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Abstract 

 

The increase in energy costs and the demands for products with greater nutritional value 

and of processing procedures less toxic to the environment are attractive factors for 

transferring membrane processing to food industry and biotechnology applications. 

Sugar production is one of the most energy-intensive applications in the food industry, 

therefore membrane separation processes find many applications, nevertheless some 

limitation exist for application of membrane processes in the sugar industry, since the 

solutions exhibit high viscosity and high osmotic pressure, as well as criticalities still exist 

in modelling and process simulation. 

This study focused mainly on Food applications of membrane processes. A brief graphical 

abstract of the main topics discussed is given in Fig. A.1. 

 

Figure A.1: Flow sheet of the modeling steps of the thesis, about pressure driven membrane processes for 

food applications. 

 

After a general introduction on pressure driven membrane processes, sugar chemistry and 

sugar Nanofiltration, a critical summary of a wide experimental investigation is reported. 

In this work, separation performances of commercial polyamide NF membranes are 

investigated in a wide range of compositions in the feed side (from 5 to 300 g/dm3) at 

temperatures from 30 to 50°C; aqueous solutions containing monosaccharides (xylose, 
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glucose or fructose), disaccharides (maltose), and mixtures of them are studied, and the role 

of the electrolytes (NaCl, CaCl2, NaHSO3) on their rejection is investigated. 

All the results obtained, performed with two module configurations (flat sheet and spiral 

wound membranes) have been organized in three main sections: (i) Hydraulic permeability, 

(ii) experimental investigation as it is, and (iii) Intrinsic membrane performances.   

Differently from literature, where typically aqueous solutions containing monosaccharides 

and oligosaccharides are used at low concentrations (from 9 to 80 g/dm3), at room 

temperature and only experimental data as it is are reported, a key point of this study is the 

critical evaluation based on intrinsic membrane performances. 

The data processing discussed allows to introduce a revised Donnan Steric Pore & 

Dielectric Exclusion model (DSP&DE), in which: 

i) General equations of the model are introduced;  

ii) A critical assessment about model parameter calculation in literature is 

proposed and a new procedure for their calculation is suggested; 

iii) Model validation is performed at each experimental level (from flat sheet to 

SW, from single solutes to multicomponent mixtures).   

 

Elaborations of experimental data with oligosaccharides put in evidence that the Stokes 

radius is not representative of the molecule shape because it does not account for: (a) 

molecule shape (such as deviations from sphericity); (b) change in hydration shell due to 

solution properties, and (c) solute-solute interactions. 

The revised model provides useful elements to understand which kind of interactions 

(complex formation or dehydration) can affect sugars rejections in presence of strong 

electrolytes, however dehydration effects caused by temperature and electrolyte are the 

most evident. 

The revised model is able to predict with good confidence both the temperature effect on 

membrane performances and rejections in multicomponent mixtures, ranging from 

laboratory to process/industrial scale, by comparison with literature data from 4040C1025 

GE-DL module. 

 

For completeness, the study provides in Appendix: 

 Discussion about fluid dynamic analysis in 1812 Spiral Wound Modules and 

calculation of proper correlation for mass transfer coefficient (Appendix B); 
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 A preliminary study for membrane processes in biotechnology applications about : 

(i) the recovery of PHAs (Polyhydroxyalcanoates) via Ultrafiltration; and (ii) the 

recovery and/or fractionation of VFA (Volatile Fatty Acids) by Nanofiltration 

(Appendix C) 
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List of symbols  

Symbol Units Quantity   

c  [g/dm3] concentration RO Reverse Osmosis 

P  [bar] pressure NF Nanofiltration 

∆  difference UF Ultrafiltration 

Q [dm3/h] flow rate MF Microfiltration 

Jv  [dm3/(hm2)] permeate flux   

JS [g/ (hm2)] solute flux  Subscript  

Robs - observed rejection  i  Solute/component 

Rreal  - real rejection  bulk bulk side 

kL [m/s] mass transfer coefficient I feed/membrane interface 

D [m2/s] diffusion coefficient F feed  

δ [m] boundary layer thickness P permeate  

A [m2] membrane area R retentate  
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1.0 Preface 

Membranes and membrane processes are not a recent invention, they are part of our daily 

life, exist as long as life exist, and they are also an essential structural component of living 

objects. We can distinguish between biological membranes, which are part of the living 

organism, and synthetic membranes that are man-made.   

Many biological processes require membranes. The phospholipid bilayer is the basic 

structure of all biological membranes. Physically and chemically essential functions 

include metabolism and the process of the accumulation and usage of energy in the 

biological system. An essential function of the membrane is to keep a well-defined 

chemical composition inside of the membrane at a limited volume, which is different from 

the outside. Moreover biological membranes reproduce themselves continuously, 

controlling important physiological processes, carry out very complex and specific 

transport tasks. They accomplish them quickly, efficiently, and with minimal energy 

expenditure, frequently using active transport. 

On the other side, synthetic membranes are not nearly as complicated in their structure or 

function as biological membranes. They exhibit only passive transport properties and are 

usually less selective and energy efficient. In general however, they have significantly 

higher chemical and mechanical stability, especially at elevated temperatures and 

pressures, while their selectivity is determined by their porous structure. 

The preparation of synthetic membranes and their utilization on a large industrial scale, 

however, are a more recent development which has rapidly gained a substantial importance 

due to the large number of practical applications. 

Today membrane processes have a wide industrial applications covering many existing and 

emerging uses in chemical, environmental, water treatment, pharmaceutical, medical, food, 

diary and beverage industries. Membranes are used to produce water from the sea, to clean 

industrial effluents and recover valuable constituents, to concentrate, purify, or fractionate 

macromolecular mixtures in the food and drug industries, as well as to separate gases and 

vapors. They are also key components in energy conversion systems, and in artificial organs 

and drug delivery devices. 

Membrane operations in the last years have shown their potentialities in the rationalization 

of production system. Their intrinsic characteristics of efficiency, operational simplicity 

and flexibility, relatively high selectivity and permeability for the transport of specific 

components, low energy requirements, good stability under a wide spectrum of operating 

conditions, environment compatibility, easy control and scale up have been confirmed in a 
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large variety of applications and operations, as molecular separation, fractionation, 

concentration, purification, etc., in a wide spectrum of operating parameters such as pH, 

temperature and pressure. 

From a general point of view membrane processes are used to concentrate or fractionate a 

liquid to yield two liquids that differ in their composition. It stands out as alternatives to 

conventional processes for the chemical, pharmaceutical, biotechnological and food 

industries (Baker 2004). In many cases the low energy consumption, reduction in number 

of processing steps, greater separation efficiency and improved final product quality are the 

main attractions of these processes. Indeed, in many applications membrane processes 

compete directly with the more conventional techniques. However, compared to these 

conventional procedures membrane processes are often energy efficient, simple to operate 

and yield a higher quality product. The same is true for separation, concentration, and 

purification of drugs and food products or in pharmaceutical applications. 

For instance, for surface water purification and waste-water treatment, micro- and 

ultrafiltration are competing with flocculation, sand bed filtration and biological treatment. 

In terms of versatility, centrifugation is perhaps the only method to match membrane 

technology (see Table 1.1), when concentration is required, however, an absolute 

requirement for centrifugal processes is the existence of a suitable density difference 

between the two phases that are to be separated, in addition to the two phases being 

immiscible. 

The existing membrane applications include mainly: (i) dialysis for the purification of 

human blood (the artificial kidney); (ii) reverse osmosis for seawater desalination; (iii) 

ultrafiltration for the concentration of protein molecules (typically from cheese and milk); 

(iv) microfiltration for the sterilization of pharmaceutical and medical product ( Winston 

Ho and Sirkar 1992). 

The possibility of having the membrane systems as tools for a better design of chemical 

transformation is becoming realistic for interesting biological applications (i.e. MBR, 

Membrane Bio Reactors); synthetic membranes provide an ideal support to catalyst 

immobilization due to their available surface area per unit volume. Membrane based 

artificial organs such as the artificial kidney are a standard part of modern biochemical 

engineering and medicine. 

The possibility of developing new nanostructured materials with specific configurations 

and morphology is offering powerful tools for the preparation of membranes with 

controlled selectivity and higher permeability (Strathmann, Giorno and Drioli 2011). 
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In this study (as suggested by the title of this work) we have focused on pressure driven 

membrane processes for food and biotechnology applications.  

Membranes in their many configurations are used throughout the food processing industry 

for many years. They can be applied within the production process, i.e. for clarification and 

concentration, as well as used to treat the resulting wastewater prior to disposal or re-use.  

In biotechnology industry, membrane applications are increasingly being used in reaction, 

clarification and recovery schemes for the production of molecules, emulsions and 

particles. They are very well suited to biological processes, since they operate at relatively 

low temperatures and pressures and involve no phase changes or chemical additives, 

thereby minimizing the extent of denaturation, deactivation, and/or degradation of 

biological products (Zeman and Zydney 1996). 

The increase in energy costs and the demands for products with greater nutritional value 

and of processing procedures less toxic to the environment are attractive factors for 

transferring membrane processing to food industry and biotechnology applications. 

In addition to food and biotechnology applications, the growth of bio resource based 

chemicals, functional monomers as well as fuels leads to an increased demand for new 

separation processes. Current research focuses on the utilization of lignocellulosic 

materials as a bio-renewable feedstock, thus he role of membranes in view of the new 

biorefinery concept is crucial for downstream processes (Abels, Cartensen and Wessling 

2013). 

In this chapter a general introduction to membrane science and technology is given. It 

begins with the definition of technical terms and provides a description of membrane 

structures and processes that are used in mass separation. The discussion of engineering 

considerations such as mass transfer in membrane modules and concentration polarization 

and their consequences in practical applications in food and biotechnology industries will 

follow later. 

 

1.1 Pressure driven membrane processes  

Technically filtration is defined as the separation of two or more components from a fluid 

aqueous stream based primarily on size differences [ (Van der Bruggen, Vandecasteele, et 

al. 2003), (Daufin, et al. 2001)]. The primary role of a membrane is to act as a selective 

barrier: it should permit passage of certain components and retain certain other components 
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of a mixture. By implication, either the permeating stream or the retained phase should be 

enriched in one or more components, selectively. 

In pressure driven membrane processes (reverse osmosis, nanofiltration, ultrafiltration, and 

microfiltration, RO, NF, UF and MF respectively) a pressure (PF as shown in Fig. 1.1) 

exerted on the solution at one side of the membrane is the driving force that separates it 

into a permeate and a retentate (P and R respectively). In other applications, concentration 

gradients or electrical potential gradients may also be used as additional driving forces 

(Baker 2004). 

Membranes involved may be typically polymeric, organo-mineral, ceramic, or metallic, 

and filtration techniques differ in pore size, from dense (no pores) to porous membranes. 

Moreover, depending on the type of technique, salts, small organic molecules, 

macromolecules, or particles can be retained, just as the applied pressure will differ. 

Pressure-driven membrane processes use thus the pressure difference (∆P) between the 

feed and the permeate side as the driving force to transport the solvent (usually water) 

through the membrane. Particles and dissolved components are (partially) retained based 

on properties such as size, shape, and charge. 

According to a further grading, pressure-driven membrane processes can be classified by 

several criteria: 

 The characteristics of the membrane (pore size); 

 Size and charge of the retained particles or molecules; 

 Pressure exerted on the membrane.  

This classification distinguishes intrinsically microfiltration, ultrafiltration, nanofiltration, 

and reverse osmosis.  

The hydrostatic pressure gradient exerted (∆P) is the driving force used to achieve the 

desired hydrodynamic flow (Jv) through the membrane (and through a deposited layer that 

may develop during the filtration process).  
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In its simplest form, as shown in Fig. 1.1, a generic membrane technology consists merely 

of pumping the feed solution under pressure over the surface of a membrane of the 

appropriate chemical nature and physical configuration.  

Figure 1.1: Operating principle of membrane technology, “cross-flow” configurational mode, where the 

feed (F) is pumped from the feed tank over the surface of the membrane, resulting in two stream, permeate 

(P) and retentate (R) 

The pressure exerted on the solution at one side of the membrane represent the driving force 

to separate it into a Permeate (P) and a Retentate (R). Permeate is usually a diluted stream 

(or pure water), whereas the retentate is a concentrated solution.  

The pressure gradient across the membrane would force solvent and in some case smaller 

species through the pores of the membrane, while the larger molecules/particles would be 

retained. Thus, one feed stream is split into two product stream. The retained stream (R) 

will thus be enriched in the retained macromolecules, and will also contain some of the 

soluble solutes. In fact, the permeable solutes may be at the very same or higher 

concentration than in the permeate stream, depending on how the membrane separates or 

rejects the solute. However, since the retentate now forms a much smaller volume than in 

the feed a purification of the retained species is reached.  

As well as by the pressure, separation performance of a membrane is influenced by its 

chemical composition, temperature, feed flow rate and interactions between components in 

the feed flow and the membrane surface.  

The four major pressure driven membrane processes are Microfiltration (MF), 

Ultrafiltration (UF), Nanofiltration (NF) and reverse osmosis (RO), and cover a wide range 

of particle/molecular sizes and applications. What distinguishes the more common pressure 

driven processes is the application of hydraulic pressure to speed up the transport process, 

as well as the nature of the membrane itself controls which components permeate and which 

are retained preferentially, as shown in Table 1.1. 

In its ideal definition, RO retains all components other than the solvent (e.g. water) itself, 

while ultrafiltration retains only macromolecules or particles larger than about 10-200 Å 

(about 0.001-0.02 μm). Because UF deals with the separation of fairly large molecules, 
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such as proteins, starch or pigments, the osmotic pressures involved are fairly low; in 

contrast, pressure involved in RO would be fairly high (of order 35-100 bar) in order to 

overcome the high osmotic pressure of the small solutes, like salts. NF has lower osmotic 

pressure to work and thus will need lower operating pressure (10-30 bar). UF and MF, on 

the other hand, would thus need fairly low pressures for operation, and thus lower 

equipment and operating (mainly pumping) costs. Table 1.1 shows some typical example 

of components that fall under these four main processes.  

When pressure-driven flow through a membrane is used to separate micron-sized particles 

from fluids, the process is called Microfiltration. 

 

Table 1.1: Principal characteristics typical of solutes retained of commercial pressure driven membrane 

separation processes  

Separation 

Process 
Application Species retained  

Cut off 

(kDa) 

Driving 

force 

Pressure 

(bar)  
Centrifugation* 

MF Clarification 

Suspended and 

emulsified solid, 

Yeats 

>200  

Hydrostatic 

Pressure 

 

0.5-3 

High speed 

centrifuge 

5000-10,000 G 

UF 
Clarification/ 

Concentration 

Colloids, 

Proteins, Bacteria 
1-200  

Hydrostatic 

pressure 

vs. small 

osmotic 

pressure 

2-10 

Ultra-

centrifuge 

10,000-

100,000 G 

NF 
Concentration/ 

Purification 

Divalents salt  

(SO4
2-, PO4

2-), 

Oligosaccharides 

Dextrans 

0.1-1  
 

Hydrostatic 

pressure 

vs. osmotic 

pressure 

 

6-30 _ 

RO Purification 

Monovalents 

salts, 

Monosaccharides 

< 0. 1  10-80 _ 

*comparison of centrifugation and filtration processes 

 

Microfiltration (MF) is a membrane process that involves the use of membranes with a 

pore size of 0.2–2 μm, and can selectively separate particles with molecular weights of 

>200 kDa.  

MF is generally defined to be the filtering of a suspension containing colloidal or fine 

particles with linear dimensions within the range of 0.025 to 10 μm. This size range covers 

a wide variety of natural and industrial particles (i.e. viruses, bacteria, synthetic polymer 

spheres, yeast cells). These particles are generally large, consequently the osmotic pressure 

for MF is negligible, and the transmembrane pressure drop, which drives the filtration 
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process, is lower than 0.2 MPa. MF is primarily used to separate particles and bacteria from 

other smaller solutes. 

In the food processing industry MF is commonly used for clarification instead of 

centrifugation and for sterilization in place of heat. It is primarily used to remove suspended 

solids (SS), fat and high molecular weight (HMW) proteins. In the diary industry, for 

example, it can be used to clarify cheese whey, as well as de-fat and reduce the microbial 

load of milk. 

In biotechnology applications, tangential flow microfiltration competes with 

centrifugation, depth filtration and expanded-bed chromatography for the initial harvest of 

therapeutic products from mammalian, yeast and bacterial cell cultures. In contrast to 

centrifugation, MF membranes generate a particle-free harvest solution that requires no 

additional clarification before subsequent purification (van Reis and Zydney 2001). 

The most common application of microfiltration is sterile filtration (bacterial removal) prior 

to final formulation of many biotechnological products, and in the initial clarification of 

fermentation broths to remove suspended cells, other particulate debris, or antibiotics 

recovery (Charcosset 2006). 

Ultrafiltration (UF) is primarily a size-exclusion-based pressure driven membrane 

separation process. Typical rejected species include sugars, biomolecules, polymers, and 

colloidal particles. Most UF membranes are described by their nominal molecular weight 

cut-off (MWCO)1. The MWCO of any given membrane can vary with changing feed 

chemistries as well as with factors such as molecular orientation, molecular configuration, 

operating conditions, etc. As a consequence of the high molecular weight of species 

separated in a UF process, osmotic pressure differentials are smaller, simultaneously the 

liquid phase diffusivity is also lower, hence membrane fouling and concentration 

polarization problems are significant. 

UF involves the use of membranes with a molecular weight cut off (MWCO) in the range 

of 1–300 kDa and a pore size of ∼0.01μm. UF processes operate from 2 to 10 bar, although 

in some cases up to 25-30 bars have been used. Feed liquid phase mass transfer resistance 

and resistance due to gel layer formation on the membrane surface are extremely important 

effects in UF processing. 

                                                           
1 MWCO is usually defined as the smallest molecular weight specie for which the membrane shows more 

than 90% rejection 
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UF membrane processes are generally used in the food, beverage, and diary industries, for 

effluent treatment, and for biotechnology and medical applications [ (Baker 2004), ( 

Winston Ho and Sirkar 1992)]. UF is ideal for fractionation, concentration and purification. 

For example, UF can be used to fractionate milk for cheese production. A particularly large 

market for UF is in the specialty milk-based beverages. Another industry where UF has 

found popularity is the fruit juice industry, where permeate rather than retentate is the 

product of interest. Here, UF can be used to clarify a wide variety of fruit juices by 

removing impurities, such as yeast, bacteria and colloids, together with proteins, tannins 

and polysaccharides, which all helps to impart stability to the final product. 

Not to mention that UF has numerous applications in the biotechnology field. In the last 

decade UF has become the method of choice for protein concentration and buffer exchange, 

largely replacing size-exclusion chromatography in these applications, purification of 

plasmide DNA as well as virus-like particles [ (Kurnik, et al. 1995), (Kahn, et al. 2000),  

(Cruz, et al. 2000)]. 

Reverse osmosis (RO) 2 technology has grown extensively in recent years, since when thin-

film composite (TFC) membranes has provided better flux performance and enhanced 

separations of organic under lower operating pressures than those obtained with cellulosic 

membranes. These materials are more pH, temperature, and chlorine resistant than the 

traditional cellulose acetate membranes. The ideal reverse osmosis membrane should be 

resistant to chemical and microbial attack, and the separation and mechanical 

characteristics should not change after long-term operation. 

RO is characterized by a MWCO of about 100 Da, and the process involves pressures 5–10 

times higher than those used in UF. It uses pressures between 4 and 10 MPa and 

concentrates particles with molar masses below 350 Da and this technique reject nearly all 

solutes and desalinate water (Baker 2004).  

Applications of RO membranes include treatment of water and hazardous wastes, 

separation processes in the food, beverage, and pulp and paper industries, recovery of 

organic and inorganic materials from chemical processes, etc. One of the main advantage 

of using RO is the reduction in the costs associated with evaporation, or even the 

elimination of this step. 

                                                           
2 Osmosis is a natural phenomenon in which water flows through a semipermeable (no solute flow) membrane 

from the side with lower solute concentration to the higher solute concentration side until equilibrium of 

solvent (water) chemical potential is restored. To reverse the flow of water, a pressure difference greater than 

the osmotic pressure difference is applied; as a result, separation of water from solutions become possible.  

This phenomenon is termed Reverse Osmosis. 
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These membranes, originally developed for desalination, have found a small niche in the 

biopharmaceutical industry; more often they are used for the concentration of antibiotics, 

peptides, or salts (Kalyanpur 2002). 

Nanofiltration (NF) lies between the separation characteristics of RO and UF process which 

is widely used for several applications such as water softening and wastewater treatment. 

The pore size of the NF is in the range of 0.5–1 nm. This application concentrates, 

fractionates or purifies aqueous solutions of organic solutes with molecular weight between 

100 and 1000 Da and mixture of monovalent/multivalent salts and uses pressures between 

1 and 4 MPa [ (Baker 2004), (Salehi, Razavi and Elahi 2011)]. Since, the NF membrane 

shows an amphoteric behavior, depending on pH, positive or negative charged ions will be 

attracted and repelled due to Donnan effect. NF carries quite distinctive properties such as 

pore radius and surface charge density which influences the separation of various solutes 

(Salehi, Razavi and Elahi 2011). 

NF membranes also have a useful (peculiar) property in that they can separate dissociated 

forms of a compound from the undissociated form; e.g., organic acids such as lactic, citric, 

and acetic pass through easily at low pH but are rejected at higher pH when in their salt 

forms.  

NF can also be applied for more challenging applications, involving fractionation rather 

than purification. The nature of the membrane controls which components will permeate 

and which will be retained, since they are selectively separated according to their molar 

masses or particle size. It is well known that NF membranes can be used for salt 

fractionation since the rejection of monovalent salts is lower than that of multivalent salts 

(Bandini and Bruni 2010). NF appears as an important alternative to conventional methods 

of food processing, and it is a technology is still evolving, finding more and more 

applications in food processing and appears as an important alternative to conventional 

methods. Recent research has highlighted the potential for NF use in wide ranging, 

including water softening, wastewater treatment, vegetable oil processing, beverage, dairy 

and sugar industry (Salehi, Razavi and Elahi 2011). NF has been established as greater 

separation efficiency technology: it successfully reduces the wastewater, in can be 

performed at low temperatures, it is characterized by reduction in number of processing 

steps and it presents a promising choice toward the achievement of cost effective process.  
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1.1.1 Membrane types 

As seen in the previous section, membrane processes involve very different applications 

and hence it might be expected that a number of very different membranes are necessary. 

This is especially so because even for a single process one type of membrane is not 

sufficient to cover all possible applications.  

Membranes can be classified by: (i) nature of the membrane (natural or synthetic), (ii) 

structure of the membrane (porous or nonporous), (iii) application (gas-gas, gas-liquid or 

liquid-liquid separation), and (iv) mechanism of membrane action (adsorptive, diffusive, 

ion exchange, osmotic, or nonselective (inert) membranes.  

Synthetic membranes may be polymeric, organo-mineral, ceramic, and filtration techniques 

may differ in pore size, from dense (no pores) to porous membranes. Depending on the type 

of process (technique), salts, small organic molecules, macro-molecules, or particles can 

be retained, and so the applied pressure as well as the mechanical stability will differ [ (Van 

der Bruggen, Vandecasteele, et al. 2003), (Cheryan 1998) ]. 

Most membrane type are asymmetric, consisting of a thin separation layer (0.1 to 1 μm) 

supported by one or more thicker layers with larger pores. The supporting layers do not 

contribute to the resistance against the mass transfer; the permeability of the membrane is 

determined solely by the thin active layer. When the different layers consist of different 

polymer materials, the membrane are classified as thin film composite (TFC) membranes. 

Traditional material used in pressure-driven membrane processes are organic polymers.  

Membranes are usually classified according to the size of the separated components, and 

thus in MF applications are specified in microns (i.e., μm). However, in UF membranes, it 

is customary to refer to the “molecular weight cut-off” (MWCO) instead of particle size. 

Thus, UF covers particles and molecules that range from about 1000 in molecular weight 

to about 500,000 Daltons. The most important membrane qualities are: 

 high selectivity; 

 high permeability; 

 mechanical stability;  

 temperature stability; and 

 chemical resistance. 

Firstly, membranes should combine high permeability and high selectivity, with sufficient 

mechanical stability. Selectivity is placed first on the list because low selectivity leads to a 

multi stage process, which is not economical compared with conventional process, whereas 

low permeability can be compensated by an increase in membrane surface area. The 
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separation efficiency is expressed by the rejection of a given compound, which ranges from 

0 for complete permeation to 1 (R=100%) for complete rejection. In industrial full-scale 

installations, the recovery, REC3, typically is around 80%. 

MF membranes have the largest pores, ranging from 0.1 to 10 μm, and the highest 

permeability, so that a sufficient water flux is obtained at a low pressure. For 

microfiltration, the most often used materials are the hydrophobic polytetrafluoroethylene 

(PTFE), poly (vinylidene fluoride) (PVDF), polypropylene (PP), polyethylene (PE) and the 

hydrophilic materials cellulose esters, polycarbonate (PC), polysulfone/poly(ether sulfone) 

(PSf/PES), polyimide/poly(ether imide) (PI/PEI), aliphatic polyamide (PA), and 

polyetheretherketone (PEEK). 

UF membranes have smaller pores (from 2 to 100 nm), and the permeability is considerably 

lower than in MF, so higher pressures are needed.  Ultrafiltration membranes must be 

prepared by phase inversion. Materials used are polysulfone/poly(ether sulfone)/sulfonated 

polysulfone, poly (vinylidene fluoride), polyacrylonitrile and related block-copolymers, 

cellulosic such as cellulose acetate, polyimide/poly(ether imide), aliphatic polyamide, and 

polyetheretherketone. Polymer blends, e.g., with polyvinylpyrrolidone (PVP) are 

commonly used to increase the hydrophilicity of the membranes. Nanofiltration 

membranes are made of aromatic polyamide, polysulfone/poly(ether sulfone)/sulfonated 

polysulfone, cellulose acetate, or poly(piperazine amide). 

In NF the pore size are smaller than in UF, typically around 1 nm, which corresponds to 

dissolved compounds with a molecular weight of about 300. Nanofiltration membranes are 

made of aromatic polyamide, polysulfone/poly(ether sulfone)/sulfonated polysulfone, 

cellulose acetate, or poly(piperazine amide). NF membranes also have a surface charge: 

polymeric NF membranes contain ionizable groups (carboxylic or sulfonic acid groups) 

which results in a surface charge in the presence of a feed solution.  

Partitioning between the charged membrane and the bulk solution is characterized by the 

contribution of Donnan equilibrium, of Dielectric exclusion and hindrance; all of them 

allow also steric retention of ions with a size below the pore size of the membrane. Most 

NF membranes are composite materials supported by polymer substrate and manufactured 

in a spiral wound design as opposed to a flat sheet or tube geometry, the predominant model 

used today for industrial applications is the spiral configuration, whereas Polyamide (PA) 

                                                           
3 REC: defined as the ratio between permeate stream (QP) and feed stream (QF) 
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is typically used as the main component of the skin [ (Baker 2004), (Hong, Miller e 

Bruening 2006)]. 

RO membranes are dense membranes without predefined pores. As a result, permeation is 

slower and rejection is not a result of sieving effect, but of a different diffusivity of the 

solutes with the membrane. The low permeability of RO membranes requires high pressures 

and, as a consequence, relatively high energy consumption. This effect is even more 

pronounced in the presence of osmotic pressure due to the high concentrations of dissolved 

components that counteract the effect of the exerted pressure. Reverse osmosis membranes 

can be made of cellulose triacetate, aromatic polyamide or interfacial polymerization of 

polyamide and poly(ether urea). Most membrane types are asymmetric, i.e. consisting of a 

thin separating layer (0.1 to 1 μm) supported by one or more thicker layers with larger 

pores. The supporting layers do not contribute to the resistance against mass transfer; the 

permeability of the membrane is determined solely by the thin active layer. These 

asymmetric membranes were a breakthrough for industrial application of membrane 

filtration because they combine high flux with sufficient mechanical strength. When the 

different layers consist of different polymer materials, the membranes are classified as thin 

film composite (TFC) membranes. 

 

1.1.2 Polymers used in membrane manufacture 

Among all the materials used to manufacture membranes (over 130 materials have been 

documented in literature), only few was approved for use in food and biotechnology 

applications. Moreover those material is limited by the high pressure values in pressure 

driven membrane processes. A brief summary of the membrane chemistry is presented in 

this section, towards understanding the behavior, performance, and limitations of particular 

materials. 

Cellulose Acetate (CA) is a classic membrane material. The raw material is cellulose, which 

is a polymer of β-1,4 linked glucose units. One primary and two secondary hydroxyl groups 

and the β-glucosidic oxygen are in the equatorial position. Cellulose and its derivatives are 

generally linear, rod like, and rather flexible molecules, which are considered as fairly 

important characteristics for RO and UF applications. Cellulose acetate is prepared from 

cellulose by acetylation (i.e. reaction with acetic anhydride, acetic acid, and sulfuric acid).  

There are several advantages to the use of CA as membrane material: 

 Hydrophilicity (which minimizes fouling); 
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 Wide range of pore size (covering from RO to UF applications) 

 Low cost. 

Among the disadvantages of CA membranes there are a fairly narrow temperature range, 

maximum recommended temperature is 35°C, as well as a rather narrow pH range (pH 5-

6.54). Another problem is the poor resistance to chlorine (less than 1 ppm is suggested under 

continuous operation), moreover CA is highly biodegradable, it is highly susceptible to 

microbial attack due to the nature of its cellulose backbone, not to mention that the lower 

the temperature the higher the risk of microbiological growth. 

One important physical property that affects membrane quality is the degree of 

polymerization of the cellulose, the optimum appears to be 100-200 or 100-300, which 

would result in molecular weights of about 25,000-80,000. 

Recently cellulose matrix have been studied as affinity support for biotechnology 

applications. Memtek Corporation5 has introduced hydrophilic affinity micro porous 

membranes composed of reactive aldehyde sites for covalent coupling to the groups of 

proteins and other ligands (Hermanson, Krishna Mallia and Smith 1992). 

Polyamide (PA) membranes are characterized by having an amide bond in its structure (-

CONH-). This class of materials overcomes some of the problems associated with CA 

membranes. Temperature, pH, biofouling as well as chlorine tolerance are higher. Typically 

PA form the contact skin layer in many composite membranes. 

Polysulfone (PS) membranes are widely used in MF and UF. Polysulfone itself is 

characterized by having in its structure diphenylene sulfone repeating units. The –SO2 

group in the polymeric sulfone is quite stable. Repeating phenylene rings contribute to high 

degree of molecular immobility, producing high rigidity and strength. Polysulfone (PS) and 

Polyethersulfone (PES) are widely used, and are considered breakthroughs for MF and UF 

applications because of wide temperature limits (up to 75°C), wide pH tolerance as well as 

good chlorine tolerance. 

To conclude, Polyvinylidene fluoride (PVDF) is a hydrophobic material, although some 

PVDF membrane has its surface modified to make it more hydrophilic (especially for 

biotechnology applications, where the fouling is severe). These class of material is very 

popular for MF and UF applications, because to its good chlorine tolerance. Table 1.2 

summarizes the main characteristics of these membrane materials. 

                                                           
4 http://www.gewater.com/ 
5 http://memteccorp.com/ 

http://www.gewater.com/
http://memteccorp.com/
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Table 1.2: Polymeric materials used for the manufacture of membranes 

Membrane 

Polymer 
Structure Tmax (°C) pH range 

Chlorine 

tolerance (ppm) 

Cellulose Acetate 

(CA) 
 

30-35 5.0-6.5 1  

Polyamide (PA) 
 

50-55 3.0-10.0 5,000  

Polysulfone (PS) 
 

75 

1.0-13.0 200  

Polyethersulfone 

(PES) 
 

125 

 

 

1.1.3 NF Membranes: State of art 

With properties between Ultrafiltration and Reverse Osmosis, NF membranes have been 

used extensively in many interesting applications especially in water and wastewater 

treatment. Other interesting applications include those in food, pharmaceutical and 

biotechnology applications. 

NF membranes possess pore size typically of 1 nm which corresponds to molecular weight 

cut-off of 300-500 Da. NF membranes in contact with aqueous solution are also slightly 

charged due to the dissociation of surface functional groups or adsorption of charge solutes. 

For example, polymeric NF membranes contain ionizable groups such as carboxylic groups 

and sulfonic acid groups which result in charged surface in the presence of a feed solution; 

the dissociation of these surface groups is strongly influenced by the pH of the contacting 

solution and where the membrane surface chemistry is amphoteric in nature, the membrane 

may exhibit an isoelectric point at a specific pH. 

Similar to RO membranes, NF membranes are able in the separation of inorganic salts and 

small organic molecules. Key distinguish characteristics are low rejection of monovalent 

ions, high rejection of divalent ions and higher fluxes compared to RO membranes. These 

properties have allowed NF to be used for water and wastewater treatment, pharmaceutical 

and biotechnology, and food engineering.  

A wide literature is available about NF membrane properties [ (Van der Bruggen, Manttari 

and Nystrom 2008) , (Hilal, et al. 2004)] as well as (Schaefer, Fane and Waite 2005) have 

written a comprehensive reference book on NF. Other recent reviews covered the chemical 
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modification of NF membranes  (Van der Bruggen 2009), fouling [ (Al-Almoudi 2010), 

(Tang, Chong and Fane 2011)], as well as effect of pH and salt (Luo and Wan 2013). 

NF is an extremely complex process and depends on the micro hydrodynamic and 

interfacial phenomena occurring at the membrane surface and within the membrane 

nanopores. Rejection for NF membranes may be attributed to a combination of steric, 

Donnan, dielectric, and transport effects. The transport of neutral solutes is based on size 

exclusion and has been well established through numerous studies. 

Most of NF membranes possess a porous active layer, and characterization of these 

nanopores in terms of pore size and distribution is a key element to understanding sieving 

aspect of these membranes. Thus membrane characterization is widely documented in 

literature because plays a crucial role, and as documented by (Mohammad, et al. 2015) can 

be performed by: 

 Atomic Force Microscopy (AFM), which allows the direct measurement of pore 

size and distribution, surface roughness, topography; 

 Neutral solutes rejection studies and model application, which allows the indirect 

measurement of pore size; 

 Scanning electron microscope (SEM) for imaging of the membrane surface, 

membrane cross section and fouling. 

A more detailed discussion about membrane characterization will be presented in Chapter 

4. 

 

1.1.4  Spiral-Wound module 

Commercially, flat sheet membranes are installed in spiral wound modules and used in 

mainly water desalination and purification. In most cases the company which produces the 

membranes also produces the appropriate modules. This module type provides a rather 

large membrane area per unit volume, but requires in certain applications a substantial 

amount of pre-treatment.  

Spiral wound is one of the most compact and inexpensive designs, and is characterized by 

a high packing density (> 900 m2/m3) and a simple design. These membrane elements are 

designed around flat sheets: two flat sheets are placed together with their active sides facing 

away from each other and are wound around a permeate collecting tube with a special mesh 

being use as spacers (usually made of polypropylene). Both sheets are separated from each 

other and are glued together on three sides, the fourth open side is fixed around the 
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perforated center tube. Another mesh like spacer of the required thickness (the feed channel 

spacer) is placed on one side of this envelope and the whole assembly rolled around the 

center tube in a spiral configuration. A simplified sketch of the basic concept is depicted in 

Fig. 1.2: 

 

Figure 1.2: Detailed structure of a spiral wound module with axial feed flow 

The feed is pumped lengthwise along the unit, while the permeate is forced through the 

membrane sheets into the permeate channel and spirals toward the perforated center 

collected tube. Usually, several elements are assembled in one pressure vessel.  

In terms of fluid flow characteristics, spiral wound modules are basically flat sheet arranged 

on top of each other to form several narrow slits for fluid flow. The feed channel height is 

controlled by the thickness of the spacer in the feed channel. The advantage of a narrow 

channel height is that much more membrane area can be packed into a given pressure 

vessel. 

The classic spiral wound module is characterized by cross flow and accurate modelling 

must, therefore, take into account the two-dimensional nature of velocity, pressure and 

concentration distribution for both feed and permeate channels.  

These modules operate in turbulent flow. The velocity in the feed channel is calculated by 

dividing the volumetric flow rate by the cross sectional area. Typically the velocity in spiral 

wound unit ranges from 0.1 to 0.6 m/s, being higher for the larger mesh spacer. These are 

“superficial” velocities, corresponding to Reynolds number of 100-1300: nominally this is 

the laminar flow region (i.e. in tubular modules), but the additional turbulence contributed 

by the spacers, should also be taken into account. The spacer enhances turbulence, despite 

low Reynolds numbers. 

Other configurations are plate-and-frame and tubular modules, used mainly in the chemical 

and food processing industry and in treating certain waste waters. Capillary type membrane 

modules dominate the hemodialysis market but are also applied in ultrafiltration and the 

production of ultra-pure water [ (Strathmann, Giorno and Drioli 2011), (Cheryan 1998)]. 
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1.2 Operating parameters 

The terminology used for pressure-driven membrane processes (such as NF) was reviewed 

by (Gekas 1988). The driving force of the process is the pressure across the membrane. 

The main physical operating parameters that affect membrane performances are: feed flow 

rate (QF), trans membrane pressure (∆P), turbulence near the membrane surface (provided 

by stirring in a bench-top test cell, or by cross flow in an industrial module), temperature 

(T) and concentration of the solute(s) (c). Additional factors include pH, ionic strength (in 

particular for Electrolyte solutions), and other features that may affect the shape and 

conformation of the solutes.  

The process is generally evaluated in terms of two parameters: observed solute rejection 

Robs, and permeate flux Jv. 

The definitions of these parameters are given below:  

1 P
obs

bulk

c
R

c
   (1.1) 

P
v

Q
J

A
  (1.2) 

cP, cbulk in Eq. (1.1) are permeate and bulk concentration respectively, and QP, A in Eq. 

(1.2) represent permeate flow rate and membrane area, respectively. All these factors 

mentioned above affect rejection values. In pressure driven membrane processes it is 

important to account for the effect of concentration polarization.  

Besides concentration polarization, others parameters that affect membrane performances 

are viscosity and density of the feed fluid. The viscosity can be controlled by two factors: 

solids concentration in the feed and temperature (Hwang and Kammermeyer 1998). An 

increase in feed concentration alters the viscosity, density and diffusivity of the feed 

solution, causing a decrease in permeate flow rate (Satyanarayana et al., 2000). An increase 

in temperature results in a decrease in fluid viscosity and increase in molecular mobility, 

that is, in diffusivity. For its part, an increase in tangential velocity increases the permeate 

flow rate by provoking greater turbulence, causing a dispersion in the solute molecules 

concentrated on the membrane surface, reducing the thickness of the gel layer [ (Cheryan 

1998), (Cheng and Lin 2004)].  

There is a linear relationship between flow rate and the inverse of the solvent viscosity for 

NF and UF membranes, indicating that the main mass transport mechanism in these 

systems is convection (Tsui and Cheryan 2004).  
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1.2.1 Concentration Polarization 

The term concentration polarization is used to describe the accumulation of membrane 

rejected solute at the membrane surface where the solute concentration is much higher than 

that of the bulk feed solution. This is shown schematically in Fig.1.3:  

 

Figure 1.3: Concentration profiles during membrane processing of partially or completely rejected solutes 

This phenomenon is an additional complication that arises when macromolecules (such as 

proteins, in UF) and other relatively large solutes (such as sugars, in NF) or particles are 

filtered. These compounds, being largely rejected by the membrane, tend to form a layer 

on the surface of the membrane. Depending on the type of solid, this layer could be fairly 

viscous (in case of sugars) or gelatinous (with proteins). Thus, a further resistance to the 

permeate flow is encountered, in addition to those of the membrane and boundary layer. 

As water passes through the membrane, the convective flow of solute to the membrane 

surface is much larger than the diffusion of the solute back to the bulk feed solution; as a 

result, the concentration of the solute at the membrane surface increases (cI > cbulk). 

During Nanofiltration solutes in the feed are brought to the membrane surface by 

convective transport, and a portion of the solvent (water frequently) is removed from the 

fluid. This results in a higher local concentration of the rejected solute at the membrane 

surface as compared to the bulk, regardless of whether the solutes are partially or 

completely rejected by the membrane. This solute buildup is known as “concentration 

polarization” and is chiefly responsible for the marked deviation in flux compared to pure 

water flux. 

Analogous to the velocity boundary layer, there will also be a concentration boundary layer 

that separates the region of higher concentration near the wall (i.e., near the membrane 

surface) from the lower, more uniform concentration in the bulk of the liquid (see Fig. 1.3). 

This concentration boundary layer is thinner than the corresponding velocity boundary 

layer since mass transfer by molecular diffusion is generally a much slower process than 

momentum transfer. In addition, the length over which the concentration boundary layer 

develops will be much longer. 
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Concentration polarization is more pronounced at higher pressure, lower velocities, and 

any other conditions which bring solute to the membrane surface very rapidly. When these 

operating conditions aggravate polarization effects, rejection will increase. The additional 

layer formed next to the membrane surface will cause the local concentration of the solute 

at the membrane surface, cI (interfacial concentration) to be higher than in the bulk solution 

where samples are taken, thus, the true rejection, Rreal, will differ from the apparent 

(observed) rejection, Robs, where:   

1 P
real

I

c
R

c
   (1.3) 

Where cI refers to membrane surface concentration. Since cI>cbulk because of the 

concentration polarization, Rreal will be greater than Robs. It is easy to measure cP and cbulk, 

on the other hand, Robs values would only be valid under similar operating and polarization 

conditions, which in many cases is difficult to scale-up on industrial systems.  

Concentration polarization is responsible of negative effects, such as: 

(i) Decrease in water flux due to an increase in osmotic pressure at the membrane 

surface; 

(ii) Increase in solute flux though the membrane; 

(iii) Precipitation of the solute if the surface concentration exceeds its solubility 

limit, plugging membrane pores and hence reducing water flux; 

(iv) Changes in separation properties of the membrane; 

(v) Fouling. 

If the concentration of a rejected species is high enough, the secondary layer formed on the 

membrane surface may impede the passage of lower molecular solutes, in addition, higher 

concentrations lead to a decrease in the apparent MWCO (Cheryan 1998).  

The extent of concentration polarization can be reduced by promoting good mixing of the 

bulk feed solution near the membrane surface. This can be done by modifying the 

membrane module to enhance the mixing, by including turbulence promoters in the feed 

channel, or by increasing the feed flow rate to increase the axial velocity and so promote 

turbulent flow, increasing Reynolds number.  

Concentration polarization can have a major impact on membrane processes. The increased 

solute concentration on the membrane surface results in a significantly higher osmotic 

pressure, causing a decrease in the driving force of the process, and thus a decrease of the 

flux.  
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On the other hand the lower flux in polarization-limited system is due to the hydrodynamic 

resistance of the boundary layer. Initially, as a result of convective transport of solute to 

the membrane, solute buildup will cause a steep concentration gradient within the boundary 

layer. This causes a back transport of the solute into the bulk because of diffusion. 

Eventually, a steady state is reached where the two phenomena balance each other. Solute 

concentration in the gel layer reaches a maximum.  

Changing the operating conditions, such as lowering pressure or feed concentration, or 

increasing the feed velocity, should revert the system back to the pressure controlled 

operating regime. Concentration polarization, differently from fouling, is an irreversible 

phenomenon. 

 

1.2.2 The Film Theory 

The flow of fluid in the bulk stream influences the back transfer of accumulated solute into 

the bulk, thus keeping this boundary layer thin. This concept forms the basis of the film 

theory.   

The first model proposed to explain the effects of concentration polarization in UF was the 

gel-polarization model (Porter 1972). In the following years many works and reviews about 

concentration polarization have been reported [ (Gekas and Hallstrom 1987), (Sablani, et 

al. 2001)]. 

Concentration polarization greatly complicates the modeling of membranes systems 

because experimental determination of the wall concentration is very difficult. For very 

high flow rates, enough mixing occurs, and the wall concentration can be assumed equal to 

the bulk concentration ( bulk Ic c ); however at lower flow rates this assumption could cause 

substantial error. One of the simplest and widely used theory for modeling flux in mass-

transfer controlled systems is the Film theory. As solution is filtered, solute is brought to 

the membrane surface by convective transport at a rate Js, defined as: 

s v bulkJ J c  (1.4) 

Where Jv is the permeate flux and cbulk is the bulk concentration of the rejected solute. The 

resulting concentration gradient causes the solute to be back-transported in to the bulk of 

the solution due to diffusional effects. Neglecting axial concentration gradients, the rate of 

back-transport of solute will be given by: 
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s

dc
J D

dx
  (1.5) 

 Where D is the diffusion coefficient and the term dc
dx

is the concentration gradient over 

differential element in the boundary layer. 

The Film theory, developed by (Brian 1966), simplifies a complex transport problem to a 

one-dimensional mass transfer problem by assuming axial solute convection near the 

membrane surface is negligible. At steady state, integrating the one dimensional 

convection-diffusion mass balance (the Navier-Stokes diffusion-convection equation) from 

the membrane surface out to a finite mass boundary (film) layer thickness, δ, assuming that 

the boundary layer is stagnant and its thickness does not change with channel length, yields 

the relationship between concentration polarization and permeate flux. The result is: 

lnv I P

L bulk P

J c c

k c c





 (1.6) 

Where kL is the mass transfer coefficient, having the same units as the flux Jv, and is 

calculated as: 

L

D
k




 
(1.7) 

Where δ is the thickness of the boundary layer over which the concentration gradient exists. 

From Film theory, the intrinsic rejection can be calculated from the apparent (measured) 

rejection by the following relationship: 

1 1
ln lnobs real v

obs real L

R R J

R R k

    
    

   

 (1.8) 

Where Jv is the flux and kL is the mass transfer coefficient. Thus, whenever rejection data 

are reported, the mass transfer characteristics for the apparatus used should be known. This 

will allow the value kL to be known, along with the volume flux Jv. Equation (1.3) could 

then be used to determine the true rejection, Rreal.  

In this model there is no pressure term; no effect of pressure was assumed, and thus this 

model will be valid only in the pressure-independent region. The flux will be controlled by 

the rate at which solute is transferred back from the membrane surface into the bulk fluid. 

Flux only can be improved by enhancing mass transport as much as possible, such as by 

reducing the thickness of the boundary layer. 
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2.0 Introduction 

Carbohydrates are one of the most abundant classes of organic compounds that can be 

found on earth. This large natural resource has long interested chemist and biochemist 

because of its predominant role in biological and industrial applications. Among the well-

known carbohydrates are various sugars, starches, and cellulose, all of which are important 

for the maintenance of life in both plants and animals, and which today play a pivotal role 

in food and biotechnology technology. 

Carbohydrates are a major class of naturally occurring organic compounds, which come by 

their name because they usually have, or approximate, the general formula Cn(H2O)m with 

3n  , 1m .  

Although the structures of many carbohydrates appear to be quite complex, the chemistry 

of these substances usually involves only two functional groups- ketone or aldehyde 

carbonyls and alcohol hydroxyl groups. The carbonyl groups normally do not occur as such, 

but are combined with hydroxyl groups to form hemiacetal or acetal linkages.  



Sugar Chemistry & Sugar NF 

28 

 

An understanding of stereochemistry is particularly important to understanding the 

properties of carbohydrates: configurational and conformational isomerism play an 

important role for this class of organic compounds. 

The structural characteristics of oligosaccharides, including the types of monosaccharides, 

substitutions and linkages building the structure, as well as the molecular weight, obviously 

influence their physic-chemical properties and in turn define the properties of the resulting 

solution as well as the membrane separation performance [ (Geankoplis and Toliver 2003), 

(Pinelo, Jonsson and Meyer 2009)]. 

In commercial usage, the term “sugar” usually refers to sucrose, a disaccharide obtained 

from sugar cane and sugar beet. Today’s trend in commercial application is to use the term 

“sugar” without reference to its origin (Pancoast and Junk 1980). Glucose, sucrose, 

cellulose and starch are household names even if the common man may not know that 

glucose is a constituent of the other three. Within this group, one comes across a wide range 

of molecular sizes (from monomers to oligomers to polymers), and shapes. The 

predominant functional group is the hydroxyl (-OH), several of which occur in a 

carbohydrate. Another key functional group is the carbonyl group (C=O), which plays a 

pivotal role in the chemical behavior of carbohydrates. 

Sucrose, the refined sugar of commerce, is represented by the following structural formula 

(Fig. 2.1): 

 

Figure 2.1: Sucrose, Glucose and Fructose structural formula. Sucrose is a disaccharide with one molecule 

of α-D-glucose condensed with one molecule of β-D-fructose. 

 

Sucrose is a α-D-glucopyranosyl-β-D-fructofuranoside, technically. It is a disaccharide 

with one molecule of α-D-glucose in the pyranose (or 6-membered) ring and is condensed 

with one molecule of β-D-fructose in the furanose (or 5-member) ring form.  

α-D-glucose is generally referred to as dextrose in its food applications, as well as  β-D-

fructose is also known as levulose, but more commonly as fructose. This structure is quite 

stable both in the dry form and in solution, but it is subject to hydrolysis in acid solution or 

when attacked by invertase enzyme. This hydrolysis reaction is also termed inversion, 

because of the net change in optical rotation (α)D. 
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Upon hydrolysis a mixture of α-D-glucose (α-D-glucopyranose) and β-D-fructose (β-D-

fructopyranose) is formed, technically named “Invert sugar syrup”.  

There are three methods that are used to produce invert syrup: (i) the oldest procedure is 

the use of invertase, which is still used to some extent; secondly (ii) acid inversion, using 

hydrochloric acid, is widely used in both batch and in continuous systems; (iii) the third 

method is to use an ion-exchange resin. 

Total invert sugar is, by definition, sucrose which is essentially completely hydrolyzed to 

an equimolecular ratio of dextrose and fructose. The limiting factor for the solubility of 

total invert is the solubility of dextrose. When one sugar is dissolved in an aqueous solution 

of another, the solubility of the latter is usually reduced due to the salting-out effect of the 

added sugar. 

(Van der Linden 1919) firstly showed that the solubility of sucrose was less in an invert 

sugar solution than in pure water. 

In this section sugar properties will be investigated in view of membrane processes 

application, however the first attempt is to introduce their classification. 

 

2.1 Classification of Carbohydrates 

Carbohydrates are primarily classified according to their molecular size and the number of 

monosaccharide units.  

The simple sugars, or monosaccharides, are the building blocks of carbohydrate chemistry. 

They are polyhydroxy aldehydes or ketones with five, six, seven, or eight carbon atoms 

that are classified appropriately as pentoses (C5), hexoses (C6), heptoses (C7), or octoses 

(C8), respectively. They can be designated by more specific names, such as aldohexose or 

ketohexose, to denote the kind of carbonyl compound they represent (see Fig. 2.2). For 

example, an aldopentose is a five-carbon sugar with an aldehyde carbonyl; a ketohexose is 

a six-carbon sugar with a ketone carbonyl. 

 

Figure 2.2: Representation of Carbonyl groups 

It is important to keep in mind that the carbonyl groups of sugars usually are combined 

with one of the hydroxyl groups in the same molecule to form a cyclic hemiacetal or 

hemiketal. These structures once were written as follows, and considerable stretch of the 
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imagination is needed to recognize that they actually represent oxacycloalkane ring 

systems. 

Oligosaccharides are made up of two or more monosaccharide units; for example, 

disaccharides, such as sucrose, lactose and maltose, are hydrolysable to yield two 

monosaccharide units. In the case of sucrose, the monomers obtained are glucose and 

fructose. Raffinose, which can be isolated from molasses, is a trisaccharide; this compound 

on hydrolysis yields one molecule each of glucose, galactose, another aldohexose, and 

fructose.  

As already mentioned, cellulose and starch are polysaccharides, being polymeric 

compounds. Another example of a polysaccharide is glycogen, commonly known as animal 

starch. Others carbohydrates which do not conform to the general formula Cn(H2O)m 

include deoxy sugars and amino sugars.  

 

2.1.1 Monosaccharides  

Monosaccharides are monomers. The most important member of this group is Dextrose (a 

C6), which is an aldohexose as it has six carbon atoms, five hydroxyl groups (one primary 

and the other four secondary) and an aldehyde function at one end, as in the Fischer 

representation. Dextrose is the hexose sugar D-glucose obtained by the complete hydrolysis 

of starch.  

The optical activity exhibited by (+)-Glucose was first observed by Biot in the year 1817. 

Two years earlier he had recorded that sucrose was optically active. However, the 

stereochemistry of glucose and other monosaccharides remained obscure until Fischer 

began his pioneering studies. The molecular formula, formation of a penta acetate and 

reduction of Tollen’s reagent established that glucose is a pentahydroxy aldehyde having 

six carbon atoms. The presence of the aldehyde group could be confirmed by oxidation 

with bromine water, the product being gluconic acid. Glucose cyanohydrin, on hydrolysis 

followed by reduction with hydriodic acid gave n-heptanoic acid showing that glucose is a 

straight-chain aldohexose. On catalytic hydrogenation over a nickel catalyst glucose 

yielded glucitol or sorbitol, which is 1,2,3,4,5,6-hexahydroxyhexane. However, structure 

that emerged from the above mentioned reactions could not account for all the known 

properties of glucose.  
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Fructose, which is an isomer of glucose (C6), has a keto carbonyl function and is known as 

a ketohexose. This hexose sugar is a natural constituent of many foods, and is a very 

hygroscopic sugar 

When it crystallizes from solution it has the β-D-fructo-pyranose configuration. The 

crystals are anhydrous. (Shallenberger and Birch 1975) reported that the percentage 

distribution of the isomers of mutarotated D-fructose at 20°C is 68.4-76.0 for β-pyranose, 

28.0-31.6 for β-furanose, and 4.0 for α-pyranose. Increasing temperature favors the 

formation of the pyranose configuration. 

Fructose has the highest sweetness value of any of the commercial sugars; compared to 

sucrose, crystalline fructose is about 1.7-1.8 times sweeter than sucrose. When in solution, 

however, certain factors affect the sweetness intensity. These include concentration of 

sugar, temperature, and pH. Since the sweetness level is reduced with increasing 

temperature, fructose ha a more effective application at normal or cool food temperatures. 

Monosaccharides having fewer carbon atoms are also known. For example, arabinose and 

ribose are aldopentoses, that is, they are C5 compounds with an aldehyde group and four 

hydroxyls.  

Xylose, a pentose sugar, is an intermediate product in xylitol production. Xylitol is a sugar 

alcohol having sweetness equal to sucrose but it does not cause dental carries and, thus, it 

is used as a sweetener by e.g. the confectionary industry (P.M. Olinger 2001). Xylose can 

be hydrolyzed from xylan-rich materials like rice husk, corn stalk, wheat straw and flax 

straw. Potential sources for xylose are birch and other hardwoods that have a xylan-rich 

hemicellulose structure. 

 

2.1.2 Disaccharides  

Combinations of two or more of the simple sugars through glycoside linkages give 

substances known as polysaccharides. They also are called oligosaccharides if made from 

two to ten sugar units. The simplest oligosaccharides are disaccharides made of two 

molecules of simple sugars that can be the same or different. 

The best known disaccharide is sucrose or cane sugar. As mentioned earlier, on hydrolysis 

it gives one molecule each of D(+)-Glucose and D(-)-Fructose. Since it does not reduce 

Tollen’s reagent or react with phenylhydrazine, it is evident that it does not have a free 

carbonyl group. Nor does it exhibit mutarotation. Therefore, it is obvious that glucose and 

fructose are combined through their anomeric carbon atoms that are C-1 of glucose and C-
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2 of fructose as shown in structure 26. This linkage is known as the glycoside bond. The 

configuration at the anomeric carbon atom of the glucose unit is -, whereas that at the 

corresponding position in the fructose part is .  

In contrast to sucrose, D(+)-Lactose, which is the milk sugar, reduces Tollen’s reagent, 

exhibits mutarotation and reacts with phenylhydrazine to form an osazone derivative. On 

acidic or enzymatic hydrolysis (brought about by the action of emulsin which specifically 

cleaves -glycosidic linkages), one molecule each of D-(+)-Glucose and D-(+)-Galactose 

are obtained. The observation that lactosazone on hydrolysis gives galactose and 

glucosazone shows that in lactose, the glucose unit retains its anomeric hydroxyl group. 

Further experiments involving methylation followed by hydrolysis show that the anomeric 

carbon atom (C-1) of galactose is linked through an oxide bond to C-4 of glucose as shown 

in Maltose (28) and cellobiose are both diglucosides, each being made of two glucose units. 

Both are reducing sugars. In both the compounds, C-1 of one glucose unit is linked to C-4 

of the other unit through an oxide bond. The only difference is the configuration of the 

glucosidic bond; in maltose it is -, whereas in cellobiose it is . Maltose forms the 

structural unit of starch, while cellobiose has a similar function in cellulose.  

 

2.1.3 Polysaccharides  

Among polysaccharides the best known are cellulose, starch and chitin. As mentioned 

earlier, the monomeric unit in both cellulose and starch is D-glucose but the glucosidic 

bond in cellulose is  and in starch it is . Apart from this important difference, cellulose 

and starch differ from each other in several other respects. In cellulose, where the 

disaccharide unit is cellobiose, several molecules of the latter combine in a linear manner 

to form the polymer. Further, parallel strands of the polysaccharide thus formed link 

together by hydrogen bonding. The resulting ropelike structure makes cellulose a strong 

structural material. Starch, on the other hand, is not a homogeneous substance; it can be 

separated into the water-soluble amylose and water-insoluble 

 

2.2 Sugar Chemistry in water solution 

A mixture composed of water and small sugars is not as simple as it seems to be when 

molecular structure is investigated. Sugar molecules are neutral, but are sensitive to solvent 

polarity. As concentration increases, depending on sugar type, solute-solvent interactions 
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became more complex. Among small carbohydrates, the most studied one is sucrose for 

which literature is particularly rich in information. 

The sucrose molecule can readily interact with water as well as other sucrose molecules 

through hydrogen bonding. Therefore, at least three types of molecular interactions take 

place in sucrose solutions: 

(i) Water-water; 

(ii) Sucrose-water (Solvation or Hydration); 

(iii) Sucrose-sucrose (Complex formation). 

As well as aggregates between formed complexes are possible, all resulting in the formation 

of intermolecular hydrogen bonds.  

The hydration of sugars is a crucial factor affecting properties such as water activity, 

solubility, and osmotic pressure. When dealing with uncharged solutes in aqueous 

environment, the so-called hydrodynamic model is the most common tool used to describe 

their rejection with a NF membrane. This model assumes the membrane, with uniform 

radius, having a proper pore geometry, defined as membrane pore radius, rp, and the solute 

size is described, generally, by the Stokes radius. 

In this study, different type of neutral solutes are investigated in order to better understand 

their behavior in solution; in nanofiltration applications rejection is the most useful tool for 

understanding their behavior.  

Neutral solutes investigated and their molecular structure are summarized in Tab. 2.1, from 

mono-saccharides (xylose, glucose, fructose) to di-saccharides (maltose and lactose). 

Since molecular weight is not able to describe the molecule steric hindrance, the 3-D 

structure put in evidence the spherical (or semi-spherical) nature regarding mono-

saccharides whereas underlines the deviation from spherical nature of di-saccharides.  

Both 2-D as well as 3-D figures represent very well the orientation of the free molecule 

alone, free to rotate in the space, and deviations from “sphericity”. 

Besides orientation and steric hindrance, sugar chemistry in aqueous solution is quite 

complex. Small carbohydrates in aqueous solution are known to establish hydrogen bonds 

with water molecules: the number and strength of these bonds depend on solute 

conformation (orientation of –OH groups in the space) anomeric effect and on the 

proportion of ring isomers in the solution (Seuvre and Mathlouthi 2010); sugar hydration 

is influenced by the stereochemistry of the solute and the molecular conformation.  
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The aim in this section is to show the complex behavior of sugar in solution, starting from 

literature studies. 

 

Table 2.1: Molecular weight (MW), 2-D and 3-D structure, Diffusivity, Stokes radius (rStokes) and pKa 

constant of interesting oligosaccharides. 

Solute 

Molecular 

Weight 

(g/mol) 

2-D Structure 3-D Structure 
D°(25°C) 

(m2/s) 

rStokes 

(nm) 

pKa 
1
 

(25°C) [d] 

Xylose 

(XY) 
150.13 

 
 

7.495·10-10 

[b] 

7.5·10-10 [c] 

 

0.65[c] 12.15 

Dextrose 

(DX) 
180.16 

 

α-D-Glucopyranose 
 

6.790·10-10 

[a] 

6.728·10-10 

[b] 

0.361 [a] 12.28 

Fructose 

(FR) 
180.16 

  

 

6.860·10-10 

[a] 

 

0.357 [a] 

 

12.03 

Maltose 

(ML) 
342.29  

 
 

4.80·10-10 

[a] 
0.470 [a] 11.94 

Lactose 

(LT) 
342.29 

  

5.66·10-10 

[a] 
0.433 [a] 11.98 

[a] (Ribeiro 2006); [b] (Sjoman, et al. 2007) (Shibusawa and Gakkaishi 1987) ;[c] (Taylor and Francis 2006) D.R. Lide 

(Ed.) CRC Handbook of Chemistry and Physics, Taylor & Francis, Boca Raton, FL, 2006 
[d] (Bhattacharyya and Roherer 2012) 

 

2.2.1 Hydration 

It is well known that carbohydrates present a very high affinity for water molecules, as well 

as water is known as a highly solvating (hydrating) agent. It is the nature of such 

                                                 
1 pKa is defined as the negative logarithm of the acidity constant in aqueous solution at 25°C 
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interactions that is responsible for most of the biological features, such as solubility, as well 

as sweet taste. 

The number and strength of hydrogen bonds established between sugar and water 

molecules depends on sugar conformation (disposition of the hydroxyl groups in space), 

anomeric effect and on the proportion of ring isomers (pyranose or furanose) at equilibrium 

in solution. Moreover equatorial OHs are known to be more hydrated than axial ones 

because of a better fit with water structure (Seuvre and Mathlouthi 2010). In particular 

sugar hydration is influenced by the stereochemistry of the solute and the molecular 

conformation (Franks 1985). 

Different studies showed that the hydration of a carbohydrate does not depend only on the 

number of OH groups and on the potential hydrogen binding sites, but also on their relative 

orientation. Moreover, the water structure is influenced by the ions arising from the 

dissolution of the electrolytes. Hydration plays an important role at low temperature and 

low concentration, especially when monosaccharides are processed (Sjoman, et al. 2007). 

As concentration increases, sugar-sugar interactions (i.e. complexation) become 

preponderant and nh decreases. Among small carbohydrates, the most studied is sucrose for 

which the literature is particularly rich in information using all types of experimental 

techniques as well as molecular modelling in order to describe molecule hydration 

(Gharsallaoui, et al. 2008). 

The hydration of sugars is a decisive factor for properties such as water activity, glass 

transition temperature, melting temperature, solubility (for instance fructose is more 

soluble than glucose in water) and osmotic pressure (Ben Gaida, Dussap and Gros 2006). 

It is well known that increase in temperature provokes an increase of water activity 

coefficient and a decrease in hydration number (as shown in Fig. 2.4) 

Sugar hydration has been investigated for many years and several measured methods have 

been proposed to calculate overall sugar hydration and dependence on sugar concentration 

(NMR2, NIR3, water activity or density measurements), as shown in Tab. 2.2. As a general 

rule, the hydration number (nh) given in literature for saccharides greatly varies with the 

technique used to determine it. There is a considerable variation depending on the 

measurement method used, as suggested by (Ben Gaida, Dussap and Gros 2006).  

                                                 
2 Nuclear Magnetic Resonance spectroscopy 
3 Nuclear and Near-Infrared 
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Although maltose is comparable to sucrose, shows different hydration behavior; its 

hydration numbers are higher than that of sucrose, in the whole range of concentrations 

investigated. However the hydration layers of carbohydrates in aqueous solutions cannot 

be exactly described based upon present knowledge (Sjoman, et al. 2007). 

 

Table 2.2: Hydration number (nh), and technique adopted to calculate it for sugars from literature, 

temperature ranging between 20 and 25°C 

Solute nh Methodology-technique Ref. 

Dextrose 

(DX) 

2.45-1.83 water activity, 20°C (Cooke, Jónsdóttir and Westh 2002) 

3.56-1.35 density, 20°C (Gharsallaoui, et al. 2008) 

3.26 viscosity measurements,25°C (Seuvre and Mathlouthi 2010) 

1.93±0.02 water activity data (Ben Gaida, Dussap and Gros 2006) 

Fructose 

(FR) 

2.24-1.5 water activity, 20°C (Cooke, Jónsdóttir and Westh 2002) 

3.83-1.89 density, 20°C (Gharsallaoui, et al. 2008) 

2.93 viscosity measurements,25°C (Seuvre and Mathlouthi 2010) 

3.39±0.02 water activity data (Ben Gaida, Dussap and Gros 2006) 

Maltose 

(ML) 

4.75-3.79 water activity 20°C (Cooke, Jónsdóttir and Westh 2002) 

8.17-3.45 density, 20°C (Gharsallaoui, et al. 2008) 

6.93 viscosity measurements,25°C (Seuvre and Mathlouthi 2010) 

4.48±0.02 water activity data (Ben Gaida, Dussap and Gros 2006) 

14.2 

11.7 

acoustic data, 25°C 

viscosity data, 25°C 
(Branca, Magazù, et al. 2001) 

Sucrose 

(SC) 

1.8 NMR 
Allen and Wood (1974) 

21 NIR 

5.3 viscosity (Mathlouti and Génetolle 1994) 

5 water activity data (Akhumov 1981) 

13.8 ultrasound velocity and density data (Galema and Høiland 1991) 

5-0.85 density, 20°C (Gharsallaoui, et al. 2008) 

6.59 viscosity measurements,25°C (Seuvre and Mathlouthi 2010) 

13.1 

11.2 

acoustic data, 25°C 

viscosity data, 25°C 
(Branca, Magazù, et al. 2001) 

3.13±0.02 water activity data (Ben Gaida, Dussap and Gros 2006) 

Xylose 

(XY) 
1.33±0.22 water activity data (Ben Gaida, Dussap and Gros 2006) 

 

There is a considerable variation depending on the measurement method used, as indicated 

in Tab. 2.2 and Fig.2.3 for some sugars, particularly at high molecular weight. 
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Figure 2.3: Literature data (from Tab.2.2) of sugar hydration number nh as a function of molecular weight 

(MW). Temperature ranging from 20 to 25°C. Xylose (C5) 150.16 g/mol, Dextrose and Fructose (C6) 

180.16 g/mol, Maltose and Sucrose (C12) 342.29 g/mol. 

As illustrated in Tab 2.2 is not yet possible to set the hydration number values a priori for 

sugars to represent the hydration of these compounds in aqueous solution. From numerous 

literature data we can observe general trend of hydration number, nh, as well as apparent 

molar volume, Vφ, as a function of temperature, concentration and salt in solution.  

As can be seen in Fig. 2.4 a-b, nh decreases with increasing temperature and solute 

concentration. A similar relationship between hydration number and temperature was also 

found by (Branca, Magazù, et al. 2001) for sucrose and maltose.  

a)  b) 

Figure 2.4:(a) Hydration number of sucrose solution at temperatures between 0 and 80°Cand 

concentration between 10 and 90 %w/w  (Gharsallaoui, et al. 2008); (b) Variation of hydration number of 

glucose fructose and maltose in function of mass concentration, at 20°C comparison between (Cooke, 

Jónsdóttir and Westh 2002)and (Gharsallaoui, et al. 2008) literature data. 

However it is difficult to observe differences between the hydration phenomena of isomers 

(see Dextrose and Fructose), although it is possible to observe that D-fructose shows higher 

hydration than D-glucose at all concentrations and a better compatibility with water 

structure.  

 

2.2.2 “Salting out” effect 

Dehydration experimentally occurs when a salt is added to the solution. The salting out 

technique is well known in the field of protein separation where the protein hydrophilic 
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property is overridden by the introduction of a salt which causes the protein to precipitate. 

Similarly, the addition of salt to an aqueous organic solution can be used to enhance the 

extraction of organic compounds by reducing their solubility in water. The contribution of 

salting out, to the negative rejection of neutral solutes was studied by (Mandale and Jones 

2010). Hofmeister firstly observed in his work on the influence of the nature of the 

background salt on the precipitation of hen-egg-white protein (Kunz, Henle and Ninham 

2004): 

2 3 2

6 5 7 4 and  Mg Li K C H O SO Cl             

Increasing in molar volume of sugars in salt solution can be interpreted as a dehydration of 

the sugars. The addition of the salt (NaCl or LiCl) to the water decreased the average molar 

volumes of the sugars (Seuvre and Mathlouthi 2010). The apparent size of neutral solutes, 

like carbohydrates, is expected to be influenced by the ionic composition. Indeed, it was 

established that glucose is less hydrated when NaCl is added to the solution (Zhuo, et al. 

1998). Since this release of water makes the apparent size of the solute smaller, a lower 

retention can be expected. 

a) b) 

Figure 2.5: Apparent Molar volumes of carbohydrates in pure water and in salt aqueous solutions at 25 

°C; (a) glucose and fructose, (b) maltose and sucrose (Seuvre and Mathlouthi 2010) 

In conclusion, despite the attempts for study water-sugar interactions, it remains very 

difficult to accurately identify the number of water molecules that hydrate sugar molecules: 

thermodynamic methods give one value in the equilibrium state, whereas perturbation 

methods give numbers which depend on the magnitude of the perturbation (Ben Gaida, 

Dussap and Gros 2006). 

 

2.2.3 Sweetness and sweetener 

The sense of sweetness in a food product is the subjective evaluation of the interaction of 

sugars, total acidity, pH level, and other constituents when tasted under a given set of 

conditions. 
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An extensive amount of research has been directed about sweetener chemistry. Sucrose is 

the standard sweetener to which all other sweeteners are compared. The relative sweetness 

of sucrose is set to 1 or 100% (See Fig. 2.6) 

 

Figure 2.6: Approximate sweetness of selected sweeteners. 

The only way to measure the sweetness of a substance is to taste it. When a substance is 

placed on the tongue, the taste buds decipher the chemical configuration of the substance 

and a signal of the taste is sent to the brain. A growing number of alternative sweeteners 

exist on the market all with somewhat different sweetness compared to sucrose, except for 

HFS. The literature offers figures for the sweetness of the various sweeteners but in most 

cases these figures are related to just one application. 

It is necessary to know in what medium the product was tested because the sweetness of 

many sweeteners depends on concentration, pH, temperature and the use of other 

ingredients, for example other sweeteners or flavors. In some cases, psychological effects 

also influence the taste sensation: green jelly is perceived as less sweet than red jelly 

although they contain exactly the same amount of sweetener. 

Figure 2.6 shows some of the sweeteners available today and their approximate level of 

sweetness. Sweeteners are divided into two main groups: bulk sweeteners, with a relative 

sweetness lower or slightly higher than sucrose, and high intensity sweeteners (HIS) with 

a relative sweetness considerably above 1. 

Sucrose, glucose and fructose are the most common sweeteners in nature. Glucose is always 

less sweet than sucrose, whereas the sweetness of fructose is highly dependent on 

temperature. Fructose is sweeter than sucrose at low temperatures, whereas the sweetening 

effect decreases as the temperature rises (Shallenberger and Birch 1975). 

Sweetness decreases as temperature, concentration, and acidity increase. The effect of 

temperature and concentration was established by (Tsuzuki and Yamasaki 1953). 
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2.2.4 Solubility  

Solubility represent another peculiar feature of oligosaccharides. Solubility characteristics 

of sugars in water are determined by their molecular structure, as well as by their molecular 

size. Basically, temperature and the chemical interaction between a given component and 

the water molecule determine the component’s solubility in water [ (Pancoast and Junk 

1980), (Bubnik, et al. 1995)]. 

The solubility of saccharide molecules is directly determined by the chemical structure, and 

the oligosaccharide solubility has a major impact on membrane separation (Pinelo, Jonsson 

and Meyer 2009). 

The solubility of sucrose in water has been widely studied in literature. Dextrose has a 

lower solubility in water than sucrose. For example, at 30°C dextrose has a solubility of 

54.6%, whereas at the same temperature the value for sucrose is 68.2%.This difference in 

solubility becomes important in the storage of dextrose solutions.   

The relatively high solubility of sucrose is an important parameter for its bulking effect in 

many foods and beverages. The dissolved sugar increases the viscosity of water-based 

solutions or mixtures, resulting in enhanced mouth feel. 

 

Figure 2.7: Solubility of selected sugars as a function of temperature, from (Pancoast and Junk 1980)  

 

The solubility of sucrose is lower than fructose but higher than glucose, as shown in figure 

2.7. The presence of other ingredients in the solution or product affects the solubility and 

the potential crystallization. Glucose syrups and invert sugar are typically used to avoid 

crystallization of sucrose, but other ingredients such as proteins, texturisers and stabilisers 

also influence crystallization process, for instance the solubility of dextrose limits the total 

solids for each type of HFCS when stored for a given temperature. 
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2.3 Sugar fractionation: state of the art 

 

2.3.1 Conventional techniques: the isomer separation case 

Glucose and fructose are the most applicable sugars in the food industry. Not to mention 

the importance of sucrose, fructose is the second important bulk sugar in food industry. It 

is a popular dietary sugar because it is 1.3-1.8 sweeter than sugar, depending on its 

anomeric form in aqueous solution, moreover, unlike dextrose, it does not require insulin 

in its metabolic pathway. Fructose is strongly soluble in water (79% w/w at 20°C), is more 

soluble than glucose in water, and is the sweetest natural sugar in the world and it is 30% 

sweeter than sucrose, while glucose has 70% of the sweetness of sucrose; not to mention 

that fructose can be produced from starch (substrate available in food material) at lower 

cost (Hanover and White 1993). 

Nowadays fructose is produced by separation from the enzimatically isomerised mixture 

containing fructose and glucose from corn starch [ (Zhang, Hidajat and Ray 2004),  

(Azavedo and Rodrigues 2001)]. The research and commercial production of high fructose 

corn syrup (HFCS) is the most important development that has occurred in the corn refining 

industry in the last years 

The isomerized fructose corn syrup typically contains 42% fructose, 50% glucose and 8% 

oligosaccharides on a dry-weight basis; actually fructose is available on the market in the 

following types: high-fructose corn syrups with 42% fructose (HFS42), 55% (HFS55) and 

85-90% (HFS90) of total sugars.  

The basic difference among the various types of HFCS is the dextrose-fructose ratio. Table 

2.3 summarizes the saccharide composition of a number of commercially available type of 

HFCS. 

Table 2.3: Typical carbohydrate composition of commercially produced High Fructose Corn Syrup 

 HFCS42 HFCS55 HFCS60 HFCS90 

Dextrose 50-52 41 36 7 

Fructose 42-43 55 60 90 

Other saccharides 5-8 4 4 3 

 

All of them are used extensively in the food and pharmaceutical industries. In order to 

produce high fructose corn syrup (HFCS) containing 90% fructose, the fructose should be 

removed continuously as the conversion rate decreases sharply from about 50% fructose.  
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The trend in the commercial production of HFCS is to increase the concentration of fructose 

with a corresponding decrease in dextrose concentration. There are two advantages in the 

higher fructose syrup:  

i) the first is a gain in sweetness values, this allow the use of lower concentrations 

of the syrup to obtain sweetness values equal to those of syrups of lower fructose 

concentrations;  

ii) the second advantage is the gain in total solids because of the higher solubility 

of fructose when compared with dextrose; 

iii) lastly, high osmotic pressure: the average molecular weight is lower than in the 

other corn syrups, so that the osmotic pressure inhibits the growth of 

microorganism. 

The method of producing HFCS consists essentially of an initial step of hydrolyzing the 

corn starch to obtain dextrose or solutions containing high concentrations of dextrose. In 

the second step, an isomerizing enzyme (glucose isomerase from a Streptomyces sp.) is 

used to convert part of the dextrose to fructose.  

The conversion is equilibrium limited and with the current enzymatic isomerization 

technology, the conversion of glucose to fructose is economically limited to 42% fructose. 

Since soft drink industries require HFS55 product, SMB separation is used to concentrate 

the fructose to 90%, which is blended with HFS42 to produce HFS55. The same approach 

is used to produce HFS60, however the amount of fructose in HFCS is governed by the 

degree of isomerization of the D-glucose (Zhang, Hidajat and Ray 2004). 

Because of the similarity of these two sugars in physical and chemical properties (fructose 

is glucose isomer), they are not separable by conventional methods. Glucose and fructose 

have very similar structures and are hard to isolate, and separation is rather complex on an 

industrial scale. 

Complex separations of monosaccharides from each other are commercially carried out by 

chromatographic methods. The state of the art for industrial sugar purification (i.e. 

raffinose-sucrose, fructose-glucose and xylose-glucose) is Simulated Moving Bed (SMB) 

chromatography on a commercial scale (Vanneste, et al. 2011).  

A wide literature production is available for chromatographic separation (Khosravanipour 

Mostafazadeh, et al. 2011), and many articles have been published about carbohydrate 

separation by SMB, as mentioned by (Azavedo and Rodrigues 2001). 
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Resin chromatographic method is a suitable method for the separation of fructose in sugar 

mixtures. The literature survey shows that there are many scientific researches on the 

separation of fructose and glucose by resin chromatography. In order to separate fructose 

from glucose, the following approaches have been studied in literature: 

 Exploit the solubility differences between the two sugars by adding solvents such 

as ethanol or propanol; 

 By adding salts (NaCl, CaCl2) which preferentially complex one of these 

monosaccharides; 

 By adding salts and solvents together; 

 By Chromatography; 

 By Ionic exchange membranes (Kalyanasundram Venkatasubramanian 1980);  

 By Ionic liquid membranes (Di Luccio, et al. 2000). 

Chromatographic systems for the separation of sugars are very impressive and feasible 

methods, moreover allow to reach very high purities (~95% in fructose).  

In chromatography the mechanism and quality of separation depend on several parameters 

such as the characteristics of the mixture and resin, but the more influencing parameters in 

the separation of the two mentioned components in their mixtures are the size exclusion 

and the ligand exchange, in fact gel-type calcinate (Ca2+ form) resins make strong 

complexes with fructose rather than glucose. The fructose is absorbed by the calcinate resin 

stronger than glucose, and left the column later than glucose, thus a fructose rich fraction 

can be obtained. Affinity of calcium ions towards specific sugar molecules is also evident 

in some of the mechanisms of cellular recognition, for which glycoproteins have an 

important role, through the binding specificity of their oligosaccharide portions (Hosoi, 

Imai and Irimura 1998). 

(Azavedo and Rodrigues 2001) separated glucose from fructose experimentally using a 

simulated moving bed (SMB) adsorber in a pilot unit. Some years later (Borges de Silva, et 

al. 2006) produced high-fructose syrup using a simulated moving bed reactor (SMBR) with 

immobilized enzyme glucose isomerase: in this study reaction and separation processes 

have been coupled to achieve complete reactant conversion, reaching a separation factor of 

1.52 for resin in the form Ca2+. 

However, such chromatographic separations are essentially batch processes and normally 

imply expensive installations, low productivity and low yields of the desired product; it is 

natural to look at new methods of separation. 
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Membrane technology has a number of advantages as compared to chromatographic 

purification techniques. These advantages include low energy requirements, hence 

sustainable processing, easy modification of the critical operational variables such as 

pressure, temperature, feed flow rate, and relatively easy scale-up. 

The membrane separation of fructose and glucose has not been reported except some work, 

including (Kim, Chang and Ghim 1985). 

(Aydogan, Gurka and Yilmaz 1998) stated that NF separations of sugars, with differences 

in their molecular size in the range of a few glucosyl units are not feasible due to poor 

selectivity. The possibility of separating through NF a pentose sugar (xylose) from a hexose 

sugar (dextrose) was documented by (Sjoman, et al. 2007), who reported a higher xylose 

separation factor when the proportion of xylose in the feed was increased.   

The molar mass of a hexose sugar is only about 20% higher than the molar mass of a 

pentose sugar. The difference in molecular radius is smaller than a 10th of a nanometer, 

thus, the demand for selectivity is great. Separation of uncharged substances is mostly 

based on differences in molecular sizes and diffusivities. The possibility for a partial 

separation of disaccharides (maltose MW=342.3 g/mol) from monosaccharides (~150-180 

g/mol) is documented in results of ](Pontalier, Ismail and Ghoul 1997), (Goulas, Grandison 

and Rastall 2002), (Bandini and Nataloni 2015)]. (Morthensen, et al. 2015) proposed an 

integrated system for the separation of mixtures of xylose and glucose, presenting an 

enzymatic process for converting glucose to gluconic acid (MW 196.16 g/mol) followed 

by a nanofiltration, achieving a separation factor of 34, in comparison, the separation factor 

was only 1.4 for solutions of xylose and glucose. 

However, except for these application chromatographic methods are still the basic 

technology for isomer separation. 

 

2.3.2 Nanofiltration 

A wide literature concern with Nanofiltration of oligosaccharide solutions and many 

authors have dealt with NF recovery/separation of sugars.  

Table 2.4 shows a brief summary of the remarkable sugar NF studies documented in 

literature. 
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Table 2.4: Sugar Nanofiltration: State of the art. Membranes, configurations, test conditions and sugar 

tested 

References  Membranes Materials Configuration Application 
Test 

Conditions 

(Aydogan, 

Gurka and 

Yilmaz 

1998) 

BM5 Berghof (500 

MWCO) 

 BM2  Berghof (200 

MWCO) 

PA4 
Flat cell, 

A=0.0045 m2 

Glucose + 

sucrose 

T=25°C 

P=10-50 

bar 

(Bargeman, 

et al. 2005) 

Desal 5 DK (200 

MWCO), 5DL (400 

MWCO), G5 (1000 

MWCO) 

PA (top layer) on 

PS5  

Flat cell, 

A=0.036 m2 

glucose , glycerin 

 +  

NaCl, KCl, CaCl2 

T=20°C 

P= 2 -30 

bar 

v= 0.9 m/s 

NF (<200MWCO)  

 (Dow Chemicals) 

PIP6 (top-layer) 

on PS 

NTR-7450 (1000 

MWCO) (Nitto) 
sulfonated PES  

(Bouchoux, 

Roux-de 

Balmann and 

Lutin 2005) 

DK (Desal) PA/PS 
Flat cell , 

A=0.014 m2 

glucose + 

Sodium Lactate 

T=25°C 

P=2-20 

bar 

(Bouranene, 

et al. 2007) 
Tami Industries TiO2 (Ceramic) 

Tubular, 

(L=604 m, 

A=0.022 m2 

PEG  

+  

KCl, LiCl, MgCl2 

T=25°C  

P=5-60 

bar 

(Boy, Roux-

de Balmann 

and Galier 

2012) 

Dow Filmtec NF 

membrane 

TFC 7 

(negative 

charged) 

Flat cell, 

A=0.012 m2 

xylose, glucose, 

sucrose                                  

+                                                                

NaCl, Na2SO4, 

CaCl2, MgCl2 

T=25°C 

(Catarino, et 

al. 2008) 

CA, CA77.5, CA80, 

CA82.5, CA85, CA87.5  

(self made) 

CA8 
Flat cell, 

A=0.00132 m2 

glucose, sucrose, 

lactose, raffinose, 

melezitose  

+  

CaCl2 

T=25°C 

P=15 bar 

(de Pinho, et 

al. 1988) 
CA CA 

Flat cell, 

A=0.00141 m2 

Glucose (2000-

75000 

ppm)/ethanol (1/5 

-1/2 of glucose) 

T=23-

26°C 

P=70 bar 

(Escoda, et 

al. 2010) 

Desal GH (GE 

Osmonics) 

PA (top layer) 

supported on a 

polyester layer  

Flat cell, A= 

0.014 m2 

PEG  

+ 

T=20°C  

P= 2-20 

bar  

                                                 
4 Polyamide;  
5 Polysulfone; 
6 poly(piperazine) 
7 Thin Film Composite; 
8 Cellulose Acetate; 
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KCl, LiCl, 

MgCl2, K2SO4 

(Kim, Chang 

and Ghim 

1985) 

CA10-60, CA10-90 (self 

made) 
CA 

n.2 Flat cell, 

A=0.00181 

m2×2 

Glucose + 

Fructose + NaCl 

or Na2CO3 or 

NaHSO3 or 

CaCl2   

room T, 

P=100 atm 

PVA (self made) 
Poly(vinyl 

alcohol)  

(Kuhn, et al. 

2010) 

NP010, NP030 

(Microdyn-Nadir) 
PES9 

stirred cell 

STERLITECH, 

A=0.00146 m2 

 flat cell, 

A=0.0066m2 

spiral wound 

NP030, A=1.8 

m2 

FOS + glucose + 

sucrose + 

fructose 

P=18 bar  

NF270 (Dow Filmtec) - 

DL, HL, DK (Desal) PA  

(Goulas, 

Grandison 

and Rastall 

2002) 

NF-CA-50, UF-CA-1 

(Intersep) 
CA 

n.2 flat cells, in 

parallel  

A=0.0081 m2 

galacto-

oligosaccarides  

(raffinose, 

sucrose, fructose) 

T= 25°C,  

P=13.8 

bar 

DS-5-DL, DS-51-HL, 

DS-GE (Desal) 
TFC 

T=60°C 

 P=13.8 

bar 

(Mandale 

and Jones 

2010) 

XN45 (Trisep), LFC1 

(Hydranautics), NF90, 

NF200 (Dow-Filmtec), 

DK (Gewater), NTR7450 

(Nitto Denko) 

_ 
Flat cell, 

A=0.0109 m2 

glycerol, benzyl 

alcohol, sodium 

benzoate, 

glucose, caffeine, 

raffinose  

+  

NaCl, 

Na2SO4,Na2HPO4 

Pmax 7.5 

bar,  

v = 0.5 

m/s 

(Manttari, 

Pihlajamaki 

and 

Kaipainem, 

et al. 2002) 

5 DK, 5 DL, G10, 11AG, 

(Desal), TS-80, XN-40 

(Trisep), NF2xx, NF200, 

NF70, NF45 (Dow), 

PVD-1 (Hydranautics), 

SR-1 (Koch), NTR-7540 

(Nitto Denko), NF-PES-

10 (Celgard) 

 - 

plate and frame 

DSS Labstak 

in serie 

glucose 
T=25-

65°C 

(Manttari, 

Pihlajamaki 

and Nystrom 

2006) 

NTR 7450 (Nitto Denko) 
suphonated PES 

(skin layer) on PS 

 n.3 flat sheet 

modules in 

parallel, 

A=0.046 m2 

Glucose  

+ 

 NaCl 

T=40°C  

P=8 bar NF 200, NF 270 (Dow 

Deutschkand)  

PA (skin layer) 

on PS 

                                                 
9 Polyethersulfone 
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OPMN-K, OPMN-P70 

(Vladipor)  

PA (skin layer)  

on PP10 support 

NF PES-10 (Nadir) PES (skin layer) 

 5DL (Desal) 
PA (skin layer) 

on PS 

(Mohammad, 

Basha and 

Leo 2010) 

DK (Osmonic) 
PA (skin layer) 

on PS  Flat cell , 

A=0.00152 m2 

glucose, sucrose, 

raffinose  

+  

NaCl, MgCl2, 

Na2SO4 

T=25°C 

CK (Osmonic) CA   

(Nilsson, 

Tragardh and 

Ostergren 

2006) 

 NFT-50 (Alfa Laval) 

active layer of 

aromatic/aliphatic 

PA 

plate and frame 

DSS Labstak 

(A=0.036 m2) 

glucose + NaCl  

T=20-30-

40-50 °C 

P=6 bar 

(Rodrigues, 

et al. 2010) 

NF90 , NF 200, NF 270 

(Filmtec, Dow 

Chemicals) 

PA TFC  

plate and frame 

module, 

A=0.036 m2  

Glucose +  

sucrose  

+ 

Na2SO4 

T=22°C 

P=10-60 

bar  

(Umpuch, et 

al. 2010) 
Desal 5DK 

PA (skin layer) 

on PS 

Flat cell , 

A=0.0137 m2 

glucose, NaLac  

+ 

 NaCl or Na2SO4 

T=25°C 

P=2-18 

bar 

(Vellenga 

and Tragardh 

1998) 

DS-5 (Desalination 

System) 
_  

Flat cell, 

A=0.00188 m2 
Sucrose + NaCl 

T=23.5°C 

P=8-21 

bar 

(Wang, 

Zhang and 

Ouyang 

2002) 

NF45 aromatic PA/PS 
Flat cell , 

A=0.0035 m2 

glucose, glycerin, 

sucrose, raffinose 

+ NaCl, KCl, 

MgCl2, Na2SO4, 

MgSO4 

T= 32°C 

P= 2.5-15 

bar 

 

Initial studies about sugar NF were performed mainly on cellulose acetate membranes 

(Kimura and Sourirajan 1968); (de Pinho, et al. 1988) investigated separation performance 

of such membranes with a binary mixture of glucose and ethanol, focusing on a reverse 

osmosis unit connected to a yeast cell reactor. 

Many authors studied firstly sucrose-glucose systems: (Nabetani 1992) focused on the 

separation capacity of a binary solution containing glucose and sucrose at high 

concentration (5-25 wt.%), (Aydogan, Gurka and Yilmaz 1998) observed that for binary 

solutions of sucrose and glucose the separation factor slightly decreased, probably due to a 

glucose-sucrose interaction; results indicate that some glucose is retained together with 

                                                 
10 Polypropylene 
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sucrose, therefore glucose retentions are increased relative to single-component 

experiments. This reduction in selectivity was less significant at higher fluxes, when total 

rejection is reached for both solutes.  

Some year later (Goulas, Grandison and Rastall 2002) studied the total sugar concentration 

effect on the retentions of single sugars with two membranes of different cut-off: the 

increase of total sugar concentration caused a decrease on the observed rejection of sugars 

and this effect was more intense as the molecular weight of sugar decreased and the 

membrane molecular weight cut-off increased. 

All these studies showed that solutes in the solution may affect separation performances: 

interactions of these compounds with each other and with the membrane can modify the 

separation efficiency and should be investigated. 

Sugars are very soluble in water: water molecules surround the sugar structure, the so-

called hydration layer is not constant under varying operating conditions. The hydration 

number is a parameter calculated at infinite dilution, but it is affected by temperature, total 

solute concentration and presence of electrolyte in solution, therefore the variation of these 

parameters can alter separation performance, particularly when the mass transfer is mainly 

diffusive (predominantly). 

The role of the hydration layer of carbohydrate in NF is not well studied. When the solute 

molecules can hydrate, the solute transport through the membrane will depend on hydration 

number (nh), therefore, the hydrated molecules are subjected to more complex interactions 

with other solution components and the membrane. Interactions between solution 

components with each other and with the membrane depend on the hydration number of 

solutes (Slezak, Grzegorczyn and Wasik 2004).  

However, when the solute molecular weights are almost the same (for instance is the case 

of glucose -180.16 g/mol -and xylose -150.13 g/mol-) hydration could play an important 

role and emphasizing size differences (Sjoman, et al. 2007); on the contrary when sugars 

in solution have different molecular weight the size difference is playing a big role in 

retention, compared to hydration phenomena which are negligible. 

Dehydration of neutral solute always occurs when neutral solute solutions are processed: 

the higher the concentration and the temperature, the lower the hydration of neutral solutes, 

in fact as concentration increases, sugar-sugar interactions become preponderant, these 

complexes are more stable in the solution, and nh decreases [ (Gharsallaoui, et al. 2008) , 

(Seuvre and Mathlouthi 2010), (Branca, Magazù, et al. 2001), (Banipal, Gautam, et al. 

2006), (Banipal, Singh, et al. 2015), (Sjoman, et al. 2007)].  
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Therefore, when sugar mixtures are processed, at least three elementary types of molecular 

interactions take place in sugar solutions:  

i) water-water; 

ii) sugar-water; and 

iii) sugar-sugar,  

all resulting in the formation of intermolecular hydrogen bonds (Gharsallaoui, et al. 2008). 

The stability of these mechanisms is altered when a salt is added to the solution: the 

introduction of salts to the solution induces perturbations in the carbohydrate-water 

interactions: when an electrolyte is added to the solution it can: (a) create interaction sugar-

electrolyte, (b) dehydrate the sugar.  

For this reason sugar-electrolyte interaction are widely documented in literature, specially 

in sugar NF applications, where these phenomena compete with electrolyte-membrane 

interaction. 

In the first case (a), if sugars form a selective complex with a salt the permeability of the 

sugar-salt complex will decrease accordingly, and this will increase separation. For 

sugar/electrolyte systems, interactions between the hydrophilic sites of the sugar (-OH) and 

the ions are possible, and depend on the number of –OH site of the sugar (Boy, Roux-de 

Balmann and Galier 2012). This type of interactions are exploited in chromatography in 

order to separate sugars: for instance fructose is known to form complexes with calcium 

ions, in the form Ca2+, and glucose with NaCl, NaHSO3, and Na2CO3. The mechanism of 

complexing is not yet well known; the ionic form of these salts such as Ca2+, SO3H
-, and 

CO3
2- are used as the counterions in resin chromatography in separating sugars; the stability 

of these complexes is the basis for chromatographic separation of sugar. 

In a binary solution of sugar-salt complexes formation is limited by the ratio between sugar 

and salt, operating next to an equimolar ratio in order to promote complexation; the higher 

the sugar concentration, the higher must be the concentration of the salt (Kim, Chang and 

Ghim 1985). 

Studies of (de Pinho, et al. 1988) investigate the fractionation of low molecular weight 

saccharide-ethanol mixtures by CA membranes and the dependence on the presence of 

calcium chloride in solution. (Catarino, et al. 2008) obtained an increase in the fractionation 

of glucose and raffinose in the presence of calcium ions; the presence of calcium ions leads 

to an increase on the sugar retention, related to the formation and stability of sugar-calcium 

complexes with the membrane matrix. The same results are provided by (Ribeiro 2006) 

trough diffusivity measurements: sugars like sucrose, glucose and fructose play a role on 
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the behavior of the diffusion of calcium chloride in aqueous solutions, the decrease of CaCl2 

diffusion coefficients can be explained by aggregate formation of 1:1 between calcium ions 

and sugar 

Contrarily to complexation, dehydration is a severe phenomenon when electrolyte is added 

to sugar solutions. (Bouchoux, Roux-de Balmann and Lutin 2005) proposed a correlation, 

only qualitative, between the hydration scale of ions and the increase of organic solute 

transfer through NF membranes; (Seuvre and Mathlouthi 2010) observed the most 

important perturbations in LiCl solutions compared to the NaCl ones: this behavior was 

attributed to the fact that LiCl is surrounded with more water molecules. 

(Banipal, Gautam, et al. 2006) studied the effect of ammonium salts on the volumetric and 

viscometric behavior of D-glucose, D-fructose and sucrose, pointing out that 

alkylammonium ions (-R-NH3
+: hydrophobic) induced structural effects different from that 

of hydrophilic ions. (Zhuo, et al. 1998) established that glucose is less hydrated when NaCl 

is added to the solution; in particular more hydrated salts in solution means less hydrated 

sugar in solution, and thus a lower size and a lower retention of the sugar is expected. 

(Mandale and Jones 2010) proposed weak negative retention of neutral solutes in presence 

of phosphate ions can be due to the polarisability of the molecule leading to interactions 

with the negatively charged membranes.  

Many authors (Boy, Roux-de Balmann and Galier 2012) studied the effect of electrolyte on 

neutral solute in combination with the effect on membrane: the presence of the electrolyte 

can change the mass transfer of a neutral specie, and this effect depends on nature and 

concentration of the electrolyte [ (Bouchoux, Roux-de Balmann and Lutin 2005), 

(Bouranene, et al. 2007), (Umpuch, et al. 2010), (Escoda, et al. 2010)] but the electrolyte 

can introduce modifications of the membrane properties (“Pore swelling”). 

Only (Boy, Roux-de Balmann and Galier 2012) concluded that the influence of the 

electrolyte is mainly due to the resulting change of the saccharide properties, since only 

weak influence was observed on the membrane properties.   

The mass transfer of a neutral solute increases, and so the retention decreases, when (i) 

membrane pore radius increases; (ii) solute radius decreases; (iii) a combination of both 

phenomena. In other words, a lower retention when a salt is added to the solution can be 

ascribed to an increase of the pore radius, to a decrease of the solute hydrodynamic radius, 

or to a combination of both. On the other hand, an increase of solute retention is due to 

complex formation in solution. 
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(Escoda, et al. 2010) and (Bouranene, et al. 2007) dissociated both contributions: the pore 

swelling was evaluated with polymeric NF membranes, while the dehydration of a neutral 

solute has been studied through ceramic membranes  

Such an effect of the presence of charged species on the retention of neutral ones was 

summarized by (Umpuch, et al. 2010) (see Tab. 2.5):  

 

 Table 2.5: Influence of salt on retention of neutral compound (Umpuch, et al. 2010) 

Neutral 

Compoun

d 

Concentratio

n Neutral 

Compound 

Electrolyt

e 

Electrolyte 

Concentratio

n 

NF membrane 
Neutral solute 

Reduction * 
Reference  

Dextrose 1 mM 

NaCl 0.01-0.1 M 
NF 45 (Dow 

Chemical) 

25% 
(Wang, 

Zhang and 

Ouyang 

2002) 
Sucrose 0.6 mM <8% 

Dextrose 0.01 M NaCl 0.01-0.1 M 
NF 45 (Dow 

Chemical) 
15% 

(Bargeman, 

et al. 2005) 

 0.1 M 

NaCl  0.5 and 1 M  

Desal 5 DK 

(Osmonics) 

20% 
(Bouchoux, 

Roux-de 

Balmann 

and Lutin 

2005) 

NaLac  0.5 M  75% 

Lactose in 

UF whey  
0.1-0.15 M 

Mineral 

salt in UF 

whey  

0.05-0.10 M 
Desal 5 

DL(Osmonics) 
<5% 

(Cuartas-

Uribe, et al. 

2007) 

Dextrose   

NaCl 0.01-0.1 M 

XN45 (Trisep) 

Retention 

reduction (data 

not given); 

Negative 

retentions for 

Na2HPO4>0.03 

M 

(Mandale 

and Jones 

2008) 

Na2SO4 0.01-0.1 M 

Na2HPO4 0.01-0.1 M 

PEG (600 

g/mol) 
~3 mM 

KCl 0.1-1 M 
NF ceramic 

membrane 

Filtanium ® 

(Tami Industries) 

30%** 

(Bouranene, 

et al. 2007) 
LiCl 0.1-1 M 60%** 

MgCl2 0.1-1 M 70%** 

* The Retention reduction is calculated from [(R(without salt)-R(with salt))/R(without salt)]x10; ** only salting out 

effect for these data  
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Typically a lower sugar retention is observed when electrolyte is added to the solutions: an 

increase in salt concentration results in lowering the neutral solute retention and that this 

decrease depend on the nature of the added salt. (Umpuch, et al. 2010) studied the effect of 

NaCl and Na2SO4 on the sodium lactate/glucose separation by NF, and saw that the glucose 

retention remain constant when adding a completely retained anion, in this case Na2SO4, 

while decreases in presence of NaCl as NaCl concentration increases. 

Retention of glucose decreases more with the addiction of sodium lactate than with that of 

sodium chloride, at the same concentration (Bouchoux, Roux-de Balmann and Lutin 2005), 

and reaches negative retentions in the presence of increased concentrations of Na2HPO4 

(Mandale and Jones 2010). 

(Bouchoux, Roux-de Balmann and Lutin 2005) explained the dehydration of neutral solute 

in presence of electrolyte; in mixed solution containing neutral solute and electrolyte, water 

preferentially solvate the ions compared to neutral solute, that it to say that neutral solute 

transfer increases in presence of ions in solution.  

(Bargeman, et al. 2005) pointed out that, relating to the addiction of an inorganic salt (NaCl, 

KCl or CaCl2) the lowest the salt retention the deep the influence on the glucose retention, 

moreover increasing NaCl concentrations decreased the retention of glucose 

Other authors (Vellenga and Tragardh 1998) reported that the sugar retention by a thin film 

NF membrane was unaffected by the salt concentration, however the extremely high 

retention of sugar (sucrose in thus study) could hide a dependency: the effect of salt on 

sugar is not discernable when sugar rejections are very high (>99%) (Mandale and Jones 

2008). (Wang, Zhang and Ouyang 2002) reported a slight fall in the sugar retention with 

sodium chloride concentration, and this effect was smaller for sucrose than for glucose. 

In contrast to the sugar retention, (Vellenga and Tragardh 1998) observed that NaCl 

retention was dependent on the sugar concentration, probably due to viscosity effect.  

The pH has a clear effect on the ion retentions of NF membranes, and it also affects 

reversibly the permeability and the neutral solute retention. (Manttari, Pihlajamaki and 

Nystrom 2006) saw that when the flux increases with the increase of pH the retention of 

uncharged molecules tends to decrease; in this case at high pH the membrane matrix would 

be in a more expanded state due to the greater intra-membrane electrostatic repulsion, 

therefore the membrane pore size is slightly larger causing lower retention of neutral 

glucose, excluding membranes stable in a wide pH range (e.g GE-DL shows a 2-11 pH 

range). For these authors decreasing glucose retention is not imputable to the salt, but only 

to the pH effect. According to (Sharma, Agrawal and Chellam 2003) increases in 
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temperature at the same time lead to a changes in the membrane structure, resulting in larger 

pore sizes which additionally contribute to reducing the solute retention. 

 

In conclusion, a wide literature about sugar NF is available, and some conclusion can be 

drawn, typically: 

i) small samples of polymeric membranes (such as Polyamide) have been study in 

small range of temperature and concentration;  

ii) sugar-sugar interactions may occur at high concentrations, affecting separation 

factor, depending on the type of sugar mixture; 

iii) sugar-electrolyte in solution are quite complex, depending on the type of salt 

added to the solution: a decrease in sugar retention is generally observed when 

a salt is added to the solution, and most of author attribute this behavior to 

membrane pore swelling instead of sugar dehydration. 

Nowadays, since a lot of studies focused on particular applications, there is a lack of 

overview about sugar NF. 

In view of such phenomena, the aim of this work is to provide a critical and general method 

to processing experimental data, in order to understand which kind of interactions take 

place when sugar solutions are processed, or which mainly affect membrane performances 

during NF. 
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List of symbols   

Symbol Units Quantity    

Lp,w [dm3/(hm2bar)] hydraulic permeability  Sfactor - separation factor 

Lp0 [dm3/(hm2bar)] 
hydraulic Permeability, in 

Arrhenius type law 
kL [m/s] mass transfer coefficient 

Lp [dm3/(hm2bar)] membrane Permeability kL
0 [m/s] 

mass transfer coefficient 

in the bulk phase 

Ea [J/mol] activation energy  Sh - Sherwood number  

R [J/(mol K)] 
Universal Gas constant  

(8.314 J/(mol K)) 

Re - Reynolds number 

T [K] temperature Sc - Schmidt number 

η [Pa/s] dynamic viscosity Rc [m] radial flow test cell radius 

c  [g/dm3] concentration b [m] radial flow test cell height 

P [bar] pressure Subscript   

π [bar] osmotic pressure w water  

∆P  [bar] trans membrane pressure i, j solutes/components 

∆Peff [bar] effective driving force  bulk bulk side 

∆πreal [bar] 
osmotic pressure 

difference  
I feed/membrane interface 

Robs - observed rejection  F feed   

Rreal  - real rejection  P permeate  

Rreal
∞ - asymptotic real rejection  

 

R retentate  

σV - 
Staverman reflection 

coefficient  
exp experimental data 

Q [dm3/h] flow rate DX dextrose (glucose) 

Jv  [dm3/(hm2)] permeate flux  FR fructose  (levulose) 

A [m2] membrane area XY xylose 

∆ - difference ML maltose 
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3.0 Introduction 

Nanofiltration appears to be a potential industrial scale method for purification and 

concentration of oligosaccharide mixtures. The potential of NF to fractionate 

oligosaccharide mixtures has been widely evaluated and documented in literature (Chapter 

2), as an alternative to more expensive chromatographic techniques. 

However, from literature overview some critical drawbacks have been put in evidence: 

typically sugar mixtures are investigated at low concentration ranges and temperatures 

(conditions far from industrial applications), and above all a lack of systematic 

investigation prevents to understand main aspects affecting sugar NF. 

The aim of the work is to investigate the role of operating parameters (temperature, pH, 

composition) on membrane performance, as well as interactions between sugars in 

multicomponent mixtures and electrolyte effect on sugar (mass-transfer) properties, in 

order to achieve the best separation performances. 

In this section separation performance of commercial Nanofiltration membranes are 

investigated in a wide range of test conditions: model solutions containing single and mixed 

solutes (such as xylose, dextrose, fructose and maltose) were mixed in demineralized water 

(conductivity < 10 μScm-1, pH 5.6) from pure crystalline substances. Experimentation was 

performed with total concentration for single solute model solutions ranging from 5 to 300 

g/dm3. Tests were carried out from 30° to 50°C, the pH was adjusted to 4 and 6 with 

concentrated drops of HCl and NaOH. The filtration pressures used were from 4 to 30 bar, 

depending on membrane and module type. Electrolyte effect was study both on single 

oligosaccharide and on mixture of oligosaccharide too: NaCl, CaCl2 and Na2SO4 were 

added to neutral solute solutions at different salt concentrations (ranging from the lower to 

the higher concentrations). 

All experiments were performed in a bench-scale plant, with small flat membranes housed 

in radial flow cell (39.6×10-4 m2 membrane area) or small commercial spiral wound 

modules (0.32 m2 membrane area), in total recirculation mode of retentate (R) and permeate 

(P). Commercial thin-film composite membranes were tested, in particular GE-DL and GE-

DK Nanofiltration membranes, and GE-AG GE-AK “Brackish water” membranes. NF 

membranes and filtration apparatus are described in detail in Appendix A: Materials & 

Methods. 
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In the following sections a critical summary of the experimental investigation is reported. 

All the results obtained, performed with both module configurations, have been organized 

in three main sections: 

1) Hydraulic permeability (Section 3.2); 

2) Experimental investigation as it is (Section 3.3); 

3) Intrinsic membrane performances (Section 3.4). 

 

Firstly hydraulic permeability of the membranes and their dependence on temperature is 

documented. 

In Section 3.3 data are reported in terms of observed rejection (Robs) and Separation factor 

(Sfactor,obs) as a function of experimental permeate flux (Jv,exp). 

In Section 3.4 data are reported as intrinsic rejection (Rreal) and Separation factor (Sfactor,real)  

as a function of experimental permeate flux, according to the data reduction procedure 

tabled. 

This pathway gives an overview about operating conditions that greatly affect separation 

performances. 

 

3.1 Hydraulic permeability 

Hydraulic permeability (Lp,w) of all the membrane used (see Appendix A) is calculated by 

water flux measurements (with demi water) according to Eq. 3.1: 

,v p wJ L P   (3.1) 

In which Jv and ∆P stand for permeate flux and pressure difference across the membrane 

respectively.  

Water fluxes were performed at three different operating temperatures, 30°, 40° and 50°C, 

in a pressure inlet range varying from 3 to 30 bar for flat sheet membranes, and from 4 to 

25 bar for spiral wound modules. Flow rate and feed pH are set at 400 dm3/h and 4 

respectively.  

The hydraulic permeability of “virgin membranes” is used as a comparison in order to 

monitor the state of the membranes and to perform washing procedure (Appendix A). 

Hydraulic permeability are collected in Table 3.1 for all the membrane tested. 
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Table 3.1: Hydraulic Permeability, Lp,w(T). Permeability was measured at 30°, 40° and 50°C, pH 4 

(conductivity < 10 μScm-1), 400 dm3/h (values shown as average ± standard deviation) 

Membrane  Configuration 
Lp,w (30°C)  

(dm3/(hm2bar)) 

Lp,w (40°C)  

(dm3/(hm2bar)) 

Lp,w (50°C)  

(dm3/(hm2bar)) 

GE-DL 
flat sheet 10.7±0.1 13.3 15.2±0.9 

Spiral Wound 7.8±0.4 9.2±0.8 10.7±0.9 

GE-DK  
flat sheet 6.9±0.6 _ 10.3±0.8 

Spiral Wound 8.8±0.8 11.2±0.9 12.7±0. 4 

GE-AG flat sheet 2.5 _ 3.29 

GE-AK flat sheet 3.7 _ 5.63 

 

The data obtained are comparable with most of data found in literature for membranes of 

the same kind (Tab. 3.2). 

 

Table 3.2: Hydraulic Permeability, experimental data from Literature, Desal GE-DK and GE-DL 

membranes 

Test Condition 
Lp,w (GE-DL)  

(dm3/(hm2bar)) 

Lp,w (GE-DK) 

(dm3/(hm2bar)) 
Ref. 

25°C 7.56 * 5.4* 
(Bowen and Mohammad 

1998) 

20°C, 5-40 bar, flat sheet, 

A=0.036 m2 
- 4.7 (Straatsma, et al. 2002) 

20°C, Pin= 2-40 bar, plate & 

frame A=0.036 m2 
5.76 5.4 

(Bargeman, Vollenbroek, 

et al. 2005) 

25°C  7.6* _ 
(Manttari, Pihlajamaki and 

Nystrom 2006) 

45°C, Pin 10 and 20 bar, plate 

and frame A=0.18 m2 

(used cleaned membrane) 

7.6±0.5 6.4±0.94 (Sjoman, et al. 2007) 

20°C, Spiral Wound 2540, 

A=2.51 m2 
3.96 _ 

(Cuartas-Uribe, et al. 

2007) 

15°C, Pin=6-40 bar, plate and 

frame A=0.072 m2 
_ 3.49 (Cavaco Morao, et al. 

2008) 
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25°C, Pin 4-20 bar, cross flow 

A=0.0137m2 
_ 5.0±0.25 (Umpuch, et al. 2010) 

25°C, dead-end stirred cell, 

A=0.00146 m2 
7.6* 5.4* (Kuhn, et al. 2010) 

25°C, dead-end stirred cell, 

A=0.00152 m2 
_ 3.05 (Mohammad, Basha and 

Leo 2010) 

25°C, Pin 2-20 bar, flat sheet 

membranes, A=0.014 m2 
_ 7.5 (Escoda, Déon and Fievet 

2011) 

25°C  6.0* 5.1* (Bandini and Nataloni 

2015) 

* from technical sheet  

 

Since hydraulic permeability increases with temperature according to an Arrhenius type 

law: 

, 0 exp( )a
p w p

E
L L

RT
   (3.2) 

Where Lp0 and Ea show the meaning of a frequency factor and activation energy 

respectively (Tab. 3.3). 

 

Table 3.3: Arrhenius type law describing the dependency of hydraulic permeability from temperature (Eq. 

3.2) 

 GE-DK GE-DL GE-AG GE-AK 

 Flat sheet SW1812 Flat sheet SW1812 Flat sheet Flat sheet 

Lp0 (dm3/(hm2bar)) 8.27 8.46  8.66 8.38 7.11 7.64 

Ea (J/mol) 229.93 

 

Validation of Eq. (3.2) can be observed in Fig. 3.1, in which a comparison among 

experimental data from this work and data from literature, including data sheets values, are 

reported.  

Hydraulic permeability data have been elaborated as a function of temperature in order to 

underline the dependence on viscosity, according to the equation: 

 

0 0

, ,( ) ( ) ( ) ( )p w w p w wL T T L T T 
 

(3.3) 
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a)  b) 

c) d) 

Figure 3.1 Arrhenius plot. Hydraulic Permeability as a function of temperature for both module 

configurations: flat sheet (black symbols and lines)  and spiral wound (grey symbols and lines).Comparison 

between data from this work (closed symbols), data from literature  (× symbols) and prediction according 

to Eq. 3.3 (lines)  for GE-DK (a), GE-DL (b), GE-AG (c) and GE-AK (d)membranes. 

 

Many authors documented hydraulic permeability from technical sheet [ (Bowen and 

Mohammad 1998), (Manttari, Pihlajamaki and Nystrom 2006), (Kuhn, et al. 2010), 

(Bandini and Nataloni 2015)], however datasheet reduction gives only Lp,w(T) values 

approximately, as shown in Fig. 3.1 a-d. 

The dispersion of experimental data compared to literature data is probably due to the 

diversity of membrane configuration or to the different procedures as well as pressure for 

membrane stabilization, as suggested by (Mohammad, Basha and Leo 2010).  

On the contrary, deviations between experimental data and prediction (according to Eq. 

(3.3)) are less than 6.5% and 7.6% for GE-DK and GE-DL membranes respectively. 

These results put in evidence that one experimental permeability data is necessary in order 

to predict membrane performance in a wide range of operating temperature, applying Eq. 

(3.3).  

Finally, it can be observed a very good reproducibility of the results documented by a wide 

number of samples. 
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3.2 Experimental data as it is 

A report is given of the results obtained in all the experiments performed first with the 

radial flow test cell and then with the “lab-scale” spiral wound module, in total recirculation 

mode of retentate and permeate (details are reported in Appendix A).  

Temperature, pH, composition as well as concentration effects were tested, in a wide range 

of operative conditions.  

Notation used in this section is explained in the list of symbols. 

For clarity sake, definition of observed Rejection is reminded, referred to a general solute 

i:  

,

,

,

1
P i

obs i

bulk i

c
R

c
    (3.4) 

In which cP,i and cbulk,i are the concentration of the solute i in the permeate and in the feed 

side, respectively.  

In addition, with regards to mixtures, separation factor was defined as: 

, , ,

,

, , ,

1

1

P i P j obs i

factor i j

F i F j obs j

c c R
S

c c R



 


 (3.5) 

This factor indicates the change in the permeate composition compared to the original 

ration of i to j in the feed. 

 

3.2.1 Single solutes 

Experiments were carried out using model solution of approximately 5-300 g/dm3 of one 

sugar in aqueous solution. Xylose, Dextrose, Fructose and Maltose were tested at pressures 

and temperatures ranging from 4 to 30 bar and from 30 to 50°C respectively. Results are 

reported in Figures 3.2 to 3.4 
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a) b) 

c) d) 

Figure 3.2:Observed Rejection vs. Experimental Permeate flux, radial flow test cell, GE-DL and GE-DK, 

dextrose (a,c), fructose (b,d), model solutions, 30° and 50°C, pH 4 6, flow rate 400 dm3/h, total 

recirculation of R and P  

 

 a) b) 

Figure 3.3:Observed Rejection vs. Experimnetal Permeate flux, radial flow test cell, GE-AG and GE-AK, 

dextrose (a) and fructose (b), model solutions, 50°C, pH 4, flow rate 400 dm3/h, total recirculation of R and 

P  

 

 



Separation of oligosaccharide mixtures in NF 

Experimental study 

68 

 

a) b) 

c)  d) 

Figure 3.4: SW1812 GE-DL Module. Observed Rejection (Robs) as a function of experimental permeate flux 

(Jv,exp), Xylose (a), Dextrose (c), Fructose (d) and Maltose (e). NF of model solution of dextrose (10 and 50 

g/dm3), fructose (10 and 50 g/dm3), xylose (10 and 50 g/dm3) and maltose (40 g/dm3), in total recirculation 

mode of R and P, 30°, 40° and 50°C, pH 4, QF 400 dm3/h, inlet pressure ranging from 4 to 20 bar. 

 

The results show similar trends: experimental curves of observed rejection range from the 

lowest to the highest fluxes, with high reproducibility.  

Oligosaccharide retentions obtained for Desal GE-DK, GE-AG and GE-AK are 

significantly higher than those for GE-DL, and these results are in agreement with 

information from membrane technical sheet. From permeate fluxes higher than 300 

dm3/(hm2) monosaccharide retentions started to decrease with increasing flux. This 

behavior indicates that concentration polarization clearly affected GE-DK and GE-DL 

membranes, particularly at higher permeate fluxes. Concentration polarization will be taken 

into account in the next section. 

For all membrane tested, increasing temperature caused the sugar rejections to decrease, 

but the effect is quite different for each compound. The monosaccharides, first of all xylose 

(C5), followed by dextrose and fructose (both C6), showed the greatest change in rejection 

values, followed by maltose (C12), which totally rejected with GE-DK and GE-DL 

membranes at permeate fluxes higher than 100 dm3/(hm2).  
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The observed retentions are stable above fluxes of 200 dm3/hm2 for both membranes in the 

case of monosaccharides. Glucose and fructose have the same retentions, which are 

strongly affected by sieving effect. 

The rejections of the sugar decrease as the total sugar concentration of the solution 

increases. Viscosity and osmotic pressure are very strong for these solutions, not to mention 

concentration polarization, which is a sever phenomenon particularly for GE-DL and DK 

membranes.  

When a sugar is completely rejected, such as maltose, depending on the ratio solute to pore 

size, temperature effect on rejection became negligible, and rejection reaches asymptotic 

values since the lowest fluxes. This is confirmed by dextrose and fructose with GE-AG and 

GE-AK membranes (Fig. 3.3 a, b). 

Besides the different configuration, the same trend was observed when experimentation 

was performed on lab-scale spiral wound modules.   

As a matter of fact temperature is a critical factor affecting NF separation. A stepwise 

increase in temperature from 30° to 50°C was reported to decrease retentions, however 

maximum deviation with temperature is in the low flux range that it should corrensponf to 

the diffusive transport zone (as documented in Fig. 3.5 a,b)  

By comparison of Fig. 3.4 it was also found that the effect of temperature on rejection is 

negligible for maltose, compared to dextrose or fructose, and xylose. We expect that 

molecular size of maltose is much contiguous to the pore radius of GE-DL and GE-DK 

membranes, compared to xylose. 

In order to quantify the temperature effect on rejection from 30° to 50°C, the following 

difference has been introduced, once fixed permeate flux: 

,30 ,50 ,,

,30 50 ,

,50 ,

v v

v

v

obs C obs CJ J

obs C J

obs C J

R R
R

R

 

 




   (3.6) 

Results are shown graphically in Fig. 3.5 a and b. Temperature effect depends both on: 

(i) Mass transport zone (diffusive vs. convective); 

(ii) Solute to pore size ratio. 

In particular the lower the fluxes (i.e. transport is mainly diffusive), the higher the 

difference in retention, in particular for monosaccharides.  

This behavior is intrinsic of the type of membrane and solutes, while is independent from 

module geometry, confirming the dependence from solute. 
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a) b) 

Figure 3.5: Temperature effect on difference in rejections for Xylose, dextrose and fructose as a function of 

permeate flux. GE-DK and GE-DL flat membranes (a), and GE-DL SW1812 membrane (b). Difference in 

observed rejection defined according to Eq. (3.6). 

 

Increased temperature caused the sugar rejections to decrease, but the effect is quite 

different for the sugars in the model solutions. The monosaccharides, xylose in particular, 

showed the greatest change in rejection values, followed by fructose and dextrose. The 

rejection of maltose, which is totally rejected, remained constant.  

These results are in agreement with the results reported from (Goulas, Grandison and 

Rastall 2002) and (Tsuru, et al. 2000) with regard to the effect of temperature on the 

transport performances of organic and inorganic membranes respectively. (Pontalier, 

Ismail and Ghoul 1997) reported that diffusive transport of sugars depends on the 

concentration gradient and remains pressure independent, whereas convective transport 

increases with pressure. This behavior is observed in particular for GE-DK and GE-DL 

membranes, for which monosaccharide rejection ranges widely from 5% to 90% 

approximately, and highlights the importance of temperature in sugar NF. 

.  

3.2.2 Mixtures (Temperature and Electrolyte effect) 

In this section (i) sugar-electrolyte, and (ii) sugar-sugar interactions have been investigated 

in a wide range of composition. 

Literature widely documented electrolyte effect on neutral solutes, already. Typically low 

concentration have been studied.  Electrolyte effect was firstly studied on dextrose 

retention, at very low Sodium Chloride concentrations (ranging from 0.5 to 1.1 g/dm3) at 

50°C. 
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a)  b) 

Figure 3.6:  Radial flow test cell, Observed Rejection (Robs) as a function of Permeate flux (Jv,exp) for Binary 

mixtures of  Dextrose (10 g/dm3) and Sodium Chloride (0.5-1.1 g/dm3), GE-DL (a) and GE-DK (b). NF of 

model binary solution performed in total recirculation mode of R and P, 50°C, pH 4, QF 400 dm3/h, inlet 

pressure ranging from 4 to 20 bar.  

 

In the whole range of permeate flux, dextrose retention was unaffected by the presence of 

the electrolyte, for both GE-DK and GE-DL membranes, as shown in Fig. 3.6 a,b.  

Increasing electrolyte concentration, GE-AK (a more selective membrane compared to GE-

DK and GE-DL) shown the same behavior for dextrose and fructose rejection in presence 

of sodium chloride and calcium chloride at concentration of 10 g/dm3. In view of the higher 

osmotic pressures in presence of electrolytes, permeate flux decreases. 

 

a) b) 

Figure 3.7: Radial flow test cell, Observed Rejection (Robs) as a function of Permeate flux (Jv,exp) for Binary 

mixture of  Dextrose (a) or Fructose (b) (50 g/dm3) and Sodium Chloride or Calcium Chloride (10 g/dm3), 

GE-AK membrane. NF of model binary solution performed in total recirculation mode of R and P, 50°C, 

pH 4, QF 400 dm3/h, inlet pressure ranging from 10 to 30 bar. 

 

When sugar mixtures are tested, sugar-sugar interaction may increase sugar retention.  

Experiments were carried out with model solutions containing mono- and disaccharide at 

high concentrations, resembling those of commercial applications. 
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a) b) 

c) d) 

Figure 3.8: Radial flow test cell, Observed Rejection (Robs) as a function of Permeate flux (Jv,exp) for Binary 

mixture (grey symbols) of  Dextrose and Maltose, compared with pure compound(black symbols + line), 

GE-DL (a-b) and GE-DK (c-d). NF of model binary solution performed in total recirculation mode of R and 

P, 50°C, pH 4, QF 400 dm3/h, inlet pressure ranging from 10 to 30 bar.  

 
 

a)  b) 

Fig. 3.9: Observed rejection (Robs) as a function of experimental permeate (Jv,exp). Comparison between 

single sugar (closed symbols + lines) and mixtures (open symbols). SW1812 GE-DL, Xylose (a) and 

Dextrose (b), 30°-50°C, pH 4, total concentration 50 g/dm3. Total recirculation mode of R and P. 

 

Differently from flat membranes, where dextrose rejection increases when maltose is added 

to the solution (whereas no effect was observed on maltose), experiments performed on 

SW1812 GE-DL shown the same behavior for single solutes and mixtures, in the whole 

range investigated: it is clear that no sugar-sugar interaction occurs in solution; only a slight 

increase in dextrose retention was observed, anyhow not comparable with those observed 

in Fig. 3.8 b and d. 
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When mixtures are processed, separation factor become a key parameter in order to 

evaluate separation efficiency. In Fig. 3.10 separation factor is presented as a function of 

experimental permeate flux, since difference in retention is not a representative parameter. 

The separation between two solutes is achieved if the separation factor differs from unit. 

As illustrated in Fig. 3.10, for the same membrane, Separation factor depends mainly on: 

(i) type of solutes, (ii) operating conditions (T, and P), and (iii) may be affected by the 

presence of electrolyte in solution.  

Increased temperature, in all cases, caused the differences between the rejections of the 

sugars to decrease, indicating a less effective separation. 

The nanofiltration membranes used in this study are able to separate xylose from dextrose, 

in agreement with the observations of (Sjoman, et al. 2007). However separation efficiency 

is affected by permeate flux and, even further by temperature. Temperature effect on 

separation was not documented in literature yet. 

The results indicate that higher separation factors are gained at higher permeate fluxes and 

lower temperatures. In this study maximum separation factor (about 3.5) is achieved at 

30°C and permeate flux higher than 20 dm3/(hm2). 

The trend observed at 50°C is however in accordance with results from (Sjoman, et al. 

2007), who obtained xylose separation factors up to around 3.3 with the Desal 5 DK 

membrane. (Morthensen, et al. 2015) achieved a xylose separation factor of 34 

(corresponding to a throughput of 18.7 l/(hm2)) converting enzymatically glucose to 

gluconic acid, followed by a nanofiltration separation step.  

Differently from Xylose-Dextrose separation, Xylose-Maltose and Dextrose-Maltose show 

a dependence of Separation factor from mixture composition. The separation factor reaches 

the maximum value in the ternary mixture, compared to binary mixture. The separation 

efficiency of xylose-maltose as well as dextrose-maltose separation is promoted when a 

third neutral solute is added to the solution, at the same total solution concentration. The 

significance of concentration, pressure, temperature, as well as electrolyte in solution where 

studied to optimize the separation. 
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a)  b) 

c) d) 

e)  f) 

Fig. 3.10: Separation factor and difference in observed retention as a function of permeate flux for xylose-

dextrose (a, b), xylose-maltose (d, e), dextrose-maltose (e, f). 1812C-34D GE-DL module, 30° and 50°C, 

pH 4, total recirculation of R and P, QF=400 dm3/h 

 

3.2.3 Isomers Separation (T, pH and Electrolyte effect on separation) 

One of the objectives of this study is to evaluate to what extent operating conditions (i.e. 

pH of the feed solution, composition and the addition of an electrolyte) can improve the 

selectivity of isomer separation. Indeed, until now, previous studies has shown that this 

separation is hardly achievable because these sugars are isomers, and on an industrial scale, 

these separations are achievable only with chromatographic methods.   

The influence of pH on both dextrose and fructose rejection was firstly studied, both on 

GE-DK and GE-DL membranes. 

 



Separation of oligosaccharide mixtures in NF 

Experimental study 

75 

 

a) b) 

c)  d) 

Figure 3.11:  pH effect on neutral solute rejection, radial flow test cell, GE-DL and GE-DK, dextrose (a 

and c), fructose (b and d), model solutions, 30° and 50°C, pH 4 6, flow rate 400 dm3/h, total recirculation 

of R and P. 

 

Experimentally a slight pH effect was observed on fructose rejection. Overall, the results 

obtained at pH 6 are compared with those at pH 4 (which represent approximately the 

Isoelectric Point of these membrane). 

Electrolyte effect was then investigated on isomer separation. Results are shown in Fig. 

3.12. 

a)  b) 

Fig. 3.12: Electrolyte Effect on Dextrose (a) and Fructose (b) rejections. SW1812 GE-DK, 50°C, QF=400 

dm3/h, total recirculation mode of R and P 

 

Electrolyte in dextrose-fructose mixture strongly affects the sugar retentions. This is 

illustrated for 1812C-34D GE-DK membrane, where dextrose and fructose rejections are 

shown as a function of permeate flux. The observed reduction in dextrose as well as fructose 
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rejection is not only due to the reduction in flux at higher electrolyte concentration (as 

shown in Fig. 3.6-3.7 a and b), but is clearly attributed to electrolyte.  

For operation at flux of 20 dm3/(hm2) dextrose and fructose rejection reduction is about 

50% (from 60% to 40% approximately). The sugar retention obtained with mixed solute 

solutions is systematically lower than that obtained with “neutral” solutions. These 

decrease is more or less important depending on the nature of the salt and its concentration.  

Nevertheless, the reduction in retention does not result in a change in separation factor, as 

shown in Fig. 3.13 and 3.14 a and b.  

 

a)   b) 

Fig. 3.13: Electrolyte effect on Dextrose-fructose separation, by NF at 50°C. Comparison between 

observed rejections, of dextrose and fructose. 1812C-34D GE-DK, pH 4, QF=400 dm3/h, total recirculation 

mode of R and P.  

 

a)  b) 

Fig. 3.14: Electrolyte effect on Dextrose-fructose separation factor as a function of permeate flux, by NF at 

50°C. 1812C-34D GE-DK, pH 4, QF=400 dm3/h, total recirculation mode of R and P.  
 

Membrane tested is not able to fractionate isomer oligosaccharide, confirming that 

chromatographic methods are suitable for these kinds of separations. 

 

Overall, experimental data as it is shown that: 

i) Sugars shown approximately the same behavior with operating conditions (T, 

P, concentration), except for totally rejected solutes; 
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ii) Electrolyte at high concentration may affect sugar retention, and reduce 

separation factor; 

iii) No separation is achievable by NF when isomers are processed.   

 

These results are in agreement with literature study [ (Wang, Zhang and Ouyang 2002), 

(Bargeman, Vollenbroek, et al. 2005), (Bouchoux, Roux-de Balmann and Lutin 2005) 

(Cuartas-Uribe, et al. 2007), (Mohammad, Basha and Leo 2010) , (Mandale and Jones 

2008) , (Bouchoux, Roux-de Balmann and Lutin 2005), (Wang, Zhang and Ouyang 2002), 

(Freger, Arnot and Howell 2000), (Vellenga and Tragardh 1998), (Bargeman, Westerink, 

et al. 2014)]. 

Electrolyte effect on oligosaccharide rejection is a key phenomenon that affect NF 

performances. 

 

3.3 Intrinsic membrane performances 

Intrinsic membrane performances have been investigated for all the experimental data 

documented in the previous section. 

Effective Driving force of the process and real Rejection are evaluated by using the film 

theory model in order to calculate the feed-membrane interface concentration of i specie. 

Effective driving force takes into account a Staverman coefficient, which can be assumed 

(in first approximation) to be equal to the asymptotic real Rejection of i specie, Rreal,i, 

defined as: 
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Where cI,i is the solute concentration at feed-membrane interface, which is described by the 

Film-Theory: 
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The mass transfer coefficient, kL, can be evaluated by means of an appropriate correlation 

of dimensionless numbers for the system and process conditions. Typically, it is necessary 

to account of the role of viscosity. To that purpose (Aimar e Field 1992) proposed: 

0.27

,0

,

bulk i

L L

I i

k k




 
   

 
 (3.12) 

For the radial flow test cell a correlation identified in a previous work (Camera-Roda, 

Saavedra and G.C. Sarti 1993) was used:  
1
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 
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 
 

500 Re 5000   

(3.13) 

Where Rc and b are the cell radius and height respectively.  

With regard to the 1812 spiral wound modules an appropriate relationship was elaborated 

and discussed in Appendix B. The experimental relationship is: 

1

0.8 30.023ReSh Sc  

200 Re 800   

(3.14) 

These relationships have been applied in order to evaluate intrinsic performances of the 

membranes.  

In this section intrinsic separation factor (Sfactor,real) has been defined according the 

following relationship: 
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
 (3.5) 

Where cF,i and Robs,i in Eq. (3.5) has been replaced by cI,i and Rreal,i respectively. 

 

3.3.1 Single solutes 

When concentration polarization affects membrane performances, real rejection (Rreal,i) is 

a key parameters which describes the intrinsic behavior of the membrane.  

All experimental data presented and discussed in previous section, now are documented in 

terms of intrinsic performances of the membrane. Results are reported from Figures 3.15 

to 3.17. 
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a)  b) 

c)  d) 

Figure 3.15: Real Rejection vs. experimental Permeate flux, radial flow test cell, GE-DL and GE-DK, 

dextrose (a, c), and fructose (b, d), model solutions, 30 and 50°C, pH 4 6, flow rate 400 dm3/h, total 

recirculation of R and P  

 

Intrinsic rejections show the same trend with temperature, concentration and pressure of 

observed rejection, however values are slightly higher than “observed” results. 

Fig. 3.15 a-c show the variations of the real retention of dextrose and fructose versus Jv for 

different concentrations (ranging from 1 to 300 g/dm3). It can be observed that the intrinsic 

retention is quite independent of the sugar concentration.  

Comparison between intrinsic (Rreal) and observed rejection (Robs) (Fig. 3.16 a-c) quantifies 

the extent of concentration polarization in the test conditions investigated. 

Concentration polarization is a key phenomenon especially at high permeate fluxes and it 

is not negligible for GE-DL membranes  
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a) b) 

c) d) 

Figure 3.16: Comparison between intrinsic (Rreal) and observed rejection (Robs). Radial flow test cell, GE-

DL and GE-DK, dextrose (a, c), and fructose (b, d), model solutions, 30 and 50°C, pH 4 6, flow rate 400 

dm3/h, total recirculation of R and P 

 

These results have been confirmed in spiral wound module (Fig. 3.17 and 3.18 a-c). 

Temperature is an operating parameter that affects mainly: 

i) Intrinsic rejection, and  

ii) Concentration polarization 

Depending on the type of solute.  
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a)  b)  

c) d) 

Figure 3.17: SW1812 GE-DL module, Data Reduction: real Rejection (Rreal) as a function of Permeate flux 

(Jv,exp) for Xylose (a), Dextrose (b), Fructose (c), Maltose (d). NF of model solution of Xylose, Dextrose or 

Fructose (10 and 50 g/dm3) and maltose (40 g/dm3), in total recirculation mode of R and P, 30°, 40° and 

50°C, pH 4, QF 400 dm3/h, inlet pressure ranging from 4 to 20 bar. 

 

 a) b) 

c)  d) 

Figure 3.18: Comparison between intrinsic (Rreal) and observed rejection (Robs). SW1812 GE-DL module, 

Xylose (a), Dextrose (b), Fructose (c), Maltose (d). NF of model solution of Xylose, Dextrose or Fructose 

(10 and 50 g/dm3) and maltose (40 g/dm3), in total recirculation mode of R and P, 30°, 40° and 50°C, pH 4, 

QF 400 dm3/h, inlet pressure ranging from 4 to 20 bar. 
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Concentration polarization is a key phenomenon affecting NF membranes, especially at 

high permeate fluxes (corresponding to low concentrations and high temperatures) and low 

molecular weight solutes, like xylose, dextrose and fructose. 

 

3.3.2 Mixtures 

As illustrated in the previous section, electrolyte at low concentration does not affect solute 

rejection. The trend has been confirmed in terms of intrinsic membrane performances. 

This is illustrated for Desal GE-DK and GE-DL in Fig. 3.19, where dextrose real retention 

is shown as a function of permeate flux for a 10 g/dm3 dextrose solution containing different 

NaCl concentrations, ranging from 0.5 to 1.1 g/dm3. In this case concentration polarization 

is negligible, especially for GE-DK membrane (Fig. 3.20). 

 

a) b)  

Figure 3.19: Radial flow test cell, data Reduction: real Rejection (Rreal) as a function of Permeate flux 

(Jv,exp), for Binary mixture of  Dextrose (10 g/dm3) and Sodium Chloride (0.5-1.1 g/dm3), GE-DK (a) and 

GE-DL (b). NF of model binary solution performed in total recirculation mode of R and P, 50°C, pH 4, QF 

400 dm3/h, inlet pressure ranging from 4 to 20 bar. 

 

a) b) 

Figure 3.20: Radial flow test cell, data Reduction: real Rejection (Rreal) as a function of observed rejection 

(Robs), for Binary mixture of Dextrose (10 g/dm3) and Sodium Chloride (0.5-1.1 g/dm3), GE-DK (a-b) and 

GE-DL (c-d). NF of model binary solution performed in total recirculation mode of R and P, 50°C, pH 4, 

QF 400 dm3/h, inlet pressure ranging from 4 to 20 bar. 
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Studying complex mixtures, no complexation was found in terms of intrinsic performances, 

although concentration polarization is not negligible, as illustrated in Fig. 3.21 c and d.  

 

a)  b) 

c)  d) 

Figure 3.21: SW1812 GE-DL module, Data Reduction: Xylose and Dextrose real Rejection (Rreal) as a 

function of Permeate flux (Jv,exp) (a, b) and as a function of observed rejection (Robs)  for Binary and 

Ternary mixture of  Xylose, Dextrose, and Maltose. NF of model binary and ternary solution of Xylose, 

Dextrose and maltose (total concentration 50 g/dm3), in total recirculation mode of R and P, 30° and 50°C, 

pH 4, QF 400 dm3/h, inlet pressure ranging from 4 to 20 bar. 

 

Since intrinsic rejection is on average higher than observed rejection, also the real 

separation factor deviates from the observed one, although the trend is the same.  

Experimentally, (Fig.3.22) a slight increase in separation factor compared to observed 

separation factor is observed at high permeate fluxes. 
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a) b) 

b)   c) 

d)  e) 

Figure 3.22: Intrinsic Sfactor as a function of experimental permeate flux and Observed Sfactor (defined in Eq. 

(3.5).Xylose-Dextrose (a-b), Xylose-Maltose (c-d), Dextrose-Maltose (d-e). SW1812 GE-DL, Binary and 

ternary mixtures, 30°C and 50°C, pH 4, QF=400 dm3/h, total recirculation mode of R and P. 

 

 

3.4 Discussions and Conclusions 

A wide experimentation was carried out to test performances of commercial polyamide 

membranes for oligosaccharide Nanofiltration. Tests were carried out by using synthetic 

sugar solutions in a wide range of concentrations, composition, pressures and temperatures. 

A lot of experimental data are available, and some interesting general conclusions can be 

drawn. 
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i) All the membrane tested, in two configurations (flat sheet and spiral wound 

membranes) show remarkable analogies in their behavior as a function of 

operative conditions; 

ii) Experimental data are highly reproducibly; 

iii) A general trend is observed in which membrane/module performances can be 

described by using few simple quantities, in a wide range of confidence.  

iv) Differently from literature, whole curves Robs vs. Jv,exp and Rreal vs. Jv,exp are 

available in a  wide range of operative conditions; 

v) Concentration polarization affects membrane performances, especially at high 

permeate fluxes; 

vi) remarkable effects of pressure and temperature on flux and rejection is quite 

typical Nanofiltration processes: (i) flux increases with pressure and 

temperature; (ii) rejection decrease as temperature increases.  

vii) The retention of monosaccharides (pentose and hexose sugars) strongly depends 

on temperature, and is altered by the presence of electrolyte at high 

concentrations in solution; 

viii) Solute-solute interactions are negligible as well as solute-salt interactions. 

 

Temperature effect on neutral solute rejection will be further investigated in the next 

chapter, with the transport model support. At the moment we limit to observe a different 

temperature effect depending on the sugar tested, while pH effect on sugar retention is not 

yet well understood. Temperature also affects separation efficiency: can be observed that 

separation factor increase as temperature decreases from 50° to 30°C. 

As well as the interactions between different components and the membrane, and their 

effect on the separation of NF membrane are negligible in the conditions tested. 

Data reported in this chapter are the experimental basis for the critical assessment of the 

Model that will be discussed in the next section. 
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List of symbols   

Symbol Units Quantity Kic - convective hindrance factor 

x [m] 
axial coordinate in the 

membrane 
Kid - diffusive hindrance factor 

0- - 
feed/membrane interface, 

feed side 
Pe - hindered Peclét number 

0+ - 
feed/membrane interface, 

membrane side 
V  [m3/mol] partial molar volume 

δ- - 
membrane/permeate 

interface, membrane side 
Rreal  - real Rejection  
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δ+ - 
membrane/permeate 

interface, permeate side 

  - 
activity coefficient 

 

 

 

rp [m] average pore radius    [J/mol] electrochemical potential 

rS [m] Stokes radius   - 
dimensionless electrostatic 

potential 

λ - 
hydrodynamic coefficient 

(=rS/rp) 
  [V] electrostatic potential 

  - 
steric partitioning 

coefficient  
   

δ [m] 

effective membrane 

thickness  accounting for 

tortuosity and porosity 

F [C/mol] Faraday constant (=98485) 

δ* [m] 

effective membrane 

thickness  accounting for 

tortuosity and porosity, 

according Hagen-Poiseuille  

z - ionic valence 

c  [mol/dm3] mole concentration ∆WDE - 
excess energy due to dielectric 

exclusion 

j [mol/(m2s)] mole solute flux D  - Donnan potential 

Jv  [dm3/(hm2)] total volume flux kL [m/s] Mass transfer coefficient 

JS  solute flux kL
0 [m/s] 

Mass transfer coefficient in the 

bulk phase 

Lp [dm3/(hm2bar)] membrane Permeability    

∆ - difference    

P [bar] pressure Subscript   

π [bar] osmotic pressure i, j solutes/components 

∆P  [bar] trans membrane pressure 0 at the feed/membrane interface 

∆Peff [bar] effective driving force  δ At the membrane/permeate interface 

∆πreal [bar] 
effective osmotic pressure 

difference 
bulk bulk side 

σV - 
Staverman reflection 

coefficient  
I feed/membrane interface 

Lp,w [dm3/(hm2bar)] hydraulic permeability inside inside the pore 

R [J/(mol K)] 
Universal gas constant  

(=8.314 J/(mol K)) 
F feed   

T [K] temperature P permeate   
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η [Pa/s] 
water dynamic viscosity 

inside the pore 
R retentate   

η0 [Pa/s] 
water dynamic viscosity in 

the external bulk 
exp Experimental data 

Robs - Observed rejection  w water  

realR  - Asymptotic Real Rejection   DX Dextrose  

D∞ [m2/s] 
bulk diffusivity at infinite 

dilution 
FR Fructose  

Dip [m2/s] 
hindered diffusivity inside 

the pore 
XY Xylose  

kB [J/K] 
Boltzmann constant 

(=1.381 ×10-23) 
ML Maltose  

 

 

4.0 Introduction  

Since the beginning of membrane technology a substantial amount of research focused on 

the description of the transport mechanism through the membranes, with the aim of process 

understanding and development. Most of these studies used flat sheet membranes; on the 

other hand many researchers studied fluid dynamics and mass transfer in spiral wound 

membrane modules, mainly in aqueous solutions. 

The development of membrane processes usually involves several steps, starting from 

feasibility tests at laboratory scale (typically small flat sheet membranes), passing through 

bench scale as well as pilot plant tests and finishing with large industrial scale processes. 

Across the different steps, modelling can be applied for two purposes:  

a) Modeling mass transfer across the membrane: it requires the description of 

partitioning and transport phenomena across the membranes. Typically it is 

accomplished by the determining of adjustable parameters which characterize the 

membrane behavior. 

b) Simulation of module and process performances at different scales 

Modelling is a key aspect of NF for food applications.  

In this study firstly an overview about NF modelling is documented, highlightening 

criticalities and issues not solved yet. Afterwards a revised transport model is presented, 

identifying and discussing the key aspects and criticalities.  
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Finally a validation of the model presented is performed by using all the experimental 

investigation reported in Chapter 3. 

 

4.1 Introduction to NF modelling 

Polymeric NF membranes show characteristics which are intermediate between 

Ultrafiltration and RO. The development of mathematical models describing transport 

mechanism through the membrane is essential to predict and optimize membrane 

performances, in the case of both simple and multicomponent systems containing neutral 

solutes, as well as electrolytes. Of course a good modelling allows to reduce the number of 

tests required to perform process scale up. 

The question about the mathematical modeling of neutral solute and electrolyte transport 

through NF membranes is well known [ (Spiegler and Kedem 1966), (Bowen, Mohammad 

and Hilal 1997), (Bandini and Vezzani 2003), (Szymczyk and Fievet 2005), (Bandini and 

Bruni 2010)]. The key points of the problem can be basically identify both in the 

characterization of the membrane (which can be seen as a homogeneous or as a porous 

medium) and in the understanding of the phenomena giving rise to partitioning and 

transport of the species across the membrane. 

Transport of uncharged solutes has been firstly described by continuous hydrodynamic 

models; later porous membranes were modeled as bundles of straight cylindrical pores and 

solute transport was corrected on account of hindered diffusion and convection cause by 

solute-membrane interactions, owing to the moving of a species in a confined spaces. 

Nowadays, it is recognized that the separation mechanism of the process is remarkably 

related to the steric and electrostatic partitioning effects between the membrane and the 

external solutions. 

In the case of neutral solutes, partitioning between feed and membrane is mainly related to 

size exclusion effects, and molecular weight cutoff is generally sufficient to describe the 

separation efficiency of the membrane. In the case of electrolyte solutions, rejection 

properties of NF membrane are remarkably affected by type and valence of the ionic 

species as well as by the type of membrane material and strongly depend on operative 

conditions such as pH and ionic strength values existing in the feed side. 

There are several models describing the mass transfer in a NF membrane: the solution-

diffusion model (Lonsdale 1965), the irreversible thermodynamics model described by 

Kedem and Katchalsky (1958), Maxwell-Stefan equation (Mason and Lonsdale 1990),and 
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recent structural models [ (Spiegler and Kedem 1966), (Bowen, Mohammad and Hilal 

1997), (Bandini and Vezzani 2003), (Szymczyk and Fievet 2005), (Bandini and Bruni 

2010)]. 

Most of the recently developed models accept a porous vision of the membrane and 

describe mass transfer through the extended Nernst-Planck (ENP) equation. In addition, 

ENP equation is appropriately modified by some authors for taking into account of the 

hindered transport through narrow pores comparable with the molecular dimensions of the 

permeating species. 

All the models make use of several parameters to characterize the membrane: there are 

structural parameters, such as average pore radius, membrane thickness, tortuosity, and 

porosity; electrical parameters, such as surface or volume membrane charge; and 

electrochemical parameters, such as the dielectric constants of the membrane and of the 

solution inside/outside the pores. In addition, depending on the authors, all the parameters 

are considered as adjustable parameters or, alternatively, some of them can be obtained by 

independent measurements, such as tangential streaming potential as well as atomic force 

microscopy. 

The more advanced models describe: (i) Solute partitioning at the interfaces between the 

membrane and the external phases; (ii) solute transport across the membrane; and (iii) water 

or total flux across the membrane. 

Typically solute and membrane properties are identified by several parameters: Stokes 

radius (rS) is used to describe the solute size, as well as average pore radius (rP), effective 

membrane thickness (δ) and pore geometry (usually cylindrical) are used to characterize 

membrane itself. The most common procedure used for parameters calculation involves 

several steps: 

a) Calculation of Stokes radius of the solute; 

b) Calculation of pore radius from asymptotic rejection data; 

c) Application of a porous viscous vision, accounting of Hagen-Poiseuille equation, 

for the calculation of the effective membrane thickness, by using hydraulic 

permeability data. 

The critical aspects of this procedure are manifold: 

i) Membrane parameters are fitted from time to time for each solute; thus each 

solute is associated with a defined couple of parameter (rP, δ), although the 

membrane is the same; 
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ii) Both parameters are validated by comparing model predictions with 

experimental rejection data, generally available at conditions very close to 

asymptotic rejections. Lack of well-defined data in the low flux region, hinders 

determination of the δ which is significant in the diffusive transfer zone; 

iii) Stokes radius is not a representative parameter for solute size, because it does 

not account for the orientation of non-spherical molecules, of phenomena that 

take place in solution, such as dehydration or complexation effects, as well as 

of membrane-solute interactions. 

In this work Donnan Steric Pore and Dielectric Exclusion Model (DSP&DE) is used as 

basic tool for data elaboration. The numerous experimental data available in Chapter 3 and 

their high reproducibility allow us to revise the basic DSP&DE model. In addition, the 

availability of a good modelling allows to interpret the experimental results. 

Key points of modelling are: 

a) Identification of the suitable parameters; 

b) Evaluation of a proper procedure for membrane characterization; 

c) Model validation in the case of aqueous mixtures containing sugars; 

d) Module and process simulation. 

 

4.2 The revised DSP&DE Model: Theoretical Background 

 

4.2.1 The general Physical Problem  

In this section, basic elements of the revised DSP&DE model for food NF applications are 

reported. The standard DSP&DE (Bandini and Bruni 2010) is an extension of the original 

DSPM developed by (Bowen and Mukhtar 1996).  

With reference to the scheme reported in Fig. 4.1, NF membrane separates two aqueous 

liquid phases (the feed, and the permeate) kept at different pressure value (∆P); the main 

operative variables are related to the feed conditions (kind of solutes, concentration, pH, 

temperature, pressure, and flow rate) and to the permeate conditions (the pressure 

downstream the membrane). Depending on the membrane material as well as on the feed 

conditions, the membrane generally assumes a surface charge located at each interface 

existing between a liquid phase and the polymeric material. 
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In order to characterize the membrane performances the solute flux (JS) as well as the water 

flux (Jv,w) through the membrane should be calculated in order to evaluate real rejection, 

Rreal, and total transmembrane flux, Jv). With reference to a generic section of the 

membrane, (Fig. 4.1) the problem can be considered in a plane geometry:  

 

Figure 4.1 Scheme of a generic membrane section, referring to a plane geometry 

 

The membrane is considered as a bundle of identical pores whose length is much larger 

than their diameter and the motion of the species is assumed as unidirectional through the 

membrane. 

The set of basic equations of the revised DSP&DE model for neutral solutes is summarized 

in Table 4.1:  

Table 4.1: Basic equations of the revised DSP&DE model 

DSP&DE:  Model equation (i=1,..,n solutes) 

Total flux ,

1
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n

v p v i i
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Peclét number 
v ic

i

ip

J K
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D


  (4.8) 

Real rejection 
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Observed rejection 
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reflection 
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Asymptotic 

rejection 
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iS i Pe real i ic iR K     (4.12) 

Slit-like pore geometry (Deen 1987), (Faxen 1922),  0 1i   

Steric partitioning  
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Cylindrical pore geometry, (Bungay and Brenner 1973), 0 1i   
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(4.20) 
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5 6 71.9215, 4.392, 5.006b b b     

 

The revised model contains the dependence from several parameters, particularly from: 

i) Hydraulic permeability, Lp,w; 

ii) Hydrodynamic coefficient, λi; 

iii) Effective membrane thickness, δ. 

Assuming a pore geometry, in the case in which the model parameters are known, equations 

in Tab. 4.1 can be solved in order to characterize membrane performances. The model then 

can be used for the simulation of a membrane module in a NF process. Alternatively, the 

same set of equations can be used to calculate all the model parameters, or any of them, as 

adjustable parameters.  

In order to predict the NF performance of single solutes, but especially for better understand 

multicomponent mixtures behavior, it is necessary to consider the mass transfer both across 

the membrane and within the film layer at the interface of feed solution/membrane. 

 

4.2.2 Solute partitioning 

Partitioning of the specie i at the interfaces between the membrane and the external 

solutions is described through the general following equations:  

2

0 0

(0 ) (0 )
exp( )exp( )

(0 ) (0 )

i i
i i D i DE

i i

c
z z W

c


 


 

 
      (4.21a) 

2( ) ( )
exp( )exp( )

( ) ( )

i i
i i D i DE

i i

c
z z W

c
 

  
 

  

 

 
      (4.21b) 

With reference to charged solutes, the ion partitioning coefficient at each interface takes 

into account of four contributions: steric exclusion, through i , nonideality of the 

solutions, through activity coefficients γi, Donnan equilibrium, through ∆ψD, and Dielectric 

Exclusion, through ∆WDE, which are widely discussed in literature [ (Bowen, Mohammad 

and Hilal 1997), (Szymczyk and Fievet 2005), (Bandini and Vezzani 2003), (Bandini and 

Bruni 2010)]. 

In the case of neutral solutes, steric exclusion and activity coefficients are the only 

partitioning effects existing. Steric exclusion accounts for the sieve effect, due to the 

intrinsic porosity of the membrane; it depends on the pore geometry and ranges from 0 (for 
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solutes larger than the pore radius) to 1 (for point solutes). In the case of neutral solutes, 

activity coefficients can be expressed making use of the typical models used in 

thermodynamics. 

In this work, in view of the low values of molar concentrations of sugars, the ratio between 

activity coefficients is assumed to be equal to 1, so doing the following relationships for 

partitioning coefficients:  

(0 )

(0 )

i
i

i

c

c





  (4.22a) 

( )

( )

i
i

i

c

c









  (4.22b) 

Solute partitioning coefficient at both membrane/solution interfaces is thus given once pore 

geometry and λi have been fixed, in view of the corresponding relations for i (Eq. (4.13) 

and Eq. (4.16)). 

 

4.2.3 Total flux 

Experimental data performed on NF of pure water, as well as of aqueous solutions 

containing electrolytes and/or neutral solutes clearly put in evidence that there is a linear 

proportionality between the total trans-membrane flux, Jv,exp, and the driving force 

maintained across the membrane, ∆Peff. As a consequence, the standard relationships, 

typically used for RO, can be considered in which the total volume flux, Jv, linearly depends 

on the effective pressure difference across the membrane, ∆Peff, through the membrane 

permeability Lp, according to the following equation: 

( )v p eff p VJ L P L P         (4.1) 

(0 ) ( )        (4.4) 

In which ∆π is the osmotic pressure difference across the membrane, which must be 

calculated at the composition values existing at the membrane/external phases interfaces, 

in the case in which concentration polarization occurs.  

Eq. (4.1) can be developed both from irreversible process thermodynamics and from a 

theoretical statistical approach.  

From a Phenomenological approach [(Kedem-Spiegler), (Mason and Lonsdale 1990)], σV 

can be related to the asymptotic rejection: 
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, , ,limV i real i real i
P

R R 

 
   (4.23) 

For water, Eq. (4.23) can be rewritten in a simplest form: 

, ,v w p wJ L P   (4.24) 

Where Lp,w and ∆P are the hydraulic permeability and difference across the membrane 

respectively. 

Parallel to the Phenomenological approach, a Structural approach is here developed, 

applying a porous vision of the membrane.  

On the basis of a generic membrane section in plane geometry (Fig. 4.1), permeate flux 

though the membrane can be expressed as: 

v pJ L P   (4.25) 

Where the term P  represents the pressure difference inside the membrane. The definition 

of P in Eq. (4.25) differs from that based on irreversible thermodynamics where an 

osmotic (Staverman) reflection coefficient, σV, is included, as suggested by (Bowen and 

Welfoot 2002). 

In view of the partitioning phenomena occurring at the solution-membrane interfaces, this 

quantity can be presented in an explicit form, as follows: 

0( )P P         (4.26) 

0 (0 ) (0 )       (4.27a) 

( ) ( )         (4.27b) 

Comparing Phenomenological (Eq. (4.1)) to Structural (Eq. (4.26)) approaches, the 

following equation is obtained:  

0( ) ( ( ))vP P             (4.28) 

The Staverman reflection coefficient assumes the following form: 

0
v

 




 



 (4.29) 

Under some simple hypothesis: 

 Single solute (i.e. Dextrose) 

 Osmotic pressure calculated from Van’t Hoff law 
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0 (0 ) (0 )RT c c        (4.30a) 

( ) ( )RT c c         (4.30b) 

(0 ) ( )RT c c        (4.31) 

 Partitioning coefficient (Eq. (4.22a), (4.22b)) 

Staverman reflection coefficient can be rewritten according the following equation: 

(0 ) ( )
1 1v

   
 



   
   


 (4.32) 

Table 4.2: Comparison between Phenomenological and structural models, in order to identify the 

Staverman reflection coefficient, in Eq. 4.x, in the case of neutral solute 

0

0[ (0 )(1 )] [ ( )(1 )]V c c
RT




 
     

      (4.33) 

0 0(1 ) (0 ) (1 ) ( )               (4.34) 

0[ [(1 ) (0 ) (1 ) ( )]] [ ]v p p vJ L P L P                  (4.35) 

0 (0 ) ( )
1v

    




 
 


 (4.36) 

[ (0 ) ( )]
1 1v

  
  



 
   


 (4.32) 

 

Comparing Phenomenological and Structural model, Staverman reflection coefficient, σV, 

defined in Eq. (4.32), deviates from the asymptotic rejection, as assumed in Eq. (4.12) (see 

Tab. 4.1). The deviation depends on both λi value and pore geometry.  

A comparison between σS and σV behavior as a function of pore geometry and 

hydrodynamic coefficient is proposed Section 4.1.7.  

 

4.2.4 Hydraulic and Membrane permeability: Lp,w and Lp 

Both hydraulic and membrane permeability are key parameters in the revised DSP&DE 

model. Typically hydraulic permeability values can be obtained from membrane technical 

sheet, however as shown in the previous chapter only qualitative behavior can be drawn, 

thus it is recommended to get an experimental value. 

In several studies permeability value changes processing strong electrolyte and it can be 

function of pH. Typically alkaline cleaning increase the membrane water flux and decrease 
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the retention of dextrose (Manttari, Pihlajamaki and Kaipainem, et al. 2002) A decrease in 

permeability can be attributed to elevated operating temperatures (above the recommended 

temperature, typically 55°C): high temperature as well as high operating pressures could 

lead to a membrane compaction, resulting in permanent loss of permeability. A relation 

between membrane swelling and an increase in the intrinsic membrane permeability with 

salinity and pH was already found with AFM1 measurements (Freger 2004). 

Hydraulic permeability in dense membranes generally depends on temperature according 

to Arrhenius type equation, which has been confirmed by experiments in Chapter 3.   

Dependence of hydraulic permeability on temperature can be also described by a porous 

viscous vision of the membrane, according Hagen-Poiseuille equation: Under the 

hypothesis of constant pressure gradient along the membrane pore, the Hagen-Poiseuille 

flow can be considered according to: 

2

p

v eff

r
J P

c
   (4.37) 

In which c is a constant that depends on pore geometry. Pore geometry is somewhat critical 

to describe, typically it varies from slit-like to cylindrical. As a consequence the c value 

ranges from 3 for slit-like pore to 8 for cylindrical pore geometry. 

Hagen-Poiseuille equation correlates the membrane permeability, Lp, to the effective 

membrane thickness, δ, consisting of tortuosity and porosity, through the mean pore radius, 

rp. 

When NF is performed with pure water, Lp represents the hydraulic permeability, Lp,w, as a 

consequence, the viscosity of the solution inside the pore corresponds to the water viscosity 

inside the pore.  

Lp at fixed pore geometry, is a constant which depends on membrane parameters (rp, δ) and 

solution viscosity inside pores, which contains the temperature dependence.  

Unfortunately, there is a certain level of uncertainty in determining that quantity, since the 

assumption of bulk solvent properties may not be valid within narrow pores: the use of bulk 

water viscosity η0 may lead to an overestimation of Lp,w, since the actual viscosity η may 

be increased with respect to η0 by interactions of water dipole with the charge pore walls. 

The problem has been studied in detail by (Bowen and Welfoot 2002), and it was 

recognized that the ratio η/η0 can be assumed closed to 10.  

                                                 
1 Atomic Force Microscopy 
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Equation (4.37), under the hypothesis of constant membrane parameters (rp, δ) in the whole 

range of temperature, leads to Eq. (4.38):  

, ( ) ( )p w wL T T const   (4.38) 

Experimental evidence of it was obtained in Chapter 3, in which: 

0 0

, ,( ) ( ) ( ) ( )p w w p w wL T T L T T   (4.39) 

Where T0 is a reference temperature, thus confirming that no swelling is observed.  

When sugar solutions are processed, membrane permeability is a function of temperature 

and concentration inside the pore, cinside, and Eq. (4.38) is revised to account for 

concentration inside the pore, according Eq. (4.40): 

,( ) ( , ) ( ) ( )p inside p w wL T c T L T T   (4.40) 

In order to understand the right cinside value, experimental data have been compared with 

model prediction at different pore concentration. The best correlation that describe 

concentration inside the pore and fits experimental data shows the following for (Eq. 4.7): 

,

(0 ) ( )

2

i i
inside i i

c c
c




 
  (4.7) 

The equation contains inside it the dependence from pore geometry selected, through the 

steric partitioning coefficient, i . The composition inside the pore is given by the theory of 

solute partitioning. This value is confirmed by experimental data and depend on pore 

geometry (through i ), type of solute (for high values of λi, 0i  ) and is a function of 

feed/permeate concentrations.  

 

4.2.5 Solute flux  

The basic equation for the description of mass transfer of a generic specie across the 

membrane is the extended Nerst-Planck equation (ENP). Since in NF dilute aqueous 

solutions are processed, under the approximation of no direct coupling between solutes the 

flux of each species, ji, can be written as a function of the electrochemical potential: 

i ip i
i ic i v

c D d
j K c J

RT dx


   (4.41) 

In which Dip is the hindered diffusivity of the specie inside the pore, defined as: 
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, 0ip id iD K D   (4.42) 

Where Di∞ is the diffusivity of the specie i in water at infinite dilution, and Kic and Kid are 

the hindrance actors for convection and diffusion, respectively. It must be observed that the 

axial coordinate x accounts for both tortuosity and the porosity of the membrane; the 

membrane thickness resulting from the integration of Equation (4.41) is defined as the 

effective membrane thickness, δ.  

Equation (4.41) can be rewritten in an explicit form, accounting for the dependence of the 

electrochemical potential on activity, pressure, as well as on the electrostatic potential, 

according to Equation 4.43: 

ln i ip ii i
i ic i v i ip ip i i ip

c D Vd dc dP F d
j K c J c D D z c D

dx dx RT dx RT dx

 
      (4.43) 

Which can be easily simplified into Eq. (4.44) neglecting the contributions of the gradient 

of lnγi as well as of the pressure gradient on the solute flux.  

i
i ic i v ip i i ip

dc F d
j K c J D z c D

dx RT dx


    (4.44) 

Equation (4.44) is a simplified form of the ENP equation accounting for convection, 

diffusion, and electromigration (in the case of charged solutes) through the membrane 

pores; it is appropriately modified to account for the hindered transport of the permeating 

species through narrow pores comparable with the molecular dimensions. The meaning and 

relevance of hindrance factors Kic and Kid have been widely (extensively) documented by 

(Deen 1987) as well as by many authors, as reported by (Bandini and Bruni 2010).  

Solutes moving in free solution experience a drag force exerted by the solvent; when solutes 

move in confined spaces, such as membrane pores the drag is altered and the transport may 

be considered to be hindered (Bowen and Mukhtar 1996). 

Kic is a drag factor accounting for the effects of the pore walls on the specie transfer; Kid  

represents the effect of the pore to reduce the solute-solvent diffusivity below the value in 

the free bulk solution, ,iD  . Hindrance factors are related to hydrodynamic coefficients 

calculated from the solution of the motion problem of a spherical specie inside cylindrical 

as well as slit-like pores of infinite length; they depend on the solute to pore-size ratio, λi. 

Many relationships have been proposed in order to calculate the proper hindrance factor. 
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In Table 4.1 a couple of representing relationship is proposed to calculate hindrance factors 

for cylindrical as well as for slit geometry. Equations listed are considered suitable for 

sugar, since λi in case of mono- and di-saccharides, is very close to 1.  

It should be noted that hindrance factors depend not only on λi but also on pore geometry, 

as well as on the radial position within the pore; in these equations the solute particle is 

located at centerline radial coordinate of the pore (Centerline approximation), according to 

other solutions the solute particle is located at different radial coordinates of the pore, like 

cross-sectional average, solvent velocity parabolic profile, etc.) 

With reference to the generic section of the membrane (Fig. 4.1), for uncharged solutes the 

transport inside the pores can be simplified in the form of: 

i
i ic i v ip

dc
j K c J D

dx
   (4.45) 

Transport of uncharged solutes happens by convection due to the applied pressure 

difference and by diffusion due to the concentration gradient that appears across the 

membrane. At low pressures, both terms contribute to the transport of solutes through the 

membrane. Close to the infinite pressure, diffusion term is negligible, compared to the 

infinite convective flux.  

The ENP equation (Eq. (4.45)) can be rewritten to obtain a relationship for the 

concentration gradient of each specie; in addition it can be rearranged into equation: 

( )
( )i v i i

ic i i i

ip ic

dc J Pe c
K c c c

dx D K







  

      
 

 (4.46) 

in which the parameter Pei is defined in a straightforward manner (Tab. 4.1): 

v ic
i

ip

J K
Pe

D


  (4.8) 

It can be observed that Pei is independent of the membrane thickness, since membrane 

permeability can be considered inversely proportional to δ. In view of the porous nature of 

the membrane, by applying Hagen-Poiseuille flow type, the following relationships can be 

also obtained to calculate Pei: 

' 2 2 2

2

0 , 0 ,

p eff ic p eff ic p eff ic v p icv ic
i v p

ip ip ip id i p id i

L P K r P K r P K J r KJ K
Pe J r

D D c D c K D L c K D



   

  
       (4.47) 

In which 
'

pL  represents a kind of permeability coefficient including all the membrane 

characteristics with the exception of the effective thickness. Apparently, independently of 
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the pore geometry (c is a constant depending on pore geometry), Pei can be assumed related 

to 
2

pr , approximately. 

When we are faced with the problem of calculating the membrane parameters, pr

calculation can be performed separately from the determination of the effective membrane 

thickness. 

As a consequence the concentration gradient is inversely proportional to the membrane 

thickness. Therefore, the concentration difference across the membrane thickness and the 

rejection of each solute will be independent of δ as well. However this conclusion does not 

mean that one can calculate rejection assuming an arbitrary membrane thickness, rather 

that, after the right calculation of Pei any membrane thickness can give the right retention.  

The problem is then transferred into the determination of the parameter Pei which can be 

expressed according to one of the relationships reported in Eq. (4.47), depending on which 

parameters are known with a better precision. The knowledge of δ is, however, required for 

the calculation of concentration profiles. 

 

4.2.6 Rejection of neutral solutes 

In the case of neutral solutes, the integration of Eq. (4.46) over the membrane thickness, δ, 

leads to a simple analytical relationship for the solute rejection: 

 
, 1

1 1 i

ic i
real i Pe

ic i

K
R

K e



 
 

 
 (4.9) 

The asymptotic retention is reached at infinite Peclet number: 

, ,lim 1
ireal i Pe real i ic iR R K 

    (4.12) 

In this case Pei assumes the meaning of a hindered Peclèt number of the uncharged solute. 

Apparently, the solute rejection depends on the pore geometry, and on λi, through i , Kic 

and Kid contained in Pei. At very high volume fluxes, the asymptotic rejection is obtained 

in the limiting case of iPe  ; apparently, asymptotic rejection depends on the pore 

geometry and λi, as well as on the partitioning at the feed/membrane interface only. 

 

4.2.7 Dependence of revised model parameters from pore geometry 

The revised DSP&DE model discussed contains the dependence from pore geometry, 

particularly for: 
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 Steric partitioning coefficient, i   

 Hindrance factors for convection and diffusion, Kic and Kid  respectively; 

 Staverman reflection coefficient, σV and asymptotic rejection, σS. 

Most of authors assume a cylindrical pore geometry for calculating these parameters [ 

(Mohammad, Basha and Leo 2010), (Otero, Lena, et al. 2006), (Kuhn, et al. 2010)]. 

Just a few authors state that the best description of experimental data was obtained 

assuming slit-like pores [ (Bandini and Vezzani 2003), (Bandini and Bruni 2010)], others 

(Cavaco Morao, et al. 2008) verified both pore geometries.  

As a rule of thumb, the Staverman reflection coefficient, σV, is determined experimentally, 

and assumed equal to the asymptotic rejection (Cuartas-Uribe, et al. 2007), however by 

using phenomenological equation [ (Van der Bruggen, Schaep, et al. 2000), (Van der 

Bruggen and Vandecasteele 2002)] became possible to predict rejections based on two key 

parameters: solute size and mean pore radius, describing a pore radius distribution.  

In this work, as suggested before, both pore geometries have been analyzed in order to 

determine the best geometry describing experimental data, further it has proved that 

Staverman reflection coefficient differs from asymptotic rejection. 

In Table 4.1 the list of correlations is proposed for both geometries. Hindrance factor 

equations have been selected on the basis of the range of validity for λi, which in the case 

of sugars is next to one. 

Correlations put in evidence the dependence of the main parameters of the model (i.e. steric 

partition coefficient, Staverman reflection coefficient, asymptotic rejection, as well as 

hindered coefficients) from hydrodynamic coefficient (λi) and pore geometry. 

A comparison between model parameter, as a function of hydrodynamic coefficient, is 

depicted in Fig. 4.2 for both pore geometries. 
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a) b) 

c) d) 

Figure 4.2: Model parameter as a function of solute to pore-size ratio (λi): Steric partitioning coefficient 

(a), Staverman reflection coefficient and asymptotic rejection (b), Hindrance factors for convection (c) and 

Diffusion (d). Comparison between Slit-like pore geometry (black lines) (Deen 1987) (Faxen 1922)and 

Cylindrical pore geometry (grey lines) (Bungay and Brenner 1973) 

 

Differences between σ coefficients are related to both pore geometry (σCyl(λi) > σSlit) and 

solute to pore-size ratio, λi: when oligosaccharide are processed in NF membranes 

(typically λi ≥ 0.8) coefficients are very similar to each other, for both pore geometries, thus 

Staverman reflection coefficient is very close to asymptotic rejection value. 

In the cases in which totally rejected solutes are processed, its contribution is clearly 

negligible, however, since sugars (in this study mono- and disaccharides) present rejection 

values ranging from 0.2 to 0.95 this term must to be taken into account.  

 

When the neutral solute is a mono- or a disaccharide the solute to pore size ratio, λi, will be 

greater than 0.8. In this proper case Fig.(4.2) put in evidence that if on one side convective 

hindrance factor is equal for both pore geometries (Kic,slit ≈Kic,cyl, when λi ≥ 0.8), on the 

other side diffusive hindrance factor assumes different values depending on the pore 

geometry (Kid,slit>Kid,cyl, , 0id cylK  ,when λi ≥ 0.8).  

Particularly for a cylindrical pore geometry, when Kid parameter approaches zero (λi ≥ 0.8), 

Peclét number tends to infinite values.  
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As will be shown later, a cylindrical pore geometry gives very low values for the effective 

membrane thickness, which are typical of high permeate flux. In this flow regime, the 

diffusion is not a prevalent, and the mass transport is governed mainly by convection. 

 

Tab.4.2: Sugar and Ionic properties and hydrodynamic coefficient λi, for rp= 0.380 nm 

 Oligosaccharides Electrolytes (Bowen & Mukhtar (1996)) 

 DX FR ML Na+ Cl- SO4
2- 

Di,∞×109 [m2/s] @  25°C 0.679 0.686 0.480 1.333 2.031 1.062 

rS×109 [m2/s] 0.361 0.357 0.470 0.184 0.121 0.231 

λ 0.940 0.930 1 0.470 0.310 0.600 

 

Calculation of all these parameters requires a priori the knowledge of the hydrodynamic 

coefficient (λi), that in turn requires the knowledge of molecule (rS) and pore radii (rp). In 

Tab. 4.2 molecule radii derive from Stokes-Einstein equation, and pore radius is assumed 

to be equal to 0.380 nm. This procedure allow to obtain a range of λi values, just to compare 

sugars and electrolytes.  

It should be noted in Fig.4.2 that the correction for hindered diffusion is substantially 

greater than the correction for hindered convection. 

 

4.3 The problem of parameters calculation: critical analysis of current approach 

 

4.3.1 Parameter calculation: state of art 

Contemporary to development of the various DSP&DE model versions, many procedures 

have been proposed for the calculation of the membrane parameters. 

The information supplied by manufacturers is limited to the molecular weight cut-off of 

the membrane, permeate flux and retention of given molecules (typically electrolytes), at 

fixed operating conditions; however datasheet reduction gives only indications on 

hydraulic permeability values.  

To overcome the lack of information, membrane properties should be obtained from a 

limited number of experiments with model liquids. The advantage of tools able to predict 

membrane performances is that costs can be saved by reducing the number of these 

experiments (Straatsma, et al. 2002). 
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In case of neutral solutes, from the application of Donnan-Steric models, the mean pore 

radius (rp) and the effective membrane thickness (δ) are the parameters required to describe 

retention behavior on the basis of the sieving effect during transport. 

These “model” parameters are usually obtained by fitting the model to solute retentions and 

membrane fluxes measured in membrane characterization experiments using pure water 

and single sugar solutions (Straatsma, et al. 2002). 

Many authors express the parameter λi as the ratio between the Stokes radius of the i-th 

molecule (rS,i(25°C))and the pore radius of the membrane (rp), assuming that: i) molecules 

are spherical (no orientation is taken into account); ii)solute properties are constant in the 

whole range of operative conditions (no hydration, complex formation or salting out effect 

occurs), according Eq. (4.48), 

, (25 )S i

i

p

r C

r



  (4.48) 

The Stokes radius, rS,i, of a solute i is calculated by using the well-known Stokes-Einstein 

equation, derived for the motion of spherical solutes in liquid: 

,

,6

B
S i

i

k T
r

D 

  (4.49) 

Where kB is the Boltzmann constant, T the absolute temperature, η the solvent bulk 

viscosity, and ,iD  the bulk diffusivity at infinite dilution. In this equation molecular 

dimension is strongly related to diffusion coefficient as well as it is an important parameter 

that affects solute transport properties in the pore. 

Based on the asymptotic limiting rejection, the effective pore radius, rp, can be fitted by 

using Eq. (4.12). Typical values from literature (Table 4.3) shows how pore radius defined 

from Eq. (4.48) is strictly dependent from the solute on which the parameter is fitted.  

Once pore radius has been fitted, most of authors  [ (Otero, Mazarrasa, et al. 2008), 

(Bargeman 2014), (Kuhn, et al. 2010), (Labbez, FIevet, et al. 2003), (Mohammad, Basha 

and Leo 2010)] correlate pore radius (rp), effective membrane thickness (δ) and hydraulic 

permeability (Lp,w), by assuming cylindrical pore geometry, according the following 

Hagen-Poiseuille equation: 

2

, *8

p

p w

r
L


  (4.50) 
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In which δ* stands for membrane thickness and water viscosity inside the pore is calculated 

as the bulk value. A schematic representation of this procedure is depicted in Fig. 4.3. 

a)  b) 

Fig.4.3. Schematic procedure for the calculation of membrane parameters (rP, δ) documented in literature. 

(a)Pore radius related to Stokes radius and hydrodynamic coefficient (b) relationship between effective 

membrane thickness (δ*) and pore radius (rp) according Hagen-Poiseuille equation, obtained from pure 

water Permeability (7 dm3/(hm2bar) at 25°C) for both pore geometries, cylindrical pores (grey lines) and 

slit-like pores (black lines);. Dashed lines represent the calculation procedure, from stokes radius to pore 

radius (1-2), and from pore radius to effective membrane thickness (3-4). 

 

The limit of this procedure is that for the same membrane, different solutes tested identify 

different membrane pore radii. Some authors justify it talking about a pore size distribution 

[ (Kuhn, et al. 2010), (Van der Bruggen and Vandecasteele 2002)]. The starting point for 

this approach is the log-normal distribution used for the calculation of the reflection 

coefficient as a function of the effective molecular diameter, however by the application of 

this method an effective membrane thickness distribution is achieved yet. (Nakao and 

Kimura 1981) showed a relationship between effective membrane thickness and solute size, 

in particular δ decrease with increasing solute size; however the δ* value obtained from the 

pure water permeability was much larger than those obtained from the fitting of rejection 

data. (Kuhn, et al. 2010), (Van der Bruggen and Vandecasteele 2002) argue that the 

membrane has a pore size distribution, and when multi-component mixtures are processed 

each solute will provide a pore radius proportional to its own size. (Kuhn, et al. 2010) 

processing a fructooligosaccharide mixture, fitted experimental data to a Gaussian function 

which leads to a mean pore size of 0.52 nm and standard deviation of 0.08 nm   

In parallel of these studies, others researchers have proposed to estimate the mean pore 

radius, rp, by atomic force microscopy (AFM2), or rejection of neutral solutes [ (Bowen, 

Mohammad and Hilal 1997), (Bowen, Welfoot and Williams 2002)]. (Otero, Lena, et al. 

2006) compared the pore radius fitted from Nanofiltration experiments with the detailed 

                                                 
2 Atomic Force Microscopy 



Separation of oligosaccharide mixtures in Nanofiltration 

Modelling and critical assessment 

111 
 

pore size distribution obtained from topographic AFM images, and then compared the 

thickness of the active layer with one obtained from the fitting procedure. 

(Déon, et al. 2013) compared the effective membrane thickness obtained from the mean 

pore radius and the membrane hydraulic permeability with experimental thickness 

observed with SEM3 + FIB4 images. For a GE-DK membrane, the Hagen-Poiseuille 

equation gives value (δ*~ 1.2 μm), while the thickness measured with SEM images of the 

membrane cross section was found to be 0.095 ± 0.01 μm. The discrepancy between the 

two methods could be attributed to a partial contribution of the membrane support in the 

membrane overall permeability. In this case, the effective membrane thickness should be 

considered as a parameter describing both active and a part of support layer, and can’t be 

deduced by SEM images. Although the values obtained are quite similar, the same authors 

state that the effective membrane thickness cannot be deduced from microscopic images, 

but has to be deduced from measurements of water flux and neutral solutes rejection. SEM 

images could not be used for a model parameter assessment, anyhow they can give 

interesting information. 

According to [ (Cuartas-Uribe, et al. 2007), (Bargeman, Vollenbroek, et al. 2005), 

(Bargeman 2014)] the viscosity term in Hagen-Poiseuille equation represents the dynamic 

viscosity of the solution; thus both the mean pore radius as well as the effective membrane 

thickness depend on the composition of the solution, and are different from values obtained 

for pure water, moreover osmotic pressure is taken into account in order to calculate the 

effective membrane thickness δ*:  

In their study the determination of membrane parameters (rp, δ
*) is obtained for a solution 

containing 1 g/dm3 of dextrose (in this case Lp=Lp,w and η=ηw).  

Other authors (Rodrigues, et al. 2010) assert that the solvent pore viscosity is equal to one 

of the aqueous solution adjacent to the membrane surface, this correction according to the 

authors strongly improves the prediction of the permeate flux, in any case permeate flux 

predicted by the model overestimate the experimental flux.  

(Bowen, Mohammad and Hilal 1997) used two approaches to obtain membrane parameters: 

(a) independent fitting of experimental data to obtain both parameters (rp and δ); and then 

(b) only rp was fitted while δ was obtained from the permeability data. However the author 

demonstrated that the permeability data should not to be used to estimate the value of δ for 

                                                 
3 Scanning Electron Microscope 
4 Focused Ion Bean 
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membrane having nanometer dimension. (Rosa and de Pinho 1994) tried the same 

approach, however obtained quite larger standard deviation.  

 

One of the few studies in which Hagen Poiseuille correlation is not used has been published 

by (Luo and Wan 2011) : they solved equations () by fitting both membrane parameters (rp, 

δ) independently. 

(Bowen and Welfoot 2002) developed firstly a one-parameter model  for uncharged solute 

rejection as a function of effective pressure difference based on a hydrodynamic description 

with hindered solute transport within the pores.  The only parameter in the model is rp. 

However this approach might be right for high permeate flux, that is in convective 

transport, when Peclèt number tends to infinite value. In fact in convective transport region, 

membrane thickness is negligible. A more rigorous analysis shows that rejection is 

independent of membrane thickness only at high fluxes (unlike supported by (Bowen and 

Welfoot 2002)) 

Just few authors (Bargeman, Vollenbroek, et al. 2005) proposed the calculation of both rp 

and δ through fitting of the experimental flux and retention, neglecting the effect of the 

membrane charge and the electrical forces on the transport of neutral solutes.  

While (Cavaco Morao, et al. 2008) proposed the calculation of model adjustable parameters 

for both geometries, however in this case instead of λi, they calculated the effective pore 

size, rp, from asymptotic retention, while the effective membrane thickness was evaluated 

from Hagen-Poiseuille equation, for both geometries.  

Table 4.3 summarize the main adjustable parameters obtained for commercial NF 

membranes and documented in literature, by applying different methods. 

 

Table 4.3: Membrane Characterization: main results from literature 

Membrane 
Pore 

geometry 

Test 

conditions 
Solute 

Pore radius, 

rp (nm) 

Effective 

thickness, δ* 

(μm) 

Ref. 

Desal 5 

DL 

- 20°C 

Glucose 0.45 2.54 
(Bargeman, 

Vollenbroek, 

et al. 2005) Desal 5 

DK 

Glucose 0.42 2.59 

Glycerine 0.44 2.62 

Desal 5 

DK 

Cylindrical 

(Bowen e 

Sharif 

1994) 

20°C Glucose 0.44 2.30 
(Bargeman 

2014) 
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TiO2 –

Tami 

Industries 

 

Cylindrical 

(Bungay 

and Brenner 

1973) 

 

25°C 

PEG 400 1.22 7.00 

(Bouranene, 

Szymczyk, et 

al. 2007) 

PEG 600 1.14 3.75 

PEG 1000 1.17 1.00 

Desal 5 

DK 
Cylindrical 25°C 

Glucose 0.43 - (Bowen and 

Welfoot 

2002) Glycerol  0.45 - 

Desal 5 

DL, Spiral 

Wound 

2540 

Cylindrical  

(Bowen & 

Sharif, 

(1994)) 

20°C Lactose 0.4735 2.838 

(Cuartas-

Uribe, et al. 

2007) 

Desal DK 

Cylindrical  

(Dechadilok 

e Deen 

2006) 

 

 

15°C 

Glycerol, xylose, 

glucose 

-average values- 

0.46 2.76 

 

(Cavaco 

Morao, et al. 

2008) 

Slit-like 

(Dechadilok 

e Deen 

2006) 

0.33 3.89 

 

Desal DK 

Cylindrical 25°C Glucose, PEG 600 

 

0.43 

1.2 from H-P 

eq. 

0.095±0.01 

from SEM + 

FIB images 
(Déon, et al. 

2013) 

 

Desal GH 

 

0.85 

7.5 from H-P 

eq. 

0.0325±0.025 

from SEM + 

FIB images 

Desal GH 

Cylindrical, 

(Bungay & 

Brenner, 

(1973)) 

20°C 

PEG 600 

rStokes=0.61 nm* 

0.875±0.0015 3.96±0.74 

(Escoda, 

Fievet, et al. 

2010) 

Desal DK 

Cylindrical 

(Bowen & 

Sharif, 

(1994)) 

25°C glucose 0.43 ±0.01 1.2 ± 0.1 

(Escoda, 

Déon and 

Fievet 2011) 

NP030 

Spiral 

Wound 

Cylindrical 

(Dechadilok 

& Deen, 

2006) 

25°C 

Fructooligosaccharides, 

sucrose, glucose, 

fructose 

0.52±0.08 

(pore size 

distribution) 

_ 
(Kuhn, et al. 

2010) 
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Desal DK 

Cylindrical  

(Bowen & 

Sharif, 

(1994)) 

 

Glucose 0.487 3.92  

(Mohammad, 

Basha and 

Leo 2010) 

Sucrose 0.538 4.79 

Raffinose 0.673 7.49 

Desal 5 

DK 
Cylindrical 20°C Glucose 0.46 3.13 

(Straatsma, et 

al. 2002) 

AFC30 

(PA) 

Cylindrical 

(Bowen & 

Sharif, 

(1994)) 

25°C Glucose 0.6 ± 0.1 2.7 ± 0.1 

(Labbez, 

Fievet, et al. 

2003) 

Desal 5 

DK 

Cylindrical 

(Bowen) 

25°C Glucose 0.52-0.63 _ 

(Bouchoux, 

Roux-de 

Balmann and 

Lutin 2005) 

PES 5 

(Hoechst) 
Cylindrical 25°C 

Glucose 
1.265 (a); 

2.468 (b) 

1.707(a);18.12 
(b) 

(Bowen, 

Mohammad 

and Hilal 

1997) 

Sucrose 
1.14 (a) ; 1.58 

(b) 

1.52(a); 7.28 
(b) 

Raffinose 
1.20 (a); 1.64 

(b) 

1.24(a); 7.84 
(b) 

*this value was calculated using the correlation proposed by (Afonso, Hagmeyer and Gimbel 2001)  

between the Stokes radii of PEG and their respective molar mass; (a) independent fit of the data to obtain 

both parameters (rp and δ); and (b) only rp was fitted while δ was obtained from the permeability data 

As shown in table, most of data has been obtained with neutral solutes and by assuming 

cylindrical pore geometry, at room temperature. A common approach is in fact to calculate 

pore radius from asymptotic rejection, by using Stokes radius (at 25°C), and then from 

water permeability data and Hagen Poiseuille equation, effective membrane thickness δ is 

calculated as a consequence.  

 

The state of the art about membrane characterization can be summarized as follows: 

i) rp fitted on asymptotic rejection, by using Stokes radius; 

ii) Effective membrane thickness calculated from water permeability through 

Hagen-Poiseuille equation and rp;  

iii) Both parameters (rp, δ) calculated at high fluxes (convective transport region, 

Pe ) 

iv) For the same membrane (rp, δ) calculated with different solutes give different 

values as a function of the solute MW (i.e. pore size and thickness distribution) 
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4.3.2 Molecular shape of mono- and disaccharides 

The primary property of a semi-permeable membrane is its sieving molecular function, and 

pore radius is an important parameter to characterize it. When dealing with uncharged 

solutes in aqueous solutions, the well known hydrodynamic model is commonly used to 

describe solute rejection by a NF membrane. This model assumes the membrane structure 

as a bundle of cylindrical or slit-like pores with uniform radius, rp. 

Pore radius can be evaluated by hydrodynamic model (indirect method) or by direct 

measurements. Atomic force microscopy studies have indeed confirmed the porous 

structure of NF membranes, moreover the pore radius measured with this technique is in 

accordance with the results obtained from hydrodynamic model calculations [ (Bowen, 

Mohammad and Hilal 1997) (Bowen and Doneva 2000)]. 

Membranes can be classified according to their structural morphology, as morphology 

determines separation mechanism and performance. Membrane thickness affect: (i) 

resistance for mass transfer; (ii) permeability of solvents. Due to these reasons it is 

important to examine membrane morphology using SEM, this because observation of the 

membrane surface and section provide interesting information about membrane 

morphology. Fig. 4.4 put in evidence the asymmetric structure of a DK membrane.  

As suggested by (Manttari, Pihlajamaki and Nystrom 2006) NF membranes do not have 

real pores but just free volume inside the polymer chain network, and this find confirmation 

in SEM images (Fig. 4.4). 

 

Fig.4.4: SEM pictures showing cross sectional view of GE-DK membrane (Mohammad, Basha and Leo 

2010) 

 

Evaluation of pore radius based through pore model is based on rejection data of 

hydrophilic organic compounds such as saccharides, because neutral solutes show weak 
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interaction with membrane polymer. From this point of view membrane pore radius, solute 

radius, water viscosity and diffusivity are critical parameters for this model.  

 (Afonso, Hagmeyer and Gimbel 2001) defined a correlation between the Stokes radii of 

the PEGs (determined by the Stokes-Einstein equation) and the respective molecular 

weight, although it is well known that the PEGs are not spherical molecules and that 

membranes bear a pore size distribution. 

Nevertheless, due to the spherical geometry assumption, the Stokes-Einstein equation is 

not able to describe the diffusion of non-spherical solutes as well as to account for 

preferential solute orientation during permeation. When Stokes radius is defined, the solute 

is assumed to be rigid and spherical; this assumption could be true if mono-saccharides are 

studied (i.e. Xylose, Dextrose, as well as Fructose), but this hypothesis becomes restrictive 

in the case of disaccharides (Kiso, Muroshige, et al. 2010). Moreover the Stokes model is 

not able to take into account for solute orientation and hydration effects which occur with 

temperature, concentration and salt in solution (Seuvre and Mathlouthi 2010). This last 

assumption is valid when a generic sugar is dissolved in a solution. Sugar chemistry in 

aqueous solutions is quite complex and this aspect was discussed previously in Chapter 2. 

According pore model, the molecule transport is described by two main steps:  

i) partitioning between the bulk phase and the pore area; 

ii) transport (convective and diffusive) through the pore.  

As mentioned by (Van der Bruggen, Schaep, et al. 1999) molecule orientation with respect 

to the pore surface may alter the partition process. The steric partition factor is defined as 

the ratio of the solute accessible area to the pore area. When the solute is spherical, the 

steric partitioning coefficient   is expressed in terms of λi, the ratio of solute to pore radius. 

However when non spherical solutes are studied, the steric partitioning factor may be 

affected by molecular shape (Van der Bruggen, Schaep, et al. 1999). 

 Molecular shape influence solute transport, including convective and diffusive transport 

and partitioning between solution and membrane. These aspect have been discussed by 

some author (Van der Bruggen, Schaep, et al. 1999), (Santos, et al. 2006). When a non-

spherical solute diffuses in a viscous solution, the orientation of the molecules may 

influence the diffusion (Kiso, Muroshige, et al. 2010). 

In literature the shape of non-spherical molecules has been approximated by several simple 

geometric shape: typically rectangular parallelepiped (Kiso, Kon and Nishimura 2001), 
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cylinder (Van der Bruggen, Schaep, et al. 1999) as well as ellipsoid (Santos, et al. 2006) 

are used (see Tab. 4.4), while the pore was assumed to be cylindrical.  

Characteristic parameters calculated non-empirically are the diameter derived from the 

hydrodynamic volume (Meireles, et al. 1995), the molecular length and width (L and MWd 

respectively) (Kiso, Muroshige, et al. 2010), the diameter derived from the molar volume 

and the effective diameter calculated from the molecular structure. However from the 

definition of these parameters, steric partition factor, diffusion coefficient and as a result 

rejection were calculated accordingly.  

(Van der Bruggen, Schaep, et al. 1999) proposed a correlation between molecular weight 

and the diameter of the molecule. In literature several methods have been proposed to 

estimate the diffusivity on the basis of molar volumes (Lyman, Reehl and Rosenblatt 1982). 

According to other approaches, the Stokes radius (calculated with diffusivity in aqueous 

solution) was correlated with molecular width, and then the “proper” diffusivity was 

calculated by using the calculated Stokes radius. (Kiso, Kon and Nishimura 2001) 

(Santos, et al. 2006) introduced a geometrical model that investigated how different 

molecular characteristics (shape, geometry, type and orientation of functional groups) can 

determine the rejection of neutral solutes.  

Table 4.4 summarizes some of the geometries investigated in order to describe the real 

shape and orientation of the molecules. 

Table 4.4: Definition of a molecule geometry from Literature 

Ref.  Solutes 
Molecula

r shape 
Molecular Parameter Diffusivity 

(Kiso, 

Muroshi

ge, et al. 

2010) 

Alcohols and 

polyhydric 

alcohols 

(60.10-134.17 

g/mol) 

Rectangu

lar 

parallele

piped 

Molecular length (L), 

Molecular width (MWd) 

L=0.6-1.2 nm; MWd=0.25-

0.4nm 

6

B

S

k T
D

r


 

With ( )Sr f MWd  

9 910 1.42( 10 ) 0.142Sr MWd    

 

(Santos, 

et al. 

2006) 

Glucose, glycerol, 

butanol, hexanol, 

octanol, hexanone, 

butanediol, 

esandiol 

Ellipsoid

, 3D 

Geometric radius, 

rgeom=f(length, width, depth) 

L=0.571-1.172 nm; 

W=0.283-0.758 nm 

D from Wilke-Chang correlation 

(Van der 

Bruggen, 

Schaep, 

Dextran solutions 

and PEG solutions 

(32.04-696.68 

gmol-1) 

sphere 

Stokes diameter, ds, equivalent 

molar diameter, dm 

ds=0.51-2.65 nm; dm=0.51-1.03 

nm 

_ 
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et al. 

1999) 
cylinder 

calculated molecular diameter, 

dc, dc=0.41-2.03 nm 

 

All geometric models proposed in literature and summarized in table allowed for a better 

description of the experimental rejection data which were dependent of the transmembrane 

pressure applied; the model could be used as an interpretative tool, allowing for a better 

understanding of the dominant factor (i.e. molecule orientation) that determine the rejection 

of uncharged solutes with different molecular geometry (Santos, et al. 2006). However 

these geometrical models are not taking into account possible hydration contributions, and 

others interactions that could occur in solution. 

The influence of hydration number on friction coefficients was introduced by (Koter 1986), 

and later (Slezak, Grzegorczyn and Wasik 2004) introduced a relationship between the 

frictional coefficients and the hydration numbers of permeating species though membranes 

in the Spiegler-Kedem-Katchalsky model. Hydration shell formation around molecules is 

an intrinsic dynamic phenomenon and is not constant.  

In this work uniform pore size is assumed and molecule shape and solution effects (i.e. 

Hydration) are taken into account inside hydrodynamic coefficient, independently from the 

definition of a Stokes radius. 

 

4.3.3 Calculation of model parameters: a new approach 

The revised DSP&DE model introduced has been applied to regress experimental rejection 

data, in order to obtain “model” parameters for each membrane tested in Chapter 3.  

In this work a new approach is developed to calculate model parameters; it is different from 

those proposed in literature, and remarkably it is independent of the Stokes radius of solutes.  

The adjustable parameters contained in DSP&DE model are: 

 Hydraulic permeability, Lp,w; 

 Effective membrane thickness, δ;  

 Solute/membrane interaction parameter, λi. 

Key points of the parameter-calculation procedure are the following: 

1) Determination of the hydraulic membrane permeability (Lp,w) from NF experiments 

with pure water, according to Eq. (4.24); 

2) Selection of the pore geometry (cylindrical or slit-like); 
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3) Calculation of membrane permeability (Lp) from NF experiments with sugar 

solution and comparison with hydraulic permeability, Lp,w; 

4) Calculation of λi, by fitting of asymptotic real rejection data (Fig. 4.5 b-c); 

5) Calculation of effective membrane thickness, δ, based on neutral solute data, using 

real rejection data as a function of total volume flux (Jv) as well as of Péclet number 

(Pe), (Fig. 4.5 b-c). 

Figure 4.5 shows in graphical form the sequence of elaboration. 

a) b) c) 

Fig. 4.5.: Graphical check for DSP&DE model parameter estimation for neutral solutes. Permeate flux (Jv) 

as a function of effective driving force (∆Peff) for each operating temperature (a); real rejection (Rreal) as a 

function of permeate flux (Jv) for each temperature (b) and real rejection (Rreal) as a function of Peclét 

number (c) 

 

Graph (a): Elaboration of Jv,exp vs. ∆Peff  data. It allows to state if membrane parameters (rp 

and δ) are constant with temperature and concentration. If experimental data are located 

inside the water permeability cone (dashed lines), it can be concluded that sugars do not 

affect membrane properties, that is no swelling occurs. 

Graph (b): Elaboration of Rreal as a function of Jv,exp. It allows to fit λi(T) and δ separately, 

under the hypothesis of rp and δ constant with temperature;  typically this kind of graph 

misleads, in fact the first approach is to fit separately both parameters (such as literature 

approach). Graph c) is required to perform correctly parameter fitting.  

Graph (c): Elaboration of Rreal as a function of Péclet number, Pe. This representation 

shows that only one curve Rreal vs. Pe exists, independently of δ, temperature and 

concentration. If λi changes with temperature or concentration, and rp and δ are constant 

from Graph (a), operating conditions affect solute properties (i.e. hydration shell), that is 

to say that solute properties are modified by operative conditions, whereas rp and δ are not 

affected by them. 

Fitting procedures are performed in order to minimize the standard variance, Stdev, between 

the calculated rejection (Rj,mod) and the experimental real rejection (Rj,exp), defined for j data 

points for each solute. The variance is defined as follows: 
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2

,mod ,exp
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1

n

j j
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R R
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n
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





 

(4.51) 

Where n is the total number of data.  

 

4.4. Calculation of model parameters: Results 

 

4.4.1 Check of Membrane permeability 

The first step for model parameter calculation requires to checking if membrane 

permeability overlaps hydraulic permeability (dashed lines). The concept of hydraulic 

permeability cones was introduced in this study to take into account changes in membrane 

performances, flux decline, as well as drop in data reliability, due mainly to fouling. 

For this purpose a lot of experimental data have been reworked in the form of Jv,exp vs. ∆Peff, 

as shown in Fig. 4.6-4.10 for GE-DL and GE-DK membranes. 

a) b) 

c) d) 

Fig 4.6. Comparison between Membrane (symbols) and Hydraulic Permeability (dashed lines). GE-DL and 

GE-DK flat membranes, Dextrose (a,c) and Fructose (b,d) 5-100 g/dm3, 30°C (black symbols) 50°C (grey 

symbols), pH 4 and 6, flow rate 400 dm3/h, ∆Pin ranging from 4 to 30 bar, total recirculation mode of R and 

P. Cones represent the confidential range of experimental hydraulic permeability 
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a) b) 

Fig 4.7. Comparison between Membrane (symbols) and Hydraulic Permeability (dashed lines). GE-DL (a) 

and GE-DK (b) flat  membranes, Dextrose (black symbols) and Dextrose + NaCl (grey symbols) 50°C,  pH 

4,  flow rate 400 dm3/h, ∆Pin ranging from 4 to 30 bar, total recirculation mode of R and P. 

Cones represent the confidential range of experimental hydraulic permeability 

 

a) b) 

Fig 4.8. Comparison between Membrane (symbols) and Hydraulic Permeability (dashed lines). (a)  GE-DL 

and GE-DK flat  membranes, Maltose 10-55g/dm3, 50°C, QF=400 dm3/h pH 4; (b) GE-AG and GE-AK flat 

membranes, Dextrose and fructose, 50 g/dm3, 50°C,  pH 4,  QF=400 dm3/h, ∆Pin ranging from 4 to 30 bar, 

total recirculation mode of R and P.Cones represent the confidential range of experimental hydraulic 

permeability 

 

a) b) 

Fig 4.9. Comparison between Membrane (symbols) and Hydraulic Permeability (dashed lines). (a)  GE-DK 

and (b) GE-DL flat  membranes, Maltose and Dextrose, 50°C, QF=400 dm3/h pH 4, total recirculation 

mode of R and P. Cones represent the confidential range of experimental hydraulic permeability 
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a) b) 

Fig 4.10. Comparison between Membrane (symbols) and Hydraulic Permeability (dashed lines). GE-DL 

and SW1812  membrane, (a) Xylose and (b) Dextrose, 10-50 g/dm3, 30° and 50°C, QF=400 dm3/h pH 4; 

∆Pin ranging from 4 to 20 bar, total recirculation mode of R and P.Cones represent the confidential range 

of experimental hydraulic permeability 

 

 

Apparently experimental results (symbols) are confined with good confidence inside 

hydraulic permeability cones, bordered by dashed lines, for all the case investigated. This 

behavior allows us to draw some conclusions: 

 Porous viscous vision describes with good approximation experimental data; 

 No pore swelling occurs: membrane parameters are constant with temperature and 

concentration. 

4.4.2 Calculation of model parameters (λi, δ) and sensitivity from pore geometry  

Once checked that membrane parameters (rp, δ) are not affected by sugar concentration and 

temperature, model parameters (λi, δ) can be fitted on whole Rreal,i vs. Jv,exp and Rreal,i vs. Pe 

curves, that means that the hydrodynamic coefficient, λi, as well as the membrane effective 

thickness δ, were estimated by fitting the intrinsic rejections of uncharged single solutes. 

In contrast to what defined in literature, in this study it is more accurate refer to “model 

parameters”, instead of “membrane parameters”. As a matter of fact, although δ is really 

a membrane parameter, λi contains in its interior the dependence of solute and membrane 

properties, and it cannot be therefore defined intrinsically as a membrane parameter. 

Results of model parameters calculation obtained for both membranes, and for both pore 

geometries is shown in Tab. 4.5 and 4.6. In the same table results are compared with 

parameters exploited in literature, according to procedure in which pore radius is calculated 

by assuming a Stokes radius, and an effective membrane thickness is calculated by Hagen 

Poiseuille equation (rp and  δ* respectively). 
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Tab. 4.5 Model (λ, δ) and Membrane Parameter (rP, δ*), comparison between pore geometry and 

temperature, GE-DK, flat sheet 
     Slit-like pore  Cylindrical pore 

Solute T (°C) λ δ (μm) rp (nm) δ* (μm) λ δ (μm) rp (nm) δ* (μm) 

Dextrose 
30 0.987 5.8 0.366 2.9 0.860 0.1 0.420 1.4 

50 0.966 6.1 0.374 2.9 0.830 0.1 0.435 1.5 

Fructose 
30 0.986 6.0 0.362 2.8 0.859 0.1 0.416 1.4 

50 0.972 5.9 0.367 2.8 0.837 0.1 0.427 1.4 

Maltose 50 0.998 6.0 0.471 4.7 0.932 0.1 0.504 2.0 

* 

 

Tab. 4.6 Model (λ, δ) and Membrane Parameter (rP, δ*), comparison between pore geometry and 

temperature, GE-DL, flat sheet 
    Slit-like pore Cylindrical pore 

Solute T (°C) λ δ (μm) rp (nm)  δ* (μm) λ δ (μm) rp (nm) δ* (μm) 

Dextrose 
30 0.977 3.7 0.369 1.9 0.853 0.045 0.423 0.9 

50 0.960 3.2 0.376 2.0 0.830 0.045 0.435 0.9 

Fructose 
30 0.980 3.2 0.364 1.8 0.848 0.045 0.421 0.9 

50 0.960 3.3 0.372 2.0 0.825 0.045 0.433 1.0 

Maltose 50 0.997 3.3 0.472 3.2 0.903 0.046 0.521 1.4 

 

Remarkably results highlight two key aspects: (i) effective membrane thickness remains 

constant for each solute used and for the temperature range investigated; (ii) it can be 

obtained a clear trend of the decrease of the hydrodynamic coefficient with temperature 

(Fig. 4.11) 
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a)  b) 

c) d) 

Fig.4.11: Model parameter λi as a function of operative temperature, 30° and 50°C. Flat sheet membranes, 

GE-DK and GE-DL, slit like pore geometry (a) and cylindrical pore geometry (b) 

 

In other words these results show that temperature affects solute properties, whereas the 

membrane permeability is not affected by pore swelling. .  

The revised DSP&DE model is also able to take into account the variation in viscosity and 

diffusion caused by temperature increase, however this effect alone is not sufficient to 

explain experimental data, and this is the reason why λi changes with temperature. 

The trend obtained for flat membranes was the same observed for commercial SW1812 

modules. In this study case a wide experimentation was carried on to test temperature effect 

on DSP&DE model parameters and different oligosaccharide. Results are summarized in 

Tab. 4.7. 
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Tab. 4.7: Model (λ, δ) and Membrane Parameter (rP, δ*), comparison between pore geometry and 

temperature, GE-DL, Spiral Wound DL1812C-34D 

    Slit-like pore Cylindrical pore 

Solute T (°C) λ δ (μm) rp (nm  δ* (μm) λ δ (μm) rp (nm) δ* (μm) 

Xylose 

30 0.985 

3.4 

0.355 2.41 0.849 

0.072 

0.412 1.22 

40 0.975 0.359 2.55 0.835 0.419 1.31 

50 0.957 0.366 2.75 0.812 0.431 1.44 

Dextrose 

30 0.995 

3.39 

0.3628 2.52 0.884 

0.069 

0.408 1.20 

40 0.994 0.3633 2.62 0.877 0.412 1.26 

50 0.991 0.3643 2.74 0.860 0.420 1.36 

Fructose 

30 0.996 

3.5 

0.3585 2.46 0.892 

0.072 

0.400 1.15 

40 0.994 0.3592 2.56 0.875 0.408 1.24 

50 0.990 0.3605 2.68 0.861 0.415 1.33 

Maltose*** 
30 0.999 

3.5 
0.4702 4.23 0.952 

0.075 
0.494 1.75 

50 0.9999 0.4702 4.55 0.949 0.495 1.90 
* 

Temperature effect was investigated for different sugars (from mono- to disaccharides) in 

a wide range of temperature (ranging from 30° to 50°C). Results confirmed flat membrane 

results, and added some information. From Fig. 4.12, an inversed relationship between 

temperature effect and sugar molecular weight exist: xylose (a C5 sugar) shows the greatest 

temperature effect on its λi coefficient, maltose hydrodynamic coefficient is constant in the 

whole range of temperatures, while dextrose and fructose (C6 isomers) show an 

intermediate behavior between xylose and maltose. 
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a) b) 

c) d) 

Fig.4.12: Membrane Parameters (λ, δ) fitted for both Slit-like pore and cylindrical geometry as a function 

of operative temperature (T) and solute molecular weight (MW), DL1812C-34D  

 

Electrolyte effect was also investigated, but only slight decrease in rejection is observed, 

since apparent size of neutral solutes is influenced by ionic composition, in particular sugar 

is less hydrated in presence of electrolyte, a lower retention can be expected 

Results obtained for both module configurations (flat sheet and spiral wound) put in 

evidence: 

i) model parameter sensitivity from pore geometries; 

ii) Both pore geometries fit very well experimental data, with different couple (λi, 

δ); 

iii) A proper effective membrane thickness (δ), independent from solute and 

temperature; 

iv) Temperature effect on hydrodynamic coefficient, λi, depending on sugar 

molecular weight 

 

Results obtained for hydrodynamic coefficient are in accordance with sugar hydration 

theory [ (Seuvre and Mathlouthi 2010), (Zhou, Wang and Wei 2013)]. The decrease of λi 

with increasing temperature can be ascribed as the sugar dehydration, when membrane 

parameters are constant with temperature. However the hydration layers of carbohydrates 
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in aqueous solutions cannot be exactly described upon present knowledge, only qualitative 

behavior can be derived.  

Revised DSP&DE model was applied to predict experimental data at 50°C, starting from 

membrane parameters at 30°C, what has been observed is that a change in chemical-

physical properties and membrane permeability with temperature is not able to describe 

experimental trend, that is to say that other phenomena take place as temperature increases.  

Some conclusion can be drawn: 

i) The decrease  in retention with temperature can’t be ascribed only as reduced 

viscosity and increased diffusion, solute properties change with Temperature 

ii) λi is a parameter that contains inside it the dependence of solute size (i.e. 

hydration) with temperature, when rp is constant.  

iii) The use of relationships derived from the application of the Hagen-Poiseuille 

equation, typically used is literature, must be careful, since it could lead to an 

underestimation of the membrane thickness by 5-10 time 

These results are in stark contrast with literature studies. Many authors explain the 

reduction in sugar retention with membrane pore swelling (Sharma, Agrawal and Chellam 

2003).  

From this data reduction no pore swelling occurs, furthermore we are able to split 

membrane to solute behavior. 

 

4.5 Revised DSP&DE model Validation 

Throughout this study, it was necessary to compare the agreement between experimental 

data and model prediction. Once the model parameters were obtained for the solute(s)-

water system of interest, the whole model (whose equation are summarized in Tab.4.1) was 

applied to make predictions at different pressure values (from 4 to 20 bar) in TK Solver ® 

environment.  

The revised DSP&DE model was accomplished to the mass transfer governing fluid-

dynamics in NF modules, whose equations are summarized in Tab. 4.8. Sherwood 

correlation for both radial flow test cell and SW1812 are documented in Chapter 3. 
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Table 4.8: Mass transfer equations in NF membrane modules 

Mass transport model in NF modules 

Film Theory 
, ,

, , ,

exp
I i P iv

L i bulk i P i

c cJ

k c c

  
    

 
(4.52) 

Mass transfer coefficient 
,0

,

i S i

L i

h

Sh D
k

d


  

(4.53) 

(Aimar and Field 1992) 

0.27

0

, ,

bulk

L i L i

I

k k




 
  

 
 

(4.54) 

Sherwood number (Re, , )i iSh f Sc geometry  (4.55) 

Reynolds number Re
bulk eff h

bulk

v d



 
  

(4.56) 

Schmidt number 
,

, ,

bulk i

i

bulk i S i

Sc
D







 

(4.57) 

 

The revised DSP&DE model solution requires the knowledge of: 

 Hydraulic permeability, Lp,w(T); 

 Model parameters, (λi, δ); 

 Inlet conditions (T, ∆P, cbulk,i, QF). 

The discrepancy between experimental values (Jv,exp, Robs,exp and Rreal, exp) and model 

prediction is put in evidence in parity diagrams (Fig. 4.13- 4.15) 
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 a)  b) 

 c)  d) 

 e)  f) 

Fig. 4.13: Model validation for radial flow test cell, GE-DL and GE-DK membranes.  Comparison between 

calculated and experimental permeate flux (a-b), observed rejection (c-d) and real rejection (e-f) 

respectively. Aqueous model solution of Dextrose (DX), Fructose (FR) and Maltose (ML), 1-300 g/dm3, 30-

50°C, pH 4-6, QF=400 dm3/h, Pin=4-30 bar, Total recirculation mode of Retentate and Permeate 

 

Good agreement between experimental data and model prediction was obtained in the 

whole range of operative conditions. DSP&DE revised model well predicts concentration 

and temperature effect (ranging from 1 to 300 g/dm3 and 30° to 50°C respectively) for each 

sugar. 

The same accuracy was achieved for spiral wound module, for which experimental flux, 

permeate concentration, observed and real rejections are depicted as a function of model 

prediction. Fig.4.14. 
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a) b)

c) d) 

Fig 4.14: Model validation, 1812C-34D GE-DL. Comparison between calculated and experimental 

permeate flux (a), permeate concentration (b), observed and real rejection (c and d) respectively. Aqueous 

model solution of Xylose(XY), Dextrose (DX), Fructose (FR) and Maltose (ML), 10-50 g/dm3, 30-40-50°C, 

pH 4, QF=400 dm3/h, Pin=4-20 bar, Total recirculation mode of Retentate and Permeate 

 

These results confirmed that the revised DSP&DE model is suitable to describe the 

membrane transport through these two type of membranes/modules at different operating 

conditions.  

Once the model was validate for single solute solutions, the same validation procedure was 

adopted for binary and ternary mixtures. In first approximation model parameters in the 

mixture were assumed to be equal to membrane parameters of the single solute solution, 

that is to say: 

mix single solute( , ) ( , )i i     , where i=1,…,3 
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 a)  b) 

c)  d)  

e)  f) 

Fig 4.15: Model validation, mixtures, DL1812C-34D. Comparison between calculated and experimental 

permeate flux and observed rejection for Xylose (XY), Dextrose (DX) and Maltose (ML), (a, b), (c, d), (e, f) 

respectively. Aqueous model mixtures of Xylose(XY), Dextrose (DX), and Maltose (ML), 10-50 g/dm3, 30-

50°C, pH 4, QF=400 dm3/h, Pin=4-20 bar, Total recirculation mode of Retentate and Permeate. 

 

Good agreement between experimental and calculated membrane module performance 

characterizes each sugar tested, in terms of both membrane flux and rejections (observed 

as well as real).  

The achieved results clearly shows that no interaction occurs (or in any case negligible) in 

mixtures between sugars, thus the approximation adopted for hydrodynamic coefficients is 

exact in the whole range of operating conditions. 

It is also worth to mention that in order to “characterize” a membrane when 

oligosaccharides are processed, in term of “model parameters”, it is only necessary to 

perform two test at each operating temperature: 

1) Hydraulic permeability test; 
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2) Filtration of model/real mixture of all n-solutes in solution. 

From the first test it is possible to achieve water permeability, Lp,w(T), afterwards filtration 

experiment allows to obtain λi(T) and δ, with i=1,…,n. 

 

 

4.6 Conclusions 

A “revised” DSP&DE model was discussed in order to describe the transport through the 

membrane when sugar NF is performed. 

The parameters of the revised model have been critically identified: (i) hydraulic 

permeability, Lp,w; (ii) hydrodynamic coefficient, λi, and (iii) effective membrane thickness, 

δ; and a new approach was proposed for the calculation of such parameters.  

Key points of this procedure are: 

 Check of membrane swelling; 

 (λi, δ) fitting on experimental data documented in Chapter 3.  

Elaborations put in evidence that the Stokes radius is not a representative parameter of the 

molecule shape. The mean pore radius of the membrane should be calculated by using 

glucose or xylose data, whereas non spherical oligosaccharides should be represented by a 

parameter accounting the shape of the molecule. The model provides useful elements to 

understand which kind of interactions (complex formation or dehydration) can affect sugars 

rejections in presence of strong electrolytes, however dehydration effects caused by 

temperature and electrolyte are the most evident. 

So doing, the model is able to predict with good confidence both the temperature effect on 

membrane performances and rejections in multicomponent mixtures, ranging from 

laboratory to process/industrial scale. 
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5.0 Module and Process prediction 

Until now the development of membrane process required several “crucial” stages, starting 

from feasibility tests at laboratory scale, passing through pilot plant tests and finishing with 

large industrial scale processes (Peshev & Livingston , 2013). 

However, since model parameters have been estimated (at any level) and fluid dynamic 

inside industrial module membrane is well known, process simulation can be performed 

from each elemental step. In fact, once the model parameters for the solvent-solute(s) 

system are available, modeling can be applied to perform prediction for the same system at 

different operating conditions (pressure, cross-flow velocity, concentration, etc.), as shown 

in Fig. 5.1. 

 

Figure 5.1: Flow sheet of the modeling steps of the thesis. 

 

In Chapter 3 and 4 the revised DSP&DE method for Sugar NF was discussed in order to 

perform the Parameter estimation, in particular: 

i) Individuation of model parameters Lp,w,(T), λi(T), δ; 
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ii) calculation of model parameters ; 

iii) validation on mono- and multicomponent mixtures on flat membranes and 

SW1812 membrane modules 

According to this model, the parameters required are the hydraulic permeability, Lp,w(T), 

the hydrodynamic coefficient for the specie i, λi(T), and the effective membrane thickness, 

δ.   

It means that for a n-solutes solution (n=number of specie (solutes) in the solution, with n 

≥ 1), the number of model parameters required to perfume a scale-up is (n + 2). 

Once the model parameters have been estimated, module and process can be simulated, 

thus scale up can be performed. 

The validity of the algorithm has been tested and verified on an industrial SW module with 

appreciable results. 

 

5.1 Simulation of industrial SW (comparison with literature data) 

The performance of a commercial 4040C1025 GE-DL module were modeled, and 

compared with literature data from (Bandini & Nataloni, 2015), carried on industrial NF 

modules for dextrose recovery from crystallization mother liquors. 

Aim of the work was primarily to compare the predictive power of the model, validated on 

laboratory scale modules and synthetic solutions, with experimental data performed on 

industrial configuration modules and real solutions.  

In spite of the complexity of the mixtures investigated, solutions were modeled as ternary 

mixture composed of water, dextrose (DX 80-83%) and impurities modeled as maltose 

(ML 20-17%). Experiments on 4040C1025 GE-DL were performed in the optimal 

operative conditions of the module at 50°C and with a feed flow rate located in the range 

from 2300 to 3500 dm3/h, corresponding to an effective velocity inside the feed channel 

ranging from 0.18 to 0.60 m/s. 

Because of the chemical nature of the solutions, chemical-physical properties necessary for 

data reduction were calculated assuming the solution as a binary Dextrose-water solution 

at the composition corresponding to the DS% content. 

Concentration polarization in industrial modules at feed/membrane interface was 

calculated by using Sherwood correlation adopted for SW1812 module (found better than 

Shock and Miquel equation), whereas the pressure drop and mass transfer correlations are 

adapted from Shock and Miquel’s work 
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Hydraulic permeability of the membrane is calculated from technical sheet, whereas model 

parameters from GE-DL flat membrane where used to predict process performances.  

Simulation conditions are summarized in table 5.1 

Table 5.1 Simulation of commercial 4040C1025 GE-DL spiral wound module. Test conditions, pressure 

drop and mass transfer correlation, and model parameters for slit-like pore geometry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since not very high fluxes across the modules were measured with sugar solutions 

(maximum Recovery less than 3.8%), because of the high sugar concentrations, module 

performances could be described by using average properties which refer to the conditions 

existing at the inlet section of the module itself. 

Experimental set up is well described in (Bandini & Nataloni, 2015), and configuration 

mode is depicted in Fig. 5.2.  

 

Reference Bandini & Nataloni, (2015) 

Module-Membrane 4040C1025  GE-DL 

Solutes DX (1) + ML (2) 

Concentration range (g/dm3) (1) 211.7-296.8; (2) 44.1-110.3  

Temperature (°C) 50  

Inlet pressure, Pin (bar) 20, 25, 30 

Flow rate, QF (dm3/h) 2336.7-3634.8 

  

Data Reduction 

Mass transfer coeff., kL  Siede &Tate 

∆Ploss Shock & Miquel 

  

DSP&DE model parameters (slit-like pore) 

Water permeability, Lp,w(50°C)* 12.7 

λDX(50°C)** 0.960 

λML(50°C)** 0.999 

Membrane thickness, δ (μm)** 4.75 

*Hydraulic permeability was calculated by data reported in technical sheets, 

according to the typical equations of the solution-diffusion model, in 

correspondence with the same conditions (Bandini & Nataloni, 2015); ** from 

GE-DL flat sheet 
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Figure 5.2: Configuration for batch operation mode, with partial recirculation of Retentate. Adapted from 

(Bandini & Nataloni, 2015) 

 

The starting concentrations and purities were set to be equal to those of experimental data, 

the inlet pressure was set at 20, 25 and 30 bar.  

In addition, as suggested by (Bandini & Nataloni, 2015) module was characterized by using 

few relevant quantities, such as total volume flux across the module (Jv), the average 

observed rejection of Dextrose (Robs,DX) and Maltose (Robs,ML), the DS composition (DS 

wt%), and finally the dextrose purity in Permeate and Retentate, which are independent 

each other. In this study each experimental quantity was compared with the same 

“predicted” value. 

Results are shown in Fig. 5.3, where symbols represent experimental data, and lines 

represent model simulations from GE-DL flat membrane model parameters. 

Fig. 5.4 shown the model prediction performed with parameters fitted on experimental data. 

The model parameters used in the simulation are reported in Table 5.2, and represent the 

parameters regressed from flat sheet, and 4040C1025 membranes respectively, for slit-like 

pore geometry.  

 

Table 5.2 DSP&DE model paraters used in the simulation of 4040C1025 NF module. Binary mixture 

Dextrose-Maltose,50°C, slit-like pore geometry. 

       Membrane            GE-DL 

Module Flat sheet 4040C1025 

Lp,w(50°C) 15.2 ± 0.9 12.7 

λDX,slit(50°C) 0.960 0.960 

λML,slit(50°C) 0.997 0.999 

δslit (μm) 3.25 4.75 
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a) b) 

c) d) 

Figure 5.3: Comparison between literature experimental data ( (Bandini & Nataloni, 2015)) and DSP&DE 

model simulation, performed with flat sheet membrane model parameters. Module GE-DL SW4040-50mil, 

experimental tests performed at pH 3.8-4.5, Feed flow rate=2300-3500 dm3/h, initial DX purity =81-83%. 

DSP&DE model simulations: (a) Total volume vs. DS wt% in the feed; (b) DS% in Permeate as a function 

of DS% in the feed; (c) observed rejection of DX and ML (~impurities) vs. total flux; (d) DX purity in 

Permeate and Retentate vs. Total flux. 

 

a) b) 

c) d) 

Figure 5.4: Comparison between literature experimental data ( (Bandini & Nataloni, 2015)) and DSP&DE 

model simulation performed with 4040C1025 module model parameters. Module GE-DL SW4040-50mil, 

experimental tests performed at pH 3.8-4.5, Feed flow rate=2300-3500 dm3/h, initial DX purity =81-83%. 

DSP&DE model simulations: (a) Total volume vs. DS wt% in the feed; (b) DS% in Permeate as a function 

of DS% in the feed; (c) observed rejection of DX and ML (~impurities) vs. total flux; (d) DX purity in 

Permeate and Retentate vs. Total flux. 



Conclusions 

144 

 

Results shown good agreement between modeled and experimental flux and rejection was 

observed as shown in Fig. 5.3 and 5.4 for each membrane sample, each solute in the whole 

range of temperature, pressure and concentration.  

Although flat membrane show a completely different fluid dynamic and membrane area 

(compared to industrial spiral wound modules), is sufficient to describe module 

performances with good approximation.  

Deviation between model prediction and experimental data may be attributed to membrane 

fouling. Experimentally fouling causes a flux decrease, with the respect to the values 

measured with the clean module at the initial condition. The flux decrease is quantified to 

70% of the initial value, though rejection values as well as separation efficiency seems to 

be not affected by fouling. 

Model is not able to take into account this flux decay, and for this reason errors may occur 

in predicting the permeate flux, overestimating experimental data. 

This study give information useful for the process design and scale-up. The results obtained 

put clearly in evidence that only few well-defined experiments are sufficient to study the 

process feasibility with the membrane under investigation. 

 

5.2 How to perform Isomer separation? 

Isomers is a challenge in membrane separation technology.  

Many studies and experiments documented the feasibility of Nanofiltration for the 

separation of monosaccharides from disaccharides [ (Nabetani 1992), (Goulas, Grandison, 

& Rastall, 2002), (Aydogan, Gurka, & Yilmaz, 1998), (Bouchoux, Roux-de Balmann, & 

Lutin, 2005), (Catarino, et al. 2008)], as well as monosaccharides fractionation (i.e. Xylose 

from dextrose), (Sjoman, et al. 2007), however simulated moving bed chromatography 

(SMB) is still the state of the art technology for industrial isomer purification.  

One of the most challenging application is the separation of dextrose-fructose mixtures, 

whose production was discussed in Chapter 2. A schematic representation of the industrial 

production of HFCS55% id depicted in Fig. 5.5. 
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Figure 5.5: Schematic representation for the production of HFS≥ 55%. Conventional pathway (SMB 

Chromatography step) vs. “Direct” pressure driven membrane process (Godfrey & West, 1996)  

 

Nowadays in order to obtain a fructose syrup of 55% chromatografic technique is applied, 

with high efficiency.  

Can we replace chromatographic step with a direct membrane process? 

From experimental data and the discussion of the revised model, dextrose and fructose 

shown very similar hydrodynamic coefficients, that is to say that they are hard to isolate, 

in the whole range of operative conditions investigated.  

On the basis of the revised model, module performance was simulated with total 

recirculation of Retentate mode on 1812C-34D GE-DL module, and results are shown in 

Fig. 5.6 
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a) b) 

c) d) 

Figure 5.6: DX-FR separation.  DSP&DE revised model simulation at 50°C, pressure ranging from 10 to 

40 bar, total initial concentration ranging from 100 g/dm3 (black lines) to 200 g/dm3 (grey lines) and initial 

fructose purity 42%, QF=400 dm3/h. Model parameters from SW1812 GE-DL: Lp,w(50°C)=10.7 

dm3/(hm2bar), λFR=0.990, λDX=0.991 , δ=3.45 μm, slit like pore geometry 

 

As shown in Fig. 5.6 Dextrose-Fructose separation, with enrichment in fructose fraction 

from 42 to 55% is nor achievable by using NF step. On the basis of model parameters 

achieved from experimental data, only a weak increase in fructose fraction is obtainable 

with small differences in hydrodynamic coefficients, especially at high total concentrations 

(200 g/dm3). 

 

5.3 Discussions & Conclusions 

This work reports the performance of commercial polyamide membranes assembled as flat 

sheet and spiral wound modules tested in aqueous solutions of oligosaccharides under 

various pressures, temperatures and concentrations. Spiral wound covered two module 

sizes (1.8”×12” and 4.0”×40”) with different feed spacer (34 mil and 50 mil respectively). 

A “revised” DSP&DE model was discussed to describe the transport through the 

membrane, starting from model parameters calculation procedure. 

The unknown model parameters were determined from regression of experimental data. 

These parameters were then used to predict the performance of industrial spiral wound 

modules as well as process performances, and good agreement was observed with literature 
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data. This indicate that the “revised” DSP&DE model combined with the film theory is 

adequate to describe the transport through membranes, once Pressure drops and mass 

transfer coefficient correlation is known for the module geometry.  

It has been shown that the correlation suited for the mass transfer coefficient determined 

for the 1.8”×12” module is able to describe mass transfer in industrial 4.0”×40” module 

too. 

Model parameters regressed at each level (flat sheet, and 4040C1025 GE-DL) were used 

to predict process performance. Results were compared with experimental literature data  

(Bandini & Nataloni, 2015), and good agreement was observed, which proves that model 

parameters regressed at each level can be extended to describe process performance in a 

wide range of operating conditions.  

This study proves that it is possible to identify the minimum number of experimental tests 

that allows to characterize oligosaccharide nanofiltration process.  

The membrane transport model parameters for both flat sheet and spiral wound membrane 

modules were determined by regressing the performance of each module, using the 

DSP&DE model for single solute. According to this model, the parameters to be determined 

are the hydraulic permeability, Lp,w(T), the hydrodynamic coefficient for the specie i, λi(T), 

and the effective membrane thickness, δ.   

It means that for a n-solutes solution (n=number of specie (solutes) in the solution, with n 

≥ 1), the number of model parameters is (n + 2). 

These model parameters where then used to predict the performance on the same membrane 

in the whole range of test conditions. Good agreement between calculated and experimental 

flux and rejection was observed as shown in Fig. 5.4 and 5.5 for each membrane sample, 

each solute in the whole range of temperature, pressure and concentration 

 

 

In conclusion 

 the revised DSP&DE model identifies the minimum number of experimental 

tests required in order to perform a process scale up for oligosaccharide NF 

processes at industrial level. 
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A.1 Solutions 

A.1.1 Sugar model solutions 

Synthetic oligosaccharide solutions were tested; analytical grade purity D(+)-glucose 

(molar mass equal to 180.16 g/mol) was supplied by Fagron Italia S.r.l, D(+)-fructose 

(180.16 g/mol), and D-(-)-maltose (342.29 g/mol)  were supplied from Sigma Aldrich, 

D(+)Xylose (150.13 g/mol) was supplied by Carlo Erba Reagents S.r.l.. These reagents 

were used for the preparation of the model sugar solution and as standards for HPLC 

analysis. The relevant characteristics of these sugars are discussed in Chapter 2. All 

solutions were prepared in demineralized water, pH 5.6. During the experimentation 

solution pH was corrected, with drops of concentrated HCl and NaOH, in order to reach 

the value 4 and 6. 
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A.1.2 PHA and non-PHA solution 

Ultrafiltration tests of non-PHA were performed on a real solution derived from enzymatic 

digestion of biomass. PHA recovery from C. necator cells was described in (Martino, et al. 

2014). Wet PHA granules were collected by centrifugation (20,000 G for 30 min), while 

the supernatant represents the non-PHA solution. 

Non-PHA consist of a mixture of cell debris and solubilized cellular materials derived from 

the enzymatic microbial cell ruptured. After a thermal treatment, the resultant debris are 

treated with enzyme cocktail and a surfactant to solubilize all non-PHA cellular materials. 

The solution tested is devoid of any PHA granules, presents a density closer to that of water, 

while viscosity and a color similar to those of an egg white. 

 

A.1.3 Model VFA Solutions 

Single VFAs (Bioreagent) were purchased from Sigma-Aldrich. Model VFA solutions 

were prepared at different pH (ranging from 3.5 to 4.0). The pH-shift of the feed solution 

was done with hydrochloric acid and sodium hydroxide, respectively. The composition of 

the solutions is showed in Table A.1 

Table A.1: VFA model solution composition 

pH 

Total VFA 

concentration 

(g/dm3) 

Acetic Acid  

AA 

(g/dm3) 

Propionic 

Acid  

PA (g/dm3) 

Butyric Acid 

BA (g/dm3) 

Valeric Acid 

VA 

(g/dm3) 

Caproic Acid 

CA 

(g/dm3) 

3.5 10.08 2.23 2.20 2.02 2.00 1.62 

4.3 11.05 2.27 2.39 2.09 2.29 1.99 

 

A.2 Membranes  

Nanofiltration 

Four commercial polyamide membranes were tested in this study, GE-DK, GE-DL, GE-

AG and GE-AK. Manufactured by GE Power&Water (well known as DESAL products) 

and supplied by Sepra S.r.l, Italy. Membranes are thin film composite, with an active layer 

in Polyamide, on a support of Polysulfone. This type of membrane has a good temperature 

and pH stability. A summary of the general properties of these membranes is reported in 

Table A.2 

Hydraulic permeability were calculated by technical sheet data applying the typical 

equations of the solution-diffusion model (Mason and Lonsdale 1990) in correspondence 

with the same conditions. 
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Table A.2: General Properties for NF membranes (data from technical sheets) 

Type Classification 
Cut-off 

(g/mol) 
Rejection 

pH 

range 
IEP Pmax (bar) 

Tmax 

(°C) 

Lp,w (25°C)  

(dm3/(hm2bar)) 

GE-

DL 

NF 
150-

300 

96% 

MgSO4
 

[a] 

3-9 

4.1 

(Manttari, 

Pihlajamaki 

and 

Nystrom 

2006)  

41.37 for 

T<35°C; 30.00 

for T>35°C 

50 5.96 ± 0.16 [b] 

GE-

DK 

98%  

MgSO4 

[a] 

3-9 

4.0 

(Hagmeyer 

and Gimbel 

1998) 

41.37 for 

T<35°C; 30.00 

for T>35°C 

50 4.90 ± 0.20 [b] 

GE-

AK 

“brackish 

water” 

- 

99 % 

NaCl [c] 

4-11 - 27.56 50 5.77 ± 0.23  [b] 

GE-

AG 
- 

99.5 % 

NaCl [c] 

4-11 - 31.03 50 3.19 ± 0.07  [b] 

[a] MgSO4 2000 mgl-1 at 7.6 bar, 25°C, 15% Recovery; [b] calculated according to solution-diffusion model (Mason and 

Lonsdale 1990); [c] NaCl 2000 mgl-1 at 15.5 bar, 25°C, pH 7.5 15% Recovery 

 

Ultrafiltration and Microfiltration 

Hydrophicilic and hydrophobic membranes of different materials and MWCO were 

delivered by Sepra S.r.l.. Table A.3 summarizes membrane properties. 

Table A.3: UF and MF hydro -phylic and -phobic membranes, delivered by Sepra S.r.l. 

Membrane Material 
Pore radius 

(µm) 
MWCO Wettability 

Lp,w  

(dm3/(hm2bar)) 

TF-200 
PTFE 1 

(PALL Corporation) 
0.2 - Hydrophobic - 

PV400R 
PVDF2 

- 250 kDa 
Low Hydrophobic 

1470±220 

PV400 0.05-0.08 100 kDa 580±87 

 

A.3 Filtration units 

A.3.1 Dead-end unit (UF/MF of PHA solution) 

A dead-end stirred filtration (Sartorius), described in Fig. A.1, was used for the filtration 

of the non-PHA/PHA solution operated batchwise using compressed air (Pmax=7 bar). The 

system consists of a stirred cell unit of 200 ml maximum process volume, a magnetic stirrer 

                                                 
1 PTFE=Polytetrafluoroethylene;  
2 PVDF=Polyvinylidene fluoride 
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bar was placed just above the membrane for mixing and minimizing concentration 

polarization. The stirrer speed was set at 500 rpm. An external jacket surrounding the cell 

is connected to an external water bath for temperature control. 

Discs of the flat membrane (4.3 cm in diameter, with an effective area of 14.6 cm2) were 

cut from flat sheets provided by the manufacturer. The pressure was provided from an air 

cylinder. During the experimental trial with solutions the permeate was collected in a 

graduated vessel (150 ml). 
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Figure A.1: Dead-end stirred cell configuration 

 

A.3.2 Radial flow test cell (Sugar and VFA Nanofiltration) 

Each NF/RO membrane were tested as circular flat sheets housed in a radial flow test cell 

(with an effective filtration area of 39.6·10-4 m2) described in a previous work C.Mazzoni 

and S.Bandini (2007). The radial flow unit houses in parallel two flat membrane sheets; 

because of the configuration of the cell each membrane is fed with half of the flow rate 

supplied by the pump 

 

Equipment List Instruments 

S-1 Air cylinder V-1 Regulating valves 

S-2 Permeate Tank PI-1, PI-2 Manometer 

M-1  Dead end Stirred cell TI Thermometer 

E1 Heat exchanger FI-1 Flow meter (Permeate side) 
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A.3.3 Lab scale spiral wound module (Sugar NF) 

In the sugar NF study, the separation of oligosaccharides was conducted with commercial 

“lab-scale” 1812 spiral wound module (with an effective filtration area of 0.32 m2), 

purchased from Sepra S.r.l 

Each modules was a small size (“lab-scale”) spiral wound element with a length of 12 in. 

(0.35 m), a nominal diameter of 1.85 in. (0.047 m) and a feed spacer of 34 mil. The main 

characteristics of the module are listed in Table A.4. 

Table A.4: Characteristics of NF spiral wound module used (data from technical sheets) 

Parameter Characteristics 

Model DK1812C-34D DL1812C-34D 

Manufacturer GE-Osmonics 

Configuration Spiral wound- Biotech test element 

Filtration area (m2) 0.38 

Length (m) 0.305 

Spacer (mil) 34 

Minimum MgSO4 rejection  98% 96% 

                          * MgSO4 2000 mgl-1 at 7.6 bar, 25°C, 15% Recovery 

 

A.3.4 Commercial SW4040 module 

In order to perform model validation at process scale, prediction of industrial commercial 

spiral wound module was performed and results compared with literature data from 

(Bandini and Nataloni 2015). In this study Dextrose-Maltose separation was performed on 

4040C1025 GE-DL, whose characteristics are summarized in Tab. A.5 

Table A.5: Characteristics of NF commercial spiral wound module (4.0”× 40”) 

Parameter Characteristics 

Model 4040C1025 GE-DL 

Manufacturer GE-Osmonics 

Configuration Industrial Spiral wound 

Filtration area (m2) 6.1 

Length (m) 1.016 

Spacer (mil) 50 
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Minimum MgSO4 rejection  96% 

 

A.3.5 Bench-scale apparatus 

Both the radial flow test cell and spiral wound modules (1.8” × 12”) described previously 

were tested in a bench scale plant described in a simplified flow sheet in Fig. A.2.  

The unit was designed to work (operate) both in total recirculation mode of retentate and 

permeate (constant concentration during the experimentation) and in total recirculation 

mode of retentate (batch operation mode) as shown in a simplified form in Fig. A.3 (a) and 

(b) respectively. During the total recycle operation mode a constant concentration in the 

feed side was obtained, and experiments were carried out by varying the inlet pressure.  

S-1

V-1

P-1 F-1

PI-1

NF

V-2

PI-2

V-3V-5

E-1

V-4

PI-3FI-1
TI-1 FI-2

Feed 
Permeate 
Retentate

 P-1

 

 Equipment List Instruments 

S-1 Feed Tank V-1, V-2, V-3, V-4 Regulating valves 

P-1 Positive displacement pump V-5 Needle valve 

F-1 Cartridge filter PI-1, PI-2, PI-3 Manometer 

E-1 Heat exchanger ∆P-1 Differential pressure Gauge 

NF NF module TI-1 Thermometer 

  FI-1, FI-2  Flow meter 

Figure A.2: Diagram of the NF bench-scale plant used in the experiments. TK-feed tank; P1-positive 

displacement pump; FT-cartridge filter; E1-heat exchanger, temperature controlled water bath for 

temperature control of the feed; V-1-3-regulating valves; V-4-by pass valve closed during NF experiments; 

V-5- needle valve, for regulating the pressure; PI-1-2-3: pressure gauge; NF-nanofiltration cell (Radial 

flow test cell, Spiral wound element 1812); FI-1-flow meter retentate side; FI-2-flow meter permeate side; 

TI-1-thermometer. 
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a)  b) 

Figure A.3: Configurations for operation mode: (a) Total recirculation of Retentate and Permeate; (b) 

Total recirculation mode of Retentate 

 

A.4 Experimental Procedure 

 

Storage and Start-up 

Before their use virgin membranes were stored in 1% bisulfite solution at room 

temperature. This conservation procedure avoids microbiological growth. Before the 

installation, membranes were rinsed with demineralized water (pH 5.6) in a single pass-

plant configuration in order to remove any preservative solution. 

The start-up procedure consinsts of three main steps. 

 

Stabilization 

Membranes are stabilized with ion free water in total recirculation mode operation of 

retentate and permeate at 20 bar, firstly at 30°C for 4 hours and then at 50°C for 4-5 hours 

again, with a volume flow rate of 400 dm3/h. 

Stabilization is completed when permeate flux is constant in a range of 30-45 min.  

 

Washing procedure 

After the compaction membranes were subjected to a washing procedure with basic/acid 

solutions. 

Washing is performed in total recirculation mode of permeate and retentate.  

After a basic cleaning step (6.6% aqueous solution of Ultrasil-11, at maximum pH of 11, 

40°C, inlet pressure 3 bar, at 400 dm3/h flow rate, for 1 h long) the acid cleaning step starts 

(aqueous solution of HNO3 at pH 4, 40°C, 3 bar inlet pressure, at 400 dm3/h flow rate, for 

1 h long). 

Both cleaning procedures are followed by an abundant rinsing step performed with de-

ionized water in single pass plant configuration, at room temperature, 3 bar inlet pressure, 

and 400 dm3/h volume flow rate. 
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Each rinsing is concluded when both permeate and retentate pH values correspond to de-

ionized water pH. Flushing with de-ionized water allows to remove all traces of detergent 

or acid present in the plant. 

A Basic/Acid washing procedure is required when a decrease higher than 20% is observed 

for water permeability. 

 

Pure Water flux measurements 

After the cleaning procedure measurements of total flux across membranes are performed 

with demineralized water, in a pressure inlet range varying from 3 to 30 bar for flat sheet 

membranes, and from 4 to 25 bar for spiral wound modules. Flow rate and pH are set 

respectively at 400 dm3/h and 4. 

Water fluxes are performed at three different operating temperature is set at 30°, 40° and 

50°C.  

The initial water flux measurements is compared with measurements carried out under the 

same condition after each experiments, in order to monitor the state of the membranes (for 

instance fouling or damage) and control the cleanliness of the membranes. 

Average permeability data measured during all the experiments are reported in Chapter 3 

for both configurations (flat-sheet and Spiral wound module). 

 

Filtration experiments, sample analysis and model solution preparation 

All the experiments were performed at controlled temperature, pressure, volume flow rate, 

as well as pH and concentration in the feed tank. Volume flow rates in Permeate P and 

Retentate R streams were measured as a function of driving force (Total recirculation mode 

of R and P) or as a function time (Total recirculation of R), contemporary samples were 

taken in the feed tank and in the Permeate P. For the entire duration of the test pH was 

measured and maintained constant.  

Before each measurement a stabilization time of 1 hour (for the lower pressures and higher 

concentrations) and 40 min (for the higher pressures and lowest concentrations) was 

applied in order to reach the correct value.  
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A.5 Analysis 

A.5.1 Oligosaccharide Analysis 

For aqueous solutions containing single sugars a refractometer was used in order to 

determine the concentration (measurements were performed at constant temperature, 

35°C).  

When mixtures were processed total dry concentration was measured in loco by a 

refractometer, afterward sugar compositions were analysed by an HPLC followed by a 

refractive index detector. The HPLC system was equipped with a Transgenomic 

CARBOSep Coregel-87C Ca2+ resin based column (dimension 300 × 7.8 mm) supplied by 

STEPBIO S.r.l. (Bologna, Italy). Technical information about the column have been 

specified in Table A.6 

Table A.6: Technical characteristics of HPLC column 

Column Type Coregel 87C 

Part Number CHO-99-9860 

Column Size (mm) 300 × 7.8 

Ionic Form Calcium (Ca2+) 

Particle Size (µm) 9 

Maximum pressure (psi)-(bar) 1000-(68) 

Standard Flow Rate (mL/min) 0.6 

pH stability 0-14 

Maximum Flow Rate (mL/min) 1.0 

Standard Temperature (°C) 85 

Maximum Temperature (°C) 95 

 

A.5.2 PHA non-PHA Analysis 

TGA analyses were performed using a TGA 2950 (TA Instruments) thermogravimetric 

analyzer, from room temperature to 600°C at a heating rate of 10°C min-1 under continuous 

airflow, as described in (Martino, et al. 2014). 

Non-PHA analysis was performed by using a refractometer (measurements were performed 

at constant temperature, 35°C) in order to quantify the suspended solids (SS) amount. 

 

A.5.3 VFA analysis 

VFAs analysis was performed according the procedure described in VFAs were determined 

by CG-FID Analysis (Agilent 7890 A). For VFAs determination, a HP-INOVAX column 

(ID 0.25 nm, length 30 m and film thickness 0.25 μm was employed. 
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List of symbols   

Symbol Units Quantity Geometrical Parameters 

Re - Reynolds number  A  [m2] membrane area  

Sc - Schmidt number  Rc  [m] semi-cell radius (=0.03551) 

Sh - Sherwood number b  [m] 
semi-cell thickness/ flat channel 

width/module leaf width  

∆Ploss  [Pa]=[kg/(ms2)] pressure loss  L  [m] module length (=0.305 m) 

λ - friction coefficient L* [m] length of the entry region  

ρ [kg/m3] density df  [m] fiber diameter 

η [kg/(ms)]=[Pa·s] dynamic viscosity h  [m] 
channel height/spacer height, feed 

side(=34 mil) 

ν=η/ρ [m2/s] kinematic viscosity hp  [m] permeate spacer height  

DS [m2/s] diffusion coefficient Aeff,  [m2] 
effective membrane area, spiral 

wound module 

v [m/s] velocity ASP  [m2] 
wetted surface of the spacer 

 

 

 

 

veff [m/s] effective velocity VSP  [m3] 
volume of the spacer 
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kL [m/s] mass transfer coefficient Sv,SP  [m-1] specific surface of the spacer 

δ [m] boundary layer thickness ε  - spacer porosity (~0.9) 

Jv  [m/s] permeate flux θ  [rad] number of spiral turns 

QF [m3/s] feed flow rate rmodule  [m] module radius (=0.047m) 

c  
[g/dm3]or 

[mol/dm3] 

concentration rgatherer  [m] 
gatherer radius (=0.0159 m) 

 

 Robs - observed rejection  sspiral   [-] spiral step 

Rreal  - real Rejection  S [m2] cross section of flow channel 

Lp [dm3/(hm2bar]) membrane permeability P [m] wetted perimeter (circumference) 

∆P  [bar] pressure difference     

∆π [bar] 
Osmotic pressure 

difference  

Subscript 

T [K] temperature i  Solute/component 

R [J/(molK)] 
Universal gas constant 

(=8.314) 

bulk bulk side 

σV - 
Staverman reflection 

coefficient 

I feed/membrane interface 

α - Reynolds exponent  F feed side 

β - Schmidt exponent  P permeate side 

ω - (dh/L) exponent  R retentate side 

a - 
Reynolds coefficient in 

friction coefficient 

correlation  

inside inside the pore 

b - 
Reynolds exponent in 

friction coefficient 

rrelation Eq. C.x. 

   

  - 
steric partitioning 

coefficient 
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B.0 Introduction  

The efficiency of membrane processes depends in general not just on the membrane 

properties but also on the flow conditions in front of the membrane (Schwinge, Neal, et al. 

2004).  

Spiral wound (SW) modules are the most common commercially available due to their high 

membrane area to volume ratio, however the major problems for SW units are concentration 

polarization and pressure loss.  

 In membrane research, knowledge of the concentration at the membrane surface cI is of 

great interest for the description and modelling of the process.  

The main purpose of this work is to measure the mass transfer coefficient, kL, and pressure 

loss, ∆Ploss, in a “lab-scale” spiral wound module, technically SW1812. 

Mass transfer coefficients are usually presented in dimensionless forms in terms of 

Sherwood number (Sh), meanwhile pressure loss is related to a proper friction coefficient 

(λ=4f). 

In literature many researchers studied fluid dynamics and mass transfer through plane, 

spacer-filled channel, characteristics of spiral wound membrane modules, typically in 

aqueous solutions. To determine the mass transfer coefficient, three main methods have 

been used in literature (Shi, et al. 2015):  

(i) direct measurements, which made use of optical or electrochemical methods;  

(ii) indirect measurements, which are based on regression of membrane 

performance data using a combination of film theory and membrane transport 

models;  

(iii) computational fluid dynamics (CFD) simulation, based on a priori simulation 

of the module geometry.  

The pressure drop characteristics of a module were usually determined either from direct 

measurements, using accurate pressure gauges, or via CFD simulation. 

This study presents some experimental data processed according the second method. 

Transport resistances at the membrane surface will be discussed in detail, taking into 

account that the real retention is a function of the concentration at the membrane surface, 

which varies with the concentration polarization. 

Furthermore the performance of the spiral wound element (i.e. permeate flux) can be 

calculated by numerical integration of balance equations. For this purpose a computer 
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program is required, which needs reliable input data regarding geometrical parameters and 

transport characteristics.  

Literature correlations (i.e. (Shock and Miquel 1987)), experimental results and a computer 

program (TK-Solver ®) have been discussed and applied in order to calculate the proper 

correlation for mass transfer coefficient and pressure drop.  

 

B.1 Determining the mass transfer coefficient: State of art 

A number of qualitative relationships correlating the mass transfer coefficient to physical 

properties, flow channel dimensions, and operating parameters exists in the literature, but 

when no good theory exists, dimensional analysis is a powerful tool. Using the analogy 

with heat transfer, one can obtain general correlations. 

Mass transport resistances at the membrane surface can be calculated by using mass 

transport coefficient. The commonly used dimensionless parameters for the description of 

mass transfer and pressure loss are:   

Mass-transfer number (Re, , )Sh f Sc geometry  

Friction coefficient (Re)f   

Where Sh, Re and Sc are Sherwood number, Reynolds number and Schmidt number 

respectively. How to calculate dimensionless number is specified in Tab. B.1: 

Table B.1: Dimensionless parameters for the description of mass transfer coefficient and pressure loss, 

specific for spiral wound element 

Dimensionless number for mass transfer* 

Sherwood number ReL h

S

k d
Sh a Sc

D

    (B.1) 

Reynolds number Re hvd


  (B.2) 

Schmidt number 
S S

Sc
D D

 


   (B.3) 

Friction coefficient 2

2
4 hdP

f
v L





    (B.4) 

 *The dimensionless numbers are calculated using average bulk physical properties  

Another geometrical parameter required is the hydraulic diameter of the spacer-filled 

channel in the element. As a general rule the hydraulic diameter can be expressed as: 
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4h

S
d

P
   (B.5) 

Where S is the cross section available for the flow, and P is the wetted perimeter of the 

channel.  

Unlike tubes and flat channel, the hydrodynamics in a spiral wound element are critically 

influenced by the presence of the spacer material. The spacer materials in the feed and 

permeate channels reduces the void volumes of these and raises the effective velocities. 

The characteristic velocity in a spiral wound element can be calculated as: 

F
eff

eff

Q
v v

A
   (B.6) 

In the simplest approaches the SW is considered to be a flat channel, accounting for the 

spacer. The effective area Aeff can be calculated from the leaf width b, spacer thickness h, 

and porosity ε, according the equation: 

effA bh  (B.7) 

Leaf width b can be calculated by using two different approaches. The first one as well as 

the easiest is the empirical rule, whereby: 

1

2

A
b

L
  (B.8a) 

The second one, known as “Spiral rule”, whereby: 

2 21
[ 1 ln 1 ]

2
b a         (B.8b) 

module gatherer

spiral 2

r r

s








 (B.9) 

spiral

2

s
a


  (B.10) 

spiral ps h h   (B.11) 

In the “spiral” correlation hp is an unknown value, besides, information about the spacer 

geometry in commercial modules is usually confidential and therefore unavailable for users 

without performing a module autopsy, however from literature the thickness of the 
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permeate spacers lies in the range from 0.2 to 0.4 mm (referred to RO membranes), and the 

porosity is significantly lower than that of feed spacer (Shock and Miquel 1987). 

For this study, once fixed porosity (ε=0.9) the value hp has been found minimizing the 

difference between the area of the membrane from data sheets (0.32 m2) and the area 

calculated from the parameters derived from the spiral rule (Eq. B.8b). For a permeate 

spacer height of 0.58 mm (~23 mil) effective area for both relationships reaches the same 

value, which is slightly higher than typical values from literature.  

Geometrical data obtained from both correlations (“empirical” (Eq. B.8a) and “spiral” (Eq. 

B.8b) rules) for both SW1812-34 GE-DL and GE-DK are compared in Tab. B.2. 

 

Table B.2: Geometrical parameters for biotech spiral wound element 1812-34 Desal GE-DK and GE-DL, 

calculated with both Empirical rule (Eq. C.12a ) and Spiral rule (Eq.C.12b) 

 Empirical Rule Spiral Rule 

Membrane area (m2) 0.32 

h (mil) 34 

ε* 0.9 

L (m) 0.305 

dh (m) 1.11·10-3 

hp (m) ** 5.85·10-4 

b (m) 0.525 0.525 

Aeff (m2) 4.08·10-4 4.08·10-4 

                                    *hypothesis; ** not required 

For simplicity in this study geometrical parameters obtained with the empirical rule will be 

use.  

The measured Sherwood numbers for comparable Reynolds numbers are significantly 

higher in the spacer-filled channel than in the empty one (Shock and Miquel 1987). 

In the case of forced convective flow the following relationship (Eq. B.1) is valid, at least 

as long as the total density and diffusivity vary only little across the boundary layer. 

ReL h

S

k d
Sh a Sc

D

    (B.1) 

The exponents α and β are constant determined by the state of development of the velocity 

and concentration profiles along the channel. The Schmidt number dependency (β) is 
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derived from dimensional considerations of the convective diffusion equation under 

condition in which the momentum boundary layer is much longer than the diffusion 

boundary layer, i.e., when 1Sc  .  

For laminar flow systems, if both velocity and concentration profiles are fully developed, 

both α and β are zero. If velocity profile is fully developed but concentration boundary 

layer is developing along the entire length of the channel, the Graetz or Leveque1 solution 

can be used with 1 3   and 1 3  . If both velocity and concentration profiles are 

developing, 1 2   and 1 3   (Grober , Erk and Grigull 1961). When a laminar flow 

occurs, the entrance length, i.e. the region of flow where the profile is not fully developed, 

is important for mass transport, and the ratio dh/L is taken as an additional parameter. 

In situations where the concentration boundary layer is developing down the entire length 

of the flow channel, the Sherwood number will also be a function of the channel length, L, 

thus equation B.1 is usually rewritten for laminar flow models as Eq. B.12:  

Re hd
Sh a Sc

L



   
  

 
 (B.12) 

Where α is 0.664 in the Grober correlation and 1.86 in the Leveque solution. The value of 

ω is 0.33 in the developing boundary layer and 0.5 for fully developed velocity profiles. 

For turbulent flow, the Chilton-Colburn or Dittus-Boelter correlation can be used with 

0.8   and 0.33  . The constant a generally is independent of the solute mobility and 

membrane retention, varies with geometrical parameters (channel eight and distance from 

the inlet zone) and reflects physical property variations and other conditions of the system 

that one cannot explicitly account for from first principles.  

Among the indirect measurements approaches, (Shock and Miquel 1987) performed 

regression of flat sheet membrane performance data to determine the mass transfer 

coefficient in a plane, feed spacer filled channel using the combination of film theory and 

an empirical membrane transport model. This empirical transport model assumes that the 

permeate flux is linearly dependent on the difference between applied pressure and osmotic 

pressure (see Tab. B.5). The authors used a dimensionless correlation to describe the mass 

transfer coefficient, in the form of Eq. B.1, where Reynolds and Schmidt numbers are 

expressed by using Eqs. B.2 and B.3 respectively: 

                                                 
1 * 0.029 RehL d  
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ReL h h

S S

k d d v
Sh a Sc a

D D



   

 

  
     

   
 (B.1) 

Where dh is the hydraulic diameter of the system and DS the diffusion coefficient. In this 

work (Shock and Miquel 1987), the spacer geometry was measured using a light 

microscope; however the authors pointed out that this might not be a very accurate 

technique to obtain the characteristic dimensions of permeate spacers, due to their 

complicated geometry, moreover they found that the geometry of the feed spacer had little 

effect on the friction coefficient, while the geometry of the permeate spacer showed more 

significant effects. Other authors [ (Kuroda, Takahashi and Nomura 1983), (Da Costa, et 

al. 1991), (Schwinge, Wiley, et al. 2000)] also studied the effects of spacer geometry on 

the friction coefficient. Various type of spacers were considered in their works and a 

number of experimentally measured pressure drop data were reported. The significant 

effects of the spacer geometry on pressure drop performance were observed. 

From all the literature so far, it is clear that the spacer geometry significantly affects the 

fluid dynamics and mass transfer characteristics in the spacer filled channels of spiral 

wound membrane modules. Accordingly many correlations in the form of Eqs. B.1 and 

B.16 were reported.  

(Shock and Miquel 1987) measured the pressure drop through various feed and permeate 

spacer filled channels. A friction coefficient correlation was used to fit their experimental 

data, in the form of Eq. (B.4): 

2

2
Re

b

bh hPd d v
a a

v L




 

  
   

 
 (B.4) 

λ is the friction coefficient and ∆P is the pressure drop through the channel, dh is the 

hydraulic diameter of the channel, L is the length of the channel, ρ is the density of the 

solution, v is the velocity of the flow along the channel, η is the dynamic viscosity of the 

solution, and Re is the Reynolds number; a and b are the coefficient and the exponent of 

Reynolds number in the friction coefficient correlation, respectively.  

In comparison to desalination, when sugar solutions are processed fluid dynamics and mass 

transfer characteristics in spiral wound membrane modules are different due to a broad 

range of feed concentrations, and of possible Reynolds and Schmidt numbers.  

In summary, in the literature, many relationships can be found to describe the mass transfer 

coefficient under various conditions. Typical expression for the calculation of mass 
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transport coefficient in membrane literature, in the case of forced convection are 

summarized in Tab. B.3  

 

Table B.3: Mass Transport and pressure loss correlations for different module geometry flow regime 

(Laminar and Turbulent) in Literature 

Geometry Flow Regime Correlation Ref. 

Tube Laminar, 
*L L  

0.33

0.5 0.330.664Re hd
Sh Sc

L

 
  

 
 

(Grober , Erk 

and Grigull 

1961) 

Tube or flat channel 

Laminar 

*L L  

1
3

1.86 Re hd
Sh Sc

L

 
   

 
 

40.1 Re 10hd
Sc

L
     

Graetz-Leveque 

(Rautenbach and 

Albrecht 1989) 

Tube or  Flat 

Channel 

Turbulent, 

1,  Re 2000Sc   , 
0.875 0.250.023ReSh Sc  

(Jonsson and 

Boesen 1977), 

(Schweitzer 

1988) or Sieder 

& Tate, Dittus-

Boelter 

Turbulent  
3 1

340.04ReSh Sc  
(Rautenbach and 

Albrecht 1989) 

Flat channel + 

spacer  

(valid for SW) 

Turbulent 

100 Re 1000   

0.875 0.250.065ReSh Sc  

0.36.23ReFeed  ; 
0.8105ReP
  

(Shock and 

Miquel 1987) 

SW1812**  

0.61 0.330.075ReSh Sc  

0.346.94 ReF
 ; 

0.3416ReP
   

(Shi, et al. 2015) 

SW Laminar/Turbulent 

0.50.5 1

60.753
2

b

b

PehK D
k Sc

K h l

   
    

    

2 b bh u
Pe

D
 ; 

1

2
b feedh h  Where 

K=f(spacer mixing efficiency), ∆l=spacer 

mixing length, ub=velocity 

(Evangelista 

1988) 

Flat channel with 

spacer 
10 Re 1000   0.57 0.40.02ReSh Sc  

(Koutsou, 

Yiantsios and 

Karabelas 2009) 

Tubular, RO 

membrane 
2600 Re 10000   0.91 0.250.02ReSh Sc  

(Sutzkover, 

Hasson and 

Semiat 2000) 
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Flat channel 

Laminar 

1

3

1.62 Re hd
Sh Sc

L

 
  

 
 

(Porter 1972) 

Turbulent 
1

0.8 30.023ReSh Sc  

**Organic Solvent Nanofiltration application, SW1812 geometrical parameters were obtained by indirect 

regression of experimental data. dh=0.79 mm, ε=0.872 h=0.77 mm (30 mil) 

 

Once obtained the mass transfer coefficient from the Sherwood correlation, concentration 

profile in front of the membrane can be estimated by the Film model: 

exp v I P

L bulk P

J c c

k c c

  
 

 
 (B.13) 

Concentration decreases exponentially from a maximum value cI at the membrane surface 

to cbulk in the bulk of the fluid, and obviously concentration polarization is greatly affected 

by both permeate flux, Jv, and the membrane-parallel flow, kL.  

 

B.2 Determination of mass transport coefficient kL suitable for SW1812 modules: 

experimental results and data reduction 

For the experimental determination of pressure drop and mass transport characteristics in 

SW modules, the pressure drop ∆P and mass transfer coefficient kL must be measured. 

In order to obtain reliable mass transfer coefficient relationships directly from experimental 

data, two methods were tested: the first method based on the variation in observed retention 

when cross-flow velocities are changed (“velocity variation method”), and the second 

method by using the osmotic pressure difference during NF experiments (“osmotic 

pressure method”). 

 

B.2.1 Materials and Methods  

In this work the performance of two spiral wound membrane modules tested in 0.5 wt% 

aqueous solutions of dextrose under various inlet pressure (from 7 to 25 bar) and flow rates 

(ranging from 150 to 600 dm3/h) is presented and discussed. These commercial modules 

were made of two different types of polyamide membranes (1812C-34D GE-DK and GE-

DL). Both spiral wound modules studied have an effective membrane surface area of 0.32 

m2, and show the same feed and permeate spacer (the height of the feed spacer is 34 mil), 

as well as the parameters describing the module geometry (dh, b and Aeff). Further 
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geometrical information are listed in Appendix A: Materials & Methods. All the 

experiments were performed in the NF-unit described in detail in Appendix A: Materials & 

Methods. 

In order to investigate effect of concentration polarization on the “lab-scale” spiral wound 

modules, experiments were performed at a constant feed concentration of 50 g/dm3 of 

dextrose (a not totally rejected sugar is required for the analysis) at 50°C and pH 4, with 

varying volume flow rate from 150 to 600 dm3/h (corresponding to a cross flow velocity 

ranging from 0.10 to 0.41 m/s) and inlet pressure ranging from 7 to 25 bar. 

All the spiral wound modules were initially conditioned at 10 bar for 5-7 hour at 30° and 

50°C using demineralized water (pH 5.5) to remove the preservative traces from 

membrane. Modules were then tested with pure water (pH 4) at 30°, 40° and 50°C and 

various feed pressures (from 3 to 15 bar in increasing order) and a constant flow rate of 400 

dm3/h in order to obtain hydraulic permeability, Lp,w(T).  

After that, modules were tested in water solution of dextrose at a constant concentration of 

50 g/dm3. In each experiment, the modules were tested at each pressure (7, 10, 15, 20 and 

25 bar) by increasing feed flow rate (150 200 300 400 500 600 dm3/h) at 50°C and 

pH 4.  

The permeate flux, Jv, the sugar concentrations cbulk and cP of the solution and the trans-

membrane pressure difference applied ∆P, were determined experimentally. 

The permeate flux Jv was measured three times under each test condition after one hour; 

the average of the three measurements was recorded as the module flux. Feed and permeate 

samples were taken at different time until that concentration had remained stable for three 

times at least. The average of these three rejection was recorded as the module rejection.  

Solute rejection, Robs, and permeate flux, Jv, were calculated as reported in Eqs. B.14 and 

B.15, respectively. 

1 P
obs

bulk

c
R

c
   (B.14) 

v

V
J

t A



 (B.15) 

cI, cbulk and cP are the concentrations at feed/membrane interface, feed side and permeate 

side, respectively. V is the total permeate volume collected during the permeation time t, 

and A is the effective membrane area. Dextrose concentration was determined using a 

refractometer at fixed temperature (35°C) 
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Pressure drop was measured only with pure water on GE-DK, while for GE-DL was 

measured with different aqueous sugar solutions and pure water.  

An average velocity over the membrane can be calculated from the feed flow rate and 

geometric parameters (summarized in Tab. B.2) of the element, by applying empirical rule. 

 

B.2.2 Experimental results 

Experimental results of mass transport measurements are shown in Fig. B.1 a-c. 

The effect of cross flow velocity and pressure on both Permeate flux (Jv,exp) and retention 

(Robs%) is put in evidence for both modules.  

 

 a) b) 

c) d) 

Figure B.1: Permeate flux and dextrose observed rejection for SW1812 GE-DK (a) and (b), and SW1812 

GE-DL (c) and (d) respectively as a function of volume flow rate. Dextrose solution was 50 g/dm3, 50°C, 

pH 4, inlet pressure from 7 to 25 bar. 

 

The permeate flux, Jv, through both membranes depends on applied pressure and flow rate, 

increases with increasing pressure and flow rate, although non linearly. Dextrose retention 

is positively influenced by cross-flow velocity and significantly affected by applied 

pressure: the higher the pressure, the higher the retention. 
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a)  b) 

c)  d) 

Figure B.2: Flow rate effect on experimental permeate flux (Jv,exp) and Observed Rejection (Robs) in SW1812 

modules of GE-DK (a-b) and GE-DL(c-d) membranes. Experimental data: Dextrose 50 g/dm3, 50°C, pH 4, 

QF ranging from 150 to 600 dm3/h, total recirculation mode of R and P 

 

From experimental data flux is directly proportional to the applied pressure and inversely 

proportional to the viscosity. Viscosity is primarily controlled by two factors: solid 

concentration (or feed composition) and temperature. Thus increasing temperature or 

pressure should increase the flux; however this is true only under certain conditions such 

as (i) low pressure, (ii) low feed concentrations, and (iii) high feed velocity. When the 

process deviates from any of these conditions, flux becomes independent of pressure, 

sometimes even at quite low pressure. This behavior is shown in Fig. B.2 a-c for both 

membranes. The asymptotic pressure-flux relationship is due to the effects of concentration 

polarization. The general effect of pressure on flux is pronounced for both membranes. At 

low pressures and high feed velocities, i.e., under conditions where concentration 

polarization effects are minimal, flux (Jv,exp) will be affected by the transmembrane pressure 

(∆P). Deviations from the linear flux-pressure relationship will be observed at higher 

pressures. Pressure independence occurs at lower pressure when the flow rate is lower.  
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B.3 Data reduction 

Once gathered experimental data, sugar concentration at the membrane surface, cI, and 

therefore mass transfer coefficient kL, have been estimated through these methods:  

i) Velocity variation method (Wilson Plot method);  

ii) Osmotic pressure “revised” method;  

iii) Checking G.Shock & A.Miquel (1987) correlation suited for 2540 and 4040 

modules.  

For all correlation the concentration dependency of the mass transfer coefficient is taken 

into account according (Aimar and Field 1992) correlation (Eq. B.16): 

0.27

0 ( )

( )

bulk
L L

I

c
k k

c





 
  

 
 (B.16) 

All methods will be discussed specifically in the following paragraphs. 

 

B.3.1 The Velocity variation method 

The first method (i) (also applied by other authors: (Bouchoux, Roux-de Balmann and Lutin 

2005) (Weng, et al. 2009) (Jonsson and Boesen 1977) is based on the description of the 

concentration polarization phenomenon by the film theory, which gives the following 

relationship: 

1 1
ln lnobs real v

obs real L

R R J

R R k

    
    

   

 (B.17) 

The Sherwood relations for kL, always show dependence on the cross-flow velocity of the 

type Lk v , where 0.33   for laminar conditions and 0.75 0.91     for turbulent 

conditions. The mass transfer coefficient kL can be calculated from Sherwood’s relation, in 

the form of Eq. B.1, by assuming Schmidt number equal to 1/3. 

By plotting the experimental values of 
1

ln obs

obs

R

R

 
 
 

as a function of  vJ

v
, where the value of 

exponent α should be chosen in advantage, the intrinsic retention and the constant a can be 

determined graphically. The relationship of the mass transfer coefficient as a function of 

the various experimental variables can now be obtained by fitting experimental data. This 

semi-empirical method needs an incomplete retention of the solute. 
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The intrinsic retention increases with increasing permeate flux, increasing applied pressure, 

but is constant at increasing cross-flow velocities. 

Usually, the description of the mass transfer coefficient is given for laminar and turbulent 

conditions separately; in this study adjustable parameters a and α were calculated for both 

flow regime conditions (laminar and turbulent) and independently for both modules (GE-

DK and GE-DL).  

 

B.3.2 The “revised” osmotic pressure method 

The second approach used was the application of “Osmotic Pressure Method”, the same 

used in (Shock and Miquel 1987) and that in this study is presented in a “revised” form.  

When the fluxes (Jv,exp) during nanofiltration of a solution are known, they can be compared 

to the “clean water flux” at equal applied pressure, and by using Eq. B.18 the osmotic 

pressure difference across the membrane can be calculated (Eq. B.19).  

The unknown sugar concentration cI at the membrane surface is commonly determined 

from the permeate flux, the membrane permeability and the net driving force (Shock and 

Miquel 1987): 

 v pJ L P     (B.18) 

The osmotic pressure difference is calculated using the concentration at the membrane 

surface and in the permeate: 

( ) ( )I Pc c      (B.19) 

With the help of the relations for the osmotic pressure as a function of the concentration, 

the concentration at the membrane surface is obtained, then from Eq. B.18  by using 

experimental flux, bulk and permeate concentration, cI and kL can be calculated as a 

consequence. 

The concentration dependence of osmotic pressure can be taken from literature: typically 

Van’t Hoff equation is used for diluted solutions: 

( )I PRT c c    (B.20) 

Together equations B.18 and B.20 yield the unknown concentration at the membrane 

surface, and once known membrane surface concentration, the Sherwood number is 

calculated. 

In this study Eq. B.18 has been replaced by the following relationship: 
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 v p VJ L P       (B.21) 

Where the Staverman reflection coefficient σV has been taken into account, and osmotic 

pressure difference has been calculated from literature data (Weast 1973). The equation 

system is summarized in Tab. B.4 and compared with (Shock and Miquel 1987) method.  

 

Table B.4: Comparison between osmotic pressure method from (Shock & Miquel, 1987) and “revised” 

method adopted in this study 

Osmotic Pressure Method 

(Shock and Miquel 1987) 

Osmotic pressure “revised” method 

this study 

Experimental data:  NaCl 300 ppm~0.3 g/dm3, 

spacer filled channel 
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Experimental data:  Dextrose 50 g/dm3 50°C, 

commercial SW1812 
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* for the calculation of the hydraulic diameter the analogy between the flow in a spacer-filled channel and that in a packed 

column is used (Rautenbach and Albrecht 1989); ** Osmotic pressure was calculated by using literature data (Weast 

1973); ***as fist approximation for slit-like pore geometry 

 

B.4 Results  

B.4.1 The velocity variation method application 

As shown in the theoretical section, the experimental data required for a typical plot in the 

velocity variation method are the observed retention (Robs), the permeate flux (Jv), and the 

cross flow velocity (veff). After choosing the exponent α of the cross flow velocity, the main 

variable for a certain combination of solute and membrane appears to be the applied 

pressure. In this study three different Reynolds exponents were chosen (α=0.33 for laminar 
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flow, α =0.8 and α=0.875 for turbulent flow). The exponent 0.875 for Reynolds number in 

(Shock and Miquel 1987) equation (see Table B.3) was also found in the turbulent flow 

regime in the case of tubular and flat channel. In figure a typical example of the application 

of the Wilson plot method is given for turbulent conditions (α=0.875 and α =0.8) 

 

a) b) 

c) d) 

Figure B.3: the velocity variation plot for turbulent conditions (α=0.875 and α=0.8), Dextrose at bulk 

concentration of 50 g/dm3 was used at 50°C using GE-DK membrane (a) and GE-DL (c) in SW1812 

configuration.  

 

The lines fitting the data show the same slope, which is 1
a

 in 
0.875

Lk av av  . This was 

imposed because equal slopes are expected when the applied pressure is the only variable 

and, more important, when a fit is made at each pressure separately the difference in slopes 

can be very large; the extrapolation of 
0.875/ 0vJ v  , to obtain the value of the intrinsic 

retention at the various pressures would then give nearly random values.  

Both exponents (α=0.875 and α=0.8) show the same trend, although for some data a 

deviation can be observed (the lowest velocities at each pressure) 

The range for choosing the exponent α for the cross flow velocity is fairly wide. For this 

study we choose “realistic” exponent like 0.875 as proposed by (Shock and Miquel 1987) 

and 0.8, used by Dittus-Boelter. A laminar flow regime (α=0.33) was rejected, because of 
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the scattering between lines and experimental data. It must be concluded that the exponent 

α should ranges from 0.8 to 0.875 instead of 0.33. 

Between 0.8 and 0.875 the difference in scattering is not very large, however the problem 

of choosing the right exponent α still exists. The large different between the two membranes 

is evident, although modules have the same geometrical characteristics.  

Both membranes shown different correlation for each exponent value. Results obtained for 

turbulent flow by using “velocity variation method” are summarized in Tab. B.5 but were 

rejected because inconsistent. 

Table B.5: Mass transfer coefficient correlations from “velocity variation method” (Wilson Plot 

application) 

SW1812 GE-DK SW1812 GE-DL 

0.875 0.250.018ReSh Sc * 
0.875 0.250.012ReSh Sc * 

1
0.8 30.015ReSh Sc  

1
0.8 30.007ReSh Sc  

  *Sc0.25 from Shock and A.Miquel (1987) 

The application of this method provided two different correlations, in spite of the modules 

have same geometric characteristics (module length, feed spacer eight, effective area). The 

method is inconsistent to find a correct correlation for kL.  

 

B.4.2 “Revised” osmotic pressure method application 

In this section the “revised” osmotic pressure method will be discussed in comparison with 

the standard osmotic pressure method applied by Shock & Miquel, (1987).  

Starting from experimental results, data were reduced by applying the equation system 

provided in Tab B.4. This method strongly depends on the hydraulic permeability of the 

membrane (Lp,w), as well as the Staverman reflection coefficient (σV) that in first 

approximation is assumed equal to the asymptotic observed rejection ( obsR
) .  

A numerical algorithm can be used to solve the set of equations. Table B.6 summarize 

inputs and outputs of the system. TK-Solver ® program was used to calculate mass transfer 

coefficient kL.  
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Table B.6: Schematic representation of Input/Output data required for the resolution of the “revised” 

osmotic pressure method 

Input  Output 

∆P,exp, cbulk,exp, T, QF 

Lp,w(50°C)=10.7 dm3/(hm2bar) 

λ(DX,50°C)=0.991 

cI 
* (*guess value) 

 

cI, cP, Jv 

Robs, Rreal 

  

Results obtained for both Reynolds exponents (α=0.875 and α=0.8) are plotted in Fig. B.4 

in terms of Sherwood as a function of Reynolds number, for both membranes. 

a) b) 

Figure B.4: Mass transport coefficient for turbulent flow from “revised” osmotic pressure methods, 

α=0.875 and α =0.8 and (lines), Spiral wound 1812 GE-DK (a) SW1812 GE-DL (b) 

 

The best correlation identified for both membranes has the following expression (Eq. B.22): 

1
0.8 30.023ReSh Sc  (B.22) 

Equal to a (Sieder and Tate 1936) equation. The same equation was identified from 

(Jonsson and Boesen 1977) and applied later by (Weng, et al. 2009) for a similar 1812 GE-

DK spiral wound module with an effective filtration area of 0.27 m2 (equal to a feed spacer 

of 47 mil). (Cuartas-Uribe, et al. 2007) applied to a 2540 GE-DL Spiral Wound element 

the same equation derived from Schaep et al. (2001), technically defined as Dittus & 

Boelter correlation.  

The “revised” osmotic pressure method provides a correlation for mass transfer already 

applied in literature for SW modules. 

 

 



APPENDIX B 

Fluid Dynamic Analysis on SW1812 modules 

178 
 

B.4.3 Comparison between Experimental data and Model  

Fig. B.5 shows a comparison between model prediction and experimental data for both 

(Shock and Miquel 1987) and the proper Sieder & Tate equations for mass transfer (the 

latter found with the revised osmotic pressure method). A comparison between the two 

methods is proposed, for both membranes. 

a)  b) 

c) d) 

Figure B.5:  Comparison between Experimental data of permeate flux (Jv,exp) and observed rejection (Robs) 

as a function of the model prediction, by using Shock and Miquel correlation (Grey dots) and Sieder & Tate 

(Black dots), SW1812 GE-DL (a-b). Data: Dextrose, 50°C, 50 g/dm3, pH 4, flow rate ranging from 200 to 

600 dm3/h. Total recirculation mode of R and P. 

As shown graphically, a good agreement between experimental data (Jv,exp and Robs,exp) and 

the “revised” osmotic pressure correlation is obtained, however model quite overestimates 

rejection for GE-DK membrane, which is probably because Lp,w and σV values are quite 

scattered compared to GE-DL membrane. For the (Shock and Miquel 1987) mass transfer 

correlation the experimental values are lower than predicted ones. From Figure B.5 it is 

further seen that Shock & Miquel equation overestimates mass transfer coefficient (that is 

to say that cI is underestimated, while effective driving force, ∆Peff is overestimated).  

As we will see in the next session, this lack of accuracy is maybe due to the fact that 1812 

module works in a transition phase, the flow should be not completely developed.  

It has been proved that (Sieder and Tate 1936) correlation is able to describe (better than 

(Shock and Miquel 1987) equation) mass transfer in industrial spiral wound module, as 
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shown in Chapter 4, relatively to 4040C1025 GE-DL module, on the basis of literature data 

from (Bandini and Nataloni 2015). 

 

B.5 Pressure Drop in a SW1812 module 

For calculating the performance of a spiral wound element, knowledge about the pressure 

drop in the feed side is crucial, since the driving force is critically influenced by these 

losses. Pressure loss along the permeate channel was assumed to be negligible compared 

to feed channel, as well as the pressure along the permeate collector tube is usually assumed 

to be constant, although in practice there will be a small pressure loss. 

Pressure losses in the feed side were experimentally measured in spiral wound element in 

order to (i) verify G.Shock and A.Miquel (1987) correlation (Eq. B.23) (ii) and/or identify 

a proper correlation able to describe pressure drop in a spiral wound element.  

The (Shock and Miquel 1987) correlation for pressure drop was determined in both spiral 

wound elements (25”×40”) just as spacer-filled flat channel: 

0.3

. & . 6.23ReG Shock A Miquel   (B.23) 

For the second purpose a differential pressure gauge was installed between upstream (feed 

side) and downstream (retentate side) of the module.  

This configuration does not allow to eliminate inlet and outlet pressure losses in the 

element. The pressure drop of the module 
module+housing

FP includes the pressure drop of the 

empty housing empty housingP , according Eq. B.24: 

module+housing module empty housing

,loss F FP P P     (B.24) 

To be able to transform experimental data (∆P/L vs. QF) to a dimensionless form λ=λ(Re) 

(Eq. B.4) element geometry is required. The hydraulic diameter dh from Tab. C.2 was used. 

The dimensionless pressure drops for spiral wound element are compared with ones 

predicted from (Shock and Miquel 1987), and shown in Fig. B.6. From technical sheet the 

maximum pressure drop over an element is reported to be 1.03 bar. 
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a)  b) 

Figure B.6: Comparison between Experimental data (dots) and predicted (from (Shock and Miquel 1987)) 

pressure loss as a function of flow rate (a) and Reynolds number (b) for 1812C-34 D GE-DL and GE-DK. 

Experimental data refer to Dextrose solution, 50 g/dm3, 50°C, pH 4, QF ranging from 150 to 600 dm3/h, 

inlet pressure from 7 to 25 bar 

 

From experimental measurements of ∆Ploss as a function of Reynolds number (Fig. B.6b) 

SW modules work in a transition region. No simple equation exists for accomplishing a 

smooth mathematical transition from laminar flow to turbulent flow. Regarding heat 

transfer Hausen’s equation describes the transition region plotting a series of curves as a 

function of Reynolds number and the ration L/D as a parameter (Bird, Steward and 

Lightfoot 1960).  

However experimental results suggest that no 1812 element will have pressure drop above 

1 bar. The state of turbulence can be easily determined by the nature of the relationship 

between pressure drop (∆P) and flow rate (QF) in the feed channel. The general relationship 

is: 

nP Q   (B.25) 

For laminar flow, n=1. For turbulent flow, on the other hand, n>1. The spiral module shows 

a departure from linearity, indicating that the flow is in the turbulent region. 

In conclusion, in order to be conservative in prediction of pressure loss, (Shock and Miquel 

1987) equation can be applied. 
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C.0 Membrane processes in biotechnology 

Microbiological processes have been used for a long time in the food and beverage industry (e.g. 

vinegar, bakers’ yeast production), in the chemical industry (ethanol production) and in the 

pharmaceutical industry (i.e. production of penicillin). Nowadays the importance in biotechnology 

increases as more and more efficient microorganism are cultivated.  

Membranes have always been an integral part of biotechnology processes, they have traditionally 

been used for size-based separations. In many applications tangential flow microfiltration (MF) 

competes with centrifugation, depth filtration and expanded-bed chromatography for the initial cell 

harvesting, similarly Ultrafiltration (UF) has become the method of choice for protein concentration 

and buffer exchange, largely replacing size-exclusion chromatography in these applications. 

Besides, membranes are increasingly being used in reaction, clarification, and recovery schemes for 

the production of molecules, emulsions and particles.  

Membrane systems take advantage of their selectivity, high surface-area-per-unit-volume, and their 

potential for controlling the level of contact and/or mixing between two phases. They are very well 

suited to the processing of biological molecules since they operate at relatively low temperatures and 
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pressures and involve no phase changes or chemical additives, thereby minimizing the extent of 

denaturation, deactivation, and/or degradation of biological products (Zeman and Zydney 1996). 

Ultrafiltration and microfiltration are commonly used to recover macromolecules and retain 

suspended colloids and particles, and are being integrated into both upstream and downstream 

processes. A large range of ultrafiltration and microfiltration applications is reported to concentrate 

proteins, exchange buffer systems, clarify suspensions for cell harvesting, and sterilize liquids to 

remove viruses and bacteria. Other membrane processes include membrane bioreactors (MBR), where 

enzymes, microorganisms or antibodies are suspended in solution and compartmentalized by a 

membrane in a reaction vessel or immobilized within the membrane matrix itself. Finally, membrane 

contactors involve using a pressure to force the dispersed phase to permeate through a membrane into 

the continuous phase, for the preparation of emulsions and various types of particles, as w/o 

emulsions, o/w emulsions, and polymeric particles, not to mention membrane chromatography, used 

as an alternative to conventional resin-based chromatography columns, for a large range of 

chromatographic purification schemes, including ion-exchange, hydrophobic, reversed-phase, and 

affinity chromatography (Charcosset 2006). 

Actually, improvements in membrane technology are focused on high-resolution applications, 

including improved protein–virus separation, protein purification by high-performance tangential 

flow filtration and enhanced membrane chromatography. These developments will allow membranes 

to play an important role in the evolution of the next generation of biotechnology processes (van Reis 

and Zydney 2001). 

As mentioned before, membrane processes are increasingly considered for the separation of 

fermentation products, next to the traditional separation methods such as centrifugation or distillation. 

Some special material properties of microbiological products such as sensitivity against elevated 

temperatures (10-40°C), small particle size (0.3-10 μm), small density differences between particles 

and liquids are often the reason for difficulties in conventional separation processes. Membrane 

processes should be capable of improving this situation generally.  

There are numerous applications for membrane processes in biotechnology applications, e.g.: 

 Recovery of biomolecules; 

 Methane recovery from biogas; 

 Separation of volatile components; 

(Cheryan 1998) 

Among all the applications, this study is focused mainly on two biotechnology applications: 

(i) PHAs (Polyhydroxyalcanoates) recovery from fermentation broth, by UF/MF; and 

(ii) VFAs (Volatile Fatty Acids) recovery by NF. 



APPENDIX C 

Membrane Processes in Biotechnology Applications 

185 

 

Nowadays biotechnology research is focused on the synthesis of bio-compounds from renewable 

sources. The first product is just a bio-polymer, bio-synthetized and accumulated intracellularly, that 

can replace synthetic production of plastics, while VFAs represent important compound for its 

fermentation pathway. A limiting factor for the production of this biopolymer, are the costs associated 

to its recovery. As mentioned in literature, membrane processes represent alternative methods to 

centrifugation, able to provide PHAs purity that exceeded 92% [ (de Koning, Kellerhals, et al. 1997), 

(Yasotha, Aroua, et al. 2006)]. 

This study represent a preliminary study for the applicability of PHAs recovery by UF/MF, integrated 

by a re-use of VFAs during fermentation, as carbon source during polymer bio-synthesis. 

 

C.1 Biotechnology processes for bio-plastics production 

The biotechnology industry today employs recombinant bacteria almost for the production of high-

value bio-molecules and chemical products, some of these latter appear to be potential candidates to 

replace some conventional plastics.  

As a matter of fact, biopolymers, produced from renewable resources, could replace the 

petrochemical-based plastomers, elastomers, latexes or even high performance polymers (G.-Q. Chen 

2010). 

Almost all the biotechnology processes now adopted are based on an initial biological fermentation 

step followed by several downstream operations. The mayor cost absorbing factors are the upstream 

fermentation, thus part of the work consists of optimizing the fermentation conditions. However 

improving the downstream processing efficiency is also of great interest; in fact, to date, in many 

fermentation processes, downstream processing is a significant factor in determining economic 

feasibility, this latter significantly affects the overall process economics. Typically, carbon source 

and downstream process (recovery and purification) represent both 30% (approximately) of the final 

product cost (Choi and Lee 1999). 

Various recovery technologies have been proposed and studies in small scales in the laboratory (a 

large amount of works and publications), as well as in industrial scales. To that respect, a large number 

of studies proposed new combination of traditional and/or innovative operations to be used after 

fermentation (Bouchoux, Roux-de Balmann and Lutin 2006): 

(i) Liquid-liquid extraction; 

(ii) Ion-exchange; 

(iii) Adsorption 

(iv) Electrodyalysis, and 

(v) Other membrane separation operations.  
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Membrane technology can play a role in each step: many works related to cell harvesting by 

microfiltration, protein fractionation by ultrafiltration, desalting by electrodialysis, as well as 

dewatering by reverse osmosis have been published in the last decades (Cheryan 1998). 

Typically, regarding biotechnology process, the first step is the separation of the biomass from its 

surrounding broth.  

Fermentation broths are generally a complex mixture of microorganisms, unreacted substances, 

metabolites, un-wanted by-products and additives such as anti-foaming agents and water. The 

microorganism itself may be the product, as in the production of bakers’ yeast, or metabolites, as in 

the production of antibiotics, amino acids or alcohols; in either case, the cellular components have to 

be separated from the dissolved components.  

Regarding a bio-polymer, it is expressed within the bacterial cell in the form of an insoluble granule. 

The recovery of the entire biomass including the cells is performed by either preparative 

centrifugation or by means of tangential flow filtration systems using microporous membranes. 

Since fermentation processes are usually operated discontinuously, membrane process is operated 

batchwise. In this preliminary feasibility study Ultrafiltration was applied for the recovery of a bio-

polymer (PHA) in a dead-end stirred cell.  

 

C.1.1 Bio-polymers: a general introduction 

Plastic materials have become an integral part of contemporary life because of many desirable 

properties including durability and resistance to degradation. Recently, the problems concerning the 

global environment and solid waste management have created much interest in the development of 

biodegradable plastics, which must still retain the desired physical and chemical properties of 

conventional synthetic plastics.  

Some of the biodegradable plastic materials under development include polyhydroxyalkanoates 

(PHAs), polylactides, aliphatic polyesters, polysaccharides, and the copolymers and/or blends of 

these, however the most extensively studied thermoplastic biopolymers are the 

polyhydroxyalcanoates (PHA) and polylactic acid (PLA) (G.-Q. Chen 2009). 

It is estimated that the global market for biodegradable polymers is expected to grow. However, one 

of the problems facing the development of biodegradable polymers as substitutes for conventional 

plastics is their high price compared with petrochemical derived plastics. To date, industrial PHA 

production is carried out using pure microbial culture fermentation technology with high costs 

associated with carbon substrate, fermentation operation and downstream processing. It has been 

suggested, based on Life Cycle Analysis (LCA), that PHA production using mixed cultures may be 
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more favorable than using pure cultures in both economic and environmental terms (Gurieff and Lant 

2007). 

Pure cultures (wild type or genetically modified) allow getting higher productivities and PHAs 

content (Agustìn Martinez, et al. 2015). Conversely, the employment of mixed cultures has the 

economic advantage that they do not need to work under sterile conditions. 

Among the candidates for biodegradable plastics, PHAs have been drawing much attention because 

of their similar material properties to conventional plastics and complete biodegradability. A number 

of review articles are available on the general features of PHAs, the physiology, genetics and 

molecular biology of bacteria synthesizing PHAs, the development of PHAs having novel monomer 

constituents, the characterization of PHA polymer and the biodegradation of PHAs. 

Even though PHAs have been recognized as good candidates for biodegradable plastics, their high 

price compared with conventional plastics limited their use in a wide range of applications. However, 

recently, much effort has been devoted to develop a process for the economical production of PHAs.  

The recovery of PHA contributes significantly to the overall economics. Development of a process 

that allows the simple and efficient extraction of polymers will be well rewarded. The major cost 

absorbing factors are the upstream fermentation processes and the downstream PHA recovery 

technologies  

PHAs have sparked global interest due to its many advantages such as thermoplastic properties, 

biodegradability, biocompatibility and its ability to be synthesized from renewable resources. 

For latex-like applications such as in paints (for binder, vanish hardening and sprayable films) as well 

as in paper coating and impregnation, a PHA purity higher than 90% is sufficient for direct 

applications without further treatments (Rehm, et al. 2004). However, for biomedical applications a 

product purity below 99% is not acceptable, thus further purification/polishing steps are required. 

In the next sections the state of art about PHA bio-synthesis and recovery will be discussed.  

 

C.1.2 Bacterial Polyhydroxyalcanoates (PHAs): the biosynthesis 

Polyhydroxyalcanoates (PHAs) are biodegradable polyester which are accumulated by numerous 

bacterial species in the form of intracellular granules and which serve as reserves of energy as shown 

in Fig.C.1 (Holmes and Lim 1990) : 
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Figure C.1: Transmission electron micrograph of recombinant Escherichia coli XL1-Blue (pSYLlO5) accumulating a 

large amount of poly(3- hydroxybutyrate), P(3HB). P(3HB) granules appear as electronlucent bodies. Bar represents 

1μm (S. Lee 1996) 

Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyalkanoates (HAS) synthesized by numerous 

bacteria as intracellular carbon and energy storage compounds and accumulated as granules in the 

cytoplasm of cells, having the general structural formula shown in Figure C.2. 

  

n R Polymer 

1 

hydrogen Poly(3-hydroxypropionate) 

methyl Poly(3-hydroxybutyrate) 

ethyl Poly(3-hydroxyvalerate) 

propyl Poly(3-hydroxyhexanoate) 

pentyl Poly(3-hydroxyoctanoate) 

nonyl Poly(3-hydroxydodecanoate 

2 hydrogen Poly(4-hydroxybutyrate) 

3 hydrogen Poly(5-hydroxyvalerate) 

Figure C.2: General structure of polyhydroxyalcanoates (S. Lee 1996) 

 

More than 80 HAS have been detected as constituents of PHAs, which allows these thermoplastic 

materials to have various mechanical properties resembling hard crystalline polymer or elastic rubber 

depending on the incorporated monomer units. A number of bacteria including Alcaligenes 

eutrophus, Alcaligenes latus, Azotobacter vinelandii, methylotrophs, pseudomonads, and 

recombinant Escherichia coli have been employed for the production of PHAs, and the productivity 

of greater than 2 g PHA/L/h has been achieved. Recently (Agustìn Martinez, et al. 2015) produced 

PHAs by feeding a pure culture of Cupriavidus necator with a pre-treated olive mill wastewater 

(OMW), accumulating up to 55% of the cells dry weight. 

Recent advances in understanding metabolism, molecular biology, and genetics of the PHA 

synthesizing bacteria and cloning of more than 20 different PHA biosynthesis genes allowed 

construction of various recombinant strains that were able to synthesize polyesters having different 

monomer units and/or to accumulate much more polymers. Also, genetically engineered plants 

harboring the bacterial PHA biosynthesis genes are being developed for the economical production 
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of PHAs. Improvements in fermentation/separation technology and the development of bacterial 

strains or plants that more efficiently synthesize PHAs will bring the costs down to make PHAs 

competitive with the conventional plastics (S. Lee 1996).  

Furthermore, improving the intracellular PHA content is important for decreasing the extraction and 

recovery cost of PHA downstream processing. 

Numerous bacteria synthesize and accumulate PHAs as carbon and energy storage materials or as a 

sink for redundant reducing power under the condition of limiting nutrients (typically nitrogen, 

phosphorous, magnesium, or oxygen) in the presence of excess carbon source. When the supply of 

the limiting nutrient is restored, the PHA can be degraded by intracellular depolymerases and 

subsequently metabolized as carbon and energy source. The monomer HA units in these microbial 

polyesters are all in the D(-) configuration due to the stereospecificity of biosynthetic enzyme. 

The molecular weights of polymers are in the range of 52 10  to 63 10  daltons, depending on the 

microorganism and growth condition. 

PHA accumulates in the cells as discrete granules, the number per cell and size of which can vary 

among the different species; some 8 to 13 granules per cell having the diameter of 0.2 to 0.5 μm were 

observed in Alcaligenes eutrophus. These granules appear as highly refractile inclusions under 

electron or phase-contrast microscopic observation. The composition and quantity of PHA polymer 

can be determined by gas chromatography after methanolysis. 

PHAs can be classified into three main groups depending on the number of carbon atoms in the 

monomer units:  

 short-chain-length (scl) PHAs, which are composed of C3 to C5 3-hydroxy/4-hydroxy fatty 

acids;  

 medium-chain-length (mcl) PHAs, which are composed of C6 to C16 3-hydroxy fatty acids;  

 long-chain-length (lcl) PHAs. 

Poly(3-hydroxybutyrate) P(3HB), the first of the PHAs to be studied extensively, fall into the first 

group of PHAs . This biopolymer shows a melting temperature close to 180°C (Kunioka and Doi 

1990) and a glass transition temperature around 4°C (Mitomo, et al. 1999) and is highly crystalline 

(55-80%). 

The composition of the general PHA produced, and thus its physical properties, depend both on the 

micro-organism and carbon source used (de Koning and Witholt 1997). Composition of the culture 

medium (particularly carbon substrate) influences the microbial polymer (e.g., range of polymers 

formed, molecular weight, crystallinity), which in turn determines the physical properties (e.g., 

mechanical and tensile strength) (Yasotha, Aroua, et al. 2007). 
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The discrepancy is mainly due to the substrate specificity of the PHA synthases, the key enzyme of 

PHA biosynthetic pathway.  

The most important property of PHAs is their complete biodegradability. The family of PHAs exhibits 

a wide variety of mechanical properties, from hard crystalline to elastic, depending on the 

composition of monomer units, which broadens its application area. For example, the mcl-PHAs are 

semi crystalline elastomers with a low melting point, low tensile strength, and high elongation to 

break and can be used as a biodegradable rubber after crosslinking by electron-beam irradiation. 

The medium-chain-length PHAs (comprising C6 to C16 monomers) produced by the Gram-negative1 

Pseudomonas are very much in demand due to the flexible and elastomeric applications in the global 

market. The mcl PHAs are more conducive for coating and film materials, and offer greater 

possibilities for chemical modifications. 

PHB and its derivates are generally produced by Gram-positive2 organism such as Bacillus 

megaterium and, on an industrial scale, Alcaligenes eutrophus. These polymers (PHB) are all highly 

crystalline materials and therefore are suitable for polypropylene- and low-density polyethylene- type 

applications. Owing to their intrinsic rigidity, these materials can only cover part of the 

biodegradables market, unlike PHAs which can cover flexible and elastomeric applications. 

 

C.1.3 Bacterial Polyhydroxyalcanoates (PHAs): the recovery 

Following the fermentation, cells containing PHAs are separated by conventional procedures such as 

centrifugation, filtration, or flocculation-centrifugation: this represents the first step for the PHAs 

granules recovery. In order to recover the PHA granules, it is necessary to rupture the bacterial cell 

and remove the protein layer that coats the PHA granules; alternatively, the PHA has to be selectively 

dissolved in a suitable solvent. PHA recovery includes three main steps: 

(i) Biomass harvesting; 

(ii) Recovery of intracellular PHA (cell disruption and biomass solubilization) (chemical or 

biological/enzymatic methods) – 1st Recovery- 

(iii) Separation of PHAs from solution (centrifugation, filtration methods)-2nd Recovery- 

Most importantly, by means of some of these approaches PHAs may be recovered in their native 

form. Within the cell, PHAs exist in an amorphous elastomeric state, surrounded by a phospholipid 

                                                 
1 Gram-negative bacteria are a group of bacteria that do not retain the crystal violet stain used in the Gram staining 

method of bacterial differentiation making positive identification possible. The thin peptidoglycan layer of their cell wall 

is sandwiched between an inner cytoplasmic cell membrane and a bacterial outer membrane. 
2 Gram-positive bacteria are bacteria that give a positive result in the Gram stain test. Gram-positive bacteria take up the 

crystal violet stain used in the test, and then appear to be purple-coloured when seen through a microscope. This is because 

the thick peptidoglycan layer in the bacterial cell wall retains the stain after it is washed away from the rest of the sample, 

in the decolorization stage of the test 
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layer with embedded and attached proteins to form a granule. Generally, cell disruption rapidly leads 

to solidification of the granule and crystallization of the polymer. Where extraction is carefully carried 

out to obtain PHAs in their native amorphous granular form, this results in polymer latexes, which 

can allow unique applications such as paints, thermolyzable lacquers, and paper coatings for 

packaging. Recovery represents thus a critical step, because should preserve the granule integrity. 

1st Recovery 

After the biomass harvesting (i.e. cells are separated from the exhaust supernatant by centrifugation, 

15 min at 8,000 rpm), cells are disrupted to recover polymers. A number of different methods, here 

discussed, have been developed in literature for the recovery of PHA. 

 Solvent Extraction 

The most popular PHA recovery method is carried out using the solvent extraction method, 

employing solvents such as chloroform and methanol (Doi 1990), which allows both high yield of 

recovery and degree of purity. Unfortunately this method requires large quantities of these volatile 

solvents which are not only cost prohibiting but also hazardous to the environment. 

The first method that has most often been used involves extraction of P(3HB) from biomass with 

solvents. The solvents employed include chloroform, methylene chloride, propylene carbonate, and 

dichloroethane. Due to the high viscosity of even dilute PHA solutions, about 20 of solvent is required 

to extract 1 of polymer. The large amount of solvent required makes this method economically 

unattractive, even after the recycle of the solvent, and it is clear that the production of a “green” 

bioplastic should not such solvents. Biopolymers obtained through this procedure are adopted as such 

in biomedical applications for surgical reconstruction and tissue engineering (Chen and Wu 2005). 

Convenience of PHA recovery approaches alternative to solvents may be partly counterbalanced by 

a loss in recovery yields and/or purity of PHAs, and sometimes by production of large amounts of 

wastewaters. However, employment of aqueous solvents may be more easily integrated into a 

biorefinery scheme. 

 Chemical digestion  

Another popular method is the use of sodium hypochlorite which solubilizes non-PHA cellular 

materials and leaves PHA intact. Several methods that have been developed involve the use of sodium 

hypochlorite for the differential digestion of non-PHA cellular materials.  

Although this method is effective in the digestion of non-PHA cellular materials, it causes severe 

degradation of the polymer resulting in a 50% reduction in the molecular weight; even when 

optimized, the hypochlorite method approximately halves the molecular weight of the PHB present 

in the original biomass (Berger, et al. 1998).  Some author [ (Berger, et al. 1998), (S. Lee 1996) ] 
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reported a severe degradation of the polymer of up to 50% reduction in molecular weight during 

sodium hypochlorite digestion 

This technology is simple a process, however, in view of the marked decrease in molecular weight of 

PHA due to sodium hypochlorite being a strong oxidant, and the appreciable amount of chlorine left 

behind in the recovered PHA, this technology has been modified by many researchers.  

A combination of solvent extraction and hypochlorite treatment has been proposed to fight this 

problem, but this approach has not been developed commercially (de Koning and Witholt 1997). The 

use of sodium hypochlorite together with chloroform significantly reduced degradation of PHA. Such 

variations include using a dispersion solution made of sodium hypochlorite and chloroform as studied 

by (Hahn, et al. 1994). However, this also leads to a higher cost and environmental hazard. 

 Enzymatic digestion 

The aqueous enzymatic digestion method has been developed as an alternative to solvent extraction. 

Numerous studies in recovery process through enzymatic digestion treatments have been taken upon 

by many researchers [ (de Koning and Witholt 1997) (de Koning, Kellerhals, et al. 1997) (Eggink and 

Northolt 1999) (Holmes and Lim 1990)]. 

In the commercial Biopol recovery process (Holmes and Lim 1990), microbial cell are ruptured by 

thermal treatment and the resultant debris is treated with enzyme cocktail and a surfactant to solubilize 

all non-PHA cellular materials. 

In the enzymatic digestion process for recovery of PHAs, heat shock is employed by means of 

sterilizing the fermentation broth for short period of time. The heat shock enables the cells to be 

ruptured as well as the polynucleic acids solubilized and denatured, thereby preventing a detrimental 

increase in medium viscosity. Then, the solubilization of non-PHA cell material can be effected 

through the various enzymatic treatments (Holmes and Lim 1990).  

The protease enzyme (Alcalase) was found to be effective in digesting the denatured nucleic acids 

and proteins (de Koning and Witholt 1997). The use of anionic detergent such as sodium dodecyl 

sulfate (SDS) can decompose any insoluble matters such as protein and lipids and solubilize the 

components by incorporation in micelles 

(de Koning and Witholt 1997) found in their research that reaction of Alcalase and SDS 

simultaneously bore no synergistic effect at the optimum pH and temperature condition of Alcalase, 

and as such this leads to considerable time savings since the reactions can be carried out 

simultaneously. Further treatments with ethylene diamine tetra acetic acid (EDTA) enables chelation 

of divalent cations as well as degradation of the lipopolysaccharride layer enveloping membrane of 

the cell wall. Lysozyme is effective in degrading the peptidoglycan wall surrounding the PHA 
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granule, however, releasing this wall, increases viscosity, and as such, a lower concentration of 

lysozyme should suffice.  

In the study carried out by (de Koning and Witholt 1997), the PHA was produced using sodium 

octanoate as the carbon source as well as different genera of the Pseudomonas putida strain from the 

one used in this study. The authors recovered the PHA by digestion with excess amounts of Alcalase, 

SDS and EDTA.  

Other recovery technologies have been proposed in literature, including mechanical disruption, 

flotation techniques, use of gamma irradiation as well as aqueous two-phase system (Kunasundari 

and Sudesh 2011). 

However, once PHA granules have been isolated from the solution, a final recovery step is required. 

 

2nd Recovery 

Final recovery of PHA granules in water suspension can be achieved through conventional methods 

(i.e. centrifugation) or new approaches (i.e. membrane processes).  

The medium containing the solubilized cell material should be separated from the PHA granules.  

Different methods have been proposed and applied for this purpose. In the PHB recovery procedures, 

solubilized and non-solubilized cell compounds are separated by centrifugation (Berger, et al. 1998). 

However, while PHB granules have a density of about 1.2 g/cm3, the submicron mcl-PHA granules 

have a density close to that of water (Marchessault, et al. 1995), therefore they form a highly stable 

suspension that would be difficult to centrifuge, requiring high G-forces. A clear supernatant could 

be obtained only by extensive centrifugation (i.e., 15,000 g for 60 min, as suggested by (de Koning 

and Witholt 1997). 

In terms of versatility, ultra and micro filtration are perhaps the only methods able to match 

centrifugation processes, as shown in Fig. C.3.  

 

Low speed centrifuge 

5,000-10,000G 

Micron Particle Separation 

 

Microfiltration (MF) 

 

  

Ultra-centrifuge 

10,000-100,000 G 

Macro-molecule Separation 

Ultrafiltration (UF) 

Figure C.3: Comparison of centrifugation and filtration processes (Cheryan 1998) 
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The filter should be selected in order to retain even the smallest PHA granules (Retentate), according 

to a basically scheme, depicted in Fig. C.4. 

 

Figure C.4: Schematic representation for the recovery of PHA granules by UF/MF membranes 

(Gozke, et al. 2012) recovered PHB by electrofiltration, a hybrid process combining dead-end 

filtration and electrophoresis, in view of the high negative zeta potential (negative charge) of PHB 

granules. (de Koning, Kellerhals, et al. 1997) recovered PHA granules by using ceramic tubular 

membrane (0.1 μm), managing to get %PHA purity that exceeded 95%. In their research tubular 

membrane was used in a cross flow system, however their high capital cost makes them less 

economics than polymeric membranes.  

Table C.1 sows pressure driven membrane processes implemented for PHA recovery and documented 

in literature, since 1997. 

Table C.1: PHA Recovery by using MF/UF membranes: state of the art 

Ref. Membranes Apparatus Test conditions 
PHA Purity & 

Recovery 

Yasotha et al. (2006) 

PES (300 kDa) 

Sartocon Slice cassette (A=0.1 

m2) 

Cross flow UF and 

DF 
∆P=0.5, 1.0, 1.5 bar 

PurPHA=92.6%, 

REC=90% 

de Koning & Witholt,  

(1997) 

KERASEP, 0.1 μm (A=0.024 

m2) ceramic tubular membrane 
Cross flow ∆P=3 bar _ 

Gozke, et al., (2012) PES (Pall) 0.1 μm Dead-end  

Pin=1, 2, 4 bar 

Electric field=0,2,4 

V/mm 

_ 

 

Typically, once the optimum conditions for the enzymatic digestion treatments was decided, the 

solubilised non-PHA cell material was removed through crossflow ultrafiltration system with 

purification of PHA in water suspension through diafiltration system in a continuous mode, by 

replacing the non-PHA substances with water (Yasotha, Aroua, et al. 2006).  

Since mcl-PHA granules are not rigid particles, but soft polymer droplets with a tendency to coalesce, 

plugging of the filter pores and surface posed a serious problem, cross-flow filtration is a technique 

typically designed to cope with this problem, in addition regular back flushing can be applied to clean 

plugging (ceramic) filters. 
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Literature studies were performed exclusively on small membrane samples or even modules, and 

focused on both PHA production and recovery. 

The aim of this study is to evaluate the recovery feasibility by testing commercial polymeric UF/MF 

membranes. 

 

C.1.4 Experimental set up 

The simplest set up of the recovery process is one in which after fermentation, the fermentor content 

is heated to the sterilization temperature (121°C), and then rapidly cooled down to 55°C. The acidity 

is adjusted at pH=8.5, Alcalase, EDTA and SDS are added and enzymatic digestion starts. After this 

procedure fermentor is connected to UF/MF unit and filtration is started in diafiltration mode (CD), 

as suggested by (de Koning, Kellerhals, et al. 1997). 

For this preliminary study UF/MF membranes (delivered by Sepra S.r.l, and described in detail in 

Appendix B) were tested housed in a dead end Stirred cell (V=200 ml, A= 13.2 cm2, Pmax=7 bar), 

described in Appendix A: Materials & Methods. The following tests were performed: 

(i) Membrane screening, with water and non-PHA solution from Enzymatic digestion; 

(ii) Separation performances with PHA solution, derived from Chemical digestion. 

The first step is necessary to select the membrane that enable non-PHA flow through the membrane. 

Secondly the best membrane was tested with PHA solution. All experiments were performed in 

concentration mode. 

 

Non-PHA Recovery 

UF/MF membranes selected were tested firstly with pure water (pH 5.6) and then with non-PHA 

solution. The solubilized non-PHA cell material was removed through a dead-end stirred cell (initial 

feed volume 200 ml). The closed system does not allow to perform diafiltration operations, by 

replacing the non-PHA substances with water, thus non-PHA concentration was performed batchwise 

only. This approach was adopted to test membrane performance, compare non-PHA permeate fluxes 

with water fluxes (hydraulic permeability), and then evaluate if non-PHA is permeable. In order to 

optimize the conditions of concentration mode, the effects of permeate flux on pressure difference 

across the membrane (∆Pin) were tested, ranging from 0.5 to 2 bar. In this study a 100 kDa (PV400) 

and a 250 kDa (PV400R) PVDF membranes were tested. Results are shown in Fig. C.5 and C.6 a-b. 
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a)  b) 

Figure C. 5: non-PHA filtration tests- Membrane screening, with PV400 (100kDa)(a) and PV400R (250 kDa)  

membranes, room T(22°C), 5,000 rpm, ∆Pin=0.5-2.0 bar, dead-end stirred cell. 

 

a) b) 

Figure C.6. non-PHA filtration test. Experimental permeate flux as a function of Suspended Solid concentration (SS) in 

permeate (a) and retentate (b) side. PV400 (a) and (PV400R) (b) membranes, room T, 500 rpm, ∆P in ranging from0.5 

to 2 bar, dead-end stirred cell. 

Concentration polarization, as we expected, is a limiting factor in UF, indeed the solute retained by 

the membranes tends to accumulate at the surface of the membrane and constitutes an additional 

barrier to the passage of the permeable specie. Furthermore, high viscosities of non-PHA solution, 

limits mass transfer coefficient. 

The experimental results shown that for both membranes tested, concentration polarization occurred 

at all inlet pressures. As shown in Fig. C.5 a and C.6 a, from ∆Pin equal to 1 bar, permeate flux 

becomes quite independent from applied pressure, therefore, the optimum condition for maximal 

permeate flux was ∆Pin=1 and ∆Pin=1.2 for PV400 and PV400R respectively. 

Although permeate fluxes are very low, during permeation tests the enzymatically treated suspension 

concentration increases in permeate side (see Fig. C.6 a, PV400 membrane), and decrease in the Feed 

side (Fig. C.6 b, PV400R membrane). 

These behavior show that both membranes are permeable to non-PHA suspension, thus can improve 

PHA purity in retentate side. However, since PV400R membrane gives low reproducibility, PHA 

suspension has been tested on PV400 membrane. 
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PHA recovery 

Final recovery of PHA granules was achieve through dead-end stirred cell too. Concentration 

experiments were performed on PV400 membrane (more stable, compared to PV400R) at 50°C (in 

order to increase permeate fluxes). 

The effect of initial PHA concentration (ranging from 5 to 20 g/dm3) was studied on the performance 

separation of the membrane. Results are shown in Fig. C.7.   

a) b) 

Figure C.7: PHA Recovery. Permeate flux as a function of VCF (a) and PHA purity in retentate as a function of test 

number. PV400 (100 kDa) membrane. Dead-end stirred cell, 50°C, 500 rpm, c(t=0,PHA)=5 and 20 g/dm3, ∆Pin=3 bar 

 

Experimental data put in evidence an increase in PHA concentration and purity in retentate side: the 

higher increment was obtained at low initial concentrations (cPHA(t=0)=5 g/dm3), however the highest 

purity (>80%) was achieved at high initial PHA concentrations, as summarized in Tab. C.2. 

During tests permeate flux tend to decrease in view of the higher concentration: thus both 

concentration and PHA purity increase in retentate side. 

 

Table C.2: PHA purity in retentate during experimentation, initial concentration of PHA 5 and 20 g/dm3. PV400 (100 

kDa) membrane. Dead-end stirred cell, 50°C, 500 rpm, ∆Pin=3 bar 

 PHA° 5 g/dm3 PHA° 20 g/dm3 

#test PHA Purity in Retentate 

1 5.09 77.77 

2 4.51 83.34 

3 19.69 82.59 

 

Results obtained shown that: 

i) PHA recovery is achievable by UF/MF polymeric membranes; 

ii) In view of the concentration polarization, cross flow unit should be tested; 

iii) Higher membrane areas are necessary to confirm these behaviors; 

iv) Fouling is a key phenomenon, emphasized in a dead-end filtration unit 
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These results are comparable with those found in literature, however they represent only a preliminary 

step: a cross-flow UF should be suitable for producing a PHA latex. 

 

C.1.5 Integration between PHA and VFA   production 

As a fully biodegradable and biocompatible plastic, polyhydroxyalkanoate (PHA) is an interesting 

alternative to petrochemical derivate plastic due to their similar characteristics. 

PHA can be biosynthesized from renewable resources, allowing for a sustainable and closed-cycle 

process for the production and use of such polymers (Braunegg, Lefebvre and Genser 1998). 

Currently, PHA synthesis at industrial scale is based on microbial isolates and well defined substrates 

(Patnaik 2005). However, the cost of PHA produced thus is still too high for PHA to compete with 

the conventional plastic commodities. Economic evaluation showed that the production expense of 

PHA can be reduced over half if renewable waste materials and activated sludge were used (Serafim, 

et al. 2004). 

Above all, almost 30% of total PHA production cost is attributed to the carbon source (Salehizadeh 

and Van Loosdrecht 2004). Additionally, a great amount of excess sludge is generated daily 

worldwide. Handling, treatment and ultimate disposal of the excess sludge accounts for 40–60% of 

the total operational cost of an activated sludge treatment plant (Liu 2003). One strategy for excess 

sludge management is moving towards reutilization of sludge as useful resources, such as fermenting 

the excess sludge to generate carbon source for PHA production by pure culture (Lee and Yu 1997). 

Nowadays Volatile Fatty Acids (VFAs) is the most suitable substrate for PHA storage. PHA synthesis 

by activated sludge is possible to reduce PHA production cost, since its sterilization, equipment and 

control requirements are lower and the microbial communities in activated sludge can adapt well to 

the complex substrates present in the agro industrial wastes (Salehizadeh and Van Loosdrecht 2004).  

Basic and applied research on this field has been implemented in the past decade (Lemos, Serafim 

and Reis 2006).  

(Mengmeng, et al. 2009) investigated the feasibility of PHA production by activated sludge by using 

VFAs generated from excess sludge fermentation. VFA is a suitable carbon source for PHAs 

production [ (Serafim, et al. 2004) (Mengmeng, et al. 2009) (Albuquerque, et al. 2011)]. 

However, in some application (i.e. distillery for ethanol production) volatile solutes are known to 

inhibit fermentation, which makes their removal essential prior to their recycling [ (Lafon-

Lafourcade, Geneix and Ribereau-Gayon 1984), (Morin Couallier, Payot, et al. 2006)]. Acetic acid is 

one of the inhibitors in bioethanol production from the bioconversion of lignocellulosic materials. 
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The growth of fermentation microorganism and the production of ethanol are strongly affected by the 

presence of acetic acid in high concentration (Palmqvist and Hann-Hagerdal 2000). 

This study aimed to evaluate the application potential of Nanofiltration (NF) membranes for the 

rejection of volatile fatty acids and reuse for PHA fermentation, since VFAs are used as the carbon 

source for PHA accumulation 

 

C.2 Introduction to VFAs 

Organic acids are generally weak acids and are dissociated with regard to the pH in the solution as 

follows: 

aK
R H R H     

Where, R, H and Ka represent the carboxylic group, hydrogen ion and acidity constant, respectively. 

As rejection of weak acids and bases is highly pH-dependent, their retention in the NF process will 

be high in the ionized form. Thus, the organic acid rejection increases significantly at pH levels above 

the acidity constant (pKa), but the rejection decreases at pH levels below pKa (when the acids are in 

the neutral form). Since the pKa values of selected organic acids are below the pH range of 3-5, an 

increase of the rejection observed at a pH between four and nine could be explained by an increase 

in the degree of dissociation. On the other hand sieving effect plays an import role in the rejection of 

neutralized organic acids, as shown by (Choi, Fukushi and Yamamoto 2008).  

Volatile Fatty Acids (VFA) have important uses, as chemical intermediates and are central to the 

organic carbon cycling (Zacharof and Lovitt 2013). These acids, especially acetic, are key 

intracellular and extracellular metabolic intermediates. Consequently if carbon could be recovered in 

the form of VFA, this could represent an alternative, sustainable source of carbon based chemicals for 

industrial use, since these can be generated and recovered from organic degradation processes, such 

as fermentation and anaerobic digestion. Furthermore, these acids can be used as a substrate for a 

number of interesting biotransformations for sustainable production of chemical (Popken, Gotze and 

Gmehling 2000). In Tab. C.3 a list of the main Volatile Fatty Acids, their structures, molecular weight 

and pKa constants is summarized. 

Table C.3: Physical and Chemical properties and structures of Volatile Fatty Acids 

VFAs symbol MW (g/mol) Structure pKa 

Formic Acid FA 46.03 
 

4.74 

Acetic Acid AA 60.05  4.76 

Propionic Acid PA 74.08 
 

4.88 
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Butyric Acid BA 88.10  4.82 

Valeric Acid VA 102.15  4.82 

Caproic Acid 

(Esanoic A.) 
CA 116.16 - 4.88 

 

Although these VFAs present very similar acid dissociation constant (pKa), their size and molecular 

weight are very different, ranging from 46.03 to 102.15 g/mol. 

 

C.2.1 VFA recovery: state of the art 

According to numerous work published in the last few years, the use of NF as a downstream operation 

in organic acids production processes is expected to be a large and new application field of this 

technology. Organic acids (i.e. acetic, lactic, gluconic acid…) are increasingly used in food industries, 

are mainly produced by fermentation [ (Han and Cheryan 1995) (Timmer, Van der Horst and 

Robbertsen 1993) (Timmer, Kromkamp and Robbertsen 1994)]. Furthermore, the National 

Renewable Energy Laboratory (NREL)3 has identified some VFA (i.e. gluconic acid) as one of the 

top 30 building blocks for derivation of high-value chemicals. 

The integration of NF process can be investigated at different stages depending on the organic acid. 

On one hand, for high molecular weight organic acids, NF can be considered as a concentration step, 

on the other hand, NF can constitute a purification step in the case of low molecular weight organic 

acids. It was shown for instance that NF is an appropriate method for the downstream processing of 

sodium acetate while retaining nutrients, like glucose, can be recycled in the fermentation tank (Han 

and Cheryan 1995). 

The separation of organics acids from digested or fermented effluents or the discharged waste streams 

of these processes is not a straightforward process considering the complex physicochemical nature 

of these streams and the concentration of the acids in them. Often these effluents demand extensive 

pretreatment to make further processing workable (Masse, Masse and Pellegrini 2008). 

Within this context, membrane filtration can offer a feasible option towards a cost effective 

fractionation and recovery of VFA.  

The low molecular mass and the chemical properties of the VFA makes NF attractive choice [ 

(Bouchoux, Roux-de Balmann and Lutin 2005), (Choi, Fukushi and Yamamoto 2008)]. However, for 

certain applications, fermentation-derived organic acids contain too many impurities and are usually 

too dilute.  

                                                 
3http://www.nrel.gov/docs/fy04osti/35523.pdf  

http://www.nrel.gov/docs/fy04osti/35523.pdf
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In the literature, there are a lot of reports on the use of Nanofiltration for downstream processing of 

acetates, as well as  many authors investigated the performance of NF membranes on enrichment and 

concentration of VFA as well as the influence of pH on the separation., as shown in Tab. C.4 Table 

D.4 focused particularly on VFA solutions (type and concentration of VFA), membrane type and 

configuration, operating conditions, as well as the influence of applied pressure, temperature and pH 

on permeate flux and rejection. 

 

Table C.4: VFA recovery by NF applications: State of the art 

VFA 

VFA 

Concentration 

(g/dm3) 

Membrane Configuration & Area  Test conditions Ref. 

Acetic A. 

(+ glucose) 
10 

DS5, DS7 (Desal); NF40, FT30 

(Dow); CA, PZ, TLC (Fluid 

Systems), MPF20, MPF50 (Kiryat-

Weizmann); NTR729, NTR759 

(Nitto-Denko); MX07 (Osmonics) 

Dead-end stirred cell, 

A=0.00145 m2 

T=30-50°C 

P=0-27.6 bar 

pH=2.7-5.8 

(Han and Cheryan 

1995) 

Acetic A. 0.01 ES20 (Nitto-Denko) 
Flat sheet, Cross flow 

module, A=0.006 m2 

 T=25°C, P=2.9 

bar, pH=3-9 

(Ozaki and Li 

2002) 

Acetic A.  

(+ xylose) 

2-10 (AA) + 20-

100 (xylose)  
Desal-5 DK 

1812-47mil Spiral 

Wound, 0.2 m2  

T=25°C, P=4.9-

24.5 bar; 

pH=4.9-6.9-9.1 

(Weng, et al. 

2009) 

Acetic A.  

+ xylose + 

glucose 

2-10 (AA) + 10-

50 (xy) + 4-20 

(glu) 

Desal-5 DK (GE) , Alfa Laval NF 

(Alfa Laval), R098pHt, RO99 (Alfa 

Laval) 

Plate & frame DSS 

LABSTACK, 0.0174 m2 

T=25-40°C, 

P=20-50 bar 

(Zhou, Wang and 

Wei 2013) 

Acetic A.  

+ xylose + 

glucose 

2-10 (AA) + 10-

50 (xy) + 4-20 

(glu) 

R098pHt (Alfa Laval) 
Plate & frame DSS 

LABSTACK, 0.0174 m2 

T=25-

40°C,P=10-40 

bar; pH=3-10 

(Zhou, Wang and 

Wei 2013) 

Acetic A. 0.01-0.015 NF-90, NF-200 (Dow/Filmtec) 
Flat sheet, SEPA II cross 

flow, A=0.0138 m2 

P=5.5 bar, 

pH=3-10  

(Bellona and 

Drewers 2005) 

Lactic A. + 

Acetic A. + 

Amino Acids 

20.4 (LA)+ 3.31 

(AA) + 

19.3(amino 

acids) 

DK, DL, HL, FT NF 270,HT, KO 

MPF35 
Flat sheet, A=0.0127 m2 

T=25°C 

P=15-25 bar 

pH 2.5-5.5 

(Eecker, Raab and 

Haraseka 2012) 

Formic A., 

Acetic A., 

Propionic A., 

Succinic A., 

Citric A. 

0.5 

 

Flat sheet NF270 (Dow/Filmtec), 

ES10 (Nitto Denko) 

Cross flow unit, A=0.006 

m2 

T=25°C, P=2.8 

bar, pH 3-9 

(Choi, Fukushi 

and Yamamoto 

2008) 

Acetic A., 

Butyric A. 

1.3 (AA) 1.4 

(BA) 

NF270 (Dow), HL, DL, DK 

(Osmonics), LF10 (Nitto-Denko) 

Dead-end attired cell, 

Sterlitech HP4750, 

A=0.00146 m2 

P=0-20 bar,  

pH 4-9 

(Zacharof and 

Lowitt 2014) 

Acetic A., 

Propanoic 

A., Butyric 

A. 

0.615 (AA), 

0.090 (PA), 

0.058 (BA) 

SG, SE, CE (Osmonics); BW30, 

BW30LE (Filmtec); ESPA2, CPA2, 

LFC30 (Hydranautics) 

Plate & Frame DSS 

LABSTACK M20-072 

(Novasep), A=0.036 m2 

T=25-50°C, 

P=30 bar, pH 

3.4-10 

(Sagne, Fargues, 

et al. 2008) 

Acetic A., 

Propanoic 

0.8593 (AA), 

0.0851 (PA), 

CPA2, ESPA2 (Hydranautics); 

BW30 (Dow) 

Spiral wound 2540, 

A=2.6 m2 

T=20°C, P=5-30 

bar, pH 3.5-9 

(Sagne, Fargues, 

et al. 2010) 
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A., Valeric 

A., Butyric 

A., Caproic 

A. 

0.2399 (BA), 

0.0548 (VA), 

0.0329 (CA) 

Formic 

A.,Acetic A., 

Propionic A., 

Butyric A., 

Valeric A.,  

Hexanoic A. 

<0.028 (FA), 

<0.016 (AA), 

<0.015 (PA), 

<0.015 (BA), 

<0.015 (VA), 

<0.01 (HA) 

Filmtec FT30 (Dow) 
DSS LABSTACK M20-

0.72, A=0.18 m2 

T=25-30°C, 

P=40 bar, pH 

3.0, 5.2, 7.5, 

10.0 

(Morin Couallier, 

Salgado Ruiz, et 

al. 2006) 

Formic A., 

Acetic A., 

Propionic A., 

Butyric A., 

Valeric A. 

0.46 (FA),  

0.6 (AA),  

0.7 (PA),  

0.8 (BA), 

 1.0 (VA) 

TR70-2514F 

Spiral Wound module 

(Sampas Membrantechnik 

GmbH), A=0.7 m2 

T=18-22°C, 

P=10 bar, pH 2-

2.4 

(Laufenberg, 

Hausmanns and 

Kunz 1996); 

(Hausmanns, 

Laufenberg and 

Kunz 1996) 

Valeric A. (+ 

wastewater 

stream) 

0.5-25 
PCI Membrane Systems AFC99 

(PA) tubulat 
A=0.9 m2 

T=20°,40°C, 

P=13-60 bar 

(Rodriguez, et al. 

2000) 

 

Different applications have been discussed and typically membranes performances have been 

investigated as a function of pressure, concentration, temperature, and the presence of other media 

components, however in such separations pH plays a key role in the rejection of VFAs. Many authors 

[ (Choi, Fukushi and Yamamoto 2008), (Ozaki and Li 2002)] also reported a significant influence of 

pH levels on the retention of various organic acids retentions during NF. (Bellona and Drewers 2005) 

reported the role of membrane surface charge on the rejection of organic acids by NF membranes in 

a single-solute solution, and others dealt with the influence of pH on the rejection of organic acids in 

multicomponent systems [ (Hausmanns, Laufenberg and Kunz 1996), (Laufenberg, Hausmanns and 

Kunz 1996)), (Sagne, Fargues, et al. 2008)]. 

(Timmer, Van der Horst and Robbertsen 1993) reported on the Nanofiltration of lactic acid; (Eecker, 

Raab and Haraseka 2012) used NF for the separation of Lactic Acid (LA) from amino acids in a 

“Green Biorefinery” pilot plant. (Rodriguez, et al. 2000) studied the feasibility of separate Valeric (n-

pentanoic) acid (VA, 102.13 g/mol) from a wastewater stream from a nylon manufacturing process. 

In this study acid rejection and permeate flux as a function of temperature, acid concentration and 

transmembrane pressure were investigated. 

A lot of study investigate Nanofiltration as a method for downstream processing of acetate 

fermentation broth. (Han and Cheryan 1995) were the first to study the separation of acetic acid from 

sugar. They firstly separated acetic acid from glucose, founding that pH is a major factor influencing 

the separation. In general, there is a correlation between rejection of acetate and the degree of 

dissociation of acetic acid, as determined from the Henderson-Hasselbach equation.  
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Many studies dealt with VFA-sugar separation: (Weng, et al. 2009) used a NF membrane (Desal-5 

DK) to separate acetic acid from xylose, using a synthetic acetic acid-xylose solution as the model. It 

was found that both the solution pH and the applied pressure affected the separation performance (a 

high separation factor (>5) was observed at high pressure and low pH; in addition, negative retention 

of acetic acid was observed only in the presence of xylose. These results suggested that intermolecular 

interactions play an important role in the separation of xylose and AA. (Teella, Huber and Ford 2011) 

examined the feasibility of removing acetic acid from glucose at high feed concentration (7 wt% 

acetic acid and 15 wt% glucose) by Nanofiltration and reverse osmosis. 

(Zhou, Wang and Wei 2013) in their work focused on the separation of acetic acid from 

monosaccharides, due to its toxicity for sugar fermentation. In this study the feasibility of 

simultaneous acetic acid separation and sugar concentration was evaluated, by using synthetic xylose-

glucose-acetic acid model solution. 

However the effects that several organic acids can have on each other have not been examined so far. 

Just (Hausmanns, Laufenberg and Kunz 1996) and (Laufenberg, Hausmanns and Kunz 1996) studied 

the interaction of acetic acid with 26 further acids in a RO application. It was concluded that the 

rejection of acetic acid was improved considerably in presence of propionic and butyric acid, as a 

consequence, it can be said that such interactions take place in VFA mixtures. 

 

From the state of the art documented in Tab. C.4 we may conclude that: 

i) a wide literature exists on VFAs recovery by NF, for different applications; 

ii) ∆P, pH, T and concentration seem to be crucial parameters for VFAs recovery; 

iii) For the most part small membrane samples have been tested. 

 

The overall objective of this preliminary research was to investigate the feasibility of using 

nanofiltration for the recovery and fractionation of VFA, depending on pH and organic compound.. 

 

C.2.2 VFA Nanofiltration: Results and Discussion 

Experiments were carried out in NF-unit (described in Appendix A) in order to study the influence of 

different parameters, first of all pressure, feed concentration and feed pH on the membrane 

performances. Since previous researches have highlighted the possibility of enhancing the retention 

process by altering the pH of the solutions, pH was adjusted from 4 to 3.5 to investigate the influence 

of pH on flux and acid retention. 

The rejection of the compounds under study were calculated as follows: 
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,

,

,

1 100
P VFAi

obs VFAi

bulk VFAi

c
R

c
    (C.1) 

Where cP,VFAi and cbulk,VFAi represent VFA concentration in the permeate and in the bulk solution 

respectively. The values obtained are shown as a function of permeate flux, Jv,exp. Volumetric flux of 

permeate was expressed in [dm3/(hm2)], in the form of: 

,exp
P

v

Q
J

A
   (C.2) 

Where Qp is the permeate flow rate (dm3/h) across the effective membrane area A (m2). 

To investigate the influence of applied pressure on the rejection of selected VFA, the pressure was 

varied from 4.4 to 24.4 bar at a total feed concentration of 10 g/dm3. In all the experiments 

temperature was set to 50°C, in order to decrease feed viscosity. 

First experiments were carried out at pH 4. For both membranes, the level of applied pressure seems 

to have little influence on the VFAs rejection as shown in Fig. C.8 a-d. 

a)  b) 

c)   d) 

Figure C.8: Nanofiltration of model solutions of VFAs. Experimental permeate fluxes (Jv,exp) as a function of applied 

pressure(a,c), and observed rejections (Robs,i) as a function of experimental permeate fluxes (Jv,exp)(b, d). Radial flow 

test cell, 50°C, pH 3.5 and 4, flow rate 400 dm3/h, total recirculation mode of R and P. 

 

The rejection coefficients obtained during tests at pH 4 were higher for Caproic, Valeric and Butiric 

acids. Since the pKa values of the compounds is higher than 4, the rejection can be attributed to sieving 

effect, and this explains why the higher the molar mass of acids, the greater the retentions. Rejection 
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values are higher with GE-AK membrane (80% compared to 15% for GE-DK), as expected from 

permeate fluxes. 

To demonstrate the role of the sieving effect on VFAs below pKa, we have investigated observed 

rejections as a function of molecular weight of compound (ranging from 60.05 for Acetic Acid to 

116.16 for Caproic Acid) at pH 4. The results shown that sieving effect plays an important role for 

GE-AK membrane. As already mentioned in literature, as the larger the acid, the higher its rejection. 

(Ozaki and Li 2002), (Sagne, Fargues, et al. 2008). 

 

Figure C.9:  Observed rejection as a function of VFAs MW for GE-DK and GE-AK membranes, at 50°C and pH 4 

The effect of pH on both permeate fluxes and rejections was ambiguous. From literature the rejection 

of acids (particularly acetic and propionic acids) increased with the pH, because of the increased 

electrostatic repulsion between the ionized form of the acids and the negatively charged membranes 

(Ozaki and Li 2002). 

Thus we would have expected at lower pH (3.5) higher fluxes and lower rejections. For both 

membranes, the flux becomes smaller (see Fig. C.8 a, c) when the pH of the solutions decreased from 

4 to 3.5, at the same time, despite the pressure increases, permeate flux reaches an asymptotic value, 

corresponding to very high rejection values. The flux reducing was linked to the increase in the 

observed retention, thus the concentration polarization and the fouling on the membrane surface, 

although the osmotic pressure calculated with proper correlations was negligible (less than 1 bar). 

By analyzing experimental data, it seems that membranes fouled very quickly during the tests, 

impairing the results obtained. High operating pressure generally results in high permeate flux; 

however the low pressure range is able to prevent undesired rapid membrane fouling caused by a 

higher permeate flux when treating VFA solutions. 

Membrane fouling was observed under the experimental conditions tested. Because of the different 

permeability offered by the two membranes, GE-DK membrane showed a higher fouling caused by 

a higher permeate flux. 

Separation efficiency vas evaluated for both membranes, in terms of VFAs purity in feed and permeate 

side, as shown in Fig. C.10. 
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a) b) 

Figure C.10: Comparison between VFAs purity in the feed and permeate side. Radial flow test cell, 50°C, pH 3.5 and 4, 

flow rate 400 dm3/h, total recirculation mode of R and P. 

GE-AK membrane were identified as the best candidate for VFAs separation and concentration. 

Although GE-DK membrane offered high permeate fluxes, no VFAs separation was achieved with 

this membrane, thus this membrane is unattractive for use as a separation step, however it can be used 

as a concentration step, or even testes at high pH values (with pH>pKa). 

 

C.3 Conclusions 

From the results obtained, it is evident that UF and NF/RO are effective tools for the recovery of PHA 

and VFAs respectively.  

Although studies presented are preliminary, gave interesting information. The recovery and 

purification of PHA in water suspension can be improved with a cross flow configuration, limiting 

concentration polarization, and operating in diafiltration mode, required in order to obtain a PHA 

latex, for which application PHA purity should be higher than 90%. 

Secondly, VFA recovery by Nanofiltration seems to be attractive in order to recycle volatile fatty 

acids in the PHA fermentation process. 

In the pH range investigated, the degree of retention of the compounds tested depended upon the 

membrane and the molecular weight of VFA, confirming that at pH lower than pKa, separation is 

governed by sieving effects. Tests at higher pH are required to improve VFA concentration. 

Based on the above mentioned results further investigations, especially about pH effect on retention, 

are required, since the pH is expected to improve the performance of the process. Furthermore it is 

necessary to optimize the operating parameters (pressure, recovery, fouling) on spiral wound 

membranes, more representative of industrial treatment conditions. 

However our work suggest that membrane processes are attractive to be integrated in a biotechnology 

system, although some drawback exist, like membrane fouling and high concentration polarization.  
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In this Appendix some experimental data, presented and discussed in detail in Chapter 3 (Food 

Applications) and Appendix C (Biotechnology Applications), is documented, in order to show the type 

of experimentation perfomed. 

 

D.1 Oligosaccharide NF 

D.1.1 GE-DK, Radial flow test cell, Single Solute  

DX GE-DK 10 g/dm3 30°C pH 4 

ΔP (bar) 
Jv 

(dm3/(hm2)) 
Cbulk(g/dm3) CP (g/dm3) CI (g/dm3) Robs % Rreal % 

ΔP-Δπbulk 

(bar) 

ΔP-σvΔπeff 

(bar) 

4,2 20,26 11,11 2,19 12,31 80,26 82,19 2,87 2,83 

6,3 35,08 11,36 1,49 14,11 86,84 89,41 4,84 4,59 

10,3 61,03 11,36 1,10 16,86 90,35 93,50 8,78 8,16 

22,25 130,34 11,26 0,85 27,06 92,48 96,87 20,71 18,66 

26,2 159,25 11,01 0,65 32,81 94,12 98,03 24,67 21,77 

         

FR GE-DK 10 g/dm3 30°C pH 4 

ΔP (bar) 
Jv 

(dm3/(hm2)) 
Cbulk(g/dm3) CP (g/dm3) CI (g/dm3) Robs % Rreal % 

ΔP-Δπbulk 

(bar) 

ΔP-σvΔπeff 

(bar) 

4,3 24,17 10,15 2,44 11,40 75,95 78,58 3,17 3,13 

6,4 38,59 10,05 1,89 12,57 81,16 84,93 5,21 5,00 

10,45 64,25 9,85 1,84 14,37 81,29 87,17 9,28 8,81 

22,25 142,52 10,05 1,25 25,19 87,61 95,06 20,98 19,07 

26,25 168,19 10,10 1,10 30,55 89,15 96,41 24,95 22,31 
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ML GE-DK 10 g/dm3 50°C pH 4 

ΔP (bar) 
Jv 

(dm3/(hm2)) 
Cbulk(g/dm3) CP (g/dm3) CI (g/dm3) Robs % Rreal % 

ΔP-Δπbulk 

(bar) 

ΔP-σvΔπeff 

(bar) 

3,45 30,79 9,57 0,30 11,48 96,90 97,42 2,73 2,582 

5,5 50,66 9,82 0,30 13,26 96,98 97,77 4,76 4,492 

7,5 70,29 9,92 0,30 15,07 97,01 98,03 6,75 6,350 

9 88,68 10,17 0,30 17,27 97,08 98,28 8,23 7,677 

11,05 106,09 10,32 0,30 19,49 97,13 98,48 10,27 9,552 

19,7 175,67 10,57 0,25 30,80 97,66 99,20 18,90 17,294 

23,7 210,17 10,72 0,30 38,79 97,23 99,24 22,89 20,649 

         

D.1.2 GE-DL, SW1812-34, Single Solute 

DX GE-DL 30°C 50 g/dm3 pH 4 

ΔP (bar) Jv (dm3/(hm2)) Cbulk(g/dm3) CP (g/dm3) CI (g/dm3) Robs % Rreal % 
ΔP-Δπbulk 

(bar) 

ΔP-σvΔπeff 

(bar) 

2,13 1,11 48,64 28,82 49,00 40,75 41,19 -0,78 -0,69 

3,13 1,82 48,88 23,76 49,64 51,39 52,13 -0,54 -0,47 

5,18 4,33 49,16 14,09 51,74 71,35 72,78 0,10 -0,01 

8,18 12,13 49,23 7,04 58,58 85,70 87,99 2,11 1,07 

10,18 18,02 48,99 5,45 64,14 88,88 91,51 3,93 2,06 

14,33 27,53 48,85 4,52 74,73 90,74 93,95 7,97 4,52 

18,43 40,70 49,09 3,83 94,08 92,20 95,93 11,94 5,57 

         

DX GE-DL 10 g/dm3 30°C pH 4 

ΔP (bar) Jv (dm3/(hm2)) Cbulk(g/dm3) CP (g/dm3) CI (g/dm3) Robs % Rreal % 
ΔP-Δπbulk 

(bar) 

ΔP-σvΔπeff 

(bar) 

3,18 20,85 9,92 0,96 13,31 90,37 92,82 1,94 1,56 

8,18 49,80 10,09 0,69 20,96 93,14 96,70 6,88 5,50 

13,33 74,10 10,06 0,66 30,38 93,45 97,83 12,03 9,37 

18,43 96,04 9,96 0,76 42,19 92,39 98,20 17,16 12,84 
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D.1.3 GE-DK, Radial flow test cell, Mixtures 

GE-DK DX+ML 5 + 10 gdm-3 50°C pH 4 

ΔP Jv (dm3/(hm2)) 
Cbulk  DX 

(g/dm3) 

Cbulk  ML 

(g/dm3) 

Cbulk,TOT 

(g/dm3) 

CP DX 

(g/dm3) 

CP ML 

(g/dm3) 

CP,TOT 

(g/dm3) 

CI DX 

(g/dm3) 

CI ML 

(g/dm3) 

Robs DX 

% 

Robs ML 

% 

Rreal DX 

% 

Rreal ML 

% 

ΔP-

Δπbulk 
(bar) 

ΔP-

σvΔπeff 
(bar) 

3,45 22,40 4,81 11,50 16,32 0,44 0,08 0,52 5,29 13,09 90,96 99,27 91,78 99,35 1,92 1,76 

5,45 40,62 4,81 11,50 16,32 0,85 0,04 0,89 5,63 14,56   99,62   99,70 3,98 3,65 

7,50 60,30 4,81 11,50 16,32 0,16 0,04 0,20 6,31 16,33 96,61 99,69 97,42 99,78 5,93 5,37 

9,50 79,58 4,81 11,50 16,32 0,15 0,02 0,18 6,89 18,29 96,82 99,80 97,78 99,87 7,93 7,13 

11,50 95,43 4,81 11,50 16,32 0,00 0,00 0,00 7,50 20,09 100,00 100,00 100,00 100,00 9,90 8,88 

19,70 164,00 4,81 11,50 16,32 0,00 0,00 0,00 10,36 30,22 100,00 100,00 100,00 100,00 18,10 15,87 

23,75 195,41 4,81 11,50 16,32 0,00 0,02 0,02 12,05 36,52 100,00 99,83 100,00 99,95 22,16 19,17 

27,95 228,73 4,81 11,50 16,32 0,00 0,00 0,00 14,19 44,92 100,00 100,00 100,00 100,00 26,35 22,38 

                

11,50 110,24 26,10 3,03 29,13 3,41 0,00 3,41 38,38 5,32 86,94 100,00 91,12 100,00 8,14 6,02 

19,70 201,72 26,10 3,03 29,13 2,80 0,00 2,80 57,79 9,08 89,28 100,00 95,16 100,00 16,25 10,87 

24,75 248,91 22,85 2,58 25,43 2,74 0,00 2,74 66,30 11,02     95,87 100,00 21,56 14,42 

 

D.1.4 SW1812 GE-DL, Mixtures 

Dextrose + Xylose SW1812 GE-DL 50 gdm-3 30°-50°C pH 4 

DX+XY 30°C pH 4  

ΔP Jv (dm3/(hm2)) 
Cbulk  DX 

(g/dm3) 
Cbulk  XY 
(g/dm3) 

Cbulk,TOT 
(g/dm3) 

CP DX 
(g/dm3) 

CP XY 
(g/dm3) 

CP,TOT 
(g/dm3) 

CI DX 
(g/dm3) 

CI XY 
(g/dm3) 

Robs 
DX % 

Robs XY 
% 

Rreal 
DX % 

Rreal 
XY % 

ΔP-

Δπbulk 

(bar) 

ΔP-

σvΔπeff 

(bar) 

3,18 2,21 27,16 27,64 54,80 10,30 20,79 31,09 27,79 27,89 62,07 24,78 62,93 25,46 -2,12 -0,29 

5,18 4,57 26,68 27,26 53,94 6,37 16,38 22,74 28,28 28,11 76,14 39,93 77,49 41,74 -1,19 0,39 

8,18 10,96 26,83 27,45 54,28 3,46 11,10 14,56 31,51 30,68 87,12 59,56 89,03 63,82 0,87 1,33 

10,18 16,25 26,89 27,49 54,38 2,65 9,11 11,76 34,45 33,16 90,15 66,86 92,32 72,52 2,61 2,11 

13,33 24,66 27,06 27,83 54,89 2,09 7,55 9,64 39,93 38,14 92,27 72,88 94,76 80,21 5,51 3,40 

18,38 36,28 26,73 27,89 54,62 1,78 6,53 8,31 48,10 45,93 93,34 76,58 96,30 85,78 10,50 5,86 
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D.2 PHA/non-PHA Recovery by UF 

D.2.1 PV400 (100 kDa) membrane 

PV400 (100 kDa), non-PHA, room T, 500 rpm ∆Pin 0.5 bar  PV400 (100 kDa), non-PHA, room T, 500 rpm ∆Pin 1 bar  PV400 (100 kDa), non-PHA, room T, 500 rpm ∆Pin 1.5 bar 

  
SS conc Feed 

(g/dm3) 
V (dm3)      

SS conc 

Feed 

(g/dm3) 

V (dm3)      
SS conc Feed 

(g/dm3) 
V (dm3)   

Feed (t0) 9,35E-05 0,20    Feed (t0) 9,15E-05 0,20    Feed (t0) 8,95E-05 0,20   

Feed (tf) 1,00E-04 0,16    Feed (tf) 1,19E-04 _    Feed (tf) 1,09E-04 _   

              

time (min) ∆P (bar) 
Jv 

(dm3/hm2) 

SS Perm. Conc. 

(g/dm3) 
 time (min) ∆P (bar) 

Jv 

(dm3/hm2) 

SS Perm. 

Conc. 

(g/dm3) 

 
time 

(min) 
∆P (bar) Jv (dm3/hm2) 

SS Perm. 

Conc. 

(g/dm3) 

2 0,55 47,74 5,65E-05  5 1 59,08 _  10 1,5 64,42 0,00 

14 0,55 35,54 5,86E-05  25 1 42,87 6,53E-05  30 1,5 38,42 7,34E-05 

30 0,55 30,35 5,92E-05  60 1 35,23 6,86E-05  60 1,5 35,18 7,40E-05 

50 0,55 25,42 6,12E-05  90 1 31,61 7,07E-05      

 

D.3 VFAs Recovery 

D.3.1 GE-DK pH 4 

GE-DK 50°C pH 4 400 dm3/h 

Feed Permeate 

T (°C) Pin (bar) ∆Pin (bar) 

AA 

conc 
(g/dm3) 

PA 

conc. 
(g/dm3) 

BA 

conc. 
(g/dm3) 

VA 

conc.(g/dm3) 

CA 

(g/dm3) 

VFAs 

conc 
(g/dm3) 

Jv,exp 

(dm3/hm2) 

AA 

conc 
(g/dm3) 

PA 

conc. 
(g/dm3) 

BA 

conc. 
(g/dm3) 

VA 

conc.(g/dm3) 

CA 

(g/dm3) 

VFAs 

conc 
(g/dm3) 

AA 

Robs% 

PA 

Robs% 

BA 

Robs% 

VA 

Robs% 

CA 

Robs% 

Robs,tot 

% 

49,83 4,40 3,50 2,28 2,40 2,09 2,29 2,00 11,05 44,04 2,19 2,31 2,02 2,12 1,85 10,50 3,78 3,59 3,34 7,29 7,16 4,99 

49,86 9,40 8,45 2,35 2,41 2,16 2,28 1,94 11,13 96,71 2,16 2,21 1,95 2,05 1,69 10,05 8,06 8,27 10,04 10,27 12,60 9,73 

49,70 14,40 13,45 2,37 2,43 2,15 2,24 1,93 11,12 146,71 2,15 2,25 1,91 1,96 1,75 10,02 9,28 7,13 11,29 12,61 9,30 9,87 

49,40 19,40 18,85 2,39 2,45 2,17 2,26 1,91 11,17 177,90 2,13 2,24 1,96 1,94 1,72 9,98 11,05 8,73 9,37 14,22 9,84 10,65 

51,60 24,40 24,20 2,43 2,46 2,20 2,26 1,96 11,32 199,52 2,07 2,16 1,91 1,93 1,65 9,72 14,80 12,51 12,97 14,64 15,95 14,11 
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