assumed to be IPANs (Song et al. 1992). In both pig and human small intestine, the 

number of primary afferent neurons in the ESMP and MP seem to represent only a minority (less than 30%) of these 

neurons (Timmermans et al. 2001). 

Intestinofugal primary afferent neurons – IFANs- Intestinofugal neurons represent a unique subset of enteric neurons, 

presenting their cell body in the myenteric ganglia and projections out of the intestinal wall (Szurszewski et al. 2002). 

Most of them show Dogiel type I and some Dogiel type II morphology (Lomax et al. 2000; Ermilov et al. 2003). IFANs 

act as mechanoceptors, being able to detect changes in volume and to respond to the stretching (but not to the tension) of 

the muscle cells (Crowcroft et al. 1971; Szurszewski and Weems 1976; Kreulen and Szurszewski 1979). Once activated, 

IFANs usually release Ach at the sympathetic neurons in the prevertebral ganglion (PVG), evoking nicotinic fast post 

synaptic potentials (Szurszewski JH 1994). A subset of IFANs also determines gamma-Aminobutyric acid (GABA) 

release in PVG in response to colonic distention, facilitating the Ach release from cholinergic IFANs. As consequence, 

sympathetic neurons in the prevertebral ganglion, reflexy release noradrenaline in GI wall, modulating muscle 

contractions or MP neurons control (Parkman et al. 1993; Ma and Szurszewski 1996; Walter et al. 2016). The functional 

significance of this reflex arc is that it acts against large increases in tone and intraluminal pression during filling 

(Szurszewski et al. 2002). 

 

1.3 Other cell types interacting with enteric neurons 

Glial cells 

In addition to neurons, enteric glial cells (EGCs) are identified as key players in the ENS in which these cells 

represent the largest cell population. They are small cells showing a starlike appearance (Ruhl 2005). A population of 
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EGCs wraps around neuronal cell bodies in MP and SMP, while another population surrounds mucosal nerves (Gabella 

1981; Gershon and Rothman 1991; Ruhl 2005). The EGCs outnumber neurons with a ratio ranging from 1.3 to 1.9 and 

from 5.9 to 7.0 in the human submucosal and myenteric plexuses, respectively (Komuro et al. 1982; Ruhl 2005; Hoff et 

al. 2008). The glial cells partly surround nerve cell bodies and axons in the ganglia, leaving bare large areas of neuronal 

membrane at the surfaces of ganglia. There is a marked contrast in relationships of glial cells to axons in small mammals 

(for example, guinea-pig or rat) and large mammals (such as cat or human). In small mammals, glial cell processes fail 

to penetrate all the interstices between nerve cell bodies and between axons in the neuropil (Baumgarten et al. 1970; 

Gabella 1972; Komuro et al. 1982). In contrast, in enteric ganglia of human and monkey, axons are separated from one 

another by intervening glial cell processes (Baumgarten et al. 1970). It is noteworthy that Auerbach  (1864)  recognized 

the different relations of neurites and supporting cells between humans and some other mammals (Furness 2006). Glial 

cells in nerve strands of the MP of small mammals give rise to radiating lamellae which divide the axons into large 

bundles, and up to 600 neurites may be associated with one glial cell (Gabella 1981). 

EGCs originate from neural crest progenitors which migrate and colonize the GI tract. Upon colonization of the 

embryonic gut, neural-crest derived progenitors mature into neurons and glia via Hedgehog/Notch pathway (Gershon 

and Rothman 1991; Ruhl 2005). Once developed, EGCs share morphological features with the astrocytes of the CNS 

(Gabella 1981). Compared with other peripheral glial cells (e.g., Schwann cells), EGCs do not form basal laminae and 

they ensheath nerve bundles and not individual axons (Bannerman et al. 1986). Available immunohistochemical markers 

for EGC labeling in the adult gut include glial fibrillary acidic protein (GFAP), S100b, and Sox (SRY-box) 8/9/10, the 

first two being the most frequently used (Ruhl 2005; Hoff et al. 2008). Recently, marker expression analysis showed that 

the majority of glia in the myenteric plexus co- express GFAP, S100b, and Sox10. However, a considerable fraction (up 

to 80%) of glia outside the myenteric ganglia, did not label for these markers. These alternative combinations of markers 

reflect dynamic gene regulation rather than lineage restrictions, revealing an extensive heterogeneity and phenotypic 

plasticity of enteric glial cells (Boesmans et al. 2015). 

EGCs have long been thought to exert a mere mechanical property by supporting neurons (hence the ancient Greek 

name glia, which means “glue,” a term coined by the German pathologist Rudolf Virchow). Many evidences, however, 

indicates that these cells exhibit a number of functions, ranging from neurotransmission to enteric neuronal maintenance 
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and survival (De Giorgio et al. 2012; Gulbransen and Sharkey 2012; Neunlist et al. 2013; Neunlist et al. 2014; 

Boesmans et al. 2015). In fact, EGCs are involved in many crucial tasks, such as synthesis of neurotransmitter 

precursors, uptake and degradation of neuroligands (i.e., detoxification of glutamate and g-aminobutyric acid), and 

expression of neurotransmitter receptors, thereby contributing to neuron-glia cross talk and neurotransmission (De 

Giorgio et al. 2012; Neunlist et al. 2013). Furthermore, EGCs exhibit immunological properties (Ruhl 2005; Neunlist et 

al. 2008; Da Silveira et al. 2011), participate in epithelial barrier functions (Steinkamp et al. 2003; Neunlist et al. 2007; 

Savidge et al. 2007a; Savidge et al. 2007b; Bouchard et al. 2008; Van Landeghem et al. 2011) and evoke 

neuroprotection (De Giorgio et al. 2012; Neunlist et al. 2014) (Fig. 1.3). Therefore, enteric glial cells have neurogenic 

potential and are capable of generating enteric neurons in response to injury (Joseph et al. 2011; Laranjeira et al. 2011).  

 

Fig. 1.3. EGCs are central regulators of gut homeostatic processes and might be actors of gut diseases. (A) Under 

physiological conditions, EGCs regulate various neuronal functions such as neuroprotection, neuromediator expression, 

or neuronal renewal via liberation of different mediators. In addition, EGCs are central regulators of intestinal epithelial 

barrier homeostasis via the liberation of functions specific gliomediators. Altogether, EGCs exert protective and 

reparative functions on the gut. (B) Under environmental stressors such as inflammatory mediators or bacterial 

stimulation, reactive enteric gliosis (similar to astrogliosis in the brain) can occur, which could participate in the 

development of intestinal inflammation but also concomitantly participate in protection/repair of IEB/neuronal lesions 
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induced by these processes. (C) EGC death (induced by specific virus or pathogens) or altered enteric gliosis could 

contribute to neuronal degeneration or barrier dysfunctions observed in some chronic intestinal or extraintestinal 

diseases. Modified from Neunlist et al. 2014 

 

Recent works also demonstrated that primary enteric glial cells respond to fast excitatory neurotransmitters such as 

Ach, 5-HT (5-hydroxytryptamine or serotonin) by changes in intracellular Ca
2+

, show that enteric glia are not only 

directly responsive to purinergic (ATP) (Gomes et al. 2009; Gulbransen and Sharkey 2009; Gulbransen et al. 2010) but 

also to serotonergic and cholinergic signaling mechanisms (Boesmans et al. 2013). 

 

Interstitial cells of Cajal 

Interstitial cells of Cajal (ICCs) are characterized by their spontaneous pacemaker-like activity. The first who 

identified ICCs histologically was Cajal in the 1890s (Cajal 1893). At the discovery he described these cells likely of 

neuronal origin. Only later, Sir Arthur Keit suggested that ICCs constituted a pacemaker system within the walls of the 

intestine (Thuneberg 1999). At morphological level, ICCs have small cell bodies and several elongated processes, 

showing a fibroblast-like shape. During years, the study of ICCs was improved by the discovery of a cellular marker, c-

Kit. Kit is a tyrosine kinase receptor for the stem cell factor and was demonstrated that ICCs express c-Kit (Furness 

2006). 

ICCs have been identified at the level of the submucosal layer (ICCSM), near the inner surface of the circular muscle 

(ICCDMP; deep muscular plexus), in the myenteric plexus (ICCMY), and within the circular muscle layer 

(intramuscular ICC, ICCIM) (Komuro 1999; Komuro et al. 1999). 

One of the main features of ICCs is the electrical coupling between these cells and smooth muscle cells. It has been 

demonstrated that ICCs form gap junctions to each other and with smooth muscle cells, thus providing structural 

evidence of these electrical connectivity (Dickens et al. 1999; Komuro et al. 1999; Hirst and Edwards 2001; Hirst et al. 

2002; Cousins et al. 2003). Patch clamping studies suggested that when smooth muscle cells were isolated, they were 

not able to spontaneous depolaryzations; on the contrary, when ICCs were isolated smooth muscle showed spontaneous 

depolarisation (Langton et al. 1989; Farrugia 1999). In fact, in many, but not all, regions of the GI tract, spontaneous 



30 
 

pacemaker activity generated by ICC conducts to smooth muscle cells and drives electrical and phasic contractions (Fig. 

1.4). Spontaneous pacemaker activity is termed slow waves; they occur in continuous rhythmic 

depolarization/repolarization cycles, and different regions of the bowel display distinct intrinsic slow wave frequencies 

(Sanders et al. 2014). Each small region of the intestine is electrically coupled to another, thus, regions of higher 

frequency drive those of lower frequency (Diamant and Bortoff 1969). As consequence, there is a conduction of slow 

waves from oral to anal direction.When slow waves are raised above threshold by nerve activity in the small intestine, 

they tend to push the contents in an anal direction, according to the frequency gradient along the small intestine. Slow 

waves only cause physiologically significant contractions in the small intestine when they are of sufficient amplitude to 

generate action potentials (Daniel et al. 1959; Bass et al. 1961; Hara et al. 1986). In general, slow waves without action 

potentials cause very small changes in tension, and the contractions of the muscle are graded according the number of 

action potentials. The small intestine requires the activity of enteric excitatory motor neurons for the slow waves to be 

brought to threshold for significant contraction (Quigley JP 1934; Reinke et al. 1967). On the contrary, gastric slow 

waves reach threshold to generate propulsive contractions; although they do not require neural activity, they are 

influenced by neural activity (Furness 2006). 

ICCs also respond to neural input, in fact they are also approached by nerve fiber varicosities and they exhibit 

receptors for neurotransmitters (Komuro et al. 1999), such as receptors for NO (Young et al. 1993)and tachykinins 

(Sternini et al. 1995; Portbury et al. 1996). Excitatory and inhibitory neural inputs have been shown to affect the 

amplitude of slow waves resulting in effects on the smooth muscle (Hennig et al. 2010). 

 



31 
 

 

Fig. 1.4 Active propagation of slow waves.  

1: The initiating step occurs by localized Ca2+ transients (elevated Ca2+ depicted by green color in all cells; arrow), 

initiating STICs in an ICC. 2: Depolarization caused by STICs activates Ca2+ entry and Ca2+-induced Ca2+ release raising 

Ca2+ throughout the ICC and activating whole cell slow wave current. 3: Depolarization causes active propagation of 

slow waves through the ICC network (horizontal black arrow shows direction of propagation), and slow wave currents 

are activated cell to cell, as the wavefront spreads. 4: As slow waves propagate through the ICC network, they conduct 

passively into electrically coupled smooth muscle cells (SMCs). Slow waves depolarize SMCs and activate L-type 

Ca2+ channels. Ca2+ entry (green) triggers SMC contraction. Spread of slow waves in the ICC network leads spread of 

contractions necessary for segmental and peristaltic contractions. Modified from Sanders et al 2014. 
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CHAPTER 2 

The development of the ENS 

The ENS of vertebrates develops from neural crest cells which migrate and colonize the embryonic gut. These 

complex processes require transcription factors, cell surface adhesion molecules, receptors, extracellular ligands, 

cytoskeletal rearrangements, and diverse intracellular signaling molecules (Avetisyan et al. 2015). 

2.1 Migration of the vagal progenitors and colonization of the embryonic gut 

Enteric precursors originate mainly at the vagal and, to a lesser extent, the sacral levels of the neural tube (Kuntz 

1910; Yntema and Hammond 1954; Le Douarin and Teillet 1973). Enteric neurons and glial cells originate from vagal 

neuronal crest progenitors emerging from the caudal hindbrain at level of somites 1-7; a small proportion of the foregut 

ENS also derives from migratory anterior trunk neural crest cells of the posterior vagal region (Burns and Le Douarin 

2001; Newgreen and Young 2002). After delamination from the neural tube, vagal ENS progenitors migrate 

ventrolaterally and then ventromedially until they reach the dorsal aorta (Burns 2005). As the vagal precursors enter the 

foregut (mouse embryonic day 9.5, 4th weeks gestation in humans), they are termed enteric neuralcrest-derived cells 

(ENCCs) (Heanue and Pachnis 2007). ENCCs migrate along the gut and begin the colonization of the foregut 

(esophagus, stomach and duodenum), the midgut (small intestine, caecum, ascending and rostral trasverse colon), and 

the hindgut (caudal trasverse colon, descending colon, sigmoid and rectum), following a rostro-caudal direction (Fig. 

2.1). The colonization of the gut by vagal progenitors is complete by E15 in mice or after the 7 weeks in humans (Fu et 

al. 2003). Sacral neural crest cells begin their migration along the caudal portion of embryonic gut at late stages, 

contributing to only a small proportion of enteric neurons and glial cells (Burns and Douarin 1998; Kapur 2000). 
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Fig. 2.1 ENS development.  

(A) Murine vagal neural crest cells destined for the ENS delaminate from the neural tube at E8.5. These ENCDCs are 

exposed to retinoic acid (RA) as they migrate by paraxial mesoderm on their way to the foregut at E9. (B) Once 

ENCDCs are in developing bowel, efficient caudal migration relies on vigorous ENCDC proliferation (top panel), as 

disorders that reduce ENCDC proliferation (bottom panel) commonly cause incomplete bowel colonization. (C) 

Efficient ENCDC migration is facilitated by contact between migrating cells. Chain migration of ENCDCs is quicker 

and more directed than migration of isolated ENCDCs. Disorders that alter ENCDC cell adhesion also delay bowel 

colonization and may cause HSCR. (D) After ENCDCs have populated the whole developing bowel (E13.5 in mice) in 

the region of the future myenteric plexus, a subset of ENCDCs migrates inward radially to form the submucosal plexus. 

Radial migration is regulated by the RET-GDNF signaling axis and by netrin/ DCC chemoattraction. Modified from 

Avetisyan et al. 2015. 

 

During the colonization and migration along the gut, vagal ENCCs at leading edge of the migratory stream (the 

‘wavefront’) appears as chains or strands of interconnected cells; some cells appears isolated in advance of the 

wavefront (Druckenbrod and Epstein 2005), while ENCC following the wavefront are randomly distributed (Fu et al. 
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2004; Wallace and Burns 2005). The proliferation of ENCCs is important during migration and colonization of the 

entire gut (Avetisyan et al. 2015). In fact, the proliferation occurring at the wavefront, provides progenitor cells to 

progressively colonize distal regions, while, behind the wavefront, ENCCs proliferation increase the number of cells to 

fully populate the intestine (Burns and Le Douarin 2001; Simkin et al. 2013). It seems that ENCCs proliferation drives 

the rostro-caudal bowel colonization thought a mechanism of competition for space and trophic factor (Landman et al. 

2007). 

Bowel colonization by ENCCs is enhanced by chain migration, a process whereby ENCCs preferentially contact each 

other while migrating (Young et al 2004; Druckenbrod et al 2005). 

The reason why contact among ENCCs enhances bowel colonization is not understood. One hypothesis is that 

ENCCs at the wavefront pull trailing ENCCs via cellular adhesion mechanisms; Another possibility to enhance 

migration is to create spaces through the alteration or the degradation of the extra-cellular matrix (Akbareian et al. 

2013).  

2.2 Genetic control of the colonisation and migration of ENCCs 

ENS development is driven by regulatory molecules. During the early migration, ENCCs start to express the tyrosine 

kinase receptor RET, in response to the local production of Retinoic Acid by the paraxial mesoderm. RET is the receptor 

for the glial cell derived neurotrophic factor (GDNF) (Avetisyan et al. 2015). Through GDNF and its co-receptor 

GRF 1, RET signaling supports ENCCs survival, proliferation, migration and differentiation. The actions of GDNF 

vary depending on the timing of its presentation to susceptible precursor cells and the location of its source (Gershon 

2010). GDNF attracts migrating vagal ENCCs, which do follow a GDNF gradient to and within the bowel (Young et al 

2001; Nataranjan et al 2002). In fact, when ENCCs first begin to colonize the gut, GDNF expression is most intense in 

the stomach, then moves caudally, reaching higher concentration in the caecum. Recent evidences showed that a 

population of ENCCs crosses from the midgut to the hindgut via the mesentery during a developmental time period in 

which these gut regions are transiently juxtaposed; also this migratory process requires GDNF signaling (Nishiyama et 

al. 2012). An additional factor would be necessary to enable vagal ENCCs migrating in the thrall of GDNF to escape 

what would otherwise be a cecal trap. Endothelin-3 (ETB) has been postulated to be such a factor (Barlow et al. 2003). 
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ETB signaling enhances Ret-driven ENCCs proliferation (Barlow et al. 2003; Nagy and Goldstein 2006)and inhibits 

ENCCs migration (Barlow et al. 2003). These mechanism might allow migrating ENCCs to escape the cecal trap and 

complete the colonization of the bowel (Barlow et al. 2003). Nevertheless, ETB/EDNRB (Endothelin receptor B) 

pathway inhibits the generation of enteric neurons (Wu et al. 1999) (Davenport and Maguire 2006), being responsible of 

the postponement of enteric neuronal differentiation, which involves withdrawal from the cell cycle and probably also 

cessation of migration (Wu et al. 1999). ETB/EDNRB functions with SOX10 to maintain ENCCs in an uncommitted 

state (Bondurand et al. 2006). ETB/EDNRB signaling might therefore be needed to prevent ENCCs from differentiating 

before they have completed their colonization of the gut (Fig. 2.2). 

 

Fig. 2.2 Sources, migratory routes and gene expression in neural crest cells contributing to the ENS.  

a) At approximately embryonic day (E) 8.5–9 in the mouse, vagal neural crest cells (red arrow) invade the anterior 

foregut and migrate in a rostral to caudal direction to colonize the entire foregut (FG), midgut (MG), caecum, and 

hindgut (HG) and give rise to the majority of the enteric nervous system (ENS, red dots). Colonization is complete by 

E15.5. The most caudal vagal neural crest cells, emanating from a region overlapping with the most anterior trunk neural 

crest cells (blue arrow), make a small contribution to the ENS of the oesophagus and the anterior stomach (blue dots). 
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Finally, sacral neural crest cells (yellow arrow) also make a small contribution, beginning their migration at 

approximately E13.5 and migrating in a caudal to rostral direction to colonize the colon (yellow dots). b) As vagal 

neural crest cells (red) emigrate from the neural tube, they express SRY-box 10 (SOX10) and endothelin receptor B 

(EDNRB). c) Upon entering the foregut at E9–9.5, enteric neural crest-derived cells (ENCCs) begin to express RET. 

Within the gut mesenchyme, the RET ligand glial cell-line-derived neurotrophic factor (GDNF) is expressed at high 

levels in the stomach (green) and the EDNRB ligand endothelin 3 (EDN3) is expressed in the midgut and hindgut 

(pink). d) As ENCCs migrate caudally at approximately E11, they encounter high levels of GDNF and EDN3 expression 

in the caecum (yellow). Cells behind the wavefront begin progressive differentiation towards neural and glial cell fates. 

Beginning at E11.5, GDNF and EDN3 are expressed in the distal hindgut (not shown). Modified from Heanue and 

Pachnis 2007. 

2.3 Differentiation of ENCCs  

A subset of ENCCs undergoes radial migration to form the submucosal plexus or into the pancreas to form ganglia 

near the Islet of Langerhans (Jiang et al. 2003; Lake and Heuckeroth 2013; Uesaka et al. 2013). This process is driven 

by the chemoattractant netrin and its receptor DCC (Deleted in colorectal cancer) (Jiang et al. 2003), secreted by fetal 

gut epithelium and pancreas. Cells that move to the SMP also have less RET signaling than do adjacent ENCCs (Uesaka 

et al. 2013). During radial migration, perimuscular gut mesenchyme downregulates GDNF and mesenchyme closer to 

the lumen upregulates GDNF (Uesaka et al. 2013). This change in GDNF localization provides additional stimulus for 

ENCCs with low RET activity to migrate inward. How cells modulate levels of RET and how neighboring cells 

communicate to ensure that only a subset of cells leave the myenteric plexus is unknown (Avetisyan et al. 2015). 

ENCCs differentiate into neuronal subtypes or enteric glia (Grundy et al. 2006), form ganglia, extend neurites, and 

establish and refine functional neural circuits to control the bowel (Young et al. 2003) (Fig. 2.3). Although Ret and ETB 

signaling are necessary for the migration/survival of adequate numbers of ENCCs in the gut, they are not sufficient to 

form an ENS. ENCCs must also differentiate into glia and neurons of appropriate phenotypes and form correct synaptic 

connections (Gershon 2010). Different transcription factors have a critical role in driving the ENCCs differentiation 

process. Among these factors, SOX10 and mammalian achaete-scute homologue 1 (MASH1) are relevant during the 

differentiation of ENCCs in enteric neurons (and subtypes) and glia. SOX-10 is a transcription factor expressed by 

neural crest progenitors before the migration, in ENCCs and in mature glial cells. It has a critical role in maintaining 
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ENCCs in an undifferentiated state (Bondurand et al. 2006). MASH-1 is a transcription factor involved in the 

development of transiently catecholaminergic cells. In particular, MASH-1 expression is required for the differentiation 

of serotonergic neurons (Blaugrund et al. 1996). 

Self-renewing progenitors express SOX10 and the stem marker p75. Upon commitment to neurons and glial cells, 

precursors upregulate RET and MASH1 expression. Neurogenic precursors cells downregulate SOX10, MASH1 and 

p75, maintain RET expression, and upregulate the neural marker TUJ1 and other neuronal subtype-specific markers. 

Gliogenic precursor cells maintain SOX10 and p75 expression, downregulate RET and MASH1, and upregulate glial 

markers such as S100 and GFAP (Lo and Anderson 1995; Young et al. 1999; Young et al. 2003; Heanue and Pachnis 

2007) (Fig. 2.3). 

 

Fig. 2.3 Differentiation of enteric neural stem cells follows a normal ENS developmental profile.  

Self-renewing progenitor cells express SOX10, p75, α4-integrin and nestin, but do not express RET or MASH1. Upon 

commitment to neurogenic and gliogenic precursor cells, RET and MASH1 expression is upregulated. Cells that 

differentiate into neurons downregulate SOX10, MASH1 and p75, maintain RET expression, and upregulate the neural 

marker TUJ1 and other neuronal subtype-specific markers. Alternatively, cells differentiating into glial cells maintain 

Sox10 and p75 expression, downregulate RET and MASH1, and upregulate glial markers such as S100 and GFAP 

Modified from Heanue and Pachnis 2007. 
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Enteric ganglia contain at least 20 distinct neuronal subtypes that differ in function, transmitters, neurite patterning, 

and electrophysiology (Furness 2000). One model for enteric neuron subtype lineage relationships include the 

transiently catecholaminergic (TC) cells. TC ENS precursors arise early in development (Pham et al. 1991)and 

absolutely require the transcription factor MASH1 (Blaugrund et al. 1996; Obermayr et al. 2013) (Fig. 2.4). 

Serotonergic neurons, but not other subtypes, also require MASH1 and were thought to arise exclusively from TC 

precursors. Fate-mapping studies of tyrosine hydroxylase–expressing cells now suggest that TC precursors give rise to 

only 30% of serotonergic neurons, but also can become calbindin-, calretinin-, and neurofilament- M–expressing 

neurons (Obermayr et al. 2013). Importantly, TC precursors give rise to less than 3% of myenteric neurons and to 13% 

of submucosal neurons in the mouse distal small intestine. It is unclear whether TC precursor–derived serotonergic 

neurons differ from non–TC derived serotonergic neurons (Fig. 2.4). The complexity of these data highlights how little 

we understand enteric neuron subtype specification (Avetisyan et al. 2015). Several transcription factors are essential for 

the differentiation of ENCCs in the different subtypes. In general, neuronal subtype specification appears to depend on a 

combination of intrinsic (genetic) and extrinsic factors (Avetisyan et al. 2015). 

Fig. 2.4 ENS precursor lineage relationships and neuronal subtype specification.  

Lineage relationships among enteric neuron subtypes remain poorly understood. This figure summarizes in vivo 

observations. Gain-of-function data are indicated in red. Loss-of-function data are indicated in blue. Most myenteric 

neurons arise from TH-negative precursors, as indicated by the relative thickness of arrows. Modified from Avetisyan et 

al.2015.
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CHAPTER 3 

The extrinsic innervation of the gastrointestinal tract. 

The neural controls of the GI functions also involves an extrinsic innervation, beyond the ENS. The ENS works in 

concert with the CNS through a bidirectional information flow. 

Connections between the gut and the central nervous system can be classified in three major divisions: vagal, spinal 

thoracolumbar and spinal lumbosacral, each including an afferent (sensory) and an efferent (motor) compartment 

(Furness 2012) (Fig 3.1). 

Sensory afferents are specialized: their nerve endings originate within the gut wall, but project centrally, following 

spinal and vagal nerve connections (Furness et al. 2014). There are, at present, 5 different functional classes of spinal 

afferent that respond to different sensory modalities (Brierley et al. 2004). The location of the nerve endings of spinal 

afferents includes intraganglionic laminar endings in the myenteric ganglia, mucosal endings, intramuscular endings, 

muscular-mucosal endings close to the muscularis mucosae, and vascular endings on the blood vessels feeding into the 

gut (Brookes et al. 2013). 

The efferent pathways contain pre-enteric neurons that end within enteric ganglia and control or modify the activities 

of enteric neurons. Pathways from the CNS also contain neurons that directly innervate a restricted number of 

gastrointestinal effectors, such as striated muscle of the esophagus (vagal innervation), sphincters (sympathetic 

innervation) and intrinsic blood vessels (also sympathetic innervation). The parasympathetic connections are 

predominantly cranio – sacral, while the thoracolumbar pathways contribute sympathetic input into the gut (Furness et al 

2014).  
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Fig. 3.1 The innervation of the gastrointestinal tract.  

The neural connections between the enteric nervous system (ENS), the central nervous system (CNS) and sympathetic 

ganglia, and neural connections between gastrointestinal organs are illustrated.Connections from the ENS to other 

organs and the CNS are at the left, and connections from the CNS are at the right. The small and large intestines (middle 

of figure) contain full ENS reflex circuits (motor neurons and interneurons in blue, sensory neurons in purple). Pathways 

from the gastrointestinal tract (left) project outwards, via intestinofugal neurons (red), to the CNS, sympathetic ganglia, 

gallbladder, pancreas and trachea. Some neurons in sympathetic prevertebral ganglia (PVG, green neurons) receive both 

CNS and ENS inputs. Sensory information goes both to the ENS, via intrinsic primary afferent (sensory) neurons 

(purple) and to the CNS via extrinsic primary afferent neurons (left of figure) that follow spinal and vagal nerve 

connections. Cervical afferents (CA) connect the esophagus to the cervical spinal cord. Pathways from the CNS reach 

the ENS and gastrointestinal effector tissues through vagal, sympathetic and pelvic pathways (right of figure). Vagal 

medullary and pelvic spinal outflows include pre-enteric neurons (ending in enteric ganglia) and most gut-projecting 

sympathetic neurons with cell bodies in PVG are also pre-enteric neurons. SCG sympathetic chain ganglia. Modifies 

from Furness et al 2014. 
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3.1 Vagal pathways 

Vagal afferent fibers exerted the role of mucosal mechanoceptors, chemoceptors and tension receptors in the 

esophagous, stomach and proximal small intestine; in liver and pancreas they act as sensory endings. The functions that 

are regulated by the vagal sensory innervation include appetite and satiety, esophageal propulsion, gastric volume, 

contractile activity and acid secretion, contraction of the gallbladder and secretion of pancreatic enzymes (Furness et al. 

2014). In the caudal small intestine and in the rostral colon, the vagal afferent innervation is less prominent. In fact, 

sensory information are detected by enteroendocrine cells, which release gut hormones. Once released, these molecules, 

such as Cholecystokinin (CCK) and 5-HT, act on vagal afferent endings and determine a mechanism of indirect 

chemoreception important to respond to luminal stimuli, including nutrients, noxious agents and to regulate satiety, 

appetite, esophageal and gastric activities (Raybould 2010; Furness et al. 2013). The vagal efferent pathways arise from 

the dorsal motor nucleus of the vagus nerve and the nucleus ambiguous. Most of these neurons are pre-enteric and they 

form synapses with myenteric neurons, while other neurons project directly to the striated muscle of the esophagus to 

control the esophageal propulsion, the lower esophageal sphincter (LES) relaxation and gastric accommodation, 

contractile activity and acid secretion (Furness et al. 2014). In the small intestine a sparse vagal innervation is present, 

but efferent fibers are predominantly connected to enteric neurons (Furness 2006). Vagal pre-enteric neurons innervate 

all intrinsic gallbladder neurons and they also have e strong influence on pancreatic neurons for the secretion of 

pancreatic enzymes   (Mawe 1998; Furness 2006). 

3.2 Thoracolumbar innervation 

The sympathetic innervation of the GI tract, derived from the thoracolumbar region of the spinal cord (T5-L2), forms 

neuronal centers in larger mammals such as the human or pig (Taubin et al. 1972). The thoracolumbar division includes 

afferent fibers arising from neuronal bodies located in the dorsal root ganglia. Axons from these neurons are almost all 

unmyelinated c-fibers (Furness et al. 2014). They are mostly CGRP and SP immunoreactive; also TRPV1channel 

(Transient receptor potential cation channel subfamily V member 1) is highly expressed, triggering visceral pain signals 

(Green and Dockray 1988; Tan et al. 2008). Sympathetic fibers innervate arterioles in gut wall, mucosa and submucosal 
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layer; many varicosities are found around myenteric ganglia and rare fibers are detected in muscle layers. Axons of 

spinal afferent neurons also provide collaterals forming synapses with cell bodies of postganglionic neurons. The 

sympathetic efferents from thoracolumbar division mainly supply MP and SMP ganglia, blood vessels and sphincter 

muscle (Taubin et al. 1972). The preganglionic sympathetic neurons have their cell bodies in the intermediolateral 

columns of the spinal cord (Furness et al. 2014). Postganglionic neurons of vasoconstrictor pathways are in sympathetic 

chain and pre-vertebral ganglia. There are three major pre-vertebral ganglia which are known as the coeliac ganglia, 

superior mesenteric and inferior mesenteric ganglia (Szurszewski 1994). The superior mesenteric ganglia supply the 

stomach, small intestines and the proximal colon, and the inferior mesenteric ganglia supplying the distal colon. 

Postganglionic projections from sympathetic chain and pre-vertebral ganglia both exert inhibitory effects: in the MP 

they inhibit excitatory neurons of the stomach and intestine and contract sphincters; in the SMP they inhibit 

secretomotor neurons. The resulting effect is of delayed transit of the luminal content along the intestine (Taubin et al. 

1972; Szurszewski 1994; Furness 2006). 

3.3 Lumbosacral innervation 

The more distal regions of the colon and rectum receive afferent and efferent innervation from the sacral nerve roots 

(S2-4) arising from the lumbosacral spinal cord (Furness et al. 2014). Afferent projections include pain fibers. Pelvic 

afferents carry information from low threshold mechanoceptors, in response to mild stroking of the mucosa in the colon 

and small intestine (Ness and Gebhart 1990; Larsson et al. 2003). On the contrary, in the rectum, mucosal 

mechanoceptors of the rectum are activated by stretch over a wide range, including into the level for pain; they also 

respond to wall distension (Zagorodnyuk et al. 2011). The efferent pelvic pathways supply innervation to enteric ganglia 

in distal colon and rectum (Brookes et al. 2009). Nerve cells of the spinal cord and pelvic ganglia project directly to the 

colon (Olsson et al. 2006). The motility control involves neurons of the defecation centers located in the lumbosacral 

spinal cord (L5-S3, depending on the species). Reflexes through this center can be initiated by rectal distention or 

irritation. In healthy condition, the propulsive reflexes of distal colon and rectum are under the control of central centers. 

Central centers are also located in the spinal defecation center, and they are responsible of the fecal continence 

(voluntary control)(Shimizu et al. 2006).When the defecation is appropriate, central commands cause co-ordinated 
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emptying of the colon, via ENS. Pelvic pathways also carry pathways that cause vasodilatation in colorectum (Hulten 

1969; Furness et al. 2014). 
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CHAPTER 4 

Neuronal control of gastrointestinal functions 

The ENS is responsible for the control of intestinal functions, such as motility, secretion, maintenance of epithelial 

barrier, regulation of the blood flux, interaction with the immune system. 

4.1 Motility  

The intestinal motility is an essential function in which different mechanisms act together, including the activity of 

the muscle layers, the neural control of both the intrinsic and extrinsic nervous systems, the pace-maker activity of the 

ICCs. The muscle layer of GI tract direct propulsion, mixing of contents, reservoir capacity and expulsion of pathogens. 

The role of the ENS is essential to coordinate the GI motility and it varies depending on the region (Furness 2012). 

Esophagus – Although the esophagus contain a well developed ENS, enteric neurons have little influence on the 

esophageal peristalsis. The propulsive activity of the striated muscles in the upper esophagus is controlled by motor 

neurons of the nucleus ambiguous, through nerve circuits starting from the medulla oblongata in the CNS (Jean 2001). 

About a third of the endplates in the esophagus receive a dual innervation, i.e. an excitatory vagal transmission and a 

presynaptic inhibition exerted by MP nitrergic neurons (Neuhuber et al. 1994; Kuramoto et al. 1996; Wu et al. 2003a). 

In the lower esophagus, the smooth muscle cells are innervated by enteric ganglia, which are directly controlled by pre-

enteric neuron of the dorsal motor nucleus of the vagus(Jean 2001). The lower esophageal sphincter (LES) is essential to 

allow passage of food from the last portion of the esophagus into the stomach. The relaxation of the LES is mainly 

controlled by vagus nerve through a descending inhibitory fibers; however a local reflex can be elicited in response to 

distension. The LES has also an important role in limiting reflux of the corrosive gastric contents and its contraction is 

mediated by vago-vagal reflex pathway that passes through the brain stem (Furness 2012; Furness et al 2014). 

Stomach – The fundic portion of the stomach is primarly associated with the gastric reservoir function, while the 

corpus-antrum is associated with the gastric mixing and antral propulsion (Kelly 1981).  
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The reservoir function is explained by a relaxation of the fundus (due to a volume increase), coupled with a 

contraction (due to a volume reduction). This activity is mainly dependent by vago- vagal reflexes. A vagally mediated 

gastro-gastric reflex relaxation is also elicited when distention is confined to the antrum(Abrahamsson and Jansson 

1969); in addition a small residual accommodation is due to an intrinsic reflex (Andrews et al. 1990). 

Gastric peristalsis is generated by slow waves. Neuronal circuits are not required to co-ordinate peristaltic 

movements. In fact, the direct excitation of the muscle by the pacemaker activity of the ICCs is sufficient to evoke 

gastric muscle contraction(Sanders et al. 2006). The neuronal control of the corpus and antrum is exerted through vago-

vagal reflexes and there is only a little evidence for a gastric intrinsic reflex (Andrews et al. 1980). 

Small intestine – The ability of small intestine to function when isolated from CNS was demonstrated over a century 

ago. The intestinal motility is under the control of the ENS and the nerve circuits for the control of intestinal motility are 

similar in many species, including humans. There are various pattern of movement: rapid orthograde propulsion of 

contents (peristalsis), mixing movements (segmentation), slow orthograde propulsion (the migrating myoelectric 

complex, MMC) and retropulsion (expulsion of noxious substances associated with vomiting)(Furness 2012). Although 

the structural organization of the circuits that detect the state of the intestine, integrate the information and direct the 

activities of motor neurons is known, the integrative circuitry through which one pattern is converted to another remains 

to be defined. Some of the signals triggering changes of the patterns of movements in the small intestine have been 

identified (Furness 2006) (Fig. 4.1). 

Mechanical and chemical stimuli are detected by enterocromaffin cells (ECs) in the mucosal layer and are able to 

induce the release of 5-HT. IPANs displaying specific serotonin receptors, are activated by 5-HT and synapse with 

ascending and descending inteneurons releasing ACh and SP. Ascending interneurons activate excitatory motor neurons, 

evoking a muscle contraction in the oral side of the tube, through the release of excitatory neurotransmitters (Ach and 

SP); on the contrary, descending interneurons activate inhibitory motor neurons responsible for a relaxation in the anal 

side, through the release of inhibitory neurotransmitters (nNOS, VIP and ATP). The coordination of the oral muscle 

contraction and anal relaxation make possible the propulsion of the content along the intestine (Furness 2006; Furness et 

al. 2014). 



46 
 

 

Fig. 4.1 Nerve circuits for control of motility in the small intestine. 

Networks of interconnected intrinsic sensory neurons (IPANs; red) detect mechanical distortion and lumenal chemistry. 

These synapse with descending (yellow) and ascending (green) interneurons, excitatory muscle motor neurons (blue) 

and inhibitory muscle motor neurons (purple) Modifies from Furness 2012. 

 

Large intestine - In the large intestine the pattern of movements are similar to the small intestine: orthograde 

propulsion, including both peristalsis and MMC, and segmentation. The ENS is responsible for the neuronal control of 

the motility, except for the distal colon and the rectum. In fact, in these tracts, the propulsive reflexes are regulated by 

central commands; when it is appropriate, neurons of the defecation center located in the lumbosacral spinal cord, 

trigger defecation, evoking coordinated emptying of the colon via ENS (Shimizu et al. 2006; Furness et al. 2014). 

4.2 Secretion 

The control of fluid movement between the intestinal lumen and the body fluid compartment is essential. The 

regulation of the fluid balance is exerted by ENS and sympathetic reflexes (Furness 2006) (Fig.4.2). One of the reasons 

for the large flux is the absorption from the lumen with nutrients, such as sugars and amino acids. Large volumes of 

fluids are absorbed during the absorption of glucose. In fact, glucose is absorbed through a cation-coupled transporter, 
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which is responsible for the internalization of a molecule of glucose, coupled with a molecule of sodium ion and counter 

ions, mostly chloride ions (Wright and Loo 2000). Lumenal glucose act via the glucose receptor expressed by the 

enteroendocrine cells, which release a gut hormone, namely glucagon like peptide 2 (GLP2). GLP2 diffuses through the 

lamina propria and activates enteric secretomotor neurons. Once activated, enteric reflexes are modulated to control 

whole body fluid balance and to return water and electrolyte to the lumen (Furness 2012). This control is exerted 

through blood volume and blood pressure detectors that change the activity of two sympathetic pathways, 

vasoconstrictor pathways and secretomotor inhibitory pathways (Sjovall et al. 1986). 

 Secretomotor enteric reflexes are mainly mediated by non cholinergic neurons through the release of VIP or 

Substance P and neuromodulator such as ATP and PACAP. Another important molecule is the 5-HT which act on 

IPANs determining the activation of cholinergic and VIPergic secretomotorneurons. Ach and VIP released, are able to 

activate specific receptors located on the epithelial cells, determining the secretion of chloride ions and fluids. 

Substances such as glutamate and PACAP are able to modulate the activity of secretomotor neurons, to increase or 

inhibit the secretion (Furness 2006). 
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Fig. 4.2 Neural control of transmucosal water and electrolyte movement in the small intestine. The final 

secretomotor neuron of reflexes that play an essential role in balancing local fluid fluxes and in whole body water and 

electrolyte balance is illustrated. Large volumes of fluid are absorbed from the lumen with nutrients, such as glucose. 

These fluids are returned through secretomotor reflexes. The absorption of nutrients with fluid activates enteric 

secretomotor reflex pathways that impinge on the secretomotor neurons. It is important that the balance of this fluid 

exchange is modulated by sympathetic vasoconstrictor and secretomotor inhibitory pathways. Activity in these 

sympathetic pathways, which inhibit secretion and reduce local blood flow, is determined by whole body fluid status, 

which includes sensory detection through blood volume detectors, baroreceptors and osmoreceptors. Modifies from 

Furness et al. 2014. 
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4.3 Barrier function 

The ENS plays a role in controlling the intestinal epithelial barrier (BEI) functions. In particular, ENS is involved in 

mechanisms involved in the maintenance of BEI integrity, such as the proliferation of epithelial cells and permeability.  

The gut barrier is a functional unit, organized as a multi-layer system, made up of two main components: a physical 

barrier surface, which prevents bacterial adhesion and regulates paracellular diffusion to the host tissues, and a deep 

functional barrier, that is able to discriminate between pathogens and commensal microorganisms, organizing the 

immune tolerance and the immune response to pathogens (Muller et al. 2005). The intestinal epithelium is organized in a 

single layer of 20 µm, and consists of 5 different cell types: enterocytes, endocrine cells, M cells, goblet cells and Paneth 

cells. The enterocytes are the most represented type (Moens and Veldhoen 2012). They act as a physical barrier, 

inhibiting the translocation of luminal contents in the inner tissues. They are connected by intercellular junctions, 

characterized by transmembrane proteins that interact with near cells and with intracellular proteins associated with the 

cytoskeleton. Together, these components form a complex and homogeneous network. In the intestinal epithelium there 

are two main types of junctions: the adherentes junctions (AJs) and the tight junctions (TJs). AJs are mainly formed of 

cadherins connected to the actin cytoskeleton via a family of catenins, while TJs are the results of interactions of 

occludin, claudins and JAM-A connected to the actin cytoskeleton via zonula occludens proteins and α-catenin (Yuan 

and Rigor 2010). The phosphorylation of myosin and contraction of the actinmyosin complex regulates the strength of 

such connections, and therefore the permeability of the epithelial barrier (Naydenov and Ivanov 2010). 

The permeability of the BEI is based on paracellular and transcellular components. It is known that the epithelial 

permeability is composed of two parts, the transcellular permeability and paracellular permeability (Kapus and Szaszi 

2006). The transcellular permeability is the movement of ions or molecules through apical and basolateral transporters 

or channels across the membrane, while the paracellular permeability is the diffusion of ions or molecules via the 

intercellular space, driven by the transepithelial electrochemical gradient. Paracellular permeability is featured as size 

and charge selectivity and the physiological function is various, to a great extent, dependent on the cell type (Hu et al. 

2013). 
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Neurotransmitters such as Ach, VIP and SP may have a role in controlling BEI permeability (Hallgren et al. 1998; 

Hardin et al. 1999; Hayden and Carey 2000). In fact, it was demonstrated that Ach release evoke the increase of 

transcellular permeability acting on muscarinic receptor 3, expressed by intestinal epithelial cells (Cameron and Perdue 

2007). 

In vitro studies showed that VIP containing neurons are able to induce an increase of the paracellular BEI 

permeability, modulating the expression of tight junctions proteins (Neunlist et al 2003). Therefore, the ENS is involved 

in mechanisms controlling the epithelial cells proliferation, both increasing (via GLP‐2 ) or inhibiting (via VIP) cells 

proliferation (Bjerknes and Cheng 2001; Toumi et al. 2003). There are other neuromediators, such as somatostatine and 

its analogues, which act inhibiting the epithelial cells proliferation, and ATP or ADP, which are able to promote the 

migration of intestinal epithelial cells (Jessen and Mirsky 1985; Thompson et al. 1993; Dignass et al. 1998). 

The permeability of the IEB has a central role in the regulation of fluid and nutrient intake as well as in the control of 

the passage of pathogens. The functions of the IEB are highly regulated by luminal as well as internal components, such 

as bacteria or immune cells, respectively. Recent evidence indicates that  enteric neurons and enteric glial cells are 

potent modulators of IEB functions, giving rise to the novel concept of a digestive 'neuronal–glial–epithelial unit' akin to 

the neuronal–glial–endothelial unit in the brain (Neunlist et al. 2013).  
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CHAPTER 5 

The Serotonergic system in the gut 

Serotonin, was isolated by Vittorio Erspamer in 1935 from the intestinal mucosal in frog, it was initially named 

enteramine. 5-HT represents one of the most important molecules in controlling different neural system, in the CNS and 

PNS (Gershon and Tack 2007). In fact, the serotonergic system is involved in motor activity, pain control and regulation 

of autonomic processes (descending circuitries) and also in the regulation of higher integrative function, such as mood, 

anxiety, stress, aggression, cognition, sleep, sexual behavior, and appetite behavior and appetite (ascending projections) 

(Olivier 2015).  

 

5.1 Serotonin synthesis and secretion 

5-HT belongs to the monoamine neurotransmitter family.Despite 5-HT is the most widely utilized neurotransmitter in 

the brain, only 5% of the whole bodies serotonin content is localized in CNS (Olivier 2015). The 95% of the 5-HT 

synthesis occurs in the gut, mostly in the ECs of the mucosal layer and in less amount in the neurons of the myenteric 

plexus of some species (Spiller 2008). 5-HT is synthetized from tryptophan. L-tryptophan is hydroxylated to 5-hydroxy-

L-tryptophan which is then catalyzed by the rate limiting enzyme tryptophan hydroxylase (TPH) to 5-HT (Walther et al. 

2003). TPH consists in two forms, TPH1 expressed by ECs and THP2 expressed by enteric neurons. Serotonergic 

enteric neurons represent only 2% of all enteric neurons (in guinea pig small intestine, (Furness 2006) and account for 

the 10% of the serotonin production, thus, the most of 5-HT synthesis occurs in ECs. Calcium influx into the ECs 

stimulates release of serotonin via activation of L-type Ca2+ channels. ECs produce and secrete far more serotonin than 

either CNS or ENS neurons to reach GI lumen and blood (Tamir et al. 1985). Overflowing serotonin from ECs, which is 

taken up and concentrated in platelet, is virtually the sole source of blood serotonin; platelets lack TPH. Similar to other 

neurotransmitters, 5-HT is constantly catabolised by monoamine oxidases (MAO) into its corresponding aldehyde. 

Aldehyde is then metabolised by aldehyde dehydrogenase to 5 hydroxyindolacetic acid in the liver and excreted via the 
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kidneys(Sikander et al. 2009). In the gut, a specialized serotonin reuptake transporters (SERT) mediate the reuptake into 

epithelial cells, platelets and other cells. SERT is able to binds 5-HT and internalize the molecule through the cellular 

membrane; it is present both in the mucosa and enteric nerves. As consequence, SERT represent a critical inactivating 

mechanism for the serotonin signal and in maintaining the 5-HT homeostasis (Wade et al. 1996) (Fig. 5.1). 

 

Fig. 5.1 5-HT signaling in the gut.  

a) The sequence of events involved in 5-HT signaling in the gut. At rest, 5-HT is synthesized by enterochromaffin cells. 

Upon mechanical or chemical stimulation, 5-HT is released into the interstitial space of the lamina propria and binds to 

receptors on nearby nerve fibers. 5-HT signaling is terminated during the recovery phase: 5-HT is transported by 

serotonin transporter into epithelial cells where it is enzymatically degraded, or it enters the blood stream where it is 

transported into platelets and stored for future use. Modified from Mawe and Hoffman 2013. 
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5.2 Serotonin actions in the gut 

Mechanical, chemical and nervous stimuli leads to the release of 5-HT in the lamina propria and in the gut lumen 

from ECs (Spiller 2008). The importance of the 5-HT in the GI physiology and pathophysiology is due to its double 

action as mucosal molecule (targeting the enterocytes) and as neurotransmitter (acting on nerves) (De Ponti 2004; 

Gershon 2012b). In fact, 5-HT has been defined as “polyfunctional signaling molecule” in the gut, exerting multiple 

actions both in developing and mature animals as a neurotransmitter, paracrine factor, endocrine hormone and growth 

factor (Gershon 2013). 5-HT initiates responses as diverse as nausea, vomiting, intestinal secretion and peristalsis. The 

5-HT secreted in the lamina propria acts on the mucosal projection of the extrinsic primary afferent neurons (extrinsic 

nerves, spinal and vagal sensory neurons) and on the intramural neurons of the ENS presenting specific receptors (Mawe 

and Hoffman 2013)(Fig 5.2).  

Fig. 5.2 Intrinsic and extrinsic afferent nerve fibers.  

Most of the intrinsic and extrinsic primary afferent neurons that innervate the gut extend processes into the lamina 

propria of the mucosal layer where they can become exposed to 5-HT released by enterochromaffin cells. These include 

vagal afferent fibers arising from the nodose ganglion, spinal afferent fibers arising from dorsal root ganglia, and 
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intrinsic AH neurons located in submucosal and myenteric ganglia. There is also a class of mechanosensitive S neurons 

in the myenteric ganglia that do not project to the mucosal layer. Modified from Mawe and Hoffman 2013. 

 

In particular, 5-HT can activate submucosal and myenteric IPANs. Once activated by the 5-HT, the extrinsic 

component transmits nausea and discomfort (and pain) to the CNS, while the IPANs initiate peristaltic and secretory 

reflexes. The 5-HT secreted by MP neurons acts directly on the GI motility pattern, regulating the fast and slow 

neurotransmission (Gershon and Tack 2007; Mawe and Hoffman 2013). 

5.3 Serotonin receptors 

The variety of serotonin functions in the body is determined by the activation of different pathways, depending on the 

receptors involved. In fact, there are 14 classes of serotonin receptors (5-HT1A, 1B, 1D, 1E, 1F, 2C, 2B, 2C, 3, 4, 5A, 

5B, 6, and 7), located in presynaptic and postsynaptic neurons (Millan et al. 2008) and specifically distributed in 

different organs. All the classes of 5-HT receptors are G protein-couple receptors, except for 5-HT3, which is a ligand-

gated cation-permeable ion channel (Millan et al. 2008).  

Actually, in the scenario of GI disorders, some the most interesting targets for pharmacological intervention are 5-HT 

receptors that are known to affect gut motor function, in particular they are those belonging to the 5-HT1, 5-HT2, 5-HT3, 

5-HT4, and 5-HT7 subtypes (Fig. 5.3) (De Ponti 2004).  

Neuronal 5-HT receptors may inhibit or enhance transmitter release and include the 5-HT1A (inhibitory), 5-HT3, and 

5-HT4 (both excitatory) subtypes. Smooth muscle 5-HT receptors may contract or relax effector cells and belong to the 

5-HT2A (mediating contraction), 5-HT4, and 5-HT7 subtypes (both mediating relaxation). In the human small bowel, 5-

HT2A receptors mediating contraction and 5-HT4 receptors mediating relaxation coexist on smooth muscle cells (De 

Ponti 2004).  
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Fig.5.3 Distribution of 5-HT receptors on enteric neurons, extrinsic nerve fibers and other excitable cells in the 

gut.  

The importance and complexity of 5-HT signaling in gut function, and its appeal as a target for pharmacotherapies, is 

reflected by the distribution of 5-HT receptors in the wall of the gut. Serotonin receptors are located on epithelial cells, 

including enterochromaffin cells, goblet cells and enterocytes. They are also distributed throughout the neuronal reflex 

circuitry, where they are located presynaptically and/or postsynaptically on all types of enteric neurons, and on extrinsic 

afferent nerve fibers. Furthermore, 5-HT receptors are expressed by interstitial cells of Cajal and smooth muscle cells. 

At least six subtypes of 5-HT receptors are expressed in the wall of the gut, and they can exert excitatory and/or 

inhibitory influences depending on their location and on the target cell type. A) Intrinsic circuits for epithelial secretion 

and vasodilation. A given motor neuron might serve both secretory and vasodilatory functions, but it promotes secretion 

via actions on epithelial cells and vasodilation via relaxation of vascular smooth muscle. B) Intrinsic circuit for 

propulsive motility. C) Extrinsic vagal and spinal afferent fibers. The + and  – symbols indicate excitatory and inhibitory 

actions, respectively. Modified from Mawe and Hoffman 2013. 

 

Peristaltic and secretory reflexes are initiated by submucosal IPANs, which are stimulated by 5-HT acting at 5-

HT(1P) receptors. Sensory signaling to the CNS is predominantly 5-HT3R mediated, although serotonergic transmission 

within the enteric nervous system and the activation of myenteric IPANs are also 5-HT3 mediated. 5-HT acting at 5-

HT4R determine a neurotransmission in prokinetic pathways, through the enhancement of Ach and CGRP release by 
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submucosal IPANs. The increase of Ach and CGRP enhances neurotransmission, in turn increasing the spread of 

excitation in the bowel following mucosal stimulation, and thus the tendency of the gut to manifest propulsive peristaltic 

and secretory reflexes (Gershon 2004). 

In the past decades, the viability of 5-HT3 and 5-HT4 receptor antagonists and agonists, has determined an explosion 

of studies aimed to investigate the possibility of a pharmacological approach for different GI disorders (De Ponti 2004; 

Gershon and Tack 2007; Spiller 2008; Mawe and Hoffman 2013). 

The current knowledge on the serotonin system in the GI lead to conclude that the modulation of the bioavailability 

of gut-derived serotonin and of the serotonin pathway, represent a very significant and promising way of treating 

patients with GI dysmotility conditions.  
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CHAPTER 6 

Enteric neuropathies 

Any damage, noxae or dysfunction involving the main effector or the control system (mainly the ENS) of the gut 

physiology may be responsible for the onset of a wide array of pathological conditions involving some lethal or 

seriously disabling manifestations (Schemann and Grundy 1999; Knowles et al. 2013). Human pathologies that involve 

the ENS include dysmotilities (e.g., achalasia and chronic intestinal pseudo-obstruction), some of which are potentially 

fatal (e.g., infantile hypertrophic pyloric stenosis, Hirschsprung’s disease) (De Giorgio and Camilleri 2004).Serious 

gastrointestinal GI pathologies due to ENS malfunction are reported in humans as well as in domestic mammals, e.g., 

abomasal displacement in cattle (Geishauser et al. 1998) and lethal white foal syndrome in horses (Metallinos et al. 

1998), an equine version of Hirschsprung disease; damage of autonomic ganglia has been reported in dysautonomia of 

dogs, cats (Key-Gaskell syndrome) (Nash 1987), and horses (grass sickness) (Cottrell et al. 1999) which is associated 

with severe gastrointestinal malfunctions. 

Pathological conditions involving the ENS are defined as “enteric neuropathies”. Several GI disorders can result from 

enteric neuropathies, including both primary and secondary forms. These neuropathies have been grouped as congenital 

or developmental neuropathies; sporadic and acquired neuropathies; neuropathies associated with other disease states 

and iatrogenic or drug­induced neuropathies (Furness 2012) (Table 6.1).  
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Table 6.1 A classification of enteric neuropathies. Modified from Furness 2012. 

Obviously, the most of the current knowledge on enteric neuropathies is related to human medicine and experimental 

animal models. 

6.1 Histopathological aspects 

The current literature shows the existence of many morphological and molecular features in enteric neuropathies 

resulting in gut dysmotility, in the absence of systemic or easily identified neuromuscular disorders. A combination of 

molecular derangements may contribute to the degenerative process that leads to enteric neuronal loss. Among these, 

there are disorders of intracellular Ca
2+

 signaling, mitochondrial dysfunction, oxidative stress and alterations in signal 
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transduction pathways. Enteric pathological features of GI neuromuscular diseases include aganglionosis, neuronal 

apoptosis and inclusions, neural degeneration, intestinal neuronal dysplasia, hyperplasia and ganglioneuromas, 

mitochondrial dysfunction, inflammatory neuropathies, neurotransmitter disorders, interstitial cell pathology (De 

Giorgio and Camilleri 2004). 

Aganglionosis is characterized by the complete absence of ganglion cells in the submucosal and myenteric plexuses; 

it occurs most frequently in the congenital form, such as Hirschsprung’s disease (Kapur 1999). 

Apoptosis of myenteric neurones has been described in diseases associated with myenteric ganglionitis and are often 

associated to pseudo obstruction (De Giorgio and Camilleri 2004); a distinct process is characterized by apoptotic 

bodies, which are features of programmed cell death (Nijhawan et al. 2000).  

Neuronal inclusions are composed of proteinaceous material and electron microscopy documented membrane-

bounded filaments. Similar intranuclear inclusions (i.e. Lewy bodies and Lewy neuritis) occur in neurones of patients 

with central nervous system diseases (Patel et al. 1985) such as Parkinson disease (PD)(Wakabayashi et al. 1988) . Lewy 

inclusions have also been observed in myenteric and submucosal neurones in parkinsonian patients and seems to be 

associated to GI dysfunctions (Fasano et al. 2015). 

Neural degeneration is associated with a reduction in the total number of neurones in chronic intestinal pseudo-

obstruction; remaining neurons may result enlarged, with thick, clubbed processes; some ganglia show an increase in the 

number of glial cells and hypertrophy of the muscularis propria. 

Intestinal neuronal dysplasia is classified in type A and B. Type A  intestinal neuronal dysplasia is extremely rare, 

while type B is more common. Type A is characterized by hypoplasia or immaturity of the extrinsic sympathetic nerves 

supplying the gut. Type B is characterized with a wide spectrum of changes in the ENS, including submucosal 

hyperganglionosis, increased numbers of cells per ganglion (giant ganglia), associated with ectopic neurones localized 

throughout the lamina propria. 

Neuronal hyperplasia and ganglioneuromas consists in an increased number and nodular proliferations of ganglion 

cells (neurons and glia), associated with abundant nerve fibres, occurring in the  myenteric plexus (Shekitka and Sobin 
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1994). This histopathological appearance is almost pathognomonic of multiple endocrine neoplasia type 2B (MEN2B) 

(Carney et al. 1976), a heritable disorder associated with tumours of the neuroendocrine system (Moline and Eng 2011). 

Mitochondrial dysfunctions resulting from structural, biochemical or genetic derangements are known to be 

associated to neuronal death both in CNS and ENS. Mitochondrial impairment associated with neural cell death may 

involve complex mechanisms, including disorders of intracellular Ca2+ signaling, oxidative stress, and alterations in 

mitochondrial pathway(Moudy et al. 1995; De Giorgio and Camilleri 2004). These mechanisms may result in necrotic 

and apoptotic enteric neuronal loss, as documented in severe constipation in elderly and neurogenic type of chronic 

idiopathic intestinal pseudo-obstruction. Mitochondrial disorders may also determine syndromic diseases with severe GI 

dysfunction, such as the Mitochondrial neurogastrointestinal encephalopathy (MNGIE)(Mueller et al. 1999).  

Inflammatory neuropathies  are determined by inflammatory or immunological insult to the ENS GI , resulting in 

enteric ganglionitis and axonitis (Krishnamurthy et al. 1986). Cellular mechanisms in myenteric ganglionitis involve 

inflammatory infiltrate surrounding ganglion cell bodies, including cytotossic T lymphocytes (in achalasia and chronic 

intestinal pseudo-obstruction), B-lymphocytes producing antibodies against antigens expressed by myenteric neurons, 

and also osinophils and neutrophils (De Giorgio and Camilleri 2004). 

Neurotransmitter disorders are described in dysfunction of sphincteric regions i.e. achalasia and congenital 

hypertrophic pyloric stenosis, in which loss of intrinsic inhibitory neurones has been documented. Many studies also 

described different neurotransmitter alterations in patients affected by  idiopathic slow transit constipation. A variety of 

genetic defects as well as inflammatory or degenerative processes may be responsible for neurotransmitters imbalance, 

and as consequence, for GI dysmotilities (De Giorgio and Camilleri 2004). 

Interstitial cell pathology is well documented in various dysmotilities, including achalasia and hypertrophic pyloric 

stenosis, idiopathic or diabetes-related gastroparesis, Hirschsprung’s disease, chronic intestinal pseudo-obstruction, slow 

transit constipation and Chagasic and idiopathic megacolon. Different pathological features related to ICCs are 

described: reduced number, loss of processes and damage to the intracellular cytoskeleton and organelles, as well as 

alteration during the development or maturation of ICCs (De Giorgio and Camilleri 2004; Knowles et al. 2013). 
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6.2 Primary neuropathies 

Enteric neuropathies are classified as “primary” in the case that the ENS is the major target of the disease process. 

Most are termed as ‘idiopathic’ to denote the poor aetiological understanding of these conditions. Among primary 

neuropathies are listed Hirschsprung’s disease, idiopathic achalasia, idiopathic gastroparesis, chronic intestinal pseudo-

obstruction  (Knowles et al. 2013) . 

Hirschsprung’s disease is characterized by an absence of enteric neurons (aganglionosis) in terminal regions of the 

gut, leading to tonic contraction of the affected segment, intestinal obstruction and massive distension of the proximal 

bowel (megacolon). In humans, Hirschsprung’s disease occurs in 1:5,000 live births and can be either familial or 

sporadic. Mutations occurring in genes involved in the development, colonization and differentiation of enteric neurons 

are responsible for genetic forms. On the contrary, sporadic forms seems to have multifactorial genesis (Di Nardo et al. 

2008; Panza et al. 2012). 

Idiopathic achalasia is characterized by hypoganglionosis or aganglionosis in the LES region, with or without 

inflammatory and degenerative features (Goldblum et al. 1994). Evidences demonstrated specific inhibitory neuronal 

loss, including nitrergic motorneurons, in LES and gastric fundus (Gockel et al. 2008; Knowles et al. 2013). 

Idiopathic gastroparesis, seems to be due to generic neuronal loss, decreased nNOS expression and in the most of the 

cases to ICCs reduction or abnormalities. These mechanisms are responsible for gastric dismotility (Knowles et al. 

2013). 

Chronic intestinal pseudo-obstruction (CIPO) indicate a condition in which affected subjects show failure of the 

propulsive forces of intestinal peristalsis to overcome the natural resistances to flow. Myogenic and neurogenic altered 

mechanisms contribute to CIPO (De Giorgio et al. 2011). Concerning CIPO-related neuropaty, there are evidences of 

neuronal degeneration and  loss, with or without ganglionitis due to lymphocytic and eosinophilic infiltrate (De Giorgio 

and Camilleri 2004). 

 



62 
 

 

6.3 Secondary neuropathies 

Secondary neuropathies are defined as pathological conditions in which the ENS is not the prymary target of the 

disease. They can be classified as degenerative neuropathies and inflammatory neuropathies, based on the mechanisms 

underlying the enteric neuronal pathology. Degenerative neuropathies include diabetes mellitus (DM) and PD, while 

inflammatory neuropathies include paraneoplastic enteric neuropathy and Chagas disease (in humans) (Knowles et al. 

2013). 

Diabetes mellitus (DM) can affect all GI tracts. In fact, symptoms such as abdominal pain, heartburn, dysphagia, post 

prandial fullness, nausea, diarrhoea and constipation are common in diabetic patients(Bytzer et al. 2001). GI 

dysfunctions during DM seems to be due to ICCs abnormalities, neuronal degeneration and loss and specific enteric 

subclasses impairment, including mostly inhibitory and less excitatory motor neurons(Chandrasekharan and Srinivasan 

2007). Concerning diabetic gastroparesis, several key cell types are affected by diabetes. These changes include 

abnormalities in the extrinsic innervation to the stomach, loss of key neurotransmitters at the level of the enteric nervous 

system, smooth muscle abnormalities, loss of interstitial cells of Cajal, and changes in the macrophage population 

resident in the muscle wall. Although oxidative stress may play an important role in the genesis of GI alteration in DM,  

mechanisms leading to neuropathy and loss of ICC  remains to be determined (Farrugia 2015). 

Parkinson disease has been associated with intra neuronal accumulation of hyperphosphorylated α-synuclein (a 

typical component of classic Lewy bodies and neurites), in the ENS, with or without neuronal degeneration and loss in 

different GI tracts (Fasano et al. 2015). Parkinsonian patients complains a wide arrays of GI symptoms, including 

dysphagia, gastroparesis and severe constipation (Pfeiffer 2003). To date, the association between the presence of intra 

neuronal inclusions and GI dysfunction remains to be demonstrated . 

Paraneoplastic enteric neuropathy is characterized by gastroparesis, intestinal pseudo-obstruction, intractable 

constipation, colonic inertia or megacolon (Lee et al. 2001). Anti-neuronal antibodies directed against the RNA-binding 

protein family Hu (anti-Hu) are the most common autoantibody expressed in affected patients and seems to elicit 
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myenteric neuronal apoptosis(Lucchinetti et al. 1998). In addition, ICCs alterations and ganglionitis were also reported 

in affected patients (Pardi et al. 2002). 

Chagas disease is caused by infection with the protozoan Trypanosoma cruzi. Affected patients showed enteric 

neuropathy (myenteric neuronal loss) and in 10% of cases associated with gastrointestinal dilation, preferably in 

oesophagus and colon. In particular, enteric neuropathy in is responsible for the failure of colorectal propulsion and 

megacolon development in adults (Knowles et al. 2013).  This neuropathy has classically been reported as being one of 

generalized neuronal loss with inflammation although selective loss and survival of neuronal subpopulations were 

reported (Da Silveira et al. 2009). Functional autoantibodies that modify muscarinic receptor functions have been 

detected in a notable proportion of patients with chagasic heart and gut disease and might include direct damage from 

autoimmunity(Goin et al. 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2  Enteric neuropathies with estimated prevalence data in humans. Modified from Knowles et al. 2013. 

Abbreviations: CIPO, chronic intestinal pseudo‑ obstruction; MEN‑ 2B, multiple endocrine neoplasia type 2B; NF1, 

neurofibromatosis type 1.  
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CHAPTER 7 

Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter 

 

Modified from 

“Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter” 

R. Chiocchetti, F. Giancola, M. Mazzoni, C. Sorteni, N. Romagnoli, M. Pietra 

Histochemistry and cell biology. 2015; 143(6):625-35. 
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Introduction 

The LES is a specialised, thickened part of the circular smooth muscle located at the junction between the esophagus 

and the stomach (Boeckxstaens 2005). It shows a high resting tone (Christensen 1973) mediated by myogenic and 

neurogenic mechanisms, and undergoes strong inhibitory innervation during swallowing or belching. The origin of basal 

LES tone is primarily myogenic, although the cellular mechanisms that impart and control it are multilayered, and the 

underlying pathways not fully understood. Myogenic LES tone depends on smooth muscle properties (Farre and Sifrim 

2008); in fact, myocytes have a less negative resting membrane potential, which favors the occurrence of spontaneous 

spike-like action potentials that cause Ca
2+

 influx in the muscle during the resting state (Kwiatek and Kahrilas 2012). 

The esophageal tunica muscularis shows different conformations, based on the domestic mammalian species (Worl 

and Neuhuber 2005); in the ruminant and dog, the musculature is totally striated whereas in the pig, cat, and horse 

(Barone 1981; Delmann 2000), the caudal portion of the esophagus and LES is composed of smooth muscle cells. 

Peristalsis in the esophageal striated muscle is controlled by the nucleus ambiguous; peristalsis in the smooth muscle 

is controlled by the vagal dorsal motor nucleus and the MP (Mittal and Bhalla 2004). Nevertheless, in several 

mammalian species, including humans, striated muscle fibers are co-innervated by vagal and ENS neurons (Worl and 

Neuhuber 2005; Hempfling et al. 2009). 

The LES is controlled by the parasympathetic, sympathetic and ENS (Niel et al. 1980; Clerc 1983; Collman et al. 

1992; Collman et al. 1993; Brookes et al. 1996; Yuan et al. 1998; Kwiatek and Kahrilas 2012). The vagal preganglionic 

fibers innervate LES smooth muscle via MP neurons (Goyal and Chaudhury 2008), providing both inhibitory and 

excitatory innervation to the LES (Goyal and Rattan 1975; Furness 2012). 

The equine LES is organized as a “one way” structure, enabling only the oral-anal progression of food; its resting 

tone increases by about 6-8 fold after deglutition (Stick et al. 1983; Clark et al. 1987) and may prevent vomiting. It 

interesting to note that, in this species, vomiting is an undesirable event because of the anatomical conformation of 
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equine soft palate. In fact, it is so elongated as to possibly hamper  the passage of the rejected bolus to the mouth, 

deflecting it into the nasal cavities, increasing the probability of  aspiration pneumonia. 

Although horses have a very delicate digestive system, still few exhaustive investigations have been carried out on 

equine ENS (Pearson 1994; Freytag et al. 2008; Chiocchetti et al. 2009a; Chiocchetti et al. 2009b; Russo et al. 2010) and 

its disorders. Among horse neurological disorders affecting the ENS (for instance equine dysautonomia, 

megaesophagus, and overo lethal white syndrome), satisfactory investigations have been published only on the grass 

sickness (equine dysautonomia) (Cottrell et al. 1999; Pirie et al. 2014), although no data are related, to the best of our 

knowledge, to the modification of the esophageal ENS. To date, the literature on the alteration of the esophageal ENS 

during achalasia (and the related megaesophagus) is scarce (Komine et al. 2013). Likewise, concerning the overo lethal 

white syndrome, a congenital disorder of neural crest cell migration considered the equine variant of human 

Hirschsprung disease, few papers are available on the absence of intestinal neurons (Hultgren 1982; Muniz et al. 2013); 

however, no indications are present about the esophageal intramural neuronal subclass composition.  

With the aim to study the intramural innervation involved in the control of the horse LES, we characterized 

immunohistochemically the inhibitory and excitatory enteric neurons of the caudal tract of the esophagus and the 

proximal portion of the gastric fundus. Inhibitory motor neurons may be immunohistochemically identified by the 

presence of the nNOS, the neuronal form of the enzyme synthesizing the nitric oxide, the primary neurotransmitter 

utilized by ENS neurons (also in the esophagus; (Conklin 1998; Farre and Sifrim 2008) during smooth muscle 

relaxation. Excitatory motor neurons utilize acetylcholine as main neurotransmitter and these neurons may be 

immunohistochemically identified by the presence of the synthesizing ChAT. Enteric neurons immunoreactive for 

nNOS and ChAT represent the two largest neuronal subpopulations occurring in the ENS (Furness 2006), also in the 

horse (Freytag et al. 2008; Chiocchetti et al. 2009b). 

Materials and methods 

Animal and tissue collections – Tissues were collected from six young Spanish Warmblood horses (1.5 years) 

slaughtered at the public slaughterhouse, and from three Italian standardbred trotter horses (two 1-week old foals and 
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one 19-years old horse) euthanized because of cardiac (foals) and musculoskeletal problem. None had gastrointestinal 

disorders. 

En block specimens consisting of the caudal third of the esophagus (about 40 cm) and the stomach were immediately 

removed and then longitudinally cut open, flushed out with phosphate-buffered saline (PBS: 0.15M NaCl in 0.01M 

sodium phosphate buffer, pH 7.2), gently pinned on wood board (thickness 5 mm) and fixed in 2% paraformaldehyde 

containing 0.2% picric acid in 0.1 M sodium phosphate buffer (pH 7.0) at 4°C for 48 hours. After rinsing in PBS, the 

tissues were stored in PBS containing 30% sucrose and 0.1% sodium azide (pH 7.4) at +4°C. The tissue was then 

separated taking a caudal portion of the esophagus (20 cm) and a portion (10 cm) of non-glandular stomach (fundus); the 

site of maximum muscular thickness (about 2 cm) within the gastro-esophageal junction served as a landmark for the 

determination of the measurement site. Pieces of tissues (2 x 1 cm) were subsequently cut, transferred to a mixture of 

PBS-sucrose-azide and OCT compound (Tissue Tek
®
, Sakura Finetek Europe, Alphen aan den Rijn, The Netherlands) at 

a ratio of 1:1 (overnight) and then embedded in 100% OCT. The tissues were frozen, mounted in Tissue Tek®
 
mounting 

medium and sectioned at 14-16 μm on a cryostat. The sections were collected on gelatin-coated slides. 

Immunohistochemistry - Cryosections were washed in PBS and processed for immunostaining. To block non-specific 

bindings, the sections were incubated in a solution containing 10% normal goat serum (Colorado Serum Co., Denver, 

Colorado, USA) and 0.5% Triton X-100 (Merck, Darmstadt, Germany) in PBS for 1h at RT. Cryosections were then 

incubated overnight in a humid chamber at RT in a cocktail of primary antibodies (Table 7.1) diluted in 1.8% NaCl in 

0.01M PBS containing 0.1% sodium azide. Enteric neurons were identified with the anti-human neuronal protein 

(HuC/HuD) antiserum or the green fluorescent Nissl stain solution (NeuroTrace
®
, Molecular Probes, Eugene, OR, 

USA). 

The specificity of the employed antibodies has already been tested in the horse by Western blot (Russo et al. 2010). 

After washing in PBS (3x10 min), the tissues were incubated for 1 h at RT in a humid chamber with the secondary 

antibodies (Table 7.2) diluted in PBS. The cryosections were then washed in PBS (3x10 min) and mounted in buffered 

glycerol at pH 8.6. The specificity of the secondary antibodies was tested as described in a previous work (Russo et al. 

2010). 
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Analysis of the sections - The sections were observed with a Zeiss Axioplan (Carl Zeiss, Oberkochen, Germany) 

microscope equipped with the appropriate filter cubes for immunofluorescence. The images were recorded with a Zeiss 

Axiocam MRm (Carl Zeiss) and Axiovision software (Carl Zeiss). Contrast and brightness were slightly adjusted with 

Adobe Photoshop CS (Adobe Systems Software Ireland, Dublin, Ireland), whereas the figure panels were prepared using 

Corel Draw (Mountain View, Ottawa, Canada). 

For co-localization analysis, the cells were first located by the presence of a fluorophore which labelled one antigen; 

thereafter the filter was switched to a different color fluorophore to determine whether the neurons were also labelled for 

a second antigen. In this way, the proportions of cholinergic and nitrergic neurons were determined, as were the 

percentages of co-localizations between these two markers. Data obtained are reported as mean±standard deviation. 

Results 

Histological esophageal features 

At 18 cm from the LES, the esophageal tunica muscularis was composed of muscular striated fibers intermingled 

with few smooth muscle cells. Approaching the caudal portion of the esophagus, the striated elements disappeared 

progressively, although they were also observed at 8 cm from the cardias (Fig. 7.1 a-b). The LES was entirely composed 

of smooth muscle cells. The single layered mm was continuous and thick. Large glands were observed in the submucosa 

(Fig. 7.1 c). 

Esophageal ENS 

In large ganglia, the myenteric neurons were often eccentrically distributed, with cell bodies showing a crown-like 

distribution (Fig. 7.2 a-c). 

The SMP appeared double-layered; the inner layer (ISMP) was composed of clusters of small neurons occupying an 

intermediate position between the mm and the CML. The outer layer (OSMP) was represented by small groups or, more 

often, single rows of larger neurons located very close or attached to the inner portion of the CML (Fig. 7.2 d-f). 

Occasionally small groups of neurons appeared “embedded” in the inner portion of the CML. 
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Nitrergic neurons – In the MP, nNOS-IR neurons represented 72±9% of the total neuronal myenteric population 

(530/727 cells; n=7). These neurons were large and showed irregular outline and short lamellar processes, resembling 

Dogiel type I neurons (Fig. 7.2 a-c). nNOS-IR fibers were mainly seen in the CML but were well represented also in the 

LML. Large bundles of NOS-IR fibers ran longitudinally in the space between the LML and CML. 

In the SMP, a large percentage of Dogiel type I neurons expressed nNOS-IR (69±8%, 118/173 cells, n=4); these 

neurons were observed in both layers of the SMP (Fig. 7.2 g-i). In the submucosa as well, large nNOS-IR bundles of 

fibers were seen in continuity with the CML. Also noteworthy is the abundance of nNOS-IR thin fibers (with their long 

axis parallel to the LML) running within the mm (Fig. 7.2 g-i).  

Cholinergic neurons - In the MP there were 29±14% of faintly labelled cholinergic neurons (149/434 cells, n=4), 

whereas in the SMP the percentage of these neurons was greater (65±24%, 64/97 cells, n=4) and their labeling stronger 

(Fig. 7.3 a-c).  

Co-localizations of nNOS- and ChAT-IR - In the MP and SMP, the nNOS-IR neurons co-expressing ChAT-IR were 

15±11% (66/381 cells, n=3) and 30±17% (34/106 cells, n=3), respectively, whereas cholinergic neurons co-expressing 

nNOS-IR were 34±24% (65/150 cells, n=3) and 44±23% (42/90 cells, n=3). Myenteric neurons showing strong ChAT-

IR were often nNOS-negative, whereas those showing moderate ChAT-IR were also nitrergic (Fig. 7.3 d-f). In the SMP 

instead, ChAT- and nNOS-IR neurons showed the same brilliant fluorescence (Fig. 7.3 g-i). 

Fundic ENS  

The myenteric ganglia were, in general, smaller than the esophageal ones and also in the stomach most of the large 

neurons observed showed Dogiel type I morphology. The MP neurons were also scattered between fascicles of smooth 

muscle and connective tissue. In the submucosa, few small ganglia, composed of elongated small neurons, were visible. 

The SMP was monolayered. 

Nitrergic neurons – As many as 57±17% (395/813 cells, n=6) of MP neurons showed nNOS-IR (Fig. 7.4 a-c), and 

the few SMP ganglia contained 45±3% of nNOS-IR neurons (78/150 cells, n=3). 

Cholinergic neurons - Cholinergic MP and SMP neurons accounted for 36±8% (266/739 cells, n=3) (Fig. 7.4 d-f) 

and 38±20% (41/98 cells, n=3), respectively. 
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Co-localizations of nNOS- and ChAT-IR - In the MP, the nNOS-IR neurons co-expressing ChAT-IR showed wide 

variability, ranging from 16% to 83% (32±31%; 86/280 cells, n=3), whereas in the SMP these cells were 54±30% (30/95 

cells, n=3). Cholinergic MP and SMP neurons co-expressing nNOS-IR were 41±16% (89/306 cells, n=3) (Fig. 7.4 g-i) 

and 54±26% (28/62 cells, n=3). Data related to the caudal esophagus and gastric fundus are illustrated in Fig. 7.5. 

Discussion 

Esophageal structure 

Horse striated esophageal musculature extended far caudally and striated and smooth musculature co-existed in the 

caudal esophagus up to few centimeters from the LES. 

In the horse, the transition from striated to smooth musculature is described as very abrupt, with the striated muscle 

giving way to smooth muscle cells at the level of the tracheal division (Barone 1981) or more gradual in the caudal third 

of the esophagus (Delmann 2000). The submucosa contains glands which, in the horse, have been described only in the 

rostral portion of the esophagus (Nickel 1973; Barone 1981; König 2006); in the mucosa, the muscularis mucosae is 

well developed and the epithelium is keratinized (Delmann 2000). 

Submucosal glands, never described so far in the equine caudal esophagus (Nickel 1973; Barone 1981; Delmann 

2000; König 2006), produce mucous and bicarbonate (Long and Orlando 1999), which is able to provide local protection 

from the injurious effects of refluxed gastric juice proximal to the cardias, thus leaving the squamous epithelium in this 

area intact. This hypothesis does not seem to apply to the horse, given the absence of vomit in this species. Although 

these glands seem to be under the control of the vagus nerve (Rossowski et al. 1996; Long and Orlando 1999) it is not 

excluded that the ENS might play a role in their innervation.  

Esophageal ENS 

It is known that the mammalian MP well developed from the esophagus to the internal anal sphincter whereas the 

submucosa of the esophagus and stomach lacks a continuous ganglionated SMP (Lefebvre et al. 1995; van Ginneken et 

al. 1996; Teixeira et al. 2001; Furness 2006). Although the equine esophagus and gastric fundus lack the fluid fluxes 

across the mucosal epithelium that occur in the small and large intestines, we observed a continuous and double layered 
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SMP. This finding reinforces both the role of the ENS in this tract of the horse esophagus and the notion that the ENS is 

no less important than the vagal circuitries. 

Almost all MP and SMP neurons showed Dogiel type I morphology; this observation is consistent with the rare 

evidence of Dogiel type II myenteric neurons in the esophagus (Furness 2006). Dogiel type I neurons are cells showing 

irregular (angular) outline, short lamellar dendrites and only one axon; these features usually characterize inhibitory and 

excitatory motor neurons or interneurons (Furness 2006). Dogiel type II neurons are large or oval cells with smooth 

outline showing up to 11 long processes which have been demonstrated to be, on morphological and functional grounds, 

axons (Stach 1981). These cells are considered intrinsic primary sensory neurons (Furness 2006).  

nNOS-IR neurons – We observed a largely greater percentage (about 72%) of nNOS-IR MP neurons than in the other 

tracts of the equine digestive system (Freytag et al. 2008; Chiocchetti et al. 2009a). This evidence reinforces the role of 

inhibitory esophageal neurons which are necessary for the LES relaxation. 

It is interesting to note that the percentages of nNOS-IR neurons observed in the foals were comparable to the 

percentage seen in the adult subjects, despite the LES of foals is not a strong barrier to reflux than in adults. It is known 

that the development of the ENS (and its functions) begins in fetal life and continues for some time post-partum, 

depending also on the maturity of the species at birth (Bueno and Ruckebusch 1979; Branchek and Gershon 1989; Milla 

1993), thus it is plausible that at birth the two main ENS neuronal subclasses (nitrergic and cholinergic neurons) are well 

represented in the horse.  

It is interesting to note that the percentage of MP nitrergic neurons observed in the horse, a species considered unable 

to vomit, was larger than the percentage of nitrergic neurons counted in species able to vomit, such as the cat (30-45%) 

(Rodrigo et al. 1998), monkey (45%) (Rodrigo et al. 1998), human (about 55%) (Singaram et al. 1994), opossum (35–

51%) (Fang and Christensen 1994), but also of those unable to vomit, such as the guinea-pig (from about 53% to 69%) 

(Furness et al. 1994; Brookes et al. 1996; Morikawa and Komuro 1998) and rat (about 65%) (Wu et al. 2003b; Dong et 

al. 2013).  

Contradictory data are also related to the mouse (unable to vomit) esophagus; Grozdanovic et al. (Grozdanovic et al. 

1992) observed that 100% of the MP neurons were nitrergic whereas a later study showed that not all myenteric neurons 

expressed nNOS (Sang and Young 1998; Sang et al. 1999). Taken together, these data suggest that animals unable to 
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vomit show a stronger tone of the LES and, consequently, the need of a greater percentage of esophageal nitrergic 

inhibitory neurons able to relax this sphincter during swallowing. 

Another interesting piece of evidence is the presence of large amounts (about 69%) of nNOS-IR neurons in the SMP 

of the horse esophagus; this finding is quite different compared to the percentage of nitrergic neurons observed in the 

ileal SMP of the same species (about 5%) (Chiocchetti et al., 2009a). The SMP is well developed in both the small and 

large intestine, whereas only scattered submucosal ganglia can be found in the esophagus and stomach (Lefebvre et al., 

1995; Teixeira et al., 2001; Furness, 2006). While the SMP in small mammals is organized in a single layer (Furness, 

2006), it is multilayered in large mammals (Timmermans et al. 1992b; Pearson 1994) and human (Brehmer et al., 2010). 

In particular, the horse SMP is double layered (Pearson et al., 1994; Chiocchetti et al., 2009a). Studies on other large 

mammals have shown that the neurons of the outer SMP project to the circular muscle and, possibly, also to the 

longitudinal muscle (Sanders and Smith, 1986).  

ChAT-IR neurons – We observed a small percentage of MP cholinergic neurons (about 29%) but a large percentage 

(about 65%) in the SMP. In the horse ileum these neurons account for approximately 66% of MP and 74% of SMP 

neuronal populations (Chiocchetti et al. 2009a).The paucity of MP cholinergic neurons in the caudal esophagus of the 

horse is interesting, although we should take into account that, as discussed above, the SMP of large mammals contains 

also neurons acting on muscle layers. 

We noted that smooth muscle cells are intermingled with striated fibers also very close to the LES; the paucity of MP 

cholinergic neurons could also be correlated to the presence of vagal cholinergic innervation regulating the esophageal 

motility of striated muscle, but not of smooth muscle. Furthermore, the vagus nerve is able to act on contraction and 

relaxation of the LES directly via cholinergic and nitrergic release (Hornby and Abrahams 2000; Smid and Blackshaw 

2000; Kuramoto and Kadowaki 2006; Goyal and Chaudhury 2008; Furness 2012) but also indirectly, via stimulation of 

MP nitrergic neurons (Goyal and Rattan 1975; Yuan et al. 1998); this could mean that, in the horse, in which the tonic 

closure of the LES is consistent, nitrergic neurons are more necessary than cholinergic ones, to regulate the inhibition of 

the LES. 

Few studies are available on other species, regarding the quantification and characterization of LES cholinergic 

neurons. In the opossum and guinea-pig cholinergic MP neurons represent, respectively, 38% and 47% of local LES 
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neurons (Seelig et al. 1984; Brookes et al. 1996). In the rat, Nakajima et al (Nakajima et al. 2000) observed that 

cholinergic neurons were largely represented in the esophageal MP (76%) whereas no neurons were observed in the 

SMP of esophagus and stomach.  

The studies reported above took into account the nitrergic and cholinergic local ENS neuronal subpopulations, but 

did not identify the descending neurons specifically innervating the LES, except for the investigation by Brookes et al. 

(1996) who identified nitrergic and cholinergic neurons innervating the LES by the injection of the lipophilic fluorescent 

tracer DiI in organotypic culture. 

Gastric ENS  

The stomach has two main functions: the first is to relax prior to food intake and act as a “reservoir” by increasing its 

volume as it fills; the second is to mix the food with gastric juice and push it down into the duodenum. The fundus is 

primarily associated with gastric reservoir functions while the corpus and antrum are associated with gastric mixing and 

propulsion (Kelly 1981; Lefebvre et al. 1995). 

The adjustment of gastric volume is mediated through the vagus nerve, although the ENS may play a role in 

accommodation reflexes (Furness 2006). The intensity of rhythmic gastric movements is modulated by enteric neurons 

which, nevertheless, do not have the same prominent role shown in the intestinal reflexes. In the present research the MP 

ganglia were scantly represented and SMP ganglia have rarely been observed. As reported for the caudal esophagus, also 

in the fundic portion of the stomach, no Dogiel type II neurons (putative intrinsic primary afferent neurons) were seen; 

this evidence strengthens the role of the vagus nerve in oeasophago-gastric sensitive functions.  

nNOS-IR neurons - Gastric relaxation seems to be mediated also through inhibitory motor neurons (nNOS-IR), and 

this function justifies the presence of a high percentage of nNOS-IR neurons in the fundus (about 57%). 

The mm is innervated by excitatory and inhibitory motor neurons (Onori et al. 1971); in large mammals such as cat 

and dog, the mm receives innervation from SMP neurons (Onori et al. 1971; Furness et al. 1990), and it is very plausible 

that also in the horse – although gastric SMP ganglia were not frequently observed – the gastric double layered mm is 

innervated by SMP neurons. We observed that the equine gastric mm was thinner than the esophageal one which could 

justify the smaller percentage of nNOS-IR neurons observed in the gastric SMP (69±8% vs. 45±3%). 
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ChAT-IR neurons – The reduced percentage of ChAT-IR MP neurons (about 36%) could reflect the prevalence of 

cholinergic vagal innervation and the inability to contract of this gastric portion. The absence of gastric glands in the 

equine fundus could justify the reduced percentage of SMP cholinergic neurons (about 38%), which should be gastric 

secretomotor neurons (Furness 2006). 

In the human gastric fundus MP, cholinergic neurons are 34±6% whereas nNOS-IR neurons are 24±4%(Pimont et al. 

2003). In the rhesus monkey MP, cholinergic neurons are 70±5% (twice as many as in humans) whereas nitrergic 

neurons are 22±3% (similar to humans) (Noorian et al. 2011). 

In the guinea-pig gastric antrum, cholinergic neurons are 56% and nitrergic one are 41% (Vanden Berghe et al. 1999). 

Co-localizations of nNOS- and ChAT-IR - The mixed phenotype seems to be, in general, a distinctive feature of MP 

interneurons; in the guinea-pig small intestine, neurons co-expressing ChAT and nNOS-IR account for 5% of all the 

neuronal population (Furness 2006). Also in the mouse esophagus, 5% of ChAT-IR neurons co-express nNOS-IR and 

viceversa (Sang and Young 1998; Sang et al. 1999). 

In large animals, the percentage of enteric neurons co-expressing ChAT- and nNOS-IR is greater; in the pig ileum, 

the percentage of MP cholinergic neurons co-expressing nNOS-IR does not exceed 9.6% (Brehmer et al., 2004). In the 

horse and sheep ileum, the cholinergic neurons co-expressing nNOS-IR are about 30% and 48% (Chiocchetti et al., 

2009a; Mazzuoli et al., 2007). 

In the human intestine neurons co-expressing ChAT- and nNOS-IR account for about 3-4% of the total neuronal MP 

population, in both the small and large intestine (Beck et al., 2009; Murphy et al., 2007) and about 14% in the gastric 

fundus (Pimont et al., 2003). 
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Table 7.1. Details of the primary antibodies and NeuroTrace® (NT) marker used.  

Antisera 

Host 

species 

Serum 

Code 

Dilution Source 

ChAT 

 

Rabbit P3YEB 1:250 
kindly provided by Prof. Michael 

Schemann, Technische Universität 

München, Germany 

HuC/HuD Mouse A21271 #833294 1:400 

Molecular Probes 

 

nNOS  Mouse (A-11) sc-5302 1:50 Santa Cruz 

nNOS Rabbit SA-227 #T4254 1:200 Biomol 

NT  N21480 1:200 Molecular Probes 

 

Abbreviations: ChAT, choline acetyltransferase; HuC/HuD, human neuronal protein; nNOS, neuronal nitric oxide 

synthase; NT, the green fluorescent Nissl stain solution.  

Suppliers: Biomol Research Laboratories, Butler Pike Plymouth Meeting, PA, USA; Molecular Probes, Eugene, OR, 

USA; Santa Cruz Biotechnology, California, USA.  
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Table 7.2. Details of the secondary antisera used.  

 

Antibody Dilution Source 

Goat anti-mouse IgG Alexa 594 1:200 Molecular Probes 

Goat anti-rabbit IgG FITC 
1:200 Calbiochem-Novabiochem 

Abbreviation: FITC, Fluorescein Isothiocyanate.  

Suppliers: Calbiochem-Novabiochem, San Diego, CA, USA; Molecular Probes, Eugene, OR, USA. 
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Figures 

 

Fig. 7.1 Photomicrograph showing horse  horse esophagus 8 cm from the cardias. (a) Transverse and longitudinal (b, c) 

cryosections labelled with NeuroTrace®. a-b) The stars indicate circular muscle striated fibers in the circular muscle 

layer whereas the arrows indicate smooth muscle cells. c) A large gland (gl) is visible in the submucosa (SM). Scale bar: 

a-b 50 µm; c 100 µm. 
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Fig. 7.2  Myenteric (MP) and submucosal plexus (SMP) neurons of the caudal portion of the equine esophagus 

immunoreactive (IR) for the pan-neuronal marker HuC/D (Hu) and neuronal nitric oxide synthase (nNOS). Enteric 

neurons were identified also by NeuroTrace® (NT) green fluorescent Nissl stain solution. Merged images are shown on 

the right (c, f, i). (a-c) The photomicrographs show a large myenteric ganglion in which the neurons occupy a peripheral 

position; the stars indicate two nNOS-negative Hu-IR myenteric neurons. (d-f) The stars indicate NT-labelled neurons 

(d) belonging to the outer submucosal plexus (OSMP) showing strong nNOS-IR (e). The neurons were aligned in a 

single row close to the inner portion of the circular muscle layer (CML). (g-i) Photomicrograph showing neurons of the 

outer (OSMP) and inner (ISMP) submucosal plexus labelled with the fluorescent tracer NT (g) and nNOS-IR (H). Small 

ISMP nNOS-IR neurons close to the esophageal gland (gl). nNOS-IR fibers were abundant in the circular muscle layer 

(CML) and along the muscularis mucosae (mm) (arrows). Scale bar: a-f 50µm; g-i 100µm. 
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Fig. 7.3 Myenteric (MP) and submucosal plexus (SMP) neurons of the caudal portion of the equine esophagus 

immunoreactive (IR) for the pan-neuronal marker HuC/D (Hu), neuronal nitric oxide synthase (nNOS) and choline 

acetyltransferase (ChAT). Merged images are shown on the right (c, f, i). a-b) Stars indicate MP Hu-IR neurons co-

expressing weak ChAT-IR. d-f) Stars indicate myenteric strong ChAT-IR neurons which were nNOS-negative. g-i) 

Stars indicate SMP neurons co-expressing ChAT-(M) and nNOS-IR (N). The arrow indicates a cholinergic neurons 

negative for nNOS. Scale bar: a-i 50µm. 
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Fig. 7.4 Myenteric plexus (MP) neurons of the fundic portion of the equine stomach immunoreactive (IR) for the pan-

neuronal marker HuC/D (Hu), the neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT). Merged 

images are shown on the right (c, f, i). (a-c) Stars indicate some Hu-IR MP neurons which were also nNOS-IR; the 

arrows indicate nNOS-negative Hu-IR neurons. (d-f) Stars indicate Hu-IR MP neurons showing strong ChAT-IR. (g-i) 

Arrows indicate two cholinergic MP neurons co-expressing nNOS-IR while the stars indicate two neurons which were 

strongly ChAT-IR but nNOS-negative. Scale bar: a-i 50µm. 
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Fig. 7.5 Graphical representation of the percentages of intramural inhibitory neurons immunoreactive for the neuronal 

nitric oxide synthase (nNOS-IR) and excitatory neurons immunoreactive for the choline acetyltransferase (ChAT-IR) in 

the horse caudal esophagus and gastric fundus. a-b) Proportion of nNOS- and ChAT-IR neurons in the myenteric (MP) 

and submucosal plexus (SMP) of the caudal esophagus (a) and gastric fundus (b). Mean value are presented in 

percentage ± standard deviation. c-d) Co-localization studies: on the top are represented the percentages of nNOS-IR 

neurons co-expressing ChAT-IR in the MP and SMP of the caudal esophagus (c) and gastric fundus (d); on the bottom 

are represented the percentages of cholinergic neurons co-expressing nNOS-IR. 
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CHAPTER 8 

Localization of 5-hydroxytryptamine receptor 4 (5-HT4R) in the equine enteric nervous system 
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Introduction 

The 95% of the serotonin synthesis occurs in the gut ECs (Gershon and Tack 2007; Spiller 2008). Mechanical, 

chemical and nervous stimulation of ECs leads to the release of serotonin in the lamina propria (Spiller 2008), which 

acts on the serotonin receptors (Gershon and Tack 2007; Millan et al. 2008) of mucosal projection of the intrinsic and 

extrinsic sensory neurons. In particular, serotonin activates submucosal and myenteric intrinsic primary afferent 

neurons, which initiate, respectively, peristaltic and secretory reflexes. Once activated by serotonin, the extrinsic 

component transmit nausea, discomfort, and pain to the CNS (Gershon and Tack 2007). 

Actually, in the scenario of GI disorders, the most interesting target for pharmacological intervention is the 5-HT4R 

subtype, which is involved in the control of motility, fluid secretion and visceral sensitivity(Schikowski et al. 2002; De 

Ponti 2004; Hoffman et al. 2012). 

There are several studies showing the presence of the 5-HT4R in different intestinal cell types of humans and rodents 

(McLean et al. 1995; Prins et al. 2000; Leclere et al. 2005; Liu et al. 2005; Cellek et al. 2006; van Lelyveld et al. 2007; 

Yaakob et al. 2015). 

Since there are evidences that 5-HT4R agonists such as cisapride, mosapride, and tegaserod can induce important 

adverse effects, a new selective 5-HT4R full agonist was developed, namely prucalopride (De Maeyer et al. 2008), 

which is currently used in human medicine as prokynetic agent (Camilleri et al. 2010; Diederen et al. 2015; Yiannakou 

et al. 2015). Prucalopride stimulates colonic propulsion, mucosal secretion and seems also to exert an anti-nociceptive 

action (Hoffman et al. 2012) and enteric neuroprotection (Gershon and Liu 2007; Liu et al. 2009; Bianco et al. 2016). 

Also in the horse 5-HT4R seems to play a fundamental role in the gastrointestinal physiology, representing a 

promising pharmacological target (Gerring and King 1989; van der Velden and Klein 1993; Steiner and Roussel 1995; 

Nieto et al. 2000; Weiss et al. 2002; Lippold et al. 2004; Sasaki et al. 2005; Delesalle et al. 2006; Delco et al. 2007; 

Prause et al. 2009; Prause et al. 2010), as showed in vitro(Nieto et al. 2000; Sasaki et al. 2005; Prause et al. 2010) and in 
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vivo experiments(Delco et al. 2007; Okamura et al. 2009). The unique immunohistochemical study (Prause et al. 2010) 

carried out on horse failed to detect 5-HT4R in enteric neurons.  

The existence of a contrasting literature on the presence of the 5-HT4R in equine enteric neurons, lead us to design 

the present research. 

The first aim of our study was to localize, immunohistochemically, the 5-HT4R on enteric neurons of the small and 

large equine intestine.The second aim was to evaluated the role of 5-HT4R receptor in the extrinsic sensory innervation; 

to obtain this information, we analyzed tissues of foals with ileocolonic aganglionosis (lethal white foal syndrome, 

LWFS), the horse equivalent of Hirschsprung’s disease in humans, in which only extrinsic fibers are present. 

Furthermore, we localized the 5-HT4R on spinal ganglion sensory neurons. 

Materials and methods 

Animals and tissues collection- Intestinal tissue samples were collected from three horses of different breed aging 1 

year and six months slaughtered at the public slaughterhouse. None had a story of gastrointestinal disorders. Lumbar 

spinal ganglia were immediately collected from the half-carcasses. Furthermore, tissues from the ileum and pelvic 

flexure of two new-born American paint male foals affected with LWFS were utilized. According to Directive 

2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for 

scientific purposes, the Italian legislation (D. Lgs. n. 26/2014) does not require any approval by the competent 

Authorities or by ethics committees. 

The blood samples of selected horses were analyzed; haemato-biochemical parameters confirmed the general healthy 

state of the subjects. 

Cryosections were obtained (as described previously) (Russo et al. 2010; Chiocchetti et al. 2015) from small and 

large intestine (descending duodenum, jejunum, ileum, pelvic flexure, and descending colon) and spinal ganglia of three 

adult horse, and from ileum and pelvic flexure of two LWFS foals. 
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Whole-thickness piece of pelvic flexure was immediately frozen in liquid nitrogen and stored at -80°C for testing the 

anti-5-HT4 antiserum specificity by western blot (WB) analysis. 

Immunofluorescence- Cryosections were hydrated in PBS and processed for double immunostaining. To block non-

specific bindings, the sections were incubated in a solution containing 20% normal goat or donkey serum (Colorado 

Serum Co., Denver, CO, USA) and 0.5% Triton X-100 (Sigma Aldrich, Milan, Italy, Europe) in PBS for 1h at RT. The 

cryosections were incubated overnight in a humid chamber at RT with a cocktail of primary antibodies (Table 8.1) 

diluted in 1.8% NaCl in 0.01M PBS containing 0.1% sodium azide. Enteric neurons were identified with the anti- 

HuC/HuD antiserum. 

After washing in PBS (3 x 10 min), the sections were incubated for 1 h at RT in a humid chamber with the secondary 

antibodies (Table 8.1) diluted in PBS. The cryosections were then washed in PBS (3 x 10 min) and mounted in buffered 

glycerol at pH 8.6. 

Specificity of the primary antibodies - The polyclonal rabbit anti-5-HT4R antibody (AB 60359, Abcam, UK) utilized 

in the present research is predicted to work on horse tissues. To confirm its specificity, we tested this antibody by WB. 

The specificity of the secondary antibodies has been tested in a previous work (Russo et al. 2010). The specificity of the 

secondary antibodies has been tested in a previous work (Russo et al. 2010). 

Analysis of the sections- Preparations were examined on a Nikon Eclipse Ni microscope (Nikon Instruments Europe 

BV, Amsterdam, Netherlands, Europe) equipped with the appropriate filter cubes. The images were recorded with a DS-

Qi1Nc digital camera and NIS Elements software BR 4.20.01(Nikon Instruments Europe BV, Amsterdam, Netherlands, 

Europe). Slight contrast and brightness adjustments were made using Corel Photo Paint, whereas the figure panels were 

prepared using Corel Draw (Mountain View, Ottawa, Canada). 

Quantitative analysis- At least 200 HuC/HuD-IR neurons were counted for in the Myenteric and Submucosal plexus 

(MP and SMP, respectively) in each gastrointestinal tract (n=3). Double-labeling immunofluorescence using HuC/HuD 

and the polyclonal rabbit anti-5-HT4 antibody on tangential crysections, allowed us to quantify the proportions 5-HT4 R-
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IR neurons. The ratio between the 5-HT4 neurons and HuC/HuD-IR neurons was determined and data were expressed as 

relative percentage (mean ± St. Dev). 

The quantitative analysis for the densities of 5-HT4 positive fiber was performed in all intestinal tracts considered. 

For each layer (tunica mucosa, circular muscle layer and longitudinal muscle layer), three high power fields (40x, 

longitudinal sections) randomly selected were acquired at the same exposure time. Images were converted into 8-bit files 

and they were analyzed using ImageJ software (http://imagej.nih.gov/ij/). Threshold values were determined empirically 

by selecting a setting which gave the most accurate binary image. The same threshold was used for all images. The 

resulting numbers of pixels corresponding to the percentage of immunoreactive area on the total area were measured. 

Data were expressed as mean ± St. Dev. 

Western blotting - Colonic tissue sample was collected, frozen in liquid nitrogen, and stored at -80 C°. Tissue was 

thawed and homogenized. Total protein content from human (SHSY5Y) and murine (Neuro 2A) neuroblastoma cell 

lines, were included as positive and negative controls, respectively (Bianco et al. 2016). 

Tissue samples (horse colon) was collected, frozen in liquid nitrogen, and stored at -80°C. Tissues were later thawed 

and homogenized. Total protein contents from horse colon and cell lines lysate (i.e. SHSY5Y and Neuro 2A) were 

extracted using T-PER tissue protein extraction reagent in the presence of a protease inhibitor cocktail (Thermo 

Scientific, Italy, Europe) according to the manufacturer's instructions, and quantified using a NanoDrop 2000 

spectrophotometer (Thermo Scientific, Italy, Europe). Aliquots containing 80 ug of proteins were denatured by heating 

at 95°C for 5 min in Laemmli buffer, separated by 12.5% Sodium Dodecyl Sulphate - PolyAcrylamide Gel 

Electrophoresis (SDS-PAGE) and transferred overnight (70 mV) onto a nitrocellulose membrane (GE Healthcare, UK, 

Europe). After blocking treatment, the membranes were incubated at 4°C overnight with the primary antibodies (Table 

8.1) diluted in Tris-buffered saline-T20 (TBS-T20 20 mM Tris-HCl, pH 7.4, 500 mM NaCl, 0.1% T-20). After washes, 

the blots were incubated 30 min at room temperature with respective peroxidase-conjugated secondary antibodies 

(Table 8.1). Immunoreactive bands were visualized using chemiluminescent substrate (Pierce ECL Western Blotting 

Substrate, Thermo Scientific, Italy, Europe). The intensity of luminescent signal was acquired on a C-DiGit 
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Chemiluminescent Western Blot Scanner using Image Studio Digits Software Ver 3.1 (LI-COR Biotechnology, UK, 

Europe). 

For 5HT4R antibody, a unique band of ~45 kDa (theoretical molecular weight ~44 kDa) (http://www.uniprot.org/) 

was present in extracts from the descending colon as well as in the positive control; no band was detected in the negative 

control (Fig. 8.1). WB analysis confirmed the specificity of the primary antibody utilized in the present study. 

Results 

5-HT4R immunoreactivity in enteric neurons and nervous fibers 

Neurons – The HuC/HuD-immunolabeling was localized in the cytoplasm and nucleus of MP and SMP neurons. The 

intensity of HuC/HuD-IR varied, from weak to bright; notably, in the submucosa, some neurons showed very faint or 

undetectable HuC/HuD-IR, whereas the 5-HT4R-IR was well defined. Neurons not recognizable for their HuC/HuD-IR 

were not considered in the counts. 

Large percentages of HuC/HuD-IR neurons showed 5-HT4R-immunoreactive (IR) in the MP and SMP of all the 

intestinal tracts considered (Fig. 8.2). The 5-HT4R-immunoreactivity (IR) showed different degrees of brightness, 

varying from weak to strong. The pattern of immunolabeling was preferentially located into the cytoplasm rather than 

along the plasma membrane. In the myenteric neuropil, nervous fibers and varicosities embracing neurons showed bright 

immunolabeling (Fig. 8.2 a-f). 

In the small intestine MP, the greatest percentage of immunolabelled neurons was observed in the ileum (63±19 %), 

followed by duodenum (44±25 %) and jejunum (35±20 %). In the large intestine MP, pelvic flexure 5-HT4R-IR neurons 

largely outnumbered (47±13 %) the density of those observed in the descending colon (28±9 %) (Fig. 8.2 a-f). 

Submucosal neurons, which showed in general brighter 5-HT4R-IR than myenteric ones, were observed in the inner 

and outer SMP layers (Fig. 8.2 g-l). In the duodenal submucosa, 5-HT4R-IR neurons were closely related to the 

Brunner’s glands (Fig. 8.2 j-l); nevertheless, no 5-HT4R-IR nervous fibers were observed within the glands. The 

percentages of 5-HT4R-IR SMP neurons were similar in the pelvic flexure, duodenum and jejunum (69±13 %, 68±14 %, 

and 67±3 %, respectively), and slightly decreased in the descending colon (60±23 %) and ileum (54±6 %). 
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Nervous fibers - Bright 5-HT4R-IR nervous fibers were widely distributed in all the layers of the small and large 

intestine. 

The duodenal mucosa showed the greatest density of 5-HT4R-IR fibers, which were however, well represented also in 

the mucosa of the other intestinal tracts considered. 5-HT4R-IR nervous fibers were distributed in the muscularis 

mucosae (mm), around intestinal glands and in the lamina propria (Fig. 8.3 a-b). In the mucosa of small intestine, 5-

HT4R-IR fibers were more visible on the upper half of the villi, whereas in the large intestine these fibers were more 

observable in the basal portion of the glands. 

In the submucosa, a thin network of 5-HT4R-IR fibers and varicosities encircled SMP neurons (Fig. 8.3 b); a few 

immunolabelled fibers were visible around blood vessels. 

In the tunica muscularis, the greatest density of 5-HT4R-IR fibers were observed in the CML (Fig. 8.3 c) of the 

duodenum and descending colon. In the LML, 5-HT4R-IR fibers were well represented in the descending colon and 

ileum, while were scantly represented in the other tracts. 

Data related to the distribution of 5-HT4R-IR neurons and fibers are graphically represented in the Fig. 8.4a and Fig. 

8.4b, respectively. 

5-HT4R immunoreactivity in extrinsic innervation 

Intestinal extrinsic sensory fibers – In the horse, the majority of SP-IR innervation derives from enteric neurons, 

which largely innervate the CML (Fig. 8.3 d). Double immunohistochemistry carried out on adult horse tissues showed 

that 5-HT4R- and SP-IR fibers widely co-localized. Interestingly, also in LWFS tissues, in which only extrinsic 

innervation is present, the extrinsic sensory SP-IR nervous fibers co-expressed 5-HT4R-IR (Fig. 8.3 e-f). 

Spinal ganglion neurons – Weak to moderate 5-HT4R-IR was expressed by small- and medium-sized spinal ganglion 

neurons. Double immunohistochemistry showed that large percentages of 5-HT4R-IR neurons co-expressed SP-IR (Fig. 

8.2 g-i). 

Extra-neuronal 5-HT4-IR distribution – 5-HT4R-IR was expressed by the tunica muscularis, ECs cells, and 

endothelial cells of small vessels (data not shown). 5-HT4R-IR was not detectable in enterocytes and interstitial cells of 

Cajal. 
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Discussion 

This is the first evidence of 5-HT4R-IR in the myenteric and submucosal neurons of the horse intestine. Our results 

represent a strong morphological support as a reinforcement for the functional investigations carried out on horse small 

and large intestine (Gerring and King 1989; van der Velden and Klein 1993; Nieto et al. 2000; Weiss et al. 2002; 

Lippold et al. 2004; Sasaki et al. 2005; Delesalle et al. 2006; Delco et al. 2007; Prause et al. 2009; Prause et al. 2010). 

The presence of large percentages of MP and SMP 5-HT4R-IR neurons suggests that 5-HT4R agonists may influence 

intestinal motility and secretion, respectively. 

In relation to the putative secretory role of 5-HT4R-IR submucosal neurons, it is known that the active mucosal 

secretion can be triggered by serotonin activation of 5-HT4R (and 5-HT3 and 5-HT1p) of intramural sensory submucosal 

neurons, which in turn excite secretomotor neurons releasing acetylcholine and VIP. This neurogenic mechanism 

induces Cl¯ and bicarbonate secretion (Mawe and Hoffman 2013). 

The expression of 5-HT4R-IR by spinal ganglion neurons does not necessarily indicate that these neurons innervate 

the intestine; nevertheless, the presence of 5-HT4R-IR on extrinsic sensory SP-IR fibers observed in LWFS tissues 

suggest that drugs acting on 5-HT4R might influence the visceral sensitivity, as shown in human(Bharucha et al. 2000; 

Coffin et al. 2003). This is, to the best of Author’s knowledge, the first morphological evidence of 5-HT4R-IR at spinal 

ganglia levels. Our findings are consistent with those showing that 5-HT4R is involved in nociception, being the RNAm 

of this receptor expressed by nociceptive neurons of rat spinal ganglia(Cardenas et al. 1997; Nicholson et al. 2003). 

5-HT4R-IR was also observed in SP-negative spinal ganglion neurons; this indicates that 5-HT4R might be involved 

in other kinds of sensitivity. In fact, it has been shown that 5-HT4R agonist (tegaserod) may have an inhibitory effect on 

intramural mechanoceptors of the cat rectum (Schikowski et al. 2002). Nevertheless, to identify and confirm a role of 5-

HT4R in the visceral sensitivity of the horse, functional and pharmacological investigations are needed. 

Gut vasodilation is regulated by intrinsic reflex circuitry involving SMP neurons via the activation of 5-HT3 and 5-

HT4R (Nicholson et al. 2003). In the present study, endothelial cells of small vessels expressed 5-HT4R -IR(Nishikawa 
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et al. 2010; Machida et al. 2013); this finding is consistent with studies indicating that 5-HT4R mRNA (together with 5-

HT1, 5-HT2, and 5-HT7 mRNA) is expressed by endothelial and vascular smooth muscle cells. Furthermore, it is known 

that 5-HT4R of endothelial cells regulates angiogenesis and that mosapride might inhibit proliferation and migration 

(Nishikawa et al. 2010) of endothelial cells in human umbilical vein (Ullmer et al. 1995). 

There are growing evidences that 5-HT4R stimulation enhances the development, survival, and neurogenesis of 

enteric neurons neuroprotection (Gershon and Liu 2007; Liu et al. 2009; Takaki et al. 2015; Bianco et al. 2016) and that 

5-HT4R agonists facilitates neurogenesis from transplanted stem cells in intestinal anastomosis (Goto et al. 2016). This 

last finding may have relevance to regenerative potential of intestinal intramural innervation and survival in horses 

subjected to colic surgery. 

A large variety of infectious and noninfectious inflammatory diseases may affect the gastrointestinal system of 

horses; it has been shown that, in mice, colitis promotes enteric neurogenesis through a 5-HT4R -dependent mechanism 

driving glial cells to transdifferentiate into neurons (Belkind-Gerson et al. 2015; Uzal and Diab 2015). 



92 
 

 

Table 8.1 Primary and secondary antibodies used in the study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: FITC, fluorescein isothiocyanate; HRP, horseradish peroxidase; IHC, Immunohistochemistry; HuC/HuD, 

human neuronal protein;WB, Western Blot. 

Suppliers: Abcam, Cambridge, United Kingdom, Europe; Biotium Inc., Hayward, California, USA; Fitzgerald Industries 

Int., Inc. Concord, MA, USA Merck Millipore, Darmstadt, Germany, Europe; Life Technologies, California, USA; 

Sigma Aldrich, Milan, Italy, Europe. 

Primary antibody Host Code Dilution Source 

HuC/HuD Mouse A21271 IHC 1:200; 

WB 1:200 

Life Technologies 

5-HT4 Rabbit AB60359 IHC 1:200; 

WB 1:200 

Abcam 

Substance P Rat 10-S15A IHC 1:400 Fitzgerald 

Secondary antibody Host Code Dilution Source 

Anti-mouse IgG Alexa 594 Goat A11005 IHC 1:200 Life Technologies 

Anti-mouse IgG Alexa 488 Donkey 20014 IHC 1:100 Biotium 

Anti-rabbit IgG FITC Goat 401314 IHC 1:200 Merck Millipore 

Anti-rabbit IgG HRP coniugated Goat A2304 WB 1:35000 Sigma Aldrich
 

Anti-rat IgG Alexa 594 Donkey A21209 IHC 1:50 Life Technologies 
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Figures 

 

Fig. 8.1 Validation of 5-HT4R antibody in horse tissue by Western Blot. Total protein lysate form horse colon (lane 1), 

marker of molecular weight (M) (lane 2), SH-SY5Y human cell line as positive control (lane 3), murine Neuro2A (N2A) 

cell line as negative control (lane 4). A specific band of ~ 45 kDa was detected in horse tissue (lane 1) as well as in the 

positive control (lane 3).No bands were detected in the negative control (lane 4). 
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Fig. 8.2 Micrographs showing HuC/HuD- and 5-HT4R -immunoreactivity (IR) in tangential cryosections of myenteric 

and submucosal plexus of horse ileum, pelvic flexure, and duodenum. a-f) Stars indicate some HuC/HuD-IR myenteric 

plexus neurons of the ileum (a-c) and pelvic flexure (d-f) which showed 5-HT4R -IR. Arrows indicate nervous fibers 

varicosities showing strong 5-HT4R -IR. g-l) Stars indicate some ileal and duodenal submucosal plexus HuC/HuD-IR 

neurons co-expressing strong 5-HT4R -IR. g-i) The open arrow indicates one 5-HT4R -IR ileal submucosal neuron 

showing very faint HuC/HuD-IR. HuC/HuD-IR showed several degrees of immunolabeling, from strong nuclear and 

cytoplasmic immunoreactivity to very weak (or almost undetectable). Bars = a-c; g-l: 20 µm; d-f: 100 µm. 
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Fig. 8.3 5-HT4R-immunoreactivity in healthy and LWFS foals and in spinal ganglia. a-c) Micrographs showing 5-HT4R-

immunoreactive nervous fibers (arrows) in the lamina propria (a), muscularis mucosae (b) and circular (CML) and 

longitudinal muscle layer (LML) (transverse cryosections; c) of the horse ileum; stars (b) indicate some 5-HT4R-IR 

submucosal neurons very close to the muscularis mucosae. d) Longitudinal ileal cryosections showing the dense CML 

innervation by substance P (SP) nervous fibers. e-f) Longitudinal cryosections of the ileum of a lethal white foal 

syndrome foal, characterized by the absence of enteric neurons. The arrows indicate SP-IR sensory fibers of extrinsic 

origin running between CML and LML and co-expressing strong 5-HT4R -IR. g-l) Cryosections of horse spinal ganglion 

neurons; the arrows indicate SP-IR sensory neurons which co-expressed 5-HT4R -IR; stars indicate other 5-HT4R -IR 

neurons which were SP-negative. Bars = a, c, d, g-i: 100 µm; b, e, f: 20 µm. 
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Fig 8.4 Graphical representation of the percentages  of 5-HT4R -immunoreactive neurons and fibers in the horse small 

and large intestine.  a) Black bars indicate the percentages of 5-HT4R-IR neurons in the myenteric plexus (MP) of 

duodenum (161/452 cells), jejunum (147/497 cells), ileum (348/571 cells), pelvic flexure (297/606 cells), and 

descending colon (165/469 cells). Gray bars indicate the percentages of 5-HT4R-IR neurons in the submucosal plexus 

(SMP) of duodenum (394/586 cells), jejunum (262/404 cells), ileum (324/599 cells), pelvic flexure (377/540 cells), and 

descending colon (248/402 cells). Data are represented as mean ± St. Dev. b) Density of 5-HT4R-IR nervous fibers in 

the mucosa and muscular layers of the horse small and large intestine. a) Percentages of 5-HT4R-IR area (fibers) in the 

tunica mucosa (mucosa), circular muscle layer (CML) and longitudinal muscle layer and (LML) of duodenum, jejunum, 

ileum, pelvic flexure and descending colon. Data are represented as mean ± St. Dev. 
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CHAPTER 9 

Extrinsic innervation of the ileum and pelvic flexure of foals with ileocolonic aganglionosis 

 

Modified from 

 

“Extrinsic innervation of the ileum and pelvic flexure of foals with ileocolonic aganglionosis” 

Giancola F, Gentilini F, Romagnoli N, Spadari A, Turba ME, Giunta M, Sadeghinezhad J, Sorteni C, Chiocchetti R 

Under revision 
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Introduction 

Intestinal aganglionosis is a congenital severe condition caused by aberrant development of the ENS. The main 

feature is the absence of enteric neurons, determined by neural crest progenitors’ unsuccessful migration and 

colonization of the gut. Natural variants of such pathological condition are described in humans - Hirschsprung’s disease 

- (Heanue and Pachnis 2006; Moore 2015) as well as in horses - lethal white foal syndrome, LWFS - (McCabe et al. 

1990; Metallinos et al. 1998). LWFS is an inherited syndrome occurring in foals born prevalently from American Paint 

Horse parents of the overo coat-pattern lineage (Finno et al. 2009). Affected foals are totally or almost totally white and 

die within few days (between 23 and 132 hours) (Julian 1994) from complications due to intestinal (ileocolonic) 

aganglionosis or hypoganglionosis (Hultgren 1982; Vonderfecht et al. 1983; Metallinos et al. 1998; Lightbody 2002; 

Finno et al. 2009; Muniz et al. 2013) and consequent intestinal akinesia. 

The mutated EDNRB gene is responsible for the LWFS (Metallinos et al. 1998; Santschi et al. 1998; Yang et al. 

1998). Mutations in EDNRB gene are also reported in the 5% of familiar cases of human Hirschsprung’s disease 

(Heanue and Pachnis 2006) and in rodents (Robertson et al. 1997; Moore 2015). In horses, as in other mammalian 

species, mutations occurring in the EDNRB gene reveal the association between intestinal aganglionosis and coat-

colours phenotypes (Reissmann and Ludwig 2013), since this receptor is involved in the development of neural crest 

cells committed to differentiate in both ENS elements and melanocytes (Robertson et al. 1997; Santschi et al. 1998; 

Santschi et al. 2001). In mice (Baynash et al. 1994; Hosoda et al. 1994), rats (Ceccherini et al. 1995; Gariepy et al. 1996) 

and humans (McCallion and Chakravarti 2001) the defects of peripheral pigmentation are associated with aganglionosis, 

while in sheep (Luhken et al. 2012) the EDNRB gene deletion is associated with hypopigmentation, megacolon, not 

with aganglionosis. 

The mutation responsible for LWFS is a TC to AG transversion causing an isoleucine to lysine substitution at codon 

118 of the ENDRB gene. The disease has a recessive inheritance pattern (Yang et al. 1998). Horses with white Overo 

patterning are more likely carriers of the mutation than solid-colored horses (Vrotsos PD 1999). Affected foals suffer 



99 
 

from aganglionosis of the myenteric and submucosal ganglia of the caudal part of the small intestine and of large 

intestine, resulting in intestinal akinesia and colic (Muniz et al. 2013). 

At present no treatment for LWFS has been suggested; therefore the genetic test is essential to prevent its occurrence 

(McCabe et al. 1990). PCR tests are now available, making possible the identification of carriers horses, heterozygous 

for the specific mutation in the EDNRB gene (Lightbody 2002). 

While it is evident that LWFS and Hirschsprung’s disease share genetic characteristics and, in some cases, the same 

aganglionosis pattern (Moore 2015), it is not yet known whether humans and horses share also the same pattern of 

extrinsic innervation in the aganglionic tracts. In fact, in humans, as well as in rodents with aganglionosis, extrinsic 

fibers show an abnormal distribution pattern (Facer et al. 2001; Rabah 2010; Nagashimada et al. 2012). Furthermore, 

since extrinsic fibers also arise from neurons derived from neural crest elements, these might also be irregularly 

distributed in the intestinal aganglionic segments. To address this question we immunohistochemically characterized, for 

the first time, the distribution and phenotype of extrinsic neural fibers in the ileum and pelvic flexure (ascending colon) 

of LWFS foals, compared to a control foal. In this research, we benefitted also from our previous findings on the origin 

and neurochemistry of the extrinsic sensory and sympathetic innervation supplying the equine ileum (Chiocchetti et al. 

2009b; Russo et al. 2010; Russo et al. 2011; Russo et al. 2012). 

Materials and methods 

Animals –Two American paint male foals affected with LWFS were included in the present research (Fig. 9.1 a-e). 

The two foals had the same dam and different sires. While the dam and the sire # 1 showed a clear white frame- overo 

pattern, the sire # 2 had a likely combination pattern. The coat of the first foal was entirely white (Fig. 9.1 a-b) and the 

iris was totally light blue; the second foal’s coat showed pigmentation of upper eyelid, nasolabial area, lower lip, 

foreskin, and perianal area while the iris was pigmented (Fig. 9.1 c-e). Within 24 hours from the birth, on physical 

examination, the foals were recumbent, depressed, and frequently rolling on their back. The first alarming observation 

was the absence of defecation. In particular, foals stopped feeding and started showing signs of abdominal pain, without 

feces production. In order to genetically confirm the clinical diagnosis of LWFS, blood samples were collected from the 

mare and foals and stored in the EDTA tubes. The foals survived up to day 3. Necessarily, foals were euthanized for 
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ethical reasons and their tissues have been collected following the owners' written consents. According to Directive 

2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for 

scientific purposes, the Italian legislation (D. Lgs. n. 26/2014) does not require any approval by the competent 

Authorities or by ethics committees. As a control, we also collected tissues from a one-week old foal which had died for 

reasons not related to gastrointestinal problems. 

Genetic analysis - The TC to AG transversion responsible for the p.118Ile>Lys substitution in EDNRB (Metallinos et 

al. 1998; Santschi et al. 1998; Yang et al. 1998) was genotyped intra-vitam using a High Resolution Melting (HRM) 

Assay and later confirmed by direct sequencing. The disease locus was amplified using the primers pair forward 5’ 

CTCCCCCGTGCGAAAGA 3’ and reverse 5’ AAATGATTCTCAGCAGTGTGGAGTT 3’ which amplifies a 120 bp 

target of the EDNRB. The reaction was carried out using 1 µL of genomic DNA purified from K3EDTA anticoagulated 

blood, 1x MeltDoctor HRM master mix
 
(Applied Biosystems, Thermo Fisher Scientific, Italy, Europe

 
), 200 nM each of 

forward and reverse primer and molecular biology grade water in a final volume of 15 µL. The assay was accomplished 

on a StepOne thermal cycler with a program composed by an initial denaturation stage at 95°C x 10 min followed by a 

40 cycles, two-steps protocol including denaturation at 95°C for 15 s and annealing/extension at 62° C for 45 s with 

signal acquisition. The amplification stages were followed by a High Resolution melt stage. Generated melting data 

were then analyzed using the High Resolution Melt software v 3.0.1 (Applied Biosystems, Thermo Fisher Scientific, 

Italy, Europe) which automatically calls the variant. 

Tissue collection – The ileum and the pelvic flexure were collected within 2 hours from euthanasia (details in Russo 

et al. 2010). Tissues were immediately removed and then longitudinally cut open, flushed out with PBS, pinned flat on 

balsa wood and fixed in 2% paraformaldehyde containing 0.2% picric acid in 0.1 M sodium phosphate buffer (pH 7.0) at 

4°C for 48 hours. 

Tissue preparation -Cryosections - This technique was described in detail elsewhere (Chiocchetti et al. 2015). After 

rinsing in PBS, the tissues were stored in PBS containing 30% sucrose and 0.1% sodium azide (pH 7.4) at +4°C. Pieces 

of tissues (2 x 1 cm) were subsequently cut, transferred to a mixture of PBS-sucrose-azide and OCT compound (Tissue 
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Tek®, Sakura Finetek Europe, Alphen aan den Rijn, the Netherlands, Europe) at a ratio of 1:1 (overnight) and then 

embedded in 100% OCT. The tissues were frozen, mounted in Tissue Tek® mounting medium and sectioned at 14-16 

μm on a cryostat. The sections were collected on gelatin-coated slides. Wholemounts – This technique was described in 

detail elsewhere (Chiocchetti et al. 2009b). Briefly, small specimens of the ileum and pelvic flexure were pinned flat, 

mucosa side up, in a Sylgard-covered Petri dish containing PBS. The mucosa was carefully scraped off using a scalpel. 

To obtain thin SMP wholemounts, we removed two distinct SMP layers, the inner submucosal plexus and the outer 

submucosal plexus. To obtain MP preparations, we gently removed the strips of circular muscle layer. 

Immunohistochemistry - All the neuronal markers utilized in this study have been shown to be expressed by extrinsic 

and intrinsic nervous fibers and ENS neurons of healthy horses (Freytag et al. 2008; Chiocchetti et al. 2009a; 

Chiocchetti et al. 2009b; Hartig et al. 2009; Russo et al. 2010). Enteric neurons were identified with the anti- HuC/HuD 

antiserum (Freytag et al. 2008; Hartig et al. 2009). Sympathetic postganglionic pathways were identified with antisera 

against the tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) (Russo et al. 2010). 

For the identification of the spinal ganglia sensory pathways, we utilized antisera directed against the neuropeptides 

SP and CGRP (Russo et al. 2010; Russo et al. 2011). 

Furthermore, enteric glial cells were identified with antisera anti-S100b (Hudson et al. 2000; Chiocchetti et al. 

2009b). 

Cryosections and wholemount preparations were incubated with the primary and secondary antisera listed in Table 

9.1. Double labeling studies using the indirect immunofluorescence method were performed, as described elsewhere 

(Chiocchetti et al. 2006; Russo et al. 2010). 

Antibody specificity - The specificity of the employed antibodies anti- CGRP, -DBH and TH has already been tested 

in the horse by WB (Russo et al. 2010; Russo et al. 2012). Furthermore, two antibodies anti-TH were used (from mouse 

and sheep), which identified the same neuronal structures. The antibody sheep anti-TH was utilized in combination with 

the antibody anti-DBH to verify the co-localization between the two different neuronal markers of the adrenergic 

pathways. 
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The rat anti-SP antibody has already been well-characterized in other species and it results raised against highly 

conserved peptides; it should recognize the appropriate antigens also in the horse, as showed recently (Chiocchetti et al. 

2009a; Chiocchetti et al. 2009b; Russo et al. 2011; Russo et al. 2012). The specificity of the secondary antibodies has 

been well described elsewhere (Russo et al. 2010). 

Analysis of the sections and wholemount preparations – Preparations were examined on a Nikon Eclipse Ni 

microscope equipped with the appropriate filter cubes. The images were recorded with a DS-Qi1Nc digital camera and 

NIS Elements software BR 4.20.01 (Nikon Instruments Europe BV, Amsterdam, Netherlands). To obtain large images, 

single fields were scanned automatically using a motorized XY stage with auto-focus capability and then stitched by the 

software. Slight contrast and brightness adjustments were made using Corel Photo Paint, whereas the figure panels were 

prepared using Corel Draw (Mountain View, Ottawa, Canada).  

The quantitative analysis of the fiber densities was performed for SP, CGRP, and TH in the ileum and pelvic flexure 

of control and LWFS foals. For each layer (tunica mucosa, CML and LML), three high power fields (40x, longitudinal 

sections) randomly selected were acquired at the same exposure time. Images were converted into 8-bit files and 

analyzed using ImageJ software (http://imagej.nih.gov/ij/). Threshold values were determined empirically by selecting a 

setting, which gave the most accurate binary image for a subset. The same threshold was used for all images of the same 

marker and the resulting number of pixels corresponding to the percentage of immunoreactive area on the total area was 

measured. All graphical representations were obtained using a commercial software (GraphPad Prism version 5.00 for 

Windows, GraphPad Software Inc., La Jolla, CA, USA). Data were expressed as mean ± standard error (SEM). 

Results 

Genetic diagnosis - Both affected foals were demonstrated to carry the mutated allele in a homozygous state by HRM 

analysis carried out intra-vitam. Also the dam and one of the two sires (namely sire #2) were analyzed and found to be 

carriers of the disease. All the HRM screening diagnosis were ultimately confirmed with direct sequencing. 
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Innervation of the ileum and pelvic flexure 

Sympathetic fibers (TH- and DBH-immunoreactivity) 

Control – TH- and DBH-immunoreactivity (IR) co-localized in nervous fibers (data not shown). As already observed 

in the tunica mucosa of adult horse (Russo et al. 2010), a dense network of adrenergic fibers was observed within the 

muscularis mucosae (mm) and some fibers were also seen in the lamina propria of the foal as well. A delicate network 

of TH- or DBH-IR fibers and varicosities was scattered in the submucosa, along blood vessels around which it formed a 

dense perivascular plexus (Fig. 9.2 a, c, e) encircling, although with larger meshes, also large veins (Fig. 9.2 e). 

Adrenergic fibers encircled also SMP and MP neurons, which, however, did not express adrenergic phenotype (Fig. 9.3 

a, b). In the tunica muscularis, adrenergic innervation was homogenously distributed in the whole thickness of the CML 

of the ileum (Fig. 9.3 c) and pelvic flexure (Fig. 9.3 e). In the CML and LML, the adrenergic innervation was largely 

more represented in the pelvic flexure than in the ileum. Some adrenergic fibers were observed in the tunica serosa. 

LWFS – In the mucosa and submucosa of pathological subjects, the adrenergic innervation did not seem to vary, 

compared to the control. In fact, some thin TH-IR fibers were seen in the tunica mucosa (pelvic flexure>ileum) along 

the major axis of the villi (ileum) and in the mm (Fig. 9.2 b). In the submucosa, as observed in control tissues, 

adrenergic fibers were abundantly seen, mainly along large blood vessels around which they formed a delicate network 

of innervation (Fig. 9.2 b, d, f). In cryosections (Fig. 9.3 d, f) and wholemount preparations (Fig. 9.4 b, d, f), large 

bundles of adrenergic fibers were visible in either the plexuses; from these fibers arose smaller bundles of fibers which 

never formed varicosities, as was observed in the SMP (Fig. 9.3 a; Fig. 9.4 a) and MP (Fig. 9.1 b; Fig. 9.4 c) of control 

tissues. Affected and control foals showed a comparable distribution of adrenergic fibers in the CML of the ileum (Fig. 

9.3 d). It is to remark that, in the pelvic flexure CML, the distribution of adrenergic fibers was different if compared to 

the pattern observed in the control tissues, being these fibers more concentrated in the outer portion of the layer and 

scantly represented in the inner portion of the CML (Fig. 9.3 f). Moreover, in the space between CML and LML, as well 

in the LML of the pelvic flexure, a dense network of large and thin bundles of adrenergic fibers was seen (Fig. 9.3 f), 

and this evidence was more appreciable in wholemount preparations (Fig. 9.4 f).  
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Semi-quantitative data related to the distribution of sympathetic fibers are summarized in Table 9.2. Quantitative data 

concerning the density of TH-IR fibers in the ileum and pelvic flexure of control and LWFS foals are graphically 

represented in Fig. 9.5. 

Peptidergic innervation (SP- and CGRP-immunoreactivity) 

Control - A large number of SP-IR fibers was seen in all the layers of the ileum and pelvic flexure. A dense network 

of mucosal SP-IR fibers co-expressing CGRP-IR was visible in the lamina propria and in the mm (Fig. 9.6 a-d). In the 

submucosa, SP-IR fibers encircled vessels and SMP neurons, many of which largely expressed both markers. The most 

abundant concentration of SP-IR fibers was seen in the CML, while in the LML these fibers were thinner and showed 

less density (Fig. 9.6 i, k). Bundles of SP-IR fascicles run between the two muscle layers, and thin varicosities were seen 

encircling myenteric neurons which partly showed SP-IR in both intestinal tracts considered. SP-IR fibers were also 

observed in the serosa. In the ileum and pelvic flexure, some CGRP-IR fibers were seen in either muscular layers 

(CML>LML); this finding was consistent with the presence of some CGRP-IR myenteric neurons (Fig. 9.7 a). 

LWFS – The SP- and CGRP-IR was dramatically reduced in the ileum and pelvic flexure (Fig. 9.6 e-h). In the 

mucosa, only a few thin SP- and CGRP-IR fibers were seen (Fig. 9.6 e-h). Notably, in the submucosa of the ileum very 

few CGRP-IR neurons (co-expressing SP-IR) were seen; it is to remark that in the mucosa above these submucosal 

neurons, the peptidergic fibers were more represented (Fig. 9.7 c). In the submucosa, peptidergic fibers were most 

abundantly represented around blood vessels (CGRP>SP) (Fig. 9.6 e-h; Fig. 9.7 d). Very few SP-IR fibers were 

observed in the CML of the ileum and pelvic flexure (Fig. 9.6 j, l); a few CGRP-IR fibers were seen in the CML of the 

pelvic flexure, while a few fibers were seen in the LML of both intestinal tracts considered (Fig. 9.7 b). Peptidergic 

fibers of different dimensions were seen between the CML and LML.  

Semi-quantitative data related to the distribution of peptidergic sensory fibers are summarized in Table 9.2. 

Quantitative data concerning the density of sensory fibers in the ileum and pelvic flexure of control and LWFS foals 

are graphically represented in Fig 9.5. 
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HuC/HuD- and S100b-immunoreactivity 

Control – HuC/HuD-IR was strongly expressed by cytoplasm and nucleus of SMP and MP neurons (Fig. 9.3 a, b: 9.8 

a). Bright S100-IR was visible in all the layers of the ileal and pelvic flexure wall and around MP and SMP neurons 

(Fig. 9.8 a). The MP ganglia of the ileum appeared smaller than those observed in the pelvic flexure. MP ganglia often 

occupied often a position within the LML; furthermore, some small ganglia were observed in ileal subserosal space 

(data not shown). The equine SMP were organized in two layers in the ileum (Chiocchetti et al. 2009a) and in a single 

layer of small ganglia in the pelvic flexure, distributed near the mucosa (data not shown). 

LWFS – In the two subjects, a few HuC/HuD-IR small neurons (co-expressing nitrergic phenotype; data not shown), 

usually grouped in small clusters, were seen in the MP of the ileum (Fig. 9.8 b-c). No neuronal somata were identified in 

the pelvic flexure. Owing to the absence of ENS neurons and fibers, S100-IR was reduced in density and limited to cells 

ensheathing bundles of extrinsic nervous fibers (Fig. 9.8 b); nevertheless, S100-IR was visible around the few 

HuC/HuD-IR neurons migrated in the MP (Fig. 9.8 b-c). 

Discussion 

LWFS vs. Hirschsprung’s disease 

Aganglionosis – In the horse, the LWFS displays total or almost total lack of enteric neurons from the caudal half of 

the jejunum to the whole length of the large intestine (Vonderfecht et al. 1983). In human Hirschsprung’s disease, the 

aganglionosis affects frequently short segments of the colon but may also involve larger portions of the bowel; in fact, in 

few cases (2-13%), i.e. in the so called Zuelzer-Wilson Syndrome, ENS neurons are missing in the whole colon and also 

in the caudal portion of small intestine (Zuelzer and Wilson 1948). Thus, it seems reasonable to compare, in terms of 

aganglionosis width, the LWFS to the human Zuelzer-Wilson Syndrome or to another form of aganglionosis which 

involves the whole colon (total colonic aganglionosis) (McCabe et al. 1990; Moore 2015). 

Genetic – The endothelin system is considered, at present, as the unique responsible for the LWFS pathogenesis 

(Yang et al. 1998; Finno et al. 2009). In the most investigated Hirschsprung’s disease, it seems that at least twelve 

genetic variations are involved in the aberrant colonization of the ENS during development (Heanue and Pachnis 2006; 

Ou-Yang et al. 2007; Liu et al. 2015; Moore 2015); however, the endothelin pathway has been shown to be one of the 
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most important genetic factors in its pathogenesis (Moore 2015). It has been shown that, in 30–50 % of patients with 

familiar Hirschsprung’s disease, in addition to EDNRB alteration, other genes are involved, such as mutations in the 

receptor tyrosine kinase (RET) or its ligand GDNF and the co-receptor GFRA1 (Moore 2015; Tomuschat and Puri 

2015). Another pair of genes, PHOX2B and SOX10, is strictly correlated in the aberrant colonization of the ENS and the 

faults in formation of enteric neurons and sympathetic ganglia (Gershon 2012a; Nagashimada et al. 2012). It is to 

remark that mutations both in RET and in SOX10 seem to be also important for alteration of the sympathetic nervous 

system (Robertson et al. 1997; Moore 2015). This represents another finding of the present research that will be 

discussed later on.  

LWFS features 

ENS - In the ileum of the two subjects analyzed, only very few HuC/HuD-IR neurons were identified in the MP and 

SMP. While the presence of SMP neurons is a new evidence, the presence of some MP neurons is consistent with the 

recent findings of Muniz et al. (Muniz et al. 2013); in fact, in their accurate paper, authors showed that in the ileal MP of 

LWFS foals a small percentage (about 1%) of atrophied neurons was still identifiable. The two foals considered in the 

present research were affected by hypoganglionosis in the ileum and complete aganglionosis in the pelvic flexure. 

Extrinsic nerve fibers - The presence of hypertrophied nerve bundles running in the two intestinal plexuses seems to 

characterize LWFS (Julian 1994), Hirschsprung’s disease (Moore 2015), and murine models of aganglionosis 

(Watanabe et al. 1995; Nagashimada et al. 2012). Nevertheless, thickened nerve trunks may be completely absent in the 

human total colonic aganglionosis bowel (Kapur 2009; Knowles et al. 2009). 

It must be considered that extrinsic fibers derive from extrinsic neurons, which in turn are derived from neural crest 

cells; thus, it is conceivable that also these neurons and fibers are not perfectly programmed to reach their natural target. 

In fact, there is evidence that other components of the autonomic nervous system (in particular the sympathetic 

elements, see below) might be altered during neurocristopathies (Carnahan et al. 1991; Gershon 2012a; Nagashimada et 

al. 2012) and Hirschsprung’s disease (Robertson et al. 1997; Ding et al. 2013). 
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Sympathetic fibers – These fibers, which innervate all the layers of the horse intestine, derive (at least for the horse 

ileum) from paravertebral (thoracic) and prevertebral ganglionic neurons (Russo et al. 2010; Bombardi et al. 2013). One 

interesting finding of the present research is the conspicuous contribution of the sympathetic innervation to the tunica 

muscularis of the pelvic flexure in control foal. This observation remarks the role of the sympathetic innervation on the 

pelvic flexure motility in the horse, in which postoperative ileus frequently occurs (Lefebvre D 2015). In the LWFS 

ileum and pelvic flexure we noticed an increased density of large bundles of adrenergic fibers between the two layers of 

the tunica muscularis, coupled with a “bizarre” distribution of adrenergic fibers in the CML and LML of the pelvic 

flexure. The presence of large nervous fascicles might be justified by the absence of enteric neurons, which represent a 

specific target of the extrinsic fibers; although just a fanciful hypothesis, the extrinsic bundles might be considered as 

bundles wandering in search for a final destination. It has been shown that a great percentage of rat postganglionic 

sympathetic fibers innervate simultaneously the muscular smooth muscle cells and myenteric neurons (Walter et al. 

2016), suggesting a crucial role of sympathetic system in the direct control of the gut motility. In line with our findings, 

we can state that in the LWFS foals also the development of the sympathetic system may be altered, exactly as observed 

in human  (Watanabe et al. 1998) and rodents (Watanabe et al. 1995). This finding, never reported in the LWFS horse 

before, might be useful for further genetic investigations. 

Sensory fibers – We demonstrated by using retrograde fluorescent tracers, that CGRP- and SP-IR extrinsic fibers 

reaching the horse ileum arise almost exclusively from spinal ganglia (Russo et al. 2010; Russo et al. 2011). However, 

since no data are reported about the phenotype of equine vagal sensory neurons, we cannot exclude that a vagal 

contingent of sensory CGRP- and SP-IR fibers might be present in the equine ileum. 

Neuropeptides SP and CGRP seem to act synergistically in modulating the nociceptive neurons in the dorsal horn of 

the spinal cord (Hanesch and Schaible 1995). 

In the dog ileum it has been shown that the mucosal SP-IR fibers largely arise from SMP neurons, while those 

innervating the CML arise from MP neurons (Daniel et al. 1987); data obtained in the present research are consistent 

with the observations of Daniel et al. (1987); in fact, in LWFS tissues lacking enteric neurons, only some SP-IR fibers 

were seen in the tunica mucosa, CML and tunica serosa, while a considerable number of SP-IR fibers encircled 
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submucosal arteries. SP-IR extrinsic fibers were seen reaching the aganglionic MP; these SP-IR, partially distributed 

also within the CML, might indicate a close relationship with the interstitial cells of Cajal (Pavone and Mandara 2010; 

Matsumoto et al. 2011). 

Our findings indicate that the extrinsic SP-IR fibers supply sensory innervation to the submucosal vessels, mucosa, 

and serosa. It is well established that primary sensory neurons can be activated antidromically and have efferent effects; 

in response to noxious stimuli, CGRP- and SP-IR can be released peripherally to induce vasoactive effects, and to 

promote inflammatory responses, thus having a healing effect on the tissue (Brain and Williams 1985; Brain and 

Williams 1988). As a result of this evidence, we can suppose that also in the horse CGRP- and SP-IR extrinsic sensory 

fibers might be also vasomotor. 

While it is quite easy to compare and verify whether sympathetic fibers are altered in LWFS tissues owing to the 

exclusively extrinsic origin of these fibers, it is not so easy to draw conclusions regarding sensory fibers immunoreactive 

for SP and CGRP. In fact, although in general our results do not seem to present a picture of abnormality regarding the 

distribution of extrinsic sensory fibers, it has been reported that also extrinsic SP- and CGRP-IR sensory fibers might be 

altered in aganglionosis (Robertson et al. 1997). To address this topic, the neurochemical and morphological 

characterization of the spinal ganglia neurons in LWFS foals would be useful, also considering the current knowledge 

about the horse sensory innervation (Russo et al 2010; 2011; 2012). 

Fibers with different phenotype - In the horse intestinal wall, extrinsic fibers immunoreactive for other neuronal 

markers have been observed: neuronal nitric oxide (nNOS), 200-kDa neurofilament protein (NF200), and neuropeptide 

Y (NPY) (Russo et al. 2010; Russo et al. 2011; Russo et al. 2012). nNOS-IR fibers belong to spinal ganglia sensory 

neurons and largely (about 82%) co-express both SP- and CGRP-IR (Russo et al. 2011). NPY-IR is expressed by 

sympathetic prevertebral neurons co-expressing also TH- and DBH-IR (Russo et al. 2010). NF200-IR is expressed by 

spinal ganglia (Russo et al. 2012) but also by sympathetic ganglia (personal observation, Dr. R. Chiocchetti); being 

expressed by two different populations of neurons (sensory and sympathetic) with different patterns of peripheral 

distribution, we excluded the investigation of the marker NF200 (Russo et al. 2012) in the present study. For the same 

reason, although the literature reports the presence of an increased number of cholinergic fibers in Hirschsprung’s 
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disease tissues, in the present research we did not utilize the antibody anti-choline acetyltransferase (ChAT), a 

neurochemical marker which should be expressed by the majority of extrinsic primary sensory fibers and vagal efferent 

and afferent fibers (Russo et al. 2010). 

Glial marker S100 - Enteroglial cells derive, as enteric neurons, from neural crest cells; these elements do not 

contribute only to the structural activity and to the nourishment of the enteric neurons but are also essential for a variety 

of functions, such as the control of homeostasis, mucosal integrity, neuroprotection, neurogenesis, neuro-immune 

interactions, and synaptic transmission (Ruhl 2005; Boesmans et al. 2015). S100-IR is expressed both by ENS glial cells 

and by Schawann cells accompanying the extrinsic fibers; these cells have already been studied in Hirschsprung’s 

disease tissues (Kato et al. 1990). Theoretically, the absence of enteric neurons should be combined by that of enteric 

glia. Thus, the great majority of the S100-IR observed in LWFS is related to the presence of glial cells surrounding 

extrinsic fibers. In this line, it is tentative to speculate about a possible role of the Schwann cells in the postnatal 

neurogenesis. In fact, it has been demonstrated in mice that a subset of Schwann cell precursors are able to invade the 

gut alongside extrinsic nerves and give rise to new born neurons in the small and large intestine, in absence of vagal 

neuronal crest derived ENS precursors (Uesaka et al. 2015). Although this mechanism might explain the presence of few 

neurons surrounded by S-100-IR processes in the ileum of LWFS, it remains a fascinating hypothesis and further studies 

are needed. 
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Table 9.1. Details of the primary and secondary antibodies. 

Abbreviations: CGRP, calcitonin gene-related peptide; DBH, dopamine beta-hydroxylase; FITC, Fluorescein 

isothiocyanate; HuC/HuD, human neuronal protein; S100b, S100 protein; SP, Substance P; TH, tyrosine hydroxylase. 

Suppliers: Abcam, Cambridge, United Kingdom, Europe;Biotium, Inc. Hayward, CA, USA; Dako Cytomation, 

Denmark, Europe; Fitzgerald Industries Int., Inc. Concord, MA, USA.; Life Technologies, Carlsbad, California, USA; 

Merck Millipore, Merck KGaA, Darmstadt, Germany, Europe; Novocastra, Leica Microsystems - Biosystems Division, 

Newcastle, UK; Peninsula Laboratories, San Carlo, CA, USA; Santa Cruz Biotechnology, CA, USA. 

Primary antibody Host Code Dilution Source 

CGRP Rabbit T-4032  1:1000 Peninsula  

DBH Mouse  MAB 308  1:250 Merk Millipore 

HuC/HuD Mouse A21271 1:200 Life Technologies 

S100B Rabbit Z0311 1:200 Dako Cytomation 

SP Rat 10-S15A 1:400 Fitzgerald 

TH Mouse NCL-TH 1:80 Novocastra  

TH Sheep AB 1542 1:80 Merk Millipore 

Secondary antibody Host Code Dilution Source 

Anti-mouse IgG Alexa 594 Goat A11005 1:200 Life Technologies 

Anti-rabbit IgG FITC Goat 401314 1:200 Merck Millipore 

Anti-rabbit IgG Alexa 594 Donkey AB150132 AB150132 1:600 Abcam 

Anti-mouse IgG Alexa 488 Donkey 20014 1:100 Biotium 

Anti-rat IgG Alexa 594 Donkey A21209 1:50 Life Technologies 

Anti- rat IgG Alexa 488 Goat 20023 1:100 Biotium 

Anti-sheep IgG Alexa 594 Donkey A11016 1:200 Life Technologies 
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Table 9.2. Semiquantitative evaluation of the density of the adrenergic-(TH and DBH) and peptidergic-(CGRP and SP) 

immunoreactive nerve cell bodies 
(c)

 and fibers 
(f)

 innervating the ileum and pelvic flexure of control and lethal white 

foal syndrome foals. Immunoreactive cells and fibers are graded as: –, not found; +, a very small number; ++, a 

moderate number; +++, a large number of nerve cell bodies and/or fibers.  

 

Control foal Lethal white foal syndrome foals 

Adrenergic 

fibers 
Peptidergic fibers 

Adrenergic 

fibers 
Peptidergic fibers 

TH/DBH CGRP SP TH/DBH CGRP SP 

Mucosa 

 

 

+
f  

lamina 

propria
 

++
f  

mm
 

+++
f
 +++

f
 +

f
 +

f
 +

f
 

Submucosa +++
f
 +++

c,f 
+++

c,f
 +++

f
  +++

f
  ++

f
 

SMP ++
f
 +++

c,f
 +++

c,f
 +

f
 

+f
 

+f
 

CML ++
f
 +

f
 +++

f
 

+
f
/ileum

 

++
f
/pf* 

-/ileum
 

+++
f
/pf 

+
f
 

MP +++
f
 

++
f 

+
c 

 

+
c 

+++
f
 

+++
f
 ++

f
 ++

f
 

LML 
+

f
/ileum

 

++
f
/pf 

+
f
 +

f
 

-/ileum
 

+++
f
/pf

 
 

- - 

Serosa +
f
 +

f
 +

f
 +

f
 +

f
 +

f
 

 

* In the circular muscle layer (CML) of the pelvic flexure (pf) of LWFS foals, the adrenergic fibers were concentrated in 

the outer portion of the layer. 

Abbreviations: circular muscle layer (CML), longitudinal muscle layer (LML), muscularis mucosae (mm), myenteric 

plexus (MP), pelvic flexure (pf), submucosal plexus (SMP). 

 



112 
 

 

Figures 

 

Fig. 9.1 The figures show the two American paint male foals investigated, in which the lethal white foal syndrome 

(LWFS) was clinically suspected. The two foals had the same dam (a, c) and a different sire. The two foals were quickly 

accepted by the mare and were active in the box (a), but one day after birth they were depressed and recumbent (c). The 

coat of the first subject was entirely pure white (a-b) and the iris was totally light blue; in the second foal (c-e) the coat 

showed pigmentation of upper eyelid, nasolabial area (d), lower lip, foreskin, and perianal area (e), while the iris was 

pigmented. 
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Fig. 9.2 Photomicrographs showing TH- and DBH-immunoreactivity (IR) of adrenergic innervation observed in in the 

submucosa of one week old foal (control) (a, c, e) and lethal white foal syndrome (LWFS) affected subjects (b, d, f). In 

either subjects no differences in the mucosal and submucosal adrenergic innervation were noted. a, b) Longitudinal 

cryosections of control (a) and LWFS ileum (b) showing adrenergic DBH-IR nervous fibers distributed around 

submucosal vessels (large arrows), within the muscularis mucosae (small arrows) and in the lamina propria (empty 

arrow). c-f) Submucosal wholemount preparations of control (c, e) and LWFS (d, f) ileum: the large arrows indicate 

large bundles of adrenergic TH-IR fibers running along submucosal blood vessel (c, d, e); the small arrows indicate the 

delicate network of adrenergic TH-IR fibers encircling large submucosal arteries. Note the thin perivascular adrenergic 

network surrounding an artery (e) and also a large vein (above the large bundle of fibers).Scale bar: a-e 20 µm; f 100 

µm. 
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Fig. 9.3 Photomicrographs showing TH-immunoreactivity (TH-IR) of adrenergic innervation observed in cryosections 

of the ileum (a-d) and pelvic flexure (e-f) of one week old foal (control) (a-c, e) and lethal white foal syndrome (LWFS) 

affected subjects (d, f). a-b) A delicate network of TH-IR fibers and varicosities (red color) was scattered around 

submucosal plexus (SMP) (a) and myenteric plexus (MP) (b) HuC/HuD-IR neurons (green color). c-f) Longitudinal 

cryosections of control (c, e) and LWFS (d, f) ileum and pelvic flexure; empty arrows indicate TH-IR nervous fibers 

scattered in the circular muscle layer (CML). Small arrows indicate TH-IR fibers within the longitudinal muscle layer 

and serosa; large arrows indicate TH-IR fibers between the CML and LML. In the control tissues (c, e), the adrenergic 
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fibers were homogenously scattered in the whole thickness of the CML layer (empty arrows). In the LWFS ileum (d) 

adrenergic fibers were slightly reduced in the CML and LML. Note the abundancy of adrenergic fibers in the CML of 

the pelvic flexure of control foal (e). In the LWFS pelvic flexure (f), adrenergic fibers were more concentrated in the 

outer portion of the CML (empty arrows) and formed packed bundles of nervous fibers between CML and LML (large 

arrows) and in the LML (small arrows).Scale bar: a-b 20 µm; c-f 100 µm. 
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Fig. 9.4 Photomicrographs showing DBH-and TH-immunoreactivity (IR) of adrenergic innervation observed in the 

wholemount preparations of ileum (a-d) and pelvic flexure (e-f) of one week old foal (control) and lethal white foal 

syndrome (LWFS) affected foal. a-b) In the submucosa of control ileum (a), a large mesh network of adrenergic fibers 

(arrows) were seen, forming baskets of varicosities at the level of SMP ganglia (stars). In the submucosa of LWFS ileum 

(b) lacking enteric neurons, only large bundles of adrenergic DBH-IR fibers (arrows) were seen, which never formed 

varicosities. c-f) In the myenteric plexus (MP) of control ileum (c) and pelvic flexure (e), DBH- and TH-IR nervous 

fibers were thin and showed varicosities within the myenteric ganglia (star). In the LWFS ileum (d) and pelvic flexure 
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(f), DBH- and TH-IR was observed in large bundles of adrenergic fibers (large arrows) running longitudinally; from 

these large bundles of nervous fibers arose medium (medium sized arrows) and small diameter bundles of fibers (small 

arrows), which never form varicosities. Scale bar: a, c 100 µm; b, d-f 500 µm. 
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Fig. 9.5 Quantification of the densities for TH- (a, d), SP- (b, e), and CGRP-immunoreactive fibers (c, f) of one week 

old foal (control, CTRL) and LWFS foals. a, d) Percentages of TH-IR area in the mucosa, circular muscle layer (CML), 

and longitudinal muscle layer (LML) of the ileum (a) and pelvic flexure (d). b, e) Percentages of SP -IR area in the 

mucosa, CML and LML of the ileum (b) and pelvic flexure (e). c, f) Percentages of CGRP-IR area in the mucosa, CML 

and LML of the ileum (c) and pelvic flexure (f). Data are represented as mean ± SEM. 
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Fig. 9.6 a-h) Photomicrographs showing the co-localization of CGRP- and SP-immunoreactivity (IR) in the cryosections 

of ileum and pelvic flexure of the one week old foal (control) and lethal white foal syndrome (LWFS) affected subjects. 

In the control ileum (a-b) and pelvic flexure (c-d), CGRP- and SP-IR were co-expressed in the nervous fibers (empty 

arrows) and submucosal neurons (white arrows); in the LWFS ileum (e-f) and pelvic flexure (g-h), there was a decreased 

density of peptidergic immunoreactive nervous fibers in the mucosa (empty arrows) compared to the control tissues. 

Furthermore, in LWFS sections (e-h), no submucosal neurons were visible. i-l) Photomicrographs showing SP-IR in 

longitudinal cryosections of the ileum (i-j) and pelvic flexure (k-l) of control and LWFS foals. Note that SP-IR was 

brightly expressed in the nervous fibers (empty arrows) in the circular muscle layer (CML) of control ileum (i) and 

pelvic flexure (k) and was dramatically reduced in the CML of the LWFS ileum (j) and pelvic flexure (l). In the 

longitudinal muscle layer (LML) the large arrow (i) indicates SP-IR nervous fibers in a myenteric plexus ganglion 

embedded in the LML, while small arrows indicate think SP-IR fibers running along the LML (i; k-l).  

Scale bar: a-b; e-h; j: 20 µm; c-d; i; k-l:100 µm.



120 
 

 

 

Fig. 9.7 a-c) CGRP-IR in longitudinal cryosections of the pelvic flexure (a-b) and ileum (c) of one week old foal 

(control) and lethal white foal syndrome (LWFS) affected subject. a-b) In the control pelvic flexure (a) CGRP-IR was 

expressed by a few CML nervous fibers (empty arrows) and myenteric plexus neurons (white arrows). In the LWFS 

pelvic flexure (b), no enteric neurons were visible and there was a great reduction of CGRP-IR nervous fibers in the 

CML and longitudinal muscle layer (LML). c) In the submucosa (SM) of LWFS ileum, only very few submucosal 

plexus neurons were observed (white arrows) which showed CGRP-IR. Notably, in the mucosa above these CGRP-IR 

neurons, the CGRP-IR fibers were more concentrated (empty arrows) compared to the mucosa above submucosa lacking 

enteric neurons (see Fig. 5 e). d) Wholemount preparation of the ileum of LWFS foal in which a large submucosal blood 

vessel showed a rich network of CGRP-IR fibers (empty arrows). Scale bar: a-d 100 µm. 



121 
 

 

 

Fig. 9.8. Photomicrographs showing S100- and HuC/HuD-immunoreactivity (Hu-IR) in tangential cryosections of the 

ileum of one week old foal (control) (a) and lethal white foal syndrome (LWFS) affected subjects (b-c). a) Hu-IR was 

strongly expressed by myenteric plexus neurons which formed ganglia of different dimensions (arrows). In the picture is 

also visible the S100-IR (green color) around HuC/HuD-IR neurons, along the strands of nervous fibers running 

between ganglia and within the muscle. b-c) In the LWFS tissues, very few HuC/HuD-IR neurons were visible only in 

the ileum (arrows, b, c) and S100-IR was reduced in density and limited mainly to cells ensheathing bundles of extrinsic 

nervous fibers and the very few HuC/HuD-IR neurons. Scale bar: a-c 100 µm. 
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Quantification of nitrergic neurons in the myenteric plexus of gastric antrum and ileum of healthy and 
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Introduction 

The gastrointestinal physiology is mainly under the control of the ENS, which consists of millions of neurons 

harbored in the wall of the digestive system from the esophagus to the inner anal sphincter. Enteric neurons are 

organized in two ganglionated plexuses: the MP and SMP, which interact in coordinating gut functions almost 

independently from the central nervous system (Furness 2006). The gastrointestinal peristalsis is triggered by sensory 

fibers responsive to the radial distension of the lumen or by chemical stimuli. Once exited, the intramural sensory 

neurons activate ENS excitatory and inhibitory muscle motor neurons. The excitatory neurons release acetylcholine, 

whereas the inhibitory neurons release nitric oxide (Furness 2006). Nitrergic neurons and fibers, which are usually 

immunohistochemically identified by the use of an antibody against the enzyme nNOS, have been already characterized 

in the canine gastrointestinal tract (Berezin et al. 1994; Ward et al. 1994). Nevertheless, none of these studies quantified 

the percentage of nitrergic neurons. 

A wide spectrum of damages affecting the structural and functional integrity of the ENS can be responsible for many 

gastrointestinal symptoms and dysfunction. Among the secondary enteric neuropathies, i.e. heterogeneous disease in 

which the primary target of the disease is not the ENS (that results however damaged), diabetes mellitus (DM) is 

classified as a “predominantly degenerative neuropathy”(Knowles et al. 2013). 

DM is a worldwide endocrine disease affecting humans but also domestic mammals, such as dogs and cats (Nelson 

and Reusch 2014). The common feature of DM is hyperglycemia, which must be controlled to avoid severe DM 

complications such as retinopathy, vascular damage, generalized neuropathy, and gastrointestinal motility disorders (i.e. 

vomiting, constipation, diarrhea, and fecal incontinence), in both human and animal models (Rothstein 1990; Zandecki 

et al. 2008; Adewoye et al. 2011; Ciobanu and Dumitrascu 2011). Seemingly, generalized neuropathy and 

gastrointestinal motility disorders are two strictly correlated complications. As a matter of fact, a growing body of 

evidence suggests that gastric and intestinal symptoms in human and animal diabetic patients derive from intestinal 

motility abnormalities related to enteric neuropathy. 
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A few studies have focused on the gastrointestinal dysfunction in DM dogs (Takeda et al. 2001; Onoma et al. 2008), 

and to date, no information is available on the effects of DM on canine ENS. 

The present research was focused on the nitrergic enteric subpopulation of dogs, since in other species (mainly 

rodents) these neurons are susceptible to diabetic neuropathy. The aims of the present study were to histochemically 

quantify the percentage of MP nitrergic neurons of the gastric antrum and ileum in healthy dogs and to characterize the 

effects of spontaneous DM on these neurons. 

Material and methods 

Animals-Tissues were collected from eight control (CTRL) dogs (none had evident gastrointestinal disorders) (Table 

10.1) and five non-obese DM-affected dogs (Table 10.2).  

DM type I was diagnosed through a documented clinical history and blood biochemical analysis. All animals died 

spontaneously or were euthanized and their tissues were collected following owner permissions. According to Directive 

2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for 

scientific purposes, the Italian legislation (D.Lgs. n. 26/2014) does not require any approval by competent Authorities or 

ethics committees. 

Tissue collection-The gastrointestinal tracts were removed within 2 h after each animal’s death. The stomach and 

ileum were longitudinally cut open respectively along the greater curvature and the mesenteric border. The stomach and 

intestine of CTRL dogs did not present apparent mucosal hyperemia or inflammatory lesions, whereas the ileum of DM-

affected dogs showed severe (two dogs) or mild (three dogs) mucosal hyperemia. The pyloric portions of the stomach 

and the ileum were treated to obtain tangential (1.0 cm x 1.0 cm) and longitudinal (2.0 cm x 0.5 cm) cryosections. 

Specimens from all the subjects were processed for immunohistochemistry as described previously (Sadeghinezhad et 

al. 2013).  

Immunohistochemistry -The antibody anti- HuC/HuD was utilized as a pan-neuronal marker to identify all the enteric 

neurons.  
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Nitrergic neurons and nervous fibers were immunohistochemically identified by the use of two antibodies against the 

nNOS enzyme. Table 10.3 lists the primary and secondary antibodies employed. 

Specificity of the primary antibodies-The antibodies utilized in the present research (mouse anti-HuC/HuD, mouse 

anti-nNOS, and rabbit anti-nNOS were tested for their specificity by WB analysis, which indicated that they were 

specific for the targeted molecules in dogs (Fig. 10.1 a). Furthermore, the two anti-nNOS antibodies were tested in a 

double-staining protocol and were totally co-localized (Fig. 10.1 b). 

The specificity of the secondary antibodies was tested as described in a previous work (Sadeghinezhad et al. 2013). 

Western blot- Tissue samples (dog ileum) were collected, frozen in liquid nitrogen, and stored at -80°C. Tissues were 

later thawed and homogenized. Total protein content was extracted using T-PER tissue protein extraction reagent in the 

presence of a protease inhibitor cocktail (Thermo Scientific, Italy, Europe) according to the manufacturer's instructions, 

and quantified using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Italy, Europe). Aliquots containing 50 ug 

of proteins were denatured by heating at 95°C for 5 min in Laemmli buffer, separated by SDS-PAGE (12.5% to test 

HuC/HuD and 7.5% to test nNOS specificity) and transferred onto a nitrocellulose membrane (GE Healthcare, UK, 

Europe). After blocking treatment, the membranes were incubated at 4°C overnight with the primary antibodies (Table 

10.3) diluted in Tris-buffered saline-T20 (TBS-T20 20 mM Tris-HCl, pH 7.4, 500 mM NaCl, 0.1% T-20). After washes, 

the blots were incubated with respective peroxidase-conjugated secondary antibodies (Table 10.3). Immunoreactive 

bands were visualized using chemiluminescent substrate (Pierce ECL Western Blotting Substrate, Thermo Scientific, 

Italy, Europe). The intensity of luminescent signal was acquired on a C-DiGit Chemiluminescent Western Blot Scanner 

using Image Studio Digits Software Ver 3.1(LI-COR Biotechnology, UK, Europe). 

For HuC/HuD antibody, a two band of ~42 kDa and ~40 kDa (theoretical molecular weight 41,770 kDa for HuD and 

39,547 kDa for HuC, respectively) (http://www.uniprot.org/) were present in extracts from the ileum (Fig. 10.1). The 

band revealed by the two nNOS antibodies showed a molecular weight of ~155 kDa (theoretical molecular weight 

160,970 kDa) in the ileum (Fig. 10.1 a). The blotting of the monoclonal antibody (mouse anti nNOS) was more clear 

and defined compared to that obtained with the polyclonal antibody (rabbit anti-nNOS); since the perfect co-localization 

between the two anti-nNOS sera utilized (Fig. 10.1 b), we also considered the polyclonal antibody suitable for our 

research.  
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WB analysis confirmed the specificity of the primary antibodies utilized in the present study. 

Fluorescence microscopy- Preparations were examined on a Nikon Eclipse Ni microscope equipped with the 

appropriate filter cubes to distinguish the fluorochromes employed. The images were recorded with a Nikon DS-Qi1Nc 

digital camera and NIS Elements software BR 4.20.01 (Nikon Instruments Europe BV, Amsterdam, Netherlands). Slight 

adjustments to contrast and brightness were made using Corel Photo Paint, whereas the figure panels were prepared 

using Corel Draw (Corel Photo Paint and Corel Draw, Ottawa, ON, Canada).  

Quantitative analysis- At least 300 HuC/HuD-IR neurons were counted for each gastrointestinal tract from each 

animal. Double-immunofluorescence using HuC/HuD and the rabbit anti-nNOS antibodies on tangential sections, 

allowed us to quantify the proportions of nitrergic neurons. The ratio between the nNOS-IR neurons and HuC/HuD-IR 

neurons was determined and data were expressed as relative percentage.  

Statistical analysis- The percentages of nitrergic neurons quantified in DM-affected dogs were compared with those 

observed in the control dogs. According to the Gaussian distribution of the data (Kolmogorov-Smirnoff test), the Student 

t test was used to analyze the difference between the mean values of the percentages of nitrergic neurons in the antrum 

and ileum of the two groups of dogs (CTRL vs.DM). Data are presented as mean ± St. Dev. 

The level of significance was set at P<0.05. All analyses were performed using a commercial software (GraphPad 

Prism version 5.00 for Windows, GraphPad Software Inc., La Jolla, CA, USA). 

Results 

Control dogs- Gastric and ileal HuC/HuD-IR neurons showed bright and homogenous labeling that was more 

concentrated in the cytoplasm than in the nucleus; nNOS immunoreactivity (-IR) was strongly expressed by neurons and 

fibers (Fig. 10.2). Tangential sectioning allowed us to observe that, in the stomach, some ganglia contained several 

nitrergic neurons, sometimes grouped in clusters (Fig. 10.2 a-c), but also some ganglia were completely free of nNOS-

IR cell bodies (Fig. 10.2 d-f). In the stomach, 30±6% of the total neuronal population showed nNOS immunoreactivity 

(902/3129 cells). Ileal ganglia were, in general, larger than gastric ones and almost all contained homogenously 

distributed nitrergic neurons (Fig. 10.2 g-i), which represented 29±5% (795/2800 cells) of the total neuronal population. 
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Diabetic dogs- In all DM dogs, regardless of the age of the subjects, duration of the hyperglycemic status, and 

diabetes severity, the common denominator was a thickening of the connective tissue surrounding the ganglia, which 

was limited in the antrum but more pronounced in the ileum (Fig. 10.3 a-l). In the most affected ganglia, this connective 

thickening showed marked autofluorescence (Fig. 10.3 d-l). While HuC/HuD and nNOS immunoreactivity was quite 

preserved in the stomach (Fig. 10.3 a-c), in some ileal ganglia, the HuC/HuD-IR was compromised, showing 

morphological changes (Fig. 10.3 d-f). In the worst condition, neuronal somata were barely identifiable (Fig. 10.3 d-e) 

and HuC/HuD-labeling seemed dispersed in small granules (Fig. 10.3 f); in some neurons, HuC/HuD-labeling was 

confined only in the nucleus. In a few ganglia in which nNOS-IR was still brightly expressed by cell somata and fibers, 

HuC/HuD-neurons were no longer identifiable (Fig. 10.3 g-i). In the ileum, nNOS immunoreactivity was altered also in 

neuronal fibers, which appeared often deranged or discontinued (Fig. 10.3 j-l). In the stomach the percentage of nNOS-

IR neurons was 25±2%  (727/2926 cells). In the ileum the percentage of nitrergic neurons was 19±5% (308/1508 cells). 

Control and diabetic comparison 

The statistical analysis did not show differences between the percentages of nitrergic neurons observed in the gastric 

antrum of the two groups CTRL= 30±6% vs. DM= 25±2% (P= 0.112). On the contrary, there was a statistically relevant 

reduction in the percentage of nNOS-IR neurons in the ileum of pathological animals: CTRL= 29±5% vs. DM= 19±5% 

(P= 0.006). Fig. 10.4 graphically represents the data. 

Discussion 

In the present study, we firstly evaluated the percentage of nitrergic neurons harbored in the myenteric plexus of the 

canine antrum and ileum. 

In the control dogs, similar percentages of nitrergic neurons were observed in the antrum (about 30%) and ileum 

(about 29%). In laboratory rodents, the percentage of nNOS-IR neurons was about 20% in the stomach (Furness 2006) 

and may vary from 24–29% in the ileum (Lawson et al. 2010; Sadeghinezhad et al. 2013), respectively. No data are 

available on the percentage of nNOS-IR myenteric neurons in the stomach of large animals, whereas this information is 

available in relation to the ileum of pigs (about 19%) (Brehmer et al. 2004b), horses (about 28%) (Chiocchetti et al. 

2009a), and sheep (about 33%) (Chiocchetti et al. 2006).  
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Knowing the proportion of the nitrergic subclass of ENS neurons in healthy subjects is crucial to compare any 

alteration (by percentage) of the same category of neurons during pathological conditions, such as DM.  

Concerning the effects of DM in the canine nitrergic myenteric neurons, our findings indicate that, in the stomach of 

diabetic dogs, the percentage of nitrergic neurons was not significantly decreased (about 25%). On the contrary, in the 

ileum, this subclass of enteric inhibitory neurons was meaningfully reduced (about 19%). To the best of our knowledge, 

the present study represents the first contribution related to diabetic enteric neuropathy in dogs. 

Path et al. (Phat et al. 1978) documented the first evidence of human ENS alteration during DM. In the last few years, 

many researchers investigated the alterations caused by spontaneous type I or streptozotocin-induced DM on the ENS 

using laboratory rodents (Fregonesi et al. 2001; Yoneda et al. 2001; Cellek et al. 2003; Alves et al. 2006; Izbeki et al. 

2008) and showed a reduction in the number of ENS neurons in different tracts of the digestive system (Fregonesi et al. 

2001; Furlan et al. 2002; Alves et al. 2006). Enteric neuronal subpopulations are known to respond differently to 

diabetes: some exhibit degeneration, some undergo changes in neurotransmitter content without degeneration, and some 

others are unaffected (Chandrasekharan and Srinivasan 2007). 

In the early stages of animal (Takahashi et al. 1997; Cellek et al. 1999; Cellek et al. 2003; Takahashi 2003; Cellek et 

al. 2004; Demedts et al. 2013) and human DM (Miller et al. 2008; Chandrasekharan et al. 2011), only inhibitory 

nitrergic neurons seem to be involved. Furthermore, at least in human, DM type I seems to determine clinical problems 

mainly in the upper gastrointestinal tract, whereas the large intestine seems to be spared (Schvarcz et al. 1996). 

The data presented here lead to the question of why the nitrergic subpopulations in the stomach and ileum were 

differently affected by the diabetic condition. Our neuroanatomical findings in the DM dog stomach are consistent with 

functional evidence from Takeda et al. (Takeda et al. 2001) and Onoma et al.(Onoma et al. 2008); these researchers 

observed that delayed gastric emptying in streptozotocin-induced diabetic dogs may require long DM duration (from 

18–60 months). The average time of hyperglycemic state of the insulin-treated DM dogs considered in the present study 

(20 months; ranging from 1–48 months) was probably not long enough to develop gastric alteration. Another 

explanation might be related to the insulin treatment of the dogs considered in our study; in fact, as shown in rats, insulin 

replacement may restore nNOS expression in the stomach (Watkins et al. 2000). 
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Regarding the significant reduction of nitrergic neurons in the ileum of DM dogs, functional studies do not exist. 

Furthermore, in some ileal ganglia of the DM dogs, the pattern of HuC/HuD immunolabeling was abnormal, i.e. not 

homogenously distributed in the cytoplasm and nucleus, showing several degrees of alteration (weakness, 

fragmentation, nuclear internalization). It is important to remark that HuC/HuD cannot be considered only as a pure pan-

neuronal marker; in fact, recent investigations reported nuclear internalization of the HuC/HuD protein in mouse MP 

neurons during experimental infectious, metabolic, and ischemic/reperfusion conditions (Lawson et al. 2010; Thacker et 

al. 2011; Rivera et al. 2014). Furthermore, a recent investigation confirmed that the subcellular localization of 

HuC/HuD-IR reflects the health status of the neurons, with oxygen deprivation being the most probable trigger of 

intracellular HuC/HuD modifications (Desmet et al. 2014). It is surely admissible that, in the presence of diabetes, many 

ganglia might undergo hypoxia. 

The etiology of nerve damage in diabetes is complex and many possible mechanisms have been proposed that may be 

interrelated (Voukali et al. 2011). During diabetes, oxidative stress and advanced glycation end products (AGEs) also 

play an important role in the pathophysiology of vessel alteration and ENS changes (Chandrasekharan and Srinivasan 

2007; Bagyanszki and Bodi 2012).  

The involvement of the oxidative stress in the development of neuropathy in nitrergic enteric neurons during DM, is 

associated to absence of the antioxidant enzyme heme oxygenase-2 (HO-2); in fact, nNOS-IR neurons lacking HO-2 are 

more susceptible to the changes caused by diabetes, while nitrergic neurons containing HO-2, seem to be protected from 

neuropathy (Shotton and Lincoln 2006). Concerning the presence of HO-2 in the canine gastrointestinal tract, Ny and 

colleagues (Ny et al. 1997) showed that the percentage of nitrergic neurons co-expressing HO-2 in the pylorus and ileum 

was the same; this result does not contribute to our understanding of the regional differences observed in the DM dogs 

of the present research. 

The loss of nNOS expression in the ENS seems to be mediated by AGEs, which interact with the receptor for AGE 

(RAGE) expressed by MP nitrergic neurons (Korenaga et al. 2006; Voukali et al. 2011). AGEs and RAGE seem to be 

also responsible for the vascular damages occurring in diabetes (Yamamoto et al. 2000). Furthermore, AGE 

accumulation in tissues seems to begin at the time point when nNOS depletion becomes irreversible. This action 

mechanism suggests that nitrergic apoptosis is triggered by the irreversible AGE increase in the serum and its 
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accumulation in tissues. It should be mentioned that at present, no data are available on the effects of AGEs in the canine 

digestive system or on the distribution of RAGE in canine enteric microvessels and neurons. 

Another aspect that deserves attention is the observation (from a macroscopic point of view) that the diabetic dogs in 

our study showed mild to severe intestinal inflammation, which can derive from the diabetic vascular damages (Bodi et 

al. 2012) and consequently ENS alteration (or vice versa) (Brierley and Linden 2014; Uranga-Ocio et al. 2015). 

In the present preliminary study, we considered only one (large) subpopulation of enteric neurons. It is plausible that 

other subclasses of neurons might be involved in DM (for instance cholinergic neurons) and other studies are needed to 

better understand the impact of hyperglycemia on the ENS. 

Considering the findings of the present research and a lack of functional studies on the digestive system of 

spontaneous diabetic dogs, further functional investigations in DM dogs are necessary.The present research turns the 

spotlight on the effect of spontaneous diabetes on the gastrointestinal intramural innervations, indicating that DM can 

potentially affect the ileal motility in dogs. 
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Table 10.1 Clinico-pathological data of the control dogs included in the present research. 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: M, male; F, female; M
 a 

male
 
neutered 

Control 

dogs 

Breed Gender Age Cause of death 

CTRL1 

German shepherd M 
a
 10 yr 

Euthanasia due to progressive 

physical deterioration 

CTRL2 
German shepherd M 9 yr, 6 mo Heart cancer 

CTRL3 Boxer M 
a
 8 yr Cardiovascular disease 

CTRL4 German shepherd M 10 yr Cardiovascular disease 

CTRL5 Siberian Husky M 
a
 16 yr Neurological (CNS) disorders 

CTRL6 English Setter F 2 yr Road accident 

CTRL7 Chihuahua F 8 mo Head trauma 

CTRL8 West Highland 

White Terrier  

M 17 yr Intracranial neoplasia 
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Table 10.2 Clinico-pathological data of the diabetic dogs included in the present research. 

 

 

 

 

 

 

 

Abbreviations: M, male; F, female; F
 a 

female spayed 

Diabetic dogs Breed Gender Age Time of insulin 

treatment 

DM 1 Cairn Terrier F 
a
  15 yr 2 yr, 5 mo 

DM 2 
Labrador retriever F 12 yr, 7 mo  4 yr 

DM 3 Mongrel M 11 yr, 1 mo 6 mo 

DM 4 German Shepherd F 
a
  13 yr, 5 mo 3 yr 

DM 5 Bull Terrier miniature F 4 mo 1 mo 
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Table 10.3 Primary and secondary antibodies used in the study.  

 

 

Abbreviations: IHC, Immunohistochemistry; HuC/HuD, human neuronal protein; nNOS, neuronal nitric oxide synthase; 

WB, Western Blot. 

Suppliers: 
a 
Life Technologies, California, USA; 

b 
Santa Cruz Biotechnology, California, USA; 

c
Merck Millipore, Merck 

KGaA, Germany, Europe; 
d 
Sigma Aldrich, Italy, Europe. 

 

Primary antibody Host Code Dilution Source 

HuC/HuD Mouse A21271 IHC 1:400; WB 1:200 Life Technologies
a
 

nNOS Mouse sc-5302 IHC 1:50;  WB 1:200 Santa Cruz
b
  

nNOS Rabbit AB5380 IHC 1:500; WB 1:1000 Merck Millipore
c
 

Secondary antibody Host Code Dilution Source 

Anti-mouse IgG Goat A11005 IHC 1:200 Life Technologies
a
 

Anti-rabbit IgG Goat 401314 IHC 1:200 Merck Millipore
c
 

Anti-mouse IgG Goat A2304 WB 1:1000 Sigma Aldrich
d
 

Anti-mouse IgG Goat A0545 WB 1:3000 Sigma Aldrich
d
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Figures 

 

Fig. 10.1 a) Western blot (WB) analysis showing the specificity of the primary antibodies utilized (mouse anti-

HuC/HuD, mouse anti nNOS, and rabbit anti-nNOS). Each antibody showed a major band close to the theoretical 

molecular weight. The number on the left of each line indicates the molecular weight. The images of the different 

immunoblots were slightly adjusted in brightness and contrast to match their backgrounds. b) Photomicrograph showing 

a tangential cryosection of the myenteric plexus of the ileum in a control dog with some myenteric neurons (stars) 

immunoreactive for both the anti-nNOS antibodies utilized in the study (rabbit anti-nNOS and mouse anti-nNOS). Scale 

bar: 50 µm. 
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Fig. 10.2 Photomicrograph showing tangential cryosections of the myenteric plexus of the pyloric antrum (a-f) and 

ileum (g-i) of control dogs in which all the myenteric plexus neurons were immunolabeled with the antibody anti-

HuC/HuD and the nitrergic neurons with the antibody anti-neuronal nitric oxide (nNOS). a-f) Of note, nitrergic neurons 

were not homogenously distributed in the gastric ganglia; in some ganglia nNOS-immunoreactive neurons (nNOS-IR) 

(stars) were well represented and grouped in clusters (a-c) while in others nNOS-IR neurons were poorly represented (d-

f). g-i) In the ileum nitrergic neurons were diffusely distributed (g-i). Scale bar: a-c, 50 µm; d-i, 100 µm. 
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Fig. 10.3 Photomicrograph showing tangential cryosections of the myenteric plexus of the antrum (a-c) and ileum (d-l) 

of diabetic dogs. a-c) in all the antral plexuses, Hu- and nNOS-IR neurons were easily recognizable. d-l) in the ileum, an 

evident thickening of the connective tissue (white arrows) surrounding the ganglia is visible. Hu-IR was severely 

compromised in many ganglia in which neurons showed structural changes with different degrees of morphological 

disorganization and disintegration (open arrows; d, e), or were barely identifiable due to the very faint immunolabeling 

(open arrow, f). in some more deranged ganglia, HuC/HuD-labeling was confined in small granules (f). g-i) in some 

ganglia nNOS-IR preserved bright immunolabeling (h, stars), whereas HuC/HuD-neurons were no longer identifiable 

(g). j-l). in other more deranged ganglia, also nNOS-IR was altered in both cell somata (stars) and in fibers, which 

appeared often discontinued/interrupted.  

Scale bar: a-c, 100 µm; d-l, 50 µm.
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Fig. 10.4 Graphical representation of the percentages (mean ± St. Dev) of nNOS-IR neurons in the antrum (a) and ileum 

(b) of control (CTRL) and diabetic (DM) dogs. The statistical analysis carried out by the Student t test evaluated the 

differences between mean values of nNOS/HuC/HuD–IR neurons in DM vs. CTRL dogs. The level of significance was 

set at P<0.05. A) In the antrum, the averages were similar: CTRL= 30±6% vs. DM= 25±2% (P=0.112). B) In the ileum, 

the averages resulted significantly different: CTRL= 29±5% vs. DM= 19±5% (* P= 0.006). 
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CHAPTER 11 

Functional and neurochemical abnormalities in patients with Parkinson's disease and chronic constipation 
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Introduction 

Parkinson disease is a chronic neurodegenerative multi-system condition affecting about 1% of the elderly 

population, although 10% of all patients develop symptoms before 50 years of age (De Rijk et al. 1997). The two 

pathological hallmarks of PD are a progressive degeneration of the dopamine-containing neurons in the substantia nigra 

along with aggregates of eosinophilic inclusions (mainly phosphorylated alpha-synuclein), i.e. Lewy bodies (LBs) and 

neurites (LNs), in the remaining surviving neurons (Schulz-Schaeffer 2010). Although PD is regarded as a prototypical 

movement disorder, non-motor manifestations, such as autonomic dysfunctions, in particular those involving the GI 

tract, are increasingly recognized as being part of a wider clinical picture (Poewe 2008). 

Virtually all parkinsonian patients experience GI dysfunctions showing dysphagia (up to 98% of cases), nausea and 

other severe dyspeptic symptoms attributable to gastroparesis, as well as chronic constipation (CC) (Pfeiffer 2003; Kaye 

et al. 2006). Specifically, CC is a dominant manifestation in up to 80% of PD patients (Fasano et al. 2015) and it occurs 

2-4 times more commonly in PD compared to age-sex matched controls (Lin et al. 2014). Furthermore, the 

administration of L-Dopa, which is a fundamental and unavoidable therapy for PD patients, exerts a well-known 

inhibitory action on GI motility, worsening the severity of CC (Pagano et al. 2015), even though a delayed colonic 

transit has been reported in PD patients independently of drugs (Jost 2010). CC in PD is usually severe since it poorly 

responds to first-line treatment (e.g. osmotic laxatives) and at times evolves to severe complications such as megacolon 

and intestinal pseudo-obstruction (Wedel et al. 2002; Tateno et al. 2011; Knowles et al. 2013). 

Previous data showed that the ENS, the third component of the autonomic nervous system, can be targeted by the 

pathological process of PD as confirmed by the presence of LBs in myenteric and submucosal neurons throughout the 

GI tract of patients with PD (Wakabayashi et al. 1988; Braak and Del Tredici 2009). In addition, it is well acquired that 

ENS changes can occur in patients with idiopathic CC as emerged by studies based on full thickness biopsies of patients 

undergoing colectomy for treatment-resistant, severe slow transit CC (Bassotti et al. 2006). Taken together these 

features provide a strong support to the regulatory role of the ENS since any abnormality affecting its integrity may 
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result in GI dysfunction and symptoms such as those detectable in patients with PD and CC. The recent evidence that 

mucosal biopsies from the colon can be used to retrieve submucosal tissue with its ganglionated plexus provided an 

exciting tool which can be easily exploitable to investigate enteric neurochemical and molecular changes occurring in 

patients with PD and GI dysfunction, including CC (Lebouvier et al. 2010).  

Thus, the present study was conceived to investigate functional and neuronal features in a cohort of PD/CC patients 

and compared neurochemical findings of PD/CC to non-parkinsonian CC. Our neuronal analysis focused on submucosal 

specimens, i.e. submucosal plexuses, which play a critical role in controlling secretomotor mechanisms in the GI tract. 

Deciphering the mechanisms underlying bowel dysfunction in PD would ultimately allow for a better knowledge of the 

management and treatment of CC in these patients. 

Material and methods 

Patient recruitment - The study design included three groups of patients: n= 29 PD/CC; n= 10 patients with chronic 

constipation CC; n= 20 control subjects. PD/CC patients were enrolled at the Movement Disorder Center of the 

Neurology Unit of St. Orsola-Malpighi Hospital in Bologna, Italy. The diagnosis of PD was defined according to well 

established guidelines of the United Kingdom Parkinson’s Disease Survey Brain society (Hughes et al. 1992). Patients 

with a significant cognitive impairment or a Mini Mental State Examination score < 19 were excluded. Data concerning 

duration of PD, Hoehn & Yahr (HY) stage, parkinsonian features evaluated by the Movement Disorders Society revised 

unified PD rating scale (MDS-UPDRS), along with daily medication dosage of L-Dopa, were collected for each PD 

patient. CC patients with or without PD were diagnosed according to Rome III criteria (Longstreth et al. 2006) at the 

Gastroenterology outpatient clinic of St. Orsola-Malpighi Hospital, Bologna, Italy. Each PD/CC and CC patient reported 

an average Bristol stool scale of 1-2 (Saad et al. 2010). Asymptomatic, otherwise healthy subjects undergoing screening 

colonoscopy for polyps served as control group. 

Each patient / subject signed an informed consent form before entering the study. The study protocol was approved 

by Ethical Committee of St. Orsola-Malpighi Hospital, Bologna, Italy (N° 66/2011/U/Tess). 

GI functional assessment - Both colonic transit time and ano-rectal manometry were performed in any CC patients 

with or without PD based on standardized methods. Colonic transit time was performed using radiopaque markers. 

Briefly, on morning of day 1, patients ingested 24 polyethylene markers (Sitzmark-Konsyl Pharmaceutical, Inc., Edison, 
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NJ) orally with water. On day 5, abdominal radiographs were obtained in the erect position. The patients were instructed 

to maintain their regular diet and avoid laxatives and suppositories for the duration of the test (Evans et al. 1992). The 

manometric study was performed with a four-channel water perfused catheter using a stationed pull-through technique 

(Mui Scientific, Mississauga, Ontario, Canada) connected to an electronic manometer and to a computer which 

generated the graphic register (Sandhill Scientific Inc., Littleton, Colorado, USA) with the patient in the left lateral 

decubitus position. The catheter is placed through the anal canal and advanced into the rectum. A complete manometric 

evaluation includes determination of the resting pressure, squeeze pressure, the ability of the IAS to relax with straining, 

the RAIR and the rectal sensation were performed according with S.S.C. Rao et al (Rao et al. 2002). 

Tissue collection - During colonoscopy, n= 4 standard mucosal biopsies were taken from the descending colon in 

each PD/CC, CC and control patient / subject. One biopsy was immediately snap-frozen in liquid nitrogen and kept at -

80°C until use. The remaining biopsies were place into a Sylgard-coated Petri dish with ice-cold Hank’s balanced salt 

solution (H4641, Sigma-Aldrich, Italy, Europe) and were microdissected under a steromicroscope (Leica S6E, Leica 

mycrosistems, Italy, Europe). Whole mounts of the submucosal layer were isolated, pinned flat and fixed in 4% 

paraformaldehyde buffered solution for 3 hours at room temperature. After three washes in phosphate-buffered saline 

(PBS, pH 7.2) solution, submucosal whole mounts were processed for immunohistochemistry. 

Immunohistochemistry and neuronal counts- Each submucosal specimen was incubate for 3h RT in solution 

containing 2% Triton X-100 and 20% Goat serum (Colorado Serum Co., Denver, CO, USA) in PBS. Tissues were 

incubate overnight +4°C in primary antibodies (Table 11.1). Whole mount tissues were then washed in PBS (3 × 10 

min) and were then incubated for 2 h RT with a cocktail of secondary antibodies (Table 11.1). Finally, after three more 

washes in PBS, preparations were mounted with buffered glycerol (pH 8.6) and examined on a on a Nikon Eclipse Ni 

microscope equipped with the appropriate filter cubes to distinguish the fluorophores employed. The images were 

recorded with a Nikon DS-Qi1Nc digital camera and NIS Elements software BR 4.20.01 (Nikon Instruments Europe 

BV, Amsterdam, Netherlands). 

The following primary antibodies were used: two general paneuronal markers, i.e. PGP9.5, recognizing perikarya and 

nerve fibers, and HuC/HuD,  detecting only neuronal cell bodies (the latter also used for quantitative analysis). Neuronal 

counts were expressed as number of cell bodies / ganglion (mean ± SD). A total number of at least 20-30 neurons (about 
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5-6 ganglia / whole mount) was quantitated in each whole mount / patient or controls subjects. Cholinergic neurons were 

identified by using the anti-peripheral choline acetyl-transferase (pChAT) antibody (rabbit polyclonal; diluted 1:150, 

Justus-Liebig-University, Giessen, Germany) and VIP (rabbit polyclonal; diluted 1:2,500; CURE/DDRC, DDD, 

University of California Los Angeles, Los Angeles, California, USA;) as markers for secretomotor neurons. Double 

labeling immunohistochemistry included experiments with HuC/HuD and either pChAT or VIP. The percentage of 

HuC/HuD positive neurons colocalizing with either pChAT or VIP were counted and data expressed as mean ± St.Dev. 

For each colocalization in each patient, a total number of at least 20 neurons (about 5-6 ganglia / whole mount) was 

quantitated in each whole mount / patient or control subjects. Experiments aimed at testing antibody specificity were 

performed by omitting the primary antibody and co-incubating each primary antibody (namely for pChAT and VIP) 

with an excess of the homologous molecule. Specificity for pChAT and VIP was demonstrated by the lack of 

immunoreaction in sections in which the primary antiserum was omitted or in sections incubated with primary 

antibodies preabsorbed with the appropriate molecule (i.e. acetylcholine and VIP peptide). 

Gene expression assay by RT-qPCR- For each patient, the frozen biopsy (10 mg of tissue) was thawed, mechanically 

disrupted with sterile forceps and homogenized using QIAshredder (Qiagen, Hilden, Germany), according to the 

manufacturer's instructions. Total RNA Extraction was performed using RNeasy mini kit as indicated and eluted in a 

final volume of 30 µl.  Extracted RNA was firstly purified from genomic DNA incubating for 30 min at 37°C in a 

thermocycler (Termal Cycler 2027, Applied Biosystem, USA) with a mixture containing the specific DNasi enzyme 

(Fermentas, Thermo Scientific, USA) according to the instructions. The product was quantified using a NanoDrop 2000 

spectrophotometer (Thermo Scientific, Italy, Europe) and the quality was checked by electrophoresis in 1% agarose.  

Each sample (200 ng of total DNA-free RNA in a 20 µl total reaction volume) was reverse transcribed to obtained 

cDNA using TaqMan® Reverse Transcription Reagents (Life Technologies, USA). RT conditions used were: 15 min 

45°C, 3 min 95°C and 5 min 4°C. Resulted cDNA was store at -20°C. Relative gene expression analysis was performed 

on an Applied Biosystem 7500 Fast real time PCR system (Life Technologies, Milan, Italy) by Duplex TaqMan® Gene 

Expression Assays (Life Technologies, Milan, Italy). Amplification was performed in a 20 µl final volume including 2 

µl of cDNA as template and TaqMan® Fast Advanced master mix (Applied Biosystem, USA). Each sample was tested 

in duplicate and each assay was performed in triplicate. Amplification conditions were: 2 min at 50°C, 20 sec 95°C 
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followed by 45 cycles (30 sec at 95°C, 30 sec at 60°C).  The relative gene expression analysis evaluated the following 

genes: VIP, VIP receptor 1 (VIPR1) and VIP receptor 2 (VIPR2).  Primer probes were from Applied Biosystem: VIC 

labelled for 18S (Hs99999901_S1), FAM labelled for VIP (Hs00175021_m1), VIP receptor 1 – VIPR1- 

(Hs00910453_m1), VIP receptor 2 – VIPR2- (Hs00173643_m1). Data were calculated with ΔΔCT method using 18S as 

a reference gene.The mean value of CTRL group for each gene was the calibrator at unit value. 

Statistical analysis - Statistical analysis was performed with the commercial software SPSS (for Windows, version 

13.0; SPSS Inc, Chicago, Illinois) according to the appropriate tests for each considered variable. A Kolmogorov-

Smirnov non-parametric test was applied to verify the normality of the distributions. Continuous data were reported as 

mean ± SD, and categorical data were described as frequencies. One-way analysis of variance, Fisher exact test, and χ
2 

test were applied. Correlation analyses were performed by Pearson χ
2 

and
 
Spearman’s rank test. Two- tailed P values 

less than 0.05 were considered significant. Graphical representations of data were obtained using a commercial software 

(GraphPad Prism version 5.00 for Windows, GraphPad Software Inc., La Jolla, CA, USA). 

Results 

Functional constipation assessment in PC/CC and CC  

Among PD/CC patients, n= 17 (58.6%) completed the study; n= 7 (24.1%) refused colonoscopy, n= 1 (3.5%) refused 

both TT and AM assessment, n= 3 (10.3 %) refused TT and n= 1 (3.5%) refused AM. Regarding CC patients, n= 9 

(90%) underwent TT and AM, while n= 1 performed only AM. 

Evaluation of colonic TT and AM was performed n= 24 and n= 28 of PD/CC patients and the main features of those 

functional tests were summarized in Table 11.2. In the investigated PD/CC cohort, about 75% (n= 18 / 24) showed a 

delay colonic TT, while 69% (n= 22 / 28) had AM abnormalities, i.e. a single or, more often, combined motor 

abnormalities. We found 1 / 28 patient with an increased basal pressure of the anal sphincter, 4 / 28 with a decreased 

basal pressure and a normal pressure in 23 / 28. Ultra-slow waves were present in 1 / 28 patient and the squeezing 

attempts, showing inability to contract the anus, in 7 / 28 patients (2 cases lacking and 5 with short duration anal 

contractions). In 8 / 28 the straining attempts revealed anismus, i.e. lack of anal inhibition and paradoxical sphincter 

contraction. The rectal sensory dysfunction was also observed in PD/CC patients characterized by a reduced ampullary 
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threshold (7 cases), although not associated with hyposensibility. The recto-anal inhibitory reflex was detected in all 

patients. Both colonic TT and AM were performed in the 23 / 29 PD/CC and the resultant features allowed for the 

identification of four subgroups of patients: 1) delayed TT and altered AM (65%); 2) delayed TT (13%); 3) altered AM 

pattern (13%); 4) no functional impairment (9%) (Fig. 11.1a). Regarding CC patients, colonic TT and AM identified 

two groups of patients: 1) delayed TT and altered AM (33%) and 2) delayed TT (67%) (Fig. 11.1b). 

Concerning TT assessment, there were no differences in the mean number of pellets found in PD/CC vs. CC patients 

(12.4±7.78 vs. 11.9± 4.65; P=.28) (Fig. 11.1 c). 

Submucosal neuronal count 

In order to define possible differences existing in the number of neurons among PD/CC, CC and controls, 

submucosal whole mount preparations were analyzed by labeling neuronal cell bodies with HuC/HuD. Virtually all 

perikarya were labeled by HuC/HuD and quantitative assessment revealed no significant differences in terms of the 

mean number of HuC/HuD immunoreactive ganglion cell bodies in the three groups (4.4±0.86 vs. 4.0±1.23 vs. 4.0±1.35 

in PD/CC, CC and controls, respectively, P= 0.357) (Fig. 11.2 a-d). 

Submucosal cholinergic and VIP containing neurons- Both cholinergic and VIP containing neurons are widely 

represented in the human colonic submucosal plexus (Anlauf et al. 2003). pChAT and VIP-IRs were readily detectable 

in the cell bodies as well as nerve processes running off the identified ganglia. The proportion of pChAT-IR neurons 

was calculated for each patient and control on the total number of HuC/HuD-IR ganglion cell bodies. There was no 

changes in the number of HuC/HuD /pChAT-IR neurons in the three groups (87.3±8.67% vs. 85.9±10.97% vs. 

89.3±8.71% in PD/CC, CC and controls, respectively, P= 0.770 ) (Fig. 11.2 e-h). In contrast, the percentage of 

HuC/HuD /VIP-IR neurons was significantly reduced in PD/CC (72.3±14.59%) vs. controls (87.2±9.24%) (P= 0.007), 

while no differences were observed between PD/CC vs. CC (78.3±16.44%; P= 0.292) and between CC vs. controls (P= 

0.321) (Fig. 11.2 i-l). 

VIP pathway gene expression  

 Based on the quantitative data, showing a reduced number of VIP containing neurons unrelated to changes of the 

total number of HuC/HuD and cholinergic neurons, we tested whether VIP and its receptors, VIPR1 and VIPR2, gene 

expression was altered in PD/CC, CC and controls (Fig. 11.3 a-c). Figure 11.3 a demonstrated a significant reduction of 
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VIP mRNA expression in PD/CC vs. controls (0.012 ± 0.045 vs. 1.059 ± 0.177; P< 0.0001). A significant reduction of 

VIP was also detected in PD/CC vs. CC (0.012 ± 0.045 ± vs. 0.189±0.39; P= 0.036) and in CC vs. controls (1.059 ± 

0.177 vs 0.189±0.39; P= 0.001). Compared to controls, VIPR1 expression (Fig. 11.3b) was significantly reduced in both 

groups of constipated patients, PD/CC vs. controls (0.00008±0,000085 vs. 1.04268±0.226402; P< 0.0001) and CC vs. 

controls (0.00315±0.005571 vs. 1.04268 ±0.226402; P< 0.0001). Notably, PD/CC VIPR1 mRNA expression was 

significantly lower than that detected in CC (0.00008±0.000085 vs. 0.00315±0.005571; P< 0.0001). Similar results were 

obtained for VIPR2 expression (Fig. 11.3c). Our data showed reduced VIPR2 mRNA expression levels in PD/CC vs. 

controls (0.00218±0.006309 vs. 0.93140±0.379026; P< 0.0001) and CC vs. Controls (0.05102±0.126542 vs. 

0.93140±0.379026; P< 0.0001). Finally, a significant reduction was also evident in PD/CC vs. CC (0.00218±0.006309 

vs. 0.05102±0.126542; P= 0.001). 

Considering functional GI assessment, PD/CC and CC patients with slow transit showed no significant changes in 

VIP mRNA levels compared to patients with normal transit (P=0. 07); however they showed a significant decrease of 

VIPR1and VIPR2 mRNA expression (P=0. 014 and P= 0.002 respectively) ( Fig. 11.4 a-c). 

Clinico-pathological correlations 

The association between age, sex, clinical and experimental data was evaluated. No correlations were detected among 

age, sex, neuronal counts and gene expression, neither with functional gastrointestinal parameters (Data not showed). 

In the PD/CC group, age resulted positively associated with the neurological and motor scale score UPDRSIII 

(P=0.023; Fig. 11.5 a). The number of HuC/HuD/VIP-IR neurons resulted positively correlated with UPDRSIII 

(P=0.018) , i.e. the lower the number of VIP containing neurons, the worst the score of PD was (Fig. 11.5 b). The 

severity of CC in PD (Rome III criteria) was significantly correlated to UPDRSIII (P= 0.023), i.e. more severe was the 

CC in PD/CC patients, the worst the score of PD was (Fig. 11.5 c). The number of intracolonic residual pellets (TT) was 

positivelycorrelated with the duration of PD (years) (P= 0.028), i.e. longer was the duration of the disease, highest was 

number of retained pellet in the colon (Fig. 11.5 d). 

Discussion 

The present study was developed to investigate the pathophysiological, neurochemical and molecular features of the 

severe constipation in parkinsonian patients. Thus, we performed a thorough characterization of PD/CC patients and 
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compared this group with non-parkinsonian CC patients and control subjects. Most (91%) of PD/CC patients enrolled in 

our study showed abnormalities to at least one of the two considered parameters, i.e. TT or AM, while 65% had a 

delayed TT combined with ano-rectal sensory-motor impairment (i.e., dyssynergic defecation). Taken together our data 

indicate a severe functional motor impairment in the colon and rectum of PD/CC patients. In contrast, in the CC group, 

only 33% of patients showed slow TT and altered AM pattern, while most cases displayed slow transit, suggesting the 

referral origin of CC, including those cases usually not easily managed in primary or secondary care levels. Thus, it 

appears that the two groups, PD/CC and CC, were comparable in terms of severity of constipation assessed by objective 

measurements. Our functional data on PD/CC confirmed and expanded previous studies evaluating constipated 

parkinsonian patients (Edwards et al. 1994; Sakakibara et al. 2003). In fact, Sakakibara et al. demonstrated that slow 

transit constipation was prevalent in PD/CC patients, while ano-rectal abnormalities were identifiable only in a small 

proportion of patients (Sakakibara et al. 2003). In contrast, Edwards et al. found ano-rectal alterations / dyssynergic 

defecation in 77% of the PD/CC cases and slow transit only in 31%. In that study, the acute administration of 

apomorphine has been shown to improve dyssynergic defecation symptoms in a subset of patients with PD/CC, thus 

implying that a dopaminergic dysfunction is also responsible for dyssynergia (Edwards et al. 1994). The differences 

between our findings and those reported by Sakakibara et al. and Edwards et al. may be explained with a number of 

reasons, including the heterogeneity of pathogenetic factors contributing to CC in PD (e.g., delayed transit vs. sensory-

motor abnormalities), the severity of PD per se (known to impact of CC) and sample size, i.e. the number of subject 

enrolled in the two mentioned studies (i.e. approximately 50% less patients than current study). In light of the data 

emerged by our study and integrating previous experience one can conclude that both a delayed TT and a dyssynergic 

pattern contribute to CC in PD patients. The origin of these abnormalities is quite complex and to date two mechanisms 

seems to be plausible: i) ENS changes mainly in the gut myenteric plexus and associated to Lewy bodies and neurites 

with or without neuronal loss (Wedel et al. 2002; Annerino et al. 2012); and ii) an altered extrinsic nerve input to the 

lower gut thereby affecting the colonic and ano-rectal sensory-motor function  (Furness 2012). An accurate 

histopathological evaluation of the myenteric plexus was clearly impracticable in our study since we cannot obtain full-

thickness biopsies from the enrolled patients. Therefore we cannot conclude whether myenteric neuron abnormalities 

and, most likely, associated Lewy pathology, occurred in the investigated PD/CC patients. In the human colonic 
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submucosa, using specific antibodies to phosphorylated synuclein, Lebouvier et al. showed Lewy neurites (not bodies) 

in about 72% of PD/CC cases. The number of Lewy neurites positively correlated with the severity of Rome III defined 

PD/CC patients, although such correlation was lost when data were adjusted by age (Lebouvier et al. 2010). The 

neuropathological impact of Lewy neurites on altered gut physiology (transt time and sensory-motor function) remain 

plausible, but not yet proven. Thus, Lewy pathology may be a marker of PD involvement in the ENS, although its actual 

role in terms of neutrally-driven gut dysfunction remains to be assessed. Finally, it should be stressed that the 

identification of Lewy pathology does not represent a reliable bio-marker of PD as many evidence points to its 

demonstration in the nervous system (either central or peripheral) in patients with a variety of neurological disorders 

(Pouclet et al. 2012), ageing people and even in healthy (Visanji et al. 2015). 

Concerning the assessment of the ENS, our study applied the newly established technique aimed at separating the 

submucosa (and related plexuses) from the mucosa in routine biopsies obtained during colonoscopy (Lebouvier et al. 

2010). Our focus was directed to the submucosal plexus which is composed primarily of two major neuronal subsets, i.e. 

secretomotor / vasomotor neurons (Furness 2003; Banks et al. 2005). In order to provide a neurochemical analysis of the 

secretory neuron component, we performed immunohistochemistry on two major transmitters, namely acetylcholine 

(identified via pChAT immunoreactivity) and VIP. Both are well known to participate significantly to the control of 

enteric secretory mechanisms in the submucosal plexus of several mammalian species, including humans (Banks et al. 

2005; Furness JB. 2014). Upon release from submucosal neurons, VIP activates the specific constitutive receptor VIPR1 

expressed by the enteric epithelial lining. This results in a cAMP-related HCO3
-
 excretion and entrance of Na

+
 and H2O 

in the gut lumen, thereby enhancing fluid secretion (Chandrasekharan et al. 2013). As widely reported, both 

acetylcholine and VIP are largely costored in submucosal plexus, with VIP containing neurons being a subset of the 

broader family of cholinergic neurons (Anlauf et al. 2003). In this respect, we showed for the first time that VIP 

containing neurons in PD/CC patients were significantly less than those of CC and controls, although the total number of 

neurons and cholinergic neurons did not change in the three groups. In support of a selective decrease of VIP in 

submucosal neurons of PD/CC patients, we showed a more pronounced downregulation of the VIP mRNA and related 

receptors, i.e. VIPR1 and VIPR2, than in CC and controls. The mechanisms underlying the reduced mRNA expression 

of VIP, VIPR1 and VIPR2, the inducible receptor, remain unknown. Probably, inflammatory changes, which are known 
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to occur in colonic mucosal biopsies of PD patients (Devos et al. 2013), can be thought to affect VIPR2 expression. 

However, since our data showed that VIPR1 was also downregulated it is conceivable that other mechanisms may alter 

the whole pathway through which VIP exerts its biological effects in PD/CC patients. Also, the altered VIP and related 

receptors did not appear to be a unique feature underlying PD/CC only; in fact, although to a lower extent, also CC 

patients had a lower expression of VIP, VIPR1 and VIPR2 compared to controls. Taken together, our data suggest that 

an altered VIP and related pathway can contribute to the pathophysiology of CC in parkinsonian patients as well as in 

CC by impairing secretion in addition to colonic and ano-rectal sensory-motor dysfunction. Beyond motility 

abnormalities, altered secretion conditioning the composition of the fecal content is correlated to a delayed colonic TT 

(Saad et al. 2010). 

Finally, given the key role exerted by VIP and related VIPRs, it is tentative to speculate that an abnormal expression 

of this neurotransmitters (and/or of their receptors), can affect other mechanisms, i.e. the intestinal epithelial barrier and 

immunomodulation, thereby contributing to the constipation in PD and even in non-parkinsonian patients by perturbing 

the neuroenteric environment. Clearly further research is eagerly awaited to prove this pathogenetic link in PD/CC 

patients. 
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Table 11.1. Details of the primary and secondary antibodies. 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: HuC/HuD, Human neuronal protein; PGP9.5, Protein Gene Product 9.5; VIP, Vasoactive Intestinal 

Polypeptide; pChAT, peripheral Choline Acetyl-Transferase 

Suppliers: Life Technologies, Carlsbad, California, USA; Merck Millipore, Merck KGaA, Darmstadt, Germany, Europe; 

a CURE/DDRC, DDD, University of California Los Angeles, Los Angeles, California, USA; b Justus-Liebig-

University, Giessen, Germany.

Primary antibody Host Code Dilution Source 

PGP9.5 Rabbit AB1761 1:500 Merck Millipore 

HuC/HuD Mouse A21271 1:50 
Life 

Technologies 

VIP Rabbit #7913 1:2500 
Generous gift of 

Prof. C. Sternini
a
 

pChAT Rabbit  1:150 
Generous gift of 

Dr. K. Lips
b
 

Secondary antibody Host Code Dilution Source 

Anti-mouse IgG 

Alexa 594 
Goat A11005 1:200 

Life 

Technologies 

Anti-rabbit IgG FITC Goat 401314 1:200 Merck Millipore 
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Table 11.2 Clinical and functional gastrointestinal features of PD/CC patients. 

Abbreviations: AM, Anorectal manomety diagnosis; RP, resting pressure; S, sensitivity; SQ, squeezing pressure; SP, 

strain pattern; TT, total colonic transit time (number of pellets). 

PD/CC TT AM RP SQ SP S 

P1 0 Normal Altered Normal Normal Normal 

P2 - Normal Decreased Normal Normal Ipersensitive 

P3 15 - - - - - 

P4 0 Altered Altered Normal Normal Normal 

P5 - Altered Altered Normal Paradoxical increase Normal 

P6 0 Normal Altered Normal Normal Normal 

P7 14 Altered Altered Normal Paradoxical increase Ipersensitive 

P8 20 Altered Altered Normal Paradoxical increase Normal 

P9 19 Altered Altered Normal Normal Normal 

P10 15 Altered Altered Normal Normal Normal 

P11 0 Altered Decreased Normal Normal Normal 

P12 17 Normal Altered Normal Normal Normal 

P13 19 Altered Altered Normal Paradoxical increase Normal 

P14 20 Altered Altered Normal Normal Normal 

P15 0 Altered Altered Normal Normal Ipersensitive 

P16 17 Altered Altered Normal Paradoxicalincrease Normal 

P17 17 Altered Altered Normal Normal Ipersensitive 

P18 18 Altered Altered Normal Normal Normal 

P19 - Altered Altered Normal Paradoxical increase Ipersensitive 

P20 8 Altered Increased Normal Normal Normal 

P21 - - - - - - 

P22 20 Altered Altered Normal Normal Ipersensitive 

P23 14 Normal Decreased Incapable Normal Normal 

P24 15 Altered Altered Normal Normal Normal 

P25 0 Altered Increased Normal Normal Normal 

P26 15 Altered Altered Normal Normal Ipersensitive 

P27 20 Altered Altered Normal Paradoxical increase Normal 

P28 15 Altered Altered Normal Normal Normal 

P29 - Altered Decreased Normal Paradoxical increase Normal 
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Figures 

 

Fig. 11.1 Functional assessment of total colonic transit time (TT) and anorectal manometry (AM) in PD/CC and CC 

patients. a) Percentages of PD/CC (n= 23) showing delayed TT and altered AM (65%) (dark gray), delayed TT (13%) 

(black) ; altered AM (13%) (light gray); no alterations (9%) (white). b) Percentages of CC (n= 9) patients showing 

delayed TT and altered AM (33%) (dark gray), delayed TT (67%) (black); no patients showed AM alteration and no 

functional impairment (%). c) No differences were present in the mean number of residual intracolonic pellets in PD/CC 

(black) vs. CC (dark gray) patients.   
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Fig. 11.2. Submucosal neuronal count performed by immunohistochmistry in PD/CC, CC and Ctrl groups. a-c) 

Photomicrographs showing the double-labeling of HuC/HuD (red) and PGP9.5 (green) to identify neuronal cell bodies 

and ganglionic structures. Stars are used to indicate a single neuron. Scale bar: 50 µm. d) Box plot representing the 

number of neurons / ganglion. Data are represented as mean ± SD. e-g) photomicrographs showing the double-labeling 

of HuC/D (red) and pChAT (green) to identify neuronal cell bodies and colinergic neurons. White filled arrows are used 

to indicate examples of pChAT immunoreactive (-IR) neurons. Scale bar: 50 µm. h) Box plot representing the 

percentages of HuC/HuD /pChAT-IR neurons. Data are represented as mean ± SD. i-k) Photomicrographs showing the 

double-labeling of HuC/HuD (red) and VIP (green) to identify neuronal cell bodies and VIP-containing neurons. White 

filled arrows are used to indicate examples of VIP immunoreactive (-IR) neurons. White empty arrows are used to 

indicate an example of VIP not containing neurons. Scale bar: 50 µm. l) Box plot representing the percentages of 

HuC/HuD /VIP immunoreactive (-IR) neurons. Data are represented as mean ± SD; * P< 0.05. 
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Fig. 11.3 VIP pathway gene expression in PD/CC, CC and Ctrl groups.  a) VIP mRNA levels. Data are expressed as 

relative folds compared to the mean value of the Ctrl group (mean ± SEM; ***P< 0.0001; **P<0 .001; * P< 0.05). b) 

VIPR1 mRNA levels. Data are expressed in logarithmic scale as relative folds compared to the mean value of the Ctrl 

group (mean ± SEM; ***P< 0.0001). c) VIPR2 mRNA levels. Data are expressed in logarithmic scale as relative folds 

compared to the mean value of the Ctrl group (mean ± SEM; **P< 0.001; ***P< 0.0001). 
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Fig. 11.4 VIP pathway gene expression in patients showing delayed transit time of PD/CC vs. CC groups. a) VIP mRNA 

levels showed no differences in PD/CC vs. CC patients (mean ± SEM; ns). b) VIPR1 mRNA levels resulted significant 

decreased in PD/CC vs. CC patients (* P<0 .05). c) VIPR2 mRNA levels resulted significant decreased in PDCC vs. CC 

patients (**P< 0.001;). Data are expressed as relative folds compared to the mean value of the Ctrl group.  
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Fig. 11.5 Clinical correlations in PD/CC group. a) Age resulted positively correlated with the severity of motor 

impairment (UPDRSIII scale) (P=.023). b) Percentages of VIP containing neurons resulted negatively correlated with 

the UPDRSIII scale (P=0.018). c) Rome III severity scale resulted positively correlated with the UPDRSIII scale (P= 

0.023). d) The number of intracolonic residual pellets (TT) was positively with the duration of PD (years) (P= 0.028). 
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CONCLUSIONS 

The ENS of different species, such as rodents, guinea-pig and other easy-handling small mammals, have been widely 

studied as experimental animal to decipher the complexity of the ENS. However, numerous papers dealing with small 

and large mammals have also been published over the last ten years. The characterization of the anatomical aspects of 

the ENS in large mammals and the identification of differences and similarities existing between species may represent a 

fundamental basis to decipher several digestive GI diseases in humans and animals. In this perspective, the present thesis 

is a collection of studies in which three different species (horses, dogs and humans) were examined. 

Two studies were focused to investigate anatomical aspects in the horse ENS. 

In the first study, the inhibitory and excitatory enteric neurons of the caudal tract of the esophagus and the proximal 

portion of the gastric fundus were immunohistochemically characterized. Although the equine esophagus and gastric 

fundus lack the fluid fluxes across the mucosal epithelium that occur in the small and large intestines, we observed a 

continuous and double layered SMP. We also observed a largely greater percentage (about 72%) of nNOS-IR MP 

neurons than in the other tracts of the equine digestive system. Those findings reinforces both the role of the ENS in the 

lower esophageal sphincter relaxation and the notion that the ENS is no less important than the vagal circuitries. Taken 

together, those findings represent an anatomical basis to allow an evaluation of whether selective groups of enteric 

neurons are involved in horse neurological disorders such as megaesophagus, white lethal foal syndrome, and equine 

dysautonomia. 

The second study was designed to investigate the loacalization of the 5-hydroxytryptamine receptor 4 (5-HT4R) in 

the equine enteric nervous system and spinal ganglia of healthy horses, and in extrinsic nervous fibers of LWFS foals 

(lacking intrinsic innervation). 5-HT4R was localized to large percentages of enteric neurons and extrinsic sensory 

nervous fibers. These findings represent the first morphological support for the functional investigations carried out on 

5-HT4R in the horse intestine. In fact, despite several functional studies indicate a prokinetic effect of 5-HT4R agonists, 
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the presence of the receptor in the equine gastrointestinal innervation was not yet demonstrated. Furthermore, no data 

were available in the horse on the presence of 5-HT4R in extrinsic visceral innervation. Taken together, these findings 

reinforce the role of the 5-HT4R in controlling the equine intestinal motility through a direct effect on enteric neurons 

and opens a new window on the pharmacological treatment of visceral nociception in this species. 

Concerning enteric dysfunctions, three studies were designed to investigate one primary and two secondary 

neuropathies in horses, dogs and humans. 

Equine ileocolonic aganglionosis - or lethal white foal syndrome - (the equine version of the human Hirschsprung’s 

disease) is a primary neuropathy characterized by neural crest progenitors’ unsuccessful colonization of the caudal part 

of the small intestine and of the entire large intestine. As consequence, LWFS foals represent a unique model to 

analyzed the distribution of extrinsic sympathetic and sensory neural fibers in absence of ENS development. Affected 

foals showed large bundles of extrinsic fibers, compared to the control, as observed in Hirschsprung’s disease. 

Furthermore, altered adrenergic pathways were observed, prominently in the pelvic flexure. Since the ENS contains 

peptidergic neurons, in LWFS tissues the SP- and CGRP-immunoreactivities were dramatically reduced in either ileum 

and pelvic flexure; the remaining sensory extrinsic fibers resulted largely distributed around submucosal blood vessels 

and were in part dedicated to the innervation of the mucosa and serosa. These findings highlight that the extrinsic 

innervation, contributing to modulate the enteric functions, might also be affected during LWFS. 

Diabetes mellitus represents one of the most common secondary enteric neuropathy. In fact, as demonstrated in 

humans and in rodents, DM can determine severe GI symptoms, associated to enteric neuronal degeneration, in 

particular involving the inhibitory nitrergic subclass of motor neurons. No date were available on enteric neuropathy in 

spontaneous diabetic dogs, also showing gastrointestinal complication. While in the antrum of DM dogs, nitrergic 

neurons resulted not damaged, in the ileum, the percentage of myenteric nitrergic resulted significantly reduced 

compared to a control group and structural alterations were also evident. These findings turn the spotlight on the effect 

of spontaneous diabetes on the gastrointestinal intramural innervation, indicating that DM can potentially affect the ileal 

motility in dogs. Considering the lack of functional studies on the digestive system of spontaneous diabetic dogs, further 

functional investigations in DM dogs are necessary.  
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Parkinson’s disease is a neurological human pathology. Although PD is regarded as a prototypical movement 

disorder, virtually all parkinsonian patients experience autonomic dysfunctions, in particular GI manifestations 

associated to ENS neuropathy. The pathogenetic mechanisms underlying the severe chronic constipation affecting the 

majority of PD patients, remain poorly understood. Most (91%) of PD patients enrolled in our study showed a severe 

functional motor impairment in the colon and rectum. Concerning ENS, PD constipated patients showed a significant 

reduction of submucosal secretomotor VIP-containing neurons, compared to constipated (CC)and controls patients, 

although the total number of neurons and cholinergic neurons did not change in the three groups. Furthermore, PD 

constipated patients showed a more pronounced downregulation of the VIP mRNA and related receptors in PD 

constipated patients than in CC and controls. These findings support a selective decrease of VIP expressing secretomotor 

neurons, suggesting that both neurally-mediated secretory mechanisms along with sensory-motor abnormalities 

represent a prominent peculiar mechanisms underlying PD constipated patients. 

Concluding, the physiology of the GI tract is characterized by a high complexity and it is mainly dependent on the 

control of the intrinsic nervous system, in all the species considered. There are great differences between the ENS 

features across similar species, therefore it is very difficult to extrapolate and speculate among animals of different size 

and alimentary tract morphology and physiology. As consequence, the vast majority of the information that we have 

about the ENS are not adequate to understand completely the physiology and the pathophysiology in a given species. 

Any damage able to alter the morpho-functional integrity of the ENS may have a severe impact on the GI balance, 

resulting in many different pathological conditions, in humans and domestic animals. Therefore, the knowledge of the 

anatomy and the pathology of the ENS represents a new important and fascinating topic, which deserves more attention 

in the veterinary medicine field. 
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