Battistelli, Giulia
  
(2016)
Stimuli-Responsive Nanoparticles for Bio-Applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Chimica, 28 Ciclo. DOI 10.6092/unibo/amsdottorato/7578.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
    
  
  
    
      Abstract
      Stimuli-responsive nanoparticles have been designed and studied, exploring their potentiality as self-assembled materials as building blocks for the development of "smart" materials for bio-applications. Perylene diimide derivatives (PDI) have been used as fluorogenic units and structural components of assembled high-brightness nanoparticles, where fluorescence changes can be triggered by external (light) or internal (pH) stimuli which promote disaggregation induced emission (DIE). 
Synthesis of PDI (P) was achieved by microwave heating in mild conditions. π-π stacking and inter-substituent interactions drove the self-assembly of quenched nanoparticles that were internalized by yeast cells responding as fluorogenic imaging agents. By controlling the dosage, they displayed either green or red fluorescence. Multicolour fluorescence imaging was achieved by sample photo-activation under strong light irradiation. 
P was adopted as structural component of covalently linked nanoparticles. P chains have been cross-linked by an epoxy monomer into Pluronic micelles, driving the formation of core-shell nanoparticles. Vicinity of the monomer aromatic regions caused the quenching of the emission, which could be recovered by fluorophore disaggregation triggered by light irradiation in proper conditions of concentration and/or polarity. Photo-activation occurred also after nanoparticles internalization by living cells, confirming the possibility of using them as stimuli-responsive fluorogenic bio-imaging agents. 
Fluorogenic pH-responsive nanoparticles have been further designed and developed, with the purpose of differentiate normal and cancer tissues. A monodispersed amphiphilic block co-polymer, constituted by a PEGylated hydrophilic block and a tertiary amine pH responsive hydrophobic block, functionalized by a PDI norbornene monomer, was synthesised by ring opening metathesis polymerization. Polymer self-assembly was exploited to obtain spherical core-shell nanoparticles, quenched in neutral pH thanks to the π-π stacking in the nanoparticles core. By switching the pH from 7.4 to 5, structural modification in the hydrophobic block were promoted, leading to the nanoparticles disassembly and to the recovery of PDI emission.
     
    
      Abstract
      Stimuli-responsive nanoparticles have been designed and studied, exploring their potentiality as self-assembled materials as building blocks for the development of "smart" materials for bio-applications. Perylene diimide derivatives (PDI) have been used as fluorogenic units and structural components of assembled high-brightness nanoparticles, where fluorescence changes can be triggered by external (light) or internal (pH) stimuli which promote disaggregation induced emission (DIE). 
Synthesis of PDI (P) was achieved by microwave heating in mild conditions. π-π stacking and inter-substituent interactions drove the self-assembly of quenched nanoparticles that were internalized by yeast cells responding as fluorogenic imaging agents. By controlling the dosage, they displayed either green or red fluorescence. Multicolour fluorescence imaging was achieved by sample photo-activation under strong light irradiation. 
P was adopted as structural component of covalently linked nanoparticles. P chains have been cross-linked by an epoxy monomer into Pluronic micelles, driving the formation of core-shell nanoparticles. Vicinity of the monomer aromatic regions caused the quenching of the emission, which could be recovered by fluorophore disaggregation triggered by light irradiation in proper conditions of concentration and/or polarity. Photo-activation occurred also after nanoparticles internalization by living cells, confirming the possibility of using them as stimuli-responsive fluorogenic bio-imaging agents. 
Fluorogenic pH-responsive nanoparticles have been further designed and developed, with the purpose of differentiate normal and cancer tissues. A monodispersed amphiphilic block co-polymer, constituted by a PEGylated hydrophilic block and a tertiary amine pH responsive hydrophobic block, functionalized by a PDI norbornene monomer, was synthesised by ring opening metathesis polymerization. Polymer self-assembly was exploited to obtain spherical core-shell nanoparticles, quenched in neutral pH thanks to the π-π stacking in the nanoparticles core. By switching the pH from 7.4 to 5, structural modification in the hydrophobic block were promoted, leading to the nanoparticles disassembly and to the recovery of PDI emission.
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Battistelli, Giulia
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
          Scuola di dottorato
          Scienze chimiche
          
        
      
        
          Ciclo
          28
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Nanoparticles, stimuli-responsive, self-assembly
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/7578
          
        
      
        
          Data di discussione
          10 Maggio 2016
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Battistelli, Giulia
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
          Scuola di dottorato
          Scienze chimiche
          
        
      
        
          Ciclo
          28
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Nanoparticles, stimuli-responsive, self-assembly
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/7578
          
        
      
        
          Data di discussione
          10 Maggio 2016
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        